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Geared toward the problems of predicting the unsteadily changing single oil well production in water flooding reservoir, a
machine learning model based on CNN (convolutional neural network) and LSTM (long short-term memory) is established
which realizes precise predictions of monthly single-well production. This study is considering more than 60 dynamic and
static factors that affect the changes of oil well production, introduce water injection parameters into data set, select 11 main
control factors, and then, build a CNN-LSTM model optimized by Bayesian optimization. The effectiveness of the proposed
model is verified in a realistic reservoir. The experiment results show that the prediction accuracy of the proposed model is
over 90%, which suggests a penitential application in an extensive range of applications. Production forecasting by the
developed model is simple, efficient, and accurate, which can provide a guidance for the dynamic analysis of a water flooding
reservoir, and work as a good reference of the development and production of other types of reservoirs.

1. Introduction

Oil production prediction runs through the entire develop-
ment course of a water-driven oilfield; it is the foundation
of the well stimulation and plays an important role in
making investment decisions. For a long time, the main
production prediction methods are reservoir numerical sim-
ulation, mechanism model, and decline curve analysis,
which have their respective advantages and disadvantages.
Since the 1990s, fuzzy comprehensive evaluation (FE), BP
neural network (BPNN), grey model (GM), and other
methods have been applied to oilfield production prediction
[1, 2]. Recently, with the maturity and wide application of
big data, artificial intelligence, and other technical theories
and methods, more and more intelligent algorithms have
been introduced into the petroleum industry, providing a
new way to solve complex engineering problems [3, 4].

As a nonlinear fitting method, machine learning can
learn rules from data and make a prediction. In the past 20
years, there has been extensive research on production
prediction based on machine learning. Common methods
include random forest (RF), support vector machine
(SVM), fuzzy comprehensive evaluation (FE), artificial neu-
ral network (ANN), and autoregressive integrated moving
average model (ARIMA) [5–14]. These classical machine
learning methods have been fully applied in the field of
petroleum industry and show strong vitality.

Y. Duana et al. use RTS (Rauch Tung Striebel) to smooth
the gas production series, and then, an ARIMA model was
established to predict the gas production [6]. J. Gu et al.
proposed an oil well production prediction model which
combines ARIMA and Kalman filter to eliminate the
influence of nonsynchronicity and hysteresis [7]. Viet
Nguyen-Le et al. propose 3 ANN models to predict the
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parameters in Arps’s hyperbolic decline and then recon-
structs the production profile [13]. Y. Zhu et al. established
an “ε-SVM” production prediction model based on sequen-
tial minimal optimization (SMO) algorithm using produc-
tion records and bottom hole pressure data [14].

Since 2015, the recurrent neural networks represented by
long short-term memory (LSTM) and gated recurrent unit
(GRU) become a new hot spot in the field of production pre-
diction [15–22].

L. Zhang et al. proposed a GRU-FNN model to predict
single-well production in water drive oilfield [23]. X. Song
et al. adopted particle swarm optimization (PSO) to opti-
mize the basic structure of LSTM model and achieved better
model performance [24]. Weiss applied fuzzy ranking and
neural network to establish correlations to predict oil pro-
duction [25]. H. Wang et al. established a production predic-
tion model for high-water-cut oil fields considering both
timing and engineering factors based on LSTM and
increased the input features to 17 items, with a relative error
of only 1% [26]. Sagheer et al. compared the application
effects of simple RNN and LSTM in oil and gas production
predictions, verified that LSTM had better performance than
simple RNN [27].

All the predictions made in the above studies are pretty
accurate, but there is still room for further improvements.
First, most of the works are aimed at predicting the total
production of a reservoir or an oilfield, few research focused
on the single-well production prediction. In fact, accurately
predicting the production of single well is not easy because
the fluctuation of single-well production is more irregular
and more drastic than that of the block/reservoir produc-
tion. Also, there are too many factors affecting single-well
production, and we can hardly analyze them clearly. Second,
in most studies, the production series is divided into 3 seg-
ments based on time, the earlier one for training, the middle
one for validating, and the latest one for testing. However, as
we all know, the production changes of oilfield/oil well have
significant stages, and the early stage, middle stage, and late
stage have different dominant control factors or rules of
change. Learning the rules in early stage and predicting the
production changes in late stage are bound to cause errors.
Finally, there are few studies that consider both dynamic
and static characteristics in time series prediction. Based

on these considerations, to achieve accurate single-well pro-
duction prediction in water flooding oilfield, the data set was
built considering over 60 geological and development factors
that affect oil well production. The influence of the water
injection on oil production is also quantified and added to
the data set as a feature. The missing data are filled in accor-
dance with the industry knowledge and the distribution pat-
tern of data. Secondly, the feature correlation analyses
tailored to time series prediction are carried out, through
which 11 dominant control factors of oil well production
are selected to build the samples. The production prediction
model is established based on a one-dimensional convolu-
tion neural network and a long short-term memory neural
network, and the model hyperparameters are optimized by
Bayesian optimization. Finally, an example numerical test
is carried out in a practical reservoir. Results show that the
CNN-LSTM model has better performance compared with
the Bi-LSTM model, Attention-LSTM model, or any other
models. Production forecasting by the developed model is
simple, efficient, and accurate, which can provide a guidance
for the dynamic analysis of a water flooding reservoir and
work as a good reference of the development and production
of other types of reservoirs.

2. Methodology

2.1. LSTM and Conv1D. LSTM (long short-term memory)
can be the most successful recurrent neural network
(RNN) nowadays. Its unique design of gate structure and cell
state makes it possible to capture long-term dependencies,
which is also the key to its great success. As shown in
Figure 1, different from the other simple RNN units, there
are three gates in the LSTM cell unit: forgetting gate, input
gate, and output gate. In each time step, LSTM cells will par-
tially pass the information to the next step and retain some
information in the cell as the cell state, which is the key for
LSTM to achieve long-term memory. LSTM neural network
performs well in the field of time series prediction [28].

Conv1D (1-dimensional convolutional neural network)
is famous in the areas of image recognition, but in recent
years, people find that 1-dimensional CNN (Conv1D) can
well accomplish the task of time series prediction and even
outperforms LSTM and other time series prediction models

ht+1

ht+1

ht

ht

ht–1

ht–1

tanh

tanh

×

𝜎𝜎𝜎

×

× +

tanh

tanh

×

𝜎𝜎𝜎

×

× +

tanh

tanh

×

𝜎𝜎𝜎

×

× +

Figure 1: The basic structure of LSTM cell. In each cell unit, long-term information and short-term information are conveyed, respectively.
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in certain cases. When Conv1D is used for time series pre-
diction, the inputs, n temporal steps with m features, can
be viewed as an image of size of n ×m, and Conv1D can
extract a new image from the input data by scanning and
calculating in one direction. Changing the number of filters
and the size of convolutional kernels, we can easily control
the size of outputs (see Figure 2). It should be noted that
the convolution kernel of Conv1D is also 2-dimensional,
but it can only slide windows in one direction, and that is
the difference between Conv1D and 2-dimensional convolu-
tional neural network.

2.2. Spearman Correlation Coefficient. Spearman correlation
coefficient, also known as the rank correlation coefficient, can
measure the degree of nonlinear correlation between two fea-
tures and is a method to analyze the correlation between two
variables. Spearman correlation coefficient is calculated as in

ρ =
∑n

i=1 xj − �x
À Á

yj − �y
� �
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Figure 2: Diagram of Conv1Ds. For the inputs sized m × n and a Conv1D layer with k filters, the outputs’ size is k × n. Using multiple
Conv1Ds, the final output size is 1 × n. The model illustrated in this figure wants to predict production for the next three months, that
is, it wants three outputs, which we achieve using a simple dense layer containing three neurons.

Table 1: Initial data set. The italicized items are category features which need to be one-hot encoding.

Well basic data
Reservoir data of well

Name X_coordinate Y_coordinate Depth

Unit Layer Start date
Flooding
date

Position Top depth (MD) Bottom depth (MD)

Inject/production Well type
Initial

temperature
Initial
pressure

Top depth
(TVD)

Bottom depth (TVD)
Thickness of sand

bodies

Initial pressure
coefficient

Saturation
pressure

Initial solution
gas-oil ratio

Viscosity
Effective
thickness

Porosity Permeability

Monthly producing well production data

Time
Producing
scheme

Production
days

Nozzle
Pump

diameter
Pump depth Stoke

Jig frequency Monthly liquid Monthly oil
Monthly
water

Monthly gas Gas-oil ratio Water cut

Cumulative oil
Cumulative

water
Cumulative

liquid
Recovery Static pressure

FBHP (bottom hole
flowing pressure)

Working fluid level

Monthly water-injecting well injection data

Injection methods Injecting days
Pumping
pressure

Casing
pressure

Oil pressure
Injecting volume

monthly
Cumulative injecting

volume
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Figure 3: Static pressure, working fluid level and FBHP in well A. (a) The relationship between time and static pressure. (b) Comparison
between real values and predicted values of FBHP. (c) The relationship between working fluid level and FBHP.
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ρ ∈ ½−1, 1�. When the ρ is negative, it means that the two
features have a negative correlation, one feature increases
means the other decreases. Similarly, if ρ is positive, the two
features are positively associated. The larger the absolute value
is, the stronger the correlation between two features is.

2.3. Bayesian Optimization. Acclaimed as one of the best
hyperparameter tuning algorithm at present stage, Bayesian
optimization is a general gradient-free global optimization
strategy, which can identify a good set of hyperparameters
with few iterations. It is suitable in two cases: (1) the objec-
tive function is extremely complex and time-consuming to
evaluate; (2) the target function is difficult to differentiate
in respect to the independent variable.

In each iteration, Bayesian optimization decomposes the
optimization problem into multiple small optimization
problems. It samples the original function curve by a certain
method and builds an alternative curve by fitting these
points. Bayesian optimization builds a model to describe
the parameter-distribution of the objective function using
the Gaussian process model and then solves the minimum
value of the alternative model and uses this minimum value
as the optimal solution of the original function in this itera-
tion. This process is called surrogate optimization. By gradu-
ally increasing the number of sampling points, the model
will gradually approach the original objective function, and
an optimal combination of hyperparameters will be obtained.

In this paper, Bayesian optimization is used to optimize
network model hyperparameters, including network depth
and width, initial learning rate, and network activation func-
tions. For all hyperparameters to be optimized, a maximum
value and a minimum value are first specified for them,
respectively. Based on the Bayesian optimization method
in the package Keras_tuner, appropriate maximum iteration
and optimization objective are set and then executed to
obtain the optimal combination of hyperparameters.

3. Data Processing and Feature Engineering

3.1. Sources of Data. Data used in this paper were collected
from 426 oil wells and 94 water wells in a Chinese reservoir
named A with an average production time of 406 months.
The oldest wells in the data set can trace back to 1956.
During more than 60 years of development, the reservoir
has experienced a variety of production methods such as
pumping production, water flooding production, and frac-
turing production. At present, the reservoir has entered the
ultrahigh water cut stage, with an average water cut of more
than 95%.

The initial data include monthly production data of 426
oil wells, monthly injection data of 94 water-injecting wells,
and single-well reservoir information. The specific items are
shown in Table 1.

3.2. Data Preprocessing

3.2.1. Filling. In this paper, most of the missing data are bot-
tom hole flowing pressure, reservoir static pressure, or
dynamic liquid level height. According to their own charac-

teristics, we use different filling methods, taking well A as an
example to illustrate.

(1) Reservoir static pressure

According to the oil field development experience, the
change of static pressure during the oilfield development
process will not be significant and may have an obvious
trend; therefore, the regression fitting method can be useful.
Through the regression analysis using existing data, the rela-
tionship between the static pressure and time can be
obtained, and the missing static pressure data will be calcu-
lated, as shown in Figure 3(a).

(2) Bottom hole flowing pressure (FBHP)

Figure 3(b) shows that changes of bottom hole flowing
pressure during a well’s production life has stages, and the
range of FBHP in different stages varies greatly, which limits
the application of fitting regression method. In this case, we
use the cubic spline interpolation, and the filling results are
shown in Figure 3(b), which is basically consistent with the
actual value distribution.

(3) Working fluid level

As the working fluid level and FBHP were highly corre-
lated (see Figure 3(c)), we can easily obtain a linear relation-
ship between the two features, and one can be calculated
from another. If either the working fluid level height or
bottom hole flowing pressure is available, cubic spline
interpolation is used.

Water-injecting well1

Water-injecting well2

Water-injecting well

Water-injecting well

Water-injecting well3

Producting well1

Producting well1

Producting well

Radiation radius

Distance1,1

Distance1,3

Figure 4: Diagram of injection-production relationship. Producing
wells always be influenced by several water-injecting wells.
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3.2.2. Encoding. Since a large part of static features in the
data set are category features, the one-hot encoding process
for category features should be carried out to concordance
numerical features and category features. The features that
are treated with this operation include units, layers, well
types, and producing schemes.

3.2.3. Measurement of Injection-Production Relationship. A
major factor that affects the production of oil well in
water-driven reservoir is waterflooding measure. In this
paper, we propose the parameter injectionti , producing well
i injected volume in month t, and add it into the data set
as a feature “inject.”

As shown in Figure 4, an oil/producing well is often con-
trolled by n water/water-injecting wells. We assume that a
water-injecting well has a certain radiation radius, and in
the radiation radius around a water well, the oil well within
the radius is affected by that water-injecting well, and the
smaller the distance is, the greater the impact of inject well
on producing well is, and the larger producing well injected
volume is. The total producing well injected volume equals
the superposition of all “affected water-injecting wells.”

According to this hypothesis, we can quantify the pro-
ducing well injected volume, as shown in

distancei,j =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi − xj
À Á2 + yi − yj

� �2r
, ð2Þ

injectionti = 〠
m

j=1

αtj
distancei,j

: ð3Þ

Here, i denotes the producing well i, j denotes the water-
injecting well j, m denotes the number of water-injecting

wells who influences producing well i. And the distance
between producing well i and water-injecting well j is
distancei,j. In tth month, αtj units of water were injected to
reservoir by water-injecting well j.

The radiation radius is determined by correlation analy-
sis: the closer the radiation radius to the actual radiation
radius, the higher the correlation between producing well
injected volume and the well production. By establishing
the relationship between radiation radius and correlation
coefficient, we can find the optimal radiation radius. As
shown in Figure 5, 1000m is the optimal radiation radius.
Under this radius, producing well injected volume in a

Time-invariant features

Class
feature

Numeric
feature

One-Hot
Encoding

PCA PCA

Concat

Figure 6: The data processing working flow. Static features and
dynamic features need to be treated separately, also the discrete
features and continuous features do.
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certain time and certain producing well is calculated and
added to the data set as the feature “inject.”

3.3. Feature Engineering

3.3.1. Feature Dimension Reduction. For better prediction
accuracy, feature compression is needed to improve the
quality of features and limit the number of features. In the
process of feature compression, static features and dynamic
features need to be treated separately, so are the discrete fea-
tures and continuous features. Otherwise, the static features
representing the characteristics of individual wells will
submerge in the continuously changing dynamic features.
Similarly, the highly sparse 0-1 features created by one-hot
encoding will also submerge in the continuously changing
numerical features. In the data processing working flow of
this paper (Figure 6), we first separate the dynamic features
(features that change over time), as shown in Table 1. There
are in total 11 dynamic features without dimension
reduction. Secondly, we separate the 0-1 features from the
static features for principal component analysis (PCA)
dimensionality reduction (with a confidence of 95%); then,
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the remaining numerical features are compressed by another
PCA model (with a confidence of 95%), and two sets of com-
pressed features are spliced to form the features numbered
no. 0-no. 32 (see Figure 7) finally.

3.3.2. Feature Selection. In previous studies, the analyses of
correlation with time series are generally carried out in the
same time step in terms of production prediction; this corre-
lation is the relationship between the current month’s output
and the current month’s flowing pressure (or other features).
This correlation can reflect the relationship between targets
and variables and between variables and variables. However,
there are still some loose places: the data used in prediction
is not the data of the current month, but the data of the pre-

vious n months, which means that if we want to get a more
accurate correlation coefficient, the calculation should also
be carried out between the target month’s output and the
input data used to predict it (see Figure 8).

The study takes the input length of 12 and the output
length of 12 (using the previous 12 months’ data to predict
the next 12 months’ production) as an example to illustrate
the problem.

Figure 7 shows the visualization results of Spearman cor-
relation coefficient between the inputs and outputs.
Figure 7(a) shows the average of 12 correlation coefficients
between the production in the next nth month and the
featurek in the last m months:

ρ outputn, featurek
� �

=
∑12

m=1ρ outputn, faturekm
� �

12 : ð4Þ

Here, ρðoutputn, featurekÞ denotes the Spearman corre-
lation coefficient between outputn and featurek; outputn
denotes the production in the nth month; featurek denotes
the kth feature; faturekm denotes the featurek in the last
m months.

Figure 7(b) shows the correlation coefficient between the
production in the next 1th month and the features in the last
mth months. When a certain feature is fixed, from left to
right, the color of the grids in Figure 7(a) gradually becomes
lighter, and the color of the grids in Figure 7(b) gradually
becomes darker, which means that the larger the time inter-
val between the inputs and outputs, the lower the correlation
between them, and the greater the difficulty of prediction.

Table 2: Model evaluation metrics.

MAE MAE = 1
n
〠
N

i=1
yi − byij j

MAPE MAPE = 1
n
〠
N

i=1

yi − byij j
yi

 !
× 100

RMSE RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i=1 yi − byij j
N

s

R2 R2 = ∑N
i=1 yi − �yð Þ2 −∑N

i=1 yið − cyiÞ2
∑N

i=1 yi − �yð Þ2

Accuracy accurate = 1 − ∑N
i=1 yi − byij jð Þ/yið Þ

N

 !
yi : the measured value at time i; byi : the predicted value at time i; �y: the mean
of yi ; N : sample size.
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Observing row by row, we can easily find that dynamic
features have stronger correlation with future productions
than static features, which can be easily explained: the corre-
lation coefficient depends to a certain extent on the relative
variation of the value of features in the sample. Compared
with the production which remains changed over time, static
features only vary from well to well, so the overall correla-
tion is weak. We also note that the forecast target (produc-
tion) has a strong autocorrelation—future production is far
more correlated with past production than any other charac-
teristic (up to 0.9), which means that the forecast value will
be largely determined by the past production data.

To reduce the degree of difficulty in model fitting,
accelerate the convergence, and eliminate invalid features,
features are selected, as shown in Figure 7(c): with ±0.2
as the threshold, the features of correlation ðaccumulative
correlation score over all outputsÞ ≥ 0:2 or ≤−0.2 will be

retained, and 11 features are eventually entered into the data
set. The correlation between them is shown in Figure 9. We
can find that the correlation between monthly water produc-
tion andmonthly liquid production is much greater than that
between monthly oil production and monthly liquid produc-
tion, which confirms that the block has entered the ultrahigh
water cut stage, and most of the produced liquid is water.

3.4. Sample Generation. Before generating the input samples,
we need to standardize the data, so that different features
have the same scale, and they will have a fair chance to be
learned by the model. As mentioned in the introduction, in
order to enable the model to learn the rule of production
variation at each production stage, we divided the data set
by wells: 341 wells constitute the training set for model train-
ing, 43 wells constitute the validation set for hyperparameter
optimization, and 42 wells constitute the test set for model

CNN-LSTM

70

60

50

40

30

20

10

0

CNN

LSTM

GRU

Bi-LSTMARIMA

Attention-LSTM

Self-attention
60.15

40.26

31.47
22.65

22.23

21.45

20.33
17.58

M
A

E

Figure 10: The predicting performance of different models.

Table 3: Model structure (CNN-LSTM).

Layer (type)
Hyperparameters

Filter Kernel size Dilation rate

Conv1D_1 128 1 1

Conv1D_2 241 1 1

Unit Activation

LSTM_1 156 Softsign

LSTM_2 136 Softsign

Dropout rate

Dropout 0.2

Unit Activation

LSTM_3 57 None

Dense Prediction time steps None
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testing. The samples were manufactured by sliding time win-
dow and rearrange order to achieve better training effect.

4. Model Design and Evaluation

4.1. Evaluation Metrics. In this paper, in order to evaluate
the prediction performance of the model comprehensively,
five evaluation metrics are used to evaluate the model, as
shown in Table 2. It is worth noting that, to reduce the
uncertainty caused by the potential randomness of the
model, the model evaluation results in this paper are all from
the average of 3 experiments under the same setting.

4.2. Model Structure Design. After extensive investigations
and comparative experiments, LSTM and CNN are selected
to build a hybrid model. CNN is stacked in the first place, its
excellent ability of feature extraction enables the model to
extract as much hidden knowledge as possible. After the
CNN layers, we stacked the LSTM layers in the hope that
the model could learn the changes of timing sequence better.
In addition, the layer normalization is used between the
LSTM layers, which prevents possible gradient extinction
and gradient explosion.

In this paper, Bayesian optimization is used to optimize
the hyperparameters and the structure of the model. Since

the limited space, only the structure and hyperparameter
optimization results of the optimal model (CNN-LSTM)
are presented here, as shown in Table 3.

4.3. Comparative Model. There were 8 models built for the
optimal model selection, as shown below:

CNN-LSTM: Conv1D for feature extraction. LSTM for
timing sequence capture [29, 30].

LSTM: classical LSTM model.
Bi-LSTM: the normal LSTM model can only learn the

information from front to back, but cannot catch the infor-
mation from back to front. Bidirectional LSTM is an
improvement in this aspect. It combines forward LSTM
and backward LSTM to capture forward and backward
information at the same time [31, 32].

GRU: GRU is one of the varieties of LSTM and maybe
the most successful one. It simplifies the three gate structures
of LSTM cells into two and can achieve almost the same pre-
diction accuracy as LSTM while greatly accelerating conver-
gence [23].

CNN: one-dimensional convolutional neural network
model for time series prediction [33].

Attention-LSTM: the LSTM model supplemented with
an attention mechanism in hope that the addition of atten-
tion mechanism can help the model better capture the criti-
cal time steps which may contain the key information about
production changes. This paper adopts Luong Attention
mechanism and “General” score function. To focus attention
on multiple time steps instead of one, we modify the weight
activation function to “sigmoid” [34–36].

Self-Attention: do not use RNNs or CNNs, and the
multihead self-attention mechanism is used to realize the
prediction of time series. The structure of the model refers
to BERT [37], but word embedding and location embed-
ding are dropped, and the activation function adopts
“sigmoid” [38].

ARIMA: one of the most common time series prediction
models.

It is worth noting that the hyperparameters of all the
above models are also the most combined ones obtained
by Bayesian optimization.

4.4. The Training Set. The input of the neural network is
selected features as well as production records in a certain
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Figure 11: Different input length vs. model prediction error.

Table 4: Performance of different models (84-3).

Model MAE MAPE R2 RMSE Accurate Training time/min

CNN-LSTM 17.58 6.54 0.99 37.26 0.93 6.33

LSTM 20.33 7.02 0.99 44.36 0.9 5.18

GRU 21.45 7.15 0.99 47.14 0.9 3.04

Bi-LSTM 22.23 7.69 0.99 48.12 0.88 6.44

CNN 22.65 7.73 0.99 48.87 0.88 3.16

ARIMA 31.47 15.68 0.98 37.17 0.83 2.11

Attention-LSTM 40.26 18.26 0.97 60.68 0.82 8.26

Self-attention 60.15 25.36 0.96 80.67 0.66 5.01

84-3: using the data from the previous 84 months to predict oil production of the next three months.
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duration, and the model is trained in a “supervised” fashion
with future well production being the outputs. In this case,
the inputs at each step of the model include historic produc-
tion/features data for 82 consecutive months; the output is
the production in the next 3 months.

In the training process, the model based on the encoder-
decoder uses the “Teacher Forcing” hybrid training strategy
[35], in which 60% of the input data of each time step in the
decoder stage is real data, and the other 40% is the predicted
value of the previous model output. This hybrid strategy can
prevent overfitting caused by rapid convergence while
ensuring the prediction accuracy of the model. Through
the experiment, “Adagrad” was chosen as the model
optimizer. The size of batch and the initial learning rate were
set at 36 and 0.05, respectively. Callback function ReduceL-
ROnPlateau was used to adapt the learning rate. The maxi-
mum epoch is 150; training process is controlled by the
callback function EarlyStop. And model loss is MAE of pre-
dicted production.

5. Results and Discussion

5.1. Discussion of Different Models. Among the 8 models
proposed, CNN-LSTM model achieved the best perfor-
mance, and the predicting performance of other models
are shown in Figure 10 and Table 4.

Results show that the prediction precision of attention
mechanism model (including self-attention mechanism) is
the worst. In many papers, attention mechanism improves
the score of time series prediction [32, 34–36]. However, it
is not the case in this paper. In fact, the production of a well
in a certain month does not heavily depend on one or more
certain previous months, so adding weights to different time
steps is not very helpful in forecasting. Besides, the addition
of attention mechanism greatly aggravates the training bur-
den of the model, which is another possible reason for the
low prediction accuracy of the model.

Bi-LSTM model also failed to reach the expected score,
and its performance was slightly worse than that of classical
LSTM model. Unlike the semantic recognition task such as
machine translation, changing the order of oil well produc-
tion series makes no significant difference in predicting
production, and the use of Bi-LSTM brings more complex

model structure undoubtedly, making model training more
difficult.

GRU and CNN models gain similar results, with LSTM
model having slightly higher accuracy than LSTM, but it
should be noted that the training time of GRU and CNN
was almost half of LSTM. GRU or CNN models may be
more appropriate in some less-desirable cases.

5.2. Discussion of Model Input Length. In this paper, CNN,
LSTM, and CNN-LSTM model were used to conduct con-
trast experiments, respectively, and to verify the influence
of different input length on model prediction error, as
shown in Figure 11.

It is easy to see that the performance of CNN model is
better than that of LSTM and CNN-LSTM when the input
length is short. However, with the increase of the input
length, the prediction error of CNN model also increases sig-
nificantly, while that of LSTM and CNN-LSTM is decreas-
ing. Compared with CNN and LSTM, CNN-LSTM model
seems to inherit advantages from both, better than LSTM
in short case and better than the other two in long case. Con-
sidering data characteristics, case requirements, and model
performance, the following example uses 84 months’ data to
predict monthly well production over the next three months.

5.3. Discussion of Feature Selection. To verify the effective-
ness of feature selection, two feature selection plan were used
for feature selection experiment. Plan A: input all features;
plan B: input select features. The prediction accuracy of each
model using different features is shown in Table 5.

It is found that features and algorithms have cross influ-
ence on the prediction accuracy of the model. The RNN
model has strong sensitivity to the number of features, and
the selection of the number of features can reduce its predic-
tion error. The model with convolutional layer is insensitive
to the changes in the number of features. It can be seen from
Table 5 that there is not much difference in model prediction
accuracy before and after feature selection. The analysis
shows that the RNN (LSTM/GRU) model is more inclined
to capture the connection of samples in time series, while
the convolution structure model is more inclined to analyze
and extract high-dimensional features. Therefore, prior fea-
ture selection for the LSTM model means that part of the

Table 5: Comparison of prediction accuracy of different models under different feature selection strategies (84-3).

Models (84-3)
MAE MAPE/%

Accurate/% R2
MAE Max Min MAPE Max Min

A

CNN-LSTM 17.60 123.1 0.24 6.55 34.2 0.04 93.30 0.99

CNN 22.66 125.31 0.21 7.19 38.1 0.03 88.37 0.99

LSTM 23.55 120.13 0.19 7.32 35.1 0.03 86.11 0.99

GRU 22.45 121.45 0.23 7.31 37.21 0.04 85.34 0.99

B

CNN-LSTM 17.58 120.03 0.23 6.54 35.4 0.03 93.23 0.99

CNN 22.65 125.47 0.22 7.73 37.9 0.03 88.36 0.99

LSTM 20.33 120.15 0.2 7.02 34.1 0.03 90.01 0.99

GRU 21.45 121.63 0.24 7.15 34.2 0.04 90.24 0.99

A: use all features; B: use selected features.
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feature extraction work has been completed before model
training, which reduces the difficulty of LSTM training, so
the LSTM model has higher prediction accuracy for data sets
with fewer features. CNN itself can well realize feature
extraction, and feature selection only accelerates its training
speed, but has little impact on the final prediction accuracy.

5.4. Case Verification. The proposed models are used to pre-
dict 43 wells’ production in the test set, and the results of 6

wells were selected randomly. The results are shown in
Figure 12.

Figures 12(a)–12(c) compare the prediction error of the
three outputs of the model with wells B, C, and D as exam-
ples. Obviously, the 1th outputs have the minimum error
consistent with the correlation analysis.

Figures 12(d)–12(f) compared different models’ predic-
tion results of wells E, F, and G. Similar to the results shown
in Table 4, CNN-LSTM model’s prediction is closer to the
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Figure 12: The prediction results of 6 wells in reservoir A. (a–c) The error distribution of the 3 predicted production of well A\B\C by
CNN-LSTM model. “1th-prediction” denotes the next month’s predicted production. Similarly, “2th-prediction” denotes the predicted
production of the month after next. And “3th-prediction” means the predicted production of the third month in the future. (e–f) The
comparison of real production curves and the 1th predicted production curves of well E/F/G by CNN-LSTM model, LSTM model, GRU
model, and CNN model. The absolute error between real production and production predicted by CNN-LSTM is also shown.
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real tendency, but other models also can fit the curve closely.
Another obvious phenomenon is that the predictions at ear-
lier time stages are worse compared to latter ones; in other
words, the error at high production is greater than the error
at low production. This is because production changes are
more dramatic in the early stages of the well development.

Extensive experiments show that proposed scheme
significantly improves production prediction accuracy and
enhances predict efficiency.

6. Conclusion

This paper proposes a machine learning model for predict-
ing single-well production in water flooding reservoir. The
specific conclusions are as follows:

(1) More than 60 factors of geology and development
that affect the changes of oil well production was
comprehensively considered to build the data set.
Data filling and feature extraction were carried out,
respectively, according to the characteristics of data.
Features were analyzed and selected from the per-
spective of time sequence. The data set is divided
by wells to make the sample distribution more
practical

(2) Eight models with good performance in the time
series prediction are constructed. By comparison,
CNN-LSTM model gains the best score, while the
improvement of attention mechanism and Bi-
LSTM model is limited. It also illustrates that com-
plex models that are doing well in other tasks may
not be suited to the well production prediction

(3) The Bayesian optimization is used to optimize the
hyperparameter of the models, which can greatly
improve the efficiency of hyperparameter optimiza-
tion and improve the prediction accuracy of the
models

(4) An experiment case is carried out in reservoir A, and
the results prove that the model proposed in this
paper can accomplish the prediction task of single-
well production successfully and provides a good
reference and guidance for development and pro-
duction in water flooding reservoir
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Compressional and shear wave velocities (Vp and Vs, respectively) are important elastic parameters to predict reservoir
parameters, such as lithology and hydrocarbons. Due to acquisition technologies and economy, the shear wave velocity is
generally lacking. Over the last few years, some researchers proposed deep learning algorithms to predict the shear wave
velocity using conventional logging data. However, these algorithms focus either on spatial feature extraction for different
physical properties of rocks or on sequential feature extraction in the depth direction of rocks. Only focusing on feature
extraction in a direction of rocks might lead to a decrease in prediction accuracy. Therefore, we propose a hybrid network of a
two-dimensional convolutional neural network and the gated recurrent unit (2DCNN-GRU), which can establish more
complex nonlinear relationships between the input and output data based on the spatial features extracted by 2DCNN and the
sequential features extracted by GRU. In this study, two cases are used to validate the reliability and prediction accuracy of the
proposed network. Comparing the prediction results of 2DCNN, GRU, and the proposed network, the proposed network
shows better performance. Meanwhile, for improving the prediction accuracy of the proposed network, the relationship is
analyzed between the prediction accuracy of the proposed network and the length of the input sample.

1. Introduction

Compressional and shear wave velocity (Vp and Vs, respec-
tively) are very important parameters in hydrocarbon fields for
characterizing and evaluating reservoir, identification of the
pore types, and estimation of the dynamic properties of rocks
[1–4]. Due to various reasons, shear wave velocity is generally
lacking. Therefore, it is necessary to study a shear wave predic-
tion method with high prediction accuracy and strong general-
ization ability to improve the reservoir prediction accuracy.

Currently, empirical regression methods, rock physics
methods, and machine learning methods are the main
methods for shear wave velocity prediction. Since empirical
methods are the fastest and easiest to apply, linear or nonlin-
ear empirical relationships between compression and shear

wave velocities have been proposed by various researchers
[5–12]; however, they are constrained by site-specific and
the rock type.

A variety of methods for predicting the shear wave veloc-
ity on the basis of rock physics have been proposed. These
rock physics models focused on the modeling of the modu-
lus of the rock matrix, dry rock, and saturated rock of the
equivalent medium. In particular, for the modeling of the
dry rock modulus of an equivalent medium, complex pore
shapes were the research focus. Jørstad et al. [13] used both
DEM and self-consistent approximation (SCA) for the shear
wave velocity prediction in sandstones and concluded that
the effective-medium theories were more accurate by com-
paring the results with those predicted from empirical
regression methods. Xu and White [14] proposed a hybrid
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approach to predict the shear wave velocity based on a shaly
sandstone formation using a combination of the Kuster and
Toksöz (KT) model [15] and the differential effective
medium (DEM) model [16]. Based on the widely used Xu–
White model and Gassmann’s equations [17], Bai et al.
[18] analyzed the influence of errors of input parameters of
rock matrix, fluid inclusions, porosity, and aspect ratio
(AR) on the prediction accuracy of shear wave velocity. Bai
et al. [19] illustrated that a variable aspect ratio method in
the Xu–White model was significantly improved. Liu et al.
[20] proposed a differential Kuster–Toksöz (DKT) model
to predict shear wave velocity and focused on the process
in which the porosity with certain geometric shapes is grad-
ually increased from zero to its final value to overcome a
diluted concentrated pore of the KT model. Yang et al.
[21] developed a revised Xu-White model and improved
the estimated shear wave velocity for a calciferous sandy
shale formation by considering the effect of the volume
fraction of limestone. In the past ten years, with the devel-
opment of unconventional oil and gas, rock physics
models of complex reservoirs have been developed rapidly.
Xu and Payne [22] extended the Xu-White model, origi-
nally designed for clastic rocks, to carbonate rocks and
proposed a carbonate rock physics model with complex
pore types. Zhang [23] established an anisotropic rock
physics model to predict shear wave velocity, which was
suitable for rocks with high-angle fractures. Based on the
dual pore theory, an anisotropic rock physics model of
tight oil sandstone was proposed, and the influence of clay
content and type and pore connectivity and type on it was
systematically studied by Huang et al. [24]. Assuming that
shale is a laterally isotropic medium, Gui et al. [25]
proposed a shear wave velocity prediction method that
considered the microscopic characteristics of the rock.
Liu et al. [26] proposed a method for predicting shear
wave velocity suitable for organic-rich rocks. The accuracy
of these methods for predicting shear wave velocity
depended on the accurate calculation of reservoir geophys-
ical parameters such as porosity, pore type, pore shape,
mineral composition, and water saturation. However, these
high-precision parameters are difficult to obtain, which
increases complexity and indeterminacy of rock physics.

With the rapid development of software and hardware
technology, some researchers use machine learning algo-
rithms to predict shear wave velocities using logging data
[27–33]. Deep learning developed from artificial neural
network algorithms is a research hotspot in academic
and industrial circles. Comparing with traditional shallow
learning, deep learning improves the accuracy of predic-
tion or classification by constructing many hidden layer
machine models with complex function approximation
and layer-by-layer feature transformation. The convolu-
tional neural network (CNN) with spatial feature capture
has achieved good results in different geophysical fields
including interpretation of reservoir parameters from logging
data [34, 35], seismic interpretation [36–38], and seismic
inversion [39–42]. Based on the characteristics of logging
data based on long-term dependencies, a long-short-term
memory (LSTM) network was proposed to predict the
shear wave velocity and its application in the identification

of geophysical parameters of complex reservoirs [43–46].
Comparing with LSTM which required a long training
time, the gated recurrent unit (GRU) has the characteris-
tics of faster speed and basically unchanged accuracy by
simplifying the internal structure of LSTM [47]. Sun and
Liu [48] proposed a GRU-based shear wave velocity pre-
diction method. The above applications show that deep
learning models have been successfully applied in the field
of geophysics and are in rapid development.

Predicting shear wave velocity is essentially a typical
regression problem in data processing. Compared with
the empirical and rock physics methods, deep learning is
better at handling regression problems by building many
hidden-layer machine models with complex function
approximations and layer-by-layer feature transformations.
In order to fully mine the sequential features in the depth
direction of rocks and spatial features of different physical
properties of rocks, a hybrid network of two-dimensional
convolutional neural network and gated recurrent unit
(2DCCN-GRU) was constructed to predict the shear wave
velocity using conventional logging data. This network
takes full advantage of the powerful spatial features
extracted by 2DCNN and the sequential features extracted
by GRU. The process of predicting Vs using the 2DCNN-
GRU hybrid network included data normalization, gener-
ating sample datasets, and constructing the 2DCNN-GRU
hybrid network and its training and prediction. The Vs
prediction of the two cases confirmed that the 2DCNN-
GRU hybrid network was an accurate and reliable method
of Vs prediction.

2. Methodology

2.1. Convolutional Neural Network (CNN). CNN, which is a
feed-forward artificial neural network, is widely used in the
field of vision and image. With the rapid development of
deep learning, it has been proven to successfully solve vari-
ous geological problems, such as fault recognition, reservoir
prediction, lithofacies classification, and geological parame-
ter inversion [39, 40]. CNN typically consists of the convolu-
tional layers, the pooling layers, and the fully connected
layers (Figure 1). In the convolutional layers, the data of
the input layer is convolved with the convolutional kernels
of the convolutional layers, which can mine the local features
between the data. Its weight sharing feature greatly reduces
the complexity of the network. The nonlinear relationship
of the data is added through the activation function, usually
the rectified linear function (“ReLU”) to avoid overfitting.
When the data is passed into the convolution layer, the
output features can be expressed as

ylj = σ 〠 al−1i wl
ij

� �
+ blj

� �
, ð1Þ

where ylj represents the j-th feature map of the l-th layer, al−1i

represents the i-th featuremap of the previous layer,wl
ij denotes

the weightmatrix of the l-th layer, blj represents the correspond-
ing bias term, and σ represents the activation function.
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Considering the intrinsic relationship between shear wave
velocity and various logging data, inspired by the extremely
high feature extraction ability of a 2D convolutional neural
network, the 2D convolution is used to extract more high-
dimensional information and preserve topology as well as
type and depth of log data.

2.2. Gated Recurrent Unit (GRU). A recurrent neural net-
work (RNN) [49] is very effective for mining data with
sequence characteristics. The hidden unit of the RNN with
long-term sequence storage contains a loop that can com-
bine the output at the current moment with the input at
the next moment as the input at the next moment. There-
fore, the RNN is particularly suitable for processing logging
data that varies with sedimentary facies in the depth direc-
tion. However, due to the relatively simple structure of
RNN, problems such as gradient disappearance or explosion
are prone to occur in practical applications [50], and it can
only hold memory functions for short-term data. In
response to the above problems, the RNN variants LSTM
[51] and GRU [52] were proposed. LSTM sets three-unit
gates (forget gate, input gate, and output gate) to update
the input data and obtain the ability of long-term memory
data. However, the hidden unit of LSTM has many parame-
ters, a complex structure, and a long training time. Com-
pared with the LSTM network, the reset gate and update
gate of GRU can reduce the network training parameters,
shorten the training time, and improve the generalization
ability of the network under the premise of ensuring the
prediction accuracy [53] (Figure 2).

The structure of GRU combined the reset gate (rt), the
update gate (zt), the output of the hidden state at t − 1
(ht−1), the output of the hidden state at t (ht), and the input
at t (xt); they can be expressed as

rt = σ Wr ht−1, xt½ � + brð Þ, ð2Þ

zt = σ Wz ht−1, xt½ � + bzð Þ, ð3Þ

~ht = tanh W~h ht−1 ∘ rt , xt½ � + b~hð Þ, ð4Þ

ht = 1 − ztð Þ ∘ ht−1 + zt ∘ ~ht , ð5Þ
where Wr ,Wz ,W~h and br , bz , b~h are the weights and

biases, respectively, which are learned, “σ” is the logistic func-
tion sigmoid, ~ht is the new hidden state at t, “∘” represents the
dot product, and “[ ]” represents that two vectors are con-
nected. The reset gate controls how much information from
the previous state is retained. On the other hand, the update
gate is contrary to the function of the reset gate [52].

