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Kernel adaptive filtering (KAF) algorithms derived from the second moment of error criterion perform very well in nonlinear
system identification under assumption of the Gaussian observation noise; however, they inevitably suffer from severe per-
formance degradation in the presence of non-Gaussian impulsive noise and interference. To resolve this dilemma, we propose a
novel robust kernel least logarithmic absolute difference (KLLAD) algorithm based on logarithmic error cost function in
reproducing kernel Hilbert spaces, taking into account of the non-Gaussian impulsive noise. ,e KLLAD algorithm shows
considerable improvement over the existing KAF algorithms without restraining impulsive interference in terms of robustness
and convergence speed. Moreover, the convergence condition of KLLAD algorithm with Gaussian kernel and fixed dictionary is
presented in the mean sense. ,e superior performance of KLLAD algorithm is confirmed by the simulation results.

1. Introduction

Kernel adaptive filters as a tremendous breakthrough of the
conventional linear adaptive filters have been widely used in
many practical nonlinear applications including time series
prediction [1], acoustic echo cancellation [2], channel
equalization [3], abnormal event detection [4], etc. ,e
scheme of kernel adaptive filtering (KAF) is to map the
original input data into high or infinite dimensional feature
space via kernel function and then apply the framework of
typical linear adaptive filtering to the transformed data in the
reproducing kernel Hilbert spaces (RKHS) leading to var-
ious KAF algorithms [5–8]. ,e kernel least-mean-square
(KLMS) algorithm, as the benchmark among of KAF al-
gorithms, is developed from the cost function of second-
order statistic of the error between the desired signal and
instantaneous estimate under the assumption of Gaussian
noise for its mathematical simplicity and convenience [9].
,erefore, it can be ensured that the performances of KLMS-
type algorithms only for Gaussian disturbance noise severely
degrade, when the desired signals are corrupted by the
impulsive interferences. In practical applications, e.g., un-
derwater acoustic signal processing [10], wireless

communication environments [11], and radar cluster
elimination [12], the impulsive noises with the statistical
characteristics consisting of infrequency, short duration, and
high amplitude are more rational than the ideal Gaussian
noises.

For conventional linear robust adaptive filtering, the
signed adaptive filters and their theoretical analyses have
been extensively studied in [13–15]. ,e generalized maxi-
mum correntropy criterion (GMCC) algorithm with gen-
eralized Gaussian density function was proposed in [16], and
its stability and steady-state mean square performance were
also investigated. ,e authors of [17] proposed the least
logarithmic absolute difference (LLAD) with the corren-
tropy-induced metric (CIM) constraint in order to exploit
system sparsity and suppress the interferences. ,e mini-
mum kernel risk-sensitive loss (MKRSL) algorithm was
developed to achieve fast convergence speed by applying
risk-sensitive loss while yielding the robust performance to
outliers [18]. When the shape parameter is equal to 2 and the
risk-sensitive parameter gradually tends to trivial, both
GMCC and MKRSL algorithms reduce to the ordinary
maximum correntropy criterion (MCC) algorithm. ,e
constrained least mean logarithmic square (CLMLS) based
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on a relative logarithmic cost function and its variants were
proposed in [19], and they were used in the application of
sparse sensor array synthesis achieving the desired beam
pattern with much less senor elements. In [20], a robust least
mean logarithmic square (RLMLS) algorithm and its vari-
able step-size variant were presented to combat impulsive
noises, and its theoretical mean square performance was also
analyzed with the stationary white Gaussian inputs.

Meanwhile, the topic of nonlinear system identification
corrupted by the impulsive noise also attracted large
numbers of research interests [21]. It is thus important and
necessary to study the robust KAF algorithm in order to
resolve the divergence problem of performance caused by
non-Gaussian impulsive noise. In [22], the kernel maxi-
mum correntropy criterion (KMCC) algorithm was de-
veloped by introducing the framework of MCC into RKHS
in the presence of impulsive noises. By combining the
kernel method and the affine projection sign algorithm, the
kernel affine projection sign algorithm (KAPSA) was pro-
posed in [23] to combat the non-Gaussian impulse inter-
ference. An improved variable forgetting factor recursive
logarithmic least mean p th (IVFF-RLLMP) algorithm was
developed in [24] for the Volterra system identification
against the impulsive interference modeled by α-stable
distribution. As a counterpart of GMCC algorithm, the
generalized kernel maximum correntropy (GKMC) and the
quantized GKMC (QGKMC) algorithm were developed in
[25] for robust nonlinear adaptive filtering. In [26], the
quantized minimum kernel risk-sensitive loss (QMKRSL)
algorithm was proposed to achieve better and robust per-
formance of nonlinear filtering for outliers. Motivated by
the studies in [27, 28] on the Cauchy loss which has been
successfully used in various robust learning applications,
the multikernel minimum Cauchy kernel loss (MKMCKL)
algorithm was reported in [29] showing the improved
nonlinear filtering performance over counterpart single
algorithm in the presence of extreme outliers. Recently, the
kernel affine projection-like (KAPL) algorithm in RKHS
was proposed and investigated for nonlinear channel
equalization in scenarios of non-Gaussian noises [30]. ,e
kernel least mean p-power (KLMP) algorithmwas proposed
to alleviate the adverse impact of impulsive noise in [31, 32],
independently. More recently, Nyström kernel recursive
generalized maximum correntropy (NKRGMC) with
probability density rank-based quantization sampling al-
gorithm was proposed to improve the convergence per-
formance for impulsive noises [33]. ,e tracking analysis of
kernel signed error algorithm (KSEA) with Gaussian kernel
for time-variant nonlinear system was analyzed thoroughly
under the assumption of impulsive noise [34]. More re-
cently, the logarithmic hyperbolic cosine-based adaptive
filter (LHCAF) was proposed in [35] to address the issue of
instability of its prototype algorithm, and the transient and
steady-state analyses were also provided. Subsequently, the
authors of [36] proposed the multiple random Fourier
features Cauchy-loss conjugate gradient (MRFGCG) algo-
rithm which has better performance than the classical KAF
algorithms in terms of computational complexity and fil-
tering accuracy.

,erefore, the cost functions adopting the frameworks of
fractional order statistics of error or the distinct types of
error measures are able to provide effective ways to reveal the
robust performance against impulsive noises. Inspired by the
family of linear adaptive filtering algorithms based on the
logarithmic cost proposed in [37], our purpose is to extend
this scheme into RKHS to obtain the robustness of KAF
algorithm particularly within non-Gaussian impulsive noise
environment. In this paper, the kernel least logarithmic
absolute difference algorithm based on the logarithmic error
cost framework is proposed to achieve the nonlinear system
identification in the impulsive interference environments,
which are more frequently encountered in practical appli-
cations. Simulation results illustrate the proposed KLLAD
algorithm can consistently decrease the drastic perturbation
of recursive weight coefficients caused by the large amplitude
of instantaneous estimation error with low probability.

Notation: We use normal font small letters x for scalar
variables, boldface small letters x for column vectors, and
boldface capital letters X for matrices. ,e superscript (·)⊤

represents the transpose of a vector or a matrix. ,e ex-
pectation is denoted by E ·{ }, and matrix trace is denoted by
tr ·{ }. ,e Gaussian distribution with mean μ and variance σ2
is denoted byN(μ, σ2). ,e notation ‖ · ‖2 is the ℓ2-norm of
its matrix or vector argument; ‖x‖2A is the weighted square
value x⊤Ax. Notation sgn ·{ } is the signum function. ,e
operator eigmax X{ } denotes the maximum eigenvalue of
matrix X. Identity matrix of size N × N is denoted by IN.

2. Preliminaries of KAF Algorithms

LetH denote a Hilbert space of real-valued function ψ from
a compact subspace U ⊂ RL. Function κ: U × U⟶ R is a
reproducing kernel, and (H, 〈·, ·〉)H is the induced RKHS
with its inner product. ,e following unknown nonlinear
system is considered:

yn � f
⋆ xn( 􏼁 + zn. (1)

,e scalar yn and the vector xn ∈ RL denote the desired
output and the input signal, respectively. Here,f⋆ represents
the optimum functional to be identified, and zn stands for
the non-Gaussian impulsive noise modeled as the con-
taminated-Gaussian (CG) noise as follows [13, 38]:

zn � vn + bnϵn, (2)

where both vn and ϵn are statistically independent zero-mean
white Gaussian noises with the variances σ2v and σ2ϵ � Kσ2v ,
with parameter 1≪K. Moreover, the random sequence bn is
from a Bernoulli random process with the probability of
Pr(bn � 1) � pr and Pr(bn � 0) � 1 − pr. Notice that vn and
bnϵn represent the common Gaussian noise and particular
impulsive interference component, respectively. Subse-
quently, the probability density function (pdf) of the im-
pulsive CG noise zn is given by

pz � 1 − pr( 􏼁N 0, σ2v􏼐 􏼑 + prN 0, (K + 1)σ2v􏼐 􏼑. (3)

When pr � 0, the impulsive CG noise zn deteriorates to a
common white Gaussian noise with zero-mean and variance
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σ2v, namely, impulsive interference free. Correspondingly,
the variance of impulsive noise zn is given by

σ2z � E z
2
n􏽮 􏽯 � 1 − pr( 􏼁σ2v + pr(K + 1)σ2v. (4)

Hence, zn is statistically independent of any other sig-
nals. ,e reason why we adopt the CGmodel is that it makes
the analysis of mean stability of KLLAD algorithm math-
ematically tractable.

Given a sample set of pairs of input vectors and desired
output scalars, i.e., xn, yn􏼈 􏼉

N
n�1, we aim at estimating a

nonlinear regression function ψ that relates input data xn

and output data yn corrupted by impulsive noise zn. Let H
be a RKHS with kernel κ. By virtue of the representer
theorem [39], the function ψ in H that minimizes the
regularized least-squares problem:

min
ψ∈H

􏽘

N

n�1
yn − ψ xn( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ ε‖ψ‖
2
H, (5)

with ε a nonnegative regularization constant, can be written
as the kernel expansion in terms of available training data in
form of

ψ � 􏽘

N

n�1
wnκ ·, xn( 􏼁. (6)

When ε � 0, it will not affect the derivation of algorithm.
It can be seen from (5) and (6) that the functional repre-
sentation is formulated as the parametric vector form.
However, solution (6) is infeasible to be performed in an
online manner, because the algorithm can not cope with the
linear increase of the size N of the model as the latest input
data available. A commonly used strategy is to adopt a finite-
order model of the form [5]

ψ � 􏽘

Mn

m�1
wmκ ·, xω,m􏼐 􏼑. (7)

,e set of selected input data Dn � xω,m􏽮 􏽯
Mn

m�1 is so-
called online dictionary with the length Mn and is gen-
erated by the informative criteria from input vectors xn in
an online manner, e.g., coherence criterion [1], surprise
criterion [5], and approximate linear dependency [40].
Note that (6) seems to be the same as (7) in form, whereas
the length Mn determined by the online sparsification
criterion is analogue to the order of transversal filter.
Without loss of generality, we chose the coherence cri-
terion which allows the candidate xn to be inserted into the
dictionary if its maximum coherence remains below the
given threshold δκ, namely,

max
m�1,2,...,Mn

κ xn, xω,m􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ δκ, (8)

where 0< δκ ≤ 1 determines both the level of sparsity and the
coherence of the dictionary. Based on the stochastic gradient
of cost functions J(en) with respect to w, using the para-
metric finite-order model (7), we can then obtain the cor-
responding recursive update equation of the KAF
algorithms:

wn+1 � wn + η
zJ en( 􏼁

zw
κω,n. (9)

With the positive step-size η and the weight coefficients
vector wn � [wn(1), wn(2), . . . , wn(Mn)]⊤, the instanta-
neous estimation error en is given by

en � yn − w⊤n κω,n. (10)

Moreover, the kernelized input vector κω,n is defined by

κω,n � κ xn, xω,1􏼐 􏼑, κ xn, xω,2􏼐 􏼑, . . . , κ xn, xω,Mn
􏼐 􏼑􏽨 􏽩

⊤
. (11)

Adopting the mean-squared error (MSE) criterion for
(9) leads to the scheme of KLMS algorithm described as
follows:

wn+1 � wn + ηenκω,n, (12)

where the complete KLMS algorithm with online sparsifi-
cation criterion is not present for clarity.

It can be easily observed from (12) that the KLMS-type
algorithms suffer from sever performance degradation and
even divergence caused by the instantaneous estimation
error given in (10), which is contaminated by the non-
Gaussian impulsive noise defined in (2). It is thus critical for
the design of robust KAF algorithm to effectively suppress
the adverse effects of impulsive interference noise.

3. KLLAD Algorithm

In this section, we shall derive the KLLAD algorithm based
on the logarithmic cost function.

Logarithmic cost as one type of relative cost measures is
capable of providing relatively legitimate amplification for
the ordinary error fluctuation and significant attenuation for
very large error value induced by impulsive interferences. It
has been illustrated in [37] that the logarithmic cost function
can proportionally adjust the weight coefficients for small
and large error values depending on the combination
weights varying with time. ,erefore, we introduce the
differentiable combined logarithmic error cost function as
follows:

J en( 􏼁 � F en( 􏼁 −
1
λ
ln 1 + λF en( 􏼁( 􏼁, (13)

where λ is a design parameter, and F(en) is the conventional
cost function of instantaneous estimation error. Note that
the universal adaptive filtering algorithm obtained from (13)
is able to update the coefficients by small error and suppress
the drastic perturbation of error simultaneously.

Taking the derivative of (13) with respective to weight
vector w, we obtain

∇wJ en( 􏼁 � ∇wF en( 􏼁
λF en( 􏼁

1 + λF en( 􏼁
. (14)

Since the impulsive CG noise exists, the kernel adaptive
filters based on quadratic cost function have to face the
severe performance degradation. Nevertheless, the signed
adaptive filtering algorithms based on the ℓ1-norm of
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estimation error are robust to the impulsive noise because of
its recursive update equation only utilizing the sign of in-
stantaneous estimation error. In order to mitigate the ad-
verse impact of impulsive noise on KAF, let the conventional
cost function of error F(en) be E |en|􏼈 􏼉 using (10), namely,

F en( 􏼁 � E yn − w⊤n κω,n

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽮 􏽯. (15)

It should be pointed out that cost function (13) using (15)
can perform less attenuation for the small estimation errors
and more attenuation for relatively large estimation errors
simultaneously. Substituting (15) into (14) leads to

zJ en( 􏼁

zw
�

zF en( 􏼁

zw
λF en( 􏼁

1 + λF en( 􏼁
. (16)

Applying the steepest-decent method to minimize the
logarithmic cost function (13), thus the weights vector of
KLLAD algorithm can be solved iteratively by

wn+1 � wn + η −
zJ en( 􏼁

zw
􏼢 􏼣. (17)

By (16), the recursive update equation of KLLAD al-
gorithm can be reformulated as

wn+1 � wn − η
zF en( 􏼁

zw
λF en( 􏼁

1 + λF en( 􏼁
, (18)

where the subgradient in the second term on the right hand
side of (18) is calculated as

zF en( 􏼁

zw
≈ sgn en( 􏼁. (19)

Note that the above approximation notation implies that
the subgradient of conventional cost function F(en) is
replaced by its instantaneous estimate. Substituting (15) and
(19) into (18) and then removing the expectations, the
stochastic update equation of KLLAD algorithm can be
rewritten as

wn+1 � wn + η
λ en

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

1 + λ en

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
sgn en( 􏼁κω,n

� wn + η
λen

1 + λ en

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
κω,n,

(20)

where κω,n denotes the Mn × 1 dimensional kernelized input
vector as in (11). For universal nonlinear filtering perfor-
mance, we only focus on using the Gaussian kernel function
κ(x, x′) � exp(− ‖x − x′‖22/2ξ

2
), with ξ > 0 the kernel band-

width in this paper. Moreover, the Gaussian kernel function
has been successfully used in the theoretical analysis of KAF
algorithms due to its mathematical convenience and trac-
tability in the derivation [34, 41]. Based on (20), the recursive
update equations of KLLAD algorithm based on the finite-
order model using the coherence criterion are presented in
the following.

At each time instant n, the input xn will be decided into
the case of rejection or reception according to the coherence
criterion (8) for online dictionary Dn as follows:

(i) Rejection: if maxm�1,2,...,Mn
|κ(xn, xω,m)|> δκ

Dn+1 � Dn, Mn+1 � Mn,

wn+1 � wn + η
λen

1 + λ|en|
κω,n.

(21)

Note that the dimensions of kernelized input vector
κω,n and weight vector wn remain still in this case.

(ii) Reception: if maxm�1,2,...,Mn
|κ(xn, xω,m)|≤ δκ

Dn+1 � Dn ∪ xn􏼈 􏼉, Mn+1 � Mn + 1,

wn+1 �

wn

0
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ + η

λen

1 + λ|en|
κω,n.

(22)

Note that the dimensions of kernelized input vector
κω,n and weight vectorwn are augmented to make the
update equation of weight vector valid.

It should be pointed that the threshold δκ is selected by
grid search over the interval [0, 1) to determine the sparsity
of online dictionary Dn as in [1, 5–7].

,e KLLAD algorithm described by (21) and (22)
combines the advantages of KLMS and KSEA algorithms
leading to the improved convergence performance taking
into account Gaussian noise and non-Gaussian impulsive
noise existing simultaneously. When the design parameter λ
is set to large value, the KLLAD algorithm can achieve the
robust convergence performance against the impulsive
noise. In addition, the KLLAD algorithm has faster con-
vergence rate than the KSEA algorithm especially for highly
correlated input signals. ,e scheme of KLLAD algorithm is
summarized as Algorithm 1.

By (9), the recursive update equation of KAF algorithms
can be expressed in a general form of

wn+1 � wn + ηf en( 􏼁enκω,n, (23)

where f(en) is defined as the nonlinear error function which
performs like the generalized variable step-size against non-
Gaussian impulsive noise. According to (23), various
nonlinear KAF algorithms can be readily obtained by solving
distinct cost functions in the RKHS. Hence, the error
functions of some KAF algorithmsmentioned previously are
listed in Table 1.

It should be pointed out that the error function of
MKRSL algorithm reduces to that of KMCC algorithm as the
risk-sensitive parameter λf⟶ 0+ or that of KLMS algo-
rithm as the kernel bandwidth ξf⟶∞ [18]. ,is means
that the KMCC algorithm is a particular case of MKRSL
algorithm in fact. ,us, we are only concerned with the
KMCC algorithm with the characteristic of robustness for
impulsive noises in the following. Correspondingly, the
curves of error functions listed in Table 1 with different
parameters are plotted in Figure 1. First of all, it can be
observed from Figure 1(a) that the value of error function of
KLMS algorithm is constant one without any ability of
suppressing the impulsive noise due to its quadratic cost
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function for Gaussian noise. We can then see from
Figures 1(b)–1(d) that the output values of nonlinear error
functions of KMCC, KLMP, and KLLAD algorithms are
effectively attenuated even for the very large instantaneous
estimation errors caused by impulsive interferences. Spe-
cifically, the attenuation rate of error function of KMCC
with small kernel bandwidth ξf is very fast, whereas its
maximum output values corresponding to the relatively
small error inputs particularly near zero are always less than
1. Consequently, the KMCC algorithm has to take much
larger step-size η than the KLMP and KLLAD algorithms.
Although both error functions have similar shape of output
values for KLMP algorithm with small p and KLLAD al-
gorithm with large λ, the error function of KLLAD con-
sistently gives much smaller outputs for larger error inputs
than that of KLMP.

4. Convergence Condition on Mean Stability of
the KLLAD Algorithm

In this section, we shall investigate the sufficient convergence
condition of KLLAD algorithm via Gaussian kernel function
with the fixed dictionary in the mean sense.

For mathematical tractability of theoretical analysis, the
CG modeled impulsive noise zn given in (1), instead of the
standard symmetric α-stable distribution, has been suc-
cessfully used in the theoretical analysis of robust adaptive
filters [13, 14, 34].

One the one hand, the coherence criterion guarantees
the length Mn is infinite [1]. On the other hand, it is true that
the length Mn of online dictionary Dn gradually tends to be
invariant in the steady-state phase. ,erefore, we only need
to consider the recursive update equation (21) of KLLAD
algorithm with the steady fixed dictionary D with constant
length M in the context of the derivation of convergence
condition on mean stability.

We start with introducing the weight error vector de-
fined by

vn � wn − w⋆, (24)

where w⋆ � [w⋆1 , w⋆2 , . . . , w⋆M]⊤ represents the optimal
weight vector of vector-valued form of nonlinear system. It
should be emphasized that w⋆ corresponds to the functional
f⋆ based on the specific dictionary elements. From (1) and
(24), the instantaneous estimation error (10) can be re-
written as

en � zn − v⊤n 􏽥κω,n. (25)

With the kernelized input vector with fixed dictionaryD

􏽥κω,n � κ xn, xω,1􏼐 􏼑, κ xn, xω,2􏼐 􏼑, . . . , κ xn, xω,M􏼐 􏼑􏽨 􏽩
⊤

. (26)

Subtracting w⋆ from both sides of (21), and using (25),
we obtain

vn+1 � vn + ηλ
zn − v⊤n 􏽥κω,n

1 + λ|en|
􏽥κω,n. (27)

Taking the expected values of both sides of (27), it follows
that

E vn+1􏼈 􏼉 � E vn􏼈 􏼉 + ηλE
zn􏽥κω,n

1 + λ en

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼨 􏼩

− ηλE
􏽥κω,n􏽥κ⊤ω,n

1 + λ en

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
vn􏼨 􏼩.

(28)

Since the impulsive CG noise zn with zero-mean is
assumed to be statistically independent of any other signals
as mentioned above, and 􏽥κω,n􏽥κ⊤ω,n is assumed to be statisti-
cally independent of weight error vector vn, i.e., the modified
independence assumption (MIA) widely used in [34, 41, 42],
then (28) can be reformulated as

E vn+1􏼈 􏼉 � IM − ηλE
􏽥κω,n􏽥κ⊤ω,n

1 + λ|en|
􏼨 􏼩􏼠 􏼡E vn􏼈 􏼉. (29)

For theoretical analysis tractability, the second term of
(29) can be approximated as

(1) Input: xn, yn􏼈 􏼉, n � 1, 2, . . .

(2) Initialization: select the step-size η> 0, the Gaussian kernel bandwidth ξ > 0, the threshold δκ > 0, the parameter λ> 0, the
dictionary D0 � x1􏼈 􏼉, and weight coefficient w0(1) � 0.

(3) for n � 1, 2, . . ., do
(4) if maxm�1,2,...,Mn

|κ(xn, xω,m)|> δκ Update wn+1 via (21);
(5) elseif maxm�1,2,...,Mn

|κ(xn, xω,m)|≤ δκ Update wn+1 via (22);
(6) end if Obtain solution ψ(xn) � 􏽐

Mn

m�1 wn(m)κ(xn, xω,m).
(7) end for

ALGORITHM 1: KLLAD algorithm.

Table 1: Error functions of several KAF algorithms.

Algorithm Error function f(en)

KLMS f(en) � 1
KMCC f(en) � κ(yn, ϕ(xn)) � exp(− ‖en‖22/2ξ

2
f)

KLMP f(en) � |en|p− 2

KLLAD f(en) � λ/1 + λ|en|
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E
􏽥κω,n􏽥κ⊤ω,n

1 + λ|en|
􏼨 􏼩 ≈

E 􏽥κω,n􏽥κ⊤ω,n􏽮 􏽯

1 + λE en

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽮 􏽯

. (30)

On the one hand, the numerator of (30) is the auto-
correlation matrix of the kernelized input vector defined by

Rκκ � E 􏽥κω,n􏽥κ⊤ω,n􏽮 􏽯 ∈ RM×M
. (31)

It has been determined in the theoretical analysis of KAF
algorithms [34, 41]. ,e (i, j)-th element of matrix Rκκ can
be computed by

Rκκ􏼂 􏼃ij � IL +
2
ξ2
Rxx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

− 1/2

× exp −
1
4ξ2

2 xω,i

����
����
2
2 + xω,j

�����

�����
2

2
􏼒 􏼓􏼔􏼠

− xω,i + xω,j

�����

�����
2

IL+ξ2R− 1
xx/2( )

− 1􏼕􏼓,

(32)

with the input covariance matrix Rxx � E xnx⊤n􏼈 􏼉 ∈ RL×L. On
the other hand, using (25) and the MIA assumption, the
expression of MSE for KLLAD algorithm is given by

E e
2
n􏽮 􏽯 ≈ σ2z + tr RκκVn􏼈 􏼉, (33)

with the autocorrelation matrix of weight error vector
Vn � E vnv⊤n􏼈 􏼉 ∈ RM×M. Although the recursion ofVn is not
explicitly provided, it has trivial influence on the con-
vergence condition on the mean stability of KLLAD al-
gorithm as shown below. By the result of (4), (33) can be
expressed as

E e
2
n􏽮 􏽯 � 1 − pr( 􏼁σ2v + pr(K + 1)σ2v + tr RκκVn􏼈 􏼉. (34)

,e expectation in denominator of (30) can be roughly
approximated as

E en

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽮 􏽯 ≈

�������������������������������

1 − pr( 􏼁σ2v + pr(K + 1)σ2v + tr RκκVn􏼈 􏼉

􏽱

. (35)
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Figure 1: Curves of error functions f(en) with en ∈ [− 10, 10]. (a) KLMS algorithm. (b) KMCC algorithm. (c) KLMP algorithm. (d) KLLAD
algorithm.
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E vn+1􏼈 􏼉 � IM − ηλ
Rκκ

1 + λ
�������������������������������

1 − pr( 􏼁σ2v + pr(K + 1)σ2v + tr RκκVn􏼈 􏼉

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠E vn􏼈 􏼉. (36)

,en, (29) can be further determined by (36), as shown
at the top of next page. By (36), thus the sufficient con-
vergence condition on mean stability is given by

0< η<
2 + 2λ

�������������������������������

1 − pr( 􏼁σ2v + pr(K + 1)σ2v + tr RκκVn􏼈 􏼉

􏽱

eigmax Rκκ􏼈 􏼉
. (37)

,us, (37) can be rigorously reformulated as

0< η<
2 + 2λσv

�������
1 + prK

􏽰

eigmax Rκκ􏼈 􏼉
, (38)

where the calculation of autocorrelation matrix of weight
error vector Vn is not used as explained before.

5. Simulation Results

In this section, we evaluated the performance of the pro-
posed KLLAD algorithm in the context of impulsive noise by
the simulation results. All the curves are obtained by av-
eraging over 200 independent Monte Carlo trails.

5.1. Example I. In general, the optimal weight vectors of KAF
algorithms, which correspond to the elements of online dic-
tionary built by an online manner, are unavailable a priori. As a
consequence, it is difficult to exhibit the convergence perfor-
mance, particularly the mean-square-deviation (MSD). In order
to obviously demonstrate the excellent mean and mean square
convergence performance of KLLAD algorithm, the desired
output of an ideal nonlinear synthesis system consisting of the
optimum weight vector and the kernelized inputs is given by

yn � 􏽘
M

m�1
w
⋆
m exp −

xω,m − xn

����
����
2
2

2ξ2
⎛⎝ ⎞⎠ + zn, (39)

where the kernel bandwidth is set to ξ � 0.65, and zn is the
non-Gaussian impulsive CG noise with parameters
K � 1 × 104, σ2v � 1, and pr � 0.05.

Furthermore, the CG noise model defined by (2) can be
generalized into the mixture Gaussian noise model by
changing the distribution of the random variable ϵn into the
uniform, binary, Rayleigh, Laplacian distributions, etc.,en,
we are able to thoroughly investigate the variations of
nonlinear filtering performance of KLLAD algorithm in the
presence of distinct impulsive noises with large outliers.

Meanwhile, the preselected dictionary with 5 elements
utilized for the kernelized nonlinear mapping is given by

D � xω,1, xω,2, xω,3, xω,4, xω,5􏽮 􏽯

�
0.72

1.44
􏼢 􏼣,

3.31

1.28
􏼢 􏼣,

− 3.03

− 2.75
􏼢 􏼣,

1.48

− 1.66
􏼢 􏼣,

− 1.28

− 0.32
􏼢 􏼣􏼨 􏼩,

(40)

which is generated by the coherence criterion from the input
signals a priori. Correspondingly, the learning curve of the
MSD is defined as

MSDn �
1
T

􏽘

T

t�1
wt,n − w⋆

����
����
2
2, (41)

where T is the total number of Monte Carlo runs. ,e input
signal was assumed to be a sequence of statistically inde-
pendent vectors xn � [x1,n, x2,n]⊤ with correlated samples
satisfying x1,n � 0.5x2,n + τx,n, where x2,n is a white Gaussian
noise sequence with variance σ2x2

� 1 and τx,n is a white
Gaussian so that x1,n has variance σ2x1

� 1. ,e optimum
weight vector w⋆ was supposed to be abruptly changed from
[0.3, 0.1, − 0.15, − 0.3, − 0.1]⊤ to
[0.05, 0.25, − 0.05, − 0.2, − 0.35]⊤ at time instant n � 2 × 104.

,e set of parameters of all used algorithms for Example
I is listed in Table 2. It should be pointed that the step-size of
KLLAD algorithm is selected by satisfying the convergence
condition presented by (38).

,e convergence curves of weight coefficients obtained
by implementing KLMS, KMCC, KLMP, and KLLAD al-
gorithms are illustrated in Figures 2–5, respectively. As il-
lustrated in Figure 2, the averaged curves of weight
coefficients of KLMS algorithm are not able to tend to the
optimal weight coefficients during the two stages due to the
interference effect of impulsive CG noise. In contrast, the
averaged curves of weight coefficients of KMCC, KLMP, and
KLLAD algorithms are smooth and all converge to two
optimal weight coefficients within the two stages, as shown
in Figures 3–5. In addition, the effectiveness of convergence
condition on the mean stability (38) is validated by Figure 5.
More importantly, Figures 6(a)–6(f) show that the filtering
performance of KLLAD algorithm consistently outperforms
those of KLMS, KMCC, and KLMP algorithms in terms of
robustness, convergence rate, and accuracy of the learning
curves of MSD during the two stages using the mixture
Gaussian noise model based on the normal, uniform, binary,
Rayleigh, Laplacian, and symmetric α-stable distributions,
respectively. ,erefore, the robust performance of KLLAD
algorithm is validated by the simulation results of nonsta-
tionary nonlinear system identification in the presence of
non-Gaussian impulsive noise.

5.2. Example II. As the second example, we consider the
input random sequence generated from the following
relation:

un � ρun− 1 + σu

�����

1 − ρ2
􏽱

ζn, (42)

where ζn is a random noise following the i.i.d. standard
normal distribution. Here, the correlation factor ρ and the
standard deviation σu of random sequence un were all
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chosen as 0.5. ,e desired output of nonlinear system is
generated as follows:

tn � 0.5un − 0.3un− 1,

yn � tn − 1.25t
2
n + 0.25t

3
n + zn,

􏼨 (43)

where zn is the non-Gaussian impulsive CG noise with
parameters K � 1 × 104, σ2v � 1, and pr � 0.1. At each time
instant n, the input vectors xn � [un, un− 1]

⊤ are used to
estimate the nonlinear desired response signal yn contam-
inated by the impulsive noise. In order to clearly investigate
the characteristic of convergence of weight coefficients, the 6

elements of dictionary were chosen by the coherence cri-
terion from the input vectors a priori as follows:

D � xω,1, xω,2, xω,3, xω,4, xω,5, xω,6􏽮 􏽯

�
0.17

− 1.92
􏼢 􏼣,

− 1.62

− 0.18
􏼢 􏼣,

0.52

1.55
􏼢 􏼣,

2.90

1.92
􏼢 􏼣,

− 2.0

− 2.47
􏼢 􏼣,

2.65

− 0.82
􏼢 􏼣􏼨 􏼩.

(44)

,e set of parameters of used algorithms for Example II
is listed in Table 3. Likewise, the step-size of KLLAD al-
gorithm in second example is also determined from the
range of convergence condition according to (38).

Although the fixed dictionary with 6 elements is used to
compare the differences of convergent performance among
used algorithms, the corresponding optimal weight

Table 2: Parameter settings of used algorithms for Example I.

Algorithm Parameters
KLMS ξ � 0.65; η � 0.05;
KMCC ξ � 0.65; η � 3; ξf � 0.05;
KLMP ξ � 0.65; η � 0.05; p � 1.1
KLLAD ξ � 0.65; η � 0.08; λ � 15
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Figure 2: Convergence of the coefficients wn(m) for KLMS al-
gorithm (the dotted lines are for the optimal weight coefficients,
and solid lines are for weight coefficients of KLMS algorithm).
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cients, and solid lines are for weight coefficients of KLMP
algorithm).

Iteration n ×104
0.5 1 1.5 2 2.5 3 3.5 4

–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4
W

ei
gh

ts 
w n

 (m
)

Figure 5: Convergence of the coefficients wn(m) for KLLAD
algorithm (the dotted lines are for the optimal weight coeffi-
cients, and solid lines are for weight coefficients of KLLAD
algorithm).

8 Mathematical Problems in Engineering



–20

KLMS
KMCC

–15

–10

–5

0

5

KLMP
KLLAD

M
SD

 (d
B)

Iteration n ×104
0.5 1 1.5 2 2.5 3 3.5 4

(a)

KLMS
KMCC

KLMP
KLLAD

–20

–15

–10

–5

0

M
SD

 (d
B)

Iteration n ×104
0.5 1 1.5 2 2.5 3 3.5 4

(b)

KLMS
KMCC

KLMP
KLLAD

–20

–15

–10

–5

0

5

M
SD

 (d
B)

Iteration n ×104
0.5 1 1.5 2 2.5 3 3.5 4

(c)

KLMS
KMCC

KLMP
KLLAD

–20

–10

0

10

20

30
M

SD
 (d

B)

Iteration n ×104
0.5 1 1.5 2 2.5 3 3.5 4

(d)

KLMS
KMCC

KLMP
KLLAD

–20

–15

–10

–5

0

5

M
SD

 (d
B)

Iteration n ×104
0.5 1 1.5 2 2.5 3 3.5 4

(e)

KLMS
KMCC

KLMP
KLLAD

–20

–10

0

10

20

30

40

50

M
SD

 (d
B)

Iteration n ×104
0.5 1 1.5 2 2.5 3 3.5 4

(f )

Figure 6: Comparisons of learning curves of MSD for KLMS, KMCC, KLMP, and KLLAD algorithms with different non-Gaussian
distribution noises. (a) Normal distribution noise. (b) Uniform distribution noise with (− 1, 1). (c) Binary distribution noise with (− 1, 1). (d)
Rayleigh distribution noise with σ2 � 4. (e) Laplacian distribution noise with μ � 0 and σ2 � 1. (f ) Symmetric α-stable distribution noise
with α � 0.9, c � 0.5, and δ � 0.
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coefficients are still unknown in fact. ,e KLMS algorithm is
ignored due to its severe instability of convergence. Figure 7
shows that the mean value curves of weight coefficients of
KLLAD algorithm converge much smoother and faster
compared with the KLMP and KMCC algorithms, which
verified the superiorities of KLLAD algorithm.

6. Conclusion

In this paper, we presented a novel KLLAD algorithm based
on the logarithmic error cost criterion under the assumption
of non-Gaussian impulsive CG noise. ,e KLLAD algorithm
can effectively mitigate the instability of convergence learning
curves caused by impulsive noise. ,e simulation results
demonstrated that the proposed KLLAD algorithm has an
excellent performance compared to the KLMS, KMCC, and
KLMP algorithms in the presence of impulsive noise.
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Tropical storm PABUK developed from tropical depression first defined on 31 December 2018 in the lower South China Sea. It
made landfall in Pak Phanang, Nakhon Si )ammarat province, southern )ailand. PABUK caused heavy rain and flash floods
from 3 to 5 January 2019 (D1, D2, and D3) where the total rainfall reached 150–300mm across 14 provinces of southern)ailand.
)is paper is aimed to investigate rainstorm properties and rainfall estimation of tropical storm PABUK with weather radar in
southern )ailand. )e radar data analysis in this study was to extract the radar reflectivity to study rainstorm properties of
PABUK over 3 days along southern )ailand derived from the )understorm Identification and Tracking Analysis and
Nowcasting (TITAN) algorithm including 5 variables of duration, area, cloud-based height, maximum reflectivity, and speed in
the data set. Based on the properties and frequency distribution of 2,557 rainstorms in D1, D2, and D3, rainstorms in D2 and D3
when PABUKmade landfall over southern)ailand show a longer lifetime, higher reflectivity, and larger rain-cells as well as it was
found efficient in terms of rainfall amount than in D1. In addition, the estimated rainfall using weather radar provides important
information of the rainfall distribution for the analysis of the rainstorm as well. )ese analyses provide a context for interpreting
the feasible rainfall estimates based on Z-R relationship during tropical storm PABUK that produced extreme floods in southern
)ailand. A Z-R relationship in the form Z� 104R1.5 provided acceptable statistical indicators, making it appropriate for radar
estimated rainfall in case studies presented of tropical storm PABUK in southern )ailand. However, the result of this study
should be improved to estimate precipitation in case of extremely heavy rainfall in tropical storm occurrence by using radar of
southern )ailand and applied for applications of early warning systems.

1. Introduction

A large number of studies on rainstorm analysis obtained
from capability for spatial and temporal storm profiles
measurement of weather radar are widely used to detect the
convective storms and study of convective storm structure
[1–3] and also the process of the rainfall system itself by
providing real-time regional information, and with the

existence of long radar data sets, these data could be also
applied for climatological applications. In addition, weather
radar is also tool that combines meteorology and hydrology
[4–6]; the meteorological informationmeasured by radar are
used for hydrological analysis as referred to Peng et al. [7],
and they explained that the advantage of using radar for
precipitation measurement is the coverage of a large area in
real-time, and radars also experience difficulty in achieving
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an accurate estimation for hydrological applications. )e
single-polarization [3] and dual-polarization [8, 9] weather
radar was used to study the relationship between radar
reflectivity and rainfall rate which is developed for rainfall
measurement by using the Z-R relationship. )e uncertainty
of radar rainfall estimation by using Z-R relationship was
proposed by Chen et al. [10] and Gou et al. [11]. )e de-
veloped Z-R relationships are needed in)ailand to provide
a more systematic and comprehensive approach to achieve
water management.

Applications of weather radar in )ailand are still
limited mostly for meteorology and monitoring the weather
routines. Not much work has been done in the field of
hydrological and heavy rainfall cases. Finding rainfall in-
tensity is one of the essential applications for weather radar
in the process of hydrology, flood management, and early
winning system in case of severe weather situation. For the
purpose in radar rainfall estimation, the relationship be-
tween radar reflectivity and rainfall rate is developed for
rainfall measurement by using the Z-R relationship.)e Z-R
relationship is highly dependent on the precipitation types
and wind conditions such as convective, stratiform or mixed
types, and deep convection [12–15]. Event type is one of the
major influences of Z-R relationship that must be studied
accordingly. Moreover, the location of areas and seasonal
also plays an important factor in applying Z-R relationships
to radar rainfall measurements [1, 16]. Most weather radars
in )ailand are not calibrated for the Z-R relationship. As
the results, the developed radar rainfall estimation in case of
severe weather situation from tropical storm is needed in
)ailand providing a more systematic and comprehensive
approach to achieve in water management and also addi-
tionally to implement in flood warning purposes. Because
the southern part of )ailand is a major economic tree
plantation zone, especially fruits, oil palm, and rubber tree, it
is almost in transition from water richness to water scarcity
because of the increasing demands on this limited resource
as well as there is no universal Z-R relationship that can be
applied to all cases of rainfall events. )erefore, the focus of
this paper will be on the optimization of Z-R relationships
during tropical storm and heavy precipitation which were
tuned to fit the rain gauge measurements that turn into
inaccuracies over the central region of )ailand.

)is article is structured as follows. )e data and
methodology section presents the overview of PABUK
tropical cyclone, the technical characteristics of the radar
used, radar data analyses, and the statistics for the analysis.
)is is followed with presenting the results of rainstorm
properties and radar rainfall estimation during PABUK
event, and the article closes with is a brief discussion about
the conclusion reached.

2. Data and Methodology

2.1. Overview of PABUK Tropical Cyclone. Tropical storm
PABUK, which has originated from the low-pressure zone in
the South China Sea, developed from tropical depression
first defined on 31 December 2018. )is storm moved
westward into the lower Gulf of )ailand, and it made

landfall on 4 January 2019 over Phanang, Nakhon Si
)ammarat province, at latitude of 8.2°N and longitude of
100.2°E. Maximum sustained wind is 75 kmhr−1, and the
storm was moving northwest at a speed of 18 kmhr−1.
PABUK became the first tropical storm tomake landfall over
southern )ailand since Linda in 1997. )is affected the
South with widespread heavy rainfalls, and torrential
downpours are possible in much of southern area of
)ailand from 3 to 5 January 2019 as follows:

(1) On 3 January 2019 (hereafter referred as D1) at 11.00
UTC, tropical storm “PABUK” was located 500 km
southeast of Nakhon Si )ammarat province at the
latitude of 6.5°N and longitude of 104.2°E with
maximum sustained winds of 65 kmhr−1. )e storm
was accelerated west-northwestward and entered the
Gulf of )ailand which affected the lower part of
southern )ailand with heavy rainfalls and some
torrential downpours in Phatthalung, Songkhla,
Pattani, Yala, and Narathiwat.

(2) On 4 January 2019 (hereafter as D2), the storm
moved westward into the lower Gulf of)ailand, and
it made landfall at 05 : 45 UTC over Phanang,
Nakhon Si )ammarat province, at latitude of 8.2°N
and longitude of 100.2°E with the maximum sus-
tained wind of 75 kmhr−1, and the storm was moving
northwest at a speed of 18 kmhr−1. It affected the east
side of South with widespread heavy rainfall, strong
winds, and severe conditions that cause forest run-
offs and flash floods in Phetchaburi, Prachuap Khiri
Khan, Chumphon, Surat )ani, Nakhon Si )am-
marat, Phatthalung, Ranong, Phangnga, Phuket,
Krabi, Trang, and Satun.

(3) On 5 January 2019 (hereafter as D3) at 17.00 UTC,
tropical storm “PABUK” was due 5 km west of Takua
Pa, Phangnga, with the latitude of 8.7°N and longitude
of 104.2°E with the maximum sustained wind of
55 kmhr−1; the storm was moving west-northwest
slowly with the outbreaks of torrential downpours
much of southern provinces including Phetchaburi,
Prachuap Khiri Khan, Chumphon, Surat )ani,
Nakhon Si )ammarat, Ranong, Phangnga, Phuket,
and Krabi. PABUK then moved down to the Anda-
man Sea and weakened into a low-pressure cell during
the same day and covered the Andaman Sea.

)e influence of tropical storm PABUK caused strong
wind shear, heavy rain, and flash floods fromD1 to D3 where
the accumulated rainfall reached 150–300mm a day across
14 provinces of southern )ailand, especially in Nakhon Si
)ammarat, Surat )ani, Chumphon, Ranong, Phatthalung,
Songkhla, Pattani, Yala, and Narathiwat, the maximum
rainfall in 24 hours reached 309.3mm, and maximum wind
speed was 89 kmhr−1 at Nakhon Si )ammarat province on
D2. In addition, PABUK also results in rising sea levels and
blowing into the shore as storm surge in the coastal region of
upper southern region; the images of the damage caused by a
tropical storm PABUK are as shown in Figure 1.
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2.2. Radar Data Analyses. )e study area has been southern
)ailand, characterized by a complex topography and di-
rectly influenced by the South China Sea and Indian Ocean
(Figure 2). )e C-Band Doppler Radar, which represents a
good compromise between range and reflectivity that can
provide rain detection up to a range of 240 km, from )ai
Meteorological Department (TMD) was used in this study.
)e reflectivity data from Songkhla’s radar located in the
eastern coastline near the landfall of PABUK tropical storm
were appropriately used to investigate the rainstorm
properties and estimated radar rainfall that affected the
southern region of )ailand. Radar is installed at Sathingpra
District, Songkhla, at the elevation of 33m MSL in southern
)ailand as shown in Figure 2. )e radar with EDGE™
software collected the reflectivity data as volume scan to the
highest altitude up to 5 km provided in the universal flies
(UF) format [17]. )e files were obtained every 15 minutes
up to the effective range of 240 km to the highest altitude up
to 5 km provided in the volume format files for 4 elevation
angles: 0.5°, 1.5°, 2.4°, and 3.4°, and a Doppler filter is applied
to remove ground clutter and fixed echoes.

In order to characterize rainstorm properties, radar
reflectivity data in horizontal polarization were run through
TITAN and used the 30 dBZ reflectivity threshold to identify
a convective storm cell before tracking their movement as
referred to Dixon and Wiener [18]; Johnson et al. [19], and
Potts et al. [20]. All of rainstorms were selected and analyzed
by the dataset from the criteria as suggestion by Chantraket
et al., [1] including their 5 properties as exhibited in Table 1.
However, it may be mentioned that in this study, only those
rainstorms are considered whose rain centers are located in
the effective range of 240 km of Songkhla’s radar. )e event
numbers differed in each day; these data were then analyzed
to express properties of individual rainstorms. )e total of
2,557 rainstorm events were chosen from D1 (1,014 rain-
storms), D2 (962 rainstorms), and D3 (581 rainstorms),
respectively, during occurred PABUK tropical cyclone. )e
example case of rainstorm events from TITAN analysis is
presented in Figure 3, and the preliminary of statistical
analysis of all properties is illustrated as Table 2.

In order to estimate radar rainfall, the relationship be-
tween radar reflectivity and rainfall rate which is developed
for rainfall measurement was used as explained in the fol-
lowing equation:

Z � aR
b
, (1)

where a and b are the relationship parameters, Z is the radar
reflectivity inmm6m−3, and R is the intensity of precipitation
mmh−1.

)e rainfall events were used to obtain the appropriated
Z-R relationship for tropical storm in southern )ailand as
well as to test an accuracy of the proposed radar rainfall
estimation based on different Z-R relationships as referred to
Kirtsaeng and Chantraket [16] of Songkhla’s radar of
Z� 104R1.5, Z� 162R1.5, and Z� 184R1.5 and the operational
Z-R relationships of TMD Z� 300R1.4 as referred for all rain
types especially for deep convective [21, 22]. In order to
evaluate the suitable Z-R relationship for tropical storm of
PABUK, their measurement wascompared with the pre-
cipitation recorded by the rain gauges from automatic
meteorological stations of Hydro Informatics Institute (HII)
and TMD. )e study was performed by using 24-hour ac-
cumulations of 156 rain gauges in and around southern
regions in the coverage of radar effective range (see Figure 2)
having been scrutinized during D1 to D3. )ese data were
procured from the (i) 129 stations of HII and (ii) 27 stations
of TMD. After procurement of 24-hour accumulations from
different sources, these were subjected to extensive quality
control tests to remove gross errors, archival errors, and
reformatting problem; however, the suspected data were
checked for validation from different reliable sources. )e
study was carried out using 24-hour accumulations, com-
paring with estimated rain accumulation from Z-R rela-
tionship that occupied the position of rain gauges. Rain
gauge measurement and radar estimate of 24-hour accu-
mulations greater than 1.0mm and less than 300mm were
considered to be valid. Daily rainfall distribution in southern
)ailand caused by tropical storm PABUK during D1, D2,
and D3 is shown in Figure 4.

)e statistical indexes used to evaluate the different of
estimated rain accumulation from Z-R relationship related
with the rain gauges as recommended by [23] are as follows.

Root mean square error (RMSE) is as follows:

RMSE �

�������������

1
N

􏽘

N

i�1
Ri − Gi( 􏼁

2

􏽶
􏽴

. (2)

Mean error (ME) is as follows:

ME �
1
n

􏽘

N

i�1
Ri − Gi( 􏼁. (3)

Figure 1: Strong wind shear and flooding caused by tropical Storm PABUK at first hit over Phanang, Nakhon Si) ammarat province,
southern) ailand on D2 (image: REUTERS and https://news.mthai.com/).
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Figure 2: Tropical storm PABUK developed from a tropical depression and being placed at 6 h intervals and as observed during D3 at 0600
UTC time by Japan’s Himawari-8 satellite. Image credit: JMA (Japan meteorological agency).

Table 1: Radar-obtained storm characteristics from TITAN and their units.

Rainstorm properties Variables Units
(1) Mean storm duration SDUR Hours
(2) Mean storm-based SBAS km MSL
(3) Maximum envelope area SARE km2

(4) Maximum reflectivity SREF dBZ
(5) Mean speed SVEL kmhr−1
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Table 2: )e storm properties during D1, D2, and D3 of PABUK event in southern )ailand.

SDUR SBAS SREF SARE SVEL
Hours km MSL dBZ km2 kmhr−1

D1 D2 D3 D1-D3 D1 D2 D3 D1-D3 D1 D2 D3 D1-D3 D1 D2 D3 D1-D3 D1 D2 D3 D1-D3
Mean 0.9 0.9 1.0 0.9 2.0 1.8 1.9 1.9 35.0 38.6 43.5 38.3 52.0 55.8 46.4 52.2 23.1 22.5 18.2 21.8
SD 0.4 0.5 0.7 0.5 0.9 0.9 0.9 0.9 5.2 6.9 8.3 7.4 112.9 138.7 68.1 115.5 13.4 13.5 11.5 13.2
Min 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6 30.0 30.0 30.0 30.0 3.4 4.5 4.5 3.4 0.0 0.0 0.0 0.0
Max 2.8 4.7 4.8 4.8 3.6 3.6 3.6 3.6 61.0 62.0 67.5 67.5 2666.3 3359.3 737.4 3359.3 62.3 114.5 56.0 114.5
D1: N� 1014 events, D2: N� 962 events, and D3: N� 581 events.
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Figure 4: Rainfall distribution of 24-hour accumulations in southern )ailand caused by tropical storm PABUK through (a) D1, (b) D2,
and, (c) D3 and (d) 3-day accumulated rainfall during D1 to D3.

(a) (b)

Figure 3: Some case of rainstorm events obtained from TITAN analysis of Songkhla’s radar on D2 at 14 : 03 UTC: (a) TITAN analysis image
and (b) cross section of selected rainstorm.
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Mean absolute error (MAE) is as follows:

MAE �
1
n

􏽘

N

i�1
Ri − Gi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (4)

Bias is as follows:

B �
􏽐

N
i�1 Gi

􏽐
N
i�1 Ri

, (5)

where G is 24-hour accumulations of rain gauges at station i
in mm, R is 24-hour accumulations of radar rainfall com-
puted using Z-R relationship at the point with coincided to
rain gauge station i in mm, and N is the number of pre-
cipitation records.

Several Z-R relationships would be specified by the
calculation of equations (2) to (5). Whichever relation
provides theminimum of the four statistical measures will be
selected as the most suitable relations for the study.

3. Result and Discussion

3.1. Rainstorm Properties of Tropical Storm PABUK from D1,
D2, and D3

3.1.1. Rainstorm Duration (SDUR). SDUR is the time
elapsed from the first radar reflectivity of 30 dBZ until the
disappearance of precipitation. )is study revealed that the
average individual SDUR during D1 to D3 was around 0.9 to
1 hour, and almost all SDURs in D1 were less than 2 hours as
in D2 and D3 tended to be longer duration than D1 as 1 to 3
hours. It is implied that the longer SDUR in D2 and D3
would extend the potential of rainfall intensity near the
center of tropical storm PABUK in accordance with ex-
tremely heavy rainfall in D2 and D3 of rain gauge mea-
surement when the rainstorm made landfall over southern
)ailand. )e time series and frequency distribution of
SDUR on D1 to D3 are illustrated in Figure 5.
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Figure 5: )e rainstorm duration (a) and frequency distribution (b) during D1, D2, and D3.
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Figure 6: )e rainstorm bases (a) and frequency distribution (b) during D1, D2, and D3.
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Figure 7: )e rainstorm reflectivity (a) and frequency distribution (b) during D1, D2, and D3.
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Figure 8: )e rainstorm area (a) and frequency distribution (b) during D1, D2, and D3.
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3.1.2. Rainstorm Bases (SBAS). )e SBAS show the mini-
mum height of radar reflectivity, as the minimum reflectivity
threshold and altitude are determined as 30 dBZ and 0.6 km,

respectively. )e results of this study showed that an average
of SBAS is quite similar in D1, D2, and D3; between 1.8 and
2.0 kmMSL, all events of occurred rainstorms are lower than
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4 km during PABUK occurrence. )e time series and fre-
quency distribution of SBAS on D1 to D3 are illustrated in
Figure 6.

3.1.3. Rainstorm Reflectivity (SREF). )e result from this
study shows that on average maximum value, storm’s
reflectivity peaks that occurred during PABUK are distin-
guished among three days and tend to be higher SREF from
D1, D2, and D3 as 35.0 dBZ, 38.6 dBZ, and 43.5 dBZ, re-
spectively. Furthermore, the maximum SREF was found as a
stronger reflectivity more than 60 dBz which corresponds to
the precipitation intensity and the development of PABUK
tropical cyclone during D1 to D3 as well. )e variation of
SREF along three days in PABUK period is presented in
Figure 7.

3.1.4. Rainstorm Area (SARE). )e average SARE during
PABUK period shows difference amongD1, D2, and D3.)e
largest SARE from individual rainstorm is shown in D2 that
is approximately 55.8 km2. It is seen that the area of indi-
vidual rainstorms of D2 when PABUK made landfall over
Nakhon Si )ammarat province was found to be more
potential rainstorms than D1 and D3 according to the ex-
tremely heavy rainfall in D2 occurred near the landfall point
and inland of southern part. )e D2 rainstorm composes of
several large cells as well as they can also lead to larger areas
of precipitation.)e variation of these properties along three
days in PABUK period is presented in Figure 8.

3.1.5. Rainstorm Speed (SVEL). )e TITAN algorithm can
provide the information of storm tracking and its move-
ment. )e results obtained from this study show that the
average SVEL of D1, D2, and D3 was 23.1 kmhr−1,
22.5 kmhr−1, and 18.2 kmhr−1, respectively. Most of SVEL
has tend to be at lower speed when landfalling and passing
through the land of southern )ailand. Investigating the
maximum speed in D1, D2, and D3 as illustrated in Table 2,
it is found that maximum SVEL of individual rainstorms was
observed in D2 consistently with the report of maximum
sustained wind during PABUK occurred period as well. )e
time series and frequency distribution of SVEL on D1 to D3
are illustrated in Figure 9.

3.2. Radar Rainfall Estimation. )e radar estimated rainfall
during PABUK landfall period was analyzed by the step as
explained in the previous section. )e result of estimated
rainfall accumulation using Z-R relationship in four trials of
(1) Z� 184R1.5, (2) Z� 104R1.5, (3) Z� 162R1.5, and (4)

Z� 300R1.4 is compared. )e comparison of the 24 hr ac-
cumulated radar rainfall and the 24 hr accumulated gauge
rainfall using the four trials of Z-R relationship is presented
in Figure 10, and the statistical measures comparing these
two sets of data are also calculated and summarized in
Table 3.

