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Valorisation of Argan oil requires the precise identification of different provenances markers. The concentration of tocopherol is
regarded as one of the essential parameters that certifies the quality and purity of Argan oil. In this study, 39 Argan samples from
six different geographical origins (Safi, Essaouira, Agadir, Taroudant, Tiznit, and Sidi Ifni) from the central west of Morocco were
collected and extracted using cold pressing. The total tocopherol amount was found to range from 783.23 to 1,271.68 mg/kg.
Generally, y-tocopherol has the highest concentration in Argan oil. It should also be noted that the geographical origin was found
to have a strong effect on the amounts of all tocopherol homologues studied. Principal component analysis of tocopherol
concentrations highlighted a significant difference between the different provenances. The content of tocopherol has also been
found to be strongly influenced by the distance from the coast and altitude, whereas no significant effect was found regarding other
ecological parameters. The prediction ability of the LDA models was 87.2%. The highest correct classification was revealed in
coastal provenances (100%), and the lowest values were from the continental ones (71.4%). These results provide the basis for
determining the geographical origins of Argan oil production with well-defined characteristics to increase the product’s value and
the income of local populations. In addition, this study provides a very promising basis for developing Argan varieties with a high
content of tocopherol homologues, as well as contributing to the traceability and protection of Argan oil’s geographical indication.

1. Introduction

Argan (Argania spinosa (L.) Skeels) is an endemic plant that
represents the only species of genus Argania and the family
of Sapotaceae in North Africa. Currently, the Moroccan
Argan forest spans the fertile Souss Valley, the Anti-Atlas
mountain range, and the coastal regions between Safi and
Agadir [1]. This area exhibits high plant diversity and en-
demism [2]. The Argan forest was recognised in 1998 as a
UNESCO biosphere reserve (Man and the Biosphere

Reserve) [3], and it significantly contributes to the economic
and social development in Morocco and sometimes even
represents the only source of income for the local population
[4]. Argan kernels provide a precious oil that is rich in anti-
oxidant compounds, such as saponins and tocopherols [5],
as well as fatty acids [6] and sterols [7].

Vitamin E is a vitamin of eight isomers: four tocopherols
and four tocotrienols [8]. Tocopherols are the isomers with
the greatest biological activity [9]. For example, a-tocoph-
erol (5,7,8-trimethyltocol) is effective against ischemic liver
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cell damage thanks to its free radical scavenging properties
[10]. Moreover, y-tocopherol (7,8-dimethyltocol) has been
found to have an effect on various types of tumours, even
more powerful than a-tocopherol, f-tocopherol (5,8-
dimethyltocol), and J-tocopherol (8-methyltocol) [11]. To-
copherols and tocotrienols are present in fruits and plant
seeds [12]. Therefore, fixed oils are a major source of to-
copherols [13]. Several studies have compared tocopherol
levels in Argan oil and other oils such as olive oil and prickly
pear seed oil [14], The results showed that Argan oil has very
high concentrations of tocopherols, especially the y-to-
copherol homologue [15]. In general, the presence of tocols
prevents lipid oxidation and, hence, maintains the quality
and shelf life of oils [16].

Argan oil plays a potential role in the prevention of
several diseases [17], including cancer [18], and has lipid-
lowering and anti-oxidant properties [19]. These pharma-
cological properties can be attributed to its high content of
tocopherols, especially y-tocopherol [8]. Argan oil is richer
in linoleic acid than olive oil (5.4%-13.2% compared to
32.3%-34.1%, respectively) [6]. The total tocopherol content
is considered a purity criterion by the Moroccan 08.5.090
standard for Argan oil, with an established quantity that
should fluctuate between 600 and 900 mg/kg of oil [20].
Gharby et al. [21] reported that the tocopherol content
ranges between 675 and 871 mg/kg of oil, but a higher range
(687.4-1,068 mg/kg of oil) has been observed by Aithammou
et al. [22]. This variability in tocopherol concentration can be
attributed to many factors, such as the climate [23], variety
[24], extraction method [25], storage conditions [26], fruits
form [27], and fruits maturity [28].

The genotype has an important impact on oil yield and
composition [29]. In the case of apricots (Prunus armeniaca
L.), the genetic factor influences the composition of to-
copherol homologues [29]. Furthermore, the variability of
tocopherol composition in various seed oils recovered from
the by-products of the apple industry has been attributed to
cultivars [30]. Using SRAP and REMAP markers, strong
genetic differentiation has been found within Argan pop-
ulations [31]. A. spinosa forests have been considered as
“climax” [32]. This state of equilibrium has been reached by
spontaneous vegetation under the action of the natural
environment, excluding direct or indirect human action
[33].

The consumption of cold-pressed oils has increased in
recent years [34]. The global Argan oil market is expected to
grow at a revenue-based compound annual growth rate of
10.8% between 2020 and 2027 [35]. Such development re-
quires more control to protect the consumer and the pro-
ducer from fraud. In fact, several marketing and
promotional strategies aimed to relate food products to their
geographical origin. European Union legislation, for ex-
ample, allows the reservation of geographical designations
for food products, such as Protected Designations of Origin
(PDO) and protected geographical indications (PGI) [36].
The combination of chemical composition and chemometric
tools such as linear discriminant analysis (LDA) [37] and
partial least squares discriminant analysis (PLS-DA) [23] has
been used for determining authenticity and quality control
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of Argan oil. However, there is a lack of studies focussing on
the relationship between the tocopherol concentration in
Argan oil and geographical origin [22].

The aim of this study was to determine the tocopherols
concentration from six Moroccan provinces: Safi, Essaouira,
Agadir Ida Outanane, Taroudant, Tiznit, and Sidi Ifni, as-
sociated with the chemometric technique LDA, to classify
Argan oil according to its geographical origin. This may
constitute the basis for geographical origin certification that
helps protect the consumer and the producer from fraud and
increase the value of Argan oil in the world market. In
addition, it can provide a database for updating the
Moroccan standard on Argan oil.

2. Materials and Methods

2.1. Plant Material. Argan plants naturally reproduce by
seeding, which is the very reason for their great diversity.
However, this study focussed on the potential for industrial
production representative of a specific environment, very
close to that intended for industrial production by local
women’s cooperatives. To this end, a maximum of trees
contributed to the constitution of our batches of samples.
Therefore, Argan fruits from natural populations were
collected at full maturity from adult trees from six different
geographical origins in the central west of Morocco: Safi (for
the first time), Essaouira, Agadir, Taroudant, Tiznit, and Sidi
Ifni (Figure 1).

This area is characterized by a semiarid to arid climate
[1]. Temperature and rainfall data were collected from
different weather stations for the period from 1989 to 2019
(Table 1). A total of 39 samples were collected between
August and November 2018. After sun drying for two weeks,
20kg of fruit for each studied point was depulped and
crushed manually between two stones, yielding between 800
and 1,500 g of kernels for each sample. The kernels were then
tightly closed by vacuum to eliminate oxidation until the
extraction process. The moisture within the Argan kernels
was measured using the international standard ISO 665 to be
in the range from 3% to 5%.

2.2. Oil Extraction. To allow the extrapolation of the results
to potential production at the level of cooperatives and local
industries, the extraction method used was identical to that
used to produce Argan oil in Morocco. For this purpose,
unroasted kernels were cold-pressed using an oil press
(Komet CA59 G; IBG Monforts Oekotec GmbH Co. KG,
Monchengladbach, Germany). The screw speed was main-
tained at 30 rpm, and the temperature of the heated press
was fixed at 50°C. The temperature of the obtained oil was
20°C. Then, once the oil was decanted, it was preserved in
250 mL dark glass bottles in a refrigerator (at 4°C) filled with
nitrogen to avoid oxidation. The oil yield varied between
48.43% and 50.67%.

2.3. Physicochemical Quality Parameters. Free acidity
(expressed as percentage oleic acid), spectrophotometric UV
indices Ky, and Ky, peroxide value given as
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FiGgure 1: Altitude of sampling provenances and localisation of Argan samples.

TaBLE 1: Geographical parameters of the six sampled provenances of argan trees.

Provenance Code Sample size Latitude Longitude Altitude (masl) Temp eratlire min-max  Rainfall — Distance from coast
(°C) (mm/year) (km.a.c.f)

Safi SA 4 32°02'N 9°18'W 112 13.15-29.60 320.36 5.57
Essaouira ES 7 3059'N 9°36'W 138 13.50-26.40 292.17 19.77
Agadir AG 7 30°22'N 9°23'W 103 12.92-24.55 264.40 22.27
Taroudant TA 7 30726'N 8°33'W 592 11.42-31.20 210.37 106.86

Tiznit TI 7 29°41'N 9°19'W 497 12.70-26.31 205.47 62.54

Sidi Ifni SI 7 29723'N 9°56'W 349 13.44-28.70 155.92 21.95

Masl: meters above sea level; km.a.c.f: km as the crow flies.

milliequivalents of active oxygen per kilogram of oil (meq
0,/kg), and oil content (%) were determined according to
ISO 660 (2009) [38], ISO 3656 (2002) [39], ISO 3960 (2007)
[40], and ISO 659 (2009) [41], respectively.

2.4. Tocopherols Composition. According to ISO 9936 [42],
1g of Argan oil was dissolved in 25mL of isooctane/iso-
propanol (99:1, v/v). Tocopherols were determined using a
Shimadzu LC-10 high-performance liquid chromatography
system. The sample was first injected into a LiChrospher Si
60 column (L=250mm, ®=4.6mm id, and ¢=5um film
thickness), and then tocopherols were detected using an RF-
10AXL HPLC Fluorescence Detector (Shimadzu, Columbia,
MD, USA) at an excitation wavelength of 290 nm and an
emission of 330 nm. The eluent used was a 99:1 isooctane/
isopropanol (v/v) mixture, and the flow rate was set at

1.2mL/min. The tocopherol standards a-, -, y-, and
d-tocopherols (Sigma-Aldrich, Madrid, Spain) and Argan oil
samples were quantified simultaneously. The different
compounds of tocopherol were identified by comparing the
retention times with authentic standards and confirmed by
extrapolating the peak area of the individual tocopherol to
the pre-established specific tocopherol calibration curve.

2.5. Statistical Analyses. All statistical analyses were per-
formed using IBM SPSS Statistics version 21 (IBM Corp.,
Armonk, NY, USA) and R software version 3.6.2 (R
Foundation for Statistical Computing, Vienna, Austria).
One-way analysis of variance (ANOVA) was performed
followed by Tukey’s post hoc test to determine the statis-
tically significant differences between the means of to-
copherol concentrations from different provenances



(p <0.05). Pearson’s correlation heatmap was also assessed
to determine the relationship between the geographical
parameters and quantity of tocopherols. Furthermore,
principal component analysis (PCA) was performed to study
whether the means of those regions are significantly dif-
ferent. In addition, linear discriminant analysis (LDA) was
applied for creating predictive models that maximize the
discrimination of the predefined regions. The difference
between means was normalized by a measure of the within-
class variability. The statistical significance of each dis-
criminant function was evaluated by Wilk’s lambda.

3. Results and Discussion

3.1. Physicochemical Quality Parameters. The oil content
ranged between 50.94% in Agadir and 55.67% in Taroudant.
The results obtained for the oil content are in agreement with
the range obtained by Ait Aabd et al. [43] (51.83-57.50%).
The ANOVA followed by Tukey’s post hoc test confirmed
significant  differences between Argan provenances.
According to the Moroccan Normalization guidelines
SNIMA 08.5.090 [20], Argan oils extracted belong to the
extra virgin Argan oil category (Table 2). The lowest acidity
value was found in Agadir (0.15%). However, the highest
value was detected in Safi (0.26%). The spectrophotometric
UV indices K53, and K70 ranged between 0.94 and 1.05 and
0.14 and 0.17, respectively. Furthermore, the highest per-
oxide value was noticed in Sidi Ifni (2.13 meq O,/kg oil) and
lowest in Taroudant (1.46 meq O,/kg oil). The overall quality
parameters confirmed the high quality of Argan oil samples.

