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Arrhythmia is a cardiovascular disease that seriously affects human health. (e identification and diagnosis of arrhythmia is an
effective means of preventing most heart diseases. In this paper, a BiLSTM-Treg algorithm that integrates rhythm information is
proposed to realize the automatic classification of arrhythmia. Firstly, the discrete wavelet transform is used to denoise the ECG
signal, based on which we performed heartbeat segmentation and preserved the timing relationship between heartbeats. (en,
different heartbeat segment lengths and the BiLSTM network model are used to conduct multiple experiments to select the
optimal heartbeat segment length. Finally, the tree regularization method is used to optimize the BiLSTM network model to
improve classification accuracy. And the interpretability of the neural network model is analyzed by analyzing the simulated
decision tree generated in the tree regularization method. (is method divides the heartbeat into five categories (nonectopic (N),
supraventricular ectopic (S), ventricular ectopic (V), fused heartbeats (F), and unknown heartbeats (Q)) and is validated on the
MIT-BIH arrhythmia database.(e results show that the overall classification accuracy of the algorithm is 99.32%. Compared with
other methods of classifying heartbeat, the BiLSTM-Treg network model algorithm proposed in this paper not only improves the
classification accuracy and obtains higher sensitivity and positive predictive value but also has higher interpretability.

1. Introduction

With the improvement of people’s living standards, the in-
cidence and mortality of cardiovascular diseases are in-
creasing year by year and are accompanied by a younger trend
[1]. Arrhythmia is a common cardiovascular disease, which
may endanger people’s lives in serious cases [2].(erefore, the
accurate detection of arrhythmia to prevent heart disease has
a very important significance. Electrocardiogram (ECG), as a
comprehensive expression of cardiac electrical activity on the
body surface, contains a wealth of physiological and patho-
logical information reflecting cardiac rhythm and electrical
conduction and is one of the important bases for diagnosis of
heart disease and evaluation of cardiac function [3]. Different
types of arrhythmias can be identified and diagnosed by

analyzing the ECG waveform. Traditional ECG waveform
analysis is performed manually by medical personnel, who
need to give a diagnosis based on cardiovascular disease
diagnosis rules and personal experience. Due to the individual
differences of patients and the complexity of diseases, there
are many types of ECG. In addition, some arrhythmias occur
only occasionally in the daily life of the patients, and the ECG
data need to be recorded for a long time. (erefore, the
amount of collected ECG data is huge, which brings a heavy
burden to doctors. Under the circumstances, mistakes, missed
inspections, or misdetections easily occur. With the rapid
development of computer technology and electronic infor-
mation technology, the computer has become an indis-
pensable and important tool of medical modernization, and
computer-aided medical treatment has penetrated into every
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corner of medical service [4]. In recent years, increasing
attention has been paid to the study of computer-aided
analysis algorithms for electrocardiography, particularly those
that can accurately and rapidly identify and diagnose ar-
rhythmias. (e automatic classification and diagnosis algo-
rithm of ECG signals can save doctors’ time by helping them
better judge the symptoms of arrhythmia quickly. In addition,
it can provide good healthcare in areas where medical re-
sources are scarce.

(is paper presents a beat classificationmethod based on
the time-series network, which integrates the interheartbeat
rhythm information. (is method is based on tree regula-
rization constraints and the BiLSTM neural network model.
(is method improves the accuracy of heartbeat classifi-
cation. And the interpretability of the proposed algorithm is
analyzed by tree regularization constraints and feature
analysis. (e main contributions of this work are as follows:

(1) A time-series BiLSTM-Treg algorithm was designed
to classify the beats, which combined the informa-
tion of the beats so that the deep neural network
could learn more rhythm information between
heartbeats.

(2) A tree regularization method for the heartbeat
classification model is proposed to optimize the
BiLSTM-Treg algorithm and improve the general-
ization ability of the neural network model.

(3) By analyzing the key nodes of the simulated decision
tree in tree regularization, the concerns in the
learning process of the BiLSTM-Treg algorithm are
analyzed, and the interpretability of the model is
analyzed to a certain extent.

(4) Compared with other deep learning methods, the
proposed BiLSTM-Treg algorithm improves the
accuracy of heartbeat classification and reduces
doctor’s misdiagnosis rate to a certain extent

2. Related Work

(e diagnosis of early arrhythmia is mainly the doctor’s
manual analysis of ECG waveform, which requires the
doctor to have a professional medical theoretical basis and
rich clinical experience. Because of the diversity of ar-
rhythmia and the complexity of the ECG waveform, this
method cannot meet the needs of patients. With the de-
velopment of artificial intelligence, the classification of ar-
rhythmia using intelligent processing technology has
become a hot topic in recent years.

In the 1950s, the automatic analysis technology of ECG
signals has appeared in the field of ECG research. At first,
only ECG filtering processing technology developed rela-
tively mature. Later, with the continuous development of
technology, automatic detection and diagnosis of arrhyth-
mia disease also began to be continuously explored by re-
searchers. In the past decades, domestic and foreign ECG
researchers have proposed a variety of heartbeat classifica-
tion methods. (ese methods can be divided into two
categories from the perspective of whether manual feature

extraction of ECG signals is needed: feature engineering-
based classification methods and deep learning-based
methods [5]. Traditional rule-based and machine-learning-
based heartbeat classification methods both require manual
feature extraction.

2.1. Heartbeat Classification Method Based on Feature
Engineering. Feature engineering is to process a series of
original data and extract the features as the input of the
model to improve the performance of the model. Feature
engineering mainly includes three aspects: feature selection,
feature extraction, and feature construction. Feature ex-
traction is the key step of ECG signal classification and
recognition, and the extracted feature quality will affect the
accuracy of ECG signal classification and recognition [6].
Generally, the features of ECG signals extracted by re-
searchers mainly include morphological features [7], in-
terphase features [8, 9], wavelet transform features [10],
higher-order statistics (HOS) [9, 11], Hermite basis function
(HBF) [12], QRS amplitude vector [13], and QRS composite
wave area [14]. (en machine-learning algorithms are used
for classification, such as the KNN algorithm [15], support
vector machine (SVM) [7], and random forest [9]. Zhu et al.
[7] extracted the ECG morphological features and used the
SVM algorithm to classify the heartbeat, achieving a high
classification accuracy. Yang et al. [9] extracted a variety of
features, including RR interval, wavelet coefficient, and high-
order statistics, and then used the random forest classifier
based on an extreme learning machine to detect arrhyth-
mias. Ji et al. [15] proposed a multifeature combination and
stacked DWKNN algorithm to classify arrhythmias. (e
effects of different characteristic combinations on the
classification of the heartbeat were analyzed.

Although this method based on feature engineering can
also achieve relatively high classification accuracy, because of
the complex waveform and poor anti-interference ability of
ECG signal, the features extracted by hand often produce the
human error. And the features of the manual design are very
dependent on the prior knowledge of the researcher. Deep
learning has the advantage of automatically extracting fea-
tures and classification, which well solves a series of prob-
lems caused by manual feature extraction.

2.2. Heartbeat ClassificationMethod Based onDeep Learning.
(e deep learning model has become a common model for
ECG data classification [16]. Compared with the feature
engineering-based ECG classification method, the deep
learning method, which uses original data rather than
manually extracted features as input, can achieve better
classification performance. In the deep learning method,
researchers use the nonlinear transformation of hidden
layers in the network to automatically obtain effective fea-
tures and transform the original features into different new
feature spaces by changing the structure of hidden layers in
the network and the way of stacking [17], so as to make full
use of the rich hidden information in the data and improve
the classification accuracy.
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Recently, some researchers [18, 19] have used a deep
neural network model for automatic classification of ECG
signals. Ji et al. [20] proposed an ECG classification system
based on Faster R-CNN. One-dimensional ECG signal is
converted into two-dimensional image as the input of neural
network to realize the classification of arrhythmias. Akarya
et al. [21] proposed a 9-layer deep convolutional neural
network (CNN) for automatic recognition of ECG signals.
(e original ECG signal and the ECG signal filtered out the
high-frequency noise were used to classify the heartbeat, and
the accuracy rates were 94.03% and 93.47%, respectively.
Khan et al. [22] used the long short-term memory network
(LSTM) to automatically identify 16 different types of ar-
rhythmias. Wu et al. [23] proposed a heartbeat classification
algorithm that integrated CNN and BiLSTM deep learning
models and extracted the morphological and temporal
features of heartbeat, respectively, by using CNN and
BiLSTM. Li et al. [24] proposed a BiLSTM-Attention Net-
work model to distinguish different types of arrhythmias.
Pandey et al. [25] applied the extracted features of wavelet,
RR interval, morphology, and high-order statistics to
BiLSTM to achieve the automatic classification of the
heartbeat. Yildirim et al. [26] proposed a heartbeat classi-
fication model based on wavelet transform and BiLSTM
network, which used wavelet to decompose ECG signals into
signals of different frequency scales and used the signals as
the input sequence of the BiLSTM model.

(e classification method of ECG signals based on deep
learning realizes the “end-to-end” learning mode, eliminates
the manual design process of features, saves manpower, and
makes the process of ECG classification simpler and more
efficient. Although all the above studies cleverly used the
deep neural network to classify ECG signals, the rhythm
information between heartbeats has not been fully consid-
ered, the interpretability of the network has not been ana-
lyzed, and the classification accuracy needs to be improved.

3. Method

(e heartbeat classification method of the BiLSTM-Treg
algorithm that integrates rhythm information between
heartbeats proposed in this paper mainly includes the fol-
lowing steps: firstly, the data are preprocessed to filter out the
noise in the ECG signal and segment ECG signal into
heartbeats. Secondly, the continuous single heartbeat is
combined into heartbeat segments so that the rhythm in-
formation between the heartbeats can be retained. (en, the
BiLSTM-Treg model was constructed and optimized. Fi-
nally, the heartbeats were classified. Section 3.1 is the pre-
processing part, Section 3.2 is the representation of the
rhythm information part, and Section 3.3 is the model
building and optimization part.

3.1. ECG Signal Preprocessing. (e preprocessing stage is
mainly denoising and segmentation of ECG signals. Generally
speaking, the collected ECG signals inevitably contain noise
due to the influence of equipment and human body itself [27],
which mainly includes baseline drift, power frequency

interference, and EMG interference. It is important to remove
as much noise as possible from ECG signals before classifying
them. Wavelet transform is a generalization of short-time
Fourier transform (STFT) [28], which can perform time-
frequency analysis of ECG signals well. Compared with the
equally spaced time-frequency localization of STFT, wavelet
transform can provide higher frequency resolution at low
frequency and higher time resolution at high frequency. In
this paper, discrete wavelet transform is used to denoise ECG
signals, which can avoid losing important physiological details
in ECG signals and better retain the characteristics of ECG
signals. Because of the high regularity of the Daubechies
wavelet, the reconstructed signal is relatively smooth. And the
strength spectrum of the DB6 wavelet [29, 30] is focused on
low frequencies. Its moderate filter length and moderate
coefficient values, compared with the other wavelets, provide
more smoothing and less shift in the ECGfiducials.(erefore,
in order to obtain a good classification accuracy, this paper
uses the DB6 wavelet in the Daubechies wavelet base to
process ECG signals. In terms of implementation, we use
python’s open-source wavelet transform tool pywt. (e
discrete wavelet transform formula [31] is shown in (1) and
(2).

WΨ(j, k) � 
x

f(x)Ψj,k(x), (1)

Ψj,k(x) � a
−J/2
0 Ψ a

−j
0 x − kb0 , (2)

where WΨ(j, k) is the wavelet coefficient, Ψj,k(x) is the
discrete wavelet function at different scales and locations,
f(x) is the input ECG signal, Ψ(k) is the wavelet basis
function, and j is the order of the scale. (e larger j is, the
smaller the scale is, which means the higher the frequency is
and the closer it is to the details. k is the offset of position. a0
is the scale parameter and b0 is the position parameter.
Signal comparison before and after pretreatment with dis-
crete wavelet transform is shown in Figure 1 and Figure 2.

Heartbeat segmentation is to divide an ECG record with
a complete heartbeat as a unit [32]. A complete heartbeat
should contain P wave, QRS compound wave, and T wave
[33], as shown in Figure3(a). In this paper, the peak value of
the R wave marked in the MIT-BIH database was used as the
reference point for heartbeat segmentation, and 0.25s and
0.4s were extracted before and after the peak of R, as shown
in Figure 3(b). We take this 0.65S data as a sample of a single
heartbeat. For MIT-BIH ECG data with a sampling rate of
360HZ, we extracted 90 points before R peak and 144 points
after R peak. (erefore, the reconstructed sample is 235
points.

3.2. Rhythm Information between Heartbeats. (e rhythm
information between heartbeats contained in the ECG is an
important basis for doctors to diagnose heart diseases.
Changes in ECG rhythm can reflect problems in different
parts of the heart, which can help medical staff design more
rational treatment plans. Common rhythm types are bi-
geminy, trigeminy, ventricular tachycardia, and atrial
tachycardia.
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Bigeminy. Every normal heartbeat is followed by a premature
beat. And the occurrence of three or more groups in a row is
called bigeminy. According to the type of premature beat, it
can be divided into ventricular bigeminy and atrial bi-
geminy. For example, the rhythm change of
N–V–N–V–N–V is ventricular bigeminy, and the rhythm
change of N–S–N–S–N–S is atrial bigeminy.

Trigeminy. A premature beat occurs after every two normal
heartbeats. And the occurrence of three ormore groups in a row
is called trigeminy. According to the type of premature beat, it
can be divided into ventricular trigeminy and atrial trigeminy.
For example, the rhythm change of N–N–V–N–N–V–N–N–V
is ventricular trigeminy, and the rhythm change of
N–N–S–N–N–S–N–N–S is atrial trigeminy. (e ECG signal
with ventricular trigeminy is shown in Figure 4.

Ventricular Tachycardia. (ree or more consecutive ven-
tricular premature beats are called ventricular tachycardia,
such as the rhythm change V–V–V.

Atrial Tachycardia. (ree or more consecutive atrial pre-
mature beats are called atrial tachycardia, such as the rhythm
change S–S–S.

In addition, the appearance of certain types of heartbeats
also reflects changes in ECG rhythm. For example, after a
continuous ventricular tachycardia, a ventricular fusion
heartbeat is often generated due to electrical signals from the
sinus node, followed by ventricular capture. (erefore,
ventricular fusion heartbeat and ventricular capture are
important characteristics of ventricular tachycardia.

In this paper, this rhythmic information, which is
beneficial to the classification of heartbeats, was integrated
into the model. Specifically, in processing the dataset, suc-
cessive single beats were grouped into segments, which
preserved information about rhythm between beats. (en,
the ECG data is input into the neural network model in the
unit of heartbeat segment, which enables the model to make
full use of the rhythm information contained in the heartbeat
segment when identifying the heartbeat type and improves
the classification accuracy. (e length of the heartbeat
segment is one of the key points of our study.

3.3. BiLSTM-Treg Algorithm. Recurrent neural network
(RNN) is a kind of neural network with short-term memory
ability, which is very effective in processing data with se-
quence characteristics. However, in deep neural networks,
the gradient is unstable. (e gradient close to the input layer
is calculated based on the product of the gradients of the
subsequent layers [34]. When the neural network has too
many hidden layers or the input sequence of the RNN
network is too long, it will cause the gradient near the input
layer to vanish or blow up, which affects the performance of
RNN to some extent. In order to solve this problem,
Hochreiter et al. [35] proposed the long short-term memory
network (LSTM) in 1997. By adding gating units into RNN,
the network can choose whether to retain the historical
information so as to solve the problem of gradient

disappearance and gradient explosion caused by long-term
dependence of the RNN network.

3.3.1. BiLSTM Neural Network Structure. Compared with
RNN, LSTM adds three gating units, which are input gate,
forgetting gate, and output gate. In addition, there are two
important parts of LSTM, namely, memory unit, and hidden
state. (e forgetting gate controls whether the information
in the memory unit is discarded, the input gate controls
whether the information of the current signal and hidden
state is added to the memory unit, and the output gate
determines the information output in the memory unit.
Figure 5 shows the unit structure of the LSTM, where ft, it,
and ot, respectively, represent the forgetting gate at the
current moment, the input gate, and the output gate; Ct−1
and Ct, respectively, represent the state value of the memory
unit at the previous moment and the current moment; ht−1
and ht, respectively, represent the hidden state at the pre-
vious moment and the current moment. xt represents the
input at the current moment, and Ct is the candidate value of
the memory unit at the current moment. σ and tanh rep-
resent the sigmoid activation function and tanh activation
function, respectively.

(e calculation process of LSTM can be expressed as
equations (3–8):

it � sigmoi d Wixt + Uiht−1 + bi( , (3)

ft � sigmoi d Wfxt + Ufht−1 + bf , (4)

ot � sigmoi d Woxt + Uoht−1 + bo( , (5)

Ct � tanh Wcxt + Ucht−1 + bc( , (6)

Ct � ft ⊗Ct−1 + it ⊗ Ct, (7)

yt � ht � ot ⊗ tanh Ct( . (8)

Formulas (3)–(6), respectively, represent the calculation
formulas for the input gate it, forget gate ft, output gate ot,
and candidate value Ct of the memory unit. (ey are all
determined by the input data xt at the current moment, the
hidden state ht−1 at the previous moment, and their cor-
responding weight matrix, where Wi, Wf, Wo, and Wc are
the weight matrix of the current input xt; Ui, Uf, Uo, and Uc

represent the weight matrix of the hidden state ht−1 at the last
moment; bi, bf, bo, and bc are the corresponding bias items,
respectively. (ese weight matrices and bias terms are
trained by the way of gradient descent. Formula (7) indicates
that the current moment memory unit Ct is adjusted by the
current candidate unit Ct and its own state Ct−1 as well as the
input gate and the forgetting gate. Finally, formula (8) in-
dicates that the output at the current moment, that is, the
hidden state at the current moment, is determined by the
current memory unit Ct and the output gate.

One disadvantage of LSTM is that it cannot encode
information upfront and can only use its past context, not its
future context. In the classification of heartbeat, if the
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relevant information of the former and the latter can be
obtained at the same time during the classification of the
current heartbeat, the rhythm information of the heartbeat
will be grasped more accurately, thus improving the clas-
sification accuracy of the current heartbeat. And BiLSTM
solves this problem well [36]. In each BiLSTM layer, there
are two independent LSTM to process sequences in two
directions, respectively. (e specific formula is shown in
(9)–(11). At the time t, the hidden layer state Ht of BiLSTM
obtains the heartbeat information ht

→
before the time t

through the forward LSTM and the heartbeat information

ht

⟵
after the time t through the backward LSTM and then

carries out the weighted sum of ht

→
and ht

⟵
, where Wt

��→
and

Wt

←
are the corresponding weight matrices and bt is the bias

term.

ht

→
� LSTM xt, ht−1

���→
 , (9)

ht

⟵
� LSTM xt, ht−1

⟵
 , (10)

Ht � Wt

��→
ht

→
+ Wt

⟵
ht

⟵
+ bt.

(11)

3.3.2. BiLSTM Network Based on Tree Regularization. In
machine learning, there are many strategies designed to
reduce model generalization errors, which are collectively
referred to as regularization. (e form of regularization is

very simple, which is to add an additional term after the
objective function to affect the selection of the optimal point
of the objective function. (e common regularization
methods are L1 regularization and L2 regularization. (e
common regularization methods are L1 regularization and
L2 regularization. (e objective function is shown in
equation (12), where λΨ(W) is a regular term.

min
W



N

n�1
loss yn, yn xn, W( (  + λΨ(W). (12)

Tree regularization is a new regularization method
proposed by Wu et al. [37], which can not only effectively
improve the generalization ability of the model but also
analyze the interpretability of the model. (e tree regula-
rization method of deep network model interpretability is a
postinterpretable method, that is, the method of applying
model analysis after model training to make the model
interpretable. (is method looks for the decision tree rep-
resentation of the deep network model and realizes the
human understanding of the prediction results of the net-
work model by improving the human simulability of the
network model. (e implementation method of tree regu-
larization includes the following two stages. First, we train
deep neural network while being closely modeled by deci-
sion trees. In this way, this decision tree can accurately
simulate the prediction process of the network. Secondly, the
complexity metric of the decision tree, the average path
length (APL), is taken as the penalty term for model
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optimization. In this way, the neural network can be en-
couraged to generate simple decision trees and restricted to
generate complex decision trees, which further makes the
generated decision trees easier to be simulated by human
beings. (e decision tree generation formula can be
expressed by (13) and (14), where xn is the sample feature of
the training set, yn(xn, W) is the prediction label of the
depth model, W is the weight matrix of the depth model, and
ytn is the prediction label of the decision tree. (e reason
why yn is used as the input of the decision tree is to make ytn

and yn as similar as possible so as to realize the purpose of
using the decision tree to simulate the deep network.

Tree � Traintree xn, yn xn, W(  ( , (13)

ytn � Tree.pre di ct xn( . (14)

(e calculation formula of tree regularization is shown
in (15), where Path Length(tree, xn) is the path length of the
n sample and Ω(W) is the average path length, namely, the
penalty term.

Ω(W) �
1
N


n

Path Length tree, xn( . (15)

It can be seen from equation (15) that is not differentiable
for network parameter W. (erefore, in order to use the
gradient descent strategy in the network optimization
process, Wu et al. [37] proposed the surrogate regularization
function Ω(W), which can surrogate the previous APL
calculation method, as shown in equations (16) and (17). By
training a Multilayer Perceptron (MLP), the mapping re-
lationship between the parameter vector W of the neural
network model and APL is established. With W and APL as
inputs to MLP, the objective function of MLP is shown in
equation (17), where ξ represents the weight matrix of the
MLP model, ε represents the regularization intensity,
Wj,Ω(Wj)  represents the known parameter vectors and
their corresponding real APL datasets, and J represents the
total number of datasets. (erefore, after using the surrogate
model, the objective function of the BiLSTM network is
shown in equation (18).

Ω(W) ≈
1
N


n

Path Length tree, xn( , (16)

min
ξ



J

j�1
Ω Wj  − Ω Wj, ξ  

2
+ ε‖ξ‖

2
2, (17)

min
W



N

n�1
loss yn, yn xn, W( (  + λ Ω(W). (18)

In this paper, tree regularization is used in the BiLSTM
model to optimize themodel, reduce the generalization error
of the model, and improve the classification accuracy. At the
same time, the generated simulated decision tree is used to
analyze and understand how the BiLSTM model carries out
heartbeat classification. (e BiLSTM model using tree
regularization is shown in Figure 6. Specifically,
xt � [xt1, xt2, . . . , xt235, ] is used to represent a single

heartbeat sample. (e heartbeat segment composed of
consecutive single heartbeats is used as the input of the
network, and the number of single heartbeats in the
heartbeat segment t is the timestep of the network. (e
model first uses BiLSTM to classify heartbeat. Secondly, the
decision tree is used to simulate BiLSTM, and APL is cal-
culated. (en, the MLP model is trained to get the surrogate
regularization function Ω(W), and then Ω(W) is added to
the objective function of the BiLSTM model for the next
round of training. Algoithm 1 describes the BiLSTM-Treg
model algorithm.

4. Experiment

(e processing and analysis of ECG signal is very important
to the classification of the heartbeat. (e research focus of
this paper is on the construction and optimization of the
model integrating rhythm information. According to the
ANSI/AAMI EC57:2012 classification proposed by the As-
sociation for the Advancement of Medical Instruments
(AAMI), arrhythmia can be divided into five categories: N
(normal or bundle branch block), S (supraventricular ec-
topic beat), V (ventricular ectopic beat), F (fusion beat), and
Q (beat not specified). On the basis of extracting continuous
heartbeat segments, this experiment constructs a time-series
network that integrates rhythm information between
heartbeats and divides heartbeats into the above five types.

4.1. Experimental Environment. (e model proposed in this
paper is trained and tested on a PC workstation with
Xeon(R)Silver-4114CPU, 32GB memory, and Gefor-
ce2080Ti graphics card.(e PCworkstation runs on Ubuntu
18.04 system. And the algorithm is run under the Tensor-
Flow-GPU V2.2.0 framework.

4.2. Experimental Data. A unified and authoritative stan-
dard database is the basis of the automatic analysis of ECG
signals. In the research field of ECG signals, the MIT-BIH
arrhythmia database is the most widely used database by
researchers [38]. (e database contains 48 records, each of
which is about 30minutes long, with about 650,000 sam-
pling points and a sampling frequency of 360Hz. Fifteen
categories were labeled in the MIT-BIH arrhythmia data-
base. Table 1 is the corresponding table of the two heartbeat
classification methods.

In this paper, we classified 109,454 heartbeats from the
MIT-BIH arrhythmia database, including 90,595 N-type
heartbeats; 2,781 heartbeats in the S category; 7,235 V-type
heartbeats. (e number of heartbeats in category F was only
802 and in Q was 8041. In this paper, 90% of the heartbeat
data were randomly selected from the dataset as the training
set and the remaining 10% as the test set. And the specific
distribution of data is shown in Table 2.

4.3. Evaluation Metrics. In order to calculate the perfor-
mance of the model for heartbeat classification, the classi-
fication results were divided into four categories: TP, FP, TN,
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and FN. Take N-type as an example; formulas (19)–(22),
respectively, represent the calculation methods of type N
true positive heartbeat (TPN), type N false-positive heartbeat

(FPN), type N true negative heartbeat (TNN), and type N
false-negative heartbeat (FNN). Table 3 shows the confusion
matrix of the classification results.
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y1 y2 yt

x1 x2 xt
Heartbeat

segment
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Fully connected
layer

Classification

Tree = TrainTree ({xn, yn (xn,W)})
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N
min

n=1
loss (yn, yn (xn,W))+λΩ (W)

Ω (W)≈1/N PathLength (Tree,xn)n

Figure 6: (e BiLSTM model based on tree regularization.

Input: dataset D � (x1, y1), (x2, y2), . . . , (xn, yn) 

Output: classification results and model parameters
Process:
(1) Build the BiLSTM-Treg model
(2) While training,
(3) Train the network according to formula (18)
(4) Get the forecast results yn  for the current round
(5) Use xn, yn  to train the decision tree
(6) Calculate the average path length of the decision tree
(7) Train MLP model to obtain Ω(W)

(8) Update the Ω(W) formula (18)
(9) If training loss stop decreasing, then
(10) Store the model and break
(11) End
(12) End

ALGORITHM 1: (e description of the BiLSTM-Treg model algorithm. BiLSTM-Treg model algorithm.

Table 1: Correspondence between MIT-BIH arrhythmia database annotations and AAMI heartbeat types.

AAMI heartbeat
category MIT-BIH heartbeat types

N Normal beat (N); left bundle branch block beat (L); right bundle branch block beat (R); nodal (junctional) escape
beat (j); atrial escape beat (e)

S Aberrated atrial premature beat (a); nodal (junctional) premature beat (J); atrial premature beat (A); premature or
ectopic supraventricular beat (S)

V Premature ventricular contraction (V); ventricular escape beat (E)
F Fusion of ventricular and normal beat (F)
Q Paced beat (/); unclassifiable beat (Q); fusion of paced and normal beat (f )
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TPN � Nn, (19)

FPN � Sn + Vn + Fn + Qn, (20)

TNN � Ss + Sv + Sf + Sq + Vs + Vv + Vf

+ Vq + Fs + Fv + Ff + Fq + Qs

+ Qv + Qf + Qq,

(21)

FNN � Ns + Nv + Nf + Nq. (22)

In this paper, sensitivity, specificity, positive predictive
value, and accuracy are used as indicators of classifier
performance. Sensitivity (Se), also known as recall rate, is the
proportion of positive samples that are correctly judged to be
positive. (e higher the sensitivity, the greater the pro-
portion of samples correctly predicted. Specificity (Sp) is the
proportion of correctly judged negative samples to actually
negative samples. (e positive predictive value (+p) refers to
the proportion of correctly judged positive samples to all the
judged positive samples. Accuracy (Acc) is the ratio of the
sum of true positives and true negatives to the total number
of samples, reflecting the consistency between test results
and actual results. (e calculation formula of the above four
evaluation metrics is shown in (23–26).

Se �
TP

(TP + FN)
, (23)

Sp �
TN

(TN + FP)
, (24)

+p �
TP

(TP + FP)
, (25)

Acc �
(TP + TN)

(TP + TN + FP + FN)
. (26)

5. Results and Analysis

In order to build a time-series network model that is most
suitable for the task of heartbeat classification and more
accurately distinguish the categories of arrhythmias, we
conducted the following five groups of experiments. In this
section, we first compare and analyze the performance of
RNN, GRU, and LSTM in heartbeat classification (Section
5.1). Secondly, the network is changed to bidirectional, and

the classification results of BiRNN, BiGRU, and BiLSTM are
compared (Section 5.2). (irdly, by comparing the effects of
different heartbeat lengths on the classification performance
of the BiLSTM model, the optimal heartbeat length was
selected (Section 5.3). (en, tree regularization was used to
optimize the BiLSTM model. By adding tree regularization,
the generalization ability of BiLSTM is improved, and the
classification accuracy is improved, compared with the
traditional L1 and L2 regularization (Section 5.4). (en, the
important features of the simulated decision tree are ana-
lyzed and verified by experiments (Section 5.5). Finally, the
results are compared with other references (Section 5.6).

5.1. Analysis of Experimental Results of Different Time-Series
Networks. In order to select the optimal time-series network
model, Experiment 1 selected three network models,
namely, RNN, GRU, and LSTM, for heartbeat classification.
(e experimental results show that the overall classification
accuracy of the RNN model and GRU model is 98.98% and
98.97%, respectively. (e overall classification accuracy of
the LSTM model is 99.09%, which is better than that of the
RNN model and GRU model. However, it cannot fully
consider the rhythm information by using the one-way
recurrent neural network for heartbeat classification. Table 4
shows the classification results and performance of three
one-way recurrent neural networks.

5.2. Analysis of Experimental Results of Different Bidirectional
Time-Series Networks. (e one-way recurrent neural net-
work can only learn the heartbeat information before the
current moment when performing heartbeat classification.
(erefore, we improve the selected LSTMnetwork to BiLSTM
so that the network can consider both the previous heartbeat
information and the future heartbeat information. And the
BiRNN and BiGRU networks are used for comparison and
verification. (e experimental results show that the overall
classification accuracy of the BiRNN model and BiGRU
model is 99.13% and 98.92%, respectively. (e overall clas-
sification accuracy of the BiLSTM model is 99.18%, which is
better than that of the BiRNN model and BiGRU model.
Table 5 shows the classification results and performance of the
three bidirectional recurrent neural networks.

5.3. Select theOptimal Length ofHeartbeat Segment. In order
to select the optimal length of the heartbeat segment, a total
of 7 experiments were conducted. (e length of heartbeat
segments selected by us is 1, 5, 10, 15, 20, 25, and 30,

Table 2: Experimental data statistics.

Training set Testing set Total
N 81,551 9,044 90,595
S 2,501 280 2,781
V 6,519 716 7,235
F 723 79 802
Q 7,242 799 8041
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respectively, and the corresponding timestep of the BiLSTM
is also 1, 5, 10, 15, 20, 25, and 30, respectively. (e exper-
imental results show that the classification accuracy of the
network is gradually improved when the length of the
heartbeat segment is less than 15. However, when the length
of the heartbeat is greater than 15, the classification per-
formance of the network decreases rapidly. (e main reason
is that the rhythm information of heartbeat, such as bi-
geminy, trigeminy, atrial tachycardia, and ventricular
tachycardia, can be shown within 15 beats. When the
heartbeat segment is too long, the heartbeat information
considered by the network is too redundant, which will affect
the network performance. Table 6 shows the classification
results of the BiLSTM network with different lengths of
heartbeat segments.

5.4. Analyze the Experimental Results of Different Regulari-
zation Methods. In order to improve the generalization
ability of BiLSTM and further improve the classification
accuracy, we choose tree regularization to constrain the
weight of the network and use the traditional L1 and L2
regularization for comparison. Experimental results verify
the feasibility and effectiveness of the proposed model, and
the overall classification accuracy is 99.32%. (e overall
classification accuracy of the models using L1 regularization
and L2 regularization was 99.26% and 99.23%. Compared
with Experiment 2, the overall accuracy of Experiment 4 was
improved by 0.14%, and the precision of class S, class V, and
class F was all improved, among which the precision of class
F was improved more obviously by 5.62%. (rough the
above analysis, it is concluded that tree regularization can
effectively improve the classification accuracy of the net-
work, which is better than the traditional L1 and L2 regu-
larization. Table 7 shows the classification results of BiLSTM
models under different regularization methods. Figure 7

shows the confusion matrix of heartbeat classification re-
sults based on the BiLSTM-Treg model.

5.5. Analyze the Key Nodes of the Simulated Decision Tree.
(e tree regularization method used in this paper looks for
the decision tree representation of the model in the training
process of the network. (e generated decision tree simu-
lates the decision process of the BiLSTM network model. We
call this decision tree a simulated decision tree (SDT). Since
there are many feature points in a single heartbeat, the
generated SDT is too large, so we selected the tree generated
by the top 10 important feature points of SDT when dis-
playing this decision tree, as shown in Figure 8. (e top 10
important feature points are 126, 112, 162, 121, 153, 80, 224,
93, 100, and 120. (e positions of these feature points
corresponding to the ECG waveform are as follows: sam-
pling points 126, 120, 121, and 153 correspond to ST seg-
ment, sampling point 112 to J point, sampling point 224
corresponds to the endpoint of T wave, sampling point 162
corresponds to the beginning point of T wave, sampling
point 80 corresponds to the peak value of Q wave, sampling
point 93 corresponds to the peak value of R wave, and
sampling point 100 corresponds to the peak value of S wave,
as shown in Figure 9.

In Figure 8, we have modified the representation of the
value field in the decision tree node. We represent the value
in the value field as the percentage of the number of
heartbeats of N, S, V, F, and Q in the total number of
heartbeats of the corresponding category. Taking node 2 as
an example, 0.08 in the value field represents that the
number of class S heartbeats in this node accounts for 0.08%
of the total number of class S heartbeats, which means that
this node almost contains no class S heartbeats. (erefore,
according to this simulated decision tree, we have the fol-
lowing analysis:

Table 4: Comparison of the classification results of RNN, GRU, and LSTM network models.

RNN GRU LSTM
Se (%) Sp (%) +p (%) Acc (%) Se (%) Sp (%) +p (%) Acc (%) Se (%) Sp (%) +p (%) Acc (%)

N 99.61 97.10 99.35 99.15 99.45 97.80 99.51 99.15 99.69 97.40 99.42 99.27
S 90.40 99.80 92.86 99.54 92.72 99.77 92.11 99.58 92.05 99.90 96.19 99.68
V 97.66 99.80 97.26 99.66 97.94 99.76 96.61 99.63 96.98 99.77 96.84 99.59
F 71.26 99.94 91.18 99.72 71.26 99.91 86.11 99.68 75.86 99.91 86.84 99.72
Q 99.43 99.94 99.32 99.90 99.77 99.90 98.88 99.89 99.55 99.97 99.66 99.94

Table 3: Classification results of heartbeat statistics.

Reference labels
Predicted labels

n s v f q
N Nn Ns Nv Nf Nq
S Sn Ss Sv Sf Sq
V Vn Vs Vv Vf Vq
F Fn Fs Fv Ff Fq
Q Qn Qs Qv Qf Qq
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(1) Sampling point 126 is the root node of the simulated
decision tree. According to whether the voltage value
at this point is less than −0.0692mV, the sample can
be divided into two parts, namely, node 2 and node 3.
In node 2, the heartbeat of classes F and Q is rela-
tively large, while the heartbeat of the other three
categories is relatively small. (erefore, 28.95% of

class F heartbeats and 46.22% of class Q heartbeats
were separated from the total sample according to
the sampling point 126. Analysis of the reason:
sampling point 126 is the point of ST segment in the
ECG waveform. ST segment refers to the segment
between the end of the QRS complex and the be-
ginning of the T wave, representing the period

Table 5: Comparison of the classification results of BiRNN, BiGRU, and BiLSTM network models.

BiRNN BiGRU BiLSTM
Se (%) Sp (%) +p (%) Acc (%) Se (%) Sp (%) +p (%) Acc (%) Se (%) Sp (%) +p (%) Acc (%)

N 99.65 97.65 99.47 99.29 99.62 97.05 99.34 99.15 99.64 98.15 99.59 99.37
S 90.40 99.81 93.17 99.55 89.07 99.82 93.40 99.52 92.72 99.83 93.96 99.63
V 98.21 99.83 97.68 99.73 97.12 99.80 97.25 99.63 98.63 99.76 96.64 99.68
F 74.71 99.93 89.04 99.73 67.82 99.90 84.29 99.64 70.11 99.93 88.41 99.69
Q 100.00 99.97 99.66 99.97 99.77 99.91 98.99 99.90 100.00 99.98 99.77 99.98

Table 6: Effects of heartbeat segments of different lengths on the classification results of BiLSTM model.

Time step 1 5 10 15 20 25 30
Overall accuracy (%) 99.04 99.02 99.12 99.18 98.55 82.52 84.53

N (9044) 0.9978
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1.0000 0.9998

0.9996

0.9977 0.9998

0.9974

0.99750.97690.9983

0.9991 0.9658 0.9973

0.99440.99540.9795

Classification report

0.7241 0.9403

S (280)

V (716)

Cl
as

se
s

F (79)

Q (799)

Se Sp +p
Metrics

Acc

0.75

0.80

0.85

0.90

0.95

1.00

Figure 7: Confusion matrix of heartbeat classification results based on the BiLSTM-Treg model.
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Figure 8: (e simulated decision tree.
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between ventricular depolarization and ventricular
repolarization [39]. (e normal ST segment is
smooth and flush with the baseline.

(2) It is shown by nodes 11 and 12 that node 2 dis-
tinguishes the F heartbeats from the Q heartbeats
according to the value of sampling point 224.(ere is
only 0.38% of class Q heartbeat in node 11 and 0% of
class S heartbeat in node 12. Analysis of the reason:
sampling point 224 is the endpoint of T wave in the
ECG waveform. T wave is a wave with a larger
amplitude and longer duration after the QRS com-
plex, which shows the process of ventricular
repolarization.

(3) It can be shown from node 5 that node 3 separates
25.1% of class V heartbeats and 25.53% of class Q
heartbeats from node 3 according to the value of
sampling point 112, and it is shown by node 14 and
node 15 that node 5 distinguishes the heartbeats of
class S from class Q according to the value of
sampling point 153. Analysis of the reason: sampling
point 112 is the J point in the ECG waveform, and J
point is the junction point between the end of the
QRS complex and the beginning of the ST segment.

(4) As indicated by node 13, node 4 separates 26.00% of
class V heartbeats from node 4 according to the value
of sampling point 162. As indicated by node 16, node
6 separates 14.85% of class V heartbeats and 12.59%
of class F heartbeats from node 6 according to the
value of sampling point 80. Sampling point 162 and
sampling point 80 are Twave start points andQwave
peak values, respectively.

(5) It is shown by node 8 that 11.88% of N, 34.33% of S,
13.11% of V, 3.22% of F, and 19.53% of Q heartbeats
are separated from the sample of node 7 according to
the value of sampling point 93. After passing through
nodes 9 and 10, 6.81% of class V is sorted out at node
18, 15.78% of class Q is sorted out at node 19, and
21.62% of class S heartbeat is sorted out at node 20.
(e reason is analyzed as follows: sampling point 93
and sampling point 100 are, respectively, Rwave and S
wave in ECG waveform, which together with Q wave
corresponding to sampling point 80 constitute QRS
complex. (e QRS complex is a group of wave groups
with complex changes and large amplitude, showing
the process of ventricular depolarization [40].

To verify that the BiLSTM-Treg algorithm focuses on
and learns from these medically significant feature points, in
Experiment 5, we only used these 10 important feature
points as the features of a single heartbeat and used the
BiLSTM-Treg algorithm to classify the heartbeat. (e ex-
perimental results are shown in Table 8, and the overall
classification accuracy is 98.45%. Compared with Experi-
ment 4, Experiment 5 showed no significant decrease in all
other metrics except the sensitivity of class S. (e experi-
mental results validate the importance of these medically
significant feature points in the model.

5.6. Comparison with Previous Studies. Table 9 compares the
classification performance of this method and other literature
methods. (e experimental data of other pieces of literature
also comes from the MIT-BIH arrhythmia database. It can be
seen from Table 9 that the method proposed in this paper has
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Figure 9: (e key feature points of the decision tree correspond to the positions in the ECG waveform.
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Table 7: Classification results of BiLSTM models based on different regularization methods.

BiLSTM+ L1 BiLSTM+ L2 BiLSTM+Treg
Se (%) Sp (%) +p (%) Acc (%) Se (%) Sp (%) +p (%) Acc (%) Se (%) Sp (%) +p (%) Acc (%)

N 99.73 98.00 99.55 99.41 99.73 97.80 99.51 99.38 99.78 97.95 99.54 99.44
S 91.72 99.90 96.18 99.67 91.72 99.89 95.85 99.66 93.38 99.91 96.58 99.73
V 98.63 99.81 97.42 99.73 98.49 99.78 97.02 99.70 98.63 99.83 97.69 99.75
F 74.71 99.92 87.84 99.72 72.41 99.96 94.03 99.74 72.41 99.96 94.03 99.74
Q 100.00 99.98 99.77 99.98 100.00 99.98 99.77 99.98 100.00 99.98 99.77 99.98

Table 8: Classification results based on key feature points and BiLSTM-Treg algorithm.

Se (%) Sp (%) +p (%) Acc (%)
N 99.28 95.45 98.98 98.58
S 77.81 99.61 85.14 99.01
V 97.94 99.74 96.35 99.62
F 73.56 99.93 88.89 99.72
Q 99.89 99.97 99.66 99.96

Table 9: Comparison with other studies.

Reference Classifier Performance (%)

Feature engineering

Yang et al., 2021 [9] Random forest
Acc� 98.1
Se� 75.2
+p� 93.9

Ji et al., 2021 [15] Stacking-DWKNN

Acc� 99.01
Sen � 99.65; Spn � 94.94; +Pn � 99.38
Ses � 89.42; Sps � 99.85; +Ps � 94.90
Sev � 97.21; Spv � 99.78; +Pv � 97.07
Sef � 80.77; Spf � 99.94; +Pf � 88.73

Zhu et al., 2018 [7] SVM

Acc� 97.80
Sen � 99.27; +Pn � 98.48
Ses � 87.47; +Ps � 95.25
Sev � 94.71; +Pv � 95.22
Sef � 73.88; +Pf � 86.09

Deep learning

Pandey et al., 2017 [21] 9-layer CNN

Acc� 94.03
Sen � 91.54; Spn � 96.71; +Pn � 87.43
Ses � 90.59; Sps � 98.63; +Ps � 94.30
Sev � 94.22; Spv � 98.84; +Pv � 95.30
Sef � 96.06; Spf � 98.67; +Pf � 94.76
Seq � 97.75; Spq � 99.69; +Pq � 98.73

Ji et al., 2019 [20] 1D-CNN

Acc� 99.21
Sen � 98.27; Spn � 99.39
Sev � 97.54; Spv � 99.44
Sef � 98.07; Spf � 99.50

Wu et al., 2020 [23] CNN-BiLSTM

Acc� 97.29
Sen � 98.57; Spn � 93.62; +Pn � 98.81
Ses � 84.97; Sps � 99.13; +Ps � 82.80
Sev � 94.90; Spv � 99.35; +Pv � 94.00
Sef � 76.89; Spf � 99.77; +Pf � 80.45

Pandey et al., 2021 [25] BiLSTM

Acc� 98.58
Sen � 99.54; +Pn � 99.44
Ses � 92.00; +Ps � 91.02
Sev � 95.81; +Pv � 96.80
Sef � 80.55; +Pf � 85.22

Proposed BiLSTM-Treg

Acc� 99.32
Sen � 99.78; Spn � 97.95; +Pn � 99.54
Ses � 93.38; Sps � 99.91; +Ps � 96.58
Sev � 98.63; Spv � 99.83; +Pv � 97.69
Sef � 72.41; Spf � 99.96; +Pf � 94.03

Seq � 100.00; Spq � 99.98; +Pq � 99.77
Bold values represent the best experimental results which correspond to the evaluation criteria for one certain type.
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the best classification accuracy, with an overall classification
accuracy of 99.32%. (e classification methods in literature
[23, 25] all use the BiLSTM model. (e results show that the
proposed method has obvious advantages in all metrics except
for the low sensitivity of class F, and the classification accuracy
is 2.03% and 0.74% higher than the two methods, respectively.
From the perspective of heartbeat type, the sensitivity of class S
is significantly improved by themethod presented in this paper
compared with other methods. Compared with the literature
[21], the method presented in this paper makes all metrics ofQ
heartbeat better, especially the sensitivity of Q heartbeat in-
creased by 2.25%. In this paper, a classification method is
proposed to integrate the rhythmic information between
heartbeats that doctors are concerned about into the time-series
network so that the network can learn this information ef-
fectively. Moreover, the bidirectional time-series network
model can more conveniently obtain the context information
of the heartbeat segment, so the algorithm in this paper can
have better classification performance in the heartbeat classi-
fication problem.

6. Conclusion

In this paper, an intelligent classification of heartbeat based on
the BiLSTM-Treg algorithm is proposed, which integrates
rhythm information between heartbeats. (is method fully
considers the information of heart rhythm, which doctors pay
attention to when diagnosing heart disease, and realizes the
automatic classification of heartbeats. In this paper, the in-
fluence of different lengths of heartbeat segments on the
classification results of the model is analyzed to select the best
heartbeat segment length. On this basis, the BiLSTM-Treg
algorithm was used for heartbeat classification. Experiments
were carried out on theMIT-BIH arrhythmia database, and the
results showed that the method can effectively distinguish five
types of heartbeats, N, S, V, F, and Q, and the overall classi-
fication accuracy rate is 99.32%.(e significance of this study is
to provide patients with more accurate medical care services.
(e highlight of this study are as follows:

(1) (e heartbeat segment containing rhythm infor-
mation between heartbeats was selected as the
characteristics of the heartbeat sample, and the
BiLSTM-Treg algorithm was used to automatically
learn the potential rhythm information of
individuals

(2) A tree regularization method is proposed to optimize
the BiLSTM-Treg algorithm and improve the ac-
curacy of heartbeat classification

(3) By analyzing the key nodes of the simulated decision
tree, the interpretability of the BiLSTM-Treg algo-
rithm is analyzed

(4) (e experimental results show that the algorithm
proposed in this paper can effectively realize the
classification of arrhythmia

In the future study, we will collect more class F-type
heartbeat data for pretraining of the model so as to obtain
more accurate intelligent ECG diagnosis results.
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)e Brain-Computer Interface (BCI) permits persons with impairments to interact with the real world without using the
neuromuscular pathways. BCIs are based on artificial intelligence piloted systems.)ey collect brain activity patterns linked to the
mental process and transform them into commands for actuators.)e potential application of BCI systems is in the rehabilitation
centres. In this context, a novel method is devised for automated identification of the Motor Imagery (MI) tasks.)e contribution
is an effective hybridization of the Multiscale Principal Component Analysis (MSPCA), Wavelet Packet Decomposition (WPD),
statistical features extraction from subbands, and ensemble learning-based classifiers for categorization of the MI tasks. )e
intended electroencephalogram (EEG) signals are segmented and denoised. )e denoising is achieved with a Daubechies al-
gorithm-based wavelet transform (WT) incorporated in the MSPCA. )e WT with the 5th level of decomposition is used.
Onward, the Wavelet Packet Decomposition (WPD), with the 4th level of decomposition, is used for subbands formation. )e
statistical features are selected from each subband, namely, mean absolute value, average power, standard deviation, skewness, and
kurtosis. Also, ratios of absolute mean values of adjacent subbands are computed and concatenated with other extracted features.
Finally, the ensemble machine learning approach is used for the classification of MI tasks.)e usefulness is evaluated by using the
BCI competition III, MI dataset IVa. Results revealed that the suggested ensemble learning approach yields the highest clas-
sification accuracies of 98.69% and 94.83%, respectively, for the cases of subject-dependent and subject-independent problems.

1. Introduction

A Brain-Computer Interface (BCI) allows individuals to
use electroencephalogram (EEG) signals to operate ex-
ternal equipment such as virtual worlds, robots, or
spelling machines.)e fundamental objective of the BCI is
to use brain signals to create the required commands to
control peripherals. )e most important application is to
bypass injured areas of the body or stimulate partly
paralyzed organs. BCI devices are viewed as the best
solution to mitigate problems for persons with various
neuromuscular impairments such as spinal cord damage,
amyotrophic lateral sclerosis, cerebral palsy, and stroke
[1].

BCI systems may be divided into two categories based
on the EEG signals collection methods: noninvasive and
invasive. Because of the ease of usage, much current re-
search has focused on noninvasive BCIs. Event-related
potentials, steady-state visual-evoked potentials, and slow
cortical potentials are the three main noninvasive BCI
approaches [2]. In noninvasive approach, different EEG
signals can be utilized in BCI. Within the EEG alpha and
beta frequency regions of the brain signals, BCI systems
typically employ Motor Imagery approaches to produce
event-related actions. )is form of BCI is mostly utilized
for cursor control on computer screens and wheelchair
navigation or in virtual environments. Several Motor
Imagery (MI) techniques are commonly used, including
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tongue movement, left/right hand movement, foot
movement, and mental counting [3]. )e goal of BCI
technology is to assist people with brain diseases including
cerebral palsy, amyotrophic lateral sclerosis, and motor
neuron disease. EEG is commonly used as a tool for the BCI
system [4, 5]. Based on phenomena of event-related syn-
chronization (ERS) and event-related desynchronization
(ERD), scientists can interpret and identify MI-related
brain signals. )e translation of imagination to action
involves ERS and ERD. Both ERD and ERS are presented by
variations in the EEG signal’s oscillatory behaviour and can
be investigated by the time-frequency analysis to identify
the MI tasks [6]. MI is characterized as a human brain’s
ability to resynthesize motor experiences with no obvious
movement. Such mental images may both appear con-
sciously and be created and controlled deliberately by a
subject making MI, which is a flexible and usable method
for examining processes of human cognition and motor
activity. As various studies have shown, MI uses almost the
same neural framework as motor execution, which enables
motor activity to be altered by MI training. )e MI-based
BCI uses variations in the cortical sensorimotor rhythms
(SMR), generally ERD related to the different sensorimotor
events, including MI [7]. In addition, BCI may serve as a
technical bridge for the management of Active and Assisted
Living (AAL) systems in the sense of intelligent environ-
ments and smart homes. As with any other traditional AAL
device interface, the consumer needs to view BCI-enabled
control as simple and normal as possible in order to en-
courage BCI acceptance and effectiveness [8].

Computer-based automated MI signal detection is es-
sential for providing continuous assistance to the intended
patients. )e preprocessing, feature extraction, dimension
reduction, and classification are all parts of the EEG-based
automated MI signal detection approaches [9, 10].

Feature extraction and dimension reduction are the most
critical aspects of the classification system for EEG-based MI
signals since they greatly affect classifier efficiency and
computational complexity. If the features retrieved from EEG
signals include irrelevant characteristics, the classifier’s per-
formance will suffer. )e amount of features determines the
classifier’s processing cost. As a result, extracting the ap-
propriate amount of relevant features from EEG-based MI
signals is critical for achieving high classification performance
and computational effectiveness for a classifier [9]. In this
study, the dataset IVa from the BCI competition is utilized in
the experiments [11]. AA, AL, AV, AW, and AY are codes of
five healthy participants that contributed to this dataset. Two
classes of MI activities, right hand and right foot movement,
referred to as class 1 and class 2, respectively, are involved.

1.1. Contribution. )e main objective of this work is to
extract relevant features from the EEG signals and to design
a classifier that can effectively recognize the intended MI
tasks.

)e major contributions are to propose a novel hy-
bridization of the Multiscale Principal Component Analysis
(MSPCA), Wavelet Packet Decomposition (WPD),

subbands statistical features selection, and ensemble
learning technique for automated classification of the MI
tasks. )e functional steps are as follows:

(i) )e Multiscale Principal Component Analysis
(MSPCA) is used for denoising.

(ii) )e Wavelet Packet Decomposition is used for
producing the subbands.

(iii) )e six different statistical features are extracted
from each subband. )ese are mean absolute value,
power, standard deviation, skewness, kurtosis, and
ratio of absolute mean values of adjacent subbands.

(iv) )e extracted features are passed to the proposed
ensemble learning-based classifiers for automated
identification of the MI tasks.

1.2. Organization. )e remainder of the paper is organized
as follows. Section 2 presents a literature review. In Section 3,
materials and methods are introduced, Section 4 discusses
the results, and the conclusion is presented in Section 5.

2. Literature Review

)e loss of motor function is one of the most concerning
effects of injury or disease to the nervous system. )e BCI
assistive technologies have allowed artificial prostheses,
wheelchairs, and computers to be controlled by the electrical
activity of the brain in this decade. )e major challenges in
the BCI systems are precision and processing effectiveness.
)e current systems have high computational complexity
and need advanced and resourceful processing systems to
attain a real-time response. Additionally, their classification
performance and robustness need to be improved. In this
context, several studies have been presented [12, 13].

Zarei et al. [9] used a combination of the Principal
Component Analysis (PCA) and the cross-covariance
(CCOV) method for features extraction from the EEG
signals for the BCI application. )e multilayer perceptron
neural networks (MLP) and Least Square Support Vector
Machine (LS-SVM) are used for classification. )e perfor-
mance of the system is tested by using the BCI competitions
dataset IVa. Kayikcioglu and Aydemir [10] extracted fea-
tures from the EEG signals by using two-dimensional fea-
tures mining from the 2nd order polynomial coefficients.
)en, the functions are categorized using the algorithm
k-nearest neighbor (k-NN). )ey achieved considerable
enhancement in speed and accuracy while evolving the
performance for the dataset Ia from the 2003 BCI compe-
tition. Leamy et al. [12] conducted a comparative experi-
mental research, from a machine learning perspective, for
MI-related EEG features in stroke subjects. )ey try to
explore if such features are generalizable to use trained
machine learning parameters employing healthy subjects
and stroke-affected patients. If BCI is trained with appro-
priate data, it gives relatively good results to stroke patients;
then such a deployment model will make BCI far more
realistic in a clinical setting for stroke recovery. On the other
hand, if the stroke-affected EEG is significantly different

2 Journal of Healthcare Engineering



from healthy EEG or changes over time, it may need more
sophisticated architecture from a machine learning per-
spective for the realistic implementation of BCI in such a
setting.

Li et al. [13] proposed a new approach for MI pattern
identification. It combines a common spatial pattern algo-
rithm for frequency band selection and features selection,
and the classification is carried out with the particle swarm
optimized twin Support Vector Machine. )ey used datasets
IIb of BCI competition IV to test the proposed system. For a
classification task, Kevric and Subasi [14] employed
MSPCA-based denoising of the EEG signals. Comparison
among three features extraction techniques, namely, the
Empirical Mode Decomposition (EMD), Discrete Wavelet
Transform (DWT), and WPD, is conducted. )e extracted
features sets are classified by using the k-Nearest Neighbor
(k-NN) algorithm. )e system performance is tested by
using the publicly available BCI competition III dataset IVa.
Miao et al. [15] have suggested an EEG signals channel
selection method. It uses the linear discriminant criteria for
automated selection of channels with strong discriminative
capabilities. Furthermore, the artificial bee colony algorithm
is used for dimension reduction. )e performance is tested
by using the dataset IVa from the BCI competition III. In
[16], Baali et al. have used a signal-dependent orthogonal
transformation for features extraction. )e classification is
carried out by using a tree-based logistic model classifier. In
[17], Chaudhary et al. used the flexible analytic wavelet
transform (FAWT) for features extraction. )e classification
is carried out with ensemble learning-based subspace
k-Nearest Neighbor (k-NN) classifier. In [18], Rahman et al.
have used the Rényi min-entropy-based features extraction
approach. )e extracted features are used for classifying 4
different BCI categories by using the Random Forest (RF)
algorithm. )e performance of the proposed method is
evaluated by using the BCI competition IV dataset.

Khare and Bajaj [19] employed the extreme learning
machine-based classification of the MI tasks. )e channels
selection is realized by using the multicluster unsupervised
learning approach. )e signal decomposition is performed
by using a flexible variational mode decomposition (F-
VMD). Pertinent features from different modes are ex-
plored, namely, hjorth, entropy, and quartiles. In [20], the
authors have used the flexible analytic wavelet transform
(FAWT) for signal decomposition. Time-frequency attri-
butes are calculated from subbands. )e PCA, kernel PCA
(KPCA), locally linear embedding (LLE), and Laplacian
Eigenmaps (LE) are used for feature selection. )e Linear
Discriminant Analysis (LDA) algorithm is used for the
classification. )e performance is tested by using the BCI
competition III dataset IIIb.

Tiwari et al. [21] proposed a Deep Neural Network
(DNN) model for automated identification of the MI tasks
by utilizing the EEG signals. )e Power Spectral Densities
(PSDs) are extracted as features from subbands by applying a
bank of Butterworth filters.)e performance is tested for the
BCI competition III and V dataset MI tasks. Musallam et al.
[22] utilized a Convolutional Neural Network (CNN) model
that incorporates a number of different methods, including

temporal convolutional networks (TCNs), separable con-
volution, depthwise convolution, and layer fusion. )e
intended EEG signals are processed by two successive 1D
convolution stages. )e first in the time domain and sub-
sequently channelwise and the second based on the image-
like representation are used as an input of the main TCN.
)e performance is tested by using the BCI competition IV,
IIa dataset.

3. Materials and Methods

)e proposed system’s framework is shown in Figure 1. A
description and parameterization of different system
modules are given in the following section.

3.1. Dataset. )e suggested system performance is evaluated
by using the well-known BCI competition III, dataset IVa1
[11]. AA, AL, AV, AW, and AY are codes of five healthy
participants that contributed to this dataset. )ey completed
two classes of MI activities involving right hand and right
foot movement, referred to as class 1 and class 2, respec-
tively. Subjects are seated in comfortable chairs with arm-
rests. )e EEG signals are acquired from 118 electrodes,
mounted by following the 10/20 globally accepted standard.
Each considered subject performed 140 trials of each cat-
egory. Being two considered classes of tasks, it resulted in a
total of 280 trials per subject. Each trial is carried out for a
duration of 3.5 sec. For each category, the data is made up of
different-sized training and testing sets.

)e training set for subjects AA, AL, AV, AW, and AY
has 168, 224, 84, 56, and 28 trials, respectively.)e testing set
consists of 112, 56, 196, 224, and 252 trials for participants
AA, AL, AV, AW, and AY, respectively.

)e EEG signals are originally recorded at a rate of 1 kHz.
)ese EEG signals are bandlimited to 50Hz by using digital
filtering and are onward downsampled to the rate of 100Hz
[11]. )ese downsampled versions of signals are used in this
study. )e EEG signals from only three channels (C3, Cz, and
C4) are selected from a total of 118 available channels. )is is
because these channels contain the most discriminatory fea-
tures onMotor Imagery activities involving the hands and feet.
For each patient, 280 EEG segments of 3.5 seconds, with 3
selected channels, are prepared [11]. )ese are from two
categories: right hand and foot. In total, 1400 EEG instances
were used for the five mentioned subjects. )ey belong to the
two considered classes of the MI tasks.

3.2. Denoising with Multiscale Principal Component Analysis
(MSPCA). Inmultivariate statistical analysis, the PCA is one
of the most important models. Let a measurement dataset
with m sensors exist, such as xϵRm. Each sensor in the
measurement sample contains n separate sampling data,
which are combined into a data matrix of size mxn. )e
process is given by

X � x1, x2, x3, . . . , xn . (1)

Each row of X represents a sample, and each column
represents a measurement variable. )e PCA model begins

Journal of Healthcare Engineering 3



by standardizing each sample of X by computing the co-
variance matrix of X. )e process is given by

cov(x) ≈
X

T
. X

n − 1
. (2)

)e size of the feature values is ordered from large to
small when the feature decomposition of X is done. )e
process of decomposing X in its principal components is
given by equation (3), where PϵRm×A contains first A feature
vectors of cov(x). TϵRn×A is a matrix, where each column is
known as the principal element variable. A is the count of
principal components, and it is equal to the number of
columns in T.

X � X + Er � T.P
T

+ Er,

T � X.P.

⎧⎨

⎩ (3)

Equation (4) can be used to determine the principal
component’s covariance, where λ1, λ2, . . . , λn are the first A

large eigenvalues of the covariance matrix of X.

Λ �
X

T
.X

n − 1
�

λ1 . . . . . . · ·

. . . · λ2 . . . ·

.

.

. . . . . . . . . · λn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

In this paper, the wavelet transform is combined with the
Principal Component Analysis (PCA) to create MSPCA for
the incoming signal denoising purpose. )e principle of
wavelet transform is described in Section 3.3. In this study,
the 5th level of decomposition is realized by using the

Daubechies wavelet analysis algorithm [23]. MATLAB is
used for implementing the wavelet transform [24].

)e ability of standard PCA is enhanced by incorpo-
rating the multiscale analysis. Collectively, it results in the
multiscale PCA (MSPCA) [25]. In MSPCA, the PCA’s ca-
pacity to extract covariance between variables is combined
with orthonormal wavelets’ ability to distinguish deter-
ministic features from stochastic processes and approxi-
mately decorrelate the autocorrelation across observations.
It identifies linearly related wavelet coefficients at multiple
level subbands, obtained with wavelet transform. It allows
representing each considered subband with fewer features
while removing the autocorrelated coefficients. It results in a
simplified representation of the considered subbands at each
level of decomposition. )e EEG waveforms are decom-
posed by using the Daubechies wavelet analysis algorithm
with the 5th level of decomposition. In the next step, the
PCA of detailed coefficients, obtained at each level, is utilized
to select the principal components at each scale. Onward, the
signal is reconstructed by using the wavelet synthesis. It
diminishes the unwanted noise from the incoming signal
and generates a simple and noise-free signal version [25, 26].
MATLAB is used for implementing the MSPCA [24].