2.3. Building a Hybrid Network of 2DCNN-GRU. The shear
wave velocity changing with time has a certain periodicity
and has a nonlinear relationship with various factors such
as density, porosity, Vp, and resistivity. Therefore, a
2DCNN-GRU hybrid network was proposed in this study
to solve the problem of lack of shear wave velocity. The
structure of 2DCNN uses the convolution kernels to fully
excavate the high-dimensional features of different logging
data, while the series data of time and depth cannot be accu-
rately excavated. The structure of GRU has a strong ability to
capture features in sequence data, while it is easy to intro-
duce noise and lose some features during the calculation
process [54], which is difficult to express the spatial features
of the data and ultimately leads to deviations in the predic-
tion results. To make up for the shortcomings of a separate
network, the 2DCNN and the GRU are combined to make
full use of the spatial convolution characteristics of 2DCNN
and the sensitivity of GRU to sequence data to establish a
nonlinear relationship between input and output. The struc-
ture of the 2DCNN-GRU hybrid network (Figure 3) and the
flow chart of the shear wave velocity prediction (Figure 4)
are as follows.

It can be seen clearly from Figure 3 that the first part
of the 2DCNN-GRU is the CNN, which convolves with
the input logging data through the convolution kernels
to obtain the spatial characteristics and uses padding to fill
it which can keep the size of the input sample unchanged
after convolution. The second part of 2DCNN-GRU is the

Input Convolutional kernel Convolutional feature

Max Pooling

Output feature
Fully 

connected 
layer

Figure 1: The structure of CNN and its unrolled network.
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GRU, which uses the spatial features extracted by the first
part as the input of this layer. In particular, the first layer
of GRU adopts the method of returning intermediate
values. Both of the networks use activation functions to
increase the nonlinearity of the network and use dropout
to prevent overfitting and increase the generalization abil-
ity of the network. Finally, these features are taken into
the fully connected layer to obtain the prediction of the
shear wave velocity.

3. Prediction Framework Based on 2DCNN-
GRU

Figure 4 shows the shear wave velocity prediction frame-
work based on the 2DCNN-GRU hybrid network, and the
specific process includes the following 4 parts.

3.1. Feature Selection. Deep learning networks are often used
to deal with classification and regression problems.

σ

ht
~

Vector sum
Vector element multiplication
Vector connection 

tanh

ht-1

1-

ht

zt rt

σ

xt

Figure 2: The internal structure of GRU.

2DCNN network

Input Convolution
kernel

Feature

GRU network

h1

ht-1

h1

ht-1

ht

Fully connected layer

ht

O
ut

pu
t

• ••

•••

•••

•••

GRU GRU

GRU GRU

GRU GRU

Figure 3: The structure of the 2DCNN-GRU hybrid network. A 2DCNN-GRU network is mainly composed of an input layer, a CNN
Network, a GRU Network, and a fully connected layer.
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Predicting shear wave velocity using conventional logging
data is a typical regression problem. The assumptions that
deal with regression problems often require correlations
between input and output data. The correlation coefficient
between logging data and shear wave velocity is shown in
the cross-plot (Figure 5). The correlation coefficients
between shear wave velocity (Vs) and compression wave
velocity (Vp), neutron porosity (CNL), gamma (Gr), shale
volume (Sh), density (RHOB), and water saturation (Sw)
are, respectively, 0.791, 0.576, 0.324, 0.300, 0.004, and
0.003. In these selected logs, the correlation between density,
Sw, and shear wave velocity is small. In addition, the corre-
lations between other logging data and shear wave velocity
are all above 0.3, which satisfies the assumption that deep
learning deals with regression problems.

3.2. Data Normalization. Since there are different degrees of
differences between different logging data, it is necessary to
normalize the logging data to speed up the training process,
which can reduce the impact on the network accuracy [55].
The logging data have mapped the range of [0, 1] with the
MinMaxScaler normalization method. The normalization
formula can be expressed as

Y = X − Xmin
Xmax − Xmin

, ð6Þ

where Xmin and Xmax are the minimum and maximum
of a sequence X, respectively, and Y represents the result
of normalization.

3.3. Generating Sample Datasets. The recurrent neural net-
work has various network structures in dealing with time
series problems, such as one-to-one, one-to-many, many-
to-one, and many-to-many. Due to the depositional law of
the subsurface in the depth direction, a many-to-one struc-
ture is adopted in the process of the prediction framework
based on 2DCNN-GRU (Figure 6).

3.4. Network Training and Evaluation. To speed up the net-
work training, the loss function mean square error (MSE)
was used to calculate the gap between the predicted values
and the true values in this study; at the same time, the Adap-
tive Moment Estimation [56] was used to back-propagate to
update the weight parameters. The prediction performance
of the network was evaluated by mean absolute error
(MAE) and correlation coefficient (R2) in this study, which
can be expressed as

MAE = 1
m
〠
m

i=1
yi − ~yiið Þj j, ð7Þ

R2 = ∑m
i=1 ~yi − �yið Þ2

∑m
i=1 yi − �yið Þ2 ,

ð8Þ

where m represents the number of samples, yi represents
the real value, ~yi represents the predicted value, and �yi repre-
sents the mean of samples.
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4. Testing and Analysis

The logging data used in our study were derived from the
Tarim Basin (Figure 7). The target layer is buried at a depth
of about 5500m, mainly composed of medium-fine sand-
stone, and the reservoir porosity is less than 10%, which
are typical characteristics of deep tight sandstone. In order
to verify the prediction accuracy of the 2DCNN-GRU hybrid
network proposed and optimize its parameters, the network
is trained with the logging data from 8 wells in a certain area,
and tested with another 2 wells to verify its accuracy and
generalization, and two cases are adopted using the optimi-

zation algorithm Adaptive Moment Estimation (Adam),
the loss function Mean Squared Error (MSE), and Dropout
to avoid overfitting of the network. In case I, the results of
the 2DCNN, GRU, and 2DCNN-GRU hybrid network were
analyzed and compared to verify the prediction accuracy of
the 2DCNN-GRU hybrid network. In case II, the influence
of sample length on the prediction accuracy of the
2DCNN-GRU hybrid network was analyzed.

4.1. Case I. Predicting shear wave velocity based on deep
learning is essentially a sequence prediction problem. Fully
considering the spatial and sequential features of the logging
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Figure 5: The cross-plot of conventional logging data and shear wave velocity. (a) RHOB–Vs; (b) Gr–Vs; (c) CNL–Vs; (d) Vp–Vs; (e) Sh–
Vs; (f) Sw–Vs. R is the correlation coefficient between the two variables.
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data, the 2DCNN-GRU hybrid network was established to
predict the shear wave velocity, and its results were com-
pared with those of the separate 2DCNN and GRU. The
structures of the 2DCNN-GRU, 2CNN, and GRU networks
are listed in Table 1.

Figure 8 shows the loss errors of 2DCNN-GRU,
2DCNN, and GRU networks. After a period of training,
the loss values of all networks reach the minimum value
and remain the same. It can be seen that the 2DCNN-
GRU hybrid network has the lowest loss error in that the
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Figure 7: The visualization of logging data.
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Figure 6: The structure of recurrent neural network (many-to-one).
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shear wave velocity prediction values are closer to the true
values than the other two networks. The logging data are
convolved with the convolution kernels to extract the high-
dimensional spatial features of the logging data. However,
the logging data has time-series features in the depth direc-
tion, so the extracted spatial features are inputted into the
GRU for time-series feature extraction, which can combine
the spatial and time-series features of the logging data to
predict shear wave velocity.

To compare the difference between the prediction per-
formances of the three networks, the 2DCNN-GRU,
2DCNN, and GRU perform shear wave velocity prediction
on the same test set and the experimental results are shown
in Figure 9. Although the predicted values of the three

networks are generally similar in trend to the true values,
the predicted values of the 2DCNN-GRU hybrid network
are closer to the true values than those of the other two net-
works at 5570-5590m.

As can be seen from Figure 10, the prediction of a single
2DCNN or GRU at this stage is always slightly higher than the
true values, but the prediction effect of the 2DCNN-GRU that
integrates spatiotemporal features has been greatly improved.
That is to say, combining with the spatiotemporal features of
the logging data can better predict shear wave velocity.

In order to analyze the prediction results of the three
networks more precisely, the mean absolute error (MAE)
and correlation coefficient (R2) were used to quantitatively
evaluate the prediction accuracy of the three networks

Table 1: The structures of the 2DCNN-GRU, GRU, and 2DCNN.

Network
name

Architecture
Kernel size of 2DConv

layers
Number of conv filters and GRU

units
Trainable
parameters

Other parameters

2DCNN-
GRU

Conv+GRU+GRU
+dense

15 ∗ 3ð Þ 16 + 32 + 64 32097
Padding = “same”

Return_
sequences = true

2DCNN Conv+conv+dense 15 ∗ 3ð Þ + 15 ∗ 3ð Þ 16 + 32 30529 Padding = “same”

GRU GRU+GRU+dense 0 32 + 64 22721
Return_

sequences = true

Conv: 2D convolution+ReLU activation.
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Figure 8: Loss error curves of 2DCNN-GRU, 2DCNN, and GRU networks.
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(Figure 11). The correlation coefficient between the data pre-
dicted by the 2DCNN-GRU hybrid network and the true
values was higher than that by the other two networks and
was as high as 0.866. Moreover, the MAE of 2DCNN-GRU
was lower than that of 2DCNN and GRU and was as low
as 0.0165. Compared with the 2DCNN-GRU hybrid net-
work, the reason for the low prediction accuracy of 2DCNN
and GRU is that both of them only predict shear waves from
single spatial or temporal features of logging data. Therefore,

the 2DCNN-GRU hybrid network that comprehensively
considers spatiotemporal features improves the accuracy of
shear wave velocity prediction.

4.2. Case II. Due to the depositional law of the subsurface in
the vertical direction, there is a certain correlation between
the sequence sampling points, which indicates that the length
of the input sample plays an important role in the prediction
of shear wave velocity by deep learning. In order to analyze
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Figure 9: Prediction results of three networks in case I. The last three subgraphs indicate the final prediction results. The blue line represents
the true values and the red line represents different prediction results based on three networks. The left one is the prediction result from
2DCNN-GRU, the middle one is that from 2DCNN, and the right one is that from GRU. To analyze the prediction performance of the
three networks more clearly, the differences between the prediction of the three networks were compared in the form of local
amplification (Figure 10).
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the optimal sample length, the vertical length of the convolu-
tion kernel in the CNN was consistent with the input sample
length, and the horizontal length was set to 3. A total of 9
experiments were performed with sample lengths set to 3,

10, 15, 20, 25, 30, 35, 40, and 65. The structure of the
2DCNN-GRU hybrid network is shown in Table 2.

Prediction results of the 2DCNN-GRU hybrid network
are shown in Figure 12. It can be seen that under different
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Figure 10: The local amplification comparison of 2DCNN-GRU, 2DCNN, and GRU.
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Figure 11: The evaluation metrics of 2DCNN-GRU, 2DCNN, and GRU networks.

Table 2: The structures of the 2DCNN-GRU hybrid network in 9 experiments.

Network
name

Architecture
The length of the convolution kernel

and sample
Number of conv filters and

GRU units
Trainable
parameters

Other parameters

2DCNN-
GRU

Conv+GRU
+GRU

3 32 + 32 + 64 40897

Padding = “same”
Return_

sequences = true

10 32 + 32 + 64 41569

15 32 + 32 + 64 42049

20 32 + 32 + 64 42529

25 32 + 32 + 64 43009

30 32 + 32 + 64 43489

35 32 + 32 + 64 43969

40 32 + 32 + 64 44449

65 32 + 32 + 64 46849

Conv: 2D convolution+ReLU activation+dropout.
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sample lengths, the prediction effects of 2DCN-GRU are dif-
ferent. With the continuous increase of the sample length,
the prediction effect of the network becomes better first
and then worse. When the input sample length is 35, the
prediction effect of the network is the best. Compared with
other sample lengths, the predicted values in the dotted box
are the closest to the true values, but with the continuous
increase of the sample length, the prediction effect of the
network changes gets worse. This is because the convolu-
tion kernels of 2DCNN can only extract local features but
cannot obtain global information as the sample length
increases; at the same time, the GRU cannot effectively
associate the input at the current moment with the histor-

ical data, which can make the prediction effect much worse
than before.

Moreover, all experimental results had been evaluated by
the correlation coefficient (R2) and mean absolute error
(MAE) (Figure 13). It can be seen clearly that the correlation
coefficient (R2) first increased and then decreased with the
input sample length, while the trend of MAE was just the
opposite during the whole testing process. When the length
of the input sample reached 35, the correlation coefficient
(R2) reached the highest value at 0.877; at the same time,
the MAE reached the lowest value at 0.0160, which indicates
that the predicted values were closest to the true values. At
the same time, the correlation between the predicted values
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Figure 12: Nine experimental results based on the 2DCNN-GRU hybrid networks. The vertical lengths of the convolution kernels from left
to right were set to 3, 10, 15, 20, 25, 30, 35, 40, and 65, respectively.
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and the true values was analyzed in the form of a cross-plot
(Figure 14), and the correlation reached 0.877. To sum up,
the prediction accuracy of the 2DCNN-GRU hybrid net-
work is affected by the length of the input samples. When
the input sample length and convolution kernel length are
35, the prediction effect of the network is the best.

5. Conclusion

Considering the sequential features in the depth direction of
rocks and spatial features of different physical properties of
rocks, a new network 2DCNN-GRU hybrid network was
proposed in this study, which can extract the spatial features
of logging data from the 2DCNN and input them into the
GRU to extract the temporal features, fully considering the
temporal and spatial features of the logging data to predict
Vs. In the case of I, the correlation coefficient, mean absolute
error, and loss function of the evaluation parameters of

2DCNN-GRU were better than those of the separate
2DCNN and GRU, reaching 86.6, 0.165, and 5.2375e-04,
respectively; comparing the prediction results of 2DCNN,
GRU, and 2DCNN-GRU, the prediction effect of 2DCNN-
GRU is better than that of 2DCNN and GRU alone. In the
case of II, the prediction accuracy of 2DCNN-GRU was
affected by the input sample length. The prediction accuracy
of 2DCNN-GRU first increased and then decreased with the
input sample length. When the sample length was 35, the
prediction accuracy of the network reached the highest.
The experimental results show that the newly proposed
2DCNN-GRU hybrid network outperforms other networks
in prediction performance. In addition, the 2DCNN-GRU
hybrid network proposed in this study was a supervised
machine learning whose prediction accuracy was dependent
on training sample accuracy.
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Cemented backfill coal mining technology is gradually becoming a key technology for green mining of coal resources. And
cemented backfill materials generally have congenital defects such as poor crack resistance, poor durability, and high
brittleness, which restrict the promotion and application of cemented backfill coal mining technology. Due to the complex
stress environment of in situ stress, mining stress, water pressure, and gas pressure, cemented backfill materials need to have
good mechanical properties, and glass fiber is usually used to mix into cemented backfill materials to improve its performance,
but there are many problems including complex testing process, high cost, and long time-consuming in the study of
mechanical properties of glass fiber-modified cemented backfill materials (GFCBM) by laboratory tests. Consequently, this
study proposed and compared four artificial intelligence models to forecast the tensile strength of GFCBM. Firstly, the
laboratory tests of tensile properties of GFCBM under different influence factors were implemented to supply the prediction
model with dataset. The input variables are aeolian sand content, cement content, glass fiber length, and glass fiber content,
and the output variable is the tensile strength of GFCBM. The correlation coefficient (R), mean absolute error (MAE), and root
mean square error (RMSE) are selected to assess the estimated performance of the hybrid intelligent model. The results
indicate that the four hybrid artificial intelligence models show a latent capacity for forecasting the tensile strength of GFCBM,
and according to the order from high to low, the prediction ability of the four prediction models is as follows: ABC-SVM, GA-
SVM, SSA-SVM, and DE-SVM, and the corresponding R values are 0.9555, 0.9539, 0.9413, and 0.9359, respectively. The
research findings are beneficial to promote the application of cemented backfill coal mining technology.

1. Introduction

The surface subsidence, soil erosion, and other ecological
environment damage caused by coal mining have been a
major problem, which seriously restricts the harmonious
development of coal exploitation and ecoenvironment pro-
tection [1, 2]. As a key technology for coal resource green
mining, backfill mining technology uses the supporting
function of backfill body to control the overlying strata
movement and reduce surface subsidence, which has
become one of the important ways to achieve safe, efficient,

economic, and sustainable development of coal resources
[3, 4]. Because of its low cost and mature technology, cemen-
ted backfill mining technology has been extensively used in
mining areas in the Northwest of China [5]. As a typical
cement-based material, cemented backfill materials generally
have congenital defects such as poor crack resistance, poor
durability, and high brittleness. Since the cemented backfill
body has the “arching effect” after it is backfilled into the
goaf, it requires not only sufficient compressive strength,
but also good tensile and shear properties [6]. At present,
simply increasing the amount of cement to make up for
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the above shortcomings not only brings huge economic and
safety costs to the mine but also largely restricts the wider
promotion and application of cemented backfill mining
technology.

Researchers have proposed that adding glass fiber mate-
rials to the cemented backfill materials can increase the
strength, toughness, and ductility of the materials and opti-
mize its mechanical properties [7, 8]. The role of glass fiber
materials in cemented backfill materials can be summarized
as crack resistance, reinforcement, and toughening. The spe-
cific reinforcement effect is related to the orientation, the
ratio of length to diameter, and the volume content of the
glass fiber materials. Qin et al. [9] analyzed the feasibility
of polypropylene fiber fabrics to enhance the mechanical
properties of concrete and compared the compressive
strength and multiscale failure characteristics of ordinary
concrete and fiber-modified concrete, and it is found that
polypropylene fiber fabric is beneficial to improve the com-
pressive strength of concrete. Elkatatny et al. [10] tested
the effect of glass fiber materials on the tensile strength,
porosity, and permeability of cement under high tempera-
ture and high pressure. The results show that glass fiber
materials do not significantly affect the rheology, density,
and water content of cement but can significantly improve
its tensile strength and compressive strength. Yi et al. [11]
studied the internal failure mechanism of cemented backfill
materials with glass fiber through uniaxial compression test
and X-ray computed tomography (CT), and the results indi-
cate that the mechanical strength of cemented backfill mate-
rials with glass fiber is increased by about 70%~90%, and the
glass fiber can effectively prevent the propagation of internal
cracks. It can be seen that the incorporation of glass fiber
materials is able to indeed change the mechanical properties
of cemented backfill materials, and the means of its optimi-
zation process is mainly laboratory test. However, this
method is currently faced with the problems of complex test
process, high cost, and long time-consuming, which restrict
the development of this research. Therefore, how to find
other methods to conveniently obtain the changes in the
properties of glass fiber-modified cemented backfill mate-
rials (GFCBM) is of great significance.

At present, artificial intelligence technology has been
gradually applied in many engineering fields [12, 13]. It
can achieve better prediction results on the basis of compre-
hensive consideration of various influencing factors. Yan
et al. [14] proposed an intelligence model named BPNN-
GA-AdaBoost to predict the change of coal strength after
CO2 injection into coal seam; Han et al. [15] integrated ran-
dom forest and particle swarm optimization algorithm to
evaluate the fracture performance of concrete; Jalal et al.
[16] estimated the swelling strength of expansive soil
through ANN, GEP, and ANFIS methods. It can be seen that
intelligent prediction has been used in various engineering
directions and has achieved excellent results, but currently,
it is still facing the following problems: (1) At present, there
is almost no intelligence model to forecast the tensile perfor-
mance of GFCBM, especially the use of support vector
machine (support vector machine has obvious advantages
in small sample data). (2) There is a lack of comparative

studies on the tensile strength of cemented backfill materials
using different prediction models. Therefore, it is of urgent
significance to implement a comparative study on the intel-
ligent prediction of the tensile properties of GFCBM.

This paper puts forward four hybrid artificial intelligence
models, namely, ABC-SVM, DE-SVM, GA-SVM, and SSA-
SVM, to predict the tensile strength of GFCBM. Among
them, the support vector machine (SVM) is mainly
employed in analyzing the function relation between the
tensile strength of GFCBM and various influence parame-
ters. The dataset of the model is gained through laboratory
tests on tensile properties of GFCBM. The input variables
of the model are aeolian sand content, cement content, glass
fiber length, and glass fiber content, and the output variable
is the tensile strength of GFCBM. The R, MAE, and RMSE
were selected to evaluate and compare the prediction perfor-
mance of these hybrid intelligent model. Finally, the optimal
model for predicting the tensile performance of GFCBM was
obtained. The research findings are beneficial to promote the
application of cemented backfill mining technology.

2. Experiment

2.1. Materials. The aeolian sand and fly ash, together with a
small amount of cement and quicklime, are chosen as the
cemented backfill materials. The aeolian sand is mainly
taken from the mining area in Northern Shaanxi, where
the surface is covered with a large amount of aeolian sand,
and the fly ash comes from the power plant. Glass fiber is
selected as the doped fiber material, mainly considering the
low cost. Among them, the length of glass fiber is 3mm,
6mm, and 15mm, and the maximum tensile strength of sin-
gle glass fiber is 2800MPa. It is often used as the filler of
cement or concrete to improve the strength, impact resis-
tance, tensile strength, bending resistance, and durability of
materials, and it is an ideal multifunctional reinforcing
material. The photograph of glass fiber is shown in Figure 1.

2.2. Preparation Process. Firstly, glass fiber and raw materials
of backfill materials (fly ash, aeolian sand, cement, and
quicklime) were weighed, mixed, and stirred evenly, and
then, water was added for mixing. Then, the mixed mortar
was poured into self-made abrasives and put into the curing
box for curing; eventually, a cube-like concrete specimen is
formed. The size of the abrasive tool is 7:07 × 7:07 × 7:07
cm, and the WAW-1000D servo press machine was selected
to test the tensile strength of the cemented backfill materials
at different ages.

2.3. Experimental Scheme. In current study, the influence of
aeolian sand content, fly ash content, cement content, quick-
lime content, glass fiber length, and glass fiber content on
the tensile strength of cemented backfill materials is mainly
considered. The content of each material refers to the weight
proportion, and the specific design scheme is shown in
Table 1. Among them, there are 4 kinds of cemented backfill
ratios, 3 kinds of glass fiber lengths, 5 kinds of glass fiber
content, and a total of 60 schemes. Each scheme carries
out 3 experiments for a total of 180 experiments.
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The design of the experimental scheme is mainly based
on the results of previous studies. Aeolian sand content,
cement content, glass fiber length, and glass fiber content
are the main variables in this scheme. Therefore, the input
variable of the artificial intelligence prediction model
selects the above variables. Since glass fiber can signifi-
cantly modify the tensile strength of cemented backfill
materials, this study mainly tests the tensile strength of
GFCBM, and it is also the output variable of the artificial
intelligence prediction model.

3. Machine Learning Algorithms

In this study, four artificial intelligence models are used to
predict the tensile properties of GFCBM, which are ABC-
SVM, DE-SVM, GA-SVM, and SSA-SVM. Among them,
SVM is employed in analyzing the function relation between
the tensile strength of GFCBM and various influence param-
eters, and ABC, DE, GA, and SSA are employed in optimiz-
ing the parameters of the SVM.

3.1. Support Vector Machine. Support vector machine
(SVM) [18] is a machine learning means raised by Vapnik.
It can be divided into support vector classification and sup-
port vector regression to solve classification and regression
problems, respectively. As shown in Figure 2, the core idea
of SVM is the conversion from low-dimensional spatial data
points to high-dimensional spatial data points through non-
linear mapping and adopt the principle of structural risk
minimization, and then, classify and predict the data in the
high-dimensional space. SVM can effectively avoid the local

extremum problem, maximize the prediction accuracy, and
prevent the data from overfitting. According to the restricted
sample data, it can obtain the optimal value between model
complexity and forecast accuracy and improve its generali-
zation ability.

The selection of kernel function and related parameter
setting are the key of SVM. In this study, the SVR is
selected, and the widely used RBF kernel function is
adopted, because it is suitable for different samples and
various dimension problems and has strong nonlinear
mapping ability. The hyperparameters (C and g) of the
SVM model are closely related to its predictive ability,
and the optimal solution needs to be gained through opti-
mization algorithms.

3.2. Artificial Bee Colony Algorithm. Artificial bee colony
(ABC) is a new optimization algorithm in view of swarm
intelligence put forward by Vasquez and Garro [19]. The
artificial bee colony algorithm model mainly includes the
following elements: one is the nectar source, that is, the
group goal. The composition of the group is dedicated to

Figure 1: The photograph of glass fiber.

Table 1: Experimental scheme design [17].

Group
Aeolian sand : fly ash:
cement: quicklime (%)

Glass fiber
length (mm)

Glass fiber
content (‰)

1 47.5 : 35 : 12.5 : 5 3, 6, 15 1, 3, 5, 10, 15

2 55 : 35 : 5 : 5 3, 6, 15 1, 3, 5, 10, 15

3 21.5 : 35 : 38.5 : 5 3, 6, 15 1, 3, 5, 10, 15

4 30 : 35 : 30 : 5 3, 6, 15 1, 3, 5, 10, 15

Original space Feature space

Mapping function

Linearly separableNonlinearly separable

Figure 2: The SVM solution principle.

Start

Divide the population into discoverers
and joiners

Update discoverer position 

Output optimal solution

Initial population 

Y

N

Update joiner position 

Select the guard and update the
location 

Satisfying stopping
criterion

Figure 3: SSA algorithm flow chart.
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finding the best nectar source and continuously updated
after mining; the second is the composition and division of
the bee colony. The hired bee is dedicated to discovering
and sharing nectar source information with the follower
bees, while the scout bee is dedicated to the update of the
nectar source. It is always transformed from the hired bee
when the quality of the nectar source drops. The third is col-
ony behavior, that is, the recruitment of new bees and the
abandonment of low-value nectar sources.

3.3. Differential Evolution Algorithm. The DE algorithm was
put forward by Yuan et al. [20]. This algorithm solves the
optimization problem by means of the cooperation and
competition of individuals in the whole population and has
a strong global convergence potentiality. The process of DE
algorithm is similar to other evolutionary algorithms,
including mutation, selection, and crossover operations,
but compared with other algorithms, DE algorithm runs sta-
bly, converges quickly and has low complexity. The DE algo-
rithm begins from the initial population, after mutation,
selection, and crossover operations; the best individual is
saved in the new population and then iterates until the ter-
mination condition is met.

3.4. Genetic Algorithm. Genetic algorithm (GA) is a type of
evolutionary calculation, which is a method to imitate Dar-
win’s genetic selection and natural elimination of biotic evo-
lution process [21]. The algorithm is simple, general, and
robust and is suitable for parallel processing. The GA mainly
transfers the better genes to the next generation by the
means of the selection operator and expands the search
range by the means of the crossover operator, and the muta-
tion operator accelerates the convergence speed, so as to
achieve the goal of global search.

3.5. Sparrow Search Algorithm. Sparrow search algorithm
(SSA) is a latest swarm intelligence optimization algorithm,
put forward in 2020 [22]. During the process of foraging
for sparrows, it is compartmentalized into discoverers and
joiners. The discoverers are responsible for finding food in
the population and provide search directions for the whole
population, while joiners use the discoverers’ guidance to
obtain food. In order to obtain food, sparrows can usually
forage for food using two behavioral strategies: discoverer
and joiner. Individuals in the population will be alert to
the other individual behaviors, and attackers in the popula-
tion will compete with high-intake companions for food

resources to increase their predation rate. The specific flow
chart is shown in Figure 3.

4. Methodology

4.1. Dataset Preparation. In current study, the tensile prop-
erties of GFCBM from the experimental test are used as
the dataset for the artificial intelligence. As mentioned above,
there are 180 series of data for training and testing. According
to early research experience [23, 24], compared with other
models such as ANN, SVM has obvious advantages in dealing
with small samples and nonlinear problems. It is unnecessary
to be large for the dataset required for the training and testing
of SVM-basedmodel, and the artificial intelligencemodels can
be well trained and tested by the 180 series of data in this
paper. According to the experimental scheme, the aeolian
sand content and cement content in the GFCBM are variables,
and the glass fiber length and content are also variables. There-
fore, the input variables are aeolian sand content, cement con-
tent, glass fiber length, and glass fiber content, and the output
variable is the tensile strength of GFCBM. Table 2 summarizes
the data statistics for the whole dataset.

In the process of modeling, the whole dataset will be sep-
arated into a training set and a testing set on the basis of a
certain ratio [25]. In this paper, the ratio is selected to be
7 : 3, that is, 126 series of data are selected for the training
set, and the 54 series of data are selected for the testing set.

4.2. Model Establishment. Figure 4 presents four hybrid arti-
ficial intelligence models, that is, ABC-SVM, DE-SVM, GA-
SVM, and SSA-SVM. Among them, SVM is employed in
analyzing the function relation between the tensile strength
of GFCBM and various influence parameters, and ABC, DE,
GA, and SSA are employed in optimizing the parameters of
the SVM. For comparison and analysis purposes, based on
the optimal effect and stable convergence of various machine
learning algorithms, it is better to keep the model parameters
consistent. The kernel function of SVM is RBF radial basis
function, the population size of each algorithm is given with
50, and the maximum number of iterations is given with 100.

4.3. Model Validation and Evaluation. The intelligence
model validation and evaluation is an important link for
the development of the model. In this study, for the sake
of assessing the dependability of the hybrid model effec-
tively, the function relationship between the predicted value
and the measured value is described by the correlation coef-
ficient (R), mean absolute error (MAE), and root mean

Table 2: Basic parameter statistics of the dataset.

Parameter Minimum Maximum Unit Variable

Aeolian sand content 21.50 55 % Input

Cement content 5 38.50 % Input

Glass fiber length 3 15 mm Input

Glass fiber content 1 15 ‰ Input

Tensile strength of GFCBM 0.17 1.23 MPa Output
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square error (RMSE), respectively, [26]. The closer the value
of R is to 1, the better correlation between predicted value
and measured value; the smaller the MAE and RMSE, the
smaller the error between the predicted value and the mea-
sured value. The calculation formula of the three evaluation

indexes is as follows:

R = ∑n
i=1 y∗i − y∗
� �

yi − �yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i=1 y∗i − y∗ð Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i=1 yi − �yð Þ2
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Figure 5: The training effects of different prediction model for training set.
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MAE = 1
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where n refers to the number of datasets, yi
∗ refers to the

predicted value, yi refers to the measured value, y∗ refers to
the average of the predicted value, and �y refers to the average
of the measured value.

5. Results and Discussion

5.1. Comparative Analysis of Different Prediction Models.
This study mainly analyzes and compares the forecast per-
formance of the above four hybrid artificial intelligence
models in the tensile strength of GFCBM from two parts
of training set and testing set.

Figure 5 shows the training effects of different prediction
model for training set. It can be demonstrated that the four
hybrid artificial intelligence models have obtained good
training effects, and the sample data are essentially near
the ideal fitting line (measured value = predicted value), and
only a few sample points deviate from the fitting line. From
the perspective of the R value, the training effect of ABC-
SVM is the best, its R value is 0.9844, followed by GA-

SVM, SSA-SVM, and DE-SVM, and its R values are
0.9835, 0.9717, and 0.9677, respectively. In general, the
training effects of the four hybrid artificial intelligence pre-
diction models have reached high accuracy.

When completing the model training, the trained model
is used for prediction. Figure 6 shows the prediction effects
of different prediction model for testing set. By analyzing
the data distribution, it is clear that the sample data of test-
ing set is also essentially near the ideal fitting line
(measured value = predicted value). According to the order
from high to low, the prediction ability of the four prediction
models is as follows: ABC-SVM, GA-SVM, SSA-SVM, and
DE-SVM, and the corresponding R values are 0.9555,
0.9539, 0.9413, and 0.9359, respectively. Consequently,
ABC-SVM has the best predictive ability in terms of the ten-
sile strength of GFCBM.

To better analyze and compare different forecast model
performance, the performance indicators of different predic-
tion models are summarized, as shown in Table 3, and it can
be drawn that compared with the other three models, the
prediction accuracy of ABC-SVM hybrid model is higher
in training set and testing set. Its R value is the largest, and
its RMSE and MAE values are also very small. This shows
that the ABC-SVM intelligent model not only gives full play
to the superiority of SVM in handling problems with few
samples but also gives full play to the characteristics of
ABC in hyperparameter optimization. Considering
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Figure 6: The prediction effects of different prediction model for testing set.
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comprehensively, the ABC-SVM intelligent model has better
learning and predictive capabilities. Consequently, this study
suggests using the ABC-SVM intelligent model to forecast
the tensile strength of GFCBM.

5.2. Contributions and Shortcomings. The innovations and
main contributions of this research are as follows: (1) it is
proposed to use artificial intelligence technology to predict
the tensile strength of GFCBM, which effectively avoids the
disadvantages of complex laboratory testing process, long
time-consuming, and high cost; (2) considering that SVM
has many unique advantages in solving small sample and
nonlinear and high-dimensional pattern recognition, it is
proposed to use support vector machine to construct the
prediction model, which solves the defect of small sample
data; (3) systematic comparative research on intelligent opti-
mization algorithms to optimize the performance of SVM
has been carried out.

This study is the initial exploration of artificial intelli-
gence technology to forecast the GFCBM mechanical prop-
erties. In the future, it is necessary to use artificial
intelligence model to forecast the compressive strength and
shear strength of GFCBM. Meanwhile, the dataset of artifi-
cial intelligence prediction model needs to be continuously
enriched, so as to make the better predictive ability.

6. Conclusions

In this research, there are four hybrid artificial intelligence
models to be proposed and compared for predicting the ten-
sile strength of GFCBM, that is, ABC-SVM, DE-SVM, GA-
SVM, and SSA-SVM. The dataset of the model is built
through laboratory tests on tensile properties of GFCBM.
The input variables are aeolian sand content, cement con-
tent, glass fiber length, and glass fiber content, and the out-
put variable is the tensile strength of GFCBM. The R,
RMSE, and MAE are selected to assess the estimated perfor-
mance of the hybrid intelligent model. The main findings are
as follows:

(1) Through laboratory tests of different fly ash content,
aeolian sand content, cement content, quicklime
content, glass fiber length, and glass fiber content
on the tensile strength of GFCBM, it is found that
the glass fiber can effectively change the tensile
strength of cemented backfill materials

(2) The four hybrid artificial intelligence models pro-
posed in this study show a latent capacity for fore-
casting the tensile strength of GFCBM, and ABC,

DE, GA, and SSA have good effects on SVM hyper-
parameter optimization

(3) According to the order from high to low, the predic-
tion ability of the four prediction models is as fol-
lows: ABC-SVM, GA-SVM, SSA-SVM, and DE-
SVM, and the corresponding R values are 0.9555,
0.9539, 0.9413, and 0.9359, respectively. In this
study, ABC-SVM intelligent model is suggested to
forecast the tensile strength of GFCBM
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“Fracturing network+imbibition oil production” is a new attempt to effectively develop low-permeability tight reservoirs.
Fracturing fluid is not only a carrier for sand carrying but also a tool in the process of imbibition. On the basis of imbibition
experiments, combined with nuclear magnetic resonance and pseudo-color processing technology, this paper clarified the
dominant forces of different types of pore-throat and quantitatively characterized the contribution of different levels of pore-
throat to imbibition oil recovery. The results show that gravity is the main controlling force of imbibition for reservoirs with
higher permeability. Fluid replacement mainly occurs in the early period of imbibition. Macropores contribute most of the
imbibition recovery, mesopores have a weak contribution, and the contribution of micropores and pinholes can be ignored.
For the reservoirs with low permeability, capillary force is the main controlling force of imbibition. Fluid replacement mainly
occurs in the later period of imbibition. Macropores contribute most of the imbibition recovery rate, mesopores contribute a
small part of the imbibition recovery factor, and the contribution of micropores and pinholes can be ignored. This paper
clarified that macropores and mesopores are the main sources of the contribution of imbibition recovery efficiency, and oil
content and connectivity are key factors for the imbibition recovery efficiency.

1. Introduction

The development potential of low-permeability tight oil res-
ervoirs is huge [1, 2], and imbibition oil recovery has become
the most effective method for enhancing oil recovery for this
type of oil reservoirs [3, 4]. Its principle is to use capillary
force as the main displacement power to enhance the oil-
water replacement capacity between fractures and rock
matrix [5, 6]. It can finally achieve the purpose of increasing
the degree of crude oil production in the matrix [7, 8]. It is
significant to clarify the main controlling factors of different
levels of pore-throat and analyze the imbibition characteris-
tics of different types of pore-throat for improving the pro-
ductivity of a single well [9–11].

At present, there are many scholars who study the law of
imbibition oil production based on nuclear magnetic reso-
nance technology: Mason et al. [12–14] compared the imbi-

bition characteristics of rocks under the different boundary
conditions. The results show that the imbibition rate of
rocks increases with the increase in the total surface area
and the recovery increases with the increase in the rock
shape factor. Bertoncello et al. took advantage of nuclear
magnetic resonance technology to study the influence fac-
tors on imbibition [15, 16]. The results show that the greater
the permeability and the longer the shut-in time, the higher
the imbibition replacement efficiency; the higher the initial
water saturation and the longer the imbibition equilibrium
time, the lower the imbibition replacement efficiency; and
the higher the permeability and injection ratio, the longer
the imbibition distance [17–19]. Chen et al. evaluated the
influence physical parameters on the dynamic imbibition
efficiency [20, 21]. The results show that the average pore
radius, permeability, porosity, average pore-throat ratio,
medium diameter, average roar radius, and specific surface
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area are the main factors that affect the dynamic imbibition
efficiency, and the degree of influence of those on the imbi-
bition efficiency is gradually poor. The degree of influence of
the sorting coefficient on the imbibition efficiency is rela-
tively small [22, 23]. Liu et al. [24] conducted experiments
on the imbibition characteristics of tight sandstone reser-
voirs through nuclear magnetic resonance and mercury
intrusion porosity testing, which studied the pore-throat
limit of imbibition, examined the relationship between pore
throat and reservoir parameters, and proposed the imbibi-
tion mechanism of tight sandstone reservoirs. Oort et al.
made a profound study on oil-water displacement under
the action of osmotic pressure and capillary force in shale
reservoirs [25, 26] and obtained the displacement character-
istics of pore fluid in the process of imbibition [27, 28].
However, most of the above studies are on the mechanism
and influencing factors of imbibition. It is basically a qualita-
tive analysis, without clarifying the main control force of dif-
ferent types of pore-throat and without quantifying the
contribution of different types of pore-throat to imbibition
oil recovery. The innovations of this paper are as follows:
based on the imbibition experiment of cores, combined with
the technology of nuclear magnetic resonance and pseudo-
color processing, this paper is aimed at achieving the pur-
pose of clarifying the main controlling force of different
types of pore-throat and quantitatively characterizing the
contribution of different types of pore-throat to imbibition
oil recovery.

2. Core Characteristics

In order to study the characteristics of different types of
pores and throats, two cores with relatively different physical
parameters were selected for experimental research. As
shown in Table 1, the gas measurement permeability of core
1 is 14:140 × 10−3 μm2 and the porosity of core 1 is 19.57%,
which belongs to the low-porosity and low-permeability
core. And core 2 has a gas measurement permeability of
0:059 × 10−3 μm2 and a porosity of 2.78%, which belongs
to the ultra-low-porosity and tight core.

Figure 1 shows the test results of core 1 and core 2 cast-
ing thin slices and scanning electron microscopy. Through
the analysis, we can get the conclusion as follows: core 1 is
mainly composed of siliceous self-formed filling pores, and
the metasomatism of silty crystal dolomite is obvious. It
mainly replaces volcanic rock debris. The feldspar and volca-
nic debris dissolve significantly. Kaolinite fills the pores with
a small amount of metasomatic debris. Tuffaceous hydration
is positive, and it exhibits wavy extinction characteristics
under cross-lighting. The eruptive rock of core 1 accounts
for 47%, and the total aperture ratio of core 1 is 7.0%. The
pores are mainly intercrystalline pores and intergranular

pores. The sorting is good. The pore type is mainly inter-
granular residual pores. The diagenesis authigenic minerals
are composed of clay minerals such as kaolinite and are
mostly produced in the form of pore filling; core 2 is mainly
quartz schist and metamorphic quartzite cuttings. Its main
componet is iron calcite with a small amount of illite filling
pores. The features of core 2 are poor pore development
and poor sorting. Schist of core 2 accounts for 60%, and total
porosity of it is 1.2%. The main types are residual pores and
fissures between grains. The diagenetic authigenic minerals
are composed of clay minerals such as imon mixed layer
and illite and are produced in the form of pore filling and
cushioning.

Figure 2 is a bar chart of the pore-throat distribution of
the two cores. It can be seen that the peak of the pore-
throat size distribution of core 1 is 2.5~6.3μm. Pore-throat
size less than 0.1μm accounts for 17.96%, the pore size of
0.1~1.0μm accounts for 25.77%, and the proportion of the
pore size more than 1.0μm is 56.27%. The quality of core
2 is poor, most of the pore-throat size is less than 0.1μm,
and the proportion of pore-throat in this part is as high as
66.37%.