3.2. Tocopherols Composition. As shown in Figure 2, y-to-
copherol was found to be the predominant tocopherol in
Argan oil, followed by a-tocopherol and §-tocopherol
(y-tocopherol > a-tocopherol = §-tocopherol). y-tocopherol
represents 90% of the total tocopherols [44]. Compared to
the literature, similar results were obtained for mechanically
pressed unroasted Argan kernels from old trees [22]. The
results showed that -tocopherol is present in Argan oil but
in very low concentrations. Generally, the results obtained in
this study are similar to those of Taribak et al. [45]. It should
be noted, however, that 3-tocopherol has not been detected
in any of the studied oils, which might be attributed to the
extraction method [46]. The amounts of tocopherols
established by the Moroccan 08.5.090 standard [20] for extra
virgin Argan oil are 18-75mg/kg for a-tocopherol,
640-810 mg/kg for y-tocopherol, 54-110 mg/kg for J-to-
copherol, and 600-900 mg/kg for total tocopherol. All values
were within the established limits, except for y-tocopherol in
the samples from Safi, Essaouira, Agadir, and Sidi Ifni, which
exceeded 810 mg/kg. These provinces presented the coastal
Argan samples. Abbasi et al. [47] reported that the amount
of tocopherols is strongly affected by abiotic stress, especially
y-tocopherol that has an important role in protecting
polyunsaturated fatty acids from oxidation and consequently
increasing the seeds’ longevity [48]. The results obtained prove
that the current standard does not reflect the real performance
in terms of the concentration of tocopherols in Argan oil.
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Considering the geographical origins, ANOVA revealed a
high variability for the three tocopherol homologues. The
highest total tocopherol content was found in Safi
(1,271.68 mg/kg), followed by Agadir (1,167.93 mg/kg) and
Sidi Ifni (1,106.87 mg/kg). These values were confirmed by
the results obtained by Aithammou et al. [22] for the same
extraction method and age of trees. The lowest value was
obtained for the samples from Taroudant (783.23 mg/kg),
although this value remains very important. Kharbach et al.
[23] reported that the samples of Taroudant (865 mg/kg of
oil) have the lowest total tocopherol content, which is in line
with the results obtained for the same region. The value of
y-tocopherol was found to range from 1,120.75 mg/kg of oil
in Safi to 657.10 mg/kg of oil in Taroudant. This range agrees
with other results in the literature: 700.30-1,068 mg/kg of oil
[22], 664-802mg/kg [23], 531-756 mg/kg oil [6], and
545.9-701.1 mg/kg oil [49]. The value of a-tocopherol was
found to range from 84.59 mg/kg in Taroudant to 48.72 mg/
kg in Safi, with both regions exhibiting the lowest and
highest altitude (Table 1). The range of variability for
d-tocopherol was found to be between 102.21 mg/kg of oil in
Safi and 41.53 mg/kg of oil in Taroudant. These detected
values are consistent with the interval found by Aithammou
et al. [22] (36.42-132 mg/kg of oil) and Kharbach et al. [23]
(58.55-104.36 mg/kg of oil). According to El Kharrassi et al.
[14] compared to olive oil, Argan oil has the highest con-
centration of total and y-tocopherols, whereas the highest
concentration of a-tocopherol was observed in olive oil. In
addition, Gharby et al. [50] mentioned that Argan oil has the
highest concentration of a-and §-tocopherols compared to
cactus pear seed oil. As reported by Gornas et al. [29], biotic
factors (genotype) also affect the content of tocopherols in
fruit kernel oils, such as apple cultivars (Malus domestica
Borkh.), plums (Prunus domestica L.), and apricots (Prunus
armeniaca L.). However, Dolde, Vlahakis, and Hazebrock
[51] reported that the composition of tocopherols in oil
seeds, such as sunflower and soybean, is highly dependent on
environmental conditions rather than on genetic factors.

3.3. Relation between Geographical Parameters and
Tocopherols. Pearson’s correlation analysis (Figure 3)
revealed that the longitude, minimum temperature, and
rainfall have no effect on the tocopherol content. However,
distance from the coast was found to exhibit a strong positive
correlation with a-tocopherol and a strong negative cor-
relation with y-tocopherol, §-tocopherol, and total to-
copherols (correlation is significant at the 0.01 level). A
significant correlation was also found between altitude and
tocopherol homologues. Although latitude was found to
have a significant negative correlation with y-tocopherol and
total tocopherol, a significant positive correlation was ob-
served with a-tocopherol. The maximum temperature was
also found to have a significant correlation with a-to-
copherol. The geographical origin can affect the process of
producing effective substances, especially in climatic con-
ditions [52]. To date, few studies have been conducted to
investigate the interaction between climatic parameters and
tocopherol content in Argan oil. However, levels of
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TaBLE 2: Mean values and standard deviations of the oil content and quality parameters of Argan oil from six provenances.

Provenance Safi Essaouira Agadir Taroudant Tiznit Sidi Ifni g?;bg;?)
Oil content (% dry matter) 54.94+1.6b 53.43+0.68ab 5094+1.12a 55.67+0.41b 51.57+0.80a 55.22+0.36b —
Free fatty acid (%) 0.26 +0.02¢ 0.24 £0.03b 0.15+0.0la 0.20+£0.0lab 0.24+0.02b  0.20+0.01b <0.8
Kys, 1.05£0.07a  0.94+0.09a 1.14+0.05¢ 1.03+0.07a 0.98+0.04a 0.99+0.07a  <2.52
Ky70 0.18+£0.03a 0.15£0.02a 0.17£0.03a 0.17+0.0la 015+£0.02a 0.14+0.02a <0.35
Peroxyde value (meq O2/kg oil) 1.68+0.06ab  1.57+0.13a  1.97+0.06cd 1.46+0.04a 1.83+0.08bc 2.13+0.07d <15

Values are expressed as mean + SD. Different letters in the same line designate significant differences (p < 0.05). K>3, and K5: ultra violet specific extinction at

232 and 270 nm, respectively.
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F1GURE 2: Boxplot of: (a) a-tocopherol, (b) y-tocopherol, (c) §-tocopherol, and (d) total to copherolin argan oil samples collected in different
provinces (Safi: SA, Essaouira: ES, Agadir: AG, Taroudant: TA, Tiznit: T1, and Sidi Ifni: SI). Significant differences (p < 0.05) were expressed

by different letters.

y-tocopherol increased with average temperature and total
sunshine and decreased with total rainfall in flaxseed oil [53].
The total tocopherol of olive oil is also strongly affected by
altitude [54]. Other Argan oil compounds such as fatty acids
were influenced by altitude, latitude, and longitude
[37, 43, 55].

3.4. Principal Compound Analysis (PCA). Figure 4 shows a
score PCA plot for the 39 Argan oil samples obtained from six
provenances according to their tocopherol composition. The
first two principal components were found to be very sig-
nificant, explaining 93% of the total inertia. Although PC1
(Dim1) presented 81.8% of the total inertia, PC2 (Dim2)
presented 11.2%. PC1 allowed classifying the coastal sampled
locations on the left side of PCA. However, the most con-
tinental sampled provinces were plotted on the right side. On
the one hand, the coastal locations were characterized by high
concentrations of y-tocopherol, §-tocopherol, and total to-
copherols. On the other hand, a-tocopherol was the most
remarkable tocopherol homologue in continental Argan oil
samples. Hence, it can be concluded that y-tocopherol could

be used as a good marker of coastal Argan oils. In addition,
a-tocopherol can be used as a marker of the continental
provinces. The geographical origin has a high impact on
tocopherols concentration, showing a distinction between the
different studied provenances. This easy, rapid, and precise
technique can be used by laboratories to protect this precious
oil from fraud such as adulteration by other cheaper oils.
Furthermore, it can be combined with other analyses such as
fatty acids and phytosterol to enhance the protected geo-
graphical indication (PGI).

3.5. Linear Discriminant Analysis (LDA). LDA is a super-
vised method contrarily to PCA. It was performed to create
discriminant models for the classification of Argan oil
according to their geographical origin. Figure 5 shows the
LDA scatter plot for Argan oils from six provinces. The most
continental provinces were plotted on the left of function 1,
whereas the coastal origins are plotted on the right. A
distinct separation between the provinces was relevant, with
some overlap, notably between Tiznit and Taroudant, which
can be explained by the geographical parameter similarities.
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FIGURE 3: Heatmap of Pearson’s correlation coeflicient between tocopherol homologues and geographical parameters.
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FIGURE 4: Principal component analysis (PCA) on the tocopherols
amount of 39 samples from six different provenances (SA: Safi, ES:
Essaouira, AG: Agadir, SI: Sidi Ifni, TA: Taroudant, and TL Tiznit).

Table 3 presented three discriminant functions created
based on Wilks’ lambda values, which explained 100% of the
variance (Table 3); 85.7% of the total variance was explained
by function 1, 10.7% explained by function 2, and 3.6%
explained by function 3. The Wilks’ lambda values (Table 3)
for the functions 1, 2, and 3 were 0.02, 0.30, and 0.69, re-
spectively, with p-values 0.0001, 0.0001, and 0.007. The LDA
showed a good predictive ability, which can reach up to
87.2% for the geographical origin classification.

Discriminant models allowed a good prediction with an
accuracy of 87.2% (Table 4). Essaouira, Safi, and Sidi Ifni
presented the highest correct classification rate (100%)
followed by Agadir (85.71%). Taroudant and Tiznit pre-
sented the lowest classification rate (71.42%). According to
the results obtained by Elgadi et al. [37] using the LDA

Canonical Discriminant Functions

6
N %‘L.
(o]
g 9 Essdouira
5 04 Taroudant
g nit
=~ .
Sidi Ifni\Agadir
3
-6 -
-6 -3 0 3 6
Function 1
Code
® Safi ® Tiznit
® Essaouira ® Sidi Ifni
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FIGURE 5: Linear discriminant analysis based on the tocopherols
amount of 39 samples from six different provenances.

models based on fatty acids and isotope combination, the
classification rate fluctuate between 85.7% and 100%, which
was near to the obtained accuracy. Furthermore, the results
obtained by Miklav¢i¢ et al. [56] based on fatty acid profile
using OPLS-DA showed a similar rate (82%-100%). The
high accuracy confirms the performance of tocopherols in
the prediction of geographical origin.
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TaBLE 3: Discriminant functions elaborated based on the tocopherols composition.

. Wilks’ . 0 .o, Canonical
Functions lambda ? value Variance (%) Cumulative (%) correlation
Function 1=-0.70-0.07 x a-tocopherol + 0.01 x y-
tocopherol + 0.035 x §-tocopherol 0.020.000 8.7 85.73 0.95
Function 2 =-4.33 + 0.05 x a-tocopherol — 0.01 x y-tocopherol + 0.11 x §- 030 0.000 107 96.42 0.75
tocopherol
Function 3 =-14.36 +0.11 x a-tocopherol + 0.01 x y- 069  0.007 16 100.00 0.55

tocopherol + 0.01 x §-tocopherol

TaBLE 4: Performance of the LDA classification models for the geographical origin prediction.

