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The articles in this special issue reflect a convergence of
developments in the fields of bioinformatics and plant
genomics. Bioinformatics has its roots vaguely seated in
the early 1980s, a time when personal computers began
appearing in research laboratories and researchers began
recognizing that those computers could be used as tools to
organize, analyze and visualize their data. In the ensuing
years bioinformatics tools began appearing at various sites
including the European Molecular Biology Laboratory, the
Molecular Biology Research Resource at the Dana-Farber
Cancer Institute in the mid 1980s, the National Center for
Biotechnology Information (NCBI) in 1988, the Genome
Database Project at Johns Hopkins University in early 1989,
and in countless laboratories throughout the world. These
last efforts resulted in the development of many of the tools
described in this special issue.

Progress and interest in plant genomics have been
accelerating since the time in late 2000 when the genome of
Arabidopsis thaliana was published. Since then many genome
sequencing projects have been undertaken that include
poplar (Populus), grape (Vitis), the moss Physcomitrella, the
biflagellate algae Chlamydomonas and several globally crucial
crop plants such as corn (Maize) and rice (Oryza). However,
as we have witnessed on numerous occasions, determining
the sequence of a genome is only the first step toward
understanding genome organization, gene structure, gene
expression patterns, disease pathogenesis and a host of other
features of both scientific and commercial interests. Com-
putational tools of genomic annotation and comparative
genomics must be applied to gain a useful understanding of
any genome.

In this special issue we present a collection of papers
that together describe a powerful and impactful toolbox

of applications and resources for plant genomic analysis.
Among those articles you will find a description of research
performed by the Mexican headquartered Generation Chal-
lenge Programme (GCP) which led to the GCP Platform
(Bruskiewich et al.). This research support tool supports a
number of data formats and web services and provides access
to high performance computing facilities and platform-
specific middleware collectively designed to support crop
science research.

Probably one of the most promising empirical tools for
investigating gene expression developed in the last 15 or so
years is that of microarray technology. While the technology
has become commonplace, with tools for generating and
hybridizing arrays available to all, the analysis of microarray-
derived data has been challenging. Many laboratories have
struggled not only with this challenge but also with the task
of sorting through the plethora of analytical tools available
in an effort to find the ones that may be best suited to their
own work. In this issue there are two reviews by Page and
Coulibaly which examine and describe bioinformatics tools
for inferring functional information from plant microarray
data. Together these papers step the reader through a
collection of tools, and their applications, for analyzing the
expression of single and multiple gene expression profiles.

This theme of microarray analysis is continued in the
description of the cross chip probe matching tool (CCPMT)
by Page et al. Indeed it expands the readers horizons
beyond the analysis of individual microarrays with the
ability to associate probes across species. And of course,
microarray analysis is facilitated by careful experimental
design from the start so Robert Tempelman provides a review
of statistical methods used to design efficient two-color
microarray experiments. Taken together, these microarray
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papers provide an overview of the design of microarray
experiments and the interpretation of the complex results
of those experiments that will be informative for new and
experienced laboratorians alike.

Several other novel tools are described herein. One,
Blast2GO is a suite of tools for the analysis and functional
annotation of plant genomes (Conesa and Goetz). It provides
an intuitive interface for identifying functional regions
within DNA sequences. Another sequence analysis tool
described by da Maia et al. is the SSR locator. That tool
enables researchers to identify suitable targets for binding
PCR primers in order to ensure that those targets are
unique within the genome. It also assists with primer design
and has a PCR simulator which facilitates comparisons of
hypothetical amplification products among different species.

Another challenge facing scientists today is the need
to stay abreast of advances in a field that is progressing
rapidly as a consequence of newly available technologies.
In order to address this challenge there are two review
articles that together provide insights into the discovery of
relationships among a varied array of plant species. The first
article, by Abdurakhmonov and Abdukarimov, describes the
application of association mapping to understanding traits
in crop species. Their work is directed toward novices within
the crop breeding community in order to expose them to
potential problems that they may face and solutions they
may employ to overcome those problems. The second article
describes the tools available for phylogenetic analyses and
the increased use of Bayesian methods in those tools (Aris-
Brosou and Xia). Constructing phylogenies has traditionally
been a challenge to even the most experienced researcher but
modern bioinformatics tools are lowering the bar for those
interested in detecting adaptive evolution and estimating
divergence among species.

The wealth of information available to researchers today
can be overwhelming. In order to address this potential,
two papers describe information resources which consolidate
and organize related information. PPNEMA is a database
resource for those interested in plant-parasitic nematode
ribosomal genes (Rubino et al. ). That resource allows the
user to browse, search and generally explore phytoparasite
ribosomal DNA. A second database described in these pages
is the MaizeGDB (Lawrence et al.). This resource con-
tains information about Zea mays which includes genomic
sequences as well as functional information and the tools to
explore both.

The body of the papers in this special issue represents
the leading edge of plant genomics research. Together
they provide the reader with descriptions of the tools and
resources necessary to understand and promote advances in
this important field.

Gary R. Skuse
Chunguang Du
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Microarrays are a very powerful tool for quantifying the amount of RNA in samples; however, their ability to query essentially every
gene in a genome, which can number in the tens of thousands, presents analytical and interpretative problems. As a result, a variety
of software and web-based tools have been developed to help with these issues. This article highlights and reviews some of the tools
for the first steps in the analysis of a microarray study. We have tried for a balance between free and commercial systems. We have
organized the tools by topics including image processing tools (Section 2), power analysis tools (Section 3), image analysis tools
(Section 4), database tools (Section 5), databases of functional information (Section 6), annotation tools (Section 7), statistical
and data mining tools (Section 8), and dissemination tools (Section 9).

Copyright © 2008 G. P. Page and I. Coulibaly. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

The primary goal of a microarray study is to generate a list
of differentially regulated genes and infer pathways that can
provide insight into the biological question under investiga-
tion. Due to the very high dimensionality of a microarray
experiment, running to thousand of genes, bioinformatics,
and statistical tools are essential for the analysis of data. This
review is written to provide plant investigators with a list of
tools and web-based resources designed to help them move
from an idea or hypothesis to the conduct of the study, image
analysis, generation of expression data, statistical analysis,
annotation, and then dissemination of the data.

The first step in the conduct of a microarray study is the
selection of a microarray platform to use. For many species,
there are commercially available arrays from commercial
vendors and academic groups. Unfortunately, arrays are not
available for all species, while arrays can be used in closely
related species, it is usually better to develop arrays based
upon the sequence of the species being studied. Section 2
provides a list of tools for generating useful probe sequences
from genomic data. Once an array has been developed, it
is critical to collect sufficient samples to run an experiment
that will generate biologically generalizable results. Section 3
highlights tools for sample size and power analysis for

microarray studies. Image analysis tools (Section 4) are
used to quantitate the amount of fluorescence for a spot
or set of spots. Microarray experiments generate copious
amounts of data. The storage and distribution of the data are
accomplished by the tools described in Section 5. Databases
of gene annotations are provided in Section 6. Sections
7 and 8 describe statistical analysis and annotation tools.
The two grouped together for the same tools often provide
both functions. In fact, many of the database tools will
also provide analytical and annotation functions as well.
Finally, in Section 9 we describe web sites for disseminating
microarray data and analyses.

2. PROBE DESIGN SOFTWARE

Plant scientists conduct their research on a wide variety of
plant taxa. Arrays have been developed for a number of
plant species including Arabidopsis, Maize, Populus, Rice,
Barley, Grape, Citrus, Cotton, Medicago, Soybean, Sugar
Cane, Tomato, and Wheat. While arrays can be used on
closely related species, it is often better to design a new array
for the species of interest. Several tools have been designed
to help design probes for spotting or deposition on arrays,
based upon genomic sequence data. The critical stage is to

mailto:gpage@uab.edu
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have high-quality sequence data. The more complete the
genome is, the easier it will be to design probes that will
not cross hybridize, be subject to SNPs, and query the gene
accurately. Table 1 lists a number of tools for probe design;
many of them are free, but a number specific to a single array
manufacturer.

3. POWER ANALYSIS AND SAMPLE
SIZE CALCULATIONS

One of the keys to a successful microarray study is to
collect enough data (arrays) in order to derive biologically
generalizable results. The key to this is the statistical power
of a study. Power is the probability of being able to detect
a significant difference between experiment groups when
one really exists. There are several factors involved in power,
but the main one under the control of an investigator is the
sample size. A study with too few samples may not detect
real differences, while too many samples will waste resources.
Power analysis allows the selection of the optimal sample
size. While sample sizes for microarrays can be planned
with traditional statistical power calculation tools such as
PS (http://biostat.mc.vanderbilt.edu/twiki/bin/view/Main/
PowerSampleSize), the unique features of arrays such as the
large number of tests and the large number of genes that are
different between groups have lead to the development of
several methods and tools for calculating power and sample
size analysis.

3.1. The Power Atlas

The Power Atlas is a web-based resource to assist inves-
tigators in the planning and design of microarray and
expression-based experiments. This software currently aims
at estimating the power and sample size for a two group
comparison based upon pilot data. The methods underlying
the web site are reported in Gadbury et al. [1] and the
software is described in further detail at Page et al. [2]. The
tool may be used in two manners: one may either upload
one’s own pilot data or select a pilot dataset from over
1 000 public data sets. Output includes graphs of power
for a variety of significance and false discovery rates; see
http://www.poweratlas.org/ [2].

3.2. Significance analysis of microarrays (SAM)

SAM is a free flexible Excel Addin that includes a number
of useful functions for the analysis of microarray data. Tools
include statistical analysis for discrete, quantitative, and time
series data, adjustments for multiple testing, gene set enrich-
ment analysis, sample size assessment, estimates of False
Discovery rate (FDR) and q-value, as well as per gene power
analysis; see http://www-stat.stanford.edu/∼tibs/SAM/ [3].

4. IMAGE ANALYSIS SOFTWARE

The purpose of image analysis software is to generate a
quantified expression score from the scanned microarray
images. Some of the tools are specific to particular array

types, and thus are not appropriate for all array types. There
are a number of tools that are available in this area, many of
which are expensive. We present here tools that are still being
actively supported and developed. Additional tools are listed
in Table 2.

4.1. Affy

This is a package in Bioconductor for processing Affymetrix
arrays. A wide variety of image processing, normalization,
and quality control procedures are available. As a note,
there are a variety of other image processing tools in
Bioconductor including PDNN and DCHip that should be
considered for use as well; see http://www.bioconductor
.org/packages/2.1/bioc/html/affy.html [4].

4.2. Affyprobe miner

Affyprobe miner is used to redefine chip definition files
(CDFs) for Affymetrix chips to take into account the more
recent genomic sequence information on SNP, alternative
splicing, changes in the gene model, exon structure, and
other such genomic difference. Precomputed CDFs for
several chips are available for download; see http://gauss.dbb.
georgetown.edu/liblab/affyprobeminer/ [5].

4.3. Beadarray

This is a function in Bioconductor for reading preprocessed
Illumina Bead summary data as well as reconstructing
bead-level data using raw TIFF images. Methods for
quality control and low-level analysis are also provided;
see http://www.bioconductor.org/packages/2.1/bioc/html/
beadarray.html [6].

4.4. Genechip operating software (GCOS)

Affymetrix GCOS automates the control of GeneChip Flu-
idics Stations and Scanners. In addition, GCOS acquires
data, manages sample and experimental information, and
performs gene expression data analysis. GCOS can quantitate
images using MAS 5 and PLIER; see http://www.affymetrix
.com/products/software/specific/gcos.affx.

4.5. Gene pix pro 6.0

This software has a number of useful features including
imaging, spot finding, quality control, analysis tools, visu-
alizations, and automation capabilities. GenePix can display
and process up to four single wavelengths, thus four-
channel imaging can be used. This tool can be integrated
with a web-accessible database. GenePix is in some ways
the default industrial standard microarray image analysis
software because of its early development of couple of output
file formats, ∗.gpr and ∗.gps that are used by many other
applications; see http://www.moleculardevices.com/.

http://biostat.mc.vanderbilt.edu/twiki/bin/view/Main/PowerSampleSize
http://biostat.mc.vanderbilt.edu/twiki/bin/view/Main/PowerSampleSize
http://www.poweratlas.org/
http://www-stat.stanford.edu/~tibs/SAM/
http://www.bioconductor.org/packages/2.1/bioc/html/affy.html
http://www.bioconductor.org/packages/2.1/bioc/html/affy.html
http://gauss.dbb.georgetown.edu/liblab/affyprobeminer/
http://gauss.dbb.georgetown.edu/liblab/affyprobeminer/
http://www.bioconductor.org/packages/2.1/bioc/html/beadarray.html
http://www.bioconductor.org/packages/2.1/bioc/html/beadarray.html
http://www.affymetrix.com/products/software/specific/gcos.affx
http://www.affymetrix.com/products/software/specific/gcos.affx
http://www.moleculardevices.com/
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Table 1: Probe design software packages.

Tool and website Cost and functions of the tool

Array Designer http://www.premierbiosoft.com/dnamicroarray/index.html

Design primers and probes for oligo and cDNA
expression microarrays. It can also design
probes for SNP detection, single exon, whole
gene, tiling, and resequencing arrays. The soft-
ware is not free.

ArrayScribe http://www.nimblegen.com/products/software/arrayscribe.html

Free, but limited to designing NimbleGen
Arrays. The tool can design probes, spec-
ify mismatches at specific sequence positions,
automatically generate mismatches, generate
multiple probes for a gene, and design the
placement of spots on an array.

eArray http://earray.chem.agilent.com/earray/login.do
Free, but limited to designing Agilent arrays.
Can design probes for expression, CGH, and
ChiP for any species with genomic sequence.

Primer3Plus http://www.bioinformatics.nl/cgi-in/primer3plus/primer3plus.cgi
Free software that can design probes for expres-
sion detection on arrays, amplification/cloning,
and sequencing/resequencing.

Sarani Oligo Design http://www.strandls.com/oligodesign.html
Probe design for expression analysis. The soft-
ware is not free.

Visual OMP http://www.dnasoftware.com/Products/VisualOMP

Design software for RNA, DNA, single or
multiple probe design, microarrays, TaqMan
assays, genotyping, single and multiplex PCR,
secondary structure simulation, sequencing,
genotyping.

Table 2: Other useful image analysis software packages.

Tool name Web site

Able Image Analyser http://able.mulabs.com/

ArrayVision http://www.imagingresearch.com/products/ARV.asp

IcononClust http://www.clondiag.com/frame.php?page=/products/sw/iconoclust/index.php

ImaGene http://www.biodiscovery.com/index/imagene

Koadarray http://www.koada.com/koadarray/

Microvigene http://www.vigenetech.com/MicroVigene.htm

ScanAlyze http://rana.lbl.gov/EisenSoftware.htm

Spot http://www.hca-vision.com/productspot.html

4.6. Nimblescan

This is a NimbleGen product designed for the extraction
of feature intensity raw values, linkage of the raw inten-
sity values with the corresponding probe parameters, and
generation of analysis reports for expression, ChIP-chip
and resequencing arrays, and methylation analysis for Nim-
bleGen Arrays; see http://www. nimblegen.com/products/
software/nimblescan.html.

4.7. TM4/spotfinder

Spotfinder is part of the larger freely available microarray
analysis suite TM4. Spotfinder is designed for the rapid,
reproducible, and computer-aided analysis of microarray
images, and the quantification of gene expression. Spotfinder

can read paired 16-bit or 8-bit TIFF image files generated
by most microarray scanners. Automatic, semiautomatic and
manual grid construction and adjustments can be made. Two
segmentation methods are available. Reusable grid geometry
files and automatic grid adjustment allow user to analyze
large quantities of images in a consistent and efficient man-
ner. Quality control views allow the user to assess systematic
biases in the data; see http://www.tm4.org/spotfinder.html
[7, 8].

5. DATABASE TOOLS

Microarray experiments generate a huge amount of data.
The handling, storing, sharing, and distribution of the data
can be quite complex. As a result a variety of database tools

http://www.premierbiosoft.com/dnamicroarray/index.html
http://www.nimblegen.com/products/software/arrayscribe.html
http://earray.chem.agilent.com/earray/login.do
http://www.bioinformatics.nl/cgi-in/primer3plus/primer3plus.cgi
http://www.strandls.com/oligodesign.html
http://www.dnasoftware.com/Products/VisualOMP
http://able.mulabs.com/
http://www.imagingresearch.com/products/ARV.asp
http://www.clondiag.com/frame.php?page=/products/sw/iconoclust/index.php
http://www.biodiscovery.com/index/imagene
http://www.koada.com/koadarray/
http://www.vigenetech.com/MicroVigene.htm
http://rana.lbl.gov/EisenSoftware.htm
http://www.hca-vision.com/productspot.html
http://www. nimblegen.com/products/software/nimblescan.html
http://www. nimblegen.com/products/software/nimblescan.html
http://www.tm4.org/spotfinder.html
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have been developed for assisting in this aspect of microarray
studies. Some of the tools listed below are more than
just stand-alone database tools and may include extensive
analysis and visualization functionality as well. There are
a number of database tools with highly different utility
and platform requirements. Table 3 outlines the tools and
websites.

6. DATABASES OF FUNCTIONAL INFORMATION

The amount of information about the functions of genes is
beyond what any one person can know. Consequently, it is
useful to pull in information on what others have discovered
about genes in order to fully and correctly interpret an
expression study. The following tools are databases of
various types on information such as published papers, gene
sequences, pathways, and ontologies that might be useful for
an investigator who is interpreting an expression study.

6.1. Agbase

AgBase is a curated, open-source, web-accessible resource
for functional analysis of agricultural plant and animal gene
products. Agbase contains databases of Poplar and Pine gene
ontology terms and annotations as well as several animals,
microbes, and parasites; see http://www.agbase. msstate.edu)
[9, 10].

6.2. Agricola

Agricola is the catalog and index to the collections of the
National Agricultural Library. The database covers materials
in all formats and periods, dating back to the 15th century.
The records include all aspects of agriculture and related
disciplines; see http://agricola.nal.usda.gov/.

6.3. Eukaryotic gene orthologues (EGO)

EGO is generated by the pair-wise comparison between
the tentative consensus (TC) sequences from individual
organisms. The reciprocal pairs of the best match are
clustered into individual groups and multiple sequence
alignments are displayed for each group. EGO is very
useful for connecting homologous genes across species; see
http://compbio.dfci.harvard.edu/tgi/ego/ [11].

6.4. Ensembl

Ensembl is a joint project between European Bioinformatics
Institute and the Wellcome Trust Sanger Institute to develop
a software system which produces and maintains automatic
annotation on selected eukaryotic genomes. Initially devel-
oped for vertebrates, Ensembl has been adapted for use
by several plant groups including legume, Gramene, and
Arabidopsis; see http://www.ensembl.org/index.html [12].

6.5. Entrez gene

Entrez Gene is an NCBI’s database for gene-specific in-
formation. Entrez Gene focuses on the genomes that have

been completely sequenced, have an active research com-
munity to contribute gene-specific information, or that
are scheduled for intense sequence analysis. Records are
assigned unique, stable and tracked integers as identifiers.
The content (nomenclature, map location, gene products
and their attributes, markers, phenotypes, and links to
citations, sequences, variation details, maps, expression, pro-
tein homologs, protein domains and external databases) is
updated regularly. There is currently at least some gene infor-
mation on 113 plant species; see http://www.ncbi.nlm.nih.
gov/sites/entrez?db=gene.

6.6. Gene index

The goal of The Gene Index Project is to use the available
EST and gene sequences, along with the reference genomes,
to provide an inventory of likely genes and variants. Genes
are linked to annotation regarding their functions. Currently
GI databases have been constructed for 34 plant species;
(http://compbio.dfci.harvard.edu/tgi/plant.html) [13, 14].

6.7. Gene ontology

The objective of GO is to provide controlled vocabularies
for the description of the molecular function, biological
process, and cellular component of gene products. These
terms are to be used as attributes of gene products by various
collaborating databases such as Gramene and TAIR; see
http://www.geneontology.org/ [15].

6.8. Gramene

Gramene is a curated, open-source, data resource for ge-
nome analysis in the grasses. The information stored in
the database is derived from public sources and includes
genomes, EST sequencing, protein structure and function
analysis, genetic and physical mapping, interpretation of bi-
ochemical pathways, Gene Ontologies, gene and QTL
localization and descriptions of phenotypic characters and
mutations. Extensive information is provided for Oryza,
Zea, Triticum, Hordeum, Avena, Setaria, Pennisetum, Secale,
Sorghum, Zizania, and Brachypodium; see http://www.
gramene.org/.

6.9. Kyoto encyclopedia of genes and genomes (KEGG)

KEGG is a database of biological systems, consisting of genes
and proteins (KEGG GENES), endogenous and exogenous
substances (KEGG LIGAND), pathways (KEGG PATHWAY),
and hierarchies and relationships of biological objects
(KEGG BRITE). This database is very rich in data with
information across hundreds of species including many
plants; see http://www.genome.jp/kegg/ [16–18].

6.10. Plant associated microbe gene
ontology (PAMGO)

PAMGO is a database of the results of a multiinstitutional
collaborative effort, aimed at developing new GO terms and

http://www.agbase.msstate.edu
http://www.agbase.msstate.edu
http://agricola.nal.usda.gov/
http://compbio.dfci.harvard.edu/tgi/ego/
http://www.ensembl.org/index.html
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene
http://compbio.dfci.harvard.edu/tgi/plant.html
http://www.geneontology.org/
http://www.gramene.org/
http://www.gramene.org/
http://www.genome.jp/kegg/
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Table 3: Database tools.

Tool name Web site

Acuity http://www.moleculardevices.com/pages/software/gnacuity.html

Array Results Manager ARM http://www.biodiscovery.com/index/arm

Arraytrack http://www.fda.gov/nctr/science/centers/toxicoinformatics/ArrayTrack/ [35, 36]

BASE 2 http://base.thep.lu.se/

caArray http://caarray.nci.nih.gov/

Expressionist http://www.genedata.com/products/expressionist/index eng.html

Gene Array Analyzer Software GAAS http://www.medinfopoli.polimi.it/GAAS/

GeneDirector http://www.biodiscovery.com/index/genedirector

GeneSpring Workgroup http://www.chem.agilent.com/scripts/pds.asp?lpage=34668

GeneTraffic http://www.iobion.com/products/products GENETRAFFIC.html

Genowiz http://www.ocimumbio.com/

Longhorn Array Database LAD [37] http://www.longhornarraydatabase.org/

MaxdLoad2 http://www.bioinf.man.ac.uk/microarray/maxd/index.html

PARTISAN arrayLIMS http://www.clondiag.com/

Rosetta Resolver System http://www.rosettabio.com/products/resolver/default.htm

Stanford Microarray Database SMD http://smd-www.stanford.edu//download/ [38]

relationships for gene products implicated in plant-pathogen
interactions. GO terms are currently being developed for
the following species: Erwinia chrysanthemi, Pseudomonas
syringae pv tomato and Agrobacterium tumefaciens, the fun-
gus Magnaporthe grisea, the oomycetes Phytophthora sojae
and Phytophthora ramorum, and the nematode Meloidogyne
hapla; see http://pamgo.vbi.vt.edu/.

6.11. SWISS-PROT

SWISS-PROT is a curated protein sequence database which
provides high level of annotations such as the descrip-
tion of the function of a protein, its domains structure,
post-translational modifications, variants, and so forth,
along with good integration with other databases; see
http://www.expasy. ch/sprot/.

6.12. TAIR

The Arabidopsis Information Resource (TAIR) maintains
a database of genetic and molecular biology data for
Arabidopsis thaliana. Data available from TAIR includes the
complete genome sequence along with gene structure, gene
product information, metabolism, gene expression, DNA
and seed stocks, genome maps, genetic and physical markers,
and publications; see http://www.arabidopsis.org/.

7. ANNOTATION TOOLS

The databases described in Section 6 can provide data in a
variety of forms, which makes merging the annotations with
the expression difficult. To deal with this heterogeneity a
number of tools have been developed to increase the ease of
annotating genes in expression studies.

7.1. CiteXplore

CiteXplore combines literature search with text mining tools
for biology. Search results are cross referenced to European
Bioinformatics Institute applications based on publication
identifiers. Links to full text versions are provided where
available; see http://www.ebi.ac.uk/citexplore/.

7.2. Database for annotation, visualization, and
integrated discovery (DAVID)

DAVID provides a huge set of functional annotation tools
for investigators to understand biological meaning behind
a large list of genes. The key is the DAVID Knowledgebase
which provides a comprehensive, high-quality collection of
gene annotation resource, the flexibility to cross-reference
gene identifiers, and heterogeneous annotations from almost
all databases. The DAVID tools are able to identify enriched
biological themes, particularly GO terms, cluster redundant
annotation terms, visualize genes on Baccarat and KEGG
pathway maps, display related many-genes-to-many-terms
on 2D view, search for other functionally related genes
not in the list, list interacting proteins, highlight protein
functional domains and motifs, redirect to related literatures,
and convert gene identifiers from one type to another; see
http://david.abcc.ncifcrf.gov/ [19].

7.3. MatchMiner

MatchMiner translates between several gene identifier types
for the same list of hundreds or thousands of genes. The
gene identifier types supported by the tool includes GenBank
accession numbers, IMAGE clone IDs, common gene names,
HUGO names, gene symbols, UniGene clusters, FISH-
mapped BAC clones, Affymetrix identifiers, and chromo-
some locations. MatchMiner can also find the intersection

http://www.moleculardevices.com/pages/software/gnacuity.html
http://www.biodiscovery.com/index/arm
http://www.fda.gov/nctr/science/centers/toxicoinformatics/ArrayTrack/
http://base.thep.lu.se/
http://caarray.nci.nih.gov/
http://www.genedata.com/products/expressionist/index_eng.html
http://www.medinfopoli.polimi.it/GAAS/
http://www.biodiscovery.com/index/genedirector
http://www.chem.agilent.com/scripts/pds.asp?lpage=34668
http://www.iobion.com/products/products_GENETRAFFIC.html
http://www.ocimumbio.com/
http://www.longhornarraydatabase.org/
http://www.bioinf.man.ac.uk/microarray/maxd/index.html
http://www.clondiag.com/
http://www.rosettabio.com/products/resolver/default.htm
http://smd-www.stanford.edu//download/
http://pamgo.vbi.vt.edu/
http://www.expasy.ch/sprot/
http://www.expasy.ch/sprot/
http://www.arabidopsis.org/
http://www.ebi.ac.uk/citexplore/
http://david.abcc.ncifcrf.gov/
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of two lists of genes specified by different identifiers; see
http://discover.nci.nih.gov/matchminer/index.jsp [20].

7.4. Medminer

MedMiner searches and organizes the biomedical literature
on genes, gene-gene relationships, and gene-drug relation-
ships. It uses GeneCards, PubMed, and syntactic analysis,
truncated-keyword filtering of relational and user-controlled
sculpting of Boolean queries to generate key sentences
from pertinent abstracts. Abstracts selected can be auto-
matically entered into EndNote; see http://discover.nci.nih.
gov/textmining/main.jsp [21].

8. DATA ANALYSIS SOFTWARE

There is an incredible breadth of tools in this area with
many tools providing very slick interfaces and very useful
functions; however, you really do not need any of these tools.
Most statistical packages such as SAS, SPSS, JMP, and R
can be used to analyze microarray data and will do most
of the functions the following tools will do, for there are
few statistical methods that are 100% unique to expression
studies. Nonetheless many of the following tools are much
easier to use and often have better visualization functions
than the pure statistical programs. Typically the tools have
been designed for ease of use, often too easy. Regardless of the
tool you use, strive to understand the function and analyses
provided and the assumption that are made when you choose
to use them for analysis. For example, in cluster analysis you
need to make a choice of link and weight functions and the
clusters that result will be quite different based on methods
which are chosen. There are similar issues to learn and
understand for all statistical methods and most visualization
methods. Additional tools are listed in Table 4.

8.1. Bioconductor

Bioconductor is a multicenter effort to develop tools in the
R programming environment for analyzing genomic data,
especially microarray data. There are a large number of
different packages available to conduct many types of anal-
yses; currently there are over 115 microarray applications.
Tools are still in very active development, and are all freely
available. Some of the most relevant tools are affy, maanova,
genefilter, limma, mulltest, annotate, geneplotter, marray to
name a few. A couple of the packages are described elsewhere
in this document, but for more details of specific tools see
the Bioconductor web site; see http://www.bioconductor.org/
[22].

8.2. Biometric research branch (BRB) arrays tools

BRB ArrayTools is a free integrated package for the visualiza-
tion and statistical analysis of DNA microarray gene expres-
sion data. It functions as an Excel Addin. It was developed
by professional statisticians experienced in the analysis of
microarray data. It is probably the best tool available for
discriminate analysis and has a variety of other statistical and

cluster methods included; see http://linus.nci.nih.gov/BRB-
ArrayTools.html.

8.3. Expression profiler

Expression Profiler is a set of tools for cluster analysis, pattern
discovery, pattern visualization, study and search for gene
ontology categories. The tool also generates sequence logos,
extracts regulatory sequences, studies protein interactions,
and links analysis results to external tools and databases; see
http://ep.ebi.ac.uk/.

8.4. Genepattern

GenePattern puts sophisticated computational methods into
the hands of the biomedical research community. A simple
application interface gives a broad audience access to a
growing repository of analytic tools for genomic data,
while an API supports computational biologists. GenePat-
tern is a powerful analysis workflow tool developed to
support multidisciplinary genomic research programs and
designed to encourage rapid integration of new techniques;
see http://www.broad.mit.edu/cancer/software/genepattern/
index.html [23].

8.5. GeneXpress

GeneXPress is a visualization and analysis tool for gene
expression data, integrating clustering, gene annotation,
and sequence information. GeneXPress allows the user
to load clustering results and automatically analyze them
for significance of functional groups through correlation
with functional annotations (e.g., Gene Ontology) and for
enrichment of motif binding sites (e.g., TRANSFAC motifs);
see http://genexpress.stanford.edu/.

8.6. GEPAS (gene expression pattern analysis suite)

GEPAS is an integrated web-based tool for the analysis of
gene expression data. GEPAS includes tools for normaliza-
tion, many clustering methods, supervised analysis, differ-
ential analysis, differential gene expression, predictors, array
CGH and functional annotation; see http://gepas.bioinfo
.cipf.es/ [24, 25].

8.7. High-dimensional biology statistics (HDBStat!)

HDBStat is a free java application that allows for the
normalization, transformation, and statistical analysis of
expression data. HDBStat also has a number of unique qual-
ity control procedures included. HDBStat has implemented
reproducible research design to allow for analysis to be
readily repeated; (http://www.ssg.uab.edu/hdbstat/) [26].

8.8. JMP genomics

JMP genomics leverages many statistical tools in JMP, a
statistical analysis package, as a result it has over 100 di-
fferent analytical procedures that can be run. It also includes

http://discover.nci.nih.gov/matchminer/index.jsp
http://discover.nci.nih.gov/textmining/main.jsp
http://discover.nci.nih.gov/textmining/main.jsp
http://www.bioconductor.org/
http://linus.nci.nih.gov/BRB-ArrayTools.html
http://linus.nci.nih.gov/BRB-ArrayTools.html
http://ep.ebi.ac.uk/
http://www.broad.mit.edu/cancer/software/genepattern/index.html
http://www.broad.mit.edu/cancer/software/genepattern/index.html
http://genexpress.stanford.edu/
http://gepas.bioinfo.cipf.es/
http://gepas.bioinfo.cipf.es/
http://www.ssg.uab.edu/hdbstat/


G. P. Page and I. Coulibaly 7

Table 4: Other useful statistical analysis and data-mining tools.

Tool name Web site

Amiada (analyzing microarray data) http://dambe.bio.uottawa.ca/amiada.asp [39]

ArrayAssist Enterprise http://www.stratagene.com/

caGEDA http://bioinformatics.upmc.edu/GE2/GEDA.html

Cluster http://rana.lbl.gov/EisenSoftware.htm

dChip http://www.dchip.org/

GeneMaths XT http://www.applied-maths.com/genemaths/genemaths.htm

INCLUSive http://homes.esat.kuleuven.be/∼dna/Biol/Software.html

J-Express Pro http://www.molmine.com/software.htm

MAExplorer http://maexplorer.sourceforge.net/

NIA Array analysis http://lgsun.grc.nia.nih.gov/ANOVA/

Onto-Tools http://vortex.cs.wayne.edu/projects.htm

Probe Profiler http://www.corimbia.com/Pages/ProductOverview.htm

TableView http://ccgb.umn.edu/software/java/apps/TableView/

Venn Mapper http://www.gatcplatform.nl//vennmapper/index.php

extensive visualization tools. Scripts can be written for
the development of standard analytical procedures; see
http://www.jmp.com/software/genomics/.

8.9. Onto-tools

Onto-Tools are a series of freely available tools for the
analysis of microarray data. Tools are available for array
design (onto-design), gene class testing (onto-express), com-
paring the content of arrays (onto-compare), mapping gene
information across databases (onto-translate), annotation
(onto-miner), and pathway analysis (pathway-express); see
http://www.vortex.cs.wayne.edu [27].

8.10. Partek genomic suite

Partek Genomics Suite can be used for gene expression anal-
ysis, exon expression analysis, chromosomal copy number
analysis, and promoter tiling array analysis, and analysis
of SNP arrays. Partek includes a large number of statis-
tical, visualization, and annotation tools that can be tied
together using workflow tools for rapid repetition of analysis
and for reproducible research; see http://www.partek.com/
software/.

8.11. R/maanova

Maanova stands for MicroArray ANalysis Of VAriance. It
provides a complete work flow for microarray data analysis
including data-quality checks and visualization, data trans-
formation, ANOVA model fitting for both fixed and
mixed effects models, statistical tests including permu-
tation tests, confidence interval with bootstrapping, and
cluster analysis. R/maanova is available in Bioconductor/R;
refer to http://www.jax.org/staff/churchill/labsite/software/
Rmaanova/index.html [28].

8.12. SAM (significant analysis of microarrays)

SAM can be used on any type of array data: oligo or cDNA
arrays, SNP arrays, protein arrays, and so forth. Both para-
metric and nonparametric tests are available for correlating
expression data to clinical parameters including treatment,
diagnosis categories, survival time, paired data, quantita-
tive (e.g., tumor volume), and one-class. SAM can also
implement imputation methods for missing data via near-
est neighbor algorithm; see http://www-stat.stanford.edu/
∼tibs/SAM/.

8.13. TM4

The TM4 suite of tools consists of four major applications,
Microarray Data Manager (MADAM), TIGR Spotfinder,
Microarray Data Analysis System (MIDAS), and Multiex-
periment Viewer (MeV), as well as a MySQL database, all
of which are freely available. Although these software tools
were developed for spotted two-color arrays, many of the
components can be easily adapted to work with single-color
formats such as filter arrays and GeneChips; see http://www
.tm4.org/index.html.

9. DISSEMINATION

Early in the use of microarray in research, it became common
practice for many journals to require investigators to submit
expression data for publication in a public database. This
sharing of data has allowed the mining of these rich resources
that many investigators have used to help their research. A
number of the public databases exist that contain and accept
plant data.

9.1. ArrayExpress

ArrayExpress is a public repository for microarray data,
which is aimed at storing MIAME-compliant data in

http://dambe.bio.uottawa.ca/amiada.asp
http://www.stratagene.com/
http://bioinformatics.upmc.edu/GE2/GEDA.html
http://rana.lbl.gov/EisenSoftware.htm
http://www.dchip.org/
http://www.applied-maths.com/genemaths/genemaths.htm
http://homes.esat.kuleuven.be/~dna/Biol/Software.html
http://www.molmine.com/software.htm
http://maexplorer.sourceforge.net/
http://lgsun.grc.nia.nih.gov/ANOVA/
http://vortex.cs.wayne.edu/projects.htm
http://www.corimbia.com/Pages/ProductOverview.htm
http://ccgb.umn.edu/software/java/apps/TableView/
http://www.gatcplatform.nl//vennmapper/index.php
http://www.jmp.com/software/genomics/
http://www.partek.com/software/
http://www.partek.com/software/
http://www.jax.org/staff/churchill/labsite/software/ Rmaanova/index.html
http://www.jax.org/staff/churchill/labsite/software/ Rmaanova/index.html
http://www-stat.stanford.edu/~tibs/SAM/
http://www-stat.stanford.edu/~tibs/SAM/
http://www.tm4.org/index.html
http://www.tm4.org/index.html
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accordance with MGED recommendations. This database is
a bit less biomedical in focus than GEO with a good repre-
sentation of plant expression data; see http://www.ebi.ac.uk/
arrayexpress [29, 30].

9.2. GEO

Gene Expression Omnibus is a gene expression/molecular
abundance repository supporting MIAME compliant data
submissions, and a curated, online resource for gene expres-
sion data browsing, query and retrieval. This is supported by
the US National Library of Medicine, but contains a good
amount of plant expression data; see http://www.ncbi.nlm
.nih.gov/projects/geo/ [31, 32].

9.3. NASC (nottingham arabidopsis
stock center) arrays

NASC runs a database of its own arrays as well as other data
that has been deposited in the database. The database pri-
marily contains Arabidopsis array data; see http://affymetrix
.arabidopsis.info/ [33].

9.4. Plant expression database (PlexDB)

PLEXdb is a unified public resource for gene expression for
plants and plant pathogens. PLEXdb serves as a portal to
integrate gene expression profile data sets with structural
genomics and phenotypic data. Data from seven species
is contained in the database; see http://www.plexdb.org/
index.php [34].

10. CONCLUSIONS

We hope this listing of tools, which only dip the surface of
the possible tools, will assist you in conducting, analyzing,
and interpreting expression studies. We suggest exploring
several tools in an area and understanding the principles of
the methods implemented before settling on one or a few to
use regularly. By exploring several tools you will understand
the potential of the various tools, how easy (or difficult) they
are to use, and determine what you really want and need for
your microarray analysis.
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1. INTRODUCTION

Microarray analysis is exploratory and very high dimen-
sional, and the primary purpose is to generate a list of
differentially regulated genes that can provide insight into
the biological phenomena under investigation. However,
analysis should not stop with a list, it should be the starting
point for secondary analyses that aim at deciphering
the molecular mechanisms underlying the biological
phenotypes analyzed. Combining microarray data with
prior biological knowledge is a fundamental key to the
interpretation of the list of genes. This prior knowledge is
stored in various public and private databases and covers
several aspects of genes functions and biological information
such as regulatory sequence analysis, gene ontology, and
pathway information. In this review, we will describe the
tools and places where to find prior accurate biological
information and how to incorporate them into the analysis
of microarray data. The plant genome outreach portal
(http://www.plantgdb.org/PGROP/pgrop.php?app=pgrop)
list many of these resources and other tools and resources
such as EST resources and BLAST that are not covered in

this review. We also address some theoretical aspects and
methodological issues of the algorithms implemented in the
tools that have been recently developed for bioinformatic
and what needs to be considered when selecting a tool for
use.

2. CLASS LEVEL FUNCTIONAL ANNOTATION TOOLS

The goal of these class level functional annotation tools is to
relate the expression data to other attributes such as cellular
localization, biological process, and molecular function
for groups of related genes. The most common way to
functionally analyze a gene list is to gather information from
the literature or from databases covering the whole genome.
The recent developments in technologies and instrumenta-
tion enabled a rapid accumulation of large amount of in
silico data in the area of genomics, transcriptomics, and
proteomics as well. The gene ontology (GO) consortium was
created to develop consistent descriptions of gene products
in different databases [1]. The GO provides researchers with
a powerful way to query and analyze this information in a
way that is independent of species [2]. GO allows for the
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annotation of genes at different levels of abstraction due to
the directed acyclic graph (DAG) structure of the GO. In this
particular hierarchical structure, each term can have one or
more child terms as well as one or more parent terms. For
instance, the same gene list is annotated with a more general
GO term such as “cell communication” at a higher level of
abstraction, whereas the lowest level provides a more specific
ontology term such as “intracellular signaling cascade.”

In recent years, various tools have been developed
to assess the statistical significance of association of a
list of genes with GO annotations terms, and new ones
are being regularly released [3]. There has been extensive
discussion of the most appropriate methods for the class
level analysis of microarray data [4–6]. The methods and
tools are based on different methodological assumptions.
There are two key points to consider: (1) whether the
method uses gene sampling or subject sampling and (2)
whether the method uses competitive or self-contained pro-
cedures. The subject sampling methods are preferred and
the competitive versus self-contained debate continues. Gene
sampling methods base their calculation of the p-value for
the geneset on a distribution in which the gene is the unit
of sampling, while the subject sampling methods take the
subject as the sampling unit. The latter is more valid for
the unit of randomization is the subjects not the genes
[7–9].

Competitive tests, which encompass most of the existing
tools, test whether a gene class, defined by a specific GO
term or pathway or similar, is overrepresented in the list of
genes differentially expressed compared to a reference set of
genes. A self-contained test compares the gene set toa fixed
standard that does not depend on the measurements of genes
outside the gene set. Goeman et al. [10, 11], Mansmann and
Meister [7], and Tomfohr et al. [9] applied the self-contained
methods.

Another important aspect of ontological analysis regard-
less of the tool or statistical method is the choice of the
reference gene list against which the list of differentially
regulated genes is compared. Inappropriate choice of refer-
ence genes may lead to false functional characterization of
the differentiated gene list. Khatri and Drǎghici [3] pointed
out that only the genes represented on the array, although
quite incomplete, should be used as reference list instead of
the whole genome as it is a common practice. In addition
correct, up to date, and complete annotation of genes with
GO terms is critical. The competitive and gene sample-
based procedures tend to have better and more complete
databases. GO allows for the annotation of genes at different
levels of abstraction due to the directed acyclic graph (DAG)
structure of the GO. In this particular hierarchical structure,
each term can have one or more child terms as well as
one or more parent terms. For instance, the same gene list
is annotated with a more general GO term such as “cell
communication” at a higher level of abstraction, whereas
the lowest level provides a more specific ontology term
such as “intracellular signaling cascade.” It is important to
integrate the hierarchical structure of the GO in the analysis
since various levels of abstraction usually give different
p-values. The large number (hundreds or thousands) of

tests performed during ontological analysis may lead to
spurious associations just by chance, thus correction for
multiple testing is a necessary step to take. We present here
a nonexhaustive list of tools available that can be used
to perform functional annotation of gene list and attempt
to compare their functionalities (Table 1). All tools accept
input data from Arabidopsis thaliana, the most used model
organism in plant studies, as well as many animal organism
models.

Onto-Express (OE): http://vortex.cs.wayne.edu/
projects.htm#Onto-Express

Onto-Express is a software application used to translate a
list of differentially regulated genes into a functional profile
[12, 13]. Onto-Express constructs a profile for each of the GO
categories: cellular component, biological process, molecular
function, and chromosome location as well. Onto-Express
implements hypergeometric, binomial, X2 and Fisher’s exact
tests. The results are displayed in a graphical form that
allows the user to collapse or expand GO node and visualize
the p-values associated with each level of GO abstraction.
Onto-Express performs Bonferroni, Holm, Sidak, and FDR
corrections to adjust for multiple testing. Users have an
option of either providing their own reference gene list or
selecting a microarray platform as reference gene list. An
extensive list of up to date annotations is provided for many
arrays.

FuncAssociate: http://llama.med.harvard.edu/cgi/
func/funcassociate

FuncAssociate is a web-based tool that characterizes large
sets of genes with GO terms using the Fisher’s exact test
[14]. Among all annotation tools FuncAssociate stands out
in that it implements a Monte Carlo simulation to correct for
multiple testing. In addition the tools can conduct analysis
on ranked list of query genes. Although FuncAssociate
supports 10 organisms, it does not provide visualization or
level information for the GO annotation.

SAFE (Significance Analysis of Function and Expression)

SAFE is a Bioconductor/R algorithm that first computes
gene-specific statistics in order to test for association between
gene expression and the phenotype of interest [15]. Gene-
specific statistics are used to estimate global statistics that
detects shifts in the local statistics within a gene category. The
significance of the global statistics is assessed by repeatedly
permuting the response values. SAFE implements a rank-
based global statistics that enables a better use of marginally
significant genes than those based on a p-value cutoff.

Global test

Global test is a Bioconductor/R package that tests the
association of expression pattern of a group of genes with
selected phenotypes of interest using self-contained methods
[10]. The method is based on a penalized regression model

http://vortex.cs.wayne.edu/projects.htm#Onto-Express
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Table 1: Recapitulative list of GO annotations tools.

Tool name Statistical model
GO abstraction
level

GO
visualization

Multiple testing Type of array
Other
annotation

OS

Onto-Express
hypergeometric,
Fisher’s exact test,
binomial, X2

Available DAG
Bonferroni,
Holm, Sidak,
FDR

172 commercial
arrays

Chromosomal
position

Any

FatiGO+ Fisher’s exact test Available
One level at a
time

FDR User-provided

KEGG
pathways,
SwissPROT
keywords

Any

FuncAssociate Fisher’s exact test Not available Not available
Monte Carlo
simulation

User-provided Not available Web-based

GoToolBox
hypergeometric
test, Fisher’s exact
test or binomial

Available
One level at a
time

Bonferroni User-provided Not available Any

CLENCH2
Hypergeometric,
binomial, X2 Static global DAG None User-provided Not available Windows

BiNGO
Hypergeometric,
binomial

Available,
GOSlim

DAG
FDR,
Bonferroni

commercial
arrays

Not available

GoSurfer X2 Lowest level DAG FDR Affymetrix only Not available Windows

that shrinks regression coefficient between gene expression
and phenotype toward a common mean. The algorithm
allows the users to testbiological hypothesis or to search GO
databases for potential pathways. The results of gene lists of
various sizes can be compared.

FatiGO+ (Fast Assignment and Transference of
Information): http://babelomics2.bioinfo.cipf.es/fatigoplus/
cgi-bin/fatigoplus.cgi

FatiGO+ tests for significant difference in distribution of GO
terms between any two groups of genes (ideally a group of
interest and a reference set of genes) using a Fisher’s exact
test for 2 by 2 contingency table [16]. FatiGO+ implements
an inclusive analysis in which at a given level in the GO DAG
hierarchy, genes annotated with child GO terms take the
annotation from the parent. This increases the power of the
test. The software returns adjusted p-values using the FDR
method [17].

GOToolBox: http://burgundy.cmmt.ubc.ca/GOToolBox/

GOToolBox identifies over-or under-represented GO terms
in a gene set using either hypergeometric distribution-based
tests or binomial test [18]. The user has the option of
choosing between the total set of genes in the genome as
reference or provides his own list of reference genes. The
software implements Bonferroni correction to adjust for
multiple testing. Its also allows the user to select a specific
level of GO abstraction prior to the analysis.

CLENCH2 (CLuster ENriCHment):
http://www.stanford.edu/∼nigam/cgi-bin/dokuwiki/
doku.php?id=clench

Clench is used to calculate cluster enrichment for GO terms
[19]. The program accepts two lists of genes: a reference set

of genes and the list of changed genes. CLENCH performs
hypergeometric, binomial and X2 tests to estimate GO terms
enrichment. The program allows the user to choose an FDR
cutoff in order to account for multiple testing.

BiNGO (Biological Network Gene Ontology tool):
http://www.psb.ugent.be/cbd/papers/BiNGO/

BiNGO is a Java-based tool to determine which gene ontol-
ogy (GO) categories are statistically overrepresented in a set
of genes or a subgraph of a biological network [20]. BiNGO
is implemented as a plugin for Cytoscape, which is an open
source bioinformatics software platform for visualizing and
integrating molecular interaction networks. The program
implements hypergeometric test and binomial test and
performs FDR to control multiple testing. BiNGO maps
predominant functional themes of the tested genes on the
GO hierarchy. It allows a customizable visual representation
of the results. One limitation is that the user can only choose
between the whole genome or the network under study as
reference set of gene for the enrichment test.

GoSurfer: http://bioinformatics.bioen.uiuc.edu/gosurfer/

GoSurfer is used to visualize and compare gene sets by
mapping them onto gene ontology (GO) information in the
form of a hierarchical tree [21]. Users can manipulate the
tree output by various means, like setting heuristic thresholds
or using statistical tests. Significantly important GO terms
resulting from a X2 test can be highlighted. The software
controls for false discovery rate.

3. GENE COEXPRESSION ANALYSIS TOOLS

In most microarray studies, gene expressions are measured
on a small number of arrays or samples; however, large
collections of arrays are available in microarray database

http://babelomics2.bioinfo.cipf.es/fatigoplus/cgi-bin/fatigoplus.cgi
http://babelomics2.bioinfo.cipf.es/fatigoplus/cgi-bin/fatigoplus.cgi
http://burgundy.cmmt.ubc.ca/GOToolBox/
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http://bioinformatics.bioen.uiuc.edu/gosurfer/
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that contain transcript levels data from thousands of genes
across a wide variety of experiments and samples. These
tools provide scientists with the opportunity to analyze the
transcriptome by pooling gene expression information from
multiple data sets. This meta-analytic approach allows biolo-
gists to test the consistency of gene expression patterns across
different studies. Most importantly, the analysis of concerted
changes in transcript levels between genes can lead to biolog-
ical function discovery. It has been demonstrated that genes
which protein products cooperate in the same pathway or are
in a multimeric protein complex display similar expression
patterns across a variety of experimental conditions [22, 23].
Using the guilt-by-association principle, investigators can
functionally characterize a previously uncharacterized gene
when it displays expression pattern similar to that of known
genes. The coexpression relationship between two genes
is usually assessed by computing the Pearson’s correlation
coefficient or other distance measures. Prior to the coex-
pression analysis, a set of “bait-genes” is selected based on
previous biological or literature information. Then the genes
which expression is significantly correlated with bait-genes
expression are analyzed to identify new potential actors in a
given pathway or biological process. However, coexpression
between two genes does not necessarily translate into similar
function between both genes. Some statistically significant
correlations may occur by chance. Some authors suggest
that to be sustainable the gene coexpressions observed in
one species should be confirmed in other evolutionary close
species [24]. Tools have been developed that make use of the
large sample size available in these databases to identify more
reliable concerted changes in transcripts levels as well as to
examine the coordinated change of gene expression levels.

Cress-express:http://www.cressexpress.org/

Cress-express estimates the coexpression between a user-
provided list of genes and all genes from Affymetrix Ath1
platform using up to 1779 arrays. Cress-express also per-
forms pathway-level coexpression (PLC) [25]. PLC identifies
and ranks genes based on their coexpression with a group
of genes. Cress-express also delivers results in “bulk” formats
suitable for downstream data mining via web services. The
tool generates files for easy import into Cytoscape for
visualization. The tool has the data processed with a variety
of image processing methods: RMA, MAS5, and GCRMA.
Investigators can select which of over 100 experiments to
include in coexpression analysis.

ATTED-II (Arabidopsis thaliana transfactor and cis-element
prediction database): http://www.atted.bio.titech.ac.jp/

ATTED-II provides coregulated gene relationships in Ara-
bidopsis thaliana to estimate gene functions. In addition,
it can predict overrepresented cis-elements based upon all
possible heptamers. There is also several visualization tools
and databases of annotations attached to the coexpression.

Genevestigator: http://www.genevestigator.ethz.ch/

Genevestigator is a web-based discovery tool to study the
expression and regulation of genes, pathways, and networks
[26, 27]. Among other applications, the software allows
the user to look at individual gene expression or group of
genes coexpression in many different tissues, at multiple
developmental stages, or in response to large sets of stimuli,
diseases, drug treatments, or mutations. In addition, elec-
tronic northern blots and other analyses may be conducted.

BAR (the botany array resource) expression ANGLER:
http://www.bar.utoronto.ca/

The expression anger allows the user to identify genes with
similar expression profile with the user provided gene across
multiple samples [28]. The user can specify the Pearson
correlation coefficient threshold and the array database to
use for the coexpression analysis.

AthCor@CSB.DB (A. thaliana coresponse database):
http://csbdb.mpimp-golm.mpg.de/csbdb/dbcor/ath.html

AthCor is a coexpression tool that allows the use of
functional ontology filter to identify genes coexpressed
with a gene of interest filtering the search by functional
ontologies [29]. The user can select between parametric and
nonparametric correlation tests.

PLEXdb (Plant Expression Database): http://www.plexdb.org/

PLEXdb serves as a comprehensive public repository for gene
expression for plants and plant pathogens [30]. PLEXdb
integrates new gene expression datasets with traditional
genomics and phenotypic data. The integrated tools of
PLEXdb allow plant investigators to perform comparative
and functional genomics analyses using large-scale expres-
sion data sets.

ACT (Arabidopsis Coexpression Data mining Tool):
http://www.arabidopsis.leeds.ac.uk/act/index.php

ACT estimates the coexpression of 21 891 Arabidopsis genes
based on Affymetrix ATH1 platform using a simple correla-
tion test [31]. The web server includes a database that stores
precalculated correlation results from over 300 arrays of the
NASC/GARNet dataset. A “clique finder” tool allows the user
to identify groups of consistently coexpressed genes within a
user-defined list of genes. The identification of genes with
a known function within a cluster allows inference to be
made about the other genes. Users can also visualize the
coexpression scatter plots of all genes against a group of
genes.

