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When can a system be unambiguously defined as “complex”?
Although many real-world systems are believed to bear the
signature of complexity, the question above remains unan-
swered. Our special issue aims at contributing to this ongoing
discussion by collecting a number of studies tackling two
aspects of complexity that have recently gained increasing
attention: the temporal one and the structural one.

The seven papers composing this special issue offer an
articulated overview of these topics by proposing novel tech-
niques for the analysis of systems described bymultiple time-
series (such as functional brain data, stock prices, andmarket
indices) and networked interaction patterns. The choice of
focusing on neural and financial systems is dictated by the
importance that topics like the identification of precursors of
stock market movements, the application of causality-testing
techniques to brain data, and the definition of null models for
the analysis of correlation matrices (only to mention a few)
have gained in recent years.

In what follows, a brief overview of the contributions is
provided.

H. Liao et al. contribute to the stream of research on
“economic complexity,” focusing on the International Trade
Network and addressing the problem of forecasting the eco-
nomic evolution of a country using predictors that go beyond
standard economic quantities (such as GDP). In order to

identify the best method, the authors compare three different
metrics across a dataset ranging from 1962 to 2000. As
a result, the “Fitness and Complexity” approach seems to
outperform the competing techniques.

B. Podobnik et al. address another timely prediction prob-
lem, that is, the rise of EU right-wing populism in response
to unbalanced immigration. In particular, the authors ana-
lyze the relationship between the percentage of right-wing
(RW) populist voters in a given country, the prevalence of
immigrants in the population of the same country, and the
total immigration inflow into the entire EU over the last three
years. They find that the increase in the percentage of RW
voters substantially overcomes the percentage of immigration
inflow. This result questions the role of EU institutions and
calls for a deeper understanding of the EU citizens perception
of the “globalization” topic.

A different, yet related, kind of prediction is the “link-
prediction” problem, addressed by M.-Y. Zhou et al. The
underlying hypothesis of any link prediction algorithm is that
the likelihood of any two nodes to establish a connection
depends on the number of “common” characteristics. The
authors, however, propose a way of resorting link scores
which enhances the precision of existingmethods by penaliz-
ing to a lesser extent nodes characterized by lower similarity
scores.
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2 Complexity

Prediction problems are related to causality problems.
Upon defining “causality” in an information-theoretic sense,
T. Aste et al. investigate the performance of three methods
(G-Lasso, Ridge, and LoGo) to detect causality links when
short time-series are considered. A combination of filtering
techniques and graphical modelling provides the best perfor-
mance.

The same kind of filtering techniques is applied to inves-
tigate different types of dependency in financial multiplex
networks. N. Musmeci et al. consider a four-layer multiplex
defined by linear, nonlinear, tail, and partial correlations
among a set of financial time-series. The structural evolution
of this peculiar kind of network reveals changes associated
with periods of financial stress, whose detection is enhanced
by the multilayer character of the considered system.

Network techniques to analyze time-evolving, multiagent
systems are also employed by A. Lombardi et al. to study
the functional connectivity of the human brain. A novel
framework is employed to quantify the synchronization of
pairs of signals by exploiting the so-called cross-recurrence
plots: community detection based on such a metric seems to
outperform the usual one, based on the Pearson correlation
coefficient.

Networks constitute also the support to explore “evolu-
tionary” game theory. G. Cimini studies two different evo-
lutionary dynamics in order to refine equilibria multiplicity
of games of strategic substitutes and complements. When
the latter are embedded in complex topologies, different
behaviors are found for different classes of games. In partic-
ular, when coordination games on infinitely large scale-free
networks are considered, equilibria arise for any value of the
incentive to cooperate.
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The complex networks approach has proven to be an effective tool to understand and predict the evolution of a wide range of
complex systems. In this work, we consider the network representing the exchange of goods between countries: the international
trade network. According to the type of goods they export, the complex networks approach allows inferring which countries will
have a bigger growth compared to others. The aim of this work is to study three different methods characterizing the complex
networks and study their behaviour on two main topics. Can the method predict the economic evolution of a country? What
happens to those methods when we merge the economies?

1. Introduction

The development of countries is a crucial question in eco-
nomics. In the next ten years, which countries will grow and
develop the biggest industries? The GDP per capita is one
of the main criteria to assess a country’s development. Even
though it does not account for the wealth distribution or for
the purchasing power of the countries, it is a good indicator
of the country’s wealth and especially of its industrial sector.
Twice a year, in April and in October, the InternationalMone-
tary Fund (IMF)makes projection for the future GDP growth
rate of countries. They do not detail the precise procedure;
however they indicate that they use many factors to do the
predictions. Actually, the prediction is done in a different
way for each country and is then aggregated and readjusted
in order to harmonize the projections. The predictions per-
formed using complex networks do not outperform the pro-
jections made by the IMF, but their goal is to make additional
information available that an organization such as the IMF
could benefit from by taking into account their factors.

Two methods, the Method of Reflections [1] and Fitness
and Complexity [2], were designed to rank the countries

according to their potential growth. The two methods use a
complex network approach to perform the ranking. The net-
works are built according to the revealed comparative advan-
tage (RCA) procedure [3] described in the datasets sec-
tion. The Method of Reflections proposed the Economic
Complexity Index (ECI) to account for the production char-
acteristics of countries, and the authors claimed it to be a
better predictor than existing governance, institution, educa-
tion quality, and economic competitiveness indexes [4].How-
ever, there is also some criticism towards theMethodof Reflec-
tions; [2, 5, 6] point out that the Method of Reflections
always underestimates the important counties with high
diversification in exports, such as China and India.Moreover,
the ECI definition based on the second eigenvector has been
firstly shown in [7]. The Fitness and Complexity method was
designed to take this feature into account and was featured in
Nature news (http://www.nature.com/news/physicists-make-
weather-forecasts-for-economies-1.16963).

In this paper, we study three metrics, Fitness and Com-
plexity, the Method of Reflections, and the simple sum of dif-
ferent exports for each country. We review their potential to
predict the economic growth of countries in detail and show
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that the Fitness and Complexity is the best method to rank
the countries and their exports according to their importance.
We push the study further to show one additional aspect of
the Fitness and Complexity approach by merging countries’
economies. We show that this approach captures additional
features of the data that cannot be performed by a simpler
approach.

2. Materials and Methods

2.1. International Trade Network. Two different datasets are
used in this work. The first one ranges from 1998 to 2014 and
has been cleaned by the BACI team [8]. The data were taken
from [9]. The second dataset ranged from 1962 to 2000 and
is used for the study of countries’ merging and separation, as
there are several occurrences during this period. This dataset
was cleaned and processed by [10]. Both datasets are repre-
sented as bipartite in which one type of node represents the
countries and the other type represents the products.

1962 to 2000. This dataset is very complete. The documen-
tation lists all the operations that were made on the data, as
well as the problemswemight encounter.The gathering of the
data would seem to be quite easy, as exports are likely to be
registered somewhere.However this is not always the case, for
three main reasons. First, even if we use the word product in
order to simplify the discussion, only the category of prod-
ucts is specified in the data. Some examples of categories
are “domestic, nonelectric, heating, cooking apparatus, and
parts,” “television receivers and color,” and “office and sta-
tionary supplies, of base metal.” This is a very rough cate-
gorization, which can contain products of various qualities.
Some cooking apparatus will break after two uses while a fine
quality one will last for decades. This is also a problem when
the categories change. In 1984, the classification of products
was revised, and so new categories appeared in the dataset. In
order to avoid troubles linked to new categorization, we only
use data from 1984 to 2000.

Secondly, a country (or someone working at the customs)
can misreport a product assigning it to the wrong category
or just misreport the quantity of export. The choice was
made in [10] to give more credibility to the importer reports
over the exporter reports, as they believe it would be more
accurate. This makes sense if we consider that countries have
a tax on imports and so have an interest in an accurate
reporting.When the importer report is not available however,
the exporter report is then considered.Themisreports for cat-
egories were treated by creating additional categories called
“aggregate categories.” In our work, we exclude these aggre-
gates.

The last reason is the absence of many countries’ reports.
In the paper, 72 countries reported to the UN database. How-
ever, we can still find information about the other countries
by considering their trade with the 72 base countries. Some
information is of course missing, as we know nothing about
the trade between two countries that are not part of the 72 that
reported. We can choose to include only 72 countries, or take
all of them into account. The main trouble that arises if we
exclude countries is that some low complexity objects (e.g.,

soy) are considered as high complexity ones because they are
only seldom exported by the 72 countries, while being low
complexity products (being easy to produce compared to a
last-generation smartphone). Nonetheless, previous studies
have used data from both countries inside and outside the
core and obtained coherent results [11, 12].

The products can be categorized with different number
of digits, but we keep only the categories at 4 digits in order
to avoid too many unique items. We discard every product
that is not in the official classification, as theywere aggregately
added by the authors to make the numbers more consistent.
These products are easy to identify as they end with letters A
and X or a 0 in the dataset.

1998 to 2014. This dataset was cleaned using harmonization
techniques in [8]. Contrary to the previous dataset, the
authors try to reconcile the exporter reports with the import-
er reports. When a trade is reported, it is usually done adding
the transport cost on the exporter side, while the importer
does not include this cost. The authors then evaluate the
transport cost using a gravity equation depending on the dis-
tance between the two countries. We use this dataset to study
the recent and the future evolution of countries, as the data
reported in this dataset ismore complete. Since the year 2000,
approximately 150 countries have adopted the classification
used in these data as legal instrument to report their trade.

RCA. In the international trade network, the information
consists of countries’ exports to other countries. We take a
simplified approach here and only consider the total volume
of export in US$ of individual products that a country ex-
ports, and by extension we refer to it as its production.

We represent the data as a bipartite network forwhich one
type of nodes is countries while the other one is products.
Obviously, if a country exports only a tiny amount of a prod-
uct, it should not be considered as an exporter of this product.
The export of a product should be a reasonable fraction of
the economy of the country, and the country should also ex-
port a reasonable fraction of the global export of the product.
We define a clear boundary to choose whether a country is
an exporter of a product or not by considering the “revealed
comparative advantage” (RCA) [3]:

RCA𝑖𝛼 =
𝑒𝑖𝛼/∑𝑗 𝑒𝑗𝛼
∑𝛽 𝑒𝑖𝛽/∑𝑗𝛽 𝑒𝑖𝛽

, (1)

where 𝑒𝑖𝛼 is the export volume of country 𝑖 for product 𝛼 in
US$.We consider that country 𝑖 is an exporter of good 𝛼 only
if RCA𝑖𝛼 ≥ 1. This ratio determines the relative importance
of an export for a country and compares it with its relative
importance for other countries.

Let us take an intuitive example to illustrate the sense
of this metric, based on the values of year 1998 found in
the dataset created by [10]. We compare the relative impor-
tance of chocolate exports for France and Switzerland in
Table 1. Though France exports twice more chocolate than
Switzerland, it is still considered to have less advantage in the
export of chocolate.This is due to the fact that France exports
much more other goods than Switzerland, so it is expected
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Table 1: Illustration using RCA of chocolate for France and Switzer-
land.Thedata are taken from 1998 and the values are given in billions
of US$ [10].

Total of all exports Total for chocolate RCA
France 292 0.68 1.71
Switzerland 83 0.29 2.60
World 5209 7.1 -

that its exports are on average higher than those of Switzer-
land.

After applying the RCA threshold to the international
trade, we can build the international trade network. Instead of
the numerous pieces of information available before the pro-
cedure, we are leftwith binaries information: does this country
export this product? Based solely on this simplified data,
we show how we are able to extract relevant information in
the next sections.

2.2. Methods. One of the first approaches to devise a score
to rank countries and products in the international trade
network was done in [1]. The algorithm is iterative and is
given at step 𝑛 by

𝑘(𝑛)𝑖 =
1
𝑘𝑖
∑
𝛼∈N(𝑖)

𝑘(𝑛−1)𝛼

𝑘(𝑛)𝛼 =
1
𝑘𝛼
∑
𝑖∈N(𝛼)

𝑘(𝑛−1)𝑖 ,
(2)

where 𝑘(𝑛)𝑖 is the score of country 𝑖 and 𝑘(𝑛)𝛼 the score of coun-
try 𝛼. Both scores are initialized with degree (𝑘(0)𝑖 = 𝑘𝑖 and
𝑘(0)𝛼 = 𝑘𝛼). In the original method, a threshold value is set,
and when the total change on the scores is smaller than this
value, the computation stops. The choice of the threshold is
important, as the scores all converge to a trivial fixed point.
The threshold has to be set big enough so that the differences
between scores do not exceedmachine precision; this point is
discussed in [6]. Note that a definition based on eigenvectors
is given in [4] and provides similar results but gets rid of the
need to define a threshold. However, it has been noted in [13]
that stopping the computation after two iterations gives the
most coherent results according to our current knowledge of
the network, as the correlation between the diversification of
a country and its score reduces after additional iterations [6].
We thenmake the choice of stopping the algorithm after only
two iterations. We consider here only the deviations to the
average values obtained with the algorithm and label the
final scores MR𝑐𝑖 and MR𝑝𝛼 for country 𝑖 and product 𝛼,
respectively:

MR𝑐𝑖 =
M̃R𝑐𝑖 − ⟨M̃R𝑐⟩
std (M̃R𝑐)

MR𝑝𝛼 =
M̃R𝑝𝛼 − ⟨M̃R𝑝⟩
std (M̃R𝑝)

.
(3)

M̃R𝑐𝑖 is the value of 𝑘(2)𝑖 and similarly M̃R𝑝 corresponds to 𝑘(2)𝛼 .
⟨M̃R𝑐⟩ stands for average over all scores for countries, and
std(M̃R𝑐) its standard deviation.The score attributed to coun-
tries was shown to have a good predictive power with the
economic growth compared to more traditional metrics [4].

The Fitness and Complexity metrics have been developed
to measure the well-being of countries and their production
[2]. The procedure has been shown to perform well in an
ecological network, by ranking the species according to their
importance in the sustainability of the system [14]. The algo-
rithm has been generalized by exponentiating the product
term [15]. The iterative self-consistent set of equations is
defined as

𝐹𝑛𝑖 = ∑
𝛼∈C𝑖

𝑄𝑛−1𝛼

𝑄𝑛𝛼 =
1

∑𝑖∈C𝛼 1/𝐹𝑛−1𝑖
,

(4)

where 𝐹𝑛𝑖 is the fitness of country 𝑖 and 𝑄𝑛𝛼 the complexity of
product 𝛼 after 𝑛 iterations.The convergence of the algorithm
and its stopping condition were studied in [15].

The idea behind the algorithm is that successful countries
export complex products and complex products are only
exported by successful countries. Indeed, the fitness of a
country in (4) is simply the sum of the complexities of its
exported goods. So a successful country should export many
products, and these products should be of high complexity in
order to achieve a high fitness.The complexity of a product in
(4) is defined in a nonlinear way, which makes effectively the
algorithmnonlinear. Due to the 1/𝐹𝑛−1𝑖 factor in the equation,
the complexity of a product is mainly characterized by the
fitness of its lowest exporter. For instance, if we take a product
𝛼 with two exporters 𝑖 and 𝑗 with fitness values of 0.1 and 10,
respectively, the complexity of the product would be 0.099. If
only country 𝑖 exports the product, the complexity would be
0.1. The two values are close and we clearly see the depend-
ence on the worst exporter. This makes sense for the inter-
pretation of the score as if poor scoring country can export a
good; this good should be of low complexity. And if only high
scoring countries export a good, it should be hard to produce;
otherwise some low fitness country would export it.

3. Results

In addition to the two metrics described previously, we add
the degree for comparison (i.e., number of exports having
a RCA equal to or above 1). The comparison with degree is
lacking in the literature about Fitness and Complexity, and
so we are interested in studying the additional information
brought by the two iterative approaches. Indeed, previous
works have shown a very high correlation between the degree
of countries’ exports and the fitness of these countries [13].

3.1. GDP Prediction. Asmentioned in Introduction, the GDP
growth is one of the main pieces of information about the
economic performance of a country. In order to study the
link between the metrics and the GDP evolution, we show in
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Figure 1 the trajectories of the countries in theGDPper capita
plane coupled with the three different metrics [2] (degree,
Methods of Reflections, and Fitness and Complexity). The
data range from 1998 to 2014 [8].We remark that the countries
that lie in the region with high degree but somehow lower
GDP per capita (such as China and India) tend to have a tra-
jectory with growingGDP.The remark is also valid for fitness,
but forMethods of Reflections it is less visible.The ones in the
region with high GDP per capita compared to their degree
(such as Norway and Iceland) tend to have a more static tra-
jectory along the GDP per capita axis. This remark was made
in [16] for fitness metric. It is hard to distinguish the different
features between degree and Fitness on this graph; the same
three countries (Czech Republic, China, and India) stand out.
The exception is Philippines, which only stands out when
looking at the Fitness metric. Its trajectory is quite flat for the
moment as it just arrived in the supposedGDPgrowth region.
It is hard to distinguish anything in the middle region of the
graph, and so a coarse grained vision is needed in order to be
able to see the tendencies.

Similarly to [16], we average the trajectories from 1998 to
2014 in Figure 3 for the three different metrics coupled with
GDP per capita. In the degree plot, we see that every country
which has a degree superior to about 100 has a significant
GDP growth. The longest arrows can be observed in the far
right regionunder the regression line in red,whichmeans that
the countries in this region experience the biggest growth.
This is evenmore true in the panel with Fitness in Figure 3(c).
The countries in the lower right part of the plot exhibit a
growth significantly higher than in the other regions of the
plane. InMethods of Reflections however, every arrow seems
to point up at the same rate and it is hard to distinguish
particular regions. By eye, the Fitness and Complexity metric
seems to have more discriminating power than the degree,
definitely more than Methods of Reflections. However, it is
hard to draw any hard conclusion on the superiority of Fitness
compared to degree based on these panels. But we will see in
the next section in which domain the Fitness and Complexity
metrics outperform the simple degree metric.

3.2. The Selective Predictability Scheme. In [16], a method
based on the method of analogues [17, 18] was applied to the
prediction of the countries’ GDP. This method is named the
selective predictability scheme. This method is useful in order
to have a clear visualization of the tendencies. The average
displacement in the plane presented in Figure 2 gives only a
general tendency. But we can also ask the question: can we
predict where the country will land in the plane in the future?
If we can say with high probability where a country will be
in the future according to its current position in the plane, it
is also an interesting observation, while this may disappear
in the averaging procedure used in the arrows picture. The
evaluation goes as follows:

(i) The GDP-Fitness space in logarithmic plane is divid-
ed into boxes.

(ii) We report the box in which countries are at a given
year and the one at which they end ten years later.

(iii) The total number of countries inside box 𝑖 at year 𝑡 is
𝑁𝑖𝑡, and the number of different boxes occupied after
ten years’ evolution coming from box 𝑖 is labeled 𝑛𝑖𝑡.

(iv) For each box, we evaluate the quantityC𝑖𝑡 = (𝑛𝑖𝑡/𝑁𝑖𝑡 −
1/𝑁𝑖𝑡)/(1−1/𝑁𝑖𝑡).This quantity is related to the disper-
sion of the box. Indeed, if the evolution of countries
is highly unpredictable, 𝑛𝑖𝑡 is large, and soC𝑖𝑡 is large.
Conversely, if countries tend to have a predictable
evolution, they would end in the same boxes, and so
𝑛𝑖𝑡 would be small, resulting in a smaller value forC𝑖𝑡.

The results for the three metrics are displayed in Figure 3.
At first glance, it seems that degree and Fitness perform
similarly, while Method of Reflections does not show exhi-
bition and predictability. There are more boxes indicating
low predictability (red) in the case of degree than for fitness.
However there are also more boxes with high predictability
(dark green).There are two shortcomings with themethod of
analogues. The first one is that the results are only graphical;
it is then hard to say that a method is more adequate than
another. The second one is that the results are dependent on
the number of boxes we choose, as well as the range of the
axis.

Themethod of analogues assigns a predictability score for
the countries located inside specific boxes.Then, by summing
over the predictability scores, the result should account for an
overall predictability of the method. However, we need to get
rid of the strong dependency on the choice of the number
of boxes and their location. With this in mind, we propose
to sum over all the boxes, taking into account the number of
occupied boxes𝑁occ as a parameter. The score is as follows:

P
𝑆 = P ⋅ 2 log (𝑁occ)𝑛 , (5)

where P = ∑𝑖,𝑡 1 − C𝑖𝑡 and 𝑛 is the number of events used
during the computation, where an event is defined as the
presence of a country in a box. The fact that 𝑛 is important is
because we only take into account the events that are located
in a boxwith at least five events.We choose to take the inverse
of the dispersion in the sum, so that a high value of overall
predictability P means that the prediction is accurate. The
results are shown in Figure 4 as a function of the number
of boxes occupied 𝑁occ. The shadowed areas represent the
standard deviation over 256 different choices of axis limits.
The choice of the axis limits matters as the boxes are shifted
depending on which values are comprised in the boxes. For
instance, in case (a) the first interval is [0.1,0.2] and in case
(b) [0.12,0.22]. A dot located at 0.21 would be inside the first
interval in case (b) but not in case (a). It is quite obvious
that Methods of Reflections performs bad, especially that the
results are highly dependent on the choice of axis’ limits.
While it is clear that the Method of Reflections has a poor
predictability, it is clear that degree is performing better than
Fitness and Complexity. We argue that this shows the predic-
tive power of Fitness andComplexity is different from the one
of diversification. Indeed, the scorewas developed to take into
account the evolution of outliers.While diversification would
grasp a better general trend, Fitness and Complexity method
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respective trajectory.

has already proven to be a good predictor for countries in
specific location [19].

3.3. Effects of Countries’ Unification on the Fitness of Countries.
What happens if countries decide tomerge their exports?Will
their fitness increase or will it decrease? This could go both
ways, as the countries would lose some exports due to the
RCA threshold: if the total export increases and the export
for a specific product remains nearly constant, the RCA value
can drop under one. Or in a different case if two countries
export a lot to each other, they will lose a lot of exports
when unifying. We show that some countries would benefit

from a unification while some would worsen their fitness
score. Fortunately, the unification and separation of countries
happen several times in the dataset. We take the example of
Germany, Czechoslovakia, and Yugoslavia to illustrate how
the unification or separation of economies affects the fitness
of countries. In a second time, we take artificial example to
show that it is hard to predict which country would benefit
from a unification and which one would not. This depends
mainly on the details of their exports and not solely on their
current fitness value.

In the original exports data, which country exports which
products to another country is specified. While we chose to
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simplify the data and take into account only the total exports
for each product in the previous sections, the detailed data
now prove useful when unifying the countries, as we are able
to subtract the exports between them.We would like to stress
before starting the analysis thatwe can onlymerge the exports
of countries and not their ability to produce goods. Indeed,
when two economies unify together, it is possible that their
common capabilities on manufacturing can be combined to
produce new goods or to increase significantly their export
for a product [1, 6].

3.3.1. Real-World Examples. It happened several times during
the world history that some countries decided to unify or
that a country choose to separate into smaller ones. We
investigate the case of separation and unification from a
purely economic point of view, without considering any other
factors. The question of interest here is to know whether the
fitness of the countries increases or decreases in the process.
If we theoretically unify two countries and the fitness of
these two countries increases, the countries would have an
economic benefit to unify. On the other hand, if the fitness
of the countries decreases when theoretically unified, the

country with the highest fitness would not benefit from the
unification.

We study three real-world cases.The first is the reunifica-
tion of East andWest Germany in 1990. Nowadays, Germany
is one of the top economies in the world; while we cannot
study the imaginary economy that would result if current
Germany would split again, we can merge the old East and
West Germany. It is well-known that the West was more
economically successful than the East in 1990. However, if the
two economies are complementary, it is possible that theWest
could benefit from a merging as well. This is highly probable
as the two parts of the countries were totally disconnected
and the political systems were completely different. We show
in Figure 5(a) the theoretical merge of the two Germanies.
Not surprisingly, the fitness of West Germany is higher than
the one of East Germany before 1990. We can see that the
fitness of Germany starts to rise before 1990; this is due to
the fact that data and some exports were referenced before
the official classification; however the total export volume is
really low. The curve named merge is the theoretical merge
of the two Germanies. We observe that it is constantly higher
than both the fitness of theWest and East Germany.We could
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Figure 3: The selective predictability scheme with𝑁 = 10 for the three different metrics. A low value means a low dispersion and so a high
predictability, while a high value means unpredictability.

say that if the countries were to merge, they would benefit
from it. And eventually they merged and became one of the
strongest economies in the world, even the first according
to the Fitness and Complexity metric. We do not show any
confidence interval; however the robustness to noise is high
and, most importantly, the tendency is consistent with years.

Our second example is the dissolution of Czechoslovakia
into Czech Republic and Slovakia in 1992. The cause of
the dissolution was mainly political, but there were also
economic tensions [20]. The Slovaks had the impression that
they were paying for the Czech, which seems to be true as
the leading parties were mostly Czech and promoted Czech
interests first. These tensions and the strong nationalism of
Slovaks led to the separation of Czechoslovakia. The fitness
of Czech Republic and Slovakia, Czechoslovakia before the
dissolution, and the theoretical merge after the dissolution of
Czechoslovakia are shown in Figure 5(b). In contrary to the
Germany case, we see that the Czech Republic scores higher
in the fitnessmetric than themerge of the two states.This is an
interesting observation aswe could claim thatCzechRepublic
had a strong economic benefit in this dissolution.

The last example is the dissolution of Yugoslavia into
Slovenia, Macedonia, Bosnia andHerzegovina, Albania, Fed-
eral Republic of Yugoslavia (Serbia and Montenegro), and

Croatia. According to [21], The Yugoslavian state, which was
created after the first world war, was held together by having
common enemies, especially Italy at that time. During the
20th century, there were many tensions in Europe and so the
state stayed united in case of an attack. Due to the lack of
pressure from the East, the ethnic tensions became stronger
than the necessity of staying together against a stronger
enemy. From 1991 to 1992, the state gradually separated into a
multitude of smaller states. As for the two previous examples,
the results are shown in Figure 5(c). Among all the states, only
Slovenia benefited from the dissolution in terms of fitness.
In a very short term, the Federal Republic of Yugoslavia also
benefited from it, but the wars that created the dissolution
certainly damaged strongly its economy.

In our three real-world examples, when two countries
would benefit from merging, they end up by merging
together. And when one country would benefit from a dis-
solution, they end up separating. We note that these are only
anecdotal evidences, and there are factors affecting the disso-
lution or merging other than the economic factor. However
the economy of a country in general reflects well its stability,
its dynamism, and its well-being. As observed in the pre-
vious section about GDP, fitness does not necessarily add
information when compared to degree. It is then natural to
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Figure 5: Comparison of countries’ fitness values before they merge together or before they dissolve. The cases of Germany, Czechoslovakia,
and Yugoslavia are presented in the panels.

ask the question: could we have obtained the same results
by using only degree? We show the equivalent with degree
in Figure 6. We see that it is in general less pronounced
than with fitness and sometimes quite different. For instance,
Slovenia performs worse than the merge when considering
the degreemetric, andWestGermany performs very similarly
to the merged Germanies. Another important point to note
is the fact that the degree is nearly perfectly continuous
and does not undergo tremendous variations. Conversely,
Fitness shows some quick variations, which shows that it
captures additional information that is hidden in a traditional
approach.

3.3.2.Theoretical Cases. We saw in the previous section that if
we merge economies together, the resulting economy can be
either stronger or weaker in terms of fitness. But so far we did
not investigate themechanisms behind this result. In order to
find the explanation for this phenomenon, we take fictitious

example by merging one country with every other country in
the dataset. By studying the relations between the countries
when the fitness goes up, or goes down, we should be able to
identify the common property between positive and negative
merges.

We present the results of merging for four different
countries in Figure 7. Obviously, it is not trivial to see if the
fitness score of a country will rise or fall when merging. We
see a clear dependency on the fitness of the target country;
however it is only a tendency. For instance, Italy would benefit
from merging with the two countries with the highest fitness
scores (Germany and USA), while Japan would see its fitness
decreasing. At the same time, the base countries rarely benefit
from merging with a country with lower fitness. This is also
interesting as it shows that this is quite rare and our previous
example with West and East Germany is a special case. It
is also surprising to see in the case of Italy that, even when
merging with a country having a higher fitness, the fitness
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Figure 6: Comparison of countries’ degrees before they merge together or before they dissolve. The cases of Germany, Czechoslovakia, and
Yugoslavia are presented in the panels.

of Italy decreases significantly. This country that would make
the fitness of Italy lower is actually France.

There is of course a dependency on the fitness of the
target country, but it is not the only factor. As we see in
Figure 7, the share of common exports is not an explanatory
factor. However, we see that Japanwould in general gainmore
fitnesswhenmergingwith another country and that it has less
common exports with other countries than the other three
base countries. While we found no solid predictor to find if a
countrywould benefit from amerge or not, it would definitely
be linked with the rarity of their exports’ basket. One possible
way to investigate this problem would be to also take into
account the complexity scores of the products they have or
not in common. If they mostly share low complexity exports
and have few high complexity products in common, a merge
would add more high complexity products, while if they
already share most high complexity products, a merge would
not add many new products in the process.

4. Conclusion

Fitness and Complexity was shown to be the top performing
algorithm to rank the countries and products according to
their importance and allowed the exhibition of additional fea-
tures compared to other approaches. While it is hard to con-
clude on its ability to predict economic growth of countries, it
is undeniable that it captures additional information. In this
work, we showed away of comparingmethods and a potential
use of the methods’ additional information. As shown in a
previous study [22], the Fitness analysis can help the weak
economies to understand how to exit the poverty trap, by
increasing complexity of their exported products and increas-
ing their diversification. Surprisingly, we saw that it is a good
predictor for the economic results in case of the merging
and separation of countries. While the analysis of the results
remains a difficult task, a deeper understanding of the fitness
changewhen two countriesmerge together orwhen a country
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separates itself into smaller countries would tell us a lot about
the metrics and the economic behaviour of countries.
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Link prediction uses observed data to predict future or potential relations in complex networks. Anunderlying hypothesis is that two
nodes have a high likelihood of connecting together if they sharemany common characteristics.The key issue is to develop different
similarity-evaluating approaches. However, in this paper, by characterizing the differences of the similarity scores of existing and
nonexisting links, we find an interesting phenomenon that two nodes with some particular low similarity scores also have a high
probability to connect together. Thus, we put forward a new framework that utilizes an optimal one-variable function to adjust
the similarity scores of two nodes. Theoretical analysis suggests that more links of low similarity scores (long-range links) could
be predicted correctly by our method without losing accuracy. Experiments in real networks reveal that our framework not only
enhances the precision significantly but also predicts more long-range links than state-of-the-art methods, which deepens our
understanding of the structure of complex networks.

1. Introduction

Modern science and engineering techniques increase our
availability to various kinds of data including online social
networks, scientific collaboration networks, and power grid
networks [1–5]. Many interesting phenomena could be
uncovered from these networks. For example, analyzing the
data of Facebook and Twitter helps find lost friends by only
counting their common friends [6, 7] and recommendation
systems in online stores [8, 9]. Restricted by instrument
accuracy and other obstacles, we only obtain a small fraction
or a snapshot of the complete networks [10, 11], promoting
us to filter the information in complex networks [12–14].
Link prediction is a straightforward approach to retrieve
networks by predicting missing links and distinguishing
spurious links [15–17].Thus great efforts have been devoted to
link prediction in recent years [16, 18]. Link prediction is used
in different kinds of networks, including unipartite networks
and bipartite networks, where unipartite networks consist of
nodes with the same type (e.g., social networks and neural
networks) and bipartite networks consist of nodes with two

types (e.g., user-object purchasing networks and user-movie
networks) [19, 20].

In classical link prediction approaches, similarity scores
are computed first for two disconnected nodes, and then
nonexisting links in the top of the score list are predicted
as potential ones [16]. Consequently, the key issue is to
search effective score-assigning methods that are mainly
divided into three categories [16, 21]: similarity based algo-
rithms, Bayesian algorithms, and maximum likelihood algo-
rithms. First, similarity based algorithms [22–24] suppose
that similar nodes have a high probability to link together.
Similarities are evaluated by common neighbors, random
walk resource allocation, and some other local and global
indices. Second, Bayesian algorithms [25–27] abstract the
joint probability distribution from the observednetworks and
then utilize conditional probability to estimate the likelihood
of a nonexisting link.Third, maximum likelihood algorithms
[28, 29] presuppose that some underlying principles rule the
structure of a network, with the detailed rules and specific
parameters obtained by maximum likelihood estimation.
Scores of nonexisting links are acquired through the details of
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these principles.Most of thesemethods favor predicting links
with high similarity scores and performbadly in the detection
of long-range links with low similarities.

In the aforementionedmethods, the basic hypothesis that
two nodes with a high similarity score have a high likelihood
of connecting together lacks an in-depth illustration. Recent
works have demonstrated that long-range links exist exten-
sively in complex networks and play an important role in
routing, epidemical diffusion, and other dynamics [30, 31].
However, in practice, the endpoints of a long-range link
usually have weak interaction and low similarity [30], which
prevents the detection of long-range links by traditional
methods [32, 33]. Hence, the structural patterns underlying
the networks are of great importance to study.

Our study takes a different but complementary approach
to link prediction problem. By analyzing the score dis-
tributions of existing and nonexisting links, respectively,
we find an interesting phenomenon that the existing and
nonexisting links follow different connecting patterns in
respective of their similarity scores. Then, inspired by the
precision-recall curves [34–36], we propose a metric, named
precision-to-noise ratio (PNR), to characterize the ability to
distinguish potential links for different scores. PNR describes
the local precision of a given set of links with the same
score. Based on PNR, a novel framework, which projects
one-variable function to adjust the scores of a given method,
is put forward. We argue that the framework finds the
optimal transforming function that exploits the full capacities
of traditional link prediction methods and improves their
performance both on precision and on the detection of
long-range links. Experiments in six real-world networks
demonstrate the effectiveness of our method.

The rest of the paper is organized as follows. In Section 2,
we first brief the link prediction problem and then introduce
our proposed method. In Section 3, we compare the perfor-
mances of our method and the classical methods. Finally, the
conclusion is given.

2. Materials and Methods

We give the link prediction formulism in Section 2.1 and the
baseline method in Section 2.2. Our proposed framework is
introduced in Section 2.3.

2.1. Network Formation and Metrics. Given a network 𝐴 =
(𝑎𝑖𝑗)𝑁×𝑁, 𝐸 = {(𝑖, 𝑗) | 𝑎𝑖𝑗 ̸= 0} with 𝑎𝑖𝑗 = 1 if node 𝑖 connects
to 𝑗; otherwise, 𝑎𝑖𝑗 = 0. When evaluating the prediction
performance, we usually divide the links randomly into 1−𝑝𝐻
training set 𝐸𝑇 and 𝑝𝐻 probe set 𝐸𝑃 (𝑝𝐻 ∈ (0, 1)), with
𝐸𝑇⋂𝐸𝑃 = 0 and 𝐸𝑇⋃𝐸𝑃 = 𝐸. The goal is to accurately
predict the links in probe set only by using the information
in training set.

We first assign a score to each nonexisting link and
then choose links with the highest top-L scores as potential
ones. State-of-the-art similarity evaluation methods could
be utilized to carry out link prediction, including common
neighbors (CN), Jaccard index (JB), resource allocation index
(RA), local path index (LP), and structural perturbation
method (SPM) (see the part of Baseline and [38]).

There are two popular metrics to characterize the accu-
racy: area under the receiver operating characteristic curve
(AUC) [39] and the precision [40, 41]. AUC can be inter-
preted as the probability that a randomly chosen missing
link (i.e., a link in 𝐸𝑃) has a higher score than a randomly
chosen nonexisting link. Then, AUC requires 𝑛 times of
independent comparisons. We randomly choose a real link
and a nonexisting link to compare their scores. After 𝑛
different comparisons, we record 𝑛1 times where real links
have higher scores, and 𝑛2 times where the two kinds of links
have the same score. The final AUC is calculated as

AUC = 𝑛1 + 0.5 × 𝑛2
𝑛

. (1)

If all the scores are given by an independent and identical
distribution, then AUC should be around 0.5. A higher AUC
is corresponding to a more accurate prediction.