3.3. Features Extraction with Wavelet Packet Decomposition
(WPD). Wavelets are well-known functions and widely
used for multiresolution time-frequency analysis. Wavelets
can be mathematically described by equation (5) [23], where
the dilation parameter is represented by s and the translation
parameter is represented by u. )e parameters can be
generated at the same time with different frequencies.

ψ(t) �
1
�
S

√ ψ
(t − u)

s
 . (5)
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Figure 1: )e system block diagram.
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)e process of decomposing a signal x (t), by using
wavelet transform, can be given by

WX(u, s) �
1
�
S

√ 
+∞

−∞
x(t)ψ∗

(t − u)

s
 dt. (6)

A discrete version of the wavelet transform (DWT) is
used in this study. )e selection of the right number of
wavelet decomposition levels, m, is the first key step in the
DWT decomposition. )e incoming signal x[n] passes
concurrently through both the high-pass and low-pass fil-
ters, h[k] and l[k]. For the mth scale level, the output is
represented by two subbands, namely, Detail (Dm) and
Approximation (Am). )e process is clear from equations
(7) and (8), where H is the order of filters used at different
decomposition stages:

Dm[k] 
H

k�1
x[n].h[2.k − n], (7)

Am[k] 
H

k�1
x[n].l[2.k − n]. (8)

)e Wavelet Packet Decomposition is known as the
extension of Discrete Wavelet Transform (DWT).)e DWT
mainly focuses on the low-frequency components, known as
approximate coefficients. However, WPD utilizes both ap-
proximate and detailed coefficients, high-frequency com-
ponents [27]. Consequently, when tactfully used, the WPD
can result in signal decomposition with superior frequency
resolution compared to the DWT [26]. In the studied case,
the denoised signal is further analysed by using four levels of
WPD. Pertinent statistical features are extracted from
multiresolution subbands, obtained with the 4th level of
WPD. MATLAB is used for implementing the WPD [24].
)e principle of employed WPD with the 4th level of de-
composition is shown in Figure 2, where Dm and Am are,
respectively, detailed and approximation coefficients at
different decomposition stages and mϵ 1, 2, 3, 4{ }.

3.4. Dimension Reduction. Since the dimension of the
extracted features with WPD is high, the dimension should
be reduced. )erefore, in this study, the dimension of
extracted features is reduced by using statistical values of the
WPD subbands. Using the statistical values of the subbands,
the pertinent classifiable features are created from 16 sub-
bands, shown in Figure 2. Five features are extracted from
each subband, namely, mean absolute value, average power,
standard deviation, skewness, and kurtosis. It results in 16 ×

5 � 80 features. Additionally, the ratios of absolute mean
values of the adjacent subbands are computed, resulting in
15 more features. In this way, in total, 95 features are
extracted for each EEG instance, resulting in feature set
dimension of 1400 × 95 for all considered instances.

3.5. Classification Methods. )e prepared features set is
categorized by using k-Nearest Neighbor (k-NN), C4.5
Decision Tree, REP Tree, Support Vector Machine (SVM),

Random Tree (RT), and RF, which are all well-known robust
classification algorithms. Weka is used for evaluating the
considered classifiers [28, 29]. To avoid any bias in findings
due to the limited volume of the dataset, the 10-fold cross-
validation (10-CV) approach is used along with multiple
evaluation measures, namely, accuracy, F-measure, and the
area under the ROC curve (AUC). Here, ROC stands for
receiver operating characteristic [29].

3.5.1. Support VectorMachine (SVM). )e SVM searches for
hyperplane in an N-dimensional space in the classification of
the data points. )e SVM can be used for both classification
and regression. )e system functions by focusing on the
decision line. It is a theoretically mature algorithm, only
takes tens of instances for training, and is unaffected by the
number of dimensions. Furthermore, effective approaches
are developed to rapidly train this classifier [30]. In this
study, the SVM is used with the cubic polynomial kernel and
with a regularization parameter of 100.

3.5.2. K-Nearest Neighbor (k-NN). )e k-NN refers to a
supervised learning algorithm used in regression and clas-
sification problems. )e algorithm functions by assuming
that every data falling near each other belongs to the same
class. It means that the algorithm considers that the clas-
sification of information is based on similarities. )e
technique is highly preferred because of its simplicity [30]. In
this study, the k-NN with k � 1 is used. Here, k is the
number of neighbors, used in the decision.

3.5.3. REP Tree. REP Tree creates a decision or regression
tree using information variance reduction and then prunes it
using reduced-error pruning. It optimizes speed by only
sorting values for numeric attributes once. )e minimum
number of instances per leaf, maximum tree depth, mini-
mum fraction of training set variance for a split, and the
number of folds for pruning are adjustable parameters [31].
In this study, the REP Tree is used with its default config-
urations, available in Weka [28, 29].

3.5.4. C4.5 Decision Tree. )e C4.5 can create classifiers that
are redescribed as rulesets. C4.5 starts by growing an initial
tree using the divide-and-conquer method. It labels the
potential test instances by using two heuristic criteria. )e
first is the information gain, which tries to minimize the total
entropy of subsets. )e second is the default gain ratio,
which tries to divide the information gain by the infor-
mation supplied via the test outcomes [30]. In this study, the
C4.5 is used with its default configurations, available in
Weka [28, 29].

3.5.5. Random Tree (RT) Classifiers. )e RT is a supervised
learning algorithm that is easy to use and flexible. )e al-
gorithm produces excellent results despite lacking hyper-
parameter tuning. A combination of decision subtrees is
trained based on the bagging method. )e primary concept
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of the functioning of the Random Tree is that combined
learning models will increase the quality of results gained
[31]. In this study, the RT is used with its default configu-
rations, available in Weka [28, 29].

3.5.6. Random Forests (RF). )eRF refers to a robustmachine
learning algorithm for various tasks such as classification and
regression. )e algorithm works by using bagging and ran-
domness when creating each of the trees. It makes an uncor-
related forest of trees where their prediction is more accurate
than a single tree [32]. In this study, the RF is usedwith 100 trees.

3.5.7. Rotation Forest (RoF). )e RoF is a feature extraction-
based classifier ensemble.Wemake the training data for a basic
classifier by randomly partitioning the feature set into Q

subgroups. PCA is applied to each subgroup, and Q is a pa-
rameter of the method. To retain the data’s variability infor-
mation, all basic components are kept. As a result, rotating the
Q-axis produces additional attributes for a base classifier [33].
All primary components are kept in order to preserve the data’s
variability information. As a result, new features for a base
classifier are formed by rotating theQ-axis [33].)e purpose of
the rotation approach is to enhance individual accuracy while
also providing variation within the group. Each base classifier’s
feature extraction contributes to diversity.

3.5.8. ?e Random Subspace Method (RSM). A well-known
ensemble technique is the RSM [34].)e training data is also
modified in the RSM. )is change, however, is done in the

feature space. )e B-dimensional random subspace of the
original B-dimensional feature space is thus obtained. As a
result, the updated training set has B-dimensional training
objects in it. )en, in the final decision rule, classifiers can be
built in random subspaces and combined using simple
majority voting [35].

3.6. ?e Ensemble Learning Method. )e ensemble learning
methods can improve the performance of classification [26]. In
this framework, the RoF and the RSM classifiers are employed
with single classifiers. Multiple classifiers are used for the
considered classification task. Findings of classifiers with
various accuracies are combined via an ensemble-based ap-
proach [36].)e principle is depicted with the help of Figure 3.

For the case of RoF, by randomly splitting the features set
into Q subgroups, we generate training data for a base
classifier. After that, the PCA is applied to each subgroup. To
maintain the data’s variability information, all principal
components are taken into consideration.)is is how Q-axis
rotations are realized to prepare new features for a base
classifier. )e rotation technique is designed to enhance
individual accuracy while simultaneously fostering variation
within the ensemble. Each base classifier’s diversity is created
by feature extraction. In this scenario, accuracy is measured
by training each base classifier with the entire dataset [33].

For the case of RSM, the B-dimensional random sub-
space of the original features set was produced. As a result,
the training set comprises B-dimensional training objects. In
this approach, we built classifiers in random subspaces and
used simple majority voting to aggregate their results [35].
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Figure 2: )e employed WPD scheme.
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3.7. PerformanceEvaluationMeasures. In order to avoid any
bias in the classification performance evaluation, multiple
evaluation measures, namely, accuracy, F-measure, and
AUC, are utilized [29]. )e accuracy is defined by equation
(9). True positives, true negatives, false positives, and false
negatives are represented as tp, tn, fp, and fn, respectively.
)e F-measure is given by equation (10). )e AUC presents
the classification performance graphically. It is the area
under the curve of the graph, obtained by tracing the True
Positive Rate (TPR) with respect to the False Positive Rate
(FPR). )e TPR and FPR are, respectively, given by equa-
tions (11) and (12).

accuracy(ACC) �
tp + tn

tp + tn + fp + fn
× 100 , (9)

F − measure �
tp

tp + 1/2(fp + fn)
, (10)

TPR �
tp

(tp + fn)
, (11)

FPR �
fp

(fp + tn)
. (12)

4. Results

)e system performance is tested by using the BCI com-
petition III, dataset IVa [11]. An example of the input EEG
signal and its denoised version, obtained with theMSPCA, is
shown in Figure 4.

)e denoised signal is onward decomposed in 16 sub-
bands by using the 4th level of WPD. An example of ob-
tained subbands is shown in Figure 5.

)e overall system performance is studied in terms of
classification precision. Findings are outlined in Table 1.
)ese results are also presented graphically. In Figure 6, the
accuracy scores, obtained with different classifiers, are
shown. Figures 7 and 8, respectively, show the F-Measure
and AUC values, obtained with different classifiers.

It is evident from Table 1 that the ensemble of k-NN and
RoF attains the superior classification performance in most
of the cases, compared to the other studied classifiers. )e
obtained percentages accuracies obtained for subjects AA,
AL, AV, AW, and AY are, respectively, 96.67%, 94.05%,
89.64%, 96.43%, and 90.71%. However, the results are

different for the case of subject AY. For AY, the highest
classification accuracy of 98.69% is attained RSM with RF
and 98.45% is attained by the RSM with C4.5. )e RoF with
C4.5 is the third with an accuracy of 97.14%. RSM with RT is
the fourth one with an accuracy of 97.02%. RSM with k-NN
is the eighth with an accuracy of 92.38%.

While considering the case of each subject, the highest
accuracy of 98.69% is achieved by the RSM with RF.
However, for all five subjects, the highest classification ac-
curacy of 94.83% is achieved by the RoF with k-NN. It shows
that, in general, the used assembly of MSPCA, WPD, and
statistical feature selection using RoF with k-NN results in
the best classification performance for the studied dataset.

5. Discussion

)e results, outlined in the above section, show that, for
most of the cases, the proposed framework of MSPCA,
WPD, statistical features selection, and RoF with k-NN leads
towards a high classification accuracy. However, the best
results obtained for the subject AY are obtained for a
combination of MSPCA, WPD, and statistical feature se-
lection using RSMwith RF. It happens due to the variation in
EEG signals magnitudes and response time of subjects while
executing an MI task. It has an impact on the shape of EEG
signals as well as the performance of the postsegmentation,
denoising, feature extraction, and classification algorithms.
)erefore, various subjects have varying classification ac-
curacy as a result of this.

)e BCI is a well-explored domain, and making a
performance comparison with state of the art is a tedious
task. It is mainly because of the variety of datasets, pre-
processing, features extraction, dimension reduction, and
classification techniques used in the previous studies.
However, a performance comparison of the suggested
framework is made with state-of-the-art solutions using
similar datasets. Table 2 provides a review of those studies. It
indicates that the suggested method ensures a comparable or
superior performance as compared to the previously pre-
sented methods. It indicates that the devised denoising,
dimension reduction, and ensemble classification ap-
proaches have a substantial influence on the overall preci-
sion and performance of the system. )e self-configurability
of ensemble classifiers, as a function of the utilized training
dataset, is one of their main advantages. )e use of event-
driven tools can help in enhancing the computational ef-
fectiveness of the suggested method [45–48]. In the future,

EEG Features Features
level

Classifier 1 Classifier 2 Classifier N……………

Combiner

Learner
level

Combiner
level

Figure 3: )e general framework of ensemble classifiers.
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Table 1: Summary of the classification performance measures.

Subj. Classifier Accuracy F-measure AUC

AA

RSM RoF RSM RoF RSM RoF
SVM 89.64 90.60 0.896 0.906 0.958 0.929
k-NN 93.45 96.67 0.935 0.967 0.988 0.985
RF 82.02 84.76 0.820 0.848 0.900 0.928
C4.5 67.50 74.76 0.675 0.748 0.764 0.834

REP tree 69.88 67.50 0.699 0.675 0.765 0.746
RT 70.83 74.29 0.706 0.742 0.799 0.827

AL

SVM 86.43 84.88 0.864 0.849 0.923 0.879
k-NN 92.26 94.05 0.923 0.940 0.970 0.968
RF 75.00 77.26 0.750 0.773 0.830 0.852
C4.5 71.07 73.69 0.711 0.737 0.786 0.812

REP tree 68.93 68.69 0.689 0.687 0.751 0.756
RT 70.95 70.60 0.708 0.703 0.778 0.786

AV

SVM 87.02 84.40 0.870 0.844 0.928 0.886
k-NN 88.93 89.64 0.889 0.896 0.955 0.939
RF 73.69 76.90 0.737 0.769 0.818 0.857
C4.5 61.90 71.31 0.619 0.713 0.677 0.767

REP tree 62.38 66.19 0.624 0.662 0.671 0.721
RT 65.00 65.95 0.644 0.654 0.691 0.738

AW

SVM 86.90 85.00 0.869 0.850 0.926 0.876
k-NN 94.64 96.43 0.946 0.964 0.983 0.976
RF 77.02 78.81 0.770 0.788 0.844 0.867
C4.5 67.62 71.19 0.676 0.712 0.727 0.788

REP tree 63.45 68.33 0.634 0.683 0.683 0.742
RT 68.69 70.24 0.685 0.700 0.735 0.780

AY

SVM 92.02 91.90 0.920 0.919 0.984 0.942
k-NN 92.38 90.71 0.924 0.907 0.977 0.952
RF 98.69 94.29 0.987 0.943 0.999 0.991
C4.5 98.45 97.14 0.985 0.971 0.999 0.995

REP tree 95.60 93.10 0.956 0.931 0.988 0.980
RT 97.02 93.10 0.970 0.931 0.996 0.985

ALL

SVM 89.98 90.12 0.900 0.901 0.962 0.932
k-NN 93.55 94.83 0.935 0.948 0.984 0.974
RF 80.36 81.83 0.804 0.818 0.889 0.901
C4.5 68.57 73.00 0.686 0.730 0.769 0.815

REP tree 68.60 69.02 0.686 0.690 0.765 0.760
RT 72.57 72.40 0.724 0.722 0.807 0.809
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Figure 6: Accuracy of different classifiers.
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Figure 8: AUC of different classifiers.

Table 2: Comparison with previous studies.

Study Feature extraction Classifier Classes/subject(s) Accuracy (%)
[18] Rényi min-entropy RF 4/subject independent 80.55
[21] Subbands PSDs DNN 2/subject independent 82.48
[37] Tangent space mapping SVM 2/1-subject 97.80

[38] Common spatial pattern Backpropagation
Neural network 2/subject independent 80.73

[39] Regularized common spatial pattern SVM 2/subject independent 91.9
[40] Fisher ratio of time domain parameters SVM 2/subject independent 89.13
[41] Common spatial pattern SVM 2/subject independent 85.01
[42] Stacked autoencoders (SAE) CNN 2/subject independent 82.00
[43] Inverse problem through beamforming CNN 2/subject independent 90.50
[44] Granger causality channel selection and common spatial pattern Linear SVM 2/subject independent 88.46

Proposed WPD RF and RSM 2/subject dependent 98.69
WPD k-NN and RoF 2/subject independent 94.83
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this aspect can be investigated.)e developed system has the
potential to be integrated into the future generation of Brain-
Computer Interface systems. )e solution performed well
for the intended dataset. Future work is to test its appli-
cability for other potential Motor Imagery datasets. )e
incorporation of deep learning tools is another axis to
explore.

6. Conclusion

In this paper, a novel automated Motor Imagery tasks
classification method is proposed. )e EEG signals are
processed to distinguish between two categories of the brain
activities. )is approach is an intelligent combination of
ensemble learning, Wavelet Packet Decomposition, Multi-
scale Principal Component Analysis, and subbands statis-
tical features extraction. Results have shown its effectiveness
in classifying the intended Motor Imagery tasks. Using an
intelligent ensemble of the Random Subspace classifier with
Random Forest, the highest subject-dependent accuracy of
98.69% is realized. )e suggested ensemble of the Rotation
Forest classifier with k-NN achieved the highest subject-
independent accuracy of 94.83%.
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1e objective of this study was to evaluate the interrater and intrarater reliability of electrical impedance myography (EIM) using
handheld sensors of different sizes. Electrical impedancemyography of the biceps brachii muscle of twenty healthy individuals was
performed by two raters using both large and small sensors. 1e procedures were also repeated 5 to 8 days after the first recording
session. 1e repeatability of the resistance, reactance, and phase angle at two different current frequencies (50 and 100 kHz) was
assessed by the intraclass correlation coefficient (ICC). 1e ICCs of the large sensor were higher than those of the small sensor for
both the intrarater and interrater reliabilities. High-frequency current tended to improve the ICC for the small sensor. 1ese
results indicate reasonable repeatability of the handheld electrode arrays for EIM measurements. 1e findings suggest that
electrode array should be selected appropriately according to the size of the tested muscle.

1. Introduction

Electrical impedance myography (EIM) is a noninvasive and
bioimpedance-based technique that assesses muscle health
by applying very low-amplitude (usually a few milliam-
peres), high-frequency current through a localized area of
tissue. It measures the resulting voltage with sensing elec-
trodes on the skin [1]. 1ere are three most commonly used
EIM parameters [2], including resistance (R), reactance (X),
and phase angle (θ), calculated as θ� arctan (X/R). Electrical
impedance myography can be used as a biomarker of
neuromuscular diseases given that pathological changes
(such as muscle atrophy, muscle fiber denervation/rein-
nervation, and the development of increasing intramuscular
fat and connective tissue, etc.) will collectively influence
normal impedance characteristics [3]. It has been reported to

quantify muscle changes in different neuromuscular dis-
eases, such as amyotrophic lateral sclerosis (ALS), spinal
muscular atrophy (SMA), and Duchenne muscular dys-
trophy (DMD) [4–6]. It has also been used to evaluate
paretic muscle changes after neurological injuries [7–9].

Linear EIM involves placement of voltage electrodes
along a line over the region of interest, and electrical current
is injected far from that region. Previous studies adopted the
approach of manually placing the two pairs of electrodes
over the skin surface of the tested muscle and reported
muscle composition alterations with neuromuscular dis-
eases [4, 5]. 1is method represents the early stage of EIM
and has demonstrated good test-retest reproducibility at
50 kHz [10, 11]. A handheld electrode array (HEA) that has
been recently developed provides localized voltage and
current electrodes for measuring EIM and has demonstrated
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very high test-retest reproducibility with multifrequency
analysis [12]. Multifrequency EIM is an extension of the
linear EIM technique that supplies alternating currents with
a range of frequencies rather than just a single frequency.
Multifrequency EIM was reported to be more sensitive than
single-frequency EIM (50 kHz) in tracking disease pro-
gression [13, 14] because multifrequency currents can aid in
the extraction of muscle-specific properties (e.g., anisotropy)
[15] from the frequency-dependent muscle evaluation.

A gap exists in the field of quantitative measurements of
muscle mass, compositional quality, and contractile quality
[16], particularly due to the lack of reliable device that can
be readily and quickly applied in clinical settings. 1e EIM
assessment procedure involves placing the electrodes on
the skin surface. 1e effects of the skin-electrode interface
or the contact sensitivity on bioimpedance outcomes have
been a topic of interest [17–19]. Robust EIM measurements
can only be obtained via an interface that allows for minor
movements without loss of contact; the skin needs to be
moist and conductive. Variations in contact levels between
raters can result in differences in contact areas, which
would reduce the reliability. Geometric factors can also
significantly affect measurement reliability, particularly for
anisotropic tissues such as skeletal muscles. 1is is related
to the relative direction between the current-injecting
electrodes and the underlying muscle fiber orientation. For
example, Shiffman found that the muscle impedance was
affected by the geometry of the electrode arrangements.1e
consequences of this entanglement often depend on fre-
quency, making it difficult to extract the properties of the
tissue if there are variations in electrode directions among
different raters [20]. Particularly, there are different sizes of
sensors for measuring EIM, which can affect the relative
geometry of the electrode arrangement with respect to the
examined muscle. 1e relative effect of skin and subcu-
taneous tissues on EIM parameters is also related to sensor
size [21]. In addition, the distance between the sensor
electrodes can also affect the EIM results.1ere is gap in the
literature in assessing if large or small sensors are suffi-
ciently reliable for clinical application, or if their reliability
may differ when measuring a single muscle group by
different rates at different time. A recent review by Clark
et al. argued that there continues to be a lack of evidence to
support the clinical application of EIM in assessing skeletal
muscle function [22]. 1ese issues must be addressed to
facilitate clinical application of EIM. 1erefore, it is critical
to evaluate the reliability of EIM measurements and to
identify the factors that may affect the EIM outcome via the
assessment of between days intrarater and within-day
interrater reliability using sensors of different sizes of
multifrequency analysis. Motivated by this rationale, the
current study assessed the reliability of the two handheld
electrode array sensor devices. Intraclass correlation co-
efficient analysis was conducted to compare the EIM
outcomes (R, X, and θ) of the two handheld electrode array
sensors, based on the obtained several days apart by the
same and different raters. 1e findings of the study can
contribute to our understanding of the reliability of vivo
EIM measurement.

2. Materials and Methods

2.1. Subjects. Healthy individuals were recruited from the
student and staff population of the host institute via internal
announcement. Included subjects had no reported history of
neuromuscular disease. No upper limb weakness or func-
tional impairment was present before or during the data
collection period.1e study was approved by the Committee
for the Protection of Human Subjects (CPHS) of the Uni-
versity of Texas Health Science Center at Houston and TIRR
Memorial Hermann Hospital (Houston, TX, USA). 1e
Declaration of Helsinki was strictly followed. All of the
subjects were provided with participant information sheet
and encouraged to ask questions about the study. Informed
written consent was obtained from all of the subjects prior to
study enrolment.

2.2. Equipment. Impedance measurements were recorded
from the biceps brachii muscle of the dominant limb by the
HEA system (EIM1103, Skulpt Inc., Boston, MA, USA),
which was used in our previous studies [23, 24] A low-
intensity electrical current at the frequencies ranging from
1 kHz to 10MHz was applied in discrete logarithmic steps.
1e resulting surface voltages were then measured. Two
different-sized sensor arrays (Model 20–00036, Small Sen-
sor, and Model 20–0045, Large Sensor) were used in se-
quence for the repeated measurements. During each
measurement, the sensor array was placed over the center of
the biceps brachii muscle belly in a longitudinal direction
over the muscle fibers. Each sensor contained a pair of
current electrodes and a pair of voltage bar electrodes. For
the large sensor, the distance between the pair of current
electrodes (3.9 cm long; 0.4 cm wide) was 6.8 cm, and the
distance between the pair of voltage bar electrodes (1.3 cm
long; 0.4 cm wide) was 1.7 cm. Figure 1(a) shows the con-
figuration of the large sensor. For the small sensor, the
distance between the pair of current electrodes (2.6 cm long;
0.2 cmwide) was 3.4 cm, and the distance between the pair of
voltage bar electrodes (0.8 cm long; 0.3 cm wide) was 0.8 cm.
Figure 1(b) shows the configuration of the small sensor.
Parameters recorded from the wide longitudinal configu-
ration measured along the longitudinal direction were
analyzed.

2.3. Procedures. 1e subjects sat on a height-adjustable
chair. 1eir dominant arm rested at 90° flexion and the
shoulder at 45° abduction. All data collection took place in
the same laboratory. A constant temperature of approxi-
mately 22°C was maintained in the laboratory during all data
collection sessions. 1e central air condition system also
effectively maintained a stable humidity, although the hu-
midity was not measured. 1e constant temperature and
humidity would ensure similar physical environment for
each test session. Each subject was recruited from office work
status to participate the study. 1ey were asked not to
participate in physical activity on the day before data col-
lection and were given sufficient time to acclimatise to the
testing environment upon arrival at the laboratory.
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1e skin area of the electrode contact was moistened by
sterile saline wipes (Hygea, PDI Inc., Hamilton, NY, USA)
prior to performing impedance measurements. 1e HEA
was then placed on the muscle until the green “Begin Test”
signal was displayed on the computer screen. 1is indicated
good skin contact and ensured the best measurement. 1en,
data recording was started. During the recording, the device
was kept in place until the results were displayed on the
screen.1e software also plotted the resistance and reactance
across the range of frequencies in real time.

Sensors of two different sizes were used in random se-
quence by each rater. 1e position of the two array sensors
were marked on the skin to minimize confounding factor
that was related to site identification betweenmeasurements.
For intrarater reliability testing, the first rater conducted
repeated measurements on two separate occasions with 5 to
8 days apart. Measurements for interrater reliability were
collected on the second visit after the first rater completed
the measurements.

1e assessors received 4 hours of training from a senior
technician on the standard operating procedure of the HEA
system. 1is was followed by two hours of unsupervised
practice.1e associated software was used to visually inspect
the data to ensure consistency over three trials.

2.4. Parameters. 1e parameters of resistance (R), reactance
(X), and phase (θ) recorded from the longitudinal current
electrodes were analyzed. All parameters were obtained at
the frequencies of 50 kHz and 100 kHz. 1ese two fre-
quencies were chosen because they were within the optimal
range to record EIM responses and were themost commonly
used frequencies in previous studies [10, 11].

2.5. Data Analysis and Statistics. Statistics analysis was
performed using SPSS 23 (IBM Corp., Armonk, NY, USA).
1e significance level was set at p< 0.05. Descriptive analysis
was conducted to describe the sample population. 1e ICC
models 2, k and 3, k were adopted to assess the relative inter-
rater and intrarater reliability, respectively. 1e interpreta-
tion of ICC was as follows: ≥0.90� high reliability,
0.80–0.89� good reliability, 0.70–0.79� fair reliability, and
≤0.69� poor reliability [25]. Absolute reliability indices of

standard error of measurements (SEM), smallest real dif-
ference (SRD), and Bland–Altman 95% limits of agreement
were calculated.

3. Results

Twenty healthy participants were recruited (mean age,
32.9 ± 8.2; 12 men and 8 women). A summary of the
between-days and within-day longitudinal biceps EIM
measurements is shown in Tables 1 and 2. 1e ICCs of all
parameters recorded at 50 kHz and 100 kHz range be-
tween 0.90 to 0.98 for the large sensor and between 0.44
and 0.97 for the small sensor. In particular, we note that
the ICC value of 50 kHz reactance using the small sensor
was 0.440, which indicates poor reliability. 1e ICCs of
the large sensor are higher than the small sensor in all
parameters for between-days interrater measurements
and within-day measurements. 1e ICC values recorded
by the small sensor at 100 kHz were consistently higher
than those recorded at 50 kHz in all parameters, except
for reactance, for between-days and within-day mea-
surements. Similar ICC values were observed at the
measurements recorded at 50 kHz and 100 kHz by the
large sensor. 1ese results indicated that the reliability of
the small sensor is prone to be affected by sampling
frequency. Tables 3 and 4 present the results of ICC
analyses of between-days and within-day measurements
recorded by each sensor. Figures 2 and 3 present the ICC
plots of longitudinal bicep measurements recorded by
the large sensor and small sensor taken by two different
raters and by the same rater on different days,
respectively.

1e SEM and SRD recorded by the large sensor were
smaller than those recorded by the small sensor for all
measurements, indicating a higher variation around the
“true” score and that a larger change is required to be
deemed real change. Bland–Altman 95% LOA indicates
larger error range between measurements recorded by the
small sensor than the large sensor. Tables 3 and 4 present the
results of absolute reliability indices for the between-days
and within-day measurements recorded by the two assessors
using both sensors.

6.8 cm

1.7 cm

I IVV

4.2 cm

1.4 cm

Large sensor

(a)

3.4 cm

2.6 cm
I IV V

0.8 cm

0.7 cm

Small sensor

(b)

Figure 1: Configuration of electrodes and dimensions of large (a) and small (b) sensors.
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4. Discussion

1is study aimed to assess the between-day intrarater reli-
ability and within-day interrater reliability of two difference-
sized array sensors to record muscle impedance. 1e results
of the present study indicated that the large sensor was
consistently more reliable than the small sensor under all
tested conditions. 1e high ICCs are consistent with pre-
vious reliability evaluations of localized EIM applications on
healthy tibialis anterior muscles [12], as well as in DMD
[6, 26]. Rutkove et al. reported high test-retest reliability of
linear EIM performed on biceps, quadriceps, and tibialis

anterior muscles (ICC� 0.970, 0.971, and 0.938, respec-
tively), 250 days apart at 50 kHz [10].

One of the possible factors that contributes to the lower
reliability of the small sensor is the effect of subcutaneous fat
over a smaller distance between electrodes. Jafarpoor et al.
applied a finite-element model to mimic human upper arm
muscles and found that the electrode distance dramatically
affected the EIM outputs [27]. All of the tissues beneath the
voltage electrodes can in theory contribute to the impedance
measurement, including subcutaneous fat and bone. 1e
muscle inherent resistivity is lower than both subcutaneous
fat and bones [28]. 1erefore, the electrical current tends to

Table 1: Between-day longitudinal biceps EIM measurements.

Large sensor Small sensor
1st measurement 2nd measurement d 1st measurement 2nd measurement d

50 kHz
Phase 20.93(3.52) 21.38 (3.25) −0.45 12.23 (4.31) 11.75 (3.58) 0.48

Reactance 9.83 (1.08) 10.13 (1.27) −0.31 13.31 (3.10) 12.61 (2.72) 0.70
Resistance 26.59 (6.91) 26.70 (7.16) −0.11 64.54 (16.60) 63.18 (16.40) 1.36

100 kHz
Phase 22.13 (3.54) 22.56 (3.51) −0.43 15.17 (3.82) 14.64 (3.27) 0.53

Reactance 8.46 (1.11) 8.63 (1.31) −0.17 14.97 (3.16) 14.19 (3.08) 0.77
Resistance 21.63 (6.38) 21.56 (6.52) 0.07 57.11(15.54) 56.27 (15.53) 0.85

Note: mean (standard deviation); d: mean difference between first and second measurements.

Table 2: Within-day longitudinal biceps EIM measurements.

Large sensor Small sensor
1st measurement 2nd measurement d 1st measurement 2nd measurement d

50 kHz
Phase 21.54 (3.34) 21.38 (3.25) 0.15 12.11 (4.07) 11.75 (3.58) 0.36

Reactance 9.85 (1.16) 10.13 (1.27) −0.32 12.73 (3.51) 12.61 (2.72) 0.12
Resistance 25.32 (5.37) 26.70 (7.16) −1.38 61.67 (7.16) 63.18 (16.39) −1.38

100 kHz
Phase 22.73 (3.80) 22.56 (3.51) 0.18 14.98 (3.56) 14.64 (3.27) 0.34

Reactance 8.36 (1.01) 8.63 (1.31) −0.27 14.14 (3.11) 14.19 (3.08) −0.05
Resistance 20.49 (5.04) 21.56 (3.52) −1.06 54.59 (14.19) 56.27 (15.53) −1.68

Note: mean (standard deviation); d: mean difference between first and second measurements.

Table 3: Reliability indices for within-day interrater reliability of both sensors.

Within-day interrater Large sensor Small sensor
ICC SEM SRD 95% LOA ICC SEM SRD 95% LOA

50 kHz
Phase 0.97 (0.92–0.99) 0.19 1.22 −6.38–4.17 0.92 (0.81–0.97) 0.59 2.13 −10.44–6.20

Reactance 0.90 (0.73–0.96) 0.21 1.27 −4.62–3.29 0.44 (−0.41–0.78) 2.62 4.49 −15.97–8.96
Resistance 0.99 (0.98–1.00) 0.12 0.96 −7.23–4.59 0.95 (0.88–0.98) 1.53 3.42 −30.09–16.03

100 kHz
Phase 0.98 (0.94–0.99) 0.13 0.99 −5.80–3.88 0.92 (0.81–0.97) 0.51 1.98 −9.41–5.69

Reactance 0.95 (0.88–0.98) 0.11 0.94 −4.00–2.98 0.67 (0.19–0.87) 1.76 3.68 −14.31–8.13
Resistance 0.99 (0.98–1.00) 0.11 0.92 −6.34–4.15 0.97 (0.93–0.99) 0.82 2.51 −22.12–12.04

Table 4: Reliability indices for between-days intrarater reliability of both sensors.

Between-days
intrarater

Large sensor Small sensor
ICC SEM SRD 95% LOA ICC SEM SRD 95% LOA

50 kHz
Phase 0.98 (0.95–0.99) 0.13 0.99 −5.66–3.81 0.84 (0.59–0.94) 1.87 3.79 −13.59–7.78

Reactance 0.90 (0.73–0.96) 0.22 1.30 −4.73–3.35 0.63 (0.02–0.85) 3.30 5.04 −15.28–8.62
Resistance 0.95 (0.85–0.98) 0.54 2.03 −11.73–6.85 0.95 (0.88–0.98) 2.38 4.27 −29.09–15.52

100 kHz
Phase 0.98 (0.96–0.99) 0.13 1.00 −5.85–3.90 0.91 (0.76–0.96) 0.99 2.76 −10.10–6.30

Reactance 0.90 (0.74–0.96) 0.22 1.31 −4.76–3.36 0.84 (0.60–0.94) 1.47 3.36 −11.24–6.60
Resistance 0.96 (0.88–0.98) 0.43 1.81 −10.49–6.22 0.96 (0.89–0.98) 1.98 3.90 −25.98–13.97
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pass through the muscle. However, Sung et al. suggested that
when currents passed through tissues that were underneath
the voltage-measuring electrodes, a considerable proportion
of the currents went through the fat at the points closest to

where the voltage was recorded [29]. A significant corre-
lation was found between the subcutaneous fat layer (SFL)
thickness and the resistance and phase for the medial gas-
trocnemius muscle in healthy subjects. Jafarpoor et al. also
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Figure 2: ICC plots of longitudinal bicep measurements in healthy subjects using large sensors (open triangles) and small sensors (filled
circles) taken by two different (inter-) raters. (a) Plots of 50 kHz data. (b) Plots of 100 kHz data.
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Figure 3: ICC plots of longitudinal bicep measurements in healthy subjects using large sensors (open triangles) and small sensors (filled
circles) taken at baseline and 5–8 days later by the same (intra-) rater. (a) Plots of 50 kHz data. (b) Plots of 100 kHz data.
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reported that the thickness of the SFL of the quadriceps
muscle did contribute to resistance and reactance [27].
1erefore, a shorter electrode distance (small sensor) is more
likely to be affected by the SFL than a larger electrode
distance (large sensor) [20]. In addition, bioimpedance
analysis is influenced not only by the degree of fat mass but
also by the electrode-skin interface [19]. 1e electrode area
and distance effects have been evaluated in linear EIM.
Rutkove et al. found that a fraction of the effect is related to
the electrochemical properties of the electrode-skin-fat-layer
complex, whose contribution is inversely proportional to the
electrode area [11]. 1erefore, the EIM output of the small
sensor is more prone to be affected by the electrode-skin-fat-
layer than the larger sensor. 1is in turn may affect the
reliability of the small sensor. Findings of this study indi-
cated that EIM measurements should be recorded by elec-
trodes that are properly sized and spaced. Measurement
recorded by a relatively small sensor should be considered
with caution.

1is study observed smaller SEM and SRD recorded by
the small sensor at 100 kHz than at 50 kHz, suggesting that
the reliability of the instrument is affected by recording
frequency. Several studies indicated that multifrequency
measures may be more sensitive to disease status and
progression over time [13, 14]. By changing the frequency of
the current injected, it can shift the relative weights of the
resistive (fluid) and reactive (membranes) contributions to
the total impedance (i.e., the cell membrane acts like a
capacitor in an electrical circuit, such that a very high fre-
quency makes nearly no reactance contribution to the im-
pedance) [30]. At low frequencies, the contact impedance
between the sensor and skin is higher, which results in less-
reliable data. Hewson et al. studied the impedance of
electrode-skin interface using multifrequency (1–16,384Hz)
and found large individual differences in the level of im-
pedance at low frequencies [31]. 1e findings of this study
suggest that higher frequencies (i.e., higher than 50 kHz)
should be considered when using the small sensor to record
impedance properties.

Reactance has the lowest value of reliability indices
among the three EIM parameters recorded by either sensor.
Possible contributing factors to the low reactance reliability
might be the angle at which the current was applied and the
angle measured relative to the muscle fiber direction, and the
contact pressure on the skin.1ere might be small variations
in the electrode positions and the angles relative to the biceps
brachii each time the electrodes were placed on the skin
surface by the rater. 1e variation in electrode position and
the angle relative to biceps brachii may affect the EIM pa-
rameters. Tarulli et al. reported that reactance was most
sensitive to the angle at which current was applied and the
angle measured relative to the muscle fiber direction in
bovine skeletal muscles [32]. 1e sensitivity may be related
to the anisotropy of muscle tissue because anisotropy rep-
resents the inherent muscle fiber geometry within the
muscle, and the electrical currents flow more readily along
muscle fibers than passing across them [33]. 1erefore, any
alteration of the electrode angle affects the direction of
injecting currents to themuscle, and in turn, it contributes to

the variation of reactance measurements. In addition, re-
actance is associated with the tendency for oscillating
charges to accumulate against the capacitors in the muscle
cell membranes [2]. Resistor-capacitor models of the elec-
trode-skin-fat layer interface revealed that the interface
resulted in a drift in the EIM results known as the “voltage
divider effect,” which depends on the input characteristics of
the impedance-measuring instrument, the area, and the
conditions of the electrode-skin interface [11]. It can be
reduced by increasing the input impedance of the instru-
ment and by using active, low-capacitance probes. Because
the measured reactance itself is modeled as a “capacitor,” it is
prone to poor contacts between electrode and interface,
which in turn can cause the low reliability of reactance.

1e limitations of the study should be acknowledged.
Although the findings of the current study with healthy
population provides useful information about the reliability
of small and large EIM sensors, a clinical population was not
included in the study while it is important to further extend
the reliability investigation to different clinical populations
where the EIM can find most important applications. 1e
current study only examined the biceps brachii muscle,
although different types of muscles should be further ex-
amined. In addition, the same EIM experiment performed
by one of the two raters (i.e., the same data set) was used for
both the between-days intrarater reliability and within-day
interrater reliability investigations. 1e protocol can be
further improved by having both raters take measurements
on both days. According to the literature, the variation of
muscle size can affect resistance and reactance measurement
[29]. For example, the decrease in muscle size might increase
measured R and X. However, the phase angle (θ) would be
affected to a less extent because its calculation would po-
tentially cancel out simple volumetric effects of themeasured
muscle [29, 30]. 1e current study investigated the per-
formance of the large and small sensors over the biceps
brachii muscle. It remains a future study to further examine
how the EIM parameters change with different muscles.

5. Conclusions

EIMmeasurements of the biceps brachii muscle recorded by
the large sensor demonstrated high between-days intrarater
and within-day interrater reliability for all three parameters.
1e small sensor demonstrated poor to high reliability, and
repeated measurements were not as consistent as the large
sensor. Reactance recorded by the small sensor was the least
reliable parameter. 1e reliability of small sensor was prone
to be affected by measuring frequency. Findings of this study
suggest that electrode size and interelectrode distance should
be selected appropriately in accordance with the size of the
tested muscle to achieve the desired reproducibility of EIM
measurements.
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)e neuropsychological characteristics inside the brain are still not sufficiently understood in previous Gestalt psychological
analyses. In particular, the extraction and analysis of human brain consciousness information itself have not received enough
attention for the time being. In this paper, we aim to investigate the features of EEG signals from different conscious thoughts.
Specifically, we try to extract the physiologically meaningful features of the brain responding to different contours and shapes in
images in Gestalt cognitive tests by combining persistent homology analysis with electroencephalogram (EEG).)e experimental
results show that more brain regions in the frontal lobe are involved when the subject perceives the random and disordered
combination of images compared to the ordered Gestalt images. Meanwhile, the persistence entropy of EEG data evoked by
random sequence diagram (RSD) is significantly different from that evoked by the ordered Gestalt (GST) images in several
frequency bands, which indicate that the human cognition of the shape and contour of images can be separated to some extent
through topological analysis. )is implies the feasibility to digitize the neural signals while preserving the whole and local features
of the original signals, which are further verified by our extensive experiments. In general, this paper evaluates and quantifies
cognitively related neural correlates by persistent homology features of EEG signals, which provides an approach to realizing the
digitization of neural signals. Preliminary verification of the analyzability of human consciousness signals provides reliable
research ideas and directions for the realization of feature extraction and analysis of human brain consciousness cognition.

1. Introduction

In recent years, with the development of neural networks,
researchers are committed to explaining the intrinsic nature
of human consciousness generation and artificial intelli-
gence (AI). One of the research directions is to explore the
laws of human brain cognition and consciousness genera-
tion process to promote the development of machine
learning technology. In communication technology, the
realization of brain-to-brain communication (B2BC) under
the support of future 6G technology also urgently needs a
method to realize the digitization of human brain nerve
signals to support the development of its research. )e most
typical analysis method of electroencephalogram (EEG)
signals is based on the brain signals’ characteristics by

filtering, artifacts removing, event-related potentials (ERP)
analysis, and brain domain heat map with respect to the
original time-domain signals. )e complex and dynamic
multichannel time-domain signal is not an ideal carrier for
information transmission. Currently, various digital analysis
methods based on the EEG signals are constantly being
proposed and improved [1–4], such as single-trial analysis
and other diverse methods, which take into account the
significant differences in EEG signals between different
subjects. Furthermore, [3] attempts to extract the digital
features that may bemore relevant and simpler regarding the
signal, which coincides with the first step of B2BC: the
digitization process of neural signals. Combining the rele-
vance enlightenment of B2BC and AI, the analysis of the
human brain’s cognitive process is of forward-looking value.
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Gestalt psychology theory is the pioneering foundation of
modern cognitive learning theory, which was established in the
early twentieth century by psychologists WestheimerW. Kohler
and K. Koffka based on similitude study [5]. )ey believe that
thinking is a holistic and meaningful perception rather than a
simple collection of connected representations and argue that
learning lies in forming a gestalt, which aims to change one
gestalt into another. )is cognition process is fundamentally
different from the current image recognition model of deep
learning empowered by artificial neural networks (ANNs).

At present, with the rapid development of deep learning,
newer and stronger algorithm models emerge endlessly, and
their computing power and learning ability for specified
tasks become increasingly powerful. On top of this basis,
some researchers initiate ambitious new goals and turn to
focus on making AI more “intelligent,” that is, achieving
brain-like intelligence. )ey expect machine learning to
achieve what the human brain can do and solve problems or
recognize things like the human brain. It is well known that
conventional neural networks are designed by the inspira-
tion of the fundamental principle of signal transmission in a
single nerve cell. )erefore, the linkage nature of the whole
biological neural network is the direction we need to explore
as the next frontier. It can inspire us to build brain-like
intelligence and transfer from the traditional machine
learning process to a more advanced consciousness level. By
exploring the act of brain cognition, it is potentially possible
to probe into the generation of consciousness [6], not limited
to what kind of consciousness the brain produces.

Researchers have made attempts to explore neural net-
works and the human brain’s biological patterns [7–15]. To
gain insight into the brain’s response to external stimuli,
scientists have developed functional network analysis meth-
odology because they assert that brain functionality is de-
termined by the internal interaction between different
neurons as well as different brain regions [11]. )ey set out to
analyze the neural signals displayed by the brain as a whole.
)e spatial and connective relationship of neurons within the
brain structure is a complex connection model, which has
been used to analyze the human brain’s activity with topo-
logical tools for a long time. )e initial focus of this kind of
research is on the somatosensory sensations (e g., hot and cold
sensations and pain sensations) that are easy to recognize in
brain signals [12]. Afterward, abnormal EEG responses
(epilepsy seizures) [13], steady-state visually evoked potential
(SSVEP), movement intention detection [14], and emotion
classification [15] were analyzed. We compared the results
obtained by various EEG analysis methods in various fields.
Among them, the detection accuracy of schizophrenia
reached a balanced accuracy of 89.59%; the detection of
moving images reached a recognition rate of 64.9%–79.5%;
and the classification of emotional EEG signals based on
gender reached 90.4% (SVM) and 92% (KNN) [16].

In particular, inspired by the recent research on Gestalt
recognition for which Baker et al. [17] and Been Kim et al. [18]
provided totally conflicting conclusions, the discussion on the
differences between artificial neural networks and the human
brain cognition process has motivated us to follow research
on the cognitive process at the level of consciousness.

Nevertheless, it is well realized that the human brain’s cog-
nition on the overall outline of geometric patterns faces local
and global problems in the previous Gestalt experiments.

)e mathematic tools of algebraic topology are uniquely
equipped to provide quantitative information about both the
local and global properties of an arbitrary graph [8]. Ac-
cordingly, topological data analysis (TDA) is capable of
providing a series of new topological and geometric methods
to analyze the brain’s neural networks covering EEG signals,
among which persistent homology is one of the key ap-
proaches. [19–24]. Persistent homology analysis provides
efficient algorithms for calculating the Betti number of each
complex graph in the network families under consideration
and encodes the evolution of the nested complex homology
groups at different networking scales. Consequently, it helps
understand the EEG data better and keeps analytical stability
concerning perturbations or noise in the EEG signals.

In our study, 20 participants were considered in tradi-
tional visual stimulation experimental methods and col-
lecting EEG signals at the same time.)e neurophysiological
evaluation of the contour in the Gestalt experiment was
investigated by exploiting Euler characteristics and persis-
tent homology features of the EEG signal. On that basis, how
the regions of the brain are involved in contour recognition
was interpreted by selecting Vietoris–Rips filtration.

)e main contributions of this work are as follows:

(1) )e topology calculation method adopted in this
experiment provides effective separability of the EEG
signals of contour cognitive behavior and realizes the
digital feature extraction of EEG signals

(2) We provide reference significance and a reference
method for B2BC and other work that needs to
realize the digital feature extraction of EEG signals

(3) We demonstrated the feasibility of using persistent
homology modeling to analyze EEG signals

2. ExperimentsandMethods forAssessingBrain
Cognition’s Gestalt Patterns

)e general framework for the neurophysiological assessment
process andmethod of Gestalt contour cognition is illustrated
in Figure 1, which is based on topological data analysis en-
abled by persistent homology. During the brain cognition
process, subjects first watch random sequence diagram (RSD)
pictures repeatedly at fixed intervals and then watch Gestalt
(GST) images in the same manner. Meanwhile, the EEG data
are collected by a special cap with sensing electrodes syn-
chronously (Step I). )en two methods are used for calcu-
lating the correlation coefficient: one is to calculate the phase
correlation coefficient (0–1) of the EEG signals between the
sensors through the algorithm based on Hilbert transform to
construct the correlation matrix and the other is to calculate
the standardized Euclidean distance between the sensors to
construct a distance matrix (Step II) [13] for obtaining the
topological Vietoris–Rips simplex (Step III). Finally, persis-
tent homology methodology is applied to analyze the brain’s
neurophysiological features stimulated by various pictures
across different qualities (Steps IV and V).
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2.1. Stimuli. As shown in Figure 2, we have selected two
representative types of Gestalt pictures with the existence
and nonexistence of a specific outline of a standard triangle.
One is the picture of GSTthat people can easily recognize the
outline of the triangle, and the others are the pictures of RSD.
)e size and quality of the two types of pictures are the same,
and both are 1,440×1,080 resolution. To explore the
characteristics of changing consciousness in a subject’s
cognition process, we repeat the RSD 30 times and then
repeated the GST 10 times to increase the samples’ amount
and eliminate potential experimental errors.

2.2. Procedure. After a general introduction to the experi-
ment and the EEG cap preparation, the subjects start the test
with EEG recording, which is described in Figure 3.)e EEG
recordings of two cognition periods correspond to two
continuous stages in the whole process. )e first stage is to
collect the EEG signals when the subject does not have a
clear cognition of RSD, and the second stage is to collect the
signals when the subject recognizes the outline of the tri-
angle from the GST. When the subjects start to identify the
triangle’s intrinsic outline from the GST, each trial began
with a fixed time slot that lasts 1 second, and then the RSD or
GST image appear for 10 seconds. After that, a rest time slot
appears to remind the subjects that they could take a break
for 1 second. One by one, the subsequent trials start to run.

2.3. Subjects and Equipment. )e EEG data are measured
from 20 healthy volunteers (9 males and 11 females, in the
age group 19–27) with normal (or corrected to normal)
vision. Volunteers are mainly sophomores and juniors. )e
main age group is 22 years old, with an average age of 22.4
and a standard deviation of 1.71. )e experiment equipment
is a standard Neuracle 64 System, which includes a 64-
channel adult-sized head cap with the sensor array, EEG
recorder with EEG acquisition software, and amplifier
(NSW364). )e sampling rate is 1,000Hz for the EEG
signals, and the filtering window is changed with frequency
from 0.3 to 100Hz.

2.4. Topological Data Analysis for EEG Data. Topological
data analysis for the EEG data has been summarized in
Figure 1, and the following provides the corresponding
details.

2.4.1. EEG Signals Acquisition and Preprocessing. )e EEG
data are collected by the EEG cap and downsampled to
250Hz. Filtered EEG signals of different wavebands are
obtained by a set of filters, including δ band (1–3Hz), θ band
(4–7Hz), α band (8–13Hz), β band (14–30Hz), and the
whole band (1–45Hz).

)e specific operations are as follows: during the entire
acquisition process, we mark the EEG signals corresponding
to different events to facilitate subsequent trial segmenta-
tion. Since the entire acquisition process is continuous,
considering the activity frequency of the human brain under
normal conditions, we first perform (1–45Hz) filtering on
the entire time-domain signal and then try segment to
extract the target data we need, based on this perform
subsequent data adjustments such as baseline calibration
and downsampling.

)e filtered signals from each electrode of the EEG cap
correspond to a set of measuring points G. As explained
before, two data analysis methods are used for characterizing
the brain cognition process: one is to calculate the corre-
lation matrix through the real-time phase relationship and
the other is to define the distance matrix for each point
through the signal-level correlation.

2.4.2. Correlation Matrix Computing. )e calculation steps
are as follows:

(1) After the key feature extraction and preprocessing of
the EEG signals, we get the signal of each trial period
as follows:

FEEG �

f11 · · · f1N

⋮ ⋱ ⋮

fM1 · · · fMN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (1)
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Figure 1: )e neurophysiological process and method of Gestalt contour cognition with topological data analysis.
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where N is the total data length, which is equal to the
sampling rate multiplied by the measurement time,
and M is the total number of electrodes that collect
the EEG signals. Each row in the matrix FEEG rep-
resents the signals collected by one electrode.

(2) Hilbert transform [25] is performed on each signal in
FEEG, that is, each row, to obtain a new matrix H
(FEEG).

(3) H (FEEG) obtained by step 2 is used to calculate the
instantaneous phase of each electrode:

ϕ � arctan
H FEEG( 

FEEG
 . (2)

(4) )e value of the corresponding element of the in-
cidence matrix is calculated by equation (3). )e
absolute value is taken and then combined to obtain
the incidence matrix equation (4):

Cpq �

1
N



N

n�1
exp j ϕp

(n) − ϕq
(n) ( 




, p≠ q,

0, p � q,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(3)

CM×M �

C11 · · · C1M

⋮ ⋱ ⋮
CM1 · · · CMM

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (4)

where j is an imaginary unit and ϕp(n) and ϕq(n)

represent the n-th instantaneous phase in the elec-
trode p and q, respectively.

2.4.3. Distance Matrix Computing. )e filtered signal from
each electrode in the EEG cap constitutes a set of sampling
points G, and the distance between electrodes with different
channels is calculated by [13]

d(r, t) �

�������������


N

k�1

r|k

sk

−
t|k

sk

 

2



, (5)

where r|k and t|k stand for the y-component of different
electrodes in (xk, yk) and sk is the sample standard deviation
calculated from all y-components at position k in channel r.

2.4.4. Simplicial Complexes Construction. Simplicial com-
plexes are constructed by Vietoris–Rips filtration according
to either the correlation matrix or the distance matrix ob-
tained in Step II, which is illustrated in Figure 4.

2.4.5. Euler Characteristics. Before calculating the persistent
entropy, we supplement Euler entropy to do a preliminary
analysis of the separability of the topological properties of
the data, which also provides a basis for the persistent
homology separability. )e topological structures of original
EEG signals are constructed by Vietoris–Rips filtration: one
uses the phase-locked value (PLV) of the EEG signals data as

GST RSD

Figure 2: Two types of Gestalt pictures used for the brain cognition experiments: GST and RSD.

rest rest

Repeat 30 times

1 s 10 s 1 s 1 s 10 s 1 s

Repeat 10 times

Trial 1 Trial N

RSD

RSD GST

Figure 3: )e procedure of Gestalt pattern cognition.
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the normalized correlation coefficient (C-matrix) between
electrodes and the other uses the level correlation distance as
the normalized correlation coefficient (D-matrix). Euler
entropy can be calculated according to the Betti numbers. In
the process of Vietoris–Rips filtration, the Betti numbers
change all the time, so we can restore an Euler entropy curve.
)e Euler entropies of brain networks for different values of
e are calculated, and it is a remarkable fact that Euler entropy
has a negative peak with the change of ε. Since the ε value
corresponding to the negative peak of Euler entropy is
different between the clear and unclear situation, we further
calculate the ε value when the negative peak of Euler entropy
appears, which is taken as a phase transition point in this
work. In the topological modeling of human brain structure,
the phase transition point is shown by Euler entropy often
represents a critical point change in brain activity [8].

2.4.6. Persistent Homology Analysis. Persistent homology is
an algebraic topology methodology that counts the number
of n-dimensional holes in a topological space, that is, Betti
number. )e Betti number of a generic topological space S is
composed of β0, β1, and β2 in this paper. β0 is the number of
connected components in S; β1 is the number of holes in S;
and β2 is the number of voids in S. During the filtration, the
time when a k-dimensional hole appears in the simplicial
complex is recorded as Tstart, while Tend is the time when the
k-dimensional hole disappears. Accordingly, the k-dimen-
sional Betti interval is defined by [Tstart, Tend], and the
corresponding persistence barcode is its graphical repre-
sentation of it [8, 26, 27]. On the other hand, persistent
entropy (PE) provides a new entropy measure to extract the
feature of topological space by persistence barcode. In this
paper, B � (xi, yi)|iεI  is set to the persistent barcode group
associated with the filtration of topological space S, where i is
a set of indexes (Figure 5). Accordingly, the persistent en-
tropy H of the simplicial complex filtration is calculated by
the following equation:

H � − 
iεI

pilog pi( , (6)

where pi � yi − xi/L and L � iεI(yi − xi). Moreover,H can
be rescaled, and H is treated as the persistent homology
feature of the EEG data in this paper and expressed as
follows:

H �
H

log ℓmax
, (7)

where ℓmax is the maximum interval in the considered
persistent barcode group.

Topological patterns of the EEG data evoked by the RSD/
GST pictures are constructed by Vietoris–Rips filtration, as
shown in Figure 6. To examine the relationship between
different brain regions and the perception of image shape
and contour, the EEG mapping results are supplemented
and drawn in Figure 6. When the subjects perceive irreg-
ularly distributed images, more brain regions are involved,
with nonprominent features, but when they perceive or-
dered images, there will be clear reaction areas with more
prominent features. )erefore, we hypothesize that vague
cognitive goals make the task more difficult and lead to more
mental activities. In addition, due to the intense brain ac-
tivity observed in the frontal lobe, the frontal lobe’s function
needs further investigation. )e frontal lobe is the physio-
logical basis of the most complex mental activities. It is
responsible for planning, regulating, and controlling human
mental activities, which plays a vital role in human’s ad-
vanced and purposeful behaviors. Figure 6 indicates the
correlation between human perception of shapes and
higher-level cognitive processes covering Gestalt patterns.
)ese results verify our method’s effectiveness in describing
the intrinsic correlation between the EEG signals and shape
cognition, and our method is closer to the actual biological
response process.

In this regard, our preliminary Euler entropy analysis
diagram is shown in Figure 7. )e two types of calculated
Euler entropy show the difference in their phase transition
points.)e red line represents the RSD in the state of unclear
recognition, and the blue line represents GST that can
recognize the outline of a triangle. It can be seen that the
phase transition point of the GST sample will appear earlier

r

Figure 4: Vietoris–Rips filtration in persistent homology-based topological data analysis.

Dim 1

yixi

I

r

Figure 5: Persistent barcode group.
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than the RSD. )e data result of the overall sample is shown
in Figure 8.

3. Result and Discussions

It can be observed from Figure 8 that the phase transition
point of GST trials of most samples is before the RSD, which
intuitively shows the separability of the overall topological
characteristics of the whole brain signal, so further con-
tinuous coherence analysis can be carried out on this basis.

To reduce the computation time of analyzing topological
features, the change of persistent entropy of the subjects at
different time latencies after the picture appearance is in-
vestigated first. )ere is a difference between the RSD and
GST trials. Without being informed of the experiment’s
purpose, the subjects observed the RSD pictures first, which
are disorderly and random. Accordingly, the overall EEG
levels are shown in each trial. )ey were all at a certain level

in a relatively balanced manner, while regarding the GST
pictures, it was intuitively reflected within 2 s, and the EEG
level was stable afterward. )erefore, the EEG signals of two
seconds after displaying the image are selected for the
persistent homology analysis in this paper.

Table 1 shows the range, mean value, and maximum
value of the distinguishing degree of the two types of
cognitive behaviors investigated by adopting persistent
entropy as the overall experiment’s discrimination standard.
)e average distinguishing rates of each frequency band
classified by C- and D-matrix were all greater than 70%, and
the optimal distinguishing rates reached 90% and 85% for C-
and D-matrix, respectively.

Figure 9 shows the respective performance and com-
parison of the persistent entropy obtained by the two dif-
ferent matrix calculation methods. )e blue line represents
the participants’ response to GST, and the red line represents
their response to RSD. Based on the statistical classification
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Phase Transition Point in Euler Entropy
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of the 20 subjects and the frequency comparison, it is clear
that both methods clearly describe the separation feature in
terms of persistent entropy between the two topological
patterns in the two types of brain cognition situations. We
further draw a comparison chart of the GSTand RSD values
calculated by the correlation matrix as shown in Figure 10.
According to Figures 9 and 10, almost all the persistent
entropy values for the topological structure of the EEG
signals induced by GST (blue) are higher than that induced
by RSD (red); the opposite is the case when the persistent
entropy is calculated by the distance matrix. From the
measurement and analysis results, it is evident that the bands
with significant differences are the α and θ bands, which are
in line with the corresponding trend of the overall original
signal. However, in the β band, the properties of the two
types of methods are similar, and the results of the com-
parison of RSD and GSTare similar as depicted in Figure 11.

As a summary, we have proposed a neurophysiological
approach for cognitive assessment of the shape and contour
of the Gestalt images via EEG. When the subjects perceive
RSD images, compared with the GST image, more brain
regions are involved in the cognition process. It can be
understood that the human brain is in a state of randomness
in this case. TDA is used to extract the physiological features
of EEG signals induced by the shape contours. )e results
verify that the EEG data induced by the GST image are in the
beta band, and the persistent entropy values obtained by the

two calculation methods are lower than that of the RSD
image. )e persistent entropy values in the α and θ bands
and the overall 1–45Hz band consistently show that
PEGST >PERSD with the correlation matrix calculation
method and PEGST <PERSD with the distance matrix cal-
culation method.

Compared with the conventional neurophysiological
methods based on evoked potentials (requiring a specific
experimental paradigm), our approach provides a general-
izable method that can extract the overall information from
the whole brain signal, not just the characteristic perfor-
mance. Our approach focuses not only on the brain response
to external stimuli but also on the algorithms designed to
normalize and extract numeric features that can be reliably
classified and represent different cognitive perceptions. )e
algebraic topology is used to explain the coordination re-
lationship between various neural regions in the human
brain.)is work can serve as an inspiration for the analytical
approach to the collaborative work of complex neural
networks. )e dimensionality of the complex neural net-
work model is reduced to one-dimensional persistent en-
tropy to measure its characteristics.

Since this paper focuses on a specific case of Gestalt
contour cognition, future research may extend to more
analysis of different Gestalt contour cognitions and even
color or content cognition and progressively try to leverage
TDA to explain the cognitive process. Unlike the previous

Table 1: )e table of distinguishing accuracy.

Distinguishing rate range (%) Average (%) Max (%)
C-matrix 65–90 73.33 90
D-matrix 55–85 71.67 85
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EEG signal analysis experiments, this work implies the
feasibility to interpret the human brain consciousness pat-
terns in a divisible manner, and it is a preliminary explo-
ration from feeling to consciousness. Furthermore, the
deepening grasp of the brain neural network’s linkage be-
havior in the brain response process from external stimuli to
digital features may inspire us to build a new artificial neural
network structure, which requires further research and
experimentation.

4. Conclusions and Future Work

In this paper, we have proposed an approach physiological
evaluation of contour cognition from EEG by using per-
sistent homology of brain network and extracted its sepa-
rable digital feature, persistent entropy (PE). Our approach
has acquired cognitively related neural information via in-
tegrating the EEG collection with the traditional Gestalt
psychology test procedure and obtained physiologically
meaningful features of brain responses to different shape
outlines by topological data analysis (TDA). )e validation
experiment results show that when subjects perceive cha-
otically distributed images, more brain regions are involved,
but the level values are more average, and when they per-
ceive ordered images, there will be clear reaction areas with
more prominent features. )e PE calculated by using two
different EEG correlation feature extraction matrices is all
separable. In the α, θ, and (1–45Hz) bands, the overall
performance is consistent, and the two types of calculations
in the β band have reached a unified result of the calculated
value and the classification situation. )e above results can
intuitively show that in some specific B2BC interaction
scenarios, the transmission of a specific human brain nerve
signal into a characteristic signal (PE) can be achieved.