4. GENE NETWORK ANALYSIS

Genes and their protein products are related to each other
through a complex network of interactions. In higher meta-
zoa, on average each gene is estimated to interact with five

http://www.cressexpress.org/
http://www.atted.bio.titech.ac.jp/
http://www.genevestigator.ethz.ch/
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other genes [32], and to be involved in ten different biological
functions during development [33]. On a molecular level,
the function of a gene depends on its cellular context, and
the activity of a cell is determined by which genes are being
expressed and which are not and how they interact with
each other. In such high interconnectedness, analyzing a
network as a whole is essential to understanding the complex
molecular processes underlying biological systems. The
traditional reductionist approach that investigates biological
phenomena by analyzing one gene at a time cannot address
this complexity. By using systems biology approach and
network theories, investigators can analyze the behavior
and relationships of all of the elements in a particular
biological system to arrive at a more complete description
of how the system functions [34]. High-throughput gene
expression profiling offers the opportunity to analyze gene
interrelationships at the genome scale. Clustering analysis on
microarray expression data only extracts lists of coregulated
genes out of a large-scale expression data. It does not tell
us who is regulating whom and how. However, the task of
modeling dynamic systems with large number of variables
can be computationally challenging. In gene regulatory
networks, genes, mRNA, or proteins correspond to the
network nodes and the links among the nodes stand for the
regulatory interactions (activations or inhibitions). In this
section, we will describe some of the methods and tools used
to reconstruct, visualize, and explore gene networks.

4.1. Gene network reconstruction algorithms

Two main approaches have been used to develop models
for gene regulatory networks [35]. One method is based
on Bayesian inference theory which seeks to find the most
probable network given the observed expression patterns of
the genes to be included in the network. The regulatory inter-
actions among genes and their directions are derived from
expression data. Several network structures are proposed and
scored on the basis of how well they explain the data as it
has been successfully implemented in yeast [36]. The second
approach is based on “mutual information” as a measure
of correlation between gene expression patterns [37]. A
regulatory interaction between two genes is established if
the mutual information on their expression patterns is
significantly larger than a p-threshold value calculated from
the mutual information between random permutations of
the same patterns. Unlike the Bayesian theory, which tries
out whole networks and selects the one that best explains the
observed data, the mutual information method constructs
a network by selecting or rejecting regulatory interactions
between pairs of genes. This method does not provide
the direction of regulatory interactions. We present below
selected tools that implement either of the aforementioned
approaches to reverse-engineer gene regulatory networks.

BNArray (Bayesian Network Array):
http://www.cls.zju.edu.cn/binfo/BNArray/

BNArray is a tool developed in R for inferring gene
regulatory networks from DNA microarray data by using

a Bayesian network [38]. It allows the reconstruction of
significant submodules within regulatory networks using
an extended subnetwork mining algorithm. BNArray can
handle microarray data with missing values.

BANJO (Bayesian Network Inference with Java Objects):
http://www.cs.duke.edu/∼amink/software/banjo/

Banjo is a tool developed in Java for inferring gene networks
[39]. Banjo implements Bayesian and dynamic Bayesian
networks to infer networks from both steady-state and time-
series expression data. A “proposer” component of Banjo
uses heuristic approaches to search the network space for
potential network structures. Each network structure is
explored and an overall network’s score is computed based
on the parameters of the conditional probability density
distribution. The network with the best overall score is
accepted by a “decider” component of the software. The
network retained is processed by Banjo to compute influence
scores on the edges indicating the direction of the regulation
between genes. The software displays the output network.

GNA (Genetic Network Analyzer):
http://www-helix.inrialpes.fr/article122.html

GNA is a freely available software used for modeling and
simulating genetic regulatory networks from gene expression
data and regulatory interaction information [40]. In GNA,
the dynamics of a regulatory network is modeled by a class
of piecewise-linear differential equations. The biological data
are transformed into mathematical formalism. Thus the
software uses qualitative constraints in the form of algebraic
inequalities instead of numerical values.

PathwayAssist http://www.ariadnegenomics.com/products/
pathway-studio

PathwayAssist allows the users to create their own pathways
by combining the user-submitted microarray expression data
with knowledge from biological databases such as BIND,
KEGG, DIP [41]. The software provides a graphical user
interface and publication quality figures.

4.2. Network visualization tools

As a result of the explosion and advances in experimental
technologies that allow genome-wide characterization of
molecular states and interactions among thousands of genes,
researchers are often faced with the need for tools for the
visualization, display, and evaluation of large structure data.
The main aim of these tools is to provide a summarized
yet understandable view of large amount of data while
integrating additional information regarding the biological
processes and functions. Several network visualization tools
have been developed of which we will describe some of the
most popular.

http://www.cls.zju.edu.cn/binfo/BNArray/
http://www.cs.duke.edu/~amink/software/banjo/
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Cytoscape—http://www.cytoscape.org/

Cytoscape is a general-purpose, open-source software envi-
ronment for the large scale integration of molecular inter-
action network data [42]. Dynamic states on molecules
and molecular interactions are handled as attributes on
nodes and edges, whereas static hierarchical data, such
as protein-functional ontologies, are supported by use of
annotations. The Cytoscape core handles basic features such
as network layout and mapping of data attributes to visual
display properties. Many Cytoscape plug-ins extend this core
functionality.

CellDesigner http://www.celldesigner.org/

CellDesigner is a structured diagram editor for drawing
gene-regulatory and biochemical networks based on stan-
dardized technologies and with wide transportability to
other systems biology markup language (SBML) compliant
applications and systems biology workbench (SBW) [43].
Networks are drawn based on the process diagram, with
graphical notation system. The user can browse and modify
existing SBML models with references to existing databases,
simulate and view the dynamics through an intuitive graphi-
cal interface. CellDesigner runs on Windows, MacOS X, and
Linux.

VANTED (Visualization and Analysis of Networks with related
Experimental Data): http://vanted.ipk-gatersleben.de/

Vanted is a freely available tool for network visualization
that allows users to map their own experimental data
on networks drawn in the tool, downloaded from KEGG
pathway database, or imported using standard imported
formats [44]. The software graphically represents the genes
in their underlying metabolic context. Statistical methods
implemented in VANTED allow the comparison between
treatments or groups of genes, the generation of correlation
matrix, or the clustering of genes based on expression
pattern.

Osprey http://biodata.mshri.on.ca/osprey/servlet/Index

Osprey is a software for visualization and manipulation
of complex interaction networks [45]. Osprey allows user
defined colors to indicate gene function, experimental sys-
tems, and data sources. Genes are colored by their biological
process as defined by standardized gene ontology (GO)
annotations. As a network complexity increases, Osprey
simplifies network layouts through user-implemented node
relaxation, which disperses nodes and edges according to
anyone of a number of layout options.

VisANT (Integrative Visual Analysis Tool for Biological
Networks and Pathways): http://visant.bu.edu/

VisANT is a freely available open-source tool for integrating
biomolecular interaction data into a cohesive, graphical
interface [45–47]. VisANT offers an online interface for a

large range of published datasets on biomolecular inter-
actions, as well as databases for organized annotation,
including GenBank, KEGG, and SwissProt.

4.3. Network exploration tools

One of the main focuses in the postgenomic era is to study
the network of molecular interactions in order to reveal
the complex roles played by genes, gene products, and the
cellular environments in different biological processes. The
nodes (genes) of a network can be associated with additional
information regarding the gene products, gene positions
in the chromosome, or the gene functional annotation.
The edges in the network symbolize specific interaction
that can be associated with a transcription factor-promoter
bond for instance. This information can be automatically
retrieved in a number of specialized and publicly acces-
sible databases containing data about the nodes and the
interactions. Network exploration tools enable the user to
perform analysis on single genes, gene families, patterns of
molecular interactions, as well as on the global structure
of the network. These tools are able to incorporate both
microscale and macroscale analysis using heterogenous data.
They can connect to a large number of disparate databases.
The user usually has an option to construct interaction
networks either by curation or by computation and to
associate microarray expression data with known metabolic
pathways. Here, we describe some of the most popular
network exploration tools.

MetNet (Metabolic Networking Database):
http://www.metnetdb.org/

MetNet is a publicly available software for analysis of
genome-wide mRNA, protein, and metabolite profiling data
[48]. The software is designed to enable the biologist to
visualize, statistically analyze, and model a metabolic and
regulatory network map of Arabidopsis, combined with gene
expression profiling data. MetNet provides a framework
for the formulation of testable hypotheses regarding the
function of specific genes. The tools within MetNet allow
the user to map metabolic and regulatory networks; to
integrate and visualize data together; to explore and model
the metabolic and regulatory flow in the network.

BiologicalNetworks: http://biologicalnetworks.net/

BiologicalNetworks is a bioinformatics and systems biology
software platform for visualizing molecular interaction net-
works, sequence and 3D structure information [49]. The
tool performs easy retrieval, construction, and visualiza-
tion of complex biological networks, including genome-
scale integrated networks of protein-protein, protein-DNA,
and genetic interactions. BiologicalNetworks also allow the
analysis and the mapping of expression profiles of genes or
proteins onto regulatory, metabolic, and cellular networks.

http://www.cytoscape.org/
http://www.celldesigner.org/
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PaVESy (Pathway Visualization Editing System):
http://pavesy.mpimp-golm.mpg.de/PaVESy.htm

PaVESy is a data managing system for editing and visual-
ization of biological pathways [50]. The main component
of PaVESy is a relational SQL database system that stores
biological objects, such as metabolites, proteins, genes, and
their interrelationships. The user can annotate the biological
objects with specific attributes that are integrated in the
database. The specific roles of the objects are derived from
these attributes in the context of user-defined interactions.
PaVESy can display an individualized view on the database
content that facilitates user customization.

Genevestigator: https://www.genevestigator.ethz.ch

Genevestigator provides a detailed analysis and naviga-
tion through biochemical and/or regulatory pathways. It
combines automatically produced or user-created graphical
representations of networks (e.g., gene modules or pathways)
for the exploratory analysis of a large compendium of
gene expression profiles. Effects on gene expression can be
projected onto these networks for the following ontologies:
anatomy, development, stimulus, and mutation, in form of
comparison sets.

5. BIOLOGICAL PATHWAY RESOURCES

One of the downstream applications of the reconstruction
of a gene regulatory networks or the identification of
clusters of functionally related genes is to associate the
genes and their interconnections with known metabolic
pathways. Biochemists summarized the sequence of enzyme-
catalyzed metabolic reactions between biomolecules as a
network of interactions that results from the conversion
of one organic substance (substrate) to another (product).
Depending on the type of interactions analyzed, several types
of biochemical networks are identified. These biochemical
networks represent the potential mechanistic associations
between genes and gene products that are involved in
specific biological processes [52]. Because of the curse of
dimensionality that sometimes hampers the whole network
analysis, investigators often focus on “pathway” rather than
“network” when they are investigated a small number of
gene interactions. Many specialized databases are available
that store and summarize large amount of information on
metabolic reactions. Increasingly, identifying and searching
the right database is a critical and necessary step in most
biological researches. This task can be tedious due to the large
number of databases available. For a more comprehensive
list of biological pathways resources on the web, the reader is
referred to pathguide (http://www.pathguide.org). Following
is the list of the most popular pathways resources on the web.

KEGG (Kyoto Encyclopedia of Genes and Genomes):
http://www.genome.jp/kegg

KEGG aims to link lower-level information (genes, proteins,
enzymes, reaction molecules, etc.) with higher-level infor-

mation (interactions, enzymatic reactions, pathways, etc.).
Pathways are included for over 100 species.

MetaCyc: http://MetaCyc.org/

MetaCyc is a database of metabolic pathways and enzymes
[53]. Its goal is to serve as a metabolic encyclopedia, con-
taining a collection of nonredundant pathways, enzymatic
reactions, enzymes, chemical compounds, genes and review-
level comments. Enzyme information includes substrate
specificity, kinetic properties, activators, inhibitors, cofactor
requirements and links to sequence and structure databases.
AracCyc (http://www.arabidopsis.org/biocyc/index.jsp) uses
MetaCyc as reference database for visualization of Arabidop-
sis thaliana biochemical pathways. Table 2 indicates web links
to more online pathways databases.

BioCarta: http://www.biocarta.com/genes/index.asp

BioCarta is a web-based resource for exploring biological
pathways. BioCarta catalogs pathways, regulation and inter-
action information for over 120,000 genes covering most
model organisms. Data in BioCarta are constantly updated,
and new pathways are suggested by the life science research
community.

GeneNeT: http://wwwmgs.bionet.nsc.ru/mgs/gnw/genenet/

The GeneNet system is designed for formalized description
and automated visualization of gene networks [54]. The
GeneNet system includes database on gene network com-
ponents, Java program for the data visualization. GeneNet
allows the users to select entities that are involved in the
functioning of a particular gene network, to describe the
regulatory relations for a particular gene network, and to
search for potential transcription factors.

6. TRANSCRIPTION REGULATION ANALYSIS TOOLS

Most organisms encode a large number of DNA-binding
proteins that act as transcription factors. In Arabidopsis,
more than 5% of the genes have been estimated to encode
transcription factors [55]. Transcription factors bind to
short conserved DNA motifs (cis-acting regulatory elements
CARE) located at the 5’end of the gene (in a region called
promoter) to initiate mRNA transcription. Thus DNA-
binding proteins play a key role in all aspects of genetic
activity within an organism. They participate in promoting
or repressing the transcription of specific genes. Elucidating
the mechanisms that underlie the expression of genomes is
one of the major challenges in bioinformatics. An interesting
hypothesis one might formulate after a successful microarray
study is that the genes that are coexpressed may also be
coregulated at the transcriptional level. One way to test this
hypothesis is to identify overrepresented oligonucleotides
sequences as potential binding sites for transcriptions factors
in promoter regions of genes clustered in the same group.
The statistical test for overrepresentation of regulatory motifs
in intergenic regions is the general principle implemented in

http://pavesy.mpimp-golm.mpg.de/PaVESy.htm
https://www.genevestigator.ethz.ch
http://www.pathguide.org
http://www.genome.jp/kegg
http://MetaCyc.org/
http://www.arabidopsis.org/biocyc/index.jsp
http://www.biocarta.com/genes/index.asp
http://wwwmgs.bionet.nsc.ru/mgs/gnw/genenet/
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Table 2: Additional links for pathways databases on the internet.

Database name Description URL

PathDB Biochemical pathways, compounds
and metabolism

http://www.ncgr.org/pathdb

UM-BBD University of Minnesota biocatalysis
and biodegradation database

http://umbbd.ahc.umn.edu/

BIND Biomolecular interaction network
database

http://www.bind.ca/

BRITE
Biomolecular relations in
information transmission and
expression, part of KEGG

http://www.genome.ad.jp/brite/

PAJEK Program for large network analysis http://vlado.fmf.uni-lj.si/pub/networks/pajek/

DDIB Database of domain interactions
and binding

http://www.ddib.org/

DIP
Database of interacting proteins:
experimentally determined
protein-protein interactions

http://dip.doe-mbi.ucla.edu/

IntAct project Protein-protein interaction data http://www.ebi.ac.uk/intact/

InterDom Putative protein domain
interactions

http://interdom.i2r.a-star.edu.sg/

PSIbase Interaction of proteins with known
3D structures

Reactome A knowledgebase of biological
pathways

http://www.reactome.org/

STRING Predicted functional associations
between proteins

http://string.embl.de/

TRANSPATH Gene regulatory networks and
microarray analysis

http://www.biobase-international.com/pages/index.php?id=transpathdatabases

most algorithms for regulatory motif detection [55]. CAREs
can also be predicted through phylogenetic footprinting
that is based on sequence similarity between orthologous
promoters [56]. Some other approaches have been pro-
posed that integrates comparative, structural, and functional
genomics to identify conserved motifs in coregulated genes.
The detailed description of these approaches is beyond the
scope of this chapter. Following is a list of transcription
factors database and tools (Table 3).

Plant Promoter Database (PlantProm DB):
http://mendel.cs.rhul.ac.uk or http://www.softberry.com/

PlantProm is a plant promoter database. The database
represents a collection of annotated, nonredundant proximal
promoter sequences for RNA polymerase II with experimen-
tally determined transcription start site from various plant
species [57].

The Arabidopsis information resource (TAIR) motif
analysis software: http://www.arabidopsis.org/tools/bulk/
motiffinder/index.jsp

The motif analysis tool of the TAIR compares the frequency
of 6-mer motif in promoter regions of query set of genes with
the frequency of the 6-mer motif in the whole A. thaliana

genome. A binomial distribution p-value is computed for
each motif identified. The user can specify the size of the
genes 5’upstream region to 500 bp or 1 kb. The tool does not
account for multiple testing.

TRANSFAC:
http://www.biobase-international.com/pages/index.php?
id=transfacdatabases

TRANSFAC is an international unique database on eukary-
otic transcriptional regulation [58]. The database contains
data on transcription factors, their target genes and their
experimental-proven binding sites in genes. Tools within
TRANSFAC allow the users to automatically visualize gene-
regulatory networks based on interlinked factor and gene
entries in the database.

AthaMap: http://www.athamap.de/index.php

AthaMap is a database that organizes a genome-wide map
of potential transcription factor binding sites in Arabidopsis
thaliana [59]. AthaMap allows the user to test for the
overrepresentation of transcription factors in a set of query
genes. A colocalization tool performs combinatorial analysis
to identify synchronized binding of pairs of transcription
factors.

http://www.ncgr.org/pathdb
http://umbbd.ahc.umn.edu/
http://www.bind.ca/
http://www.genome.ad.jp/brite/
http://vlado.fmf.uni-lj.si/pub/networks/pajek/
http://www.ddib.org/
http://dip.doe-mbi.ucla.edu/
http://www.ebi.ac.uk/intact/
http://interdom.i2r.a-star.edu.sg/
http://www.reactome.org/
http://string.embl.de/
http://www.biobase-international.com/pages/index.php?id=transpathdatabases
http://mendel.cs.rhul.ac.uk
http://www.softberry.com/
http://www.arabidopsis.org/tools/bulk/motiffinder/index.jsp
http://www.arabidopsis.org/tools/bulk/motiffinder/index.jsp
http://www.biobase-international.com/pages/index.php?id=transfacdatabases
http://www.biobase-international.com/pages/index.php?id=transfacdatabases
http://www.athamap.de/index.php


I. Coulibaly and GrierP. Page 9

Table 3: Databases for transcription factors available on the internet.

Databse name Description URL

ACTIVITY Functional DNA/RNA site activity http://wwwmgs.bionet.nsc.ru/mgs/systems/activity/

DoOP Database of orthologous promoters:
chordates and plants

http://doop.abc.hu/

EPD Eukaryotic promoter database http://www.epd.isb-sib.ch/

JASPAR PSSMs for transcription factor
DNA-binding sites

http://jaspar.cgb.ki.se/

MAPPER Putative transcription factor
binding sites in various genomes

http://bio.chip.org/mapper

TESS Transcription element search
system

http://www.cbil.upenn.edu/tess/

TRANSCompel
Composite regulatory elements
affecting gene transcription in
eukaryotes

http://www.gene-regulation.com/pub/databases.html#transcompel

TRED Transcriptional regulatory element
database

http://rulai.cshl.edu/tred/

TRRD Transcription regulatory regions of
eukaryotic genes

http://www.bionet.nsc.ru/trrd/

AthaMap
Genome-wide map of putative
transcription factor binding sites in
Arabidopsis thaliana

http://www.athamap.de/

DATF Database of Arabidopsis
transcription factors

http://datf.cbi.pku.edu.cn/

PlantCARE (Plant Cis-Acting Regulatory Elements):
http://bioinformatics.psb.ugent.be/webtools/plantcare/
html/

PlantCARE is a database of plant cis-acting regulatory ele-
ments and a portal to tools for in silico analysis of promoter
sequences [60]. The database can be queried on names of TF
binding sites, function, species, cell type, genes, and reference
literatures. The program returns a list of entries with links
to other information within the database or beyond through
accession to TRANSFAC, EMBL, GenBANK, or MEDLINE.

PLACE (Plant Cis-acting regulatory DNA Elements):
http://www.dna.affrc.go.jp/PLACE/

PLACE is a database of motifs found in plant cis-acting
regulatory DNA elements, all from previously published
reports [61]. In addition to the motifs originally reported
their variations in other genes or in other plant species
reported later are also compiled. The PLACE database also
contains a brief description of each motif and relevant
literature with PubMed ID numbers.

Athena: http://www.bioinformatics2.wsu.edu/cgi-bin/
Athena/cgi/home.pl

Athena is a database which contains over 30 000 predicted
Arabidopsis promoters sequences and consensus sequences
for 105 previously characterized TF binding sites [62].
Athena enables the user to visualize and rapidly inspect key
regulatory elements in multiple promoters. The software
includes tools for testing the overrepresentation of TF sites

among subset of promoters. A data-mining tool allows
the selection of promoter sequences containing specific
combination of TF binding sites. Athena does not adjust for
multiple testing.

AGRIS (Arabidopsis Gene Regulatory Information Server):
http://arabidopsis.med.ohio-state.edu/

AGRIS is an information resource for retrieving Arabidopsis
promoter sequences, transcription factors and their target
genes [63]. AGRIS integrates transcriptional regulatory
information from multiple sources. Users can query the
database with a gene name, gene symbol to retrieve its
promoter along with other genes regulated by the same
transcription factor.

7. ‘OMICS DATA INTEGRATION TOOLS

Various innovative and advanced technologies have allowed
scientists to rapidly generate genome-scale or “omics”
datasets at virtually every cellular level. These individual
omics provide a wealth of information about living cells
and organisms. However, it is only by integrating genomics,
transcriptomics proteomics, metabolomics, and other recent
omics types of data such as “interactomics,” “localizomics,”
“lipidomics,” and “phenomics” that biologists can gain
access to a more complete picture of living organisms and
unexplored areas of biology. This challenging task requires a
systems level approach to perform systematic data mining,
cross-knowledge validation, and cross-species interpolation.
Some investigators attempted the integration of genomic
data and transcriptomic data [64], and the integration of

http://wwwmgs.bionet.nsc.ru/mgs/systems/activity/
http://doop.abc.hu/
http://www.epd.isb-sib.ch/
http://jaspar.cgb.ki.se/
http://bio.chip.org/mapper
http://www.cbil.upenn.edu/tess/
http://www.gene-regulation.com/pub/databases.html#transcompel
http://rulai.cshl.edu/tred/
http://www.bionet.nsc.ru/trrd/
http://www.athamap.de/
http://datf.cbi.pku.edu.cn/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://www.dna.affrc.go.jp/PLACE/
http://www.bioinformatics2.wsu.edu/cgi-bin/Athena/cgi/home.pl
http://www.bioinformatics2.wsu.edu/cgi-bin/Athena/cgi/home.pl
http://arabidopsis.med.ohio-state.edu/
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Table 4: Proteomics databases available on the internet.

Databse name Description URL

RPD Rice proteome database http://gene64.dna.affrc.go.jp/RPD/

ANPD Arabidopsis nucleolar protein
database

http://bioinf.scri.sari.ac.uk/cgi-bin/atnopdb/home/

AMPD Arabidopsis mitochondrial protein
database

http://www.plantenergy.uwa.edu.au/applications/ampdb/index.html/

PA-GOSUB
Protein sequences from model
organisma, GO assignement and
subcellular localization

http://www.cs.ualberta.ca/∼bioinfo/PA/GOSUB/

Swiss-Prot
A curated protein sequence
database which strives to provide a
high level of annotation

http://expasy.org/sprot/

AAindex

Database of various
physicochemical and biochemical
properties of amino acids and pairs
of amino acids

http://www.genome.ad.jp/aaindex/

Prosite
Database of protein domains,
families and functional sites, as well
as associated patterns and profiles

http://www.expasy.ch/prosite/

PLANT-PIs

Database of information on the
distribution and functional
properties of protease inhibitors in
higher plants

http://www.ba.itb.cnr.it/PLANT-PIs/

GeneFarm Annotation of Arabidopsis genes
and proteins

http://urgi.versailles.inra.fr/Genefarm/

protein-protein interation data and transcriptomic data [65]
to analyze the dynamics of biological networks in yeast. The
approach commonly used comprises three steps: (1) identifi-
cation of the network that describes all interactions between
cellular components from integrating various genome scale
data; (2) decomposing the network into its constituent
parts or network modules; (3) building a mathematical
model that simulates biological systems for the purpose of
simulation or prediction [66]. We describe below proteomics
and metabolomics, and the potential of their integration
with transcritomic data.

7.1. Proteomics

Gene mRNA expression profiling on a global scale in
response to specific conditions is not sufficient to render
the complexities and dynamics of systems biology. The
ultimate products of genes are proteins. Furthermore, mRNA
levels are not always well correlated with the levels of the
corresponding protein [67] and one gene can produce several
protein species. Indeed, proteins undergo a series of post-
translational molecular modifications such as glycosylation,
phosphorylation, cleavage or complex formation may also
occur that overall influence their function. Proteomics is the
systematic large-scale study of proteins of an organism or a
specific type of tissue, particularly their structure, function,
and spatiotemporal distribution. Thus proteomics is an
essential component of any functional genomics study aim-
ing at understanding biological processes. The integration of
transcriptome and proteome data has not always resulted in
consistent results [68]. The methods and techniques used to

measure the transcript level and the protein level may affect
the results concordance. Nonetheless, the interpretation of
the data in terms of biological pathways or functional groups
gives better correlation of transcriptome with proteome in
yeast [69].

Many plant proteomics databases have been constructed
in recent years. As the plant model organism of choice, Ara-
bidopsis proteome database contains more data compared to
other species. Protein amino acid sequence databases and
repositories for two-dimensional polyacrylamide gel electro-
phoresis as reference maps of proteomes are becoming popu-
lar as tools for analyzing and comparing the plant proteome.
SWISS-2DPAGE is a two-dimensional polyacrylamide gel
electrophoresis database (http://expasy.org/ch2d). PhytoProt
(http://urgi.versailles.inra.fr/phytoprot) is a database of clus-
ters of all the plants full-length protein sequences retrieved
from SwissProt/TrEMBL. Proteins are grouped into clusters
based on their peptide sequence similarity in order to
track erroneous annotations made at the genome level. The
database can be searched for any protein or group of proteins
using protein ID or words appearing in protein description.
Additional plant proteomics databases are provided in
Table 4.

7.2. Metabolomics

Metabolomics is the study of all low molecular weight
chemicals in a plant as the end products of the cellular
processes. The metabolome represents the collection of all
metabolites in an organism. Metabolic profiling provides
an instantaneous snapshot of the chemistry of a sample

http://gene64.dna.affrc.go.jp/RPD/
http://bioinf.scri.sari.ac.uk/cgi-bin/atnopdb/home/
http://www.plantenergy.uwa.edu.au/applications/ampdb/index.html/
http://www.cs.ualberta.ca/~bioinfo/PA/GOSUB/
http://expasy.org/sprot/
http://www.genome.ad.jp/aaindex/
http://www.expasy.ch/prosite/
http://www.ba.itb.cnr.it/PLANT-PIs/
http://urgi.versailles.inra.fr/Genefarm/
http://expasy.org/ch2d
http://urgi.versailles.inra.fr/phytoprot
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Table 5: Main features of the types of bioinformatics tools used for the analysis of DNA microarray data.

Tools and resources Goal Methods

Class level functional
Annotation

Determine a biological meaning to
groups of related genes identified by
microarray analysis

Overrepresentation test of gene
ontology (GO) terms

Gene coexpression
Identify common expression patterns
between genes in order to infer
biological function

Correlation tests of gene expression

Gene network Analysis
Capture the interconnectedness of
cellular components in order to
explain biological phenomena

Systems biology approach

Gene network
reconstruction

Develop models for gene regulatory
networks

Bayesian inference theory Mutual
information theory

Network visualization
Display a simplified view of large
amount biological components and
their interactions

Graph theory

Network exploration
Associate network nodes and edges
with biological information

Incorporate heterogeneous data from
various databases

Biological pathway
resources

Map biological pathways information
into inferred network

Collect and process information from
pathway databases

Transcriptional regulation
analysis

Identify transcription factors that
regulate gene expression

Overrepresentation test of regulatory
motifs in promoter regions of related
genes

and defines the biochemical phenotype of a cell or a tissue
[70]. Similar to transcript level and protein level, the level
of metabolites in an organism or a tissue is influenced by
the biological context [71]. Thus measure of mRNA gene
expression and protein content of a sample do not tell the
whole story of biological phenomena unfolding in that sam-
ple. Although plant metabolomics is still in its infancy, recent
advances in mass spectrometry have enabled the accumula-
tion of metabolites data on a large scale for some species.
Applications of metabolomics data to functional genomics
are numerous. Metabolomics provide scientist with the
ability (1) to characterize genotypes, ecotypes, or phenotypes
with metabolites levels; (2) to identify sites within a genetic
network where metabolites levels are regulated; (3) to analyze
genes functions at the light of metabolites levels [70].
Currently, one of the most pressing needs in the fields of
metabolomics for bioinformatics application is the creation
of specific databases and biochemical ontologies. Such tools
would help clearly describe the function, localization, and
interaction of metabolites. However, databases imbedded in
KEGG and AraCyc can be useful at least in part for the
purpose of metabolites referencing.

8. CONCLUSION

The deluge of large-scale biological data in the recent years
has made the development of computational tools critical to
biological investigation. Microarray studies enables scientist
to simultaneously interrogate thousands of genes throughout
the genome. A great variety of tools have been developed
for the specific task of drawing biological meaning from
microarray data. Most of the tools available exploit prior
biological knowledge accumulated in numerous publicly

available databases in an attempt to provide a comprehensive
view of biological phenomena. Table 5 summarizes the main
features of each class of bioinformatics tool described. These
tools differ in many respects and the guidance provided
in this review will help biologists with little knowledge
in statistics understand some of the key concepts. The
integration of transcriptomics data with all other omics data
is a challenging task that can be addressed by a systems-
levelapproach.
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1. INTRODUCTION

Functional genomics research has expanded enormously in
the last decade and particularly the plant biology research
community has extensively included functional genomics
approaches in their recent research proposals. The num-
ber of Affymetrix plant GeneChips, for example, has dou-
bled in the last two years [1] and extensive international ge-
nomics consortia exist for major crops (see last PAG Con-
ference reports for an updated impression on current plant
genomics, http://www.intl-pag.org). Not less importantly,
many middle-sized research groups are also setting up plant
EST projects and producing custom microarray platforms
[2]. This massive generation of plant sequence data and rapid
spread of functional genomics technologies among plant re-
search labs has created a strong demand for bioinformat-
ics resources adapted to vegetative species. Functional an-
notation of novel plant DNA sequences is probably one of
the top requirements in plant functional genomics as this
holds, to a great extent, the key to the biological inter-
pretation of experimental results. Controlled vocabularies
have imposed along the way as the strategy of choice for
the effective annotation of the function of gene products.

The use of controlled vocabularies greatly facilitates the ex-
change of biological knowledge and the benefit from com-
putational resources that manage this knowledge. The gene
ontology (GO, http://www.geneontology.org) [3] is proba-
bly the most extensive scheme today for the description of
gene product functions but also other systems such as en-
zyme codes [4], KEGG pathways [5], FunCat [6], or COG
[7] are widely used within molecular databases. Many bioin-
formatics tools and methods have been developed to assist
in the assignment of functional terms to gene products (re-
viewed in [8]). Fewer resources, however, are available when
it comes to the large-scale functional annotation of novel se-
quence data of nonmodel species, as would be specifically
required in many plant functional genomics projects. Web-
based tools for the functional annotation of new sequences
include AutoFact [9], GOanna/AgBase [10], GOAnno [11],
Goblet [12], GoFigure + GoDel [13], GoPET [14], Gotcha
[15], HT-GO-FAT (liru.ars.usda.gov/ht-go-fat.htm), Inter-
ProScan [16], JAFA [17], OntoBlast [18], and PFP [19]. Ad-
ditionally, functional annotation capabilities are usually in-
corporated in EST analysis pipelines. A few relevant exam-
ples are ESTExplorer, ESTIMA, ESTree. or JUICE (see [2] for
a survey in EST analysis). These resources are valuable tools
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for the assignment of functional terms to uncharacterized se-
quences but usually lack high-throughput and data mining
capabilities, in the first case, or provide automatic solutions
without much user interactivity, in the second. In this pa-
per, we describe the Blast2GO (B2G, www.blast2go.org) ap-
plication for the functional annotation, management, and
data mining of novel sequence data through the use of com-
mon controlled vocabulary schemas. The philosophy be-
hind B2G development was the creation of an extensive,
user-friendly, and research-oriented framework for large-
scale function assignments. The main application domain
of the tool is the functional genomics of nonmodel organ-
isms and it is primarily intended to support research in ex-
perimental labs where bioinformatics support may not be
strong. Since its release in September 2005 [20], more than
100 labs worldwide have become B2G users and the appli-
cation has been referenced in over thirty peer-reviewed pub-
lications (www.blast2go.org/citations). Although B2G has a
broad species application scope, the project originated in a
crop genomics research environment and there is quite some
accumulated experience in the use of B2G in plants, which
includes maize, tobacco, citrus, Soybean, grape, or tomato.
Projects range from functional assignments of ESTs [21–24]
to GO term annotation of custom or commercial plant mi-
croarrays [25, 26], functional profiling studies [27–29], and
functional characterization of specific plant gene families
[30, 31].

In the following sections we will explain more extensively
the concepts behind Blast2GO. We will describe in detail
main functionalities of the application and show a use case
that illustrates the applicability of B2G to plant functional
genomics research.

2. BLAST2GO HIGHLIGHTS

Four main driving concepts form the foundation of the
Blast2GO software: biology orientation, high-throughput,
annotation flexibility,and data-mining capability.

Biology orientation. The target users of Blast2GO are biol-
ogy researchers working on functional genomics projects in
labs where strong bioinformatics support is not necessar-
ily present. Therefore, the application has been conceived to
be easy to install, to have minimal setup and maintenance
requirements, and to offer an intuitive user interface. B2G
has been implemented as a multiplatform Java desktop ap-
plication made accessible by Java Webstart technology. This
solution employs the higher versatility of a locally running
application while assuring automatic updates provided that
an internet connection is available. This implementation has
proven to work very efficiently in the fast transfer to users of
new functionalities and for bug fixes. Furthermore, access to
data in B2G is reinforced by graphical parameters that on one
hand allow the easy identification and selection of sequences
at various stages of the annotation process and, on the other
hand, permit the joint visualization of annotation results and
highlighting of most relevant features.

High-throughput while interactive. Blast2GO strives to be the
application of choice for the annotation of novel sequences

in functional genomics projects where thousands of frag-
ments need to be characterized. In principle, B2G accepts
any amount of records within the memory resources of the
user’s work station. Typical data files of 20 to 30 thousand
sequences can be easily annotated on a 2 Giga RAM PC
(larger projects may use the graphical interface free version
of Blast2GO). During the annotation process, intermediate
results can be accessed and modified by the user if desired.

Flexible annotation. Functional annotation in Blast2GO is
based on homology transfer. Within this framework, the ac-
tual annotation procedure is configurable and permits the
design of different annotation strategies. Blast2GO annota-
tion parameters include the choice of search database, the
strength and number of blast results, the extension of the
query-hit match, the quality of the transferred annotations,
and the inclusion of motif annotation. Vocabularies sup-
ported by B2G are gene ontology terms, enzyme codes (EC),
InterPro IDs, and KEGG pathways.

Data mining on annotation results. Blast2GO is not a mere
generator of functional annotations. The application in-
cludes a wide range of statistical and graphical functions for
the evaluation of the annotation procedure and the final re-
sults. Especially, (relative) abundance of functional terms can
be easily assessed and visualized.

The first release of B2G covered basic application func-
tionalities: high-throughput blast against NCBI or local
databases, mapping, annotation, and gene set enrichment
analysis; scalar vector graphics (SVG) combined graphs and
basic distributions charts. Enhanced modules for massive
blast, modification of annotation intensity, curation, addi-
tional vocabularies, high-performing customizable graphs
and pathway charts, data mining and sequence handling, as
well as a wide array of input and output formats have been
incorporated into the Blast2GO suite.

3. THE BLAST2GO APPLICATION

Figure 1 shows the basic components of the Blast2GO suite.
Functional assignments proceed through an elaborate anno-
tation procedure that comprises a central strategy plus re-
finement functions. Next, visualization and data mining en-
gines permit exploiting the annotation results to gain func-
tional knowledge.

3.1. The annotation procedure

The Blast2GO annotation procedure consists of three main
steps: blast to find homologous sequences, mapping to col-
lect GO terms associated to blast hits, and annotation to as-
sign trustworthy information to query sequences. Once GO
terms have been gathered, additional functionalities enable
processing and modification of annotation results.

Blast step. The first step in B2G is to find sequences similar
to a query set by blast [32]. B2G accepts nucleotide and pro-
tein sequences in FASTA format and supports the four ba-
sic blast programs (blastx, blastp, blastn, and tblastx). Ho-
mology searches can be launched against public databases

file:www.blast2go.org
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Figure 1: Schematic representation of Blast2GO application. GO annotations are generated through a 3-step process: blast, mapping, anno-
tation. InterPro terms are obtained from InterProScan at EBI, converted and merged to GOs. GO annotation can be modulated from Annex,
GOSlim web services and manual editing. EC and KEGG annotations are generated from GO. Visual tools include sequence color code,
KEGG pathways, and GO graphs with node highlighting and filtering options. Additional annotation data-mining tools include statistical
charts and gene set enrichment analysis functions.

DT = max
(
similarity× ECweight

)

AT = (#GO− 1)×GOweight

AR : lowest.node
(
AS(DT + AT) ≥ threshold

)

Figure 2: Blast2GO annotation rule.

such as (the) NCBI nr using a query-friendly version of blast
(QBlast). This is the default option and in this case, no ad-
ditional installations are needed. Alternatively, blast can be
run locally against a proprietary FASTA-formatted database,
which requires a working www-blast installation. The Make
Filtered Blast-GO-BD function in the Tools menu allows
the creation of customized databases containing only GO-
annotated entries, which can be used in combination with
the local blast option. Other configurable parameters at the
blast step are the expectation value (e-value) threshold, the
number of retrieved hits, and the minimal alignment length
(hsp length) which permits the exclusion of hits with short,
low e-value matches from the sources of functional terms.
Annotation, however, will ultimately be based on sequence
similarity levels as similarity percentages are independent
of database size and more intuitive than e-values. Blast2GO
parses blast results and presents the information for each se-
quence in table format. Query sequence descriptions are ob-
tained by applying a language processing algorithm to hit de-
scriptions, which extracts informative names and avoids low-
content terms such as “hypothetical protein” or “expressed
protein”.

Mapping step. Mapping is the process of retrieving GO terms
associated to the hits obtained after a blast search. B2G
performs three different mappings as follows. (1) Blast re-
sult accessions are used to retrieve gene names (symbols)
making use of two mapping files provided by NCBI (gene-
info, gene2accession). Identified gene names are searched in
the species-specific entries of the gene product table of the
GO database. (2) Blast result GI identifiers are used to re-
trieve UniProt IDs making use of a mapping file from PIR
(Non-redundant Reference Protein database) including PSD,
UniProt, Swiss-Prot, TrEMBL, RefSeq, GenPept, and PDB.
(3) Blast result accessions are searched directly in the DBXRef
Table of the GO database.

Annotation step. This is the process of assigning functional
terms to query sequences from the pool of GO terms gath-
ered in the mapping step. Function assignment is based on
the gene ontology vocabulary. Mapping from GO terms to
enzyme codes permits the subsequent recovery of enzyme
codes and KEGG pathway annotations. The B2G annota-
tion algorithm takes into consideration the similarity be-
tween query and hit sequences, the quality of the source of
GO assignments, and the structure of the GO DAG. For each
query sequence and each candidate GO term, an annotation
score (AS) is computed (see Figure 2). The AS is composed
of two terms. The first, direct term (DT), represents the high-
est similarity value among the hit sequences bearing this GO
term, weighted by a factor corresponding to its evidence code
(EC). A GO term EC is present for every annotation in the
GO database to indicate the procedure of functional assign-
ment. ECs vary from experimental evidence, such as inferred
by direct assay (IDA) to unsupervised assignments such as
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inferred by electronic annotation (IEA). The second term
(AT) of the annotation rule introduces the possibility of ab-
straction into the annotation algorithm. Abstraction is de-
fined as the annotation to a parent node when several child
nodes are present in the GO candidate pool. This term mul-
tiplies the number of total GOs unified at the node by a user-
defined factor or GO weight (GOw) that controls the possi-
bility and strength of abstraction. When all ECw’s are set to
1 (no EC control) and the GOw is set to 0 (no abstraction is
possible), the annotation score of a given GO term equals the
highest similarity value among the blast hits annotated with
that term. If the ECw is smaller than one, the DT decreases
and higher query-hit similarities are required to surpass the
annotation threshold. If the GOw is not equal to zero, the AT
becomes contributing and the annotation of a parent node is
possible if multiple child nodes coexist that do not reach the
annotation cutoff. Default values of B2G annotation param-
eters were chosen to optimize the ratio between annotation
coverage and annotation accuracy [20]. Finally, the AR se-
lects the lowest terms per branch that exceed a user-defined
threshold.

The annotation step in B2G can be further adjusted by
setting additional filters to the hit sequences considered as
annotation source. A lower limit can be set at the e-value
parameter to ensure a minimum confidence at the level of
homology. Similarly, % “hit” filter has been implemented to
assure that a given percentage of the hit sequence is actu-
ally spanned by the query. This parameter is of importance
to prevent potential function transfer from nonmatching se-
quence regions of modular proteins. Additionally, the mini-
mal hsp length required at the blast step permits control of
the length of the matching region.

3.2. Modulation of annotation

Blast2GO includes different functionalities to complete and
modify the annotations obtained through the above-defined
procedure.

Additional vocabularies. Enzyme codes and KEGG path-
way annotations are generated from the direct mapping of
GO terms to their enzyme code equivalents. Additionally,
Blast2GO offers InterPro searches directly from the B2G in-
terface. The user, identified by his/her email address, has the
possibility of selecting different databases available at the In-
terProEBI web server [33]. B2G launches sequence queries
in batch, and recovers, parses, and uploads InterPro results.
Furthermore, InterPro IDs can be mapped to GO terms and
merged with blast-derived GO annotations to provide one
integrated annotation result. In this process, B2G ensures
that only the lowest term per branch remains in the final
annotation set, removing possible parent-child relationships
originating from the merging action.

Annotation fine-tuning. Blast2GO incorporates three addi-
tional functionalities for the refinement of annotation re-
sults. Firstly, the Annex function allows annotation aug-
mentation through the Second Layer concept developed
by The Norwegian University of Science and Technol-
ogy (http://www.goat.no, [34]). Basically, the Second Layer

database is a collection of manually curated univocal rela-
tionships between GO terms from the different GO cate-
gories that permits the inference of biological process and
cellular component terms from molecular function annota-
tions. Up to 15% of annotation increase and around 30%
of GO term confirmations are obtained through the Annex
dataset [20]. Secondly, annotation results can be summarized
through GOSlim mapping. GOSlim consists of a subset of
the gene ontology vocabulary encompassing key ontological
terms and a mapping function between the full GO and the
GOSlim. Different GOSlim mappings are available, adapted
to specific biological domains. At present, GOSlim mappings
for plant, yeast, from GOA and Tair, as well as a generic one
are available from the GO through Blast2GO. Thirdly, the
manual curation function means that the user has the possi-
bility of editing annotation results and manually modifying
GO terms and sequence descriptors.

3.3. Visualization and data mining

One aspect of the uniqueness of the Blast2GO software is the
availability of a wide array of functions to monitor, evaluate,
and visualize the annotation process and results. The pur-
pose of these functions is to help understand how functional
annotation proceeds and to optimize performance.

Statistical charts. Summary statistics charts are generated af-
ter each of the annotation steps. Distribution plots for e-
value and similarity within blast results give an idea of the de-
gree of homology that query sequences have in the searched
database. Once mapping has been completed, the user can
check the distribution of evidence codes in the recovered
GO terms and the original database sources of annotations.
These charts give an indication of suitable values for B2G an-
notation parameters. For example, when a good overall level
of sequence similarity is obtained for the dataset, the default
annotation cutoff value could be raised to improve annota-
tion accuracy. Similarly, if evidence code charts indicate a
low representation of experimentally derived GOs, the user
might choose to increase the weight given to electronic an-
notations. After the final annotation step, new charts show
the distribution of annotated sequences, the number of GOs
per sequence, the number of sequences per GO, and the dis-
tribution of annotations per GO level, which jointly provide
a general overview of the performance of the annotation pro-
cedure.

Sequence coloring. The visual approach of B2G is further rep-
resented by the color code given to annotated sequences.
During the annotation process, the background color of ac-
tive sequences changes according to their analysis status.
Nonblasted sequences are displayed in white and change to
light red once a positive blast result is obtained. If the result
was negative, they will stay dark red. Mapped sequences are
depicted in green while annotated sequences become blue.
Finally, manually curated sequences can be labeled and col-
ored purple (see Figure 3(A)). Sequence coloring is a simple
and effective way of identifying sequences that have reached
differential stages during the annotation process. Further-
more, sequences can be selected by their color. This is a very

http://www.goat.no
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Figure 3: Blast2GO user interface. (A) Main sequence table showing sequence color codes. (B) Graphical tab showing a combined graph
with score highlighting.
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Figure 4: Similarity distribution of Soybean GeneChip. Similarity
is computed of each query-hot pair as the sum of similarity values
for all matching hsps.

useful function for the interactive use of the application. For
example, sequences that stayed dark red after blast (no posi-
tive result) can be selected to be launched to InterProScan.
Sequences that remained green (mapping code) after the
annotation step can be selected and reannotated with more
permissive parameters.

Combined graph. A core functionality of Blast2GO is the joint
visualization of groups of GO terms within the structure
of the GO DAG. The combined graph function is typically
used to study the collective biological meaning of a set of
sequences. Combined graphs are a good alternative to en-
richment analysis (see below) where no reference set is to be
considered or the number of involved sequences is low. B2G

includes several parameters to make these combined graphs
easy to analyze and navigate. Firstly, the ZWF format [35], a
powerful scalable vector graphics engine, has been adopted
to make zooming and browsing through the DAG fast and
light. Secondly, annotation-rich areas of the generated DAG
can be readily spotted by a node-coloring function. B2G col-
ors nodes either by the number of sequences gathered at that
term (additive function) or by a node information score (ex-
ponential function,

∑
GOsseq·αdist) that considers the places

of direct annotation. This B2G score takes into account the
amount of sequences collected at a given term but penalizes
by the distance to the node of actual annotation [20]. The
B2G score has shown to be a useful parameter for the identifi-
cation of “hot” terms within a specific DAG (see Figure 3(B);
Conesa, unpublished). Thirdly, the extension and density of
the plotted DAG can be modulated by a node filter function.
When the number of sequences involved in the combined
graph is large, the resulting DAG can be too big to be prac-
tical. B2G permits filtering out of low informative terms by
imposing a threshold on the number of annotated sequences
or B2G scores for a node to be displayed. In this case, the
number of omitted nodes is given for each branch, which is
an indication of the level of local compression applied to that
branch.

Enrichment analysis. A typical data mining approach ap-
plied in functional genomics research is the identification of
functional classes that statistically differ between two lists of
terms. For example, one might want to know the functional
categories that are over- or underrepresented in the set of
differentially expressed genes of a microarray experiment, or



6 International Journal of Plant Genomics

0 10 20 30 40 50 60 70 80 90 100

Blast hits

Arabidopsis thaliana
Oryza sativa

Medicago truncatula
Unknown

Glycine max
Nicotiana tabacum

Mus musculus
Solanum tuberosum

Zea mays
Homo sapiens

Ostreococcus tauri
Danio rerio

Pan troglodytes
Pisum sativum

Lycopersicon esculentum
Canis familiaris
Macaca mulatta

Bos taurus
Rattus norvegicus
Triticum aestivum
Synechococcus sp.

Strongylocentrotus purpuratus
Hordeum vulgare

Dictyostelium discoideum
Xenopus laevis

Gossypium hirsutum
Gallus gallus

Anopheles gambiae
Drosophila melanogaster

Others

Sp
ec

ie
s

Figure 5: Species distribution chart of Soybean GeneChip after blastx to NCBI nr.

0 10 20 30 40 50 60 70 80

Sequences

IEA
RCA
ND
IDA
IMP

ISS
TAS
IEP

NAS
IPI
IGI
IC

NR

E
C

co
de
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after mapping to B2G database.
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Figure 7: Annotation process results for Soybean Affymetrix
GeneChip.

it could be of interest to find which functions are distinctly
represented between different libraries of an EST collection.
Blast2GO has integrated the Gossip [36] package for statisti-
cal assessment of differences in GO term abundance between
two sets of sequences. This package employs the Fisher’s ex-
act test and corrects for multiple testing. For this analysis, the
involved sequences with their annotations must be loaded in
the application. B2G returns the GO terms under- or over-
represented at a specified significance value. Results are given
as a plain table and graphically as a bar chart and as a DAG
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Figure 8: GO level distribution chart for Soybean Affymetrix
GeneChip. Most sequences have between 3 and 6 GO terms anno-
tated.

with nodes colored by their significance value. Also in this
case, graph pruning and summarizing functions are avail-
able.

3.4. Other functionalities

Next to the annotation and data mining functions, Blast2GO
comprises a number of additional functionalities to handle
data. In this section, we briefly comment on some of them.

Import and export. B2G provides different formats for the ex-
change of data. Typically, B2G inputs are FASTA-formatted
sequences and returns a tab-delimited file with GO anno-
tations. Other supported output formats are GOstats and
GOSpring. Furthermore, B2G also accepts blast results in
xml format. This option permits skipping the first step of
the B2G annotation procedure when a blast result is al-
ready present. Similarly, when accession IDs or gene sym-
bols are known for the query sequences, these can be directly
uploaded in B2G and the application will query the B2G
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Figure 9: InterPro merging statistics. Red column: total number of
GO annotations before adding InterPro-based GO terms. Blue: total
number of GO annotations after adding InterPro-based GO terms.
Green: number of blast-based GO terms confirmed after InterPro
merging. Yellow: too general terms removed after InterPro merging.

database for their annotations. Moreover, the Main Sequence
table (see Figure 3) can be saved to a file at any moment
to store intermediate results. Finally, graph and enrichment
analysis results are presented both graphically and as text
files.

Validation. The “true path rule” defined by the gene ontology
consortium for the GO DAG assures that all the terms in the
pathway from a term up to the root must always be true for
a given gene product. The B2G annotation validation func-
tion applies this property to annotation results by removing
any parent term that has a child within the sequence annota-
tion set. B2G always executes validation after any modifica-
tion has been made to the existing annotation, for example,
after InterPro merging, Annex augmentation, or manual cu-
ration.

Comparison of two sets of GO terms. Given two annotation re-
sults, Blast2GO can compare their implicit DAG structures.
B2G computes the number of identical nodes, more general
and more specific terms within the same branch, and terms
located to different branches or different GO main categories.
Comparison is directional; this means that the active anno-
tation file is contrasted to a reference or external one. Each
GO term is compared to all terms in the reference set and the
best matching comparison result is recorded. Once a term is
matched, it is removed from the query set.

3.5. Some performance figures

The annotation accuracy of Blast2GO has been evaluated by
comparing B2G GO annotation results to the existing an-
notation in a set of manually annotated Arabidopsis pro-
teins that had been previously removed from the nr database.
This evaluation indicated that using B2G default parame-
ters, nearly 70% of identical branch recovery was achievable,
which is at the top end of the methods that are based on ho-
mology search [20]. More recent evaluations have shown that
Blast2GO annotation behavior is consistent across species
and datasets. In general, the blast step has shown to be deci-

sive in the annotation coverage. For a great deal of sequences
with a positive blast result, functional information is avail-
able in the GO database and the final annotation success is
related to the length and quality of the query sequence and
the strictness of annotation parameters. Typically and using
default parameters, around 50–60% of annotation success is
common for EST datasets and slightly higher values are ob-
tained for full-length proteins (Table 1).

On average, between 3 and 6 GO terms are assigned per
sequence at a mean GO level very close to 5. InterPro, An-
nex, and GOw annotation parameters significantly increase
annotation intensity—around 15%—and validate annota-
tion results. Furthermore, default annotation options tend to
provide coherent results and resemble the functional assign-
ment obtained by a human computational reviewed analysis
[37].

3.6. Use case

In this section, we present a typical use case of Blast2GO
to illustrate the major application features described in the
previous sections. We will address the functional annota-
tion of the Soybean Affymetrix GeneChip. The GeneChip
Soybean Genome Array targets over 37,500 Soybean tran-
scripts (www.affymetrix.com). The array also contains tran-
scripts for studying two pathogens important for Soybean
research. Sequence data and a detailed annotation sheet for
the Soybean Genome Array are provided at the Blast2GO site
(http://blast2go.bioinfo.cipf.es/b2gdata/soybean).

Blast

Sequence data in FASTA format were uploaded into the ap-
plication from the menu File → Open File. After selecting
the Blast menu, a dialog opens where we can indicate the
parameters for the blast step. In our case, the easiest op-
tion is to select the nr protein database and perform blast re-
motely on the NCBI server through Qblast. Additional blast
parameters are kept at default values: e-value threshold of
1e-3 and a recovery of 20 hits per sequence. These permis-
sive values are chosen to retrieve a large amount of infor-
mation at this first time-consuming step. Annotation strin-
gency will be decided later in the annotation procedure. Fur-
thermore, we set the hsp filter to 33 to avoid hits where
the length of the matching region is smaller than 100 nu-
cleotides. After launching, blast sequences turn red as results
arrive, up to a total of 22,788. Once blast is completed, we
can visualize different charts (similarity, e-value, and species
distributions, see supplementary material available online at
doi:10.1155/2008/619832) to get an impression of the qual-
ity of the query sequences and the blast procedure. For ex-
ample, Statistics → Blast statistics → Similarity distribution
chart (see Figure 4) shows that most sequences have blast
similarity values of 50–60% or higher. This information is
useful for choosing the annotation cutoff parameter at the
annotation step, and suggests that taking a value of 60 would
be adequate. Furthermore, the Species distribution chart (see
Figure 5) shows a great majority of Arabidopsis sequences

file:www.affymetrix.com
http://blast2go.bioinfo.cipf.es/b2gdata/soybean
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Table 1: Blast2GO performance figures of seven cDNA datasets. FE: percentage of sequences with some functional evidence (Mapping or
InterProScan positive). BA: percentage of blast-based annotated sequences, #GO: number of GOs per sequence. GO L: mean GO level. IP:
percentage of annotation increase by InterProScan. Ann: percentage of annotation increase by Annex. TA: total percentage of annotated
sequences (including blast and InterPro). Datasets are described in [37].