Another metric is precision that characterizes the ratio of
correctly predicted links for a given prediction list. That is to
say, if the length of prediction list is 𝐿, among which 𝐿𝑟 links
are the right potential links, then the precision is

𝑝 = 𝐿𝑟
𝐿
. (2)

Clearly, higher precision means higher prediction accuracy.
Intuitively, higher accuracy means higher AUC and higher
precision. In the experiments, we will see that precision has
little correlation with AUC and that improving the precision
may not result in the improvement of AUC.

2.2. Baseline PredictionMethods. There exists a large number
of score-assigning approaches in link prediction problem.
All these methods could be introduced into our framework.
Though we only investigate some state-of-the-art score-
assigning approaches, the results and conclusions are also
applicable for other score-assigning methods. The five score-
assigning approaches [6, 16] are as follows.

(i) Common Neighbor (CN). The metric supposes that if two
nodes 𝑖 and 𝑗 have more common neighbors, they are more
likely to connect together. The neighborhood overlap of the
two nodes is as follows:

𝑠CN𝑖𝑗 = 󵄨󵄨󵄨󵄨󵄨Γ (𝑖)⋂Γ (𝑗)󵄨󵄨󵄨󵄨󵄨 , (3)

where Γ(𝑖) is the neighbor set of node 𝑖 and | ⋅ ⋅ ⋅ | indicates the
size of a set.The drawback of CN is that it favors large-degree
nodes.Though the similarity of two large-degree nodes is low,
they still have many common neighbors.

(ii) Jaccard Coefficient (JB). Jaccard is a conventional similar-
ity metric that aims to suppress the influence of large-degree
nodes, which is

𝑠Jaccard𝑖𝑗 =
󵄨󵄨󵄨󵄨Γ (𝑖)⋂ Γ (𝑗)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ (𝑖)⋃ Γ (𝑗)󵄨󵄨󵄨󵄨

. (4)

Since the similarity is normalized by the size of the union set
of the two nodes’ neighbors, low similarity still exists between
two large-degree nodes even though they may have many
common neighbors.



Complexity 3

(iii) Resource Allocation (RA). This index is inspired by the
resource allocation dynamics in complex networks. Given a
pair of unconnected nodes 𝑖 and 𝑗, suppose that the node 𝑖
needs to allocate some resource to 𝑗, using common neigh-
bors as transmitters. Each transmitter (common neighbor)
starts with a single unit of resource and then distributes it
equally among all its neighbors. The similarity between 𝑖 and
𝑗 can be calculated as the amount of resource received from
their common neighbors:

𝑠RA𝑖𝑗 = ∑
𝑧∈Γ(𝑖)⋂ Γ(𝑗)

1
𝑘𝑧
. (5)

Comparing with Jaccard method, RA could also suppress
the influence of large-degree nodes, but more specifically.
Different neighbors contribute to the similarity differently.
If two nodes prefer to connect low-degree nodes, it means
that they have a higher probability to share common interests
or characteristics. However, many pair-nodes have common
high-degree neighborhoods, resulting in that high-degree
nodes play a weak role when evaluating similarity. Based
on the idea, Adamic-Adar (AA) index is obtained by using
log(𝑘𝑧) instead of 𝑘𝑧 in (5).

(iv) Local Path (LP). CN considers the intersection of neigh-
borhoods, which actually utilizes the one-path neighbors to
characterize similarity. LP takes a general consideration of
paths by considering two-path neighbors:

𝑠RA = 𝐴2 + 𝜖𝐴3, (6)

where 𝐴 is the adjacent matrix of a network and 𝜖 is a
small positive number. LP supposes that one-path neighbors
contribute more to the similarity than two-path neighbors.
LP is the low order parts of Katz method (𝑠Katz = 𝐴2 + 𝜖𝐴3 +
𝜖2𝐴4 + ⋅ ⋅ ⋅ ), but with much lower computing complexity.

(v) Structural Perturbation Method (SPM). Lü et al. [6] sup-
pose that network structure follows consistency after some
random perturbation. In SPM, training set𝐴𝑇 is divided into
a small fraction of perturbation set Δ𝐴 and the remaining set
𝐴𝑅 (𝐴𝑇 = 𝐴𝑅 + Δ𝐴). 𝐴𝑇 has similar eigenvectors with 𝐴𝑅,
but different eigenvalues. For the 𝑘th largest eigenvalues of
𝐴𝑇 and 𝐴𝑅,

Δ𝜆𝑘 = 𝜆𝑘 (𝐴
𝑇) − 𝜆𝑘 (𝐴

𝑅) ≈
𝑥𝑇𝑘Δ𝐴𝑥𝑘
𝑥𝑇𝑘𝑥𝑘

, (7)

where 𝑥𝑘 is the eigenvector of 𝐴𝑅, corresponding to 𝜆𝑘(𝐴𝑅).
The similarity matrix 𝑠 = (𝑠𝑖𝑗)𝑁×𝑁 is

𝑠 =
𝑁

∑
𝑘=1

(𝜆𝑘 + Δ𝜆𝑘) 𝑥𝑘𝑥
𝑇
𝑘 . (8)

SPM first divides a network into training set and probe
set and further divides the training set into perturbation set
and the remaining set. For a given division of training and
probe set, we calculate the average of 10 times independent
simulations of (8) as the similarity matrix.

Apart from the five similarity metrics introduced above,
for more similarity-evaluating methods, please refer to [42,
43].

2.3. The Proposed Method. We start our framework by rein-
vestigating the definition of precision. Supposing that 𝑠𝑖𝑗 is
the similarity score of nodes 𝑖 and 𝑗 obtained by a prediction
method ϝ only based on training set𝐸𝑇, 𝑝𝑟(𝑠) is the similarity
distribution that a randomly chosen existing link in training
set has score 𝑠, and 𝑝𝑛(𝑠) is the similarity distribution that
a randomly chosen nonexisting link in the training set has
score 𝑠. Due to random division of training set and probe
set, links in the probe set should have the same similarity
distribution with that of the training set at high confidence
according to the law of large numbers [44, 45]. Thus we
would not differentiate similarity distribution of existing
links in the training and probe sets in the following paper.The
assumption is reasonable according to the statistical theory
if the size of samples goes to infinity [44, 45]. Since classical
methods only predict links with high scores, the estimated
precision of the method ϝ is written as

𝑝0ϝ =
󵄨󵄨󵄨󵄨󵄨𝐸
𝑃󵄨󵄨󵄨󵄨󵄨 ∫
𝑠max

𝑐0
𝑝𝑟 (𝑠) 𝑑𝑠

󵄨󵄨󵄨󵄨𝑈 − 𝐸𝑇󵄨󵄨󵄨󵄨 ∫
𝑠max

𝑐0
𝑝𝑛 (𝑠) 𝑑𝑠

, (9)

where |𝐸𝑃| is the size of 𝐸𝑃, 𝑐0 is a constant, and 𝑈 is the
whole set of all possible links (|𝑈| = (1/2)𝑁(𝑁 − 1)). 𝑠max
is the maximum score. In real scenarios, the length of the
prediction list is usually the size of the probe set [16], which
requires 𝑐0 subjecting to |𝑈 − 𝐸𝑇| ∫𝑠max

𝑐0
𝑝𝑛(𝑠)𝑑𝑠 = |𝐸𝑃|. If

𝑝𝑟(𝑠) ≪ 𝑝𝑛(𝑠) at 𝑠 > 𝑐0, the precision 𝑝ϝ → 0. Otherwise,
𝑝𝑟(𝑠) ≫ 𝑝𝑛(𝑠) gives rise to a high precision. Since only links
with top-L highest scores are predicted as potential links,
precision could be calculated by (2) [6, 16]. Equation (2) is
a much easier formula to describe precision than (9).

Most previous link prediction methods only predict links
with high similarity scores. We generalize (9) by considering
links of different similarities. Supposing that links with scores
𝑠𝑖𝑗 ∈ 𝑆 = (𝑠1, 𝑠2)⋃(𝑠3, 𝑠4) ⋅ ⋅ ⋅ ⋃(𝑠2𝑚−1, 𝑠2𝑚) are predicted as
potential links, the precision is as follows:

𝑝ϝ =
󵄨󵄨󵄨󵄨󵄨𝐸
𝑃󵄨󵄨󵄨󵄨󵄨 ∫𝑆=(𝑠1 ,𝑠2)⋃(𝑠3 ,𝑠4)⋅⋅⋅ ⋃(𝑠2𝑚−1 ,𝑠2𝑚) 𝑝𝑟 (𝑠) 𝑑𝑠

󵄨󵄨󵄨󵄨𝑈 − 𝐸𝑇󵄨󵄨󵄨󵄨 ∫𝑆=(𝑠1 ,𝑠2)⋃(𝑠3 ,𝑠4)⋅⋅⋅ ⋃(𝑠2𝑚−1 ,𝑠2𝑚) 𝑝𝑛 (𝑠) 𝑑𝑠
, (10)

where 𝑠1 < 𝑠2 < 𝑠3 < ⋅ ⋅ ⋅ 𝑠2𝑚−1 < 𝑠2𝑚. To confine the
length of the prediction list, a precondition requires |𝑈 −
𝐸𝑇| ∫
𝑆
𝑝𝑛(𝑠)𝑑𝑠 = |𝐸𝑃|. Note that, in most previous works, 𝑆 =

(𝑐0, 𝑠max), and equation (10) reduces to (9). Our generalized
precision equation (10) considers links with both high and
low scores.

The main concern is to select appropriate set 𝑆 in (10) to
maximize the precision. We propose precision-to-noise ratio
(PNR) to determine 𝑆,

PNR (𝑠) =
𝑝𝑟 (𝑠)
𝑝𝑛 (𝑠)

, (11)
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Figure 1: Schematic shows the proposed framework based on CN. (a) A snapshot of a large network. (b) Score of nonexisting links calculated
by CN method. (c) The top panel is the score distributions of existing and nonexisting links, 𝑝𝑟(𝑠) and 𝑝𝑛(𝑠). The bottom panel is PNR(𝑠) =
𝑝𝑟(𝑠)/𝑝𝑛(𝑠). (d) Predicted links. State-of-the-art prediction methods follow the path (a)→(b)→(d), while our proposed framework follows
the path (a)→(b)→(c)→(d), which has an additional path PNR(𝑠).

where PNR(𝑠) measures the ability to distinguish real links
with the same score. Note that a nonexisting link in training
set may be an existing link in probe set. Given a nonexisting
link in training setwith the similarity 𝑠𝑖𝑗, the probability that it
is an existing link in probe set (i.e., the precision) is𝑝󸀠 = (|𝐸𝑃|⋅
𝑝𝑟(𝑠))/(|𝑈−𝐸𝑇| ⋅ 𝑝𝑛(𝑠)) = 𝛼PNR(𝑠), where 𝛼 = |𝐸𝑃|/|𝑈−𝐸𝑇|
is a constant.

The central issue of our framework is to use PNR(𝑠)
to determine the optimal score set 𝑆. We first calculate the
similarity scores of all links only based on training set by
a traditional method. Second, 𝑝𝑟(𝑠), 𝑝𝑛(𝑠), and PNR(𝑠) are
computed. Third, we reassign the scores of each link 𝑠󸀠𝑖𝑗 =
PNR(𝑠𝑖𝑗), where 𝑠𝑖𝑗 is the original similarity score by the
first step. Finally, we sort links in the descending order of 𝑠󸀠
and links with top-L scores are predicted as potential links
[16, 18].The optimal score set 𝑆opt corresponds to the original
similarity scores whose reassigned scores rank in the top-L
score list.

Different kinds of similarity evaluations could be intro-
duced into the framework. Taking CN similarity method as
an example, our framework is as follows:

(1) Divide the links of a network into 1 − 𝑝𝐻 training set
and 𝑝𝐻 probe set randomly.

(2) Calculate the similarity scores of all existing and
nonexisting links by CN method only according to
training set.

(3) Calculate PNR(𝑠). Divide the scores into 𝐾 uniform
bins and count how many existing (𝑛𝑒,𝑖) and nonex-
isting (𝑛𝑛,𝑖) links locate in each bin 𝑖 (i.e., calculate
discrete 𝑝𝑟(𝑠), 𝑝𝑛(𝑠)). Then we obtain PNR(𝑠𝑘) =
𝑝𝑟(𝑠𝑘)/𝑝𝑛(𝑠𝑘), 𝑘 = 1, 2, . . . , 𝐾. Note that if 𝑝𝑛(𝑠𝑘) = 0,
we define PNR(𝑠𝑘) = 0.

(4) Obtain the readjusting scores of the nonexisting links
in training set by 𝑠󸀠 = PNR(𝑠).

(5) Determine the prediction list by choosing links with
𝐿 = |𝐸𝑃| highest scores 𝑠󸀠, and calculate the precision.

Figure 1 depicts the proposed framework based on
CN method. After obtaining the similarity scores of links
(Figure 1(a)→1(b)), traditional CN method directly predicts
potential links according to the scores (Figure 1(b)→1(d)),
while the proposed framework calculates PNR(𝑠) (Figures
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Table 1: Structural properties of the different real networks. Structural properties include network size (𝑁), link number (𝐸), degree
heterogeneity (𝐻 = ⟨𝑘2⟩/⟨𝑘⟩2), degree assortativity (𝑟), average clustering coefficient (⟨𝐶⟩), average shortest path length (⟨𝑑⟩), and sparsity.

Network 𝑁 𝐸 𝐻 𝑟 ⟨𝐶⟩ ⟨𝑑⟩ Sparsity
Email 33696 180811 6.070 −0.060 0.170 4.08 3.2 × 10−4

PDZBase 161 209 2.263 −0.466 0.001 5.11 1.6 × 10−2

Euroad 1039 1305 1.228 0.090 0.004 18.39 2.4 × 10−3

Neural 297 2148 1.81 −0.163 0.292 2.46 4.9 × 10−2

Roundworm 453 2025 4.485 −0.226 0.647 2.66 2.0 × 10−2

USair 332 2126 3.464 −0.208 0.625 2.74 3.9 × 10−2

1(b)→1(c)) and later predicts potential links according to the
modified scores (Figures 1(c)→1(d)).

An important property of our framework is that if 𝑆
is determined according to PNR(𝑠), that is, PNR(𝑥) >
PNR(𝑦), ∀𝑥 ∈ 𝑆, ∀𝑦 ∈ R − 𝑆, the precision 𝑝ϝ could exploit
full capacity of a given similarity-evaluating method. PNR(𝑠)
is the optimal transforming function 𝑓opt(𝑠) = PNR(𝑠).
It means that no matter how we transform the similarity
by other one-variable function, 𝑠󸀠󸀠 = 𝑓󸀠(𝑠), the precision
performance of 𝑠󸀠󸀠 cannot outperform the proposed method
by PNR(𝑠). For the proof of the optimal PNR(𝑠), please see
part I in the supplementary materials.

3. Experimental Results

We first describe the six real networks in Section 3.1. The
precision comparison between our method and the baseline
methods is given in Section 3.2. Finally, the characteristics of
the predicted links by different methods are investigated in
Section 3.3.

3.1. Datasets. To verify the effectiveness of the proposed
method, we measure the performance of our framework
in six empirical networks from diverse disciplines and
backgrounds: (1) email [46]: Enron email communication
network covers all the email communication within a dataset
of around half million emails; nodes of the network are
email addresses and if an address 𝑖 sent at least one email
to address 𝑗, the graph contains an undirected link from 𝑖
to 𝑗; (2) PDZBase [47]: an undirected network of protein-
protein interactions from PDZBase; (3) Euroad [48]: inter-
national E-road network that locates mostly in Europe; the
network is undirected, with nodes representing cities and
links denoting e-road between two cities; (4) neural [49]: a
directed and weighted neural network of C. elegans; (5) USair
[6]: an directed network of flights between US airports in
2010; each link represents a connection from one airport to
another in 2010; (6) roundworm [49]: a metabolic network of
C. elegans.

Different real networks contain directed or undirected,
weighted or unweighted links. To simplify the problem, we
treat all links undirected and unweighted. Besides, only the
giant connected components of these networks are taken into
account. This is because for a pair of nodes located in two
disconnected components, their similarity score will be zero
according to most prediction methods. Table 1 shows the
basic statistics of those networks.
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Figure 2: AUC and precision of the USair network obtained by
five different approaches: common neighbors (CN), Jaccard index
(JB), resource allocation index (RA), local path index (LP), and
structural perturbation method (SPM). The results are obtained by
50 independent simulations. SPM method achieves high precision,
yet low AUC, and JB has low precision, but high AUC (>0.9).

3.2. Precision Evaluation. In the experiments, we set 𝑝𝐻 =
10% that means the networks are randomly divided into 90%
training set and 10% probe set. All the experiments are the
average of 50 independent simulations.

Figure 2 shows AUC and precision of five different
methods in USair network. In Figure 2, CN method achieves
low AUC, yet high precision, whereas RA method achieves
similar AUC with methods of CN, JB, and SPM, but much
lower precision. Apart from USair network, the deviation
between AUC and precision also exists in other real-world
networks (see FIG. S1 in the supplementary materials). The
main reason is that AUC characterizes the score difference
between existing and nonexisting links in the whole net-
works, whereas precision only counts the links with top-L
high scores. Specifically, from the perspective of score dis-
tributions, AUC = ∫+∞

−∞
𝑝𝑟(𝑥) ∫

𝑥

−∞
𝑝𝑛(𝑦)𝑑𝑥 𝑑𝑦. Comparing

with (10), the definitions of the two metrics are completely
different, resulting in little correlation between them.

Figure 3 shows PNR and the score distributions of exist-
ing and nonexisting links for USair network by CN method.
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Table 2: Maximal precision comparison of the proposed methods and traditional high-similarity methods for six real-world networks.
Traditional precision is obtained by the maximum of traditional methods, that is, max{CN, Jaccard,RA, LP, SPM}. Proposed precision is
obtained by our framework, that is, max{PNRCN,PNRJaccard,PNRRA,PNRLP,PNRSPM}.

Email PDZBase Euroad Neural Roundworm USair
Traditional 𝑝max 0.0171 0.0032 0.0052 0.0107 0.2651 0.4670
Proposed 𝑝max 0.0313 0.3159 0.0674 0.0392 0.3475 0.5309

D
ist

rib
ut

io
n 0.1

1E − 3

1E − 5

1E − 7

Similarity
0 20 40 60

pr(s)

pn(s)

(a)

Similarity
0 20 40 60

PN
R(

s)

30

20

10

0

(b)

Figure 3: Similarity distributions and the corresponding PNR(𝑠) of USair network, where the similarity is obtained by CN method. (a)
Similarity distributions of the existing and nonexisting links, 𝑝𝑟(𝑠) and 𝑝𝑛(𝑠), respectively. (b) PNR(𝑠) as a function of similarity in USair
network.

In Figure 3(a), the scores of existing and nonexisting links
follow power law distribution largely. High scores sometimes
correspond to low PNR, especially at Similarity ≈ 60 (see
Figure 3(b)). Nevertheless, some low scores achieve high
PNR, indicating that for a nonexisting link in training set
with this particular score, the link is likely to be an existing
link in probe set. For a nonexisting link in training set
with high score, yet with low PNR, it has a high proba-
bility not to be an existing link in probe set. The similar
phenomenon also exists in other networks (see FIG. S2 in
the supplementary materials). In consequence, the foun-
dation of traditional methods, which suppose that similar
nodes have a high likelihood to form links, is confronted
with great challenges in precisely predicting links of low
similarities.

Figure 6 shows the precision difference between the
proposed PNR methods and the baseline methods. Our
proposed method enhances precision remarkably compared
with the original methods in most cases. Some fluctua-
tion exists in these methods, due to the limited size of
networks. Table 2 gives the maximal precision increase-
ment in the six networks. In Table 2, precision is obtained
by the maximum of traditional methods and PNR meth-
ods, respectively, that is, max{CN, Jaccard,RA, LP, SPM}
and max{PNRCN,PNRJaccard,PNRRA,PNRLP,PNRSPM}. Our
method outperforms state-of-the-art methods in the six
networks. Besides, Figure 4 shows the influence of the probe
set size on the precision performance. We find that our
method outperforms classical methods when 𝑝𝐻 > 0.85,
except for JB method when 𝑝𝐻 > 0.6. Other networks have
similar results (see FIG. S3 in the supplementary materials).
However, according to the theoretical analysis (see the first
part in the supplementary materials), our method should
perform better than, or at least equally to, the classical
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Figure 4:The precision difference Δ𝑝 as a function of probe set size
𝑝𝐻 = 𝐿/|𝐸| in Usair network. Δ𝑝 = 𝑝PNR − 𝑝original. Δ𝑝 > 0 means
that our method outperforms the original methods. In the panel,
when 𝑝𝐻 > 0.85, Δ𝑝 > 0.

methods.The reason is that we suppose the network structure
is not influenced by the random division of training and
probe set. Thus, the training subnetwork should have similar
structure with the original networks. The assumption is
rational when 𝑝𝐻 is small. If the size 𝑝𝐻 of the probe set is
large, the training sets have many differences with the entire
networks, which violates the assumption of our method.
Therefore, ourmethod performswell when the fraction of the
probe set is small.
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Figure 5: The comparison of the predicted edges between JB and the corresponding PNR methods in the Usair network. In the panel, we
predict 10 edges for both JB and PNRJB methods. The Usair network is divided into different communities by the method in [37]. Nodes in
the same community have the same color and short geographical distances. Our method (blue lines) predicts more edges between faraway
nodes in different communities, while the original JB method (red lines) only predicts edges between close nodes.

3.3. Characteristics of the Predicted Links. Long-range links
play an important role in the dynamics of networks and
it is of much significance to predict long-range links [32,
50]. Figure 5 gives a comparison of the predicted links
between JB and the corresponding PNR methods in the
Usair network. In Figure 5, our method predicts more links
between faraway nodes in different communities, while the
original JB method only predicts links between close nodes.
Community detection method in [37] is utilized in Figure 5.
However, it is difficult to evaluate long-range links solely
based on community divisions. Since long-range links usually

have long distances and low similarities, we would investigate
the average distance and average similarity of the predicted
links by our proposed framework.

The distance 𝑑𝑖𝑗 of a link 𝑒𝑖𝑗 is the shortest distance
between nodes 𝑖 and 𝑗 only based on training set. Since the
endpoints of the predicted links do not connect directly, 𝑑𝑖𝑗 ≥
2. The average distance of the predicted links is

𝑑predict =
1
𝐿

∑
𝑒𝑖𝑗∈predcited links

𝑑𝑖𝑗. (12)
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Figure 6: Precision comparison of the proposed methods (red) and traditional high similarity based methods (cyan) for six real-world
networks. (a) Email network. (b) PDZBase network. (c) Euroad network. (d) Neural network. (e) Roundworm network. (f) USair network.
Results are the average of 50 independent simulations. Our proposed framework increases precision in most cases.

Analogously, the average similarity of the predicted links is

𝑠predict =
1
𝐿

∑
𝑒𝑖𝑗∈predcited links

𝑠𝑖𝑗, (13)

where 𝑠𝑖𝑗 is the similarity of nodes 𝑖 and 𝑗 in training set.
Figure 7 shows the difference of the average distances

obtained by PNR method and the corresponding original
methods. Generally, PNR method achieves a higher average
distance than the corresponding original methods in the six
networks, especially for SPM in Email network and LP in
USair network, whereas formany cases, PNR and the original
methods have the same average distance 𝑑 = 2. It is because
that the distance of most unconnected nodes are 2, revealing
thatmost commonly usedmethods incline to predict triangle
edges. Therefore, our method has little influence on the
average distance. However for some sparser networks, such as
neural and USair networks, the average distance is improved
by our framework, especially for LP in USair network.
Previous works show that the two endpoints of a long-range
link usually have a high distance or low similarity. Since
PNR framework could increase the average distance of the
predicted links, it can be conjectured that more long-range

links are predicted. Besides, integrating Figures 6 and 7, we
can find that our framework predict more long-range links
correctly.

Furthermore, Figure 8 shows the difference of average
similarity obtained by PNR method and the corresponding
original methods. In Figure 8, PNR method achieves a lower
average similarity than the corresponding original methods
in the six networks, except RA method in roundworm
network. The reason is that PNR has much fluctuations due
to the limited size of networks, bringing about the unusual
phenomenon of RA in roundworm network. Similar to the
analysis of average distance, we show that PNR methods are
beneficial to the prediction of long-range links, which agrees
with the conclusion from Figure 7.

4. Conclusion

In summary, we systematically study the drawbacks of
similarity-based link predictionmethods and show that some
link predictionmethods achieve highAUC, yet low precision.
Based on the differences of the similarity distributions of
existing and nonexisting links, we propose a metric (PNR)
to explain the problem of high AUC and low precision.
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Figure 7: Comparison of average distance of the PNR predicted links with that of the corresponding original methods for different networks.
(a) Email network. (b) PDZBase network. (c) Euroad network. (d) Neural network. (e) Roundworm network. (f) USair network. Results are
the average of 50 independent simulations. Our proposed framework increases the average distance on the whole, which indicates that more
long-range links are predicted correctly.

Two nodes with some particular low scores also have a
high likelihood of forming links between them. Furthermore,
we prove that PNR is the optimal one-variable function to
adjust the likelihood scores of links. Experiments in real
networks demonstrate the effectiveness of PNR, and the
precision is greatly enhanced. Additionally, the proposed
framework could also reduce the average similarity and
increase the average distance of the predicted links, which
indicates that more missing long-range links can be detected
correctly.

Though the proposed approach investigates link predic-
tion in unipartite networks, it could also be generalized to
bipartite and other kinds of networks. What is more, our
method provides a novel way to explore the connecting
patterns of real networks that may inspire other better score-
assigning methods in the future.
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Supplementary Materials

In the supplementary materials, we prove that PNR(𝑥) is
the optimal transferring function in Section 1. The deviation
of AUC and precision in different networks is shown in
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Figure 8: Comparison of average similarity of the PNR predicted is linked with that of the corresponding original methods for different
networks. (a) Email network. (b) PDZBase network. (c) Euroad network. (d) Neural network. (e) Roundworm network. (f) USair network.
Results are the average of 50 independent simulations. Our proposed framework reduces the average similarity on the whole, which indicates
that more long-range links are predicted correctly.

Section 2. The PNR performances of different methods in
different networks are shown in Section 3. In Section 3,
we first plot the PNR(𝑥) by different methods in FIG. S2
and then show the influence of the probe set size on the
precision in Fig. S3. FIG. S1 (color online), AUC and precision
of six real-world networks (see Table 2) by five different
popular approaches. Results are average of 50 independent
simulations. In the experiments, pH = 0.1 means that we
utilize 90% existing edges as training set to predict the other
10% edges (probe set). FIG. S2 (color online), PNR for six
networks by five different methods. (a) Email network. (b)
PDZBase network. (c) Euroad network. (d) Neural network.
(e) Roundworm network. (f) USair network. Results are the
average of 50 independent simulations and are obtained only
according to training set. For different methods and different
networks, scores are normalized to 0∼1 with snew = ( s
− smin)/( smax − smin). FIG. S3 (Color online), the precision
difference Δ p as a function of probe set size pH = L/| E|
in the four networks, where Δ p is the difference between
the five classical and the corresponding PNR methods, Δp =
pPNR − poriginal. Δp > 0 means that our method outperforms

the original methods. In the panels, when pH > 0.85, Δp > 0.
(Supplementary Materials)
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We investigate how efficiently a known underlying sparse causality structure of a simulated multivariate linear process can be
retrieved from the analysis of time series of short lengths. Causality is quantified from conditional transfer entropy and the
network is constructed by retaining only the statistically validated contributions.We compare results from threemethodologies: two
commonly used regularization methods, Glasso and ridge, and a newly introduced technique, LoGo, based on the combination of
information filtering network and graphical modelling. For these three methodologies we explore the regions of time series lengths
and model-parameters where a significant fraction of true causality links is retrieved. We conclude that when time series are short,
with their lengths shorter than the number of variables, sparse models are better suited to uncover true causality links with LoGo
retrieving the true causality network more accurately than Glasso and ridge.

1. Introduction

Establishing causal relations between variables from obser-
vation of their behaviour in time is central to scientific
investigation and it is at the core of data-science where
these causal relations are the basis for the construction of
useful models and tools capable of prediction. The capability
to predict (future) outcomes from the analytics of (past)
input data is crucial in modelling and it should be the main
property to take into consideration in model selection, when
the validity and meaningfulness of a model is assessed. From
a high-level perspective, we can say that the whole scientific
method is constructed around a circular procedure consisting
in observation, modelling, prediction, and testing. In such a
procedure, the accuracy of prediction is used as a selection
tool between models. In addition, the principle of parsimony
favours the simplest model when two models have similar
predictive power.

The scientific method is the rational process that, for the
last 400 years, has mostly contributed to scientific discov-
eries, technological progress, and the advancement of human

knowledge. Machine learning and data-science are nowadays
pursuing the ambition to mechanize this discovery process
by feeding machines with data and using different method-
ologies to build systems able to make models and predictions
by themselves. However, the automatisation of this process
requires to identify, without the help of human intuition, the
relevant variables and the relations between these variables
out of a large quantity of data. Predictive models are method-
ologies, systems, or equations which identify and make use
of such relations between sets of variables in a way that
the knowledge about a set of variables provides information
about the values of the other set of variables. This problem is
intrinsically high-dimensional with many input and output
data. Any model that aims to explain the underlying system
will involve a number of elements which must be of the
order of magnitude of the number of relevant relations
between the system’s variables. In complex systems, such as
financial markets or the brain, prediction is probabilistic in
nature and modelling concerns inferring the probability of
the values of a set of variables given the values of another
set. This requires the estimation of the joint probability of all
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variables in the system and, in complex systems, the number
of variables with potential macroscopic effects on the whole
system is very large.This poses a great challenge for themodel
construction/selection and its parameter estimation because
the number of relations between variables scales with, at least,
the square of the number of variables but, for a given fix
observation window, the amount of information gathered
from such variables scales, at most, linearly with the number
of variables [1, 2].

For instance, a linear model for a system with 𝑝 variables
requires the estimation fromobservation of𝑝(𝑝+1)/2param-
eters (the distinct elements of the covariance matrix). In
order to estimate O(𝑝2) parameters one needs a comparable
number of observations requiring time series of length 𝑞 ∼ 𝑝
or larger to gather a sufficient information content from a
number of observations which scales as 𝑝 × 𝑞 ∼ O(𝑝2).
However, the number of parameters in the model can be
reduced by considering only O(𝑝) out of the O(𝑝2) relations
between the variables reducing in this way the required time
series length to O(𝑝). Such models with reduced numbers of
parameters are referred to in the literature as sparse models.
In this paper we consider two instances of linear sparse
modelling: Glasso [3] which penalizes nonzero parameters
by introducing a ℓ1 norm penalization and LoGo [4] which
reduces the inference network to an O(𝑝) number of links
selected by using information filtering networks [5–7]. The
results from these two sparse models are compared with the
ℓ2 norm penalization (nonsparse) ridge model [8, 9].

This paper is an exploratory attempt tomap the parameter
regions of time series length, number of variables, penaliza-
tion parameters, and kinds ofmodels to define the boundaries
where probabilistic models can be reasonably constructed
from the analytics of observation data. In particular, we
investigate empirically, by means of a linear autoregressive
model with sparse inference structure, the true causality link
retrieval performances in the region of short time series
and large number of variables which is the most critical
region—and the most interesting—in many practical cases.
Causality is defined in information theoretic sense as a
significant reduction on uncertainty over the present values
of a given variable provided by the knowledge of the past
values of another variable obtained in excess to the knowledge
provided by the past of the variable itself and—in the condi-
tional case—the past of all other variables [10]. We measure
such information by using transfer entropy and, within
the present linear modelling, this coincides with the con-
cept of Granger causality and conditional Granger causality
[11]. The use of transfer entropy has the advantage of being a
concept directly extensible to nonlinear modelling. However,
nonlinearity is not tackled within the present paper. Linear
models with multivariate normal distributions have the
unique advantage that causality and partial correlations are
directly linked, largely simplifying the computation of trans-
fer entropy, and directly mapping the problem into the sparse
inverse covariance problem [3, 4].

Results are reported for artificially generated time series
from an autoregressive model of 𝑝 = 100 variables and
time series lengths 𝑞 between 10 and 20,000 data points.
Robustness of the results has been verified over a wider range

of 𝑝 from 20 to 200 variables. Our results demonstrate that
sparse models are superior in retrieving the true causality
structure for short time series. Interestingly, this is despite
considerable inaccuracies in the inference network of these
sparse models. We indeed observe that statistical validation
of causality is crucial in identifying the true causal links, and
this identification is highly enhanced in sparse models.

The paper is structured as follows. In Section 2 we
briefly review the basic concepts of mutual information and
conditional transfer entropy and their estimation from data
that will then be used in the rest of the paper. We also
introduce the concepts of sparse inverse covariance, inference
network and causality networks. Section 3 concerns the
retrieval of causality network from the computation and sta-
tistical validation of conditional transfer entropy. Results are
reported in Section 4 where the retrieval of the true causality
network from the analytics of time series from an autoregres-
sive process of 𝑝 = 100 variables is discussed. Conclusions
and perspectives are given in Section 5.

2. Estimation of Conditional Transfer Entropy
from Data

In this paper causality is quantified by means of statistically
validated transfer entropy. Transfer entropy 𝑇(Zi → Zj)
quantifies the amount of uncertainty on a random variable,
Zj, explained by the past of another variable, Zi, conditioned
to the knowledge about the past of Zj itself. Conditional
transfer entropy,𝑇(Zi → Zj | W), includes an extra condition
also to a set variables W. These quantities are introduced in
detail in Appendix A (see also [11–13]). Let us here just report
the main expression for the conditional transfer entropy that
we shall use in this paper:

𝑇 (Zi 󳨀→ Zj | W) = 𝐻(Zj,𝑡 | {Zlag
j,𝑡 ,W𝑡})

− 𝐻(Zj,𝑡 | {Zlag
i,𝑡 ,Z

lag
j,𝑡 ,W𝑡}) ,

(1)

where𝐻(⋅ | ⋅) is the conditional entropy and Zj,𝑡 is a random
variable at time 𝑡, whereas Zlag

i,𝑡 = {Zi,𝑡−1, . . . ,Zi,𝑡−𝜏} is the
lagged set of random variable “i” considering previous times
𝑡 − 1 ⋅ ⋅ ⋅ 𝑡 − 𝜏 andW𝑡 are all other variables and their lags (see
Appendix A, (A.5)).

In this paper we use Shannon entropy and restrict
to linear modelling with multivariate normal setting (see
Appendix B). In this context the conditional transfer entropy
can be expressed in terms of the determinants of conditional
covariances det(Σ(⋅ | ⋅)) (see (B.5) in Appendix B):

𝑇 (Zi 󳨀→ Zj | W)

= 1
2 log det (Σ (Zj,𝑡 | {Zlag

j,𝑡 ,W𝑡}))

− 1
2 log det (Σ (Zj,𝑡 | {Zlag

j,𝑡 ,Z
lag
i,𝑡 ,W𝑡})) .

(2)

Conditional covariances can be conveniently computed
in terms of the inverse covariance of the whole set of variables
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Z𝑡 = {Z𝑘,𝑡,Z𝑘,𝑡−1, . . . ,Z𝑘,𝑡−𝜏}𝑝𝑘=1 ∈ R𝑝×(𝜏+1) (see Appendix C).
Such inverse covariance matrix, J, represents the structure
of conditional dependencies among all couples of variables
in the system and their lags. Each subpart of J is associated
with the conditional covariances of the variables in that part
with respect to all others. In terms of J, the expression for the
conditional transfer entropy becomes

𝑇 (Zi 󳨀→ Zj |W) = −12

⋅ log det (J1,1 − J1,2 (J2,2)−1 J2,1) +
1
2 log det (J1,1) ,

(3)

where the indices “1” and “2” refer to submatrices of J,
respectively, associated with the variables Zj,𝑡 and Zlag

i,𝑡 .

2.1. Causality and Inference Networks. The inverse covariance
J, also known as precision matrix, represents the structure of
conditional dependencies. If we interpret the structure of J as
a network, where nodes are the variables and nonzero entries
correspond to edges of the network, then we shall see that any
two subsets of nodes that are not directly connected by one or
more edges are conditionally independent. Condition is with
respect to all other variables.