Figure 10 shows the images of estimated daily radar
rainfall attained from four Z-R relationships in D1, D2, and
D3 and the scatter plot of the 24 hr accumulation of esti-
mated radar rainfall attained from the different Z-R rela-
tionships and 24 hr accumulated gauge rainfall during D1 to
D3. )e estimated daily radar rainfall using the four trails of
relation in D1, D2, and D3 was plotted as shown in the left
side of radar images. From the scatter plot, it can be noted
that the estimated radar rainfall accumulation is mostly
higher than accumulated rain gauges except for Z� 300R1.4

and also shows that Z� 104R1.5 can provide the closest
compared with the scatter plot of the other relations.

An agreement between estimated radar and gauge
rainfall was examined using the statistical measures resulting
from the four trials of Z-R relationships. )e results show
that the Z� 104R1.5 is acceptable for overall statistical
measures, with minimum of the four statistical measures,
RMSE, ME, MAE, and BIAS, between the estimated radar
and calculated rain gauge rainfall for the data sets in D1, D2,
and D3. )e calibrated Z-R relationship of Z� 104R1.5 is
therefore appropriate to be used for an estimation of ac-
cumulated radar rainfall in the tropical storm of PABUK.

4. Conclusions

)e study presented the physical properties of rainstorm and
radar-based rainfall estimation during tropical storm
PABUKmoving into the lower Gulf of )ailand and making
landfall over southern )ailand which affected the southern
regions with widespread heavy rainfall and flash floods.
Derived from the data set of radar reflectivity and rain
gauges during three days of PABUK, all storm properties
were analyzed with TITAN, and estimated radar rainfall
specified the appropriated Z-R relationship by the selected
statistical measures. )e results are shown as follows:

(1) )ree days (D1, D2, and D3) during the tropical
storm of PABUK in order to investigate rainstorm of
southern )ailand obtained the 5 properties of
rainstorms by using TITAN, which provided the
important analysis tool to identify rainstorms and
their movement in this study. It is revealed that
rainstorms were found to be the most effective
clouds over southern region. In accordance with the

Table 3: Comparisons of the statistical measures gained from the different Z-R relationships of Z� 184R1.5, Z� 104R1.5, Z� 162R1.5, and
Z� 300R1.4.

Z-R relationships ME (mm) RMSE (mm) MAE (mm) BIAS (G/R)
Z� 104R1.5(NEM) −4.00 21.27 12.46 0.87
Z� 162R1.5(BULK) −26.33 53.40 30.10 0.48
Z� 184R1.5(SWM) −12.06 54.77 30.48 0.67
Z� 300R1.4(WSR) 9.34 24.38 12.94 1.52
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characteristics of rainstorms, it can be seen that
rainstorms in D2 and D3 when PABUK made
landfall over Nakhon Si )ammarat province,
southern )ailand, show a longer lifetime, higher
reflectivity, and larger rain-cells as well as it was
found efficient in terms of rainfall amount than in D1
consistently with the records of high precipitation
depth in southern in that periods.

(2) )e appropriated Z-R relationship acceptable for
estimated radar rainfall during the tropical storm of
PABUK in southern )ailand is Z� 104R1.5, which
provided the minimum of the four statistical
measures (RMSE, ME, MAE, and BIAS) so far as the
southern basin is concerned. )e results should be
especially useful in urban design problems as well as
in hydrologic design problems during unusual cases
such as extremely heavy rainfall from tropical storm
on the southern basin.

(3) )ese results are provided to assess the planning of
water resources on a probability in a particular re-
gion or a basin and made to provide improvement of
hydrometeorological relations that are pertinent to
hydrological applications in the southern region and
also capable of adapting to the other parts of
)ailand. Relationships presented are subject to
modification as additional data are collected in the
heavy windy rainstorms, and further research is
conducted.
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In this paper, the reliability analysis and residual life assessmentmodel of gas pipelines withmultiple corrosion pits are established.
Aiming at the simulation evaluation of small failure probability of gas pipelines, a new method for reliability analysis and residual
life assessment of gas pipelines with multiple internal corrosion pits is proposed, which is called the Hamiltonian Monte Carlo
subset simulation (HMC-SS) method. Compared with the traditional MCS (Monte Carlo simulation) algorithm, the HMC-SS
method has the advantages of less sampling, low cost, and high accuracy. And compared with the random walk SS method, the
HMC-SSmethod can analyze the state space more efficiently and achieve faster convergence. In this paper, the HMC-SSmethod is
applied to the reliability analysis and residual life assessment of gas pipeline engineering, and the sensitivity analysis of the random
parameters affecting the failure probability of the pipeline is carried out. 'e results show that the corrosion rate, the depth of
corrosion defects, and the wall thickness of the pipeline have great influence on the residual life of the pipeline, while the yield
strength, working pressure, and the length of corrosion pits have no obvious influence on the failure probability and residual life of
the pipeline. 'e analysis shows that the proposed HMC-SS method can be used as a reasonable tool for failure assessment of
natural gas pipelines affected by corrosion to determine the remaining life of the pipeline system. 'is method provides a reliable
theoretical basis for the integrity management of the gas pipeline.

1. Introduction

Pipeline transportation is an important part of gas pro-
duction process. With the increasing service time of existing
pipelines, the gas pipeline will inevitably be affected by an
internal transport medium, external soil medium, and stray
current in the long-term operation process, which will cause
pipeline corrosion [1]. Corrosion will cause the pipeline wall
thickness reduction, perforation, leakage, strength reduc-
tion, and cracking; serious cases will cause pipeline leakage
or explosion, not only will cause serious casualties and major
economic losses but also pollute the environment and cause
bad social impacts.'erefore, once the oil and gas pipeline is
put into operation for a period of time, the reliability analysis
and remaining service life assessment of the pipeline are very
important. At present, the assessment of corrosion pipelines

mainly includes ASME-B31G [2], DNV RPF101 [3], API579
[4], and other standards. Many scholars have carried out
reliability analysis and residual life assessment of corrosion
pipelines through these standards.'emost commonly used
numerical simulation methods are a second-order moment
method and MCS method. Teixeira et al. [5] used the first-
order reliability method (FORM) and MCS simulation
method to analyze the failure probability of the pipeline
affected by internal pressure corrosion; Carr [6] points out
that the failure probability obtained by MCS is more ac-
curate and applicable than that obtained by FOSM because
MCS is independent of the dimension of random variables
and the complexity of limit state function; Li et al. [7] use
MCS to evaluate the probability of pipeline instability. Al-
though the first-order reliability method is simple to cal-
culate, the error of the structural function with high
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nonlinearity increases sharply [8]. 'e MCS method is
widely used in the failure probability analysis of structures
and residual life assessment due to its robustness and un-
biased calculation results [9]. It can solve any model, es-
pecially when the sample size tends to be infinite, the
accurate solution can be obtained, and the calculation results
are often used as the standard to test the accuracy of other
calculation methods. However, the sample size required by
MCS is inversely proportional to the failure probability. 'is
means that in order to ensure the accuracy and compre-
hensiveness of failure probability calculation, a large number
of samples are needed when we use MCS to deal with the
problem of high-dimensional small failure probability (for
example, ≤10–3), and MCS is difficult to accept by the
project. 'e failure analysis and residual life assessment of
corrosion pipeline are high-dimensional and small failure
probability problems. In order to solve this problem, an
accurate and effective method is urgently needed. 'e im-
proved MCS method, such as the SS simulation method, has
obvious advantages in solving high-dimensional and small
failure probability problems. 'e efficiency and robustness
of the method are highly praised by many scholars [10–12].
Many researchers have applied the SS method to reliability
analysis of bridges, buildings, and other engineering
structures [13–16]. In the current practice of subset simu-
lation, the most widely used method is to generate the re-
quired condition samples by various MCMC (Markov chain
Monte Carlo) algorithms based on random walk. Au and
Beck apply this method to the reliability problem of high-
dimensional small failure probability, thus improving the
calculation accuracy of subset simulation [17]. Miao and
Ghosn use the subset simulationmethod based onMCMC to
the safety and reliability analysis of structural systems [18].
Papaioannou et al. believe that the subset simulation method
based on MCMC can effectively solve the problem of high-
dimensional structural reliability [19]. Wang applies the
subset simulation method based on MCMC to the reliability
evaluation of steel bridges.'e results show that this method
is a good choice to solve the fatigue problems of nonlinear
and multidimensional LSF [20]. Although this method has
many advantages and is widely used, MCMC sampling
method based on random walking makes Markov chain
converge to the fixed distribution function p (x), and the
resulting conditional samples have high autocorrelation, so
the accuracy of simulation results is poor and the efficiency is
still very low [21]. In order to overcome these shortcomings
and solve the practical problems of engineering, a new
MCMC algorithm, which is more efficient and accurate, is
adopted in this paper. HMC is used to calculate the future
state of Markov chain rather than probability distribution by
using the concept of dynamics in the physical system [22]. In
this way, the state space can be analyzed more efficiently and
the convergence can be achieved faster.

In recent years, HMC has been widely used and developed
rapidly and has made remarkable achievements in various
statistical applications [23–25]. 'e HMC method has been
applied to Bayesian analysis and reliability analysis of structural
engineering problems perfectly [26–28].'ere is no research on
this aspect in the reliability analysis and residual life assessment

of corrosion pipelines. In this paper, the system reliability
analysis method is used to evaluate the pipelines with multiple
corrosion pits. 'e model of reliability analysis and residual life
assessment of corrosion pipelines based on HMC-SS method is
established. 'e results based on the HMC-SS method are
compared with those of SS and MCS methods.

'e structure of this paper is as follows. In Section 2, the
reliability analysis model of the gas pipeline based on reliability
theory is established. In Section 3, the SS method based on
random walking is reviewed. 'e fourth section describes the
calculation details and flow of HMC-SS algorithm in detail.
Section 5 proves the effectiveness of the method by a specific
engineering example and further analyzes the sensitivity of the
random variables that affect the remaining life of the gas
pipeline. 'e conclusion and prospect are given in Section 6.

2. Reliability Analysis Model of Gas Pipelines
Based on Reliability Theory

Based on the reliability theory, the state function of pipeline
failure due to corrosion can be expressed by the following
formula:

G � Ff − F0, (1)

where Ff is the failure pressure of the corroded pipeline and
F0 is the actual operating pressure of the pipeline.'e failure
probability of corroded pipeline can be expressed by the
following formula:

Pf � P G � Ff − F0 ≤ 0􏽨 􏽩, (2)

∅(β) � 1 − Pf, (3)

where P is the probability of the event, ∅ is the cumulative
distribution function, and β is the reliability index of the
structure.

For gas pipelines with corrosion defects, according to the
revised ASME-B31G standard measurement, the failure
stress formula of corrosion pipeline is as follows:

σp � σy

1 − A/A0( 􏼁

1 − A/A0F( 􏼁
, (4)

where σy is the flow stress of the pipeline material, A is the
projected area of the corrosion defect on the side, A0 is the
original cross-sectional area of the pipeline at the corrosion
defect, F is the Folias expansion factor, which is related to the
corrosion pipe outer diameter D, wall thickness t, and
corrosion defect length L, namely:

F �

�����������������������������

1 + 0.6275
L
2

Dt
􏼠 􏼡 − 0.003375

L
4

D
2
t
2􏼠 􏼡

􏽳
L
2

Dt
≤ 50 ,

F � 0.032
L
2

Dt
􏼠 􏼡 + 3.3

L
2

Dt
> 50.

(5)

In equation (4), σy � kσs (σs is the yield stress of pipeline
material), where k is the coefficient. For steel tubes, k is
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usually 1.1 or 1.15, and in this paper, k is 1.15. A0 � Lt and
A � 0.85dL (d is the maximum depth of the corrosion pit
and L is the maximum length of the corrosion pit). To
predict the strength of a pipe at time T, it is necessary to
estimate the corrosion growth rate. In [29, 30], a reasonable
linear model is proposed to predict the corrosion growth of
steel pipes and estimate the size of corrosion pits at time T.

d � d0 + ]d T − T0( 􏼁,

L � L0 + ]L T − T0( 􏼁.
􏼨 (6)

In equation (6), d0, L0 denotes the depth and length of
corrosion defects detected in T0, respectively. d andL denote
the depth and length of corrosion defects after service T,
respectively; ]d denotes the radial corrosion rate; and ]L

denotes the axial corrosion rate. Substituting (6) into (4), the
failure pressure Ff of the pipeline with corrosion defects can
be obtained as follows:

Ff �
2tσp

D
�
2.3tσs

D
×

1 − d0 + ]d T − T0( 􏼁􏼂 􏼃/t
1 − d0 + ]d T − T0( 􏼁􏼂 􏼃/Ft

. (7)

Since the failure pressure of the corroded pipeline is
relatively independent of the actual operating pressure (F0)
of the pipeline, the limit state function G of the corroded
pipeline is established based on the reliability theory as

G � Ff − F0 �
2.3tσs

D
×

1 − d0 + ]d T − T0( 􏼁􏼂 􏼃/t
1 − d0 + ]d T − T0( 􏼁􏼂 􏼃/Ft

− F0.

(8)

WhenG> 0, the structure is in a reliable state;G< 0 indicates
that the structure is in a failure state; G � 0 means that the
structure is in the limit state.

3. SS Algorithm Based on Random Walk
MCMC Sampling

'e basic idea of SS algorithm based on random walk
MCMC sampling is to convert the small failure probability
into the product of a series of large conditional failure
probability events by introducing reasonable intermediate
failure events. In the failure region for the functional
function G(X): E � G(X)< b{ }, a series of thresholds can be
introduced as b1 > b2 > · · · > bm � b. Failure events with
nested relationships are composed of these thresholds.
Ek � G(X)< bk, k � 1, 2, . . . , m􏼈 􏼉, and m is the total number
of intermediate events. At this time, E1

E2
···Em�E

. According to
conditional probability theory, the target failure probability
Pf can be obtained as

Pf � P Em( 􏼁 � P E1( 􏼁 􏽙

m

k�2
P

Ek

Ek−1
􏼠 􏼡. (9)

To facilitate calculation, the intermediate conditional
probability is set to a constant value P0 and then the
threshold value bm can be determined by the adaptive
method. 'e traditional subset simulation method has a
detailed process description in [31, 32]. 'e approximate

value of the final failure probability can be obtained by the
following equation:

􏽣Pf �
P

m−1
0
N

NEm
≈ Pf, (10)

where NEm
is the number of samples falling into the last

layer.

4. Reliability Analysis Model of Gas Pipelines
Based on HMC-SS Algorithm

HMC-SS is an improvement on the traditional SS algorithm.
'is method combines Hamiltonian dynamics with MCMC
algorithm and applies it to subset simulation, which has the
advantages of faster convergence, higher accuracy, and
better efficiency.

4.1. Principle of Hamiltonian Dynamics. Hamiltonian dy-
namics describes the time evolution of the system according
to the position vector q and momentum vector p. 'e total
energy of the system H is a function of q and p, namely:

H(q, p) � U(q) + K(p), (11)

where U(q) is the potential energy and K(p) is the kinetic
energy.

Hamiltonian dynamics has several important properties:
(1) reversibility, (2) conservation of the Hamiltonian, (3)
volume preservation, and (4) symplecticness. 'ese prop-
erties are the most important conditions for Hamiltonian
dynamics to be applied to Markov chain Monte Carlo
updating, and the analysis and proof process are described in
detail in references [28, 33]. In order to connect the
Hamiltonian dynamics with the Markov chain Monte Carlo
method, firstly, the random variables x are regarded as q (i.e.,
x ≡ q) of the Hamiltonian system and p as independent
variables with the same dimension, so x and p together form
the extended initial position space; then, the position mo-
mentum state space of the Hamiltonian system is obtained.
'e potential energy function U(x) can be determined by
the target probability density function π(x):

U(x) � −logπ(x). (12)

In general, the kinetic energy function K(p) can be
defined as follows:

K(p) �
p

T
M

− 1
p

2
, (13)

where M is a positive definite, symmetric “mass” matrix,
generally taking the scalar product of the unit matrix (the
scalar matrix). Equation (11) can be rewritten as follows:

H(x, p) � U(x) + K(p). (14)

We use the knowledge of statistical mechanics to connect
Hamiltonian functions H(x, p) and π(x). According to the
energy function E(θ), we can define a regular distribution:
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π(θ) �
1
Z

e
− E(θ)

, (15)

where Z is the regularization coefficient and can guarantee
􏽒 π(θ)dθ � 1. 'en, E(θ) is

E(θ) � H(x, p) � U(x) + K(p). (16)

'en, the regular distribution of Hamiltonian energy
function can be expressed as

P(x, p)∝ e
− H(x,P)∝ e

− U(x)
e

− K(P)∝P(x)P(p). (17)

It can be seen from equation (14) that P(x, p) can be
decomposed into the product of P(x) and P(p). It can be
seen that these two variables are independent of each other.
So, we can sample from the joint probability density function
of x and p. In the Hamiltonian system, H(x, p) is a constant
value, which describes how the kinetic energy and potential
energy are transformed into each other in the process of
system motion. It can be analyzed quantitatively in the form
of differential equation as follows:

dxi

dt
�

zH

zpi

,

dpi

dt
� −

zH

zxi

.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(18)

'e rationality and validity of applying Hamiltonian
equation to the MCMC method are explained in [32, 34].
'e common methods of discrete Hamiltonian equation are
Euler method, improved Euler method, jump point method,
and so on [34]. 'ese methods have been described in detail
in reference [34]. Because the jump point method is simple,
reversible, and retains the symplectic structure of the phase
space, it has high efficiency and high accuracy in solving
Hamiltonian equation. In this paper, the jump point method
is used, and the formula is as follows:

pi t +
ε
2

􏼒 􏼓 � pi(t) −
ε
2

􏼒 􏼓
zU

zxi

(x(t)),

xi(t + ε) � xi(t) + ε
pi(t + ε/2)

mi

,

pi(t + ε) � pi t +
ε
2

􏼒 􏼓 −
ε
2

􏼒 􏼓
zU

zxi

(x(t + ε)),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

where ε is the time step, L � (τ/ε), L is the number of iterations,
and τ is the length of the path. 'e efficiency of the jump point
method is very dependent on the selection of ε and L. In this
paper, when the average acceptance rate is about 65%, the
corresponding L and ε are selected. Generally, it is assumed that
the value between 60% and 80% is the best, which is determined
by dual algorithm. It is described in [34–36] in detail. Ham-
iltonian function is applied to the MCMC method, which is
called HMC algorithm in this paper. HMC algorithm is used to
extract samples from conditional probability density function
f(x/Ek−1). 'e algorithm flow is as follows:

(1) An initial momentum Pinit(where M is the unit
matrix) is generated from the normal distribution
N(0, M).

(2) 'e initial momentum Pinit and the position xinit of
the seed sample are used as the initial conditions to
generate a new state (x∗, p∗) according to equation
(16).

(3) Receiving calibration: if x∗ ∈ Ek and
rand<min[1, exp(−H(x∗, p∗)) + H(xinit, pinit)],
where rand ∼ U([0, 1]), receive the suggested sam-
ple x∗ as the next state; otherwise x∗ cannot be the
next state, and the next state is still the current state
xinit, end.

HMC sampling can explore the state space more ef-
fectively than random walk MCMC sampling, which greatly
improves the computational efficiency. 'e following is a
binary Gaussian distribution, where the mean value of
position variable is 0, and the covariance matrix is [1, 0.9; 9,
1], the momentum variable is 0, and the covariance matrix is
[1, 0; 0, 1]. At this time, Hamiltonian function can be defined
as the following formula:

H(x, p) � x
T
􏽘

− 1x

2
+ p

Tp

2
,

􏽘 �

1 0.9

0.9 1
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(20)

From Figures 1 and 2, we can see that HMC algorithm
has higher probability of accepting samples than traditional
random walk sampling methods and can analyze state space
more efficiently, thus achieving faster convergence.

4.2. .e Flow of Hamiltonian Monte Carlo Subset Simulation
Algorithm. 'e flow of Hamiltonian Monte Carlo subset
simulation algorithm is as follows:

(1) 'e total number of samples N and conditional
failure probability P0 are defined. Let
Ns � NP0 andNt � N − Ns.

(2) According to the probability density function of the
model, the Monte Carlo simulation method is di-
rectly used to generate N independent samples.

(3) Take the samples into the limit function to get the
response value of the corresponding samples and
sort them from small to large to get
G

(1)
j , j � 1, 2, . . . , N􏽮 􏽯 and the corresponding sample

sequence x
(1)
j , j � 1, 2, . . . , N􏽮 􏽯, respectively.

(4) Take b1 � GNs, then P(E1) � P0; let k� 2.
(5) Take x

(k−1)
j , j � 1, 2, . . . , Ns􏽮 􏽯 as the “seed” sample

and generate Nt groups of new samples
xl, l � 1, 2, . . . , Nt􏼈 􏼉 that meet the conditional
probability density function f(x/Ek−1) according to
the HMC algorithm. Specific steps can be carried out
as follows:
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(a) 'rough the “seed” samples, the Hamiltonian
jump point method is used to generate Nt

groups of new samples.
(b) 'e original Ns groups of “seed” samples and

Nt groups of new samples are brought into the
limit function to obtain the corresponding
response value.

(c) Reorder the response values in ascending order
to get G

(k)
j , j � 1, 2, . . . , N􏽮 􏽯 and the corre-

sponding sample sequence x
(k)
j , j � 1, 2, . . . ,􏽮

N}. Take bk � G
(k)
Ns and get the intermediate

conditional probability pk � p0.

(6) If at least G
(k)
j􏽮 􏽯 response values in Ns reach the

threshold, i.e., G
(k)
Ns � b, let k � 2 go directly to (7);

otherwise, let k � k + 1 go to (5).
(7) 'e number of samples falling into the failure do-

main Em is calculated, i.e.,

Pf ≈
P

m−1
0
N

NEm
. (21)

When a pipeline has multiple corrosion points, the
failure occurring at each corrosion point constitutes the total
failure of the pipeline. 'erefore, the series system is more
suitable for the failure assessment of corroded pipelines. 'e
failure probability Pf,s of pipelines can be estimated by using
the reliability method of a series system [37, 38]:

LBPf,s
� max Pf,i􏽨 􏽩≤Pf,s ≤ 1 − 􏽙

n

i�1
Pf,i􏽨 􏽩 � UBPf,s

, (22)

where Pf,i represents the failure probability of the ith
corrosion pit, which can be calculated by (21). n is the total
corrosion points, and LBPf,s

and UBPf,s
represent the lower

and upper ascertainments of the failure probability of the
system, respectively. According to the requirements of the
geographical location of the pipeline on the risk level, when
the failure probability of the corroded pipeline is greater
than the acceptable failure probability over time, it is
considered the pipeline damage; that is, the remaining life of
the corroded pipeline is calculated.

5. Numerical Examples

Taking the secondary high-pressure gas pipeline in a cor-
rosion area as an example, under the assumption of inde-
pendent random variables, the pipeline has been running for
20 years. 'e pipe specifications are as follows: 273× 7, 20#
steel, yield strength of 245MPa, and maximum allowable
working pressure of 0.7MPa. And, one of the sections is
sampled.'e results show that there are three corrosion pits,
and the gas pipeline parameters and geometric features of
the corrosion pits are shown in Tables 1 and 2.

According to the target reliability of the API579 standard
(see Table 3), the geographical location of the pipeline is in
the middle risk area and the allowable failure probability of
the corroded pipeline is 10− 3.When the failure probability of
the pipeline is greater than 10− 3, the initial time is the
remaining life of the pipeline.

In the corrosion failure process of a gas pipeline, the
failure probability of the corroded pipeline is calculated by
the upper bound of equation (22). To improve the accuracy
of the calculation, the sample number of the MCS method is
109 and its result is approximate to the analytical result.

Random Walk Metropolis Hastings

Samples
1st 50 States

-6

-4

-2

0

2

4

6

-4 -2 0 2 4 6-6

Figure 1: 200 iterations of random walk MH method (acceptance
probability α � 0.87).
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Hamiltonian Monte Carlo

-6
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-4 -2 0 2 4 6-6

Figure 2: HMC method with 200 iterations (L � 200, ε � 0.3)
(acceptance probability α � 0.97).
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According to Figure 3, the pipeline runs for another
17 years, if the failure probability is 8.0 × 10− 4; the
pipeline continues to run 18 years, if the failure proba-
bility is 2.59 × 10− 3; the pipeline residual life is 17 years
because the failure probability of the pipeline is over the
pipeline allowance of 10− 3. 'e simulation results of SS
method and HMC-SS method are also 17 years. 'e
results of the three methods are in good agreement.

It can be seen from Table 4 that the failure probability
calculated by the MCS method, SS method, and HMC-SS
method for another 18 years of pipeline operation is
5.29 × 10− 3, 1.4 × 10− 3, and 2.08 × 10− 3. 'e corre-
sponding running time is 1.0561 × 102 seconds, 13.818
seconds, and 11.281 seconds.

'rough the comparative analysis, it can be seen that
the MCS calculation for the pipeline with three corrosion
pits needs a lot of calculation cost, about 0.915 × 102
seconds. When using SS, HMC-SS algorithm only needs
1% of MC samples to achieve the same accuracy, and the
running time is less than 8.49% and 8.77% of MCS al-
gorithm. 'erefore, the SS and HMC-SS algorithms can
be more easily applied to the system reliability analysis
and life prediction with multiple corrosion points.

RMSE (root mean square error) is used to measure the
deviation between the simulated value and the accurate
value. 'e smaller the RMSE is, the higher the accuracy of
the simulation value is. In this paper, the root mean
square error between the failure probability of 1000 :
1000 : 5000 (the number of samples is 1000 to 5000, with a
step of 1000) and MCS (N � 106) is calculated by equation
(23), respectively:

RMSE �

�������������������

􏽐
m
i�1 PfMCS − Pf(i)( 􏼁

2

m

􏽳

. (23)

Among them, PfMCS is the failure probability of MCS
(N � 106), Pf(i) is the failure probability calculated by
simulation method, and m is the number of simulations.

In order to obtain clear observation results, Figure 4
takes logarithmic coordinates, and it can be seen from
Figure 4 that RMSE of HMC-SS andMCSmethods is smaller
than that of SS andMCSmethods.'is shows that compared
with the SS method, the HMC-SS method has higher ac-
curacy and more effective calculation failure probability.

It can be seen from Figure 5 that with the increase of the
working pressure of the gas pipeline, the failure probability
of the pipeline increases and the remaining life decreases
gradually. When the working pressure increases from
0.25MPa to 1.25MPa, the corresponding remaining life
decreases from 22 years to 16 years. It can be seen from
Figure 6 that the change of corrosion rate has greater in-
fluence on the remaining life of the pipeline, when the
corrosion rate ]d and ]l increased from 0.113mm·a−1 to
0.458mm·a−1, the service life of gas pipeline is reduced from
23 years to 14 years. Without replacing the gas pipeline, the
corrosion treatment should be strengthened actively to delay
the corrosion rate of the pipeline and ensure the safety of the
gas pipeline.

It can be seen from Figure 7 that the yield strength σs of
the gas pipeline has little influence on the remaining life of
the pipeline, while it can be seen from Figure 8 that the
geometric shape of the gas pipeline has a significant influ-
ence on the remaining life of the pipeline. 'e remaining life
of pipe decreases sharply with the decrease of pipe wall
thickness, which is also consistent with the actual situation.
'e thicker the pipe wall is, the stronger the corrosion re-
sistance is, and the less likely it is to fail.

To make a more detailed and intuitive analysis of the
influence of random variables on the failure probability and
the remaining service life of gas pipelines, the reliability
sensitivity of the mean value of random variables is shown in
Figure 9. 'e paper [38] provides the reliability sensitivity

Table 1: Pipeline parameters.

Random variable Distribution type μ Std
Diameter, D (mm) Normal distribution 273 5.46
Wall thickness, t (mm) Normal distribution 7 0.14
Pipeline operating pressure, F0 (MPa) Normal distribution 0.7 0.07
Pipe yield strength, σs (MPa) Normal distribution 245 17.15
Radial corrosion rate, ]d (mm · a− 1) Normal distribution 0.229 0.0229
Axial corrosion rate, ]L (mm · a− 1) Normal distribution 0.229 0.0229

Table 2: Geometry of pipeline corrosion pits.

Corrosion pit 1 Corrosion pit 2 Corrosion pit 3
Length (mm) Depth (mm) Length (mm) Depth (mm) Length (mm) Depth (mm)

Mean 115 4.64 150 4.0 200 3.6
Standard deviation 11.5 0.928 15 0.8 20 0.72

Table 3: Reliability of pipeline operation target.

Location
category

Low risk area
(category I

areas)

Medium risk
area (category

II areas)

High risk area
(category III
and IV areas)

Acceptable
failure
probability

10− 2 10− 3 10− 5
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computation formula as follows: SX � (zPf/zX), from
graphics can be very intuitive found that the most important
factors affecting the failure probability and remaining service
life of the gas pipeline are the corrosion rate, wall thickness,

corrosion pit depth, and gas transmission pressure.'e yield
strength of the pipe material and the length of corrosion pits
have almost negligible effects on the failure probability and
remaining service life.
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Figure 3: Curve of failure probability and service life of corroded pipeline.

Table 4: Comparison of results between HMC-SS, SS, and MC methods.

Simulation method Sample number Elapsed time (s) Probability of failure (pf) Running time (T) (years)
MCS 106 0.915 × 102 4.12 × 10− 3 18
SS (p0 � 0.1) 1000 13.818 1.4 × 10− 3 18
HMC-SS 1000 11.281 2.08 × 10− 3 18
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SE

 V
A

LU
ES

SS
HMC-SS

10-7

10-6

10-5

10-4

10-3

10-2

21 22 23 24 25 26 27 2820
Time (year)

Figure 4: RMSE of SS method and HMC-SS method compared with MCS method, respectively.
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Figure 5: Failure probability at different working pressures.
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Figure 6: Failure probability at different corrosion rates.
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Figure 7: Failure probability at different working pressures.
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6. Conclusions

In view of the characteristics of multimode failure and small
failure probability in the residual life of urban gas trans-
mission and distribution pipelines, a reliability residual life
calculation model of gas pipelines with multiple corrosion
pits is established in this paper. 'e MCS, SS, and HMC-SS
methods are used to calculate the residual life of gas pipe-
lines, and the influence of relevant parameters is discussed.

(1) In the case of a small failure probability problemwith
multiple corrosion pits, HMC-SS has advantages of
less sampling, saving time, and high calculation
accuracy.

(2) 'e analysis of sensitivity shows that the corrosion
rate, wall thickness, corrosion defect depth, and gas
transportation pressure of the pipeline have obvious
influences on the failure probability and the
remaining service life of the gas pipeline, while the
yield strength of the pipe and the length of the
corrosion pit have little influence on the failure
probability and the remaining service life of the
pipeline.

(3) Considering that the corrosion rate and wall
thickness of the pipeline have an obvious influence
on the remaining service life of the gas pipeline, it is
suggested to select the appropriate pipe type
according to the geographical location of the pipeline
to meet the safety requirements and make it
economical.

(4) According to the sensitivity of factors affecting the
remaining life of gas pipelines, it is necessary to
prioritize the maintenance or replacement of in-
service pipelines and select the materials for laying
pipelines to provide theoretical guidance.
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Variational modal decomposition (VMD) has the end effect, which makes it difficult to efficiently obtain fault eigenvalues from
rolling bearing fault signals. Inspired by the mirror extension, an improved VMD is proposed. (is method combines VMD and
mirror extension. (e mirror extension is a basic algorithm to inhibit the end effect. A comparison is made with empirical mode
decomposition (EMD) for fault diagnosis. Experiments show that the improved VMD outperforms EMD in extracting the fault
eigenvalues.(e performance of the new algorithm is proven to be effective in real-life mechanical fault diagnosis. Furthermore, in
this article, combining with singular value decomposition (SVD), fault eigenvalues are extracted. In this way, fault classification is
realized by K-nearest neighbor (KNN). Compared with EMD, the proposed approach has advantages in the recognition rate,
which can accurately identify fault types.

1. Introduction

VMD is a novel method to deal with the signals. At present,
VMD has shown great achievements in the processing of
vibration signal, biological signal, and electrical signal. It has
been used for detection, diagnosis, and prediction. In the
heart sound signal, Babu et al. [1] adopted VMD to extract
the Shannon entropy envelope of the heart beat pulse. (e
approach can accurately identify the signal features
reflecting cardiac abnormalities in ECG. Li et al. [2] pro-
posed an adaptive denoising method based on VMD, which
is applied to water supply pipeline leakage location. Com-
pared with EMD, VMD can effectively eliminate modal
aliasing and is robust to noise and sampling [3, 4].

At present, many scholars use different methods to study
the vibration signal of fault bearing [5–11]. In the field of
fault diagnosis, some scholars study and apply VMD. Zhang
et al. [12] constructed a new technique, which applies VMD
to mechanical fault diagnosis. (rough failure mechanism
analysis, they established the fault model in fast Fourier
transform (FFT) and envelope analysis. (is approach can

successfully diagnose the fault of rolling bearing. Jiang et al.
[13] presented an adaptive detection method, which uses
VMD to detect early defects in bearings. Yi et al. [14]
employed VMD to extract bearing fault characteristics. Lv
et al. [15] used VMD and multicore vector to realize me-
chanical fault diagnosis. Compared with the traditional fault
diagnosis model, this approach had better performance. Yan
et al. [16] adopted VMD to extract hybrid-domain features,
identifying fault type with high accuracy. VMD has an
important application value for mechanical fault diagnosis
[17]. However, the drawback of the abovementioned ap-
proaches is that they have the modal aliasing in VMD, which
affects the diagnostic performance.

In this paper, a new method is proposed for rolling
bearing fault diagnosis. First, a mirror extension to suppress
its modal aliasing is used and the improved VMD into
bearing fault diagnosis is introduced [18].(en, combine the
improved VMD with SVD to achieve the effective extraction
of fault eigenvalues, finally adopt KNN to complete fault
classification. (e contributions of this paper are presented
as follows:
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(1) An improved VMD approach is proposed based on
VMD and mirror extension, which inhibits the end
effect. Improved VMD makes it effective for fault
diagnosis.

(2) Compared with EMD, the proposed approach has an
advantage in the recognition rate, which can accu-
rately identify the rolling bearing fault type.

(3) (e proposed diagnosis framework is effectively
verified by detection of the rolling bearing fault.
Results demonstrate that our framework has ad-
vantages in extracting the characteristic frequency,
which is suitable for the detection of manufacturing
systems.

(e article is organized as follows. (e principles of
VMD, mirror extension, and KNN are introduced in Section
2. Section 3 provides a new method and the detailed di-
agnosis scheme of the proposed approach. Section 4 presents
the experimental verification. Section 5 concludes this paper.

2. Theories

2.1. VMD. VMD is a new approach of signal processing,
which is adaptive and quasi-orthogonal. (e original signal

is decomposed into several modal components using VMD.
Eachmodal component has limited bandwidth, and it is near
the central frequency wk [19]. As presented in equation (1),
the constrained variational models are calculated:

min
uk{ }, wk{ }

􏽘
k

zt δ(t) +
j

πt
􏼒 􏼓uk(t)􏼔 􏼕e

− jwkt

�������

�������

2

2

⎧⎨

⎩

⎫⎬

⎭

s.t. 􏽘
k

uk � f,

(1)

where uk􏼈 􏼉 � u1, . . . , uk􏼈 􏼉 are the narrow-band components
and wk􏼈 􏼉 � w1, . . . , wk􏼈 􏼉 represent the central frequencies.
􏽐k � 􏽐

K
k�1, where k is the number of decompositions.

In order to find the optimal solution of the constrained
variational model, the VMD method uses the quadratic
penalty function with good convergence and the Lagrange
multiplier λ operator with strong constraint ability.
(erefore, a Lagrangian function L can be introduced to
optimize the constrained variational problem so as to
minimize the narrow-band component uk and the central
frequency wk obtained in equations (3) and (4). (e ex-
pression of L is introduced:

L uk􏼈 􏼉, wk􏼈 􏼉, λ( 􏼁 � α􏽘
k

zt δ(t) +
j

πt
􏼒 􏼓uk(t)􏼔 􏼕e

− jwkt

�������

�������

2

2

+ f(t) − 􏽘
k

uk(t)

���������

���������

2

2

+〈λ(t), f(t) − 􏽘
k

uk(t)〉. (2)

(e formula for minimizing the narrow-band compo-
nent 􏽢uk is expressed as follows:

􏽢u
n+1
k (w) �

􏽢f(w) − 􏽐i≠k􏽢ui(w) + 􏽢λ(w)/2
1 + 2α w − wk( 􏼁

2 . (3)

(e formula for minimizing the central frequency
narrow-band component uk is obtained as follows:

w
n+1
k �

􏽒
∞
0 w|􏽢u(w)|

2dw

􏽒
∞
0 |􏽢u(w)|

2dw
. (4)

2.2. KNN. KNN is a nonparametric prediction algorithm. It
searches for k most similar eigenvectors in the historical
database to predict the future value [20]. (e model has
simple structure and high computational efficiency.

(e KNN classification algorithm is described as follows.
When the testing sample (unknown sample) is given, first
search the pattern space to find the K training sample closest
to the testing sample, that is, K-nearest neighbor, and then
calculate the selected K-nearest neighbor. If a class has the
maximum number of the nearest neighbors, the testing
sample can be determined to the class. Euclidean distance is
used to calculate the distance between the testing sample and
all training samples. (e formula is defined as follows:

d(X, Y) �

������������

􏽘
N

i�1 xi − yi( 􏼁
2

􏽲

, (5)

where X is the testing sample and Y denotes the training
sample. Figure 1 is the detailed steps of KNN.

3. The Proposed Diagnosis Method

3.1. Improved VMD. (e mirror extension assumes that a
mirror is placed at both ends of the data. (e original data
sequence image in the mirror is symmetrical with respect to
the mirror and the original data sequence [21]. (e original
data sequence image and the original data sequence in the
two mirrors form a continuous and closed ring without
endpoints. (e internal data completely determines the
upper and lower envelopes of the data, so the end effect is
fundamentally avoided [22]. Above the mirror surface is the
original data. Below the mirror surface is the extension data.
After the operation, only the data processing results above
the mirror surface are output.

(e purpose of boundary extension is not to provide
accurate data beyond the end, but to provide a condition that
the data within the end completely determine the envelope.
(e mirror extension satisfies this condition, so it is an ideal
extension algorithm.

When VMD analyzes and processes the fault signal, the
error is caused by the influence of external factors on both
ends [23–27]. Taking into account the end effect in VMD, a
mirror extension is adopted to suppress it. (e newly
proposed method has an advantage in extracting the
characteristic frequency. Figure 2 is the detailed steps of the
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improved VMD.(emain process of improved VMD can be
summarized as follows:

Step 1 : initialize 􏽢u1
k􏼈 􏼉, w1

k􏼈 􏼉, 􏽢λ
1
, n⟵ 0, where uk􏼈 􏼉 �

u1, . . . , uk􏼈 􏼉 are the narrow-band components,
wk􏼈 􏼉 � w1, . . . , wk􏼈 􏼉 represent the central fre-
quencies, k is the number of decompositions,
and λ represents the Lagrange multiplier.

Step 2 : set n⟵ n + 1 and k⟵ k + 1 and execute the
whole cycle. Update 􏽢uk and wk for all w≥ 0 to
reach the preset decomposition number. When
k � K, the cycle ends. (e updated formula of
the narrow-band component and the corre-
sponding central frequency are as follows:

􏽢u
n+1
k (w) �

􏽢f(w) − 􏽐i<k􏽢u
n+1
i (w) − 􏽐i>k􏽢u

n
i (w) + 􏽢λ

n
(w)/2

1 + 2a w − w
n
k( 􏼁

2 , (6)

􏽢w
n+1
k �

􏽒
∞
0 w 􏽢u

n+1
k (w)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
dw

􏽒
∞
0 􏽢u

n+1
k (w)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
dw

. (7)

Step 3 : update λ according to the formula:

􏽢λ
n+1

(w)⟵ 􏽢λ
n
(w) + τ 􏽢f(w) − 􏽘

k

􏽢u
n+1
k (w)⎛⎝ ⎞⎠. (8)

Step 4 : return to Step 2 and repeat the above process
until the whole iterative process meets the
constraints, and a series of narrow-band ei-
genmode component signals are obtained.
Equation (9) is the constraint condition, where ε
is set to 10−6:

􏽐k 􏽢u
n+1
k − 􏽢u

n
k

����
����
2
2

􏽢u
n
k

����
����
2
2 < ε

. (9)

(e specific extension process is provided as follows:

(1) Find all extreme points of the rolling bearing fault
signal x(t), t � 1, 2, . . . , T. (e extreme points
include the local maximum points and the local
minimum points.
(e local maximum point sequence of the signal x(t)

is

fmax(1), xmax(1)( 􏼁, fmax(2), xmax(2)( 􏼁,Λ fmax tmax( 􏼁, xmax tmax( 􏼁( 􏼁􏼈 􏼉. (10)

(e local minimum point sequence of the signal x(t)

is

fmin(1), xmin(1)( 􏼁, fmin(2), xmin(2)( 􏼁Λ fmin tmin( 􏼁, xmin tmin( 􏼁( 􏼁􏼈 􏼉, (11)

where fmax(t), t � 1, 2, . . . , T, are the local maxi-
mum points, fmin(t), t � 1, 2, . . . , T, are the local
minimum points, xmax(t), t � 1, 2, . . . , T, are the
maximum points, and xmin(t), t � 1, 2, . . . , T, are
the minimum points.

(2) According to equation (12), the symmetrical ex-
tension is employed to the extreme points of the fault
signal x(t) to obtain a new extreme point sequence
p′􏼈 􏼉:

Calculate distance:
given the unknown
object, calculate its
distance from each

object in the training set.

Find the nearest
neighbor: circle the
nearest K training

objects as the nearest
neighbor of unknown

objects.

Do classification: the
most frequent category

 in the KNN is the
testing object's

prediction category.

First Step Second Step Third Step

Figure 1: Steps of KNN.
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fmax(0) � fmax(1)

xmax(0) � 2∗xmax(1) − xmax(2)
􏼨 , when xmin(1)< xmax(1) ,

fmin(0) � fmin(1)

xmin(0) � 2∗xmin(1) − xmin(2)
􏼨 , when xmin(1)>xmax(1) ,

fmax tmax + 1( 􏼁 � fmax tmax( 􏼁

xmax tmax + 1( 􏼁 � 2∗ xmax tmax( 􏼁 − xmax tmax − 1( 􏼁
􏼨 , when xmin tmin( 􏼁>xmax tmax( 􏼁

fmin tmin + 1( 􏼁 � fmin tmin( 􏼁

xmin tmin + 1( 􏼁 � 2∗ xmin tmin( 􏼁 − xmin tmin − 1( 􏼁
􏼨 , when xmin tmin( 􏼁< xmax tmax( 􏼁 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

(3) Correct the new extreme point sequence p′􏼈 􏼉 after
extension:

fmin(0)> x(1), when xmax(1) <xmin(1)

fmax(0)> x(1), when xmax(1) >xmin(1)

fmin tmin( 􏼁>x(t), when xmin tmin( 􏼁 <xmax tmax( 􏼁

fmax tmax( 􏼁<x(t), when xmin tmin( 􏼁 > xmax tmax( 􏼁
.􏼨􏼨􏼨 (13)

(4) Use the value on the left end of the fault signal x(t) as
the symmetry plane, and the mirror extension is

realized. Meanwhile, the new fault signal y(i) of
rolling bearing is realized.

Calculate the local extreme value p
of rolling bearing fault signal x (t)

The mirror extension is applied to
the newly formed extreme

value sequence {p}

Compare the endpoints before
and after the extension

For the new sequence {p′},
the mirror continuation

starts from the left

VMD is used to decompose the
new signal y (i) of rolling bearing

fault

Figure 2: Steps of the improved VMD.
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3.2. Diagnosis Scheme. Owing to the feature extraction is
difficult in the incipient rolling bearing failures, this paper
presents a new method combined improved VMD and
KNN. (e structure of the diagnosis scheme is shown in
Figure 3.

(e detailed steps of the diagnosis scheme are as follows:

(1) Firstly, improved VMD is applied to handle the fault
signal, and several narrow-band eigenmode com-
ponents u are realized.

(2) (en, the narrow-band components are selected,
which have rich fault information. (ese modal
components are selected to reconstruct the fault
signal, and the envelope spectrum is conducted for it.

(3) Finally, the feature vector frommodal components is
extracted by using SVD. After feature extraction,
there are 100 data sets. 70 of the 100 data sets are
randomly employed to train the KNN classification
model, and the rest are employed to test the clas-
sification performance.

4. Experimental Verification

4.1. Experimental Setting. As shown in Figure 4, the fault
diagnosis platform consists of a 0.75 kW three-phase
asynchronous motor, two couplings, a reducer, a magnetic
powder brake, a piezoelectric accelerometer, a faulty rolling
bearing, and a photoelectric speed sensor. (e faulty rolling
bearing is installed in the bearing pedestal of the reducer.

(e signal acquisition system is used to collect the fault
signals, in which the rotation speed n and the sampling
frequency f are set at 600 r/min and 1 kHz, respectively.
Table 1 is the basic parameters of rolling bearing. According
to these parameters, the fault characteristic frequencies are
calculated: inner race is 99Hz and outer race is 71Hz. (e
improved VMD is applied to decompose the fault signal.
When the mode number K is different, their central fre-
quency is different. (e relationship between them is
depicted in Figure 5.

4.2. Experimental Results and Analysis. When the value of K
starts from 5, the central frequency is close [26], see
Figure 5(a). (is is an over decomposition phenomenon.
Hence, the K value taken in the test is 5. Based on VMD
experience, the balance parameter constrained by data fi-
delity adopts the default value of 2000, and the time step of
the double rise is 0.1. Figure 6(a) illustrates the time domain
diagram of the inner race fault, and its improved VMD result
is demonstrated in Figure 7(a).

As illustrated in Figure 5(b), when the value of K starts
from 5, the central frequency is close, which is an over
decomposition phenomenon [28]. (ereby, the K value
taken in the test is 5. Based on VMD experience, the balance
parameter constrained by data fidelity adopts the default
value of 2000, and the time step of the double rise is 0.1.
Figure 6(b) shows the time domain diagram of the outer race
fault. (e improved VMD result is demonstrated in
Figure 7(b).

As shown in Figure 6(a), the original signal of the inner
race fault contains considerable background noise, which
obscures the fault information. As shown in Figure 7(a),
compared with the original signal, the modal components
after the improved VMD eliminate the noise, which is the
function of Wiener filter. (ere are obvious fault shock
components in U3, U4, and U5. (erefore, these three modal
components are selected to reconstruct the signal, and the
envelope spectrum is conducted for it. (e result of the
envelope spectrum is depicted in Figure 8(a).

In contrast to the improved VMD, the first five com-
ponents of EMD are also taken, and Figure 9(a) is the de-
composition results. In Figure 9(a), IMF1, IMF2, and IMF3
contain many fault feature information, and they are
reconstructed. Figure 8(b) presents the envelope spectrum of
the reconstructed signal.

From Figure 6(b), the original signal time domain of the
outer race fault contains large background noise, which
obscures the fault information. Figure 7(b) shows that the
modal components eliminate the noise, which is the func-
tion of the Wiener filter. (ere are obvious fault shock
components in U2, U4, and U5. Hence, these three modal
components are selected to reconstruct the signal, and the
envelope spectrum is conducted for it. (e result of the
envelope spectrum is provided in Figure 10(a).

As a comparative test analysis, the first five components
of EMD are taken, and Figure 9(b) is the decomposition
result. As evident in Figure 9(b), IMF1, IMF2, and IMF3
contain many fault feature information, and they are
reconstructed. Figure 10(b) presents the envelope spectrum
of the reconstructed signal.

Figure 8(a) displays that the envelope spectrum has
obvious fault shock characteristics around 99Hz, which is
basically consistent with the theoretical value. (e small gap
does not affect the fault identification. 198Hz is the second
frequency, and 297Hz is the third frequency. As shown in
Figure 8(b), the envelope spectrum is not ideal. 99Hz and its
octave are not demodulated. Consequently, the decompo-
sition result of the improved VMD outperforms EMD.

Figure 10(a) shows that the envelope spectrum has
obvious fault shock characteristics around 71Hz. (is is
basically consistent with the theoretical value. (e small gap
does not affect the fault identification. 142Hz is the second
frequency, and 213Hz is the third frequency. In
Figure 10(b), the envelope spectrum is not ideal. 71Hz and
its octave are not demodulated. (erefore, the decomposi-
tion result of the improved VMD is shown to outperform
EMD.

In the fault classification, K in the KNN algorithm is set
to 1. (e first three groups of singular values are selected as
the nearest neighbor classification training sets and testing
sets. For each fault type, 70 of the 100 datasets are randomly
employed to train the KNN classification model, and the rest
are applied to test the classification performance. (e fault
classification results after improved VMD+SVD are shown
in Figure 11(a), and the fault classification results after
EMD+SVD are provided in Figure 11(b). Figures 11(a) and
11(b) show that the performance of the improved
VMD+SVD is better than EMD+ SVD.
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Figure 3: (e structure of the diagnosis scheme.
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Figure 4: (e fault diagnosis platform.

Table 1: (e parameters of bearing.
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Figure 5: (e relationship between mode number and central frequency after improved VMD. (a) Inner race fault. (b) Outer race fault.

6 Mathematical Problems in Engineering



0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1
Time (s)

-0.1

0

0.1

0.2
A

m
pl

itu
de

 (u
m

)

(a)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1
Time (s)

-1

-0.5

0

0.5

1

A
m

pl
itu

de
 (u

m
)

(b)

Figure 6: Time domain diagram. (a) Inner race fault. (b) Outer race fault.
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Figure 7: (e decomposition results after improved VMD. (a) Inner race fault. (b) Outer race fault.
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Figure 8: Envelope spectrum of inner race fault. (a) U3 +U4 +U5. (b) IMF1 + IMF2 + IMF3.
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(e fault recognition rates are reported in Table 2. In the
classification results after the improved VMD+SVD, one
inner race fault is incorrectly identified as the outer race
fault, and one outer race fault is incorrectly identified as the

inner race fault. In the classification results after
EMD+SVD, three inner race faults are incorrectly identified
as the outer race faults, and five outer race faults are in-
correctly identified as the inner race faults.
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Figure 10: Envelope spectrum of outer race fault. (a) U2 +U4 +U5. (b) IMF1 + IMF2 + IMF3.
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Figure 9: (e decomposition results after EMD. (a) Inner race fault. (b) Outer race fault.
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5. Conclusion

A new method combining the improved VMD and KNN for
the rolling bearing fault detection system is presented. First,
the improved VMD decomposes the fault signal to obtain
the modal component. (en, the modal components with
many fault shock components are reconstructed. Finally, the
envelope spectrum is applied to the reconstructed signal, and
the characteristic frequency is identified successfully. Fur-
thermore, combining with SVD, KNN realizes fault type
classification. (e experimental results demonstrate that the
proposed approach has potential application in rolling
bearing fault diagnosis.
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Vertical takeoff and landing (VTOL) is an essential feature of unmanned aerial vehicles (UAVs). On the one hand, VTOL can
expand and enhance the applications of UAVs; yet, on the other hand, it makes the design of control systems for UAVs more
complicated. +e most challenging demand in designing the control system is to achieve satisfactory response sharpness of fixed-
wing UAVs to control commands and ensure that the aircraft mode channels are effectively decoupled. In this work, a six-degree-
of-freedom (6-DoF) model with forces and moments is established based on the aerodynamic analysis, which is carried out
through computational fluid dynamics (CFD) numerical simulation.+e improved proportional derivative (PD) controller based
on the extended state observer (ESO) is proposed to design the inner-loop attitude control, which increases the anti-interference
ability for internal and external uncertainty of the UAV system.+emotion equations of the UAV are established and divided into
independent components of longitudinal and lateral motion to design the outer loop control law under minor disturbance
conditions. A total energy control system (TECS) for the longitudinal height channel is proposed, which separates speed control
and track control. L1 nonlinear path tracking guidance algorithm is used for lateral trajectory tracking so as to improve curve
tracking ability and wind resistance. Effectiveness of this approach is proved by actual flight experiment data. Finally, a controller
based on angular velocity control is designed to prevent the attitude and head reference system (AHRS) from malfunctioning. Its
effectiveness is verified by the response test of the control system.

1. Introduction

+eVTOL functions keep the fixed-wing UAVs from relying
on runways to takeoff or land and also significantly reduce
the risk of accidents during takeoff and landing. Besides, the
VTOL function supplies the fixed-wing UAVs, the flexibility
to make it easier to perform tasks in mountainous areas, sea,
and other scenarios, thereby broadening their application
[1]. Furthermore, UAVs with VTOL can quickly implement
one-key autonomous takeoff and landing functions, which
improves the reliability and safety in takeoff and landing for
potential nonprofessional and unskilled users [2, 3]. Hence,
the UAVs with VTOL functions have always been the focus
of research in the aviation field of Western Europe and the
United States [4, 5]. Typical representatives are tail-mounted
VD200, tiltrotor “Osprey” V-22, tilt-wing NASA “Greased
Lightning,” and fixed-wing HQ-60 from American Latitude
Engineering LLC.

+e design of controllers for VTOL UAVs is widely
concerned in both the industry and the research field. In the
recent years, multiple novel methods have been proposed to
improve the performance of VTOL UAVs. For example,
Özgür Dündar proposed to employ an aerodynamic design
steps and sizing of both wing and control surfaces to im-
prove static stability and endurance [6]. Wu et al. employed
multiple sensors to design a UAV system for emergency
response [7]. Oca et al. presented a longitudinal aircraft
dynamics to model the takeoff and landing considering the
rolling resistance forces during ground roll through a
friction model [8]. Govdeli et al. developed a detailed
aerodynamic modeling technique along with a fuzzy
switching multimodel guidance and control strategy for a
UAVs and successfully controlled the aircraft for a full flight
envelope from hover to landing [9]. However, to date, the
control method and algorithms have not been fully devel-
oped to fulfill the needs for various UAVs. More researches
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are still needed to improve the performance of VTOL UAVs
in specific circumstances.

Based on novel control techniques and algorithms, this
paper takes SD-40 UVA as an example and presents the
modeling and design of an aircraft mode controller for fixed-
wing UAVs with VTOL functions. +e SD-40 UVA has a
fixed wing with eight horizontal rotors installed on the
double-tail brace, as shown in Figure 1.

In this work, a six-degree-of-freedom (6-DoF) model
with forces and moments is established. A improved
proportional derivative (PD) controller based on the ex-
tended state observer (ESO) and a total energy control
system (TECS) for the longitudinal height channel are
proposed. +e motion equations of the UAV are estab-
lished. L1 nonlinear path tracking guidance algorithm is
used to improve curve tracking ability and wind resistance.
Finally, a controller based on angular velocity control is
designed to prevent the attitude and head reference system
(AHRS) from malfunctioning. Effectiveness of these novel
approaches is investigated by analyzing actual flight ex-
periment data.

2. SD-40 Motion Mathematical Model

+e nonlinear model obtained by the Newton–Euler for-
mulation involves twomain right-hand reference coordinate
systems [10], as shown in Figure 2. For the geodetic coor-
dinate frame, which is expressed as Ogxgygzg. A North-
East-Down (NED) orthogonal coordinate frame is estab-
lished with its origin at the takeoff point.