DataSet FE BA no. GOs GO L IP Ann TA

C. clementina 70.2 58.2 4.4 5.10 7.9 11.8 62.3

M. incog 70.7 55.7 5.6 4.95 11.8 9.9 63.9

T. harzianum 61.1 47.7 3.6 5.27 14.4 16.2 53.4

G. max 61.8 51.1 4.3 5.11 6.1 11.8 53.5

P. flesus 50.1 34.4 5.2 5.07 21.9 10.6 45.1

A. phagocytophilum 56.6 42.5 3.0 4.91 35.4 20.9 49.1

Whale metagenome 69.5 50.7 3.0 4.45 17.6 18 58.8
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Figure 10: Molecular function combined graph of GOSlim annotation of the Soybean Affymetrix GeneChip. Nodes are colored by score
value.

within the blast hits, followed by Cotton, Medicago, Glycine,
and Nicotiana.

Mapping

Mapping is a nonconfigurable option launched from the
menu Mapping → Make Mapping. GO terms could be
found for 21,079 sequences (56%). Mapping charts (menu
Statistics → Mapping Statistics) permit the evaluation of
mapping results. The evidence code distribution chart (see
Figure 6) shows an overrepresentation of electronic annota-
tions, although other nonautomatic codes, such as review
by computational analysis (RCA), inferred by mutant phe-
notype (IMP), or inferred by direct assay (IDA) are also
well represented. This suggests that an annotation strategy
that promotes nonelectronic ECs would be meaningful as
it would benefit from the high-quality GO terms without
totally excluding electronic annotations. Therefore, the de-
fault EC weights (menu Annotation → Set Evidence Code
Weights) that adjust proportionally to the reliability of the

source annotation will be maintained at the annotation
step.

Annotation

Taking into consideration the charts generated by the previ-
ous steps, we have chosen an annotation configuration with
an e-value filter of 1e-6, default gradual EC weights, a GO
weight of 15, and an annotation cutoff of 60. This implies
that only sequences with a blast e-value lower than 1e-6 will
be considered in the annotation formula, that the query-
hit similarity value adjusted by the EC weight of the GO
term should be at least 60, and that abstraction is strongly
promoted. This annotation configuration resulted in 17,778
successfully GO annotated sequences with a total of 70,035
GO terms at a mean GO level (distance of the GO term to
the ontology root term) of 4.72. Furthermore, 6,345 enzyme
codes were mapped to a total of 5,390 sequences. Once an-
notation has been completed, we can visualize the results
at each step of the annotation process (see Figure 7). Re-
annotation is possible by selecting green or red sequences
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the whole Soybean genome array.

(Tools → Select Sequences by Color) and rerunning blast,
mapping, and annotation with different, more permissive
parameters. In this way, we obtain a trustworthy annotation
for most sequences and behave more permissively only for
those sequences which are hard to annotate. Other charts
available at the Annotation Statistics menu show the distri-
bution of GO levels (see Figure 8), the length of annotated
sequences, and the histogram of GO term abundance.

Annotation augmentation

Blast-based GO annotations can be increased by means of the
integrated InterProScan function available under Annotation
→ Run InterProScan. The user must provide his/her email
address and select the motif databases of interest. An Inter-
ProScan search against all EBI databases resulted in the re-
covery of motif functional information for 11,347 sequences
and a total of 8,046 GO terms. Once merged to the al-
ready existing annotation (Annotation → Add InterProScan
GOs to Annotation), 1,189 additional sequences were anno-
tated (see Figure 9). Once Blast plus InterProScan annota-
tions have been gathered, a useful step is to complete im-
plicit annotations through the Annex function (Annotation
→ Augment Annotation by Annex). After this step, it is rec-
ommended to run the function to remove first-level anno-
tations (under Annotation menu). In our use case, the An-
nex function resulted in the addition of 8,125 new GO terms
and a confirmation of 3,892 annotations, which is an average
contribution of the Annex function [37].

Manual curation

The manual annotation tool is a useful functionality
when information on the automatically generated anno-

tation needs to be changed. For example, the target of
GmaAffx.69219.1.S1 at probe was found to be the UDP-
glycosyltransferase. The automatic procedure assigned GO
terms metabolic process (GO:0008152) and transferase ac-
tivity, transferring hexosyl groups (GO:0016758) to this se-
quence. However, as we are aware of the ER localization of
this enzyme and its involvement in protein maturation, we
would like to add this information to the existing annotation.
The manual curation function is available at the Sequence
Menu which is displayed by mouse right button click on the
selected sequence. From this Menu, the blast and annotation
results for this particular sequence can be visualized. Selec-
tion of Change Annotations and Description edits the an-
notation record of GmaAffx.69219.1.S1 at. We can now type
in the Annotations box the terms GO:0005783 (endoplasmic
reticulum) and GO:0006464 (protein modification process)
and mark the manual annotation box. The new annotations
are then added and the sequence turns purple (manual an-
notation color code).

GOSlim

As the number of sequences and different GO terms in the
Soybean array is quite large, we are interested in a sim-
pler representation of the functional content of the data. An
appropriate option is to map annotations into a GOSlim.
At Annotation → Change to GOSlim View, we can se-
lect an appropriate GOSlim (generic plant) for this dataset.
Upon completion of slimming sequences acquire the yellow
GOSlim coding. The original annotations are stored and can
be recovered at any moment. GOSlim mapping generated
a set of 105 different annotating GO terms on 18,820 se-
quences with a mean GO level of 3.41. This means around 40
times less functional diversity than in the original annotation
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Figure 12: Enriched graph (biological process) of the Soybean membrane subset of sequences. Node filter has been set at FDR < 1e-6. Nodes
are colored accordingly to their FDR value in the Fisher exact’s test against the whole Soybean genome array.

(4533 different terms) and an increase of almost 2 levels of
the mean annotation depth.

Combined graph

Once the slimmed annotation is obtained, we can visualize
the functional information of the Soybean Genome Array
on the GO DAG. This functionality is available under Anal-
ysis → Combined Graph. At the Dialog we must indicate
the GO category to display (e.g., biological process). To ob-
tain a compact representation of the information, two fil-
ters can be applied. For example, by setting the sequence
filter to 20, only those nodes with at least 20 sequence as-
signments will be displayed. By setting the score filter to
20, additionally, parent nodes that do not annotate more
sequences than their children terms will be omitted from
the graph. Node coloring by score value highlights the ar-
eas in the resulting DAG where sequence annotations are
most concentrated. Figure 10 shows the Combined Graph

for the Molecular Function Category. The two most inten-
sively colored terms at the second GO level indicate the two
most abundant functional categories in the Soybean Chip:
catalytic activity and binding. Highlighting at lower levels re-
veals other, most informative, highly represented functional
terms, such as hydrolase activity (level 3), kinase activity
(level 4), transcription factor activity (level 3), protein bind-
ing (level 3), nucleotide binding (level 3), and transporter
activity (level 2). The reader is referred to the annotation
sheet URL (http://blast2go.bioinfo.cipf.es/b2gdata/soybean)
for figure navigation.

Enrichment analysis

The enrichment analysis function in B2G executes a sta-
tistical assessment of differences in functional classes be-
tween two groups of sequences. To illustrate this function,
we have selected all sequences in the Soybean chip which
contain the word “membrane” within their description—132

http://blast2go.bioinfo.cipf.es/b2gdata/soybean
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sequences—and compared their annotations to the whole
chip. We go to Analysis → Enrichment Analysis → Make
Fisher’s Exact Test and browse for a text file containing the
test set with the names of membrane sequences. As the com-
parison is made against the complete microarray dataset
loaded into the application, no file needs to be selected as
Reference. We uncheck the two-tail box to perform only pos-
itive enrichment analysis. Upon completion a table with test
statistical results is presented in the Statistics tab. This table
contains significant GO terms which are ranked according
to their significance. Three different significance parame-
ters are given for false-positive control: false discovery rate
(FDR), family-wise error rate (FWER), and single test P-
value (Fisher P-value) (see [36] for details). By taking a FDR
significance threshold of 0.05, we obtain those functionali-
ties that are strongly significant for membrane proteins in
the Soybean Chip. These refer to processes related to trans-
port, protein targeting, and photosynthesis as might be ex-
pected for a plant species. Graphical representations of these
results can be generated at Analysis → Enrichment Anal-
ysis → Bar Chart and Analysis → Enrichment Analysis →
Make Enriched Graph. The Bar Chart shows, for each sig-
nificant GO term, frequency differences between the mem-
brane and the whole chip datasets (see Figure 11). The En-
riched Graph shows the DAG of significant terms with a
node-coloring proportional to the significance value. This
representation helps in understanding the biological con-
text of functional differences and to find pseudoredundan-
cies in the results—parent-child relationships within signifi-
cant terms—(see Figure 12).

Export results

Once different analyses have been completed the data can
be exported in many different ways. The annotation format
(menu File → Export → Export Annotations) is the default
format for export/import in B2G and simply consists of a
tab-delimited file with two columns, one for sequences and
other for annotation IDs. Another useful export format is
GeneSpring, for communication with this interesting appli-
cation, which consists of one row per sequence and three dif-
ferent columns showing the descriptions of the GO terms at
the three main GO categories. Graphs can be saved in png
format. Additionally, all information contained in the Com-
bined Graph can be generated as table (including sequences,
GO IDs, levels, and scores) and exported (Analysis→ Export
Graph Information).

The analysis presented in this use case took about 15 days
to complete. Four days were necessary to obtain the totality
of 37,500 blast results from the NCBI while twelve days were
required for the InterProScan at the EBI web server. Mapping
and Annotation were ready within a few hours and one day
was necessary to collect and evaluate charts. This shows that
with the adequate tools and some training, functional anno-
tation of a plant genome-wide sequence collection is in reach
within a couple of weeks.

4. CONCLUSIONS

Functional annotation of novel sequence data is a key re-
quirement for the successful generation of functional ge-
nomics in biological research. The Blast2GO suite has been
developed to be a useful support to these approaches, espe-
cially (but not exclusively) in nonmodel species. This bioin-
formatics tool is ideal for plant functional genomics re-
search because of the following: (1) it is suitable for any
species but can be also customized for specific needs, (2)
it combines high throughput with interactivity and cura-
tion, and (3) it is user-friendly and requires low bioinfor-
matics efforts to get it running. In our opinion, the major
B2G strength is the combination of functional annotation
and data mining on annotation results, which means that,
within one tool, researchers can generate functional annota-
tion and assess the functional meaning of their experimental
results. Further developments of Blast2GO will reinforce this
second aspect thought the integration of the tool with the
Babelomics (www.babelomics.org, [38]) and GEPAS suites
(www.gepas.org, [39]) for the statistical analysis of functional
profiling data.
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high-throughput analyses of project data; (iii) platform-specific middleware reference implementations of the domain model
integrating a suite of public (largely open-access/-source) databases and software tools into a workbench to facilitate biodiversity
analysis, comparative analysis of crop genomic data, and plant breeding decision making.
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1. INTRODUCTION

The fast-moving fields of comparative genomics, molecular
breeding, and bioinformatics have the potential to bring new
knowledge to bear on problems encountered by resource-
poor farmers. These problems include abiotic stresses (such
as drought and soil salinity) and biotic stresses (such as
plant diseases and pests). The Generation Challenge Pro-
gramme (GCP; http://www.generationcp.org/) aims to ex-
ploit advances in molecular biology to harness the rich
global heritage of plant genetic resources and contribute
to a new generation of stress-tolerant varieties that meet
the needs of these farmers and the consumers of their
crops. The GCP brings together three sets of partners:
member agricultural research institutes of the Consulta-
tive Group on International Agricultural Research (CGIAR;
http://www.cgiar.org/), advanced research institutes in devel-
oped countries, and national agricultural research and exten-
sion systems in developing countries, to undertake a long-
term program of globally integrated scientific research, ca-
pacity building, and delivery of products for the above goal.

Central to GCP activities is the development of an in-
tegrated platform of molecular biology and bioinformatics
tools to be applied to the research objectives of the GCP.
The resulting platform is also intended to be a “global public
good” to be made freely available to all crop researchers and
breeders around the world, thus enabling agricultural scien-
tists, particularly in developing countries, to more readily ap-
ply information about elite genetic stocks, genomic knowl-
edge, and new breeding technologies that are becoming avail-
able to their local breeding programmes.

The goal of this GCP crop informatics platform is to
provide solutions for priority end-user needs for biodiver-
sity analysis, comparative analysis of crop genomic data, and
plant breeding decision making. Development of the plat-
form is driven by the following observations:

(i) GCP partners (and the international crop research
community in general) are globally distributed, each
research team having relatively large datasets to share
and integrated datasets that reside in diverse online,
but locally curated databases;

(ii) GCP research covers a diversity of crop species;
(iii) GCP research spans a wide range of scientific data

types, including germplasm, genomic, phenotypic, as
well as crop physiological and geographic information,
this constellation of data types is evolving with time as
new experimental technologies are created;

(iv) GCP scientists (and crop scientists in general) need to
apply a wide range of analytical tools already used by

their research communities; they also need new tools
to meet new or evolving needs; integration of such
tools to interoperate with one another is a nontrivial
task.

A GCP crop information platform is being developed to
better meet these challenges by managing genetic resources,
genomics, and crop information using the following compo-
nents:

(i) shared public platform-independent set of scientific
domain models, ontology, and data templates to cross-
link all data types and analysis processes within the
platform;

(ii) GCP domain model-constrained web service and reg-
istry technologies to identify, share, and manage the
analysis of information, as well as to integrate it across
a network of diverse globally dispersed data sources
connected to the Internet;

(iii) reference implementations of platform-specific mid-
dleware using the GCP domain model;

(iv) a suite of open-source software tools (adopted or
newly developed) integrated into a workbench and
accessing web-connected data sources. Included in
this suite is software to provide enhanced access to
high-performance computational (HPC) grid facili-
ties enabling computationally intensive and/or high-
throughput analyses of project data.

This paper will survey progress on some of the central
components of the platform, with a special emphasis on the
domain model, a reference Java middleware implementation,
and Internet protocol aspects of the project.

2. MATERIALS AND METHODS

2.1. GCP domain model

To cope with the scope, diversity, and dispersion of crop in-
formation, GCP researchers formulated a vision to specify
a consensus blueprint of a scientific domain model and as-
sociated ontology. The resulting models and ontology allow
a “model-driven architecture” for the development of GCP
software and network protocols [1].

The domain model is documented in Unified Modeling
Language (UML). Computable versions of the UML model
are archived in the DemeterUML folder of the “Pantheon”
project in CropForge (http://cropforge.org/) software project
repository. The UML diagrams themselves are indexed and
published with supporting narratives on a project web-
site (http://pantheon.generationcp.org/demeter). The bulk
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of the models are specified with the UML <<interface>>
stereotype.

At the heart of the domain model are generic core model
interfaces from which other specific scientific model in-
terfaces are derived. This core model starts with the con-
cept of simple identification of data objects in the system
(using the SimpleIdentifier interface), which is extended by
several more specific interfaces. The core includes a gen-
eral concept of Entity, which serves as the superclass for
most other interfaces describing major scientific concepts
or data types in the system. The Entity interface documents
generic metadata about objects in the system, including spe-
cific annotation of object characteristics using a rich Fea-
ture model. Other packages in the core models provide util-
ity models for ontology, publication, and experimental study
management.

Additional scientific models are derived as extensions
of the core models. For example, the base interface classes
of most specific major concepts or experimental objects
in the scientific domain of discourse of the GCP, such as
Germplasm, Map, or GeneProduct, directly extend the En-
tity model, adding subdomain-specific attributes as required.
More lightweight concepts in the system extend simpler in-
terfaces such as Feature.

For the elaboration of specific components of the core, as
well as scientific domain models, the project generally adapts
extant public domain models. For example, the Germplasm
and Study subdomain models are derived from the data
models of the open-source International Crop Information
System (ICIS, http://www.icis.cgiar.org/; [2–4]). Aspects of
the genotype (and associated genetic map and genomic se-
quence) models are influenced by public initiatives such as
the Chado relational database schemata of the Generic Model
Organism Database (GMOD) project [5]. The production-
release GCP domain model is being validated based on feed-
back from project scientists and developers, who are striving
to validate the model by practical application in data man-
agement and platform implementation.

A significant feature of the domain model is the re-
liance on extensible controlled vocabulary and ontology
(CVO) to define the full semantics of specialized types, fea-
ture attributes, and annotation values of instances of the
model classes. Where possible, the GCP is simply adopt-
ing existing CVO standards, such as from the gene ontol-
ogy [6], plant ontology [7], and Microarray Gene Expres-
sion Data Society (MGED) ontology [8] consortia. Where
no appropriate ontology has yet been formalized, new dic-
tionaries of terms are being compiled in collaboration with
GCP scientists. CVO dictionaries selected for the platform
are being catalogued in a dedicated online database (at
http://pantheon.generationcp.org/) with web browser and
web service access. Each selected dictionary is assigned a GCP
ontology index number to facilitate platform management
of the ontology. Where an existing public ontology already
has its own accession identifiers (e.g., GO identifiers for the
GO CVO), these identifiers are propagated into the full GCP
identifier for the corresponding CVO terms. However, newly
specified CVO lacking such a number space are assigned de
novo GCP accession identifiers.

2.2. GCP platform middleware

Since a March 2006 public review of the GCP domain
model, the GCP informatics team has developed selected
technology-specific GCP implementations of the model,
primarily focusing on Java-based middleware specifying a
Model-View-Controller (MVC) architecture (see Figure 1).
Although the primary development stream of the project is
focusing on a Java language implementation, the GCP do-
main model is a “platform-independent model” amenable to
implementation with other computing languages and is, in-
deed, being used to guide some complementary work with
languages such as Perl, Javascript, and PHP. The Java-based
middleware was given the overall name “Pantheon” to ac-
count for the usage of various ancient agricultural gods
(mostly agricultural, e.g., Demeter, Ceres, Belenus, Osiris) in
the naming of the various layers and component parts of the
code base. This code base is open source and managed under
the Pantheon project in CropForge.

In addition to a Java implementation of the GCP domain
model, a Java application programming interface (API) was
specified to assist with and standardize software integration
of components within the middleware architecture. These
interfaces are collected into a core Java library called “Pan-
theonBase” hosted as a module in the Ceres section of Pan-
theon (under Ceres/projects/Pantheonbase). PantheonBase
includes a simple DataSource interface for read-only query
retrieval of data from any source (local or distributed); a
DataConsumer interface to guide integration and synchro-
nization of applications and viewers wishing to use data ex-
tracted using the middleware; and finally, a DataTransformer
interface to provide a framework for analysis and transfor-
mations (e.g., reformatting) of data. PantheonBase was de-
liberately designed to be essentially agnostic about the GCP
domain model per se, for maximum flexibility and possible
reuse with non-GCP-compliant data.

Additional support libraries are being provided within
Ceres to support GCP domain model-driven DataSource de-
velopment. In addition to core and support libraries, the
Pantheon project provides a clearinghouse for platform and
data-type-specific components. These components include
adapters implementing the DataSource interface for specific
data sources (archived in Osiris) for various crop databases
at various GCP partner and external sites. Among oth-
ers, current DataSource implementations include a wrapper
for the ICIS and for GMOD schemata (Chado, Gbrowse).
Other Pantheon components provide application support,
including a search engine, data visualization, and web ser-
vice provider implementations (in Belenus). Examples of the
latter are support for NCGR ISYS [9], support for stand-
alone applications based on Eclipse/RCP [10], and a web-
based GCP domain-model-compliant web-based search en-
gine (Koios).

2.3. GCP network protocols

The GCP domain model is also being applied to platform-
specific implementation of a GCP network based on Internet
bioinformatics data exchange protocols such as BioMOBY

http://www.icis.cgiar.org/
http://pantheon.generationcp.org/
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[11], SoapLab [12], SSWAP [13], and Tapir [14]. In this pa-
per, in the interest of brevity, we will discuss only BioMOBY,
arepresentative protocol being used in the GCP network.

For BioMOBY, data types were designed using GCP do-
main model semantics. Although generally faithful in trans-
lating the semantics of the Demeter UML specification of
the domain model (i.e., the SimpleIdentifier interface is rep-
resented as a GCP SimpleIdentifier data type), the GCP
BioMOBY data types simplify the data representation as a
concession to BioMOBY design constraints and to web ser-
vice performance.

One key example of this is the extensive substitution of
GCP SimpleIdentifier objects, instead of fully detailed data
objects, at the end of model-to-model association edges
found in the Demeter model. The rationale for this is the ex-
pectation that, in most cases, web services can apply a con-
cept of “lazy loading” of data-type components, in which
one identifies what objects might be embedded in a par-
ent object, but does not necessarily retrieve their details un-
til the user needs them (as a separate web service accepting
a GCP SimpleIdentifier of the object but returning the fully
populated complex object of the specified type).

UML diagrams with supporting explanatory narration
for these GCP-specific BioMOBY data types are pub-
lished on the Pantheon website (http://pantheon.genera-
tioncp.org/moby), which is complemented by a website doc-
umenting GCP BioMOBY implementation details (http://
moby.generationcp.org/). Supporting the BioMOBY proto-
col in Pantheon are a series of Pantheon modules for inter-
conversion between GCP MOBY data types and Demeter-
compliant Java objects, for web service provider implemen-
tation, and for a MOBY client DataSource adapter to com-
municate with GCP-compliant web service providers.

Using GCP model-constrained BioMOBY data types (all
prefixed with “GCP ” in their name in the MOBY central reg-
istry), various GCP teams are deploying GCP-compliant web
services from a common proposed list of documented web
service use cases. Concurrently, the MOBY client DataSource
adapter is being elaborated to communicate with these web
services and import remote data into local “workbench” in-
stances of the GCP platform.

2.4. Additional tools integrated into the GCP platform

The GCP domain model and associated platform middle-
ware is not an end in itself. Rather, the goal of these in-
formatics products is to serve as a semantically and oper-
ationally rich scaffold for the integration of both local and
remote (Internet-connected) bioinformatics data resources
and analysis tools.

In addition to data sources and tools already mentioned
above, additional open-source third-party analysis tools al-
ready coded using Java, but agnostic concerning the GCP
framework are being connected to the platform through tar-
geted software engineering. To this end, GCP developers are
connecting several public open-source applications by writ-
ing suitable DataSource adapters, DataConsumer, or Data-
Transformer integration code. These include Java software
hosted by GMOD such as the Apollo genome browser [15],
tools forming part of the Genomic Diversity and Phenotype
Connection (GDPC) protocol such as Tassel [16], and tools
such as TIGR Multiple Experiment Viewer [17] for microar-
ray analysis, the Comparative Map and Trait Viewer [18]
connected to the NCGR ISYS framework [9], the Cytoscape
network visualization tool [20], and the MAXD microarray
system [19].

http://pantheon.generationcp.org/moby
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http://moby.generationcp.org/


Richard Bruskiewich et al. 5

3. RESULTS AND DISCUSSION

The GCP consortium was formally established in 2003. The
first meeting of the bioinformatics and crop informatics de-
velopment team of the GCP, designated as Subprogramme
4, was hosted in Rome, in February 2004. The general
user needs and project goals were coarsely mapped out at
this meeting, with some considerable differences in opinion
voiced at how to construct the required informatics frame-
work for the GCP. In May 2004, a smaller team of software
experts met in Mexico to discuss project management, iden-
tify key user needs and platform requirements, and make
some initial progress in the design of the system. Key deci-
sions at this latter meeting were the adoption of the “model-
driven architecture” paradigm for system development and
to embrace web services as a key technology for global in-
tegration of systems. Numerous development meetings have
been convened annually since these initial meetings to fur-
ther refine and advance the design and implementation of
the platform.

In particular, a milestone review of the GCP do-
main model and initial software systems using the model
was held in Pretoria, South Africa in March 2006. Since
that time, a number of early release versions of soft-
ware systems based on GCP platform technology have be-
come available, generally documented at http://pantheon.
generationcp.org/ and publicly downloadable from vari-
ous CropForge projects.A special “communications” project
for GCP-specific projects is also available on CropForge
at the http://cropforge.org/projects/gcpcomm to further in-
form prospective users on the variety of such GCP software
tools now available, and provide a venue for user discussions
and feedback about the tools.

3.1. So, what can I do with the GCP platform?

The vision of the platform development team of the bioin-
formatics and crop informatics subprogramme of the GCP is
to establish a truly easy to use but extensible workbench pro-
viding interoperability and enhanced data access across all
GCP partner sites and, later, across the global crop research
community. As indicated above, the GCP domain model has
a scope of data type coverage that spans most of the perti-
nent scientific data types found in crop research from up-
stream laboratory experiments through germplasm manip-
ulations, in a georeferenced characterized field setting. The
diversity of potential data sources and analysis tools is sim-
ilarly large. What the platform facilitates is transparent data
flows between such data sources and tools, whether from lo-
cally administered databases or remote Internet-connection
resources.

In this light, a number of practical “use cases” may be
described in general terms, as a series of data manipulation
steps, to highlight some of the anticipated usage of the plat-
form. As an indication of the data retrieval and analysis scope
of the GCP platform, we describe a general integrative use
case here below, in terms of a series of defined steps.

General GCP platform analysis use case for
crop improvement

(1) Retrieve the list of all genetic maps that include a quan-
titative trait locus (QTL) for a specified trait.

(2) Retrieve selected maps in the list, from a project
database or source file containing such maps.

(3) Load this into a suitable mapping tool (e.g., the com-
parative map and trait visualization tool, CMTV).

(4) Extract the pairs of flanking markers for the QTL.
(5) From a second (crop) database, retrieve the list of all

germplasm that have been genotyped with these flank-
ing markers.

(6) Retrieve all the pertinent passport, genotype, and phe-
notype information about the germplasm in the list.

(7) In parallel to the steps (5) and (6), if available, re-
trieve any gene locus candidates within (genetic/phys-
ical/sequence) map intervals which are defined by
flanking markers which are molecular sequence based.

(8) Retrieve gene functional information about the gene
loci compiled in step (7).

(9) Retrieve the alleles of “interesting” genes from (8), in
the list of germplasm identified in step (5).

(10) Plot germplasm passport, genotype, and phenotype
information on geographical information maps.

(11) Retrieve information about the environmental charac-
teristics of the geographical regions identified in step
(10).

(12) Identify germplasm, for further detailed evaluation,
which appears to be adapted to target environments,
which have promising phenotypic values identified in
step (6) and which contains target alleles of gene loci
identified in step (9).

(13) Identify genotyping (marker) systems potentially
available from step (9), for marker assisted selected
transfer of target traits from identified germplasm to
additional germplasm targets.

4. CONCLUSIONS

The vision of the platform development team of the bioin-
formatics and crop informatics subprogramme of the GCP
is to establish a state-of-art but truly easy-to-use and exten-
sible open-source workbench providing interoperability and
enhanced data access across all GCP partner sites and, by ex-
tension, the global crop research community.

Although several attempts have been made in the past to
build such globally integrative bioinformatics systems, few
have the global distribution of partners, scope of crop re-
search, diversity of data types, and magnitude of datasets in
comparison to the GCP consortium, nor do they have the
long-term project perspective of 10 years. In addition, the
GCP platform is specifically targeted to bioinformatics for
developing world crop research, in contrast to biomedical
research, and also strives to integrate databases from many
plants and crops less well represented by well-funded model
organisms and crops.

In these respects, the GCP platform effort represents
an extremely ambitious but very useful global public good

http://pantheon.generationcp.org/
http://pantheon.generationcp.org/
http://cropforge.org/projects/gcpcomm
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resource for crop research. It is still conceded to be, in sev-
eral respects, an incomplete evolving product, one with many
rough edges and incompletely met end-user needs; however,
the open-source and public nature of the project provides a
credible venue for wide participation of interested developers
and prospective end users in the future evolution and deploy-
ment of the platform.
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Microsatellites or SSRs (simple sequence repeats) are ubiquitous short tandem duplications occurring in eukaryotic organisms.
These sequences are among the best marker technologies applied in plant genetics and breeding. The abundant genomic, BAC,
and EST sequences available in databases allow the survey regarding presence and location of SSR loci. Additional information
concerning primer sequences is also the target of plant geneticists and breeders. In this paper, we describe a utility that integrates
SSR searches, frequency of occurrence of motifs and arrangements, primer design, and PCR simulation against other databases.
This simulation allows the performance of global alignments and identity and homology searches between different amplified
sequences, that is, amplicons. In order to validate the tool functions, SSR discovery searches were performed in a database
containing 28 469 nonredundant rice cDNA sequences.
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1. INTRODUCTION

Microsatellites or SSRs (simple sequence repeats) are sequen-
ces in which one or few bases are tandemly repeated for
varying numbers of times [1]. Variations in SSR regions
originate mostly from errors during the replication process,
frequently DNA polymerase slippage, generating insertion
or deletion of base pairs, resulting, respectively, in larger or
smaller regions [2, 3]. SSR assessments in the human genome
have shown that many diseases are caused by mutation in
these sequences [4].

SSRs can be found in different regions of genes, that
is, coding sequences, untranslated sequences (5′-UTR and
3′-UTR), and introns, where the expansions and/or con-
tractions can lead to gene gain or loss of function [5].
Also, there are evidences that genomic distribution of
SSRs is related to chromatin organization, recombination,
and DNA repair. SSRs are found throughout the genome,
in both protein-coding and noncoding regions. Genome
fractions as low as 0.85% (Arabidopsis thaliana), 0.37% (Zea

mays), 0.21% (Caenorhabtis elegans), 0.30% (Sacharomyces
cerevisae) and as high as 3.0% (Homo sapiens) and 3.21%
(Fugu rubripes) have been found. Some bias for defined
genomic locations has also been reported [6, 7]. This class
of markers is broadly applied in genetics and plant breeding,
due to its reproducibility, multiallelic, codominant nature,
and genomic abundance. Its use for integrating genetic
maps, physical mapping, and anchoring gives geneticists and
plant breeders a pathway to link genotype and phenotype
variations [8].

The protocols for isolating SSR loci for a new species
were always very labor-intensive. Currently, with the accu-
mulation of biological data originating from whole genome
sequence initiatives, the use of bioinformatics tools helps
to maximize the identification of these sequences and
consequently, the efficiency in the number of generated
markers [9].

The first in silico studies of SSRs were developed using
FASTA [10] and BLAST [11] packages. Later, more specific
algorithms, such as SPUTINICK [12], REPEATMASKER
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[13], TRF-Tandem Repeat Find [14], TROLL [15], MISA [16]
and SSRIT (Simple Sequence Repeat Tool) [17], were obtained
[9].

SSR detection is generally followed by the use of another
program for primer design, to be anchored on flanking
sequences. Also, in some applications, a third step using
e-PCR [18] is added, with the goal of verifying primer
redundancy. The sequential use of a number of software
is often called a pipeline. Building such a pipeline can be
a very difficult task for research groups not familiar with
programming tools.

In the present work, a computing tool with an interface
for Windowsusers was developed, called SSR Locator. The
application integrates the following functions: (i) detec-
tion and characterization of SSRs and minisatellite motifs
between 1 and 10 base pairs; (ii) primer design for each
locus found; (iii) simulation of PCR (polymerase chain
reaction), amplifying fragments with different primer pairs
from a given set of fasta files; (iv) global alignment between
amplicons generated by the same primer pair; and (v)
estimation of global alignment scores and identities between
amplicons, generating information on primer specificity and
redundancy. The described tool is publicly available at the
site http://www.ufpel.edu.br/∼lmaia.faem.

2. MATERIAL AND METHODS

2.1. Algorithms

The algorithms used for the searches, alignment, and homol-
ogy estimates are described separately.

2.2. SSR search

The algorithm used for perfect and imperfect micro-
/minisatellite searches was written in Perl and consists of the
generation of a matrix that mixes A(adenine), T(thymine),
C(cytosine), and G(guanine) in all possible composite
arrangements between 1 and 10 nucleotides. The script
instructions perform readings on fasta files, searching all
possible arrangements in each database sequence.

Several instructions in the algorithm used in SSRLocator
resemble those from MISA [16] and SSRIT [17]. However,
additional instructions have been inserted in SSRLocator’s
code. Instead of allowing the overlap of a few nucleotides
when two SSRs are adjacent to each other and one of them
is shorter than the minimum size for a given class as found
in MISA and SSRIT, a module written in Delphi language
records the data and eliminates such overlaps.

The SSR Locator software contains windows focused on
the selection and configuration of SSR and minisatellite types
(mono- to 10-mers) and a minimum number of repeats for
each one of the selected types. The algorithm calls a perfect
repeat when one locus is present with adjacent loci at an up
or downstream distance higher than 100 bp.

The algorithm calls an imperfect repeat when the same
motif is present on both sides of a fragment containing up to
5 base pairs.

The algorithm identifies a composite locus when two or
more adjacent loci were found at distances between 6 and
100 bp [16].

In this study, only “Class I” (≥20 bp) repeats are shown.
These repeats have been described as the most efficient loci
for use as molecular markers [17]. The software SSRLoca-
tor was configured to locate a minimum of 20 bp SSRs:
monomers(x20), 2-mers(x10), 3-mers(x7), 4-mers(x5), 5-
mers(x4), 6-mers(x4), and minissatellites: 7-mers(x3), 8-
mers(x3), 9-mers(x3), and 10-mers(x3).

In order to validate the efficiency of SSRLocator in
finding SSRs and minisatellites, the same database was
analyzed withMISA and SSRIT, using the same parameters
for minimum number of repeats.

2.3. Primer design

An algorithm written in Delphi language performs calls
to Primer3 [19], which execute primer designs. These
results are fed to a module that performs Virtual-PCRs
and allocates individual identification, forward and reverse
primer sequences, and a sequence fragment corresponding
to the region flanked by the primers (original amplicon) to
each SSR locus. A window allows the selection of Primer3
parameters, such as range of primer and amplicon sizes,
as well as optimum primer size, ranges of melting tem-
perature (TM) (minimum, maximum, and optimum) and
GC content (minimum and optimum). For primer searches,
the software automatically looks for five base pair distances
from both SSR (5′ and 3′) flanking sites. In this study, the
following parameters were used: amplicon size between 100
and 280 bp; minimum, optimum, and maximum annealing
temperature (TM) of 45, 50, and 55, respectively, minimum,
optimum, and maximum primer size of 15, 20, and 25 bp,
respectively.

2.4. Virtual-PCR

The module used to simulate a PCR reaction was written in
Delphi. The algorithm consists in reading the file generated
by the previous module (SSR locus, forward and reverse
primers, and original amplicon), followed by a search of
sequences containing primer annealing sites. When anneal-
ing sites are found for the two primers, the flanked region
and the primer sequences are copied to a new variable called
“paralog amplicon.”

2.5. Global alignment

For the global alignment between paralog and original
amplicon sequences and score calculations (match, mis-
match, gaps), a routine was written in Delphi language using
the algorithms of Needleman and Wunsch (1970) [20] and
Smith and Waterman (1981) [21]. Also, in the same module,
amplicon identities were calculated according to Waterman
(1994) [22] and Vingron and Waterman (1994) [23].

2.6. Implementation

The strategy of creating a two-language hybrid program was
established as a function of: (i) the higher speed achieved by

http://www.ufpel.edu.br/~lmaia.faem
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Figure 1: Flow-chart showing the functional structure of SSR Locator. (A) Perl script to search SSRs; (B) text file where information
from detected SSRs is stored; (C) module for the statistical calculations for SSR motif occurrence; (D) module that formats text files into
standard Primer3 input files; (E) running of Primer3; (F) module for running Virtual-PCR (using a second sequence file as a template); (G)
module performing global alignment between homologous amplicons; (H) identity and alignment score calculations between homologous
amplicons; and (I) file containing SSR, primer, homologous amplicons, identity, and score information.

handling large text files with Perl as compared to Delphi,and
(ii) the better fitness of Perl for generating combinatory
strings to be located. The Perl module was transformed
into an executable file, making unnecessary to install Perl
libraries during program installing. The graphic interface
built, integrating input and output windows to the Windows
operational system, was obtained using the Suite Turbo
Delphi, where a menu system executes calls for each of the
previously described modules.

2.7. Sequences for analysis

A total of 28 469 rice (Oryza sativa ssp. japonica- cv.
Nipponbare) nonredundant full length nonredundant cDNA
sequences, sequenced by The Rice Full-Length cDNA Consor-
tium, mapped on the databases derived from the sequencing
of japonica (japonica draft genome, BAC/PAC clones—
IRGSP) and indica (indica draft genome) subspecies [24]
were used for the analyses. These sequences are deposited
in NCBI as two groups, the first comprising accesses from
AK058203 to AK074028, and the second comprising accesses
from AK98843 to AK111488. All these sequences can be
also found in KOME (Knowledge-based Oryza Molecular
Biological Encyclopedia).

A flow chart representing the different steps performed
by the software is shown in Figure 1.

3. RESULTS

3.1. Program validation

A total of 3907 micro- and minisatellites were detected by
SSRLocator in the 28 469 analyzed cDNA sequences. The
same database searched with MISA and SSRIT presented
3913 and 3917 loci, respectively. The mono-, 4-mer, 6-mer,
7-mer, 8-mer, 9-mer, and 10-mer repeats were identical
for the three programs. In the case of 2-mer repeats, 594
elements were detected by SSRLocator and 596 elements
were detected by MISA and SSRIT. 3-mer repeats were

differently scored by SSRLocator (1990) and the other two
(1994) algorithms. For 5-mer repeats, SSRLocator and MISA
found the same number of repeats (426), while SSRIT (430)
found a different value.

3.2. Overall distribution of SSR types

The results obtained with SSRLocator indicate that out of
28 469 cDNA sequences, 3765 (13.22%) presented one or
more micro-/minisatellite loci. In other studies, microsatel-
lites were found in the following proportions in ESTs: 3% in
arabidopsis [25], 4% in rosaceae [26], 8.11% in barley [16],
2.9% in sugarcane [27], and values ranging between 6–11%
[28] and 1.5–4.7% [29] for cereals in general (maize, barley,
rye, sorghum, rice, and wheat).

Considering the 3765 fl-cDNA sequences, in 3632
(92.96%) only a single micro-/minisatellitelocus was
detected. In 125 sequences, two loci were detected, in seven
sequences three lociandonly one sequence had four loci,
adding up to 3907 occurrences. Among the types analyzed,
SSRs (mono to 6-mer repeats) and minisatellites (7- to
10-mer repeats) comprised 96.98% and 4.12% of detected
loci, respectively.

The distribution of occurrences detected by SSRLocator
was consisted of 138 monomers, 594 2-mers, 1990 3-mers,
251 4-mers, 426 5-mers, 390 6-mers, 82 7-mers, 6 8-mers,
25 9-mers, and 5 10-mers, corresponding to rates of 3.53%,
15.20%, 50.93%, 6.42%, 10.90%, 9.98%, 2.10%, 0.15%,
0.64%, and 0.13%, respectively (see Table 1).

For the remaining SSRs, average percentage values have
been reported as between 17 and 40% for 2-mer, 54–78%
for 3-mer, 2.6–6.6% for 4-mer, 0.4–1.3% for 5-mer, and
less than 1% for 6-mer repeats [28] and 26.5% for 2-mer,
65.4% 3-mer, 6.8% 4-mer, 0.77% 5-mer, and 0.45% for 6-
mer repeats [30] for barley, maize, wheat, sorghum, rye,
and rice, respectively. In nonredundant transcripts from the
TIGR database, 15.6% 2-mer, 61.6% 3-mer, 8.5% 4-mer, and
14.4% 5-mer repeats were found in rice [31].
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Table 2: Distribution of SSR/minisatellite repeats in the rice cDNA collection.

Motif Ocur(1) (%)(1) Ocur(2) (%)(2) Total (%) Group (%) Overall

Mono-
A/T 111 88.80 14 11.20 125 90.58 3.20

C/G 10 76.92 3 23.08 13 9.42 0.33

2-mer

AG/CT 97 36.06 172 63.94 269 45.29 6.89

GA/TC 143 61.37 90 38.63 233 39.23 5.96

CA/TG 10 35.71 18 64.29 28 4.71 0.72

AT 24 100.00 — — 24 4.04 0.61

AC/GT 6 31.58 13 68.42 19 3.20 0.49

TA 19 100.00 — — 19 3.20 0.49

CG 2 100.00 — — 2 0.34 0.05

3-mer

CCG/CGG 197 53.68 170 46.32 367 18.44 9.39

CGC/GCG 218 61.24 138 38.76 356 17.89 9.11

GCC/GGC 112 53.08 99 46.92 211 10.60 5.40

CTC/GAG 73 42.69 98 57.31 171 8.59 4.38

AGG/CCT 34 30.91 76 69.09 110 5.53 2.82

GGA/TCC 60 62.50 36 37.50 96 4.82 2.46

CAG/CTG 58 76.32 18 23.68 76 3.82 1.95

AAG/CTT 34 50.75 33 49.25 67 3.37 1.71

CGA/TCG 33 54.10 28 45.90 61 3.07 1.56

AGC/GCT 36 62.07 22 37.93 58 2.91 1.48

GCA/TGC 47 83.93 9 16.07 56 2.81 1.43

AGA/TCT 33 62.26 20 37.74 53 2.66 1.36

CCA/TGG 39 75.00 13 25.00 52 2.61 1.33

ACC/GGT 22 48.89 23 51.11 45 2.26 1.15

GAA/TTC 28 63.64 16 36.36 44 2.21 1.13

CAC/GTG 28 65.12 15 34.88 43 2.16 1.10

GAC/GTC 18 54.55 15 45.45 33 1.66 0.84

ACG/CGT 11 42.31 15 57.69 26 1.31 0.67

ATC/GAT 5 45.45 6 54.55 11 0.55 0.28

TCA/TGA 5 50.00 5 50.00 10 0.50 0.26

CAA/TTG 4 50.00 4 50.00 8 0.40 0.20

ACT/AGT 3 42.86 4 57.14 7 0.35 0.18

TAA/TTA 1 14.29 6 85.71 7 0.35 0.18

CTA/TAG 4 66.67 2 33.33 6 0.30 0.15

AAT/ATT 1 20.00 4 80.00 5 0.25 0.13

CAT/ATG 4 100.00 0 0 4 0.20 0.10

AAC/GTT 3 75.00 1 25.00 4 0.20 0.10

ATA/TAT 1 50.00 1 50.00 2 0.10 0.05

GTA/TAC 1 100.00 0 0 1 0.05 0.03

4-mer

GATC 18 100.00 0 0 18 7.17 0.46

ATTA/TAAT 9 52.94 8 47.06 17 6.77 0.44

ATCG/CGAT 3 20.00 12 80.00 15 5.98 0.38

CATC/GATG 4 40.00 6 60.00 10 3.98 0.26

AGAA/TTCT 2 25.00 6 75.00 8 3.19 0.20

GCTA/TAGC 6 75.00 2 25.00 8 3.19 0.20

GATA/TATC 1 14.29 6 85.71 7 2.79 0.18

GCGA/TCGC 3 42.86 4 57.14 7 2.79 0.18

GCAC/GTGC 2 33.33 4 66.67 6 2.39 0.15

AGGG/CCCT 2 33.33 4 66.67 6 2.39 0.15
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Table 2: Continued.

Motif Ocur(1) (%)(1) Ocur(2) (%)(2) Total (%) Group (%) Overall

5-mer

AGGAG/CTCCT 3 15.00 17 85.00 20 4.69 0.51

CTCTC/GAGAG 17 89.47 2 10.53 19 4.46 0.49

GAGGA/TCCTC 9 56.25 7 43.75 16 3.76 0.41

CCTCC/GGAGG 12 80.00 3 20.00 15 3.52 0.38

AGAGG/CCTCT 4 26.67 11 73.33 15 3.52 0.38

GGAGA/TCTCC 2 18.18 9 81.82 11 2.58 0.28

CTCGC/GCGAG 7 77.78 2 22.22 9 2.11 0.23

AGCTA/TAGCT 4 44.44 5 55.56 9 2.11 0.23

GAAAA/TTTTC 2 25.00 6 75.00 8 1.88 0.20

AGGCG/CGCCT 2 25.00 6 75.00 8 1.88 0.20

6-mer

CGCCTC/GAGGCG 12 85.71 2 14.29 14 3.59 0.36

CGGCGA/TCGCCG 4 28.57 10 71.43 14 3.59 0.36

CCTCCG/CGGAGG 9 81.82 2 18.18 11 2.82 0.28

AGGCGG/CCGCCT 1 10.00 9 90.00 10 2.56 0.26

CCGTCG/CGACGG 4 44.44 5 55.56 9 2.31 0.23

CGTCGC/GCGACG 7 77.78 2 22.22 9 2.31 0.23

ACCGCC/GGCGGT 1 12.50 7 87.50 8 2.05 0.20

CCACCG/CGGTGG 6 85.71 1 14.29 7 1.79 0.18

GGCGGA/TCCGCC 5 71.43 2 28.57 7 1.79 0.18

CTCCAT/ATGGAG 6 100.00 0 0 6 1.54 0.15

7-mer

CCGCCGC/GCGGCGG 4 66.67 2 33.33 6 7.32 0.15

CTCTCTC/GAGAGAG 4 80.00 1 20.00 5 6.10 0.13

CCTCTCT/AGAGAGG 4 100.00 0 0 4 4.88 0.10

CTCTCTT/AAGAGAG 4 100.00 0 0 4 4.88 0.10

CCCAAAT/ATTTGGG 3 100.00 0 0 3 3.66 0.08

GCCGCCG/CGGCGGC 3 100.00 0 0 3 3.66 0.08

GCGGCGC/GCGCCGC 2 100.00 0 0 2 2.44 0.05

AATAAAA/TTTTATT 2 100.00 0 0 2 2.44 0.05

GTGTGCG/CGCACAC 2 100.00 0 0 2 2.44 0.05

CGCCGTC/GACGGCG 2 100.00 0 0 2 2.44 0.05

8-mer

TTGGTTTC/GAAACCAA 2 100.00 0 0 2 33.33 0.05

TGGGCTTG/CAAGCCCA 1 100.00 0 0 1 16.67 0.03

GCTTCTTG/CAAGAAGC 1 100.00 0 0 1 16.67 0.03

ACGGGCGA/TCGCCCGT 1 100.00 0 0 1 16.67 0.03

ATGATGTA/TACATCAT 1 100.00 0 0 1 16.67 0.03

9-mer

TCGGCGGCG/CGCCGCCGA 2 100.00 0 0 2 8.00 0.05

AGGTGGTGG/CCACCACCT 2 100.00 0 0 2 8.00 0.05

CCGGTGCGA/TCGCACCGG 1 100.00 0 0 1 4.00 0.03

ACGAGGAGG/CCTCCTCGT 1 100.00 0 0 1 4.00 0.03

TCCCTTTTC/GAAAAGGGA 1 100.00 0 0 1 4.00 0.03

CGGCATGAA/TTCATGCCG 1 100.00 0 0 1 4.00 0.03

CGGCAGCGA/TCGCTGCCG 1 100.00 0 0 1 4.00 0.03

ACCATCCCG/CGGGATGGT 1 100.00 0 0 1 4.00 0.03

ATGGGCGGC/GCCGCCCAT 1 100.00 0 0 1 4.00 0.03

ATGCAGGGT/ACCCTGCAT 1 100.00 0 0 1 4.00 0.03

10-mer

AGCCCCAACG/CGTTGGGGCT 1 50.00 1 50.00 2 40.00 0.05

TTTTTTTCTT/AAGAAAAAAA 1 100.00 0 0 1 20.00 0.03

CCTGCTTTGC/GCAAAGCAGG 1 100 0 0 1 20 0.03

ATCTCCGCCG/CGGCGGAGAT 1 100 0 0 1 20 0.03
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The frequency of micro/minisatellite locus occurrence
for each million nucleotides (loci/Mb) [6] in this study was
2.94, 12.64, 42.34, 5.34, 9.06, 8.30, 1.74, 0.13, 0.53, and
0.11 for mono to 10-mer repeats/Mb, respectively. Overall
occurrences of 83.13 loci/Mb were found (see Table 1). In
other studies, different taxa were described in analyses of EST
databases, such as 133 loci/Mb (barley), 161 loci/Mb (wheat,
sorghum and rye), and 256 loci/Mb for rice [28]. Also, for
nonredundant ESTs in rice, sorghum, barley, wheat, and
Arabidopsis, frequencies of 277, 169, 112, 94 and 133 loci/Mb
were found, respectively [30]. Frequencies closer to those
found in this study were described for CDS regions of
Rosaceaespecies, with an average of 40.9–78 loci/Mb for
Rose, Almond and Peach, while 39 loci/Mb were found for
Arabidopsis [26].

3.3. Occurrence patterns for different SSR and
minisatellite types and motifs Monomers,
2-mers, 3-mers, and 4-mers

On Table 2, the contents and percentage values for different
micro-/minisatellite motifs are shown. For monomer, 2-mer
and 3-mer repeats, all possible arrangements are shown,
while for 4-mer to 10-mer repeats, only the ten most frequent
motifs are shown.

The A/T monomer repeats were found in 125 loci, with
111 (88.80%) and 14 (11.20%) loci formed by A and
T nucleotides, respectively. The C/G motifs were found
in 13 loci, with ten (76.92%) and three (23.08%) loci
formed by C and G, respectively. A/T containing SSRs were
predominant and comprised 90.58% of monomer loci. In
the overall distribution, the monomers represent 3.53% of
3907 detected loci. Motifs AG/CT and GA/TC were the most
frequent and added up to 8.52% of 2-mer SSRs, and 6.89%
and 5.96% of all 3907 detected occurrences. The motifs CT,
GA, and TC were the most abundant adding up to 172,
143, and 90 loci, respectively. In maize, barley, rice, sorghum,
and wheat ESTs, the motif AG was described as the most
frequent [6, 16, 28, 29, 31, 32]. However, in some studies,
the most frequent motif was GA [30, 33]. Repeats composed
by guanine and cytosine were the most abundant among
trimers, with occurrences of 18.44%, 17.89%, and 10.60%,
respectively, for the motifs CCG/CGG, CGC/GCG, and
GCC/GGC, adding up to 23.9% of the overall frequencies of
micro-/minisatellites in the analysis. The motifs CGC, CCG,
and CGG were the most frequent comprising 218, 197, and
170 loci, respectively. Many reports indicate the 3-mer CCG
as the most frequent in maize, barley, wheat, sorghum and
rye [6, 16, 28, 32], sugarcane [27] and rice [29, 31].

Among 4-mers, 100 different arrangements were found,
where the motifs GATC (7.17%), ATTA/AAT (6.77%), and
ATCG/CGAT (5.98%) were the most frequent. These motifs
add up to 19.92% of 4-mer repeats found and represent
1.28% of the overall content of micro-/minisatellites. In
barley ESTs, ACGT was reported as the most abundant motif
[16, 28]. For other species, AAAG/CTTT and AAGG/CCTT
in Lolium perene [34], AAAG/CTTT and AAAC/GTTT in
arabidopsis UTRs [6, 35], and AAAT and AAAG in citrus
[36, 37] were described as most abundant.

3.4. Remaining repeats

Among 5-mers, 188 different arrangements were detected
and the most frequent were CTCCT, CTCTC, and CCTCC
with 17, 17, and 12 occurrences, respectively. In the analysis
of CDS regions, the ACCCG motif was the most frequent
in Arabidopsis, AAAAG in S. cerevisae, C. elegans, and
AAAAC in different primates [38]. Also, the motifs AAAAT,
AAAAC, and AAAAG were described as the most frequent
in eukaryotes [39]. In rice, the motifs AGAGG and AGGGG
were the most abundant [31]. Repeats of type 6-mer were
detected in 230 different arrangements, where CGCCTC
and TCGCCG were the most frequent, occurring in 12
and 10 loci, respectively. Other studies have shown higher
frequencies for the motifs AAGATG, AAAAAT in arabidopsis
[35], AAAAAG in citrus [36], AACACG in S. cerevisae,
ACCAGG in C. elegans and CCCCGG in primates [38].
For all remaining repeats (minisatellites), the occurrences
are widely distributed with low-percentage values for each
arrangement. For 7-mer, 8-mer, 9-mer, and 10-mer repeats,
the totals of occurrences were 57, 5, 23, and 5, respectively.

3.5. Primer design and PCR simulation

The design of primers for the 3907 detected micro-
/minisatellites resulted in 3329 primer pairs, covering 85.20%
of loci. The running of “Virtual PCR” generated a total of
4610 amplicons. A module in SSRLocator checks for primer
redundancy. A total of 2397 primer pairs amplified only the
fragment from its original locus (specific amplicons) and
932 pairs amplified one or more regions besides the original
locus. From these, 692 pairs amplified two fragments, one
from the original site and a second from another region
(paralogous). In this case, 692 specific amplicons plus 692
redundant amplicons, were detected. A total of 143, 90, 2,
and 5 primer pairs generated three (two redundancies), four
(three redundancies), five (four redundancies), and six (five
redundancies) fragments, respectively. The final product of
932 primers with more than one anchoring region resulted
in 932 specific amplicons and 1281 redundant amplicons,
adding up to 2213 fragments.