Links between variables at different lags are associated
with causality with direction going from larger to smaller
lags. The network becomes therefore a directed graph. In
such a network entropies can be associated with nodes,
conditional mutual information can be associated with edges
between variables with the same lag, and conditional transfer
entropy can be associated with edges between variables with
different lags. A nice property of this mapping of information
measures with directed networks is that there is a simple
way to aggregate information which is directly associated
with topological properties of the network. Entropy, mutual
information, and transfer entropies can be defined for any
aggregated subset of nodes with their values directly asso-
ciated with the presence, direction, and weight of network
edges between these subparts.

Nonzero transfer entropies indicating, for instance, vari-
able i causing variable j are associated with some nonzero
entries in the inverse covariance matrix J between lagged
variables i (i.e., Zi,𝑡−𝜏, with 𝜏 > 0) and variable j (i.e.,
Zj,𝑡). In linear models these nonzero entries define the
estimated inference network. However, not all edges in this
inference network correspond to transfer entropies that are
significantly different from zero. To extract the structure of
the causality network we shall retain only the edges in the
inference network which correspond to statistically validated
transfer entropies.

Conditioning eliminates the effect of the other variables
retaining only the exclusive contribution from the two vari-
ables in consideration. This should provide estimations of
transfer entropy that are less affected by spurious effects from
other variables. On the other hand, conditioning in itself can
introduce spurious effects; indeed two independent variables
can become dependent due to conditioning [13]. In this paper
we explore two extreme conditioning cases: (i) conditioned to
all other variables and their lags; (ii) unconditioned.

In principle, one would like to identify the maximal
value of 𝑇(Zi → Zj | W) over all lags and all possible
conditionings W. However, the use of multiple lags and
conditionings increases the dimensionality of the problem
making estimation of transfer entropy very hard especially
when only a limited amount of measurements is available
(i.e., short time series). This is because the calculation of
the conditional covariance requires the estimation of the
inverse covariance of the whole set of variables and such
an estimation is strongly affected by noise and uncertainty.
Therefore, a standard approach is to reduce the number of
variables and lags to keep dimensionality low and estimate
conditional covariances with appropriate penalizers [3, 8, 9,
14]. An alternative approach is to invert the covariancematrix
only locally on low dimensional subsets of variables selected
by using information filtering networks [5–7] and then recon-
struct the global inversion by means of the LoGo approach
[4]. Let us here briefly account for these two approaches.

2.2. Penalized Inversions. The estimate of the inverse covari-
ance is a challenging task to which a large body of literature
has been dedicated [14]. From an intuitive perspective, one
can say that the problem lies in the fact that uncertainty
is associated with nearly zero eigenvalues of the covariance
matrix. Variations in these small eigenvalues have relatively
small effects on the entries of the covariance matrix itself but
have major effects on the estimation of its inverse. Indeed
small fluctuations of small values can yield to unbounded
contributions to the inverse. Away to cure such near-singular
matrices is by adding finite positive terms to the diagonal
which move the eigenvalues away from zero: Ĵ = ((1 − 𝛾)S +
𝛾I𝑁)−1, where S = cov(Z) is the covariance matrix of the set
of variables Z ∈ R𝑁 estimated from data and I𝑁 ∈ R𝑁×𝑁

is the identity matrix (where 𝑁 = 𝑝 × (𝜏 + 1); see later).
This is what is performed in the so-called ridge regression
[9], also known as shrinkage mean-square-error estimator
[15] or Tikhonov regularization [8]. The effect of the addi-
tional positive diagonal elements is equivalent to compute
the inverse covariance which maximizes the log-likelihood:
log det(̂J)− tr(SĴ)−𝛾‖ Ĵ ‖2, where the last term penalizes large
off-diagonal coefficients in the inverse covariance with a ℓ2
norm penalization [16]. The regularizer parameter 𝛾 tunes
the strength of this penalization. This regularization is very
simple and effective. However, with this method insignificant
elements in the precision matrix are penalized toward small
values but they are never set to zero. By using instead ℓ1
norm penalization log det(̂J) − tr(SĴ) − 𝛾‖ Ĵ ‖1, insignificant
elements are forced to zero leading to a sparse inverse
covariance. This is the so-called lasso regularization [3, 14,
17]. The advantage of a sparse inverse covariance consists
in the provision of a network representing a conditional
dependency structure. Indeed, let us recall that in linear
models zero entries in the inverse covariance are associated
with couples of nonconditionally dependent variables.

2.3. Information Filtering Network Approach: LoGo. An alter-
native approach to obtain sparse inverse covariance is by
using information filtering networks generated by keeping
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the elements that contribute most to the covariance bymeans
of a greedy process.This approach, named LoGo, proceeds by
first constructing a chordal information filtering graph such
as aMaximumSpanningTree (MST) [18, 19] or aTriangulated
Maximally FilteredGraph (TMFG) [7].These graphs are built
by retaining edges that maximally contribute to a given gain
function which, in this case, is the log-likelihood or—more
simply—the sum of the squared correlation coefficients [5–
7].Then, this chordal structure is interpreted as the inference
structure of the joint probability distribution function with
nonzero conditional dependency only between variables that
are directly connected by an edge.On this structure the sparse
inverse covariance is computed in such a way to preserve
the values of the correlation coefficients between couples of
variables that are directly connected with an information
filtering graph edge. The main advantage of this approach
is that inversion is performed at local level on small subsets
of variables and then the global inverse is reconstructed
by joining the local parts through the information filtering
network. Because of this Local-Global construction this
method is named LoGo. It has been shown that LoGomethod
yields to statistically significant sparse precisionmatrices that
outperform the ones with the same sparsity computed with
lasso method [4].

3. Causality Network Retrieval

3.1. Simulated Multivariate Autoregressive Linear Process. In
order to be able to test if causality measures can retrieve the
true causality network in the underlying process, we gener-
ated artificial multivariate normal time series with known
sparse causality structure by using the following autoregres-
sive multivariate linear process [20]:

Z𝑡 =
𝜏

∑
𝜆=1

A𝜆Z𝑡−𝜆 + U𝑡, (4)

where A𝜆 ∈ R𝑝×𝑝 are matrices with random entries drawn
from a normal distribution. The matrices are made upper
diagonal (diagonal included) by putting to zero all lower
diagonal coefficients andmade sparse by keeping only aO(𝑝)
total number of entries different from zero in the upper and
diagonal part. U𝑡 ∈ R𝑝 are random normally distributed
uncorrelated variables.This process produces autocorrelated,
cross-correlated, and causally dependent time series. We
chose it because it is among the simplest processes that can
generate this kind of structured datasets.Thedependency and
causality structure is determined by the nonzero entries of the
matricesA𝜆.The upper-triangular structure of thesematrices
simplifies the causality structure eliminating causality cycles.
Their sparsity reduces dependency and causality interactions
among variables. The process is made autoregressive and
stationary by keeping the eigenvalues of A𝜆 all smaller than
one in absolute value. For the tests we used 𝜏 = 5,𝑝 = 100 and
sparsity is enforced to have a number of links approximately
equal to 𝑝. We reconstructed the network from time series
of different lengths 𝑞 between 5 and 20,000 points. To test
statistical reliability the process was repeated 100 times with
every time a different set of randomly generated matrices

A𝜆. We verify that the results are robust and consistent by
varying sample sizes from𝑝 = 20 to 200, by changing sparsity
with number of links from 0.5𝑝 to 5𝑝 and for 𝜏 from 1 to
10. We verified that the presence of isolated nodes or highly
connected hub nodes does not affect results significantly.

3.2. Causality and Inference Network Retrieval. We tested the
agreement between the causality structure of the underlying
process and the one inferred from the analysis of𝑝 time series
of different lengths 𝑞, Z𝑡 ∈ R𝑝 with 𝑡 = 1 ⋅ ⋅ ⋅ 𝑞, generated
by using (4) We have 𝑝 different variables and 𝜏 lags. The
dimensionality of the problem is therefore 𝑁 = 𝑝 × (𝜏 + 1)
variables at all lags including zero.

To estimate the inference and causality networks we
started by computing the inverse covariance, J ∈ R𝑁×𝑁, for
all variables at all lags Z ∈ R𝑁×𝑞 by using the following three
different estimation methods:

(1) ℓ1 norm penalization (Glasso [14]);
(2) ℓ2 norm penalization (ridge [8]);
(3) information filtering network (LoGo [4]).

We retrieved the inference network by looking at all cou-
ples of variables, with indices i ∈ [1, . . . , 𝑝] and j ∈ [1, . . . , 𝑝],
which have nonzero entries in the inverse covariance matrix
J between the lagged set of j and the nonlagged i. Clearly,
for the ridge method the result is a complete graph but
for the Glasso and LoGo the results are sparse networks
with edges corresponding to nonzero conditional transfer
entropies between variables i and j. For the LoGo calculation
wemake use of the regularizer parameter as a local shrinkage
factor to improve the local inversion of the covariance of the
4-cliques and triangular separators (see [4]).

We then estimated transfer entropy between couples
of variables, i → j conditioned to all other variables in
the system. This is obtained by estimating of the inverse
covariance matrix (indicated with an “hat” symbol) by using
(C.7) (see Appendix C.2) with

Z1 = Zj,𝑡

Z2 = {Zi,𝑡−1 ⋅ ⋅ ⋅Zi,𝑡−𝜏}

Z3 = {Zj,𝑡−1 ⋅ ⋅ ⋅Zj,𝑡−𝜏,W} ,

(5)

with W a conditioning to all variables Z except Z1,Z2, and
{Zj ,𝑡−1 ⋅ ⋅ ⋅Zj ,𝑡−𝜏}. The result is a 𝑝 × 𝑝 matrix of conditional
transfer entropies 𝑇(Zi,𝑡 → Zj,𝑡). Finally, to retrieve the
causality networkwe retained the network of statistically vali-
dated conditional transfer entropies only. Statistical valida-
tion was performed as follows.

3.3. Statistical Validation of Causality. Statistical validation
has been performed from likelihood ratio statistical test.
Indeed, entropy and likelihood are intimately related: entropy
measures uncertainty and likelihood measures the reduction
in uncertainty provided by the model. Specifically, the Shan-
non entropy associated with a set of random variables, Zi,
with probability distribution 𝑝(Zi) is𝐻(Zi) = −E[log𝑝(Zi)]
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(see (B.1)) whereas the log-likelihood for the model 𝑝(Zi)
associated with a set of independent observations Ẑ𝑖,𝑡 with
𝑡 = 1 ⋅ ⋅ ⋅ 𝑞 is logL(Ẑi) = ∑𝑞𝑡=1 log𝑝(Ẑ𝑖,𝑡)which can bewritten
as logL(Ẑi) = 𝑞E𝑝[log𝑝(Zi)]. Note that 𝑞 is the total avail-
able number of observations which, in practice, is the length
of the time series minus the maximum number of lags.
It is evident from these expressions that entropy and the
log-likelihood are strictly related though this link might be
nontrivial. In the case of linear modelling this connection
is quite evident because the entropy estimate is 𝐻 =
(1/2)(− log |̂J| + 𝑝 log(2𝜋) + 𝑝) and the log-likelihood is
logL = (𝑞/2)(log|̂J| − Tr(Σ̂Ĵ) − 𝑝 log(2𝜋)). For the three
models we study in this paper we have Tr(Σ̂Ĵ) = 𝑝 and there-
fore the log-likelihood is equal to 𝑞 times the opposite of the
entropy estimate. Transfer entropy and conditional transfer
entropy are differences between two entropies: the one of a
set of variables conditioned to their own past minus the one
conditioned also to the past of another variable.This, in turns,
is the difference of the unitary log-likelihood of two models
and therefore it is the logarithmof a likelihood ratio. AsWilks
pointed out [21, 22] the null distribution of such model is
asymptotically quite universal. Following the likelihood ratio
formalism, we have 𝜆 = 𝑞𝑇 and the probability of observ-
ing a transfer entropy larger than 𝑇, estimated under null
hypothesis, is given by 𝑝V ∼ 1 − 𝜒2𝑐 (𝑟𝑞𝑇, 𝑑) with 𝑟 ≃ 2 and
𝜒2𝑐 the chi-square the cumulative distribution function with
𝑑 degrees of freedom which are the difference between the
number of parameters in the two models. In our case the two
models have, respectively, 𝜏(𝑝2𝑗 + 1) and 𝜏(𝑝2𝑗 + 1) + 𝜏(𝑝𝑗𝑝𝑖)
parameters.

3.4. Statistical Validation of the Network. The procedures
described in the previous two subsections produce the
inference network and causality network. Such networks are
then compared with the known network of true causalities
in the underlying process which is defined by the nonzero
elements in the matrices 𝐴𝜆 (see (4)). The overlapping
between the retrieved links in the inference or causality
networks with the ones in the true network underlying the
process is an indication of a discovery of a true causality
relation. However some discoveries can be obtained just by
chance or some methodologies might discover more links
only because they produce denser networks. We therefore
tested the hypothesis that the matching links in the retrieved
networks are not obtained just by chances by computing the
null-hypothesis probability to obtain the same or a larger
number of matches randomly. Such probability is given by
the conjugate cumulative hypergeometric distribution for a
number equal or larger than TP of “true positive” matching
causality links between an inferred network of 𝑛 links and a
process network of 𝐾 true causality links, from a population
of 𝑝2 − 𝑝 possible links:

𝑃 (𝑋 ≥ TP | 𝑛, 𝐾, 𝑝) = 1 −
TP−1
∑
𝑘=0

( 𝐾𝑘 ) ( 𝑝
2−𝑝−𝐾
𝑛−𝑘

)
( 𝑝2−𝑝
𝑛

)
. (6)

Small values of 𝑃 indicate that the retrieved TP links out of
𝐾 are unlikely to be found by randomly picking 𝑛 edges from

𝑝2−𝑝 possibilities. Note that in the confusionmatrix notation
[23] we have 𝑛 = TP + FP and𝐾 = TP + FN with TP number
of true positives, FP number of false positives, FN number of
false negatives, and TN number of true negatives. The total
number of “negatives” (unlinked couples of vertices) in the
true model is instead𝑚 = FP + TN.

4. Results

4.1. Computation and Validation of Conditional Transfer
Entropies. By using (4) we generated 100multivariate autore-
gressive processes with known causality structures. We here
report results for 𝑝 = 100 but analogous outcomes were
observed for dimensionalities between 𝑝 = 20 and 200
variables. Conditional transfer entropies between all couples
of variables, conditioned to all other variables in the system,
were computed by estimating the inverse covariances by
using tree methodologies, ridge, Glasso, and LoGo and
applying (3). Conditional transfer entropies were statistically
validated with respect to null hypothesis (no causality) at
𝑝V = 1% 𝑝 value. Results for Bonferroni adjusted 𝑝 value at
1% (i.e., 𝑝V = 0.01/(𝑝2 − 𝑝) ∼ 10−6 for 𝑝 = 100) are reported
in Appendix E. We also tested other values of 𝑝V from 10−8
to 0.1 obtaining consistent results. We observe that small 𝑝V
reduce the number of validated causality links but increase
the chance that these linksmatch with the true network in the
process. Conversely large values of 𝑝V increase the numbers
of mismatched links but also of the true links discoveries. Let
us note that here we use 𝑝V as a thresholding criteria and we
are not claiming any evidence of statistical significance of the
causality. We assess the goodness of this choice a posteriori
by comparing the resulting causality network with the known
causality network of the process.

4.2. Statistical Significance of the Recovered Causality Network.
Results for the contour frontiers of significant causality links
for the three models are reported in Figure 1 for a range
of time series with lengths 𝑞 between 10 and 20,000 and
regularizer parameters 𝛾 between 10−8 and 0.5. Statistical
significance is computed by using (6) and results are reported
for both 𝑃 < 0.05 and 𝑃 < 10−8 (continuous and dotted
lines respectively). As one can see, the overall behaviours for
the three methodologies are little affected by the threshold
on 𝑃. We observe that LoGo significance region extends well
beyond the Glasso and ridge regions.

The value of the regularizer parameter 𝛾 affects the results
for the three models in a different way. Glasso has a region
in the plane 𝛾-𝑝/𝑞 where it has best performances (in this
case it appears to be around 𝛾 ≃ 0.1 and 𝑝/𝑞 ≃ 2.5). Ridge
appears instead to be little affected with mostly constant per-
formances across the range of 𝛾. LoGo has best performances
for small, even infinitesimal, values of 𝛾. Indeed, different
fromGlasso in this case 𝛾does not control sparsity but instead
acts as local shrinkage parameter. Very small values can be
useful in some particular cases to reduce the effect of noise
but large values have only the effect to reduce information.

4.3. Causality Links Retrieval. Once identified the parameter
regions where the retrieved causality links are statistically
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Figure 1: Regions in the 𝑝/𝑞-𝛾 space where causality networks for
the three models are statistically significant. The significance regions
are all at the left of the corresponding lines. Tick line reports the
boundary 𝑃 < 0.05 (see (6)) and dotted lines indicate 𝑃 < 10−8
significance levels (𝑃 is averaged over 100 processes). The plots refer
to 𝑝 = 100 and report the region where the causality networks are
all significant for 100 processes.

significant, we also measured the fraction of true links
retrieved. Indeed, given that the true underlying causality
network is sparse, one could do significantly better than
random by discovering only a few true positives. Instead,
fromanypractical perspectivewe aim to discover a significant
fraction of the edges. Figure 2 shows that the fraction of
causality links correctly discovered (true positive, TP) with
respect to the total number of causality links in the process
(𝑛) is indeed large reaching values above 50%. This is the
so-called true positive rate or sensitivity, which takes values
between 0 (no links discovered) and 1 (all links discovered).
Reported values are averages over 100 processes. We observe
that the region with discovering of 10% ormore true causality
links greatly overlaps with the statistical validity region of
Figure 1.

We note that when the observation time becomes long,
𝑝/𝑞 ⪅ 0.25, ridge discovery rate becomes larger than
LoGo. However, statistical significance is still inferior to
LoGo, indeed the ridge network becomes dense when 𝑞
increases and the larger discovery rate of true causality links
is also accompanied by a larger rate of false links incorrectly
identified (false positive FP).

The fraction of false positives with respect to the total
number of causality links in the process (𝑛) are reported in
Table 1 together with the true positive rate for comparison.
This number can reach values larger than one because the
process is sparse and there are much more possibilities to
randomly chose false links than true links. Note that this is
not the false positive rate, which instead is FP/𝑚, and cannot
be larger than one. Consistent with Figure 1 we observe
that, for short time series, up to 𝑝/𝑞 ∼ 0.5, the sparse
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Figure 2: True positive rate: fraction of retrieved true causality links
(TP) with respect to the total number of links in the process (𝑛). The
three panels refer to ridges, Glasso, and LoGo ((a), (b), and (c)). Data
are average fractions over 100 processes.

models have better capability to identify true causality links
and to discard the false ones with LoGo being superior to
Glasso. Remarkably, LoGo can identify a significant fraction
of causality links already from time series with lengths of 30
data points only. 𝑝 value significance, reported in the table
with one or two stars, indicates when all values of 𝑃(𝑋 ≥
TP | 𝑛, 𝐾, 𝑝) from (6) for all 100 processes have, respectively,
𝑃 < 0.05 or 𝑃 < 10−8. Again we observe that LoGo discovery
rate region extends well beyond the Glasso and ridge regions.

4.4. Inference Network. We have so far empirically demon-
strated that a significant part of the true causality network
can be retrieved from the statistically validated network of
conditional transfer entropies. Results depend on the choice
of the threshold value of 𝑝V at which null hypothesis is
rejected. We observed that lower 𝑝V are associated with net-
work with fewer true positives but also fewer false positives
and conversely larger 𝑝V yield to causality networks with
larger true positives but also larger false positives. Let us
here report on the extreme case of the inference network
which contains all causality channels with no validation. For
the ridge model this network is the complete graph with all
variables connected to each other. Instead, for Glasso and
LoGo the inference network is sparse.
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Table 1: Causality network validation. Comparison between fraction of true positive (TP/𝑛) and fraction of false positive (FP/𝑛), statistically
validated, causality links for the three models, and different time-series lengths. The table reports only the case for the parameter 𝛾 = 0.1.
Statistical validation of conditional transfer entropy is at 𝑝V = 1% 𝑝 value. Note that LoGo can perform better than reported in this table for
smaller values of 𝛾 (see Figures 1 and 2).

q 10 20 30 50 200 300 1000 20000
Ridge TP/𝑛 0.00 0.00 0.00 0.00 0.23∗∗ 0.49∗∗ 0.76∗∗ 0.93∗∗
Ridge FP/𝑛 0.00 0.00 0.00 0.00 0.00 0.10 0.65 1.06
Glasso TP/𝑛 0.00 0.00 0.00 0.13∗∗ 0.48∗∗ 0.53∗∗ 0.62∗∗ 0.74∗∗
Glasso FP/𝑛 0.00 0.00 0.00 0.00 0.06 0.10 0.23 0.54
LoGo TP/𝑛 0.00 0.08∗ 0.21∗∗ 0.37∗∗ 0.61∗∗ 0.65∗∗ 0.75∗∗ 0.90∗∗
LoGo FP/𝑛 0.00 0.00 0.00 0.01 0.06 0.08 0.15 0.34
∗
𝑃 < 0.05; ∗∗𝑃 < 10−8.

Table 2: Inference network validation: comparison between fraction of true positive (TP/𝑛) and fraction of false positive (FP/𝑛). Data for ridge
are only for comparison because it is a complete graph with all links present. The table reports only the case for the parameter 𝛾 = 0.1.

q 10 20 30 50 200 300 1000 20000
Ridge TP/𝑛 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Ridge FP/𝑛 97.84 97.84 97.84 97.84 97.84 97.84 97.84 97.84
Glasso TP/𝑛 0.61∗ 0.74∗ 0.79∗ 0.85∗ 0.87∗∗ 0.84∗∗ 0.80∗∗ 0.80∗∗
Glasso FP/𝑛 28.39 38.11 45.79 53.58 40.61 26.60 1.54 0.92
LoGo TP/𝑛 0.31∗ 0.50∗∗ 0.58∗∗ 0.63∗∗ 0.75∗∗ 0.78∗∗ 0.85∗∗ 0.93∗∗
LoGo FP/𝑛 4.53 4.27 4.18 4.03 3.72 3.63 3.44 3.21
∗
𝑃 < 0.05; ∗∗𝑃 < 10−8.

Results are summarized in Table 2. In terms of true
positive rate we first notice that they are all larger than the
ones in Table 1. Indeed, the network of statistically validated
conditional transfer entropies is a subnetwork of the inference
network. On the other hand we notice that the false positive
fraction is much larger than the ones in Table 2. Ridge
network has a fraction of 1 because, in this case, the inference
network is the complete graph.

Glasso also contains a very large number of false positives
reaching even 55 times the number of links in the true
network and getting to lower fractions only from long time
series with 𝑞 > 1000.These numbers also indicate that Glasso
networks are not sparse. LoGo has a sparser andmore signifi-
cant inference network with smaller fractions of false posi-
tives which stay below 5𝑛, which is anyway a large number
of misclassifications. Nonetheless, we observe that, despite
such large fractions of FP, the discovered true positives are
statistically significant.

4.5. Unconditioned Transfer Entropy Network. We last tested
whether conditioning to the past of all other variables gives
better causality network retrievals than the unconditioned
case. Here, transfer entropy, 𝑇(Zi → Zj), is computed by
using (3) with W = 0, the empty set. For the ridge case
this unconditional transfer entropy depends only from the
time series,Z𝑖,𝑡, {Z𝑖,𝑡−1, . . . ,Z𝑖,𝑡−𝜏} and {Z𝑗,𝑡−1, . . . ,Z𝑗,𝑡−𝜏} (with
𝜏 = 5 in this case). Glasso and LoGo cases are instead
hybrid because a conditional dependency has been already
introduced in the sparse structure of the inverse covariance J
(the inference network). Results are reported in Table 3 where
we observe that these networks retrieve a larger quantity of

true positives than the ones constructed from conditional
entropy. However, the fraction of false positive is also larger
than the ones in Table 1 although it is smaller than what
observed in the inference network in Table 2. Overall, these
results indicate that conditioning is effective in discarding
false positives.

4.6. Summary of All Results in a Single ROC Plot. In sum-
mary, we have investigated the networks associated with
conditional transfer entropy, unconditional transfer entropy,
and inference for three models under a range of different
parameters. In the previous subsections we have provided
some comparisons between the performances of the three
models in different ranges of parameters. Let us here provide a
summary of all results within a single ROC plot [23]. Figure 3
reports the ROC values, for each model and each parameter
combination, 𝑥-axis is false positive rates (FP/𝑚), and 𝑦-axis
is true positive rates (TP/𝑛). Each point is an average over 100
processes. Points above the diagonal line are associated with
relatively well performing models with the upper left corner
representing the point where models correctly discover all
true causality linkswithout any false positive.Theplot reports
with large symbols the cases for 𝛾 = 0.1 and validation
at 𝑝 value 𝑝V = 0.01, which can be compared with the
data reported in the tables. We note that, by construction,
LoGo models are sparse (with a number of edges ∼ 3𝑝 [4]).
This restrains the ROC results to the left-hand side of the
plot. For this reason an expanded view of the figure is also
proposed with the 𝑥-axis scaled. Note that this ROC curve
is provided as a visual tool for intuitive comparison between
models.
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Table 3: Unconditioned transfer entropy network: comparison between fraction of true positive (TP/𝑛) and fraction of false positive (FP/𝑛).
Statistical validation of transfer entropy is at 𝑝V = 1% 𝑝 value. The table reports only the case for the parameter 𝛾 = 0.1.

q 10 20 30 50 200 300 1000 20000
Ridge TP/𝑛 0.02 0.39∗∗ 0.45∗∗ 0.51∗∗ 0.65∗∗ 0.69∗∗ 0.78∗∗ 0.92∗∗
Ridge FP/𝑛 0.07 1.06 0.95 0.85 0.93 0.99 1.20 1.73
Glasso TP/𝑛 0.00 0.24∗∗ 0.35∗∗ 0.43∗∗ 0.57∗∗ 0.60∗∗ 0.67∗∗ 0.77∗∗
Glasso FP/𝑛 0.00 0.10 0.20 0.29 0.51 0.56 0.73 1.66
LoGo TP/𝑛 0.11 0.34∗∗ 0.41∗∗ 0.47∗∗ 0.63∗∗ 0.66∗∗ 0.76∗∗ 0.89∗∗
LoGo FP/𝑛 0.02 0.16 0.25 0.34 0.59 0.66 0.87 1.49
∗∗
𝑃 < 10
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Figure 3: ROC values, for each model and each parameter combination. 𝑥-axis false positive rates (FP/𝑚); 𝑦-axis true positive rates (TP/𝑛).
(a) and (b) are the same with 𝑥-axis expanded on the low values only for (b) to better visualise the differences between the various models.
Large symbols refer to 𝛾 = 0.1 and validation at 𝑝 value 𝑝V = 0.01. Color intensity is proportional to time series length. Inference network
results are all outside the range of the plot. Reported values are averages over 100 processes.

Overall from Tables 1, 2, and 3 and Figure 3 we con-
clude that all models obtain better results for longer time
series and that conditional transfer entropy overperforms
the unconditional counterparts (see, Tables 1 and 3 and the
two separated ROCfigures for conditional and unconditional
transfer entropies reported in Figure 5 in Appendix D). In the
range of short time series, when 𝑞 ≤ 𝑝, which is of interest
for this paper, LoGo is the best performing model with better
performances achieved for small 𝛾 ≲ 10−4 and validation
with small 𝑝 values 𝑝V ≲ 10−4. LoGo is consistently the best
performing model also for longer time series up to lengths of
𝑞 ∼ 1000. Instead, above 𝑞 = 2000 ridge begins to provide
better results. For long time series, at 𝑞 =20,000, the best
performing model is ridge with parameters 𝛾 = 10−5, 𝑝 value
𝑝V = 5 10−6. LoGo is also performing well when time series
are long with best performance obtained at 𝑞 =20,000 for

parameters 𝛾 = 10−10, 𝑝 value 𝑝V = 5 10−6. We note that
LoGo instead performs poorly in the region of parameters
with 𝛾 ≤ 0.1 and 𝑝V ≤ 0.01 for short time series 𝑞 ≤ 𝑝/2.

5. Conclusions and Perspectives

In this paper we have undertaken the challenging task to
explore models and parameter regions where the analytics of
time series can retrieve significant fractions of true causality
links from linear multivariate autoregressive process with
known causality structure. Results demonstrate that sparse
models with conditional transfer entropy are the ones who
achieve best results with significant causality link retrievals
already for very short time series even with 𝑞 ≤ 𝑝/5 = 20.
This region is very critical and general considerations would
suggest that no solutions can be discovered. Indeed, this result
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is in apparent contradiction with a general analytical results
in [24, 25] who find that no significant solutions should be
retrieved for 𝑞 ≤ 𝑁/2 = 150. However, we notice that
the problem we are addressing here is different from the
one in [24, 25]. In this paper we have been considering an
underlying sparse true causality structure and such a sparsity
changes considerably the condition of the problem yielding
to significant solutions even well below the theoretical limit
from [24, 25] which is instead associated with nonsparse
models.

Unexpectedly, we observed that the structure of the
inference networks in the two sparse models, Glasso and
LoGo, has excessive numbers of false positives yielding to
rather poor performances. However, in these models false
positive can be efficiently filtered out by imposing statistical
significance of the transfer entropies.

Results are affected by the choice of the parameters
and the fact that the models depend on various parameters
(𝑞, 𝑝, 𝛾, 𝑝V, 𝑃) make the navigation in this space quite
complex. We observed that the choice of 𝑝 values, 𝑝V, for
valid transfer entropies affects results. Within our setting we
obtained best results with the smaller 𝑝 values especially in
the regions of short time series. We note that the regularizer
parameter 𝛾 also plays an important role and best perfor-
mances are obtained by combination of the two parameters
𝛾 and 𝑝V. Not surprisingly, longer time series yield to better
results. We observe that conditioning to all other variables or
unconditioning is affecting the transfer entropy estimation
with better performing causality network retrieval obtained
for conditioned transfer entropies. However, qualitatively,
results are comparable. Other intermediate cases, such as
conditioning to past of all other variables only, have been
explored again with qualitatively comparable results. It must
be said that in the present system results are expected to
be robust to different conditionings because the underlying
network of the investigated processes is sparse. For denser
inference structures, conditioning could affect more the
results.

Consistently with the findings in [4] we find that LoGo
outperforms the other methods. This is encouraging because
the present settings of LoGo is using a simple class of infor-
mation filtering networks, namely, theTMFG [7], obtained by
retaining largest correlations. There are a number of alterna-
tive information filtering networks which should be explored.
In particular, given the importance of statistical validation
emerged from the present work, it would be interesting to
explore statistical validation within the process of construc-
tion of the information filtering networks themselves.

In this paper we investigate a simple case with a lin-
ear autoregressive multivariate normal process analysed by
means of linear models. Both LoGo and Glasso can be
extended to the nonlinear case with LoGo being particularly
suitable for nonparametric approaches as well [4].

There are alternative methods to extract causality net-
works from short time series, in particular Multispatial CCM
[26, 27] appears to perform well for short time series. A
comparison between different approaches and the application
of these methods to real data will be extremely interesting.
However this should be the object of future works.

Appendix

A. Conditional Transfer Entropy

Let us here briefly review two of the most commonly used
information theoretic quantities that we use in this paper,
namely, mutual information (quantifying dependency) and
transfer entropy (quantifying causality) for the multivariate
case [11–13].

A.1. Mutual Information. Let us first start from the simplest
case of two random variables, 𝑋 ∈ R1 and 𝑌 ∈ R1,
where dependence can be quantified by the amount of
shared information between the two variables, which is called
mutual information: 𝐼(𝑋; 𝑌) = 𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋, 𝑌),
where𝐻(𝑋) is the entropy of variable𝑋,𝐻(𝑌) is the entropy
of variable 𝑌, and 𝐻(𝑋, 𝑌) is the joint entropy of variables
𝑋 and 𝑌 [13]. Extending to the multivariate case, the shared
information between a set of 𝑛 random variables X =
(𝑋1, . . . , 𝑋𝑛)𝑇 ∈ R𝑛 and another set of 𝑚 random variables
Y = (𝑌1, . . . , 𝑌𝑚)𝑇 ∈ R𝑚 is

𝐼 (X;Y) = 𝐻 (X) + 𝐻 (Y) − 𝐻 (X,Y) (A.1)

with 𝐻(X), 𝐻(Y) being the entropies, respectively, for the
set of variables X and Y and 𝐻(X,Y) being their joint
entropy. It must be stressed that this quantity is the mutual
information between two sets of multivariate variables and
it is not the multivariate mutual information between all
variables {X,Y} which instead measures the intersection of
information between all variables. Mutual information in
(A.1) can also be written as

𝐼 (X;Y) = 𝐻 (Y) − 𝐻 (Y | X) = 𝐻 (X) − 𝐻 (X | Y) (A.2)

which makes use of the conditional entropy of Y given X:
𝐻(Y | X) = 𝐻(Y,X) − 𝐻(X) = E(𝐻(Y) | X).

Conditioning to a third set of variables W can also be
applied to mutual information itself and its expression is a
direct extension of (A.1) and it is called conditional mutual
information:

𝐼 (X;Y |W) = 𝐻 (X |W) + 𝐻 (Y |W)
− 𝐻 (X,Y |W) .

(A.3)

Equations (A.1) and (A.3) coincide in the case of an empty set
W = 0. Mutual information and conditionalmutual informa-
tion are symmetric measures with 𝐼(X;Y | W) = 𝐼(Y;X |
W) always. Let us note that symmetry is unavoidable for
information measures that quantify the simultaneous effect
of a set of variables onto another. Indeed, in a simultaneous
interaction cause and effect cannot be distinguished from the
exchange of information and direction cannot be established.
To quantify causality one must investigate the transmission
of information not only between two sets of variables but also
through time.

A.2. Conditional Transfer Entropy. Causality between two
random variables, 𝑋 ∈ R1 and 𝑌 ∈ R1, can be quantified
by means of the so-called transfer entropy which quantifies
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the amount of uncertainty on 𝑌 explained by the past of 𝑋
given the past of 𝑌. Let us consider a series of observations
and denote with𝑋𝑡 being the random variable𝑋 at time 𝑡 and
with𝑋𝑡−𝜏 being the random variable at a previous time, 𝜏 lags
before 𝑡. Using this notation, we can define transfer entropy
from variable 𝑋 to variable 𝑌 in terms of the following
conditional mutual information: 𝑇(𝑋 → 𝑌) = 𝐼(𝑌𝑡; 𝑋𝑡−𝜏 |
𝑌𝑡−𝜏) [11, 13].

For the multivariate case, given two sets of random
variables X ∈ R𝑛 and Y ∈ R𝑚, the transfer entropy is the
conditional mutual information between the set of variables
Y𝑡 at time 𝑡 and the past of the other set of variables, X𝑡−𝜏
conditioned to the past of the first variable Y𝑡−𝜏. That is,
𝑇(X → Y) = 𝐼(Y𝑡;X𝑡−𝜏|Y𝑡−𝜏) [13]. In general, the influence
from the past can come from more than one lag and we can
therefore extend the definition including different sets of lags
for the two variables: 𝜏1, . . . , 𝜏𝑘, 𝜆1, . . . , 𝜆ℎ:

𝑇 (X 󳨀→ Y)

= 𝐼 (Y𝑡 {Y𝑡−𝜆1 ⋅ ⋅ ⋅Y𝑡−𝜆ℎ} ; {X𝑡−𝜏1 ⋅ ⋅ ⋅X𝑡−𝜏𝑘})

= 𝐻(Y𝑡 {Y𝑡−𝜆1 ⋅ ⋅ ⋅Y𝑡−𝜆ℎ})

− 𝐻(Y𝑡 {X𝑡−𝜏1 ⋅ ⋅ ⋅X𝑡−𝜏𝑘 ,Y𝑡−𝜆1 ⋅ ⋅ ⋅Y𝑡−𝜆ℎ}) ;

(A.4)

a further generalization, which we use in this paper, includes
conditioning to any other set of variables {W𝑡−𝜃1 ⋅ ⋅ ⋅W𝑡−𝜃𝑔}
lagged at 𝜃1, . . . , 𝜃𝑔:

𝑇 (X 󳨀→ Y |W) = 𝐼 (Y𝑡; {X𝑡−𝜏1 ⋅ ⋅ ⋅X𝑡−𝜏𝑘} |

{Y𝑡−𝜆1 ⋅ ⋅ ⋅Y𝑡−𝜆ℎ ,W𝑡−𝜃1 ⋅ ⋅ ⋅W𝑡−𝜃𝑔}) .
(A.5)

In this paper we simplify notation using Xlag
𝑡 = {X𝑡−𝜏1 ⋅ ⋅ ⋅

X𝑡−𝜏𝑘}, Y
lag
𝑡 = {Y𝑡−𝜆1 ⋅ ⋅ ⋅Y𝑡−𝜆ℎ}, andW𝑡 = {W𝑡−𝜃1 ⋅ ⋅ ⋅W𝑡−𝜃𝑔}.

