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-is paper studies and analyzes a model describing the flow of contaminated brines through the porous media under severe
thermal conditions caused by the radioactive contaminants. -e problem is approximated based on combining the mixed finite
element method with the modified method of characteristics. In order to solve the resulting algebraic nonlinear equations
efficiently, a two-grid method is presented and discussed in this paper. -is approach includes a small nonlinear system on a
coarse grid with size H and a linear system on a fine grid with size h. It follows from error estimates that asymptotically optimal
accuracy can be obtained as long as the mesh sizes satisfy H � O(h1/3).

1. Introduction

A compressible nuclear waste disposal contamination
problem in porous media is presented by the following
coupled systems of partial differential equations. -e
physical processes can be concreted to be a high-level waste
disposal buried in a salt dome, and next the salt dissolves to
generate a brine, radioactive elements decay to generate heat,
and finally the radionuclides are transported by the flow.

Fluid:

ϕ1
zp

zt
+ ∇ · u � − q + Rs

′(􏽢c), (1)

u � −
k

μ(􏽢c)
∇p � − a(􏽢c)

− 1∇p, (2)

where p and u are the fluid pressure and Darcy velocity,
respectively, ϕ1 � ϕcw and ϕ is the porosity. q � q(x, t) is a
production term, Rs

′(􏽢c) � [csϕKsfs/(1 + cs)](1 − 􏽢c) is a salt
dissolution term, k(x) is the permeability of the rock, and
μ(􏽢c), the viscosity of the fluid, is dependent upon 􏽢c, the
concentration of the brine in the fluid.

Brine:

ϕ
z􏽢c

zt
+ u · ∇􏽢c − ∇ · Ec∇􏽢c( 􏼁 � g(􏽢c), (3)

where Ec is the diffusion tensor including the molecular
diffusion and mechanical diffusion and Ec � D + DmI,
D � (D)i,j � ((αT|u|δi,j + (αL − αT)uiuj)/|u|), and g(􏽢c) �

− 􏽢c [csϕKsfs/(1 + cs)](1 − 􏽢c)􏼈 􏼉 − qc + Rs. Here, Dm is mo-
lecular diffusion. ui and uj are two direction cosines of Darcy
velocity. I is an identity matrix.

Heat:

d1(p)
zp

zt
+ d2

zT

zt
+ cpu · ∇T − ∇ · 􏽥EH∇T( 􏼁 � Q(u, T, 􏽢c, p),

(4)

where T is the temperature of the fluid,
d1(p) � − ϕcw[U0 + (p/ρ)], d2 � ϕcp + (1 − ϕ)ρRcpR, 􏽥EH �

Dcpw + Km
′I, Km
′ � km/ρ0, and Q(u, T, 􏽢c, p) � − [∇U0 −􏼈

cp∇T0] · u + [U0 + cp(T − T0) + (p/ρ)][− q + Rs
′]} − qL −

qH − qH.
Radionuclide (component i):

ϕKi

zci

zt
+ u · ∇ci − ∇ · Ec∇ci( 􏼁 + d3 ci( 􏼁

zp

zt

� fi 􏽢c, c1, . . . , cN( 􏼁, i � 1, . . . , N,

(5)
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where ci is the trace concentration of the i th radionuclide,
d3(ci) � ϕcwci(Ki − 1), and

fi 􏽢c, c1, . . . , cN( 􏼁 � ci q −
csϕKsfs

1 + cs( 􏼁
􏼢 􏼣(1 − 􏽢c)􏼨 􏼩 − qci − qci

+ q0i + 􏽘
N

j�1
kijλjKjϕcj − λiKiϕci.

(6)

We assume the following:

(1) Zero Neumann boundary conditions for the
equations

(2) -e initial conditions are assumed given
(3) -e medium Ω is vertically homogeneous and take
Ω ∈ R2

(4) -e solutions are smooth and Ω periodic
(5) k,ϕ, ϕ1, d2, andKi are bounded below by positive

constants, and Rs
′(􏽢c), μ(􏽢c), g(􏽢c), d3(ci), fi(ci),

andQ(T) are twice continuously differentiable with
bounded partial derivatives about the variables in
parentheses

(6) D � 0

Chou and Li [1], Ewing et al. [2], and Li et al. [3] have
presented and studied several numerical methods for system
(1)–(5) and its incompressible case. In this paper, we use the
mixed finite element method to approximate the fluid
problem and treat the brine, heat, and radionuclides by a
modified method of characteristic finite element. It is well
known that the full discrete approximation scheme is
coupled and nonlinear. If simply lagging, the evaluation of
the nonlinear items is used to obtain a linear system; it would
be inevitable to introduce the constraint conditions about

the mesh grid due to the stability requirement. Moreover, it
would take an expensive cost to choose the implicit scheme
to nonlinear solutions. An efficient method motivated by Xu
[4] is considered in this paper.-emethod is used by Bi et al.
[5], Chen et al. [6–10], and Liu et al. [11, 12] for solving some
nonlinear problem. We shall relegate all of nonlinear iter-
ations on a coarse grid of size H much coarser than the
original fine grid of size h. According to the error estimates
in the context, it obtains the asymptotically optimal accuracy
to take H � O(h1/3).

-e remainder of the paper is organized as follows.
Notations and approximation assumptions are given in
Section 2. A two-grid method is defined and the convergence
error estimates are derived in Section 3. In Section 4, we give
some conclusions and extensions.

2. Notations and Approximation Results

To analyze the temporal discretization on a time interval
(0, T), let M be a positive integer number, △t � T/M,
tn � n△t (0≤ n≤M), and φn � φ(·, tn). Let Lp(J; Wj,q(Ω))

denote the usual set of functions with the norm

‖ψ‖Lp J;Wj,q(Ω)( ) � 􏽚
J
‖ψ(·, t)‖

p

Wj,q(Ω)
dt􏼠 􏼡

1/p

, (7)

where if p �∞, the integral is replaced by the essential
supremum. Let lp(J; Wj,q(Ω)) denote the time discrete
analogue to the space Lp(J; Wj,q(Ω)) with the norm

‖ψ‖lp Wj,q(Ω)( ) � 􏽘
N

n�1
ψn

����
����

p

Wj,q(Ω)
Δt⎛⎝ ⎞⎠

1/p

. (8)

Let W � L2(Ω) and V � v ∈ H(div;Ω); v · c � 0􏼈 􏼉. -e
weak form is presented as follows:

ϕ1
zp

zt
, w􏼠 􏼡 +(∇ · u, w) � − q + Rs

′(􏽢c), w( 􏼁, ∀w ∈W, (9)

(a(􏽢c)u, v) − (∇ · v, p) � 0, ∀v ∈ V, (10)

ϕ
z􏽢c

zt
, z􏼠 􏼡 +(u · ∇􏽢c, z) + Ec∇􏽢c,∇z( 􏼁 � (g(􏽢c), z), (11)

d2
zT

zt
, z􏼠 􏼡 + cp(u · ∇T, z) + 􏽥EH∇T,∇z( 􏼁 + d1(p)

zp

zt
, z􏼠 􏼡 � (Q(u, T, 􏽢c, p), z), (12)

ϕKi

zci

zt
, z􏼠 􏼡 + u · ∇ci, z( 􏼁 + Ec∇ci,∇z( 􏼁 + d3 ci( 􏼁

zp

zt
, z􏼠 􏼡 � fi 􏽢c, c1, . . . , cN( 􏼁, z( 􏼁, (13)

for z ∈ H1(Ω) and i � 1, . . . , N.
Assume that Vh × Wh is the Raviart–-omas space of

index at least k associated with a quasitriangulation of Ω
such that the elements have diameters bounded by hp. Let

Mh � Mhc
and Rh � RhT

be finite-dimensional subspaces of
W1,∞(Ω) for the approximation of concentrations and
temperature, respectively, and we take Mh and Rh as the
piecewise-polynomial space of degree at least l and r,
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respectively. As in [2, 11, 13], the approximation properties
for Vh × Wh and Mh, Rh are given by

inf
vh∈Vh

v − vh

����
����≤C‖v‖k+1h

k+1
p , (14)

inf
vh∈Vh

∇ · v − vh( 􏼁
����

����≤C ‖v‖k+1 + ‖∇ · v‖k+1( 􏼁h
k+1
p , (15)

for v ∈ V∩Hk+1(Ω)2 and ∇ · v ∈ Hk+1(Ω), and

inf
wh∈Wh

w − wh

����
����≤C‖w‖k+1h

k+1
p , w ∈ H

k+1
(Ω), (16)

inf
zh∈Mh

z − zh

����
����1,q
≤C‖z‖l+1,qh

l
c, z ∈W

l+1,q
(Ω), 1≤ q≤∞,

(17)

inf
zh∈Rh

z − zh

����
����1,q
≤C‖z‖r+1,qh

r
T, z ∈W

r+1,q
(Ω), 1≤ q≤∞.

(18)

If the initial solutions p0
h, u0

h, 􏽢c0h, �T
0
h, c0ih􏼚 􏼛 ∈ Vh ×

Wh × Mh × Rh × MN
h , the characteristics-Galerkin and

mixed finite element approximation schemes are to find
pn

h, un
h, 􏽢cn

h, �T
n

h, cn
ih􏽮 􏽯 ∈ Vh × Wh × Mh × Rh × MN

h satisfying

ϕ1
p

n
h − p

n− 1
h

Δt
, w􏼠 􏼡 + ∇ · u

n
h, w( 􏼁 � − q + Rs

′ 􏽢c
n
h( 􏼁, w( 􏼁, ∀w ∈Wh,

(19)

a 􏽢c
n
h( 􏼁u

n
h, v( 􏼁 − ∇ · v, p

n
h( 􏼁 � 0, ∀v ∈ Vh, (20)

ϕ
􏽢c

n
h − 􏽢c

n− 1
h

Δt
, z⎛⎝ ⎞⎠ + Ec∇􏽢c

n
h,∇z( 􏼁 � g 􏽢c

n
h( 􏼁, z( 􏼁, ∀z ∈Mh,

(21)

d2

�T
n

h − �T
n− 1
h

Δt
, z⎛⎝ ⎞⎠ + 􏽥Eh∇�T

n

h,∇z􏼐 􏼑 + d1 p
n
h( 􏼁

p
n
h − p

n− 1
h

Δt
, z􏼠 􏼡

� Q u
n
h, �T

n

h, 􏽢c
n
h, p

n
h􏼐 􏼑, z􏼐 􏼑, ∀z ∈ Rh,

(22)

ϕKi

c
n
ih − c

n− 1
ih

Δt
, z􏼠 􏼡 + Ec∇c

n
ih,∇z( 􏼁 + d3 c

n
ih( 􏼁

p
n
h − p

n− 1
h

Δt
, z􏼠 􏼡

� fi 􏽢c
n
h, c

n
1h, . . . , c

n
Nh( 􏼁, z( 􏼁, ∀z ∈Mh,

(23)

where i � 1, . . . , N and

􏽢c
n− 1
h � 􏽢c

n− 1
h x

n− 1
􏼐 􏼑,

x
n− 1

� x −
u

n
hΔt
ϕ

,

c
n− 1
ih � c

n− 1
ih x

n− 1
􏼐 􏼑,

x
n− 1

� x −
u

n
hΔt
ϕKi( 􏼁

,

�T
n− 1
h � �T

n− 1
h x

n− 1
􏼐 􏼑,

x
n− 1

� x −
cpu

n
hΔt

d2
.

(24)

Remark. If xn− 1 is located outside Ω, we can join xn− 1

with Y ∈ zΩ so that (xn− 1 − Y)/‖xn− 1 − Y‖ is the outer-
normal direction to the boundary zΩ at Y. Take x∗ ∈ Ω so
that Y − x∗n− 1 � xn− 1 − Y, then we define xn− 1 � x∗n− 1.

In order to deduce the error estimates, we employ the
elliptic projections by labeling them with tildes.

(∇ · (u − 􏽥U), w) +(p − 􏽥P, w) � 0, w ∈Wh, (25)

(a(􏽢c)(u − 􏽥U), v) +(∇ · v, p − 􏽥P) � 0, v ∈ Vh, (26)

Ec∇(􏽢c − 􏽥C),∇z􏼐 􏼑 + λ(􏽢c − t􏽥C, z) � 0, z ∈Mh, (27)

EH∇(T − 􏽥T),∇z􏼐 􏼑 + λ(T − 􏽥T, z) � 0, z ∈ Rh, (28)

Ec∇ ci − 􏽥Ci􏼐 􏼑,∇z􏼐 􏼑 + λ ci − 􏽥Ci, z􏼐 􏼑 � 0, z ∈Mh, (29)

where 􏽥U, 􏽥P􏼈 􏼉: J⟶ Vh × Wh, 􏽥C: J⟶Mh, 􏽥T: J⟶ Rh

and 􏽥Ci: J⟶Mh for t ∈ J and introduce the following
notations:

η � p − 􏽥P,

α � 􏽥P − ph,

ϱ � u − 􏽥U,

β � 􏽥U − uh,

􏽢ζ � 􏽢c − 􏽥C,

􏽢χ � 􏽥C − 􏽢ch,

ζ i � ci − 􏽥Ci,

χi � 􏽥Ci − cih,

θ � T − 􏽥T,

ψ � 􏽥T − �Th.

(30)

Subtracting (19) from (9) and taking w � dtαn− 1, we get
the error equation about the pressure function as follows:
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ϕ1dtα
n− 1

, dtα
n− 1

􏼐 􏼑 + ∇ · βn
, dtα

n− 1
􏼐 􏼑

� − ϕ1
zηn

zt
, dtα

n− 1
􏼠 􏼡 + ϕ1 dt

􏽥P
n− 1

−
z􏽥P

n

zt
􏼠 􏼡, dtα

n− 1
􏼠 􏼡

+
zRs
′

z􏽢c
δn
1( 􏼁 􏽢c

n
− 􏽢c

n
h( 􏼁, dtα

n− 1
􏼠 􏼡,

(31)

where dtαn− 1 � (αn − αn− 1)/Δt and δn
1 is between 􏽢cn and 􏽢cn

h.
Next, combining (20) from (10) at t � tn with the test

function βn,

a 􏽢c
n
h( 􏼁βn

, βn
( 􏼁 − ∇ · βn

, αn
( 􏼁 � −

za

z􏽢c
δn
2( 􏼁 􏽥U

n
􏽢c

n
− 􏽢c

n
h( 􏼁, βn

􏼠 􏼡.

(32)

When t � tn− 1, we apply the Taylor expansion and obtain
that

a 􏽢c
n− 1
h􏼐 􏼑βn− 1

, βn− 1
􏼐 􏼑 − ∇ · βn

, αn− 1
􏼐 􏼑

� a 􏽢c
n− 1
h􏼐 􏼑βn− 1

, βn− 1
− βn

􏼐 􏼑 −
za

z􏽢c
δn− 1
2􏼐 􏼑 􏽥U

n− 1
􏽢c

n− 1
− 􏽢c

n− 1
h􏼐 􏼑, βn

􏼠 􏼡,

(33)

where δ2 is between 􏽢c and 􏽢ch.
Combining (32) with (33), we get

1
2

dt a 􏽢c
n− 1
h􏼐 􏼑βn− 1

, βn− 1
􏼐 􏼑􏽮 􏽯 − ∇ · βn

, dtα
n− 1

􏼐 􏼑

� −
1
2Δt

a 􏽢c
n
h( 􏼁βn

, βn
( 􏼁 +

1
2Δt

a 􏽢c
n− 1
h􏼐 􏼑βn

, βn
􏼐 􏼑 −

1
2Δt

a 􏽢c
n− 1
h􏼐 􏼑βn

, βn
􏼐 􏼑

+
1
Δt

a 􏽢c
n− 1
h􏼐 􏼑βn− 1

, βn
􏼐 􏼑 −

1
2Δt

a 􏽢c
n− 1
h􏼐 􏼑βn− 1

, βn− 1
􏼐 􏼑

− dt

za

z􏽢c
δn− 1
2􏼐 􏼑 􏽥U

n− 1
􏽢c

n− 1
− 􏽢c

n− 1
h􏼐 􏼑, βn

􏼨􏼠 􏼡.

(34)

By (31) and (34),

ϕ1dtα
n− 1

, dtα
n− 1

􏼐 􏼑 +
1
2

dt a 􏽢c
n− 1
h􏼐 􏼑βn− 1

, βn− 1
􏼐 􏼑􏽮 􏽯

� − ϕ1
zηn

zt
, dtα

n− 1
􏼠 􏼡 + ϕ1 dt

􏽥P
n− 1

−
z􏽥P

n

zt
􏼠 􏼡, dtα

n− 1
􏼠 􏼡 +

zRs
′

z􏽢c
δn
1( 􏼁 􏽢c

n
− 􏽢c

n
h( 􏼁, dtα

n− 1
􏼠 􏼡

−
1
2Δt

a 􏽢c
n
h( 􏼁 − a 􏽢c

n− 1
h􏼐 􏼑􏽨 􏽩βn

, βn
􏼐 􏼑 −

1
2Δt

a 􏽢c
n− 1
h􏼐 􏼑 βn

− βn− 1
􏼐 􏼑, βn

− βn− 1
􏼐 􏼑􏼐 􏼑

− dt

za

z􏽢c
δn− 1
2􏼐 􏼑 􏽥U

n− 1
􏽢c

n− 1
− 􏽢c

n− 1
h􏼐 􏼑, βn

􏼨􏼠 􏼡

≤ − ϕ1
zηn

zt
, dtα

n− 1
􏼠 􏼡 + ϕ1 dt

􏽥P
n− 1

−
z􏽥P

n

zt
􏼠 􏼡, dtα

n− 1
􏼠 􏼡 +

zRs
′

z􏽢c
δn
1( 􏼁 􏽢c

n
− 􏽢c

n
h( 􏼁, dtα

n− 1
􏼠 􏼡

−
1
2Δt

a 􏽢c
n
h( 􏼁 − a 􏽢c

n− 1
h􏼐 􏼑􏽨 􏽩βn

, βn
􏼐 􏼑 − dt

za

z􏽢c
δn− 1
2􏼐 􏼑 􏽥U

n− 1
􏽢c

n− 1
− 􏽢c

n− 1
h􏼐 􏼑, βn

􏼨􏼠 􏼡.

(35)

Using the deduction as [1, 2], we have
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dtα
n− 1����

����
2

+
1
2
dt a 􏽢c

n− 1
h􏼐 􏼑βn− 1

, βn− 1
􏼐 􏼑􏽮 􏽯

≤ βn
����

����
2
∞ + ε􏼒 􏼓 dt􏽢χ

n− 1����
����
2

+ C 􏽢χn− 1����
����
2

+ βn
����

����
2

+ h
2k+2
p + h

2l+2
c + Δt2􏼒 􏼓.

(36)

After making the induction hypothesis that
sup ‖βn‖∞⟶ 0, we multiply (36) by Δt and sum over
1≤ n≤M to get

􏽘

M

n�1
dtα

n− 1����
����
2Δt + a 􏽢c

M− 1
h􏼐 􏼑βM

, βM
􏼐 􏼑

≤ βn
����

����
2
∞ + ε􏼒 􏼓 􏽘

M

n�1
dt􏽢χ

n− 1����
����
2
Δt

+ C 􏽘
M

n�1
􏽢χn− 1����

����
2
1 + βn

����
����
2

􏼔 􏼕Δt + h
2k+2
p + h

2l+2
c + Δt2⎛⎝ ⎞⎠.

(37)

Combining (11) and (21), we get the following equality,
in which we choose the test function
z � 􏽢χn − 􏽢χn− 1 � dt􏽢χ

n− 1Δt and sum over 1≤ n≤M:

􏽘

M

n�1
ϕdt􏽢χ

n− 1
, dt􏽢χ

n− 1
􏼐 􏼑Δt +

1
2

Ec∇􏽢χ
M

,∇􏽢χM
􏼐 􏼑 −

1
2

Ec∇􏽢χ
0
,∇􏽢χ0􏼐 􏼑

≤ 􏽘
M

n�1
ϕ

z􏽢c
n

zt
+ u

n
h · ∇􏽢cn

− ϕ
􏽢c

n
− 􏽢c

n− 1

Δt
, dt􏽢χ

n− 1⎛⎝ ⎞⎠Δt + 􏽘
M

n�1
ϕ

􏽢χn− 1
− 􏽢χn− 1

Δt
, dt􏽢χ

n− 1⎛⎝ ⎞⎠Δt

+ 􏽘
M

n�1
ϕdt

􏽢ζ
n− 1

, dt􏽢χ
n− 1

􏼒 􏼓Δt + 􏽘
M

n�1
ϕ

􏽢ζ
n− 1

− 􏽢ζ
n− 1

Δt
, dt􏽢χ

n− 1⎛⎜⎜⎝ ⎞⎟⎟⎠Δt + 􏽘
M

n�1
λ 􏽢ζ

n
, dt􏽢χ

n− 1
􏼐 􏼑Δt

+ 􏽘
M

n�1
u

n
− u

n
h( 􏼁 · ∇􏽢cn

, dt􏽢χ
n− 1

􏼐 􏼑Δt + 􏽘
M

n�1

zg

z􏽢c
􏽢c

n
h( 􏼁 􏽢ζ

n
+ 􏽢χn

􏼐 􏼑, dt􏽢χ
n− 1

􏼠 􏼡Δt,

(38)

where 􏽢χn− 1
� 􏽢χn− 1(xn− 1), 􏽢ζ

n− 1
� 􏽢ζ

n− 1
(xn− 1), and

xn− 1 � x − (un
h/ϕ(x))Δt.

Note that

􏽘

M

n�1
ϕ

􏽢ζ
n− 1

− 􏽢ζ
n− 1

Δt
, dt􏽢χ

n− 1⎛⎜⎜⎝ ⎞⎟⎟⎠Δt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� ϕ 􏽢ζ
M− 1

− 􏽢ζ
M− 1

􏼠 􏼡, 􏽢χM
􏼠 􏼡 − ϕ 􏽢ζ

0
− 􏽢ζ

0
􏼠 􏼡, 􏽢χ0􏼠 􏼡􏼢 􏼣 − 􏽘

M− 1

n�1
ϕdt

􏽢ζ
n

− 􏽢ζ
n

􏼒 􏼓, 􏽢χn
􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� CΔt 􏽢ζ
M− 1

������

������

2
+ 􏽢ζ

0
������

������

2
+ 􏽘

M− 1

n�1

􏽢ζ
n− 1

������

������

2
+ dt

􏽢ζ
n�����

�����
2

􏼒 􏼓
⎧⎨

⎩

⎫⎬

⎭ + εΔt 􏽢χ0
����

����
2
1.

(39)

-e reminder of the right side items in (38) is just as [2],
that is,
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􏽘

M

n�1
dt􏽢χ

n− 1����
����
2
Δt + Ec∇􏽢χ

M
,∇􏽢χM

􏼐 􏼑

≤C 􏽘

M

n�1
∇􏽢χn− 1����

����
2
∞ 􏽢χn− 1����

����
2
1 + βn

����
����
2

􏼔 􏼕Δt + h
2k+2
p + h

2l+2
c + Δt2⎛⎝ ⎞⎠.

(40)

It follows from the assumption sup‖∇􏽢χn− 1‖∞ ≤C and
Gronwall lemma that

‖􏽢χ‖L∞ H1( ) + dt􏽢χ
����

����l2 L2( )
+‖β‖L∞ L2( ) + dtα

����
����l2 L2( )

≤C Δt + h
l+1
c + h

k+1
p􏼐 􏼑.

(41)

-en, by the inverse estimate and (40), we know that the
induction hypotheses hold if

h
k+1
p � o hc( 􏼁,

h
l+1
c � o hp􏼐 􏼑,

Δt � o hc( 􏼁,

Δt � o hp􏼐 􏼑.

(42)

Finally, from the approximation properties,

􏽢c − 􏽢ch

����
����L∞ h1( )

+ dt 􏽢c − 􏽢ch( 􏼁
����

����l2 L2( )
+ u − uh

����
����L∞ L2( )

+ dt p − ph( 􏼁
����

����l2 L2( )

≤ c Δt + h
l
c + h

k+1
p􏼐 􏼑.

(43)

Similar to the above analysis, we can obtain the error
estimates for the radionuclide equation and heat equation as
follows:

􏽘

N

i�1
χi

����
����L∞ H1( )

+ 􏽘
N

i�1
dtχi

����
����l2 L2( )
≤C Δt + h

l+1
c + h

k+1
p􏼐 􏼑,

‖ψ‖L∞ H1( ) + dtψ
����

����l2 L2( )
≤C Δt + h

l+1
c + h

r+1
T + h

k+1
p􏼐 􏼑,

(44)

where hk+1
p � o(hT), hl+1

c � o(hT), andΔt � o(hT) are
satisfied.

Note that the time step is limited to be o(h) due to the
theoretical proof.

Theorem 1. Define pn
h, un

h, 􏽢cn
h, �T

n

h, cn
ih􏽮 􏽯 ∈ Vh × Wh × Mh×

Rh × MN
h for n≥ 1 by system (19)–(23) and assume that the

approximation properties (25)–(29) hold. If

h
k+1
p � o hc( 􏼁,

h
l+1
c � o hp􏼐 􏼑,

Δt � o hc( 􏼁,

Δt � o hp􏼐 􏼑,

h
k+1
p � o hT( 􏼁,

h
l+1
c � o hT( 􏼁,

Δt � o hT( 􏼁,

(45)

then there exists a positive constant C independent of h and
△t, such that

􏽢c − 􏽢ch

����
����L∞ H1( )

+ dt 􏽢c − 􏽢ch( 􏼁
����

����l2 L2( )
+ u − uh

����
����L∞ L2( )

+ dt p − ph( 􏼁
����

����l2 L2( )

+ 􏽘
N

i�1
ci − cih

����
����L∞ H1( )

+ 􏽘
N

i�1
dt ci − cih( 􏼁

����
����l2 L2( )

+ T − �Th

����
����L∞ H1( )

+ dt T − T
⌣

h􏼒 􏼓

������

������
l2 L2( )

≤C Δt + h
l
c + h

r
T + h

k+1
p􏼐 􏼑.

(46)
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Similarly, we can get the error estimates of fine grid
scheme in L2 norm.

Theorem 2. Define pn
h, un

h, 􏽢cn
h, �T

n

h, cn
ih􏽮 􏽯 ∈ Vh × Wh × Mh×

Rh × MN
h for n≥ 1 by system (19)–(23) and assume that the

approximation properties (25)–(29) hold. =en, there exists a
positive constant C independent of h, H, and △t, such that

􏽢c − 􏽢ch

����
����L∞ L2( )

+ u − uh

����
����l2 L2( )

+ p − ph

����
����L∞ L2( )

+ 􏽘
N

i�1
ci − cih

����
����L∞ L2( )

+ T − �Th

����
����L∞ L2( )

≤C Δt + h
l+1
c + h

r+1
T + h

k+1
p􏼐 􏼑.

(47)

3. An Efficient Method

We now use and analyze a two-grid method for iteratively
solving the nonlinear problem. -e method has two steps.

Stage 1. On the coarse grid TH with a mesh size
H ∈ (0, 1), solve a small nonlinear system for
Pn

H, Un
H, 􏽢C

n

H, Tn
H, Cn

iH􏽮 􏽯 ∈ VH × WH × MH × RH × MN
H

given by (19)–(23).
Stage 2. On the fine grid Th with a mesh size
h ∈ (0, 1)(h≪H), solve the following linear system for
Pn

h, Un
h, 􏽢C

n

h, Tn
h, Cn

ih􏽮 􏽯 ∈ Vh × Wh × Mh × Rh × MN
h :

ϕ1
P

n
h − P

n− 1
h

Δt
, w􏼠 􏼡 + ∇ · U

n
h, w( 􏼁 −

zRs
′

z􏽢c
􏽢C

n

H􏼐 􏼑􏽢C
n

h, w􏼠 􏼡

� − q + Rs
′ 􏽢C

n

H􏼐 􏼑 −
zRs
′

z􏽢c
􏽢C

n

H􏼐 􏼑􏽢C
n

H, w􏼠 􏼡, ∀w ∈Wh,

(48)

a 􏽢C
n

H􏼐 􏼑U
n
h +

za

z􏽢c
􏽢C

n

H􏼐 􏼑U
n
H

􏽢C
n

h, v􏼠 􏼡 − ∇ · v, P
n
h( 􏼁 �

za

z􏽢c
􏽢C

n

H􏼐 􏼑U
n
H

􏽢C
n

H, v􏼠 􏼡, ∀v ∈ Vh, (49)

ϕ
􏽢C

n

h − 􏽢C
n− 1
h

Δt
, z⎛⎝ ⎞⎠ + U

n
h · ∇􏽢C

n

H, z􏼐 􏼑 + Ec∇􏽢C
n

h,∇z􏼐 􏼑 −
zg

z􏽢c
􏽢C

n

H􏼐 􏼑􏽢C
n

h, z􏼠 􏼡

� U
n
H · ∇􏽢C

n

H, z􏼐 􏼑 + g 􏽢C
n

H􏼐 􏼑 −
zg

z􏽢c
􏽢C

n

H􏼐 􏼑􏽢C
n

H, z􏼠 􏼡, ∀z ∈Mh,

(50)

d2
T

n
h − T

n− 1
h

Δt
, z⎛⎝ ⎞⎠ + 􏽥EH∇T

n
h,∇z( 􏼁 −

zQ
H

zT
T

n
h, z􏼠 􏼡

� − d1 P
n
h( 􏼁

P
n
h − P

n− 1
h

Δt
, z􏼠 􏼡 + Q

H
, z􏼐 􏼑 −

zQ
H

zT
T

n
H, z􏼠 􏼡, ∀z ∈ Rh,

(51)

ϕKi

C
n
ih − C

n− 1
ih

Δt
, z⎛⎝ ⎞⎠ + Ec∇C

n
iH,∇z( 􏼁 +

zd3

zci

C
n
iH( 􏼁

P
n
h − P

n− 1
h

Δt
C

n
ih, z􏼠 􏼡

−
zf

H
i

zc1
C

n
1h + · · · +

zf
H
i

zcN

C
n
Nh, z􏼠 􏼡 � − d3 C

n
iH( 􏼁

P
n
h − P

n− 1
h

Δt
, z􏼠 􏼡

+
zd3

zci

C
n
iH( 􏼁

P
n
h − P

n− 1
h

Δt
C

n
iH + f

H
i −

zf
H
i

zc1
C

n
1H − · · · −

zf
H
i

zcN

C
n
NH, z􏼠 􏼡, ∀z ∈Mh,

(52)

where
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Q
H

� Q U
n
h, T

n
H, 􏽢C

n

h, P
n
h􏼐 􏼑,

f
H
i � fi

􏽢C
n

h, C
n
1H, . . . , C

n
NH􏼐 􏼑,

􏽢C
n− 1
h � 􏽢C

n− 1
h x

n− 1
􏼐 􏼑,

x
n− 1

� x −
U

n
HΔt
ϕ

􏼠 􏼡,

C
n− 1
ih � C

n− 1
ih x

n− 1
􏼐 􏼑,

x
n− 1

� x −
U

n
hΔt
ϕKi( 􏼁

􏼠 􏼡,

T
n− 1
h � T

n− 1
h x

n− 1
􏼐 􏼑,

x
n− 1

� x −
cpU

n
hΔt

d2
􏼠 􏼡,

(53)

and the projection on the fine grid is based on the numerical
solutions on coarse grid.

-e sequential solution processes are defined as follows.
Firstly, we apply the Newton iteration to the coupled system
on the coarse grid and obtain Pn

H, Un
H, 􏽢C

n

H, Tn
H, Cn

iH􏽮 􏽯. Next,
combining (48)–(50), we get Pn

h andUn
h with RT1 and 􏽢C

n

h

with piecewise linear finite element using a coupled linear
system. Finally, from (51) and (52), we can get Cn

ih and Tn
h by

parallel computation.
In order to analyze the linear scheme on the fine grid, we

define

π � 􏽥P − Ph,

σ � 􏽥U − Uh,

􏽢ξ � 􏽥C − 􏽢Ch,

ξ � 􏽥Ci − Cih,

ω � 􏽥T − Th.

(54)

According to Taylor expansion, there exists a positive δ3
such that

Rs
′ 􏽢c

n
( 􏼁 − Rs

′ 􏽢C
n

H􏼐 􏼑 −
zRs
′

z􏽢c
􏽢C

n

H􏼐 􏼑 􏽢C
n

h − 􏽢C
n

H􏼐 􏼑

� Rs
′ 􏽢C

n

H􏼐 􏼑 +
zRs
′

z􏽢c
􏽢C

n

H􏼐 􏼑 􏽢c
n

− 􏽢C
n

H􏼐 􏼑 − Rs
′ 􏽢C

n

H􏼐 􏼑 −
zRs
′

z􏽢c
􏽢C

n

H􏼐 􏼑 􏽢C
n

h − 􏽢C
n

H􏼐 􏼑

+
z
2
Rs
′

2 z􏽢c
2 δ3( 􏼁 􏽢c

n
− 􏽢C

n

H􏼐 􏼑
2

�
zRs
′

z􏽢c
􏽢C

n

H􏼐 􏼑 􏽢c
n

− 􏽢C
n

h􏼐 􏼑 +
z
2
Rs
′

2 z􏽢c
2 δ3( 􏼁 􏽢c

n
− 􏽢C

n

H􏼐 􏼑
2
.

(55)

According to (48), (9), and (25),

ϕ1dtπ
n− 1

, dtπ
n− 1

􏼐 􏼑 + ∇ · σn
, dtπ

n− 1
􏼐 􏼑

� − ϕ1
zηn

zt
, dtπ

n− 1
􏼠 􏼡 + ϕ1 dt

􏽥P
n− 1

−
z􏽥P

n

zt
􏼠 􏼡, dtπ

n− 1
􏼠 􏼡 + ηn

, dtπ
n− 1

􏼐 􏼑

+
zRs
′

z􏽢c
􏽢C

n

H􏼐 􏼑 􏽢c
n

− 􏽢C
n

h􏼐 􏼑 +
z
2
Rs
′

2 z􏽢c
2 δ1( 􏼁 􏽢c

n
− 􏽢C

n

H􏼐 􏼑
2
, dtπ

n− 1
􏼠 􏼡.

(56)

Like the deduction of (34), we see that
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1
2
dt a 􏽢C

n− 1
H􏼒 􏼓σn− 1

, σn− 1
􏼒 􏼓􏼚 􏼛 − ∇ · σn

, dtπ
n− 1

􏼐 􏼑

� −
1
2Δt

a 􏽢C
n

H􏼐 􏼑σn
, σn

􏼐 􏼑 +
1
2Δt

a 􏽢C
n− 1
H􏼒 􏼓σn

, σn
􏼒 􏼓 −

1
2Δt

a 􏽢C
n− 1
H􏼒 􏼓σn

, σn
􏼒 􏼓

+
1
Δt

a 􏽢C
n− 1
H􏼒 􏼓σn− 1

, σn
􏼒 􏼓 −

1
2Δt

a 􏽢C
n− 1
H􏼒 􏼓σn− 1

, σn− 1
􏼒 􏼓 − dt

za

z􏽢c
􏽢C

n− 1
H􏼒 􏼓 􏽥U

n− 1
􏼨􏼠

􏽢c
n− 1

− 􏽢C
n− 1
h􏼒 􏼓 +

za

z􏽢c
􏽢C

n− 1
H􏼒 􏼓 􏽥U

n− 1
− U

n− 1
H􏼐 􏼑 􏽢C

n− 1
h − 􏽢C

n− 1
H􏼒 􏼓􏼩, σn

􏼡

−
1
2Δt

z
2
a

z􏽢c
2 δ4( 􏼁 􏽥U

n
􏽢c

n
− 􏽢C

n

H􏼐 􏼑
2

−
z
2
a

z􏽢c
2 δ4( 􏼁 􏽥U

n− 1
􏽢c

n− 1
− 􏽢C

n− 1
H􏼒 􏼓

2
, σn

􏼠 􏼡,

(57)

where δ4 is between 􏽢c and 􏽢CH. Hence, (56) and (57) can give that

ϕ1dtπ
n− 1

, dtπ
n− 1

􏼐 􏼑 +
1
2
dt a 􏽢C

n− 1
H􏼒 􏼓σn− 1

, σn− 1
􏼒 􏼓􏼚 􏼛

� − ϕ1
zηn

zt
, dtπ

n− 1
􏼠 􏼡 + ϕ1 dt

􏽥P
n− 1

−
z􏽥P

n

zt
􏼠 􏼡, dtπ

n− 1
􏼠 􏼡 + ηn

, dtπ
n− 1

􏼐 􏼑

+
zRs
′

z􏽢c
􏽢C

n

H􏼐 􏼑 􏽢c
n

− 􏽢C
n

h􏼐 􏼑 +
z
2
Rs
′

2 z􏽢c
2 δ3( 􏼁 􏽢c

n
− 􏽢C

n

H􏼐 􏼑
2
, dtπ

n− 1
􏼠 􏼡

−
1
2Δt

a 􏽢C
n

H􏼐 􏼑 − a 􏽢C
n− 1
H􏼒 􏼓􏼔 􏼕σn

, σn
􏼒 􏼓 −

1
2Δt

a 􏽢C
n− 1
H􏼒 􏼓 σn

− σn− 1
􏼐 􏼑, σn

− σn− 1
􏼐 􏼑􏼒 􏼓,

− dt

za

z􏽢c
􏽢C

n− 1
H􏼒 􏼓 􏽥U

n− 1
􏽢c

n− 1
− 􏽢C

n− 1
h􏼒 􏼓 +

za

z􏽢c
􏽢C

n− 1
H􏼒 􏼓 􏽥U

n− 1
− U

n− 1
H􏼐 􏼑 􏽢C

n− 1
h − 􏽢C

n− 1
H􏼒 􏼓􏼨 􏼩, σn

􏼠 􏼡

−
1
2Δt

z
2
a

z􏽢c
2 δ4( 􏼁 􏽥U

n
􏽢c

n
− 􏽢C

n

H􏼐 􏼑
2

−
z
2
a

z􏽢c
2 δ4( 􏼁 􏽥U

n− 1
􏽢c

n− 1
− 􏽢C

n− 1
H􏼒 􏼓

2
, σn

􏼠 􏼡.

(58)

-e error equation about 􏽢c shows that

ϕ
􏽢ξ

n
− 􏽢ξ

n− 1

Δt
, z⎛⎝ ⎞⎠ + Ec∇􏽢ξ

n
,∇z􏼐 􏼑

� − ϕ
z􏽢c

n

zt
+ u

n
H · ∇􏽢cn

− ϕ
􏽢c

n
− 􏽢c

n− 1

Δt
, z⎛⎝ ⎞⎠ + ϕ

􏽢ξ
n− 1

− 􏽢ξ
n− 1

Δt
, z⎛⎜⎜⎝ ⎞⎟⎟⎠

− ϕ
􏽢ζ

n
− 􏽢ζ

n− 1

Δt
, z⎛⎜⎜⎝ ⎞⎟⎟⎠ + λ 􏽢ζ

n
, z􏼐 􏼑 − u

n
− U

n
H( 􏼁 · ∇􏽢cn

− ∇􏽢C
n

H􏼐 􏼑 + u
n

− U
n
h( 􏼁 · ∇􏽢C

n

H, z􏼐 􏼑

+
zg

z􏽢c
􏽢C

n

H􏼐 􏼑 􏽢ζ
n

+ 􏽢ξ
n

􏼐 􏼑, z􏼠 􏼡 +
z
2
g

2z􏽢c
2 δ5( 􏼁 􏽢c

n
− 􏽢C

n

H􏼐 􏼑
2
, z􏼠 􏼡,

(59)
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where 􏽢ξ
n− 1

� 􏽢ξ
n− 1

(X
n− 1

), 􏽢ζ
n− 1

� 􏽢ζ
n− 1

(X
n− 1

), and X
n− 1

�

x − (Un
H/ϕ(x))Δt.

Taking the test function z � 􏽢ξ
n

− 􏽢ξ
n− 1

� dt
􏽢ξ

n− 1
Δt and

summing over 1≤ n≤M, we have

􏽘

M

n�1
ϕdt

􏽢ξ
n− 1

, dt
􏽢ξ

n− 1
􏼒 􏼓Δt +

1
2

Ec∇􏽢ξ
M

,∇􏽢ξ
M

􏼒 􏼓 −
1
2

Ec∇􏽢ξ
0
,∇􏽢ξ

0
􏼒 􏼓

≤ 􏽘

M

n�1
ϕ

z􏽢c
n

zt
+ u

n
H · ∇􏽢cn

− ϕ
􏽢c

n
− 􏽢c

n− 1

Δt
, dt

􏽢ξ
n− 1

⎛⎝ ⎞⎠Δt + 􏽘

M

n�1
ϕ

􏽢ξ
n− 1

− 􏽢ξ
n− 1

Δt
, dt

􏽢ξ
n− 1⎛⎜⎜⎝ ⎞⎟⎟⎠Δt

+ 􏽘
M

n�1
ϕ

􏽢ζ
n

− 􏽢ζ
n− 1

Δt
, dt

􏽢ξ
n− 1⎛⎜⎜⎝ ⎞⎟⎟⎠Δt + 􏽘

M

n�1
λ 􏽢ζ

n
, dt

􏽢ξ
n− 1

􏼒 􏼓Δt

+ 􏽘
M

n�1
u

n
− U

n
H( 􏼁 · ∇􏽢cn

− ∇􏽢C
n

H􏼐 􏼑 + u
n

− U
n
h( 􏼁 · ∇􏽢C

n

H, dt
􏽢ξ

n− 1
􏼒 􏼓Δt

+ 􏽘
M

n�1

zg

z􏽢c
􏽢C

n

H􏼐 􏼑 􏽢ζ
n

+ 􏽢ξ
n

􏼐 􏼑 +
z
2
g

2 z􏽢c
2 δ4( 􏼁 􏽢c

n
− 􏽢C

n

H􏼐 􏼑
2
, dt

􏽢ξ
n− 1

􏼠 􏼡Δt.

(60)

Since

􏽢c − 􏽢CH􏼐 􏼑
2�����

�����≤ 􏽢c − 􏽢CH

����
����L∞

􏽢c − 􏽢CH

����
����L2

≤ ‖􏽢c − 􏽥C‖L∞ + 􏽥C − 􏽢CH

����
����L∞

􏼐 􏼑 􏽢c − 􏽢CH􏼐 􏼑
�����

�����L2

≤C ln Hc

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌H

l+1
c + lnHc

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 H

l+1
c + H

k+1
p􏼐 􏼑􏼐 􏼑

× H
l+1
c + H

k+1
p􏼐 􏼑

≤C H
2l+2
c lnHc

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + H

2k+2
p ln Hc

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑,

(61)

u − UH( 􏼁 􏽢c − 􏽢CH􏼐 􏼑
�����

�����≤ u − UH

����
���� 􏽢c − 􏽢CH

����
����L∞

≤C H
l+1
c + H

k+1
p􏼐 􏼑􏼑

× lnHc

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 H

l+1
c + H

k+1
p􏼐 􏼑􏼐 􏼑

≤C H
2l+2
c lnHc

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + H

2k+2
p ln Hc

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑,

(62)

u − UH( 􏼁 ∇􏽢c − ∇􏽢CH􏼐 􏼑
�����

�����≤ u − UH

����
���� 􏽢c − 􏽢CH

����
����1,∞

≤C H
l+1
c + H

k+1
p􏼐 􏼑

× H
l
c + H

− 1
c H

l+1
c + H

k+1
p􏼐 􏼑􏼐 􏼑

≤C H
2l+1
c + H

2k+2
p H

− 1
c􏼐 􏼑.

(63)

It follows from (61)–(63) that

􏽢c − 􏽢Ch

����
����L∞ H1( )

+ dt 􏽢c − 􏽢Ch􏼐 􏼑
�����

�����l2 L2( )
+ u − UH

����
����L∞ L2( )

+ dt p − Ph( 􏼁
����

����l2 L2( )

≤C Δt + h
l
c + h

k+1
p + H

2l+1
c + H

2k+2
p H

− 1
c􏼐 􏼑.

(64)

At last, we present the error results of the radionuclide
equation and heat equation as follows:

􏽘

N

i�1
ci − Cih

����
����L∞ H1( )

+ 􏽘
N

i�1
dt ci − Cih( 􏼁

����
����l2 L2( )

≤C Δt + h
l
c + h

k+1
p + H

2l+2
c ln Hc

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + H

2k+2
p ln Hc

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑,

T − Th

����
����L∞ H1( )

+ dt T − Th( 􏼁
����

����l2 L2( )

≤C Δt + h
l
c + h

r
T + h

k+1
p + H

2r+2
T ln HT

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + H

2l+2
c |ln H|T + H

2k+2
p ln HT

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑.

(65)
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If setting l � 1, r � 1, k � 1, hc � hT � hp, and
Hc � HT � Hp, which accords with the assumption (45), we
can get the following theorem of fine grid scheme.

Theorem 3. Define Pn
h, Un

h, 􏽢C
n

h, Tn
h, Cn

ih􏽮 􏽯 ∈ Vh × Wh × Mh ×

Rh × MN
h for n≥ 1 by system (48)–(52) and assume that the

approximation properties (14)–(18) hold. =en, there exists a
positive constant C independent of h, H, and △t, such that

􏽢c − 􏽢Ch

����
����L∞ H1( )

+ dt 􏽢c − 􏽢Ch􏼐 􏼑
�����

�����l2 L2( )
+ u − Uh

����
����L∞ L2( )

+ dt p − Ph( 􏼁
����

����l2 L2( )

+ 􏽘
N

i�1
ci − Cih

����
����L∞ H1( )

+ 􏽘
N

i�1
dt ci − Cih( 􏼁

����
����l2 L2( )

+ T − Th

����
����L∞ H1( )

+ dt T − Th( 􏼁
����

����l2 L2( )

≤C Δt + h + H
3

􏼐 􏼑.

(66)

Theorem 4. Define Pn
h, Un

h, 􏽢C
n

h, Tn
h, Cn

ih􏽮 􏽯 ∈ Vh × Wh × Mh ×

Rh × MN
h for n≥ 1 by system (48)–(52) and assume that the

approximation properties (14)–(18) hold. =en, there exists a
positive constant C independent of h, H, and △t, such that

􏽢c − 􏽢Ch

����
����L∞ L2( )

+ u − Uh

����
����l2 L2( )

+ p − Ph

����
����L∞ L2( )

+ 􏽘
N

i�1
ci − Cih

����
����L∞ L2( )

+ T − Th

����
����L∞ L2( )

≤C Δt + h
2

+ H
3

􏼐 􏼑.

(67)

4. Conclusions and Extensions

-e two-grid method presented in this paper reduces the
complexity of problem. It involves a small nonlinear system
on a coarse grid of sizeH and a linear system on a fine grid of
size h. It is shown that the coarse space can be extremely
coarse and still achieve asymptotically optimal approxi-
mation as long as the mesh sizes satisfy H � O(h1/3) in H1

norm. Compared with the implicit scheme, the two-grid
method reduces CPU time. Moreover, the method is suitable
to make the large-scale computation and long time duration.
-e future work is to use the discontinuous finite volume
element method [14], block-centered finite difference
method [15], higher-order finite volume [16], and SAV
method [17, 18] to consider this problem.
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Generally, the differential equations of integer order do not properly model various phenomena in different areas of science and
engineering as compared to differential equations of fractional order.)e fractional-order differential equations provide the useful
dynamics of the physical system and thus provide the innovative and effective information about the given physical system.
Keeping in view the above properties of fractional calculus, the present article is related to the analytical solution of the time-
fractional system of equations which describe the unsteady flow of polytropic gas dynamics. )e present method provides the
series form solution with easily computable components and a higher rate of convergence towards the targeted problem’s exact
solution. )e present techniques are straightforward and effective for dealing with the solutions of fractional-order problems.)e
fractional derivatives are expressed in terms of the Caputo operator. )e targeted problems’ solutions are calculated using the
Adomian decomposition method and variational iteration methods along with Shehu transformation. In the current procedures,
we first applied the Shehu transform to reduce the problems into a more straightforward form and then implemented the
decomposition and variational iteration methods to achieve the problems’ comprehensive results. )e solution of the nonlinear
equations of unsteady flow of a polytropic gas at various fractional orders of the derivative is the core point of the present study.
)e solution of the proposed fractional model is plotted via two- and three-dimensional graphs. It is investigated that each
problem’s solution-graphs are best fitted with each other and with the exact solution. )e convergence of fractional-order
problems can be observed towards the solution of integer-order problems. Less computational time is the major attraction of the
suggested methods. )e present work will be considered a useful tool to handle the solution of fractional partial
differential equations.

1. Introduction

In recent years, nonlinear fractional partial differential equa-
tions (FPDEs) have attracted researchers because of their useful
applications in science and engineering [1–3]. )e analysis of
exact solutions to these nonlinear PDEs plays a very significant
role in the Soliton theory since much of the information are
provided on the description of the physical models, in the
transmission of electrical signals, as a standard diffusion-wave
equation, the transfer of neutrons by nuclear reactor, the theory
of random walks, and so on [4–14].

In recent decades, many researchers have used different
approaches to analyze the solutions of nonlinear PDEs, such
as Laplace transform [15], Akbari–Ganji’s method [16],
homotopy analysis method [17], lattice Boltzmann method
[18, 19], volume of fluid method [20, 21], Laplace homotopy
analysis method [22, 23], Adomian decomposition tech-
nique [24–27], the variational iteration technique [28],
Adams–Bashforth–Moulton algorithm [29], homotopy
perturbation Sumudu transform method [30], the tanh
method [31], the sinh-cosh method [32], finite difference
method [33], the homotopy perturbation method [34], and
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the Laplace decomposition technique, to handle fractional-
order Zakharov–Kuznetsov equations [35].

In the present study, we consider the gas-dynamic
equations fractional-order scheme describing the evolution
of an ideal gas’s two-dimensional unsteady flow. )e pol-
ytropic gas in astrophysics is given as follows [36]:

ψ � kω1+(1/m)
, (1)

where ψ � (θ/ϕ) is the energy density, ϕ is the container
volume, θ is the total energy of the gas, m is the polytropic
index, and k is a constant. Degenerate adiabatic gas and
electron gas are two instances of such gases. In astrophysics
and cosmology, the analysis of polytropic gases plays a
critical role, and these gases can perform like dark energy
[37]. Now consider the gas-dynamic equations scheme,
which describes the evolution of unstable flow of a perfect
gas with fractional derivatives [36, 38]:

D
δ
ημ + μ

zμ
zξ

+ ]
zμ
zζ

+
1
ω

zψ
zξ

� 0,

D
δ
η] + μ

z]
zξ

+ ]
z]
zζ

+
1
ω

zψ
zζ

� 0,

D
δ
ηω + μ

zω
zξ

+ ]
zω
zζ

+ ω
zμ
zξ

+
z]
zζ

􏼠 􏼡 � 0,

D
δ
ηψ + μ

zψ
zξ

+ ]
zψ
zζ

+ τψ
zμ
zξ

+
z]
zζ

􏼠 􏼡 � 0,

(2)

with initial conditions

μ(ξ, ζ, 0) � α(ξ + ζ),

](ξ, ζ, 0) � β(ξ + ζ),

ω(ξ, ζ, 0) � c(ξ + ζ),

ψ(ξ, ζ, 0) � Φ(ξ + ζ),

(3)

where μ(ξ, ζ, η) and ](ξ, ζ, η) are the velocity components,
ω(ξ, ζ, η) is the density, ψ(ξ, ζ, η) is the pressure, and τ is the
ratio of the specific heat and it represents the adiabatic index.
In past decade, the appropriate analytical results of several
distinct types of gas-dynamic equations are achieved using
many analytical and numerical methods. Various methods
have been solved by a gas-dynamic model such as fractional
reduced differential transform method [39], Elzaki trans-
form homotopy perturbation method [40], q-homotopy
analysis method [36], Adomian decomposition method [41],
fractional homotopy analysis transform method [38], and
natural decomposition method [42].

)e variational iteration transform method (VITM)
combines the variational iteration method and the Shehu
transform. Many researchers commonly used this technique
to solve linear and nonlinear models [43–45]. )e method
provides a reliable and effective procedure for a broad range
of science. VIM does not need discretization, linearization,
or perturbation. It provides quick convergence and suc-
cessive approximations of the exact result [46–48]. Various
equations solve the variational iteration method with the

help of different transformations, such as Kur-
amoto–Sivashinsky equations [49] and fourth-order para-
bolic partial differential equation [45].

)e ADM is an efficient and accurate technique that was
suggested initially to solve analytically frontier physical
models [50]. Since then, ADM has been implemented in
nonlinear ODEs and PDEs without using perturbation or
linearization procedure. )e Shehu decomposition method
(SDM) is a mixture of ADM and Shehu transform [51–54].

)e motivation and novelty of the current research work
are to modify the ADM and VIM along with Shehu
transformation to investigate the solution of a nonlinear
system of nonlinear FPDEs of unsteady flow of polytropic
gas-dynamics equations. Besides the nonlinear system of
four equations, the given problem’s solution is calculated by
an effortless and straightforward procedure. A higher degree
of accuracy is achieved with a tiny number of calculations.
)e fractional-order solutions are achieved with some
graphical justifications. )e visual representation has con-
firmed the effectiveness and applicability of the suggested
techniques. In the future, the proposed techniques are
preferred to solve other nonlinear FPDEs that frequently
arise in science and engineering.

2. Preliminaries Concepts

2.1. Definition 1. )e Riemann–Liouville fractional integral
is given as follows [55, 56]:

I
δ
0h(η) �

1
Γ(δ)

􏽚
η

0
(η − s)

δ− 1
h(s)ds, δ > 0, η> 0,

h(η), δ

(4)

2.2. Definition 2. )e Caputo’s fractional-order derivative of
h(η) is defined as follows [55, 56]:

D
δ
ηh(η) � I

n− δ
f

n
, n − 1< δ < n, n ∈ N

d
n

dηn

h(η), δ � n, n ∈ N.

(5)

2.3. Definition 3. )e Shehu transformation is the new and
modern transformation which is described for exponential-
order functions. In set A, we take a function represented as
follows [51, 52, 57, 58]:

A � ](η): ∃, ρ1, ρ2 > 0􏼈 , |](η)|<Me |η|/ρi( ),

if η ∈ [0,∞).
(6)

)e Shehu transform which is given by S(.) for a
function ](η) is defined as

S ](η)􏼈 􏼉 � V(s, μ) � 􏽚
∞

0
e

(− sη/μ)](η)dη,

η> 0, s> 0.

(7)
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)e Shehu transform of a function ](η) is V(s, μ), and
then, ](η) is called the inverse of V(s, μ), which is given as

S
− 1

V(s, μ)􏼈 􏼉 � ](η), for η≥ 0,

S
− 1 is inverse Shehu transformation.

(8)

2.4. Definition 4. Shehu transform for nth derivatives is
given as follows [51, 52, 57, 58]:

S ](n)
(η)􏽮 􏽯 �

s
n

u
n V(s, u) − 􏽘

n− 1

k�0

s

u
􏼒 􏼓

n− k− 1
](k)

(0). (9)

2.5. Definition 5. Shehu transform for fractional-order de-
rivatives [51, 52, 57, 58]:

S ](δ)
(η)􏽮 􏽯 �

s
δ

u
δ V(s, u) − 􏽘

n− 1

k�0

s

u
􏼒 􏼓

δ− k− 1
](k)

(0),

0< β≤ n.

(10)

2.6. Definition 6. )e Mittag–Leffler function denoted by
Eδ(z) for δ > 0 is defined as

Eδ(z) � 􏽘
∞

m�0

z
m

Γ(δm + 1)
δ > 0, z ∈ C. (11)

3. The Procedure of VITM

)is section describes the VITM solution, the system of
FPDEs:

D
δ
ημ(ξ, ζ, η) + G1(μ, ]) + N1(μ, ]) − G1(ξ, ζ, η) � 0,

D
δ
η](ξ, ζ, η) + G2(μ, ]) + N2(μ, ]) − G2(ξ, ζ, η) � 0,

m − 1< δ ≤m,

(12)

with initial conditions

μ(ξ, ζ, 0) � g1(ξ, ζ),

](ξ, ζ, 0) � g2(ξ, ζ),
(13)

where Dδ
η � (zδ/zηδ) is the Caputo fractional derivative of

order δ; G1, G2 and N1, N2 are linear and nonlinear
functions, respectively; and G1,G2 are source operators.

)e Shehu transformation is applied to equation (1):

S D
δ
ημ(ξ, ζ, η)􏽨 􏽩 + S G1(μ, ]) + N1(μ, ])􏽨

− G1(ξ, ζ, η)􏼃 � 0,

S D
δ
η](ξ, ζ, η)􏽨 􏽩 + S G2(μ, ]) + N2(μ, ])􏽨

− G2(ξ, ζ, η)􏼃 � 0.

(14)

Applying the differentiation property of Shehu trans-
form, we have

S[μ(ξ, ζ, η)] − 􏽘
m− 1

k�0

sδ− k− 1

uδ− k

zkμ(ξ, ζ, η)

zkη
|η�0

� − S G1(μ, ]) + N1(μ, ]) − G1(ξ, ζ, η)􏽨 􏽩,

S[](ξ, ζ, η)] − 􏽘
m− 1

k�0

sδ− k− 1

uδ− k

zk](ξ, ζ, η)

zkη
|η�0

� − S G2(μ, ]) + N2(μ, ]) − G2(ξ, ζ, η)􏽨 􏽩.

(15)

)e iteration method for equation (15) may be utilized to
indicate the major iterative scheme requiring the Lagrange
multiplier as

S μm+1(ξ, ζ, η)􏼂 􏼃 � S μm(ξ, ζ, η)􏼂 􏼃+

λ(s)
s
δ

u
δμm(ξ, ζ, η) − 􏽘

m− 1

k�0

sδ− k− 1

uδ− k

zkμ(ξ, ζ, η)

zkη
|η�0

⎡⎣

− S G1(ξ, ζ, η)􏼂 􏼃 − S G1(μ, ]) + N1(μ, ])􏽮 􏽯􏽩,

S ]m+1(ξ, ζ, η)􏼂 􏼃 � S ]m(ξ, ζ, η)􏼂 􏼃 + λ(s)
s
δ

u
δ􏼢

]m(ξ, ζ, η) − 􏽘
m− 1

k�0

sδ− k− 1

uδ− k

zk](ξ, ζ, η)

zkη
|η�0

− S G2(ξ, ζ, η)􏼂 􏼃 − S G2(μ, ]) + N2(μ, ])􏽮 􏽯􏽩.

(16)

A Lagrange multiplier

λ(s) � −
u
δ

s
δ , (17)

using inverse Shehu transformation S− 1, and equation (16)
can be written as

μm+1(ξ, ζ, η)

� μm(ξ, ζ, η) − S
− 1 u

δ

s
δ 􏽘

m− 1

k�0

sδ− k− 1

uδ− k

zkμ(ξ, ζ, η)

zkη
|η�0

⎡⎣⎡⎣

− S G1(ξ, ζ, η)􏼂 􏼃 − S G1(μ, ]) + N1(μ, ])􏽮 􏽯􏽩􏽩,

]m+1(ξ, ζ, η)

� ]m(ξ, ζ, η) − S
− 1 u

δ

s
δ 􏽘

m− 1

k�0

sδ− k− 1

uδ− k

zk](ξ, ζ, η)

zkη
|η�0

⎡⎣⎡⎣

− S G2(ξ, ζ, η)􏼂 􏼃 − S G2(μ, ]) + N2(μ, ])􏽮 􏽯􏽩􏽩.

(18)

)e initial value can be found as
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μ0(ξ, ζ, η) � S
− 1 u

δ

s
δ 􏽘

m− 1

k�0

sδ− k− 1

uδ− k

zkμ(ξ, ζ, η)

zkη
|η�0

⎧⎨

⎩

⎫⎬

⎭
⎡⎣ ⎤⎦,

]0(ξ, ζ, η) � S
− 1 u

δ

s
δ 􏽘

m− 1

k�0

sδ− k− 1

uδ− k

zk](ξ, ζ, η)

zkη
|η�0

⎧⎨

⎩

⎫⎬

⎭
⎡⎣ ⎤⎦.

(19)

)e converge of this technique is as follows [59, 60].

4. The Procedure of SDM

In this section, we discuss the SDM solution for system of
FPDEs:

D
δ
ημ(ξ, ζ, η) + G1(μ, ]) + N1(μ, ]) − G1(ξ, ζ, η) � 0,

D
δ
η](ξ, ζ, η) + G2(μ, ]) + N2(μ, ]) − G2(ξ, ζ, η) � 0,

m − 1< δ ≤m,

(20)

with initial conditions

μ(ξ, ζ, 0) � g1(ξ, ζ),

](ξ, ζ, 0) � g2(ξ, ζ),
(21)

where Dδ
η � (zδ/zηδ) is the Caputo fractional derivative of

order δ; G1, G2 and N1, N2 are linear and nonlinear
functions, respectively; and G1,G2 are source functions.

Apply Shehu transform to equation (20):

S D
δ
ημ(ξ, ζ, η)􏽨 􏽩 + S G1(μ, ]) + N1(μ, ])􏽨

− G1(ξ, ζ, η)􏼃 � 0,

S D
δ
η](ξ, ζ, η)􏽨 􏽩 + S G2(μ, ]) + N2(μ, ])􏽨

− G2(ξ, ζ, η)􏼃 � 0.

(22)

Applying the differentiation property of Shehu trans-
form, we have

S[μ(ξ, ζ , η)] �
u
δ

s
δ 􏽘

m− 1

k�0

sδ− k− 1

uδ− k

zkμ(ξ, ζ , η)

zkη
|η�0

+
u
δ

s
δ S G1(ξ, ζ, η)􏼂 􏼃 −

u
δ

s
δ S G1(μ, ]) + N1(μ, ])􏽮 􏽯􏽩,

S[](ξ, ζ , η)] �
u
δ

s
δ 􏽘

m− 1

k�0

sδ− k− 1

uδ− k

zk](ξ, ζ , η)

zkη
|η�0

+
u
δ

s
δ S G2(ξ, ζ, η)􏼂 􏼃 −

u
δ

s
δ S G2(μ, ]) + N2(μ, ])􏽮 􏽯􏽩.

(23)

SDM solution of infinite series μ(ξ, ζ, η) and ](ξ, ζ, η) is
as follows:

μ(ξ, ζ, η) � 􏽘
∞

m�0
μm(ξ, ζ, η),

](ξ, ζ, η) � 􏽘
∞

m�0
]m(ξ, ζ, η).

(24)

Adomian polynomials of nonlinear terms N1 and N2
are given as

N1(μ, ]) � 􏽘
∞

m�0
Am,

N2(μ, ]) � 􏽘
∞

m�0
Bm.

(25)

)enonlinear of Adomian polynomials can be defined as

Am �
1

m!

zm

zλm N1 􏽘

∞

k�0
λkμk, 􏽘

∞

k�0
λk]k

⎛⎝ ⎞⎠
⎧⎨

⎩

⎫⎬
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,

Bm �
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∞
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∞
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⎧⎨

⎩

⎫⎬

⎭
⎡⎢⎢⎣ ⎤⎥⎥⎦

λ�0

.

(26)

Substituting equation (24) and equation (25) into (23)
gives

S 􏽘
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u
δ

s
δ S G2(ξ, ζ, η)􏼈 􏼉 −

u
δ

s
δ S G2 􏽘

∞

m�0
μm, 􏽘

∞

m�0
]m

⎛⎝ ⎞⎠ + 􏽘

∞

m�0
Bm

⎧⎨

⎩

⎫⎬

⎭.

(27)
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Applying the inverse Shehu transformation to equation
(20), we get

􏽘

∞

m�0
μm(ξ, ζ, η)

G1(ξ, ζ, η)􏼈 􏼉 −
u
δ

s
δ S G1 􏽘

∞

m�0
μm, 􏽘
∞

m�0
]m

⎛⎝ ⎞⎠ + 􏽘
∞

m�0
Am

⎧⎨

⎩

⎫⎬

⎭
⎤⎥⎥⎦,

􏽘

∞

m�0
]m(ξ, ζ, η) � S

− 1 u
δ

s
δ 􏽘

m− 1

k�0

sδ− k− 1

uδ− k

zk](ξ, ζ, η)

zkη
|η�0 +

u
δ

s
δ S⎡⎣

G2(ξ, ζ, η)􏼈 􏼉 −
u
δ

s
δ S G2 􏽘

∞

m�0
μm, 􏽘
∞

m�0
]m

⎛⎝ ⎞⎠ + 􏽘
∞

m�0
Bm

⎧⎨

⎩

⎫⎬

⎭
⎤⎥⎥⎦.

(28)

We define the following terms:

μ0(ξ, ζ, η) � S
− 1 u

δ

s
δ 􏽘

m− 1

k�0

sδ− k− 1

uδ− k

zkμ(ξ, ζ, η)

zkη
|η�0

⎡⎣

+
u
δ

s
δ S G1(ξ, ζ, η)􏼈 􏼉􏼣,

]0(ξ, ζ, η) � S
− 1 u

δ

s
δ 􏽘

m− 1

k�0

sδ− k− 1

uδ− k

zk](ξ, ζ, η)

zkη
|η�0⎡⎣

+
u
δ

s
δ S G2(ξ, ζ, η)􏼈 􏼉􏼣,

μ1(ξ, ζ, η) � − S
− 1 u

δ

s
δ S G1 μ0, ]0( 􏼁 + A0􏽮 􏽯􏼢 􏼣,

]1(ξ, ζ, η) � − S
− 1 u

δ

s
δ S G2 μ0, ]0( 􏼁 + B0􏽮 􏽯􏼢 􏼣,

(29)

in general for m≥ 1, and we have

μm+1(ξ, ζ, η) � − S
− 1 u

δ

s
δ S G1 μm, ]m( 􏼁 + Am􏽮 􏽯􏼢 􏼣,

]m+1(ξ, ζ, η) � − S
− 1 u

δ

s
δ S G2 μm, ]m( 􏼁 + Bm􏽮 􏽯􏼢 􏼣.

(30)

5. Implementation of the Methods

Example 1. Consider fractional-order system of nonlinear
equations of unsteady flow of a polytropic gas [36, 38]:

D
δ
ημ + μ

zμ
zξ

+ ]
zμ
zζ

+
1
ω

zψ
zξ

� 0,

D
δ
η] + μ

z]
zξ

+ ]
z]
zζ

+
1
ω

zψ
zζ

� 0,

D
δ
ηω + μ

zω
zξ

+ ]
zω
zζ

+ ω
zμ
zξ

+
z]
zζ

􏼠 􏼡 � 0,

D
δ
ηψ + μ

zψ
zξ

+ ]
zψ
zζ

+ τψ
zμ
zξ

+
z]
zζ

􏼠 􏼡 � 0,

(31)

with initial conditions

μ(ξ, ζ, 0) � e
ξ+ζ

,

](ξ, ζ, 0) � − 1 − e
ξ+ζ

,

ω(ξ, ζ, 0) � e
ξ+ζ

,

ψ(ξ, ζ, 0) � c,

(32)

where c is the real constant.
First, SDM is used to solve equation (31).
For this applying Shehu transformation to equation (31),

S
z
δμ

zηδ
⎧⎨

⎩

⎫⎬

⎭ � S − μ
zμ
zξ

+ ]
zμ
zζ

+
1
ω

zψ
zξ

􏼨 􏼩􏼢 􏼣,

S
z
δ]

zηδ
⎧⎨

⎩

⎫⎬

⎭ � S − μ
z]
zξ

+ ]
z]
zζ

+
1
ω

zψ
zζ

􏼨 􏼩􏼢 􏼣,

S
z
δω

zηδ
⎧⎨

⎩

⎫⎬

⎭ � S − μ
zω
zξ

+ ]
zω
zζ

+ ω
zμ
zξ

+
z]
zζ

􏼠 􏼡,􏼨 􏼩􏼢 􏼣

S
z
δψ

zηδ
⎧⎨

⎩

⎫⎬

⎭ � S − μ
zψ
zξ

+ ]
zψ
zζ

+ τψ
zμ
zξ

+
z]
zζ

􏼠 􏼡,􏼨 􏼩􏼢 􏼣

s
δ

u
δ S μ(ξ, ζ, η)􏼈 􏼉 −

s
δ− 1

u
δ μ(ξ, ζ, 0)

� S − μ
zμ
zξ

+ ]
zμ
zζ

+
1
ω

zψ
zξ

􏼨 􏼩􏼢 􏼣,

s
δ

u
δ S ](ξ, ζ, η)􏼈 􏼉 −

s
δ− 1

u
δ ](ξ, ζ, 0)

� S − μ
z]
zξ

+ ]
z]
zζ

+
1
ω

zψ
zζ

􏼨 􏼩􏼢 􏼣,

s
δ

u
δ S ω(ξ, ζ, η)􏼈 􏼉 −

s
δ− 1

u
δ ω(ξ, ζ, 0)

� S − μ
zω
zξ

+ ]
zω
zζ

+ ω
zμ
zξ

+
z]
zζ

􏼠 􏼡􏼨 􏼩􏼢 􏼣,

s
δ

u
δ S ψ(ξ, ζ, η)􏼈 􏼉 −

s
δ− 1

u
δ ψ(ξ, ζ, 0)

� S − μ
zψ
zξ

+ ]
zψ
zζ

+ τψ
zμ
zξ

+
z]
zζ

􏼠 􏼡􏼨 􏼩􏼢 􏼣.

(33)
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)e above algorithm is reduced to simplified form:

S μ(ξ, ζ, η)􏼈 􏼉 �
1
s
μ(ξ, ζ, 0)􏼈 􏼉

−
u
δ

s
δ S μ

zμ
zξ

+ ]
zμ
zζ

+
1
ω

zψ
zξ

􏼨 􏼩􏼢 􏼣,

S ](ξ, ζ, η)􏼈 􏼉 �
1
s
](ξ, ζ, 0){ }

−
u
δ

s
δ S μ

z]
zξ

+ ]
z]
zζ

+
1
ω

zψ
zζ

􏼨 􏼩􏼢 􏼣,

S ω(ξ, ζ, η)􏼈 􏼉 �
1
s
ω(ξ, ζ, 0){ }

−
u
δ

s
δ S μ

zω
zξ

+ ]
zω
zζ

+ ω
zμ
zξ

+
z]
zζ

􏼠 􏼡􏼨 􏼩􏼢 􏼣,

S ψ(ξ, ζ, η)􏼈 􏼉 �
1
s
ψ(ξ, ζ, 0)􏼈 􏼉

−
u
δ

s
δ S μ

zψ
zξ

+ ]
zψ
zζ

+ τψ
zμ
zξ

+
z]
zζ

􏼠 􏼡􏼨 􏼩􏼢 􏼣.

(34)

Applying inverse Shehu transformation, we get

μ(ξ, ζ, η) � μ(ξ, ζ, 0)−

S
− 1 u

δ

s
δ S μ

zμ
zξ

+ ]
zμ
zζ

+
1
ω

zψ
zξ

􏼨 􏼩􏼢 􏼣,

](ξ, ζ, η) � ](ξ, ζ, 0)−

S
− 1 u

δ

s
δ S μ

z]
zξ

+ ]
z]
zζ

+
1
ω

zψ
zζ

􏼨 􏼩􏼢 􏼣,

ω(ξ, ζ, η) � ω(ξ, ζ, 0)−

S
− 1 u

δ

s
δ S μ

zω
zξ

+ ]
zω
zζ

+ ω
zμ
zξ

+
z]
zζ

􏼠 􏼡􏼨 􏼩􏼢 􏼣,

ψ(ξ, ζ, η) � ψ(ξ, ζ, 0)−

S
− 1 u

δ

s
δ S μ

zψ
zξ

+ ]
zψ
zζ

+ τψ
zμ
zξ

+
z]
zζ

􏼠 􏼡􏼨 􏼩􏼢 􏼣.

(35)

Equation (35) can be written in an operator form as

μ(ξ, ζ, η) � μ(ξ, ζ, 0) − S
− 1 u

δ

s
δ S􏼢

A1 μ, μξ􏼐 􏼑 + B1 ], μζ􏼐 􏼑 + C1 ω,ψξ􏼐 􏼑􏽮 􏽯􏽩,

](ξ, ζ, η) � ](ξ, ζ, 0) − S
− 1 u

δ

s
δ S􏼢

A2 μ, ]ξ􏼐 􏼑 + B2 ], ]ζ􏼐 􏼑 + C2 ω,ψζ􏼐 􏼑􏽮 􏽯􏽩,

ω(ξ, ζ, η) � ω(ξ, ζ, 0) − S
− 1 u

δ

s
δ S A3 μ,ωξ􏼐 􏼑+􏽮􏼢

B3 ],ωζ􏼐 􏼑 + C3 ω, μξ􏼐 􏼑 + D3 ω, ]ζ􏼐 􏼑􏽯􏽩,

ψ(ξ, ζ, η) � ψ(ξ, ζ, 0) − S
− 1 u

δ

s
δ S A4 μ,ψξ􏼐 􏼑+􏽮􏼢 􏼣

B4 ],ψζ􏼐 􏼑 + τC4 ψ, μξ􏼐 􏼑 + τD4 ψ, ]ζ􏼐 􏼑􏽯􏽩.

(36)

Assume that the unknown functions μ(ξ, ζ, η), ](ξ, ζ, η),
ω(ξ, ζ, η), and ψ(ξ, ζ, η) have infinite series solution as
follows:

μ(ξ, ζ, η) � 􏽘

∞

m�0
μm(ξ, ζ, η),

](ξ, ζ, η) � 􏽘
∞

m�0
]m(ξ, ζ, η),

ω(ξ, ζ, η) � 􏽘

∞

m�0
ωm(ξ, ζ, η),

ψ(ξ, ζ, η) � 􏽘
∞

m�0
ψm(ξ, ζ, η).

(37)

All forms of nonlinear Adomian polynomials can be
defined as
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A1 μ, μξ􏼐 􏼑 � μ0μ0ξ + μ1μ0ξ + μ0μ1ξ􏼐 􏼑 + · · · ,

B1 ], μζ􏼐 􏼑 � ]0μ0ξ + ]1μ0ξ + ]0μ1ξ􏼐 􏼑 + · · · ,

C1 ω,ψξ􏼐 􏼑 �
ψ0ξ

ω0
+
ω0ψ1ξ − ω1ψ0ξ

ω0
+ · · · ,

A2 μ, ]ξ􏼐 􏼑 � μ0]0ξ + μ1]0ξ + μ0]1ξ􏼐 􏼑 + · · · ,

B2 ], ]ζ􏼐 􏼑 � ]0]0ξ + ]1]0ξ + ]0]1ξ􏼐 􏼑 + · · · ,

C2 ω,ψζ􏼐 􏼑 �
ψ0ζ

ω0
+
ω0ψ1ζ − ω1ψ0ζ

ω0
+ · · · ,

A3 μ,ωξ􏼐 􏼑 � μ0ω0ξ + μ1ω0ξ + μ0ω1ξ􏼐 􏼑 + · · · ,

B3 ],ωζ􏼐 􏼑 � ]0ω0ξ + ]1ω0ξ + ]0ω1ξ􏼐 􏼑 + · · · ,

C3 ω, μξ􏼐 􏼑 � ω0μ0ξ + ω1μ0ξ + ω0μ1ξ􏼐 􏼑 + · · · ,

D3 ω, ]ζ􏼐 􏼑 � ω0]0ζ + ω1]0ζ + ω0]1ζ􏼐 􏼑 + · · · ,

A4 μ,ψξ􏼐 􏼑 � μ0ψ0ξ + μ1ψ0ξ + μ0ψ1ξ􏼐 􏼑 + · · · ,

C4 ψ, μξ􏼐 􏼑 � ψ0μ0ξ + ψ1μ0ξ + ψ0μ1ξ􏼐 􏼑 + · · · ,

D4 ψ, ]ζ􏼐 􏼑 � ψ0]0ζ + ψ1]0ζ + ψ0]1ζ􏼐 􏼑 + · · · .