Provenance of origin

Predicted origin

Agadir Essaouira Safi Sidi Ifni Taroudant Tiznit

Agadir 6 (85.71%) 1 (14.28%) 0.0 0.0 0.0 0.0
Essaouira 0.0 7 (100%) 0.0 0.0 0.0 0.0
Safi 0.0 0.0 4 (100%) 0.0 0.0 0.0
Sidi Ifni 0.0 0.0 0.0 7 (100%) 0.0 0.0
Taroudant 0.0 0.0 0.0 0.0 5 (71.42%) 2 (28.57%)
Tiznit 0.0 2 (28.57%) 0.0 0.0 0.0 5 (71.42%)
4. Conclusion Acknowledgments

The results obtained in this study highlight the impact of
the geographical origin on the a-tocopherol, y-tocopherol,
and J-tocopherol content. Pearson’s correlation analysis
showed that the longitude, minimum temperature, and
rainfall have no effect on the content of tocopherols.
However, distance from the coast, latitude, and altitude was
found to exhibit a strong correlation with the majority of
tocopherol homologues. PCA also revealed a distinction
between provenances and confirmed the relationship be-
tween the geographical origin and tocopherol concentra-
tion. In addition, a-tocopherol and y-tocopherol could
present promising markers to protect the geographical
origin of Argan oil. The prediction ability of the LDA
models was 87.2%. Our study provided interesting results
for the variability of tocopherol homologues concentration
in six principal production areas. This technique is easy, not
expensive, and rapid for laboratories to control the fraud
related to geographical origin. These results present a
preliminary basis for determining the geographical origins
of Argan oil and highlight the real tocopherols potential in
Argan oil that varies from 1,271.68 to 844.05 mg/kg of oil.
Further future studies more exhaustive are planned to
confirm the obtained results. In addition, more studies
focussing on biotic factors (genotype/variety/cultivar) are
necessary to have a clear overview of tocopherol homo-
logues variation, which is very useful particularly for va-
rietal selection objectives.
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The separation and simultaneous quantitation of diastereomers of DL-«-tocopherol, eight tocol forms, and retinols (trans and cis)
have been conducted by reversed-phase liquid chromatography followed by solid-phase extraction. A chiral silica stationary phase
modified with polysaccharide derivative on the monodisperse macroporous silica gel (Unichiral OD-5H column,
150 mm x 4.6 mm, 5 um, NanoMicro Technology Co., Ltd.) was employed for eluting each target compound. Instead of con-
ventional solvent extract, a green and eco-friendly solid-phase extraction column, packing with nonpolar polystyrene
divinylbenzene, was optimized in terms of capacity and solvent used in steps. Validation of the method was examined and
confirmed to be satisfactory, with excellent linearity regression (> 0.9999), acceptable accuracy (74.66%~112.92%), and precision
(0.20%~10.52%) results. Limit of detection ranged from 0.05 mg-kg_1 (retinols) to 0.4 mg-kg_1 (tocols). The method was checked
by infant formula reference material SRM 1849a as well, which illustrated good agreement of mass fraction with certified value and

enriched the important isomer data.

1. Introduction

Measurement of vitamins in foods and supplements is
important for monitoring and controlling nutrient intakes of
various populations, especially for specific groups (like el-
ders and infants). Excess and deficient intakes of fat-soluble
vitamins could cause a disorder of protein metabolism [1],
immune system, version and regulation of cell growth, and
differentiation [2].

Vitamin A belongs to the fat-soluble vitamin group that
helps maintain normal reproduction, vision, and immune
function. It comes in several forms (like retinol, retinal,
retinoic acid, or retinyl ester). Isomers of vitamin A have
different activities. All-trans-retinol is defined to the 100%
reference activity level, while 13-cis-retinol and 11-cis are
75% and 30% active, respectively, and the other isomers
have activities lower than 20% [3]. In general, all-trans and

13-cis retinol are the most common forms found in foods
and supplements. However, the determinations of vitamin
A always focus on total vitamin A or total retinol only,
which could lead to underestimation of vitamin A when
cis-isomers are also present.

Vitamin E, another main group of fat-soluble vitamins,
plays an important role in animal reproduction, antioxi-
dant, and anticancer activities. Consisting of tocopherols
and tocotrienols («a-, 3-, y-, and é-form), both natural and
synthetic forms of vitamin E are used as additives in food
and food supplement. For the sake of different presentence
of 2, 4, and 8 asymmetric carbon atoms in tocopherol
molecule, the natural a-tocopherol (D-a-tocopherol) and
synthetic tocopherol (DL-a-tocopherol) result in eight
stereoisomers [4, 5]. Natural D-a-tocopherol is the most
effective assigned 1.491IU vitamin E equivalent, whereas
DL-a-tocopherol (all-rac) was assigned 1.10IU vitamin E
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equivalent [6]. Besides, -, y-, §-tocopherol and tocotrienol
congeners act out significantly different activities. Conse-
quently, the distinction of a-tocopherol forms and vitamin
E isomers is important for quality control and analysis.

Liquid chromatography is the method most frequently
employed for the analysis of retinol and tocol isomers.
Normal-phase liquid chromatography (NP-LC) has suc-
cessfully been applied to separations of isomers of retinol
[7-9], and tocol isomers, which has been reviewed by
Ruperez et al. and Fanali et al. [5, 10]. When saponification is
not essential, the NP-LC method could conduct direct
quantitative of target compounds through sample extraction
and elution with hexane. However, considering robustness
of the chromatographic columns, reproducibility of chro-
matographic peak characteristics, and reduction of volatile
and hazardous solvents, reverse-phase liquid chromatog-
raphy (RP-LC) offers greater suitability, especially in the
aspect of multiple vitamin isomers separation. Silica-C30,
pentafluorophenyl (PFP), and high-density C18 stationary
phase with polymeric stationary phase have been employed
in RP-LC for the separation of - and y-tocols [4, 11, 12],
while it has been a bit rarely used for retinol isomers.

To distinguish the natural tocopherol (D-«-tocopherol)
in a product, it is only necessary to demonstrate a single peak
using the chiral stationary column. To date, several publi-
cations have been reported to separate a-tocopherol ste-
reoisomers, based on the three chiral centers in the phytyl
tail. With different polymeric bonding modified chiral
stationary phases, some scientific researches have been done
to separate isomers of DL-a-tocopherol into more than two
peaks [4, 13, 14]. Although there is rarely a report showing
the differentiation between diastereomers of vitamin E and
retinol congeners simultaneously, the differentiation by RP-
LC would be usefully considered for the sake of reversed-
phase mode advantages and versatilities.

Solvent extraction is a classical method in vitamin A and
vitamin E analysis, as in the case of the standardized method
in authority [15-17]. Except for tedious steps, those methods
are not satisfied with the economy and environmental
friend. For their peculiarities, extraction methods, including
solid-phase extraction (SPE), supercritical fluid extraction,
and pressurized liquid extraction, have been developed to
meet the scientific trend of simplification, speediness,
wastage reduction, costs, and safety. Among them, SPE is a
rapid, effective, and versatile technique and has been
employed in various matrices for fat-soluble compounds
extraction, such as the concentration of tocols in rice brans
[18], and tocols and carotenoids in cereal samples [19]. To
the best of our knowledge, there is no study to describe
simultaneous extraction of vitamin E congeners and retinols
(cis and trans isomers) in infant formula by SPE.

The present study aims to develop and validate an ac-
curate, precious, sensitive, and eco-friendly RP-LC method
for the determination of tocols (tocopherols and toco-
trienols) and retinol (cis and trans) isomers simultaneously
using polysaccharide derivative modified silica stationary
phase (Unichiral OD-5H column, 150 mm x 4.6 mm, 5 ym),
which was proven to be sufficient for the distinction of the
DL-a-tocopherol and D-a-tocopherol. A green sample
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preparation technique was employed instead of solvent
extraction and was applied in infant formula samples
successfully.

2. Materials and Methods

2.1. Chemicals and Materials. All-trans-retinol, 9-cis-retinol,
and 13-cis-retinol were obtained from Toronto Research
Chemicals (Irvine, CA, USA). D-Tocopherols (D-a-, -, y-,
and §-tocopherol) and tocotrienols (D-a-, -, y-, and
d-tocotrienol) were obtained from Supelco (Bellefonte, PA,
USA), as well as DL-a-tocopherol. Stock solutions
(1 mg-mL_1 of all-trans-retinol, 100 ‘l,tg-mL_1 of cis-retinol,
20 mg-mL™" of DL-a-tocopherol, 5 mg-mL™" of tocopherols
and tocotrienols) were prepared in anhydrous alcohol and
stored in brown glass bottles at —20°C. Their concentrations
were evaluated spectrophotometrically based on their spe-
cific absorption coefficients: a-tocopherol =75.8 at 292 nm,
p-tocopherol=89.4 at 296nm, y-tocopherol=91.4 at
298 nm, J-tocopherol =87.3 at 298 nm, a-tocotrienol =91.0
at 292 nm, B-tocotrienol = 87.5 at 295nm,
y-tocotrienol =103.0 at 298nm, &-tocotrienol=83.0 at
292 nm, all-trans-retinol = 1830 at 325 nm, and 13-cis-reti-
nol=1686 at 328 nm [15, 20]. Take one milliliter of each
stock standard solution and makeup to 100mL with
methanol in a 100-mL volumetric flask. Working solutions
were prepared by methanol in available dilution times.

HPLC grade of methanol (MeOH) and acetonitrile
(ACN) were purchased from Merck (Darmstadt, Germany).
Ultrapure water was obtained from Millipore (Bedford, MA,
USA). All other reagents were of analytical grade and were
purchased from local suppliers. The packings with poly-
styrene divinylbenzene (PS-DVB) SPE cartridges in three
brands were evaluated, SelectCore PSN from NanoMicro
Technology Co., Ltd. (Suzhou, China), Bond Elut Plexa from
Agilent Technologies, Inc. (CA, USA), and Welchrom PS/
DVB column from Welch Technologies Shanghai Co., Ltd.
(Shanghai, China). The infant powder matrix sample was
purchased and information was collected from a local
supplier.

2.2. Instrumentation. LC system was composed of I-Class
Waters Acquity™ UPLC with a fluorescent detector (Large
volume flow cell), a photo-diode array detector, and a 20-
uL sample loop. The chiral column, 150 mm X 4.6 mm inner
diameter, 5um particle size, Unichiral OD-5H column
(NanoMicro Technology Co., Ltd, China), which was
packed with polysaccharide derivative on the surface of
spherical silica stationary phase, was conducted at 35°C.
The two-component mobile phase (A-water, B-75% ACN/
25% MeOH) was delivered at a flow rate of 1.2 mL-min ™" as
the following time table: 0-23 min, 75% B; 23-32.5 min,
75%~80% B; 32.5-35 min, 80%~100% B; 35-39 min, 100%
B, 39-39.5min, 100%~75% B; total run time was 45 min.
Tocopherols and tocotrienols were detected with fluores-
cence at 294 nm excitation and 328 nm emission, while
retinols were detected with a photo-diode array detector at
328 nm.
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2.3. Method Validation. The established RP-LC method was
validated in an aspect of specificity, linearity, range, limits of
detection (LOD), limits of quantification (LOQ), precision, and
accuracy. The linearity of each analyte was evaluated by cal-
culating the slope, intercept, and correlation coefficient of each
calibration curve. The LODs and LOQs were determined by
spiking various low concentration levels and determined as the
lowest concentrations that produce chromatographic peaks at a
signal-to-noise ratio (S/N) of 3 and 10, respectively. Accuracy
and precision of the method were conducted by adding three
levels of standard working solution to infant formula sample in
six parallel levels, whereas spiking concentrations were based
0.75-, 1.5-, and 3-folds on the content of analytes in infant
formula sample (which is mainly calculated based on the
content of D-a-tocopherol). The selectivity of the method was
analyzed by comparing the chromatograms of analyte-free
samples and the spiked ones. Furthermore, the method was
validated and applied for an infant/adult nutritional formula
SRM 1849a of reference material supplied by the National
Institute of Standards and Technology (NIST).