)e neurophysiological assessment process of Gestalt
contour cognition is a preliminary study to explore human
consciousness formation. )e experimental results show
that the conventional EEG signal can be digitized and
converted into the matrix relationship between the electrode
points, and then the Vietoris–Rips complex is constructed to
use the topological calculation to express the characteristics.
It encouragingly shows good separation, which provides a
possibility for the development of B2BC.

At present, there still exist some limitations to be
addressed, specifically in the following two aspects:

(1) One is that noninvasive EEG acquisition equipment
cannot completely restore the spatial location gen-
erated by electrical signals, which means that the
accuracy of our topological reconstruction con-
struction cannot restore the original signals gener-
ated by consciousness

(2) Second, the use of algebraic topology is still in the
preliminary stage, and more experiments are re-
quired to verify the robustness of the method.

)e outlook for future work can be expanded from two
dimensions of breadth and depth. )e breadth is that there
are many forms of conscious thinking because the project is
an exploratory experiment, and we use contour recognition

as the starting point. Subsequent work can be developed to
the consciousness analysis of more advanced cognitive be-
haviors, such as the calculation of simple mathematical
problems, the judgment of the right and wrong of simple
logic, and so on. )e depth requires us to further enhance
and strengthen this method on the basis of existing research.
We can try to refine the research based on gender differ-
ences, brain region selection, more detailed trial segmen-
tation, and frequency band selection to verify the robustness
and reliability of the method proposed in this paper. )e
realization and gradual advancement of these tasks will lay a
solid foundation for our future realization of brain-com-
puter interconnection and brain-to-brain interconnection
technology, and this is also an effective means to simulate
and realize human intelligence. )e analysis of human
consciousness and thinking activities in this work also ex-
pands the breadth and depth of EEG analysis. )e research
in this area is still in the preliminary stage for the time being,
and we provide enlightening significance for reference.
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Interpreting the brain commands is now easier using brain-computer interface (BCI) technologies. Motor imagery (MI) signal
detection is one of the BCI applications, where the movements of the hand and feet can be recognized via brain commands that
can be further used to handle emergency situations. Design of BCI techniques encountered challenges of BCI illiteracy, poor signal
to noise ratio, intersubject variability, complexity, and performance. *e automated models designed for emergency should have
lesser complexity and higher performance. To deal with the challenges related to the complexity performance tradeoff, the
frequency features of brain signal are utilized in this study. Feature matrix is created from the power of brain frequencies, and
newly proposed relative power features are used. Analysis of the relative power of alpha sub-band to beta, gamma, and theta sub-
band has been done. *ese proposed relative features are evaluated with the help of different classifiers. For motor imagery
classification, the proposed approach resulted in a maximum accuracy of 93.51% compared to other existing approaches. To check
the significance of newly added features, feature ranking approaches, namely, mutual information, chi-square, and correlation, are
used. *e ranking of features shows that the relative power features are significant for MI task classification. *e chi-square
provides the best tradeoff between accuracy and feature space. We found that the addition of relative power features improves the
overall performance. *e proposed models could also provide quick response having reduced complexity.

1. Introduction and Background

Brain activates the sensory motor rhythm for virtual motor
movements such as hand or feet; however, the actual motor
movement of the body parts is not essential. *e activation
properties of brain correlate the activities with the motor
movements, which help in different emergency situations to
provide quick response in the system [1, 2]. Amyotrophic
lateral sclerosis (ALS) is one of the serious diseases of brain,
where the patient loses their control over the body and only
the mind is active. *e brain-computer interface (BCI)
technology designed for motor imagery task can assist the
patients in communication [3]. BCI technology enables the
translation of brain commands of motor actions to read the
brain signal and thus is considered as effective method for

providing faster and accurate response [4, 5]. *e accuracy
of BCI is very sensitive to internal and external noises,
intersubject variabilities, and nonstationarity and nonline-
arity of brain signal. Also, when BCI models are considered,
the performance is limited by the algorithm simplicity.

*e structure of brain consists of four lobes, which are
frontal, parietal, occipital, and temporal lobe. Each lobe is
responsible for a specific task. Frontal lobe is active when
emotion, problem solving, speech, and movement related
tasks are performed; and the parietal lobe is responsible for
sensation, taste, speech, reading, and so forth. Occipital lobe
is responsible for vision, visual stimuli, and interpretation.
*e temporal lobe is related to hearing, comprehension of
language, and information retrieval. *e movement related
actions are performed by the motor cortex which is located
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in back part of the frontal lobe almost in the center of brain.
*us, the signal received from the motor cortex from the
frontal and parietal lobes is helpful in understanding and
classifying motor imagery actions [6].

Numerous studies are reported in the literature to rec-
ognize and interpret the brain signals. *e motor imagery
commands are decoded using Fourier transform, short time
Fourier transform, common spatial pattern and its variants,
local mean decomposition, wavelet packet decomposition,
and power spectral density [5, 7–11]. Wavelets are used for
various applications such as denoising, feature extraction, and
frequency sub-band categorization [12, 13]. Band power is
also one of the widely used features. Brodu et al. [14] pre-
sented a comparative study on band power extraction for
motor imagery (MI) task in which periodogram, autore-
gression, Butterworth filter, spectrogram, andMorlet wavelets
are evaluated and wavelets are recommended for obtaining
satisfactory results. Wang et al. [15] evaluated time frequency
representation synthesis for spatial filters. Qin and He [16]
developed wavelet and event-related desynchronization-
based method for MI task classification, in which further
comparison is based on the weighted energy difference of
electrode pairs for MI task. Kim et al. [17] proposed an
optimal channel based feature extraction via difference
weighted power spectral density forMI task classification.*e
single session and session-to-session accuracies were evalu-
ated for reliability of the proposed model. Tidare et al. [18]
studied a single limb hand open and close movement by
power measures. Linear regression and convolution neural
network (CNN) are used to evaluate the performance and
CNN was found to be outperforming. However, it still suffers
from less accuracy, nearly 60% for the used dataset. *is
shows the chances of improvement via deep learning with
higher variety of datasets. Mu-beta rhythms were proved
efficient; however, to enhance the training feedback, SSVEP
based hybrid BCI is proposed in [19]. Further studies also
reported combination of EEG from motor and somatosen-
sory cortex together for improving the performance of BCI
[20]. Discriminative feature learning, sliding window com-
mon spatial patterns are some recent approaches used for MI
task classification [21, 22]. EEG-Net with Temporary Con-
strained Sparse Group Lasso also proves its efficiency in MI
task classification [23]. Akbulut et al. [24] proposed alpha and
beta frequency power for MI task classification as the fre-
quency represented as most responsible frequency of motor
tasks. *e performance evaluation is based on nearest
neighbor, SVM, logistic regression, näıve Bayes, and decision
tree classifiers. From these studies, decision tree and random
forest are reported as the most widely used classifiers for MI
task classification and, thus, in the current study, we have
taken them into consideration. Deep learning is a widely
accepted area nowadays, but the computational cost, com-
plexity of model, and lack of sufficient data still create
implementation challenges.

1.1. Motivation and Objectives. Motor imagery task classi-
fication is one of the open challenging tasks for which various
methods are proposed. Common spatial pattern (CSP) and its

variants show the improved accuracy for MI task classifica-
tion, but these are sensitive to noise; and the spectral and
temporal characteristics of signals are neglected. Moreover,
the variants are susceptible to channel specific data. To
mitigate these limitations, frequency-based features are
gaining popularity nowadays. Keeping inmind the popularity
of frequency specific features, the current study aims to

(1) Improve the performance of motor imagery task
classification using frequency-based features

(2) Analyze the relative power of frequency for classi-
fication of motor imagery task

(3) Maintain the tradeoff between accuracy and feature
space for minimal complexity of the model

*e rest of the paper is organized as follows. Section 2
presents the methodology for the process adopted to im-
prove the performance of motor imagery task classification.
Section 3 provides the details of the results obtained from
different classifiers. Section 4 provides the detailed discus-
sion on the results and Section 5 concludes the paper with
future aspects in the area.

2. Methodology

In this section, the details of the method incorporated to
classify the motor imagery signal are described. First, the
dataset used in the current work is described. Second, the
features and feature extraction methods from brain signal
used for MI task are discussed. Furthermore, feature ranking
algorithms are used to evaluate the performance of newly
added features. Figure 1 represents the overall flow of
processing involved in MI task classification.

In Figure 1, the processing of work accomplishes on EEG
based MI task dataset. *e description of the dataset is
provided in Section 2.1. EEG signals are preprocessed using
Butterworth filter and variety of features extracted from the
wavelets of different power bands which are alpha, beta,
gamma, and theta. To get the most significant feature and
evaluate the suitability of feature ranking method, three
different feature ranking methods, namely, mutual infor-
mation, chi-square, and correlation, are performed. Clas-
sification on all feature sets and ranked feature set has been
done using listed classification techniques. Results are
evaluated based on accuracy, precision, recall, and F1-score.
*e results are also compared with existing techniques on
the same dataset. Further details on each block of Figure 1
are presented further in the section.

2.1. Dataset Description. *e current study utilizes an open
source dataset available for MI task classification, which has
been accessed from BNCI Horizon 2020 website. In this
dataset, cue grazed recordings of 10 subjects in a single
session of 8 runs, each of 20 trails, are available. *e subjects
were asked to perform hand and feet movements as per the
cue. Participants had the task of performing sustained (5
seconds) kinesthetic motor imagery (MI) of the right hand
and of the feet each as instructed by the cue. Feedback was
presented in form of a white colored bar graph.*e length of
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the bar graph reflected the amount of correct classifications
over the last second. EEG was measured with a biosignal
amplifier and active Ag/AgCl electrodes at a sampling rate of
512Hz.*e electrodes placement was designed for obtaining
three Laplacian derivations. To record the EEG signals, wet
electrodes were fixed at central lobe, that is, C3, C4, and Cz
[25, 26]. In this experiment, we have used 5-fold cross-
validation throughout the work. Although there are different
datasets available for MI task classification, this dataset has
been chosen, since it provides a large number of data
samples along with the different subjects available for re-
cording with reduced intersubject variability issue.

2.2. Signal Preprocessing. *e signals obtained from the
source electrode contain artifacts such as undesired fre-
quencies which are removed by preprocessing the data using
Butterworth band-pass filter of 5th order having a passband
frequency of 0.5Hz and stopband frequency of 100Hz. *e
filter transfer function is given in (1) [27]. Maximally flat
response and uniform passband property make the filter
more suitable for preprocessing of brain signals.

2.3. Feature Extraction. Feature extraction is an important
step to reduce the dimensionality of a signal and simulta-
neously extract the important information. EEG recordings
consist of large oscillations of different frequencies and
various studies on brain oscillatory frequencies reflect the
event-related synchronization and desynchronization in
alpha, beta, and gamma rhythms [28]. Power spectral
density (PSD) of these frequencies helps to analyze the
impact of signal while performing MI task. Since the results
from different studies suggest that only average power of
these features is not sufficient to discriminate hand and feet
movement, relative power and variance of the PSD are
proposed in the current study for analysis.

To obtain the oscillations of different frequencies from
EEG signal, discrete wavelet transform (DWT) of 5th level
decomposition and “dB4” wavelet are used. *e technique
localizes the changes in frequency of signal over time and

thus both time information and frequency information are
taken into consideration unlike CSP features with reduced
computational complexity. In wavelet transform, the signal
is downsampled by 2 and up to 5 levels, and, using
downsampling, we get 5 detailed coefficients and 1 ap-
proximate coefficient. *e 5th level DWT has been chosen
because its decomposition provides the range of frequencies
distributed similar to brain oscillatory frequencies. *e
“dB4” is chosen based on the effective results from different
studies [17, 18, 29]. *e frequency ranges for the coefficients
are as follows: D1: 50–100Hz (called noise and rejected), D2:
25–50Hz (gamma), D3: 12.5–25Hz (beta), D4: 6.25–12.5Hz
(alpha), D5: 3.125–6.25Hz (theta), and A5: 0–3.125Hz
(delta, none of our interest).

In the current work, average power and relative and
varied powers from each frequency band of interest are used
as a new feature combination which can effectively distin-
guish the MI task. In Figure 2, it can be seen that the average
as well as variance of each oscillatory frequency can play a
major role. While the concept of relative power is considered
here because the event-related synchronization and
desynchronization between alpha, beta, and gamma rhythm
are used for the MI task to happen, this will add extra ef-
ficient features for MI task classification. Average power of
each frequency and variance of power distribution are ob-
tained by using signal reconstruction corresponding to the
wavelet coefficients of alpha, beta, and gamma. Pwelch
function of MATLAB is used for the calculation of power
spectral density, and the feature matrix is as follows:
[A11, A12, A11, A13, A14, A15,

A16, A17, A18, A19, A110, A111, A111], where A11 − A14 denote
average powers of alpha, beta, gamma, and theta band,
respectively, A15 − A17 denote relative powers of alpha to
beta, gamma, and theta band, respectively, and A18 − A111
denote varied powers of alpha, beta, gamma, and theta band,
respectively. *e algorithm used in the current study is
presented as Algorithm 1.

*e obtained feature matrix has dimension of 1 × 11 for
each trial from the dataset. *e overall feature matrix of size
1260 × 11 is obtained. To evaluate the significance of
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Figure 1: Flowchart of the proposed method.
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features, feature ranking method is used and comparative
analysis is carried out. In the next section, feature ranking
method is described in detail.

2.4. Feature Ranking. Feature ranking methods help in
evaluating the importance of the proposed features which
are used in the work. *ese methods will provide rank of
features based on different methods. Mutual information,
chi-square (χ2), and correlation are the most widely used
feature ranking methods. In this study, these three tech-
niques are used to find the most as well as least important
features. *e details of the method are discussed below.

2.4.1. Mutual Information. Mutual information provides
the measure of dependency between features and can be
obtained by

I(A, B) � 
A


B

p(A, B)log
p(A, B)

p(A)p(B)
, (1)

where A and B are two different features, respectively;
p(A, B) is the joint probability; p(A) and p(B) are indi-
vidual probabilities and I(A, B) denotes the mutual infor-
mation between two features. *e higher the mutual
information is, the higher the dependency is; hence, features
having higher mutual information will be ranked higher
than others [30, 31].

2.4.2. Chi-Square Method. Chi-square method of feature
selection ranks the features based on the dependency of
features on the respective class. We are interested in features
which are highly dependent on the class and this method
gives the higher rank to the feature which is more dependent
on class than others. *ese feature frequencies are calculated
from each sample. Null hypothesis for the test is formulated

as the features are highly dependent with an alternative
hypothesis as the features are independent.*e value of χ2 is
calculated by using the following formula [30, 32]:

χ2 �
FO − FE( 

2

FE

, (2)

where FO is the observed frequency of dependent features
and FE is the expected frequency of the dependent features.
Alpha (confidence interval) is chosen as 0.05.

2.4.3. Correlation Method. Correlation measure provides a
method to identify highly correlated features of the data.
Higher correlation signifies the lesser generalizability of the
model. Hence, these features need to be removed to reduce
the dimension and to improve the generalizability of the
selected classifier. *e correlation is calculated using the
following formula [30, 33]:

r �
k  AB(  −  A(   B( 

�����������������������������

 A
2

  −  A(   k  B
2

  −  B  

 , (3)

where A and B are two features from the set of features and r

denotes the correlation coefficient between features. *e
correlation between more than two features can be visual-
ized in heat map. In this map, highly correlated features are
darker, while the features having lesser correlation show less
intensity of the color. From the heat map, one can rank the
highly positively or negatively correlated features [30, 33].

2.5. Classification and Comparative Analysis. *e feature
matrix obtained using the method is fed into different
classifiers to evaluate the performance of features. Five well-
known classifiers, namely, decision tree (DT), fine k-nearest
neighbor (KNN), weighted KNN (WKNN), quadratic sup-
port vectormachine (QSVM), and random forest, are used for
classification. *e results obtained from classification are
shown and discussed in Section 3. *e results obtained after
classification are analyzed based on the classification accuracy
of classifier, precision, recall, and F1-score [34]. *e com-
parative analysis of the current study with different existing
approaches is also presented in the next section.

3. Results and Discussion

*e experiment was performed on a system configuration of
Intel Core i5 processor and 8GB RAM. Open source dataset
of motor imagery task classification is evaluated with the
proposed approach and compared with different existing
approaches. *e results obtained from the current study are
presented in this section.

3.1. Results of Different Classifiers without Feature Ranking.
In this study, five classifiers are used for classification of MI
tasks and the results obtained are shown in Table 1. Five of
the most widely used classifiers are chosen for the study,
which are decision tree, fine KNN, weighted KNN, quadratic
SVM, and random forest.
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Figure 2: Power spectral density of different brain oscillatory
frequencies.
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Decision tree takes the decision based on experience by
splitting the data and it works like a human brain. KNN is
based on nearness criteria; that is, the lower the distance, the
higher the chances of data to lie in that class. SVM creates a
hyperplane to classify the objects. Random forest consists of
multiple small decision trees on a random subset of data, and
each tree will act as an expert to take the decision of split
[34].

From the results, it is clear that, except SVM, all clas-
sifiers provide competitive accuracy. *e highest accuracy
obtained from the weighted KNN classifier is 93.51%.

Precision, recall, and F1-score measures are also important
criteria while evaluating the performance of classifiers. *e
higher the precision is, the lower the number of false positive
errors committed by the classifier is. Classifiers with large recall
have very few positive examples misclassified. F-measure
represents a harmonic mean between recall and precision. A
high value of F-measure ensures that both precision and recall
are reasonably high [34].*e precision, recall, and F1-scores of
different classifiers are shown in Figure 3.

In Figure 3, it can be seen that, for values of precision,
recall, and F1-score for classifiers ranging from 0.75 to 0.95,
in decision tree, fine KNN, and random forest, we get outlier
values; however, weighted KNN and QSVM does not have
outliers. In weighted KNN, maximum values are above the
1st quartile range and have significant score of more than
0.85 which can be termed as good precision, recall, and F1-
scores for MI task classification. Fine KNN also shows better
values but has less accuracy than weighted KNN. Hence
weighted KNN is used further in the study.

Feature ranking methods are evaluated for analysis in
order to understand the role of power features. *e detailed
results on the ranking method are provided in the subse-
quent section.

3.2. Results of Different Classifiers with Feature Ranking
Methods. Analysis of features is essential and crucial step to
obtain the dominant features and reduce the dimensionality.
As feature ranking can provide the relevant set of features, it

Input: EEG Signal for each trail, Class Label No. of Subject� n. No. of trails�T. No. of Segment�m
Output: Accuracy, precision, recall, F-Score
for subject i� 1 : n
for segment j� 1 :T
for trail k� 1 :T
Data� Import data from each trail,
Pro_data�Preprocessing using Butterworth filter of band [0.5–100 HZ] for Data (k)
Features�Wavelet (Processed data with dB 4,5 level)
calculate avg power, Variance of power, Relative power to alpha;
Feature_set� Feature, Class (k);

end
Updated_Feature�Update feature set after each trail by concatenation;
end

Updated_Feature_Final�Update feature set after each segment by concatenation;
end
Confusion Matrix� Function_Classifier (Updated_Feature_Final, Cross validation (k times));
Accuracy, Precision, Recall, F-Score� [Obtain from confusion matrix];
Calculate Ranks of features from Mutual Information, chi-square, Correlation and Repeat the steps to calculate the matrix and
Accuracy

ALGORITHM 1: Algorithm for the proposed approach.

Table 1: Classification accuracy of different classifiers.

Subjects
Classification accuracy (in %)

Tree Fine KNN Weighted KNN Quadratic SVM Random forest
S01 89.1 92.9 94.3 65.3 89.4
S02 87.3 91.9 92.8 70.5 91.1
S03 89.5 92.9 94.2 71 91.34
S04 88.2 90.6 93.6 67.3 90.625
S05 85.5 91.8 93.1 66.1 86.77
S06 87.7 90.2 93.1 58.4 90.86
S07 88.7 89.1 91.6 69 87.01
S08 86.7 91.3 92.9 64.4 89.66
S09 92 92.7 95.2 73.7 92.78
S10 87.7 92.9 94.3 67.5 91.34
AVG 88.24 91.63 93.51 67.32 90.0885
Bold letters show the maximum classification accuracy of the classifier.
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also helps to reduce the overfitting and improve the gener-
alizability of the classification model. *is section discusses
the results of different methods of feature ranking in detail.

3.2.1. Results of Feature Ranking with Mutual Information.
Mutual information is a very prominent method of feature
ranking. *e detailed method was discussed in Section 2.4.1.
To obtain the results of feature ranking, the method is
evaluated 10 times and the ranking obtained after each it-
eration is stored. Mutual information shows the dependency
of features with respect to class. *e higher the mutual
information, the higher the significance of the feature.

Top 6 features are selected out of 11 which are obtained
from 10 iterations for all ten subjects. Figure 4 represents the
ranking of features obtained with the mutual information
method. From Figure 4, it is clear that features {5, 7, 8, 10, 11}
are the most valuable features, out of which 5 and 7 are
relative power features and the others are varied power
features. It can be seen that mutual information method of
feature selection selects the variety of features containing
alpha, theta, and gamma band.

3.2.2. Results of Feature Ranking with Chi-Square Method.
Chi-square test is performed for the ranking of features. *e
higher dependence of features on the class is preferred for
ranking. Chi-square test rankings for 11 features are shown
in Figure 5.

Decision Tree Fine KNN
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Figure 3: Precision, recall, and F1-scores for different classifiers.
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Figure 4: Feature ranking with mutual information.
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Figure 5: Feature rankings with chi-square method.
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Chi-square method is another popular approach of
feature selection. *is method focuses on two values named
F-Score and P values. *e higher F-Score and the lower P

values are the most significant features. In the current work,
the same procedure is followed and top five features out of
eleven are selected by the rank provided by chi-square
method. *e feature selection is performed for 10 iterations
and the results are presented in Figure 5. Top five features are
selected based on occurrence of features in multiple itera-
tions. Feature set {6, 8, 9, 10, 11} is selected as most sig-
nificant feature for further analysis.

3.2.3. Results of Feature Ranking with Correlation Measure.
*e correlation method is another measure for feature
ranking, which provides information of mutually correlated
features. *e heat map for the features of the ten subjects is
shown in Figure 6.

In the heat map, darker color shows higher correlation,
while lighter color has less correlation among the features.
*e correlated pairs obtained after 10 iterations of the
correlation feature selection module are shown in 7.

Figure 7 shows the correlated pairs of feature.*e higher
the correlation, the lower the importance of feature; hence,
feature {3, 7, 8, 9, 10, 11} can be discarded and accuracy can
be calculated among the rest of the features for further
analysis. From this, it can also be seen that there is no
correlation among the features of relative power, that is,
feature {5, 6}. *is represents the significance of relative
power features with respect to the correlation among them.

3.2.4. Overall Analysis of Feature Ranking Method on
Accuracy. In this section, the overall analysis of the impact
of relative and varied power on accuracy for MI task clas-
sification is presented. *e accuracy has been calculated by
considering the best features obtained from feature ranking
method. *e results are shown in Table 2.

When all features are taken into consideration, the av-
erage accuracy of 93.51% has been obtained, which is a
significant result. We analyze the importance of relative
power features by calculating the accuracy without con-
sidering them. *e results show that, for six out of ten
subjects, the accuracy is reduced and, for the rest of the
subjects, there is a slight change in the accuracy, nearly ±0.2
to 0.6%, which is very small. Further, in the analysis, the best
features from different ranking algorithms are selected based
on the rank and the rest of the features are dropped out. *e
results for dropout of those features do not have more
impact on the classification accuracy. In the subsequent
section, a comparative analysis of different existing models
and feature ranking methods is presented.

3.3. Comparative Analysis. To compare the proposed
method with existing models, a comparative analysis is
presented in this section. *e results for comparison are
based on the research papers using the same datasets
[25, 26]. *e proposed approach is compared with the most
widely used feature, that is, CSP for MI task classification.

*e comparative results are shown in Figure 8. From the
figure, it is clear that the average and varied power features
with RF classifier outperform the CSP feature for most of the
subjects. *e figure also represents that the performance of
CSP method is varied with the subjects, but our proposed
approach does not have this issue. *is ensures that the
performance of the proposed approach mitigates the chal-
lenge related to intersubject variability.

Apart from the results presented in this dataset, some
other studies reported performance for a few subjects. Sahu
et al. reported the average performance of 60.5% for 3
subjects using principal component analysis [35]. In another
study, M. Sahu and S. Shukla used a feature selection ap-
proach for improved classification of MI signals. In this
study, an average accuracy of 58.25% for 4 subjects is re-
ported [36]. Kumar and Sahu proposed PSO based analysis
for MI task classification and this resulted in the highest
accuracy achieved which is 68.75% [37]. To analyze the
performance of feature ranking approach, we further eval-
uate the average loss of features and accuracy for different
feature raking approach.

Figure 9 represents the loss or reduction in accuracy
for different methods. If we select top 5 features from the
feature set and calculate the accuracy, the variation in
accuracy with existing accuracy of particular subject is
termed as loss in accuracy. *e higher the loss, the lower
the significance of method. Correlation method shows the
highest loss in accuracy with respect to accuracy of all the
features. Mutual information method shows significant
loss in accuracy, while chi-square method provides
minimum loss in accuracy. So, chi-square method can be
used to maintain the tradeoff if higher complexity is the
issue.

Further, in this study, to know the effect of dropout
features with respect to accuracy, Figure 10 highlights the
change in accuracy.

From Figure 10, it is clear that the highest accuracy is
obtained by considering all eleven features. In mutual in-
formation, top six features are selected and accuracy of 93%
is achieved, whereas, in chi-square method, top five features
are selected and accuracy of 93.5% is obtained. In correlation
method, top 5 features are selected but accuracy drastically
reduces to 91.5%. Hence, it can be concluded that, in mutual
information method and chi-square method, the tradeoff
between feature space and accuracy is maintained.

4. Discussion

In the current study, the impact of relative power and
variance of power is taken into consideration for classifi-
cation of MI tasks. Signals obtained from brain are taken
using electrodes placed on themotor cortex; hence, the study
is based on frequency and power of signal from the motor
cortex, that is, C3, C4, and Cz and nearby electrodes. To
analyze the impact, different strategies are adopted. Ten
subjects are considered for the evaluation of the proposed
method for MI task classification. *e results show that the
proposed approach outperforms CSP based approach for
classification; the reason behind this is the nature of
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frequency-based features which allows holding significant
characteristics for each task efficiently. Overall average ac-
curacy obtained in the study is 93.51%, which is consistent
for all subjects, not like other approaches having higher
accuracy for a few subjects. As an analysis of feature ranking
method, the mutual information-based method delivers an
average classification accuracy of 93.05% for the feature set
{5, 7, 8, 10, 11}. In this method, the relative power features
and varied power features show their significance with the
slightest loss in accuracy. In the chi-square method, the
analysis provides accuracy of 93.4% on the feature set {6, 8, 9,

10, 11}. In this method, the dominance of varied power
feature is indicated, but it also shows the contribution of
relative power feature of alpha to gamma ratio (6th feature).
In correlation-based method, again the feature {5, 6} shows
the least correlation. Hence, these proposed features are
significant not only in the aspect of accuracy enhancement
but also in different scenarios considered having mutual
information and correlation of features as major concerns.
*e analysis also shows that the combination of features
exhibits the tradeoff between accuracy and complexity of
feature space when complexity is a major concern.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Subject 6 Subject 7 Subject 8 Subject 9 Subject 10

Figure 6: Heat map of all ten subjects for correlated and uncorrelated features.
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Figure 7: Correlated pairs of features.

Table 2: Analysis of accuracy (in %) for impact of relative and varied power features.

Subjects Accuracy with
all features

Accuracy without
relative power

features

Accuracy with best features
from mutual information

method

Accuracy with best
features from chi-square

method

Accuracy with dropping
out correlated features

S01 94.3 94.9 93.8 94.2 92.4
S02 92.8 93 93.7 93.1 92.5
S03 94.2 93.3 93.2 94.2 90.4
S04 93.6 91.9 92.1 93.6 91.7
S05 93.1 92.5 92.6 93.1 91.8
S06 93.1 92.7 92.3 93.1 90.1
S07 91.6 91.4 91.7 91.6 89.7
S08 92.9 92.6 92.2 93.01 90.6
S09 95.2 95.4 95.4 95.2 91.7
S10 94.3 94.9 93.8 94.3 92.1
Bold letters show the maximum classification accuracy of the classifier.
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Change in Accuracy with Feature Ranking
Algorithms
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Figure 10: Change in accuracy with feature ranking algorithms.
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5. Conclusion

*e improvement in motor imagery based BCI is important
in its sophisticated model and analysis. In the current study,
MI signals are classified by the power of alpha, beta, and
gamma frequencies along with the relative power. Five
different classifiers are adopted to choose the better results
from the variety of classifiers. *e results of the classification
suggest that all classifiers have competitive results but, based
on accuracy, weighted KNN outperforms all the other
classifiers. *e proposed approach also outperforms the
CSP-based feature extraction method for the given dataset.
*e proposed approach not only resolves the problem to
maintain the tradeoff and complexity but also mitigates the
intersubject variability problem. To judge the significance of
new added features, feature ranking method is presented.
Based on the mutual information, chi-square, and corre-
lation methods of feature ranking, results are calculated and
compared.*e results of the feature ranking method suggest
that when feature space and time complexity are the con-
cerns, then chi-square method outperformers other feature
ranking methods with reduction of 45% feature space.
However, when the accuracy of the method is concerned for
BCI, the addition of relative power feature improves the
overall performance of the system. Future era will be based
on BCI, which flourishes the scope of further research to
meet the challenges of electrode placements and selection,
signal to noise ratio improvement, and device dependency
reduction.
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Investigating gender differences based on emotional changes becomes essential to understand various human behaviors in our
daily life. Ten students from the University of Vienna have been recruited by recording the electroencephalogram (EEG) dataset
while watching four short emotional video clips (anger, happiness, sadness, and neutral) of audiovisual stimuli. In this study,
conventional filter and wavelet (WT) denoising techniques were applied as a preprocessing stage and Hurst exponent (Hur) and
amplitude-aware permutation entropy (AAPE) features were extracted from the EEG dataset. k-nearest neighbors (kNN) and
support vector machine (SVM) classification techniques were considered for automatic gender recognition from emotional-based
EEGs. -e main novelty of this paper is twofold: first, to investigate Hur as a complexity feature and AAPE as an irregularity
parameter for the emotional-based EEGs using two-way analysis of variance (ANOVA) and then integrating these features to
propose a new CompEn hybrid feature fusionmethod towards developing the novelWT CompEn gender recognition framework
as a core for an automated gender recognition model to be sensitive for identifying gender roles in the brain-emotion relationship
for females and males. -e results illustrated the effectiveness of Hur and AAPE features as remarkable indices for investigating
gender-based anger, sadness, happiness, and neutral emotional state. Moreover, the proposed WT CompEn framework achieved
significant enhancement in SVM classification accuracy of 100%, indicating that the novel WT CompEn may offer a useful way
for reliable enhancement of gender recognition of different emotional states. -erefore, the novel WT CompEn framework is a
crucial goal for improving the process of automatic gender recognition from emotional-based EEG signals allowing for more
comprehensive insights to understand various gender differences and human behavior effects of an intervention on the brain.

1. Introduction

Perceiving gender based on human emotions has gained lots
of research interest to investigate personal characteristics in
neuroscience and psychology [1]. Gender differences pri-
marily based on processing emotions have attracted precise
interest due to their attainable utility in understanding
human psychopathology such as depression and

nervousness that might also be associated with the differ-
ential response of females and males to stress [2].

-us far, few researchers have investigated gender
variations primarily based on emotional changes [3], and
most of them report substantial differences [2]. Accordingly,
the kind of stimulus could be visual, auditory, or audiovisual
stimuli. -e visual stimuli and auditory stimuli are related to
an increase or decrease in the sensorimotor rhythm
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amplitude [4]. To reveal personal characteristics that would
be valuable in recognizing individual gender accurately in
daily life, visual and auditory stimuli are considered as two
common ways for human beings to elicit different emotional
states [2]. Recently, researchers indicated that, to provide the
best environment for automatic emotion recognition, they
need to get the combined effect of both visual and auditory
stimuli to elicit a specific emotional state [5]. Audiovisual
elicitations utilizing short film video clips are usually used to
elicit various conditions of emotion better compared to the
other modalities [4, 6–9]. Hence, in this work, emotions
were precipitated with the aid of the use of short audiovisual
video clips.

From the psychological point of view, the emotional
state can be distinguished and grouped into two emotional
models: the discrete model and the dimensional model. -e
discrete model comprises a lot of discrete emotional states
that are identified to be one of the core emotions, and all
other different emotions are considered part of these pri-
mary emotions (anger, fear, disgust, surprise, happiness, and
sadness) or an aggregate of them [10, 11]. -e dimensional
model is a two-dimensional (2D) cognitive-emotional state
model that is broadly utilized in mapping emotion recog-
nition applications. It plots emotions on two scales, valence-
arousal plots, where valence is in the horizontal axis and is
considered as the polarity or the quality of an emotion
ranging from unpleasant to pleasant and arousal is in the
vertical axis and is considered as the intensity of emotion
ranging from calm to excited [12]. -erefore, the 2D cog-
nitive-emotional state model is the mapping of all emotions
onto the valence-arousal graph, as portrayed in the cir-
cumplex model of emotion [13, 14]. Other researchers have
proposed a three-dimensional (3D) cognitive-emotional
state model which takes into consideration the attention-
rejection property in addition to the 2D model [8, 15–17].

In this study, the conventional filter and wavelet (WT)
denoising techniques were applied as a preprocessing stage
to the EEG dataset. Hurst exponent (Hur) complexity
feature and amplitude-aware permutation entropy (AAPE)

irregularity parameter have been computed to investigate
the gender changes of the emotional-based EEGs. Subse-
quently, the individual performances of these features were
statistically examined using two-way analysis of variance
(ANOVA) to recognize a gender-specific role in the brain-
emotion relationship for females and males during four
short emotional video clips (anger, happiness, sadness, and
neutral) of audiovisual stimuli. -en, the used features were
combined as a novel complexity and irregularity features
(CompEn) hybrid feature fusion set towards developing the
novel WT CompEn framework for automated gender rec-
ognition system on EEG for gender identification. Finally,
kNN and SVM classification techniques were used for au-
tomatic gender identification of emotional-based EEG
datasets. -e performances of these classifiers were exam-
ined on Hur and AAPE individually and on the CompEn
feature set.

To the best of author’s knowledge, the contribution of a
gender-precise role in the brain-emotion relationship has
been tended to in this work. -erefore, the main novelty of

this paper is threefold. First, it aims to propose an automated
gender recognition system based on EEG data of different
emotional states acquired using low-cost wireless EEG de-
vices. -is can be done by investigating the changes in
complexity and irregularity features of the emotional-based
EEGs using statistical analysis. -en, integrate the employed
features as CompEn feature set towards developing the novel
WT CompEn framework as a core for automated gender
recognition system feature set to be sensitive for identifying
gender differences of emotional-based EEG signals. -ird,
the EEG elicitation convention and the EEG estimation
system are utilized without precedent for this investigation
for emotion data obtaining, and that may make gender
contrast more articulated and may accomplish better
performance.

2. Related Works

Over the last decade, studies have indicated that the possible
adequacy of biomedical signs for recognizing people by
exploring gender differences based on emotional changes
would be elicited using different physiological measure-
ments such as electrocardiogram (ECG) [18] and electro-
encephalogram (EEG) [6, 19]. Several studies illustrated the
gender differences and classification from ECG signal
analysis [20, 21], while in other studies, the gender has been
classified based on using EEG signals [22, 23].

Characterized by wide availability, affordability, and lack
of invasiveness, EEG is a clinical instrument capable of
monitoring data processing in millisecond accuracy with a
high level of temporal resolution [24], -erefore, it has
neurophysiology applications for the detection and differ-
entiation of modifications in the brain [24, 25].

A wide range of brain disorders, including seizures,
attention-deficit hyperactivity disorder (ADHD), and Alz-
heimer’s disease (AD)/vascular dementia (VaD), have been
detected based on EEG signals, while mental tasks and sleep
stages have been classified based on such signals as well
[23–26]. -e latest research has employed EEG for high
time-resolution evaluation of affective moods in people
[26–29]. Recently, EEG has been generally utilized to assess
human emotional states with high time resolution [6, 30, 31].
Given the important insight that it can provide in this
regard, EEGmay be a promising biomarker for the appraisal
of different affective reactions from an EEG dataset with
multiple channels across brain regions [32]. To give an
example of such research, brain waveforms were used in [33]
to develop a method of uninterrupted music emotion de-
tection. Similarly, in [34], real-time techniques of human
emotion detection based on EEGwere employed to devise an
integrated music therapy for the identification of present
affective moods according to neurofeedback and patient-
specific customization of treatment.

Besides being highly informative about brain physiology,
EEG signals could potentially be biomarkers of brain linear
and nonlinear behavior [26, 27, 35–37]. -e Hurst exponent
(Hur) [6, 38] and fractal dimension (FD) [39, 40] are among
the nonlinear techniques that have been adopted for the
representation of complex affective tasks and for the
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examination of complicated dynamic data generated by the
brain cortex [33, 41].

EEG signals are considered dynamic systems lacking
stability, and the uncertainty of such systems can be de-
termined by employing the nonlinear parametric index of
entropy [42]. Research into cognitive mental states, sleep
states, and approaches for categorizing affective levels has
benefitted from the application of entropy to EEG signals
[35, 43–45]. Furthermore, the use of a range of entropies for
the identification of biological gender based on EEG could
be useful in clinical analyses, especially on social emotion,
individual identification, response to therapy, clinical ef-
fectiveness, and side effects [46]. To give an example, in [1],
human emotions triggered by video clips were examined
based on sample entropy (SampEn), approximate entropy
(ApEn), and permutation entropy (PerEn), as these entro-
pies are resistant to noise and can effectively measure time
series complexity. In a different study, the analysis of EEG
signals for clinical evaluation was conducted based on PerEn
entropy and symbolic transfer entropy, hinting at the re-
lational ability of the employed EEG entropy examination
with clinical cases of different cognitive conditions [47].
Another type of entropy suggested for EEG examination is
fuzzy entropy (FuzEn), involving the substitution of
Heaviside functions with fuzzy membership functions
[48, 49]. According to existing studies, the issue of entropy
mutation is mitigated by FuzEn, but on the downside, the
relevant information is lost when employing such entropy
techniques because they entail single-scale analysis. Whereas
the speed of SampEn is better compared to FuzEn, greater
consistency and reduced reliance on data length are dem-
onstrated by FuzEn [50]. ApEn [51], SampEn [52], FuzEn
[53], and PerEn [54] constitute the four most popular en-
tropy predictors within the context of EEG signal processing
[50]. To identify how affective-based EEG signals across the
brain differ between genders, the present work concentrates
on EEG-derived indices.

Support vector networks (SVNs), artificial neural net-
works (ANNs), k-nearest neighbors (kNN) and support
vector machine (SVM) classifiers [55], and hidden Markov
models (HMM) have all been employed to investigate au-
tomatic algorithms for a system of gender categorization
[56, 57]. For instance, the SVM classifier was used in [22] to
devise an EEG signal-based automatic system of age and
gender detection, while EEG data related to resting state
were the basis of a model of automatic gender detection in
[1]. In other research, EEG sensors with wavelet transform
frequency breakdown for feature extraction and random
forest classifier enabled the creation of an automatic system
for detecting age and gender in resting state with eyes closed
[58, 59].

Most gender detection studies using EEG signals based
on emotional response focused on the linear analysis using
spectral relative powers [30, 60, 61]. However, other re-
searchers have used nonlinear features to investigate brain
complexity [62–64]. In the current study, we aim to un-
derstand the role of EEG for gender identification using the
integrated entropy and spatial features to characterize the
emotional-based signals by examining different brain region

behaviors during audiovisual video clips. Integrated features
are essential for an automatic gender detection system to
perform effectively and be solidly reliable. In this context, the
impact of gender discrepancies on the elements of EEG-
based systems of affective reaction detection and the general
performance of such systems are worth investigating. To this
end, computation of entropy features was done to highlight
the gender variability occurring in affective-based EEG
systems.

3. Materials and Methods

Figure 1 illustrates the block diagram of the proposed study.

3.1. EEGAcquisitionandRecording. Amobile and affordable
Emotiv EPOC EEG 14-channel headset (Emotiv Systems,
Inc., San Francisco, CA) was employed in this work to
capture EEG signals labeled as AF3, F7, F3, FC5, T7, P7, O1,
O2, P8, T8, FC6, F4, F8, and AF4, with the common mode
sense (CMS) left mastoid and the driven right leg (DRL)
being referenced as ground. -e positioning of the sponge-
based electrodes used by the headset was done according to
the 10–20 system, while a band-pass filter of 0.5–70Hz
frequency facilitated the filtering of electrode data. -e
frequency of sampling was 128Hz, with 0.51mV resolution.

-e study recruited a total of ten participants (6 males
and 4 females; the age of 22.6± 2.75 years, mean± standard
deviation (SD)), all university students, aged between 18 and
24 years. Before beginning the research, each participant
underwent an evaluation to ensure no prior history of
neurological or psychiatric issues and was then presented
with an informed consent form (ICF) which they were
requested to sign before participating in the study.

During the EEG recording procedure, subjects were
asked to remain relaxed and calm for the entire EEG re-
cording duration to minimize the data reading artifacts
resulting from movements. -e evaluation of the 3 emotion
states (anger, sadness, and happiness) along with the neutral
condition was conducted by allowing the participants to
view various short emotionally stimulating video clips, with
audio, following which the participants were allowed some
time to evaluate and grade their responses to the clips
employing a self-assessment questionnaire, followed by a
break of 45 seconds before viewing the next video clip
(Figure 2) [65].

-e running time of the various video clips varied from
one to the other, with the longest having a duration of four
minutes. -e emotional video clips used were selected based
on those recommended by Rottenberg et al. [65]. As pre-
viously mentioned, participants were asked to evaluate the
strength of their emotional response to each clip using a five-
point-scale SAQ; participants were asked to select either 1
(very low), 2 (low), 3 (medium), 4 (high) or 5 (very high) to
evaluate the degree of emotion experienced [31].

To enable the participants to view the affective video
clips, the used video clips were in German language and the
virtual emotion presenter (VEP) software from the Uni-
versity of Vienna was employed. -is software was chosen
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because it not only permits arbitrary viewing but also
documents extra sources of data.-e experimental work was
conducted in the Anthropology Research Laboratory, and
besides the VEP software, the equipment used included the
regular laboratory ambient lighting, LCD for screening the
video clips, and stereo speakers so that the video clips could
be accompanied by uninterrupted sound at a level acceptable
to the participants (Figure 3). -e Helsinki declaration and
subsequent refinements were followed in every research
procedure.

3.2. Preprocessing Stage. Since most artifacts occurring in
EEG signals were overlapping with brain activity, pre-
processing is essential in EEG signal processing.

3.2.1. Conventional Filtering. In this context, conventional
filters were used as an initial stage to process each channel of
the recorded EEG datasets. A notch filter at 50Hz was used
to remove the power line interference noise [32], and a
fourth-order Butterworth bandpass filter was applied with a
0.5–64Hz frequency range to limit the band of the recorded
EEG signals [66].

3.2.2. Wavelet Analysis. WT has the ability in resolving EEG
into specific time and frequency components by providing a
good time resolution and poor frequency resolution at high
frequencies and good frequency resolution and poor time
resolution at low frequencies. -e DWT is a fast

nonredundant transform used in practice for analyzing both
the low- and high-frequency components in the EEG signals
because it requires less computational time than the con-
tinuous WT (CWT) [67]. -e DWT can be processed by
obtaining the discrete value of the parameters a and b, as in
equation (1). It can be obtained as a set of decomposition
functions of the correlation between the signal f(t) and the
shifting and dilating of one specific function called mother
wavelet function ψ(t). MWT is shifted by the location pa-
rameter (b) and dilated or contracted by frequency scaling
parameter a, as in the following equation
[8, 16, 17, 36, 68–70]:

DWTm,n(f) � a
− (m/2)
0  f(t)ψ a

− m
0 t − nb0( dt, (1)

where a0 and b0 values are set to 2 and 1, respectively.

ψa,b(t) �
1
��
a

√ ψ
t − b

a
 , a ∈ R+

, b ∈ R. (2)

SURE threshold is an adaptive soft thresholding method,
which aims to determine the threshold limit for each level
based on Stein’s unbiased risk estimation [71] and com-
monly used value in [72–74].

In this study, the sampling frequency was 128Hz and the
EEG dataset was subjected to “sym9” from the Symlets
family with a four-decomposition level of five subband EEG
signals. Among the five subbands, cD1, cD2, cD3, and cD4
represented the decomposition detail coefficients and cA is
the decomposition approximation coefficient. -e SURE

EEG Classification
Stage 

EEG Acquisition and Recording

Preprocessing
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Conventional Filters

Statistical Analysis
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Extraction 

Accuracy Confusion matrix
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Performance
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kNN SVM
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Figure 1: -e block diagram of the proposed study.
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threshold is an adaptive soft thresholding method that is
used to find the threshold limit for each level based on Stein’s
unbiased risk estimation [70, 74].

3.3. Features Extraction Stage. Because of the complicated
structure of the brain and its ability to perform multiple and
complex sophisticated cognitive tasks, the brain neurons are

considered to be governed by nonlinear dynamic phe-
nomena. EEG signals have been used to investigate the
chaotic behavior of the brain from nonlinear time series
[75, 76]. Since the EEG spectral-band analysis was unable to
illustrate the electrical activity of the brain and the under-
lying mechanisms of the brain function, the nonlinear
analysis based on dynamics information needs to be in-
vestigated.-e present study was undertaken to examine the
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Figure 2: -e experimental protocol of emotion [9].
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Figure 3: Setup of the experimental room with presentation TV and the recorders.
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gender differences from emotional-based EEG background
activity with two different features: Hurst exponent (Hur)
and amplitude-aware permutation entropy (AAPE) to il-
lustrate the complexity and irregularity features in detecting
gender differences [63, 77–79]. Indeed, the used features
were selected based on previous studies due to their use-
fulness and effectiveness in discriminating the EEG signals
[35, 80, 81]. In this stage, the filtered EEG datasets were
segmented into 3 trials, and each trial includes 10 seconds of
each video clip viewed (3×10 second period) with 1280 data
points.

3.3.1. Hurst Exponent (Hur). Hur is a measure that has been
widely used to evaluate the self-similarity and correlation
properties of fractional Brownian noise and the time series
produced by a fractional (fractal) Gaussian process. Hur is
used to evaluate the presence or absence of long-range
dependence and its degree in a time series. However, local
trends (nonstationarities) are often present in physiological
data and may compromise the ability of some methods to
measure self-similarity. Hur is the measure of the
smoothness of a fractal time series based on the asymptotic
behavior of the rescaled range of the process. In time series
analysis of EEG, Hur is used by [38, 80] to characterize the
nonstationary behavior of the EEG signals. Hur is defined as

Hur �
log(R/S)

log(T)
, (3)

where T is the duration of the sample of data and R/S is the
corresponding value of the rescaled range. -e above ex-
pression is obtained from Hurst’s generalized equation of
time series that is also valid for Brownian motion [82].

3.3.2. Amplitude-Aware Permutation Entropy (AAPE).
AAPE has been proposed to consider the amplitude in-
formation from permutation entropy (PE) to overcoming
the PE shortcoming of considering the order of the am-
plitude and discarding the information regarding the am-
plitude, besides the equal amplitude values in each
embedded vector are not considered.

To estimate AAPE, assume y � yt+(j1− 1)l, yt+(j2− 1)l, . . . ,

yt+(jd − 1)l is the time series, where j is the time index of the
element in the reconstruction vector, a vector including the
d! potential symbol patterns of π motifs, where d is the
embedded dimension, which determines how much infor-
mation is contained in each vector, and l is the time delay of
the order pattern i, i � 1, 2, . . . , d!. To calculate AAPE, for
each πi, p(πk) demonstrates the relative frequency as follows
[81]:

p πk(  �

p πd,l
i  + A/d 

d

k�1
xi+(k− 1)l


 + 1 − A/d − 1 

d

k�2
xi+(k− 1)l − xi+(k− 2)l


⎡⎣ ⎤⎦ if p πd,l

i  � 0

p πd,l
i 


N− d+1
i�1 A/d 

d
k�1 xi+(k− 1)l


 + 1 − A/d − 1

d
k�2 xi+(k− 1)l − xi+(k− 2)l


 

otherwise

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

AAPE(d, l, n) � − 

πk�dl

πk�1
p πk( ln p πk( .

(4)

When all motifs have equal probability, the largest value
of AAPE is obtained at l � 1. For 30 seconds, N � 3840
samples, 3 windows of 10-second length (1280 samples)
were extracted from the original EEG time series for each 14
channels.

3.3.3. Complexity and Entropy Features Fusion. To get an
efficient gender recognition model in terms of high accuracy
recognition rates and to have more insights on the mental
processes for females and males, the Hur index of com-
plexity and AAPE index of irregularity have been combined
to develop a new hybrid index of complexity-entropy
(CompEn) set of feature.

3.4. Statistical Analysis Stage. -is study intends to inves-
tigate the significance of Hur and AAPE features to be re-
liable indices in detecting gender differences in anger,
happiness, sadness, and neutral emotional states. -erefore,
statistical analysis has been conducted using SPSS statistical
tool version 22. Two sessions of two-way analyses of variance
(ANOVA) were performed to realize the significant dif-
ferences among the emotions (i.e., anger, happiness, sadness,
and neutral), and Hur was considered for the first session
and AAPE was considered for the second session. Hur and
AAPE were applied as dependent variables.-e group factor
(i.e., female and male) was the independent variable. -e
significance was set at p< 0.05. Moreover, the study was
aimed to test the hypothesis that the gender differences from
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emotional-based EEG performed from the complexity and
entropy-based features would be different between females
and males.

4. Classification Stage and
Performance Measures

-e last stage for identifying neurophysiological changes in
females and males is using the classification model. In this
study, k-nearest neighbors (kNN) and support vector
machine (SVM) were used.

Given that the majority of the learning algorithms as-
sume a balanced class distribution, their results typically
favor the predominant class that gives poor class predictions.
-e class imbalance in the dataset highly affects the quality of
the classification model. However, given that the minority
class cannot be easily discriminated against, the classifier can
simply classify each instance as the majority class. In this
study, the minority class was represented by the females. A
synthetic oversampling technique (SMOTE) was applied to
overcome the data imbalance [83]. -e classifier parameters
and percentage of oversampling were determined via 10-fold
cross-validation using a grid search approach to avoid
overfitting and bias in the classification analysis [84]. -e
available dataset was divided into 10 equal size disjoint
subsets. One of these subsets was used as the test set, while
the remaining nine subsets were combined into a training set
to learn the classifier. -is procedure was performed 10
times, which resulted in 10 accuracies. -e average of these
accuracies represented the 10-fold cross-validation accuracy
of learning from this dataset [85]. Given that SMOTE
changes the dataset, the percentage of oversampling were
combined with the parameters. -erefore, those parameters
that are found with different SMOTE percentages may not
be the same. Using only the training set, the SMOTE was
used to equalize the frequency of the classes [86, 87].

kNN is one of the most popular nonparametric classi-
fication algorithms, it is more robust when k> 1 particularly
to reduce the influenced noisy points within the training set.
In this study, the Euclidean distance was utilized as a
similarity measure to classify each trial by kNN. -e clas-
sifier was trained to obtain the best value of k � 7 that
maximizes the overall classification performance evaluation.
kNN with 7 neighbors classifiers were selected based on
previous work [9, 28, 29, 43, 77, 79, 88].

Optimization of the complexity parameter C with a
range of − 4≤ log10(C)≤ 4 in C values
C ∈ 0.0001, 0.001, 0.01, 0.1, 0, 10, 100, 1000, 10000{ } on the
training set via ten-fold cross-validation yielded ideal out-
comes for the SVM classifier. During testing, C corre-
sponding to 10 gave optimal results for C values. -e
multiclass SVM classifiers were applied based on the radial
basis function (RBF) kernel. Furthermore, the training
dataset was used to determine the minimum misclassifica-
tion rate, which in turn helped to obtain the smoothing
parameter σ in the context of SVM training. Methodical
variation of σ value in different training episodes is the only
way of determining the ideal σ. Hence, in this work, vari-
ation of the σ value was done in the range of 0.1–1 at 0.1

intervals. A σ value of 0.5 was established to be associated
with the minimum misclassification rate.

-e performance of the proposed framework was
evaluated using the values of average classification accuracy,
confusion matrix, receiver operating characteristic curve
(ROC), and area under the curve (AUC).

5. Results and Discussions

5.1. Results of Preprocessing Stage. As previously described,
the EEG signal datasets were filtered by conventional filters
and subjected to the WT denoising technique. Figure 4 il-
lustrates the data obtained from channel 7, representing the
frontal brain area when subjected to the emotional state of
anger. Observation shows that the artifactual signal elements
(blue lines) present in the raw EEG signal were successfully
blocked during signal denoising, resulting in the clean EEG
signal (red line).

5.2. Results of Statistical Analysis. -e statistical character-
ization of the differences in Hur and AAPE females and
males will be discussed in the following sections.

5.2.1. Results of Hurst Exponent (Hur). -e boxplots of
Figure 5 indicate the overall pattern of Hur feature response
for the two group factor distribution (i.e., female and male)
from emotional-based EEG signals. It can be observed that
Hur provides a significant variation with a useful way to
visualize the characteristics of responses for the female and
male group factors. Furthermore, boxplot analysis dem-
onstrates themedian value, as the value inside the boxplots is
the median value of the distribution. -e typical boxplot has
lines at the upper median and lower quartile values. Figure 5
confirms the suitability of the feature for pattern
classification.

Moreover, to recognize the importance of the complexity
feature Hur method for the pattern classification, statistical
analysis using two-way ANOVA was conducted on the Hur
features. In this analysis, the group factor (i.e., female and
male) was the independent variable, whereas the Hur fea-
tures were the dependent variable. -e significance for all
statistical tests was set at p< 0.05. Normality was then
assessed using the Kolmogorov–Smirnov test, whereas ho-
moscedasticity was verified using Levene’s test. -e post hoc
comparison was performed through Duncan’s test.

Figure 6 illustrates the comparative plot of Hur which
was estimated to discriminate between females and males
based on anger, happiness, sadness, and neutral emotional
states based on EEG signal complexity. Anger, happiness,
and neutral were statistically significant from sadness,
particularly for females, whereas anger, happiness, and
sadness were statistically significant from neutral for males.
One can see that the females had significantly lower Hur
values at the four different emotional states compared to
males ((Huranger,happiness,sadness,neutral (Females)
<Huranger,happiness,sadness,neutral (Males))) with significant dif-
ferences (p< 0.05). -ese results suggest that the EEG ac-
tivities of females are significantly less complex for males.
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5.2.2. Results of Amplitude-Aware Permutation Entropy
(AAPE). -e boxplots of Figure 7 indicate the overall
pattern of AAPE feature response for the two group factor
distribution (i.e., female and male) from emotional-based
EEG signals. It can be observed that AAPE provides a
significant variation with a useful way to visualize the
characteristics of responses for the female and male group
factors. Furthermore, boxplot analysis demonstrates the
median value, as the value inside the boxplots is the median
value of the distribution. -e typical boxplot has lines at the
upper median and lower quartile values. Figure 7 confirms
the suitability of the feature for pattern classification.

Moreover, to recognize the importance of the complexity
feature AAPE method for the pattern classification, statis-
tical analysis using two-way ANOVA was conducted on the
AAPE features. In this analysis, the group factor (i.e., female

and male) was the independent variable, whereas the AAPE
features were the dependent variable. -e significance for all
statistical tests was set at p< 0.05. Normality was then
assessed using the Kolmogorov–Smirnov test, whereas ho-
moscedasticity was verified using Levene’s test. -e post hoc
comparison was performed through Duncan’s test.

In this study, AAPE has been used for discriminating
females from males based on anger, happiness, sadness, and
neutral emotional states based on EEG signal irregularities.
Figure 8 illustrates the comparative plot of AAPE; it
can be observed that sadness was statistically significant
from neutral anger and happiness. Notably, EEG signifi-
cantly had lower AAPE values in happiness and
sadness for females compared to males (AAPEhappiness,
sadness(Females)<AAPEhappiness,sadness(Males)), whereas
the females had higher AAPE values for anger and neutral
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Figure 4: -e denoising results after preprocessing stage for channel F7.
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emotional states compared to males
(AAPEanger,neutral (Females)<AAPEanger,neutral (Males))
(p< 0.05). -ese results suggest that EEG had regular be-
havioral activities for both females and males.

5.3. Results of Classification Stage. -is study has dealt with
emotional-based EEG signals for gender identification
problems. -e key design decisions for kNN and SVM used
in the classification are the training process, as they depend
on the size of the training set and the test set. However, to
comparatively evaluate the performance of the proposed
classifiers, the classifiers employed in this work were trained
on the same training data set and tested on the testing data
set.

5.3.1. Results of Hurst Exponent and Classification
Performance. Tables 1 and 2 display the confusion matrix
for female and male identification from emotional-based
EEG signals using Hur complexity index with kNN and
SVM classifiers, respectively, in which correct recognition is
shown on the diagonal and substitution errors are off-
diagonal.

In Table 1, the two diagonal cells show the percentage of
correct classification using kNN classifier. For example,

females are correctly classified with 58.3%; similarly, 100%
are correctly classified as males, whereas 41.7% of females are
incorrectly classified as males.

-e results show that kNN classifier can differentiate
females and males from emotional-based EEG signals with a
high accuracy of 83%. Moreover, Figure 9 illustrates the
ROC curve and the AUC value obtained from the investi-
gation of the Hur features.

In Table 2, the two diagonal cells show the percentage of
correct classification using SVM classifier. For example,
females are correctly classified with 80%; similarly, 90% are
correctly classified as males. Moreover, 20% of females are
incorrectly classified as males, whereas 10% of males are
incorrectly classified as females.

-e results show that SVM classifier can differentiate
females and males from emotional-based EEG signals with a
high accuracy of 86.7%. Moreover, Figure 10 illustrates the
ROC curve and the AUC value obtained from the investi-
gation of the Hur features.

5.3.2. Results of Amplitude-Aware Permutation Entropy and
Classification Performance. Tables 3 and 4 display the
confusion matrix for female and male identification from
emotional-based EEG signals using AAPE entropy index
with kNN and SVM classifiers, respectively, in which correct
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Table 1: Confusion matrix calculations for gender classification from emotional-based EEGs using Hurst exponents and kNN classifier.

Predicted
Actual

Gender Females (%) Males (%)

Hur Females 58.3 41.7
Males 0 100

Table 2: Confusion matrix calculations for gender classification from emotional-based EEGs using Hurst exponents and SVM classifier.

Predicted
Actual

Gender Females (%) Males (%)

Hur Females 80 20
Males 10 90
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Figure 9: ROC curve and the AUC values of gender classification from emotional-based EEGs using Hurst exponent features and kNN
classifier.
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recognition is shown on the diagonal and substitution errors
are off-diagonal.

In Table 3, the two diagonal cells show the percentage of
correct classification using kNN classifier. For example,
females are correctly classified with 100%; similarly, 77.8%
are correctly classified as males, whereas 22.2% of males are
incorrectly classified as females.

-e results show that kNN classifier can differentiate
females and males from emotional-based EEG signals with a
high accuracy of 86.7%. Moreover, Figure 11 shows the ROC
curve and the AUC value obtained from the investigation of
the AAPE features.

In Table 4, the two diagonal cells show the percentage of
correct classification using the SVM classifier. For example,

females are correctly classified with 90%; similarly, 90% are
correctly classified as males. Moreover, 10% of females are
incorrectly classified as males, whereas 10% of males are
incorrectly classified as females.

-e results show that the SVM classifier can differentiate
females and males from emotional-based EEG signals with a
high accuracy of 90%. Moreover, Figure 12 shows the ROC
curve and the AUC value obtained from the investigation of
the AAPE features.

5.3.3. Results of CompEn Hybrid Index and Classification
Performance. Tables 5and 6 display the confusion matrix for
female and male identification from emotional-based EEG
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Figure 10: ROC curve and the AUC values of gender classification from emotional-based EEGs using Hurst exponent features and SVM
classifier.

Table 3: Confusion matrix calculations for gender classification from emotional-based EEGs using amplitude-aware permutation entropy
and kNN classifier.

Predicted
Actual

Gender Females (%) Males (%)

AAPE Females 100 0
Males 22.2 77.8

Table 4: Confusion matrix calculations for gender classification from emotional-based EEGs using amplitude-aware permutation entropy
and SVM classifier.

Predicted
Actual

Gender Females (%) Males (%)

AAPE Females 90 10
Males 10 90
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signals using CompEn hybrid index with kNN and SVM
classifiers, respectively, in which correct recognition is shown
on the diagonal and substitution errors are off-diagonal.

From Table 5, the two diagonal cells show the percentage
of correct classification using kNN classifier. -e females are
correctly classified with 91.7%; similarly, 100% are correctly
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Figure 11: ROC curve and the AUC values of gender classification from emotional-based EEGs using amplitude-aware permutation
entropy and kNN classifier.

0

0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

ROC curve
Area under curve (AUC)
Current classifier

(0.06,0.83)

AUC=0.97

Figure 12: ROC curve and the AUC values of gender classification from emotional-based EEGs using amplitude-aware permutation
entropy and SVM classifier.
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classified as males, whereas 8.3% of males are incorrectly
classified as females.