(38)

)e initial sources are

μ0(ξ, ζ, η) � e
ξ+ζ

,

]0(ξ, ζ, η) � − 1 − e
ξ+ζ

,

ω0(ξ, ζ, η) � e
ξ+ζ

,

ψ0(ξ, ζ, 0) � c.

μm(ξ, ζ, η) � − S
− 1 u

δ

s
δ S􏼢

· A1 μ, μξ􏼐 􏼑 + B1 ], μζ􏼐 􏼑 + C1 ω,ψξ􏼐 􏼑􏽮 􏽯􏽩,

]m(ξ, ζ, η) � − S
− 1 u

δ

s
δ S􏼢

· A2 μ, ]ξ􏼐 􏼑 + B2 ], ]ζ􏼐 􏼑 + C2 ω,ψζ􏼐 􏼑􏽮 􏽯􏽩,

ωm(ξ, ζ, η) � − S
− 1 u

δ

s
δ S A3 μ,ωξ􏼐 􏼑+􏽮􏼢

B3 ],ωζ􏼐 􏼑 + C3 ω, μξ􏼐 􏼑 + D3 ω, ]ζ􏼐 􏼑􏽯􏽩,

ψm(ξ, ζ, η) � − S
− 1 u

δ

s
δ S A4 μ,ψξ􏼐 􏼑+􏽮􏼢

B4 ],ψζ􏼐 􏼑 + τC4 ψ, μξ􏼐 􏼑 + τD4 ψ, ]ζ􏼐 􏼑􏽯􏽩.

(39)

For m � 1,

μ1(ξ, ζ, η) � e
ξ+ζ ηδ

Γ(δ + 1)
,

]1(ξ, ζ, η) � − e
ξ+ζ ηδ

Γ(δ + 1)
,

ω1(ξ, ζ, η) � e
ξ+ζ ηδ

Γ(δ + 1)
,

ψ1(ξ, ζ, 0) � 0.

(40)

For m � 2,

μ2(ξ, ζ, η) � e
ξ+ζ η2δ

Γ(2δ + 1)
,

]2(ξ, ζ, η) � − e
ξ+ζ η2δ

Γ(2δ + 1)
,

ω2(ξ, ζ, η) � e
ξ+ζ η2δ

Γ(2δ + 1)
,

ψ2(ξ, ζ, 0) � 0.

(41)

For m � 3,

μ3(ξ, ζ, η) � e
ξ+ζ η3δ

Γ(3δ + 1)
,

]3(ξ, ζ, η) � − e
ξ+ζ η3δ

Γ(3δ + 1)
,

ω3(ξ, ζ, η) � e
ξ+ζ η3δ

Γ(3δ + 1)
,

ψ3(ξ, ζ, 0) � 0.

μm(ξ, ζ, η) � μ0(ξ, ζ, η) + μ1(ξ, ζ, η) + · · · ,

]m(ξ, ζ, η) � ]0(ξ, ζ, η) + ]1(ξ, ζ, η) + · · · ,

]m(ξ, ζ, η) � ]0(ξ, ζ, η) + ]1(ξ, ζ, η) + · · · ,

ωm(ξ, ζ, η) � ω0(ξ, ζ, η) + ω1(ξ, ζ, η) + · · · ,

ψm(ξ, ζ, 0) � ψ0(ξ, ζ, η) + ψ1(ξ, ζ, η) + · · · ,

μ(ξ, ζ, η) � e
ξ+ζ

+ e
ξ+ζ ηδ

Γ(δ + 1)

+ e
ξ+ζ η2δ

Γ(2δ + 1)
+ e

ξ+ζ η3δ

Γ(3δ + 1)
+ · · · ,

](ξ, ζ, η) � − 1 − e
ξ+ζ

− e
ξ+ζ ηδ

Γ(δ + 1)

− e
ξ+ζ η2δ

Γ(2δ + 1)
− e

ξ+ζ η3δ

Γ(3δ + 1)
− · · · ,

ω(ξ, ζ, η) � e
ξ+ζ

+ e
ξ+ζ ηδ

Γ(δ + 1)

+ e
ξ+ζ η2δ

Γ(2δ + 1)
+ e

ξ+ζ η3δ

Γ(3δ + 1)
+ · · · ,

ψ(ξ, ζ, 0) � c + 0 + · · · .

(42)

In general, we have
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μm(ξ, ζ, η) � e
ξ+ζ ηmδ

Γ(mδ + 1)
,

]m(ξ, ζ, η) � − e
ξ+ζ ηmδ

Γ(mδ + 1)
,

ωm(ξ, ζ, η) � e
ξ+ζ ηmδ

Γ(mδ + 1)
,

ψm(ξ, ζ, 0) � 0, m � 1, 2, . . . .

(43)

)e Approximate Solution by VITM
According to equation (16) and the iteration formulas

for system (31), we get

μm+1(ξ, ζ, η) � μm(ξ, ζ, η) − N
− u

δ

s
δ S

s
δ

u
δ􏼨􏼢

·
zμm

zη
+ μm

zμm

zξ
+ ]m

zμm

zζ
+

1
ωm

zψm

zξ
􏼩􏼣,

]m+1(ξ, ζ, η) � ]m(ξ, ζ, η) − S
− 1 u

δ

s
δ S

s
δ

u
δ􏼨􏼢

·
z]m

zη
+ μm

z]m

zξ
+ ]m

z]m

zζ
+

1
ωm

zψm

zζ
􏼩􏼣,

ωm+1(ξ, ζ, η) � ωm(ξ, ζ, η) − N
− u

δ

s
δ S

s
δ

u
δ

zμm

zη
􏼨􏼢 􏼣

+ μm

zωm

zξ
+ ]m

zωm

zζ
+ ωm

zμm

zξ
+

z]m

zζ
􏼠 􏼡􏼩􏼣,

ψm+1(ξ, ζ, η) � ψm(ξ, ζ, η) − S
− 1 u

δ

s
δ S

s
δ

u
δ

z]m

zη
􏼨􏼢

+ μm

zψm

zξ
+ ]m

zψm

zζ
+ τψm

zμm

zξ
+

z]m

zζ
􏼠 􏼡􏼩􏼣,

(44)

where

μ0(ξ, ζ, η) � e
ξ+ζ

,

]0(ξ, ζ, η) � − 1 − e
ξ+ζ

,

ω0(ξ, ζ, η) � e
ξ+ζ

,

ψ0(ξ, ζ, 0) � c.

(45)

For m � 0, 1, 2, . . .,

μ1(ξ, ζ, η) � μ0(ξ, ζ, η)−

N
− u

δ

s
δ S

s
δ

u
δ

zμ0
zη

+ μ0
zμ0
zξ

+ ]0
zμ0
zζ

+
1
ω0

zψ0
zξ

􏼨 􏼩􏼢 􏼣,

]1(ξ, ζ, η) � ]0(ξ, ζ, η)−

S
− 1 u

δ

s
δ S

s
δ

u
δ

z]0
zη

+ μ0
z]0
zξ

+ ]0
z]0
zζ

+
1
ω0

zψ0

zζ
􏼨 􏼩􏼢 􏼣,

ω1(ξ, ζ, η) � ω0(ξ, ζ, η) − N
− u

δ

s
δ S

s
δ

u
δ􏼨􏼢

·
zμ0
zη

+ μ0
zω0

zξ0
+ ]0

zω0

zζ0
+ ω0

zμ0
zξ

+
z]0
zζ

􏼠 􏼡􏼩􏼣,

ψ1(ξ, ζ, η) � ψ0(ξ, ζ, η) − S
− 1 u

δ

s
δ S

s
δ

u
δ􏼨􏼢

·
z]0
zη

+ μ0
zψ0

zξ
+ ]0

zψ0

zζ
+ τψ0

zμ0
zξ

+
z]0
zζ

􏼠 􏼡􏼩􏼣,

μ1(ξ, ζ, η) � e
ξ+ζ 1 +

ηδ

Γ(δ + 1)
􏼨 􏼩,

]1(ξ, ζ, η) � − 1 − e
ξ+ζ 1 +

ηδ

Γ(δ + 1)
􏼨 􏼩,

ω1(ξ, ζ, η) � e
ξ+ζ 1 +

ηδ

Γ(δ + 1)
􏼨 􏼩,

ψ1(ξ, ζ, 0) � c + 0.

μ2(ξ, ζ, η) � μ1(ξ, ζ, η)−

N
− u

δ

s
δ S

s
δ

u
δ

zμ1
zη

+ μ1
zμ1
zξ

+ ]1
zμ1
zζ

+
1
ω1

zψ1
zξ

􏼨 􏼩􏼢 􏼣,

]2(ξ, ζ, η) � ]1(ξ, ζ, η)−

S
− 1 u

δ

s
δ S

s
δ

u
δ

z]1
zη

+ μ1
z]1
zξ

+ ]1
z]1
zζ

+
1
ω1

zψ1

zζ
􏼨 􏼩􏼢 􏼣,

ω2(ξ, ζ, η) � ω1(ξ, ζ, η) − N
− u

δ

s
δ S

s
δ

u
δ􏼨􏼢

·
zμ1
zη

+ μ1
zω1

zξ0
+ ]1

zω1

zζ1
+ ω1

zμ1
zξ

+
z]1
zζ

􏼠 􏼡􏼩􏼣,

ψ2(ξ, ζ, η) � ψ1(ξ, ζ, η) − S
− 1 u

δ

s
δ S

s
δ

u
δ􏼨􏼢

·
z]1
zη

+ μ1
zψ1

zξ
+ ]1

zψ1

zζ
+ τψ1

zμ1
zξ

+
z]1
zζ

􏼠 􏼡􏼩􏼣,

μ2(ξ, ζ, η) � e
ξ+ζ 1 +

ηδ

Γ(δ + 1)
+

η2δ

Γ(2δ + 1)
􏼨 􏼩,
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]2(ξ, ζ, η) � − 1 − e
ξ+ζ 1 +

ηδ

Γ(δ + 1)
+

η2δ

Γ(2δ + 1)
􏼨 􏼩,

ω2(ξ, ζ, η) � e
ξ+ζ 1 +

ηδ

Γ(δ + 1)
+

η2δ

Γ(2δ + 1)
􏼨 􏼩,

ψ2(ξ, ζ, 0) � c + 0.

μ3(ξ, ζ, η) � μ2(ξ, ζ, η)−

N
− u

δ

s
δ S

s
δ

u
δ

zμ2
zη

+ μ2
zμ2
zξ

+ ]2
zμ2
zζ

+
1
ω2

zψ2

zξ
􏼨 􏼩􏼢 􏼣,

]3(ξ, ζ, η) � ]2(ξ, ζ, η)−

S
− 1 u

δ

s
δ S

s
δ

u
δ

z]2
zη

+ μ2
z]2
zξ

+ ]2
z]2
zζ

+
1
ω2

zψ2

zζ
􏼨 􏼩􏼢 􏼣,

ω3(ξ, ζ, η) � ω2(ξ, ζ, η) − N
− u

δ

s
δ S

s
δ

u
δ􏼨􏼢

·
zμ2
zη

+ μ2
zω2

zξ0
+ ]2

zω2

zζ2
+ ω2

zμ2
zξ

+
z]2
zζ

􏼠 􏼡􏼩􏼣,

ψ3(ξ, ζ, η) � ψ2(ξ, ζ, η) − S
− 1 u

δ

s
δ S

s
δ

u
δ􏼨􏼢

·
z]2
zη

+ μ2
zψ2

zξ
+ ]2

zψ2

zζ
+ τψ2

zμ2
zξ

+
z]2
zζ

􏼠 􏼡􏼩􏼣,

μ3(ξ, ζ, η) � e
ξ+ζ 1 +

ηδ

Γ(δ + 1)
􏼨

+
η2δ

Γ(2δ + 1)
+

η3δ

Γ(3δ + 1)
􏼩,

ω3(ξ, ζ, η)

+
η2δ

Γ(2δ + 1)
+

η3δ

Γ(3δ + 1)
􏼩,

ψ3(ξ, ζ, 0) � c + 0.

]3(ξ, ζ, η) � − 1 − e
ξ+ζ 1 +

ηδ

Γ(δ + 1)
􏼨

+
η2δ

Γ(2δ + 1)
+

η3δ

Γ(3δ + 1)
􏼩,

](ξ, ζ, η) � 􏽘
∞

m�0
]m(ξ, ζ)

+
η2δ

Γ(2δ + 1)
+

η3δ

Γ(3δ + 1)
+ · · · +

ηmδ

Γ(mδ + 1)
􏼩,

ω(ξ, ζ, η) � 􏽘
∞

m�0
ωm(ξ, ζ)

+
η2δ

Γ(2δ + 1)
+

η3δ

Γ(3δ + 1)
+ · · · +

ηmδ

Γ(mδ + 1)
􏼩,

ψ(ξ, ζ, 0) � 􏽘
∞

m�0
ψm(ξ, ζ)

μ(ξ, ζ, η) � 􏽘
∞

m�0
μm(ξ, ζ)

+
η2δ

Γ(2δ + 1)
+

η3δ

Γ(3δ + 1)
+ · · · +

ηmδ

Γ(mδ + 1)
􏼩.

(46)

)e exact solution of equation (31) at δ � 1 is

μ(ξ, ζ, η) � e
ξ+ζ+η

,

](ξ, ζ, η) � − 1 − e
ξ+ζ+η

,

ω(ξ, ζ, η) � e
ξ+ζ+η

,

ψ(ξ, ζ, 0) � c.

(47)
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Figure 1: SDM and VITM solution graph of μ at ζ � 1 and η � 0.5
of Example 1.
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Figure 2: SDM and VITM solution graph of ] at ζ � 1 and η � 0.5
of Example 1.
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6. Results Discussion

In this section, we discuss the solution-graphs of fractional-order
system of nonlinear equations of unsteady flow of a polytropic
gas which has been solved by using SDM and VITM. In
Figures 1–4, the solutions μ, ],ω, and ψ obtained by using SDM
and VITM are compared by keeping one variable and other
constants. )e dotted and line subgraphs are, respectively,
denoted the SDM and VITM solutions. It is observed that SDM
and VITM solution-graphs are identical and within close

contact. In similar way, in Figures 5–7, the three-dimensional
graphs for variables μ, ], and ψ are plotted for Example 1. )e
identical solution-graphs of the suggested methods are attained
and confirmed that the results obtained by two different pro-
cedures are identical and verified the applicability of the pro-
posed techniques. In Figures 8–10, the SDM and VITM
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Figure 3: SDM and VITM solution graph of ω at ζ � 1 and η � 0.5 of Example 1.
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Figure 4: SDM and VITM solution graph of ψ of Example 1.
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Figure 5: SDM and VITM solution 3d graph of μ(ξ, ζ, η) of Ex-
ample 1.
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solutions are plotted in two dimensions at fractional order δ �

0.4, 0.6, 0.8, 1 for Example 1. )e convergence phenomenon of
the fractional solutions towards integer solution is observed.)e
three-dimensional graphs of the fractional-order solutions for
Example 1 are represented in Figures 11–13 for variables μ, ],

and ω, respectively. In Table 1 and Figure 14, the combined
graph for variables μ, ], andψ is displayed at δ � 1.)e solution
comparison of the suggested methods, SDM and VITM, is
discussed.)e suggested techniques have provided the solutions
with the desire degree of accuracy with the consideration of very
few terms in its series form solutions.
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Figure 6: SDM and VITM solution 3d graph of ](ξ, ζ, η) of Example 1.
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Figure 7: SDM and VITM solution 3d graph of ω(ξ, ζ, η) of
Example 1.
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Figure 8: SDM and VITM graph of different value of δ for μ(ξ, ζ, η)

of Example 1.
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Figure 9: SDM and VITM graph of different value of δ for ](ξ, ζ, η) of Example 1.
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7. Conclusion

In this article, the analytical solution of the system of time-
fractional partial differential equations of unsteady flow of
polytrophic dynamics is investigated by using two different
techniques:

(i) )e proposed techniques are the mixture of Shehu
transformation with Adomian decomposition
method and variational iteration method,
respectively.

(ii) )e obtained solutions of the suggested techniques
for both fractional and integer orders are calculated
and plotted via two- and three-dimensional graphs.

(iii) A close contact between the actual and the derived
results is observed.

(iv) )e fractional-order solutions provide various
dynamics for a different fractional order of the
derivative.

(v) Using analytical solutions, the task can be done
rather simple and effective as compared to nu-
merical investigations that need larger calculations.

(vi) After all, the researchers are now able to select the
fractional-order problem whose solution is com-
paratively very close to the experimental results of
any physical problem.

(vii) Due to simple and straightforward implementation,
the suggested techniques are considered to be
preferable to solve other system of FPDEs.

)e following abbreviations are used in this article:

Nomenclature

ST: Shehu transform
LT: Laplace transform
FPDEs: Fractional partial differential equations
VITM: Variational iteration transform method
SDM: Shehu decomposition method
ADM: Adomian decomposition method.
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[23] M. Yavuz and N. Özdemir, “Numerical inverse Laplace
homotopy technique for fractional heat equations,” 2018.
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In this paper, we study the convergence rate of the proximal difference of the convex algorithm for the problem with a strong
convex function and two convex functions. By making full use of the special structure of the difference of convex decomposition,
we prove that the convergence rate of the proximal difference of the convex algorithm is linear, which is measured by the objective
function value.

1. Introduction

Difference of convex programming (DCP) is a kind of
important optimization problem that the objective function
can be written as the difference of convex (DC) functions.
+e DCP problem has found many applications in assign-
ment and power allocation [1], digital communication
system [2], compressed sensing [3], and so on [4–6].

Up to now, one of the classical algorithms for DCP is the
DC algorithm (DCA) [7] in which the nonconvex part of the
objective function is replaced by a linear approximation. By
DCA, only a convex optimization subproblem needs to be
solved at each iteration. After that, the DCA has been attracted
by a lot of researchers. Le +i et al. [8] proved the linear
convergence rate of DCA by employing the Kurdy-
ka–Lojasiewicz inequality. Assuming that the subproblem of
DCA can be easily solved [6], Gotoh et al. [4] proposed the
proximal DC algorithm (PDCA) for solving the DCP, in which
not only the nonconvex part in the objective function is
replaced by the same technique as in DCA but also the convex
part is replaced by a quadratic approximal. +e PDCA reduces
to the classical proximal gradient algorithm for convex pro-
gramming if the nonconvex part of the objective function is
void [9]. To accelerate the PDCA, Wen et al. [10] introduced a

new type of proximal algorithm (PDCAe) with the help of an
extrapolation technique. Since the convergence rate of PDCAe

heavily depends on the Kurdyka–Lojasiewicz inequality,
PDCAe converges linearly in general [10].

In this paper, we study the linear convergence rate of
PDCA by the structure, which is different from the tech-
niques in [8, 10]. Under conditions that the objection
function can be divided into difference of a strong convex
function and two convex functions with Lipschitz contin-
uous gradient, we prove the linear convergence rate of
PDCA, which is measured by the objective function value.

+e remainder of the paper is organized as follows. In
Section 2, several useful preliminaries are recalled. In Section
3, more details about the DC optimization problem are
given, and the PDCA proposed in [4] is listed for the sake of
simplicity. +e linear convergence rate of the PDCA is
established in Section 4. Final remarks are given in Section 5.

2. Preliminaries

In this section, we recall some useful definitions and
properties.

Let f: Rn⟶ [− ∞, +∞] be an extended real function.
+e domain of f is denoted by
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domf � x ∈ R
n
: f(x)<+∞􏼈 􏼉. (1)

If f(x) never equals − ∞ for all x ∈ domf and dom
f≠∅, we say that f is a proper function. If the proper
function is lower semicontinuous, then it is called a closed
function. A proper closed function f(x) is said to be level

bounded if the lower level set of f (i.e.,
x ∈ Rn|ft( nxq )h≤ rx, 7C∀; r ∈ R􏼈 􏼉) is bounded.

Let f: Rn⟶ R ⋃ +∞{ } be a proper closed function.
+en, the limit subdifferential of f at x ∈ domf is defined as
follows:

zf(x) � v ∈ R
n
: ∃xt⟶

f
x, v

t⟶ vwith lim inf
y⟶xt

f(y) − f x
t

􏼐 􏼑 − 〈vt
, y − x

t〉
y − x

t
����

����
≥ 0, ∀ t

⎧⎨

⎩

⎫⎬

⎭, (2)

where z⟶
f

x denote z⟶ x and f(z)⟶ f(x). Note
that dom zf � x ∈ Rn: zf(x)≠∅􏼈 􏼉. It is well known that
the limit subdifferential reduces to the classical sub-
differential in convex analysis when f(x) is a convex
function, that is,

zf(x) � v ∈ R
n
: f(u) − f(x) − 〈v, u − x〉≥ 0, ∀u ∈ R

n
􏼈 􏼉.

(3)

Furthermore, if f is continuously differentiable, then the
limit subdifferential reduces to the gradient of f denoted by
∇f.

3. DC Programming and PDCA

In this section, we begin to consider the DC programming
problem:

min
x∈Rn

F(x) ≔ f(x) + g(x) − h(x)􏼈 􏼉, (4)

where f: Rn⟶ R is a strong convex function with con-
stant a> 0 and g, h: Rn⟶ R are convex functions, and
their gradients are Lipschitz continuous with constants
Lg > 0 and Lh > 0, respectively. +roughout the paper, we
assumed that F(x) is level bounded and a> 1. Apparently,
(4) is a DC optimization problem and can be solved by the
following DCA Algorithm 1.

Although the subproblem (Algorithm 2) is convex, it
may not have closed solutions. To solve this drawback,
Gotoh et al. proposed the following PDCA.

4. The Convergence Rate of PDCA

In this section, we give the linear convergence rate of PDCA.
To continue, the following lemma is useful.

Lemma 1. Let f: Rn⟶ R be a continuous differentiable
function with Lipschitz continuous gradient with Lipschitz
constant L> 0. 2en, for any L′ > L, it holds that

f(x)≤f(y) +〈∇f(y), x − y〉 +
L′
2

‖x − y‖
2
, ∀x, y ∈ R

n
. (5)

By Lemma 1, we have the following result.

Lemma 2. Let xk􏼈 􏼉 be generated in Algorithm 2. 2en,

μ F(x) − F xk+1( 􏼁( 􏼁≥ x − xk+1
����

����
2

− x − xk

����
����
2
. (6)

Proof. Since f is strongly convex with parameter a> 0, it
holds that

f(x)≥f xk+1( 􏼁 +〈ξk+1, x − xk+1〉 +
a

2μ
x − xk+1

����
����
2
, (7)

where ξk+1 ∈ zf(xk+1).
Since ∇h(x) is Lipschitz continuous with constant

Lh > 0, by (5), there exists 0< μ≤ 1/Lh such that

h(x)≤ h xx( 􏼁 +〈∇h xk( 􏼁, x − xk〉 +
1
2μ

x − xk

����
����
2
, (8)

that is,

− h(x)≥ − h xk( 􏼁 − 〈∇h xk( 􏼁, x − xk〉 −
1
2μ

x − xk

����
����
2
. (9)

Since g is a convex function, we have

g(x)≥g xk( 􏼁 +〈∇g xk( 􏼁, x − xk〉. (10)

Summing (7), (9), and (10), we get

f(x) + g(x) − h(x)≥f xk+1( 􏼁 + g xk( 􏼁 − h xk( 􏼁 +〈ξk+1, x − xk+1〉+

〈∇g xk( 􏼁 − ∇h xk( 􏼁, x − xk〉 +
a

2μ
x − xk+1

����
����
2

−
1
2μ

x − xk

����
����
2
.

(11)

On the contrary, since h is a convex function, we have

h(x)≥ h xk( 􏼁 +〈∇h xk( 􏼁, x − xk〉, (12)

which is equivalent to the following form:

− h(x)≤ − h xk( 􏼁 − 〈∇h xk( 􏼁, x − xk〉. (13)

Since ∇g(x) is Lipschitz continuous with constant
Lg > 0, by (5), there exists 0< μ≤ 1/Lg such that

g(x)≤g xk( 􏼁 +〈∇g xk( 􏼁, x − xk〉 +
1
2μ

x − xk

����
����
2
. (14)
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Summing (13) and (14), we have

g(x) − h(x)≤g xk( 􏼁 − h xk( 􏼁 +〈∇g xk( 􏼁 − ∇h xk( 􏼁, x − xk〉

+
1
2μ

x − xk

����
����
2
.

(15)
Adding f(x) on both sides of (15), we get

f(x) + g(x) − h(x)≤f(x) + g xk( 􏼁 − h xk( 􏼁

+〈∇g xk( 􏼁 − ∇h xk( 􏼁, x − xk〉 +
1
2μ

x − xk

����
����
2
.

(16)

Taking x � xk+1, it follows that

f xk+1( 􏼁 + g xk+1( 􏼁 − h xk+1( 􏼁≤f xk+1( 􏼁 + g xk( 􏼁 − h xk( 􏼁

+〈∇g xk( 􏼁 − ∇h xk( 􏼁, xk+1 − xk〉 +
1
2μ

xk+1 − xk

����
����
2
.

(17)

By optimality conditions of Algorithm 2, we know that

ξk+1 + ∇g xk( 􏼁 − ∇h xk( 􏼁 +
1
μ

xk+1 − xk( 􏼁 � 0, (18)

where ξk+1 ∈ zf(xk+1), which means that

−
1
μ

xk+1 − xk( 􏼁 � ξk+1 + ∇g xk( 􏼁 − ∇h xk( 􏼁. (19)

By (11) and (17), it holds that

F(x) − F xk+1( 􏼁

≥ 〈ξk+1, x − xk+1〉 +〈∇g xk( 􏼁 − ∇h xk( 􏼁, x − xk+1〉

+
a

2μ
x − xk+1

����
����
2

−
1
2μ

x − xk

����
����
2

−
1
2μ

xk − xk+1
����

����
2

� −
1
μ
〈xk+1 − xk, x − xk+1〉 +

a

2μ
x − xk+1

����
����
2

−
1
2μ

x − xk

����
����
2

−
1
2μ

xk − xk+1
����

����
2

�
1
2μ

xk − xk+1
����

����
2

+ x − xk+1
����

����
2

− x − xk

����
����
2

􏼒 􏼓 +
a

2μ
x − xk+1

����
����
2

−
1
2μ

x − xk

����
����
2

−
1
2μ

xk − xk+1
����

����
2

�
1
2μ

(1 + a) x − xk+1
����

����
2

− 2 x − xk

����
����
2

􏼒 􏼓

≥
1
μ

x − xk+1
����

����
2

− x − xk

����
����
2

􏼒 􏼓,

(20)

where the first equality follows from (19) and the last in-
equality follows from a> 1. +e desired result follows.

Now, we are at a position to prove the main theorem as
follows. □

Theorem 1. Let xk􏼈 􏼉 be generated in Algorithm 2. 2en,

F xk( 􏼁 − F x
∗

( 􏼁≤
x0 − x

∗����
����
2

μk
, (21)

where x∗ is the stationary point of (4).

Proof. By Lemma 2, let x � xk, and we have that

(1) Initial step: choose ε> 0 andx0 ∈ Rn, and set k � 0.
(2) Iterative step: compute the new point by the following formula:
(3) xk+1 � argminx∈Rn f(x) + g(x) − h(xk) − 〈∇h(xk), x − xk〉􏼈 􏼉,
(4) until ‖xk+1 − xk‖≤ ε is satisfied.

ALGORITHM 1: DCA for problem (4).
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μ F xk( 􏼁 − F xk+1( 􏼁( 􏼁≥ xk+1 − xk

����
����
2 ≥ 0. (22)

+en, it follows from μ> 0 that F(xk)≥F(xk+1), which
means that the sequence F(xk)􏼈 􏼉 is nonincreasing. +en, for
any k0 ∈ N, it follows that

􏽘

k0− 1

k�0
F xk+1( 􏼁≥ 􏽘

k0− 1

k�0
F xk0

􏼐 􏼑 � k0F xk0
􏼐 􏼑. (23)

By Lemma 2 again, let x � x∗, and we have that

μ F x
∗

( 􏼁 − F xk+1( 􏼁( 􏼁≥ xk+1 − x
∗����
����
2

− xk − x
∗����
����
2
, (24)

which implies that

μ( k0F( x
∗

) − 􏽘

k0− 1

k�0
F( xk+1 ) )≥ xk0

− x
∗

�����

�����
2

− x0 − x
∗����
����
2

≥ − x0 − x
∗����
����
2
.

(25)

By (23) and (25), it yields that

μk0 F x
∗

( 􏼁 − F xk0
􏼐 􏼑􏼐 􏼑≥ − x

∗
− x

0����
����
2
, (26)

and the desired result follows. □

5. Conclusions

In this paper, we give the linear convergence rate of PDCA
for the case that the objective function is divided into a
strong convex function and two convex functions. Different
from the method in [8, 10], which depends heavily on the
Kurdyka–Lojasiewicz inequality, we give a simple proof by
the special structure of the optimization problem. Actually,
there may be some other potential applications about the
proposed PDCA. We leave this work in the future. For
example, we will study further applications of the PDCA
algorithm to some nonconvex problems [11, 12], tensor
optimization problems [13, 14], and so on [15–18].
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One of the advantages of stochastic differential equations (SDE) is that they can follow a variety of different trends so that they can
establish complex dynamic systems in the economic and financial fields. Although some estimation methods have been proposed
to identify the unknown parameters in virtue of the results in the SDEmodel to speed up the process, these solutions only focus on
using explicit approach to solve SDEs, and therefore they are not reliable to deal with data source merged being large and varied.
1us, this study makes progress in creating a new implicit way to fill in the gaps of accurately calibrating the unknown parameters
in the SDE model. Essentially, the primary goal of the article is to generate rigid SDE simulation. Meanwhile, the particle swarm
optimization method serves a purpose to search and simultaneously obtain the optimal estimation of the model unknown
parameters in the complicated experiment of parameter space in an effective way. Finally, in an interest rate term structure model,
it is verified that the method effectively deals with parameter estimation in the SDE model.

1. Introduction

Inevitably, a lot of fluctuation dynamics are observed as a
result of both internal and external shocks to the system.
Stochastic differential equations (SDEs) seem to be a ben-
eficial way to model these fluctuation phenomena by
combining deterministic models with a noise term. As a
consequence, SDEs have been extensively used to explain
uncertainty of complex systems in the area ranging from the
subject of biological sciences to the realm of finance and
economics [1]. Particularly, SDEs display as a fundamental
explanation for volatility coming from an unexpected di-
rection over the short-term interest rate, as well as asset
prices in modern finance and economic theory. As is known,
one of the main aims of financial modelling is subjected to
the accurate calculation in the model. But it is fraught with
difficulties and frustrations to estimate those parameters

from large samples of financial data. For this reason, it is
noted that the description of parameter estimation has
become a more eye-catching way in integral research area
[2–4].

When it comes to SDEs, it is more difficult to infer
unknown parameters compared to their deterministic
counterparts. To be exact, under the same parameters and
initial conditions, it is available to generate some unideal
simulations with SDEs.1erefore, even thoughmany effective
methods are supposed to achieve the goal in deterministic
models [2], it occurs to be not obvious in SDEs [5]. As a result,
this research has focused on establishing efficient methods for
SDEs. A big concern has been the slow convergence of Monte
Carlo simulations for SDEs. Henceforth, some efficient
methods have been produced to succeed in estimation at
length like the Taylor approximation, Runge–Kutta, and SDEs
generating a large number of simulations [6]. However, it is
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expected to be a serious barrier because in most cases the
search space for the parameters is complex, and the com-
putational time of the inference is expensive.

Currently, three popular methods to infer the process are
discussed with the example of the maximum likelihood
estimation (MLE) or simulated maximum likelihood (SML)
[7, 8], the method of moments [9, 10], and extended Kalman
filter [11]. 1e other most commonly used method is the
Bayesian inference method, which will not be discussed in
this work. Among them, the method of moments is quite
easy to implement application. Although it has been widely
used, the major disadvantage has resulted in the charac-
teristic of frequenting approach and large observations.
1erefore, if one has a small sample size, the results often
suffer from inaccuracy. Meanwhile the MLE approach is not
vulnerable to strict limits on set of data and the results of
parameters are evaluated by means of reliable analysis of the
probability density function (PDF). In effect, an analytical
function of closed-form solution is always misconceived for
the MLE; therefore, an SML method is developed to obtain
the result of PDF by systematic analysis of numerical
simulations. Lately, one study examined by lots of scholars
that classical statistical models are mostly not precise for the
realization of learning-based process, particularly for non-
linear events. Even though the machine-learning techniques
provide a better opportunity to undertake the analysis than
classical methods, there is little hope of achieving success
because of sample size and time consumption [12].

Two kinds of errors can be found in the research of SML.
1e primary error would refer to the low-rate convergence with
the Monte Carlo simulations. To concur this, there is a major
concern in variance reduction methods that have been applied
to the reduction of stochastic simulations and the bias in the
effect of estimation of the moment. Among the method of
variance reduction, the existence of the importance sampler and
random number generation methods are induced to illustrate
the procedure.1e second type of error is pointed out to be the
difference discretizationmethod based on numerical results and
the original SDE. Attempts to solve this dilemma have resulted
in the rapid development of the Euler–Maruyama method,
which is applied to form the inference of stochastic process.
Simple modelling and Gaussian random variable of the nu-
merical solution are the reason for the popularity. But it fails to
be stable and achieve a better convergence rate. Hence, it has
been advocated that high-order analytic methods and various
forms of implicit methods are employed to maintain the sta-
bility and enhance the simulation accuracy. Many scholars have
found that the convergence rate of SML is proved to be better
than the Markov Chain Monte Carlo (MCMC) approach [13].
Also, it can be analyzed by their numerical solutions that
implicit SMLmethods might accurately generate a vast range of
estimations on the purpose of following observing data [14].

1e other contribution related to the SML method shows
the optimal parameters of the model and raises the efficiency.
Several approaches to machine learning, the principle of the
genetic algorithm (GA) [14, 15] and the application of particle
swarm optimization (PSO) algorithm, have mushroomed with
rapid growth in the inference of SML parameters [3, 16]. PSO

characterized as an artificial intelligence (AI) method is used to
make a process of approximation of the minimization prob-
lems, which is a sort of nondifferentiable optimization problem
in order to arrive at a solution. A number of comparison
studies have been conducted to investigate the efficiency of
PSO and GA [17–23]. Also, particle swarm optimization
provides an important way in fine-tuning the parameters of
finance models and deserved popularity in this field [24–29].
Taguchi’s experimental design method has been used to define
the user-defined parameters in a comparison study of six al-
gorithms, including the PSO algorithm [30, 31]. It is noted to
point out that this method has been turned out to be suc-
cessfully applied to approximately 700 problems [32]. Em-
pirical studies in recent years have shown that the PSO
algorithms achieved high convergence speed for the multi-
objective optimization problems [33]. Apart from this, it has
been performed to apply to the automatic space exploration on
the superscalar computer systems successfully [34, 35]. More
notably, it is suggested that PSO has been exercised to greatly
improve the implicit SML algorithm through convergence
speed and accuracy in consideration of the financial model
calibration problems.

To address the issues mentioned above, we design a new
research in this study for the application of PSO to infer the
unknown parameters in SDE models using the implicit nu-
merical methods for simulating SDEs.1e contributions of this
work mainly include two parts. 1e first one is to use implicit
methods for simulating stochastic models rather than domi-
nantly using explicit methods in existing research works. 1is
issue is important because the SDE model may have quite a
range of stability properties based on the generated parameter
samples. 1e large simulation error may be caused by the
stability property of the model rather than the parameter
sample. 1e second contribution is to use efficient PSO algo-
rithm to reduce the computing time. As a heuristic global
optimization method, there are still limited research works for
applying the PSO algorithm to infer stochastic models. 1is
workwill show that the PSO algorithmhas greatly improved the
efficiency of the implicit SML algorithm with high convergence
speed and more accuracy compared to the existing methods.

1e remaining sections are organized as follows. Sections 2
and 3 briefly illustrate the research on the interest rate term
structure models and method of moments as benchmark for
solving models, respectively, while Section 4 will provide our
algorithm to generate parameter estimates optimized by PSO
for unknown parameter search. Section 5 is presented to be a
demonstration of the accuracy and robustness of the proposed
algorithm for parameter estimation. Section 6 undertakes an
empirical analysis for the application to the US treasury bill
data. Finally, in Section 7, conclusions and further research are
summarized.

2. Stochastic Model

1e standard stochastic differential equation built on the
general Brownian motion is analyzed as follows:

dS � μ(t, S)dt + σ(t, S)dB(t), (1)
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where B(t) � (B1
t , . . . , Bm

t ), t ∈ [0, T]􏼈 􏼉 is an A-adapted
m-dimensional standard Wiener process in the probability
space (Ω,A, P); μ(t, S) is the drift term with μ(t, s): [0, T] ×

Rd⟶ Rd being d-dimensional vectors of Borel measur-
able functions. Also, σ(t, S) is the diffusion term with σ(t, s)

defined on [0, T] × Rd which is a d × m-matrix of Borel
measurable functions. 1eWiener process has an increment
of ΔBn � B(tn+1) − B(tn) and follows the Gaussian distri-
bution N(0, tn+1 − tn).

1e Euler–Maruyama method is a computer-based
implementation consisting of strong convergence estimation
of order 0.5 used in computational finance. However, the
above method is the real challenge faced by researchers which
is that the result attempts to be stable if the numerical
simulation of SDEs with a comparatively large diffusion terms
has been solved. A possible solution to this problem is pre-
sented to take small step sizes to obtain stable simulations at
the art of increasingly computing time consumption. In this
study, the implicit Milstein method is utilized to obtain the
reliability of results of numerical simulation with the char-
acteristics of precision and stabilization.

1e Milstein approach is proposed with a higher-order
stochastic process of Taylor expansion technique to achieve a
better result in order 1.0 strong convergence as shown
below:

Sn+1 � Sn + μ tn, Sn( 􏼁h + σ tn, Sn( 􏼁ΔBn

+
1
2
σ tn, Sn( 􏼁σ′ tn, Sn( 􏼁 ΔBn( 􏼁

2
− h􏼐 􏼑,

(2)

where σ′(t, S) is the first derivative of σ(t, S). 1e semi-
implicit and fully implicit Milstein methods have a profound
impact on the stability and robustness of the system of
Milstein scheme only with implicit drift term.

Sn+1 � Sn + μ tn+1, Sn+1( 􏼁h + σ tn, Sn( 􏼁ΔBn

+
1
2
σ tn, Sn( 􏼁σ′ tn, Sn( 􏼁 ΔBn( 􏼁

2
− h􏼐 􏼑.

(3)

1e full implicit Milstein method [36] including implicit
drift term and the diffusion term is set up by

Sn+1 � Sn + μ tn+1, Sn+1( 􏼁h + σ tn+1, Sn+1( 􏼁ΔBn

+
1
2
σ tn+1, Sn+1( 􏼁σ′ tn+1, Sn+1( 􏼁 ΔBn( 􏼁

2
+ h􏼐 􏼑.

(4)

In fact, in light of CIR (Cox, Ingersoll, and Ross) model
primarily constructing interest rate term structure, the accuracy
of inference method has been detected [3]. 1e dynamic
change of the short term of interest rate is a worthwhile field to
financemarket because bond prices andmortgage contracts are
mostly valued in a way of using the term structure of interest
rates, option, and derivative [37, 38].1e model of the CIR has
been ready to short interest rate with information [39, 40],
which is viewed as a linear stochastic differential equation with
mean-reversing [41]. Regarding short term of interest rate
acting like a square root controlled by diffusion, the formula is a
continuous-time system as below:

dr � α(β − r)dt + σ
�
r

√
dB(t), (5)

where α, β, σ > 0, α represents the speed of adjustment (or
mean reversion), β is value of the randommoving on interest
rate of the long term, and σ is a volatility based on constant
measure. It has become apparent that the drift is varying
along with the volatility change according to the short-term
interest rate level.

According to previous literatures, the explicit Milstein
method as described in (2) is better than the Euler method.
More emphasis is placed on the comparison with the
accuracy of the Milstein method in (2) against the semi-
implicit Milstein method in (3) for the purpose of parameter
inference of the CIR model. On the premise of Milstein
method, the application of the CIR is shown as follows:

rn+1 � rn + α β − rn( 􏼁h + σ
��
rn

√ ΔBn +
σ2

4
ΔB2

n − h􏼐 􏼑, (6)

and, with the linear correlation analysis of the interest rate
drift term, a semi-implicit algorithm is included as the
following formula:

rn+1 �
1

1 + αh
rn + αβh + σ

��
rn

√ ΔBn +
σ2

4
ΔB2

n − h􏼐 􏼑􏼠 􏼡.

(7)

Figure 1 shows the whole process 5 simulations of the
CIR model with result of parameters α � 0.2, β � 0.08, and
σ � 0.2. Given the relatively small level of volatility, the
short-term value remains positive.

3. Method of Moments

For the next sections, the analysis of the parameter θ of one-
dimensional SDE is employed as follows:

dS � μ(t, θ, S)dt + σ(t, θ, S)dB(t). (8)

If we sample S to get (N + 1) observations S0, S1, . . . , SN

on some discrete point-in-time t0, t1, . . . , tN, result θ of the
maximum-likelihood (ML) will be estimated based on the
maximum likelihood function:

G(θ) � g0 S0|θ( 􏼁 􏽙

N−1

n�0
g Sn+1|Sn; θ( 􏼁. (9)

Similarly, minimizing the negative effect of log-likeli-
hood function to estimate θ is shown as follows:

−logG(θ) � −log g0 S0|θ( 􏼁􏼂 􏼃 − 􏽘
N−1

n�0
log g Sn+1|Sn; θ( 􏼁􏼂 􏼃,

(10)

where g0(S0|θ) is set with the density function of the initial
value S0 and g(Sn+1|Snt; nθ) presents the corresponding
value in the case of the transitional probability density
function (PDF) at (tn+1, Sn+1). It must be discussed that,
according to the Markovian property in equation (8), the
transitional PDF correctly satisfies the Fokker–Planck
equation. However, considering the failure to reach the
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closed-form solution in the Fokker–Planck equation, the
final maximum likelihood estimation will make a difference.

However, it is able to approximate a transitional PDF by
the method of SDE in (8). For instance, an application of the
Euler–Maruyama method can be used to discretize equation
(8) given by

Sn+1 � Sn + μ t, θ, Sn( 􏼁h + σ t, θ, Sn( 􏼁ΔBn, (11)

where h is time step of the discretization scheme. We can
then approximate the transitional PDF of S by normal
distribution with mean Sn + μ(Sn, θ)h and variance
σ2(Sn, θ)h such that

1
σ t, θ, Sn( 􏼁

����
2πh

√ exp −
Sn+1 − Sn − μ t, θ, Sn( 􏼁h( 􏼁

2

2σ2 t, θ, Sn( 􏼁h
􏼢 􏼣. (12)

Alternatively, the simplest form on a discrete maximum
likelihood function is called the method of moments, which
is achieved by the approximated above-mentioned PDF, not
the exact transitional PDF g(Sn+1|Snt; nθ) in equation (10).
In the analysis of this paper, the method is given to be a
benchmark in comparison with accuracy and stability of the
proposed methods.

As mentioned above, the major focus of the work is
placed on the CIR process (5) and to see what happens to the
optimal values referring to the parameters α, β, α, and β
separately as follows [3]:

α β 􏽘

N−1

n�0
h − 􏽘

N−1

n�0
Snh⎛⎝ ⎞⎠ � SN − S0,

α β 􏽘
N−1

n�0

h

Sn

− 􏽘
N−1

n�0
h⎛⎝ ⎞⎠ � 􏽘

N−1

n�0

Sn+1 − Sn

Sn

,

(13)

with the optimal value of σ being σ such that

σ2 �
1
N

􏽘

N−1

n�0

Sn+1 − Sn − α β − Sn􏼐 􏼑h􏼐 􏼑
2

Snh
, (14)

is satisfied.
1e Milstein variant should make a direct contribution

to improving the accuracy with the implementation of the
discrete maximum likelihood method. However, it appears
that it is not easy to express directly the parameter esti-
mation by the transitional PDF [3, 13]. For that reason, the
system of the simulation method of maximum likelihood is
identified as the transitional PDF method along with several
stochastic simulations.

4. Simulated Maximum Likelihood Method

In this section, a simulated implicit numerical scheme is
included to illustrate the growth of the efficiency to estimate
parameters by PSO algorithm.
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Figure 1: Five simulations of the CIR model.
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In the application of deterministic models, parameter
estimation is successfully achieved through fitting numerical
simulations to experimental observations. Unfortunately,
the method is far from ready to deal with SDE models
because a single SDE model can develop. A case is to discuss
the simulated maximum likelihood (SML) method for
structuring stochastic models [42, 43]. N + 1 is given as time
sequence observation S0, S1, . . . , SN􏼈 􏼉 containing a time
period t0, t1, . . . , tN􏼈 􏼉. 1e joint transitional density function
(likelihood function) during the study period is derived as
follows:

g0 t0, S0( 􏼁|θ􏼂 􏼃 􏽙

N

n�1
g tn, Sn( 􏼁 | tn−1, Sn−1( 􏼁, . . . , t0, S0( 􏼁; θ􏼂 􏼃, (15)

such that parameters θ � (θ1, . . . , θn) in equation (8) need to
be determined. By analyzing the density of state,
g0[(t0, S0)|θ] is initially presented with

g tn, Sn( 􏼁| tn−1, Sn−1( 􏼁, . . . , t0, S0( 􏼁; θ􏼂 􏼃, (16)

as the transitional density initializing from (tn−1, Sn−1) and
running to (tn, Sn).

If the framework of financial system is fundamentally
prescribed based on the stochastic model (8), we have a
stochastic process S which exhibits the Markov property
[44], and the brief description of transitional density
function can be shown as follows:

g tn, Sn( 􏼁 | tn−1, Sn−1( 􏼁, . . . , t0, S0( 􏼁; θ􏼂 􏼃 � g tn, Sn( 􏼁| tn−1, Sn−1( 􏼁; θ􏼂 􏼃. (17)

1e equivalence function of the maximum joint tran-
sitional density (15) is confirmed to the minimum negative
log-likelihood function (10) with the implicit time t in the
formula.

Since a closed-form solution obtained from the transi-
tional density (17) is impossible to be evaluated, based on a
nonparametric kernel density algorithm it can be used as

gM t, Sn( 􏼁 | tn−1, Sn−1( 􏼁; θ􏼂 􏼃 �
1

MD
􏽘

M

i�1
K

Sn − Ti

D
􏼠 􏼡. (18)

In replace for the transitional density, in this case
T1, . . . ,TM are the M realizations of Sn at a particular time
point tn following the initial condition (tn−1, Sn−1), and D is
obtained by the kernel bandwidth. We also have that K(·) is
devised as a nonnegative kernel function within a probability
unit. Regarding a single variable of SDE models linking with
the normal Kernel, the specific bandwidth can be repre-
sented as D � 0.9σM− 0.2, with σ as standard deviation of the
sample with realization M [42]. In the case of multivariate
stochastic models, it can be assumed that random variables
are independent or alternatively supported by the existence
of the theory of multivariate density estimation [45].

After setting up the objective function, another consid-
eration that has been taken into account is to select a method
to improve speed of researching the optimal parameters.
Numerical solutions tell us that PSO has better computational
saving for computational saving purpose; PSO is studied in
presence of numerical solutions for nonlinear and uncon-
strained problems consisting of continuous design variables.
However, the computational saving of integer and combined
constrained nonlinear program is much lower.

Eberhart and Kennedy [16] have developed a PSO al-
gorithm based on population stochastic optimization
scheme; the discovery of PSO approach is inspired by
abundant contents of different social behaviours like bird
flocking or fish schooling without the idea of evolution
operators like crossover and mutation. 1e information

relevant to this method is that potential solutions are re-
ferred to as particles swarm across the problem space of
current optimum particles. For the further research, a PSO
MATLAB toolbox [46] that was downloaded from the
MATLAB File Exchange Central is designed to estimate
unknown parameter of SDE models. 1e software package
can be successfully made to settle a number of optimization
problems. Fortunately, the optimal solution to unknown
parameter θ is identified by SML method referring to the
SDEs model (8) by finding the minimum log-likelihood
function (10) through the following sampling process and
algorithm:

(i) Firstly, the process starts with inputting the system
states S0, S1, . . . , SN􏼈 􏼉 and time points
t0, t1, . . . , tN􏼈 􏼉.

(ii) Secondly, taking Sn−1 at time tn−1 (n � 1, . . . , N) as
the starting point, several methods are required to
realize M realizations T1, . . . ,TM of Sn at tn. 1e
value for random seed is explained specifically by
the Gaussian random variables samples.

(iii) 1irdly, the study of the nonparametric density
estimation (18) with the normal kernel algorithm
and multivariate density function have been gen-
erally completed to calculate the transitional density
(17).

(iv) 1en, it is necessary to repeat the above step for each
time point t0, . . . , tN−1 and describe the log-likelihood
function (10).

(v) Finally, it offers a conclusion reading the optimal
kinetic rates with the process of a particle swarm
optimization algorithm on the account of the
minimum G(θ) in (10).

It should be highlighted that equal increments deriving
from the Wiener process should be applied to the numerical
simulations method to study diverse values of parameter θ.
Also, to minimize variation on estimation, an important
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research to be summarized is that the condition of the same
random seeds or samples mentioned in the second step is
applied to estimate numeral values of different candidate
parameters.

5. Parameter Estimation of the Interest
Rate Models

As mentioned above, we shall now estimate specific pa-
rameters from the CIR model. 1ere is no doubt that we
can get 20 trajectories from a small step size of (h � 0.001)
with the help of the semi-implicit Milstein method in a
given set of parameters. Great efforts have been made to
obtain the estimation of each parameter of the generated
trajectories by virtue of the method of moments, the SML
method, and the explicit and semi-implicit method of the
Milstein scheme. Result can be made by using the PSO
algorithm with the population of 40 and generation of 200.
1e PSO algorithm is implemented 20 times using different
random seeds in computation, and thus we achieve 20
estimates of parameters. Hopefully, it is proposed to focus
on the mean error and standard deviation (STD) of the
estimation.

1e above simulation results declare that indeed the
method of moments is frequently improper to deal with
parameters estimation in model. Because the results of the
save parameter have a differential when applying different
implementations, for some instances, the parameter relative
error will exceed 100%. Worst still, it may have access to a
negative coefficients estimation, which happens to be
meaningless in finance market, although the noise strength
is small. Furthermore, it is important to emphasize that the
moment method relies upon observation points Δ correlated
with the length and the quantity of various time points of
observation. If the length of the data points is large and the
chosen observation is big enough, it is proved that the
method of moments (see Table 1) can be designed to predict
estimates with near acceptable accuracy.

Studying the effect of the noise imprecision of estima-
tion, the volatility of parameter σ is proposed for each SDE
model with 3 differing values. From Tables 2 and 3, the
explicit Milstein method and the semi-implicit Milstein
method were employed for actual parameter estimations on
the basis of negligible minor errors and standard deviations
with the evidence of small fluctuations in the SDE model
(σ � 0.1). In fact, the final result of the SML method linking
with the explicit Milstein scheme is considered to be more
accurate and reliable. Reasonably, for modelling nonstiff
SDEs, the explicit Milstein method is expected to be more
precise than the semi-implicit one. If the actual fluctuations
in the SDE models are average instead of extreme (σ � 0.2),
more accurate research results can be attained by the semi-
implicit Milstein method compared to the explicit Milstein
approach. In terms of application, the stability of the semi-
implicit method is slightly prioritized over the precision of
the explicit scheme. Particularly, if the noise of interest rate is
large enough to estimate (σ � 0.3), the acceptable results can
be achieved by the semi-implicit method. However, if the

noise of interest rate tends to be a large extent, the same
method becomes less reliable.

Since then, a good approach has been extensively ex-
plored to simulate the SDE models with less step size, and
the use of the fully implicit Milstein method should guar-
antee the numerical simulations to be more stable.

1e robustness property of estimates for the stochastic
search methods is a critical problem in the current study. For
this study, two research tests of variations are conducted,
namely, the change of random seeds for solving the sto-
chastic model, which leads to different outcomes, and

Table 1: Parameter estimation results of method of moments.

Mean Bias STD
Exact parameter (α � 0.2, β � 0.08, σ � 0.1, Δ � 5)
α 0.0501 0.1499 0.0103
β −0.0118 0.0918 0.0193
σ 0.1067 0.0933 0.0148
Exact parameter (α � 0.2, β � 0.08, σ � 0.2, Δ � 5)
α 0.1013 0.0987 0.0253
β 0.0722 0.0078 0.0271
σ 0.3650 0.1650 0.2647
Exact parameter (α � 0.2, β � 0.08, σ � 0.3, Δ � 5)
α 0.0907 0.1093 0.0490
β 0.0746 0.0054 0.0230
σ 0.3319 0.1319 0.2128

Table 2: Parameter estimation results of Milstein method.

Mean Bias STD
Exact parameter (α � 0.2, β � 0.08, σ � 0.1, Δ � 5)
α 0.2052 0.0052 6.3E-4
β 0.0814 0.0011 1.1E-4
σ 0.0955 0.0045 3.3E-5
Exact parameter (α � 0.2, β � 0.08, σ � 0.2, Δ � 5)
α 0.2184 0.0184 0.0037
β 0.0812 0.0012 0.0005
σ 0.1835 0.0165 0.0006
Exact parameter (α � 0.2, β � 0.08, σ � 0.3, Δ � 5)
α 0.3269 0.1269 0.0158
β 0.0496 0.0304 0.0005
σ 0.2434 0.0566 0.0015

Table 3: Parameter estimation results of semi-implicit method.

Mean Bias STD
Exact parameter (α � 0.2, β � 0.08, σ � 0.1, Δ � 5)
α 0.2091 0.0091 1.0E-3
β 0.0787 0.0013 1.6E-6
σ 0.0933 0.0067 3.6E-5
Exact parameter (α � 0.2, β � 0.08, σ � 0.2, Δ � 5)
α 0.2116 0.0116 0.0028
β 0.0808 0.0008 0.0005
σ 0.1850 0.0150 0.0006
Exact parameter (α � 0.2, β � 0.08, σ � 0.3, Δ � 5)
α 0.3023 0.1023 0.0096
β 0.0534 0.0266 0.0006
σ 0.2375 0.0625 0.0007
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changes in the implementation of PSO algorithm that
employs varying random samples.

To be specific, the first one is partly caused by the
convergence property inherent in the procedure of Monte
Carlo simulation under certain conditions. A discussion that
presented a problem-solving solution is subject to the in-
crease of stochastic simulations. It is defined to fix the course
of the interest rate, and 10 sets of random seeds are needed to
apply to simulations the stochastic model. 1e results from
Figures 2(a)–2(c) illustrate that the estimations have pro-
gressed to be relatively stable when the amount of simu-
lations exceeded 5000. If the number of simulations was
extended to N � 10000, the estimates become highly stable.
1e results are reflection of the application of GA to estimate
the calculated rate with constants given in discrete chemical
reaction systems preciously [14].

Secondly, the initial model parameters are proposed to
accurately estimate the final results in the PSO algorithm.
Prior experiments concluded that a significant influence lies
between initial parameters and final estimation when the GA
was assigned as the stochastic searching method [14, 15].
Various random seeds have been devoted to the PSO al-
gorithm to initialize parameters of the CIR stochastic model.
Figures 3(a)–3(c) contain the implication of the final results
for parameter estimates. 1e information on numerical
results with the several relevant experiments describes that
the PSO method is reliable to estimate independent initial
parameters, posing a definite advantage for the PSO algo-
rithm over the GA in the program of model calibration and
estimation of parameters in complicated mathematical
models. However, given the opportunity cost, it is suffering
to pick the optimal estimation from a series of possible
candidates according to the designated standard like
imparting the robustness in the mathematical model.

6. Application to US Treasury Bill Data

1e instantaneous interest rate R of the term structure under
the classical single factor model is given as

dR � α(β − R)dt + σR
cdB, (19)

where dB is considered as the standard Wiener process, α is
deemed as the speed of adjustment parameter, β is regarded
as the mean interest rate, σ is considered as the control of
volatility, and c is considered as the effect of levels, which are
devoted to estimate the parameters. According to previous
analysis, CIR model has a fine description of a unique and
special type of the model in (19) with c � 0.5. A plenty of
empirical research results have suggested that c should be in
preference to estimate rather than being simply imposed
into the model.

Concentrating on parameter estimates under stochastic
differential equation (SDE)models (19) is complex but needs
to be done. 1e US three-month Treasury Bill rate (1e data
are available from the Board of Governors of the Federal
Reserve System (US), three-month Treasury Bill: Secondary
Market Rate [TB3MS], retrieved from FRED, Federal Re-
serve Bank of St. Louis; https://fred.stlouisfed.org/series/

TB3MS) is provided to approximate a reasonable estimate
about real short-term interest rates, which is unobservable
and instantaneous. For an illustrative purpose, the method
of moments is regarded as a benchmark to discuss the
approaches. 1en the discrete equations that were declared
from the single factor model by the Milstein method and
semi-Milstein method of SML estimation are suggested as
follows:

Rn+1 � Rn + α β − Rn( 􏼁h + σR
c
nΔBn +

1
2
σ2cR

2c−1
n ΔBn( 􏼁

2
− h􏼐 􏼑,

Rn+1 �
1

1 + αh
Rn + αβh + σR

c
nΔBn +

1
2
σ2cR

2c−1
n ΔBn( 􏼁

2
− h􏼐 􏼑􏼒 􏼓.

(20)

1e analysis of data is carried out on the US Treasury Bill
from the first day of January 1996 to the first day of June 2019
with 282 observations in total on the purpose of parameters
estimation of the single-factor model (19). An expression of
the results of the estimated parameter from the method of
moments and explicit Milstein method as well as semi-
implicit Milstein method has been presented at Tables 4–6,
respectively. Also, the estimation of standard errors by three
methods is explained in the relevant tables. As can be seen, a
large number of the estimates are confirmed to be similar
without difference. With a large sample size, the method of
moments is in line with the result of accuracy of other
methods. Although the method of moments is still accurate,
the results of the standard errors by these two Milstein
methods are much smaller. Detailed analysis is designed for
these two Milstein methods with a smaller step size during
the numerical simulation, whereas a large number of sim-
ulations M are offered for the statistical inference methods.
1e sign of the improvement to versify the standard error
was not much.

Figure 4 gives a specific description of the course of the
monthly interest of the US three-month Treasury Bills. As
shown in the graph, the results of mean interest rate θ fit
precisely with the interest rate data. In accordance with the
results, it is reported that the scientific semi-implicit Milstein
method is greater and more precise than the others. An
outstanding phenomenon supports the evidence that the
results of parameter c of the levels effect by three methods
are relatively identical to each other compared to the other
parameters estimations. Another important finding broadly
supports the analysis that the estimation of standard error of
c is obviously smaller than initial value of c � 0.5, reflecting
that the results of estimation of c might be clearly different
from 0.5 obtained from the CIR model.1ese studies further
support the idea that the classic single-factor model (19) is
better at describing the interest rate than the CIR model.
More research confirms that c should be received from the
estimation of financial data instead of simply being imposed
to the interest term structure model.

1e performance of the levels effect fits better in the
interest term structure model, and the appropriate obser-
vations were expressed as follows. It is encouraging to es-
timate parameters of the SML by semi-explicit Milstein
method with the given information of Δ � 0.01 and 5000
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Figure 2: 1e results of ten sets in the CIR SDE model based on different random seeds: (a) under α parameter estimates; (b) under β
parameter estimates; (c) under σ parameter estimates.
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Figure 3: 1e results of ten sets in PSO algorithm based on different random seeds: (a) under α parameter estimates; (b) under β parameter
estimates; (c) under σ parameter estimates.

Table 4: Estimated parameters of method of moments.

Parameters Moment method Standard error
M � 1000,Δ � 0.01

α 0.0112 0.0094
θ 0.0401 0.0115
σ 0.0155 0.0060
c 0.6646 0.0923

Table 5: Estimated parameters of Milstein method.

Parameters Milstein method Standard error
M � 1000,Δ � 0.01

α 0.0107 0.0092
θ 0.0399 0.0106
σ 0.0143 0.0011
c 0.6680 0.0347

Table 6: Estimated parameters of semi-implicit method.

Method Semi-implicit method Standard errorParameters M � 1000,Δ � 0.01
α 0.0105 0.0056
θ 0.0405 0.0058
σ 0.0161 0.0027
c 0.6683 0.0508
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simulations in response to be set out to calculate the mean
average. 1e findings from standard deviation range of the
actual data were demonstrated in Figure 5, which is ac-
ceptable statistically.

7. Conclusions and Future Works

1is study provides a new insight into the method of pa-
rameters estimation for the SDE models. To undertake a
longitudinal analysis of the implicit numerical simulation
method in the Monte Carlo simulation along with the PSO
method, it can be found that the estimation from the SML by
the semi-implicit Milstein method is presented better in
efficiency than Euler–Maruyama approach with regard to
the convergence and stability. A key discussion on experi-
mental results in moderately stiff SDE model is presented
that the semi-implicit Milstein method appears to be more
exact than explicit Milstein method. Also, the effects of the
PSO method are reliable and almost independent with
comparison to the genetic algorithms. For the imple-
mentation of the SDE models, especially the interest term
structure, actual financial data was explored to estimate the
parameters. 1erefore, the estimated parameters of the
model make a perfect match for actual data.

Compared with the inference of deterministic models,
there is more uncertainty in the inference of stochastic
models. Generally, it is more difficult for inferring a

stochastic model than a deterministic model. Although we
have achieved progress in this work for the parameter in-
ference of stochastic model, there are still some limitations of
this work. First, the accuracy of the estimated parameters
depends on the samples in stochastic simulation. A large
number of simulations are needed to ensure the stability of
the estimates. It is still an important issue for reducing the
computational time for the inference of stochastic models. In
addition, it is still a difficult issue to select appropriate es-
timate from the candidates that all have similar estimation
errors. In this work, we use robustness as an additional
criterion to select estimates. Other criteria for selecting
inference candidates are strongly required. Furthermore, the
stochastic differential equations with the generated pa-
rameter sample may be highly stiff. In this work, we use the
semi-implicit Milstein method to improve the stability
property of the explicit Milstein method. It is strongly re-
quired to employ numerical methods with better stability
properties, such as the fully implicit methods, to simulate
stochastic differential equations. All these issues will be
interesting topics of our further research.

Data Availability

1e data used to support the findings of this study are
available from the corresponding author upon request.
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Figure 4: Interest rate series of US three-month Treasury Bills.
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.is paper considers the nonlinear symmetric conic programming (NSCP) problems. Firstly, a type of strong sufficient optimality
condition for NSCP problems in terms of a linear-quadratic term is introduced. .en, a sufficient condition of the nonsingularity
of Clarke’s generalized Jacobian of the Karush–Kuhn–Tucker (KKT) system is demonstrated. At last, as an application, this
property is used to obtain the local convergence properties of a sequential quadratic programming- (SQP-) type method.

1. Introduction

In this paper, we consider the nonlinear symmetric conic
programming (NSCP) as follows:

min
x∈X

f(x),

s.t. h(x) � 0,

g(x) ∈ K,

(1)

where X and Y are two finite dimensional real vector spaces;
f: X⟶ R, h: X⟶ Rm, and g: X⟶ Y are twice
continuously differentiable functions; and K ∈ Y is a sym-
metric cone defined by Euclidean Jordan algebras. In the
following part, unless otherwise specified, we denote X, Y,
and Z to represent finite dimensional real vector spaces with
a scalar product 〈·, ·〉 and norm ‖ · ‖.

It is well-known that the Karush–Kuhn–Tucker (KKT)
conditions of optimization problem (1) are equivalent to the
KKT system, which is a nonsmooth system with the metric
projector over the symmetric cone. .e nonsingularity of
Clarke’s generalized Jacobian of the KKT system introduced
by Pang and Qi [1] is not only one of the most important
concepts in perturbation analysis of optimization problems

but also plays a vital part in the design of the algorithms and
the analysis of the convergence [2–4].

When K in problem (1) is a polyhedral set, Robinson [5]
has showed that the strong second-order sufficient condition
and the LICQ imply the nonsingularity of Clarke’s gener-
alized Jacobian of the KKT system. Interestingly, the con-
verse is also true [2, 6, 7]. Bonnans and Ramı́rez [8] and Sun
[9] demonstrate the equivalent conditions to the non-
singularity of the second-order cone programming problem
(SOCP) and the semidefinite programming problem (SDP),
respectively.

When K is the class of C2-cone reducible sets ([3],
Definition 3.135), there are lots of most important results
about the Aubin property and the robust isolated calmness
of the KKT solution mapping, which guarantee the non-
singularity of the KKTsystem (see [10–13] and the references
therein).

For symmetric cone programming problem, Kong,
Tunçel, and Xiu [14–16] use a triangular representation of
the Jacobian of Löwner operator to characterize the structure
of Clarke’s generalized Jacobian of metric projection op-
erator onto symmetric cone. .ey consider the linear
symmetric cone programming problem as follows:
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min 〈c, x〉,

s.t. A(x) � b, x ∈ K,
(2)

and present five equivalent conditions to the nonsingularity
of Clarke’s generalized Jacobian of KKT system in [15].

In this paper, we focus on the nonsingularity of Clarke’s
generalized Jacobian of the KKT system in the setting of the
nonlinear symmetric cone programming problem (1). In
order to present the optimality conditions of NSCP, we need
the variational analysis of symmetric cones and some im-
portant sets such as tangent cone. We found that, almost at
the same time, we [17] and Kong et al. [15] independently
obtained the same expressions of the tangent cone and so on
by different approaches (see Proposition 2). Importantly, we
introduce a linear-quadratic function to establish the
second-order optimality conditions. Using the Euclidean
Jordan Algebras and the Peirce decomposition of a finite-
dimensional vector space, we obtain an upper bound of
the linear-quadratic function. Under the constraint
nondegeneracy condition, we demonstrate our main
result that if a kind of strong second-order sufficient
condition holds, any element in Clarke’s generalized
Jacobian of the KKT system is nonsingular.

In [18], the local convergence for an SQP-type method is
ensured by the nonsingularity of Clarke’s generalized Ja-
cobian. In this paper, as an application, we give an SQP-type
method to solve NSCP (1). .e analysis of the local con-
vergence is presented by using the above properties of the
nonsingularity, and our proof is a natural extension of the
nonlinear programming problem.

.e paper is organized as follows. In Section 2, it gives
some preliminaries which are used in the paper, including
the fundamental notations in Euclidean Jordan algebras..e
properties of a linear-quadratic function are developed. In
Section 3, we describe the KKT condition and a kind of
second-order sufficient condition of NSCP (1) using the
linear-quadratic function. .en, we discuss the non-
singularity of Clarke’s generalized Jacobian of the equation
reformulation of the KKT system. Lastly, the local conver-
gence of a SQP-type method is analyzed by using the
nonsingularity in Section 4.

2. Preliminaries

In this section, some preliminaries used in the paper are
given firstly. .en, we introduce the decomposition results
in Euclidean Jordan algebras, which are vital to this paper.

For a locally Lipschitz continuous function
Ξ: O⊆Y⟶ Z, Clarke’s generalized Jacobian of Ξ at y is
defined by

zΞ(y) ≔ conv V: V � lim
k⟶∞
Ξ′ y

k
􏼐 􏼑, y

k ∈ OΞ, y
k⟶ y􏼚 􏼛,

(3)

whereOΞ is the set of F-differentiable points inO and “conv”
denotes the convex hull.

.e next conclusion of the chain rule is given in [19],
which is stronger than its first version in [9].

Lemma 1. Suppose that Ψ: X⟶ Y is a continuously dif-
ferentiable function and Ξ: O⊆Y⟶ Z is a locally Lipschitz
continuous function. Denote y∗ ≔ Ψ(x∗) ∈ O and let
Ψ′(x∗): X⟶ Y be onto. )en, the composite function
Φ(x) ≔ Ξ(Ψ(x)) is F-differentiable at x ∈ 􏽢N if and only if Ξ
is F-differentiable at Ψ(x), where 􏽢N is an open neighborhood
of x∗ and

zBΦ x
∗

( 􏼁 � zBΞ y
∗

( 􏼁Ψ′ x
∗

( 􏼁. (4)

.e following conclusion of implicit functions can be
obtained from [20] (Section 7.1) and [21] (Lemma 2)
directly.

Lemma 2. Let Φ: X × Y⟶ X be a locally Lipschitz con-
tinuous function and Φ(x, ty) � 0. Suppose that any element
in ΠXzΦ(x, ty) is nonsingular. )en, there exists a locally
Lipschitz continuous function x(·): OY⟶ X satisfying
x(y) � x and

Φ(x(y), y) � 0, (5)

where OY is an open neighborhood of y. Furthermore, if Φ is
(strongly) semismooth, then x(·) is (strongly) semismooth.

In the last part of this section, we provide some prop-
erties about the metric projector over a convex set C in
Banach space (see [22]).

Lemma 3. Suppose that C is a convex set in a Banach space
Z. )en, for any y ∈ Z and V ∈zΠC(y), V is self-adjoint.
Furthermore, for any d ∈ Z, 〈d, V d〉≥ 0 and
〈V d, d − V d〉≥ 0.

2.1. Euclidean Jordan Algebras. In this part, we show some
useful notations and conclusions on Euclidean Jordan Al-
gebras introduced in [23]. Suppose that F is the real field R

and V is a finite-dimensional vector space over F .
For any x ∈ V , denote

L(x)y ≔ x · y for every y ∈ V . (6)

.e pair A ≔ (V , ·) defined over the real field R is called
a Euclidean Jordan algebra, if, for all x, y ∈ V :

(i) x · y � y · x

(ii) x · (x2 · y) � x2 · (x · y), where x2 ≔ x · x

(iii) 〈x · y, z〉V � 〈y, x · z〉V

Here are some common concepts used in this paper.
An element c ∈ V is called to be the unit element of A if

x · e � e · x � x for all x ∈ V . We always assume that there
exists a unit element e ∈ V of A � (V , ·) in the following
paper.

If is called to be idempotent. If two idempotents p and q

satisfy p · q � 0, they are called orthogonal. And k orthog-
onal idempotents c1, c2, . . . , ck􏼈 􏼉 are said to be a complete
system if they satisfy
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􏽘

k

j�1
cj � e. (7)

If a nonzero idempotent q cannot be written as the sum
of two other nonzero idempotents, we say q is primitive. And
Jordan frame is a complete system of orthogonal primitive
idempotents.

.e following theorem in [23] is very important to show
the spectral decomposition.

Theorem 1. Let A � (V , ·) be a Euclidean Jordan algebra
and R(A) � r. )en, for any x ∈ V ,

x � 􏽘
r

j�1
λj(x)cj � λ1(x)c1 + λ2(x)c2 + · · · + λr(x)cr, (8)

where c1, c2, . . . , cr􏼈 􏼉 is a Jordan frame and
λj(x) ∈ R, j � 1, . . . , r, satisfying λ1(x)≥ λ2(x)≥ · · · ≥
λr(x).

We say the numbers λ1(x), λ2(x), . . . , λr(x) to be ei-
genvalues of x. .en, x has the spectral decomposition (8)
and

tr(x) � 􏽘
r

j�1
λj(x). (9)

.erefore, another associative inner product can be
defined by using tr(x): 〈x, y〉 ≔ tr(x · y), x, y ∈ V . Let ‖ · ‖

be the norm on V induced by this inner product, then

‖x‖ ≔
������
〈x, x〉

􏽰
�

���

􏽘
r

j�1

􏽶
􏽴

λ2j(x) , x ∈ V . (10)

For a scalar-valued function ϕ: R⟶ R, we define
Löwner’s operator associated with A � (V , ·) from [24] as

ϕV(x) ≔ 􏽘
r

j�1
ϕ λj(x)􏼐 􏼑cj � ϕ λ1(x)( 􏼁c1 + ϕ λ2(x)( 􏼁c2

+ · · · + ϕ λr(x)( 􏼁cr,

(11)
where x � 􏽐

r
j�1 λj(x)cj ∈ V .

.e metric projection operator on

K ≔ y
2
: y ∈ V􏽮 􏽯 (12)

can be described by Löwner’s operator using
ϕ(t) � max(0, t) as follows:

ΠK(x) � x+ � λ1(x)( 􏼁+c1 + λ2(x)( 􏼁+c2 + · · · + λr(x)( 􏼁+cr,

(13)
which is very important in the following research.

It is known from ([23], .eorem III.2.1) that the above
cone K � y2: y ∈ V􏼈 􏼉 is a self-dual homogeneous closed
convex cone, we call it a symmetric cone, which is the
constraint set of problem (1)

For a Jordan frame of A c1, c2, . . . , cr􏼈 􏼉, we denote V ij as
follows:

V ij ≔

V ci, 1( 􏼁, i � j,

V ci,
1
2

􏼒 􏼓∩V cj,
1
2

􏼒 􏼓, i≠ j.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(14)

Suppose that Cij(x) is the orthogonal projection onto
V ij. .en, Cij(x) has the following expression:

Cjl(x) � 􏽘
d

i�1
〈v(i)

jl , ·〉v(i)
jl , (15)

where v
(i)
jl􏼚 􏼛

d

i�1
∈ V denotes orthonormal vectors and d

satisfies n � r + d/2r(r − 1).
It follows from [25] that

h � 􏽘
r

j�1
Cjj(x)h + 􏽘

1≤ j< l≤ r

Cjl(x)h � 􏽘
r

j�1
〈cj, h〉cj

+ 􏽘
1≤ j< l≤ r

4cj · cl · h( 􏼁, ∀h ∈ V .

(16)

Actually, all the eigenvectors

c1, c2, . . . , cr, v
(1)
jl , v

(2)
jl , . . . , v

(d)
jl , 1≤ j< l≤ r􏽮 􏽯 (17)

form an orthonormal basis of V .
Assume that there exist two integers s and s1 such that

λ1(x)≥ · · · ≥ λs(x)> 0 � λs+1(x) � · · · � λs1
(x)> λs1+1(x)

≥ · · · ≥ λr(x).

(18)
Let us introduce three index sets:

α ≔ 1, . . . , s{ },

β ≔ s + 1, . . . , s1􏼈 􏼉, and c ≔ s1 + 1, . . . , r􏼈 􏼉.
(19)

For 1≤ j≤ l, denote

hjj ≔ Cjj(x)h �〈cj, h〉cj,

hjl ≔ Cjl(x)h � 􏽘
d

i�1
〈v(i)

jl , h〉v(i)
jl ,

hαα � 􏽘
s

j�1
hjj + 􏽘

1≤ j< l≤ s

hjl,

hαβ � 􏽘
s

j�1
􏽘

s1

l�s+1
hjl,

hαc � 􏽘
s

j�1
􏽘

r

l�s1+1
hjl,

hββ � 􏽘

s1

j�s+1
hjj + 􏽘

s+1≤ j< l≤ s1

hjl,

hβc � 􏽘

s1

j�s+1
􏽘

r

l�s1+1
hjl,

hcc � 􏽘
r

j�s1+1
hjj + 􏽘

s1+1≤ j< l≤ r

hjl.

(20)
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For themerit projectorΠK onto the symmetric cone, Sun
and Sun [25] has proved that ΠK is strongly semismooth
everywhere. Wang [17] gave a characterization pertaining
the structure of the B-subdifferential of ΠK. Recently, Kong,
Tunçel, and Xiu presented an exact expression for B-sub-
differential and Clarke’s generalized Jacobian of ΠK [14, 15].
Here, we rewrite the conclusion obtained by Kong et al. [15]
as follows.

Proposition 1. Let x � 􏽐
r
j�1 λj(x)cj and the indexsets α, β, c

be given by (19). )en, for any V ∈zΠK(x), there exists
W ∈zΠK|β| (0) such that

Vh � 􏽘
s

j�1
hjj + 􏽐

s

j�1
􏽘

s1

l�j+1
hjl + 􏽘

s

j�1
􏽘

r

l�s1+1

λj(x)

λj(x) − λl(x)
hjl + Wh,

(21)

where K|β| is the symmetric cone in subspace
Vββ ≔ ⊕i≤j,i∈β,j∈βV ij.