In the literature, there are several examples that use
adaptations of (1) to compute causality and dependency
measures [28]. A notable example is the directed information,
introduced byMassey in [29], where 𝜏 spans all lags in a range
between 0 and 𝑠 − 1 and 𝜆 spans the lags from 1 to 𝑠 − 1. The
directed information is then defined as the sum over transfer
entropies from 𝑠 = 1 to present:

𝐼 ({X}𝑡1 󳨀→ {Y}𝑡1 |W)

=
𝑡

∑
𝑠=1

𝐼 (Y𝑠; {X}𝑠1 | {Y}𝑠−11 ,W) ,
(A.6)

where we adopted the notations {X}𝑡1 = {X1 ⋅ ⋅ ⋅X𝑡} and
{Y}𝑡1 = {Y1 ⋅ ⋅ ⋅Y𝑡}. Interestingly, this definition includes the
conditional synchronous mutual information contributions

between X𝑠 and Y𝑠. Following Kramer et al. [30, 31] we
observe that for stationary processes

lim
𝑡→∞

1
𝑡 𝐼 ({X}

𝑡
1 󳨀→ {Y}𝑡1) = lim

𝑡→∞
𝐼 ({X}𝑡1 ;Y𝑡 | {Y}𝑡−11 )

= 𝑇 ({X}𝑡−11 󳨀→ Y𝑡) + 𝐼 ({X}𝑡1 ; {Y}𝑡1 | {X}𝑡−11 ) ,
(A.7)

with 𝑇({X}𝑡−11 → Y𝑡) = 𝐼(Y𝑡; {X1 ⋅ ⋅ ⋅X𝑡−1}|{Y1 ⋅ ⋅ ⋅Y𝑡−1}). This
identity supports the intuition that the directed information
accounts for the transfer entropy plus an instantaneous term.

B. Shannon-Gibbs Entropy

The general expression for the transfer entropy reported di
in Section A, (1), is independent of the kind of entropy
definition. In this paper we use Shannon entropy, which is
defined as

𝐻(X) = −E [log𝑝 (X)] , (B.1)

𝐻(Y) = −E [log𝑝 (Y)] , (B.2)

where𝑝(X) and𝑝(Y) are the probability distribution function
for the set of random variables X and Y. Similarly, the joint
Shannon entropy for the variables X and Y is defined as

𝐻(X,Y) = −E [log𝑝 (X,Y)] (B.3)

with 𝑝(X,Y) being the joint probability distribution function
of X and Y. This is the most common definition of entropy.
It is a particularly meaningful and suitable entropy for linear
modelling, as we focus in the paper.

B.1. Multivariate Normal Modelling. For multivariate normal
variables the Shannon-Gibbs entropy is

𝐻(X) = 1
2 log (detΣ (X)) + 𝑛

2 log (2𝜋𝑒) (B.4)

and its conditional counterpart is

𝐻(X |W) = 1
2 log (detΣ (X |W)) + 𝑛

2 log (2𝜋𝑒) (B.5)

with Σ being the covariance matrix and det(⋅) being the
matrix determinant. In the paper we use these expressions
to compute mutual information and conditional transfer
entropy.

C. Computing Conditional
Covariances for Subsets of Variables from
the Inverse Covariance

Let us consider three sets of variables Z1 ∈ R𝑝1 , Z2 ∈
R𝑝2 , and Z3 ∈ R𝑝3 and the associated inverse covariance
J ∈ R(𝑝1+𝑝2+𝑝3)×(𝑝1+𝑝2+𝑝3) for {Z1,Z2,Z3} ∈ R(𝑝1+𝑝2+𝑝3). The
conditional covariance of Z1 given Z2 and Z3 is the inverse of
the 𝑝1 ×𝑝1 upper left part of Jwith indices in𝑉1 = (1, . . . , 𝑝1)
(see Figure 4):

Σ (Z1 | Z2,Z3) = (J1,1)−1 . (C.1)
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Figure 4: The inverse of parts the inverse covariance J gives the
covariance of the variables corresponding to that part conditioned
to the other variables.

Instead, the conditional covariance of Z1 given Z3 is
obtained by inverting the larger upper left part J12,12 with
both indices in {𝑉1, 𝑉2} with 𝑉2 = (𝑝1 + 1, . . . , 𝑝1 + 𝑝2), and
then taking the inverse of the part with indices in 𝑉1 which,
using the Schur complement [13], is

Σ (Z1 | Z3) = (J1,1 − J1,2 (J2,2)−1 J2,1)
−1 . (C.2)

Figure 4 schematically illustrates these inversions and
their relations with conditional covariances. Let us note that
these conditional covariances can also be expressed directly
in terms of subcovariances by using again the Schur com-
plement:

Σ (Z1Z2,Z3) = Σ1,1 − Σ1,23 (Σ23,23)−1 Σ23,1,

Σ (Z1 | Z3) = Σ1,1 − Σ1,3 (Σ3,3)−1 Σ3,1.
(C.3)

However, when 𝑝3 (cardinality of 𝑉3) is much larger than 𝑝1
and𝑝2 (cardinalities of𝑉1 and𝑉2) then the equivalent expres-
sions, (C.1) and (C.2), that use the inverse covariance involve
matrices with much smaller dimensions. This can become
computationally crucial when very large dimensionalities are
involved. Furthermore, if the inverse covariance J is estimated
by using a sparse modelling tool such as Glasso or LoGo [4,
14] (as we do in this paper), then computations in expressions
(C.1) and (C.2) have to handle only a few nonzero elements
providing great computational advantages over (C.3).

In the paper we make use of (C.1)-(C.2) to compute
mutual information and conditional transfer entropy for the
system of all variables and their lagged versions.

C.1. Mutual Information. Let us consider the mutual infor-
mation between any two subsets X ∈ R𝑛 and Y ∈ R𝑚 of vari-
ables conditioned to all other variables, which we shall call
W ∈ R𝑝−𝑛−𝑚. For these three sets of variables {X,Y,W} ∈ R𝑝

the conditional mutual information, 𝐼(X,Y,W) = 𝐻(X,Y |
W) − 𝐻(X | Y,W) (see (A.3)), can be expressed in terms of
the conditional covariances by using (B.5):

𝐼 (X;Y |W) = 1
2 log detΣ (X |W)

− 1
2 log detΣ (X | Y,W) .

(C.4)

Given the inverse covariance J ∈ R𝑝×𝑝, by using (C.1) and
(C.2) and substituting

Z1 = X,
Z2 = Y,
Z3 = W,

(C.5)

we can express the conditional mutual information, (C.4),
directly in terms of the parts of J:

𝐼 (X;Y |W) = −12 log det (J1,1 − J1,2 (J2,2)−1 J2,1)

+ 1
2 log (det J1,1) .

(C.6)

Note that although this is not directly evident, (C.6) is
symmetric by exchanging 1 and 2 (i.e., X and Y).

C.2. Conditional Transfer Entropy. Conditional transfer
entropy (see (1)) is conditional mutual information between
lagged sets of variables and therefore it can be computed
directly from (C.6). In this case we shall name

Z1 = Y𝑡,

Z2 = {X𝑡−𝜏1 ⋅ ⋅ ⋅X𝑡−𝜏𝑘} ,

Z3 = {Y𝑡−𝜆1 ⋅ ⋅ ⋅Y𝑡−𝜆ℎ ,W𝑡−𝜃1 ⋅ ⋅ ⋅W𝑡−𝜃𝑔} ,

𝑇 (X 󳨀→ Y | W)

= −12 log det (J1,1 − J1,2 (J2,2)−1 J2,1)

+ 1
2 log det (J1,1)

(C.7)

obtaining an expression which is formally identical to (C.6)
but with indices 1 and 2 referring to the above sets of variables
instead.

Note that index 3 does not appear in this expression.
Information from variables 3 (W) has been used to compute
J but then only the subparts 1 and 2 are required to compute
the conditional transfer entropy. The fact that these expres-
sions for conditional mutual information and conditional
transfer entropy involve only local parts (1 and 2) of the
inverse covariance can become extremely useful when high-
dimensional datasets are involved.

D. Comparison between Conditional and
Unconditional Transfer Entropies

The two ROC plots for conditional and unconditional trans-
fer entropies are displayed in Figure 5. Form the comparison
it is evident that, for the process studied in this paper,
conditional transfer entropy provides best results. This is in
line with what observed in Tables 1, 3, 4, and 5.
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Figure 5: ROC values, for conditional (a) and unconditional (b) transfer entropies. 𝑥-axis false positive rates (FP/𝑚); 𝑦-axis true positive rates
(TP/𝑛). Large symbols refer to 𝛾 = 0.1 and validation at 𝑝 value 𝑝V = 0.01. Color intensity is proportional to time series length. Inference
network results are all outside the range of the plot. Reported values are averages over 100 processes.

Table 4: Causality network validation with conditional transfer entropy validation at 1% Bonberroni adjusted 𝑝 value. Fraction of true positive
(TP/𝑛) and fraction of false positive (FP/𝑛), statistically validated, causality links for the three models, and different time series lengths. The
table reports only the case for the parameter 𝛾 = 0.1.

q 10 20 30 50 200 300 1000 20000
Ridge TP/𝑛 0.00 0.00 0.00 0.00 0.00 0.30∗∗ 0.67∗∗ 0.89∗∗
Ridge FP/𝑛 0.00 0.00 0.00 0.00 0.00 0.01 0.18 0.75
Glasso TP/𝑛 0.00 0.00 0.00 0.00 0.35∗∗ 0.43∗∗ 0.57∗∗ 0.71∗∗
Glasso FP/𝑛 0.00 0.00 0.00 0.00 0.01 0.03 0.13 0.45
LoGo TP/𝑛 0.00 0.00 0.02 0.17∗∗ 0.50∗∗ 0.56∗∗ 0.69∗∗ 0.87∗∗
LoGo FP/𝑛 0.00 0.00 0.00 0.00 0.01 0.03 0.09 0.28
∗∗
𝑃 < 10

−8.

Table 5:Causality network validationwith unconditional transfer entropy validation at 1%Bonberroni adjusted𝑝 value. Fraction of true positive
(TP/𝑛) and fraction of false positive (FP/𝑛), statistically validated, causality links for the three models, and different time-series lengths. The
table reports only the case for the parameter 𝛾 = 0.1.

q 10 20 30 50 200 300 1000 20000
Ridge TP/𝑛 0.00 0.00 0.22∗∗ 0.36∗∗ 0.55∗∗ 0.59∗∗ 0.70∗∗ 0.88∗∗
Ridge FP/𝑛 0.00 0.00 0.09 0.21 0.47 0.55 0.77 1.32
Glasso TP/n 0.00 0.00 0.00 0.27∗∗ 0.48∗∗ 0.53∗∗ 0.62∗∗ 0.75∗∗
Glasso FP/𝑛 0.00 0.00 0.00 0.11 0.37 0.43 0.61 1.41
LoGo TP/𝑛 0.00 0.00 0.22∗∗ 0.35∗∗ 0.53∗∗ 0.58∗∗ 0.69∗∗ 0.86∗∗
LoGo FP/𝑛 0.00 0.00 0.05 0.16 0.42 0.49 0.71 1.27
∗∗
𝑃 < 10

−8.
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E. Causality Network Results for
Transfer Entropy Validation with 1%
Bonferroni Adjusted 𝑝 Values

In Tables 4 and 5, true positive rates (TP/𝑛) and fraction
of false positives (FP/𝑚) statistically validated and causality
links with validation at 1% Bonberroni adjusted 𝑝 value (i.e.,
𝑝V ≲ 10−6) are reported. These tables must be compared
with Tables 1 and 3, in the main text where causality links are
validated at 𝑝V = 1% nonadjusted 𝑝 value.
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Complex network analysis has become a gold standard to investigate functional connectivity in the human brain. Popular
approaches for quantifying functional coupling between fMRI time series are linear zero-lag correlation methods; however, they
might reveal only partial aspects of the functional links between brain areas. In this work, we propose a novel approach for
assessing functional coupling between fMRI time series and constructing functional brain networks. A phase space framework
is used to map couples of signals exploiting their cross recurrence plots (CRPs) to compare the trajectories of the interacting
systems. A synchronizationmetric is extracted from the CRP to assess the coupling behavior of the time series. Since the functional
communities of a healthy population are expected to be highly consistent for the same task, we defined functional networks of task-
related fMRI data of a cohort of healthy subjects and applied amodularity algorithm in order to determine the community structures
of the networks.Thewithin-group similarity of communities is evaluated to verifywhether such newmetric is robust enough against
noise. The synchronization metric is also compared with Pearson’s correlation coefficient and the detected communities seem to
better reflect the functional brain organization during the specific task.

1. Introduction

The human brain, as many biological systems, can be seen
as a complex network of interacting components whose
integration leads to a hierarchical architecture of highly
specialized modules [1]. A network formulation simplifies
the analysis of a complex system by providing mathematical
tools able to capture different aspects of its organization in
a compact and straightforward manner. Graph theoretical
methods have been extensively applied to many neuroimag-
ing datasets in order to describe the topological properties of
both functional and structural networks [2, 3].

In particular, over the past few years, there has been
an increasing interest in inferring connectivity properties
from fMRI data. Functional connectivity analysis aims at
assessing the strength of functional coupling between the
signal responses in distinct brain areas [4]. According to the
complex network framework, the anatomical regions of inter-
est are the nodes of the network, connected by edges resulting
from the adopted interregional interaction metrics. Pairwise
fMRI time series connections are usually estimated through
zero-lag correlation metrics, leading to a weighted network
whose links quantify the statistical similarity between pairs
of regions. Different preprocessing techniques and strategies
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are also applied in order to extract only relevant information
from the functional network, for example, by considering
only a range of weights or by applying several thresholds
to filter out weak connections [3]. Functional connectiv-
ity studies have revealed interesting insights on normal
functional brain organization such as property of small-
worldness [5], modularity and presence of hub nodes [6], and
the existence of critical alterations of low-frequency neural
activity patterns in pathological conditions [7]. Among the
proposed strategies, some techniques are more established
than others, even if there is still no agreement on which ones
are the most effective or appropriate.

A number of important questions regarding the identifi-
cation of networks have to be addressed before considering
any analysis technique. Recent studies have demonstrated
that different edge definitions could affect the topological
properties of brain networks obtaining variable findings [8,
9]. Thus, properties like time resolution of the physiological
time series under investigation, the effect of the observational
noise, and the presence of nonlinear effects should been taken
into account for selecting measures for edge definition. The
low temporal resolution of fMRI data limits the number of
methods that can be used to assess the statistical interactions
between the time series. Linear correlationmetrics, including
Pearson’s correlation and partial correlation, have been used
in simulation environment and resting state studies, showing
good performances in estimating functional connections in
both cases [9, 10]. On the other hand, nonlinear phenomena
in the human brain have been explored at various scales,
revealing complex coupling mechanisms in both resting
state and task-based neural activity [11, 12]. Most of the
functional connectivity studies are focused on configurations
of intrinsic connectivity networks (ICNs) and therefore did
not assess complex connectivity patterns that can arise in the
presence of a cognitive task. Indeed, even if a steady intrinsic
network architecture has been found at rest and across a
large number of tasks and conditions, task-evoked changes of
functional connectivity have been also documented, proving
the existence of task-specific network configurations [13].
Exploring topological changes in functional networks when
the neural activity is modulated by a cognitive task could
improve the understanding of some important mechanisms
of human cognition, for example, the dynamic balancing of
specialization and integration of brain regions for support-
ing different cognitive loads [4] and the trade-off between
connection cost and topological efficiency in information
processing [14]. Assessing functional interactions during
external tasks should require metrics that (i) are sensitive
to nonlinear coupling between time series and (ii) are more
robust with respect to noise.

In this work, we propose a novel approach for quan-
tifying functional coupling between fMRI time series and
constructing functional brain networks.We use a phase space
framework to map pairs of signals in their reconstructed
phase space, that is, a topological representation of their
behavior under all possible initial conditions [15]. This
method assumes that each signal represents a projection of
a higher-dimensional dynamical system evolving in time,
whose trajectories are embedded into a manifold, that is, a

region of its phase space. Cross recurrence plots (CRPs) [16]
are then employed to reduce the dimensionality of the phase
space and compare the trajectories of the interacting systems.
A synchronizationmetric is finally extracted from the CRP to
assess the coupling behavior of the time series.

The proposedmetric and Pearson’s correlation coefficient
are applied to the fMRI data of a cohort of healthy subjects
acquired during performing a working memory task to
construct weighted networks.

At macroscopic level, functional related brain regions
exhibit similar BOLD responses. These groups of regions
form dense communities that reflect the functional organi-
zation of the brain and whose properties can be linked to
the topological features of the task-evoked network config-
uration [17, 18]. The analysis carried out in this work aims
at investigating some properties of the modular structure
of task-evoked functional networks obtained with Pearson’s
correlation metric and the proposed synchronization index
in order to understand which index can better highlight the
functional organization of distinct subsystems involved in
the specific working memory task. Therefore, a modularity
algorithm is used to determine the community structure
of each functional network. The within-group similarity of
communities is evaluated and exploited to verify whether the
metrics are sufficiently robust against noise and effective in
revealing correlation even in presence of external stimuli.
The rationale underlying this choice is that community
structure of a group of healthy subject is expected to be highly
consistent in presence of the same task.

2. Materials

2.1. Subjects. We studied 50 healthy subjects (age: mean =25, standard deviation SD = 6; 24 females) in the analysis.
All of them were evaluated using the Non-Patient Structured
Clinical Interview forDSM-IV [19] to exclude any psychiatric
condition. Other exclusion criteria were a significant history
of drug or alcohol abuse, active drug abuse in the previous
year, experience of a head trauma with loss of consciousness,
and any other significant medical condition. Socioeconomic
status (Hollingshead Four Factor Index, [20]), handedness
(Edinburgh Inventory) [21], and total IQ (WAIS-R [22])
were also measured (see Table 1). The present study was
approved by the local ethics committee (Comitato Etico
Locale Indipendente Azienda Ospedaliera Ospedale Poli-
clinico Consorziale Bari). Written informed consent was
obtained by all participants after a complete description of the
procedures, in accordance with the Helsinki Declaration.

2.2. fMRI Task. Participants performed the N-Back working
memory task, in which a sequence of stimuli is presented
and the subject has to remember the stimulus from “N” steps
earlier. The stimuli consisted of numbers (1–4) presented in
random sequence and displayed at the points of a diamond-
shaped box. The control condition (0-back) simply required
the subjects to identify the current stimulus. In the working
memory condition, the task required the collection of a
stimulus seen two stimuli earlier (2-back). The task was
organized in a block design, consisting of eight alternating
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Table 1: Demographic data of the healthy cohort (mean ± standard
deviation).

Demographic Data
Age (years) 25 ± 6
Gender (M/F) 26/24
Handedness 0.60 ± 0.55
Socioeconomic status 39 ± 17
IQ 114 ± 4

0-back and 2-back conditions, each lasting 30 seconds. Each
30 sec. block includes 14 𝑛-back trials with an interstimuli
interval of 2000ms. Each run lasted 4minutes and 8 seconds,
from which dummy scans were acquired and discarded,
obtaining 120 volumes.

2.3. fMRI Data. Echo planar imaging blood oxygenation
level dependent fMRI data were acquired on a GE Signa 3T
scanner (GE Healthcare) equipped with a standard quadra-
ture head coil. A gradient-echo planar imaging sequence
(repetition time, 2000ms; echo time, 30ms; thickness, 4mm;
gap, 1mm;flip angle, 90∘; field of view, 24 cm; andmatrix, 64×64) was used to acquire images while the subjects performed
the tasks.

Images were preprocessed using Statistical Parametric
Mapping 8 software (SPM8; http://www.fil.ion.ucl.ac.uk/
spm). Images were realigned to the first volume in the time
series to correct for head motion (<2mm translation, <1∘
rotation), resampled to a 2mm isotropic voxel size, spatially
normalized into a standard stereotactic space (Montreal Neu-
rological Institute template) using a 12-parameter nonlinear
warping, and smoothed to minimize noise and residual
differences in gyral anatomy with a Gaussian filter, set at
6mm full-width at half-maximum.

3. Methods

3.1. Network Construction. The brain volume of each subject
was divided into 246 nonoverlapping anatomical regions of
interest (ROIs) according to the Brainnetome Atlas [23].
Thirty regions from the most ventral part of the brain not
acquired during scans were discarded and are not included in
the following analysis. For each of the 216 remaining ROIs, a
single time series was extracted by averaging the fMRI time
series over all the voxels within the ROI.The time series were
high-pass filtered (cutoff frequency 1/128 s). For each subject,
functional connectivity between all pairwise combinations of
ROI time series was assessed:

(i) by calculating their Pearson’s correlation coefficient;
(ii) by computing their CRP and then by calculating their

synchronization (SYNC) index as described in the
following subsection.

Finally, for each subject, we identified two undirected
weighted networks, whose edges resulted from

(1) the signed pairwise Pearson’s correlation coefficients;
(2) the SYNC indexes.

3.2. Synchronization Index. A state of a system is defined
by the values of the variables that describe it at a given
time. When such system evolves in time, the sequence of
all its states forms a trajectory in the phase space, that is,
a multidimensional space whose dimension depends on the
number of the variables of the system. Starting from different
initial conditions, a real physical dissipative system tends to
evolve in similar ways, such that its trajectories converge in
a region of the phase space called attractor which represents
the steady-state behavior of the system [15].

In experimental contexts, where the time series {𝑢𝑖}𝑁𝑖=1
obtained from the sampling of a single observable variable
is available, it is possible to reconstruct the phase space of
the system under investigation bymeans of Takens’sTheorem
[24]. Accordingly, a state in the reconstructed phase space
is given by a 𝑚-dimensional time delay embedded vector
obtained from time delayed versions of the output signals as

󳨀→𝑥 𝑖 = (𝑢𝑖, 𝑢𝑖+𝜏, . . . , 𝑢𝑖+(𝑚−1)𝜏) , (1)

where𝑚 is the embedding dimension and 𝜏 is the time delay.
Both parameters have to be properly selected to avoid

redundancy in the phase space. The dimension 𝑚 of the
reconstructed phase space should be large enough to preserve
the properties of the dynamical system (𝑚 ≥ 2𝐷 + 1, where𝐷 is the correlation dimension of the original phase space).
The correct time delay 𝜏 should be chosen by determining
when the samples of the time series are independent enough
to be useful as coordinates of the time delayed vectors. For
the estimation of the embedded parameters 𝑚 and 𝜏 several
techniques have been proposed. As an example, the first
localminimumof averagemutual information algorithm [25]
can be used to select the proper time delay. The minimum
embedding dimension is usually estimated through the false
nearest-neighbors (FNN) algorithm [26].

The trajectories of two distinct systems with the same
embedded parameters can be compared in a CRP [16], a
matrix whose entries include information on the degree of
closeness of each state of the first system with each state of
the second system. In detail, for two systemswith trajectories,
respectively, 󳨀→𝑥 𝑖 (𝑖 = 1, . . . , 𝑁) and 󳨀→𝑦 𝑗 (𝑗 = 1, . . . , 𝑁), the
CRP is defined as

𝐶𝑅𝑖,𝑗 (𝜖) = Θ (𝜖 − 󵄩󵄩󵄩󵄩󵄩󳨀→𝑥 𝑖 − 󳨀→𝑦 𝑗󵄩󵄩󵄩󵄩󵄩) , (2)

where Θ is the Heaviside function, 𝜖 is a threshold for
closeness, 𝑁 is the number of considered states for each
system, and ‖ ⋅ ‖ is a norm function. A generic entry 𝐶𝑅𝑖,𝑗 in
the resulting𝑁×𝑁 array is set to one if the distance between
the points󳨀→𝑥 𝑖 and󳨀→𝑦 𝑗 is smaller than the threshold 𝜖 or to zero
elsewhere.

The value of the parameter 𝜖must be estimated carefully,
as it influences the creation of structures in the plot. The
selection of an appropriate value for the threshold 𝜖 can be
made by taking into account the influence of the observa-
tional noise that could affect the experimental measures and
the minimum distance between the trajectories of the two

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
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systems. In general, choosing 𝜖 equal to few percent of the
maximum phase space diameter could ensure a sufficient
number of structures in the cross recurrence plot [27], while
the appearance of artifacts could be avoided by considering
the signal-to-noise ratio for the underlying physical systems
[28].

A CRP exhibits characteristic patterns that show local
time relationships of the segments of the trajectories of
the two interacting systems. Typical structures include sin-
gle dots, diagonal lines, and vertical and horizontal lines.
Diagonal lines occur when the evolution of the states is
similar at different times and their lengths are related to the
periods during which the two systems move in similar ways
remaining close to each other [29]. A CRP can also exhibit
the main diagonal known as line of synchronization (LOS).
The presence of LOS implies the identity of the states of
the two systems in the same time intervals, that is, the (𝑖, 𝑖)
states, so its structure can be analyzed to extract information
about the synchronization of the two time series [30]. In
particular, the presence of LOS suggests that the two time
series are fully synchronized, while discontinuities appear
when the two signals do not have the same frequency and
the same phase. Hence, the synchronization time (SYNC) has
been defined as a metric to quantify the mean period during
which the two systems are synchronized in order to reflect the
dynamical synchronization behavior of the series throughout
the observation period. SYNC is proportional to the ratio of
the sum of the lengths of the subsegments 𝑙𝑗 along the LOS to
the total number of samples𝑁:

SYNC = 1
𝑁𝑑

∑𝑁𝑑𝑗=1 𝑙𝑗
𝑁 , (3)

where𝑁𝑑 is the total number of subsegments.
For a visual reference, see Figure 1. In Figure 1(a),

two fMRI unsynchronized time series are compared and in
Figure 1(b) are shown two fully synchronized fMRI time
series. It is worth noting that in the first case there are
discontinuities of LOS, while in the second case the LOS is
continuous. Their SYNC values are, respectively, 0.05 and1.
3.3. Modularity Detection. Several community detection
methods have been proposed to find an optimum partition of
the nodes into nonoverlapped communities, that is, clusters
of nodes that are more densely connected to each other than
to other nodes in the network [31–33]. All these methods aim
at maximizing a modularity metric that evaluates the quality
of a partition by comparing the density of connections within
a community to that expected in a randomnetwork.Here, the
Louvain algorithm [33] has been used to find communities of
ROIs in the two functional networks obtaining two partitions
for each subject. The Louvain method is divided into two
phases that are repeated iteratively. The first step favors local
optimizations of modularity, while during the second step
the communities found in the first step define a new coarse-
grained network to be evaluated. This algorithm was chosen
because it is fast and seems to be less affected by the resolution

limit problem (i.e., the capability to detect modules smaller
than a certain size) thanks to its multilevel nature. This
method optimizes the modularity function defined as

𝑄 = 1
2𝑚∑
𝑖,𝑗

[𝐴 𝑖,𝑗 − 𝑘𝑖𝑘𝑗
2𝑚 ]𝛿 (𝑐𝑖, 𝑐𝑗) , (4)

where 𝐴 𝑖,𝑗 is the link between nodes 𝑖 and 𝑗, 𝑘𝑖 is the sum of
theweights of the links attached to node 𝑖, 𝑐𝑖 is the community
assigned to the node 𝑖, 𝑚 is the sum of all of the links of the
networks, and 𝛿 is the 𝛿 function.
3.4. Statistical Analysis ofModularity. A statistical framework
was adopted in order to compare the partitions of all the
subjects for each functional network [34].

The normalizedmutual information (NMI) [35] was used
to assess the similarity between a couple of community
partitions. For two networks with partitions, respectively, 𝐴
and 𝐵, it is defined as

NMI (𝐴, 𝐵) = 2 𝐼 (𝐴, 𝐵)
[𝐻 (𝐴) + 𝐻 (𝐵)] , (5)

where 𝐼(𝐴, 𝐵) is the mutual information between the two
partitions and 𝐻(𝐴) and 𝐻(𝐵) are the entropy of 𝐴 and 𝐵.
This metric ranges between zero (if 𝐴 and 𝐵 are completely
independent) and one (if 𝐴 and 𝐵 are identical).

The statistical relevance of the within-group community
structure similaritywas evaluated through a permutation test.
First, a randomly rewired version of each functional net-
work was generated preserving weights, density, and degree
sequence, resulting in two groups of networks: the actual
and its randomized matching network. Then, the NMI was
calculated between all the possible pairs of network partitions
within each group. A null distribution was generated by
randomizing group labels 10000 times and by calculating
the permuted within-group mean NMI at each permutation.
Finally, a 𝑝 value was assigned as the number of times that
the permuted within-groupmean-similarity was greater than
the actual within-group similarity, divided by the number of
permutations.

In order to inspect the consistency of node assignments
to specific functional communities, we carried out further
analyses on the networks. Since the labels of modules are
arbitrarily assigned by the community detection algorithm at
each iteration, it is necessary to match the partition values
across the subjects for visualizing the group level community
structure. This problem can be overcome by finding a tem-
plate partition as a reference and by reassigning the labels
of communities to match the template, while preserving
the distinctions between different modules in each partition
[34]. In this work, the partitions of each network for both
metrics were matched to the most representative network
partition of the group, that is, the median determined by
pairwise NMI. Once the labels of partitions are reassigned,
it is possible to assess the within-group consistency of each
ROI in community membership by counting the number of
occurrences with which a ROI appears with a particular label.
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Figure 1: Pairs of fMRI time series and their CRPs for (a) occipital inferior L and frontal medial orbital L (SYNC= 0.05); (b) occipital superior
L and occipital superior R (SYNC = 1).

4. Results

4.1. CRP Parameters. We randomly selected a subset of 5000
BOLD time series from the whole dataset and applied the
FNN algorithm for estimating the embedded dimension and
the first local minimum of the averaged mutual information
for selecting the proper time delay. We obtained m = 5.2 ±
0.75 and 𝜏 = 1.4 ± 0.66, so the embedded parameters were
set to 𝑚 = 6 and 𝜏 = 1. Following the criteria reported in
[27, 28], we identified the range [1.2–1.8] for the threshold𝜖. The analysis was carried out with the average value of the
range, setting 𝜖 = 1.5.
4.2. Statistical Analysis of Modularity. Permutation tests
reveal significant differences of modularity structures
between all the functional networks and their randomly
rewired versions (𝑝 = 0 for both the couples), indicating
different modular decompositions compared to the null
models. However, as shown in Figure 2(a), Pearson’s
networks exhibit within-group NMI values much lower than
those obtained by means of the SYNC metric (see Table 2

Table 2: Mean and median (interquartile range) quantities of NMI
and 𝑄 distributions for the metrics synchronization and Pearson’s
correlation.

Distributions NMI 𝑄
Synchronization 0.24; 0.23 (0.11) 0.17; 0.17 (0.04)
Pearson 0.15; 0.14 (0.15) 0.11; 0.11 (0.07)

for mean, median, and interquartile range quantities).
The nonparametric Wilcoxon rank sum test confirmed
significant differences between NMI values of SYNC and
those of Pearson’s metric (𝑝 < 0.0001, 𝛼 = 0.05). The ranges
of NMI values of SYNC networks are also comparable to
those found among control healthy subjects in resting studies
at different threshold values of network density [34]. These
results suggest that the functional networks constructed with
the SYNC metric share more modularity structures than
Pearson’s networks and exhibit also a higher signal-to-noise
ratio.

In addition, we evaluated the modularity index 𝑄. This
index ranges between 0 and 1 and measures the density
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Figure 2: Violin plots of (a) within-group NMI distributions and (b) 𝑄 distributions for synchronization and Pearson’s correlation
connectivity metrics with their randomized matching networks (in gray).

of links inside communities as compared to links between
communities. As shown in Figure 2(b), the two distributions
are significantly different from their random versions (per-
mutation tests: 𝑝 = 0 for both pairings) and the modularity
index of the networks obtained with the SYNC metric is
higher than that of Pearson’s networks (𝑝 value resulting from
the nonparametric Wilcoxon rank sum test 𝑝 = 3.52 ⋅ 10−8,𝛼 = 0.05).
4.3. Comparison of Modular Partitions in SYNC and Pear-
son’s Networks. Since we computed connectivity measures
on a time series derived from a working memory task,
we expected to find modules related to working memory
performance involving the frontoparietal network [36] to
motor activity related to the 0-back task [37] and to the
defaultmode network, which is deactivatedwhen performing
the task [38]. Figure 3 shows the five modules detected
by the Louvain algorithm at group level. The first module
includes areas critical for visuospatial memory and closely
resembles the classical frontoparietal network. In contrast,
the secondmodule includes moremedial regions, with nodes
belonging to both the anterior and the posterior defaultmode
networks [39, 40]. The third module overlaps widely with
the sensory-motor network, including pre- and postcentral
nodes, but also areas of the temporal lobe involved in auditory
perception. Interestingly, the fourth and fifth module map
almost exclusively to subcortical regions, including the dorsal
basal ganglia and the thalamus with the ventral striatum,
respectively. These regions are involved in working memory
performance [41, 42], but it is intriguing to notice that the
technique here employed parsed the connectivity of cortical
and subcortical regions based on the time series of activation,
yielding anatomic information just based on functional activ-
ity patterns. Figure 4 shows the two communities identified
at group level for Pearson’s networks. The first module
comprises most of the ROIs mapped in the first community

of the SYNCnetworks, while the rest of the ROIs are included
in the second module.

The consistency of the assignment of brain regions to
functional modules for the SYNC networks is shown in
Figure 5. As can be seen, all the ROIswithin the frontoparietal
network are the most consistent among the subjects; in
contrast, some nodes from themedial temporal lobes, insular
gyrus, and globus pallidus are assigned less uniformly to
the same community across the subjects. These findings are
in line with the crucial involvement of the frontal parietal
network in working memory processing [43]. As this map
resembles closely an activity group map, these findings
highlight that the connectivity assessment we developed is
sensitive to the functional role of the modules identified.
Overall, the network parsing obtained by the novel technique
we reported reveals a pattern of coupling between brain
regions consistent with known models of activation and
deactivation during task performance. In Figure 6 is shown
the within-group consistency of each ROI in community
membership for Pearson’s networks. Although the overall
consistency seems generally higher due to the lower number
of communities (two versus five), a direct comparison with
the SYNC networks is possible only for the first module. The
one-sided hypothesis Wilcoxon rank sum test confirmed a
greater consistency of the ROIs within the first module for
the SYNC matrices (median values of consistency: 𝑚sync =85.5, 𝑚pearson = 82, 𝑝 = 0.0096, 𝛼 = 0.0) proving a
better identification of the frontoparietal network across the
subjects in such matrices.

5. Discussion

In the current study, a modularity analysis is applied to
networks defined with both the proposed SYNC index and
Pearson’s correlation coefficient in order to investigate the
task-related functional organization of the brain. Modularity
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Figure 3: The five group level functional communities detected in SYNC networks. In each row, a single community is shown in four brain
views (left side, right side, top side, and bottom side).
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(1)

(2)

Figure 4: The two group level functional communities detected in Pearson’s networks. In each row, a single community is shown in four
brain views (left side, right side, top side, and bottom side).
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Figure 5: Consistency of the assignment of brain regions to modules measured as the frequency of occurrence of the node with a specific
label (in percent) for SYNC networks.