-e results show that females can be differentiated with a
high accuracy of 96.7% using kNN classifier to discriminate
females and males from emotional-based EEG signals.
Moreover, Figure 13 illustrates the ROC curve and the AUC
obtained from the investigation of the CompEn features; the
AUC was 0.96 and indicates that the proposed CompEn
hybrid index exhibits robust classification performance in
discriminating females and males from emotional-based
EEGs.

In Table 6, the two diagonal cells show the percentage of
correct classification using the SVM classifier. For example,
females are correctly classified with 100%; similarly, 100%
are correctly classified as males.

-e results show that females can be differentiated with a
high accuracy of 100% using SVM classifier as a benchmark
technique to discriminate females and males from emo-
tional-based EEG signals. Moreover, Figure 14 illustrates the
ROC curve and the AUC obtained from the investigation of
the CompEn features; the AUC was 1 and indicates that the
proposed CompEn hybrid index exhibits robust classifica-
tion performance in discriminating females and males from
emotional-based EEGs.

-erefore, the results showed that the proposed
WT CompEn framework significantly increases the classi-
fication accuracy. Indeed, the results emphasize the crucial
role played by the novel proposed WT CompEn framework
in the EEG signal processing chain, particularly in the
classification results.

Table 5: Confusion matrix calculations for gender classification from emotional-based EEGs using CompEn hybrid fusion index and kNN
classifier.

Predicted
Actual

Gender Females (%) Males (%)

CompEn Females 91.7 8.3
Males 0 100

Table 6: Confusion matrix calculations for gender classification from emotional-based EEGs using amplitude-aware permutation entropy
and SVM classifier.

Predicted
Actual

Gender Females (%) Males (%)

CompEn Females 100 0
Males 0 100
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Figure 13: ROC curve and the AUC values of gender classification from emotional-based EEGs using proposed CompEn hybrid features
and kNN classifier.
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Gender recognition framework using emotional-based
EEG signals has been performed under MATLAB R2021a on
a laptop with processor Intel Core i7-8550U CPU @
1.80GHz and 1.99GHz using 16.0GB RAM and 64-bit
operating system.

However, some limitations also need to be considered in
this study; for instance, the sample size was small and an
additional analysis with a large database should be per-
formed in the future. Despite this, the different attributes of
offline and online categorizations call for additional inves-
tigations based on real-time online experiments to validate
the results obtained. Such limitations notwithstanding, there
is an agreement between the results reported by this work
and those of other studies, which confirmed the ability of
EEG signals to identify the most gender discrepancies re-
garding anger, sadness, happiness, and neutral emotions and
those discrepancies were reflected in the EEG bands as well
[8, 17, 63, 77–79].

6. Conclusion

Conventional filters and WT techniques were used in the
preprocessing stage to denoise the EEG datasets of 10
subjects while watching four short emotional video clips
(anger, happiness, sadness, and neutral) of audiovisual
stimuli. In the second stage, Hur complexity feature and
AAPE irregularity parameter have been computed to in-
vestigate the gender changes of the emotional-based EEGs.
Moreover, ANOVA has been used to statistically examine
the individual performance of the used features to recognize
a gender-specific role in the brain-emotion relationship for
females and males during four short emotional video clips.

-en, the used features were combined as novel complexity
and irregularity features CompEn hybrid feature set towards
developing the novel WT CompEn framework as a core for
an automated gender recognition system on EEG for gender
identification. Finally, kNN and SVM classification tech-
niques have been used for automatic gender identification of
emotional-based EEG datasets. -e performances of these
classifiers were examined on Hur and AAPE individually
and on the CompEn hybrid feature set. Potentially, the novel
WT CompEn framework can be used to identify gender
differences from emotional-based EEG signals with high
classification results.

-is study has a primary limitation of the small sample
size examined during the experiment. -erefore, further
investigations will be carried out on a larger database in the
future. Like every work, this study has advantages and weak
points. However, gender detection has many advantages as
well as applications such as health care, human-computer
based interaction, knowing consumer preferences for online
retailers, and biometric. Our findings approve the effec-
tiveness of using complexity and irregularity features and
CompEn hybrid feature set towards developing the novel
WT CompEn framework as an automated gender recog-
nition system on EEG for gender identification. -is study
reveals useful insights about gender detection from emotion-
based EEG classification. More investigation can be per-
formed to describe the physiological meaning of the
extracted features. Other classification approaches can be
employed in further studies. In the future, researchers can
decrease the computation cost and processing time. It is
worth mentioning that the advantages of the current study
outweigh the drawbacks.
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In this pandemic situation, importance and awareness about mental health are getting more attention. Stress recognition from
multimodal sensor based physiological signals such as electroencephalogram (EEG) and electrocardiography (ECG) signals is a very
cost-effective way due to its noninvasive nature. A dataset, recorded during the mental arithmetic task, consisting of EEG+ECG
signals of 36 participants is used. It contains two categories of performance, namely, “Good” (nonstressed) and “Bad” (stressed)
(Gupta et al. 2018 and Eraldéır et al. 2018). )is paper presents an effective approach for the recognition of stress marker at frontal,
temporal, central, and occipital lobes. It processes the multimodality physiological signals. )e variational mode decomposition
(VMD) strategy is used for data preprocessing and for the decomposition of signals into various oscillatory mode functions. Poincare
plots (PP) are derived from the first eight variational modes and features from these plots have been extracted such asmean, area, and
central tendencymeasure of the elliptical region.)e statistical significance of the extracted features with p < 0.5 has been performed
using the Wilcoxson test. )e multilayer perceptron (MPLN) and Support Vector Machine (SVM) algorithms are used for the
classification of stress and nonstress categories. MLPN has achieved the maximum accuracies of 100% for frontal and temporal lobes.
)e suggested method can be incorporated in noninvasive EEG signal processing based automated stress identification systems.

1. Introduction

Short-term mental fatigue results in reduced efficiency in
workspace, whereas long-term mental fatigue may result
into brain damage. )erefore, timely awareness about rea-
sonable rate of mental fatigue is very crucial. Stress man-
agement is very necessary for successful and happy leading
life. )e population who can easily manage stress does
exhibit their behavior in brain as well and can be easily
captured by noninvasive approach. Acquisition of data in
real time environment is very tough; thus, induced tech-
nique plays a very important role in behavioral study. )ree
levels of mental arithmetic tasks that are mostly used in
literature are easy, medium, and hard and it is an appropriate
technique for inducing the stress in virtual environment [1].

Nowadays, in every work domain and culture, performance
setting is marked and stress management is a key to succeed
and nonmanagement of stress not only leads to failure but is
a major reason of depression, frustration, and negative
approach towards life. )us, stress management is an im-
portant skill to learn and to help this fraternity by early
identification of markers which is very essential.

In literature, lot of attempts have been made in this
direction. Firstly, in order to understand the markers of
fraternity stress and nonstress, various types of studies have
been conducted where arithmetic test is the most common
technique which has been widely adopted. However, mental
arithmetic task is an appropriate stress inducing technique
but it has certain limitation and according to age it has
shown different impact [2]. To capture the response from
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different types of subjects in response to various stress in-
duced techniques, multimodality approach has exhibited
significant role and its impact is noteworthy [3]. Various
types of studies have been carried out in this domain and
quite interesting study has been carried out on the arithmetic
task where experimentation has been done on numbers with
respect to ordered and unordered [4]. As brain has various
lobes and it gives response to various activities, sometimes, it
might be subject dependent and independent and this
correlation has been identified by studying different regions
of brain while performing activity abacus [5] and hemi-
sphere activation has been studied [6].)inking also acts as a
vital role in the generation of brain signals; thus, silent text
reading and study of brain signals in response to silent text
reading have been carried out [7–9].

For capturing the physiological signals in response to
induced techniques, electroencephalogram (EEG), electro-
myography (EMG), electrooculography (EOG), and elec-
trocardiography (ECG) have mostly been used whereas
photoplethysmography (PPG) also serves a very important
role in capturing physiological signals [3, 10]. Single channel
study though focuses on single task whereas multimodal
ones focus and capture the responses from various parts;
thus, multimodality signals and their correlation with
mental workload have been studied [11, 12]. Every signifi-
cant activity contains the significance of various brain re-
gions and its association details are presented [13]. Even
though behavioral impact is available all over, certain lobes
have shown prominent changes; majorly frontal region
exhibits prominent changes in signals while performing
mental arithmetic task [14]. Data acquisition by inducing
relevant technique/protocol and its systematic analysis lead
to designing of an appropriate study protocol and popularly
used methods are appropriate selection of channels [15].
Analysis of an EEG signal from only visualization is an
empirical science and needs expertise in neurological do-
main and thus, it is very time-consuming and tedious
process [16]. As there are stress induced techniques, simi-
larly stress relieving techniques and their cognitive impact
are also great to understand [17]. Stress has significant
impact to invoke and subsidize emotions [18] and generate
different behavioral response in epilepsy patients [19, 20].
Physiological signals also help to learn behavioral pattern in
special category [21]. In order to better visualize signals
decomposition method, feature extraction plays very crucial
role. Decomposition of signals in empirical way has been
widely used [22], but high frequency study is well supported
by VMD; thus authors have proposed the use of VMD
technique to better visualize the signal in time domain while
retaining its frequency components.)is method has proven
its significant role in area of seizure [23, 24]. Understanding
of connectivity among brain regions gives clear insight about
origin and exit of electrical connectivity between regions
[20]. However, convolution techniques have been used [21]
for reading EEG signals but they have no flexibility of
reading signals in time-frequency domain and sometimes
because of nonstationary behavior of the EEG signal they
need to compromise on accuracy [25]. )ere are unlimited
areas where stress gets evoked and reason for it could be

noise trigger or unpleasant vision [26]. As it is said every task
is time bounded and it is proven in studying correlation of
activity and time in [24]. Mere clean data acquisition does
not solve the purpose unless relevant features have been
extracted and its importance is viable [1, 23]. Capturing of
signal from throughout brain region is very tedious; thus,
study of only frontal region has been carried out in [27]. EEG
signals are very effective in carrying correlation between
various rhythmic signals [28]. Activation of specific region
and band is dependent upon types of activities performed by
subjects [29, 30]. Because of scarcity of professional auto-
mation and semiautomation, the analysis of multimodal
signals such as EEG+ECG is very important [31]. In real life,
time requirement to induce stress and analyze its resistant
capability has various constraints [32–34].

)e main objective of this work is to extract relevant
features from the multimodality physiological signals and to
design a classifier which can easily detect the stress (bad) and
nonstress (good) performer where signals have been cap-
tured while subjects have performed silent math activity as
well as during getting acquainted with an environment.
)erefore, key contributions of this research work are as
follows:

(i) Proposing an effective method for the automated
classification of stress resistant capability while
conducting short time mental arithmetic task.

(1) )e VMD is used for decomposing the multi-
modal physiological signals.

(2) )e PPs plots are derived from the first eight
variational modes.

(3) )e discriminating features have been identified
such as area, mean, and central tendency measure
from each PP.

(4) )e extracted features are passed to the consid-
ered classifiers for automated identification of
good and bad classes.

Remainder of the paper is organized as follows: Section 2
describes materials and methods, Section 3 discusses the
results, and conclusion is presented in Section 4.

2. Materials and Methods

)is section has contributed for the discussion of meth-
odology which consists of four components: (i) description
of dataset used for an experimentation, (ii) selection of
channels for an experiment purpose, (iii) VMD, (iv) PPs and
features extraction, (v) classifiers, and (vi) evaluation
measures.

)e suggested work flow is shown in Figure 1. Different
stages are described in the following subsections.

2.1. Dataset. In this work, dataset used for the purpose of
an experimentation and evaluation of stress classifier is
available publicly [15]. For each subject, two trails have
been conducted where physiological signals (EEG + ECG)
have been captured. Trail 1 is baseline activity for
180 seconds to get subjects acquainted with an
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environment and 60 seconds’ data for actual cognitive
task performance. Sampling rate for data acquisition is
516 Hz. )us, each subject cognitive task has raw file with
data dimension (21 channels x 516 samples x time du-
ration results) into (21 × 516 × 60 � 650160) data points
and (21 × 516 ×180 �1950480) data points for baseline
activity. Independent component analysis (ICA) has been
done for the purpose of noise removal. However, dataset
is captured while subjects were performing silent math
activity where no muscle movement was expected but
noise generally get introduced and elimination of arti-
facts like eyes movement and cardiac overlapping of
cardiac position has been done. Tasks which was per-
formed by the subjects include subtraction of two
numbers without making any movement. Each trial has
been commenced with the communication orally of 2-
digit (subtrahend) and 4-digit (minuend) numbers like 42
and 3141, respectively. More details of the dataset can be
found in [15]. As a ground truth labelling of dataset is
done on the basis of performance report card which is
available in the form of excel sheet with dataset. During
data acquisition subjects were asked to perform arith-
metic activity and nonstressed performer has performed
21 subtractions approximately and stressed performer
has performed 7 subtractions in the given time. Number
of nonstress performers in dataset is 26 and that of stress
performers was 10. Dummy participants have been added
to the dataset for nonstress category by replicating the
data channelwise for an experimentation purpose with
goal of balancing data for both categories. Age group of
subjects is in range of 16–26; both male and female
categories were included.

)e total data of 36 subjects has been evaluated and has
been given to the classifier by a robust and appropriate
feature extraction approach. For labels in documentation for
dataset [1], in the performance report of subjects with no-
tation subject 0 to subject 35 which consist of name, age,
gender, number of subtractions, and count quality “G”
indicates good and “B” indicates bad, as mentioned in the
excel file. Joining subject file with EEG data and name at-
tribute created a labelled dataset file and those labels have
been used as a ground truth for binary classification.

2.1.1. Channel Selection. Channels included into study cover
complete skull hemisphere ranging from frontal to occipital
region: frontal position, 6 + 1 channels; temporal position, 4
channels; central position, 2 + 1 channels; parietal position,
2 + 1 channels; occipital position, 2 channels; behind the ear,
1 channel; and 1 ECG channel. Channel selection is done
with objective in mind to investigate the affected areas so
that precise marker can be identified in each category which
definitely helps for identification of discrimination purpose
of stress and nonstress biomarkers. Channel positions
considered are illustrated in Figure 2.

2.2. Variational Mode Decomposition (VMD). )is decom-
position method is robust for noise handling [35]. It is a
process of decomposition of real valued input signal f into
discrete number of subsignals also known as mode uk. Each
mode is densely oriented towards its central frequency wk,
which is determined during decomposition process. Each
mode has a sparsity property which is being used while
reconstructing the signal. Before decomposition sparsity of

Performance Evaluation

Poincare Plots of Modes 

Feature Extraction (Area; Mean; Central tendency Measure)

Statistical significance (Wilcoxon Test) with p<0.5

Data division 70:10:20 for Training, Validation and Test

Labelling of data “1” (Good Performer)“0” (Bad Performer) ground truth for 21 channels

Variable mode decomposition of signal (VMD) 

Short Time Silent Arithmetic 
Activity Dataset 36 subjects (0-35) 20 EEG channels; 1 ECG 

channel

Figure 1: )e overall workflow of proposed method.
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each mode has to be determined by bandwidth in spectral
domain. To identify the bandwidth, three steps need to be
followed which are given as follows:

(1) From each mode, Hilbert transform has been used to
obtain the unilateral frequency domain.

(2) Subsequently, shift the frequency spectrum which
has been obtained in step 1 to the baseband by in-
tegrating with an exponential tune to the respective
centre frequency.

(3) Afterwards, apply H1 Gaussian smoothness to the
demodulated signal for obtaining bandwidth given
in

min
uk , wk 


k

zt z(t) +
j

πt
∗ uk(t) e

− jwkt
⎧⎨

⎩

⎫⎬

⎭, (1)

where uk � u1, . . . , uk  and wk � w1, . . . .

wk}kuk � f.

)e detailed behavior of variational mode decomposi-
tion (VMD) is as shown in Algorithm 1.

2.3. Poincare Plots (PPs). PP of the modes obtained after
VMD of EEG signals can provide favourable characteristic
patterns for the classifications purpose. )e PP of signal is
defined as given in the equation below:

x (t) is a plotting of X(t) against Y(t) as shown in the
following equations:

X(t) � x(t + 1) − x(t), (2)

Y(t) � x(t + 2) − x(t + 1). (3)

)is plot indicates the successive proportions against
each other [36]. )e resultant elliptical shape of plots
portrayed from mode signifies the strong positive associa-
tion between the consecutive data points, variability, and
stochastic nature. As modes derived from signal are deviated
towards central frequency, asymmetric area coverage is
visible in PPs. Region coverage for the plot of the first eight
modes is significantly higher than that of the other modes.

Ten modes are obtained from the signal and evaluated but
only first eight modes are considered for experimentation
and the remaining two are excluded on the basis of sig-
nificant area coverage as compared to the rest at central
modes.

2.4. Features Extraction. Owing to the no stationary be-
havior of captured physiological signals, features obtained
from the PPs are the area of the elliptic region, mean dis-
tance, and central tendency measure. PPs are designed from
each mode obtained from variational mode decomposition,
and for the calculation of area coverage of the elliptic shape
of plots, the equations used are as follows:

SX �

�����������

1
N



N�1

i�0
X(t)

2




, (4)

SY �

����������

1
N



N�1

i�0
Y(t)

2




, (5)

SXY �
1
N

 X(t)Y(t), (6)

AreaEllipse � πab, (7)

where a � major radius of poincare plots(
����������

S2X + S2Y + D



),

b � minor radius of poincare plots (

����������

S2X + S2Y + D



), and

D �
��������������������
(S2X + S2Y)4(S2XS2Y + S2XY)


.

Area computed from the PPs of EEG and ECG signals is
used as a discriminative feature with 95% confidence. )e
details of area computation includes calculation of mean
values X(t) and Y(t) as mentioned in equations (2) and
(3).To compute plot parameter D compute mean values
from equations (4)–(6). Ellipse area can be computed by
equation (7). Mean and central tendency measure (CTM) of
the PPs have been derived.

2.5. Classifier Used in Study. For the analysis of the ro-
bustness of the proposed approach, two classifiers have been
tested which are multilayer perceptron neural network
(MLPN) and support vector machine (SVM). First experi-
mentation has been carried out with SVM. It is of category
supervised learning and can be used for the purpose of data
classification either at binary or at multiclass type. Each data
point is indicated as ni and requires n-dimensional space for
plotting all data points in consideration. For classification
purpose objective of an algorithm is to find an appropriate
hyperplane where discrimination and segregation of correct
data points are possible. In the condition where classification
is not easily achievable kernelling is an option opted by
SVM, which is a method to elevate lower dimensional input
space to higher level. Unlike SVM MLPN has a capability of
performing more complex operations and it had a tendency

REF REF

Fp1 Fp2

F8F7

T3

T5

O1 O2

P3

C3

F3 F2 F4

C4

P4
T6

T4Cz

Pz

Figure 2: Channel positions considered in study: F �Frontal,
C�Central, P�Parietal, O�Occipital, and T�Temporal.
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to approximate the input as it is integrated with nonlinear
activation function.

As data is not separable linearly all the time MLPN
does the error correction by using a backpropagation
approach where initial set weights and biased get cor-
rected in order to reduce the difference level between
obtained and expected results. It is very useful for image
classification approach as well. Authors have converted
the data into labelled version by using the ground truth
value as described in Section 2. Different numbers of
layers have been experimented and suitable layers fixed
are 10 neurons and 3 hidden layers at each level. Acti-
vation function employed is rectified linear unit (ReLU),
various learning parameters are set to regularization, and
alpha is decided to be at value 0.0001 as most studies have
reported this value and it deems fit for our experimen-
tation purpose as well. Number of iterations is set to 200.
Adam optimizer is used for an optimization purpose and

it has helped us to reach to the expected accuracy level for
most of the subsets. In order to avoid very fast and very
slow learning process we have selected the value 0.001 and
kept it constant for experimentation. For SVM details the
parameters selected are CostC � 0.90, Epsilon � 0.1,
RBF kernel � exp(− g|x − y|2), g � 0.02, Iteration limit �

100, and Numerical Tolerance � 0.0010.

2.6. Performance Evaluation Measures. Performance evalua-
tors mostly used are sensitivity, specificity, and accuracy which
gives insight about training, validation, and testing phase in
order to compute the variance and bias level of the classifier. In
this work, performance of the proposed classifier has been
evaluated by using three evaluation metrics such as accuracy,
specificity, and sensitivity as represented in the following
equations:

sensitivity(SEN) �
TP

TP + FN
∗ 100, (8)

specificity(SPE) �
TN

TN + FP
∗ 100, (9)

accuracy(ACC) �
TTP + TN

TP + TN + FP + FN
∗ 100, (10)

F1measure �
TP

TP +(1/2)(FP + FN)
, (11)

Kappa statistics �
(percent agreement observed) − (percent agreement expected by chance alone)

100 − (percent expected by chance alone)
, (12)

where TN and TP are the indicators to notify about how
many data points have been correctly predicted by the
classifier andFP and FN are the indicators to notify about
how many data points have been incorrectly classified by the
proposed classifier.

3. Results and Discussion

In this work, dataset used for the purpose of an experimentation
and evaluation of stress classifier is available publicly [15].)ese

are recordings of EEG signals while performing the mental
arithmetic task of finite duration. Figure 3 shows the decom-
position of signal by using VMD approach and its modes which
are deviated towards the central frequency of the original input
signal that proves the significance of an approach for better
noise handling and its appropriateness for handling the lower
frequency as compared to higher frequency components.

)e PPs of first eight variational modes are shown in
Figure 4. Plots for modes are clearly representing the varying
area covered and it is more inclined towards lower frequency

Initialize u1
k , w1

k , λ
1
, n⟵ 0

Repeat
n⟵ n + 1
for k � 1: K do
update uk for all ww≥ o: u

(n+1)
k (w)⟵ (f(w) − i<ku

(n+1)
i (w) − i>kun

i (w) + λ
n
(w)/2/1 + 2∝ (w − wn

k)2)

Update wkbw
(n+1)
k ⟵ (

∞
0 w|u

(n+1)
k (w)|2dw/

∞
0 |u

(n+1)
k (w)|2dw)

End for
Dual ascent for all w≥ 0λ

(n+1)
(w)⟵ (w) + τ(f(w) − ku

(n+1)
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Until convergence ku(n+1)
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k
2
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2 < ∈

ALGORITHM 1: Variational mode decomposition (VMD).
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Figure 3: VMD of the signal while performing mental arithmetic activity of 1min duration for subject 1 (female, good performer), channel
FP1.
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Figure 4: PPs of the modes while performing mental arithmetic activity of 1min duration for subject 1 (female, good performer), channel
FP1.
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component mode as compared to higher frequency com-
ponent mode. )ese are PPs of an EEG signal, for subject 1
(female, good performer) recorded for channel FP1, while
performing mental arithmetic activity of 1minute duration.

Features extracted described in Section 2, “Materials and
Methods,” contributed for the designing of feature space.
Extracted features from PPs contributed for the design of
feature space and it is provided as an input to the SVM and
multilayer perceptron neural network. Statistical signifi-
cance of the extracted feature has been performed with
Wilcoxon statistical significance test with p< 0.5. Extracted
features are central tendency measure, mean distance, and
area. )e data generated for trail 1 and trail 2 for good
performer female for channels FP1 and FP2 as listed in
Table 1. Area coverage is the highest for middle modes as
compared to initial and end position.

)e Wilcoxon signed-rank test has been performed to
verify the statistical significance of the features extracted
with a confidence interval of 95%.

To check robustness and more reliable performance
evaluation of classifier data is provided to classifier in two
ways for the first time, where 70%, 10%, 20% training, val-
idation, and testing have been used by the split strategy to
split the data and later k-fold data where value of k� 10 is
selected. Only first eight modes have been used for the
extraction of results. By considering all three features on 20%
of test data from 36 subjects, the first to eight modes, binary
classification results according to group selection of chan-
nels are listed in Table 2. Table 3 summarizes results for the
case of k-fold cross validation.

Modes extracted from EEG signals have displayed var-
iable frequency behavior and because of tendency towards
central frequency modes are fluctuating from lower to
higher and vice versa. )e central mode exhibited higher
frequency components in comparison to initial and ending.
Initial signal is decomposed into 10 modes but after 8th
mode it has stopped exhibiting any variation in behavior and
appears to be static in nature. )us, only first 8 modes have
been considered for an experimentation purpose. Remaining
8 nodes also exhibited some grouping characteristics; thus 3
groups with combination of 1–4 modes, 5–8 modes, and 1–8
modes are created and processed accordingly. As each
subject consists of 21 channels decomposition has been done
subjectwise and trialwise. For the decomposition of signals
into modes it took approximately 2-3mins and for designing
PPs of mode it took approximately 3-4mins for each subject.
)e range mentioned is because of different size of data
points for trial 1 and trial 2 as explained in Section 2. For
classification purpose two algorithms have been used, SVM
and MLPN. )e time taken for SVM is much more as
compared to MLPN for binary classification of different
subsets. By using k-fold, performance of classifier is im-
proved compared to the intended percentage split base
study. It is particularly notable for modes 1–4 and 1–8 but
marginal for modes 5–8 except for the first set, good per-
former vs. bad performer. )e better performance, in the
case of k-fold cross validation, is attained because a higher
percentage of data is used for the training purpose compared
to the percentage split case. Authors main objective were to

identify specific region of brain which exhibits significant
behavior and can be used as marker for discrimination and
thus subsets have been designed accordingly.

First subset is good vs. bad (combination of 20 EEG and
1 ECG channel) and subsequently 4 subsets are at regions
frontal, temporal, central, and occipital. In addition to these
five subsets 2 more subsets were tested for good vs. bad male
and female but have not achieved any good classification
accuracy as per gender and thus concluded that gender
discrimination for performance is not possible through the
designed approach and needs some other approach for the
same as what also happened in case of subset for parietal
region and has been excluded from an experimentation.
Extracted modes exhibited the inconsistent and abrupt
upsurge and/or fall, which can be taken care of by detection
and removal of outliers before determining the PPs. Elliptic
nature of plots varies/diminishes for different modes but
only those modes have been considered for which plots have
shown good elliptic curve and the rest were excluded for an
experimentation purpose. Area covered by plots emerges as
a combination of real imaginary numbers and we treated it
in a form of absolute version.)e reason for complex nature
emerge is correct as plots of equations (4)–(6) involve root
function and it is quite possible that the root results into
negative number which emerges as a complex number.

Dataset consists of 21 channels but for an experimen-
tation purpose initially only frontal channels were consid-
ered and subsequently temporal, central, and parietal ones
were evaluated. At the end 20 EEG channels and 1 ECG
channel were considered for experimentation. )e feature
map consists of channel, trail, mode, area, mean, and CTM
of dimension 8× 3 for each channel and subject. )e first
eight modes and their plots were generated for each of the
undertaken channels. Later 3 features have been extracted
from each consecutive plot. Wilcoxson signed-rank test has
been performed to validate the statistical significance of the
derived features with p< 0.5. )e plot area has been con-
siderably reduced at initial and end position of mode, which
is a sign of less frequency contents of the underlying signal.

Table 1: Format of the feature map used in experimentation for
channels FP1 and FP2 for trail 2.

Channel Mode Area m (r� 0.5) ctm (r� 0.5) Target
EEG Fp1 1 2.53 0.93 0.19 1
EEG Fp1 2 37.39 0.20 0.26 1
EEG Fp1 3 63.25 0.13 0.29 1
EEG Fp1 4 11.44 0.31 0.25 1
EEG Fp1 5 4.78 0.41 0.24 1
EEG Fp1 6 48.82 0.16 0.28 1
EEG Fp1 7 12.03 0.28 0.28 1
EEG Fp1 8 33.35 0.22 0.26 1
EEG Fp2 1 3.19 0.85 0.21 1
EEG Fp2 2 4.70 0.56 0.24 1
EEG Fp2 3 22.77 0.26 0.25 1
EEG Fp2 4 27.51 0.28 0.24 1
EEG Fp2 5 27.43 0.23 0.25 1
EEG Fp2 6 22.22 0.24 0.26 1
EEG Fp2 7 29.60 0.21 0.28 1
EEG Fp2 8 1.77 0.42 0.27 1
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In comparison, the mean derived from the PPs has shown
even rise and steadiness that can be visible in case of central
tendency measure.

)e experimental results are noticeable for approxi-
mately all the subsets utilized for the classification. Most
stress related studies reported for specific/limited
channels [37–39]. )e proposed approach for the stress
classification has outperformed other existing methods
[3, 40–43] by achieving 100% accuracy with minimum
time of mental arithmetic activity and has also given an
insight for the identification of marker lobewise (frontal,
temporal, central, and occipital) rather than selection of
channels in a generalized way. Our brain activity consists
of interchange of ions between neurons which results into
current flow through synaptic mode. Stress and emotions
either generated naturally or in induced environment
have a tendency to retain in the form of current flow. EEG
device is meant to measure the voltage fluctuation that
occurs because of the movement of the neuron and as it
has tendency to retain some time; this is very effective way

for the measure of positive and negative impact of any
environmental situation on human brain [44–46].
)erefore, in this research work, an efficient and accurate
classifier has been proposed with exceptional results for
stress classification from EEG signals employing VMD,
SVM, and multilayer perceptron. )e maximum accuracy
achieved at temporal and frontal lobe and in [47] was
reported as category activation and discriminating area is
observed at temporal lobe which is closely related with
speech and nonspeech activity and as dataset [15] used
study prototype which includes silent mental counting
activity without any movement; the extracted results are
relevant. Extracted results are more prominent at frontal
and temporal region which is closely associated with
concentration and focused mode of nature. )e approach
works nice for the intended dataset. In future the per-
formance of the proposed method will be tested for other
biomedical signals. )e incorporation of event-driven
methods can improve the performance of suggested so-
lution in terms of computational effectiveness,

Table 2: Classification results for the percentage split.

Sets Statistical parameters MPLN SVM MPLN SVM MPLN SVM
Modes 1-4 Modes 5-8 Modes 1-8

Good performer vs. bad performer

Sensitivity 97.2 61.23 98 68.67 98 70.65
Specificity 96.3 65.12 98 68.67 98 70.65
Accuracy 97.2 61.23 98 68.67 98 70.65
F-measure 0.95 0.65 0.97 0.57 1 0.69

Kappa statistics 0.94 0.63 0.98 0.56 0.99 0.69

Good performer vs. bad performer (female)

Sensitivity 78.56 62.34 81.67 68.67 83.78 69.67
Specificity 78.9 62.37 82.23 68.67 83.67 69.67
Accuracy 76.56 62.78 81.78 68.67 83.67 69.67
F-measure 0.67 0.64 0.82 0.65 0.87 0.67

Kappa statistics 0.68 0.63 0.82 0.65 0.88 0.69

Good performer vs. bad performer (male)

Sensitivity 79.56 63.43 80.21 68.67 82.67 70.02
Specificity 78.78 63.56 80.12 68.67 82.56 70.02
Accuracy 78.67 63.56 80.32 68.67 82.67 70.02
F-measure 0.87 0.65 0.79 0.68 0.83 0.69

Kappa statistics 0.87 0.65 0.79 0.67 0.83 0.69

Good performer vs. bad performer (frontal region)

Sensitivity 98 70.78 98.45 70.67 99 72.67
Specificity 98 78.78 98.45 70.67 99 72.67
Accuracy 98 67.89 98.45 70.67 99 72.67
F-measure 0.98 0.74 0.99 0.69 1 0.71

Kappa statistics 1 0.78 1 0.7 1 0.71

Good performer vs. bad performer (temporal region)

Sensitivity 99.8 67.78 99.99 61.23 99.99 75.56
Specificity 97.78 67.78 99.99 65.12 99.99 75.56
Accuracy 99.8 67.78 99.99 61.23 99.99 75.56
F-Measure 0.99 0.74 0.99 0.59 1 0.72

Kappa statistics 1 0.74 1 0.59 1 0.76

Good performer vs. bad performer (occipital region)

Sensitivity 78.56 60 80.23 62.34 89.34 76.7
Specificity 78.9 60 80.34 62.37 89.43 76.7
Accuracy 76.56 60 80.32 62.78 89.34 76.7
F-measure 0.88 0.58 0.89 0.62 0.85 0.74

Kappa statistics 0.85 0.58 0.86 0.62 0.85 0.74

Good performer vs. bad performer (central region)

Sensitivity 75.78 64.67 79.78 63.43 80.56 68.78
Specificity 76.89 64.67 79.56 63.56 80.56 68.78
Accuracy 78.67 64 79.34 63.56 80.56 68.78
F-measure 0.76 0.67 0.75 0.62 0.83 0.56

Kappa statistics 0.78 0.65 0.78 0.62 0.83 0.56
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compression, and power consumption [48–51]. Investi-
gation of this approach is another prospect.

4. Conclusions

In this work, an attempt has been made to propose and
explore the VMD approach and its Poincare plots for the
classification of stress managing capability from the silent
mental arithmetic activity. )e VMD is a promising method
for extracting the relevant features from the EEG+ECG
signals. )e resultant region of the Poincare plots has
exhibited discriminating nature and varies widely for stress
and nonstress category. Only the first six or seven modes
provided the better classification accuracy for the compar-
ative analysis of the stress. Signals accompanying with the
activity have shown significant variability in comparison to
the baseline activity for good performer while it has shown
stability in case of bad performer and thus had a straightway
more extensive influence on the Poincare plots. )e area of

good performer female has been significantly higher. )e
devised method has achieved the maximum accuracies of
100% for frontal and temporal lobes. )e proposed scheme
can be beneficial for the clinical identification of low- and
high-dominance regions in the subjects. In future scope, the
proposed method can be extended to study the classification
of other brain conditions such as epilepsy, Alzheimer’s, and
depression. Because of the identified marker in frontal and
temporal lobe this approach can be used as promising ap-
proach to implement in real time situation.
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)e dataset used in this paper is publicly available at https://
physionet.org/content/eegmat/1.0.0/.

Conflicts of Interest

)e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Table 3: Classification results for the k-fold cross validation.

Sets Statistical
parameters

K-fold
MPLN

K-fold
SVM

K-fold
MPLN

K-fold
SVM

K-fold
MPLN

K-fold
SVM

Modes 1-4 Modes 5-8 Modes 1-8

Good performer vs. bad performer

Sensitivity 98.12 65.45 98.1 69 99.12 72.34
Specificity 97 66 98 69 99 72.34
Accuracy 97.56 63 98 69 99 72.34
F-measure 0.98 0.7 0.97 0.59 1 0.7

Kappa statistics 0.97 0.66 0.98 0.56 1 0.71

Good performer vs. bad performer
(female)

Sensitivity 79.01 63.12 81.67 68.67 85.56 71.34
Specificity 79.12 63.34 82.23 68.67 84 70
Accuracy 77.45 63.45 81.78 68.67 84.02 71.78
F-measure 0.69 0.68 0.82 0.65 0.89 0.68

Kappa statistics 0.7 0.65 0.82 0.65 0.89 0.7

Good performer vs. bad performer
(male)

Sensitivity 80.01 64.34 80.21 68.67 83 71
Specificity 79.9 65.67 80.12 68.67 84 72
Accuracy 79.12 64 80.32 68.67 84 71.34
F-measure 0.89 0.65 0.79 0.68 0.86 0.72

Kappa statistics 0.88 0.66 0.79 0.67 0.85 0.72

Good performer vs. bad performer
(frontal region)

Sensitivity 98.23 71.01 98.45 70.67 100 75.23
Specificity 98.45 79.23 98.45 70.67 100 73.23
Accuracy 99.12 69 98.45 70.67 100 73.12
F-Measure 0.99 0.76 0.99 0.69 1 0.72

Kappa statistics 1 0.79 1 0.7 1 0.76

Good performer vs. bad performer
(temporal region)

Sensitivity 99.82 68 99.99 61.23 100 76
Specificity 98 68 99.99 65.12 100 78
Accuracy 100 68 99.99 61.23 100 78
F-measure 1 0.78 0.99 0.59 1 0.75

Kappa statistics 1 0.76 1 0.59 1 0.78

Good performer vs. bad performer
(occipital region)

Sensitivity 79.12 62.67 80.23 62.34 90 77
Specificity 79 62 80.34 62.37 90 77
Accuracy 77 61 80.32 62.78 90 77
F-measure 0.9 0.6 0.89 0.62 0.87 0.78

Kappa statistics 0.87 0.6 0.86 0.62 0.89 0.76

Good performer vs. bad performer
(central region)

Sensitivity 76 65 79.78 63.43 82.12 69
Specificity 77.78 65 79.56 63.56 82 69.12
Accuracy 79.23 65 79.34 63.56 82 69
F-measure 0.79 0.68 0.75 0.62 0.87 0.59

Kappa statistics 0.79 0.66 0.78 0.62 0.86 0.59
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*is article presents a machine learning approach for Parkinson’s disease detection. Potential multiple acoustic signal features of
Parkinson’s and control subjects are ascertained. A collaborated feature bank is created through correlated feature selection,
Fisher score feature selection, and mutual information-based feature selection schemes. A detection model on top of the feature
bank has been developed using the traditional Näıve Bayes, which proved state of the art. *e Näıve Bayes detector on col-
laborative acoustic features can detect the presence of Parkinson’s magnificently with a detection accuracy of 78.97% and precision
of 0.926, under the hold-out cross validation. *e collaborative feature bank on Naı̈ve Bayes revealed distinguishable results as
compared to many other recently proposed approaches. *e simplicity of Naı̈ve Bayes makes the system robust and effective
throughout the detection process.

1. Introduction

Parkinson’s disease (PD) is an inherent disease among el-
derly individuals. *e disease appears when the dopamine
neurons significantly fall in the human brain [1, 2]. *e PD
symptoms start with voice impairments at its early stage,
tremor, and loss of memory, and the subject shows an in-
ability to walk, run, and even perform regular day-to-day
duties. *e situation worsens at a late age, where the subject
suffers huge memory loss and cannot move and lean to
perform minor activities. *e worst part is that the disease is
not curable and not reversible [3], so all efforts have been
made to its early detection and preventive measures to

suppress its adverse effects. Medical science reveals that
Parkinson’s disease mainly causes gradual reduction of
dopamine hormone in the human brain as this hormone acts
as the transmitter of signals among various neurons [4].
Insufficient amount of dopamine hormone leads to non-
transmission of signals and various neurorelated disorders
and symptoms being started in human beings, and Par-
kinson’s disease is one of them. Symptoms of PD can be
nonmotor and motor-related. Nonmotor symptoms include
sleep disorder, speech variation, problem in swallowing, and
loss of smell, whereas motor symptoms were connected to
slow movement, e.g., bradykinesia, tremor, rigidity, and
postural instability [5]. *ese symptoms also vary from
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patient to patient over different time periods, and the ap-
pearance of symptoms is often lately observed by the patient
due to the casual ignorance of early symptoms.

*e effect of Parkinson’s disease varies from person to
person, and all the symptoms may not be evident by every
PD patient and even may not appear in the same order and
same combination. However, subjects suffering from idio-
pathic rapid eye movement sleep behavior disorder (iRBD)
are more prone to PD. Speech changes are the first motor
symptom that appears even ten years before the actual di-
agnosis starts [6]. *erefore, assessing speech signals pro-
vides a better scope for detecting chances of Parkinson’s in
the early stage. For instance, the time domain amplitude of
both controls and Parkinson’s has been visualized in Fig-
ure 1. Each block of Figure 1 represents a subject, where the
green color plots represent controls and the red color plots
represent the subjects suffering Parkinson’s. *e subjects’
specific plots are generated on the pronunciation of sus-
taining vowel/a/in Italian language [7].

From Figure 1, the amplitude of Parkinson’s subjects
appears to be abnormal, where the disorder can be identified.
On the other hand, the amplitude of the Non-Parkinson’s
Disease subject is uniformly in a decreasing trend. *e
disorder signal of Parkinson’s subjects is the dysphonia and
hypokinetic dysarthria that a subject suffers at various stages
of PD [8]. Dysphonia refers to the inability to produce
normal phonation due to impaired functioning of the
phonatory system. Reduction of pitch variation often de-
notes monotonicity and reduces loudness, breathless voice,
and tiny speech formation [9]. Approximately 90% of the PD
patients are affected by this combined sign of hypokinetic
dysarthria [9]. In the context of acoustic voice analysis, it is
difficult to identify the slight variation of a sound wave
through the naked ears. In such a situation, the power of
machine learning techniques can be employed to discrim-
inate Parkinson’s from the other signal [10, 11].

As PD is a nonreversible disease, the only option left with
the clinical practitioners is to reduce the speed of the effect.
In this way, the subject feels confident and cured if the
diagnosis process starts early. PD shows only a few symp-
toms at the early stage on the flip side of the coin, like voice
disorder and mild tremors. However, these symptoms also
resemble other symptoms of an average person. *is is why
diagnostic technicians and clinical practitioners are nowa-
days exploring machine learning and artificial intelligence
approaches [12–14] to predict the presence and severity of
disease among their subjects.

*e main contribution of this article is as follows:

(a) A collaborative feature bank consisting of seven
vocal features has been created from Baseline Fea-
tures (BF), Vocal Fold Features (VFF), and Time
Frequency (TFF) with the help of Correlated Feature
Selection (CFS) [15], Fisher Score Feature Selection
(FSFS) [16], and Mutual Information-Based Feature
Selection (MIFS) [17].

(b) *e traditional Näıve Bayes has been trained and
tested on the seven features of the collaborative
feature bank, which shows the robustness and

effectiveness of our system as compared to other
recent approaches of Parkinson’s disease detection.

*e rest of the article is as follows. Section 2 deals with
literature reviews, Section 3 outlines the materials and
methods, and Section 4 briefly discusses the results, followed
by a conclusion at Section 5.

2. Literature Review

Many recent machine learning techniques, including Näıve
Bayes, proved useful in segregating subjects suffering PD
from the controls. For instance, Avuçlu and Elen [18]
proposed Parkinson’s detection through multiple classifiers.
*eir experiment was conducted on various training and
testing instances spanned over 22 vocal features of 195
sound samples. *e k-Nearest Neighbor, Random Forest,
Support Vector Machine, along with Näıve Bayes, have been
used to detect Parkinson’s. It has been observed that the
Näıve Bayes detects the Parkinson’s subjects with 70.26%
accuracy with a precision of 0.64. Bourouhou et al. [19]
compared many classifiers to predict the presence of Par-
kinson’s among subjects. *eir experiment was conducted
on 40 subjects comprising 20 Parkinson’s and control
subjects. *e experimental results Näıve Bayes detector
revealed a detection accuracy of 65%, the sensitivity of
63.6%, and specificity of 66.6%, respectively. On a similar
note, Zhang et al. [20] used Näıve Bayes along with other
machine learning techniques to detect Parkinson’s disease.
*eir approach employed signal processing techniques to
extract relevant features from the acoustic signal of Par-
kinson’s and control subjects. At the next stage Näıve Bayes,
Support Vector Machine (SVM), Logistic Regression (LR),
and single and double-layered neural networks have been
used to segregate Parkinson’s and control subjects. With the
22 vocal features, the Naı̈ve Bayes reveals 69.24% of de-
tection accuracy with a 96.02% of the precision rate.
Meghraoui et al. [21] proposed Bernoulli and Multinomial
Näıve Bayes (BMNB) on harmonicity, pitch, and pulse
features. *e BMNB approaches are proved to be a better
solution to detect the presence of Parkinson’s. A test on 28
samples comes across with a 62.5% detection accuracy on
Bernoulli Näıve Bayes (BNB) with 0.375 Mean Squared
Error (MSE). Kadiri et al. [22] proposed a method of Par-
kinson’s disease detection using SVM on Single Frequency
Filtering Cepstral Coefficients (SFFCC) and Shifted Delta
Cepstral (SDC) features exacted from voice signals of Par-
kinson’s and control subjects. *e SFFCC+ SDC features
witnessed 9% of performance improvements as compared to
traditional MFCC+ SDC features. *e traditional SVM on
SFFCC+ SDC features shows 73.33% detection accuracy
with 73.32% F1-score.

Apart from Näıve Bayes, many other supervised tech-
niques, including but not limited to famous deep learning
techniques, have been proposed to detect Parkinson’s among
subjects. Recently Jain et al. [23] proposed a Parkinson’s
detection method using multiple classifier ensembles. *e
authors used Synthetic Minority Oversampling Technique
(SMOTE) to generate artificial samples for prediction. *eir

2 Journal of Healthcare Engineering



proposed approach on Deep Neural Network (DNN) detects
Parkinson’s with a detection accuracy of 91.47%.*ough the
result seems impressive, their approach does not appear
practical for many reasons. *e authors used the dataset
proposed by Sakar et al. [24], and the dataset contains
replicated speech information of 252 subjects resulting in
756 instances. Machine learning methods cannot be directly
applied to these instances as each subject has three readings
of the speech signal. *ese instances need to be consolidated
before the actual classification starts. Moreover, creating a
Parkinson’s detection system on 754 features is not con-
vincing. *e Performance of DNN, as claimed by the au-
thors, may vary on consolidated instances. Further, their
system may not be practically effective on synthetic samples
generated by SMOTE. Similarly, Polat and Nour [25] use
multiple classifiers ensemble to detect Parkinson. *e One
Against All (OAA) sampling technique plays a pivotal role in
the detection process. *e Logistic Regression (LR) on OAA

samples proved to be a brilliant Parkinson’s detector.
Multiple supervised classifiers are also used on vocal features
selected through Adaptive Grey Wolf Optimization Algo-
rithm (AGWOA) and Sparse Auto Encoder (SAE) [26]. *e
Näıve Bayes classifier on AGWOA and SAE features reveals
a detection accuracy of 72%. In the recent past, decision trees
are gaining popularity in biomedical data classification [27].
Classification and Regression Tree (CART) have been used
to detect the presence of Parkinson’s [28], where the CART
detector detects Parkinson’s with 75.19% through 8 opti-
mum features of vowel /a/.

3. Materials and Methods

3.1. Dataset. *e idea behind the proposed approach is the
feature collaboration to detect Parkinson’s disease. For
feature collaboration, the Baseline Features (BF), Vocal Fold
Features (VFF), and the Time Frequency Features (TFF)
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Figure 1: Amplitudes of controls and Parkinson’s subjects.
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about the acoustic signal of both Parkinson’s and control
patients have been considered. All the BF, VFF, and TFF are
extracted from a recent Parkinson’s detection database
publicly available at the UCI machine learning repository
[24], prepared at the Department of Neurology in
Cerrahpaşa, Faculty of Medicine, Istanbul. *e database
contains 752 acoustic features of 252 subjects, including
control and Parkinson’s. Data is prepared with a 44.1 kHz
microphone setting followed by a physician’s examination.
*e sustained phonation of the vowel /a/ was collected from
each subject with three repetitions.

*e vast 752 features also include 22 VFF, 11 TFF, and 21
BF.*ese features are extracted using Praat acoustic analysis
software [24]. *e number of features available under VFF,
TFF, and BF of the dataset has been presented in Table 1.
Gender-specific control and sick subjects are outlined in
Table 2. *e detailed characteristics of these features seg-
ments and corresponding features can be found at [24, 27].

*e Istanbul acoustic database [24] used here comprises
252 subjects, where 64 are controls, and 188 subjects are
suffering from Parkinson’s. Similarly, the dataset contains
vocal information of 122 female (41 controls and 81 Par-
kinson’s) and 130 male subjects (41 controls and 81
Parkinson’s).

3.2.Features Selection. For effective collaboration, a Features
Bank (FB) is created using the best features of BF, VFF, and
TFF. *e identification of best features has been established
through three prominent feature selection techniques
[29, 30]— Correlated Feature Selection (CFS) [15], Fisher
Score Feature Selection (FSFS) [16], and Mutual Informa-
tion-based Feature Selection (MIFS) [17]. *ese feature
selection schemes initially ranked the features (based on
their contribution towards the classification). *ey selected
the most suitable features from the ranked features (features
having the highest contribution towards the classification
process). All three CFS, FSFS, and MIFS techniques use
distinct proven mechanisms for feature ranking. *e CFS
calculates correlation among attributes to understand the
variable similarity. For two attributes A � a1, a2, a3, . . . , an 

and B � b1, b2, b3, . . . , bn , CFS calculates correlation r as
follows:

r �


n
i�1 ai − a(  bi − b 

�����������������������


n
i�1 ai − a( 

2


n
i�1 bi − b 

2
 , (1)

where a �mean of attribute A and b �mean of attribute B.
*e higher the value of r, the more the underlying attributes
correlated and the lower the value of r the underlying at-
tributes have far deviated from each other. After calculating
the correlation score for each attribute, the attributes are
arranged in the ascending order of the correlation score.
Arranging attributes based on correlation score provides a
scope to move the highly uncorrelated attributes to the front
and perfectly correlated attributes at the rear, thus sup-
porting the classifiers for enhanced detection. Similarly,
FSFS calculates the fisher score of individual features of the
underlying Parkinson’s dataset. *e feature weights are

calculated based on the sample size and number of class
labels. FSFS are tested for binary and multiclass datasets, but
it is widely used for binary datasets [31]; hence, a suitable
feature ranker is proposed for the current work. For a given
set of features f � f1, f2, f3, . . . , fp  having a set of classes
K � k1, k2, k3, . . . , kc , the fisher score S of the feature fi

can be estimated as follows:

S �


C
j�1 nj μij − μi 

2


c
j�1 njρ

2
ij

, (2)

where nj is the number of instances in the jth class, μi is the
mean of the ith feature, and μij and ρij are the mean and
variance of the ith feature and jth class, respectively. In this
way, the fisher score of each feature of the Parkinson’s
dataset has been calculated, allowing us to rank the features
based on the score accumulated. It should be noted that the
fisher score evaluates the score individually; i.e., no two
features are taken simultaneously to calculate the feature’s
score [32]. *e individual fisher score proved to be a lim-
itation to identify the feature redundancy. However, since
prominent features have been selected iteratively through
Näıve Bayes classification, the limitation of identifying
feature redundancy will not affect the evaluation process.
With a similar guideline of CFS, the MIFS ranking algorithm
estimated the relationship among features through mutual
information and ranked the features based on the mutual
information score of attributes. For any two given attributes
a and b having values 1, . . . , p  and 1, . . . , q , respectively,
a joint probability πab ensures the samples of attribute

Table 1: Features of Istanbul acoustic dataset.

Features group Number of features
Vocal fold features
Glottis quotient 3
Glottal to noise excitation 6
Empirical mode decomposition 6
Vocal fold excitation ratio 7
Time frequency features
Voice intensity 3
Bandwidth 4
Formant frequencies 4
Baseline features
Entropy of recurrence period density 1
Detrended fluctuation 1
Entropy of pitch period 1
Harmonicity 2
Variants of jitter 5
Fundamental frequency 5
Variants of shimmer 6

Table 2: Gender-specific controls and subjects suffering from
Parkinson’s in the dataset.

Genders (↓)/Classes (⟶) Controls Parkinson’s Total
Female (—) 41 81 122
Male (—) 23 107 130
Total 64 188 252
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(a, b) ∈ 1, . . . , p  × 1, . . . , q , then the dependency be-
tween a and b can be estimated [17] through mutual in-
formation as follows:

MI � 

p

a�1

q

b�1
πablog

πab

bπabaπab

. (3)

Like correlation score, mutual information places a
crucial role in features ranking. All the three feature ranking
algorithms CFS, FSFS, and MIFS can also be extended to
select a subset of features. After ranking all ranked feature
segments, the ranked features are passed to Näıve Bayes
incrementally one feature at a time in an iterative fashion.
*e incremental feature classification allows selecting the
suitable number of features from each segment where the
Näıve Bayes shows the highest detection accuracy.

In a nutshell, all the three feature selection techniques
CFS, FSFS, and MIFS work jointly to identify goodness
scores for each attribute of the underlying Parkinson’s
dataset. *e idea behind this incremental feature selection is
to select only those attributes which are mainly close to class
attributes and not close to each other. However, instead of
depending on the practical way of identifying attributes,
selecting attributes through incremental classification is
emphasized. In a landscape, the incremental feature selec-
tion helps to identify potential attributes in the most realistic
way.*e selected features of BF, VFF, and TFF through CFS,
FSFS, and MIFS provide the most relevant collaborative
Parkinson’s disease detection features. *e entire process of
Parkinson’s detection process has been depicted in Figure 2.

*e process of detecting subjects affected with Parkin-
son’s follows three steps; viz., Feature Selection, Feature
Collaboration, and Parkinson’s Detection. As pointed ear-
lier, in the feature selection stage, the BF, TFF, and VFF are
ranked separately using CFS, FSFS, andMIFS techniques. As
a result, nine feature blocks are realized. *e feature col-
laboration stage’s ranked feature blocks are passed, where
Näıve Bayes play a crucial role in suitable feature identifi-
cation. Features from each ranked feature block are fetched
incrementally and sent to Näıve Bayes for classification. *is
process continues till all features are fetched from each
ranked feature block. *e incremental features for classifi-
cation help identify the minimum number of features re-
quired to achieve maximum detection accuracy.*e number
of ranked features for which the maximum amount of de-
tection accuracy has been received are identified. For each
feature block, i.e., VFF, TFF, and BF, the best features are
identified by comparing all three feature ranking schemes
(i.e., CFS, FSFS, and MIFS).

3.3. Classification. *e ranked features are collaborated and
sent to Näıve Bayes for detection of Parkinson’s. In this way,
the entire detection process relies on a small number of
collaborative features; thus, it appears to be a practical
method of Parkinson’s detection. *e detection approach
has been developed using the Weka machine learning re-
pository [33, 34]. *e implementation settings of the pro-
posed model are outlined in Table 3.

*e predictive model of Näıve Bayes uses estimator
classes for prediction [35]. *e numeric estimator precision
values are chosen based on the analysis of the training data.
*e batch size indicates the desired number of instances to
process for batch prediction of testing samples. *e su-
pervised discretization option ensures the conversion of
numerical attributes to nominal ones. All the attributes
remain numerical, so this option has been disabled during
the training and testing process.

4. Results and Discussion

*e results of the proposed work have been analyzed in three
broad ways. At the first stage, the efficiency of feature
ranking schemes, i.e., CFS, FSFS, and MIFS, has been an-
alyzed.*e individual ranking of features per feature selector
helps identify the most potential VFF, TFF, and BF segments
for effective collaboration. At the second stage, the per-
formance of Näıve Bayes has been evaluated along with
many other traditional supervised classifiers in the context of
Parkinson’s detection. Finally, the proposed collaborative
feature-based Parkinson’s detection system has been com-
pared against other recent vibrant Parkinson’s detection
mechanisms.

4.1. Collaborative Features Identification. As the first stage of
the collaborative Parkinson’s detection scheme, a bank of
collaborative features is prepared. *e detection accuracy of
Näıve Bayes on change in the vocal fold, time frequency, and
baseline feature through CFS, FSFS, and MIFS ranking has
been presented in Figures 3–5, respectively. *e classifica-
tion accuracy of Näıve Bayes was also recorded on original
features to understand the power of feature ranking
techniques.

It is to note that both the original and the ranked acoustic
features are incrementally processed through Näıve Bayes to
observe the performance enhancement with a change in the
number of features. *e performance of Näıve Bayes due to
CFS, FSFS, andMIFS shows a satisfactory result as compared
to original features. It can be seen from Figure 3 that the CFS
shows the highest detection accuracy with just ten features in
hand. In contrast, the same Näıve Bayes took 12 original
features to produce similar detection accuracy. On the other
hand, the three features of the FSFS ranked scheme help the
Näıve Bayes attain the same CFS detection accuracy. On a
similar note, the Näıve Bayes shows the same detection
accuracy with 6 MIFS features. *erefore, all the three CFS,
FSFS, andMIFS boost the performance of Näıve Bayes to the
peak with the help of 10, 3, and 6 features, respectively.
*erefore, the 3 FSFS features have been sent to the feature
bank for collaboration.

With a similar guideline, when both the original TFF
features and ranked CFS, FSFS, and MIFS features are
processed incrementally, only the 3 features of CFS boost the
performance of Näıve Bayes exceptionally well up to 75.79%.
However, FSFS also boosts the Näıve Bayes’ performance but
not as that of CFS and MIFS. Both FSFS and MIFS reveal a
satisfactory performance improvement with a detection
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accuracy of 73.4% and 73.81%, respectively. *ough the
Näıve Bayes took only 1 MIFS feature, the first 3 features of
CFS have been sent to the feature bank for collaboration due
to the highest detection accuracy.

When the performance of Näıve Bayes is studied, the
performance of the classifier due to rankers CFS, FSFS, and
MIFS was found to be degraded. Nevertheless, the rankers
show a similar result as that of original arrangements with
minimal features. In this regard, the Naı̈ve Bayes yields the
highest accuracy of 76.59% with 3FSFS features. But instead
of FSFS, we prefer to choose 1 CFS ranked baseline feature.
*e CFS enhances the performance of Näıve Bayes with the
same detection accuracy parallel to the original order of
features with a lesser number of features. *erefore, the first
feature of baseline ranked through CFS ranker has been
shortlisted and sent to feature bank for collaboration.

*e performance of Näıve Bayes on CFS, FSFS, and
MIFS and the original order of VFF, TFF, and BF features
have been presented in Table 4. *e feature threshold col-
umn indicates theminimumnumber of features identified to
produce maximum detection accuracy under the concern
settings. So, a total of 3 FRFS ranked vocal fold features. 3
CFS ranked time frequency features and 1 CFS ranked
baseline features are identified for feature collaboration.

4.2. Performance Analysis of Collaborative Parkinson’s
Detection. As the first stage of collaborative Parkinson’s
detection scheme, a bank of 7 collaborative features com-
prising VFF, TFF, BF has been prepared. *ose 7 features
have been undergone 10-fold cross validation on Naı̈ve
Bayes classifier.*e result obtained both for Parkinson’s and
control subjects has been presented in Table 5.
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Figure 3: Classification accuracy of Naı̈ve Bayes with change in original features and ranked features on VFF.
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Figure 2: *e process of collaborative Parkinson’s detection.

Table 3: Settings used for Naı̈ve Bayes.

Settings Value
Batch size 100
Use kernel estimator True
Use supervised discretization False
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According to Table 5, the sensitivity of Parkinson’s
subjects and specificity of control subjects are satisfactory.
*e specificity of 0.926 for control subjects indicates that the
collaborative Parkinson’s detection model correctly detects
negative results for 92.6% of control subjects who have
undergone the test. Similarly, the sensitivity of 0.926 for
Parkinson’s subjects pointed out that the model will cor-
rectly return a positive result for 92.6% of the disease
subjects. Similarly, a precision of 0.817 indicates a total of
174 subjects are suffering from Parkinson’s out of all the
subjects that are predicted as Parkinson’s, which is im-
pressive in the context of medical diagnosis. On the other

hand, the Receiver Operating Curve (ROC) represents an
excellent AUC (>71%). *e Precision-Recall Curve (PRC)
represents 0.905, which is again in an acceptable range. *e
ROC and the PRC of subjects predicted as control or
Parkinson’s have been presented in Figure 6.

According to Figure 6(a), the ROC of both the Control
and Parkinson’s subjects is entirely satisfactory. *e curves
are tending nicely towards the true positive rate. *e curves
claim 76.2% area of the plot both for Controls and Par-
kinson’s subjects. On the other hand, the PRC is convincing
for Parkinson’s subjects, whereas for the control subjects, the
PRC is not convincing (Figure 6(b)).

Table 4: Highest detection accuracy of Naı̈ve Bayes due to ranked acoustic features and original features.

Feature selection techniques
Vocal fold Time frequency Baseline

Feature threshold Accuracy Feature threshold Accuracy Feature threshold Accuracy
CFS 10 76.59 3 75.79 1 75.40
FSFS 3 76.59 2 73.41 3 76.59
MIFS 6 76.59 1 73.81 1 74.60
Original 12 76.59 1 66.67 3 75.40

Table 5: Performance of collaborative Parkinson’s detection on Naı̈ve Bayes.

Subjects Sensitivity Specificity Precision F-measure MCC ROC area PRC area
Control 0.391 0.926 0.641 0.485 0.380 0.762 0.514
Parkinson’s 0.926 0.391 0.817 0.868 0.380 0.762 0.905
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Figure 4: Classification accuracy of Näıve Bayes with change in original features and ranked features on TFF.
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Figure 5: Classification accuracy of Näıve Bayes with change in original features and ranked features on BF.
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4.3. Performance Comparison with Other State-of-the-Art
Models. *is section highlights the comparison of the
proposed work with other similar classifiers for Parkinson’s
disease detection. *e seven collaborative features used are
also passed to the C4.5 decision tree, k-Nearest Neighbor,
Logistic Regression, Neural Network, and Random Forest
classifiers. *e hold-out validation method has been
employed to validate the proposed model with other state-
of-the-art approaches. In the view of hold-out validation, the
training instances are prepared with 30% of the subjects, and
the testing instances are 70% of subjects randomly. It is
observed that Naı̈ve Bayes on collaborative features excels
with 78.97% of detection accuracy with the lowest ever
training time. *e k-Nearest Neighbor suffers on the col-
laborative features with the lowest detection accuracy of
67.46%. However, the training time of k-Nearest Neighbor is
at par with that of Näıve Bayes. On the other hand, Logistic
Regression shows a close performance outcome of Näıve
Bayes with a bit of training time of 0.03 s. *e detailed
performance outcomes of the proposed approach, along
with others, are presented in Table 6.

In a subsequent attempt, errors generated by the proposed
collaborative Parkinson’s detection system have been ob-
served along with peer supervised classifiers. *e errors
generated by the various classifiers along with collaborative
features based on Näıve Bayes represent an inconclusive
result. It is because the collaborative PDS shows better results
for Mean Absolute Error (MAE). In contrast, it shows at par
results with other classifiers in Root Mean Squared Error
(RMSE), Relative Absolute Error (RAE), and Root Relative
Squared Error (RRSE).*e outcome of error matrices such as
Mean Absolute Error (MAE), Root Mean Squared Error
(RMSE), Relative Absolute Error (RAE), and Root Relative
Squared Error (RRSE) have been presented in Table 7.

Similarly, the Näıve Bayes based on collaborative fea-
tures is also compared with other classifiers through ROC
and PRC. *e results about the various classifiers have been
outlined in Table 8.