To investigate the ability of these primers in amplifying
genomic sequences, an extra experiment was performed
against the whole rice genomic sequence available at NCBI.
The different groups of redundant and nonredundant primer
sets, that is, amplifying one, two, three, or more times
in the cDNA database, were tested against the genomic
sequence. From the 2397 nonredundant primers, only 924
amplified a locus in the genomic sequence. This difference
was already expected because of difficulties in amplifying
genomic regions, that is, if some primers anneal to a
boundary region between two exons in the cDNA, the
presence of introns would make this annealing site no more
available. It is interesting to note that from the 924 amplicons
detected, 914 (99%) did amplify only one locus in the
genomic region, agreeing with the cDNA results. When the
primer sets that amplified two different cDNAs were run
against the genomic sequence, only 294/692 (42.5%) did
amplify, having 14.5% been able to amplify two different loci.
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Table 3: Distribution of amplicon alignments for specific and redundant amplicons with varying identity levels.

Identity 100 99 98 97 96 95–90 89–80 79–70 69–60 ≤59 Total

Amplicons 787 261 151 29 11 8 8 6 5 15 1281

% 61.44 20.37 11.79 2.26 0.86 0.62 0.62 0.47 0.39 1.17 —

Only one primer set did amplify more than two loci. These
results indicate that SSR locator performance was consistent
between the two databases regarding the nonredundant loci,
that is, from those loci that were able to be amplified in both
databases, their status of nonredundant was maintained. The
changes observed for the redundant loci can be attributable
to many causes, including redundancy in the cDNA database,
but also to biological reasons due to primer positioning.

3.6. Identity between specific and
redundant amplicons

Results of a global alignment between amplicons from
original and redundant sites are shown in Table 3. Among
the 1281 redundant amplifications, 787 (61.44%) resulted
in a perfect alignment between both loci (identity equal
to 100). For redundant amplicons with identity levels of
96–99%, and 90–95%, 452 (35.28%) and 8 (0.62%) loci
were found, respectively. Alignments with identity levels
bellow 90% were found in only 2.65% of cases. The fact
that such a high percentage of redundant loci show high
identity is probably a consequence of the genome fraction
chosen, that is, expressed sequences. This fraction is under
tight selection pressure and should not accumulate variations
such as substitutions or indels at a high rate. As expected,
comparisons to whole genome, generated a great deal of
polymorphism, due to the inclusion of intronic regions in
the alignments (data not shown).

4. CONCLUSIONS

The software SSRLocator was successfully implemented,
adding steps for (1) SSR discovery, (2) primer design, and
(3) PCR simulation between the primers obtained from
original sequences and other fasta files. Also, the software
produces reports for frequency of occurrence, nucleotide
arrangement, primer lists with all standard information
needed for PCR and global alignments. From the PCR
simulation, it was possible to point out which primer pairs
were nonredundant, suggesting that these primers are more
appropriate for mapping purposes. In this case, however,
wet lab experiments should be performed to confirm the
advantage of nonredundant over redundant primers for
mapping.

It is possible that the results for micro-/minisatellite
frequencies (loci/Mb) obtained in this study diverge from
the results found in the literature. This can be explained
by the different databases used (redundant ESTs, nonredun-
dant ESTs and/or fl-cDNA), different algorithm configura-
tions and minimum requirements set for counting motifs.
Another explanation for some contrasting results is the fact
that only “Class I” repeats were analyzed in our study.

The results showed that 932 (27.99%) primers presented
amplifications in more than one gene sequence. This could
be mostly due to the fact that primer pairs derived from
a specific gene (cDNA) anchored in similar sites in other
duplicated genes, since 5,607/28,469 (19.70%) genes were
described as paralogs in the annotation of the database
used [24]. Gene duplication along with polyploidy and
transposon amplification are the major driving forces in
genome evolution [40]. It is therefore not surprising that
so many loci have redundancy. Also, a second possibility
is that some primers were generated from protein domain
regions within the analyzed cDNAs. These domains could
be found in protein families with many genome copies,
resulting in the observed redundancies. A validation of
the redundancies of cDNA results was obtained through a
virtual-PCR against the whole rice genome sequence. From
the nonredundant primers that generated an amplicon, ca.
99% were nonredundant.

Finally, this tool can be used successfully for data mining
strategies to find SSR primers in genomic or expressed
sequences (ESTs/cDNAs). Also, this software can be a tool
for microsatellite discovery in databanks of related species,
anchoring primers in ortholog or paralog regions contained
between databases from two different species.

ACKNOWLEDGMENTS

The authors are thankful to the Brazilian Council for
Research and Development (CNPq) and the Coordination
for Support to Superior Studies (CAPES/Brazil) for grants
and fellowships.

REFERENCES

[1] M. Morgante, M. Hanafey, and W. Powell, “Microsatellites
are preferentially associated with nonrepetitive DNA in plant
genomes,” Nature Genetics, vol. 30, no. 2, pp. 194–200, 2002.

[2] R. R. Iyer, A. Pluciennik, W. A. Rosche, R. R. Sinden, and R.
D. Wells, “DNA polymerase III proofreading mutants enhance
the expansion and deletion of triplet repeat sequences in
Escherichia coli,” Journal of Biological Chemistry, vol. 275, no.
3, pp. 2174–2184, 2000.

[3] H. Ellegren, “Microsatellites: simple sequences with complex
evolution,” Nature Reviews Genetics, vol. 5, no. 6, pp. 435–445,
2004.

[4] S. M. Mirkin, “DNA structures, repeat expansions and human
hereditary disorders,” Current Opinion in Structural Biology,
vol. 16, no. 3, pp. 351–358, 2006.

[5] B. Li, Q. Xia, C. Lu, Z. Zhou, and Z. Xiang, “Analysis on
frequency and density of microsatellites in coding sequences
of several eukaryotic genomes,” Genomics Proteomics & Bioin-
formatics, vol. 2, no. 1, pp. 24–31, 2004.



Luciano Carlos da Maia et al. 9

[6] M. Morgante, M. Hanafey, and W. Powell, “Microsatellites
are preferentially associated with nonrepetitive DNA in plant
genomes,” Nature Genetics, vol. 30, no. 2, pp. 194–200, 2002.

[7] S. Subramanian, R. K. Mishra, and L. Singh, “Genome-wide
analysis of microsatellite repeats in humans: their abundance
and density in specific genomic regions,” Genome Biology, vol.
4, no. 2, p. R13, 2003.

[8] R. K. Varshney, A. Graner, and M. E. Sorrells, “Genic
microsatellite markers in plants: features and applications,”
Trends in Biotechnology, vol. 23, no. 1, pp. 48–55, 2005.

[9] M. Bilgen, M. Karaca, A. N. Onus, and A. G. Ince, “A
software program combining sequence motif searches with
keywords for finding repeats containing DNA sequences,”
Bioinformatics, vol. 20, no. 18, pp. 3379–3386, 2004.

[10] W. R. Pearson and D. J. Lipman, “Improved tools for biological
sequence comparison,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 85, no. 8, pp. 2444–
2448, 1988.

[11] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D.
J. Lipman, “Basic local alignment search tool,” Journal of
Molecular Biology, vol. 215, no. 3, pp. 403–410, 1990.

[12] C. Abajian, SPUTNIK, 1994, http://www.abajian.com/
sputnik.

[13] A. F. A. Smit, R. Hubley, and P. Green, RepeatMasker Open-
3.0, 1996, http://www.repeatmasker.org.

[14] G. Benson, “Tandem repeats finder: a program to analyze
DNA sequences,” Nucleic Acids Research, vol. 27, no. 2, pp.
573–580, 1999.

[15] A. T. Castelo, W. Martins, and G. R. Gao, “TROLL—tandem
repeat occurence locator,” Bioinformatics, vol. 18, no. 4, pp.
634–636, 2002.

[16] T. Thiel, W. Michalek, R. K. Varshney, and A. Graner, “Exploit-
ing EST databases for the development and characterization
of gene-derived SSR-markers in barley (Hordeum vulgare L.),”
Theoretical and Applied Genetics, vol. 106, no. 3, pp. 411–422,
2003.

[17] S. Temnykh, G. DeClerck, A. Lukashova, L. Lipovich, S. Cart-
inhour, and S. McCouch, “Computational and experimental
analysis of microsatellites in rice (Oryza sativa L.): frequency,
length variation, transposon associations, and genetic marker
potential,” Genome Research, vol. 11, no. 8, pp. 1441–1452,
2001.

[18] G. D. Schuler, “Sequence mapping by electronic PCR,”
Genome Research, vol. 7, no. 5, pp. 541–550, 1997.

[19] S. Rozen and H. Skaletsky, “Primer3 on the WWW for general
users and for biologist programmers,” Methods in Molecular
Biology, vol. 132, part 3, pp. 365–386, 2000.

[20] S. B. Needleman and C. D. Wunsch, “A general method
applicable to the search for similarities in the amino acid
sequence of two proteins,” Journal of Molecular Biology, vol.
48, no. 3, pp. 443–453, 1970.

[21] T. F. Smith and M. S. Waterman, “Identification of common
molecular subsequences,” Journal of Molecular Biology, vol.
147, no. 1, pp. 195–197, 1981.

[22] M. Waterman, “Estimating statistical significance of sequence
alignments,” Philosophical transactions of the Royal Society of
London. Series B, vol. 344, no. 1310, pp. 383–390, 1994.

[23] M. Vingron and M. S. Waterman, “Sequence alignment
and penalty choice. Review of concepts, case studies and
implications,” Journal of Molecular Biology, vol. 235, no. 1, pp.
1–12, 1994.

[24] S. Kikuchi, K. Satoh, T. Nagata, et al., “Collection, mapping,
and annotation of over 28,000 cDNA clones from japonica

rice: the rice full-length cDNA consortium,” Science, vol. 301,
no. 5631, pp. 376–379, 2003.

[25] L. Cardle, L. Ramsay, D. Milbourne, M. Macaulay, D. Marshall,
and R. Waugh, “Computational and experimental charac-
terization of physically clustered simple sequence repeats in
plants,” Genetics, vol. 156, no. 2, pp. 847–854, 2000.

[26] S. Jung, A. Abbott, C. Jesudurai, J. Tomkins, and D. Main,
“Frequency, type, distribution and annotation of simple
sequence repeats in Rosaceae ESTs,” Functional & Integrative
Genomics, vol. 5, no. 3, pp. 136–143, 2005.

[27] G. M. Cordeiro, R. Casu, C. L. McIntyre, J. M. Manners, and R.
J. Henry, “Microsatellite markers from sugarcane (Saccharum
spp.) ESTs cross transferable to erianthus and sorghum,” Plant
Science, vol. 160, no. 6, pp. 1115–1123, 2001.

[28] R. K. Varshney, T. Thiel, N. Stein, P. Langridge, and A.
Graner, “In silico analysis on frequency and distribution of
microsatellites in ESTs of some cereal species,” Cellular &
Molecular Biology Letters, vol. 7, no. 2A, pp. 537–546, 2002.

[29] R. V. Kantety, M. La Rota, D. E. Matthews, and M. E. Sorrells,
“Data mining for simple sequence repeats in expressed
sequence tags from barley, maize, rice, sorghum and wheat,”
Plant Molecular Biology, vol. 48, no. 5-6, pp. 501–510, 2002.

[30] S. K. Parida, K. Anand Raj Kumar, V. Dalal, N. K. Singh, and
T. Mohapatra, “Unigene derived microsatellite markers for the
cereal genomes,” Theoretical and Applied Genetics, vol. 112, no.
5, pp. 808–817, 2006.

[31] M. La Rota, R. V. Kantety, J.-K. Yu, and M. E. Sorrells,
“Nonrandom distribution and frequencies of genomic and
EST-derived microsatellite markers in rice, wheat, and barley,”
BMC Genomics, vol. 6, article 23, 2005.

[32] J.-K. Yu, T. M. Dake, S. Singh, et al., “Development and
mapping of EST-derived simple sequence repeat markers for
hexaploid wheat,” Genome, vol. 47, no. 5, pp. 805–818, 2004.

[33] N. Nicot, V. Chiquet, B. Gandon, et al., “Study of sim-
ple sequence repeat (SSR) markers from wheat expressed
sequence tags (ESTs),” Theoretical and Applied Genetics, vol.
109, no. 4, pp. 800–805, 2004.

[34] T. Asp, U. K. Frei, T. Didion, K. K. Nielsen, and T. Lübberstedt,
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1. INTRODUCTION

Maize (Zea mays L.) is a species that encompasses the
subspecies mays (commonly called “corn” in the US) as well
as the various teosintes that gave rise to modern maize. Maize
is an important crop: not only is it one of the most abundant
sources of food and feed for people and livestock the world
over, it is also an important component of many industrial
products. Maize byproducts are present in, for example,
glue, paint, insecticides, toothpaste, rubber tires, rayon, and
molded plastics, among others. Maize is also currently the
nation’s major source of ethanol, a major biofuel that is more
environmentally friendly than gasoline and that may be a
more economical fuel alternative in the long run. Although
it is unlikely that ethanol production from maize directly
will be sustainable long-term, maize’s suitability to serve as a

model organism for developing fuelstock grasses is apparent
[1]. Indeed, in addition to its value as a commodity, maize
has been a premiere model organism for biological research
for over 100 years. Many seminal scientific discoveries have
first been shown in maize, such as the identification [2] and
cloning [3] of transposable elements, the correlation between
cytological and genetic crossing over [4], and the discovery of
epigenetic phenomena [5]. These exceptional characteristics
of maize set this amazing plant apart: no other species serves
as both a commodity and a leading model for basic research.

Today, with the accelerated generation of maize genetic
and genomic information, the need for a centralized biologi-
cal data repository is critical. MaizeGDB (the Maize Genetics
and genomics Data Base [6]) (http://www.maizegdb.org/)
is the Model Organism Database (MOD) for maize. Stored
at MaizeGDB is comprehensive information on loci (genes
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and other genetically defined genomic regions including
QTL), variations (alleles and other sorts of polymorphisms),
stocks, molecular markers and probes, sequences, gene
product information, phenotypic images and descriptions,
metabolic pathway information, reference data, and con-
tact information for maize researchers. Described in the
results and discussion section are example workflows that
could be followed by researchers to utilize the MaizeGDB
resource for their research. Other long-term resources serv-
ing maize data include Gramene (http://www.gramene.org/)
[7], which specializes in grass comparative genomics, and
GRIN (the Germplasm Resources Information Network;
http://www.ars-grin.gov/npgs/), which provides access to the
National Plant Germplasm System’s germplasm stocks and
related breeding data. MaizeGDB makes an effort to guide
researchers to these resources via context-sensitive linkages
rather than duplicating data, though some data are shared
simply to allow for the context-sensitive linkages to be
created. This reduces duplication in effort and allows per-
sonnel skilled in comparative genomics and germplasm con-
servation/plant breeding to interact with maize researchers
directly via Gramene and GRIN, respectively.

In addition to storing and making maize data available,
the MaizeGDB team also provides services to the commu-
nity of maize researchers and offers technical support for
the Maize Genetics Executive Committee and the Annual
Maize Genetics Conference. Also available at the MaizeGDB
website, as a service to the maize research community, are
bulletin boards for news items, information of interest to
cooperators, lists of websites for projects that focus on the
scientific study of maize, the Editorial Board’s recommended
reading list, and educational outreach items.

The genetic and genomic data as well as community-
related information maintained by MaizeGDB are highly
utilized: MaizeGDB averages 8620 visitors (based on unique
Internet Protocol or IP addresses) and over 160 000 page
impressions per month (July 2007 to June 2008). In addition,
MaizeGDB came in fifth out of 170 in a National Plant
Genome Initiative Grantees poll in which lead principal
investigators reported most useful websites for their research
[8].

2. MATERIALS AND METHODS

2.1. Kinds of data in the database that link genetic and
genome sequence information

MaizeGDB is the primary repository for the major genetic
and cytogenetic maps and includes details about genes,
mutants, QTL (quantitative trait loci), and molecular
markers including 2500 RFLPs (restriction fragment length
polymorphisms), 4625 SSRs (simple sequence repeats),
363 SNP (single nucleotide polymorphisms), 2500 indels
(insertion/deletion sites), and 10 644 overgos (overlapping
oligonucleotides). These data are described using 1.27
millions synonyms, 42 000 primer sequences, 16 394 raw
scores from mapping based upon 16 panels of stocks,
and 323 313 links to GenBank [9] accessions. GenBank
accessions form the links between the genetic position on

a chromosome, the sequence records at MaizeGDB, and
the EST (expressed sequence tag) and GSS (genome survey
sequence) contig assemblies at PlantGDB [10] and Dana
Farber (The Gene Indices at http://compbio.dfci.harvard
.edu/tgi/cgi-bin/tgi/gimain.pl?gudb=maize, previously at
TIGR [11]). All of the 3 520 247 sequences in MaizeGDB
are accessible by BLAST [12] and can be filtered to report
only mapped loci, including any SSRs and overgos that may
not be mapped genetically, but via BACs (bacterial artificial
chromosomes) in anchored contigs.

The inclusion of the public BAC FPC (Finger Print
Contig) information [13] adds 439 449 BACs together with
associated overgo, SSR, and RFLP markers, which are
used to assemble the contigs and to link contigs onto
genetic map coordinates. The order of loci on the BAC
contigs is represented by over 27 000 sequenced-based
loci on the IBM2 FPC057 maps (http://www.maizegdb
.org/cgi-bin/displaymapresults.cgi?term=ibm2+fpc0507) in
MaizeGDB, by links to contigs at both the Arizona FPC
site (http://www.genome.arizona.edu/) and the genome
sequencing project (http://www.maizesequence.org/). As the
B73 genome sequence progresses, these BAC sequences are
added to MaizeGDB along with links to the sequencing
project, both from the BAC clones and from genetically
mapped loci associated with a BAC.

The newest maps in MaizeGDB, IBM SNP 2007 (http://
www.maizegdb.org/cgi-bin/displaymapresults.cgi?term=ibm
%20snp%202007), are the first of a new generation of
genetic maps from the Maize Diversity Project (http://www
.panzea.org/) kindly provided pre-publication by Dr. Mike
McMullen. The SNP loci on these maps are associated
with allelic sequences from a core set of maize and teosinte
germplasm. Because the majority of the anticipated 1128
loci have been previously mapped onto BAC clones [13, 14],
these genetic maps tightly link sequence diversity to the B73
genome sequence.

2.2. Methods of access, environments,
and the database back end

2.2.1. The production web interface

Maize researchers primarily access MaizeGDB through
the series of interconnected Web pages available at
http://www.maizegdb.org/ (see Figure 1). These web pages
are dynamically generated and are written in PHP (the
recursive abbreviation for PHP Hypertext Preprocessor [15])
and Perl [16]. Through this interface, each page shows
detailed information on a specific biological entity (such as
a gene) as well as basic information about data associated
with it (genes are associated with maps, phenotypes, and
citations, among others). These additional data types are
linked to the gene page, enabling quick access to alternative
data views. The site also includes links to related resources at
other databases; genes, for example, are linked to Gramene
[7].

One may access these individual data pages by using
either (1) the search bar located at the top right of every page
(Figure 1(A)), or (2) data type-specific advanced querying
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http://compbio.dfci.harvard.edu/tgi/cgi-bin/tgi/gimain.pl?gudb=maize
http://compbio.dfci.harvard.edu/tgi/cgi-bin/tgi/gimain.pl?gudb=maize
http://www.maizegdb.org/cgi-bin/displaymapresults.cgi?term=ibm2+fpc0507
http://www.maizegdb.org/cgi-bin/displaymapresults.cgi?term=ibm2+fpc0507
http://www.genome.arizona.edu/
http://www.maizesequence.org/
http://www.maizegdb.org/cgi-bin/displaymapresults.cgi?term=ibm$% $20snp$% $202007
http://www.maizegdb.org/cgi-bin/displaymapresults.cgi?term=ibm$% $20snp$% $202007
http://www.maizegdb.org/cgi-bin/displaymapresults.cgi?term=ibm$% $20snp$% $202007
http://www.panzea.org/
http://www.panzea.org/
http://www.maizegdb.org/


Carolyn J. Lawrence et al. 3

A

D

F

C

B

E

Figure 1: The MaizeGDB home page. The most commonly utilized search functionality for MaizeGDB is the search bar (A), which is
available within the header of any MaizeGDB page. To browse data and to search specific data types using specific limiters, the Data Centers
(B) are also quite useful. Also available is a Bin Viewer (C), which allows for a view of lots of data types within the context of their
chromosomal location. To enable access to the Data Centers and other displays of interest from any MaizeGDB page, a pull-down menu
for “Useful pages” (D) is accessible on the header of any MaizeGDB page. The footer of all MaizeGDB pages contains a context-sensitive
“feedback form” link (E). Researchers use the feedback form to report errors, ask questions, and to contact the MaizeGDB team directly. For
newcomers to the site, the MaizeGDB Tutorial (F) can help them to get a jump start on how to use the site.

tools (accessible via the “Data Centers” links; Figure 1(B))
on the left side of the home page, or (3) the Bin Viewer tool
(Figure 1(C)), which is located in the left margin of the home
page or via a pull down labeled “Useful pages” (Figure 1(D))
accessible at the top of any MaizeGDB page. These tools allow
researchers to easily find relevant data displays.

MaizeGDB’s method of data delivery has three primary
goals: placing information within the framework of its
scientific meaning, making this information available to
the researcher with minimal input (often only the relevant
term), and requiring minimal effort from the researcher to
comprehend the data displays. By focusing on biological
context and ease of use as the primary focus of this
interface (the “production” Web interface), the database
is intended to be intuitive to the researcher as their click
stream follows a logical path of biological associations.
Up-to-date site usage statistics can be accessed online at
http://www.maizegdb.org/usage/.

2.2.2. Structure and relationship of environments:
production, staging, and test

The production Web interface, which most MaizeGDB
users interact with, is only one component of the overall
MaizeGDB infrastructure (Figure 2). The data accessed by
the production Web interface are typically updated on
the first Tuesday of each month. Prior to being in that
Production Environment, the data are prepared for public
accessibility in a Staging Environment. In the Staging Envi-
ronment, the most up-to-date information is available, new
data are added to the database, and existing data are updated
with new information. In addition to a Web interface that
appears identical to the one in the Production Environment,
the Staging Environment offers SQL (Structured Query
Language) read-only access to the community so that
researchers interested in interacting with the data in a more
direct and customized manner can have access to the most
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up-to-date information available. In addition, a Disaster
Recovery system has been put in place whereby the Curation
Database is backed up in a compressed format to a separate
machine in Ames, Iowa daily. Once weekly, the Ames file is
copied to Columbia, Missouri for off-site storage.

To aid in the modeling of new types of data for inclusion
in the MaizeGDB product and to enable programming to
be tried out in a safe place, a Test Environment identical to
the Staging Environment has been created. Note that three
copies of the database exist. While each environment and
server has a specific purpose, all are configured such that they
could serve a backup to each other. If any one server was to
fail, either of the other two could provide full, unrestricted
data access and site functionality. The curation database is
backed up on a daily basis and is available for download
(http://goblin1.zool.iastate.edu/∼oracle/) for those who have
Oracle Relational Database Management System (RDBMS)
installed locally.

2.2.3. Curation

Also available within the Staging Environment are Com-
munity Curation Tools to enable researchers to add small
datasets to the database directly, as well as a set of Profes-
sional Curation Tools developed by Dr. Marty Sachs’ group
at the Maize Genetics Cooperation-Stock Center in Urbana-
Champaign [17]. Whereas the Community Curation Tools
have many safeguards to help researchers enter data step-
wise and with enforced field requirements, the Professional
Curation Tools allow MaizeGDB project members as well
as Stock Center personnel to enter datasets in a more
stream-lined and powerful fashion with fewer integrity
enforcement rules (which slow down the data entry process
considerably). It also should be noted that data added
to the database via the Community Curation Tools are
first marked as “Experimental” that must be “Activated”
by professional curators at MaizeGDB. This ensures that
only quality information is made publicly accessible. The
availability of a Curation Web interface (within the Staging
Environment) enables researchers to view the data as they
will appear once they are uploaded to Production. Few
researchers (about 30 at present) have Community Curation
accounts. To increase the use of these tools, training sessions
are being organized (see Section 2.3, below). If researchers
wish to deposit complex or large datasets, it would not be
reasonable to enter the data via the Community Curation
Tools because those tools work via a “bottom-up” approach
whereby the records are (1) built based upon the most basic
information included in the dataset and (2) entered one
record at a time (i.e., not in bulk). For complex or large
datasets, researchers are encouraged to submit data files to
the curators at MaizeGDB. Those data are added to the
database directly by curators and the database administrator.

2.2.4. Database back end

Each environment’s server has a perpetual license and is
supported by Oracle RDBMS powered by 2 × 2.0 GHz Xeon
processors, 4 GB of RAM, 5 × 73 GB Ultra 320 10 K RPM

drives with Red Hat Advanced Server 2.1 operating system
installed. The curation database, either partially or in its
entirety, can be moved to MySQL, Microsoft Access, and
nearly any other portable data format that a researcher would
need. Requests to gain read-only SQL access to the Curation
database can be made via the feedback link that appears at the
bottom of any MaizeGDB page. Data housed at MaizeGDB
are in the public domain and are freely available for use
without a license.

2.3. Outreach

One of the strengths of MaizeGDB is its responsiveness
to community input, received either personally or by the
feedback forms accessible at the bottom of each page
(Figure 1(E)). To provide outreach and user support as well
as to solicit input from researchers in a more active manner,
several strategies are employed. The first is tutorials and
basic information on MaizeGDB. The MaizeGDB Tutorial
(Figure 1(F)) can be reached from the home page at the top
of the left margin. A new user can go through this tutorial,
and become familiar with how to use the site quickly. In
addition, a “Site Tour” with an overview with examples can
be found under the “Useful pages” pull down menu at the
top of each page. More specific tutorial examples and other
educational materials are available via the “Education” link,
also within the “Useful pages” pull down menu. Also, on
many of the “Data Center” pages (available from the left
margin of the front page or via the “Useful pages” pull down)
a discussion of the topic of the page that is suitable for the
general public appears toward the bottom. Another form of
outreach supported by MaizeGDB is assistance at meetings
and conferences. Representatives from MaizeGDB attend and
help researchers at the Annual Maize Genetics Conference
(usually in March), the International Plant and Animal
Genome Conference (January), and various other meetings
through direct interaction in person. Finally, researchers can
request a MaizeGDB site visit. About three times a year,
an expert curator travels to various research locations and
provides tutorials and support for maize researchers. For
these visits, the local maize researchers are asked for a list of
specific questions ahead of time. During the one to two day
visits, researchers interact in groups and one-on-one with the
traveling curator to learn how to utilize MaizeGDB for their
research and to deposit data at MaizeGDB.

2.4. Community support services

MaizeGDB provides community support in several ways.
Two members of the MaizeGDB team, MLS and TES, serve
as ex officio members of the Maize Genetics Conference
Steering Committee. They collect electronic abstracts
for the Annual Maize Genetics Conference and handle
the preparation and printing of the program for the
conference. MaizeGDB personnel also manage regular
community surveys on behalf of the Maize Genetics
Executive Committee. These surveys enable the Executive
Committee to summarize the overall research interest
of the maize community and to advise funding agencies

http://goblin1.zool.iastate.edu/~oracle/
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Figure 2: Simplified infrastructure of MaizeGDB. The community of maize researchers can add data to the database (downward-facing
arrows from the uppermost yellow box) via direct data deposition (upper left) and via a set of Community Curation Tools that interacts
with the Curation Database (upper center). Researchers are also allowed access to maize data (upward-facing arrows from the lower dashed
box) via a web interface that can be accessed at http://www.maizegdb.org/ (upper right) and by way of SQL access to the Curation Database,
which houses the most up-to-date data available (upper center). These functionalities are supported by two of the three environments:
Production and Staging, respectively (upper dashed gold boxes). Available for use by MaizeGDB personnel to facilitate data modeling
and trial programming manipulations is a third environment called Test (lower left dashed gold box), which is identical to the Staging
Environment. To ensure that the most up-to-date copy of the database is backed up, a Disaster Recovery process has been instituted (lower
center dashed gold box) whereby a compressed copy of the database is backed up to a separate machine in Ames, Iowa daily, and to a server
in Columbia, Missouri weekly.

on future research directions. MaizeGDB personnel
also manage the Executive Committee’s website (i.e.,
http://www.maizegdb.org/mgec.php) and conducts the
Executive Committee’s elections. MaizeGDB houses the
mailing list for the annual Maize Newsletter and project
personnel conduct semi-regular mailings to the maize com-
munity on behalf of interested researchers by maintaining an
electronic list of researchers’ contact information. Potential
mailings to this list are vetted by the Executive Committee.

3. RESULTS AND DISCUSSION

To demonstrate how researchers utilize MaizeGDB, three
example usage cases are presented here. Because researchers
with very different goals can all utilize MaizeGDB to advance
their work, the usage cases are classified by research type:
basic, translational, and applied. See Figure 3 for examples of
how these research types fit together. By enabling researchers
to carry out workflows that support translational and
applied research, MaizeGDB plays a part in influencing crop
development directly. Although a single researcher might
even include all of these three aspects in his/her research

simultaneously, here the researcher types are distinguished
as follows: basic researchers investigate the fundamental
biology of the organism, translational researchers work to
determine the application of basic research outcomes for
practical purposes [18], and applied researchers implement
proven technologies to improve crops.

3.1. Basic

Many basic researchers work with mutants to understand
the processes underlying biological phenomena. Once a new
mutant is found, there are several standard methods used
to elucidate normal gene functions. These efforts include
determining whether the mutant represents an allele of a
previously described gene, and if not, genetic mapping and
cloning of the new gene. Information stored in MaizeGDB is
useful in all of these steps.

In a large screen for mutations that change pericarp
pigmentation from red to some other color, Researcher
1 has found a plant with a brownish-red pericarp
coloration. She first wants search MaizeGDB to find
all known mutants that have red pericarp phenotypes

http://www.maizegdb.org/
http://www.maizegdb.org/mgec.php
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Basic Translational Applied

Definition

Investigation to gain
knowledge and
understanding of a
particular subject
without regard to
practical applications

The scientific work
required to develop a
clinical or commercial
application from a
basic science
discovery

Scientific investigation
carried out to create
therapies or
commercial/consumer
products

Medical
examplar

Investigating disease
mechanisms and
processes as well as
chemical effects on
cellular processes

Determining the relative
risk of an allele or
therapy to a patient

Using the relative
risk information to
prescribe therapies

Plant
biology
examplar

Investigating new
information on, for
example, genome
structure, gene models,
gene function, and
genetic variability

Utilizing variants as
selectable biomarkers
in breeding crosses
and progeny

Making breeding
crosses to create
plants that have
value-added traits for
real-world production
agricultural uses

Example
usage
cases (See
Section 3)

Determining the
genetic cause of red
pigmentation in the
pericarpof a newly
discovered mutant

Identifying markers
associated with both
pigmentation and
maysin production for
corn ear worm
resistance

Using markers
(morphological and
molecular) to guide
breeding programs to
produce ear worm
resistant sweet corn
lines

Figure 3: Three types of biological research. Research can be divided into three categories: basic, translational, and applied. Outcomes
from basic research feed into translational predictions, and developed uses for these findings constitute the basis for developing real-world
applications that benefit humanity and the world. Listed after the flow of research are definitions for each research type as well as medical
and plant biological models for how the different divisions are interrelated. Also shown are overviews of the example usage cases presented
in Section 3.

to determine whether this mutation represents a newly
discovered gene. Because she does not know how others
might have described the phenotype, she decides to
browse existing phenotype terms and images. From the
left margin of the MaizeGDB homepage, she selects
“Mutant Phenotypes” under “Data Centers-Functional.”
On this page (http://www.maizegdb.org/), she selects
“pericarp color” from the pull down menu labeled
“Show only phenotypes relating to this trait” in the
green search bar. A number of possible mutant phenotypes
are returned, including “red pericarp.” Clicking on the
“red pericarp” phenotype link, she finds that the listed
mutants are alleles of p1 (pericarp color1). On this page
(http://www.maizegdb.org/cgi-bin/displayphenorecord.cgi?
id=13818), she scrolls to the bottom and finds that there
are many stocks that can be ordered from the Maize
Genetics Cooperation-Stock Center that carry P1-rr (an
allele that causes red pericarp and red cob) or P1-rw (red
pericarp and white cob). Having these stocks in hand will
enable her to test whether the new mutant represents an
allele of the p1 gene, so she decides to order a few for
complementation analyses. Clicking on the stock links
listed on the variation/allele page allows her access to a
shopping cart utility (in the green right hand panel), and

she orders seed from the Stock Center directly through the
MaizeGDB interface. She then goes back to the results of her
“pericarp color” query and repeats the process for “cherry
pericarp,” ordering stocks for r1-ch (colored1-cherry), also
to be used in her complementation analyses. (Another way
she could have found maize stocks that have red pericarp is
the following: from the header of any page, select “Useful
pages” and click “Stocks.” This pulls up the stock search
page http://www.maizegdb.org/stock.php. In the green box,
select stocks with the phenotype “red pericarp” from the
pull down menu of all phenotype names and submit. A
long list of stocks that contain alleles of p1 with red pericarp
is returned. Alternatively, the Stock Center Catalog is also
available from the Stocks Data Center page.)

Researcher 1 receives several appropriate stocks and
performs allelism tests and determines that her mutant
(which turns out to be recessive) is not allelic to p1 or r1.
She returns to MaizeGDB and again looks through “Mutant
Phenotype” results using the “pericarp color” query. Listed
there are brown pericarp, orange pericarp, white pericarp,
and lacquer red pericarp phenotypes in addition to the
red and cherry phenotypes she focused on initially. She
finds that there is no stock available for the brown pericarp
phenotype (the brown pericarp1 mutant has been lost), and

http://www.maizegdb.org/phenotype.php
http://www.maizegdb.org/cgi-bin/displayphenorecord.cgi?id=13818
http://www.maizegdb.org/cgi-bin/displayphenorecord.cgi?id=13818
http://www.maizegdb.org/stock.php
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all the others are alleles that confer colored pericarp in the
dominant condition as a result of the presence of P1 alleles.
To determine whether the new mutation could be an allele of
bp1, she decides to map it genetically.

MaizeGDB houses the largest collection of publicly
available genetic maps of maize (currently over 1,337 maps).
These include maps of genes primarily defined by mutants
with morphological phenotypes (“Genetic 2005” is the most
current), maps based on phenotypic molecular markers, and
composite maps where various maps have been integrated.
These maps can be easily accessed from the home page,
via the left margin link to “Data Centers-Genetic-Maps”
(http://www.maizegdb.org/map.php). This page not only
allows various map search functions, but also provides infor-
mation on the most popular maps and a handy reference to
explain more about the various composite maps.

The maize genome is divided into genetic bins of
approximately 20 centiMorgans each and boundary markers
with nearby SSRs can be used for mapping (for further expla-
nation see http://www.maizegdb.org/cgi-bin/bin viewer.cgi).
Researcher 1 decides to utilize SSRs to map her gene to bin
resolution. To find the core markers from the home page,
she clicks on “Tools-Bin Viewer” in the left margin of the
home page. This provides a list of the core bin markers and
a link to purchase relevant primers to screen her mapping
population. She generates a mapping population, performs
PCR experiments using the polymorphic markers, and maps
her mutant to bin 9.02.

To see what genes are located in bin 9.02, she goes back
to the Bin Viewer (from the homepage), and holds the curser
over the image of chromosome 9 until she sees “bin 9.02,”
then clicks. The result is a long list of genes, other loci,
sequences, EST contigs, SSRs, BACs, and other data relating
to bin 9.02. Searching through this data, she sees that bp1 is
listed under “other loci” in bin 9.02. This is a “lapsed locus”
meaning that the stock has been lost, but perhaps she has
found a new allele!

To see more specific genetic mapping data on bp1,
she goes to the search bar along the top green bar of
every page, selects “loci” from the pull down menu,
types “bp1” into the field provided, and clicks the button
marked “Go!” This brings her to the bp1 locus page
(http://www.maizegdb.org/cgi-bin/displaylocusrecord.cgi?
id=61563) where she can see that bp1 is placed on three
genetic maps. Clicking on each map, Researcher 1 learns that
in 1935, bp1 was mapped between sh1 and wx1 (shrunken1
and waxy1), two well-studied genes. To search for molecular
markers suitable for fine structure mapping, she visits “Data
Centers-Genetic-Maps” from the link on the home page.
In the green Advanced Search box, she enters sh1 and wx1
separately in the “Show only maps containing this locus”
lines. This returns only genetic maps that contain both
genes. She selects the map with the most markers—IBM2
2005 Neighbors 9 (with 2,488 markers). She finds sh1 at
position 80.30, and wx1 at 185.00. To choose among several
molecular markers, Researcher 1 follows the available links
leading her to information about suitable primers, a number
of variations (which can help to decide if there may be a
polymorphism in her mapping populations), gel patterns,

and any available GenBank accession numbers for sequences
as well as sequenced BACs. She finally selects markers and
performs fine structure mapping. As she finds markers
closer and closer to the gene, she can proceed with positional
cloning to determine whether the position is consistent with
bp1 (nice examples of how this is done can be found in
[19–21]).

3.2. Translational

Research to understand the metabolic pathways that produce
pigmentation (like those outlined in Section 3.1) are well
studied in maize [22]. One example of a well-characterized
gene that confers pigmentation is p1, which encodes a
transcription factor that regulates synthesis of flavones such
as anthocyanins [23]. The p1 gene, along with its adjacent
duplicate pericarp color2 (p2), controls pericarp and cob
coloration and causes silks to brown when cut. One flavone
produced by the pathway is maysin, a compound which
has been shown to be antinutritive to the corn ear worm
at concentrations above 0.2% fresh weight if husks limit
access to the ear such that feeding on silks is required for
the insect to enter [24]. Many QTL for resistance to corn
earworm map near loci in the flavone synthesis pathway that
are either regulatory genes (such as p1 and p2), or at rate-
limiting enzymatic steps, such as c1 (chalcone synthase1) that
contribute maysin accumulation in silks [25]. Understanding
how maysin functions and how this information could be
used for production agriculture is Researcher 2’s area of
expertise.

Researcher 2 has investigated maysin synthesis for some
time, and has decided to clone an uncharacterized maysin
QTL near umc105a, in the bin 9.02, which is bounded by
bz1 and wx1 [24]. He believes that the QTL may be a
previously described, but lost, bp1 mutant thought to be
involved in maysin synthesis. In the first step, he must first
find molecular markers to more finely map the region (his
preference would be to use SSRs, since members of the
lab are already using them successfully). He plans to follow
the strategy of chromosome walking to narrow down the
region of interest [19–21] followed by association mapping
to identify the actual QTL sequence [26, 27]. Knowing this
sequence would enable plant breeders to track the QTL for
marker assisted selection.

To find SSR data for mapping to a bin region, Researcher
2 goes to the MaizeGDB home page and clicks on “Data
Centers-Genomic-Molecular Markers/Probes” in the left
margin, then clicks the “SSR” link at the top of the page
(the link is located in “Specific information is available on
BACs, ESTs, overgos, and SSRs.”) Scrolling down to the green
“Set Up Criteria” box, he then selects bin 9.02 and submits
a search request. A report is returned that lists the available
SSRs for bin 9.02, complete with primers, gel patterns for
different germplasm, and related maps. By going back to the
SSR page, he also downloads tabular reports of map locations
of all SSRs on chromosome 9, including those that have been
anchored to a BAC contig. Using this information in the
laboratory, members of his research group perform mapping
experiments using several SSRs in bin 9.02 along with some

http://www.maizegdb.org/map.php
http://www.maizegdb.org/cgi-bin/bin_viewer.cgi
http://www.maizegdb.org/cgi-bin/displaylocusrecord.cgi?id=61563
http://www.maizegdb.org/cgi-bin/displaylocusrecord.cgi?id=61563
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others in the more distal part of bin 9.03. They discover that
the mid-region peak for the QTL is very near an SSR for
bnlg1372, which is anchored to a BAC contig.

To find sequenced BACs that may harbor the earworm
resistance QTL, Researcher 2 uses the search bar at the
top of each MaizeGDB page to find the locus bnlg1372.
At the top of the bnlg1372 page, he follows a link to
the contig 373 display at the Maize Sequencing Project
site (http://www.maizesequence.org/). This is a rather large
contig with many sequenced BACs and assigned markers.
At the Maize Sequencing Project site, he uses the export
function (a button at the left margin) to view a text list
of all the markers and sequenced BAC clones that are
available on the Finger Print Contig physical map. He finds
that bnlg1372 is assigned to the region “19742100,1974700,”
encompassed by the sequenced BAC clone, c0324E10. This
information provides coordinates for viewing the region
on a large contig associated with bnlg1372, the sequence
of BAC c0324E10, and any other BACs nearby. Researcher
2 sequences candidate regions in diverse germplasm and
conducts association analysis using silk maysin levels as
a trait. This may require other information about nearby
markers, which also are accessible via MaizeGDB [28, 29].

Although these investigations may require the devel-
opment of further sequenced-based markers, Researcher 2
hopes that useful markers already exist and decides to explore
MaizeGDB for any other sequences or primer-based markers
already assigned to the region of interest including SNPs and
indels. To do this from the locus page for bnlg1372, he clicks
on the link to the most current IBM neighbors map listed,
then explores the “sequence” and “primer” view versions of
the map by clicking on the relevant links at the top of the page
just under the map name. The primer view shows primers
associated with mapping probes along with the name of the
probes—just what he needs to get going with the association
mapping work.

3.3. Applied

Interested in breeding plants for organic sweet corn produc-
tion, Researcher 3 has decided to use molecular markers to
select for high maysin content, which would increase resis-
tance to the corn earworm—a cause of significant damage
to sweet corn [30]. Although plants could be genetically
modified to carry the genes that confer high maysin levels
in silks (e.g., see [31]), Researcher 3’s farming clients require
that their product be certified as both organic and “GMO-
free.” To meet the producers’ needs, he has decided to pursue
a marker-assisted selection program to create high maysin
sweet inbred lines, which he will use to generate single-
cross hybrids. To get started with the work, he searches
MaizeGDB to find references, markers, and stocks for the
project. Described here are the details on how he could use
MaizeGDB to (1) access stocks known to have high maysin
content directly and (2) locate relevant stocks based upon
associated data with no prior knowledge of which stocks
he wants to find. An outline of how he uses MaizeGDB to
identify relevant selectable markers for tracking the various
QTL associated with maysin accumulation also is described.

In the instance of looking for particular stocks,
Researcher 3 has identified GT114 as a high maysin line from
[25]. Using the green search bar at the top of any MaizeGDB
page, he searches “stocks” for “GT114.” At that page, he
sees a brief annotation stating that GT114 is a poor pollen
producer and makes a note of that observation and plans to
cross by IA453 and IA5125, sweet lines that produce pollen
well, to ameliorate this potential difficulty. Clicking the link
to GT114, he sees that it is an inbred line derived from GT-
DDSA (DD Syn A) in Georgia, and it is made available via
GRIN. Selecting the link for GRIN, a page opens at that site
(http://www.ars-grin.gov/cgi-bin/npgs/html/search.pl?PI+
511314). Listed there are the Crop Science Registration data,
availability (noted as currently unavailable, but a call to Mark
Millard, maize curator at the maintenance site indicates that
he could access that stock in limited quantities if current
resources allow), and an image of bulk kernels among
other information. The image of bulked kernels is especially
revealing: the kernels are yellow and the cob fragments
appear red. Aware that a red cob would be unacceptable for
breeding sweet corn (the red pigment could cause quite a
mess for those cooking and eating corn on then cob), he
decides to search MaizeGDB for other available high maysin
stocks.

After a literature search of breeding stocks with a white
cob that might still produce maysin in the silks, Researcher
3 starts searching stocks for those known to carry the P1-
wwb allele, a dominant allele of the p1 locus that confers
white pericarp, white cob, and browning silks. By clicking
the “Data Centers-Genetic-Stocks” link from the MaizeGDB
homepage, he arrives at the Stocks Data Center page (which
is also accessible via the “Useful pages” pull down at the top
of every MaizeGDB page). He uses the Advanced Search box
to limit the query by variation to those stocks associated
with the allele P1-wwb. A number of the stocks returned
on the results page have been evaluated for silk maysin
accumulation (per associated publications) and could be
further investigated as potential breeding stocks.

Although the p1 gene accounts for much of the
variability in maysin accumulation [32], association and
QTL analyses for candidate genes for maysin accumulation
also have identified anthocyaninless1 (a1), colorless2 (c2), and
white pollen1 (whp1) as contributing significantly [32, 33].
Researcher 3 can track the dominant P1-wwb allele visually
by selecting for browning silks given that the sweet lines
he will be using in the breeding program have silks that do
not brown, but tracking the other factors will require the
use of molecular markers. To find molecular markers to
select for desirable alleles of, for example, a1, Researcher 3
uses the search menu at the top of any page at MaizeGDB
to find “loci” using the query “a1.” The results page
(http://www.maizegdb.org/cgi-bin/displaylocusresults.cgi?
term=a1) lists many loci with a1 as a substring, but
shows the exact match (the a1 locus) at the top of
the list. Clicking on that link shows the a1 locus page
(http://www.maizegdb.org/cgi-bin/displaylocusrecord.cgi?
id=12000), which lists useful information including
six probes/molecular markers that could be used for
tracking useful a1 alleles. Using the same process, he also

http://www.maizesequence.org/
http://www.ars-grin.gov/cgi-bin/npgs/html/search.pl?PI+511314
http://www.ars-grin.gov/cgi-bin/npgs/html/search.pl?PI+511314
http://www.maizegdb.org/cgi-bin/displaylocusresults.cgi?term=a1
http://www.maizegdb.org/cgi-bin/displaylocusresults.cgi?term=a1
http://www.maizegdb.org/cgi-bin/displaylocusrecord.cgi?id=12000
http://www.maizegdb.org/cgi-bin/displaylocusrecord.cgi?id=12000
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finds markers for the c2 and whp1 loci and sets to work
determining which markers to use for his selections.

4. CONCLUSIONS

Because MaizeGDB stores and makes accessible data of use
for a variety of applications, it is a resource of interest to
maize researchers spanning many disciplines. The fact that
basic research outcomes are tied to translational and applied
data enables all researcher types to utilize the MaizeGDB
resource to further their research goals, and connections to
external resources like Gramene, NCBI, and GRIN make it
possible for researchers to find relevant resources quickly,
irrespective of storage location.

At present, maize geneticists are at the cusp of a
milestone: the genome of the maize inbred B73 is being
sequenced in the U.S., with anticipated completion
in 2008. In addition, scientists working in Mexico
at Langebio (the National Genomics for Biodiversity
Laboratory) and Cinvestav (Centro de Investigacion y
Estudios Avanzados) have announced through a press
release (July 12, 2007) that they completely sequenced
95% of the genes with 4X coverage in a native Mexican
popcorn called palomero, though the data have not yet
been released and the quality of the data is unknown (see
http://www.bloomberg.com/apps/news?pid=20601086&sid=
aO.Xj8ybAExI&refer=latin america). At present and as more
maize sequence becomes available relating sequences to the
existing compendium of maize data is the primary need
that must be met for maize researchers in the immediate
future. Creating and conserving relationships among the
data will enable researchers to ask and answer questions
about the structure and function of the maize genome
that previously could not be addressed. To address this
need, MaizeGDB personnel will create a “genome view” by
adopting and customizing a Genome Browser that could
be used to integrate the outcomes of the Maize Genome
Sequencing Project. For genome browser functionality, basic
researchers have an interest in visualizing genome structure,
gene models, functional data, and genetic variability.
Translational researchers would like to be able to assign
values to genomic and genetic variants (e.g., the value
of a particular allele in a given population) and to view
those values within a genomic context. Applied researchers
are interested in tagging variants for use as selectable
markers and retrieving tags for particular regions of the
genome. To best meet these researchers’ needs, the “genome
view” will allow researchers to visualize a gene within its
genomic context and a soon to be created “pathway view”
will enable the visualization of a gene product within the
context of relevant metabolic pathways annotated with
Plant Ontology (http://www.plantontology.org/) [34] and
Gene Ontology (http://www.geneontology.org/index.shtml)
[35] terms. By making sequence information more easily
accessible and fully integrated with other data stored at
MaizeGDB, it will become possible for researchers to begin
to investigate how sequence relates to the architecture
of the maize chromosome complement. How are the
chromosomes arranged? Is it possible to relate the genetic

and cytological maps to the assembled genome sequence?
Are there sequences present at centromeres that signal the
cell to construct kinetochores, the machines that ensure
proper chromosome segregation to occur, at the correct site?
MaizeGDB aims to enable researchers to discover answers
to such queries that will enhance the quality of basic maize
research and ultimately the value of maize as a crop. It will
become possible to interrogate the database to find answers
to these and other complex questions, and the content of the
genome can better be related to its function, both within the
cell and to the plant as a whole. Convergence of traditional
biological investigation with the knowledge of genome
content and organization is currently lacking, and is a new
area of research that will open up once a complete genome
sequence and a method for searching through the whole
of the data are both in place. It is the ability to investigate
and answer such basic research questions that will serve as
the basis for devising sound methods to breed better plants.
Once the relationships among sequence data and more
traditional maize data like genotypes, phenotypes, stocks,
and so forth have been captured, it is important that those
data be presented to researchers in a way that can be easily
understood without requiring that they have any awareness
of how the data are actually stored within a database. It is
these needs—creating connections between sequence and
traditional genetic data, improving the interface to those
data, and determining how sequence data relate to the overall
architecture of the maize chromosome complement—that
the MaizeGDB team seeks to fulfill in the very near future.
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Plant-parasitic nematodes are important pests of crop plants worldwide, and also among the most difficult animals to identify.
Their identification based on nuclear ribosomal DNA (rDNA) cistron (18S, 28S, and 5.8S RNA genes, and internal transcribed
spacers, ITS1 and ITS2) is becoming a popular tool. Sequences from nuclear ribosomal RNA repeats have been used to
demonstrate the identity of isolates from various hosts and to unravel the relationships of cryptic and complex species. In
addition, the availability of RNA sequences allows study of phylogenetic relationships between nematodes, also for more complete
understanding of their biology as agricultural pests. PPNEMA is a plant-parasitic nematode bioinformatic resource. It consists of a
database of ribosomal cistron sequences from various species grouped according to nematode genera, and a search system allowing
data to be extracted according to both text and pattern searching. PPNEMA offers to the scientific community a preprocessed
archive of plant parasitic nematode sequences useful for nematologists. It is a tool to retrieve plant nematode multialigned
sequences for phylogenetic studies or to recognize a nematode by comparing its rDNA sequence with the PPNEMA available
genus specific multialignments.

Copyright © 2008 Francesco Rubino et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

Plant-parasitic nematodes are devastating parasites of crop
plants, reducing the overall yield or lowering the market
value of crops [1, 2]. Nematodes are remarkably consistent
in their anatomy [3], and their identification is essen-
tially based on morphometric characters. In addition, as
variations occur in host responses to attack by various
morphologically indistinguishable populations of several
parasitic species, correct species identification is fundamen-
tal for efficient nematode control. For this reason, direct
examination of genetic material has, recently, been used
as it represents the most powerful method for nematodes
recognition.

Although phytoparasitic nematodes have evolved specific
structures for their survival as parasites, these adaptations
are essentially built around a basic framework of nematode
anatomy. Many biological questions can thus be addressed
by placing the nematode Caenorhabditis elegans, the best
characterised multicellular organism [4], in a phylogenetic

and evolutionary context, together with plant-parasitic
nematodes.

The nucleotide sequences of fragments of rRNA genes
have recently been obtained in various species of plant-
parasitic nematodes, yielding a proper platform for both
identification and taxonomic approaches [5]. Nematode
ribosomal RNA genes are arranged in tandemly repeated
clusters (rDNA arrays) containing the genes for 18S, 5.8S,
and 26S ribosomal RNA, separated by internal transcribed
spacers ITS1 and ITS2 and bordered by IGS intergenic
spacers (see Figure 1). Only few sequences available in the
primary nucleotide databases span the entire rDNA array,
although in several cases phylogenetic relationships within
different species of plant-parasitic nematodes have been
obtained even when only fragments of ribosomal genes were
used [6–8].

This paper describes the PPNEMA database, grouping
and analysing rRNA genes sequenced in plant-parasitic
nematodes and present in the primary databases. It
should be noted that, although specific and important
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Figure 1: rDNA cistron scheme. Representation of nematode
ribosomal RNA genes arranged in tandemly repeated clusters:
rDNA array.

nematode resources are available on the web, such as
WormBase ([9], http://www.wormbase.org/), Nematode.net
([10], http://www.nematode.net/), NemATOL (http://nem-
atol.unh.edu/index.php the Comprehensive Phytopathogen
Genome Resource (CPRG) (http://cpgr.tigr.org/index.html),
NEMrRNA ([11], http://www.nemamex.ucr.edu/rna/),
and NEMBASE ([12], http://www.nematodes.org/nemato-
deESTs/nembase.html) a database resource for nematode
EST datasets. The last three contain sequences from rRNA
genes and therefore are likely to be of interest to any reader
of this article. However, the innovative aspect of PPNEMA
is the availability of the rDNA sequences in groups of
multialigned sequences.