2.4. Sample Preparation. According to significantly different
uniformity of dry and wet blended powder samples, sample
homogenization was conducted as follows: transfer 20 g of
dry blended/nonhomogeneous infant formula powder
samples, accurately weighed, to a 250-mL bottle. Dissolve in
warm water (about 50-60°C) until no obvious granule, cool
down, and make up to 100g with water. Transfer 5g
reconstituted sample to a screw-top centrifuge tube. For wet
blended/homogeneous powder samples, transfer 1.0g to a
screw-top 50 mL centrifuge tube. Add 5mL warm water of
approximately 50°C and shake to dissolve [21].

For extraction, samples were submitted to a modified
saponification procedure as described in mandate stan-
dardized method [17], with 0.2 g ascorbic acid, 6 mL ethanol
containing 0.1% butylated hydroxytoluene (BHT), and 3 mL
50% potassium hydroxide for 30min at 80°C constant
temperature oscillation water bath. The tube was placed in
an ice bath to cool down. Then onefold saponification so-
lution bulk of the water was added. The test tube was
centrifuged and the supernatants were loaded to SPE car-
tridge. To avoid the destruction of labile vitamins, all sa-
ponification work was carried out under subdued light.

The total of the above supernatants was passed through
PS-DVB cartridges, which were conditioned with 3 mL of
methanol and 3 mL of water. After washing with 5mL of
10% aqueous methanol solution repeated twice, retained
constituents were eluted with 7.5mL of ACN/MeOH mix-
ture (75/25, v/v). Making up to 10 mL by water, the lotions
were filtered and injected into the HPLC column. All
measurements were performed in triplicate. The results of all
measurements are expressed as means + SD.

3. Results and Discussion

3.1. Separation of Asymmetric a-Tocopherol and Retinol
Isomers. The first and crucial study was carried out here to
pick up the analytical column and address the optimization

of the mobile phase. Different stationary phase columns
were considered, as alkyl-bonded C30 silica, high-density
C18 stationary phase with polymeric bonding, and PFP
column were reported to separate 3 and y tocol isomers. In
an aspect of retinols, few pieces of literature were discussed
about the RP-LC method for trans and cis isomers sepa-
ration. In the present study, C30 and PFP stationary phases
were proven to be of satisfying performance for the sepa-
ration of trans and cis retinols, while both of them could not
distinguish DL-a-tocopherol and D-a-tocopherol. Normal
C18 stationary phase could not be used for the separation of
p and y tocol isomers. According to previous reports, chiral
stationary phases were available for asymmetric a-tocoph-
erol. In this study, a chiral silica stationary phase modified
with polysaccharide derivative on the monodisperse mac-
roporous  silica gel (Unichiral OD-5H column,
150 mm x 4.6 mm, 5ym) was tested. Methanol and aceto-
nitrile were primarily examined as mobile phases. Starting
isocratic elution with methanol, the overlapping peak of
d-tocopherol and y-tocotrienol was observed, as well as the
longer retention times of all analytes. With acetonitrile
solvent, the elution was so quick that the complete sepa-
ration of trans and cis retinols could not be achieved.
Different proportions of these two solvents were tested
consequently. The best separation was conducted by the
gradient elution system started with 75% of ACN/MeOH
(75/25, v/v) mixture. Under optimization conditions, those
compounds were separated sufficiently by the Unichiral OD-
5H column and the whole elution lasted less than 40 min.
Figure 1(c) illustrates that there would be two peaks in DL-
a-tocopherol standard solution, while it would be only one
peak in the D-a-tocopherol standard, which would be
employed to distinguish the a-tocopherol form in samples.

3.2. Optimization of SPE Parameters. For disadvantages of
solvent extraction in long extraction time with a lot of toxic
solvents consumption and tedious steps, several environmental
extraction methods have been developed for the release of
tocols depending on the characteristics of the samples. In this
study, a green SPE method was established and optimized,
including the choice of sorbent, wash, and eluent solvent.
The simultaneous extraction of tocols and retinols was
more complicated. A commercial nonpolar polystyrene
divinylbenzene (PS-DVB) packing column was taken on
researchers’ interest based on its advantage of high-
throughput assays, alkali resistance, and strong hydropho-
bicity. Bond Elut Plexa column (500 mg, 6 mL), Bond Elut
Plexa column (200mg, 6mL), SelectcCore PSN column
(200mg, 6 mL), and Welchrom PS/DVB column (200 mg,
6mL) were compared and illustrated in Figure 2. The
simulated saponification extract solution consists of avail-
able tocols and retinols standards mixture, and 40 % po-
tassium hydroxide in ethanol solution. Figure 2 illustrates
that different brand packing columns showed different re-
tention capabilities for analytes. There was no significant
difference between the capabilities of SelectcCore PSN and
that of Welchrom PS/DVB. Bond Elut Plexa columns
demonstrated fewer capacities for partial analytes, especially
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FIGURE 1: Typical chromatograms of (a) tocopherols and tocotrienols in fluorescent detector and (b) retinols in photo-array detector: (A)
presents all analytes in mixture standard solution, (B) presents analytes in matrix extraction, (c) presents peaks of D-a-tocopherol (C) and
DL-a-tocopherol (D) in the relative standard solution, (d) presents chromatograms of components in SRM 1849a, (E) retinols in photo-
array detector, (F) tocopherols and tocotrienols in fluorescent detector.

200 mg size column. And the speed of extracts passed by For cleaner samples and reducing ion suppression, the
Bond Elut Plexa column (500 mg, 6 mL) was much slower ~ washing solution was optimized. Different percentages of
during the loading step. Thus, both of SelectcCore PSN  organic solution (10 mL of 0%, 2%, 5%, 10% methanol so-
(200mg, 6mL) and Welchrom PS/DVB (200 mg, 6 mL) lution, and 40% ethanol, respectively) were compared and
could be chosen in the following steps. the results showed 10% methanol solution was the best with
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retinol; 13-cis: 13-cis-retinol; all-trans: all-trans-retinol).

higher than 80% recoveries of all analytes. Recoveries of
d-tocols were lower than 70% when 40% ethanol solution
was used for washing, which explicated a higher organic
washing solution was undesirable. In the elution step, 7.5 mL
of ACN/MeOH mixture (75/25, v/v) was necessary to
provide high recoveries of analytes, which ranged from
90.25% to 103.3% for tocotrienols, 89.54% to 98.36% for
tocopherols, and 93.13 to 116.03% for retinols.

Besides being satisfied with the simulated saponification
solution, it would be available for real infant formula samples.
To confirm the SPE conditions, a mixture of several different
brands of infant formula samples was conducted for the sake
of enriching tocols and retinols instead of spiking standards.
Also, it is more economical and effective to investigate the
purification ability and applicability of the SPE method to
potential impurities. The results were evaluated by each
compound content in the mixture sample. In practice, there
was no difference in washing and eluting steps between
simulation solution and mixture infant formula sample, ex-
cept the loading step. When loading sample saponification
extract directly, the contents of §-tocols would be half of that
from the loading sample with a onefold volume of water. This
is matched with the simulation extract recoveries obtained
from 40% ethanol used as a washing solution. The high
percentage of ethanol in saponification extract would cause
less reservation of analytes. Onefold bulk of the water was
added to decrease the percentage of organic solvent.

3.3. Analytical Characteristics of the Method. The typical
chromatograms of analytes extracted from the mixture
infant formula sample and standards solution are presented

in Figures 1(a) and 1(b), as well as DL-a-tocopherol and
D-a-tocopherol standard solution (Figure 1(c)). The sep-
aration of each retinol and tocol compound exhibited good
specificity. No unidentified peaks in the selected samples
interfered with the analytes.

The linearity calculation was based on the six increasing
concentrations of the standard solution of each isomer.
Ranging from 0.01 yg-mL " to 25 ug-mL", all of retinols and
tocols compounds showed good linear regressions
(r>0.999) as displayed in Table 1, which allowed acquiring
reliable and effective data for infant formula samples and
relative modified products with low and high contents of
vitamin E and retinols. The LODs and LOQs, from 0.05 mg/
kg to 0.4mgkg™', and from 0.15mgkg " to 1.2mgkg ",
respectively, were reported here matched with small
amounts of analytes in infant formula samples, which re-
ferred to the sensitivity of the instrument.

Accuracy and precious constructed for the spiked in-
fant formula sample with approximate standard concen-
tration, prepared as described in Section 2.4, are presented
in Table 2. It is noticed that the results performed excellent
repeatability and satisfactory precision, with RSD values
lower than 11%, and mean recoveries were between 74.66%
and 112.92%.

Finally, the reliability of the method was further
checked by using the reference material SRM 1849a. The
results obtained are listed in Table 3 and illustrated in
Figure 1(d). Figure 1(d) displays the variety of compo-
nents in SRM 1849a, containing cis and trans retinols, and
four isomers of tocopherols (a-, -, y-, and 6-), compared
with NIST official document report. The form of a-to-
copherol is D-a-tocopherol mainly, for the sake of one
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TaBLE 1: Parameters of the RP-LC method for determination of vitamin E and retinol isomers.

Analyte RT (min) Calibration curve r LOD (mg kg’l) LOQ (mg kg’l) Range (ug mL™)
All-trans-retinol 6.53 y=10.0042x - 3.00 0.9999 0.05 0.15 0.1~5
13-cis-retinol 7.09 y=10.0046x-0.36 1.0000 0.05 0.15 0.01~0.5
9-cis-retinol 5.97 y=0.0041x-1.43 1.0000 0.05 0.15 0.01~0.5
DL-a-tocopherol®  33.34/35.10  y=0.0006x — 74.28 0.9998 0.4 1.2 2~100
D-a-tocopherol 33.34 y=10.0006x-119.01 0.9998 0.4 1.2 0.5~25
D-f-tocopherol 31.93 y=0.0002x - 10.63 0.9999 0.4 1.2 0.5~25
D-y-tocopherol 30.84 y=0.0001x +49.20 0.9999 0.4 1.2 0.5~25
D-4§-tocopherol 27.99 y=0.0001x+10.72 0.9999 0.4 1.2 0.5~25
D-a-tocotrienol 26.92 y=0.0006x + 108.41 0.9999 0.4 1.2 0.5~25
D-f-tocotrienol 24.32 y=0.0002x + 7.62 0.9996 0.4 1.2 0.5~25
D-y-tocotrienol 22.29 y=0.0002x +47.58 0.9999 0.4 1.2 0.5~25
D-4-tocotrienol 18.30 y=0.0001x-12.00 0.9999 0.4 1.2 0.5~25

@ Two ideal peaks appeared in retention time (RT) of 33.34 min and 35.10 min, within the approximate peak area.

TaBLE 2: Accuracy and precious in spiked infant formula samples (n=6).

Analyte Blank® (mg kg™) Spiking level 1® Spiking level 2 Spiking level 3
Recovery (SD) % RSD% Recovery (SD) % RSD% Recovery (SD) % RSD%
All-trans-retinol 2.25 (0.10) 95.31 (3.46) 3.63 82.49 (3.18) 3.85 82.54 (3.21) 3.89
13-cis-retinol 0.74 (0.10) 74.66 (2.72) 3.64 95.12 (9.80) 10.30 98.63 (9.61) 9.74
9-cis-retinol 0.39 (0.10) 112.92 (5.71) 5.05 96.40 (6.27) 6.50 97.23 (4.38) 4.51
DL-a-tocopherol 114.19 (2.02) 103.22 (4.19) 39 91.34 (2.59) 2.86 85.70 (1.07) 1.25
D-a-tocopherol 69.85 (2.33) 104.12 (6.20) 5.68 93.35 (2.65) 2.84 87.24 (0.84) 0.97
D-p-tocopherol 1.26 (0.15) 92.22 (1.41) 1.53 89.29 (1.49) 1.67 91.62 (0.59) 0.65
D-y-tocopherol 23.14 (0.92) 92.70 (9.75) 10.52 90.93 (5.28) 5.81 90.90 (3.57) 3.92
D-4§-tocopherol 10.42 (0.47) 81.15 (6.67) 8.22 84.14 (4.28) 5.08 83.16 (2.24) 2.69
D-a-tocotrienol 2.42 (0.00) 76.38 (4.03) 5.28 90.31 (2.69) 2.97 89.53 (2.70) 3.02
D—ﬁ-tocotrienol ND 109.38 (9.95) 9.10 97.18 (4.21) 4.33 95.35 (2.90) 3.05
D-y-tocotrienol 1.07 (0.00) 79.81 (0.16) 0.20 82.03 (4.49) 5.47 83.83 (1.90) 2.27
D-é-tocotrienol 0.78 (0.00) 82.98 (3.38) 4.07 85.15 (1.00) 118 85.92 (1.16) 1.35

@ND represents mass fraction of the analyte in sample was lower than LOD. ®Spiking concentrations were based 0.75-, 1.5-, and 3-folds on the content of
analytes in infant formula sample, which was mainly calculated based on the content of D-a-tocopherol.