In Table 8, Näıve Bayes represents exceptional ROC and
PRC Values of 76% and 81%. *e results appear to be far
better than that of the k-Nearest Neighbor and C4.5 decision
tree. *e Logistic Regression is the only classifier that closely
competes with Naı̈ve Bayes. *e ROC and PRC are visually
represented for all classifiers, including Näıve Bayes in
Figure 7 for control and Parkinson’s subjects.

ROC of all the classifiers, including Näıve Bayes, can be
seen more towards True Positive Rates. However, C4.5 and
k-Nearest Neighbor suffers for controls but shows marginal
results for Parkinson’s subjects. In addition, with the pro-
gression of false positives, k-Nearest Neighbor reveals low
true positive rates, and thus, results in low AUC. On the
other hand, while evaluating PRC, it is found that Naı̈ve
Bayes outperforms with superior precision. *erefore, the
proposed collaborative features on Näıve Bayes is a practical
approach to Parkinson’s detection. At the final stage of
analysis, the proposed collaborative features-based Parkin-
son’s detection system has been compared with the current
state-of-the-art function-based methods, viz., Avuçlu and
Elen [18], Bourouhou et al. [19], Zhang et al. [20], Meghraoui
et al. [21], Kadiri et al. [22], Polat and Nour [25], Xiong and
Lu [26] and Mekyska et al. [28]. Since our approach is based
on a function-based approach, most of the methods taken
for comparison belong to function-based approaches such as
Näıve Bayes and Support Vector Machine (SVM). *e
comparison has been conducted in two different sets of
performance matrices. At first, the standard detection ac-
curacy has been used for the comparison (Table 9). Finally,
the Näıve Bayes based Parkinson’s detection mechanisms
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Figure 6: (a) Receiver Operating Curve of collaborative Parkinson’s detection for Parkinson’s and Control subjects. (b) Precision-Recall
Curve of collaborative Parkinson’s detection for Parkinson’s and Control subjects.
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Table 6: Detection accuracy and misclassification rate of collaborative Parkinson’s Detection using Naı̈ve Bayes and other supervised
classifiers.

Classifiers Number of features Training time (Sec) Accuracy (%) Misclassification rate (%)
C4.5 decision tree 7 0.03 73.81 26.19
k-Nearest Neighbor 7 0.01 67.46 32.54
Logistic Regression 7 0.03 77.38 22.62
Neural Network 7 0.14 75.40 24.60
Random Forest 7 0.21 76.98 23.02
Naı̈ve Bayes 7 0.01 78.97 21.03

Table 7: Error matrices of collaborative Parkinson’s detection using Naive Bayes.

Classifier Attributes MAE RMSE RAE RRSE
C4.5 decision tree 7 0.33 0.46 86.12 104.99
k-Nearest Neighbor 7 0.33 0.57 86.02 130.45
Logistic Regression 7 0.31 0.40 80.33 91.63
Neural Network 7 0.31 0.42 80.42 96.26
Random Forest 7 0.31 0.40 81.26 92.33
Naı̈ve Bayes 7 0.26 0.41 68.47 95.24

Table 8: ROC area and PRC area of collaborative Parkinson’s detection using Naive Bayes.

Classifier Attributes ROC area PRC area
C4.5 decision tree 7 0.60 0.69
k-Nearest Neighbor 7 0.56 0.65
Logistic Regression 7 0.75 0.80
Neural Network 7 0.73 0.79
Random Forest 7 0.74 0.78
Naı̈ve Bayes 7 0.76 0.81
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Figure 7: Continued.
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are compared and analyzed using many other additional
performance matrices and are presented in Table 10.

*e detection result of five recent Parkinson’s disease
detection (PDD) schemes has been tabulated in Table 9
along with the proposed collaborative PDD scheme. All
these methods used function-based approaches. It has been
observed that the proposed collaborative approach claims
the highest detection accuracy with the relatively lowest
number of vocal features. *ough the SVM approach of
Kadiri et al. [22] shows 73.32% detection accuracy, which is
close to our approach, but at the same time, the number of
vocal features used is not clearly highlighted.

A detailed comparison through additional performance
measures helps to visualize the capability of the proposed
approach over other Näıve Bayes approaches. For this
comparison, the Avuçlu and Elen [18] and Bourouhou et al.
[19] methods are taken into consideration. According to
Table 10, the Avuçlu and Elen [18] method has the highest
sensitivity score of 0.949. *erefore, the concerned method
indicates that 94.9% of Parkinson’s subjects are detected
among all the Parkinson’s subjects. On the other hand, our
proposed PD detection model is more precise with a 0.926
precision rate. In addition, it shows the lowest false positive
rate in detecting control subjects as Parkinson’s.

5. Discussion, Limitations, and Future Works

Like any other detection model, the proposed method also
suffers few limitations.*e proposedmodel is based on a voice
signal dataset provided by the Department of Neurology in

Cerrahpaşa, Faculty of Medicine, Istanbul. *e pronunciation
ascent of the sustained vowel /a/ is different for different
geographical regions. As a result, the model may generate
significant false positives or false negatives on the voice signals
of subjects of other continents. *erefore, it is essential for
further evaluation of other voice signal datasets. As future
work, the proposed model can be extended to a graphical user
interface mode which must have scope to be trained on
varying Parkinson’s signal datasets. Gender and age of subjects
are other aspects that need a detailed investigation, which the
proposed approach lacks. It should be noted that gender and
age play a significant role in vocal performance both for
control and Parkinson’s subjects [36, 37]. An unbalanced
dataset age and gender concerning disease pose considerable
issues towards the detection process [36–39]. *erefore, the
number of participants in the dataset should be balanced based
on genders and age for both Parkinson’s and control classes.
*e assessment of gender and age parameters is missing in this
research work and will remain a limitation. *e disease se-
verity is another factor that allows a detector to determine the
stage of the PD. In the future, the proposed work can be
modeled to predict the severity of the disease.

A good Parkinson’s detection dataset containing acoustic
features of the subjects needs to address various factors such as
the balance of gender concerning age, microphone quality,
noise, the robustness of analysis procedure, number of subjects,
disease severity, and influence of medication. Recently, Rusz
et al. [40] presented a guideline for speech recording, which can
prepare acoustic datasets for Parkinson’s detection. *e dataset
considered here addresses and meets almost all the parameters
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Figure 7: *e receiver operating and precision-recall curves of the collaborative Parkinson’s detection for Naive Bayes and its comparison
with other supervised learning techniques. (a) Performance comparison, receiver operating curves, on control subjects. (b) Performance
comparison, receiver operating curves, on Parkinson’s subjects. (c) Performance comparison, precision-recall curves, on control subjects.
(d) Performance comparison, precision-recall curves, on Parkinson’s subjects.
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stated above. However, it still fails to reveal the disease severity,
which is a critical issue for any Parkinson’s detection system that
relies on the dataset used here. *erefore, the proposed work
needs to be validated for disease severity prediction, which will
make the application practical for clinical use.

Similarly, incorporating event-driven methods may
improve the performance of suggested solutions in terms of
computational effectiveness, compression, and power con-
sumption [41–44]. Future work considering these aspects
may be investigated.

6. Conclusion

In this article, a collaborative PDD model has been
proposed. *e model relies on the vocal fold, time fre-
quency, and baseline features of both control and Par-
kinson’s subjects. *ese vocal features are first ranked
through correlation, fisher score, and mutual informa-
tion-based feature selection schemes. *e ranked features
have been passed sequentially to many classifiers where
Naı̈ve Bayes evolved as the best classifier for the proposed
model. *e feature points are also identified based on the
highest detection accuracy reported by Naı̈ve Bayes.
Relevant features are selected based on these feature
points. A total of 7 ranked features has been selected from
the vocal fold, time frequency, and baseline feature seg-
ments. *e detection model based on the 7 ranked features
shows promising detection accuracy of 78.97% and pre-
cision of 0.926, under the hold-out cross validation. *e
proposed model has also been compared with other
function-based detection models, where our PD detection
model proved to be accurate and precise. Finally, an
extensive discussion has been carried out regarding the
shortcoming and future direction of the proposed Par-
kinson’s detection model.
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Kinematic evaluation via portable sensor system has been increasingly applied in neurological sciences and clinical practice.
However, conventional kinematic evaluation rarely extends the context beyond the motor impairment level. In addition, ki-
nematic tasks with numerous items could be complex and time consuming that pose a burden to test applications and data
processing. -e study aimed to explore the correlation of finger-to-nose task (FNT) kinematics via Inertial Measurement Unit
with upper limb motor function in subacute stroke. In this study, six FNT kinematic variables were used to measure movement
time, smoothness, and velocity in 37 participants with subacute stroke. Upper limb motor function was evaluated with the Fugl-
Meyer Assessment for Upper Extremity (FMA-UE), Action Research Arm Test (ARAT), and modified Barthel Index (MBI). As a
result, mean velocity, peak velocity, and the number of movement units were associated with the clinical assessments. -e
multivariable linear regression models could estimate 55%, 51%, and 32% of variance in FMA-UE, ARAT, and MBI, respectively.
In addition, age, gender, type of stroke, and paretic side had no significant effects on these associations. Results show that FNT
kinematic variables measured via Inertial Measurement Unit are associated with upper extremity motor function in individuals
with subacute stroke. -e objective kinematic evaluation may be suitable for predicting clinical measures of motor impairment
and capacity to understand upper extremity motor recovery and clinical decision making after stroke. -is trial is registered
with ChiCTR1900026656.

1. Introduction

Upper extremity (UE) motor function is impaired in ap-
proximately 50–80% of individuals with acute stroke [1] and
40–50% with chronic stroke [2, 3]. Motor impairment re-
sults in poor movement control and has a major impact on
functional capacity and activities of daily living (ADL) of
stroke survivors [4]. To optimize UE recovery after stroke, it
is crucial to select multilevel outcome measures for the
interpretation of motor recovery and clinical decision
making [5]. Although there have been extensive validated
UE scales or tests to assess body structure, function, and

activity in clinical practice [6], these assessments often rely
on subjectively rated ordinal scales with ceiling effects that
may lead to examiner bias or lack sensitivity to detect po-
tentially impactful changes of upper limb motor recovery
[7].

Kinematic evaluation facilitates interpreting the mech-
anisms of motor restoration, which has been increasingly
applied in neurological sciences and clinical practice [8–10].
Such technology is capable of providing detailed informa-
tion regarding upper extremity function evaluation and
delivering personalized interventions. According to the
previous literature, kinematic assessment is usually
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performed using arm-supported robots or optical-camera
systems, based on fixed laboratory environments or ex-
pensive equipment that leads to several disadvantages
[11–13]. From the technical perspective, robotic instruments
are unable to capture the entire spectrum of UE motor
impairment due to their mechanical structure [14]. More-
over, most robotic devices could not extend the value of
kinematic scenarios beyond the impairment level according
to the International Classification of Functioning, Disability
and Health (ICF) framework [11, 15]. Optical camera sys-
tems raise privacy concerns inevitably and constrain par-
ticipants into a laboratory environment with much setup
time and cost [16].

Portable sensor systems, a novel approach of kinematic
evaluation, can provide upper limb spatiotemporal mea-
surements against gravity in a natural three-dimensional
environment [17]. Inertial Measurement Units (IMU) are
portable sensor devices combining the three-dimensional
accelerometers, gyroscopes, and magnetometers to detect
kinematic parameters. Kinematic analysis of motor im-
pairment via Inertial Measurement Unit has been shown to
be objective, sensitive, and quantitative. However, kinematic
tasks with numerous items could be complex and time
consuming that pose burden on test application, compliance
issues, and data processing in previous studies [18, 19].
Moreover, its relationship with the multilevel UE clinical
measures regarding ICF framework has not been fully in-
vestigated [14, 20].

In clinical practice, the finger-to-nose test (FNT) is
commonly applied to evaluate upper limb coordination in
patients with stroke and cerebellar ataxia [12, 21]. Compared
with multi-item clinical scales that require trained personnel
and as long as 30 minutes to complete, FNT could reduce
task burden when estimating individual’s UE performance
[22]. Previous studies have shown that FNTcould add value
to measure UE coordination with construct, convergent, and
discriminant validity [12, 23] as well as ADL-related dex-
terity [24, 25]. However, it remains unclear how FNT cor-
relates with motor impairment, capacity, and ADL
performance in individuals with subacute stroke from a
kinematic perspective. -erefore, the purpose of this study
was to explore the associations between FNT kinematic
variables obtained via Inertial Measurement Unit and
multilevel upper extremity motor function in subacute
stroke survivors. Furthermore, we aimed to compare the
amount of variance in clinical scales that could be explained
by FNT kinematic variables. Hypothetically, kinematic
metrics reflecting the UE movement strategy, smoothness,
and velocity could be considered to measure more aspects of
motor impairment (FMA-UE) than activity assessments
(ARAT and MBI).

2. Materials and Methods

2.1. Study Design. -is cross-sectional study followed the
Strengthening the Reporting of Observational Studies in
Epidemiology (STROBE) checklist. -e study was per-
formed in accordance with the principles of the Declaration
of Helsinki. -e study protocol was approved by the Clinical

Trials Ethics Committee of Huazhong University of Science
and Technology on 24 October 2018. -e study was regis-
tered in the Chinese Clinical Trial Registry (no.
ChiCTR1900026656) on 17 October 2019.

2.2. Participants. -irty-seven individuals with subacute
stroke were recruited from the Department of Rehabilitation
Medicine from December 2019 to January 2021 (Figure 1).
-e inclusion criteria were as follows: (a) clinical diagnosis
of unilateral, first-ever subacute stroke verified by MRI or
CT; (b) aged 18–80 years; (c) showing upper limb motor
impairment (Fugl-Meyer Assessment of Upper Extremity
<66); (d) able to complete the kinematic protocol; (e) no
complicating medical history, such as visual, cardiac, or
pulmonary disorders. -ose who had other musculoskeletal
or neurological conditions that affected arm function were
excluded from the study [23]. All the participants were right
handed [26] and have provided written informed consent
prior to study entrance.

2.3. Clinical Assessments. Clinical assessments of the par-
ticipants included the Fugl-Meyer Assessment of Upper
Extremity (FMA-UE), Action Research Arm Test (ARAT),
and modified Barthel Index (MBI). -e FMA-UE is a val-
idated and reliable assessment of poststroke upper limb
motor impairment. FMA-UE is composed of 33 items that
comprise four subscales (arm, wrist, hand, and coordina-
tion) regarding motor domains, and higher scores indicate
less motor impairment of upper extremity [27]. -e ARAT
was used to evaluate UE functional capacity, including grasp,
grip, pinch, and gross movement. ARATconsists of 19 four-
point ordinal items, and higher scores indicate greater arm
functional capacity [28]. -e independence level in basic
activities of living was assessed with the MBI, which consists
of 10 items and higher scores indicate greater ADL inde-
pendence [29].

2.4. Kinematic Assessment. Kinematic assessment was
implemented with an Inertial Measurement Unit system
(IMU, Noraxon USA Inc.). Each IMU sensor contains a
coordinate system to assess accelerations and three-di-
mensional orientations at a 100Hz sampling frequency. -e
IMU system had shown excellent reliability, accuracy, and
precision in quantifying kinematic test [17]. Four sensors
were placed on body segments, including head, upper arm,
forearm, and hand, to detect UE kinematic information.
Participants were required to sit in a height-adjustable chair
with their hips and knees flexed to 90°. Upper extremity
maintained in the neutral position, with elbow extension and
palm downward initially. Standardized procedure for the
finger-to-nose test was first presented by the same re-
searcher, and then, it was imitated by the participants for
three times before testing. -e tests were recorded for five
times, and a mean of the variable was used in statistical
calculations [30].

Data were extracted through a semiautomated code in
MATLAB software (-e MathWorks, Natick,
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Massachusetts, USA) according to the anatomical coordi-
nate system and joint rotation recommended by the In-
ternational Society Biomechanical (ISB) [31]. Onsets and
ends of FNT movements were defined with a velocity
threshold of 50mm/s [30]. In this cross-sectional study, six
FNT kinematic variables were calculated: movement time
(MT), mean velocity (VM), peak velocity (VP), percentage of
time to peak velocity (TVP%), number of movement units
(NMU), and normalized integrated jerk (NIJ) [30, 32]. MT
was an objective quantitative variable defined as the time
spent during the test to reflect movement performance. -e
maximum tangential velocity of index finger was calculated
during each movement segment to get VP; VM was defined
as the average tangential velocity. TVP% was the proportion
of time taken from the onset of the movement to the peak
velocity. -e number of velocity peaks exceeding 10% of VP
was characterized as NMU. NIJ was utilized to assess
movement smoothness, which was calculated using jerk,
M,T and length of the task according to the following
formula:

NIJ �

��������������������

MT5

2 × length2
×  jerk(t)

2




, (1)

where jerk represented the third derivate of end point
displacement, and length represented the shortest distance
between initial and terminal positions of index finger.

2.5. Statistical Analysis. Statistical analysis was performed
on IBM Statistical Package for Social Science (SPSS) version
22.0. Chi-squared test was used to examine categorical
variables, and one-way ANOVA was used to examine
quantitative variables. Shapiro–Wilk test or Q-Q plot was
used to evaluate whether the quantitative data were normally
distributed. Pearson’s correlation coefficients (r) were
conducted between kinematic and clinical assessments. -e
limit for multicollinearity among independent variables was
set at 0.7 for correlation coefficients. After controlling the
influencing factors (including age, gender, type of stroke,

and paretic side), the kinematic metrics were included as
independent variables into the multivariable linear regres-
sion to investigate the associations with clinical assessments.
Probability for entry in backward regression was set at 0.05
and removal at 0.10. Adjusted R2 values with P value, un-
standardized coefficient (β), and unique partial correlation
coefficients were used to estimate the contribution of each
metrics to the models. A two-sided P< 0.05 was set as
statistical significance.

3. Results

3.1. Demographics and Clinical Characteristics.
Demographics and clinical characteristics of the participants
are presented in Table 1. -irty-seven individuals (28 male,
aged 49.78± 10.26 years) with subacute stroke were
recruited in this study from December 2019 to January 2021
(Figure 1). -ey had moderate-to-severe UE motor im-
pairment (mean FMA-UE scores, 36.22± 17.69) and ca-
pacity (mean ARAT scores, 23.97± 17.38). Of the 37
participants, 26 (70.3%) had ischemic stroke and 11 (29.7%)
had hemorrhagic stroke; 22 (59.5%) had left-sided hemi-
plegia and 15 (40.5%) had right-sided hemiplegia (Table 1).

3.2. Correlations between Clinical and Kinematic Measures.
Correlations between clinical and kinematic measures are
shown in Table 2. Mean velocity strongly correlated with the
FMA-UE (r� 0.85, P< 0.01) and ARAT (r� 0.80, P< 0.01)
and moderately correlated with MBI positively (r� 0.58,
P< 0.01). Besides, all the clinical assessments correlated
significantly with VP positively (r� 0.55 to 0.81, P< 0.01)
and NMUnegatively (r� −0.45 to −0.65, P< 0.05). However,
MT, TVP%, and NIJ were not significantly associated with
the clinical assessments (Table 2). As shown in Table 2,
multicollinearities were observed between MT and NIJ, as
well as among VM, VP, and NMU. For that reason, only the
VM and NIJ/MTduring the FNT task were inputted into the
multivariable linear regression models to estimate variation
in clinical assessments.

-e results of multivariable regression analysis of the
kinematic metrics against the clinical assessments are pre-
sented in Table 3. Backward multiple regression revealed
that kinematic variables could explain the largest amount of
variance in the assessment of UE motor impairment as
measured by FMA-UE. -e only significant predictor was
the VM, which explained 55% of the FMA-UE variance
(F� 20.72, P< 0.01). Moreover, the VM alone showed a
significant contribution to the models, accounting for 51% of
the ARAT variance (F� 39.10, P< 0.01) and 32% of the MBI
variance (F� 8.93, P< 0.01) (Table 3). Moreover, demo-
graphics, including age, gender, type of stroke, and paretic
side, showed no significant influence in any regression
model.

4. Discussion

-e cross-sectional study investigated the associations be-
tween FNT kinematic variables obtained via Inertial Mea-
surement Unit and upper extremity motor function in

A total of 536 hospitalized
patients in the Department of

Rehabilitation Medicine

158 patients with stroke
were consecutively screened
according to eligible criteria

37 patients with stroke were
included in the study

378 patients were excluded
316 not stroke patients
62 untimely hospital
discharge

(i)
(ii)

121 patients were excluded
76 not unilateral, first-
ever subacute stroke
29 unable to complete
the kinematic test
10 musculoskeletal or
neurological conditions
affecting arm function
6 declined to participate

(i)

(ii)

(iii)

(iv)

Figure 1: Flowchart of the study.
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Table 1: Demographics and clinical characteristics (n� 37).

Characteristics (n� 37)
Age (years) 49.78± 10.26
Gender (M/F) 28/9
Days between onset and enrollment 106.30± 65.46
Type of stroke (ischemic/hemorrhagic) 26/11
Paretic side (left/right) 22/15
FMA-UE (range 0–66) 36.22± 17.69
ARAT (range 0–57) 23.97± 17.38
MBI (range 0–100) 72.30± 22.20
Body mass index (kg/m2) 24.43± 2.60
MT (s) 1.09± 0.31
VP (m/s) 1.61± 0.92
VM (m/s) 0.78± 0.44
TVP% (%) 42.23± 11.30
NMU 2.56± 1.25
NIJ 2.86± 1.98
FMA-UE, Fugl-Meyer assessment for upper extremity; ARAT, action research arm test; MBI, Modified Barthel index; MT: movement time; VP: peak velocity;
VM: mean velocity; TVP%: percentage of time to peak velocity; NMU: Number of movement units; NIJ: Normalized integrated jerk.

Table 2: Correlations between clinical assessments and kinematic metrics (n� 37).

FMA ARAT MBI MT VP VM TVP% NMU
Clinical assessment
FMA
ARAT 0.94∗∗
MBI 0.62∗∗ 0.64∗∗

Kinematic metrics
MT 0.11 0.07 0.15
VP 0.81∗∗ 0.76∗∗ 0.55∗∗ −0.03
VM 0.85∗∗ 0.80∗∗ 0.58∗∗ −0.11 0.96∗∗
TVP% −0.11 −0.17 −0.14 −0.49∗ −0.17 −0.11
NMU −0.65∗∗ −0.59∗∗ −0.45∗ 0.10 −0.70∗∗ −0.74∗∗ 0.22
NIJ −0.24 −0.27 −0.10 0.71∗∗ −0.27 −0.40∗∗ −0.20 0.47∗

FMA-UE, Fugl-Meyer Assessment for Upper xtremity; ARAT, Action Research Arm Test; MBI, Modified Barthel Index; MT: movement time; VP: peak
velocity; VM: mean velocity; TVP%: percentage of time to peak velocity; NMU: Number of movement units; NIJ: Normalized integrated jerk. ∗: P< 0.05.
∗∗: P< 0.01.

Table 3: Multivariable regression analysis of the kinematic metrics against the clinical assessments (n� 37).

Independent variables Unstandardized coefficient
β

Standard
error

Partial unique
correlations

P value of the
variable

Adjusted R2

(model P value)
FMA-UE as dependent
variable 0.55 (<0.01∗)

Constant 11.91 2.59 — <0.01∗
VM 17.81 2.90 0.74 <0.01∗
NIJ 1.05 0.68 0.25 0.13
ARATas dependent variable 0.51 (<0.01∗)
Constant 1.50 4.11 — 0.72
VM 28.84 4.61 0.73 <0.01∗

MBI as dependent variable 0.32 (0.01∗)
Constant 32.57 12.23 — 0.19
VM 28.93 7.09 0.57 <0.01∗
MT 15.70 10.05 0.26 0.13
FMA-UE, Fugl-Meyer Assessment for Upper Extremity; ARAT, action research arm test; MBI, Modified Barthel Index; MT: movement time; VM: mean
velocity; NIJ: normalized integrated jerk. ∗: P< 0.05.
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subacute stroke survivors according to the ICF framework.
-e results indicated that the mean velocity (r� 0.58 to 0.85),
peak velocity (r� 0.55 to 0.81), and number of movement
units (r� −0.45 to −0.65) were associated with all of the
clinical assessments. Mean velocity was entered into the
multivariable linear regression models and could estimate
55%, 51%, and 32% of variance in FMA-UE, ARAT, andMBI
during the FNT task. Additionally, age, gender, type of
stroke, and paretic side had no significant effects on these
associations.

-e previous kinematic literature mainly focused on
predicting upper limb motor impairment. Our results ex-
tended the value of kinematic scenarios beyond the im-
pairment level according to the ICF framework and
suggested that FNT kinematics was more strongly associated
with FMA-UE and ARAT than MBI. Lee et al. proposed an
automated FMA system and showed high scoring accuracy
in 79% of FMA test in nine stroke patients [33]. -eir al-
gorithms were shown appropriate for clinical use but lacked
clinical interpretability in kinematic results because esti-
mating clinical scale was not the only goal of portable
sensors [14, 16, 34]. In addition, little was known about the
associations between clinical activity–related scales and IMU
sensors [35]. Our models established predictable correla-
tions between FNTmean velocity via Inertial Measurement
Unit and upper extremity motor function after stroke [36].

Due to multicollinearity among VM, VP, and NMU,
only VM was entered into the multivariable models. Speed
variables reflect how efficiently a person controls interaction
torques of the agonist/antagonist muscles [32]. Analogous to
our results, two studies using robotic device showed sig-
nificant correlations between movement speed and FMA-
UE in individuals with subacute [37] and chronic [38]
stroke, respectively. Furthermore, movement smoothness is
an important indicator of upper limb motor recovery after
stroke [30]. Smoothness parameters evaluate the temporal
organization or UE multijoint coordination [39]. In a study
early after stroke, smoothness measured by NMUwas able to
predict upper limb motor recovery over time [40].
According to our results, NIJ was not significantly associated
with the clinical assessments. However, smoothness should
be interpreted with cautions because a single smoothness
parameter may not completely reflect motor recovery of
upper extremity [41].

Interestingly, the FNT kinematic metrics measured
comparable aspects of motor impairment by FMA-UE
(R2 � 0.55) and functional capacity by ARAT (R2 � 0.51).
-is was analogous with a prior work by Adans-Dester et al.,
which used eight motor tasks of Wolf Motor Function Test
(WMFT) and found satisfactory results to estimate upper
limb impairment and activity scales [42]. Although this was
in line with our second hypothesis, the difference was small
and needed to be further studied [19]. One possible ex-
planation might be that participants had moderate-to-severe
upper extremity motor impairment, leading to poor scores
on manual dexterity of ARAT items. Future studies should
therefore include much kinematic variables and compre-
hensive tasks at different UE segments to explore the cor-
relations between the assessments. -e low variance

explained by IMU kinematic variables in MBI could be that
the FNT task did not measure distal dexterity of the upper
extremity. As a result, variables in the models may not fully
capture kinematic information in individuals with stroke
[43]. Moreover, MBI is a questionnaire for ADL in a real
environment and not an observational measure of UEmotor
function in an experimental setting.-us, participants could
use compensatory behaviors or actually the less affected UE
to improve MBI scores, which may be difficult to explain
with the current kinematic task.

Several limitations of this study should be acknowledged.
First, the sample size restricted the number of kinematic
variables entered into the multivariable linear regression
models. -erefore, future studies could implement other
statistical models, such as machine-learning approaches, to
investigate the associations between FNT kinematic vari-
ables and upper extremity motor function in individuals
with stroke [42, 44]. Second, this was a cross-sectional study
and unable to investigate the longitudinal associations be-
tween kinematics and clinical measurements. Finally, the
models did not include other kinematic tests and variables
concerning trunk and interjoint movements, whichmay lead
to task-related bias and loss of information [45, 46].

5. Conclusions

-is study indicates that kinematic variables measured via
Inertial Measurement Unit during the finger-to-nose task
are associated with upper extremity motor function in in-
dividuals with subacute stroke according to the ICF
framework. Furthermore, the objective kinematic evaluation
may be suitable for predicting clinical measures of motor
impairment and capacity to understand upper extremity
motor recovery and clinical decision making after stroke.
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For active-contour-based surgery systems, the success of skin cancer boundary segmentation depends on the initialization point of
the snake model, which is a task originally performed by skillful experts, and on the parameters set for the algorithms of active
contour. *is paper proposes initial geometrical templates and parameter sets for the active contour on skin cancer boundary
segmentation. To establish initial geometrical templates and parameter sets for the active contour, first, template candidates, which
are geometrically designed by users in advance, are simply calculated based on similarity with a skin cancer boundary, and the
candidate with the least difference is selected as an initial template. Initially, all candidate templates are performed before the test
with some selected skin cancer samples by randomly varying needed parameters to determine parameter sets for each template.
*e parameter set is therefore implicitly selected as the suitable set with the selected initial template. Experiments with 227 skin
cancer samples were performed based on our proposed initial templates and parameter sets, and the results show 99.46% accuracy,
97.43% sensitivity, and 99.87% specificity approximately in which accuracy, sensitivity, and specificity were improved by 0.26%,
0.36%, and 0.26%, respectively, compared with the conventional method.

1. Introduction

According to a WHO’s (World Health Organization) report
in 2016 [1], cancer is the worst death cause for humans.
Among cancer types including breast, cervical, and lung, skin
cancer was ranked as number 19 of human death causes, and
the number of patients dramatically increase by approxi-
mately 1.7 million in 2016 [1] due to stronger ultraviolet (UV)
in recent years. Among several approaches to cure skin cancer
including surgery, radiation, and photodynamic therapy,
surgery comprising Mohs microsurgery, laser surgery, and
electrodesiccation and curettage are currently widely accepted
as effectivemethods with less pain. However, surgery basically
depends on skillful medical doctors who are limited in
number, and treatment is normally costly [2] such that the
existence of an automatic skin cancer surgery system would
be useful to assist medical doctors curing patients.

One of the important fundamental functions of the
automatic skin cancer surgery system is skin cancer
boundary segmentation [3]; so many researchers are trying
to focus on the research problem of segmentation of the
skin cancer boundary to ensure the success of automatic
surgery. In fact, the skin cancer boundary complicatedly
consists of many tiny curves and angles with low contrast in
some parts. It truly becomes difficult to accurately segment
the boundary for automatic skin cancer surgery. In case
that the segmentation is not properly performed, the skin
cancer is not completely removed due to reduced seg-
mentation, and the cancer may subsequently spread
throughout the entire body. *us, some neighboring
normal flesh is removed with the skin cancer as buffer
because the medical doctor intends to ensure that all cancer
is removed.*erefore, if automatic segmentation efficiently
functions, it ensures that all of the skin cancer is removed,
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and the pain caused by removing some neighboring flesh
needlessly is simultaneously eased.

Previous research works of segmentation, especially
those related to automatic skin cancer surgery, could be
divided into a couple approaches that are supervised and
unsupervised. *e first group of supervised-based ap-
proaches [4–7] analyzed images of skin cancer and utilized
existing image processing and machine-learning tools to
segment the boundary of skin cancers. Some of these studies
[4] focused upon cancer detection and discuss the benefits
and costs in terms of automatic cancer detection and as-
sistance systems. However, to implement an automatic skin
cancer surgery system, segmentation fundamentally be-
comes a crucial basic function and vitally requires high
accuracy. Moreover, the aforementioned supervised
methods are evaluated to yield good results in skin cancer
segmentation and detection.

In another unsupervised approach, Castillejos et al. [8]
proposed wavelet-transformed fuzzy algorithms for der-
moscopic image segmentation. *is method used feature
extraction in wavelet transform space before proceeding to
the segmentation process, and three-color channels (RGB
space) in wavelet-transformed space gather the color
channels via the nearest neighbor interpolation (NNI). *is
type of preprocess using existing mathematic tools and some
machine learning algorithms that were discussed in the
supervised approach is highly evaluated as good mathematic
segmentationmethods, but the bad cases with negative faults
are critically outstanding [9, 10]. *ese models were ac-
ceptable in applications of skin cancer detection that decide
the cancer boundaries. Although methods used for active
contours simultaneously provide poorer results [9, 10],
negative faults were found less often compared with the
mentioned methods. *is was the critical point for the
automatic surgery system that medically requires seg-
menting skin cancer boundaries accurately since the bad
segmentation cases were seriously regarded as negative re-
sults for the surgery. In this case, the skin cancer was not
completely removed and ultimately not cured. In the sub-
group of active contour usage, Munir et al. [11] recently
proposed adaptive active contours based on the variable
kernel with constant initialization. *is mathematically
incorporated a force term that pushed the contour towards
the object boundary by using a regularization term that has
taken into account the smoothness of the level set function
and an edge term that helped to stop the contour at required
boundaries. *is system achieved high accuracy, but ini-
tialization is not completely automatic to date. On the other
hand, Mogali et al. [12] proposed template-based active
contours using a generalized active contour formalism for
image segmentation based on shape templates, and the shape
template is subjected to a restricted affine transformation
(RAT), which allows for translation, rotation, and scaling.
*e segmentation functions excellently for any shapes.
Kirimasthong et al. [13] proposed a method of automatic
initialization of GVF-type snakes in ultrasound images of
breast cancer. *e method was proved to deal well with
ultrasound images of breast cancer. Rodtook et al. [14]
proposed an automatic initialization of active contours and a

level set method in ultrasound images of breast abnor-
malities. *e method successfully dealt with ultrasound
images of malignant tumors, fibroadenomas, and cysts.
Nevertheless, the complexity of automatic initialization
remained as a problem in these mentioned methods for
system implementation and to set parameters (weighting
factors, iteration steps, etc.) for active contours depending
on human skill [15] and it was not clearly reproducible.

*e authors of this paper hence have focused on the
research problems of automatic initialization and parameter
setting for active contours. *e initialization and parameter
setting are considered in this paper to be improved in terms
of human skill independence, simpleness, and reproduc-
ibility. Although deep learning tool as convolution neural
network (CNN) is recently accepted as powerful for clas-
sification, it basically needs a huge number of samples for
training, which may not be suitable for some medical
problems. *e authors first sought to perform experiments
on skin cancer images using SVM and snake model using a
semiautomated method [16]. It was confirmed to work well
with some skin cancer samples but needed to be improved as
a fully automatic method. *e contribution of this paper
hence is to create an algorithm to automatically initialize the
active contour using a geometric template which is auto-
matically selected from a group of geometric shape candi-
dates based on some samples trained in advance. Since there
exist many parameters in active contours which vitally in-
fluence convergence of the contours, parameters, which are
matched with selected geometric template shapes, are au-
tomatically selected based on prior training of parameter
sets. *e active contours therefore can simply perform
segmentation by the independence of any human skills.

*is paper is constructed as follows: analysis of initial-
ization and parameter setting for active contour-based
segmentation is reported in Section 2. An overview of the
imagined automatic surgery system and the proposed
method are described in Section 3. Section 4 demonstrates
the experimental results using proposed templates and
parameter sets. *e discussion of the selected initial tem-
plates and parameter sets is explained in Section 5. Finally,
the conclusion is presented in Section 6.

2. Analysis of Initialization and Parameter
Setting for Active-Contour-
Based Segmentation

It is a fact that segmentation obtained by active contours is
accepted as an excellent one, but it depends upon initiali-
zation and parameters based on human skill. If initialization
is fit with the object shape, segmentation and active contours
may be performed appropriately. As shown in Figure 1(a)
where blue and red lines represent initialization manually
performed by an expert and segmentation done by active
contours, respectively, the segmentation result is observed to
converge appropriately. In the opposite way, when the
initialization is not fit with the object shape shown by a blue
line, the red line representing segmentation is observed to
converge inside the object, as shown in Figure 1(b). It is
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obvious that initialization is one of the crucial keys for
active contours, and originally it depends on human skill.
Although some researchers have achieved good results to
create algorithms for automatic initialization using seed
explosion [13, 14], complexity remains as important issue
that will be discussed in this paper. *e approach of
conventional methods is basically based on random dis-
tribution which is regarded as a good way to cover any
kinds of shapes. Observing the shape of appropriate ini-
tialization, it looks similar to the segmentation but closely
bigger. It is also very difficult to create such kind of the
shape which is similar to any shapes of the skin cancer,
because it is initially unknown. Our solution in this paper is
to scope numbers of candidate shapes using similar geo-
metric ones. As shown by an example of circle in
Figure 1(c), although the number of convergence loops
observed by thickness of the red lines is accumulated more
than the case of good initialization, as shown in Figure 1(a),
it finally can converge in the similar level with the ini-
tialization done by an expert.

On the other hand, it is also observed that parameters
such as weight factors, iteration steps, alpha, beta, kappa,
wline, wedge, and wterm influence the segmentation results.
For instance, appropriate parameters are set on those cases,
as shown in the first row of Figure 1, and all initializations
converge well except for the bad initialization, as shown in
Figure 1(b). If inappropriate parameters are applied to those
cases, segmentation results represented by red lines reveal
incorrect convergence with many loops. Obviously, this
means parameters are another key for active contours.

As discussed earlier in Figure 1, initialization whose
shape is similar to the skin cancer is the most preference for
active contour segmentation, and an appropriate geometric
shape is regarded as another choice used as a basic concept in
this paper. Moreover, parameter setting is another crucial
factor that controls active contour to converge appropri-
ately. As shown in Figure 2, a skin cancer boundary is
applied by different geometric templates which are rectangle,
ellipse, and circle, as shown in row directions, respectively,
and three parameter sets, which are assumed to be suitable
for initialization, too less convergence, and too much
convergence, are used in the column directions, respectively.
*ese figures show the appropriate geometric shape with
appropriate parameter set is preference, as shown in
Figure 2(a), while others are unworkable based on inap-
propriate conditions of either initiation or parameter set, as
shown in Figures 2(b)–2(i). *is means both appropriate
initiation and parameter set are really required in the
implementation of fully automatic active contours, and the
authors of this paper would find an algorithm to determine a
geometric shape as initiation with a set of parameters which
initially was fixed with the selected geometric shape.

Based on [17], the active contour or snake is defined as a
deformable curve (X(s) � [x(s), y(s)]), where s ∈ [0, 1]),
and it is adjusted to minimize the energy (E) in the following
equation:

E � 
1

0
α X′(s)



2

+ β X″(s)



2

+ Eext(X(s)) ds, (1)

where α and β are weighting parameters corresponding to
elasticity and stiffness of the snake, respectively, and they are
assumed to be uniform for all. X′(s) and X″(s) are 1st and
2nd order derivative of X(s) with respect to s.

In operation, the snake curve represented by the first and
second terms in (1), which exactly implies snake initiali-
zation, may be adjusted through the image spatial domain to
reach the external energy Eext representing image features.
At that time, the total energy (E) should reach minima or
even none, and the image boundary is regarded to be ob-
tained. Since, normally, a shape of a skin cancer boundary is
arbitrary, the snake operation sometimes cannot be per-
formed accurately to segment the boundary due to some
local minimum even logically reaching no total energy.

As the research theme of this paper mentioned earlier,
the authors of this paper try to find a simple way to auto-
matically initialize for practical snake operation for practical
applications. Mathematically, geometric shapes can be ap-
proximated as candidates of the initialization, and the cri-
teria of geometric shape selection should be an issue to
discuss.

If some geometrical shapes (Ti) are conceptually ap-
proximated in terms of template as initialization, a geo-
metric shape (TP), which is selected based on the most
similarity to the skin cancer image (W) from a group of
candidate geometric shapes including circle, ellipse, triangle,
rectangle, pentagon, hexagon, possibly differed the least
compared with the skin cancer image, as shown in Figure 3.
*e geometrical template can be selected as follows:

TP � min
i�1,2,...,n

Ti − W, (2)

where n is the number of template candidates.
*e geometrical template candidates (Ti), in which their

scale is determined based on the maximum skeleton (lmax) of
the rough skin cancer boundary and their posture is varied
by all angles (θj) starting from an initial angle, can be
expressed as follows:

Ti � Ti lmax, θj 
2π+t

j+t
, (3)

where t and j are initial angle and angles around a point
(j � 0, 1, 2, . . . , 2π), respectively.

*erefore, the least difference between geometric ini-
tialization and skin cancer image is concluded as the con-
dition for initialization determination in this paper.

3. Proposed Initialization and Parameter
Setting Method for Active Contours

In the implementation of the proposed method, some
samples of skin cancer images need to be selected and
trained to obtain candidate templates and their suitable
parameters in the training state. As shown in the left column
in the flowchart of Figure 4, the training state starts from
inputting some known skin cancer images, performs fitting
and voting for selection of candidate templates from geo-
metrical shapes, and experiments those selected candidate
templates with active-contour parameters for selecting
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parameter set for each candidate template. *ose mentioned
candidate templates with their suitable active-contour pa-
rameter sets would be stored in a database for usage in the
testing state. *e template and parameter determination
processes will be explained in Sections 3.1 and 3.2,
respectively.

In the testing state, suppose an unknown skin cancer
image is inputted for segmentation, a suitable template with
its parameter set will then be selected by searching in the
database of templates and parameter sets trained with
geometrical shapes and active-contour parameters in ad-
vance, and an active contour will finally segment the skin
cancer based on the selected geometrical shape template
with parameter set, as shown in the right column of the
flowchart in Figure 4. *e processes of template determi-
nation and active contour segmentation are mentioned in
Sections 3.1, and 3.3, respectively.

3.1.GeometricalTemplateDetermination. Normally, the best
initialization for active contour is considered to fix the shape
closest to the workpiece. Since the workpiece boundary is
originally unknown, a way to determine initialization au-
tomatically is to estimate a rough boundary of the workpiece
and utilize a geometrical shape as a template, which is closest
to the rough boundary, as initialization. In the estimation of
the rough boundary of the workpiece, which is assumed to
be a skin cancer boundary, some preprocessing such as
binarization process can be used to simply extract a border
of rough skin cancer boundary which is the foreground of

the image, and then offset should be added surrounding the
extracted skin cancer boundary border to ensure the whole
skin cancer boundary is picked up. In the utilization of
geometrical shapes as candidate template for automatic
initialization determination, all possible geometrical shapes,
as shown in Figure 5, should be applied as a candidate to the
rough skin cancer boundary with added offset, and all
candidate geometrical shapes regarded as a template should
be adjusted in scaling and rotation views to fit into the
boundary. Conceptually, the centroid of a candidate geo-
metrical template is first mapped in the same coordinates
with the centroid of the rough skin cancer boundary, and
differences between those mapped shapes are obtained in all
scales and rotation angles of the template. In detail, the
template first fixed its scale to be slightly bigger than the
longest skeleton of the rough skin cancer boundary in the
same centroid position, and then differences between the
template and rough skin cancer boundary are obtained by
rotating the candidate template in all angles, as shown in
Figure 6. *e algorithm of the mentioned steps is illustrated
in Algorithm 1.

On the other hand, unknown skin cancer images per-
formed segmentation in the testing state, as shown in the
right column in Figure 6. In the testing state, all template
candidates stored in the database of geometrical templates
and parameter sets would be applied in a rough skin cancer
boundary obtained by the binarization process. Like the
processes in the training state, the candidate template with
the least difference compared with the rough skin cancer
boundary would be determined as the initial geometrical

Initialization
Segmented result

(a) (b) (c)

(d) (e) (f)

Figure 1: Comparison of different initialization and parameters. (a) Appropriate manual initialization with appropriate parameters.
(b) Inappropriate manual initialization with appropriate parameters. (c) Geometrical initialization with appropriate parameters.
(d) Appropriate manual initialization with inappropriate parameters. (e) Inappropriate manual initialization with inappropriate pa-
rameters. (f ) Geometrical initialization with inappropriate parameters.

4 Journal of Healthcare Engineering



template for active contour operation, and the template and
parameter set which has been trained and matched with the
determined geometrical template are used in active contour
segmentation in the next process.

In practice, it is almost impossible and redundant to find
a suitable template from all existing geometrical shapes and
find the difference between all possible templates with rough

skin cancer boundary by continuously varying the templates
in all angles. As shown in Figure 7, circle, rectangle, and
ellipse should be selected as candidate templates, while other
kinds of geometrical shapes, which are rarely used, should be
excluded from the template candidate group. *ese rarely
used geometrical shapes should be considered to delete in
the training state. *erefore, a practical way to reduce re-
dundancy of template determination from all possible
geometrical shapes is recommended to limit the number of
geometrical template candidates by high possibility based on
some samples of skin cancer image as training state in
advance. To determine high possibility geometrical shapes as
templates stored in the geometrical shape database, as shown
in the left column in Figure 4, some samples of skin cancer
boundary image are manually selected for finding a
threshold value. Consequently, those selected skin cancer
samples are performed before testing based on the steps
illustrated in Algorithm 1 for preprocessing, template se-
lection, and template rotation starting from the 3rd, 9th, and
15th lines, respectively. *e number of determined geo-
metrical templates would be simply counted, and a

Initialization
Segmented result

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2: Comparison of snake initialized by geometric shapes with different parameters. (a), (d), and (g) Appropriate geometrical
initialization with appropriate parameters. (b), (e), and (h) Appropriate geometrical initialization with too little convergence. (c), (f ), and
(i) Appropriate initialization with too much convergence.

Tp

W

Figure 3: A geometric shape as initialization.
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thresholding value [18] should be statistically determined for
dividing between highly selected and less selected geomet-
rical shapes. *is means some geometrical templates, which
are frequently determined as initialization template, would
be screened as template candidates for storing in the geo-
metrical shape database.

3.2. Determination of Parameter Set for Candidate Templates.
It has been proved that parameters which are matched with
initialization will help active contour to segment

appropriately [19]. When geometrical shapes are selected as
a template in the training state, parameters which are
matched with those geometrical templates should be si-
multaneously performed before the test of active contour on
some samples and determined in advance. *ese parameters
which are the most matched in each geometrical template
should be concluded as a parameter set of the geometrical
template and would be utilized as initial parameters in the
testing state.

In the training state, all parameters, which need to be set
as initial ones, are listed up with varied ranges and steps, as

3.1

3.2

3.3

Training

Start

Template
determination

Parameter set
determination

Database of
templates

and
parameter

setsGeometrical
shape 

database

Active 
contour 

parameter 

Start

Image inputImage input

Template and
parameter selection

Active contour
segmentation

Output

Stop

Testing

Skin cancer images Skin cancer images

Binarization Binarization

3.4 

Figure 4: Flowchart of the proposed method. 3.1–3.4 represent subchapters explaining details of the processes.
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radius

Ellipse
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Longest
radius

Longest
radius Longest

radius

Circle

Triangle Parallelogram

Longest
radius
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Figure 5: Geometrical shapes as template candidate.
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shown by an example in Table 1. *ese ranges and steps of
parameters would be used to vary in the pretest on some
samples and concluded the best parameters by average as
parameter set of the geometrical template. A computer
program for finding parameter sets of all geometrical
templates should be created following Algorithm 2. In Al-
gorithm 2, a skin cancer image and geometrical templates
are input in the 4th and 8th lines, respectively. *en, best
parameter finding, parameter varying, and rotation are
performed in 9th, 11th, and 13th, respectively.

In the training state, a geometrical template is performed
mapping with some skin-cancer image samples while rotated

in all 360 degrees; the best parameter sets for all samples are
selected based on the least differences with samples, and the
average of those best parameters are determined as parameter
set of the template as shown in Algorithm 2. *e parameter
sets of all templates are stored in the database as fixed-pa-
rameter sets of templates and ready to be retrieved and used
for the operation of active contour in the testing state.

3.3. Template Selection andHow to Apply a Template to a Skin
Cancer Image. In the testing state, when a skin cancer image
is input, a geometrical template and parameter set will be

Centroid

Offset (Tf)

Longest
radius (lmax)

Offset skin cancer 
boundary (C)

Template (Tp)

Skin cancer (S)

Offset for 
template (Tt)

θ

Binarized skin 
cancer boundary (B)

Figure 6: Mapping of geometrical shapes on a skin cancer boundary.

(1) START
(2) SET Tp (i): candidate templates (e.g., circle, rectangle, ellipse, triangle, etc.), n: number of candidate templates, θ: template

rotation angle, Tf: offset of rough skin cancer image
(3) REPEAT
(4) INPUT an image of skin cancer
(5) COMPUTE binarization
(6) COMPUTE rough contour of a skin cancer image
(7) COMPUTE scaling the skin cancer image by offset (Tf)
(8) COMPUTE centroid and the longest radius of skin cancer
(9) REPEAT
(10) INPUT candidate template (Tp(i))
(11) COMPUTE centroid and the longest radius of template
(12) COMPUTE mapping between candidate template and skin cancer image based on centroid and the longest radius
(13) COMPUTE scaling the template based on the longest radius of skin cancer image with offset
(14) SET θ � 0
(15) REPEAT
(16) COMPUTE difference between candidate template (Tp(i)) and skin cancer image
(17) CALCULATE θ � θ + 1
(18) COMPUTE rotation of candidate template on the centroid
(19) UNTIL all rotation angles (θ≥ 360)
(20) SELECT angle with the smallest difference
(21) CALCULATE i � i + 1
(22) UNTIL all candidate templates
(23) SELECT template and angle with the smallest difference with the skin cancer image
(24) UNTIL all skin-cancer image samples
(25) END

ALGORITHM 1: Template selection in training state.
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selected, as shown on the right side of Figure 4. Like the
training state, binarization is first performed to obtain a rough
contour of the skin cancer image; then, an offset (Tf) is added
to the rough contour of skin cancer for ensuring to cover the
whole skin cancer, and centroid and the longest radius (lmax)
of the workpiece are determined. Consequentially, mapping
between the skin cancer image and candidate templates re-
trieved from the database is performed based on centroid and
the longest radius and offset for template (Tt) is added to
ensure the template will cover the workpiece. Differences
between templates and workpiece are obtained while the
candidate templates are rotated around the centroid in all
angles, and the best candidate template and the best rotation
angle with the smallest difference between the candidate
template and offset skin cancer boundary (C) are selected as
initialization and will be applied for active contour. Simul-
taneously, a parameter set, which was fixed in the training
state and stored in the database, would be retrieved deter-
mined by template. *e algorithm is illustrated in Algo-
rithm 3. In Algorithm 3, the rough contour of a skin cancer
image is obtained in the 4th line, and template mapping and
selection are performed from the 7th line.

3.4.OperationofActiveContour. Currently, there exist many
kinds of active contours such as normal gradient vector flow
[20], convolution vector flow [21], dynamic directional

gradient vector flow [22], adaptive diffusion flow [23], and
gradient vector flow (GVF) [24]. Users should consider
selecting one of those active contours which is the most
suitable for users’ problems. *e GVF has been selected in
implementation and evaluation in this paper because it was
designed and developed for the segmentation of complicate
shapes and specially assumed to benefit varieties of medical
applications.

It is well known that a couple of important keys for
applying an active contour for image segmentation are
initialization and parameters. In general, these are manually
determined by experts based on the trial-and-error concept.
*e experts, who are going to tune up parameters to find the
ones that are best matched with the images for segmentation,
should well understand parameter characteristics for tuning
suitably. *ese determined appropriate initialization and
parameter set may contribute to energy minimization of
active contour, especially for a local minimum.

*is paper proposes initial geometrical templates for the
automatic initialization of active contour. *e geometrical
template is first selected as the best matched with the skin
cancer boundary image from a group of geometrical tem-
plate candidates, and the selected template then performed
mapping with the skin cancer boundary image in terms of
scale and rotation. In addition, the parameter set, which was
initially trained for each geometrical template, will be set
with the initialization for active contour operation. To start
running the operation of active contour, the mentioned
geometrical template and parameter set are set in the
program of active contour, as shown by an example in
Table 1. When the active contour is executed, initialization
will converge to the skin cancer image based on the energy
minimization condition.

4. Experimental Results

*is paper concentrates on the research problem of initial
templates and parameter sets for initializing the active
contour for skin cancer boundary segmentation and pro-
poses a method for initial template and parameters setup.
Since most of the medical image samples are sensitive and

Threshold value
Selected templates

θ7θ6θ5θ4θ3

θ2

θ1

N
o 

of
 te

m
pl

at
es

Geometrical shape

T1
T2

T3

T4 T5 T6 T7 T8

Figure 7: Determination of threshold value for screening geometrical shapes as template candidate.

Table 1: Parameters of active contour.

Parameter set Range Step
Interaction 100–400 100
nPoints 100–1000 100
Sigma1 1–10 1
Sigma2 1–20 5
Sigma3 0–1 1
Wline 0–0.01 0.01
Wedge 2–50 2
Wterm 0.01–100 10
Kappa 0–5 1
Alpha 0.02–7 0.2
Beta 0.01–2 0.01
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(1) START
(2) SET Tp (j): geometrical templates (e.g., circle, rectangle, ellipse, etc.), rng: range of parameter, rng_st [i]: starting range of

parameter, stp [i]: step for range increment in a parameter, rng_end [i]: maximum range in parameters, n: number of templates,
m: number of parameters, prm [j][i]: parameters for geometrical templates

(3) REPEAT
(4) INPUT a skin cancer image
(5) SET j� 1
(6) REPEAT
(7) SET i� 1
(8) INPUT Tp (j)
(9) REPEAT
(10) SET rng� rng_st [i]
(11) REPEAT
(12) CALCULATE rng� rng + stp [i]
(13) REPEAT
(14) COMPUTE mapping of template with a skin cancer image
(15) COMPUTE difference between template and skin cancer image
(16) UNTIL 360 degrees rotation
(17) SELECT parameter for a skin-cancer-image sample by the smallest difference
(18) CALCULATE (stp[i] � stp[i] × 2) and (i� i+ 1)
(19) UNTIL all ranges in a parameter (rng≥ rng_end)
(20) COMPUTE average of all selected parameters as a parameter in the set for a template (prm [j][i])
(21) UNTIL all parameters (i � m)
(22) CALCULATE j� j+ 1
(23) UNTIL all templates
(24) UNTIL all skin cancer images
(25) END

ALGORITHM 2: Parameter set determination for geometric templates.

(1) START
(2) SET Tp (i): candidate templates (e.g., circle, rectangle, ellipse, triangle, etc.), n: number of candidate templates, θ: template

rotation angle, Tf: offset of rough skin cancer image
(3) INPUT an image of skin cancer
(4) COMPUTE binarization
(5) COMPUTE scaling the skin cancer image by offset (Tf)
(6) COMPUTE centroid and the longest radius of skin cancer
(7) REPEAT
(8) INPUT candidate template (Tp(i))
(9) COMPUTE centroid and the longest radius of template
(10) COMPUTE mapping between candidate template and skin cancer image based on centroid and the longest radius
(11) COMPUTE scaling the template based on the longest radius of skin cancer image with offset
(12) SET θ � 0
(13) REPEAT
(14) COMPUTE difference between candidate template (Tp(i)) and skin cancer image
(15) CALCULATE θ � θ + 1
(16) COMPUTE rotation of candidate template on the centroid
(17) UNTIL all rotation angles (θ≥ 360)
(18) SELECT angle with the smallest difference
(19) CALCULATE i � i + 1
(20) UNTIL all candidate templates
(21) SELECT template and angle with the smallest difference with the skin cancer image
(22) COMPUTE template mapping on the offset skin cancer image
(23) INPUT parameter set of the selected template
(24) COMPUTE active contour
(25) END

ALGORITHM 3: Template selection and applying the template to a skin cancer image.
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confidential, it is normally difficult to find samples for ex-
periments and evaluation. To verify the effectiveness and
evaluate the performance of the proposed method, the GVF
snake algorithm was selected as active contour, and 227
images of skin cancer, as shown in the 2nd column of Table 2,
are used in experiments performed by the experiment set up,
as shown in Table 3. Initial template candidates including
circle, ellipse, and rectangle, which were automatically se-
lected by our proposed method in terms of similarity with
the skin cancer images, were used as candidate templates of
initialization, and results of template selection and mapping
are shown in the 3rd column of Table 2. Initially, parameters
for those templates for the GVF snake algorithm have been
trained with 48 skin cancer image samples, and parameters
sets for selected geometrical shape templates were deter-
mined based on the proposed method and concluded in
Table 4. Experimental results done based on our proposed
method and experts are shown in the 4th and 5th columns of
Table 2, respectively. Finally, errors which are differences
between the results of our proposed method and experts are
shown in the 6th column. Evaluation of our proposed
method using geometrical shapes with parameter sets for
automatic initialization can be concluded as 99.46% accu-
racy approximately with 13.61 sec per skin cancer image as
computational time, while conventional methods [13, 14]
achieved 96.41% and 99.20%, respectively, as shown in
Table 5. On the other hand, sensitivity and specificity of
conventional methods [13, 14] can be calculated [18] and
concluded as 85.13% and 97.07%, and 99.83% and 99.16%,
respectively, while the proposed method shows 97.43% and
99.87%, respectively, as shown in Table 5. Sensitivity (SEN),
specificity (SPC), accuracy (ACC), and the Jaccard Index
(JAC) can be calculated as follows [25].

Sensitivity:

SEN �
TP

TP + FN
. (4)

Specificity:

SPC �
TN

TN + FP
. (5)

Accuracy:

ACC �
TP + TN

TP + TN + FP + FN
. (6)

Jaccard index:

JAC �
TP

(TP + FP + FN)
, (7)

where TP,TN, FP, and FN are true positives, true negatives,
false positives, and false negatives, respectively.

5. Discussion

*is paper proposes initial geometrical templates and pa-
rameter sets as automatic initialization for the active contour
on skin cancer boundary segmentation. *e initial tem-
plates, which are geometrical shapes, such as circle,

rectangle, ellipse, pentagon, are initially trained with some
skin cancer image samples for template candidate deter-
mination. *e parameter sets are accordingly established by
varying all parameters and selecting the best parameter
groups for each template.

In testing, candidate geometric shapes are compared
with the input skin cancer image. *e initial template is then
determined by the least difference with the candidate initial
templates, and the parameter set is used to initialize and run
the active contour for the skin cancer boundary segmen-
tation. Since normally medical image samples are not open
in public due to personal information, it is difficult to collect
a lot of samples. Moreover, the samples for evaluation based
on conventional methods are not open in public, it is im-
possible to directly compare performance on the same
samples. *erefore, the authors of this paper attempted to
collect skin cancer image samples in a number, in which
evaluation results can be relied on, to compare with the
conventional methods. Experiments were performed based
on our proposed method, and the performance of the
proposed method achieves as high as 99.46% accuracy ap-
proximately, which is similar and slightly better than the
conventional method [14]. However, in the case of skin
cancer surgery, segmentation would originally be performed
based on expert skill with added offset, and specificity, which
represents false positive, should be importantly concerned.
Our proposed method improves 0.26% specificity compared
with conventional methods so that it is regarded to be useful
for skin cancer segmentation. On the other hand, although
modern and robust deep learning tool as CNN is currently
considered as an excellent and powerful tool for classifi-
cation and should be effectively applied in the skin cancer
segmentation problem, it has been reported that active
contour can perform comparably with CNN with less
computation time [26].

Furthermore, since our basic concept is to approximate a
similar geometrical shape as the initial template applied in
the initialization of active contour, our initialization is
originally apart from the skin cancer boundary. Mathe-
matically, any shaped template which is close to the skin
cancer boundary is the most suitable, but the algorithm may
be complicate and time-consuming. *e idea of using
geometrical shape as a template for initialization is con-
sidered as a solution for implementation. As seen in the
experimental results in Table 2, there exist obvious errors in
skin cancer images, T4, T13, T18, T19, T39, T51, T59, T67,
T88, T168, T169, T179, T185, T186, and T197. If template
candidates are increased, some errors are partially solved. In
fact, if a template is appropriately selected during the ini-
tialization, the snake algorithm should perform well. Basi-
cally, the concept of template implicitly includes comparing
some errors with an initialized shape performed by experts.
*ese errors should be traded off with computational cost.
To improve initialization for active contour, learning and
observing initialization done by skillful experts is recom-
mended as future work.

For skin cancer boundary segmentation, our proposed
method achieves 99.46% accuracy which includes both
concave and convex results. As observed, most of the results
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Table 2: Experimental results of skin cancer segmentation.
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Table 3: Specification of experiment set up.
Image Size 256× 256 pixels

Gray level 256
No. of cancer boundaries per image 1

Program Basic programing MATLAB_R2018b

Segmentation

Snake internal force matrix 2D,
snake internal force matrix 3D,

snake move iteration 2D,
snake move iteration 3D,

snake 2D, snake 3D

Computer

Device name: LAPTOP-ENCF7NAD
Processor: Intel(R) Core(TM) i5-1035G1

CPU@1.00GHz 1.19GHz
Installed RAM: 8.00GB (7.78GB usable)
Product ID: 00327-35165-87873-AAOEM
System type: 64-bit operating system,

x64-based processor

Table 4: A sample of parameter sets selected by the proposed method.

Parameter Interaction nPoints Sigma1 Sigma2 Sigma3 Wline Wedge Wterm Kappa Alpha Beta
Parameter set for circular template

1000 800 5 5 0 0 10 50 2 3 0.001
Parameter set for the ellipse template

1000 100 5 5 0 0 10 100 2 2 0.01
Parameter set for the rectangular template

1000 1000 5 5 0 0 10 150 2 3 0.01
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are convex. However, some are partially included in
concave, and most of them are tiny. In medical practice,
miss-segmentation in convex is better than concave be-
cause all skin cancer cells are removed. *e concave seg-
mented boundaries are recovered by offset as a final
boundary.