In order to describe the optimality conditions of NSCP
(1), we need the expressions of some important sets, such as
the tangent cone of K at x+(TK(x+)), the linearity of
TK(x+)(lin(TK(x+))), critical cone C(x+), and the affine
space of C(x+), denoted by aff(C(x+)). As Wang [17] and
Kong et al. [15] have obtained the characterizations inde-
pendently, we only show the topological results in the fol-
lowing proposition.

Proposition 2. Let x have eigenvalues as in (18). It holds that

TK x+( 􏼁 � z: hββ + hβc + hcc≽0􏽮 􏽯, (22)

lin TK x+( 􏼁( 􏼁 � h: hββ � 0, hβc � 0, hcc � 0􏽮 􏽯, (23)

C x+( 􏼁 � h: hββ≽0, hβc � 0, hcc � 0􏽮 􏽯, (24)

aff C x+( 􏼁( 􏼁 � h: hβc � 0, hcc � 0􏽮 􏽯. (25)

2.2. A Linear-Quadratic Function. Inspired by the works by
Bonnans and Shapiro [2] and Sun [9], we define a linear-
quadratic function as follows, which is vital for establishing a
kind of strong second-order sufficient condition.

Definition 1. For any given v ∈ V , define a linear-quadratic
function Υv: V × V⟶ R by

Υv(z, h) ≔ 4〈z · h, v
†

· h〉,

(z, h) ∈ V × V ,
(26)

where v† is the Moore–Penrose pseudoinverse of v.

Here, the linear-quadratic function is different from
Definition 3.2 in [15]. Even in the especial case, v ∈ K and

v · z � 0, the value of the linear-quadratic function (26) is
twice the one in [15].

For the linear-quadratic function (16), we have the
following conclusions.

Proposition 3. If h ∈ aff C(x+), then

Υx+
x − x+, h( 􏼁 � 􏽘

s

j�1
􏽐
r

l�s1+1

λl

λj

hjl

�����

�����
2
. (27)

Proof. As x+ � 􏽐
s
j�1 λjcj, x − x+ � 􏽐

r
j�s1+1 λjcj, we have

x − x+( 􏼁 · h � 􏽘
s

j�1
􏽘

r

l�s1+1
􏽘

d

i�1
λl〈v

(i)
jl , h〉 cl · v

(i)
jl􏼐 􏼑,

n!

r!(n − r)!
,

x+( 􏼁
†

· h � 􏽘
s

j�1
λ− 1

j 〈cj, h〉cj + 􏽘
s

j�1
􏽘

r

l�s1+1
􏽘

d

i�1
λ− 1

j 〈v
(i)
jl , h〉 cj · v

(i)
jl􏼐 􏼑,

(28)

and (28) comes from the definition of Υx+
(x − x+, h). □

Lemma 4. Let b ∈ K and − r ∈NK(b). )en, for any
v ∈zΠK(b − r),

〈Δb,Δr〉≥Υb(r,Δb), (29)

where Δb,Δr ∈ V satisfying Δb � v(Δb + Δr).

Proof. Denote x ≔ b − r. .en,

b � ΠK(b − r) � ΠK(x) and b · r � r · b � 0, b ∈ K, r ∈ K.

(30)

.us, we assume that x has the following spectral
decomposition:

x � 􏽘
s

j�1
λj(x)cj + 􏽘

r

j�s1+1
λj(x)cj (31)

satisfying (18), and b and r have the spectral decompositions
as follows:

b � 􏽘
s

j�1
λj(x)cj,

r � 􏽘
r

j�s1+1
− λj(x)􏼐 􏼑cj.

(32)

From Proposition 1, we have, for any V ∈zΠK(x), there
exists W ∈zΠK|β| (0) such that

Vh � 􏽘
s

j�1
hjj + 􏽐

s

j�1
􏽘

s1

l�j+1
hjl + 􏽘

s

j�1
􏽘

r

l�s1+1

λj(x)

λj(x) − λl(x)
hjl + Wh.

(33)

.erefore, we have from Δb � v(Δb + Δr) that
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􏽘

s

j�1
(Δb)jj +(Δr)jj􏽨 􏽩 + W(Δb + Δr)

+ 􏽘
s

j�1
􏽘

s1

l�j+1
(Δb)jl +(Δr)jl􏽨 􏽩 + 􏽘

s

j�1
􏽘

s

l�s1+1

λj(x)

λj(x) − λl(x)

· (Δb)jl +(Δr)jl􏽨 􏽩

� 􏽘

s

j�1
(Δb)jj + 􏽘

r

j�s1

(Δb)jj +(Δb)ββ +(Δb)αc +(Δb)βc +(Δb)cc,

(34)

which implies

􏽘

s

j�1
(Δr)jj � 0,

􏽘

r

j�s1+1
(Δb)jj � 0,

􏽘

s

j�1
􏽘

s1

l�j+1
(Δr)jl � 0,

􏽘

r

l�s1+1
􏽘

l− 1

j�s+1
(Δb)jl � 0,

(35)

􏽘

s

j�1
􏽘

r

l�s1+1

λj(x)

λj(x) − λl(x)
(Δr)jl +(Δb)jl􏽨 􏽩 � 􏽘

s

j�1
􏽘

r

l�s1+1
(Δb)jl,

(36)

W(Δb + Δr) � (Δb)ββ. (37)

We can easily check that

W(Δb + Δr) � W (Δb)ββ +(Δr)ββ􏼐 􏼑. (38)

.en, by the properties of the projection of the metric
projector in Lemma 3,

〈(Δb)ββ, (Δr)ββ〉 �〈W(Δb + Δr), (Δb)ββ

+(Δr)ββ − W(Δb + Δr)〉

�〈(Δb)ββ +(Δr)ββ, W − W
2

􏼐 􏼑

· (Δb)ββ +(Δr)ββ􏼐 􏼑〉≥ 0.

(39)

Hence, by equations (35)–(37), we obtain from
b† � 􏽐

r
j�1 λ

− 1
j (x)cj that

〈Δb,Δr〉 �〈􏽘
s

j�1
(Δb)jj + 􏽘

s

j�1
􏽘

r

l�j+1
(Δb)jl + Δbββ, 􏽘

r

j�s1+1
(Δr)jj

+ 􏽘
r

l�s1+1
􏽘

l− 1

j�1
(Δr)jl + Δrββ〉

≥ 〈􏽘
s

j�1
􏽘

r

l�s1+1
(Δb)jl, 􏽘

s

j�1
􏽘

r

l�s1+1
(Δr)jl〉

� − 􏽘
s

j�1
􏽘

r

l�s1+1

λl(x)

λj(x)
(Δb)jl

�����

�����
2

� 4〈r · Δb, b
†

· Δb〉

� Υb(r,Δb).

(40)

.e proof is completed. □

3. Optimality Conditions and Nonsingularity

We consider nonlinear conic problem (1). Let x belong to
the feasible set of problem (1). If

0 ∈ int
h(x)

g(x)
􏼠 􏼡 +

h′(x)

g′(x)
􏼠 􏼡X −

0

K
􏼠 􏼡

⎧⎨

⎩

⎫⎬

⎭, (41)

we say that Robinson’s constraint qualification holds at x.
.en, there exists a Lagrange multiplier (y, z) ∈ Rm × Y

satisfying the following KKT conditions:

∇xL(x, y, z) � 0,

h(x) � 0, − z ∈NK(g(x)),
(42)

where

L(x, y, z) � f(x) +〈y, h(x)〉 − 〈z, g(x)〉 (43)

is the Lagrangian function of (1). Let Λ(x) ⊂ Rm × Y be the
set of all the Lagrangian multipliers.

It is easy to verify the KKTconditions (42) which can be
equivalently expressed as

F(x, y, z) �

∇xL(x, y, z)

h(x)

g(x) − ΠK(g(x) − z)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

∇xL(x, y, z)

h(x)

z − ΠK(z − g(x))

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � 0.

(44)
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For a general constraint G(x) ∈ K′, x ∈ X, where
G: X⟶ Y′ is a continuously differentiable function and
K′⊆Y′ is a closed convex set, if for a feasible point x,

G′(x)X + lin TK′(G(x))( 􏼁 � Y′, (45)

then the constraint nondegeneracy condition holds at x. So,
for conic optimization problem (1), the constraint non-
degeneracy condition at x∗ has the following form:

h′ x
∗

( 􏼁

g′ x
∗

( 􏼁
⎛⎝ ⎞⎠X +

0

lin TK g x
∗

( 􏼁( 􏼁( 􏼁
􏼠 􏼡 �

R
m

Y
􏼠 􏼡. (46)

It follows from [2] that, if a locally optimal solution x∗

satisfies (46), then Λ(x∗) is a singleton.
For a KKT point (x∗, y∗, z∗) ∈ X × Rm × Y of problem

(1), suppose that u∗ ≔ g(x∗) − z∗ has the spectral
decomposition:

u
∗

� λ1c1 + · · · + λrcr, (47)

satisfying

λ1 ≥ · · · ≥ λs > 0 � λs+1 � · · · � λs1
> λs1+1≥ · · · ≥ λr. (48)

.en,

g x
∗

( 􏼁 � 􏽘
s

j�1
λjcj,

z
∗

� − 􏽘
r

j�s1+1
λjcj.

(49)

According to (23) and (25), we have

lin TK g x
∗

( 􏼁( 􏼁( 􏼁 � w ∈ Y: wββ � 0, wβc � 0, wcc � 0􏽮 􏽯.

(50)

Although the critical cone C(x∗) of problem (1) has an
explicit formula

C x
∗

( 􏼁 � d ∈ X: f′ x
∗

( 􏼁d≤ 0,􏼈

h′ x
∗

( 􏼁d � 0, g′ x
∗

( 􏼁d ∈ TK g x
∗

( 􏼁( 􏼁􏼉,
(51)

aff C(x∗) is not easy to describe. Instead, we define the
following outer approximation set to aff C(x∗) with respect
to (y∗, z∗):

app y
∗
, z
∗

( 􏼁 � d ∈ X: h′ x
∗

( 􏼁d � 0, g′ x
∗

( 􏼁d􏼂 􏼃βc􏽮

� 0, g′ x
∗

( 􏼁d􏼂 􏼃cc � 0􏽯.
(52)

It is easy to get that, for any (y∗, z∗) ∈ Λ(x∗),

aff C x
∗

( 􏼁⊆app y
∗
, z
∗

( 􏼁. (53)

We now introduce a kind of strong second-order suf-
ficient condition for problem (1), which is coincided with the
strong second-order sufficient condition in [8, 9] whenK is a
SDP cone and a second-order cone.

Definition 2. Let x∗ be a feasible point of (1) such that
constraint nondegeneracy condition (46) holds at x∗. We say
that the strong second-order sufficient condition holds at x∗ if

〈d,∇2xxL x
∗
, y
∗
, z
∗

( 􏼁d〉 + Υg x∗( ) z
∗
, g′ x

∗
( 􏼁d( 􏼁> 0,

∀ d ∈ app y
∗
, z
∗

( 􏼁∖ 0{ },
(54)

where (y∗, z∗)􏼈 􏼉 � Λ(x∗) ⊂ Rm × Y and app (y∗, z∗) is
defined by (52).

.e following theorem establishes the relationship be-
tween the strong second-order sufficient condition and the
nonsingularity of Clarke’s Jacobian of the mapping F de-
fined by (44).

Theorem 2. Let x∗ is a local minimizer of (1). Assume that
(x∗, y∗, z∗) ∈ X × Rm × Y is a KKT point to (1). If the
constraint nondegeneracy condition and the second-order
sufficient condition (53) hold at x∗, then any element in
zF(x∗, y∗, z∗) is nonsingular.

Proof. Firstly, we assume that the strong second-order
sufficient condition (53) holds at x∗ with the constraint
nondegeneracy condition (46). We shall prove that any
W ∈zF(x∗, y∗, z∗) is nonsingular. Let (Δx,Δy,Δz) ∈ X ×

Rm × Y satisfying the condition

W(Δx,Δy,Δz) � 0. (55)

Suppose that u � g(x∗) − z∗ has the spectral decom-
position (47) satisfying (48), then we can write g(x∗) and z∗

in the form of (49). From Lemma 1, there exists
V ∈zΠK(g(x∗)) such that

W(Δx,Δy,Δz)

�

∇2xxL x
∗
, y
∗
, z
∗

( 􏼁Δx + ∇h x
∗

( 􏼁Δy − ∇g x
∗

( 􏼁Δz,

− h′ x
∗

( 􏼁Δx,

− g′ x
∗

( 􏼁Δx + V g′ x
∗

( 􏼁Δx − Δz( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � 0.

(56)

From the third equality in (56), namely,

Step 0: for a given initial point (x1, y1, z1), calculate the value of h(x1), g(x1),∇f(x1), h′(x1) and g′(x1). Set k ≔ 1.
Step 1: if ∇xL(xk, yk, zk) � 0, h(xk) � 0, g(xk) ∈ Q, stop.
Step 2: calculate Mk � M(xk, yk, zk) and find a KKT point (Δxk, yk

QP, zk
QP) of (Subk) by solving the KKT system (67).

Step 3: set xk+1 ≔ xk + Δxk, yk+1 ≔ yk
QP, zk+1 ≔ zk

QP.
Step 4: calculate h(xk+1), g(xk+1),∇f(xk+1), h′(xk+1) andg′(xk+1). Set k ≔ k + 1. Go to step 1.

ALGORITHM 1: Local SQP method.
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g′ x
∗

( 􏼁Δx � V g′ x
∗

( 􏼁Δx − Δz( 􏼁, (57)

it has

􏽘

r

j�s1+1
〈cj, g′ x

∗
( 􏼁Δx〉cj � 0,

􏽘

r

l�s1+1
􏽘

l− 1

j�s+1
􏽘

d

i�1
〈v(i)

jl , g′ x
∗

( 􏼁Δx( 􏼁〉v(i)
jl � 0.

(58)

.en, it implies from (52) and (56) that

Δx ∈ app y
∗
, z
∗

( 􏼁,

0 �〈Δx,∇2xxL x
∗
, y
∗
, z
∗

( 􏼁Δx + ∇h x
∗

( 􏼁Δy − ∇g x
∗

( 􏼁Δz〉

�〈Δx,∇2xxL x
∗
, y
∗
, z
∗

( 􏼁Δx〉 +〈 − Δz, g′ x
∗

( 􏼁Δx〉.
(59)

Combining with the last equation of (36) and Lemma 4,
we obtain

〈Δx,∇2xxL x
∗
, y
∗
, z
∗

( 􏼁Δx〉 + Υg x∗( ) z
∗
, g′ x

∗
( 􏼁Δx( 􏼁≤ 0.

(60)

Comparing with the strong second-order sufficient
condition in the strong form (53), we get Δx � 0. .us, (36)
can be expressed in the following form:

∇h x
∗

( 􏼁Δy − ∇g x
∗

( 􏼁Δz

V(Δz)
􏼠 􏼡 � 0. (61)

From V(Δz) � 0, we have

(Δz)αα � 0,

(Δz)αβ � 0,

(Δz)αc � 0.

(62)

.en, it follows from the nondegeneracy (46) that there
exists a vector d ∈ X and w ∈ lin (TK(g(x∗))) satisfying

h′ x
∗

( 􏼁d � Δy,

g′ x
∗

( 􏼁d + w � − Δz.
(63)

.erefore, we have

〈Δy,Δy〉 +〈Δz,Δz〉 �〈Δy, h′ x
∗

( 􏼁d〉 − 〈Δz, g′ x
∗

( 􏼁d + w〉

� − 〈w,Δz〉 � 0,

(64)

where the last equation can be obtained by (50) and (62).
.us, Δy � 0, Δz � 0. Together with Δx � 0, we get that W
is nonsingular. .e proof is completed. □

4. Application

In this section, as an application of the nonsingularity in
.eorem 2, we will study the sequential quadratic pro-
gramming- (SQP-) type method to solving problem (1). Let
(xk, yk, zk) be the current iteration point. .e new iteration
points (xk+1, yk+1, zk+1) will be generated by solving the
following quadratic problem:

(Subk)

min
Δx
∇f x

k
􏼐 􏼑

T
Δx +

1
2
ΔxT

MkΔx,

s.t.
h x

k
􏼐 􏼑 + h′ x

k
􏼐 􏼑Δx � 0,

g x
k

􏼐 􏼑 + g′ x
k

􏼐 􏼑Δx ∈ K,

(65)

where Mk ≔M(xk, yk, zk) and M: X × Rm × Y⟶ X × X

is a matrix function satisfying M(x∗, y∗, z∗) �

∇2xxL(x∗, y∗, z∗). .is model introduced in [18] to solve the
classical nonlinear programming problems is used to solve
the nonlinear SDP problems [26, 27] and nonlinear second-
order cone programming problems [28, 29], where they may
choose the different forms of M(·, ·, ·).

Theorem 3. Suppose that (x∗, y∗, z∗) ∈ X × Rm × Y is a
KKT point to (1) and the second-order sufficient condition
(53) with constraint nondegeneracy condition holds at x∗x∗.
Let the matrix function M: X × Rm × Y⟶ X × X satis-
fying M(x∗, y∗, z∗) � ∇2xxL(x∗, y∗, z∗) be semismooth at
(x∗, y∗, z∗). )en, for any (xk, yk, zk) ∈ U, a neighborhood
of (x∗, y∗, z∗), (39) has a KKT solution (Δxk, yk

QP, zk
QP)

satisfying

Δxk
�����

����� + y
k
QP − y

∗
�����

����� + z
k
QP − z

∗
�����

�����

� O x
k
, y

k
, z

k
􏼐 􏼑 − x

∗
, y
∗
, z
∗

( 􏼁
�����

�����􏼒 􏼓.
(66)

Proof. Let (Δx, yQP, zQP) be a KKT point of (Subk). .en,

∇f x
k

􏼐 􏼑 + zkΔx + ∇h x
k

􏼐 􏼑yQP − ∇g x
k

􏼐 􏼑zQP � 0,

h x
k

􏼐 􏼑 + h′ x
k

􏼐 􏼑Δx � 0,

g x
k

􏼐 􏼑 + g′ x
k

􏼐 􏼑Δx � ΠK g x
k

􏼐 􏼑􏼐

+ g′ x
k

􏼐 􏼑Δx − zQP􏼑,

(67)

namely,

􏽢F Δx, yQP, zQP, x
k
, y

k
, z

k
􏼐 􏼑 � 0, (68)

where

􏽢F(ζ , η, ξ, x, y, z) ≔

∇f(x) + M(x, y, z)ζ + ∇h(x)η − ∇g(x)ξ,

h(x) + h′(x)ζ ,

g(x) + g′(x)ζ − ΠK g(x) + g′(x)ζ − ξ( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(69)

is a function with the variable (ζ, η, ξ, x, λ, μ) ∈
X × Rm × Y × X × Rm × Y. Let τ ≔ (ζ, η, ξ) ∈ X × Rm × Y

and ] ≔ (x, λ, μ) ∈ X × Rm × Y. Let τ∗ � (0, y∗, z∗) and
]∗ � (x∗, y∗, z∗). We can easily have the following equation:

􏽢F 0, y
∗
, z
∗
, x
∗
, y
∗
, z
∗

( 􏼁 � 􏽢F τ∗, ]∗( 􏼁 � 0. (70)
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By replacing (xk, Mk) in (65) with , we obtain a new
problem expressed as (Sub∗), and (0, y∗, z∗) is an KKTpoint
of (Sub∗).

.erefore, the strong second-order sufficient condition
of (Sub∗) at (0, y∗, z∗) under the constraint nondegeneracy
condition (46) has the same expression as condition (53). It
is concluded from .eorem 2 that any element
W ∈ ΠX×Rm×Yz􏽢F(τ∗, z∗) is nonsingular. .en, there exists a
strong semismooth function τ(·): U⟶ X × Rm × Y

satisfying

τ ]∗( 􏼁 � τ∗,
􏽢F(τ(]), ]) � 0, ∀] ∈ U,

(71)

where U is a neighborhood of ]∗. Denote
(Δxk, yk

QP, zk
QP) ≔ τ(]k). .en, (Δxk, yk

QP, zk
QP) is a KKT

point of (Subk) if ]k ∈ U. By the strong semismoothness of
τ(·),

τ ]k
􏼐 􏼑 − τ∗

�����

����� � O ]k
− ]∗

�����

�����􏼒 􏼓. (72)

.e proof is completed.
Now we present a local SQP method based on solving

SQP-type model (Subk) in each iteration to solve (1). □

Next, the primal-dual quadratic convergence of Algorithm 1
is demonstrated by using the semismoothness of M and
.eorem 2.

Theorem 4. Suppose that all the hypotheses of)eorem 3 still
hold for Algorithm 1. )en, there exists a neighborhood U of
(x∗, y∗, z∗) such that, for any (x1, y1, z1) ∈ U, the sequence
(xk, yk, zk)􏼈 􏼉 generated by Algorithm 1 converges to
(x∗, y∗, z∗) quadratically.

Proof. According to .eorem 3, it is easy to verify that the
algorithm is well-defined. Denote

δk ≔ x
k
, y

k
, z

k
􏼐 􏼑 − x

∗
, y
∗
, z
∗

( 􏼁
�����

�����. (73)

We obtain

Δxk
� O δk( 􏼁,

y
k+1

− y
∗

� O δk( 􏼁,

z
k+1

− z
∗

� O δk( 􏼁,

(74)

where Δxk is a solution to (65), and yk+1 � yk
QP, zk+1 � zk

QP is
the associated multiplier.

As M(x∗, y∗, z∗) � ∇2xxL(x∗, y∗, z∗) and M is semi-
smooth at (x∗, y∗, z∗),

Mk − ∇2xxL x
∗
, y
∗
, z
∗

( 􏼁 � O x
k
, y

k
, z

k
􏼐 􏼑 − x

∗
, y
∗
, z
∗

( 􏼁
�����

�����􏼒 􏼓.

(75)

It follows from the Taylor expansion to (67) at
(x∗, y∗, z∗), ∇xL(x∗, y∗, z∗) � 0, xk+1 � xk + Δxk, (74), and
(75) that

∇2xxL x
∗
, y
∗
, z
∗

( 􏼁 x
k+1

− x
∗

􏼐 􏼑 + ∇h x
∗

( 􏼁 y
k+1

− y
∗

􏼐 􏼑

− ∇g x
∗

( 􏼁 z
k+1

− z
∗

􏼐 􏼑 � O δ2k􏼐 􏼑,
(76)

h′ x
∗

( 􏼁 x
k+1

− x
∗

􏼐 􏼑 � O δ2k􏼐 􏼑. (77)

Because of the strongly semismoothness of the projec-
tion operator ΠK(·), we get V ∈zΠK(g(x∗) − z∗) satisfying

ΠK g x
∗

( 􏼁 − z
∗

( 􏼁 � ΠK g x
k

􏼐 􏼑 + g′ x
k

􏼐 􏼑Δxk
− z

k
QP􏼐 􏼑

+ V g x
∗

( 􏼁 − z
∗

− g x
k

􏼐 􏼑 − g′ x
k

􏼐 􏼑Δxk
+ z

k
QP􏼐 􏼑

+ O g x
∗

( 􏼁 − z
∗

− g x
k

􏼐 􏼑 − g′ x
k

􏼐 􏼑Δxk
+ z

k
QP

�����

�����
2

􏼒 􏼓.

(78)

Since

g x
∗

( 􏼁 − z
∗

− g x
k

􏼐 􏼑 − g′ x
k

􏼐 􏼑Δxk
+ z

k
QP

� g x
∗

( 􏼁 − g x
∗

( 􏼁 − g′ x
∗

( 􏼁 x
k

− x
∗

􏼐 􏼑 + O x
k

− x
∗

�����

�����
2

􏼒 􏼓

− g′ x
∗

( 􏼁Δxk
+ O x

k
− x
∗

􏼐 􏼑Δxk
− z
∗

+ z
k+1

g′ x
∗

( 􏼁

· x
∗

− x
k+1

􏼐 􏼑 − z
∗

+ z
k+1

+ O δ2k􏼐 􏼑,

(79)

it is known that

ΠK g x
k

􏼐 􏼑 + g′ x
k

􏼐 􏼑Δxk
− z

k
QP􏼐 􏼑 � ΠK g x

∗
( 􏼁 − z

∗
( 􏼁

− V g′ x
∗

( 􏼁 x
∗

− x
k+1

􏼐 􏼑 − z
∗

+ z
k+1

􏼐 􏼑 + O δ2k􏼐 􏼑,
(80)

which, together with ΠK(g(x∗) − z∗) � g(x∗) and
ΠK(g(xk) + g′(xk)Δxk − zk

QP) � g(xk) + g′(xk)Δxk,
implies

(V − I)g′ x
∗

( 􏼁 x
k+1

− x
∗

􏼐 􏼑 − V z
k+1

− z
∗

􏼐 􏼑 � O δ2k􏼐 􏼑.

(81)

Following from (76), (77), with (81), we obtain

∇2xxL x
∗
, y
∗
, z
∗

( 􏼁 ∇h x
∗

( 􏼁 − ∇g x
∗

( 􏼁

h′ x
∗

( 􏼁 0 0

− g′ x
∗

( 􏼁 + Vg′ x
∗

( 􏼁 0 − V

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

x
k+1

− x
∗

y
k+1

− y
∗

z
k+1

− z
∗

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� O δ2k􏼐 􏼑.

(82)
Combining (46) and (54) with .eorem 2, we show that

x
k+1

− x
∗

y
k+1

− y
∗

z
k+1

− z
∗

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

��������������

��������������

� O δ2k􏼐 􏼑, (83)

which means the quadratic convergence of the sequence
(xk, yk, zk)􏼈 􏼉. .en, we complete the proof. □
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5. Conclusion

In this paper, we discuss the nonlinear symmetric conic
programming problems. We show that a kind of strong
second-order sufficient condition, together with constraint
nondegeneracy condition, implies the nonsingularity of
Clarke’s generalized Jacobian of the mapping F at the KKT
point. In the special cases of NLP, SCOP, and SDP, the
converses are also true. .en, we demonstrate the local
quadratic convergence of the SQP-type method for solving
the nonlinear symmetric conic programming problems.
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[24] A. Korányi, “Monotone functions on formally real Jordan
algebras,” Mathematische Annalen, vol. 269, pp. 73–76, 1984.
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-e establishment of the fractional Black–Scholes option pricing model is under a major condition with the normal distribution
for the state price density (SPD) function. However, the fractional Brownian motion is deemed to not be martingale with a long
memory effect of the underlying asset, so that the estimation of the state price density (SPD) function is far from simple.-is paper
proposes a convenient approach to get the fractional option pricing model by changing variables. Further, the option price is
transformed as the integral function of the cumulative density function (CDF), so it is not necessary to estimate the distribution
function individually by complex approaches. Finally, it encourages to estimate the fractional option pricing model by the way of
nonparametric regression and makes empirical analysis with the traded 50 ETF option data in Shanghai Stock Exchange (SSE).

1. Introduction

In the financial market, the memory effect of asset price has
been described by the fractional Brownian motion (FBM).
-e first finding of long memory effects in stock returns was
reported by Mandelbrot and Van Ness who also defined the
fractional Brownian motion [1]. -e memory effect between
0 and 1 is measured by Hurst index (H). Specifically
speaking, the asset price has long memory effects if the Hurst
index is between 1/2 and 1 whereas the asset price has short
memory effects if the Hurst index is between 0 and 1/2.
However, there is no memory effect when the Hurst indexH
is equal to 1/2.

According to the stochastic differential equation driven
by the fractional Brownian motion, a large number of lit-
erature studies have studied the option pricing models of
improving the classical Black–Scholes option pricing model
(see Black and Scholes [2]). For instance, the study was
reported by Necula [3], Rostek [4], and Hu and Øksendal [5]
that fractional Black–Scholes pricing model (FBS) is ob-
tained on the condition that the underlying asset price
process obeys the fractional Brownian motion (FBM). Some
results reflect the study reported by Ren et al. [6] who found
that the option pricing model is linking with the Hurst index

between 0.5 and 1. One study done by Wang et al. [7]
examined the fractional option pricing formula is carried out
when the Hurst index is between 1/3 and 1/2. One study by
Chen et al. [8] offers another empirical analysis of the mixed
fractional-fractional version of the Black–Scholes model
with the Hurst index between 0 and 1.

-ere are two defects for the existing fractional Black-
–Scholes option pricing models. Firstly, the existing frac-
tional Black–Scholes option pricing models corroborate the
condition of the lognormal distribution of SPD. In practice,
it is hard to undertake the estimation of the state price
density (SPD) function when the underlying asset process is
not a martingale; in addition, the state price density function
(SPD) is unknown.

-is paper is designed to relax the assumption in the
fractional Black–Scholes pricing model (FBS) so that the
returns of the underlying asset obey the lognormal distri-
bution, and the option price will be transformed to the
integral function of the cumulative density function (CDF).
As a result, it is not necessary to estimate the distribution
function individually via complex approaches. -is idea of
variable transformation is inspired by the research found by
Ait-Sahalia [9], Xiu [10], and Vogt [11].-e option price can
be transformed to a regression equation with the changing
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variables, which can be estimated by the local polynomial
model proposed by Fan and Gijbels [12] and Li and Racine [13].

Nonparametric pricing option has been present among
researchers Ait-Sahalia and Lo [14, 15]. In order to overcome
model errors, the semiparametric Black–Scholes model
(SBS) has been proposed by Ait-Sahalia and Lo [14] with the
implied volatility in the Black–Scholes option pricing model.
-e research done by Dumas et al. [16] carried out the so-
called ad hoc Black–Scholes model in that implied volatility
is the parabolic function of moneyness. Inspired by Ait-
Sahalia and Lo [14], Fan and Mancini [17] proposed the
semiparametric Black-Sholes model in that the implied
volatility was the nonparametric estimator of moneyness.

-e outline of the article is illustrated as follows. In
Section 2, the analysis of the fractional Black–Scholes option
pricing model and nonparametric fractional option pricing
model established when a variable happens to change along
with nonparametric fractional option pricing models is by
the local polynomial regression. In Section 3, with the use of
the traded 50 ETF option prices in Shanghai Stock Exchange
(SSE), the experimental work compares the analysis of the
effectiveness among classical Black–Scholes (BS) option
pricing model, semiparametric Black–Scholes pricing model
(SBS), semiparametric fractional Black–Scholes (SFBS) op-
tion pricing model, and nonparametric fractional (NF)
option pricing model. In Section 4, several conclusions are
given about the different option pricing models.

2. Pricing European Option by
Changing Variables

Although the fractional Black–Scholes has improved the
pricing performance, the application of the model is still under
the condition of lognormal distribution and the framework of
parametric Black–Scholes. -e importance of the study is that
it explores a new achievement in an orthogonal way instead of
improving the pricing model to a more flexible level. -e
nonparametric fractional Black–Scholesmodel is established to
improve the pricing performance by relaxing the lognormal
distribution of the returns of the underlying asset (or random
variable) to be nonparametric.

2.1. Black–Scholes Option Pricing Model by Changing
Variables. -is section will propose the following changing
variables to obtain closed-form expressions of the Black-
–Scholes option pricing model. Let P(f

Q1
0 , U1) be the Eu-

ropean put option price, and ST is considered as the
underlying asset price at time T and K is the strike price.
-en, τ � T − t is regarded as the time to maturity and
f

Q1
0 (ST|τ) means the state price probability density function,

while r is the riskless interest rate, and the price of European
put option refers to the discounted expressed payoff in the
risk-neutral world:

P f
Q1
0 , U1􏼐 􏼑 � e

− rτ
E max K − ST, 0( 􏼁􏼂 􏼃

� e
− rτ

􏽚
K

0
(K − S)f

Q1
0 (S|

(1)

-e underlying asset price St follows the Brownian
motion:

dSt � rStdt + σStdBt, (2)

where r is the riskless rate, σ is the diffusion coefficient, and
Bt is the standard Brownian motion.

According to Ito’s lemma, the price process is as follows:

ln
ST

S0
􏼠 􏼡 � μ1 U1( 􏼁 + σ1 U1( 􏼁Z1, (3)

where μ1(U1) and σ1(U1) are the known functions of the
characteristics of option parameters U1 � (S, K, τ, r, σ), and
μ1(U1) � (r − 1/2σ2)τ and σ1(U1) � σ

�
τ

√
. Z1 ∼ f0(·|τ), in

which f0(·|τ) is the unknown state price density function to
be nonparametrically estimated by the market data.

From equation (3), Brownian motion is concretely de-
scribed by the underlying asset as follows:

Z1 �
ln ST/S0( 􏼁 − μ1 U1( 􏼁􏼂 􏼃

σ1 U1( 􏼁
. (4)

By changing variables, the option valuation equation (1)
becomes

P f
Q1
0 , U1􏼐 􏼑 � e

− rτ
E max K − ST, 0( 􏼁􏼂 􏼃 � e

− rτ
􏽚

K

0
(K − S)f

Q1
0 (S|

� e
− rτ

􏽚
d1 U1( )

+∞
K − S0e

μ1 U1( )+σ1 U1( )U1􏼒 􏼓f0 Z1|τ( 􏼁dZ1 � PU1
f0, U1( 􏼁,

(5)

where

d1 U1( 􏼁 �
ln K/S0( 􏼁 − μ1 U1( 􏼁􏼂 􏼃

σ1 U1( 􏼁
. (6)

-e relationship between f
Q1
0 (ST|τ) and f0(Z1|τ) is as

follows:

f
Q1
0 ST|τ( 􏼁 � S0σ1 U1( 􏼁e

μ1 U1( )+σ1 U1( )Z1􏼔 􏼕
− 1

f0 Z1|τ( 􏼁. (7)

-e state price density function f0(Z1|τ) is the normal
distribution as follows:

f0 Z1|τ( 􏼁 �
1
���
2π

√ e
− Z2

1/2. (8)

-e systematic analysis of option valuation is the
Black–Scholes option pricing model [2] as follows:
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P f
Q1
0 , U1􏼐 􏼑 � e

− rτ
􏽚

d1 U1( )

0
K − S0e

μ1 U1( )+σ1 U1( )Z1􏼒 􏼓f0 Z1|τ( 􏼁dZ1

� e
− rτ

K 􏽚
d1 U1( )

0
f0 Z1|τ( 􏼁dZ1 − e

− rτ
􏽚

d1 U1( )

0
S0e

μ1 U1( )+σ1 U1( )Z1f0 Z1|τ( 􏼁dZ1

� e
− rτ

K 􏽚
d1 U1( )

0

1
���
2π

√ e
− Z2

1/2dZ1 − e
− rτ

􏽚
d1 U1( )

0
S0e

μ1 U1( )+σ1 U1( )Z1
1
���
2π

√ e
− Z2

1/2dZ1

� e
− rτ

KN d1 U1( 􏼁( 􏼁 − S0e
μ1 U1( )+1/2σ21 U1( ) 􏽚

d1 U1( )

0

1
���
2π

√ e
− 1/2 Z1− σ1 U1( )[ ]

2

dZ1

� e
− rτ

KN d1 U1( 􏼁( 􏼁 − S0e
μ1 U1( )+1/2σ21 U1( ) 􏽚

d1 U1( )− σ1 U1( )

0

1
���
2π

√ e
− 1/2x2

dx

� e
− rτ

KN d1 U1( 􏼁( 􏼁 − S0N d1 U1( 􏼁 − σ1 U1( 􏼁( 􏼁

� e
− rτ

KN
ln K/S0( 􏼁 − r − σ2/2􏼐 􏼑􏼐 􏼑τ

σ
�
τ

√⎛⎝ ⎞⎠ − S0N
ln K/S0( 􏼁 − r − σ2/2􏼐 􏼑􏼐 􏼑τ

σ
�
τ

√ − σ
�
τ

√
⎛⎝ ⎞⎠

� e
− rτ

KN −
ln S0/K( 􏼁 + r − σ2/2􏼐 􏼑􏼐 􏼑τ

σ
�
τ

√⎛⎝ ⎞⎠ − S0N −
ln S0/K( 􏼁 + r + σ2/2􏼐 􏼑􏼐 􏼑τ

σ
�
τ

√⎛⎝ ⎞⎠

� PBS f0, Z1( 􏼁,

(9)

where let x � Z1 − σ1(Z1). -at is the classical Black–Scholes
option pricing model when volatility turns to the history
volatility:

PBS � e
− rτ

KN − d12( 􏼁 − S0N − d11( 􏼁, (10)

where d11 � ln(S0/K) + (r + (σ2/2))τ/σ
�
τ

√
and d12 � d11 −

σ
�
τ

√
� ln(S0/K) + (r − (σ2/2))τ/σ

�
τ

√
.

Furthermore, model (10) has a fine description about
semiparametric Black–Scholes model (SBS) proposed by
Ait-Sahalia and Lo [14] and Fan and Mancini [17] with
implied volatility. Fan and Mancini [17] proposed a non-
parametric approach to fit the implied volatility function:

σIV
t,i � G mt,i􏼐 􏼑 + εt,i, i � 1, 2, . . . , n, (11)

where mt,i � K/Ft,τ is the moneyness and Ft,τ �

(Ct − Pt)e
− rt,ττ + K � Ste

(rt,τ − δt,τ)τ means the forward price,
the forward price is obtained from the put-call parity
Ct + Ke− rt,ττ � Pt + Ft,τe

− rt,ττ , P denotes the put price, and C
denotes the call price.

However, the random variable Z1 does not obey the log-
normal distribution, which is unknown. By changing variables,
option price can be illustrated by the integral function about
random variable Z1 depending on function d1(U1). When the
state price cumulative density function F0(Z1|τ) is unknown,

P f
Q1
0 , U1􏼐 􏼑 � e

− rτ
􏽚

K

0
f

Q1
0 (S|τ)dS � e

− rτ
􏽚

d1 U1( )

0

· K − S0e
μ1 U1( )+σ1 U1( )Z1􏼒 􏼓f0 Z1|τ( 􏼁dZ1

� e
− rτ

􏽚
d1 U1( )

0
Kσ1 U1( 􏼁f0 Z1|τ( 􏼁dZ1

� e
− rτ

Kσ1 U1( 􏼁 􏽚
d1 U1( )

0
f0 Z1|τ( 􏼁dZ1,

(12)

where f0(Z1|τ) is the cumulative density function (CDF) of
random variable Z1 and f0(Z1|τ) is unknown function.

Because the function f0(Z1|τ) is unknown, and let
􏽒

d1(U1)

0 f0(Z1|τ)dZ1 � G(d1(U1)), equation (12) will be the
form as follows:

P f
Q1
0 , U1􏼐 􏼑 � e

− rτ
Kσ1 U1( 􏼁 􏽚

d1 U1( )

0
f0 Z1|τ( 􏼁dZ1

� e
− rτ

Kσ1 U1( 􏼁G d1 U1( 􏼁( 􏼁.

(13)

It can be found that the option price is the function of
one-dimensional variable d1(U1) and distribution function
F0(B|τ).

From equation (13), the nonparametric estimation
equation has been established between put option price
function P(f

Q1
0 , Z1) and variable d1(U1) as follows:

Yi � G Xi( 􏼁 + εi, i � 1, 2, . . . , n, (14)

where G(·) is the unknown function to be estimated, Yi �

erτ/Kσ1(U1)P(f
Q1
0 , Z1), Xi � ln(Ki/Ft,τ) + (σ2/2)τ/σ

�
τ

√
,

and εi features i.i.d with zeromean and common variance σ2.

2.2. Fractional Option Pricing Model by Changing Variables.
-e correlational analysis of stock price is set out by a
fractional Brownian motion when the stock price process
has memory effects. In this section, the fractional option
pricing model and nonparametric fractional option pricing
model have been established on the condition that the stock
price is subject to the fractional Brownian motion by
changing variables.

Assume that the underlying asset price St follows the
fractional Brownian motion:
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dSt � rStdt + σStdBH(t), (15)

where BH(t) is subject to fractional Brownian motion and H

means the Hurst index and H can be estimated by R/S
analysis approach.

-e fractional Brownian motion BH(t) can be denoted
by the standard Brownian motion B(t) as follows:

BH(t) � CH 􏽚
0

− ∞
(t − s)

H− 1/2
− (− s)

H− 1/2
􏼑dB(s􏼐 􏼑􏼢

+ 􏽚
t

0
(t − s)

H− 1/2dB(s)􏼣.

(16)

-e increment of the fractional Brownian motion
ΔBH(t) obeys the standard normal distribution:

ΔBH(t) ∼ N 0, (Δt)2H
􏼐 􏼑. (17)

-e autocovariance function of between ΔBH(t) and
ΔBH(t + s) is as follows:

Cov ΔBH(t),ΔBH(t + s)( 􏼁 �
1
2

(Δt) |s + 1|
2H

+|s − 1|
2H

− 2|s|
2H

􏼐 􏼑.

(18)

From equation (15), the stock price process is as follows:

ln
ST

S0
􏼠 􏼡 � μ2 U2( 􏼁 + σ2 U2( 􏼁BH(t), (19)

where U2 � (S, K, τ, r, σ, H) and μ2(U2) � μτ −

1/2σ2(τ)2H, σ2(U2) � σ(τ)H.

In order to make the variable transformation, let Z2 be
the random variable with memory:

Z2 �
ln ST/S0( 􏼁 − μ2 U2( 􏼁

σ2 U2( 􏼁
. (20)

-en, equation (1) will be

P f
Q2
0 , U2􏼐 􏼑 � e

− rτ
E max K − ST, 0( 􏼁􏼂 􏼃

� e
− rτ

􏽚
K

0
(K − S)f

Q2
0 (S|τ)dS

� e
− r(T− τ)

􏽚
d2 U2( )

+∞
K − S0e

μ2 U2( )+σ2 U2( )U2􏼒 􏼓

· f0 Z2|τ( 􏼁dZ2

� PU2
f0, U2( 􏼁,

(21)

where

d2 U2( 􏼁 �
ln K/S0( 􏼁 − μ2 U2( 􏼁

σ2 U2( 􏼁
. (22)

-e density function f0(Z2|τ) is given as normal dis-
tribution as follows:

f0 Z2|τ( 􏼁 �
1
���
2π

√ e
− Z2

2/2. (23)

-e option valuation is discussed as the fractional
Black–Scholes (FBSM) option pricing model (see Necula
[3]):

P f
Q2
0 , U2􏼐 􏼑 � e

− rτ
􏽚

d2 U2( )

0
K − S0e

μ2 U2( )+σ2 U2( )Z2􏼒 􏼓f0 Z2( 􏼁dZ2

� e
− rτ

K 􏽚
d2 U2( )

0
f0 Z2( 􏼁dZ2 − e

− rτ
􏽚

d2 U2( )

0
S0e

μ2 U2( )+σ2 U2( )Z2f0 Z2( 􏼁dZ2

� e
− rτ

K 􏽚
d2 U2( )

0

1
���
2π

√ e
− Z2

2/2dZ2 − e
− rτ

􏽚
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0
S0e

μ2 U2( )+σ2 U2( )Z2
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���
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���
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dZ2

� e
− rτ

KN d2 U2( 􏼁( 􏼁 − S0e
μ2 U2( )+1/2σ22 U2( ) 􏽚

d2 U2( )− σ2 U2( )

0

1
���
2π

√ e
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� e
− rτ

KN d2 U2( 􏼁( 􏼁 − S0N d2 U2( 􏼁 − σ2 U2( 􏼁( 􏼁

� e
− rτ

KN
ln K/S0( 􏼁 − rτ − σ2/2􏼐 􏼑τ2H

􏼐 􏼑

στH
⎛⎝ ⎞⎠ − S0N

ln K/S0( 􏼁 − rτ − σ2/2􏼐 􏼑τ2H
􏼐 􏼑

στH
− στH⎛⎝ ⎞⎠

� e
− rτ

KN −
ln S0/K( 􏼁 + rτ − σ2/2􏼐 􏼑τ2H

􏼐 􏼑

στH
⎛⎝ ⎞⎠ − S0N −

ln S0/K( 􏼁 + rτ + σ2/2􏼐 􏼑τ2H
􏼐 􏼑

στH
⎛⎝ ⎞⎠

� PFBS f0, Z2( 􏼁,

(24)
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where let x � Z2 − σ2(Z2). Generally, the fractional Black-
–Scholes option pricing model is given by

PFBS � e
− rτ

KN − d22( 􏼁 − S0N − d21( 􏼁, (25)

where d21 � ln(S0/K) + (rτ + (σ2/2)τ2H)/στH and d22 �

d21 − στH � ln(S0/K) + (rτ − (σ2/2)τ2H)/στH.
However, the state price density function is unknown in

practice. What makes it more complicated is that the
fractional Brownian motion is neither martingale nor
semimartingale. -erefore, the estimation of the density
function is difficult to estimate due to the existing memory
effects of the underlying asset:

P f
Q2
0 , U2􏼐 􏼑 � e

− rτ
􏽚

K

0
(K − S)f

Q2
0 (S|τ)dS � e

− rτ
􏽚

d2 U2( )

0

· K − S0e
μ2 U2( )+σ2 U2( )Z2􏼒 􏼓f0 Z2|τ( 􏼁dZ2

� e
− rτ

􏽚
d2 U2( )

0
Kσ2 U2( 􏼁f0 Z2|τ( 􏼁dZ2

� e
− rτ

Kσ2 U2( 􏼁 􏽚
d2 U2( )

0
f0 Z2|τ( 􏼁dZ2.

(26)

In fact, the density function f0(Z2|τ) is hard to estimate
for two reasons: f0(Z2|τ) is unknown and f0(Z2|τ) has
memory effects. -erefore, a new idea is put forward not to
estimate the function f0(Z2|τ) directly. Let
􏽒

d2(U2)

0 f0(Z2|τ)dZ2 � G(d2(U2)) and the nonparametric
regression equation is proposed as follows:

P f
Q2
0 , U2􏼐 􏼑 � e

rτ
Kσ2 U2( 􏼁 􏽚

d2 U2( )

0
f0 Z2|τ( 􏼁dZ2

� e
rτ

Kσ2 U2( 􏼁G d2 U2( 􏼁( 􏼁.

(27)

According to equation (27), the nonparametric regres-
sion equation is given by

Yi � G Xi( 􏼁 + εi, i � 1, 2, . . . , n, (28)

where Yi � erτ/Kσ2(Z2)p(f
Q2
0 , U2) � erτ/KστHP(f

Q2
0 , U2),

Xi � d(U2) � ln(Ki/S0) − μ2(U2)/σ2(U2) � ln(Ki/Ft,τ) +

(σ2/2)τ2H/στH, and εi features i.i.d. with zero mean and
common variance σ2.

2.3. Nonparametric Regression Estimation of Option Prices.
We can estimate the nonparametric regression model (28)
by local polynomial approach in Fan and Gijbels [12]:

Yi � G Xi( 􏼁 + εi, i � 1, 2, . . . , n, (29)

where Y � erτ/KστHP(f
Q2
0 , U2), X � ln(Ki/Ft,τ) +

(σ2/2)τ2H/στH, and εi features i.i.d with zero mean and
common variance σ2.

We approximate the unknown regression functionG(X)

locally by a polynomial of order m, and the Taylor expansion
of G(X) in the neighborhood of x is given by

G(X) � 􏽘
m

k�0

m
(k)

(x)

k!
(X − x)

k
. (30)

-e nonparametric regression equation (29) will be es-
timated by a weighted least squares regression problem [12]:

min􏽘

n

i�0
Yi − 􏽘

m

k�0
βk(x)(X − x)

k
⎧⎨

⎩

⎫⎬

⎭

2

Kh

Xi − x

h
􏼒 􏼓, (31)

where K(·) is the kernel function, K(z) � 0.75(1 −

z2)I(|z|< 1) (Epanechnikov kernel), h is the bandwidth, and
h � 3.45σn− 1/5 from the experience of cross-validation (CV)
approach [15], σ is the std. dev of the regressors, and n is the
number of samples.

Generally, the majority of recent studies involve the non-
parametric equation by applying a local quadratic polynomial
approximation with m � 2. It is more convenient to write the
weighted least squares problems (31) as matrix notation:

minimizeβ(Y − Xβ)
T
W(Y − Xβ), (32)

where

X �

1 X1 − x X1 − x( 􏼁
2

1 X2 − x X2 − x( 􏼁
2

3
1 Xn − x Xn − x( 􏼁

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n×3

,

Y �

Y1
Y2
· · ·

Yn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n×1

,

W � diag Kh(X − x)􏼈 􏼉,

(33)

whereW is the weight matrix. And the coefficient βk(x) can
be denoted by

β(x) �

β0(x)

β1(x)

β2(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

3×1

�

β0 x1( 􏼁 β0 x2( 􏼁 . . . β0 xn( 􏼁

β1 x1( 􏼁 β1 x2( 􏼁 . . . β1 xn( 􏼁

β2 x1( 􏼁 β2 x2( 􏼁 . . . β2 xn( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

3×n

.

(34)

-e solution vector of (32) is given as

􏽢β � X
T
WX􏼐 􏼑

− 1
X

T
WY. (35)

3. Empirical Analysis

3.1. Data and Option Contacts. -is section will make an
empirical analysis by the option market data in China. -e
analysis is sourcing from the closing prices of European put
option on the 50ETF in China from February 9, 2015, to
August 21, 2015, and the option contacts contain from
March 2015 to September 2015. To retain only liquid op-
tions, it is encouraged to discard the options with implied
volatility larger than 70% and price smaller than 0.05, ending
up with 3529. As a conclusion, the riskless rate is 2.25% in
the year of 2015, and the history volatility is 20.59%.

3.2. Empirical Results. -e Hurst index of 50 ETF is
H � 0.4526, which is estimated by R/S analysis approach.
Table 1 summarizes the pricing errors of different option
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pricingmodels. FromTable 1, the result of theMAE and RMSE
of NF model is found to be lower than the BS, SBS, and SFBS
models. To conclude, the nonparametric fractional option
pricing model (NF) is superior to Black–Scholes model (BS),
Semiparametric Black–Scholes model (SBS), and semi-
parametric fractional Black–Scholes pricing model (SFBS).

BS is the classical Black–Scholes option pricing model,
and whole SBS is the semiparametric Black–Scholes option
pricing model in that implied volatility is the local linear
estimator of moneyness; SFBS is the semiparametric frac-
tional Black–Scholes option pricing model, and NF is the

nonparametric regression fractional option pricing model.
-e items are shown as the minimum, maximum, mean, std.
dev, RMSE, andMAE of the price error (model price-market
price RMSE �

���������������������

1/2􏽐
n
i�1 |Pmodel − Pmarket|

2
􏽱

, MAE � 1/2
􏽐

n
i�1 |Pmodel − Pmarket/Pmarhet|).
Figure 1 presents the expression of the regression of implied

volatility smile about moneyness; Figure 2 describes the results
of the local quadratic polynomial estimation of equation (28).

Figures 3–6 demonstrate the price error histogram of
several models, which is concentrated on zero. From the

Table 1: Empirical result.

Model Minimum Maximum Mean Std. dev. RMSE MAE
BS − 0.218300 − 0.000200 − 0.072371 0.040202 0.082785 0.459366
SBS − 0.114000 0.144400 0.006069 0.041827 0.042259 0.233587
SFBS − 0.164617 0.356268 0.006773 0.0.045880 0.046373 0.227103
NF − 0.342859 0.235327 0.001111 0.041441 0.041449 0.146550
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results, it is expected to found that the NF model outper-
forms the other models.

4. Conclusions

A lot of efforts being spent on proposing the nonparametric
fractional option pricing model (NF), which is better than
Black–Scholes model (BS), semiparametric Black–Scholes
model (SBS), and semiparametric fractional Black–Scholes
option pricing model (SFBS). Comparing the pricing error
histogram of semiparametric fractional Black–Scholes
pricing model (SFBS) to nonparametric fractional option
pricing model (NF), the experimental results have revealed
that the error of NF is close to zero.
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In this paper, the refinements of integral inequalities for all those types of convex functions are given which can be obtained from
(s, m)-convex functions. 1ese inequalities not only provide refinements of bounds for unified integral operators but also for
various associated fractional integral operators containing Mittag–Leffler function. At the same time, presented results give
generalizations of many known fractional integral inequalities.

1. Introduction

1e following fractional integral operator is the well-known
Riemann–Liouville fractional integral operator.

Definition 1 (see [1]). Let f ∈ L1[a, b]. 1en, Rie-
mann–Liouville fractional integrals of order μ where
R(μ)> 0 are defined as follows:

μ
Ia+ f(x) �

1
Γ(μ)

􏽚
x

a
(x − t)

μ− 1
f(t)dt, x> a,

μ
Ib− f(x) �

1
Γ(μ)

􏽚
b

x
(t − x)

μ− 1
f(t)dt, x< b,

(1)

where Γ(·) is the gamma function.
Next, generalizations of Riemann–Liouville fractional

integral operators are given.

Definition 2 (see [2]). Let f: [a, b]⟶ R be an integrable
function. Also, let g be an increasing and positive function
on (a, b], having a continuous derivative g′ on (a, b). 1e
left-sided and the right-sided fractional integrals of a
function f with respect to another function g on [a, b] of
order μ where R(μ)> 0 are defined by

μ
gI

a+
f(x) �

1
Γ(μ)

􏽚
x

a
(g(x) − g(t))

μ− 1
g′(t)f(t)dt, x> a,

(2)

μ
gI

b−
f(x) �

1
Γ(μ)

􏽚
b

x
(g(t) − g(x))

μ− 1
g′(t)f(t)dt, x< b,

(3)

where Γ(·) is the gamma function.
A k-analogue of the above definition is given as follows.
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Definition 3 (see [3]). Let f: [a, b]⟶ R be an integrable
function. Also, let g be an increasing and positive function
on (a, b], having a continuous derivative g′ on (a, b). 1e
left-sided and right-sided fractional integrals of a function f

with respect to another function g on [a, b] of order μ where
R(μ), k> 0 are defined by

μ
gI

k

b−
f(x) �

1
kΓk(μ)

􏽚
x

a
(g(x) − g(t))

(μ/k)− 1
g′(t)f(t)dt, x> a,

μ
gI

k

b−
f(x) �

1
kΓk(μ)

􏽚
b

x
(g(t) − g(x))

(μ/k)− 1
g′(t)f(t)dt, x< b,

(4)

where Γk(x) � 􏽒
∞
0 tx− 1e− (tk/k)dt, R(x)> 0.

1e following integral operator is given in [4].

Definition 4. Let f, g: [a, b]⟶ R, 0< a< b, be the func-
tions such that f be positive and f ∈ L1[a, b] and g be
differentiable and strictly increasing. Also, let ϕ/x be an
increasing function on [a,∞). 1en, for x ∈ [a, b], the left
and right integral operators are defined by

F
ϕ,g

a+ f􏼐 􏼑(x) � 􏽚
x

a
Kg(x, t; ϕ)f(t)d(g(t)), x> a,

F
ϕ,g

b−
f􏼒 􏼓(x) � 􏽚

b

x
Kg(t, x; ϕ)f(t)d(g(t)), x< b,

(5)

where Kg(x, y; ϕ) � ((ϕ(g(x) − g(y)))/(g(x) − g(y))).
A fractional integral operator containing an extended

generalized Mittag–Leffler function in its kernel is defined as
follows.

Definition 5 (see [5]). Let ω, μ, α, l, c, c ∈ C,
R(μ),R(α),R(l)> 0, and R(c)>R(c)> 0 with p≥ 0,
δ > 0, and 0< k≤ δ + R(μ). Let f ∈ L1[a, b] and x ∈ [a, b].
1en, the generalized fractional integral operators ϵc,δ,k,c

μ,α,l,ω,a+ f

and ϵc,δ,k,c

μ,α,l,ω,b− f are defined by

ϵc,δ,k,c

μ,α,l,ω,a+ f􏼒 􏼓(x; p) � 􏽚
x

a
(x − t)

α− 1
E

c,δ,k,c

μ,α,l ω(x − t)
μ
; p( 􏼁f(t)dt,

(6)

ϵc,δ,k,c

μ,α,l,ω,b− f􏼒 􏼓(x; p) � 􏽚
b

x
(t − x)

α− 1
E

c,δ,k,c

μ,α,l ω(t − x)
μ
; p( 􏼁f(t)dt,

(7)

where

E
c,δ,k,c

μ,α,l (t; p) � 􏽘
∞

n�0

βp(c + nk, c − c)

β(c, c − c)

(c)nk

Γ(μn + α)

t
n

(l)nδ
, (8)

is the extended generalized Mittag–Leffler function. For
further study of the Mittag–Leffler function, see [6, 7]. (c)nk

is the Pochhammer symbol defined by
(c)nk � ((Γ(c + nk))/Γ(c)), and βp is the extended beta
function given by

βp(x, y) � 􏽚
1

0
t
x− 1

(1 − t)
y− 1

e
− (p/(t(1− t)))dt, x, y, p ∈ R+.

(9)

1e following identities for the constant function are
obtained in [8] (see also [9]):

Jα,a+ (x; p) ≔ ϵc,δ,k,c

μ,α,l,ω,a+1􏼒 􏼓(x; p) � (x − a)
α
E

c,δ,k,c

μ,α+1,l w(x − a)
μ
; p( 􏼁,

Jβ,b− (x; p) ≔ ϵc,δ,k,c

μ,β,l,ω,b− 1􏼒 􏼓(x; p) � (b − x)
β
E

c,δ,k,c

μ,β+1,l w(b − x)
μ
; p( 􏼁.

(10)

Recently, a unified integral operator is defined as follows.

Definition 6 (see [10]). Let f, g: [a, b]⟶ R, 0< a< b, be
the functions such that f be positive and f ∈ L1[a, b] and g

be differentiable and strictly increasing. Also, let ϕ/x be an
increasing function on [a,∞) and α, l, c, c ∈ C, p, μ, δ ≥ 0,
and 0< k≤ δ + μ. 1en, for x ∈ [a, b], the left and the right
integral operators are defined by

gF
ϕ,c,δ,k,c

μ,α,l,a+
f􏼒 􏼓(x,ω; p) � 􏽚

x

a
K

y
x E

c,δ,k,c

μ,α,l , g; ϕ􏼒 􏼓f(y)d(g(y)),

(11)

gF
ϕ,c,δ,k,c

μ,α,l,b−
f􏼒 􏼓(x,ω; p) � 􏽚

b

x
K

x
y E

c,δ,k,c

μ,β,l
, g; ϕ􏼒 􏼓f(y)d(g(y)),

(12)

where the involved kernel is defined by

K
y
x E

c,δ,k,c

μ,α,l , g; ϕ􏼒 􏼓 �
ϕ(g(x) − g(y))

g(x) − g(y)
E

c,δ,k,c

μ,α,l ω(g(x) − g(y))
μ
; p( 􏼁.

(13)

1e known fractional integrals studied in [2, 11–22] can
be reproduced from the above definition, see [23], Remarks 6
and 7.

1e aim of this study is to obtain the bounds of all known
fractional integral operators defined in [2, 11–22] in a
unified form for strongly (s, m)-convex functions. In the
result, we get refinements of many known integral and
fractional integral inequalities. Next, we recall definitions of
convex, strongly convex, s-convex, m-convex, (s, m)-con-
vex, and strongly (s, m)-convex functions.

Definition 7 (see [24]). A function f: I⟶ R is said to be a
convex function if the inequality

f(ta +(1 − t)b)≤ tf(a) +(1 − t)f(b), (14)

holds for all a, b ∈ I and t ∈ [0, 1].
1e concept of a strongly convex function is defined as

follows.

Definition 8 (see [25]). Let I be a nonempty convex subset of
a normed space. A real-valued function f is said to be
strongly convex with modulus λ≥ 0 on I if for each a, b ∈ I

and t ∈ [0, 1], we have

f(ta +(1 − t)b)≤ tf(a) +(1 − t)f(b) − λt(1 − t)‖b − a‖
2
.

(15)
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A generalization of the convex function defined on the
right half of the real line is called the s-convex function, and
it is given as follows.

Definition 9 (see [26]). Let s ∈ [0, 1]. A function
f: [0,∞)⟶ R is said to be an s-convex function in the
second sense if

f(ta +(1 − t)b)≤ t
s
f(a) +(1 − t)

s
f(b), (16)

holds for all a, b ∈ [0,∞) and t ∈ [0, 1].
1e notion of the m-convex function and strongly

m-convex function is defined as follows.

Definition 10 (see [27]). A function f: [0, b]⟶ R is said
to be an m-convex function, where m ∈ [0, 1] and b> 0, if for
every x, y ∈ [0, b] and t ∈ [0, 1], we have

f(tx + m(1 − t)y)≤ tf(x) + m(1 − t)f(y). (17)

Definition 11 (see [28]). A function f: [0, +∞)⟶ R is
said to be a strongly m-convex function with modulus λ if

f(ta + m(1 − t)b)≤ tf(a) + m(1 − t)f(b) − λmt(1 − t)(b − a)
2
,

(18)

with a, b ∈ [0, +∞) and m ∈ [0, 1].
A further generalized convexity is given as follows.

Definition 12 (see [29]). A function f: [0, b]⟶ R is said
to be an (s, m)-convex function, where (s, m) ∈ [0, 1]2 and
b> 0, if for every x, y ∈ [0, b] and t ∈ [0, 1], we have

f(tx + m(1 − t)y)≤ t
s
f(x) + m(1 − t)

s
f(y). (19)

1e notion of the strongly (s, m)-convex function is
defined as follows.

Definition 13 (see [30]). A function f: [0, +∞)⟶ R is
said to be a strongly (s, m)-convex function, with modulus
λ≥ 0, for (s, m) ∈ [0, 1]2, if

f(ta + m(1 − t)b) ≤ t
s
f(a) + m(1 − t)

s
f(b) − λt(1 − t)|b − a|

2
,

(20)

holds for all a, b ∈ [0, +∞) and t ∈ [0, 1].
Using strongly (s, m)-convexity and utilizing fractional

operators (6) and (7), some fractional integral inequalities
are obtained as in [31]. 1e following result provides the
bound of sum of left and right fractional integrals (6) and (7)
for strongly (s, m)-convex functions at an arbitrary point.

Theorem 1 (see [31]). Let f: [a, b]⟶ R be a real-valued
function. If f is positive and strongly (s, m)-convex, then for
α, β≥ 1, the following fractional integral inequality holds:

ϵc,δ,k,c

μ,α,l,ω,a+ f􏼒 􏼓(x; p) + ϵc,δ,k,c

μ,β,l,ω,b− f􏼒 􏼓(x; p)≤
f(a) + mf(x/m)

s + 1
− λ

(x − ma)
2

6m
2􏼠 􏼡

(x − a)Jα− 1,a+ (x; p) +
f(b) + mf(x/m)

s + 1
− λ

(mb − x)
2

6m
2􏼠 􏼡(b − x)

Jβ− 1,b− (x; p), x ∈ [a, b].

(21)

Fe following Hadamard-type inequality holds for gen-
eralized fractional integral operators for strongly
(s, m)-convex functions.

Theorem 2 (see [31]). Let f: [a, b]⟶ R, a> b, be a real-
valued function. If f is positive, strongly (s, m)-convex and
f((a + mb − x)/m) � f(x), then for α, β> 0, the following
fractional integral inequality holds:

2s

1 + m
f

a + mb

2
􏼠 􏼡 Jα+1,a+ (b; p) + Jβ+1,b− (a; p)􏼐 􏼑 +

λ
4m

(b − a)
β+2

Jβ+1,b− (a; p)􏼐􏼠

− 2(1 + m)(b − a)
β+1

Jβ+2,b− (a; p) + 2(1 + m)
2
Jβ+3,b− (a; p) +(b − a)

α+2

×Jα+1,a+ (b; p) − 2(1 + m)(b − a)
α+1

Jα+2,a+ (b; p) + 2(1 + m)
2
Jα+3,a+ (b; p)􏼑􏼑

≤ ϵc,δ,k,c

μ,α+1,l,ω,a+ f􏼒 􏼓(b; p) + ϵc,δ,k,c

μ,β+1,l,ω,b− f􏼒 􏼓(a; p)􏼒 􏼓

≤ Jβ,b− (a; p) + Jα,a+ (b; p)􏽨 􏽩(b − a)
f(b) + mf(a/m)

s + 1
− λ

(mb − a)
2

6m
2􏼠 􏼡.

(22)
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In the following, using the strongly (s, m)-convexity of
|f′|, a modulus inequality is obtained.

Theorem 3 (see [31]). Let f: [a, b]⟶ R be a real-valued
function. If f is differentiable and |f′| is strongly
(s, m)-convex, then for α, β≥ 1, the following fractional in-
tegral inequality holds:

ϵc,δ,k,c

μ,α+1,l,ω,a+ f􏼒 􏼓(x; p) + ϵc,δ,k,c

μ,β+1,l,ω,b− f􏼒 􏼓(x; p) − Jα− 1,a+ (x; p)f(a) + Jβ− 1,b− (x; p)f(b)􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
f′(a)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + m f′(x/m)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

s + 1
− λ

(x − ma)
2

6m
2􏼠 􏼡(x − a)Jα− 1,a+ (x; p)

+
f′(b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + m f′(x/m)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

s + 1
− λ

(mb − x)
2

6m
2􏼠 􏼡(b − x)Jβ− 1,b− (x; p), x ∈ [a, b].

(23)

In [32], we studied the properties of the kernel given in
(13). Here, we are interested in the following property.

P: let g and ϕ/x be increasing functions. Fen, for
x< t<y, x, y ∈ [a, b], the kernel K

y
x(E

c,δ,k,c

μ,α,l , g; ϕ) satisfies the
following inequality:

K
x
t E

c,δ,k,c

μ,α,l , g; ϕ􏼒 􏼓g′(t)≤K
x
y E

c,δ,k,c

μ,α,l , g; ϕ􏼒 􏼓g′(t). (24)

Fis can be obtained from the following two straight-
forward inequalities:

ϕ(g(t) − g(x))

g(t) − g(x)
g′(t)≤

ϕ(g(y) − g(x))

g(y) − g(x)
g′(t),

E
c,δ,k,c

μ,α,l ω(g(t) − g(x))
μ
; p( 􏼁≤E

c,δ,k,c

μ,α,l ω(g(y) − g(x))
μ
; p( 􏼁.

(25)

Fe reverse of inequality (13) holds when g and ϕ/x are
decreasing.

Fe upcoming section contains the results for unified
integral operators dealing with the bounds of several

fractional integral operators in a compact form by utilizing
strongly (s, m)-convex functions. A compact version of the
Hadamard inequality is presented, and also a modulus in-
equality is given for the differentiable function f such that |f′|
is a strongly (s, m)-convex function. In the whole paper, we
will use

I(a, b, g)≕
1

b − a
􏽚

b

a
g(t)dt. (26)

2. Main Results

1e following result provides the upper bound of unified
integral operators.

Theorem 4. Let f: [a, mb]⟶ R, 0≤ a<mb, be a positive
integrable and strongly (s, m)-convex function, m≠ 0. Fen,
for unified integral operators (11) and (12), the following
inequality holds:

gF
ϕ,c,δ,k,c

μ,α,l,a+
f􏼒 􏼓(x,ω; p) + gF

ϕ,c,δ,k,c

μ,β,l,b−
f􏼒 􏼓(x,ω; p)≤K

a
x E

c,δ,k,c

μ,α,l , g;ϕ􏼒 􏼓 mf
x

m
􏼒 􏼓g(x) − f(a)g(a) −

Γ(s + 1)

(x − a)
s mf

x

m
􏼒 􏼓

s
Ix− g(a) − f(a)

s
Ia+ g(x)􏼒 􏼓􏼠

+
λ(x − ma)

2

(x − a)
2I a, x, Idg( 􏼁 − (a + x)I(a, x, g)( 􏼁􏼡 + K

x
b E

c,δ,k,c

μ,β,l , g; ϕ􏼒 􏼓 f(b)g(b)(

− mf
x

m
􏼒 􏼓g(x) −

Γ(s + 1)

(b − x)
s f(b)

s
Ib− g(x) − mf

x

m
􏼒 􏼓

s
Ix+ g(b)􏼒 􏼓

+
λ(mb − x)

2

(b − x)
2I x, b, Idg( 􏼁 − (x + b)I(x, b, g)( 􏼁􏼡.

(27)
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Proof. By (P), the following inequalities hold:

K
t
x E

c,δ,k,c

μ,α,l , g; ϕ􏼒 􏼓g′(t)≤K
a
x E

c,δ,k,c

μ,α,l , g; ϕ􏼒 􏼓g′(t), a< t< x,

(28)

K
x
t E

c,δ,k,c

μ,α,l , g; ϕ􏼒 􏼓g′(t)≤K
x
b E

c,δ,k,c

μ,β,l , g; ϕ􏼒 􏼓g′(t), x< t< b.

(29)

For a strongly (s, m)-convex function, the following
inequalities hold for a< t<x and x< t< b, respectively:

f(t)≤
x − t

x − a
􏼒 􏼓

s

f(a) + m
t − a

x − a
􏼒 􏼓

s

f
x

m
􏼒 􏼓 −

λ(x − t)(t − a)(x − ma)
2

m
2
(x − a)

2 , (30)

f(t)≤
t − x

b − x
􏼒 􏼓

s

f(b) + m
b − t

b − x
􏼠 􏼡

s

f
x

m
􏼒 􏼓 −

λ(t − x)(b − t)(mb − x)
2

m
2
(b − x)

2 . (31)

From (28) and (30), one can have

􏽚
x

a
K

t
x E

c,δ,k,c

μ,α,l , g; ϕ􏼒 􏼓f(t)d(g(t)) ≤f(a)K
a
x E

c,δ,k,c

μ,α,l , g; ϕ􏼒 􏼓

× 􏽚
x

a

x − t

x − a
􏼒 􏼓

s

d(g(t)) + mf
x

m
􏼒 􏼓K

a
x E

c,δ,k,c

μ,α,l , g; ϕ􏼒 􏼓

· 􏽚
x

a

t − a

x − a
􏼒 􏼓

s

d(g(t))

− K
a
x E

c,δ,k,c

μ,α,l , g;ϕ􏼒 􏼓
λ(x − ma)

2

(x − a)
2 􏽚

x

a
(x − t)(t − a)d(g(t)),

(32)

i.e.,

gF
ϕ,c,δ,k,c

μ,α,l,a+
f􏼒 􏼓(x,ω; p)≤K

a
x E

c,δ,k,c

μ,α,l , g; ϕ􏼒 􏼓

mf
x

m
􏼒 􏼓g(x) − f(a)g(a) −

Γ(s + 1)

(x − a)
s mf

x

m
􏼒 􏼓

s
Ix− g(a) − f(a)

s
Ia+ g(x)􏼒 􏼓

+
λ(x − ma)

2

(x − a)
2I a, x, Idg( 􏼁 − (a + x)I(a, x, g)( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(33)

On the other hand, from (29) and (31), one can have

􏽚
b

x
K

x
t E

c,δ,k,c

μ,β,l , g; ϕ􏼒 􏼓f(t)d(g(t)) ≤f(b)K
x
b E

c,δ,k,c

μ,β,l , g; ϕ􏼒 􏼓

× 􏽚
b

x

t − x

b − x
􏼒 􏼓

s

d(g(t)) + mf
x

m
􏼒 􏼓K

b
x E

c,δ,k,c

μ,β,l , g;ϕ􏼒 􏼓 􏽚
b

x

b − t

b − x
􏼠 􏼡

s

d(g(t))

− K
b
x E

c,δ,k,c

μ,α,l , g; ϕ􏼒 􏼓
λ(mb − x)

2

m
2
(b − x)

2 􏽚
b

x
(t − x)(b − t)d(g(t)),

(34)

Mathematical Problems in Engineering 5



i.e.,

gF
ϕ,c,δ,k,c

μ,β,l,b−
f􏼒 􏼓(x,ω; p)≤K

x
b E

c,δ,k,c

μ,β,l
, g; ϕ􏼒 􏼓 f(b)g(b) − mf

x

m
􏼒 􏼓g(x) −

Γ(s + 1)

(b − x)
s f(b)

s
Ib− g(x) − mf

x

m
􏼒 􏼓

s
Ix+ g(b)􏼒 􏼓􏼠

+
λ(mb − x)

2

(b − x)
2I x, b, Idg( 􏼁 − (x + b)I(x, b, g)( 􏼁􏼡.

(35)

By adding (33) and (35), (27) can be obtained. □ Corollary 1. Setting p � ω � 0 in (27), we can obtain the
following inequality involving fractional integral operators
defined in [4]:

F
ϕ
α,a+ f􏼐 􏼑(x; p) + F

ϕ
β,b− f􏼒 􏼓(x; p)≤Kg(a, x; ϕ) mf

x

m
􏼒 􏼓g(x) − f(a)g(a) −

Γ(s + 1)

(x − a)
s mf

x

m
􏼒 􏼓

s
Ix− g(a) − f(a)

s
Ia+ g(x)􏼒 􏼓􏼠

+
λ(x − ma)

2

(x − a)
2I a, x, Idg( 􏼁 − (a + x)I(a, x, g)( 􏼁􏼡 + Kg(x, b; ϕ) f(b)g(b)(

− mf
x

m
􏼒 􏼓g(x) −

Γ(s + 1)

(b − x)
s f(b)

s
Ib− g(x) − mf

x

m
􏼒 􏼓

s
Ix+ g(b)􏼒 􏼓

+
λ(mb − x)

2

(b − x)
2I x, b, Idg( 􏼁 − (x + b)I(x, b, g)( 􏼁􏼡.

(36)

Remark 1
(i) If we consider λ � 0 in (27), then 1eorem 3.1 in

[32] can be obtained, and for λ> 0, we get its
refinement

(ii) If we consider ϕ(t) � tα and g(x) � x in (27),
then 1eorem 1 can be obtained

(iii) If we consider s � m � 1 in the result of (ii), then
Corollary 1 in [31] can be obtained

(iv) If we consider α � β in the result of (ii), then
Corollary 3 in [31] can be obtained

(v) If we consider f ∈ L∞[a, b] in the result of (ii),
then Corollary 5 in [31] can be obtained

(vi) If we consider α � β in the result of (v), then
Corollary 7 in [31] can be obtained

(vii) If we consider s � 1 in the result of (ii), then
Corollary 5 in [31] can be obtained

(viii) If we consider (s, m) � (1, 1) in (27), then 1e-
orem 2 in [33] is obtained

(ix) If we consider α � β, λ � 0, and (s, m) � (1, 1) in
(27), then 1eorem 8 in [23] is obtained

(x) If we consider λ � 0 and p � ω � 0 in (27), then
1eorem 1 in [34] is obtained

(xi) If we consider λ � 0, ϕ(t) � Γ(α)tα, p � ω � 0,
and (s, m) � (1, 1) in (27), then1eorem 1 in [35]
is obtained

(xii) If we consider α � β in the result of (xi), then
Corollary 1 in [35] is obtained

(xiii) If we consider λ � 0, ϕ(t) � tα, g(x) � x, andm �

1 in (27), then 1eorem 2.1 in [36] is obtained
(xvi) If we consider α � β in the result of (xiii), then

Corollary 2.1 in [36] is obtained
(xv) If we consider λ � 0, ϕ(t) � ((Γ(α)

t(α/k))/(kΓk(α))), (s, m) � (1, 1), g(x) � x, and
p � ω � 0 in (27), then 1eorem 1 in [37] can be
obtained

(xvi) If we consider α � β in the result of (xv), then
Corollary 1 in [37] can be obtained

(xvii) If we consider λ � 0, ϕ(t) � Γ(α)tα, g(x) � x,
p � ω � 0, and (s, m) � (1, 1) in (27), then 1e-
orem 1 in [38] is obtained

(xviii) If we consider α � β in the result of (xvii), then
Corollary 1 in [38] can be obtained

(xviii) If we consider α � β � 1 and x � a orx � b in the
result of (xvii), then Corollary 2 in [38] can be
obtained

(xix) If we consider α � β � 1 and x � ((a + b)/2) in
the result of (xvii), then Corollary 3 in [38] can be
obtained
1e following lemma is very helpful in the proof
of the upcoming theorem, see [31].
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Lemma 1. Let f: [a, mb]⟶ R be a strongly (s, m)-convex
function, 0≤ a<mb. If f is f((a + mb − x)/m) � f(x),
m≠ 0, then the following inequality holds:

f
a + mb

2
􏼠 􏼡≤

(1 + m)f(x)

2s −
λ
4m

(a + mb − x − mx)
2
. (37)

In the literature, many mathematicians have established
many types of Hadamard inequalities, and for their

generalizations, see [39–42]. 1is also motivates us to in-
troduce the more generalized forms of Hadamard-type
inequalities. So, by the help of the abovementioned lemma,
the following result provides generalized Hadamard in-
equality for strongly (s, m)-convex functions.