TaBLE 3: Retinol and vitamin E isomer contents in certified reference materials (SRM 1849a).

Vitamin A (mg kgfl)

All-trans-retinol 13-cis-retinol 9-cis-retinol

Total®

Vitamin E (mg kgfl)(b)

D-a-tocopherol B-tocopherol y-tocopherol 6-tocopherol

Content 591+0.13 1.80+0.05

0.81+0.04 7.71+0.14

221+4 5.59+0.36 141 +4 76.1+2.1

Certified value

7.68 +0.23 mgkg " retinol equivalents, total (cis + trans) 219 + 16 mgkg " a-tocopherol equivalents, including natural
retinol without any biological activity correction

a-tocopherol and added a-tocopheryl acetate

@The total listed here is equal to all-trans-retinol and 13-cis-retinol without any biological activity correction. The total is equal to 8.52 +0.18 mgkg . If
calculating all cis and trans retinols without any biological activity correction. ®Mass fractions of tocotrienols were detected lower than LODs in SRM 1849a.

peak, appeared in relative retention time. Table 3 shows
the mass fraction of total (cis and trans) retinols was a
little bit higher than the certified content, whereas the
total of all-trans and 13-cis retinols was in agreement.
With respect to vitamin E, the result of D-a-tocopherol
was in the range of assigned value, and the contents of y-
and J-tocopherols were also abundant. Such data con-
firmed the efficacy of the methodology and the extraction
procedure. And what is more, it is necessary to identify
each isomer of retinols and tocols compound in infant
formula when evaluating biological activity and estimate
the equivalent by rule and line.

4. Concluding Remarks

The optimized RP-LC method offers advantages over pre-
vious literature, such as simultaneous quantitation of variety
analytes, quicker distinction of a-tocopherol form, and
estimation of common retinol isomers. The choice chiral
chromatographic column was recommended to utilize in
routine practice for the relatively low cost and available
effective time. For the trend of quicker, simpler, cheaper,
rugger, and safer requests in sample preparations, the SPE
method takes place of the conventional solvent extraction
method. Although the sorbent (PS-DVB) in the packing



column is not a novel material, it is the first time to be
employed in vitamin E and retinols concentrated.
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Tocols are present in various foods, mostly in fruits and in plant seeds. Edible oils are the most important natural dietary sources of
tocopherols and tocotrienols, collectively known as tocols. Tocopherols and tocotrienols are considered beneficial for their
antioxidant effect which impacts on prevention of different health conditions. This perspective is addressed to give an updated
picture of the tocol occurrence in foods. Moreover, the current state of the art of tocols in updated databases is explored and

commented outlining their importance and future trends.

1. Introduction

Tocols (tocopherols and tocotrienols), as shown in Figure 1,
are monophenols obtained from 6-hydroxy-2-methyl-2-
phytylchroman, which are applied as food additives in the
food and pharmaceutical industries [1]. Some of the chemical
characteristics of the tocols include their solubility in poly-
ethylene glycol, propylene glycol, chloroform, acetone, sur-
factants, oils, and ethanol. They are not water soluble, while
they are resistant to heat, and acid-stable, although they are
instable when exposed to alkali, light, and oxygen [2].

The chemical structure of tocopherols and tocotrienols is
different so that tocopherols (&, 8, y, and ) contain a
chromanol ring and a 16-carbon phytyl side chain in their

structure with methylation at three positions of 5, 7, and 8 in
the chromanol ring of the a-tocopherols, at two positions of
7 and 8 in the chromanol ring of the y-tocopherols, and the
positions of 8 in the chromanol ring of the §-tocopherols.
Simultaneously, the same substitution of methyl groups can
be seen in the tocotrienols on the chromanol ring with
unsaturation in the 16-carbon side chain having double
bonds at the positions of 3'-, 7'-, and 11’ [3].

There are reports on different functional features of
tocopherols and tocotrienols, including anticancer [4], an-
tiobesity [5], antidiabetic [6], and cardioprotective [7] ef-
fects. Moreover, the functions of tocotrienols and
tocopherols are different, and a recent study indicated a
more effective activity of the tocotrienols than that of the
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FiGuRre 1: Structure of main tocols.

a-tocopherol in the control of chronic disorders [8]. The
results of a review article on noncommunicable diseases
revealed the inhibition of hormonal changes, oxidative
stress, inflammatory response, and 3-hydroxy-3-methyl-
glutaryl-coenzyme A reductase following the administration
of tocotrienols, wherein the efficiency of tocotrienols was
higher than that of tocopherol. The tocotrienols alone had a
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better influence on the treatment of diseases rather than the
combination of tocotrienols and tocopherol [9]. Idriss et al.
[10] found an in vitro anticancer activity for beta-toco-
trienol, which was related to the induction of p53-inde-
pendent apoptosis and the stop of the cell cycle G1 phase,
and a higher anti-tumorigenic potential for beta-tocotrienol
when compared with gamma-tocotrienol was also noted.
The administration of tocotrienol-rich fraction (200 mg/kg)
for about three months showed a positive impact on the
myocardial antioxidative system in rats via new GSH syn-
thesis [11]. The administration of gamma-tocotrienol re-
duced adipose tissue macrophages’ recruitment and
systemic and adipose inflammation in mice after a month,
confirming the antiobesity activity [12].

A study aimed to investigate pharmacokinetics’ impact of
d-tocotrienol at different high concentrations (750-1000 mg/
d), the results of which showed Tmax value of 3—4 hours for all
the isomers of tocotrienols and tocopherols, apart from
a-tocopherol. According to this finding, it can be concluded
that such high concentrations of tocotrienols are safe for
human use especially as therapeutic agents in the manage-
ment of some disorders, e.g., Alzheimer’s disease, diabetes,
and cancer [13]. Liang et al. produced a-tocopherol succinate
modified chitosan (CS-TOS) and then encapsulated it using
paclitaxel (PTX) to obtain micelles [14]. They could improve
the performance and safety of PTX-loaded CS-TOS micelles
via prolonged systemic circulation time and slow down the
elimination rate than those of Taxol formulation. Based on the
results from an in vivo study, the Ul4 tumor growth was
significantly inhibited by PTX-loaded polymeric micelles,
mitigating the toxicity of formulation [14].

2. Distribution of Tocols in Foods: Occurrence

Tocols are present in various foods, predominantly in fruits
and plant seeds (see Table 1). Bastias-Montes et al. con-
ducted a study to identify the tocols using the HPLC
technique and reported the presence of f-sitosterol, toco-
trienols, and «, f, y, and é-tocopherols from seed oil of
Magqui berry (Aristotelia chilensis) fruit [15]. In a study, the
two methods of direct injection and solid-phase micro-
extraction (SPME) were combined with gas chromatogra-
phy-mass spectrometry (GC-MS). The results detected
a-tocopherol (LOD=0.001 g mL™" and LOQ=0.004 ug
mL™") and a-tocopheryl acetate (LOD = 0.002 ug mL™" and
LOQ=0.006 g mL™"), as well as the relative standard
derivation (RSD) percent on days 4.8 and 8.8 in vegetables
such as curly kale, celery, carrot, and onion [16]. The to-
copherols were detected in vegetable oils using a novel flow-
through column electrolytic cell for supercritical fluid
chromatography system, the results of which reported 3.55
RSD percent [17]. Mezni et al. found a- and y-tocopherols at
the concentrations of 119 mg/kg and 23 mg/kg of oil, re-
spectively, using HPLC analysis [18]. In a recent study, the
yield of edible oil was 8.6+ 1.2 g 0il/100 g of guava seeds by
supercritical CO, extraction, and then the y-tocopherol with
a concentration of 82.6 + 3.7 mg/100 g oil was detected by the
GC-MS method [19]. One of the most important products
derived from fruit is Hass avocado (Persea americana Mill.)



Pitaya, jackfruit, durians, mango, and

Journal of Food Quality 3
TaBLE 1: Levels of tocols in different foodstuff.
Compound Content Reference
Raw foods
Macauba fruits a-Tocopherol 4373 ug/100 g [29]
Cauliflower a-Tocopherol and y-tocopherol 23.47 mg/100 g and 74.55mg/100 g [30]
Yellow passion fruit (Passiflora edulis) y-Tocopherol 0.045mg/100 g [31]
Broccoli Tocopherols 286 uglg [21]
]

papaya fruits a-Tocopherol

Oat, corn, spelt, buckwheat, wheat, rye,

0.45, 0.20, 0.36, 0.16, and 0.26 mg/100 g DW [32
5.5, 16.2, 15.8, 14.7, 12.8, 10.7, and 9.1 mg/

and rice bran Total tocochromanol 100g DW [33]
Annatto seeds y-Tocotrienol, total tocotrienols 3.7 and 28.9g/100 g extract [34]

. a-Tocotrienol, y-tocotrienol,
Barely grain a-tocopherol, and y-tocopherol 16.26, 4.67, 7.14, 0.55mg/100 g DW [35]
Einkorn wheat (Triticum monococcum «- and B-tocopherol and tocotrienol 12.2mg/g dm, 4.79 mg/g dm, 12.7 mg/g dm, (36]
ssp. monococcum L.) and 48.2mg/g dm
Sesamum angustifolium Tocopherol 7.34mg a-TE/100 g [37]
Hazelnuts Tocols 41.9 mg/100g [38]
Barley genotypes (Hordeum vulgare L.) Total tocols 39.9 and 81.6 ug/g [39]
Irish barley a-Tocotrienol 46-58 ug/g dw [40]
Fresh goji berries a-Tocopherol and B-tocopherol 1.4 and 1.0mg/100 g [41]
Oils
Sea buckthorn berries pulp oil Total tocols 666-1788 mg/kg [42]
Cold.—pressed M.ormga Ole.l fera and a-Tocopherol 139.61 and 137.89 mg/kg [43]
Moringa peregrina seed oils
Cane berry seed oils Total tocopherols 75-290 mg/100 g [44]
Apple, Japanese quince, and sea
buckthorn seed oils a-Tocopherol 58.77, 121.79, and 198.94mg/100 g [45]
Rapeseed, sunflower seed, linseed, a-Tocopherol, S-tocopherol,
sesame, and maize oils y-tocopherol, and §-tocopherol 0.6-46.1 mg/100 g [46]
Cold—press.ed pumpkin seed (Cucurbita Tocopherol and tocotrienol 94.29-97.79 mg/100 g [47]
pepo L.) oil