Obxbybzb is the body-fixed frame (BFF) attached to the
center of gravity (CoG) of SD-40, where Obxb points out the
nose of the SD-40, Obyb points out the right wing, and Obzb

points out the belly.
Bbg represents the transformation matrix from the NED

frame to the BFF.

Bbg �

cθcψ cθsψ − sθ

sθsϕcψ − cϕsψ sθsϕsψ + cϕcψ cθsϕ

sθcϕcψ + sϕsψ sθcϕsψ − sϕcψ cθcϕ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (1)

where ϕ, θ, andψ represent the Euler angles and s and c are
the shorthand notation of the sine and cosine functions,
respectively.

2.1. Linear Motion Equation. According to the momentum
theorem, the kinetic equation of mass center can be
obtained:
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R
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×
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ Bbg

0

0

g

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2)

where [U V W]T is the velocity vector in the BFF, m is the
mass of the SD-40, [Fx Fy Fz]T the total force vectors
expressed in the BFF, and [P Q R]T is the vector of the
attitude angular rates.

Fx

Fy

Fz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � Sba

− D − FD

Y

− L

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ +

T

0

− FT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Sba �

cαcβ sβ sαcβ

− cαsβ cβ − sαsβ

− sα 0 cα

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(3)

where Sba is the transformation matrix from the airflow
coordinate frame (AFF) to the BFF, α is the angle of attack, β
is the sideslip angle, [D Y L]T is the total force vectors
expressed in AFF, T is the horizontal thrust of the engine, FT

is the force in BFF produced by eight motors with rotors in
multirotor mode, and FD is the drag force in AFF produced
by eight rotors in aircraft mode.

+e components of the force vector and the drag force
yields are expanded as

D � qs∗Cd,

L � qs∗Cl,

Y � qs∗Cy,

FD � KdV
2
t ,

(4)

where Vt is the airspeed,Kd is the drag coefficient of rotors,
qs is the dynamic pressure, and [Cd Cl Cy]T is the vector of
the drag coefficient, the lift coefficient, and the side force
coefficient of the fixed wing.

[WinduWindvWindw]T is the wind disturbance. +e
three-axis velocity in the BFF can be updated as

Figure 1: SD-40 UVA.
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Figure 2: Reference coordinate systems for mathematical
modeling.
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (5)

Vt, α, and β are equally updated as

Vt �

�������������

U
2
w + V

2
w + W

2
w

􏽱

,

α � a tan
Ww

Uw

,

β � a sin
Vw

Vm

.

(6)

According to the relationship between the NED frame
and the BFF, the kinematics equation of the mass center is
obtained as
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (7)

where [X Y Z]T represents the position vector of the UAV in
the NED.

2.2. AngularMotion Equation. According to the moment of
momentum theorem, the dynamic equation of the rotation
of the mass center can be derived with respect to the inertia,
the total moment of the fixed wing, and the angular rates as
follows:
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

where I is the inertia matrix of the rigid body and I− 1 is the
inverse matrix of I.

I �

Ix 0 − Ixz

0 Iy 0

− Ixz 0 Iz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (9)

[L M N]T is the total moment vectors of fix-wing
expressed in the BFF, which can be expressed as

L � qs
∗
b
∗
Cr

M � qs
∗
c
∗
Cm

N � qs
∗
b
∗
Cn

, (10)

where b is the wingspan and c is the length of the average
aerodynamic chord. [Cr Cm Cn]T is a vector representing the
roll moment coefficient, the pitch moment coefficient, and
the yaw moment coefficient of the fixed wing, respectively.
[MCL MCM MCN]T is the total moment vectors of the
multirotor system expressed in the BFF as

MCL � −

�
2

√

2
∗ l∗ T1 − T2 − T3 + T4 + T5 − T6 − T7 + T8( 􏼁,

MCM � −

�
2

√

2
∗ l∗ − T1 + T2 + T3 − T4 − T5 + T6 + T7 − T8( 􏼁,

MCN � N1 − N2 + N3 − N4 − N5 + N6 − N7 + N8,

MNi � Kn ∗N
2
i (i � 1, 2, 3, 4, 5, 6, 7, 8),

(11)

where l is the multirotor wheelbase, Kn is the rotational
damping moment coefficient, Ni is the revolutions per
minute (RPM) of the rotor, Ti is the force in the BFF
produced by eight motors with rotors in multirotor mode,
and MNi

is the counter-torque of each rotor [11].
Based on the Euler Angle relation, the relationship be-

tween the attitude angle differential and the angular rate can
be obtained as
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. (12)

+e 6-DoF nonlinear dynamics equations can be
expressed by equations (2), (7), (8), and (12).

3. Flight Controller Design

+e flight controller of SD-40 consists of an inner loop for
attitude control and an outer loop for trajectory control. +e
attitude angle error is used as the input signal for the attitude
control. In contrast, the external loop controller uses the
trajectory error and its rate of change as input signals.

3.1. Attitude Control. +e attitude control design of the
UAV can be carried out into extended state observer, pitch
channel control, and roll channel control.

3.1.1. Extended State Observer. Equation 12 shows that the
roll channel, pitch channel, and yaw channel are interrelated,
which poses a challenge in the design of a conventional
controller. However, Active Disturbance Rejection Control
(ADRC) can solve this coupled problem. First, the inter-
action between different channels inside the system, together
with the external disturbance caused by the environment, is
treated as the total disturbance of the channel. +en, ESO is
applied to each angle channel independently to estimate the
total disturbance in real time. Finally, a total disturbance is
used to dynamically compensate and linearize the UAV
control system [12, 13].

Equation system (12) can be updated as
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€ϕ � f1(ϕ, _ϕ, θ, _θ,ψ, _ψ) + ω1 + b1L,

€θ � f2(ϕ, _ϕ, θ, _θ,ψ, _ψ) + ω2 + b2M,

b1 � Lδa �
qs∗BL∗Clδa( 􏼁

Ix

,

b2 � Mδe �
qs∗BA∗Cmδe( 􏼁

Iy

,

(13)

where fi(ϕ, _ϕ, θ, _θ,ψ, _ψ) is a modeled nonlinear dynamic
system and ωi is the unmodeled dynamic system including
external interference, modeling error, and other factors
[14, 15]. b1 is the control input gain from the deflection angle
of the aileron angle to roll angular acceleration and b2 is the
control input gain from the deflection angle of the elevator
angle to pitch angular acceleration.Clδa is the coefficient of
the rolling moment, while Cmδe is the coefficient of pitching
moment [16].

+e second-order system can be expanded into a third-
order system as

_x1 � x2

_x2 � x3 + bu

_x3 � _f x1, x2,ω(t)( 􏼁

y � x1

.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(14)

+e linear extended state observer can be unfolded into
the following equation:

e1 � z1 − y

_z1 � z2 − β1e1
_z2 � z3 − β2e1 + bu

_z3 � − β3e1

,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(15)

where [z1 z2 z3]
T is the output of the ESO, tracking the state

variables of the original system [x1 x2 x3]
T[17, 18]. All poles

of the ESO characteristic equation can be located at − ω0 (on
the left half-plane of the complex plane) as per the following
equation:

β1 � 3ω0

β2 � 3ω2
0

β3 � ω3
0

,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(16)

where ω0 is denoted as the bandwidth of the ESO.
+e control signal can be expressed as

u �
u0 − β · z3

b
, (17)

where u0 is the output of PD controller andβ is the com-
pensation coefficient of total disturbance [19].

3.1.2. Pitch Channel Control Loop. +e pitch channel con-
troller needs the signals from the angular rate sensor and
attitude angle sensor for feedback, increasing the damping of
the UAV system and improving the dynamic response of the
open-loop system.

+e longitudinal control system structure of the SD-40 is
shown in Figure 3, which is composed of the pitch attitude
control loop based on ESO and the height control loop based
on the total energy control system (TECS).

Pitch angle control based on ESO is an adaptive PD
controller [20] with double loop feedback of the pitch an-
gular rate Q and pitch angle θ. According to equations (14)
and (15), x1 is θ and x2 is Q, z1 is the estimation of the θ
signal, z2 is the estimation of the Q signal, and z3 is the
estimation of the uncertain parts.

+e system block diagram is shown in Figure 4, and the
mathematical expression is shown in the following equation:
where δe is the deflection angle of the elevator, θg is the pitch
angle command, andQ is the pitch angular rate feedback value.

δe � K
θ
e θ − θg􏼐 􏼑 + K

Q
e Q −

β
b2

z3, (18)

b2 can be calculated with equation (13) as
b2 � (qs∗BA∗Cmδe)/Iy � − 0.4 ∼ − 0.45.

+e bandwidth ω0 of the pitch channel ESO can adjust
the tracking speed of the observed state variable. According
to reference [21], ω0 ≈ 5 − 10ωc , where ωc is the equivalent
bandwidth of the transient profile, which is used with a
settling time of 1 s, ωc � 4, so ω0 ≈ 20 − 40.

A higher bandwidth corresponds to a better command of
the disturbance rejection and sensitivity to parameter var-
iations. However, achievable bandwidth is limited by the
hardware and software limitations, including sensor noises
and the given sampling rate of the actual flight control
hardware system. +e comparison of responses at different
values ω0 is shown in Figure 5.

Considering the simulation results and the actual
limitations, ω0 is selected as 25. +e system response versus
the step input is shown in Figure 6. +e pitch angle can
quickly track instructions and can be well estimated by zl.
Figure 7 is the observed value of total disturbance of pitch
control loop. +e disturbance can be suppressed in a short
period.

3.1.3. Roll Channel Control Loop. Similar to the pitch
channel, the roll angle control is also developed based on the
PD philosophy. +e control block diagram of the roll
channel is shown in Figure 8.

+e control law is as follows:

δa � K
ϕ
a ϕ − ϕg􏼐 􏼑 + K

P
a P −

β
b1

z3, (19)

where δa is the deflection angle of the aileron, ϕg is the roll
angle command, and P is the roll angular rate feedback
value, improving the short period damping.

b1 can be calculated with equation (13) [12]:
b1 � (qs∗BL∗Clδa)/Ix � − 0.4 ∼ − 0.49.

+e comparison of response at different values ω0 is
shown in Figure 9. As done previously for the pitch channel,
the bandwidth of the roll channel ESO ω0 is selected as equal
to 25.

+e roll angle step response is shown in Figure 10, which
has good tracking and observation effects. Figure 11 is the
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observed value of the total disturbance of the Roll control
loop. +e disturbance can be suppressed in a short period
and the system can quickly reach a stable state.

+e pitch angle and the roll angle controller based on
ESO for the inner loop can respond to and track the
command effectively and achieve high precision positioning
of the UAV.

3.2. Trajectory Control

3.2.1. Longitudinal Height Control. +e control of the
longitudinal height of the SD-40 is performed through an
outer loop based on the TECS. +e throttle controls the
change of total energy, and the deflection angle of the

elevator distributes the kinetic energy and the gravitational
potential energy. As such, the speed control and the height
control are decoupled [22–24].
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+e error between the kinetic energy and the specified
kinetic energy at a certain moment can be expressed as

Kerr � Kref − K �
1
2

m V
c
t( 􏼁

2
−
1
2

mV
2
t , (20)

where K is the kinetic energy of the particle, Vt is the true
airspeed, and Vc

t is the specified airspeed.
+e error between the gravitational potential energy and

the specified gravitational potential energy at a certain
moment can be expressed as

Uerr � mg h
c

− h( 􏼁. (21)

+e error of the total energy E and the allocation L of the
total energy error can be expressed as per the following
equation:

E � Uerr + Kerr,

L � Uerr − Kerr.
(22)

+e allocation is updated as

L � (2 − k)Uerr − kKerr. (23)

By differentiating both sides of the total energy equation
and assuming that the trajectory angle c is small, the rate of
change of the total energy is approximately expressed as

_E �
_ET

mgVt

�
_Vt

g
+

_h

Vt

�
_Vt

g
+ sin c ≈

_Vt

g
+ c. (24)

Meanwhile, the longitudinal dynamics equation of the
UAV is expressed as per the following equation:

T − D � m _Vt + mg sin c ≈ mg
_Vt

g
+ c􏼠 􏼡, (25)

where T and D are, respectively, the thrust and drag force of
UAV during cruise state. In this balanced state, the thrust
increment is expressed as

ΔT � mg
_Vt

g
+ c􏼠 􏼡 � mg

Δ _E

V
. (26)

In summary, the change of total energy can be controlled
by the change in thrust [25].

+e deflection angle of the elevator changes the track
angle, which leads to the mutual conversion between the
potential energy and the kinetic energy [26, 27]. Assuming
that there is no significant energy loss during the conversion
process, the change rate of the energy distribution can be
defined as
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_L � c −
_Vt

g
. (27)

Total energy control block diagram is shown in Fig-
ures 12 and 13.

Hg is the height command, Vg is the speed command.
Esp is the specified energy, Lsp is the specified energy dis-
tribution, and _Esp and _Lsp are the corresponding rates of
change. E is the total energy, L is the energy distribution, and
_E and _L are the corresponding rates of change, respectively.

K _E⟶ΔT is the gain from energy change rate to throttle
andK _L⟶Δθ is the gain from energy distribution change rate
to pitch angle.

+e complete TECS control law, as well as the total
energy change control channel, can be expressed as

_E
c

� kpE × E + dpE
_E + IpE 􏽚 Edt􏼒 􏼓,

Tg � _E
c

× K _E⟶ΔT,

K _E⟶ΔT �
δTmax − δTmin

_Emax − _Emin
,

(28)

where _Emax and _Emin are the max and min rate of change of
the total energy in climbing mode and descending mode,
respectively. δTmax and δTmin are themax andmin opening of
the throttle, respectively.

+e total energy distribution control channel could then
be expressed as

_L
c

� keL × L + deL
_L + IeL 􏽚 Ldt􏼒 􏼓. (29)

Controlling _L
c with the elevator requires a pitch rate/

pitch attitude feedback inner-loop control law, where θg will
be transformed into elevator command to stabilize the
UAVs short period mode. +us, _L

c develops θg, serves as the
input of the pitch attitude control loop, which acts indirectly
on the elevator [28–30].

_L

gVt

�
g _h − Vt

_Vt

gVt

≈ c −
_Vt

g
,

θg �
_L
c

K _L⟶Δθ
�

1
gVt

× _L
c
,

(30)

where gVt is the conversion coefficient from the climb angle
to energy distribution change rate, which adapts to a range of
speed changes.

(1) Simulation Data.

Case 1: Given the initial state of UAV, height is 100m
and speed is 30m/s. When t� 1 s, change the height
command to 105m, then the height step response is
shown in Figure 14.
From the graph in Figure 15, the height can track the
command well with some overshoot. Meanwhile, the
speed is basically unchanged, and the fluctuation is
controlled within ±0.5m/s.

As the height increases, the kinetic energy is converted
into potential energy, which requires a larger throttle
energy value. Even though the value of the elevator
energy is negative, the UAV performs an upward
movement. When the new balance is reached, the value
comes back to zero.
Case 2: Given the initial state of UAV, the height is set
equal to 100m and the speed to 30m/s. When time
t� 1 s, change the speed command to 32m/s, then
speed step response is shown in Figure 16.
As shown in Figure 17, the speed can track the com-
mand well, with some likely overshoot. Meanwhile, the
height is unchanged, and the fluctuation is controlled
within a distance of ±0.3m.
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As the speed increases, the kinetic energy increases,
requiring a larger throttle energy value. +e elevator’s
value is positive to accelerate the UAV, and when the
new balance is reached, the value keeps at 2°, as shown
in Figure 15.

(2) Flight Data. +e UAV’s initial height is 1470m and speed
is 30m/s. When t� 1 s, the change in height command and
the speed command areHg � 1170m, Vg � 32m/s, then step
response is shown in Figure 18.

As shown in Figures 18 and 19, the altitude drops
slowly with the command, and the airspeed is kept at
35 ± 1m. Since the UAV flyes at a constant speed, the
throttle remains unchanged to keep the kinetic energy
intact. +e elevator command is essentially negative,

raising the UAV’s head and increasing the drag as the
gravitational potential energy slowly converts to internal
power to work done against friction.

3.2.2. Lateral Trajectory Control. +e lateral trajectory
consists of the roll and yaw motions, which have been
considered in the controller design. L1 guidance is well
known for its simplicity in tracking circular and linear
motions typical for fixed-wing vehicles’ flight plans. How-
ever, the law has a specific ADRC effect in curve tracking,
which is introduced for circular trajectory tracking, as shown
in Figure 20. Under this section, the controller design is
presented along with simulated results and the profile of the
flight data.

When the UAVmoves laterally, the roll angle is not zero,
resulting in lift tilt and lateral acceleration as expressed by
the following equation:
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ascmd
�

V
2

R
�

V
2

L1/2 sin η
�
2V

2

L1
sin η, (31)

sin η � sin η1 + η2 + η3( 􏼁 ≈ η1 cos η3 + η2 cos η3 + sin η3( 􏼁, (32)

ascmd
�
2V

2
c
2

L
2
1

d +
2Vc

L1

_d +
V

2

R
. (33)

where ascmd
is the acceleration command, L1 is the distance

between the reference point and the UAV, which is a fixed
value, and η is the angle from the ground speed to the line L1.
Meanwhile, the velocity direction change due to the accel-
eration can be expressed as

Δψ �
as

V
Δt, (34)

ascmd
≈ V _ψ � V _θ − _η2􏼐 􏼑 �

V
2

R
− €d . (35)

Based on the equations (33) and (35), we can get

€d + 2ζωn
_d + ω2

nd ≈ 0, (36)

whereζ �
�
2

√
/2,ωn �

�
2

√
Vc/L1, and c �

�����������

1 − (L1/2R)2
􏽱

.
+e undamped natural frequency is determined by V

and L1:

L1 �
VTc

�
2

√
π

. (37)

+e period and damping ratio are taken as the control
parameters of the control law and L1 as a variable pro-
portional to the flight speed [31].

+e lateral acceleration is provided by the lateral com-
ponent of the lift force during the rolling of the UAV as

ascmd
� g · tanϕ. (38)

+e roll angle command can be expressed as

ϕcmd � tan− 1 ascmd

g
􏼠 􏼡. (39)

L1 control structure diagram shown in Figure 21 is
designed based on the following equation:
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Figure 20: Principle diagram of circular trajectory tracking.
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ascmd
� Kxd + Kv

_d +
V

2

R
, (40)

where Kx � ω2
n � 4π2/T2, Kv � 2ζωn � 4πζ/T, and R is the

radius of the tracked circular arc.

(1) Tracking Simulation. A nonlinear model in Matlab/
Simulink environment has been adopted to carry out the
circular trajectory tracking simulation. Given the L1 guidance
law parameters period damping ζ � 0.707, the simulation
data at different periods T, as shown in Figures 22 and 23.

It can be seen from Figures 22 and 23, with the decrease
of the period T, the response time of the lateral deviation
distance and yaw angle error, that the error rapidly narrows,
and the steady-state error of the lateral deviation distance
decreases accordingly. In contrast, the yaw angle error
fluctuates significantly. Reducing the period T will make the
system response faster and the control effect more practical.
A smaller value of the period T will lead to more aggressive
navigation or sharper corners, while a more considerable
value will lead to gentler navigation. Meanwhile, considering
the safety and control rapidity in the UAV operation, the
value of T is selected here as equal to 20 s.

Setting ζ � 0.707 and T � 20 s simulation initial state
Vt � 30m/s, constant wind disturbances in the north di-
rection and east direction are addedU � 5m/s andV � 5m/s.
Track a circular trajectory with a radius of 600m
(R � 600m).

+e velocity profile with wind disturbances is shown in
Figure 24. +e tracking effect is shown in Figures 25 and 26.

As shown in Figure 24, the crosswind with 5m/s has
been simulated.

Simulation results show that the lateral deviation dis-
tance can be controlled at ±3m precision, while the yaw
angle error is ±0.5°, which offers a good effect of the circular
trajectory tracking.

Figures 27 and 28 show the simulation of circular track
tracking in a windless environment. Setting ζ � 0.707 and
T � 20s, initial state Vt � 30m/s, track a circular trajectory
with a radius of 600m. +e lateral deviation distance is
controlled at − 1m, while the yaw angle error is 0.4°, which
shows a good effect of circular trajectory tracking without
wind disturbance.

(2) Flight Data Profile. +e UAV tracks a circle with a radius
of R� 450m, and the center of the circle is located at lon-
gitude: 100.23°, latitude: 41.01°, the tracking effect is shown in
Figure 29.

Under the constant wind disturbance of 7m/s (direction
184), airspeed values vary from 30m/s to 37m/s, as shown in
Figure 30.

+e value of the lateral deviation distance is between 0
and − 4m (shown in Figure 31), which means the UAV
keeps on the left of the desired circular path. +e yaw angle
error can be controlled at ±3° (shown in Figure 32), larger
than the value obtained by simulation. It is affected by
crosswind to some extent, but the overall tracking effect is
relatively good.
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Figure 21: L1 block diagram. Here, η2 is the yaw angle from the
target heading to the speed heading and d is the lateral deviation
distance, that is, the distance between the UAV real-time position
and the center of the tracked circular arc minus the radius of the
tracked circle.
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For the SD-40, L1 guidance law enhances the circular
trajectory tracking control ability and the ability to resist wind,
using the insensitive period and damping parameters.+is law
can calculate different expected accelerations according to
different speeds V and offers good adaptability to different
usual flight speeds and interference of ambient wind in actual
flight. Furthermore, L1 guidance law can track irregular curves
and be extended to more advanced trajectory algorithms,
including obstacle avoidance flight and formation flight.

3.3. Emergency Control. Due to the limitations of cost,
payload weight, and payload size, most small civil UAVs

adopt the Attitude and Heading Reference System (AHRS)
based on a microelectromechanical system (MEMS). AHRS
cannot provide accurate and stable attitude data under the
following conditions:

(a) When the UAV is under large continuous overload
(b) When the algorithm of attitude solving unit has

some problem
(c) When the calculated data of attitude solving unit are

divergent
(d) When the magnetometer is interfered with and

provides false heading information
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In all these four cases, a triaxial attitude angle information
and geomagnetic course information are invalid. +e control
method is the same in all the four cases because it is designed
to deal with this information invalidation. In this study, we
intend to propose a general solution for this information
invalidation.+e traditional attitude angle control technology
is no longer applicable, and the control law based on the
angular rate is needed [32]. Sound signals for flight controllers
are UAV’s position information, track angle, and ground
speed provided by GPS; airspeed, atmospheric altitude, and
rate of change information supplied by atmospheric pressure
sensor; triaxial acceleration and triaxial angular rate provided
by AHRS. +e emergency controller design looked at the
longitudinal and lateral control of the UAV.

3.3.1. Longitudinal Control Law. TECS can decouple the
height control loop and the speed control loop of the
longitudinal motion, while the latter has no attitude
control loop but directly controls the engine’s thrust.
+erefore, the speed control loop of TECS law can con-
tinue to be used. On the other hand, the height control law
needs to be updated.

+e pitch control loop is used to stabilize the pitch at-
titude and serves as the inner loop of the height controller.
Since there is no pitch angle feedback information, height
control based on angular pitch rate is proposed. +e re-
duced-order ESO model is used for the inner-loop angular
rate control. +e longitudinal controller structure is shown
in Figure 33:
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δe � K
Iq
e 􏽚 Q − Qg􏼐 􏼑 dt + K

Q
e Q,

Qg � K
_H

Q
_H − K

H
e H − Hg􏼐 􏼑􏽨 􏽩,

(41)

where Qg is the given pitch angular rate and _H is the vertical
speed of the UAV.

+e outer loop height control output serves as the input
to the inner-loop attitude angular rate control loop, which
ultimately acts on the elevator.

+e UAV’s initial state of the simulation: height is 100m
and speed is 30m/s. When t� 1 s, the height command is
changed toHg � 105m.

+e vertical speed is obtained according to a specific
proportional relation of the error between height and its
command. When t� 1 s, there is a sudden change in the
vertical speed command due to the considerable height
error, but the vertical speed can track the command well and
respond quickly (Figure 34).

As shown in Figure 35, the value of the elevator energy
is negative to enable the UAV to move upward, and when
the new balance is reached, the energy value comes back
to zero.

+e height step command is tracked without overshoot,
and the response is quick (see Figure 36). In addition, by
putting an integral part into the pitch angular rate control
loop, the influence of external interference on the system can
be easily neglected.

3.3.2. Lateral Control Law. +e structure of lateral roll
angular rate control is similar to that of longitudinal pitch
angular rate control. +e turning control of UAV is realized
by controlling the yaw angular rate.

+e outer track control loop outputs the roll angular rate
command, which will be used as input to the inner loop of
the roll to control the aileron deflection angle (see Figure 37
and equations (42) and (43)):

δa � K
Ip
a 􏽚 P − Pg􏼐 􏼑 dt + K

P
a P, (42)

Pg � K
R
a R − K

Psi
a Psi − Psig􏼐 􏼑􏽨 􏽩, (43)

where Pg is the roll angular rate command, R is the feedback
of yaw angular rate, and Psi is the feedback of the track
azimuth, which can be provided by GPS.

As shown in Figure 38, the track azimuth tracked the
command well without overshoot.

+e yaw angular rate command needs to be optimized
into a smooth transient profile (Figure 39), as the desired
trajectory to allow the output to follow more closely.

It can be seen from Figures 40 and 41 that the proportion
term plays a significant role in the roll angular rate control
loop. In addition, simulation data show that when AHRS
fails, the emergency control law without Euler Angle
feedback can track the control instructions well and enable
the UAV to make a crash landing or continue to perform the
mission, improving flight safety.
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Figure 39: Yaw angular rate response to command tracking.
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4. Conclusion

In this paper, an aircraft flight mode controller for fixed-
wing UAVs with VTOL functions has been successfully
designed where the SD-40 served as a reference. +e con-
troller design process starts by establishing linear and an-
gular perspective, then proceeds with the design of flight
controller. Controllers for the attitude, the trajectory, and
emergency condition flight have been developed and tested
through simulations in the MATLAB and SIMULINK en-
vironment. First, pitch and roll channel controllers have
been designed for attitude control. Next, the total energy
control system, the extended state observer, and L1 guidance
have been proposed for longitudinal and lateral control of
fixed-wing UAV SD-40. An attitude controller based on the
ESO has been proved to be effective from its anti-inter-
ference ability. +e TECS is again proposed for the

longitudinal height channel, while the L1 guidance law is
used for lateral trajectory tracking. +e controller and
simulation data show that the controller effectively responds
to the command and decouples the speed control and the
track control while improving the curve tracking ability and
the wind resistance ability. Finally, a controller based on
angular rate has been proposed in emergency and simulation
data to verify its effectiveness.
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It is important to detect adversarial samples in the physical world that are far away from the training data distribution. Some
adversarial samples can make a machine learning model generate a highly overconfident distribution in the testing stage.+us, we
proposed a mechanism for detecting adversarial samples based on semisupervised generative adversarial networks (GANs) with
an encoder-decoder structure; this mechanism can be applied to any pretrained neural network without changing the network’s
structure.+e semisupervised GANs also give us insight into the behavior of adversarial samples and their flow through the layers
of a deep neural network. In the supervised scenario, the latent feature (or the discriminator’s output score information) of the
semi-supervised GAN and the target network's logit information are used as the input of logistic regression classifier to detect the
adversarial samples. In the unsupervised scenario, first, we proposed a one-class classier based on the semisupervised Gaussian
mixture conditional generative adversarial network (GM-CGAN) to fit the joint feature information of the normal data, and then,
we used a discriminator network to detect normal data and adversarial samples. In both supervised scenarios and unsupervised
scenarios, experimental results show that our method outperforms latest methods.

1. Introduction

Deep neural networks (DNNs) have achieved high accuracy
in many classification tasks, such as speech recognition [1],
objection detection [2], and image classification [3]. Al-
though these DNNs are robust to random noise, they can
mislead the model and cause it to output erroneous pre-
dictions when inputting small perturbations that are hard
for humans to detect. In many machine learning applica-
tions (for example, in novelty detection [4], autonomous
vehicles [5], and banking systems [6]), this prediction un-
certainty will significantly reduce the model’s safety.

Several methods have been proposed to protect against
DNN attacks. One such method relies on the adversarial
training method by adding adversarial samples in the
training phase [7]. +is method is robust to a variety of
adversarial attacks but is ineffective against certain other
attacks. To guarantee that there is no adversarial pertur-
bation to fool the neural network within a given range, a

more computationally demanding and provable defense is
used, employing either integer programming approaches
[8, 9] or satisfiability modulo theories [10]. +e above-
mentioned methods require a lot of calculations and special
training procedures. However, when the parameters and
structure of the neural network are fixed, neither of these
methods can be used without modifying the neural network
structure or retraining the neural network.

Adversarial sample detection is a good solution to the
above problems. In the supervised scenario, most methods
train a binary classifier to distinguish whether the sample is a
normal sample or an adversarial sample. In 2018, Lee et al.
[11] established a class-conditional Gaussian distribution in
the intermediate layers of the pretrained network and dis-
tinguished adversarial samples using the Mahalanobis dis-
tance. Meanwhile, Ma et al. [12] proposed the local intrinsic
dimensionality (LID) and experimentally proved that the
LID can be employed to represent a test sample’s charac-
teristics. Both supervised learning methods use normal
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samples to train the feature extractor in the training stage. In
the testing stage, the test samples are input to the feature
extractor to obtain feature data. Finally, the feature data are
input to the supervised classifier to realize the detection of
normal samples and adversarial samples.

In the unsupervised scenario, alternatively, we can
consider the unsupervised detection algorithm of adversarial
samples. In 2017, Xu et al. [13] proposed a method to detect
adversarial samples by comparing the model’s prediction on
a given image input with its prediction on the compressed
image input version. In 2019, Yang et al. [14] proposed a
feature attribute map of the adversarial samples close to the
classification boundary; this map was different from the
feature attribute map of the true data. In 2019, Roth et al. [15]
introduced a statistical test based on the change in feature
representations and log odds under noise; this approach is
called odds-testing. PouyaSamangouei et al. [16] used GANs
to model real images’ distribution and find a close model’s
output to a test image, which did not contain adversarial
perturbations; this confirmed that the adversarial sample has
a data distribution far away from that of the normal sample,
and it inspired other researchers to train a normal sample
classifier to fit the distribution of real data. In 2018, an
interesting analysis [16] showed how adversarial samples are
propagated through neural network layer features; in 2019,
Joshua et al. [17] studied the first-order classifier by training
a discriminator with a generative adversarial network. +ese
works [16, 17] inspired the present work. Regarding su-
pervised learning and partial supervision methods, our
method is inspired by the approach of Lee et al. [11]. +ey
established a class-conditional Gaussian model through the
Mahalanobis distance: they calculated the Mahalanobis
distance between the true data and the adversarial sample
and found that the feature distribution of the true data and
that of the adversarial sample were different. Grosse et al.,
[18] also showed that adversarial samples have different
distributions from normal data. Considering this finding, we
also study the feature distribution information of normal
samples through a semisupervised GAN in the present ar-
ticle. +ere are differences in the feature distributions be-
tween real samples and adversarial samples when the
adversarial samples are input to the generator.

Our approach is described as follows. We used this
difference to detect adversarial samples and true data. For
unsupervised learning, we are inspired by the method of
Engelsma and Jain [17]; we also employed the GM-CGAN to
study the hidden layers’ features and label information of the
true data in the hidden layers of the pretrained network for
joint feature distribution. When the sample belongs to true
data, the discriminator will output a high predicted value.
Conversely, when the sample is an adversarial sample, the
joint feature of the hidden layers’ feature and the label does
not conform to the true data’s feature distribution, and the
discriminator will output a relatively low predicted value.
We highlight that we do not directly study the joint features
of true data and labels but instead use the intermediate
layers’ features of the pretrained network.

Figure 1 shows the framework of the proposed detection
method. We train individual semisupervised generative

adversarial networks to study normal data distributions in
the pretrained target network’s hidden layers. GE is the
semisupervised GAN’s encoder structure, and GD is the
semisupervised GAN’s decoder structure. In a supervised
scenario, the latent feature of the semisupervised GAN and
the target network’s logit information are used as the input
of the external classifier to detect the adversarial samples.
latent1 represents the latent vector of the first semisupervised
GAN, and latenti represents the last latent vector. In addition
to using the latent information to do experiments, we also
use the discriminator’s output score information of the
semi-supervised GAN for supervised training in our ex-
periment. In the case of an unsupervised scenario, input
features (i.e., the reconstruction error vector errori in the
final layer of the last block group in the pretrained target
network, the latent vector latenti in the final layer of the last
block group in the pretrained target network, and the logit
vector of the target network) are used as Gaussian mixture
conditional generative adversarial networks to study the
distribution of features. Besides, the label information of the
target network is used as the GM-CGAN’s conditional
information.

Our method has universal applicability, and the samples
are tested without modifying any of the model’s structure.
Experiments conducted on the DenseNet and ResNet net-
work architectures show that among the recently proposed
detection methods, our method obtains the highest detec-
tion rate in both supervised and unsupervised learning
scenarios. Our method is better than the method utilizing
the Mahalanobis distance [11] in a supervised scenario. In a
partially supervised scenario, our method and the Maha-
lanobis distance method have similar performance. In an
unsupervised scenario, our method performs similar to or
better than the odds-testing [15] method.

2. Materials and Methods

2.1. Preliminaries. In this work, we describe the deep neural
network first and then introduce the observation of
adversarial samples in the neural network. Finally, we
present the foundations of the GAN and CGAN.

2.1.1. Neural Network. +e neural network solves the
classification problem of class k, and the final output result is
obtained by logit through the softmax function. +e neural
network consists of M layers hm:

zm � hm zm−1( 􏼁, form � 1, . . . , M. (1)

In the above formula, M represents the total number of
layers of the neural network, z represents the output of the
neural network, and h is the hidden layer of the neural
network.

2.1.2. Observation of Adversarial Samples in Neural
Networks. In this article, we further verify that the adver-
sarial sample and the normal sample are feature distribu-
tions in the target network’s hidden layers. +e distribution
of the adversarial samples’ feature data and the distribution
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of normal samples’ feature data are di�erent, and the in-
�uence of interference increases as the network deepens.
Besides, adversarial samples will deviate from the real data.

�e structure of the neural network contains nonlinear
mappings and is formalized as follows:

F � h1 ∘ · · · ∘ hM, (2)

where F is the �nal output of the neural network and h is the
hidden layer of the neural network.

Since in practice, the Lipschitz constant lip(hl) of the
neural network in each mapping is greater than 1 [19], we
can assume that there is a small perturbation in the input
space, and after the neural network propagates, the �nal
layer has a vast representation distance. Our formula for the
propagation of neural networks in high-dimensional space is
formalized as follows:

lip(F) ≈ lip h1( ) . . . lip hM( ), (3)

where F is the �nal output of the neural network, h is the
hidden layer of the neural network, and lip is the Lipschitz
constant.

Due to the propagation properties of neural networks, as
the number of neural network layers increases, the distri-
bution of the adversarial samples will deviate farther from
the distribution of normal samples. �e di�erence between
the real samples and the adversarial samples becomes more
obvious in each sequent hidden layer.

2.1.3. GAN. �e GAN [19] is relatively good for training
generative models. It is composed of two adversarial
modules: a generative model G used to describe the data
distribution, and a probability discrimination model that
determines whether the sample comes from the training data
distribution instead of G. Both generator and discriminator
are nonlinear mapping functions and have multilayer
perceptrons.

To study the generator distribution pg on the training
data x, generatorG builds a mapping function from the prior
noise distribution pz(z) to the space of the generated data
(G(z; θε)).D(x; θD) (the output data of discriminatorD) is a
probability scalar used to determine the probability y that the
data comes from the distribution of the training data.
Generator G and discriminator D are trained at the same
time, and we adjust their parameters so that the generator
has minimal loss:

log(1 −D(G(z))). (4)

�e loss of discriminator D is

log(D(x)). (5)

�us, the generator and discriminator essentially max-
imize and minimize V (D, G).

min
G

max
D
V(D,G) � Ex∼pdata(x)[log(D(x)]

+ Ez∼pz(z)[log(1 −D(G(z)))].
(6)

Lcon = || x – x~ ||1

Ladv = || f (x) – f (x~) ||2
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Figure 1: Framework of the proposed detection method.
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In equations (4) and (6), z is the input noisy data fol-
lowing the pz distribution. Meanwhile, in equations (5) and
(6), x is the input data following the pdata distribution. In
equations (4)-(6), log is a logarithmic function. +e G is the
generator network and the D is the generator network. E is
the expectation of the distribution function.pdata(x) is the
distribution of real samples. pz(z) is a low-dimensional noise
distribution. V is the loss function.

2.1.4. CGAN. If both generator and discriminator are
conditioned with some additional information, the GAN can
be extended to its conditional form. Y can be any type of
auxiliary information, such as a class label or data of other
forms. We can adjust [x] using a discriminator and gen-
erator with y input as an additional input layer. In this way,
the maximum andminimum objective function is as follows:

min
G

max
D

V(D, G) � Ex∼pdata(x)[log(D(x|y)]

+ Ez∼pz(z)[log(1 − D(G(z|y)))].

(7)

Here, z is the input noisy data following the pz distri-
bution, x is the input data following the pdata distribution,
and y is the one-hot encoding of labels. Log is a logarithmic
function. G is the generator network, and D is the generator
network. E is the expectation of the distribution function.
pdata(x) is the distribution of real samples. pz(z) is a low-
dimensional noise distribution. V is the loss function.

2.2. Related Work. We introduce adversarial attacks and
adversarial defense in this work.

2.2.1. Adversarial Attacks. Adversarial attacks can be
roughly divided into poisoning at training time or test time,
and evasion. Adversarial attacks at training time are mainly
conducted by adding maliciously tampered data into the
training dataset during training so that the DNNs enter a
suboptimal state, resulting in a decrease in model perfor-
mance; this is called poisoning.

Meanwhile, evasion attacks involve tampering with the
trained model’s input, making the final prediction of the
model incorrect. In both types of adversarial attack, an
adversarial input modifies the other inputs in such a way that
humans do not perceive the changes, but the DNNs make an
incorrect final prediction.

For example, we add some minimal perturbations to
pixels of the digit 2 inMNISTdata so that the predicted value
of the digit becomes 7, even though the digit still looks like
the digit 2.

In this article, we study an evasion attack at test time.
Given a test input x from class c, the adversarial attack aims
to create the smallest perturbations so that the model’s
output will eventually become a specific class c′ (targeted
attack) or a class outside of class c (untargeted attack).+is is
formalized as an optimization problem, and its general form
is as follows:

min ‖δ‖ps.t., (8)

C
∧

(x + δ) � c′(targeted), (9)

orC
∧

(x + δ)≠ c(untargeted). (10)

In equations (9) and (10), C
∧
is the trained model clas-

sifier. δ is the adversarial perturbation. x is the input data of
the trained model. Based on the above general formula,
many adversarial attack methods have been proposed; well-
known methods include the fast gradient symbol algorithm
(FGSM) [20], projected gradient descent (PGD) attack [22],
Carlini–Wagner (CW) attack [23], DeepFool attack [24],
and BIM attack [25]. +ese attack methods can be catego-
rized into black-box attack or white-box attack methods
depending on the extent of their knowledge about the DNNs
classifier’s parameters, structure, loss function, and algo-
rithm.+emost commonly used deep neural network attack
methods are white-box methods because they assume a
complete understanding of the system.

2.2.2. Defenses against Adversarial Attacks. Defending
against neural networks is much more complicated than
attacking them. Here, we summarize some current defense
methods.

(1) Adversarial Training. It is a method that trains a better
classifier to defend against adversarial samples. [25].+is is a
method to add adversarial sample information in the
training process of neural network classifier. For instance,
one can add adversarial examples to the training data [26]
for data augmentation [27] or add adversarial targets to the
classification targets [28] for regularization [29]. Although
the method is promising, it is difficult to determine which
kind of attack is more suitable for the training way and how
important the training way is; these problems are still un-
resolved [30].

(2) Defensive Distillation. +e defensive distillation [30]
training classifier makes it almost impossible for gradient-
based attacks to directly generate adversarial samples on the
trained network. +is method uses the distillation training
technique and hides the gradient between the logits and the
output of the softmax function [26]. However, attacks can
bypass this defense through the following three ways: (1)
choosing an appropriate loss function, (2) directly calcu-
lating the gradient of the previous layer of the softmax layer
instead of the gradient of the postlayer of the softmax layer,
and (3) first attacking other vulnerable network models and
then migrate to the trained distillation network.

(3) Detecting Adversarial Samples. Detecting adversarial
samples can use statistical feature [29] methods or a classifi-
cation network [30] to achieve defense. We build different
detection classifiers for different attack methods to determine
whether the input is a normal sample.+e detector uses normal
samples and adversarial samples for training. When the
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training and testing adversarial samples are generated from the
same way, and the adversarial perturbation is obvious enough,
the detector shows good performance. However, this means of
defense cannot be well generalized to different attack.

Our method is inspired by the approach of Lee et al. [11].
+ey established a class-conditional Gaussian model through
the Mahalanobis distance: they calculated the Mahalanobis
distance between true data and the adversarial sample and
found that the feature distribution of the true data and that of
the adversarial sample were different. Our method takes ad-
vantage of the difference between the adversarial samples and
the normal samples in the middle layers of the neural network.
In 2019, Joshua et al. [17] studied the first-order classifier by
training a discriminator with a generative adversarial network.
In our unsupervised method, we use the feature vectors
extracted from the middle layer to train the discriminator
network. Because our GM-CGAN is used to train a one-class
classifier on themicrofeature distribution of themiddle layers of
the pretrained network, we capture the weak perturbation of
adversarial samples.+us, ourmethodwill have better detection
performance than the three types of methods described above.

2.3. Our Approach. In this work, we introduce the semi-
supervised GAN’s structure and training method for studying
the hidden layers’ feature distribution of the pretrained net-
work first. +en, we present our detection methods under
supervised, partially supervised, and unsupervised scenarios.

2.3.1. Semisupervised GAN. Samet Akcay et al. [28] inspired
us to use the semisupervised anomaly detection structure.
+ey used an encoder-decoder-encoder structure to study
the data distribution of the input image. For simplicity, we
used an encoder-decoder structure in the generator part of
the semisupervised GAN to analyze the feature distribution
of the target network’s hidden layers.

+e formal principle behind the semisupervised GAN is
as follows. Generator G first reads the intermediate layer
feature x of the target network, where x ∈ Rm, and forward
passes it to the encoder network GE. With the use of con-
volutional layers followed by batch norm and ReLU() ac-
tivation, GE downscales x by compressing it to a latent
vector, where latent ∈ Rd (d represents the best dimension).
In our experiment, d is set to 128. +e decoder network GD

of generator G is composed of convolution transpose layers,
the batch-norm function, and the ReLU() activation func-
tion. Finally, the latent vector is input to GD to reconstruct
the intermediate layer feature 􏽥x of the target network. Fi-
nally, generator G generates the intermediate layer feature 􏽥x

via 􏽥x � GD(latent), where latent � GE(x).

(1) Adversarial Loss. Because the GAN is unstable during the
training phase, we add feature matching loss to the training
phase. In the ordinary GAN’s training phase, generator G is
updated based on discriminator D. Following the work of
Salimans et al. [29], feature matching is employed to reduce
instability during training. We update this approach based on
the internal representation of discriminatorD. First, we assume
that there is an f function of the intermediate layer of

discriminator D. For the input data x that satisfies the pX

distribution and outputs the intermediate layer features of
discriminator D, the feature matching loss calculates the L2
distance between the original feature and the generated feature.
+e form of our formalized adversarial loss Ladv is as follows:

La dv � Ex∼px f(x) − Ex∼pxf(G(x))
�����

�����2
. (11)

In equation (11), x is the input data; f is the function of
the intermediate layer of discriminator D, G is the generator
network, D is the discriminator network, and px is the
distribution of real samples. +e adversarial loss Ladv is the
L2 loss. E is the expectation of the distribution function.

(2) Contextual Loss. While adversarial loss makes the gen-
erated adversarial samples deceive discriminator D, there is
only one adversarial loss, and the generator cannot be op-
timized according to the input data’s context information.
Punishing the generator by measuring the distance between
the input data and the generated data can remedy this
problem. Isola et al. [30] showed that the fuzzy results due to
L1 loss are less than those due to L2 loss. +erefore, we
penalize G by measuring the L1 distance between the
original input data and the generated data 􏽥x � G(x). +us,
the contextual loss Lcon is formalized as follows:

Lcon � Ex∼px‖x − G(x)‖1. (12)

In equation (12), x is the input data, E is the expectation
of the distribution function, and px is the distribution of real
samples. +e contextual loss Lcon is the L1 loss.

In this way, the generator encodes normal data but
cannot encode adversarial samples because our generator G
and discriminator D are optimized for normal data. +e loss
function we trained is as follows:

L � WadvLadv + WconLcon, (13)

where Wadv is the weight coefficient of Ladv and Wcon is the
weight coefficient of Lcon. Wadv and Wcon are both positive
integers; Wadv � 1, and Wcon � 15. Ladv is the adversarial loss
in equation (11). Lcon is the contextual loss in equation (12).
+e semisupervised GAN training flow chart is described in
Algorithm 1.

2.3.2. Supervised Scenario and Partially Supervised Scenario.
We used the semisupervised GAN to study the normal data’s
feature distribution information in the hidden layers of the
pretrained network. +en, we input the normal data and the
adversarial samples into the pretrained network and obtain
the corresponding latent features through the semi-
supervised GAN. Finally, the features are input into the
supervised classifier logistic regression classifier to realize
supervised classification and partially supervised classifica-
tion. +e supervised scenario and partially supervised sce-
nario training flowchart is described in Algorithm 2.

2.3.3. Unsupervised Scenario. Due to the discrepancy be-
tween the feature distributions of the normal data and the
adversarial samples in the hidden layers of the pretrained
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network, we use the hidden layers’ difference features of the
normal data and its label as the joint feature information for
training the CGAN and a good discriminator.

+e loss function of the target is as follows:

min
G

max
D

V(D, G) � Ex∼pnormal(x)[log(D(x | y)]

+ Ez∼pz(z)[log(1 − D(G(z | y)))].

(14)

Here, in order to reduce the amount of calculation, x is
the joint feature data that includes the reconstruction error
vector in the final layer of the last block group in the pre-
trained target network, the latent vector in the final layer of
the last block group in the pretrained target network, and the
logit vector of the target network. pnormal is the distribution
of real samples, and pz is the low-dimensional noise dis-
tribution; x follows a normal distribution pnormal, and z is the
input noisy data following the pz distribution, and y is the
one-hot encoding of labels. Usually, U[−1, 1]d or multi-
variate normal distribution information N(0, Id×d) are used
as the noise input during the GAN’s training. G is the
generator network and D is the discriminator network. We
emphasize that to better study the joint feature distribution
of normal data and labels, we use the inherent multimodal
distribution feature of px. Its specific form is as follows:

pz(z) � 􏽘

K

k�1
αk ∗pk(z). (15)

Here, K is defined as the number of Gaussian distri-
butions in the mixture model, which is the number of neural
network block groups in our experiment. pk(z) is defined as

multivariate normal distribution information N(μk, 􏽐 k),
where ∀k ∈ [K], αk � 1/K. z is the input noisy data. For data
evaluation, we used the normal sample’s one-hot encoding
of labels and the adversarial sample’s one-hot encoding of
labels as the trained GM-CGAN’s conditional information
during the testing phase. +e supervised scenario and
partially supervised scenario training flowchart is described
in Algorithm 3.

3. Results and Discussion

3.1. Experiments. We test our detection method against
DeepFool, FGSM, BIM, PGD, and CW adversarial attacks on
CIFAR10 [32], CIFAR100 [33], and SVHN [34] datasets. We
used the ResNet-34 [35] and DenseNet-BC [36, 37] models.
Similar to Lee’s method, we chose to train the semisupervised
GAN on the last layer of the basic block of the two neural
network models; then, we extracted the hidden layers’ features
from the target network. For convenience of calculation, if the
feature shape of the dataset in the network’s hidden layers is the
same, we used the same semisupervised GAN.

In the supervised and partially supervised scenario, the
final detection classifier is the logistic regression classifier
classifier; we used 10% of the test set as training data and 90%
as evaluation data. In the unsupervised scenario, we used the
GM-CGAN as the final detection classifier trained on the
training samples that not include adversarial samples and
noise samples. Our analyses of reconstruction error and L2
norm are presented in Figures 2–4. When we train the GM-
CGAN, we select the input features as the reconstruction
error vector in the final layer of the last block group in the
pretrained target network, the latent vector in the final layer
of the last block group in the pretrained target network, and

Input: train sample x into the pretrained target network.
for each layer l ∈ 1, . . . , L do.
Train individual semisupervised generative adversarial networks in layer l.
A semisupervised GANl is obtained.

end for
return semisupervised GANl l ∈ 1, . . . , L

ALGORITHM 1: We train individual semisupervised generative adversarial networks to study normal data distributions in the pretrained
target network’s hidden layers.

Input: the normal data x and the adversarial samples xadv into the pretrained network.
for each layer l ∈ 1, . . . , L do

Input: the hidden layer l into semisupervised GANl(Algorithm 1)
latentl is obtained.
errori is obtained.

end for
+e normal data x latent feature is 􏽐llatantlx and the logit vector of the target network.
+e adversarial samples xadv latent feature is 􏽐1latantlxadv and the logit vector of the target network.
We use the normal data x latent feature and adversarial samples xadv latent feature input the support vector machine classifier.
return the evaluation data’s AUROC.

ALGORITHM 2: In the supervised and partially supervised scenario, the final detection classifier is the support vector machine classifier. We
used 10% of the test set as training data and 90% as evaluation data.

6 Mathematical Problems in Engineering



the logit vector of the target network. +e GM-CGAN’s
conditional information is the label of the output of this
neural network model.

+e features we input are important for detecting
adversarial samples. In the study by Yang et al. [19], the
reconstruction error vector of the L1 norm was shown to
reflect the discrepancy between the given sample and the real
sample. +e latent feature vector’s norm reflects whether a
given sample can be generated on the data manifold. In
Figure 2, we can also view the importance of the logit norm.
+is can reduce the computational complexity and allows us
to better capture the difference information. Similar to Lee’s
[11] method, we use logistic regression classifier. +e
hyperparameters of the SVM classifier are fine-tuned.

First, similar to how Yang et al. [14] approached the
problem, we analyzed the norm and reconstruction error
information of the hidden layer’s latent feature vectors
generated from the semisupervised GAN (Figures 2 and
3). We also analyzed the joint feature information of the
norm and reconstruction error (Figure 4). Finally, we
assessed the importance of different hidden layers’ fea-
tures (Figure 5). Here, due to limited space of article, we
only present figures for the ResNet model under attack by
five methods, on the CIFAR10 dataset. +is analysis puts
forward a strong argument that the reconstruction error
and the latent norm can fully explain the data manifold,
which can help us to detect adversarial samples.

For the sake of fairness, ourmethod and themethod of Lee
et al. [11] are initialized with the same settings. In the ex-
perimental test stage of Lee et al., noisy data and adversarial
samples are generated for normal test data. Our semi-
supervised GAN obtains latent features, and then, we used
these latent features to train the supervised and unsupervised
classifiers.We used 10% of the test set as training data and 90%
as evaluation data and performed five-fold cross-validation.

3.2. Result. In Figure 2, we visualized the distribution infor-
mation of normal (green) and adversarial (red) samples
through kernel density estimation in 2D space. In the subfigure,
x-axis represents the L2 norm in the latent vector produced by
the generator and y-axis represents probability density. +ese
figures are generated for the CIFAR10 dataset, with the ResNet
model. +e adversarial samples flow through 5 semisupervised

GANs and the target network’s logit layer, and hence, there are
6 rows of subfigures. +e difference between the real sample
and the adversarial sample is obvious in the last few layers of
the neural network, especially in the logit layer.

In Figure 3, we visualized the distribution information of
normal (green) and adversarial (red) samples through kernel
density estimation in 2D space. In the subfigure, x-axis
represents reconstruction error and y-axis represents
probability density. +ese figures are generated for the
CIFAR10 dataset, with the ResNet model. +e adversarial
samples flow through 5 semisupervised GANs, and hence,
there are 6 rows of subfigures.

In Figure 4, we visualized the distribution information of
normal (green) and adversarial (red) samples through kernel
density estimation in 2D space. In the subfigure, x-axis rep-
resents the L2 norm in the latent vector produced by the
generator and y-axis represents reconstruction error. +ese
figures are generated for the CIFAR10 dataset, with the ResNet
model.+e adversarial samples flow through 5 semisupervised
GANs, and hence, there are 6 rows of subfigures.

Figure 5 presents the AUROC of the threshold-based de-
tector using the latent vector generated from the semisupervised
GAN’s generator at different basic blocks of ResNet trained on
CIFAR10 dataset and the logit vector of the target network. We
measured the detection performance using adversarial samples
produced by FGSM, BIM,DeepFool, CWL2, and PGD.We also
measured the detection performance using the entire latent
vectors generated from the semisupervised GAN’s generator
(see the last subfigure, i.e., Feature Ensemble).

To generate the results for the supervised scenarios
(Table 1), the final detection classifier is the support vector
machine classifier whose input includes all latent vectors.
For the partially supervised scenarios (Table 2), the final
detection classifier is the support vector machine classifier
whose input only includes FGSM samples.

Meanwhile, for the unsupervised scenarios (Table 3), we
used the GM-CGAN as a one-class classifier whose input
features are the reconstruction error vector, the latent vector
in the final layer of the last block group (obtained by the
semisupervised GAN), and the logit of the target network.
+e GM-CGAN’s conditional information is the label of the
target network. We train the classifier based on the training
data, which does not include any adversarial samples and
noisy samples.

Input: the normal data x into the pretrained network.
for each layer l ∈ 1, . . . , L do

Input: the hidden layer l into semisupervised GANl(Algorithm 1)
latentl is obtained.
errori is obtained.

end for
In order to reduce the amount of calculation, the GM-CGAN's input features are the reconstruction error vector in the final layer of
the last block group in the pre-trained target network, the latent vector in the final layer of the last block group in the pre-trained
target network, and the logit vector of the target network. +e GM-CGAN’s label information is the label of the output of this neural
network model.
return the evaluation data’s AUROC.

ALGORITHM 3: In the unsupervised scenario, we used 10% of the test set as training data and 90% as evaluation data.
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Figure 2: Continued.
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Figure 2: Continued.
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3.3. Discussion. In our experiment, we utilized the PGD-100
attack. In the supervised scenario, our method performed
significantly better than that of Lee et al. Our method re-
duced the preprocessing time for input data and reduced the
total amount of calculations. We note that the Mahalanobis
distance covariance matrix must be full rank and that it
cannot handle problems on nonlinear manifolds. In the deep
layers of the neural network, the Mahalanobis distance
cannot provide a reliable measure of the distance between
the data, which mainly exist in a nonlinear form; ultimately,
the Mahalanobis distance is unstable in such situations. +e
source of this instability is the covariance matrix. In Lee’s
method, the distance between data of different network
blocks is very small compared with the distance between
high-dimensional adversarial data and the real data. Fur-
thermore, Lee’s method cannot reflect the difference be-
tween the adversarial data and the real data. In contrast, our
semisupervised GAN method maps different network block
feature data to low-dimensional space, thereby obtaining
more sample feature information. Moreover, it can over-
come the drawback of the Mahalanobis distance being
unsuitable for the determination of nonlinear data. Con-
sidering these key characteristics, it is clear why our method
achieved the best results in the supervised classification task.