3. Experimental Process

This paper is based on the core imbibition experiments,
combined with the technology of the nuclear magnetic reso-
nance (MesoMR23-60H-I medium-size nuclear magnetic
resonance spectrometer) and pseudo-color processing to
study the imbibition characteristics of different types of
pore-throat. The experimental process is as follows:

(1) Cut core 1 and core 2 into small cores with a length
of about 4.00 cm and a diameter of 2.50 cm; then,
clean them simply and maintain the original
wettability

(2) Place the core in the displacement device and pres-
surize it to displace saturated distilled water until it
is fully saturated; then, let it stand for a period of
time; perform the first NMR scan with a nuclear
magnetic resonance instrument on the core, and
record the core signal when it is fully saturated with
distilled water

(3) Use fluorine oil to reversely drive the saturated core
until no distilled water is produced. The fluorine oil
used meets the condition of no nuclear magnetic sig-
nal. Let it stand for a period of time to ensure that
the core fluid is fully balanced under the action of
capillary force. Then, perform the second NMR scan
with an MRI machine on the core to record the core
signal after reverse saturation of fluorine oil

Table 1: The physical parameters of cores.

Core number Porosity (%) The gas measurement permeability (10-3 μm2) Length (cm) Diameter (cm) Dry weight (g)

1 19.57 14.140 3.95 2.50 39.232

2 2.78 0.059 4.00 2.50 49.745
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(a) Casting thin section of the core (intergranular pores and dissolved pores)

1 mm

(b) Casting thin section of core 2 (overall dense)

100 𝜇m EHT = 20.00kV WD = 8.9 mm Mag = 103 X Signal A = SE2

(c) Scanning electron microscope of core 1 (intergranular pores)

20 𝜇m EHT = 20.00 kV WD = 9.0 mm Mag = 395 X Signal A = SE2

(d) Scanning electron microscope of core 1 (detrital particles, dissolved pores)
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(e) Scanning electron microscope of core 2 (intergranular residual pores)
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(f) Scanning electron microscope of core 2 (intergranular flake illite)

Figure 1: Cast thin section and scanning electron microscope.
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(4) The core self-imbibition experiment system is con-
structed as shown in Figure 3. The core saturated
with fluorine oil was suspended vertically in the dis-
tilled water imbibition liquid, and the core is taken
out after the imbibition for 3 days, 5 days, and 7
days. Then, the core was subjected to resonance
scanning, and core signals are recorded at different
time points of imbibition

(5) Process and analyze nuclear magnetic resonance
data and pseudo-color visualization images

4. Result Analysis

4.1. Core 1. Figure 4 shows the pseudo-color images gener-
ated by scanning of core 1 after being saturated with fluorine
oil for 3 days of imbibition, 5 days of imbibition, and 7 days
of imbibition. The red area is the area with a strong nuclear

magnetic signal. It can be seen from the evolution of the
pseudo-color pictures that as the imbibition time increases,
the red area gradually spreads, which indicates that during
the process of imbibition, the core and the distilled water
in the beaker have a significant fluid replacement. Because
the core is placed vertically, the left end of the picture is
the upper end of the vertical core. It is not difficult to see that
the red area spreads from top to bottom along the core axis,
indicating that for core 1, the gravity effect is the most obvi-
ous during the self-imbibition process.

Figure 5 shows the corresponding NMR T2 spectrum
curve of core 1 saturated with fluorine oil for 3 days of imbi-
bition, 5 days of imbibition, and 7 days of imbibition. From
the comparison of the curve differences, it is not difficult to
see that the fluid imbibition displacement of core 1 mainly
occurs in pore-throat of 0.25~20μm, and fluid replacement

(a) Saturated fluorine oil (b) Imbibition for 3 days

(c) Imbibition for 5 days (d) Imbibition for 7 days

Figure 4: Pseudo-color image of core 1 (red is the water phase signal).
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of pore throats of 1.6~10μm is the most significant. The
phenomenon is more obvious in the first 3 days of imbibi-
tion replacement, and the efficiency of imbibition replace-
ment is relatively weakened in the next 4 days.

In order to quantitatively characterize the contribution
of different types of pore-throat to imbibition oil recovery,
the core pore throats are subdivided into four types, including
micropores (pore diameter ≤ 0:025 μm), pinhole (pore diame-
ter: 0.025~0.1μm), mesopores (pore diameter: 0.1~1μm), and
macropores (pore diameter > 1 μm). Figure 6 shows the
change curve of water cut of different types of pore-throat of
core 1 with time. Statistics show that the total water cut of core
1 increased from 15.31% to 38.37%, and the 168-hour imbibi-
tion recovery rate of the core was 23.06%. The macroporous
water cut increased from the initial 9.63% to 32.29%, which
contributed 98.26% of the total oil production by imbibition;
the water cut of mesopores increased from the initial 5.35%

to 5.75%, which contributed 1.73% of the total oil production
by imbibition; the contribution of micropores and pinholes
was negligible.

4.2. Core 2. Figure 7 shows the pseudo-color images gener-
ated by scanning of core 2 after being saturated with fluorine
oil for 3 days of imbibition, 5 days of imbibition, and 7 days
of imbibition. It can be seen that with the increase in the
imbibition time, the bright-colored area diffuses irregularly.
Compared with the axial direction of the core, the lateral
movement of the fluid is more obvious, which indicates that
the capillary force plays a major role in core 2.

Figure 8 shows the corresponding NMR T2 spectrum
curve of core 2 saturated with fluorine oil for 3 days of imbi-
bition, 5 days of imbibition, and 7 days of imbibition. From
the comparison of the curves, it is not difficult to see that there
are mainly two intervals of pore-throat for the fluid imbibition
displacement of core 2, namely, 0.001~0.017μm interval and
0.08~2.5μm interval. The fluid replacement in 0.08~2.5μm
pore-throat is relatively obvious. What is more, the imbibi-
tion replacement is overall stable; the fluid replacement phe-
nomenon is more obvious in the later 2 days. In the first 5
days, the efficiency of imbibition replacement was relatively
weakened, indicating that the time of imbibition replacement
in cores with poor pore throats was relatively slower.

Figure 9 shows the change curve of water cut of different
types of pore-throat of core 2 over time. Statistics show that
the total water cut of core 2 increased from 40.42% to
49.33%, and the 168-hour imbibition recovery rate of core
2 was 8.91%. The macroporous water cut increased from
the initial 27.81% to 33.63%, contributing 65.35% of the total
imbibition oil production; the mesoporous water cut
increased from the initial 10.29% to 13.29%, contributing
33.67% of the total imbibition oil production. The contribu-
tion of micropores and pinholes are both around 0.5%, and
mesopores have been assumed to have more contribution.

(a) Saturated fluorine oil (b) Imbibition for 3 days

(c) Imbibition for 5 days (d) Imbibition for 7 days

Figure 7: Pseudo-color image of core 2 (bright color is the water phase signal).
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5. Conclusions

(1) For reservoirs with high permeability, gravity is the
main controlling force in the process of imbibition.
The fluid replacement mainly occurs in the early
period of imbibition, and the effect is relatively
weak in the later period. Macropores (pore diameter
> 1 μm) contribute most of the imbibition, and meso-
pores (pore diameter: 0.1~1μm) have a weak contri-
bution. The contribution of micropores and pinholes
can be ignored

(2) For reservoirs with low permeability, capillary force
is the main controlling force in the process of imbibi-
tion. The fluid replacement mainly occurs in the later
period of imbibition. Early fluid replacement is rela-
tively weak. Macropores (pore diameter > 1 μm) con-
tribute most of the imbibition, and mesopores (pore
diameter: 0.1~1μm) contribute a small part of the
imbibition. The contribution of micropores and pin-
holes can be ignored

(3) Regardless of whether the main controlling force is
gravity or capillary force, macropores (pore diameter
> 1 μm) and mesopores (pore diameter 0.1~1μm)
are the main sources of contribution to imbibition
recovery, indicating that oil content and connectiv-
ity are two crucial factors that affect imbibition
recovery
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Evaluation of hydraulic fracture (HF) performances is critical to develop unconventional resources such as tight oil and gas. We
present a probabilistic evaluation approach that integrates ensemble machine learning with Monte Carlo simulation. In the
method, we employ the ensemble learning to develop a predictive model between well productivity and its influential factors
including both geological properties and HF treatment parameters. Next, coupling the built prediction model with Monte
Carlo simulation, an empirical cumulative probability distribution of the well productivity is generated. The well HF
performance is assessed by estimating its cumulative probability value. The proposed method is applied to evaluate the HF
performances in a developed block of the eastern Sulige region. The study shows that 19% of the wells were fractured with
good quality and 55% of the wells were fractured with average quality, while the rest were stimulated with poor quality. The
evaluations provide a guideline for optimization of HF designs of wells that have not been hydraulically stimulated in the region.

1. Introduction

Tight sand gas has become a new exploration target and
important source of natural gas supply in China [1–6].
Sulige gas field, located in the central part of the Ordos
Basin, is the largest tight gas field with estimated gas reserves
of 18.85 Tcf in China [7–9]. The eastern Sulige is one of the
main regions of natural gas exploration and development in
the gas field [10, 11]. Due to the low quality of rock proper-
ties such as permeability and porosity in the gas-bearing for-
mations, hydraulic fracturing stimulations were carried out
so that natural gas can be produced economically from the
tight formation.

The hydraulic fracturing is a process which injects large
amounts of water, proppants (sand), and additives via a
wellbore at high pressure into the low permeable formations
to break rock and create cracks (hydraulic fractures). The
injected proppants keep fractures open [12–14]. These frac-
tures could extend several hundred feet away the wellbore
and form high permeable flow paths, which ease the natural
gas flow from the tight formation toward the wellbore and

enhance the gas recovery. In the past several years, hundreds
of wells were hydraulically stimulated and put on production
in the eastern Sulige region. However, the significant differ-
ences in the gas production have exhibited in the fractured
wells [15]. To further develop the gas field, it is necessary
to evaluate the hydraulic fracture performances and to iden-
tify the best hydraulic fracturing practices to maximize the
well gas production in the field.

Upon completing of a HF job, well production perfor-
mance such as absolute open flow potential (AOFP) or
cumulative gas production is employed as an indicator for
the hydraulic fracture performance of the well. The well pro-
duction performance is controlled by multiple variables. In
this work, we consider geological properties and fracturing
treatment parameters. The geological properties include
gas saturation, pay thickness, porosity, matrix permeability,
and presence of nature fractures. The treatment parameters
mainly contain fluid injection volumes, injection rates and
pressure, and proppant volumes, which influence fracture
geometries. To conduct the performance evaluation, it is
essential to build a predictive model to quantify the well
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production performance with these influential factors. A
numerical reservoir simulator is usually employed to build
such model by simulating natural gas flow in both tight
matrix and the fractures [16–19]. However, the accuracy of
the hydrocarbon production predictions highly relies on
the characterization of the tight gas reservoirs and represen-
tation of induced fracture geometry. Due to limited forma-
tion data and subsurface complexities, it is impossible to
quantify the properties precisely. Meanwhile, the underlying
flow mechanism is so complex in the tight formations that
multiple simplified assumptions have been made in the
mechanistic modelling [20]. These challenges have made
that the estimated hydrocarbon production from the reser-
voir simulations often differs from actual production data
[21]. In addition, the numerical simulation runs are compu-
tationally intensive by solving large partial deferential equa-
tions and make them unfeasible for the probabilistic
evaluation of the HF performance, where hundreds of simu-
lations are often required. Numerous data have been col-
lected from various sources and available in the eastern
Sulige region. A machine learning method could provide
potential solutions to overcome the drawbacks.

In recent years, the machine learning method has become
a powerful tool for predicting the production performance.
For instance, Nejad et al. [22] developed a neural network
model to examine the effect of the completion and fracture
treatment designs on gas production in the Eagle Ford Shale.
Mohaghegh [23] proposed the concept of shale analytics to
describe the applications of artificial intelligence to shale gas
development. The shale analytics was applied to investigate
how different reservoir and completion parameters affect gas
production in several shale plays of the United States. Mont-
gomery and O’Sullivan [24] developed a spatial error model
and regression-Kriging to forecast tight oil production using
a large well dataset from the Williston Basin in North Dakota.
Wang and Chen [25] investigated the performances of four
machine-learning algorithms in forecasting first-year oil pro-

duction of Montney tight reservoirs and concluded that ran-
dom forest outperformed other algorithms. Porras et al. [26]
developed a random forest model to predict first-year oil pro-
duction using geological and completion design parameters.
The developed model was used to evaluate hydraulic fracture
performance of the horizontal wells in the Viking Formation,
Canada. Although the machine learning techniques have
shown promising results in the production prediction in the
above studies, these studies did not consider the uncertainties
related to the complexities of the HF process. The quantifica-
tion of these uncertainties can provide valuable information to
assess the HF performances.

In this study, we develop a probabilistic approach to
evaluate the HF performance. Our approach integrates
ensemble learning with Monte Carlo simulations to consider
the uncertainties caused by the HF treatment complexities.
The approach was inspired by Mohaghegh’s combination
of neural networks and the Monte Carlo simulations [23].
We applied the developed approach to obtain an empirical
cumulative probability distribution of the well productivity.
The well HF performance is assessed by estimating its prob-
ability value.

2. Methodology

The probabilistic evaluation workflow of the HF perfor-
mance consists of four main steps, as shown in Figure 1.

(Step 1) Data collection: collect raw data from a database.
The independent variables include geological
properties and hydraulic fracturing treatment
parameters. The target variable represents post-
treatment well production performance.

(Step 2) Data preprocessing: make raw data ready for
building a predictive model. The data prepro-
cessing is composed of two parts: data cleaning
and feature selection.

(Step 3) Ensemble learning: build a model to predict the
well production performance using ensemble
machine learning.

(Step 4) Probabilistic evaluation: combine the predictive
model with the Monte Carlo simulation to
assess the HF performance.

2.1. Data Collection and Preprocessing. We extracted 743
vertical fractured wells from a private database. These wells
were chosen without missing values and from the same
developed block in the eastern Sulige. As one of China’s nat-
ural gas development key areas, the eastern Sulige gas field
stretches from the Ordos district in the Inner Mongolia
Autonomous Region to the Yulin district of Shaanxi prov-
ince in China. The reservoir rocks of the gas field mainly
consist of the Upper Paleozoic fluvial and deltaic sands
[27]. The main gas-producing layers are Permian-age Shi-
hezi formation, Shanxi formation, Benxi formation, and

Data collection
Geological, fracturing treatment data

Data pre-processing

Ensemble learning

Performance evaluation

Correlation analysis
Outlier removal(i)

(ii)

(i)

(i)

(ii)

(ii)

Gradient boosting decision trees
Data split into train/test

Monte carlo simulation
Performance prediction

Figure 1: Workflow of HF performance evaluation.
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Majiagou formation. The 8th member of Shihezi formation
(He8) is one of the most gas productive zones with forma-
tion thickness between 45m and 60m. The average depth
of the tight formations in the study area ranges from
2300m to 3800m. The reservoir porosity ranges from 5%
to 15%, and the matrix permeability varies from 0.5 to
20mD [28]. The multistage hydraulic fractured wells have
been applied recently in the field. However, the field is still
dominated by vertical well development, accounting for
more than 80% of the total number of wells [29]. The verti-
cal wells were drilled into the formations He8 and 1st mem-
ber of Shanxi formation (Shan1) between 2009 and 2016.
Based on geological interpretations, most of the vertical wells
have several gas-bearing layers with average thickness less
than 5m. To stimulate the separate layer, multilayer staged
fracturing techniques such as mechanical packers, casing
sleeves, and coiled tubing were developed to enhance frac-
turing efficiency and increase single-well production. How-

ever, the fractured wells could only keep stable gas
production for 1 to 1.5 years; then the production declined
rapidly. Therefore, the gas flow rates were allocated properly
to maintain a relatively long stable production [30].

For each vertical well, there are twelve variables listed in
Table 1.

The target variable is absolute open flow potential
(AOFP) to quantify the hydraulic fracture performance.
The number of independent variables is eleven. Two kinds
of independent variables are identified the most important
to the production performance of hydraulically fractured
wells: geological properties and HF treatment parameters.
The geological properties include formation thickness, true
vertical depth (TVD), porosity, matrix permeability, and
gas saturation. The HF treatment parameters such as fluid
volumes, injection rates, and pressure determine a fracture
geometry and conductivity, which play an important role
in natural gas flow.

Geological properties

Formation thickness
Porosity
Gas saturation
Matrix permeability

Treatment parameters
Probability distribution

Normal

Predictive model

AOFP

Triangular

Uniform

Pad volume
Proppant fluid ratio
Slurry volume
Injection rate

.....

.....

Figure 2: Probabilistic evaluation of a fractured well through obtaining cumulative probability distribution of AOFP (modified from [23])

Table 1: Lists of modelling variables.

Type Parameters Unit Abbreviation

Geological properties

Formation thickness m TH

Well true vertical depth m TVD

Formation porosity % PO

Matrix permeability mD PERM

Gas saturation % SG

Fracture treatment

Pad fluid volume m3 PFV

Slurry fluid volume m3 SFV

Proppant fluid ratio % PFR

Total fluid volume m3 TFV

Average injection rate m3/min AIR

Average injection pressure MPa AIP

Production Absolute open flow potential 104m3/day AOFP
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The collected raw data usually include missing data,
incorrect formats, and abnormal data, and the direct usage
of the raw data affects later predictive modelling. Data pre-
processing is employed to solve the issues, which mainly
includes data cleaning, data transformation, and feature
selection, which are described in Section 3.

2.2. Ensemble Learning. The ensemble learning method is
an advancement in machine learning technique by build-
ing multiple learners and combining the outputs of these
learners to obtain robust predictions [31]. It has been con-
firmed that the ensemble learner has better performances
than a single learner and has already been applied in
many regression and classification problems [32]. Boosting
is one of effective ensemble learning methods. Friedman
[33, 34] regarded the boosting as the optimization of a loss
function and introduced the concept of gradient boosting.

Gradient boosting decision trees (GBDT) is an ensemble
algorithm to combine many decision tree models, where
each tree is built to minimize the residual error of the pre-
vious tree iteratively. The final prediction is integrated
from the outputs of all trees. The GBDT algorithm is
described briefly as follows.

Assuming that x is a set of features (geological properties
and HF treatment parameters) and FMðxÞ is a predicted func-
tion of the target variable y (absolute open flow potential).
Given training data set T = fðx1, y1Þ, ðx2, y2Þ,⋯, ðxN , yNÞg,
a GBDTmodel FMðxÞ is built as the summation ofM additive
functions f mðxÞ based on decision trees tðx ; μmÞ [35, 36]:

FM xð Þ = 〠
M

m=1
f m xð Þ = 〠

M

m=1
θmt x ; μmð Þ, ð1Þ
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where μm is the mean of split locations and the terminal nodes
of a tree tðx ; μmÞ and θm is estimated by minimizing a speci-
fied loss function Lðy, FðxÞÞ = ðy − FðxÞÞ2:

f0 xð Þ = γ = argminγ 〠
N

i=1
L yi, γð Þ: ð2Þ

The number of iterationm starts from 1 toM, and negative
gradient gim in the current prediction model is calculated by

gim = −
∂L yi, f xið Þð

∂f xið Þ
� �

f xð Þ=f m−1 xð Þ
: ð3Þ

The tree tðx ; μmÞ is used to approximate the negative gra-
dient, and a descent step size θm is computed by

θm = argminθ 〠
N

i=1
L yi, Fm−1 xið Þ + θt x ; μmð Þð Þ: ð4Þ

Table 2: Statistical properties of the variables.

Parameter Range Mean Standard deviation

Absolute open flow (104m3/day) 0.4~21.5 5.5 3.2

Formation thickness (m) 1.7~38.0 14.6 6.6

True vertical depth (m) 2534~3699 3025 175.7

Formation porosity (%) 4.8~12.7 8.8 1.7

Matrix permeability (mD) 0.1~5.1 0.8 0.7

Gas saturation (%) 30.5~78.5 59.2 6.3

Pad fluid volume (m3) 39.0~830.0 249.8 158.5

Slurry fluid volume (m3) 88.2~933.7 310.5 153.2

Proppant fluid ratio (%) 3.1~45.6 27.4 9.3

Total fluid volume (m3) 144.2~1560.0 589.7 292.6

Injection rate (m3/min) 1.4~11.0 3.2 1.1
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The model is updated based on Equations (2)–(4):

F xð Þ = Fm−1 xð Þ + θmt x ; μmð Þ: ð5Þ

The GBDT has a few advantages, including the ability to
cope with skewed variables, computational robustness, and
high scalability [37]. More details of the algorithm can be found
from Zhu et al. [27].

2.3. Probabilistic Evaluation. Due to the complexity of
hydraulic fracturing process, the production prediction has
some uncertainty, which strongly affects the HF perfor-
mance evaluation.

Monte Carlo simulations can be used to quantify the
prediction uncertainty by estimating an empirical cumula-
tive probability distribution of the well productivity instead
of a determined value. As shown in Figure 2, we fixed the
values of the geological properties of a selected well and
assumed the fracture treatment parameters as random vari-
ables to follow a certain probability distribution such as tri-
angular or Gaussian or uniform. The ranges, means, and
variances of these distributions are estimated from the data-
set. We run the predictive model thousands of times by ran-
domly sampling from the given distributions. At the end of
the runs, an empirical cumulative probability distribution
of the selected well AOFP is generated. Through the proba-
bility distribution, the HF performance of the well could be
evaluated by estimating its probability value. The details
are described in the next section.
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Table 4: Properties of well Sudong42-48.

Parameter Value

Formation thickness (m) 17.2

True vertical depth (m) 3138.9

Formation porosity (%) 7.2

Matrix permeability (mD) 0.4

Gas saturation (%) 54.3

Pad fluid volume (m3) 425

Slurry fluid volume (m3) 380

Proppant fluid ratio (%) 9.7

Injection rate (m3/min) 3.5

Injection pressure (MPa) 67.5

Absolute open flow (104m3/day) 8.5

Table 3: Optimal hyperparameter values of the GBDT.

Hyperparameter Name Ranges Optimal values

No. of trees N_estimators 1~200 110

Max. depth max_depth 2~8 3

No. of features to split max_features sqrt; auto sqrt

Min. number of samples min_samples_split 2~12 4

Learning rate learning_rate 0.08~0.13 0.11

6 Geofluids



3. Results

3.1. Outlier Removal. Figure 3 displays the presence of out-
liers through histograms of the main input variables. The
outliers in the data are circled in black for the variables.
We also applied Rosner’s test to verify the outliers identified
in the histograms [38]. A total of 39 wells with the outliers
were detected from the dataset and removed. 704 wells were
kept to the following predictive modelling.

Table 2 summarizes the range and statistical properties
of the independent and dependent variables. The absolute
open flow potential per well ranges from 0.4 to 21.5
(104m3/day), averaging 5:5 × 104m3/day. The total injection
fluid volume and proppant fluid ratio per well are averaged
to be 589.7m3 (27.4%), respectively.

3.2. Correlation Analysis. Figure 4 shows the Pearson covari-
ance matrix to quantify the degree of linear correlation
among the variables. It is noted that all treatment parameters
have a positive correlation with the well productivity
(AOFP). The increasing in the fracturing fluid volumes
enlarges the reservoir stimulated zones, which creates more
contact area between the wellbore and reservoir. As
expected, there is the multicollinearity among the pad fluid
volume (PFV), slurry fluid volume (SFV), and total fluid vol-
ume (TFV) since total fluid volume consists of the pad fluid
volume and slurry fluid volume. Therefore, the total fluid
volume will be dropped in the following predictive model-
ling. In addition, the geological properties also have a posi-
tive correlation with the AOFP. The formation thickness
has the largest value of the Pearson coefficient. More sophis-
ticated feature selection methods including stepwise regres-
sion and recursive feature elimination are being investigated.

3.3. Production Forecasting. The 704 wells in the dataset
were split into training and test data sets in the ratio of
80 : 20. The main hyperparameters for a GBDT model

include learning rate, number of trees, minimum number
of samples required at a leaf node, maximum depth, and
number of features for the best split. The hyperparameter
tuning were performed on the training data using grid
searching combined with five-fold cross-validation (CV).
The optimal hyperparameter values are listed in Table 3.

Figure 5 shows the results of the relative importance of
10 input variables on the AOFP. The formation thickness
and proppant fluid ratio are two most important variables,
followed by the pad fluid volume and matrix permeability.
The variable importance indicts that the formation thickness
has a significant impact on the well productivity. Therefore,
when fracturing a gas well, we need to evaluate its formation
thickness and matrix permeability. In terms of the fracturing
operation, we may add more proppant to enhance the frac-
ture conductivity and increase the pad fluid volume to
improve the fracturing effectiveness.

Figure 6 compares the actual and predicted AOFP for
the training and test data sets using the built GBDT model.

In the figure, the data points are grouped along the 45-
degree straight line, and the values of coefficient of determi-
nation R2 for the training and test data set are calculated to
be 0.91 and 0.74, respectively. The results show that the pre-
dicted AOFP have a good match with the actual AOFP
values for both the training and test data sets, which indi-
cates the developed AOFP forecasting model is robust for
the evaluation of the hydraulic fracture performance.

3.4. Well Hydraulic Performance Evaluation.We choose well
Sudong42-48 to assess its hydraulic fracturing performance
as an example. Table 4 shows the input variable and AOFP
values of this well.

We fixed the values of the geological properties of this
well and assumed the fracture treatment parameters as ran-
dom variables to follow a certain probability distribution
such as triangular or Gaussian or uniform. We run the pre-
dictive model thousands of times by sampling the treatment
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parameters from the given distributions. An estimated
AOFP was obtained from each run. At the end of the runs,
a histogram and empirical cumulative probability distribu-
tion of the selected well were generated as shown in
Figure 7. The well hydraulic performance is assessed by esti-
mating its cumulative probability based on its AOFP, as
shown in Figure 7. The well AOFP is 8:5 × 104 m3/day,
which is marked as a filling circle in the x-axis. The corre-
sponding cumulative probability is 0.18 to determine the
hydraulic fracturing performance. The hydraulic fracturing
quality of this well was classified as “poor” according to the
evaluation criteria given in Table 5 because its cumulative
probability value is less than 0.3. Taking the same evaluation
process, we have assessed the hydraulic fracturing perfor-
mances of other vertical wells in the developed block of the
eastern Sulige region.

From the variable importance analysis, the proppant
fluid ratio (FPR) is the most influential factor among the
fracture treatment parameters. If we increased FPR value
from 9.7% (original) to 23%, the well productivity was
increased by 29%, and the hydraulic fracturing quality of this
well could be classified as “Fair.” Therefore, the evaluation is
useful to optimize the HF treatment.

We performed the assessments for all 704 fractured
wells. The evaluation results of the block are shown in
Figure 8. 54.6% of the wells in the block have been fractured
with “Fair” quality, 26.4% wells with “Poor” quality, and
only 19% wells with “Good” quality. The results indicate that
the better HF designs are required to improve the HF perfor-
mances in the gas field.

4. Conclusions

In the paper, we have developed a probabilistic workflow to
assess the hydraulic fracture performance by integrating the
ensemble learning with the Monte Carlo simulation. Using

the data from a developed block in the eastern Sulige region,
we have applied the workflow to evaluate the hydraulic frac-
ture performance of the wells.

(1) The absolute open flow potential is regarded as the
response variable, while ten geological and fracture
treatment parameters are chosen as the input
variables

(2) An ensemble learning model is built to quantify
complex relationship between the geological proper-
ties, treatment parameters, and the absolute open
flow potential. Results indict that the formation
thickness has the most important effect on the well
productivity, followed by the proppant fluid ratio

(3) Among 704 fractured vertical wells, 19% of the wells
have been stimulated with “Good” quality, 54.6% of
the wells with “Fair” quality, and 26.4% wells with
“Poor” quality

(4) The proposed workflow could be applied to evaluate
other well stimulation performances such as multi-
stage hydraulic fracturing in horizontal wells or acid
fracturing
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In the modern petroleum industry system, oil-water two-phase flows exist widely. Among them, the total flow rate of mixture fluid
in a horizontal well is difficult to obtain due to the phase segregation caused by gravity. Therefore, it is a difficult and hot issue. To
obtain the total flow rate of oil-water two-phase flows in horizontal wells, in this paper, Multiple Array Production Suite (MAPS),
which is also called Production Array Logs (PAL), is used to conduct simulation experiments, uses BP neural network (BPNN)
algorithm to train the data samples, and establishes the prediction models of the total flow rates of oil-water two-phase flows
in horizontal wells. The results showed that the average relative error was less than 10%, which justify that the BPNN has good
practicability in using data of MAPS in oil-water two-phase flows horizontal wells to predict the total flow rates, and it
provides a new method and theoretical support for obtaining flow rates in horizontal wells.

1. Introduction

With the maturity and wide application of horizontal well oil
development technology, it has become an important
research direction to study its related production logging
technology, including obtaining various flow parameters in
wells. Among them, the study of oil-water two-phase flows
is a key problem [1, 2].

In the logging industry, some researchers have tried to
provide the solution: multiple-sensor array tools (MAPS),
which can be used to detect and analyze multiphase flow
in horizontal wells. For the multiphase flow of horizontal
well, these tools measure the fluid properties at multiple
locations around the cross-sectional area of the wellbore,
providing a distributed measurement that helps to relate
the measurements to obtain flow rates and holdups [3, 4].
According to the measured value, auxiliary computer analy-
sis software can be used to reconstruct it, which can reflect
the flow pattern in the horizontal well. At the same time,

the relevant special software can reconstruct the results of
well logging into simulation images. It should be used in
conjunction with neural network technology to obtain better
results.

The neural network has shone in the oil-related sector.
During the COVID-19 outbreak, the convolutional neural
network which extracts online oil news can be used to pre-
dict the fluctuation of the oil market [5]. The deep neural
network is used to process seismic wave data for reservoir
prediction [6].

In addition, some scholars have made researches on the
application of processing well logging data with neural net-
works. Guo et al. [7] studied the use of feedforward artificial
neural networks for oil-water two-phase flow production log-
ging interpretation methods and obtained the design of corre-
sponding software. Strict experiments were carried out on the
three-phase flow simulation device of Daqing Oilfield. The
105 sets of sample data obtained in the experiment were
substituted into the network for training and learning. 93 sets
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of data were selected to train the BP neural network and RBF
network. 12 multiple sets of sample data were used for testing
and prediction, the value was compared with the actual value,
and the error was within the acceptable range [8]; Chen et al.
[9] used BP neural network to predict the startup velocity of
the continuous flowmeter in the wellbore and obtained excel-
lent prediction results, which showed the potential of this
method in conventional vertical well logging interpretation.

In general, it is very effective to use great algorithms combined
with computer tools to improve productivity [1, 10].

In horizontal wells, the fluid is stratified under the influ-
ence of gravity, which makes the instruments used in con-
ventional vertical wells such as inline flowmeters and
capacitance holdup meters not applicable anymore. In order
to solve these problems, this paper took the MAPS array log-
ging tools as the research object and the experimental data
obtained from the oil-water two-phase simulation experi-
ment on the production logging experiment platform of
Yangtze University as samples, adopting BPNN that can
realize the nonlinear mapping to establish models and pre-
dict flow rates. It provides a new method for obtaining flow
rates of horizontal wells.

2. Production Logging Simulation
Experiment in Horizontal Well

2.1. Experimental Set-Up. The experimental set-up
(Figure 1) was a multiphase flow simulation experiment
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platform of Yangtze University, which included two trans-
parent glass tubes with one inner diameter of D = 124mm
and another inner diameter of D = 159mm, which both
permitted visual observation of the flow, besides a large
liquid storage tank for oil and water storage, an air com-
pressor for pneumatic control valves and gas for experi-
ments, a hydraulic machine for adjusting the angle of the
wellbore, and the relevant complete set of pumps, trans-
portation pipelines, and a master console for controlling
the input fluid and observing the state of the entire exper-
imental set-up. The simulation experiment used a 12m
long 159mm inner diameter wellbore. The fluid was an
oil-water two-phase flow, the water was tap water, and
the oil was No. 10 industrial white oil. The oil-water ratio
was set to 20%, 40%, 60%, 80%, and 90% water cut. The
flow rates were 100m3/d, 300m3/d, and 600m3/d. The
wellbore angles were set to near-horizontal (93°, 90°, and

85°). The measurement methods were divided into spot
measurements and continuous measurements. During con-
tinuous measurements, set the cable speed to 0, 10m/min,
15m/min, and 20m/min.

2.2. Production Array Logs. The experimental tools MAPS
(Figure 2) include spinner array tool for obtaining flow rates,
resistance array tool, and capacitance array tool for obtain-
ing holdup, in addition to a caged fullbore flowmeter [11].

The spinner array tool (SAT) (Figure 3) is composed of
six microspinners distributed on the same section, which
can measure the flow at different positions on the wellbore
area; the capacitance array tool (CAT) (Figure 4) and the
resistivity array tool (RAT) have similar shapes: twelve
microsensors are evenly distributed to measure the fluid
nearby [12]. The caged fullbore (CFB) (Figure 5) flowmeter,
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Figure 6: Structure of BP.

Table 1: Cable speed-flow conversion table.

Experimental control
flow (m3/d)

Cable speed
(m/min)

Equivalent total flow
(m3/d)

100

0 100.00

10 385.91

15 528.87

20 671.82

300

0 300.00

10 585.91

15 728.87

20 871.82

600

0 600.00

10 885.91

15 1028.87

20 1171.82

Figure 5: CFB.
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which uses retractable metal blades to measure the flow
velocity and resides in the middle of the wellbore, can accu-
rately measure the total flow rate [13].

3. Backpropagation Neural Network

Backpropagation neural network is a multilayer feedforward
neural network that uses a backpropagation learning algo-
rithm to adjust the weights, generally uses a sigmoid func-
tion to transmit signals between neurons, and can realize
any nonlinear mapping from input to output.

BP neural network is a kind of neural network, which is
powerful and widely used. It consists of an input layer, a hid-
den layer, and an output layer. The layers are fully intercon-
nected, and the same layers are not connected. The hidden
layer can be one or more layers. Figure 6 is a typical three-
layer BP neural network structure picture.

The multilayer network design enables the network to
calculate errors more accurately during operation and
complete more complex tasks. At the same time, it uses
backpropagation algorithm for learning. In the BP neural
network, the data signal is propagated back layer by layer
through the input layer and hidden layer. When training
the network weights, the signal is in the direction of
reducing errors in the network structure, from the output
layer to the middle layers, and forwards layer by layer.
Modify the connection weight of the network [14]. With
the continuous progress of learning, the final error
becomes smaller and smaller and finally reaches the set
ideal error. At this time, a series of neuron weights con-
taining information is obtained, and a model that can
solve the problem is completed.

In summary, the BP neural network can realize complex
nonlinear mapping, can approximate complex functions
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suitable for problem-solving and processing for the fusion of
multiple input data, and is suitable for processing MAPS
well logging data to predict the flow rates.

4. The Realization of Predicted Flow Rates

4.1. Sample Data Training and Prediction. In the laboratory
environment, total input flow rates, water cuts, and wellbore
inclinations are controlled; the corresponding MAPS data
are used as the original data. Among them, all data samples
are divided into two categories according to whether the
measurement method is the continuous measurement or
spot measurement, and only the CAT corresponding to
SAT is included in the spot measurement data.

In the wellbore, pulling the cable to drive the instrument
to the direction of fluid entry is equivalent to increasing the
flow rate. Therefore, Equation (1) and Equation (2) can be

used to convert the cable speed into flow rate:

Pc =
1
4πD

2 × 3600 × 24 × 10−6 m3/d, ð1Þ

Q = v ∗ PC ∗
5
3 ,

ð2Þ

where Q represents the conversion flow (m3/d), v represents
cable speed (m/min), and PC is pipe constant ((m3/d)/(cm/
s)).

After unit conversion and calculation according to the
above formula, the result was obtained and made into
Table 1.

The array spinners of SAT are closely distributed in the
wellbore wall, and the CFB is located in the center of the
wellbore. The combination of the two can measure the flow
data in the horizontal well. The conventional processing of
these data is to consider the spinner starting velocity fitting
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to obtain the apparent velocity and obtain the flow data after
deviation correction. Using the BP neural network to predict
the flow of these data can omit the fitting step and ignore the
influence of the correction factor, as shown below in the
figures.

Analyzing Figures 7–17, we can get this conclusion: the
response values of CFB with different water cuts have a dif-
ferent slope or intercept with the measuring velocity rela-
tional graph. There is also a significant difference in SAT
response value in oil and water. It can be seen that SAT
and CFB have different instrument constants and start-up
velocities in different fluids. The data of CAT is used to give
the phase states of different positions in the wellbore. In fact,
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Figure 16: The response diagram of SAT spinners with flow rate
= 100m3/d in horizontal well in different water cuts.
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Figure 17: The wellbore distribution map in horizontal well with
flow rate = 100m3/d of SAT.
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Figure 18: Histogram of the predicted value error of model 1.
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Figure 19: Histogram of the predicted value error of model 2.
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Figure 20: Histogram of the predicted value error of model 3.
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the BP neural network is trained with different oil and water
SAT and CFB data as weights. Therefore, CAT data can be
added to the training to improve accuracy. According to
the existing data and algorithm requirements, the following
three prediction models have been set up:

(1) Data of SAT as inputs: response value of spinner
array tool as inputs (129 sets for training, 10 sets
for test)

(2) Data of SAT and CFB as inputs: response value of
spinner array tool and caged fullbore flowmeter as
inputs (129 sets for training, 10 sets for test)

(3) Data of SAT, CAT, and CFB as inputs: response
value of spinner array tool and capacitance array tool
and caged fullbore flowmeter as inputs (24 sets for
training, 6 sets for test)

The above three different input models all use actual
flow rates as output for the BP neural network algorithm
to adjust connection weights. When importing data into
the algorithm, select several groups of data to keep (about
10% of the total amount of data samples) for use in testing
algorithms, analyzing errors, and evaluating effects. Benefit-
ting from the advantages of the BP neural network, the error
can be continuously corrected to analyze the data by itself, so
the data can be used directly without correction processing;
on the other hand, due to the advantages of the BP network,
when inputting the measured value of capacitance array tool
CAT instrument, it is not necessary to normalize to obtain
the water holdup, but the network can obtain the
relationship through calculation by itself, which makes it
quick and convenient to predict the flow rates on the way.
The results obtained by running the above three models
are as follows:

(1) Data of SAT as inputs

The average relative error is 10.84% and according to
Figure 18, there are many jump points. It may be related
to insufficient experimental data, and the bigger reason is
the limitation of the single SAT value as input that can be
analyzed from Figure 18: only 5 of the predicted values can
meet the requirement of less than 10% error, accounting
for half of the total number of test samples, and the effect
is not as expected.

(2) Data of SAT and CFB as inputs

According to Figure 19, there are few jump points and
basically, they meet the requirements, and the average rela-
tive error is 7.94%; according to the visual error chart, the
effect is good, most of the predicted values fluctuate within
the ±10% error line, and occasionally, the predicted values
exceed these lines. It can be seen that the absolute error is
not large at the lower flow rate, the relative error is higher,
and the rest of the data is better, which achieves the purpose
of predicting the flow rates.

(3) Data of SAT, CAT, and CFB as inputs

This model has less data, which is not conducive to the
neural network but still achieves relatively good results
according to Figure 20. Overall, there is one and only one
jump point, which may be caused by too little data or insuf-
ficient experimental conditions. Only one of the six
predicted values has a relative error of 29.9%, and the rest
are within 10%, the average relative error is 9.03%, which
realizes the prediction of flow rate. After increasing the
number of data samples, it is bound to further improve the
accuracy and reduce the error. It also shows the superiority
of model 3.
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Figure 21: Comparison chart of the prediction effect of the three models.
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4.2. Result Analysis. The BP neural network has been used
to process the raw data of the array logging tool, and dif-
ferent models have been designed to run. From the results
of the three models, according to Figure 21, the accuracy
of model 1 is slightly worse, and the average relative error
of model 1 is 10.84%, but the consistency is poor, while
the average error of model 2 is 7.94% and model 3 is
9.03%. The accuracies are better than model 1. They are
limited by the number of output data and a small number
of total data sets, so their accuracies may still be improved.
In general, this design can be used in actual production
with improvement.