. L 39.9 mg/100 g, 36.06 mg/100 g, 29.42 mg/100

Soybean, corn, olive, and camellia oils Total tocopherols g, and 17.72 mg/100 g [48]
Sunflower, soybean, corn, hazelnut, Total tocols 488.88-913.51 mg/kg (49]

peanut, and canola oils

oil, which has a great market value and is the richest source of
tocopherols. Accordingly, Santana et al. extracted Hass av-
ocado oil from dried fruit using conventional methods and
then identified the a-tocopherol with the concentration of
11.6-21.0 mg/100 g using normal phase HPLC with a photon-
diode array detector (PDA) [20]. In another study, the an-
alytical method of LC-APCI-MS/MS was used to detect the
main compounds in 12 vegetables from the Brassicaceae
family, the results of which reported total levels ranging from
1.83 t0286 ug/g DW for tocopherols [21]. Niro et al. employed
the HPLC method to detect the tocols (tocopherols and
tocotrienols) in the cereals [22]. According to the findings,
total levels of tocols were 3.80 mg/100g d.w. in millet, 3.09 mg/
100g d.w. in sorghum, 5.99 mg/100g d.w. in tef, 0.36 mg/100g
d.w. in wild rice, 9.10 mg/100g d.w. in quinoa (white and
pigmented), 18.06 mg/100g d.w. in canihua, 6.31 mg/100g
d.w. in amaranth, and 14.43 mg/100g d.w. in chia. Labu-
schagne et al. used the HPLC method and reported the
maximum tocol level of 59.8 mg kg™ in the whole flour of
South Africa’s wheat [23]. Dabrowski et al. applied the HPLC-
FLD technique to detect tocols such as f/y-tocopherols in

flaxseed oils using n-hexane (1%, m/V) and isopropanol
(0.7%) solutions [24]. Bertolin et al. [25] implemented a fast,
accurate, and simple method to determine carotenoids, to-
copherols, retinol, and cholesterol in ovine lyophilised meat,
liver, and milk and raw samples using the UHPLC method.
Another recent study developed a UHPLC-LTQ-Orbitrap-
HRMS-based method to determine the nutrients in rice; as a
result, 21 nutrients have been identified and reported in less
than 13 min [26]. The range of regression coeflicients was
between 0.05 and 10 yg/mL for tocopherols, tocotrienols, and
B-carotene, between 0.1 and 50 yg/mL for phospholipids, and
between 0.001 and 10 ug/mL for y-oryzanols. Besides, the
limit of detection was between 0.2, and 1.9 ng/mL, the limit of
quantitation was between 0.7 and 6.3 ng/mL, the relative
standard deviations were between 2.3 and 9.6%, and the
recoveries were between 80.6 and 109.6% for all the analytes.
Moreover, the total ion current fingerprint profile showed
significant differences between the brown and white rice
samples. The developed method provided a convenient an-
alytical method to identify the nutrients in rice, confirming
the effectiveness of this approach for food testing [26].



Knecht et al. [27] developed and validated an HPLC-FLD
method for tocochromanol (tocopherols and tocotrienols)
analysis equally suitable for raw and cooked vegetables. The
recent study of Wu et al. [28], reported the integrated
analysis of fatty acid, sterol, and tocopherol components of
seed oils obtained from four varieties of industrial and
environmental protection crops, i.e., Amygdalus peduncu-
lata Pall. (Amygdalus), Elaeagnus mollis Diels (Elaeagnus),
Xanthoceras sorbifolium Bunge (Yellowhorn), and Paeonia
suffruticosa Andr. (Paeonia); particularly, three tocopherol
homologues, a-, y-, and §-tocopherols, were present in four
varieties of seed oils, and Elaeagnus oil contains the highest
a-tocopherol (7.48 mg/100 g) and y-tocopherol (109.58 mg/
100g) content [28].

A shot of the occurrence of tocols in different foodstufts
is given in Table 1, taking into account both more and less
rich sources and more and less consumed foods.

The occurrence of tocols in food groups is described
here. It is worth mentioning that the reviews [50-54]
summarized common and emerging dietary sources of
tocols, with particular attention to oils as the major natural
dietary sources of tocopherols and tocotrienols, as well as
main analytical methods and effects in food and biological
systems.

3. Tocols and Databases: The Current State of
the Art

Nowadays, the need of the categorization of bioactive
compounds is emerging. A bioactive compound can be
defined as a “compound that occurs in nature, part of the
food chain, that can interact with one or more compounds of
the living tissue, by showing an effect on human health” as
reported by Biesalski et al. [55]. Databases can be viewed as a
system that can generate and collect any data, information,
and documentation especially organized for a rapid search
and retrieval by using a computer (Encyclopaedia Bri-
tannica) [56]. They represent tools developed to simplify the
storage, retrieval, modification, and deletion of data, all this
in combination with several data-processing operations [57].

The development of specialized databases of components
with nutritional and nutraceutical properties [58], at a
National and European level, represents a current challenge
to explore better the relationship between food, nutrition,
health, and environment. Researches on the relationship
between diet and health have led to a great interest in all
bioactive substances present with the nutrients in food, and
data on these and other compounds are increasingly re-
quired in the database system. Specialized databases could be
useful for planning and evaluating clinical and epidemio-
logical research studies on biologically active food contained
compounds. They may represent a crucial tool to evaluate
exposure measurement and, indeed, understanding the
potential benefits of substances and extracts with nutritional
and nutraceutical properties [59-62]. In the formulation of
complete and comprehensive harmonized databases, pos-
sible limitations, as highlighted by Scalbert et al. [63], could
be given both by the diversity of the chemical features of the
compounds, the numerous dietary sources, the variability in
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content from a source to another, and by the different ex-
traction procedures as well as the analytical techniques and
methodologies used. Moreover, additional factors that
should be considered in some cases are as follows: (i) only a
few compounds within a class are investigated in literature
studies and (ii) there is a lack of appropriate analytical
methods.

As an example, as reported by the NDA Panel of the
European Food Safety Authority (EFSA) in 2015 [64], the
most of food composition databases in EU countries contain
values for vitamin E as a-tocopherol equivalents (a-TEs),
and only two countries (Finland and Sweden) considered in
the intake assessment by EFSA have vitamin E values in their
food composition databases as a-tocopherol values. Food
Explorer, an innovative interface for finding food compo-
sition data, allows to simultaneously search information
from most of the available databases from the European
Union (EU) Member States, as well as Canada, United
States, New Zealand, and Japan. Searching, for example,
“Vitamin E” and selecting all the 39 databases, 398 records
can be retrieved [65, 66].

The eBASIS database [67, 68] contains composition data
and biological effects of over 300 major European plant-
derived foods organized in 24 classes of compounds (i.e.,
glucosinolates, polyphenols, isoflavones phytosterols, gly-
coalkaloids, and xanthine alkaloids).

The EuroFIR eBASIS (Bioactive Substances in Food
Information Systems) is an Internet-deployed food com-
position and biological effects resource based on a compi-
lation work of experts that critically evaluated data extracted
from peer-reviewed literature as raw data. eBASIS could be
considered as the first EU-harmonized food composition
database. Concerning tocols, in eBASIS, 4 data points are
present for a-tocopherols [69].

Tocols represent essential ingredients in many dietary
supplements. Nowadays, a great attention is given to the use
of natural substances in different fields such as nutraceutical
and cosmeceutical ones [70-72].

Recently, information on the compositions reported on
labels of selected dietary supplements has been collected for
the development of a Dietary Supplement Label Database
according to products' availability on the Italian market,
including also items consumed in the last Italian Dietary
Survey [73]. Five hundred and fifty-eight products were
entered into the aforementioned database, giving a homo-
geneous picture of the major classes of food supplements
consumed in Italy. It is worth underlining that, for each
item, a code was assigned following the food classification
system FoodEx2 developed by EFSA [74], a tool for the
standardization and harmonization of the data among
different countries to guarantee interoperability between
different databases [75].

In particular, in Italian Dietary Supplement Label Database,
tocols are present as ingredients in different categories of
products containing vitamin E and, in particular, as main
ingredients in vitamin only supplements [A03SL], combination
of vitamin and mineral only supplements [A03SN], mixed
supplements/formulations [A03TC], or as minor ingredients in
formulations containing special fatty acids (e.g., omega-3 and
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essential fatty acids) [A03SX], protein and amino acid sup-
plement [A03SY], and micronutrient supplement for sports
people [A03SB] [73]. The ingredient vitamin E was indicated
using the facet [F04.AOEXL]. The code in square brackets
identify the category of products.

Moving towards the scenario of metabolic pathways and
the benefits of bioactive compounds in humans, Human
Metabolome Database (HMDB) has been considered, in
particular, the version 4.0 [76, 77]. It is a freely available
electronic database of information regarding small molecule
metabolites found in the human body. It well linked
chemical data, clinical data, and molecular biology/bio-
chemistry data. In the above database, for instance, the
following information is reported including metabocard for
a-tocopherol (https://hmdb.ca/metabolites/
HMDBO0001893) and f-tocopherol (https://hmdb.ca/
metabolites/HMDB0006335) reporting information on re-
cord information, metabolite identification, chemical tax-
onomy, ontology, physical properties, chemical spectra,
biological properties, normal concentrations, abnormal
concentrations, associated disorders, diseases, external links,
and references.

4. Conclusion

Alongside the increasing attention towards the standardi-
zation and need of food categorization and classification,
this perspective paper gives an updated shot of the occur-
rence of tocols in food and existing databases as useful tool in
nutrition-related studies, i.e., dietary intake assessment and
exposure studies.

Although the tocols and their different homologous
derivates have been consuming as additives in food and
pharmaceutical industries and evaluated using advanced
analysis methods during the last decade, extracting and
analyzing them from complex food matrices is still time-
consuming and needs a significant quantity of organic
solvents. Therefore, there is need for simple, fast, and
green extraction protocols using environmentally
friendly solvents. Despite the absence of any evidence of
possible adverse effects following the use of tocols,
caution should still be exercised in recommending the use
of supplement containing them, with special attention to
the recommended intake and dosage.
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This paper reviews the contribution of tocopherols and tocotrienols (tocols) to food quality as well as their bioactivity and health-
promoting properties, which have attracted researchers and food technologists. Tocols are lipophilic phenolic antioxidants
encompassing tocopherols that are characterized by a saturated side chain and tocotrienols with an unsaturated isoprenoid side
chain. Tocols are natural constituents of several foods like dairy, vegetable oils, nuts, and grains. Their presence in foods, namely,
as food additives, helps prevent lipid oxidation, which negatively affects the sensorial quality of foods, and even the nutritional
value and safety. Supplementation of animals’ diets with tocopherols has proven its effectiveness in preserving fresh color and
flavor of the meat. Although alfa-tocopherol displays much higher vitamin E activity than other tocols, health outcomes have been

reported for tocotrienols, thus calling for more studies.

1. Introduction

The interest in the study of tocols has dramatically increased
in the last decades, most probably in raising awareness on
the health impact of individual food items and diets. Tocols
include tocopherols and tocotrienols, whose biosynthetic
pathways are exclusive of photosynthetic organisms (plants
and cyanobacteria) and are essential nutrients in mammals
mostly due to their vitamin E activity and/or antioxidant and
other bioactivities [1]. Tocols are lipophilic phenolic anti-
oxidants that protect polyunsaturated fatty acids (PUFA)
from lipid peroxidation in food matrices and in the human
body, where reactive oxygen species (ROS) may come from
environmental exposure or are formed as side products of

cell metabolism. Tocols and other antioxidants accept un-
shared highly energetic electrons from ROS, thus preventing
damage to unsaturated fatty acids, whether part of a food or
biological membrane.

The primary dietary sources of tocols are lipids, notably
butter and vegetable oils (as virgin olive oil). The current review
encompasses a rapid overview of tocols’ chemistry, their main
features, and occurrence in foods, a brief review on sensorial
assessment, and other factors that determine food choice. We
also describe the contribution of main tocols to color and flavor
of foods, as well as their role in sensorial food quality. We aim
to reach students and researchers in food quality and nutrition
and food technologists, in search of focused information to
support their research and innovations efforts.
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2. Sensorial Perceptions and Food Choices

Humans associate wider roles and significance to food,
mainly surpassing its primary function of supplying essential
nutrients. Food is associated with pleasure, social and re-
ligious occasions, and, more recently, healthy and sustain-
able lifestyles. A myriad of diets and processed foods have
been arising to the market, advertised as healthy and/or
environmentally friendly, often by blaming or amplifying
certain features or constituents of foods to align them with
consumers’ preferences at the time of shopping [2]. Inter-
national organizations have been raising attention to climate
change and environmental issues, such as soil degradation
and biodiversity loss, and the burden of obesity and non-
communicable diseases associated with the so-called
“western diet” [3, 4].