We highlight that our method improved the detection of
DeepFool to above 94.68%.

For the partially supervised scenario, we used the logistic
regression classifier as the final classifier with FGSM samples.
Although it did not achieve the same effect as Lee’s method in
this scenario, our method still achieved good results. Here, we
take the ResNet model and the CIFAR10 dataset as an example
(Table 2). For BIM attacks, the detection AUROC dropped
from 98.91% to 73.19%;meanwhile, for FGSM attack detection,
the AUROCwas 99.98%.We argue that theremight be a trade-
off between performance on a fully supervised scenario (where
our method had an AUROC close to 100% in some cases) and
an ability to generalize to other attacks. In Figure 4, we find that
BIM attacks and FGSM attacks deviate from the real data and
have great inconsistencies; this is mainly manifested in the 1st,
7th, and 27th layers of the network. By the same token, theways
in which different attacks deviate from the true data are also
different. +erefore, only partial supervision is suitable for
FGSM attacks.

For the unsupervised scenario, our method performed
better than the odds-testing method [15], except for with
the PGD-100 attack. We argue that not all attack differ-
ential features are present in the last layer. +e PGD attack
consists of initializing the search for an adversarial
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Figure 2: Analysis of feature norms of different network layers.
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example at a random point within the allowed norm ball,
then running several iterations of the basic iterative
method. �e PGD-100 has stronger attack performance
because of the basic iterative method. We think the per-
formance feature of PGD’s adversarial samples in the
network middle layer is more similar to those of real
samples. �e input at the end of the network is di�erent
from the real one. �e PGD-100 can attack deep neural
networks, such as ResNet-34 and DenseNet, which contain
many features. GM-CGAN contains fewer features and is
easier to be attacked by PGD-100. Because GM-CGAN is
also a classi�er based on neural network, the features in the
hidden layers space will also be attacked by PGD. It re-
duces the defensive performance of GM-CGAN. For ex-
ample, as shown in Figures 3 and 4, the most obvious
di�erence in the PGD-100 attack is in the 15th layer.
Although our method requires multiple forward propa-
gations of neural networks like the odds-testing method,
we provide a new idea for detecting adversarial samples: a
new one-class classi�er. We emphasize that our one-class
classi�er does not require any noisy data during the
training process compared with the odds-testing method,

and the training method is simple and easy to operate.
Additionally, the number of forward propagations of our
method is relatively small. �rough Figures 2–4, we �nd
that as the network layer deepens, the data distribution of
the adversarial sample deviates farther from the charac-
teristic distribution of the normal data. �e L2 norm
information of the logit can better re�ect this di�erence
than the latent vector’s norm information. Compared with
the L2 norm information, the reconstruction error can
reveal the distribution discrepancy between the adversarial
sample and the normal sample earlier, and the deeper the
network layer, the greater the discrepancy. �e combined
information of the reconstruction error and L2 norm can
also re�ect this trend. In general, the discrepancy between
the distribution of real samples and adversarial samples is
more obvious in the last few layers. In Figure 5, we an-
alyzed the detector’s performance with di�erent basic
blocks (which have di�erent latent vector characteristics).
We also analyzed the performance of the detector after the
integration of di�erent basic block features. Like in
Figures 2–4, in most instances, the discrepancy is most
obvious in the last layer. At the same time, we found that
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the logit vector is signi�cant for the detection of adver-
sarial samples. In our supervised and partially supervised
experiments, we ensemble the latent feature vectors; we
believe that this treatment can provide adaptability to
di�erent adversarial attack strategies and lead to good
performance.

�is method has practical signi�cance. For example, this
method can be used in target recognition. Without modi-
fying the original neural network, this method can detect
images with adversarial perturbation. For example, if
adversarial perturbation is added to a picture of a kitten, it
may be recognized as other animals in target recognition.
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Table 1: Supervised scenarios for detecting adversarial samples.

Model Dataset Method
Supervised scenario

FGSM BIM DeepFool CW PGD

DenseNet

CIFAR10
Mahalanobis 99.94 99.78 83.41 87.31 97.79
Ours (lantent) 99.95 99.98 97.46 96.11 99.42
Ours (score) 99.98 99.93 98.54 96.13 99.34

CIFAR100
Mahalanobis 99.86 99.17 77.57 87.05 79.24
Ours (lantent) 100.00 99.86 97.22 98.01 90.35
Ours (score) 99.89 99.90 97.34 98.02 91.36

SVHN
Mahalanobis 99.85 99.28 95.10 97.03 98.41
Ours (latent) 99.95 99.85 99.25 98.65 99.49
Ours (score) 99.90 99.80 99.35 98.23 99.12

ResNet

CIFAR10
Mahalanobis 99.94 99.57 91.57 95.84 89.81
Ours (latent) 99.98 99.86 98.66 97.89 100.00
Ours (score) 99.87 99.92 98.65 98.11 98.65

CIFAR100
Mahalanobis 99.77 96.90 85.26 91.77 91.08
Ours (lantent) 99.92 99.11 94.68 97.21 99.95
Ours (score 99.93 97.91 94.34 92.34 92.34

SVHN
Mahalanobis 99.62 97.15 95.73 92.15 92.24
Ours (latent) 99.96 99.46 99.54 99.30 99.98
Ours (score) 99.65 98.34 96.54 97.56 97.45

Table 2: Partially supervised scenarios in detecting adversarial samples.

Model Dataset Method
Partially unsupervised scenario

FGSM BIM DeepFool CW PGD

DenseNet

CIFAR10
Mahalanobis 99.94 99.51 83.42 87.95 81.84
Ours (latent) 99.95 90.79 98.06 95.75 76.00
Ours (score) 99.98 92.23 96.09 97.18 78.00

CIFAR100
Mahalanobis 99.86 98.27 75.63 86.20 39.32
Ours (latent) 100.00 89.86 83.14 79.08 62.35
Ours (score) 99.89 90.15 80.19 81.09 64.15

SVHN
Mahalanobis 99.85 99.12 93.47 96.95 81.40
Ours (latent) 99.95 99.00 98.71 98.16 94.15
Ours (score) 99.90 99.01 98.29 97.18 92.16
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+is method can be used to detect kitten images with anti-
interference.+is method can prevent the recognition image
from making mistakes.

4. Conclusions

Our article intends to discover the adversarial samples in
training data in order to prevent the generation of the highly
overconfident distribution in the test phase. +e proposed
method designs a semisupervised generative adversarial net-
work that is applied to the output of the hidden layers in a
neural network to detect the variation of the adversarial
samples withoutmodifying the structure of the neural network.
In the supervised scenario, the latent feature (or the dis-
criminator's output score information) of the semisupervised
GAN and the target network’s logit information are used as the
input of the external classifier logistic regression classifier to
detect the adversarial samples. In the unsupervised scenario,
first we proposed a one-class classier based on the semi-
supervised Gaussianmixture conditional generative adversarial
network (GM-CGAN) to fit the joint feature information of the
normal data and then we used a discriminator network to
detect normal data and adversarial samples. +e novel con-
tribution is that the output of hidden layers of a neural network
is analyzed without modifying the neural network.
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(is paper proposes a cooperative search algorithm to enable swarms of unmanned aerial vehicles (UAVs) to capture moving
targets. It is based on prior information and target probability constrained by inter-UAV distance for safety and communication.
First, a rasterized environmental cognitive map is created to characterize the task area. Second, based on Bayesian theory, the
posterior probability of a target’s existence is updated using UAV detection information. (ird, the predicted probability
distribution of the dynamic time-sensitive target is obtained by calculating the target transition probability. Fourth, a customized
information interaction mechanism switches the interaction strategy and content according to the communication distance to
produce cooperative decision-making in the UAV swarm. Finally, rolling-time domain optimization generates interactive in-
formation, so interactive behavior and autonomous decision-making among the swarm members are realized. Simulation results
showed that the proposed algorithm can effectively complete a cooperative moving-target search when constrained by com-
munication distance yet still cooperate effectively in unexpected situations such as a fire.

1. Introduction

In combat, search and reconnaissance are important for
providing effective information to accelerate the observe-
orient-decide-act (OODA) cycle [1–4]. Consequently, the
US military has identified wide-area target search capability
as one of the medium and long-term development goals of
unmanned aerial vehicles (UAVs) [3, 4]. UAV swarms have
excellent wide-area search capabilities affected by cooper-
ation among swarm members; that is, the collective capa-
bility is far greater than the sum of all single UAVs [5, 6].
Cooperative search planning is integral for guiding swarms
to achieve wide-area search and target acquisition and has
been widely studied [7]. To ensure cooperative search effi-
ciency, a reasonable search planning area and an efficient
cooperative strategy are needed.

To determine the area, grid [8, 9], landmark [10, 11], and
potential field [12, 13] methods are the main ones proposed.
In [8], based on rasterizing the task area, real-time path

planning was realized through an improved ant colony al-
gorithm. In [11], the task area was divided by a Voronoi
diagram, and waypoint allocation and track smoothing were
used to realize the fast planning of a search track in a static
environment. In [13], based on describing the task area using
an artificial potential field, an improved logarithmic linear
learning algorithm was proposed to reduce the risk that a
UAV may wander into a zero-potential field area.

Valente et al. [14] proposed a cooperative search method
based on a diffusion-weighted uncertaintymodel. EachUAV
is assigned a search area, and then a potential field algorithm
based on a rolling-time domain program solves each search
track, but this method can only search for a single moving
target. Zhang et al. [15] initialized the target probability
distribution map using prior target information and then
introduced the environmental uncertainty map to guide the
UAV to return to a grid that had not been searched for a long
time. (e result was a feasible scheme for long-time swarm
searches and surveillance track planning. However, only one
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kind of prior information, including the initial position of
the target, was considered, so the speed and direction of
motion were not considered. Dong et al. [16] defined a
digital pheromone map and a corresponding updating
strategy to realize UAV cooperation in a moving-target
search. In [17], a Markov chain was used to describe the
target, but it could not consider communication distance
and other constraints.

To sum up, the current research enables UAV swarms to
have certain cooperative search capabilities, but there are
still problems:

(1) (e influence of communication distance on a UAV
swarm’s cooperation is not considered

(2) (e use of a variety of prior information in amoving-
target search is not considered

(3) (e risk of collision in a UAV swarm is simplified as
a function of height layers, or it is not considered

In view of the preceding, this paper has done the fol-
lowing work:

(1) It designed a cooperative search method suitable for
dynamic communication distance

(2) It analyzed the prior information of four typical
moving targets to generate a mathematical model
that defines them in a cooperative search

(3) It provided an interface to apply to current UAV
conflict resolution results [18–21] in swarm coop-
erative search missions

2. Description of the Cooperative Moving-
Target Search Problem

2.1. Task Description. UAV swarm cooperation is usually
divided into area-coverage and target search tasks [22, 23]. (e
former is to make the UAV swarm complete a flight over a
maximum coverage area as soon as possible when prior in-
formation about themission area is difficult to obtain.(e latter
is to obtain all target information when some prior information,
such as location and quantity of targets, is known [24]. (is
paper is concerned with the second kind of task. In practice,
some prior information of enemy target distribution can be
obtained from satellite remote sensing imagery and radar de-
tection, which also provides advantages for target acquisition.

Figure 1 is a typical task scenario for a cooperative UAV
target search. (ere are Nt potential moving targets in the
mission area, andNu UAVs are used to search themission area.
Moving targets, such as enemymissile launch vehicles and radar
vehicles, are deployed at corresponding positions to protect key
enemy targets. Our four UAVs set out from different positions
to inspect and defeat moving enemy targets.

2.2. UAV Motion Model. If the UAV swarm that performs
the task is Us, then its motion is given by

Us � Ui | i � 1, 2, . . . , Nu􏼈 􏼉, (1)

where i is the number of the swarm members and Nu is the
scale of the swarm.

To simplify the search decision, a UAV is regarded as a
particle in space. (e task area is divided into a W × H grid
map where the two-dimensional coordinates (w, h) are used
to discretize the UAV motion range and decision set [25].
Assuming that the UAV moves in the grid every time, the
constraint of normal overload of UAVmovement is satisfied
by limiting the grid size and the maximum turning angle,
thus ensuring flyability along the planned track. (erefore,
the UAV can fly in eight directions at any time, as shown in
Figure 2.

(e state vector si(k) of Ui at k moment is

si(k) �

xi(k)

yi(k)

ψi(k)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (2)

where (xi(k), yi(k)) is the position of Ui at k moment in the
environmental awareness map, and ψi(k) is the flight course
of Ui at k moment, and

ψi(k) ∈ 0, 1, 2, 3, 4, 5, 6, 7{ }. (3)

(en the flight direction of Ui at k moment can be given
by

ψi(k + 1) � ψi(k) + ui(k)( 􏼁mod8, (4)

where ui(k) values are the maximum turning angle con-
straints of the UAV. (e state transition function of UAV is
then

si(k + 1) � f1 si(k), ui(k)( 􏼁, (5)

where f1(·) is the UAV state transition function determined
by Figure 2 and equation (4).

2.3. Autonomous Decision Function. When performing a
cooperative search task amid strong electromagnetic interfer-
ence, centralized decision-making can realize collaboration
among swarm members, but it depends on strict communi-
cation, which is often difficult to apply [24]. In this paper, the
distributed decision-makingmethod is adopted tomake full use
of the limited UAV communication distance so that swarm
members can make interactive decisions to improve the search
and avoid collisions.

1 i
w

1
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h
H

j

UAV2 UAV3

UAV1

UAV4
Δd

Δd

... ...

...
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Figure 1: Schematic diagram of cooperative UAV swarm search.
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Rolling-time domain optimization decision-making allows
a UAV to predict a subsequent multistep decision according to
its current state vector and environmental cognitive map at a
given moment [26, 27]. (e first step prediction is the actual
decision quantity, which avoids a decline in overall search ef-
ficiency caused by a focus on only short-term search benefits.

If Ui cannot communicate effectively with other
members of the swarm at k moment, it uses the differ-
ential evolution algorithm to solve the cumulative au-
tonomous decision function according to its current state
vector and environmental cognitive map, thereby
obtaining the current decision value. (e autonomous
decision function of Ui at k moment is

J
i
ind(k) � w1J1 + w2J2 + w3J3,

s.t. k ∈ 0, Ta􏼂 􏼃; i � 1, 2, . . . , Nu,
(6)

where Ji
ind is composed of target search revenue J1, en-

vironmental search income J2, and expect probe revenue
J3; wl indicates the weight of each income in the process
of generating interactive information to satisfy wl ∈ [0, 1]

and 􏽐
3
l�1 wl � 1, l � 1, 2, 3, and values according to the

specific task requirements and engineering experience.
(e benefits of autonomous decision function are de-
scribed as follows.

2.3.1. Probability Return of Target Existence J1. Target ex-
istence probability income represents the value of possible
targets in the corresponding environmental cognitive map,
which guides the UAV to search areas that have a high pos-
sibility of targets. It is defined as

J1(k) � 􏽘
W

w�1
􏽘

H

h�1
pwh(k) − pwh(k − 1)( 􏼁, (7)

where pwh(k) indicates the probability of having a goal in
grid (w, h) at k moment that satisfies pwh ∈ [0, 1].

2.3.2. Income from Environmental Uncertainty J2.
Environmental uncertainty revenue represents the reduction
of uncertainty in the grid of the corresponding environ-
mental cognition map after the UAV has searched it. It
guides the UAV to search the task area with high uncertainty
and reduces the possibility of missing targets:

J2(k) � 􏽘

W

w�1
􏽘

H

h�1
ψwh(k + 1) − ψwh(k)( 􏼁, (8)

where ψwh(k) represents the uncertainty of grid (w, h) in the
environment cognition map, and ψwh(k) ∈ [0, 1] (see Sec-
tion 3.2 for details).

2.3.3. Comprehensive Income J3. Comprehensive income is
obtained by multiplying environmental uncertainty and
target existence probability, which is used to guide the UAV
to detect areas with high uncertainty and target existence
probability. (e detailed description is [15]

J3(k) � 􏽘
W

w�1
􏽘

H

h�1
pwh(k + 1) · ψwh(k + 1) − pwh(k) · ψwh(k)( 􏼁.

(9)

(en, the autonomous decision value u∗i (k) of Ui at k

moment can be given by the following formula:

u
∗
i (k) � argmax 􏽘

t�k+q−1

t�k

J
i
ind si(t), E

i
(t)􏼐 􏼑, (10)

where si(t) is the state vector of Ui at t moment, Ei(t) is the
environmental cognitive map of Ui at t moment, and q is the
step size of the rolling-time domain.

2.4. Interactive Decision Function. When Ui is in the com-
munication range of other swarm members, the efficiency of
cooperative search can be improved by sharing information,
but the problem of collision prevention should be consid-
ered. (e flight conflict resolution method and information
interaction method are described below.

(ere has beenmuch research on collisions inUAV swarms
in the distributed decision framework.(e literature [12] guides
UAVs to avoid conflict by establishing an artificial potential
field, which has the characteristic of a short response time and
requires only a small amount of calculation. It can realize real-
time obstacle avoidance but cannot resolve complex conflict
problems. In [18–20], the speed obstacle method broadcasts
automatic correlation monitoring to give each UAV the po-
sition and speed of the others; thus it solved the potential
problem by detecting flight conflict and determining a relief
flight path; however, the relief path can easily deviate the UAV
from the search target point, thus compromising mission ef-
ficiency. In [21], the distributed model predictive control
method is adopted, in which the collision avoidance manage-
ment unit and the interactive graph updating mechanism ad-
dress conflict resolution in multi-UAV route planning, but it
requires a large amount of computation.

0 1

26

4 35

7

Figure 2: UAV flight decision set.

Mathematical Problems in Engineering 3



To study cooperative strategy in the search for moving
targets, this paper introduced the artificial potential field term to
meet the basic requirements of collision prevention. In practice,
the minimum safe distance can be defined by this method. To
achieve a better anticollision effect, the previous conflict res-
olution decision method replaced the interactive decision
function within the minimum safe distance.

(e anticollision constraint J4 is defined as

J4 � lg 􏽘

j�Nu

j�1

lij

Ncomu

⎛⎝ ⎞⎠, (11)

where Ncomu represents the number of members that can
communicate with Ui (see Section 3.2) and lij indicates the
distance between Ui and the other swarm members within
the communication distance of Ui, which is given by

lij �
0, cij(k) � 0,

si(k) − sj(k)
�����

�����, cij(k) � 1,

⎧⎪⎨

⎪⎩
(12)

where cij � 0 means that Uj is not within the direct com-
munication distance of Ui at k moment; cij � 1 means that
Uj can communicate directly with Ui; ‖ · ‖ is the second
norm, which is used to calculate the distance between two
UAVs that can communicate directly. Furthermore, it is
possible to obtain the interactive decision function of Ui as

J
i
int(k) � w1 · J1 + w2 · J2 + w3 · J3 + w4 · J4, (13)

where Ji
int is composed of target search revenue J1, envi-

ronmental search income J2, expected detection income J3,
and anticollision constraint J4; wl indicates the weight of
each income in the process of generating interactive in-
formation that satisfies wl ∈ [0, 1] and
􏽐

3
l�1 wl � 1, l � 1, 2, 3, 4.
(en the interactive decision value u∗i (k) of Ui can be

given by the following formula:

u
∗
i (k) � argmax 􏽘

t�k+q−1

t�k

J
i
int si(k), E

i
inter(k)􏼐 􏼑, (14)

where si(k) is the state vector of Ui at k moment, Ei
inter(k) is

a decision-making environment cognitive map fused to the
environment map of other members acquired by Ui at k

moment (see Section 4.1), and q is the optimized step size of
the rolling-time domain.

3. Construction and Update of Environmental
Cognition Map

In a UAV swarm search, environmental cognitive maps
(target probability distribution and environmental

uncertainty maps) are used to describe the environmental
state, and swarm members interact with each other through
their own environmental cognitive maps.

3.1. Target Probability Distribution Map Initialization and
Update. In a cooperative search, the existence probability of
the target in grid (w, h) at k moment can be expressed as
pwh(k) ∈ [0, 1]. Among them, pwh(k) � 0 expresses no
target in grid (w, h) at k moment, whereas pwh(k) � 1 ex-
presses targets in grid (w, h) at k moment. Now, the target
probability distribution diagram of Ui at k moment can be
expressed as

Pi(k) � p
i
wh(k) | w � 1, 2, . . . , W, h � 1, 2, . . . , H􏽮 􏽯. (15)

In order to make full use of the prior information of the
moving target, we divide the target in the cooperative search
task into four types, as shown in Table 1.

3.1.1. Unknown Target Position and Speed Information.
At this time, the probability distribution of targets in the task
area is uniform, and the probability density function of any
target in the task area can be expressed as

f(x, y) �
1

(W · H)
. (16)

3.1.2. 8e Initial Position of the Target Is Known, but the
Velocity Information Is Unknown. Assume that the task area
has N2 targets that have type 2 prior information, and
(xn2

tar, yn2
tar) is used to represent its initial position. Each such

target can be considered to obey a two-dimensional normal
distribution N(xn2

tar, yn2
tar, δ

2
0, δ

2
0, ρ), because the distribution

of x, y is independent of each other and ρ� 0. Without
losing generality, assuming that the initial position distri-
bution of each target is independent, the total probability
distribution density of the second target can be expressed as

f(x, y) � 􏽘

N2

n2�1

1
2π δ20

· exp− x− xn2
tar( )

2/2δ20+ y−yn2
tar( )

2/2δ20( 􏼁
. (17)

After t0 time, the target moves from the initial po-
sition in an independent, incremental process [16] as
described by the Wiener stochastic process:
xn2
tar(t)∼N(0, δ2e t0), yn2

tar(t)∼N(0, δ2et0). (e distribution
density probability of the second kind of target at t0 time
is

f(x, y) � 􏽘

N2

n2�1

1
2π δ20 + δ2e t0􏼐 􏼑

· exp− x− xn2
tar( )

2/2 δ20+δ2e t0( )+ y−yn2
tar( )

2/2 δ20+δ2e t0( )( 􏼁
. (18)
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3.1.3. 8e Initial Position and Velocity of the Target Are
Known, but the Moving Direction Is Unknown. Assume that
the task area has N3 targets having type 3 prior information,
and each initial position is expressed by (xn3

tar, yn3
tar) and speed

size is represented by vn3. Since the speed of the target is fixed
after t0 the probability density of the grid (w, h) is trans-
ferred from the probability distribution of the arc region of
the vn3t0 radius by (w, h), namely,

f(x, y) �
1

2πvn3t0
· 􏽚

L
f0 x0, y0( 􏼁ds, (19)

where L is an arc region with center (x0, y0) and the radius
vn3t0. By transforming using the first curve integration, the
probability distribution of the third-class target area can be
obtained as

f(x, y) � 􏽘

N3

n3�1

1
2πδ0( 􏼁

2 􏽚
2π

θ�0
exp− x+vn3t0 cos θ− xn3

tar( )
2/2δ20+ y+vn3t0 sin θ−xn3

tar( )
2/2δ20( 􏼁dθ. (20)

3.1.4. 8e Initial Position, Velocity Direction, and Size of the
Target Are Known. Assume that the task area has N4 targets
with type 4 prior information. (e initial position is
(xn4

tar, yn4
tar), speed size is vn4, and θn4 ∈ [0, 2π] represents the

speed direction. After t0, the target position offset is
(vn4t0 cos(θn4), vn4t0 sin(θn4)), and the probability distri-
bution density of the fourth target can be expressed as

f(x, y) � 􏽘

N4

n4�1

1
2π δ20

· exp− x+vn4t0 cos θn4( )− xn4
tar( )

2/2δ20+ y+vn4t0 sin θn4( )−yn4
tar( )

2/2δ20( 􏼁
. (21)

3.2. Initialization and Update of Environmental Uncertainty
Map. (e environmental uncertainty in the grid (w, h) at k

moment can be expressed as ψwh(k) ∈ [0, 1], where
ψwh(k) � 1 represents the information of the grid (w, h) that
is completely uncertain at k moment and ψwh(k) � 0 rep-
resents the information of the grid (w, h) that is completely
obtained by a UAV at k moment. (e environmental un-
certainty diagram of Ui at k moment can be expressed as

ψi(k) � ψi
wh(k) | w � 1, 2, . . . , W, h � 1, 2, . . . , H􏽮 􏽯. (22)

(e initial environmental uncertainty map is defined as
an all-1 matrix. With the increasing number of UAV
searches, the grid uncertainty continues to decline. (e
specific update method is

ψwh(k) � ηδn
· ψwh(k − 1), (23)

where η ∈ [0, 1] indicates the attenuation factor of envi-
ronmental uncertainty [28]. It is used to characterize the
amount of information obtained by the UAV after searching
the corresponding grid once; δn ∈ N is the number of the
grid (w, h) that is searched at k moment.

4. Swarm Cooperation Strategy

Under the distributed cooperative search architecture, when
Ui reaches the communication range of other members of

the swarm, it is possible to avoid searching the searched grids
repeatedly through information interaction, thus improving
the efficiency of the swarm cooperative search. When
making interactive decisions under distributed architecture,
the decision of a UAV does not depend on the state in-
formation of other UAVs or the operation of central nodes.
(erefore, this interactive decision-making method can be
applied to a strong confrontation environment that has
dynamic changes of effective communication distance.

4.1. Interactive Information Fusion Method. When per-
forming the cooperative search, the target probability maps
of all members can be considered to be updated synchro-
nously because the prior information of the target is com-
pletely shared. However, the state of the environmental
uncertainty map changes in real time with the search, which
requires interaction in the cooperative search. (e envi-
ronmental cognitive map of Uj after realizing information
interaction is then defined as

E
j

inter(k) � ψj

inter(k), Pj(k)􏽮 􏽯, (24)

where the target probability distribution map Pj(k) is
updated according to the task execution time and target
prior information formulas (16)–(21); ψj

inter(k) indicates the
interactive environment uncertainty map. If the information

Table 1: Classification of prior information of targets.

Target initial
position

Target speed
size Target speed direction

Type 1 × × ×

Type 2 √ × ×

Type 3 √ √ ×

Type 4 √ √ √
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interaction between Ui and Uj is taken as an example, the
interaction mode can be given by

ψi
inter(k) � ψj(k) · ⌈ψi(k) − ψj(k)⌉ + ψi(k) · ⌈ψj(k) − ψi(k)⌉,

(25)

where ⌈⌉ is an upward rounding function; ψi(k) is the
environment uncertain map carried by UAV that can
communicate with Uj at k moment.

4.2. Swarm Communication Topology. When UAVs send
messages to each other in the form of a swarm broadcast, the
distance between Ui and Uj at k moment can be expressed as

dij(k) �

�����������������������������

xi(k)
2

− xj(k)
2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + yi(k)
2

− yj(k)
2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏽱

. (26)

(e finite set of UAVs that can communicate with Ui at k

moment can be expressed as

Ci(k) � Uj(k) | cij(k) � 1􏽮 􏽯 � Uj(k) | Uj ∈ Us ∩dij(k)≤R(k)􏽮 􏽯,

(27)

where cij(k) represents the communication state between Ui

and Uj and R(k) is the effective communication distance
among swarm members at k moment.

4.3. Algorithm Flow. (e pseudocode of a UAV swarm
moving-target search algorithm with communication dis-
tance constraint is shown in Algorithm 1, and the specific
steps are described as follows:

Step 1: environmental awareness map and parameter
initialization. (e environmental cognitive map is
initialized according to the prior information of four
kinds of moving objects. (e rolling-time domain
optimization step of the UAV is q; the initial effective
communication distance is R(0); the scale of the UAV
swarm is Nu; and the initial state, course, and weight
coefficient of the autonomous decision and interactive
decision functions of the UAV are set.
Step 2: autonomous decision. According to the UAV’s
own independent decision function and environmental
cognitive map, the differential evolution algorithm is
used to solve the problem and make real-time route
planning.
Step 3: information interaction. When the UAV rea-
ches the communication range of the other members of
the swarm, the interactive information of the other
members is fused by formula (25), and the cognitive
map of its own decision environment is updated.
Step 4: interactive decision. After updating the self-
knowledge map of the environment according to the
interactive decision function in formula (11), the dif-
ferential evolution algorithm is used to track in real
time.
Step 5: update the target probability map. In the co-
operative search process of a UAV swarm, according to
UAV decision information and the target probability

map updating method, the target probability distri-
bution map is updated by formula (16) to formula (21),
and the environment uncertain map is updated by
formula (23).
Step 6: repeat step 2 to make the next decision based on
the updated environmental cognitive map.

5. Comparative Analysis of Simulation

In this section, concerning the moving-target search scene
with four types of prior information, the UAV swarm co-
operative search was simulated numerically, with the impact
of introducing prior target information. In the cooperative
search, the task was simulated and analyzed, and the ef-
fectiveness of the algorithm in the strong confrontation
environment was verified, such as the dynamic change of the
communication distance, the damage of some members of
the swarm, and other emergencies.

5.1. Task Assumption and Parameter Setting. (e recon-
naissance mission area is a 30× 40 km rectangle divided into
1× 1 km grids. (e initial distribution, speed direction, and
performance constraints of a UAV swarm are shown in
Table 2, and the parameters of autonomous decision-making
and interactive decision-making are shown in Table 3 and
Table 4, respectively. Set the simulation time to 6000 s and
the rolling-time domain optimization step to 30 s. (e
simulation time is divided into 600 planning steps with an
interval of 10 s. (e initial effective UAV communication
distance is set at 3 km. According to the predetermined prior
information, the initial target location distribution is shown
in Figure 3, the speed of the target is 10 km/h, and the target
probability distribution generated by the UAV swarm
according to the prior information is shown in Figure 4.

5.2. Planning Results of Moving-Target Cooperative Search.
Given a limited communication distance, the numerical
simulation of a cooperative moving-target search is carried
out using the number of captured targets as an evaluation
index. (e simulation results are shown in Figure 5.

Figure 5(a) shows that the swarm captured two type 4
targets after 1000 s based on prior information and another
target had moved out of the task area, so the target prob-
ability distribution is concentrated. It attracted the attention
of the UAV swarm and was then captured. In Figure 5(b),
after the swarm captured the category 4 targets, it quickly
carried out a cooperative search in the center of the task area
where other target categories were concentrated. According
to Figures 5(c) and 5(d), when the task was executed at
6000 s, the swarm completed coverage of the task area and
captured 1 type-1 target, 1 type-2 target, 2 type-3 targets, and
3 type-4 targets. Because prior information of the type-1
moving target was unknown, it was difficult to capture, but
the swarm captured other moving targets by making full use
of prior information: the richer the prior information, the
higher the capture probability.
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5.3. Search Path Planning under Dynamic Communication
Conditions. Electromagnetic interference (EMI) is a regular
means of attack in a strong confrontation environment, and
it has a severe influence on battlefield communication. To
verify the applicability of the algorithm in this paper to a
complex communication environment, this section simu-
lated and analyzed the cooperative search of a UAV swarm
under a dynamically changing effective communication
distance. (e total simulation time (6000 s) was divided into
600 planning steps at an interval of 10 s. (e effective initial
intermachine communication distance was 20 km. After
1500 s, the distance was reduced to 10 km and restored to
2000 s.(e effective communication distance was reduced to
0 km when the task was executed at 3500 s and was restored
at 4500 s.

To further demonstrate the applicability of the algorithm
in a dynamic communication environment, this section took
environmental uncertainty as the main goal guiding the
swarm and used the search coverage rate of the task area as
the evaluation index to carry out a numerical simulation. At
this time, the algorithm simulation parameters were updated
(Tables 5 and 6).

(e left half of Figure 6 shows that when the search went
to 1500 s because of decreased effective communication
distance, the frequency of information interaction among
the UAVs also decreased, but after communication was
restored at 2000 s, the number of information interactions
was quickly restored. From the right half of Figure 6, when
the search went for 3500 s, the distance between computers
decreased, which led to slow growth in the area-coverage
rate.(is was caused by the repeated searching of some grids
after interference led to the loss of information interaction.

At 4500 s, communication and interactive decision-making
were restored, and search coverage gradually improved,
which shows that interactive decision-making can improve
cooperative efficiency but that a UAV can still perform
scheduled tasks autonomously when communication con-
ditions are not guaranteed.

5.4. SearchRoutePlanningWhenSomeMembers of the Swarm
Are Damaged. Compared with the preplanning method
(referring to the related documents of preplanning), the
dynamic planning method can effectively reduce the risk
that the enemy can predict and attack the track and adapt to
unexpected situations such as the failure of some members.
In this section, the parameters of target probability distri-
bution (Tables 3 and 4) and environmental uncertainty
(Tables 5 and 6) guide the swarm and take the number of
captured targets and the coverage rate as evaluation indexes
for the numerical simulation. In this scenario, UAV1 and
UAV3 failed at 1500 s and 3500 s, respectively, and stopped
executing tasks.

From Figures 7(a)–7(c), when UAV1 and UAV3, re-
spectively, stop performing tasks due to faults, UAV2 and
UAV4 still performed effectively and achieved higher re-
gional coverage because in the distributed decision-making
architecture each UAV does not depend on other members
to make decisions. When the swarm is large, the efficiency of
a cooperative search can be improved through interactive
decision-making. It can be seen from Figure 7(d) that when
some members are damaged, which leads to a decline in
swarm size, a UAV can still carry out search tasks through
autonomous decision-making, which has good robustness.

main program
(1) Initialize algorithm parameters, environment map, UAV position, and heading
(2) for tar � 1: Ntar
(3) if tar in class 1
(4) Initialize the environmental cognitive map according to formula (16);
(5) . . .

(6) if tar in class 4
(7) Initialize the environmental cognitive map according to formula (21);
(8) end if
(9) end for
(10) for k � 0: kmax
(11) Update the target probability distribution map according to equations (16)–(21);
(12) for Ui � 1: Nu

(13) According to formula (26), judge whether to make an independent decision;
(14) According to formula (11), a differential evolution algorithm is adopted to make a real-time decision;
(15) for Uj � 1: Nu

(16) Determine the interactive member set according to formula (27);
(17) Complete information interaction and fusion according to formula (25);
(18) end for
(19) According to formula (14), the differential evolution algorithm is adopted to make real-time decisions;
(20) Update the UAV position according to formula (5);
(21) Update your own environmental cognition map according to formula (23);
(22) end for
(23) end for

ALGORITHM 1: Algorithm pseudocode.
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Figure 8 shows that, driven by prior information, the
UAV swarm searches for and quickly captures type-4 targets
according to prior information. It can be seen from the
whole search process from Figures 8(a)–8(d), even after
UAV1 and UAV3 quit at 1500 s and 3000 s, UAV2 and
UAV4 still searched effectively.

5.5. Influence of Communication Distance on Search
Efficiency. On the basis of completing the path planning of
the cooperative moving-target search using the coverage rate
as the main evaluation index, the efficiency under different
communication distances was analyzed by using the control
variable method. Five groups of simulations having a 10 km

communication interval over 6000 s were carried out and the
results are shown in Figure 9.

According to the simulation results, information
interaction avoided the repeated search of the same grid,
and the cooperative efficiency of the UAV swarm im-
proved. With the increase in communication distance,
the cooperative search efficiency gradually increases, but
when the communication distance was greater than
30 km the efficiency no longer increased. (e results
showed a positive correlation in the nonlinear relation-
ship of communication distance to cooperative search
efficiency. In practice, the minimum effective commu-
nication distance can be preliminarily determined by the
simulation to achieve better task cooperation.

Table 2: Initial states and performance constraints of UAV.

UAV serial number Initial coordinates Initial direction Fixed flight speed Maximum turning angle
1 (5, 0) 0° 20 45°
2 (35, 28) 0° 20 45°
3 (5, 29) 180° 20 45°
4 (35, 0) 180° 20 45°

Table 3: Independent decision-making parameters.

Parameter w1 w2 w3 q

Value 0.3 0.3 0.4 3

Table 4: Interactive decision parameters.

Parameter w1 w2 w3 w4 q

Value 0.2 0.2 0.2 0.4 3

Number of information interaction:0

Number of targets captured:0
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Figure 3: Initial position distribution of targets.
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Figure 5: Continued.
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Figure 5: Cooperative search planning of moving targets: (a) 1000 s, (b) 2000 s, (c) 4000 s, and (d) 6000 s.

Table 5: Independent decision-making parameters.

Parameter w1 w2 w3 q

Value 0 1 0 3

Table 6: Algorithm parameters.

Parameter w1 w2 w3 w4 q

Value 0 0.5 0 0.5 3
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Figure 6: Coverage change under communication restriction.
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Figure 7: Coverage track planning under the condition of partial member damage: (a) 1000 s, (b) 2000 s, (c) 4000 s, and (d) 6000 s.
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Figure 8: Track planning of moving-target search after damage to some members: (a) 1000 s, (b) 2000 s, (c) 4000 s, and (d) 6000 s.

6000500040003000200010000
Simulation time (s)

0

20

40

60

80

C
ov

er
ag

e r
at

e (
%

)

Communication distance:0 km
Communication distance:10 km
Communication distance:20 km
Communication distance:30 km
Communication distance:40 km

Figure 9: Coverage growth under different communication distances.

12 Mathematical Problems in Engineering



6. Conclusion

(1) (is algorithm simulated the cooperative search
decision-making of a UAV swarm at a limited
communication distance and improved its robust-
ness in a strong countermeasure environment by
establishing autonomous and interactive decision-
making

(2) (e mathematical models and updating methods of
prior information of the four types of moving targets
were established so that a UAV swarm could make
full use of prior information to carry out a coop-
erative search

(3) Using a distributed control architecture in an ex-
perimental simulation, the algorithm in this paper
proved that a cooperative search task can still be
completed effectively when some members fail

(e algorithm did not consider the influence of com-
munication delay and packet loss on the cooperative search
efficiency, but it could in subsequent research to improve the
cooperative search algorithm of the UAV swarm.
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In this article, a low-order partial integrated guidance and control (PIGC) design method is proposed for diving hypersonic
vehicles to impact ground maneuver target. A three-channel analytical model of body rates is deduced based on acceleration
components of the hypersonic vehicle. By combining the analytical model of body rates and relative dynamic model between the
hypersonic vehicle and target, three-channel commands of body rates are directly generated based on the extended state observer
(ESO) technique, sliding mode control approach, and dynamic surface control theory in the guidance subsystem. In the attitude
control subsystem, a sliding mode controller is designed to track the commands of body rates and generate commands of control
surface fin deflections. By making full use of acceleration information of the hypersonic vehicle measured by the mounted
accelerometer, the proposed PIGC design method provides a novel solution to compensate the unknown acceleration of the
ground maneuver target. Besides, the order of design model is also reduced, and the design process is simplified.)e effectiveness
and robustness of the PIGC design method are verified and discussed by 6DOF simulation studies.

1. Introduction

)e studies on the hypersonic vehicle are increasing due to
its unique advantages, such as global rapid attack and ultra-
high-speed transportation. )erefore, it has rapidly become
a focused research topic in aerospace domain [1]. )e dive
flight of hypersonic vehicles exhibits characteristics of fast
time-varying, strong coupling, and nonlinearity. )e cou-
pling between the guidance loop and control loop is
strengthened, which proposes higher requirements for the
guidance and control (G&C) system design.

Compared with the traditional separated design ap-
proach of the G&C system, the integrated guidance and
control (IGC) method can fully consider the coupling be-
tween centroid motion and rotational motion of the hy-
personic vehicle. Besides, the IGC method can ensure the
overall stability and improve the accuracy of design model as
well as the overall performance of the G&C system [2–4].
Based on the published literatures, the IGC design methods
can be divided into three types:

(1) Single-channel/plane IGC scheme: the three-di-
mensional (3D) motion of the air vehicle is
decomposed into different channels or planes, and
the coupling between each channel/plane is regarded
as a small amount, which is generally neglected.
Hence, the design of the 3D IGC system is reduced to
a single-channel or single-plane low-order IGC
design process [5–8].

(2) Full-state IGC scheme: a full-state high-order IGC
design model is established, which takes rotational
motion model of the air vehicle and relative motion
model between the air vehicle and target into ac-
count. )e order of the design model is usually
8–10, and the design model is generally transformed
into a strict feedback form. )en, the backstepping
control, dynamic surface control, or other control
methods are used to solve the high-order IGC
system. Hence, the IGC system design is trans-
formed into a high-order nonlinear control prob-
lem [4, 9–14].
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(3) PIGC scheme: the PIGC scheme is executed in the
guidance and control loops. )e two-loop controller
structure is similar to the full-state single-loop
controller structure under some conditions. )e
PIGC method takes body rates instead of accelera-
tion components of the air vehicle as the virtual
inputs. )e control loop is designed to track the
commands of body rates. )e order of design model
and the number of design parameters can be reduced
by using this method [15–17].

)e target impacted by air vehicles is often maneuver-
able, and its acceleration is difficult to acquire directly, which
increases the complexity of the G&C system design. In
recent years, most studies on the design of the G&C system
for air vehicles to impact maneuver target are based on the
full-state coupled high-order IGC design model, which
contains angles of line-of-sight (LOS), rotational Euler
angles of the air vehicle, three-channel body rates, and other
motion state variables. )e IGC system design is accom-
plished through the backstepping control method or dy-
namic surface control method, and the uncertainties
containing acceleration components of the target are esti-
mated through some techniques, such as ESO [18–24],
sliding mode observer [25, 26], and adaptive law [27]. )e
effectiveness of this kind of design method has been verified
by nonlinear simulation results in the published literatures.
However, there are still several disadvantages in the above
studies. Firstly, the single-channel/plane IGC system design
does not fully consider the coupling between each channel/
plane. Secondly, the full-state coupled high-order 3D IGC
systems are still based on the traditional separated design
method of the G&C system to some extent. )e angle of
attack, sideslip angle, and bank angle are still the bridges
connecting the guidance loop and control loop. )e com-
plexity of the high-order design model brings difficulty to
the IGC system design. )irdly, there are still limited studies
on the G&C system design for hypersonic vehicles to impact
maneuver target.

Taking the above problems into account, a low-order
PIGC design method for diving hypersonic vehicles to impact
ground maneuver target is proposed in this article. By de-
ducing a three-channel analytical model of body rates based
on acceleration components of the hypersonic vehicle, the
integration mechanism of rotational motion model of the
hypersonic vehicle and relative motion model between the
hypersonic vehicle and target is exploited. By combining the
analytical model of body rates, relativemotionmodel between
the hypersonic vehicle and target, and rotational dynamic
model of the hypersonic vehicle, a low-order PIGC scheme is
presented, and the design process can be distilled to two steps:

(1) )ree-channel commands of body rates are generated
in the guidance loop based on ESO, sliding mode
control approach, and dynamic surface control theory.

(2) Commands of control surface fin deflections are
generated in the control loop based on sliding mode
control approach.

)is novel low-order PIGC scheme can offer an innovative
method to compensate the unknown acceleration infor-
mation of the maneuver target based on the measured ac-
celeration of the hypersonic vehicle and simplify the design
process of the G&C system. )e content of this article is
arranged as follows. Section 2 proposes the 6DOF motion
model of the hypersonic vehicle and relative motion model
between the hypersonic vehicle and target in dive phase.
Section 3.1 deduces the three-channel analytical model of
body rates based on acceleration components of the hy-
personic vehicle. Section 3.2 presents the design process of
the guidance subsystem. Section 3.3 provides the design
process of the attitude control subsystem. Section 4 conducts
simulation experiments to verify the effectiveness and ro-
bustness of the proposed PIGC design method using the
generic hypersonic vehicle (GHV) model. Section 5 sum-
marizes the conclusion of this article.

2. Motion Models

)e hypersonic vehicle in dive phase has the characteristics
of high speed and short flight distance. Hence, the following
reasonable assumptions are proposed to simplify the study
process: (1) the Earth’s rotation is neglected, and the Earth is
considered as a flat ground; (2) the mass of the hypersonic
vehicle is uniformly distributed, and the influence of body
deformation is neglected; (3) the impacts of errors caused by
the unmodeled parts of design model are ignored; and (4)
the hypersonic vehicle is in unpowered flight during the dive
phase regardless of thrust. )e denoted motion models in
this section consist of centroid and rotational dynamic and
kinematical equations of the hypersonic vehicle as well as
relative motion equations between the hypersonic vehicle
and target. )e motion models are given by variables in the
ground inertial coordinate system, the body coordinate
system, the ballistic coordinate system, and the LOS coor-
dinate system, which are defined in Yan [3].

2.1. Centroid Equations. )e centroid dynamic equations of
the hypersonic vehicle in the ballistic coordinate system are
denoted as follows [3]:

_v � −g sin θ −
D

m
,

_θ �
1

mv
−mg cos θ + L cos cV − N sin cV( 􏼁,

_σ �
1

mv cos θ
−L sin cV − N cos cV( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where v is the velocity magnitude of the hypersonic vehicle,
g is the gravitational acceleration, θ is the flight path angle, σ
is the heading angle, cV is the bank angle, andm is the mass
of the hypersonic vehicle. D, L, and N are the aerodynamic
drag, lift, and side force, respectively, which are calculated by
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D � qSCD,

L � qSCL,

N � qSCN,

(2)

where q � 0.5ρv2 is the dynamic pressure, ρ is the density of
atmosphere, CL is the lift coefficient, CD is the drag coef-
ficient, CN is the side force coefficient, and S is the aero-
dynamic reference area of the hypersonic vehicle.

)e centroid kinematical equations of the hypersonic
vehicle in the ground inertial coordinate system are given by

_x � v cos θ cos σ,

_y � v sin θ,

_z � −v cos θ sin σ,

⎧⎪⎪⎨

⎪⎪⎩
(3)

where x, y, and z are the components of position vector of the
hypersonic vehicle in the ground inertial coordinate system.

2.2. Rotational Equations. )e rotational dynamic equations
of the hypersonic vehicle in the body coordinate system are
denoted as

_ωx � J
−1
x Mx + J

−1
x Jy − Jz􏼐 􏼑ωzωy,

_ωy � J
−1
y My + J

−1
y Jz − Jx( 􏼁ωxωz,

_ωz � J
−1
z Mz + J

−1
z Jx − Jy􏼐 􏼑ωyωx,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

where ωx is the roll rate, ωy is the yaw rate, and ωz is the
pitch rate. Jx, Jy, and Jz are the roll, yaw, and pitch moments
of inertia of the hypersonic vehicle, respectively. Mx is the
roll moment, My is the yaw moment, and Mz is the pitch
moment, which are calculated by

Mx � qSlxmx,

My � qSlymy,

Mz � qSlzmz,

(5)

where lx, ly, and lz are the aerodynamic reference lengths
with respect to the roll, yaw, and pitch channels, respectively.
mx is the roll aerodynamicmoment coefficient,my is the yaw
aerodynamic moment coefficient, and mz is the pitch
aerodynamic moment coefficient.

)e rotational kinematical equations of the hypersonic
vehicle in the body coordinate system are provided by

_φ � ωy sin c + ωz cos c,

_ψ � ωy cos c − ωz sin c􏼐 􏼑secφ,

_c � ωx − ωy cos c − ωz sin c􏼐 􏼑tanφ,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

where φ is the pitch angle, ψ is the yaw angle, and c is the roll
angle.

2.3. Relative Motion Equations. Figure 1 illustrates the
schematic diagram of relative motion between the hyper-
sonic vehicle and ground maneuver target. OB and T rep-
resent the centroids of the hypersonic vehicle and target,
respectively. O − XYZ is the ground inertial coordinate

system. OB − xsyszs is the LOS coordinate system. )e
relative motion equations between the hypersonic vehicle
and target are denoted as [3]

€r � r _λ
2
D + r _λ

2
Tcos

2λD + a
T
xs − a

V
xs,

€λD �
−2 _r _λD − r _λ

2
T cos λD sin λD􏼒 􏼓

r
+

a
T
ys − a

V
ys􏼐 􏼑

r
,

€λT �
2r _λD

_λT sin λD − 2 _r _λT cos λD􏼐 􏼑

r cos λD( 􏼁
−

a
T
zs − a

V
zs􏼐 􏼑

r cos λD( 􏼁
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

where r is the relative distance between the hypersonic
vehicle and target, λD is the elevation angle of LOS, λT is the
azimuth angle of LOS, aV

xs, aV
ys, and aV

zs are the acceleration
components of the hypersonic vehicle in the LOS coordinate
system, and aT

xs, a
T
ys, and aT

zs are the acceleration components
of the target in the LOS coordinate system.

3. Partial Integrated Guidance and Control
System Design

In this section, the design scheme of a novel PIGC system is
presented, which contains a guidance loop and a control loop.
Firstly, a three-channel analytical model of body rates is de-
duced. )en, three-channel commands of body rates are
generated in the guidance loop based on ESO, sliding mode
control approach, and dynamic surface control theory. Finally,
a sliding mode attitude controller is designed to track the
commands of body rates, and commands of control surface fin
deflections are directly obtained in the control loop.

3.1. 4ree-Channel Analytical Model of Body Rates.
According to equation (3), the velocity vectors of the hy-
personic vehicle denoted in the ground inertial coordinate
system and the body coordinate system, respectively, hold
the following relation:

v cos θ cos σ

v sin θ

−v cos θ sin σ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � TGB

u

v

w

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (8)
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Figure 1: Schematic diagram of relative motion.
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where u v w􏼂 􏼃
T is the velocity vector of the hypersonic

vehicle in the body coordinate system and TGB is the
transition matrix from the body coordinate system to the
ground inertial coordinate system. )e derivatives of both
sides of equation (8) can be written as

d

dt

v cos θ cos σ

v sin θ

−v cos θ sin σ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

d

dt
TGB( 􏼁

u

v

w

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ TGB

d

dt

u

v

w

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(9)
)e left side of equation (9) holds the following relation:

d

dt

v cos θ cos σ

v sin θ

−v cos θ sin σ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� TGH

_v

v _θ

−v cos θ _σ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(10)

where TGH is the transition matrix from the ballistic co-
ordinate system to the ground inertial coordinate system and
aV

xh, aV
yh, and aV

zh are the acceleration components of the
hypersonic vehicle along the three axes in the ballistic co-
ordinate system. )e first term on the right side of equation
(9) can be calculated by

d

dt
TGB( 􏼁

u

v

w

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

T11 T12 T13

T21 T22 T23

T31 T32 T33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

_φ

_ψ

_c

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (11)

where

T11 � −sinφ cosψu − cosφ cosψ cos cv + cosφ cosψ sin cw,

T12 � −cosφ sinψu + cosψ sin cv + sinφ sinψ cos cv

+ cosψ cos cw − sinφ sinψ sin cw,

T13 � sinψ cos cv + sinφ cosψ sin cv − sinψ sin cw + sinφ cosψ cos cw,

T21 � cosφu − sinφ cos cv + sinφ sin cw,

T22 � 0,

T23 � −cosφ sin cv − cosφ cos cw,

T31 � sinφ sinψu + cosφ sinψ cos cv − cosφ sinψ sin cw,

T32 � −cosφ cosψu − sinψ sin cv + sinφ cosψ cos cv

− sinψ cos cw − sinφ cosψ sin cw,

T33 � cosψ cos cv − sinφ sinψ sin cv − cosψ sin cw − sinφ sinψ cos cw.

(12)

Combining equations (6) and (9)–(11), the following
equation can be obtained:

TGH

a
V
xh

a
V
yh

a
V
zh

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� TGB

_u

_v

_w

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + AB

ωx

ωy

ωz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (13)

where A,B ∈ R3×3 are given by

A �

T11 T12 T13

T21 T22 T23

T31 T32 T33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B �

0 sin c cos c

0 cos c secφ −sin c secφ

1 −cos c tanφ sin c tanφ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(14)

According to equation (13), a three-channel analytical
model of body rates can be obtained:

ωx

ωy

ωz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � (AB)
−1 TGH
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V
xh

a
V
yh

a
V
zh

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− TGB

_u

_v

_w

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (15)

Based on the expected acceleration components of the
hypersonic vehicle along the three axes in the ballistic coor-
dinate system, the corresponding desired body rates of the
hypersonic vehicle with respect to the roll, yaw, and pitch
channels can be generated by equation (15). )is analytical
equation can help in replacing the process of “generating
commands of angle of attack and sideslip angle/bank angle
according to the desired acceleration of the hypersonic vehicle
⟶ designing the attitude control system to track the com-
mands of rotational Euler angles” in the traditional design
scheme of the G&C system. Besides, the integration of centroid
motion model and rotational motion model can be improved,
and the design procedure of the G&C system can be simplified.

3.2. Guidance Subsystem Design. Equation (7) can be re-
written as
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€λD

€λT

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ �
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f2
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r cos λD( 􏼁
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, (16)

where

f1

f2

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ �

−2 _r _λD − r _λ
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T cos λD sin λD + a

T
ys􏼒 􏼓

r

2r _λD
_λT sin λD − 2 _r _λT cos λD − a

T
zs􏼐 􏼑

r cos λD( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (17)

In this article, the hypersonic vehicle is steered to the
ground maneuver target by zeroing _λD and _λT. Based on
equation (17), aV

ys and aV
zs are regarded as the virtual inputs

to zero the angle rates of LOS. A sliding mode surface vector
is conducted as S1 � SD ST􏼂 􏼃

T
� _λD

_λT
􏽨 􏽩

T
, and the an-

ticipant dynamic of S1 is chosen as

_SD

_ST

⎡⎣ ⎤⎦ �
−εD SD

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
ρDsgn SD( 􏼁 − kDSD

−εT ST

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
ρTsgn ST( 􏼁 − kTST

⎡⎢⎣ ⎤⎥⎦, (18)

where εD, εT, ρD, ρT, kD, and kT are parameters that need to
be designed suitably to make SD and ST converge to zero
gradually without chattering phenomenon.

In equation (16), f1 and f2 contain acceleration com-
ponents of the ground maneuver target, which cannot be
directly obtained by the seeker of the hypersonic vehicle. In
this article, the acceleration components of the target in the
LOS coordinate system are recognized as bounded uncer-
tainties. )e ESO technology is used to estimate f1 and f2
including uncertainties [28]:

_Z1 � Z2 − β1 Z1 −

_λD

_λT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

_Z2 � β2 Z1 −
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

where β1 and β2 are parameters that need to be designed, Z1,
Z2 ∈ R2×1 are the state vectors of the ESO, and the two
elements in Z2 are the estimated values of f1 and f2. In
practical engineering application, real-time aV

ys and aV
zs can

be obtained by

a
V
ys

a
V
zs

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ � TSG,23 TGB

a
V
xb

a
V
yb

a
V
zb

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ AB

ωx

ωy

ωz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (20)

where TSG,23 represents the matrix reconstructed with the
second and third rows of the transition matrix from the
ground inertial coordinate system to the LOS coordinate
system:

TSG,23 �
−sin λD cos λT cos λD sin λD sin λT

sin λT 0 cos λT

􏼢 􏼣, (21)

where aV
xb aV

yb aV
zb􏽨 􏽩

T
is the acceleration of the hypersonic

vehicle in the body coordinate system and is measured by the
accelerometer mounted on the hypersonic vehicle. Hence,
f1 and f2 can be estimated and the acceleration components
of the target in the LOS coordinate system can be well
compensated by making full use of acceleration information
of the hypersonic vehicle. It should be noted that real-time
aV

ys and aV
zs in the simulation experiments are obtained based

on the centroid dynamic model of the hypersonic vehicle in
this article.