Theorem 5. Under the assumptions of Feorem 4, in ad-
dition to f(x) � f((a + mb − x)/m), the following inequality
holds:

f
a + mb

2
􏼠 􏼡

2s

(1 + m)

gF
ϕ,c,δ,k,c

μ,β,l,a+
1􏼒 􏼓(b,ω; p) +

λ
4m gF

ϕ,c,δ,k,c

μ,β,l,b−
(a + mb − x − mx)

2
􏼒 􏼓

(a,ω; p) + gF
ϕ,c,δ,k,c

μ,β,l,b−
1􏼒 􏼓(a,ω; p) +

λ
4m

gF
ϕ,c,δ,k,c

μ,β,l,a+
(a + mb − x − mx)

2
􏼒 􏼓(b,ω; p)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤ gF
ϕ,c,δ,k,c

μ,β,l,a+
f􏼒 􏼓(b,ω; p) + gF

ϕ,c,δ,k,c

μ,β,l,b−
f􏼒 􏼓(a,ω; p)

≤ K
a
b E

c,δ,k,c

μ,α,l , g;ϕ􏼒 􏼓 + K
a
b E

c,δ,k,c

μ,β,l
, g; ϕ􏼒 􏼓􏼒 􏼓

· f(b)g(b) − mf
a

m
􏼒 􏼓g(a) −

Γ(s + 1)

(b − a)
s f(b)

s
Ib− g(a)(􏼠

− mf
a

m
􏼒 􏼓

s
Ia+ g(b)􏼓 +

λ(mb − a)
2

(b − a)
2I a, b, Idg( 􏼁(

− (a + b)I(a, b, g)􏼁􏼁.

(38)

Proof. By (P), the following inequalities hold:

K
a
x E

c,δ,k,c

μ,α,l , g; ϕ􏼒 􏼓g′(x)≤K
a
b E

c,δ,k,c

μ,α,l , g; ϕ􏼒 􏼓g′(x), a<x< b,

(39)

K
x
b E

c,δ,k,c

μ,β,l , g; ϕ􏼒 􏼓g′(x)≤K
a
b E

c,δ,k,c

μ,α,l , g; ϕ􏼒 􏼓g′(x), a< x< b.

(40)

A strongly (s, m)-convex function satisfying the fol-
lowing inequalities hold for a< x< b:

f(x)≤
x − a

b − a
􏼒 􏼓

s

f(b) + m
b − x

b − a
􏼠 􏼡

s

f
a

m
􏼒 􏼓

−
λ(b − x)(x − a)(b − ma)

2

m
2
(b − a)

2 .

(41)

From (39) and (41), one can have

􏽚
b

a
K

a
x E

c,δ,k,c

μ,α,l , g;ϕ􏼒 􏼓f(x)d(g(x))

≤mf
a

m
􏼒 􏼓K

a
b E

c,δ,k,c

μ,α,l , g;ϕ􏼒 􏼓 􏽚
b

a

b − x

b − a
􏼠 􏼡

s

d(g(x))

+ f(b)K
a
b E

c,δ,k,c

μ,α,l , g; ϕ􏼒 􏼓 􏽚
b

a

x − a

b − a
􏼒 􏼓

s

d(g(x))

− K
b
a E

c,δ,k,c

μ,α,l , g; ϕ􏼒 􏼓

λ(b − ma)
2

m
2
(b − a)

2 􏽚
b

a
(x − a)(b − x)d(g(x)).

(42)

Further, the aforementioned inequality takes the form
which involves Riemann–Liouville fractional integrals in the
right-hand side, and thus we have upper bound of the
unified left-sided integral operator (2) as follows:
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gF
ϕ,c,δ,k,c

μ,α,l,b−
f􏼒 􏼓(a,ω; p)≤K

a
b E

c,δ,k,c

μ,α,l , g; ϕ􏼒 􏼓 f(b)g(b) − mf
a

m
􏼒 􏼓g(a) −

Γ(s + 1)

(b − a)
s f(b)

s
Ib− g(a) − mf

a

m
􏼒 􏼓

s
Ia+ g(b)􏼒 􏼓􏼠

+
λ(mb − a)

2

(b − a)
2I a, b, Idg( 􏼁 − (a + b)I(a, b, g)( 􏼁􏼡.

(43)

On the other hand, from (39) and (41), the following
inequality holds which involves Riemann–Liouville

fractional integrals on the right-hand side and gives the
estimate of the integral operator (3):

gF
ϕ,c,δ,k,c

μ,α,l,a+
f􏼒 􏼓(b,ω; p)≤K

a
b E

c,δ,k,c

μ,β,l
, g; ϕ􏼒 􏼓 f(b)g(b) − mf

a

m
􏼒 􏼓g(a) −

Γ(s + 1)

(b − a)
s f(b)

s
Ib− g(a) − mf

a

m
􏼒 􏼓

s
Ia+ g(b)􏼒 􏼓􏼠

+
λ(mb − a)

2

(b − a)
2I a, b, Idg( 􏼁 − (a + b)I(a, b, g)( 􏼁􏼡.

(44)

By adding (43) and (44), the following inequality can be
obtained:

gF
ϕ,c,δ,k,c

μ,α,l,b−
f􏼒 􏼓(a,ω; p) + gF

ϕ,c,δ,k,c

μ,α,l,a+
f􏼒 􏼓(b,ω; p)≤ K

a
b E

c,δ,k,c

μ,α,l , g;ϕ􏼒 􏼓 + K
a
b E

c,δ,k,c

μ,β,l , g; ϕ􏼒 􏼓􏼒 􏼓 f(b)g(b) − mf
a

m
􏼒 􏼓g(a)􏼒

−
Γ(s + 1)

(b − a)
s f(b)

s
Ib− g(a) − mf

a

m
􏼒 􏼓

s
Ia+ g(b)􏼒 􏼓 +

λ(mb − a)
2

(b − a)
2I a, b, Idg( 􏼁(

− (a + b)I(a, b, g)􏼁􏼁.

(45)

Multiplying both sides of (37) by Ka
x(E

c,δ,k,c

μ,α,l , g; ϕ)g′(x)

and integrating over [a, b], we have

f
a + b

2
􏼠 􏼡 􏽚

b

a
K

a
x E

c,δ,k,c

μ,α,l , g; ϕ􏼒 􏼓d(g(x))

≤
1
2s􏼒 􏼓(1 + m) 􏽚

b

a
K

a
b E

c,δ,k,c

μ,α,l , g; ϕ􏼒 􏼓f(x)d(g(x))

−
λ
4m

􏽚
b

a
K

a
x E

c,δ,k,c

μ,α,l , g; ϕ􏼒 􏼓(a + mb − x − mx)
2d(g(x)).

(46)

From Definition 6, the following inequality is obtained:

f
a + mb

2
􏼠 􏼡

2s

(1 + m) gF
ϕ,c,δ,k,c

μ,α,l,b−
1􏼒 􏼓(a,ω; p)

≤ gF
ϕ,c,δ,k,c

μ,α,l,b−
f􏼒 􏼓(a,ω; p)

−
λ
4m gF

ϕ,c,δ,k,c

μ,α,l,b−
(a + mb − x − mx)

2
􏼒 􏼓(a,ω; p).

(47)

Similarly, multiplying both sides of (37) by
Kx

b (E
c,δ,k,c

μ,β,l , g; ϕ)g′(x) and integrating over [a, b], we have
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f
a + mb

2
􏼠 􏼡

2s

(1 + m) gF
ϕ,c,δ,k,c

μ,β,l,a+
1􏼒 􏼓(b,ω; p)

≤ gF
ϕ,c,δ,k,c

μ,β,l,a+
f􏼒 􏼓(b,ω; p)

−
λ
4m gF

ϕ,c,δ,k,c

μ,β,l,a+
(a + mb − x − mx)

2
􏼒 􏼓(b,ω; p).

(48)

By adding (47) and (48), the following inequality is
obtained:

f
a + mb

2
􏼠 􏼡

2s

(1 + m) gF
ϕ,c,δ,k,c

μ,β,l,a+
1􏼒 􏼓(b,ω; p) +

λ
4m gF

ϕ,c,δ,k,c

μ,α,l,b−
(a + mb − x − mx)

2
􏼒 􏼓(a,ω; p) + gF

ϕ,c,δ,k,c

μ,α,l,b−
1􏼒 􏼓(a,ω; p)􏼠

+
λ
4m gF

ϕ,c,δ,k,c

μ,β,l,a+
(a + mb − x − mx)

2
􏼒 􏼓(b,ω; p)􏼡≤ gF

ϕ,c,δ,k,c

μ,β,l,a+
f􏼒 􏼓(b,ω; p) + gF

ϕ,c,δ,k,c

μ,α,l,b−
f􏼒 􏼓(a,ω; p).

(49)

Using (45) and (49), inequality (38) can be obtained,
which completes the proof. □

Corollary 2. Setting p � ω � 0 in (38), we can obtain the
following inequality involving fractional integral operators
defined in [4]:

f
a + mb

2
􏼠 􏼡

2s

(1 + m)

F
ϕ
β,a+1􏼒 􏼓(b; p) +

λ
4m

F
ϕ
α,b− (a + mb − x − mx)

2
􏼐 􏼑

(a; p) + F
ϕ
α,b− 1􏼐 􏼑(a; p) +

λ
4m

F
ϕ
β,a+ (a + mb − x − mx)

2
􏼒 􏼓(b; p)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤ F
ϕ
β,a+ f􏼒 􏼓(b; p) + F

ϕ
α,b− f􏼐 􏼑(a; p)

≤ Kg(a, b; ϕ) + Kg(a, b; ϕ)􏼐 􏼑

f(b)g(b) − mf
a

m
􏼒 􏼓g(a) −

Γ(s + 1)

(b − a)
s f(b)

s
Ib− g(a) − mf

a

m
􏼒 􏼓

s
Ia+ g(b)􏼒 􏼓

+
λ(mb − a)

2

(b − a)
2I a, b, Idg( 􏼁 − (a + b)I(a, b, g)( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(50)

Remark 2
(i) If we consider ϕ(t) � tα and g(x) � x in (38), then

1eorem 7 in [31] can be obtained
(ii) If we consider λ � 0 in the result of (i), then

1eorem 8 in [31] can be obtained
(iii) If we consider (s, m) � (1, 1) in (38), then1eorem

3 in [33] is obtained
(iv) If we consider λ � 0 and (s, m) � (1, 1) in (38), then

1eorem 22 in [23] is obtained
(v) If we consider λ � 0, ϕ(t) � Γ(α)tα+1, p � ω � 0,

and (s, m) � (1, 1) in (38), then1eorem 3 in [35] is
obtained

(vi) If we consider α � β in the result of (v), then
Corollary 3 in [35] is obtained

(vii) If we consider λ � 0, ϕ(t) � tα+1, g(x) � x, and
m � 1 in (38), then1eorem 2.4 in [36] is obtained

(viii) If we consider α � β in the result of (vii), then
Corollary 2.6 in [36] is obtained

(ix) If we consider λ � 0, ϕ(t) � Γ(α)t(α/k)+1,
(s, m) � (1, 1), g(x) � x, and p � ω � 0 in (38),
then 1eorem 3 in [37] can be obtained

(x) If we consider α � β in the result of (ix), then
Corollary 6 in [37] can be obtained

(xi) If we consider λ � 0, ϕ(t) � Γ(α)tα+1, p � ω � 0,
(s, m) � 1, and g(x) � x in (38), then 1eorem 3
in [38] can be obtained

(xii) If we consider α � β in the result of (xi), then
Corollary 6 in [38] can be obtained
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Theorem 6. Let f: [a, mb]⟶ R, 0≤ a<mb, be a differ-
ential function such that |f′| is a strongly (s, m)-convex

function, m≠ 0. Fen, for unified integral operators (11) and
(12), the following inequality holds:

gF
ϕ,c,δ,k,c

μ,α,l,a+
f∗g􏼒 􏼓(x,ω; p) + gF

ϕ,c,δ,k,c

μ,β,l,b−
f∗g􏼒 􏼓(x,ω; p)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤K
a
x E

c,δ,k,c

μ,α,l , g; ϕ􏼒 􏼓

m f′
x

m
􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
g(x) − f′(a)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌g(a) −

Γ(s + 1)

(x − a)
s􏼠 􏼡

m f′
x

m
􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
s
Ix− g(a) − f′(a)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
s
Ia+ g(x)􏼒 􏼓+

λ(x − am)
2

(x − a)
2I a, x, Idg( 􏼁 − (a + x)I(a, x, g)( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ K
x
b E

c,δ,k,c

μ,β,l , g; ϕ􏼒 􏼓

f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌g(b) − m f′
x

m
􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
g(x)􏼒 􏼓 −

Γ(s + 1)

(b − x)
s

f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
s
Ib− g(x) − m f′

x

m
􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
s
Ix+ g(b)􏼒 􏼓 +

λ(mb − x)
2

(b − x)

2I x, b, Idg( 􏼁 − (x + b)I(x, b, g)( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(51)

where

gF
ϕ,c,δ,k,c

μ,α,l,a+
f∗g􏼒 􏼓(x,ω; p) ≔ 􏽚

x

a
K

t
x E

c,δ,k,c

μ,α,l , g; ϕ􏼒 􏼓f′(t)d(g(t)),

gF
ϕ,c,δ,k,c

μ,β,l,b−
f∗g􏼒 􏼓(x,ω; p) ≔ 􏽚

b

x
K

x
t E

c,δ,k,c

μ,α,l , g; ϕ􏼒 􏼓f′(t)d(g(t)).

(52)

Proof. For a strongly (s, m)-convex function |f′|, the fol-
lowing inequalities hold for a< t< x and x< t< b,
respectively:

f′(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
x − t

x − a
􏼒 􏼓

s

f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + m
t − a

x − a
􏼒 􏼓

s

f′
x

m
􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

−
λ(x − t)(t − a)(x − ma)

2

m
2
(x − a)

2 ,

(53)

f′(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
t − x

b − x
􏼒 􏼓

s

f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + m
b − t

b − x
􏼠 􏼡

s

f′
x

m
􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

−
λ(t − x)(b − t)(mb − x)

2

m
2
(b − x)

2 .

(54)

From (28) and (54), the following inequality is obtained:

gF
ϕ,c,δ,k,c

μ,α,l,a+
(f∗g)􏼒 􏼓(x,ω; p)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤K

a
x E

c,δ,k,c

μ,α,l , g; ϕ􏼒 􏼓

m f′
x

m
􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
g(x) − f′(a)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌g(a) −

Γ(s + 1)

(x − a)
s

m f′
x

m
􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
s
Ix− (a) − f′(a)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
s
Ia+ g(x)􏼒 􏼓+

λ(x − am)
2

(x − a)
2I a, x, Idg( 􏼁 − (a + x)I(a, x, g)( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(55)

Similarly, from (29) and (55), the following inequality is
obtained:
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gF
ϕ,c,δ,k,c

μ,β,l,b−
(f∗g)􏼒 􏼓(x,ω; p)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤K

a
x E

c,δ,k,c

μ,β,l , g; ϕ􏼒 􏼓

· f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌g(b) − m f′
x

m
􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
g(x)􏼒 􏼓 −

Γ(s + 1)

(b − x)
s − f′(b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
s
Ib− g(x) − m f′

x

m
􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
s
Ix+ g(b)􏼒 􏼓

+
λ(mb − x)

2

(b − x)
2I x, b, Idg( 􏼁 − (x + b)I(x, b, g)( 􏼁.

(56)

By adding (56) and (57), inequality (52) can be
achieved. □

Corollary 3. Setting p � ω � 0 in (52), we can obtain the
following inequality involving fractional integral operators
defined in [4]:

F
ϕ
α,a+ f∗g􏼐 􏼑(x, p) + F

ϕ
β,b− f∗g􏼒 􏼓(x, p)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤Kg(a, x; ϕ)

m f′
x

m
􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
g(x) − f′(a)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌g(a)􏼒 􏼓 −

Γ(s + 1)

(x − a)
s

m f′
x

m
􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
s
Ix− g(a) − f′(a)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
s
Ia+ g(x)􏼒 􏼓

+
λ(x − am)

2

(x − a)
2I a, x, Idg( 􏼁 − (a + x)I(a, x, g)( 􏼁
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+ Kb(x, b; ϕ)

f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌g(b) − m f′
x

m
􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
g(x)􏼒 􏼓 −

Γ(s + 1)

(b − x)
s

f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
s
Ib− g(x) − m f′

x

m
􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
s
Ix+ g(b)􏼒 􏼓+

λ(mb − x)
2

(b − x)
2I x, b, Idg( 􏼁 − (x + b)I(x, b, g)( 􏼁
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.

(57)

Remark 3
(i) If we consider λ � 0 in (52), then1eorem 3.4 in [32]

can be obtained
(ii) If we consider ϕ(t) � tα and g(x) � x in (52), then

1eorem 6 in [31] can be obtained
(iii) If we consider s � m � 1 in the result of (ii), then

Corollary 13 in [31] can be obtained
(iv) If we consider α � β in the result of (ii), then

Corollary 11 in [31] can be obtained
(v) If we consider (s, m) � (1, 1) in (52), then1eorem

3 in [33] is obtained
(vi) If we consider λ � 0 and (s, m) � (1, 1) in (52), then

1eorem 25 in [23] is obtained
(vii) If we consider λ � 0 and p � ω � 0 in (52), then

1eorem 2 in [34] is obtained
(viii) If we consider λ � 0, ϕ(t) � Γ(α)tα+1, p � ω � 0,

and (s, m) � (1, 1) in (52), then1eorem 2 in [35] is
obtained

(ix) If we consider α � β in the result of (viii), then
Corollary 2 in [35] is obtained

(x) If we consider λ � 0, ϕ(t) � tα, g(x) � x, and m �

1 in (52), then 1eorem 2.3 in [36] is obtained
(xi) If we consider α � β in the result of (x), then

Corollary 2.5 in [36] is obtained
(xii) If we consider λ � 0, ϕ(t) � Γ(α)tα/k+1, (s, m) � (1,

1), g(x) � x, and p � ω � 0 in (52), then 1eorem
2 in [37] can be obtained

(xiii) If we consider α � β in the result of (xii), then
Corollary 4 in [37] can be obtained

(xiv) If we consider α � β � k � 1 and x � ((a + b)/2) in
the result of (xii), then Corollary 5 in [37] can be
obtained

(xv) If we consider λ � 0, ϕ(t) � Γ(α)tα+1, g(x) � x,
p � ω � 0, and (s, m) � (1, 1) in (52), then 1eo-
rem 2 in [38] is obtained

(xvi) If we consider α � β in the result of (xv), then
Corollary 5 in [38] can be obtained

3. Concluding Remarks

In this paper, bounds of a unified integral operator for
strongly (s, m)-convex functions are studied. 1e compact
form of these bounds lead to further interesting conse-
quences with respect to fractional integrals of various kinds
for convex, (s, m)-convex, m-convex, s-convex, and convex
functions. 1ese findings are generalized in nature and give
the refinements of many inequalities for unified and frac-
tional integral operators via different types of convex
functions.
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In this paper, we have studied the design of Cantonese cultural and creative products. In the design process of the system, we use
the Analytic Hierarchy Process to analyze the needs of users and apply the analysis results to the product design practice, so as to
design Cantonese cultural and creative products more in line with the needs of tourists.

1. Introduction

Cantonese Culture, that is, the culture of Cantonese ethnic
group of Han nationality, is an important part of Chinese
Han civilization and is subordinate to Lingnan Culture [1].
*roughout the history, the population began to move
southward in the Qin and Han Dynasties, which brought the
impact of the advanced culture of the Central Plains to
Lingnan area. Since the Han and Tang Dynasties, Guang-
dong, led by Guangzhou, has always been an important
window for China’s foreign trade. Cantonese have formed a
typical “marine cultural character” [2]. *erefore, the main
characteristics of Cantonese Culture are open-minded and
active, daring to be the first in everything, natural and
peaceful attitude, focusing on daily life, open and inclusive,
pragmatic, and not exclusive.

Based on the understanding of the core of Cantonese
Culture, our project team discussed and studied the design
of Cantonese cultural and creative products. Usually, cul-
tural and creative products are designed through emotional
experience, but lack of rational guidance. In the product
design process, it is better to use appropriate mathematical
methods, such as Analytic Hierarchy Process (AHP). In
1977, Saaty [3] firstly proposed AHP with the aim of solving
problems which can bemodeled by a network or hierarchical

structure. AHP can be used to solve the problem of com-
parison of user demand factors. We use it to calculate the
weight of factors to carry out the product design.

2. Cantonese Cultural and Creative Product
Current Situation Analysis

2.1. Less Outstanding Products and Weak Brand Awareness.
*e project team investigated the current market of Can-
tonese cultural and creative products and found that there
were few representative products and brands in the market.
In the only products, the visual identity is poor and there is
lack of systematic design; most enterprises have weak brand
awareness and have not formed an influential brand; the lack
of clear representative elements makes consumers confused
and aesthetic fatigue in regional identification.

2.2./e Application of Graphics Is Hard and the Resonance Is
Weak. At present, most of Cantonese cultural and creative
products mainly use local representative graphics. For ex-
ample, the cultural and creative products of Canton tower
directly copy the shape of Canton tower, giving people a
sense of mechanically copying. *e lack of modern design
means to analyze, deconstruct, and restructure the
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characteristic patterns of Cantonese which cannot reflect the
added value of cultural and creative products. At the aes-
thetic level, the expression of product surface decoration is
obsolete, less consideration of the aesthetic needs of today’s
society, and it is difficult to arouse the resonance of
consumers.

2.3. Single Product Type and Poor Experience. *e great
majority Cantonese cultural and creative products on the
market are mainly handicraft ornaments, bookmarks, and
trinkets. *e handicraft thinking of these products is more
than the industrial design thinking, and the general prac-
ticability is not strong. Nowadays, many Cantonese cultural
and creative products still use the product carrier of the
traditional handicraft era and do not develop new functions
based on the needs of consumers’ life. In addition, in the
product reflection level, the cultural depth is not fully ex-
plored and the communication is not precise enough.
Cultural and creative products need more in-depth con-
sideration from the functional level, aesthetic level, and
philosophical level to arouse the psychological resonance of
consumers.

3. Cantonese Cultural and Creative Product
Audience Demands

*e consumption groups of Cantonese cultural and creative
products are mainly local people and tourists in Guangzhou.
According to the data, Guangzhou received 16.2383 million
tourists during the National Day golden week in 2019, ac-
counting for about one third of the total number of tourists
in the province. Guangzhou is located in the Pearl River
Delta, adjacent to Hong Kong and Macao, so the inbound
tourists in Guangzhou are mainly composed of foreigners,
Hong Kong, Macao, and Taiwan compatriots. Among them,
Hong Kong andMacao tourists account for about 60% of the
total flow, while Asian tourists account for 30% of the total
flow, followed by European and American visitors. Due to
the fact that Guangzhou has two sessions of Canton Fair
every year, and the geographical advantage of being adjacent
to Hong Kong and Macao, the inbound tourists in
Guangzhou have their unique characteristics in tourism
destination structure. With the heating up of tourism in-
dustry, it brings huge business opportunities. However, the
low sales revenue of tourist souvenirs in Guangzhou is in
contrast with the rapid development of tourism. Cantonese
cultural and creative products can be used not only be as
tourist souvenirs but also as the name card of the city.
Nowadays, the business card of Guangzhou is vague and not
good enough to be used.

Western psychological scholars have put forward some
different theories of human motivation, which have certain
reference value for audience analysis and marketing strat-
egies. Among them, the most popular one is Maslow’s
“hierarchy of needs” theory [4]. According to the demand
hierarchy theory and the market survey completed by the
project team in the early stage, we can sort out the audience
demand of Cantonese cultural and creative products, so as to

enhance the rationality and effectiveness of the later product
design practice.

3.1. Appearance Requirements. *e lowest level of Maslow’s
demand level is the basis of the transition to other levels.*e
external demand for products belongs to the most direct and
instinctive response of human beings. It emphasizes the
physiological characteristics of users’ gaze, feeling, and voice.
In the early stage, the project team took frequent visitors to
Guangzhou as the main target group, sent out 117 ques-
tionnaires, and recovered 117 valid questionnaires. In the
preliminary research, among “factors affecting the purchase
of Guangzhou souvenirs,” 36.84% of the respondents chose
“appearance, commemorative significance, and usability,”
which is a very good illustration that tourists consider
whether the products meet the basic demand as the most
basic factor to influence the purchase.

3.2. Functional Requirements. Functional requirements are
in the middle of Maslow’s hierarchy of requirements. *e
function demand is related to the utility of the product,
which emphasizes whether the product can solve the
problems in life smoothly for users. Pragmatism is an im-
portant feature of western culture. Cultural and creative
products with practical functions have the basis of com-
mercial value, and they are also the first choice for tourists in
Guangdong Province who combine Chinese and Western
culture. In the preliminary investigate and survey, among
the question “which features of cultural and creative
products do you pay more attention to?” 38.46% of the
respondents chose “practicability,” accounting for the first
place, which proves that consumers are attached great im-
portance by the functional characteristics of Cantonese
cultural and creative products.

3.3. Cultural Needs. Cultural needs correspond to Maslow’s
level of self-demand, and in the pyramid, it refers to a kind of
ideological and spiritual transition after functional needs are
met. *e goal of product design is not only to enable users to
use the product but also to meet their deep emotional needs
in the multilevel interaction with products in the modern
market environment with serious homogenization of
functions. In the questionnaire, 74% of the respondents
chose “custom” and 63% chose “traditional art” for “which
cultural elements do you prefer to buy Guangzhou souve-
nirs?” Due to the unique composition of Guangzhou
tourists, Hong Kong, Macao, and Taiwan compatriots, Asian
and Western tourists account for a large proportion. *eir
aesthetic taste is more influenced by the West and has its
uniqueness.

4. Cantonese Cultural and Creative Products
Hierarchical Analysis of User Requirements

4.1. Analytic Hierarchy Process. One comprehensively uti-
lized Multicriteria Decision-Making (MCDM) strategy is
AHP [3, 5, 6]. Analytic hierarchy process decomposes the
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decision-making elements into objectives, criteria, schemes,
and other levels, on which qualitative and quantitative analysis
are carried out. It is a simple, flexible, and practicalmulticriteria
decision-makingmethod for quantitative analysis of qualitative
problems. AHP is utilized to measure, order, rank, evaluate
decision choices, etc. AHP estimates criteria weights by pair-
wise comparisons. *is method is helpful to determine the
relative weight which should have each criterion when we need
to make a decision. *erefore, it has been applied in various
fields such as environmental management [7], risk assessment
[8], and supply chain management [9].

AHP has three advantages: systematization, which regards
the object as a whole system and makes decisions according to
the thinking steps of decomposition, comparison, judgment,
and synthesis; practicability, combining qualitative, and
quantitative methods, can deal with problems that cannot be
solved by traditional optimizationmethods; simplicity, it is easy
to calculate and clear in results so that decision makers can
quickly and directly understand and master.

Now, we give the main steps of the AHP.

Step 1: define the central questions, choices, and
judgment criteria
Step 2: using the fundamental scale of Table 1 to create
the pairwise comparison matrix

Step 3: determine the criterion weight vector. Normalize
the comparisonmatrix by equation (1); then, calculate the
average of each row of the normalized comparisonmatrix
by equation (2) to obtain the weight vector:

aij �
aij

􏽐
n
k�1 aki

, i, j � 1, 2, . . . , n, (1)

Wi � 􏽘
n

j�1

aij

n
, i � 1, 2, . . . , n. (2)

Step 4: using equations (3) and (4) to compute the
consistency index (CI) of the comparison matrix:

CI �
λmax − n

n − 1
, (3)

λmax � 􏽘
4

i�1

(AW)i

nWi

. (4)

Step 5: calculate the consistency ratio (CR) by equation
(5), where the random consistency index (RI) value is
determined by Table 2:

CR �
CI
RI

. (5)

Step 6: compare the obtained CR with the value con-
sidered acceptable for consistency.

4.2. Application of AHP to the Design of Cantonese Cultural
and Creative Products. *e analytic hierarchy process
model is established. First of all, the questionnaire is

distributed to the tourists who often travel to and from
Guangzhou. *en, it takes the user demand factors of
Cantonese cultural and creative products as the goal level,
takes the appearance factors, function factors, and culture
factors corresponding to Maslow’s demand level as the
criterion layer, and extracts nine perceptual words from
the user demand vocabulary of typical user interviews as
the criterion layer, so as to guide the design of product
appearance, function, and culture. Figure 1 shows the
analytic hierarchy process model of user demand factors
of Cantonese cultural and creative products.

*e test group is composed of 117 effective users
mentioned above. According to the index system, ques-
tionnaire survey is conducted by focus group combined
with information method in user survey and decision is
made. *e importance of the goal layer, criteria layer, and
evaluation index layer are scored, respectively. *en, the
scoring results are discussed and summarized internally,
and the pairwise judgment matrixes (see Tables 3–6) are
obtained, and reasonable conclusions are drawn through
consistency test. *e judgment matrix is constructed and
related calculation is carried out, and the relevant data are
presented as follows.

*e criteria layer judgment matrix is denoted by

A �

1 1/2 1/3

2 1 1/2

3 2 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (6)

then by equation (1), we can get the following normalize the
comparison matrix:

A1 �

0.1667 0.1428 0.1818

0.3333 0.2857 0.2727

0.5 0.5715 0.5455

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (7)

By equation (2), we get the criterion weight vector:

W � (0.1637, 0.2972, 0.5391)
T
. (8)

*erefore,

AW �

1 1/2 1/3

2 1 1/2

3 2 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ·

0.1637

0.2972

0.5391

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

0.4921

0.8942

1.6248

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (9)

Table 1: Scale for pairwise comparison.

Numerical value Description
1 Equally liked
2
3 Moderately preferred
4
5 Strongly preferred
6
7 Very strongly preferred
8
9 Extremely preferred
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Figure 1: User demand factors of Cantonese cultural and creative product AHP model.

Table 2: Random consistency index (RI).

1 2 3 4 5 6 7 8 9 10
RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49

Table 3: Criteria layer judgment matrix.

Appearance Function Culture
Appearance 1 1/2 1/3
Function 2 1 1/2
Culture 3 2 1

Table 4: Appearance evaluation index judgment matrix.

Individuality Beauty Brand
Individuality 1 1/4 1/3
Beauty 4 1 3
Brand 3 1/3 1

Table 5: Functional evaluation index judgment matrix.

Decorative Portability Durability
Decorative 1 1/2 1/4
Portability 2 1 1/3
Durability 4 3 1

Table 6: Culture evaluation index judgment matrix.

Cantonese customs Inclusive attitude Auspicious meaning Adventure spirit
Cantonese customs 1 5 3 7
Inclusive attitude 1/5 1 1/3 2
Auspicious meaning 1/3 3 1 5
Adventure spirit 1/7 1/2 1/5 1
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then by equation (4), we obtain

λmax � 3.0096. (10)

Since the order of A is 3, by equation (3) we obtain

CI � 0.0048. (11)

Because n � 3, we know that RI � 0.58 fromTable 2, then
by equation (5), we obtain

CR � 0.0083. (12)

Similar with the above procedure, we obtain the results
as follows and do not show computational process in detail
for simplicity.

W � (0.1199, 0.6079, 0.2722)
T
,

λmax � 3.0742,

CI � 0.0371,

CR � 0.0639.

(13)

W � (0.1372, 0.2394, 0.6234)
T
,

λmax � 3.0191,

CI � 0.0095,

CR � 0.0164.

(14)

W � (0.5628, 0.1079, 0.2671, 0.0622)
T
,

λmax � 4.0679,

CI � 0.0226,

CR � 0.0252.

(15)

*rough the analytic hierarchy process, the consistency
ratio of each factor layer judgment matrix evaluation index
is less than 0.1, which indicates that the test team has passed
the consistency test on the user demand hierarchy factors.
*e order of the importance of the decision-making level is
as follows: culture factors > function factors > appearance
factors, which shows that culture factors are more im-
portant for the design of Cantonese cultural and creative
products.

In the order of the importance of functional factors in
the evaluation index layer, the order of importance of culture
factors is Cantonese customs > auspicious meaning > in-
clusive attitude > adventure spirit, which shows that Can-
tonese customs are the most important in culture factors.
*e order of importance of function factors is
durability > portability > decorative, indicating that dura-
bility is the most important factor. *e order of importance
of appearance factors is as follows: beauty > brand > in-
dividuality, which indicates that the beauty of products is
more important in appearance factors.

5. Design Practice of Cantonese Cultural and
Creative Products

5.1. Appearance Design. Cantonese architecture mainly re-
fers to the traditional architecture in Cantonese area, which
refers to the building with traditional style built by using
traditional building technology and building materials.
Cantonese architecture is closely related to Cantonese culture
and style and has strong regional characteristics. *e cultural
and creative design chooses the “Bahe guild hall” which is
very historic and representative in Guangzhou Xiguan as the
main design element. “Bahe guild hall” is the guild organi-
zation of Cantonese opera artists, formerly known as
“Qionghua guild hall” [10]. *is guild hall strengthened the
unity of people in the opera industry, ensured the normal
operation of the troupe, and resumed the troupe business
after the lifting of the ban on Cantonese Opera in the Qing
Dynasty. “Bahe” have branches all over the world, where there
are Chinese, as long as there are Cantonese opera, and there
are these guild halls. *e long history and profound cultural
heritage of Guangzhou’s “Bahe,” which are respected as their
ancestors all over the world, are of great significance.*ey not
only enable the intangible cultural heritage art of Cantonese
opera to continue to be inherited but also represent the
profound Cantonese opera culture and the indomitable spirit
of Cantonese people.

5.2. Function Design. In the early research, we learned that
tourists are more interested in some small products and
stationery products, so we chose the four treasures of the
study as the design objects, including a pen holder, a pen shelf,
a paper weight, and an ink slab (see Figures 2–5). In the
functional design, people pay more attention to the durability
of the product, so in the design of the whole set of products,
we strive to achieve a stable and reasonable structure.

5.3. Culture Design. *e top half of the pen holder refers to
the iconic roof of “Bahe guild hall,” while the lower part is
added with window decoration elements; the shape of pen

Figure 2: Pen holder.
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shelf is transformed from the roof shape of “Bahe guild hall,”
which is round and beautiful as a whole; the paper weight is
decorated with the exterior wall patterns of the guild hall; the
ink slab is designed by combining the cloud pattern
on the ceiling of the guild hall with the architectural
elements.

6. Conclusions

In the research of social science [11] and natural science
[12–18], the selection of methods is very important. In this

paper, we choose to use an effective method, AHP, to study
the design of Cantonese cultural and creative products.
Based on the AHP model of user demand, we sort out the
user needs of Cantonese cultural and creative products,
conduct trade-off screening on the design demand factors of
these products, so as to further quantify the needs of tourist
groups, determine the most suitable combination of product
design factors for users, and apply the conclusions to the
design practice. With the vision of tourists, we can design
products to meet the needs of tourists so that the cultural
and creative products of Cantonese will be loved by more
people, and the culture of Cantonese will spread faster and
farther.
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In this paper, we consider the existence of positive solutions for the fully fourth-order boundary value problem
u

(4)
(t) � f(t, u(t), u′(t), u″(t), u

‴
(t)), 0≤ t≤ 1,

u(0) � u(1) � u″(0) � u″(1) � 0
􏼨 , where f: [0, 1] × [0, +∞] × (−∞, +∞) × (−∞, 0) × (−∞, +∞)⟶

[0, +∞] is continuous.*is equation can simulate the deformation of an elastic beam simply supported at both ends in a balanced
state. By using the fixed-point index theory and the cone theory, we discuss the existence of positive solutions of the fully fourth-
order boundary value problem. We transform the fourth-order differential equation into a second-order differential equation by
order reduction method. And then, we examine the spectral radius of linear operators and the equivalent norm on continuous
space. After that, we obtain the existence of positive solutions of such BVP.

1. Introduction

In this paper, we study the existence of positive solutions for
the fully fourth-order boundary value problem:

u
(4)

(t) � f t, u(t), u′(t), u″(t), u
‴

(t)􏼒 􏼓, 0≤ t≤ 1,

u(0) � u(1) � u″(0) � u″(1) � 0,

⎧⎪⎨

⎪⎩

(1)

where f: [0, 1] × [0, +∞] × (−∞, +∞) × (−∞, 0) × (−∞,

+∞)⟶ [0, +∞] is continuous. *is boundary value
problem can simulate the deformation of an elastic beam,
whose one end is fixed and the other end is free in a balanced
state. In mechanics, BVP (1) is called a cantilever beam
equation. In this equation, each derivative of u(t) has its
physical meaning: u′(t) is the slope, u″(t) is the bending
moment stiffness, u‴(t) is the shear force stiffness, and
u(4)(t) is the load density stiffness. *e nonlinear fourth-
order differential equation boundary value problem can

simulate the deformation of an elastic beam under external
force, and different boundary value conditions can show its
force under different conditions. Because of its importance
in mechanics, many scholars have done a lot of research on
the existence of solutions for fourth-order ordinary differ-
ential equations using various nonlinear methods [1–11].

As the nonlinear term does not contain the derivative
term of the unknown function, equation (1) becomes

u
(4)

(t) � f(t, u(t)), 0≤ t≤ 1,

u(0) � u(1) � u″(0) � u″(1) � 0.

⎧⎨

⎩ (2)

If f(t, u) is superlinear or sublinear growth on u, the
authors in [1] used the fixed-point theorem on the cone to
obtain the existence of the positive solution of equation (2).
In [3], the author used the fixed-point theorem and topo-
logical degree theory to study the existence of one or two
positive solutions for the fourth-order differential equation
boundary value problem:
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u
(4)

(t) − λf(t, u(t)) � 0, 0≤ t≤ 1,

u(0) � u(1) � u″(0) � u″(1) � 0.

⎧⎨

⎩ (3)

Under the fixed-point index method on the cone, the
authors of [11] discussed the existence of positive solutions
for fourth-order boundary value problems with two pa-
rameters. Among them, the assumption condition of the
nonlinear term f is related to the first eigenvalue of the
corresponding linear operator. It is noteworthy that the
nonlinear term in the abovementioned boundary value
problems does not include the higher-order derivative u‴.
When the nonlinear term contains the higher-order de-
rivative of the unknown function, the authors of [8, 9] used
the upper and lower solution method to study the existence
of solutions for fully fourth-order nonlinear boundary value
problems with nonlinear boundary conditions. In [10], the
author discussed a fourth-order boundary value problem
with fully form:

u
(4)

(t) � f t, u(t), u′(t), u″(t), u‴(t)( 􏼁, 0≤ t≤ 1,

u(0) � u′(0) � u″(1) � u‴(1) � 0.

⎧⎨

⎩

(4)

When the nonlinear term satisfies superlinear growth
and sublinear growth, the author used the fixed-point index
method, combined with the positivity of linear operators and
spectral radius, to get the positive solutions for the boundary
value problem. But the linear operator in [10] does not
involve the first and second derivatives of unknown
functions.

In this paper, by using cone theory and the fixed-point
index, combined with the spectral radius of linear integral
operators, and the application of equivalent norms, we
discuss the existence of positive solutions for boundary value
problems (1).

2. Preliminaries

In this section, we give some assumptions that are important
to our main results:

(i) (H1): f: [0, 1] × [0, +∞] × (−∞, +∞) × (−∞, 0) ×

(−∞, +∞)⟶ [0, +∞] is continuous
(ii) (H2): there exist nonnegative constants a1, c1 ≥ 0

and r> 0 such that a1x1 + c1x3 ≤f(t, x1, x2 − x3,

x4), x1, x3 ∈[0, r], x2 ∈ [−r, r], and x4 ∈ (−∞, +∞).
(iii) (H3): there exist nonnegative constants a, b, c,

d, M≥ 0 and 0< q< 1 such that

f t, x1, x2, −x3, x4( 􏼁≤ ax1 + b x2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + cx3 + d x4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+ M, x1,

x3 ∈ [0, +∞], x2, x4 ∈ (−∞, +∞).

(5)

Let C[0, 1] denote the Banach space of continuous
functions from [0, 1] intoR with norm ‖u‖ � max0≤t≤1|u(t)|.
Let

P � u ∈ C[0, 1] u(t)is concave on [0, 1], u(0) � u(1) � 0{ }.
*en, P is a positive cone on C[0, 1].

*e functions on cone P have the following properties:

Lemma 1 (see [12]). Every function u ∈ P on the cone P is
differentiable almost everywhere on (0, 1) and satisfies

u(t)≥ t(1 − t)‖u‖, t ∈ [0, 1],

u′(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
u(t)

t(1 − t)
, a.e. on [0, 1].

(6)

Let v(t) � −u″(t), then the differential equation BVP (1)
can be transformed into the following two second-order
differential equations:

u″(t) � −v(t),

u(0) � u(1) � 0,

⎧⎨

⎩ (7)

−v″(t) � f t, u(t), u′(t), u″(t), u″(t)( 􏼁,

v(0) � v(1) � 0.
􏼨 (8)

Let G(t, s) �
s(1 − t) 0≤ s≤ t≤ 1
t(1 − s) 0≤ t≤ s≤ 1􏼨 , which is the cor-

responding Green’s function of BVP (7). *us, BVP (7) can
be transformed into an equivalent integral equation:

u(t) � 􏽚
1

0
G(t, s)v(s)ds. (9)

By using (9), BVP (8) can be reduced to

−v″(t) � f t, (Av)(t), (Av)′(t), −v(t), −v′(t)( 􏼁,

v(0) � v(1) � 0,

⎧⎨

⎩ (10)

where operator A is defined as (Av)(t) � 􏽒
1
0 G(t, s)v(s)ds.

*us, BVP (10) can be reduced to the equivalent integral
equation:

v(t) � 􏽚
1

0
G(t, s)f s, (Av)(s), (Av)′(s), −v(s), −v′(s)( 􏼁ds.

(11)

From the expression of Green’s function G(t, s), we
know that G(t, s) is continuous on [0, 1] × [0, 1], and we
have

t(1 − t)s(1 − s)≤G(t, s)≤ s(1 − s) or t(1 − t), 0≤ t, s≤ 1.

(12)

From the standard proof, we can easily obtain the fol-
lowing statement.

Lemma 2. A: L[0, 1]⟶ C[0, 1] is a completely continuous
operator.

For ∀ v ∈ P, we define an operator (Fv)(t) � f(t,

(Av)(t), (Av)′(t), −v(t), −v′(t)). It follows from Lemma 1
and condition (H3) that
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|(Fv)(t)| � f t, (Av)(t), (Av)′(t), −v(t), −v′(t)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ a(Av)(t) + b (Av)′(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + cv(t) + d v′(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+ M

≤ a 􏽚
1

0
G(t, s)v(s)ds + b 􏽚

1

0
Gt(t, s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌v(s)ds + cv(t) + d

‖v‖
q

t
q
(1 − t)

q + M.

(13)

It shows that F is an operator which is defined on P to
L(0, 1). It is easy to conclude that F is the continuous
bounded operator mapping from P to L(0, 1). *erefore,
T � A°F: P⟶ P is a completely continuous operator. So,
BVP (1) is equivalent to the operator equation u � Tu, where
the operator T � P⟶ P is given by

(Tv)(t) � 􏽚
1

0
G(t, s)f s, (Av)(s), (Av)′(s), −v(s), −v′(s)( 􏼁ds.

(14)

Let 􏽥a � (a, b, c) with a, b, c≥ 0. We define an operator T􏽥a
on cone P:

T􏽥au( 􏼁(t) � a 􏽚
1

0
G(t, s) 􏽚

1

0
G(s, τ)u(τ)dτ ds

+ b 􏽚
1

0
G(t, s) 􏽚

1

0
Gs(s, τ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌u(τ)dτ ds

+ c 􏽚
1

0
G(t, s)u(s)ds, u ∈ P.

(15)

It is easy to see that T􏽥a: P⟶ P is a linear operator.
Let u0(t) � t(1 − t), by (15), we obtain

T􏽥au0( 􏼁(t)≥ at(1 − t) 􏽚
1

0
s(1 − s) 􏽚

1

0
G(s, τ)τ(1 − τ) dτ ds + bt(1 − t)

· 􏽚
1

0
s(1 − s) 􏽚

1

0
Gs(s, τ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌τ(1 − τ) dτ ds + ct(1 − t) 􏽚

1

0
s(1 − s)s(1 − s) ds � t(1 − t)

· a 􏽚
1

0
s(1 − s) 􏽚

1

0
G(s, τ)τ(1 − τ) dτ ds + b 􏽚

1

0
s(1 − s) 􏽚

1

0
Gs(s, τ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌τ(1 − τ)dτ ds + c 􏽚

1

0
s
2
(1 − s)

2 ds􏼢 􏼣.

(16)

*en, if scalars a, b, c≥ 0, not all equal to zero, there
exists a constant α> 0 satisfies T􏽥a u0 ≥ αu0. *us, from
Krein–Rutman theorem, we know r(T􏽥a)> 0, and there is
v􏽥a ∈ P/ θ{ } such that λ􏽥aT􏽥a v􏽥a � v􏽥a, where λ􏽥a � (r(T􏽥a))− 1 is
the first eigenvalue of the operator T􏽥a.

Now, we estimate the range of λ􏽥a � (r(T􏽥a))− 1. For any
u ∈ P, from (15), we get

T􏽥au( 􏼁(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ a 􏽚
1

0
s(1 − s) 􏽚

1

0
G(s, τ)u(τ)dτ ds

+ b 􏽚
1

0
s(1 − s) 􏽚

1

0
Gs(s, τ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌u(τ)dτ ds

+ c 􏽚
1

0
s(1 − s)u(s)ds, a, b, c≥ 0, 􏽥a � (a, b, c),

(17)

thereby

T􏽥au
����

����≤ a 􏽚
1

0
s(1 − s) 􏽚

1

0
G(s, τ)u(τ) dτ ds

+ b 􏽚
1

0
s(1 − s) 􏽚

1

0
Gs(s, τ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌u(τ) dτ ds

+ c 􏽚
1

0
s(1 − s)u(s) ds.

(18)

By the expression of Green’s function G(t, s) and (15),
we infer that

T􏽥au( 􏼁(t)≥t(1− t) a􏽚
1

0
s(1− s)􏽚

1

0
G(s,τ)u(τ)dτds􏼢

+ b􏽚
1

0
s(1− s)􏽚

1

0
Gs(s,τ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌u(τ)dτds

+ c􏽚
1

0
s(1− s)u(s)ds􏼣, a,b,c≥0,􏽥a �(a,b,c).

(19)

According to the above two inequalities, we have

T􏽥au( 􏼁(t)≥ t(1 − t) T􏽥au
����

����. (20)

Recalled that u0(t) � t(1 − t). By (20), we have

T􏽥au0 ≥ T􏽥au0
����

����u0. (21)

Note the positivity of operator T􏽥a, we have
T2

􏽥au0 ≥ ‖T􏽥au0‖
2u0. Hence, for any n ∈ N, using the recursion

method to the above inequality, we get Tn

􏽥a
u0 ≥ ‖T􏽥au0‖

nu0.
*erefore, we have

T
n

􏽥au0
����

����≥ T􏽥au0
����

����
n

u0
����

����. (22)

*us,
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T􏽥a

����
����

n ≥
T

n

􏽥au0
����

����

u0
����

����
≥ T􏽥au0

����
����

n
. (23)

From this inequality and Gelfand formula on spectral
radius, we obtain

r T􏽥a( 􏼁 � lim
n⟶∞

����

T
n

􏽥a

����
����

n

􏽱

≥ T􏽥au0
����

����> 0. (24)

From (24), we get

T􏽥a

����
����≥ r T􏽥a( 􏼁≥ T􏽥au0

����
����. (25)

By λ􏽥a � (r(T􏽥a))− 1, we can get

1
T􏽥au0

����
����
≤ λ􏽥a ≤

1
Ta

����
����
. (26)

Now, we calculate ‖T􏽥a‖ and ‖T􏽥au0‖ as follows. We have
known that

G(s, τ) �
s(1 − τ), 0≤ s≤ τ ≤ 1,

τ(1 − s), 0≤ τ ≤ s≤ 1,
􏼨

Gs(s, τ) �
1 − τ, 0≤ s≤ τ ≤ 1,

−τ, 0≤ τ < s≤ 1.
􏼨

(27)

We first calculate ‖T􏽥a‖. From (15), we get

T􏽥a

����
���� � max

t∈[0,1]
a 􏽚

1

0
G(t, s) 􏽚

1

0
G(s, τ)u(τ) dτ ds

+ b 􏽚
1

0
G(t, s) 􏽚

1

0
Gs(s, τ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌u(τ) dτ ds

+ c 􏽚
1

0
G(t, s)u(s) ds.

(28)

*rough integration, we have

T􏽥a

����
���� � max

t∈[0,1]
t(1 − t)

1
12

a +
1
3

b +
1
2

c􏼒 􏼓􏼔 􏼕 �
1
48

a +
1
12

b +
1
8

c.

(29)

Next, we calculate ‖T􏽥au0‖. Because

T􏽥au0
����

���� � max
t∈[0,1]

a 􏽚
1

0
G(t, s) 􏽚

1

0
G(s, τ)u0(τ)dτ ds􏼢

+ b 􏽚
1

0
G(t, s) 􏽚

1

0
Gs(s, τ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌u0(τ)dτ ds

+ c 􏽚
1

0
G(t, s)u0(s)ds􏼣.

(30)

*rough integration, we have

T􏽥au0
����

���� � max
t∈[0,1]

t(1 − t)
1
60

a +
1
15

b􏼒 􏼓 +
1
12

t −
1
6
t
3

+
1
12

t
4

􏼒 􏼓c􏼔 􏼕

�
1
240

a +
1
60

b +
5
192

c.

(31)

Combining this with (29), we can obtain

48
a + 4b + 6c

≤ λ􏽥a ≤
960

4a + 16b + 25c
, a, b, c> 0, 􏽥a � (a, b, c).

(32)

Now, we consider the special case with 􏽥b � (a1, 0, c1).
We make a definition that

T􏽥b
u􏼒 􏼓(t) � a1 􏽚

1

0
G(t, s) 􏽚

1

0
G(s, τ)u(τ)dτ ds

+ c1 􏽚
1

0
G(t, s)u(s)ds, 􏽥b � a1, 0, c1( 􏼁.

(33)

Because of λ􏽥bT􏽥b
v􏽥b

(t) � v􏽥b
(t), it is equivalent to λ􏽥b and

v􏽥b
(t) satisfying the differential equation:

u
(4)

(t) � λ􏽥b a1u(t) − c1u″(t)􏼂 􏼃, t ∈ [0, 1],

u(0) � u(1) � u″(0) � u″(1) � 0.

⎧⎪⎨

⎪⎩
(34)

We notice that the function v􏽥b
(t) is nonnegative. After

solving the above differential equations, we may take
v􏽥b

(t) � sin πt. Hence, we conclude the value of λ􏽥b is
λ􏽥b � π4/a1 + π2c1.

To prove our main results, we also need the two fol-
lowing lemmas.

Lemma 3 (see [13, 14]). Let E is a Banach space, P is a cone
in E, and Ω(P) is a bounded open set in P. Assume that
A: Ω(P)⟶ P is a completely continuous operator. If there
exists x0 ∈ P/ θ{ } such that

x − Ax≠ μx0, ∀x ∈zΩ(P), μ≥ 0. (35)

Then, i(A,Ω(P), P) � 0.

Lemma 4 (see [13, 14]). Let E is a Banach space, P is a
cone in E, Ω(P) is a bounded open set in P, and θ ∈ Ω(P).
Assume thatA: Ω(P)⟶ P is a completely continuous op-
erator. If

Ax≠ μx, ∀x ∈zΩ(P), μ≥ 1, (36)

then i(A,Ω(P), P) � 1.

3. Main Results

Theorem 1. Suppose that conditions (H1), (H2), and (H3)

are satisfied, and

λ􏽥a > 1, (37)

λ􏽥b < 1. (38)

λ􏽥a and λ􏽥b are the first eigenvalues of operator T􏽥a and
operator T􏽥b

, respectively. *en, BVP (1) has at least one
positive solution.

Proof. It follows from (H1) and (H2) that, for some
r> 0, the function f satisfies
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f t, x1, x2, −x3, x4( 􏼁≥ a1x1 + c1x3,

x1, x3 ∈ [0, r],

x2 ∈ [−r, r],

x4 ∈ (−∞, +∞).

(39)

It is known that v􏽥b
is the positive eigenvector of T􏽥b

corresponding to λ􏽥b, and we have v􏽥b
� λ􏽥bT􏽥b

v􏽥b
. According to

(14), (38), and (39), for any v ∈zBr ∩P, we have

|(Av)(t)| � 􏽚
1

0
G(t, s)|v(s)|ds ≤ r 􏽚

1

0
G(t, s)ds< r,

(Av)′(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 􏽚
1

0
Gt(t, s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌|v(s)|ds≤ r 􏽚

1

0
Gt(t, s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ds< r.

(40)

*us, we get

(Tv)(t) � 􏽚
1

0
G(t, s)f s, (Av)(s), (Av)′(s), −v(s), −v′(s)( 􏼁ds

≥ 􏽚
1

0
G(t, s) a1(Av)(s) + c1v(s)( 􏼁ds

� a1 􏽚
1

0
G(t, s) 􏽚

1

0
G(s, τ)v(τ)dτ ds

+ c1 􏽚
1

0
G(t, s)v(s)ds � T􏽥b

v􏼒 􏼓(t), t ∈ [0, 1].

(41)

Let us suppose that T has no fixed point on zBr ∩P;
otherwise, *eorem 1 is proved.

Now, we prove

v − Tv≠ ζv􏽥b
, ∀v ∈zBr ∩P, ζ ≥ 0, (42)

where Br � x ∈ C[0, 1]|‖x‖≤ r{ }. If otherwise, there exists
v0 ∈zBr ∩P and ζ0 ≥ 0 such that v0 − Tv0 � ζ0v􏽥b. *en, we
have ζ0 > 0 and v0 � Tv0 + ζ0v􏽥b ≥ ζ0v􏽥b

. Let ζ∗ � sup

ζ|v0 ≥ ζv􏽥b
􏼚 􏼛, we can know ζ∗ ≥ ζ0 > 0 and v0 ≥ ζ

∗
v􏽥b
. By

T􏽥b
(P) ⊂ P, we get λ􏽥bT􏽥b

v0 ≥ ζ
∗λ􏽥bT􏽥b

v􏽥b
� ζ∗v􏽥b. Based on (41),

we have

v0 � Tv0 + ζ0v􏽥b ≥T􏽥b
v0 + ζ0v􏽥b ≥

ζ∗

λ􏽥b
+ ζ0⎛⎝ ⎞⎠v􏽥b

. (43)

*en, by the definition of ζ∗, we conclude that
ζ∗ ≥ ζ∗/λ􏽥b + ζ0. By (15), we notice that λ􏽥b < 1 and ζ0 > 0. So,
the above inequality contradicts the definition of ζ∗. Hence,
(42) holds. By Lemma 3, we have

i T, Br ∩P, P( 􏼁 � 0. (44)

From (H3), we have

(Tv)(t)≤􏽚
1

0
G(t, s) a􏽚

1

0
G(s,τ)v(τ)dτ+ b􏽚

1

0
Gs(s,τ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌v(τ)dτ+ cv(s) + d v′(s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

+ M􏼠 􏼡ds

≤a􏽚
1

0
G(t, s)􏽚

1

0
G(s,τ)v(τ)dτds + b􏽚

1

0
G(t, s)􏽚

1

0
Gs(s,τ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌v(τ)dτds + c􏽚

1

0
G(t, s)v(s)ds + d􏽚

1

0
G(t, s)

|v(s)|
q

s
q
(1− s)

qds + M

� T􏽥av( 􏼁(t) + d􏽚
1

0
G(t, s)

|v(s)|
q

s
q
(1− s)

qds≤ T􏽥av( 􏼁(t) + d􏽚
1

0
G(t, s)

|v(s)|
q

s
q
(1− s)

qds + M

≤ T􏽥av( 􏼁(t) + d􏽚
1

0
s(1− s)

|v(s)|
q

s
q
(1− s)

qds + M≤ T􏽥av( 􏼁(t) + d􏽚
1

0
|v(s)|

qds + M.

(45)

Note that (r(T􏽥a))− 1 > 1. Take

ε �
1 − r T􏽥a( 􏼁

2
. (46)

According to Gelfand formula, r(T􏽥a) � limn⟶∞

����
‖Tn

􏽥a
‖n

􏽱
,

and there is a natural number N, so that, for n≥N,
‖Tn

􏽥a
‖≤ [r(T􏽥a) + ε]n.
For any v ∈ C[0, 1], we define

‖v‖
∗

� 􏽘

N

i�1
r T􏽥a( 􏼁 + ε􏽨 􏽩

N− i
T

i−1
􏽥a v

����
����, (47)

where T0
1 � I is an identity operator. It is not difficult to

verify that ‖ · ‖∗ is a norm in C[0, 1], and we have

􏽚
1

0
v

q
(s)ds

�������

�������

∗

≤K‖v‖
∗q

, v ∈ C[0, 1], (48)

where K is a constant. Take

r1 >max 1, r, 4‖M‖
∗ε− 1

, 4 dKε−1
􏼐 􏼑

1/1−q
.􏼚 (49)

Because of ‖v‖∗ ≥ [r(T􏽥a) + ε]N− 1‖v‖, we can take r2 > r1
so that when ‖v‖≥ r2, we have ‖v‖∗ > r1.
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Next, we prove

Tv≠ μv, ∀v ∈zBr2
∩P, μ≥ 1. (50)

If there exists v1 ∈zBr2
∩P and μ0 ≥ 1, such that

Tv1 � μ0v1, by Lemma 1 and (45), we can obtain

Tv1( 􏼁(t) � 􏽚
1

0
G(t, s)f s, Av1( 􏼁(s), Av1( 􏼁′(s), v1(s), v1′(s)( 􏼁ds

≤ T􏽥av1( 􏼁(t) + d 􏽚
1

0
v

q
1(s)ds + M.

(51)

Hence, we have

0≤ μ0v1(t) � Tv1( 􏼁(t)≤ T􏽥av1( 􏼁(t) + d 􏽚
1

0
v

q
1(s)ds + M,

∀t ∈ [0, 1].

(52)

Furthermore, T􏽥a(P) ⊂ P, and we have

0≦ T
j

􏽥a
Tv1( 􏼁􏼐 􏼑(t)≤ T

j

􏽥a
T􏽥av1 + d 􏽚

1

0
v

q
1(s)ds + M􏼠 􏼡􏼠 􏼡(t),

∀t ∈ [0, 1], j � 1, 2, . . . , N − 1,

(53)

and we also get

T
j

􏽥a
Tv1( 􏼁

�����

�����≤ T
j

􏽥a
T􏽥av1 + d 􏽚

1

0
v

q
1(s)ds + M􏼠 􏼡

��������

��������
,

j � 1, 2, . . . , N − 1.

(54)

*erefore, from (47), we have

Tv1
����

����
∗

� 􏽘
N

i�1
r T􏽥a( 􏼁 + ε􏽨 􏽩

N− i
T

i−1
􏽥a Tv1( 􏼁

����
����

≤ 􏽘

N

i�1
r T􏽥a( 􏼁 + ε􏽨 􏽩

N− i
T

i−1
􏽥a T􏽥av1 + d 􏽚

1

0
v

q
1(s)ds + M􏼠 􏼡

��������

��������

� T􏽥av1 + d 􏽚
1

0
v

q
1(s)ds + M

�������

�������

∗

.

(55)

When ‖v1‖ � r2, we have ‖v1‖
∗ > r1. Hence, from (48)

and (55), it follows that

μ0 v1
����

����
∗

� Tv1
����

����
∗ ≤ T􏽥av1 + d 􏽚

1

0
v

q
1(s)ds + M

�������

�������

∗

≤ T􏽥av1
����

����
∗

+ d 􏽚
1

0
v

q
1(s)ds

�������

�������

∗

≤ T􏽥av1
����

����
∗

+ dK v1
����

����
∗ q

+
ε
4

v1
����

����
∗

� 􏽘
N−1

i�1
r T􏽥a( 􏼁 + ε􏽨 􏽩

N− i
T

i

􏽥av1
����

���� + dK v1
����

����
∗ q

+
ε
4

v1
����

����
∗

≤ r T􏽥a( 􏼁 + ε􏽨 􏽩 􏽘

N−1

i�1
r T􏽥a( 􏼁 + ε􏽨 􏽩

N− i− 1
T

i

􏽥av1
����

���� + T
N

􏽥a v1
����

���� +
ε
4

v1
����

����
∗ q

r
1−q
1 +

ε
4

v1
����

����
∗

≤ r T􏽥a( 􏼁 + ε􏽨 􏽩 􏽘

N−1

i�1
r T􏽥a( 􏼁 + ε􏽨 􏽩

N− i− 1
T

i

􏽥av1
����

���� r T􏽥a( 􏼁 + ε􏽨 􏽩
N

v1
����

���� +
ε
4

v1
����

����
∗

+
ε
4

v1
����

����
∗

≤ r T􏽥a( 􏼁 + ε􏽨 􏽩 􏽘

N−1

i�1
r T􏽥a( 􏼁 + ε􏽨 􏽩

N− i
T

i−1
􏽥a v1

����
���� +

ε
2

v1
����

����
∗

� r T􏽥a( 􏼁 + ε􏽨 􏽩 v1
����

����
∗

+
ε
2

v1
����

����
∗ ≤ r T􏽥a( 􏼁 +

3ε
2

􏼔 􏼕 v1
����

����
∗

.

(56)

By μ0 ≥ 1 and (56), we can get 1≤ r(T􏽥a) + 3ε/2. But it is
contradictory to the definition of ε � 1 − r(T􏽥a)/2. Hence,
(50) holds. According to Lemma 4, we obtain that

i T, Br2
∩P, P􏼐 􏼑 � 1. (57)

Now, from (44) and (57), it follows that

i T,
Br2
∩P􏼐 􏼑

Br ∩P( 􏼁
, P⎛⎝ ⎞⎠ � i T, Br2

∩P, P􏼐 􏼑 − i T, Br ∩P, P( 􏼁 � 1.

(58)

Hence, T has at least one fixed point in (Br2
∩P)/

(Br ∩P). *at is to say, BVP (1) has at least one positive
solution. *e proof of *eorem 1 is completed.
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In this paper, we discuss the exact regional controllability of fractional evolution equations involving Riemann–Liouville
fractional derivative of order q ∈ ]0, 1[. +e result is obtained with the help of the theory of fractional calculus, semigroup theory,
and Banach fixed-point theorem under several assumptions on the corresponding linear system and the nonlinear term. Finally,
some numerical simulations are given to illustrate the obtained result.

1. Introduction

Time-fractional systems have been proved, with the devel-
opment of science and technology, to be one of the most
effective tools in modeling many phenomena arising in
physics, engineering, and real world problems [1–6].
+erefore, the research studies of fractional-order calculus
attract lots of attention for these kinds of systems with
several fractional derivatives (for more details, see [7–10]
and the references therein). Zhou and Jiao [11] introduced a
concept of a mild solution based on Laplace transform and
probability density functions; several authors presented a
tremendous amount of valuable results on controllability
and observability, stability analysis, and so on [12–15].

Similar to the integer-order control systems [16–21], the
regional controllability problem of fractional systems is a
class of control problems presented in many applications in
real world. Regional controllability of linear and some
nonlinear fractional systems is referred to in literature
[22–24] and the references therein. However, regional
controllability of Riemann–Liouville fractional semilinear
evolution equations with analytic semigroup problem is still
open.+en, this paper focuses on the existence of a bounded
control steering the system into a bounded desired state
defined only in a subregion of the whole evolution domain.
Based on Banach fixed-point theorem and some properties
of fractional operators, the main result is deduced.

+e rest of this paper is organized as follows. In Section
2, some definitions and preparation results are introduced.
In Section 3, the regional controllability of the considered
system, using theory of analytical semigroup, is established
under some conditions. At last, two examples are given to
illustrate our given algorithm.

2. Preliminaries and Problem Formulation

In this section, we introduce some basic definitions of
fractional operators present in the considered system which
will be specified later and some properties which are used
further in this paper.

Definition 1 (see [7]). +e left sided Riemann–Liouville
fractional integral (resp. derivative) of a function y at a point
t of order q ∈ ]0, 1[ can be written as

Iq
0+ y(t) �

1
Γ(q)

􏽚
t

0
(t − s)

q− 1
y(s)ds, 0< t≤T, (1)

RL
D

q

0+ y(t) �
d
dt

I
1− q
0+ y(t), 0< t≤T. (2)

Let us consider X and Y to be two Banach spaces; we
have the following two propositions.
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Proposition 1 (see [25]). Let us consider f ∈ L1
loc(0, T; X)

and T: [0, T]⟶L(X, Y) to be strongly continuous.
#en, the convolution

(T∗f)(t) ≔ 􏽚
t

0
T(t − s)f(s)ds, (3)

exists in Bochner sense and defines a continuous function
T∗f from [0, T] into Y.

Proposition 2 (see [25]). (Young’s inequality).
Let us consider p, r, s≥ 1 such that 1/r + 1/p � 1 + 1/s. If

T ∈ Lp(0, T;L(X, Y)) and f ∈ Lr(0, T; X); then, T∗f ∈
Ls(0, T; Y) and

‖T∗f‖Ls(0,T;Y) ≤ ‖f‖Lr(0,T;X).‖T‖Lp(0,T;L(X,Y)). (4)

Now, we present the considered system. For that, letΩ be a
bounded subset of Rn with a smooth boundary zΩ . Let us
consider T> 0 and denote

Q ≔ Ω ×]0, T],

Σ ≔ zΩ ×]0, T].
(5)

We consider the following semilinear fractional system
involving Riemann–Liouville derivative of order q ∈ ]0, 1[:

RLD
q

0+y(x, t) + Ay(x, t) � Ny(x, t) + Bu(t), inQ,

y(ξ, t) � 0, onΣ,

lim
t⟶0+

I
1− q
0+ y(x, t) � y0, inΩ,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(6)

where − A is the infinitesimal generator of an analytic semigroup
of uniformly bounded operator G(t){ }t≥0 on the Hilbert space
X � L2(Ω). Without loss of generality, let 0 ∈ ρ(A) where ρ(A)

is the resolvent set of A. +en we define the fractional power Aα

for 0< α< 1, which is a closed linear operator. Its domain is
D(Aα) � Xα, which is a Banach space equipped with the norm
‖.‖Xα � ‖Aα(.)‖X, N: L2(0, T;Xα)⟶ L2(0, T;X) is a non-
linear operator, and B is the control operator which is linear
(bounded or unbounded) fromRp into X where p is the number
of actuators, u is given in U ≔ L2(0, T,Rp), and the initial state
y0 is in Xα.

We use the following definition of mild solution for the
previous problem.

Definition 2 (see [26]). For t ∈ ]0, T] and any given u ∈ U,
we say that a function yu ∈ C(0, T; X) is a mild solution of
system (6) if it satisfies the following formula:

yu(., t) � t
q− 1

Kq(t)y0

+ 􏽚
t

0
(t − τ)

q− 1
Kq(t − τ) Nyu(τ) + Bu(τ)( 􏼁dτ,

(7)

where

Kq(t) � α􏽚
∞

0
θϕq(θ)G t

qθ( 􏼁dθ, (8)

in which ϕq is a probability density function defined in
]0,∞[.

Moreover Aα and Kq have the following properties.

Proposition 3 (see [27]). For any t> 0, we have

(i) ∃Mα > 0 such that

A
α
Kq(t)

�����

�����L(X,X)
≤

qMα

t
αq ×

Γ(2 − α)

Γ(1 + q(1 − α))
. (9)

(i) ∃M> 0 such that

Kq(t)
�����

�����L Xα ,Xα( )
≤

M

Γ(q)
. (10)

Corollary 1. Let us consider

Hq(t) � t
q− 1

Kq(t). (11)

#en, we have

Hq ∈ L
1 0, T;L X, X

α
( 􏼁( 􏼁. (12)

Proof. We have 0< α, q< 1; then, q(1 − α)> 0. +erefore,
t− αq+q− 1 ∈ L1(0, T), and by the previous proposition, we
have the result.

For the rest of this paper, we denote

β ≔ Hq

�����

�����L1 0,T;L X,Xα( )( )
‖B‖L X,Rp( ). (13)

3. Regional Controllability

In this section, we formulate and prove conditions for the
regional controllability of semilinear Riemann–Liouville
fractional control systems. To do this, let ω be a subregion of
Ω, and we define the restriction operator in ω by

χω: L
2
(Ω)⟶ L

2
(ω),

y⟶ y|ω
,

(14)

and we denote by χ∗ω its adjoint.
We have the following definition.

Definition 3. +e system (6) is said to be exactly (respec-
tively, approximately) ω-controllable if for all yd ∈ L2(ω)

(respectively, for all ε> 0 and for all yd ∈ L2(ω)), there exists
a control u ∈ U such that χωyu(T) � yd (respectively,
‖χωyu(T) − yd‖L2(ω)≤ ε).

For the rest of this paper, we can write the mild solution
as follows:

yu(., t) � Hq(t)y0 + Hq ∗Nyu􏼐 􏼑(., t) + Hq⋆Bu􏼐 􏼑(., t),

(15)
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and we define the restriction of the controllability operator
in ω by

H
q

Tω: U⟶ L
2
(ω),

u⟶ χω Hq ∗Bu􏼐 􏼑(., T).
(16)

Consider now the following associate linear system of
equation (6):

RLD
q

0+yu(x, t) � Ayu(x, t) + Bu(t), inQ,

yu(ξ, t) � 0, onΣ,

lim
t⟶0+

I
1− q
0+ yu(x, t) � y0, inΩ,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(17)

which we assume to be approximately ω− controllable.
Next, we will study the regional controllability of the

system (6) in ImH
q

Tω endowed with the norm

yd

����
����ImH

q

Tω
� H

q†

Tωyd

�����

�����U
, (18)

where

H
q†

Tω≔H
q∗

Tω H
q

TωH
q∗

Tω􏼐 􏼑
− 1

Pseudo − inverseoperatorof H
q

Tω( 􏼁.

(19)

Now, we shall present the main result; we first define the
operator

ψ yd,u( 􏼁 � H
q†

Tω yd − χωHq(T)y0 − χω Hq∗Nyu􏼐 􏼑(.,T)􏼐 􏼑, (20)

and we make the following assumptions:

(i) (H1) For arbitrary x, y ∈ L2(0, T;Xα),

N(0) � 0,

‖Nx − Ny‖L2(0,T;X) ≤LN(‖x‖, ‖y‖)‖x − y‖L2 0,T;Xα( ),

⎧⎨

⎩

(21)

with LN: R+ × R+⟶ R+ satisfying lim(a,])⟶(0,0)

LN(a, ]) � 0.
(ii) (H2) ‖χωHq(.)‖L(X,ImH

q

Tω) ≔ gq ∈ L2(0, T).

We obtain the following theorem.

Theorem 1. If the hypotheses (H1) and (H2) are satisfied,
then the following assertions hold:

(1) #ere exist ρ> 0, μ � μ(ρ)> 0, and m � m(ρ)> 0 such
that, under the assumption

ρ>(1 + β)
MT

Γ(q)
y0

����
����Xα, (22)

for any state yd in B(0, μ) ⊂ ImH
q

Tω, the operator
Ψ(yd, .) has a unique fixed point u∗ in B(0, m) that
steers system (6) to yd in ω.

(2) #e mapping

F: B(0, μ)⟶ U,

yd⟶ u
∗ (23)

is a Lipschitz mapping.

Proof

(1) Let us consider

A1 � β gq

�����

�����L2(0,T)
sup
a,]≤ρ

LN(a, ]),

A2 � Hq

�����

�����L1 0,T;L X,Xα( )( )
  sup

a,]≤ρ
LN(a, ]) +

MT

ρΓ(q)
y0

����
����Xα,

A3 � Hq

�����

�����L1 0,T;L X,Xα( )( )
  sup

a,]≤ρ
LN(a, ]).

(24)

Using the limit of LN(., .) near (0, 0), we can see that
for ρ> 0, there exists l> 0 such that

LN(a, ])≤ l<
1 − (1 + β)MT/ρΓ(q) y0

����
����Xα

Hq

�����

�����L1 0,T;L X,Xα( )( )
+ β gq

�����

�����L2(0,T)

∀a, ]≤ ρ,

(25)

which gives A1,A2,A3 < 1.
Let us consider

m �
ρ
β

1 − Hq

�����

�����L1 0,T;L X,Xα( )( )
  sup

a≤ρ
LN(a, 0)􏼠

−
MT

ρΓ(q)
y0

����
����Xα􏼡.

(26)

We have m> 0 and the mapping f: B(0, m)⟶
B(0, ρ) such that
f(u) � yu is a Lipschitz mapping with constant
β/1 − A3. In fact,

Hq

�����

�����L1 0,T;L X,Xα( )( )
sup
a≤ρ

LN(a,0) +
MT

ρΓ(q)
y0

����
����Xα≤A2<1,

(27)

and hence m> 0.
To show the Lipschitz condition of the function f,
we use equation (15), and Corollary 1, we have for all
 u, v ∈ B(0, m)

yu − yv

����
����L2 0,T;Xα( )

� Hq∗N yu − yv( 􏼁􏼐 􏼑(.) + Hq⋆B(u − v)􏼐 􏼑(.)
�����

�����L2 0,T;Xα( )

≤ Hq

�����

�����L1 0,T;L X,Xα( )( )
N yu − yv( 􏼁

����
����L2(0,T;X)

+ Hq

�����

�����L1 0,T;L X,Xα( )( )
‖B‖L X,Rp( )‖u − v‖U.

(28)

+erefore, by hypothesis (H1), we obtain

yu − yv

����
����L2 0,T;Xα( )

≤A3 yu − yv

����
����L2 0,T;Xα( )

+ β‖u − v‖U,

(29)

and hence f is a Lipschitz mapping with constant
β/1 − A3.
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Now, let μ � ρ/β(1 − ((1 + β)MT/ρΓ(q)‖y0‖Xα +

A1 + A3))> 0 and consider yd ∈ B(0, μ); we show
that Ψ(yd, .) has a unique fixed point in B(0, m).

Let us consider u, v ∈ B(0, m); we have

Ψ yd, u( 􏼁 − Ψ yd, v( 􏼁
����

����U
� 􏽚

T

0
χωHq(T − s) Nyu(s) − Nyv(s)( 􏼁ds

��������

��������Im Hq

Tω

≤ gq

�����

�����L2(0,T)
Nyu − Nyv

����
����L2(0,T;X)

≤ gq

�����

�����L2(0,T)
sup
a≤ρ

LN(a, 0) yu − yv

����
����L2 0,T;Xα( )

≤
A1

β
yu − yv

����
����L2 0,T;Xα( )

.

(30)

Since f is Lipschitz, then

Ψ yd, u( 􏼁 − Ψ yd, v( 􏼁
����

����U
≤

A1

1 − A3
‖u − v‖U. (31)

For A4 ≔ A1/1 − A3, using inequality (15), we have
A4 < 1, and thus Ψ(yd, .) is a strict contraction
mapping.