2. MATERIALS AND METHODS

2.1. Data source

Sequence data are derived from primary databases
(EMBL/GenBank/DDBJ) using the retrieval systems
SRS and Entrez. Since a single entry in the primary
database can contain more elements of the same cistron, the
extraction of the sequences of each element is supported
by the information contained in the entry’s features table.
Moreover, in order to reduce false negatives obtained
through the retrieval system, the extracted data are
compared to the whole database by applying the Blast
database similarity searching system. In this way, sequences
of interest for PPNEMA (plant parasitic nematode rDNA
sequences) are found, which are not correctly annotated in
primary databases and which hence are lost during the text
searching retrieval.

2.2. Software

Extracted sequences are analysed by applying (i) the CleanUP
software [13] which allows the detection of redundant
sequences, and (ii) the ClustalW [14] software which
produces the genus/cistron element specific multialignment.
Data so obtained are stored in the PPNEMA database. The
database is physically based on MySQL DBMS [15], and
the web application is based on an application framework
written in Python.

3. RESULTS

3.1. Aim of PPNEMA

The aim of PPNEMA is to offer end-users a ready to use
compilation of multialigned plant-parasitic nematode ribo-
somal cistrons, of which thousands of sequences are available
in primary nucleotide databases (EMBL/GenBank/DDBJ).

The sequences of several rRNA regions retrieved from
primary databases are analysed and stored in the PPNEMA
database, grouped by each nematode genus. Thus, PPNEMA
is a preprocessed archive of data ready to be used from
researchers interested in phylogenetic studies on phytopar-
asitic nematodes, or to recognize a nematode by comparing
its rDNA cistrons with the PPNEMA available genus specific
multialigned groups.

3.2. Structure of PPNEMA database

PPNEMA is a well-integrated, web-based, plant-parasitic
nematode bioinformatics resource, allowing the storage,
query, and analysis of phytoparasitic rDNA sequences.
PPNEMA consists of a database of ribosomal cistron
sequences from various species of plant-parasitic nematodes,
grouped according to nematode genera and of a search
system allowing data to be extracted according to both
text and pattern searching. Each entry in the PPNEMA
database refers to a complete or partial cistron element of
a single isolate within a nematode species; it is identified
by a code defining species and function. Sequences derived
from the various species are multialigned within each
nematode genus. However, since not all sequences span
the entire rDNA array, separate multialignments have been
produced for single rRNA genes or for portions of the
same gene separately, depending on sequence availability.
Each multialignment defines a group. The presence within a
genus group of perfectly matching sequences (here defined as
redundant) is determined by CleanUP software. Redundant
sequences are stored in the database, linked to the group
containing the group-reference sequence, but they are not
enclosed in the multialignment of that group. Thus, each
entry in the database is related to a species-specific functional
element. Several entries are associated in a group. Several
groups are available for the same genus and the same
functional element. Figure 2 shows the database structure,
and Figure 3 shows an example of a PPNEMA database
entry.

3.3. Updating of PPNEMA database

Generally speaking, data in primary databases are organised
in such a way that each entry is related to a genomic fragment
of DNA related to a genome or one or more genes, complete
or partial, so that the extraction of sequences related to the
same cistronic element has been so far performed through,
very time consuming, a nonautomated procedure. However,
we have planned, but not yet implemented, a new updating
procedure which will allow the automatic extraction from
primary databases of the newly sequenced phytoparasites
nematodes rDNA. The automatic procedure will generate
one sequence for each entire or partial cistron element of a
specific species; this sequence will be analysed through the
application of the PPNEMA “characterizing” tool that will
guide the automatic procedure in defining its better fitting
multialignment group.

http://www.wormbase.org/
http://www.nematode.net/
http://nematol.unh.edu/index.php
http://nematol.unh.edu/index.php
http://cpgr.tigr.org/index.html
http://www.nemamex.ucr.edu/rna/
http://www.nematodes.org/nematodeESTs/nembase.html
http://www.nematodes.org/nematodeESTs/nembase.html
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Figure 2: PPNEMA relational database design. It includes 8 tables, storing complete set of PPNEMA data linked to each other.

Figure 3: Example of a PPNEMA entry. Entry dgs 5.8S (PPNEMA ID) shows functional element, PPNEMA group ID to which entry
belongs, Genus and Species names, sequence length, EMBL accession number, list of redundant sequences, and sequence, in FASTA format,
which can be downloaded.

3.4. Contents of PPNEMA database

PPNEMA currently contains 2405 sequences, organised in
208 Alignment Groups from 26 genera. Because the plant-
parasitic nematode RNA cistrons are not all conserved
between and within genera, it is practically impossible to
produce one multialignment for each element not only
among all species but also among species of the same genera.
This means that there are associated multialigned sequences
in different groups for the same genera and, in order to have
a reference, each multialignment was produced both with
and without Caenhorabditis elegans, used as outgroup guide.

More detailed information about database contents may
be obtained through the Statistics option available through
the PPNEMA site. Figure 4 shows data obtainable from the
statistic option in PPNEMA.

3.5. Functions of PPNEMA

Starting from the PPNEMA home page, two main options
are available: search PPNEMA and browse PPNEMA. Both
are organised in subsections. Search PPNEMA is used
to retrieve specific sequences and/or aligned groups of
sequences, through basic search, advanced search, or pattern
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Figure 4: General statistics about PPNEMA data. It is also possible to obtain statistical information centred on functional elements or on
redundant data content.

Figure 5: Result of an anonymous sequence characterization. The submitted sequence contains 2 fragments matching part of
28smeloidogyne00 and 5.8sditylenchus01 multialignment consensus.

search. Basic search allows retrieval of data according to the
following criteria: functional element, genus name, species
name, sequence length range. Advanced search allows more
elaborate queries combining the various retrieval criteria
through the logical operators AND or OR; selection criteria
include the possibility to select data through a pattern
searching option implemented on the basis of regular

expressions. A regular expression is a powerful way of
specifying a pattern for a complex search. The primer
for the regular expressions used by MySQL is available
through the help PPNEMA function. From the advanced
search, a pattern search option is implemented within the
search menu. The difference between the options “pattern
search” and “pattern search through advanced search” is the
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output format of the retrieved data. Search results may be
grouped by alignment, reference sequences, or redundancy
groups. Retrieved sequences grouped by alignment are ready
to be analysed with phylogenetic tools. Lastly, the option
“characterising a new sequence” can search group/s of
multialigned sequences, the consensus sequence of which,
defined through regular expressions, matches submitted
end-user sequence whose function and/or species paternity
is undefined or not completely defined. Figure 5 shows
an example of the output obtained by submitting a new
sequence for its characterisation. The browse DB option
allows the list of database species, multialignments, and
sequences to be viewed. Starting from any element in the list,
related information available in both PPNEMA and cross-
referenced databases (e.g., EMBL, GenBank, and Taxonomy)
can be obtained. Lastly, the PPNEMA resource contains
online help, statistics tables, and an option, designed but
not yet implemented, allowing submission of the new
sequences on behalf of registered end-users. Registration
is already implemented. In progress is the production of
the phylogenetic trees, there where data which are variable
enough to be informative by the evolutionary point of
view. The produced trees will be available in the PPNEMA
database.

4. CONCLUSIONS

The PPNEMA database is very helpful in identifying
plant parasitic nematodes on a molecular basis, since the
availability of multialigned sequences for nematode genera
represents a map, on which the sequence of any unidentified
nematode species can be located. In addition, the existence
of several entries for the same species gives information on
the extent of intraspecies variability and can thus help in
discriminating between variants or new nematode species.
This information is important in view of the expected rapid
growth of sequence data from intraspecific studies aimed
at both population migration and identification of different
pathotypes.

It is important to emphasise that the more sequences
obtained, the more informative the PPNEMA database will
become. Periodical updating is foreseen, but contribution
from sequence producers is welcome.

In conclusion, the perspective is extensive use of the
PPNEMA database by plant pathologists who are not
specialised in molecular biology.
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The CCPMT is a free, web-based tool that allows plant investigators to rapidly determine if a given gene is present across various
microarray platforms, which, of a list of genes, is present on array(s), and which gene a probe or probe set queries and vice versa,
and to compare and contrast the gene contents of arrays. The CCPMT also maps a probe or probe sets to a gene or genes within
and across species, and permits the mapping of the entire content from one array to another. By using the CCPMT, investigators
will have a better understanding of the contents of arrays, a better ability to link data between experiments, ability to conduct
meta-analysis and combine datasets, and an increased ability to conduct data mining projects.
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1. INTRODUCTION

Microarrays are an incredibly powerful technology that
enables the rapid and relatively accurate measurement of
thousands of genes in a single sample. Many different
microarray platforms have been developed and each has
somewhat different content and format. One key differ-
ence is the type of probe used to query a gene expres-
sion; some platforms use a single probe, and others use
many probes. The probes may be short (25 base pairs)
oligonucleotides (Affymetrix and NimbleGen arrays), long
(50–70 bp) oligonucleotides (Operon, Agilent, CATMA), or
cDNA clones (AFGC arrays). Each of the formats has its
advantages and disadvantages as well as its proponents and
opponents. One thing on which everybody agrees is that
arrays will be a part of the experimental techniques of plant
biologists for years to come.

Since there are many microarray platforms even within
a single species, different investigators may use different
platforms to try to address similar or complementary
experimental questions or data may be collected across types
using different platforms. Also, the large number of datasets

that sets in the public domain allow can be used for data
mining or meta-analysis if the elements can be connected.
However, it is difficult to compare and combine the results
due to the difficultly in matching probes across arrays with
the genes, or even to determine if a given gene is on a
given platform. To make matters worse, while the probe
sequences on an array are constant, the genome annotation
and gene models are not, and homologous genes may have
different names across species. As a result, matching probes
across arrays is continually evolving and needs continuing
updating.

Investigators have long realized the problem of linking
probes across platforms; as a result, several tools have been
developed. These include Keck ARray Manager and Annota-
tor (KARMA) [1], RESOURCERER [2], and GeneSeer [3].
Our tool has several advantages over the other tools for
several reasons. None of the other tools allows investigators
to query for genes within a microarray platform nor do the
other tools allow queries by Arabidopsis Genome Initiative
(AGI) annotation IDs or by TIGR tentative consensus (TC)
gene IDs. Furthermore, our tool sends the results to the
investigators by email as well as a web-based report making

mailto:gpage@rti.org
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results’ tracking and storage easier. More importantly for
plant researchers, only RESOURCERER has any provision
for the linking of plant array data, but it has fewer array types.

We developed the CCPMT to enable investigators to
rapidly determine (1) if a given gene is present across many
types of array platforms within and across species, (2) which,
of a list of genes, is present on array(s), and (3) which gene
a probe or probe set queries. The CCPMT also maps a probe
set or probe sets to a gene or genes within and across species,
and permits the mapping of the contents from one array to
another, both within and across species.

The CCPMT is the first tool exclusively designed
for linking probes from plant microarrays within and
across microarray platforms and species. A web-based tool,
CCPMT, helps investigators query for annotations at probe
level with probe set IDs or even at gene level with gene
identifiers such as AGI, EGO [4], and TC IDs. In CCPMT,
an investigator can enter either individual or multiple probe
set or gene identifiers (separated by commas) in the textbox
to query the CCPMT database. Checkboxes for microarray
vendors provide the option of selecting multiple arrays
while querying the CCPMT database. CCPMT also offers
the flexibility to carry out a one-to-one comparison of
microarrays. Results are displayed immediately in the web
browser and are also sent through email in a ∗csv file format.

CCPMT has a flexible database design, and in the
immediate future additional plant arrays will be added
to the database; we will revise the underlying annotation
and mapping for the probes based upon new genomic
information.

By using the CCPMT, investigators will have a better
understanding of the contents of arrays, a better ability to
link data between experiments, plus the ability to more easily
conduct data mining projects.

2. METHODS

2.1. Arrays selected for initial analysis

Initially we focused upon microarrays with diverse probe
types (short and long oligos as well as cDNA) and for
both Poplar and Arabidopsis. Poplar and Arabidopsis were
chosen due to both having completely sequenced genomes
and being relatively closely related species. The Arabidopsis
arrays as tools are the Affymetrix Arabidopsis genome (8 K)
commonly referred to as AG, Affymetrix Arabidopsis genome
ATH1-121501 (25 K) commonly referred to as ATH1, Agilent
Arabidopsis 2 Oligo Microarray (V2) G4136B, Arabidopsis
Functional Genomics Consortium (AFGC) array, Complete
Arabidopsis Transcriptome MicroArray (CATMA) array,
Operon Arabidopsis Genome Oligo Set Version 3.0, and
Affymetrix Poplar Genome Array. The array that we are
calling AFGC actually represents all cDNA clones used in all
of the AFGC arrays including the 11 k, 13 k, and 16 k arrays.

2.2. Arabidopsis data preprocessing

We obtained the probe set ID, the vendor’s corresponding
mapping to AGI ID (for Arabidopsis arrays), and the

Microarray vendor provided
probe sequence

Tair dataset

Blastn result
probe set and corresponding

AGI mapping

NCBI BLAST
blastn program

Figure 1: CCPMT Arabidopsis BLAST workflow. The workflow in
CCPMT to get the probe set to AGI mappings is shown.

nucleotide sequences of the probe sets (Table 1) directly from
the vendors.

In the case of Arabidopsis, all vendors provided the
mappings between their probe sets and the corresponding
AGI gene identifiers. However, due to evolving genome
annotation, we derived a new set of mappings between the
probe sets and the corresponding AGI IDs. The steps of
the process are illustrated in Figure 1. The mapping was
accomplished using the NCBI blastn [5] program. Blastn
compares a nucleotide query sequence against a nucleotide
sequence database. We used two different databases for blastn
analysis. For the Affymetrix and Operon probe sequences,
which do not contain introns, the AGI CDS database at
TAIR was used as the sequence database due to the lack
of introns and the UTRs in this database. The AGI CDS
dataset is based on the TAIR6.0 release version, and was
released in November 2005. For the AFGC and CATMA
arrays, which do contain some intronic and UTR sequences,
the AGI Transcripts dataset was used. The AGI Transcripts
dataset includes all of the coding sequences from Arabidopsis,
as well as containing the UTRs. Neither database contained
intronic sequence. The AGI Transcripts dataset used the
TAIR6.0 release version and was released in November 2005.
The blastn expected value and percent identity cut-off were
10−4 and 98%, respectively.

2.3. Poplar data preprocessing

About 27% of the Poplar sequence have significant homology
to Arabidopsis protein-coding sequences [6] and have been
sequenced. Unlike Arabidopsis, Poplar does not have a
universal gene annotation ID; so in CCPMT Poplar, probe
sets are mapped within the species using the TIGR TC
IDs and across plant species using the EGO database. The
Poplar target sequences were sequence-aligned with the
TIGR Poplar TC dataset using the blastn program as shown
in Figure 2. The blastn expected value and percent identity
cut-off were 10−4 and 98%, respectively. TIGR also provides
a file with a mapping of the EGO ID and the corresponding
TCs for all species. From this file, the mappings between EGO
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Affymetrix Poplar probe set

Poplar TC sequence files

EGO TOG
(TIGR ortholog group) ID

Arabidopsis TC mappings

Yes NoDoes TC annotation
have AGI?

Query the existing CCPMT
database with the AGI to get

the corresponding
Arabidopsis probe sets from

the Arabidopsis microarray vendors

Use the TC oligo sequence to
BLAST it against the TAIR

provided Arabidopsis dataset.
The BLAST returns the AGI ID

Figure 2: Poplar-Arabidopsis mapping. The above workflow explains the steps that were undertaken while mapping the Affymetrix Poplar
probe set ID with the Arabidopsis probe set ID. TIGR EGO ID was used to go across species during mapping.

Table 1: Web pages from where plant microarray data were downloaded.

Probe sequence file location Vendor-provided annotation file location

Affymetrix AG
http://www.affymetrix.com/support/technical/
byproduct.affx?product=atgenome1

http://www.affymetrix.com/support/technical/
byproduct.affx?product=atgenome1

Affymetrix ATH1
http://www.affymetrix.com/support/technical/
byproduct.affx?product=arab

http://www.affymetrix.com/support/technical/
byproduct.affx?product=arab

Operon http://omad.operon.com/download/index.php http://omad.operon.com/download/index.php

CATMA
ftp://ftp.arabidopsis.org/home/tair/Microarrays/
CATMA/

ftp://ftp.arabidopsis.org/home/tair/
Microarrays/CATMA/

AFGC
ftp://ftp.arabidopsis.org/home/tair/
Microarrays/AFGC/

ftp://ftp.arabidopsis.org/home/tair/
Microarrays/AFGC/

Agilent NA (do not provide sequence files)
http://www.chem.agilent.com/Scripts/
PDS.asp?lPage=37068

Affymetrix Poplar Genome Array
http://www.affymetrix.com/support/technical/
byproduct.affx?product=poplar

http://www.affymetrix.com/support/technical/
byproduct.affx?product=poplar

IDs and the corresponding Arabidopsis and Poplar TCs were
parsed. The mapping of the TC to EGOs was assumed to be
correct. In the future, any plant species with genes mapping
to an EGO ID can be easily incorporated into CCPMT.
Mapping the Arabidopsis TCs to their corresponding AGI IDs
was achieved by using the Arabidopsis TC sequences (TIGR
provides this file) and sequence-aligning with the TAIR “AGI

Transcripts” dataset using blastn. Based on the cut-offs used
there is the one-to-many mapping at several stages. A probe
set can map to multiple genes, and multiple probe sets can
map to one gene (Table 2).

As an example, Figure 3 illustrates the mapping of the
Affymetrix Poplar Genome Array with the Affymetrix AG
and Affymetrix ATH1 arrays; similar processes are used for

http://www.affymetrix.com/support/technical/ byproduct.affx?product=atgenome1
http://www.affymetrix.com/support/technical/byproduct.affx?product=atgenome1
http://www.affymetrix.com/support/technical/ byproduct.affx?product=atgenome1
http://www.affymetrix.com/support/technical/byproduct.affx?product=atgenome1
http://www.affymetrix.com/support/technical/ byproduct.affx?product=arab
http://www.affymetrix.com/support/technical/byproduct.affx?product=arab
http://www.affymetrix.com/support/technical/ byproduct.affx?product=arab
http://www.affymetrix.com/support/technical/byproduct.affx?product=arab
http://omad.operon.com/download/index.php
http://omad.operon.com/download/index.php
ftp://ftp.arabidopsis.org/home/tair/Microarrays/CATMA/
ftp://ftp.arabidopsis.org/home/tair/Microarrays/CATMA/
ftp://ftp.arabidopsis.org/home/tair/Microarrays/CATMA/
ftp://ftp.arabidopsis.org/home/tair/Microarrays/CATMA/
ftp://ftp.arabidopsis.org/home/tair/Microarrays/AFGC/
ftp://ftp.arabidopsis.org/home/tair/Microarrays/AFGC/
ftp://ftp.arabidopsis.org/home/tair/ Microarrays/AFGC/
ftp://ftp.arabidopsis.org/home/tair/Microarrays/AFGC/
http://www.chem.agilent.com/Scripts/ PDS.asp?lPage=37068
http://www.chem.agilent.com/Scripts/PDS.asp?lPage=37068
http://www.affymetrix.com/support/technical/ byproduct.affx?product=poplar
http://www.affymetrix.com/support/technical/byproduct.affx?product=poplar
http://www.affymetrix.com/support/technical/ byproduct.affx?product=poplar
http://www.affymetrix.com/support/technical/byproduct.affx?product=poplar
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Affymetrix Poplar genome array has 61414
Poplar probe sets

Poplar TC file from TIGR

Total mappings 57668

Poplar Affymetrix 
probe set 

Poplar TC

PtpAffx.249.8.A1_s_at 

Ptp.1492.1.S1_s_at 

TC19207

TC28054

Poplar EGO-TC mappings by TIGR 16818

TIGR
EGO

894523

894156 Poplar TC19207

Poplar TC28054

TIGR orthologous TCs

Table A: total Poplar prope set-TC-EGO mappings 21931

Poplar Affymetrix 
probe set 

PtpAffx.249.8.A1_s_at 

Ptp.1492.1.S1_s_at 

Poplar TC

TC19207

TC28054

TIGR
EGO

894523

894156

Blastn

Persent ID = 98%

TIGR has provided 41375 Poplar TCs  

E-value = E-4

Affymetrix Arabidopsis genome (8 k) target sequences has

8297 Arabidopsis probesets

Affymetrix Arabidopsis genome ATH1-121501 (25 k) target sequences
has 22810 Arabidopsis probesets

TAIR AGI CDS dataset
Blastn

Persent ID = 98%

Table B: total mappings of AG-AGI 7998

table mappings of ATH1-AGI 23664

Affymetrix Arabidopsis Arabidopsis AGI

12936_s_at

12752_s_at

264474_s_at

254386_at

AT5G38410

AT4G21960

genome (AG) Affymetrix ATH1 probe set

E-value = E-4

Arabidopsis TCs proivded by TIGR
TIGR has 28901 Arabidopsis TCs

TIGR ‘‘AGI transcripts’’ dataset

Table C: total TC-AGI mappings 41651

Arabidopsis TC AGI

TC261045

TC251315

AT5G38410

AT4G21960

TIGR
EGO

894523

894156

TIGR orthologous TCs

Arabidopsis TC261045

Arabidopsis TC251315

Table D: Arabidopsis EGO-TC mappings by

Blastn

Persent ID = 98%

TIGR 18551

E-value = E-4
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Union of table B, table C and table D

Table E: total AG-AGI-TC-EGO mappings 7823

table ATH1-AGI-TC-EGO mappings 20051

AG probe set ATH1probe set AGI Arabidopsis TC EGO

12936_s_at

12752_s_at

264474_s_at

254386_at

AT5G38410

AT4G21960 TC251315

TC261045 894156

894523

Union of table A and table E

7744 mappings between Affymetrix Poplar genome array probe sets and Affymetrix AG probe sets

17297 mappings between Affymetrix Poplar genome array probe sets and Affymetrix ATH1 probe sets

Poplar Affymetrix
probe set

Poplar Arabidopsis Arabidopsis
Arabidopsis
Affymetrix
AG probe set

Arabidopsis
Affymetrix
ATH1
probe set

PtpAffx.249.8.A1_s_at 

Ptp.1492.1.S1_s_at 

TC19207

TC28054

AT5G38410

AT4G21960TC251315

TC261045 12936_s_at

12752_s_at

264474_s_at

254386_at

TC TC AGI

Figure 3: Workflow for the mapping between Affymetrix Poplar, Affymetrix AG, and Affymetrix ATH1 arrays.

Table 2: Comparing microarray vendor and CCPMT mappings.

Type of match Affymetrix AG Affymetrix ATH1 Operon CATMA AFGC

Number of probes per array type 8297 22810 29954 24576 19108

Nil entries from vendor (no mapping for these probes) 141 250 936 2969 2823

Absent-vendor; present-blast 0 0 0 0 1

Present-vendor; absent-blast 850 930 2335 2990 10952

Many-vendor; one-blast 124 584 0 30 117

One-vendor; many-blast 338 896 480 408 368

Exact match 6932 20193 26138 19551 6413a

Percentage of the vendor mapping numbers 84% 89% 87% 80% 34%

the other arrays. Table 3 contains the number of matches that
were found between all possible matches among arrays.

2.4. The CCPMT application

The CCPMT (http://www.ssg.uab.edu/ccpmt/) is composed
of three pieces, namely, web pages (front end), core methods,
and database (back end). The CCPMT web pages are written
in JSP. Once the user hits the submit button, all of the data
that have been entered are sent to the core code of Java
servlets. The servlets act as the core methods that process
the information received from the JSP pages and query the
database. MySQL is used as the back-end database to store
the microarray mappings. The code underlying the CCPMT
is available from the corresponding author by request.

2.5. Using the CCPMT

The CCPMT is designed to be flexible and to allow for linking
probes across arrays from a variety of starting data. CCPMT
can be queried either at the probe set level or with identifiers
such as the probe set IDs, AGI IDs, TIGR EGO IDs, or TC
IDs, and output can be and is returned in these formats
as well. As CCPMT is a web application, users can type or

paste their queries in a textbox and, upon submission of
the queries, the results are displayed in a browser-friendly
format. One can also compare entire arrays by selecting
the input array and the output array from the drop-down
menu.

2.6. Example of the use of CCPMT

We illustrate the utility of the CCPMT via mapping the probe
set 244904 at that is found on the Affymetrix AG array to
determine which probe sets on the ATH1 array query the
same gene. Step 1 (illustrated in Figure S1 in Supplementary
Material available online at doi:10.1155/2008/451327) shows
that the user wants to map the input data using Affymetrix
probe set IDs. In addition, users’ email address is entered so
that the results can also be sent as an attachment in comma-
separated file format. The next step (see Figure S2) is to enter
the probe set(s), 244904 at in this case, and the species of the
probe set, and to indicate which arrays to find homologous
probe sets (in this example, Affymetrix AG and Affymetrix
ATH1 arrays). The results are then displayed in Figure S3
which shows that the probe set 244904 at was mapped to
244922 s at and 244923 s at through the respective AGI IDs
and that they map to AT2G07674.

http://www.ssg.uab.edu/ccpmt/
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Table 3: Summary table of the number of probes that are linked between the various arrays currently in the CCPMT from the array in row
to the arrays in columns. The above and below diagonal elements are slightly different for the methods we used such as Blasn, and percent
identity is not always reflexive.

Affymetrix AG Affymetrix ATH1 AFGC Agilent CATMA Operon Affymetrix Poplar
Genome Array

Affymetrix AG — 7828 12170 7018 7193 8361 7744

Affymetrix ATH1 7827 — 30066 19188 20521 24636 17279

AFGC 12171 30066 — 29622 26070 30509 17793

Agilent 7018 19188 29622 — 18563 21371 16913

CATMA 7192 20521 26070 18561 — 23082 16378

Operon 8362 24636 30509 21371 23081 — 17505

Affymetrix Poplar Genome Array 7744 17279 17793 16912 16378 17504 —

3. DISCUSSION

Microarrays are gaining popularity in plant research. In addi-
tion, the requirement of many journals to deposit microarray
data into public databases has made large amounts of data
available for other investigators to use. But because there are
a large number of arrays and array types, it can be difficult
to compare data across datasets. We developed the CCPMT
to allow investigators to identify common elements between
databases rapidly and accurately.

While most vendors provide some mapping of probes
to genes, in many cases the annotation is out of data or
the companies use different standards for mapping. In
some cases, there is considerable difference between our
mapping and those provided with the arrays. This is due
to at least three reasons. The first is that sequence, gene
models, and annotation, especially for the incompletely
sequenced genomes, can change rapidly. As a result, the
provided annotation may be out of date. For example,
data for CATMA and AFGC, obtained with TAIR at
ftp://ftp.arabidopsis.org/home/tair/Microarrays/, had a
timestamp of January 2006, but the FASTA file format
has a timestamp of April 2004. The second reason for
differences would be the choice of cut-off for mapping.
We used >98% and E score of less than 10−4 for all but
the AFGC arrays. Our choice of >98% is debatable, and
somewhat different answers are obtained if other values are
used; 98% may identify some paralogous genes, especially
across species. It has not been conclusively established
what level of sequence similarity is needed between a gene
and a probe set for efficient binding. It is known that a
single-base-pair difference in a short oligo can (with >50%
of the time depending on the position of the SNP) destroy
most binding. But since Affymetrix arrays usually have 11
sets of short oligos, the nonbinding of a single probe may
or may not affect the overall RNA quantitation [7]. Long
oligos bind relatively well with a few (1–3 bp) differences,
but there is usually no redundancy of the addition of probes.
cDNA clones can be quite long and only a portion of the
sequence needs to be homologous for binding. A third
source of difference may result from the choice of common
genes. We used the TIGR EGO, but the NCBI HomoloGene
(http://www.ncbi.nlm.nih.gov/sites/entrez?db=homologene)
also identifies homologous genes across species. Unfortu-

nately, these databases give slightly different mapping.
We have used TIGR EGO database as it has more plant
sequence data and has plant biologists devoted to curating
the databases, as opposed to HomoloGene which is
mammal-centric. Thus, the choice we made about cut-offs
is conservative, but we have probably missed some probes
with lower homology that actually do bind certain RNAs,
and many others identify paralogous genes. As a result of
these issues, our mapping is different from those provided
by the vendor. The highest overlap is between the mapping
provided by Affymetrix and the CCPMT mapping for the
Affymetrix ATH1 array at 89%, while the AFGC has the
lowest overlap at about 66%.

We think that the function allowing direct comparison
of complete arrays is very useful for several reasons. One
of the reasons why we developed the CCPMT was to allow
coexpression analysis across arrays and species. This map-
ping in the CCPMT will be the basis of our next additions to
CressExpress (http://www.cressexpress.org/), and others may
use this as well for similar projects. Data from experiments
that are often collected across time and different array
platforms are used, which requires the mapping of probes
across array platforms. This ability will be greatly amplified
by the ability of the CCPMT to map data across platforms.

The annotation and sequence for genes as well as gene
models are continuing to evolve, especially as additional
species are sequenced. We have set up the CCPMT to allow
for us to rapidly change the various portions of the database
and mapping as data change. We plan to revise the CCPMT
based upon new genomic information.

CCPMT currently has six Arabidopsis microarray arrays
and one Poplar microarray. The tool was designed in such
a way that one can easily incorporate a new microarray
vendor for the current plant species as well as for new plant
species. In the near future, we will rule out mapping for all
Affymetrix-provided arrays for plant species, as well as those
long oligo arrays from Operon and Agilent.
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1. INTRODUCTION

The choice and optimization of experimental designs for
two-color microarrays have been receiving increasing atten-
tion [1–13]. Interest has been particularly directed towards
optimizing experiments that involve a factorial design con-
struction [7, 9, 14] in order to study the joint effects of
several factors such as, for example, genotypes, pathogens,
and herbicides. It is well known by plant scientists that
factorial designs are more efficient than one-factor-at-a-time
studies and allow the investigation of potentially interesting
interactions between two or more factors. For example,
investigators may study how herbicide effects (i.e., mean
differences) depend upon plant genotypes or times after
application.

Two-color systems such as spotted cDNA or long
oligonucleotide microarrays involve hybridizations of two
different mRNA samples to the same microarray, each of the
two samples being labeled with a different dye (e.g., Cy3 or
Cy5; Alexa555 or Alexa647). These microarrays, also simply
referred to as arrays or slides, generally contain thousands
of probes with generally a few (≤4) spots per probe, and

most often just one spot per probe. Each probe specifically
hybridizes to a matching mRNA transcript of interest within
each sample. After hybridization, microarray images are
scanned at two different wavelengths as appropriate for each
dye, thereby providing two different fluorescence intensity
measurements for each probe. Upon further preprocessing
or normalization [15], these dye-specific intensities for each
probe are believed to reflect the relative mRNA abundance
for the corresponding transcript within the respectively
labeled samples. The normalized intensities, or the Cy3/Cy5
ratio thereof, for each spot are typically logarithmically
transformed to render data that is generally characterized to
be approximately normally distributed.

An increasingly unifying and indisputable message is that
the heavily used common reference design is statistically
inefficient [1, 9, 10, 12, 13]. Here, the same common
reference sample or pool is reused as one of the two
samples on every microarray, the other sample deriving
from a treatment group of interest. Hence, inferences on
differential expression are based only on indirect connections
across arrays as samples from different treatments of interest
are never directly connected or hybridized together on the

mailto:tempelma@msu.edu
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same microarray. In contrast, most of the alternatively
proposed efficient designs are incomplete block designs, the
most popular being various deviations of the loop design
as first proposed for microarrays by Kerr and Churchill
[16]. In these designs, direct connections or hybridizations
are typically reserved for the most important treatment
comparisons with inference on other comparisons being
generally as efficient as any based on the common reference
design.

The intent of this review is to reemphasize the use
of mixed models as the foundation for statistical anal-
ysis of efficient factorial designs for microarrays. Mixed
model analysis for microarray data was first proposed by
Wolfinger et al. [17]. However, this and other previous expo-
sitions on the use of mixed model analysis for microarray
data have been primarily directed towards the analysis of
completely balanced designs [18, 19] whereas many recently
proposed designs for microarray studies are unbalanced with
respect to, for example, different standard errors on all
pairwise comparisons between treatment groups [10, 13].
We will review various aspects of mixed model analysis for
unbalanced designs, including a demonstration on publicly
available data from a recent plant genomics study [20].

2. THE CONNECTION BETWEEN MIXED MODELS
AND EFFICIENT DESIGNS

Efficient experimental designs are typically constructed such
that their factors can be broadly partitioned into two
categories: treatment structure factors and design structure
factors [21]. The treatment structure naturally includes
the factors of greatest interest; for example, herbicides,
genotypes, tissues, and so forth, whose effects are deemed to
be fixed. In other words, the levels of these fixed effects factors
are specifically chosen by the investigator such that mean
comparisons between such levels, for example, different
treatments, are of primary interest. These factors also include
any of whose levels are consistently reused over different
experiments, such as dye labels, for example, Cy3 versus
Cy5, for two-color microarrays. On the other hand, the
design structure primarily includes random effects factors,
whereby the levels of each such factor are considered to
be randomly chosen from a conceptually infinite set of
such levels [22]. For example, the specific arrays used for a
microarray study are considered to be a random sample from
a large, perhaps hypothetically infinite, population of arrays;
similar claims would be made regarding biological replicates,
for example, plants, pools thereof, or even field plots as
dependent upon the experimental design [14]. Within each
random-effects factor, the effects are typically specified to be
normally, independently, and identically distributed (NIID)
with variability in effects formally quantified by a variance
component (VC).

These design structure or random effects factors are
typically further partitioned into two subcategories: blocking
factors and experimental error factors. In two-color microar-
ray experiments, arrays are typically blocking factors as
treatments can be directly compared within arrays, although
this is not true for the common reference design as previously

noted. Blocking represents a longstanding and efficient
experimental design strategy for improving precision of
inference on treatment comparisons. Experimental error
factors, such as plants or pooled samples thereof within treat-
ments, are often necessary to be included as random effects
in order to properly specify true experimental replication at
the biological level rather than merely at the measurement or
technical level. Such specifications are particularly required
when multiple aliquots are derived from the same biological
specimen for use in multiple arrays [20, 23] or when probes
for each gene transcript are spotted more than once on
each array. Of course, plants may also alternatively serve
as blocking factors in some designs if different tissues are
compared within plants.

Currently, there is much software available for microar-
ray data analysis, some of which is only suited for studies hav-
ing only a treatment structure but no pure design structure.
Common examples include the analysis of data generated
from single channel systems (e.g., Affymetrix) or of log
ratios generated from common reference designs. When
no random effects are specified, other than the residuals,
the corresponding statistical models are then simply fixed-
effects models. Ordinary least squares (OLS) inference is then
typically used to infer upon the treatment effects in these
studies. OLS is appropriate if the assumption is valid that
there is only one composite residual source of variability such
that the residuals unique to each observation are NIID.

Conversely, statistical analysis of efficient two-color
experiments having a fully integrated treatment and design
structure needs to account for fixed and random effects as
typical of a mixed effects model, more often simply referred to
as a mixed model. Generalized least squares (GLS) analysis,
also referred to as mixed-model analysis, has been recognized
as optimal in terms of minimizing variance of estimates for
inference on treatment comparisons. This is true not only
for efficient microarray designs [10, 17, 19, 24] but even
for general plant science and agronomy research [25–27],
including recent applications in plant genomics research [20,
23, 28]. Some of the more recently popular microarray data
analysis software has some mixed model analysis capabilities
[29, 30].

Recall that some designs may be characterized by
different levels of variability thereby requiring particular
care in order to properly separate biological from technical
replication, for example. Hence, it is imperative for the data
analyst to know how to correctly construct the hypothesis test
statistics, including the determination or, in some cases, the
estimation of the appropriate degrees of freedom. Although,
some of these issues have been discussed for balanced designs
by Rosa et al. [19], they have not generally been carefully
addressed for the analysis of microarray data generated from
unbalanced designs. Optimally constructed experimental
designs are often unbalanced with respect to inference on
all pairwise treatment comparisons, such that even greater
care for statistical inference is required than in completely
balanced designs. For example, Wit et al. [13] proposed a
method for optimizing two-color microarray designs to
compare any number of treatment groups. Suppose that
9 different treatment groups are to be compared. Using
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Figure 1: Optimized interwoven loop design for 9 treatments
using R package SMIDA (Wit et al., 2005). Each circle represents
a different treatment group. Each arrow represents a single array
hybridization with circle base representing the Cy3 labeled sample
and tail end representing the Cy5 labeled sample.

the methods and software developed by Wit et al. [13], the
recommended interwoven loop design that is optimized for
A-optimality (lowest average squared standard errors for a
particular arrangement of treatment comparisons) is pro-
vided in Figure 1. Although Figure 1 appears to be visually
symmetric with respect to the treatment labels, including
that all treatment groups are dye balanced, not all treatment
groups are directly hybridized against each other. Hence,
inferences on all pairwise comparisons between treatment
groups will not be equally precise. For example, the standard
errors for the inference on treatments R2 versus R8 or R8
versus R24 will not be the same as that for treatments R8
versus S24 or R8 versus M2 due to the differences in the
number and/or degree of direct and indirect connections for
these two sets of comparisons in Figure 1.

Even for some balanced factorial designs, where the
standard errors for comparing mean differences for levels of
a certain factor are the same for all pairwise comparisons,
the experimental error structure can vary substantially for
different factors. That is, substantial care is required in
deriving the correct test statistics, particularly with split
plot arrangements [14]. Of course, even when a completely
balanced design is intended, data editing procedures that
delete poor quality spots for certain genes would naturally
result in unbalanced designs.

3. CASE STUDY

3.1. Design

Zou et al. [20] present an experiment where three different
inoculate treatments were applied to soybean (Glycine max.)
plants 14 days after planting. The three different inoculates
included bacteria inoculation along with the avirulence gene
avrB thereby conferring resistance (R), bacteria inoculation
without avrB thereby conferring susceptibility (S), and a
control group whereby the inoculate simply contained an
MgCl2 solution (M). Unfoliated leaves from three to four
plants were drawn and pooled for each treatment at each
of three different times after postinoculation; 2, 8, and

24 hours. Hence, the treatment structure was comprised
of a 3 × 3 factorial, that is, 3 inoculates ×3 times, for a
total of 9 groups. A 10th group involving a fourth null
inoculate with leaves harvested at 2 hours postinoculation,
N2, was additionally studied by Zou et al. [20]. The com-
plete dataset on gene expression data for all 27 684 genes
represented on a set of three microarray platforms as used
by Zou et al. [20] is available as accession number GSE 2961
from the NCBI gene expression omnibus (GEO) repository
(http://www.ncbi.nlm.nih.gov/geo/). The vast majority of
the corresponding probes were spotted only once per array
or slide for each platform.

A graphical depiction of the 13 hybridizations that
superimposes the design structure upon one replicate of the
3 × 3 factorial treatment structure plus the additional 14th
hybridization involving the 10th group N2 is illustrated in
Figure 2. Note that at least two aliquots per each pooled
sample are used, each aliquot being labeled with different
dyes such that each replicate pool is used in at least
two different hybridizations or arrays with opposite dye
assignments. In other words, this design is characterized by
technical replication such that it is imperative to explicitly
model samples within inoculate by time combination as
the biological replicates, that is, a set of random effects for
modeling experimental error. Failing to do so would confuse
pseudoreplication with true replication in the statistical
analysis as each of the 2+ aliquots per each pool would
then be incorrectly counted as 2+ different experimental
replicates. The design in Figure 2 was replicated twice by
Zou et al. [20], the second replication being of the exact same
dye assignment and hybridization orientation as the first, for
a total of 28 hybridizations. Hence, there were 20 samples
(pools of leaves) utilized in the experiment, 2 per each of the
9 inoculate by time treatment groups plus 2 samples for the
N2 control.

We arbitrarily consider gene expression measurements
for just one particular gene based on the GEO submission
from Zou et al. [20]: ID REF #30 located in the metarow-
metacolumn-row-column location 1-1-2-14 of each array
from microarray platform GPL 1013, one of three different
platforms used by Zou et al. [20] and further described in
GEO. The statistical analysis of any of the remaining 27 683
genes that were spotted once on each slide across the three
different platforms would be exactly the same as that for
ID REF #30, at least for those genes where no observations
would be edited out for poor data quality. We use the
normalized Cy3 and Cy5 data, provided as fields S532N and
S635N in accession number GSE 2961 for ID REF #30 from
GEO. Hence, for the 28 hybridizations considered for two
replications of Figure 2, there were 56 fluorescence intensities
(28 Cy3 and 28 Cy5) for each gene. The 56 fluorescence
intensities for ID REF #30, as retrieved from GSE 2961 in
GEO, are reproduced in Table 4.

3.2. Statistical model

For the purposes of this review, we concentrate our attention
just on the subdesign characterized by the solid arrows in
Figure 2 that connect the three primary inoculates (R,S, and

http://www.ncbi.nlm.nih.gov/geo/
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Figure 2: Experimental design for one replicate from Zou et al.
(2005). Treatments included a full 3 × 3 factorial of inoculate and
time effects plus a 10th null control group at time 2 (N2). Samples
indicated by circles with letters indicating inoculate assignment:
bacteria resistant (R), a bacteria susceptible (S), and MgCl2 (M)
control inoculate and numbers indicating time (2, 8, or 24 hours)
after inoculation. Each arrow represents a single array hybridization
with circle base representing the Cy3 labeled sample and tail end
representing the Cy5 labeled sample. Solid arrows refer to the A-
loop design of Landgrebe et al. (2006).

M) together within each of the 3 different times (2, 8, and
24 hours). The remaining dashed lines in Figure 2 involve
either the 10th group (N2) or connect adjacent times (2
with 8 and 8 with 24) within each of two inoculates (R and
S); note that no hybridizations connecting any of the three
times within inoculate M were provided with GSE 2961 on
GEO. Labeling inoculate type as Factor A and time after
inoculation as Factor B, the resulting subdesign is an example
of the “A-loop” design presented by Landgrebe et al. [9] as
illustrated in their Figure 2 (B), albeit for a 3 × 2 factorial
treatment structure in their case. In other words, the only
direct connections between the 9 treatment groups within
arrays involve comparisons of levels of Factor A within levels
of Factor B. Using the log intensities as the response variables
for further statistical analysis, an appropriate linear mixed
model to specify for this A-loop design would be as follows:

yi jklm = μ + αi + βj + αβi j + δk + r(αβ)l:i j + s(β)m: j + ei jklm,

(1)

where yi jklm is the log fluorescence intensity pertaining to
the lth biological replicate assigned to the ith inoculate (i =
1, 2, 3) and jth time ( j = 1, 2, 3) labeled with the kth dye
(k = 1 or 2), and hybridized to array m(m = 1, 2, . . . , 6)
within the jth time. Here, μ is the overall mean, αi is the
effect of the ith inoculate, βj is the effect of the jth time,
αβi j is the interaction effect between the ith inoculate and
jth time, and δk is the effect of the kth dye, all of which are
defined to be fixed effects. The design structure component
of (1) is defined by the random effects of r(αβ)l:i j for the
lth pool or biological replicate (l = 1, 2) within the ijth
inoculate-time combination, s(β)m: j for the mth array (m =
1, 2, . . . , 6) or slide within the jth time, and the residual ei jklm
unique to the same subscript identifiers as that for yi jklm.
The typical distributional assumptions in mixed models

are such that each of the three sets of random effects are
NIID with their own VC; that is, r(αβ)l:i j ∼NIID(0, σ2

R(AB)),

s(β)m: j ∼NIID(0, σ2
S(B)), and ei jklm∼NIID(0, σ2

E). As clearly
demonstrated by Dobbin et al. [31] and based on our
experiences, dye effects should be modeled in (1), even after
using global normalization procedures such as loess [15],
as gene-specific dye effects are common. Nevertheless, one
would not normally anticipate interaction effects between
dye and other treatment factors (e.g., inoculate or time), and
hence these effects are not specified in (1).

It should be somewhat apparent from the A-loop design
of Figure 2 why the nesting or hierarchical specifications
are specified as such for the random effects. For example,
although each pool or replicate is labeled twice, once with
each dye, each pool is still part of or nested within the
same inoculate by time combination such that samples or
replicates are specified to be nested within inoculate by time.
Similarly, arrays are nested within times since each array is
associated with only one particular level of time; that is,
different times are never directly compared or connected
within arrays. Hence, one should intuitively recognize from
Figure 2 that there would be greater precision for inferring
upon inoculate effects than for time effects using the A-loop
design. That is, the variability due to arrays is completely
confounded with time differences such that it partly defines
the experimental unit or replicate for time.

3.3. Classical ANOVA

The complex nature of different levels of replication in
the A-loop this design is further confirmed in the classical
analysis of variance or ANOVA [21] for this design in
Table 1. However, as demonstrated later, classical ANOVA
is not necessarily equivalent to a more optimal GLS or
mixed model analysis [32]; in fact, estimates of treatment
effects based on classical ANOVA are simply equivalent
to OLS estimates where all factors are treated as fixed.
Nevertheless, the classical ANOVA table, when extended
to include expected mean squares (EMS), is instructive in
terms of identifying different levels of replication and hence
experimental error.

Classical ANOVA is based on equating sums of squares
(SS), also called quadratic forms, to their expectations;
typically this involves equating mean squares (MS), being
SS divided by their degrees of freedom (ν), to their EMS.
For completely balanced designs, there is generally one
universal manner in which these quadratic forms, and hence
the ANOVA table, are constructed [19, 22]. However, for
unbalanced designs, such as all of or even just the A-loop
component of Figure 2, there are a number of ways of
constructing different quadratic forms and hence different
ways of constructing ANOVA tables for the same set of data
[21, 32]. The most common ANOVA strategy is based on the
use of type III quadratic forms as in Table 1 whereby the SS
for each factor is adjusted for every other factor in the model.
More details on type III and alternative ANOVA quadratic
forms for unbalanced data can be found in Milliken and
Johnson [21] and Searle [33].
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Table 1: Classical ANOVA of log intensities for duplicated A-loop design component of Figure 2 for any particular gene using (1).

Source SS∗ df † Mean square Expected mean square

Inoculate SSA vA MSA = SSA/vA σ2
E + 1.5σ2

R(A·B) + φA
‡

Time SSB vB MSB = SSB/vB σ2
E + 2σ2

R(A·B) + 2σ2
S(B) + φB

Inoculate∗time SSAB vAB MSAB = SSAB/vAB σ2
E + 1.5σ2

R(A·B) + φAB

Dye SSD vD MSD = SSD/vD σ2
E + φD

Rep(inoculate∗time) SSR(AB) vR(AB) MSR(AB) = SSR(AB)/vR(AB) σ2
E + 1.5σ2

R(A·B)

Array(time) SSS(B) vS(B) MSS(B) = SSS(B)/vS(B) σ2
E + 1.5σ2

S(B)

Error SSE vE MSE = SSE/vE σ2
E

∗
Sums of squares.

†Degrees of freedom.
‡φX is the noncentrality parameter for factor X . For example, when φA = 0, there are no overall mean inoculate differences such that inoculate and
Rep(inoculate∗time) have the same expected mean square and FA = MSA/MSR(AB) is a random draw from an F distribution with vA numerator and vR(AB)

denominator degrees of freedom.

Table 1 conceptually illustrates the basic components of
an ANOVA table; again, for every term, say X, in a statistical
model like (1), there is a sum of squares (SSX), degrees of
freedom (vX), mean square (MSX = SSX/vX), and expected
mean square (EMSX). Generally, ANOVA tests on fixed
effects are of greatest interest; for example, inoculate, time,
and inoculate by time interaction. The correct F ratio test
statistic for any fixed effects term in the ANOVA table is
constructed such that its MS and a denominator MS have
the same EMS if the null hypothesis is true; that is, that
there are truly no effects for that particular term. In statistical
parlance, no effects for a term X , whether that pertains to
the main effects of a factor or the interaction effects between
two or more factors, is synonymous with its corresponding
noncentrality parameter (φX) being equal to zero; that is,
there is no signal due to that model term [32].

Consider, for example, the test for the main effects of
inoculate denoted as Factor A in Table 1. If the main effects
of inoculate are nonexistent, that is, there are no overall or
marginal mean differences between any of the inoculates,
then φA = 0. It should be clearly noted that when φA = 0,
the EMS for inoculate matches with the EMS for replicate
within inoculate and time, denoted as rep(inoculate∗time)
in Table 1. In other words, rep(inoculate∗time) is said to
be the denominator or error term for the main effects of
inoculate such that rep(inoculate∗time) defines the experi-
mental unit or the biological replicate for inoculate effects.
Hence, the correct F statistic for testing inoculate effects, as
demonstrated from Table 1, is FA = MSA/MSR(AB) based on
vA numerator and vR(AB) denominator degrees of freedom.
It should also be observed that this same error term or
experimental unit would be specified as the denominator MS
term for the ANOVA F-test on inoculate by time interaction
effects, denoted as inoculate∗time in Table 1. That is, when
the corresponding noncentrality parameter φAB = 0, both
inoculate∗time and rep(inoculate∗time) share the same EMS
such that the correct F statistic for testing this interaction is
FAB = MSAB/MSR(AB) based on vAB numerator and vR(AB)

denominator degrees of freedom.
It was previously noted from the A-loop design of

Figure 2 that inference on the main effects of time (Factor
B) should be less precise than that for the main effects

of inoculate. In other words, the size of the experimental
unit should be larger for time effects since arrays are
nested within levels of time whereas levels of inoculate
treatments are directly compared within arrays. This is
further demonstrated in Table 1 by the EMS for time with
φB = 0, being larger than that for inoculate effects with
φA = 0, under the corresponding true null hypotheses of no
main effects for either factor. In fact, the experimental error
term for time is composite of both rep(inoculate∗time) and
arrays(time) such that marginal mean comparisons between
the three times, 2, 8, and 24 hours, will be affected by
more noise than marginal mean comparisons between the
three inoculates which were directly and indirectly connected
within arrays.

Note that under the null hypothesis of no time effects
(φB = 0), there is no one other MS that shares the same
EMS σ2

E + 2σ2
R(AB) + 2σ2

S(B) that would allow one to readily
construct an ANOVA F-statistic for the main effects of time.
Satterthwaite [34] provided a solution to this problem by
proposing the “synthesis” of a denominator MS, call it MS∗,
as being a linear combination of q random effects MS:

MS∗ = a1MS1 + a2MS2 + a3MS3 + · · · + aqMSq, (2)

where a1, a2, . . . , aq are known coefficients such that MS∗

has the same expectation as that for a certain model term X
having mean square MSx under the null hypothesis (φX =
0). Then F = MSX/MS∗ is approximately distributed as
a random variable from a central F distribution with vX
numerator and v∗ denominator degrees of freedom, where

v∗ =
(
MS∗

)2

θ
, (3)

with θ denoting (a1MS1)2/v1 + (a2MS2)2/v2 + (a3MS3)2/v3 +
· · · + (aqMSq)2/vq.

In our example, consider the synthesized MS∗ =
4/3MSR(AB) + 4/3MSS(B) − 5/3MSE as being a linear combi-
nation of the MS for rep(inoculate∗time), array(time), and
residual. With reference to (2), MS∗ is then a linear function
of q = 3 different MS with a1 = 4/3, a2 = 4/3, and
a3 = −5/3. Using the EMS for these three MS provided from
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Table 2: Classical ANOVA of log intensities for duplicated A-loop design component of Figure 2 on ID REF #30 from Zou et al. (2005)
using output from SAS PROC MIXED (code in Figure 3).

Type 3 analysis of variance

Source DF† Sum of
squares

Mean
square Expected mean square Error term Error

DF F value Pr > F‡

Trt 2 0.7123 0.3561
Var(Residual) + 1.5
Var(sample(inoc∗time)) +
Q(inoc,inoc∗time)

MS(sample(inoc∗time)) 6 3.13 0.1172

Time 2 3.7737 1.8868

Var(Residual) + 2
Var(sample(inoc∗time)) +
2Var(array(time)) +
Q(time,inoc∗time)

1.3333 MS(array(time)) +
1.3333
MS(sample(inoc∗time)) −
1.6667 MS(Residual)

13.969 3.27 0.0683

Inoc∗time 4 0.6294 0.1573
Var(Residual) + 1.5
Var(sample(inoc∗time)) +
Q(inoc∗time)

MS(sample(inoc∗time)) 6 1.38 0.3435

Dye 1 0.0744 0.0744 Var(Residual) + Q(dye) MS(Residual) 5 2.19 0.1989

Rep(inoc∗time) 6 0.6826 0.1137 Var(Residual) + 1.5
Var(sample(inoc∗time)) MS(Residual) 5 3.35 0.1030

Array(time) 12 4.3330 0.3610 Var(Residual) + 1.5
Var(array(time)) MS(Residual) 5 10.63 0.0085

Residual 5 0.1699 0.0339 Var(Residual) . . . .
†

Degrees of freedom.
‡ P-value.

Table 1 as (σ2
E+1.5σ2

R(AB)), (σ2
E+1.5σ2

S(B)), and σ2
E , respectively,

it should be readily seen that the expectation of MS∗ is then

EMS∗ = 4
3

(
σ2
E + 1.5σ2

R(AB)

)
+

4
3

(
σ2
E + 1.5σ2

S(B)

)− 5
3
σ2
E

= σ2
E + 2σ2

R(AB) + 2σ2
S(B).

(4)

That is, MS∗ shares the same EMS as that for time in Table 1
when φB = 0. Hence, a suitable F statistic for inferring upon
the main effects of time would be FB = MSB/MS∗.