6. Conclusion

Automatic skin cancer image segmentation using active
contour, which originally depended on skillful initializa-
tion done by experts, required practical automatic ini-
tialization with appropriate parameter sets. *is paper
proposed a method of initial geometrical templates with
parameter sets for active contour on skin cancer boundary
segmentation. Some skin cancer images were initially
trained to evaluate and select geometrical shapes as can-
didate templates by mapping the geometrical shapes with
skin cancer image samples based on the centroid and the
longest radius and finding shapes with the least differences
as candidate templates. *ese candidate templates were
then used to perform active contour by possible parameters
and then find a parameter set which performed the best
active contour segmentation as a parameter set for each
candidate template. In testing, these candidate templates
performed mapping with a skin cancer image and rotating
around the centroid in the same manner with training, and
a geometrical template with the least difference with the
skin cancer image was determined as the initial template for
active contour. *e determined geometrical template with
the trained parameter set then was initialized for the active
contour segment. Finally, the effectiveness of the proposed
method has been evaluated by experiments with 227 skin
cancer images.
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Multiple sclerosis (MS) is a chronic and autoimmune disease that forms lesions in the central nervous system.Quantitative analysis of these
lesions has proved to be very useful in clinical trials for therapies and assessing disease prognosis. However, the efficacy of these quantitative
analyses greatly depends on how accurately theMS lesions have been identified and segmented in brainMRI.)is is usually carried out by
radiologists who label 3DMR images slice by slice using commonly available segmentation tools. However, suchmanual practices are time
consuming and error prone. To circumvent this problem, several automatic segmentation techniques have been investigated in recent years.
In this paper, we propose a new framework for automatic brain lesion segmentation that employs a novel convolutional neural network
(CNN) architecture. In order to segment lesions of different sizes, we have to pick a specific filter or size 3× 3 or 5× 5. Sometimes, it is hard
to decide which filter will work better to get the best results. Google Net has solved this problem by introducing an inception module. An
inceptionmodule uses 3 × 3, 5 × 5, 1 × 1 andmax pooling filters in parallel fashion. Results show that incorporating inceptionmodules in
a CNN has improved the performance of the network in the segmentation of MS lesions. We compared the results of the proposed CNN
architecture for two loss functions: binary cross entropy (BCE) and structural similarity index measure (SSIM) using the publicly available
ISBI-2015 challenge dataset. A score of 93.81 which is higher than the human rater with BCE loss function is achieved.

1. Introduction

Multiple sclerosis (MS) is a chronic disease that damages the
nerves in the spinal cord, brain, and optic nerves. Axons in the
brain are covered with a myelin sheath. Demyelination is a
process in which the myelin sheaths start falling off and
develops lesions in brain nerves. Millions of people are af-
fected by MS worldwide which is mainly found in young
people between 20 and 50 years of age. )e symptoms caused
by this disease are fatigue, memory problem, the problem in
concentration, weakness, loss of balance, loss of vision, and
many others. Diagnosing and treating this disease is very
challenging because of its variability in its clinical expression.

)ese lesions can be traced in magnetic resonance imaging
(MRI) using different sequences. Many features such as a
volume and location are very important biomarkers for
tracking the progression of the disease. Manually segmenting
these lesions by expert radiologists is the most common
practice in clinics, but this is tiresome, time consuming, and
error prone. Figure 1 shows the manual segmentation of MS
lesions by two raters in one slice of a brain MRI.

In recent years, automatic segmentation of MS lesions
using convolutional neural networks (CNNs) have been
investigated [1–5]. CNNs learn subtle features from the raw
image data to facilitate 2D pixel (or 3D voxel) classification
that ultimately leads to image segmentation. However, there
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is no one-fit-for-all CNN model that could work for every
classification problem or data. An expert knowledge has to be
incorporated during the design phase of the CNN model
based on the nature of the application and the data. Complex
problems such as MS lesion segmentation require careful
selection of the CNN architecture and training model for an
optimum solution. In addition, automatic segmentation of an
MS lesion in MRI may be challenging due to the following:

(i) )e lesion size and location are highly variable
(ii) )e edges between anatomical objects are not well

defined in MR images due to low contrast
(iii) )e MR image of clinical quality may have imaging

artifacts such as noise and inhomogeneity

In this work, we are proposing a novel CNN architecture
for MS lesion segmentation. )e MS lesions vary tremen-
dously in size and shape, and sometime, it is difficult to detect
in brain MR images. To address this particular challenge,
inception modules, originally introduced by Google in
GoogLeNet, are added in the CNNmodel [6].)e significance
of the inception module lies in using multiple kernels of
different sizes in parallel in an efficient way. )is smart ap-
proach captures features of varying magnitude in the input
data without overburdening the network with additional
computations. )e proposed model is trained for two loss
functions, binary cross entropy (BCE) and structural simi-
larity index measure (SSIM). )e BCE loss function tries to
maximize the difference of the probability distribution be-
tween two classes, in this case, lesion and nonlesion voxels [7].
SSIM, on the other hand, is a perception-based loss function
that quantifies the similarity between two images [8].

)e proposed solution for the MS lesion segmentation in
brain MRI offers the following attributes:

(i) Introduction of inception modules embedded in the
CNN architecture for the segmentation of MS le-
sions with different shapes and sizes

(ii) Comparison of MS lesion segmentation results
using BCE and SSIM loss functions

(iii) Improvement of performance of the proposed ar-
chitecture in terms of the Dice coefficient, positive

predicted value, lesion-wise true positive rate, and
volume difference of the segmented lesions com-
pared to the gold standard

1.1. Literature Review. In past decade, deep neural networks
have shown promising results in the segmentation of MS
lesions in brain MR images. In [9], a novel architecture for
segmenting MS lesions in magnetic resonance images by
using a deep 3D convolutional encoder with the connections
of shortcut in pathways was proposed. )e method was
evaluated on publicly available data from ISBI-2015 [10] and
MICCAI-2008 [11] challenges. Authors compared their
method with other five available approaches used for MS
lesion segmentation.)e final results show that their method
outperformed the previous existing methods for MS lesion
segmentation. In [12], the authors used a fully automatic
multiview CNN approach for segmenting a multiple scle-
rosis lesion in longitudinal MRI data and tested on the ISBI-
2015 dataset. Various deep learning techniques for the
medical image analysis are presented in [13].

Valverde et al. have proposed a novel architecture for
segmentation of a white matter (WM) lesion in multiple
sclerosis (MS) using small number of imaging data [14]. )is
approach proposed a cascaded CNN model working on 3D
MRI patches from FLAIR and T1w modalities. In this
method, the output of the first network is retrained on the
second network in series to reduce misclassification from
the first network. )e proposed model score is evaluated
on the publicly available dataset of MICCAI-2008 and
outperformed all the participant approaches. Roy et al.
proposed a fully convolutional neural network (FCNN) to
segment WM lesions in multicontrast MR images using
multiple convolutional pathways [15]. )e first pathway of
the CNN contains dual convolutional filters for two image
modalities. In the second pathway, the convolutional fil-
ters are applied to the output of the first pathway which are
in parallel and concatenated. )is method was evaluated
on the ISBI-2015 dataset. A novel approach of using a fully
2D CNN to segment MS lesions in MR images is proposed
in [16]. Maleki et al. have investigated the use of a CNN

(a) (b) (c)

Figure 1: Manual segmentation of MS lesions: (a) T1w MRI, (b) manual segmentation by rater 1, and (c) manual segmentation by rater 2.
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model for the detection and segmentation of MS lesions
[17].

In recent studies, a multimodal MRI dataset in tissue
segmentation has shown promising results. In a recent work
for brain tumor segmentation, a deep multitask learning
framework that performs a performance test on multiple
BraTS datasets was shown [18]. )e authors claimed im-
provement over the traditional V-Net framework by using a
structure of two parallel decoder branches. )e original
decoder performs segmentation, and the newly added de-
coder performs the auxiliary task of distance estimation to
make more accurate segmentation boundary. A total loss
function is introduced to combine the two tasks with a
gamma factor to reduce the focus on the background area
and set different weights for each type of label to alleviate the
problem of category imbalance. Zhang et al. proposed the
ME-Net model and obtained promising results using the
BraTS 2020 dataset [19]. Four encoder structures for the four
modal images of brain tumorMRI were employed with skip-
connections. )e combined feature map was given as input
to the decoder. )e authors also introduced a new loss
function, that is, Categorical Dice, and set different weights
for different masks. In another study, a 3D supervoxel-based
learningmethod was proposed that demonstrated promising
results in the segmentation of brain tumor [20]. )e added
features from multimodal MRI images greatly increased the
segmentation accuracy. In another earlier study, Gabor
texton feature, fractal analysis, curvature, and statistical
intensity features from superpixels were used to segment
tumors in multimodal brain MR images using extremely
randomized trees (ERTs) [21]. )e experimental results
demonstrated the high detection and segmentation per-
formance of the proposed method. Soltaninejad et al. pro-
posed a method that used machine-learned features learned
by fully convolutional networks (FCNs) and texton-based
histograms as hand-crafted features [22]. )e random forest
(RF) classifier was then employed for the automated seg-
mentation of brain tumor in the BraTS 2017 dataset.

Segmentation results can be greatly affected by the
quality of the MRI images. Low resolution, intensity vari-
ations, and image acquisition noise hamper the accuracy of a
segmentation task. Jin et al. proposed a deep framework for
the segmentation of prostate cancer [23]. )ey had shown
that the segmentation results were greatly improved by using
bicubic interpolation and improved version of 3D V-Net.
)e bicubic interpolation of the input data helped in en-
hancing the relevant features required for prostate seg-
mentation. Recently, attention-based methods have gained
reputation in the segmentation of small but discrete objects
in MRI images. In a study, for the enhancement of left
atrium scars, a dilated attention network was used [24]. )e
proposed approach improved the accuracy of the scar
segmentation to 87%. Liu et al. proposed a spatial attentive
Bayesian deep learning network for the automatic seg-
mentation of the peripheral zone and transition zone of the
prostate with uncertainty estimation [25]. )is method
outperformed the state-of-the-art methods.

)e heterogeneity of MS lesions poses a challenge
for the detection and segmentation in MR images. An

attention-based fully CNN has also been used in the seg-
mentation of prostate zones [26]. )e authors in this work
have proposed a novel feature pyramid attention mechanism
to cope with heterogeneous prostate anatomy. Raschke et al.
developed a statistical method to analyze heterogeneity of
brain tumors in multimodal MRI [27]. )e approach pre-
sented in the paper does not make any assumption on the
probability distribution of the MRI data and prior knowl-
edge of the location of tumors. )is, according to the au-
thors, gives an advantage for tumor segmentation of varying
sizes and spatial locations. )e proposed method consist of
two deep subnetworks in which the first one was an
encoding network that was responsible of extracting feature
maps and the second was a decoding network and was
responsible for upsampling feature maps. )e proposed
FCNN was evaluated on an ISBI-2015 dataset.

2. Proposed Methodology

As mentioned earlier, the shape and size of MS lesions vary
dramatically. To detect these lesions using machine
learning techniques is a challenging task. In the proposed
methodology, a CNN model with inception modules is
employed to automatically segment MS lesions in brain
MRI. Filters of multiple sizes used in the inception modules
capture features of MS lesions of different sizes. Prior to
CNN model training, the images in the dataset are first
preprocessed to remove image noise, intensity inhomo-
geneity, variability of intensity ranges, and the presence of
nonbrain tissues. In this work, preprocessed ISBI-2015
image data have been used.

2.1.Dataset. )eproposed algorithm uses the dataset of ISBI-
2015 challenge [10] which is grouped in two categories,
training and testing data.)e training data are named ISBI-21
and are available publicly with 21MRI images from 5 patients.
In the training set, MR brain images of four patients with 4
time points and one with 5 time points with a gap of ap-
proximately a year are gathered. )e test data are named as
ISBI-61 which are not available publicly and have 14 subjects
with 61 images. Each subject in the testing set has 4-5 time
points, and each time point has a gap of approximately a year.
)ese images contain longitudinal scans of all five patients, as
shown in Figure 2. During training, we used 80 percent of the
total patches of 100 × 100 size for training and the remaining
20 percent for validation.

2.2. Proposed Deep Network Architecture. In the CNN ar-
chitecture, a kernel size and type of filters have to be selected
carefully so that it can learn all the features which are useful
in the classification of objects. Generally, filters of different
sizes and pooling schemes are employed in different CNN
layers in order to learn most present features in the data. )e
inception module, however, uses multiple kernels in each
layer in parallel and then pools the features [28]. In the
proposed framework, we have investigated the efficacy of
inception modules embedded in the CNN model for the
segmentation of MS lesions.
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2.2.1. CNN Model. In the proposed method for segmenta-
tion of multiple sclerosis disease, we incorporated three
inceptionmodules in our CNNmodel. Eachmodule consists
of 1 × 1, 3 × 3, 5 × 5, max pooling, and average pooling. )e
CNN model consists of two convolution layers with 64
feature maps followed by inception modules and then three
convolutions layers. )e final layer has one feature map for
the prediction of lesion and nonlesion voxels. Figure 3 shows
the complete architecture with inceptionmodules embedded
in the CNN layers. )e model is trained with two different
loss functions, i.e., binary cross entropy (BCE) and structural
similarity index measure (SSIM). BCE is a measure of the
difference between two probability distributions for a given
random variable or a set of events and is used in binary
classification tasks, whereas SSIM is a perceptual metric that
quantifies image quality degradation caused by losses in data
compression. For high similarity in images, the value of BCE
is low and the value of SSIM is high.

2.2.2. Inception Module. )e fundamental idea behind the
GoogLeNet is the introduction of inception modules or
inception blocks in the CNN architecture. In CNN, the
feature maps learned from the previous layer are given as
input to the next layer. )e inception module takes the
previous layer output and passes it to four different filter
operations in parallel, as shown in Figure 4. )e feature
maps from all the filters are then concatenated to form the
final output. )e fundamental idea of using a 1 × 1 kernel in
the inceptionmodule is just to shrink the depth of the feature
maps [29]. )e 1 × 1 convolutions preserve the parameters
spatially that can be used when needed. )is strategy in the

inception module can lower the dimensions of the feature
maps which can eventually drop the computational cost.

2.3. Loss Functions. )e proposed model is trained for two
loss functions, binary cross entropy (BCE) and structural
similarity index measure (SSIM).)e BCE loss function tries
to maximize the difference of the probability distribution
between two classes, in this case, lesion and nonlesion voxels.
It measures the performance of a classification model whose
output is the probability between 0 and 1, i.e., the output of
sigmoid activation. Mathematically, BCE loss for an output
y with probability p can be computed as

BCE � − y log p − (1 − y)log(1 − p). (1)

SSIM is a perception-based loss function that quantifies
the similarity between two images. In SSIM, similarity be-
tween two images can be computed using a statistical model.
Let μx and μy be the means, σx and σy be the variances, and
σxy be the covariance of the two images x and y; then,

SSIM(x, y) �
2μxμy + C1  + 2σxy + C2 

μ2x + μ2y + C1  σ2x + σ2y + C2 
, (2)

where C1 and C2 are regularization constants.

2.4. Model Implementation. )e CNN model is imple-
mented in Python using Keras [30] with TensorFlow library
[31]. All the experiments were performed on the Nvidia
GeForce RTX 2080 GPU.)e deep network is trained end to
end using patches. During the training phase of the CNN

(a) (b) (c)

(d) (e) (f )

Figure 2: Sample of the ISBI dataset: (a) T1w, (b) FLAIR, (c) T2w, and (d) PDw, (e) manual delineation by rater 1, and (f) manual
delineation by rater 2.
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model, the patches are extracted from each slice in MR
images. )e training set is divided into two subsets, one for
training the network and the other for validating the results.
)e optimization technique employed to update the pa-
rameters in the model is the Adam method [32]. In neural
network parameter optimization, the Adam method shows
better convergence. )e hyperparameters used during net-
work training include the fixed learning rate of 0.0001 for 50
epochs. )ese parameters’ setting has produced sufficient
convergence to optimal network parameters without over-
fitting the data. )e size of the minibatch is set to 64, and
each minibatch includes random number of patches. )e
best model from the validation set is selected at the 24th
epoch which takes 48 hours on the GPUs.

3. Results and Discussion

3.1. PerformanceMetrics. Standard performance metrics for
the assessment of the proposed CNN model have been
employed. )e Dice similarity coefficient measures repro-
ducibility of segmentation as a statistical validation of
manual annotation. Another similar metric is the Jaccard
similarity index that gives the intersection between the
machine segmentation and the ground truth. Positive

predicted value is the probability that people with a positive
screening test result indeed have the condition of interest.
)e portion of positive voxels in ground truth that is also
identified as positive in the automatic segmentation is
captured by true positive rate. Lesion-wise true/false positive
rate is the number of lesions that overlap/do not overlap in
automatic segmentation and the ground truth. )e differ-
ence is volume of automatic segmentation, and the ground is
another important metric for the assessment of the per-
formance of the CNN model. )e Pearson correlation co-
efficient computes the correlation between the automatic
segmentation and the ground truth. )e overall score gives
the average of the combined effect of all these performance
metrics in a single number. Table 1 shows formulas for these
performance metrics.

3.2. Feature Learning by InceptionModules. As suggested by
the literature, the proposed CNN model is trained on T1w,
T2w, and FLAIR sequences of the MRI data. Table 2 shows
quantitative results for automatic MS lesion segmentation in
MRI using the BCE loss function for test images at time
points TP. Although, in the results, both Dice and Jaccard
similarity indices are reported, they both convey the same
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Figure 3: Proposed deep network architecture for MS lesion segmentation in brain MRI.
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information. )e performance metrics observed for the
proposed CNNmodel have significantly outperformed when
compared with the existing techniques, as shown in Table 3.
Kernels of different sizes used in the inception modules help
in extracting discriminative features for the automatic
segmentation of MS lesions and background tissues in brain
MRI. )e most present features are ultimately pooled using
max pooling and average pooling at various stages of the
inception modules. )e number of inception modules used
in the CNN model is also very crucial in the architecture
design. Using too many inception modules in MS lesion
segmentation has degraded the results due to overfitting the
model to the data. Also, poor results are obtained when the
number of inception modules has been lowered. )is may
correspond to underfitting the CNN model for the

segmentation of MS lesions. Experiments have also con-
firmed that a mix of average pooling and max pooling works
better by keeping the most present features in the high-level
feature maps and averaging them in the low-level feature
maps.)e authors suggest that, for a specific application, the
number and placement of inception modules, filter size, and
pooling strategy have to be selected accordingly.

3.3. Comparison of BCE and SSIM Loss Functions. Two loss
functions in training the proposed CNN model have been
used, BCE and SSIM. Tables 2 and 4 report the quantitative
results for the two loss functions. Table 5 gives the com-
parison of the two loss functions on the basis of the average
values of the results. In the MS lesion classification, the BCE
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Figure 4: Inception block in the proposed CNN architecture.

Table 1: Performance metrics used in the proposed solution.

Metric Formula
Dice similarity coefficient DSC � 2TP/(FN + FP + 2TP)

Jaccard similarity coefficient JSC � TP/(TP + FP + FN)

Positive predicted value PPV � TP/(TP + FP)

True positive rate TPR � TP/(TP + FN)

Lesion-wise true positive rate LTPR � LTP/RL
Lesion-wise false positive rate LFPR � LFP/PL
Volume difference VD � TPs − TPgt/TPgt

Pearson correlation coefficient Cor � cov(X, Y)/σXσY

Overall score SC � (1/|R| + |S|)R,S((DSC/8) + (PPV/8) + (1 − LFPR/4) + (LTPR/4) + (Cor/4))
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Table 2: Quantification of MS lesion segmentation with the BCE loss function.

Subject TP Dice Jaccard PPV TPR LFPR LTPR VD
test01 1 0.6639 0.4969 0.8991 0.5263 0.1356 0.5068 0.4147
test01 2 0.6916 0.5286 0.9131 0.5566 0.0806 0.5128 0.3904
test01 3 0.682 0.5174 0.8845 0.5549 0.1452 0.5 0.3726
test01 4 0.6732 0.5074 0.9226 0.5299 0.1034 0.4667 0.4256
test02 1 0.6933 0.5306 0.7548 0.6411 0.1176 0.4653 0.1507
test02 2 0.6823 0.5178 0.8229 0.5828 0.087 0.4969 0.2918
test02 3 0.664 0.497 0.8241 0.5559 0.0638 0.4867 0.3254
test02 4 0.6409 0.4716 0.8529 0.5134 0.0631 0.5411 0.3981
test02 5 0.7099 0.5502 0.8444 0.6123 0.1277 0.4157 0.2748
test03 1 0.4949 0.3288 0.8944 0.3421 0.125 0.3056 0.6175
test03 2 0.5132 0.3451 0.9271 0.3548 0.1379 0.3333 0.6173
test03 3 0.4988 0.3322 0.9457 0.3387 0 0.4375 0.6419
test03 4 0.5838 0.4122 0.9242 0.4266 0.08 0.4667 0.5384
test04 1 0.8168 0.6903 0.8693 0.7702 0.1154 0.6944 0.114
test04 2 0.7928 0.6567 0.8205 0.7668 0.36 0.5172 0.0654
test04 3 0.8067 0.676 0.8099 0.8035 0.08 0.7586 0.0078
test04 4 0.7999 0.6665 0.8095 0.7905 0.2759 0.697 0.0234
Average 0.6711 0.5133 0.8658 0.5686 0.1234 0.5060 0.3335

Table 3: Comparison with the existing techniques.

Method SC DSC PPV LTPR LFPR VD
Birenbaum and Greenspan [12] 90.07 0.6271 0.7889 0.5678 0.4975 0.3522
Litjens et al. [13] 86.92 0.5009 0.5491 0.4288 0.5765 0.5707
Valverde et al. [14] 91.33 0.6294 0.7866 0.3669 0.1529 0.3384
Aslani et al. [16] 89.85 0.4856 0.7402 0.3034 0.1708 0.4768
Proposed 90.84 0.6306 0.7888 0.5736 0.2512 0.3444

Table 4: Quantification of MS lesion segmentation with the SSIM loss function.

Subject TP Dice Jaccard PPV TPR LFPR LTPR VD
test01 1 0.6061 0.4348 0.866 0.4662 0.0408 0.4247 0.4617
test01 2 0.6296 0.4595 0.8677 0.4941 0.0702 0.4487 0.4306
test01 3 0.6179 0.447 0.85 0.4853 0.0556 0.4024 0.429
test01 4 0.6194 0.4486 0.8814 0.4775 0.0909 0.4267 0.4582
test02 1 0.6608 0.4934 0.7923 0.5667 0.0864 0.375 0.2847
test02 2 0.631 0.4609 0.8246 0.5111 0.101 0.4025 0.3802
test02 3 0.5987 0.4273 0.8224 0.4707 0.0667 0.34 0.4277
test02 4 0.5909 0.4194 0.852 0.4523 0.0467 0.4452 0.4692
test02 5 0.6617 0.4944 0.8427 0.5446 0.0978 0.3614 0.3537
test03 1 0.4394 0.2815 0.7986 0.3031 0.0769 0.3333 0.6205
test03 2 0.4663 0.3041 0.8313 0.3241 0.08 0.4 0.6102
test03 3 0.4597 0.2985 0.852 0.3148 0.0909 0.375 0.6305
test03 4 0.5254 0.3563 0.8287 0.3847 0.2 0.3333 0.5358
test04 1 0.776 0.634 0.8535 0.7115 0.1304 0.5833 0.1664
test04 2 0.762 0.6156 0.8345 0.7012 0.2353 0.4138 0.1597
test04 3 0.7729 0.6299 0.8089 0.74 0.2273 0.5862 0.0852
test04 4 0.7792 0.6383 0.8187 0.7433 0.1667 0.6364 0.0921
test05 1 0.433 0.2763 0.3939 0.4806 0.45 0.2778 0.2201
test05 2 0.4622 0.3006 0.5652 0.391 0.1852 0.4082 0.3082
test05 3 0.5353 0.3655 0.6448 0.4576 0.1951 0.4923 0.2903
test05 4 0.5169 0.3485 0.6145 0.446 0.1923 0.375 0.2742
Average 0.5974 0.4350 0.7830 0.4984 0.1374 0.4210 0.3661

Table 5: Quantitative comparison of BCE and SSIM loss functions.

Loss function SC DSC PPV LTPR LFPR VD
BCE 90.84 0.6306 0.7888 0.5736 0.2512 0.3444
SSIM 89.01 0.5934 0.7288 0.4476 0.1935 0.3999
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loss function seems to work better than SSIM. )is sounds
very intuitive as BCE tries to evaluate the difference in the
maximum likelihood between the predictions and ground
truths. SSIM, on the other hand, quantifies the perceptual
differences between the predictions and the ground truths. It
uses luminance, contrast, and structure features to compute
the similarity between two images. )e reason why the BCE
loss function works better than SSIM is because loss functions
also depend on the activation functions used in the output
layer. For sigmoid activation, the literature suggests that the
BCE loss function is the natural choice due to its accuracy and
efficiency. )e automatic MS lesion segmentation using BCE
and SSIM loss functions is illustrated in Figure 5.

3.4. Comparison with Existing Techniques. )e proposed
methodology is compared with different published tech-
niques for MS lesion segmentation using the ISBI-2015
dataset. )e comparison of the results is shown in Table 3.
)e Dice coefficient, PPV, LTPR, and VD obtained in the
proposed methodology show that the model is generalized
well for successfully handling new data. )e performance of

Birenbaum and Greenspan’s model, multiview CNN, in-
cludes a score of 90.07, DSC of 62.71%, PPV of 78.89%,
LTPR of 56.78%, LFPR of 49.75%, and VD of 35.22%. )is
model produced the best LFPR result among the five
techniques compared here. )e performance of Litjens’
CNN model used was the worst compared to the other
techniques. )e performance value of score was 86.92, the
DSC was 50.09%, PPV was 54.91%, LTPR was 42.88%, LFPR
was 57.95%, and VD was 57.07%. )e second best perfor-
mance was shown by the cascaded CNN architecture pro-
posed by Velverde et al. It includes a score of 91.33, DSC of
62.94%, PPV of 78.66%, LTPR of 36.69% LFPR of 15.29%,
and VD of 33.84%. )e results for the multibranch CNN
model proposed by Aslani et al.’s model includes a score of
89.85, DSC of 48.56%, PPV of 74.01%, LTPR of 30.34%,
LFPR of 17.08%, and VD of 47.68%. Finally, the perfor-
mance of the proposed model was the best with a score of
93.81, DSC of 67.11%, PPV of 86.58%, LTPR of 50.60%,
LFPR of 12.34%, and VD of 33.35%. )e value of LTPR was
the only metric that was worse than Valverde’s and Aslani’s
models. )e shortcoming in LFPR can further be investi-
gated in the future model of the present work.

(a) (b) (c)

(d) (e)

Figure 5: Comparison of the segmentation results when using BCE and SSIM loss functions. (a) T1w. (b) T2w. (c) Rater 1. (d) BCE. (e)
SSIM.
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4. Limitations in Real Clinical Studies

)e proposed work is an attempt to prove the efficacy of AI-
based techniques in medical applications. In recent years, AI
has gained reputation in automating tedious routine works
in clinical settings. However, the diversity and inadequacy of
the patient data for training a deep network have hampered
practical use of AI-based techniques in clinics. As more and
more data will become available and as deep neural networks
will become more efficient, the practicability of these
techniques will definitely improve.

5. Conclusions and Future Works

In this work, a CNN model with inception modules is in-
vestigated in automatic segmentation of MS lesions in MRI.
)e CNN model with inception modules seems to pick MS
lesions of different sizes and shapes more successfully. )e
key advantage of inception modules is the use of different
kernels such as 1 × 1, 3 × 3, and 5 × 5 that tend to extract
salient features in the input of varying sizes. )is improves
the Dice coefficient, PPV, LTPR, and VD of the segmen-
tation when compared to the existing techniques. )ese
results have outperformed all the existing techniques. )e
success of Velverde’s model can also be attributed to ac-
curate learning of MS lesion features of various sizes and
shapes. )e performance of Birenbaum and Greenspan’s
model, multiview CNN, includes a score of 90.07, DSC of
62.71%, PPV of 78.89%, LTPR of 56.78%, LFPR of 49.75%,
and VD of 35.22%. )is model produced the best LFPR
result among the five techniques compared here. )e per-
formance of Litjens’ CNNmodel was the worst compared to
the other techniques. )e performance of the model used
had a score of 86.92, DSC of 50.09%, PPV of 54.91%, LTPR of
42.88%, LFPR of 57.95%, and VD of 57.07%.)e second best
performance was shown by the cascaded CNN architecture
proposed by Velverde et al. It includes a score of 91.33, DSC
of 62.94%, PPV of 78.66%, LTPR of 36.69%, LFPR of 15.29%,
and VD of 33.84%. )e results for the model proposed by
Aslani et al.’s model, multibranch CNN, includes a score of
89.85, DSC of 48.56%, PPV of 74.01%, LTPR of 30.34%,
LFPR of 17.08%, and VD of 47.68%. Finally, the perfor-
mance of the proposed model was the best with a score of
93.81, DSC of 67.11%, PPV of 86.58%, LTPR of 50.60%,
LFPR of 12.34%, and VD of 33.35%. )e value of LTPR was
the only metric that was worse than Valverde’s and Aslani’s
models. In the present study, we have also discovered that
the BCE loss function works better than the SSIM loss
function. )e intuition behind this behavior of the model is
that BCE tries to maximize the differences between the
probability distributions predictions and ground truths.
SSIM, on the other hand, seems to converge to local minima
while quantifying the error loss. Another important reason is
the sigmoid activation function used in the output layer for
the binary classification. )e authors believe this naturally
supports the BCE loss function to produce more accurate
and efficient results. In the future, this work can be further
extended to integrate in different architectures such as the
residual network (ResNet), UNet, parallel CNN, and

cascaded CNN on multiple datasets which are publicly
available. )e incorporation of event-driven processing can
improve the performance of the suggested solution in terms
of computational efficiency and compression [33–36]. In-
vestigation based on this axis is another prospect.
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(is study presents and evaluates the mathematical model to estimate the mean and variance of single-lead ECG signals in sleep
apnea syndrome. Our objective is to use the volatility property of the ECG signal for modeling. ECG signal is a stochastic signal
whose mean and variance are time-varying. So, we propose to decompose this nonstationarity into two additive components; a
homoscedastic Autoregressive Integrated Moving Average (ARIMA) and a heteroscedastic time series in terms of Exponential
Generalized Autoregressive Conditional Heteroskedasticity (EGARCH), where the former captures the linearity property and the
latter the nonlinear characteristics of the ECG signal. First, ECG signals are segmented into one-minute segments. (e het-
eroskedasticity property is then examined through various tests such as the ARCH/GARCH test, kurtosis, skewness, and
histograms. Next, the ARIMA model is applied to signals as a linear model and EGARCH as a nonlinear model. (e appropriate
orders of models are estimated by using the Bayesian Information Criterion (BIC). We assess the effectiveness of our model in
terms of mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage
error (MAPE). (e data in this article is obtained from the Physionet Apnea-ECG database. Results show that the ARIMA-
EGARCH model performs better than other models for modeling both apneic and normal ECG signals in sleep apnea syndrome.

1. Introduction

ECG signal has an essential role in medical diagnosis for the
study of cardiac function and abnormalities. Considering the
abnormal activity of heart or heart rate variation (HRV)
could be an indicator of some diseases such as congestive
heart failure (CHF) [1], sudden cardiac death (SCD) [2], and
obstructive sleep apnea (OSA) [3]. OSA is a common re-
spiratory disease characterized by a cessation in the airflow
for at least 10 seconds [4]. (e literature has stated that sleep
apnea affects approximately 2% of women and 4% of men
and that most of them are overweight [5]. Apnea increases
accidents and mortality rates. Previous research considered
apnea as a public health risk compared with smoking.
Untreated OSA can also cause depression, high blood
pressure, stroke, hypertension, death, and an increased risk
of long-term and short-term disease. It increases the risk of
myocardial infarction by up to 20% and heart attack by up to

40% [6]. Accurate and early diagnosis is an essential step in
the control and prevention of sleep apnea. So, it attracts
much attention in ECG research.

Polysomnography (PSG), a multimodality system, is the
most accurate and precise method of sleep monitoring,
which can be used to describe sleep stages and disorders.
PSG measures electrocardiogram (ECG), electroencepha-
logram (EEG), electromyogram (EMG), electrooculogram
(EOG), and respiratory airflow and peripheral oxygen sat-
uration (SpO2). After collecting the PSG data, physicians
rate the OSA events using statistical methods. (e PSG
system, on the other hand, has two major defects. First,
manually scoring sleep stages according to the guideline
requires the use of physicians and appropriate sensors is
time-consuming and expensive. (erefore, PSG can only be
performed in sleep laboratories, which delays detection and
results in a long waiting list. Second, it is an obtrusive
approach, which requires the attachment of several sensors
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and wires. Sleep normality can be disrupted by the sensors
and wires, making PSG inappropriate for long-term sleep
researches [7]. So, developing methods that can accurately
detect apnea with a few signals at home is critical. (ese
approaches were focused on biosignals such as respiratory,
snoring, SpO2, and ECG signals, and several authors have
achieved a high level of performance in terms of OSA de-
tection [8–11].

Using wearable devices with some necessary biosensors
for sleep disorder diagnosis is safer because these devices are
designed with unobtrusiveness insight. Furthermore, they
are simpler to use, easier to find, and less expensive than
clinical measurements. (e ECG is one of the most reliable
physiological signals given by various wearable devices and
used in many OSA studies [12]. Several researchers have
suggested innovative methods for evaluating sleep quality
and sleep apnea using only a single-lead ECG. (e presence
of irregular characteristics in the ECG signal is seen as a
warning sign of sleep apnea. When sleep apnea occurs, the
oxygen saturation decreases and the cardiovascular system is
activated to maintain the oxygen intake constant. Further-
more, according to a clinical study in [7], patients’ com-
pliance is extremely low when wearing the pressure
transducer sensor to achieve nasal and oral respiration.
Patients usually pulled out the nasal cannula and nasal
airflow data can be unreliable compared to the ECG signal
due to lead loss. As a consequence, we chose ECG signals to
model OSA and normal events in this study.

(e majority of ECG approaches proposed in the lit-
erature for sleep apnea detection are based on feature ex-
traction from single-lead ECG signals and using classifiers
[8–11]. Zarei and Mohammadzadeh Asl [10] proposed a
novel approach based on single-lead ECG autoregressive
(AR) modeling and ECG feature extraction using the
spectral autocorrelation function. Sequential forward feature
selection (SFFS) is used to select the most appropriate
features, which are then fed into a random forest to classify
normal and apnea epochs. Singh et al. [8] extracted the mean
and the standard deviation from the instantaneous ampli-
tude (IA) and instantaneous frequency (IF) of each recon-
structed component (RC) of heartbeat intervals and
electrocardiogram-derived respiration (EDR) signals. (en,
stacked autoencoder-based deep neural network (SAE-
DNN) and support vector machine (SVM) are used to
categorize apneic and normal segments. Zhang et al. [11]
suggested a sleep monitoring model based on a single-
channel electrocardiogram using a convolutional neural
network (CNN). Rajesh et al. [9] extracted moments of
power spectrum density, waveform complexity measures,
and higher-order moments from the 1min segmented ECG
subbands obtained from discrete wavelet transform (DWT).
(e acquired feature set is fed to various classifiers such as
SVM, linear discriminant analysis (LDA), random forest,
and k nearest neighbors (kNN). All of these methods are
purely data-driven.

Signal modeling and feature extraction is an essential
step in the analysis of the ECG signals. Mathematical
modeling of the ECG signal is widely used in many car-
diovascular studies, such as ECG signals denoising, ECG

beats segmentation, arrhythmias detection, heart rate esti-
mation, and synthetic ECG signal generation [13, 14].
Mathematically, modeling helps to understand how the
model’s factors influence the sensitivity and specificity in
computer-aided diagnosis methods. Different models have
been used for ECG signals such as autoregressive (AR)
model [15], autoregressive moving average (ARMA) [16],
generalized autoregressive moving average (GARMA) [17],
data flow graph (DFG) model [18], generalized orthogonal
forward regression (GOFR) [19], Gaussian mesa and bi-
Gaussian functions [19], hidden Markov models (HMM)
[20], morphological models [21], Hermite basis functions
[22], Gaussian model [23], principal component analysis
[24], Kalman filter [25], and time-varying autoregressive
model (TVAM) [26]. (ese ECG models have fitted
mathematical representations into HRV or the points of
ECG signals and need ECG preprocessing to achieve es-
sential components such as QRS complexes, P-wave, and
T-wave. (e main drawback is that using these components
needs to determine the exact location of waves, which in-
creases the computation time, and the system performance
depends on the method used. (erefore, in this article, we
used an unprocessed single-lead ECG signal, which is lower
in cost. Only a few researchers used models to detect apnea
[26–28]. Mendez et al. [26] used a time-varying autore-
gressive model (TVAM) to assess power spectral densities
for the QRS complex area and the RR intervals. (is study
aims to use time series models to propose a new ECG signal
model. (is model can be used to detect normal and apneic
ECG signals. Sharma and Sharma [27] used a linear com-
bination of the lower order Hermite basis functions to es-
timate each QRS complex of the ECG signal. Hassan et al.
[28] used a tunable-Q factor wavelet transformation
(TQWT), and each subband was modeled using symmetric
Normal Inverse Gaussian (NIG) pdf. One issue neglected in
previous articles is that apnea is associated with fluctuations
in the ECG process. (is property can be used to model
apnea and normal ECG signals.

Time-varying conditional standard deviation, usually
called volatility, describes periods of high oscillations dis-
tributed with relative calm periods and plays a vital role in
predicting time series fluctuations [29]. In statistics, heter-
oskedasticity indicates that a variable standard error is not
constant over time. It has been proven that hetero-
skedasticity modeling through Autoregressive Conditional
Heteroskedasticity (ARCH) and Generalized Autoregressive
Conditional Heteroskedasticity (GARCH) and their variants
are helpful in the modeling varying volatility in nonsta-
tionary time series [29]. Real-world time series such as ECG
signals have volatility. In the literature, ECG volatility and
heteroskedasticity during apnea are underestimated. Huand
Tsoukalas [30] showed that Integrated GARCH(1, 1) could
model apneic ECG segments, and ARCH(1) can model the
normal ECG recordings. Experimental observations showed
that cardiovascular variations are complex, nonlinear, and
nonstationary [31]. Linear models like AR, Moving Average
(MA), and ARMA are coarse estimations of real-world
systems and usually have poor performance in forecasting
the evolution of nonstationary and nonlinear processes [31].
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(e ARIMA model is usually used to model these patterns
[31]. (erefore, in this article, the ARIMA model is used to
model linear features of ECG signals. (e consistency of
conditional variance is one of the essential assumptions used
by conventional ARIMA models to forecast future values. If
we assume that the ARIMA model fits an ECG signal, the
conditional variance should be constant. It has been shown
that during apnea, the homoskedasticity assumption is not
correct [29]. Instead of using the ARIMA model, which
focuses only on predicting the conditional mean of future
values, clusters of abundant variance need to use models that
can simultaneously predict both the conditional mean and
the conditional heteroscedasticity of the system. Since
ARIMA is a linear model, it cannot reflect nonlinear
characteristics such as volatility. ARIMA is a linear model
that reveals linear characteristics of the ECG signal, and
nonlinear features such as heteroskedasticity of the ECG
signal remain in residuals, which are modeled using a
nonlinear ARCH or GARCH model. (erefore, the pro-
posed model is based on the linear ARIMA model and a
nonlinear GARCH model. First, the heteroskedasticity
property of the ECG signal is examined through the ARCH/
GARCH test, kurtosis, skewness, and histograms. Next, the
linear characteristics of ECG signals are modeled using the
ARIMA model. To model the nonlinear heteroskedasticity
features of ECG signals, we use three different versions of the
original GARCH model: GARCH, Glosten-Jagannathan-
Runkle GARCH (GJR-GARCH), and Exponential GARCH
(EGARCH). Finally, the model with the maximum likeli-
hood value is selected as the best model among existing
models.(e best orders of the models are then selected using
Bayesian Information Criteria (BIC) and the performance of
the proposed model is assessed in terms of four criteria:
mean square error (MSE), root mean square error (RMSE),
mean absolute error (MAE), and mean absolute percentage
error (MAPE).

(e article is organized as follows: Section 2 briefly
addresses the fundamentals of ARIMA and GARCHmodels.
Section 3 provides descriptions of the proposed ECG signal
model, where data statistic measures and performance
metrics are also provided. Associated numerical results are
given in Section 4. Section 5 discusses the obtained results,
and the article is concluded in this section, too.

2. Prediction Model

In this section, a brief review of the ARIMA and GARCH
family models will be presented, respectively.

2.1. Autoregressive Integrated Moving Average (ARIMA).
Autoregressive Integrated Moving Average (ARIMA)
model is generalized as an ARMA model used in cases
where the signal is nonstationary. (e ARIMA(p, d, q)
model consists of three parts: Autoregressive (AR), In-
tegrated (I), and Moving Average (MA). For a given time
series, an ARMA(p, q) model with p as the number of
autoregressive terms and q as the sum of lagged forecast
errors of the following type:

1 − 

p

k�1
ak

⎛⎝ ⎞⎠Xt � 1 + 

q

k�1
bk

⎛⎝ ⎞⎠εt, (1)

where p is the number of autoregressive (AR) terms, ak s are
AR parameters, q is the number of terms in moving average
(MA), bk s are MA parameters, and ϵt is an independent
error term. ARMA models assume that signals are sta-
tionary, and the performance of the ARMA model reduces
whenever time trends and seasonality features exist.
Methods such as ARIMA are used to remove or reduce these
nonstationarity moments [32].

(e ARIMA model of orders (p, d, q) is a process, Xt,
whose differences (1 − L)dXt satisfy an ARMA(p, q) model,
which is stationary. d is a nonnegative integer (usually less
than (2)) and represents dth difference of Xt to find a sta-
tionary time series. ARIMA models are always assuming the
data variance is constant.(e following equation can be used
to describe the ARIMA(p, d, q) model.

1 − 

p

k�1
akL

k⎛⎝ ⎞⎠(l − L)
d
Xt � 1 + 

q

k�1
bkL

k⎛⎝ ⎞⎠εt, (2)

where L Xt  � Xt − Xt−1 and d is the number of differences
required to stationary time series, ak s are AR parameters, p

is the model’s autoregression order (AR) and the number of
differential series lags, bk s are MA parameters, q is the order
of the model’s moving average (MA) and the number of
prediction error lags, and ϵt is independent error terms.
Modeling the ECG signal via ARIMA is essentially a three-
stage iterative process that involves the following: identifying
model order, model estimation, and checking the model.

2.2. Autoregressive Conditional Heteroskedasticity (ARCH)
Model. Conditional volatility models are known as heter-
oscedastic models, meaning the variance is not constant.
(ese models were widely used in finance because data
appear to differ or be highly volatile in these areas. Volatility
models were first introduced with the Autoregressive
Conditional Heteroskedasticity (ARCH) model in eco-
nomics by Engle [33]. In this model, the conditional variance
varies during time as a function of previous errors. Suppose
that Z(t) is a strong white noise process, Z(t) ∼ N(0, 1); the
process yt can be an ARCH process, if a process is stationary
and has the following properties:

yt � σtZt,

σ2t � α0 + 

q

i�1
αiy

2
t−i,

(3)

where Z(t) is a stochastic piece, σt is a standard deviation
depending on time, q is the length of ARCH lags, α0 ≥ 0, and
αi ≥ 0,  i � 1, 2, . . . , q.

2.3. Generalized Autoregressive Conditional Hetero-
skedasticity (GARCH) Model. Although the ARCH method
has proven useful in modeling data instability, a relatively
long lag is often needed. A simplified version of the ARCH
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model, i.e., Generalized Autoregressive Conditional Heter-
oskedasticity (GARCH), was proposed by Bollerslev [34] to
allow both longer memory and a more stable lag structure.
GARCH modeling is a statistical method for time series
modeling whose variances are a stochastic process widely
used in modeling financial time series. (e main idea of this
model is that the conditional variance σ2t has an AR structure
and also depends on past values of σt. GARCH(p, q) is
defined as follows:

yt � σtZt,

σ2t � α0 + 

q

i�1
αiy

2
t−i + 

p

j�1
βjσ

2
t−j,

(4)

where p is the order of GARCH terms, q is the order of
ARCH terms, α0 > 0, αi ≥ 0, βj ≥ 0. (e GARCH model’s
application in various fields proves its ability to model data’s
uncertainty.

2.4. Glosten-Jagannathan-Runkle GARCH (GJR-GARCH)
Model. Some more complex GARCH parameterizations
were suggested for modeling the conditional variance after
the standardized GARCH model. (ese sophisticated
models aim to capture better the empirically demonstrated
stylized facts of the mechanism of conditional variance. (e
asymmetric effect of the negative return shocks, for example,
is identified by the Exponential GARCH (EGARCH) model
[35] and the Glosten-Jagannathan-Runkle GARCH (GJR-
GARCH) model [36]. To conclude, there is no consensus on
which GARCH model offers the best for forecasting. Dif-
ferent studies prefer different GARCH parameters, with
different study times, different asset groups, and different
output assessment requirements. (e asymmetric GARCH
models are, however, usually favored over the symmetric
GARCH model. (e first model we used is Glosten-
Jagannathan-Runkle GARCH (GJR-GARCH). GJR-
GARCH is a nonlinear GARCH model that considers the
asymmetries in response to the conditional variance in an
innovation. (e GJR-GARCH model’s principle is that
conditional variance dynamics admit that a regime switch
depends on the sign of past innovations. It models the
asymmetry in GARCH and defined by the following
equations:

yt � σtZt,

σ2t � α0 + 

q

i�1
αiy

2
t−i + 

p

j�1
βjσ

2
t−j + 

q

i�1
ciIt−iy

2
t−i,

(5)

where Zt is i.i.d., It−i � 0 if yt−i ≥ 0, and It−i � 1 if yt−i < 0

2.5. Exponential GARCH (EGARCH) Model. Nelson intro-
duced the Exponential GARCH (EGARCH) (p, q) model
[35] to catch the asymmetry:

yt � σtZt,

log σ2t  � α0 + 

q

k�1
βkg Zt−k(  + 

p

k�1
αklog σ2t−k ,

g Zt(  � θZt + λ Zt


 − E Zt


  ,

Zt �
yt

σt

,

(6)

where σ2t is a conditional variance; α0, α, β, θ, and λ are
coefficients. Zt can be a regular normal variable, or it can
come from a generalized distribution of errors.(e structure
of g(Zt) allows for the sign and magnitude of Zt to have
different impacts on the volatility. Since log(σ2t ) can be
negative, the parameters are not subject to sign restrictions.

3. ECG Signal Modeling Using ARIMA-
EGARCH

ECG signals are segmented into one-minute segments. Each
segment has 6000 samples, which contain either normal or
apneic conditions. We calculated the order of the models
from randomly selected 50% of the segments and then used a
test and validated the model’s output on the remaining
segments. (e overall proposed scheme is demonstrated in
Algorithm 1.

3.1. Statistical Tests for ARCH/GARCH Effect. GARCH
models can only be used when the data are volatile. We need
to verify the volatility of data before using any GARCH
models. We use various tests to explore ECG segments’
statistical properties to examine whether GARCH family
models provide an efficient ECG signals modeling. One of
the approaches is by measuring histograms for verifying data
distribution. Kurtosis is the indicator of peaks in the data
distribution, and skewness is a symmetrical representation
of a mean distribution. (e series is volatile when the
kurtosis value is greater than 3 and is skewed to either the left
or the right. In simple terms, the heavy-tailed distribution
indicates that the probability of encountering large devia-
tions from the mean is higher than in the case of normal
distribution. Kurtosis and skewness measurements are used
as follows:

Kurtosis �
E(x − μ)

4

σ4
,

Skewness �
E(x − μ)

3

σ3
,

(7)

where μ and σ are the mean and the standard deviation of x.
Another method for testing ARCH/GARCH effects is the
ARCH/GARCH test suggested by Engle [33]. (is approach
tests a null hypothesis that the ARCH/GARCH effect does
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not exist. Besides, this statistical test is asymptotically dis-
tributed as chi-square. (e final test form is based on the
Wilcoxon signed-rank test, which is a nonparametric sta-
tistical test to assess if two populations are similar without
assuming that they obey the normal distribution. (e null
hypothesis of the test is that the output indicators are
equivalent or comparable to populations for GARCH
models versus ECG segments. (e test statistics, W, is the
total of the positive difference ranks (i.e., x − y) between the
two samples. We set 0.05 as the level of significance for the
test. If the “P value” is less than 0.05, we can conclude that
the significance level of the null hypothesis is violated. (is
test is given as follows:

z(x, y) �
(W − n(n + 1)/4)

�������������������������
(n(n + 1)(2n + 1) − tieadj)/24

 , (8)

where n corresponds to the sample size of the x − y.
Signrank uses
[tierank, tieadj] � tiedrank(abs(diffxy), 0, 0, epsdiff) to get
the tie adjustment value tieadj for the two-sample event.

3.2. Order Selection. An ARIMA(p, d, q) model can be
constructed by visually inspecting the autocorrelation
function (ACF) and partial autocorrelation function
(PACF). However, using objectively defined parameters
such as Akaike information criteria (AIC) and Bayesian
Information Criterion (BIC) is a more objective approach to
determine p, q, and d of an ARIMA(p, d, q) method. (ese
information criteria are statistical model fit measures [37].
(ey provided a set of results and assessed the relative fitness
of the model of a number of previously developed mathe-
matical models. Each of these criteria defines a cn(k) for-
mula, where k denotes the number of model parameters and
n the number of observations. (e model with the fewest
parameters, k, is called the best fit, and the quantity cn(k) is
the smallest. (e AIC [38] is an information processing
method focused on the principle of entropy. (e AIC’s main
concept is to look at the model’s difficulty and its fit to the
sample data and come up with a score that combines the two.
Its formula is [37].

AIC : cn(k) � 2.
k

n
  − 2 ln

(L)

n
, (9)

where L denotes the likelihood function, k denotes the
number of model parameters, and n denotes the number of
observations.

Schwarz [39] provides the BIC:

BIC : cn(k) � k.ln
(n)

n
− 2 ln

(L)

n
. (10)

Both of these criteria have advantages and disadvantages.
Shibata [40] studied the asymptotic properties of the AIC
estimation, concluding that the AIC estimate is inconsistent
and asymptotically overestimates k with a nonzero probability.
BIC is known to underestimate k [41].(erefore, in the present
study, we used the BIC criterion. (e model with the lowest
amount of BIC value is chosen as the most suitable match.

3.3.EvaluationMethodsofModelSufficiency. (ere is usually
no common criterion for evaluating a model’s forecast
output and comparing it with other benchmark models [42].
Since there are no common parameters for measuring er-
rors, various error metrics were used to verify the proposed
model’s efficacy. (e model performance evaluation is done
in this analysis by comparing the expected values with their
corresponding observed values using traditional perfor-
mance metrics, such as mean square error (MSE), root mean
square error (RMSE), mean absolute error (MAE), andmean
absolute percentage error (MAPE) based on the following
equations:

MSE �
1
N



N

i�1
Xi − Xi 

2
, (11)

RMSE �

��������������

1
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N
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, (12)

MAE �
1
N



N

i�1
Xi − Xi


, (13)

MAPE �
1
N



N

i�1

Xi − Xi

Xi




× 100%, (14)

where N is the number of samples in one segment and Xi, Xi

are observed and predicted values in one segment. (ese
errors are advisable for predicting time series with the same
scale and the same data processing procedures. (e model
with the smaller value of MSE, RMSE, MAE, and MAPE is
selected as the best model. MAE and RMSE calculated the
average of forecast errors over a sample size n. MAE and

(1) : decompose ECG signals into one-minute segments
(2) randomly select 50% segments as a training set
(3) select the best order of the ARIMA model from training segments using BIC
(4) select the best order of GARCH, GJR-GARCH, and EGARCH models from training segments using BIC
(5) choose a model with a maximum likelihood value
(6) use maximum likelihood estimation (MLE) to identify model coefficients
(7) evaluate the proposed model using MSE, RMSE, MAE, and MAPE on the remaining segments

ALGORITHM 1: (e proposed procedure for modeling apneic and normal ECG signals.
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RMSE have the analyzed signal units. MAPE, which is a
dimensionless quantity, assesses the predictive model’s ac-
curacy. In statistics, MAPE calculates the precision of the
prediction of a forecasting system and is typically expressed
as a percentage. (e predictive potential of the proposed
ARIMA-EGARCH model was assessed by using equations
(11)–(14).

4. Numerical Results

4.1. Data. In this study, the Physionet Apnea-ECG dataset
(https://www.physionet.org/physiobank/database/apnea-
ecg/) was used [43, 44] because of its availability and
widespread use in the literature. Recordings were obtained
from 32 people (25 men and 7 women). A total of 35 re-
cordings sampled at 100Hz from normal subjects and
subjects with OSA were used. All signals were segmented
into one-minute segments, and each segment was labeled as
apnea or normal by physicians. Recordings varied in length
from slightly less than 7 hours to almost 10 hours and were
divided into three groups:

Apnea group: with 100 minutes or more of apnea, the
mean age is 50 years. (e range of age is 29–63 years.
Borderline group: with 10–96 minutes of apnea, the
mean age is 46 years. (e range of age is 39–53 years.
Healthy group: with 5 minutes or fewer of apnea, the
mean age is 33 years. (e range of age is 27–47 years.

4.2. Results. (e first step in the modeling method is to
approximate the mean of the data. In the literature, nu-
merous mean equation models have been studied. Among
these latest processes, which have been suggested, the
ARIMA-type model was one of the most commonly used
approaches in the literature due to its simplicity of execution
and its well-known ability to predict and forecast. (erefore,
this article applies the ARIMA model as the mean equation.
ECG signals are nonstationary. To implement the afore-
mentioned time series models on ECG signals, we must
ensure that the time series is stationary. If the data are
nonstationary, then the first difference is used to transform
it. Plotting the first difference data will show whether the
data have been converted into a stationary sequence. (e
second difference is taken if it is still not stationary. Model
fittings can be made once the time series is stationarity. In
the ARIMA model, this mechanism determines the differ-
entiating parameter “d.” As “d” is typically less than 2, we
created the new time series by first and second differenti-
ating the ECG signal. To find p, q, and d order, several
combinations of ARIMA(p, d, q) are tested by the BIC, and
the model with the smallest amount of BIC is selected.
Results show that ARIMA(5, 2, 4) has the minimum amount
of BIC for most segments. So, we consider ARIMA(5, 2, 4)
for all segments.

Since the ECG signal is nonstationary, both the mean
and percentiles of the data are different at varying periods.
(is means that the residual series differs over time, and the
constant variance concept of the standard time series models

is broken. (is further proves that the volatility model is
essential. (e GARCH models can only be used on volatile
data.(at is why a histogram is plotted to analyze whether or
not ECG segments follow a normal distribution. Figure 1
shows the histogram for one ECG segment.

(en, kurtosis is determined. (e minimum and the
maximum kurtosis for all ECG segments are 5.1479 and
281.4540, respectively. It is evident from the minimum value
that all measured kurtosis is higher than the value of three
predicted for Gaussian distribution and histogram skewed to
the right. Kurtosis values indicate that ECG segments have
heavy tail characteristics and are not normally distributed.
We also performed a Wilcoxon signed-rank test. Table 1
gives the “h,” “P value”, and “Stat” for the test. “h� 1” in-
dicates a rejection of the null hypothesis, and “h� 0” indi-
cates a failure to reject the null hypothesis at the 5%
significance level. “Stat” has information about the test
statistic. (e “P values” of the statistical test for the ECG
segments versus GARCH are more than 0.05, as shown in
Table 1.(is indicates that the ECG segments are statistically
similar to GARCH models. We also used the ARCH/
GARCH test suggested with Engle. Results of Engle’s test are
shown in Table 2,

“H” is the Boolean decision variable. “1” suggests a null
hypothesis rejection that there is no ARCH/GARCH effect.
“Stat” displays ARCH/GARCH test statistics, and the
“critical value” calculates the critical value of the chi-square
distribution. If the “Stat” is below the “critical value” point,
at a meaning level equal to 5%, there is no GARCH effect.
However, if “Stat” is more than “critical value,” it formally
shows clear evidence for GARCH in this time sequence. We
applied the ARCH/GARCH test to all of the ECG signals in
the databases. Because of the limited space, we demonstrate
in this section the results of some representative signals. We
should also remember that the simulated results are identical
for different ECG signals. As shown in Table 2, for all signals,
“H” is 1, and “Stat” is more than “critical value,” which
means the null hypothesis is rejected, and therefore, the ECG
signals have an ARCH/GARCH effect. Finally, visual vali-
dation is also performed between the histogram of ECG
signals and the GARCH family models. Figure 2 shows ECG
segment histograms and Gaussian distribution function with
the estimated mean and standard deviation from the data
and a corresponding GARCH model histogram.

From Figure 2, it is evident that there is high accuracy
between the histogram of ECG segments and the GARCH
model. Compared to Gaussian, the studied distribution is
sharper and has a zero peak with a heavier tail. We also plot
the cumulative distribution function (CDF) of ECG seg-
ments and the corresponding GARCH model in Figure 3.

It is evident from Figure 3 that ECG segments and the
GARCH data are from the same CDF. Considering the
results in Tables 1 and 2 and Figures 1–3, we find an ARCH/
GARCH effect in all examined ECG segments. It should be
again reported that the results of modeling various ECG
signals are identical. However, only a few results are shown
here. Hence, we proposed GARCH family models and
demonstrated that they were a suitable representation of
ECG segments.
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Figure 1: Histogram for an ECG segment.

Table 1: Results of the Wilcoxon signed-rank test.

Signal H Stat P value
Signal 1 0 38 0.3223
Signal 2 0 41 0.1934
Signal 3 0 45 0.0840
Signal 4 0 38 0.3223
Signal 5 0 45 0.0840
Signal 6 0 37 0.3750
Signal 7 0 41 0.1934
Signal 8 0 41 0.1855

Table 2: Results of Engle’s test for the existence of ARCH/GARCH effects.

Signal H Stat Critical value
Signal 1 1 2.6848e+ 3 3.8415
Signal 2 1 3.1229e+ 3 3.8415
Signal 3 1 3.1219e+ 3 3.8415
Signal 4 1 3.2108e+ 3 3.8415
Signal 5 1 3.1211e+ 3 3.8415
Signal 6 1 2.8983e+ 3 3.8415
Signal 7 1 3.2584e+ 3 3.8415
Signal 8 1 3.2659e+ 3 3.8415
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Figure 2: Histograms of ECG segment, corresponding GARCHmodel, and Gaussian distribution of (a) an apneic segment and (b) a normal
segment.
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(e literature is comprehensive on the GARCH family
models. However, we limit our study to the three more
common models for compactness, namely, GARCH,
EGARCH, and GJR-GARCH. Estimating the volatility
model requires order selection and parameter estimation,
similar to the ARIMAmodel. Again, to find the proper order
of GARCH, EGARCH, and GJR-GARCH models, several
combinations were tested by the BIC, and the models with
the smallest amount of BIC were selected.

Results show that GARCH(1,4), GJR-GARCH(1,5), and
EGARCH(1,5) have the minimum BIC for most segments.
So, we consider GARCH(1,4), GJR-GARCH(1,5), and
EGARCH(1,5) for all segments. We calculated the log-
likelihood amount of GARCH, GJR-GARCH, and EGARCH
to find the best model among the others. We also computed
log-likelihood for ARIMA-GARCH, ARIMA-GJR-GARCH,
and ARIMA-EGARCH. (e model with the maximum
amount of log-likelihood was selected as a proper model.

(e results are illustrated in Figure 4. As is evident from
Figure 4, GJR-GARCH and ARIMA-EGARCH have a
maximum amount of log-likelihood. Finally, in each seg-
ment, the maximum likelihood estimation (MLE) was used
to identify model coefficients. MLE is applied to both
ARIMA and GARCH models.

In the next step, we validated our proposed method on
the remaining ECG segments, which were not used in the
model estimation step. We run ARIMA and GJR-GARCH
models on the Physionet Apnea-ECG database and com-
pared the ARIMA-EGARCH model results with these
models using MSE, RMSE, MAE, and MAPE.(e reason for
choosing these models is that linear models such as AR, MA,
and ARMA are coarse estimations of real-world systems and
usually have poor performance in forecasting the evolution
of nonstationary and nonlinear processes; ARIMA model is
usually used to model these patterns [31]. So, we considered
the ARIMAmodel as the first model for comparison. On the

1
Emprical CDF

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
–0.3 –0.2 –0.1 0 0.1 0.2 0.3

Apnea ECG segment

GARCH data

(a)

ECG normal segment

GARCH data

1
Emprical CDF

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
–0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8

(b)

Figure 3: Comparison of cumulative distribution function (CDF) of ECG segments (solid line) and CDF of GARCH data (dash line) for (a)
apneic and (b) normal segments.
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Figure 4: (e likelihood values of (a) GARCH, EGARCH, and GJR-GARCH models; (b) ARIMA-GARCH, ARIMA-EGARCH, and
ARIMA-GJR-GARCH models.
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other hand, we showed that ECG signals were hetero-
skedastic; GARCH family models can be used to model
them. Since the log-likelihood of GJR-GARCH had maxi-
mum value, we selected GJR-GARCH as the second model.
Average and standard deviation of MSE, RMSE, MAE, and
MAPE based on the assessment criteria 11, 12, 13, and 14 for
ARIMA, GJR-GARCH, and ARIMA-EGARCH models on
apneic and normal ECG segments are presented in Tables 3
and 4, respectively.

Tables 3 and 4 demonstrate that in terms of averagedMSE,
RMSE, MAE, and MAPE, the proposed ARIMA-EGARCH
model outperforms all other models in modeling both apnea
and normal ECG signals. (e lowest prediction error value
reflects the superiority of the proposed ARIMA-EGARCH
model over the ARIMA model and the GJR-GARCH model.

(e graphical validation of our model on the sample test
data is illustrated in Figures 5 and 6 for sample apneic and
normal ECG segments using three different models,

Table 3: Comparison of MSEs, RMSEs, MAEs, and MAPEs from different models estimated for apnea segments.

ARIMA GJR-GARCH ARIMA-EGARCH
Ave Std Ave Std Ave Std

MSE 0.0181 0.0133 0.2032 0.7924 0.0177 0.0129
RMSE 0.1232 0.0543 0.2990 0.3378 0.1216 0.0535
MAE 0.0666 0.0282 0.0736 0.0140 0.0613 0.0255
MAPE 13.6081% 42.5486% 42.3760% 678.0458% 4.0841% 15.9423%
Ave� average, Std� standard deviation.