5. Conclusions

(1) It is not feasible to predict the flow rates by using
only a single spinner array tool SAT instrument
response value as the data input. The other two pre-
diction models have higher accuracy. After more
data samples and more improvement of multiple
output, directions and algorithms can be put into
actual production interpretation and complement
other methods of calculating flow

(2) Although the BP neural network does not need to
calibrate the data due to its unique operating princi-
ple, the increased input parameters, for example, in
model three, the introduction of capacitance array
tool CAT measurement data is equivalent to giving
the array spinner tool data with the water holdup
parameter corresponding to the flowmeter which
adds weight to the network when processing differ-
ent spinners. As a result, the predicted flow rates
are closer to the true value. It can be concluded that
when using the BP network, increasing the related
different parameters such as the corresponding
RAT and CAT data will improve the efficiency and
accuracy of the network, which is of great signifi-
cance to the actual production

(3) BPNN is a traditional and mature neural network
algorithm, which is easy to implement and obtain.
However, it should be noted that BPNN has disad-
vantages such as difficult parameters to determine
and dependence on samples and it takes many oper-
ations to determine the optimal parameter. In future
studies, more advanced new algorithms will be used
or extended to deep learning
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To obtain a reliable production forecast, one has to establish a geological model with well logs and seismic data. The geological
model usually has to be upscaled using certain upscaling techniques. Then, a dynamic reservoir model is constructed with
another dataset, including completion data, production data, fluid properties, and relative permeability curves. At last, the
dynamic model needs to be validated by a history matching process. This approach is data-intensive, time-consuming, and
often not rigorously accomplished due to the lack of skillset and time. In this study, 10,000 groups of reservoir/completion
input data were generated by Latin hypercube sampling method, and then, 10,000 groups of output (oil rate and cumulative
production data) were obtained by numerical simulation. Next, a machine learning technique was applied to establish a model
between the input data and determining parameters of a decline curve analysis model by fitting the generated cumulative
production rate. Overall coefficients of determination (R2) of the three Arps decline curve factors were 0.966, 0.990, and 0.945.
The validation result shows that the production rate and cumulative production predicted by the proposed machine learning–
decline curve analysis (ML-DCA) model agreed well with those simulated by reservoir simulation. As a result of the ML-DCA
regression model, a complete understanding can be established of the impact of reservoir properties on the DCA model. The
proposed ML-DCA model not only provides a quick and robust method for petroleum engineers to estimate production
performance for unconventional reservoirs from reservoir and completion properties without full-field geocellular modeling
but also can be used to optimize the completion and operation parameters for wells of interest.

1. Introduction

Unconventional oil and gas reservoirs have been able to be
developed economically with advancements in horizontal
well drilling and multistage hydraulic fracturing technology.
Management and operation of unconventional oil and gas
reservoirs demand accurate prediction of production rates,
which facilitates better development strategy, more eco-
nomic feasibility, more reliable reserve evaluations, and
more informed business decisions.

Many efforts have been made to develop efficient numer-
ical models for simulation of unconventional oil and gas
production considering complex hydraulic and natural frac-
ture geometries and multiple gas transport mechanisms in
nanopores [1–4]. High-resolution, three-dimensional (3D),
geocellular models characterize geological features and frac-

ture network complexities with grid blocks and their related
rock and fluid properties, and they yield a comprehensive
geographic distribution of pressure and saturation over a
period of time. However, such a model is computationally
prohibitive as a large number of simulations are required
for history matching and production optimization in a
close-loop reservoir management and decision-making con-
text. The challenges become even more discouraging with a
lack of rock and fluid data and insufficient production his-
tory. Researchers have tried to accelerate simulations
through techniques such as upscaling [5, 6], multiscaling
[7–9], and streamline methods [10, 11]. However, all of
these speed-ups require a full physics-based model as a start-
ing point for simplification.

Decline curve analysis (DCA) as an alternative technique
to forecast oil and gas production has been applied in the oil
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industry for a long time. The most commonly used curve-fit-
based decline curve models for unconventional oil and gas
reservoirs include the multisegment Arps decline model
[12–15], modified Arps DCA model [16], transient hyper-
bolic model [17], stretched exponential decline method
(SEDM) [18], Duong method [19], and power law exponen-
tial (PLE) method [20]. It is well known that curve-fit-based
DCA models are easy to apply for unconventional reservoirs
once the flow regimes related to depth of investigation are
appropriately identified, but they fall short of prediction
accuracy as they cannot capture the reservoir features or
properties that are highly relevant to production
performance.

With the introduction of data analytics in the oil and gas
industry, such practical challenges have caused emerging
data-driven solutions in the area of data mining and
machine learning (ML), in which geological data, comple-
tion data, and dynamic data are input to the ML algorithm
to unravel hidden physical relationships contained in the
data but not represented in existing simulation models to
output future production performance. Li and Han [21]
applied a neural network to study the correlation between
selected reservoir/completion properties and the determin-
ing parameters of the logistic growth model (LGM). Thus,
a trained ML-DCA model can be used to predict the produc-
tion trends for both an existing well and a new well accord-
ing to the given reservoir/completion properties. Sun et al.
[22] proposed a recurrent neural network- (RNN-) based
sequence-to-sequence model to forecast production.
Mukherjee et al. [23] tested and performed various ML algo-
rithms, including linear regression (LR), principal compo-
nent analysis (PCA), neural network regression (NNR),
boosted decision tree (BDT), and binned decision tree
(BiDT), to forecast gas production. Tamimi et al. [24] pre-
sented a comprehensive intelligent decision support system
(IDSS) to forecast and determine parameters of Arps decline
curve model from 3,400 unconventional wells. Temizel et al.
[25] applied the long short-term memory (LSTM) method
for predicting long-term production behavior in unconven-
tional shale reservoirs. Xue et al. [26] proposed a multiobjec-
tive random forest (MORF) algorithm to forecast the
production rate, with reservoir and completion characteris-
tics as input. Gross et al. [27] proposed a physics-informed
ML workflow combining fast reduced-order models (ROMs)
with reservoir simulation models to predict production as a
function of pressure management in a fractured Marcellus
shale reservoir. Doan and Vo [28] used ML techniques to
enhance the accuracy of production forecasting in the North
Malay Basin.

Data-driven models may not capture many geological
features of a reservoir, but they run much faster than full-
physics models, and the trained model on real data can avoid
uncertainty or making hypothesis. They can provide reliable
predictions with enough data in the calibration process.
However, when the number of parameters becomes large,
data-driven models require a certain number of samples
for training and testing before they can be effectively used.

The unique nature of this study is using a simulation
model as a basis for the production dataset, which provides

an alternative for utilizing the machine learning algorithms
when actual data are insufficient or unavailable. This research
offers less experienced engineers with an effective ML-DCA
model that correlates reservoir and fluid properties, as well
as completion parameters, with the DCA model to forecast
the production rates without full-field geocellular modeling
for unconventional reservoirs. Therefore, without even work-
ing with complicated geomodels, less experienced engineers
can make robust estimations about the production forecast
once theML-DCAmodel is established and delivered by expe-
rienced reservoir engineers. The implementation between
DCA and the simplified reservoir model with ML algorithm
makes it easy to extend the workflow for any other type of res-
ervoirs, such as thermal or compositional.

This study is organized as follows. Firstly, the methods in
the proposed ML-DCA workflow, including decline curve
model and artificial neural network were introduced, followed
by synthetic production profiles generated and established
from single-well numerical simulation considering 15 geolog-
ical and completion parameters that includedmatrix and frac-
ture network properties for data-driven study. Next, the ML-
DCA model was trained and tested by the synthetic produc-
tion profiles; then, a case study was given to evaluate the pre-
diction performance of the ML-DCA model, which shows the
power and accuracy the proposed ML-DCA workflow; and a
sensitivity analysis was performed to investigate the effect of
geological and reservoir parameters on the production with
the ML-DCA model; finally, the limitations and future work
were discussed and conclusions were drawn.

2. Methodology

2.1. Decline Curve Analysis. The Arps decline curve is the
most common DCA. The Arps hyperbolic decline curve
model is [29].

q = qi
1 + bDitð Þ1/b

, ð1Þ

where q is the predicted production, qi is the initial produc-
tion, t is time, b is a constant, and Di is the initial decline
rate. When the constant loss ratio b is 0, the decline curve
reduces to an exponential decline; if b is 1, the decline curve
becomes harmonic; if b is greater than 0 but less than 1, the
decline curve is hyperbolic; and if b is greater than 1, often
during transient flow, the decline curve is called superhyper-
bolic. When one deals with low- and ultralow-permeability
wells, transient flow lasting months to years is common,

Table 1: Cumulative production-time relationship of Arps decline
curve.

Exponential b = 0 Q = 1
Di

qi − qtð Þ

Hyperbolic or superhyperbolic Q = qi
Di 1 − bð Þ
� �

1 − qt
qi

� �1−b
" #

Harmonic b = 1 Q = qi
Di

� �
ln qt

qi

� �
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followed by a transition flow regime and later BDF. In prac-
tice, b is constant for a long time during transient flow in
hydraulically fractured wells and during BDF, so one can
apply the Arps model with confidence to those time periods
during which b is constant [12].

In this study, cumulative oil production was selected to
perform DCA regression as it is much smoother than the
production rate. This approach also mitigates the effect of
irregular and noisy production data, especially for real field
data. Cumulative oil production is the integral of the pro-
duction rate (Equation (1)), which is defined as

Q =
ðt
t0

qdt =
ðt
t0

qi
1 + bDitð Þ1/b

, ð2Þ

where Q is the cumulative production. Integrating and rear-
ranging Equation (2), the cumulative production-time rela-
tionship for different b values can be derived and shown as
in Table 1.

2.2. Artificial Neural Network. An artificial neural network
(ANN) is a common ML technique inspired by the structure
of neurons in the human brain. The ANN was selected as the
ML method because it has been successfully applied in many
engineering and science problems to extract complex and
nonlinear relationships among process variables. In this
study, a typical three-layer back-propagation ANN structure
was established, consisting of an input layer, a hidden layer,
and an output layer, as shown in Figure 1. Several key vari-
ables, including hidden layer neurons, training algorithm,
and transfer functions, were considered to get the optimal

ANN structure. The neuron number in the input layer
equals the input feature number. The neuron number in
the hidden layer was tuned to optimize the objective func-
tion. Each neuron received the input information from the
output of the neurons in the previous layer and generated
and passed output to the next layer. The mathematical
model of the ith neuron is expressed as

yi = ϕ 〠
n

j=1
wijxj + bi

 !
, ð3Þ

where yi is the output of the i
th neuron on the next layer, xj

is the input from the previous layer, wij is the weight, n is the
input number from the previous layer, and ϕ is the activa-
tion function. The weight was tuned for each neuron
through optimizing the loss function in the model training
process. The R-squared score (R2) is commonly used as the
loss function. It is a statistical measure that represents the
proportion of the variance of a dependent variable that is
explained by an independent variable or variable in a regres-
sion model. R2 score is given as

R2 = 1 − ∑i ŷi − yið Þ2
∑i �yi − yið Þ2 , ð4Þ

where ŷi is the predicted value for i, and �yi is the mean of yi.

2.3. Machine Learning-Decline Curve Analysis Algorithm.
The ML algorithm provides a statistical technique to analyze
a system with an existing dataset without being explicitly pro-
grammed. To introduce how the ML algorithm solves a
regression problem, one usually defines the input vector, xi, as

xi = x 1ð Þ
i , x 2ð Þ

i ,⋯, x Pð Þ
i

� �
, i = 1,⋯,N , ð5Þ

where N is the sample size or the number of input vectors and
P is the number of input parameters, such as permeability and

Input layer Hidden layer Output layer

Figure 1: General ANN structure.
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. . .

. . .

... ......

(b, Di, qi)N

kf1
(P)

kfN
(P)

𝜃N
(1)

Figure 2: ML-DCA regression with neural network.
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Figure 3: Flowchart of the ML-DCA model for production
prediction based on ANN.
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porosity. Thus, the input matrix X can be defined as

X = x1, x2,⋯xi,⋯, xNð ÞT =
x 1ð Þ
1 ⋯ x Pð Þ

1

⋮ ⋱ ⋮

x 1ð Þ
N ⋯ x Pð Þ

N

0
BB@

1
CCA: ð6Þ

In this study, the input was a column matrix composed of
reservoir, completion, and operation parameters, such as frac-
ture half-length, fracture width, fracture permeability, and
porosity.

The corresponding output parameters can be given as

Y = y1, y2,⋯yi,⋯, yNð ÞT ð7Þ

where the output vector yi is the determining parameters of
the decline curve model corresponding to the input vector xi
.

yi = y 1ð Þ
i , y 2ð Þ

i ,⋯, y tð Þ
i

� �
, i = 1,⋯,N , ð8Þ

where t is the number of determining parameters for the
decline curve model. Clearly, there are three parameters in
the Arps decline curve model; thus, the output yi is a column
matrix of b, Di, and qi.

The existing measurement dataset was used to train the
ML model. The training dataset is given as

X, Yð Þ = x1, y1ð Þ, x2, y2ð Þ,⋯, xk, ykð Þ,⋯, x1, y1ð Þf g: ð9Þ

The purpose of ML is to establish a mapping function,
∅ð∙Þ, from the training dataset

Y =∅ Xð Þ: ð10Þ

The proposed ML-DCA model can be expressed and
established as Figure 2 with the training dataset.

∅ 1ð Þ
1 ⋯ k Pð Þ

f1

⋮ ⋱ ⋮

∅ 1ð Þ
N ⋯ k Pð Þ

f N

0
BB@

1
CCA⟶∅ Neural Networkð Þ⟶

b,Di, qið Þ1
⋯

b,Di, qið ÞN

0
BB@

1
CCA:

ð11Þ

2.4. Pearson Correlation. The most commonly used type of
correlation that describes the degree of relationship between
two variables is the Pearson correlation. Pearson’s r mea-
sures the linear relationship between two variables, say X
and Y . A correlation of 1 indicates that the data points per-
fectly lie on a line for which Y increases as X increases. A
value of -1 also implies that the data points lie on a line;

Hydraulic fractures

Well-1

Figure 4: MFHW model to generate the simulated oil and gas production data for DCA.

Table 2: Parameters and associated distribution to generate the input dataset.

Parameters Minimum value Maximum value Distribution function

Grid size, X direction(DI) (ft) 75 125 Uniform[75,125]

Grid size, Y direction(DJ) (ft) 30 80 Uniform[30,80

Grid size, Z direction(DK) (ft) 1 5 Uniform[1,5]

Matrix permeability (mD) 0.0001 1 Power[10,Random[-4,0]]

Porosity 0.05 0.15 Uniform[0.05,0.15]

Horizontal well length (ft) 1800 6000 Triangle[1800,3500,6000]

Fracture half-length (ft) 100 850 Triangle[100,380,850]

Fracture spacing (ft) 75 500 Uniform 1, 4½ � × DI
Effective fracture permeability (mD) 1 100 Uniform[1,100]

Layer-up 1 3 Uniform[1,3]

Layer-down 1 3 Uniform[1,3]

Monitored oil rate (bbl/day) 1.5 2.5 Triangle[1.5, 2, 2.5]

Initial reservoir pressure (psi) 2000 6000 Uniform[2000,6000]

Bubble point pressure, psi 400 6000 Initial reservoir pressure/random[1,15]

Operating BHP (psi) 200 3000 Initial reservoir pressure/random[10,30]

Note: the range of each parameter was set based on Chinese oilfield practice, such as Ordos basin [31–33].
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however, Y decreases as X increases. The formular for r is

r = ∑n
i=1 Xi − �X
� 	

Yi − �Y
� 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i=1 Xi − �X
� 	2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i=1 Yi − �Y
� 	2q : ð12Þ

Figure 3 shows the proposed workflow of ML-DCA.
First, a 3D numerical model was established for a typical
multistage fractured horizontal well (MFHW). Then, the
Latin hypercube sampling (LHS) method was performed to
generate enough (e.g., 10,000) experimental designs within
the predetermined distribution type and ranges of certain
input parameters, which were then used to simulate the
cumulative oil production rates by running reservoir simula-
tion. Next, the DCA regression algorithm was then per-
formed to fit the simulated cumulative oil production rates
and obtain the determining parameters of the DCA model.
Finally, the ML algorithm (e.g., ANN, but it can be other
algorithms in future work) was trained and tested to investi-
gate the correlations or mapping function between geologi-

cal and completion parameters and the determining
parameters of the DCA model.

Note that the proposed workflow can be extended to
investigate various decline curve models, such as SEDM,
PLE, and Duong model, by simply replacing the decline
model. In addition, all related algorithms were developed
with open-source libraries that can be easily integrated with
an in-house or commercial simulator.

3. Data Generation

Building a data-driven model requires a large set of geologi-
cal features and completion data (production, pressure, well
logs, etc.) as inputs and the factors of the DCA model as out-
put. The ML method was then used to establish the correla-
tion between reservoir features and production. Ideally, it is
better to obtain the dataset used to build the data-driven
model from the actual field. However, synthetic data gener-
ated from numerical or analytical models can alternatively
be used if good-quality, actual data are insufficient or
unavailable [26, 30]. In this study, we used a numerical
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Figure 5: Histograms of geological and completion parameters generated through LHS.
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model to generate cumulative production profiles with ran-
domly generated geological and completion parameters.
Later, the simulated cumulative production rates were used
to establish the relationship between reservoir properties
and the DCA model.

3.1. Single-Well Reservoir Model. The MFHW model to sim-
ulate production from tight oil reservoirs was a three-phase,
3D rectangular model that was established with a CMG sim-
ulator. A tartan grid was used to model the MFHW as it is

the best way to catch transient behavior. Otherwise, ones
need to use local grid refinement (LGR), which is more time
consuming. The grid number (Nx ×Ny ×Nz) of the model
is set to be 50 × 21 × 7. The grid size for each direction
(DI, DJ, and DK) was one of the uncertain parameters that
were generated by the sampling method later. Thus, the well
control area and drainage area
(Lx =Nx ×DI, Ly =Ny ×DJ , Lz =Nz ×DK) was changed
with the grid size. The horizontal well was placed in the cen-
ter of the reservoir model and produced under the constraint

Cumulative oil production distribution histogram

0 1 2 3 4 5 6 7 8
Cumulative oil production (bbl) 

0

0.05

0.1

0.15

0.2

0.25

0.3

Cu
m

ul
at

iv
e o

il 
pr

od
uc

tio
n 

di
str

ib
ut

io
n

×105

Figure 6: Distribution of 10-year cumulative oil production calculated by numerical simulation.
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of constant flowing BHP. Duration of production was set to
be 10 years, which is considered a realistic tight oil produc-
tion scenario. Figure 4 shows the sideview of the MFHW
model, in which the darkened sections of the grid blocks
represent the hydraulic fractures.

3.2. Latin Hypercube Sampling. Once the base model was
established, the experimental design was carried out, varying

the design variables to generate experiments that would be
used to calibrate the model. In this study, 15 geological
and completion parameters were investigated, including grid
size in X, Y , and Z directions (DI, DJ, and DK), matrix per-
meability, porosity, horizontal well length, fracture half-
length, fracture spacing, fracture effective permeability,
layer-up, layer-down, bubble point pressure, initial pressure,
monitored oil rate, and operating bottom-hole-pressure
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Figure 8: Part of the DCA fitting results.
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(BHP) (Table 2). Among the 15 parameters, the first three
features were used to define the drainage area. Matrix per-
meability and porosity were the tight oil reservoir properties.
The following four features, including horizontal well length,
fracture half-length, fracture spacing, and fracture effective

permeability, define the horizontal well and completion
parameters. The layer-up and layer-down specified the num-
ber of layers that defines the fracture penetrate above/below
the horizontal well. Thus, these two parameters were related
to the fracture height. Bubble point pressure was one of the
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fluid properties, and initial pressure defined the initial reser-
voir condition. Bubble point pressure was set to be lower
than the initial reservoir pressure for each scenario. The
water saturation of the reservoir was constant in this study,
and the value was set to 0.4. Relative permeability curve
was predefined. The last two features were operation param-
eters during production. Oil production changed with the
operating BHP, which was set to lower than the initial reser-
voir pressure. The well was shut off when the oil rate was
lower than the monitored oil rate defined by well con-
straints. To obtain effective training and testing of data-
driven models, 10,000 samples of each parameter were gen-
erated through the LHS method, with the ranges and distri-
bution type listed in Table 2. The probability distributions of
each parameter are shown in Figure 5.

3.3. Generation of Cumulative Production. The correspond-
ing 10-year monthly oil production for each combination
was then simulated by the numerical model. The distribu-
tion of the 10,000 cumulative oil productions and recoveries
are displayed in Figures 6 and 7. Basically, the cumulative
production of 50% of wells was less than 10 × 104 bbl. The
typical oil recovery usually was less than 35%, mainly dis-
tributed between 5% and 15%.

3.4. Decline Curve Analysis Regression. To obtain the best pre-
dictive model, production data from 10,000 wells were trans-
formed into DCA space. DCA best fit curves were usually
computed with the least-squares regression [34]. Thus, least-
squares regression was programmed to estimate the three deter-
mining parameters of the Arps decline model from the 10,000
synthetic cumulative production profiles generated by the rep-
resented reservoir simulation. Figure 8 shows parts of 10,000 fit-
ting results as an example. It shows good agreement between
the cumulative oil production calculated by the DCA model
and the synthetic cumulative production simulated by the
numerical model. Figure 9 is the distribution of coefficient of
determination (R2). 99% of theDCA regression had aR2 greater
than 0.99. In other words, the DCA curve can be a proxy model
of the single-well simulation to forecast tight oil production in
this study.

Figure 10 gives the histogram of the determined initial
rate (qi), b value, and initial decline rate (Di) by the ML-
DCA model. The distribution can be used for further study
if one performs production uncertainty analysis with the
DCA model, such as to forecast P10, P50, and P90. b value
affects long-term production but does not make much differ-
ence in short-time production. Initial production rate and ini-
tial decline rate affect the short-term rate. As shown in
Figure 11, there was no apparent correlation between b and
initial production rate (qi), meaning that initial production
alone cannot represent how well or how poorly a well will pro-
duce in the long term. However, b showed a significant corre-
lation with the initial decline rate (Di) (Figure 11(b)). This
observation was similar to Tamimi et al.’s [24] study based
on more than 3,400 unconventional wells in DJ basin. Simply
put, a higher initial decline rate indicates a higher b value.
Thus, it seems a higher decline rate may indicate a bad well,
but eventually it produces more in the long term.
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Figure 12: ANN model used in this study to estimate the three Arps parameters from geological and operational parameters.

Table 3: The comparison of overall R2.

Variables Sequential network Simultaneous network

b 0.990 0.923

qi 0.966 0.904

Di 0.945 0.912
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Table 4: The optimized network structure for ML-DCA model.

Variables qi B Di

Number of neurons in input layer 15 parameters 15 parameters and qi 15 parameters, qi and b

Number of neurons in hidden layer 40 50 60

Output in output layer qi B Di

Data split 70% for training, 30% for testing

Function performance R2

Training algorithm Bayesian regularization

Iterations to achieve optimal structure 185 250 324

Overall R2 0.966 0.990 0.945
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4. Results and Analysis

4.1. Neural Network Regression. In this study, three-layer
back-propagation neural network was established, as shown
in Figure 12. As it can been seen, the three factors of the
DCA model were solved sequentially rather than simulta-
neously, as the sequential network shown as Figure 12
achieved the highest overall R2 and proven to be the optimal
regression workflow to determine the factors of the DCA
model (Table 3).

The optimal regression workflow is summarized as
follows:

(i) Step 1: initially, there are 15 neurons in the input
layer and 1 neuron in the output layer

(ii) Step 2: Bayesian regularization is selected as the
training algorithm. Thus, in the 10,000 combina-
tions of input parameters and corresponding
cumulative production profiles, 70% of them are
used as the training dataset to establish the data-
driven model, and 30% of them are used as the test-
ing dataset to determine the DCA factors

(iii) Step 3: by changing the number of neurons in the
hidden layer, the different results for the target
DCA factor are obtained

(iv) Step 4: Bayesian regularization, which minimizes a
linear combination of squared errors, is performed
to modify the connective weights and biases to
achieve more accurate results [35]
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Figure 16: Flowchart to evaluate the production prediction performance.

Table 5: Reservoir features used as inputs for performance validation.

Feature Value Units Feature Value Units

Grid size, X direction 84.08 ft Fracture effective permeability 52 mD

Grid size, Y direction 57.43 ft Layer-up 2 Layer

Grid size, Z direction 3.21 ft Layer-down 1 Layer

Matrix permeability 0.0004 mD Bubble point pressure 845 psi

Porosity 0.08 Initial pressure 3767 psi

Well length 2775 ft Monitored oil rate 2 bbl/day

Fracture half-length 546 ft Operating BHP 699 psi

Fracture spacing 252 ft
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Figure 17: Comparison between the production simulated by the numerical model and predicted by ML-DCA algorithm.
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(v) Step 5: the ANN’s training process continues inter-
actively until the desired level of error or maximum
iteration number is reached, and the first final net-
work used to determine the vector of qi is achieved.

(vi) Step 6: the vector of qi is added to the input matrix,
and Step 2 to Step 5 are repeated to obtain the vec-
tor of b

(vii) Step 7: the vector of b is added to the input matrix,
and Step 2 to Step 6 are repeated to determine the
vector of Di

The optimum network was achieved and is given in
Table 4.

Figures 13–15 show R2 of the training set, the testing set,
and all sets of the three determining parameters predicted by
the proposed ML-DCA model, respectively. The axes of the
abscissa and ordinate are the actual determining parameters
of Arps decline curves and their predicted values, respec-
tively. The smaller the difference between the actual value
and the predicted value, the closer the data point is to the
45-degree line. The data in Figures 13–15 (both the training
set and testing set) is densely distributed near the 45-degree
line indicating the high prediction accuracy of the ML-DCA
model. The overall prediction errors of the three factors (qi,
b, and Di) are 0.966, 0.990, and 0.945, respectively. With the
trained and validated ML-DCA model, one can easily and
quickly output a decline curve model to forecast the produc-
tion rate of new wells by only knowing the reservoir and
completion parameters.

4.2. Prediction Performance Evaluation. Figure 16 shows the
process to evaluate the prediction performance of the ML-
DCA model by comparing the production profiles with
numerical simulation. Table 5 presents the values of the 15
selected key features used to forecast the production profile
of a tight oil well. The comparison result of the well is
depicted in Figure 17. Overall, both the production rate
and cumulative production between these two methods
agreed with each other very well, indicating that the perfor-
mance of the ML-DCA model is acceptable and reliable for
science and engineering applications. It can be concluded
that the ML-DCA model has the same accuracy as single-
well numerical simulation. Thus, instead of establishing a
complex numerical model, engineers who have less experi-
ence with numerical simulation can use the ML-DCA model
as a proxy model to forecast tight oil production with low
cost.

4.3. Sensitivity Analysis. Pearson correlation coefficient was
calculated to evaluate the significance of each property in
the three determining parameters (qi, b, and Di)
(Figure 18). Figure 18(a) reflects permeability, grid size in
the vertical direction (DK), and fracture spacing to be the
top three factors having the most significant effect on the ini-
tial rate, followed by initial pressure, fracture permeability,
well length, matrix porosity, fracture half-length, etc. Among
them, fracture spacing had a significant negative impact on
the initial rate. And operating BHP, monitored oil rate,

layer-up, and layer-down had a minor effect on the initial
rate.

Figure 18(b) indicates that permeability has mainly a
negative influence on b. The higher the permeability, the
lower the b value. It also can be concluded that operating
BHP, bubble point pressure, well length, initial pressure,
fracture half-length, and fracture permeability had a negative
impact on b value, while fracture spacing, porosity, and grid
size had a positive effect on b value.

Figure 18(c) shows the correlation between the initial
decline rate (Di) and reservoir and completion parameters.
Fracture spacing, used to define the number of fractures in
the reservoir model, had a prominent influence on the initial
decline rate Di. Meanwhile, the grid size (DK, DI, and DJ),
well length, porosity, and fracture half-length had a negative
influence. Results also indicate matrix permeability, initial
pressure, fracture permeability, bubble point pressure, and
operating BHP to have a positive impact on the initial
decline rate.

5. Discussion and Future Work

It is well known that ML-DCA can be powerful if the data
quantity and quality can be improved by including actual
field data. However, with most tight oil wells having less
than 60 months of production history, these data cannot
be directly used to perform history matching. This study
proves that this simulation-based proxy tool is reliable
with a well-maintained database generated from a single-
well reservoir simulation, and its efficiency in computa-
tional time allows the practicing engineer to achieve
modeling objectives and to reduce uncertainty in a rapid
way. As a result, the ML-DCA algorithm not only can
be used as a tool to determine DCA factors and predict
production, once the initial reservoir conditions, rock
properties, and completion and operation parameters are
given, but also can be used to optimize the completion
and operation parameters for a target reservoir, such as
fracture spacing, fracture half-length, and operating BHP.
As for future work, further studies can be conducted to
investigate the effect of measurement errors and sample
size on production prediction performance.

6. Conclusions

In this study, a ML-DCA algorithm, integrating a ML tech-
nique with a DCA model, was developed to predict tight
oil production performance, serving as a proxy for analyti-
cal/numerical reservoir simulation. The following critical
conclusions can be summarized:

(1) With the reservoir and completion parameters as the
inputs and the DCA factors as outputs, the ML-DCA
model can be trained to determine DCA factors
accurately, with the overall prediction errors (R2) of
the three Arps decline curve factors being 0.966,
0.990, and 0.945
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(2) The production rate and cumulative production pre-
dicted by the proposed ML-DCA model agree well
with those simulated by reservoir simulation

(3) ML-DCA outperforms traditional DCA methods,
especially for a new well or reservoir, as ML-DCA
captures the production trend of the training dataset,
as well as considering the rock, fluid, completion,
and wellbore properties

(4) The proposed ML-DCA outperforms full-field
numerical simulation due to its simplicity and low
cost

(5) As a result of sensitivity analysis, the reservoir, com-
pletion, and operation parameters that affect the
three DCA factors can be determined. Among them,
fracture spacing and matrix permeability have an
essential effect on the DCA model, while the moni-
tored oil rate, layer-up, and layer-down have a minor
effect on the DCA model

Nomenclature

b: Arps hyperbolic or superhyperbolic decline exponent,
dimensionless

Di: Initial decline rate in the Arps decline model, D-1

N : Sample size or the number of input vectors in the ML-
DCA model

n: Input number from the previous layer in the ANN
model

P: Number of input parameters in the ML-DCA model
Q: Cumulative production rate, MSCF or BBL
q: Predicted production rate, MSCF/D or BBL/D
qi: Initial production in the Arps decline model, MSCF/D

or BBL/D
t: Production time, days
xi: Input from the previous layer of ANN model
yi: Output of the ith neuron on the next layer in an ANN

model
ŷi: Predicted value
�yi: Mean value of yi
wij: Weight of ANN model.

Greek variables

ϕ: Activation function in the ANN model
μ: Mean value
σ: Standard deviation.
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The soil pressure on the bottom surface of the foot blades is an important monitoring point during the sinking process of large
underwater caissons. Complex soil-structure interactions occur during the sinking process, making it difficult to accurately
predict the soil pressure of foot blades. Accurate construction processes often rely on data from the soil pressure of foot blades
in the field. In this study, a data-driven approach is used to establish the relationship between the amount of sinking of the
caisson and the soil pressure of foot blades. Furthermore, by improving the splitting method of the original Classification and
Regression Tree (CART) algorithm, a single model’s numerical prediction of 80-foot blades soil pressures is realized. The
improved CART model, multilayer perceptron (MLP), long short-term memory (LSTM), and a linear regression model are
compared through a comprehensive multiparameter evaluation method. Finally, this article discusses the deployment scheme
of the model by comparing and analyzing the data in the time period of 10 : 00 on July 29, 2020, and 23 : 00 on August 7, 2020.
The experimental results can satisfy the engineering demands and provide a basis for further data-driven intelligent control of
large caisson sinking.

1. Introduction

As the main bridge engineering deep foundation, a caisson
has the advantages of excellent integrity, high load-bearing
capacity, superior structural stiffness, small floor area, and
good seismic performance [1–3]. By extracting soil from
the well, the caisson uses its gravity and sinking aid to over-
come buoyancy and soil resistance in order to sink. The
sinking process can be analyzed using the soil pressure of
foot blades to calculate the end resistance, thus, providing
a basis for instructions during construction [4]. However,
with the gradual increase in the number of large caissons
being built, the theories developed for small foundations
may not predict the soil pressure of large caissons accu-
rately [5].

At present, some achievements have been made in
studying caisson foot blades. For example, Jiang et al. [6]
found that the sand migration during the sinking of the

Hutong Yangtze River Bridge has a relatively significant
effect on the soil pressure of foot blades through traditional
model experiments. Yan et al. [7] studied the caisson of
the Oujiang River North Estuary Bridge as an example to
demonstrate the effective reduction of the soil pressure of
foot blades by layered excavation during the construction
of the caisson. Zhang et al. [8] and Baogang et al. [9] found
that the sudden sinking of the caisson during construction
was related to the short time decrease of the soil pressure
of foot blades. Yea and Kim [10] investigated the three-
dimensional distribution pattern of the soil pressure of foot
blades during sinking for the caisson of Youngjong Grand
Bridge by field experiments. The characteristics of soil pres-
sure of caisson in different engineering backgrounds have
been well studied. However, due to complex soil-structure
interactions, mechanical properties have significant nonline-
arity and plasticity during the sinking of the caisson [11].
Existing descriptive design approaches do not readily
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capture the accurate prediction of the soil pressure of foot
blades. In recent years, during the construction of a caisson,
a series of sensors are usually installed to obtain information
on the dynamics of the sinking foot blades of the caisson
[12]. However, the data analysis capability is not robust;
therefore, it cannot predict the soil pressure state of the cais-
son’s foot blades, which increases the uncertainty of caissons
construction.

With the development of artificial intelligence and
machine learning technology, data-driven applications are
being researched and applied in many fields. Most of the
current data-driven bridge engineering applications are
focused on bridge health monitoring [13]. For example, a
data-driven and computer vision-based approach to auto-
matically identify pitting corrosion [14], crack recognition
based on a convolutional neural network [15], and a hybrid
artificial neural network-based imperial competitive algo-
rithm used to predict damage of slab-on-girder bridge struc-
tures [16]. However, there are minimal studies on data-
driven methods for bridge construction processes, especially
for large caisson construction. In terms of algorithm analy-
sis, most data-driven bridge engineering-based applications
focus on the output of a single target. Prediction of multi-
class damage [17] and crack width [18] by algorithms such
as convolutional neural networks. Output values such as
these have only one category or a single regression objective,
making it difficult to solve the current problem of the multi-
label regression of the caisson soil pressure of foot blades.
There are two main solutions to the multilabel problem.
One type of processing is through problem transformation,
which focuses on manipulating and processing the dataset
in order to transform the multilabel learning problem into
one or more single-label problems [19–21]. The other is
via algorithmic adaptation methods, by improving existing
methods that are needed to be directly suitable for learning
multilabel datasets [22–24]. In the caisson sinking dataset,
the values of the multiple soil pressures of foot blades are
predicted simultaneously, and this kind of multilabel pro-
cessing during the bridge construction process needs to be
further studied. Regarding model evaluation indexes, regres-
sion problems are generally evaluated by a single index such
as mean square error or a fitting coefficient. However, during
multimodel evaluation, it is easy to have inconsistent index
tendencies of different models, making it difficult for multi-
ple models to conduct comprehensive and accurate quanti-
tative evaluations. Therefore, the comprehensive judgment
of multiple models is conducive to comparing and selecting
models during the experimental process.

An algorithm based on an improved Classification and
Regression Tree (CART) implemented for multilabel predic-
tion will be investigated in detail within this study. Specifi-
cally, the primary contributions of this study are as follows:
(1) the performance of neural network methods and
improved CART models for multilabel foot blades regres-
sion prediction of soil pressure is investigated by compari-
son. Among them, multilayer perceptron (MLP) and long
short-term memory (LSTM) are chosen as typical neural
network representatives. (2) A multilabel comprehensive
evaluation method is improved, and a model comparison

and a parameter optimization are performed through com-
prehensive evaluation indexes. (3) The results of the impact
of the model on different learning approaches during field
tests are discussed. Based on the natural advantages of the
data-driven approach, the present method can be easily
extended to other scenarios of caisson construction after suf-
ficient data is collected.

The framework of this study is shown in Figure 1. The
second section will explain the engineering background as
well as the data acquisition and preprocessing of the GPS
data and the soil pressure of foot blades. The third section
will investigate the improved CART algorithm. The fourth
section focuses on parameter optimization and model com-
parison based on the improved multiparameter integrated
evaluation index. In the fifth part, the deployment scheme
of the model and the field prediction results is discussed.

2. Engineering Background and
Data Preparation

2.1. Engineering Background. The main channel bridge of
the Changtai Yangtze River Bridge is a double-layer cable-
stayed bridge. The upper layer of the bridge is a highway,
and the lower layer is an intercity railway and ordinary high-
way. The two pylons of the main channel bridge adopt a
large-scale steel caisson foundation, as shown in Figure 2.
The foundation plane of the caisson at pier #5 of the main
bridge is round-end, the elevation is stepped, and the width
of the step is 9.0m. The bottom surface of the caisson is
95.0m long, 57.8m wide, and the radius of the round end
is 28.9m. The top surface of the caisson is 77.0m in length,
39.8m in width, and 19.9m in radius at the round end. The
outer wall of the caisson is 1.8m thick and 43m high, the
inner wall thickness is 2.0m, and the height is 64m. The
inner and outer ring partition walls are both 1.4m thick,
the outer ring partition wall is 64m high, and the inner ring
partition wall is 39m high. The standard size of the inner
wellbore is 11m in length and 11m in width. The partition
and inner shaft wall are inverted by 1.5m in length and
1.5m in width. The steel shell structure has 28 compart-
ments. The river section where the steel caisson is located
is a tidal section of the lower reaches of the Yangtze River.
The tidal level is affected by both the Yangtze River runoff
and the tide. The 20-year encounter bridge cross-section
vertical average maximum velocity ranges from 1.93m/s to
2.1m/s. The dry period vertical average maximum velocity
is less than 1.05m/s. The steel caisson is located on the north
side of the main channel area. The topography of the pier is
relatively stable. The surface layer of the riverbed is loose silt,
with an uneven layer thickness that ranges from 11.6 to
4.8m thick and has poor engineering properties. Most of
the sandy soil layers drilled into pier #5 reveals a sandy
gravel cement layer, which is a nonlayered structure and is
distributed sporadically, revealing that the depth primarily
ranges from -35 to -45m under the river bed.

The location hydrology and geological conditions of
Changtai Yangtze River Bridge are complex, the volume of
the caisson is large, and the structure form is particularly
novel. The specific characteristics and construction
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difficulties are mainly concentrated in that the safety risk
and attitude control of initial caisson are difficult. As well
as during construction, the caisson has been in a state of
dynamic balance, requiring many monitoring items and a
large number of measuring points. Traditional monitoring
systems have lagging information feedback, which cannot
predict the soil pressure of foot blades accurately, thus,
increasing the uncertainty of caisson construction.

2.2. Data Preparation. In order to monitor the sinking pos-
ture of the caisson and adjust the construction plan in time,
Beidou GPS sensors are arranged on the top of the caisson,
and the results of the manual high-precision measurement
are checked every day to ensure that the monitoring data is
accurate and reliable. The installation position of the Beidou
control points is shown in Figure 3(a). Figure 3(b) shows the
installation positions of the soil pressure of foot blades
sensors.

In Figure 3(a), h1, h2, h3, h4, and h5 are the measured
GPS values, and h5 is the average value of the four measured
points. The sinking amount (SA) is calculated by the follow-
ing equation:

SAi = hi,t − hi,t−1, ð1Þ

where i is 1-5, representing the sinking amount of 5 loca-
tions, hi,t is the vertical value of the i-th monitoring position
at time t, and hi,t−1 is the monitoring data of the vertical
direction at time t − 1 of the i-th monitoring position.

The sinking data from July 19, 2020, to July 29, 2020,
and the soil pressure of foot blades data for the correspond-
ing times formed the data set, as shown in Tables 1 and 2.

The sinking data is recorded every 10 minutes, and the
soil pressure of foot blades is recorded every 30 minutes.
During the complex construction of the caisson, some of
the foot blades sensors are damaged despite the many pro-
tections made to protect the sensors; therefore, 80 of them
with normal sensors were selected for learning and predic-
tion. Data aggregation of the sinking amount data and the
80 foot blades soil pressure data is based on a 1h period;
thus, the raw dataset was constructed. The raw dataset con-
tains a total of 249 samples and 85 features (5 features for
the sinking amount and 80 features for the soil pressure of
foot blades). The model was tested on 5 out of the 249 sam-
ples from July 29 at 4 : 00 to July 29 at 8 : 00. The remaining
244 were tested for model training and validation. The train-
ing and validation sets were split according to 80% (195
samples) and 20% (49 samples), respectively. The model
was trained via the training set and the validation set evalu-
ated the model. Mean square error (MSE), mean absolute
error (MAE), mean absolute percentage error (MAPE), and
the fitted coefficient (R2) were calculated for each model.

MSE = 1
n
〠
n

i=1
yi − ŷið Þ2, ð2Þ

MAE = 1
n
〠
n

i=1
yi − ŷið Þj j, ð3Þ

MAPE = 1
n
〠
n

i=1

ŷi − yi
yi

����
����, ð4Þ

R2 = 1 − ∑n
i=1 yi − ŷið Þ2

∑n
i=1 yi − �yð Þ2 ,

ð5Þ

where yi is the true value, ŷi is the predicted value, �y is the
mean of the true value of the sample, and n is the number
of samples.