Combining the constraints related to human health and
environmental dimensions while appealing to the senses
seems to be a complicated equation in a diet. A very few
dietary patterns, notably the Mediterranean Diet (MD), can
simultaneously address all these factors, translated in the
“one health” approach [5, 6]. The MD can stimulate the
senses through a wide range of colors, flavors, aromas, and
scents, which are mainly conveyed by the large quantities
and variety of plant-based foods, thus valuing agro-
biodiversity and addressing other sustainability factors. In
the MD, the food components that bring nutritional, health,
and environmental benefits are the same ones that convey
colors and flavors [7-9].

When appreciating food, all senses are involved, and our
preferences are also dictated by memories, beliefs, cultural
aspects, and other subjective factors. In respect to sensorial
aspects, the taste of foods is detected by receptors on the
tongue and interpreted in the brain. Basic tastes are cate-
gorized into sweet (e.g., fig), bitter (e.g., coffee), sour (e.g.,
yogurt), salty (e.g., table olive), and umami (cheese). Aroma
detected by olfactory pathways is usually interlinked with
taste, playing an essential role in the sensations caused by a
food. The physical sensations (color, temperature, texture,
and hardness) and chemical sensations (chemical irritation
in the mouth and throat) also affect the overall perception of
food [10].

The term “flavor,” as used by sensory analysis spe-
cialists, refers to all these sensations. When a piece of food
is introduced into the mouth, it is smelled in the process
and sensed through the gut, and a whole cascade of
chemical reactions and nerve responses are triggered.
When interpreted in the brain, other factors such as per-
ceptions from the surrounding environment to cultural
and ethical judgments are all considered. Thus, the feeling
of how enjoyable a meal is or how and when we like or
dislike a particular food is highly subjective, variable, and
quite complex [11, 12].

When examining foods at the molecular level, plant
foods stand out for their pigments, like carotenoids, tocols,
xanthophylls, chlorophylls, and polyphenols that, besides
the color, also act as vitamins, provitamins, or antioxidants;
plant foods also contain molecules that convey aroma (e.g.,
tocols, aldehydes, and aliphatic and triterpenic alcohols)
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which are often bioactive too, displaying multiple features of
interest in foods (color, flavor, and bioactivity) [13].

3. Tocols and Vitamin E Activity

The molecular structure of tocopherols consists of a chro-
manol ring connected to a long carbon side chain. Variations
in the number and position of the methyl groups on the ring
result in different forms named «-, -, y-, and §-tocopherol,
all provided as a blend in the abovementioned dietary
sources, although in different proportions and depending on
the species and the considered edible part. Tocopherols are
more abundant than tocotrienols, which are only found in
some plant species’ fruits and seeds [1, 14].

It has been argued that a-, 3-, y-, and §-tocopherols are
all forms of vitamin E with different levels of activity and
bioavailability. a-Tocopherol is the preferred form of vita-
min E, absorbed and accumulated in humans and other
mammals. On the other hand, -, y-, and d-tocopherols are
referred to as having little vitamin E activity, but they retain
similar antioxidant activity and may convey additional
health benefits [14-16].

There has been some debate in relation to vitamin ac-
tivity of tocols. Some authors claim that the 8 isomeric forms
of tocopherols and tocotrienols all have vitamin E activity,
though to a different extent [1, 17-19], while the EFSA NDA
Panel [20] considers vitamin E as being a-tocopherol only,
despite acknowledging that other tocopherol isomers and
tocotrienols may have antioxidant activity. On its turn, NIH
[21] accepts that vitamin E may exist in 8 different chemical
forms but states that a-tocopherol is the only form main-
tained in plasma and recognized to meet human require-
ments for vitamin E.

4. Colors and Flavors of Main Tocols

Tocopherols and tocotrienols are naturally transparent and
viscous substances with colors ranging from light yellow to
reddish-brown [14]. When in the form of powders, to-
copherols take a tan or tan-to-reddish color. Besides the
beneficial health properties, tocols play a vital role in the
stability of color and flavor of foods.

Carotenoids and tocopherols are closely related in their
functions and location in plants, as both are lipid-soluble
antioxidants found in chloroplasts. In addition to their roles
in photosynthesis, carotenoids and tocols are essential
components of animal diets, including humans, for their
vitamin and antioxidant activities [16]. Synergy and reac-
tions between tocopherols, carotenoids, ascorbic acid, and
other components have been reported to affect food quality
[16].

For instance, the autoxidation of lipids observed in
vegetable oils is initiated by the free radicals, leading to the
formation of lipid peroxy radicals and finally lipid hydro-
peroxides, which are unstable and can trigger further
propagation reactions. As such compounds play a crucial
role as intermediates of oils’ autoxidation reactions, the
“peroxide value” is a parameter that gives a measure of the
extent of primary oxidation of edible oils and is of capital
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importance in their grading and hence in their quality [22].
Propagation reactions triggered by hydroperoxides are
known as branching steps or secondary decomposition
reactions, and their products are responsible for causing
rancid off-flavors. Oxidation of lipids is a major cause of
deterioration of the quality of foods affecting flavor, color,
texture, and even the nutritional value and safety. Safety is of
particular concern when speaking of ultra-processed and
frying foods, in which further degradation reactions may
occur with the formation of toxic compounds [23, 24].

Tocopherols and tocotrienols are best known for their
ability to accept high energy electrons (free radicals) and
terminate oxidation chain reactions, thus preventing
changes in color and flavor of foods containing natural (e.g.,
hazelnut) or added tocols (e.g., margarine).

Supplementation of feed with tocopherols (in poultry,
cattle, and fish diets) has shown effective results in delaying
lipid oxidation and subsequently increasing the shelf life
with preserved freshly color and flavor. Researches on feed
quality and the relation to food quality started in the 1970s
and are still a field of interest. The detailed information on
the use of tocols in the feed (as vitamin supplements or as
preservatives) was reported.

5. The Role of Tocols in Food Quality

5.1. Tocols as Natural Constituents in Food. As lipophilic
molecules, tocols are natural constituents of a range of foods,
as dairy (e.g., butter), vegetable oils (as virgin olive oil), nuts
(as almonds and hazelnuts), vegetables, and grains (notably
wheat germ), which are known sources of vitamin E and
other lipophilic vitamins, as the presence of fat is required
for active absorption [20, 21]. In addition to the activities
referred to above as an antioxidant, vitamin E is involved in
immune function, anti-inflammatory processes, inhibition
of platelet aggregation, cell signaling, regulation of gene
expression, and other metabolic processes [20, 21].

According to EFSA [20], the average a-tocopherol ab-
sorption from a usual diet is about 75% and defines adequate
intakes for a-tocopherol (based on observed intakes in
healthy populations) in 13 mg/day for men, 11 mg/day for
women, and 9 mg/day for children of both sexes, aged 3 to
<10 years, and 6 mg/day if aged <3 years, considering that no
vitamin E deficiencies have been reported in Europe. NIH
[21] sets higher levels for the American population, with
recommended dietary allowance for a-tocopherol of 15 mg/
day for adults irrespective of sex and 11 mg/day for children
aged 9 to <13 and decreasing until 6 mg/day for children
aged <3 years [25].

The bioavailability of vitamin E is influenced by a range
of factors, including fixed ones, like gender, age, and genetic
constitution, as well as others that depend on the envi-
ronment and can be changed, as food habits and lifestyle,
impacting dietary guidelines for different population groups.

Vitamin E deficiencies are rare and reported in pre-
mature babies of very low birth weight, rare inherited dis-
orders, Crohn’s disease, cystic fibrosis, or medical conditions
interfering with the ability to secrete bile from the liver into
the digestive tract [21]. Thus, vitamin E supplements are

justifiable only in some instances as, in general, a balanced
diet provides the necessary levels of vitamin E and other
tocols for health benefits. It should also be noted that
naturally occurring a-tocopherol exists in only one ste-
reoisomeric form, known as RRR a-tocopherol. In contrast,
synthetically produced forms contain equal amounts of all
stereoisomers and are known as all-racemic a-tocopherol,
with about half the potency of the natural form [21, 26].

In the body, tocols undergo a series of complex meta-
bolic processes comprising intestinal absorption, vascular
transport to the liver, and hepatic sorting by intracellular
binding proteins, such as the significant a-tocopherol-
transfer protein (a-TTP), which preferentially binds a-to-
copherol rather than other tocopherols or tocotrienols
[20, 27]. According to EFSA panel on dietetic products,
nutrition, and allergies (NDA) [20], because «-TTP and
w-hydroxylase (a key enzyme in the liver) have a much
higher affinity towards a-tocopherol than other tocopherols,
the former one predominantly accumulates in body tissues.
In contrast, other tocols are preferentially catabolized in the
liver. However, doubt persists on the functions and health
outcomes of other tocols, namely, tocotrienols, which have
not been so thoroughly studied, and some authors discuss
their probable hypocholesterolemic, anticancer, and neu-
roprotective properties, as well as tocotrienols’ potential
action against inflammation-associated diseases [17, 19].

In the case of ingested natural vitamin E, it is necessary to
take into account the interactions with the food matrix,
resulting in enhanced bioactivities when synergies are
established with other food constituents, such as vitamin K
[27], ascorbic acid, and carotenoids [28].

In this context, the vitamin content of plant foods, and
hence nutritional quality, varies widely with a range of
factors, including agronomic techniques. Due to the lack of
robust data, debate exists on the existence of sufficient
differences in sensorial and nutritional quality of organic
produce vs. intensive systems [29-31]. When considering
the nutritional quality of foods, it is necessary to recognize
that competing nutrients can reduce the bioavailability of
certain compounds as tocopherols in the food matrix [27].
There is not enough science-based evidence supporting the
superior composition on bioactive compounds of organic
produce, even though evidence shows that organic foods are
lower in toxic compounds bringing proven benefits to hu-
man health and the environment. A more in-depth dis-
cussion is out of the scope of the present review. For
sensorial and nutritional quality, the food matrix seems to
have a much higher impact, potentiating synergies between
distinct classes of compounds (e.g., tocols and other anti-
oxidants), or reactions with antinutrients that decrease the
bioavailability of vitamins and others [32].

The content in vitamin E of primary dietary sources is
given in Table 1, which indicates available data on the
composition in other tocols. As deduced from Table 1 and
corroborated by authorities [20, 21], a balanced diet should
provide the necessary amounts of vitamin E and other
potentially health-promoting tocols. As shown in Table 1,
the primary natural sources of vitamin E to the diet are
edible oils (notably olive oil) and certain nuts.
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TaBLE 1: Natural dietary sources of vitamin E and average content (mg/100 mg) according to ANSES-Ciqual food composition table.

Food group Description Average concentration of a-tocopherol (mg/100 g)
Dair Butter (80% fat) 211
Y Cheddar cheese (cow’s milk) 0.78
Olive oil (virgin) 22.3
Vegetable oils Palm oil* 15.9
Sunflower oil* 57.3
Grains Wheat germ 10.2
Spinach, boiled 3.98
Vegetables Basil, fresh 0.8
Tomato, raw 0.66
Mango, pulp, raw 2.05
Fruits Avocado, pulp, raw 2.23
Kiwi 0.96
Almond, with peel 22,3
Nuts Walnut, fresh 1.6
Hazelnut 16.3

*Commerecial oils that may include additional vitamin E as a food additive. Data retrieved from ANSES-Ciqual food composition table: https://ciqual.anses.fr.