Let us show that

Ψ(B(0, μ), B(0, m)) ⊂ B(0, m). (32)

For that, let u ∈ B(0, m); then, yu ∈ B(0, ρ) and

Ψ yd, u( 􏼁
����

����U
� yd − χωHq(T)y0 − 􏽚

T

0
χωHq(T − s)Nyu(s)ds

��������

��������Im Hq

Tω

≤ yd

����
����Im Hq

Tω
+

MT

Γ(q)
y0

����
���� + gq

�����

�����L2(0,T)
Nyu

����
����L2(0,T;X)

≤ yd

����
����Im Hq

Tω
+

MT

Γ(q)
y0

����
���� + gq

�����

�����L2(0,T)
ρ sup

a≤ρ
LN(a, 0).

(33)

+erefore, for yd ∈ B(0, μ), we have

Ψ yd, u( 􏼁
����

����U
≤
ρ
β

1 − Hq

�����

�����L1 0,T;L X,Xα( )( )
  sup

a≤ρ
LN(a, 0) −

MT

ρΓ(q)
y0

����
����Xα􏼠 􏼡 � m. (34)

+en, Ψ(B(0, μ), B(0, m)) ⊂ B(0, m); finally, we
deduce from Banach fixed-point theorem that
Ψ(yd, .) admits a unique fixed point u∗ ∈ B(0, m).
A direct calculation shows us that u∗ obtained is the
solution of the regional controllability problem of
system (3).

(2) Let us consider zd and yd in B(0, μ); we have

F zd( 􏼁 − F yd( 􏼁 � Ψ zd, F zd( 􏼁( 􏼁 − Ψ zd, F yd( 􏼁( 􏼁

+ Ψ zd, F yd( 􏼁( 􏼁 − Ψ yd, F yd( 􏼁( 􏼁.

(35)

On the other hand,

Ψ zd, F zd( 􏼁( 􏼁 − Ψ zd, F yd( 􏼁( 􏼁
����

����U
≤A4 F zd( 􏼁 − F yd( 􏼁

����
����U

,

Ψ zd, F yd( 􏼁( 􏼁 − Ψ yd, F yd( 􏼁( 􏼁
����

����U
� zd − yd

����
����Im Hq

Tω
.

(36)

+en,

F zd( 􏼁 − F yd( 􏼁
����

����U
≤

1
1 − A4

zd − yd

����
����Im Hq

Tω
. (37)

+erefore, F satisfies the Lipschitz condition. □

Remark 1. In the case where B is unbounded, we suppose
that B is an admissible control operator for Hq (see [28]),
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and consequently we can demonstrate the same result with a
suitable β.

We give the following proposition.

Proposition 4. #e sequence

u0 � 0,

un+1 � H
q†

Tω yd − χωHq(T)y0 − χω Hq ∗Nyun
􏼐 􏼑(T)􏼐 􏼑,

⎧⎨

⎩

(38)

converges in B(0, m) ⊂ U to u∗.

Proof. Let us consider n, k ∈ N∗; we have

un+k − un

����
����U
≤ 􏽘

n+k− 1

l�n

ul+1 − ul

����
����U

. (39)

From inequality (31), we obtain

ul+1 − ul

����
����U

� Ψ yd, ul( 􏼁 − Ψ yd, ul− 1( 􏼁
����

����U

≤A4 ul − ul− 1
����

����U
≤Al

4 u1
����

����U
.

(40)

Since An
4⟶ 0

n⟶ +∞
, limn⟶+∞‖un+k − un‖U � 0.

+en, (un)n is a Cauchy sequence on B(0, m), and we
conclude that (un)n converges to u∗ in B(0, m).

Passing to the limit in (8), we have u∗ � Ψ(yd, u∗);
therefore, u � u∗ becauseΨ(yd, .) has a unique fixed point in
B(0, m).

Accordingly, we implement the algorithm as follows.

(i) Step 1

q, y0, the actuator, the subregion ω, yd and ε small
enough.
Choose r1 � yd.
Calculate u1 � H

q†
Tωr1 and obtain yu1

(., T).

(ii) Step 2

Repeat
rn � rn− 1 + (yd − χωyun− 1

(., T)), n≥ 2.

Calculate un � H
q†
Tωrn and obtain yun

(., T).
Until ‖χωyun

(., T) − yd‖ImHq

Tω
< ε.

4. Numerical Simulations

In this section, we present two numerical simulations il-
lustrating our theoretical result where the first one is given
by using zonal actuator and the second example is given by
using a pointwise actuator.

4.1. Zonal Actuator. Let us consider the following one-di-
mensional fractional system with q � 0.3.

RLD0.3
0+yu(x, t) �

z
2
yu(x, t)

zx
2 + 􏽘

∞

j�1
〈yu,φj〉􏼐 􏼑

2
φj(x) + χDu(t) in ]0, 1[×]0, 2[,

yu(ξ, t) � 0 on 0, 1{ } ×]0, 2[,

lim
t⟶0+

I
0.7
0+ yu(x, t) � sin(πx) in ]0, 1[,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(41)

where φj �
�
2

√
sin(jπx) and D � [0.4, 0.6].

+e subregion where we search the controllability of the
considered system is ω � [0.2, 0.5] and let
yd(x) � 12x2(x − 1)(x − 0.4). By using the previous algo-
rithm, we have the following figures.

In Figure 1, we remark that with the given zonal sensor,
we obtain successful results which validate the used method
and the previous algorithm; indeed, the desired and

estimated final states are very close in the subregion ω �

[0.2, 0.5] with the error ϵ � 3 × 10− 6 which is very small.
Figure 2 presents the evolution of control function which has
a transfer cost equal to ‖u∗‖2 � 0.21.

4.2. Pointwise Actuator. We consider the following system:

RLD0.5
0+yu(x, t) �

z
2
yu(x, t)

zx
2 + 􏽘

∞

j�1
〈yu,φj〉

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌〈yu,φj〉φj(x) + δbu(t) in ]0, 1[×]0, 2[,

yu(ξ, t) � 0 on 0, 1{ } ×]0, 2[,

lim
t⟶0+

I
0.5
0+ yu(x, t) � sin(πx) in ]0, 1[.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(42)
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By applying the above algorithm for b � 0.2,
ω � [0.35, 0.55], and

yd(x) � − 52x(x − 1)(x − 0.33)(x − 0.54), (43)

we have the following result.
In Figure 3, like the previous part, the given algorithm

leads to good results; we remark that the desired state and
the reached one are close in w � [0.35, 0.55] using the given
pointwise actuator. In this case, the reconstruction error is
very small, and it is of order ε � 10− 5. Figure 4 shows the
evolution of control function depending on the time t with
the transfer cost ‖u∗‖2 � 4 × 10− 3.

5. Conclusion

In this paper, we have established the regional controllability
for a class of Riemann–Liouville fractional semilinear
control systems. +e idea of applying control theory for this
kind of systems is very interesting and constitutes a new
issue in the applications.+e presented method in this paper
covers a large class of this kind of systems. We have also
given an algorithm which has been implemented numeri-
cally and has very satisfactory results. In addition, the
problem of regional controllability remains open for other
types of fractional systems that will be the subject of future
research.
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Figure 1: Desired state and estimated final state in ω.
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Figure 2: Control input function.
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Figure 3: Estimated state and desired state in ω.
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Figure 4: Control function.
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,is paper discusses a class of semilinear fractional evolution equations with infinite delay and almost sectorial operator on infinite
interval in Banach space. By using the properties of analytic semigroups and Schauder’s fixed-point theorem, this paper obtains
the existence of mild solutions of the fractional evolution equation. Moreover, this paper also discusses the existence of mild
solution when the analytic semigroup lacks compactness by Kuratowski measures of noncompactness and Darbo–Sadovskii fixed-
point theorem.

1. Introduction

Fractional differential models play a very important role in
describing many complex phenomena such as chaotic sys-
tem [1], fluid flow [2, 3], anomalous diffusion [4–7], and so
on. Compared with the classical partial differential models
such as [8–19], the biggest advantage of models with frac-
tional derivatives is their global property and history
memory. Delay is short for time delay, which exists widely in
the objective world. In the differential equation model with
delay, the function depends not only on the current state but
also on the past time state, so it is more suitable to describe
the process with time memory. ,is property of delay is very
similar to that of fractional derivatives. So many researchers
introduced fractional derivatives into differential equations
with delay [20–24]. Evolution equation, which is a general
appellation for some partial differential equations with time
variable, is mainly used to describe the time-dependent state

and process. Common evolution equations include the wave
equation, the heat equation, Schrodinger equation, KdV
equation, Navier–Stokes equation, and so on. By using the
operator semigroup theory, some partial differential evo-
lution equations can be represented to some abstract or-
dinary differential equations (ODEs) in some special
functional spaces. At present, the research on integer-order
evolution equations has been relatively perfect [25, 26], but
the research on fractional-order evolution equations is still
in the preliminary stage. ,e existence of solutions for
fractional evolution equations is also the basis of the fol-
lowing study. ,e mild solution of integer-order evolution
equations is defined by the constant variationmethod, which
cannot be directly extended to fractional-order evolution
equations.

Li [20] studied the following fractional evolution
equations with almost sectorial operator on finite interval:

cD
q
t x(t) � Ax(t) + f t, x, xt( 􏼁, 0< q< 1, t ∈ (0, T], x0 � ϕ(t) ∈ B, t ∈ (− ∞, 0],􏼈 (1)
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where cD
q
t is the Caputo fractional derivative operator, the

evolution operator A is an almost sectorial operator, and B is
a phase space. xt is the element of B defined by
xt(θ) � x(t + θ), θ ∈ (− ∞, 0]. Here, xt(·) represents the
history of state up to the present time.

Baliki et al. [22] discussed a second-order evolution
equation with infinite delay and obtained the existence and
attractivity of mild solutions by Schauder’s fixed point as
follows:

x″(t) − A(t)x(t) � f t, xt( 􏼁, 0< q< 1, t ∈ (0,∞),

x0 � ϕ(t) ∈ B, x′(0) � 􏽥x,

⎧⎨

⎩

(2)

where A(t){ }0≤t<∞ is a family of linear closed operators,
xt(θ) � x(t + θ), θ ∈ (− ∞, 0], and B is a phase space. ,e
existence of mild solutions for fractional evolution equations
and evolution equations with infinite delay has been dis-
cussed in several papers (see [20, 21]). However, we find that
most of the previous papers discuss the fractional evolution
equations in the conventional spaces of continuous function
on finite or infinite interval and in Banach space on finite
interval. To our knowledge, no paper is devoted to the
existence of mild solutions with infinite delay and almost
sectorial operator on infinite interval on Banach space.

In this paper, we consider the following fractional
evolution problem with infinite time delay:

cD
q
0+ x(t) + Ax(t) � f t, xt( 􏼁, t ∈ (0, +∞), 0< q< 1, x(t) � ϕ(t) ∈ B, t ∈ (− ∞, 0],􏼈 (3)

where cD
q
0+ is the Caputo fractional derivative operator, the

evolution operator A is an almost sectorial operator, f is a
given function which will be introduced later, and B is a
phase space. For any continuous function x and any t≥ 0, xt

is the same as in equation (1) which represents the history of
state up to the present time.

,e rest of this paper is organized as follows. In Section
2, we recall some definitions, propositions, notations, and
lemmas. In Section 3, the main results of this paper are
obtained. We consider two cases: the semigroup Q(t)

generated by operator A with compactness and without
compactness. For the case that Q(t) is compact, we construct
a special Banach space B′ and obtain the existence of global
mild solution by using Schauder’s fixed-point theorem. For
the case that Q(t) is not compact, we expand the result of
,eorem 1.2.4 in Guo et al. [27] from any compact interval
to infinite interval (see Lemma 10) and obtain the existence
of global mild solution by applying Kuratowski measures of
noncompactness theory and Darbo–Sadovskii fixed-point
theorem.

2. Preliminaries

In this section, we introduce some notations, definitions,
lemmas, and preliminary facts that will be used in the rest of
this paper. Let (E, | · |) be a Banach space. Denote B(E) as
the space of all bounded linear operators from E to itself with
norm ‖·‖B(E).

Definition 1 (see [28, 29]). Let − 1< c< 0 and 0<ω< (π/2).
Denote by Θc

ω(E) all the linear closed operators
A: D(A) ⊂ E⟶ E which satisfy

(1) σ(A) ⊂ Sω � z ∈ C∖ 0{ }, arg|z|≤ω􏼈 􏼉∪ 0{ }.

(2) For every ω< μ< π, there exists a constant Cμ such
that

|R(z, A)|≤Cμ|z|
c for all z ∈ C\Sμ. (4)

A linear operator A will be called an almost sectorial
operator on E if A ∈ Θc

ω(E).
Define the power of A as

A
β

�
1
2πi

􏽚
Γθ

z
β
R(z, A)dz, β> 1 + c, (5)

where Γθ � R+eiθ ∪R+e− iθ􏼈 􏼉 is an appropriate path oriented
counterclockwise and ω< θ< μ. ,en, the linear power space
Xβ ≔ D(Aβ) can be defined and Xβ is a Banach space with
the graph norm ‖x‖β � |Aβx|, x ∈ D(Aβ).

Next, let us introduce the semigroup associated withA. If
A is an almost sectorial operator, then A generates an an-
alytic semigroup Q(t) of growth order 1 + c as follows:

Q(t) �
1
2πi

􏽚
Γθ

e
− tz

R(z, A)dz, t ∈ S
0
(π/2)− ω, (6)

where Γθ � R+eiθ ∪R+e− iθ􏼈 􏼉 is oriented counterclockwise
and ω< θ< μ< (π/2) − arg|t|. S0(π/2)− ω is the open sector
z ∈ C∖ 0{ }, |argz|< (π/2) − ω􏼈 􏼉. Furthermore, Q(t) satisfies
the following properties.

Proposition 1 (see [28, 29]). Let A ∈ Θc
ω(E) with − 1< c< 0

and 0<ω< (π/2). ,en, the following properties remain true:

(1) Q(t) is analytic in S0(π/2)− ω and
(dn/dtn)Q(t) � (− A)nQ(t), t ∈ S0(π/2)− ω.

(2) -e functional equation holds: Q(s + t) � Q(s)Q(t)

for all s, t ∈ S0(π/2)− ω.
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(3) -ere is a constant C0 � C0(c)> 0 such that
|Q(t)| ≤C0t

− c− 1, t> 0.
(4) -e range R(Q(t)) of Q(t) (t ∈ S0(π/2)− ω) is contained

in D(A∞). Particularly, R(Q(t)) ⊂ D(Aβ) for all
β ∈ C with Re β> 0:

A
β
Q(t)x �

1
2πi

􏽚
Γθ

z
β
e

− tz
R(z, A)xdz, t ∈ S

0
(π/2)− ω, x ∈ E,

(7)

and there exists a constant C′ � C′(c, β)> 0 such that
for all t> 0,

A
β
Q(t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤C′t− c+Reβ− 1
. (8)

(5) If β> 1 + c, then
D(Aβ) ⊂ 􏽐Q � x ∈ E, lim

t⟶0
Q(t)x � x􏼚 􏼛.

By Theorem 3.13 in Periago [28], if A is an almost
sectorial operator, then for every λ ∈ C with Re λ> 0,

R(λ, − A) � 􏽚
+∞

0
e

− λt
Q(t)dt. (9)

Let X be the following set:

X ≔ x: R⟶ Xβ, x[0,+∞) ∈ C [0, +∞), Xβ􏼐 􏼑, lim
t⟶+∞

e
− kt

x(t) � 0, x0 ∈ B􏼚 􏼛, (10)

where x[0,+∞) is the restriction of x on [0, +∞) and k is a
constant.

In this paper, we use an axiomatic definition of the phase
space B. (B, ‖·‖B) is a seminormed linear space of functions
mapping (− ∞, 0] into E and satisfies the following axioms
which are introduced by Hale and Kato in [30].

(A) If x: (− ∞, b]⟶ E, b> 0 is continuous on [0, b]

and x0 ∈ B, then for any t ∈ [0, b], the following
conditions hold:

(i) xt ∈ B.
(ii) ,ere exists a positive constant H such that

|x|≤H‖xt‖B.
(iii) ,ere exist positive continuous functions

K(·), M(·) independent of x(·) such that

xt

����
����B
≤K(t) sup

0≤s≤t
‖x(s)‖β + M(t) x0

����
����B

. (11)

(B) For the functions in (A), xt is a B-value continuous
function on [0, b].

(C) ,e space B is complete.

Definition 2 (see [31, 32]). Let f ∈ L1((0, +∞), E) and q> 0;
then,

I
q
0+f(t) �

1
Γ(q)

􏽚
t

0
(t − s)

q− 1
f(s)ds (12)

is called the Riemann–Liouville fractional integral of order q.

Definition 3 (see [31, 32]). ,e Caputo fractional deriv-
ative of order q> 0 of the function f: (0, +∞)⟶ E is
given by

c
D

q
0+f(t) �

1
Γ(n − q)

􏽚
t

0
(t − s)

n− q− 1
f

(n)
(s)ds, (13)

where n is the smallest integer greater than or equal to q,
provided that the right side is well defined on (0, +∞).

Lemma 1 (see [31, 32]). For all f, g ∈ Lq((0,

+∞), E), 1≤ q<∞,

I
q
0+(f∗g) � I

q
0+f( 􏼁∗g. (14)

Next, we will introduce the mild solution of equation (3).
Shu et al. [33] define the mild solution of equation (3) as

x(t) � Sq(t)ϕ(0) + 􏽚
t

0
(t − s)

q− 1
Pq(t − s)f s, xs( 􏼁ds,

(15)

where Sq(t) and Pq(t) have the following expressions and Γ
is an appropriate path in ρ(− A).

Sq(t) �
1
2πi

􏽚
Γ
e
λtλq− 1

R λq
, − A( 􏼁dλ,

Pq(t) �
t
1− q

2πi
􏽚
Γ
e
λt

R λq
, − A( 􏼁dλ.

(16)

Using the properties of the Mittag-Leffler function (for
more details, we refer the readers to [32]),

Eα,β(z) � 􏽘
+∞

k�0

z
k

Γ(αk + β)
�

1
2πi

􏽚
Γ

λα− β
e
α

λα − z
dλ, (17)

where Γ is the same path as in (4) (see [32]), the above
operators Sq(t) and Pq(t) can be represented as the gen-
eralized Mittag-Leffler-type functions:

Sq(t) � Eq,1 − t
q
A( 􏼁 � Eq − t

q
A( 􏼁,

Pq(t) � Eq,q − t
q
A( 􏼁.

(18)

Moreover, Wang et al. [29] and Zhou et al. [34–36]
introduced the function of Wright-type Mq(z):
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Mq(z) � 􏽘
+∞

n�1

(− z)
n− 1

(n − 1)!Γ(1 − nq)
, 0< q< 1, z ∈ C, (19)

and obtained another expression of Sq(t), Pq(t):

Sq(t) � 􏽚
+∞

0
Mq(s)Q t

q
s( 􏼁ds,

Pq(t) � 􏽚
+∞

0
qsMq(s)Q t

q
s( 􏼁ds.

(20)

In fact, these three expressions ((16)–(20)) are equivalent
in the case that t> 0 and A ∈ Θc

ω(E). -erefore, in this paper,
we use the same expression of Sq(t), Pq(t) as Wang et al. in
[29] and Zhou et al. in [34–36]. -en, the global mild solution
of problem (3) is given in the following definition.

Definition 4. A function x: R⟶ X is called a global mild
solution to the problem (3), if x(t) ∈ C(R, X) and

x(t) �
Sq(t)ϕ(0) + 􏽚

t

0
(t − s)

q− 1
Pq(t − s)f s, xs( 􏼁ds, t ∈ (0, +∞),

ϕ(t), t ∈ (− ∞, 0].

⎧⎪⎨

⎪⎩
(21)

Lemma 2 (see [29]). For any fixed t> 0, Sq(t) and Pq(t) are
linear and bounded operators and there exist constants Cs

and Cp such that for all x ∈ E,

Sq(t)x
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤Cst
− q(1+c)

|x|,

Pq(t)x
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤Cpt
− q(1+c)

|x|.
(22)

Lemma 3 (see [29]). For t> 0, operators Sq(t)􏽮 􏽯 and
Pq(t)􏽮 􏽯 are continuous in the uniform operator topology.
Moreover, for every r> 0, the continuity is uniform on
[r, +∞).

Lemma 4 (see [29]). Let 0< β< 1 − c; then,

(1) For t> 0, the range R(Pq(t)) of Pq(t) is contained in
D(Aβ).

(2) For all x ∈ D(A) and t> 0,
|ASq(t)x|≤Ct− q(1+c)|Ax|, where C is a constant
depending on c, q.

Remark 1. Moreover, for all x ∈ D(Aβ)(0< β< 1 − c) and
t> 0,

A
β
Sq(t)x

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤Cst
− q(1+c)

A
β
x

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

A
β
Pq(t)x

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤Cpt
− q(1+c)

A
β
x

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,
(23)

that is,
Sq(t)x

�����

�����β
≤Cst

− q(1+c)
‖x‖β,

Pq(t)x
�����

�����β
≤Cpt

− q(1+c)
‖x‖β.

(24)

Lemma 5 (see [29]). Let β> 1 + c; then, limt⟶0+Sq(t)x � x

for all x ∈ D(Aβ).

3. Main Results

In this section, our main purpose is to establish sufficient
conditions for the existence of global mild solutions to
problem (3) in X. Assume that:

(H) f: [0, +∞) × B⟶ Xβ, (1 + c< β< 1 − c) is con-
tinuous and satisfies

‖f(t, x)‖β ≤p(t)e
− kt

‖x‖B, (25)

where p(t) is a nonnegative and continuous function on
[0, +∞) and here exists a big enough k> 0 such that

(i) For any t≥ 0,

Cpe
− kt

􏽚
t

0
(t − s)

− qc− 1
p(s)K(s)ds ≤

1
2
, (26)

(ii) limt⟶+∞e− kt 􏽒
t

0 (t − s)− qc− 1p(s)K(s)ds � 0,

limt⟶+∞ e− kt 􏽒
t

0 (t − s)− qc− 1p(s)M(s)ds � 0.

In order to obtain the existence of global mild solution of
problem (3), we transform it into a fixed-point problem. For
any ϕ(0) ∈ Xβ, define the operator 􏽢T: X⟶ X as

􏽢Tx(t) �
Sq(t)ϕ(0) + 􏽚

t

0
(t − s)

q− 1
Pq(t − s)f s, xs( 􏼁ds, t ∈ (0, +∞),

ϕ(t), t ∈ (− ∞, 0].

⎧⎪⎨

⎪⎩
(27)
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Let z(t): R⟶ X be the function

z(t) �
Sq(t)ϕ(0), t ∈ (0, +∞),

ϕ(t), t ∈ (− ∞, 0],
􏼨 (28)

and x(t) � y(t) + z(t), t ∈ R. It is easy to know that x(t)

satisfies (21) if and only if

y(t) �
􏽚

t

0
(t − s)

q− 1
Pq(t − s)f s, ys + zs( 􏼁ds, t ∈ (0, +∞),

y0 � 0, t ∈ (− ∞, 0].

⎧⎪⎨

⎪⎩

(29)

Define the set B′ ≔ y ∈ X: y0 � 0 ∈ B􏼈 􏼉 endowed with
seminorm ‖·‖b:

‖y‖b � y0
����

����B
+ sup

t≥0
e

− kt
‖y(t)‖β􏽮 􏽯 � sup

t≥0
e

− kt
‖y(t)‖β􏽮 􏽯.

(30)

,us, (B′, ‖·‖b) is a Banach space. Define the operator
T: B′ ⟶ B′ as

Ty(t) �
􏽚

t

0
(t − s)

q− 1
Pq(t − s)f s, ys + zs( 􏼁ds, t ∈ (0, +∞),

y0 � 0, t ∈ (− ∞, 0].

⎧⎪⎨

⎪⎩

(31)

Consequently, the operator 􏽢T: X⟶ X having a fixed
point in X is equivalent to the operator T: B′ ⟶ B′ having
a fixed point in B′.

Lemma 6. Assume that condition (H) is valid; then, there
exists a constant r> 0 such that

Cpe
− kt

􏽚
t

0
(t − s)

− qc− 1
e

− ks
p(s) K(s)M + M(s)‖ϕ‖B􏼂 􏼃ds≤

r

2
,

(32)

where M satisfies supt>0‖Sq(t)ϕ(0)‖β≤M. Consider Br ≔
y ∈ B′, ‖y‖b ≤ r􏼈 􏼉; then, for any ϕ(0) ∈ Xβ, the operator

T: Br⟶ Br is continuous.

Proof. By ϕ(0) ∈ Xβ and Lemma 5 (1), there exists
0< δ1 <T, and for any t ∈ (0, δ1], such that
‖Sq(t)ϕ(0) − ϕ(0)‖β< ε. for any t≥ δ1, ‖Sq(t)ϕ(0)‖β

≤Cs‖ϕ(0)‖βδ
− q(1+c)
1 . ,erefore, there exists a constant M> 0

such that supt>0‖Sq(t)ϕ(0)‖β≤M.
For any y(t) ∈ Br, 0< s< t, note that

ys + zs

����
����B
≤ ys

����
����B

+ zs

����
����B

,

≤K(s)e
ks

‖y‖b + K(s) sup
0<τ≤s

Sq(τ)ϕ(0)
�����

�����β

+ M(s)‖ϕ‖B,

≤K(s)e
ks

‖y‖b + K(s)M + M(s)‖ϕ‖B,

≔ η(s).

(33)

,en, by condition (H) and Remark 1, we have

e
− kt

‖Ty(t)‖β ≤ e
− kt

􏽚
t

0
(t − s)

q− 1
Pq(t − s)f s, ys + zs( 􏼁

�����

�����β
ds,

≤Cpe
− kt

􏽚
t

0
(t − s)

− qc− 1
e

− ks
p(s)η(s)ds,

≤ Cpe
− kt

􏽚
t

0
(t − s)

− qc− 1
e

− ks
p(s)K(s)ds􏼠 􏼡‖y‖b,

+ Cpe
− kt

􏽚
t

0
(t − s)

− qc− 1
e

− ks
p(s) K(s)M + M(s)‖ϕ‖B􏼂 􏼃ds,

≤
r

2
+

r

2
� r,

(34)

which implies that ‖Ty‖b ≤ r and T: Br⟶ Br.

Next, we will prove the continuity of T. Let
yn(t)􏼈 􏼉

∞
n�1 ∈ Br and ‖yn − y‖b⟶ 0 as n⟶∞ for any

t≥ 0. ,en, for any t> 0, by the continuity of f,

e
− kt

Ty
n
(t) − Ty(t)

����
����β ≤Cpe

− kt
􏽚

t

0
(t − s)

− qc− 1

f s, y
n
s( 􏼁 − f s, ys( 􏼁

����
����βds⟶ 0 (n⟶∞),

(35)

which implies that ‖Tyn(t) − Ty(t)‖b⟶ 0 as n⟶∞.
,erefore, the continuity of T is proved. □

Lemma 7. Assume that condition (H) is satisfied; then, for
any ϕ(0) ∈ Xβ,

(1) e− ktTy(t), y ∈ B′􏼈 􏼉 is equicontinuous on any com-
pact interval of [0, +∞).

(2) For any given ε> 0, there exists a constant T> 0 such
that e− kt‖Ty(t)‖β < ε for any t≥T and y ∈ B′.
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Proof. (1) Without loss of generality, we take
[0, T) ⊂ [0, +∞) as the compact interval and 0≤ t1 < t2 ≤T.

Firstly, for t1 � 0, t1 < t2 ≤T and any y ∈ B′, according to
the continuity of p(s) and η(s), we have

e
− kt1Ty t1( 􏼁 − e

− kt2Ty t2( 􏼁
�����

�����β
≤Cpe

− kt2

􏽚
t2

0
t2 − s( 􏼁

− qc− 1
e

− ks
p(s)η(s)ds⟶ 0 t2⟶ 0( 􏼁.

(36)

Next, for 0< t1 < t2 ≤T, by Lemma 2 and Remark 1, we
have

e
− kt1Ty t1( 􏼁 − e

− kt2Ty t2( 􏼁
�����

�����β
,

≤ e
− kt2 􏽚

t2

t1

t2 − s( 􏼁
q− 1

Pq t2 − s( 􏼁f s, ys + zs( 􏼁
�����

�����β
ds,

+ e
− kt1 − e

− kt2􏼐 􏼑 􏽚
t1

0
t2 − s( 􏼁

q− 1
Pq t2 − s( 􏼁f s, ys + zs( 􏼁

�����

�����β
ds,

+ e
− kt1 􏽚

t1

0
t1 − s( 􏼁

q− 1
− t2 − s( 􏼁

q− 1
􏽨 􏽩 Pq t2 − s( 􏼁f s, ys + zs( 􏼁

�����

�����β
ds,

+ e
− kt1 􏽚

t1

0
t1 − s( 􏼁

q− 1
Pq t2 − s( 􏼁 − Pq t1 − s( 􏼁􏼐 􏼑f s, ys + zs( 􏼁

�����

�����β
ds,

≤Cpe
− kt2 􏽚

t2

t1

t2 − s( 􏼁
− qc− 1

e
− ks

p(s)η(s)ds,

+ Cp e
− kt1 − e

− kt2􏼐 􏼑 􏽚
t1

0
t2 − s( 􏼁

− qc− 1
e

− ks
p(s)η(s)ds,

+ Cpe
− kt1 􏽚

t1

0
t1 − s( 􏼁

q− 1
− t2 − s( 􏼁

− qc− 1
􏽨 􏽩e

− ks
p(s)η(s)ds,

+ sup
s∈ 0,t1− δ[ ]

Pq t2 − s( 􏼁 − Pq t1 − s( 􏼁
�����

�����B(E)
e

− kt1 􏽚
t1− δ

0
t1 − s( 􏼁

− qc− 1
e

− ks
p(s)η(s)ds,

+ e
− kt1 􏽚

t1

t1− δ
t1 − s( 􏼁

q− 1
Pq t2 − s( 􏼁 − Pq t1 − s( 􏼁􏼐 􏼑f s, ys + zs( 􏼁

�����

�����β
ds,

≔ I11(t) + I12(t) + I13(t) + I14(t) + I15(t).

(37)

For I11(t), I12(t), and I14(t) by the continuity of p(s),
η(s), e− ks, and Pq(s), we have I11(t), I12(t)I14(t)⟶ 0 as
t2⟶ t1, δ⟶ 0. For I13(t) and I15(t), note that

I1i(t)≤ 2Cpe
− kt1 􏽚

t1

0
t1 − s( 􏼁

− qc− 1
e

− ks
p(s)η(s)ds, i � 3, 5.

(38)

,en, by using Lebesgue’s dominated convergence
theorem, we have I13(t), I15(t)⟶ 0 as t2⟶ t1, δ⟶ 0.
,erefore, for any 0≤ t1 < t2 ≤T and y ∈ B′,
‖Ty(t1) − Ty(t2)‖b⟶ 0 as t2⟶ t1, δ⟶ 0.

(2) By condition (H), for big enough T> 0,

e
− kt

􏽚
t

0
(t − s)

− qc− 1
e

− ks
p(s)η(s)ds<

1
Cp

ε. (39)

,en, for any t≥T, y ∈ B′, we have

e
− kt

‖Ty(t)‖β ≤Cpe
− kt

􏽚
t

0
(t − s)

− qc− 1
e

− ks
p(s)η(s)ds< ε. (40)

□

3.1. -e Case -at Q(t) Is Compact. In this section, we as-
sume that Q(t) is compact for t> 0, i.e., Q(t) is a compact
operator for every t> 0.

Lemma 8. Let Z⊆B′ be a bounded set; then, Z is relatively
compact in B′ if the following conditions hold:

(1) -e set y(t), y ∈ Z􏼈 􏼉 is equicontinuous on any
compact interval of [0, +∞) and for any t≥ 0,
y(t), y ∈ Z􏼈 􏼉 is relatively compact in X.

(2) For any given ε> 0, there exists a constant
T � T(ε)> 0 such that e− kt‖y(t)‖β < ε for any t≥T

and y(t) ∈ Z.
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Proof. It is sufficient to prove that Z is totally bounded. We
consider the compact interval [0, T] of [0, +∞). Define

Z[0,T] ≔ y(t): y(t) ∈ Z, t ∈ [0, T]􏼈 􏼉, (41)

with norm ‖y‖b1
≔ sup0≤t≤T e− kt‖y(t)‖β􏽮 􏽯; then, condition

(1) combined with Arzelà–Ascoli theorem in Banach space
indicates that Z[0,T] is relatively compact. ,erefore, for any
ε> 0, there exist finitely many balls Bε(yi) such that
Z[0,T] ⊂ ∪ n

i�1Bε(yi), where yi ∈ B′.

Bε y
i

􏼐 􏼑 � y(t) ∈ Z[0,T], y − y
i

����
����b1

� sup
0≤t≤T

e
− kt

y(t) − y
i
(t)

����
����β􏼚 􏼛≤ ε􏼨 􏼩.

(42)

Hence, for any y(t) ∈ Z, there exists an i ∈ 1, 2, . . . , n{ }

such that y[0,T] ∈ Bε(yi), i.e., for t ∈ [0, T],

e
− kt

y(t) − y
i
(t)

����
����β ≤ ε. (43)

Moreover, for t ∈ [T, +∞], with conditions (3) and (43),

e
− kt

y(t) − y
i
(t)

����
����β,

≤ e
− kt

y(t) − e
− kT

y(T)
�����

�����β
+ e

− kT
y(T) − e

− kT
y

i
(T)

�����

�����β

+ e
− kT

y
i
(T) − e

− kt
y

i
(t)

�����

�����β
,

≤ 5ε.
(44)

,erefore, by (43) and (44), we have ‖y(t) − yi(t)‖b ≤ 5ε
for any t≥ 0. ,en, Z can be covered by balls
B5ε(yi) � y(t) ∈ Z, |y − yi|b ≤ 5ε􏼈 􏼉. Consequently, Z is to-
tally bounded and the process is complete. □

Theorem 1. Assume that condition (H) holds; then, for
ϕ(0) ∈ Xβ, problem (3) has at least one global mild solution in
Br.

Proof. We aim to prove this theorem by using Schauder’s
fixed-point theorem. In view of Lemma 6, T: Br⟶ Br and
T is continuous, so we just need to prove that for any
bounded subset V ⊂ Br, TV is relatively compact in X. ,en,
it is easy to prove that TV satisfies all conditions in Lemma 8.

Consider Lemma 6; we have proved that
‖Ty‖b � sup

t≥0
e− kt‖Ty(t)‖β􏽮 􏽯≤ r for any y ∈ Br which implies

Ty, y ∈ Br􏼈 􏼉 is uniformly bounded. By Lemma 7,
Ty, y ∈ B′􏼈 􏼉 is equicontinuous on any compact interval

[0, T] of [0, +∞) and e− kt‖Ty(t)‖β < ε for any t≥T and
y ∈ B′. ,en, it remains to show that
V(t) � (Ty)(t), y(t) ∈ V􏼈 􏼉 is relatively compact in X for
any t ∈ [0, T].

It is easy to know that V(0) � 0{ } is compact in X. Let
t ∈ [0, T) be fixed and for any ε ∈ (0, t), δ > 0, we define an
operator Tδ

ε on V by the formula

T
δ
εy􏼐 􏼑(t) � 􏽚

t− ε

0
􏽚

+∞

δ
qθ(t − s)

q− 1
Mq(θ) Q (t − s)

qθ( 􏼁f s, ys + zs( 􏼁dθds,

� Q εqδ( 􏼁 􏽚
t− ε

0
􏽚

+∞

δ
qθ(t − s)

q− 1
Mq(θ) Q (t − s)

qθ − εqδ( 􏼁f s, ys + zs( 􏼁dθds,

(45)

where y ∈ V. Under the compactness of Q(εqδ)(εqδ > 0) and
the boundedness of

􏽚
t− ε

0
􏽚

+∞

δ
qθ(t − s)

q− 1
Mq(θ)Q (t − s)

qθ − εqδ( 􏼁

f s, ys + zs( 􏼁dθds,

(46)

we obtain that the set Vδ
ε(t) � (Tδ

εy)(t), y ∈ V􏼈 􏼉 is relatively
compact in X for any ε ∈ (0, t) and δ > 0. Moreover, for any
y ∈ V, t> 0, we have

e
− kt

(Ty)(t) − T
δ
εy􏼐 􏼑(t)

�����

�����β
,

≤ qe
− kt

􏽚
t

0
􏽚
δ

0
θ(t − s)

q− 1
Mq(θ) (t − s)

qθ( 􏼁f s, ys + zs( 􏼁dθds

��������

��������β
,

+ e
− kt

􏽚
t

t− ε
􏽚

+∞

δ
qθ(t − s)

q− 1
Mq(θ) Q (t − s)

qθ( 􏼁f s, ys + zs( 􏼁dθds

�������

�������β
,

≤ qCpe
− kt

􏽚
t

0
(t − s)

− qc− 1
e

− ks
p(s)η(s)ds 􏽚

δ

0
θ− c

Mq(θ)dθ,

+ Cpe
− kt

􏽚
t

t− ε
(t − s)

− qc− 1
e

− ks
p(s)η(s)ds.

(47)
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According to 􏽒
+∞
0 θrMq(θ)dθ � (Γ(1 + r)/Γ(1 + qr))

and condition (H), we have

􏽚
δ

0
θ− c

Mq(θ)dθ⟶ 0,

􏽚
t

t− ε
(t − s)

− qc− 1
p(s)η(s)ds⟶ 0, as ε⟶ 0, δ⟶ 0,

(48)

which implies ‖(Ty)(t) − (Tδ
εy)(t)‖b⟶ 0 as

ε⟶ 0, δ⟶ 0.
,erefore, the relatively compact set Vδ

ε(t) is arbitrarily
close to the set V(t). Hence, for any t ∈ [0, T], the set V(t),
t ∈ [0, T] is also relatively compact in X.

Hence, T: Br⟶ Br is a completely continuous oper-
ator. So, by Schauder’s fixed-point theorem, T has at least
one fixed point in Br which implies that problem (3) has at
least one global mild solution in Br. □

3.2. -e Case -at Q(t) Is Not Compact. In this section, we
assume that Q(t) is not compact. In the following, α and αB′
denote the Kuratowski measures of noncompactness of
bounded sets in Xβ and in B′. For more details about
Kuratowski measures of noncompactness, we refer the
readers to [27]. Assume that:

(H∗) ,ere exists m(t) ∈ L([0, +∞), [0, +∞)) such that
I

q
0+m exists and for any bounded set V ⊂ B,

α(f(t, V))≤m(t) e
− ktsup− ∞<τ≤0α(V(τ)), (49)

and for any t≥ 0,

Cpe
− kt

􏽚
t

0
(t − s)

− qc− 1
m(s)ds< 1. (50)

Lemma 9 (see [27]). If V ⊂ C(J, E) is bounded and equi-
continuous, then α(V(t)) is continuous and

α 􏽚
J
y(t)dt, y ∈ V􏼨 􏼩􏼠 􏼡≤􏽚

J
α(V(t))dt, (51)

where J is any compact interval of [0, +∞).

Lemma 10. Let V be a bounded set in B′. Suppose that V(t)

is equicontinuous on any compact interval [0, T] of [0, +∞)

and for any t≥T, ε> 0, and y ∈ V,

e
− kt

‖y(t)‖β < ε. (52)

-en, for each V(t) � y(t), y ∈ V􏼈 􏼉,

αB′(V) � sup
t≥0

e
− ktα(V(t))􏽮 􏽯. (53)

Proof. First, we prove that αB′(V)≥ supt≥0 e− ktα(V(t))􏼈 􏼉.
For the above given ε> 0, t≥ 0, there exists a partition V �

∪ n
j�1Vj such that

diam Vj􏼐 􏼑< αB′(V) + ε, for any j � 1, 2, . . . , n. (54)

,en, V(t) � ∪ n
j�1Vj(t). For any u, v ∈ Vj, t≥ 0,

e
− kt

‖u(t) − v(t)‖β ≤ diam Vj􏼐 􏼑< αB′(V) + ε. (55)

,erefore, diam(Vj(t))≤ ekt(αB′(V) + ε) which implies

sup
t≥0

e
− ktα(V(t))􏽮 􏽯≤ αB′(V), (56)

by the arbitrariness of ε.
Next, we show that αB′(V)≤ supt≥0 e− ktα(V(t))􏼈 􏼉. By the

equicontinuity of V(t) on [0, T], there exists a partition 0 �

t0 < t1 < · · · < tm � T such that

e
− kti
′
y ti
′( 􏼁 − e

− kt″
i y ti
″( 􏼁

������

������β
< ε, (57)

for any ti
′, ti
″ ∈ [ti, ti+1], y ∈ V, i � 0, 1, . . . , m − 1. Let

Ii � [ti, ti+1], i � 0, 1, . . . , m − 1 and Im � [tm, +∞); then, by
(51) and (57),

e
− kti
′
y ti
′( 􏼁 − e

− kt″
i y ti
″( 􏼁

������

������β
< 2ε, for any y ∈ V, ti

′, ti
″ ∈ Ii, i � 0, 1, . . . , m. (58)

For each i ∈ 0, 1, . . . , m{ }, there exists a division V �

∪ n
j�1V

i
j such that V(ti

′) � ∪ n
j�1V

i
j(ti
′) and

diam V
i
j ti
′( 􏼁􏼐 􏼑< α V ti

′( 􏼁( 􏼁 + 2ε, j � 1, 2, . . . , n. (59)

Let Y be the finite set of all maps i⟶ c(i) of
0, 1, . . . , m{ } into 1, 2, . . . , n{ }. For c ∈ Y,

Zc ≔ y ∈ V, y ti
′( 􏼁 ∈ V

i
c(i) ti
′( 􏼁, i � 0, 1, . . . , m􏽮 􏽯, (60)
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so V � y(t), y ∈ Zc, c ∈ Y􏽮 􏽯. For any u, v ∈ Zc and t≥ 0,
there exists i ∈ 0, 1, . . . , m{ } such that t ∈ Ii; then,

e
− kt

‖u(t) − v(t)‖β,

≤ e
− kt

u(t) − e
− kti
′
u ti
′( 􏼁

�����

�����β
+ e

− kti
′
u ti
′( 􏼁 − e

− kti
′
v ti
′( 􏼁

�����

�����β
+ e

− kt
v(t) − e

− kti
′
v ti
′( 􏼁

�����

�����β
,

< α V ti
′( 􏼁( 􏼁 + 6ε.

(61)

,erefore, diam(Zc)≤ α(V(ti
′)) + 6ε. Since ε> 0 is ar-

bitrary, we have

αB′(V)≤ sup
t≥0

e
− ktα(V(t))􏽮 􏽯. (62)

□

Lemma 11 (see [27]). Let D be a bounded, closed, and
convex subset of Banach spaceE. If the operatorT: D⟶ D

is a strict set contraction, then T has a fixed point in D.

Remark 2. A bounded and continuous operator T: D⟶ E

is called a strict set contraction if there is a constant 0≤ λ< 1
such that α(TV)≤ λα(V) for any bounded set V ⊂ D.

Theorem 2. Assume that conditions (H), (H∗) are satisfied;
then, for ϕ(0) ∈ Xβ, problem (3) has a global mild solution in
Br.

Proof. Let V be an arbitrary bounded set in Br. According to
Lemmas 6 and 7, we know that T: Br⟶ Br is bounded and
continuous and Ty(·), y ∈ V􏼈 􏼉 is equicontinuous on [0, T]

and e− kt‖Ty(t)‖β < ε for any t≥T, y ∈ V, ε> 0. ,en, by
Lemma 3.6, it follows that

αB′(TV) � sup
t≥0

e
− ktα(TV(t))􏽮 􏽯. (63)

Consider Lemma 9 and condition (H∗); let any t≥ 0 be
fixed, and for the above ε> 0, we have

e
− ktα(TV(t)) � e

− ktα 􏽚
t

0
(t − s)

q− 1
Pq(t − s)f s, ys + zs( 􏼁ds, y ∈ V􏼨 􏼩􏼠 􏼡,

≤ e
− kt

􏽚
t

0
α (t − s)

q− 1
Pq(t − s)f s, ys + zs( 􏼁, y ∈ V􏽮 􏽯􏼐 􏼑ds,

≤Cpe
− kt

􏽚
t

0
(t − s)

− qc− 1α f s, ys + zs( 􏼁, y ∈ V􏼈 􏼉( 􏼁ds,

≤Cpe
− kt

􏽚
t

0
(t − s)

− qc− 1
m(s)e

− ks sup
0≤τ≤s

α(V(τ))ds,

≤ Cpe
− kt

􏽚
t

0
(t − s)

− qc− 1
m(s)ds􏼠 􏼡αB′(V),

(64)

which implies that αB′(TV)≤ λαB′(V) where
λ ≔ Cpe− kt 􏽒

t

0 (t − s)− qc− 1m(s)ds< 1. ,en, T is a strict set
contraction.

Consequently, by Lemma 11, T has a fixed point in Br

which implies that problem (3) has a global mild solution in
Br. ,e proof process is completed. □

4. Conclusions

In this paper, we investigated a class of fractional evolution
equations with infinite delay and almost sectorial operator
on unbounded domains in Banach space. We considered the
case of compact semigroups and noncompact semigroups
and obtained sufficient conditions of the existence of global
mild solutions.
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infinite delay under Carathéodory conditions,” Advances in
Difference Equations, vol. 2014, no. 1, p. 216, 2014.

[22] A. Baliki, M. Benchohra, and J. R. Graef, “Global existence and
stability for second order functional evolution equations with
infinite delay,” Electronic Journal of Qualitative -eory of
Differential Equations, vol. 2016, no. 23, pp. 1–10, 2016.

[23] M. Benchohra, J. Henderson, S. K. Ntouyas, and A. Ouahab,
“Existence results for fractional order functional differential
equations with infinite delay,” Journal of Mathematical
Analysis and Applications, vol. 338, no. 2, pp. 1340–1350,
2008.

[24] P. Chen, X. Zhang, and Y. Li, “Study on fractional non-au-
tonomous evolution equations with delay,” Computers &
Mathematics with Applications, vol. 73, no. 5, pp. 794–803,
2017.

[25] A. Pazy, Semigroups of Linear Operators and Applications to
Partial Differential Equations, Applied Mathematical Sci-
ences, New York, NY, USA, 1983.

[26] T. J. Xiao and J. Liang, -e Cauthy Problem for Higher Order
Abstract Differential Equations, Springer, Berlin, Germany,
1998.

[27] D. Guo, V. Lakshmikantham, and X. Liu, Nonlinear Integral
Equations in Abstract Spaces, Kluwer Academic Publishers
Group, Dordrecht, Netherlands, 1996.

[28] F. Periago and B. Straub, “A functional calculus for almost
sectorial operators and applications to abstract evolution
equations,” Journal of Evolution Equations, vol. 2, no. 1,
pp. 41–68, 2002.

[29] R.-N. Wang, D.-H. Chen, and T.-J. Xiao, “Abstract fractional
cauchy problems with almost sectorial operators,” Journal of
Differential Equations, vol. 252, no. 1, pp. 202–235, 2012.

[30] J. Hale and J. Kato, “Phase space for retarded equations with
infinite delay,” Funkcialaj Ekvacioj, vol. 21, pp. 11–41, 1978.

[31] K. Diethelm, “,e analysis of fractional differential equa-
tions,” in Lecture Notes in Mathematics, Springer, Berlin,
Germany, 2010.

[32] A. A. Kilbas, H. M. Struvasteva, and J. J. Trujilio, -eory and
Applications of Fractional Differential Equations, North-
Holland Mathematics Studies, Amsterdam, Netherlands,
2006.

[33] X.-B. Shu, Y. Lai, and Y. Chen, “,e existence of mild so-
lutions for impulsive fractional partial differential equations,”
Nonlinear Analysis: -eory, Methods & Applications, vol. 74,
no. 5, pp. 2003–2011, 2011.

[34] Y. Zhou, X. H. Shen, and L. Zhang, “Cauchy problem for
fractional evolution equations with caputo derivative,” -e
European Physical Journal Special Topics, vol. 222, no. 8,
pp. 1749–1765, 2013.

[35] Y. Zhou and F. Jiao, “Existence of mild solutions for fractional
neutral evolution equations,” Computers & Mathematics with
Applications, vol. 59, no. 3, pp. 1063–1077, 2010.

[36] Y. Zhou and L. Peng, “On the time-fractional navier-stokes
equations,” Computers & Mathematics with Applications,
vol. 73, no. 6, pp. 874–891, 2017.

10 Mathematical Problems in Engineering



Research Article
Some Existence Results for High Order Fractional Impulsive
Differential Equation on Infinite Interval

Zhaocai Hao 1,2 and Tian Wang 1,3

1School of Mathematical Sciences, Qufu Normal University, Qufu 273165, Shandong, China
2Department of Mathematics and Statistics, Missouri University of Science and Technology, Rolla, MO 65401, USA
3School of Mathematics, Faculty of Science, Beijing University of Technology, Beijing 100124, China

Correspondence should be addressed to Tian Wang; 13562714499@163.com

Received 5 August 2020; Revised 23 September 2020; Accepted 28 September 2020; Published 22 October 2020

Academic Editor: Chuanjun Chen

Copyright © 2020 Zhaocai Hao and Tian Wang. -is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

In this paper, we consider the high order impulsive differential equation on infinite interval
D

α
0+u(t) + f(t, u(t), J

β
0+u(t), D

α− 1
0+ u(t)) � 0, t ∈ [0,∞)∖ tk􏼈 􏼉

m
k�1

△u(tk) � Ik(u(tk)), t � tk, k � 1, . . . , m

u(0) � u′(0) � · · · � u
(n− 2)

(0) � 0, D
α− 1
0+ u(∞) � u0

⎧⎪⎪⎨

⎪⎪⎩
By applying Schauder fixed points and Altman fixed points, we

obtain some new results on the existence of solutions. -e nonlinear term of the equation contains fractional integral operator
Jβu(t) and lower order derivative operator Dα− 1

0+ u(t). An example is presented to illustrate our results.

1. Introduction

In this paper, we are concerned with the following impulsive
differential equation on infinite interval:

D
α
0+u(t) + f t, u(t), J

β
0+u(t), D

α− 1
0+ u(t)􏼐 􏼑 � 0, t ∈ [0,∞)∖ tk􏼈 􏼉

m

k�1,

△u tk( 􏼁 � Ik u tk( 􏼁( 􏼁, t � tk, k � 1, . . . , m,

u(0) � u′(0) � · · · � u
(n− 2)

(0) � 0, D
α− 1
0+ u(∞) � u0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

where u0 ∈ R, α, β ∈ (n − 1, n], n> 2, Dα
0+ is the standard

Riemann–Liouville fractional derivative,
0 � t0 < t1 < t2 < · · · < tm <∞, △u(tk) � u(t+

k ) − u(t−
k ),

u(t−
k ) � u(tk), u(t+

k ) � limh⟶0+u(tk + h) and
u(t−

k ) � limh⟶0− u(tk − h) represent the right and left limits
of u(t) at t � tk, and Dα− 1

0+ u(∞) � limt⟶∞Dα− 1
0+ u(t). Also,

f ∈ C([0, +∞) × R × R × R, R), Ik ∈ C(R, R).

During the past decades, fractional differential equations
have drawn wide concerns. Compared with integer order dif-
ferential equations, fractional differential equations have more
extensive application range, such as control theory, physics,
aerodynamics, polymer rheology, chemistry, biology, and so
forth.-ere aremany papers focused on the existence of positive
solutions for fractional differential equations (see [1–3]).
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Since the last century, the dynamics of populations
subject to abrupt changes was described by impulsive dif-
ferential system. And other phenomena, for instance, har-
vesting, diseases, and so on, also have been described by
using impulsive differential systems. Impulsive differential
equations of fractional order play an important role in
fractional differential equations theory and applications.
Recently, impulsive fractional differential equations have
been studied extensively. For example, Wang et al. studied
the existence and multiplicity of solutions for impulsive
fractional boundary value problem with p-Laplacian in [4],
and Liu considered fractional impulsive differential equa-
tions using bifurcation techniques in [5]. For more articles
related to impulsive fractional differential equations, refer to
[6–12].

Recently, in [13], Liu investigated the existence of so-
lutions for higher order impulsive fractional differential
equations given by

cD
q
0+x(t) � F(t, x(t)), t ∈ ti, ti+1( 􏼃, i ∈ N0,

△x|t�ti
� I ti, x ti( 􏼁( 􏼁, i ∈ N,

x(0) � x0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

D
q
0+x(t) � G(t, x(t)), t ∈ ti, ti+1( 􏼃, i ∈ N0,

lim
t⟶t+

i

t − ti
1− α

􏼐 􏼑x(t) � J ti, x ti( 􏼁( 􏼁, i ∈ N,

lim
t⟶0+

t
1− q

x(t) � x0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

where q ∈ (0, 1), t ∈ [0, T], 0 � t0 < t1 < t2 < · · ·

< tm < tm+1 <T, I, J: tk: k ∈ N􏼈 􏼉 × R⟶ R are discrete
Carathéodory functions, and F, G: (0, T) × R⟶ R are
strong Carathéodory functions. By using Schauder’s fixed-
point theorem, Liu established some existence results.

In [10], Liu and Ahmad studied the following problems:

cD
α
0+x(t) � q(t)f t, x(t),

c
D

p
0+x(t)􏼐 􏼑, t ∈ (0,∞),

△x tk( 􏼁 � Ik tk, x tk( 􏼁( 􏼁, k � 1, 2, . . . ,

x(0) � x0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

cD
α
∗x(t) � q(t)f t, x(t),

c
D

p
∗x(t)( 􏼁, t ∈ (0,∞),

△x tk( 􏼁 � Ik tk, x tk( 􏼁( 􏼁, k � 1, 2, . . . ,

x(0) � x0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

where x0 ∈ R, α ∈ (0, 1], 0<p< α, 0 � t0 < t1 < t2 < · · · with
limk⟶∞ tk �∞, q: (0,∞)⟶ R satisfies that there exists
l> − α such that |q(t)|≤ tl for all t ∈ (0,∞), and q may be
singular at t � 0. And f: [0,∞) × R2⟶ R is a Car-
athéodory function, Ik: (0,∞) × R⟶ R (k � 1, 2, . . . , ), Ik

is a Carathéodory function sequence, and
△x(tk) � limt⟶t+

k
x(t) − limt⟶t−

k
x(t), k � 1, 2, . . . ,. By us-

ing Schauder’s fixed-point theorem, the authors studied the
existence of solution. And the authors also considered the
uniqueness of solution under some appropriate conditions.

In [9], Zhao and Ge considered the following boundary
value problem:

D
α
0+u(t) + f(t, u(t)) � 0, t ∈ (0,∞), t≠ tk, k � 1, 2, . . . , m,

u t
+
k( 􏼁 − u t

−
k( 􏼁 � − Ik u tk( 􏼁( 􏼁, k � 1, 2, . . . , m,

u(0) � 0, D
α
0+u(∞) � 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

where α is a real number with 1< α≤ 2, Dα
0+ is the standard

Riemann–Liouville fractional derivative, t0 � 0,
1< t1 < t2 < · · · < tm <∞, u(t+

k ) � limh⟶0+ u(tk + h),
u(t−

k ) � limh⟶0+ u(tk − h), Dα− 1
0+ u(∞) � limt⟶∞Dα− 1

0+ u(t),
f(t, (1 + tα)u): [0,∞) × [0,∞)⟶ [0,∞) is continuous,
and Ik: [0,∞)⟶ [0,∞) (k � 1, 2, . . . , m) are continuous.
Wang and Ge proved that the problem they studied has at
least three positive solutions.

Motivated by the aforementioned work, we studied
existence of solution of problem (1) by Schauder’s fixed-
point theorem and Altman’s fixed-point theorem. -e main
features of this paper are as follows. Firstly, the nonlinear
term not only involved fractional order derivative but also
contained fractional integral. Compared with [9, 10, 13], our
nonlinear terms are more general. Many articles contain
derivatives for nonlinear terms, but few articles contain both
derivatives and integrals. Secondly, we studied the problem
on the infinite interval. To the best of our knowledge, there
are few articles involving the impulsive fractional order
differential equations on the infinite interval. If the nonlinear
term contained fractional integral and t ∈ [0,∞), it will
bring new obstacles to solve the problem. For this purpose,
we overcome obstacles by constructing a special cone.
-irdly, our problem is higher order impulsive fractional
equation. Compared with [9], we allowed α ∈ (n − 1, n],
where n> 2. It is obvious that our problem is more general.

-is paper is organized as follows. In Section 2, we
introduce some definitions and lemmas. In Section 3, we
give our main results by fixed-point theorem. In Section 4,
one example is presented to illustrate the main results.

2. Preliminaries and Lemmas

Let u: [0,∞)⟶ R, J � [0,∞), J0 � [0, t1], Jm � (tm,∞),
Jk � (tk, tk+1], k � 1, . . . , m − 1. For k � 1, 2, . . . , m, define
the function uk(t) � u(t). Let C(J, R) be the Banach space of
continuous functions from J to R. Let us to introduce the
Banach spaces

PC(J,R) � u: uk ∈ C Jk,R( 􏼁, k � 0, 1, . . . , m, u􏼨

· t
+
k( 􏼁 and u t

−
k( 􏼁 exist, u tk( 􏼁

� u t
−
k( 􏼁, lim

t⟶∞

u(t)

1 + t
α− 1 exsits􏼩,

(5)

with the norm
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‖u‖PC � sup
t∈[0,∞)

u(t)

1 + t
α− 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

PC1
(J,R) � u ∈ PC(J, R): D

α− 1
u(t) ∈ C Jk,R( 􏼁, k � 0, 1, . . . , m, D

α− 1
u t

+
k( 􏼁 andD

α− 1
u t

−
k( 􏼁 exist, D

α− 1
u t

−
k( 􏼁􏼚

� D
α− 1

u tk( 􏼁, lim
t⟶∞

D
α− 1

u(t) exists􏼛,

(6)

with the norm

‖u‖PC1 � max sup
t∈J

|u(t)|

1 + t
α− 1, sup

t∈J
D

α− 1
u(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼨 􏼩. (7)

Definition 1. -e Riemann–Liouville fractional integral of
order α> 0 of a function f: (0,∞)⟶ R is given by

J
α
0+f(t) �

1
Γ(α)

􏽚
t

0
(t − s)

α− 1
f(s)ds, (8)

where the right side is pointwise defined on (0,∞).

Definition 2. -e Riemann–Liouville fractional derivative of
order α> 0 of a function f: (0,∞)⟶ R is given by

D
α
0+f(t) �

1
Γ(n − α)

d
dt

􏼠 􏼡

n

􏽚
t

0
(t − s)

n− α− 1
f(s)ds, (9)

where n is the smallest integer greater than or equal to α and
the right side is pointwise defined on (0,∞). In particular,
for α � n, Dα

0+f(t) � f(n)(t).

Lemma 1. Let α> 0, and n denotes the smallest integer
greater than or equal to α. For all t ∈ [a, b],

J
α
0+D

α
0+u(t) � u(t) + c1t

α− 1
+ c2t

α− 2
+ · · · + cnt

α− n
, (10)

where cj ∈ R, j � 1, 2, . . . , n.

Lemma 2 (see [2]). LetΩ⊆PC1. 3en,Ω is relatively compact
in PC1 if the following conditions hold:

(1) Ω is bounded in PC1

(2) For any u(t) ∈ Ω, u(t)/1 + tα− 1 and Dα− 1u(t) are
equicontinuous on any interval Jk

(3) Given ε> 0, there exists a constant N � N(ε)> 0 such
that

u t1( 􏼁

1 + t
α− 1
1

−
u t2( 􏼁

1 + t
α− 1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
< ε,

D
α− 1

u t1( 􏼁 − D
α− 1

u t2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< ε,

(11)

for any t1, t2 ≥N and u(t) ∈ Ω.

Theorem 1 (Schauder fixed-point theorem). If U is a
closed bounded convex subset of a Banach space X and

T: U⟶ U is completely continuous, then T has at least one
fixed point in U.

Theorem 2 (Altman theorem). Let Ω be an open bounded
subset of a Banach space E with 0 ∈ Ω and T: Ω⟶ E be a
completely continuous operator. 3en, T has a fixed point in
Ω, provided that

‖Tx − x‖
2 ≥ ‖Tx‖

2
− ‖x‖

2
, ∀x ∈zΩ . (12)

Lemma 3. For a given y ∈ C(J,R), a function u ∈ PC1(J,R)

is a solution of the following boundary value problem:

D
α
0+u(t) + y(t) � 0, t ∈ [0,∞)∖ tk􏼈 􏼉

m

k�1,

△u tk( 􏼁 � Ik u tk( 􏼁( 􏼁, t � tk,

u(0) � u′(0) � · · · � u
(n− 2)

(0) � 0, D
α− 1
0+ u(∞) � u0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(13)

if and only if u ∈ PC1(J,R) is a solution of the impulsive
fractional integral equation

u(t) � −
1
Γ(α)

􏽚
t

0
(t − s)

α− 1
y(s)ds +

t
α− 1

Γ(α)
􏽚
∞

0
y(s)ds

+
t
α− 1

Γ(α)
u0 − t

α− 1
􏽘
t<ti

Iit
1− α
i .

(14)

Proof. Assume u(t) satisfies (13). We denote the solution of
(13) by u(t)≜ uk(t) in Jk(k � 0, 1, . . . , m).

For t ∈ [0, t1], applying Lemma 1, we have

u0(t) � −
1
Γ(α)

􏽚
t

0
(t − s)

α− 1
y(s)ds + C01t

α− 1
+ C02t

α− 2

+ · · · + C0nt
α− n

.

(15)

From u(0) � u′(0) � · · · � u(n− 2)(0) � 0, we know
C0n � · · · � C03 � C02 � 0. So, we get

u0(t) � −
1
Γ(α)

􏽚
t

0
(t − s)

α− 1
y(s)ds + C01t

α− 1
, t ∈ 0, t1􏼂 􏼃,

u t
−
1( 􏼁 � −

1
Γ(α)

􏽚
t1

0
t1 − s( 􏼁

α− 1
y(s)ds + C01t

α− 1
1 .

(16)

For t ∈ (t1, t2], by applying Lemma 1, we know
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u1(t) � −
1
Γ(α)

􏽚
t

0
(t − s)

α− 1
h(s)ds + C11t

α− 1
+ C12t

α− 2

+ · · · + C1nt
α− n

.

(17)

In view of u(0) � u′(0) � · · · � u(n− 2)(0) � 0, we have
C1n � · · · � C13 � C12 � 0. So, we know

u1(t) � −
1
Γ(α)

􏽚
t

0
(t − s)

α− 1
y(s)ds + C11t

α− 1
,

u t
+
1( 􏼁 � −

1
Γ(α)

􏽚
t1

0
t1 − s( 􏼁

α− 1
y(s)ds + C11t

α− 1
1 .

(18)

And from impulsive condition of (13),
△u(t1) � u(t+

1 ) − u(t−
1 ) � I1(u(t1)). -en,

−
1
Γ(α)

􏽚
t1

0
t1 − s( 􏼁

α− 1
y(s)ds + C11t

α− 1
1

− −
1
Γ(α)

􏽚
t1

0
t1 − s( 􏼁

α− 1
y(s)ds + C01t

α− 1
1􏼠 􏼡 � I1 u t1( 􏼁( 􏼁.

(19)

-us,

C11 � C01 + t
1− α
1 I1 u t1( 􏼁( 􏼁. (20)

-en,

u1(t) � −
1
Γ(α)

􏽚
t

0
(t − s)

α− 1
y(s)ds + t

α− 1
C01

+ t
α− 1

t
1− α
1 I1 u t1( 􏼁( 􏼁, t ∈ t1, t2( 􏼃.

(21)

For t ∈ (t2, t3], by applying Lemma 1, we obtain

u2(t) � −
1
Γ(α)

􏽚
t

0
(t − s)

α− 1
h(s)ds + C21t

α− 1
+ C22t

α− 2

+ · · · + C2nt
α− n

.

(22)

In view of u(0) � u′(0) � · · · � u(n− 2)(0) � 0, we have
C2n � · · · � C23 � C22 � 0. So, we know

u2(t) � −
1
Γ(α)

􏽚
t

0
(t − s)

α− 1
y(s)ds + C21t

α− 1
,

u t
+
2( 􏼁 � −

1
Γ(α)

􏽚
t2

0
t2 − s( 􏼁

α− 1
y(s)ds + C21t

α− 1
2 .

(23)

And from impulsive condition,
△u(t2) � u(t+

2 ) − u(t−
2 ) � I2(u(t2)). -en,

−
1
Γ(α)

􏽚
t2

0
t2 − s( 􏼁

α− 1
y(s)ds + C21t

α− 1
2

− −
1
Γ(α)

􏽚
t2

0
t2 − s( 􏼁

α− 1
y(s)ds + C11t

α− 1
2􏼠 􏼡 � I2 u t2( 􏼁( 􏼁.

(24)

We get

C21 � C11 + t
1− α
2 I2 u t2( 􏼁( 􏼁 � C01 + t

1− α
1 I1 u t1( 􏼁( 􏼁

+ t
1− α
2 I2 u t2( 􏼁( 􏼁 � C01 + 􏽘

2

i�1
t
1− α
i Ii.

(25)

Consequently,

u2(t) � −
1
Γ(α)

􏽚
t

0
(t − s)

α− 1
y(s)ds + t

α− 1
C01

+ t
α− 1

􏽘

2

i�1
t
1− α
i Ii, t ∈ t2, t3( 􏼃.

(26)

By the recurrent method and Lemma 1, for t ∈ (tk, tk+1],
k � 0, 1, 2, . . . , m, we can say that

u(t)uk(t) � −
1
Γ(α)

􏽚
t

0
(t − s)

α− 1
y(s)ds + t

α− 1
C01 + t

α− 1
􏽘

k

i�1
t
1− α
i Ii.

(27)

-us, for t ∈ (tm,∞), we have

u(t) � um(t) � −
1
Γ(α)

􏽚
t

0
(t − s)

α− 1
y(s)ds + t

α− 1
C01

+ t
α− 1

􏽘

m

i�1
t
1− α
i Ii.

(28)
From Dα− 1

0+ u(∞) � u0, we get

− 􏽚
∞

0
y(s)ds + Γ(α) 􏽘

m

i�1
t
1− α
i Ii + Γ(α)C01 � u0. (29)

So,

C01 �
1
Γ(α)

u0 +
1
Γ(α)

􏽚
∞

0
y(s)ds − 􏽘

m

i�1
t
1− α
i Ii. (30)

-erefore, for t ∈ [0,∞), we have

u(t) � −
1
Γ(α)

􏽚
t

0
(t − s)

α− 1
y(s)ds +

t
α− 1

Γ(α)
􏽚
∞

0
y(s)ds

+
t
α− 1

Γ(α)
u0 − t

α− 1
􏽘

m

i�1
t
1− α
i Ii + t

α− 1
􏽘
ti < t

t
1− α
i Ii

� −
1
Γ(α)

􏽚
t

0
(t − s)

α− 1
y(s)ds +

t
α− 1

Γ(α)
􏽚
∞

0
y(s)ds

+
t
α− 1

Γ(α)
u0 − t

α− 1
􏽘
t<ti

t
1− α
i Ii.

(31)

Conversely, assume that u(t) satisfies impulsive frac-
tional integral equation (14). Obviously, we get
u(0) � u′(0) � · · · � un− 2(0) � 0, and Dα− 1

0+ u(∞) � u0. Us-
ing the fact Dα

0+tα− 1 � 0, we obtain Dα
0+u(t) � − y(t). Also,

we can easily show that△u(tk) � Ik(u(tk)), k � 1, 2, . . . , m.
-en, u is also the solution of problem (13). □
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3. Main Results

In this section, we will prove the existence of solution of (1) by
using Schauder fixed-point theorem and Altman theorem.

According to Lemma 3, we obtain the following lemma
first.

Lemma 4. u ∈ PC1(J,R) is a solution of problem (1) if and
only if u ∈ PC1(J,R) is a solution of the impulsive fractional
integral equation

u(t) � −
1
Γ(α)

􏽚
t

0
(t − s)

α− 1
f s, u(s), J

β
u(s), D

α− 1
u(s)􏼐 􏼑ds

+
t
α− 1

Γ(α)
􏽚
∞

0
f s, u(s), J

β
u(s), D

α− 1
u(s)􏼐 􏼑ds

+
t
α− 1

Γ(α)
u0 − t

α− 1
􏽘
t<ti

Iit
1− α
i , t ∈ J.

(32)

Define an operator T: PC1(J,R)⟶ PC1(J,R) as
follows:

(Tu)(t) � −
1
Γ(α)

􏽚
t

0
(t − s)

α− 1
f s, u(s), J

β
u(s), D

α− 1
u(s)􏼐 􏼑ds

+
t
α− 1

Γ(α)
􏽚
∞

0
f s, u(s), J

β
u(s), D

α− 1
u(s)􏼐 􏼑ds

+
t
α− 1

Γ(α)
u0 − t

α− 1
􏽘
t<ti

Iit
1− α
i , t ∈ J.

(33)

-en, problem (1) has a solution if and only if the op-
erator T has a fixed point.

Theorem 3. Assume that following conditions hold:
(H1) For f ∈ C([0, +∞)) × R × R × R, R), there exist

nonnegative functions a(t), b(t), c(t), e(t) ∈ L1(J) such that

|f(t, x, y, z)|≤ a(t)|x| + b(t)|y| + e(t)|z| + c(t),

􏽚
+∞

0
1 + t

α− 1
􏼐 􏼑a(t) + b(t)􏼐 􏼑dt<∞,

􏽚
+∞

0
c(t)dt<∞, 􏽚

+∞

0

(1 + t)
α− 1

t
β

Γ(β + 1)
e(t)dt<∞.

(34)

(H2) For Ik ∈ C(R, R), for all u ∈ R, there exist some
constants Lk > 0 such that |Ik(u)| <Lk, k � 1, 2, . . . , m.

-en, problem (1) has at least one solution u(t) in
PC1(J,R).

Proof. Wewill use five steps to prove our conclusion. Firstly,
we will show T: PC1(J,R)⟶ PC1(J,R) is continuous.
From (33), we know

D
α− 1

Tu(t) � − 􏽚
t

0
f s, u(s), J

β
u(s), D

α− 1
u(s)􏼐 􏼑ds + 􏽚

∞

0
f s, u(s), J

β
u(s), D

α− 1
u(s)􏼐 􏼑ds + u0 − Γ(α) 􏽘

t< ti

Iit
1− α
i . (35)

From (H1), we have

􏽚
∞

0
f s, u(s), J

β
u(s), D

α− 1
u(s)􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ds≤ 􏽚
+∞

0
a(s)|u(s)| + b(s) D

α− 1
u(s))

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + e(s) J

β
u(s)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + c(s)􏼔 􏼕ds

≤ 􏽚
+∞

0
1 + s

α− 1
􏼐 􏼑a(s)‖u‖PC + b(s) D

α− 1
u(s))

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +

(1 + s)
α− 1

s
β

Γ(β + 1)
e(s)‖u‖PC + c(s)􏼢 􏼣ds

≤ ‖u‖PC1 􏽚
+∞

0
1 + s

α− 1
􏼐 􏼑a(s) + b(s) +

(1 + s)
α− 1

s
β

Γ(β + 1)
e(s)􏼢 􏼣ds + 􏽚

+∞

0
c(s)ds

<∞.

(36)

Let un, u ∈ PC1(J,R) be such that un⟶ u(n⟶∞).
-en, ‖un‖PC1 <∞ and ‖u‖PC1 <∞. By (36) and the Lebesgue
dominated convergence theorem, we get

limn⟶∞ 􏽚
∞

0
f s, un(s), J

β
un(s), D

α− 1
un(s)􏼐 􏼑ds

� 􏽚
∞

0
f s, u(s), J

β
u(s), D

α− 1
u(s)􏼐 􏼑ds.

(37)
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By (H1), (H2), and (36), we have

Tu(t)

1 + t
α− 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� −

1
Γ(α)

􏽚
t

0

(t − s)
α− 1

1 + t
α− 1 f s, u(s), J

β
u(s), D

α− 1
u(s)􏼐 􏼑ds +

t
α− 1

1 + t
α− 1

1
Γ(α)

􏽚
∞

0
f s, u(s), J

β
u􏼐

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

· s), D
α− 1

u(s)􏼐 􏼑ds +
t
α− 1

1 + t
α− 1

1
Γ(α)

u0 −
t
α− 1

1 + t
α− 1 􏽘

t<ti

Iit
1− α
i

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
2
Γ(α)

􏽚
∞

0
f s, u(s), J

β
u(s), D

α− 1
u(s)􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ds +
u0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

Γ(α)
+ 􏽘

t<ti

Lit
1− α
i <∞,

(38)

D
α− 1Tu(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � − 􏽚

t

0
f s, u(s), J

β
u(s), D

α− 1
u(s)􏼐 􏼑ds + 􏽚

∞

0
f s, u(s), J

β
u(s), D

α− 1
u(s)􏼐 􏼑 + u0 − Γ(α) 􏽘

t<ti

Iit
1− α
i

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ 􏽚
∞

0
f s, u(s), J

β
u(s), D

α− 1
u(s)􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ds + 􏽚
∞

0
f s, u(s), J

β
u(s), D

α− 1
u(s)􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ds + u0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + Γ(α) 􏽘
t<ti

Lit
1− α
i <∞.

(39)

Hence, according to (37)–(39) and Lebesgue dominated
convergence theorem, we can easily get

Tun − Tu
����

����PC1⟶ 0 (n⟶∞). (40)

-erefore, T: PC1(J,R)⟶ PC1(J,R) is continuous.
Secondly, choose r such that

r≥
2􏽒
∞
0 c(s)ds + u0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + Γ(α)􏽐t<ti

Lit
1− α
i

1 − 2􏽒
∞
0 1 + s

α− 1
􏼐 􏼑a(s) + b(s) +(1 + s)

α− 1
s
β/Γ(β + 1)e(s)􏼐 􏼑ds

,

(41)

and let Br �
����u ∈ PC1‖u‖PC1 ≤ r􏽮 􏽯 ⊂ PC1(J,R).

For any u(t) ∈ Br, by (41) and condition (H1), we have

Tu(t)

1 + t
α− 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

2
Γ(α)

􏽚
∞

0
f s, u(s), J

β
u(s), D

α− 1
u(s)􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ds +
u0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

Γ(α)
+ 􏽘

t<ti

Lit
1− α
i

≤
2‖u‖PC1

Γ(α)
􏽚

+∞

0
1 + s

α− 1
􏼐 􏼑a(s) + b(s)􏽨 􏽩ds +

2
Γ(α)

􏽚
+∞

0
c(s)ds

+
2‖u‖PC1

Γ(α)
􏽚

+∞

0

(1 + s)
α− 1

s
β

Γ(β + 1)
e(s)ds +

u0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

Γ(α)
+ 􏽘

t<ti

Lit
1− α
i

≤ r,

D
α− 1Tu(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 2􏽚

∞

0
f s, u(s), J

β
u(s), D

α− 1
u(s)􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ds + u0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + Γ(α) 􏽘
t<ti

Lit
1− α
i

≤ 2‖u‖PC1 􏽚
+∞

0
1 + s

α− 1
􏼐 􏼑a(s) + b(s) +

(1 + s)
α− 1

s
β

Γ(β + 1)
e(s)􏼢 􏼣ds

+ 2􏽚
+∞

0
c(s)ds + u0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + Γ(α) 􏽘

t<ti

Lit
1− α
i

≤ r.

(42)

6 Mathematical Problems in Engineering



So, ‖Tu‖PC1 ≤ r and T: Br⟶ Br.
-irdly, we show that TBr is uniformly bounded. From

(38) and (39), we know

supt∈J
Tu(t)

1 + t
α− 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
<∞,

supt∈J D
α− 1Tu(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌<∞.

(43)

So, for u ∈ Br, it is easy to know that ‖Tu‖PC1 <∞.
Hence, TBr is uniformly bounded.