3. Improved CART Algorithm

A decision tree is an example-based inductive learning
approach that constructs a tree-like regression model from
the given samples. It is a relatively simple algorithm with
excellent robustness compared to other regressions.

GPS data

Soil pressure
of foot blade

Improved CARTData preprocessing
Model

comparison and
selection

Multi-index
evaluation method

Parameter
optimization

Model
comparison

Discussion
of field

prediction

Figure 1: The flow chart of the soil pressure of foot blades prediction.

Caisson

Figure 2: Caisson under construction.
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Research on the soil pressure of foot blades prediction based
on CART [25] is carried out in this study and introduces
how to use the decision trees in order to solve the regression
problem; lets us define the input matrix x as

x = x 1ð Þ, x 2ð Þ, x 3ð Þ, x 4ð Þ, x 5ð Þ
� �

=

x 1ð Þ
1 x 2ð Þ

1 x 3ð Þ
1 x 4ð Þ

1 x 5ð Þ
1

x 1ð Þ
2 ⋱ ⋮

⋮ ⋱ ⋮

x 1ð Þ
n ⋱ ⋮

⋮ ⋮

x 1ð Þ
N x 2ð Þ

N x 3ð Þ
N x 4ð Þ

N x 5ð Þ
N

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
,

ð6Þ

where xð1Þ, xð2Þ, xð3Þ, xð4Þ, xð5Þ represent the input monitoring
SA1, SA2, SA3, SA4, and SA5 sinking amount data, also called
features, and N represents the number of samples. Each
sample strip corresponds to 80 foot blades soil pressure
points in the following equation.

yn = yn,1,⋯,yn,q,⋯,yn,80
n o

: ð7Þ

It is not possible to directly output 80 foot blades soil
pressure values with conventional CART. For the multiob-
jective regression problem, there are two general solutions:
the first one is to convert the multiple regression problem
into a single-objective regression, such that if 80 foot blades
soil pressure values need to be predicted, then 80 single
regression models are constructed, and the soil pressure
values at different locations are output. However, this
method is too cumbersome, and the training complexity is
large and time consuming. The alternative way is to build
a multiobjective CART regression model [26]:

minp,a minc1 〠
xn∈R1 p,að Þ

yn − c1ð Þ2 + minc2 〠
xn∈R2 p,að Þ

yn − c2ð Þ2
" #

,

ð8Þ

minp,a minc1 〠
xn∈R1 p,að Þ

yn,q − c1,q
� �2

+ minc2 〠
xn∈R2 p,að Þ

yn,q − c2,q
� �2

" #
:

ð9Þ
Equation (8) is the traditional CART regression node

division method, where yn is the target value, c1 and c2 are
the predicted values within the intervals of R1 and R2,
respectively. The minimum point a is chosen as the splitting
point by calculating the mean square error of R1 and R2.
The target values in this method are not multidimensional,
and the splitting process cannot calculate the loss under
the multidimensional data, so the traditional CART cannot
be carried out for multiobjective regression. With the
improved splitting methods of Eq. (8), Eq. (9) integrates

h1

h4h5

h2

h3

(a) (b)

Figure 3: Sensor locations. (a) Beidou GPS sensor locations. (b) Bottom soil pressure of foot blades sensor locations.

Table 1: Sample sinking amount data.

Time SA-1 SA-2 SA-3 SA-4 SA-5

2020-07-19 00 : 00 5.701 5.413 5.554 5.534 5.568

2020-07-19 00 : 10 5.734 5.429 5.582 5.534 5.632

2020-07-19 00 : 20 5.715 5.386 5.553 5.511 5.601

2020-07-19 00 : 30 5.749 5.442 5.582 5.531 5.605

2020-07-19 00 : 40 5.738 5.435 5.577 5.536 5.599

2020-07-19 00 : 50 5.767 5.456 5.604 5.562 5.633

Table 2: Sample soil pressure of foot blades data.

Time RF-1 RF-2 RF-16 RF-124 RF-125

2020-07-19 00 : 00 0.100 0.100 0.775 2.968 2.204

2020-07-19 00 : 30 0.100 0.100 0.806 2.964 2.201

2020-07-19 01 : 00 0.100 0.100 0.929 2.959 2.195

2020-07-19 01 : 30 0.100 0.100 0.796 2.953 2.189

2020-07-19 02 : 00 0.100 0.100 0.638 2.941 2.180

2020-07-19 02 : 30 0.100 0.100 1.008 2.936 2.172

1 2 3 4 5 6 1 2 3 4 5

Time line

7 8 9 10

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5

1 4 9 7 8 2 3 10 5 6 1 2 3 4 5

(a) Raw data

(b) Training method one

(c) Training method two

Figure 4: Training methods.
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Figure 5: Continued.
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the minimum loss of the q-dimensional output value as the
splitting point when calculating the loss. The leaf nodes of
CART can be written explicitly as

ĉ1 =
1
Nm

〠
xn∈R1 p,að Þ

yn and ĉ2 =
1
Nm

〠
xn∈R2 p,að Þ

yn, ð10Þ

ĉ1,q =
1
Nm

〠
xn∈R1 p,að Þ

yn,q and ĉ2,q =
1
Nm

〠
xn∈R2 p,að Þ

yn,q: ð11Þ

Equation (10) is the output form of the traditional model
that calculates the average value of the R1 and R2 regions as
the output of the target values. Improving the above method
in order to obtain Eq. (11), the average value of the output
target in q dimensions was calculated as the output of mul-
tiple targets within the R1 and R2 regions, respectively.

4. Analysis of the Experimental Results

4.1. Improved CART Training Methods. We split the data
according to the temporal order for the prediction of the soil
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Figure 5: Results of different training methods. (a) Disordered training method MAPE value. (b) Disordered training method MSE value.
(c) Disordered training method R2 value. (d) Disordered training method MAE value. (e) Ordered training method MAPE value. (f)
Ordered training method MSE value. (g) Ordered training method R2 value. (h) Ordered training method MAE value.
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pressure of foot blades, where the training was performed
separately according to whether the data set was shuffled
or not. Examples are shown in Figure 4(a) below, blue 1-
10 are the 10 samples on the timeline, and red 1-5 are the
test samples. We used two training methods, the first one
is shown in Figure 4(b), according to the time order, the first
80% of the data is used as the training set (data samples 1-8
in the yellow area) and 20% as the validation set (samples 9-
10 in the green area). Alternatively, as shown in Figure 4(c)
ignoring, the temporal order, the overall random selection
divides the training and validation sets, i.e., 1-10 in the orig-
inal data are shuffled, 80% of the data is randomly selected as
the training set and 20% as the validation set.

A grid search method is used to select the parameters for
the maximum depth of the decision tree and the minimum
number of leaf node samples, where the maximum depth

is 2, 3, 4, 5, 6, 7, 8, 9, and 10, and the minimum number
of leaf node samples is 1, 2, 3, 5, and 10. There are 45 com-
binations of the maximum depth and the minimum number
of leaf node samples, such as <maximum depth is 2 and the
minimum number of leaf node samples is 1>, and <maxi-
mum depth is 2 and the minimum number of leaf node sam-
ples is 2>. In Figure 5, (a), (b), (c), and (d) are the results of
training method 2 (disordered method) in Figure 5, and (e),
(f), (g), and (h) are the results of training method 1 (ordered
method) in Figure 5, respectively.

As the depth increases, the nonlinear representation of
the tree model is gradually strengthened. The metrics of both
ordered and disordered training on the training set show a
step-up trend. The accuracy of the ordered training, how-
ever, gradually decreases on the validation and test sets.
For the regression coefficient, for example, when the depth
is 2, and the minimum number of leaf node samples 1, the
fitting coefficient of the training set is 0.8900, and when
the depth is 10, and the minimum number of leaf node sam-
ples is 1, the fitting coefficient of the training set is 0.9947.
The accuracy improved by 11.76%; however, the validation
and test sets decreased by 37.16%, and the accuracy of the
test set decreased by 50.17%. In the disordered training,
the fit coefficient of the training set is 0.8768 when the depth
is 2, and the number of minimum leaf samples is 1. It
increased to 0.9973 when the depth is increased to 10, while
the maximum decrease in the fit coefficient of the validation
set and the test set is approximately 16%. As the depth
increases, the performance of the training set gradually
increases, and the performance of both the validation and
test sets decreases, especially within the ordered training.

Increases in the minimum number of leaf node samples
at the same depth show an improvement in the robustness of
the model, in the model at a depth of 10, the number of min-
imum leaf samples in the validation set ranges from 1 to 10
in the disordered training, and the fit coefficient increases
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Figure 6: The average value of the index under different training methods. (a) Ordered training of the mean value of each index. (b)
Disordered training of the mean value of each index.
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Table 3: Cross-validation results.

Validation set Test set
Model MAPE MSE (MPa2) R2 MAE (MPa) MAPE MSE (MPa2) R2 MAE (MPa)

MLP 0.1127 0.0959 0.8545 0.1273 0.1852 0.2186 0.8634 0.2584

LSTM 0.1988 0.1482 0.7754 0.2109 0.6275 0.9932 -4.3973 0.6421

Linear regression 0.0900 0.0868 0.8764 0.0931 0.9598 0.2793 0.8509 0.3126

Improved CART 0.0487 0.0487 0.8862 0.0671 0.1114 0.1516 0.8632 0.1658

Table 4: Multiparameter model evaluation results.

Validation set Test set Integrated evaluation index value Ranking
Model MAPE MSE R2 MAE MAPE MSE R2 MAE
BP 0.2479 0.2669 0.7139 0.3064 0.5492 0.6383 1.0000 0.5169 4.2395 2

LSTM 0.0000 0.0000 0.0000 0.0000 0.0701 0.0000 0.0000 0.0000 0.0701 4

Linear regression 0.3922 0.3462 0.9116 0.5904 0.0000 0.4604 0.9976 0.3669 4.0653 3

Improved CART 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 8.0000 1
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Figure 8: Prediction scheme.
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from 0.8687 to 0.9038. It indicates that in the depth deter-
mined case, the accuracy of the validation model and test
sets can be improved by increasing the number of minimum
leaf samples.

In the ordered training method, since the data set is
split according to the temporal order, the construction
conditions change more significantly over time, and the
data learning in the preceding time period may not be suf-
ficient to support the later predictions. Prediction ability is
significantly reduced in the training, validation, and test
sets in Figure 6(a), realizing that MSE, R2, and MAE indi-
cators show the best results in the training set, followed by
the validation set, and the worst was observed in the test
set. The gap between the training and test set indicators
is relatively large; in terms of the fit coefficient, the test
set is reduced by 36.65% compared to the training set.
In Figure 6(b), the average value of the disorder training
is shown. Because the model learns the data characteristics
of extended time periods and multiple working conditions
during training, the model realizes a better robustness. The
average fitting coefficient decreases from 0.9325 in the
training set to 0.8716, which is 6.53% lower, and the sta-
bility of the model is better compared with the ordered
training method.

In the evaluation metrics, the closer the R2 is to 1, the
closer the MSE, MAE, and MAPE are to 0, the better the
model performance is. Different indicators do not have the
same tendency to evaluate the predictive capability of the
model. Furthermore, in this study, the MSE, MAE, and
MAPE are transformed as follows:

MSE′ = 1
100 ×MSE ,

ð12Þ

MAE′ = 1
100 ×MAE ,

ð13Þ

MAPE′ = 1
100 ×MAPE :

ð14Þ

In the regression models, different evaluation indica-
tors are focused on different aspects. The evaluation of dif-
ferent models via a single indicator lacks
comprehensiveness. Accordingly, a comprehensive evalua-
tion of different models with multiple indicators is needed.
The ranking method proposed by Zorlu et al. [27] in 2008
is a commonly used multi-index comprehensive evaluation
method. Zhang et al. [28] carried out optimization in
terms of the tendency uniformity and normalization based
on Zorlu. However, there is no comprehensive consider-
ation of the different data sets, and the following steps fur-
ther improve the above study.

Step 1. Calculate the evaluation indexes of MSE, MAE,
MAPE, and R2 for the training set and validation set,
respectively.

Step 2.MSE′,MAE′, andMAPE′ by tendency uniform con-
version of MSE, MAE, and MAPE.

Step 3. MSE′, MAE′, MAPE′, and R2 are normalized by the
formula:

�IM = IM −max ðIÞ/max ðIÞ −min ðIÞ to get MSE, MAE,
MAPE, and R2.

Step 4. MSE, MAE, MAPE, and R2 of the training and vali-
dation set are summed to get the comprehensive evaluation
index.

The evaluation metrics for different parameter combina-
tions of the disordered training under the training and vali-
dation sets are calculated according to the above
comprehensive evaluation algorithm to obtain Figure 7,
showing that the model has the highest comprehensive eval-
uation metrics at a depth of 5 and a minimum number of
leaf node samples of 10.

4.2. Comparison of Model Performances. A comparison of
the test results of MLP [29], LSTM [30], and the linear
regression [31] models are analyzed in this study. The 5-
fold cross-validation method is used to divide the sample
into 5 equal parts according to 20%, and 4 parts are taken
for training and the other 1 part for validation. The average
of the five results is used as the evaluation result of the model
validation set. The test set evaluation results are obtained by
the last five hours of data.

Average values of the 5-fold cross-validation of the MLP,
LSTM, linear regression model, and the improved CART
model are shown in Table 3. The linear regression model,
which requires the modeling of each soil pressure of foot
blade feature; thus, constructing 80 linear regression models
to meet the engineering requirements, is more complex and
computationally intensive compared to the improved CART
model. Table 4 is obtained through tendency transforma-
tion, and after normalization, the multiparameter model
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evaluation results are shown in Table 3. Various index
results of the validation and the test sets were added to com-
bine and evaluate the robustness of the model simulta-
neously. Finally, the results were ranked. Based on the
evaluation results of the multi-index model in Table 4, it is
clear that the improved CART model performs the best in
all indexes compared with other models in the validation

and test sets in terms of the soil pressure of foot blades pre-
diction it was ranked first overall.

5. Discussion

Previous analytical studies confirm the forecasting schemes
and the forecasting algorithms, but whether the model has
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Figure 10: Real and predicted values of the model at different moments in time. (a) July 30, 2020 20 : 00 real value; (b) August 3, 2020 20 : 00
real value; (c) August 7, 2020 18 : 00 real value; (d) July 30, 2020 20 : 00 predicted value; (e) August 3, 2020 20 : 00 predicted value; (f) August
7, 2020 18 : 00 predicted value.
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sufficient capacity for field forecasting is subject to further
discussion. A total of 230 data points from July 29, 2020,
10 : 00 to August 7, 2020, 23 : 00, are used in the discussion
as the evaluation data set for the long-term prediction of
the model. Due to the differences in the sinking conditions
of the caissons, two schemes were selected for the field pre-
diction. In Figure 8(a) scheme one, forgetting is used for
the first scheme, where the model learns 43 hours of data,
predicts the next five hours of data, and updates the model
every five hours. Figure 8(b) scheme two, continuous accu-
mulation of the data set, each time is predicting the next five
hours of data, and then updating the model once.

The prediction results of schemes 1 and 2 are shown in
Figure 9. It is found that there is no significant difference
between the two schemes with a fitting coefficient of
0.7699 for scheme 1 and 0.7719 for scheme 2, under the
detection of 230 data points. It shows that in the field fore-
casting process, it is only necessary to update the model at
regular intervals in order to achieve a relatively good fore-
casting effect. We extracted the true and predicted values
of the data at 20 : 00 on July 30, 2020, 20 : 00 on August 3,
2020, and 18 : 00 on August 7, 2020, for visualization. The
model’s predicted values for the soil pressure of foot blades
match the real values, as shown in Figure 10.

6. Conclusion

During the sinking of large caissons, monitoring the soil
pressure of foot blades plays a key role during its bridge
engineering-based applications safe and smooth sinking. In
this study, research based on the data-driven prediction of
the soil pressure of foot blades during sinking was developed
using the Changtai Yangtze River Bridge caisson as an exam-
ple, several conclusions were reached as follows:

(1) The multilabel task of a single model for the soil
pressure of foot blades of a caisson was achieved by
improving the splitting rule of CART. A multipa-
rameter model evaluation algorithm was imple-
mented to select parameters for the maximum
depth and a minimum number of samples of the
minimum leaf node of the improved CART. The
optimal combination of parameters with a maxi-
mum depth of 5 and a minimum number of leaf
node samples of 10 was selected. In the test set,
MAPE is 0.1114, MSE is 0.1516MPa2, R2 is 0.8632,
and MAE is 0.1658MPa

(2) The improved multiparameter model evaluation
algorithm compared and analyzed the improved
CART, MLP, LSTM, and the linear regression
models. It is concluded that the CART model is
more suitable for predicting the soil pressure of foot
blades during the sinking of the caisson

(3) A total of 230 samples from July 29, 2020, 10 : 00 to
August 7, 2020, 23 : 00, were used to continue the
evaluation of the improved CART model. Compari-
son of the two prediction schemes for whether the
data were forgotten or not revealed no significant

differences, with the average fit coefficient being
approximately 0.77. The results of the experiments
can be satisfied with the engineering requirements

(4) A shift from empirical decision making to a data-
driven based approach needs to be further investi-
gated. Data-driven predictions of the soil pressure
of foot blades are part of the overall intelligent con-
struction of the caisson
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A new method for the determination of oil and water flow rates in vertical upward oil-water two-phase pipe flows has been
proposed. This method consists of an application of machine learning techniques on the probability density function (PDF)
and the power spectral density (PSD) of the power spectrum output of an ultrasonic Doppler sensor in the pipe. The power
spectrum characteristic parameters of the two-phase flow are first determined by the probability density function (PDF)
method. Then, the transducer signal is preprocessed by distance correlation analysis (DCA), and independent features are
extracted by principal component analysis (PCA). The extracted features are used as input to a least-squares fit, which gave the
oil flow rates as output. In the same way, the transducer signal is also preprocessed by partial correlation analysis (PCA), and
independent features were extracted using independent component analysis (ICA). The extracted features were used as inputs
to multilayer back-propagation neural networks, which water cuts as output. The present method was used to calibrate an
ultrasonic Doppler sensor to estimate the flow rates of both phases in oil–water flow in a vertical pipe of diameter 159mm.
Predictions of the present method were in good agreement with direct flow rate measurements. Compared to previously used
methods of feature extraction from the ultrasonic Doppler power spectrum signals, the present method provides a theoretical
basis for the interpretation of ultrasonic multiphase flow logging data. Ultrasonic multiphase flow logging has potential
application value in the production profile logging and interpretation evaluation of production wells with low fluid production
and high water cut.

1. Introduction

Production logging is a major means of oil well dynamic
monitoring. It is an important issue in the logging industry
to understand the production status of the oil well produc-
tion layer, the remaining oil production of the reservoir,
the evaluation of the reservoir reconstruction effect, and
the adjustment and improvement of the development plan
[1]. The production logging technology also plays a very
important role in the development of oil fields.

However, oil fields with low porosity and low permeabil-
ity in the middle-late mining stage are characterized by low
flow rate, high water cut, and sand out. The oil-water two-

phase flow in the oil well has complex flow regimes with ran-
dom and variable oil-water interface, as well as a serious slip
effect between the oil and water phases. These problems
have caused major challenges to traditional production pro-
file logging, such as spinner flowmeter responds poorly
under low flow conditions, and the fluid capacitance has
poor response under high water cut conditions [2]. Ultra-
sonic multiphase flow logging tool is a logging method that
uses the ultrasonic Doppler effect and the difference in
acoustic impedance between oil, gas, and water and uses
the spectral characteristics of the discrete phase reflected
sound waves to obtain the flow of fluids in each phase [3].
Ultrasonic multiphase flow logging technology solves the
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problems of two-phase flow and three-phase flow logging in
complex well conditions (low production fluid, sand out,
highly deviated well, etc.), and the logging data provides a
reliable basis for oilfield development engineers [4]. At this
stage, the realization of the instrument method is relatively
mature, and the difficulty lies in how to extract information
that can accurately reflect the flow of oil, gas, and water from
a single ultrasonic frequency spectrum data [5].

Due to the nonlinearity of the data, there are many diffi-
culties in establishing an accurate prediction model. The
measurement precision of split-phase flow is lower. Therefore,
it is significant to study on the soft measurement method of
split-phase flow. In recent years, machine learning models
have begun to be applied in various fields. Several investigators
suggested the artificial neural network (ANN) methods to
solve this problem for multiphase flow [6–8]. ANN techniques
have been proposed as a powerful and computational tool to
model and solve the complex problems that cannot be
described with simple mathematical models [9–11]. Osman
presented an ANN model for prediction of pressure drop in
horizontal and near-horizontal gas–liquid flow [12]. Zhao
et al. established an ANN prediction model based on the
conductance signal obtained by measuring the oil-water two-
phase flow with electrical methods, where water cut was from
51% to 91%, and good prediction results were obtained [13].

Dimensionality reduction methods are an essential step
in any machine learning model pipeline since they will have
major importance regarding the accuracy of the classifica-
tion or regression algorithm applied to the data [14].
Principal component analysis (PCA) is the most commonly
used dimensionality reduction method. PCA was originally
introduced by Pearson [15] and developed independently
by Hotelling [16]. PCA is an unsupervised linear mapping
based on an eigenvector search and suitable for Gaussian
data. PCA provides different strategies for reducing the
dimensionality of feature space and preserves the maximum
amount of variance of the original data [17, 18]. PCA can be
computed using different algorithms including eigenvalues,
latent variable analysis, factor analysis, or linear regression
(LR) [19]. Major applications of PCA include image and
speech processing, visualization, exploratory data analysis,
and robotic sensor data [20].

Aiming at the oil-water two-phase production character-
istics of low production, high water cut, and obvious
slippage, in order to improve the interpretation accuracy
and dig out more ultrasonic multiphase flow logging
information, this paper carried out the oil-water two-phase
simulation logging experiment of the ultrasonic multiphase
flow logging tool to study the ultrasonic frequency spectrum
information of the oil-water two-phase flow and the oil and
water flow interpretation model. It provides a new interpre-
tation method for the ultrasonic multiphase flow logging of
oil-water two-phase production wells with low production
liquids.

2. Experimental Facility and Logging Tool

All logging experiments were conducted in the oil-water
flow facility at the Yangtze University in China (Figure 1),

and the ultrasonic multiphase abortion profile production
logging instrument is shown in Figure 2.

This facility was mainly composed of clear Perspex tub-
ing with an inner diameter of 159mm, which permitted
visual observation of the flow, and the wellbore angle is
vertical 90° (relative to the ground). The water of the exper-
imental medium is tap water (density 988 kg/m3, viscosity
1.16mPa·s), and the oil is 10# industrial white oil (density
826 kg/m3, viscosity 8.29mPa·s). The total flow rate (Qm)
in the experiment ranges from 0.5m3/d to 40m3/d; the water
cut (Cw) varies from 0% to 100%. The oil and water are
transported by peristaltic pumps to the pressure-stabilized
irrigation and then enter the metering pipeline to ensure that
the fluid flow in the oil-water transportation pipeline can
ignore the impact of the pump pulsation. The oil and water
volumetric flow rates were controlled by butterfly valves, and
they were measured by high-precision mass flowmeter
(KLB-CMFI-DN6). A total of 42 sets of experimental operat-
ing conditions for oil-water two-phase flow with different
total flow rates and different water cuts were designed for
the experiment. In order to ensure that the fluid flow is suf-
ficiently stable, the measurement of the ultrasonic logging
instrument probe was set at 6.0 meters from the inlet of flow
fluid; after the oil-water flow rate of each experimental point
stabilized for 30 minutes, the ultrasonic instrument started
the test and continued at least 3 pulse periods, and the test
scenario is shown in Figure 3. All experiments were con-
ducted normal temperature and under the atmospheric
pressure.

The structure of the ultrasonic multiphase flowmeter is
shown in Figure 2. The ultrasonic probe is located at the
lower end of the instrument string during well logging, and
the instrument string is connected to the centralizer to make
the instrument centered for measurement. The ultrasonic
probe adopts spontaneous and self-receiving measurement,
and the transmitting and receiving surfaces are conical [4].
Basic principle is the ultrasonic probe that is the transmis-
sion of ultrasonic signal by cone, and sound waves meet
continuous water phase in the discrete phase (oil bubble,
bubble) reflects, when the ultrasonic wave propagation
direction and oil bubble movement direction are 90°, ultra-
sonic reflection in oil bubble surface, and the frequency of
the reflected ultrasonic wave relative to change in the fre-
quency of the ultrasonic before reflection, this change is
the Doppler frequency shift.

Transducer T emits ultrasonic waves of frequency f0 to
the fluid, and transducer R receives the waves scattered by
a particle in the sample volume [21]. Owing to the relative
motion between the particle and transducer T , the frequency
f1 of incident waves received by the particle is modulated
according to the Doppler effect:

f1 =
c + u cos θ

c
f0, ð1Þ

where c is the speed of sound in fluid, u is the particle velocity
in the main flow direction, and θ is the angle (Doppler angle)
between the sound beam axis and particle flow direction. For
the scattering waves, the moving particle is considered a
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secondary ultrasound source, and the relative motion between
the particle and transducer R produces a second Doppler
effect. Hence, the frequency f r of scattering waves received
by transducer R is also modulated by the relative motion
between it and the particle, which can be expressed as

f r =
c

c − u cos θ f1 = 1 + 2u cos θ
c − u cos θ

� �
f0: ð2Þ

Because the flow velocity u is usually much lower than c,
the term (c − u cos θ) in Eq. (2) can be approximated as c,
which simplifies frequency f r to

f r ≈ 1 + 2u cos θ
c

� �
f0: ð3Þ

As a result, the Doppler shift of a single oil bubble can be
calculated from [22]

f d = f r − f0 =
2u cos θ

c
f0: ð4Þ
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Figure 1: Schematic diagram of multiphase flow simulation well experiment device.

Stent Sensor head
Filter

Guide coneConnector Sealing ring

Figure 2: Schematic diagram of ultrasonic multiphase flow logging tool structure.

Figure 3: Simulation logging experiment diagram.
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The signal reflected by a large number of oil bubbles in the
wellbore and the acoustic signal of the wellbore straight lotus
are superimposed on the receiving transducer. The signal is
transmitted and amplified by telemetry. The final difference
frequency signal obtained is the Doppler signal of the ultra-
sonic multiphase flowmeter [23]. The amount of frequency
change is related to the movement speed of the oil bubble,
and the amount of reflection of the ultrasonic wave on the sur-
face of the oil bubble corresponds to the number of oil bubbles.
Ultrasonic multiphase flow meters use the Doppler frequency
domain effect of reflected and scattered ultrasonic signals to
obtain fluid flow information [24].

The center frequency of the probe is set to 750KHz, the
measurement method adopts the static point measurement
of the instrument, the test time of each experimental mea-
surement point is 3 minutes, and at least 3 cycles of data
are collected. The probe is at the foremost end of the instru-
ment string, the fluid is in a noncollecting condition, and the
state of the fluid to be measured is basically unchanged.
When it flows through the ultrasonic probe, measurement
is performed to collect data.

3. Analysis of Experimental Results

3.1. Characteristics and Spectrum Analysis of Instruments
Influencing Oil-Water Two-Phase Flow. In order to study
the response characteristics of the ultrasonic flowmeter to
the oil bubble flow, the logging data collected by the ultra-
sonic flowmeter was analyzed and processed by the power
spectrum, the hydrostatic oil injection (the wellbore is filled
with water, increasing the flow of oil), and power spectrum
curve (as shown in Figure 4). The power spectrum curve of
the same total flow and different water cuts is as the oil-
water two-phase flow (as shown in Figure 5). From
Figures 4 and 5, the flow characteristics of the fluid at the
measuring point can be qualitatively analyzed by the curve
change trend.

In the case of hydrostatic oil injection, the amplitude of
the power spectrum curve increases with the increase of oil
flow. The greater the oil flow, the stronger the reflected sig-
nal. When the oil flow rate is very low (less than 1.5m3/d),
most of the acoustic waves emitted by the ultrasonic sensor
are dispersed, the reflected waves are weak, the amplitude
is low, and the measurement effect is not obvious. With
the increase of oil flow, discrete oil bubbles in the continuous
water phase increase, and part of the sound wave is reflected
on the surface of the oil bubble. The amplitude of the
reflected sound wave is relative to the number of oil bubbles.
The more oil bubbles (the larger the oil holdup), the stronger
the reflected wave, and the larger the amplitude. Because the
water is still, the oil bubbles move upwards at a static drift
speed in the water, and the slip phenomenon is obvious
[25]; so, the relationship between the change of the center
frequency and the change of the oil phase flow rate is not
obvious. When the oil flow rate is greater than 20 m3/d,
the oil flow rate increases, but the center frequency
decreases. That is, under low flow conditions, the increase
in oil flow is mainly due to the increase in the number of
oil bubbles (increased oil holdup), and the speed of oil bub-

bles hardly increases or even decreases. Therefore, in the
case of low flow, especially when the water is static or the
flow is very low, the center frequency has little correlation
with the oil flow.

In the case of oil-water two-phase flow, the amplitude of
power spectrum curve, left and right attenuation coefficient,
and center frequency has obvious changes under the same
total flow and different water cuts. The center frequency
moved to the right with the increase of water cut, and the
peak amplitude decreased with the increase of water cut.
This is mainly due to the increase in water cut and the
decrease in oil flow. There are fewer discrete oil bubbles in
the continuous water phase. Part of the sound waves reflects
weakly on the surface of the oil bubbles, and the reflected
wave received by the probe decreases, resulting in a drop-
in amplitude peaks. The amplitude peak value and center
frequency are proportional to the flow rate, but their propor-
tional relationship is uncertain under different total flow well
conditions. Therefore, it is necessary to use the statistical
results of the power spectrum data measured by the experi-
ment to find the relationship between the amplitude,
frequency, and the oil and water flow and obtain the corre-
sponding calculation model or make the relationship chart.

3.2. Measurement of Oil Flow Rates and Description of the
Algorithm. For the flow rate prediction, the PDF and PSD
are first calculated from the input signal, and appropriate
features are extracted by using PCA. The preprocessing steps
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Figure 4: Hydrostatic oil injection power spectrum diagram.
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employ methods that preserve as much of the information
contained in the differential the characteristic parameters
as possible, albeit extracting features with a relatively small
dimension.

In order to mine more power spectrum signal connota-
tion, the one-dimensional probability density function
(PDF) was used to fit the original measurement curve, and
the characteristic parameters such as amplitude of oil, fre-
quency of oil, variance of oil, and peak area of reaction oil
bubble distribution and flow velocity information were
obtained [26]. In order to reduce the complexity of the prob-
lem, the correlation analysis method is used to analyze the
distribution parameters of the oil-water two-phase flow
experiment and the characteristic parameters of the ultra-
sonic power spectrum to find the relationship between the
characteristic parameters of the ultrasonic power spectrum
and the oil-water flow parameters.
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Figure 5: Power spectrum curve of oil-water two-phase flow: (a)Qm= 10m3/d, (b)Qm= 15m3/d, (c) Qm= 20m3/d, (d)Qm= 25m3/d, (e)
Qm= 30m3/d, and (f) Qm= 40m3/d.

Table 1: Matrix table of approximate values of variables related to hydrostatic oil injection.

Correlation between vectors of power spectrum
Oil
flow

Peak
amplitude

Center
frequency

Amplitude
of oil

Frequency
of oil

Variance
of oil

Area of oil
peak

Logarithm of
amplitude ratio

Oil flow 1.000 .960 -.610 .958 -.582 .048 .857 .787

Peak amplitude .960 1.000 -.385 1.000 -.354 .294 .962 .920

Center frequency -.610 -.385 1.000 -.377 .984 .693 -.140 -.029

Amplitude of oil .958 1.000 -.377 1.000 -.348 .299 .966 .922

Frequency of oil -.582 -.354 .984 -.348 1.000 .763 -.116 .024

Variance of oil .048 .294 .693 .299 .763 1.000 .497 .641

Area of oil peak .857 .962 -.140 .966 -.116 .497 1.000 .973

Logarithm of
amplitude ratio

.787 .920 -.029 .922 .024 .641 .973 1.000

Table 2: Results of PCA.

Component Eigenvalue
Variance

contribution
rate/%

Cumulative variance
contribution rate/%

1 6.026 86.087 86.087

2 0.773 11.038 97.125

3 0.168 2.397 99.522

4 0.024 0.340 99.862

5 0.006 0.084 99.946

6 0.004 0.050 99.996

7 0.000 0.004 100.000
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First, the correlation analysis of the experimental
rationing parameters of hydrostatic oil injection and the
characteristic parameters of the ultrasonic power spectrum
are carried out. The correlation analysis of the variables
related to hydrostatic oil injection is based on the distance
process correlation analysis. The approximate value matrix
is shown in Table 1. The strength of the distance relationship
between variables can be observed through the approximate
matrix [27]. The results of the correlation analysis show that
the oil flow has a good correlation with many characteristic
parameters, if only one or two parameters for the traditional
linear or nonlinear fitting to obtain the formula to calculate

the oil flow, the results obtained error is larger, but too many
variables will inevitably exist data duplication and superpo-
sition, resulting in the complexity of the algorithm to
enhance. The basic principle of principal component analy-
sis (PCA) is to integrate the original variables into several
principal components, replacing a large number of variables
with fewer combined variables, to minimize the loss of
information carried by the variables, and to make them
uncorrelated with each other [28]. The mathematical model
of principal component analysis is as follows.

Suppose there are n samples, and each sample has p var-
iables: x1, x2,…, xp, the original data observation matrix is as
follows:

Xn×p =

x11 x12 ⋯ x1p

x21 x22 ⋯ x2p

⋮ ⋮ ⋱ ⋮

xn1 xn2 ⋯ xnp

2
666664

3
777775: ð5Þ

Establish the correlation coefficient matrix R of variables
and find the characteristic root of R (λ1 ≥ λ2 ≥⋯λp > 0) and
its corresponding unit characteristic vector (e1, e2,⋯, ep).

Then, determine the number of principal components,
define the contribution rate of the principal components
which is λi/∑

p
k=1λk, ði = 1, 2,⋯,pÞ, and the cumulative contri-

bution rate is ∑i
k=1λk/∑

p
k=1λk, ði = 1, 2,⋯,pÞ.

Generally, the eigenvalues λ1, λ2,⋯λm corresponding to
the first, second, ..., mth (m ≤ p) principal components
whose cumulative contribution rate reaches 85% or more
are taken. The PCA model can be formulated as

f1 = e11x1 + e12x2 + e13x3+⋯+e1pxp,
f2 = e21x1 + e22x2 + e23x3+⋯+e2pxp,

⋮

f m = em1x1 + em2x2 + em3x3+⋯+empxp,

8>>>>><
>>>>>:

ð6Þ

where eip is the p-dimensional eigenvector correspond-
ing to the i-th eigenvalue of the correlation matrix of the
original variables; ½x1 x2 ⋯ xp�T is the p-dimensional initial
input variable.

Principal component analysis was performed on the
characteristic parameters of the oil-water two-phase ultra-
sonic power spectrum, and the results are shown in Table 2.

It can be seen from Table 2 that the cumulative contribu-
tion rate of the first component reaches 86.087%, which
exceeds 85%, which can well summarize the original vari-
ables. Therefore, the principal component of the characteris-
tic parameters of the oil-water two-phase ultrasonic power
spectrum is the first extracted. According to the component
score coefficient matrix, the expression can be obtained as

F1 = 0:163X1 − 0:146X2 + 0:162X3 − 0:155X4 − 0:144X5 + 0:148X6 + 0:159X7:

ð7Þ
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Therefore, the oil flow rate and the principal compo-
nents extracted from the characteristic parameters of the
ultrasonic power spectrum are used for the rendezvous anal-
ysis to predict the oil flow rate. The result is shown in
Figure 6.

Figure 6 is fitted to get the relationship between the oil
flow rate (Qo) and the principal component value (F1) mea-
surement model which is

Qo = 7:5778F1 + 11:667: ð8Þ

The oil flow rate increases linearly with the principal
component value, and it has very good monotonicity. When
the oil flow rate is small, the data correlation is obviously
stronger than when the oil flow rate is high, indicating that
the ultrasonic flow logging tool is more sensitive to small
oil flow changes under the conditions of low oil flow and
high water holdup. This is because when the oil flow is low
and the wellbore water holdup is high, the size and number
of oil bubbles are small, and the oil phase is evenly distrib-
uted, which is conducive to ultrasonic Doppler measure-
ment. When the oil flow rate increases and water holdup
decreases, the size and number of oil bubbles in the wellbore
increase, small oil bubble collision and aggregation become
larger, oil phase distribution is uneven, ultrasonic Doppler
measurement sensitivity decreases, reflection intensity
increases, and amplitude increases. Therefore, ultrasonic
Doppler measurement has high sensitivity to high water cut.

Substituting the data obtained from the ultrasonic
measurement experiment of the oil-water two-phase flow
into Eq. (8), the oil flow rate prediction results as shown
in Figure 7 is obtained. In the case of different total flow,
the oil flow value in the ultrasonic multiphase flow simu-
lation experiment is in good agreement with the oil flow
prediction value.

Table 3: Approximate value matrix table of related variables for oil-water two-phase flow.

Correlation between vectors of power spectrum
Total
flow

Water
cut

Peak
amplitude

Center
frequency

Amplitude of
oil

Frequency of
oil

Variance of
oil

Area of oil
peak

Amplitude
ratio

Total flow 1.000 .000 .667 -.555 .668 -.573 -.455 .651 .659

Water cut .000 1.000 -.651 .601 -.648 .656 .556 -.647 -.690

Peak
amplitude

.667 -.651 1.000 -.778 .999 -.852 -.807 .939 .975

Center
frequency

-.555 .601 -.778 1.000 -.766 .959 .853 -.630 -.719

Amplitude of
oil

.668 -.648 .999 -.766 1.000 -.837 -.790 .947 .979

Frequency of
oil

-.573 .656 -.852 .959 -.837 1.000 .933 -.687 -.784

Variance of
oil

-.455 .556 -.807 .853 -.790 .933 1.000 -.572 -.684

Area of oil
peak

.651 -.647 .939 -.630 .947 -.687 -.572 1.000 .983

Amplitude
ratio

.659 -.690 .975 -.719 .979 -.784 -.684 .983 1.000

Table 4: Results of PCA for water cut.

Component Eigenvalue
Variance

contribution
rate/%

Cumulative variance
contribution rate/%

1 6.09 87.002 87.002

2 0.675 9.639 96.641

3 0.18 2.565 99.207

4 0.035 0.502 99.709

5 0.013 0.19 99.899

6 0.005 0.072 99.971

7 0.002 0.029 100
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Figure 8: Intersection diagram of water cut and amplitude ratio.
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On the whole, the oil flow rate prediction model estab-
lished by the hydrostatic oil injection experiment data is
effective in calculating the oil flow rate under the oil-water
two-phase flow. The overall average absolute error is
0.92m3/d, and the average relative error is 10.36%.

Although the oil flow rate in oil-water two-phase flow
can be accurately calculated by extracting principal compo-
nent value of the characteristic parameters of the ultrasonic
power spectrum, the main reason is that the total flow rate
is small, the oil phase velocity is close to the static drift veloc-
ity of oil in water, and the change of oil flow rate mainly

depends on the number of oil bubbles (oil holdup), which
is strongly related to the amplitude of oil and area of oil
peak. The total flow does not change, the water cut
decreases, and as the oil flow increases, the error value
increases. That is to say, the prediction model (8) has higher
prediction accuracy in the case of high water cut and less oil
bubbles. With the increase of oil bubbles, the flow pattern
changes from discrete bubble flow to emulsion flow, and
the measurement effect becomes worse.

3.3. Water Cut Measurement and Description of the
Algorithm. In the previous section, it was shown that the
PDF and PSD of the differential ultrasonic power spectrum
characteristic parameters followed certain systematic trends
as the oil, and water flow rates were changed [29].

The water cut reflects the relationship between the water
flow and the total flow in the oil-water two-phase flow and
has a complicated relationship with factors such as water
holdup and oil-water slip velocity. In the oil-water two-
phase flow of low-yield liquid, the water holdup is generally
high due to the serious water logging in the wellbore, which
brings more difficulties to the calculation of water cut. The
conventional production profile interpretation model (drift
flux model, slip model) is greatly affected by the fluctuation
of water holdup. Ultrasonic multiphase flow logging data
processing uses the power spectrum related characteristic
parameters to compare and analyze the water cut ratio of
the experiment to determine the water cut calculation
model. In the same way, for the water prediction, the PDF
and PSD are also calculated from the input signal, appropri-
ate features are extracted by using DCA followed by PCA,
and regression is performed using artificial neural networks.

It can be seen from the power spectrum analysis of ultra-
sonic measurement in Figures 4 and 5 that the total flow rate
has no obvious dependence on the related characteristic
parameters, when the total flow rate remains unchanged,
the water cut increases, the amplitude of the corresponding

Table 5: Analysis table of partial correlation of variables related to oil-water two-phase flow.