To help further illustrate these concepts, let us con-
duct the ANOVA on the data generated from the A-
loop design of Figure 2 for ID REF #30 from Zou et al.
[20]; that is, using data from arrays 1–9 and 15–23 as
provided in Table 4. The classical ANOVA table using
the method=type3 option of the popular mixed-model
software SAS PROC MIXED [35] for that particular
gene is provided in Table 2; SAS code for all statistical
analysis presented in this paper is provided in Figure 3
and also available for download, along with the data in
Table 4, from http://www.msu.edu/∼tempelma/ijpg2008.sas.
As noted previously, the correct denominator MS term
for testing the main effects of inoculate is replicate within
inoculate by time. Hence, the corresponding F statistic =
MSA/MS(R(AB)) = FA = 0.356/0.114 = 3.13, with vA =
2 numerator and vR(AB) = 6 denominator degrees of
freedom leading to a P-value of 0.1172. Similarly, for the
inoculate∗time interaction, the appropriate F-test statistic is
MSAB/MS(R(AB)) = FAB = 0.157/0.114 = 1.38, with vAB = 6
numerator and vR(AB) = 6 denominator degrees of freedom
leading to a P-value of 0.3435. Even without considering
the control of false discovery rates (FDRs) that involve the
joint control of type I errors with respect to the remaining

27 683 genes, it seems apparent that neither the main effects
of inoculate nor the interaction between inoculate and time
would be statistically significant for gene ID REF #30.

The synthesized denominator MS∗ for time effects is
MS∗ = 4/3MSR(AB) + 4/3MSS(B) − 5/3MSE = 4/3(0.114) +
4/3(0.361) − 5/3(0.034) = 0.576. The estimated degrees of
freedom for this synthesized MS using (3) is then

v∗

=
(
MS∗

)2

(
a1MSR(AB)

)2
/vR(AB) +

(
a2MSS(B)

)2
/vS(B) +

(
a3MSE

)2
/vE

= (0.576)2

(
(4/3)·0.114

)2
/6+

(
(4/3)·0.361

)2
/12+

(− (5/3)·0.034
)2
/5

=13.97.
(5)

Hence, the main effects of time, appropriate F-test statistic is
MSB/MS∗ = FB = 1.88/0.576 = 3.27, with vB = 2 numerator
and v∗ = 13.97 denominator degrees of freedom leading
to a P-value of 0.0683 as also reported in the SAS output
provided in Table 2.

3.4. Mixed model analysis

Although the classical ANOVA table is indeed instructive
in terms of illustrating the different levels of variability
and experimental error, it is not the optimal statistical
analysis method for a mixed effects model, especially when
the design is unbalanced. A mixed-model or GLS analysis
more efficiently uses information on the design structure
(i.e., random effects) for inferring upon the fixed treatment
structure effects [27, 32].

http://www.msu.edu/~tempelma/ijpg2008.sas
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Table 3: EGLS inference on overall importance of fixed effects for ID REF #30 based on REML versus ANOVA (type III quadratic forms)
for estimation of variance components using output from SAS PROC MIXED (code in Figure 3).

Type 3 tests of fixed effects using REML Type 3 tests of fixed effects using ANOVA

Effect Num DF∗ Den DF∗ F value Pr > F† Den DF∗ F value Pr > F†

Inoc 2 5.28 3.12 0.1273 6.36 3.48 0.0954

Time 2 17.8 2.81 0.0870 22.8 3.27 0.0563

Inoc∗time 4 5.28 1.26 0.3893 6.36 1.38 0.3392

Dye 1 5.43 2.27 0.1879 5.15 2.19 0.1973
∗

Num Df = numerator degrees of freedom; Den DF = denominator degrees of freedom.
†P-value.

Unfortunately, GLS, in spite of its optimality prop-
erties, is generally not attainable with real data because
the VC (e.g., σ2

R(AB), σ
2
S(B), and σ2

E) must be known. Hence,
the VC must generally be estimated from the data at hand.
There are a number of different methods that are available for
estimating VC in mixed models [22]. The classical ANOVA
method is based on equating MS to their EMS in the ANOVA
table. For example, using the bottom row of Table 1, the
EMS of MSE is σ2

E . So then using the numerical results for
ID REF #30 from Table 2, the type III ANOVA estimate of
σ2
E is simply σ̂2

E = MSE = 0.034. Now work up one row
further in Table 1 to the term array(time). Equating MSS(B) =
0.361 from the same corresponding row in Table 2 to its
EMS of σ2

E + 1.5σ2
S(B) using σ̂2

E = 0.034 gives σ̂2
S(B) = 0.218.

Finally, work up one more (i.e., third to last) row in both
tables. Equating MSR(AB) = 0.114 from Table 2 to its EMS of
σ2
E + 1.5σ2

R(AB) using σ̂2
E = 0.034 leads to σ̂2

R(AB) = 0.053. So
array variability σ2

S(B) is estimated to be roughly four times
larger than the biological variability σ2

R(AB) which, in turn, is
estimated to be somewhat larger than residual variability σ2

E

for ID REF #30.
Recall that with unbalanced designs, quadratic forms are

not unique such that ANOVA estimators of VC will not
be unique either. Nevertheless, type III quadratic forms are
most commonly chosen as then the SS for each term is
adjusted for all other terms, as previously noted. Although
ANOVA estimates of VC are unbiased, they are not efficient
nor optimal in terms of estimates having minimum standard
error [25]. Restricted maximum likelihood (REML) is a
generally more preferred method of VC estimation [22,
36, 37] and is believed to have more desirable properties.
Nevertheless, the corresponding REML estimates σ̂2

E = 0.033,
σ̂2
S(B) = 0.258 and σ̂2

R(AB) = 0.061 for ID REF #30 are in some
qualitative agreement with the previously provided ANOVA
estimates.

Once the VCs are estimated, they are substituted for
the true unknown VCs to provide the “estimated” GLS
or EGLS of the fixed effects. It is important to note that
typically EGLS = GLS for balanced designs, such that
knowledge of VC is somewhat irrelevant for point estimation
of treatment effects. However, the same is generally not true
for unbalanced designs, such as either the A-loop design
derived from Figure 2 or even the interwoven loop design
from Figure 1. Hence, different methods of VC estimation
could lead to different EGLS estimates of treatment effects

as we demonstrate later. Suppose that it was of interest to
compare the various mean responses of various inoculate by
time group combinations in the duplicated A-loop design
example. Based on the effects defined in the statistical model
for this design in (1), the true mean response for the ith
inoculate at the jth time averaged across the two dye effects
(δ1 and δ2) can be written as

μi j· = μ + αi + βj + αβi j + 0.5δ1 + 0.5δ2. (6)

If the levels are, say, ordered alphanumerically, the mean
difference between inoculate i = 1(M) and i = 2(R) at time
j = 1 (2 hours) is specified as μ11. − μ21.. Using (6), this
difference written as a function of the model effects is then
μ11.−μ21. = (μ+α1 +β1 +αβ11 + 0.5δ1 + 0.5δ2)− (μ+α2 +β1 +
αβ21 + 0.5δ1 + 0.5δ2) = α1 − α2 + αβ11 − αβ21. Similarly, the
mean difference μ11. − μ12. between time j = 1 (2 hours) and
time j = 2 (8 hours) for inoculate i = 1(M) could be derived
as β1 − β2 + αβ11 − αβ12. Note that these two comparisons or
contrasts can be more elegantly written using matrix algebra
notation. A better understanding of contrasts is useful to
help determine the correct standard errors and statistics
used to test these contrasts, including how to write the
corresponding SAS code. Hence, a matrix algebra approach
to hypothesis testing on contrasts is provided in Appendix 5
that complements the SAS code provided in Figure 3. For
now, however, we simply use the “hat” notation ( ̂ ) in
referring to the EGLS estimates of these two contrasts as
μ̂11. − μ̂21. and μ̂11. − μ̂12., respectively.

As we already intuitively noted from the A-loop design of
Figure 2, inference on μ11.−μ21. should be much more precise
than that for μ11. − μ12. since inoculates are compared within
arrays whereas times are not. This distinction should then
be reflected in a larger standard error for μ̂11. − μ̂12. than for
μ̂11.− μ̂21.. Indeed, using the REML estimates of VC for EGLS
inference, this is demonstrated by ŝe (μ̂11. − μ̂21.) = 0.2871
whereas ŝe (μ̂11. − μ̂12.) = 0.4085 for ID REF #30. However,
these standard errors are actually slightly understated since
they do not take into account the uncertainty of the VC
estimates as discussed by Kackar and Harville [38]. Kenward
and Roger [39] derive a procedure to take this uncertainty
into account which is part of the SAS PROC MIXED
implementation using the option ddfm=kr [35] as indicated
in Figure 3. Invoking this option raises the two standard
errors accordingly, albeit very slightly, to ŝe (μ̂11. − μ̂21.) =
0.2878 and ŝe (μ̂11. − μ̂12.) = 0.4088.
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Table 4: Dataset for ID REF #30 for all hybridizations (14 arrays/loop x2 loops) in Figure 1 for each of two replicates per 10 inoculate by
time groups, fluorescence intensities provided as y, log(base 2) intensities provided as ly.

Obs array inoculate time rep dye y ly

1 1 R 2 1R2 Cy3 16322.67 13.9946

2 1 M 2 1M2 Cy5 20612.48 14.3312

3 2 M 2 1M2 Cy3 10552.21 13.3653

4 2 S 2 1S2 Cy5 10640.89 13.3773

5 3 S 2 1S2 Cy3 24852.98 14.6011

6 3 R 2 1R2 Cy5 21975.92 14.4236

7 4 R 8 1R8 Cy3 30961.96 14.9182

8 4 M 8 1M8 Cy5 13405.08 13.7105

9 5 M 8 1M8 Cy3 13103.51 13.6777

10 5 S 8 1S8 Cy5 15659.44 13.9347

11 6 S 8 1S8 Cy3 20424.47 14.3180

12 6 R 8 1R8 Cy5 34244.92 15.0636

13 7 R 24 1R24 Cy3 15824.29 13.9499

14 7 M 24 1M24 Cy5 13014.05 13.6678

15 8 M 24 1M24 Cy3 17503.11 14.0953

16 8 S 24 1S24 Cy5 27418.99 14.7429

17 9 S 24 1S24 Cy3 37689.16 15.2019

18 9 R 24 1R24 Cy5 55821.64 15.7685

19 10 S 2 1S2 Cy3 28963.28 14.8219

20 10 S 8 1S8 Cy5 38659.44 15.2385

21 11 S 8 1S8 Cy3 41608.78 15.3446

22 11 S 24 1S24 Cy5 41844.79 15.3528

23 12 R 2 1R2 Cy3 12132.41 13.5666

24 12 R 8 1R8 Cy5 19131.53 14.2237

25 13 R 8 1R8 Cy3 31067.04 14.9231

26 13 R 24 1R24 Cy5 26197.03 14.6771

27 14 N 2 1N2 Cy3 18540.91 14.1784

28 14 M 2 1M2 Cy5 24971.88 14.6080

29 15 R 2 2R2 Cy3 9612.25 13.2307

30 15 M 2 2M2 Cy5 9212.11 13.1693

31 16 M 2 2M2 Cy3 10322.23 13.3335

32 16 S 2 2S2 Cy5 10979.19 13.4225

33 17 S 2 2S2 Cy3 8061.40 12.9768

34 17 R 2 2R2 Cy5 6737.37 12.7180

35 18 R 8 2R8 Cy3 8807.09 13.1044

36 18 M 8 2M8 Cy5 8696.95 13.0863

37 19 M 8 2M8 Cy3 15186.20 13.8905

38 19 S 8 2S8 Cy5 23477.49 14.5190

39 20 S 8 2S8 Cy3 19424.30 14.2456

40 20 R 8 2R8 Cy5 18198.99 14.1516

41 21 R 24 2R24 Cy3 19630.00 14.2608

42 21 M 24 2M24 Cy5 15629.14 13.9320

43 22 M 24 2M24 Cy3 10875.49 13.4088

44 22 S 24 2S24 Cy5 20816.21 14.3454

45 23 S 24 2S24 Cy3 24647.70 14.5892

46 23 R 24 2R24 Cy5 22148.96 14.4350

47 24 S 2 2S2 Cy3 17795.09 14.1192

48 24 S 8 2S8 Cy5 34569.11 15.0772

49 25 S 8 2S8 Cy3 44175.28 15.4310

50 25 S 24 2S24 Cy5 38020.46 15.2145
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Table 4: Continued.

Obs array inoculate time rep dye y ly

51 26 R 2 2R2 Cy3 34689.07 15.0822

52 26 R 8 2R8 Cy5 62219.10 15.9251

53 27 R 8 2R8 Cy3 22724.21 14.4719

54 27 R 24 2R24 Cy5 19594.71 14.2582

55 28 N 2 2N2 Cy3 11755.32 13.5210

56 28 M 2 2M2 Cy5 12599.55 13.6211

Now, the denominator degrees of freedom for inference
on these two contrasts should also differ given that the
nature of experimental error variability somewhat differs
for inoculate comparisons as opposed to time comparisons
as noted previously from Figure 2. However, with EGLS,
there are no SS and hence no corresponding MS or EMS
expression for each main effects or interaction term in
the model, such that determining the correct test statistic
and degrees of freedom is somewhat less obvious than
with the previously described classical ANOVA approach
[32]. Giesbrecht and Burns [40] introduced a procedure
for estimating the denominator degrees of freedom for
EGLS inference which, again, is invoked with the ddfm=kr
option of SAS PROC MIXED. Using this option along with
REML estimation of VC for the analysis of ID REF #30, the
estimated degrees of freedom for μ̂11. − μ̂21. is 5.28 whereas
that for μ̂11. − μ̂12. is 17.0.

Contrasts are also used in EGLS to provide ANOVA-like
F tests for the overall importance of various fixed effects;
more details based on the specification of contrast matrices
to test these effects are provided in Appendix 5. For example,
denote the marginal or overall mean of inoculate i averaged
across the 3 times and 2 dyes as μi.. = (1/3)

∑3
j=1μi j.. The

vA = 2 numerator degrees of freedom hypothesis test for the
main effects of inoculates can be written as a combination
of two complementary contrasts (A1) H0 : μ1.. − μ3.. = 0
and (A2) H0 : μ2.. − μ3.. = 0; that is, if both contrasts are 0,
then obviously H0 : μ2.. − μ3.. = 0 is also true such that then
H0 : μ1.. = μ2.. = μ3.. is true. Similarly, let us suppose that
one wished to test the main effects of times (Factor B). Then,
it could be readily demonstrated that the corresponding
hypothesis test can also be written as a combination of vB = 2
complementary contrasts: (B1) H0 : μ.1. − μ.3. = 0 and (B2)
H0 : μ.2. − μ.3. = 0, where μ. j. = (1/3)

∑3
i=1μi j. denotes

the marginal mean for the jth level of Factor B; that is, the
jth time. If both component hypotheses (B1) and (B2) are
true, then H0 : μ.1. = μ.2. = μ.3. = 0 is also true thereby
defining the composite vB = 2 numerator degrees of freedom
hypothesis test for the main effects of Factor B.

Now the interaction between inoculate and time is a
vAB = vAvB = 2∗2 = 4 numerator degrees of freedom
test as previously noted from Tables 1 and 2, suggesting
that there are 4 complementary contrasts that jointly test for
the interaction of the two factors. Of course, it is also well
known that the interaction degrees of freedom is typically
the product of the main effects degrees of freedom for the
two factors considered. Two of the four degrees of freedom

for the interaction involve testing whether or not the mean
difference between inoculates 1 and 3 is the same within time
1 as it is within time 3, that is, (AB1) H0 : μ11.− μ31.− (μ13.−
μ33.) = 0, and whether or not the mean difference between
inoculates 2 and 3 is the same within time 1 as it is within
time 3; that is, (AB2) H0 : μ21. − μ31. − (μ23. − μ33.) = 0.
If both hypotheses (AB1) and (AB2) are true then it should
be apparent that H0 : μ11. − μ21. − (μ13. − μ23.) = 0 is also
true; that is, the mean difference between inoculates 1 and 2
is the same within time 1 as it is within time 3. The remaining
two degrees of freedom for the interaction involve testing
whether or not the mean difference between inoculates 1
and 3 is the same within time 2 as it is within time 3; that
is, (AB3) H0 : μ12. − μ32. − (μ13. − μ33.) = 0, and whether
or not the mean difference between inoculates 2 and 3 is
the same within time 2 as it is within time 3; that is, (AB4)
H0 : μ22. − μ32. − (μ23. − μ33.) = 0. If both hypotheses
(AB3) and (AB4) are true then H0 : μ12. − μ22. − (μ13. −
μ23.) = 0 is also true. Hence, contrasts AB1, AB2, AB3, and
AB4 completely define the four components or numerator
degrees of freedom for the interaction between Factors A and
B. That is, the test for determining whether or not the mean
differences between all levels of A are the same within each
level of B, and vice versa, can be fully characterized by these
four complementary contrasts.

The EGLS statistics used for testing the overall impor-
tance of these main effects or interactions are approximately
distributed as F-random variables with the numerator
degrees of freedom defined by the number of complementary
components or contrasts as previously described; refer to
Appendix 5 and elsewhere [27, 32, 35] for more details. Now,
the denominator degrees of freedom for each contrast are
dependent upon the design and can be determined based on
that using classical ANOVA as in Table 1 or by a multivariate
extension of the Satterthwaite-based procedure proposed by
Fai and Cornelius [41]; again this option is available as
ddfm=kr using SAS PROC MIXED (Figure 3).

Unfortunately, much available software used for mixed
model analysis of microarray data does not carefully take
into consideration that various fixed effects terms of interest
may have different denominator degrees of freedom when
constructing F test statistics. In fact, a typical strategy of
such software is to assume that vE (i.e., the residual degrees
of freedom) is the denominator degrees of freedom for all
tests. This strategy is denoted as the “residual” method for
determining denominator degrees of freedom by Spilke et al.
[36] who demonstrated using simulation work that the use
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title “Mixed model analysis of log fluorescence intensity data from gene 30”;
proc mixed

data=gene30 /∗ name of data as provided in Table 4 ∗/
method = type3;
/∗ Provides classical ANOVA table and EGLS based on ANOVA estimates of VC ∗/
/∗ If REML estimates of VC are desired, change above line to method = reml; ∗/
where ((array <= 9) or (15 <=array <= 23));

/∗ Using A-loop component (arrays 1-9, 15-23) of Table 4 data only ∗/
class rep array inoc time dye;

/∗ name of fixed and random classification factors in design ∗/
model ly = inoc time inoc∗time dye

/∗ Specify response variable and fixed effects here ∗/
/ddfm = kr
/∗ Use Kenward-Roger’s procedure to estimate denominator degrees of freedom ∗/

e3;
/∗ e3 will print the contrast matrices KA, KB and KAB (see (A.8), (A.9) and

(A.10) of Appendix 5) used to provide the EGLS ANOVA F-test statistics (optional) ∗/
random array(time) rep(inoc∗time) ; /∗ Specify random effects ∗/
estimate “k1 contrast”

int 0 inoc 1 − 1 0 time 0 0 0 inoc∗time 1 0 0 − 1 0 0 0 0 0 dye 0 0;
/∗ contrast coefficients as specified for k1 in (A.6) of Appendix 5 ∗/

estimate “k2 contrast”
int 0 inoc 0 0 0 time 1 − 1 0 inoc∗time 1 − 1 0 0 0 0 0 0 0 dye 0 0;
/∗ contrast coefficients as specified for k2 in (A.7) of Appendix 5 ∗/

run;

Figure 3: SAS code for classical ANOVA and EGLS inference. Comments describing purpose immediately provided after corresponding
code between /∗ and ∗/ as with a regular SAS program. EGLS based on REML would simply involve substituting method = reml for method
= type3 in the third line of the code.

of the residual method can substantially inflate type I error
rate for EGLS inference on fixed effects; in other words, the
number of false-positive results or genes incorrectly declared
to be differentially expressed between treatments would be
unduly increased. Spilke et al. [36] further demonstrated
that use of the Kenward-Rogers’ method for degrees of
freedom estimation and control for uncertainty on VC
provided best control of the nominal confidence interval
coverage and type I error probabilities.

3.5. Impact of method of variance component
estimation on EGLS

It was previously noted that the estimated standard errors for
EGLS on two contrasts μ11.−μ21. and μ11.−μ12. were ŝe (μ̂11.−
μ̂21.) = 0.2878 and ŝe (μ̂11. − μ̂12.) = 0.4088, respectively,
when REML was used to estimate the variance components
for ID REF #30. If the VC estimates are computed using
type III ANOVA, then these estimated standard errors would
differ accordingly; that is, ŝe (μ̂11. − μ̂21.) = 0.2752 and
ŝe (μ̂11. − μ̂12.) = 0.3828, respectively. What perhaps is even
more disconcerting is that the estimates of μ11. − μ21. and
μ11. − μ12. also differ between the two EGLS inferences; for
example, using REML, μ̂11. − μ̂21. = 0.1328 and μ̂11. − μ̂12. =
−0.0881 whereas using ANOVA μ̂11. − μ̂21. = 0.1298 and
μ̂11. − μ̂12. = −0.0873.

The overall EGLS tests for ID REF #30 for testing the
main effects of inoculate, time and their interaction as based
on the previously characterized complementary contrasts
are provided separately for ANOVA versus REML estimates
of VC in Table 3; this output is generated as type III tests
using the SAS code provided in Figure 3. From here, it
should be clearly noted that conclusions upon the overall
importance of various fixed effects terms in (1) as derived
from EGLS inference subtly depend upon the method of
VC estimation; for example, the EGLS P-values in Table 3
tend to be several points smaller using ANOVA compared
to REML; furthermore, note the differences in the estimated
denominator degrees of freedom between the two sets.
Naturally, this begs the question as to which method of VC
estimation should be used?

In completely balanced designs, ANOVA and REML lead
to identical estimates of VC and identical EGLS inference,
provided that all ANOVA estimates of VC are positive.
ANOVA estimates of VC that are negative are generally
constrained by REML to be zero, thereby causing a “ripple”
effect on REML estimates of other VC and subsequently on
EGLS inference [42]. As noted previously, REML does tend
to outperform most other methods for various properties
of VC estimation [37]. Furthermore, there is evidence that
EGLS based on ANOVA leads to poorer control of type
I error rate for inference on fixed effects compared to
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EGLS based on REML in unbalanced data structures [36].
However, Stroup and Littell [42] concluded that EGLS using
REML may sometimes lead to inference on fixed effects
that is too conservative (i.e., actual error rates less than
nominal type I error rate) again due to the nonnegative
REML restrictions on the VC estimates and associated ripple
effects. This issue warrants further study given that it has
implications for control of FDR which are most commonly
used to control the rate of type I errors in microarray
studies [43]. Estimation of FDR inherently depends upon the
distribution of P-values for treatment effects across all genes
such that even mild perturbations on this distribution have
potential bias implications for control of false-positive rates.

4. OTHER ISSUES FOR THE DESIGN
ANALYSIS INTERFACE

4.1. Log ratio versus log intensity modeling

Recent work on the optimization and comparison of var-
ious efficient microarray designs have been based on the
assumption of OLS inference; that is, no random sources of
variability other than residuals are considered [2, 8, 9, 13].
While this observation may seem to be counterintuitive given
that the arguments laid out in this review for the need of
(E)GLS to analyze efficient designs, it is important to note
at least a couple of things. First, virtually all of the work
on design optimization has been based on the assumption
that a sample or pool is used only once; the corresponding
interwoven loop designs in such cases [13] have been referred
to as classical loop designs [10, 19]. However, sometimes
two or more aliquots from each sample are used in separate
hybridizations [20, 23] such as the A-loop design, example
used in this review; the corresponding designs are connected
loop designs [10, 19] that require the specification of random
biological replicate effects separate from residual effects as
previously noted.

Secondly, almost all of the design optimization work
has been based on the use of Cy3/Cy5 log ratios as the
response variables rather than dye-specific log intensities as
used in this review. This data reduction, that is, from two
fluorescence intensities to one ratio per spot on an array,
certainly eliminates array as a factor to specify in a linear
model. However, the use of log ratios can severely limit
estimability and inference efficiency of certain comparisons.
Suppose that instead of using the 36 log intensities from
the duplicated A-loop design from arrays 1–9 and 15–23
of Table 4, we used the derivative 18 Cy3/Cy5 log ratios as
the response variables. For example, the two corresponding
log2Cy3 and Cy5 fluorescence intensities for array 1 from
Table 4 are 13.9946 and 14.3312. The Cy3/Cy5 log ratio
is then the difference or −0.3316 corresponding to a fold
change of 2−0.3316 = 0.795. Using log ratios as their
response variables, Landgrebe et al. [9] concluded that it was
impossible to infer upon the main effects of Factor B (e.g.,
time) in the A-loop design. However, as we demonstrated
earlier, it is possible to infer upon these effects using ANOVA
or EGLS analysis on the log intensities. Jin et al. [18] similarly

illustrate the utility of log intensity analysis in a split plot
design that would not otherwise have been possible using
log ratios. Milliken et al. [14] provide much more extensive
mixed modeling details on the utility of log intensity analysis
in nested or split-plot microarray designs similar to the A-
loop design.

The relative efficiency of some designs may be seen to
depend upon the relative magnitude of biological to technical
variation [10, 44]; sometimes it is only possible to separately
estimate these two sources of variability using log intensities
rather than log ratios thereby requiring the use of (E)GLS
rather than OLS. In fact, analysis of log intensities using
mixed effects model appears to be not only more flexible
than log-ratio modeling but is statistically more efficient
in recovering more data information [1, 45]. That is, as
also noted by Milliken et al. [14], treatment effects are more
efficiently estimated by combining intraarray and interarray
information in a mixed model analysis when an incomplete
block design is used, and arrays are explicitly included as
random effects by analyzing log intensities rather than log
ratios.

4.2. Choosing between efficient experimental designs
using mixed models

There are a number of different criteria that might be used to
choose between different designs for two-color microarrays.
We have already noted that the interwoven loop design
in Figure 1 is A-optimal for pairwise comparisons between
9 treatment groups. A-optimality has been criticized for
microarray studies because it chooses designs with improved
efficiency for certain contrasts at the expense of other
perhaps more relevant contrasts and further depends upon
the parameterization of the linear model [1, 6, 9]; other com-
monly considered types of optimality criteria are possible
and further discussed by Wit et al. [13] and Landgrebe et al.
[9]. At any rate, it is somewhat possible to modify A-
optimality to explicitly take into account a particular set
of scientific questions [13]; furthermore, optimization with
respect to one criterion will generally be nearly optimal for
others.

For one particular type of optimality criterion,
Landgrebe et al. [9] demonstrated that the A-loop design
has the best relative efficiency compared to other designs for
inference on the main effects of Factor A and the interaction
effects between A and B although the main effects of Factor
B could not be inferred upon using an analysis of log ratios
as previously noted. How does the A-loop design of Figure 2
generally compare to the interwoven loop design of Figure 1
if a 3 × 3 factorial treatment structure is imposed on the 9
treatments as implied by the same labels as used in Figure 2?
Suppose that Figure 1 is a connected interwoven loop design
[10] in the sense that the outer loop of Figure 1 (dashed
arrows) connects one biological replicate for each of 9
groups whereas the inner loop of Figure 1 (solid arrows)
connects a second biological replicate for each of the 9
groups. Then this design would consume 18 biological
replicates and 18 arrays, thereby providing a fair comparison
with the duplicated A-loop design of Figure 2.
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Recall that Figure 1 is A-optimized for pairwise com-
parisons between all 9 groups. It is not quite clear what
implications this might have for statistical efficiency for
the constituent main effects of A(vA = 2), B(vB = 2),
and the effects of their interaction A∗B(vAB = 4); note,
incidentally, that these degrees of freedom independently
sum to 8 as required for 9 groups. As duly noted by Altman
and Hua [1], pairwise comparisons between all 9 groups may
be not as important as various main effects or interaction
contrasts with a factorial treatment structure arrangement.
Although, as noted earlier, Figure 1 is symmetric with respect
to the treatment labels, the classical ANOVA table for this
interwoven loop design would be even more complicated
(not shown) than that presented for the A-loop design since
there is not one single denominator MS that would serve as
the experimental error term for inoculate, time or inoculate
by time effects!

One should perhaps compare two alternative experimen-
tal designs having the same factorial treatment structure, but
a different design structure, for contrasts of highest priority,
choosing those designs where such contrasts have the smaller
standard error. Let us consider the following comparisons:
μ1.. − μ3.., μ.1. − μ.3., and μ11. − μ31. − (μ13. − μ33.); that is,
respectively, the overall mean difference between inoculates
1 and 3, the overall mean difference between times 1 and 3,
and the interaction component pertaining to the difference
between inoculates 1 and 3 within time 1 versus that same
difference within time 3. Recall that these contrasts were
components of the EGLS tests on the two sets of main effects
and the interaction and previously labeled as (A1), (B1), and
(AB1), respectively.

Now the comparison of efficient designs for the relative
precision of various contrasts will generally depend upon
the relative magnitude of the random effects VC as noted
recently by Hedayat et al. [44] and for various microarray
design comparisons [10]. Suppose the “true” variance com-
ponents for σ2

E , σ2
R(AB), and σ2

S(B) were 0.03, 0.06, and 0.25,
comparable to either set of estimates provided previously on
ID REF #30 from Zou et al. [20]. The linear mixed model for
analyzing data generated from Figure 1 would be identical to
that in (1) except that arrays would no longer be specified as
being nested within times. For the interwoven loop design of
Figure 1, the standard errors for each of the three contrasts
are se(μ̂1.. − μ̂3..) = 0.18, se(μ̂.1. − μ̂.3.) = 0.21, and se(μ̂11. −
μ̂31. − (μ̂13. − μ̂33.)) = 0.43 whereas for the A-loop subdesign

of Figure 2, the corresponding standard errors are se(μ̂1.. −
μ̂3..) = 0.16, se(μ̂.1. − μ̂.3.) = 0.33, and se(μ̂11. − μ̂31. − (μ̂13. −
μ̂33.)) = 0.40. So whereas the optimized design in Figure 1
using Wit et al. [13] provided a substantial improvement for
the estimation of overall mean time differences, the A-loop
design is indeed more efficient for inferring upon the main
effects of inoculate and the interaction between inoculate
and time. Hence, the choice between the two designs would
reflect a matter of priority for inference on the various
main effects and their interactions. It should be carefully
noted as demonstrated by Tempelman [10], that designs

leading to lower standard errors for certain comparisons do
not necessarily translate to greater statistical power as the

denominator degrees of freedom for various tests may be
substantially different between the two designs.

4.3. Unbalanced designs and shrinkage estimation

Shrinkage or empirical Bayes (EB) estimation is known to
improve statistical power for inference on differential gene
expression between treatments in microarray experiments
[46]. Shrinkage-based estimation is based on the well-
established hierarchical modeling concept that more reliable
inferences on gene-specific treatment differences are to be
attained by borrowing information across all genes [47,
48]. Typically, such strategies have involved improving
estimation of standard errors of gene-specific treatment
differences by “shrinking” gene-specific variances towards
an overall mean or other measure of central tendency.
However, most shrinkage estimation procedures have been
developed for fixed effects models, that is, for simple
experimental designs having a treatment structure but no
or very limited design structure, or even treating all design
structure factors as fixed [30]. Currently popular shrinkage
estimation procedures [49–51] are certainly appropriate for
many designs based on one-color Affymetrix systems or
for common reference designs. Other proposed shrinkage
procedures have facilitated extensions to very special cases
of nested designs [47], including some based on rather
strong modeling assumptions such as a constant correlation
of within-array replicate spots across all genes [52] or a
design structure facilitating the use of permutation testing
[29]. However, virtually none of the procedures proposed
thus far are well adapted to handle unbalanced designs such
as the A-loop design where different sizes of experimental
units need to be specified for different treatment factors;
hence investigators should proceed with caution when using
shrinkage estimation for unbalanced mixed-model designs.

5. CONCLUSIONS

We have provided an overview of the use of mixed linear
model analysis for the processing of unbalanced microarray
designs, given that most efficient incomplete block designs
for microarrays are unbalanced with respect to various
comparisons. We strongly believe that much mixed-model
software currently available for the analysis of microarrays
does not adequately address the proper determination of
error terms and/or denominator degrees of freedom for
various tests. This would be particularly true if we had
chosen to analyze all of the data for ID REF #30 in
Table 4 from Zou et al. [20] based on all of the 2 × 14
hybridizations depicted in Figure 2. Even then, the size of
the standard errors and estimated degrees of freedom would
still be seen to be somewhat different for estimating the
main effects of times compared to estimating the main
effects of inoculates given the lower degree of within-array
connectivity between the various levels of time as illustrated
in Figure 2. If inferences on various comparisons of interest
are not conducted correctly in defining a list of differ-
ently expressed genes, all subsequent microarray analysis
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(e.g., FDR estimates, gene clustering, gene class analysis, etc.)
are absolutely futile.

We believe that it is useful to choose proven mixed-model
software (e.g., SAS) to properly conduct these tests and, if
necessary, to work with an experienced statistician in order
to do so. We have concentrated our attention on the analysis
of a particular gene. It is, nevertheless, straightforward to use
SAS to serially conduct mixed-model analysis for all genes
on a microarray [53]; furthermore, SAS JMP GENOMICS
(http://www.jmp.com/software/genomics/) provides an even
more powerful user interface to the mixed model analysis of
microarray data.

APPENDIX

MATRIX REPRESENTATION OF THE MIXED MODEL
ANALYSIS OF THE A-LOOP DESIGN OF ZOU ET AL.

Any mixed model, including that specified in (1), can be
written in matrix algebra form:

y = Xβ + Zu + e. (A.1)

Here y = {yi jklm} is the vector of all data, β is the vector
of all fixed effects (e.g., inoculate, time, dye, and inoculate
by time interaction effects), u is the vector of all random
effects (e.g., arrays and sample within inoculate by time
effects), and e = {ei jklm} is the vector of random residual
effects. Furthermore, X and Z are corresponding incidence
matrices that specify the treatment and design structure of
the experiment, thereby linking the treatment and design
effects, β and u, respectively, to y. Note that y has a dimension
of 36× 1 for the duplicated A-loop design of Zou et al. [20].
Now β and u can be further partitioned into the effects as
specified in (1); for our example,

β = [μ α1 α2 α3 β1 β2 β3 αβ11 αβ12 αβ13,

αβ21 αβ22 αβ23 αβ31 αβ32 αβ33 δ1 δ2]′,
(A.2)

such that β is a 18× 1 vector of fixed effects; that is, there are
18 elements in (A.2). Furthermore, u = [u′R(AB) u′S(B)]

′ can
be similarly partitioned into a 18×1 vector of random effects,
uR(AB), for replicates within inoculate by time and another
18× 1 vector of random effects, uS(B), for arrays within time;
that is, there are a total of 18 biological replicates and 18
arrays in the study, each characterized by a random effect.
Note that it is coincidence that the row dimensions of β,
uR(AB), and uS(B) are all 18 for this particular example design.

Again, the distributional assumptions on the ran-
dom and residual effects are specified the same as in
the paper but now written in matrix algebra notation:
uR(AB)∼N(018×1, I18σ

2
R(AB)), uS(B)∼N(018×1, I18σ

2
S(B)), and

e∼N(036×1,R = I36σ
2
E) with 0t×1 denoting a t × 1 vector

of zeros and It denoting an identity matrix of dimension
t. Reasonably assuming that uR(AB) and uS(B) are pairwise
independent of each other (i.e., biological sample effects
are not influenced by array effects and vice versa), then the
variance-covariance matrix G of u is a 36 × 36 diagonal
matrix with the first 18 diagonal elements being σ2

R(AB) and

the remaining 18 diagonal elements being σ2
S(B). The GLS

estimator, β̂, of β can be written [22, 32] as

β̂ = (X′V−1X
)−

X′V−1y, (A.3)

with its variance-covariance matrix defined by

var
(
β̂
) = (X′V−1X

)−
, (A.4)

such that (X′V−1X)− denotes the generalized inverse of
(X′V−1X).

Once the VC are estimated, they are substituted for the
true unknown VC in V to produce V̂ which are then used to
provide the “estimated” GLS or EGLS β̃, of β:

β̃ = (X′V̂−1X
)−

X′V̂−1y. (A.5)

As noted in the text, typically β̃ = β̂ (i.e., EGLS = GLS) for
balanced designs but not necessarily for unbalanced designs,
such as those depicted in Figures 1 or 2.

It was previously noted in the paper that the mean
difference μ11.−μ21. between inoculate i = 1 and i = 2 at time
j = 1 as could be written as a function of the model effects
in (1) as α1−α2 +αβ11−αβ21. Similarly, the mean difference
μ12. − μ12. between time j = 1 and time j = 2 for inoculate i
could be written as β1−β2 +αβ11−αβ12. These two contrasts
written in matrix notation as k′1β and k′2β, respectively, where

k′1 = [ 0 1 −1 0 0 0 0 1 0 0 −1 0 0 0 0 0 0 0 ],
(A.6)

k′2 = [ 0 0 0 0 1 −1 0 1 −1 0 0 0 0 0 0 0 0 0 ]
(A.7)

are contrast vectors whose coefficients align in order with the
elements of β in (A.2). For example, note from (A.6) that
the nonzero coefficients of 1, −1, 1, and −1 occur within the
2nd, 3rd, 8th, and 11th positions of k′1, respectively. When
these coefficients are multiplied in the same order with the
2nd, 3rd, 8th, and 11th elements of β provided in (A.2), one
gets (1)α1+(−1)α2+(1)αβ11+(−1)αβ21 which is indeed k′1β =
α1−α2+αβ11−αβ21 as specified previously. The reader should
be able to make a similar observation for k′2β in considering
how the nonzero elements of (A.7) align in position with
elements of β in (A.2) to produce β1 − β2 + αβ11 − αβ12. In
Figure 3, SAS PROC MIXED is used to provide the estimates,
standard errors, and test statistics for these two contrasts.
That is, note how all of the elements from (A.6) and (A.7)
are completely reproduced in the estimate statements as “k1
contrast” and “k2 contrast,” respectively, in Figure 3.

Now, when the VC are known, these two contrasts can
be estimated by their GLS, k′1β̂, and k′2β̂. Furthermore, using
(A.4), the true standard errors of these two estimates can be

determined as se(k′1β̂) =
√

k′1(X′V−1X)−k1 and se(k′2β̂) =
√

k′2(X′V−1X)−k2, respectively. However, as previously
noted, the VC are generally not known but must be
estimated from the data such that the two contrasts are
typically estimated using k′1β̃ and k′2β̃ with approximate

http://www.jmp.com/software/genomics/
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standard errors determined by ̂

se(k′1β̃) =
√

k′1(X′V̂−1X)
−

k1

and ̂

se(k′2β̃) =
√

k′2(X′V̂−1X)
−

k2. Using the REML estimates

of VC as provided in the paper, the code from Figure 3

can be executed to provide ̂

se(k′1β̃) = 0.2871 whereas
̂

se(k′2β̃) = 0.4085 for ID REF #30 by simply changing
method = type3 to method = reml and by deleting ddfm
= kr. However, these standard errors are actually slightly
understated since they do not take into account the
uncertainty of the VC or V̂ as an estimate of V as discussed
by Kackar and Harville [38].

Kenward and Roger [39] derive a procedure to take
this uncertainty into account and which is part of the SAS
PROC MIXED implementation using the ddfm=kr option
[35] as specified in Figure 3. Invoking this option raises
the two standard errors accordingly, albeit very slightly, to
̂

se(k′1β̃) = 0.2878 and ̂

se(k′2β̃) = 0.4088. Furthermore,
the ddfm=kr option invokes the procedure of Giesbrecht
and Burns [40] to estimate the denominator degrees of
freedom for EGLS inference. Using this option and REML,

the estimated degrees of freedom for k′1β̃ is 5.28 whereas

that for k′2β̃ is 17.0 as would be noted from executing the
SAS code in Figure 3. The corresponding SAS output will
furthermore include the t-test statistics for the two contrasts

as t1 = k′1β̃/
̂

se(k′1β̃) = 0.1328/0.2878 = 0.46 and t2 =
k′2β̃/

̂

se(k′2β̃) = −0.3799/0.4088 = −0.93. These statistics
when compared to their Student t distributions with their
respective estimated degrees of freedom, 5.28 and 17.0, lead
to P-values of 0.66 and 0.37, respectively; that is, there is no
evidence that either contrast is statistically significant.

Contrast matrices on β can be used to derive ANOVA-
like F tests for the overall importance of various fixed effects
using EGLS. Recall from the paper that the test for the main
effects of inoculates can be written as a joint function of vA =
2 contrasts μ1..− μ3.. and μ2..− μ3.., where μi.. = (1/3)

∑3
j=1μi j.

with μi j. is defined as in (6). These two contrasts, labeled as
(A1) and (A2) in the paper, can be jointly written together as
a linear function K′

Aβ of the elements of β in (A.2), where

K′
A

=

⎡

⎢
⎢
⎢
⎣

0 1 0 −1 0 0 0
1
3

1
3

1
3

0 0 0 −1
3
−1

3
−1

3
0 0

0 0 1 −1 0 0 0 0 0 0
1
3

1
3

1
3
−1

3
−1

3
−1

3
0 0

⎤

⎥
⎥
⎥
⎦
.

(A.8)

For example, the first row of K′
A specifies the coefficients for

testing μ1..−μ3.. = (1/3)(μ11. +μ12. +μ13.)− (1/3)(μ31. +μ32. +
μ33.) as a function of the elements of β using (6). In other
words, matching up, in order, the first row of K′

A in (A.8)
with the elements of β in (A.2), the corresponding contrast
μ1..−μ3.. can be rewritten as α1−α3 +(1/3)αβ11 +(1/3)αβ12 +
(1/3)αβ13− (1/3)αβ31− (1/3)αβ32− (1/3)αβ33. Similarly, the
second row of K′

A in (A.8) specifies the contrast coefficients
for μ2.. − μ3.. as a function of the elements of β.

Recall that the main effects of times (Factor B) involves a
joint test of vB = 2 contrasts μ.1. − μ.3. and μ.2. − μ.3. labeled
as (B1) and (B2) in the paper, where μ. j. = (1/3)

∑3
i=1μi j.. In

terms of the elements of β in (A.2), these two contrasts are
jointly specified as K′

Bβ with

K′
B

=

⎡

⎢
⎢
⎢
⎣

0 0 0 0 1 0 −1
1
3

0 −1
3

1
3

0 −1
3

1
3

0 −1
3

0 0

0 0 0 0 0 1 −1 0
1
3
−1

3
0

1
3
−1

3
0

1
3
−1

3
0 0

⎤

⎥
⎥
⎥
⎦
.

(A.9)

That is, (A.9) is another 2 × 18 contrast matrix, just like
K′
A, where the two rows of K′

B specify the coefficients for the
contrasts μ.1. − μ.3. and μ.2. − μ.3., respectively, as a function
of the elements of β in (6).

Recall that the interaction between the effects of inoc-
ulates and times was vAB = 4 numerator degrees of
freedom test based on jointly testing four complementary
and independent contrasts, suggesting that there are four
rows that determine the corresponding contrast matrix. The
complete interaction contrast can then be written as K′

ABβ,
where

K′
AB

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0 1 0 −1 0 0 0 −1 0 1 0 0

0 0 0 0 0 0 0 0 1 −1 0 0 0 0 −1 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0 −1 −1 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 −1 0 −1 1 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦
.

(A.10)

Note that the 4 rows in (A.10) specify contrast coefficients
on the model effects for each of the 4 constituent component
hypotheses, (AB1), (AB2), (AB3), and (AB4) as defined in
the paper, when aligned with the coefficients of β in (A.2).
As a sidenote, the somewhat uninteresting contrast for dye
effects could be written using a contrast vector k′D (not
shown) in order to test the overall mean difference between
the two dyes.

The EGLS test statistic for testing the overall importance
of any fixed effects term, say X , is specified as FX =
β̃
′
KX(X′V̂−1X)−K′

X β̃. Here FX is distributed as an F-random
variable under H0 : K′

Xβ = 0 with the numerator
degrees of freedom being defined by the number of rows
of the contrast matrix K′

X [27, 32, 35]. The denominator
degrees of freedom for each contrast is dependent upon the
design and can be determined based on that using classical
ANOVA as in Table 1 or a multivariate extension of the
Satterthwaite-based procedure from Giesbrecht and Burns
[40] as proposed by Fai and Cornelius [41]; again this option
is available as ddfm=kr using SAS PROC MIXED (Figure 3).
The corresponding EGLS ANOVA output for ID REF #30,
based on either ANOVA or REML estimation of VC, is
provided in Table 3.
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1. INTRODUCTION

The level of the genetic diversity is pivotal for world food
security and survival of human civilization on earth. His-
torically, humans exploited plant species for their livelihoods
that resulted in domestication of many of them as improved
cultivars to produce food for the better supply of the human
diet [1]. Presently, out of 150 plant species cultivated in
agriculture, twelve provide about 75% of human food and
four produce 50% of human diet [2]. According to Food
and Health Organization report, ∼800 million people in the
developing countries are suffering from food deficiency [3]
that underlies an attention to improve agricultural produc-
tion to eliminate or, at least, reduce the feeding problems.

The narrow genetic base of modern crop cultivars is the
serious obstacle to sustain and improve crop productivity
due to rapid vulnerability of genetically uniform cultivars
by potentially new biotic and abiotic stresses [4]. However,
plant germplasm resources worldwide, comprising of wild
plant species, modern cultivars, and their crop wild relatives,

are the important reservoirs of natural genetic variations,
originated from a number of historical genetic events as
a respond to environmental stresses and selection through
crop domestication [1, 5]. The efficient exploiting these ex
situ conserved genetic diversities is vital to overcome future
problems associated with narrowness of genetic base of
modern cultivars. However, many agriculturally important
variations such as productivity and quality, tolerance to envi-
ronmental stresses, and some of forms of disease resistance
are controlled by polygenes and “multifactorial” that greatly
depends on genetic × environmental (G × E) interactions
[1, 6]. These complex traits are referred to as quantitative
trait loci (QTLs), and it is challenging to identify QTLs based
on only traditional phenotypic evaluation. Identification of
QTLs of agronomic importance and its utilization in a crop
improvement further requires mapping of these QTLs in a
genome of crop species using molecular markers [1, 6]. This
was the major breakthrough and accomplishment in many
crops in “genomics era” since the end of the 20th century,
and now extended to flourish in the 21st century.

mailto:genomics@uzsci.net
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In this review, we provide a brief description for the
concept of genetic mapping; then, as a flourish of the crop
genomics era, we thoroughly review one of the powerful
genetic mapping tools for crops, linkage disequilibrium
(LD)-based association study, as a high-resolution, broader
allele coverage, and cost effective gene tagging approach in
plant germplasm resources. This provides an opportunity to
widely dissect and exploit existing natural variations for crop
improvement.

2. GENETIC MAPPING OF CAUSATIVE VARIANTS

The main goal of genetic mapping is to detect neutrally
inherited markers in close proximity to the genetic causatives
or genes controlling the complex quantitative traits. Genetic
mapping can be done mostly in two ways [1]: (1) using the
experimental populations (also referred to as “biparental”
mapping populations) that is called QTL-mapping as well
as “genetic mapping” or “gene tagging,” and (2) using the
diverse lines from the natural populations or germplasm col-
lections that is called LD-mapping or “association mapping.”
The details of the traditional QTL-mapping approach has
recently been reviewed by Collard et al. [6], and further basic
description of the approach here would be a redundant. For
detailed concept, models and methodologies, problems, and
perspectives of linkage analysis, readers are suggested refer
to Liu [7] and Wu et al. [8]. Here, we briefly outline linkage
mapping procedure for the sake of highlighting the merits of
the alternative approach-association mapping.

So that such a linkage analysis can be done [6–8],
firstly, the experimental populations such as F2, back cross
(BC), double haploid (DH), recombinant inbred line (RIL),
and near isogenic line (NIL) populations, derived from the
genetic hybridization of two parental genotypes with an
alternative trait of interest, need to be developed. Secondly,
these experimental populations including a large number
of progenies or lines are measured for the segregation of a
trait of interest in the different environmental conditions.
Thirdly, a set of polymorphic DNA markers, differentiating
the parental genotypes and segregating in a mapping popu-
lation, need to be identified and genotyped. For that, usual
practice is that, first, the parental genotypes are screened,
and if markers are polymorphic over the parents, then, all
individuals of a mapping population are genotyped with
these polymorphic molecular markers. Once genotypic data
of a mapping population is ready, marker data is used to
construct the framework linkage maps, representing the
order (position) and linkage (a relative genetic distance in
cM) of used molecular markers along the linkage groups or
segments of particular chromosomes. This is accomplished
through assessing of recombination rates between the marker
loci. Consequently, these markers ordered along the linkage
map are statistically correlated with phenotypic characteris-
tics of individuals of a mapping population, and QTL regions
affecting a trait of interest, along with closely positioned
marker tags to that QTL, are identified.

One can imagine these linkage marker maps as a “road
map,” marker tags as the labels directing to specific places,
and QTLs to a community/neighborhood (with specific

function) on the map [6]. The precision of QTL-mapping
largely depends on the genetic variation (or genetic back-
ground) covered by a mapping population, the size of a
mapping population, and a number of marker loci used.
Once QTLs affecting a trait of interest accurately tagged using
above-outlined approach, marker tags are the most effective
tools in a crop improvement that allows the mobilization
of the genes of interest from donor lines to the breeding
material through marker-assisted selection (MAS). Although
traditional QTL-mapping will continue being an important
tool in gene tagging of crops, it is a “now classical approach”
and overall is very costly [1, 9], and has low resolution
with simultaneous evaluation of only a few alleles [10] in a
longer research time scale. In linkage mapping, the major
limitation, hampering the fine mapping, is associated with
the availability of only a few meiotic events to be used that
occurred since experimental hybridization in a recent past
[11].

3. ASSOCIATION MAPPING AS
AN ALTERNATIVE APPROACH

These limitations, however, can be reduced with the use
of “association mapping” [1]. Turning the gene-tagging
efforts from biparental crosses to natural population of
lines (or germplasm collections), and from traditional QTL-
mapping to linkage disequilibrium (LD)-based association
study became a powerful tool in mapping of the genes of
interest [12]. This leads to the most effective utilization of
ex situ conserved natural genetic diversity of worldwide crop
germplasm resources. LD refers to a historically reduced
(nonequilibrium) level of the recombination of specific alle-
les at different loci controlling particular genetic variations
in a population. This LD can be detected statistically, and has
been widely applied to map and eventually clone a number of
genes underlying the complex genetic traits in humans [13–
16].

The advantages of population-based association study,
utilizing a sample of individuals from the germplasm collec-
tions or a natural population, over traditional QTL-mapping
in biparental crosses primarily are due to (1) availability
of broader genetic variations with wider background for
marker-trait correlations (i.e., many alleles evaluated simul-
taneously), (2) likelihood for a higher resolution mapping
because of the utilization of majority recombination events
from a large number of meiosis throughout the germplasm
development history, (3) possibility of exploiting historically
measured trait data for association, and (4) no need for the
development of expensive and tedious biparental popula-
tions that makes approach timesaving and cost-effective [17–
19].

Although the overall approach of population-based asso-
ciation mapping in plants varies based on the methodology
chosen (see below sections), assuming structured population
samples, the performance of association mapping includes
the following steps (see Figure 1): (1) selection of a group
of individuals from a natural population or germplasm col-
lection with wide coverage of genetic diversity; (2) recording
or measuring the phenotypic characteristics (yield, quality,
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Choosing a germplasm group with global genetic
diversity

Phenotypic
measurements in the
multiple replication
trials and different

environments

Genotyping with
molecular markers

(e.g., AFLPs,
SSRs, and SNPs)

Quantification
of LD using

the molecular
marker data

Marker-trait correlation with
appropriate approach
(e.g., GLM, SA, MLM)

Measurements
of population
characteristics
(structure and

relatedness)

Identification of marker tags
associated with a trait of interest

Cloning and annotation of tagged loci
for potential biological function

Figure 1: The scheme of association mapping for tagging a gene of
interest using germplasm accessions. Note that the outlined scheme
may vary based on population characteristics and methodology
chosen for association study.

tolerance, or resistance) of selected population groups,
preferably, in different environments and multiple replica-
tion/trial design; (3) genotyping a mapping population indi-
viduals with available molecular markers; (4) quantification
of the extent of LD of a chosen population genome using
a molecular marker data; (5) assessment of the population
structure (the level of genetic differentiation among groups
within a sampled population individuals) and kinship
(coefficient of relatedness between pairs of each individuals
within a sample); and (6) based on information gained
through quantification of LD and population structure,
correlation of phenotypic and genotypic/haplotypic data
with the application of an appropriate statistical approach
that reveals “marker tags” positioned within close proximity
of targeted trait of interest. Consequently, a specific gene(s)
controlling a QTL of interest can be cloned using the
marker tags and annotated for an exact biological function
(Figure 1). As a starting point for association mapping, it
is important to gain knowledge of the patterns of LD for
genomic regions of the “target” organisms and the specificity
of the extent of LD among different populations or groups to
design and conduct unbiased association mapping [20, 21].