Fourth, we prove that for any u(t) ∈ Br, (Tu(t)/1 + tα− 1)

and Dα− 1Tu(t) are equicontinuous on any interval Jk.
For any u(t) ∈ Br, t1, t2 ∈ Jk (k � 0, 1, 2, . . . , m), t1 < t2,

we have

Tu t2( 􏼁

1 + t
α− 1
2

−
Tu t1( 􏼁

1 + t
α− 1
1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

1
Γ(α)

􏽚
t1

0

t2 − s( 􏼁
α− 1

1 + t
α− 1
2

−
t1 − s( 􏼁

α− 1

1 + t
α− 1
1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
f s, u(s), J

β
u(s), D

α− 1
u(s)􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ds

+
1
Γ(α)

􏽚
t2

t1

t2 − s( 􏼁
α− 1

1 + t
α− 1
2

f s, u(s), J
β
u(s), D

α− 1
u(s)􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ds

+
1
Γ(α)

􏽚
∞

0
f s, u(s), J

β
u(s), D

α− 1
u(s)􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ds
t
α− 1
2

1 + t
α− 1
2

−
t
α− 1
1

1 + t
α− 1
1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+
u0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

Γ(α)

t
α− 1
2

1 + t
α− 1
2

−
t
α− 1
1

1 + t
α− 1
1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

􏽐t<t2Lit
1− α
i

Γ(α)

t
α− 1
2

1 + t
α− 1
2

−
t
α− 1
1

1 + t
α− 1
1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
⟶ 0 if t2⟶ t1,

D
α− 1Tu t2( 􏼁 − D

α− 1Tu t1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 􏽚
t2

t1

f s, u(s), J
β
u(s), D

α− 1
u(s)􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ds + Γ(α) 􏽘
t2 < ti

Iit
1− α
i − Γ(α) 􏽘

t1 < ti

Iit
1− α
i

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
⟶ 0 if t2⟶ t1.

(44)

-erefore, for any u(t) ∈ Br, Tu(t)/1 + tα− 1 and
Dα− 1Tu(t) are equicontinuous on any interval Jk.

Fifth, we need to verify that condition (3) in Lemma 2 is
satisfied. It means that we need to verify Tu(t)/1 + tα− 1 and

Dα− 1Tu(t) are equiconvergent at
t � Jk (k � 1, 2, . . . , m, . . . , ) and t �∞ for any u ∈ Br. We
have

lim
t⟶∞

|Tu(t)|

1 + t
α− 1 ≤ lim

t⟶∞

2
Γ(α)

􏽚
∞

0
f s, u(s), J

β
u(s), D

α− 1
u(s)􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ds
t
α− 1

1 + t
α− 1 +

u0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

Γ(α)

t
α− 1

1 + t
α− 1 + 􏽘

t<ti

Lit
1− α
i

t
α− 1

1 + t
α− 1

⎡⎢⎢⎣ ⎤⎥⎥⎦

≤
2‖u‖PC1

Γ(α)
􏽚
∞

0
1 + s

α− 1
􏼐 􏼑a(s) + b(s) +

(1 + s)
α− 1

s
β

Γ(β + 1)
e(s)􏼠 􏼡ds +

2
Γ(α)

􏽚
∞

0
c(s)ds +

u0

Γ(α)
+ 􏽘

t<ti

Lit
1− α
i

⎛⎝ ⎞⎠

limt⟶∞
t
α− 1

1 + t
α− 1 <∞,

lim
t⟶∞

D
α− 1Tu(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌< lim

t⟶∞
􏽚
∞

0
f s, u(s), J

β
u(s), D

α− 1
u(s)􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ds + 􏽚
∞

0
f s, u(s), J

β
u(s), D

α− 1
u(s)􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ds + u0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + Γ(α) 􏽘
t<ti

Lit
1− α
i

⎡⎢⎢⎣ ⎤⎥⎥⎦

< limt⟶∞ 2‖u‖PC1 􏽚
∞

0
1 + s

α− 1
􏼐 􏼑a(s) + b(s) +

(1 + s)
α− 1

s
β

Γ(β + 1)
e(s)􏼠 􏼡ds + 2􏽚

∞

0
c(s)ds + u0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + Γ(α) 􏽘

t<ti

Lit
1− α
i

⎡⎢⎢⎣ ⎤⎥⎥⎦

<∞.

(45)
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Hence, TBr is equiconvergent at infinity. -en, we prove that Tu(t)/1 + tα− 1 and Dα− 1Tu(t) are
equiconvergent at t⟶ t+

k (k � 0, 1, 2, . . . , ). We have

lim
t⟶t+

k

Tu(t)

1 + t
α− 1
k

+
1
Γ(α)

􏽚
tk

0

tk − s( 􏼁
α− 1

1 + t
α− 1
k

f s, u(s), J
β
u(s), D

α− 1
u(s)􏼐 􏼑ds −

t
α− 1
k

Γ(α) 1 + t
α− 1
k􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏽚
∞

0
f s, u(s), J

β
u(s), D

α− 1
u(s)􏼐 􏼑ds

−
t
α− 1
k

Γ(α) 1 + t
α− 1
k􏼐 􏼑

u0 +
t
α− 1
k

1 + t
α− 1
k

􏽘
tk < ti

Iit
1− α
i

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 0,

lim
t⟶t+

k

D
α− 1Tu(t) + 􏽚

tk

0
f s, u(s), J

β
u(s), D

α− 1
u(s)􏼐 􏼑ds − 􏽚

∞

0
f s, u(s), J

β
u(s), D

α− 1
u(s)􏼐 􏼑ds − u0 + Γ(α) 􏽘

tk < ti

Iit
1− α
i

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 0.

(46)

-erefore, Tu(t)/1 + tα− 1 and Dα− 1Tu(t) are equi-
convergent at t � Jk (k � 1, 2, . . . , m, . . . , ) and t �∞ for
any u ∈ Br. By using Lemma 2, we obtain that TBr is rel-
atively compact, that is, T is a compact operator.

-erefore, Schauder’s fixed-point theorem implies that
problem (1) has at least one solution in Br.

Our second result is based on Altman fixed-point
theorem. □

Theorem 4. Assume (H2) and the following condition hold:
(H3) For f ∈ C([0, +∞) × R × R × R, R), there exist

nonnegative functions a(t), b(t), c(t) defined on [0,∞) and
constants p, q, l≥ 0 such that

|f(t, x, y, z)|≤ a(t) + b(t)|x|
p

+ c(t)|y|
q

+ e(t)|z|
l
,

􏽚
+∞

0
a(t)dt � a

∗ <∞, 􏽚
+∞

0
1 + t

α− 1
􏼐 􏼑

p
b(t)dt � b

∗ < +∞, 􏽚
+∞

0
c(t)dt � c

∗ < +∞,

􏽚
+∞

0

(1 + t)α− 1tβ

Γ(β + 1)
􏼠 􏼡

l

e(t)dt � e
∗ <∞.

(47)

If 0≤p, q, l< 1, then problem (1) has at least one solution
u(t) in PC1(J,R).

Proof. Let us choose

R≥max 12a
∗
, 12b

∗
( 􏼁

1/1− p
, 12c

∗
( 􏼁

1/1− q
, 12e

∗
( 􏼁

1/1− l
, 6 u0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, 6Γ(α) 􏽘

t<ti

Lit
1− α
i

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (48)
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and define U � u ∈ PC1|‖u‖PC1 ≤R􏼈 􏼉. According to-eorem
3, we know T: U⟶ U is a completely continuous operator.
For any u ∈zU, by (H3), we have

Tu(t)

1 + t
α− 1 ≤

2
Γ(α)

􏽚
∞

0
f s, u(s), J

β
u(s), D

α− 1
u(s)􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ds +
u0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

Γ(α)
+ 􏽘

t<ti

Lit
1− α
i

≤
2
Γ(α)

􏽚
∞

0
a(s) + b(s)|u(s)|

p
+ c(s) D

α− 1
u(s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

+ e(s) J
β
u(s)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
l

􏼔 􏼕ds􏼒 􏼓 +
u0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

Γ(α)
+ 􏽘

t<ti

Lit
1− α
i

≤
2
Γ(α)

a
∗

+ 􏽚
∞

0
b(s) 1 + s

α− 1
􏼐 􏼑

p |u(s)|
p

1 + s
α− 1

􏼐 􏼑
p ds + 􏽚

∞

0
c(s)‖u‖

q

PC1ds + 􏽚
+∞

0
e(s)

(1 + s)α− 1sβ

Γ(β + 1)
􏼠 􏼡

l

‖u‖
l
PC1ds⎛⎝ ⎞⎠

+
u0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

Γ(α)
+ 􏽘

t<ti

Lit
1− α
i

≤
2
Γ(α)

a
∗

+ b
∗
‖u‖

p

PC1 + c
∗
‖u‖

q

PC1 + e
∗
‖u‖

l
PC1􏼐 􏼑 +

u0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

Γ(α)
+ 􏽘

t<ti

Lit
1− α
i

≤
2
Γ(α)

R

12
+

R

12
+

R

12
+

R

12
􏼒 􏼓 +

R

6Γ(α)
+

R

6Γ(α)

<R,

(49)

D
α− 1Tu(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 2􏽚

∞

0
f s, u(s), J

β
u(s), D

α− 1
u(s)􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ds + u0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + Γ(α) 􏽘
t<ti

Lit
1− α
i

≤ 2 a
∗

+ b
∗
‖u‖

p

PC1 + c
∗
‖u‖

q

PC1 + e
∗
‖u‖

l
PC1􏼐 􏼑 + u0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + Γ(α) 􏽘

t<ti

Lit
1− α
i

≤ 2
R

12
+

R

12
+

R

12
+

R

12
􏼒 􏼓 +

R

6
+

R

6
� R.

(50)

-us, from (49) and (50), we have TU ⊂ U and
‖Tu‖PC1 ≤ ‖u‖PC1 , ∀u ∈zU. So, by -eorem 2, we know that
problem (1) has at least one solution. □

Theorem 5. Assume that conditions (H2) and (H3) are
satisfied. If p � q � l � 1, (1 + Γ(α))(b∗ + c∗)< Γ(α), then
problem (1) has at least one solution.

Proof. Let us take

R>
u0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + Γ(α)􏽐t<ti

Lit
1− α
i + 2a

∗

1 − 2 b
∗

+ c
∗

+ e
∗

( 􏼁
, (51)

and define U � u ∈ PC1|‖u‖PC1 <R􏼈 􏼉.
For any u ∈zU, we have
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Tu(t)

1 + t
α− 1 ≤

2
Γ(α)

􏽚
∞

0
f s, u(s), J

β
u(s), D

α− 1
u(s)􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ds +
u0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

Γ(α)
+ 􏽘

t<ti

Lit
1− α
i

≤
2
Γ(α)

􏽚
∞

0
a(s) + b(s)|u(s)| + c(s) D

α− 1
u(s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + e(s) J

β
u(s)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼔 􏼕ds􏼒 􏼓 +
u0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

Γ(α)
+ 􏽘

t<ti

Lit
1− α
i

≤
2
Γ(α)

a
∗

+ 􏽚
∞

0
b(s) 1 + s

α− 1
􏼐 􏼑

|u(s)|

1 + s
α− 1

􏼐 􏼑
ds + 􏽚

∞

0
c(s)‖u‖PC1ds + 􏽚

∞

0
e(s)

|u(s)|

1 + s
α− 1

􏼐 􏼑

(1 + s)
α− 1

s
β

Γ(β + 1)
⎡⎢⎣ ⎤⎥⎦ +

u0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

Γ(α)
+ 􏽘

t<ti

Lit
1− α
i

≤
2
Γ(α)

a
∗

+ b
∗
‖u‖PC1 + c

∗
‖u‖PC1 + e

∗
‖u‖PC1( 􏼁 +

u0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

Γ(α)
+ 􏽘

t<ti

Lit
1− α
i

≤
2
Γ(α)

a
∗

+ b
∗
R + c
∗
R + e
∗
R( 􏼁 +

u0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

Γ(α)
+ 􏽘

t<ti

Lit
1− α
i

<R,

(52)

D
α− 1Tu(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 2􏽚

∞

0
f s, u(s), J

β
u(s), D

α− 1
u(s)􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ds + u0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + Γ(α) 􏽘
t<ti

Lit
1− α
i

≤ 2 a
∗

+ b
∗
‖u‖PC1 + c

∗
‖u‖PC1 + e

∗
‖u‖PC1( 􏼁 + u0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + Γ(α) 􏽘

t<ti

Lit
1− α
i

≤ 2 a
∗

+ b
∗
R + c
∗
R + e
∗
R( 􏼁 + u0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + Γ(α) 􏽘

t<ti

Lit
1− α
i

<R.

(53)

-us, from (52) and (53), we have TU ⊂ U and
‖Tu‖PC1 ≤ ‖u‖PC1 , ∀u ∈zU. So, by -eorem 2, we know that
problem (1) has at least one solution. □

Remark 1. If we use other conditions instead of the con-
dition “p � q � 1”, for example, 0≤p< 1, q � 1 or p> 1, q �

1 or 0≤ q< 1, p � 1 or q> 1, p � 1 or p, q> 1 or
0≤p< 1, q> 1 or 0≤ q< 1, p> 1, and choose proper R, re-
spectively, then we can obtain the same result. -e proof is
similar to -eorem 4 or -eorem 5, so we omit it.

4. Example

In this section, we give an example to illustrate of our main
result.

Example 1. Consider the following impulsive boundary
value problem of fractional order:

D
3/2
0+ u(t) +

ln 1 + D
1/2
0+ u(t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓􏼒

20 1 + t
2

􏼐 􏼑
+

������������
u(t)D

1/2
0+ u(t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏽱

20e
�
t

√ +
J
3/2

u(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

20e
t � 0, t ∈ [0,∞)∖

1
2

􏼚 􏼛,

△u
1
2

􏼒 􏼓 � I u
1
2

􏼒 􏼓􏼒 􏼓, t �
1
2
,

u(0) � u′(0) � 0, D
1/2
0+ u(∞) � u0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(54)
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where α � 3/2, f(t, x, y, z) � ln(1 + |y|)/20(1 + t2) +����
|xy|

􏽰
/20e

�
t

√

+ |z|/20et, k � 1, t1 � 1/2.
Let I(u) � 1/(u + 1/u). -en, we have

|f(t, x, y)|≤
1

40e
�
t

√ |x| +
1

20 1 + t
2

􏼐 􏼑
+

1

40e
�
t

√⎛⎝ ⎞⎠|y| +
1

20e
t |z|,

I(u) �
1

|u| + 1/|u|
≤ 1.

(55)

By computing, we know that

􏽚
+∞

0
1 + t

α− 1
􏼐 􏼑a(t) + b(t)􏽨 􏽩dt � 􏽚

+∞

0
1 + t

1/2
􏼐 􏼑

1

40e
�
t

√ +
1

20 1 + t
2

􏼐 􏼑
+

1

40e
�
t

√⎡⎢⎣ ⎤⎥⎦dt �
1
5

+
π
40
≈ 0.2785<∞,

􏽚
+∞

0

(1 + t)
α− 1

t
β

Γ(β + 1)
e(t)dt � 􏽚

+∞

0

(1 + t)
1/2

t
3/2

Γ(5/2)

1
20e

t ≈ 64.5850<∞.

(56)

-us, the conditions of -eorem 3 are satisfied, and
hence problem (54) has at least one solution.

Remark 2. By theorems in [9, 10, 13], this problem could not
be solved.
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-is manuscript studies the computational solutions of the highly dimensional elastic and nonelastic interaction between internal
waves through the fractional nonlinear (4 + 1)-dimensional Fokas equation.-is equation is considered as the extension model of
the two-dimensional Davey–Stewartson (DS) and Kadomtsev–Petviashvili (KP) equations to a four spatial dimensions equation
with time domain. -e modified Khater method is employed along the Atangana–Baleanu (AB) derivative operator to construct
many novel explicit wave solutions. -ese solutions explain more physical and dynamical behavior of that kind of the interaction.
Moreover, 2D, 3D, contour, and stream plots are demonstrated to explain the detailed dynamical characteristics of these solutions.
-e novelty of our paper is shown by comparing our results with those obtained in previous published research papers.

1. Introduction

Internal waves are waves that spread inside a stream, with
gradients of intensity [1–3]. -e surface gravity waves pass
along the broad pressure boundary between air and water,
while internal waves migrate inside the ocean over gradients
of intensity [4–7]. Perturbations of these gradients of in-
tensity are preserved by momentum, which creates a
propagating motion [8–11].

Globally, internal waves play a significant role in the
ocean, providing nutrients to surface waters that facilitate
the growth of phytoplankton, the foundation of the ocean
food chain [12–15]. Created primarily by the tide’s inter-
action with ocean floor and water topography, internal
waves may bring the energy from these forces through the
entire ocean basins [16, 17]. As internal waves pass through
the continental shelf, they interact with the topography, and

as the gravity of the surface steepens and splits on the sea,
internal waves steep their energy in the shelf and dissipate it
[18, 19]. When the internal waves rise, they turn into
nonlinear waves of fluid that may assume several forms (e.g.,
solitons, bores, and boluses), all of which have the potential
to bring deep water that has different properties (probably
colder, higher in nutrients, lower in oxygen, lower in pH)
across the shelf and into shallower waters [20–22].

Depending on the potential of the nonlinear partial
differential equation to describe several complicated pro-
cesses in diverse fields such as physiology, plasma physics,
hydrodynamics, fluid mechanics, and optics, numerous
precise and computational schemes such as in [23–26] have
been developed. Using inspired schemes, computational and
technical advances are seen as the basic usefulness of solving
these phenomena [27–31]. Such schemes have recently been
regarded as simple methods for discovering the different
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formulas of moving wave solutions to these dynamic phe-
nomena [32–34]. However, in the nonlinear partial differ-
ential equation (NLPDE), with an integer instruction,
several researchers have struggled to extract and formulate
certain complex phenomena [35, 36]. -e fractional equa-
tion is then deemed an appropriate solution to this issue
because it includes a nonlocal property that is not NLPDE-
based with an integer [37–40].

In this research, we study the nonlinear fractional
(4 + 1)-dimensional Fokas model that is mathematically
given by [41–43]

4Dα
t Ux − Uxxxy + Uxyyy + 12UyUx

+ 12UUxy − 6Uwz � 0, (0< α< 1),
(1)

where U is the function of the elastic and nonelastic in-
teraction between internal waves in straight and varying
cross-section channels. Implementation of the following
AB-derivative definitions on equation (1) with the following
wave transformation U(x, y, z, w, t) � ψ(ζ), ζ � (((α − 1)

λt− αn) /B(α) 􏽐
∞
n�0 (− (α/1 − α))nΓ(1 − αn)) +k4w + k1x + k2

y + k3z, where ki and λ (i � 1, 2, 3, 4) are arbitrary constants
[37–40], while B(α) is a normalized function, converts the
fractional PDE into the next integer order ODE:

α1ψ″ + α2ψ″″ + α3ψ′
2

+ α4ψψ″ � 0, (2)

where α1 � (4k1λ − 6k3k4), α2 � (k1k
3
2− k3

1k2), α3 � 12k1
k2, and α4 � − 6k3k4.

-e remaining parts of our research paper are organized
as follows: Section 2 employs the modified Khater system
[44–49] to provide the nonlinear fractional Fokas model
with novel solitary solutions. Section 3 describes the out-
comes and provides the physical description of the sketches
seen. -is work is concluded in Section 4.

2. Applications

Usage of the modified Khater technique via the concepts of
homogeneous equilibrium on equation (2) provides general
solutions:

ψ(ζ) � 􏽘
m

i�1
aiK

iφ(ζ)
+ 􏽘

m

i�1
biK

− iφ(ζ)
+ a0 � a1K

φ(ζ)

+ a2K
2φ(ζ)

+ a0 + b2K
− 2φ(ζ)

+ b1K
− φ(ζ)

,

(3)

where ai, bj(i, j � 0, 1, 2, . . . , ), am ≠ 0, or bm ≠ 0. Addi-
tionally, φ(ζ) is the solution function of
φ′(ζ) � (1/ln(K))[δ + ρKf(ζ) + ϰK− f(ζ)] where δ, ρ, and ϰ
are arbitrary constants. Using equation (3) through its
auxiliary equation in the modified Khater technique’s
framework gives the following families for the above-
mentioned arbitrary constants.

Family I:

a1⟶ 0,

a2⟶ 0,

b1⟶
b2δ
ϰ

,

α1⟶ −
α4 12a0ϰ

2
− b2δ

2
− 8b2ρϰ􏼐 􏼑

12ϰ2
,

α2⟶ −
α4b2
12ϰ2

,

α3⟶ α4.

(4)

Family II:

a1⟶
a2δ
ρ

,

b1⟶ 0,

b2⟶ 0,

α1⟶ −
α4 − a2δ

2
+ 12a0ρ

2
− 8a2ρϰ􏼐 􏼑

12ρ2
,

α2⟶ −
a2α4
12ρ2

,

α3⟶ α4.

(5)

Consequently, the explicit solutions of equation (1) are
given in the following forms.

In case of δ2 − 4ρϰ< 0, ρ≠ 0, we obtain

U(ξ)I,1 � a0 +
2b2ρ δ

�������

4ρϰ − δ2
􏽱

tan (1/2)ξ
�������

4ρϰ − δ2
􏽱

􏼒 􏼓 − δ2 + 2ρϰ􏼒 􏼓

ϰ δ −

��������

4ρϰ − δ2
􏽱

tan (1/2)ξ
��������

4ρϰ − δ2
􏽱

􏼒 􏼓􏼒 􏼓
2 ,

U(ξ)I,2 � a0 +
2b2ρ δ

�������

4ρϰ − δ2
􏽱

cot (1/2)ξ
�������

4ρϰ − δ2
􏽱

􏼒 􏼓 − δ2 + 2ρϰ􏼒 􏼓

ϰ δ −

��������

4ρϰ − δ2
􏽱

cot (1/2)ξ
��������

4ρϰ − δ2
􏽱

􏼒 􏼓􏼒 􏼓
2 ,

U(ξ)II,1 �
a2 − δ2 − 4ρϰ􏼐 􏼑sec2 (1/2)ξ

�������

4ρϰ − δ2
􏽱

􏼒 􏼓 − 4ρϰ􏼒 􏼓

4ρ2
+ a0,

U(ξ)II,2 �
a2 − δ2 − 4ρϰ􏼐 􏼑csc2 (1/2)ξ

�������

4ρϰ − δ2
􏽱

􏼒 􏼓 − 4ρϰ􏼒 􏼓

4ρ2
+ a0.

(6)

In case of δ2 − 4ρϰ> 0, ρ≠ 0, we obtain
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U(ξ)I,3 � a0 −
2b2ρ δ

�������

δ2 − 4ρϰ
􏽱

tanh (1/2)ξ
�������

δ2 − 4ρϰ
􏽱

􏼒 􏼓 + δ2 − 2ρϰ􏼒 􏼓

ϰ
��������

δ2 − 4ρϰ
􏽱

tanh (1/2)ξ
��������

δ2 − 4ρϰ
􏽱

􏼒 􏼓 + δ􏼒 􏼓
2 , (7)

U(ξ)I,4 � a0 −
2b2ρ δ

�������

δ2 − 4ρϰ
􏽱

coth (1/2)ξ
�������

δ2 − 4ρϰ
􏽱

􏼒 􏼓 + δ2 − 2ρϰ􏼒 􏼓

ϰ
��������

δ2 − 4ρϰ
􏽱

coth (1/2)ξ
��������

δ2 − 4ρϰ
􏽱

􏼒 􏼓 + δ􏼒 􏼓
2 , (8)

U(ξ)II,3 �
a2 − δ2 − 4ρϰ􏼐 􏼑sech2 (1/2)ξ

�������

δ2 − 4ρϰ
􏽱

􏼒 􏼓 − 4ρϰ􏼒 􏼓

4ρ2
+ a0,

(9)

U(ξ)II,4 �
a2 δ2 − 4ρϰ􏼐 􏼑csch2 (1/2)ξ

�������

δ2 − 4ρϰ
􏽱

􏼒 􏼓 − 4ρϰ􏼒 􏼓

4ρ2
+ a0.

(10)

In case of ρϰ> 0, ϰ≠ 0, ρ≠ 0, andδ � 0, we obtain

U(ξ)I,5 � a0 +
b2ρ cot2(ξ

���
ρϰ√

)

ϰ
,

U(ξ)I,6 � a0 +
b2ρ tan2(ξ

���
ρϰ√

)

ϰ
,

U(ξ)II,5 �
a2ϰ tan

2
(ξ

���
ρϰ√

)

ρ
+ a0,

U(ξ)II,6 �
a2ϰ cot

2
(ξ

���
ρϰ√

)

ρ
+ a0.

(11)

In case of ρϰ< 0, ϰ≠ 0, ρ≠ 0, and δ � 0, we obtain

U(ξ)I,7 � a0 +
b2ρ cot2(ξ

�
ρ

√ ��
ϰ

√
)

ϰ
,

U(ξ)I,8 � a0 +
b2ρ tan2(ξ

�
ρ

√ ��
ϰ

√
)

ϰ
,

U(ξ)II,7 �
a2ϰ tan

2
(ξ

�
ρ

√ ��
ϰ

√
)

ρ
+ a0,

U(ξ)II,8 �
a2ϰ cot

2
(ξ

�
ρ

√ ��
ϰ

√
)

ρ
+ a0.

(12)

In case of δ � 0 and ϰ � − ρ, we obtain

U(ξ)I,9 � a0 + b2tanh
2
(ξϰ), (13)

U(ξ)II,9 � a2coth
2
(ξϰ) + a0. (14)

In case of δ � (ϰ/2) � κ and ρ � 0, we obtain

U(ξ)I,10 � a0 +
b2e

κξ

2 e
κξ

− 2􏼐 􏼑
2. (15)

In case of δ � ρ � κ and ϰ � 0, we obtain

U(ξ)II,10 �
1
4
a2csch

2 κξ
2

􏼠 􏼡 + a0. (16)

In case of ϰ � 0, δ ≠ 0, and ρ≠ 0, we obtain

U(ξ)II,11 �
2a2δ

2
e
δξ

ρ ρe
δξ

− 2􏼐 􏼑
2 + a0. (17)

In case of δ � ρ � 0 and ϰ≠ 0, we obtain

U(ξ)I,11 � a0 +
b2

ξ2ϰ2
. (18)

In case of δ � ϰ � 0 and ρ≠ 0, we obtain

U(ξ)II,12 �
a2

ξ2ρ2
+ a0. (19)

In case of δ � 0 and ϰ � ρ, we obtain

U(ξ)I,12 � a0 + b2cot
2
(C + ξϰ),

U(ξ)II,13 � a2tan
2
(C + ξϰ) + a0.

(20)

In case of ρ � 0, δ ≠ 0, and ϰ≠ 0, we obtain

U(ξ)I,13 �
a0ϰ ϰ − δe

δξ
􏼐 􏼑

2
+ b2δ

3
e
δξ

ϰ ϰ − δe
δξ

􏼐 􏼑
2 . (21)

In case of δ2 − 4ρϰ � 0, we obtain

U(ξ)I,14 � a0 −
b2δ

3ξ(δξ + 4)

4ϰ2(δξ + 2)
2 ,

U(ξ)II,14 �
2a2ϰ(δξ + 2) 2ρϰ(δξ + 2) − δ3ξ􏼐 􏼑

δ4ξ2ρ
+ a0.

(22)

3. Results and Discussion

-is section shows our obtained solutions and their novelty.
Also, we compare our obtained solutions with those of
previously published articles to show the similarity and
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difference between our and their solutions. Our discussion is
divided into three main parts, which are the used analytical
method, obtained solutions, and figure interpretation:

(1) -e used computational scheme:
-e modified Khater method have been used for the
first time for applying to the fractional nonlinear
(4 + 1)-dimensional Fokas equation. -is modified
method is considered as one of the most general
analytical schemes in this field; especially, it covers
more than twelve recent analytical schemes [50].

(2) -e obtained solutions:
-is part gives a comparison between our ob-
tained solutions and those obtained in previously
accepted papers. In [41–43] by Wan-Jun Zhang
and Tie-Cheng Xia, Ruoxia Yao, Yali Shen, and
Zhibin Li, and Wei Li and Yinping Liu,

respectively, who applied the Hirota bilinear
method, the bilinear form, and Hirota method,
receptively to a fractional nonlinear (4 + 1)-
dimensional Fokas equation, many distinct types
of solutions for these fractional nonlinear models
were obtained. All our obtained solutions of the
investigated model are new and different from
those obtained in [41–43].

(3) -e figures interpretation:
We have represented some of our obtained so-
lutions in three distinct types of figures (3D, 2D,
and contour plots) to explain kink, antikink,
periodic, and singular shapes to illustrate the
perspective view of the solution, the wave prop-
agation pattern of the wave along x-axis, and the
overhead view of the solution for the following
values of the parameters:

5.0
5.5

6.0
6.5

7.0 –5

0

5

x

t

(a)

U1,3 (x, t)

–5 5 10 15
x

–2.670

–2.675

–2.680

–2.685

–2.690

(b)

4

2

0

–2

–4

x

t
5.0 5.5 6.0 6.5 7.0 7.5

(c)

Figure 1: Solitary wave solutions equation (7) in three, two, and contour plots.
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7.0
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0
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–8.5

–9.0

–9.5

(b)

2

1

0

–1
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x

6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8
t

(c)

Figure 2: Solitary wave solutions equation (9) in three, two, and contour plots.
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Figure 3: Continued.
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Figure 3: Solitary wave solutions equation (13) in three, two, and contour plots.
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Figure 4: Solitary wave solutions equation (16) in three, two, and contour plots.
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a0 � − 2, b2 � 1, δ � 5, k1 � − 1, k2 � 3, k3 � 4, k4 �
33
2

, λ � − 6, ρ � 2, w � −
2
3
, y � 1, z � 2, ϰ � 3a2 � 7,􏼔

& a0 � 6, δ � 3, k1 � 5, k2 � 3, k3 � 4, k4 �
33
2

, λ � 9, ρ � 1, w � −
2
3
, y � 1, z � 2, ϰ � 2& a0 � − 2, b2 � 1,

δ � 0, k1 � − 1, k2 � 3, k3 � 4, k4 �
33
2

, λ � − 6, ρ � − 3, w � −
2
3
, y � 1, z � 2, ϰ � 3& a2 � 1, a0 � − 2, δ � 0,

κ � 2, k1 � − 1, k2 � 3, k3 � 4, k4 �
33
2

, λ � − 6, w � −
2
3
, y � 1, z � 2􏼕.

(23)

4. Conclusion

-is research paper has successfully investigated the nonlinear
fractional nonlinear (4+ 1)-dimensional Fokas model via the
modified Khater method that has used the Atangana–Baleanu
derivative operator to convert the fractional form of the studied
model to a nonlinear ordinary differential equation with an
integer order. Many distinct exact traveling and solitary wave
solutions have been obtained. -ese solutions have been il-
lustrated via various sketches (Figures 1–4) that explain more
novel properties of the considered fractional models. -e ac-
curacy and novelty of our obtained solutions have been
explained. -e powerfulness and effectiveness of the used
techniques are also explained and verified.
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Based on the cellular automatonmodel, the risk of modernization of traditional sports culture is evaluated andmeasured by using the
methods of documentary, interview, and simulation experiments. )e results of simulation experiment show that, in the complex
system of themodernization of traditional sports culture, themutation factors will lead to the sudden decline of the survival suitability
of traditional sports culture and the risk of being unable to evolve; in the process of the modernization of traditional sports culture,
there are two kinds of risks: self-extinction of dying out and self-extinction of homogenization; risk of dislocation failure lies in the
government’s support policies; risk of imbalance between fitness and scale allocation lies in modernity of derivative traditional sports
culture. Countermeasures. )e government should measure the environmental carrying capacity of the development of traditional
sports culture in the region according to the regional resource situation; on this basis, heterogeneous sports activities are selectively
introduced, the vitality of local traditional sports culture is enhanced, and the policy support and intervention time are reasonably
controlled, to promote the balanced allocation of the suitability and scale of the derivative traditional sports culture.

1. Introduction

)e traditional sports culture is the root and soul of sports
development in China. But in the process of modernization,
the soil on which the traditional sports culture depends has
undergone great changes and is facing the risk that it may
bring a survival crisis. )e risk sources of traditional sports
culture are diverse and complex, and different scholars also
reveal and define the risk from different aspects. From the
perspective of social transformation, national traditional
sports culture faces the risk of lack of modern factors,
elimination of living environment, and shrinking of target
groups [1]; from the perspective of change, the four levels of
material, institution, custom, and thought and value are
inevitably facing crisis [2]; in the aspect of inheritance and

development, themodernization of traditional sports culture
faces many contradictions, such as nationalization and
globalization, regionalization, and nationalization [3]. As far
as current research is concerned, there is a lack of scientific
measurement and intuitive quantitative research for the
specific risk factor such as government policy. Moreover, the
government policy has more countermeasures to deal with
the risk, and there is less research on the risk brought by the
policy itself, which provides the space for this research, that
is, using cellular automata as the basis for constructing the
risk assessment model, and based on explaining the com-
position and classification of cellular automata, the gov-
ernment policy is chosen as the key control parameter to
carry out the simulation experiment of the risk of mod-
ernization of traditional sports culture and to measure and

Hindawi
Mathematical Problems in Engineering
Volume 2020, Article ID 5150490, 8 pages
https://doi.org/10.1155/2020/5150490

mailto:sdufelmh@163.com
https://orcid.org/0000-0003-1755-2138
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/5150490


identify the risk categories to provide a reference for the
formulation of accurate development policy.

2. Simulation Experiment of Traditional Sports
Culture Modernization Risk Based on
Cellular Automata

2.1. Introduction of Cellular Automata Model

2.1.1. Physical Definition of Cellular Automata. From a
physical point of view, cellular automaton is a dynamic
system that demonstrates a system that evolves in discrete
time dimensions within a cellular space composed of cells
with discrete, finite states, according to certain local rules [4].

In cellular automata, space is divided into several cells by a
certain regular grid. Each cell in these regular grids is called a
cell, and the value of each cell has a fixed limit; that is, it can
only be taken in a set of finite discrete states. All cells must
follow the same rules in their evolution. A large number of cells
constantly update their self-state according to the rules of local
evolution. Cellular automata can follow a series of evolutionary
rules rather than strictly defined physical equations or func-
tions. )e model of cellular automata is similar to the “field”
which can produce close action in traditional physics, which
can be said to be a discrete model of “field” [5].

)e basic idea of cellular automata is to use a large
number of simple cells, thick through simple operation rules
(that is, determined local evolution rules), in discrete time
and space to continue to run, and then simulate the complex
and rich various phenomena, providing effective model tools
for the study of the overall behavior and complex phe-
nomena of the system, and has been widely used in the
research fields of economics, sociology, and other disciplines
since its emergence [6].

2.1.2. Composition of Cellular Automata. )e cellular
automata model consists of four parts: cellular, cellular
space, cellular neighbors, and cellular evolution rules. By
mathematical definition, cellular automata can be under-
stood as being composed of a cellular space and a trans-
formation function scheduled for that space [7].

(1) Cellular. Cell, or unit, is the most basic unit of com-
position that can be calculated in cellular automata. Cells are
all dispersed on lattice points in discrete 1, 2, or multidi-
mensional Euclidean spaces [8]. Strictly speaking, each cell
must have its own state value at a fixed time, thus forming a

state set, which can be a binary form of {0, 1} or a discrete set
of {s0, s0, s1,. . .,sn}integer form.

(2) Cellular Space. Cell space refers to a set of spatial lattice
points distributed by cells. In theory, cellular space can be
Euclidean space of arbitrary dimension, but the main re-
search is 1-dimensional and 2-dimensional cellular
automata (2-dimensional cellular automata model is used in
this paper).

Geometric Division of Cellular Space. For 1-dimensional
cellular automata, it is obvious that there is only one division
of its cellular space, while in 2-dimensional cellular
automata, its cellular spatial structure mainly involves three
mesh arrangement modes: triangle, square, and regular
hexagon. And this topic uses a square grid.

Boundary Conditions in Cellular Space. Even the most ad-
vanced computer simulation technology cannot complete the
automata evolution experiment of an infinite grid. Data
simulation must require the system to be finite and bounded.
For the cell on the boundary, we can generally consider adding
the boundary condition to the cell space.)e general condition
mainly has the fixed boundary, that is, adding the “virtual cell”
of the fixed state outside the boundary of the cell space so that
the boundary looks complete; the periodic boundary, in the 2D
grid, mainly the left and right boundary and the upper and
lower boundary, needs to be connected separately; there is also
a kind of heat insulation boundary, adding “virtual cell” outside
the boundary of the cell space, and the state determination of
these “virtual cell” needs certain rules, which can give them the
state of the boundary cell with which they are adjacent. )is
topic adopts fixed boundaries.

(3) Cellular Neighbors. )e cellular and cellular spaces only
define the static part of the cellular automata model. )e
cellular automata need to be equipped with corresponding
evolution rules to carry out dynamic evolution. )ese rules
are all defined in the local range, that is, the state of cellular at
the next moment, depending on its state at the current
moment, and the state of its neighbor cell. )erefore, the
neighbors of the cell must be determined first before given
the cell rules. In the 2d cellular automata model, the
commonly used neighbor structure is von Neumann and
Moore type, and this subject is adopted by von Neumann.

)e upper, lower, left, and right adjacent four cells of a
cell are the neighbors of the cell. Mathematics is defined as

NNeumann � vi � vix, viy􏼐 􏼑: vix − vox

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + viy − voy

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ 1, vix, viy􏼐 􏼑 ∈ Ζ2􏼚 􏼛, (1)

where vi � (vix, viy) denotes the neighbor cell and its co-
ordinates and (vox, voy) is the coordinates of the central cell.

(4) Rules of Cellular Evolution. According to the cellular state
at present and its neighbor state, the dynamic function of

determining the state of the cell at the next time is generally
called the state transfer function [9]. For the given cell i, all of
its neighbors Ni, the state of cellular i recorded at t time is St

i

so the state of the entire neighborhood can be recorded as
St

Ni
. )e state transfer function can be recorded as F. As a

2 Mathematical Problems in Engineering



result, every cell i has St+1
i � F(St

i , St
Ni

). It can be said that the
cellular evolution rule is the key to cellular automata and the
dominant factor. )e reasonable selection of the evolution
rule is related to the success of a cellular automata model.

2.2. Construction of Risk Simulation Model of Traditional
Sports Culture Modernization Based on Cellular Automata.
Taking the key control parameters of traditional sports
culture development, government policy as the research
object, the following CA models are established:

S
t

� f Ω, S
t− 1

, ϕ(N), A, R
t

􏼐 􏼑. (2)

)emeaning of the elements in formula (2) is as follows:

(1) Ω mark cell space, Ω � (i, j), i, j � 1, 2, . . . , N􏼈 􏼉.
(2) St(i, j) and St− 1(i, j) are the strategies for labeling

cells at x and y times, which is defined as follows:

S
t
(i, j) �

0

1

2

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
, (3)

where 0 represents no policy involvement in project
development, 1 represents the macropolicy guidance
of the sports culture represented by a project, and 2
represents the sports culture of a project.

(3) ϕ(N) labels the neighborhood of intercellular in-
teraction, and this paper uses the von Neumann
model.

(4) Rt(i, j) represents the winning rate of (i, j) cell at t

time, also known as the fitness of the cell.

During the development of traditional sports culture,
when the government policy begins to intervene in
the development of culture, the behavior derived
from traditional sports culture is the game behavior
of policy and cultural development system; that is,
the derivative state of traditional sports culture will
have a certain influence after receiving the influence
of different policies. InΩ, the formula for calculating
the suitability of internal cells R is

R
t
(i, j) � 1 − 􏽘

S
t− 1

(i, j)

N
􏼠 􏼡􏼢 􏼣 1 − L

t− 1σ􏼐 􏼑 1 + E
t− 1

􏼐 􏼑. (4)

For the convenience of simulation, this study stipulates
that, from the beginning of the reform and opening up
in 1989, the influence of the policy on the development
of traditional sports culture is set a fixed constant:

R
t
(i, j) � 0.1 1 − L

t− 1σ􏼐 􏼑 1 + E
t− 1

􏼐 􏼑. (5)

)e relationship between the elements in formulae (4)
and (5) is explained as follows: 􏽐 St− 1(i, j) is expressed
as the number of ecological traditional sports cultural
items under the influence of policy at t − 1 time, that is,
the number of relevant policies selected as 1 or 2 in the
cellular space, and this study will be one of the indi-
cators to measure the risk of sports culture
modernization.
N indicates the number of all traditional sports cultural
items (including original and new ecology) under the
influence of policy.
1 − (􏽐(St− 1(i, j))/N) is expressed in a certain time and
space, the survival of ecological traditional sports, and
cultural projects due to the dependence on policy
caused by their own growth block.
1 − Lt− 1σ reflects the game competition influence of all
kinds of traditional sports culture items under the
influence of policy.
Lt− 1 denotes the number of cells in the neighborhood
space belonging to the evolution state of national
traditional sports culture at t − 1 time.
σ represents the effect of competition between cells on
the cell in the neighborhood space.
Et− 1 is a remarkable feature and one of the important
parameters in the modernization of traditional sports
culture.
Generally, we regard the scale change in derivative
traditional sports culture is affected by policies such as
urban and rural S-shaped curve change; that is, at the
beginning, the response to the policy is slow, and then,
it enters the rapid development period. With the en-
hancement of adaptability, the policy stimulus tends to
decline. )erefore, the influence of policy parameters
conforms to the typical diffusion curve, and the cal-
culation formula used is as follows:

E
t− 1

�
1

1 + a exp − b 􏽐 E
t
(i, j)􏼐 􏼑􏼐 􏼑

. (6)

In (6), at time t, the diffusion rate affected by policy is
the parameter of the above model. Parameter a
determines the position of the curve, and parameter
b determines the shape of the curve. )e larger the
value of b, the steeper the curve is, which means that
the response speed of traditional sports cultural
projects to policies is very fast, and the derivative
scale is larger.)erefore, this study is mainly through
the study of parameter b to explore the influence of
policy parameters on the development scale of tra-
ditional sports culture.

(5) f is the state transition rule function.
Each traditional sports culture item may have a
random variation on the derivative route. Because of
the policy influence, different projects have a certain
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contraction strategy, that is, either new or choose to
die out.

2.3. Simulation Steps

Step 1: t � 0 assigns an initial value to the threshold for
the number of experiments T, maximum policy tol-
erance N, threshold r, a, b, and σ threshold value. At
the moment of t � 1, at the center of the cell space
(20∗ 20 matrix), there exists a 2∗ 2 matrix; that is, the
derivative formed under the influence of the policy of
the beginning of the traditional sports culture project.
Step 2: end if t≻T;
Step 3: Et− 1 from formula (6);
Step 4: find Rt− 1 andRt from formulae (4) and (5);
Step 5: calculation St(i, j), Rt

(i, j), 􏽐 st(i, j), using rules
f;
Step 6: calculation St+1(i, j), using rules f;
Step 7: t � t + 1, step 2.

All the above steps can be programmed by MATLAB to
complete the simulation calculation.

2.4. Simulation Diagram. In the simulation process of this
study, the cell network of 20∗ 20 is mainly adopted, the
number of simulations is specified as
T � 70, N � (1/2)(20∗ 20), and r � 0.3, and then different
initial values are given to b and σ; the following series of
simulation diagrams are obtained, as shown in Figures 1–8.

(1) a � 60, σ � (1/8), b � 0.2, and the simulation results
are shown in Figures 1 and 2.

(2) a � 60, σ � (1/8), b � 0.8, and the simulation results
are shown in Figures 3 and 4.

(3) a � 60, σ � (1/2), b � 0.2, and the simulation results
are shown in Figures 5 and 6.

(4) a � 60, σ � (1/2), b � 0.8, and the simulation results
are shown in Figures 7 and 8.

3. Interpretation of Result

From the results of the above eight diagrams, we can analyze
and obtain four significant risks of the cultural development
of the derivative traditional sports culture project.

3.1. Risk 1: Extinction Self-Extinguishing. When a � 60, σ �

(1/8) (see Figures 1 and 2); when the policy parameter
b� 0.2, that is, the impact of policy is not strong. At the same
time, the average suitability of the policy to the traditional
sports culture has changed from the initial intense response
to zero. )is phenomenon is called extinction self-extinc-
tion.)emost likely reason for this is that the policy is not in
line with the market demand, which leads to the traditional
sports culture.

)e project’s derivative ecology appeared “survival
suffocation” and then “revived from the dead” with the
strong support of the government. )ere is a growing gap in

development. At this time, the policy measures are not
conducive to the health of traditional sports culture
development.

As the policy parameters b � 0.8, that is, the policy
changes, the average, fitness, and development scale of the
traditional sports culture evolution ecology gradually appear
as local peak, but after the local peak appears, there is no big
change, which indicates that the support strategy can only
support it to the current high level, but the support fatigue
phenomenon. )e possible reasons are as follows: first, the
traditional sports culture in the evolution of the “ride”
behavior, the project because of regional rules, and no one to
support innovation, and this situation will lead to the entire
project’s evolutionary die out. Secondly, maintaining the
leading edge of technology, leading innovation projects in
traditional sports culture will be taken strict knowledge
protection measures by the higher authorities to prevent the
spread of innovation technology; the signing of confiden-
tiality agreements for the descendants and the registration of
trademarks and patent rights in the form of expression are
all-powerful measures to protect the development of local
projects, but these measures can often also become resistant
to their development.

3.2. Risk 2: Homogenization Self-Extinguishing. As the tra-
ditional sports culture system has not died out, when the
policy parameters change from 0.2 to 0.8, the scale of de-
velopment of the traditional sports culture is shrinking at
x � (1/2) (Figures 5–8), which shows that when the gov-
ernment’s support policy is strengthened, the external
economic diffusion effect of traditional sports culture is
obvious, and the traditional sports culture system has al-
ready manifested competitive advantages such as the scale of
participating artists, the rapid spread of influence, and the
strong regional brands. Of course, this cannot say which
policy is the most reasonable, and only after the market test
can we determine the good policy, but this time, often many
homogeneous sports in the system have died out or are in a
state of extinction, and the emergence of homogenization is
self-extinguishing.

3.3. Risk 3: Risk of Dislocation Failure in Government Support
Policies. )e simulation results show that when the market
competition is in a smooth state, the policy support of the
government or the competent department does not promote
the evolution of the traditional sports culture modernization
but only affects the upper limit of the system scale of the
traditional sports culture. Suppose the government support
policy is the main control parameter. Figures 1–4 show that
when the policy is not strong, b� 2; the average fitness
R

t
(i, j) is 0.3–0.7 when the evolutionary risk effect of all

sports culture modernization in the region spreads slowly,
while the traditional sports culture is affected by the policy,
the development scale 􏽐 St(i, j) fluctuation range is 60–120;
when the policy is strong, that is, b� 0.8, the fluctuation
range of the average fitness R

t
(i, j) is 0.3–0.9, while the

development scale 􏽐 St(i, j) fluctuation range of traditional
sports culture is 20–120. It can be seen that when the social
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Figure 1: Average fitness R
t
(i, j) of all sports culture-derived ecology in the region.
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Figure 2: 􏽐 St(i, j) of development scale of derivative ecology after being affected by policy.
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Figure 3: Average fitness R
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(i, j) of all sports culture-derived ecology in the region.
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environment changes, mainly in the environment of fierce
market competition, the support of the government has little
influence on the development scale derived from the tra-
ditional sports culture, which shows that blindly introducing
policies to support will make the policy miss the best time to
intervene, which will not only reduce the efficiency of the
policy but also affect the self-adjustment of the traditional
sports culture.

3.4. Risk 4: Unbalance of Fitness and Scale Allocation of
Traditional Sports Culture. When a � 60 and σ � (1/2), we
can see that when the government policy is not strong,
b= 0.2, the average fitness of the items in the traditional
sports culture system is 0.1–0.7, and the scale of the tradi-
tional sports culture is 20–160; if the government policy is
strong, b= 0.8, the average fitness of the items in the tra-
ditional sports culture system is 0.2–0.8, and the scale of the
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Figure 6: 􏽐 St(i, j) of development scale of the derivative ecology after being affected by policy.
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Figure 5: Average fitness R
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(i, j) for all sports culture-derived ecology in the region.
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Figure 4: 􏽐 St(i, j) of development scale of the derivative ecology after being affected by policy.
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traditional sports culture is 0–150.)is shows that the policy
will enhance the suitability of the components in the tra-
ditional sports culture project system, but it will inhibit the
development of the traditional sports culture scale. )ere-
fore, whether to improve the conformity of the traditional
sports culture or to enlarge the scale of its modern devel-
opment tests the management wisdom of relevant depart-
ments. Partially emphasizing conformity or development
scale may bring great challenge to traditional sports culture.

4. Risk-Avoiding Strategy for Modernization of
Traditional Sports Culture

4.1. Actively Introducing Heterogeneous Sports. To avoid the
phenomenon of self-extinguishing, the government should
actively introduce as many heterogeneous sports as pos-
sible to stimulate the innovation and development of local
traditional sports. Of course, in the process of develop-
ment, the government cannot forcibly change its devel-
opment structure, but through the external environment to
change its internal factors, thus causing its evolution. To
complete the modernization and evolution of local tradi-
tional sports, the competent authorities should take the
search for sports with heterogeneity and stimulation as one
of the important tasks.

4.2. Measuring the Environmental Carrying Capacity of the
Development of Traditional Sports Culture in the Region.
It is suggested to do a good job of statistics and track the scale
of sports culture development after the policy release and to
predict the environmental carrying capacity of traditional
sports development in the region before the new policy
release. Evaluate the suitability of the policy, use the CA
model, measure the development scale of traditional sports
culture, and prevent the risk of self-extinguishing, unbal-
ance, and even failure. )erefore, in the development of the
traditional sports culture system, the measurement of en-
vironmental carrying capacity is necessary and crucial.

4.3. Policy Support and Timing of Intervention. According to
the current situation of inheritance and protection of tra-
ditional sports culture in China, government guidance and
support are still the main forces to promote its moderni-
zation [10]. But the simulation experiment shows that the
government policy support strength and the intervention
time, should according to the external environment situa-
tion, realize the precision support, thus enhancing the policy
utility. So when does government support work on tradi-
tional sports culture? When the strength of policy support
changes from 0.2 to 0.8, the average fitness of sports culture
development ecology has been improved to some extent, but
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Figure 8: 􏽐 St(i, j) of development scale of the derivative ecology after being affected by policy.
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the threshold of development scale fluctuation is different.
)erefore, when the government formulates the support
policy to the traditional sports culture, it must first measure
key control parameters (economic and geographical con-
ditions) in its evolution process, so it is possible to determine
the timing of policy intervention and better control the
influence [11].

4.4. To Promote the BalancedAllocation of Fitness and Scale of
Traditional Sports Culture in Derivative State. Because fit-
ness and scale are the important factors that affect the
development of ecological traditional sports culture, it
should be determined according to the external environ-
ment and development stage of traditional sports culture
[12]. It can be divided into the following situations: first,
when the internal and external environmental resources of
a certain region are limited and the competition between
projects is fierce, the government should minimize the
policy interference and let the different traditional sports in
a free competition state; when the competition reaches a
certain stage, the government chooses the opportunity to
enter, support some projects, and improve the suitability of
the project system; second, when the internal and external
resources available in a certain region are abundant and the
competition between projects is small, the government
should strengthen the policy, on the one hand, improve the
suitability of traditional sports culture, on the other hand,
make full use of external resources to promote its scale
development, and achieve the double promotion of suit-
ability and scale; third, when the regional internal and
external environmental resources are abundant and the
project competition is more intense, the government
should make full use of the resources to promote the de-
velopment of the project scale at this time [13].

5. Conclusion

According to the research needs, this paper selects the
government policy as the key control parameter to simulate
the four risks in the process of modernization of traditional
sports culture, which is of great significance for the pro-
tection and inheritance of national culture. In fact, in the era
of big data, the “cloud computing” of the modernization
development of traditional sports culture in the region is not
difficult, and it is expected that soon, the modernization
development of traditional sports culture projects can
achieve the precise control of various influencing factors and
develop towards the direction of human needs and hopes.
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In this paper, a dynamic model for long-term on-orbit operation of the tethered solar power satellite (Tethered-SPS) is established.
Because the Tethered-SPS is a super-large and super-flexible structure, the coupling among the orbit, attitude, and structure
vibration of the system should be considered in comparison with the traditional spacecraft dynamic models. Based on the absolute
nodal coordinate formulation (ANCF), the dynamic equation of the Tethered-SPS is established by Hamiltonian variational
principle, and the dual equations of the Hamiltonian system are established by introducing generalized momentum through
Legendre transformation. (e symplectic Runge–Kutta method is used for numerical simulation, and the validation of the
modeling method is verified by a numerical example.(e effects of orbital altitude, initial attitude angle, length of solar panel, and
orbital eccentricity on the orbit and attitude of the Tethered-SPS are analyzed. (e numerical simulation results show that the
effect of orbital altitude and length of solar panel on the orbital error of midpoint of beam is small. However, the initial attitude
angle has a significant effect on the orbital error of midpoint of solar panel. (e effect of the length of solar panel on the attitude
angle of the system is not significant, but orbital altitude, orbital eccentricity, and initial attitude angle of the system severely affect
the attitude angle of the system. (en, the stability of the system is affected.

1. Introduction

With the use of a large number of mineral energy, the global
natural environment has been seriously polluted, which has
also caused the destruction of the ecological environment.
How to make full use of solar energy, a clean and renewable
energy, has attracted worldwide attention [1]. In order to
utilize solar energy more effectively, Glaser [2] first proposed
the concept of space solar power station (SPS): solar energy
is converted into electric energy in space; then the electric
energy is transmitted to the ground rectenna receiver
through microwave, and finally the electric energy is
transmitted to users. NASA and Doe attached great im-
portance to the concept of SPS and put forward the first
systematic concept: the 1979 SPS Reference System [3].
Subsequently, the Sun Tower concept [4, 5], the Integrated
Symmetrical Concentrator [6], and the SPS-ALPHA [7]
were proposed. (ereafter, based on the Sun Tower model,
the European Sail Tower Concept was put forward by DLR/
ESA [4]. Since the introduction of SPS in the United States,
several configurations have been proposed by Japan, such as
the tethered solar power satellite (Tethered-SPS) and the

NASDA reference system [8]. China also attached great
importance to the research of SPS and proposed MR-SPS
[9, 10] and SSPS-OMEGA [11].

(e above research on SPS is mainly configurational
design. However, there are many problems to be solved
about SPS research, such as thermal management [9] and
structural health monitoring [12, 13]. With the deepening of
research, many researchers began to pay attention to the
dynamics and control of SPS. Liu et al. [6, 14] simplified the
segmented reflector as a particle, the metering structure
boom as an Euler-Bernoulli beam, the solar collector, and
the microwave transmitter as a rigid body. A coupled dy-
namic model of the Integrated Symmetric Concentrator
system was established by using the floating frame of ref-
erence formulation (FFRF). In [15], the coupled orbit-atti-
tude dynamic equations of European Sail Tower were
established by using FFRF. (e gravitational force and
torques were expanded to fourth-order terms through
Taylor series. (e effects of higher order terms on the orbit
and attitude motions were analyzed. Hu et al. [16] estab-
lished the coupled dynamic model of space flexible beams by
FFRF and analyzed the effect of weak damping on the
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vibration of beams according to six different initial values.
Afterwards, considering the effect of aspheric perturbation,
Hu and Deng [17] established the coupled dynamic model of
flexible spatial beams by using FFRF and analyzed the effect
of nonsphere perturbation of the Earth and weak damping of
beams on the transverse vibration and the stable fixed point
of beams. Considering the effect of solar pressure, gravity
gradient, and space thermal radiation, Mu et al. [10]
established the complex dynamic equation of the flexible
beam by using FFRF. (e effects of initial attitude angle,
structure size and space environment on the structural vi-
bration and attitude of the beam were analyzed. (e above
dynamic equations were established by the FFRF, which was
the most commonly dynamic modeling method for flexible
systems. However, when the flexible body undergoes large
deformation and rotation, the modeling accuracy and
computational efficiency of the FFRF will be reduced [18].
(en Yang et al. established finite element model of MR-SPS
by simplifying the antenna array as thin plates [19].

(e Tethered-SPS has many advantages, such as no
active attitude control, no active heat control, high ro-
bustness and stability, and easy integration and maintenance
[20]. So many researchers paid attention to its dynamics and
control. In 2003, Fujii et al. [21] established a one-dimen-
sional flexible beam for Tethered-SPS and designed a
method to control attitude and structural vibration of the
system by adjusting the tethers. In order to control the
vibration of solar array panel of the Tethered-SPS, Fujii et al.
[22] designed a feedback controller based on task function
method by simplifying solar array panel as Euler-Bernoulli
beams and verified the feasibility of this control method
through ground tests. Senda and Goto [23] established a
dynamic model composed of rigid and flexible bodies
connected by springs and joints. (e attitude control al-
gorithm of the Tethered-SPS was designed and simulated by
using geomagnetic force. However, the above studies mainly
focused on the control of the attitude motion and structural
vibration and did not study the coupled dynamic charac-
teristics of the system. Based on the Hamiltonian variational
principle, Hu et al. [24] established a damped beam-spring-
mass model of Tethered-SPS. (e symplectic dimension
reduction method was used to decouple the dynamic
equation, and the structure-preserving method was used to
solve the dynamic equation. However, [24] was only a one-
dimensional dynamic model. Li and Cai [25] simplified the
solar array panel as a rigid panel. A dynamic model was
established by considering the rotation of solar array panel,
the deployment and retrieval of tethers, and the vibration of
tethers. (e effects of initial attitude errors and the vibration
of the tethers on the system were analyzed. However, the
deformations of solar array panel were not considered in
[25]. (e dynamic model of the Tethered-SPS was estab-
lished by simplifying the bus system as a particle, the tethers
as a mass-free springs, and the solar array panel as flexible
panels in [26], and the effect of thermal deformation of solar
panels on the attitude of the system was studied. Lately, Hu
et al. [27] studied the characteristics of the vibration and
elastic wave propagation by establishing damping panel-
spring-mass model. However, the above models were based

on the premise of small deformation and small attitude
swing, so it was difficult to study large deformation and large
attitude swing.

(e absolute node coordinate formulation (ANCF) has
the advantages of constant mass matrix in dynamic equa-
tion, no Coriolis force and centrifugal force term [28].
(erefore, the method can describe the dynamic charac-
teristics of flexible system more accurately when large angle
rotary maneuver and orbital transfer occur. In recent years,
more and more researchers began to use ANCF to establish
the dynamic models of space flexible system [29–32]. Sun
et al. [31] simplified the tether as a flexible beam and the
satellites as particles. (e dynamic model of the space
tethered satellite was established by using the ANCF. Li et al.
[32] used the ANCF to establish the dynamic model of large
flexible beam and flexible plate in space. A new method for
calculating Jacobian matrix of the generalized gravitational
force was proposed. (e method was successfully applied to
attitude control simulation of solar subarrays. (e Tethered-
SPS is a super-large and super-flexible spacecraft. Its orbit
dynamics, attitude dynamics, and structural vibration are
quite complex, and even there will be strong coupling be-
tween them. At the same time, when the Tethered-SPS is
maneuvering and trajectory transferring at large angle, the
system will undergo large deformation and rotation. At this
time, the ANCF can be used to establish its accurate dynamic
model. Wei et al. [33] established the dynamic model of the
Tethered-SPS by adopting the ANCF. (e effects of the bus
system mass, orbital altitude, and tether length on the vi-
bration characteristics of the solar array panel were studied.
Xu et al. [30] simplified solar array panels as Euler-Bernoulli
beams, tethers as massless springs, and bus system as par-
ticle. A simplified model of the Tethered-SPS was estab-
lished, and the effects of solar pressure on structural
vibration and attitude of the systemwere analyzed. Although
[24, 30, 33] established a one-dimensional coupled dynamic
model for the Tethered-SPS, they were based on the sim-
plified model of the Tethered-SPS. In this paper, a multi-
tethers dynamic model will be established.

Because the dynamic equations of the Tethered-SPS
based on ANCF are strongly coupled nonlinear equations, it
can only be solved by numerical method. Symplectic al-
gorithm can maintain the stability, energy conservation, and
momentum conservation of the system in numerical sim-
ulation, which has attracted extensive attention of many
researchers [34–37]. At the same time, symplectic method
has also been applied in celestial mechanics and aerospace
dynamics simulation [37–41]. Aiming at the deployment
process of solar receivers in SPS-ALPHA, a damping dy-
namic model was established by Yin et al. [37]. (e classical
damping systemwas separated into undamped system by the
separation transformation method, and the numerical
simulation was carried out by using the symplectic Run-
ge–Kutta method. Hernandez [38] proposed a symplectic
method to solve the N-body problem quickly, and simulated
the three-body problem numerically. Li and Zhu [39]
established the dynamics model of the tethered satellite by
finite element method and used the fourth-order symplectic
Runge–Kutta method for numerical simulation. Compared
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with the classical Runge–Kutta method, the symplectic
Runge–Kutta method can maintain long-term numerical
stability. (ereafter, they established the dynamic model of
flexible electric solar sail and used symplectic method to
simulate the dynamic equation [42]. Hubaux et al. [40]
established the dynamic model of space debris in the
complex space environment. (e numerical results showed
that the symplectic method can obtain stable and accurate
numerical results even with a large step. Li et al. [42]
established the orbit-attitude coupled dynamic model of a
spacecraft rotating around a small celestial body. (e sim-
ulation results showed that the coupled effect had a sig-
nificant impact on the orbit of the system, especially when
the higher-order terms were considered. Based on the above
background, the symplectic method is used to study the orbit
and attitude dynamic response of the Tethered-SPS.

2. Dynamic Model of the Tethered-SPS

In order to accurately reflect the attitude motion of the
Tethered-SPS, the dynamic model of orbit-attitude-structure
coupling is established. In order to facilitate the study, this
paper only considers the motion of the system in the orbit
plane. (e Tethered-SPS system can be simplified as a dy-
namic model consisting of Euler-Bernoulli beam (beam AB)
and particle (point P). (e beam AB and point P are con-
nected by 21 springs [20], and point C is the midpoint of
beam AB (see Figure 1). (e inertial coordinate system is
established, in which the coordinate origin O coincides with
Earth’s center of mass, and theOx axis and the Oy axis are in
the orbit plane.

On the premise of accuracy and calculation efficiency
[30], beam AB is discretized into 20 ANCF elements. So the
absolute coordinate vector of any point on the ith beam
element can be given by

r xe( 􏼁 � x xe( 􏼁, y xe( 􏼁􏼂 􏼃
T

� S xe( 􏼁ei, (1)

where xe ∈ [0, le] is local coordinate along the beam axis,
le � lAB/20 is length of ANCF elements, the shape function
S(xe) can be obtained in [28], and the node coordinate
vector ei of the ith beam element is taken as

ei � ei,1, ei,2, ei,3, ei,4, ei+1,1, ei+1,2, ei+1,3, ei+1,4􏽨 􏽩
T
, (2)

where

ei,1 � x(0), ei,2 � y(0), ei+1,1 � x le( 􏼁, ei+1,2 � y le( 􏼁,

ei,3 �
zx(0)

zxe

, ei,4 �
zy(0)

zxe

, ei+1,3 �
zx le( 􏼁

zxe

, ei+1,4 �
zy le( 􏼁

zxe

.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(3)

(e mass matrix of the ith beam element can be written
as follows [28]:

Mi � 􏽚
le

0

mAB

lAB

STSdxe. (4)

(en, the total kinetic energy of the system can be
written in an abbreviated form as

T �
1
2

􏽘

20

i�1
_e
T
i Mi _ei +

1
2
mP _x

2
P + _y

2
P􏼐 􏼑 �

1
2

_q
TM _q, (5)

where q � [e1,1, e1,2, e1,3, e1,4, . . . , e21,4, xP, yP]T is the gen-
eralized coordinate vector of the system, M is the mass
matrix of the system, and [xP, yP]T is the absolute coor-
dinate vector of point P.

Neglecting the shear deformation and using the as-
sumptions of Euler-Bernoulli beam theory, the elastic po-
tential energy of the ith beam element can be expressed as
[28]

Ui,elast �
1
2

􏽚
le

0
EABAAB

zul

zxe

􏼠 􏼡

2

+ EABIAB

z2ut

zx2
e

􏼠 􏼡

2
⎛⎝ ⎞⎠dxe,

(6)

where ul and ut are, respectively, the axial and transverse
displacements. Equation (6)fd6 is calculated according to
[32].

Unlike the traditional spring model, tether pressure is
not considered [27]. So elastic coefficient of the ith tether can
be written as

ki �
sign Δli( 􏼁 + 1

2
EtAt

li
, (7)

where sign( ) is the sign function and li is the original length,
which can be expressed as

li �

������������������

l
2
PC +

lAB

2
− (i − 1)le􏼢 􏼣

2

􏽶
􏽴

. (8)

(en, the elastic potential energy of the ith tether can be
expressed as

Ui,tether �
1
2
ki

���������������������

xP − xNi( 􏼁
2

+ yP − eNi( 􏼁
2

􏽱

− li􏼔 􏼕
2
, (9)

where xNi and yNi are the coordinates of the ith node,
respectively.

(erefore, the elastic potential energy of the system is
expressed as

Uelast � 􏽘
20

i�1
Ui,elast + 􏽘

21

i�1
Ui,tether. (10)

(e gravitational potential energy of the system includes
the gravitational potential energy of the bus system and
beam AB, which can be expressed as [20]

Ugrav � −
μmP�������

x
2
P + y

2
P

􏽱 − 􏽘
20

i�1
􏽚

le

0

μmAB

lAB

������

x
2

+ y
2

􏽱 dxe, (11)

where μ � 3.986 × 1014 m3/s2 is gravitational parameter of
the Earth; x and y can be obtained by (1)fd1. Equation (11)
fd11 is calculated by the Taylor approximation method [32],
which has the advantage of high computational efficiency
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and easy calculation of gravitational potential energy and
Jacobian matrix.

According to (5), (10), and (11), the Hamiltonian
function of the system can be expressed as [30]

H � T + Uelast + Ugrav. (12)

(e generalized momentum can be obtained using
Legendre transformations:

p �
zH

z _q
� M _q. (13)

(e Hamiltonian function of the system is rewritten to a
dual equation about q and p; that is,

H �
1
2
pTMp + Uelast + Ugrav. (14)

(en Hamiltonian canonical equation can be rewritten
in the following form [36]:

_q �
zH

zp
� MTp,

_p � −
zH

zq
� −

zUelast

zq
−

zUgrav

zq
.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(15)

Equation (15)fd15 is a system of first-order ordinary
differential equations, which can be solved by Runge–Kutta
method [43]. (e s-stage Runge–Kutta method formulated
can be written as

un+1 � un + τ 􏽘
s

j�1
bjf tn + cjτ, kj􏼐 􏼑,

ki � un + τ 􏽘
s

j�1
aijf tn + ciτ, kj􏼐 􏼑,

⎧⎪⎪⎪⎪⎪⎪⎨
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(16)

where 􏽐
s
j�1 aij � ci, 􏽐

s
i�1 ci � 1, 􏽐

s
i�1 bi � 1, and cj ≥ 0,

i, j � 1, 2, . . . , s. Equation (16)fd16 is symplectic, if the co-
efficients satisfy following conditions:

bibj − aijbi − ajibj � 0, (17)

where i, j � 1, 2, . . . , s. (e 2-stage symplectic Runge–Kutta
parameters are adopted as [37, 44]
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(18)

3. Validation of the Proposed Model

A body-fixed coordinate system Pξζ is established as shown
in Figure 2. Its origin is located at the center of mass of bus
system, the ξ axis is initially parallel to the beam AB, and the
ζ axis is perpendicular to the beam AB at the origin. In the
following example and numerical simulation analysis, the
deflection of midpoint of beam AB is expressed as δ; that is,
δ � ζ − lPC.

(e parameters of the system are consistent with the
design parameters in [20, 26], as shown in Table 1.

In order to verify the correctness of the model, the
Tethered-SPS is simplified to have only two springs con-
nected, and the system parameters are changed to be con-
sistent with [30, 33].

In [33], the tethers are simplified as equidistant con-
straints; that is, the elastic coefficient of the tethers is
considered as infinite. In this model, the elastic coefficient of
the tethers is set to a very large number, so that the de-
formations of the tethers are very small. Figure 3 is the
deflection of the midpoint of the beam changing with time.
(e results of this paper are consistent with [30, 33]. It
verifies the correctness of the dynamic model and the nu-
merical algorithm in this paper. It is known that the nu-
merical simulation results of symplectic Runge–Kutta
method can maintain the inherent characteristics of the
original system. In the following numerical simulation, the
symplectic Runge–Kutta method is used.

4. Numerical Simulation and Analysis

(is section focuses on the analysis of the orbit and attitude
dynamics of the Tethered-SPS. Except for special instruc-
tions, the system parameters are shown in Table 1. PointM is
the center of mass of the system, and the attitude angle of the
system is expressed as shown in Figure 4. Initially, the PC
points to the ground, the beam is in an undistorted state, and
all the tethers are in a straight state, but not subject to tension
and pressure. Because Tethered-SPS transmit electricity to
ground rectenna receivers through microwave transmitting
antenna, it is necessary to consider the effect of the system
parameters on the orbit and attitude of the system. We
define the orbital error of the midpoint of the beam as
rerror � r − r0, where r represents the orbital radius of the
midpoint of the beam and r0 represents the orbital radius of
the midpoint of the beam at the initial time.

x

y

O

P

A

B

C

Figure 1: Dynamic model of the Tethered-SPS.
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4.1. Effect of Orbital Altitude on Orbit and Attitude. (e
Tethered-SPS can be placed in a geostationary Earth orbit.
(e advantages are that the solar radiation can be received
stably in 99% of the time, and the energy can be transmitted
to the ground in real time. (e disadvantages are the high
launch cost brought by high orbit and the low efficiency of
microwave transmission.(erefore, many researchers began
to study other orbits [45–49], such as low Earth orbit, Sun-
synchronous orbit, and medium orbit. To compare the ef-
fects of orbital altitude, the following orbital altitudes are
chosen to be 650 km, 6500 km, 104 km, 20200 km, and
35786 km, respectively. (e initial attitude angle of the
system is α � 0 rad, and the bus systemmass is assumed to be
106 kg. For simplicity, Figures 5 and 6 only draw the graphs
of orbital altitudes as 650 km, 104 km, 20200 km, and
35786 km and record them as Case 1, Case 2, Case 3, and
Case 4, respectively.

It can be seen from Figures 5 and 7 that the orbital
altitudes will affect the orbital error of midpoint of beam.
(e orbital error of midpoint of beam decreases with the
increase of orbital altitude. When the system is in

geostationary Earth orbit, the orbital error of midpoint of
beam is too small to be neglected. Although the maximum of
orbital error of midpoint of beam will increase as the orbital
altitude decreases, the maximum error is not more than 6m,
which is negligible relative to the orbit radius of the system.
So the orbital altitude has little effect on the orbital error of
midpoint of beam.

It can be seen from Figures 6 and 8 that the attitude of the
system will oscillate periodically even at the initial attitude
angle α � 0 rad. (e higher the orbital altitude is, the longer
the swing period will be. With the decrease of the orbital
altitude of the system, the maximum swing amplitude of the
attitude angle of the system will increase. When the Teth-
ered-SPS is in geostationary Earth orbit, the maximum at-
titude angle of the system is 2 × 10− 6 rad. However, the
maximum attitude angle of the system is 2.5 × 10− 4 rad in
low altitude orbit 650 km. (e maximum attitude angle in
low altitude orbit 650 km is about 100 times that of in
geostationary Earth orbit. (erefore, it is necessary to
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Figure 4: Definition of attitude angles.
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Figure 2: Body-fixed coordinate system of the Tethered-SPS.

Table 1: Parameters of the system.

Parameter Symbol Value
Mass of beam AB mAB 1.9 × 107 kg
Mass of bus system P mP 1.0 × 106 kg
Length of beam AB lAB 2000m
Cross-sectional area of beam AB AAB 1.9m2

Second moment of section of beam
AB IAB 4.7027 × 10− 3 m4

Elastic modulus of beam AB EAB 70GPa
Cross-sectional area of tether At 1.6464 × 10− 4 m2

Modulus of elasticity of tethers Et 70GPa
Original distance from point P to
point C lPC 10 km

×10–3

Proposed method
Reference [30]
Reference [33]
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Figure 3: Deflection of midpoint of the beam.
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consider the effect of orbital altitude on the attitude angle of
the system.

4.2. Effect of Length of Beam AB on Orbit and Attitude.
For the length of solar panel in the Tethered-SPS, the length
of solar panel is 2 km in [20]. However, the length of solar
panel is 2.6 km in refrence [48] and 1.5 km in [26], re-
spectively. For the convenience of research, the solar panel is
simplified as Euler-Bernoulli beam in [22]. In this paper, the
solar panel of the Tethered-SPS is simplified to beam AB. In
order to investigate the effect of the length of beam AB on
the orbit and attitude of the Tethered-SPS, it is assumed that
the midpoint of beam AB operates in geostationary Earth
orbit.(e initial attitude angle of the system is α � 0 rad, and
the bus system mass is 106 kg. (e lengths of beam AB are
chosen to be 1 km, 1.5 km, 2 km, 2.5 km, and 3 km, re-
spectively. For simplicity, Figures 9 and 10 only draw the
graphs of length of beam AB as 1 km, 2 km, 2.5 km, and 3 km
and record them as Case 1, Case 2, Case 3, and Case 4,
respectively.

It can be seen from Figure 9 that the orbital error of
midpoint of beam decreases with the increase of length of
beam AB. It shows that the longer the beam AB is, the
smaller the orbital error is. It can be seen from Figure 11 that
the maximum of orbital error of midpoint of beam is less

than 2.5m, when the length of beam AB is 1 km. (is shows
that the effect of the length of beamAB on the orbital error of
midpoint of beam is not significant.

Even with the initial attitude angle α � 0 rad, the attitude
of the system will oscillate periodically from Figures 10 and
12. Although the longer the length of beam AB is, the longer
the period of swing will be, the difference is not very big. As
can be seen from Figure 12, the maximum swing amplitude
of the attitude angle of the system is kept around
α � 2 × 10− 6 rad, and the swing amplitude is relatively small.
So the length of the beam AB does not have a great effect on
the attitude angle of the system.

4.3. Effect of Eccentricity on Orbit and Attitude. After the
assembly of the SPS, the system needs to be pushed to the
designed orbit [50]. If the system adopts Horman orbital
transfer, multi-pulse orbital transfer, and other orbital
transfer modes, the transfer orbit will be elliptical. In this
paper, the dynamic response of the Tethered-SPS in elliptical
orbit is studied. (e initial time of the system is assumed to
be at the perigee of geostationary Earth orbit. In order to
investigate the effect of orbital eccentricity on orbit and
attitude, the initial orbital altitude of the beammidpoint of a
Tethered-SPS is assumed to be 35786 km.(e initial attitude
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angle of the system is α � 0 rad, and the bus system mass is
106 kg. To compare the effects of orbital eccentricity, the
orbital eccentricity is chosen to be e � 0, e � 0.1, e � 0.2,
e � 0.3, e � 0.4, e � 0.5, e � 0.6, and e � 0.7, e � 0.8, re-
spectively. For simplicity, Figure 13 only draws the graphs of
orbital eccentricity as e � 0.1, e � 0.3, e � 0.5, and e � 0.7
and record them as Case 1, Case 2, Case 3, and Case 4,
respectively.

As shown in Figure 13, the attitude angle of the system
will oscillate periodically within 24 hours. Figure 14 shows
that the maximum of attitude angle of the system increases

with the increase of eccentricity. However, when the orbital
eccentricity e≥ 0.5, the maximum of attitude angle of the
system does not increase anymore and remains at 1.6 rad. As
is seen in Figures 13 and 14, although the maximum of
attitude angle does not increase after orbital eccentricity
e≥ 0.5, the frequency of swing increases. (erefore, the
orbital eccentricity will affect the attitude of the system.