Table 4: Comparison of MSEs, RMSEs, MAEs, and MAPEs from different models estimated for normal segments.

ARIMA GJR-GARCH ARIMA-EGARCH
Ave Std Ave Std Ave Std

MSE 0.0235 0.0131 0.6792 4.0802 0.0230 0.0128
RMSE 0.1454 0.0490 0.4477 0.6928 0.1437 0.0484
MAE 0.0810 0.0250 0.0962 0.0526 0.0754 0.0226
MAPE 16.1331% 97.8801% 18.5205% 161.6340% 4.7286% 29.5338%
Ave� average, Std� standard deviation.
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Figure 5: Fitting results using ARIMA, GJR-GARCH, and ARIMA-EGARCH models on a sample apneic ECG segment (blue line: ECG
data; redline: estimated data).
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respectively. For better understanding, we only show the 500
first samples of each segment in figures.

Figures 5 and 6 show that the ARIMA-EGARCH model
can best model both sudden and slow transients in apneic
and normal ECG signals. Moreover, if we only consider slow
changes in the ECG signal, we can see that a linear approach
such as ARIMA cannot predict slow changes, but a nonlinear
method like GJR-GARCH can predict almost slow changes
(white noise). (ese findings confirm our claim that
EGARCH models improve the estimation made by ARIMA
and a combination of ARIMA and EGARCH models can
complete each other in ECG signal modeling.

4.3. Comparison with Other Models. In this section, the
performance of the selected model is compared with other
models proposed in the literature. Since the results obtained
from the same sample must be compared for meaningful
comparison, we must compare our results with the results of
models that used the Physionet Apnea-ECG. As mentioned

in the Introduction, only a few researchers used models to
detect apnea [26–28], and these articles fit models to QRS
complexes and not the entire ECG. (erefore, we can not
compare our results with them. On the other hand, these
articles used the model’s parameters to detect sleep apnea,
and they did not compare the estimated results with the
actual ECG signal. Only Hu et al. [30] proposed a mathe-
matical model for apneic and normal ECG signals. (ere-
fore, to show our model’s capability, we compared our
results with this article. Tables 5 and 6 compare RMSEs and
MAEs from ARIMA-EGARCH with ARCH(1) [30],
GARCH(1,1) [30], Student-t GARCH(1,1) [30], Integrated
GARCH(1,1) [30], and Student-t Integrated GARCH(1,1)
[30] for apneic and normal segments, respectively.

5. Discussion and Conclusion

(is article describes a method for mathematical modeling
of the ECG signal. Although the forecasting of time series is a
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Figure 6: Fitting results using ARIMA, GJR-GARCH, and ARIMA-EGARCH models on normal ECG data (blue line: ECG data; redline:
estimated data).

Table 5: Comparison of RMSEs and MAEs from ARIMA-
EGARCH with other existing models for apnea segments.

Method RMSE MAE
ARCH(1) [30] 0.6614 0.5876
GARCH(1,1) [30] 0.6636 0.5808
Integrated GARCH(1,1) [30] 0.6325 0.5725
Student-t GARCH(1,1) [30] 0.6497 0.5625
Student-t Integrated GARCH(1,1) [30] 0.6551 0.5638
ARIMA(5,2,4)-EGARCH(1,5) 0.1216 0.0613

Table 6: Comparison of RMSEs and MAEs from ARIMA-
EGARCH with other existing models for normal segments.

Method RMSE MAE
ARCH(1) [30] 0.6482 0.5652
GARCH(1,1) [30] 0.6508 0.5618
Integrated GARCH(1,1) [30] 0.7133 0.5843
Student-t GARCH(1,1) [30] 0.7347 0.5785
Student-t Integrated GARCH(1,1) [30] 0.7212 0.5841
ARIMA(5,2,4)-EGARCH(1,5) 0.1437 0.0754
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vast research area, it can be classified into short- and long-
term predictions. Short-term forecasting can also be split
into mathematical modeling and physiological modeling.
(e mathematical-based forecasting model uses mathe-
matical representation and dynamic variations to predict the
future status of the time series of the process that underlies it.
It should be clear that no apnea detection method is pro-
vided in this article. We have shown that ECG signals are
heteroskedastic, which means the conditional variance is not
constant. In the literature, ECG volatility and hetero-
skedasticity during apnea are underestimated.(us, we used
this characteristic to model ECG signals.

(e proposed ARIMA-EGARCH can model the mean
and volatility of ECG signals in sleep apnea syndrome. (is
model can cover both linear and nonlinear characteristics of
ECG signals. Using BIC, the best orders of the ARIMA and
EGARCH models were estimated. (e model parameters
were approximated using the maximum likelihood esti-
mation method. Finally, some metrics, including MSE,
RMSE, MAE, and MAPE, between the actual and estimated
ECG signals were calculated. (e method is validated and
compared to other methods, using recordings from the
Physionet Apnea-ECG database containing ECG segments
during sleep apnea and normal breathing. Visual quality and
objective quality of the proposed approach were achieved in
terms of MSE, RMSE, MAE, and MAPE. Since the results
obtained from the same sample must be compared for
meaningful comparison, we must compare our results with
the results of models that used the Physionet Apnea-ECG.
So, we compared our proposed model with models in [30]
(see Tables 4 and 5). As it can be inferred from Tables 4 and
5, the proposed ARIMA-EGARCH model outperforms the
other existing models for sleep apnea modeling. Experi-
mental findings show that the ARIMA-EGARCHmodel can
estimate both normal and apneic ECG signals. Our results
are robust for selecting performance assessment criteria.

(e proposedmodel has some advantages.(e estimated
model’s parameters can be used as features for the automatic
detection of sleep apnea [45]. Moreover, one of the current
widespread therapies in sleep apnea is continuous positive
airway pressure (CPAP) that blows constant air at a fixed
pressure. ECG model can be used in CPAP machines in
order to blow air only when apnea occurs.

Data Availability

In this study, the Physionet Apnea-ECG dataset is available
at https://www.physionet.org/physiobank/database/apnea-
ecg/ was used.
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[5] A. H. Yüzer, H. Sümbül, M. Nour, and K. Polat, “A different
sleep apnea classification system with neural network based
on the acceleration signals,” Applied Acoustics, vol. 163, Ar-
ticle ID 107225, 2020.

[6] E. Braunwald, A. S. Fauci, D. L. Kasper, S. L. Hauser,
D. L. Longo, and J. L. Jameson, Harrison’s Principles of In-
ternal Medicine, McGraw-Hill, New York, NY, US, 2001.

[7] P. Leelaarporn, P. Wachiraphan, T. Kaewlee et al., “Sensor-
driven achieving of smart living: a review,” IEEE Sensors
Journal, vol. 21, no. 9, pp. 10369–10391, 2021.

[8] H. Singh, R. K. Tripathy, and R. B. Pachori, “Detection of sleep
apnea from heart beat interval and ecg derived respiration
signals using slidingmode singular spectrum analysis,”Digital
Signal Processing, vol. 104, Article ID 102796, 2020.

[9] K. N. V. P. S. Rajesh, R. Dhuli, and T. S. Kumar, “Obstructive
sleep apnea detection using discrete wavelet transform-based
statistical features,” Computers in Biology and Medicine,
vol. 130, Article ID 104199, 2021.

[10] A. Zarei and B. Mohammadzadeh Asl, “Performance evalu-
ation of the spectral autocorrelation function and autore-
gressive models for automated sleep apnea detection using
single-lead ecg signal,” Computer Methods and Programs in
Biomedicine, vol. 195, Article ID 105626, 2020.

[11] J. Zhang, Z. Tang, J. Gao et al., “Automatic detection of
obstructive sleep apnea events using a deep cnn-lstm model,”
Computational Intelligence and Neuroscience, vol. 2021, Ar-
ticle ID 5594733, 2021.

[12] N. Banluesombatkul, T. Rakthanmanon, and
T. Wilaiprasitporn, “Single channel ecg for obstructive sleep
apnea severity detection using a deep learning approach,” in
Proceedings of the TENCON 2018-2018 IEEE Region 10
Conference, pp. 2011–2016, Jeju, Korea, October 2018.

[13] O. Sayadi and M. B. Shamsollahi, “Life-threatening ar-
rhythmia verification in icu patients using the joint cardio-
vascular dynamical model and a bayesian filter,” IEEE
Transactions on Biomedical Engineering, vol. 58, no. 10,
pp. 2748–2757, 2011.

[14] O. Sayadi, M. B. Shamsollahi, and G. D. Clifford, “Synthetic
ecg generation and bayesian filtering using a Gaussian wave-
based dynamical model,” Physiological Measurement, vol. 31,
no. 10, pp. 1309–1329, 2010.

[15] K. Padmavathi and K. S. Ramakrishna, “Detection of atrial
fibrillation using autoregressive modeling,” International
Journal of Electrical and Computer Engineering (IJECE), vol. 5,
no. 1, pp. 64–70, 2015.

[16] J. Aguila, E. Arias, M. Artigao, and J. Miralles, “A prediction of
electrocardiography signals by combining arma model with
nonlinear analysis methods,” Recent Researches in Applied
Computer and Applied Computational Science, vol. 35,
pp. 31–37, 2011.

Journal of Healthcare Engineering 11

https://www.physionet.org/physiobank/database/apnea-ecg/
https://www.physionet.org/physiobank/database/apnea-ecg/


[17] O. Raach, T. R. Pillai, and A. Abdullah, “Garma modeling of
ecg and classification of arrhythmia,” in Proceedings of the
2018 8th International Conference on Intelligent Systems,
Modelling and Simulation (ISMS), pp. 26–31, Kuala Lumpur,
Malaysia, May 2018.

[18] Z. Zheying Li and M. Minjie Ma, “Ecg modeling with dfg,” in
Proceedings of the 2005 IEEE Engineering in Medicine and
Biology 27th Annual Conference, pp. 2691–2694, Shanghai,
China, February 2005,.

[19] R. Dubois, P. Roussel, M. Vaglio et al., “Efficient modeling of
ecg waves for morphology tracking,” in Proceedings of the
2009 36th Annual Computers in Cardiology Conference
(CinC), pp. 313–316, September 2009.

[20] R. V. Andreao, B. Dorizzi, and J. Boudy, “Ecg signal analysis
through hidden markov models,” IEEE Transactions on
Biomedical Engineering, vol. 53, no. 8, pp. 1541–1549, 2006.

[21] E. K. Roonizi and R. Sameni, “Morphological modeling of
cardiac signals based on signal decomposition,” Computers in
Biology and Medicine, vol. 43, no. 10, pp. 1453–1461, 2013.

[22] S. Osowski, L. T. Hoai, and T. Markiewicz, “Support vector
machine-based expert system for reliable heartbeat recogni-
tion,” IEEE Transactions on Biomedical Engineering, vol. 51,
no. 4, pp. 582–589, 2004.

[23] P. E. McSharry, G. D. Clifford, L. Tarassenko, and L. A. Smith,
“A dynamical model for generating synthetic electrocardio-
gram signals,” IEEE Transactions on Biomedical Engineering,
vol. 50, no. 3, pp. 289–294, 2003.

[24] M. Chawla, H. Verma, and V. Kumar, “Ecg modeling and qrs
detection using principal component analysisdoi,” in Pro-
ceedings of the Advances in Medical, Signal and Information
Processing, 2006. IET 3rd International Conference On,
Dublin, Ireland, April 2006.

[25] J. McNames and M. Aboy, “Statistical modeling of cardio-
vascular signals and parameter estimation based on the ex-
tended kalman filter,” IEEE Transactions on Biomedical
Engineering, vol. 55, no. 1, pp. 119–129, 2008.

[26] M. O. Mendez, A. M. Bianchi, M. Matteucci, S. Cerutti, and
T. Penzel, “Sleep apnea screening by autoregressive models
from a single ecg lead,” IEEE Transactions on Biomedical
Engineering, vol. 56, no. 12, pp. 2838–2850, 2009.

[27] H. Sharma and K. K. Sharma, “An algorithm for sleep
apnea detection from single-lead ecg using hermite basis
functions,” Computers in Biology and Medicine, vol. 77,
pp. 116–124, 2016.

[28] A. R. Hassan, “Computer-aided obstructive sleep apnea de-
tection using normal inverse Gaussian parameters and
adaptive boosting,” Biomedical Signal Processing and Control,
vol. 29, pp. 22–30, 2016.

[29] P. Sun and C. Zhou, “Diagnosing the distribution of garch
innovations,” Journal of Empirical Finance, vol. 29, pp. 287–
303, 2014.

[30] M. Y. Hu and C. Tsoukalas, “Conditional volatility properties
of sleep-disordered breathing,” Computers in Biology and
Medicine, vol. 36, no. 3, pp. 303–312, 2006.

[31] C. Cheng, A. Sa-Ngasoongsong, O. Beyca et al., “Time series
forecasting for nonlinear and non-stationary processes: a
review and comparative study,” IIE Transactions, vol. 47,
no. 10, pp. 1053–1071, 2015.

[32] S. Singh and A. Mohapatra, “Repeated wavelet transform
based arima model for very short-term wind speed fore-
casting,” Renewable Energy, vol. 136, pp. 758–768, 2019.

[33] R. F. Engle, “Autoregressive conditional heteroscedasticity
with estimates of the variance of United Kingdom inflation,”
Econometrica, vol. 50, no. 4, pp. 987–1007, 1982.

[34] T. Bollerslev, “Generalized autoregressive conditional heter-
oskedasticity,” Journal of Econometrics, vol. 31, no. 3,
pp. 307–327, 1986.

[35] D. B. Nelson, “Conditional heteroskedasticity in asset returns:
a new approach,” Econometrica, vol. 59, no. 2, pp. 347–370,
1991.

[36] L. R. Glosten, R. Jagannathan, and D. E. Runkle, “On the
relation between the expected value and the volatility of the
nominal excess return on stocks,” He Journal of Finance,
vol. 48, no. 5, pp. 1779–1801, 1993.

[37] U. Kumar and V. K. Jain, “ARIMA forecasting of ambient air
pollutants (O3, NO, NO2 and CO),” Stochastic Environmental
Research and Risk Assessment, vol. 24, no. 5, pp. 751–760, 2010.

[38] H. Akaike, “Information theory and an extension of the
maximum likelihood principle,” in Selected Papers of Hir-
otugu AkaikeSpringer, Berlin, Germany, 1998.

[39] G. Schwarz, “Estimating the dimension of a model,” Annals of
Statistics, vol. 6, no. 2, pp. 461–464, 1978.

[40] R. Shibata, “Selection of the order of an autoregressive model
by Akaike’s information criterion,” Biometrika, vol. 63, no. 1,
pp. 117–126, 1976.

[41] E. J. Hannan and B. G. Quinn, “(e determination of the
order of an autoregression,” Journal of the Royal Statistical
Society: Series B, vol. 41, no. 2, pp. 190–195, 1979.

[42] Y. Xu, W. Yang, and J. Wang, “Air quality early-warning
system for cities in China,” Atmospheric Environment,
vol. 148, pp. 239–257, 2017.

[43] T. Penzel, G. B. Moody, R. G. Mark, A. L. Goldberger, and
J. H. Peter, “(e apnea-ecg database,” Computers in Cardi-
ology 2000, vol. 27, pp. 255–258, 2000.

[44] A. L. Goldberger, L. A. Amaral, L. Glass et al., “Physiobank,
physiotoolkit, and physionet: components of a new research
resource for complex physiologic signals,” Circulation,
vol. 101, no. 23, pp. e215–e220, 2000.

[45] M. Faal and F. Almasganj, “Obstructive sleep apnea screening
from unprocessed ecg signals using statistical modelling,”
Biomedical Signal Processing and Control, vol. 68, Article ID
102685, 2021.

12 Journal of Healthcare Engineering



Research Article
EEG-BasedClosed-LoopNeurofeedback for AttentionMonitoring
and Training in Young Adults

Bingbing Wang , Zeju Xu , Tong Luo , and Jiahui Pan

School of Software, South China Normal University, Guangzhou 510631, China

Correspondence should be addressed to Jiahui Pan; panjh82@qq.com

Received 26 February 2021; Revised 2 June 2021; Accepted 7 June 2021; Published 15 June 2021

Academic Editor: Siti Anom Ahmad

Copyright © 2021 Bingbing Wang et al. +is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Attention is an important mechanism for young adults, whose lives largely involve interacting with media and performing
technology multitasking. Nevertheless, the existing studies related to attention are characterized by low accuracy and poor
attention levels in terms of attention monitoring and inefficiency during attention training. In this paper, we propose an improved
random forest- (IRF-) algorithm-based attention monitoring and training method with closed-loop neurofeedback. For attention
monitoring, an IRF classifier that uses grid search optimization andmultiple cross-validation to improvemonitoring accuracy and
performance is utilized, and five attention levels are proposed. For attention training, we develop three training modes with
neurofeedback corresponding to sustained attention, selective attention, and focus attention and apply a self-control method with
four indicators to validate the resulting training effect. An offline experiment based on the Personal EEG Concentration Tasks
dataset and an online experiment involving 10 young adults are conducted. +e results show that our proposed IRF-algorithm-
based attention monitoring approach achieves an average accuracy of 79.34%, thereby outperforming the current state-of-the-art
algorithms. Furthermore, when excluding familiarity with the game environment, statistically significant performance im-
provements (p< 0.05) are achieved by the 10 young adults after attention training, which demonstrates the effectiveness of the
proposed serious games. Our work involving the proposed method of attention monitoring and training proves to be reliable
and efficient.

1. Introduction

Attention can be characterized as a cognitive process in the
brain that selectively focuses on some part of the available
information [1]. Nevertheless, excessive media multitasking
poses a serious issue with respect to the attention function of
young adults, resulting in distraction and poor attention
control. +erefore, there is an increasing demand for at-
tention monitoring and training for young adults [2].

Numerous methods have been developed for attention
training, meditation [3], and computer-based exercises [4],
but these approaches may contribute to mental fatigue. In
recent years, several researchers have explored methods with
fewer side effects. For example, Putri et al. [5] proposed the
method of regular high-intensity circuit training (HICT),
which can improve attention function in young male adults.

In the same year, Luo and Zhang [2] conducted experiments
to validate that noninvasive tactile training has an excellent
effect on sustained attention in young adults. +e main
purpose of this paper is to investigate a method of attention
monitoring and training based on closed-loop neurofeed-
back. We use brain-computer interface (BCI) technology,
which utilizes recorded brain activity, primarily measured by
electroencephalography (EEG), to execute communications
between the brain and computers to manipulate the envi-
ronment in a manner that is compatible with the intentions
of humans [6]. Notably, EEG signals are the most frequently
used. In contrast to the previously developed methods in
[3, 4, 7], an EEG-based system can be used as a noninvasive
neurofeedback platform to enhance individual attention and
cognitive abilities [8]. Furthermore, a neurofeedback-based
attention training system not only helps young adults but
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also is suitable for children, especially those with attention
deficit hyperactivity disorder (ADHD) [9].

BCI-based technology can be used to identify subtle
shifts in individual attention [10]. Chiang et al. [11] de-
veloped an attention monitoring technique that integrates
the minimum entropy principle approach (MEPA) and an
associative Petri network (APN). Using a 14-electrode EEG
device, a two-class classification accuracy of 90.4% was
achieved based on 10 subjects in an online experiment. Hu
et al. [12] compared the correlation-based feature selection
(CFS) algorithm with other classification algorithms to
evaluate attention at 3 levels (high, neutral, and low) and
concluded that combining CFS and the K-nearest neighbors
(KNN) data mining algorithm, which was used with a single
valence resulted in the best performance. Six electrodes (C3,
C4, Cz, P3, P4, and Pz) were used, and 10 subjects achieved
an accuracy of 80.84% in their online experiment. In another
study, Mohammadpour and Mozaffari [1] adopted an ar-
tificial neural network (ANN) to classify attention into four
levels by using EEG signals from Fp1, Fp2, F3, F4, F7, F8, and
Fz electrodes. An online experiment involving 5 subjects was
conducted and an average accuracy of 79.75% was obtained.
However, there have been two major issues to be further
investigated. One issue is that the accuracy of attention
monitoring needs to be improved, which may be related to
the numbers of attention levels, detection algorithms, and
types of feedback. +e other issue is that more attention
levels (i.e., ≥5) and fewer electrodes (i.e., ≤4) need to be
explored in online attention monitoring, especially for EEG-
based practical application.

Neurofeedback is an effective training technique based
on brain waves and computer processing [13], and EEG-
based neurofeedback training can provide real-time infor-
mation to individuals regarding their brain function through
BCI devices. Bettencourt et al. [14] used closed-loop neu-
rofeedback from multivariate pattern analysis (MVPA) as a
type of cognitive prosthetic to provide a neural error signal
so that individuals could learn to properly evaluate the state
of their attention. Mohammadi et al. [13] designed a
computer game to train individual attention based on
neurofeedback, and they summarized that the neurofeed-
back game not only helps individuals increase the possibility
of success in controlling their attention but also decreases
the time required for the training process. Although EEG-
based neurofeedback training plays an important role in
attention improvement, one should note that the above-
mentioned training methods are not suitable for all the
different mechanisms of attention, such as sustained at-
tention, selective attention, and focus attention.

To address these above issues, we focus on EEG-based
attention monitoring and training with closed-loop neu-
rofeedback in this study. On one hand, we propose an
improved random forest- (IRF-) algorithm-based moni-
toring method, which uses grid search optimization and
multiple cross-validation to classify attention into five levels.
+e Personal EEG Concentration Tasks dataset involving 80
subjects was used to verify the effectiveness of the proposed
attention monitoring method in the offline analysis. On the
other hand, along with closed-loop neurofeedback, we

provide three serious game-type training modes based on
sustained attention, selective attention, and focus attention,
which might be promising in terms of self-regulated at-
tention training. Four primary indicators, including the
Schulte times, win times, game scores, and skill times, were
evaluated in an online experiment.

+e rest of this paper is organized as follows: Section 2
offers additional details on various methods, such as EEG
data processing, classification algorithms, and game design.
+e succeeding section illustrates the process of the ex-
periments and analyzes the results, followed by a discussion
and our conclusions.

2. Materials and Methods

+is section provides an overview of the utilized methods, as
shown in Figure 1, which are separated into two modules:
EEG-based attention monitoring and EEG-based training.
+e first module commences with attention monitoring
workflows based on EEG signals. +en, EEG data processing
and feature extraction are performed. Finally, the output
classification obtained based on the IRF algorithm is pre-
sented. In the second module, we illustrate the principle of
attention training and describe the implementation of se-
rious games with closed-loop neurofeedback.

2.1. EEG-Based Attention Monitoring. In the attention
monitoring module, an OpenBCI headset with 8 channels
was used to collect EEG signals, and a wavelet transform
algorithm was used to analyze and extract features for the
preprocessed EEG data. +en, we utilized the IRF algorithm
to classify attention.

2.1.1. EEG Data Preprocessing and Feature Extraction.
Previous related studies have shown that the power spectral
densities (PSDs) of delta, theta, alpha, beta, and gamma have
certain correlations with human attention. To this end, we
selected and extracted EEG features based on these findings.
An OpenBCI headset was used to capture the EEG data.
Additionally, in terms of EEG data processing and attention
monitoring, there are two factors to be considered. First, the
most active sites of attention need to be given priority be-
cause the response is not evenly distributed across the
electrodes. Second, if the algorithm is time-consuming, the
time delays will not conform to the real-time constraints,
rendering the feedback meaningless. Given the complexity
of all kinds of data processing and the activity of positions,
this paper selected the relatively active and attention-relative
channels located in the frontal and temporal lobes, that is,
TP9, AF7, AF8, and TP10, following the research of Castillo
et al. [15] and Taillez et al. [16]. +e wavelet transform al-
gorithm was then applied to extract the PSD features of the
EEG signals.

Wavelet analysis involves a combination of the time
domain and frequency domain and is suitable for multiscale
time-frequency analyses. +e wavelet basis is defined as
follows:
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In (1), ψs,a(t) represents the displacement and scale
expansion of the basic wavelet, which can be used to de-
compose signals at different times. s denotes the translation
factor, a indicates the scale parameter, and 1/
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In equation (2), a time-scale planar function CWT(s, a)

mapped by the signal f(t) is shown. CWT(s, a) represents a
one-dimensional continuous wavelet transform.
Cψ � 

+∞
−∞(|ψ(u)|2/|u|du), and ψ(u) is the Fourier transform

(FT) of ψ(t).
+e continuous wavelet transform (CWT) is used for

extracting the PSD features of EEG signals. In this study, we
used Daubechies coefficients for the wavelet transform, as
they are characterized by excellent time localization per-
formance and a maximal number of vanishing moments for
a given support set. Daubechies 4 enjoys compact support
and an orthonormal wavelet with smoothness. +us, an
improved effect can be achieved through the analysis of
nonstationary EEG signals. It is necessary to select a suitable
number of decomposition levels to analyze an EEG signal;
thus, we selected a decomposition level of 5 (L� 5). In
addition, the sampling frequency was 256Hz, and the band-
limited EEG was then subjected to a five-level decomposi-
tion coefficient of six subband signals through CWT. As
shown in Figure 2, six subbands, including xD1, xD2, xD3,
xD4, xD5, and xA1, represented the frequency range of the
band-limited EEG signal [17], where xA is the decompo-
sition approximation coefficient and xD is the decomposi-
tion detail coefficient.

Four wavelet thresholding methods were used in [18] to
select an accurate threshold. We adopted the SURE
threshold, which is an adaptive soft thresholding method.
Once the threshold coefficients were extracted from each
level, the effect of the noise on the EEG signals was removed.

We then used the inverse CWT to reconstruct the signals at
each level.

+e first reconstructed detail D1 was regarded as the
noise component of the EEG signal, and the reconstruction
details of the other four subband signals D2–D5 and the
reconstruction approximation of the subband signal A5
yielded signal information relevant to each EEG frequency
band. Furthermore, 5 PSD features were extracted for
classification: the delta (0Hz< f< 4Hz), theta
(4Hz< f< 8Hz), alpha (8Hz< f< 16Hz), beta
(16Hz< f< 32Hz), and gamma (32Hz< f< 64Hz) bands.
+ere were a total of 20 EEG features (4× 5� 20).

2.1.2. Improved Random Forest Classifier. Compared with
the correlation classification method, random forest clas-
sification removes noise more effectively and accurately,
which contributes to the higher accuracy during the clas-
sification of noise-containing EEG signals. In addition, the
random forest method offers stability, running efficiency,
and reducing errors for imbalanced datasets. On this
foundation, Belle et al. [19] compared the random forest and
regression techniques for attention classification based on
EEG signals, determining that random forest seems to work
best for both modalities, which obtained an average accuracy
of 85.7% for EEG. +us, we choose the random forest al-
gorithm to classify the attention level and propose the IRF
method with higher accuracy.

+e workflows of the IRF algorithm used for attention
monitoring are shown in Figure 3. A random forest is a set of
multiple decision tree classifiers h(x, ϕk), k � 1, . . . , and
the parameter set ϕk  is an independent and identically
distributed random vector. +e input feature variables X are
classified separately by each decision tree, and the results are
relied on to make predictions. After that, the classification
results with the most votes are attained as the output.

(1) Decision Tree. +e random forest algorithm takes
multiple samples from the original data through bootstrap
resampling and generates multiple decision tree classifica-
tion models. +ree steps are involved in the establishment of
a decision tree.

Step 1. Select a random bootstrap sample across N

original training sets by using the sampling with the
replacement method, and repeat k times.

Neurofeedback

EEG

signals

Attention

levels

Data preprocessing

Feature extraction

Improved random forest-
based classification

Attention monitoring

Serious games

Closed-loop
neurofeedback

Attention
mechanisms

Attention trainingData acquisition

Figure 1: Architecture of the attention monitoring and training modules.
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Step 2. Train a decision tree with a training set in-
cluding each bootstrap sample and recognize it as the
root node of the sample. When each node is split, the
feature variables x(x≪X) are extracted from the X

total feature variables at random for calculation pur-
poses, and the best feature obtained from the x feature
variables is selected as a branch of the node to achieve
minimal node impurity.
Step 3. Split each node as before without a pruning
operation in the course of establishing the decision tree.

To achieve stable accuracy, two random factors are in-
troduced during the establishment of the decision tree. One
is the bootstrap samples drawn from the N original training
sets.+e other is the stochastic feature variable selected from
the node of the decision tree.

(2) Voting. To enhance the mutual influence between the
classification models and improve their prediction ability,
diverse decision trees are constructed by using different
samples. After k rounds of training are conducted, the
optimal classification models h1(X), h2(X), . . . , hk(X)  are
obtained and combined in a sequence to acquire the ultimate
classification results by using the simple majority voting
method. Equation (4) presents the classification decision:

H(x) � argmax
Y



k

i�1
F hi(x) � Y( , (4)

where H(x) is the classification model after the combination
and hi(x) is one of the decision tree classification models. Y

is the target variable, and the characteristic function is
F(hi(x) � Y).

Noisy EEG signal
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xA1 xD1
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A5 D5
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A3 D3
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Figure 2: Wavelet multiresolution analysis.
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(3) Grid Search Optimization. +e random forest algo-
rithm has high precision and runs fast. However, a large
number of hyperparameters are generated in the course of
operation. To obtain attention monitoring results with high
accuracy, a grid search is used to optimize the parameters.
+e grid search algorithm involves meshing the variable
regions, traversing all the grid points, solving for the ob-
jective function values that satisfy the constraint conditions,
and selecting the optimal values [20]. Figure 4 shows the
workflow of the optimization process.

To the best of our knowledge, it takes considerable time to
traverse all the parameters, which decreases the training speed
to some extent. In this paper, we use an improved grid search to
increase the training speed. First, we use a large step size for a
rough search over a wide range. +e mesh built on the co-
ordinate system consists of penalty parameters, the numbers of
decision trees, and split features, n_estimators, max_features,
and min_sample_leaf. When a set of parameters meets the set
requirements, the optimal parameters and accuracy are output.
In a case where more than one set of parameters meets the
requirements, the set of parameters with the smallest penalty
parameter is output as the best selection object. +en, the
search range and step size are reduced to search the parameter
set more accurately. +e above steps are repeated with a step
size of 2 to find the global hyperparameters.

(4) Multiple Cross-Validation. +e accuracy of the
proposed method is closely related to the ratio of training
data to test data. To address this problem, S-fold cross-
validation is conducted by randomly dividing the data into S

subsets without repetition, of which S − 1 subsets are used
for training and the remaining subset is used for testing:

T1, T2, . . . , TS ,

Ti ∩Tj � ∅ .
(5)

+is process is repeated S times, and S accuracies are
obtained. After each round, S − 1 subsets are selected at
random to be retrained. In our paper, we use 10-fold cross-
validation, which mitigates the situation of overfitting and
yields reliable results. +e training set is split into 10 subsets,
of which one subset is used for testing and the remaining
subsets are used as the training set.

2.2. Neurofeedback-Based Attention Training. +ree types of
attention mechanisms and closed-loop neurofeedback were
adopted to implement the attention training function.
Closed-loop neurofeedback technology involves the self-
regulation of an individual’s brain activity by relying on real-
time visual and auditory feedback regarding his/her brain
patterns. +is technique can maintain specific conditions in
the brain states of young adults and improve their cognitive
function through training.

We proposed an attention training method based on
closed-loop neurofeedback technology that increases indi-
vidual interest through the use of serious games and im-
proves attention in a relaxing atmosphere without adverse
reactions. At the same time, impaired concentration is as-
sociated not only with psychology but also with the three
previously mentioned attention mechanisms: sustained at-
tention, selective attention, and focus attention. According
to the persistence, selectivity, and focus of attention, we
designed three serious games (as shown in Figure 5), named
Tug of War (Figure 5(a)), Adventures of Birds (Figure 5(b)),
and Greedy Jelly (Figure 5(c)) in this study.

2.2.1. Serious Games with Closed-Loop Neurofeedback.
+e young adults controlled each game by their attention
levels; the specific implementation process is as follows: first,
EEG signals were obtained from the young adults through
OpenBCI. +en, their attention function was monitored by
the IRF algorithm, and the results were quantified as young
adults’ attention levels during the games. +e value of “high
attention” was quantified as 1, the value of “medium-high
attention” was quantified as 0.75, the value of “medium
attention” was quantified as 0.5, the value of “medium-low
attention” was quantified as 0.25, and the value of “low
attention” was quantified as 0. In the sustained game, only
when the young adults’ attention levels were higher than a
certain threshold would the strength of the character in the
game be greater than that of the enemy. During the selective
game, the bird’s direction (upward, downward, or horizontal
flight) was manipulated by the young adults’ attention levels.
For the focus game, the character, who was equipped with a
special skill, would release his skill when the young adults’
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Result of
decision tree 1

······

X1

X2

Xk

······
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Random
sampling

Result of
decision tree k

Result of
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······
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Grid search optimization

10-fold cross-validation

Medium-high

Medium

High

Medium-low
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Figure 3: Workflows of the improved random forest algorithm used in attention monitoring.
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attention was focused and reached the maximum level. In
Figure 5(d), a subject is shown playing a serious game with
closed-loop neurofeedback.

To increase the efficiency of attention training, we op-
timized the graphical user interface (GUI) of the games as
follows:

(1) We designed various game environments and
characters by taking young adults as the basis to
increase their interest in the GUI.

(2) Feedback was provided to the young adults in real
time in the form of a progress bar that showed their
attention levels.

(a) (b)

(c) (d)

Figure 5: +ree serious games were developed to improve attention. (a) Tug of War was designed in terms of the mechanism of sustained
attention. (b) Adventures of Birds was designed in terms of the mechanism of selective attention. (c) Greedy Jelly was designed in terms of
the mechanism of focus attention. (d) A subject playing a serious game with closed-loop neurofeedback.

Start to traverse all
parameters

Select the set of parameters that
meets the requirements

10-fold cross-validation

Multiple sets of parameters

End
traversal?

Output the optimal
parameters

Penalty function

Number of decision trees

Number of split features

Minimum number of leaf
node samples

Hyperparameters

Reduce search
range and step size 

No

Yes

Figure 4: Workflow of the optimization process.
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Closed-loop neurofeedback technology can be an ad-
ditional option for enhancing attention, which means that
young adults could control the characters in the games with
their attention; at the same time, they could also receive
attention feedback from the games. Furthermore, young
adults could increase their focus by actively concentrating
after becoming acquainted with their attention function.

3. Experiments and Results

3.1. Experiments for Attention Monitoring

3.1.1. Offline Analysis. In offline analysis, the Personal EEG
Concentration Tasks dataset involving 80 subjects was used
to verify the effectiveness of the proposed attention moni-
toring method. We selected 70% of the samples as the
training set and 30% of the samples as the test set at random.
Different algorithms were utilized to divide attention into
the abovementioned five levels. +e results are shown in
Table 1.

Among the five algorithms, the IRF achieved an accuracy
of 79.34%, with a loss rate of 21.76%, a recall rate of 76.18%,
and a precision of 82.60%. +e results show that the at-
tention monitoring method based on the IRF algorithm
obtained the highest accuracy rate.

3.1.2. Online Analysis. In the online experiment, we used an
OpenBCI headset at 256Hz to record the EEG data. Ten
healthy subjects participated in the experiment, including 5
males and 5 females. +e ages of the subjects ranged from 8
to 20 years old (mean� 15.95, std.� 4.63). +e study was
approved by the Ethics Committee of South China Normal
University and complied with the Code of Ethics of the
World Medical Association (Declaration of Helsinki). Be-
fore the experiment started, the subjects sat on a comfortable
chair without blinking or moving their bodies, and they
completed the entire experiment according to the provided
instructions.+ere were two sessions during the experiment:
a calibration session and an evaluation session.

In the calibration session, each subject performed 20
trials, which took the subjects approximately one hour to
complete. Furthermore, each subject was asked to enter their
personal information on a computer at the start of the
experiment for the purpose of extracting the EEG data and
labeling them conveniently. At the beginning of each trial,
the computer screen showed a 10-second countdown to help
subjects adjust their attention. After that, a calculation task, a
minesweeping game task, or an article task was presented on
the computer screen, and subjects needed to select an option
or read. We induced the attention of subjects through the
assigned task and recorded their EEG data simultaneously.
After clicking the finish button, the subjects were asked to fill
in the valence of self-assessment manikins (SAMs) to report
their attention states, that is, high attention, medium-high
attention, medium attention, medium-low attention, and
low attention. +e overall process of this experiment is il-
lustrated in Figure 6.

In the evaluation session, we used similar experimental
trials to evaluate the model. In each trial, 6 algorithms (SVM,

KNN, AdaBoost, ET, RF, and IRF) were applied to detect
attention. Ultimately, we calculated the accuracy of each
approach by comparing the predicted attention levels and
the actual labels.

3.1.3. Results. Figure 7 reveals the accuracy of the attention
monitoring results for the 10 subjects, obtained by using the
abovementioned five algorithms during the experiment. P

values were calculated using a t-test to evaluate the accuracy
differences between IRF and other algorithms with the SPSS
tool, and the results are shown in Table 2, which were
corrected for false discovery rate of p< 0.01.

+e average accuracy rates of the various algorithms are
displayed in Table 3, from which we can find that the ac-
curacy of the IRF is significantly better than the accuracies of
the other methods during the online attention monitoring
experiment. +ere is a significant difference (p � 0.016)
between the IRF algorithm and ET algorithm.

3.2. Experiments for Attention Training

3.2.1. Workflow of the Attention Training Experiment.
Ten healthy subjects participated in this experiment, in-
cluding 5 males and 5 females; these subjects were different
from those who participated in the online experiment. +e
ages of the subjects ranged from 8 to 18 years (mean� 12.5,
std.� 4.32). We performed a self-controlled study to validate
the effectiveness of the training method, which offers good
comparability and high reliability. During the course of the
experiment, each subject sat quietly on a chair to avoid
excessive movements that would affect the results.

Each subject performed 3 experiments. Before Experi-
ment I and after each experiment, the subjects were required
to complete a 5× 5 grid of a Schulte table while recording the
observed completion time and EEG signals.

+ere were 3 phases in each experiment: a preparation
phase, a training phase, and a rest phase. +e preparation
phase, which lasted for 3 seconds, required subjects to ac-
tively refrain from noticing the game on the screen. During
the training phase, the sustained game was presented, and
the completion time was recorded. Afterwards, the selective
game was carried out, and the scores were recorded when the
subjects failed. Finally, the subjects performed the focus
game and recorded the times at which they released the
special skill. In addition, the resting phase provided a 5-

Table 1: Accuracy (%) of five-level attention monitoring with
different algorithms.

Algorithm Accuracy Loss Recall Precision
Support vector machine
(SVM) 52.46 51.48 26.65 53.41

K-nearest neighbors (KNN) 54.75 43.60 50.81 50.12
AdaBoost 67.32 32.35 68.74 71.69
Extreme random tree (ET) 72.90 27.28 65.68 81.09
Random forest (RF) 73.22 26.45 64.02 79.54
Improved random forest
(IRF) 79.34 21.76 76.18 82.60
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Table 2: Results of a t-test with SPSS.

Group SVM-IRF KNN-IRF AdaBoost-IRF ET-IRF RF-IRF
t-test statistics −29.347 −30.623 −9.565 −7.753 −20.622
P value <0.001 <0.001 <0.001 <0.001 <0.001

Table 3: Average accuracy rates (%) of various algorithms for five levels of attention in online experiments.

Algorithm SVM KNN AdaBoost ET RF IRF
Accuracy (%) 48.52± 5.35 50.49± 4.26 62.62± 4.70 72.95± 5.38 73.14± 5.93 79.06± 6.47
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second relaxation time during which subjects could divert
their attention from the screen.

3.2.2. Effectiveness. Four primary indicators, including the
Schulte times, win times, game scores, and skill times, are
proposed as follows:

(1) Schulte times, which represent the times(s) required
to complete the Schulte table.

(2) Win times, which denote the times(s) required to
win a sustained game.

(3) Game scores, which indicate the scores obtained by
each subject upon losing the selective game.

(4) Skill times, which denote the times at which the
special skill was released during the focus game.

+e Schulte times of the 10 subjects before Experiment I
and after each experiment are shown in Figure 8.
Figures 9(a)–9(c) show the win times, game scores, and skill
times, respectively.

In the above four figures, all indicators underwent re-
markable changes (p< 0.05). +e Schulte times and win
times were obviously reduced. In contrast, the game scores
and skill times increased significantly. +ese can be attrib-
uted to two reasons: (i) the familiarity of the subjects with the
game environment after much practice and (ii) the effec-
tiveness of neurofeedback. To explore the impact of the
neurofeedback on the 3 experiments, we conducted an
additional experiment without neurofeedback on the same
subjects. We removed the neurofeedback elements from the
three games in experiment III, such as the progress bar and
the background sound effects used to display the subject’s
attention level in the GUI. +e average results of the four
indicators for each experiment are presented in Figure 10.
For comparison purposes, we reduced the values of the win
times by a factor of 10.

As the subjects became more familiar with the game,
even without neurofeedback, their attention was improved
to a certain extent. However, the rates of change of the four
indicators without neurofeedback were much lower than
those observed when using neurofeedback.

Moreover, to verify the accuracy of the control pa-
rameters, the Schulte times and the EEG signals input into
the Schulte table before the experiment and after each ex-
periment were analyzed. +e Schulte times are often in-
versely proportional to the concentration and attention
levels. Table 4 illustrates the comparison between the Schulte
times and the results of attention monitoring among the
subjects. +e results showed that the shorter a given Schulte
time was, the more concentrated the subjects were and the
higher the attention monitoring results. In contrast, there
was less enhancement of the monitoring results.

4. Discussion

+e main work in our paper was to propose an IRF-algo-
rithm-based attention monitoring and training method with
closed-loop neurofeedback. For attention monitoring, we
divided attention into five levels ranging from low to high

attention and applied the IRF algorithm to improve mon-
itoring accuracy and performance. Furthermore, an offline
experiment based on the Personal EEG Concentration Tasks
dataset and an online experiment involving 10 young adults
were carried out. +e results yielded an average accuracy of
79.34% for the IRF algorithm. For attention training, we
designed three training modes with neurofeedback, corre-
sponding to sustained attention, selective attention, and
focus attention. Furthermore, a self-control method with
four indicators was used in the attention training experi-
ment, and the results demonstrated a statistically significant
performance improvement (p< 0.05) for the 10 tested young
adults after attention training, thereby demonstrating the
effectiveness of the proposed games.

From the perspective of the attention monitoring
method, it is essential to achieve a promising level of ac-
curacy and improved classification. At the same time, the
attention mechanism and training method are vital for at-
tention training. We show the differences between other
studies and our work in Tables 5 and 6.

Most past studies explored attention training methods,
such as the focused attention meditation (FAM) method
proposed by Yoshida et al. [24]. In addition, Shereena et al.
[25] used the EEG neurofeedback training method to design
training tasks, aiming to enhance β waves for the purpose of
suppressing θ waves. +ese studies related to attention
training focused on EEG signals, with little emphasis on
neurofeedback. Notably, several recent papers examined the
method of combining neurofeedback and serious games,
which is helpful for improving self-regulation skills in at-
tention training with appropriate guidance; an example of
this is the “ExerBrain” game [14], which assists individuals in
improving their attention control due to the immersive and
interactive feature of neurofeedback. Moreover, neuro-
feedback training has proven to be an efficient tool for
sustained attention [26]. Nevertheless, attention, as a kind of
higher-order cognition, comprises not only sustained at-
tention but also selective attention and focus attention [25].
As such, this study provides a means by which to implement
serious games and analyze three mechanisms of attention
simultaneously to help young adults enhance their attention
effectively.

+e advantages of this paper primarily comprise the
following points: (i) we utilized the IRF algorithm for five-
level attention monitoring and obtained promising accu-
racy; (ii) we designed serious games in a multiangle and
targeted manner with consideration of sustained, selective,
and focus attention; (iii) we quantified the attention mon-
itoring results and used them as the control parameters to
manipulate the games with improved accuracy; and (iv) four
indicators were proposed in the experiment to validate the
effectiveness of the presented method.

In addition, the main finding is that the attention of
young adults could be enhanced by using closed-loop
neurofeedback in comparison with methods that ignore
neurofeedback. +is is in line with the results of previous
attention monitoring studies [27]. On this basis, this paper
used the IRF algorithm to classify 5-level attention and
attained an accuracy of 79.34%, which is higher than those of
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the other algorithms that were compared. Furthermore,
consistent with past studies [11, 25], we showed that neu-
rofeedback training can assist young adults in improving
their attention. In the present study, we implemented three
serious games for young adults with neurofeedback and
incorporated three mechanisms of attention that were not
fully considered in past studies. Furthermore, the attention

training method in this paper contributed to significant
improvements in sustained attention, selective attention,
and focus attention. +erefore, we can conclude that all
mechanisms of attention can be improved with specific
serious games.

+e primary limitation of our study was the small
number of subjects examined during the experiment. In
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Figure 10: Average results of the four indicators in experiment (I), experiment II, and experiment III.+e x-axis of each subfigure identifies
each indicator, and the y-axis corresponds to the Schulte times, one-tenth of the win times, the game scores, and the skill times.

Table 4: Comparison of the Schulte times and the results of attention monitoring.

Subject
Before the experiment Experiment I Experiment II Experiment III
T D T D T D T D

1 25.12 Medium-low 16 High 15 High 14 High
2 34 Low 30 Low 26.8 Low 25 Medium-low
3 21.1 Medium 18.37 Medium-high 15.64 High 12.91 High
4 20.55 Medium-high 19.17 Medium-high 19 Medium-high 17 High
5 23.3 Medium- 19.25 Medium-high 18 Medium-high 16 High
6 32.07 Low 29 Low 28 Low 22 Medium
7 24.35 Medium-low 20.05 Medium-high 18 Medium-high 17.5 High
8 20.37 Medium-high 16.32 High 16 High 15.6 High
9 21.25 Medium 21 Medium 20 Medium-high 18 Medium-high
10 26 Medium-low 24.5 Medium-low 22 Medium 20 Medium-high
Note. T denotes the Schulte time of each subject, and D denotes the monitoring result of each subject.

Table 5: Comparison of different methods related to attention monitoring.

Reference Algorithm Classification Accuracy (%)
[1] ANN 4 levels 78
[21] KNN 3 levels 67
[22] Naive Bayes 3 levels 60
Our work IRF 5 levels 79.34

Table 6: Comparison of different methods related to attention training.

References Mechanism Method

[2] Sustained attention A closed-loop tactile training process related to visual sustained
attention.

[14] Sustained attention Closed-loop neurofeedback from MVPA as a type of cognitive
prosthetic.

[23] Sustained attention and selective attention A 3D game with neurofeedback.

Our work Sustained attention, selective attention, and focus
attention

+ree serious games related to the mechanism of attention with
neurofeedback.
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addition, there are a few datasets pertaining to the attention
of young adults; these data are challenging to record due to
the volatility of conductive media in BCIs. In addition,
several external factors, such as the habits, motivations, and
mental statuses of the subjects, were not considered.

5. Conclusions

We proposed an IRF-algorithm-based attention monitoring
and training method with closed-loop neurofeedback, and
we presented the mechanism of attention. In the future, we
will collect attention data and attempt to fuse EEG and
physiological signals (such as facial expressions and verbal
speech) to improve the accuracy of attention monitoring.
Furthermore, we will develop 3D serious games in the near
future.
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+e mental stress faced by many people in modern society is a factor that causes various chronic diseases, such as depression,
cancer, and cardiovascular disease, according to stress accumulation. +erefore, it is very important to regularly manage and
monitor a person’s stress. In this study, we propose an ensemble algorithm that can accurately determinemental stress states using
a modified convolutional neural network (CNN)- long short-term memory (LSTM) architecture. When a person is exposed to
stress, a displacement occurs in the electrocardiogram (ECG) signal. It is possible to classify stress signals by analyzing ECG signals
and extracting specific parameters. To maximize the performance of the proposed stress classification algorithm, fast Fourier
transform (FFT) and spectrograms were applied to preprocess ECG signals and produce signals in both the time and frequency
domains to aid the training process. As the performance evaluation benchmarks of the stress classification model, confusion
matrices, receiver operating characteristic (ROC) curves, and precision-recall (PR) curves were used, and the accuracy achieved by
the proposed model was 98.3%, which is an improvement of 14.7% compared to previous research results. +erefore, our model
can help manage the mental health of people exposed to stress. In addition, if combined with various biosignals such as
electromyogram (EMG) and photoplethysmography (PPG), it may have the potential for development in various healthcare
systems, such as home training, sleep state analysis, and cardiovascular monitoring.

1. Introduction

Stress is a mental and physical reaction that a person may
feel when they find themselves in a difficult and/or unfa-
miliar environment or situation. Excessive stress accumu-
lation can cause chronic diseases such as high blood
pressure, heart disease, and cancer and, in severe cases, can
lead to death [1, 2]. For this reason, stress observation is
becoming increasingly important in modern society.

Studies measuring stress by using various biological
signals such as electroencephalography (EEG), electro-
myogram (EMG), oxygen saturation, and pulse waves have
been published [3–5]. However, these measurement
methods require expensive and bulky systems to acquire
data, are complicated and expensive to use, and require
signal analysis by experts.

Existing studies using EEG signals have analyzed stress
using support vector machines (SVMs), multilayer per-
ceptrons (MLPs), and näıve Bayes (NB) and have obtained
accuracies of 75%, 85.20%, and 64.29%, respectively [6–8].
However, because these studies used only 15 EEGs as
training data, underfitting can occur. Furthermore, because
an EEG produces a 7-channel signal, it involves a complex
and time-consuming process to measure stress signals.
Previous studies using EMG signals analyzed by SVM
achieved an 85% accuracy. However, despite the same action
being taken (the characteristic movement of the muscles),
the magnitude of the signal amplitude varies from mea-
surement to measurement, and noise in the signal makes it
difficult to extract accurate feature points [9].

Studies that classify stress using an electrocardiogram
(ECG) have been the most popular because the signal
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acquisition method is simpler than other methods and a
clear waveform is acquired. Two studies achieved 89.21%
and 84.4% accuracy using SVM [10, 11], but extracting
feature points can be difficult because of noise and the time
required to measure multichannel ECG signals and because
preprocessing is not always accurate. Two different studies
achieved 75% and 89% accuracy by considering the standard
deviation of the R-R interval of the heart rate variability
(HRV) signal [12, 13]. Accurate stress classification is dif-
ficult because it takes more than 5min to calculate the
standard deviation of the R-R interval, and because the
difference in parameter values is minimal. Furthermore,
because the ECG waveform is not accurate in the frequency
domain, it is difficult to extract feature points, making it
difficult to directly evaluate or minimize the effect of noise
generated by the human body.

In addition, certain research results have exhibited
63.97% and 82.7% accuracy using fuzzy c-means (FCM)
clustering and convolutional neural network (CNN) [14, 15].
+ese studies have difficulty classifying stress signals because
the distance between the center point and the data is slight,
and the scale of the training data is small, making it easier for
the occurrence of underfitting.

Certain earlier study results have exhibited 87.39% and
90.19% accuracy using CNNs and convolutional recurrent
neural networks (CRNNs) [16, 17]. In these studies, the
hierarchical structure of the stress classifier is complex, and
there is a considerable amount of noise; therefore, it is
difficult to achieve a high-stress classification accuracy by
detecting an incorrect R peak value. Models based on long
short-term memory (LSTM) achieved 88.13% accuracy [18].
However, owing to the high noise of the ECG signal, it is
difficult to calculate the root mean square (RMS) of the R-R
interval.

+e aforementioned stress signal classification algorithm
using the ECG signal has disadvantages such as underfitting,
the calculation of a standard deviation for the R-R interval of
a long-time HRV signal, and the detection of an incorrect R
peak value. To overcome these problems, we propose an
ensemble model that accurately classifies mental stress by
combining CNN and LSTM. +e proposed model extracts
the R − Speak feature point using the threshold value, con-
verts it into a spectrogram, and classifies the stress signal
using ECG signal analysis.

To improve the stress classification accuracy, batch
normalization (BN), flatten layers, and fully connected layers
were added. Subsequently, the accuracy of the stress clas-
sification model was improved by separately classifying ECG
signals in the time domain and frequency domain. Con-
fusion matrices, receiver operating characteristic (ROC)
curves, and precision-recall (PR) curves were used to
evaluate the performance of the stress classification model.
In this study, we proposed an ensemble method to classify
the mental stress of the CNN-LSTM model using ECG
signals. +e data of the ST Change Database and WESAD
Database were trained, and more than 98% classification
performance was achieved.

2. Materials and Methods

2.1. Subject. Figure 1 shows the procedure for classifying
stress signals. In this study, we used the ST Change Database
andWESADDatabase, which provide ECG signals that were
acquired in different stress environments. +e ST Change
Database contains ECG data that records physical stress and
consists of 28 ECG signals obtained from 15 male subjects
[19]. +e WESAD database contains 30 ECG signals mea-
sured at the wrist and chest obtained from 15 subjects (12
men and 3 women) [20].

2.2. Preprocessing and Feature Extraction.
Electrocardiography is the most common way to check
health status by noninvasively checking the electrical status
of the heart. When taking an electrocardiogram, noise is
generated by several factors, which greatly reduces ECG
classification accuracy [21]. To solve this problem, we used a
low-pass filter and confirmed that 90.89% of the noise was
eliminated using a low-pass filter with a sampling frequency
of 360Hz and a cutoff frequency of 150Hz.

Figure 2 shows the extracted R − Speak values from an
ECG signal. By extracting these data under stress and
without stress, the ECG can be accurately analyzed [22].
Rpeak and Speak were extracted from ECG signals after setting
a threshold. Rpeak extracted the pole when the threshold
value was greater than 0.2mV in one period of the signal and
extracted the pole when the threshold value was less than
−0.54mV in one period.

In the under-stress state, the heart beats irregularly and
quickly, the R-R interval of the ECG signal becomes narrow,
and the R − Speak increases. On the other hand, in the un-
stressed state, the heart is relatively stable, the R-R interval
widens, and the R − Speak decreases [23]. In each state, the
average R − Speak without stress was found to be 1.47mV,
and under stress, it was 4.25mV. Figure 3 shows the con-
version of either signal (under stress or without stress) into a
spectrogram.

2.3. CNN-LSTM Model Design. Figure 4 shows the archi-
tecture of the ensemble model proposed in this study. +e
classification layer consists of 14 levels.

Table 1 lists the structure of the layers comprising the
ensemble model. First, 124×124× 3 image sequence data are
input to the sequence input layer. Subsequently, the ECG
image data are converted into an array form (vertical,
horizontal, and channel) using a sequence folding layer and
then transferred to the convolution layer.

+e reason for using the sequence folding layer is so that
the image sequence data can be converted into an array,
arranged, and then transferred to the two-dimensional (2D)
convolution layer. +e first 2D convolution layer contains
six filters of size 5× 5.

Because of calculating the convolution layer using
equation (1), the size of the output value is 124×124× 6.
Equation (1) represents the calculation process for the
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convolution layer. When padding and stride are applied, and
the size of the input data and filter is given, the output value
can be calculated. H andW are the input data size, FH (filter
height) and FW (filter weight) are filter size, S is the stride, P
is padding, andOH (output height) andOW (output weight)
are output value sizes.

(OH, OW) �
H + 2P − FH

S
+ 1,

W + 2P − FW

S
+ 1 .

(1)

+e output data are then connected to the batch nor-
malization layer. After normalizing the size of the output

ECG data
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Low-pass filter Without stress
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Roc curve
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Figure 1: Procedure for classifying stress signals and validating the model.
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data to 124×124× 6 in the batch normalization layer, it was
connected to the max pooling layer. According to equation
(2), the size of the output data is determined by dividing the
row and column size by the pooling size.

(ORs, OCs) �
H

P
,
W

P
 . (2)

Its output is fed to a batch normalization layer and then
to a max pooling layer. +e max pooling layer is a 2× 2 filter
with a stride of 2. As a result, the original data are reduced to
a size of 62× 62× 6. +e second 2D convolution layer
contains 12 filters of size 3× 3. As a result, the data are
further reduced to a size of 31× 31× 12. Normalization is
then performed and the data are passed to the LSTM layer.
To transfer the size of the output data to the LSTM layer,
normalization was performed using a sequence unfolding

layer, and feature vectors were obtained using a flattening
layer (or flattened layer).

+e flattening layer has the advantage of not affecting the
parameter by converting the output of the extracted feature
map into a 1D array, which allows reconstructing the feature
maps as the input to the LSTM [24]. At this time, the input is
transmitted through the hidden layer of the LSTM.

A weight value of 800×11532 at the input layer is applied
to equations (3)–(7), which represents the computational
process of the LSTM layer, to extract the feature value. +e
LSTM layer consists of input gates (it, gt), forget gates (ft), and
output gates (Ot).+eLSTM layer is composed of an input gate
(it, gt), forgetting gate (ft), and output gate (Ot). In each gate,
a weight value is multiplied according to an input vector (xt), a
hidden state (ht−1), and a cell state (Ct) using the sigmoid and
Tanh functions, and then a feature value is extracted.

S = 1
H = 5
K = 6
P = 2

Seqeunce input layer
124 ∗ 124 ∗ 3

Seqeunce unfolding
 layer

31 ∗ 31 ∗ 12 LSTM layer
200

Fully connected
layer

2

xt = 1532

Wx = 800 ∗ 11532
Wh = 800 ∗ 200

Flatten layer

Seqeunce
folding layer
124 ∗ 124 ∗ 1

Convolution
2D layer
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Max pooling
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62 ∗ 62 ∗ 6

Convolution
2D layer

62 ∗ 62 ∗ 12

Max pooling
layer

31 ∗ 31 ∗ 12
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H = 3
K = 12
P = 2S = 2

H = 5

BN
 la

ye
r

BN
 la
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S = 2
H = 3
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Figure 4: Classification architecture.

Table 1: Classification layers used to evaluate stress signals using CNN-LSTM.

Number Layer Activation Weights Bias
1 Sequence input layer 124×124× 3 — —
2 Sequence folding layer 124×124×1 — —
3 Convolution 2D layer 124×124× 6 5× 5× 3× 6 1× 1× 6
4 Batch normalization layer 124×124× 6 — —
5 Max pooling layer 62× 62× 6 — —
6 Convolution 2D layer 62× 62×12 3× 3× 6×12 1× 1× 12
7 Batch normalization layer 62× 62×12 — —
8 Max pooling layer 31× 31× 12 — —
9 Sequence unfolding layer 31× 31× 12 — —
10 Flatten layer 11532 — —
11 LSTM layer 200 Input: 800×11532 recurrent: 800× 200 800×1
12 Fully connected layer 2 2× 200 2×1
13 Softmax layer 2 — —
14 Classification — — —
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it � σ Wxxt + Whiht−1 + bi( , (3)

gt � tanh Wxgxt + Whght−1 + bg , (4)

ft � σ Wxfxt + Whfht−1 + bf , (5)

Ot � σ Wxoxt + Whoht−1 + bo( , (6)

Ct � ft ∘Ct−1 + it ∘gt. (7)

Subsequently, it is applied to equation (8) to pass the
feature value calculated at the output gate to the output layer.
Equation (8) is the process of extracting a required feature
value from several feature values calculated at the output
gate. After extracting a feature value from −1 to 1 using the
Tanh function, the feature value in the range calculated using
the output gate is transferred to the output layer.

ht � Ot ∘ tanh Ct( . (8)

+e feature value extracted from the LSTM layer clas-
sifies the image using a fully connected layer of size two and
calculates a probability value for the image classified by the
softmax layer. Subsequently, image classification is per-
formed using the feature values extracted earlier using the
fully connected layer, and the probability value of the
classified image is calculated using the softmax layer. Finally,
in the classification step, the signal is classified as either
under stress or without stress.

Figure 5 shows the components of the convolution 2D
layer and LSTM layer to which equations (1)–(8) are applied.
Equations (1) and (2) show the calculation process of the
convolution 2D layer among the CNN models, and equa-
tions (3)–(7) show the process of outputting feature values
using the weight values of the input gate, forgetting the gate,
and output gate in the LSTM layer. Equation (8) transfers the
feature values in the range from the output gate to the output
layer.

We used the confusion matrix, receiver operating
characteristic (ROC) curve, and precision-recall (PR) curve
to evaluate the stress signal classification performance of the
proposed ensemble model [25]. +e confusion matrix is a
matrix that allows one to evaluate how accurately the pre-
dicted value is compared to the actual observed value. We
used ECG data from the ST Change Database (DB) and the
WESAD DB. +e total number of data points was 58.
However, with such a small amount of data, it is difficult to
accurately evaluate the stress signal classification model.
+erefore, to improve the accuracy of the classification
model and better analyze its performance, the data were
doubled by transforming the time domain data to frequency
domain data using the fast Fourier transform (FFT), as
indicated in Figure 6. After preprocessing, the performance
of the ensemble model was evaluated using 58 time domain
data and 58 frequency domain data.

3. Experimental Results

Table 2 shows the accuracy, sensitivity, specificity, precision,
and negative predictive values obtained to evaluate the
classification model’s performance using formulas (9)–(13)
[26–28]. Formula (1) defines accuracy and indicates the
probability of accurately classifying all under stress and
without stress conditions. In the formula, TP, TN, FP, and
FN indicate true positive, true negative, false positive, and
false negative, respectively. For the time and frequency
domains, the accuracies of the stress classifier were 94.8%
and 98.3%, respectively.

Accuracy �
TP + TN

TP + TN + FP + FN
. (9)

Sensitivity refers to the proportion of data correctly
classified as without stress to all without stress data (actual
observed data). In the time and frequency domains, the
sensitivities of the stress classifier were 96.4% and 100%,
respectively.

Sensitivity �
TP

FN + TP
. (10)

Specificity is the proportion of data correctly classified as
under stress among all under stress data (actual observed
data). In the time and frequency domains, the sensitivities of
the stress classifier were 96.4% and 100%, respectively.

Specificity �
TN

TN + FP
. (11)

Precision is the ratio of the data correctly classified by the
stress classification algorithm as without stress to the value
of all data classified as without stress. In the time and fre-
quency domains, the precision of the stress classifier was
93.1% and 96.6%, respectively.