4. LINKAGE DISEQUILIBRIUM (LD)

4.1. Concept of LD

Genetic linkage generally refers to coinheritance of different
loci within a genetic distance on the chromosome. There are

two terms used in population genetics, linkage equilibrium
(LE), and linkage disequilibrium (LD) to describe linkage
relationships (co-occurrence) of alleles at different loci in
a population. LE is a random association of alleles at
different loci and equals the product of allele frequencies
within haplotypes, meaning that at random combination of
alleles at each locus its haplotypes (combination of alleles)
frequency has equal value in a population. In contrast, LD is
a nonrandom association of alleles at different loci, describ-
ing the condition with nonequal (increased or reduced)
frequency of the haplotypes in a population at random
combination of alleles at different loci. LD is not the same
as linkage, although tight linkage may generate high levels of
LD between alleles. Usually, there is significant LD between
more distant sites or sites located in different chromosomes,
caused by some specific genetic factors [9, 22–24] that
will be discussed in below sections. Linkage disequilibrium
also referred as “gametic phase disequilibrium” (GPD) or
“gametic disequilibrium” (GLD) [11, 25] in the literature
that describes the same nonrandom association of haplo-
types within unrelated populations with a distantly shared
ancestry, assuming Hardy-Weinberg equilibrium (HWE).

The concept of LD was first described by Jennings in
1917, and its quantification (D) was developed by Lewtonin
in 1964. The simplified explanation of the commonly used
LD measure, D or D′ (standardized version of D), is the
difference between the observed gametic frequencies of
haplotypes and the expected gametic haplotype frequencies
under linkage equilibrium (D = PAB − PAPB = PABPab −
PAbPaB) [26]. Besides D, a various different measures of LD
(D′, r2, D2, D∗, F, X (2), and δ) have been developed to
quantify LD [25, 27–29]. The detail formulae and description
of LD quantification was well explained by a number of
review papers [10, 25, 26] with a number of hypothetical
scenarios for LD and LE. The merits, sensitivity, comparison,
appropriate statistical tests, and calculation methodology
for these LD measures with the utilization of biallelic or
multiallelic loci have been extensively described in the
literature in detail [10, 26, 30, 31], and have recently been
reviewed by Gupta et al. [25]. Hence here we highlight only
some of key utility properties of LD measures to provide a
brief understanding the merits of LD in association mapping.

Choosing the appropriate LD measures really depends
on the objective of the study, and one performs better than
other in particular situations and cases; however, D′ and
r2 is the most commonly used measures of LD [25, 26].
D′ is informative for the comparisons of different allele
frequencies across loci and strongly inflated in a small sample
size and low-allele frequencies; therefore, intermediate values
of D′ is dangerous for comparative analyses of different LD
studies and should be verified with the r2 before using for
quantification of the extent of LD [26]. The r2, the square
of the correlation coefficient between the two loci have more
reliable sampling properties than D′ with the cases of low
allele frequencies [26]. The r2 is affected by both mutation
and recombination while D′ is affected by more mutational
histories (it might indicate minimal historic recombination
when high D′ values used) [10, 25, 26, 31]. Considering the
objective, the most appropriate LD quantification measure



4 International Journal of Plant Genomics

needed for association mapping is r2 that is also an indicative
of marker-trait correlations [25, 26, 32]. The r2 value varies
from 0 to 1, and it will be equal to 1 when only two
haplotypes are present. The r2 value of equal to 0.1 (10%)
or above considered the significant threshold for the rough
estimates of LD to reveal association between pairs of loci
[33].

It is noteworthy to briefly mention here that the
estimation of above described GLD (commonly used in
association mapping) between different loci ordered within
gametes assumes that a targeted population or sampled
germplasm is randomly mating and under HWE. Neverthe-
less, many natural populations violate HWE due to different
genetic events (bottleneck, mutation, admixture, artificial
selection, population structure, etc.) occurred in history of
a population, and are under Hardy-Weinberg disequilibrium
(HWD). A concept of “zygotic disequilibrium (ZLD)” was
introduced for such a nonequilibrium population [34] that
measures LD between different loci of gametes. ZLD, being
defined as a deviation of joint zygotic frequencies from
the expected values of zero zygotic associations [35, 36],
has a power to measure nonrandom associations at both
gametic and zygotic level [34, 37]. It shares the most of
statistical properties of GLD [36], and the results of GLD
and ZLD are mostly in agreement, yet ZLD detects more
extensive LD than determined by GLD [37]. The statistical
models of ZLD measures for biallelic and multilocus data, its
application for natural populations, and inference the genetic
and demographic events from the comparisons of GLD
and ZLD results as well as implication for whole genome
association studies (WGAs) were excellently addressed and
described by a number of studies [35–37].

4.2. Calculation and visualization of LD:
LD triangle and decay plots

LD can be calculated using available haplotyping algorithms
[26]. One of such efficient methodology is the maximum
likelihood estimate (MLE) using an expectation maximiza-
tion algorithm [38]. Several computer software packages are
available and can be utilized for calculation of LD using
variety type of molecular markers. These software packages
were extensively listed and described in the review by Gupta
et al. [25].

Graphical display of pairwise LD between two loci is very
useful to estimate the LD patterns measured using a large
number of molecular markers. Pairwise LD can be depicted
as a color-code triangle plot (Figure 2) based on significant
pairwise LD level (r2, and p-value as well as D′) that helps
to visualize the block of loci (red blocks) in significant LD.
The large red blocks of haplotypes along the diagonal of the
triangle plot indicate the high level of LD between the loci
in the blocks, meaning that there has been a limited or no
recombination since LD block formations. There is freely
available specific computer software, “graphical overview of
linkage disequilibrium” (GOLD) [39], to depict the structure
and pattern of LD. Some other software packages measuring
LD such as “Trait Analysis by aSSociation, Evolution and
Linkage” (TASSEL) [33, 40] and PowerMarker [41] have
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Figure 2: The TASSEL generated triangle plot for pairwise LD
between marker sites in a hypothetical genome fragment, where
pairwise LD values of polymorphic sites are plotted on both the
X- and Y-axis; above the diagonal displays r2 values and below
the diagonal displays the corresponding p-values from rapid 1000
shuffle permutation test. Each cell represents the comparison of
two pairs of marker sites with the color codes for the presence
of significant LD. Colored bar code for the significance threshold
levels in both diagonals is shown. The genetic distance scale for a
hypothetical genome fragment was manually drawn. Note: this is
for demonstration purposes only and does not have any real impact
or correspond to any genomic fragment of an organism.

also similar graphical display features. The strong block-like
LD structures are of a great interest in association mapping
which simplifies LD mapping efforts of complex traits [42].
LD blocks are very useful in association mapping when sizes
are calculated, which suggest the needs for the minimum
number of markers to efficiently cover the genome-wide
haplotype blocks in association mapping.

To estimate the size of these LD blocks, the r2 values
(alternatively, D′ can also be used) usually plotted against
the genetic (cM) or weighted (bp) distance referred to as
a “LD decay plot” (Figure 3). One can estimate an average
genome-wide decay of LD by plotting LD values obtained
from a data set covering an entire genome (i.e., with more
or less evenly spaced markers across all chromosomes in a
genome) against distance. Alternatively, the extent of LD for
particular region (gene or chromosome) can be estimated
from an LD decay plot generated using dataset obtained from
a region of interest. When such a LD decay plot generated,
usual practice is to look for distance point where LD value
(r2) decreases below 0.1 or half strength of D′ (D′ = 0.5)
based on curve of nonlinear logarithmic trend line (see, e.g.,
[33, 43, 44]). This gives the rough estimates of the extent of
LD for association study, but for more accurate estimates,
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Figure 3: Linkage disequilibrium (LD) decay plot depicted from the
LD values of a hypothetical marker data to demonstrate a measure
of an average genome-wide LD block sizes. A pairwise LD values
(r2) are plotted against a genetic distance. Inner fitted trend line is
a nonlinear logarithmic regression curve of r2 on genetic distance.
LD decay is considered below r2 = 0.1 threshold and based on trend
line it is around 38–40 cM in above plot. A pairwise LD between
unlinked marker loci is assigned to 100 cM distance point. Note:
this is for demonstration purposes only and does not have any real
impact or correspond to any genomic fragment of an organism.

highly significant threshold LD values (r2 ≥ 0.2) are also used
as a cutoff point. The decrease of the LD within the genetic
distance indicates that the portion of LD is conserved with
linkage and proportional to recombination [22, 25].

4.3. Factors affecting LD and association mapping

There are many genetic and demographic factors that play a
role in the shaping of the haplotypic LD blocks in a genome
[9, 22, 23, 25, 26]. Although mutation and recombination
are one of the strong impact factors influencing LD [24],
generally, factors affecting LD can be grouped into two
categories: (1) factors that increasing LD, and (2) factors
that decreasing LD. The increase of LD is observed with
new mutation, mating system (self-pollination), genetic
isolation, population structure, relatedness (kinship), small
founder population size or genetic drift, admixture, selection
(natural, artificial, and balancing), epistasis, and genomic
rearrangements [25, 26]. The decrease of LD is observed with
high recombination and mutation rate, recurrent mutations,
outcrossing, and gene conversions [25, 26].

LD conserved with linkage is very useful for association
mapping. However, more often there is a significant LD
between pairs of loci located far from each other or
even in different chromosomes that might cause spurious
correlations in association mapping. These long stretched
LD or LD between unlinked loci indicate the existence of
other LD generating factors than linkage itself in a genome
[9, 22, 23]. One of those factors is selection that generate
LD between unlinked loci through “a hitchhiking” effect
(high-frequency sweeping and fixation of alleles flanking
a favored variant) [45], and epistatic selection or the so-
called coadapted genes [46] that is the result of coselection
of loci during breeding for multiple traits [26], common in
traditional crop breeding programs worldwide.

The population structure (existences of distinctly clus-
tered subdivisions in a population) and population admix-
ture are the main factors to create such an LD between
unlinked loci. This primarily happens due to the occurrence
of distinct allele frequencies with different ancestry in an
admixed or structured population. Theoretically, relatedness
generates LD between linked loci, yet it might also generate
LD between unlinked loci pairs when predominant parents
exist in germplasm groups. There is evidence that relatedness
caused LD between linked and unlinked loci in an equal
proportion in maize germplasm [22]. The high ratio value
of linked to unlinked loci in LD is good indicative to draw
conclusion about the role of LD generating factor(s) such
as selection or population stratification (cryptic relatedness)
[9, 22, 23]. The other factors such as genetic drift or
bottlenecks might have also generated LD in a genome [22–
24], which is evidenced by nonuniform distribution of LD in
chromosomes [24].

Knowing these factors that are increasing or decreasing
LD in a genome, obvious question one might ask is
whether increased or decreased level of LD is favored in
association mapping? Very extensive level of LD (means
LD persists within a long distance), theoretically, reduces
a number of markers needed for association mapping,
but makes resolution lower (coarse mapping). In contrast,
less extensive level of LD (means that LD quickly decays
within a short distance) requires many markers to tag a
gene of interest, but in high resolution (fine mapping).
Hence, choosing a population with low or high level of
LD depends on the objective of association mapping study.
Furthermore, increased LD level due to LD between unlinked
loci is not salutary in association mapping since it tends
to cause spurious marker-trait associations. LD generated
by selection, population structure, relatedness, and genetic
drift might be theoretically useful for association mapping
in specific situations and population groups that reduces
number of markers needed for association mapping [9, 22],
but requires serious attention to control factors affecting
LD (e.g., population structure and relatedness) to perform
unbiased population-based association mapping in plants
[41, 47] (see next sections).

There are other factors affecting LD referred to as a
whole “ascertainment bias” that are associated with an
assayed sample and data characteristics. Some of these factors
leading to inaccurate estimate of LD were well reviewed
by Gupta et al. [25]. One of such factors largely affecting
the LD and leading inaccurate estimates is the presence
of minor alleles (also referred as to rare alleles that are
present in only 5 to 10% individuals of the sample) in a
dataset. Minor alleles are problematic in LD quantification
as they largely inflate LD values (in particular the D′ and
p-values) [43, 48–50]. The r2 is also very sensitive and
has a large variance with rare alleles [43, 51]. Hence in
the quantification of LD and association mapping, markers
with minor allele frequency of 5–10% (varied from study
to study) are (1) removed before analysis (see, e.g., [17,
18, 43, 44, 51]), (2) pooled into common allelic class (see,
e.g.,[44, 46]), and (3) replaced with missing values (see, e.g.,
[52, 53]).
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4.4. Estimation of LD using dominant versus
codominant markers

The quantification methodology of LD, perfectly suitable
for biallelic codominant type of markers (majorly, single
nucleotide polymorphisms (SNPs) and now largely extended
to multiallelic simple sequence repeats-SSRs), has been
well developed and used in human, animal, and plant
populations (for reviews see [25, 27–30]). LD quantifica-
tion using dominant markers (such as random amplified
polymorphic DNAs-RAPD, and amplified fragment length
polymorphisms-AFLPs) is poorly explored and usually
subject to wrong perception and interpretation. However,
many underrepresented plant species, like forest trees, or
other crops with limited genomic information largely rely
on dominant type of markers such as RAPDs and AFLPs
[54]. Furthermore, even with codominant, and multiallelic
SSR markers, there is a great challenge with assigning
correct allelic relationships (identity by decent) of multiple
band amplicons when diverse, reticulated, and polyploid
germplasm resources, lacking historical pedigree informa-
tion, are genotyped. Misassignment of allelic relationships of
loci is the concern in association analysis [55]. To avoid such
a challenging cases, (1) one might select only single band SSR
loci and code a dataset as a codominant marker type, yet
such a single band SSRs are usually not many in polyploid
crop genomes and yield also multiple bands when very
diverse germplasm resources are genotyped; (2) alternatively,
multiple-band SSRs with unknown allelic relationship may
be scored as a dominant marker taking each band as an
independent marker locus (uniquely) with a clear size band
separation (see, e.g., [52, 56]).

Could a dominant marker data be used for LD quantifi-
cation? There are some reports where LD level of natural
forest tree populations has been measured using dominant
markers (AFLPs) and commonly used statistical approach
(see, e.g., [57]). There are also a number of reports where
dominantly coded (present versus absent) marker data of
RAPD, RFLP, AFLP, “candidate gene” (CAPs), and SSRs
were successfully used in genome-wide LD analyses and
LD-based association mapping in plants (see, e.g., [17–
19, 56, 58–60]), demonstrating the feasibility of dominantly
coded molecular data in revealing of haplotypic associations.
Although a dominant type of coding has limited statistical
power compared to codominant markers in population-
based analyses because of missing heterozygote information,
previous studies suggested that it can be successfully applied
to the clustering of individuals and grouping of populations
using a Bayesian approach when a large number of loci are
genotyped [61, 62]. Dominant-type markers can be a useful
tool to estimate the kinship coefficients between individuals
[63].

Recently, Li et al. [54] investigated the use of dominant
markers in estimation of LD in diploid species and developed
appropriate EM algorithm. Based on their conclusion from
the comparative data simulation of dominant versus codom-
inant markers, the dominant-type markers could effectively
be used in LD analysis with preferentially large number
of marker loci and population sample sizes of ≥200 for

high heterozygous (proportion of alternative alleles (present
versus absent) in a data set, i.e., 0.5 versus 0.5) marker data or
with even larger sample size ≥400 for low-heterozygous (i.e.,
0.9 versus 0.1) dominant markers. It is also recommended
that a mixture of codominant and dominant markers should
be used to better characterization of a genetic structure of a
population [54].

4.5. LD quantification in plants

LD quantification and LD-based association mapping have
been a research objective in plants beginning with the model
organism as Arabidopsis, and now extended to crops as
maize, barley, durum wheat, spring wheat, rice, sorghum,
sugarcane, sugar beet, soybean, and grape, as well as in forest
tree species, and forage grasses.

Nordborg et al. [20] sequenced 0.5–1 kb long 13 frag-
ments from a 250 kb region surrounding the flowering time
FRI gene in a 20 global sample of A. thaliana, highly selfing
model plant species. They determined that LD decays within
a 1 cM distance or 250 kb. Later, investigation of the same
authors [21] with markers surrounding the disease resistance
locus RPM1 in a globally-derived set of 96 Arabidopsis
accessions revealed that a genome-wide LD extended up to
50–250 kb. LD blocks extended up to 50–100 cM in local
Michigan Arabidopsis populations. These long-stretched
LDs in local Arabidopsis population were explained as a
genetic bottleneck or founder effect through introduction
A. thaliana into North America in recent past (200 years
ago). In contrast, in other study that targeted the region
surrounding another disease resistance gene rps5, Tian et al.
[64] reported much smaller LD block size, extended up to
only 10 kb. Likewise, LD quickly decays within 10–50 kb
distance around the CLAVATA 2 region of Arabidopsis [65].
Recently, Ehrenreich et al. [66] reported the LD decay within
∼10 kb in extensive sequence analysis of 600-bp fragments
of the regions MORE AXILLARY GROWTH 2 (MAX2) and
MORE AXILLARY GROWTH 3 (MAX3) in a panel of 96
accessions from a restricted geographic range in Central
Europe. In their genome-wide survey of 1347 fragments
of 600-bp lengths, Plagnol et al. [67] reported that LD
completely disappears after ∼100 kb, which is comparable to
that observed in human.

In maize (Zea mays L.), a highly outcrossing crop
species, very rapid genome-wide LD decay was determined.
Tenaillon et al. [68] first reported the extent of LD for
maize, genotyping of 21 loci of chromosome 1 over the 25
individuals of the exotic landrace and United States maize
germplasm. An average LD decay was determined to occur
within 400 bp with r2 = 0.2 and extended up to 1000 bp
(∼1 kb) in a group of US inbred lines. Later, Remington et al.
[43] also reported a very rapid decline of LD in their survey
of 6 genes (1.2–10 kb long) in 102 inbred lines, including
tropical and semitropical lines with a wide genetic diversity.
For these surveyed genes, LD declined generally within 200–
2000 bp with r2 = 0.1 except sugary1 (su1) loci, where LD
remained significant (r2 = 0.3− 0.4) for 10 kb distance. This
was explained by strong selective episodes in su1 gene. In the
same study, Remington et al. [43] found higher level of LD
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with 47 SSR markers compared to those obtained from SNP
data. This result was explained by different mutation rate
of these two marker systems that tends to capture different
historic information.

Long stretches of LD for maize also were reported.
Thornsberry et al. [69] measured LD in and around the
Dwarf8 locus. They found “localized LD” (i.e., restricted
to particular regions, meaning that high LD stretches
interspersed with regions of low LD) extended up to 3 kb.
Jung et al. [70] reported the extent of LD within 500 kb in
surveying adh1 locus. Stich et al. [22] examined the genetic
diversity and LD in a cross section of 147 European and
United States elite inbred material with 100 SSRs. They
reported an average significant (P < .5) LD block size
of 26 cM for flint group, or 41 cM for dent group with
nonuniform distribution of LD among 10 chromosomes.
They showed a very long stretched LD blocks up to 105 cM
in chromosome 2 and up to 103 cM in chromosome 7 in
flint and dent groups, respectively. Obtaining of different
result from earlier studies [43] was explained due to using
(1) much higher marker density, and (2) both related and
unrelated inbred lines. In another study, the same authors
[9] examined 72 European elite inbred lines with 452 AFLP
and 93 SSR markers and reported much shorter average
LD block sizes for AFLP (4 cM), but extensive LD for
SSR (30-31 cM) in both flint and dent germplasm groups.
This suggested a potential for exploiting both markers
in association mapping, but with the favor of SSRs over
AFLPs because of power of detecting LD. Recently, Andersen
et al. [71] reported that LD is persisted over entire 3.5 kb
phenylalanine ammonia lyase (PAL) gene with the r2 > 0.2
in a survey of 32 European maize inbred lines.

In the selfing tetraploid wheat (Triticum durum Desf.),
Maccaferri et al. [50] quantified LD in a 134 durum wheat
accessions that extended up to 10 and 20 cM with D′ = 0.67
and 0.43, respectively. In hexaploid wheat (Triticum aestivum
L), almost completely self-pollinating species, strong LD
was determined to occur on average within <1 and ∼5 cM
for region on chromosome 2D and centromeric region 5A
that was surveyed with 36 SSR markers in a 95 cultivars of
winter wheat [52]. Recently, Chao et al. [72] investigated
the genome-wide LD among 43 US wheat elite cultivars
and breeding lines representing seven US wheat market
classes using 242 SSRs distributed throughout the wheat
genome. For this germplasm collection, a genome-wide LD
estimates were generally less than 1 cM for the genetically
linked loci pairs. Most of the LD regions observed were
between loci less than 10 cM apart, suggesting LD is likely
to vary widely among wheat populations [72]. Tommasini
et al. [56] reported that LD on chromosome 3B extended up
to 0.5 cM in 44 varieties or 30 cM in 240 RIL populations of
winter wheat, surveyed with 91 SSR and STS markers. This
suggested usefulness of cultivar germplasm over biparental
mapping population in association mapping.

In rice (Oryza staiva L), a selfing species, Garris et al.
[73] examined the LD surrounding disease resistance locus
Xa5 using 21 SSRs in a survey of 114 rice accessions. They
determined the strong LD within 100 kb with r2 = 0.1.
Agrama and Eizenga [74] investigated LD patterns in a

worldwide collection of Oryza staiva, and its wild relatives
using 176 SSR markers. Although it was not specifically
indicated, LD decay plot suggests a long range LD declining
∼50 cM with D′ = 0.5 in the “International” and “US”
rice collections. Interestingly, LD persisted over an average
of 225 cM distance with significant D′ > 0.5 in a wild
accessions. In contrast, many other studies reported a less
extent of LD in wild and landrace (broad-based) germplasm
and high extent of LD in cultivar (narrow-based) germplasm
resources in plants [9, 43]. There is evidence that the LD
is remarkably different in other rice species. Rakshit et al.
[75] reported that LD in O. rufipogon decays within 5 kb,
while it declines at 50 kb in O. sativa ssp. indica accessions.
Mather et al. [76] observed that the extent of LD is greatest in
temperate japonica (>500 kb), followed by tropical japonica
(∼150 kb) and indica (∼75 kb) that was revealed by using
unlinked SNPs. LD extends over a shorter distance in O.
rufipogon (�40 kb) than in any of the O. sativa groups
assayed in their study [76].

LD also has been extensively quantified another highly
self-pollinated crop, barley (Hordeum vulgare L), where the
extent of LD varied from 10 cM to 50 cM range depending
on assayed set of a germplasm [17, 77]. Caldwell et al. [51]
measured LD in four genes surrounding hardness locus (Ha)
in three different gene pools and reported a long stretched
LD extended up to at least 212 kb in inbred barley and
98 kb in landrace barley germplasm. In contrast to these long
range LDs observed in barley germplasm, Morrell et al. [78]
reported a rapid decay of LD detected within 300 bp in their
study of 18 nuclear genes (average length of 1 361.1 bp) in
25 diverse wild barley accessions. In that, LD completely
disappeared within a 1200 bp distance. This demonstrates
another example of variability of LD quantification across
germplasm resources, breeding material, and regions tested.

Furthermore, genome-wide LD has been quantified for
many other plant species that extended up to 10 cM in sugar
cane (Saccharum) [10], 10–50 cM in soybean (Glycine max)
[79, 80], 3 cM in sugar beet (Beta vulgaris L) [81], 50 cM
in sorghum (Sorghum bicolor) [44], 5–10 cM in grape (Vitis
vinifera L) [53], 16–34 kb in poplar (Populus trichocarpa)
[82], <500 bp in European aspen (Poplus termula) [83],
2000 bp in loblolly pine (Pinus taeda) [84], 1000 bp in
Douglas-fir (Pseudostuga menziensii) [85], 100–200 bp in
Norway Spruce (Picea abies) [86], 200-1, 200 bp in silage
maize (Zea mays L) [87, 88], and 500–2000 bp in ryegrass
(Lolium perenne) [89–91]. Also, LD quantification for other
important crops, perhaps, is in progress. In this context,
recently, we have quantified LD level for improved varieties
and landrace stock germplasm of cotton (Gossypium hirsu-
tum L) [92]. Survey of 200 microsatellite markers in 335
G. hirsutum variety germplasm demonstrated that a genome-
wide averages of LD extended up to genetic distance of
25 cM with r2 > 0.1. Likewise, our another companion study
using 95 core set microsatellite markers in a total of 286
“exotic” G. hirsutum revealed that a genome-wide averages
of LD decays within the genetic distance at <10 cM in the
landrace stocks germplasm and >30 cM in photoperiodic
variety germplasm, providing evidence of the potential
for association mapping of agronomically important traits
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in cotton (Abdurakhmonov et al. unpublished, submitted
elsewhere for publication).

4.6. Implications for association mapping gained from
LD quantification studies in plants

Important information and implication for association
mapping gained from above studies are that: (1) LD more
quickly declines in outcrossing plant species than highly
self-pollinating plants, enabling high resolution mapping
of a trait of interest in outbreeder plant germplasm. At
the same time, LD rapidly declines in crop variety groups
(even in selfing species) compared to populations derived
from biparental crosses, which provides an advantage of
discovery more polymorphisms in the variety germplasms
than biparental populations of self-pollinated crops [56];
(2) the extent of LD varies across the genomic regions,
among population samples and between species with the
examples of “localized LD”; (3) LD measures differ per
marker systems used as a reflection of capturing of different
historic information in a genome due to different mutation
rate (e.g., SNP versus SSR or AFLP versus SSR); (4) an
estimate of genome-wide averages for the extent of LD in
plant germplasm may not adequately reflect LD patterns of
specific regions or specific population groups. Each of these
specific regions or population groups should additionally be
explored for the extent of LD in order to conduct successful
association mapping of variants within regions or popula-
tions of interest; (5) LD blocks in narrow-based germplasm
groups are longer than broad-based germplasm groups in
plants [9, 43]. This suggests an opportunity perform coarse
mapping with less number of markers in narrow-based plant
germplasm and then fine mapping in broad-based plant
germplasm, assuming that genetic causations is sufficiently
similar across germplasm groups [12]. This also suggest an
opportunity develop a set of mapping populations with the
required amount of LD and diversity for high-resolution
mapping through directed crossing between selected broad-
and narrow-based germplasm groups [86]; and (6) con-
founding population characteristics and biological behavior
have serious impact on pattern and structure of LD in
plant germplasm resources that need to be taken into
consideration in conducting unbiased association mapping.

5. ASSOCIATION STUDIES IN PLANTS

5.1. The methodology overview

There are many types of different methodologies that have
been developed and initially are widely used for association
mapping studies in human (comprehensively reviewed by
Schulze and McMahon [93]), yet perfectly applicable with-
out change or case-to-case modifications for wide range of
organisms, including plants. Lately, some considerably suc-
cessful achievements have been made to develop powerful,
more precise, and unbiased population-based association-
mapping methodology for plants. Here, we provide a brief
overview for a basic concept and ideology of widely used
pioneer methodologies for association mapping, and then

highlight the latest developments in the methodology and
experimental design of association mapping in plant pop-
ulation with the examples of association mapping of useful
traits in crop species.

The classical methodology and design of association
mapping is “case and control” (also referred to as “case-
control”) approach that identifies the causative gene tags
in the comparison of allele frequencies in a sample of
unrelated affected (referred to as “cases”) individuals and a
sample of uninfected or healthy individuals (referred to as
“controls”) [93, 94]. This design requires an equal numbers
of unrelated and unstructured “case-control” samples for
accurate mapping. The Pearson chi-square test, Fisher’s exact
test, or Yates continuity correction can be used for a com-
parison of allele frequencies and detection of an association
between a disease phenotype and marker. Although favored,
the random sampling individuals from a population do
not provide the equal representation of case and controls
in the mapping population since cases in the population
are usually low, thus requires special efforts to collect the
cases. Case and control approach is seriously affected by
the existence of population structure and stratification that
caught the attention of scientist [93]. Falk and Rubinstein
[95] developed a haplotype relative risk (HRR) approach
that minimizes, but not eliminates population stratification
issues in association mapping [96]. In that, first, a “pseudo-
control” group (containing combination of two alleles that
are not transmitted to affected offspring) is created; then, the
marker allele frequencies in case and “pseudocontrol” groups
are correlated [93].

To efficiently eliminate the confounding effects coming
from population structure and stratification, Spielman et al.
[97] developed transmission disequilibrium test (TDT)
method that compares transmission versus nontransmission
of marker alleles to affected offspring by using chi-square
test [93], assuming a linkage between marker and trait.
The TDT design requires genotyping of markers from
three individuals: one heterozygous parent, one homozygous
parent, and one affected offspring. Although HRR performs
better with unstructured sample than TDT because of its
power to completely eliminate spurious association with
good experimental design, later is widely used as a tool for
unbiased fine mapping of traits in the presence of linkage
with a biallelic, one marker model that can accommodate
pedigree structure [30, 93].

Nonetheless, initial TDT approach had issues with
the use of multiallelic markers, multiple markers, miss-
ing parental information, extended (larger) pedigrees, and
complex quantitative traits [93]. To address these issues, a
variety of extensions of TDT approach were developed and
applied for multiallelic markers (i.e., GTDT, ETDT, MC-
Tm) [98–102], multiple markers [103–105], missing parental
information (Curtis-test, S-TDT, SDT, 1-TDT, C-TDT or
RC-TDT) [96, 106–110], which were reviewed by Schulze
and McMahon [93] in detail. Shortly after publication of
various extensions of TDT to multiallelic and multiple
markers, the extensions for X-linked genes, such as XS-
TDT or XRC-TDT were developed and applied [111]. TDT
approach was also extended to pedigrees of any size as a PDT
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approach [112, 113] that was demonstrated more powerful
than TDT, and S-TDT or SDT under the assumption of high
disease prevalence [93, 114].

Further, there were many studies to extend the TDT
approaches to QTL and covariates [93]. One of the com-
prehensive approaches, QTDT was developed with its three
different extensions for quantitative traits for any pedi-
gree structure [115, 116]. These family-based association-
mapping approaches have their other improvements using
more powerful statistical and robust algorithmic procedures,
such as likelihood-base statistics and EM algorithm (TDT-
LIKE, LRT, EM-LRT) [117–119]. The unified family-based
association test package (FBAT) incorporating some of TDT
is also developed [120–122] to deal with wide types of
experimental designs. The next generation of association
mapping approaches in both “case and control” and family-
based designs, referred to as identity by decent (IBD)
mapping [123], haplotypes-sharing analysis (HSA) [124],
and decay of haplotypes sharing (DHS) [125], involves the
analysis of haplotypes by testing the length of haplotypes in
the data sample, assuming affected individuals will have a
longer haplotypes than controls [93].

Although family-based association mapping methodol-
ogy is effective to control confounding effects of a sample
and remove spurious associations, it is less powerful design
[126] and have its disadvantageous sides compared to case-
control [93] that led to develop the methodologies with
better controlling of population structure and stratification.
Such an improved methodology for a case and control design
or random samples from a population involves the use of
additional markers that have neutral effect (null loci) to the
trait of interest in the analysis. This approach is referred to
as the genomic control (GC) that finds confounding effects
of a population and corrects it, thus enabling to remove
spurious associations [127, 128]. Although GC is powerful
then TDT [128], it will not remove spurious associations in
highly structured populations. Zhao et al. [129] put it as

“Methods like “genomic control,” which simply
rescale p-values without changing the ranking of
loci are not likely to be useful in genome-wide
scans where the existence of true positives is not
in doubt.”

To better deal with highly structured populations,
Pritchard et al. [47, 62] developed approach of structured
association (SA). SA first searches a population for closely
related clusters/subdivisions using Bayesian approach, and
then uses the clustering matrices (Q) in association mapping
(by a logistic regression) to correct the false associations.
Population structure and shared coancestry coefficients
between individuals of subdivisions of a population can
be effectively estimated with STRUCTURE program using
several models for linked and unlinked markers [130].
Similar type of methodology measuring and using the
population subdivisions (K) in association mapping referred
to as “mixture model” was proposed by several other studies
[131, 132]. However, SA incorporating only population
structure information in the analysis is not good enough

itself when highly structured population with some degree
of related individuals used in the association mapping.

Hence, recently, Yu et al. [133] developed new method-
ology, a mixed linear model (MLM) that combines both
population structure information (Q-matrix) and level of
pairwise relatedness coefficients—“kinship” (K-matrix) in
the analysis. To perform MLM: (1) Q-matrix is generated
using STRUCTURE, (2) the pairwise relatedness coefficients
between individuals of a mapping population (K-matrix)
[134] measured using SpaGedi software [135], and (3) then
both Q- and K-matrices are used in association mapping
to control spurious associations. Although computationally
intensive, MLM approach found to be effective in removing
the confounding effects of the population in association
mapping [133].

Later Zhao et al. [129] extensively tested the MLM
approach of Yu et al. [133] in their global set of 95
highly structured Arabidopsis population and came to
overall agreement with better performance of Q + K MLM
model than any of the other tests that used K- or Q-
matrix alone. However, they also noted that (1) K matrix
would alone be good enough if a kinship estimated as a
proportion of shared haplotypes for each pair of individuals
(as denoted K∗); (2) the replacement of Q-matrix (from
the computational intensive structure analysis) [130] with
P-matrix (from more robust principal component analysis)
[136] performed similarly to MLM of Yu et al. [133], thus
suggesting a potential for future replacements; (3) removing
of the confounding effects will also subject to remove
true associations with biological effect, which is strongly
correlated with population structure that requires a caution;
and (4) in a small and highly structured population, the
causations with major effect should be expected to be found
and, perhaps, larger samples and adequate marker densities
are needed for genome-wide dissection of the most traits of
interest segregating in an association mapping population
[129].

There are other types of mixed models for association
mapping that have its own advantages to control population
confounding effects and tag a genetic causative of a trait
of interest. One of such mixed models utilizes a sample
with pedigree information to measure a pedigree-based
relatedness and incorporates it directly in QTL-mapping
and association mapping [59, 137, 138]. This type of mixed
model for known pedigree population combines haplotype
effects with pedigree-based structure of variance-covariance
relatedness matrix and random polygenic effect that con-
trol the population structure [59, 139]. The efficiency of
pedigree population for association mapping depends on
the population size of pedigree founders (i.e., pedigree
population obtained from just two parents will not provide
significant level of LD) and the level of relatedness of
the founders. Latter is very important and may still lead
to spurious association due to initial population structure
(mostly unknown) coming from founders that needs to be
analyzed also by using STRUCTURE [140].

However, as stated by Malosetti et al. [59] and others
[140] the pedigree-based mixed model is highly appropriate
in association mapping in crops due to (1) plant breeding
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programs have already generated many useful pedigree pop-
ulations that contain LD useful for association studies but
cannot be used as an independent LD-mapping population,
and (2) many historical trait data sets in plant breeding
are unbalanced that have been collected over multiple-
years, and multienvironmental trials. At the same time,
issues with obtaining the fine-grained pedigree information
and difficulty of finding population structure of narrow-
based elite cultivars are the concern in pedigree-based mixed
model. There is another mixed model that combines the
Bayesian variable selection for mapping multiple QTLs and
LD mapping method, incorporating estimates of population
structure, but not relatedness. This approach was used
for association mapping in highly selfing rice germplasm
[58]. Authors stated that incorporation of multiple QTL
effects and population structure efficiently reduces spurious
association and useful for future whole genome associations,
with the development of more complex models dealing
with differences of LD and effect of QTL alleles between
populations.

The other mixed model approach combines QTL and
LD analyses of distinct studies. In that, QTLs or candidate
genes with already annotated biological function(s) are used
as a priori information in association mapping [140, 141].
This is one of the effective alternative strategies in association
mapping that allow reducing the total amount of marker
genotyping (because of preselecting of markers restricted to
QTL region) in less number of individuals. This increases the
power and precision of the trait-marker correlations [142].

5.2. Power of association mapping

The power of association mapping is the probability of
detecting the true associations within the mapping pop-
ulation size that really depends on (1) the extent and
evolution of the LD in a population, (2) the complexity
and mode of gene action of the trait of interest, (3) sample
size and experimental design. The power can be increased
utilizing the better data (knowledgeable experimental design
and accurate measurements) and increasing the sample
size. In QTL mapping studies, there are specific statistical
approaches to estimate the false-positive level of the obtained
strong (p-value) associations (control for Type I error) such
as a permutation test [143] or false discovery rate (FDR)
[144].

A statistical approach within the Bayesian framework is
used test the reliability of obtained significance (p-values) in
association mapping because of possibility of getting unre-
liable values due to (1) overestimation of effects (selection
bias), (2) association coming from neglecting confounding
effects of a sample, (3) poor experimental design, and (4)
instability of genetic effects across different environments
[142]. Ball [142] developed a methodology, combining the
Bayesian and non-Bayesian approaches, that determines the
Bayes factors guiding to properly design the experiments
with given power to detect reliable effects. To detect the
reliable effects in association mapping, experiments should
be designed at least with the Bayes factor of 20 that may
require much larger sample sizes. Bayes factor provides

stronger evidence than conventional p-values [142]. If given
Bayes factor value (say B = 20) reached with larger sample
than the original experimental design, then, the original
results indicate a very weak evidence to provide the real
effects [142]. At this point, requirement for larger sample
size might make association mapping disadvantageous over
a traditional QTL-mapping. However, the sample size for
association mapping can be decreased keeping the high
power with (1) preselecting a priori known QTL regions
or candidate genes (from QTL-mapping and expression
analyses), (2) using the large populations with samples
longer LD block that require a less number of markers
to find useful associations, (3) an alternative experimental
design (i.e., TDT), and (4) choosing the single marker
from the haplotypes of interest that would cut also marker
number and so genotyping cost [142]. Bayes factor can
be calculated using R function of ld.design from ldDesign
package [140]

5.3. Examples from reports

The pioneer association studies in plants were performed
by Beer et al. [166] in oat, and by Virk et al. [167] in
rice. Beer et al. [166] associated 13 QTL with RFLP loci
using 64 oat varieties and landraces, yet without considering
the population structure that resulted in more increased
associations than what were obtained in separate analysis of
subpopulations [11]. Virk et al. [167] predicted 6 trait values
using RAPD markers in rice germplasm. Later, association
mapping was extended to sea beet, barley, maize, wheat,
potato, more examples in rice, and Arabidopsis that have
utilized population level of LD considering a population
structure. Hansen et al. [19] reported association of ALFP
markers with bolting gene in sea beat. In barley, various traits
such as yield, yield stability, heading date, flowering time,
plant height, rachilla length, resistance to mildew and leaf
rust were associated with many different types of molecular
markers [17, 18, 157, 158]. In maize, flowering time and
plant height [43, 69] were associated using SNP and SSRs.
Following these pioneer studies of association mapping in
maize, several other traits such as phenotypic variation in
flowering time, endosperm color, starch production, maysin
and chlorogenic acid accumulation, cell wall digestibility,
and forage quality were associated using SNP markers of
candidate genes [71, 87, 88, 149–153].

In wheat, Breseghello and Sorrells [52] reported first
association mapping of kernel size and milling quality in
a collection of USA winter wheat using SSRs. Following
this work, association mapping of a high molecular-weight
glutenin [159] and blotch resistance [56] were reported
that utilized SNPs, SSRs, and STS markers. In rice, asso-
ciation mapping has not widely been applied yet due to
highly structured population of rice (due to high selfing)
[58, 133]. However, Zhang et al. [156] successfully used
association mapping for multiple agronomic traits using
discriminant analysis (DA) with SSR and AFLP markers.
Recently, Iwata et al. [58] associated RFLP markers with
width and length of milled rice grains in a set of 332 rice
germplasm using their multiple QTL model considering the
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Table 1: Linkage disequilibrium and association mapping studies in plants.

Species
Mating
system

LD extent Mapped traits ∗Approach used

Arabidopsis Selfing
10–250 kb and 50–100 cM
[20, 21, 64, 66, 67]

Flowering time, growth response,
pathogen resistance, and branching
architecture [66, 129, 145–148]

One way ANOVA,
simple regression,
SA, MLM

Maize Outcrossing
200–2000 bp [43, 68],
3–500 kb [43, 69–71],
4–41 cM [9, 22]

Plant height, flowering time, endosperm
color, starch production, maysin and
chlorogenic acid accumulation, cell wall
digestibility, forage quality, and oleic acid
level [43, 69, 71, 87, 88, 149–154]

GLM, SA, MLM,
WGA

Rice (indica, japonica
and rufipogon)

Selfing
5–500 kb [73, 75, 76]
50–225 cM [74], 20–30 cM
[155]

Multiple agronomic traits such as plant
height, heading date, flag leaf length and
width, tiller number, steam diameter,
panicle length, grain length and width,
grain length/width ratio, grain thickness,
1000-grain weight, width and length of
milled rice grains [58, 155, 156]

DA, MLM, mixed
model with
multiple QTL effect

Barley Selfing
10–50 cM [16, 77], 98–500 kb
[51], 300 bp [78]

Yield, yield stability, heading date,
flowering time, plant height, rachilla
length, resistance to mildew, and leaf rust
were associated with many different types
of molecular markers [17, 18, 157, 158]

Pearson correlation;
regression, ANOVA

Tetraaploid wheat Selfing 10 and 20 cM [50] N/A N/A

Hexaploid wheat Selfing <1–10 cM [52, 56, 72]

Kernel size and milling, a high molecular
weight glutenin and blotch resistance
[52, 56, 159]

GLM-Q, LMM

Potato Selfing 0.3–1 cM [25, 60], 3 cM [160]

Resistance to wilt disease, bacterial blight,
Phytophtora, and potato quality (tuber
shape, flesh color, under water weight,
maturity, and etc.)[59, 60, 138, 160]

Nonparametric
Mann-Whitney U
test, standard two
sample t-test, GMM

Soybean Selfing 10–50 cM [79, 80], Seed protein content [80] WGA

Sorghum Outcrossing 50 cM [44] N/A N/A

Grape
Vegetative
propagation

5–10 cM [53] N/A N/A

Sugarcane
Outcrossing/
Vegetative
propagation

10 cM [10] N/A N/A

Sugar beet Outcrossing 3 cM [81] N/A N/A

Forage grasses (silage
maize and ryegrass)

Outcrossing 200–2000 bp [87–91]
Cold tolerance, flowering time and
forage quality, water-soluble
carbohydrate content [87, 88, 161, 162]

Multiple linear
regression; ANOVA

Forest trees (Norway
spruce, Loblolly
pine, poplar,
European aspen,
Douglas-fir)

Outcrossing
100–200 bp [86],
∼500–2000 bp [83–85]

Early-wood microfibril angle trait, wood
density and wood growth rate [141, 163]

ANOVA;
combination of LD
and QTL mapping

∗
MLM: mixed linear model [133]; GLM: general linear model without population structure [71]; GLM-Q: general linear model using population structure

matrix (Q) or the least square solution to the fixed effects GLM [56]; DA: discriminant analysis [156]; SA-structured association [47]; LMM: linear mixed
model [52]; WGA: whole genome association [154, 164, 165]; GMM: general mixed model [59]; ANOVA: analysis of variance test; N/A—not available (search
of known major online library database as of December 2007).

population structure. Association mapping approach was
also successfully applied in tetraploid potato where resistance
to wilt disease [138], bacterial blight [60], Phytophtora [59]
that utilized a pedigree-based mixed model.

To date association mapping has also been extended to
long lifespan plant species, forest tree populations [163],
where associations of polymorphisms in cinnamoil CoA
reductase (CCR) with earlywood microfibril angle trait [141],
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and polymorphisms a putative stress response gene with
wood density and wood growth rate [163] were reported.
There are also the examples of association mapping successes
for cold tolerance, flowering time, water-soluble carbohy-
drate content, and forage quality in forges species that have
recently been reviewed by Dobrowolski and Forster (Table 1)
[87, 88, 161].

Association mapping of traits in Arabidopsis also has
been reported and overall suitability of the approach well
documented. Associations of CRY2 with flowering time were
reported [145, 146]. Balasubramanian et al. [147] reported
the association of PHYC with flowering and growth response
in Arabidopsis. Later Zhao et al. [129] revisited to these
association results with their mixed model approach and
reproved some of previously reported associations (with
PHYC), but challenged the power of these associations
detected by using “standard linear methods without correct-
ing population structure.” They put it as “Clearly, none of
these polymorphisms would have been picked up in a genome-
wide scan” while noting the use of different sample and trait
measurements in the original studies. They also reported one
of the significant flowering time associated polymorphisms
in CLF gene in their genome-wide analysis using MLM
[129]. Flowering time (in FRI gene) and pathogen resistance
(in Rpm1, Rps5, and Rps2 genes) associated polymorphisms
were also reported [148]. Recently, Ehrenreich et al. [66]
reported polymorphisms of candidate genes (SPS1, MAX2,
and MAX3) associated with branching architecture in a
survey of 36 genes involved in branch development that
were genotyped in a panel of 96 Arabidopsis accessions from
Central Europe.

5.4. Choice of the appropriate approach

Table 1 summarizes the LD and association mapping efforts
in plants including some of very recent whole genome
association mapping studies. As one can see, within the
frame of above highlighted association studies in plants, vari-
ous association mapping methodologies (Table 1), molecular
markers (both dominant and co-dominant markers), and
plant germplasm resources (including landrace stocks, elite
germplasm, and experimental populations—e.g., RILs) have
been utilized. Identifying of the most appropriate approach
and marker systems, therefore, is challenging and might be
irrelevant case-to-case basis.

Choosing the appropriate association mapping depends
on (1) the extent and evolution of the linkage disequilibrium
in a population, (2) the level of population structure and
stratification, (3) availability of pedigree information, (4)
complexity of the trait of interest under study, and (5) avail-
ability of the genomic information and resources. Based on
reported studies, GC is favored approach when population
structure is suspected, but failed to be detected [59]; however,
MLM considering both relatedness and population structure
[133] and pedigree-based mixed model [59] or multiple
QTL model [58] performs well in most cases with highly
structured and stratified population although one still might
argue based on his own experience, knowledge, and type
of gemplasm used. According to Stich et al. [23], SA and

MLM models do not “explicitly correct” for LD caused by
selection and genetic drift, the major factors causing LD
in plant germplasm and breeding materials. Hence Stich
et al. [23] suggested use of family based association approach
[168] with breeding materials. However, again the choice
of methodology greatly depends on the germplasm used
for mapping. The germplasm materials used for association
mapping were comprehensively discussed by Breseghello and
Sorrells [169].

6. CONCLUSIONS

Thus the association mapping methodology, initially devel-
oped by the human geneticists, has found its successive
application in plant germplasm resources, in particular
after recent improvements in minimization of spurious
associations. The examples of association mapping studies
performed in various plant germplasm resources includ-
ing model plant Arabidopsis and extended to various
crop germplasm largely demonstrate the flourish of crop
genomics era with the utilization of powerful LD-based
association mapping tool. This is also a good indicative
of the potential utilization of this technology with the
other crops and plant species in the future. Currently,
a number of such studies are, perhaps, in progress in
many laboratories worldwide. The near-future completion of
genome sequencing projects of crop species, powered with
more cost-effective sequencing technologies, will certainly
create a basis for application of whole genome-association
studies [164], accounting for rare and common copy number
variants (CNV) (for review see, e.g., [165]) and epigenomics
details of the trait of interest in plants, which is widely
being applied in human genetics with great success. This
will provide with more powerful association mapping tool(s)
for crop breeding and genomics programs in tagging true
functional associations conditioning genetic diversities, and
consequently, its effective utilization.
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1. INTRODUCTION

Human cultures have always been fascinated by their origins
as a means to define their position in the world, and to jus-
tify their hegemony over the rest of the living world. How-
ever, scientific (testable) predictions about our origins had
to wait for Darwin [1] and his intellectual descendents first
to classify [2] and then to reconstruct the natural history of
replicating entities, and hereby to kick-start the field of phy-
logenetics [3, 4]. Rooted in the comparison of morpholog-
ical characters, phylogenies have for the past four decades
focused on the relationships between molecular sequences
(e.g., [4]), potentially helped by incorporating morphologi-
cal information [5], in order to infer ancestor-to-descendent
relationships between sequences, populations, or species.

Today, molecular phylogenies are routinely used to in-
fer gene or genome duplication events [6], recombination
[7], horizontal gene transfer [8], variation of selective pres-
sures and adaptive evolution [9], divergence times between
species [10], the origin of genetic code [11], elucidate the ori-
gin of epidemics [12], and host-parasite cospeciation events
[13, 14]. As complementary tools for taxonomy (DNA bar-
coding: [15]), they have also contributed to the formulation

of strategies in conservation biology [16]. In addition to un-
tangling the ancestral relationships relating a group of taxa
or of a set of molecular sequences, phylogenies have also been
used for some time outside of the realm of biological sciences
as for instance in linguistics [17, 18] or in forensics [19, 20].

Most of these applications are beyond the scope of plant
genomics, but they all suggest that sophisticated phyloge-
netic methods are required to address most of today’s bio-
logical questions. While parsimony-based methods are both
intuitive and extremely informative, for instance to disentan-
gle genome rearrangements [21], they also have their limita-
tions due to their minimizing the amount of change [22].
These limitations become particularly apparent when ana-
lyzing distantly related taxa. A means to overcome, at least
partly, some of these difficulties is to adopt a model-based ap-
proach, be in a maximum likelihood or in a Bayesian frame-
work. These two frameworks are extremely similar in that
they both rely on probabilistic models. Bayesian approaches
offer a variety of benefits when compared to traditional max-
imum likelihood, such as computing speed (although this is
not necessarily true, especially under complex models), so-
phistication of the model, and an appropriate treatment of
uncertainty, in particular the one about nuisance parameters.
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As a result, Bayesian approaches often make it possible to
address more sophisticated biological questions [23], which
usually comes at the expense of longer computing times and
higher memory requirements than when using simpler mod-
els.

Because it is not possible or even appropriate to discuss
all the latest developments in a given field of study, this re-
view will focus on a very limited number of key phylogenetic
topics. Of notable exceptions, recent developments in phylo-
genetic hidden Markov models [24] or applications that map
ancestral states on phylogenies [25] are not treated. We fo-
cus instead on the very first steps involved in most phylo-
genetic analysis, ranging from reconstructing a tree to esti-
mating selective pressures or species divergence times. For
each of these steps, some of the most recent theoretical de-
velopments are discussed, and pointers to relevant software
are provided.

2. RECONSTRUCTING PHYLOGENETIC TREES

2.1. Sequence alignment

The first step in reconstructing a phylogenetic tree from
molecular data is to obtain a multiple sequence alignment
(MSA) where sequence data are arranged in a matrix that
specifies which residues are homologous [26]. A large num-
ber of methods and programs exist [27] and most have been
evaluated against alignment databases [28], so that it is pos-
sible to provide some general guidelines.

The easiest sequences to align are probably those of
protein-coding genes: proteins diverge more slowly than
DNA sequences and, as a result, proteins are easier to align.
The rule-of-thumb is therefore first to translate DNA to
amino acid sequences, then perform the alignment at the
protein level, before back-translating to the DNA align-
ment in a final step. This procedure avoids inserting gaps
in the final DNA alignment that are not multiple of three
and that would disrupt the reading frame. Translation to
amino acid sequences can be done directly when download-
ing sequences, for instance from the National Center for
Biotechnology Information (NCBI: www.ncbi.nlm.nih.gov).
A number of programs also allow users to perform this trans-
lation locally on their computers from an appropriate trans-
lation table (e.g., DAMBE [29], MEGA [30, 31]; see Table 1).
The second step is to perform the alignment at the protein
level. Again, a number of programs exist, but ProbCons [32]
appears to be the most accurate single method [33]. An alter-
native for using one single alignment method is to use con-
sensus or meta-methods, that is, to combine several meth-
ods [27]. Meta-methods such as M-Coffee can return bet-
ter MSAs almost twice as often as ProbCons [34]. Finally,
when the alignment is obtained at the protein level, back-
translation to the DNA sequences can be performed either
by using a program such as DAMBE, CodonAlign [35], or by
using a dedicated server such as protal2dna (http://bioweb.
pasteur.fr/seqanal/interfaces/protal2dna.html) or Pal2Nal

(coot.embl.de/pal2nal).
The alignment of rRNA genes with the constraint of sec-

ondary structure has now been frequently used in practical

research in molecular evolution and phylogenetics [56–60].
The procedure is first to obtain reliable secondary structure
and then use the secondary structure to guide the sequence
alignment. This has not been automated so far, although
both Clustal [61, 62] and DAMBE have some functions to
alleviate the difficulties.

What to do with other noncoding genes is still an open
question, especially when it comes to aligning a large number
(>100) of long (>20,000 residues) and divergent sequences
(<25% identity). Some authors have attempted to provide
rough guidelines to choose the most accurate program de-
pending on these parameters [28]. However, accuracy figures
are typically estimated over a large number of test alignments
and may not reflect the accuracy that is expected for any par-
ticular alignment [28]. More crucially, most of the alignment
programs were developed and benchmarked on protein data,
so that their accuracy is generally unknown for noncoding
sequences [28]. A very general recommendation is then to
use different methods [63] and meta-methods. Those parts
of the alignment that are similar across the different meth-
ods are probably reliable. The parts that differ extensively are
often simply eliminated from the alignment when no exter-
nal information can be used to decide which positions are
homologous. Poorly aligned regions can cause serious prob-
lems as, for instance, when analyzing rRNA sequences in
which conserved domain and variable domains have differ-
ent nucleotide frequencies [60]. A simple test of the reliabil-
ity of an alignment consists in reversing the orientation of
the original sequences, and performing the alignment again;
because of the symmetry of the problem, reliable MSAs are
expected to be identical whichever direction is used to align
the sequences [64]. These authors further show that reliabil-
ity of MSAs decreases with sequence divergence, and that the
chance of reconstructing different phylogenies increases with
sequence divergence. More sophisticated methods also per-
mit the direct measure of the accuracy of an alignments or
the estimation of a distance between two alignments [65].
Applications of Bayesian inference strictly to pairwise [66]
and multiple [67, 68] sequence alignment are still in their in-
fancy.

Whichever method is used to obtain an MSA, a final
visual inspection is required, and manual editing is often
needed. To this end, a number of editors can be used such
as JalView [69].