Combining equations (16), (18), and (19), the desired
virtual inputs can be obtained by
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Let C � TSG,23TGH. Combining equations (15) and (22),
the desired three-channel body rates of the hypersonic ve-
hicle can be directly generated as
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

_SD

_ST

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ − Z2

⎛⎜⎝ ⎞⎟⎠ − TGB

_u

_v

_w

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (23)
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It should be noted that the change rates of the desired
three-channel body rates are indispensable in the design
process of the attitude control subsystem. However, dif-
ferentiating the desired body rates directly is more incon-
venient in engineering application and increases the amount
of calculation. Hence, based on the dynamic surface control
theory, ωx,c ωy,c ωz,c􏽨 􏽩

T
is passed through a low-pass filter:

τ

_ωx,d

_ωy,d

_ωz,d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ +

ωx,d

ωy,d

ωz,d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

ωx,c

ωy,c

ωz,c

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (24)

where τ ∈ R3×3 is the designed parameter matrix of the low-
pass filter.)e outputs ωx,d, ωy,d, and ωz,d are the final three-
channel commands of body rates generated in the guidance
subsystem. By designing the attitude controller to track the
three-channel commands of body rates, _λD and _λT can
gradually converge to zero. Hence, the hypersonic vehicle
can successfully impact the ground maneuver target.

It should be noted that the inverse of matrix AB and the
generalized inverse of matrix C are included in equation
(23). )e elements of matrix AB are the functions of
components of velocity vector of the hypersonic vehicle in
the body coordinate system and rotational Euler angles. )e
elements of matrix C are the functions of angles of LOS,
flight path angle, and heading angle. As the two matrixes
cannot be proved to be invertible/generalized invertible
theoretically, the inverse of AB and the generalized inverse
of C are assumed to exist in the whole dive phase. )is
assumption can only be validated by 6DOF simulation
results.

3.3. Attitude Control Subsystem Design. To track the com-
mands of body rates generated in the guidance subsystem,
the commanded control surface fin deflections of the hy-
personic vehicle should be calculated by designing the at-
titude control subsystem. To simplify the design process,
equation (4) is rewritten as

_ωx

_ωy

_ωz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � D + E

δa

δe

δr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (25)

where

D �

_ω∗x
_ω∗y
_ω∗z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

J
−1
x Jy − Jz􏼐 􏼑ωzωy + J

−1
x qSlxm

∗
x

J
−1
y Jz − Jx( 􏼁ωxωz + J

−1
y qSlym

∗
y

J
−1
z Jx − Jy􏼐 􏼑ωyωx + J

−1
z qSlzm

∗
z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (26)

E �

J
−1
x qSlx

J
−1
y qSly

J
−1
z qSlz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

mx,1 mx,2 mx,3

my,1 my,2 my,3

mz,1 mz,2 mz,3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (27)

In equation (25), δa, δe, and δr are the right elevon, left
elevon, and rudder fin deflections of the GHV, respectively.
In equation (27), mi,j, i � x, y, z, j � 1, 2, 3 are the coeffi-
cients related to first-degree control surface fin deflections.

In equation (26), m∗x, m∗y, and m∗z represent the remaining
terms of mx, my, and mz after removing the relevant parts of
first-degree control surface fin deflections.

)e sliding mode control method is used in the attitude
control subsystem. )e sliding mode surface vector is se-
lected as

S2 �

Sx

Sy

Sz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

ωx − ωx,d

ωy − ωy,d

ωz − ωz,d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (28)

)e desired dynamic of S2 is selected as

_Sx

_Sy

_Sz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

−εx Sx

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
ρxsgn Sx( 􏼁 − kxSx

−εy Sy

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
ρysgn Sy􏼐 􏼑 − kySy

−εz Sz

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
ρzsgn Sz( 􏼁 − kzSz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (29)

where εi, ρi, ki, i � x, y, z are parameters that need to be
designed. For the attitude control subsystem, the signifi-
cance of finite-time convergence is obvious. Hence, the
values of εi, ρi, ki, i � x, y, z should be set reasonably to
ensure the high convergence rate of S2 and avoid the oc-
currence of chattering.

Combing equations (25), (28), and (29), three-channel
commands of control surface fin deflections are obtained by

δa,c

δe,c

δr,c

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � E−1

_Sx

_Sy

_Sz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

_ωx,d

_ωy,d

_ωz,d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ − D
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (30)

For the convenience of calculating the current com-
mands of control surface fin deflections, _ω∗x _ω∗y _ω∗z􏽨 􏽩

T
is

obtained based on the commands of control surface fin
deflections generated one time step before. Define
x1 � _λD

_λT
􏽨 􏽩

T
, x1 ∈ R2×1, x2 � ωx ωy ωz􏽨 􏽩

T
, x2 ∈ R3×1,

u � δa δe δr􏼂 􏼃
T
, u ∈ R3×1. Based on the above design

process of guidance and attitude control subsystems, the
design model of the PIGC system is given by

_x1 � F + G · x2,

_x2 � D + E · u,
􏼨 (31)

where

F �
f1

f2

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ +

−1
r

0

0
1

r cos λD( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

TSG,23TGB

_u

_v

_w

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

G �

−1
r

0

0
1

r cos λD( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

TSG,23AB.

(32)
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It is noted that the order of the design model is only 5.
Besides, the process of calculating the commands of rota-
tional Euler angles based on the desired overload of the
hypersonic vehicle in the traditional G&C system design is
elided. Hence, the design process of the proposed PIGC
system exhibits the characteristic of simplification.

Taking the response delay of fin actuators into account,
the generated commands of control surface fin deflections are
regarded as the inputs of the second-order fin actuators. )e
outputs are regarded as the actual fin deflections applied to the
hypersonic vehicle. )e model of the fin actuators is given by

d _δi

dt
� −ω2

nδi − 2ξωnδi + ω2
nδi,c, i � a, e, r, (33)

where ωn � 20Hz is the natural frequency of the second-
order model and ξ � 0.7 is the damping ratio of the model.

4. Simulation Tests and Discussion

4.1. Parameter Setting. )e effectiveness and robustness of
the proposed PIGC method are validated by 6DOF simu-
lation experiments based on the GHV model. )e detailed
model parameters and aerodynamic force and moment
coefficients of GHV are provided in [29]. )e maximum
change rate of fin deflections is 100 deg/s, and the magni-
tudes of fin deflections are constrained
as−20∘ ≤ δi ≤ + 20∘, i � a, e, r. )e initial values of 6DOF
motion states of the diving hypersonic vehicle are presented
in Table 1. )e values of design parameters are given in
Table 2.

)e ground maneuver target is considered as a point
mass, and the centroid motion model is given by

_xT _yT _zT􏼂 􏼃
T

� vxT vyT vzT􏽨 􏽩
T

,

_vxT _vyT _vzT􏽨 􏽩
T

� axT ayT azT􏽨 􏽩
T

,

⎧⎪⎨

⎪⎩
(34)

where xT yT zT􏼂 􏼃
T, vxT vyT vzT􏽨 􏽩

T
, and axT ayT azT􏽨 􏽩

T

are the position, velocity, and acceleration vectors of the
target in the ground inertial coordinate system. )e initial
components of position vector and velocity vector of the
target are set as xT0 � 120km, yT0 � 0km, zT0 � 30km,
vxT0 � vyT0 � 0m/s, and vzT0 � −25m/s. )e acceleration
components of the target are set as axT � 2cos(0.01t)m/s2 ,
ayT � 0m/s2, and azT � 1m/s2.

In this article, the longitude, latitude, and altitude of the
origin of the ground inertial coordinate system are set as 0
deg, 0 deg, and 0m.)e ox axis is set to the straight east, and
the oy axis is set to be vertical to the ground and upward.
When the altitude of the hypersonic vehicle is less than zero,
the simulation test is terminated. At the terminal time, the
distance between the hypersonic vehicle and target is the
miss distance.

4.2. Effectiveness Verification. In order to verify the effec-
tiveness and robustness of the proposed PIGC designmethod,
the nominal values of aerodynamic force coefficients, aero-
dynamic moment coefficients, and density of atmosphere are
multiplied by ① 1 + 0.2 sin(t), ② 1 + 0.3 sin(t), and ③

1 + 0.4 sin(t)(t stands for the simulation time). Simulation
studies are conducted with the actual aerodynamic force and
moment coefficients and atmospheric density deviating as
①–③. Simulation results of the three conditions are repre-
sented by red solid lines, green dash lines, and blue dot lines,
respectively, as shown in Figures 2–8 .

Figure 2 presents the curves of velocity, flight path angle,
and heading angle of the hypersonic vehicle in the dive phase
under different deviations. As shown in Figure 2(a), the
velocity magnitude of the hypersonic vehicle gradually and
smoothly decreases under each deviation. It is also observed
that the flight path angle and heading angle vary smoothly in
the total dive phase, as illustrated in Figures 2(b) and 2(c).

Figure 3 illustrates the 3D flight trajectories of the hy-
personic vehicle and curves of relative distances between the
hypersonic vehicle and target under different deviations. A
red pentagram indicates the location of the ground ma-
neuver target when the simulation terminates (considering
that the distances between the terminal locations of the
ground maneuver target under different deviations are very
short, the terminal location of the target under deviation①
is taken as an example). It is indicated that the flight tra-
jectories almost coincided with each other under different
deviations. For deviations ①–③, the miss distances at the
terminal time are 16.07m, 22.55m, and 31.06m, respec-
tively. Considering the reference length and high flight speed
of the hypersonic vehicle, the miss distances under different
deviations are acceptable and the proposed PIGC design
method can accurately steer the hypersonic vehicle to impact
the ground maneuver target with good robustness.

Figure 4 illustrates the curves of elevation and azimuth
angles of LOS and change rates of angles of LOS (sliding
mode surfaces SD and ST) under different deviations. It can
be observed that when the simulation time is more than 30
seconds, the change rates of elevation and azimuth angles of
LOS almost converge to zero. It should be noted that when
the simulation is near the end, the elevation and azimuth
angles of LOS drastically change.)is phenomenon is due to

Table 2: Values of design parameters of the PIGC system.

Parameters Values Parameters Values
εD 0.03 εx, εy, εz 0.002
εT 0.015 kx, ky, kz 1
kD 1.5 ρx, ρy, ρz 0.6
kT 0.75 β1 200
ρD, ρT 0.6 β2 10000
τ diag(0.04, 0.04, 0.04)

Table 1: Initial values of 6DOF motion states of the hypersonic
vehicle.

States Values States Values
v0 2600m/s φ0 10∘
θ0 0∘ ψ0 −5∘
σ0 0∘ c0 −40∘
x0 0m ωx0 0∘/s
y0 27000m ωy0 0∘/s
z0 0m ωz0 0∘/s
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the fact that the two angles are calculated based on the
relative spatial position of the hypersonic vehicle and target.
When the distance between the hypersonic vehicle and
target reduces to a small amount, the two angles drastically
change.

Figures 5–7 illustrate the curves of rotational motion
state variables of the hypersonic vehicle under different
deviations. It is found that all attitude angles and body rates
change boundedly and smoothly in the dive phase, which
indicates that the attitude of the hypersonic vehicle is
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Figure 3: Curves of flight trajectories of the hypersonic vehicle and relative distances between the hypersonic vehicle and target.

0 10 20 30 40 50 60 70
1000

2000

3000

Deviation 1
Deviation 2
Deviation 3

v (
m

/s
)

t (s)

(a)

θ 
(°

)

Deviation 1
Deviation 2
Deviation 3

t (s)
0 10 20 30 40 50 60 70

–30

–20

–10

0

10

(b)

σ 
(°

)

Deviation 1
Deviation 2
Deviation 3

t (s)
0 10 20 30 40 50 60 70

–30

–20

–10

0

10

(c)

Figure 2: Curves of velocity, flight path angle, and heading angle.
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Figure 5: Curves of angle of attack, sideslip angle, and bank angle.
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Figure 7: Curves of roll rate, yaw rate, and pitch rate.
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Figure 6: Curves of pitch angle, yaw angle, and roll angle.
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controllable under each deviation. However, the change
rates of rotational motion state variables are larger in the first
30 seconds of the simulation. )is phenomenon is caused by
the large deviation between the initial flight direction of the
hypersonic vehicle and initial location of the ground ma-
neuver target. )e phenomenon is also in accordance with
the fact that the elevation and azimuth angles of LOS slowly
decrease in the first 30 seconds as shown in Figure 4. )e
three-channel body rates also exhibit similar characteristics
as mentioned above.

Figure 8 illustrates the curves of actual control surface fin
deflections applied to the hypersonic vehicle under different
deviations, which are smooth and bounded. It is indicated that
the hypersonic vehicle can complete the G&C mission within
the ability of actuators under different deviations. In addition,
the assumption that the inverse of matrix AB and the gen-
eralized inverse of matrix C in equation (23) exist during the
whole dive phase is validated by the simulation results.

5. Conclusion

In this article, a low-order PIGC method for diving hy-
personic vehicles to impact ground maneuver target with
good robustness is designed. A three-channel analytical
model of body rates based on acceleration components of
the hypersonic vehicle is deduced. By combining the
analytical model of body rates and relative motion model
between the hypersonic vehicle and target, three-channel
commands of body rates are directly generated based on

ESO, sliding mode control approach, and dynamic sur-
face control theory. A sliding mode controller is designed
in the attitude control subsystem to track the commands
of body rates. )e acceleration components of the ma-
neuver target in the relative motion model can be
compensated by ESO with the use of acceleration in-
formation of the hypersonic vehicle. Hence, the utiliza-
tion efficiency of the acceleration sensor mounted on the
hypersonic vehicle is improved, and the impact accuracy
can be guaranteed. Besides, the order of design model is
reduced, and the design process of the G&C system is
simplified. However, this article is aimed at proposing a
novel PIGC scheme and verifying its effectiveness and
robustness. Hence, the influences of uncertainties
brought by dynamic models of the hypersonic vehicle and
complex constraints such as overload, dynamic pressure,
and terminal impact angle are ignored, which require
further study.
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Mechanical products are composed of two or more parts. (e geometric tolerance and dimensional tolerance of each feature in
part will affect the assembly performance of the product, which are accumulated and propagated between assembly fit and parts. In
this paper, through the secondary development of CAD software, the B-rep model of parts is obtained. (e model information is
decomposed and simplified based on geometric features to obtain the key information of parts in the assembly process, simplify
the operation, and improve the accuracy. (rough a directed graph network, the transmission model of assembly error in-
formation based on geometrical and dimensional tolerances (GD&T) on the surface of parts is established. Combined with the
error transfer characteristics of different geometric surfaces and different error sources, guided by the breadth-first search al-
gorithm and the shortest path theory, the search and establishment of a three-dimensional assembly chain are realized. Finally, the
three-dimensional chain is simulated by the Monte Carlo method. (e calculation results are compared with the error range
obtained by the traditional method to prove the effectiveness of the method.

1. Introduction

Assembly is an integrative process of joining a complete
mechanical product by bringing all individual parts to-
gether. (ere is a deviation between the nominal size and
the actual size of the product. (e manufacturing deviation
and fitting deviation are propagated and superimposed in
the component through the assembly of parts, affecting the
assembly quality and expected function of products.
(rough tolerance analysis and tolerance stack-up, engi-
neers can predict the final assembly accuracy before ma-
chining, so it has become a hot research area of automation
[1]. Tolerance stacks are a direct and straightforward
method to simulate dimensional deviation on the distance
between different assembly features. It usually only in-
cludes dimensional tolerance (DT), although modern
modification of this method also considers geometric
tolerance [2]. However, under the actual manufacturing
conditions, the propagation of geometric, dimensional
tolerances (GD&T), the gap between mating parts, and the

assembly sequence of parts will cause some mating features
to deviate from their nominal positions, thus affecting the
assembly accuracy [3].

In recent years, scholars have established general tol-
erance analysis methods [4–8], which can obtain the as-
sembly accuracy of mechanical products to a certain extent.
However, few researchers consider the influence of the as-
sembly sequence on assembly accuracy. Assembly sequence
planning and assembly accuracy calculation depend on the
assembly information model. To analyze the influence of the
assembly sequence in the calculation of assembly accuracy,
we should establish an appropriate model that can carry out
assembly sequence planning and assembly accuracy calcu-
lation. (e appropriate model needs to include the di-
mension and tolerance information of parts and the
assembly relationship information between parts and
components for assembly [4]. GD&T and assembly rela-
tionship information are added into parts’ geometric fea-
tures and propagated through parts’ direct geometric
contact.
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To model assembly information, several problems need
to be further studied. First of all, only some features in-
fluence the assembly process, so we are only aiming the key
features to do the subsequent calculation. Secondly, the
surface of parts determines geometric constraints between
parts and geometric feasibility of the assembly. Non-
geometric constraints have an influence on assembly effi-
ciency. It is necessary to combine the nongeometric
constraints that affect the assembly sequence to optimize the
feasible geometric sequence. Different tolerances on dif-
ferent types of assembly surfaces will have different effects on
assembly accuracy, so it is necessary to establish an assembly
error transfer model to obtain error transfer and superpo-
sition in parts.

(is paper presents a method to obtain the assembly
dimension relation model. (e key features of part obtained
by simplifying the part and determining the influence area of
error according to the different contact surfaces. (en, the
complete assembly dimension relationship model is formed
by combining the assembly error. Based on the model, the
three-dimension chain between the corresponding features
of two different parts of the assembly is searched by the
graph search algorithm and solving the assembly parts’
assembly error. (e basic process is as follows: (1) the hi-
erarchical assembly information model can establish the
decomposition of the geometric feature of the part repre-
sented by the B-rep model. (2) (e assembly information
model carries out assembly sequence planning. (3) On the
premise of obtaining the optimal assembly sequence under
multiple constraints, the three-dimensional chain of parts in
an assembly accuracy propagationmodel is searched. (4)(e
assembly accuracy of related parts is calculated based on
obtaining the dimension chain.

2. Literature Review

2.1. Assembly Constraint Model. (e optimal assembly se-
quence has an important influence on assembly time and
cost [9, 10]. For generating the valid assembly sequences, the
engineers must be pointed out the assembly precedence
between parts. However, it is challenging and time-con-
suming to find the optimal assembly sequence due to many
feasible assembly sequences. Assembly sequence planning
(ASP) is typical of the discrete optimization problem in
mathematics. In the early 1960s, researchers developed at
least one optimal feasible assembly sequence for a product
[11]. (en, through the assembly constraints between parts,
the feasible assembly sequence can be found using the
graphical method [12]. Although these traditional methods
provide a correct and complete solution for the assembly
configuration of some parts counting, they were time-
consuming and required many calculations [13]. Also, the
methods were semi-automated, which required skilled users
to oversee the decision-making process.

In 1988, graphic representation methods such as con-
nection graph, interference graph, and assembly constraint
graph were proposed to represent assembly trajectory
constraints and were used to generate assembly priority
relationships [14]. de Mello and Sanderson introduced all

feasible assembly sequences of the product with the and/or
graph [15]. In the graph, the node is an assembly subpart, the
root node is a complete part, the leaf is a separate part, and
the arc corresponds to a feasible assembly operation, linking
each node to all combinations in which it can be split [16].
Wolter, on the other hand, used a partial assembly tree to
express the assembly. Its nodes correspond to subassemblies
in the assembly process. (e leaf node is a single part, while
the root node is the final mechanical product [17]. Besides,
there is an assembly directed graph [9, 18], whose nodes
correspond to the assembly of parts in the assembly and
whose arcs correspond to feasible assembly operations [19].

A researcher prefers extracting assembly sequence
constraints from Computer-Aided Design (CAD) software
to minimize human intervention. Some researchers have
developed automatic extraction methods to retrieve as-
sembly connection data, interference data, and assembly
stability information through CAD interfaces [20, 21].
However, this method requires manual operations, which
rely on engineers’ experience, so it is not the optimal so-
lution as human input errors are a significant factor [22].(e
existing methods cannot automatically establish the ap-
propriate assembly constraint information model. In this
paper, the surface included in the part is divided to obtain
the geometric structure and the topological relationship
between the geometric structures.(e introduction of model
simplification reduces the number of nodes in the model,
improves operation efficiency, and results in faster and more
accurate results. (e key features that affect the assembly
accuracy are combined with the nongeometric information
to form a complete assembly information model.

2.2. Error Transformation Model for Assembly. (e design
and calculation of dimensions and tolerances are difficult
problems in the industry. Scholars have carried out much
research on the mathematical model expression of assembly
tolerance to solve this problem. Typical tolerance models
include topologically and technologically related surface
(TTRS) [7, 23], polychromatic set model [24], small-dis-
placement sensor (SDT) [25], tolerance map (T-map) [5],
and degree of freedom model [26].

As a widely used model, Clément et al. [27] proposed the
TTRS model on seven-element surfaces, and twenty-eight
surface relationships determine the tolerance. Davidson and
Shah [28] established the T-map tolerance model of standard
plane features. On this basis, Xiao and Zhu [29] combined
with T-map and ASME standard, took the intersection axis
as the research object, established the spatial domain of
assembly feature deviation fluctuation, and improved the
accuracy of the transformed tolerance. Solving the problem
that the machining datum does not coincide with the design
datum in the machining process, the tolerance graph is
another model for calculating tolerance in the n-dimen-
sional Euclidean space, mapping the geometric features of
parts to the point space model. Ke et al. [30] established an
M-map to realize the transfer of the datum plane and re-
alized the adjustment and optimization of machining tol-
erance under different constraint conditions.
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(e stack-up of assembly errors is another problem in
the process of assembly accuracy calculation. Liu et al. [31]
divided the assembly errors into three categories: geometric
position deviation, geometric shape deviation, and assembly
position deviation, and then, they established the assembly
directed graph to express the transmission process of as-
sembly accuracy. Boccaletti et al. [32] divided a complex
network into different modules based on complex network
and dynamic cluster coefficient analysis, which provides a
new idea of error tracing. Based on the above principles [33],
Zhu et al. [34] established the deviation transfer network
model of the mechanical assembly process, identified the key
assembly surface, and realized the error traceability. (e
existing methods are limited to the transfer direction of
assembly error. In addition, few researchers regard the as-
sembly sequence as one of the constraints of assembly ac-
curacy. However, different assembly sequences will lead to
different contact sequences between parts and different error
transmission paths. In this paper, in the same model, the
optimal assembly sequence of parts is deduced, and the
assembly accuracy of parts is obtained under this sequence.

2.3. Problem Definition and Objectives of Present Research.
Every feature in a component is subjected to variation be-
tween design positions and is strictly applied with some
tolerances. When there are multiple components in a me-
chanical product, the variations will accumulate and
propagate, affecting the functional performance of parts.(e
sources of these changes can be divided into three categories:

(1) (e size change or tolerance superposition of a single
part

(2) (e change of geometric features
(3) (e change of parts and the change of transmission

between parts in the assembly process

In previous studies, the second and third types of de-
viations are not considered in evaluating fit accuracy, which
usually regards as null according to the translation or se-
lection changes added in the assembly process.

(e variation of geometric features can significantly
affect tolerance superposition, depending on the type of
translation and rotation variation added during assembly. In
the process of assembly accuracy simulation, considering the
assembly sequence of mechanical products and thematching
accuracy between parts, the assembly accuracy obtained is
more realistic than the simple dimensional accuracy. (e
propagation direction of different error sources on different
surfaces is also different. In searching the dimension chain, it
is necessary to determine whether each error has a com-
ponent in the calculation direction of assembly accuracy and
then ignore the interaction of multiple errors. So, the ex-
pected accuracy of precision assembly can be calculated, and
the service life of parts can be improved.

(is paper aims to apply geometric tolerance and di-
mensional tolerance, surface tolerance, assembly error, and
assembly sequence of parts to the calculation of assembly
accuracy. (erefore, it is necessary to establish a model
containing all the assembly information of the parts. (e

influence of geometric constraints between parts on the
feasible motion range of parts is analyzed. It is important to
determine the feasible transfer direction of assembly devi-
ation of different kinds of error sources on different surfaces.
In establishing the model, the key features of the parts
participating in the assembly process are obtained through
simplification and planning the assembly sequence of the
products. After obtaining the contact sequence between
parts, it is necessary to analyze the influence of GD&T
deviation on assembly accuracy. We propose a breadth-first
algorithm combined with the assembly sequence to search
the 3D chain of the required assembly size in the assembly
error transfer model to solve this problem. Finally, the as-
sembly accuracy of the product is obtained by the Monte
Carlo method.(e shaft and its related parts of the two-stage
reducer are an example. Analyzing is carried out in order to
understand the proposed method.

3. Assembly Information Model

(e assembly constraint relation model expresses constraint
andmating relations between parts. Assembly tolerances can
be used as attributes of assembly models and are attached to
them. (is paper builds a hierarchical representation model
whose structure is shown in Figure 1. (e representation
model includes five levels: assembly level, part level, as-
sembly feature level, surface level, and assembly tolerance
level.

To meet the design requirements, CAD models usually
contain accurate geometric information. (ere are some
structures in part, such as chamfering, fillet, or tool
retracting groove, which will increase the number of nodes
in the assembly information model and increase calculation
difficulty. (erefore, it is necessary to calculate the key
features of parts to improve operational efficiency. In this
paper, by simplifying the model extracted from CAD, the
key features with assembly constraints are obtained. If a
simplified basic unit is a surface, the part may not be a
complete entity. To avoid this problem, take the feature as
the minimum simplified element. Because different engi-
neers understand that the CAD modeling process is dif-
ferent, using feature trees directly in CAD software cannot
get the simplest simplified results. (erefore, through the
secondary development of the CAD system, the digital
model of part B-rep representation is obtained. (is method
generates a feature-based model from the B-rep model by
applying the volume decomposition method. (e assembly
information model of mechanical products is constructed
hierarchically to store the assembly constraints and the
nongeometric information related to the parts.

3.1. B-Rep Model. Obtaining the geometric constraint in-
formation between parts, through the contact surface be-
tween parts, we can obtain the geometric structure of parts,
including contact surface and noncontact surface. (e
noncontact surface ensures the transmission of geometric
constraints on the part, while the contact surface ensures the
transmission of geometric constraints between the part. (e

Mathematical Problems in Engineering 3



B-rep model established the model of parts’ contact rela-
tionship through the secondary development of CAD. (e
feature tree of the part is obtained through the decompo-
sition of the volume feature.

(e assembly information model can represent con-
straint information at each level and indicate the reasoning
relation matrices built at different levels. Boundary repre-
sentation is a common geometric description method in
CAD. (e B-rep model retains the information of points,
lines, and surfaces in the CAD model, which helps calculate
the geometric features of parts. In the B-rep model, as shown
in Figure 2, the type of part surface is obtained, and the
concave-convex of the edge formed by the intersection of
two surfaces is judged by the angle between the normal
vectors of two surfaces.

3.2. Geometric Feature Decomposition. (e mechanical
product can be seen as a complex geometry formed by many
simple subfeatures and their Boolean operation. When
applying additive features, convex inner loops are often
generated at feature intersections. So, the convex inner loops
can be the sign of additive features. Koo and Lee [35]
proposed the wrap-around operation to decompose parts.
(e algorithm for the wrap-around operation on a given
shape S is described as follows:

(1) Find and mark the convex inner loops {Li} of S
(Figure 3(a)).

(2) Separate every faces {Fj} (Figure 3(b)).
(3) Find {Li} in {Fj} (Figure 3(b)).
(4) Remove {Li} and add new surface according to {Li}

(Figure 3(c)).

(5) Sew all {Fj} and add corresponding plane
(Figure 3(d)).

(6) Unite T and W with a regularized Boolean union
(Figure 3(d)).

(7) If T has convex inner loops, apply the wrap-around
operation again to T1 and obtain T2. Repeat the wrap-
around operation until convex inner loops do not
exist.

3.3. Assembly Constraints Model. Most studies on the sim-
plification of feature-based 3D CAD models involve the
following two steps: feature rearrangement according to
importance and removal of features with low importance
until the termination condition. In this study, through the
effective volume of features and the contact features between
parts, the parts are simplified on the premise of maintaining
the connectivity of the model using a feature adjacency
graph.

A feature tree is generated by decomposing the part and
reconstructing the simple subfeatures. Different deletion
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processes lead to different results, so it is necessary to deter-
mine a reasonable deletion order to ensure the integrity of the
constraint information of the final part. Kim andMun [36] and
Kang et al. [37] proposed several recombination strategies.(is
study evaluates the importance of subfeatures according to the
following criteria. (e main results are as follows:

(1) (e importance of additive features is higher than
that of subtractive features.

(2) Larger features are more important than smaller
ones.

(3) Features need to be retained in contact with other
parts.

(4) (e first adjacent feature near the port is more
important than the other features. We use the fol-
lowing formula to measure the importance of
features:

f � n × C1 + C2 + C3( 􏼁. (1)

If it is a port feature, it cannot be deleted and retained. At
this time, n� 1, making f> 0. Otherwise, n� −1 making f< 0.
C1 is the volume ratio of the feature to the largest feature in
the part, which is a number greater than 0 and less than 1. If
it is an additive feature,C2 �1; otherwise, it is 0. Suppose that
it is the first feature near the port, C3 �1. Otherwise, it is 0.
(e results are shown in Figure 4.

As shown in Figure 5, all the nodes are connected, and all
the nodes in the graph are ordinary nodes. When deleting
node 4, node 2 will become the cut node, while node 3, node
5, and node 1 remain unchanged. After the deletion of node
3 on the above condition, all the nodes in the graph become
ordinary nodes. (us, the graph nodes can switch between
cut nodes and ordinary nodes in the simplification process.
Furthermore, the set of cut nodes need to reevaluated when
the graph changes.

During the reduction of nodes on the diagram in the
graph above, the nature of the retained node as a cut node
also changes. (erefore, it is necessary to determine whether
the node in the graph is a cut node after deleting a feature.
When the node to be deleted is a cut point in the geometric
contact diagram, skip the feature. (en, the part model is
simplified according to the order.

(e assembly constraints graph is highlighting the fea-
tures from the same part in the same color. (e node code is
a 4-digit string.(e first two digits are the ID of the part, and
the last two digits are the ID of the face in part, as shown in
Figure 6(d).

3.4. Assembly Variation Model. A complex component is
considered to have a high number of parts and a large
degree of connectivity between subfeatures or parts. Most
of the existing assembly accuracy analysis methods sim-
plify the machining error of the part surface to the
translation and rotation of the ideal geometric surface
along with its theoretical position. (is simplification
ignores the influence of surface morphology on the po-
sition of parts, thus affecting the accuracy of precision
analysis results.

(e assembly tolerances mentioned in this paper include
dimensional tolerances, shape tolerances, and position tol-
erances. Form tolerances and position tolerances are col-
lectively referred to as geometric tolerances. (e error of the
part can be regarded as an ideal surface, which is translated
and rotated under the limitation of orientation and posi-
tioning error and then superimposed with the deformation
caused by shape tolerance. (erefore, the small-displace-
ment torsor (SDT) represents the orientation and posi-
tioning error of the part, and then, the shape error is
expressed in the form of the point cloud. (e superposition
of the two is the final assembly error .

(a) Positioning Tolerance Modeling.
When geometric features are constrained by location
tolerance and orientation tolerance, location and
orientation errors can be expressed by SDT, which
include a set of translation components along the x-
axis, y-axis, and z-axis ([u, v,w]) and a set of rotation
components along the x-axis, y-axis, and z-axis ([α,
β, c]).(e SDTrepresentation of common geometric
features and their value range is shown in Table 1. In
Table 1, L and W represent the length and width of
the rectangular plane, φd and φD represent the outer
diameter of the circle, and H and h represent the
height of the cylinder and cone. On this basis [38],
the geometric surface with positioning/orientation
errors can be obtained by translating and rotating the
geometric surface in the ideal position, and the given
SDT parameters determine the values of translation
and rotation.

(b) Form Tolerance Modeling.
Similar to positioning or orientation tolerance, form
tolerance also limits the variation range of geometric
features. (e rectangular plane is taken as an ex-
ample; its form tolerance region is also the area
between two parallel planes, as shown in Figure 7.
(e nonideal surface generated by form error
modeling still needs to meet the constraints of form
tolerance. Form error can be modeled by point cloud
simulation.

S

F5

F4

F3

F2

F1
T

W

+

Figure 3: Concept of volume decomposition.
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(e nonideal surface model is generated by super-
imposing a randomly generated geometric surface with form
error on the geometric surface with location and orientation
error based on the modeling of location, orientation error,
and form error, as shown in Figure 8. Form tolerance and
position tolerance are independent of each other, and they
constrain the surface of parts together. It should be noted
that, in the process of using numerical simulation, in some
cases, the plane will exceed the constraint range of tolerance,
so manual correction is needed.

4. Assembly Sequence Planning

(e essence of part assembly is to impose constraints on
geometric elements to adjust the position and the rotation of
the part model. (e geometric elements involved in the
constraints between parts include various geometric sur-
faces, such as planes, cylinders, and cones.(is paper focuses
on the geometric surfaces with contact relationships between
two different parts.

4.1. Geometrically Feasible Assembly Sequence. In 3D space,
the assembly constraints of different kinds of geometric
surfaces are transformed into the remaining feasible motion
direction of the part. (e unit spherical coordinates are
stored in the form of a set, as shown in Figure 9.

Table 2 shows the constraints of the geometric contact
surface in part on the feasible direction of movement and the
assembly direction. When there are constraints between the
planes, the part can move in the opposite hemisphere of the
plane normal vector, and the assembly direction is the
normal direction of the plane; when there are cylindrical
constraints, the part can move in the positive and negative
direction of the vector, and the assembly direction is also the
positive and negative direction of the vector; when there are
conical constraints, the part can move in the opposite di-
rection of the vector, and the assembly direction is the
component of the vector.

(e potential assembly sequence for N parts in a me-
chanical product is N!. Geometric constraints between parts
result in a reduction in the number of parts. (e method of

Priority

Section 1

0

Section 2

(a)

–4

–2

0

2

4

1 3 5 7 9 11 13 15 17 19

(b)
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2

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(c)

Figure 4: Geometric features are rearranged according to their importance. (a) Two sections according to feature importance. (b) Im-
portance of the feature. (c) Rearrange the features according to their importance.
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Figure 5: (e change of cut points in the process of node deletion in the undirected graph.
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obtaining the assembly sequence is to inverse the disas-
sembly sequence. In this paper, a geometrically feasible
assembly sequence for all parts is obtained by continuously
removing the parts from the product.

An undirected graph of assembly constraints of me-
chanical products is established through the port features of
parts and the B-rep model of assembly. (e node represents
the contact surface between parts and records the type and
direction of the surface. (e assembly sequence is repre-
sented as a string, so the sequence [1 3 4 5 6 7 8 91015 16 212
11 13] is represented as “01, 03, 04, 05, 06, 07, 08, 09, 10, 15,
16, 02, 12, 11, 13,” and each part number is represented by

two digits. Part 2 has ID number 02, and part 13 has ID
number 13.

Parts with the not empty feasible moving area can be
disassembled when constraints are received. (en, surface
nodes and connections between surface nodes and link edges
can be deleted, which contact other parts. Record the re-
moved parts, update the assembly constraint relationship
model, and then, obtain the parts with no empty feasible
moving area again. When there are several removable parts,
store them separately to form several strings representing the
disassembly sequence. Repeat this process until all parts are
completely removed. Invert the obtained disassembly
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09 08
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(b) (c)
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Figure 6: Contact relationship of parts based on surface representation. (a) Part 1 CAD model. (b) Part 2 CAD model. (c) Fitting model of
parts. (d) Feature representation of part fitting model.

Table 1: Analysis of the tolerance zone in common geometric features.

Plane Cylinder Cone

Tolerance zone

L

z

x W

Fit plane Tolerance zone

fm

y

Tolerance zone

Fit cylindrical
surface

y

0 x

hz

φd
φD

Tolerance zone

Fit conical
surface

y
x

h

H

z

φd
φD

Deviation vector (0, 0, δz, δα, δβ, 0) (δx, δy, 0, δα, δβ, 0) (δx, δy, δz, δα, δβ, 0)
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sequence to define the geometrically feasible assembly se-
quence of a part.

For example, there are two pairs of surface contact in
model A and model B. (ey are marked as x1, y1, x2, and y2,
and the assembly direction constraint of the part between x1
and x2 is shown in Figure 10(a), and the constraint of the
part between y1 and y2 is shown in Figure 10(b). (e feasible

assembly domain of the two parts is shown in Figure 10(c).
(e details are shown in Figure 10.

4.2. Assembly Sequence Optimization. Before optimizing the
assembly sequence, it is necessary to determine the fitness
function, which describes the difficulty and complexity of

S: actual surface

S0: ideal surface

TZ

diinf

disup

Figure 7: Form error of the plane.

Ideal datum
Assembly surface A

Actual datum
Assembly surface A′

Actual assembly
surface B′

Ideal assembly
surface B

Surface A

Dimensional tolerance
Orientation tolerance

Location tolerance
Form tolerance

Surface B

Dimensional tolerance
Orientation tolerance

Location tolerance
Form tolerance

Fitting error
between contact face

Errors during the assembling

Figure 8: Error transfer between two surfaces.

z

y

x

ϕ2

ϕ1

θ1

θ2

Figure 9: Feasible assembly region represented by spherical coordinates.
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assembly sequence operation. (e fitness function includes
the following:

(1) (e number of tools changes in the assembly process

(2) (e number of times the assembly direction changes
in the assembly process

(3) (e fitness difficulty between parts

(e optimization function used in this paper is shown in
formula (2), and the calculation method of variables is
shown in Table 3.

Fn represents the assembly process factors, including the
change times of assembly tools R1, the difficulty of assembly
operation R2, and the change times of assembly direction R3.
Xie and Zhong used the analytic hierarchy process to
evaluate the assembly sequence, in which the weights of
various constraints were obtained by consulting experts
using the sadi scale. (is paper referred to the relevant
conclusions [39]. (e value of weight factors was set as
ω1 � 0.2, ω2 � 0.3, and ω3 � 0.5. (en, using the fitness
function to select the geometric feasible assembly sequence
to get the optimal solution under the constraint:

Table 2: Constraints of the surface on the feasible assembly region of parts.

Connect
relationship

Assembly
direction

Disassembly
direction

Assembly zenith
angle

Assembly
azimuth angle

Disassembly
zenith angle

Disassembly
azimuth angle
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Figure 10: Determination of the assembly region between parts.
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Fn � ω1R1 + ω2R2 + ω3R3. (2)

5. 3D Dimension Chain Search Based on the
Breadth-First Algorithm

According to the assembly error model established in the
previous paper, the assembly error of parts can be obtained
by calculating the three-dimensional dimension chain of
mechanical products. According to the assembly sequence,
we need to obtain the error transfer path in each part of the
product and the error transfer relationship between parts
and gradually obtain the three-dimensional chain of this
precision. When the number of nodes increases, the ac-
cumulated error on the path also increases, so transforming
the assembly accuracy calculation problem can be trans-
formed into a shortest path problem.

Based on the model network established in the previous
paper, a directed graph G is constructed, in which the faces
are mapped to the node n of G and the transfer relationship
of assembly errors between faces is mapped to the edge e of
G. For the edge e, if the precision level between two sides is
high, the distance W(e) of edge e is smaller. If the precision
level between two sides is low, the distance W(e) of edge e is
larger. If there is no component of the error precision be-
tween two sides in the band direction, then W(e) is a large
numberM. Let d(vi, vj) be the set of paths with u and v as the
endpoints in G and W(d(vi, vj)) denote the sum of the
distances on the top of the path d(vi, vj). (e three-di-
mensional dimension chain search problem can be
expressed as finding a path P0(vi, vj) in d(vi, vj) in G such
that

W P0 vi, vj􏼐 􏼑􏼐 􏼑 � min W p ui, vj􏼐 􏼑􏼐 􏼑 ∈ d ui, vj􏼐 􏼑􏼐 􏼑. (3)

Typical shortest path algorithms include Dijkstra algo-
rithm, Floyd algorithm, Bellman–Ford algorithm, and SPFA
algorithm. In this paper, we get the shortest path when the
starting vertex and the ending vertex are known. (erefore,
we are choosing the Floyd algorithm as the search algorithm
for the 3D dimension chain.

(e Floyd algorithm thought is that the shortest path
from any node vi to any node vj is no more than two
possibilities, one is directly from node vi to node vj and the
other is from vi through several nodes to vj. Suppose that
distance between node u and node v, which is expressed as
dist(vi, vj), is the shortest path distance from node vi to node
vj for each node k, and check whether
dist(vi, k) + dist(k, vj)< dist(vi, vj) holds. If it is true, it is
proved that the path from node vi to node k and then to vj is
shorter than the path from u to v. After traversing all nodes
k, dist(vi, vj) records the shortest path distance from vi to vj.

(e error transfer graph G � V, E{ } of each part and the
assembly sequence s � [a(i)]n under multiple constraints
are calculated. (e weight adjacency matrix τ � [a(i, j)]n×n

is constructed, and a subsequent node matrix path
p � [a(i, j)]n×n is introduced to record the shortest path
between two points. (e specific algorithm steps are as
follows:

(1) Determine the transfer direction of the error.
According to the start and end surfaces of assembly
error, spherical coordinates are recording the error
transfer direction.

(2) (is can be obtained between the contact surfaces
and the contact order of the parts by the determined
assembly sequence. Judge whether there is a com-
ponent in the direction of error transmission. (e
error transfer path between parts, the participating
parts, and the start and end surfaces of the partici-
pating parts is obtained

(3) For each part, the weighted error transfer digraph is
established from any path. (e distance between all
the two points is the weight of the edge. If there is no
edge connection between the two points, the weight
is infinite. (e graph weight adjacency matrix and
node matrix path are constructed.

(4) Use the Floyd algorithm to find intermediate node k.
If there is a vertex k, update the result.

(5) Repeat the above step (2)–step (4) until all nodes are
traversed until the end. (e shortest path formed is
the three-dimensional dimension chain of parts.

(6) (rough the dimension chain of parts and the fitting
error between parts, the three-dimensional dimen-
sion chain of the error to be solved is formed.

6. Assembly Accuracy Calculation

After obtaining the three-dimensional dimension chain of
the product, the assembly accuracy of the product can be
calculated, including the error transfer and numerical
calculation.

6.1. Error Transfer of Homogeneous Transformation Matrix.
Based on the coordinate transformation theory of robot
kinematics, a 4× 4 homogeneous transformation matrix is
used to express the tolerance model transmit [40]:

M �

1 −c β u

c 1 −α v

−β α 1 w

0 0 0 1‘

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

(en, the transformation relation of the coordinate
position of P point from S2 to S1 is as follows:

ps2 �

Xs2

Ys2

Zs2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � T•

Xs1

Ys1

Zs1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � T•Ps1. (5)

As shown in Figure 11, the nominal coordinate system
and the actual coordinate system of the geometric features of
the mating surface are established at the mating surface
between parts. (ey represent mapping of the measuring
point P from one space coordinate system to another space
coordinate system by the homogeneous coordinate trans-
formation matrix.
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(e transformation of any mating surface from the
nominal feature coordinate system to the actual feature
coordinate system will affect the spatial attitude of subse-
quent parts in the global coordinate system. For the mea-
surement point P, its spatial position and pose in the global
coordinate system will be affected by the surface changes of
each link in the dimensional chain. It is mathematically
described as a cross product of the series transformation
matrices of all adjacent coordinate systems on the transfer
path:

Ps3 � T11•T12•T22•T23•T33( 􏼁Ps1. (6)

Among them, T11, T22, and T33 represent the coordinate
transformation matrix of the actual mating surface relative
to the nominal mating surface between parts P1, P2, and P3.
T12 and T23 represent the relative transformation matrix of
nominal coordinates between parts P1 to P2 and P2 to P3.

6.2. Calculation Accuracy Based on Monte Carlo Method.
In the process of calculating assembly accuracy, the process
of tolerance superposition optimization is extremely com-
plex. An optimization strategy combined with the Monte
Carlo method has been proposed to solve this problem.
According to the distribution law of the uncertain values in
the error domain, the specific size of each assembly is
randomly selected, and the error domain of the final as-
sembly error is obtained by multiple stack calculation.

In the three-dimensional dimension chain of error
transfer, for the numerical simulation of the errors con-
tained in the nodes, the manufacturing errors usually
conform to the normal distribution. (rough the statistical
simulation, the approximate solution of the assembly error is
obtained. After determining the three-dimensional dimen-
sion chain of assembly error transfer, the number of sim-
ulation N needs to be determined, and the distribution
function of error sources determines each error source in the
chain, and random sampling is carried out within the error
range. In the analysis of geometric tolerance, the parameters
of SDT which control geometric features are randomly se-
lected in their value range to obtain the corresponding
random sequence. According to the stacking process shown
in Figure 8, calculate and repeat this step until the number of
repetitions meets the simulation number N. (e maximum

and minimum values of the calculation results are the
prediction range of the corresponding assembly accuracy.

7. Case Study

In this paper, the assembly of a shaft in the speed reducer is
taken as an example for algorithm verification, implemented
by Matlab 2017b and Solidworks API programming. (e
shaft is mainly composed of shaft, key, gear, locating ring,
end cover, sleeves, two bearing, gaskets, and screw. In order
to save analysis time and cost and improve disassembly
efficiency, we use one fastener to express multiple fasteners.
A three-dimensional model of a shaft in the speed reducer is
shown in Figure 12 and Table 4. (e fit relationship between
parts in the assembly is shown in Table 5, and the rest fit
relationship is clearance fit.

(e model is decomposed into Boolean operation sets of
several basic subfeatures according to the volume feature
decomposition method. (e types of planes included in the
simple subfeatures are counted, the normal vectors and
contact relationships of the planes are determined, and the
assembly information model is established. According to the
simplified method proposed in this paper, the port features
of each part are determined and the importance of neutron
characteristics of each part is ranked.(e importance of each
subfeature of the most complex shaft part is shown in
Figure 4(c) and is then sequenced on this basis. Obtain the
contact relationship between the features, and establish the
undirected diagram of the contact relationship between the
features, as shown in Table 6. Parts are gradually simplified
by an algorithm until further simplification is not possible.
(e feasible movement direction of each part under as-
sembly constraints and the geometrically feasible sequence
of mechanical products are obtained through the contact
relationship between the surfaces of the parts.

According to the results, the simplified shafts are
composed of 9 features, and 11 are reduced. It retains all
features of contact with other parts; the volume is 48.98 dm3

before simplifying, the reduction volume is 37.55 dm3, the
volume change is 11.86 dm3, and the reduction ratio is about
23.3%. It retains the number of surfaces of 46 before sim-
plifying, and the number of surfaces after simplifying is 26,
the number of surfaces reduced is 20, and the reduction
percentage is about 43.5%.(e characteristic topology of the
simplified model has a change of 24.3%, where the node
represents the feature in the part and the line represents the
contact relationship between the two features. By simpli-
fying the parts in the assembly and combining the contact
relation between the parts, the following assembly relation
characteristic diagram is obtained (Figure 13).

Based on the above analysis of geometric constraints
between parts in the product, we obtain 36 geometrically
feasible assembly sequences as the input of subsequent as-
sembly sequence optimization, which refer to Table 7 for
complete information.

Firstly, the disassembly sequence is reversed to obtain
the geometrically feasible assembly sequence of the part, and
the feasible direction of the part is determined according to
the contact relationship of the direct surface of the part.

Tolerance transfer path

T1′

T2′ T3′

T2
T3

T1

Figure 11: Tolerance transfer path in the product.
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According to the sequence, the number of assembly di-
rection changes in different sequences is calculated. (e
number of tool changes in different sequences is calculated
according to the tools required for assembling parts shown
in Table 8. Finally, the assembly difficulty of different parts in
different sequences is obtained through different matching
types.(emaximum number of changes of tools is 6, and the
maximum number of direction changes of parts is 5. (e
evaluation value of the geometrically feasible assembly se-
quence is obtained by the adaptability function. (e results
are shown in Table 9.

9 5 7 4

10

3 2

1

8 6

Figure 12: Exploded view of reducer shaft and related parts.

Table 4: (e list of features in the shaft.

Feature no. Feature type Feature volume vi(mm3) Bool Port

01 Step 13760804 Increase True
02 Step 11191924 Increase True
03 Step 4618141 Increase True
04 Step 8286893 Increase True
05 Step 11625063 Increase False
06 Cone 202845.4 Decrease False
07 Chamfering 3081.902 Decrease False
08 Ring channel 2814.73 Decrease False
09 Fillet 15133.4 Increase False
10 Fillet 3506.017 Decrease False
11 Fillet 2716.042 Increase False
12 Fillet 2392.43 Increase False
13 Fillet 580.5962 Decrease False
14 Chamfering 3002.734 Decrease False
15 Key channel 221326 Decrease True
16 Chamfering 110.0858 Increase False
17 Screw hole 21714.69 Decrease True
18 Screw hole 21714.69 Decrease True
19 Screw hole 21714.69 Decrease True
20 Screw hole 21714.69 Decrease True

Table 5: Fit relationship between parts in assembly shown in
Figure 11.

Reference part no. Target part no. Fit type Value
1 3 Transition H7/m6
1 7 Interference H7/p6
1 8 Interference H7/p6
1 10 Clearance None

Table 6: (e contact relationship between the features.

Aij �

0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 1
1 0 1 0 0 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0
0 1 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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Based on the assembly sequence of geometrically feasible
parts, the breadth-first algorithm is applied to obtain three
optimal sequences: 1-2-3-4-7-5-9-10-8-6, 1-2-8-6-3-4-7-5-
9-10, or 1-8-6-2-3-4-7-5-9-10.

(e topological relationship between parts can be
represented as the transfer matrix of assembly error

based on the surface by the undirected graph. Taking the
axis as an example, the simplified shaft surface rela-
tionship is shown in Figure 14(a), while the relationship
between the axis surface after adding dimension toler-
ance and form position tolerance is shown in
Figure 14(b). (e error transfer model of the assembly
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Figure 13: Part simplification results. (a) Before and after shaft simplification. (b) Topological relations of features before simplification.
(c) Topological relations of features after simplification.
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product is built after the error transfer model of each part
is established. According to the algorithm proposed in
the previous paper, the error transfer path in the part is
obtained, as shown in Figure 15.

Table 10 shows the results of 10, 100, 1000, and manual
dimensional chain calculations. (e comparison of data
shows that the error obtained by multiple iterations meets
the manual calculation results and improves the accuracy.

Table 7: Assembly sequence planning results.
No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 No. 9 No. 10 No. 11 No. 12 No. 13 No. 14 No. 15 No. 16 No. 17 No. 18
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 8 8 8
7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 4 4 4
5 5 5 5 5 5 8 8 8 8 6 7 7 7 7 6 7 7
8 8 8 9 9 9 5 5 5 6 7 5 5 5 6 7 5 5
6 9 9 8 8 10 6 9 9 5 5 6 9 9 5 5 6 9
9 6 10 6 10 8 9 6 10 9 9 9 6 10 9 9 9 6
10 10 6 10 6 6 10 10 6 10 10 10 10 6 10 10 10 10
No. 19 No. 20 No. 21 No. 22 No. 23 No. 24 No. 25 No. 26 No. 27 No. 28 No. 29 No. 30 No. 31 No. 32 No. 33 No. 34 No. 35 No. 36
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 8 8 8 8 8 8 8 8
3 3 3 8 8 8 8 8 8 8 2 2 2 2 2 2 2 6
8 8 8 3 3 3 3 3 3 6 3 3 3 3 3 3 6 2
4 4 6 4 4 4 4 4 6 3 4 4 4 4 4 6 3 3
7 7 4 6 7 7 7 7 4 4 6 7 7 7 7 4 4 4
5 6 7 7 5 5 5 6 7 7 7 5 5 5 6 7 7 7
9 5 5 5 6 9 9 5 5 5 5 6 9 9 5 5 5 5
10 9 9 9 9 6 10 9 9 9 9 9 6 10 9 9 9 9
6 10 10 10 10 10 6 10 10 10 10 10 10 6 10 10 10 10

Table 8: Tool for the shaft in speed reducer assembly shown in Figure 12.

Part no. Part name Tool
1 Shaft None
2 Key None
3 Gear None
4 Locating ring None
5 End cover None
6 Sleeves None
7 Bearing Tool group
8 Bearing Tool group
9 Gaskets None
10 Screw Screwdriver

Table 9: Assembly sequence planning results.

Assembly sequence Number of assembly direction changes Number of assembly tool changes Fitness function value
1-2-3-8-4-6-7-5-9-10 5 5 0.867
1-2-3-4-7-5-9-10-8-6 2 5 0.667
1-8-2-3-4-7-5-9-6-10 4 5 0.867
1-8-2-3-4-7-5-9-10-6 3 6 0.800

Mathematical Problems in Engineering 15



(a) (b)

Figure 14: Tolerance transfer model of the shaft. (a) Contact relation of the surface in parts. (b) Tolerance relation of the part surface.

Start surface

End surface

Figure 15: Error transmission path.
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8. Conclusion

An assembly information model based on the internal
structure of parts and the contact relationship among parts is
proposed. Firstly, the product is divided into product layer,
part layer, feature layer, surface layer, and constraint layer.
(e assembly information model is built through the to-
pological relationship of features and the contact relation-
ship between parts. On this basis, the assembly constraint
model and assembly error transfer model are deduced from
the assembly information model. (e corresponding rela-
tionship between the factors affecting the assembly per-
formance and the total weight is established, and the 3D
dimension chain search algorithm is constructed. (e main
contributions of this study are as follows.

(1) (e assembly information model with multilevel
features of the product, part, and assembly process is
introduced as a bridge between the product CAD
model and the assembly process. High-level se-
mantic concepts of CAD systems and CAD model
data of specific products are integrated into a model
framework. (e assembly information model is built
according to the multilevel andmultifactor principle,
which is the link of CAD and CAPP integration.

(2) According to the assembly information model, the
key features in the assembly process are obtained by
using the graph theory to simplify the subsequent
calculation complexity.

(3) According to the contact relationship between parts,
the feasible assembly area of parts is deduced, and the
assembly information undirected graph is estab-
lished. By analyzing the influence factors of the as-
sembly informationmodel, the fitness function of the
assembly process is constructed.

(4) (e assembly sequence planning and assembly
precision calculation are carried out in a model,
and the error transfer dimension chain of the as-
sembly is obtained through the sequence planning
results. (e assembly sequence is taken as the
reference factor of precision calculation, which
further improves simulation reality. After obtain-
ing the three-dimensional dimension chain of the
product, the assembly accuracy of the product can
be calculated, including the error transfer and
numerical calculation.
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Spam filtering, which refers to detecting unsolicited, unwanted, and virus-infested emails, is a significant problem because spam
emails lead to unnecessary costs of Internet resources, waste of people’s time, and even loss of property. Support vector machine
(SVM) is the state-of-the-art method for high accuracy spam filtering. However, SVM incurs high time complexity because of the
high dimensionality of the emails. In this study, we propose a manifold learning-based approach for time-efficient spam filtering.
From the experiments that most of the features are not decisive, we can obtain the viewpoint that only a minor part of the spam
emails can be detected using the nondecisive features. Based on the insight, we propose to employ the Laplace feature map
algorithm to obtain the geometrical information from the email text datasets and extract the decisive features. )en, the extracted
features are used as the input of SVM to spam filtering. We conduct extensive experiments on three datasets, and the evaluation
results indicate the high accuracy time efficiency of our proposed algorithm.