Correlation
Control variable Water cut Amplitude of oil Frequency of oil Area of oil peak Amplitude ratio

Total flow

Water cut

Correlation 1.000 -.872 .800 -.852 -.918

Significance (two-tailed) . .000 .000 .000 .000

Degree of freedom 0 21 21 21 21

Amplitude of oil

Correlation -.872 1.000 -.745 .907 .963

Significance (two-tailed) .000 . .000 .000 .000

Degree of freedom 21 0 21 21 21

Frequency of oil

Correlation .800 -.745 1.000 -.505 -.660

Significance (two-tailed) .000 .000 . .014 .001

Degree of freedom 21 21 0 21 21

Area of oil peak

Correlation -.852 .907 -.505 1.000 .971

Significance (two-tailed) .000 .000 .014 . .000

Degree of freedom 21 21 21 0 21

Amplitude ratio

Correlation -.918 .963 -.660 .971 1.000

Significance (two-tailed) .000 .000 .001 .000 .

Degree of freedom 21 21 21 21 0
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Figure 9: The relationship between water cut and amplitude ratio
at the same total flow rate.
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power spectrum decreases, and the center frequency shifts to
the right. Therefore, the distance correlation analysis (DCA)
method is also used to perform correlation analysis on the
experimental data of the oil-water two-phase flow. The anal-
ysis results are shown in Table 3. According to the analysis
results, Pearson correlation coefficients between total flow
and amplitude peak, center frequency, amplitude of oil, fre-
quency of oil, variance of oil, area of oil peak, and amplitude
ratio are not high, all less than 0.7, indicating that the dis-
tance correlation intensity between them is very weak, which
is consistent with the qualitative analysis results of power
spectrum in Figures 4 and 5.

The Pearson correlation coefficient between water cut
and ultrasonic characteristic parameters is not high, which

is positively correlated with the center frequency, frequency
of oil and variance of oil, but negatively correlated with the
amplitude peak, amplitude of oil, area of oil peak, and ampli-
tude ratio. Pearson correlation coefficient with the total flow
is 0, and there is no correlation between water cut and the
total flow. In the case of oil-water two-phase flow, the peak
amplitude is positively correlated with the oil amplitude,
and the center frequency is positively correlated with the fre-
quency of oil. The correlation coefficient is relatively close,
and the correlation coefficient with the oil-water amplitude
ratio (ln ðAo/AwÞ) is 0.69.

To investigate the effect of representing the total infor-
mation in the original dataset with a smaller number of
features, principal component analysis was performed on
the characteristic parameters of the oil-water two-phase
ultrasonic power spectrum, and the results are shown in
Table 4.

According to the component score coefficient matrix, the
expression can be obtained as

F2 = 0:158X1 − 0:149X2 + 0:163X3 − 0:156X4 − 0:144X5 + 0:143X6 + 0:158X7:

ð9Þ

Figure 8 is the intersection of the water cut and the oil-
water amplitude ratio, and the fitting formula is Eq. (10):

Ln Ao

Aw

� �
= 0:098974Cw + 2:60833: ð10Þ

The linear fitting correlation coefficient (R2 = 0:45784) is
low, and the water cut calculated by Eq. (10) has a large
error, which can be used as the pseudowater cut calculation
formula.
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Further analysis of moisture content and the relationship
between ultrasonic power spectrum parameters, extraction,
and analysis of the results of correlation coefficient absolute
value are greater than 0.6 variable frequency amplitude
(amplitude of oil, frequency of oil, area of oil peak, amplitude
ratio), the partial correlation analysis (PCA) method, analysis
of traffic is fixed, and the water cut and the correlation between
ultrasonic power spectral characteristic parameters process the
results as shown in Table 5. It can be seen from the results that
when controlling the total flow, the partial correlation coeffi-
cient between the water cut and the amplitude ratio is
-0.918, and the probability (significance) that they are not cor-
related is p = 0. It can be concluded that under the condition of
a certain total flow, there is a significant negative correlation
between water cut (Cw) and oil-water amplitude ratio
(ln ðAo/AwÞ). Figure 9 is a graph showing the relationship
between water cut and amplitude ratio when the total flow rate
is constant under the oil-water two-phase flow.

It can be seen from Figure 9 that under a certain total
flow rate, the water cut and the oil-water amplitude ratio
have a good linear correlation. The larger the amplitude
ratio, the smaller the water cut. Using this chart, you can
calculate the water cut based on the amplitude ratio interpo-
lation when the total flow rate is determined, and you can
also calculate the total flow rate based on the amplitude ratio
interpolation when the water cut rate is determined. For the
flow rate prediction, water cut (Cw) and oil-water amplitude
ratio (ln ðAo/AwÞ) were used as inputs to multilayer back-
propagation neural networks, which gave the total flow rates
as output. Figure 10 presents the ratio of predicted and
measured flow rates for the ANN; the vast majority of pre-
dictions were within ±10% of the measured values.

3.4. Water Phase Flow Calculation. From the above power
spectrum Figure 5 and the distances process correlation
analysis result Table 3, it can be seen that it is difficult to
directly find the relationship between the water phase flow
rate and the relevant characteristic parameters of the power

spectrum. However, under a certain total flow rate, the rela-
tionship between the ratio of the water phase flow rate and
the amplitude obtained from the water cut is very obvious,
and the linear relationship is better. Therefore, based on
the above Eq. (5) of the oil phase flow calculation model
and the water cut calculation chart under a certain total flow,
the following method is proposed to calculate the water
phase flow.

(1) First, calculate the oil phase flow rate Qo from the
principal component value (F1) using Eq. (8)

(2) From the oil-water amplitude ratio (ln (Ao/Aw)),
use Eq. (9) to calculate the pseudo water cut Cw′

(3) Then, use the oil-water amplitude ratio (ln (Ao/Aw))
and the pseudowater cut Cw′ obtained in step (2) into
the same water cut and amplitude ratio relationship
chart (Figure 9) for the total flow rate for ANN to
obtain the total flow rate Qm. Recalculate the water
cut according to the definition formula of water cut

Cw = Qm −Qo

Qm
: ð11Þ

(4) Then calculate the error between the water cut calcu-
lated by Eq. (7) and the pseudowater cut calculated
by Eq. (6). If it is within the error range, the total
flow Qm and water cut Cw can be obtained, and the
water phase flow can be calculated by the relation-
ship between them

Qw =Qm · Cw: ð12Þ

Table 6: Well 13-1-2 power spectrum characteristic parameter table.

Layer
number

Measuring point
depth (m)

Temperature
(°C)

Pressure
(MPa)

Peak amplitude
(μv/Hz2)

Center
frequency

(Hz)

Amplitude of oil
(μv/Hz2)

Frequency of
oil (Hz)

Fluid phase

1 1390.25 68.00 2.90 1067.00 326.34 812.51 361.70
Oil-water
two-phase

2 1411.00 68.80 3.10 812.53 297.02 636.01 322.33
Oil-water
two-phase

3 1430.20 69.80 3.30 623.64 301.73 469.24 326.78
Oil-water
two-phase

4 1470.40 71.40 3.80 559.80 295.98 453.81 314.15
Oil-water
two-phase

5 1530.32 73.50 4.40 314.81 268.70 236.23 261.76
Oil-water
two-phase

6 1563.12 74.50 4.80 129.34 241.65 106.64 283.13
Oil-water
two-phase

7 1595.30 76.64 5.14 13.46 221.14 0.00 0.00 Static water
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(5) If the error is greater than the error limit, adjust the
pseudowater cut Cw′ according to the relationship
between the water cut Cw calculated on the plate
and the pseudowater cut Cw′ and continue to insert
it into the Figure 9 for interpolation calculations
until the error is less than the error limit

In order to check the calculation accuracy of the method,
the logging data of the ultrasonic Doppler flowmeter in the
full flow layer of 26 wells were measured by power spectrum
processing to extract the relevant characteristic parameters.
Because the calibration conditions of the logging instrument
laboratory are different from the working conditions of
downhole logging, and the physical properties of oil and
water are different, it is necessary to calibrate the amplitude
and center frequency of the total flow power spectrum curve
of the downhole test to the calibration conditions of the
same flow rate for explanation [4]. The calibration
coefficient is

KA = Alog/Aexp,
KF = F log/Fexp:

(
ð13Þ

In the formula, KA is the amplitude correction coeffi-
cient, Alog is the actual logging amplitude value, Aexp is the
amplitude value measured in the laboratory with the same
flow rate, KF is the frequency correction coefficient, K log is
the actual logging frequency value, and Kexp is the frequency
value measured by the laboratory with the same flow rate.

The calibrated power spectrum characteristic parame-
ter values were substituted into the above formula and
chart, and the interpretation results were compared with
the water flow calculated by the total production and
water cut of logging time at that time. The comparison
between the actual water flow in the full flow layer of
these 26 wells and the water flow calculated by this
method is shown in Figure 11. The average absolute error
of the water phase flow calculation is 1.502m3/d, and the
average relative error is 22.79%. The relative error of the
water phase flow rate under high water cut conditions is
obviously smaller than the relative error value under low
water cut conditions, which also shows that the ultrasonic
Doppler oil-water two-phase flow measurement has higher
sensitivity under high water cut conditions.

4. Field Application

Western Oilfield is a low-porosity and low-permeability
reservoir. It is currently in the middle and late stages of
development, and most of the oil wells are in a state of low
production fluid and high water cut. Well 13-1-2 is a
pumped well. Ultrasonic multiphase flow production profile
logging was performed on March 23, 2018. Before logging,
the daily production fluid at the wellhead was 5.55m3/d,
and the water cut was 41.4%.

The logging interpretation of ultrasonic polyphase abor-
tion profile is mainly based on the temperature, pressure,
and power spectrum curve of downhole fluid to judge the
phase state of downhole fluid, and the oil and water produc-
tion of each producing zone is calculated according to the
production status of wellhead and the amplitude and central
frequency of oil signal of power spectrum curve. The power
spectrum curve of ultrasonic multiphase flow test in well 13-
1-2 is shown in Figure 12.

According to the position of the downhole perforation
layer, there are a total of 7 test points, and the test point fluid
is a two-phase flow of oil and water. The power spectrum
curve of each test point is processed to obtain the power
spectrum characteristic parameters, as shown in Table 6.

The comprehensive interpretation results are shown in
Figure 13, and the interpretation results are shown in
Table 7. After comprehensive analysis, the interpretation
results are obtained: the main liquid producing layer is IV-
49 sublayer, the liquid production volume is 1.84m3/d, and
the water cut is 58.36%. The secondary liquid producing
layers are IV-25, IV-28, IV-30, IV-40, and IV-47, with liquid
production of 0.68m3/d, 0.69 m3/d, 0.27m3/d, 1.11m3/d,
and 0.97m3/d, respectively. Water cut were 0.0%, 27.09%,
36.98%, 41.64%, and 49.42%, respectively.

Compared with the actual oil and water flow in the field,
the accuracy of data-driven artificial intelligence interpreta-
tion is higher than that of traditional ultrasonic power
spectrum single-factor calculation of flow, and it also solves
the problem of water flow calculation.

5. Conclusion

In this paper, the ultrasonic multiphase flow logging tool is
used to test the acoustic frequency characteristics of the
oil-water two-phase flow in a vertical simulation experimen-
tal wellbore, and the data-driven methodology is used for the

Table 7: Well 13-1-2 interpretation result table.

Serial number Interpretation level
Perforated well section

Oil yield (m3/d)
Water yield Total fluid production

Water cut (%)
(m) (m3/d) (m3/d)

1 IV-25 1400.00-1401.50 0.68 0 0.68 0

2 IV-28 1421.90-1423.90 0.5 0.19 0.69 27.09

3 IV-30 1435.47-1437.70 0.17 0.1 0.27 36.98

4 IV-40 1501.38-1505.22 0.65 0.46 1.11 41.64

5 IV-47 1555.95-1557.55 0.49 0.48 0.97 49.42

6 IV-49 1570.10-1572.80 0.77 1.07 1.84 58.36

Total 3.26 2.3 5.56 41.37
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prediction of fluid flow in ultrasonic production logging data
processing. The following conclusions are obtained through
the analysis of the experimental data.

(1) The ultrasonic multiphase flow logging tool mainly
detects the movement parameters of the oil bubbles
in the continuous water phase. The power spectrum
curve obtained from the experimental data can
qualitatively analyze the change characteristics of
the total flow rate and water cut of the oil-water
two-phase flow

(2) Under low flow conditions, the oil bubbles move
upward at a static drift speed; so, the oil phase flow
is mainly related to the number of oil bubbles and
the ultrasonic reflection intensity that reflects the
number of oil bubbles

(3) The characteristic parameters extracted from the
ultrasonic power spectrum curve are related to the
oil flow and water cut, and there is a functional
relationship. This paper uses the distance process
correlation analysis method and partial correlation
analysis method to analyze the correlation of the
power spectrum characteristic parameters and
establishes the oil phase flow calculation model, the
water cut prediction chart, and the water flow
calculation method. The research results show that
the method has high precision and can be a very
good calculating the output profile parameters of
oil-water two-phase flow

(4) The data-driven artificial intelligence interpretation
accuracy is higher than the traditional single-factor
calculation accuracy of ultrasonic power spectrum
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Using surrogate model to assist parameter optimization of oil and gas reservoir development can greatly reduce the call times of
numerical simulator and accelerate the optimization process. However, for serial simulators or parallel simulators with low
speedup ratio, the conventional method is still time-consuming. Firstly, an improved surrogate model assisted particle swarm
optimization (PSO) algorithm was proposed in this paper. Then, the performance of the algorithm was analyzed using the
Rastrigin function. Finally, the key operation parameters of a gas hydrate reservoir by depressurization−to−hot−water−flooding
method were optimized with the new method. The results show that the new method only affects the update of the global
optimal particle without interfering with the calculation process of the local optimal particles at the early stage of optimization.
It realizes the rapid addition of the particle samples through the good parallel features of the PSO algorithm, and therefore,
improve the precision of surrogate model in a short time. At the late stage of optimization, it is transformed into a local
surrogate model to achieve rapid convergence, when the training time of the surrogate model exceeds the calculation time of
the simulator. Both the optimization of Rastrigin function and operation parameters of gas hydrate development reveal that
the new algorithm greatly reduces the number of iterations under the same accuracy and thus successfully accelerates the
optimization process.

1. Introduction

Multiparameter optimization is a common problem in oil and
gas industry. At present, the optimization methods that can be
combined with simulators mainly include gradient-based
algorithms, approximate gradient-based algorithms, and intel-
ligent algorithms [1–3]. Gradient-based algorithms need to
accurately obtain the gradient of the objective function, and
therefore, the simulator must be open source so that the code
can be modified to obtain the gradient [4]. Approximate gra-
dient algorithms mainly include Levenberg-Marquardt (LM)
algorithm, simultaneous perturbation stochastic approxima-
tion (SPSA) algorithm, etc. These kinds of algorithms usually

have fast convergence speed, but it is easy to obtain local opti-
mum for nonconvex problems [5, 6]. Intelligent algorithms
include genetic algorithm, simulated annealing algorithm,
particle swarm optimization (PSO) algorithm, etc. Their opti-
mization process does not depend on the gradient of the objec-
tive function, and the differentiability of the objective function
is not necessary [7, 8]. In addition, the global search ability of
these algorithms is very strong, so compared with the approx-
imate gradient algorithms, the probability of obtaining the
global optimum of nonconvex problems is greatly enhanced.
Therefore, intelligent optimization algorithms have been
widely used in multiparameter optimization problems in the
oil and gas industry in recent years [9, 10].
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However, many researchers found that the conventional
intelligent optimization algorithms have a slow convergence
speed. A large number of iterations are required, and the
numerical simulator needs to be called hundreds or even thou-
sands of times. Therefore, the calculation time for complex
models can be up to several weeks or even longer [11, 12]. In
recent years, with the development of machine learning tech-
nology, the surrogate model assisted optimization algorithm
points out a new direction for rapid optimization [13]. Based
on the known information about an objective function, a sur-
rogate model can be trained to obtain the potential location of
optimum, which then are verified by the numerical simulator.
Compared with conventional intelligent optimization algo-
rithms, the surrogate model assisted optimization algorithm
can find the potential positions and accelerate the convergence
quickly [14, 15]. Using radial basis function network to train
the surrogate model, Yu et al. proposed a surrogate-assisted
PSO algorithm and proved the effectiveness of the new
method [16]. Cai et al. also proposed a surrogate-assisted
PSO algorithm which focus on the balance between the pre-
diction ability of surrogates and global search ability of PSO,
and the results show that the new method can handle high-
dimensional expensive problems well [17]. Zhang et al. trained
the surrogate model with random forest algorithm and pre-
dicted the creep index. The results show that the prediction
accuracy of the method is significantly higher than that of
empirical model [18]. Chen et al. proposed a surrogate model
assisted differential evolution method and optimized the oper-
ation parameters in waterflooding production. A higher net
present value and better convergence speed are achieved by
the new algorithm [19].

From the above analysis, it can be seen that many studies
have proposed a variety of computing processes for different
surrogate models and intelligent optimization algorithms.
Meanwhile, the surrogate model shows a good ability to accel-
erate the convergence speed. However, most of these models
focus on reducing the call times of numerical simulators. For
serial simulators or parallel simulators with low speedup ratio,
the computing resources are often idle in the calculation pro-
cess, resulting the low computing efficiency. Making full use
of the good parallel characteristics of intelligent optimization
algorithms and how to design workflow to make rational use
of computing resources have not been fully considered. There-
fore, based on the parallel characteristics of PSO algorithm, this
paper proposed an improved surrogate-assisted particle swarm
optimization algorithm (i-SAPSO) and verified it with Rastri-
gin function. Then, the operation parameters of gas hydrate
reservoir developed by depressurization−to−hot−water−flood-
ing method were optimized by the new method. Finally, the
performance of different algorithms and rationality of optimi-
zation results were analyzed.

2. Surrogate Model Assisted Particle
Swarm Optimization

2.1. PSO Algorithm. PSO algorithm was proposed by James
Kennedy and Russell Eberhart in 1995. Inspired from the
activity behavior of animal clusters, the algorithm combines
the individual information of particles together to make the

movement of the whole group and produces an evolution
process from disorder to order in the problem-solving space
[20–23]. The algorithm randomly selects several particles in
the N-dimensional search space, in which the position of

particle i in the t-th iteration can be expressed as x!
t
i = ðxti1,

xti2,⋯,xtiNÞ. The historical optimal position of the particle i

in the t-th iteration can be recorded as p
!t

i = ðpti1, pti2,⋯,ptiNÞ
, and the optimal position of all particles, that is, the global

optimal position, can be recorded as p
!t

g = ðptg1, ptg2,⋯,ptgNÞ.
According to the PSO algorithm, the particle has the trend
of moving to its historical optimal position and to the global
optimal position. Thus, the update formula of the particle
position can be expressed as follows:

vt+1id = ωvtid + c1 rand1ð Þ ptid − xtid
� �

+ c2 rand2ð Þ ptgd − xtid
� �

,

xt+1id = xtid + vt+1id ,

8<
:

ð1Þ

where ω is the inertia weight, c1 and c2 are the constants,
and rand1ðÞ and rand2ðÞ are the random functions. Inertia
weight ω in this paper is 1.0, and c1 and c2 are both defined
as 2.0 [20].

2.2. Surrogate Model. From the iterative process of PSO, it
can be seen that the PSO algorithm only updates the particle
positions by simply recording the global optimal and histor-
ical optimal, but it does not mine the information of all the
calculated particles. The introduction of surrogate model is
to combine the information of all particles together, so as
to obtain the potential position of the optimal value in a
short time and improve the optimization speed of PSO.
The methods of training surrogate model mainly include
Gaussian process regression, support vector machine, radial
basis function network, regression tree, artificial neural net-
work, etc. [24] Among these methods, Gaussian process
regression is a widely used method, and it has been proved
that it can obtain satisfactory training performance. There-
fore, this paper mainly uses Gaussian process regression to
train the surrogate model [25].

Assume that the training data set is

D = x!i, yi
� ����i = 1,⋯,M
n o

, ð2Þ

where x!is the variable vector and y is the vector of fitness.
Gaussian process regression assumes that y follows the

multivariate normal distribution, that is:

y1

y2

⋯

yM

2
666664

3
777775 ∼N

0
0
⋯

0

2
666664

3
777775,

k11 k12 ⋯ k1M

k21 k22 ⋯ k2M

⋯ ⋯ ⋯ ⋯

kM1 kM2 ⋯ kMM

2
666664

3
777775

0
BBBBB@

1
CCCCCA,

ð3Þ
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where k is the covariance of the variable vector, and the
matrix composed of the covariance of each vector can be
represented by K .

When there is a new variable vector denoted by x ∗, the
Gaussian process regression assumes that it still satisfies the
multivariate normal distribution, the following equation can
be obtained based on Equation (3):

y

y∗

" #
∼N 0,

K x, xð Þ K x, x∗ð Þ
K x∗, xð Þ K x∗, x∗ð Þ

" # !
: ð4Þ

The corresponding predicted value y ∗can be obtained
from the properties of Gaussian distribution, which can be
expressed as

y∗ = K x∗, xð ÞK x, xð Þ−1y: ð5Þ

From the above analysis, it can be seen that the key point
affecting the regression performance of Gaussian process is
the kernel function generating covariance matrix. In this
paper, rational quadratic kernel is used for model training.

2.3. The Improvement of Yu’s Method. For optimization
problems in oil and gas industry, the fitness calculation of
an objective function often takes a long time because of the
calls of numerical simulators. In order to reduce the calcula-
tion time, many researchers improved the PSO algorithm by
combining it with a surrogate model. Among them, the
model proposed by Yu et al. is a quite typical model, and
therefore, Yu’s method was selected as the comparative
model in this study. For the problem of finding the mini-
mum value of the objective function, Yu’s method mainly
includes the following steps:

(1) Latin hypercube sampling is used to obtain M sam-
ples in the search space [26]. The objective function
is called to calculate the fitness of samples, and the
samples and corresponding fitness form the initial
fitness sample database

(2) The fitness of the samples is arranged in ascending
order, and the first N samples are selected to form
the initial particle swarm. Then, the historical opti-
mal and global optimal of the initial N particles are
obtained according to the principle of PSO algorithm

(3) The first P samples are selected to train the surro-
gate model by a machine learning method

(4) The optimal value and optimal location of the surro-
gate model are obtained by PSO algorithm. After cal-
culating the fitness at the optimal location by using
the objective function, the optimal location of the
surrogate model and its fitness are added into the
sample database. Then, the particles are reordered
in the sample database according to the fitness

(5) If the first P samples of the sample database have
been changed, the surrogate model is retrained by
the machine learning method

(6) Update the global best, and then update the particle
swarm according to Equation (1)

(7) The finesses of the updated particles are estimated
by the surrogate model. If the estimated fitness of
a particle is smaller than the current historical opti-
mal, the particle is selected as the potential particle

(8) Call the objective function to calculate the fitness of
the potential particles, and add the potential parti-
cles and their fitness into the sample database

(9) Update the global best and the historical best posi-
tion of each particle

(10) Judge whether the convergence condition is met. If
not, return to step 3

It can be seen from the above steps that Yu’s method
greatly reduces the evaluation times of fitness by using sur-
rogate model. However, the significant reduction of the eval-
uation times of fitness results in the slow growth of the
sample number in the database. Therefore, the difference
between the surrogate models trained in step 3 and step 5
may be small, and thus, the optimization convergence speed
is slow at the late stage of optimization. In addition, Yu’s
method works well for parallel simulators with high speedup
ratios, but it is prone to idle computing resources for serial
or low speedup ratio simulators. For example, the number
of potential particles screened in step 7 is far less than the
total number of particles. Therefore, the number of cores
called in the fitness calculation in step 8 is usually far less
than the total number of cores of the computer.

Considering the good parallel characteristics of PSO algo-
rithm, an improved surrogate-assisted particle swarm optimi-
zation (i-SAPSO) method which is based on Yu’s method was
proposed to make full use of computing resources and reduce
the total number of iterations. The steps are as follows:

(1) Latin hypercube sampling is used to obtain the initial
samples in the search space, and the fitness of each
sample is calculated according to the objection func-
tion. Due to the independence between samples, par-
allel computing (MPI, CUDA, etc.) can achieve to
make full use of computing resources. Considering
that the number of samples to be calculated in the
subsequent iteration process of i-SAPSO is much
higher than that of Yu’s method, the initial number
of samples in i-SAPSO algorithm can be much less
than that of Yu’s method. The samples and their fit-
ness form the initial sample database

(2) The fitness of the samples is arranged in ascending
order, and the first N samples are selected to form
the initial particle swarm

(3) Update the global best and the historical best of each
particle according to the principle of PSO algorithm.
Generate the new particle swarm according to Equa-
tion (1), and then obtain the fitness of each particle
according to the objective function. Similarly, due
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to the independence between particles, the fitness of
each particle can be calculated in parallel. The new
particle swarm and fitness are added to the database

(4) While performing step 3, appropriate computing
resources are allocated to train the database to obtain
the surrogate model. Then, the optimal value and
location of the surrogate model are obtained by
PSO algorithm

(5) Monitor the consumed time of step 4. In the early
stage of optimization, the number of samples in the
database is small, and the step 4 only takes a short
time. Therefore, after step 4 is completed, use the
computing resources occupied in step 4 to call the
objective function to calculate the fitness of the opti-
mal location screened by the surrogate model, and
put the optimal location and its fitness into the sam-
ple database. However, when the number of samples
is large in the late stage of optimization, the time
spent in step 4 may be close to that of step 3. At this
time, the fitness calculation of the optimal position
of the surrogate model can be postponed to the next
iteration; that is, the surrogate model is trained and
optimized in the current iteration, and the fitness
of potential particles is calculated in the next itera-
tion. Moreover, when the number of samples is too
large, the time spent in step 4 may exceed that of step
3. Then, the computing resources occupied by step 3
may be idle after the calculation is completed. At this
time, the particles in the database shall be sorted, and
the τ particles with the highest fitness are selected. At
the same time, the optimization range is determined
according to the following equation:

lbi =min xi1, xi2 ⋯ , xiτ
� �

,

ubi =max xi1, xi2 ⋯ , xiτ
� �

:

(
ð6Þ

(6) Judge whether the convergence condition is met. If
not, return to step 3

It can be seen from the above steps that the main differ-
ence between the i-SAPSO method and Yu’s method is that
the surrogate model is no longer used to screen the potential
historical optimal position. The good parallel feature of
particle fitness calculation is used to quickly supplement
the sample database, so as to realize the rapid accuracy
improvement of the global surrogate model and accelera-
tion of convergence. In addition, when the number of cal-
culated particles is too large, the particles with high fitness
are selected, and the local surrogate model is constructed.
Due to the consideration of the invocation of computing
resources in each step, the improved algorithm can almost
achieve high availability of computing resources in the
entire optimization process.

3. Performance Analysis and Comparison

Rastrigin function is a widely used function for testing opti-
mization algorithms, and its expression is

f xð Þ = 10n + 〠
n

i=1
x2i − 10 cos 2πxið Þ� �

: ð7Þ

The model is a nonconvex function, and the global mini-
mum value 0 is obtained when xi are all 0. It can be seen from
Equation (7) that changing the n value can construct a Rastri-
gin function of any dimension. In order to more intuitively
compare the differences between the Yu’s method and i-
SAPSO method in terms of surrogate model training, a 2-
dimensional Rastrigin function was first used for testing and
analysis. Figure 1 shows the values of the 2-dimensional
Rastrigin function on the interval [-5 5], from which it can
be seen that the function has a multipeaked distribution, and
there are many extreme value points, which can effectively test
the optimum-seeking ability of global optimization algo-
rithms. The optimization processes of the PSO algorithm,
Yu’s method, and i-SAPSO method are compared, and the
initial Latin hypercube sampling points of the three methods
are the same, and the number is 100. The maximum number
of iteration is 300, and the iteration is stopped when the objec-
tive function value is lower than 1 × 10−10. Figure 2 shows the
comparison of the surrogate model evolution during the iter-
ations of the Yu’s method and i-SAPSOmethod. It can be seen
from the figure that the Yu’s method greatly reduces the calls
of the objective function, and thus, its surrogate model is
updated slowly. The surrogate model of Yu’s method greatly
differs from the Rastrigin function at the 10th iteration, and
only after 40 iterations does the surrogate model show more
local features of the Rastrigin function. Meanwhile, the surro-
gate model updates slowly in the subsequent iterations. The
surrogate model in the i-SAPSO method can already charac-
terize the local features of the Rastrigin function well after 10
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Figure 1: 2D Rastrigin function.
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iterations, and the local features of the function are more accu-
rately characterized by the surrogate model after 40 iterations.

Figure 3(a) shows the comparison of the change of the
objective function value with the number of iterations. From
the results, it can be seen that since both the Yu’s method
and i-SAPSO method use the surrogate model to predict
the potential particle positions; the decrease of the objective
function is obviously faster than that of PSO at the early
stage of optimization. Meanwhile, because the number of
particles in the sample database of the i-SAPSO increases
rapidly and the surrogate model evolution quickly in the
early stage, the probability of obtaining potential particles
is much greater than that of Yu’s method. Correspondingly,
the objective function of i-SAPSO method decreases more
rapidly than that of Yu’s method. The PSO and i-SAPSO
methods reach the preset accuracy after 253 and 109 itera-
tions, respectively, but the Yu’s method cannot further reduce
the objective function value after 131 iterations. Finally, Yu’s
method exits the calculation when it reaches the maximum
number of iterations of 300. From Figure 3(b), it can be seen

that the PSO algorithm has the highest number of objective
function calls, while the Yu’s model has the lowest number
of calls, and the i-SAPSO is in between. From the comparison
results, it can be seen that the Yu’s method is more suitable for
cases where the requirements for optimization results are not
critical and the computational process of the objective func-
tion is highly parallel. On the contrary, if a higher fitness is
expected and the computational process of the objective func-
tion is not parallel, i-SAPSO can reasonably organize the com-
putation steps to achieve fast parallel computation.

The number of unknowns can often reach tens or more
when optimizing actual oil and gas field development
parameters. For this reason, the dimension of the Rastrigin
model is changed, and the comparison of the algorithms is
carried out. The number of iterations is set to 300, and
Table 1 shows the optimized objective function values for
the three algorithms. It can be seen from the table that the
performance of each algorithm in multidimensional case is
basically the same as that in two-dimensional case. That is,
under the same number of iterations, the performance of i-
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Figure 2: Evolution of surrogate model.
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SAPSO is the best, followed by the PSO algorithm, and the
call times of the objective function of Yu’s method is the
least, so the fitness is the worst under the same number of
iterations. In addition, the nonlinearity of the objective func-
tion increases with the increase of dimension, and therefore,
the probability of falling into the local optimum increases for
all three algorithms as the number of dimensions increases.

4. Model Application

China has implemented two trial production tests of hydrate
bearing layers in the Shenhu area, and the average daily gas pro-
duction rate of the second trial production test is 2:87 × 104m3,
which is quite lower than the minimum gas production rate
required for commercial development [27–29]. Moridis et al.
investigated the depressurization performance of the hydrate
bearing layers in Mallik area and Alaska North Slope. The
results show that the dissociation area is mainly located around
the well, and the gas production is low only through depressur-
ization method [29, 30]. Zhang et al. investigated the decompo-
sition conditions of methane hydrate and the effect of hydrate
saturation on the methane hydrate dissociation, and the results
are similar to those of Moridis [32–34]. In order to enhance gas
production, more and more attention has been paid to the
combined method of depressurization and thermal stimulation

[35, 36]. In this paper, the Tough+Hydrate software was used to
establish a numerical simulation model for a Class III hydrate
reservoir at station SH7 in the Shenhu area of the South China
Sea, and the basic geological parameters of themodel are shown
in Table 2 [37].

The model is a five-point well pattern composed of four
vertical wells and one horizontal well (Figure 4(a)). The grid
system is 30 × 21 × 11, and the grid size is 15m × 10m × 2m
. The length of the horizontal well in the center is 300m, and
the distance between the vertical well and the nearest perfora-
tion of the horizontal well is 75m. In order to represent the
heterogeneity of the hydrate reservoir, a nonuniform perme-
ability distribution is generated by sequential Gaussian simu-
lation method which is a widely used in geostatistics, as
shown in Figure 4(b) [38]. The average permeability is
75md, and the coefficient of variation is 0.4 [39]. Neumann
boundary condition is used, and in order to avoid the usage
of well fraction, each vertical well has a distance from the
boundary. Four vertical wells and one horizontal well first pro-
duce at a constant pressure of 4MPa. The gas production rate
continually decreases due to the pressure drawdown and tem-
perature decline. When the gas production rate reaches a crit-
ical value (critical gas production rate), the four vertical wells
are converted to hot water injection well to enhance gas pro-
duction. In order to get a better performance, the injection rate
of each well is adjusted once during the heat injection process,
and thus, the total number of optimized parameters is 11. The
range for each parameter is shown in Table 3, where the sum
of the injection rates of the four injection wells was always
maintained at 300m3/d.

The development of gas hydrate reservoirs needs to con-
sider both productivity and economy. Therefore, the evalua-
tion index is divided into production index and economic
index. The production index is mainly the methane recovery,
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Figure 3: Performance comparison of different methods.

Table 1: Optimized objective function values of different methods.

PSO Yu’s method i-SAPSO

10-dimension 1.98 2.83 0.21

20-dimension 19.84 12.65 1.78

30-dimension 78.63 110.90 4.73
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Table 2: Basic parameters of the hydrate reservoir model.

Parameter Value Parameter Value

Seabed depth 1108m Reservoir thickness 22m

Initial hydrate saturation 0.44 Initial water saturation 0.56

Average permeability 75mD Porosity 0.41

Initial pressure 13.83MPa Initial temperature 11.7°C

(a) Well layout

Horizontal well

Well 1

Well 2 Well 3

Well 4

200

150

100

50

0
Unit: mD

(b) Permeability distribution

Figure 4: Physical model of numerical simulation and permeability distribution.

Table 3: Ranges of optimized parameters.

Parameter Value Parameter Value

Critical gas production rate 4000~20000m3/d Temperature of injected water 20~90°C

Water injection rate of each well 0~ 200m3/d
Gas production rate when water injection

rates are adjusted
4000~20000m3/d

Water injection rate of each well after adjustment 0~ 200m3/d — —
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and the economic index is mainly the ratio of produced energy
to injected energy, that is, energy efficiency ratio. Thus, the
objective function of this paper is

Q = ER + αη,

ER =
ND

NT
,

η = Eout
Ein

,

8>>>>><
>>>>>:

ð8Þ

where Q is the objective function; ER is the methane recovery;
η is energy efficiency ratio; ND is the cumulative volume of
methane produced, m3;NT is the total volume ofmethane that
can be generated from hydrate dissociation, m3; Eout is the
total heat of produced methane, J; Ein is the total heat of
injected hot water, J; and α is the weight coefficient of ER
and η. According to the research results of Liu et al., the value
α of is 0.025 [40].

Three algorithms are compared to optimize the key
parameters. The simulated time of depressurization stage is
800 days, and the maximum number of iterations is 150.
The test platform is XeonSP, which contains a 40-core pro-
cessor, and the memory is 64G. From the perspective of
making full use of computing resources, the number of par-
ticles is set to 35. In parallel computing of i-SAPSO method,
each particle occupies one CPU core based on MPI, and
thus, 35 cores are occupied by the particles. Three CPU cores
are used for surrogate model training, and the remaining
two CPU cores are used to process system applications.
Figure 5 shows the performance comparison of the three
algorithms. It can be seen from the figure that the change
law of the objective function is consistent with that when
Rastrigin function is used as the objective function. The
Yu’s method and i-SAPSO method can quickly find the
potential position through the surrogate model. Therefore,
the fitness quickly increases in the early stage of iteration,
but the fitness increase of Yu’s method becomes slower in
the later stage which means that Yu’s method falls into local
optimum. Comparing the fitness at the end of the iteration,
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Figure 5: Performance comparison of different methods.

Table 4: Optimal parameter values of i-SAPSO method.

Parameter Value Parameter Value

Critical gas production rate 4254m3/d Temperature of injected water 33°C

Water injection rate of well 1 58m3/d Water injection rate of well 2 51m3/d

Water injection rate of well 3 104m3/d Water injection rate of well 4 87m3/d

Gas production rate when water injection rates are adjusted 22518m3/d Water injection rate of well 1 after adjustment 73m3/d

Water injection rate of well 2 after adjustment 64m3/d Water injection rate of well 3 after adjustment 89m3/d

Water injection rate of well 4 after adjustment 74m3/d — —
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Figure 6: Gas and water production of the optimal case.
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Figure 7: Hydrate saturation distribution.
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it can be concluded that although it is difficult to prove that the
optimization result of i-SAPSOmethod is globally optimal, the
performance of i-SAPSO method is better than that of the
PSOmethod and Yu’s method under the same number of iter-
ations. Figure 5(b) shows the comparison of simulation time,
which indicates that the elapsed time of the PSO method is
close to that of i-SAPSO method, while that of Yu’s method
is the longest. This is mainly due to the good independence
between particles of PSO algorithm, which can easily realize
parallel computing. Therefore, the elapsed time for 100 itera-
tions is theoretically close to the time required to run the sim-
ulator 100 times continuously. Although the surrogate model
training is added to the i-SAPSO method, additional comput-
ing resources are allocated. At the same time, the parallel com-
puting framework between surrogate model training and
particle fitness calculation is considered in the workflow, so
the computing time is close to that of PSO method. Although
Yu’s method greatly reduces the total number of calls to the
simulator, the computation process includes one simulator
call in both step 4 and step 8, and the two calls cannot be com-
puted parallelly. Therefore, the total calculation time is much
higher than the other two algorithms.

Table 4 shows the values of the parameters obtained after
the optimization of the i-SAPSO method. Combined with
Table 3, it can be seen that the critical gas production rate is
4254m3/d, which is only slightly higher than the lower limit
of the allowable range (4000~20000m3/d) which indicates
that the time of depressurization should be long enough. This
is because on one hand, the heat contained in rock and fluid
can be fully used to promote the dissociation of hydrate if
the depressurization period is long, and on the other hand, if
hot water is injected too early, the hot water injected is easy
to enter the production well directly along the dissociation
area, which will lead to a waste of heat energy and reduction
of energy efficiency. The optimized injected water temperature
is 33°C, which is a relatively low injection temperature. Con-
sistent with the conclusions of other researchers, a relatively
low temperature of injected water is conducive to improve
energy efficiency. The water injection rates of wells 1 and 2
located in the low permeability area is significantly lower than
those of wells 3 and 4 located in the high permeability area,
which helps to prevent the excessive pressure rise near the
wellbore and the secondary formation of hydrate.Water injec-
tion rates of wells 3 and 4 after adjustment are lower than
those before the adjustment, which can effectively avoid the
rapid flow of injected hot water from the high permeability
area to the bottom of the production well. Thus, the energy
efficiency ratio can be enhanced.

Figures 6 and 7 show the gas and water production curves
and hydrate saturation distributions of the optimal case,
respectively. It can be seen that the gas production rate
increases significantly after hot water injection. During depres-
surization development stage, the hydrate dissociation areas
around wells 3 and 4 which are located in the high permeability
area are significantly larger than those of wells 1 and 2, which
indicates that higher permeability can achieve faster reservoir
depressurization and hydrate dissociation. There is little differ-
ence in the shapes of the dissociation areas formed by the four
wells after hot water injection, which means that balanced

exploitation of hydrate reservoir can be realized through injec-
tion rate adjustment.

In conclusion, i-SAPSO method can effectively accelerate
the optimization process, and the optimization results are
satisfactory. Therefore, it can be used for parameter optimi-
zation of oil and gas reservoir development.