Complexity 9

L R

0 100

Figure 6: Consistency of the assignment of brain regions to modules measured as the frequency of occurrence of the node with a specific
label (in percent) for Pearson’s networks.

is implicitly related to significant self-regulating mechanisms
of the human brain: efficient densewithin-module processing
and sparse fast integration among subsystems reduce noise
propagation and latency [44]. Thus, this feature is strictly
connected to critical functional organization between brain
systems that are specialized to carry out different tasks:
modularity is expected to be greater for optimal system
organizations, while decreased modularity implies that there
are less intramodular edges than intermodular edges [45].
A low level of modularity would not be compatible with a
fast adaptation of the human brain in response to external
stimuli. Indeed, lack of highly specialized modules may not
allow a rapid execution of complex cognitive task [45, 46].
Consistently, a decreased modularity has been associated
with brain disorders characterized by abnormal cognitive
processing and has been found as amarker of abnormal brain
network development [47–49]. Moreover, there is evidence
that while the adaptation speed of the functional organiza-
tion of the brain is not critical among healthy individuals
that perform a specific task, modularity is stable across
time, suggesting the existence of latent specific task-related
modular configurations [17, 50]. The statistical analysis of

modularity reveals that a greater structure homogeneity and
a higher number of functional communities activated during
the working memory task seem to be better identified in
SYNC networks, while Pearson’s correlation does not reflect
such features expected in a healthy population. In detail,
the SYNC networks showed both higher NMI and 𝑄 values
thus indicating that the extracted modular partitions are
more similar to each other across the population and exhibit
a clearer division into communities. Indeed the modular-
ity index 𝑄 statistically quantifies the goodness of a hard
partition as its value is related to the difference between
the within-module interactions and the between-module
interactions [51]. Furthermore, the consistency analysis in
which the partition of each subject is compared with the
median partition of the population points out two results:
(i) both networks show at the group level a similar first
community that resembles the frontoparietal network, but
in the SYNC networks other modules that map to systems
engaged during working memory performance are detected;
(ii) the statistical comparison of the ROIs within the first
module highlights a greater consistency of such task-related
regions in SYNC networks. These findings suggest that a
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problem of community resolution is evident in Pearson’s
networks, whereas all the regions not included in the first
module are identified in a single community without distinc-
tion among sensory-motor network, default mode network,
and subcortical areas and even the frontoparietal network is
identified more weakly across the population.

In our framework, the same community detection algo-
rithm was applied to both kinds of networks. Since the
algorithm generates a node partition of a connectivitymatrix,
some properties of the index used to identify the network
such as sensitivity to noise and to complex interaction mech-
anisms occurring among the brain regions could affect the
degree of partition of the network into communities. Several
brain connectivitymetrics have been proposed as alternatives
to Pearson’s correlation coefficient. Coherence and partial
coherence analysis were applied to fMRI data to extend linear
metrics of zero-lag correlation. These spectral measures
estimate the linear time-invariant relationship between time
series by using phase and magnitude information for all the
time lags [8]. Both coherence and partial coherence were
proved effective in overcoming an important limitation of the
zero-lag correlation, that is, its sensitivity to the shape of the
regional hemodynamic response function that could result
in spurious correlations of the underlying neural activity.
In the last two decades, there has been a growing interest
in developing new connectivity metrics sensitive to both
linear and nonlinear interactions in human brain. In fact, the
spatiotemporal nonlinearity was shown to be an important
feature of the BOLD signal that should be considered to
properly characterize the complex interactions between brain
regions. In [52] a phase space multivariate approach was
adopted to investigate the nonlinear properties of resting state
fMRI data. The dynamics of the signals were reconstructed
by using the time delay embedding of some principal com-
ponents of the fMRI data and the correlation dimension and
the spatiotemporal Lyapunov exponents were calculated to
assess the nonlinear fractal property and the chaotic dynamic
behavior of the signals. A surrogate data test confirmed an
inherent deterministic nonlinear behavior in fMRI fluctua-
tions. Other methods for exploring the dynamic behavior of
physiological signals have been proposed. Recurrence plots
and recurrence quantitative analysis of the structures therein
contained were used to examine the recurrence properties
of dynamic systems [29]. As an example, in [53] RQA was
employed as a univariate data-driven technique to quantify
recurrent patterns in fMRI data. This technique involves the
projection of each time series in the phase space from which
a recurrence plot is obtained. Several numerical descriptors
are then used to quantify recurrent patterns in each time
series. This method has been developed as an alternative to
general linear model and probabilistic independent compo-
nent analysis in activation studies.The underlying idea is that
single-voxel signals become more regular in response to a
stimulus, so RQA can detect the most active voxels without
any model assumption. Recurrence plots and RQA were
proved successful in analyzing very noisy and nonstationary
signals. These methods afford a set of metrics able to capture
comprehensively the dynamic behavior of a system in the
phase space. Some studies confirmed their effectiveness

also for the analysis of EEG and MEG data, particularly
for detecting functional anomalies in several diseases [54–
57]. Cross recurrence plots are bivariate extensions of the
recurrence plots that consist in two-dimensional matrices
showing the interactions of pairs of signals in the phase space.
The proposed index, extracted from the CRP, represents an
intuitively interpretable generalized dynamic synchroniza-
tion metric that could be used to extend the set of known
RQA measures.

6. Methodological Limitations

These results are promising with respect to the value of the
novel technique we are proposing, even though they are
not free of limitations. For example, since we used task-
dependent time series, we do not know yet whether these
results extend to resting state data, and this will be the object
of future studies.We chose to examine task-driven functional
connectivity as done in several other studies [17, 18, 51], by
analyzing the modular architecture during working memory.
In particular, we used both the presence of known task-
related functional modules and their high consistence across
a healthy cohort of subjects to evaluate the proposed syn-
chronizationmetric. An advantage of the block-designed task
we considered is that BOLD activity presents cyclostationary
properties due to the ON-OFF periods of the task. Instead,
spontaneous BOLD fluctuations are intrinsically dynamic
over time and thus nonstationary [58]. For this reason,
studying modularity with resting state data will require a
modified dynamical framework to correctly identify stable
ICNs for the declared purposes.

Another relevant issue concerns the modularity prop-
erties used to perform the comparison between the SYNC
metric and Pearson’s correlation index. Indeed, in our anal-
ysis we found both higher modularity and higher consis-
tency of task-related communities in the SYNC matrices.
These features are related to a greater homogeneity of the
functional organization across the subjects in response to the
same task and although they are compatible with behaviors
expected in a healthy cohort, a more rigorous assessment
of the sensitivity of the proposed synchronization metric
should require further analysis. Future studies could employ
alternative topological properties of SYNC networks and
their correlation with task performance or behavioral data to
uncover additional insights into the suitability of the SYNC
index as a functional connectivitymetric for fMRI time series.

Finally, our study has focused on an alternativemethod to
define functional connectivity between pairs of BOLD time
series. Generally, functional connectivity refers to a larger
spectrum of neuroimaging techniques including EEG, MEG,
and NIRS. As discussed above, recurrence plots have been
used to explore dynamical properties of EEG and MEG,
providing interesting features on complex phenomena in
human brain. Although the SYNC metric is extracted from
cross recurrence plots, a separate and accurate analysis may
be needed to assert the validity of the index in a broader
context and extend its use to more functional imaging
techniques.
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7. Conclusion

In this work, a new synchronization-basedmetric is proposed
to assess functional connectivity in human brain. The metric
is a generalized synchronization measure that takes into
account both the amplitude and phase coupling between
pairs of fMRI series.This method differs from the correlation
measures used in the literature, as it is more sensitive to
nonlinear coupling phenomena between time series and it is
more robust against the physiological noise. In order to probe
these latter two aspects, we performed a modularity analysis
of task-related fMRI networks of a cohort of healthy subjects
built with the new proposed metric. The aim was to verify
whether the new metric was able to return networks whose
functional modules were coherent with the actual organiza-
tion of the brain regions during the task-based activity. We
considered unthresholded complete connectivity matrices to
test the effectiveness of the synchronization against noise
and spurious correlations. Indeed unthresholded networks
have lower signal-to-noise ratio as the most important links
do not stand out among all the weights. By comparing the
networks constructed by means of the proposed metric with
those obtained through Pearson’s coefficient, it seems that
the synchronization metric better reflects the task-related
network structure for number of detected communities, for
the functional organization of the ROIs, and for greater
consistency of communities across the subjects.
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[42] J. Peräkylä, L. Sun, K. Lehtimäki et al., “Causal Evidence from
Humans for the Role of Mediodorsal Nucleus of the Thalamus
in Working Memory,” Cognitive Neuroscience, pp. 1–13, 2017.

[43] J. H. Callicott, V. S. Mattay, A. Bertolino et al., “Physiological
characteristics of capacity constraints in working memory as
revealed by functional MRI,” Cerebral Cortex, vol. 9, no. 1, pp.
20–26, 1999.

[44] D. S. Bassett, D. L. Greenfield, A. Meyer-Lindenberg, D. R.
Weinberger, S.W.Moore, and E. T. Bullmore, “Efficient physical
embedding of topologically complex information processing
networks in brains and computer circuits,” PLoS Computational
Biology, vol. 6, no. 4, 2010.

[45] D. Meunier, R. Lambiotte, and E. T. Bullmore, “Modular
and hierarchically modular organization of brain networks,”
Frontiers in Neuroscience, vol. 4, no. 200, 2010.

[46] D. A. Fair, A. L. Cohen, J. D. Power et al., “Functional brain
networks develop from a “local to distributed” organization,”
PLoS Computational Biology, vol. 5, no. 5, Article ID e1000381,
e1000381, 14 pages, 2009.

[47] A. F. Alexander-Bloch, N. Gogtay, D. Meunier et al., “Disrupted
modularity and local connectivity of brain functional networks
in childhood-onset schizophrenia,” Frontiers in Systems Neuro-
science, vol. 4, article 147, 2010.

[48] J. Wang, X. Zuo, Z. Dai et al., “Disrupted functional brain
connectome in individuals at risk for Alzheimer’s disease,”
Biological Psychiatry, vol. 73, no. 5, pp. 472–481, 2013.

[49] J. D. Rudie, J. A. Brown, D. Beck-Pancer et al., “Altered func-
tional and structural brain network organization in autism,”
NeuroImage: Clinical, vol. 2, no. 1, pp. 79–94, 2013.

[50] D. S. Bassett, N. F. Wymbs, M. A. Porter, P. J. Mucha, J. M.
Carlson, and S. T. Grafton, “Dynamic reconfiguration of human
brain networks during learning,” Proceedings of the National
Acadamy of Sciences of the United States of America, vol. 108,
no. 18, pp. 7641–7646, 2011.
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We propose here a multiplex network approach to investigate simultaneously different types of dependency in complex datasets.
In particular, we consider multiplex networks made of four layers corresponding, respectively, to linear, nonlinear, tail, and partial
correlations among a set of financial time series. We construct the sparse graph on each layer using a standard network filtering
procedure, and we then analyse the structural properties of the obtained multiplex networks. The study of the time evolution of
the multiplex constructed from financial data uncovers important changes in intrinsically multiplex properties of the network, and
such changes are associated with periods of financial stress.We observe that some features are unique to themultiplex structure and
would not be visible otherwise by the separate analysis of the single-layer networks corresponding to each dependency measure.

1. Introduction

In the last decade, network theory has been extensively
applied to the analysis of financial markets. Financial markets
and complex systems in general are comprised of many inter-
acting elements, and understanding their dependency struc-
ture and its evolution with time is essential to capture the col-
lective behaviour of these systems, to identify the emergence
of critical states, and tomitigate systemic risk arising from the
simultaneous movement of several factors. Network filtering
is a powerful instrument to associate a sparse network to
a high-dimensional dependency measure and the analysis
of the structure of such a network can uncover important
insights on the collective properties of the underlying system.
Following the line first traced by the preliminary work of
Mantegna [1], a set of time series associated with financial
asset values is mapped into a sparse complex network whose
nodes are the assets and whose weighted links represent
the dependencies between the corresponding time series.
Filtering correlation matrices has been proven to be very
useful for the study and characterisation of the underlying

interdependency structure of complex datasets [1–5]. Indeed,
sparsity allows filtering out noise, and sparse networks can
then be analysed by using standard tools and indicators
proposed in complex networks theory to investigate the
multivariate properties of the dataset [6, 7]. Further, the
filtered network can be used as a sparse inference structure to
construct meaningful and computationally efficient predic-
tive models [7, 8].

Complex systems are often characterised by nonlinear
forms of dependency between the variables, which are hard
to capture with a single measure and are hard to map into a
single filtered network. Amultiplex network approach, which
considers the multilayer structure of a system in a consis-
tent way, is thus a natural and powerful way to take into
account simultaneously several distinct kinds of dependency.
Dependencies among financial time series can be described
by means of different measures, each one having its own
advantages and drawbacks, and this has led to the study of
different types of networks, namely, correlation networks,
causality networks, and so on. The most common approach
uses Pearson correlation coefficient to define the weight of a
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link, because this is a quantity that can be easily and quickly
computed. However, the Pearson coefficient measures the
linear correlation between two time series [9], and this
is quite a severe limitation, since nonlinearity has been
shown to be an important feature of financial markets [10].
Other measures can provide equally informative pictures
on assets relationships. For instance, the Kendall correlation
coefficient takes into accountmonotonic nonlinearity [11, 12],
while other measures, such as the Tail dependence, quantify
dependence in extreme events. It is therefore important to
describe quantitatively how these alternative descriptions are
related but also differ from the Pearson correlation coefficient
and also to monitor how these differences change in time, if
at all.

In this work we exploit the power of a multiplex approach
to analyse simultaneously different kinds of dependencies
among financial time series.The theory of multiplex network
is a recently introduced framework that allows describing
real-world complex systems consisting of units connected by
relationships of different kinds as networks with many layers,
where the links at each layer represent a different type of
interaction between the same set of nodes [13, 14]. A mul-
tiplex network approach, combined with network filtering,
is the ideal framework to investigate the interplay between
linear, nonlinear, and Tail dependencies, as it is specifically
designed to take into account the peculiarity of the patterns
of connections at each of the layers but also to describe the
intricate relations between the different layers [15].

The idea of analysing multiple layers of interaction was
introduced initially in the context of social networks, within
the theory of frame analysis [16]. The importance of consid-
ering multiple types of human interactions has been more
recently demonstrated in different social networks, from
terrorist organizations [14] to online communities; in all these
cases, multilayer analyses unveil a rich topological structure
[17], outperforming single-layer analyses in terms of network
modeling and prediction as well [18, 19]. In particular, mul-
tilayer community detection in social networks has been
shown to be more effective than single-layer approaches [20];
similar results have been reported for community detection
on the World Wide Web [21, 22] and citation networks
[23]. For instance, in the context of electrical power grids,
multilayer analyses have provided important insight into the
role of synchronization in triggering cascading failures [24,
25]. Similarly, the analyses on transport networks have high-
lighted the importance of a multilayer approach to optimize
the system against nodes failures, such as flights cancellation
[26]. In the context of economic networks, multiplex analyses
have been applied to study the World Trade Web [27].
Moreover, they have been extensively used in the context of
systemic risk, where graphs are used to model interbank and
credit networks [28, 29].

Here, we extend the multiplex approach to financial
market time series, with the purpose of analysing the role
of different measures of dependencies, namely, the Pearson,
Kendall, Tail, and Partial correlation. In particular we con-
sider the so-called Planar Maximally Filtered Graph (PMFG)
[2–4, 7] as filtering procedure to each of the four layers. For
each of the four unfiltered dependence matrices, the PMFG

filtering starts from the fully connected graph and uses a
greedy procedure to obtain a planar graph that connects all
the nodes and has the largest sumofweights [3, 4].ThePMFG
is able to retain a higher number of links, and therefore a
larger amount of information, than the Minimum Spanning
Tree (MST) and can be seen as a generalization of the latter
which is always contained as a proper subgraph [2]. The
topological structures of MST and PMFG have been shown
to provide meaningful economic and financial information
[30–34] that can be exploited for risk monitoring [35–37]
and asset allocation [38, 39]. The advantage of adopting a
filtering procedure is not only in the reduction of noise and
dimensionality but more importantly in the possibility of
generating sparse networks, as sparsity is a requirement for
most of the multiplex network measures that will be used in
this paper [14]. Other kinds of filtering procedures, includ-
ing thresholding based methods [35, 40], could have been
considered. However, PMFG has the advantage to produce
networks with fixed a priori (3𝑁 − 6) number of links
that make the comparison between layers and across time
windows easier. It is worth mentioning that the filtering
of the Partial correlation layer requires an adaptation of
the PMFG algorithm to deal with asymmetric relations. We
have followed the approach suggested in [41] that rules out
double links between nodes. The obtained planar graph
corresponding to Partial correlations has been then converted
into an undirected graph and included in the multiplex.

2. Results

2.1. Multiplex Network of Financial Stocks. We have con-
structed a time-varying multiplex network with𝑀 = 4 layers
and a varying number of nodes. Nodes represent stocks,
selected from a dataset of 𝑁tot = 1004 US stocks which have
appeared at least once in S&P500 in the period between
03/01/1993 and 26/02/2015. The period under study has been
divided into 200 rolling time windows, each of 𝜃 = 1000
trading days. The network at time 𝑇 = 1, 2, . . . , 200 can
be described by the adjacency matrix 𝑎𝛼𝑖𝑗(𝑇), with 𝑖, 𝑗 =1, . . . , 𝑁(𝑇) and 𝛼 = 1, 2, 3, 4. The network at time window𝑇 has 𝑁(𝑇) < 𝑁tot nodes, representing those stocks which
were continuously traded in timewindow𝑇.The links at each
of the four layers are constructed bymeans of the PMFG pro-
cedure fromPearson, Kendall, Tail, and Partial dependencies.
The reason for this choice is to provide a complete picture of
the market dependency structure: Pearson layer accounts for
linear dependency, Kendall layer for monotonic nonlinearity,
and Tail dependency for correlation in the tails of returns
distribution while Partial correlation detects direct asset-
asset relationships which are not explained by themarket (see
Materials and Methods for details).

Figure 1(a) shows how the average link weight of each
of the four dependency networks changes over time. We
notice that the average edge weight is a meaningful proxy for
the overall level of correlation in one of these dependency
layers, since the distribution of edge weights within a layer
is normally quite peaked around its mean. The curves
shown in Figure 1(a) indicate an overall increase of the
typical weights in the examined period 1993–2015 and reveals
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Figure 1: The multiplex nature of dependence among financial assets. The plots report the network analysis of a multiplex whose four layers
are PlanarMaximally FilteredGraphs (PMFGs) obtained from four classical dependencemeasures, namely, Pearson, Kendall, Tail, and Partial
correlation, computed on rolling timewindows of 23 trading days between 1993 and 2015. Each of the four layers provides different information
on the dependency structure of a market. Although market events and trends have a somehow similar effect on the average dependence ⟨𝑤𝑖𝑗⟩
between nodes at the different layers (panel (a)), each layer has a distinct local structure.This is made evident by the plots of the average edge
overlap ⟨𝑂⟩ (panel (b)) and of the fraction 𝑈[𝛼] of edges unique to each layer, which confirm that an edge exists on average on less than two
layers, and up to 70% of the edges of a layer are not present on any other layer. Moreover, the same node can have different degrees across
the four layers, as indicated by the relatively low values of the pairwise interlayer degree correlation coefficient 𝜌[𝛼,𝛽] reported in panel (d) for
three pairs of layers over the whole observation interval.

a strongly correlated behaviour of the four curves (with
linear correlation coefficients between the curves range in[0.91, 0.99]). In particular they all display a steep increase in
correspondence with the 2007-2008 financial crisis, revealing
how the market became more synchronized, regardless of
the dependence measure used. This strong correlation in
the temporal patterns of the four measures of dependence
may lead to the wrong conclusion that the four networks
carry very similar information about the structure of financial
systems. Conversely, we shall see that even basic multiplex
measures suggest otherwise. In Figure 1(b) we report the
average edge overlap ⟨𝑂⟩, that is, the average number of

layers of the financial multiplex network where a generic pair
of nodes (𝑖, 𝑗) is connected by an edge (see Materials and
Methods for details). Since our multiplex network consists
of four layer, ⟨𝑂⟩ takes values in [1, 4], and in particular
we have ⟨𝑂⟩ = 1 when each edge is present only in one
layer, while ⟨𝑂⟩ = 4 when the four networks are identical.
The relatively low values of ⟨𝑂⟩ observed in this case reveal
the complementary role played by the different dependency
indicators. It is interesting to note that the edge overlap ⟨𝑂⟩
displays a quite dynamic pattern, and its variations seem to be
related to the main financial crises highlighted by the vertical
lines in Figure 1(b). Overall, what we observe is that periods
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of financial turbulence are linked to widening differences
among the four layers. Namely, the effect of nonlinearity in
the cross-dependence increases, as well as correlation on the
tails of returns: the dependence structure becomes richer
and more complex during financial crisis. This might be
related to the highly nonlinear interactions that characterise
investors activities in turbulent periods and that make fat-tail
and power-law distributions distinctive features of financial
returns. Indeed, if returns were completely described by a
multivariate normal distribution, the Pearson layer would be
sufficient to quantify entirely the cross-dependence and its
relation with the other layers would be trivial and would not
change with time. Therefore any variation in the overlapping
degree is a signature of increasing complexity in the market.
In particular, the first event that triggers a sensible decrease
in the average edge overlap is the Russian crisis in 1998,
which corresponds to the overall global minimum of ⟨𝑂⟩ in
the considered interval. Then, ⟨𝑂⟩ starts increasing towards
the end of year 2000 and reaches its global maximum at
the beginning of 2002, just before the market downturn
of the same year. We observe a marked decrease in 2005,
in correspondence with the second phase of the housing
bubble, which culminates in the dip associated with the credit
crunch at the end of 2007. A second, even steeper drop
occurs during the Lehman Brothers default of 2008. After
that, the signal appears more stable and weakly increasing,
especially towards the end of 2014. Since each edge is present,
on average, in less than two layers, each of the four layers
effectively provides a partial perspective on the dependency
structure of the market.This fact is mademore evident by the
results reported in Figure 1(c), where we show, for each layer𝛼 = 1, . . . , 4, the fraction of edges𝑈[𝛼] that exist exclusively in
that layer (see Materials and Methods for details). We notice
that, at any point in time, from 30% to 70% of the edges
of each of the four layers are unique to that layer, meaning
that a large fraction of the dependence relations captured
by a given measure are not captured by the other measures.
For instance, despite the fact that Pearson and Kendall show
similar behaviour in Figure 1(c), still between 30% and 40%
of the edges on each of those layers exist only on that layer.
This indicates that the Pearson and Kendall layers differ for
at least 60% to 80% of their edges. In general, each of the
four layers is contributing information that cannot be found
in the other three layers. It was shown in a recent paper by
some of the authors [36] that information filtering networks
can be used to forecast volatility outbursts.The present results
suggest that a multilayer approach could provide a further
forecasting instrument for bear/bull markets. However, this
requires further explorations. Interestingly, we observe an
increase of 𝑈[𝛼] for all the layers since 2005, which indicates
a build-up of nonlinearity and tail correlation in the years
preceding the financial crisis: such dynamicsmight be related
to early-risk warnings.

Another remarkable finding is that also the relative
importance of a stock in the network, measured for instance
by its centrality in terms of degree [39, 42], varies a lot across
layers. This is confirmed by the degree correlation coefficient𝜌[𝛼,𝛽] for pairs of layers 𝛼 and 𝛽. In general, high values of

𝜌[𝛼,𝛽] signal the presence of strong correlations between the
degrees of the same node in the two layers (see Materials and
Methods for details). Figure 1(d) shows 𝜌[𝛼,𝛽] as a function
of time for three pairs of dependence measures, namely,
Pearson-Kendall, Kendall-Tail, and Tail-Partial. Notice that
the degrees of the layers corresponding to Pearson and
Kendall exhibit a relatively large correlation, which remains
quite stable over the whole time interval. Conversely, the
degrees of nodes in the Kendall and Tail layers are on average
less correlated, and the corresponding values of 𝜌[𝛼,𝛽] exhibit
larger fluctuations. For example, in the tenth time windowwe
find that General Electric stock (GE US) is a hub in Kendall
layer with 71 connections, but it has only 16 connections
in the Tail layer: therefore the relevance of this stock in
the dependence structure depends sensitively on the layer.
A similar pattern in observed in the interlayer correlation
between the degrees of nodes in Partial and Tail. This
might have important implications for portfolio allocation
problems, since the asset centrality in the network is related
to its risk in the portfolio.

The presence of temporal fluctuations in ⟨𝑂⟩, in partic-
ular the fact that ⟨𝑂⟩ reaches lower values during financial
crises, together with the unique patterns of links at each layer,
testified by high values of 𝑈[𝛼] and by relatively weak inter-
layer degree-degree correlations for some pairs of layers, con-
firms that an analysis of relations among stocks simply based
on one dependencemeasure can neglect relevant information
which can however be captured by othermeasures. As we will
show below, a multiplex network approach which takes into
account at the same time all the four dependence measures,
but without aggregating them into a single-layer network, is
able to provide a richer description of financial markets.

2.2. Multiedges and Node Multidegrees. As a first example
of useful quantities that can be investigated in a multiplex
network, we have computed the so-called multidegree 𝑘󳨀→𝑚𝑖
for each node 𝑖 in the network, corresponding to different
multiedges (see Materials and Methods) [43]. In particular,
we have normalised the multidegree of node 𝑖 dividing it by
the corresponding node overlapping degree 𝑜𝑖, so that the
resulting 𝑘󳨀→𝑚𝑖 /𝑜𝑖 is the fraction of multiplex edges of node 𝑖
that exist only on a given subset of layers. In Figure 2 we
report the average normalised multidegree of each of the 10
industry sectors of the Industry Classification Benchmark
(ICB) classification. We focus on the edges existing exclu-
sively in one of the four layers and on the combination
of multiedges associated with edges existing in either of
the Kendall, Tail, or Partial layer, but not in the Pearson
layer. As shown in Figure 2, the multidegree exhibits strong
variations in time and high heterogeneity across different
industries. Industries such as Oil & Gas, Utilities, and Basic
Materials show low values of normalised multidegree in all
the four panels (Figures 2(a)–2(d)). Conversely, the edges
of nodes corresponding to Industrials, Finance, Technology,
Telecommunications, and Consumer Services tend to con-
centrate in one layer or in a small subset of layers only.
For instance, we observe a relatively high concentration
of edges at the Kendall layer for nodes corresponding to
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Figure 2: Multidegrees reveal the different role of industrial sectors during crises. The plots of the average multidegree of the nodes of
the same industrial sector restricted to edges existing exclusively on the (a) Pearson, (b) Kendall, (c) Tail, and (d) Partial layers clearly
show that some dependence measures can reveal structures which are unnoticed by other measures. In particular, the plot of the average
multidegree associated with edges existing on at least one layer among Kendall, Tail, and Partial, but not on Pearson (panel (e)), reveals that
Pearson correlation does not capture many important features such as the prominent role of Basic Materials, Financial, Consumer Goods,
and Industrials during crises and the increasing importance of Technology and Consumer Services after the 2007-2008 crisis.
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Finance, Industrials, and Consumer Goods stocks in the
period preceding the dot-com bubble and the 2002 down-
turn, a feature not visible in the Pearson layer in Figure 2(a).
This implies that for stocks belonging to those industries
nonlinearity was a feature of their cross-dependency more
important than for other stocks. Analogously, we notice a
sudden increase of edges unique to the Tail layer for nodes
in Consumer Goods, Consumer Services, and Health Care
after the 2007-2008 crisis.Therefore, during this crisis period,
the synchronization in the tail region has become a more
relevant factor in their dependency structure than before
the crisis: this has important implications for portfolio risk,
as high Tail dependence can lead to substantial financial
losses in case of large price movements.The presence of large
heterogeneity and temporal variations in the relative role of
different industrial sectors confirms the importance of using
a multiplex network approach to analyse dependence among
assets. Since industrial sectors have been often used for risk
diversification, these findings point out that their use as a
diversification benchmark might benefit remarkably from a
continuous monitoring based on multiplex: an increase of
edges in one layer for an industry can indicate the need of
using the corresponding dependency measure for assessing
the industry’s risk and diversification potential. The fact that
different industries display different degrees of nonlinearity
and Tail dependence is not surprising after all, given that
each industrial sector can be affected in a different way by
new information: this industrial specific sensitivity might
translate in different cross-dependency properties.

From this perspective it is particularly interesting to
discuss the plot of multidegree restricted to edges that are
present on either Kendall, Partial, or Tail layer but are
not present in the Pearson layer as reported in Figure 2(e).
Despite the fact that Pearson correlation coefficient is the
most used measure to study dependencies, the plot reveals
that until 2002 an analysis of the financial network based
exclusively on Pearson correlations would have missed from
40% up to 60% of the edges of assets in sectors such as Basic
Materials, Financial, Consumer Goods, and Industrials. The
study of evolution with time in Figure 2(e) reveals that the
relative role of such industrial sectors in Kendall, Tail, and
Partial layers becomes relatively less important between the
two crises in 2002 and in 2007, but then such sectors become
central again during the 2007-2008 crisis and beyond. This
prominent role is quite revealing but it would not had been
evident from the analysis of the Pearson layer alone. Let us
also note that the period following the 2007-2008 crisis is
also characterised by a sensible and unprecedented increase
of the normalised multidegree on Kendall, Partial, and Tail
layers of stocks belonging to Technology and Telecommuni-
cations sectors, whose importance in the market dependence
structure has been therefore somehow underestimated over
the last ten years by the studies based exclusively on Pearson
correlation.

2.3. Multiplex Cartography of Financial Systems. To better
quantify the relative importance of specific nodes and groups
of nodes we computed the overlapping degree and participa-
tion coefficient, respectively, measuring the total number of

edges of a node and how such edges are distributed across
the layers (see Materials andMethods for details). We started
by computing the average degree 𝑘[𝛼]𝐼 at layer 𝛼 of nodes
belonging to each ICB industry sector 𝐼, defined as 𝑘[𝛼]𝐼 =(1/𝑁𝐼) ∑𝑖∈𝐼 𝑘[𝛼]𝑖 𝛿(𝑐𝑖, 𝐼), where by 𝑐𝑖 we denote the industry of
node 𝑖 and 𝑁𝐼 is the number of nodes belonging to industry
sector 𝐼. Figures 3(a)–3(d) show 𝑘[𝛼]𝐼 as a function of time for
each of the four layers.

Notice that nodes in the Financial sector exhibit a quite
high average degree, nomatter the dependencemeasure used,
with a noticeable peak before the dot-com bubble in 2002.
After that, the average degree of Financials has dropped
sensibly, with the exception of the 2007-2008 crisis. Apart
from the existence of similarities in the overall trend of
Financials across the four layers, the analysis of the average
degree suggests again the presence of high heterogeneity
across sectors and over time.

In the Pearson layer, Basic Materials is the second most
central industry throughout most of the observation interval,
whereas Industrials and Oil & Gas acquired more connec-
tions in the period following the 2007-2008 crisis.The degree
in the Kendall layer is distributed more homogeneously
among the sectors than in the Pearson layer. Interestingly,
the plot of degree on the Tail layer looks similar to that of
the Pearson layer. Finally, in the Partial layer we observe the
highest level of concentration of links in Finance (consistently
to what was found in [41]) and, after the 2007-08 crisis, in
Basic Materials.

We have also calculated for each industry 𝐼 the average
overlapping degree 𝑜𝐼 ≡ ⟨𝑜𝑖⟩𝑖∈𝐼, where 𝑜𝑖 is the overlapping
degree of node 𝑖, which quantifies the overall importance of
each industrial sector in the multiplex dependence network.
The average overlapping degree of each industry is shown
as a function of time in Figure 3(e). As we can see, 𝑜𝐼 is
able to highlight the prominent role played in the multiplex
network by Financials, BasicMaterials, Oil &Gas, and Indus-
trials sectors, revealing also the presence of four different
phases between 1997 and 2015. The first phase, during which
Financials is the only prominent industry, covers the period
between 1997 and 2000. The second phase, between 2000
and the 2007-08 crisis, is characterised by the emergence of
Basic Materials as the secondmost central sector. In the third
phase, between 2009 and 2014, Financials loses its importance
in favour of Industrials, Oil & Gas, and Basic Materials
(that becomes the most central one). Finally, in 2014 a new
equilibrium starts to emerge, with Financials and Industrials
gaining again a central role in the system.

The participation coefficient complements the informa-
tion provided by the overlapping degree, quantifying how the
edges of a node are distributed over the layers of the multi-
plex. In particular, the participation coefficient of node 𝑖 is
equal to 0 if 𝑖 has edges in only one of the layers, while it is
maximum and equal to 1when the edges of node 𝑖 are equally
distributed across the layers (see Materials and Methods for
details). In Figure 3(f) we report, as a function of time, the
average participation coefficient 𝑃𝐼 for each ICB industry 𝐼.
Interestingly, the plot reveals that the increase of the over-
lapping degrees of Financials, Basic Materials, Industrials,
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(d) Degree Partial

17
/1

2/
19

96

05
/0

1/
20

00

30
/0

1/
20

03

17
/0

2/
20

06

11
/0

3/
20

09

28
/0

3/
20

12

21
/0

4/
20

15

50

45

40

35

30

25

20

15

Financials
Health Care

Industrials
Oil & Gas

Technology
Telecomm.

Utilities

Basic
Materials

Consumer
Goods

Consumer
Services

(e) Overlapping degree

17
/1

2/
19

96

05
/0

1/
20

00

30
/0

1/
20

03

17
/0

2/
20

06

11
/0

3/
20

09

28
/0

3/
20

12

21
/0

4/
20

15

0.99

0.98

0.97

0.96

0.95

0.94

0.93

Financials
Health Care

Industrials
Oil & Gas

Technology
Telecomm.

Utilities

Basic
Materials

Consumer
Goods

Consumer
Services

(f) Participation coefficient

Figure 3: Average node degree as a proxy of the importance of an industry.The plots of average degree of the nodes belonging to the different
industrial sectors restricted to the (a) Pearson, (b) Kendall, (c) Tail, and (d) Partial layers and of the average overlapping degree reported in
panel (e) confirm the relative importance of Financials. However, the average participation coefficient (panel (f)) suggests that the dependence
structure of some sectors such as BasicMaterials, Industrials, andOil &Gas has becomemore heterogeneous, that is, focusing only on a subset
of the four layers, after the 2007-2008 crisis.
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and Oil & Gas sectors shown in Figure 3(e) is normally
accompanied by a substantial decrease of the corresponding
participation coefficients. This indicates that those sectors
accumulated degree on just one or two layers, confirming
what we found in multidegree analysis. A somehow more
detailed analysis of the temporal evolution of participation
coefficient for each sector is reported in Section 4.5.

3. Discussion

By using filtered networks from different correlation mea-
sures we have demonstrated that a multiplex network
approach can reveal features that would have otherwise been
invisible to the analysis of each dependency measure in
isolation. Although the layers produced, respectively, from
Pearson, Kendall, Tail, and Partial correlations show a certain
overall similarity, they exhibit distinct features that are
associated with market changes. For instance, we observed
that average edge overlap between the first three layers drops
significantly during periods of market stress revealing that
nonlinear effects are more relevant during crisis periods. The
analysis of the average multidegree associated with edges not
present on the Pearson layer, but existing on at least one
of the three remaining layers, indicates that Pearson corre-
lations alone can miss detecting some important features.
We observed that the relative importance of nonlinearity
and tails on market dependence structure, as measured
by mean edge overlap between the last three layers, has
dropped significantly in the first half of the 2000s and then
risen steeply between 2005 and the 2007-08 crisis. Overall,
financial crises trigger remarkable drops in the edge overlap,
widening therefore the differences among the measures of
dependence just when evaluation of risk becomes of the high-
est importance. Different industry sectors exhibit different
structural overlaps. For instance, Financials, Industrials, and
Consumer Goods show an increasing number of connections
only on Kendall layer in the late 90s/early 2000s, at the
edge of the dot-com bubble. After the 2007-08 crisis these
industries tend to have many edges on the Kendall, Tail,
and Partial which are not present on the Pearson layer. This
observation questions whether we can rely on the Pearson
estimator alone, when analysing correlations between stocks.
A study of the overlapping degree and of the participation
coefficient shows that asset centrality, an important feature for
portfolio optimization [39, 40], changes considerably across
layers with largest desynchronized changes occurring during
periods of market distress. Overall our analysis indicates
that different dependency measures provide complementary
pieces of information about the structure and evolution of
markets and that a multiplex network approach can be useful
in capturing systemic properties that would otherwise go
unnoticed.

4. Materials and Methods

4.1. Dataset. The original dataset consists of the daily prices
of 𝑁tot = 1004 US stocks traded in the period between
03/01/1993 and 26/02/2015. Each stock in the dataset has been
included in S&P500 at least once in the period considered.