Precision �
TP

TP + FP
. (12)

+enegative predictive value is the ratio of data classified
correctly as under stress to the actual value without stress
data. In the time and frequency domains, the negative
predictive values of the stress classifier were 96.6% and
100%, respectively.

Negative PredictiveValue �
TN

TN + FN
. (13)

Figure 6 shows the results of the classification model’s
performance using a confusionmatrix.+ematrix on the left of
Figure 7 uses the data converted to the time domain, and the
matrix on the right is the result of using the data in the fre-
quency domain. +e highest classification accuracy of the
proposed ensemblemodel was 98.3% for the frequency domain.
In previous studies, the accuracy of the model was 83.6% [29].
+ese results indicate that accuracy was improved by 14.7%
using the proposed ensemble compared to previous results.
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Figure 8 shows the classification performance
according to the epochs for the time and frequency do-
mains. +e graph shows the mean squared error (MSE)
according to the number of epochs. +e time domain
yielded the lowest MSE at 219 epochs (the validation curve
shown), while the frequency domain yielded the lowest
MSE at 223 epochs.

Figure 9 shows the ROC curves according to the epochs
for the time and frequency domains of the ECG data. +e
ROC curve is a performance evaluation technique applicable
to a binary classifier system that indicates how the perfor-
mance of the classification model changes as the threshold
changes [30]. +e area under the curve (AUC) (the area
under the ROC curve) is an index used to evaluate the

ST change database WESAD

Image data 1

Image data 28

Image data 1

Image data 30

 Frequency image data 1

 Frequency image data 28

 Frequency image data 1

 Frequency image data 30

Figure 6: FFT transformation to increase input data quantity.

Table 2: Classification performance assessment of stress signals in time and frequency domains.
Time domain

Stress Precision Sensitivity Specificity Negative predictive value Accuracy
Performance (%) 93.1% 96.4% 93.3% 96.6% 94.8%
Error (%) 6.9% 3.6% 6.7% 3.4% 5.2%

Frequency domain
Stress Precision Sensitivity Specificity Negative predictive value Accuracy
Performance (%) 96.6% 100% 96.7% 100% 98.3%
Error (%) 3.4% 0.0% 3.3% 0.0% 1.7%
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Figure 5: Components of the convolution 2D layer and the LSTM layer.
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Figure 9: Stress classification performance evaluation using ROC curves.
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classification performance of different types of signals (stress
signals in this study). When the AUC range falls between 0.9
and 1.0 (90%–100%), the classification performance is ex-
cellent, and when the AUC range falls between 0.8 and 0.9
(80%–90%), the classifier’s performance is low. In the time
domain, the AUC of the ROC curve was 94.67%, and it was
98.12% in the frequency domain. +e AUC of a previous
study was 85.7% [14], and it was confirmed that the en-
semble proposed in this study represents a 12.42% im-
provement. +e AUC value of the frequency domain was
3.45% higher than that of the time domain in our model
indicating that the classification performance of the stress
signal is better in the former.

Figure 10 shows the PR curves for the ECG data
according to the epochs for the time and frequency domains.
When considering the ROC curve, if the dataset is unbal-
anced, the shape of the curve is skewed to one side, and the
classifier performance cannot be accurately evaluated [31].
+e PR curve can be used to overcome the shortcomings of
the ROC curve and shows the correlation between precision
and recall. +e average precision (AP) of the PR curve is an
index that can be used to evaluate the classification per-
formance of stress signals [32].

+e X-axis represents the recall, and the Y-axis repre-
sents the precision. In the PR curve, the larger the AP is, the
better the stress signal classification performance. +e PR
curve AP of the time domain was 93.8%, and it was 97.6% for
the frequency domain. +e AP obtained using the PR curve
in [32] was 84.2%. +erefore, compared to the previously
proposed stress signal classifier, the AP of the PR curve is
improved by 13.4% using the proposed classifier. In addi-
tion, the AP value of the frequency domain was 3.8% higher
than that of the time domain in our model, indicating that
the stress classification performance is better in the former.

In previous studies using the time domain or frequency
domain of ECG data, the epochs were set to 10, and the batch
size was set to 64. As a result, the time domain and frequency
domain accuracies were 83.6% and 74.5%, respectively [33].
However, the architectures used are susceptible to over-
fitting, and the accuracies achieved after 10 epochs may
reflect this problem. Figure 11 shows the accuracy of stress
classification using the proposed CNN-LSTM. After setting
the epochs to 20 and the batch size to 64, the classification
accuracies involving ECG stress signals in the time and
frequency domains were measured. Under these settings, the
time required for the time domain classification was 7min
48 s and the verification accuracy was 94.13%. +e elapsed
time for the frequency domain was 7min 31 s and the
verification accuracy was 98.26%, which represents 10.53%
and 23.76% improvements in accuracy compared to pre-
vious results [33].

For comparison purposes, we evaluated the stress clas-
sification performance of the CNN, LSTM, and CNN-LSTM
models. First, stress signals were classified using CNN. After
inputting the time series data values from the DBs into the
image input layer, feature maps were extracted using

convolutional, batch normalization, and max pooling layers.
+e stress was classified using a fully connected layer and a
softmax layer under stress and without stress as the final
classification. +e classification accuracy of the stress signals
using CNN was 88.35%.

In addition, stress signals were classified using LSTM.
LSTM is a type of recurrent neural network (RNN), which is
an artificial neural network that recognizes patterns in data
that can be represented as an array and is used for tasks such
as text and gene signal analysis. After inputting the sequence
data of the ECG DBs into the sequence input layer, the
output was calculated using the LSTM layer (with the ReLU
activation function). +e signal was then classified as under
stress or without stress using a fully connected layer. +e
classification accuracy of the stress signals using LSTM was
86.25%.

Table 3 compares the stress classification accuracies of
the CNN, LSTM, and CNN-LSTM models. We set the
epochs to 20 and the batch size to 64 and then determined
the elapsed time and accuracy.+e results confirmed that the
CNN-LSTM model was approximately 1min faster than the
CNN and LSTM models, and accuracy was improved by
9.91% and 12.01%, respectively.

Figure 12 shows the AUC and AP curves for each model
based on the ROC and PR results. +e AUC of CNN-LSTM
was 98.12%, while those of CNN and LSTM were 87.5% and
84.3%, respectively. +erefore, the AUC of the CNN-LSTM
model was 10.62% and 13.82% higher than that of the CNN
and LSTM models, respectively, confirming that its stress
classification performance is better. +e AP of CNN-LSTM
was 97.6%, and it was 88.2% and 86.02%, respectively, for
CNN and LSTM. +e CNN-LSTM model achieved AP
values that were 9.4% and 11.58% higher than the CNN and
LSTM models, respectively, further confirming improved
classification performance.

4. Discussion

In this study, to improve the performance of stress classi-
fication and prevent overfitting, an optimized ensemble
model was developed by generating additional data using
spectrograms and adding layers such as batch normalization,
a flattening layer, and a fully connected layer. +e perfor-
mance of the classifier was evaluated using a confusion
matrix, ROC, and other measures. By applying the average
value of the R − Speak of the ECG signal, the characteristics of
under-stress and without-stress signals are extracted to
improve the stress classification accuracy. In the time do-
main, a precision of 93.1%, a sensitivity of 96.4%, and a
specificity of 93.3% were achieved. In the frequency domain,
a precision of 96.6%, a sensitivity of 100%, and a specificity of
96.7% were achieved. +e CNN-LSTM achieved 94.8% ac-
curacy for time domain signals and 98.3% accuracy for
frequency domain signals. +e best stress classification ac-
curacy of the proposed CNN-LSTM algorithm is 98.3%,
which is approximately 14.7% higher than the best
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accuracies reported in previous studies. +e proposed stress
classifier achieves optimal stress signal classification per-
formance when the number of epochs is 219 in the time
domain and 223 in the frequency domain. In addition, the

model’s performance was evaluated using ROC and PR
curves. It was confirmed that improvements of 12.42% and
13.4%, respectively, were obtained compared to previous
study results.

Table 3: Classification accuracy comparison of stress signals using CNN, LSTM, and CNN-LSTM.

CNN LSTM CNN-LSTM
Elapsed time 8min 32 s 8min 45 s 7min 31 s
Accuracy 88.35% 86.25% 98.26%
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Figure 10: Evaluation of classification performance using PR curve.
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5. Conclusions

In this study, we proposed an improved ensemble model
based on CNN-LSTM to accurately classify stress states. To
prevent the overfitting of the algorithm and improve the
accuracy of the classifier, ECG signals were classified sep-
arately in the time domain and frequency domain. +e
proposed ensemble model achieved a stress classification
accuracy of 98.3%. +ese results exhibit an approximate
14.7% improvement in accuracy compared to earlier studies
that classify the existing under stress and without stress. In
the future, we plan to improve the preprocessing method,
such as a subtle noise removal of biological signals, and to
improve accuracy by applying a wearable transform filter
that will remove baseline fluctuations and noise using
Fourier transforms. +e stress classifier proposed by us is
expected to be helpful inmental health management as it can
quickly and accurately classify the stress experienced by
modern people. It is also expected to assist in preventing
various diseases such as depression, high blood pressure, and
diabetes through periodic stress management.
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Surface electromyography- (sEMG-) based gesture recognition is widely used in rehabilitation training, artificial prosthesis, and
human-computer interaction. -e purpose of this study is to simplify the sEMG devices by reducing channels while achieving
comparably high gesture recognition accuracy. We propose a compound channel selection scheme by combining the variable
selection algorithms based on multitask sparse representation (MTSR) and minimum Redundancy Maximum Relevance
(mRMR). Specifically, channelwise features are first extracted to compose channel-feature paired variables, for which variable
selection procedures by MTSR and mRMR are carried out, respectively. -en, we rank all the channels according to their
occurrences in each variable selection procedure and figure out a certain number of informative channels by fusing these rankings
of channels. Finally, the gesture classification performance using the selected channels is evaluated by the support vector machine
(SVM) classifier. Experiment results validate the effectiveness of this proposed method.

1. Introduction

Surface electromyography (sEMG) is commonly used in
clinical and engineering areas with the advantages of being
noninvasive and convenient in signal acquisition. For ex-
ample, sEMG reveals the information in diagnosing neu-
romuscular disorders [1, 2]. More generally, it may play
important roles in the controlling of artificial assistance
robots, arm prostheses, rehabilitation equipment, and some
other instruments [3, 4].

Most of the related works have been carried out with
sEMG of multiple channels to guarantee satisfactory rec-
ognition performance [5]. However, the increase of channels
makes not only a high cost in engineering but also the great
complexity of the sEMG devices and data processing burden.
In addition, it could suffer from performance deterioration
due to signal crosstalk [6, 7]. To overcome these problems
due to multiple channels of sEMG, it is rewarding to select a
reduced group of channels in a myoelectric control system.

-is is just the aim of our work which is to simplify the
sEMG device by removing some redundant electrodes on the
premise of desired classification performance.

2. Related Research and Motivation

Feature extraction is a routine procedure to describe the
sEMG signals with a feature vector. Multitudinous features
of time domain, frequency domain, and time-frequency
domain have been widely applied in sEMG-based classifi-
cation tasks. When multiple features are extracted for
channels one by one, we could get a feature set with a quite
large size (the number of features per channel times the
number of channels). Hence, feature selection can be fol-
lowed to reduce the feature redundancy and alleviate the
curse of dimensionality, where metrics including scatter plot
of features, statistical analysis, and recognition rate are
applied to evaluate the effectiveness of features [8, 9], and
feature search strategies including sequential forward
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selection (SFS), sequential backward selection (SBS), or
bidirectional searching are adopted to find out the most
informative features [10].

Like feature selection in the point of lowering the feature
size, channel selection will, in addition, remove those
channels unnecessary or irrelevant to classify different
gestures. In fact, channel selection is highly related to feature
selection since features coming from all the channels are
generally combined to create a set of channel-feature paired
variables. Hence, channel selection can be the successor
operation after feature selection, using the selected or fixed
features.

To select useful channels from multielectrode, Nagata
and his colleagues [11] used the recognition rate to evaluate
each measurement channel and found out the best com-
bination of channels by the Monte Carlo method. Huang
et al. [12] applied SFS search strategy for expected channels
where four kinds of time-domain features and an LDA
classifier are used in the searching iteration. Khushaba and
Al-Jumaily [13] also adopted a wrapper method, particle
swarm optimization, in channel selection where the im-
portance of subsets was measured using the error rates
acquired from a multilayer perceptron trained with back-
propagation neural network. Similar work by Oskoei et al.
[14] employed a multiobjective genetic searching algorithm
with the objective function of data separability index or
classification rate. Besides, filter methods have also been
applied to rank the channels, where the minimum Re-
dundancy Maximum Relevance (mRMR) [15] was used by
Liu et al. [16] and Gupta et al. [17], the Relief-F by Qu et al.
[18], and theMarkov random field (MRF) by Qu et al. [16] as
well.

As shown in these aforementioned pieces of literature,
channel selection could be conducted by fixing the feature
subset. -at means we cannot simultaneously select the best
features and channels, which can be improved in the way as
follows. Features and channels are combined to construct
feature-channel pairs, leading to a hybrid feature-channel
selection problem. By finding the least redundant and most
informative group of feature-channel pairs among all the
possible ones, the best channels should be the most repeated
ones. In these aspects, some classic or modified ranking
methods have been applied to select channel-feature vari-
ables, such as mRMR-FCO [19] and certain correlation-
based or distance-based evaluation function in the work by
Al-Angari et al. [20].

Channel selection can follow a feature-channel filtering
pipeline, but differing in specific ranking scores or search
strategies. Our work is just under this kind of framework
where we resort to the multitask sparse learning [21] to-
gether with mRMR filtering to pursue the discriminative
sEMG channels across the classification for multiple
gestures.

Since the classic least square regression model in sparse
learning does not pursue the class-discriminative power of
features, certain type of discriminative regularization terms is
preferred to make up this limitation. Zhu et al. [22] put
forward a group-sparsity-based least square regression
framework integrating linear discriminant analysis and

locality preserving projection. Similarly, to better capture the
discriminative information among subjects, a multitask fea-
ture selection method was proposed to incorporate the
intraclass and interclass Laplacian matrices [23]. But this kind
of work will generally lead to a complicated optimization
problem and most likely suffer from heavy computation cost.

Inspired by the works related to multitask sparse
learning, for channel selection, we propose a channel se-
lection method that combines the multitask sparse repre-
sentation (MTSR) and mRMR algorithms. Instead of
superimposing discriminative regularization terms in the
MTSR framework, we evaluate the sEMG channels using the
MTSR and mRMR, respectively, and then fuse their results
to figure out the ideal channels in the end. -e flowchart of
this paper is shown in Figure 1.

3. Methods

3.1. Dataset and Evaluation Metrics. -e sEMG dataset [24]
contains thirty healthy normal-limbed subjects, who were
kept relaxed and performed 7 distinct hand gestures in-
cluding hand open, hand close, supination, pronation, wrist
flexion, wrist extension, and rest. Eight surface electrodes
were used for sEMG acquisition. In other words, we have
signals with eight channels.

In this work, three classic measures, that is, precision,
recall, and accuracy, are selected as indicators to evaluate the
performance of gesture classification. -ese metrics are
defined as follows:

precision �
TP

TP + FP
, (1)

recall �
TP

TP + FN
, (2)

accuracy �
TP + TN

TP + FP + TN + FN
, (3)

where TP, FP, TN, and FN are True Positive, False Positive,
True Negative, and False Negative, respectively. An average
of classification metrics in the experiments below will be
obtained by 5-fold cross validation.

3.2. Feature Extraction. To analyze the sEMG signal, a
sliding window is adopted for the 8 channels. Totally 11
time-domain features, as listed in Table 1, are extracted
which have been proved effective for myoelectric pattern
recognition [16]. -us, we have channel-feature paired
variables with the size of 8 times 11.

L is the signal length, and xi is the signal in an analysis
window. SD is the standard deviation. p is the order of
autoregressive model, εi is a white noise term, and the co-
efficients ap are used as features.

3.3. Channel Selection Scheme. -is study aims to reduce the
sEMG channels by finding the least and best electrode lo-
cations to discriminate different hand motions. For channel-
feature variables, we first perform a composite variable
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selection for the task of gesture motion recognition.-en, all
channels will be ranked according to their occurrences in the
selection of channel-feature variables, where MTSR and the
mRMR variable ranking method are used, respectively. By
fusing these two ranking results, we can finally get the ideal
channels but with high recognition capability for hand
gesture motions.

3.3.1. MTSR-Based Variable Selection. Given a feature
matrix X ∈ Rd×n, where d and n are the numbers of features
and samples, respectively, we also have a class indicator
matrix Y ∈ Rc×n with the class number c. Since multiple
response variables are included in the class indicator matrix
Y, for each response variable, we can find a regression
coefficient vector individually. By regularizing a least square
regression model with an ℓ2,1-norm, the multiclass feature
selection problem can be formulated as a sparse least square
regression model as follows [21]:

min
W

1
2

‖Y − W
T
X‖

2
F + λ‖W‖2,1, (4)

where W ∈ Rd×c is a coefficient matrix for regression and
the parameter λ is adopted to adjust the sparsity of W. By
enforcing the group sparsity on the coefficient matrix with
a ℓ2,1-norm, some rows in W will be zero. -e first term in
equation (4) controls the data fitting error, and the reg-
ularization parameter λ balances the relative importance of

both terms. -e larger λ results in more zero rows in the
coefficient matrix. It can be assumed that the optimal
solution would assign large weights to the important
features and zero or small weights to the less important
features.

3.3.2. mRMR Variable Ranking. -e above MTSR method
mainly focuses on the relationship between labels and fea-
tures but ignores the relationship between features to some
extent. Hence, we resort to mRMR algorithm to select
features from a different perspective.

-e mRMR criteria [15] aim to choose features that are
mutually dissimilar to each other and marginally similar to
the classification labels, ranking candidate component fea-
tures based on compromise between relevance and redun-
dancy. In this paper, we use mutual information to measure
both redundancy and relevance.

Mutual information is defined as follows:

I(X; Y) � B

p(x, y)log

p(x, y)

p(x)p(y)
dxdy, (5)

where X and Y denote two feature vectors and p(x, y) is the
joint probabilistic density, while p(x) and p(y) are the
marginal probabilistic densities. -e goal is to find a subset S
with m features, and the maximum relevance and the
minimum redundancy are defined by equations (6) and (7):

Multichannel
sEMG signals

Preprocessing
Feature

extraction

Feature
selection

Ranking-fused
channel selection

MTSR channel
ranking

k-fold cross
validation

mRMR channel
ranking

Classification
accuracies

Figure 1: Gesture recognition by reducing sEMG channels.

Table 1: Features extracted for each analysis window.

Acronym Name Number of features Formula
WL Waveform length 1 WL � 

L−1
i�1 |xi+1 − xi|

IAV Integrated absolute value 1 IAV � 
L
i�1 |xi|

RMS Root mean square 1 RMS �

��������
1
L


L
i�1 x2

i



SSI Simple square integral 1 SSI � 
L
i�1 |xi|

2

Kurtosis Kurtosis 1 Kurtosis � 1
L−1 

L
i�1((xi − x)4/SD4) − 3

Skewness Skewness 1 Skewness � 1
L−1 

L
i�1((xi − x)3/SD3)

ZC Zero crossing (threshold T�10) 1

ZC � 
L−1
i�1 φ(xi, xi+1)

φ(xi, xi+1) �
1, xixi+1 < 0, |xi − xi+1|>T,

0, otherwise,

4AR 4th-order autoregressive model 4 xi � 
4
p�1 apxi−p + εi
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maxD(S, c),

D �
1

|S|

xi∈S

I xi; c( ,
(6)

minR(S),

R �
1

|S|
2 

xi,xj∈S
I xi; xj  ,

(7)

where xi is the i-th feature, c is the class variable, and S is the
feature subset. -e maximum relevance and the minimum
redundancy are integrated by equation (8) or (9).

maxΦ(D, R),

Φ � D − R,

(8)

maxΦ(D, R),

Φ �
D

R
.

(9)

-e incremental search method is used to find the ap-
proximate optimal feature. Supposing that we already have
the feature set Sm−1, the next step is to find the m-th feature
from the feature set X − Sm−1 maximizing Φ(·). -e in-
cremental algorithm optimizes the formula [15]

maxxj∈X−Sm−1
I xj; c  −

1
m − 1


xi∈Sm−1

I xj; xi ⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦. (10)

3.4. To Fuse the Channel Rankings. As stated above, we
successively select the effective channel-feature pairs by
MTSR and mRMR ranking method. -us, we can get two
groups of rankings for all channels according to their oc-
currences in the screened channel-feature variables. -ese
two channel rankingmethods work with different principles,
but their corresponding results share common informative
components even if they differ to a certain extent. We
combine the two channel ranking results in the hope of
avoiding decision faults to the utmost extent.

4. Results

4.1. Channel Selection. Considering that 11 features are
extracted for 8 channels each, we have 88 channel-feature
paired variables in total for each analysis window. We apply
the multiclass sparse representation model for the training
data. According to equation (4), the parameter λ controls the
sparsity of the coefficient matrix W, namely, the number of
the screened channel-feature variables. -e gesture recog-
nition performance would be affected by features and
classifiers we employed.

Let λ varies from 0.01 to 0.1, and channel-feature var-
iables corresponding to nonzero rows of the coefficient
matrix W are kept and fed to a support vector machine
(SVM) classifier with radial basis function [25]. We hope to

achieve a high recognition rate (accuracy is used in Section
4.1 and 4.3) while using only a few feature variables.

We make a comparison to show how to decide a proper
value for λ. When λ varies from 0.01 to 0.1, the screened
channel-feature number varies greatly but the recognition
rate does not decrease too much. -e changing of recog-
nition rate and channel-feature number along with λ is
shown in Figure 2. We can also see that a good balance
between the recognition rate and channel-feature dimension
can be achieved when λ equals 0.03. Accordingly, we will
keep 36 channel-feature variables in the following channel
selection procedure.

And for mRMR-based channel-feature selection, we also
keep the top 36 variables which will be fused with the results
of MTSR.

Table 2 lists the selected 36 channel-feature variables
(features for each channel) by MTSR and mRMR, respec-
tively. It is obvious that there is a certain difference between
the screened results by these two methods. For instance,
autoregressive features AR1 and AR2 play important roles in
MTSR modal, being used by most channels. However, for
mRMR, the two features only appear in channel ⑧.
-erefore, we select channels based on channel utilization
rather than analyzing the features. We count the number of
times that any two channels occupy a common feature,
namely, the number of features shared by a channel pair.-e
more frequently a channel is utilized, the more important
the channel will be. -e corresponding statistical results for
MTSR and mRMR are shown in Tables 3 and 4 .

From Tables 3 and 4, we sort channels by the number of
times which are used. For MTSR, the order is
②>③�⑧>⑤>⑦>①�④>⑥ and ①�⑤>⑧>③>⑦>②
�⑥>④ for mRMR. By decision-making level fusion for
channel selection, three channels③,⑤, and⑧ are adopted for
the subsequent gesture recognition.

4.2. Feature Selection. Also based on the screened channel-
feature variables by MTSR and mRMR, we list all the
channels occupying a given feature (shown in Table 5). If a
feature is shared by over half channels (>4), it will be selected
for the gesture recognition task. Specifically, we have WL,
AR1, and AR2 fromMTSR-based results, and WL, IAV, SSI,
and Kurtosis by mRMR. -ese six features, WL, IAV, SSI,
Kurtosis, AR1, and AR2, will be fed into classifier in the
following experiments.

4.3. Classification Performance Based onChannel and Feature
Selection. According to Section 4.1, three channels (③, ⑤,
and⑧) are jointly selected by fusing MTSR and mRMR.We
first compare the gesture classification performance using
these three channels with those by MTSR or mRMR indi-
vidually. For MTSR-based results, the top three channels are
②,③, and⑧, and the three channels①,⑤, and⑧ are for
mRMR. -eir corresponding gesture recognition accuracies
are shown in Figure 3. By combining MTSR and mRMR,
channels③,⑤, and⑧ are used and the average recognition
rate is 98.68%, which is higher than that using channels ②,
③, and ⑧ or ①, ⑤, and ⑧ (the average classification
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Table 2: -e selected 36 channel-feature variables by MTSR and mRMR. AR1∼AR4 are four coefficients in the fourth-order autoregressive
model, respectively.

Channel Features by MTSR Features by mRMR
① RMS, AR1, AR2, and AR4 WL, IAV, Kurtosis, SSI, and AR3
② WL, Skewness, AR1, AR2, and AR3 WL, IAV, Kurtosis, and Skewness
③ WL, IAV, AR1, AR2, and AR3 WL, IAV, Kurtosis, and SSI
④ WL, IAV, AR1, and AR4 WL, IAV, and Kurtosis
⑤ RMS, Kurtosis, AR1, AR2, AR3, and AR4 WL, IAV, Kurtosis, SSI, and AR3
⑥ WL and Skewness WL, IAV, SSI, and AR3
⑦ IAV, Skewness, AR1, and AR2 WL, IAV, Kurtosis, and AR3
⑧ WL, SSI, Kurtosis, Skewness, AR1, and AR2 WL, IAV, SSI, Kurtosis, Skewness, AR1, and AR2

Table 3:-e number of times that two given channels occupy a common feature by MTSR (e.g., channel① and channel② share 2 features:
AR1 and AR2). -e best channels are in italics.

Channel ① Channel ② Channel ③ Channel ④ Channel ⑤ Channel ⑥ Channel ⑦ Channel ⑧
Channel ① — 2 2 2 4 0 2 2
Channel ② 2 — 4 2 3 2 3 4
Channel ③ 2 4 — 3 3 1 3 3
Channel ④ 2 2 3 — 2 1 2 2
Channel ⑤ 4 3 3 2 — 0 2 3
Channel ⑥ 0 2 1 1 0 — 1 2
Channel ⑦ 2 3 3 2 2 1 — 3
Channel ⑧ 2 4 3 2 3 2 3 —
Sum 14 20 19 14 17 7 16 19

Table 4:-e number of times that two given channels occupy a common feature bymRMR (e.g., channel① and channel② share 3 features:
WL, IAV, and Kurtosis). -e best channels are in italics.

Channel ① Channel ② Channel ③ Channel ④ Channel ⑤ Channel ⑥ Channel ⑦ Channel ⑧
Channel ① — 3 4 3 5 4 4 4
Channel ② 3 — 3 3 3 2 3 4
Channel ③ 4 3 — 3 4 3 3 4
Channel ④ 3 3 3 — 3 2 3 2
Channel ⑤ 5 3 4 3 — 4 4 4
Channel ⑥ 4 2 3 2 4 — 3 3
Channel ⑦ 4 3 3 3 4 3 — 3
Channel ⑧ 4 4 4 3 4 3 3 —
Sum 27 21 24 20 27 21 23 25
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Figure 2: Changes of recognition rate and channel-feature number when λ varies from 0.01 to 0.1.
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accuracy is 95.59% for channels ②, ③, and ⑧ and 81.15%
for channels ①, ⑤, and ⑧).

In addition, comparative experiments for gesture clas-
sification are carried out using two or four channels selected
by different methods. When choosing two channels, we have
channels⑤ and⑧ by fusingMTSR andmRMR. ForMTSR-
based method, the top two channels are② and③ or② and
⑧; for mRMR, the selected two channels are① and⑤. -e
gesture classification accuracies are illustrated in Figure 4,
where channels selected by jointly using MTSR and mRMR
achieve the highest classification accuracy.

As for choosing four channels, channels ③, ⑤, ⑦, and
⑧ are selected by fusing MTSR and mRMR. For MTSR-
based method, the top four channels are②, ③,⑤, and⑧;
for mRMR, the four channels are ①, ③, ⑤, and ⑧. Cor-
respondingly, the gesture classification accuracies are drawn
in Figure 5. It also verifies that channels selected by jointly
using MTSR and mRMR achieve the highest classification
accuracy.

4.4. Performance Evaluation and Comparison. To evaluate
the performance of our method by fusing MTSR and mRMR
for channel selection, comparative experiments are con-
ducted in two aspects. Firstly, we further compare the
proposed method with MTSR and mRMR in the task of
channel selection. For the number of selected channels
varying from 2 to 4, precision and recall for gesture clas-
sification corresponding to different method are listed in
Table 6 where the selected channels are in square brackets.

Compared with only 2 channels used, the recognition
performance improves significantly when 3 channels are
selected. It reveals that even 2 informative channels cannot
capture enough information to distinguish different hand
gestures in the experiment, where the best combination of 2
channels [5 8] is picked out by the proposed method. With
more channels added in a certain range, the recognition
performance will increase overall. In all cases, as shown in
the table, our MTSR- and mRMR-fused methods outper-
form each of the two base methods alone.
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The number of validations

98.68%Both, channels 3 5 8, , and
95.59%MTSR, channels 2 3 8, , and

mRMR, channels 81.15%1 5 8, , and

Figure 3: -e classification accuracies using three channels selected by different methods (channels②,③, and⑧ are selected by MTSR,
channels ①, ⑤, and ⑧ are selected by mRMR, and channels ③, ⑤, and ⑧ are jointly selected by the two methods).

Table 5: Channels used by each feature.

Feature Channels by MTSR Selected Channels by mRMR Selected
WL ②③④⑥⑧ √ ①②③④⑤⑥⑦⑧ √
IAV ③④⑦ ①②③④⑤⑥⑦⑧ √
RMS ①⑤ –
SSI ⑧ ①③⑤⑥⑧ √
Kurtosis ⑤⑧ ①②③④⑤⑦⑧ √
Skewness ②⑥⑦⑧ ②⑧
ZC – –
AR1 ①②③④⑤⑦⑧ √ ⑧
AR2 ①②③⑤⑦⑧ √ ⑧
AR3 ②③⑤ ①⑤⑥⑦
AR4 ①④⑤ –
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Besides, a latest work proposed a mean Relief-F-based
channel selection method (MRCS) [18]. Under the same
experimental conditions including dataset and features, its
classification performance is shown as the third row in
Table 6. As for selecting four channels, the channel com-
bination [1 3 5 7] is obtained by MRCS, and the

corresponding classification rate is lower than our work
here by selecting 3 channels or 4 channels. It should be
noted that the classification performance can be further
improved by using more informative features as demon-
strated in the work [18], which will be our focus in the work
later.
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Figure 5:-e classification accuracies using three channels selected by different methods (channels②,③,⑤, and⑧ are selected byMTSR,
channels ①, ③, ⑤, and ⑧ are selected by mRMR, and channels ③, ⑤, ⑦, and ⑧ are jointly selected by the two methods).

Table 6: Comparison with different research methods.

Method Channel Recall Precision Channel Recall Precision Channel Recall Precision
MTSR [2 8] 83.69 84.59 [2 3 8] 95.30 95.60 [2 3 5 8] 96.82 97.18
mRMR [1 5] 80.52 83.90 [1 5 8] 85.94 89.81 [1 3 5 8] 98.61 98.75
MRCS [18] [1 5] 80.52 83.90 [1 5 7] 83.64 88.64 [1 3 5 7] 96.99 97.09
Our method [5 8] 93.42 93.74 [3 5 8] 98.92 98.95 [3 5 7 8] 99.12 99.19

89.58%Both, channels 
81.44%MTSR, channels 

83.09%MTSR, channels
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Figure 4: -e classification accuracies using three channels selected by different methods (channels② and③ and channels② and⑧ are
selected by MTSR, channels ① and ⑤ are selected by mRMR, and channels ⑤ and ⑧ are jointly selected by the two methods).
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5. Conclusion

Recent developments in sEMG instrumentation have made
it possible to record many channels from single or multiple
muscles simultaneously. -e current study combines MTSR
and mRMR to process the channel-feature variables, aiming
to reduce the channel number without degrading the gesture
recognition performance.

For a gesture recognition task, sEMG dataset of 8
channels is recorded for 7 hand motions. Given the channel-
features pairs obtained from time-domain features, the most
informative channels are decided by theMTSR- andmRMR-
combined variable selection method. -e combination of
MTSR and mRMR makes the selected variables not only
reflect the relationship between labels and feature vectors
but also try to meet the requirement of maximum relevance
and minimum redundancy between vectors. Experimental
results have verified the effectiveness of the proposed
method.

It is worth noting that only time-domain features are
extracted for sEMG signals in this paper. -e channel se-
lection operation is dependent on these features. More
features generated in the frequency domain or time-fre-
quency domain are to be used to test this feature/variable
selection method in the coming work. In addition, this
proposed method for feature selection can also be used in
other pattern recognition and machine learning
applications.
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Emotion is a crucial aspect of human health, and emotion recognition systems serve important roles in the development of
neurofeedback applications. Most of the emotion recognition methods proposed in previous research take predefined EEG
features as input to the classification algorithms. )is paper investigates the less studied method of using plain EEG signals as the
classifier input, with the residual networks (ResNet) as the classifier of interest. ResNet having excelled in the automated hi-
erarchical feature extraction in raw data domains with vast number of samples (e.g., image processing) is potentially promising in
the future as the amount of publicly available EEG databases has been increasing. Architecture of the original ResNet designed for
image processing is restructured for optimal performance on EEG signals. )e arrangement of convolutional kernel dimension is
demonstrated to largely affect the model’s performance on EEG signal processing. )e study is conducted on the Shanghai Jiao
Tong University Emotion EEG Dataset (SEED), with our proposed ResNet18 architecture achieving 93.42% accuracy on the 3-
class emotion classification, compared to the original ResNet18 at 87.06% accuracy. Our proposed ResNet18 architecture has also
achieved a model parameter reduction of 52.22% from the original ResNet18. We have also compared the importance of different
subsets of EEG channels from a total of 62 channels for emotion recognition. )e channels placed near the anterior pole of the
temporal lobes appeared to be most emotionally relevant.)is agrees with the location of emotion-processing brain structures like
the insular cortex and amygdala.

1. Introduction

Emotion is the conscious or subconscious neuro-
psychological response generated upon external or internal
stimuli which are of major concern to the person.

Emotion involves the interrelated synchronization of a
number of organismic subsystems encompassing the central
nervous system, the autonomous nervous system, the neuro-
endocrine system, the somatic nervous system, and the con-
scious or subconscious reactions of the respective effectors [1].

Expression of emotion includes the linguistic choice of
words, speaking rate, intonation, facial expression, gesture,
and posture. Emotion can also be reflected via the

autonomous nervous system and neuroendocrine system
into the cardiovascular dynamics [2, 3], respiratory patterns
[4], and electrodermal activity [5]. Nevertheless, all the
peripheral emotion reactions arise from the neurological
activities in the brain.)e cerebral neuronal activities can be
recorded as the electrical potentials on the scalp with the
electroencephalography (EEG) technique [6].

Emotion recognition algorithms are useful in human-
machine interaction, allowing machines to identify the
emotional or affective mental states of humans [7]. Affective
computing [8] and the “empathetic” capability of the ma-
chine can have an important role in the development of
many applications such as neurofeedback therapies for
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mood and cognition improvement [9]. Also, affective
computing has substantial potential in helping victims with a
neurodevelopmental disorder and improving their ability to
emote and identify emotional expressions [10].

Emotion recognition can be achieved by analyzing the
abovementioned nonphysiological expression such as the vocal
signals, facial expression and bodily gestures, and the physi-
ological signals such as the photoplethysmogram (PPG),
electrocardiogram (ECG), electrodermal activity (EDA), elec-
tromyogram (EMG), and electroencephalogram (EEG).

Emotion recognition methods can be classified as
multimodal or single modal. )e combined information
from two or more of the physiological and nonphysiological
aspects is required in the multimodal emotion recognition
methods, while the single-modal recognition approach
typically utilizes one type of physiological signal. EEG is
among the most widely used single-modal signal for emo-
tion recognition as it carries the information of the brain
neuronal activities from which almost all other physiological
and nonphysiological reactions arise [11–14].

A recent extensive 5-year review by Craik et al. (2019)
[15] on the current research state of deep neural networks for
EEG classification reported the finding of only about 22% of
the emotion recognition research using EEG signal values as
the input data, with the remaining vast majority using the
precalculated EEG features or images constructed from the
EEG features as the input data to the classifiers.

Another 8-year review (2010–2018) by Roy et al. (2019)
[16] on deep learning architectures for EEG analysis cov-
ering 154 publications reported that only about 12% of the
deep learning architectures used for the affective mental
domain were the convolutional neural networks (CNNs).

In recent years, there are an increasing number of publicly
shared EEG databases among the research community. With
this trend ongoing, increasingly sufficient variations of input
EEG samples will be available soon for the training of very-deep
neural networks.)e projected future availability of sufficiently
large variation of input EEG samples can promisingly solve the
problem of overfitting of very-deep neural networks to the
small research pool of EEG samples which are currently in-
sufficient to serve as a good representative of the population.
)erefore, our work studies the application of variants of very-
deep CNN (ResNet18 and VGG16) on the plain EEG signal
(instead of precalculated EEG features) classification, with
emotion recognition as the case study. We will present the
architectural optimization of Residual Network (ResNet) for
EEG signal classification. )e performance of the variants of
ResNet will be compared with the VGG variants. We will also
compare the significance of different EEG channel subsets for
emotion recognition and present the relevance of different
subsets of EEG channels to emotion recognition.

2. Methodology

2.1. Experiment Design of SEED Dataset. )is study uses the
EEG signals recorded in the SEED experiment by the
Shanghai Jiao Tong University (SJTU). )e SEED dataset
[17, 18] is an emotion-related EEG dataset publicly available
for research purposes. )e stimuli in the SEED experiment

were 15 film clips carefully chosen such that each elicits a
single desired target emotion. Each film clip lasts about
4minutes and is coherent to either positive, neutral, or
negative valence emotion as described in Table 1.

SEED experiment had 15 participants. Every participant
underwent 3 sessions of the experiment, with at least one-
week interval between every 2 sessions. Each experiment
session contained 15 trials, each playing one of the 15 film
clips followed by self-assessment and a short rest. Figure 1
shows the structure of the experiment session.

)e play sequence of the film clips was arranged such
that no two consecutive trials carried the clips of the same
emotion category.

)e EEG signals were recorded with 62 active AgCl
electrodes of the ESI NeuroScan System at a sampling
frequency of 1000Hz.)e electrode placement was based on
the international 10–20 system as shown in Figure 2.

)e recorded EEG signals were then downsampled to
200Hz and a bandpass frequency filter of 0.5Hz to 70Hz
was applied.

2.2. SEED Dataset Literature Review. )e research working
on the SEED dataset in the recent three years (2018–2020) was
reviewed and is summarized in Table 2. Althoughmany of the
research works were using one or another kind of neural
network classifier, almost all of the attention had been placed
on using manually extracted EEG features, instead of plain
EEG signals.

Using plain EEG signals as the input data to the emotion
classifiers has currently received relatively much lower re-
search attention. Although the number of currently available
public EEG research databases may not yet be sufficiently
representative of the general population, the trend of an
increasing number of publicly available EEG databases shall
warrant more research works into the application of very-
deep neural networks on plain EEG signals.

In line with this, the focus of this work is on eliciting the
architectural modification on the original image-oriented
ResNet and VGG that results in a vast improvement of their
performance on plain EEG signal. In addition, we have also
proposed the location of EEG channels that are most useful
for emotion recognition.

2.3. EEG Dataset Preprocessing. As the target emotion
caused by watching the film clip would not likely be suc-
cessfully induced immediately at the start of the film clip, we
have set a buffering period of 90 seconds for the emotion
establishment.)erefore, the initial 90 seconds of each of the
4-minute EEG trials were discarded.

)e remaining EEG recording is split into 2-second
nonoverlapping segments, with each EEG segment assuming
the length of 400 sampling points for the sampling frequency of
200Hz. Each of the nonoverlapping segments is then nor-
malized along the time axis, respectively, using the Euclidean
normalization method. All the generated EEG segments are
split into five subpools for 5-fold cross-validation of the model
performance.
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2.4. Optimizing ResNet and VGG for EEG Signals.
Figures 3 and 4, respectively, illustrate the architectural
details of different versions of ResNet18 and VGG16 ex-
amined in this study.

2.4.1. ResNet Optimization. )e original architecture of
ResNet18 consisting of 17 convolutional layers and 1 layer of
the fully connected network is depicted in Figure 3(a).

As the original ResNet18 is designed for image pro-
cessing, the convolutional kernels within the model are all 2-
dimensional kernels. It has 3-by-3 kernels throughout its
convolutional path, except for the very first convolutional
layer (Conv 0) which has 7-by-7 kernels.

)e color coding of Figure 3 denotes the major con-
volutional blocks of the ResNet. )e convolutional layers of
the same color have the same number of kernels (e.g., orange
for 64 kernels, yellow for 128 kernels, green for 256 kernels,
and blue for 512 kernels). )e darker color layers are

convolutional layers, while the lighter layers are the other
functional layers in the block, such as the batch normali-
zation (BN) function, the Rectified Linear Unit (ReLU)
activation function, the summation (Sum) of the by-passed
feature map and the main convolution feature map, and the
adaptive average pooling (AvgPool). )e adaptive AvgPool
layer before the fully connected (FC) layer allows the model
to process EEG signals of different numbers of channels
without the need to reassign the number of connections in
the FC network.

)e last layer of the ResNet18 is a single layer of a fully
connected (FC) network with three output nodes, corre-
sponding to the three emotion classes.

)ere are two types of bypass connection in the ResNet,
i.e., the identity bypass and the downsampling bypass. )e
identity bypass has its feature map being passed on, skipping
two convolutional layers without any further processing
before the summation function. )e downsampling bypass
happens at the initial stage of every major convolutional
block, where the input feature maps will have their map size
reduced due to kernel stride and the number of feature maps
will increase due to the increment of convolutional kernels.
)erefore, the downsampling bypass is necessary in order to
have the dimension of the shortcut data matching the data
dimension of the main convolutional path. While the
identity bypass performs no additional processing on the
data passed onwards, the downsampling bypass has 1-by-1
convolutional kernels which introduce an additional small
number of trainable parameters as reported in Figure 3.

In this study, three variants of the original ResNet18were
constructed and investigated. Two of the three ResNet18
variants are illustrated in Figures 3(b) and 3(c). )e 2D
kernels of the ResNet were all restructured into 1D kernels
along either the temporal(time)-dimension or the spa-
tial(channel)-dimension.

)e variant in Figure 3(b) has alternating temporal and
spatial-dimension convolution. Eckart and Young [28] and
Maji and Mullins [29] reported that the matrix such as the
convolution filters can be well approximated with an arbi-
trary number of lower rank matrices. Maji and Mullins
(2018) [29] had also demonstrated the feasibility of sepa-
rating the 2D kernels of the well-established CNNs (e.g.,
AlexNet, VGG-16, Inception-v1, ResNet-152) into alternating
1D vertical and horizontal kernels, achieving near baseline
accuracy for image classification with a significant speedup
of training.

Nevertheless, given the different format and nature of
EEG signals from the images, the alternating arrangement of
1D horizontal (time-dimension) kernel and 1D vertical
(spatial-dimension) kernel may not be the optimal design for
EEG signal processing. )erefore, we have constructed
another variant of ResNet18 (Figure 3(c)) with the initial two
major convolutional blocks (all the nine initial convolutional
layers) operating purely in the temporal dimension before
introducing the spatial convolutional kernels. )e spatial-
dimension convolution of this ResNet variant appears only
in the final two convolutional blocks.

In addition, we have investigated the effect of ini-
tializing the convolutional path with spatial-dimension

Table 1: Film clips in SEED dataset.

Source film name Emotion Number of clips
Tangshan earthquake Negative 2
Back to 1942 Negative 3
Lost in )ailand Positive 2
Flirting scholar Positive 1
Just another Pandora’s box Positive 2
World heritage in China Neutral 5

Hint of
start

Movie
clip

Self-
assessment Rest

5 sec 4 min 45 sec 15 sec

Trial 1 Trial K . . . Trial 15. . .

Figure 1: Data collection session design of SEED experiment.
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Figure 2: EEG channel layout of SEED dataset.
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convolution, by making only a single change in the initial
layer (Conv 0) of ResNet18-1D-kernel-(T-S-alternate) in
Figure 3(b), from time-dimension convolution into spa-
tial-dimension convolution. We have name-coded this
variant as ResNet18-1D-kernel-(S-T-alternate), for com-
parison with the model in Figure 3(b) to highlight the
great impact of the abovementioned single minor archi-
tectural change on the model’s performance which is
presented in Figure 5.

)e right columns of the Figures 3(a)–3(c) indicate the
number of trainable parameters in each architectural layer of
the ResNet variants.

2.4.2. VGG Optimization. As illustrated in Figure 4, variants
of VGG16 are also constructed for performance comparison
with the variant of ResNet18. )e VGGmodels have classical
convolutional pathways without data bypassing. )e VGG16
has five major convolutional blocks, with two convolutional
layers in each of its first two major convolutional blocks and
three convolutional layers in each of its last three con-
volutional blocks. )ese thirteen convolutional layers to-
gether with the final three FC layers have made up the 16
main functional layers in the VGG16.

Figure 4(a) shows the structure of the VGG16 with all the
original 2D kernels being modified into 1D kernels along either
the temporal or spatial dimension. )e model in Figure 4(b) is
namedVGG14-1Dwith the removal of the two hidden FC layers
from the VGG16-1D, such that the fully connected network is
more closely resemble and comparable to that of the ResNet18.

)e VGG architectures in Figure 4 are color-coded such
that the transition between different color blocks is preceded
by max-pooling (MaxPool) operation along the dimension
of the previous convolution operation.)e adaptive AvgPool
layer before the FC networks is for the same purpose as
described for the ResNet18.

We have also investigated the importance of batch
normalization in CNN for EEG processing by removing the
BN layers of the VGG16 as in Figure 4(c). )e performance
analysis is presented in the Results section.

2.5. Model Training. )e objective function for model opti-
mization during training was set as the cross-entropy loss of the
CNN outputs. Adam optimizer was used to update the trainable

parameters of the CNNat the learning rate of 0.001, based on the
backpropagated error from the output cross-entropy loss.

)e model training process was conducted with sto-
chastic minibatches, with the size of each minibatch being
one 200th of the total training pool. )us, one complete
training epoch consists of 200 training iterations. )e
training data pool will be reshuffled after every complete
training epoch to ensure the different combinations of
minibatch samples in the subsequent training epochs.
Stochastic minibatch training serves to prevent the training
process from being stuck at the local minima of the objective
function.

3. Results and Discussion

3.1. Variants of ResNet18. Figure 5 presents the averaged 5-
fold cross-validation classification accuracy of the ResNet
variants, using different subsets of EEG channels as their
data input.

)e ResNet variant with 1D kernels has generally out-
performed the original ResNet18, particularly in the scenario
of using a lower number of EEG channels (10 channels for
each subset). Not only has the classification improved with
the ResNet18 architectural restructuring from 2D-kernel
convolution to 1D-kernel convolution, the total number of
trainable parameters (obtainable by summing up the layer-
wise parameters in Figure 3) in the ResNet18 has also seen a
reduction of more than 50% from the original 11.17 million
parameters down to the range of 4.27 to 5.34 million
parameters.

As pointed out in Section IV-B, the models ResNet18-
1D-(S-T-alternate) and ResNet18-1D-(T-S-alternate) differ
in only their very first convolutional layer (the Conv-0 of
Figure 3(b)), where the ResNet18-1D-(T-S-alternate)model
has Conv-0 as temporal convolution while the ResNet18-
1D-(S-T-alternate) model has its Conv 0 as spatial con-
volution. Although this single change in Conv-0 has
resulted in the difference in parameter count by only 256
((1× 9 ‒ 5×1) × 64� 256), the performance in EEG signal
classification has seen substantial improvement by about
10% elevation (using either all 62 channels, the outermost
10 channels, or outer 10 channels), as presented in Figure 5.
)is strongly indicates that the convolution operation on

Table 2: Recent research on SEED dataset.

Classifier algorithm/year Data input Accuracy
(%)

Dynamic graph CNN [19]/2018 Differential entropy (DE) 79.95
Logistic regression classifier [20]/2018 DE 72.47
GRSLR (graph regularized sparse linear regression) [21]/
2018 DE, Hjorth features 88.41

Bidirectional LSTM [22]/2019 DE/Power spectral density (PSD) 94.96/86.27
Graph convolutional broad network (GCBN) [23]/2019 DE 94.24
CNN+LSTM [24]/2019 DE 89.88
Variational pathway reasoning (VPR) [25]/2019 DE 94.3

Sequential backward selection SVM [26]/2019 Hjorth features, standard deviation, sampling entropy, wavelet
entropy 89

Spiking NN [27]/2020 DWT, FFT, variance 96.67
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plain EEG signal should not be initiated with spa-
tial(channel)-dimension convolution.

Some other previous works that used CNN for plain EEG
signal processing had also forced the convolution process to

operate only along either the temporal or spatial dimension
for every single convolutional layer. Most of the works
[30–36] applying 1D-kernel CNN on EEG signals had ini-
tiated the convolutional path with temporal convolution.
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Figure 3: Architectural details of (a) original ResNet18 and its modified variants (b) ResNet18-1D-kernel-(T-S-alternate) and (c) ResNet18-
1D-kernel-(T-then-S) for EEG signal processing.
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However, they had not provided the performance com-
parison with the models that did otherwise, as we high-
lighted in this study.

We took a further step of increasing the number of layers of
pure temporal convolution before starting spatial convolutional
operation, as in the architecture of ResNet18-1D-(T-then-S) in
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Figure 4: Architectural details of (a) VGG16-1D-kernel and its modified variants (b) VGG14-1D-kernel and (c) VGG14-1D-kernel (no batch
norm) for EEG signal processing.
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Figure 3(c). )e ResNet18-1D-(T-then-S) model has out-
performed all the other ResNet18 variants substantially, in every
classification scenario as reported in Figure 5.

)is supports that constructing multiple consecutive layers
of temporal convolution before starting spatial convolution is
beneficial for extracting distinctive information from the EEG
signals. Although ResNet had been reported with inferior per-
formance than the typical CNN at EEG classification in [34],
their ResNet architecture was, however, designed with spatial
convolution very early on as the second convolutional layer. If
more temporal convolutional layers were introduced before the
spatial convolution, the ResNet presented in [34] could poten-
tially have seen significant performance improvement.

With the presence of multiple consecutive temporal con-
volutional layers before spatial convolution, higher hierarchical

features within each EEG channel could be extracted before
comparing across different channels. Direct cross-channel
convolution of rudimentary EEG voltages may not carry as
much distinctive information as that of the higher hierarchical
features.

Plain EEG signals carry only voltage levels measured
over the scalp. Every single sampling point of the voltage
level in an EEG channel is not as meaningful as a sequence of
sampling points along the channel. )e excessively short
receptive field over a single channel is susceptible to re-
cording artifacts and other nonessential signal variations.

)erefore, with multiple consecutive temporal con-
volutional layers, the initial stages of the model can cover a
larger receptive field over the raw signal, at the same time
extracting features of a higher level of abstraction from the
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Figure 5: SEED 3-class emotion recognition accuracy by variants of ResNet18 using different subsets of EEG channels. (a) Classification
accuracy and the total number of model parameters. (b) Different subsets EEG channels.
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particular channel. Comparing the rudimentary EEG signal
sampling point by sampling point across the channels may
have considerably taken into account the undesired
meaningless voltage variations, resulting in lower classi-
fication accuracy in the ResNet18-1D-(S-T-alternate)
model.

We have also constructed and examined another var-
iant of the ResNet18-1D-(S-then-T) model with its several
initial convolutional layers all being spatial-dimension
convolution followed by temporal convolution only. )is
model which was not presented in Figure 3 had presented
worse performance than even the ResNet18-1D-(S-T-al-
ternate) model, which further supports the proposal above
that EGG signal convolution for emotion recognition
should ideally be started with temporal-dimension
convolution.

Figure 6 reports the training-validation performance log
of the four variants of ResNet-1D, using the 10 outermost
channels. Based on the training-validation cross-entropy
loss plot, the ResNet18-1D-(T-then-S) model, which had
outperformed all the rest, was clearly less susceptible to
overfitting. )e other three ResNet18-1D models all had
started to experience overfitting after around eight to ten
training epochs, with the models ResNet18-1D-(S-then-T)
and ResNet18-1D-(S-T-alternate) experiencing the greatest
degree of overfitting.

3.2. ResNet versus VGG. We have compared the perfor-
mance of ResNet18with the more classical CNN architecture
(the VGG16) from the aspects of classification accuracy, the
number of trainable parameters, and the model training
convergence speed.

Figure 7 shows that the classification accuracy achieved by
ResNet18-1D(T-then-S), VGG14-1D, and VGG16-1Dmodels is
very close to each other. )e ResNet18-1D(T-then-S) achieves
93.42% classification accuracy, outperforming the VGG at
using all 62 EEG channels. )e VGG models have achieved
higher accuracy at the less significant subsets of EEG channels
(e.g., using the innermost 10 channels).

Given the almost negligible difference in the classifica-
tion accuracy, the ResNet18-1D(T-then-S) model contains
only 5.34 million parameters, which is only about 36.3% of
that in the VGG14-1D model which has 14.72 million pa-
rameters. )e VGG16-1D has an even staggering greater
number of parameters (at 46.18 million) due to a large
number of fully connected perceptrons in its original 3-layer
FC networks. )is densely connected FC network con-
taining over 31 million parameters does not appear to be
essential to the classification accuracy.

Another aspect of performance measurement investi-
gated is the convergence speed of the model under training.
With reference to Table 3, using all 62 EEG channels, the
ResNet18-1D(T-then-S) and the VGG14-1D models are able
to converge to above 95% training accuracy in 11 epochs and
10 epochs, respectively. )e VGG16-1D requires a greater
number of training epochs (14 complete rounds) to reach its
training accuracy of 95%. )e lower convergence speed of
VGG16-1D is likely due to its complex FC network.

)e ResNet18-1D(T-then-S) model completes a training
epoch with (1665/11≈ 151) seconds, while the VGG models
require a much greater amount of time to complete a
training epoch (VGG14-1D using about 249 seconds, and
VGG16-1D using about 250 seconds).

Similarly, the ResNet18-1D(T-then-S) uses only about 38
seconds for a complete training epoch with 10 EEG chan-
nels, while the two VGG models use about 50 seconds for
completing a training epoch.

)e VGG14-1D-(no batch norm) illustrated in
Figure 4(c) is the version of VGG14-1D without the batch
normalization function after every convolutional layer. )is
model without the batch normalization had failed to
progress well even in its training phase. )e training ac-
curacy of this model had stayed at around 35%, with the
training loss staying at around the initial value.

)e failure of this VGG14-1D-(no batch norm) has in-
dicated the importance of batch normalization in training
deep CNN on EEG signals, even with the EEG signals being
prenormalized before being passed into the CNNmodel. All
the ResNet18 variants in Figure 3 are also equipped with
batch normalization at the output of their convolutional
layers.

In our model, each layer of the batch normalization
function introduces two additional trainable parameters per
feature map. )e dimension of the feature map depends on
the number of convolutional kernels immediately preceding
the batch norm function.

)e short EEG segments being passed into the classifier
may contain large signal amplitude variations from segment
to segment. Different batches of the EEG segments may also
encounter the problem of large internal covariate shift [37]
which is a notorious reason for the diverging loss during
model optimization [38].

)is does not only slow down the training speed by
demanding a very low learning rate but also potentially
disrupt altogether the convergence of the model optimiza-
tion process as experienced in our model (Figure 4(c))
without batch normalization.

3.3. Channel Significance in Emotion Recognition.
Identifying the most critical subsets of EEG channels can
reduce the input data redundancy and ease the design and
mounting of portable consumer-friendly EEG recording
hardware. )erefore, previous works [39–41] had tried to
identify the subsets of EEG channels that are most crucial for
emotion recognition. In line with the purpose, we have
looked into the emotion EEG channel significance with
regard to lateral-medial placement, along the nasion-inion
axis, and in terms of the left-versus-right hemispheric
discrepancy.

3.3.1. Electrode Distance to the Midline. With reference to
Figures 5(a) and 5(b), the relevance of different subsets of
EEG channels for emotion recognition is investigated, with
respect to the channels’ distance from the midline.

)e trend of classification accuracy as reported in Fig-
ure 5 follows that the more laterally placed the EEG channels
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are, the higher the classification accuracy they deliver. )is
implies that more emotionally distinctive information is
carried in the laterally placed (farther away from the mid-
line) EEG channels than the medially placed channels.

)e possible reason for this channel significance dis-
tribution pattern is that the lateral channels are in fact placed
over or close to the temporal region above the ears on the
scalp. )ese electrode locations are closer to the brain
structures that are highly involved in emotional response.
)ese structures (such as the anterior temporal pole, the

insular cortex, the amygdala, and the hippocampus [42–44])
are either part of the temporal lobe itself or lying at just the
medial side of the temporal lobe. Hence, the more medially
placed EEG electrodes are located higher up on top of the
scalp and are hence farther away from these emotionally
important brain structures.

3.3.2. Along the Nasion-Inion Axis. Figure 8 shows the 5-
fold cross-validated emotion classification accuracy of
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Figure 6: Training-validation performance log of variants of ResNet18-1D.
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ResNet18-1D(T-then-S) model, using four different subsets
of EEG channels along the nasion-inion axis.

As indicated by Figure 8(b), these subsets of EEG
channels, respectively, cover the frontal region (blue),
centrotemporal region (green), centroparietal region (yel-
low), and the parietooccipital region (red).

In coherence with the distribution of emotionally
important brain structures (e.g., the anterior temporal
pole, the insular cortex, and the amygdala) discussed
above, the three different emotion classes are best clas-
sified with the twelve centrotemporal channels (green
color coded) because these twelve channels are located
nearest to these structures, relative to the other three
subsets.

)e twelve-frontal-channel subset gives the same ac-
curacy as the twelve parietal channels.)e occipital channels
are the least emotionally correlated set of EEG channels.

3.3.3. Cerebral Lateralization of Emotion. Figure 9 shows the
5-fold cross-validation accuracy using EEG channels of the
left hemisphere versus the right hemisphere. )e left
channels present around 4-5% higher accuracy than the
right channels. Using only 10 lateral channels of the left
hemisphere has resulted in 88.48% average accuracy which is
still even better than using all 27 right-hemispheric channels
which give 86.96%.

)is lateralized significance of EEG channels in emotion
recognition can be due to the fundamental cerebral

lateralization [45, 46] or simply because of the nature of the
SEED experiment design.

)e stimuli of the SEED experiment were movie clips,
and the mode of content delivery of movies can be heavily
verbal or language-based. )e center of language processing
and understanding is located exactly in the lateral side of the
left temporal lobe, known asWernicke’s area [47].)erefore,
the imbalanced activation of Wernicke’s area in comparison
to its right-hemispheric counterpart area can be a com-
pounding factor resulting in the classification accuracy
discrepancy.

3.3.4. Comparing across all the Channel Subsets.
Reviewing the classification results using various EEG
channel subsets presented in Figures 5, 8, and 9, the ten
lateral-most left and right EEG channels in Figure 5 achieved
the highest accuracy (91.5%), compared to using the ten
lateral left channels in Figure 9 which has achieved 88.48%
recognition accuracy and the twelve centrotemporal chan-
nels in Figure 8 which have achieved 83.84% accuracy.

With a comparable number of channels used in the subsets,
the above result implies that there is additional distinctive
information for emotion recognition retrievable from the left-
versus-right channel feature cross-correlation, in view of the
pairing of 10 left and right channels giving better classification
result than the 10 lateral-most left channels.

)e highly emotion-correlated subsets of EEG channels
identified by this work are close to the 12-channel (FT7, FT8,
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Figure 7: Classification accuracy of ResNet18-1D and VGG16 variants.

Table 3: Model training convergence efficiency comparison between ResNet and VGG.

Training length to reach 95% training accuracy (epochs//seconds)
Using all 62 channels Using outermost 10 channels

ResNet18-1D (T-then-s) 11//1665 11//416
VGG14-1D (T-then-s) 10//2488 10//503
VGG16-1D (T-then-s) 14//3505 12//622
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T7, T8, C5, C6, TP7, TP8, CP5, CP6, P7, and P8) subsets
used by Zheng and Lu (2015) [41] which was reported to
have achieved even higher emotion recognition accuracy
than using all 62 channels.

4. Conclusion

)is study has investigated the applicability of a very-deep
convolutional neural network for plain emotion-related EEG
signal classification, which is an area of relatively low research
attention as most of the emotion EEG classification tasks were
based on preextracted EEG features. With the future avail-
ability of a greater pool of EEG data that better represents the
population, the very-deep CNNs can potentially outperform
the feature-based algorithms, although they do not yet show
accuracy superiority over feature-based algorithms with the
current size of publicly available EEG database.

ResNet18 and VGG16 originally constructed for image
processing were modified for EEG signal processing. )e
original ResNet18 andVGG16 designed for image processing
are not ideal for direct application onto EEG signals. Our
modified variants of ResNet18 with 1D kernels have shown
significant performance improvement in both the aspects of
classification accuracy and reduced model parameters. )e
modified ResNet18 variants have shown better training
convergence speed than the VGG16 variants.

)e sequence of convolutional dimension arrangement
within the ResNet18-1D has also been investigated for op-
timal EEG signal processing performance. )e result find-
ings have suggested against initiating the convolutional
operation with spatial-dimension convolution. Multiple
layers of consecutive temporal-dimension convolution
should ideally be placed before the operation of spatial-
dimension convolution. Using the SEED dataset, our best
performing model [ResNet18-1D-(T-then-S)] has achieved a
3-class emotion classification accuracy of 93.42%.

Not of less importance, the batch normalization function
proves to be essential in tackling the problem of internal

covariate shift which can result in model optimization
convergence failure.

Investigating the EEG channel significance for emotion
recognition from the neurological aspects, the laterally
placed channels around the temporal lobe show greater
importance than the channels placed over other brain re-
gions. )is finding is consistent with the fact that many
emotionally important brain structures are located within or
nearby the temporal lobe.
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