1. Introduction

Email became a popular and widely adopted method in the
Internet era since the 1960s for communication, adver-
tisement, and account registration. Spam emails are defined
as unsolicited, unwanted, or virus-infested emails [1, 2].
Based on the statistics from Spamlaws, nearly 85% of all
emails are spam, in which the advertising, adult-related, and
unwanted emails make up 36%, 31.7%, and 26.5% of the
content, respectively [3]. Spam filtering, which refers to the
process of detecting spam emails, is critical because spam
emails are very cheap to send but have severe consequences
such as annoying the recipients, wasting the Internet re-
sources, and even leading to loss of property [4]. In spam
filtering, nonspam emails should never be classified as spam
because the misclassified emails can be critical for the users,
which bring significant challenges [5].

)e spam filtering methods can be divided into two
complementary categories, i.e., origin-based and content-
based [6]. In origin-based methods, the senders of the emails
are classified as trusted, unknown, and spammer based on
the IP addresses, email addresses, allowlists, and blocklists
[7]. Emails from trusted senders and spammers will be

directly classified as nonspam and spam, respectively. As for
emails from unknown senders, they will be further filtered
via content-based methods. )is study focuses on the
content-based approach in which the classification is purely
based on the email content, i.e., header and body.

In the early stage, content-based approaches are mainly
based on the statistics of words and phrases in spam and
nonspam emails [8]. For example, more than 99% of the
emails containing some words and phrases, such as “act
now,” “offer expires,” and “winning,” are spam [9]. A spam
filter incorporating such statistics is called a Bayesian filter,
which classifies the emails by going through the content
word by word and phrase by phrase. )e advantage of the
Bayesian filter is that the classification accuracy can be
improved when more data are collected from the users.
However, Bayesian filters fail to consider the relationship
among the words and phrases, resulting in limited accuracy.

Recently, machine learning becomes popular in content-
based spam filtering [10]. Support vector machine (SVM) is
one of the successful and cutting-edge techniques achieving
higher accuracy than Bayesian filters [11]. SVM embeds the
email content into a vector space and separates the emails
into two classes, i.e., spam and nonspam, using a hyperplane
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in the vector space. )e secret of SVM lies in the com-
prehensive embedding of the email content and separation
using a hyperplane. )e embedding of the email content
incorporates the complex relationship among the words and
phrases, which is a comprehensive content representation.
)e hyperplane separation maximizes the margin between
the email embeddings and the hyperplane, making the SVM
method robust in spam filtering.

However, embedding of the email content is nontrivial
[12–14]. If few features are embedded, the spam filter will
incur low classification accuracy; if too many features are
embedded, training and applying the spam filter will incur
high time overhead. A natural question comes as follows: is it
possible to select few features to guarantee high accuracy for
SVM-based spam filtering?

In this study, we propose a manifold learning-based
approach to select the distinctive features and feed the
features to the SVM model for time efficiency and accurate
spam filtering. In particular, we gain the insight through
experiments that most of the features used in traditional
SVM-based spam filtering approaches are not decisive, using
which only a minor part of the spam emails can be detected.
Based on the insight, we employ an adapted manifold
learning algorithm to select the decisive features. )en, the
features are fed into the classic SVM model for spam fil-
tering. In this way, our method only selects a small number
but decisive features for spam filtering, which provides both
high accuracy and time efficiency.

)e main contributions of this study are as follows:

(i) We propose an adapted manifold learning approach
to extract the decisive features for spam filtering.
)e features can not only be used in SVM but also
other machine learning-based spam filtering
algorithms.

(ii) We propose a time-efficient SVM-based approach
that takes the decisive features as input and filters
spam emails

(iii) We extensively evaluate the proposed spam filtering
algorithms, and the experimental results indicate
the high accuracy and time efficiency of the pro-
posed method.

)e rest of the study is organized as follows. Section 2
presents the related work. Section 3 introduces the proposed
method for spam filtering using manifold learning and SVM.
Section 4 illustrates the time complexity analysis and
demonstrates extensive experimental results. Finally, Section
5 concludes the study with future directions.

2. Related Work

)is section presents the related work on machine learning-
based spam filtering in Subsection 2.1 and manifold learning
in Subsection 2.2.

2.1. SpamFilteringAlgorithm. Currently, in the field of spam
filtering, the traditional machine learning sorting algorithms
include decision-making trees [15], SVM [16], and Bayesian

classifiers. A decision-making tree is a learning algorithm for
sorting out datasets based on a tree-like structure. )e tree
structure includes root nodes and child nodes, representing
different attributes of datasets. To form a tree structure is
meant to determine the position of different attributes in the
decision-making tree, which serves as the learning assign-
ment for the algorithm. Carreras et al. [17] use the decision-
making tree model to sort out spam emails, a practice not
widely applied to spam filtering for the fact that the attri-
butes of spam emails are hard to be defined. SVM classifiers,
however, have pretty wide applications to spam filtering. Its
main goal is to learn a linear hyperplane for linear divisible
sample point sets and make the sample sets under a given
category placed on the one side of the hyperplane while
different categories of sample points on the other sides. In
training an SVM classifier, only several sample points closest
to the linear hyperplane are relevant to model training, and
the remaining sample point sets will not work during the
training process. )erefore, those several vector-represented
sample points that lie closest to the hyperplane are called
support vectors. Sculley et al. [18] integrate SVM with the
online learning model to filter the spam email. Renuka et al.
[19] add latent semantic information in the text message to
classification and sort out spam emails using the SVM
model.

Undeniably, there are other machine learning classifiers
applied to email sorting research, such as ensemble learning
algorithm [17], naive Bayesian classifier [20, 21], and rein-
forcement learning [22, 23]. For small email corpora, some
conventional classifier algorithms work effectively in spam
filtering. As for massive text corpora, typical machine
learning methods are incapable of handling a large amount
of text data. Such a backdrop has allowed deep learning
techniques to be extensively applied to spam filtering. )e
deep learning techniques treat an email as a piece of text data
from which keywords are extracted for spam identification.
Tzortzis et al. [24] initiated a deep learning model for spam
filtering, and an autoencoder is employed to detect
spams [25].

Although deep learning is emerging and can be applied
in spam filtering, deep learning models are not widely ac-
cepted by academia and industries for the following two
reasons. First, deep learning models are rarely explainable.
In spam filtering, nonspam emails should never be classified
as spam because the misclassified emails can be critical for
the users. Deep learning models can hardly explain the
misclassification and are generally not adopted for spam
filtering [26]. Second, the training and inference of deep
learning models demand a large number of resources
(power).)e email service providers want to reduce the cost,
and deep learning models are not employed [27].

2.2. Manifold Learning. In terms of text classification, such
as spam filtering, representation or embedding of the text
data is essential to enhance the classification performance.
Text representation converts the text data into vector rep-
resentations that contain necessary information without
redundancy and noise. As a result, before training a
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classifier, we need to preprocess the text dataset and extract
the features for text representation. Such a preprocessing
procedure is called feature extraction. Manifold learning is
an efficient approach for feature extraction.

Manifold learning is first proposed by Tenenbaum et al.
in the Science Magazine in 2000 as a concept of machine
learning. Building on the manifold geometric construction,
manifold learning is a nonlinear dimensionality reduction
technique to reduce high-dimensional samples to nonlinear
structure distribution. )is kind of algorithm is assumed to
place high-dimensional sample point sets on a low-di-
mensional manifold, which has a highly complicated non-
linear structure and cannot obtain the manifold features as a
whole. )erefore, the idea of localization emerges in man-
ifold learning. Essentially, manifold learning is a process of
extracting features from high-dimensional datasets, reject-
ing noise features of no use to a learning assignment, and
retaining those useful ones. )erefore, manifold learning is
mainly applied to preprocessing datasets, simplifying data
representations and reducing time for a learning assignment.
At present, there are two types of manifold learning algo-
rithms, i.e., the global structure-preserving dimensionality
reduction algorithm, e.g., Isomap [28] containing the geo-
desic distance between all sample points and local structure-
preserving dimensionality reduction algorithms, as shown in
locally linear embedding (LLE) [29], Laplacian eigenmaps
(LEP) [30], local tangent space alignment (LTSA) [31], and
locality preserving projections (LPP) [32].

Text datasets are typically characterized by a highly
complex structure in the feature space, and manifold
learning can be applied to obtaining the neighboring local
structure and the complicated overall structure of datasets.
In this way, datasets in the form of text can be processed
effectively.

3. Our Proposed Algorithm

)is study explores operating the manifold learning algo-
rithm on email text datasets to extract useful features and
train the classifier with the SVM algorithm for email clas-
sification. )is section introduces the manifold learning
algorithm and then elaborates on the steps for the men-
tioned algorithms.

3.1. Laplacian Eigenmaps. )e idea of localization is first
proposed in manifold learning. )at means the critical step
to manifold learning is to divide the neighborhood of
datasets and then excavate the geometrical characteristics of
each neighborhood. In this study, we use the Laplacian
eigenmap (LEP) algorithm [30] to extract the useful features
of datasets. As a local structure-preserving algorithm, the
LEP is time-efficient and features a flexible internal mech-
anism under which regular terms and other structural in-
formation can be added. For the sake of presentation, we
suppose the input sample set is expressed as x1, x2, . . . , xN􏼈 􏼉,
and after dimensionality reduction, we have the output
sample set expressed as y1, y2, . . . , yN􏼈 􏼉. )e steps in detail
for the LEP algorithm go as follows:

(i) Step I: calculate the k-neighborhood of all input
sample points with the k-nearest neighbor algo-
rithm, and the corresponding neighborhood for xi

is expressed as Ui.
(ii) Step II: construct the adjacent map on the input

sample set and establish the edge structure only
between any two points within the sample neigh-
borhood. Each edge is endowed with the weight wij

as

wij �
exp− xi− xj

����
����
2
/2σ2􏼐 􏼑

, if xj ∈ Ui,

0, if xj ∉ Ui,

⎧⎪⎨

⎪⎩
(1)

where exp− (‖xi− xj‖2/2σ2) denotes a Gaussian function,
and σ is the parameter of the Gaussian function.

(iii) Step III: reconstruct a group of sample point sets in
the low-dimensional space, so that between the low-
dimensional field points, this weight structure can
still be satisfied, so the low-dimensional space ex-
pression sets can be obtained by optimizing the
following function:

min􏽘
ij

yi − yj

�����

�����
2
wij. (2)

Let Y � [y1, y2, . . . , yN] and [W]i j � wij; the above
objective function can be written in the form of matrix
representation:

min trace YLYT
􏼐 􏼑 s.t.YDYT

� I, (3)

where matrix D is a diagonal matrix, Dii � 􏽐
N
i�1 wij, and

matrix L � D − W is called the Laplacian matrix.

3.2. Feature Extraction-Based Email Classification Algorithm.
Generally speaking, the email datasets we deal with are text
datasets. As a result, to fulfill the learning assignment, we
need to convert these text datasets into digital ones that
algorithms can process. )erefore, the algorithm as a whole
has three steps. First, preprocess text datasets; second, use
the manifold learning algorithm to extract the features of
datasets; finally, operate the SVM algorithm on low-di-
mensional datasets for classification training. Emails are
datasets in the form of text, so we use the doc2vec technique
[33] to convert them into datasets in the form of a vector,
ensuring machine learning algorithms can process them.
Note that doc2vec is a natural language processing tool for
representing documents as a vector and is a generalization of
the word2vec method [34, 35].

As for a manifold learning algorithm, there are three
choices, i.e., Isomap, LLE, and LEP.)e Isomap algorithm is
inefficient in processing massive ultrahigh-dimensional
datasets due to its high time complexity. )e LLE algorithm
assumes that the local neighborhood of datasets is linear
space and acquires the linear correlation representation of
the neighborhood. Compared with Isomap and LLE, the LEP
algorithm has quite flexible design methods. It works by
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constructing the adjacent map of datasets and obtaining the
weight on the edge of the map. We can provide additional
feature information during this weight acquisition process,
like the context structure information of the text and deep
layer nonlinear structure information distributed in the text
datasets. )erefore, to address the complexity of text
datasets, we employ the LEP algorithm to extract text
features.

)e specific steps for this algorithm are shown in Fig-
ure 1 as follows:

(i) Step I: build an email dictionary. Using the doc2vec
technique, we convert the text information of each
email into the form of vector representation. After
the doc2vec conversion, the initial vector dimen-
sionality can be quite different. To this end, we use
the principal component analysis (PCA) [36] to
adjust the vector dimensionality and ensure all
vector dimensions in good conformity.

(ii) Step II: reduce, with the LEP algorithm, the di-
mensionality of the datasets obtained in step I, with
specific algorithm steps shown in Subsection 3.1.
Moreover, we can obtain the context structure in-
formation of the email and apply it to the weight
calculation process as regular items. Based on the
successive order of sentences and paragraphs in the
text, we provide their context weights. Two
neighboring sentences boast higher weights than
others, and sentences within the same paragraph
bear higher weights than those in different para-
graphs. Applying this weight information as regular
items to the Gaussian function, we can calculate the
weight on the adjacent map.

(iii) Step III: use SVM to classify the datasets of low-
dimensional feature representation obtained

(iv) Step IV: predict the email classification accuracy.
We use the method mentioned in Step I to process
test emails and convert them into training datasets
of the same dimensionality.

4. Analysis and Experiments

)e section introduces several types of common datasets in
email classification, based on which we compare the accu-
racy of our new algorithm with conventional classification
algorithms to demonstrate the strengths of this new
algorithm.

4.1. Time Complexity Analysis. )e SVM classifier features
the training and testing complexities to be O(m2N2) and
O(m2N), respectively, in which N stands for sample point
number and m represents the sample feature dimension,
following the traditional SVM classifiers [37]. )e time
complexity of the LEP algorithm involves two parts. On the
one hand, k-neighborhood set division takes O(N2(m + k))

time. On the other hand, graph embedding calculation takes
O(dN2) time, where d stands for low-dimensional repre-
sentation of dimensionality. )erefore, we can use the LEP

algorithm and the SVM algorithm to obtain a new algorithm
with time complexity: O(N2(m + k + d + d2)). If the input
sample set dimension m is very high, the new algorithm’s
time complexity will be approximate O(N2m). Compared
with the SVM algorithm, the time complexity is much lower.

4.2. Spam Datasets. We found there are six representative
spam datasets, i.e., EnronSpam, PU1, PU2, PU3, PUA, and
GenSpam, as described in Table 1. In particular, EnronSpam
[38] is currently a common spam dataset. EnronSpam in-
cludes 33, 702 emails altogether, including 16, 764 regular
emails and 16, 938 junk emails, accounting for around 50%
of the total. With largely the same format comprising subject
and text, these emails were mainly from 150 users. )ese
datasets are preprocessed, with each email represented by
one text and each text numbered chronologically. )is ex-
periment is designed to conduct a contrastive analysis of the
algorithm accuracy for these datasets. In terms of PU1, PU2,
PU3, and PUA, their content distributions are similar. In
this study, we only consider PU1, which is a representative
dataset out of the four. To summarize, the performance of
our proposed method is compared with the state-of-the-art
solutions on three datasets, i.e., EnronSpam, PU1, and
GenSpam. We divide each dataset into 70% as the training
data and 30% as the test data randomly as usual.

4.3. Experimental Results. )is experiment design involves
two parts. First, we train classifiers with datasets. )en, we
use the trained classifiers to conduct spam email sorting
prediction for the test sample sets before calculating their
corresponding prediction accuracy. In this experiment, we
do the contrastive analysis of the performance of our new
algorithm from two aspects, i.e., accuracy prediction and the
time taken by the algorithm. Note that the misclassification
ratios of the proposed algorithms and the benchmarks are
zero through fine calibration. As a result, the misclassifi-
cation ratio is not included in the comparison results.
Specifically, we operate two types of SVM classification
algorithms as displayed in [18, 19] on the datasets of PU1
and GenSpam, respectively. )eir corresponding accuracy
results are given in Table 2. )e table provides that the
classification accuracy of our SVM+LEP algorithm is not
considerably different from that of the other algorithms.
With the LEP algorithm applied to the email text’s structural

Input text datasets Output categories of 
emails

Pre-process data
–doc2vec conversion

Feature extraction
–LEP algorithm

Feature classification
–SVM algorithm

Classification accuracy 
prediction

Figure 1: Algorithm flow schematic diagram.
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information, their corresponding classification accuracy
improves remarkably.

Now, we analyze the time consumption of different
algorithms. We still contrast the two algorithms with our
algorithm, whose results are presented in Table 3. )e table
provides that the time consumption of our new algorithm is
significantly lower than that of the other two algorithms. We
can use the manifold learning algorithm to extract the
features of datasets and effectively reduce the time it takes to
train and test these classifiers. Manifold learning also works
to remove data noise; so to some extent, it rejects invalid
information from the datasets.

4.4. Discussion of Manifold Learning Algorithms. )e ex-
periment above helps compare the LEP algorithm-based
email classification method with conventional classification
methods. Since 2000, manifold learning has given rise to a
series of classic algorithms with distinct advantages. In this
section, we contrast several types of manifold learning al-
gorithms with the LEP algorithm to show the latter’s ad-
vantages in email feature extraction. )e selected algorithms

are Isomap, LLE, and LPP. In designing the experiment, we
have contrastive analysis from two aspects: classification
accuracy and time consumption.

We still use three groups of datasets for experimen-
tation on classification accuracy: EnronSpam, PU1, and
GenSpam. First, we use different manifold learning algo-
rithms to reduce the dimensionality of the text datasets
down to the same low dimension. We then implement the
SVM algorithm to fulfill the classification assignment, and
the ultimate classification results are presented in Table 4.
)is table provides that the LEP algorithm with no
structural information added sees its dimensionality re-
duction results similar to those of the other three algo-
rithms. With the structural information added, however,
classification accuracy improves significantly. )erefore, in
contrast with other manifold learning algorithms, the LEP
algorithm has more flexibility in design. It invites addi-
tional structural information, while the LPP algorithm
learns linear dimension reduction mapping and thus is not
as flexible as the LEP algorithm.

In terms of time consumption, we compare different
algorithms’ time consumption for dimensionality reduction,

Table 1: Several types of spam email corpora.

Corpora Email Spam email Regular email Spamming rate Time
EnronSpam [38] 33702 16938 16764 50% 2006
PU1 [39] 1099 484 615 40% 2000
PU2 [39] 721 144 577 20% 2003
PU3 [39] 4139 1821 2318 44% 2003
PUA [39] 1142 570 572 50% 2000
GenSpam [38] 41404 32295 9109 78% 2005

Table 2: Different algorithms’ classification accuracy.

Datasets SVM [19] SVM [18] SVM+LEP SVM+LEP+ Struc
EnronSpam 92.1% 93.5% 93.9% 94.7%
PU1 95.8% 96.1% 95.6% 96.9%
GenSpam 93.7% 94.6% 93.9% 95.1%

Table 3: Time consumption for different algorithms.

Datasets SVM [19] SVM [18] SVM+LEP SVM+LEP+ Struc
EnronSpam 3523 s 2582 s 983 s 1312 s
PU1 743 s 642 s 236 s 285 s
GenSpam 2452 s 1834 s 634 s 715 s

Table 4: Different manifold learning algorithms’ classification accuracy.

Datasets Isomap + SVM LLE+ SVM LPP+ SVM SVM+LEP SVM+LEP+ Struc
EnronSpam 92.4% 93.3% 92.8% 93.9% 94.7%
PU1 94.7% 95.8% 95.1% 95.6% 96.9%
GenSpam 92.9% 93.7% 93.5% 93.9% 95.1%

Table 5: Different manifold learning algorithms’ time consumption.

Datasets Isomap + SVM LLE+ SVM LPP+ SVM SVM+LEP SVM+LEP+ Struc
EnronSpam 6468 s 894 s 965 s 983 s 1312 s
PU1 1683 s 247 s 229 s 236 s 285 s
GenSpam 5478 s 608 s 615 s 634 s 715 s
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and the corresponding experiment contrast results are listed
in Table 5. )ese results show that Isomap has high time
complexity, rendering it inefficient in processing massive
datasets. Like the LLE and LPP algorithms, the LEP algo-
rithm represents a local dimensionality reduction technique,
meaning their time consumption varies barely.

5. Conclusion and Future Directions

Spam filtering has been a critical concern across sectors and
industries. If we regard it as a scientific problem, addressing
this issue could be a classification issue. However, this
classification assignment involves how to have data repre-
sentation of text and data preprocessing and improve the
accuracy of sorting algorithms.

For the top priority of text processing, feature extraction
plays a vital role in the follow-up learning assignment. In
terms of feature extraction, the typical principal component
analysis (PCA) method has some limitations and works only
to process the datasets showing the linear structure in data
distribution. )e standard text datasets themselves have
highly complex spatial structures and show high-degree
nonlinearity in spatial distribution.With that, it is ineffective
to adopt the PCA method for dimensionality reduction. )e
manifold learning algorithm should be introduced to pro-
cess the complex structure of text datasets, clean out noise
information, and merge redundant features. )e objective is
to obtain minimum decisive features, reduce data size, and
improve learning efficiency.

Manifold learning can obtain the spatial geometric
construction of datasets as it bases the geometrical char-
acteristics of datasets on algorithm construction. As for
email text datasets, each text comprises a group of sentences,
and currently, the mainstream algorithms are learning the
feature vector representation of sentences, with few capable
of obtaining the spatial structure between sentences. In-
cluding manifold assumptions into the algorithm for text
analysis, we can increase the structural information of text
datasets. Such an advantage is vital to natural language
processing, or perhaps to a certain degree, provide some
breakthroughs for developing natural language processing-
related algorithms. )is study is a preliminary attempt to
address spam filtering concerns, and in the future, text
processing in other fields can also be merged with manifold
learning. As long as the complex distributed architecture of
datasets is involved, we can always try to bring in the
manifold hypothesis to address this problem.

)is study introduced some machine learning algo-
rithms in spam sorting. On this basis, we proposed a new
learning algorithm, which, together with the manifold
learning algorithm, works to preprocess datasets and ef-
fectively reduce the algorithm’s time complexity. In the
Experimentation section, we carried out a contrastive
analysis of different algorithms’ classification accuracy and
time consumption.

In the future, we expect that more machine learning
algorithms can be applied to ensuring cybersecurity. Take
spam filtering as an example. For the corpora of text, we can
introduce the embedding idea in deep learning and use the

embedding method to have a vector representation of the
email text. )en, for this type of vector dataset, we can
choose some appropriate machine learning algorithms for
classification. Unquestionably, the classification results are
affected by the embedding performance to add the semantic
and structural information of the text to the embedding
process. In this way, we may obtain much better classifi-
cation results.
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Hydraulic turbine runners experience high excitation forces in their daily operations, and these excitations may cause resonances
to runners, which may induce high vibrations and shorten the runner’s lifetimes. Increasing the added damping of runners in
water can be helpful to reduce the vibration level during resonances. Some studies have shown that the modification of the trailing
edge shape can be helpful to increase added damping of hydrofoils in water. However, the influence of blade trailing edge shape on
the added damping of hydraulic turbine runners has been studied in a limited way before. Due to the difficulties to study this
problem experimentally, the influence of blade trailing edge shape on a Kaplan turbine runner has been studied numerically in this
paper and the one-way FSI method was implemented.(e performances of three different turbulence models, including the k − ϵ,
k − ω SST, and transition SSTmodels, in the added damping simulation of the NACA 0009 hydrofoil were evaluated by comparing
with the available results of the two-way FSI simulation in the references. Results show that, unlike the significantly different
performances in the two-way FSI method, the performances of all the turbulencemodels are very close in the one-way FSI method.
(en, the k − ϵ turbulence model was applied to the added damping simulation of a Kaplan turbine runner, and results show that
the modification of the blade trailing edge shape can be helpful to increase the added damping to some extent.

1. Introduction

Nowadays, hydropower plays an important role in world
electricity generation, and over 21% percent of world
electricity is produced by hydropower every year [1]. Due to
the fast increase of wind and solar energy for electricity
generation in recent years, great unstableness is introduced
to the electricity grid. Hydropower can provide fast re-
sponses for the power regulation to adjust the unstableness
of the electricity grid caused by some other renewable
sources, like solar and wind energy [1], and its load can
change from 20% to 100% in less than 1minute. (erefore,
hydraulic turbines operate at extreme off-design conditions
and experience transient events much more times one day
than before, which leads to even larger forces. Such higher
forces can produce higher vibration levels in the runners,
which can cause fatigue damage and shorten their lifetime.
Such failures are attributed to the fluid-structure interaction

(FSI) caused by the rotor-stator interaction (RSI) [2–5].
Sometimes, the runner’s natural frequency is very much
close to the frequency of RSI and/or its harmonic and causes
resonances to the runner. (is amplifies the amplitudes of
runner vibrations and greatly accelerates its fatigue progress
[6–8].

Kaplan turbines are one type of widely used hydraulic
turbines that are mostly used in low water head and large
capacity hydropower plants [9], and the blades of Kaplan
turbine runners can rotate to make the runner operate under
high efficiencies for a wide range of operation. (e typical
structure of Kaplan turbines is shown in Figure 1. (e
excitation forces of Kaplan turbine runners can be both
static and dynamic pressures [10–15]. (e dynamic pressure
mostly comes from the rotor-stator interaction (RSI). Due to
the aforementioned reasons, several failure cases for Kaplan
turbine runners have been reported in the literature, and
some are caused by resonances [6, 16–18].
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To reduce the vibration levels of Kaplan turbine runners
during resonances to increase their lifetimes, increasing their
damping ratios can be helpful. Kaplan turbine runners are
submerged in water in daily operations, and their dynamic
behavior is severely affected by the added mass and added
damping effect from the surrounding water [19–21]. To
increase the damping of Kaplan turbine runners, increasing
the added damping in water can be a practical way. A good
review on the added damping in hydraulic turbines has been
shown in [20], where a measure to increase the added
damping by modifying the trailing edge shape of the blades
has been mentioned. Blake first found that the vibration
amplitude of Francis turbine runners can be greatly reduced
by sharpening the trailing edge of blades, particularly the
Donaldson trailing edge, which has a smooth transition for
the sharpening [22]. To study the mechanism of how
Donaldson trailing edge reduced the vibration amplitude,
Zobeiri investigated the influence of trailing edge shapes,
including the blunt trailing edge and the Donaldson trailing
edge, on the wake dynamics of a NACA 0009 hydrofoil, and
they found that the Donaldson trailing edge can reduce the
distance between the vortices after the trailing edge com-
pared with that of blunt trailing edge and increase their
collision, which increases the energy dissipation [23]. Yao
Yao et al. understand the effect of trailing edge shape from
the viewpoint of added damping, and they found that the
Donaldson trailing edge can significantly increase the added
damping of the NACA 0009 hydrofoil, which explains why
the Donaldson trailing edge can be helpful to reduce the
vibration level [24, 25]. However, there are no studies on the
influence of blade trailing edge shape on the added damping
of real hydraulic turbine runners, particularly Kaplan tur-
bine runners.

To measure the added damping of hydraulic turbine
runners is very difficult because runners are enclosed by case
walls and submerged in water, which makes the sensor
installations and data transmissions very difficult. (erefore,
investigating the added damping based on numerical
methods probably can be an ideal way. (e numerical
methods for the added damping simulation can be divided
into two types, one is the one-way fluid-structure interaction
(FSI) method, and another one is the two-way fluid-

structure method.(e two-way FSI method needs to give the
structure an initial excitation and thenmeasure the vibration
amplitude decay ratio to extract the damping ratio. Gen-
erally, the two-way FSI method is more theoretical integrity,
but the calculation cost is usually very high. Zeng et al. used
the two-way FSI method to investigate the influence of
trailing edge shape on the added damping of the NACA 0009
hydrofoil, and the results fitted the experimental results very
well [25, 26]. In their investigations, they also investigated
the influence of turbulence models on the results, including
the k − ϵ, k − ω SST, and transition SST models, and they
found that the transition SST model can accurately capture
the velocity and pressure distributions in the boundary layer,
thus accurate damping compared with experimental results.
However, the k − ϵmodel and k − ω SST model can produce
large errors.

(e one-way FSI method needs to project the mode
shape to the structure boundary and then integrate the flow
field parameters under the periodic vibration of the structure
boundary. Generally, the one-way FSI method is not the-
oretical integrity, as the influence of mode shape change due
to the fluid flowing is not considered. However, for sub-
merged structures, the mode shape change due to the water
flowing usually is not significant, together with considering
the much less calculation cost compared with the two-way
FSI method, the one-way FSI method is also used by many
researchers, and good results were obtained compared with
experimental results. Tengs et al. use the one-way fluid-
structure method based on the k − ω SST turbulence model
to investigate the added damping of a hydrofoil in flowing
water, and little errors were found between the numerical
and experimental results [27]. Gauthier et al. developed an
improved one-way fluid-structure method with the con-
sideration of the added stiffness and added mass change due
to the water flowing and applied this method to investigate
the added damping of a hydrofoil and a Kaplan turbine
runner [28]. In their study, the k − ϵ turbulence model was
used, and limited errors were found compared with the
experimental results.

Due to the too high computation cost of the two-way FSI
method, in this study, the one-way FSImethod in [28] will be
used to investigate the influence of the blade trailing edge
shape on the added damping of a Kaplan turbine runner.
One problem with the one-way FSI method is the influence
of the turbulence model used on the results. (ough dif-
ferent turbulence models can produce significant differences
in the final results for the two-way FSI method, when dif-
ferent researchers used different turbulence models to do the
one-way FSI simulation to simulate the added damping, they
all claimed that good results were obtained. (erefore, some
uncertainties still lie in the performances of different tur-
bulence models when using the one-way FSI method. To
know the performance differences of different turbulence
models is important for accurate simulation result
achievements. In this study, firstly, the performances of three
turbulence models, including the k − ϵ, k − ω SST, and
transition SSTmodels, will be evaluated when they are used
in the one-way FSI method for the influence of the trailing
edge shape on the added damping of a NACA 0009 hydrofoil
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Figure 1: Blunt trailing edge hydrofoil.
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in [25], and then, the turbulence model with the best per-
formance will be applied for the influence of blade trailing
edge shape on the added damping of a Kaplan turbine
runner.

2. Numerical Methods

(e one-way FSI method developed in [28] will be used in
this paper. Due to the little influence of damping on the
natural frequencies, by neglecting the structure damping, the
motion of one vibrating system is described by

MS €x + KS � FF(t). (1)

(e natural frequency in vacuum ωv of the system
motion described by equation (1) depending only on
structure parameters is

ω2
v �

KS

MS

. (2)

MS represents the structure modal mass and KS the
structure modal stiffness, where FF(t) represents the fluid
total modal force applied on the structure and x is repre-
senting the deflection.

(e structure modal mass and the total force introducing
the chosen mode shape are expressed as

MS � C
Ω
ρSφ

2dV, FF(t) � B
Γ
τ(t).φdS. (3)

ρS represents the structure density, Ω represents the
structure volume, and the total surface load induced on the
structure by the flow and the fluid-structure interface are,
respectively, represented by τ and Γ.

Considering the effect of added mass and added stiffness,
the natural frequency, ωn, of the system becomes

ω2
n �

Ks + KF

Ms + MF

. (4)

(e dimensionless damping ratio is then represented as

ζ �
CF

2ωn Ms + MF( 􏼁
. (5)

MF represents the fluid-added mass, CF is the fluid-
added modal damping coefficient, and KF is the fluid-
added modal stiffness. (e added mass can be interpreted
as the mass of fluid accelerated due to the motion of the
structure. (e added stiffness describes the change in the
flow-induced restoring force with the deflection of the
structure. (e added damping represents energy extracted
from the structure as a result of work done by the fluid
flow.

(ree types of simulations need to be done in order to
obtain the above parameters: modal analysis, steady-state
CFD analysis, and unsteady CFD analysis. For one selected
mode, the modal analysis is mainly used to get the natural
frequency, modal mass, and stiffness in vacuum and water.
(e wet natural frequency and mode shape will act as the
initial values for the following simulation. (e steady-state
CFD is mainly used to get the added stiffness in water, and

the transient CFD is mainly used to update the added mass
and calculate the added damping in water.

2.1.Modal Analysis in VacuumandWater. A modal analysis
in vacuum provides the initial circular natural frequency ωv.
(e mode shape in vacuum can be extracted, and the modal
mass MS can be calculated from equation (2) or exported
from the FEM software directly. (e modal stiffness KS can
be calculated from equation (2). (en, the wet modal
analysis of the structure in water will be done, which can be
achieved through the Acoustic FSI technology available in
Ansys. (e wet modal analysis will provide the frequency ωf

and mode shape in still water used in the following simu-
lation. (e added mass MF in still water can be calculated
from the following equation:

ωf �
1
2π

��������
KS

MS + MF

􏽳

. (6)

2.2. Steady-State CFD. For the steady state, the modal force
can be written as a sum of two forces:

FF � F0 − KFx. (7)

(e fluid-added stiffness, KF, corresponds to a gradient,
defined by the variation of the modal total force over the
variation of the deflection −dFF/dx. So, at least two values of
both the modal total force and the structure deflection are
needed. For linearity purposes, the difference between de-
flection values has to be very small. URANS flow simulations
of five deflection values of the structure were done to get the
fluid-added stiffness.

2.3. TransientCFDAnalysis. (e harmonic modal motion of
the structure is defined as

x(t) � X0 sin ωnt( 􏼁. (8)

By projecting the motion to the flow field, a transient
CFD simulation can be done. An averaged quantity, Φ, can
be calculated as

ϕ �
1
N

􏽚
t0+ 2πN/ωn( )

t0

FF · x(t)dt, (9)

where N is an integer number of oscillations and t0 an
arbitrary time coordinate. If the number of periods is high
enough, substituting equation (4) into equation (8) results in

ϕ � πX
2
0ωnMF. (10)

From equations (8) and (9), the natural frequency can be
updated and used in the following transient CFD simulation.
With some repetition, the convergent added mass can be
obtained. (e average modal work done by the flow on the
structure, W, can be obtained as
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W �
1
N

􏽚
t0+ 2πN/ωn( )

t0

FF · _xdt. (11)

If the number of oscillations is high enough, W goes to
its convergent value:

W � −CFπX
2
0ωn. (12)

From equations (11) and (12), CF can be obtained for the
added damping ratio calculation in equation (4).

3. Results and Discussion

3.1. Hydrofoil

3.1.1. Physical Model. (e simulated hydrofoil is the 3D
NACA 0009 hydrofoil used in [24–26], and in their research,
the influence of the trailing edge shape on the added
damping was studied. Blunt trailing edge hydrofoil is pre-
sented by Figure 1 with a chord length L� 100mm, the
width of the span is w � 150mm, and the trailing edge
thickness is h� 3.22mm. (e hydrofoil of structural steel
material has a density of ρS � 7700 kg/m3, the elasticity
modulus is E� 215GPa, and Poisson’s ratio is ]� 0.3. (e
angle of attack of the hydrofoil in the calculation domain is
0°. (e configurations of the calculation domain are shown
in Figure 2.

(e Donaldson trailing edge hydrofoil is a modification
of the blunt model. Figure 3 presents the operations to
modify the trailing edge from the blunt one to the
Donaldson one. Several parameters have to be taken into
account as the angle α� 45°, the oblique tangent l1, and the
cubic polynomial curve l2.(e cubic polynomial is expressed
by

y � ax3 + bx2 + cx + d,

a � 2595.18, b � 637.51, c � 51.141, d � 1.322.

⎧⎨

⎩ (13)

3.1.2. Modal Analysis in Vacuum and Water. (e modal
analysis was done through Ansys Workbench 19.2. Fix
support was given to the end of the hydrofoil. For the modal
analysis in water, Acoustic FSI technology was used to
simulate the added mass effect from the surrounding water,
which is a reliable simulation technology used by many
researchers [29, 30]. (e water domain was selected as the
acoustic body with a density of 1000 kg/m3 and a sound
speed of 1483m/s.(e inlet and outlet were set to be the total
absorption surface, and all other walls were set to be rigid
walls. A fluid-structure coupled algorithmwas implemented.
(e mode shape and natural frequency of the first bending
mode in water were set as the initial frequency and mode
shape for the following CFD analysis. When the hydrofoil is
submerged in water, common nodes technology was used
for the mesh at the fluid-structure interfaces. (e view of the
mesh for the hydrofoil in vacuum is shown in Figure 4. (e
mode shapes of the first bending mode of the blunt and
Donaldson hydrofoil in water are shown in Figure 5. (e
modal parameters are shown in Table 1.

3.1.3. Steady CFD Analysis. (e boundary conditions for the
CFD analysis are shown in Figure 2. A velocity inlet was used
with a low turbulence intensity of 1%, and three different
inlet velocities were tested. (e outlet boundary is defined as
a pressure outlet with a 0 Pa relative pressure. (e up, down,
left, and right sides are all set as walls. (e mode shape
profile of the first bending mode was projected to the hy-
drofoil surface, and in the steady CFD analysis, the hydrofoil
was set as the wall with different specific displacements
(from 0.01mm to 0.05mm). (ree different turbulence
models, including the k − ϵ, k − ω SST, and transition SST
models, were tested, and for each turbulence model, the
modal forces under different hydrofoil displacements were
interacted over the hydrofoil surface to calculate the added
stiffness. (e mesh sensitivity has been strictly checked, and
the view of the mesh of the blunt hydrofoil has been shown
in Figure 6. (e thickness of the first layer of the boundary
layers is about 0.001mm, which corresponds to a y+ about 1
when the inlet velocity is 15m/s. For the k − ϵ turbulence
model, scalable wall functions were implemented. A back-
ward Euler second-order time integration scheme was
implemented in the analysis. (e modal force change versus
the hydrofoil displacement under the inlet velocity of 10m/s
has been shown in Figure 7. (e modal force nearly linearly
increases with the deflection amplitude, and the gradient of
the fit curve, that is to say, the added stiffness, is about 0.47.
(erefore, the added stiffness is very small compared with
the structural stiffness (see in Table 1), and this is maybe
because the hydrofoil is symmetric and because of the 0-
degree incidence angle of the flow. Due to the small influence
of the added stiffness, it is directly neglected for the added
damping calculation for all the cases of the hydrofoil.

3.1.4. Transient CFD Analysis. For transient CFD analysis,
the mode shape profile of the first bending mode was
projected to the hydrofoil surface, and the hydrofoil was set
as the wall with periodic displacement with an amplitude of
0.05mm. (e initial frequency is the natural frequency of
each hydrofoil in still water. Totally 15 periods of vibration
cycles were calculated for each case, and the last 10 periods
were used to calculate the addedmass and added damping to
avoid the influence of the initial turbulence. For each vi-
bration period, 400 substeps were used which has been
shown enough for this type of structure [28]. A double-
precision solver was selected for calculation via a 64-core
cloud computer.

(e modal forces along with the time steps (2000 to
4000) for the blunt hydrofoil under the inlet velocity of 5m/
s, 10m/s, 15m/s when the turbulence model is transition
SST have been shown in Figure 8, and themodal forces along
with the time steps (2000 to 4000) for the blunt hydrofoil
using three different turbulence models under the inlet
velocity of 10m/s have been shown in Figure 9. When the
inlet velocity becomes higher, the modal force curve may
become not that smooth which may be because the tur-
bulence intensity becomes higher.

(e frequency updating of the Donaldson hydrofoil
under the inlet velocity of 10m/s when using the k − ω SST
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model has been shown in Table 2. After two steps of
updating, the frequency has been nearly convergent.
(erefore, two steps of updating were applied to all the
simulation cases.

(e results obtained from the two-way FSI simulation by
[25] are also shown in the figure. As can be seen, the results
obtained from different turbulence models are very close for
both the blunt and Donaldson hydrofoils, and the results are
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Figure 3: Trailing edge modification.

Figure 4: Blunt trailing edge hydrofoil mesh.
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also very close to the results obtained from the two-way FSI
simulation. (is on the one hand confirms our simulation
configurations, and on the other hand, unlike the influence
of the turbulence model on the results of the two-way FSI
method, the turbulence model seems to affect the results of
the one-way FSI method very little. (is can also be seen in
Figure 7 that the modal forces of the three turbulencemodels
are nearly the same, and thus, nearly the same results are
obtained.

3.2. Kaplan Turbine Runner

3.2.1. Physical Model. (e investigated turbine is the same
one described in [30, 31]. (e turbine has a head of 34m and
a maximum power of 73MW. (e runner has 6 blades
rotating at 125 rpm, and the distributor has 24 guide vanes.
(e flow rate at the best efficiency point is about 22.5m3/s.
(e diameter of the runner is about 6m, and the tip
clearance is 0.09% of the outlet diameter of the runner. (e
geometry sketch of the studied Kaplan turbine is shown in
Figure 11.

Due to the geometry complexity of the blades, it is
impossible to sharpen the blade trailing edge with a curve
that has an accurate equation as that on the hydrofoil. In this
paper, the blade trailing edge was given a proximate 45-
degree sharpener with smooth transitions. (e geometry
view of the blunt and Donaldson blade has been shown in
Figure 12.

To purely investigate the influence of the trailing edge
shape on the added damping of the runner, only six blades
submerged in the water domain were simulated. (e blade
model has been validated in another paper by the author
[30]. For simple, an isolated stage without considering the
stay vanes was investigated, and the water domain from the
end of the stay vanes to the bottom of the hub was con-
sidered. (e blade angle of the runner at the nominal load
was studied. Only the bending mode of 0 nodal diameters,

i.e., mode for which the motion of every blade is in phase,
was considered in the simulation. Due to the low added
stiffness of this type of structure [28], the steady CFD
analysis was eliminated, and the influence of the added
stiffness was neglected.

3.2.2. Modal Analysis. For the modal analysis in vacuum,
only one blade was simulated. (e blade material is stainless
steel. (e surface where the rod connects the blade profile
was fixed. For the wet modal analysis in water, all the blades
were simulated together, and the surrounding water was
selected as the acoustic body. (e surfaces at which the
simulated blades connect with the water domain wer set to
be fluid-structure interfaces, the inlet and outlet surface were
set to be totally absorbed surfaces (the absorption coefficient
is 1), and all other surfaces were set to be rigid walls. Only the
bending mode was considered. Due to the little mode shape
changes from vacuum to water, the blade mode shape in
vacuumwas used for the following CFD analysis.(e view of
the mesh in water is shown in Figure 13. (e bending mode
shapes of the blunt and Donaldson blades have been shown
in Figure 14. (e natural frequencies of the 0 ND bending
modes of the blunt and Donaldson blades in water were
selected as their initial frequencies in the following CFD
analysis.

3.2.3. Transient CFD Analysis. For the transient CFD
analysis, the amplitude of the blade vibration was set to be
0.0005m, which was also used in [28]. Because the turbu-
lence model has been demonstrated to have little influence
on the added damping simulation, the standard k–ϵ model
was used. Scalable wall functions were applied to near-wall
regions. (ree different inlet velocities, including the 100%,
75%, and 50% of the inlet velocity under the best efficiency of
the runner, were simulated. A pressure outlet was also used
with a relative pressure of 0 Pa. To simulate the added
damping of the 0 ND mode, a Fourier Transformation
Method was implemented, which allows us to use only two
single blade passages to simulate the entire flow field with
different ND blade motions [32, 33]. For every case, a total of
15 periods of oscillation was simulated. (e mesh sensitivity
was strictly checked, and the view has been shown in Fig-
ure 15. For one single blade passage, about 1.2M

Blunt Donaldson 
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Figure 5: Bending mode shapes of the blunt and Donaldson hydrofoil.

Table 1: Modal parameter for the bending mode of the blunt and
Donaldson hydrofoils.

fv (Hz) fw (Hz) MF/MS KS (N/m)

Blunt 283.26 188.44 2.2596 5076.3
Donaldson 284.38 189.94 2.2416 5157.4
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unstructured cells were used, and boundary layers on the
blade profiles were created with the y+ lower than 150 (the

thickness of the first layer is about 0.1mm). A backward
Euler second-order time integration scheme was also
implemented in the analysis. (e time step was also selected
as 400 substeps per period. (e double-precision solver was
also selected for calculation via the 64-core cloud computer.
(e same as that on the hydrofoil is also two-step natural
frequency updating to get the final added damping. (e
damping ratios of the blunt and Donaldson Kaplan turbine
runners have been shown in Figure 16.
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2000 3000 4000 5000 6000

−0.2

0.0

0.2

0.4

M
od

al
 fo

rc
e (

N)

Time step

k-
k- SST 
Transition SST

Figure 9: Modal forces along with the time steps under different
turbulence models.

Table 2: Frequency interactives.

(Hz) Frequency interactives
Initial frq. 189.94
Step 1 191.26
Step 2 191.41
(e final damping ratios of the blunt and Donaldson hydrofoil under
different inlet velocities have been shown in Figures 10(a) and 10(b),
respectively.
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Figure 10: Added damping ratio versus the inlet velocity. (a) Blunt hydrofoil. (b) Donaldson hydrofoil compared with the results of the two-
way FSI simulation (Zeng, Y. S. et al., 2019).
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Figure 11: Geometry sketch of the studied Kaplan turbine.
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Figure 12: View of the blunt and Donaldson trailing edge of the Kaplan turbine blade.
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Same as the hydrofoil, the added damping linearly in-
creases with the inlet velocity for both the blunt and
Donaldson trailing edge blades, and generally, the added
damping of the Donaldson trailing edge blade is higher than
that of the blunt trailing edge blade when the inlet velocity is
higher than some values. However, compared with the in-
fluence of the trailing edge shape on the added damping, its
influence on the Kaplan turbine runner is less significant,

and for each inlet velocity, the difference between two tailing
edge shapes is less than 10%. (e reason for this may be
because the Kaplan turbine blade is wider than the narrow
hydrofoil, and the modal displacement concentrates more
on other areas of the blade than the hydrofoil, which de-
termines that the trailing edge shape modification produces
less significant influence on the modal force than the hy-
drofoil, thus less significant influence on the added damping.

Figure 13: View of the mesh when the blades are submerged in water.
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Figure 14: Bending mode shapes of the blunt and Donaldson blades.

Figure 15: View of the mesh of one flow passage.
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4. Conclusions

In this paper, the influence of blade trailing edge shape on the
added damping on hydraulic turbine runners has been
studied. Numerical methods have been used for study in this
paper. Because of the too high computation cost of the two-
way fluid-structure interaction (FSI) method, the one-way FSI
method was implemented. Firstly, the performances of three
different turbulence models, including the k − ϵ, k − ω SST,
and transition SSTmodels, in the simulation of the influence
of the trailing edge shape on the added damping of hydrofoils,
were evaluated by comparing with the results of the two-way
FSI simulation available in the references. Unlike the tur-
bulence model which affects the results of the two-way FSI
method a lot, the performances of different turbulencemodels
in the on-way FSI method are very close. Little errors found
between the results of the three turbulence models are all very
close, which provides a reference for the turbulence model
chosen in the future added damping simulation using the
one-way FSI method. Based on this, the k − ϵ model was
applied to the added damping simulation of a Kaplan turbine
runner, and the influence of the blade trailing edge shape on
the added damping was investigated. Results show that the
Donaldson trailing edge can increase the added damping of
the Kaplan turbine runner more than the blunt trailing edge
to some extent to reduce the vibration level, but the influence
is less significant than that on the hydrofoil. (e reason for
this may be because the blades of Kaplan turbine runners are
wider than the hydrofoil, which determines that the trailing
edge shapemodification produces less significant influence on
the modal force than the hydrofoil, thus less significant in-
fluence on the added damping. In the future, the influence of
the blade trailing edge shape on the added damping of other
types of hydraulic turbine runners which have higher modal
displacement concentrations near the blade trailing edge, like
the Francis turbine runners, will be investigated to provide
suggestions for the vibration level reduction.

Nomenclature

BD: Bending mode
FF: Total modal force
KF: Added stiffness
KS: Structural modal stiffness
MS: Structural modal mass
MF: Added mass
nV: Number of vertical nodal lines
TS: Torsion mode
W: Modal work
Zv: Number of guide vanes
φ: Mode shape
ωv: Natural frequency in vacuum
X0: Vibration amplitude
CF: Added damping
FSI: Fluid-structure interaction
k: Flow field pressure pattern
mH: Number of horizontal nodal lines
ND: Nodal diameter
NL: Nodal line
RSI: Rotor-stator interaction
x: Modal deflection
Zb: Number of blades
ωn: Circular vibration frequency
ξ: Damping ratio
ωf: Natural frequency in vacuum.
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)e on-board power supply system provides power for the launch vehicle. )e power transmission and transformation system
plays an irreplaceable role to ensure that the on-board power supply system receives the normal working voltage of the launch
vehicle.)ere are many types of faults in power transmission and transformation systems.)e traditional faulty diagnosis method
of power transmission and transformation equipment has the disadvantages of being susceptible to experts’ subjectivity and
model’s ossification. In this paper, a new method of equipment fault diagnosis based on big data is proposed. On the basis of big
data, this paper introduces the failure mode clustering algorithm, the state parameter correlation analysis algorithm, the fault
diagnosis method based on the correlation matrix, and other key fault diagnosis technologies. )e fault record data of the 400 kV
voltage grade oil-immersed transformer bushing in the past ten years by a Chinese combat unit is used as a case for demonstration.
)e results show that the accuracy rate of SC-LSTM-K-means clustering model exceeds 95%. And the fault classificationmode can
be accurately obtained. A priori correlation algorithm with TA coefficient can be used to evaluate the strong and weak relationship
between the state parameters; the fault diagnosis matrix based on Pearson’s correlation coefficient can accurately determine the
fault mode consistent with the actual operation and maintenance test results. )erefore, the fault diagnosis method of power
transmission and transformation system based on big data can both effectively obtain the inherent laws of historical data and
realize more accurate fault diagnosis with data adaptability.

1. Introduction

)e vehicle-mounted power supply system is the power
source of the launch vehicle, and the safety of the power
transmission and transformation system is the basis of re-
liable and stable operation of the launch vehicle’s power grid,
which is of great significance to mobile warfare. Effective and
accurate evaluation, diagnosis, and prediction of equipment
status can significantly improve the reliability of power
supply and the intelligent level of power grid operation [1].

)e research on condition monitoring, evaluation, and
fault diagnosis technology of high-voltage power equipment
was carried out earlier abroad [2, 3]. As early as 1951, en-
gineers fromWestinghouse Electric Corporation monitored
and diagnosed the motor damage caused by electric dis-
charge in normal operation [4, 5].

Before the 1970s, developed countries such as the former
Soviet Union, Japan, the United States, Germany, and
Canada made more explorations in live and online moni-
toring of power transmission and transformation systems.
First, they opened up the research field of online monitoring
technology and developed partial discharges of dissolved
gases in transformer oil, transformers, and gas-insulated
switchgear [6]. After the 1990s, equipment condition
monitoring and diagnosis technology has developed rapidly,
and measurement methods have been continuously im-
proved with the development of sensors, computers, net-
work communication, and other technologies. Monitoring
objects have gradually expanded from substation equipment
to transmission equipment, and condition information has
become increasingly rich. )ere are also some other test
instruments that reflect the equipment condition through
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nonelectric quantity measurement, such as ultra-high-
frequency partial discharge detection, gas chromatography
sensor, optical fiber temperature online measurement, in-
frared equipment, ultrasonic equipment, etc.

)e research on condition monitoring and evaluation of
power system equipment in China began in 1970s–1980s [7].
Since the 1980s, the research of online monitoring tech-
nology has laid the foundation of development status as-
sessment technology in China. In the past 10 years, live
detection and online monitoring systems for primary
equipment have been widely used in China. Particularly,
with the construction and development of smart grid, online
monitoring technology has been rapidly popularized and
applied [8, 9]. In recent years, China’s power grid companies
have made a lot of explorations and attempts in the field of
equipment operation and maintenance, gradually realizing
the important value of accurately grasping equipment status
information, and have begun to promote maintenance
management strategies based on status evaluation. In recent
years, with the rapid development of sensor technology,
countries such as Europe, America, Australia, and Japan
have significantly accelerated the research and application of
intelligent diagnostic devices. Large foreign companies,
especially European companies such as SIEMENS, ABB,
Alston, AGE, etc., use online detection systems in high-
voltage circuit breakers and GIS. In modern technology,
there is still a hard connection between the compartment
control cabinet and the primary components of the GIS [10].
In order to overcome this shortcoming, ABB has developed a
serial fiber optic bus system, eliminating hard-wired cables
and developing the third-generation secondary intelligent
technology [11]. ABB adopts intelligent sensor technology
and microprocessing technology in the equipment it de-
velops and realizes online monitoring, diagnosis, process
monitoring, and in-station computer monitoring of the
equipment through digital communication [12].

At present, the widely used state evaluation methods of
power transmission and transformation systems in Chinese
power grid companies include equipment state scoring
system method, expert system method, multidimensional
equipment state evaluation method based on traditional
machine learning, and sample training method introducing
remote expert opinions. However, with the development of
intelligent monitoring equipment in recent years, the
amount of state parameter data of power transmission and
transformation system has increased exponentially; the
equipment status data comes from a number of different
systems. Traditional state evaluation methods cannot deal
with this kind of multisource heterogeneous massive data.

Firstly, this paper analyzes the shortcomings of tradi-
tional fault diagnosis methods for power transmission and
transformation equipment, including the shortcomings of
setting model parameters, being difficult to change after
model training and forming, and some relationships being
unable to be expressed by equations. A fault diagnosis
method of power transmission and transformation system
based on big data is proposed. )e improved LSTM-K-
means algorithm based on silhouette coefficient (SC) is used
for fault classification, the a priori correlation algorithm is

combined with TA coefficient to obtain the strong-weak
relationship between state parameters, and Pearson’s coef-
ficient is used to construct the fault diagnosis matrix. Finally,
the feasibility and accuracy of the proposed method are
verified by a fault example of 400 kV oil-immersed trans-
former bushing in combat unit launch vehicle in the recent
ten years.

2. State Evaluation Methods of the Traditional
Power Transmission and
Transformation System

With the development of artificial intelligence algorithms
such as neural networks, an equipment state evaluation
method based on machine learning has been developed, as
shown in Figure 1. )is kind of method is usually based on
limited sample training and adopts a certain mathematical
modeling method to construct a predictable relationship
between input and output. Compared with the traditional
scoring system, the state evaluation method based on ma-
chine learning can use more time section data for sample
training, and the prediction results obtained are more ac-
curate than the traditional scoring system. In addition, this
method can use complex physical and mathematical func-
tions to model. Usually used mathematical methods include
artificial neural network, Bayesian network, support vector
machine, and Markov [13].

However, the data that can be used by machine learning
method is still limited, and it is still difficult to consider the
influence of external factors such as meteorological envi-
ronment on equipment status in the modeling process of
such functions. )e model is solidified after setting and
training. Unless it is modified or trained again, it cannot
adapt to various changes in the process of equipment op-
eration and maintenance, nor can it reflect the influence of
differences between different equipment models and dif-
ferent operating environments on diagnosis results. Because
the core problem of machine learning method is the se-
lection of historical samples and the training of samples,
there are limitations of training speed, training convergence,
local minima, and other problems in practical application.
Some improvement measures are usually adopted to solve
the above problems, such as preimprovement algorithm,
postimprovement algorithm, and so on.