5. Conclusions

Based on the parallel computing framework, this paper pro-
posed an improved surrogate model assisted particle swarm
optimization method. Then, the effectiveness of the method
was verified by Rastrigin function. Finally, the key parame-
ters of depressurization−to−hot−water−flooding develop-
ment of natural gas hydrate reservoir are optimized. The
main conclusions are as follows:

(1) In a single iteration, the fitness calculation of each
particle of PSO algorithm is independent. Therefore,
parallel computing can be used to realize the rapid
improvement of accuracy of global surrogate model.
When the particle and fitness database is large, local
surrogate model helps to achieve a quick conver-
gence. The new method fully considers the parallel
features of the calculation process and thus can get
a better performance

(2) Yu’s method greatly reduces the number of calls to
the objective function. However, the accuracy of
the surrogate model increases slowly with the itera-
tion. Due to the independence of particles in an iter-
ation, the purpose of the new model is to reduce the
number of iterations rather than the number of calls
to the objective function. The accuracy of the surro-
gate model increases significantly with the increase
of iterations, and therefore, the iteration is expected
to quickly converge for the new method

(3) The key parameters of a gas hydrate reservoir by
depressurization−to−hot−water−flooding method
are optimized. The results show that the fitness of
the optimal case of the new method is significantly
higher than those of Yu’s method and PSO method
under the same number of iterations. Meanwhile,
the optimization results are satisfactory and consis-
tent with the conclusions of other researchers.
Therefore, the effectiveness of the new method is
verified
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Commercial production from hydrocarbon-bearing reservoirs with low permeability usually requires the use of horizontal well
and hydraulic fracturing for the improvement of the fluid diffusivity in the matrix. The hydraulic fracturing process involves
the injection of viscous fluid for fracture initiation and propagation, which alters the poroelastic behaviors in the formation
and causes fracturing interference. Previous modeling studies usually focused on the effect of fracturing interference on the
multicluster fracture geometry, while the related productivity of horizontal wells is not well studied. This study presents a
modeling workflow that utilizes abundant field data including petrophysical, geomechanical, and hydraulic fracturing data. It is
used for the quantification of fracturing interference and its correlation with horizontal well productivity. It involves finite
element and finite difference methods in the numeralization of the fracture propagation mechanism and porous media flow
problems. Planar multistage fractures and their resultant horizontal productivity are quantified through the modeling
workflow. Results show that the smaller numbers of clusters per stage, closer stage spacings, and lower fracturing fluid
injection rates facilitate even growth of fractures in clusters and stages and reduce fracturing interference. Fracturing modeling
results are generally correlated with productivity modeling results, while scenarios with stronger fracturing interference and
greater stimulation volume/area can still yield better productivity. This study establishes the quantitative correlation between
fracturing interference and horizontal well productivity. It provides insights into the prediction of horizontal well productivity
based on fracturing design parameters.

1. Introduction

Wells in low permeability reservoirs bearing hydrocarbons
typically have low productivity as it is hard for hydrocarbons
to efficiently flow. Therefore, horizontal wells and hydraulic
fractures are often used to enhance the contact between the
wellbore and the matrix [1–6]. Since multistage and multi-
cluster hydraulic fracturing facilitates the establishment of
complex fracture networks, this type of fracturing technique
is widely used in the development of unconventional reser-
voirs such as shale oil reservoirs [7–9]. However, due to

the stress changes induced by hydraulic fracture initiation
and propagation, multistage and multicluster hydraulic frac-
turing is affected by stress interference, and the geometry of
the fracture network can be negatively impacted. It can lead
to nonuniform hydraulic fracture growth and unevenly dis-
tributed fracture networks [9]. As fracture quality is directly
related to horizontal well productivity, it is meaningful to
quantitatively understand the relationship between hydrau-
lic fracturing stress interference and horizontal well produc-
tivity. In order to quantify the relationship between stress
interference in hydraulic fracturing and the production
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performance of the fractured horizontal well, it is important
to describe the fracture mechanics during hydraulic fractur-
ing and the fluid flow in porous media during horizontal
well depletion.

To build an efficient and reliable modeling method for
the temporal and spatial evolution of stress, hydraulic frac-
ture width and path, pressure, and hydrocarbon production,
adequate modeling techniques should be employed. In geo-
logic media, multiphase fluids flow in the porous media.
Hydrocarbon-bearing reservoirs are usually characterized
by rock heterogeneity, where fractured and unfractured
media play an important role in the evaluation of pressure
and stress evolutions [10, 11]. In such problems, the coeffi-
cient matrices in multiple time steps in the numerical system
are usually huge, and the use of compositional and multi-
phase flow models and multiporosity assumptions further
increases the complexity and leads to higher computational
costs [12–14]. Therefore, the accurate modeling of the stress
interference and the multistage fractured horizontal well
productivity should be specifically investigated.

Hydraulic fracturing involves the use of high-pressure
fluid injection into the reservoir to break the rock, forming
fractures with high conductivities. This makes it easier for
reservoir fluids to flow into the wellbore, thereby increasing
oil and gas production. This process can activate natural
fractures and increase the complexity of fracture networks.
To understand and optimize hydraulic fracturing parame-
ters, researchers have proposed many mathematical models
for the simulation of hydraulic fractures. The early
researches generally assumed simplified fracture geometries
using the 2D plane strain assumption. The widely used
Khristinaovic–Geertsma–de Klerk (KGD) model and
Perkins–Kern–Nordgren (PKN) model calculate fracture
geometries in two-dimensional planes, and fracture width
distributions are calculated as a ratio of length to height
[15–18]. 2D and 3D models were then derived, and the effect
of in-situ stress and fluid flow was incorporated [19–21].

Industrialized exploitation of shale gas and shale oil res-
ervoirs requires more sophisticated models describing the
process of multistage and multicluster hydraulic fracturing.
In this process, it is necessary to take into account the effect
of the evolution of stress fields as there are interstage and
intercluster interferences. As a result, hydraulic fractures
with nonuniform half-lengths can be generated. Nonplanar
and asymmetric fracture geometries can be generated under
the influence of stress interference as well [22, 23]. The inter-
ference between simultaneously growing fractures can be
intensified by decrease fracture spacing, and a minimum
spacing should be determined for good fracturing quality
[24]. Optimized hydraulic fracture-related parameters
including fracturing timing and cluster location were deter-
mined in a reservoir-geomechanics-fracturing workflow
where the effect of production-induced stress state changes
is also considered [25, 26]. In addition to numerical model-
ing, triaxial tests are usually used in the lab to physically
understand the fracturing initiation and propagation process
[27, 28]. Monitoring techniques are also developed to better
understand the shape and geometry of fractures in shale res-
ervoirs [29, 30].

After the establishment of hydraulic fractures in the hor-
izontal well, numerical simulation techniques are used to
compute the fluid flow from the low permeability reservoir
to the wellbore [31]. Stress sensitivity was sometimes
incorporated in reservoir simulators, and the production
prediction was affected by poroelasticity. Typically, the con-
sideration of geomechanical effects tends to decrease the
predicted production [32, 33]. In another reservoir simula-
tion model, Moradi et al. [34] pointed out that changes in
fracture aperture significantly alter the simulated production
rates.

Previous studies usually focused on the stress interfer-
ence phenomenon during the propagation of multiple
hydraulic fractures, and the quantitative impact of this phe-
nomenon on the horizontal well productivity has not been
thoroughly investigated. This study employs hydraulic frac-
turing modeling and reservoir simulation techniques and
proposes a modeling workflow quantifying the relationship
between stress interference and horizontal well productivity.
Parametric studies are also conducted to investigate the stage
and cluster parameters on horizontal well productivity. This
workflow provides a reference for the optimization of
hydraulic fracturing parameters based on fracturing quality
and horizontal well productivity modeling.

2. Methodology

In the methodology, a combined modeling workflow con-
sisting of hydraulic fracturing modeling and porous media
flow is presented. Finite element methods are used to
establish the numerical models. Fracture propagation, geo-
mechanical response, and fluid flows are all considered.

The momentum balance in the stress tensor is used to
describe the rock deformation.

∇ ⋅ σ = 0: ð1Þ

The boundary condition for the rock deformation prob-
lem has three types. They are the stress boundary, the pres-
sure boundary, and the displacement boundary:

σ ⋅ n =�t forΓt , ð2Þ

σ ⋅ n = −pn forΓ+
p ∩ Γ−

p , ð3Þ

u = �u for Γu , ð4Þ
where n represents the unit normal vector, Γt represents the
traction boundary, Γ+

p ∩ Γ−
p denotes the pressure boundary,

and Γu represents the displacement boundary.
The Poiseuille’s law is employed to compute the incom-

pressible fracturing fluid flow in fractures as follows:

qt = −
w3

12μ
∂p
∂l

: ð5Þ

In Equation (5), w is the width of fracture at location l; p
is the pressure; μ is the viscosity; qt is the flow rate [35].
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Then, a lubrication equation can be used to characterize the
mass balance in the fracture flow as follows:

∂w
∂t

+
∂qf i
∂s

+ qts = 0, ð6Þ

where w is the fracture width, qf i is the flow rate, and qts is
the fluid loss in the fracture flow.

The fluid leak-off into the host rock can be calculated by
the following:

qts = c pi − ptð Þ, ð7Þ

where c is the leak-off coefficient, pi is the pressure in the
fracture, and pt is the pressure in the formation.

In the fracture mechanism, the normal and shear stresses
are depicted by the traction-separation method as follows:

tn =
1 −Dð ÞTn, Tn ≥ 0,
Tn, Tn < 0,

(

ts = 1 −Dð ÞTs,
tt = 1 −Dð ÞTt ,

ð8Þ

where tn, ts, and Tt represent the normal and shear compo-
nents for stresses; D represents the damage. Once the frac-
ture is initiated, the damage factor gradually increases and
the fracture propagation can be described [36].

A two-phase black oil model is used to calculate the pro-
duction in the hydraulically fractured horizontal well. The
mass balance equations are as follows:

∂ ρoϕsoð Þ
∂t

+∇ ⋅ ρovoð Þ = ρoqo, ð9Þ

∂ ρwϕswð Þ
∂t

+∇ ⋅ ρwvwð Þ = ρwqw, ð10Þ

where so and sw are saturation values for oil and water, ρo
and ρw are densities for oil and water, ϕ is porosity, q is
the sink/source term, and t is time. The terms of ∂ðρoϕsoÞ/
∂t and ∂ðρwϕswÞ/∂t describe the accumulation of oil and
water flows in porous media. ∇⋅ ðρovoÞ and ∇⋅ ðρwvwÞ terms
represent the fluxes.

Darcy’s law is widely used for fluid flows in porous
media with low flow rates. It is used in this model as
follows:

vo = −
kkro
μo

∇po − ρog∇Hð Þ, ð11Þ

vw = −
kkrw
μw

∇pw − ρwg∇Hð Þ, ð12Þ

where kr is the relative permeability, μ is the viscosity, v is
the velocity, k is the permeability, g is the gravitational
acceleration, and H is the depth. In this model, it is assumed
that the hydraulic fracture network is fully propped and a
fracture permeability is prescribed to denote the fracture
conductivity.

Putting Darcy’s law and the mass balance together,

∂ ρoϕsoð Þ
∂t

+∇ ⋅ −ρo
kkro
μo

∇po − ρog∇Hð Þ
� �

= ρoqo, ð13Þ

∂ ρwϕswð Þ
∂t

+∇ ⋅ −ρw
kkrw
μw

∇pw − ρwg∇Hð Þ
� �

= ρwqw,

ð14Þ

where more detailed forms of fluid flow diffusivity are
obtained.

In the two-phase black oil model, the relationship
between water and oil saturations and the initial sink/source
rates can be written as follows:

so + sw = 1,

qo t = 0ð Þ = qw t = 0ð Þ = 0:

8>><
>>: ð15Þ

Based on the assumption of slightly compressible fluids
in the reservoir, the compressibility water and oil can be
defined as Cw = 1/ρw∂ρw/∂pw and Co = 1/ρo∂ρo/∂po.

As a result, the flow diffusivities in Equations (12) and
(13) can be extended as follows:

soϕco
∂po
∂t

+ ρoϕ
∂ 1 − swð Þ

∂t
− ρo∇ ⋅

kkro
μo

∇po − ρogð Þ
� �

= 0,

ð16Þ

swϕcw
∂po
∂t

+ ρwϕ
∂sw
∂t

− ρw∇ ⋅
kkrw
μw

∇po − ρwgð Þ
� �

= 0:

ð17Þ

Neglecting capillary pressure terms, Equations (16) and
(17) become the following:

swϕCw + 1 − swð ÞϕCo½ � ∂po∂t
+∇

⋅ −
kkrw
μw

∇po −
kkrw
μw

∂pc
∂sw

+ kkro
μo

∇po −
kkro
μo

ρog −
kkrw
μw

ρwg
� �� �

= 0,

ð18Þ
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For numerical treatment, a matrix form can be obtained
as follows:

ϕswcw + ϕ 1 − swð Þcw 0

ϕswcw ϕ

" # ∂po
∂t

∂sw
∂t

2
6664

3
7775+∇ ⋅ −1ð Þ

�

kkro
μo

+ kkrw
μw

0

kkrw
μw

0

2
66664

3
77775

∇po
∇sw

� �
+∇ ⋅

−
kkro
μo

ρog −
kkrw
μw

ρwg

−
kkrw
μw

ρwg

2
66664

3
77775 = 0:

ð19Þ

Initial conditions and boundary conditions are needed to
solve the porous media flow problem.

An initial condition is as follows:

po t = 0ð Þ = pini: ð20Þ

The boundary condition is as follows:

v ⋅ n = 0 on ∂Ω , ð21Þ

where v is a velocity tensor. Equation (21) represents a no-
flow boundary condition for the flow problem.

3. Modeling Study

A synthetic scenario in the development of a shale oil reser-
voir is established for the numerical study. Modeling param-
eters in the synthetic case are based on a realistic field in
Junggar Basin, northwestern China [37]. Table 1 records
the modeling parameters related to hydraulic fracturing

while Table 2 shows the parameters for the modeling of frac-
tured horizontal well production in reservoir simulation.

In the modeling workflow, the fracturing and production
from a segment in the horizontal wellbore are considered. In
the base case, totally four stages are hydraulically fractured
in the horizontal wellbore. In each stage, there are three frac-
ture clusters. A fracturing fluid injection rate of 12m3/min
per stage is used. The base case fracture stage spacing is
60m. In the parametric study for hydraulic fracturing, the
effects of stage number, cluster number, stage spacing, and
injection volume are quantified. Then, the horizontal well
production and pore pressure depletion in the reservoir cor-
responding to each hydraulic fracturing scenario are simu-
lated. Thus, the relationship between the stress interference
in hydraulic fracturing and the productivity can be quanti-
fied using this workflow.

In addition to the hydraulic fracturing modeling and
productivity modeling in the aforementioned base case, sev-
eral parametric studies are also carried out. In the paramet-
ric study for the effect of fracture stage and cluster, two
scenarios are considered. One scenario has two stages and
six clusters in each stage, and the other scenario has three
stages with four clusters in each stage. In the parametric
study for the effect of fracture stage spacing, another two
scenarios of 40m and 60m stage spacings are considered.
In the parametric study for the effect of fracturing fluid
injection rate per stage, two scenarios of 10m3/min and
14m3/min are modeled.

3.1. Hydraulic Fracturing Modeling. In this section, the
effects of fracture stage/cluster number, stage spacing, and
fracturing fluid injection rate on the propagation of the
hydraulic fracture networks are modeled. The resultant frac-
ture length, fracture width, fracture area, and fracture

Table 1: Parameters for the base case of hydraulic fracturing
modeling.

Parameter Value

Young’s modulus (GPa) 22.41

Poisson’s ratio 0.25

Overburden stress (MPa) 64

Initial maximum horizontal stress (MPa) 70

Initial minimum horizontal stress (MPa) 52

Differential stress (MPa) 18

Fracture number in one stage 3

Stage number in a horizontal well 4

Fracture spacing within one stage 15

Spacing between two stages (m) 60

Matrix permeability (m2) 1 × 10−16

Matrix porosity 0.1

Total injection rate (m3/min) 12

Fluid viscosity (mPa·s) 20

Leak-off coefficient (m/Pa·s) 1 × 10−13

Table 2: Parameters for the base case of reservoir simulation
modeling.

Parameter Value

Reservoir area (m2) 800000 (1000 × 800)
Pay zone depth (m) 100

Matrix permeability (m2) 1 × 10−16

Matrix porosity 0.15

Initial reservoir pressure (MPa) 22

Bottomhole pressure (MPa) 5

Water viscosity (mPa·s) 1

Oil viscosity (mPa·s) 25

Rock density (kg/m3) 2530

Oil density (kg/m3) 800

Water density (kg/m3) 1000

Constant oil compressibility (Pa-1) 1 × 10−8

Constant water compressibility (Pa-1) 1 × 10−8

Fracture permeability (m2) 1 × 10−14

Irreducible water saturation 0.1

Residual oil saturation 0.1
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volume are presented. The associated stress evolutions are
also discussed.

3.1.1. Fracture Stage and Cluster. Three scenarios of fracture
stage and cluster designs are modeled. Totally 12 clusters are
kept as a constant, while cluster numbers in each stage are 3,
4, and 6. Other fracturing parameters are kept the same.
Figure 1 shows the nonuniform hydraulic fractures in the
horizontal well with the three different stage and cluster
numbers. In general, the four-cluster design leads to the
most nonuniform hydraulic fracture growth in the wellbore,
with the two outer fracture clusters longer than the inner
fracture clusters. Note that the stage spacing is kept as
60m in all the scenarios. To better quantify the effect of
stage and cluster design on the nonuniform fracture lengths,
Figure 2 is plotted where the length of each individual frac-
ture cluster is presented as bars. In Figure 2, the labels A to D
represent the four fracture stages, and 1 to 3 represent the
clusters in a stage. Note that A represents the first fractured
stage while D is the last stage that is fractured in the multi-
stage fracturing job. Similarly, labels E to J represent the

six fracture stages in another design, where 1 to 2 are the
two clusters in each stage. K to M are the three stages in
the 4-cluster scenario. Based on the detailed fracture length
results, it is noted that when the cluster number exceeds
two in each stage, the inner fractures are always shorter than
the outer fractures. This indicates that the stress interference
in simultaneously growing clusters inhibits the growth of the
inner fractures and makes the outer fracture more competi-
tive in terms of fracture propagation [38]. The 2-cluster sce-
nario results in a more evenly distributed fracture length.
This indicates that reducing the clusters in each stage can
lower the stress interference effect on the heterogeneous
growth of fracture clusters. In this scenario, only two frac-
tures grow simultaneously each time. Therefore, the interfer-
ence between clusters is reduced, leading to a more uniform
growth of fractures. In the 4-cluster scenario, since four frac-
ture clusters are competing in the simultaneous growth, the
inhibition on the inner fractures becomes more noticeable.
Also, the average fracture lengths are the shortest in the 4-
cluster scenario.

Generally, the longest fracture length of an individual
fracture is obtained in the first stage in the 3-cluster scenario.
This indicates that the first stage is less affected by interstage
interference than the stages fractured later on. In addition, in
the 2-cluster, 3-cluster, and 4-cluster scenarios, it is noted
that the first stage has very symmetric fractures, indicating
that the interference does not take effect unless there are
sequentially fractured stages. The interstage stress interfer-
ence is the most significant in the 4-cluster scenario, as the
second and third stages have lower fracture lengths. These
results show that the interstage interference on hydraulic
fracturing interference increases with the cluster number in
each stage. However, it is noted that although reducing the
number of clusters in each stage helps to form uniform frac-
ture networks, it may increase the cost of the fracturing
operations and fracturing time.

Figure 3 presents the temporal evolution of fractured
volume and fracture area during the multistage fracturing
operation with different fracture stage and cluster designs.
This helps to improve the understanding of the correlation
between stage and cluster designs and fracture quality.
Step-by-step trends are obvious in these results, as stages
are sequentially fractured in the operation. The final frac-
tured volumes for the 3-cluster and 2-cluster scenarios are
very similar, while the selection of 4-cluster design leads to
the lowest fractured volume. This is direct evidence that
increased fracturing interference reduces the final fracture
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Figure 1: Fracture geometries of different stage and cluster numbers.
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Figure 2: Comparison of fracture length for scenarios with
different stage and cluster numbers.
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network quality. Based on the fractured area results, the 2-
cluster scenario has the best fracture quality and the 3-
cluster scenario has the intermediate quality. Again, the
4-cluster scenario leads to the lowest fracture quality. Note
that the change from 3-cluster to 2-cluster design increases
the contact area between fractures and the low permeabil-
ity matrix, implying an improved fracturing performance.

3.1.2. Fracture Stage Spacing. In this section, the effect of the
fracture stage on the hydraulic fracture quality is investi-
gated. Three stage spacings of 40m, 60m, and 80m are stud-
ied while other fracturing-related parameters are the same as
the base case as in Table 1.

Figure 4 describes the fracture geometries from three dif-
ferent stage spacings. Note that the cluster spacing within
each stage is kept the same during the parametric study. In
general, when the stage spacing is reduced to 40m, a more
nonuniform fracture length pattern is observed. In contrast,
when the stage spacing is increased to 80m, a rather uniform
distribution of fracture length is obtained. However, it is
noted that the inner fracture growth is always inhibited by
fracturing interference even when the spacing is large. It
means that the inhibition on the inner fracture is caused
by intercluster interference instead of interstage interference.

Figure 5 records the comparison of fracture length of
each cluster in scenarios with different stage spacings. Since
all three scenarios have the same stage number of four, labels
A to D are used to represent the four stages and each stage
has three clusters. Based on the fracture length results, the
effect of stage spacing is not quite monotonic. The correla-
tion between stage spacing and fracture cluster length is
not clear.

Figure 6 shows the temporal changes in the fractured
volume and the fractured area during the 4-stage fracturing.
The fracturing of each individual stage leads to a sharp
increase in the fractured volume and area. The fractured vol-
ume results indicate that the 80m spacing leads to the great-
est volume while the 60m spacing has the lowest fractured
volume. The fractured area results show that the 40m spac-
ing leads to the highest fractured area.

3.1.3. Fracturing Fluid Injection Rate. The fracturing fluid
injection rate is a key parameter in designing the hydraulic
fracturing operations. It directly governs the amount of fluid
injected into the fractures, which are used to establish the net
pressure for fracture propagation. In this study, three fluid
injection rates of 10m3/min, 12m3/min, and 14m3/min are
simulated. Other parameters are the same as the base case.
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The geometries are shown in Figure 7. Compared to the
fracturing fluid injection rates 10m3/min and 12m3/min,
the fracturing fluid injection rate of 14m3/min leads to
a more nonuniform fracture geometry, and the nonuni-
form lengths are more significant between the first and
the second stages. This shows that an increase in injec-
tion rate leads to a more unevenly distributed fracture
network, and an increased injection rate corresponds to

an elevated fracturing interference between hydraulic frac-
turing stages.

Figure 8 shows the cluster-by-cluster comparison of frac-
ture length with various fluid injection rates. The correlation
between injection rate and fracture length is well in the first
stage (stage A). In the first stage, the longest fracture lengths
are obtained when the injection rate is 14m3/min, and the
fracture lengths decrease with the decrease in injection rate.
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Figure 6: Evolutions of fractured volume and area for scenarios with different stage spacings.
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The general trend is the same for stages B to D, while oscil-
lations in fracture length are observed. This is caused by the
nonuniform results obtained in the simulation for the frac-
ture mechanism.

In Figure 9, the stepwise increases in the fractured vol-
ume and area are plotted against fracturing time. In these
results, the correlation between the injection rate and the
fractured volume/area is clear. With the increase in frac-
turing fluid injection, the step-by-step fractured volume
and area and the final fractured volume and area both
increase. Since the total injection time is constant, a higher
fracturing fluid injection rate corresponds to a greater vol-
ume of fluid injected into the fractures for fracture initia-
tion and propagation.

Based on these parametric studies for the effect of frac-
ture stage/cluster design, stage spacing, and fracturing fluid
injection rate, stage spacing is less influential than stage/clus-
ter design and injection rate. The reduction of cluster num-
ber per stage and the increase in stage spacing help to
establish more evenly propagated fractures. The increase in

injection rate can elevate the interstage fracturing interfer-
ence by making the fracture lengths more uneven, while a
greater injection rate improves the overall fractured volume
and area.

The study in this section quantifies the hydraulic fracture
geometries in the horizontal well, and the effect of fracturing
interference is investigated in terms of fracture geometry.
However, the investigation of horizontal well productivity
requires results more than fracture geometry, and the
productivity-related parameters such as pore pressure and
hydrocarbon production should be quantified.

3.2. Productivity Modeling. In the previous section, fracture
geometry, fractured volume and area, and fracture length
are used as the variates to denote the effect of fracturing
interference. To further investigate the horizontal well pro-
ductivity, reservoir simulation techniques are used to calcu-
late the production of the horizontal well with different
hydraulic fracture geometries obtained in the previous frac-
turing modeling. Thus, the relationship between fracturing
interference and horizontal well productivity can be estab-
lished. In the modeling process, the fracture conductivity is
assumed to be constant in each fracture and it does not
change with time. The fracture conductivity is calculated as
the product of the fracture width and a constant permeabil-
ity value for the fracture. Modeling parameters are shown in
Table 2. Productivity over 2 years of production is reported.
Figures 10 and 11 compare the cumulative production of oil
over 2 years from horizontal wells with three different clus-
ter and stage designs, stage spacings, and fluid injection
rates.

In Figure 10, the use of six stages with two clusters in
each stage leads to the highest cumulative production. This
is because this strategy has the lowest fracturing interference,
and it can lead to even depletion within the low permeability
reservoir. The use of four stages with three clusters in each
stage (the base case) leads to intermediate cumulative pro-
duction performance. In contrast, the use of four clusters
in each stage results in a much lower cumulative oil produc-
tion curve. Combined with results in Figures 1 and 2, it is
noted that the use of four clusters in a stage largely inhibits
the growth of fractures, especially for the two inner fractures
in each stage. In this scenario, the average fracture length is
the lowest, leading to lower production performance.

In Figure 12, how stage spacing affects cumulative pro-
duction from a horizontal well is presented. In general, the
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effect of stage spacing is not as great as stage and cluster
design, and the differences in cumulative production results
are smaller. The base case of a 60m spacing yields the high-
est cumulative production, while the stage spacing of 40m
has the lowest cumulative production. Based on the observa-
tions in Figures 4 and 5, reducing the stage spacing to 40m
strengthens the fracturing interference and leads to uneven
fracture lengths, where the inhibition on the growth of cer-
tain fractures is also increased.

Cumulative oil productions from horizontal wells with
three fracturing fluid injection rates during the hydraulic

fracturing process are compared in Figure 11. Intuitively,
the highest injection rate corresponds to the greatest cumu-
lative production, and the lowest injection rate leads to the
smallest cumulative production, which is also correlated
with the fracture geometries and lengths in Figures 7 and 8.

Based on productivity modeling, the fracture geometry
and the horizontal well productivity can be generally corre-
lated: horizontal wells with longer fracture lengths and
weaker fracturing interference usually yield higher cumula-
tive production. However, the differences in horizontal well
productivity from multiple hydraulic fracturing design
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Figure 12: Cumulative oil production from horizontal wells with different stage spacings.
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scenarios cannot be directly quantified by hydraulic fractur-
ing modeling, and reservoir simulation has to be used to
obtain the detailed differences in cumulative oil production.

4. Discussion

Note that in this modeling study, planar hydraulic fractures
are considered while it is also possible to have nonplanar
hydraulic fractures generated in multistage hydraulically
fractured horizontal wells. Nonplanar fracture modeling
can better quantify the effect of stress interference on resul-
tant hydraulic fracture geometries. For example, curved frac-
tures with uneven lengths can be obtained using this
modeling technique. However, the focus of this study is on
the correlation between stress interference and horizontal
well productivity. As shown in Figure 13, hydraulic fracture
geometries directly govern the drainage area. After three
months of depletion, the pressure drop fronts are around
10m away from the fractures, indicating that the hydrocar-
bons within this area are being produced. Therefore, the frac-
ture length and the drainage area jointly govern the resultant
horizontal well productivity. In this workflow, the effects of
curvatures of nonplanar hydraulic fractures on horizontal well
productivity are weakened. In consequence, although planar
fracture modeling used in this study cannot characterize how
fractures are curved by stress interference, the obtained frac-
tures are unevenly distributed and the effects on fracture
lengths and the resultant drainage area are still honored.

5. Conclusion

In this modeling study, based on a numerical modeling
workflow, the relationship between the fracturing interfer-
ence during multistage hydraulic fracturing and horizontal
well productivity is established, which is the primary contri-
bution in the study. Using hydraulic fracture geometries to
quantify the effect of fracturing interference on productivity
is not comprehensive. Based on the modeled fracture geom-
etries including fracture length, fractured volume, and frac-
tured area, an estimate can be obtained for productivity.
However, quantitative understanding should be obtained
using a more comprehensive workflow including fracturing
modeling and productivity modeling. In conclusion,

(1) Reducing the cluster number within a stage, increas-
ing the spacing between two stages, and reducing the
fracturing fluid injection rate help to decrease the
negative impact of fracturing interference on multi-
stage and multicluster fracturing

(2) Fractured volume and fractured area are parameters
indicating the magnitude of the stimulated reservoir
volume/area. They are generally correlated with frac-
ture lengths. The temporal evolution patterns of
fractured volume and area are highly stepwise, which
corresponds to the sequentially fractured stages in
the field operation

(3) Productivity modeling results are generally corre-
lated with fracturing modeling results. However,

productivity modeling is capable of providing the
quantitative differences in cumulative production,
which directly shows the effect of fracturing interfer-
ence on horizontal well production performance

Nomenclature

σ: Stress tensor
n: Unit normal vector
�t: Traction boundary
p: Pressure, Pa
u: Displacement vector
w: Fracture width, m
μ: Viscosity, cP
so: Oil saturation
sw: Water saturation
ρo: Oil density, kg/m3

ρw: Water density, kg/m3

ϕ: Porosity
t: Time, s
v: Velocity, m/s
k: Permeability, m2

g: Gravitational acceleration, m/s2

Cw: Water compressibility, 1/Pa
Co: Oil compressibility, 1/Pa.

Data Availability

The data are available by contacting the corresponding
author.

Conflicts of Interest

The authors declare that they have no conflicts of interest

Acknowledgments

The authors acknowledge the financial support from the
National Natural Science Foundation of China (No.
51904314, No. 51991362, and No. U19B6003-05), the
Fundamental Research Funds for the Central Universities
(No. 2462018YJRC031), and the Research Foundation of
China University of Petroleum-Beijing at Karamay (No.
XQZX20200009).

References

[1] J. Xie, J. Tang, R. Yong et al., “A 3-D hydraulic fracture prop-
agation model applied for shale gas reservoirs with multiple
bedding planes,” Engineering Fracture Mechanics, vol. 2020,
no. 228, article 106872, 2020.

[2] X. Zhao, L. Zhou, X. Pu et al., “Formation conditions and
enrichment model of retained petroleum in lacustrine shale:
a case study of the Paleogene in Huanghua depression, Bohai
Bay Basin, China,” Petroleum Exploration and Development,
vol. 47, no. 5, pp. 916–930, 2020.

[3] J. Tang, B. Fan, L. Xiao et al., “A new ensemble machine-
learning framework for searching sweet spots in shale reser-
voirs,” SPE Journal, vol. 26, no. 1, pp. 482–497, 2021.

11Geofluids



[4] S. Mao, Z. Zhang, T. Chun, and K. Wu, “Field-scale numerical
investigation of proppant transport among multicluster
hydraulic fractures,” SPE Journal, vol. 26, no. 1, pp. 307–323,
2021.

[5] W. Cheng, G. S. Jiang, J. Y. Xie, Z. J. Wei, Z. D. Zhou, and X. D.
Li, “A simulation study comparing the Texas two-step and the
multistage consecutive fracturing method,” Petroleum Science,
vol. 16, no. 5, pp. 1121–1133, 2019.

[6] B. Lin, H. Meng, J. Pan, and S. Chen, “Porothermoelastic
response of an oil sand formation subjected to injection and
micro-fracturing in horizontal wells,” Petroleum Science,
vol. 17, no. 3, pp. 687–700, 2020.

[7] R. Weijermars, N. Sorek, D. Sen, and W. B. Ayers, “Eagle Ford
Shale play economics: U.S. versus Mexico,” Journal of Natural
Gas Science and Engineering, vol. 38, pp. 345–372, 2017.

[8] G. Lindsay, G. Miller, T. Xu, D. Shan, and J. Baihly, “Produc-
tion performance of infill horizontal wells vs. preexisting wells
in the major US unconventional basins,” in SPE hydraulic frac-
turing technology conference and exhibition, the woodlands,
Texas, USA, 23–25 January, USA: Society of Petroleum Engi-
neers, 2018.

[9] S. Mao, P. Siddhamshetty, Z. Zhang et al., “Impact of proppant
pumping schedule on well production for slickwater fractur-
ing,” SPE Journal, vol. 26, no. 1, pp. 342–358, 2021.

[10] C. H. Yew and X.Weng,Mechanics of hydraulic fracturing, sec-
ond edition, Gulf Professional Publishing, 2014.

[11] B. Yan, L. Mi, Z. Chai, Y. Wang, and J. E. Killough, “An
enhanced discrete fracture network model for multiphase flow
in fractured reservoirs,” Journal of Petroleum Science and Engi-
neering, vol. 161, pp. 667–682, 2018.

[12] D. R. Harp, D. O’Malley, B. Yan, and R. Pawar, “On the feasi-
bility of using physics-informed machine learning for under-
ground reservoir pressure management,” Expert Systems with
Applications, vol. 178, article 115006, 2021.

[13] X. Guo, Y. Wang, and J. Killough, “The application of static
load balancers in parallel compositional reservoir simulation
on distributed memory system,” Journal of Natural Gas Sci-
ence and Engineering, vol. 28, pp. 447–460, 2016.

[14] B. Yan, L. Mi, Y. Wang, H. Tang, C. An, and J. E. Killough,
“Multi-porosity multi-physics compositional simulation for
gas storage and transport in highly heterogeneous shales,”
Journal of Petroleum Science and Engineering, vol. 160,
pp. 498–509, 2018.

[15] X. Guo, Y. Jin, J. Zi, and B. Lin, “Numerical investigation of the
gas production efficiency and induced geomechanical
responses in marine methane hydrate-bearing sediments
exploited by depressurization through hydraulic fractures,”
Energy & Fuels, vol. 35, no. 22, pp. 18441–18458, 2021.

[16] J. Geertsma and F. De Klerk, “A rapid method of predicting
width and extent of hydraulically induced fractures,” Jour-
nal of Petroleum Technology, vol. 21, no. 12, pp. 1571–
1581, 1969.

[17] S. A. Khristianovich and Y. P. Zheltov, “Formation of vertical
fractures by means of highly viscous liquid,” in 4th world
petroleum congress, Rome, Italy, 1955.

[18] R. P. Nordgren, “Propagation of a vertical hydraulic fracture,”
Society of Petroleum Engineers Journal, vol. 12, no. 4, pp. 306–
314, 1972.

[19] T. K. Perkins and L. R. Kern, “Widths of hydraulic fractures,”
Journal of Petroleum Technology, vol. 13, no. 9, pp. 937–949,
1961.

[20] R. L. Fung, S. Vilayakumar, and D. E. Cormack, “Calculation
of vertical fracture containment in layered formations,” SPE
Formation Evaluation, vol. 2, no. 4, pp. 518–522, 1987.

[21] J. Rungamornrat, M. F. Wheeler, andM. E. Mear, “Coupling of
fracture/non-newtonian flow for simulating nonplanar evolu-
tion of hydraulic fractures,” in SPE annual technical conference
and exhibition, Society of Petroleum Engineers, Dallas, Texas,
USA, 2005.

[22] A. Settari and M. P. Cleary, “Development and testing of a
pseudo-three-dimensional model of hydraulic fracture geome-
try,” SPE Production Engineering, vol. 1, no. 6, pp. 449–466,
1986.

[23] K. Wu and J. E. Olson, “Simultaneous multifracture treat-
ments: fully coupled fluid flow and fracture mechanics for hor-
izontal wells,” SPE Journal, vol. 20, no. 2, pp. 337–346, 2015.

[24] X. Guo, J. Ma, S. Wang, T. Zhu, and Y. Jin, “Modeling interwell
interference: a study of the effects of parent well depletion on
asymmetric fracture propagation in child wells,” in Paper pre-
sented at the SPE/IATMI Asia Pacific oil & gas Conference and
exhibition, Bali, Indonesia, 2019.

[25] N. Roussel and S. Mukul, “Strategies to minimize frac spacing
and stimulate natural fractures in horizontal completions,” in
SPE annual technical conference and exhibition, Denver, Colo-
rado, USA, 2011.

[26] X. Guo, W. Kan, and J. Killough, “Investigation of production-
induced stress changes for infill-well stimulation in Eagle Ford
Shale,” SPE Journal, vol. 23, no. 4, pp. 1372–1388, 2018.

[27] X. Guo, K. Wu, C. An, J. Tang, and J. Killough, “Numerical
investigation of effects of subsequent parent-well injection on
interwell fracturing interference using reservoir-geomechanics-
fracturing modeling,” SPE Journal, vol. 24, no. 4, pp. 1884–
1902, 2019.

[28] B. Hou, Z. Chang, W. Fu, Y. Muhadasi, and M. Chen,
“Fracture initiation and propagation in a deep shale gas
reservoir subject to an alternating-fluid-injection hydraulic-
fracturing treatment,” SPE Journal, vol. 24, no. 4, pp. 1839–
1855, 2019.

[29] G. Xie, L. Luo, X. Liu, L. Liang, W. Jiang, and J. Chang, “Pre-
dicting the shape of hydraulic fracture of shale gas horizontal
well in Sichuan with log data,” Well Logging Technology,
vol. 41, no. 5, pp. 590–595, 2017.

[30] R. Wen, X. Yang, D. Liu, X. Zheng, and Y. Xu, “Comprehen-
sive evaluation of fracture distribution by near-and far-well
logging and monitoring technology,”Well logging Technology,
vol. 43, no. 5, pp. 531–535, 2019.

[31] J. Zhang, H. Song, W. Zhu, and J. Wang, Liquid transport
through nanoscale porous media with strong wettability, Trans-
port in Porous Media, 2021.

[32] W. Yu and K. Sepehrnoori, “Simulation of gas desorption and
geomechanics effects for unconventional gas reservoirs,” Fuel,
vol. 116, pp. 455–464, 2014.

[33] X. Guo, H. Song, K. Wu, and J. Killough, “Pressure character-
istics and performance of multi-stage fractured horizontal well
in shale gas reservoirs with coupled flow and geomechanics,”
Journal of Petroleum Science and Engineering, vol. 163,
pp. 1–15, 2018.

[34] M. Moradi, A. Shamloo, and A. D. Dezfuli, “A sequential
implicit discrete fracture model for three-dimensional coupled
flow-geomechanics problems in naturally fractured porous
media,” Journal of Petroleum Science and Engineering,
vol. 150, pp. 312–322, 2017.

12 Geofluids



[35] R. Zimmerman and Bodvarsson, “Hydraulic conductivity of
rock fractures,” Transport in Porous Media, vol. 23, no. 1,
pp. 1–30, 1996.

[36] X. Shi, Y. Qin, H. Xu et al., “Numerical simulation of hydraulic
fracture propagation in conglomerate reservoirs,” Engineering
Fracture Mechanics, vol. 248, article 107738, 2021.

[37] D. Zhi, X. Guo, W. Wang et al., “Fracturing and production
analysis of the efficacy of hydraulic fracture stage reduction
in the improvement of cost-effectiveness in shale oil develop-
ment: a case study of Jimsar shale oil, China,” Energy Science
& Engineering, vol. 9, no. 9, pp. 1337–1348, 2021.

[38] A. Chen, X. Guo, H. Yu, L. Huang, S. Shi, and N. Cheng, “A
parametric study of hydraulic fracturing interference between
fracture clusters and stages based on numerical modeling,”
Energy Exploration & Exploitation, vol. 39, no. 1, pp. 65–85,
2021.

13Geofluids



Research Article
Intelligent Microfluidics Research on Relative Permeability
Measurement and Prediction of Two-Phase Flow in Micropores

Hongqing Song ,1,2 Changchun Liu,1 Junming Lao,1,2 Jiulong Wang,2,3 Shuyi Du,1,2

and Mingxu Yu4

1School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
2National and Local Joint Engineering Laboratory of Big Data Analysis and Computing Technology, Beijing 100190, China
3Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China
4Beilong Zeda (Beijing) Data Technology Co., Ltd., Beijing 100190, China

Correspondence should be addressed to Hongqing Song; songhongqing@ustb.edu.cn

Received 26 October 2021; Revised 18 November 2021; Accepted 22 November 2021; Published 11 December 2021

Academic Editor: Bicheng Yan

Copyright © 2021 Hongqing Song et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Relative permeability is a key index in resource exploitation, energy development, environmental monitoring, and other fields.
However, the current determination methods of relative permeability are inefficient and invisible without considering wetting
order and pore structure characteristics either. In this study, microfluidic experiments were designed for figuring out key
factors impacting on the two-phase relative permeability. The optimized intelligent image recognition was established for
saturation extraction. The deep learning was conducted for the prediction of two-phase permeability based on the inputs from
microfluidic experiments and image recognition and optimized. Results revealed that phase saturation, wetting order, and pore
topology were the key factors influencing the two-phase relative permeability, with the importance of 38.22%, 34.84%, and
26.94%, respectively. The deep learning-based relative permeability model performed well, with MSE < 0:05 and operational
efficiency of 3ms/epoch. Aiming at relative permeability model optimization, on the one hand, the dividing ratio of training
set and testing set for flooding phase relative permeability prediction achieved the highest prediction accuracy at 7 : 3, while
that for displaced phase was 6 : 4. On the other hand, tanh() activation function performed 40% more accurate than the
sigmoid() activation function.