Because an MSA represents a hypothesis about sitewise
homology at all the positions, obtaining an accurate MSA
presents some circularity; an accurate MSA often necessitates
an accurate guide tree, which in turn demands an accurate
alignment. The early realization of this “chicken-egg” conun-
drum led to the idea that both the MSA and the phylogeny
should be estimated simultaneously [70]. Although this ini-
tial algorithm was parsimony-based, it was already too com-
plex to analyze more than a half-dozen sequences of 100 sites
or more. Subsequent parsimony-based algorithms allowed
the analysis of larger data sets [71] but still showed some lim-
itations when sequence divergence increases. More recently,
a Bayesian procedure was described and implemented in a
program, BAli-Phy, where uncertainties with respect to the
alignment, the tree, and the parameters of the substitution
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Table 1: List of programs cited in this review. GUI: graphic user interface; ML: maximum likelihood; PL: penalized likelihood.

Name Method Platform GUI Inference Reference

BAMBE Bayes DOS, MacOS, Unix No Tree [36]

BayesPhylogenies Bayes DOS, MacOS, Unix No Tree [37]

BAli-Phy Bayes DOS, MacOS, Unix No Simultaneous
alignment and tree

[38]

BEAST Bayes Windows, MacOS, Unix Yes Tree, times [39]

CONSEL ML DOS, MacOS, Unix No Tree comparison [40]

DAMBE Distances, parsimony, ML Windows Yes Tree [29]

GARLI ML (Genetic Algorithm) Windows, MacOS, Unix Yes Tree [41]

HyPhy ML Windows, MacOS, Unix Yes
Tree, selection,
recombination, tree
comparison,

[42]

MEGA Distances, parsimony Windows Yes Tree, times [30, 31]

MrBayes Bayes DOS, MacOS, Unix No Tree, selection [43, 44]

Multidivtime Bayes DOS, MacOS, Unix No Times [45–47]

OmegaMap Bayes DOS, MacOS, Unix No
Simultaneous
selection and
recombination

[48]

PAML ML DOS, MacOS, Unix No Tree, tree comparison,
times, selection

[49, 50]

PAUP∗ Distances, parsimony, ML DOS, MacOS, Unix No Tree [51]

PhyloBayes Bayes DOS, MacOS, Unix No Tree, tree comparison [52]

PHYML ML DOS, MacOS, Unix No Tree [53]

RAxML ML DOS, MacOS, Unix No Tree [54]

r8s PL DOS, MacOS, Unix No Times [55]

model are all taken into account [38] (see also [72]). Un-
certain alignments are a potential problem in large-scale ge-
nomic studies [73] or in whole-genome alignments [74].
In these contexts, disregarding alignment uncertainty can
lead to systematic biases when estimating gene trees or in-
ferring adaptive evolution [73, 74]. However, these complex
Bayesian models [38, 72, 73] still require some nonnegligible
computing time and resource, and to date, their performance
in terms of accuracy is still unclear.

2.2. Selection of the substitution model

Once a reliable MSA is obtained, the next step in comparing
molecular sequences is to choose a metric to quantify diver-
gence. The most intuitive measure of divergence is simply to
count the proportion of differences between two aligned se-
quences (e.g., [75]). This simple measure is known as the p
distance. However, because the size of the state space is fi-
nite (four letters for DNA, 20 for amino acids, and 61 for
sense codons), multiple changes at a position in the align-
ment will not be observable, and the p distance will underes-
timate evolutionary distances even for moderately divergent
sequences. This phenomenon is generally referred to as satu-
ration. Corrections were devised early to help compensate for
saturation. Some of the most famous named nucleotide sub-
stitution models are the Jukes-Cantor model or JC [76], the
Kimura two-parameter model or K80 [77], the Hasegawa-

Kishino-Yano model or HKY85 [78], the Tamura-Nei model
or TN93 [79], and the general time-reversible model or GTR
[80] (also called REV). Because substitution rates vary along
sequences, two components can be added to these substitu-
tion models: a “+I” component that models invariable sites
[78] and a “+Γ” component that models among-site rate
variation either as a continuous [81] or as a discrete [82]
mean-one Γdistribution, the latter being more computation-
ally efficient. Amino acid models can also incorporate a “+F”
component so that replacement rates are proportional to the
frequencies of both the replaced and resulting residues [83].

Given the variety of substitution models, the first step of
any model-based phylogenetic analysis is to select the most
appropriate model [84, 85]. The rational for doing so is
to balance bias and variance: a highly-parameterized model
will describe or fit the data much better than a model that
contains a smaller number of parameters; in turn however,
each parameter of the highly-parameterized model will be
estimated with lower accuracy for a given amount of data
(e.g., [86]). Besides, both empirical and simulation stud-
ies show that the choice of a wrong substitution model can
lead not only to less accurate phylogenetic estimation, but
also to inconsistent results [87]. The objective of model se-
lection is therefore not to select the “best-fitting” model,
as this one will always be the model with the largest num-
ber of parameters, but rather to select the most appropri-
ate model that will achieve the optimal tradeoff between
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bias and variance. The approach followed by all model se-
lection procedures is therefore to penalize the likelihood of
the parameter-rich model for the additional parameters. Be-
cause most of the nucleotide substitution models are nested
(all can be seen as a special case of GTR +Γ+I), the standard
approach to model selection is to perform hierarchical like-
lihood ratio tests or hLRTs [88]. Note that in all rigor, likeli-
hood ratio tests can also be performed on nonnested mod-
els; however, the asymptotic distribution of the test statis-
tic (twice the difference in log-likelihoods) under the null
hypothesis (the two models perform equally well) is com-
plicated [89] and quite often impractical. When models are
nested, the asymptotic distribution of the test statistic un-
der the null hypothesis is simply a χ2 distribution whose de-
gree of freedom is the number of additional parameters en-
tering the more complex model (see [90] or [91] for applica-
bility conditions). With the hLRT, then all models are com-
pared in a pairwise manner, by traversing a choice-tree of
possible nested models. A number of popular programs al-
low users to compare pairs of models manually (e.g., PAUP
[51], PAML [49, 50]). Readily written scripts that select
the most appropriate model among a list of named models
also exist, such as ModelTest [92] (which requires PAUP),
the R package APE [93], or DAMBE. Free web servers are
also available; they are either directly based on ModelTest
[94] or implement similar ideas (e.g., FindModel, available
at hcv.lanl.gov/content/hcv-db/findmodel/findmodel.html).
A similar implementation, ProtTest, exists for protein data
[95].

However, performing systematic hLRTs is not the opti-
mal strategy for model selection in phylogenetics [96]. This
is because the model that is finally selected can depend on
the order in which the pairwise comparisons are performed
[97]. The Akaike information criterion (AIC) or its vari-
ant developed in the context of regression and time-series
analysis in small data sets (AICc, [98]) is commonly used
in phylogenetics (e.g., [96]). One advantage of AIC is that
it allows nonnested models to be compared, and it is eas-
ily implemented. However, in large data sets, both the hLRT
and the AIC tend to favor parameter-rich models [99]. A
slightly different approach was proposed to overcome this se-
lection bias, the Bayesian information criterion (BIC: [99]),
which penalizes more strongly parameter-rich models. All
these model selection approaches (AIC, AICc, and BIC) are
available in ModelTest and ProtTest. Other procedures exist
such as the Decision-Theoretic or DT approach [100]. Al-
though AIC, BIC, and DT are generally based on sound prin-
ciples, they can in practice select different substitution mod-
els [101]. The reason for doing so is not entirely clear, but it
is likely due to the data having low-information content. One
prediction is that, when these model selection procedures
end up with different conclusions, all the selected models will
return phylogenies that are not significantly different. It is
also possible that applying these different criteria outside of
the theoretical context in which they were developed might
lead to unexpected behaviors [102]. For instance, AICcwas
derived under Gaussian assumptions for linear fixed-effect
models [98], and other bias correction terms exist under dif-
ferent assumptions [86].

All the above test procedures compare ratios of likelihood
values penalized for an increase in the dimension of one of
the models, without directly accounting for uncertainty in
the estimates of model parameters. This may be problematic,
in particular for small data sets. The Bayesian approach to
model selection, called the Bayes factor, directly incorporates
this uncertainty. It is also more intuitive as it directly assesses
if the data are more probable under a given model than under
a different one (e.g., [103]). An extension of this approach
makes it possible to select the model not only among the set
of named models (JC to GTR) but among all 203 nucleotide
substitution models that are possible [104]. An alternative
use or interpretation of this approach is to integrate directly
over the uncertainty about the substitution model, so that
the estimated phylogeny fully accounts for several kinds of
uncertainty: about the substitution models, and the param-
eters entering each of these models. MrBayes (version 3.1.2)
[43] implements this feature for amino acid models.

There is an element of circularity in model selection, just
as in sequence alignment. In theory, when the hLRT is used
for model selection, the topology used for all the computa-
tions should be that of the maximum likelihood tree. In prac-
tice, model selection is based on an initial topology obtained
by a fast algorithm such as neighbor-joining [105, 106] (de-
fault setting in ModelTest) or by Weighbor [107] (default
setting in FindModel) on JC distances without any correc-
tion for among-site rate variation. As mentioned above, it is
known that the choice of a wrong model can affect the tree
that is estimated, but it is not always clear how the choice of
a nonoptimal topology to select the substitution model af-
fects the tree that is finally estimated. Again, this issue with
model choice disappears with Bayesian approaches that inte-
grate over all possible time-reversible models as in [104].

2.3. Finding the “best” tree and assessing its support

Once the substitution model is selected, the classical ap-
proach proceeds to reconstruct the phylogeny [108]. This
is probably one area where phylogenetics has seen mixed
progress over the last five years, due to both the combinato-
rial and the computational complexities of phylogenetic re-
construction.

The combinatorial complexity relates to the extremely
large number of tree topologies that are possible with a
large number of sequences [109]. For instance, with five se-
quences, there are 105 rooted topologies, but with ten se-
quences, this number soars to over 34 million. An exhaus-
tive search for the phylogeny that has the highest probability
is therefore not practical even with a moderate number of
sequences. Besides, while heuristics exist (e.g., stepwise addi-
tion [109]; see [4] for a review), almost none of these is guar-
anteed to converge on the optimum phylogenetic tree. The
common practice is then to use one of these heuristics to find
a good starting tree, and then modify repeatedly its topol-
ogy more or less dramatically to explore its neighborhood
for better trees until a stopping rule is satisfied [110]. The art
here is in designing efficient tree perturbation methods that
adaptively strike a balance between large topological modifi-
cations (that almost always lead to a very different tree with

file:hcv.lanl.gov/content/hcv-db/findmodel/findmodel.html
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a poor score) and small modifications (that almost always
lead to an extremely similar tree with lower score). Some
of today’s challenges are about choosing between methods
that successfully explore large numbers of trees but that can
be costly in terms of computing time [110], and methods
that are faster but may miss some interesting trees [53]. Sev-
eral programs such as Leaphy, PhyML, and GARLI[41] are
among the best-performing software in a maximum likeli-
hood setting. In a Bayesian framework, the basic perturba-
tion schemes were described early [36] and recently updated
[111]. Three popular programs are MrBayes, BAMBE [36],
and BEAST [39]. Among all these programs and approaches,
PHYML, GARLI, and BEAST are probably among the most
efficient programs in terms of computational speed, han-
dling of large data sets and thoroughness of the tree search.

A first aspect of the computational complexity relates to
estimating the support of a reconstructed phylogeny. This is
more complicated than estimating a confidence interval for a
real-valued parameter such as a branch length, because a tree
topology is a graph and not a number. The classical approach
therefore relies on a nonstandard use of the bootstrap [112].
However, the interpretation of the bootstrap is contentious.
Bootstrap proportions P can be perceived as testing the cor-
rectness of internal nodes, and failing to do so [113], or 1–P
can be interpreted as a conservative probability of falsely sup-
porting monophyly [114]. Since bootstrap proportions are
either too liberal or too conservative depending on the ex-
act interpretation given to these values [115], it is difficult
to adjust the threshold below which monophyly can be con-
fidently ruled out [116]. Alternatively, an intuitive geomet-
ric argument was proposed to explain the conservativeness
of bootstrap probabilities [117], but the workaround was
never actually used in the community or implemented in any
popular software. The introduction of Bayesian approaches
in the late 1990s [36, 118] suggested a novel approach to
estimate phylogenetic support with posterior probabilities.
Clade or bipartition posterior probabilities can be relatively
fast to compute, even for large data sets analyzed under com-
plicated substitution models [119]. As in model selection,
they have a clear interpretation as they measure the probabil-
ity that a clade is correct, given the data and the model. But as
with bootstrap probabilities, some controversies exist. Early
empirical studies found that posterior probabilities of highly
supported nodes were much larger than bootstrap proba-
bilities [120], and subsequent simulation studies supported
this observation (e.g., [121–124]). Some of these differences
can be attributed to an artifact of the simulation scheme
that was employed [125], but more specific empirical and
simulation studies show that prior specifications can dra-
matically impact posterior probabilities for trees and clades
[115, 126, 127]. In the simplest case, the analysis of simu-
lated star trees with four sequences fails to give the expected
three unrooted topologies with equal probability (1/3, 1/3,
1/3) but returns large posterior probabilities for an arbitrary
topology [115, 126], even when infinitely long sequences are
used [128, 129] ([130]). This phenomenon, called the star-
tree paradox [126], seems to disappear when polytomies are
assigned nonzero prior probabilities and when nonuniform
priors force internal branch length towards zero [129]. The

second issue surrounding Bayesian phylogenetic methods is
about their convergence rate. A theoretical study shows that
extremely simple Markov chain Monte Carlo (MCMC) sam-
plers, the technique used to estimate posterior probabilities,
could take an extremely long time to converge [131]. In prac-
tice, however, MCMC samplers such as those implemented
in MrBayes are much more sophisticated. In particular, they
include different types of moves [111] and use tempering,
where some of the chains of a single run are heated, to im-
prove mixing [43]. As a result, it is unclear whether they suf-
fer from extremely long convergence times. It is also expected
that current convergence diagnostic tools such as those im-
plemented in MrBayes would reveal convergence problems
[132]. Finally, it is also argued that these controversies such as
exaggerated clade support, inconsistently biased priors, and
the impossibility of hypothesis testing disappear altogether
when posterior probabilities at internal nodes are abandoned
in favor of posterior probabilities for topologies [133] (see
Section 2.4 below).

The most fundamental aspect of the computational com-
plexity in phylogenetics is due to the structure of the phyloge-
nies: these are trees or binary graphs on which computations
are nested and interdependent, which makes these computa-
tions intractable or NP-hard [134]. As a result, it is difficult
to adopt an efficient “divide and conquer” approach, where a
large complicated problem would be split into small simpler
tasks, and to take advantage of today’s commodity comput-
ing by distributing the computation over multicore architec-
tures or heterogeneous computer clusters. Current strategies
are limited to distributing the computation of the discrete
rate categories (when using a “+Γ” substitution model) and
part of the search algorithm [54], or simply to distribute dif-
ferent maximum likelihood bootstrap replicates [53, 54] or
different MCMC samplers to available processors [44].

2.4. Comparisons of tree topologies

Science proceeds by testing hypotheses, and it is often nec-
essary to compare phylogenies, for instance to test whether a
given data set supports the early divergence of gymnosperms
with respect to Gnetales and angiosperms (the anthophyte
hypothesis), or whether the Gnetales diverged first (the Gne-
tales hypothesis) [135, 136]. Because of the importance of
comparing phylogenies, a number of tests of molecular phy-
logenies were developed early. The KH test was first devel-
oped to compare two random trees [137]. However, this test
is invalid if one of the trees is the maximum likelihood tree
[138]. In this case, the SH test should be used [139]. Because
the SH test can be very conservative, an approximately un-
biased version was developed: the AU test [140]. PAUP and
PAML only implement the KH and SH tests; CONSEL [40]
also implements the AU test. A Bayesian version of these tests
also exists [141], but the computations are more demanding.

Indeed, the Bayesian approach to hypothesis testing relies
on computing the probability of the data under a particu-
lar model. This quantity is usually not available as a close-
form equation, and it must be approximated numerically.
The most straightforward approximation is based on the har-
monic mean of the likelihood sampled from the posterior
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distribution [142]. This approximation was described sev-
eral times in the context of phylogenies [141, 143] and is
available from most Bayesian programs such as MrBayes or
BEAST. However, the approximation is extremely sensitive
to the behavior of the MCMC sampler [52, 142]: if extremely
low-likelihood values happen to be sampled from the pos-
terior distribution, the harmonic mean will be dramatically
affected. To date, a couple of more robust approximations
have been described and were shown to be preferable to the
harmonic mean estimator [52]. The first is based on thermo-
dynamic integration [52] and is available in PhyloBayes (see
Table 1). The second approximation [144] is based on a more
direct computation [145], but its availability is currently lim-
ited to one specific model of evolution.

2.5. More realistic models

While model selection is fully justified on the ground of
the bias-variance tradeoff, it should not be forgotten that all
these models are simplified representations of the actual sub-
stitution process and are all therefore wrong. Stated differ-
ently, if AIC selects the GTR +Γ+I to analyze a data set, it
should be clear that this conclusion does not imply that the
data evolved under this model. All model selection proce-
dures measure a relative model fit. One way to estimate ade-
quacy or absolute model fit is to perform a parametric boot-
strap test [146]: first, the selected model is compared with a
multinomial model by means of a LRT whose test statistic is
s (twice the log-likelihood difference); the following steps de-
termine the distribution of s under the null hypothesis that
the selected model was the generating model; second, the se-
lected model is used to simulate a large number of data sets;
third, the model selection procedure (LRT) is repeated on
each simulated data set, and the corresponding test statistics
s∗ are recorded; fourth, the P-value is estimated as the num-
ber of times, the simulated s∗ test statistics are more extreme
(>, for a one-sided test) than the original value of s. The re-
sults of such tests suggest that the selected substitution model
is generally not an adequate representation of the actual sub-
stitution process [85]. Of course, we do not need a model
that incorporates all the minute biological features of evolu-
tionary processes. As argued repeatedly (e.g., [147]), we need
useful models that capture enough of reality of substitution
processes to make accurate predictions and avoid systematic
biases such as long-branch attraction [148].

More realistic models are obtained by accommodating
heterogeneities in the evolutionary process at the level of
both sites (space) and lineages (time). The simplest site-
heterogeneous model is one, where the aligned data are par-
titioned, usually based on some prior information. For in-
stance, first and second codon positions are known to evolve
slower than third codon positions in protein-coding genes, or
exposed residues might evolve faster than buried amino acids
in globular proteins. A number of models were suggested to
analyze such partitioned data sets (e.g., [149]); these mod-
els are implemented in most general-purpose software (e.g.,
PAML, PAUP, MrBayes) and can be combined with a “+Γ+I”
component. A different approach consists in considering that

sites can be binned in a number of rate categories; the use of
a Dirichlet prior process then makes it possible both to deter-
mine the appropriate number of categories and to assign sites
to these categories; the application of this method to protein-
coding genes was able to recover the underlying codon struc-
ture of these genes [150]. However, several studies suggest
that evolutionary patterns can be as heterogeneous within a
priori partitions as among partitions [37, 151].

Lineage-heterogeneous models or heterotachous models
[152] have attracted more attention. In one such approach,
different models of evolution are assigned to the different
branches of the tree [153], which can make these models
extremely parameter-rich. Such a large number of parame-
ters can potentially affect the accuracy of the phylogenetic in-
ference (see the “bias-variance tradeoff” above) and present
computational issues (long running times, large memory re-
quirements, and convergence issues). Several simplifications
can be made. One assumes that some sets of branches evolve
under a particular process [153]. But now these branches
must be assigned a priori, and both the determination of
the number of sets and their placement on the tree can be
difficult (but see Section 4 below for a solution to a similar
question). At the other end of the spectrum of heterotachous
models lies the simplest model known as the covarion model
[154], where sites can either be variable along a branch, or
not, and can switch between these two categories across time
(e.g., [155], also described in a Bayesian framework [156]).

Between these two extremes are mixture models, which
extend the covarion model by allowing more categories of
sites. A number of formulations exist, where each site is as-
sumed to have been generated by either several sets of branch
lengths [157, 158] or by several rate matrices [37, 96, 151].
One particularity of these models is that they give a semi-
parametric perspective to the phylogenetic estimation: if a
single simple model cannot approximate a complex substi-
tution process, the hope is that mixing several simple substi-
tution models makes our models more realistic. In some ap-
plications, mixture models can also be used to avoid under-
estimating uncertainty, first when choosing a single model
of evolution and then ignoring this uncertainty when esti-
mating the phylogeny. The mixing therefore involves fitting
at each site several sets of branch lengths, or several substi-
tution models to the data, and combining these models us-
ing a certain weighting scheme. The difference between the
numerous mixture models that have been described lies in
the choice of the weight factors, and how these are obtained.
In one approach, known as model averaging, the weights are
determined a priori. A first possibility is to assume that all
the models are equally probable, which does not work with
an infinite number of models (individual weights are zero
in this case). More critically in phylogenetics, this assump-
tion is not coherent for nested models since larger models
should be more likely than each submodel. A second possi-
bility is to weight the models with respect to their probabil-
ity of being the generating model given the data. For practi-
cal purposes, this posterior probability can be approximated
by Akaike weights [96]. The difficulty here is that model av-
eraging requires analyzing the data even for models that, a
posteriori, turn out to have extremely small probabilities or
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weights. This may be seen as a waste of resources (computing
time and storage space).

2.6. Integrated Bayesian approaches

Mixture models can work within the framework of max-
imum likelihood, but the treatment of the weight factors
is complicated. A sound alternative is to resort to a fully
Bayesian approach. A prior distribution is set on the weight
factors, and a special form of MCMC sampler whose Markov
chain moves across models with different numbers of pa-
rameters, a reversible-jump MCMC sampler (RJ-MCMC), is
constructed. The advantage of RJ-MCMC samplers is that
they allow estimating the phylogeny while integrating over
the uncertainty pertaining to the parameters of the substitu-
tion model and even integrating over the model itself [104].
Mixture models are available in BayesPhylogenies [37] for
nucleotide models. Another Bayesian mixture model, named
CAT for CATegories, was developed to analyze amino acid
alignments. The CAT model recently proved successful in a
number of empirical [159, 160] and simulation [161] stud-
ies in avoiding the artifact known as long-branch attraction
[148]. This model is freely available in the PhyloBayes soft-
ware (see Table 1).

All these models assume that each site evolve indepen-
dently. The independence assumption greatly simplifies the
computations, but is also highly unrealistic. Models that de-
scribe the evolution of doublets in RNA genes [162], triplets
in codon models [163, 164], or other models with local or
context dependencies [165–167] exist, but complete depen-
dence models are still in their infancy and, so far, have only
been implemented in a Bayesian framework [168, 169]. One
particularly interesting feature of this approach is that com-
plete dependence models incorporate information about the
three-dimensional (3D) structure of proteins and therefore
permit the explicit modeling of structural constraints or of
any other site-interdependence pattern [170]. The incorpo-
ration of 3D structures also allows the establishment of a di-
rect relationship between evolution at the DNA level and at
the phenotypic level. This link between genotype and pheno-
type is established via a proxy that plays the role of a fitness
function which, in retrospect, can be used to predict amino-
acid sequences compatible with a given target structure, that
is, to help in protein design [171].

3. DETECTING POSITIVE SELECTION

Fitness functions are however difficult to determine at the
molecular level. In addition, while examples of adaptive evo-
lution at the morphological level abound, from Darwin’s
finches in the Galapagos [172] to cichlid fishes in the East
African lakes [173], the role of natural selection in shap-
ing the evolution of genomes is much more controversial
[147, 174]. First, the neutral theory of molecular evolution
asserts that much of the variation at the DNA level is due to
the random fixation of mutations with no selective advan-
tage [175]. Second, a compelling body of evidence suggests
that most of the genomic complexities have emerged by non-
adaptive processes [176]. A number of statistical approaches

exist either to test neutrality at the population level or to de-
tect positive Darwinian evolution at the species level [147]. A
shortcoming of neutrality tests is their dependence on a de-
mographic model [177] and their sensitivity to processes of
molecular evolution such as among-site rate variation [178].
They also do not model alternative hypotheses that would
permit distinguishing negative selection from adaptive evo-
lution. The development of demographic models based on
Poisson random fields [179] and composite likelihoods [180]
makes it possible both to estimate the strength of selection
and to assess the impact of a variety of scenarios on allele
frequency spectra [9]. But demographic singularities such as
bottlenecks can still generate spurious signatures of positive
selection [180, 181].

When effective population sizes are no longer a concern,
for instance in studies at or above the species level, the de-
tection of positive selection in protein-coding genes usually
relies on codon models [163, 164] (see [182] for a review
including methods based on amino-acid models). Codon
models permit distinguishing between synonymous substi-
tutions, which are likely to be neutral, and nonsynonymous
substitutions, which are directly exposed to the action of se-
lection. If synonymous and nonsynonymous substitutions
accumulate at the same rate, then the protein-coding gene
is likely to evolve neutrally. Alternatively, if nonsynonymous
substitutions accumulate slower than synonymous substitu-
tions, it must be because nonsynonymous substitutions are
deleterious and this suggests the action of purifying selec-
tion. Conversely, the accumulation of nonsynonymous sub-
stitutions faster than synonymous substitutions suggests the
action of positive selection. The nonsynonymous to synony-
mous rate ratio, denoted ω = dN/dS, is therefore interpreted
as a measure of selection at the protein level, with ω = 1, <1
and >1 indicating neutral evolution, negative or positive se-
lection, respectively. This ratio is also denoted Ka/Ks, in par-
ticular in studies that rely on counts of nonsynonymous and
synonymous sites (e.g., [183]). An extension exists to detect
selection in noncoding regions [184], and a promising phy-
logenetic hidden Markov or phylo-HMM model permits de-
tection of selection in overlapping genes [185].

These rate ratios can be estimated by a number of meth-
ods implemented in MEGA, DAMBE, HyPhy [42], and
PAML. The most intuitive methods, called counting meth-
ods, work in three steps: (i) count synonymous and nonsyn-
onymous sites, (ii) count the observed differences at these
sites, and (iii) apply corrections for multiple substitutions
[186]. Counting methods are however not optimal in the
sense that most work on pairs of sequences and therefore,
just like neighbor-joining, fail to account for all the infor-
mation contained in an alignment. In addition, simulations
suggest that counting methods can be sensitive to a variety of
biases such as unequal transition and transversion rates, or
uneven base, or codon frequencies [187]. Counting methods
that incorporate these biases perform generally better than
those that do not, but the maximum likelihood method still
appears more robust to sever biases [187]. In addition, the
maximum likelihood method that accounts for all the infor-
mation in a data set has good power and good accuracy to
detect positive selection [188, 189].
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However, the first studies using these methods found
little evidence for adaptive evolution essentially because
they were averaging ω rate ratios over both lineages and
sites [147]. Branch models were then developed [190, 191]
quickly followed by site models [192–196] and by branch-site
models [189, 197]. All these approaches, as implemented in
PAML, rely on likelihood ratio tests to detect adaptive evolu-
tion: a model where adaptive evolution is permitted is com-
pared with a null model where ω cannot be greater than one.
Simulations show that some of these tests are conservative
[189], so that detection of adaptive evolution should be safe
as long as convergence of the analyses is carefully checked
[198], including in large-scale analyses [199]. If the model al-
lowing adaptive evolution explains the data significantly bet-
ter than the null model, then an empirical Bayes approach
can be used to identify which sites are likely to evolve adap-
tively [192]. The empirical Bayes approach relies on estimates
of the model parameters, which can have large sampling er-
rors in small data sets. Because these sampling errors can
cause the empirical Bayes site identification to be unreliable
[200], a Bayes empirical Bayes approach was proposed and
was shown to have good power and low-false positive rates
[201]. Full Bayesian approaches that allow for uncertain pa-
rameter estimates were also proposed [202]. Yet, simulations
showed that they did not improve further on Bayes empir-
ical Bayes estimates [203], so that the computational over-
head incurred by full Bayes methods may not be necessary
in this case. One particular case, where a Bayesian approach
is however required, is to tell the signature of adaptive evo-
lution from that of recombination, as these two processes
can leave similar signals in DNA sequences. Indeed, simu-
lations show that recombination can lead to false positive
rates as large as 90% when trying to detect adaptive evolution
[204]. The codon model with recombination implemented
in OmegaMap [48] can then be used to tease apart these two
processes (e.g., see [205]).

4. ESTIMATING DIVERGENCE TIMES
BETWEEN SPECIES

The estimation of the dates when species diverged is often
perceived to be as important as estimating the phylogeny
itself. This explains why so-called “dating methods” were
first wished for when molecular phylogenies were first re-
constructed [206]. In spite of over four decades of history,
molecular dating has only recently seen new developments.
One of the reasons for this slow progress is that, unlike the
other parts of phylogenetic analysis, divergence times are
parameters that cannot be estimated directly. Only sitewise
likelihood values and distances between pairs of sequences
are identifiable, that is, directly estimable. Distances are ex-
pressed as a number of substitutions per site (sub/site) and
can be decomposed as the product of two quantities: a rate
of evolution (sub/site/unit of time) and a time duration (unit
of time). As a result, time durations and, likewise, divergence
times cannot be estimated without making an additional as-
sumption on the rates of evolution. The simplest assumption
is to posit that rates are constant in time, which is known as
the molecular clock hypothesis [207]. This hypothesis can

be tested, for instance, with PAUP or PAML, by means of
a likelihood ratio test that compares a constrained model
(clock) with an unconstrained model (no clock). These two
models are nested, so that twice the log-likelihood differ-
ence asymptotically follows a χ2 distribution. If n sequences
are analyzed, the constrained model estimates n − 1 diver-
gence times, while the unconstrained model estimates 2n− 3
branch lengths. The degree of freedom of this test is then
(2n − 3) − (n − 1) = n − 2 [4]. The systematic test of the
molecular clock assumption on recent data shows that this
hypothesis is too often untenable [208].

The most recent work has then focused on relaxing this
assumption, and three different directions have emerged
[209]. A first possibility is to relax the clock globally on the
phylogeny, but to assume that the hypothesis still holds lo-
cally for closely related species [210–212]. Recent develop-
ments of these local clock models now allow the use of mul-
tiple calibration points and of multiple genes [213], the au-
tomatic placement of the clocks on the tree [214] and the
estimation of the number of local clocks [209]. PAML can be
used for most of these computations. However, local clock
models still tend to underestimate rapid rate change [209].
The second possibility to relax the global clock assumption
is to assume that rates of evolution evolve in an autocorre-
lated manner along lineages and to minimize the amount
of rate change over the entire phylogeny. The most popular
approach in the plant community is Sanderson’s penalized
likelihood [215], implemented in r8s [55]. This approach
performs well on data sets for which the actual fossil dates
are known [216] but still tends to underestimate the actual
amount of rate change [209].

Bayesian methods appear today as the emerging ap-
proach to estimate divergence times. Taking inspiration from
Sanderson’s pioneering work [217], Thorne et al. developed
a Bayesian framework where rates of evolution change in an
autocorrelated manner across lineages [45–47]: the rate of
evolution of a branch depends on the rate of evolution of
its parental branch; the branches emanating from the root
require a special treatment. These Bayesian models work by
modeling how rates of evolution change in time (rate prior),
and how the speciation/population process shapes the dis-
tribution of divergence times (speciation prior). These prior
distributions can actually be interpreted as penalty functions
[45, 209], and they can have simple or more complicated
forms [218]. The Multidivtime program [45–47] is extremely
quick to analyze data thanks to the use of a multivariate nor-
mal approximation of the likelihood surface. It assumes that
rates of evolution change following a stationary lognormal
prior distribution. Further work suggested that it might not
always be the best performing rate prior [218–220], but these
latter studies had two potential shortcomings: (i) they were
based on a speciation prior that was so strong that it biased
divergence times towards the age of the fossil root [219, 221],
and (ii) they used a statistical procedure, the posterior Bayes
factor [222], that is potentially inconsistent. One potential
limitation of the Bayesian approach described so far is its de-
pendence on one single tree topology, which must be either
known ahead of time or estimated by other means. Recently,
Drummond et al. found a way to relax this requirement by
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positing that rates of evolution are uncorrelated across lin-
eages, while all the branches of the tree are constrained to
follow exactly the same rate prior [223]. As a result, their
approach is able to estimate the most probable tree (given
the data and the substitution model), the divergence times
and the position of the root even without any outgroup or
without resorting to a nonreversible model of substitution
[224]. Drummond et al. further argue that the use of explicit
models of rate variation over time might contribute to im-
proved phylogenetic inference [223]. In addition, when the
focus is on estimating divergence times, a recent analysis sug-
gests that this uncorrelated model of rate change could out-
perform the methods described above to accommodate rapid
rate change among lineages [209]. Implemented in BEAST,
this approach offers a variety of substitution models and
prior distributions and presents a graphic user interface that
will appeal to numerous researchers [39].

5. CHALLENGES AND PERSPECTIVES

With the advent of high-throughput sequencing technolo-
gies such as the whole-genome shotgun approach by py-
rosequencing [225], fast, cheap, and accurate genomic in-
formation is becoming available for a growing number of
species [226]. If low coverage limits the complete assembly of
many genome projects, it still allows the quick access to draft
genomes for a growing number of species [227]. As a result,
phylogenetic inference can now incorporate large numbers
of expressed sequence tags (ESTs), genes [228], and occasion-
ally complete genomes [229]. The motivation for developing
these so-called phylogenomic approaches is their presumed
ability to return fully resolved and well-supported trees by
decreasing both sampling errors [230] and misleading signals
due for instance to horizontal gene transfer [231] or to hid-
den paralogy [232]. In practice, these large-scale studies can
give the impression that incongruence is resolved [228], but
they also can fail to address systematic errors due to the use
of too simple models [233]. If the genes incorporated in phy-
logenomic studies are often concatenated to limit the num-
ber of parameters entering the model, it remains important
to allow sitewise heterogeneities [234]. If partition models
can reduce systematic biases [234], Bayesian mixture mod-
els such as CAT [151] appear to be robust to long-branch at-
traction [159], a rampant issue in phylogenomics [235]. All
together, the accumulation of genomic data and these latest
methodological developments seem to make the reconstruc-
tion of the tree of life finally within reach. In comparison,
dating the tree of life is still in its infancy, even if a number
of initiatives such as the TimeTree server are being developed
[236]. These resources are limited to some vertebrates but
will hopefully soon be extended to include other large taxo-
nomic groups such as plants. To achieve this goal, however,
phylogenetic studies should systematically incorporate diver-
gence times, as is now routine in some research communities
(e.g., [237]). This joint estimation of time and trees is today
facilitated by the availability of user-friendly programs such
as BEAST. The near future will probably see the development
of mixture models for molecular dating and more sophisti-
cated models that integrate most of the topics discussed here

from sequence alignment to detection of sites under selection
into one single but yet user-friendly [238] toolbox.

ACKNOWLEDGMENTS

Jeff Thorne provided insightful comments and suggestions,
and two anonymous reviewers helped in improving the orig-
inal manuscript. Support was provided by the Natural Sci-
ences Research Council of Canada (DG-311625 to SAB and
DG-261252 to XX).

REFERENCES

[1] C. Darwin, On the Origin of Species by Means of Natural Se-
lection, J. Murray, London, UK, 1859.

[2] R. R. Sokal and P. H. A. Sneath, Principles of Numerical Tax-
onomy, W. H. Freeman, San Francisco, Calif, USA, 1963.

[3] L. L. Cavalli-Sforza, I. Barrai, and A. W. Edwards, “Analysis of
human evolution under random genetic drift,” Cold Spring
Harbor Symposia on Quantitative Biology, vol. 29, pp. 9–20,
1964.

[4] J. Felsenstein, Inferring Phylogenies, Sinauer Associates, Sun-
derland, Mass, USA, 2004.

[5] H. Glenner, A. J. Hansen, M. V. Sørensen, F. Ronquist, J. P.
Huelsenbeck, and E. Willerslev, “Bayesian inference of the
metazoan phylogeny: a combined molecular and morpho-
logical approach,” Current Biology, vol. 14, no. 18, pp. 1644–
1649, 2004.

[6] B. E. Pfeil, J. A. Schlueter, R. C. Shoemaker, and J. J. Doyle,
“Placing paleopolyploidy in relation to taxon divergence: a
phylogenetic analysis in legumes using 39 gene families,” Sys-
tematic Biology, vol. 54, no. 3, pp. 441–454, 2005.

[7] E. R. Chare and E. C. Holmes, “A phylogenetic survey of re-
combination frequency in plant RNA viruses,” Archives of Vi-
rology, vol. 151, no. 5, pp. 933–946, 2006.

[8] H. Philippe and C. J. Douady, “Horizontal gene transfer and
phylogenetics,” Current Opinion in Microbiology, vol. 6, no. 5,
pp. 498–505, 2003.

[9] R. Nielsen, C. Bustamante, A. G. Clark, et al., “A scan for pos-
itively selected genes in the genomes of humans and chim-
panzees,” PLoS Biology, vol. 3, no. 6, p. e170, 2005.

[10] S. R. Ramı́rez, B. Gravendeel, R. B. Singer, C. R. Marshall,
and N. E. Pierce, “Dating the origin of the Orchidaceae from
a fossil orchid with its pollinator,” Nature, vol. 448, no. 7157,
pp. 1042–1045, 2007.

[11] R. D. Knight, S. J. Freeland, and L. F. Landweber, “Rewiring
the keyboard: evolvability of the genetic code,” Nature Re-
views Genetics, vol. 2, no. 1, pp. 49–58, 2001.

[12] J. Antonovics, M. E. Hood, and C. H. Baker, “Molecular vi-
rology: was the 1918 flu avian in origin?” Nature, vol. 440,
no. 7088, p. E9, 2006, discussion E9-10.

[13] A. P. Jackson and M. A. Charleston, “A cophylogenetic per-
spective of RNA-virus evolution,” Molecular Biology and Evo-
lution, vol. 21, no. 1, pp. 45–57, 2004.

[14] J. P. Huelsenbeck, B. Rannala, and B. Larget, “A Bayesian
framework for the analysis of cospeciation,” Evolution,
vol. 54, no. 2, pp. 352–364, 2000.

[15] M. Hajibabaei, G. A. C. Singer, P. D. N. Hebert, and D. A.
Hickey, “DNA barcoding: how it complements taxonomy,
molecular phylogenetics and population genetics,” Trends in
Genetics, vol. 23, no. 4, pp. 167–172, 2007.



10 International Journal of Plant Genomics

[16] S.-J. Luo, J.-H. Kim, W. E. Johnson, et al., “Phylogeography
and genetic ancestry of tigers (Panthera tigris),” PLoS Biology,
vol. 2, no. 12, p. e442, 2004.

[17] C. J. Howe, A. C. Barbrook, M. Spencer, P. Robinson, B. Bor-
dalejo, and L. R. Mooney, “Manuscript evolution,” Endeav-
our, vol. 25, no. 3, pp. 121–126, 2001.

[18] R. D. Gray and Q. D. Atkinson, “Language-tree divergence
times support the Anatolian theory of Indo-European ori-
gin,” Nature, vol. 426, no. 6965, pp. 435–439, 2003.

[19] D. M. Hillis and J. P. Huelsenbeck, “Support for dental HIV
transmission,” Nature, vol. 369, no. 6475, pp. 24–25, 1994.

[20] A. Salas, H.-J. Bandelt, V. Macaulay, and M. B. Richards,
“Phylogeographic investigations: the role of trees in forensic
genetics,” Forensic Science International, vol. 168, no. 1, pp.
1–13, 2007.

[21] D. Sankoff and J. H. Nadeau, “Chromosome rearrangements
in evolution: from gene order to genome sequence and back,”
Proceedings of the National Academy of Sciences of the United
States of America, vol. 100, no. 20, pp. 11188–11189, 2003.

[22] D. L. Swofford, P. J. Waddell, J. P. Huelsenbeck, P. G. Foster,
P. O. Lewis, and J. S. Rogers, “Bias in phylogenetic estima-
tion and its relevance to the choice between parsimony and
likelihood methods,” Systematic Biology, vol. 50, no. 4, pp.
525–539, 2001.

[23] M. Holder and P. O. Lewis, “Phylogeny estimation: tradi-
tional and Bayesian approaches,” Nature Reviews Genetics,
vol. 4, no. 4, pp. 275–284, 2003.

[24] A. Siepel and D. Haussler, “Phylogenetic hidden Markov
models,” in Statistical Methods in Molecular Evolution, R.
Nielsen, Ed., pp. 325–351, Springer, New York, NY, USA,
2005.

[25] M. Pagel and A. Meade, “Bayesian analysis of correlated evo-
lution of discrete characters by reversible-jump Markov chain
Monte Carlo,” American Naturalist, vol. 167, no. 6, pp. 808–
825, 2006.

[26] S. Kumar and A. Filipski, “Multiple sequence alignment: in
pursuit of homologous DNA positions,” Genome Research,
vol. 17, no. 2, pp. 127–135, 2007.

[27] C. Notredame, “Recent evolutions of multiple sequence
alignment algorithms,” PLoS Computational Biology, vol. 3,
no. 8, p. e123, 2007.

[28] R. C. Edgar and S. Batzoglou, “Multiple sequence alignment,”
Current Opinion in Structural Biology, vol. 16, no. 3, pp. 368–
373, 2006.

[29] X. Xia and Z. Xie, “DAMBE: software package for data anal-
ysis in molecular biology and evolution,” Journal of Heredity,
vol. 92, no. 4, pp. 371–373, 2001.

[30] S. Kumar, K. Tamura, and M. Nei, “MEGA: molecular evo-
lutionary genetics analysis software for microcomputers,”
Computer Applications in the Biosciences, vol. 10, no. 2, pp.
189–191, 1994.

[31] K. Tamura, J. Dudley, M. Nei, and S. Kumar, “MEGA4:
molecular evolutionary genetics analysis (MEGA) software
version 4.0,” Molecular Biology and Evolution, vol. 24, no. 8,
pp. 1596–1599, 2007.

[32] C. B. Do, M. S. P. Mahabhashyam, M. Brudno, and S. Bat-
zoglou, “ProbCons: probabilistic consistency-based multiple
sequence alignment,” Genome Research, vol. 15, no. 2, pp.
330–340, 2005.

[33] I. M. Wallace, G. Blackshields, and D. G. Higgins, “Multiple
sequence alignments,” Current Opinion in Structural Biology,
vol. 15, no. 3, pp. 261–266, 2005.

[34] I. M. Wallace, O. O’Sullivan, D. G. Higgins, and C.
Notredame, “M-Coffee: combining multiple sequence align-
ment methods with T-Coffee,” Nucleic Acids Research, vol. 34,
no. 6, pp. 1692–1699, 2006.

[35] B. G. Hall, Phylogenetic Trees Made Easy: A How-to Manual,
Sinauer Associates, Sunderland, Mass, USA, 2008.

[36] B. Larget and D. L. Simon, “Markov chain Monte Carlo algo-
rithms for the Bayesian analysis of phylogenetic trees,” Molec-
ular Biology and Evolution, vol. 16, no. 6, pp. 750–759, 1999.

[37] M. Pagel and A. Meade, “A phylogenetic mixture model
for detecting pattern-heterogeneity in gene sequence or
character-state data,” Systematic Biology, vol. 53, no. 4, pp.
571–581, 2004.

[38] B. D. Redelings and M. A. Suchard, “Joint Bayesian estima-
tion of alignment and phylogeny,” Systematic Biology, vol. 54,
no. 3, pp. 401–418, 2005.

[39] A. J. Drummond and A. Rambaut, “BEAST: Bayesian evolu-
tionary analysis by sampling trees,” BMC Evolutionary Biol-
ogy, vol. 7, article 214, pp. 1–8, 2007.

[40] H. Shimodaira and M. Hasegawa, “CONSEL: for assessing
the confidence of phylogenetic tree selection,” Bioinformatics,
vol. 17, no. 12, pp. 1246–1247, 2001.

[41] D. Zwickl, “Genetic algorithm approaches for the phyloge-
netic analysis of large biological sequence datasets under the
maximum likelihood criterion,” Ph.D. thesis, University of
Texas at Austin, Austin, Tex, USA, 2006.

[42] S. L. Kosakovsky Pond, S. D. W. Frost, and S. V. Muse, “Hy-
Phy: hypothesis testing using phylogenies,” Bioinformatics,
vol. 21, no. 5, pp. 676–679, 2005.

[43] F. Ronquist and J. P. Huelsenbeck, “MrBayes 3: Bayesian
phylogenetic inference under mixed models,” Bioinformatics,
vol. 19, no. 12, pp. 1572–1574, 2003.

[44] G. Altekar, S. Dwarkadas, J. P. Huelsenbeck, and F. Ronquist,
“Parallel Metropolis coupled Markov chain Monte Carlo
for Bayesian phylogenetic inference,” Bioinformatics, vol. 20,
no. 3, pp. 407–415, 2004.

[45] J. L. Thorne, H. Kishino, and I. S. Painter, “Estimating the
rate of evolution of the rate of molecular evolution,” Molec-
ular Biology and Evolution, vol. 15, no. 12, pp. 1647–1657,
1998.

[46] H. Kishino, J. L. Thorne, and W. J. Bruno, “Performance of
a divergence time estimation method under a probabilistic
model of rate evolution,” Molecular Biology and Evolution,
vol. 18, no. 3, pp. 352–361, 2001.

[47] J. L. Thorne and H. Kishino, “Divergence time and evolution-
ary rate estimation with multilocus data,” Systematic Biology,
vol. 51, no. 5, pp. 689–702, 2002.

[48] D. J. Wilson and G. McVean, “Estimating diversifying selec-
tion and functional constraint in the presence of recombina-
tion,” Genetics, vol. 172, no. 3, pp. 1411–1425, 2006.

[49] Z. Yang, “PAML: a program package for phylogenetic anal-
ysis by maximum likelihood,” Computer Applications in the
Biosciences, vol. 13, no. 5, pp. 555–556, 1997.

[50] Z. Yang, “PAML 4: phylogenetic analysis by maximum like-
lihood,” Molecular Biology and Evolution, vol. 24, no. 8, pp.
1586–1591, 2007.

[51] D. L. Swofford, PAUP∗: Phylogenetic Analysis Using Parsi-
mony (and other Methods) 4.0 Beta, Sinauer Associates, Sun-
derland, Mass, USA, 10th edition, 2002.

[52] N. Lartillot and H. Philippe, “Computing Bayes factors us-
ing thermodynamic integration,” Systematic Biology, vol. 55,
no. 2, pp. 195–207, 2006.



S. Aris-Brosou and X. Xia 11

[53] S. Guindon and O. Gascuel, “A simple, fast, and accurate al-
gorithm to estimate large phylogenies by maximum likeli-
hood,” Systematic Biology, vol. 52, no. 5, pp. 696–704, 2003.

[54] A. Stamatakis, “RAxML-VI-HPC: maximum likelihood-
based phylogenetic analyses with thousands of taxa and
mixed models,” Bioinformatics, vol. 22, no. 21, pp. 2688–
2690, 2006.

[55] M. J. Sanderson, “r8s: inferring absolute rates of molecular
evolution and divergence times in the absence of a molecular
clock,” Bioinformatics, vol. 19, no. 2, pp. 301–302, 2003.

[56] K. M. Kjer, “Use of rRNA secondary structure in phyloge-
netic studies to identify homologous positions: an example
of alignment and data presentation from the frogs,” Molec-
ular Phylogenetics and Evolution, vol. 4, no. 3, pp. 314–330,
1995.

[57] C. Notredame, E. A. O’Brien, and D. G. Higgins, “RAGA:
RNA sequence alignment by genetic algorithm,” Nucleic Acids
Research, vol. 25, no. 22, pp. 4570–4580, 1997.

[58] R. E. Hickson, C. Simon, and S. W. Perrey, “The performance
of several multiple-sequence alignment programs in rela-
tion to secondary-structure features for an rRNA sequence,”
Molecular Biology and Evolution, vol. 17, no. 4, pp. 530–539,
2000.

[59] X. Xia, “Phylogenetic relationship among horseshoe crab
species: effect of substitution models on phylogenetic anal-
yses,” Systematic Biology, vol. 49, no. 1, pp. 87–100, 2000.

[60] X. Xia, Z. Xie, and K. M. Kjer, “18S ribosomal RNA and tetra-
pod phylogeny,” Systematic Biology, vol. 52, no. 3, pp. 283–
295, 2003.

[61] J. D. Thompson, D. G. Higgins, and T. J. Gibson, “CLUSTAL
W: improving the sensitivity of progressive multiple sequence
alignment through sequence weighting, position-specific gap
penalties and weight matrix choice,” Nucleic Acids Research,
vol. 22, no. 22, pp. 4673–4680, 1994.

[62] M. A. Larkin, G. Blackshields, N. P. Brown, et al., “Clustal W
and clustal X version 2.0,” Bioinformatics, vol. 23, no. 21, pp.
2947–2948, 2007.

[63] T. Golubchik, M. J. Wise, S. Easteal, and L. S. Jermiin, “Mind
the gaps: evidence of bias in estimates of multiple sequence
alignments,” Molecular Biology and Evolution, vol. 24, no. 11,
pp. 2433–2442, 2007.

[64] G. Landan and D. Graur, “Heads or tails: a simple reliability
check for multiple sequence alignments,” Molecular Biology
and Evolution, vol. 24, no. 6, pp. 1380–1383, 2007.

[65] A. S. Schwartz, E. W. Myers, and L. Pachter, “Alignment met-
ric accuracy,” http://arxiv.org/abs/q-bio.QM/0510052, 2005.

[66] J. Zhu, J. S. Liu, and C. E. Lawrence, “Bayesian adaptive se-
quence alignment algorithms,” Bioinformatics, vol. 14, no. 1,
pp. 25–39, 1998.

[67] I. Holmes and W. J. Bruno, “Evolutionary HMMs: a Bayesian
approach to multiple alignment,” Bioinformatics, vol. 17,
no. 9, pp. 803–820, 2001.

[68] J. L. Jensen and J. Hein, “Gibbs sampler for statistical multiple
alignment,” Statistica Sinica, vol. 15, no. 4, pp. 889–907, 2005.

[69] M. Clamp, J. Cuff, S. M. Searle, and G. J. Barton, “The Jalview
Java alignment editor,” Bioinformatics, vol. 20, no. 3, pp. 426–
427, 2004.

[70] D. Sankoff and R. Cedergren, “Simultaneous comparison of
three or more sequences related by a tree,” in Time Wraps,
String Edits and Macromolecules: The Theory and Practice of
Sequence Comparison, D. Sankoff and R. Cedergren, Eds., pp.
253–264, Addison-Wesley, Reading, Mass, USA, 1983.

[71] J. Hein, “A new method that simultaneously aligns and re-
constructs ancestral sequences for any number of homolo-
gous sequences, when the phylogeny is given,” Molecular Bi-
ology and Evolution, vol. 6, no. 6, pp. 649–668, 1989.

[72] G. Lunter, I. Miklós, A. Drummond, J. L. Jensen, and J. Hein,
“Bayesian coestimation of phylogeny and sequence align-
ment,” BMC Bioinformatics, vol. 6, article 83, pp. 1–10, 2005.

[73] K. M. Wong, M. A. Suchard, and J. P. Huelsenbeck, “Align-
ment uncertainty and genomic analysis,” Science, vol. 319,
no. 5862, pp. 473–476, 2008.

[74] G. Lunter, A. Rocco, N. Mimouni, A. Heger, A. Caldeira, and
J. Hein, “Uncertainty in homology inferences: assessing and
improving genomic sequence alignment,” Genome Research,
vol. 18, no. 2, pp. 298–309, 2008.

[75] M. Nei and S. Kumar, Molecular Evolution and Phylogenetics,
Oxford University Press, New York, NY, USA, 2000.

[76] T. H. Jukes and C. R. Cantor, “Evolution of protein
molecules,” in Mammalian Protein Metabolism, H. N. Munro,
Ed., pp. 21–121, Academic Press, New York, NY, USA, 1969.

[77] M. Kimura, “A simple method for estimating evolutionary
rates of base substitutions through comparative studies of
nucleotide sequences,” Journal of Molecular Evolution, vol. 16,
no. 2, pp. 111–120, 1980.

[78] M. Hasegawa, H. Kishino, and T. Yano, “Dating of the
human-ape splitting by a molecular clock of mitochondrial
DNA,” Journal of Molecular Evolution, vol. 22, no. 2, pp. 160–
174, 1985.

[79] K. Tamura and M. Nei, “Estimation of the number of nu-
cleotide substitutions in the control region of mitochondrial
DNA in humans and chimpanzees,” Molecular Biology and
Evolution, vol. 10, no. 3, pp. 512–526, 1993.

[80] S. Tavare, “Some probabilistic and statistical problems on the
analysis of DNA sequences,” in Lectures on Mathematics in
the Life Sciences, vol. 17, pp. 57–86, American Mathematical
Society, Providence, RI, USA, 1986.

[81] Z. Yang, “Maximum-likelihood estimation of phylogeny
from DNA sequences when substitution rates differ over
sites,” Molecular Biology and Evolution, vol. 10, no. 6, pp.
1396–1401, 1993.

[82] Z. Yang, “Estimating the pattern of nucleotide substitution,”
Journal of Molecular Evolution, vol. 39, no. 1, pp. 105–111,
1994.

[83] N. Goldman and S. Whelan, “A novel use of equilibrium fre-
quencies in models of sequence evolution,” Molecular Biology
and Evolution, vol. 19, no. 11, pp. 1821–1831, 2002.
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