4.4. Effect of Initial Attitude Angle on Orbit and Attitude.
When the Tethered-SPS is pushed to the designed orbit, the
attitude angle of the system will change. In order to study the
effect of initial attitude angle on orbit and attitude, the initial
attitude angles of the system are α � 0 rad, α � π/108 rad,
α � π/36 rad, α � π/12 rad, and α � π/4 rad, respectively.
(e initial orbital altitude of the beam midpoint of the
Tethered-SPS is 35786 km, and the bus systemmass is 106 kg.
For simplicity, Figures 15 and 16 only draw the graphs of
initial attitude angles as α � 0 rad, α � π/36 rad,
α � π/12 rad, and α � π/4 rad and record them as Case 1,
Case 2, Case 3, and Case 4, respectively.

It can be seen from Figures 15 and 17 that the initial
attitude angle will affect the orbital error of midpoint of beam
but will not change its periodicity. (e orbital error of
midpoint of beam increases with the increase of initial attitude
angle.When the initial attitude angle is less than α � π/36 rad,
the orbital error of midpoint of beam is also small. As shown
in Figure 17, when the initial attitude angle is α � π/12 rad,
the maximum of orbital error of midpoint of beam is 200m.
When the initial attitude angle is α � π/4 rad, the maximum
of orbital error of midpoint of beam is 800m. So, the effect of
initial attitude angle on the orbital error of midpoint of beam
is relatively large. (erefore, it is necessary to consider the
effect of initial attitude angle on the orbital error of the system.

It can be seen from Figures 17 and 18 that the attitude of
the system will oscillate periodically for any attitude angle.
(e larger the initial attitude angle is, the larger the swing
amplitude will be. However, attitude angle changes peri-
odically, and the period is basically the same. It shows that
different initial attitude angles have little effect on the os-
cillation period of the attitude angle of the system but have
obvious effect on the amplitude of the attitude angle of the
system.
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5. Conclusion

In this paper, the ANCF is used to establish the coupled orbit-
attitude-structure dynamic model of Tethered-SPS. (e
coupled dynamic equation of system is established under
Hamiltonian system. (e validity of the method is illustrated
by an example. (e effect of four different parameters on the
orbit and attitude of the system is analyzed by using the
symplectic Runge–Kutta method. (e results are as follows:

(1) (e orbital error of midpoint of beam decreases with
the increase of orbital altitude. (e maximum swing

amplitude of system attitude angle increases with the
decrease of orbital altitude. It is necessary to consider
the effect of orbital altitude on the attitude angle of
the system.

(2) As the length of solar panel increases, the orbital
error of midpoint of beam decreases. However, the
effect of the length of solar panel on the orbital error
of midpoint of beam is not significant. Meanwhile,
the length of solar panel has little effect on the at-
titude angle of the system.

(3) With the increase of eccentricity, the maximum of
the attitude angle of the system will increase.
However, when the orbital eccentricity e≥ 0.5, the
maximum of attitude angle of the system does not
increase anymore and remains at 1.6 rad.Meanwhile,
the attitude angle of the system will oscillate peri-
odically, and the frequency of oscillation increases
with the increase of eccentricity. (erefore, the or-
bital eccentricity will affect the attitude of the system.

(4) (e initial attitude angle will affect the orbital error
of midpoint of beam but will not change its peri-
odicity. (e orbital error of midpoint of beam in-
creases with the increase of initial attitude angle.
However, different initial attitude angles have little
effect on the oscillation period but have obvious
effect on the amplitude of the attitude angle of the
system.

(e modeling theory presented in this paper can be
extended to the coupled dynamic model of two-dimensional
Tethered-SPS. At the same time, the numerical algorithm in
this paper provides a good numerical method for the dy-
namic analysis of Tethered-SPS with large range of motion.
Future works could be devoted to improving the modeling
accuracy and computing efficiency.
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In this paper, we are concerned with the existence of the maximum and minimum iterative solutions for a tempered fractional
turbulent flow model in a porous medium with nonlocal boundary conditions. By introducing a new growth condition and
developing an iterative technique, we establish new results on the existence of the maximum and minimum solutions for the
considered equation; at the same time, the iterative sequences for approximating the extremal solutions are performed, and the
asymptotic estimates of solutions are also derived.

1. Introduction

Tempered stable laws were introduced to model turbulent
velocity fluctuations of physics [1]. Normally, tempered
stable laws retain their signature power-law behaviour at
infinity and infinite divisibility [2]. By multiplying by an
exponential factor for the usual second derivative, one can
obtain tempered fractional derivatives and integrals. In
[3], an exponential tempering factor was applied to the
particle jump density in random walk and stochastic
model for turbulence in the inertial range, which is the
fractional derivative of Brownian motion exhibiting semi-
long range dependence with a power law at moderate time
scales.

Tempered stable laws are useful in statistical physics
and provide a basic physical model such as turbulent flow
for the underlying physical phenomena. Motivated by
these physical backgrounds and the sources, in this paper,
we focus on the existence of the maximum and minimum
iterative solutions for the following tempered fractional
turbulent flow equation with nonlocal boundary
conditions:

R
0D

α,λ
t φp

R
0D

β,λ
t x(t)􏼒 􏼓􏼒 􏼓 � h(t)f(x(t)),

x(0) � x′(0) � · · · � x
(n− 2)

(0) �
R
0D

β,λ
t x(0) � 0,

R
0D

β,λ
t x(1) � 􏽚

1

0
e

− λ(1− t)
x(t)dt,

R
0D

c,λ
t φp

R
0D

β,λ
t x􏼒 􏼓􏼒 􏼓(1) � 􏽚

1

0
a(t)

R
0D

c,λ
φp

R
0D

β,λ
t x(t)􏼒 􏼓􏼒 􏼓dA(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where 1< α≤ 2, n − 1< β≤ n, n≥ 4, 0< c< α − 1, λ> 0 is a
constant, φp is the p-Laplacian operator defined by

φp(s) � |s|p− 2s, p> 1, R
0D

α,λ
t is the tempered fractional de-

rivative, 􏽒
1
0 a(t)R

0D
c,λ
t (φp(R

0D
β,λ
t x(t)))dA(t) denotes a Rie-

mann–Stieltjes integral, A is a function of bounded
variation, f: [0, +∞)⟶ (0, +∞) is continuous, and
h ∈ [L(0, 1), [0, +∞)].

Turbulent flow is a fundamental fluid mechanics
problem which can be described by a p-Laplacian equa-
tion with a suitable boundary condition; for details, see
[4]. Particularly, if the model is of fractional order, then it

Hindawi
Mathematical Problems in Engineering
Volume 2020, Article ID 2492193, 11 pages
https://doi.org/10.1155/2020/2492193

mailto:zxg123242@163.com
https://orcid.org/0000-0001-9250-6823
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/2492193


can describe turbulent flow in a porous medium [5–10].
On the contrary, fractional-order derivative has nonlocal
characteristics; based on this property, the fractional
differential equation can also interpret many abnormal
phenomena that occur in applied science and engineering,
such as viscoelastic dynamical phenomena [11–29], ad-
vection-dispersion process in anomalous diffusion
[30–34], and bioprocesses with genetic attribute [35, 36].
As a powerful tool of modeling the above phenomena, in
recent years, the fractional calculus theory has been
perfected gradually by many researchers, and various
different types of fractional derivatives were studied, such
as Riemann–Liouville derivatives [16, 37–62], Hadamard-
type derivatives [63–71], Katugampola–Caputo deriva-
tives [72], conformable derivatives [73–76], Capu-
to–Fabrizio derivatives [77, 78], Hilfer derivatives
[79–82], and tempered fractional derivatives [83]. *ese
works also enlarged and enriched the application of the
fractional calculus in impulsive theories [84–89], chaotic
system [90–93], and resonance phenomena [94–96].
Among them, by using the fixed point theorem of the
mixed monotone operator, Zhang et al. [9] established the
result of uniqueness of the positive solution for the
Riemann–Liouville-type turbulent flow in a porous
medium:

D
β
t φp − D

α
t z( 􏼁􏼐 􏼑(t) � − f z(t),D

c
t z(t)( 􏼁, t ∈ (0, 1),

D
α
t z(0) � D

α+1
t z(0) � D

α
t z(1) � 0,

D
c
t z(0) � 0,D

c
t z(1) � 􏽚

1

0
D

c
t z(s)dA(s),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

where 0< c≤ 1< α≤ 2< β< 3, α − c> 1, Dα
t , D

β
t , andDc

t
denote the Riemann–Liouville derivatives, and 􏽒

1
0 z(s)dA(s)

indicates the Riemann–Stieltjes integral, and A is a function
of bounded variation; the nonlinear term may be singular at

both first variable and second variable. Recently, Zhou et al.
[83] investigated a class of tempered fractional differential
equations with Riemann–Stieltjes integral boundary con-
ditions; by using the fixed point theorem of the sum-type
mixed monotone operator, the existence and uniqueness of
positive solutions were established, and iterative sequences
for approximating the unique positive solution were also
constructed.

However, to the best of our knowledge, there are relatively
few results on fractional turbulent flow in a porous medium
with nonlocal Riemann–Stieltjes integral boundary conditions,
and no work has been reported on the maximal and minimal
solutions for the tempered-type fractional turbulent flow
equation.*us, following the previous work, this paper will pay
attention to the extremal solutions for the tempered fractional
turbulent flow equation in a porous medium with nonlocal
Riemann–Stieltjes integral boundary conditions by developing
iterative technique, also see [97–100]. Different from [9, 83], in
this paper, we will give a new type of growth condition for the
nonlinear term to guarantee equation (1) has the extremal
solutions. At the same time, the iterative sequences for ap-
proximating the extremal solutions are performed, and the
asymptotic estimates of solutions are also obtained.

2. Preliminaries and Lemmas

Before starting our work, we firstly recall the definition of the
tempered fractional derivative which is an extension of the
Riemann–Liouville derivative and integral.

Let λ> 0; the α-order left tempered fractional derivative
is defined by

R
0D

α,λ
t x(t) � e

− λt R
0D

α
t e

λt
x(t)􏼐 􏼑, (3)

where R
0D

α
t denotes the standard Riemann–Liouville frac-

tional derivative which can be found in [101].
Let

H(t, s) �

β(1 − s)
β− 1

(β − 1 + s)e
λs

t
β− 1

− β(β − 1)e
λs

(t − s)
β− 1

􏽨 􏽩e
− λt

(β − 1)Γ(β + 1)
, 0≤ s ≤ t ≤ 1,

β(1 − s)
β− 1

(β − 1 + s)􏽨 􏽩e
λs

(β − 1)Γ(β + 1)
t
β− 1

e
− λt

, 0≤ t ≤ s ≤ 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ �
e

− λ
− δ

Γ(α − c)
,

δ � 􏽚
1

0
e

− λs
s
α− c− 1

a(s)dA(s).

(4)

*e following results have been proven in [83].
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Lemma 1. Given k ∈ C[0, 1]; then, the boundary value
problem,

R
0D

α,λ
t φp

R
0D

β,λ
t x(t)􏼒 􏼓􏼒 􏼓 � k(t),

x(0) � x′(0) � · · · � x
(n− 2)

(0) �
R
0D

β,λ
t x(0) � 0,

R
0D

β,λ
t x(1) � 􏽚

1

0
e

− λ(1− t)
x(t)dt,

R
0D

c,λ
t φp

R
0D

β,λ
t x􏼒 􏼓􏼒 􏼓(1) � 􏽚

1

0
a(t)

R
0D

c,λ
t φp

R
0D

β,λ
t x(t)􏼒 􏼓􏼒 􏼓dA(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

has the unique solution

x(t) � 􏽚
1

0
H(t, s)φq 􏽚

1

0
G(t, τ)k(τ)dτ􏼠 􏼡ds, (6)

where H(t, s) is defined by (4) and G(t, s) denotes the Green
function as follows:

G(t, s) � G1(t, s) +
t
α− 1

e
− λt

ΔΓ(α − c)
􏽚
1

0
a(t)G2(t, s)dA(t),

G1(t, s) �
e
λ(s− t)

Γ(α)

(1 − s)
α− c− 1

t
α− 1

− (t − s)
α− 1

, 0≤ s≤ t≤ 1,

(1 − s)
α− 2

t
α− 1

, 0≤ t≤ s≤ 1,

⎧⎪⎨

⎪⎩

G2(t, s) �
e
λ(s− t)

Γ(α)

(1 − s)
α− c− 1

t
α− c− 1

− (t − s)
α− c− 1

, 0≤ s≤ t≤ 1,

(1 − s)
α− c− 1

t
α− c− 1

, 0≤ t≤ s≤ 1.

⎧⎪⎨

⎪⎩

(7)

In order to obtain the positive extremal solutions of
tempered fractional turbulent flow equation (1), it is nec-
essary to preserve nonnegativity of the Green function.

(H0):

􏽚
1

0
e

− λs
s
α− c− 1

a(s)dA(s)< e
− λ

. (8)

Lemma 2. Assume (H0) holds; then, functions G(t, s) and
H(t, s) have the following properties:

(1) G(t, s) and H(t, s) are nonnegative and continuous
for (t, s) ∈ [0, 1] × [0, 1].

(2) For any t, s ∈ [0, 1], H(t, s) satisfies

m1(s)e
− λt

t
β− 1 ≤H(t, s)≤M1(s)e

− λt
t
β− 1

, (9)

where

M1(s) �
β(1 − s)

β− 1
(β − 1 + s)e

λs

(β − 1)Γ(β + 1)
,

m1(s) �
βs(1 − s)

β− 1
e
λs

(β − 1)Γ(β + 1)
.

(10)

(3)

m2(s)e
− λt

t
α− 1 ≤G(t, s)≤M2(s)e

− λt
t
α− 1

, s, t ∈ [0, 1],

(11)

where

M2(s) �
1
Γ(α)

+
δ

ΔΓ(α)Γ(α − c)
􏼢 􏼣e

λs
(1 − s)

α− c− 1
,

m2(s) �
e
λs

(1 − s)
α− c− 1

− (1 − s)
α− 1

􏽨 􏽩

Γ(α)
.

(12)

Let

M
∗
1 �

β2eλ

(β − 1)Γ(β + 1)
. (13)

In order to obtain the existence of positive extremal
solutions of tempered fractional turbulent flow equation (1),
we introduce the following new control conditions.

(H1): f: [0, +∞)⟶ (0, +∞) is continuous and
nondecreasing, and there exists a positive constant
ϵ> 3/(q − 1) such that

0< d≕ sup
s≥0

f(s)

(s + 2)
ϵ < +∞. (14)

(H2):

0< 􏽚
1

0
M2(τ)h(τ)dτ <

M∗1
3ϵ(q− 1)

􏼠 􏼡

1/q− 1

d
− 1

. (15)

Remark 1. Assumption (14) we introduced is a new type of
growth condition, which includes a large number of basic
functions such as

(1) f(t) � b0 + 􏽐
n
i�1 bi(t + 2)μi , where b0 > 0, bi, μi >

3/q − 1, i � 1, 2, . . . , n.
(2) f(t) � b0 + [􏽐

n
i�1 bi(t + 2)μi ]1/μ, where b0 > 0, μ> 0,

bi > 0, μi > 0(i � 1, 2, . . . , n) and

min
i�1,...,n

μi􏼈 􏼉>
3μ

q − 1
. (16)

(3) f(t) � (t + 1)μ− 1 ln(1 + (1/2 + t)) + (2 + t)μ− 2 + b,

b> 0, μ> 2 + (3/q − 1).
(4) f: [0, +∞)⟶ (0, +∞) is continuous and nonde-

creasing, and there exists a positive constant
ϵ> 3/q − 1 such that f(x)/(x + 2)ϵ is increasing on
x, and

lim
x⟶+∞

f(x)

(x + 2)
ϵ � M> 0. (17)
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(5) f: [0, +∞)⟶ (0, +∞) is continuous and nonde-
creasing, and there exists a positive constant
ϵ> 3/q − 1 such that f(x)/(x + 2)ϵ is nonincreasing
on x.

Proof. For cases (1)–(3), take

ϵ � max
i�1,2,...,n

μi􏼈 􏼉,

ϵ �
maxi�1,2,...,n μi􏼈 􏼉

μ
,

ϵ � μ − 2,

(18)

respectively; obviously,

0<d≕ sup
s≥0

f(s)

(s + 2)
ϵ < +∞. (19)

For cases (4) and (5), it is clear; we omit the proof. □

Denote E � C[0, 1] as all continuous functions equipped
the maximum norm

‖x‖ � max x(t) : t ∈ [0, 1]{ }. (20)

Define a cone P,

P � x ∈ E: there exists a number 0< lx < 1 such that􏼈

0≤ x(t)≤ l
− 1
x e

− λt
t
β− 1

, t ∈ [0, 1]􏽯,

(21)

and an operator T in E:

T(x)(t) � 􏽚
1

0
H(t, s)φq 􏽚

1

0
G(s, τ)h(τ)f(x(τ))dτ􏼠 􏼡ds.

(22)

*en, the fixed point of operator T in E is the solution of
tempered fractional turbulent flow equation (1). □

Lemma 3. Assume that (H0)–(H2) hold. @en, T: P⟶ P

is a continuous, compact operator.

Proof. It follows from the definition of P that, for any x ∈ P,
there exists a number 0< lx < 1 such that

0≤x(t)≤ l
− 1
x e

− λt
t
β− 1

, t ∈ [0, 1]. (23)

Since T is increasing with respect to x, by (14), (23), and
Lemma 2, we have

T(x)(t) � 􏽚
1

0
H(t, s)φq 􏽚

1

0
G(s, τ)h(τ)f(x(τ))dτ􏼠 􏼡ds

≤ e
− λt

t
β− 1

􏽚
1

0
M1(s)φq 􏽚

1

0
G(s, τ)h(τ)f(x(τ))dτ􏼠 􏼡ds

≤ e
− λt

t
β− 1

􏽚
1

0
M1(s)φq 􏽚

1

0
G(s, τ)h(τ)

f(x(τ))

(x(τ) + 2)
ϵ(x(τ) + 2)

ϵdτ􏼠 􏼡ds

≤φq(d)e
− λt

t
β− 1

􏽚
1

0
M1(s)φq 􏽚

1

0
G(s, τ)h(τ)(x(τ) + 2)

ϵdτ􏼠 􏼡ds

≤φq(d)e
− λt

t
β− 1

􏽚
1

0
M1(s)φq 􏽚

1

0
G(s, τ)h(τ) l

− 1
x e

− λττβ− 1
+ 2􏼐 􏼑
ϵ
dτ􏼠 􏼡ds

≤M
∗
1 φq d l

− 1
x + 2􏼐 􏼑

ϵ
􏽚
1

0
M2(τ)h(τ)dτ􏼠 􏼡e

− λt
t
β− 1

≤
1
l
∗
x

e
− λt

t
β− 1

,

(24)

where

l
∗
x � min

1
2
, M
∗ − 1
1 d l

− 1
x + 2􏼐 􏼑

ϵ
􏽚
1

0
M2(τ)h(τ)dτ􏼠 􏼡

1− q⎧⎨

⎩

⎫⎬

⎭.

(25)

*us, it follows from (24) that

0≤T(x)(t) ≤
1
l
∗
x

e
− λt

t
β− 1

, (26)

which implies that T is well defined and uniformly bounded,
and T(P) ⊂ P.

On the contrary, according to the Arzela–Ascoli theorem
and the Lebesgue dominated convergence theorem, it is easy
to know that T: P⟶ P is completely continuous. □
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3. Main Results

Before we begin to state our main result, we first give the
following lemma.

Lemma 4. Suppose ϵ(q − 1)> 3 and (H2) hold; then, the
equation

M
∗
1 d 􏽚

1

0
M2(τ)h(τ)dτ􏼠 􏼡

q− 1

(x + 3)
ϵ(q− 1)

(x + 1)
− 1

� 1,

(27)
has unique solution δ∗ in (0,∞).

Proof. Let

ϕ(x) � 1 − M
∗
1 d 􏽚

1

0
M2(τ)h(τ)dτ􏼠 􏼡

q− 1

(x + 3)
ϵ(q− 1)

(x + 1)
− 1

.

(28)

It follows from ϵ(q − 1)> 3 and (H2) that

ϕ(0) � 1 − M
∗
1 d 􏽚

1

0
M2(τ)h(τ)dτ􏼠 􏼡

q− 1

3ϵ(q− 1) > 0, (29)

ϕ(+∞) � − ∞. (30)

On the contrary, ϕ(x) is a continuous function in [0,∞)

satisfying

ϕ′(x) � − ϵ(q − 1)M
∗
1 d 􏽚

1

0
M2(τ)h(τ)dτ􏼠 􏼡

q− 1

(x + 3)
ϵ(q− 1)− 1

(x + 1)
− 1

+ M
∗
1 d 􏽚

1

0
M2(τ)h(τ)dτ􏼠 􏼡

q− 1

(x + 3)
ϵ(q− 1)

(x + 1)
− 2

� − M
∗
1 d 􏽚

1

0
M2(τ)h(τ)dτ􏼠 􏼡

q− 1

(x + 3)
ϵ(q− 1)− 1

(x + 1)
− 1 ϵ(q − 1) −

x + 3
x + 1

􏼒 􏼓< 0, x ∈ (0,∞).

(31)

*us, (29)–(31) imply equation (27) has unique zero
point δ∗in (0,∞). □

Theorem 1. Suppose (H0)–(H2) hold. @en, the following is
obtained:

(i) Existence: equation (1) has a positive minimal solu-
tion x and a positive maximal solution x.

(ii) Asymptotic estimates: there exist positive numbers
ni > 0, i � 1, 2, such that

x(t)

e
− λt

t
β− 1 ∈ 0, n1􏼂 􏼃,

x(t)

e
− λt

t
β− 1 ∈ 0, n2􏼂 􏼃, t ∈ (0, 1].

(32)

(iii) Iterative sequences: for initial values
x(0)(t) � 0 and y(0)(t) � δ∗ + 1, construct the iter-
ative sequences

x
(n)

(t) � 􏽚
1

0
H(t, s)φq 􏽚

1

0
G(s, τ)h(τ)f x

(n− 1)
(τ)􏼐 􏼑dτ􏼠 􏼡ds,

y
(n)

(t) � 􏽚
1

0
H(t, s)φq 􏽚

1

0
G(s, τ)h(τ)f y

(n− 1)
(τ)􏼐 􏼑dτ􏼠 􏼡ds.

(33)

*en,
lim

n⟶+∞
x

(n)
(t) � x(t),

lim
n⟶+∞

y
(n)

(t) � x(t),
(34)

uniformly, for t ∈ [0, 1], where δ∗ is the unique solution of
equation (27) in (0,∞).

Proof. Firstly, let Pδ∗ � x ∈ P: 0≤ ‖x‖≤ δ∗ + 1{ }; we shall
show T(Pδ∗) ⊂ Pδ∗ .

For any x ∈ Pδ∗ and for any t ∈ (0, 1), we have

0≤x(t)≤maxt∈[0,1]x(t)≤ δ∗ + 1. (35)

Consequently, it follows from (H1) and Lemma 4 that

‖T(x)‖ � maxt∈[0,1] 􏽚
1

0
H(t, s)φq 􏽚

1

0
G(s, τ)h(τ)f(x(τ))dτ􏼠 􏼡ds􏼨 􏼩

≤ 􏽚
1

0
M1(s)φq 􏽚

1

0
G(s, τ)h(τ)f(x(τ))dτ􏼠 􏼡ds

≤ 􏽚
1

0
M1(s)φq 􏽚

1

0
G(s, τ)h(τ)

f(x(τ))

(x(τ) + 2)
ϵ(x(τ) + 2)

ϵdτ􏼠 􏼡ds

≤φq(d) 􏽚
1

0
M1(s)φq 􏽚

1

0
G(s, τ)h(τ)(x(τ) + 2)

ϵdτ􏼠 􏼡ds

≤φq(d) 􏽚
1

0
M1(s)φq 􏽚

1

0
G(s, τ)h(τ) δ∗ + 3( 􏼁

ϵdτ􏼠 􏼡ds

≤M
∗
1 d 􏽚

1

0
M2(τ)h(τ)dτ􏼠 􏼡

q− 1

δ∗ + 3( 􏼁
ϵ(q− 1)

� δ∗ + 1,

(36)
which implies that T(Pδ∗) ⊂ Pδ∗ .

Next, take the initial value x(0)(t) � 0, and let

x
(1)

(t) � T x
(0)

􏼐 􏼑(t) � T(0)(t), t ∈ [0, 1]. (37)

It follows from x(0)(t) ∈ Pδ∗ that x(1)(t) ∈ T(Pδ∗) ⊂ Pδ∗ .
Denote

x
(n+1)

(t) � Tx
(n)

(t) � T
n+1

x
(0)

(t), n � 1, 2, . . . . (38)
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By T(Pδ∗) ⊂ Pδ∗ , we have xn ∈ Pδ∗ for n≥ 1. It follows
from the fact of T being a compact operator that x(n)􏼈 􏼉 is a
sequentially compact set.

On the contrary, since x(1)(t)≥ 0 � x(0)(t) and T is
increasing on x, we have

x
(2)

(t) � Tx
(1)

􏼐 􏼑(t)≥ Tx
(0)

􏼐 􏼑(t) � x
(1)

(t), t ∈ [0, 1].

(39)

By induction, one has

0≤x
(n)

(t)≤x
(n+1)

(t)≤ δ∗ + 1, n � 1, 2, . . . . (40)

Consequently, there exists x ∈ Pδ∗ such that x(n)⟶ x.
Noticing that Tx(n) � x(n− 1) and letting n⟶ +∞, by the
continuity of T, we have T x � x, which implies that x is a
nonnegative solution of equation (1), and then x is a positive
solution of equation (1) since f(0)> 0.

Now, we take y(0)(t) � δ∗ + 1 as the initial value and let

y
(1)

(t) � T y
(0)

􏼐 􏼑(t)􏼐 􏼑, t ∈ [0, 1]. (41)

It follows from y(0)(t) � δ∗ + 1 ∈ Pδ∗ that y(1) ∈ Pδ∗ .
*us, construct the iterative sequence

y
(n+1)

(t) � Ty
(n)

(t) � T
n+1

y
(0)

(t), n � 1, 2, . . . . (42)

We have

y
(n)

(t) ∈ Pδ∗, n � 0, 1, 2, . . . , (43)

since T(Pδ∗) ⊂ Pδ∗ . It follows from Lemma 3 that y(n)􏼈 􏼉 is a
sequentially compact set.

Now, since y(1) ∈ Pδ∗ and T is increasing, one has

0≤y
(1)

(t)≤ y
(1)

�����

�����≤ δ
∗

+ 1 � y
(0)

(t), (44)

and then

y
(2)

(t) � Ty
(1)

(t)≤Ty
(0)(t)

� y
(1)

(t). (45)

It follows from induction that

0≤y
(n+1)

(t)≤y
(n)

(t)≤ δ∗ + 1, n � 0, 1, 2, . . . , (46)

which implies that there exists x ∈ Pδ∗ such that y(n)⟶ x.
Letting n⟶ +∞, from the continuity of T and
Ty(n) � y(n− 1), we have Tx � x, which implies that x is
another positive solution of equation (1).

Next, we prove that x and x are the maximum and
minimum positive solutions of equation (1). In fact, suppose
􏽥x is any positive solution of equation (1); then, we have

x
(0)

(t) � 0≤ 􏽥x(t)≤ δ∗ + 1 � y
(0)

(t),

x
(1)

(t) � Tx
(0)

(t)≤T􏽥x(t) � 􏽥x(t)≤T y
(0)

􏼐 􏼑(t) � y
(1)

(t).

(47)

*us, it follows from induction that

x
(n)

(t)≤ 􏽥x(t)≤y
(n)

(t), n � 1, 2, 3, . . . . (48)

Taking the limit, we have

x ≤ 􏽥x≤ x, (49)

which implies that x and x are the maximal and minimal
positive solutions of equation (1), respectively.

In the end, since x, x ∈ Pδ∗ ⊂ P, there exist constants
n1 > , n2 > 0 such that

x(t)

e
− λt

t
β− 1 ∈ 0, n1􏼂 􏼃,

x(t)

e
− λt

t
β− 1 ∈ 0, n2􏼂 􏼃, t ∈ (0, 1].

(50)

□

4. Example

Since the fractional-order derivative possesses long-memory
characteristics, in fluid mechanics, equation (1) can describe
a turbulent flow in a porous medium. Here, we give a specific
example to illustrate the main results.

Example: consider the following nonlocal tempered
fractional turbulent flow equation:

R
0D

(3/2),1
t φ(3/2)

R
0D

(7/2),1
t x(t)􏼒 􏼓􏼒 􏼓 �

e
− t

(1 − t)
− (1/4)

400
(x(t) + 1)

3 ln 1 +
1

2 + x(t)
􏼠 􏼡 +(2 + x(t))

2
+ 2􏼠 􏼡,

x(0) � x′(0) � x′′(0) �
R
0D

(7/2),1
t x(0) � 0,

R
0D

(7/2),1
t x(1) � 􏽚

1

0
e

− (1− t)
x(t)dt,

R
0D

(1/4),1
t φ(3/2)

R
0D

(7/2),1
t x􏼒 􏼓􏼒 􏼓(1) � 􏽚

1

0

R
0D

(1/4),1
t φ(3/2)

R
0D

(7/2),1
t x(t)􏼒 􏼓􏼒 􏼓dA(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(51)

where
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A(t) �

0, t ∈ 0,
1
2

􏼔 􏼓,

1, t ∈
1
2
,
3
4

􏼔 􏼓,

1
2
, t ∈

3
4
, 1􏼔 􏼕.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(52)

*en, equation (51) has the positive minimal and
maximal solutions x and x, and there exist constants
n1 > , n2 > 0 such that

x(t)

e
− t

t
5/2 ∈ 0, n1􏼂 􏼃,

x(t)

e
− t

t
5/2 ∈ 0, n2􏼂 􏼃,

t ∈ (0, 1].

(53)

Let

α �
3
2
,

β �
7
2
,

λ � 1,

c �
1
4
,

p �
3
2
,

a(t) � 1,

h(t) �
1
400

e
− t

(1 − t)
− 1/4

,

f(x) � (x + 1)
3 ln 1 +

1
2 + x

􏼒 􏼓 +(2 + x)
2

+ 2.

(54)

Firstly, we have

δ � 􏽚
1

0
e

− λs
s
α− c− 1

a(s)dA(s) � 􏽚
1

0
e

− s
s
1/4dA(s)

� 0.2902< e
− 1

� 0.3679.

(55)

*us, (H0) holds.
Obviously, f: [0, +∞)⟶ (0, +∞) is continuous and

nondecreasing. Take ϵ � 2> 3/q − 1 � 3/2; then, we have

0<d≕ sup
x≥0

f(x)

(x + 2)
ϵ � sup

x≥0

x + 1
x + 2

􏼒 􏼓
3
ln 1 +

1
2 + x

􏼒 􏼓
x+2

􏼠

+ 1 +
2

(x + 2)
2􏼡 � 2< +∞,

(56)

which implies that (H1) is satisfied.
Now, we compute M∗1 andΔ:

M
∗
1 �

β2eλ

(β − 1)Γ(β + 1)
�

3.52 × e

2.5 × Γ(4.5)
� 0.1550,

Δ �
e

− λ
− δ

Γ(α − c)
�

e
− 1

− 0.3679
Γ(5/4)

� 0.0857.

(57)

*us, we have

M2(s) �
1
Γ(3/2)

+
0.3679

0.0857 × Γ(3/2)Γ(5/4)
􏼢 􏼣e

s
(1 − s)

1/4

� 5.3439e
s
(1 − s)

1/4
.

(58)

Consequently,

0< 􏽚
1

0
M2(τ)h(τ)dτ � 0.013358 <

M ∗1
3ϵ(q− 1)

􏼠 􏼡

1/q− 1

d
− 1

� 0.0219.

(59)

So, condition (H3) holds.
*us, by *eorem 1, equation (51) has a positive min-

imal solution x and a positive maximal solution x, and there
exist constants n1 > , n2 > 0 such that

x(t)

e
− t

t
5/2 ∈ 0, n1􏼂 􏼃,

x(t)

e
− t

t
5/2 ∈ 0, n2􏼂 􏼃,

t ∈ (0, 1].

(60)

5. Conclusion

In this work, we establish a new result on the existence of the
maximum and minimum solutions for a class of tempered
fractional-order differential equations with nonlocal
boundary conditions. *is type of equation can describe a
turbulent flow of a porous medium in fluid mechanics and
diffusive interaction. In order to obtain the extremal solu-
tions of the equation, a new type of growth condition is
introduced, and the iterative sequences with explicit initial
values are constructed which converge uniformly to the
maximum and minimum solutions; in addition, the esti-
mations of the upper bounds of the maximum and mini-
mum solutions are also derived.
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Nonnegative sparsity-constrained optimization problem arises inmany fields, such as the linear compressing sensing problem and
the regularized logistic regression cost function. In this paper, we introduce a new stepsize rule and establish a gradient projection
algorithm. We also obtain some convergence results under milder conditions.

1. Introduction

In this paper, we are mainly concerned with the nonnegative
sparsity-constrained optimization problem (NN-SCO):

min f(x)

s.t. x ∈ S∩R
n
+,

(1)

where f: Rn⟶ R is a continuously differential function
with a lower bound. S: � x ∈ Rn: ‖x‖0 ≤ s􏼈 􏼉 is a sparse set,
where s< n is a given integer regulating the sparsity level in
x and Rn

+ is the nonnegative orthant in Rn. ‖x‖0 is the l0
norm of x, counting the number of nonzero elements in x.
Many application problems can be translated into prob-
lem (1), such as the widely studied linear compressing
sensing problem of f(x) � (1/2)‖Ax − b‖2 with A ∈ Rm×n

being a sensing matrix, b ∈ Rm is the observation vector,
and ‖ · ‖ is the Euclidean norm in Rn [1]. Problem (1) has
also used to the regularized logistic regression cost
function [2].

Recently, a great deal of work has been devoted to al-
gorithms for sparsity-constrained optimization problem.
Beck and Eldar [3] established the IHT algorithm which
converges to L-stationary under the Lipchitz continuity of
the gradient of objective function. Beck and Hallak [4]
generalized these results to sparse symmetric sets. Lu [5]

designed a nonmonotone algorithm for symmetric set
constraint problems. Pan, Xiu, and Zhou [6, 7] established
the B-stationary, C-stationary, and α-stationary based on the
Bouligand tangent cone and Clarke tangent. Recently, Pan,
Zhou, and Xiu [8] established the improved IHT algorithm
(IIHT) for problem (1) by using Armijo line search. )ey
proved that any accumulation point converged to an
α-stationary point under the restricted strong smoothness of
objective function which is weaker than the Lipchitz con-
tinuity of the gradient.

Inspired by the above literature studies, in this paper, we
establish a gradient projection algorithmwith a new stepsize.
)e new algorithm removes the condition of the restricted
strong smoothness of objective function which makes it
more applicable. Meanwhile, we prove the convergence of
the algorithm.

)e rest of this paper is organized as follows. In Section
2, we present some notations, definitions, and lemmas. In
Section 3, we give the algorithm of (1) and prove the
convergence properties.

2. Preliminaries

2.1. Notations. To make it easier to read, we give some used
notations as follows:
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Mathematical Problems in Engineering
Volume 2020, Article ID 6489190, 7 pages
https://doi.org/10.1155/2020/6489190

mailto:35030@sdwu.edu.cn
https://orcid.org/0000-0003-3465-7951
https://orcid.org/0000-0001-5354-8043
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/6489190


S � x ∈ R
n
: ‖x‖0 ≤ s􏼈 􏼉,

I1(x) ≡ i ∈ 1, . . . , n{ }: xi ≠ 0􏼈 􏼉,

I1(xy) � I1(x)∪ I1(y),

PS∩Rn
+
(x) ≔ argminy∈S∩Rn

+
‖x − y‖,

I0(x) ≡ i ∈ 1, . . . , n{ }: xi � 0􏼈 􏼉,

I1(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌: the cardinality of I1(x).

(2)

2.2. Definitions

Definition 1 (see [8]). Let x∗ ∈ S∩Rn
+ be a given feasible

point of (1). We say that x∗ is an α-stationary point, if there
exists α> 0 such that

x
∗ ∈ PS∩Rn

+
x
∗

− α∇f x
∗

( 􏼁( 􏼁. (3)

Definition 2 (see [9]). A function f is called 2s-restricted
strongly smooth (2s-RSS) with parameter L2s > 0, and if for
any x, y ∈ Rn satisfying |I1(xy)|< 2s, it holds that

f(y) − f(x) − 〈∇f(x), y − x〉≤
L2s

2
‖y − x‖

2
. (4)

Definition 3 (see [9]). A function f is called 2s-restricted
strongly convex (2s-RSC) with parameter l2s > 0, and if for
any x, y ∈ Rn satisfying |I1(xy)|< 2s, it holds that

f(y) − f(x) − 〈∇f(x), y − x〉≥
l2s

2
‖y − x‖

2
. (5)

If and only if for any x, y ∈ Rn and |I1(xy)|≤ 2s, we have

(∇f(x) − ∇f(y))I1(xy)

�����

�����≥ l2s‖x − y‖. (6)

In particular, in (5), if l2s � 0, the function f is called 2s-
restricted convex (2s-RC).

Definition 4 (see [10]). )e projected gradient ∇S∩Rn
+
f(x) of

f is defined by

∇S∩Rn
+
f(x) � PTC

S∩Rn
+

(− ∇f(x))

�������

�������
,

� argmin ‖v + ∇f(x)‖ v ∈ T
C
S∩Rn

+

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛,

� max 〈 − ∇f x
k

􏼐 􏼑, v〉, ‖v‖ � 1􏽮 􏽯.

(7)

2.3. Lemmas

Lemma 1 (see [8]). For α> 0, vectorx∗ ∈ S∩Rn
+ is an

α-stationary point if and only if

∇if x
∗

( 􏼁
� 0, i ∈ I1 x

∗
( 􏼁,

≥ αMs x
∗

( 􏼁, i ∈ I0 x
∗

( 􏼁.

⎧⎨

⎩ (8)

In particular, when ‖x∗‖0 � s, x∗ ≥ 0, ∇if(x∗) �

0, i ∈ I1(x
∗
)

≥ − αMs(x
∗
), i ∈ I0(x

∗
)

􏼨 .

When ‖x∗‖0 < s, x∗ ≥ 0, ∇if(x∗) �
0, i ∈ I1(x

∗
)

∈ R
n
+, i ∈ I0(x

∗
)

􏼨 .

Lemma 2 (see [8]). PS∩Rn
+
(x) � PS(PRn

+
(x)).

Lemma 3 (see [8]). For any x∗ ∈ S∩Rn
+, we have

T
C
S∩Rn

+
x

k
􏼐 􏼑 � span ei, i ∈ I1 x

k
􏼐 􏼑􏽮 􏽯, (9)

where ei ∈ Rn is a vector whose ith component is one and
others are zeros.

3. Main Results

In this section, we establish a new algorithm which improves
the IIHT algorithm for (1) and then we analyze its con-
vergence properties. At first, let us develop the gradient
projection algorithm with a new stepsize rule.

Algorithm 1

Step 1. Initialize x0 ∈ S∩Rn
+, 0≤ θ≤ 1, and ε> 0, and

set k⟸ 0.
Step 2. Compute Lk � supα>0(‖∇f(xk) − ∇f(zk(α,θ))‖/
‖xk − zk(α,θ)‖), where

z
k
(α, θ) � x

k
+ θ x

k
(α) − x

k
􏼐 􏼑,

x
k
(α) � PS∩Rn

+
x

k
− α∇f x

k
􏼐 􏼑􏼐 􏼑.

(10)

Step 3. Compute xk+1 � PS∩Rn
+
(xk − αk∇f(xk)) where

αk satisfies 0≤ αk ≤ (1/3Lk).
Step 4. If ‖∇Γkf(xk)‖≤ ε, then stop; otherwise, set
k⟸ k + 1 and go to Step 2.

Next, let us list the following assumptions for
convenience:

(1) For any k> 0, Lk < +∞
(2) f is bounded below on S∩Rn

+

Lemma 4. Let the sequence xk􏼈 􏼉 be generated by Algo-
rithm 1, and set lk � 3Lk. 7en, we have

f x
k

􏼐 􏼑≤ hlk
x

k
, x

k+1
􏼐 􏼑, (11)

where hlk
(xk, xk+1) � f(xk+1) + 〈∇f(xk+1), xk − xk+1〉+

(lk/2)‖xk − xk+1‖2.

Proof. Let

g(t) � f x
k+1

+ t x
k

− x
k+1

􏼐 􏼑􏼐 􏼑. (12)

)en,
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g(0) � f x
k+1

􏼐 􏼑,

g(1) � f x
k

􏼐 􏼑,

g′(t) � x
k

− x
k+1

􏼐 􏼑
T
∇f x

k+1
+ t x

k
− x

k+1
􏼐 􏼑􏼐 􏼑.

(13)

)us,

f x
k

􏼐 􏼑 − f x
k+1

􏼐 􏼑 � g(1) − g(0),

� 􏽚
1

0
g′(t)dt,

� 􏽚
1

0
x

k
− x

k+1
􏼐 􏼑

T
∇f x

k+1
+ t x

k
− x

k+1
􏼐 􏼑􏼐 􏼑dt,

� 􏽚
1

0
x

k
− x

k+1
􏼐 􏼑

T
∇f x

k+1
􏼐 􏼑dt

+ 􏽚
1

0
x

k
− x

k+1
􏼐 􏼑

T
∇f x

k+1
+ t x

k
− x

k+1
􏼐 􏼑􏼐 􏼑 − ∇f x

k+1
􏼐 􏼑􏼐 􏼑dt,

� 􏽚
1

0
x

k
− x

k+1
􏼐 􏼑

T
∇f x

k+1
􏼐 􏼑dt

+ 􏽚
1

0
x

k
− x

k+1
􏼐 􏼑

T
∇f x

k+1
+ t x

k
− x

k+1
􏼐 􏼑􏼐 􏼑 − ∇f x

k+1
􏼐 􏼑 + ∇f x

k
􏼐 􏼑 − ∇f x

k
􏼐 􏼑􏼐 􏼑dt,

� 􏽚
1

0
x

k
− x

k+1
􏼐 􏼑

T
∇f x

k+1
􏼐 􏼑dt + 􏽚

1

0
x

k
− x

k+1
􏼐 􏼑

T
∇f x

k
􏼐 􏼑 − ∇f x

k+1
􏼐 􏼑􏼐 􏼑dt,

+ 􏽚
1

0
x

k
− x

k+1
􏼐 􏼑

T
∇f x

k+1
+ t x

k
− x

k+1
􏼐 􏼑􏼐 􏼑 − ∇f x

k
􏼐 􏼑􏼐 􏼑dt,

≤ 􏽚
1

0
x

k
− x

k+1
􏼐 􏼑

T
∇f x

k+1
􏼐 􏼑dt + 􏽚

1

0
x

k
− x

k+1
􏼐 􏼑

T
∇f x

k
􏼐 􏼑 − ∇f x

k+1
􏼐 􏼑􏼐 􏼑dt,

+ 􏽚
1

0
x

k
− x

k+1
�����

����� ∇f x
k+1

+ t x
k

− x
k+1

􏼐 􏼑􏼐 􏼑 − ∇f x
k

􏼐 􏼑􏼐 􏼑
�����

�����dt,

≤ x
k

− x
k+1

􏼐 􏼑
T
∇f x

k+1
􏼐 􏼑 + Lk x

k
− x

k+1
�����

�����
2

+ x
k

− x
k+1

�����

����� 􏽚
1

0
Lk(1 − t) x

k
− x

k+1
�����

�����dt,

≤ x
k

− x
k+1

􏼐 􏼑
T
∇f x

k+1
􏼐 􏼑 +

3Lk

2
x

k
− x

k+1
�����

�����
2
,

� x
k

− x
k+1

􏼐 􏼑
T
∇f x

k+1
􏼐 􏼑 +

lk
2

x
k

− x
k+1

�����

�����
2
.

(14)

)en, (11) is tenable. □

Lemma 5. We suppose l≥ lk. For xk ∈ S∩Rn
+ and

xk+1 � PS∩Rn
+
(xk − (1/l)∇f(xk)), we have

f x
k

􏼐 􏼑 − f x
k+1

􏼐 􏼑≥ σ x
k

− x
k+1

�����

�����
2
, (15)

where σ � (l − lk/2).

Proof. Since xk+1 ∈ PS∩Rn
+
(xk − (1/l)∇f(xk)), by the defi-

nition of projection, we get

x
k+1 ∈ arg minx∈S∩Rn

+
x − x

k
−
1
l
∇f x

k
􏼐 􏼑􏼒 􏼓

�������

�������

2
. (16)

Moreover,
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hl x, x
k

􏼐 􏼑 � f x
k

􏼐 􏼑 +〈∇f x
k

􏼐 􏼑, x − x
k〉 +

l

2
x − x

k
�����

�����,

�
l

2
x − x

k
−

l

2
∇f x

k
􏼐 􏼑􏼠 􏼡

��������

��������

2

+ f x
k

􏼐 􏼑 −
1
2l
∇f x

k
􏼐 􏼑

�����

�����
2
.

(17)

Because f(xk) − (1/2l)‖∇f(xk)‖2 is a constant inde-
pendent of x, we can get

x
k+1 ∈ argminx∈PS∩Rn

+

hl x, x
k

􏼐 􏼑. (18)

)erefore,

hl x
k+1

, x
k

􏼐 􏼑≥ hl x
k
, x

k
􏼐 􏼑 � f x

k
􏼐 􏼑. (19)

By Lemma 4, we get

f x
k+1

􏼐 􏼑≥ hl x
k+1

, x
k

􏼐 􏼑. (20)

Hence,

f x
k

􏼐 􏼑 − f x
k+1

􏼐 􏼑≥f x
k

􏼐 􏼑 − hlk
x

k+1
, x

k
􏼐 􏼑,

≥ hl x
k+1

, x
k

􏼐 􏼑 − hlk
x

k+1
, x

k
􏼐 􏼑,

�
l − lk
2

x
k+1

− x
k

�����

�����
2
.

(21)

Let σ � (l − lk/2). We get

f x
k

􏼐 􏼑 − f x
k+1

􏼐 􏼑≥ σ x
k

− x
k+1

�����

�����
2
. (22)

□

Lemma 6. Let the sequence xk􏼈 􏼉 be generated by Algo-
rithm 1. 7en,

(1) f(xk) − f(xk+1)≥ ((1/αk) − lk)/2‖xk − xk+1‖2

(2) f(xk)􏼈 􏼉 is an increasing sequence, and when
k⟶∞, f(xk)􏼈 􏼉 converges

(3) ‖xk − xk+1‖⟶ 0
(4) for any k � 0, 1, 2, . . ., if xk ≠ xk+1, we have

f(xk+1)<f(xk)

Proof

(1) Since 0≤ αk ≤ (1/3Lk), we get

1
αk

≥ 3Lk � lk. (23)

Setting l � (1/αk) in (15), formula (1) can be
obtained.

(2) We can easily get that f(xk)􏼈 􏼉 is an increasing se-
quence by (15). Moreover, by the assumptions (H2),
we can get that f(xk)􏼈 􏼉 converges.

(3) Let μ � ((1/αk) − lk/2) in (1). We can get

f x
k

􏼐 􏼑 − f x
k+1

􏼐 􏼑≥ μ x
k

− x
k+1

�����

�����
2
. (24)

Summing over both sides of this inequality, we get

􏽘

∞

k�1
x

k
− x

k+1
�����

�����
2
≤ 􏽘
∞

k�1

2
μ

f x
k

􏼐 􏼑 − f x
k+1

􏼐 􏼑􏼐 􏼑,

�
2
μ

f x
0

􏼐 􏼑 − lim
k⟶+∞

f x
k

􏼐 􏼑􏼒 􏼓.

(25)

Since f is bounded below, we get

x
k

− x
k+1

�����

�����⟶ 0. (26)

(4) It easily can be got by (2). □

Lemma 7. Let the sequence xk􏼈 􏼉 be generated by Algorithm 1.
Suppose that the function f is 2s-RC. We have

∇f x
k+1

􏼐 􏼑 − ∇f x
k

􏼐 􏼑
�����

�����≤ lk x
k+1

− x
k

�����

�����. (27)

Proof. Because the sequence xk􏼈 􏼉 be generated by Algo-
rithm 1, we get |I1(xy)|< 2s. By Lemma 4 and Lemma 5 in
reference [8], we can get

∇f x
k+1

􏼐 􏼑 − ∇f x
k

􏼐 􏼑
�����

�����≤ lk x
k+1

− x
k

�����

�����. (28)
□

Theorem 1. Let the sequence xk􏼈 􏼉 be generated by Algo-
rithm 1. 7en, the following results hold:

(1) Any accumulation of sequence xk􏼈 􏼉 is an α-stationary
point.

(2) If f is 2s-RC, the projected gradient sequence con-
verges to zero, i.e.,

lim
k⟶+∞
∇Γkf x

k
􏼐 􏼑

�����

����� � 0. (29)

Proof

(1) Suppose that x∗ is an accumulation point of se-
quence xk􏼈 􏼉. )en, there exists a subsequence xkn􏼈 􏼉

converges to x∗.
Because

x
kn

�����

����� − x
kn+1

− x
kn

�����

�����≤ x
kn+1

�����

����� � x
kn+1

− x
kn + x

kn

�����

�����

≤ x
kn

�����

����� + x
kn+1

− x
kn

�����

�����,

(30)

we get

lim
n⟶+∞

x
kn+1

� lim
n⟶+∞

x
kn � x

∗
. (31)

Moreover,

x
kn+1

� PS∩Rn
+Rn x

k
− αkn
∇f x

kn􏼐 􏼑􏼐 􏼑,

� PS PRn
+

x
k

− αkn
∇f x

kn􏼐 􏼑􏼐 􏼑􏼐 􏼑.
(32)

We consider the next two cases: □
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Case 1. For i ∈ I1(x∗), there must exist a sufficiently large
index N and a constant c0 > 0 such that

min x
kn

i , x
kn+1
i􏽮 􏽯≥ c0 > 0. (33)

By PS∩Rn
+

� PS(PRn
+
) and (33), we can get

x
kn+1
i � x

k
i − αkn
∇if x

kn􏼐 􏼑. (34)

Since

lim
n⟶+∞

inf αkn
> 0, (35)

without loss of generality, we can suppose
limk⟶+∞αkn

> c. Let n⟶ +∞. We get

x
∗
i � x

∗
i − c∇if x

∗
( 􏼁, (36)

i.e.,

∇if x
∗

( 􏼁 � 0, ∀ i ∈ I1 x
∗

( 􏼁. (37)

Case 2. For i ∈ I0(x∗), we consider two subcases.

Subcase 1. When ‖x∗‖0 � s, we get

0 � x
∗

� lim
n⟶+∞

x
kn+1
i � PS PRn

+
x

kn − αkn
∇f x

kn􏼐 􏼑􏼐 􏼑􏼐 􏼑
i
.

(38)

Due to the property of the projections PS and PRn
+
, we

have

max x
kn

i − αkn
∇if x

kn􏼐 􏼑􏼑, 0􏽮 􏽯≤Ms x
∗

( 􏼁. (39)

)us,

x
kn

i − αkn
∇if x

kn􏼐 􏼑≤Ms x
∗

( 􏼁. (40)

Taking limits on both sides, we obtain

∇if x
∗

( 􏼁≥ −
1
c
Ms x

∗
( 􏼁. (41)

Subcase 2. When ‖x∗‖0 < s, suppose ∇if(x∗)< 0, and we
have

lim
n⟶+∞

x
kn

i − αkn
∇if x

kn􏼐 􏼑􏼐 􏼑 � − c∇if x
∗

( 􏼁> 0. (42)

For all sufficiently large n, we have

PRn
+

x
kn

i − αkn
∇if x

kn􏼐 􏼑􏼐 􏼑 � x
kn

i − αkn
∇if x

kn􏼐 􏼑,

� − c∇if x
∗

( 􏼁> 0.
(43)

Since ‖x∗‖0 < s, for all sufficiently large n, we have

x
kn+1
i � PS PRn

+
x

kn − αkn
∇f x

kn􏼐 􏼑􏼐 􏼑􏼐 􏼑
i
,

� PRn
+

x
kn − αkn
∇f x

kn􏼐 􏼑􏼐 􏼑
i
> 0.

(44)

which contradicts with i ∈ I0(x∗). )us,
∇if(x∗)≥ 0.
Summarizing the two cases, we obtain

∇if x
∗

( 􏼁

� 0, i ∈ I1 x
∗

( 􏼁,

≥ −
1
c
Ms x

∗
( 􏼁, i ∈ I0 x

∗
( 􏼁.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(45)

)us, x∗ is an α-stationary point of (1).
(2) Set Γk � I1(xk). By Lemma 3, we have

T
C
S∩Rn

+
x

k
􏼐 􏼑 � R

n
Γk ,

� span ei, i ∈ I1 x
k

􏼐 􏼑􏽮 􏽯.
(46)

By Definition 4, we have

PTC

S∩Rn
+

− ∇f x
k

􏼐 􏼑􏼐 􏼑

�������

�������
� max 〈 − ∇f x

k
􏼐 􏼑􏼐 􏼑, v〉, ‖v‖ � 1􏽮 􏽯,

� ∇Γkf x
k

􏼐 􏼑
�����

�����.

(47)

Moreover, the maximum value is taken at ‖v‖ � 1. For
any ε> 0, there exists vk ∈ Rn

Γk and ‖vk‖ � 1 satisfies

∇Γkf x
k

􏼐 􏼑
�����

�����≤ 〈 − ∇f x
k

􏼐 􏼑, v
k〉 + ε. (48)

Because xk+1 � PS∩Rn
+
(xk − αk∇f(xk)) and xΓk+1 � yΓk+1 ,

x ∈ PS∩Rn
+
(y), we get

x
k+1
Γk+1 � x

k
− αk∇f x

k
􏼐 􏼑􏼐 􏼑Γk+1, (49)

i.e.,

x
k+1
Γk+1 − x

k
− αk∇f x

k
􏼐 􏼑􏼐 􏼑Γk+1 � 0. (50)

)us, for any ϖk+1 ∈ Rn
Γk+1 , we get

􏼜 x
k+1

− x
k

− αk∇f x
k

􏼐 􏼑􏼐 􏼑,ϖk+1 − xk+1􏼐 􏼝 � 0. (51)

Taking ϖk+1 � xk+1 + vk+1, we get

􏼜 x
k+1

− x
k

+ αk∇f x
k

􏼐 􏼑, − vk+1􏼐 􏼝 � 0. (52)

By the Cauchy–Schwartz inequality, we get

〈αk∇f x
k

􏼐 􏼑, − v
k+1〉 �〈xk+1

− x
k
, v

k+1〉≤ x
k+1

− x
k

�����

�����,

(53)

i.e.,

− 〈∇f x
k

􏼐 􏼑, v
k+1〉≤

x
k+1

− x
k

�����

�����

αk

. (54)

By Lemma 7, we get
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− 〈∇f x
k+1

􏼐 􏼑, v
k+1〉 � − 〈∇f x

k+1
􏼐 􏼑 − ∇f x

k
􏼐 􏼑, v

k+1〉

− 〈∇f x
k

􏼐 􏼑, v
k+1〉,

≤ lk x
k+1

− x
k

�����

����� +
x

k+1
− x

k
�����

�����

αk

.

(55)

Taking limits on both sides and using Lemma 6, we have

lim
k⟶+∞

sup〈 − ∇f x
k

􏼐 􏼑, v
k+1〉 ≤ 0. (56)

By (32), we get

lim
k⟶+∞
∇Γkf x

k
􏼐 􏼑

�����

����� � 0. (57)

Theorem 2. Let the sequence xk􏼈 􏼉 be generated by Algo-
rithm 1. x∗ is an accumulation point of the sequence xk􏼈 􏼉.
Suppose f(x) is 2s − RC, then the following results hold:

(1) If ‖x∗‖0 < s, then x∗ is a global minimizer of (1)
(2) If ‖x∗‖0 � s, then x∗ is a local minimizer of (1)

Proof

(1) For ∀x ∈ S∩Rn
+, we have |I1(xx∗)| � |I1(x)∪

I1(x∗)|≤ 2s. Since f(x) is 2s − RC, by Definition 3,
we have

f(x)≥f x
∗

( 􏼁 +〈∇f x
∗

( 􏼁, x − x
∗〉,

� f x
∗

( 􏼁 + 􏽘
i∈I1 x∗( )

∇if x
∗

( 􏼁 xi − x
∗
i( 􏼁

+ 􏽘
i∈I0 x∗( )

∇if x
∗

( 􏼁 xi − x
∗
i( 􏼁.

(58)

Because x∗ is an accumulation point of the sequence
xk􏼈 􏼉. By)eorem 1, x∗ is an α-stationary. By Lemma
1, we can get

f(x)≥f x
∗

( 􏼁. (59)

)us, x∗ is a global minimizer of (1).
(2) If ‖x∗‖0 � s, then I1(x∗) � I1(xk).

In fact, for all sufficiently large k, taking 0< δ <
min x∗i : i ∈ I1(x∗)􏼈 􏼉, we get

x
k

− x
∗

�����

�����≤ δ. (60)

For any i ∈ I1(x∗), we have

x
k
i � x
∗
i − x

∗
i − x

k
i􏼐 􏼑≥x

∗
i − x

∗
i − x

k
i

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌>x
∗
i − δ > 0. (61)

)us,

I1 x
∗

( 􏼁 ⊂ I1 x
k

􏼐 􏼑. (62)

By ‖xk‖0 � s and |I1(x∗)| � ‖x∗‖0 � s, we have

I1 x
∗

( 􏼁 � I1 x
k

􏼐 􏼑. (63)

For any xk ∈ S∩Rn
+ satisfying ‖xk − x∗‖≤ δ, we have

|I1(xkx∗)| � |I1(xk)∪ I1(x∗)|≤ 2s. Since f(x) is 2s − RC,
by Definition 3, )eorem 1, and Lemma 1, we have

f x
k

􏼐 􏼑≥f x
∗

( 􏼁 +〈∇f x
∗

( 􏼁, x
k

− x
∗〉,

� f x
∗

( 􏼁 + 􏽘
i∈I1 x∗( )

∇if x
∗

( 􏼁 x
k
i − x
∗
i􏼐 􏼑

+ 􏽘
i∈I0 x∗( )

∇if x
∗

( 􏼁 x
k
i − x
∗
i􏼐 􏼑,

≥f x
∗

( 􏼁.

(64)

)us, x∗ is a local minimizer of (1). □

Theorem 3. Let the sequence xk􏼈 􏼉 be generated by Algo-
rithm 1. x∗ is a limit of the sequence xk􏼈 􏼉. Suppose f(x) is
2s − RSC with parameter l2s and ‖x∗‖0 � s, for all sufficiently
large k, and we have

x
k+1

− x
∗

�����

�����
2
≤ x

k
− x
∗

�����

�����
2
, 0< ρ< 1, (65)

where ρ � 1 − (− 2l22sαk/Lk) + 2l22sα2k.

Proof. By )eorem 2, we get xk⟶ x∗. As f(x) is 2s −

RSC with parameter l2s, for any x, y ∈ Rn and |I1(xy)|≤ 2s,
we have

(∇f(x) − ∇f(y))I1(xy)

�����

�����≥ l2s‖x − y‖. (66)

Set Γk � I1(xk) and Γ∗ � I1(x∗). By )eorem 2, we get
Γk � Γ∗ . For all sufficiently large k, we have

∇Γ∗f x
∗

( 􏼁
�����

����� � lim
k⟶+∞
∇Γkf x

k
􏼐 􏼑

�����

����� � 0,

x
k+1
Γk+1 � x

k
− αk∇f x

k
􏼐 􏼑􏼐 􏼑Γk+1.

(67)

For all sufficiently large k, we have

x
k+1

− x
∗

�����

�����
2

� x
k
Γ∗ − αk∇Γ∗f x

k
􏼐 􏼑􏼐 􏼑 − x

∗
Γ∗ + αk∇Γ∗f x

∗
( 􏼁

�����

�����
2

� x
k

− x
∗

�����

�����
2

− 2αk〈x
k

− x
∗
,∇f x

k
􏼐 􏼑 − ∇f x

∗
( 􏼁〉

+ α2k ∇f x
k

􏼐 􏼑 − ∇f x
∗

( 􏼁􏼐 􏼑Γ∗

�����

�����.

(68)

Because ‖xk − x∗‖≥Lk‖∇f(xk) − ∇f(x∗)‖, we get

x
k+1

− x
∗

�����

�����
2
≤ x

k
− x
∗

�����

�����
2

−
2αk

Lk

− α2k􏼠 􏼡

· ∇f x
k

􏼐 􏼑 − ∇f x
∗

( 􏼁􏼐 􏼑Γ∗

�����

�����,

≤ 1 −
2l

2
2sαk

Lk

+ l
2
2sα

2
k􏼠 􏼡 x

k
− x
∗

�����

�����
2
.

(69)

Since 0≤ αk ≤ (1/3Lk) and σ � (l − lk/2) � (l − Lk/2),
we have 0≤ αk ≤ (1/2σ + 3Lk). )us,

β
2σ + 3Lk

≤ inf αk ≤
1

2σ + 3Lk

. (70)
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Setting α∗ � (β/2σ + 3Lk), we get

α∗ ≤ αk ≤
1
3Lk

. (71)

)us,

1 −
2l

2
2sαk

Lk

+ l
2
2sα

2
k � 1 + l

2
2s αk −

1
Lk

􏼠 􏼡

2

−
l
2
2s

L
2
k

,

≤ 1 + l
2
2s α∗ −

1
Lk

􏼠 􏼡

2

−
l
2
2s

L
2
k

,

� 1 −
2l

2
2sα∗
Lk

+ l
2
2sα

2
∗ ,

� ρ2.

(72)

By l2s ≤Lk and ρ2 � 1 + l22s(α∗ − (1/Lk))2 − (l22s/L2
k), we

get ρ> 0.
From 0< β< 1 and ρ2 � 1 − (2l22sα∗/Lk) + l22sα

2
∗ , we have

ρ< 1.
)us,

lim
k⟶+∞

xk+1 − x∗
����

����

xk − x∗
����

����
≤ �

ρ
√

, (73)

where 0< �ρ√ < 1. )us, the sequence xk􏼈 􏼉 is Q-linear
convergence to x∗. □

4. Conclusions

In this paper, we are mainly concerned with the nonnegative
sparsity-constrained optimization problem. We introduce a
new stepsize rule and propose a new gradient projection
algorithm to solve this problem.)e new algorithm removes
the condition of the restricted strong smoothness of ob-
jective function which makes the new algorithm more ap-
plicable. Meanwhile, we prove the convergence of the
algorithm.
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In this work, we shall study the existence of nontrivial solutions for a system of second-order discrete boundary value problems.
Under some conditions concerning the eigenvalues of relevant linear operator, we use the topological degree theory to obtain our
main results.

1. Introduction

Nonlinear discrete problems appear in many mathematical
models, such as computer science, mechanical engineering,
control systems, economics, and fluid mechanics (see [1–4]).
Owing to the wide applications, in recent years, there are a
large number of researchers paying special attention in this
direction (we refer to some results [5–15] and the references
therein). For example, in [5], the authors used the
Guo–Krasnosel’skii fixed point theorem to study the exis-
tence of positive solutions for the following second-order
discrete boundary value problem:

Δ2xi− 1 + f xi( 􏼁 � 0, i ∈ [1, n],

x0 � 0 � xn+1,

⎧⎨

⎩ (1)

and the following discrete second-order system:

Δ2xi− 1 + f xi, yi( 􏼁 � 0, i ∈ [1, n],

Δ2yi− 1 + g xi, yj􏼐 􏼑 � 0, i ∈ [1, n],

x0 � xn+1 � y0 � yn+1 � 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(2)

where n is a positive integer, [1, n] � 1, 2, . . . , n{ },Δ is the
forward difference operator, i.e., Δxi− 1 � xi − xi− 1, and
Δ2xi− 1 � Δ(Δxi− 1).

In [6], the authors used themonotone iterative technique
to investigate the existence and uniqueness of positive so-
lutions for the following discrete p-Laplacian fractional
boundary value problem:

Δ]]− 1 ϕp Δ
]
]− 1y(t)( 􏼁􏼐 􏼑 � f(y(t + ] − 1)), t ∈ [0, T]Z,

y(] − 1) � y(] + T),Δ]]− 1y(] − 1) � Δ]]− 1y(] + T),

⎧⎨

⎩

(3)

where ] ∈ (0, 1) is a real number, Δ]]− 1 is a discrete fractional
operator, and ϕp(s) � |s|p− 2s is the p-Laplacian with
s ∈ R, p> 1.

Coupled systems of discrete problems have also been
investigated by many authors; some results can be found in a
series of papers [11–15] and the references cited therein (also
see some results on differential systems [16–24]). For ex-
ample, in [11], the authors used the Guo–Krasnosel’skii fixed
point theorem to study the following systems of three-point
discrete boundary value problems:

Δ2u(n − 1) + λa(n)f(u(n), v(n)) � 0, n ∈ 1, 2, . . . , N − 1{ },

Δ2v(n − 1) + μb(n)g(u(n), v(n)) � 0,

u(0) � βu(η), u(N) � αu(η), v(0) � βv(η), v(N) � αv(η),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)
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where N≥ 4, η ∈ 1, 2, . . . , N − 1{ }, α> 0, β> 0, λ, μ> 0. .ey
offered some values for the parameters λ, μ to yield a positive
solution for the above system.

In [12], the authors used the fixed point index to study
the positive solutions for the following system of first-order
discrete fractional boundary value problems:

Δv
v− 1x(t) � f1(t + v − 1, x(t + v − 1), y(t + v − 1)), t ∈ [0, T]Z,

Δv
v− 1y(t) � f2(t + v − 1, x(t + v − 1), y(t + v − 1)), t ∈ [0, T]Z,

x(v − 1) � x(v + T), y(v − 1) � y(v + T).

⎧⎪⎪⎨

⎪⎪⎩

(5)

By discrete Jensen’s inequality, the authors adopted
some appropriate nonnegative concave and convex func-
tions to characterize the coupling behavior of the nonlin-
earities fi(i � 1, 2).

Motivated by the aforementioned works, in this paper,
by means of the topological degree theory, we study the
existence of nontrivial solutions for the following system of
second-order discrete boundary value problems:

Δ2u(k − 1) + f(k, v(k)) � 0, k ∈ 1, 2, . . . , T{ },

Δ2v(k − 1) + g(k, u(k)) � 0,

u(0) � u(T + 1) � v(0) � v(T + 1) � 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(6)

where T> 2 is a fixed positive integer number, △u(k) �

u(k +1) − u(k),Δ2u(k) � △(△u(k)), and f,g: 1,2, . . . ,T{ }×

R⟶R(R ≔ (− ∞,+∞)) are continuous and satisfy the
following conditions:

(H1) .ere exist three nonnegative functions
ai(k), bi(k)(bi(k)≢ 0, k ∈ T1) and βi(i � 1, 2) on R+

such that

f(k, v)≥ − a1(k) − b1(k)β1(v), g(k, u)

≥ − a2(k) − b2(k)β2(u), ∀u, v ∈ R, t ∈ T1,

(7)

where T1 : � 1, 2, . . . , T{ }.
(H2) lim|v|⟶+∞β1(v)/|v| � 0, lim|u|⟶+∞β2(u)/|u| � 0.
(H3) lim inf |v|⟶+∞f(k, v)/|v| > λ1, lim inf |u|⟶+∞g(k,

u)/|u|> λ1 uniformly on k ∈ T1, where λ1 � 4sin2

(π/(2T + 2)).
(H4) lim sup|v|⟶0|f(k, v)|/|v| < λ1, lim sup|u|⟶0|g(k,

u)|/|u|< λ1 uniformly on k ∈ T1.

Now, we state our main result here.

Theorem 1. Suppose that (H1)–(H4) hold. 4en, (6) has at
least one nontrivial solution.

2. Preliminaries

Let E be the Banach space of real valued functions defined on
the discrete interval T2 with the norm ‖u‖ � maxk∈T2

|u(k)|,
where T2 : � 0, 1, 2, . . . , T + 1{ }. Define the following sets:

P � u ∈ E: u(k)≥ 0, ∀k ∈ T2􏼈 􏼉,

P0 � u ∈ E: mink∈T1
u(k)≥

1
T

‖u‖􏼚 􏼛,

(8)

and Br � x ∈ E: ‖x‖< r{ } for r> 0. .en, P, P0 are cones on
E, and Br is an open ball in E.

Lemma 1 (see [11, 15]). Let h(k) ∈ C(T1). 4en, the discrete
boundary value problem

Δ2u(k − 1) + h(k) � 0, k ∈ T1,

u(0) � u(T + 1) � 0,

⎧⎨

⎩ (9)

has a solution with the form

u(k) � 􏽘
T

l�1
G(k, l)h(l), k ∈ T2, (10)

where

G(k, l) �
1

T + 1

l(T + 1 − k), 1≤ l≤ k − 1≤T,

k(T + 1 − k), 0≤ k≤ l≤T.

⎧⎪⎨

⎪⎩
(11)

Furthermore, G(k, l) has the following properties (see
[13, 15]):

(i) G(k, l)> 0 and G(k, l) � G(l, k), for (k, l) ∈ T1 × T1.
(ii) G(l, l)/T≤G(k, l)≤G(l, l), for (k, l) ∈ T1 × T1.

By Lemma 1, system (6) is equivalent to

u(k) � 􏽘
T

l�1
G(k, l)f(l, v(l)), k ∈ T2,

v(k) � 􏽘
T

l�1
G(k, l)g(l, u(l)), k ∈ T2.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(12)

.en, we can define operators T,S: E⟶ E by

(Tv)(k) � 􏽘
T

l�1
G(k, l)f(l, v(l)), (Su)(k)

� 􏽘
T

l�1
G(k, l)g(l, u(l)),

(13)

and operator A: E × E⟶ E × E by

A(u, v)(k) � ((Tv), (Su))(k). (14)

Note that T,S,A are completely continuous operators
(see [11]), and (u, v) solves (6) if and only if (u, v) is a fixed
point of the operator A.

Lemma 2 (see [7, 15]). Let ϕ(k) � sin(kπ)/(T + 1), k ∈ T2.
4en, λ1 􏽐

T
l�1 G(k, l)ϕ(l) � ϕ(k), ∀k ∈ T1.

Define a linear operator as follows:

(Lx)(k) � 􏽘
T

l�1
G(k, l)x(l), ∀k ∈ T2. (15)
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.en, we have

(Lϕ)(k) �
1
λ1

ϕ(k), (16)

and we have the following lemma.

Lemma 3. If x ∈ P, then Lx ∈ P0.

.is is a direct result by Lemma 1 (ii), so we omit the
proof.

Remark 1. ϕ ∈ P0 in Lemma 2.

Lemma 4 (see [25, .eorem A.3.3]). Let Ω be a bounded
open set in a Banach space E and T: Ω⟶ E be a continuous
compact operator. If there exists x0 ∈ E\ 0{ } such that

x − Tx≠ μx0, ∀x ∈ zΩ, μ≥ 0, (17)

then the topological degree deg(I − T,Ω, 0) � 0.

Lemma 5 (see [25, Lemma 2.5.1]). Let Ω be a bounded open
set in a Banach space E with 0 ∈ Ω and T: Ω⟶ E be a
continuous compact operator. If

Tx≠ μx, ∀x ∈ zΩ, μ≥ 1, (18)

then the topological degree deg(I − T,Ω, 0) � 1.

3. Main Results

In order to obtain the Proof of .eorem 1, we first provide a
lemma.

Lemma 6. 4ere exists a sufficiently large R> 0 such that

deg I − A, BR, 0( 􏼁 � 0. (19)

Proof. By (H3), there exist ε1 > 0 and X1 > 0 such that

f(k, v)≥ λ1 + ε1( 􏼁|v|, g(k, u)≥ λ1 + ε1( 􏼁|u|,

∀k ∈ T1, |u|, |v|>X1.
(20)

Note that when k ∈ T1, |u|, |v|≤X1, the functions
|f(k, v)| and |g(k, u)| are bounded, so we can choose some
appropriate positive numbers M1, M2 such that

f(k, v)≥ λ1 + ε1( 􏼁|v| − M1, g(k, u)≥ λ1 + ε1( 􏼁|u| − M2,

∀k ∈ T1, u, v ∈ R,

(21)

where

M1 � max
k∈T1 ,|u|,|v|≤X1

|f(k, v)| + λ1 + ε1( 􏼁X1,

M2 � max
k∈T1 ,|u|,|v|≤X1

|g(k, u)| + λ1 + ε1( 􏼁X1.
(22)

From (H2), for any given ε,􏽥ε> 0 with
ε1 − ε‖b1‖> 0, ε1 − 􏽥ε‖b2‖> 0, there is X2 >X1 such that

β1(v)≤ ε|v|, β2(u)≤􏽥ε|u|, ∀|u|, |v|>X2. (23)

Let β∗1 � max|v|≤X2
β1(v) and β∗2 � max|u|≤X2

β2(u). .en,

β1(v)≤ ε|v| + β∗1 , β2(u)≤􏽥ε|u| + β∗2 , u, v ∈ R. (24)

.us, we have

f(k, v)≥ λ1 + ε1( 􏼁|v| − a1(k) − b1(k)β1(v) − M1

≥ λ1 + ε1( 􏼁|v| − a1(k) − b1(k) ε|v| + β∗1􏼂 􏼃 − M1

≥ λ1 + ε1 − ε b1
����

����􏼐 􏼑|v| − a1(k) − β∗1 b1(k) − M1,

∀k ∈ T1, v ∈ R,

(25)

g(k, u)≥ λ1 + ε1 − 􏽥ε b2
����

����􏼐 􏼑|u| − a2(k) − β∗2 b2(k) − M2,

∀k ∈ T1, u ∈ R.

(26)

Note that ε,􏽥ε can be chosen arbitrarily small, so we can
let

R>max N1, N2, N3, N4􏼈 􏼉, (27)

where

N1 �
2􏽐

T
l�1 G(l, l) a1(l) + β∗1 b1(l) + M1􏼂 􏼃

1 − 2ε􏽐
T
l�1 G(l, l)b1(l)

,

N2 �
2􏽐

T
l�1 G(l, l) a2(l) + β∗2 b2(l) + M2􏼂 􏼃

1 − 2􏽥ε􏽐
T
l�1 G(l, l)b2(l)

,

N3 �
λ1T +(1 + T) ε1 − ε b1

����
����􏼐 􏼑􏼐 􏼑 􏽐

T
l�1 G(l, l) a1(l) + a2(l) + β∗1 b1(l) + β∗2 b2(l) + M1 + M2􏼂 􏼃

ε1 − ε b1
����

����􏼐 􏼑 − λ1T +(1 + T) ε1 − ε b1
����

����􏼐 􏼑􏼐 􏼑 ε􏽐
T
l�1 G(l, l)b1(l) + 􏽥ε􏽐

T
l�1 G(l, l)b2(l)􏽨 􏽩

,

N4 �
λ1T +(1 + T) ε1 − ε b2

����
����􏼐 􏼑􏼐 􏼑 􏽐

T
l�1 G(l, l) a1(l) + a2(l) + β∗1 b1(l) + β∗2 b2(l) + M1 + M2􏼂 􏼃

ε1 − ε b2
����

����􏼐 􏼑 − λ1T +(1 + T) ε1 − ε b2
����

����􏼐 􏼑􏼐 􏼑 ε􏽐
T
l�1 G(l, l)b1(l) + 􏽥ε􏽐

T
l�1 G(l, l)b2(l)􏽨 􏽩

.