0
50

100
150
200
250
300
350
400
450
500

Basic Materials
Consumer Goods
Consumer Services
Financials
Health Care

Industrials
Oil Gas
Technology
Telecomm.
Utilities

T

N
(T

)

17
/1

2/
19

96

05
/0

1/
20

00

30
/0

1/
20

03

17
/0

2/
20

06

11
/0

3/
20

09

28
/0

3/
20

12

21
/0

4/
20

15

Figure 4: Number of stocks in each ICB industry in time. Number
of stocks that are continuously traded in each time window together
with their partition in terms of ICB industries.

Hence the stocks considered provide a representative picture
of the US stock market over an extended time window of 22
years and cover all the 10 industries listed in the Industry
Classification Benchmark (ICB) (Figure 4). It is important
to notice that most of the stocks in this set are not traded
over the entire period. This is a major difference with respect
to the majority of the works on dynamic correlation-based
networks, in which only stocks continuously traded over the
period under study are considered, leading to a significant
“survival bias.” For each asset 𝑖 we have calculated the series
of log-returns, defined as 𝑟𝑖(𝑡) = log(𝑃𝑖(𝑡)) − log(𝑃𝑖(𝑡 − 1)),
where 𝑃𝑖(𝑡) is stock price at day 𝑡. The construction of the
time-varying multiplex networks is based on log-returns and
has been performed in moving time windows of 𝜃 = 1000
trading days (about 4 years), with a shift of 𝑑𝑇 = 23 trading
days (about onemonth), adding up to 200 different multiplex
networks, one for each time window. For each time window𝑇, four different𝑁(𝑇)×𝑁(𝑇) dependencematrices have been
computed, respectively, based on the four different estimators
illustrated in Section 4.2. Since the number of active stocks
changes with time, dependence matrices at different times
can have different number of stocks 𝑁(𝑇), as shown in
Figure 4. In the figure the ICB industry composition of our
dataset in each time window is also shown, confirming that
we have a representative sample of all market throughout the
period. We have verified that the results we are discussing in
the following are robust against change of 𝜃 and 𝑑𝑇.
4.2. Dependence among Financial Time Series. We have con-
sidered four different measures of dependence between two
time series 𝑟𝑖(𝑢) and 𝑟𝑗(𝑢), 𝑖, 𝑗 = 1, 2, . . . , 𝑁, 𝑢 = 1, 2, . . . , 𝜃,
indicated in the following, respectively, as Pearson, Kendall,
Tail, and Partial.
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4.2.1. Pearson Dependence. It is a measure of linear depen-
dence between two time series and is based on the evaluation
of the Pearson correlation coefficient [44]. We have used
the exponentially smoothed version of this estimator [45], in
order to mitigate excessive sensitiveness to outliers in remote
observations:
𝜌𝑤𝑖𝑗
= ∑𝜃𝑢=1 𝑤𝑢 (𝑟𝑖 (𝑢) − 𝑟𝑖𝑤) (𝑟𝑗 (𝑢) − 𝑟𝑗𝑤)

√∑𝜃𝑢=1 𝑤𝑢 (𝑟𝑖 (𝑢) − 𝑟𝑖𝑤)2√∑𝜃𝑢=1 𝑤𝑢 (𝑟𝑗 (𝑢) − 𝑟𝑗𝑤)2
, (1)

with

𝑤𝑢 = 𝑤0 exp(𝑢 − 𝜃𝑇∗ ) , (2)

where 𝑇∗ is the weight characteristic time (𝑇∗ > 0) that
controls the rate at which past observations lose importance
in the correlation and 𝑤0 is a constant connected to the
normalisation constraint ∑𝜃𝑢=1 𝑤𝑢 = 1. We have chosen 𝑇∗ =𝜃/3 according to previously established criteria [45].

4.2.2. Kendall Dependence. It is ameasure of dependence that
takes into account the nonlinearity of a time series. It is based
on the evaluation of the so-called Kendall’s 𝜏 rank correlation
coefficient, starting from the quantities 𝑑𝑘(𝑢, V) ≡ sgn(𝑟𝑘(𝑢)−𝑟𝑘(V)). The estimator counts the number of concordant pairs,
that is, pairs of observations such that 𝑑𝑖(𝑢, V) and 𝑑𝑗(𝑢, V)
have equal signs, minus the number of discordant pairs [11].
As for the case of the Pearson dependence, we have used the
exponentially smoothed version of the estimator [45]:

𝜏𝑤𝑖𝑗 =
𝜃∑
𝑢=1

𝜃∑
V=𝑢+1

𝑤𝑢,V𝑑𝑖 (𝑢, V) 𝑑𝑗 (𝑢, V) , (3)

with

𝑤𝑢,V = 𝑤0 exp(𝑢 − 𝜃𝑇∗ ) exp(V − 𝜃𝑇∗ ) , (4)

where 𝑇∗ is again the weight characteristic time.

4.2.3. Tail Dependence. It is a nonparametric estimator of tail
copula that provides a measure of dependence focused on
extreme events. It is based on the evaluation of the following
estimator [46]:

𝐶𝑖𝑗 (𝑝1, 𝑝2) = ∑𝜃𝑢=1 1{𝐹𝑖(𝑟𝑖(𝑢))<𝑝1∧𝐹𝑗(𝑟𝑗(𝑢))<𝑝2}
∑𝜃𝑢=1 1{𝐹𝑖(𝑟𝑖(𝑢))<𝑝1∨𝐹𝑗(𝑟𝑗(𝑢))<𝑝2} , (5)

where 𝐹𝑖 and 𝐹𝑗 are the empirical cumulative probabilities
of returns 𝑟𝑖(𝑢) and 𝑟𝑗(𝑢), respectively, and 𝑝1 and 𝑝2 are
two parameters representing the percentiles above which an
observation is considered (lower) tail. We focus on lower
tails since we are interested in risk management applications,
where the attention is on losses. It can be shown that this is a
consistent estimator of tail copula [46]. In this work we have
chosen 𝑝1 = 𝑝2 = 0.1 (i.e., we consider tail every observation
below the 10th percentile), as a trade-off between the need of
statistic and the interest in extreme events.

4.2.4. Partial Dependence. It is a measure of dependence
that quantifies to what extent each asset affects other assets
correlation. The Partial correlation 𝜌𝑖𝑘|𝑗, or correlation influ-
ence, between assets 𝑖 and 𝑘 based on 𝑗, is the Pearson
correlation between the residuals of 𝑟𝑖(𝑢) and 𝑟𝑘(𝑢) obtained
after regression against 𝑟𝑗(𝑢) [47]. It can be written in terms
of a Pearson correlation coefficient as follows [41]:

𝜌𝑖𝑘|𝑗 = 𝜌𝑖𝑘 − 𝜌𝑖𝑗𝜌𝑘𝑗
√[1 − 𝜌2𝑖𝑗] [1 − 𝜌2

𝑘𝑗
]
.

(6)

This measure represents the amount of correlation between𝑖 and 𝑘 that is left once the influence of 𝑗 is subtracted.
Following [41], we define the correlation influence of 𝑗 on the
pair 𝑖, 𝑘 as

𝑑 (𝑖, 𝑘 | 𝑗) = 𝜌𝑖𝑘 − 𝜌𝑖𝑘|𝑗. (7)

𝑑(𝑖, 𝑘 | 𝑗) is large when a significant fraction of correlation
between 𝑖 and 𝑘 is due to the influence of 𝑗. Finally, in order
to translate this into a measure between 𝑖 and 𝑗, the so-called
Partial dependence, we average it over the index 𝑘:

𝑑 (𝑖 | 𝑗) = ⟨𝑑 (𝑖, 𝑘 | 𝑗)⟩𝑘 ̸=𝑖,𝑗 . (8)

𝑑(𝑖 | 𝑗) is the measure of influence of 𝑗 on 𝑖 based on Partial
correlation. It is worth noting that, unlike the other measures
of dependence, 𝑑(𝑖 | 𝑗) provides a directed relation between
assets (as in general 𝑑(𝑖 | 𝑗) ̸= 𝑑(𝑗 | 𝑖)). In the rest of
the paper we refer to this indicator as “Partial dependence,”
even though strictly speakingwe are analysing the correlation
influence based on Partial correlation.

4.3. Graph Filtering and the Construction of the Multiplex
Network. For each of the 200 time windows we have then
constructed a multiplex network with𝑀 = 4 layers obtained,
respectively, by means of the four dependence indicators.
In order to reduce the noise and the redundance contained
in each dependence matrix we have applied the Planar
Maximally Filtered Graph [2–4, 7]. It is worth mentioning
that the filtering of the correlation influence layer requires an
adaptation of the PMFG algorithm to deal with asymmetric
relations. We have followed the approach suggested in [41]
that rules out double links between nodes. The obtained
planar graphs have been then converted into undirected
graphs and included in the multiplex.

4.4. Multiplex Measures. Let us consider a weighted mul-
tiplex network M on 𝑁 nodes, defined by the 𝑀-
dimensional array of weighted adjacency matrices W ={𝑊[1],𝑊[2], . . . ,𝑊[𝑀]}, where𝑊[𝛼] = {𝑤[𝛼]𝑖𝑗 } are the matrices
of weights that determine the topology of the 𝛼th layer
though the PMFG filtering. Here the weight 𝑤[𝛼]𝑖𝑗 represents
the strength of the correlation between node 𝑖 and node 𝑗 on
layer 𝛼, where the different layers are obtained through differ-
ent correlation measures. In the following we will indicate by𝑊[𝛼] the weighted adjacency matrix of the PMFG associated
with layer 𝛼 and by 𝐴[𝛼] the corresponding unweighted
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adjacency matrix, where 𝑎[𝛼]𝑖𝑗 = 1 if and only if 𝑤[𝛼]𝑖𝑗 ̸= 0.
We denote by 𝐾[𝛼] = (1/2)∑𝑖𝑗 𝑎[𝛼]𝑖𝑗 the number of edges on
layer 𝛼 and by 𝐾 = (1/2)∑𝑖,𝑗[1 − ∏𝛼(1 − 𝑎[𝛼]𝑖𝑗 )] the number
of pairs of nodes which are connected by at least one edge on
at least one of the 𝑀 layers. Notice that since the network at
each layer is a PMFG, then we have 𝐾[𝛼] = 3(𝑁 − 2) ∀𝛼 by
construction.

We consider some basic quantities commonly used to
characterise multiplex networks [14, 43]. The first one is the
mean edge overlap, defined as the average number of layers
on which an edge between two randomly chosen nodes 𝑖 and𝑗 exists:

⟨𝑂⟩ = 12𝐾∑
𝑖,𝑗

∑
𝛼

𝑎[𝛼]𝑖𝑗 . (9)

Notice that ⟨𝑂⟩ = 1 only when all the𝑀 layers are identical;
that is, 𝐴[𝛼] ≡ 𝐴[𝛽] ∀𝛼, 𝛽 = 1, . . . ,𝑀, while ⟨𝑂⟩ = 0
if no edge is present in more than one layer, so that the
average edge overlap is in fact a measure of howmuch similar
the structures of the layers of a multiplex network are. A
somehow dual quantity is the fraction of edges of layer 𝛼
which do not exist on any other layer:

𝑈[𝛼] = 12𝐾[𝛼]∑𝑖,𝑗 𝑎
[𝛼]
𝑖𝑗 ∏
𝛽 ̸=𝛼

(1 − 𝑎[𝛽]𝑖𝑗 ) (10)

which quantifies how peculiar the structure of a given layer 𝛼
is, since 𝑈[𝛼] is close to zero only when almost all the edges
of layer 𝛼 are also present on at least one of the other 𝑀 − 1
layers.

More accurate information about the contribution of each
node to a layer (or to a group of layers) can be obtained by the
so-called multidegree of a node 𝑖. Let us consider the vector󳨀→𝑚 = (𝑚1, 𝑚2, . . . , 𝑚𝑀), with𝑀 equal to the number of layers,
where each 𝑚𝛼 can take only two values {1, 0}. We say that a
pair of nodes 𝑖, 𝑗 has a multilink 󳨀→𝑚 if they are connected only
on those layers𝛼 for which𝑚𝛼 = 1 in󳨀→𝑚 [43].The information
on the 𝑀 adjacency matrices 𝑎𝛼𝑖𝑗 (𝛼 = 1, . . . ,𝑀) can then be
aggregated in the multiadjacency matrix 𝐴󳨀→𝑚𝑖𝑗 , where 𝐴󳨀→𝑚𝑖𝑗 = 1
if and only if the pair 𝑖, 𝑗 is connected by a multilink 󳨀→𝑚.
Formally [13, 43]

𝐴󳨀→𝑚𝑖𝑗 ≡
𝑀∏
𝛼=1

[𝑎𝛼𝑖𝑗𝑚𝛼 + (1 − 𝑎𝛼𝑖𝑗) (1 − 𝑚𝛼)] . (11)

From the multiadjacency matrix we can define the multide-
gree 󳨀→𝑚 of a node 𝑖, as the number of multilinks 󳨀→𝑚 connecting𝑖:

𝑘󳨀→𝑚𝑖 = ∑
𝑗

𝐴󳨀→𝑚𝑖𝑗 . (12)

This measure allows us to calculate, for example, how many
edges node 𝑖 has on layer 1 only (𝑘󳨀→𝑚𝑖 choosing 𝑚1 = 1, 𝑚𝛼 =0, ∀𝛼 ̸= 1), integrating the global information provided by𝑈[𝛼].

The most basic measure to quantify the importance of
single nodes on each layer is by means of the node degree𝑘[𝛼]𝑖 = ∑𝑗 𝑎[𝛼]𝑖𝑗 . However, since the same node 𝑖 is normally
present at all layers, we can introduce two quantities to
characterise the role of node 𝑖 in the multiplex [14], namely,
the overlapping degree

𝑜𝑖 = ∑
𝛼

𝑘[𝛼]𝑖 (13)

and the multiplex participation coefficient:

𝑃𝑖 = 𝑀𝑀 − 1 [1 − ∑
𝛼

(𝑘[𝛼]𝑖𝑜𝑖 )] . (14)

The overlapping degree is just the total number of edges
incident on node 𝑖 at any layer, so that node are classified as
hubs if they have a relatively large value of 𝑜𝑖. The multiplex
participation coefficient quantifies the dispersion of the edges
incident on node 𝑖 across the layers. In fact, 𝑃𝑖 = 0 if the
edges of 𝑖 are concentrated on exactly one of the𝑀 layers (in
this case 𝑖 is a focused node), while 𝑃𝑖 = 1 if the edges of 𝑖
are uniformly distributed across the 𝑀 layers, that is, when𝑘[𝛼]𝑖 = 𝑜𝑖/𝑀 ∀𝛼 (in which case 𝑖 is a truly multiplex node).
The scatter plot of 𝑜𝑖 and𝑃𝑖 is calledmultiplex cartography and
has been used as a synthetic graphical representation of the
overall heterogeneity of node roles observed in a multiplex.

In a multiplex network, it is important also to look at
the presence and sign of interlayer degree correlations. This
can be done by computing the interlayer degree correlation
coefficient [15]:

𝜌[𝛼,𝛽] = ∑𝑖 (𝑅[𝛼]𝑖 − 𝑅[𝛼]) (𝑅[𝛽]𝑖 − 𝑅[𝛽])
√∑𝑖 (𝑅[𝛼]𝑖 − 𝑅[𝛼])2∑𝑗 (𝑅[𝛽]𝑗 − 𝑅[𝛽])2

, (15)

where 𝑅[𝛼]𝑖 is the rank of node 𝑖 according to its degree on
layer 𝛼 and 𝑅[𝛼] is the average rank by degree on layer 𝛼. In
general 𝜌[𝛼,𝛽] takes values in [−1, 1], where values close to +1
and −1, respectively, indicate the strong positive and negative
correlations, while 𝜌[𝛼,𝛽] ≃ 0 if the degrees at the two layers
are uncorrelated.

4.5. TimeEvolution of theAverage ParticipationCoefficient. In
Figure 5 we plot the time evolution of the average participa-
tion coefficient 𝑃𝐼 (𝑥-axis) of stocks in the industrial sector 𝐼
against the average overlapping degree 𝑜𝐼 (𝑦-axis). Each circle
corresponds to one of the 200 time windows, while the size
and colour of each circle represent different time windows.
Each panel corresponds to one industrial sector 𝐼. The
diagrams reveal that in the last 20 years the role of different
sectors has changed radically and in different directions.
For instance, stocks in the Financials sector evolved from a
relatively large overlapping degree and a small participation
coefficient in the late 1990s to a smaller number of edges,
distributed more homogeneously across the layers, towards
the end of the observation period. Conversely, Industrials
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Figure 5: Continued.
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Figure 5: Industries evolution in the overlapping degree/participation coefficient plane. Fixing an industry 𝐼, we have plotted for each time
window a circle whose 𝑦 coordinate is the average overlapping degree 𝑜𝐼 and whose 𝑥 coordinate is the average participation coefficient𝑃𝐼. Points at different times are characterised by different sizes (small to large) and colours (legend on the right). In (a)–(j) we show the
results, respectively, for Basic Materials, Consumer Goods, Consumer Services, Financials, Health Care, Industrials, Oil & Gas, Technology,
Telecommunications, and Utilities.

stocks have acquired degree on some of the layers, resulting
in a considerable decrease of participation coefficient. This
is another indication of the importance of monitoring all
the layers together, as an increase in the structural role
of an industry (as measured by the overlapping degree) is
typically due to only a subset of layers (as indicated by the
corresponding decrease of the participation coefficient).
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We consider games of strategic substitutes and complements on networks and introduce two evolutionary dynamics in order to
refine their multiplicity of equilibria. Within mean field, we find that for the best-shot game, taken as a representative example
of strategic substitutes, replicator-like dynamics does not lead to Nash equilibria, whereas it leads to a unique equilibrium for
complements, represented by a coordination game. On the other hand, when the dynamics becomes more cognitively demanding,
predictions are always Nash equilibria: for the best-shot game we find a reduced set of equilibria with a definite value of the fraction
of contributors, whereas, for the coordination game, symmetric equilibria arise only for low or high initial fractions of cooperators.
We further extend our study by considering complex topologies through heterogeneous mean field and show that the nature of the
selected equilibria does not change for the best-shot game. However, for coordination games, we reveal an important difference: on
infinitely large scale-free networks, cooperative equilibria arise for any value of the incentive to cooperate. Our analytical results are
confirmed by numerical simulations and open the question of whether there can be dynamics that consistently leads to stringent
equilibria refinements for both classes of games.

1. Introduction

Strategic interactions among individuals located on a net-
work, be it geographical, social, or of any other nature, are
becoming increasingly relevant in many economic contexts.
Decisions made by our neighbors on the network influence
ours and are in turn influenced by their other neighbors to
whom we may or may not be connected. Such a framework
makes finding the best strategy a very complex problem,
almost always plagued by a very large multiplicity of equi-
libria. Researchers are devoting much effort to this problem,
and an increasing body of knowledge is being consolidated
[1–3]. In this work we consider games of strategic substitutes
and strategic complements on networks, as discussed in [4].
In this paper, Galeotti et al. obtained an important reduction
in the number of game equilibria by going from a complete
information setting to an incomplete one. They introduced
incomplete information by assuming that each player is only
aware of the number of neighbors he/she has, but not of their

identity nor of the number of neighbors they have in turn.We
here aim at providing an alternative equilibrium refinement
by looking at network games from an evolutionary viewpoint.
In particular, we look for the set of equilibria which can
be accessed according to two different dynamics for players’
strategies and discuss the implications of such reduction.
Furthermore, we go beyond the state-of-the-art mean field
approach and consider the role of complex topologies with
a heterogeneous mean field technique.

Our work belongs to the literature on strategic interac-
tions in networks and its applications to economics [5–13].
In particular, one of the games we study is a discrete version
of a public goods game proposed by Bramoullé and Kranton
[14], who opened the way to the problem of equilibrium
selection in this kind of games under complete information.
Bramoullé further considered this problem [15] for the case of
anticoordination games on networks, showing that network
effects are much stronger than for coordination games. As
already stated, our paper originates from Galeotti et al. [4],
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for they considered one-shot games with strategic comple-
ments and substitutes and model equilibria resulting from
incomplete information. Our approach is instead based on
evolutionary selection of equilibria—pertaining to the large
body of work emanating from the Nash programme [16–
19]—and is thus complementary to theirs. In particular we
focus on the analysis of two evolutionary dynamics (see Roca
et al. [20] for a review of the literature) in two representative
games and on how this dynamics leads to a refinement of
the Nash equilibria or to other final states. The dynamics we
consider are Proportional Imitation [21, 22], which does not
lead in general to Nash equilibria, and best response [23, 24],
which instead allows for convergence to Nash equilibria—an
issue about which there are a number of interesting results
in the case of a well-mixed population [25–27]. As we are
working on a network setup, our specific perspective is close
to that of Boncinelli and Pin [28]. They elaborate on the
literature on stochastic stability [19, 29] (see [24, 30] for an
early example of related dynamics on lattices) as a device
that selects the equilibria that are more likely to be observed
in the long run, in the presence of small errors occurring
with a vanishing probability.They work from the observation
[31] that different equilibria can be selected depending on
assumptions on the relative likelihood of different types of
errors. Thus, Boncinelli and Pin work with a best response
dynamics and by means of a Markov Chain analysis find,
counterintuitively, that when contributors are the most per-
turbed players, the selected equilibrium is the one with the
highest contribution.The techniqueswe use here are based on
differential equations and have a more dynamical character,
and we do not incorporate the possibility of having special
distributions of errors—although we do consider random
mistakes. Particularly relevant to our work is the paper by
López-Pintado [32] (see [33] for an extension to the case of
directed networks) where a mean field dynamical approach
involving a random subsample of players is proposed.Within
this framework, the network is dynamic, as if at each period
the networkwere generated randomly.Then a unique globally
stable state of the dynamics is found, although the identities
of free riders might change from one period to another. The
difference with our work is that we do not deal with a time-
dependent subsample of the population, but we use a global
mean field approach (possibly depending on the connectivity
of individuals) to describe the behavior of a static network.

In the remainder of this introduction we present the
games we study and the dynamics we apply for equilibrium
refinement in detail, discuss the implications of such a
framework on the informational settings we are considering,
and summarize our main contributions.

1.1. Framework

1.1.1. Games. We consider a finite set of agents 𝐼 of cardinality𝑛, linked together in a fixed, undirected, exogenous network.
The links between agents reflect social interactions, and
connected agents are said to be “neighbors.” The network
is defined through a 𝑛 × 𝑛 symmetric matrix 𝐺 with null
diagonal, where 𝐺𝑖𝑗 = 1 means that agents 𝑖 and 𝑗 are
neighbors, while𝐺𝑖𝑗 = 0means that they are not. We indicate

with𝑁𝑖 the set of 𝑖’s neighbors; that is,𝑁𝑖 = {𝑗 ∈ 𝐼 : 𝐺𝑖𝑗 = 1},
where the number of such neighbors |𝑁𝑖| = 𝑘𝑖 is the degree of
the node.

Each player can take one of two actions 𝑋 = {0, 1},
with 𝑥𝑖 ∈ 𝑋 denoting 𝑖’s action. Hence, only pure strategies
are considered. In our context (particularly for the case of
substitutes), action 1 may be interpreted as cooperating and
action 0 as not doing so—or defecting. Thus, the two actions
are labeled in the rest of the paper as 𝐶 and 𝐷, respectively.
There is a cost 𝑐, where 0 < 𝑐 < 1, for choosing action 𝑥 = 1,
while action 𝑥 = 0 bears no cost.

In what follows we concentrate on two games, the
best-shot game and a coordination game, as representative
instances of strategic substitutes and strategic complements,
respectively. We choose specific examples for the sake of
being able to study analytically their dynamics. To define the
payoffs we introduce the following notation: 𝑥𝑁𝑖 = ∑𝑗∈𝑁𝑖 𝑥𝑗
is the aggregate action in𝑁𝑖 and 𝑦𝑖 = 𝑥𝑖 + 𝑥𝑁𝑖 .
(a) Strategic Substitutes: Best-Shot Game. This game was first
considered by Bramoullé and Kranton [14] as a model of
the local provision of a public good. As stated above, we
consider the discrete version,where there are only two actions
available, as in [4, 28]. The corresponding payoff function
takes the form

𝜋𝑖 = Θ𝐻 (𝑦𝑖 − 1) − 𝑐𝑥𝑖, (1)

whereΘ𝐻(⋅) is theHeaviside step functionΘ𝐻(𝑥) = 1 if 𝑥 ≥ 0
and Θ𝐻(𝑥) = 0 otherwise.
(b) Strategic Complements: Coordination Game. For our
second example, we follow Galeotti et al. [4] and consider
again a discrete version of the game, but now let the payoffs
of any particular agent 𝑖 be given by

𝜋𝑖 = (𝛼𝑥𝑁𝑖 − 𝑐) 𝑥𝑖. (2)

Assuming that 𝑐 > 𝛼 > 0, we are faced with a coordination
gamewhere, as discussed in [4], depending on the underlying
network and the information conditions, there can generally
be multiple equilibria.

1.1.2. Dynamics. Within the two games we have presented
above, we now consider evolutionary dynamics for players’
strategies. Starting at 𝑡 = 0 with a certain fraction 𝜌(0) =∑𝑖 𝑥𝑖(0)/𝑛 of players randomly chosen to undertake action𝑥 = 1, at each round 𝑡 of the game players collect their
payoff 𝜋(𝑡) according to their neighbors’ actions and the
kind of game under consideration. Subsequently, a fraction𝑞 of players update their strategy. We consider two different
mechanisms for strategy updating.

(a) Proportional Imitation (PI) [21, 22]. It represents a rule of
imitative nature in which player 𝑖 may copy the strategy of
a selected counterpart 𝑗, which is chosen randomly among
the 𝑘𝑖 neighbors of 𝑖. The probability that 𝑖 copies 𝑗’s strategy
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depends on the difference between the payoffs they obtained
in the previous round of the game:

P {𝑥𝑗 (𝑡) 󳨀→ 𝑥𝑖 (𝑡 + 1)}

= {{{{{
[𝜋𝑗 (𝑡) − 𝜋𝑖 (𝑡)]Φ if 𝜋𝑗 (𝑡) > 𝜋𝑖 (𝑡)
𝜖 otherwise,

(3)

whereΦ is a normalization constant that ensuresP{⋅} ∈ [0, 1]
and 0 ≤ 𝜖 < 1 allows for mistakes (i.e., copying an action that
yielded less payoff in the previous round). Note that because
of the imitation mechanism of PI, the configurations 𝑥𝑖 =1 ∀𝑖 and 𝑥𝑖 = 0 ∀𝑖 are absorbing states: the system cannot
escape from them and not even mistakes can reintroduce
strategies, as they always involve imitation. On the other
hand, it can be shown that PI is equivalent to the well-known
replicator dynamics in the limit of an infinitely large, well-
mixed population (equivalently, on a complete graph) [34,
35]. Aswas first put by Schlag [22], the assumption that agents
play a random-matching game in a large population and learn
the actual payoff of another randomly chosen agent, along
with a rule of action that increases their expected payoff, leads
to a probability of switching to the other agent’s strategy that is
proportional to the difference in payoffs. The corresponding
aggregate dynamics is like the replicator dynamics. See also
[36] for another interpretation of these dynamics in terms of
learning.

(b) Best Response (BR). This rule was introduced in [23, 24]
and has been widely used in the economics literature. BR
describes players that are rational and choose their strategy
(myopically) in order to maximize their payoff, assuming
that their neighbors will again do what they did in the last
round.This means that each player 𝑖, given the past actions of
their partners 𝑥𝑁𝑖(𝑡), computes the payoffs that he/she would
obtain by choosing action 1 (cooperating) or 0 (defecting) at
time 𝑡, respectively, 𝜋̃𝐶(𝑡) and 𝜋̃𝐷(𝑡).Then actions are updated
as follows:

P {𝑥𝑖 (𝑡 + 1) = 1} = {{{
1 − 𝜖 if 𝜋̃𝐶 (𝑡) > 𝜋̃𝐷 (𝑡)
𝜖 if 𝜋̃𝐶 (𝑡) < 𝜋̃𝐷 (𝑡) ;

P {𝑥𝑖 (𝑡 + 1) = 0} = {{{
𝜖 if 𝜋̃𝐶 (𝑡) > 𝜋̃𝐷 (𝑡)
1 − 𝜖 if 𝜋̃𝐶 (𝑡) < 𝜋̃𝐷 (𝑡)

(4)

and 𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) if 𝜋̃𝐶(𝑡) = 𝜋̃𝐷(𝑡). Here again 0 ≤ 𝜖 < 1
represents the probability of making a mistake, with 𝜖 = 0
indicating fully rational players.

The reason to study these two dynamics is because they
may lead to different results as they represent very different
evolutions of the players’ strategies. In this respect, it is
important to mention that, in the case 𝜖 = 0, Nash equilibria
are stable by definition under BR dynamics and, vice versa,
any stationary state found by BR is necessarily a Nash
equilibrium. On the contrary, with PI this is not always true:
even in the absence of mistakes, players can change action

by copying better-performing neighbors, also if such change
leads to a decreasing of their payoffs in the next round.
Another difference between the two dynamics is the amount
of cognitive capability they assume for the players: whereas
PI refers to agents with very limited rationality, which imitate
a randomly chosen neighbor on the only condition that
he/she does better, BR requires agents with a much more
developed analytic ability.

1.1.3. Analytical and Informational Settings. Westudy how the
system evolves by either of these two dynamics, starting from
an initial random distribution of strategies. In particular, we
are interested in the global fraction of cooperators 𝜌(𝑡) =∑𝑖 𝑥𝑖(𝑡)/𝑛 and its possible stationary value 𝜌𝑠. We carry
out our calculations in the framework of a homogeneous
mean field (MF) approximation, which ismost appropriate to
study networks with homogeneous degree distribution 𝑃(𝑘)
like Erdös-Rényi random graphs [37]. The basic assumption
underlying this approach is that every player interacts with
an “average player” that represents the actions of his/her
neighbors. More formally, the MF approximation consists in
assuming that when a player interacts with a neighbor of
theirs, the action of such a neighbor is 𝑥 = 1 with probability𝜌 (and 𝑥 = 0 otherwise), independently of the particular pair
of players considered [38]. Loosely speaking, this amounts to
having a very incomplete information setting, in which all
players know only how many other players they will engage
with, and is reminiscent of that used by Galeotti et al. [4] for
their refinement of equilibria. However, the analogy is not
perfect and therefore, for the sake of accuracy, we donot dwell
any further on the matter. In any case, MF represents our
setup for most of the paper.

As an extension of the results obtained in the above con-
text, we also study the case of highly heterogeneous networks,
that is, networks with broad degree distribution 𝑃(𝑘), such
as scale-free ones [39]. In these cases in fact there are a
number of players with many neighbors (“hubs”) and many
players with only a few neighbors, and this heterogeneitymay
give rise to very different behaviors as compared to Erdös-
Rényi systems. Analytically, this can be done by means of
the heterogeneous mean field technique (HMF) [40] which
generalizes, for the case of networks with arbitrary degree
distribution, the equations describing the dynamical process
by considering degree-block variables grouping nodes within
the same degree. More formally, now when a player interacts
with a neighbor of theirs, the action of such a neighbor is𝑥 = 1 with probability 𝜌𝑘 (and 𝑥 = 0 otherwise) if 𝑘 is
the neighbor’s degree (𝜌𝑘 is the density of cooperators within
players of degree 𝑘). By resorting to this second perspective
we are able to gain insights on the effects of heterogeneity on
the evolutionary dynamics of our games.

1.2. Our Contribution. Within this framework, our main
contribution can be summarized as follows. In our basic
setup of homogeneous networks (described by themean field
approximation): for the best-shot game, PI leads to a station-
ary state in which all players play 𝑥𝑖 = 0, that is, to full
defection, which is however non-Nash as any player sur-
rounded by defectors would obtain higher payoff by choosing
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cooperation (at odds with the standard version of the public
goods game). This is the result also in the presence of
mistakes, unless the probability of errors becomes large, in
which case the stationary state is the opposite, 𝑥𝑖 = 1,
that is, full cooperation, also non-Nash. Hence, PI does not
lead to any refinement of the Nash equilibrium structure.
On the contrary, BR leads to Nash equilibria characterized
by a finite fraction of cooperators 𝜌𝑠, whereas, in the case
when players are affected by errors, this fraction coincides
with the probability of making an error as the mean degree
of the network goes to infinity. The picture is different for
the coordination game. In this case, PI does lead to Nash
equilibria, selecting the coordination in 0 below a threshold
value of 𝛼 and the opposite state otherwise. This threshold
is found to depend on the initial fraction 𝜌(0) of players
choosing 𝑥 = 1. Mistakes lead to the appearance of a
new possibility, an intermediate value of the fraction of
players choosing 1, and as before the initial value of this
fraction governs which equilibrium is selected. BR gives
similar results, albeit for the fact that a finite fraction of
1 actions can also be found even without mistakes, and
with mistakes the equilibria are not full 0 or 1 but there
is always a fraction of mistaken players. Finally, changing
the analytical setting by proceeding to the heterogeneous
mean field approach does not lead to any dramatic change
in the structure of the equilibria for the best-shot game.
Interestingly, things change significantly for coordination
games—when played on infinitely large scale-free networks.
In this case, which is the one where the heterogeneous mean
field should make a difference, equilibria with nonvanishing
cooperation are obtained for any value of the incentive to
cooperate (represented by the parameter 𝛼).

The paper is organized in seven sections including this
introduction. Section 2 presents our analysis and results for
the best-shot game. Section 3 deals with the coordination
game. In both cases, the analytical framework is that of the
mean field technique. After an overall analysis of global wel-
fare performed in Section 4, Section 5 presents the extensions
of the results for both games within the heterogeneous mean
field approach, including some background on the formalism
itself. Finally, Section 6 contains an assessment of the validity
of all these analytical findings in light of the results of
recent numerical simulations of the system described above,
and Section 7 concludes the paper summarizing our most
important findings concerning the refinement of equilibria
in network games and pointing to relevant open questions.

2. Best-Shot Game

2.1. Proportional Imitation. We begin by considering the case
of strategic substitutes when imitation of a neighbor is only
possible if he/she has obtained better payoff than the focal
player; that is, 𝜖 = 0 in (3). In that case, the main result is
the following.

Proposition 1. Within the mean field formalism, under PI
dynamics, when 𝜖 = 0 the final state for the population is
the absorbing state with a density of cooperators 𝜌 = 0 (full
defection) except if the initial state is full cooperation.

Proof. Working in a mean field context means that individu-
als are well-mixed, that is, every player interacts with average
players. In this case the differential equation for the density
of cooperators 𝜌 is

̇𝜌𝑞 = (1 − 𝜌) 𝜌P𝐷→𝐶 − 𝜌 (1 − 𝜌)P𝐶→𝐷. (5)

The first term is the probability (1 − 𝜌)𝜌 of picking a
defector with a neighboring cooperator, times the probability
of imitationP𝐷→𝐶. The second term is the probability 𝜌(1 −𝜌) of picking a cooperator with a neighboring defector,
times the probability of imitation P𝐶→𝐷. In the best-shot
game a defector cannot copy a neighboring cooperator (who
has lower payoff by construction), whereas, a cooperator
eventually copies one of his/her neighboring defectors (who
has higher payoff). Hence P𝐷→𝐶 = 0 and P𝐶→𝐷 is equal to
the payoff difference 1 − (1 − 𝑐) = 𝑐. Since the normalization
constant Φ = 1 for strategic substitutes, (5) becomes

̇𝜌𝑞 = −𝑐𝜌 (1 − 𝜌) . (6)

The solution, for any initial condition 0 < 𝜌(0) < 1, is
𝜌 (𝑡) = {1 + [𝜌 (0)−1 − 1] 𝑒𝑐𝑞𝑡}−1 , (7)

hence 𝜌(𝑡) → 0 for 𝑡 → ∞: the only stationary state is full
defection unless 𝜌(0) = 1.
Remark 2. As discussed above, PI does not necessarily lead to
Nash equilibria as asymptotic, stationary states. This is clear
in this case. For any 𝜌(0) < 1 the population ends up in full
defection, even if every individual player would be better off
by switching to cooperation. This phenomenon is likely to
arise from the substitutes or anticoordination character of the
game: in a context in which it is best to do the opposite of the
other players, imitation does not seem the best way for players
to decide on their actions.