Despite the differences of natural and synthetic com-
pounds (including esterification to prolong its shelf life while
protecting its antioxidant properties), the organism absorbs
and metabolizes different isomers and esters as efficiently as
natural molecules [21].

5.2. Tocols as Food Additives. The Joint FAO/WHO Expert
Committee on Food Additives (JECFA) defines food ad-
ditives as “substances added to food to maintain or improve
its safety, freshness, taste, texture, or appearance” [33]. The
safety of additives that can be used in foods traded inter-
nationally should be evaluated firstly by the joint FAO/
WHO Expert Committee on Food Additives [33]. Food
additives are thus substances intentionally added to food-
stuffs in small quantities generally aiming to improve their
sensorial features and/or increase their time-span for con-
sumption, and tocols, most particular tocopherols, are
recognized as safe food additives by official food authorities
[34-36]. Codex Alimentarius code numbers for d-a-to-
copherol, dl-a-tocopherol, and tocopherol concentrated mix
(a mixture of several different types of vitamin E) are 307a,
307¢, and 307b [33]. The maximum levels of tocopherols in
foods have been established by the Codex Alimentarius
Commission and are summarized in Table 2.

As mentioned above, and again stressed, main tocols
have vitamin E activity, although to different levels, in ad-
dition to other potential health benefits. In this respect,
JECFA derived an acceptable daily intake (ADI) for vitamin
E of 0.15-2 mg/kg body weight (bw)/day for dl-a-tocopherol
[34] and Codex Alimentarius recommends the incorpora-
tion of tocopherols in some foods, namely, in vegetable oils
to prevent rancidity, as the often necessary oil refining
process causes a decrease in the concentration of this vi-
tamin, as well as of other antioxidants that could be present
in crude oil fractions. According to [38], for named vegetable
oils, the authorized concentration of tocopherols (tocoph-
erol, d-a, tocopherol concentrate, mixed and tocopherol, dl-
«) is about 300 mg/kg (Table 2). The standard for olive oils

and olive-pomace oils [39] recommend an addition level of
tocopherols [d-a-tocopherol (INS 307a), mixed tocopherol
concentrate (INS 307b), and/or dl-a-tocopherol (INS 307¢)]
to refined olive oil and other grades, stating that the con-
centration of a-tocopherol in the final product shall not
exceed 200 mg/kg [40].

From the European perspective, the use of food additives
is regulated by specific laws in the European Union, sup-
ported by the evidence-based and expert opinions of the
European Food Safety Authority (EFSA). These legal reg-
ulations consider the specificity of the food, in which the
additive is incorporated, the maximum permitted quantity,
the chemical structure, and the degree of purity [41]
(Table 3).

EFSA derived a tolerable upper intake level (UL) for
vitamin E of 300 mg/day for adults [34]. The EFSA ANS
panel has reevaluated the safety of tocopherols-rich extract
of natural origin (E 306), synthetic a-tocopherol (all-rac
a-tocopherol; dl-a-tocopherol; E 307), synthetic y-tocoph-
erol (dl-y tocopherol; E 308), and synthetic §-tocopherol (E
309) on food additives, and nutrient sources added to food
[34] and claimed that “tocopherols (E 306-E 309) are not of
safety concern at the levels used in food”.

Tocopherol occupies the category of antioxidants in the
list of food additives. It is used in an extensive series of
foodstuffs to abolish the oxidation of fatty acids and vitamins
[42]. A considerable number of studies have focused on
using tocopherols as additives in food [43-45]. Wagner and
Elmadfa [45] have tested the effects of tocopherols and their
mixtures on the oxidative stability of olive oil and linseed oil
under heating. These authors registered an antioxidant ac-
tivity at all levels of the addition of tocopherols that
depended on the concentration level and the mixture of
tocopherols. Incorporation of a-tocopherol at up to 0.2%
increased the oxidative stability of refined olive oil and
decreased the formation of phytosterol oxidation products,
as reported by Tabee et al. [44]. A comparative study on the
impact of certain antioxidant compounds on the stability
and prolongation of the mayonnaise’s shelf life was carried
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TaBLE 2: Example of general standard for food additives’ provisions for tocopherols.

Food category

Max level (mg/kg)

Aromatized alcoholic beverages (e.g., beer, wine, and spirituous cooler-type beverages, low alcoholic refreshers) 5
Batters (e.g., for breading or batters for fish or poultry)

Beverages whiteners

Breakfast cereals, including rolled oats
Butter oil, anhydrous milk fat, ghee

Dried fruit

Flavored fluid milk drinks
Vegetables oils and fats
Fish oil and other animal fats

100
200
200
500
200
200
300
300

Adapted from the update to the 42nd session of [37] http://www.fao.org/gsfaonline/groups/details.html?id=2.

TaBLE 3: Use of tocopherols as food additives in accordance with European legislation.

General data

The additive is authorized to be used in the following category (ies)

Legislation (details on European
Regulation/Directive)

Tocopherol-rich
extract E 306

(i) Fats and oils essentially free from water (excluding anhydrous milk fat)/
individual restriction/exception: quantum satis, except virgin olive oils
and olive oils

(ii) Infant formulae as defined by directive 2006/141/EC (13.1.1)

(iii) Follow-on formulae as defined by directive 2006/141/EC (13.1.2)/
Individual restriction/exception: ML = 10 mg/kg

(iv) Processed cereal-based foods and baby foods for infants and young
children as defined by directive 2006/125/EC (13.1.3)/individual
restriction/exception: ML = 100 mg/kg; only fat-containing cereal-
based foods including biscuits and rusks and baby foods

(v) Other foods for young children (13.1.4)/individual restriction/
exception: ML = 100 mg/kg

(i) No. 1129/2011, applicable as from
01/06/2013

(ii) No. 1129/2011, applicable as from
01/06/2013
(iii) No. 1129/2011, applicable as from
01/06/2013

(iv) No. 1129/2011, applicable as from
01/06/2013

(v) (EU) No. 1129/2011, applicable as
from 01/06/2013

Alpha-tocopherol E
307

(i) Fats and oils essentially free from water (excluding anhydrous milk fat)
(2.1)/individual restriction/exception: quantum satis, except virgin oils
and olive oils; ML = 200 mg/kg, only refined olive oils, including olive
pomace oil

(ii) Infant formulae as defined by directive 2006/141/EC (13.1.1)

(iii) Follow-on formulae as defined by directive 2006/141/EC (13.1.2)/
individual restriction/exception: ML :10 mg/kg

(iv) Processed cereal-based foods and baby foods for infants and young
children as defined by directive 2006/125/EC (13.1.3)/individual
restriction/exception: ML = 100 mg/kg, only fat-containing cereal-
based foods including biscuits and rusks and baby foods

(v) Other foods for young children (13.1.4)/individual restriction/

exception: ML :100 mg/kg

(i) No. 1129/2011, applicable as from
01/06/2013

(ii) No. 1129/2011, applicable as from
01/06/2013
(iil) No. 1129/2011, applicable as from
01/06/2013

(iv) No. 1129/2011, applicable as from
01/06/2013

(v) No. 1129/2011, applicable as from
01/06/2013

Gamma-tocopherol
E 308

(i) Fats and oils essentially free from water (excluding anhydrous milk fat)
(2.1)/individual restriction/exception: ML: quantum satis, except
virgin oils and olive oils

(ii) Infant formulae as defined by directive 2006/141/EC (13.1.1)

(iii) Follow-on formulae as defined by directive 2006/141/EC (13.1.2)/
individual restriction/exception: ML = 10 mg/kg

(iv) Processed cereal-based foods and baby foods for infants and young
children as defined by directive 2006/125/EC (13.1.3)/Individual
restriction/exception: ML = 100 mg/kg, only fat-containing cereal-
based foods including biscuits and rusks and baby foods

(v) Other foods for young children (13.1.4)/individual restriction/
exception: ML = 100 mg/kg

(i) No. 1129/2011, applicable as from
01/06/2013

(ii) No. 1129/2011, applicable as from
01/06/2013

(iii) Legislation: (EU) no. 1129/2011,
applicable as from 01/06/2013

(iv) No. 1129/2011, applicable as from
01/06/2013

(v) No. 1129/2011, applicable as from
01/06/2013
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TaBLE 3: Continued.

General data

The additive is authorized to be used in the following category (ies)

Legislation (details on European
Regulation/Directive)

(i) Fats and oils essentially free from water (excluding anhydrous milk fat)
(2.1)/individual restriction/exception: ML = quantum satis, except

virgin oils and olive oils

(ii) Infant formulae as defined by directive 2006/141/EC (13.1.1)

(iii) Follow-on formulae as defined by directive 2006/141/EC (13.1.2)/
individual restriction/exception: ML = 10 mg/kg

Delta-tocopherol E
309

(i) No. 1129/2011, applicable as from
01/06/2013

(ii) No. 1129/2011, applicable as from
01/06/2013
(iil) No. 1129/2011, applicable as from
01/06/2013

(iv) Processed cereal-based foods and baby foods for infants and young

children as defined by directive 2006/125/EC (13.1.3)/individual
restriction/exception: ML = 100 mg/kg, only fat-containing cereal-

(iv) No. 1129/2011, applicable as from
01/06/2013

based foods including biscuits and rusks and baby foods

(v) Other foods for young children (13.1.4)/individual restriction/

exception: ML = 100 mg/kg

(v) No. 1129/2011, applicable as from
01/06/2013)

out by Alizadeh et al. [43]. This study used tocopherols,
rosemary essential oil, and Ferulago angulata extract,
showing the high potency of tocopherol in maintaining the
stability of mayonnaise. 10% of the extract from the to-
copherol solution was able to scavenge up to 99% of free
radicals from DPPH (2, 2-diphenyl-1-picrylhydrazyl).. To-
copherol was notable in controlling the primary oxidation
steps (after four months of storage), showing a considerable
capability to inhibit the formation of some secondary
products, such as hexanal and heptanal [43]. The overall
acceptability of the mayonnaise supplemented with to-
copherol was good in terms of the sensory score, and the
molecule seems to be compatible with mayonnaise’s flavor.
Based on this study, the authors recommended using to-
copherols as an alternative to synthetic antioxidants in food
[43].

6. Final Remarks

Tocols encompass tocopherols and tocotrienols, collectively
known as vitamin E, and are associated with lipids in animal-
based (e.g., dairy) and vegetable-based (e.g., oils and nuts)
food. Chemical reactions, which lead to the degradation of
food constituents under processing and storage conditions,
may cause the accumulation of compounds that compro-
mise the sensorial and nutritional quality of foodstuffs.
Notably, the oxidative deterioration of fat-rich food can be
protected by tocols. Under food processing and storage
conditions, tocols offer protection against oxidative dete-
rioration of foodstufs.

The consumption of natural and organic foods is be-
coming more and more fashionable and is gaining new
markets in spite of ultra-processed foods. However, the
vulnerability of certain foodstuffs, such as the oxidation of
fats and oils, poses the problem of the addition of additives
to avoid color changes, rancidity, and the appearance of
undesirable tastes and odors. A scan of scientific research
confirms the relevance of tocopherols in maintaining the
sensory properties of foods in addition to their role as ef-
fective antioxidants. In fact, their physicochemical proper-
ties, low volatility, and good solubility in fats and oils give

them the necessary resistance to processes using high
temperatures. They have been incorporated into many
formulations including baked goods, grains, dehydrated
potatoes, fried nuts and noodles, meat and eggs, and tuna
fillets. On the other side, while the tocopherols have been
investigated extensively, little is known about the toco-
trienols but some studies suggest that both the molecular
and therapeutic targets of the tocotrienols are distinct from
those of the tocopherols, and their role in cancer prevention
and treatment, as well as in cardiovascular and neurological
diseases, awaits further investigation.
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