(28)
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Now, we prove

(u, v) − A(u, v)≠ μ(ϕ, ϕ), ∀u, v ∈ zBR, μ≥ 0, (29)

where ϕ(k) � sin(kπ)/(T + 1), k ∈ T2. We argue this claim
by indirection. Suppose that there exist u, v ∈zBR, μ≥ 0 such
that

(u, v) − A(u, v) � μ(ϕ, ϕ). (30)

u(k) � (Tv)(k) + μϕ(k) � 􏽘
T

l�1
G(k, l)f(l, v(l)) + μϕ(k),

(31)

v(k) � (Su)(k) + μϕ(k) � 􏽘
T

l�1
G(k, l)g(l, u(l)) + μϕ(k).

(32)

􏽥v(k) � 􏽘
T

l�1
G(k, l) a1(l) + b1(l)β1(v(l)) + M1􏼂 􏼃,

􏽥u(k) � 􏽘

T

l�1
G(k, l) a2(l) + b2(l)β2(u(l)) + M2􏼂 􏼃.

(33)

.en by Lemma 3, 􏽥u, 􏽥v ∈ P0, and we also have

u(k) + 􏽥v(k) � 􏽘

T

l�1
G(k, l) f(l, v(l)) + a1(l)􏼂

+ b1(l)β1(v(l)) + M1􏼃 + μϕ(k),

v(k) + 􏽥u(k) � 􏽘
T

l�1
G(k, l) g(l, u(l)) + a2(l)􏼂

+ b2(l)β2(u(l)) + M2􏼃 + μϕ(k).

(34)

Using (24) and (25), we have

f(l, v(l)) + a1(l) + b1(l)β1(v(l)) + M1 ∈ P,

g(l, u(l)) + a2(l) + b2(l)β2(u(l)) + M2 ∈ P.
(35)

So, from Lemma 3 and Remark 1, we have

v + 􏽥u, u + 􏽥v ∈ P0. (36)

Note that u, v ∈ zBR, and using (24), R>N1, andR>N2,
we have

‖􏽥v‖≤ 􏽘
T

l�1
G(l, l) a1(l) + b1(l)β1(v(l)) + M1􏼂 􏼃

≤ 􏽘
T

l�1
G(l, l) a1(l) + b1(l) ε‖v‖ + β∗1( 􏼁 + M1􏼂 􏼃<

R

2
,

‖􏽥u‖≤ 􏽘
T

l�1
G(l, l) a2(l) + b2(l) 􏽥ε‖u‖ + β∗2( 􏼁 + M2􏼂 􏼃<

R

2
.

(37)

It is noted that ‖u‖ � ‖v‖ � R, u + 􏽥u + 􏽥v ∈ P0, and
v + 􏽥u + 􏽥v ∈ P0. .erefore, we get

u(k) + 􏽥u(k) + 􏽥v(k)≥
1
T

‖u + 􏽥u + 􏽥v‖≥
1
T

(‖u‖ − ‖􏽥u + 􏽥v‖)

≥
1
T

[‖u‖ − (‖􏽥u‖ +‖􏽥v‖)],

v(k) + 􏽥u(k) + 􏽥v(k)≥
1
T

‖v + 􏽥u + 􏽥v‖≥
1
T

(‖v‖ − ‖􏽥u + 􏽥v‖)

≥
1
T

[‖v‖ − (‖􏽥u‖ +‖􏽥v‖)].

(38)

Using R>N3, we have

ε1 − ε b1
����

����􏼐 􏼑 􏽘

T

l�1
G(k, l)[v(l) + 􏽥u(l) + 􏽥v(l)] − λ1 + ε1 − ε b1

����
����􏼐 􏼑 􏽘

T

l�1
G(k, l)[􏽥u(l) + 􏽥v(l)]

≥
ε1 − ε b1

����
����

T
􏽘

T

l�1
G(k, l)[R − (‖􏽥u‖ +‖􏽥v‖)] − λ1 + ε1 − ε b1

����
����􏼐 􏼑 􏽘

T

l�1
G(k, l)[(‖􏽥u‖ +‖􏽥v‖)]≥ 0,

(39)

and R>N4 implies that

ε1 − 􏽥ε b2
����

����􏼐 􏼑 􏽘

T

l�1
G(k, l)[u(l) + 􏽥u(l) + 􏽥v(l)] − λ1 + ε1 − 􏽥ε b2

����
����􏼐 􏼑 􏽘

T

l�1
G(k, l)[􏽥u(l) + 􏽥v(l)]≥ 0. (40)
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Consequently, we obtain

(Tv)(k) + 􏽥v(k) � 􏽘
T

l�1
G(k, l) f(l, v(l)) + a1(l) + b1(l)β1(v(l)) + M1􏼂 􏼃

≥ 􏽘
T

l�1
G(k, l) λ1 + ε1 − ε b1

����
����􏼐 􏼑|v(l)| − a1(l) − β∗1 b1(l) − M1 + a1(l) + b1(l)β1(v(l)) + M1􏽨 􏽩

≥ 􏽘
T

l�1
G(k, l) λ1 + ε1 − ε b1

����
����􏼐 􏼑|v(l)| − β∗1 b1(l) + b1(l) ε|v(l)| + β∗1( 􏼁􏽨 􏽩≥ λ1 + ε1 − ε b1

����
����􏼐 􏼑 􏽘

T

l�1
G(k, l)|v(l)|

≥ λ1 + ε1 − ε b1
����

����􏼐 􏼑 􏽘

T

l�1
G(k, l)[v(l) + 􏽥u(l) + 􏽥v(l)] − λ1 + ε1 − ε b1

����
����􏼐 􏼑 􏽘

T

l�1
G(k, l)[􏽥u(l) + 􏽥v(l)]

≥ λ1 􏽘

T

l�1
G(k, l)[v(l) + 􏽥u(l) + 􏽥v(l)]≥ λ1 􏽘

T

l�1
G(k, l)[v(l) + 􏽥u(l)],

(Su)(k) + 􏽥u(k) � 􏽘
T

l�1
g(k, l) g(l, v(l)) + a2(l) + b2(l)β2(u(l)) + M2􏼂 􏼃

≥ 􏽘
T

l�1
G(k, l) λ1 + ε1 − 􏽥ε b2

����
����􏼐 􏼑|u(l)| − a2(l) − β∗2 b2(l) − M2 + a2(l) + b2(l)β2(u(l)) + M2􏽨 􏽩

≥ λ1 + ε1 − 􏽥ε b2
����

����􏼐 􏼑 􏽘

T

l�1
G(k, l)|u(l)|

≥ λ1 + ε1 − 􏽥ε b2
����

����􏼐 􏼑 􏽘

T

l�1
G(k, l)[u(l) + 􏽥u(l) + 􏽥v(l)] − λ1 + ε1 − 􏽥ε b2

����
����􏼐 􏼑

· 􏽘
T

l�1
G(k, l)[􏽥u(l) + 􏽥v(l)]≥ λ1 􏽘

T

l�1
G(k, l)[u(l) + 􏽥u(l) + 􏽥v(l)]

≥ λ1 􏽘

T

l�1
G(k, l)[u(l) + 􏽥v(l)].

(41)

As a result, we get

(Tv)(k) +(Su)(k) + 􏽥u(k) + 􏽥v(k)≥λ1(L(u + v + 􏽥u +􏽥v))(k).

(42)

In view of (31) and (32), we see

u(k) + v(k) + 􏽥u(k) + 􏽥v(k) � (Tv)(k) +(Su)(k) + 􏽥u(k)

+ 􏽥v(k) + 2μϕ(k)

≥ λ1(L(u + v + 􏽥u + 􏽥v))(k)

+ 2μϕ(k)≥ 2μϕ(k).

(43)

Define μ∗ � supSμ ≔ sup μ> 0 : u + v + 􏽥u + 􏽥v≥ 2μϕ􏼈 􏼉.
.en, Sμ ≠∅, μ∗ ≥ μ and u + v + 􏽥u + 􏽥v≥ 2μ∗ϕ. From
ϕ � λ1Lϕ, we obtain

λ1L(u + v + 􏽥u + 􏽥v)≥ λ1L 2μ∗ϕ( 􏼁 � 2μ∗λ1Lϕ � 2μ∗ϕ. (44)

Hence,

u + v + 􏽥u + 􏽥v≥ λ1L(u + v + 􏽥u + 􏽥v) + 2μϕ≥ 2 μ∗ + μ( 􏼁ϕ,

(45)

which contradicts the definition of μ∗. .erefore, (29) holds,
and from Lemma 4, we obtain

deg I − A, BR, 0( 􏼁 � 0. (46)

.is completes the proof. □

Proof of 4eorem 1. From (H4), there exist ε2 ∈ (0, λ1) and
r ∈ (0, R) such that

|f(k, v)|≤ λ1 − ε2( 􏼁|v|, |g(k, u)|≤ λ1 − ε2( 􏼁|u|,

∀k ∈ T1, u, v ∈ Rwith |u|, |v|≤ r.
(47)

.is implies that
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|(Tv)(k)| � 􏽘

T

l�1
G(k, l)f(l, v(l))

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ 􏽘

T

l�1
G(k, l)|f(l, v(l))|≤ λ1 − ε2( 􏼁 􏽘

T

l�1
G(k, l)|v(l)|,

|(Su)(k)| � 􏽘
T

l�1
G(k, l)g(l, u(l))

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ 􏽘

T

l�1
G(k, l)|g(l, u(l))| ≤ λ1 − ε2( 􏼁 􏽘

T

l�1
G(k, l)|u(l)|.

(48)

Consequently, we have

|(Tv)(k)| +|(Su)(k)|≤ λ1 − ε2( 􏼁 􏽘

T

l�1
G(k, l)[|u(l)| +|v(l)|].

(49)

Now, we prove that

(u, v)≠ μA(u, v), (50)

for all u, v ∈ zBr and μ ∈ [0, 1]. We argue by contradiction.
Suppose that there exist u, v ∈ zBr and μ ∈ [0, 1] such that

(u, v) � μA(u, v). (51)

.erefore,

u(k) � μ(Tv)(k), and v(k) � μ(Su)(k), k ∈ T1. (52)

Hence, we have

|u(k)| +|v(k)|≤ |(Tv)(k)| +|(Su)(k)|

≤ λ1 − ε2( 􏼁 􏽘

T

l�1
G(k, l)[|u(l)| +|v(l)|].

(53)

From Lemma 1 (i) and Lemma 2, we have

λ1 􏽘

T

k�1
G(k, l)ϕ(k) � ϕ(l), ∀l ∈ T1. (54)

Multiplying both sides of (53) by sin(kπ)/(T + 1), then
summing from 1 to T, and using (54), we obtain

􏽘

T

k�1
[|u(k)| +|v(k)|]

sin(kπ)

(T + 1)
≤ λ1 − ε2( 􏼁 􏽘

T

k�1

sin(kπ)

(T + 1)
􏽘

T

l�1
G(k, l)[|u(l)| +|v(l)|] �

λ1 − ε2
λ1

􏽘

T

l�1
[|u(l)| +|v(l)|]

sin(lπ)

(T + 1)
. (55)

.is implies that

􏽘

T

k�1
[|u(k)| +|v(k)|]

sin(kπ)

(T + 1)
� 0. (56)

Because sin(kπ)/(T + 1)≥ 0(≢ 0) for k ∈ T1, we have
|u(k)| + |v(k)| ≡ 0, k ∈ T1. .is contradicts u, v ∈ zBr.
.erefore, (50) holds, and Lemma 5 implies that

deg I − A, Br, 0( 􏼁 � 1. (57)

Combining this with Lemma 6, we have

deg I − A,
BR

Br

, 0􏼠 􏼡 � deg I − A, BR, 0( 􏼁 − deg I − A, Br, 0( 􏼁 � − 1.

(58)

.erefore, the operator A has at least one fixed point in
BR/Br, and (6) has at least one nontrivial solution. .is
completes the proof. □
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In this paper, we consider the problem of detecting the copositivity of partially symmetric rectangular tensors. We first propose a
semidefinite relaxation algorithm for detecting the copositivity of partially symmetric rectangular tensors. )en, the convergence
of the proposed algorithm is given, and it shows that we can always catch the copositivity of given partially symmetric tensors.
Several preliminary numerical results confirm our theoretical findings.

1. Introduction

Let A � (ai1i2 ,...,ipj1j2 ,...,jq
) be a real (p, q)-th order

m × n-dimensional rectangular tensor, where
ai1i2 ,...,ipj1j2 ,...,jq

∈ R for ik ∈ [m], k ∈ [p], jl ∈ [n], and l ∈ [q].
If the entries of the tensor are invariant under any per-
mutation of i1, i2, . . . , ip and j1, j2, . . . , jq, A is called a
partially symmetric tensor. For the sake of simplicity, let
PSm×n

p,q be the set of all partially symmetric rectangular
tensors with order (p, q) and dimension m × n. By the re-
lationship between partially symmetric tensors and homo-
geneous polynomials, we always use the following notation:

f(x, y) � Axpyq
� 􏽘

i1,...,ip∈[m]

j1,...,jq∈[n]

ai1i2 ,...,ipj1j2,...,jq
xi1

xi2
, . . . , xip

yj1
yj2

, . . . , yjq
.

(1)

By this notation, we know that
A � (ai1 ,...,ipj1 ,...,jq

) ∈ PSm×n
p,q is strictly copositive if and only

if

Axpyq ≥ (> )0, for all x ∈ Rm
+ , y ∈ Rn

+ with ‖x‖ � 1, ‖y‖ � 1.

(2)

Particularly, if m � n and x � y, then it reduces to the
copositivity of symmetric tensors [1–10].

)e copositive tensor has attracted many researches’
attention since it plays an important role in polynomial
optimization [11], hypergraph theory [1], vacuum stability of
a general scalar potential [12], tensor complementarity
problem [13, 14], tensor eigenvalue complementarity
problem [15, 16], and so on [17–37]. Kannike proved the
vacuum stability conditions for more complicated potentials
with the help of the copositive tensor [12]. Ling et al. [16]
proposed that the tensor generalized eigenvalue comple-
mentarity problem is solvable and has one solution at least
under assumptions that the related square tensor is strictly
copositive. During the process of application, a challenging
problem is how to detect the copositivity of tensors
numerically.

Recently, several numerical algorithms are proposed to
check the copositivity of symmetric tensors. To the best of
our knowledge, the first numerical algorithm was proposed
by Chen et al. in [2], where the algorithm is based on the
representation of the multivariate form in barycentric co-
ordinates with respect to the standard simplex. )en, by a
suitable convex subcone of a copositive tensor cone, an
updated numerical algorithm for copositivity of tensors was
proposed in [1]. It must be pointed out that the methods of
[1, 2] can only capture strictly copositive tensors and
noncopositive tensors. To overcome this drawback, in [38],
Li et al. proposed an SDP relaxation algorithm to test the
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copositivity of higher-order tensors. Very recently, Nie et al.
gave a complete semidefinite relaxation algorithm for
detecting the copositivity of a matrix or tensor [39]. If the
potential tensor is copositive, the algorithm can get a cer-
tificate for the copositivity. Otherwise, the algorithm can get
a point that refutes the copositivity. Furthermore, it is
showed that the detection can be done by solving a finite
number of semidefinite relaxations for all matrices and
tensors.

For the copositivity of partially symmetric tensors, Gu
et al. gave the first two spectral properties in [40], and some
necessary or sufficient conditions for a real partially sym-
metric rectangular tensor to be copositive are further
established. Moreover, an equivalent notion of strictly
copositive rectangular tensors is presented [40]. In [41],
Wang et al. extended the simplicial partition method for
symmetric tensors to check the copositivity of partially
symmetric tensors. However, as we discussed above, it can
only capture all strictly copositive rectangular tensors or
noncopositive rectangular tensors. When the input tensor is
copositive but not strictly copositive, the algorithm may not
stop in general. To solve this, motivated by the algorithm of
[38, 39], we propose a new algorithm to check the copo-
sitivity of partially symmetric tensors in this paper.

)e remainder of this paper is organized as follows. In
Section 2, we recall some preliminaries on polynomials. In
Section 3, we formulate the potential problem as a proper
polynomial optimization problem which can be efficiently
solved by Lasserre-type semidefinite relaxations. )en, a
numerical method is proposed to check whether a given
partially symmetric tensor is copositive or not, and the
convergence of this algorithm is established. Several nu-
merical experiments are listed in Section 4, and final remarks
are given in Section 5.

2. Preliminaries

Let R[x] be the ring of the polynomial with variables
x � (x1, x2, . . . , xn) ∈ Rn. Let R[x]d ⊆R[x] denote the
vector space of polynomials with degree at most d. )e
degree of a polynomial f is denoted as deg (f). Denote e
as the vector of all entries which equals one. A polynomial
p is called SOS if there exist p1, p2, . . . , pr ∈ R[x] such
that p � p2

1 + p2
2+, . . . , +p2

r . Denote by 􏽐 [x] the set of
all SOS polynomials. For x ∈ Rn and α ∈ Nn, let
xα � x

α1
1 x

α2
2 , . . . , x

αn
n . )en, for any polynomial f ∈ R[x], it

can be denoted by f(x) � 􏽐α∈Nn fαxα, and vec(f) :�

(fα)α∈Nn denotes its sequence of coefficients in the mono-
mial basis of R[x]. For matrix A, its transpose is denoted by
A⊤. For a symmetric matrix X, X ≽ 0 means X is positive
semidefinite. More details about polynomial optimization
can be seen in [42–45].

For α � (α1, α2, . . . , αn) ∈ Nn, |α| � α1+, · · · , +αn, and
denote Nn

d � α ∈ Nn | |α|≤d{ }. For t ∈ R, ⌈t⌉ denotes the
smallest integer that is not smaller than t. If the subset
I ⊆R[x] satisfies that I + I ⊆ I and I · R[x] ⊆R[x], then I is
called ideal. For a polynomial tuple h � (h1, h2, . . . , hs), the
ideal generated by h is defined such that

I(h) � h1R[x] + h2R[x]+, . . . , + hsR[x]. (3)

)e k-th truncation ideal generated by h is

I(h)k � h1R[x]k− deg h1( ) + h2R[x]k− deg h2( )+, · · · , + hsR[x]k− deg hs( ).

(4)

For complex and real algebraic varieties of polynomial
tuple h, define

VC(h) � x ∈ Cn | h(x) � 0{ },

VR(h) � VC(h)∩Rn.
􏼨 (5)

)e quadratic module generated by g � (g1, g2, . . . , gt)

is (denote g0 � 1)

Q(g)k � 􏽘[x] + g1 􏽘[x]+, . . . , + gt 􏽘[x]. (6)

For y � (yα) ∈ RNn
d , α ∈ Nn

d, where RNn
d is the space of

real vectors indexed by α ∈ Nn
d, define

􏽘
α∈Nn

d

pαx
α1
1 x

α2
2 , . . . , x

αn

n , y􏼪 􏼫 � 􏽘
α∈Nn

d

pαyα. (7)

For a polynomial q ∈ R[x]2k, the k-th localizing matrix
of q is the symmetric matrix L

q

k(y) satisfying

vec p1( 􏼁
⊤

L
(k)
q (y)􏼐 􏼑vec p2( 􏼁 �〈qp1p2, y〉, (8)

for all p1, p2 ∈ R[x] with deg(p1), deg(p2)≤ k − 􏼆deg(q)/2􏼇,
where vec(pi) denotes the coefficient vector of the poly-
nomial pi. When q � 1, L(k)

q (y) is the moment matrix
Mk(y) � L

(k)
1 (y). Let f � (f1, f2, . . . , fr) be a polynomial

tuple; its localizing matrix is defined such that

L
(k)
f (y) � L

(k)
f1

(y), L
(k)
f2

(y), . . . , L
(k)
fr

(y)􏼐 􏼑. (9)

3. The SDP Algorithm for Copositivity of
Partially Symmetric Tensors

In this section, we establish an equivalent condition for the
copositivity of partially symmetric tensors. )en, the con-
cerned problem can be reformulated as a polynomial op-
timization problem. To continue, recall that a partially
symmetric tensor A ∈ PSm×n

p,q is strictly copositive if and
only if

Axpzq ≥ 0(> 0), for all x ∈ Rm
+ , z ∈ Rn

+ with ‖x‖ � 1, ‖z‖ � 1,

(10)

which is equivalent with the following optimization
problem:

f∗ � min Axpzq

s.t. e⊤1 x � 1, e⊤2 z � 1

x ∈ Rm
+ , z ∈ Rn

+.

(11)

Clearly, tensor A is strictly copositive if and only if
f∗ ≥ 0(> 0). Problem (11) can be solved by classical Lasserre
relaxations [46]. Since the objection function is continuous
and the feasible region is compact, problem (11) always has a
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solution.Without loss of generality, assume (x∗, z∗) is one of
the solutions of (11); then, it satisfies the following KKT-
conditions with λ, μ ∈ R, v ∈ Rm, andw ∈ Rn:

pAx∗p− 1z∗q − λe1 − v � 0,

qAx∗pz∗q− 1 − μe2 − w � 0,

e⊤1 x
∗ � 1, e⊤2 z

∗ � 1,

x∗ ≥ 0, z∗ ≥ 0, v ≥ 0,w ≥ 0,

x∗⊤v � 0, z∗⊤w � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

By (12), we obtain that λ � pAx ∗ pz∗q, μ � qAx∗pz∗q,
and

pAx∗p− 1zq
− λe1 ≥ 0, qAx∗pz∗q− 1

− μe2 ≥ 0,

x∗⊤ pAx∗p− 1z∗q􏼐 􏼑 − λx∗⊤e1 � 0, z∗⊤ qAx∗pz∗q− 1
􏼐 􏼑 − μz∗⊤e2 � 0 .

(13)

Combining this with the fact that ‖x∗‖≤ 1, ‖z∗‖≤ 1, we
consider the following optimization problem:

min Axpzq

s.t. x⊤ Axp− 1zq( 􏼁 − Axpzq( )x⊤e1 � 0,

z⊤ Axpzq− 1( 􏼁 − Axpzq( )z⊤ � 0,

Axp− 1zq − Axpzq( )e1 ≥ 0,

Axpzq− 1 − Axpzq( )e2 ≥ 0,

e⊤1 x � 1, e⊤2 z � 1, 1 − ‖x‖2 ≥ 0, 1 − ‖z‖2 ≥ 0

x ∈ Rm
+ , z ∈ Rn

+.

(14)

It is clear to see that problems (11) and (14) are
equivalent in the sense that they have the same optimal
solution. To solve (14), we introduce the following notations:

f(x, z) � Axpzq,

g(x, z) � Axp− 1zq − Axpzq( )e1,Axpzq− 1 − Axpzq( )e2, 1 − ‖x‖2, 1 − ‖z‖2, xi, zj􏽮 􏽯,

h(x, z) � e⊤(x, 0)n+m � 1, e⊤(0, z)n+m � 1, xi Axp− 1zq( 􏼁i − Axpzq( )xi, zj Axpzq− 1( 􏼁j − Axpzq( )zj􏽮 􏽯.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(15)

So, the problem of (14) can be rewritten such that

f∗ � min f(x, z)

s.t. g(x, z)≥ 0,

h(x, z) � 0.

(16)

By the Lasserre-type semidefinite relaxations of (16),
consider the semidefinite program

ρk � min 􏽐
α∈Nn+m

fαyα

s.t. L(k)
g (y) ≽ 0, L

(k)
h (y) � 0,

y0 � 1, Mk(y) ≽ 0, y ∈ RNn+m
2k ,

(17)

where k � k0, k0 + 1, . . ., with k0 � max 􏼆(p/2)􏼇, 􏼆(q/2)􏼇􏼈 􏼉. It
is obvious that the feasible set is compact, and the Archi-
medean condition holds. )us, the asymptotic convergence
of (17) is always guaranteed. Moreover, A is copositive if
ρk ≥ 0 for some k, and ρk is a monotonically decreasing
sequence, with the decreasing of order k, i.e.,

ρk0
≤ ρk0+1≤ , . . . , ≤ ρk ≤ , . . . , ≤f

∗
. (18)

Now, we present an algorithm to check the copositivity
of a given partially symmetric rectangular tensor
(Algorithm 1).

ρ∗k � min 〈ξ⊤[x, y]m+n, y〉

s.t. y0 � 1, L(k)
g (y) ≽ 0, L

(k)
h (y) � 0

Mk(y)≽0, L
(k)
ρk− f(x,z) ≽ 0, y ∈ RNn+m

2k ,

(19)

)e following theorem shows the convergence of Al-
gorithm 1 for any partially symmetric tensor.

Theorem 1. Suppose A ∈ PSm×n
p,q is a partially symmetric

tensor. (en, the following properties hold:

(i) For all k≥ 0, problem (16) is feasible and achieves its
optimal value ρk � f∗ for all k sufficiently large

(ii) For all k≥ 0, problem (19) has an optimizer if it is
feasible

(iii) If A is copositive, Algorithm 1 must stop with ρk ≥ 0
when k is sufficiently large

(iv) If A is not copositive, Algorithm 1 must stop with
f(x, z)< 0 for almost all ξ ∈ RNn+m

p+q when k is suf-
ficiently large

Proof

(i) Since the feasible set of (11) is compact, it must
have a minimizer (x∗, z∗). On the contrary,
(x∗, z∗) is a feasible point for (16), which implies
that the semidefinite relaxation (17) is always
feasible. Since L

(k)

1− ‖x‖2
≽ 0, let X � (x, 0),{

(0, z) | x ∈ Rm, z ∈ Rn} ⊆Rm+n; then, it holds that
L

(k)

1− ‖x‖2
≽ 0. We now show that the feasible set

of (17) is compact as follows. First of all, we have

1≥y2e1
+ y2e2

+, . . . , + y2en+m
. (20)
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)en, 0≤y2ei
≤ 1; since Mk(y) ≽ 0, i ∈ [m + n]. Fur-

thermore, for all 0< |α|≤ k − 1, the (α, α)-th diagonal
entry of L

(k)

1− ‖x‖2
is nonnegative, which implies that

y2α ≥y2e1+2α + y2e2+2α+, . . . , + y2en+m+2α. (21)

Take α � e1, e2, . . . , em+n in the following analysis. By
the same argument as (21) and repeating k − 1 times,
we can show that 0≤y2β ≤ 1 for all |β|≤ k. By the
definition of Mk(y), we know that the diagonal entries
Mk(y) are precisely y2β, |β|≤ k. Since Mk(y) ≽ 0, all the
entries of Mk(y) must be between − 1 and 1. So, y is
bounded, and the feasible set of (17) is compact. Hence,
the optimal value can always be achieved. In the fol-
lowing, we will show that ρk � f∗ for all k sufficiently
large.

By direct computation, the optimization (16) is
equivalent with the following problem:

min Axpzq

s.t. xi Axp− 1zq( 􏼁i − Axpzq( )xi � 0,

zj Axpzq− 1( 􏼁j − Axpzq( )zj � 0,

Axp− 1zq − Axpzq( )e1 ≥ 0,

Axpzq− 1 − Axpzq( )e2 ≥ 0,

e⊤1 x � 1, e⊤2 z � 1,

x ∈ Rm
+ , z ∈ Rn

+.

(22)

For simplicity, denote

f(x, z) � Axpzq,

g(x, z) � (x, z),Axp− 1zq − Axpzq( )e1,Axpzq− 1 − Axpzq( )e2􏼈 􏼉

h(x, z) � e⊤(x, 0)m+n − 1, e⊤(0, z)m+n − 1, xi Axp− 1zq( 􏼁i − Axpzq( )xi, zj Axpzq− 1( 􏼁j − Axpzq( )zj􏽮 􏽯.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(23)

Corresponding Lasserre’s relaxations for (22) are

ρk
′ � min 􏽘

α∈Nn

fαyα

s.t. L
(k)
g (y) ≽ 0, L

(k)
h (y) � 0,

y0 � 1, Mk(y) ≽ 0, y ∈ RNn+m
2k .

(24)

For k � k0, k0 + 1, . . ., where
k0 � max 􏼆(p/2)􏼇, 􏼆(q/2)􏼇􏼈 􏼉, any feasible solution of
(17) is also a feasible solution of (24), so

ρk
′ ≤ ρk ≤f∗, k � k0, k0 + 1, . . . . (25)

Next, we show that the set of polynomials

F � 1 − eTx􏼐 􏼑ϕ + 􏽘
n

i�1
xi 􏽘

l

s
2
l

⎛⎝ ⎞⎠ + 1 − eTz􏼐 􏼑ψ + 􏽘
n

i�1
zj 􏽘

t

s
2
t

⎛⎝ ⎞⎠
⎧⎨

⎩

⎫⎬

⎭.

(26)

is Archimedean, i.e., there exists f ∈ F such that the
inequality f(x)≥ 0 defines a compact set in Rm+n. Let
f � 2 − ‖X‖2 and X � (x, z)m+n; we have

2 − ‖x‖
2

� 1 − eTx􏼐 􏼑 1 +‖x‖
2

􏼐 􏼑 + 􏽘

n

i�1
xi 1 − xi( 􏼁

2

+ 􏽘

m

i≠j�1
x
2
i xj + 1 − eTz􏼐 􏼑 1 +‖z‖

2
􏼐 􏼑 + 􏽘

n

j�1
zj 1 − zj􏼐 􏼑

2

+ 􏽘
n

i≠j�1
z
2
i zj.

(27)

Step 0: given an arbitrary vector ξ ∈ RNn+m
p+q . Let k � max 􏼆(p/2)􏼇, 􏼆(q/2)􏼇􏼈 􏼉.

Step 1: solve the semidefinite relaxation (17). If ρk ≥ 0, then stop, and A is copositive. If ρk < 0, go to Step 2.
Step 2: solve the following semidefinite program:
for an optimizer y∗ if it is feasible. If it is infeasible, let k � k + 1 and go to Step 1.
Step 3: let (x∗, z∗) � ((y∗)e1

, . . . , (y∗)em
, (y∗)em+1

, . . . , (y∗)em+n
). If Ax∗pz∗q < 0, then A is not copositive and stop. Otherwise, let

k � k + 1 and go to Step 1.

ALGORITHM 1: An SDP method for copositivity of a partially symmetric tensor A ∈ PSm×n
p,q .
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So, F is Archimedean by )eorem 3.3 of [47]; we
know that ρk

′ � f∗ when k is sufficiently large.
Hence, ρk � f∗ when all k values are sufficiently
large.

(ii) )e proof is the same with (i).
(iii) Clearly,A is copositive if and only if f∗ ≥ 0. By item

(i), ρk � f∗ for all k big enough. )erefore, if A is
copositive, we must have ρk ≥ 0 for all k large
enough.

(iv) IfA is not copositive, then f∗ < 0. By (i), there exists
k1 ∈ N such that ρk � f∗ for all k≥ k1. Hence, for all
k≥ k1, problem (19) is equivalent with the following
problem:

􏽢ρk � min 〈ξ⊤[x, y]m+n, y〉

s.t. y0 � 1, L
(k)

1− eTx(y) ≽ 0, L
(k)

1− eTy ≽ 0, L
(k)
X (y) ≽ 0,

Mk(y) ≽ 0, L
(k)
f∗ − f(X) ≽ 0, X �(x, z)m+n, y ∈ RNn+m

2k .

(28)

It is k-th Lasserre’s relaxation for the polynomial
optimization

min ξ⊤[x, z]m+n

s.t. 1− e⊤(x, 0)m+n ≥ 0, 1 − e⊤(0, z)m+n ≥ 0, x ≥ 0, z≥ 0, f∗− f(X)≥ 0.

(29)

)e feasible region of (29) is clearly compact. When
ξ ∈ RNn+m

p+q is arbitrary, (29) has a unique optimizer
X∗ � (x∗, z∗). Hence, for almost all ξ ∈ RNn+m

p+q , X∗ is the
unique optimizer. For notation convenience, denote by 􏽢yk

the optimizer of (19) with the relaxation order k. Let
Xk � ((􏽢yk)e1

, . . . , (􏽢yk)en+m
). By Corollary 3.5 of [48] or

)eorem 3.3 of [49], the sequence Xk􏼈 􏼉
∞
k�k0

must converge to
X∗. Since f∗ ≤ ρ∗k < 0, we must have f(Xk)< 0 when k is
sufficiently large. □

4. Numerical Examples

In this section, we give several numerical examples to show
the efficiency of Algorithm 1. Let Sπ(i1i2 ,...,im) denote the set of
all permutations of i1i2, . . . , im, and let ρ∗k � 0 when
|ρ∗k |< 1e − 5. All experiments are done in Matlab2014b on a
desktop computer with Intel (R) Core (TM)i7-6500 CPU @
2.50GHz 2.60GHz and 16GB of RAM.

Example 1. Suppose that A ∈ PS2×4
2,2 is given by

a1111 � 1, a1122 � 1, a1133 � 1, a1144 � 1, a2211 � 1, a2222 � 1, a2233 � 1, a2244 � 1,

􏽐
i1i2j1j2∈Sπ(1112)

ai1i2j1j2
� 2, 􏽐

i1i2j1j2∈Sπ(1134)

ai1i2j1j2
� 2, 􏽐

i1i2j1j2∈Sπ(1113)

ai1i2j1j2
� − 2,

􏽐
i1i2j1j2∈Sπ(1114)

ai1i2j1j2
� − 2, 􏽐

i1i2j1j2∈Sπ(1123)

ai1i2j1j2
� − 2, 􏽐

i1i2j1j2∈Sπ(1124)

ai1i2j1j2
� − 2,

􏽐
i1i2j1j2∈Sπ(2212)

ai1i2j1j2
� 2, 􏽐

i1i2j1j2∈Sπ(2234)

ai1i2j1j2
� 2, 􏽐

i1i2j1j2∈Sπ(2213)

ai1i2j1j2
� − 2,

􏽐
i1i2j1j2∈Sπ(2214)

ai1i2j1j2
� − 2, 􏽐

i1i2j1j2∈Sπ(2223)

ai1i2j1j2
� − 2, 􏽐

i1i2j1j2∈Sπ(2224)

ai1i2j1j2
� − 2,

􏽐
i1i2j1j2∈Sπ(1211)

ai1i2j1j2
� − 2, 􏽐

i1i2j1j2∈Sπ(1222)

ai1i2j1j2
� − 2, 􏽐

i1i2j1j2∈Sπ(1212)

ai1i2j1j2
� − 4,

􏽐
i1i2j1j2∈Sπ(1244)

ai1i2j1j2
� − 2, 􏽐

i1i2j1j2∈Sπ(1234)

ai1i2j1j2
� − 4, 􏽐

i1i2j1j2∈Sπ(1213)

ai1i2j1j2
� 4,

􏽐
i1i2j1j2∈Sπ(1214)

ai1i2j1j2
� 4, 􏽐

i1i2j1j2∈Sπ(1223)

ai1i2j1j2
� 4, 􏽐

i1i2j1j2∈Sπ(1224)

ai1i2j1j2
� 4,

􏽐
i1i2j1j2∈Sπ(1233)

ai1i2j1j2
� − 2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(30)

)e corresponding polynomial for tensor A is

f(x, y) � x1 − x2( 􏼁
2

y1 + y2 − y3 − y4( 􏼁
2
, x

� x1, x2( 􏼁, y � y1, y2, y3, y4( 􏼁.
(31)

By Algorithm 1, we know that f∗ � 0 with
x � (0.5000, 0.5000), y � (0.2500, 0.2500, 0.2500, 0.2500),
which implies that rectangular tensor A is copositive.

Example 2. Suppose that A ∈ PS1×2
2,2 with entries such that

a1111 � 1,

a1122 � 1,

􏽐
i1i2j1j2∈Sπ(11,12)

ai1i2j1j2
� − 2.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(32)

)e corresponding polynomial of A is
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f(x, y) � x
2
1y

2
1 − 2x

2
1y1y2 + x

2
1y

2
2, x � x1( 􏼁, y � y1, y2( 􏼁.

(33)

By Algorithm 1, we obtain that f∗ � 0 with optimal
solution (x, y) � (1.0000, 0.7071, 0.7071), which implies
that A is copositive but not strictly copositive.

Example 3. Suppose that A ∈ PS2×2
2,2 is given by

a1111 � 1,

a1122 � 1,

a2211 � 1,

a2222 � 1,

􏽐
i1i2j1j2∈Sπ(11,12)

ai1i2j1j2
� − 2,

􏽐
i1i2j1j2∈Sπ(22,12)

ai1i2j1j2
� − 2,

􏽐
i1i2j1j2∈Sπ(12,11)

ai1i2j1j2
� 2,

􏽐
i1i2j1j2∈Sπ(12,22)

ai1i2j1j2
� 2,

􏽐
i1i2j1j2∈Sπ(12,12)

ai1i2j1j2
� − 4.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(34)

So, the corresponding polynomial of A is that

f(x, y) � x
2
1y

2
1 + x

2
1y

2
2 − 2x

2
1y1y2 + x

2
2y

2
1 + x

2
2y

2
2

− 2x
2
2y1y2 + 2x1x2y

2
1 + 2x1x2y

2
2 − 4x1x2y1y2,

(35)

where x � (x1, x2), y � (y1, y2). By Algorithm 1, we have
f∗ � 0 with x∗ � (0.5126, 0.4874), y∗ � (0.5000, .5000),
which implies that the rectangular tensor is copositive.

Example 4. Suppose that A ∈ PS3×2
3,2 is given by

a11122 � 1,

a22222 � 1,

a33311 � 1,

􏽐
i1i2i3j1j2∈Sπ(123,12)

ai1i2i3j1j2
� − 3.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(36)

)e corresponding polynomial of the partially sym-
metric rectangular tensor A is

f(x, y) � x
3
1y

2
2 + x

3
2y

2
2 + x

3
3y

2
1 − 4x1x2x3y1y2, (37)

where x � (x1, x2, x3), y � (y1, y2). By Algorithm 1, we
know that f∗ � − 0.0639 with x∗ � (0.7652, 0.4702, 0.7652),
y∗ � (0.3572, 0.8724), which implies that the rectangular
tensor is not copositive.

Example 5. SupposeA ∈ PS2×2
2,2 is a tensor with entries such

that

a1111 � 1,

a1122 � − 1,

a2211 � 1,

a2222 � 1,

􏽐
i1i2j1j2∈Sπ(11,12)

ai1i2j1j2
� 2,

􏽐
i1i2j1j2∈Sπ(22,12)

ai1i2j1j2
� 2,

􏽐
i1i2j1j2∈Sπ(12,11)

ai1i2j1j2
� 2,

􏽐
i1i2j1j2∈Sπ(12,22)

ai1i2j1j2
� 2,

􏽐
i1i2j1j2∈Sπ(12,12)

ai1i2j1j2
� − 4.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(38)

)e corresponding polynomial of the partially sym-
metric rectangular tensor A is

f(x, y) � x
2
1y

2
1 − x

2
1y

2
2 + 2x

2
1y1y2 + x

2
2y

2
1 + x

2
2y

2
2

+ 2x
2
2y1y2 + 2x1x2y

2
1 + 2x1x2y

2
2 − 4x1x2y1y2,

(39)

where x � (x1, x2), y � (y1, y2). By Algorithm 1, we know
that f∗ � 0.3333 with x∗ � (0.6666, 0.3334),
y∗ � (0.5000, .5000), which implies that the rectangular
tensor is strictly copositive.

5. Conclusions

In this paper, based on Lasserre’s hierarchy of semidefinite
relaxations, we propose a new criterion to judge whether a
given partially symmetric rectangular tensor is copositive or
not. )e convergence for the proposed algorithm is estab-
lished. Furthermore, numerical examples demonstrate that
the proposed algorithm is effective when the input rectan-
gular tensor has lower dimension and orders, and it is
difficult for the case with higher order or higher dimension.
We will continue to study this problem in the future.
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In recent years, with the expansion of university enrollment in China, the cost of running a school is getting higher and higher.
Under the circumstance of insufficient state investment in higher education, the education charge paid by students has become an
important source of the university income. It has become a hot topic of social concern to formulate a reasonable charging model to
enable more students to enter higher education institutions. In this paper, we mainly put forward the basic differential equation
models describing the problem of higher education charges in China. +rough the qualitative analysis of these two basic models,
we draw several conditions for universities to maintain or stabilize their education charges and give some suggestions on
macrocontrol of university education charges in China.

1. Introduction to the Present Situation of
Higher Education in China

Since the 1990s, under the guidance of the strategy of
“rejuvenating the country through science and education
and sustainable development (Deng Xiaoping, the chief
designer of China, first put forward the important conclu-
sion that science and technology are the first productive
force. In 1997, the 15th Congress of the Communist Party of
China clearly put forward the strategy of rejuvenating the
country through science and education: to fully implement
the idea that science and technology are the first productive
force, to adhere to education as the basis, and to put science
and technology and education in an important position in
economic and social development),” the Chinese govern-
ment has implemented “Project 211 (Project 211 is a con-
struction project of about 100 universities and a number of
key disciplines facing the 21st century),” “Project 985
(Project 985 is guided by the key areas and major needs
urgently needed by the state or industry and focuses on
building a number of platform bases around the national

development strategy and the frontier of disciplines),” and
“2011 Collaborative Innovation Plan (2011 Collaborative
Innovation Plan is called the innovation ability promotion
program of colleges and universities)” successively. +e
“first-class university and first-class discipline construction
of higher education” has also been deployed since 2016.
China’s higher education has achieved a great leap both in
quantity and quality due to this series of important mea-
sures. Since 1999, China has experienced a huge increase in
the enrollment in higher education (see Table 1). +e level of
the popularization of higher education is also rising.

From the table, we can easily see that China’s gross
enrollment rate has considerably increased. In 2002, the
higher education gross enrollment rate in China reached
15.0%. After 16 years of development, the gross enrollment
rate of higher education in China reached an astonishing
48.1% in 2018. Correspondingly, the number of students
enrolled in 2018 reached 87.679 million. +e Chinese
government’s financial investment in higher education is
also increasing year by year. In 1993, the Chinese govern-
ment has formulated the Outline of China’s Educational
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Reform and Development in which, for the first time, the
Chinese government put forward the target of government
spending on education, taking for 4% of GDP. +is goal has
already been achieved in 2012 (see Table 2), and the pro-
portion has remained above 4% for seven consecutive years
(see [1]).

At the same time, we have also realized that although
China’s higher education has made great achievements in
recent decades, there are still many problems or challenges.
According to the statistical data, in terms of national fi-
nancial investment in education, the world’s average level is
about 7%. Developed countries have reached about 9% and
economically underdeveloped countries only reached 4.1%
(see [2]).+erefore, there is still a long way to go for China to
invest in education funds (see [3]). As far as the current
development of education in China is concerned, two issues
have aroused wide concern. +e first issue to which most
Chinese scholars pay attention is how to solve the problem of
higher education charges and the problem of tuition pay-
ment for the poor students with the premise of a stable
educational financial input. +e second issue is how to
coordinate the relationship among the development of
higher education, talent training, and educational equity in
order to avoid social contradictions.+ese two issues are two
crucial social problems that China is facing today. +rough
the years, these problems have been studied from the per-
spective of educational economics, sociology, and law by
various scholars in the field of educational theories (see
[2, 4–12]). And, they put forward some corresponding
measures on how to calculate the cost of colleges and
universities. In order to survive and develop, colleges and
universities must pay attention to the dual development of
economic and social benefits, improve the efficiency of the
use of funds, and further optimize the allocation of edu-
cational resources.

2. The Analysis of the Theory of Higher
Education Charges in China

At present, the model of raising funds for running uni-
versities in China is still mainly based on the state invest-
ment and is supplemented by the investment of private and

other social forces. +is is different from all state investment
models implemented in the planned economy in the past.
Before the 1990s, higher education institutions are regarded
as nonprofit units, so all expenditures are provided by the
state finance, while the education department and the fi-
nance department do not account for the cost of higher
education.

Now, we know that higher education is a special activity
process and resource consumption. Higher education cost is
the value of educational resources consumed in the process
of higher education activities. Because higher education can
train technical talents and promote economic development,
the government is the beneficiary of higher education. And,
because higher education can bring great future benefits to
the individuals, the individuals are also beneficiaries of
higher education. At the same time, society and universities
can also gain their own benefits through the development of
higher education. +erefore, from the perspective of market
economy theory, it is necessary to implement the cost
compensation and allocation system in higher education at
present.

According to Martin +row’s theory of the stages of
higher education, education in China has changed from
elitism to popularity.+e process of popularization of higher
education is not only the expansion of the educational scale,
but also the change of cost sharing. In 1986, Johnston put
forward the cost-sharing theory of higher education (see
[7]). He believes that the cost of higher education should be
reasonably shared by the beneficiaries. Beneficiaries should
compensate the cost according to the level of income and the
ability to bear it. +erefore, the main body of cost sharing in
higher education should include the government, the in-
dividuals, the society, and the universities. In the way of
sharing, the government shares the cost through financial
allocation, the individual by paying tuition and miscella-
neous expenses, the society by donating, and the colleges and
universities by means of income generation from school-run
industries and transformation of scientific research
achievements (see [5]). In fact, the tuition charge of higher
education is only related to the educational cost shared by
the educator. According to the principle of complementarity
and affordability of education fees, we believe that the main

Table 1: Development of higher education in China from 1999 to 2018.

Year Number of
schools

Enrollment in higher
education (thousand)

Gross enrollment
rate (%)

Number of teaching
staff expenses (RMB)

Per public finance
budget education

expenses

Per public finance
public funds (RMB)

1999 1071 1689 10.5 1065 7201.24 2962.37
2000 1041 2335 12.5 1113 7309.58 2921.23
2001 1225 2848 13.3 1214 6818.23 2613.56
2002 1396 3408 15.0 1304 6177.96 2453.47
· · · · · · · · · · · · · · · · · · · · ·

2014 2526 7835 37.5 2336 16102.72 7637.97
2015 2560 8024 40.0 2369 18143.57 8280.08
2016 2596 8153 42.7 2405 18747.65 8067.26
2017 2631 8421 45.7 2443 20298.63 8506.02
2018 2663 8768 48.1 2488 22007.77 9222.23
Remark. +e data cited in this paper come from the China Statistical Yearbook (1999–2018) and the China Education Funds Statistical Yearbook (1999–2018).
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influencing factors of higher education fees are the educa-
tional costs shared by educators and the unpaid tuition fees
of poor students.

In this paper, we aim to establish differential equation
models of the higher education cost by analyzing the theory
of total cost, input, and output, and then we study the higher
educational charges of universities.

3. Differential Equation Models Based on Cost
Sharing in Higher Education

3.1. Establishment of Models. According to the theory of
sharing in the higher educational cost and the variable re-
lation of difference equation (see [4, 6]), we suppose that the
continuous variable N is the number of students in the
university; then, we establish the following functional var-
iables which affect the change of the higher education cost:

R(N): educational charge of colleges and universities
c(N): individually shared educational costs
p(N): unpaid tuition of per poor student
q(N): allowance of per unpaid students
From the analysis on the sharing of educational costs in

institutions of higher education, we know that the functions
c(N), c(N), and p(N) satisfy the following condition: as
c(N) increases, R(N) also increases; as c(N) increases,
R(N) decreases. So, we can suppose that the relationship
between the change rate of R(N) and the function c(N) is a
positive linear correlation, and the relationship between the
change rate of R(N) and the function p(N) is also linear and
negative. At the same time, as the function p(N) increases,
q(N) also increases. So, we have

q(N) � αp(N), (1)

where α is the subsidy coefficient. We can obtain the fol-
lowing differential equation model (I) for the university
educational charge:

R′(N) � δc(N) − σ[p(N) + q(N)] � δc(N) − σ(1 + α)p(N).

(2)

Because the function p(N) of the unpaid charge can
increase with the increase in the individually shared edu-
cational cost c(N), we have that

p(N) � g(c(N)), (3)

where g(c) is the monotonically increasing functions.
+erefore, we obtain the following differential equation
model (II) for the university educational charge:

R′(N) � δc(N) − βg(c(N)), (4)

where β � σ(1 + α).
Furthermore, we can obtain the function c(N) by the

function R(N). So, we have

c(N) � f(R(N)), (5)

where f(R) is the monotonically increasing function.
+erefore, we obtain the following differential equation

model (III) for the university educational charge:

R′ � δf(R) − σg(f(R)), (6)

where δ > 0 and σ > 0.

3.2. Qualitative Analysis of Educational Charge Model of
Universities. From model (I), we can obtain sufficient and
necessary conditions for the constant charge of higher
education:

δc(N) � σg(c(N)). (7)

+is shows that the necessary and sufficient conditions
for colleges and universities to keep their educational charge
unchanged are as follows: maintaining a balance between the
cost of per education shared by individuals and the cost of
per unpaid expenses of poor students. In order to achieve
this balance, there must exist a positive solution N0 for the
above equation.

+erefore, we can obtain the number N0 of students
enrolled in colleges and universities and individually shared
per cost of education c0 � c(N0).

At present, China has set an upper limit of 25% for the
individual share of education costs. But in fact, the pro-
portion of poor students in colleges and universities has
exceeded 30%. +is is unbalanced. +e objective reason for
the imbalance is that the cost of higher education is difficult
to calculate. It is easy to make the charge standard exceed the
upper limit of the proportion of the education cost shared by
individuals. +erefore, balance can be achieved and prob-
lems be solved by increasing state finance investment in
education, encouraging and attracting social funds to run
schools, or by improving the payment ability of poor stu-
dents by student loans, scholarships, work aids, etc.

Furthermore, by the discriminating method of function
extreme, we have the following sufficient condition for
keeping the educational charges of colleges and universities
invariant:

(1) As c′(N0)> 0, 0<g′(c(N0))< δ/σ, or c′(N0)

< 0, gσ(c(N0))> δ/σ, we have

R′ N0( 􏼁 � 0, R″ N0( 􏼁> 0. (8)

+erefore, there exists the minimum value of edu-
cational charges in colleges and universities, i.e.,
R(N0). +is means that under the conditions at
which the per cost c(N) of education shared by
individuals increases, the minimum charge R(N0) of

Table 2: +e proportion of national financial investment in education to GDP in 2008–2018.

Year 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
% 3.48 3.59 3.66 3.93 4.28 4.11 4.10 4.26 4.22 4.14 4.11
Remark. +e data cited come from the China Education Funds Statistical Yearbook (2008–2018).
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colleges and universities would maintain unchanged
as long as the growth rate g′(c(N0)) of the per
unpaid expenses for poor students is controlled
within a certain limit. But, if the growth rate
g′(c(N0)) of the per unpaid expenses of poor stu-
dents exceeded one degree δ/σ, we can keep the
minimum charges R(N0) of colleges and universities
unchanged by reducing the cost c(N) of per edu-
cation shared by individuals.

(2) As c′(N0)< 0, 0<g′(c(N0))< δ/σ, or c′(N0)> 0,

g′(c(N0))> δ/σ, we have

R′ N0( 􏼁 � 0,

R″ N0( 􏼁< 0.
(9)

+erefore, there exists the maximum value of educa-
tional charges in colleges and universities, i.e., R(N0).
+is means that under the conditions at which the per
cost c(N) of education shared by individuals decreases,
the maximum charge R(N0) of colleges and univer-
sities would maintain unchanged as long as the growth
rate g′(c(N0)) of the per unpaid expenses of poor
students is controlled within a certain limit. But, if the
growth rate g′(c(N0)) of the per unpaid expenses for
poor students exceeded one degree δ/σ, we can keep the
maximum charge R(N0) of colleges and universities
unchanged by raising the cost c(N) of per education
shared by individuals. However, this situation is
equivalent to high tuition charges, and some impov-
erished students will default more tuition charges or
drop out of school because of their inability to pay.
+erefore, we should try our best to avoid this problem.
From model (II), we can know that the necessary and
sufficient conditions for the constant charge of higher
education are as follows:

δf(R) � σg(f(R)). (10)

It is also a balance. Here, we ask that there is a positive
solution for the above equation, i.e., c0 � f(R0).
Because R0 is the equilibrium point of the differential
equation model (II), we can obtain the following
stability conclusion for educational charges R0 by the
stability criterion of solutions (see [8]).

(3) As f′(c0)> 0, 0<g′(c(N0))< δ/σ, we know that R0
is the equilibrium point of the differential equation
model (II). +is means that under the conditions at
which the per cost c � f(R) of education shared by
individuals increases, we can maintain the stability
conclusion for educational charges R0 as long as the
growth rate of the per unpaid expenses of poor
students is controlled within a certain limit.

(4) As f′(c0)< 0, g′(c(N0))> δ/σ, we know that R0 is
also the equilibrium point of the differential equation
model (II). +is means that if the growth rate of the
per unpaid expenses of poor students exceeded one
degree δ/σ, we can keep the stability conclusion of R0

by reducing the cost of per education shared by
individuals.

4. Conclusion

In the past 30 years, China has experienced a huge increase
in the enrollment in higher education. So, we pay attention
on how to solve the problem of higher education charges and
the problem of tuition payment for the poor students with
the premise of a stable educational financial input. In this
paper, we mainly put forward the basic differential equation
model describing the problem of higher education charges in
China. +rough the qualitative analysis of these two basic
models, we draw several conditions for universities to
maintain or stabilize their education charges and give some
new conclusions and suggestions on macrocontrol of uni-
versity education charges.
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In this paper, by using the partial order method, the existence and uniqueness of a solution for systems of a class of abstract
operator equations in Banach spaces are discussed. 'e result obtained in this paper improves and unifies many recent results.
Two applications to the system of nonlinear differential equations and the systems of nonlinear differential equations in Banach
spaces are given, and the unique solution and interactive sequences which converge the unique solution and the error estimation
are obtained.

1. Introduction

Guo and Lakshmikantham [1] introduced the definition of
the mixed monotone operator and the coupled fixed point,
and there are many good results (see [2–23]). Recently, from
paper [6], using the monotone iterative techniques, the it-
erative unique solution of the following nonlinear mixed
monotone Fredholm-type integral equations in Banach
spaces E is obtained:

u(t) � 􏽚
I
H(t, s, u(s))ds, I � [a, b], (1)

where I � [a, b] and H ∈ C[I × I × E, E].
In this paper, the following nonlinear abstract operator

equations in Banach spaces E are discussed:

u � A(u, v),

v � B(v, u),
􏼨 (2)

where A, B: D × D⟶ E and D is a partial interval in E

which is denoted as the following:

D≐ u0, v0􏼂 􏼃 ≡ u ∈ E | u0 ≤ u≤ v0􏼈 􏼉. (3)

For convenience, the following assumptions are made:

(H1) 'ere exist positive bounded operators
Ti: E⟶ E(i � 1, 2) which satisfy.
(I + T1 − T2)x≥ θ⟹x ∈ P, and for any
ui, vi ∈ D(i � 1, 2), u1 ≤ u2, v1 ≤ v2, the following is
obtained:

B v2, u1( 􏼁 − B v1, u2( 􏼁≥ − T1 v2 − v1( 􏼁 − T2 u2 − u1( 􏼁,

A v2, u1( 􏼁 − A v1, u2( 􏼁≥ − T1 v2 − v1( 􏼁 − T2 u2 − u1( 􏼁.

(4)

(H2) u0 + T2(v0 − u0)≤A(u0, v0), B(v0, u0)≤ v0 − T2
(v0 − u0).
(H3) 'ere exists a positive bounded operator
L: E⟶ E, and for any u, v ∈ D, u≤ v, the following is
obtained:

− T1 + T2( 􏼁(v − u)≤B(v, u) − A(u, v)≤L(v − u). (5)

(H4) LT2 � T2L, LT1 � T1L, T1T2 � T2T1 in which the
spectral radius satisfies
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r(L) + r T1( 􏼁 + r T2( 􏼁< inf |λ|: λ ∈ σ I + T1 − T2( 􏼁􏼈 􏼉,

r T1 − T2( 􏼁< 1.
(6)

In this paper, firstly, by using the partial order method,
the existence and uniqueness of a solution for systems of a
class of abstract operator equations in Banach spaces are
discussed. And next, two applications to the system of
nonlinear integral equations and the system of nonlinear
differential equations in Banach spaces are given, and the
unique solution and interactive sequences which converge a
unique solution and the error estimation are obtained.

2. The Interactive Solution of Abstract
Operator Equations

Let P be a cone in E, i.e., a closed convex subset, such that
λP ⊂ P for any λ≥ 0 and P∩ − P{ } � θ{ }. A partial order ≤ in
P is defined as x≤y⇔y − x ∈ P. A cone P is said to be
normal if there exists a constant N> 0 which satisfies
x, y ∈ E, θ ≤x≤y, implying ‖x‖≤N‖y‖, where θ denotes
the zero element of E. And, the smallest number N is called
as the normal constant of P and denoted as NP.'e coneP is
normal iff every ordered interval [x, y] � z ∈ E: x≤ z≤y􏼈 􏼉

is bounded.
'e following theorem is the main results in this section.

Theorem 1. Let P be a cone in E, u0, v0 ∈ E, u0 ≤ v0. Suppose
that A, B: D × D⟶ E satisfies conditions (H1) − (H4).
+en,

(i) +ere exists a unique solution of equation (2) (u∗, u∗)

in D × D, and for any solutions of equation (2)
(u, u) ∈ D × D, one has u � u∗.

(ii) For any initial value x0, y0 ∈ D, x0 ≤y0, the following
iterative sequences are constructed:

xn � I + T1 − T2( 􏼁
− 1

A xn− 1, yn− 1( 􏼁 + T1xn− 1 − T2yn− 1􏼂 􏼃,

yn � I + T1 − T2( 􏼁
− 1

B yn− 1, xn− 1( 􏼁 + T1yn− 1 − T2xn− 1􏼂 􏼃,

⎧⎨

⎩

(7)

which satisfy ‖xn − u∗‖⟶ 0, ‖yn − u∗‖⟶ 0(n⟶∞),
and for any δ,

r(L) + r T1( 􏼁 + r T2( 􏼁

inf |λ|: λ ∈ σ I + T1 − t2( 􏼁􏼈 􏼉
< δ < 1, (8)

there exists a natural number n0 which satisfies as n≥ n0, the
following is obtained:

xn − u∗
����

����≤ 2Npδ
n v0 − u0
����

����,

yn − u∗
����

����≤ 2Npδ
n v0 − u0
����

����.

⎧⎪⎨

⎪⎩
(9)

Proof. By r(T1 − T2)< 1, it is known that the operator (I +

T1 − T2) is reversible. And, from condition (H1),
(I + T1 − T2)

− 1 is the positive operator. Let

F(u, v) � I + T1 − T2( 􏼁
− 1

A(u, v) + T1u − T2v􏼂 􏼃,

G(v, u) � I + T1 − T2( 􏼁
− 1

B(v, u) + T1v − T2u􏼂 􏼃.

⎧⎨

⎩ (10)

'en, equation (7) can be substituted by the following:

xn � F xn− 1, yn− 1( 􏼁,

yn � G yn− 1, xn− 1( 􏼁.
􏼨 (11)

By conditions (H1) − (H3), it is easy to obtain that
operators F andG satisfy the following:

(1) u0 ≤F(u0, v0)≤G(v0, u0)≤ v0

(2) F, G: D × D⟶ E are the mixed monotone
operator

(3) θ≤G(v, u) − F(u, v)≤H(v − u), u0 ≤ u≤ v≤ v0,
where H � (L + T1 + T2)(I + T1 − T2)

− 1

Letting un � F(un− 1, vn− 1) and vn � G(vn− 1, un− 1)

(n � 1, 2, . . .), the following two results are obtained by
mathematical induction:

u0 ≤ u1 ≤ · · · ≤ un ≤ · · · ≤ vn ≤ · · · ≤ v1 ≤ v0, (12)

un ≤xn ≤yn ≤ vn,

θ ≤ vn − un ≤H
n

v0 − u0( 􏼁, n � 1, 2, . . . .
(13)

In fact, from (1) and (3), one has

u0 ≤ u1 ≤ v1 ≤ v0,

u1 ≤x1 ≤y1 ≤ v1,

0≤ v1 − u1 ≤H v0 − u0( 􏼁.

(14)

Suppose that for n � k, one has (12) and (13). 'en, as
n � k + 1, by (2) and (3), the following is obtained:

uk+1 � F uk, vk( 􏼁≤ xk+1 � F xk, yk( 􏼁≤G yk, xk( 􏼁 � yk+1

≤G vk, uk( 􏼁 � vk+1,

θ≤ vk+1 − uk+1 � G vk, uk( 􏼁 − F uk, vk( 􏼁≤H vk − uk( 􏼁

≤H
k+1

vk − uk( 􏼁.

(15)

'en, it is known that

uk ≤ uk+1 ≤xk+1 ≤yk+1 ≤ xk+1 ≤ vk,

θ≤ vk+1 − uk+1 ≤H
k+1

vk − uk( 􏼁.
(16)

'en, for any natural number n, (12) and (13) are ob-
tained by mathematical induction.

Next, it is proved that xn􏼈 􏼉 is Cauchy sequences. From
condition (H4), it is known that

L + T1 + T2( 􏼁 I + T1 − T2( 􏼁
− 1

� I + T1 − T2( 􏼁
− 1

L + T1 + T2( 􏼁,

(17)

then by ([14], V 3.9), r(H)≤ [r(L) + r(T1)+ r(T2)]

r[{(I+{T_{{1}}}�{T_{{2}}})^{{�1}}}]:
'us, for any δ: (r(L) + r(T1) + r(T2))/(inf |λ|: λ ∈{

σ(I + T1 − t2)})< δ < 1, the following is obtained:
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lim H
n

����
����
1/n

� r(H)≤ r(L) + r T1( 􏼁 + r T2( 􏼁􏼂 􏼃r

· I + T1 − T2( 􏼁
− 1

􏽨 􏽩

�
r(L) + r T1( 􏼁 + r T2( 􏼁􏼂 􏼃

inf |λ|: λ ∈ σ I + T1 − t2( 􏼁􏼈 􏼉
< δ < 1.

(18)

'en, there exists a natural number n0 which satisfies

H
n

����
����≤ δn

, ∀n≥ n0. (19)

And, by (12) and (13), it is obtained that

θ≤ un ≤ un+p ≤ xn+p ≤yn+p ≤ vn+p ≤ vn,

θ≤ un ≤xn ≤yn ≤ vn, n, p � 1, 2, . . . .
(20)

So, by (13), it is known that

θ≤ xn+p − un ≤ vn − un ≤H
n

v0 − u0( 􏼁,

θ≤ xn − un ≤H
n

v0 − u0( 􏼁.
(21)

'en, by the normality of P and (19), it is known that

xn+p − un

�����

�����≤Np H
n

v0 − u0( 􏼁
����

����≤Npδ
n

v0 − u0
����

����, (22)

xn − un

����
����≤Np H

n
v0 − u0( 􏼁

����
����≤Npδ

n
v0 − u0

����
����,

n≥ n0, p � 1, 2, . . . .
(23)

'us, the following is obtained:

xn+p − xn

�����

�����≤ xn+p − un

�����

����� + xn − un

����
����≤ 2Npδ

n
v0 − u0

����
����,

n≥ n0, p � 1, 2, . . . ,

(24)

i.e., xn􏼈 􏼉 is Cauchy sequences. So, there exists u∗ ∈ D (D is
bounded), such that limn⟶∞xn � u∗.

And, by θ≤yn − xn ≤ vn − un ≤Hn(v0 − u0), the nor-
mality of P, and (19), one obtains

yn − xn

����
����≤Npδ

n
v0 − u0

����
����, (25)

therefore

lim
n⟶∞

yn � u
∗

� lim
n⟶∞

xn, xn ≤ u
∗ ≤yn, n � 1, 2, . . . .

(26)

'us, ‖xn − un‖≤Npδ
n‖v0 − u0‖, ‖vn − xn‖≤Npδ

n

‖v0 − u0‖, and

lim
n⟶∞

un � u
∗

� lim
n⟶∞

vn, (27)

un ≤ u
∗ ≤ vn, n � 1, 2, . . . , (28)

so by (2), (3), and (11), it is also obtained that

un � F un− 1, vn− 1( 􏼁≤F u
∗
, u
∗

( 􏼁≤G u
∗
, u
∗

( 􏼁≤G vn− 1, un− 1( 􏼁 � vn.

(29)

Letting n⟶∞ and by (27), F(u∗, u∗) �

G(u∗, u∗) � u∗.
'en, by the definition of F andG, one obtains

u∗ � A(u∗, u∗), u∗ � B(u∗, u∗), i.e., (u∗, u∗) is a solution of
equation (2).

Lastly, it is proven that the solution is unique. Supposing
that (u, u) ∈ D × D also satisfies equation (2), then by (11)
and mathematical induction, the following is obtained:

un ≤ u≤ vn, (n � 1, 2, . . .). (30)

'us, u � u∗.
And, letting p⟶∞ in (24), as n≥ n0, the following is

obtained:

xn − u
∗����
����≤ 2Npδ

n
v0 − u0

����
����. (31)

Similarly, as n≥ n0, the following is obtained:

yn − u
∗����
����≤ 2Npδ

n
v0 − u0

����
����. (32)

'e proof is complete.

Remark 1. In 'eorem 1, it is only supposed that operators
A andB satisfy the partial condition, and the unique solution
and interactive sequences which converge a unique solution
are obtained.

3. The Application of Nonlinear
Integral Equations

In this section, the following nonlinear integral equations are
considered:

u(t) � f1(t, u(t), v(t)) + 􏽚
t

0
g1(s, u(s), v(s))ds,

v(t) � f2(t, v(t), u(t)) + 􏽚
t

0
g2(s, u(s), u(s))ds,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(33)

where fi ∈ [I × R+ × R+, R+] (here, the continuity of fi is
not assumed) and gi ∈ C[I × R+ × R+,R+], i � 1, 2,
I � [0, +∞), and E is a real Banach space with norm ‖ · ‖.

In this section, the iterative solution of a nonlinear in-
tegral equation (33) is discussed. For convenience, the
following assumptions are made:

(L1) For the nonnegative bounded continuous function
a(t), b(t), and nonnegative integrable c(t), d(t), one
has

f2(t, u, θ)≤ a(t)u + b(t),

g2(t, u, θ)≤ c(t)u + d(t).
(34)

(L2) 'ere exists a constant M> 0, for any
u, v ∈ E, u≤ v, which satisfies

fi(t, v, u) − fi(t, u, v)≥ − M(v − u),

gi(t, v, u) − gi(t, u, v)≥ 0, (i � 1, 2).
(35)

(L3) For any u, v ∈ E, u≤ v, the following is satisfied:
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− M(v − u)≤f2(t, v, u) − f1(t, u, v)≤ c(t)(v − u),

0≤g2(t, v, u) − g1(t, u, v)≤ a(t)(v − u).
(36)

(L4) maxt∈Ia(t)< 1.

In this section, the following main theorem is obtained.

Theorem 2. Let P be a normal cone in E. Suppose conditions
(L1) − (L4) hold. +en, there exists a unique solution of
equation (2) (u∗, u∗) ∈ (E × E), and there are iterative se-
quences converging to the unique solution, and corresponding
error estimates are given.

Proof. Let E � C[I, R]. 'en, Pc � x ∈ C[I, R] | x(t)≥ 0,{

∀t ∈ I} is a cone.'us, by the normal of P, Pc is also normal.
'e following operator is considered:

A � F1 + G1,

B � F2 + G2,
(37)

where for any u, v ∈ Pc, t ∈ I,

F1(u, v) � f1(t, u(t), v(t)),

G1(u, v) � 􏽚
t

0
g1(s, u(s), v(s))ds,

F2(v, u) � f2(t, u(t), u(t)),

G1(v, u) � 􏽚
t

0
g2(s, v(s), u(s))ds.

(38)

'en, A, B: Pc × Pc⟶ E. It is easy to know that
(u∗, u∗) ∈ Pc × Pc is a solution of (33) if and only if (u∗, u∗)

is a solution of the following integral equations:
u � A(u, v),

v � B(v, u).
􏼨 (39)

Next, from conditions (L1) − (L4), it is obtained that
the operators A andB satisfy the whole condition of
'eorem 1.

In fact, ∀u1, u2, v1, v2 ∈ Pc, u1 ≤ u2, v1 ≤ v2:

(i) Let

Lu � a(t)u + 􏽚
t

0
c(s)u(s)ds,

h � b(t) + 􏽚
t

0
d(s)ds, t ∈ I,

L1u � a(t)u,

L2u � 􏽚
t

0
c(s)u(s)ds.

(40)

'en, L1L2 � L2L1 and r(L1) � maxt∈Ia(t), r(L2) � 0.
'us,

r(L) � r L1 + L2( 􏼁≤ r L1( 􏼁 + r L2( 􏼁 � max
t∈I

a(t)< 1.

(41)

'erefore, for the equation (I − L)u � h, there exists a
unique solution v0 � (I − L)− 1h � 􏽐

∞
n�0 Lnh ∈ P. 'en,

by (L1), for any t ∈ I, the following is obtained:

B v0, θ( 􏼁 � F2 v0, θ( 􏼁 + G2 v0, θ( 􏼁 � f2 t, v0(t), θ( 􏼁

+ 􏽚
t

0
g2 s, v0(s), θ( 􏼁ds

≤ a(t)v0 + 􏽚
t

0
c(s)v0(s)ds + b(t)

+ 􏽚
t

0
d(s)ds � Lv0 + h � v0.

(42)

Obviously, θ≤f1(t, θ, v0(t)) + 􏽒
t

0 g1(s, θ, v0(s))d �

A(θ, v0).
(ii) By (L2), the following is obtained:
B v2, u1( 􏼁 − B v1, u2( 􏼁

� f2 t, v2(t), u1(t)( − f2 t, v1(t), u2(t)( 􏼁

+ 􏽚
t

0
g2 s, v2(s), u1(s)( 􏼁 − g2 s, v1(s), u2(s)( 􏼁􏼂 􏼃ds

≥f2 t, v2(t), u1(t)( − f2 t, v1(t), u2(t)( 􏼁≥ − M v2 − v1( 􏼁.

(43)

Similarly, A(v2, u1) − A(v1, u2)≥ − M(v2 − v1).
(iii) From (L3) and (L4), the following is obtained:

B(v, u) − A(u, v)

� f2(t, v(t), u(t)) − f1(t, v(t), u(t)) + 􏽚
t

0
g2 (s, v(s), u(s)) − g1(s, v(s), u(s))( 􏼁􏼂 􏼃ds

≥ − M(v − u) + 􏽚
t

0
g2(s, v(s), u(s)) − g1(s, v(s), u(s))􏼂 􏼃ds≥ − M(v − u),

B(v, u) − A(u, v)

� f2(t, v(t), u(t)) − f1(t, v(t), u(t)) + 􏽚
t

0
g2(s, v(s), u(s)) − g1(s, v(s), u(s))􏼂 􏼃ds

≤ a(t)(v − u) + 􏽚
t

0
c(s)(v − u)ds � L(v − u).

(44)
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'en, by (41), it is known that

− M(v − u)≤B(v, u) − A(u, v)≤L(v − u), r(L)< 1.

(45)

'erefore, from (i), (ii), and (iii), letting
T1 � M1I, T2 � 0 in 'eorem 1, it is easy to know that
the condition (H4) holds.
Finally, for any initial value x0, y0 ∈ [θ, v0], x0 ≤y0, by
constructing the iterative sequences

xn(t) � f1 t, xn− 1(t), yn− 1(t)( 􏼁 + 􏽚
t

0
g1 s, xn− 1(s), yn− 1(s)( 􏼁ds,

yn(t) � f2 t, yn− 1(u), xn− 1(t)( 􏼁 + 􏽚
t

0
g2 s, yn− 1(s), xn− 1(s)( 􏼁ds,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(46)

one has ‖xn − u∗‖⟶ 0, ‖yn − u∗‖⟶ 0(n⟶∞),
and for any α ∈ (0, 1), there exists a natural number n0
which satisfies as n≥ n0, the following is obtained:

xn − u∗
����

����≤ 2Npαn v0 − u0
����

����,

yn − u∗
����

����≤ 2Npαn v0 − u0
����

����.

⎧⎪⎨

⎪⎩
(47)

'is completes the proof of 'eorem 2.

4. The Application of Nonlinear
Differential Equations

In this section, the following nonlinear initial value problems
of the differential equation are considered:

u′(t) � f1(t, u, v) + 􏽚
T

0
g1(s, u, v)ds, u(0) � u0,

v′(t) � f2(t, u, v) + 􏽚
T

0
g2(s, u, v)ds, v(0) � v0,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(48)

where fi, gi ∈ C[I × R+ × R+,R+], i � 1, 2, I � [0, T], and E

is a real Banach space with norm ‖·‖.
For convenience, the following assumptions are made:

(C1) 'ere exists the nonnegative bounded integrable
functions a(t), b(t), c(t), d(t) which satisfy

f2(t, u, θ)≤ a(t)u + b(t),

g2(t, u, θ)≤ c(t)u + d(t).
(49)

(C2) 'ere exists constant M> 0, for any u, v ∈ E, u≤ v,
which satisfies

fi(t, v, u) − fi(t, u, v)≥ − M(v − u),

gi(t, v, u) − gi(t, u, v)≥ 0, (i � 1, 2).
(50)

(C3) For any u, v ∈ E, u≤ v, the following is satisfied:

− M(v − u)≤f2(t, v, u) − f1(t, u, v)≤ c(t)(v − u),

0≤g2(t, v, u) − g1(t, u, v)≤ a(t)(v − u).

(51)

(C4) 􏽒
T

0 a(t)(v − u)dr 􏽒
t

0 K(r, s)ds< eMt,∀t ∈ I.

'en, the following theorem is obtained.

Theorem 3. Let P be a normal cone in E. Suppose that
conditions (C1) − (C4) hold. +en, there exists a unique
solution of equation (48) (u∗, u∗), and there are iterative
sequences converging to the unique solution, and corre-
sponding error estimates are given.

Proof. Firstly, differential equation (48) is turned into in-
tegral equations. For any fixed η ∈ C1[J, E], the following
one-order linear ordinary differential initial value problems
in Banach spaces are investigated:

u′ � f1(t, η, η) − M(u − η) + 􏽚
T

0
K(t, s)g1(s, η, η)ds, u(0) � u0,

u′ � f2(t, η, η) − M(u − η) + 􏽚
T

0
K(t, s)g2(s, η, η)ds, u(0) � u0.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(52)
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It is easy to know that (u, u) ∈ C1[I, E] × C1[I, E] is a
solution of (52) if and only if (u, u) is a solution of the
following integral equations:

u(t) � e
− Mt

u0 + 􏽚
T

0
g1(r, η(r), η(r))dr 􏽚

t

0
K(s, r)ds􏼢 􏼣

+ e
− Mt

􏽚
t

0
e

Ms
f1(s, η(s), η(s)) + Mη(s)􏼂 􏼃ds,

u(t) � e
− Mt

u0 + 􏽚
T

0
g2(r, η(r), η(r))dr 􏽚

t

0
K(s, r)ds􏼢 􏼣

+ e
− Mt

􏽚
t

0
e

Ms
f2(s, η(s), η(s)) + Mη(s)􏼂 􏼃ds.

(53)

Next, the operator A, B: C1[I, E] × C1[I, E]⟶
C1[I, E] is defined as the following:

A(η, η) � e
− Mt

u0 + 􏽚
T

0
g1(r, η(r), η(r))dr 􏽚

t

0
K(s, r)ds􏼢 􏼣

+ e
− Mt

􏽚
t

0
e

Ms
f1(s, η(s), η(s)) + Mη(s)􏼂 􏼃ds,

B(η, η) � e
− Mt

u0 + 􏽚
T

0
g2(r, η(r), η(r))dr 􏽚

t

0
K(s, r)ds􏼢 􏼣

+ e
− Mt

􏽚
t

0
e

Ms
f2(s, η(s), η(s)) + Mη(s)􏽨 􏽩ds.

(54)

Obviously, (η, η) is a solution of (48) if and only if

η � A(η, η),

η � B(η, η).
􏼨 (55)

Next, similar to the proof of 'eorem 2, it is tested
whether the operators A andB satisfy the whole condition of
'eorem 1 from conditions (C1) − (C4). 'erefore, the
result of 'eorem 3 is obtained from 'eorem 1.
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