On the basis of machine learning method and the
concept of expert system, a diagnosis system based on re-
mote expert intervention is developed. )e system can train
the system with expert opinions as new samples, which
integrates the advantages of machine learning method and
expert system method, and can improve the accuracy and
reliability of subsequent diagnosis results. However, the
introduction of remote expert opinions cannot solve the
problem of model solidification.

)e rise and development of big data mining analysis
method has opened up a brand-new technical route for state
evaluation and fault diagnosis of power equipment in
weapons and equipment and put forward higher require-
ments for existing equipment state monitoring parameters.
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)is method introduces the theories and tools of mathe-
matical statistics and pattern recognition. On the basis of
large-scale data analysis, it focuses on mining the correlation
between analyzed factors under uncertain model conditions.
)e equipment status evaluation model based on big data is
shown in Figure 2. )is method adopts the idea of big data
mining, focusing on mining and investigating equipment
defects and the correlation degree between fault state results
and equipment state parameters.

Compared with traditional methods, the most funda-
mental difference between power equipment condition as-
sessment and fault diagnosis methods based on big data
mining analysis is as follows:

(1) In the evaluation model of traditional methods, the
equipment condition monitoring quantity is the
input parameter, while the equipment defects and
faults are the output parameters; in the analysis
method of big data mining, equipment condition
monitoring quantity and equipment defects and
faults are all input parameters, while output quantity
is the association rules, association degrees, and
other elements among all input parameters. )e
traditional model formed by input and output
training, once generated, cannot be changed unless
retrained; the big data mining analysis method
model uses dynamic correlation coefficient matrix to
model the correlation between equipment condition
index and equipment condition monitoring pa-
rameters, which can be continuously regressed and
revised and flexibly changed according to the studied
equipment objects, state parameters, fault types, etc.,
without reconstructing the model and without the
problem of model solidification. )e condition
evaluation method of power transmission and
transformation equipment based on big data mining
is suitable for evaluating and predicting any pa-
rameter index of equipment, including equipment
health and load capacity.

(2) In the traditional methods, the evaluation model is
themost critical; it is impossible to express the results

other than the preset logical relationship in the
evaluation model between the input and output; it is
difficult to properly reflect the personalized and
differentiated elements such as equipment manu-
facturers, meteorological environment, habits of
operation and maintenance personnel, etc.; however,
the correlation mining analysis method based on big
data analysis is different from the traditional method.
On the basis of higher requirements for existing
equipment condition monitoring parameters, it
takes massive data as mining objects and uses data
mining methods suitable for big data to mine the
correlation between factors to be analyzed in un-
certain models. In the data mining analysis method,
the most important thing is the effective integration
and fusion of massive data with multiple sources,
multiple time scales, and multiple space-time di-
mensions, so as to find the inherent (known or
hidden) correlation between various equipment
condition monitoring quantities and equipment
defects and faults, even if it is difficult to integrate the
correlation of physical and logical models.

3. Key Technology of System Condition
Evaluation Based on Big Data Analysis

3.1. )e Clustering Model

3.1.1. K-Means Algorithm. K-means algorithm is proposed
by Ding and He [14], which can divide the data into k
clusters that minimize the sum of squares of errors through
continuous iterative calculation. )e algorithm is widely
used in all walks of life because of its simple and efficient
operation, strong scalability, nearly linear time complexity,
and suitability for processing large data sets [15]. )e
implementation steps of K-means clustering algorithm are
as follows [16–18]:

(1) Initializing the clustering center: randomly selecting
K sample points from N sample data as the initial
clustering center.

The influence factors 

Using effect

Equipment evaluation 
model based on big data

Figure 2: Diagram of equipment evaluating model based on big
data.

The limited 
equipment data

The state of equipment/
the probability of failures

The analysis model based 
on machine learning

Figure 1: Equipment fault diagnosis method based on machine
learning.
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(2) Cluster division: calculating the distance from the
remaining sample points of K initial cluster centers
to each initial cluster center and dividing the
sample points into the cluster with the smallest
distance.

(3) Calculating a new clustering center: calculating the
sum of the divided cluster sample points in step (2),
completing the average value calculation, and taking
the calculated average value as the new clustering
center.

(4) Convergence judgment: E function is usually used as
judgment function, where E function is the sum of
squares of errors between sample data and each
clustering center. Steps (2) and (3) are circulated
until the end of the division cycle that minimizes the
E value, which is the best clustering result.

3.1.2. SC-LSTM-K-Means Clustering Model. Based on the
long short-term memory (LSTM) network’s strong non-
linear deep learning capabilities [19] and the advantages of
the K-means clustering algorithm, this paper proposes a
hybrid clustering model combining LSTM and K-means to
identify fault types in power transmission and transfor-
mation systems.)e flowchart of the LSTM-K-means hybrid
model is shown in Figure 3.

In LSTM-K-means clustering, the selection of K value of
cluster number is very important. Only by finding out the
appropriate K value can we get ideal clustering effect. Sil-
houette coefficient can solve this problem well. In this paper,
by introducing SC, the two concepts of cohesion and sep-
aration are integrated, and it is more effective to evaluate the
clustering effect by SC.

For the measurement of cohesion in a cluster, the way is
to calculate the average distance between the fth element in
the cluster and other elements in the cluster, which is
denoted as ai. For the quantification of the separation degree
between clusters, the way is to select a cluster b other than
the cluster of the above elements, calculate the average value
of the distance between the element and all elements in b,
then calculate the distance between the above elements and
all elements in the other clusters, and find the minimum
value of the distance between the element and other clusters,
which is recorded as bi. )e equation for calculating the SCi

of the ith element is

SCi �
bi − ai

max bi, ai( 􏼁
. (1)

Finally, the silhouette coefficients of all elements in all
clusters are calculated, and the average value of the silhouette
coefficients of each element is obtained as the overall sil-
houette coefficients of the current cluster.

3.2. Correlation Analysis Algorithm of State Parameters.
As far as the current situation is concerned, there are many
and complicated equipment state parameters, and there is a
lack of mining and analysis of the relationship between
equipment parameters, which leads to the lack of systematic

understanding of equipment parameters. )rough the
analysis of state parameter association rules, the effective
combination of multiple state parameters of equipment, the
extraction and merging of feature quantities, and the
analysis of the mutual influence degree of state parameters
can be realized. For association rules, the general form is the
implication of X≥Y, which can be understood as “if X, then
Y,” where X is the equipment state parameter in the pre-
ceding item, which can be a single state parameter or a set of
multiple state parameters, and Y is the state parameter in the
following item, which is generally a single state parameter.

Taking a priori algorithm used in this paper as an ex-
ample, set the library to be mined of association rules be D,
which is a collection of transactions T. If there are n
transactions, D � T1, T2, . . . , Tj, . . . , Tn􏽮 􏽯, for each trans-
action, consists of “m items,” T � I1, I2, . . . , Il, . . . , Im􏼈 􏼉.

For item set X, the degree of support S is defined as

S(X) �
N(X⊆T)

|D|
. (2)

For the association rules with X≥Y x> y, the degree of
support is

S(X⟶ Y) �
N(X∪Y)

|D|
, (3)

where S is the degree of support and N(X⊆T) is the number
of sets.

)e degree of support described in equation (3) reflects
the probability of simultaneous occurrence of these two item
sets. )e support degree is equal to that of frequent sets.

Similarly, for association rules with X≥Y, its credibility
C is

C(X⟶ Y) �
S(X⟶ Y)

S(X)
. (4)

Draw a part of data 
as a sample

Classify each data in the sample 
based on K-means

Calculate each attribute weight
of each layer

based on LSTM network

Obtain the trained LSTM-K-means 
model

Input the whole 
data set

Figure 3: )e flowchart of LSTM-K-means model.
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)e reliability described in equation (4) reflects the
probability that if the item set contains X, it also contains Y.
For users who use association rules, users can mine asso-
ciation rules with higher S and C by defining thresholds of
minimum support and credibility.

3.3. Fault Diagnosis Based onCorrelationMatrix. In order to
diagnose the fault mode, it is necessary to consider the
correlation between each state parameter and each fault
mode, that is, the possibility of a certain fault mode when a
certain state parameter is abnormal. After obtaining the
correlation coefficient between each state parameter and
each fault mode of the equipment, the equipment fault mode
diagnosis matrix R can be obtained; that is,

R �

R11 · · · R1t · · · R1q

⋮ ⋮ ⋮

Rr1 · · · Rrt · · · Rrq

⋮ ⋮ ⋮

Rp1 · · · Rpt · · · Rpq

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5)

where Rrt is the correlation coefficient of vector Br of the rth
failure mode under vector Vt of the tth state parameter;
among them, r ∈ [1, p], there are p fault modes; t ∈ [1, q],
and there are q state parameters. When calculating Rkt, there
are many sets of data for each failure mode and state pa-
rameter, so Br and Vt are vectors.

When calculating the correlation coefficient Rrt, Pearson’s
coefficient is used in this paper. )e correlation coefficient is
based on the deviation between the two variables and the
average value of their respective variables, calculated by the
product-difference method, multiplied by the two deviations,
and the product is used to reflect the correlation degree
between the two variables [20–22]. Pearson’s coefficient
ranges from −1 to 1. A value of 0 indicates that there is no
significant linear relationship between the two variables. −1
and 1 indicate that the two variables are completely negative
or positive. )e following equation shows the correlation
coefficient of Br and Vt applied to equipment fault diagnosis:

Rrt Br, Vt( 􏼁 �
Cov Br, Vt( 􏼁

�������
Var Br( 􏼁

􏽱
·

�������
Var Vt( 􏼁

􏽱 , (6)

whereCov(Br, Vt) is the covariance of Br and Vt; Var(Br) is
the variance of Br; and Var(Vt) is the variance of Vt. After
the diagnosis matrix R is obtained by the above method, the
fault data can be diagnosed by the following equation:

F � R · U. (7)

In equation (7),

U � U1, U2, . . . , Ut, . . . , Uq􏽨 􏽩
T
,

F � F1, F2, . . . , Fr, . . . , Fp􏽨 􏽩
T
,

(8)

where U is the data vector of the fault case to be diagnosed,
including the state parameter level of each state parameter,

and F is a fault mode diagnosis result vector, and the value of
each element in the vector can indicate the membership
degree of the fault case under each fault mode. When the
most likely failure mode is finally diagnosed, the failure
mode with the largest membership degree (the largest value)
can be selected as the final result.

4. Simulation Analysis of Fault Diagnosis
Based on Big Data

In this paper, the fault cases of 400 kV oil-immersed trans-
former bushing in a combat unit launch vehicle in the recent
ten years are taken as data mining objects, and the equipment
fault diagnosis based on big data mining is studied.

4.1. Preprocessing Data. Firstly, the abnormal state data of
the equipment to be mined are collected, with emphasis on
the case data of faults and defects. )e case code is repre-
sented by As(s � 1, 2, . . . , 34) and the state parameter is
represented by Wu(u � 1, 2, . . . , 26). According to the
representation of faults and defects, the state parameters are
assigned. Since the construction of knowledge map is only to
mine and analyze the state parameters or equipment ab-
normal cases themselves, only one state parameter needs to
be known whether it is abnormal or not and does not involve
the equipment state level or the deterioration degree of the
state parameters, so only binary quantification is carried out.
According to the severity, defects can be divided into
emergency defects, major defects, and general defects.

When a certain state parameter is abnormal, the value of
Wu is 1, which means that the state parameter has faults or
major or urgent defects. )e value of Wu is 0, which means
that the state parameter is normal. )e parameters of the
state parameters considered in this paper are shown in
Table 1. )rough summary statistics, there are 34 groups of
equipment failure and defect cases, of which 22 groups are
failure data.

4.2. Clustering Analysis of Failure Cases

4.2.1. Clustering Analysis of SC-LSTM-K-Means. Firstly, 22
groups of fault cases in the original data are clustered hi-
erarchically, and all faults can be divided into 3–8 categories
by preliminary analysis. K is selected as 3, 4, 5, 6, 7, and 8,
respectively, and the clustering effects are compared by
calculating the silhouette coefficients of different cluster
numbers K. )e results are shown in Figure 4. As can be seen
from Figure 4, k� 5, the clustering result is the most ideal
when the failure modes are divided into 5 categories.
Combined with the fault physical background and expert
experience of transformer bushing, five common fault
modes of transformer bushing can be summarized. Using
LSTM-K-means to cluster fault cases, the results are shown
in Table 2.

4.2.2. Comparison of )ree Models’ Clustering Accuracy.
In recent years, some scholars have studied the combined
clustering model of BP neural network and K-means
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Figure 4: Silhouette coefficient under different K values.

Table 2: Clustering results of fault data (k� 5).

)e serial number Case Fault name
Failure 1 A4, A6, A11, A12, A19 External insulation affected with damp
Failure 2 A3, A10, A13, A22 Serious oil leakage
Failure 3 A7, A9, A15, A16, A18 Poor contact
Failure 4 A2, A14, A20 Insulating oil affected with damp
Failure 5 A1, A5, A8, A17, A21 Discharge at the end of screen

Table 1: Names of status parameters.

State parameter name Symbol
Porcelain set of creepage W1
External insulation configuration W2
Porcelain insulation damage W3
Oil level indicator W4
Oil leakage check W5
Casing grounding W6
Lead wire at the end of the screen W7
Infrared temperature measurement W8
)e main insulation dielectric loss and capacitance W9
Dielectric loss at the end of screen and capacitance W10
)e main insulation resistance W11
Insulation resistance at the end of screen W12
Dissolved gas analysis in oil W13
Outside the insulating oil W14
Oil dielectric loss W15
Insulating oil water-soluble acid W16
Insulation oleic acid value W17
Insulating oil flash point W18
Insulating oil moisture W19
Insulating oil interfacial tension (below 25 degrees Celsius) W20
Insulating oil breakdown voltage W21
Insulating oil volume resistance (below 90 degrees Celsius) W22
Insulating oil sludge and sediment W23
Insulating oil corrosive sulfur W24
)e carbamate insulating oil W25
Insulating oil charged tendency W26

6 Mathematical Problems in Engineering



algorithm. )e basic idea is to use raw data and historical
prediction errors as the input of the model, use the pre-
diction error interval as the output, and then use BP neural
network to learn the relationship between the input and
output of the model. Finally, we can get a combination
model with determined parameters.

)is section uses the model proposed in this paper to
compare the accuracy of clustering with K-means algorithm
and BP-K-means. To solve this problem, SSE, the sum of
squares of distances from all sample points to the corre-
sponding cluster centers, and the change curve ofK value are
drawn. With the increase of K value, SSE decreases and
finally tends to remain unchanged, and the K value with the
largest image slope decrease is found, which is a relatively
reasonable value. MATLAB simulation analysis is shown in
Figure 5; the K values of the K-means model and the BP-K-
means model both take 5 when the SSE is maximum.

We use the actual classification results of 22 groups
faulted cases as the basis for the comparison of clustering
accuracy. Figure 6 is a comparison diagram of the clustering
effect of the three models. It can be seen that the clustering
effect of the model proposed in this paper is better and the
boundary is clearer, while the clustering results of the other
two models are more disordering. Table 3 is a comparison of
the accuracy of the three models. )e accuracy of the
K-means model is 81.81%, the accuracy of the BP-K-means
model is 86.37%, and the accuracy of the model in this paper
is 95.45%, which is significantly higher than the other two
clustering models.

4.3. Correlation Analysis of State Parameters. In the analysis
of association rules, the determination of confidence and
support is very important. Only reasonable thresholds of
confidence and support can better mine association rules
with comparative value; because there are many kinds of
state parameters, the threshold of support should not be set
too large. Support is set to 0.1. In order to obtain association
rules with high credibility, confidence is set to 0.85. A total of
21 association rules with high confidence are obtained. )e
visualization effect of 21 association rules RULE1–RULE21
based on association relationship is shown in Figure 7.

In Figure 7, G1 � W1􏼈 􏼉; G2 � W7􏼈 􏼉; G3 � W9􏼈 􏼉;
G4 � W11􏼈 􏼉; G5 � W12,13􏽮 􏽯; G6 � W10,13􏽮 􏽯; G7 � W1,12􏽮 􏽯;
G8 � W1,25􏽮 􏽯; G9 � W1,5􏽮 􏽯; G10 � W1,12􏽮 􏽯; G11 � W5,12􏽮 􏽯;
G12 � W1,10􏽮 􏽯; G13 � W1,12,13􏽮 􏽯; G14 � W1,10,13􏽮 􏽯; G15 �

W5􏼈 􏼉; G16 � W12􏼈 􏼉; and G17 � W10􏼈 􏼉. )e abscissa is the
previous equipment state parameter of the association rule;
the ordinate is the latter equipment state parameter y of the
association rule; circles RULE1–RULE21 at the intersection

of vertical and horizontal axes represent 21 association rules,
which are used to reflect the correlation between the front
and back equipment state parameters; the size of circle area
indicates the support degree of correlation, and the larger the
circle, the greater the corresponding support degree; the
depth of the circle color indicates the confidence of corre-
lation, and the darker the color, the greater the confidence.
We can intuitively see the association rules with high
support. )e latter equipment state parameters are mainly
concentrated in W10 and W12, which not only shows that
the end screen is a component prone to problems in
transformer bushing, but also shows that the dielectric loss,
capacitance, and insulation resistance of the end screen have
high possibility of occurring together with other abnormal
states. Because the casing is prone to insulation damp failure,
the factors are often unqualified production quality or aging,
and human factors are caused by poor casing sealing.
)erefore, when the main insulation dielectric loss or the
end screen dielectric loss is abnormal, the end screen
insulation resistance will often drop seriously, which is
consistent with the actual situation on-site. According to the
fault mode name of poor connection, the state parameters
such as infrared temperature measurement, terminal screen
outgoing line, and casing wiring are obviously abnormal. By
extracting each abnormal state parameter and TA coefficient
of the abnormal state parameter under this kind of fault
mode, the correlation between the state parameter and the
fault mode can be obtained, as shown in Figure 8. )e TA
coefficient of infrared temperature measurement, terminal
screen outgoing line, and casing connection is higher. In case
of poor contact, due to the increase of resistance at the poor
contact point, the heat generation is more serious, and
infrared temperaturemeasurement can find the poor contact
point well.

4.4. State Evaluation. )rough cluster analysis, five fault
modes of oil-immersed transformer bushing are mined out.
For oil-immersed transformer bushing, the number of fault
modes is p � 5. )ere are 15 key state parameters in total,
and the number of state parameters is q� 15. In the state
evaluation, because the equipment state and state parame-
ters need to be quantitatively and finely calculated, the data
task in this section cannot be well carried out only by binary
quantification of state parameters. )erefore, according to
the deterioration degree of health level, the equipment state
can be divided into five grades: 0, 1, 2, 3, and 4, which can
better reflect the correlation with state parameters. Con-
sidering all 34 groups of fault and defect cases, the key state
parameters are renumbered from 1 to 15. For the last screen
discharge fault mode, the abnormal state vector S5 is

S5 � [3, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0]. (9)
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Figure 6: Contrast of the three models’ clustering results. (a) SC-LSTM-K-means. (b) Real result. (c) K-means. (d) BP-K-means.
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Table 3: Contrast of the three clustering models.

Models
Indicators

Number of correct cases Number of wrong cases Accuracy (%)
SC-LSTM-K-means 21 1 95.45
K-means 18 4 81.81
BP-K-means 19 3 86.37
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Calculate the correlation coefficient of each state pa-
rameter in the terminal screen discharge fault mode; for
example, the vector V13 of the state parameter for analyzing
the dissolved gas in the oil is

V13 � [4, 0, 4, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 4, 0, 0]. (10)

)erefore, the factor R5&13 in the diagnosis matrix is
calculated by

R5&13 �
Cov S5, V13( 􏼁

�������
Var S5( 􏼁

􏽱
·

��������
Var V13( 􏼁

􏽱 . (11)

Similarly, the remaining elements in the diagnostic
matrix R of equation (5) can be calculated. )e condition
evaluation results of oil-immersed transformer bushing
equipment twice are taken as cases for example verification.
In case 1, the parameters of casing wiring, terminal screen
outgoing line, and infrared temperature measurement state
are abnormal; in case 2, the porcelain insulation was
damaged, and the parameters of oil level indication and oil
leakage inspection state were abnormal. )e evaluation of
the state parameters is quantified by the deterioration level,
and the vectorsU of the two cases to be diagnosed are shown
in the following equation:

U �
[0, 0, 0, 0, 0, 3, 4, 0, 0, 0, 0, 0, 0, 0], (For case 1),

[0, 0, 2, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0], (For case 2).
􏼨

(12)

After substituting equation (7), the fault mode diagnosis
result vector F of the two diagnosis cases is shown in Table 4.

If the fault mode with the highest diagnosis membership
value is taken as the diagnosis result, the diagnosis result of
the sample of diagnosis case 1 is poor contact; the diagnosis
result of diagnostic case 2 is serious oil leakage. After on-site
fault diagnosis by relevant operation and maintenance
personnel, the former is an abnormal situation caused by the
thread of the casing end screen not tightening, while the
latter is an abnormal situation caused by the failure to
observe the oil level through the oil level mirror. After in-
spection, it is caused by the failure to replenish oil for a long
time and the normal aging and oil leakage of the casing.

5. Conclusion

Firstly, the SC-LSTM-K-means clustering algorithm can be
used to mine the fault modes of power transmission and
transformation systems of launch vehicles, and the number of
fault classifications can be determined through the SC. By

comparing the clustering effects with K-means and BP-K-
means algorithms, it can be concluded that the clustering
accuracy of this model reaches 95.45%. Secondly, a priori
algorithm based on Boolean association rules to mine fre-
quent item sets can be used to mine the internal correlation
relationship of characteristic parameters of power transmis-
sion and transformation system, so as to realize the effective
combination of multiple state parameters of equipment,
feature extraction and merging, and analysis of the mutual
influence degree of state parameters; the obtained TA coef-
ficient can characterize the strong-weak relationship of cor-
relation. Finally, the equipment fault correlation matrix based
on Pearson’s coefficient can get that the maximum value of Fr
for case 1 is 5.1630, and the maximum value of Fr for case 2 is
4.8892. )e method accurately analyzes and diagnoses the
equipment fault mode which is consistent with the actual
operation and maintenance test results.
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In recent years, increasingly severe wildfires have posed a significant threat to the safe and stable operation of transmission lines.
Wildfire risk assessment and early warning have become an important research topic in power grid risk assessment. 'is study
proposes a fire prediction model on the basis of the CatBoost algorithm to effectively predict the fire point. Five wildfire risk
factors, including vegetation factors, meteorological factors, human factors, terrain factors, and land surface temperature, were
combined using the feature selection method on the basis of the gradient boosting decision tree model and principal component
analysis to achieve dimensionality reduction of redundant data and create a fire prediction model. 'e MODIS fire point product
is used as the model evaluation data.'e verification result uses the AUC value as the evaluation factor.'e accuracy of the model
is 0.82, and the AUC value is 0.83. 'e obtained fire point evaluation results are in good agreement with the actual fire points.
Results show that this model can effectively predict the risk of wildfires.

1. Introduction

Mountain fire disaster is an essential factor that destroys the
forest ecosystem and affects the safe and stable operation of
the power grid [1, 2]. Mountain fires accounted for 60% of all
the emergencies that have changed the stable operation of
the power grid in recent years [2]. According to statistical
analysis over the years, most reclosing of transmission line
trips caused by wildfire disasters will fail, which seriously
affects the quality of life in the area and causes substantial
economic losses to relevant departments.

Most regions in southern China are located in forest
areas, with dense forests, complex terrain, and dry climate,
which provide a good material basis for the occurrence of
mountain fire disasters, leading to frequent mountain fire
disasters and posing a considerable threat to the safe and
stable operation of the power grid [3, 4]. Mountain fire
disasters have become an important factor that affects the
safe and stable operation of the power supply system.

'erefore, effectively predicting the fire risk of woodland,
grassland, and cultivated land that may occur in the future
and making corresponding warnings are considerably sig-
nificant to maintain the stable operation of the power grid
[5].

Scholars at home and abroad are mainly divided into two
directions in the research of wildfire risk: purely using
meteorological data for wildfire risk assessment and com-
bining the tripping mechanism of transmission lines, veg-
etation factors, and human factors to classify wildfire risk
levels. At present, meteorological departments and forestry
departments mainly assess the risk of wildfires from the
perspective of meteorology [6]. In 1995, Wang et al. [7] and
others proposed a new technology for forest fire risk as-
sessment based on meteorological elements such as tem-
perature, humidity, precipitation, and wind speed, but it is
only suitable for large-area forest fire risk forecasting. Lit-
erature [8] built a graphmodel-based overhead transmission
line wildfire risk prediction model based on the
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meteorological factors, combined with surface combustion
factors and historical fire factors. 'is method has been
effectively applied to a certain southern power grid. Liter-
ature [9] uses forest fire danger meteorological grades to
assess the probability of wildfires and establishes a risk
assessment model for transmission lines with temporal and
spatial distribution characteristics. Literature [10] estab-
lished a risk assessment model from two aspects: the risk of
wildfire disasters and the vulnerability of transmission lines.
Literature [11] combined the relationship between nor-
malized differential vegetation index (NDVI), satellite re-
mote sensing fire point, rainfall, and other factors with the
occurrence of wildfires on transmission lines and proposed a
wildfire risk assessment model for transmission lines, but
only monthly risk assessment. In fact, fires are very closely
related to human activities. Literature [11] proposed a fire
prediction model that combines meteorological data and
human activities. 'e model is applied in areas with severe
fire disasters, and it has good prediction accuracy. Literature
[12], based on historical meteorological data, vegetation,
data and terrain data, used partial least squares method PLS
to select the main wildfire forecasting factors and established
an optimized power grid wildfire risk early warning model.
Literature [13] designed a forest fire early warning model
based on mobile edge computing (MEC) by acquiring
ground surface parameters, which can be used to effectively
predict wildfires.

In order to more fully combine meteorological data and
human factors, this study is based on the MODIS fire point
data of a southern province from 2015 to 2019 combined
with meteorological data, terrain data, land surface tem-
perature (LST), human factors, and vegetation factors to
analyze the influencing factors of mountain fire disasters and
establish a CatBoost model to predict fire points. Effective
prediction and early warning of fire points are significantly
important to reduce the loss of wildfire disasters.

2. Analysis and Data Acquisition of Influencing
Factors of Mountain Fire Disasters

'e occurrence of mountain fire disasters is comprehen-
sively affected by a variety of factors. According to the
analysis of relevant literature and the research on the
principles of mountain fires [14], the occurrence of
mountain fire disasters is not random, and specific laws have
been passed in relation to this situation. 'is article divides
the factors that affect the appearance of wildfires into five
aspects: vegetation factors, human factors, surface temper-
ature, terrain factors, and meteorological factors. 'is re-
search aims to realize large-scale wildfire assessment
through multisource remote sensing data and combined
meteorological data. 'e specifically related factors among
the five factors that affect the occurrence of wildfire disasters
are as follows.

2.1. Remote Sensing Data

2.1.1. Vegetation Factors. Vegetation is the material basis for
the occurrence of wildfire disasters. In this study, the
influencing factors of plant on wildfire disasters are refined
into normalized difference infrared index 7 (NDII7) and
normalized differential vegetation index (NDVI).'eNDII7
is a critical wildfire risk assessment factor. Qin [15] proved
that the NDII7 can characterize the vegetation fuel moisture
content and then evaluate the mountain fire risk. 'e NDVI
is used as a criterion for judging surface vegetation and
estimate the growth status and density of plant. 'e oc-
currence of mountain fire disasters is closely related to the
growth status and density of vegetation. Wang et al. [14]
judged the event of wildfire disasters and estimated the area
of the fired area according to the change of plant NDVI at
adjacent time points.

'e acquisition of NDVI comes from the MOD13A1
vegetation information product of MODIS provided by the
NASA website (https://ladsweb.modaps.eosdis.nasa.gov/),
with a spatial resolution of 1000m. 'e global NDVI in-
formation is updated every 16 days. NDII7 is derived from
the MOD09A1 product provided on the website as previ-
ously mentioned. 'e temporal resolution of this product is
8 days. After the product is obtained, NDII7 is calculated
according to the calculation formula obtained by Qin [15]
and others:

NDII7 �
ρ2 − ρ7
ρ2 + ρ7

. (1)

2.1.2. Human Factors. 'e occurrence of wildfire disasters is
highly correlated with the time of people’s frequent activi-
ties. Statistics show that the occurrence of wildfire disasters
shows a significant upward trend every Friday and every day
from 13:00 to 16:00 from January to April [2]. 'e uncer-
tainty of human factors is relatively considerable. 'is study
extracts the influencing factors of wildfire disasters as land
type, distance from roads, and distance from cultivated land.
'ese data directly indicate the inevitability of human ac-
tivities and can be used as the influencing factors of wildfire
disasters. 'is notion indirectly suggests the impact of
humans on fire. Land types are classified into cultivated land,
forest land, grassland, water area, residential land, and
unused land according to the 30m classification data of the
global surface.

2.1.3. LST. Surface temperature affects the occurrence of
forest fires because it will indirectly affect the moisture
content of the combustibles of vegetation. In areas with a
relatively dense vegetation, the evaporation of the surface is
relatively small because the surface temperature is low,
thereby leading to the high moisture content of the com-
bustibles. Mountain fire disasters are less likely to occur [16].
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By contrast, if the surface temperature is high, then it is easy
to cause mountain fire disasters.

'e LSTdata come from the MOD11A1 product, with a
spatial resolution of 1000m and a temporal resolution of 1
day.

2.1.4. Terrain Factors. Elevation, slope, and aspect are fixed
static variables, and many researchers classify them as the
fundamental factors leading to wildfire disasters. 'e ups
and downs of terrain will cause different vegetation coverage
and meteorological conditions, including rainfall, water
content, dense vegetation, vegetation types, and growth
conditions; thus, the probability of wildfire disasters will
naturally vary. 'e spatial resolution of terrain data is 30m.
Currently, NASA website (https://ladsweb.modaps.eosdis.
nasa.gov/) provides downloading of SRTM 30m resolu-
tion digital elevation data.

2.2. Meteorological Data. 'e probability of mountain fire
disaster is highly correlated with meteorological factors.
Meteorological factors, such as rainfall, average relative
humidity, maximum temperature, average temperature,
minimum temperature, maximum wind speed, and maxi-
mum wind direction [15], have a significant influence on the
occurrence of wildfire disasters. 'e meteorological data
come from the China Meteorological Data Network (http://
data.cma.cn/), which is the cumulative annual value data set
(2015–2019) of China.

3. Information Extraction

3.1. Fire Point Information Extraction. 'e fire point data
come from the fire point product of MODIS C6 (2015–2019)
provided by https://firms.modaps.eosdis.nasa.gov/, and its
spatial resolution is 500m. 'is study extracts the fire point
data according to the fire point collection time and confi-
dence level provided by the product. Detailed MODIS C6
product information is shown in Table 1. 'is study will
extract high-confidence fire data with a confidence of more
than 90% as the input data of the fire information to improve
the quality of the extracted fire information.

3.2. Nonfire Point Information Extraction. 'is study first
determines the distance of 35 pixels (17,500m) from the
buffer radius of the fire point through the semivariogram
function [17] on the basis of the fire point data to eliminate
the influence of time and then extracts it from the ring buffer
(17,500–18,000m). 'ereafter, all the nonfire point data in a
month are obtained. Finally, the daily fire point data cor-
responding to the fire point data are extracted from the
corresponding monthly nonfire point data according to the
daily fire point data.

4. Input Data Preprocessing

4.1. Spatial Interpolation of Meteorological Data. 'e me-
teorological data downloaded from the China Meteoro-
logical Data Network are monitored by various

meteorological stations and are spatially discrete. 'e me-
teorological data need to be spatially interpolated to achieve
the continuity of the meteorological data in the study area.
'is study uses Anusplin software to interpolate meteoro-
logical data, which has a good effect. Qian et al. [18]
compared the interpolation accuracy of Anusplin software
with that of Ordinary Kriging and reverse distance weights
and found that the interpolation error of the former is the
smallest. 'e interpolation principle is mainly to use ordi-
nary and local thin disk spline functions. 'e advantage of
this method is primarily that it allows the introduction of
multiple influence factors as covariates. 'is study intro-
duces elevation data to significantly reduce the influence of
elevation on temperature data changes.

4.2. Data Undersampling. 'is study will use the ensemble
resampling [15] algorithm for undersampling the data to
ensure the consistency of the model training samples, that is,
the proportion of fire-spot samples and nonfire-spot samples
is the same. 'is algorithm can correctly solve the problem
of data loss in the undersampling. Such an algorithm uses
ensemble to sample with various models. Each model is
undersampling. 'e undersampling results of multiple
models are integrated, and the data distribution will not be
changed. 'e sampling effect is better than the current
numerous oversampling and undersampling techniques.

4.3. Normalization of Real Factor Data. Among the influ-
encing factors of mountain fire disasters, some variables are
of real number type. Before the CatBoost model is trained,
such input data must be normalized to ensure the dimen-
sionlessness of the data, such as the following: distance from
the road (x1,m), distance from cultivated land (x2,m), land
surface temperature (x3), NDVI (x4), NDII7 (x5), DEM
(x6,m), precipitation (x7,mm/day), maximum temperature
(x8,

°C), average relative humidity (x9,%), average temper-
ature (x10,

°C), lowest temperature (x11,
°C), and maximum

wind speed (x12,m/s). 'ese input variables will be nor-
malized to zero mean.'e advantage of this method is that if
abnormal points occur, then a small number of strange
points will not have a significant effect on the average value;
thus, the variance of the variance is little. Z-score normal-
ization is also called standardization.'is method maps data
to a distribution with a mean of zero and a standard de-
viation of one. With regard to the above xi, formula (2) is
used to standardize the data, and the obtained new variable
data xi
′ is used as the input data of the model:

xi
′ �

xi − mean
σ

, (2)

where xi(i � 1, 2, 3, . . . , 12) is the original wildfire disaster
impact factor, mean; σ is the average value and standard
deviation corresponding to each element; and xi

′ is the
standardized wildfire disaster impact factor.

4.4. Discrete Factor One-Hot Encoding. 'e discontinuous
values, such as land type, slope, and aspect, have no
significance. 'is study will perform one-hot encoding to

Mathematical Problems in Engineering 3

https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
http://data.cma.cn/
http://data.cma.cn/
https://firms.modaps.eosdis.nasa.gov/


eliminate the influence between the numerical values. 'e
significant advantage of this method is that it is easy to
deal with noncontinuous values, and the model input data
are also expanded to a certain extent.

4.5. Feature Selection Method Based on the Gradient Boosting
Decision Tree (GBDT) Model. Features must be selected
because of the large number of variables in this study, and
some variables have little effect on the occurrence of
wildfires. Feature selection is the process of choosing factors
that are highly correlated with the appearance of fires. 'e
feature selection method based on the GBDT model is a
commonly used feature selection method based on the tree
model. 'e principle is to use the node magazines in each
decision tree to calculate the importance of features. 'e
final feature importance is the average of the feature im-
portance of all decision trees. In this study, the cross-vali-
dation method is used to select the factors whose feature
importance is more significant than 0.3. 'en, the dimen-
sionality reduction is performed according to the principal
component analysis (PCA). 'e ranking of the importance
index of wildfire impact factors is shown in Table 2.

4.6. PCA: Principal Component Analysis. Among the influ-
encing factors of mountain fire disaster, a specific correlation
exists between elevation, slope, aspect, maximum temper-
ature, average temperature, minimum temperature, and
surface temperature. 'is study uses the currently widely
used linear dimensionality reduction algorithm (PCA) to
reduce the dimensionality of all influencing factors of
wildfire disasters and eliminate redundant data. 'e ad-
vantage of this algorithm is its ability to retain the original
data quality of the sample. In this mechanism, the model
training data are compressed as much as possible, and the

factors with high principal components for model training
are determined.

'e mathematical model of the PCA algorithm in this
study is as follows.

X � x1, x2, . . . , xm is the impact factor of wildfire di-
saster, where the dimension of X is m, which is the number
of impact factors. 'e projection of xi on the hyperplane in
the new hyperdimensional space is WTxi. 'e principle is to
increase the variance between all sample points to ensure
that the projections between all sample data are separated as
much as possible. XXT can be obtained according to the
following formula:

XX
T
W � λW. (3)

After the sample feature matrix XXT is decomposed, the
eigenvalues of each factor λ1 ≥ λ2 ≥ . . . λm are obtained, and
the corresponding eigenvectors of the first I samples W �

(W1, W2, . . . Wi) are the required mountain fires of the
principal components of the disaster impact factor. 'is
paper retains 99% of the main information of the original
feature. 'e latitude of the principal component m is 18.
Compared with the feature selection based on the GBDT
model, the feature dimension is reduced by 13.

5. Fire Point Prediction Model Based on
CatBoost Algorithm

5.1. CatBoost Model. CatBoost is an algorithm that com-
bines GBDT and categorical features. 'is approach is an
improved implementation under the framework of the
GBDTalgorithm. CatBoost is based on oblivious trees with
few parameters and supports categorical variables and high
accuracy sexual GBDT framework. 'e main pain point is
to efficiently and rationally deal with categorical features.
CatBoost is composed of categorical variables and boost.

Table 1: MODIS C6 product details.

Brightness Scan Track ACQ_Date Satellite Confidence Bright_T31 FRP
312.4 1.1 1.1 2015/1/1 Terra 72 290.3 11.6
305.3 1.3 1.1 2015/1/1 Terra 61 289.2 9.1
304.3 1.3 1.1 2015/1/1 Terra 59 292.3 6.9
326.2 1.3 1.1 2015/1/1 Terra 84 289.8 34.1
307.8 1.3 1.1 2015/1/1 Terra 66 288.3 11.2
312 3.3 1.7 2015/1/1 Aqua 72 285.9 67.5
305 4.3 1.9 2015/1/1 Aqua 57 290.3 42.7
304.5 1 1 2015/1/2 Aqua 48 292.2 4.9
324.5 1 1 2015/1/2 Aqua 83 291.6 22.5
309.7 1 1 2015/1/2 Aqua 35 293.6 5.8
346.2 1 1 2015/1/2 Aqua 94 294 55.8
305.6 1 1 2015/1/2 Aqua 62 287.8 6.7
315.4 1 1 2015/1/2 Aqua 73 293.2 12.9
301.1 1 1 2015/1/2 Aqua 44 289.6 3.9
. . . . . . . . . . . . . . . . . . . . . . . .

300.3 1 1 2019/12/30 Terra 30 286.9 4.3
304.7 1.1 1 2019/12/30 Terra 60 292.1 5.6
308.1 1 1 2019/12/31 Aqua 61 295.5 5
302.9 1 1 2019/12/31 Aqua 24 290.4 3
300.1 1 1 2019/12/31 Aqua 13 285.9 3.8
302.4 1.2 1.1 2019/12/31 Aqua 49 290 5
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'is mechanism also deals with gradient bias and pre-
diction shift problems, thereby improving the generaliza-
tion ability and robustness of the algorithm [19, 20]. 'is
study considers many categorical features, such as rainfall,
wind direction, slope direction, and land type. CatBoost can
be used to quickly process nonnumerical features. When
the CatBoost algorithm processes categorical features, it
puts all sample data sets into the algorithm for learning.
'en, CatBoost randomly arranges all these sample data
sets and filters out samples with the same category from all
features. When numerically transforming the characteris-
tics of each sample, the target value of the sample is first
calculated before the sample, and the corresponding weight
and priority are added [21, 22]. 'e specific formula is
shown in the following:

x
i
k �

􏽐
n
j�1 x

i
j � x

i
k􏽮 􏽯.yi + ap

􏽐
n
j�1 x

k
j � x

i
k􏽮 􏽯 + a

, (4)

where p represents the added prior value and the weight
coefficient greater than zero. An a priori value is added to
significantly reduce the noise points caused by low-fre-
quency features to effectively minimize the overfitting of the
model and improve the generalization ability.

5.2. Fire Point Model Training and Optimization

5.2.1. Model Training. 'e five-year MODIS monitoring fire
point data of a southern province from 2015 to 2019 and the
nonfire point data extracted by the method described in this
study are selected as the sample set. 'e fire-spot data with a
confidence level of less than 90% is eliminated to improve
the quality of the fire-spot samples. 'e sample data after
data oversampling, normalization, one-hot encoding, fea-
ture selection, and PCA dimensionality reduction are
substituted into the CatBoost model for training. Approx-
imately 70% of the data are randomly selected for model
training and 30% for model testing. 'e temporal resolution
of NDII7, NDVI, and land surface temperature in the input
feature variables of the model are 8 days, 16 days, and 1 day,
respectively. 'e input data of NDII7, NDVI, and land
surface temperature select the data of the previous time
phase before the fire to prevent the input vegetation data and
land surface temperature from being affected by the fire and
failing to achieve the effect of fire prediction. 'e data of
human factors and terrain factors are unchanged, while the
input time phase of weather data is consistent with the fire
data. Figure 1 is the time phase relationship diagram of the
input feature variables of the CatBoost model, and Figure 2 is
the basic flow chart of model training.

5.2.2. Model Optimization. 'is study uses grid search
combined with tenfold cross-validation to optimize the
primary hyperparameters of the CatBoost model, including
iterations, learning_rate, max_depth, criterion, and feature
importance, to improve the accuracy of model fire predic-
tion. Tenfold cross-validation divides the sample data into
ten mutually exclusive training subsets. Each time nine
subsets are selected as training data, and the remaining
subset is used as test data. 'e multiple rounds of training
are repeated to ensure that each subset is as the test set, the
ten test results are obtained, and the average of the ten test
results is the accuracy of the model. 'e hyperparameters
obtained through a grid search can effectively improve the
prediction effect of the model [23].

After model optimization, the best hyperparameters of
the fire point prediction model are shown in Table 3.

5.2.3. Model Evaluation. 'is study uses accuracy, precision,
recall, F1-score, and AUC value to make a comprehensive
evaluation of the model prediction accuracy and address the
classification problem of unbalanced data of fire point
prediction. 'e confusion matrix of the fire point and
nonfire point data sets in this article is shown in Table 4.

'e evaluation index of the fire point prediction model
can be obtained according to the confusion matrix.

Table 2: Importance index of wildfire impact factors.

Land surface temperature 37.61
Distance from the road 7.31
Maximum wind speed 6.51
Slope 5.15
Aspect (NE) 0.63
Aspect (SW) 0.58
Aspect (N) 0.54
Precipitation 0.37
Wind direction (SW) 0.29
Aspect (E) 0.16
Wind direction (SE) 0.07
Wind direction (NNE) 0.00
Wind direction (ENE) 0.00
Normalized infrared index 7 9.83
Maximum temperature 6.76
Normalized vegetation index 6.24
Wind direction (WSW) 0.67
Aspect (N) 0.62
Aspect (NW) 0.55
Grass 0.44
Aspect (W) 0.35
Wind direction (SSE) 0.28
Wind direction (W) 0.16
Wind direction (E) 0.06
Wind direction (NNW) 0.00
Wind direction (N) 0.00
Elevation 9.69
Distance from cultivated land 6.63
Average relative humidity 5.84
Wind direction (S) 0.65
Aspect (SE) 0.62
Woodland 0.55
Cultivable land 0.42
Wind direction (WNW) 0.32
Wind direction (SSW) 0.27
Wind direction (ESE) 0.12
Wind direction (NW) 0.04
Wind direction (NE) 0.00
Aspect (flag) 0.00

Mathematical Problems in Engineering 5



Accuracy �
(TP + TN)

(TP + FN + FP + TN)
. (5)

Precision �
TP

(TP + FP)
. (6)

Recall �
TP

(TP + FN)
. (7)

F1-score � 2
(precision∗ recall)
(precision + recall)

. (8)

�e phase of the fire

Time phase of weather dataTime phase of remote sensing data

Model input data

TimelineT-1 phase T phase

Figure 1: Time-phase relationship diagram of the model input characteristic variables.

Data extraction

CatBoost model

Fire feature extraction Nonfire point feature 
extraction

Data preprocessing

Model training and 
evaluation

Model optimization
Discrete factor one-

hot encoding

Data oversampling

Continuous factor 
normalization

Feature selection

PCA dimensionality
reduction

Fire prediction

Meteorological dataRemote sensing data

Figure 2: Flow chart of the fire prediction model.

Table 3: Best hyperparameters of the fire prediction model.

Iterations Learning_rate Max_depth Criterion Feature importance
1000 0.05 9 Gini 0.3

Table 4: Confusion matrix of fire and nonfire points.

Predicted fire point Predicted nonfire point
Real fire point TN (true negative) FP (false positive)
Real nonfire point FN (false negative) TP (true positive)
TN: the actual value is the fire point, and it is also predicted as the fire point. FN: the actual value is a nonfire point, but it is predicted to be a fire
point. FP: the actual value is a fire point, but it is predicted to be a nonfire point. TP: the actual value is a nonfire point, and it is also predicted as a
nonfire point.
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AUC value: the AUC value is the area value under the
ROC curve, which can quantitatively reflect the model
performance measured on the basis of the ROC curve. 'e
abscissa of the ROC curve is the false positive rate, FPR� FP/
(FP +TN), and the ordinate is the true positive rate,
TPR�TP/(TP+ FN).

'is study uses the best hyperparameters obtained from
the model optimization in Section 4.2 to predict the fire
point of the sample data set. 'e final five model evaluation
indicators are shown in Table 5.

'e results shown in Table 5 demonstrate that the CatBoost
fire point prediction model after model optimization has a
nonfire point precision of 0.83, recall of 0.87, and F1-score of
0.78 and a fire point precision of 0.81, recall of 0.82, and F1-

score of 0.83. 'e final accuracy is 0.79, the overall precision is
0.82, recall is 0.84, the F1-score is 0.80, and the AUC value is
0.83. 'e fire prediction results indicated that the model’s
prediction of the fire starts with a good predictive effect, and the
risk of wildfires can be effectively predicted.

In order to more intuitively reflect the effect of the model
in predicting the risk of wildfires, this article draws the
comparison between the wildfire risk prediction maps and
real fire spots in Yunnan Province on March 15, 2020, April
15, 2020, and May 15, 2020. 'e resolution of the wildfire
risk predictionmap is 500meters, as shown in Figures 3–5. It
can be seen that more than 80% of the real fire points fall in
the high-risk area of the prediction map, which further
verifies the model’s effectiveness.

Table 5: CatBoost fire point prediction model results.

Precision Recall F1-score Support AUC
Nonfire point 0.83 0.87 0.78 889
Fire point 0.81 0.82 0.83 273
Accuracy 0.79 1162
Overall 0.82 0.84 0.80 1162 0.83
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Figure 3: 'e risk forecast of wildfires in Yunnan Province on March 15, 2020.
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Figure 4: 'e risk forecast of wildfires in Yunnan Province on April 15, 2020.
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Figure 5: 'e risk forecast of wildfires in Yunnan Province on May 15, 2020.
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6. Conclusions and Prospects

'is study uses MODIS fire data, combined with vegetation
factors, human factors, meteorological factors, surface
temperature, and terrain factors, based on feature selection
and PCA dimension reduction to find out the influencing
factors that are highly correlated with the occurrence of
wildfires. 'e research proposes a method based on Cat-
Boost algorithmic fire prediction model. 'is model can
effectively predict fire points, is helpful in preventing wildfire
risks, and has a specific guiding role for the electric power
department to avoid risks of fire and make appropriate early
warning arrangements in advance.

Although this article has achieved positive research re-
sults, it still has some deficiencies and areas worthy of in-
depth study. 'e research conducted in this study is only
based on the first-level classification of land types to make
fire forecasts and does not make precise fire forecasts under a
single ground type. Under the secondary classification of
land types, the establishment of different fire prediction
models is based on each specific feature to achieve more
precise and accurate fire prediction in the direction of
further in-depth research.
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In order to further overcome the difficulties of the existing models in dealing with the nonstationary and nonlinear characteristics
of high-frequency financial time series data, especially their weak generalization ability, this paper proposes an ensemble method
based on data denoising methods, including the wavelet transform (WT) and singular spectrum analysis (SSA), and long-term
short-term memory neural network (LSTM) to build a data prediction model. 'e financial time series is decomposed and
reconstructed by WT and SSA to denoise. Under the condition of denoising, the smooth sequence with effective information is
reconstructed. 'e smoothing sequence is introduced into LSTM and the predicted value is obtained. With the Dow Jones
industrial average index (DJIA) as the research object, the closing price of the DJIA every five minutes is divided into short term (1
hour), medium term (3 hours), and long term (6 hours), respectively. Based on root mean square error (RMSE), mean absolute
error (MAE), mean absolute percentage error (MAPE), and absolute percentage error standard deviation (SDAPE), the ex-
perimental results show that in the short term, medium term, and long term, data denoising can greatly improve the stability of the
prediction and can effectively improve the generalization ability of LSTM prediction model. As WT and SSA can extract useful
information from the original sequence and avoid overfitting, the hybrid model can better grasp the sequence pattern of the
closing price of the DJIA.

1. Introduction

As the worldwide largest economy, the US has advanced
statistical constitutions and a mature financial supervision
system, whose financial data are comprehensive, accurate,
and credible. At the same time, the US stock market co-
operates with other markets in an efficient way and plays an
important role in the US financial system, and all these
characteristics make the market a good model. On the one
hand, global stock markets react quickly to the tendency of
this market, especially in the case of unusually high market
volatility. On the other hand, most economic theories and
assumptions are based on the study of a developed financial
system with a larger and more active stock market, a more
mature economy, and a more effective financial supervision
system. As a representative of developed markets, the US
market is also the most favorable object for empirical or

theoretical propositions in academic research. 'e three
major stock indexes in the United States are the Dow Jones
Index [1], the Standard and Poor’s 500 Index, and the
Nasdaq Composite Index. 'e most famous of these indexes
is the Dow Jones Index. 'e importance of the Dow Jones
Index has been further recognized in global markets beyond
its role in the domestic market. 'e 30 companies that make
up the Dow, such as Citigroup, Coca-Cola, General Motors,
and Intel, are prestigious multinational corporations. 'ey
cover a wide range of large industries and their performance
is behind the global economy. 'erefore, forecasting the
Dow Jones index is of great significance to the entire fi-
nancial system.

At present, there are two categories of prediction models
that are suitable for financial time series: parametric model
and nonparametric model. Autoregressive (AR), moving
average (MA), autoregressive moving average (ARMA), and
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autoregressive comprehensive moving average (ARIMA) are
typical models of parameter types [2]. However, all of the
above models can only be used if the predicted time series
conforms to the statistical assumptions they have.'erefore,
the parametric model has limitations to some degree. Ad-
ditionally, the parametric model is more functional for the
time series with linear characteristics, but the financial time
series of DJIA price is characterized with nonlinearity and is
highly fluctuating, which will cause so many estimated
parameters and increase the complexity of the model. Due to
the limitations of the parametric model and features of DJIA
price, the parametric model is unsuitable for the Dow Jones
index price forecast.

Stock price prediction is a pertinent and tricky problem
that has caught the interest of many scholars. In order to
adapt to the characteristics of DJIA and ensure high accu-
racy, nonparametric models are used. Specifically, machine
learning (ML) and deep learning (DL) models are used for
DJIA prediction. Ahmed [3] found that machine learning
methods can perform better than traditional econometrics
methods. Sun et al. [4] have compared the accuracy of the
echo state network (ESN) and the long short-term memory
model (LSTM) on Kweichow Moutai’s stock price predic-
tion. 'e empirical results found that the ESN model can
alleviate the problems of the low accuracy of the deep
learning model, the slow convergence speed, and the
complex network structure. At the same time, it has higher
prediction accuracy. Cao et al. [5] used the convolutional
neural network (CNN) model to predict the stock index and
finally established the CNN-support vector machine (SVM)
stock index prediction model. 'e empirical results show
that the effect of using a neural network to predict the fi-
nancial time series is better than the traditional measure-
ment method Ustali et al. [6] have used Artificial Neural
Network (ANN), Random Forest (RF) algorithm, and
XGBoost algorithm to estimate the future price of company
stocks listed on the Istanbul Stock Exchange (BIST) United
Joint Stock Company (BIST) 30 Index. 'e empirical results
show that although the results of XGBoost and Random
Forest algorithms are similar, the prediction results of
XGBoost are slightly better. Moreover, the performance of
both models is better than ANN.

LSTM (Long Short-TermMemory) network is one of the
cyclic neural networks (RNNs). Sepp Hochreiter and Jurgen
Schmidhuber first presented this algorithm in Neural
Computing [7]. It has better performance than ordinary
RNN in data processing and prediction. Considering the
excellent performance of the LSTM network in time series,
Jiang et al. [8], taking the daily data of Shanghai Composite
Index and Dow Jones Index as the research object, re-
spectively, uses RNNS and LSTM to build the model. 'en
they found through experiments that the LSTM model
prevails over the RNNSmodel for the neural networkmodel.
However, this model is still not that well applicable to Dow
Jones Index. Actually, to ensure the prediction accuracy of
the Dow Jones Industrial Average, more potential factors,
such as the influence of policy information, should be taken
into consideration. However, the quantification of these
parameters is exceedingly difficult. 'erefore, another

method is to further mine the information of the sequence
itself through the lag term.

In order to make up for the deficiency of a single
forecasting model, a new forecasting model-hybrid model
is presented. In this category, decomposition methods,
such as empirical mode decomposition (EMD) [9] and
singular spectrum analysis (SSA) [10], are usually com-
bined with ML and DL based on financial time series
prediction models [11–13]. In recent works [14, 15], the
superiority of hybrid models has been verified because of
their preponderance in identifying time series patterns. As
there is a nonlinear relationship between the predicted
price of agricultural products and the influencing factors,
Jia et al. [16] have designed a neural network model of
LSTM-DA (Long Short-Term Memory-Double Attention)
which combines the convolutional attention network, the
LSTM network, and the attention mechanism. Compared
with the traditional signal model, this model can improve
the prediction accuracy, and the predicted price index can
accurately describe the overall trend of vegetable products
in the next week.

However, hybrid models are rarely used to forecast DJIA
prices. Meanwhile, lots of previous studies have proved that
denoising the high-frequency time series can significantly
raise the ability to extend the model and dramatically op-
timize the prediction results. At present, the empirical data
decomposition and noise reduction methods mainly include
ensemble empirical mode decomposition (EEMD), singular
spectrum analysis (SSA), and wavelet transform decompo-
sition (WT). Although the integrated empirical mode de-
composition (EEMD) can suppress the mode aliasing
problem to some extent, it may increase the complexity of
the sequence. Jung et al. [17] have integrated wavelet
transforms and recurrent neural network (RNN) based on
artificial bee colony (ABC) algorithm (called ABC-RNN) to
establish a system for the purpose of stock price prediction,
and it turns out that the performance of the presented model
is the best in TAIEX. However, it still has some insuffi-
ciencies. For example, this system lacks a solution that in-
cludes a feature selection function and addiction parameter
information provision function to achieve a simplified
system organization.