1. Introduction

The relative permeability is a crucial parameter reflecting
reservoir rock allocation properties and an indispensable
index revealing the characteristics of fluid flow and distribu-
tion [1, 2]. Moreover, relative permeability is a key index in
resource exploitation, energy development, environmental
monitoring, and other fields [3, 4]. The greater the relative
permeability of certain fluid in a particular reservoir means
that the weaker the reservoir resistance to the fluid, the stron-
ger the mobility of fluid in pores and the more clear the
distribution in the reservoir. For instance, in groundwater
resource mining and storage, water relative permeability is
applied to guide the location of mining sites and to evaluate
the risk of groundwater leakage in the reservoir. In oil and

gas reservoir development, the relative permeability of crude
oil or natural gas is adopted to evaluate the significance and
benefits of the reservoir water injection development. In soil
environmental monitoring, relative permeability is a key
indicator to determine the characteristics of sewage diffusion
and transport. The construction of a relative permeability
model with high efficiency, high accuracy, high robustness,
and extensive applicable scenarios is of great significance to
effectively evaluate resource mining efficiency, improve
energy recovery, and optimize environmental monitoring
and testing [5–8].

The construction of relative permeability models is based
on data feedback from adequate relative permeability exper-
iments. However, the current relative permeability determi-
nation experiments are still based on the steady-state
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multiphase core displacement, which has some shortcom-
ings [9–11]. First, a single core cannot reflect the pore char-
acteristics of the entire reservoir, while equivalent
conditional experiments on multiple cores imply significant
consumption of time and cost. In addition, the experiments
will change the core wetting history or even destroy the
internal pore structure of the core, which is not beneficial
for improving the experimental accuracy by weakening the
stochastic error through multiple experiments. Finally, the
experiments require the experimenter to keep recording
the flow of each phase fluid and indirectly obtain the satura-
tion at each time, which limits the experimenter resulting in
low experimental efficiency [12–15].

Besides, extensive experiments have shown that relative
permeability is a function of saturation. Nevertheless, the
factors such as wetting order and pore structure characteris-
tics also have negligible effect on relative permeability. Most
of the relative permeability models proposed by academia
lack the consideration of wetting order and pore structure
characteristics. This is largely due to the invisibility of inter-
nal flow during conventional steady-state core displacement
experiments, leading to the wetting order and the pore struc-
ture features’ unattainability. In addition, the introduction of
wetting order and pore structure characteristics based on the
phase saturation will significantly increase the nonlinearity
and model complexity of the relative permeability model,
which increases the difficulty to build a reliable relative
permeability model [16–19].

The nonsteady two-phase microfluidic experiments are
characterized by whole-process visualization, automated
parameter recording, and the experimental setup closer to
the two-phase displacement flow in engineering practice. It
is a reliable substitution experiment to obtain the basic data
of constructing the relative permeability model. During the
microfluidic experiments, the electron ocular records the
saturation over time, producing a large number of image
data [20–23]. According to the microfluidic experiments,
general cognition of impacts from various parameters on
relative permeability could be obtained, while the quantita-
tive contribution of each parameter could be clarified basing
on the Sobol sensitivity analysis model. Furthermore, by
introducing the image recognition algorithm, the intelligent
identification, storage and analysis of saturation, wetting
order, and pore structure characteristics could be achieved
with less time cost comparing to conventional methods
[24–27]. Finally, based on the saturation, wetting order,
and pore structure data, relative permeability intelligent
models are constructed by adopting deep learning algorithm,
especially the deep neural network (DNN) [28, 29].

In this study, microfluidic experiments were designed for
figuring out key factors impacting on the two-phase relative
permeability. The optimized intelligent image recognition
was established for saturation extraction. The deep learning
was conducted for the prediction of two-phase permeability
based on the inputs from microfluidic experiments and
image recognition. The microfluidic experiments and deep
learning model introduced in this study are of great signifi-
cance for efficient and reliable research on resource exploita-
tion, energy development, and environmental monitoring.

2. Methodology

The research route for intelligent model-based image recog-
nition and permeability prediction of two-phase flow in
micropores is shown in Figure 1. First, experimental images
were obtained by the designed microfluidic two-phase flow
experiments. Subsequently, the image data was preprocessed
via applying the image enhancement algorithm specifically
the global equalization. Secondly, the preprocessed image
data was input into the convolution neural network
(CNN); then, the water and oil saturation in the images
was extracted and identified. Output from the CNN, the oil
and water saturation together with the wetting order and
pore diversity obtained from the microfluidic two-phase
flow experiments was input to the deep neural network
(DNN) model. Finally, the intelligent prediction model of
relative permeability based on the DNN was established
and optimized [30–34].

2.1. Physical Equations. In this study, the two-phase flow in
micropores specified as the process of oil flooding by water
was investigated. The flowing process could be described as
the Darcy porous flow [31, 35]. According to the Darcy law,
the relationship between the permeability and the pressure
and flow, as shown in the following equation [31, 36, 37]:

Q = KA
μ

∇P, ð1Þ

whereQ is flow rate, m3/s; K is the permeability of the porous
media, m2; A is the outlet area, m2; μ is the viscosity of liquid,
Pa·s; and ▽P is the pressure gradient, Pa/m.

Accordingly, the permeability is defined as the format as
shown in the following equation:

K = uμ
∇P

, ð2Þ

where u is the liquid velocity, m/s.
Furthermore, the relative permeability of a certain liquid

is defined as the format as shown in the following equation:

Kri =
uiμi
K∇Pi

, ð3Þ

where Kri is the relative permeability of liquid i, dimension-
less; ui is the velocity of liquid i during multiphase flow, m/s;
μi is the viscosity of liquid i, Pa·s; and ▽Pi is the pressure
gradient on liquid i, Pa/m.

The pressure gradient on liquid i is correlated to the
capillary force on which and the absolute driving pressure
gradient, as shown in the following equation:

∇Pi =
Pc,i + Pa

L
, ð4Þ

where Pc,i is the capillary force on liquid i, Pa; Pa is the
absolute driving pressure, Pa; and L is the length of the
porous media, m.
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2.2. Microfluidic Two-Phase Experiments. The microfluidic
two-phase experiments were conducted at a laboratory at
room temperature of 24.3°C with 70% relative humidity
and reaching stable thermal balance indoors. The atmo-
spheric pressure of the laboratory site was 99.2 kPa. Water
used in the experiments was mineral water. Oil used in the
experiments was light crude oil. Detailed properties of fluids
used in experiments are shown in Table 1. While studying
the impact of wetting order on two-phase relative permeabil-
ity, Light oil 2# was used as flooding phase to flood themineral
water since the microfluidic chips were hydrophobic. Mean-
while, the reason why Light oil 2# as flooding phase was
adopted was to maintain the capillary force on either flooding
or displaced phase as constant variable. Based on the proper-
ties of the experimental fluid, the three-phase porous flow
process performed in this research was considered an isother-
mal incompressible two-dimensional flow [21, 38–40].

The overview of the flooding experiment and data mea-
surement and record is presented in Figure 2. In particular,
the driving module, pressure monitoring module, experi-
ment visualization module, and data record module were
established. The adopted equipment and materials included
two constant-speed microinjection pumps for liquid injec-
tion, medical plastic syringes, alloy four-way valve, 16 kPa
capsule pressure gauge, PE lines, microfluidic chips, optical
microscope with electron lens, waste liquid collection test
tube, mobile workstation, and experimental recording cam-
era [41–44]. The left and lower inlets of the four-way valve
were connected to the water pump and nitrogen pump,
respectively, while the outlet at the top were connected to
the pressure gauge and the right outlet connected to the inlet
of the microfluidic chip. Before the experiment began, the
microfluidic chip was saturated by the displaced phase.
The injection rate was also set in the microinjection pump,
which corresponded to the injection rate at the inlet of
microfluidic chip [36, 45–47].

To quantitatively analyze the contribution of each
parameter to relative permeability, the Sobol sensitivity anal-
ysis method was adopted. The Sobol method is based on the
idea of model decomposition, yielding the sensitivity of
parameters 1, 2, and higher, respectively. Usually, 1 sensitiv-
ity reflects the main effect of parameters, while 2 and higher
sensitivity consider more. Compared with other sensitivity
analysis methods, the Sobol method has a relatively stable

sampling method, which can grade the sensitivity to the con-
tribution proportion of the output variance through param-
eters and is a more efficient method to quantitatively identify
the sensitivity of different parameters. The specific model of
Sobol sensitivity analysis is shown in equations (5)-(9).

f xð Þ = f0 +〠
i

f i xið Þ +〠
i<j

f ij xi, xj
� �

+⋯+〠f1,2,⋯,n x1, x2,⋯xnð Þ,

ð5Þ

D =〠
i

Di +〠
i<j
Dij+⋯+〠D1,2,⋯,n, ð6Þ

S1,2,⋯,n =
D1,2,⋯,n

D
, ð7Þ

1 =〠
i

Si +〠
i<j
Sij+⋯+〠S1,2,⋯,n, ð8Þ

STi = 1−〠S~i: ð9Þ

2.3. Image Enhancement and Recognition. Before the satura-
tion recognition and extraction, the images require to be
enhanced for highlighting the features while weakening the
white noise inside. In particular, smoothing is required to
eliminate noise interference in the image or to enhance
contrast and sometimes to emphasize the edges and details
of the image. For oil-water two-phase microfluidic experi-
mental images, the grayscale distribution of the image is
relatively concentrated, resulting in the segmentation diffi-
culty of two-phase saturation. Histogram equalization is
achieved by adjusting the gray order distribution of the
image so that the distribution on the 0~255 gray order is
more balanced, which is an effective method to improve
the contrast of the image and simplify the segmentation of
oil and water saturation. Shown in Figure 3 is a schematic
diagram of the histogram equalization principle. Generally,
images obtained from oil-water two-phase microfluidic
experiments are suitable for adopting the histogram equali-
zation method to enhance image details.

After the image enhancement is done by histogram
equalization, the next step is the saturation recognition and
extraction. The convolution neural network (CNN) is
adopted in this study for oil and water saturation

Global equalization Convolution Neural 
Network (CNN)

Saturation
(oil & water)

Pore diversity

Wetting order Relative permeability 
model

Deep Neural 
Network (DNN)

Microfluidic 
two-phase flow 

experiments

Image pre-processing

Model inputs

Deep learning model
Experimental

images

Figure 1: Research route for intelligent model-based image recognition and permeability prediction of two-phase flow in micropores.
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recognition and extraction from microfluidic experimental
images. The schematic diagram of the CNN is shown in
Figure 4. The CNN consists of the following five parts:
the input layer, convolution layer, pooling layer, fully con-
nected layer, and the output layer. The key advantage of
this method is that it could extract local data features
through convolution and pooling operations. Besides, as

a supervised intelligent method, the CNN is with high reli-
ability and robustness.

2.4. Deep Learning Model. A narrow definition of deep learn-
ing is the neural network with multilayers. Accordingly, the
CNN mentioned above and the DNN which is introduced
later are both classified as the deep learning model. In this

Table 1: Phase parameters in the injection experiment (at 24.3°C, 99.2 kPa).

Phase type Material Density (kg/m3) Viscosity (mPa·s) Compressibility (1/Pa)

Displaced phase Light oil 1# 855.297 4.160 5:268 × 10−10

Flooding/displaced phase Mineral water 997.323 0.917 4:504 × 10−10

Flooding phase Light oil 2# 804.865 1.617 5:602 × 10−10

(a) (b) (c)

(d) (e) (f)

Figure 2: The microfluidic experiment scheme of water-oil flow: (a) overview of experimental equipment; (b) microinjection pump; (c)
capsule pressure gauge (16 kPa) and alloy four-way valve; (d) medical plastic syringes; (e) optical microscope with electron lens and
microfluidic chip; (f) screen and data record.
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Figure 3: Schematic diagram of the histogram equalization principle. (a) The partial pixels at concentrated grayscale are equally converted
to which at diverse grayscale ranging from 0 to 255. (b) The practical processing results based on the principle demonstrated in (a).
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study, the deep neural network (DNN) model was proposed
for effectively extracting the linear and nonlinear character-
istics of the data. The schematic diagram of the DNN for
two-phase relative permeability prediction is shown in
Figure 5, and the fundamental theories of the DNN are
described from equation (10) to equation (14). Specifically,
equation (10) to equation (12), respectively, show the oper-
ational criterion between the input layer and the first hidden
layer, present hidden layer and next hidden layer, and the
last hidden layer and output layer, while equation (13) to
equation (14) show the activation functions of tanh() and
sigmoid(). The parameter matrix of A and b is determined
after the DNN is well-trained and validated [48–52].

Activation A1X + b1
� �

=H1, ð10Þ

Activation An+1Hn + bn+1
� �

=Hn+1, ð11Þ

Activation AN+1HN + bN+1
� �

= Y , ð12Þ

tanh xð Þ = exp xð Þ − exp −xð Þ
exp xð Þ + exp −xð Þ , ð13Þ

sigmoid xð Þ = 1
1 + exp −xð Þ , ð14Þ

where X is the input matrix of this study consisting of satu-
ration, wetting order, and pore diversity; H is the hidden
layer matrix; A is the weight matrix while b is the bias
matrix, both called the parameter matrix; n is the layer order
of the hidden layer; N is the amount of hidden layers; and Y
is the output matrix, corresponding to the relative perme-
ability in this study.

In order to control the error of deep learning models
during the training learning process, loss function is usually
used to reflect the regression training effect of the model.
The commonly used loss functions include mean square
error (MSE), as shown in equation (15). According to the
law of gradient descent and back-propagation of regression
error, the parameter matrix A and b are adjusted and a
model with high accuracy is finally obtained.

MSE = 1
M

〠
M

i=1
yori − yreið Þ2, ð15Þ

whereM is the total number of the output variablewhich is the
product of variable dimensions and feature numbers; yi repre-
sents the ith output variable, while the superscript or and re
represent original value and regressed value, respectively.

For neural networks with multiple input variables, differ-
ent variables may have different units and values. To elimi-
nate this effect and maintain the relative relationship
between the values of the same variables, it is necessary to
normalize the input dataset via the following equation:

X ′ = X − Xmin
Xmax − Xmin

, ð16Þ

where X ′ is the normalized input matrix; X is the original
input matrix; and Xmax and Xmin are the maximum and
minimum values of the input variables.

3. Results and Discussion

3.1. Characterizations of Two-Phase Flow in Micropores. In
this study, 12 sets of microfluidic experiments with different
pore structure characteristics, wetting order, and injection
rate conditions were designed. The experimental results of
microfluidic two-phase flow experiments are shown in
Figure 6. Figures 6(a)–6(l), respectively, show experimental
images at initial injection, during injection, and injection
completion of each group of experiment. Among them,
Figures 6(a)–6(c) show experiments with the coefficient of
pore diversity of 0.872. The injection rate was 50, 100, and
150μL/min, respectively. The wetting order was mineral
water flooding. It should be noted that when mineral water
flooded, the Light crude oil 1# was displaced while when
Light crude oil 2# flooded, the mineral water was displaced.
Similarly, Figures 4(d)–4(f) show experiments with the coef-
ficient of pore diversity of 3.248. The setting of injection rate
and wetting order was consistent with the experiments
shown from Figures 6(a)–6(c). Figures 4(g)–4(i) show exper-
iments with the coefficient of pore diversity of 6.965. The
setting of injection rate and wetting order was consistent
with the experiments shown from Figures 6(a)–6(d).

Image inputs (from 
microfluidic experiments)

Convolution Pooling

Full connection

Saturation outputs 
(water & oil)

Figure 4: Schematic diagram of the convolution neural network (CNN) for saturation extraction.
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Figures 4(j)–4(l) show experiments with the coefficient of
pore diversity of 0.872, 3.248, and 6.965, respectively. The
injection rates were all 100μL/min. The wetting order was
Light crude oil 2# flooding.

According to Figure 6, it could be found that the in addi-
tion to the saturation, the wetting order and pore diversity of
pores did significantly impact on the two-phase flow in
micropores. Hence, the saturation, wetting order, and pore
diversity should be contained in the relative permeability
model comprehensively.

Though the impact of saturation on relative permeability
is hardly possible to visually observe, the effects of wetting
order and pore diversity are significantly visible. In particu-
lar, at the mineral water flooding condition, it could be seen
that the higher pore diversity was conducive to enhance the
displacement of displaced phase generally. It is worth noting
that the relationship between injection rate and saturation is
nonlinear, while at the medium injection rate, 100μL/min,
the most residual displaced phase was left in pores. On the
contrary, at the light crude oil flooding condition, the most
complete flooding was done at the lowest pore diversity.

The reasons why such phenomena occurred are that on
the one hand, the capillary effect is evident during the two-
phase flow process in micropores. The pores in microfluidic
chips were hydrophobic determined by the materials. When
the wetting order was set to be mineral flooding, the mineral
water occupied the large pores initially and mainly and
seldom permitted into fine pores due to the resistance con-
ducted by capillary force on mineral water. Conversely,
when the wetting order was set to be light crude oil flooding,
the light crude oil occupied the fine pores initially and
immediately and through which the light crude oil escaped
instead of occupying the large pores. On the other hand,
the saturation of both flooding and displaced phases was
governed by Darcy’s law of porous flow and capillary effect.
Therefore, at a low injection rate particularly 50μL/min in
this study, the capillary effect played the domain role that
large pores were more completely occupied. At a high injec-

tion rate particularly 150μL/min in this study, the Darcy law
of porous flow performed more significant that flooding
phase could permit into partial fine pores with high flooding
pressure. Eventually, at the medium injection rate, particu-
larly 100μL/min in this study, both capillary effect and
Darcy’s law of porous flow failed to take advantage of them-
selves resulting in themost suboptimal flooding performance.

According to the microfluidic two-phase flow experi-
ments, the two-phase flow saturation-relative permeability
curves were plotted as shown in Figure 7. Specifically, curves
from Figure 7(a)–7(l) are corresponding to the experimental
results obtained from Figures 6(a)–6(l).

According to Figure 7, it could be found that at the
wetting order of mineral water flooding, the equivalent
points of relative permeability were all in the interval where
the displaced phase saturation was greater than or equal to
0.8. However, at the wetting order of light crude oil flooding,
there was no equivalent point of the two phases, while the
two-relative permeability interval is shorter than the wetting
order of mineral water flooding.

3.2. Sensitivity Analysis of Variable Effects on Relative
Permeability. The Sobol full-order weight model was applied
to perform the sensitivity analysis of the saturation, wetting
order, and pore diversity impact on relative permeability as
shown in Figure 8. Notably, due to the saturation of the
flooding and displaced phase satisfy the constraints of 1,
the present study only considered the displaced phase satu-
ration as the input variable for the Sobol full-order weight
model. According to the results of the analysis shown in
Figure 8, the saturation has the greatest effect on both the
relative permeability of flooding phase and displaced phase.
The wetting order was the second key impact factor of the
relative permeability followed the saturation. Although the
effect of the pore structure characteristics (coefficient of
diversity) on the relative permeability was minimal among
the three variables, the contribution difference from the
saturation was not higher than 50%. Overall, phase

Hidden layers

Inputs (saturation, 
wetting order, 

geometry diversity)
Outputs (relative 

permeability)

Input layer Output layer

Figure 5: Schematic diagram of the deep neural network (DNN) for two-phase relative permeability prediction.
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saturation, wetting order, and pore structure characteristics
could be considered key factors in the two-phase flow of
oil and water in micropores.

3.3. Performance of Intelligent Relative Permeability Model.
The training set of the deep learning-based intelligent rela-
tive permeability model was initially divided by the ratio of
8 : 2. The activation function adopted to the model was the
tanh() function, and 5 hidden layers were set. The training
process and validation results of the intelligent relative per-
meability model of flooding phase are shown in Figure 9(a),
and those of the displaced phase are shown in Figure 9(b).

According to Figures 9(a) and 9(b), it can be found
that the training process and validation results of the intel-

ligent relative permeability model of both the flooding
phase and displaced phase performed well. Furthermore,
Figures 10(a) and 10(b) reveal the specific loss (mean
square error, MSE was adopted in this study) at each
epoch corresponding to the training process of the intelli-
gent relative permeability model of the flooding phase and
displaced phase, respectively. It could be concluded that
the intelligent relative permeability models proposed in
this study are reliable and accurate.

3.4. Optimization of Intelligent Relative Permeability Model.
The intelligent relative permeability model was first opti-
mized by adjusting the dividing ratio of the training set
and the test set. As could be seen from the optimization

500 𝜇m

Mineral water/media matrix
Light crude oil

(a) (g)

(b) (h)

(c) (i)

(d) (j)

(e) (k)

(f) (l)

Figure 6: Experimental results of microfluidic two-phase flow experiments.
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Figure 7: Two-phase relative permeability obtained from microfluidic experiments.
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Figure 9: The training and testing results of the DNN: (a) the training process and validation results of the intelligent relative permeability
model of the flooding phase; (b) the training process and validation results of the intelligent relative permeability model of the displaced
phase.

0.008

0.007

0.006

0.005

0 200 400 600 800 1000

Loss

(a)

0 200

0.14

0.12

0.10

0.08

0.06

0.04

400 600 800 1000

(b)

Figure 10: The specific loss (MSE) at each epoch corresponding to the training process of the intelligent relative permeability model of the
flooding phase and displaced phase, respectively. (a) The specific loss (MSE) at each epoch corresponding to the training process of the
intelligent relative permeability model of the flooding phase. (b) The specific loss (MSE) at each epoch corresponding to the training
process of the intelligent relative permeability model of the displaced phase.
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Figure 11: Optimization results of two-phase seepage intelligent model of oil and water. (a) The optimization results of intelligent relative
permeability model by adjusting the dividing ratio of the training set and the test set. (b) The optimization results of intelligent relative
permeability model by adjusting the number of hidden layers of the deep neural network as well as the activation function.
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results in Figure 11(a), the lowest validation loss (MSE) for
relative permeability of the flooding phase was at the ratio
of 7 : 3 while that for the displaced phase was at the ratio
of 6 : 4 compared to the ratio of 8 : 2 for the initial model.
Moreover, as the proportion of the training set increased
along with the test set scale decreased, the verification loss
of the displaced phase relative permeability continuously
improved, while that of the flooding phase showed a para-
bolic trend of falling first and then rising.

Subsequently, the intelligent relative permeability model
was optimized by adjusting the number of hidden layers of
the deep neural network as well as the activation function.
The optimization results in Figure 11(b) show that the adop-
tion of 3 or 7 hidden layers does not bring an obvious opti-
mization effect for the model compared to the initial neural
network structure of 5 hidden layers. However, it is worth
noting that the tanh() activation function performed 40%
more accurate than the sigmoid() activation function while
adopting the equivalent 5 hidden layers.

4. Conclusion

Relative permeability is a key index in resource exploitation,
energy development, environmental monitoring, and other
fields. However, the current determination methods of
relative permeability are inefficient and invisible without
considering wetting order and pore structure characteristics
either. In this study, microfluidic experiments were designed
for figuring out key factors impacting on the two-phase
relative permeability. The optimized intelligent image recog-
nition was established for saturation extraction. The deep
learning was conducted for the prediction of two-phase
permeability based on the inputs from microfluidic experi-
ments and image recognition and optimized.

Results revealed that phase saturation, wetting order,
and pore topology were the key factors influencing the
two-phase relative permeability, with the importance of
38.22%, 34.84%, and 26.94%, respectively. The deep learning
model for relative permeability prediction performed well,
with MSE < 0:05 and operational efficiency of 3ms/epoch.
Aiming at relative permeability model optimization, on the
one hand, the dividing ratio of training set and testing set
for flooding phase relative permeability prediction achieved
the highest prediction accuracy at 7 : 3, while that for dis-
placed phase was 6 : 4. On the other hand, tanh() activation
function performed 40% more accurate than the sigmoid()
activation function.
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It is important to realize rapid and accurate prediction of fluid viscosity in a multiphase reservoir oil system for improving oil
production in petroleum engineering. This study proposed three viscosity prediction models based on machine learning
approaches. The prediction accuracy comparison results show that the random forest (RF) model performs accurately in
predicting the viscosity of each phase of the reservoir, with the lowest error percentage and highest R2 values. And the RF
model is tremendously fast in a computing time of 0.53 s. In addition, sensitivity analysis indicates that for a multiphase
reservoir system, the viscosity of each phase of the reservoir is determined by different factors. Among them, the viscosity of
oil is vital for oil production, which is mainly affected by the molar ratio of gas to oil (MR-GO).

1. Introduction

The fluid viscosity of the oil-gas reservoir [1, 2] is the key
factor to determine the final development effect and eco-
nomic benefit of the oil-gas reservoir. Therefore, it has
become an important basis performance for formulating
oil-gas field development plans [3], studying oil and gas res-
ervoir performance, implementing plan adjustment, and
evaluating stimulation [4].

The combination of PVT device and high-pressure fall-
ing ball viscometer [5, 6] can realize the laboratory analysis
of reservoir samples, to obtain the viscosity value in reservoir
environment (high pressure and temperature). PVT device
[7, 8] can create specifical temperature and pressure to sim-
ulate reservoir environmental conditions; therefore, it has
been widely used in the oil industry in recent years [9]. How-
ever, the acquisition of such data, including sampling and
subsequent analysis, will cost considerable cost and time,
which is not desirable [10].

In addition, to simplify and quickly obtain the reservoir
fluid viscosity and to analyze the influencing factors of vis-
cosity, a large number of simulation studies on viscosity
have appeared in the petroleum industry, and many com-

monly used viscosity models have been proposed, includ-
ing LBS viscosity model [11], CS viscosity model, LLS
viscosity model, Pt viscosity model, and PR viscosity model
[12, 13]. The application of these models can realize the
viscosity acquisition of reservoir fluid with specific compo-
sition and realize viscosity prediction. But the viscosity of
oil-gas reservoir fluid, especially in oil-gas-water multi-
phase reservoir system, is affected by many factors, includ-
ing reservoir environmental conditions, oil and gas
composition, and water and gas injection [14]. At present,
it is impossible to find a general viscosity model to
describe the viscosity characteristics of fluids in multiphase
reservoir systems.

Therefore, the objective of this study is to establish a reli-
able and accurate machine learning model for predicting the
viscosity of each phase in a multiphase mixed oil-gas-water
system. Research shows that deep neural networks (DNN),
random forests (RF), and support vector regression (SVR)
are very good at capturing and learning the nonlinear feature
relationships between data, and they can accurately predict
parameters in a data-driven manner without physical
models. Compared with some classic machine learning
algorithms, these machine learning algorithms can often

Hindawi
Geofluids
Volume 2021, Article ID 3223530, 9 pages
https://doi.org/10.1155/2021/3223530

https://orcid.org/0000-0002-9699-8711
https://orcid.org/0000-0003-3665-202X
https://orcid.org/0000-0002-0352-856X
https://orcid.org/0000-0002-6642-3773
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/3223530


maintain high prediction accuracy even under small sample
conditions, which map more feature spaces. And trained
models have higher portability and can quickly adapt to dif-
ferent application scenarios. This paper, therefore, would
choose these three machine learning methods to predict
and analyze the viscosity of each fluid in a multiphase mixed
oil-gas-water system.

To achieve this research purpose, Tarim reservoir oils
were taken as an example. Tarim Oilfield is located in Kuqa
County, Xinjiang, China. It is urgent to tackle the key prob-
lems of enhanced oil recovery. The early gas injection
research recognized that gas injection is the practical tech-
nical direction of enhanced oil recovery of reservoir in
Tarim. This study collects a large number of experimental
and simulation data to provide a large amount of data for
machine learning. In addition, the sensitivity analysis of
influencing factors plays a vital role in the development
guidance of the reservoir oils, so the collected data was
sorted and analyzed, according to the reservoir environ-
mental factors (temperature T and pressure P) and the res-
ervoir composition (the molar ratio of gas to oil MR-GO
and molar ratio of water to oil MR-WO [15, 16]). There-
fore, the developed viscosity prediction model covers wider
ranges of input data, which is important to the production
of oil reservoirs.

The structure of this paper is as follows. In the following
section, the background, governing equations, and develop-
ment methodology of the three presented models, including
RF, DNN, and SVR, are introduced and described in detail.
In addition, this section will also give the calculation method
of the statistical indicators for evaluating the three models.
Next, in Section 3, the accuracy and calculation time com-
parison of these three developed models will be evaluated
by the statistical indicators, and the reliability analysis of
the calculation process of the RF model will be given. More-
over, the sensitivity analysis of the influencing factors will be
carried out, and the influence weight of each influencing fac-
tor on the output viscosity in the multiphase system will also
be given. Finally, Section 4 will present the key findings of
this paper.

2. Methodology

2.1. Prediction Models. Three prediction models were used to
predict the viscosity of a multiphase reservoir oil system
from input data of crude oil systems, such as MR-GO,
MR-WO, reservoir environment pressure (P, MPa), and
temperature (T , °C). Table 1 indicates the statistical charac-
teristics of the input data.

2.1.1. Random Forest (RF). Random forest [17], as an ensem-
ble learning algorithm based on classification and regres-
sion trees, has been widely used in many fields. Ho
[18] first proposed the random forest algorithm in 1995
and improved the algorithm by Breiman [19] in 2001.
RF is a machine learning method based on statistical
learning theory. First, multiple samples are extracted from
the original data set through the bootstrap resampling
method. Then, a decision tree model is established for

Table 1: Statistical characteristic of the input data.

Parameter Minimum Maximum Mean

P 5 95 46.25

T 30 210 120

MR-GO 0.5 6 1.5

MR-WO 0 2.3 1.292

Samples (N)

Training set

Test set

Sample 1 Sample 2 Sample K…

…

Result 1 Result 2 Result k

K
Trees

Max
depth

Average of all regression
tree prediction results

Regression tree 1 Regression tree 2 Regression tree k…

…

Figure 1: The training process of random forest.

Input layer Hidden layer Output layer

…

Figure 2: The training process of deep neural network.

Table 2: Statistical evaluation results calculated by three models.

Models MSE MAE R2

RF

υg 2:8979e − 06 0.0005 0.9824

υo 0.0008 0.0093 0.9623

υw 4:3221e − 06 0.0008 0.9999

DNN

υg 9:2978e − 05 0.0063 0.4364

υo 0.0022 0.0301 0.8942

υw 0.0099 0.0463 0.7759

SVR

υg 0.0002 0.0112 -0.1083

υo 0.0108 0.0855 0.4798

υw 0.0118 0.0767 0.7340
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each bootstrap sample. Finally, the predictions of multiple
decision trees are combined and averaged to obtain the
final prediction result. The ultimate regression decision
formula is as follows:

Mrf xð Þ = 1
K
〠
K

k=1
ti xð Þ, ð1Þ

where Mrf represents the calculation result of the ran-
dom forest model, K is the number of regression trees
required, and ti represents a single regression tree
model. In the calculation process of the random forest
model, there are two extremely critical hyperparameters,
which are the number of regression trees (n-estimators)
and the number of random variables at the nodes
(max depth). Too little number of regression trees will
affect the accuracy of the calculation. Similarly, too
many numbers will increase the complexity of the calcu-
lation. The training process of random forest is shown
in Figure 1.

2.1.2. Deep Neural Network (DNN). A deep neural network
[20, 21] is a machine learning method that combines a
multilayer perceptron structure and a backpropagation
algorithm. It is mainly composed of three parts, including
the input layer, hidden layer, and output layer (Figure 2).
The key structure of a deep neural network is called a
neuron, which can characterize the nonlinear mapping

relationship between input and output. The output equa-
tion of each neuron is as follows:

O xð Þ = g 〠
i

wixi + b

 !
, ð2Þ

where O is the output value, g is the activation function,
w is the weight of the input parameter, and b is the
threshold. The training process of the neural network
model is divided into two steps: forward propagation
and backward propagation. First, forward propagation
is used to calculate the predicted value of the model.
The error gradient between the predicted value and
the true value is obtained by the loss function. Accord-
ing to the error gradient, the weights and thresholds in
the neural network are adjusted through the backpropa-
gation algorithm. Repeating this process can make the
network continuously learn the hidden features between
the data.

2.1.3. Support Vector Regression (SVR). Support vector
machine [22–24] is a machine learning method proposed
by Cortes and Vapnik [25] in 1995 to learn the map-
ping relationship between parameters. The core idea of
support vector regression is to find the nonlinear map-
ping relationship between input space and output space.
Relying on the nonlinear mapping, data is mapped to a
high-dimensional characteristic space. The estimating
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Figure 3: The cross-plot pictures between model predictions and the corresponding experimental values.

4 Geofluids



No. of data

0
0 20 40 60 80 100 120

0.1

0.2

0.3

0.4

0.5

0.6

0.7

V
isc

os
ity

 (c
P)

Reference value
Predictive value (RF)

(a) RF model

No. of data

0

0 20 40 60 80 100 120

0.1

−0.1

0.2

0.3

0.4

0.5

0.6

0.7

V
isc

os
ity

 (c
P)

Reference value
Predictive value (DNN)

(b) DNN model

Figure 4: Continued.
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function of linear regression in characteristic space is as
follows:

f xð Þ = w, xh i + b, ð3Þ

where f is the linear function and w and b are the
identified weight vector and the bias term, respectively.

In the high-dimensional feature space, the optimization
problem for SVR with ε-insensitive loss function is as follows:

min 1
2 wk k2 + C〠

N

i=1
ξi + ζið Þ

s:t: wTxi + b
� �

− yi ≤ ε + ξi

yi − wTxi + b
� �

≤ ε + ζi

ξi, ζi ≥ 0, i = 1, 2,⋯,N ,

ð4Þ

where kwk2 in the objective function is the confidence
range reflecting the generalization ability, ξi and ζi are the
slack variables that represent the upper and lower limits
of allowable error, ∑N

i=1ðξi + ζiÞ denotes the experimental
risk reflecting the learning capacity of function, ε > 0 is an
insensitive loss coefficient, and parameter CðC ≥ 0Þ is a
penalty factor. In SVR, the dual problem of Equation (4)
is often derived by using the Lagrange multiplier method,
based on which a linear regression function can finally be
constructed.

2.2. Statistical Evaluation of Three Models. To evaluate the
accuracy of machine learning models, three statistical indi-

cators were used, including mean square error (MSE), mean
absolute error (MAE), and coefficient of determination (R2)
[26–28]. This experiment also utilizes these indicators to
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Figure 4: The comparison diagram between model predictions and the corresponding experimental values of oil viscosity (υo).

Table 3: The prediction calculation time of different models.

Methods Prediction time

RF 0.53 s

DNN 0.82 s

SVR 0.76 s

TDM 52.8 s

Table 4: Statistical error analysis results calculated by RF model.

Parameter Value

Training set

R2 0.9921

MAE 0.0021

MSE 9:942E − 5
Testing set

R2 0.9816

MAE 0.0035

MSE 0.0003

Total

R2 0.9811

MAE 0.0023

MSE 0.0001
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calculate the error and test the robustness of the machine
learning model.

MSE = 1
N
〠
N

i=1
Xdata
i − Xmodel

i

� �2
, ð5Þ

MAE = 1
N
〠
N

i=1
Xreal
i − Xmod el

i

��� ���, ð6Þ

R2 = 1 − ∑N
i=1 Xdata

i − Xmodel
i

� �2
∑N

i=1 Xdata
i − average Xmodel

i

� �� �2 , ð7Þ

where N represents the total number of samples, Xi
data is the

referenced parameter that is the actual expected value, and
Xi

model represents the predicted value of the machine learn-
ing methods.

3. Results and Discussion

3.1. Comparison of Three Proposed Models. To evaluate the
precision of each constructed network, MSE, MAE, and R2

are calculated, based on different output data of gas viscosity
(υg), oil viscosity (υo), and water viscosity (υw), respectively.
The calculated evaluation results are presented in Table 2.

According to the results of Table 2, the proper prediction
model for viscosity modeling is RF. Take the oil viscosity
modeling as an example; among these three prediction
models, the presented RF model has the lowest MSE of
0.008, lowest MAE of 0.0093, and highest R2 value of
0.9623. Compared to the other two developed models, the
SVR model has the worst prediction results.

To reveal and visualize the performance of each predic-
tion model, a cross-plot picture between model predictions
and the corresponding experimental values is drawn in
Figure 3, for gas viscosity (υg), oil viscosity (υo), and water

viscosity (υw), respectively. In this curve, there are three
color points: blue points for estimated data of RF, red points
for estimated data of SVR, and yellow points for estimated
data of DNN, and Y = X line for experimental values. In a
cross-plot picture, a higher precision is attained when the
data is closer to the Y = X line. From Figures 3(a)–3(c), in
all prediction results for gas viscosity (υg), oil viscosity (υo),
and water viscosity (υw), only in the RF model, there is an
adequate closeness of the majority of the data points to the
line Y = X, showing a very good agreement between model
predictions and the corresponding experimental values. For
the RF model, the coefficient of determination (R2) is high
to 0.9824, 0.9623, and 0.9999 for gas viscosity (υg), oil viscos-
ity (υo), and water viscosity (υw), respectively, which is much
higher than the other models.

Moreover, in Figure 4, model predictions and the corre-
sponding experimental values of oil viscosity (υo) by three
proposed models are also compared and depicted. From
these results, the predicted results using the RF model are
very close to the corresponding experimental results. It can
be seen that the RF model achieves a good accuracy of
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predicting the oil viscosity (υo) of the multiphase oil-gas-
water systems.

Finally, taking 1200 sets of data as an example, the
prediction calculation time of machine learning models
was compared with the tradition numerical method
(TDM), as shown in Table 3. In this paper, the experiment
is based on TensorFlow and Sk-learn learning library with
Python language. The hardware resources include Intel i7-
7700hq@2.8G processor, 16G memory, and Nvidia GTX
1060 (6G) graphics card. Table 3 indicates that machine
learning models only need 0.53 s, 0.82 s, and 0.76 s for
the prediction calculation of RF, DNN, and SVR, respec-
tively. Prediction time by machine learning models is tre-
mendously fast, while for the tradition numerical method,
the prediction time is high up to 52.8 s. Machine learning
models, therefore, have advantages in terms of computing
time.

3.2. Results Analysis by RF Model. Statistical evaluation
parameters of the best network RF model for training, test-
ing, and total data sets are presented in Table 4. Table 4
reports that for training set, R2 of the RF model is high to
0.9921, while MAE and MSE are very low with the values
of 0.0021 and 9:942E − 5. For testing set, the R2, MAE, and
MSE values are 0.9816, 0.0035, and 0.0003. While for a total
set, the corresponding statistical evaluation results are
0.9811, 0.0023, and 0.0001, respectively, indicating good
evaluation parameters for the RF model.

Cross-plot figure of the proposed RF model is also
shown in Figure 5. It could be seen that there is a dense point
distribution around the Y = X line for all of the data, and the
error is basically maintained within 5%, indicating the suffi-
cient accuracy and reliability of the developed RF model.

3.3. Importance Analysis. Importance analysis of influencing
factors was carried out to figure out a sensitivity analysis on
viscosity in a multiphase gas-oil-water system. For each vis-
cosity, such as gas, oil, and water, each of the independent
influencing factors, such as P, T , MR-GO, and MR-WO,
was evaluated in this part. The results of the importance
analysis are indicated in Figure 6. For each output result,
the sum of the influence proportion of the influencing fac-
tors (P, T , MR-GO, and MR-WO) is 1. The higher the
impact proportion value, the stronger the relationship
between the input parameter and the output function.

As it is expected, for gas viscosity, the MR-GO is the
most significant factor influencing the output result with
an impact proportion of 0.53. The second is environmental
factors, including P and T , and the proportions are 0.20
and 0.25, respectively. Here, the water content has a litter
effect. For oil viscosity, the output value is mainly affected
by ambient temperature T and gas content MR-GO, and
the specific impact proportion is 0.42 and 0.40, respectively.
Secondly, pressure P also plays an important role with the
affecting proportion of 0.17. Finally, the viscosity of water
in the multiphase system is mainly determined by the ambi-
ent temperature T , and the influence proportion is 0.76,
followed by its content MR-WO in the system, and the ratio
is 0.23.

4. Conclusions

In this study, three machine learning models, namely, ran-
dom forest (RF), deep neural network (DNN), and support
vector regression (SVR), were proposed for calculating and
predicting the phase viscosity of multiphase reservoir oils
systems.

To make a judgment of the accuracy of each developed
model, various statistical evaluation indicators, including
mean square error (MSE), mean absolute error (MAE),
and coefficient of determination (R2), were applied. The
results show that the RF model has higher accuracy com-
pared with the other two models. Specifically, for the RF
model, the R2, MAE, and MSE values are 0.9811, 0.0023,
and 0.0001, respectively, indicating good evaluation perfor-
mance. Moreover, machine learning models have advantages
in computing time for the RF model, which only needs 0.53 s
for 1200 sets of data prediction.

Moreover, an importance analysis of influencing factors
was carried out on viscosity in this multiphase gas-oil-
water system. For gas viscosity, the MR-GO is the most sig-
nificant influencing factor with an impact proportion of
0.53, followed by P and T . Next, oil viscosity is mainly
affected by T and MR-WO, and P also has an effect. Finally,
for water, the viscosity is mainly determined by T , followed
by MR-WO.
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