Proposition 3. Within the mean field formalism, under PI
dynamics, when 𝜖 ∈ (0, 1) the final state for the population is
the absorbing state 𝜌 = 0 (full defection) when 𝜖 < 𝑐, 𝜌 = 𝜌(0)
when 𝜖 = 𝑐, and 𝜌 = 1 when 𝜖 > 𝑐. When the initial state is𝜌(0) = 0 or 𝜌(0) = 1, it remains unchanged.

Proof. Equation (5) is still valid, with P𝐶→𝐷 unchanged,
whereas,P𝐷→𝐶 = 𝜖. By introducing the effective cost 𝑐 = 𝑐−𝜖
we can rewrite (7) as

𝜌 (𝑡) = {1 + [𝜌 (0)−1 − 1] 𝑒𝑐𝑞𝑡}−1 . (8)

Hence 𝜌(𝑡) → 0 for 𝑡 → ∞ only for 𝑐 > 0 (𝜖 < 𝑐) and instead
for 𝑐 = 0 (𝜖 = 𝑐) then 𝜌(𝑡) ≡ 𝜌(0) ∀𝑡, and for 𝑐 < 0 (𝜖 > 𝑐)
then 𝜌(𝑡) → 1 for 𝑡 → ∞ (cooperation is favored now).

Remark 4. As before, PI does not drive the population to a
Nash equilibrium, independently of the probability ofmaking
a mistake. However, mistakes do introduce a bias towards
cooperation and thus a new scenario: when their probability
exceeds the cost of cooperating, the whole population ends
up cooperating.
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2.2. Best Response. We now turn to the case of the best
response dynamics, which (at least for 𝜖 = 0) is guaranteed
to drive the system towards Nash equilibria. In this scenario,
we have not been able to find a rigorous proof of our main
result, but we canmake some approximations in the equation
that support it. As we will see, our main conclusion is that,
within the mean field formalism under BR dynamics, when𝜖 = 0 the final state for the population is a mixed state 𝜌 = 𝜌𝑠,0 < 𝜌𝑠 < 1, for any initial condition.

Indeed, for BR dynamics without mistakes, the homoge-
neous mean field equation for ̇𝜌 is

̇𝜌𝑞 = −𝜌𝑄 [𝜋𝐶 < 𝜋𝐷] + (1 − 𝜌)𝑄 [𝜋𝐶 > 𝜋𝐷] , (9)

where the first term is the probability of picking a cooperator
who would do better by defecting, and the second term is
the probability of picking a defector who would do better
by cooperating. This far, no approximation has been made;
however, these two probabilities cannot be exactly computed
and we need to estimate them.

To evaluate the two probabilities, we can recall that 𝜋𝐶 =1 − 𝑐 always, whereas 𝜋𝐷 = 0 when none of the neighbors
cooperates and 𝜋𝐷 = 1 otherwise. Therefore, for an average
player of degree 𝑘 we have that 𝑄𝑘[𝜋𝐶 > 𝜋𝐷] = (1 − 𝜌)𝑘.
Consistently with the mean field framework we are working
on, as a rough approximation, we can assume that every
player has degree 𝑘 (the average degree of the network), so
that𝑄[𝜋𝐶 > 𝜋𝐷] = 1 −𝑄[𝜋𝐶 < 𝜋𝐷] = (1 − 𝜌)𝑘. Thus, we have

̇𝜌𝑞 = (1 − 𝜌)𝑘 − 𝜌. (10)

To go beyond this simple estimation, we can work out a
better approximation by integrating 𝑄𝑘[𝜋𝐶 > 𝜋𝐷] over the
probability distribution of players’ degrees 𝑃(𝑘). For Erdös-
Rényi random graphs, in the limit of large populations (𝑛 →
∞), it is 𝑃(𝑘) ≃ 𝑘𝑘𝑒−𝑘/𝑘!. This leads to 𝑄[𝜋𝐶 > 𝜋𝐷] = 𝑒−𝑘𝜌
and, subsequently,

̇𝜌𝑞 = 𝑒−𝑘𝜌 − 𝜌. (11)

Remark 5. The precise asymptotic value for the density of
cooperators, 𝜌𝑠, depends on the approximation considered
above. However, at least for networks that are not too inho-
mogeneous, the approximations turn out to be very good,
and therefore the corresponding picture for the evolution of
the population is quite accurate. It is interesting to note that,
whatever its exact value, in both cases 𝜌𝑠 is such that the right-
hand sides of (10) and (11) vanish and, furthermore, 𝜌𝑠 is an
attractor of the dynamics, because 𝑑( ̇𝜌)/𝑑𝜌|𝜌𝑠 < 0.

How is the above result modified by mistakes? When 𝜖 ∈(0, 1), (9) becomes

̇𝜌𝑞 = 𝑄 [𝜋𝐶 < 𝜋𝐷] {−𝜌 (1 − 𝜖) + (1 − 𝜌) 𝜖}
+ 𝑄 [𝜋𝐶 > 𝜋𝐷] {(1 − 𝜌) (1 − 𝜖) − 𝜌𝜖}

= 𝑄 [𝜋𝐶 < 𝜋𝐷] (−𝜌 + 𝜖)
+ 𝑄 [𝜋𝐶 > 𝜋𝐷] (1 − 𝜌 − 𝜖) ,

(12)

where the first term accounts for cooperators rightfully
switching to defection and defectors wrongly selecting coop-
eration, while the second term accounts for defectors cor-
rectly choosing cooperation and cooperators mistaken to
defection. Proceeding as before, and again in the limit 𝑛 →
∞, we approximate 𝑄[𝜋𝐶 > 𝜋𝐷] = 𝑒−𝑘𝜌, thus arriving at

̇𝜌𝑞 = (1 − 2𝜖) 𝑒−𝑘𝜌 − (𝜌 − 𝜖) (13)

from which it is possible to find the attractor of the dynamics𝜌𝑠. Such attractor in turn exists if

𝜖 < (1 + 𝑘−1𝑒𝑘𝜌𝑠)
2 , (14)

a threshold that is bounded below by 1/2, which would
be tantamount to players choosing their action at random.
Therefore, all reasonable values for the probability of errors
allow for equilibria.

Remark 6. To gain some insight on the cooperation levels
arising from BR dynamics in the Nash equilibria, we have
numerically solved (13). The values for 𝜌𝑠 are plotted in
Figure 1 for different values of 𝜖, as a function of 𝑘. We
observe that the larger the 𝑘, the lower the cooperation
level. The intuition behind such result is that the more the
connections that every player has, the lower the need to
play 1 to ensure obtaining a positive payoff. It could then be
thought that this conclusion is reminiscent of the equilibria
found for best-shot games in [4], which are nonincreasing
in the degree. However, this is not the case, as in our work
we are considering an iterated game that can perfectly lead
to high degree nodes having to cooperate. Note also that
this approach leads to a definite value for the density of
cooperators in the Nash equilibrium, but there can be many
action profiles for the player compatible with that value, so
multiplicity of equilibria is reduced but not suppressed.

Remark 7. From Figure 1 it is also apparent that as the
likelihood of mistakes increases, the density of cooperators
at equilibrium increases. Note that for very large values of the
connectivity 𝑘, (13) has solution 𝜌(𝑡) = 𝜌(0)𝑒−𝑞𝑡 + 𝜖, and thus𝜌𝑠 ≡ 𝜖, in agreementwith the fact that when a player hasmany
neighbors he/she can assume that a fraction 𝜖 of them will
cooperate, thus turning defection into his/her BR.

3. Coordination Game

We now turn to the case of strategic complements, exem-
plified by our coordination game. As above, we start from
the case without mistakes, and we subsequently see how they
affect the results.
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Figure 1: Best-shot game under BR dynamics in the mean field
framework. Shown are the asymptotic cooperation values 𝜌𝑠 versus
the average degree 𝑘 for different values of the probability of making
a mistake 𝜖. Values are obtained by numerically solving (13).

3.1. Proportional Imitation

Proposition 8. Within the mean field formalism, under PI
dynamics, when 𝜖 = 0 the final state for the population is
the absorbing state with a density of cooperators 𝜌 = 0 (full
defection) when 𝛼 < 𝛼𝑐 ≡ 𝑐/[𝑘𝜌(0)], and the absorbing state
with 𝜌 = 1 when 𝛼 > 𝛼𝑐. In the case 𝛼 = 𝛼𝑐 both outcomes are
possible.

Proof. Still within our homogeneous mean field context, the
differential equation for the density of cooperators 𝜌 is again
(5). As we are in the case in which 𝜖 = 0, we have that
P𝐷→𝐶 = (𝜋𝐶 − 𝜋𝐷)𝑄[𝜋𝐶 > 𝜋𝐷]/Φ and P𝐶→𝐷 = (𝜋𝐷 −𝜋𝐶)𝑄[𝜋𝐶 < 𝜋𝐷]/Φ = −(𝜋𝐶 − 𝜋𝐷)(1 − 𝑄[𝜋𝐶 > 𝜋𝐷])/Φ, where
for strategic complementsΦ = 𝛼𝑘max. Given that 𝜋𝐷 = 0 and
that, consistently with our MF framework, 𝜋𝐶 = 𝛼𝑘𝜌 − 𝑐, we
find

̇𝜌𝑞 = 𝜌 (1 − 𝜌) (𝛼𝑘𝜌 − 𝑐)
Φ = 𝑐𝜌 (1 − 𝜌) (𝜌/𝜌𝑐 − 1)

Φ , (15)

where we have introduced the values 𝜌𝑐 = 𝜌(0)[𝛼𝑐/𝛼] and𝛼𝑐 ≡ 𝑐/[𝑘𝜌(0)].
It is easy to see that 𝜌 = 𝜌𝑐 is an unstable equilibrium, aṡ𝜌 < 0 for 𝜌 < 𝜌𝑐 and ̇𝜌 > 0 for 𝜌 > 𝜌𝑐. Therefore, we have

two different cases: when 𝛼 > 𝛼𝑐 then 𝜌𝑐 < 𝜌(0) and the final
state is full cooperation (𝜌 = 1), whereas when 𝛼 < 𝛼𝑐 then𝜌𝑐 > 𝜌(0) and the outcome is full defection (𝜌 = 0). When𝛼 ≡ 𝛼𝑐 then 𝜌𝑐 ≡ 𝜌(0), so both outcomes are in principle
possible.

Remark 9. The same (but opposite) intuition we discussed
in Remark 2 about the outcome of PI on substitute games
suggests that imitation is indeed a good procedure to choose

actions in a coordination setup. In fact, contrary to the case
of the best-shot game, in the coordination game PI does
lead to Nash equilibria, and indeed it makes a very precise
prediction: a unique equilibrium that depends on the initial
density. Turning around the condition for the separatrix, we
have 𝜌(0) < 𝑐/(𝑘𝛼); that is, when few people cooperate
initially then evolution leads to everybody defecting, and
vice versa. In any event, having a unique equilibrium (except
exactly at the separatrix) is a remarkable achievement.

Remark 10. In a system where players may have different
degrees, while full defection is always a Nash equilibrium
for the coordination game, full cooperation becomes a Nash
equilibrium only when 𝛼 > 𝑐/𝑘min, where 𝑘min is the smallest
degree in the network—whichmeans that only networkswith𝑘min > 𝑐/𝛼 > 1 feature a fully cooperative Nash equilibrium.

When 𝜖 ∈ (0, 1), the problem becomes much more
involved and we have not been able to prove rigorously our
main result. In fact, now we haveP𝐷→𝐶 = (𝜋𝐶 − 𝜋𝐷)𝑄[𝜋𝐶 >𝜋𝐷]/Φ + 𝜖𝑄[𝜋𝐶 < 𝜋𝐷] and P𝐶→𝐷 = (𝜋𝐷 − 𝜋𝐶)𝑄[𝜋𝐶 <𝜋𝐷]/Φ + 𝜖𝑄[𝜋𝐶 > 𝜋𝐷]. Equation (15) thus becomes

̇𝜌𝑞 = 𝜌 (1 − 𝜌){𝑐 (𝜌/𝜌𝑐 − 1)
Φ + 𝜖 (1 − 2𝑄 [𝜌 > 𝜌𝑐])} , (16)

where we have used 𝑄[𝜋𝐶 > 0] ≃ 𝑄[𝛼𝑘𝜌 > 𝑐] = 𝑄[𝜌 >𝜌𝑐]. We then have three different cases which we can treat
approximately:

(i) When 𝜌 ≃ 𝜌𝑐, then 𝑄[𝜌 > 𝜌𝑐] ≃ 1/2 and (16) reduces
to (15); that is, we would recover the result for the case
with no mistakes.

(ii) When 𝜌 ≫ 𝜌𝑐, then 𝑄[𝜌 > 𝜌𝑐] ≃ 1 and (16) can be
rewritten as

̇𝜌𝑞 = 𝜌 (1 − 𝜌) ( 𝑐Φ + 𝜖)( 𝜌𝜌+ − 1) (17)

with 𝜌+ = 𝜌𝑐(1 + Φ𝜖/𝑐) > 𝜌𝑠. This value 𝜌+ leads to an
unstable equilibrium; in particular, ̇𝜌 < 0 for 𝜌 < 𝜌+
so that 𝜌 → 𝜌𝑐 and hence (16) holds.

(iii) Finally when 𝜌 ≪ 𝜌𝑐, then𝑄[𝜌 > 𝜌𝑐] ≃ 0 and (16) can
be rewritten as

̇𝜌𝑞 = 𝜌 (1 − 𝜌) ( 𝑐Φ − 𝜖)( 𝜌𝜌− − 1) (18)

with 𝜌− = 𝜌𝑐(1 − Φ𝜖/𝑐) < 𝜌𝑠. As before, 𝜌− gives an
unstable equilibrium, because ̇𝜌 < 0 for 𝜌 > 𝜌− so that
again 𝜌 → 𝜌𝑐 where (16) holds.

Remark 11. In summary, the region 𝜌− < 𝜌 < 𝜌+ becomes a
finite basin of attraction for the dynamics. Note that when𝜖 > 𝑐/(𝛼𝑐𝑘max), then 𝜌+ = 𝜌(0) has no solution and 𝜌𝑐
becomes the attractor in the whole 𝛼 space. Our analysis thus
shows that, for a range of initial densities of cooperators, there
is a dynamical equilibrium characterized by an intermediate
value of 𝜌, which is neither full defection nor full cooperation.
Instead, for small enough or large enough values of 𝜌(0), the
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system evolves towards the fully defective or fully cooperative
Nash equilibrium, respectively.

Remark 12. The intuition behind the result above could be
that mistakes can take a number of people away from the
equilibrium, be it full defection or full cooperation, and that
this takes place in a range of initial conditions that grows with
the likelihood of mistakes.

3.2. Best Response. Considering now the case of BR dynam-
ics, the case of the coordination game is no different from that
of the best-shot game and we cannot find rigorous proofs for
our results, althoughwe believe that we can substantiate them
on firm grounds. To proceed, for this case, (9) becomes

̇𝜌𝑞 = −𝜌 + 𝑄 [𝜋𝐶 > 0] , (19)

where we have taken into account that 𝜋𝐷 = 0 and 𝑄[𝜋𝐶 <𝜋𝐷] = 1 −𝑄[𝜋𝐶 > 𝜋𝐷]. Assuming that every node has degree𝑘, that is, a regular random network, it is clear that theremust
be at least [𝑐/𝛼] + 1 neighboring cooperators in order to have𝜋𝐶 > 𝜋𝐷. Thus

𝑄 [𝜋𝐶 > 𝜋𝐷] = 𝑄 [𝜋𝐶 > 0]
= 𝑘∑
𝑙=[𝑐/𝛼]+1

(𝑘
𝑙)𝜌𝑙 (1 − 𝜌)𝑘−𝑙 ,

̇𝜌𝑞 = −𝜌 + 𝑘∑
𝑙=[𝑐/𝛼]+1

(𝑘
𝑙)𝜌𝑙 (1 − 𝜌)𝑘−𝑙 .

(20)

Once again, the difficulty is to show that 𝜌𝑐 = 𝜌(0)(𝛼𝑐/𝛼) is
the unstable equilibrium. However, we can follow the same
approach used with PI and write 𝑄[𝜋𝐶 > 0] ≃ 𝑄[𝛼𝑘𝜌 > 𝑐] =𝑄[𝜌 > 𝜌𝑐]; that is, we approximate 𝑄[𝜋𝐶 > 0] as a Heaviside
step function with threshold in 𝜌𝑐. We then again have three
different cases as follows:

(i) If 𝜌 ≃ 𝜌𝑐, then 𝑄[𝜌 > 𝜌𝑐] ≃ 1/2: we have ̇𝜌/𝑞 = −𝜌 +1/2 and the attractor becomes 𝜌 ≡ 1/2.
(ii) If 𝜌 ≫ 𝜌𝑐, then 𝑄[𝜌 > 𝜌𝑐] ≃ 1: we have ̇𝜌/𝑞 = −𝜌 + 1

and a stable equilibrium at 𝜌 ≡ 1.
(iii) Finally if 𝜌 ≪ 𝜌𝑐, then 𝑄[𝜌 > 𝜌𝑐] ≃ 0: we have ̇𝜌/𝑞 =−𝜌 and a stable equilibrium at 𝜌 ≡ 0.

Remark 13. As one can see, even without mistakes, BR equi-
libria with intermediate values of the density of cooperators
can be obtained in a range of initial densities. Compared to
the situation with PI, in which we only found the absorbing
states as equilibria, this points to the fact that more rational
players would eventually converge to equilibria with higher
payoffs. It is interesting to note that such equilibria could
be related to those found by Galeotti et al. [4] in the sense
that not everybody in the network chooses the same action;
however, we cannot make a more specific connection as
we cannot detect which players choose which action—see,
however, Section 5.2.2.

A similar approach allows some insight on the situation𝜖 > 0. We start again from (12), which now reduces to

̇𝜌𝑞 = − (𝜌 − 𝜖) + 𝑄 [𝜋𝐶 > 0] (1 − 2𝜖) . (21)

Approximating as before 𝑄[𝜋𝐶 > 0] ≃ 𝑄[𝜌 > 𝜌𝑐] we again
have the same three different cases.

(i) If 𝜌 ≃ 𝜌𝑐, then the attractor 𝜌 ≡ 1/2 is unaffected by
the particular value of 𝜖.

(ii) If 𝜌 ≫ 𝜌𝑐, then the stable equilibrium lies at 𝜌 ≡ 1− 𝜖.
(iii) If 𝜌 ≪ 𝜌𝑐, then the stable equilibrium is at 𝜌 ≡ 𝜖.

Remark 14. Adding mistakes to BR does not change dra-
matically the results, as it did occur with PI. The only
relevant change is that equilibria for low or high densities of
cooperators are never homogeneous, as there is a percentage
of the population that chooses the wrong action. Other than
that, in this case the situation is basically the same with a
range of densities converging to an intermediate amount of
cooperators.

4. Analysis of Global Welfare

Having found the equilibria selected by different evolutionary
dynamics, it is interesting to inspect their corresponding
welfare (measured in terms of average payoffs). We can again
resort to the mean field approximation to approach this
problem.

Best-Shot Game. In this case the payoff of player 𝑖 is given
by (1): 𝜋𝑖 = Θ𝐻(𝑦𝑖 − 1) − 𝑐𝑥𝑖. Within the mean field
approximation, for a generic player 𝑖 with degree 𝑘𝑖, we can
approximate the theta function asΘ𝐻(𝑦𝑖−1) ≃ 𝜌+(1−𝜌)[1−(1 − 𝜌)𝑘𝑖], where the first term is the contribution given by
player 𝑖 cooperating (𝑥𝑖 = 1), whereas the second term is the
contribution of player 𝑖 defecting (𝑥𝑖 = 0) and at least one of𝑖’s neighbors cooperating (𝑥𝑗 = 1 for at least one 𝑗 ∈ 𝑁𝑖). It
follows easily that

⟨𝜋⟩ = ∑
𝑘

𝑃 (𝑘) {𝜌 + (1 − 𝜌) [1 − (1 − 𝜌)𝑘] − 𝑐𝜌} . (22)

If 𝑃(𝑘) = 𝛿(𝑘 − 𝑘) (where 𝛿(⋅) stands for the Dirac delta
function), then ⟨𝜋⟩ = 1 − 𝑐𝜌 − (1 − 𝜌)𝑘+1, whereas, if
𝑃(𝑘) = 𝑘𝑘𝑒−𝑘/𝑘!, then ⟨𝜋⟩ = 1 − 𝑐𝜌 − (1 − 𝜌)𝑒−𝜌𝑘. We recall
that in the simple case where players do not make mistakes
(𝜖 = 0), PI leads to a stationary cooperation level 𝜌 ≡ 0,
which corresponds to ⟨𝜋⟩ = 0. On the other hand, with BR
the stationary value of 𝜌𝑠 is given by (10) or (11), both leading
to ⟨𝜋𝑠⟩ = 1−𝑐𝜌𝑠−𝜌𝑠(1−𝜌𝑠). As long as 𝜌𝑠 < 𝑐, it is ⟨𝜋𝑠⟩ > 1−𝑐
(the payoff of full cooperation). We thus see that under BR
players are indeed able to self-organize into states with high
values of welfare in a nontrivial manner: defectors are not too
many and are placed on the network to allow any of them to
be connected to at least one cooperator (and thus to get the
payoff 𝜋 = 1); this, together with cooperators having 𝜋 = 1−𝑐
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by construction, results in a state of higher welfare than full
cooperation.

Coordination Game. Now player 𝑖’s payoff is given by (2):𝜋𝑖 = (𝛼𝑥𝑁𝑖 −𝑐) 𝑥𝑖. Again within themean field framework we
approximate the term 𝑥𝑁𝑖 as 𝜌𝑘𝑖, and we immediately obtain

⟨𝜋⟩ = ∑
𝑘

𝑃 (𝑘) 𝜌 {𝛼𝜌𝑘 − 𝑐} = 𝜌 (𝛼𝜌𝑘 − 𝑐) . (23)

⟨𝜋⟩ is thus a convex function of 𝜌, which (considering that0 ≤ 𝜌 ≤ 1) attains its maximum value at 𝜌 = 0 when 𝛼 <𝛼𝜋 fl 𝑐/𝑘, and at 𝜌 = 1 for 𝛼 > 𝛼𝜋. Recalling that, in the
simple case 𝜖 = 0, with both PI and BR there are two different
stationary regimes (𝜌 → 0 for 𝛼 ≪ 𝛼𝑐 = 𝑐/[𝜌(0)𝑘] and 𝜌 →1 for 𝛼 ≫ 𝛼𝑐), we immediately see that for 𝛼 > 𝛼𝑐 > 𝛼𝜋
the stationary state 𝜌 = 1 maximizes welfare, and the same
happens for 𝛼 < 𝛼𝜋 with 𝜌 = 0. However, in the intermediate
region 𝛼𝜋 < 𝛼 < 𝛼𝑐, the stationary state is 𝜌 = 0 but payoffs
are not optimal.

5. Extension: Higher Heterogeneity
of the Network

In the two previous sections we have confined ourselves to
the case in which the only information about the network we
use is the mean degree, that is, how many neighbors players
do interact with on average. However, in many cases, we may
consider information on details of the network, such as the
degree distribution, and this is relevant as most networks
of a given nature (e.g., social) are usually more complex
and heterogeneous than Erdös-Rényi random graphs. The
heterogeneous mean field (HMF) [40] technique is a very
common theoretical tool [41] to deal with the intrinsic
heterogeneity of networks. It is the natural generalization
of the usual mean field (homogeneous mixing) approach
to networks characterized by a broad distribution of the
connectivity. The fundamental assumption underlying HMF
is that the dynamical state of a vertex depends only on its
degree 𝑘. In other words, all vertices having the same number
of connections have exactly the same dynamical properties.
HMF theory can be interpreted also as assuming that the
dynamical process takes place on an annealed network
[41], that is, a network where connections are completely
reshuffled at each time step,with the sole constraints that both
the degree distribution 𝑃(𝑘) and the conditional probability𝑃(𝑘 | 𝑘󸀠) (i.e., the probability that a node of degree 𝑘󸀠 has a
neighbor of degree 𝑘, thus encoding topological correlations)
remain constant.

Note that in the following HMF calculations we always
assume that our network is uncorrelated; that is, 𝑃(𝑘󸀠 |𝑘) = 𝑘󸀠𝑃(𝑘󸀠)/𝑘. This is consistent with our minimal infor-
mational setting, meaning that it represents the most natural
assumption we can make.

5.1. Best-Shot Game

5.1.1. Proportional Imitation. In this framework, considering
more complex network topologies does not change the results

we found before, and we again find a final state that is not a
Nash equilibrium, namely, full defection.

Proposition 15. In the HMF setting, under PI dynamics, when𝜖 = 0 the final state for the population is the absorbing state
with a density of cooperators 𝜌 = 0 (full defection) except if the
initial state is full cooperation.

Proof. TheHMF technique proceeds by building the 𝑘-block
variables: we denote by 𝜌𝑘 the density of cooperators among
players of degree 𝑘. The differential equation for the density
of cooperators 𝜌𝑘 is

̇𝜌𝑘𝑞 = (1 − 𝜌𝑘)∑
𝑘󸀠

𝜌𝑘󸀠𝑃 (𝑘󸀠 | 𝑘)P𝑘𝑘󸀠𝐷→𝐶
− 𝜌𝑘∑
𝑘󸀠

(1 − 𝜌𝑘󸀠) 𝑃 (𝑘󸀠 | 𝑘)P𝑘𝑘󸀠𝐶→𝐷.
(24)

The first term is the probability of picking a defector of
degree 𝑘 with a neighboring cooperator of degree 𝑘󸀠 times
the probability of imitation (all summed over 𝑘󸀠), whereas
the second term is the probability of picking a cooperator of
degree 𝑘 with a neighboring defector of degree 𝑘󸀠 times the
probability of imitation (again, all summed over 𝑘󸀠). For the
best-shot game when 𝜖 = 0, we have

P
𝑘𝑘󸀠

𝐶→𝐷 = 𝑐
P
𝑘𝑘󸀠

𝐷→𝐶 = 0
∀𝑘, 𝑘󸀠.

(25)

We now introduce these values in (24) and, using the
uncorrelated network assumption, we arrive at

̇𝜌𝑘𝑞 = −𝑐𝜌𝑘∑
𝑘󸀠

(1 − 𝜌𝑘󸀠) 𝑘󸀠𝑃 (𝑘󸀠)
𝑘 = −𝑐 (1 − Θ) 𝜌𝑘, (26)

wherewe have introduced the probability to find a cooperator
following a randomly chosen link:

Θ fl ∑
𝑘󸀠

𝑘󸀠𝑃 (𝑘󸀠) 𝜌𝑘󸀠
𝑘 . (27)

The corresponding differential equation for Θ reads

Θ̇ = ∑
𝑘

𝑘𝑃 (𝑘) ̇𝜌𝑘𝑘 = −𝑞𝑐Θ (1 − Θ) , (28)

and its solution has the same form of (7):

Θ (𝑡) = {1 + [Θ (0)−1 − 1] 𝑒𝑐𝑞𝑡}−1 (29)

with Θ(0) ≡ 𝜌(0) as 𝜌𝑘(0) = 𝜌(0) ∀𝑘. Hence Θ(𝑡) → 0 for𝑡 → ∞ which implies 𝜌𝑘(𝑡) → 0 for 𝑡 → ∞ and ∀𝑘.
Remark 16. For the best-shot game with PI, the particular
formof the degree distribution does not change anything.The
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outcome of evolution still is full defection, thus indicating
that the failure to find a Nash equilibrium arises from the
(bounded rational) dynamics and not from the underlying
population structure. Again, this suggests that imitation is
not a good procedure for the players to decide in this kind
of games.

Proposition 17. In theHMF setting, under PI dynamics, when𝜖 ∈ (0, 1) the final state for the population is the absorbing state𝜌 = 0 (full defection) when 𝜖 < 𝑐, 𝜌 = 𝜌(0) when 𝜖 = 𝑐, and𝜌 = 1when 𝜖 > 𝑐.When the initial state is𝜌(0) = 0 or𝜌(0) = 1,
it remains unchanged.

Proof. Equation (24) is still valid, but now P𝑘𝑘
󸀠

𝐶→𝐷 = 𝑐 and
P𝑘𝑘

󸀠

𝐷→𝐶 = 𝜖 ∀𝑘, 𝑘󸀠. Again, using the uncorrelated network
assumption, and introducing the effective cost 𝑐 = 𝑐 − 𝜖, we
arrive at

̇𝜌𝑘𝑞 = −𝑐 (1 − Θ) 𝜌𝑘 + 𝜖Θ (1 − 𝜌𝑘) ,
Θ̇ = −𝑞𝑐Θ (1 − Θ) ,

(30)

and at the end at a solution of the same form of (29):

Θ (𝑡) = {1 + [Θ (0)−1 − 1] 𝑒𝑐𝑞𝑡}−1 (31)

withΘ(0) ≡ 𝜌(0). HenceΘ(𝑡) → 0 for 𝑡 → ∞ (which implies𝜌𝑘(𝑡) → 0) only for 𝑐 > 0 (𝜖 < 𝑐) and instead for 𝑐 = 0 (𝜖 = 𝑐)
then Θ(𝑡) ≡ Θ(0) (𝜌(𝑡) ≡ 𝜌(0)) ∀𝑡, and for 𝑐 < 0 (𝜖 > 𝑐) thenΘ(𝑡) → 1 for 𝑡 → ∞ (which implies 𝜌𝑘(𝑡) → 1).
5.1.2. Best Response. Always within the deterministic sce-
nario with 𝜖 = 0, for the case of best response dynamics the
differential equation for each of the 𝑘-block variables 𝜌𝑘 has
the same form as (9) above, where now to evaluate 𝑄𝑘[𝜋𝐶 >𝜋𝐷] we have to consider the particular values of neighbors’
degrees. As before, we consider the uncorrelated network case
and introduce the variable Θ from (27). We thus have

𝑄𝑘 [𝜋𝐶 > 𝜋𝐷] = [∑
𝑘󸀠

(1 − 𝜌󸀠𝑘) 𝑃 (𝑘󸀠 | 𝑘)]
𝑘

= (1 − Θ)𝑘 ,
̇𝜌𝑘𝑞 = −𝜌𝑘𝑄𝑘 [𝜋𝐶 < 𝜋𝐷]

+ (1 − 𝜌𝑘) 𝑄𝑘 [𝜋𝐶 > 𝜋𝐷]
= (1 − Θ)𝑘 − 𝜌𝑘.

(32)

The differential equation for Θ is thus

Θ̇𝑞 = −Θ + ∑
𝑘

(1 − Θ)𝑘 𝑘𝑃 (𝑘)
𝑘 (33)

whose solution depends on the form of degree distribution𝑃(𝑘). Nevertheless, the critical value Θ𝑠 such that the right-
hand side of (33) equals zero is also in this case the attractor
of the dynamics.
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Figure 2: Asymptotic value of the cooperator density for the best-
shot gamewith BR dynamics for Erdös-Rényi and scale-free random
graphs (with 𝑘min = 3 and varying 𝛾):Θ𝑠 (main panel) and 𝜌𝑠 (inset)
versus the average degree 𝑘, obtained by numerically solving (33).

Remark 18. In order to assess the effect of degree heterogene-
ity, we have plotted in Figure 2 the numerical solution for two
random graphs, an Erdös-Rényi graph with a homogeneous
degree distribution and a scale-free graph with a much more
heterogeneous distribution 𝑃(𝑘) = (𝛾 − 1)𝑘(𝛾−1)min /𝑘𝛾. In
both cases, the networks are uncorrelated so our framework
applies. As we can see from the plot, the results are not very
different, and they becomemore similar as the average degree
increases. This is related on one hand to the particular form
of Nash equilibria for strategic substitutes, where cooperators
are generally the nodeswith lowdegree and on the other hand
to the fact that the main difference between a homogeneous
and a scale-free 𝑃(𝑘) lies in the tail of the distribution. In this
sense, the nodes with the highest degrees (that can make a
difference) do not contribute to Θ𝑠 and thus their effects on
the system are negligible.

If we allow for the possibility of mistakes, the starting
point of the analysis is—for each of the 𝑘-block variables𝜌𝑘—the differential equation given by (9). Recalling that𝑄𝑘[𝜋𝐶 > 𝜋𝐷] = (1 − Θ)𝑘, we easily arrive at

̇𝜌𝑘𝑞 = 𝜖 − 𝜌𝑘 + (1 − 2𝜖) (1 − Θ)𝑘
Θ̇𝑞 = 𝜖 − Θ + (1 − 2𝜖)∑

𝑘

(1 − Θ)𝑘 𝑘𝑃 (𝑘)
𝑘 . (34)

A sufficient condition for the existence of a dynamical
attractor Θ𝑠 is 𝜖 < 1/2: also, in heterogeneous networks, all
reasonable values for the probability of errors allow for the
existence of stable equilibria.

5.2. Coordination Game. Unfortunately, for the coordina-
tion game, working in the HMF framework is much more
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complicated, and we have been able to gain only qualitative
but important insights on the system’s features. For the sake
of clarity, we illustrate only the deterministic case in which no
mistakes are made (𝜖 = 0).
5.2.1. Proportional Imitation. The average payoffs of cooper-
ating and defecting for players with degree 𝑘 are

𝜋𝑘𝐷 = 0 ∀𝑘;
𝜋𝑘𝐶 = 𝛼𝑘[∑

𝑘󸀠

𝑃 (𝑘󸀠 | 𝑘) 𝜌𝑘󸀠] − 𝑐 = 𝛼𝑘Θ − 𝑐, (35)

where Θ is the same as defined in (27).
We then use our starting point for the HMF formalism,

(24), where now the probabilities of imitation are

P
𝑘𝑘󸀠

𝐷→𝐶 = (𝜋𝑘󸀠𝐶 − 𝜋𝑘𝐷)𝑄 [𝜋𝑘󸀠𝐶 > 𝜋𝑘𝐷]
Φ

= (𝛼𝑘󸀠Θ − 𝑐)𝑄𝑘󸀠 [𝜋𝐶 > 0]
Φ

P
𝑘𝑘󸀠

𝐶→𝐷 = (𝜋𝑘󸀠𝐷 − 𝜋𝑘𝐶)𝑄 [𝜋𝑘󸀠𝐷 > 𝜋𝑘𝐶]
Φ

= −(𝛼𝑘Θ − 𝑐) {1 − 𝑄𝑘 [𝜋𝐶 > 0]}
Φ .

(36)

Once again within the assumption of an uncorrelated net-
work, we find

Φ ̇𝜌𝑘𝑞 = (1 − 𝜌𝑘)∑
𝑘󸀠

𝜌𝑘󸀠 𝑘
󸀠𝑃 (𝑘󸀠)

𝑘 (𝛼𝑘󸀠Θ − 𝑐)

⋅ 𝑄𝑘󸀠 [𝜋𝐶 > 0] + 𝜌𝑘∑
𝑘󸀠

(1 − 𝜌𝑘󸀠) 𝑘󸀠𝑃 (𝑘󸀠)
𝑘 (𝛼𝑘Θ − 𝑐)

⋅ {1 − 𝑄𝑘 (𝜋𝐶 > 0)} .

(37)

In the second term we can carry out the sum over 𝑘󸀠, which
yields ∑𝑘󸀠(1 − 𝜌𝑘󸀠)𝑘󸀠𝑃(𝑘󸀠)/𝑘 = 1 − Θ. We are now ready to
write the differential equation for Θ:

Φ𝑘Θ̇𝑞 = ∑
𝑘

𝑘𝑃 (𝑘) ̇𝜌𝑘𝑞 = ∑
𝑘

𝑘𝑃 (𝑘) (1 − 𝜌𝑘)∑
𝑘󸀠

𝜌𝑘󸀠

⋅ 𝑘󸀠𝑃 (𝑘󸀠)
𝑘 (𝛼𝑘󸀠Θ − 𝑐)𝑄𝑘󸀠 [𝜋𝐶 > 0] + ∑

𝑘

𝑘𝑃 (𝑘)
⋅ 𝜌𝑘 (1 − Θ) (𝛼𝑘Θ − 𝑐) {1 − 𝑄𝑘 [𝜋𝐶 > 0]} .