'is paper proposes an integrated method to establish a
prediction model, which utilizes data denoising methods
including the wavelet transform (WT) and singular spec-
trum analysis (SSA), and long-term short-term memory
neural network (LSTM). At the same time, we compare the
results of different models. 'e second part of this paper will
introduce the model formula used in this paper, and the
third part will introduce the data, model prediction accu-
racy, and stability results comparison. 'e fourth part is a
summary.

2. Model Formulation

In this section, based on the previous work [18], we provide
an overview of the main models used in this study, including
the LSTM, WT, hybrid WT-LSTM, SSA, and hybrid SSA-
LSTM models.
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2.1. Long Short-Term Memory. LSTM neural network was
first proposed by Hochreiter and Schmidhuber, which is
widely used to process sequence information owning to its
advantages in discovering long-term dependencies. 'ere-
fore, it is theoretically feasible to establish an LSTM neural
network model for financial high-frequency time series data.
'e structure of each neuron in LSTM is shown in Figure 1,
and its internal structure is constituted of a cell and three
gates. Cell records the state of neurons, and the function of
input gate and output gate is to receive, output, and modify
parameters. Forget gate controls the forgotten degree of the
previous state of neurons; that is, it determines the infor-
mation to be removed from the cell. 'e selection of acti-
vation function is an important part in the process of
training a neural network, which can make the neural
network learn the nonlinear factors in the data. 'e acti-
vation function used in this paper is the traditional sigmoid
activation function and tanh activation function. It mainly
includes the following stages.

'e first stage is eliminating part of the information from
the cell through the forget gate.

ft � σ bf + Wfxt + Ufht−1􏼐 􏼑, (1)

where xt represents the input of the current cell, ht−1 rep-
resents the output of the previous cell, and σ represents the
sigmoid activation function which reads the information of
xt and ht−1 and outputs a value between 0 and 1.

'e second stage is updating the status of information in
the cell.

it � σ bi + Wixt + Uiht−1( 􏼁,

􏽥Ct � tanh bc + Wcxt + Ucht−1( 􏼁,

Ct � ft × Ct−1 + it × 􏽥Ct,

(2)

where Ct−1 indicates the status of old cell information.
'e third stage is outputting the information controlled

by output gate. Firstly, we run the sigmoid layer to determine
which part of the cell state outputs. Secondly, we process the
cell state through the tanh activation function (get a value
between -1 and 1) and multiply it with the output of the
sigmoid layer. In the end, we will only output the part of the
controlled information.

Ot � σ bo + Woxt + Uoht−1( 􏼁,

ht � Ot × tanh Ct( 􏼁.
(3)

For the purpose of verifying the effectiveness and
versatility of WT and SSA filtering scheme, the most
common LSTM neural network structure is adopted in
this research. 'e characteristic quantity is selected as the
most basic highest price in the last five minutes, lowest
price in the last five minutes, closing price in the last five
minutes, and opening price in the last five minutes.
Specifically, the main structure of the LSTM neural net-
work in this paper includes a 150-node LSTM layer, a 50-
node LSTM layer, and a fully connected layer. Besides, a
dropout layer is introduced to this model in order to
compare the performance of the dropout layer and data

denoising methods. 'e calculation diagram structure of
the LSTM neural network constructed in this paper is
shown in Figure 2. 'e dotted box represents the neural
network structure.

2.2. Wavelet Transform Analysis. Dow Jones Index is sus-
ceptible to a large number of factors such as economic
development, policy changes, and investor sentiment. 'ey
usually contain lots of noise and are characterized by
nonlinearity. To raise the ability to extend of the model, the
noise data should be filtered out when the deep neural
network is used to process the nonlinear data. Wavelet
analysis can carry out multiscale refined analysis of signals
through operation functions such as stretching and
shifting, effectively eliminating noise contained in the data
and retaining the characteristics of original signals [19].
Accordingly, this paper intends to use wavelet decom-
position and reconstruction for data preprocessing of fi-
nancial time series, which is shown in Figure 3, and adopts
“wavelet denoising” to eliminate the high-frequency
components of noise in time series, so as to weaken the
influence of short-term noise disturbance on neural net-
work structure and improve the prediction performance of
the model.

Wavelet decomposition decomposes each input signal
into a signal of low frequency and a signal of high fre-
quency and merely decomposes the part of low frequency.
Assume that C0 is the original financial time series signal;
C1, C2 . . . Cl and D1, D2 . . . Dl are the first, second, and
L-layer low-frequency and high-frequency signals. 'en
it can be mathematically expressed as follows:

C0 � Cl + Dl + Dl−1 + . . . + D2 + D1 (4)

In order to denoise, the Mallat wavelet is used to be
reconstructed on the basis of the coefficients of the first N
layer with low frequency and the coefficients of 1-N layer
with high frequency of wavelet decomposition, and the high-
frequency part of zero. 'e low frequency part of wavelet
decomposition of financial sequential data reports the
general tendency of the series, and the high-frequency part
reports the short-term stochastic disturbance of this fi-
nancial time series. 'erefore, on the one hand, setting the
high-frequency part to zero can eliminate the noise and
smooth the signal. On the other hand, it can also obtain the
approximate signal of the primary financial sequential data
so as to prevent the excessive learning of the neural network
structure caused by short-term stochastic disturbance fac-
tors and raise the extrapolation and generalization ability of
the model.

2.3. WT-LSTM. In order to obtain higher accuracy, LSTM
and WT are combined to predict the price of DJIA. Hybrid
WT-LSTM consists of the following three phases and the
modeling process is shown in Figure 4.

'e first stage is WT decomposition: sym wavelet is
chosen as the wavelet basis for DJIA closing price forward
fractional solution.
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'e second stage is time series reconstruction: recon-
struct the financial time series data and raise the ability to
extend of the prediction model.

'e third stage is LSTM prediction: smoothed series 􏽥xt

and volume (Vt) are the input characteristics of LSTM.
According to the partial autocorrelation function (PACF) of
xt, the time lag of 􏽥xt and Vt is determined. 'en, the final
prediction result is obtained.

'e sym wavelet is an approximate symmetric or-
thogonal wavelet function of db wavelet, and it has better
symmetry [20]. 'e more the layers of wavelet decom-
position, the better the stability of detail signal and ap-
proximate signal. However, it will lead to greater errors in

the decomposition process, so the number of layers
should not be too much or too little. Under the cir-
cumstance of four layers of decomposition, the effect of
denoising is remarkable without eliminating much valid
information. 'erefore, in this paper, the sym4 wavelet
basis is firstly used to divide the closing price of DJIA into
four layers, so as to reconstruct the time series data of the
gold melting and raise the ability to extend the prediction
model. On this basis, the general tendency and market
volatility information in the primary data are pre-
processed. As a result, the hybrid WT-LSTM model
proposed can avoid overfitting and outperform the single
LSTM model.

Inputs Inputs Inputs Inputs Inputs

LSTM LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM LSTM

Dense Dense Dense Dense Dense

Dropout Dropout Dropout Dropout Dropout

Outputs

Figure 2: LSTM deep neural network structure.
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Figure 1: LSTM neuron structure.
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2.4. Singular Spectrum Analysis and SSA-LSTM. In order to
study the effects of the prediction accuracy of out-of-
sample data and the prediction ability of future dynamic
trend after decomposing and reconstructing financial
sequential data by wavelet transform (WT), we also carry
out a controlled experiment to study the model predic-
tion after financial time series data decomposition and

reconstruction using singular spectrum analysis (SSA).
'e effect of SSA can construct a trajectory matrix from
the observed financial time series, decompose and re-
construct the trajectory matrix, and extract the different
parts of the signal, thus effectively eliminating the noise
of the financial sequential data and retaining the features
of the primary signal.

Suppose there is a one-dimensional sequence
x(i)(i � 1, 2, . . . , n). Given that the embedding dimension is
m(m< (n/2)), a time-delay matrix X can be obtained, and
its dimension is m × k(k � n − m + 1),

X �

x1 · · · xn−m+1

⋮ ⋱ ⋮

xm · · · xn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (5)

Let S be the m × m dimensional covariance matrix of the
delay matrix, then

S �

s(0) · · · s(m − 1)

⋮ ⋱ ⋮

s(m − 1) · · · s(0)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (6)

Singular spectrum analysis is used to decompose the
covariance matrix S to obtain m singular values
λi(i � 1, 2, . . . , m). 'en arrange the obtained m singular
values in descending order. 'e magnitude of the singular
value represents the relative relationship between the signal
and the noise. 'e singular value points with larger values
are regarded as signal points, and the points with smaller
values are regarded as noise points. 'e eigenvector Ek

corresponding to λk is called the empirical orthogonal
projection function. 'e orthogonal projection coefficient of
the sampled signal x(i) on the eigenvector Ek is the k-th
principal component:

a
k
i � 􏽘

m

j�1
xi+jE

k
j (0≤ i≤ n − m). (7)

If each principal component and the empirical or-
thogonal function are known, the process of reversing the
original sequence is as follows:

xi+j � 􏽘
m

j�1
a

k
i E

k
j (1≤ j≤m). (8)

So as to reach a comparison model with the WT-LSTM
model, we combined LSTM and SSA to predict the DJIA.
'e hybrid SSA-LSTM consists of the following three stages
and the modeling process is shown in Figure 5.

'e first stage is SSA decomposition: SSA technique is
used to decompose the primary sequential data (xt) into
tendency, market volatility, and noise.

'e second stage is time series reconstruction: recon-
struct the smooth sequence based on the tendency and
market volatility signal (􏽥xt).

'e third stage is LSTM prediction: smooth series 􏽥xt and
volume (Vt) are the input characteristics of LSTM. In light
of the partial autocorrelation function (PACF) of xt, the time

Cn Dn

D3C3

D2C2

D1C1

C0

Figure 3: Financial time series wavelet decomposition.
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Input:
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Input:
Vt–1, ..., Vt-p
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III

II

I

Figure 4: Hybrid WT-LSTM model processing process.
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lag of 􏽥xt and Vt is determined. 'en, the final prediction
result is obtained.

SSA is used as a pretreatment method to extract effective
information of overall tendency and market volatility from
primary sequential data.

'is paper chooses m � 10, that is, the original series is
decomposed into ten layers. According to the singular values
shown in Table 1, it is found that, for this financial high-
frequency time series, the first layer already contains more
than 99.99% of the sequence information.'erefore, the first
layer is selected as the reconstruction of the sequence, and
the rest are regarded as noise.

2.5. Training Method and Optimizer Selection. 'e goal of
this article is to compare the prediction effect of the
closing price of DJIA, so mean square error (MSE) is
chosen as the loss function. As for the optimizer, since the
Adam algorithm has advantages over other adaptive
learning rate algorithms in convergence speed and
learning effect, this article uses the Adam optimizer
(Adaptive Moment Estimation) for optimization training.
Epochs are set to be 10. 'is article is based on the Python
language environment and uses TensorFlow as the deep

learning framework for training, prediction, and
comparison.

3. Data and Results

3.1. Data. In order to research the feasibility and effec-
tiveness of the denoising methods to forecast the actual
financial sequential data, this section compares the pre-
diction results of the RNN and LSTMmodels with a dropout
layer and the LSTM model using data denoising methods

Time series (Xt)

Decomposition with SSA

Reconstruction

Smooothed series (X~t)

Partial autocorrelation function

Input:
X~t–1, ..., X

~
t-p

Input:
Vt–1, ...,Vt-p

LSTM

Forecasting results

Trend Market fluctuation Noise

III

II

I

Figure 5: Hybrid SSA-LSTM model processing process.

Table 1: Singular values of singular spectrum analysis.

i λi

1 0.999991285112503
2 5.18930589813891e− 06
3 1.42616024536684e− 06
4 6.95916781349973e− 07
5 4.21779000682764e− 07
6 2.87333215462852e− 07
7 2.15658198719760e− 07
8 1.77801416057950e− 07
9 1.55528979155002e− 07
10 1.45403762506482e− 07
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with the prediction results of the original LSTM model. 'e
data sample has selected the latest data available in the past
years. 'at is, the time interval is from 00 : 00 on January 1,
2020, to 23 : 55 on December 31, 2020, with a time interval of
5minutes and a total of 19,666 pieces of data. And de-
scriptive statistics of the data are shown in Table 2. 'e data
come from the Wind database.

3.2. Test Set Prediction Effect Evaluation Index. To verify the
validity of the model, the prediction and verification have
been carried out from the three dimensions of short term (1
hour), medium term (3 hours), and long term (6 hours).
Root mean square error (RMSE), mean absolute error
(MAE), and mean absolute percentage error (MAPE) are
used as the prediction accuracy indexes to evaluate the
predictive effect of the test set. 'e smaller the values of the
above three indicators are, the higher the prediction accu-
racy is. 'e prediction stability is evaluated by the standard
deviation of absolute percentage error (SDAPE). 'e lower
the SDAPE value, the higher the reliability of prediction.

RMSE �

�������������

1
N

􏽘

N

i�1
yi − 􏽢yi( 􏼁

2

􏽶
􏽴

,

MAE �
1
N

􏽘

N

i�1
yi − 􏽢yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

MAPE �
1
N

􏽘

N

i�1

yi − 􏽢yi

yi

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
× 100,

SDAPE �

����������������������

1
N

􏽘

N

i�1

yi − 􏽢yi

yi

− MAPE􏼠 􏼡

2􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏽶
􏽴

.

(9)

Here, yi is the actual value and 􏽢yi is prediction derived
from the forecast model. N is the number of predictions.

3.3. Comparative Analysis of Short-Term Forecasting Effects.
For the short-term prediction effect, according to the results
shown in Table 3, in terms of prediction accuracy, RNN with
a dropout layer is superior to the LSTM model, and RMSE,
MAE, and MAPE are decreased by 11.63%, 1.96%, and
1.89%, respectively. Besides, the dropout layer [21] can
optimize the prediction effect of the original LSTM model,
and RMSE, MAE, and MAPE are decreased by 34.81%,
37.95%, and 37.95%, respectively. SSA-LSTM can optimize
the prediction effect of the original LSTMmodel, and RMSE,
MAE, and MAPE are reduced by 70.11%, 65.73%, and
65.72%, respectively. WT-LSTM can optimize the prediction
effect of the original LSTM model, reducing RMSE, MAE,
and MAPE by 79.55%, 76.91%, and 76.91%, respectively. In
terms of prediction stability, RNN with a dropout layer is
also superior to the LSTM model and the SDAPE is reduced
by 28.24%. Besides, the dropout layer can improve the
prediction stability of the original LSTM model and reduce
the SDAPE by 30.41%. SSA-LSTM can improve the

prediction stability of the original LSTM model and reduce
the SDAPE by 78.14%. WT-LSTM can improve the pre-
diction stability of the original LSTM model and reduce the
SDAPE by 84.23%. 'rough the analysis of short-term
prediction, it is found that the generalization effect of fil-
tering to prevent overfitting is better than the effect of the
dropout layer to improve the accuracy. At the same time,
wavelet transform has a good filtering effect. In terms of
prediction accuracy, WT-LSTM can improve the prediction
effect of SSA-LSTMmodel, and RMSE,MAE, andMAPE are
reduced by 31.57%, 32.64%, and 32.64%, respectively. In
terms of predictive stability, WT-LSTM can improve the
predictive stability of the SSA-LSTMmodel, and SDAPE can
be reduced by 27.85%. 'e prediction results of the four
methods are shown in Figures 6–10.

3.4. Comparative Analysis of Medium-Term Forecasting
Effects. For the medium-term prediction effect, according to
the results shown in Table 4 in terms of prediction accuracy,
RNN with a dropout layer is superior to the LSTM model,
and RMSE, MAE, and MAPE are decreased by 10.64%,
4.54%, and 4.53%, respectively. Besides, the dropout layer
can optimize the prediction effect of the original LSTM
model, and RMSE, MAE, and MAPE are decreased by
34.54%, 36.15%, and 36.14%, respectively. SSA-LSTM can
optimize the prediction effect of the original LSTM model,
and RMSE, MAE, and MAPE are reduced by 77.67%,
76.49%, and 76.49%, respectively. WT-LSTM can optimize
the prediction effect of the original LSTM model, reducing
RMSE, MAE, and MAPE by 75.60%, 73.29%, and 73.28%,
respectively. In terms of prediction stability, RNN with a
dropout layer is also superior to the LSTM model and the
SDAPE is reduced by 21.23%. Besides, the dropout layer can
improve the prediction stability of the original LSTM model
and reduce the SDAPE by 32.03%. SSA-LSTM can improve
the prediction stability of the original LSTM model and
reduce the SDAPE by 79.20%. WT-LSTM can improve the
prediction stability of the original LSTM model and reduce
the SDAPE by 79.79%. 'rough the analysis of medium-
term prediction, we can see that the generalization effect of
filtering to prevent overfitting is better than the effect of the
dropout layer to improve the accuracy. At the same time,
singular spectrum analysis also has a good effect on filtering.

Table 2: Descriptive statistics of DJIA closing price every 5
minutes.

Obs Mean Std. dev Variance Skewness Kurtosis
19666 26876 2513.763 6319004 -0.8633175 3.213287

Table 3: 1-hour DJIA closing price forecast results.

RMSE MAE MAPE SDAPE
LSTM 5.8516916 4.5195833 0.0001481 0.0001218
RNN-dropout 5.1708886 4.4310000 0.0001453 0.0000874
LSTM-dropout 3.8146496 2.8042500 0.0000919 0.0000848
SSA-LSTM 1.7488158 1.5490332 0.0000508 0.0000266
WT-LSTM 1.1966503 1.0434276 0.0000342 0.0000192
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In terms of prediction accuracy, SSA-LSTM can improve the
prediction effect of the WT-LSTMmodel and reduce RMSE,
MAE, and MAPE by 8.46%, 12.00%, and 12.00%,

respectively. Concerning predictive stability, WT-LSTM can
improve the predictive stability of the SSA-LSTMmodel and
reduce SDAPE by 2.84%. 'e predicted results of the four
methods are shown in Figures 11–15.

3.5. Comparative Analysis of Long-Term Forecasting Effects.
For long-term forecasts, according to the results shown in
Table 5, in terms of prediction accuracy, RNN with a
dropout layer is superior to the LSTM model, and RMSE,
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Figure 6: Short-term LSTM prediction.
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Figure 7: Short-term RNN-dropout prediction.
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Figure 8: Short-term LSTM-dropout prediction.
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Figure 9: Short-term SSA-LSTM prediction.
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Figure 10: Short-term WT-LSTM prediction.

Table 4: 3-hour DJIA closing price forecast results.

RMSE MAE MAPE SDAPE
LSTM 5.2447743 4.1066389 0.0001347 0.0001069
RNN-dropout 4.6867001 3.9202222 0.0001286 0.0000842
LSTM-dropout 3.4334542 2.6221944 0.0000860 0.0000727
SSA-LSTM 1.1713269 0.9653596 0.0000317 0.0000222
WT-LSTM 1.2796409 1.0970283 0.0000360 0.0000216
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MAE, and MAPE are decreased by 13.02%, 6.03%, and
5.99%, respectively. Besides, the dropout layer can optimize
the prediction effect of the original LSTMmodel, and RMSE,

MAE, and MAPE are decreased by 26.99%, 29.56%, and
29.54%, respectively. SSA-LSTM can optimize the prediction
effect of the original LSTM model, and RMSE, MAE, and
MAPE are reduced by 80.94%, 78.28%, and 78.28%, re-
spectively. WT-LSTM can optimize the prediction effect of
the original LSTMmodel, reducing RMSE,MAE, andMAPE
by 68.92%, 69.15%, and 69.14%, respectively. In terms of
prediction stability, RNN with a dropout layer is also su-
perior to the LSTM model and the SDAPE is reduced by
22.35%. Besides, the dropout layer can improve the pre-
diction stability of the original LSTM model and reduce the
SDAPE by 23.90%. SSA-LSTM can improve the prediction
stability of the original LSTM model and reduce the SDAPE
by 84.82%. WT-LSTM can improve the prediction stability
of the original LSTM model and reduce the SDAPE by
68.57%. According to the analysis of long-term prediction,
we can see that the generalization effect of filtering to prevent
overfitting is better than the effect of the dropout layer to
improve the accuracy. At the same time, singular spectrum
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Figure 11: Medium-term LSTM prediction.
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Figure 12: Medium-term RNN-dropout prediction.
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Figure 13: Medium-term LSTM-dropout prediction.
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Figure 14: Medium-term SSA-LSTM prediction.
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Figure 15: Medium-term SSA-LSTM prediction.
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analysis also has a good effect on filtering. In terms of
prediction accuracy, SSA-LSTM can improve the prediction
effect of the WT-LSTMmodel and reduce RMSE, MAE, and
MAPE by 38.67%, 29.60%, and 29.63%, respectively. In
terms of predictive stability, SSA-LSTM can improve the
predictive stability of WT-LSTM model and reduce SDAPE
by 51.70%. 'e predicted results of the four methods are
shown in Figures 16–20.

Table 5: 6-hour DJIA closing price forecast results.

RMSE MAE MAPE SDAPE
LSTM 6.1655946 4.5780000 0.0001503 0.0001356
RNN-dropout 5.3630017 4.3020694 0.0001413 0.0001053
LSTM-dropout 4.5014469 3.2249583 0.0001059 0.0001032
SSA-LSTM 1.1753464 0.9942363 0.0000326 0.0000206
WT-LSTM 1.9164739 1.4123594 0.0000464 0.0000426
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Figure 16: Long-term LSTM prediction.
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Figure 17: Long-term RNN-dropout prediction.
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Figure 18: Long-term LSTM-dropout prediction.
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Figure 19: Long-term SSA-LSTM prediction.
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Figure 20: Long-term WT-LSTM prediction.
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In summary, both WT-LSTM and SSA-LSTM can sig-
nificantly enhance the prediction ability of the original
LSTM and raise the prediction accuracy and stability, es-
pecially the generalization ability, no matter in the short,
medium, or long term. Also, in the short term and medium

term, the improvement effect of WT-LSTM is better than
that of SSA-LSTM, while in the long term, the improvement
effect of SSA-LSTM is better than that of WT-LSTM. A
comprehensive comparison of the prediction results of the
four methods is shown in Figures 21–23.
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Figure 21: Short-term prediction results.
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Figure 22: Medium-term prediction results.
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4. Conclusion and Discussions

'is paper has discussed the theoretical basis of deep
learning and the practical application of LSTM price pre-
diction and has proposed the use of denoising methods to
reduce noise on high-frequency financial time series to
minimize the effect of random interference noise to raise the
prediction generalization of the model for out-of-sample
data. 'e results are also significant enough to prove the
improvement of the LSTM predicting model with effective
denoising methods, especially wavelet transform and sin-
gular spectrum analysis.

In light of the empirical results of the DJIA 5 minutes
closing data, the following conclusions can be drawn: firstly,
the use of wavelet transform and singular spectrum analysis
to denoise data can significantly raise the ability to extend of
LSTM neural network and WT’s effect is better than SSA’s
effect in the short term and medium term, but worse than
SSA filtering method in the long term. Secondly, with the
extension of the time limit, the generalization ability of
wavelet transform and reconstructed filter sequence in the
prediction of LSTM neural network is weakening, while the
generalization ability of singular spectrum analysis de-
composition and reconstructed filter sequence in the pre-
diction of LSTM neural network is increasing. But the
prediction effect of wavelet transform and singular spectrum
analysis reconstruction filter is still significant. 'irdly, the
WT-LSTM neural network and SSA-LSTM neural network
can converge quickly in a small amount of time and has a
good prediction effect under the high-frequency data, which
provides a new idea for financial risk management and
monitoring under high-frequency trading. 'ese findings
can be widely used in the selection of methods for processing
time series. To be specific, WT-LSTM is recommended to be
chosen when processing relatively short-term time series,
while SSA-LSTM is more efficient in processing long-term
time series.

In view of the high tunability of neural networks, there
are still many technical improvements in future research,
such as adding more nonhomogeneous information as
input to the neural network and optimizing the structure
of the neural network itself. It is worth noting that ap-
plying the advantages of big data in the financial high-
frequency time series to the investment field can enable
investment opportunities to be discovered by investors in
a timely manner and facilitate the development of in-
telligent investment in the financial market. In addition, it
can also strengthen risk management, improve the effi-
ciency of risk identification, and effectively maintain the
stability of the financial market.
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'e research objects of this paper were the prefabricated concrete components produced by four enterprises in China, and the
dimension deviation data of more than 1400 prefabricated concrete components are measured with high-precision 3D pho-
togrammetry technology. 'e nonparametric Kruskal–Wallis test was carried out for the size deviation of the same type of
components produced by different enterprises. 'e distribution characteristics of geometric parameters of typical components of
prefabricated structures in China, such as beams, columns, wall boards, and composite slabs, were analyzed by using the
probability statistical method. 'e Kolmogorov–Smirnov goodness-of-fit method was used to test the cumulative distribution
function of dimension deviation, and the size distribution of fabricated components was studied. 'e results showed that there
was no significant difference in the size deviation of the same-type component produced by different enterprises, and the range of
geometric parameter uncertainty random variables was small, which was between 0.99 and 1.02. Also, the fluctuation was small,
the coefficient of variation was below 0.0093, and the variability of component size deviation was small. 'e transverse dimension
of the component shows a positive deviation, the vertical dimension of component shows a negative deviation, and the dimension
deviation of prefabricated concrete components follows the normal distribution.

1. Introduction

Prefabricated building is one of the important directions of
building structure development, which is conducive to the
development of building industrialization. As a crucial part
of the prefabricated concrete (PC) structure, the quality of
prefabricated components plays an important role in the
overall structural performance [1]. In terms of the splicing
structure of prefabricated components, if the size of pre-
fabricated components is too large, it would be difficult to
assemble and if the size is too small, the joints between
components would be too large, causing water seepage
problems. From the aspect of stress performance, when
analyzing the reliability of the structure according to the
probability limit state design method, the failure probability
of the structural part or its corresponding reliability index is
used as the measurement, and the geometrical dimension

variable is one of the aspects that affect the resistance of the
structural part. Moreover, contemporary buildings have
become lighter and more vulnerable to building movement
and subsequent geometric changes [2]. 'e lack of uni-
formity of accuracy between factory-made and in-situ
components and the higher level of building movements in
the contemporary building are two major factors that affect
the dimensional and geometric accuracy of buildings [3].
'e conversion of a good design into a good product (e.g., a
building) is a matter of keeping dimensional and geometric
variations within tolerances that are predetermined at the
design stage [4]. 'e acceptability of a product depends on
whether its variations in size and geometry fall within set
limits; thus, the bridge between design and production is
tolerance. In other words, tolerances interlink design with
construction because without specifying the tolerances, it is
not clear whether components and subassemblies (i.e.,
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connections of two or more components) meet the design
intent regarding the accuracy of the final product [5].

At present, there are many quality control standards for
fabricated components, such as German DIN18203 and
DIN18202 standards, Japanese JASS10, American MNL-116
and ACI regulations, and Chinese standards GB/T51231-
2016 and GB/T 51232-2016 [6–10]. Each standard specifies
the dimensional deviation of prefabricated components.
'ese standards usually determine the allowable value of
dimensional deviation based on traditional experiences [11],
and the deviation allowable value for prefabricated com-
ponents is strictly controlled and appropriately modified
based on the relevant specifications of cast-in-place concrete.
Scholars do not pay attention to the prefabricated compo-
nent manufacturers’ production capacity and have not
systematically investigated the dimensional deviation of
prefabricated components [12]. To determine the reliability
of the concrete structure design, in the 1970s and 1980s [13],
a survey of the size deviation of cast-in-place concrete
structures was conducted in China [13]. Liu et al. [11]
conducted the statistical investigation on the size deviation
of cast-in-place concrete structures in Beijing and suggested
adjusting the size deviation acceptance index, while Mao and
Shi [14] conducted the statistical investigation and analysis
on the section size and axis position of cast-in-place concrete
structures, and they believed that the deviation of concrete
section size obeys the normal distribution, yet the axis
position deviation obeys the logarithmic distribution.
Nowadays, there are many types of research on the size
deviation of cast-in-situ structures, but there are quite few
statistical studies on the size deviation of prefabricated
concrete components. 'erefore, it is of great significance to
systematically investigate the size deviation of fabricated
components.

In this paper, the dimensions of fabricated concrete
components of different companies in China are measured
by 3D photogrammetry technology, obtaining a database of
wall board, composite slab, beam, and column size devia-
tion. 'e dimensional deviation distribution characteristics
of fabricated components are analyzed.

2. Data Acquisition

2.1. Overview of Sample Acquisition. 'e focus is mainly on
the component forms existing in prefabricated building
structures: beams, columns, wall panels, and composite
slabs. In terms of survey objects, components produced by
prefabricated component factories in different regions of
China are mainly selected. Random sampling is used for
each type of component. Detailed information about the
number of survey samples is shown in Table 1.

2.2. Measurement Method. Prefabricated building produc-
tion and installation have higher precision requirements
than traditional cast-in-situ concrete structures. 'e tradi-
tional measurement method for prefabricated concrete
buildings is mainly using steel rulers, and there are problems
with the use of steel rulers in measuring the dimensions of

prefabricated concrete components, such as insufficient
accuracy, large errors, and difficulty in measuring the edge
corners of the component dimensions. 'e HL-3DP is a
medium-range photogrammetry scanner type. It was
designed for medium-space applications such as building,
civil and survey, and forensics. 'ree-dimensional photo-
grammetry known as HL-3DP was applied for prefabricated
concrete, and the scanned data were managed with their
associated software HOLON3DP. HL-3DP is a high-accu-
racy and medium-range photogrammetry system. It is as-
sociated with a high-resolution camera. Table 2 shows the
specification of HL-3DP. 'erefore, in this article, HL-3DP
three-dimensional photogrammetry was adopted to collect
sample data. Figure 1 shows the on-site measurement of
prefabricated components. 'e relative error of this method
is less than 5%, and the absolute error is less than 0.01mm.
'e measurement of the size of the prefabricated compo-
nent, thus, resulted in high precision in terms of both ex-
perimental error and measurement accuracy.

2.3. Accuracy Assessment. Accuracy assessment was also
performed in this study. 'e findings show that the 3D
photogrammetry of HL-3DP can provide high accuracy of
the building structure. To get a systematic accuracy as-
sessment, the evaluation of the estimate accuracy was carried
out using equation (1), where x represents each value in the
dataset, x represents themean of all values in the dataset, and
n represents the number of value in the dataset.

RMSE �

�����������

􏽐
n
i−1 (x − x)

2

n

􏽳

. (1)

'e root-mean-square error (RMSE) was used to
measure the differences between values observed. According
to Mao and Shi [14], RMSE is commonly used in the re-
search field to describe the accuracy of features and it is
acceptable to measure the error and estimate the quality of
features. 'e lower the RMSE value, the better the accuracy.

Table 3 shows the dimensional measurement difference
between the measuring steel tape and photogrammetry
system. Meanwhile, the analysis for this study included the
comparison of measurement between the photogrammetry
system and conventional method (measuring steel tape) with
the design value.'e comparison is performed and recorded
in Table 4. 'e RMSE value of the photogrammetry system
data was 0.60mm while that of the measuring steel tape
method was 0.94mm. As the result, the tolerance of the
photogrammetry system model is well within the 0.01-
millimeter level. 'e photogrammetry system model has a
lower tolerance compared to the measuring steel tap. 'is
proved that the photogrammetry system method was
accurate.

3. Results of Sample Collection

In the process of statistical analysis of the geometric pa-
rameters of the components, because the design dimensions
of the components are not the same, to analyze and compare
the variation of the dimensions described by the uncertainty
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of the geometric parameters with the random variable KA

[15], which can be expressed as shown in equation (2), where
a is the actual value of the geometric parameter of the
component and aK is the standard value of the geometric
parameter of the component (usually the design value),

KA �
a

aK

. (2)

When analyzing the variability of the geometric di-
mensions of components, variables such as length, width,
and height are regarded as independent random variables.

Taking the same type of component produced by the same
enterprise as a matrix, its statistical parameters are analyzed
with a subsample of capacity n> 50. Integrating the statis-
tical analysis results of various enterprises, the weighted
average of the same type of component size variation is used
to reflect the variation level of geometric dimensions. 'is
paper is based on the measured data, and the number of
subsamples participating in the statistical analysis is the
weight (the capacity is n) [16]. Statistical parameters of
random variables with uncertain geometric dimensions of
various components were obtained as follows:

Table 1: Sample number of prefabricated concrete members in different enterprises.

Survey object
Sample number of prefabricated parts

Beam components Column components Wall panel components Composite slab components
Enterprise 1 62 66 102 87
Enterprise 2 54 129 84 96
Enterprise 3 76 94 64 111
Enterprise 4 103 85 121 107

Table 2: Specification of 3D photogrammetric HL-3DP.

HL-3DP 3D photogrammetric instrument

Range measurement principle scanner control Measurement of noncontact optical tricoordinate
Range Up to 20m (minimum range 0.01m)
Field of view 360°horizontal, 360°vertical
Signal image 1.8MB, 4Mpixels (1920×1920 pixel)
Ranging error ±0.01mm

(a) (b)

Figure 1: 3D photogrammetric component size. (a) Composite slab 3D measurement. (b) 3D measurement of prefabricated columns.
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μKA
�

􏽐
n
i�1 niμKAi

􏽐
n
i�1 ni

, (3)

δKA
�

􏽐
n
i�1 niδKAi

􏽐
n
i�1 ni

, (4)

where ni is the subsample capacity of the geometric char-
acteristic value of a certain construction unit, μKA

is the
average value under capacity ni, and δKA

is the coefficient of
variation under ni capacity. According to equations (2) and
(3), the statistical parameters of the random variable of the
geometric parameters of the component can be obtained.

3.1. Analysis of Acquisition Results. Taking prefabricated
concrete components produced by different companies as
the research object, analyzing the difference in geometric
uncertainty of component size in different enterprises,
and calculating the average production component KA

maximum, minimum, upper, and lower quartiles of each
enterprise production, Figures 2–5 give a comparison of
box plots. 'e figures show the different production
enterprise production ranges of similar artifacts are

similar, both in the range of 0.99 to 1.02. 'e abnormal
port of beam members accounted for 3.4%, the abnormal
points of column members accounted for 0.8%, the ab-
normal percentage of wall slabs accounts for 3.4%, and
the abnormal percentage of composite slab slabs accounts
for 1.2%. 'ere are fewer abnormal points, which indi-
cates that the variability of component size deviation in
the actual production process is small. 'e volume of the
box body represents the dense and discrete degree of data
distribution in the group. 'e length and width of beams,
columns, wall panels, slabs, and width values KA of the
box body are relatively short, and the fluctuation is small.

Table 5 shows the comparison results of the KA value
among similar components of different manufacturers. 'e
horizontal size of the components produced by different en-
terprises (wall panel height, wall panel width, composite slab
length, and composite slab width) dimension uncertainty is less
than 1, which is biased towards negative deviation, and lon-
gitudinal member dimensions are greater than 1, which are
biased toward positive deviation. 'e size deviation of similar
PC components produced by different companies is not large,
which proves the reliability of the measured data. Manufac-
turers have less influence on the size of prefabricated PC

Table 4: Comparison of measurement between the measuring steel tape and photogrammetry system.

Prefabricated Measuring steel tape (mm) x2 Photogrammetry system x2

Prefabricated −3 9 −1.86 3.46

Beam components −2 4 −0.82 0.67
−3 9 −2.03 4.12

Prefabricated −4 16 −2.08 4.33
Column −3 9 −2.07 4.28
Components −3 9 −0.67 0.45
Prefabricated wall −3 9 0.16 0.02

Panel components 2 4 0.76 0.58
2 4 −0.65 0.42

Prefabricated −5 25 3.94 15.52
Composite slab −3 9 3.05 9.30
Sum Σ 107 Σ 43.15
RMSE

��
Σ

√
/11 0.94

��
Σ

√
/11 0.60

Table 3: Result of dimensional measurement.

Prefabricated Dimension Design value (mm) Measuring steel tape (mm) Photogrammetry system (mm)

Prefabricated beam components
Length 2830 2833 2831.86
Width 400 402 400.82
Height 410 413 412.03

Prefabricated column components
Length 2535 2539 2537.08
Width 500 503 502.07
Height 520 523 520.67

Prefabricated wall panel components
Height 6630 6633 6629.84
Width 2600 2598 2599.24

'ickness 240 238 240.65

Prefabricated composite slab∗ Length 4350 4355 4346.06
Width 3930 3933 3926.95

∗Since the thickness direction of the prefabricated composite slab is cast-in-place concrete, it was not counted.

4 Mathematical Problems in Engineering



components. 'e coefficients of variation KA are below 0.0093,
and the variation is small, indicating that similar components
produced by different companies have the same size
characteristics.

3.2. Correlation Test of Dimensional Deviation. With the
significant level a � 0.05 as the difference, a single factor
analysis of variance on the dimensions of the components
produced by the four companies is performed, the differ-
ences between the components produced by each factory are
discussed, and it is evaluated whether the dimensional de-
viations of the components can be traced to a certain extent
so that the measurement results of different component
factories are comparable.

'e Kruskal–Wallis test [17] infers whether the sample
comes from the populationmedian or the distribution pattern is
significantly different. 'is method neither requires the data to

obey the normal distribution nor does it require the homo-
geneity of variance. 'e Kruskal–Wallis test is a nonparametric
test method to test whether multiple population distributions
are the same. Firstly, samples in multiple groups are mixed and
sorted in ascending order to find the rank of each variabl; if the
values show no big difference, it can be considered that the
distributions of multiple populations are not significantly dif-
ferent; on the contrary, if the rank means of each group are
significantly different, the data of multiple groups cannot be
mixed, and if the distributions of multiple samples are signif-
icantly different, the statistic constructed by the Kruskal–Wallis
test is the K–W statistic, which is pRi,R, shown as follows:

p �
12

N(N + 1)
􏽘

k

i�1
ni Ri − R( 􏼁

2
,

Ri �
Ri

ni

,

R �
N + 1
2

,

(5)

where k is the number of sample groups, N is the total
sample size, Ri is the sum of ranks of the group I, Ri is the
average rank of the group I, and R is the total average rank.

Assuming that the distribution of the size deviation of
similar components is the same in the company category, if
p< a, the null hypothesis is rejected, and the size deviation
distributions of similar components produced by different
companies have significant differences; on the contrary, if
p> a, then accept the null hypothesis, which means that the
size deviation distribution of similar components produced
by different companies has no significant difference. 'e
nonparametric Kruskal–Wallis test was performed by
SPSS19.0 software, and the analysis results are shown in
Table 6. 'e significance value of each component size is
greater than the significance level of 0.05, accepting the
former hypothesis, so there is no significant difference in the
size deviation of similar components produced by different
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Figure 2: Box plot of geometric uncertainty of the beam member.
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Figure 3: Box plot of geometric uncertainty of the column
member.
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companies. 'e size deviation values of the same types of
components produced by different companies can be used as
subsamples to analyze the distribution characteristics of the
size deviations of fabricated components in China.

4. Frequency Distribution of Size Deviation

Since there is no significant difference in the size deviation of
the same type components, the size deviations of the same-
type components produced by different companies are in-
tegrated as a sample of the size deviation, and the distri-
bution law of size deviation is analyzed using histograms and
box plots.

4.1. Dimensional Deviation Distribution of Prefabricated
Beam Components. Calculating the difference between the
measured data and the design value of the prefabricated beam,
the sample size is 295, which is divided into 20 groups. 'e
histogram is drawn with the deviation value as the abscissa and
the measured frequency as the ordinate, as shown in Figure 6.

As seen in Figure 6, the dimensional deviation distribution
histogram for the beam decreases from the center to the sides,
and it can be seen from Figure 6 that the dimensional deviation
distribution histogram of the beam is a normal distribution.

'e length deviation of beam components mainly
concentrated in the range of 0–6mm, 'e most frequent
deviation is 2–4mm, the mean is 3.02mm, and the variance
is 1.91. 'e width deviation range is mainly concentrated in
the range of 0-3mm, the mean value is 1.57mm, and the
variance is 1.56, 'e height deviation is mainly concentrated
in the range of 0–5mm, the mean value is 2.44mm, and the
variance is 3.27.

'e maximum, minimum, upper quartile, lower quartile,
and median of the size deviations are compared using box
plots, as shown in Figure 7. 'e characteristic values of the
three-dimensional dimensional deviation of prefabricated
beam components are all significantly different, and the di-
mensional deviations are basically positive deviations. 'ere is
no abnormal value in the length dimension deviation, the
median is located in the center of the upper and lower quartiles,
and the box chart is symmetrical about the median line, in-
dicating that the length dimension deviation is symmetrically
distributed. Both height and width deviations have abnormal
values. 'e height deviation abnormal values are concentrated
on the smaller value side and the median tends to the upper
quartile, indicating that the height size deviation distribution is
right-skewed distribution. 'e width size deviation abnormal
values are concentrated on the larger value side and themedian
tends to the lower quartile, indicating that the width deviation
distribution is left-skewed distribution.

4.2. Dimensional Deviation Distribution of Prefabricated
Column Components. Calculating the difference between
the measured data and the design value of the prefabricated
column, the sample size is 374, which is divided into 20
groups. 'e histogram is drawn with the deviation value as
the abscissa and the measured frequency as the ordinate, as
shown in Figure 8. As seen in Figure 8, the dimensional
deviation distribution histogram for the column decreases
from the center to the sides, and it can be seen from Figure 8
that the dimensional deviation distribution histogram of the
column is a normal distribution.

'e length deviation of the column components mainly
concentrated in the range of −5-1mm, the most frequent
deviation is −3-1mm, the mean value is −2.05mm, and the
variance is 3.74; the width deviation mainly concentrated in the
range of −1-3.5mm, themost frequent deviation is 0.7–1.5mm,
the mean value is 1.34mm, and the variance is 1.21; the height
deviation is mainly concentrated in the range of −2–5mm, the
most frequent deviation is 1.5–2.5mm, the average is 1.88mm,
and the variance is 4.34.

'e maximum, minimum, upper quartile, lower quartile,
andmedian of the size deviations are compared using box plots,
as shown in Figure 9. 'e characteristic values of the three-
dimensional dimensional deviation of prefabricated column
components are all significantly different.'ere is no abnormal
value for the width dimension deviation, the median deviation
of width is located in the center of the upper and lower quartiles,
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Figure 4: Box plot of wall panel geometric uncertainty.
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Figure 5: Box plot of geometric uncertainty of slab.
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and the square box chart is symmetrical about the median line,
which means that the dimension deviation is symmetrically
distributed. 'e abnormal values of height deviation are con-
centrated on the side of the larger value, and the median de-
viation tends to the upper quartile, indicating that the height
dimension deviation is right-skewed distribution. Although
there are outliers on both sides of the length deviation, the box
chart is symmetrical about the median, and the proportion of
the outliers in the upper and lower quartiles is consistent;
therefore, it can be considered that the length deviation is
symmetrical.

4.3.DimensionalDeviationDistribution of PrefabricatedWall
Panel Components. Calculating the difference between the
measured data and the design value of the prefabricated wall

panel, the sample size is 371, which is divided into 20 groups.
'e histogram is drawn with the deviation value as the
abscissa and the measured frequency as the ordinate, as
shown in Figure 10. As seen in Figure 10, the dimensional
deviation distribution histogram for the wall panel decreases
from the center to the sides, and it can be seen from Fig-
ure 10 that the dimensional deviation distribution histogram
of the wall panel is a normal distribution.

'e height deviation size of prefabricated wall panels is
mainly concentrated in the range of −5-0mm, the most fre-
quent deviation is −3.5-2.8mm, the average is −2.39mm, and
the variance is 2.91. 'e width deviation mainly concentrated
in the range of −3-0.5mm, themost frequent deviationwas−1-
0.6mm, the mean value was −1.13mm, and the variance was
1.57. 'e thickness deviation is mainly concentrated in the

Table 5: Summary of sample statistical.

Prefabricated
components Project

μk/mm
(δk)

Deviation range (mm)

Enterprise
1

Enterprise
2 Enterprise 3 Enterprise

4 Enterprise 1 Enterprise 2 Enterprise 3 Enterprise 4

Prefabricated
beammember

Length 1.0011 1.0009 1.0010 1.0065 [0.04, 5.44] [−0.77, 5.32] [0.53, 5.52] [0.16, 6.78](0.0004) (0.0005) (0.0004) (0.0034)

Width 1.0030 1.0067 1.0035 1.0036 [−1.05, 3.13] [−0.81, 6.06] [−0.09, 3.39] [−1.48, 4.72](0.0023) (0.0038) (0.0018) (0.0030)

Height 1.0039 1.0061 1.0047 1.0065 [−4.74, 5.85] [−1.25, 5.11] [−1.56, 5.33] [−1.09, 7.79](0.0056) (0.0032) (0.0031) (0.0034)

Prefabricated
column
member

Length 0.9996
(0.0007)

0.9991
(0.0007)

0.9993
(0.0007)

0.9993
(0.0006) [−4.53, 4.29] [−8.06, 1.81] [−6.54, 1.48] [−6.16, 1.09]

Width 1.0035
(0.0019)

1.0031
(0.0029)

1.0033
(0.0029)

1.0039
(0.0032) [−0.25, 3.91] [−1.44, 3.30] [−1.30, 3.90] [−1.25, 4.04]

Height 1.0026
(0.0040)

1.0053
(0.0061)

1.0033
(0.0029)

1.0055
(0.0056) [−1.51, 6.48 ] [−3.65, 6.21] [−2.28, 6.81] [−2.19, 8.23]

Prefabricated
wall panel
components

Height 0.9996
(0.0002)

0.9994
(0.0005)

0.9994
(0.0006)

0.9992
(0.0006) [−5.81, 0.24] [−5.42, 2.16] [−5.03, 1.15] [−6.57, 3.29]

Width 0.9996
(0.0005)

0.9997
(0.0004)

0.9996
(0.0003)

0.9997
(0.0004) [−4.75, 2.29 ] [−4.36, 2.05] [−3.32, 1.77] [−4.38, 2.04]

'ickness 1.0071
(0.0093)

1.0121
(0.0089)

1.0076
(0.0070)

1.0054
(0.0084) [−3.45, 5.88 ] [−0.67, 5.98] [−1.09, 4.48] [−4.28, 5.98]

Prefabricated
composite
slab

Length 0.9994
(0.0006)

0.9994
(0.0003)

0.9993
(0.0003)

0.9992
(0.0005) [−5.99, 3.10] [−4.84, 1.12] [−5.23, 0.23] [−5.41, 0.92]

Width 0.9994
(0.0004)

0.9993
(0.0003)

0.9994
(0.0004)

0.9991
(0.0004) [−4.88, 1.22] [−6.20, 0.09] [−3.89, 2.13] [−3.48, 1.10]

Table 6: Kruskal–Wallis inspection of component size deviation.

Prefabricated components Project N Ri Ri p a∗

Prefabricated beam member
Length 295 584.07 146.02 0.131

0.05

Width 295 611.65 152.91 0.177
Height 295 575.88 143.97 0.123

Prefabricated column member
Length 368 765.93 191.48 0.401
Width 368 741.33 185.33 0.231
Height 368 727.64 181.91 0.090

Prefabricated wall panel components
Height 404 818.47 204.61 0.061
Width 404 818.34 204.59 0.053

'ickness 404 821.64 205.41 0.077

Prefabricated composite slab Length 401 808.91 202.23 0.097
Width 401 796.64 199.16 0.081

∗Significance is progressive significance, and the significance level is 0.05.
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range of −1.5-4mm, the most frequent deviation is
1.0–1.6mm, the average is 1.81mm, and the variance is 4.13.

'e maximum, minimum, upper quartile, lower quartile,
andmedian of the size deviations are compared using box plots,
as shown in Figure 11. 'e characteristic values of the three-
dimensional dimensional deviation of prefabricated wall panel
components are all significantly different. 'e characteristic
values of the wallboard size deviation are significantly different.
'e height and width deviations are basically negative devia-
tions, and the thickness deviations are basically positive devi-
ations. 'e abnormal values of height and width deviations are
concentrated on the larger value side, and the median deviation
tends to the upper quartile indicating that the height dimension
deviation and width dimension deviation are right-skewed
distribution, and the thickness deviation abnormal values are
concentrated on the smaller value side, which means that the
thickness deviation distribution is left-skewed distribution.

4.4. Dimensional Deviation Distribution of Prefabricated
Composite Slab Components. Because the thickness direc-
tion of the composite slab is cast-in-place concrete, the

thickness of the composite slab is not counted. Calculating
the difference between the measured data and the design
value of the prefabricated composite slab components, the
sample size is 401, which is divided into 20 groups. 'e
histogram is drawn with the deviation value as the abscissa
and the measured frequency as the ordinate, as shown in
Figure 12. As seen in Figure 12, the dimensional deviation
distribution histogram for composite slab decreases from the
center to the sides, and it can be seen from Figure 12 that the
dimensional deviation distribution histogram of the com-
posite slab is a normal distribution.

'e length deviation size of the composite slab is mainly
concentrated in the range of −5-0mm, the most frequent
deviation is −2.6-2.0mm, the mean value is −2.44mm, and
the variance is 2.21; 'e width deviation mainly concen-
trated in the range of 0–3mm, the most frequent deviation is
−2.5-2.0mm, the mean value is 1.34mm, and the variance is
1.21.

'e maximum, minimum, upper quartile, lower
quartile, and median of the size deviations are compared
using box plots, as shown in Figure 13. 'e dimensional
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Figure 6: Histogram of beam member size deviation distribution. (a) Statistical histogram of beam length deviation. (b) Statistical
histogram of beam width deviation. (c) Statistical histogram of beam height deviation.
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deviation characteristic values of the composite slab slabs
are all significantly different, and the dimensional devi-
ations are basically negative deviations, there are ab-
normal values in the length and height deviation. 'e
length deviation abnormal value is concentrated on the

larger value side, which means that the length deviation
distribution is skewed to the left-skewed distribution, and
the width deviation abnormal values are concentrated on
the side of the smaller value, which means that the width
deviation distribution is right-skewed distribution.
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Figure 7: Box plot of beam size deviation distribution.
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Figure 8: Histogram of column member size deviation distribution. (a) Statistical histogram of column length deviation. (b) Statistical
histogram of column width deviation. (c) Statistical histogram of column height deviation.
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4.5. Frequency Distribution Inspection of Dimensional
Deviation. In statistics, the Kolmogorov–Smirnov test (KS
test) [18, 19] is used to test whether two empirical

distributions are the same or whether one empirical dis-
tribution is different from another ideal distribution. As-
suming that X1, X2, . . . , XN and Y1, Y2, . . . , YN are two
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Figure 9: Box plot of column size deviation distribution.
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Figure 10: Histogram of wall panel size deviation. (a) Statistical histogram of wall panel height deviation. (b) Statistical histogram of wall
panel width deviation. (c) Statistical histogram of wall panel thickness deviation.
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different samples, K–S can be used to test whether the two
samples belong to the same population, and it depends on
the value of the test statistic D. 'e D value is defined as

D � max SX(x) − SY(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (6)

Among them, SX(x) and SY(x) are the cumulative dis-
tribution functions of the two samples, respectively. If the value
ofD is small, it can be judged that the two samples are from the
same population. Taking into account that the versatility of the
normal probability distribution to random variables and the
general significance of Weibull’s theory in analyzing the size
effect of concrete [20], these two probability statistical distri-
butions are compared with the size deviation values of fabri-
cated components. By using Matlab, the normal distribution
function y � normrnd(X, σ, m, n) is used to generate a sample
that conforms to the normal distribution with the average value
X and the standard deviation σ. 'e Weibull distribution
function y � weibrnd(X, a, b) is used to generate a sample that
conforms to the Weibull distribution with X as the average,
where a is the scale parameter and b is the shape parameter.

Figures 14–17 are the curve fitting diagram of the cumu-
lative distribution function of different component size devi-
ations. 'eWeibull cumulative distribution function curve and
the normal distribution function curve are similar to the
component size deviation cumulative distribution function
curve. Intuitively, the length deviation cumulative distribution
and the width size deviation fit well with the normal distri-
bution, but are significantly different with the Weibull distri-
bution. In the deviation distribution of wallboard height and
wallboard thickness, the Weibull cumulative distribution and
the normal cumulative distribution function curve are in good
agreement. To accurately compare and determine the best
distribution, it is necessary to further calculate the maximum
absolute deviation among the theoretical distribution function,
the empirical distribution function, and the probability P of
making the first type of error. 'e specific results are shown in
Table 4. Among them,D is calculated according to equation (6),
and the value of P is calculated under the hypothesis of the
Kolmogorov distribution of the limit distribution of D.

'e KS test results of size deviation frequency, normal
distribution, and Weibull distribution are shown in Table 7.
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Figure 11: Box plot of wall panel size deviation distribution.
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Figure 12: Histogram of composite slab size deviation distribution. (a) Statistical histogram of length deviation of composite slab.
(b) Statistical histogram of width deviation of the composite slab.
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Figure 13: Box plot of composite slab size deviation distribution.
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Figure 14: 'e cumulative distribution function of beam size deviation. (a) 'e cumulative distribution function of beam length deviation.
(b) 'e cumulative distribution function of beam width deviation. (c) 'e cumulative distribution function of beam height deviation.
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Figure 15: 'e cumulative distribution function of column size deviation. (a) 'e cumulative distribution function of column length
deviation. (b) 'e cumulative distribution function of column width deviation. (c) 'e cumulative distribution function of column height
deviation.
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It can be seen from Table 7 that, in the two distributions, the
maximum absolute value of the normal distribution D is the
smallest, and the P value of the normal distribution is the

smallest. If the significance is taken at the level of 0.05, the
fitting effects of normal distribution and Weibull distribu-
tion are both acceptable, and it is obvious that the former is
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Figure 17: 'e cumulative distribution function of sample value deviation of superimposed slab size. (a) 'e cumulative distribution
function of length deviation of composite. (b) 'e cumulative distribution function of height deviation of composite slab.
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Figure 16:'e cumulative distribution function of sample value of wall panel size deviation. (a)'e cumulative distribution function of wall
panel height deviation. (b) 'e cumulative distribution function of wall panel width deviation. (c) 'e cumulative distribution function of
wall panel thickness deviation.
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better. It shows that the dimensional deviation of fabricated
components conforms to the null hypothesis and normal
distribution.

5. Conclusions

In this paper, three-dimensional surveys of more than 1,400
prefabricated components in China were carried out, and
the geometric parameters of the components were statisti-
cally analyzed using probability and statistics methods,
hence obtaining the following conclusions:

(1) 'e range of the geometric parameter uncertainty
random variable of the same component size pro-
duced by different enterprises shows little difference
and the fluctuation is small, ranging from 0.99 to
1.02. 'e geometric parameter uncertainty coeffi-
cient of variation is below 0.0093, and the compo-
nent size deviation variability is small.

(2) 'e significance of the correlation degree of the
prefabricated component size deviation is greater
than the level of 0.05, and there is no significant
difference among the size deviations of similar
components produced by different companies.

(3) 'e histogram of the frequency distribution of
prefabricated component size deviation decreases
from the center to both sides, and the fitting curve
has only one peak.'e geometric uncertainties of the
transverse dimensions of the components are all less
than 1, which tend to be negative deviations, and the
geometric uncertainties of the longitudinal dimen-
sions are all greater than 1, which tend to be positive
deviations.

(4) 'e size deviation of fabricated components does not
refuse to obey the normal distribution and the
Weibull distribution, but it is more inclined to obey
the normal distribution.
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