(38)

Carrying out the summation over 𝑘 in the first term (which
results again in 1 − Θ), and relabeling 𝑘󸀠 as 𝑘, we are left with

Φ𝑘Θ̇𝑞 = ∑
𝑘

𝑘𝑃 (𝑘) 𝜌𝑘 (1 − Θ) (𝛼𝑘Θ − 𝑐)𝑄𝑘 [𝜋𝐶 > 0]
+ ∑
𝑘

𝑘𝑃 (𝑘) 𝜌𝑘 (1 − Θ) (𝛼𝑘Θ − 𝑐) {1 − 𝑄𝑘 [𝜋𝐶 > 0]}

= ∑
𝑘

𝑘𝑃 (𝑘) 𝜌𝑘 (1 − Θ) (𝛼𝑘Θ − 𝑐) = (1 − Θ)

⋅ Θ[𝛼∑
𝑘

𝑘2𝑃 (𝑘) 𝜌𝑘 − 𝑐𝑘] .
(39)

Finally, introducing the new variable

Θ2 fl ∑
𝑘󸀠

(𝑘󸀠)2 𝑃 (𝑘󸀠) 𝜌𝑘󸀠
𝑘 (40)

we arrive at

ΦΘ̇𝑞 = (1 − Θ)Θ (𝛼Θ2 − 𝑐) . (41)

Remark 19. While is it difficult to solve (41) in a self-
consistent way, qualitative insights can be gained by defining𝛼𝑐(𝑡) = 𝑐/Θ2(𝑡), and by rewriting (41) as Θ̇(𝑡) ≃ 𝛼/𝛼𝑐(𝑡) − 1
(the term (1 − Θ)Θ ≥ 0 always and thus can be discarded).
Now, starting from the beginning of the game at 𝑡 = 0, the
initial conditions {𝜌𝑘(0)} univocally determine the value ofΘ2(0) and thus of 𝛼𝑐(0). For 𝛼 < 𝛼𝑐(0), Θ̇(0) < 0 and𝜌 decreases. Because of this, in the next time step 𝑡 = 1
we have on average that Θ2(1) < Θ2(0), meaning 𝛼𝑐(1) >𝛼𝑐(0) > 𝛼: Θ̇(1) < 0 again and 𝜌 keeps decreasing. By
iterating such a reasoning, we conclude that in this case the
stable equilibrium is Θ = 0. Symmetrically, for 𝛼 > 𝛼𝑐(0),
the attractor becomes Θ = 1, and the transition between
the two regimes lies at 𝛼 ≡ 𝛼𝑐(0). Note that Θ2 is basically
the second momentum of the degree distribution, where
each degree 𝑘 is weighted with the density 𝜌𝑘. Recalling that𝑘2 may diverge for highly heterogeneous networks (e.g., it
diverges for scale-free networks with 𝛾 < 3), and that for
the coordination game cooperation is more favorable for
players with many neighbors (hence 𝜌𝑘 ≃ 1 for high 𝑘), we
immediately see that in these casesΘ2 diverges as well (as the
divergence is given by nodes with high degree). Thus, while
at the transition point the product 𝛼𝑐Θ2 remains finite (and
equal to 𝑐), 𝛼𝑐 → 0 to compensate for the divergence of Θ2
(Figure 3).We can conclude that, in networkswith broad𝑃(𝑘)
and in the limit 𝑛 → ∞, cooperation emerges also when the
incentive to cooperate (𝛼) vanishes.This is likely to be related
to the fact that as the system size goes to infinity, so does
the number of neighbors of the largest degree nodes. This
drives hubs to cooperate, thus triggering a nonzero level of
global cooperation. However, if the network is homogeneous,
neither 𝑘2 nor Θ2 diverge, so that 𝛼𝑐 remains finite and the
fully defective state appears also in the limit 𝑛 → ∞.

5.2.2. Best Response. For BR dynamics, we would have to
begin again from the fact that the differential equation for
each of the 𝑘-block variables 𝜌𝑘 has the same form of
(19). We would then need to evaluate 𝑄𝑘[𝜋𝐶 > 0] =∑𝑘𝑙=[𝑐/𝛼]+1 ( 𝑘𝑙 ) [∑𝑘󸀠 𝜌𝑘󸀠𝑃(𝑘󸀠 | 𝑘)]𝑙[1 − ∑𝑘󸀠 𝜌𝑘󸀠𝑃(𝑘󸀠 | 𝑘)]𝑘−𝑙 =
∑𝑘𝑙=[𝑐/𝛼]+1 ( 𝑘𝑙 )Θ𝑙(1−Θ)𝑘−𝑙. As in the homogeneous case, such
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Figure 3: Coordination game with PI dynamics for scale-free
networks (with 𝛾 = 2.5, 𝑘min = 3, and 𝑘max = √𝑛): stationary
cooperation levels 𝜌∞ versus 𝛼Θ2 for various system sizes 𝑛. The
vertical solid line identifies the critical value of 𝛼𝑐Θ2 = 𝑐.

expression is difficult to treat analytically. Alternatively, we
can perform the approximation of setting 𝑄𝑘[𝜋𝐶 > 0] =𝑄[𝛼𝑘Θ > 𝑐]; that is, we approximate 𝑄𝑘[𝜋𝐶 > 0] with a
Heaviside step function with threshold in Θ = 𝑐/(𝛼𝑘). This
leads to

̇𝜌𝑘𝑞 = −𝜌𝑘 for 𝑘 < 𝑐(𝛼Θ) (42)

̇𝜌𝑘𝑞 = −𝜌𝑘 + 1 for 𝑘 > 𝑐(𝛼Θ) (43)

Θ̇𝑞 = −Θ + ∑
𝑘>𝑐/(𝛼Θ)

𝑘𝑃 (𝑘)
𝑘 (44)

and to the following self-consistent equation for the equilib-
rium Θ𝑠:

Θ𝑠 = ∑
𝑘>𝑐/(𝛼Θ𝑠)

𝑘𝑃 (𝑘)
𝑘 (45)

whose solution strongly depends on the form of degree dis-
tribution𝑃(𝑘). Indeed, if the network is highly heterogeneous
(e.g., a scale-free network with 2 < 𝛾 < 3), it can be shown
that Θ𝑠 is a stable equilibrium whose dependence on 𝛼 is of
the formΘ𝑠 ∼ 𝛼(𝛾−2)/(3−𝛾); that is, there exists a nonvanishing
cooperation level Θ𝑠 no matter how small the value of 𝛼.
However, if the network is more homogeneous (e.g., 𝛾 > 3),Θ𝑠 becomes unstable and for 𝛼 → 0 the system always
falls in the fully defective Nash equilibria. Another important
characterization of such system comes from considering (42)
and (43): we have 𝜌𝑘(𝑡) → 0when 𝑘 < 𝑐/(𝛼Θ𝑠) and 𝜌𝑘(𝑡) → 1
for 𝑘 > 𝑐/(𝛼Θ𝑠). In this sense, we find a qualitative agreement

between the features of our equilibria and those found by
Galeotti et al. [4], inwhich players’ actions show amonotonic,
nondecreasing dependence on their degrees.

6. Comparison with Numerical Simulations

Before discussing and summarizing our results, one ques-
tion that arises naturally is whether, given that mean field
approaches are approximations in so far as they assume
interactions with a typical individual (or classes of typical
individuals), our results are accurate descriptions of the real
dynamics of the system.Therefore, in this section, we present
a brief comparison of the analytical results we obtained above
with those arising from a complete program of numerical
simulations of the system recently carried out by us, whose
details can be found in [42] (along with many additional
findings on issues that cannot be analytically studied). In this
comparison, we focus on the scenario in which mistakes are
not allowed (𝜖 = 0) as it, being deterministic, allows for a
meaningful comparison of theory and simulations without
extra effects arising perhaps from poor sampling.

Concerning the best-shot game, numerical simulations
fully confirm our analytical results. With PI, the dynamical
evolution is in perfect agreement with that predicted by both
MF and HMF theory—which indeed coincide when (as in
our case) 𝜌𝑘(𝑡 = 0) does not depend on 𝑘. Simulations
and analytics agree well also when the dynamics is BR:
The final state of the system is, for any initial condition, a
Nash equilibrium with cooperators ratio 𝜌𝑠 (which decreases
for increasing network connectivity). Yet, the 𝜌𝑠 solution oḟ𝜌 = 0 from (13) slightly underestimates the one found in
simulations—probably because of the approximation made
in computing the probabilities𝑄 of (9). Notwithstanding this
minor quantitative disagreement, we can safely confirm the
validity of our analytical results.

On the other hand, the agreement between theory and
simulations is also good for coordination games with PI
dynamics. On homogeneous networks, numerical simula-
tions show an abrupt transition from full defection to full
cooperation as 𝛼 crosses a critical value 𝛼𝑇. The MF theory
is thus able to qualitatively predict the behavior of the
system; furthermore, while 𝛼𝑇 is somewhat smaller than
the 𝛼𝑐 predicted by the theory, simulations also show that𝛼𝑇 → 𝛼𝑐 in the infinite network size, which implies that
for reasonably large systems our analytical predictions are
accurately fulfilled. Finally, simulations cannot find other
Nash equilibrium (with intermediate cooperation levels) than
full defection, again as predicted by the MF calculations. On
heterogeneous networks instead, simulations show a smooth
crossover between full defection and full cooperation, and
the point at which the transition starts (𝛼𝑇) tends to zero
as the system size grows. Therefore, the most important
prediction of HMF theory, namely, that the fully defective
state disappears in the large size limit (a phenomenon not
captured by the simple MF approach), is fully confirmed
by simulations. Finally, concerning BR dynamics for coordi-
nation games, we have a similar scenario: in homogeneous
networks, simulations allow finding a sharp transition at𝛼𝑇 from full defection to full cooperation, featuring many
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nontrivial Nash equilibria (all characterized by intermediate
cooperation levels) in the transient region. This behavior,
together with𝛼𝑇 → 𝛼𝑐 in the infinite network size, agrees well
with the approximate theoretical results. Heterogeneous net-
works instead feature a continuous transition, and it appears
from numerical simulations that—in the infinite network
size—a Nash equilibrium with nonvanishing cooperation
level exists no matter how small the value of 𝛼, exactly as
predicted by the HMF calculations.

We can conclude that the set of analytical results we are
presenting in this paper provides, in spite of its approximate
character, a very good description of the evolutionary equi-
libria of our two prototypical games, particularly so when
considering the more accurate HMF approach.

7. Conclusion

In this paper, we have presented two evolutionary approaches
to two paradigmatic games on networks, namely, the best-
shot game and the coordination game as representatives,
respectively, of the wider classes of strategic substitutes and
complements. As we have seen, using the MF approximation
we have been able to prove a number of rigorous results
and otherwise to get good insights on the outcome of the
evolution. Importantly, numerical simulations support all
our conclusions and confirm the validity of our analytical
approach to the problem.

Proceeding in order of increasing cognitive demand, we
first summarize what we have learned about PI dynamics,
equivalent to replicator dynamics in awell-mixed population.
For the case of the best-shot game, this dynamics has proven
unable to refine the set of Nash equilibria, as it always leads
to outcomes that are not Nash. On the other hand, the
asymptotic states obtained for the coordination game are
Nash equilibria and constitute indeed a drastic refinement,
selecting a restricted set of values for the average cooperation.
We believe that the difference between these results arises
from the fact that PI is imitative dynamics and in a context
such as the best-shot game, in which equilibria are not
symmetric, this leads to players imitating others who are
playing “correctly” in their own context but whose action
is not appropriate for the imitator. In the coordination
game, where the equilibria should be symmetric, this is
not a problem and we find equilibria characterized by a
homogeneous action. Note that imitation is quite difficult
to justify for rational players (as humans are supposed to
act), because it assumes bounded rationality or lack of
information leaving players no choice but copying others’
strategies [22]. Indeed, imitation is much more apt to model
contexts as biological evolution, where payoffs are interpreted
as reproductive successeswithin natural selection [43].Under
this interpretation, in the best-shot game, for instance, it is
clear that a cooperator surrounded by defectors would die
out and be replaced by the offspring of one of its neighboring
defectors.

When going to a more demanding evolutionary rule,
BR does lead by construction to Nash equilibria—when
players are fully rational and do not make mistakes. We
are then able to obtain predictions on the average level of

cooperation for the best-shot game but still many possible
equilibria are compatible with that value. Predictions are less
specific for the coordination game, due to the fact that—in an
intermediate range of initial conditions—different equilibria
with finite densities of cooperators are found. The general
picture remains the same in terms of finding full defection or
full cooperation for low or high initial cooperation, but the
intermediate region is much more difficult to study.

Besides, we have probed into the issue of degree hetero-
geneity by considering more complex network topologies.
Generally speaking, the results do not change much, at least
qualitatively, for any of the dynamics applied to the best-shot
game.The coordination game is more difficult to deal with in
this context but we were able to show that when the number
of connections is very heterogeneous, cooperation may be
obtained even if the incentive for cooperation vanishes. This
vanishing of the transition point is reminiscent of what
occurs for other processes on scale-free networks, such as
percolation of epidemic spreading [41]. Interestingly, our
results are in contrast with [15], in the sense that—for our
dynamical approach—coordination games are more affected
by the network (and are henceforth more difficult to tackle)
than anticoordination ones.

Finally, a comment is in order about the generality of our
results.We believe that the insight on howPI dynamics drives
the two types of games studied here should be applicable in
general; that is, PI should lead to dramatic reductions of the
set of equilibria for strategic complements, but is likely to be
off and produce spurious results for strategic substitutes, due
to imitation of inappropriate choices of action. On the other
hand, BR must produce Nash equilibria, as already stated,
leading to significant refinements for strategic substitutes
but to only moderate ones for strategic complements. This
conclusion hints that different types of dynamics should be
considered when refining the equilibria of the two types
of games, and raises the question of whether a consistently
better refinement could be found with only one dynamics. In
addition, our findings also hint to the possible little relevance
of the particular network considered on the ability of the
dynamics to cut down the number of equilibria. In this
respect, it is important to clarify that while our results should
apply to a wide class of networks going from homogeneous
to extremely heterogeneous, networks with correlations,
clustering, or other nontrivial structural properties might
behave differently. These are relevant questions for network
games that we hope will attract more research in the near
future.

Abbreviations
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BR: Best response
MF: Homogeneous mean field
HMF: Heterogeneous mean field.

Conflicts of Interest

The author declares that there are no conflicts of interest
regarding the publication of this paper.



Complexity 13

Acknowledgments

The author is thankful to Antonio Cabrales, Claudio Castel-
lano, Sanjeev Goyal, Angel Sánchez, and Fernando Vega-
Redondo for their feedback on early versions of the manu-
script and advice on the presentation of the results. This
work was supported by the Swiss Natural Science Foundation
(Grant no. PBFRP2 145872) and the EU project CoeGSS
(Grant no. 676547).

References

[1] S. Goyal, Connections: An Introduction to the Economics of
Networks, PrincetonUniversity Press, Princeton, NJ, USA, 2007.

[2] F. Vega-Redondo, Complex Social Networks, Econometric Soci-
ety Monographs, Cambridge University Press, Cambridge, UK,
2007.

[3] M. O. Jackson, Social and Economic Networks, Princeton Uni-
versity Press, Princeton, NJ, USA, 2008.

[4] A. Galeotti, S. Goyal, M. O. Jackson, F. Vega-Redondo, and L.
Yariv, “Network games,” Review of Economic Studies, vol. 77, no.
1, pp. 218–244, 2010.

[5] G.-M.Angeletos andA. Pavan, “Efficient use of information and
social value of information,”Econometrica: Journal of the Econo-
metric Society, vol. 75, no. 4, pp. 1103–1142, 2007.
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Among the central tenets of globalization is the free migration of labor. Although much has been written about the benefits
of globalization, little is known about its limitations and how antiglobalist sentiment can be strongly affected by high levels of
immigration. Analyzing poll data from a group of EU countries affected by the recent migrant crisis, we find that over the last
three years the percentage of right-wing (RW) populist voters in a given country depends on the prevalence of immigrants in this
country’s population and the total immigration inflow into the entire EU. The latter is likely due to the perception that the EU
functions as a supranational state in which a lack of inner borders means that “someone else’s problem” can easily become “my
problem.” We find that the increase in the percentage of RW voters substantially surpasses the percentage of immigration inflow,
implying that if this process continues, ongoing democratic processes will cause RWpopulism to prevail and globalization to rapidly
decrease. We locate tipping points between the fraction of immigrants and the rise of RW populism, and we model our empirical
findings using a complex network framework in which the success of globalization rests on a balance between immigration and
immigrant integration.

1. Introduction

An important goal of globalization is to allow both capital and
labor to move freely across national borders [1–4]. Although
one EU country that lacks a sufficient labor force can draw
from another EU country that has an overabundance of
labor, this economic consideration neglects how movement
of people can affect public opinion and alter the outcome
of subsequent elections. A volatile situation can arise when
either the native majority or the migrant minority sense that
their national, ethnic, or religious identity is being threatened.
Thus the unprecedented inflow of immigrants into the EU
during the recent migrant crisis allows fresh insights into

the relationship between immigration and the popular vote
and—by extension—the factors that directly affect the success
of further globalization.

Although a large body of literature is dedicated to the
analysis of how migration affects the global economy [1–
3, 5–10] and right-wing (RW) populism [11–17], much less is
known about the limitations of globalization [4, 18], especially
how large-scale migrations sway the popular vote and what
the economic consequences may be. For example, analyzing
national elections in 16 European countries from 1981 to
1998 Swank and Betz reported that the welfare state directly
depresses RWpopulism [9]. Smith reported that RWpopulist
parties benefit from higher levels of crime by linking crime
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with higher levels of immigration [16]. Borjas reported that
the integration of immigrants into the USwas slow and that it
took four generations for the earnings of immigrants to equal
the earnings of natives, not one or two as commonly believed
[19].

Although the recent migrant crisis in the EU was caused
by political turmoil and armed confrontation, not global-
ization, some of the central tenets of globalization have
nevertheless been tested. The surge in the population of
immigrants has beenmatched by a surge in voters supporting
RW populist parties. The growing number of RW voters
across the EU suggests that tolerance towards immigrants
is conditional [20] and that members of the general public
previously not identifying with RW populism have become
supporters. If globalization is to succeed, wemust understand
this “change of heart.”When immigration is more rapid than
integration over a prolonged period of time [20], RWpopulist
movements canwin elections and this can cause globalization
to decline. Apart from concerns about globalization, expected
global climate change strongly indicates possible massive
displacements in the global population [21].

Why immigration in the past decades did not stir as
much RW populism across the EU as the most recent inflow
did is perhaps because the EU societies are approaching a
tipping point characterized by drastic political and economic
upheaval. The term tipping point is used (i) to denote a
possible change during which RW populism becomes the
ruling political option and (ii) to emphasize a potentially
sudden (nonlinear) aspect of such a change thatmay not even
be visible in the available data. It may not be globalization and
immigration themselves that are the root of the problem, but
rather the high speed at which these processes are occurring
right now. Herein, we find that during the last three years
the rise of RW populism in a set of EU countries has been
substantially more rapid than the immigrant inflow into the
EU. We report that the percentage of RW voters in a country
significantly depends on the percentage of immigrants within
this country and the total immigration inflow into the entire
EU. We also find that the occurrence of violent incidents
is unrelated to the rate of immigrant inflow and has little
effect on the rising percentage of RW voters. We identify
tipping points connecting the percentage of immigrants
and the popularity of RW populist parties. Globalization
is meant to be a tolerant form of democracy in which
cooperation between nations supersedes individual national
interests, but there are circumstances under which growing
RW populist movements can overthrow this tolerant form
of democracy. We analyze whether the interconnectedness
between countries characteristic of globalization can facilitate
cascades (i.e., domino effects) in which growing populist
movements within one country trigger similar movements in
other countries.

2. Results

It seems reasonable that the causes of populist behavior are,
at least partly, nation-dependent. Generally, when a society is
relatively far from a tipping point, the nation’s interests likely
span a multidimensional space. For example, according to

Eurobarometer 65 published in 2006, the main concerns of
European citizens were unemployment (49%), crime (24%),
economic health (23%), immigration (14%), and terrorism
(10%). In a concurrent survey in the UK, however, 38% of
the respondents listed race and immigration as the top issue.
Because RW populism in the UK eventually led to a win
over the BREXIT vote, previous surveys suggest an intriguing
possibility that, as a society approaches a tipping point, its
multidimensional space starts to shrink, finally reducing to
a one-dimensional space in which a single issue dominates
the current affairs. Inspired by the developments in the UK,
we analyze the rise of RW populism in the EU, wherein the
recent migrant crisis suggests that the Union is approaching
a tipping point.

RW populism often embraces intolerance, which is a
widespread social phenomenon that produces conflicts and
generates segregation [22–28]. Intolerance combined with
radicalization is the main cause of violence and terrorism
[29–33]. However, RW populism often shares certain values,
for example, antiglobalization, protectionism, and Euroscep-
ticism, with left wing (LW) populism. In principle, people
not satisfied by the current government can swing between
RW and LW populism. Such a cyclic dynamics may arise as
the prevailing issues (e.g., economic versus ethnic) change
at a faster-than-generational time scale. Here we focus only
on RW populism and the fraction of RW populist voters in
response to unbalanced immigration as the driving factor.

For each country affected by the recent migrant crisis,
we calculate the percentage of immigrants from September
2013 to September 2016 by combining the official value for
2013 with the number of visa applicants recorded monthly
[34, 35]. We then collect the available election poll data
and election results for the same range of months [36].
Figure 1(a) shows that in June 2016 in this set of EU
countries there is a rising trend in the percentage of RW
populist supporters in response to the increasing percentage
of immigrants in the general population. We calculated the
best linear fit that can be interpreted as the cumulative
probability function of a uniform distribution. From this fit
we estimate that when the fraction of immigrants reaches
approximately 30%, RW populism attains the majority. The
slope value of 1.80 is highly statistically significant (𝑡-statistic
= 2.62). Besides the linear fit, we relate the fractions of
immigrants and RW votes using the cumulative exponential
probability function, thus finding that as the percentage of
immigrants approaches approximately 22%, the percentage of
RWpopulist voters exceeds 50%, which is again the threshold
at which in democratic societies a party can take over the
government. The considerable scattering of the data suggests
that tolerance levels may differ among countries, and the
lower the percentage of immigrants needed to trigger high
levels of RW populism in a country, the lower the level of
tolerance in that country. Figure 1(b) shows, for example,
that in Austria the 50% threshold is reached even when the
percentage of immigrants is below 20%.

The current fraction of immigrants in the general popula-
tion is not the only factor that affects voter sentiment. Figure 2
uses the data for Austria and Germany for 2013–2016 and
shows that the growing percentage of RWpopulist supporters
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Figure 1: Immigration affects the support for right-wing populism I. (a) Among the EU countries involved in the recent migrant crisis, support
for RW populism is generally higher in those countries that accepted a larger number of immigrants relative to the country’s population
size. Shown is June 2016. Seeing democracy as the majority rule principle, we presume that RW populism becomes a dominant political
option when the percentage of RW voters exceeds 50%. Judging based on a cumulative exponential function that fits the data reasonably
well—𝑦 = 4.43 exp(0.097𝑥)—RW populism in the examined EU countries may take over if the percentage of immigrants in the total
population approaches 22%. Shown is also a linear fit 𝑦 = −3.67 + 1.80𝑥 roughly giving that the RW populism reaches the majority for
the percentage of immigrants equal to approximately 30%. Coefficients of determination (𝑅2) for the two models are 0.3866 and 0.4077,
respectively. Akaike weights indicate that, given the dataset at hand, the exponential model is better with probability 44.3%, while the linear
model is better with the remaining probability 55.7%. (b) Similar as in the other EU countries, Austrian data reveal that the increase in
the percentage of immigrants is accompanied with an increase in the percentage of RW populist voters. Here too a cumulative exponential
function fits the data well. This function predicts the rise of RW populism in Austria when the percentage of immigrants is slightly below the
20% mark.

is responding to the inflow of immigrants. For example, in
Austria the far-right party won 20.5% of the popular vote
in 2013 in response to the percentage of immigrants living
in Austria at the time, but in the second half of 2015 the
inflow of immigrants increased sharply [34, 35] and a local
election in Vienna saw the percentage of RW votes jump to
33%. This sudden change suggests the presence of a phase
transition, tipping point, or critical point [37, 38]; that is, the
nearer the percentage of immigrants comes to the tipping
point, the more quickly voters turn to extreme political
alternatives. Figures 2(b) and 2(c) show a qualitatively similar
phenomenon occurring in Germany.

In an attempt to probe deeper into the internal dynamics
of RW populism in the EU as a function of the inflow of
immigrants, next we analyze how the immigration rate affects
the rise in RW populist voters. In Figure 3, we qualitatively
represent the annualized increase in RW votes by taking the
differences between the popularity of RW populist parties
in September 2016 and September 2013 and subsequently
annualizing these differences by dividing them with the
number of years in the specified period. Surprisingly, for
a group of countries in which the annualized increase in
the percentage of RW voters exceeded 2%, Figure 3 shows
that this increase is practically independent of the inflow
of immigrants. Why would countries with a relatively high
and a relatively low inflow of immigrants exhibit about the
same increase in the percentage of RW voters? This result

may be a consequence of the EU’s political organization.
Because the EU functions practically as a supranational state
with no internal borders, if one country decides to accept
immigrants, this decision may have repercussions for all the
other member states. The increase in the percentage of RW
populist voters may therefore more systematically depend on
the total inflow of immigrants into the entire EU, expressed
here as a percentage of the total EU population, than the
inflow in any individual country.

Anecdotal evidence to this effect can be seen in the case
of Sweden and Norway. Sweden was among the countries hit
hard by the recent migrant crisis, yet Norway had approx-
imately the same annualized increase in the percentage of
RW voters. A similar occurrence happened in Germany and
Poland. Germany experienced a high inflow of immigrants,
and in Poland 53% of the population wanted their govern-
ment to refuse asylum seekers from the Middle East and
North Africa, and only 33% thought the opposite. If Poland
has already transitioned from the tolerant mode of democ-
racy associated with globalization to a mode dominated by
RW populism, then the fraction of immigrants at which
the Polish population is pushed beyond the tipping point
is much lower than in western EU countries. Poland and
Hungary both share decades of socialist experience and are
both among the toughest opponents of immigration into
the EU. Both strongly oppose EU quotas designed to evenly
spread the shock of the migrant crisis.
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Figure 2: Immigration affects the support for right-wing populism II. (a) An unprecedented inflow of immigrants into Austria coincided with
a steady increase in the fraction of RW populist voters. A solitary black dot represents the results of Austrian presidential election in May
2016 in which an RW populist candidate secured almost 50% of votes. This election shows that even after the record immigrant inflow at
the end of 2015 had subsided, a decreasing trend in the number of immigrants that enter Austria did not automatically translate into lower
support for the RWpopulist political option, that is, RWpopulism seems to bemore than just a craze. (b) In Germany, the increasing inflow of
immigrants (monthly data [34, 35]) rather clearly coincided with the increasing support for an RW populist party. (c) A significant regression
emerges when the German case is presented as a scatter plot between the inflow of immigrants and the percentage of far-right voters.

Figure 3 indicates that the interplay of factors influencing
the rising popularity of RW populism is more complex than a
simple bivariate regression, and thus we turn to econometric
analysis and multivariate regression. Using the results of the
simple regression in Figure 1, we assume that the fraction
of RW voters (response variable, RW𝑡) in a given country
is determined by the fraction of immigrants (IM𝐿𝑡 ) living
in the country. We further assume that the fraction of RW
voters depends on the overall inflow of immigrants into the
EU (IMEU

𝑡 ) calculated relative to the total EU population.
This variable represents an “immigration shock” in the
model. To also take into account the possibility that violent
incidents involving immigrants could affect the popular vote,
we include the total number of injuries (𝐼) and casualties

(𝐷) involving immigrants recorded across the EU [39] in the
model. Additionally, we take into account the unemployment
rate (𝑈) that might also affect the popular vote. Finally, we
add a variable𝑀𝑖𝑡 = (1−MIPEX/100) in whichMIPEX is the
migrant integration policy index [40], a proxy for the integra-
tion rate—the larger the MIPEX, the better the integration.

We perform econometric analysis using a pooled time-
series cross-section (TSCS) method that combines the cross-
sectional data on multiple countries. Here the number of
countries is 𝑁 = 10, entirely consisting of the so-called old
democracies: Germany, France, Austria, Netherlands, Swe-
den, Norway, Denmark, Finland, Greece, and Italy. Because
for each country there are 𝑇 observations along the temporal
dimension, the entire dataset has𝑁 × 𝑇 = 370 observations.
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Figure 3: Immigrant inflows and the popularity of right-wing populist
movements—a nonlinear threshold. Shown is the annualized immi-
grant inflow into a given country (horizontal axis) as a percentage of
that country’s population, as well as the corresponding percentage
change in RW populist votes (vertical axis). In parentheses are the
fractions of immigrants in the total population of the corresponding
country. For a group of countries in which the annualized increase
in the percentage of RW voters exceeded 2%, this increase is
virtually independent of the inflow of immigrants. Such a result may
reflect the EU’s political organization, that is, the lack of internal
borders whereby if one country decides to accept immigrants, the
decision may have repercussions for all the other member states.
We also observe a threshold indicated by a dashed line at which
the immigrant inflow into a given country is sufficiently high to
invariably provoke an increase in the percentage of RW populist
voters. In the model construction, this threshold suggests 𝛼 = 0.004
on an annual basis.

We have an extra index 𝑖 = 1, 2, . . . , 𝑁 that refers to a cross-
sectional unit giving

RW𝑖𝑡 = 𝛽0 + 𝛽
𝐿
IMIM
𝐿
𝑖𝑡 + 𝛽

EU
IM IMEU
𝑖𝑡 + 𝛽

ter
𝐷 𝐷𝑖𝑡 + 𝛽

ter
𝐼 𝐼𝑖𝑡

+ 𝛽𝑈𝑈𝑖𝑡 + 𝛽𝑀𝑀𝑖𝑡 + 𝑒𝑖𝑡,
(1)

where 𝑒𝑡 is the random error.
Table 1 shows the results of the TSCS regression model,

indicating that the fraction of immigrants in the general
population and the immigration inflow into the entire EU
are the significant explanatory variables. In addition, the
coefficient 𝛽𝐿IM is not only significant but also higher than
unity. Perhaps surprisingly, the response variable is not
significantly affected by the number of injuries and casualties
in violent incidents involving immigrants. We also show that
unemployment insignificantly affects the popular vote.

The aforementioned survey data suggest that not every
EU nation is equally tolerant to immigrants. We believe that
a proxy for this tolerance can be a fraction of RW votes just
after the Second World War (RW0) when the fractions of
immigrants were considerably smaller than nowadays. Note
that by far the largest fraction of RW votes was recorded
in Austria, 11.67%. Table 2 show the results of the TSCS
regression model when RW0 is included. We find that this

Table 1: Pooled time series cross-section (TSCS) analysis with
random-effects GLS regression as defined in (1). Test statistics: Wald
𝜒2(6) = 147.87 and Prob > 𝜒2 = 0.000.

Coeff. Std. err. 𝑧 𝑃 > |𝑧|
𝛽𝐿IM 2.17 0.527 4.12 0.000
𝛽EU
IM 431.1 53.2 8.10 0.000
𝛽𝐷ter −3.7𝑒 − 04 4.9𝑒 − 04 −0.78 0.437
𝛽𝐼ter 2.1𝑒 − 04 1.6𝑒 − 04 1.28 0.202
𝛽𝑀 0.208 0.212 0.98 0.325
𝛽𝑈 −0.167 0.348 −0.48 0.630
𝛽0 −0.298 0.103 −2.89 0.004

Table 2: Pooled time series cross-section (TSCS) analysis with
random-effects GLS regression as defined in (1). Test statistics: Wald
𝜒2(6) = 151.54 and Prob > 𝜒2 = 0.000.

Coeff. Std. err. 𝑧 𝑃 > |𝑧|
𝛽𝐿IM 1.32 0.445 2.96 0.003
𝛽EU
IM 455.9 53.5 8.52 0.000
𝛽ter
𝐷 −4.2𝑒 − 04 4.9𝑒 − 04 −0.86 0.392
𝛽ter
𝐼 2.2𝑒 − 04 1.6𝑒 − 04 1.38 0.167
𝛽𝑀 −0.019 0.2 −0.09 0.926
𝛽𝑈 −0.015 0.289 −0.05 0.959
RW0 0.904 0.562 1.61 0.108
𝛽0 −0.139 0.093 −1.50 0.133

Table 3: Pooled time series cross-section (TSCS) analysis with
random-effects GLS regression. Test statistics: Wald 𝜒2(5) = 142.4
and Prob > 𝜒2 = 0.000.

Coeff. Std. err. 𝑡 stat. 𝑃 > 𝑡
𝛽𝐿IM 2.17 0.466 4.65 0.000
𝛽EU
IM 467.2 50.1 9.33 0.000
𝛽0 −0.235 0.056 −4.15 0.000

new regression insignificantly contributes to modern RW
populism.

Table 3 shows the results of the TSCS regression model
withoutMIPEX, unemployment, and violent incidents. Inter-
estingly, with the total inflow of immigrants into the EU
of 100,000 on a monthly basis, coefficient values in Table 3
suggest that around 30% of immigrants in the total popu-
lation of a country are sufficient to cause larger than 50%
support for RW populist parties, which corresponds to the
result obtained by a linear fit in Figure 1.

The analyzed data do not indicate whether the rise of RW
populism is a transient phenomenon or a longer-term change
in political orientation. One factor is the persistence of voter
memory. In the October 2015 local election in Vienna the
RW populist party won 33% of the popular vote. During the
presidential election a fewmonths later themigrant crisis had
reached a peak and the RW populist movement candidate
secured almost 50% of the votes, narrowly losing to a leftist
rival. These results have been contested and a new election
in December 2016 brought around 48% to the RW populist
candidate, indicating that this rise in RW populism is not
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short-term. This phenomenon has been described in the
literature. Betz [41] describes how a substantial increase in
the number of refugees and illegal immigrants in European
countries during the 1980s provoked a wave of radical RW
populism. Following these events in the early 1990s there
remained between 11% and 14% of Europeans who felt the
presence of other nationalities, races, and religions to be
unsettling [41].

3. Model

Human interactions are often heterogeneous and prone to
abrupt nonlinear responses. Because this characterizes the
rise of the RW populist party and its RW candidate in the
Austrian elections, such linear approaches as the regression
in (1) yield only partial results. A useful intuition is gained by
thinking about the election system in a democratic country as
a randomwalker. Even in a bipolar political system, not every
left government is equally left, and similarly not every right
government is equally right. Therefore, as a result of election,
the randomwalker can move either left or right, with the size
of this move depending on the standard deviation. Without
limitations such that democracy and the election process
possess an unlimited tolerance for every political option, after
a long enough time the random walker is bound to end
up either extremely right or extremely left. Both of these
limits exhibit ideological rigidity likely to substantially reduce
the level of democracy and tolerance—in agreement with
Popper: “unlimited tolerance must lead to the disappearance
of tolerance” [42]. Thus, RW populism can be considered as
just one of the two randomwalk limits. However, the random
walker intuition does not explain why a society would move
left or right nor does it provide a microscopic interpretation
of the societal processes at the individual agent level.

To mechanistically characterize the rise of RW populism
and account for the existence of tipping points in social
dynamics, we use a complex network approach [20, 43–45].
Complex network science is able to emulate heterogeneity in
human interactions and goes beyond capturing the dynam-
ics near tipping points. Heterogeneity is important when
considering immigration and integration issues, because
immigrants in order to sustain their identity live in “hubs”
that make them more difficult to integrate than immigrants
mixed into the native population.

We construct our model by setting a constant number
of native “insider” agents and arranging them in an Erdős-
Rényi random network of business and personal contacts.
Immigrant “outsider” agents are then added to the network.
Each insider notices the percentage of outsiders in their
neighborhood and based on this percentage decides whether
to be supportive of globalization or RW populism. Insider
agents get information from their neighborhood and the
interaction is local, and this data is essential in understanding
tipping points [46], but there are also other relevant, nonlocal
interactions.There is furthermore the factor that information
can be misperceived or misinterpreted. In the following, we
formalize these concepts with three assumptions.

Assumption i (media and economic influences). At each
one-month period of time 𝑡, insider agents are influenced
by media at a probability rate 𝑝 and remain influenced
for a period 𝜏. We assume that this influence transforms
insiders into RW populist supporters. Although media can
affect insiders in both directions, we focus on the growth
rate and disregard negative values of 𝑝. The effect of the
media is global, and hearing that immigration is occurring
can transform some insiders into RW populist supporters
irrespective of their local situation. For example, most likely
as the effect of media coverage of immigration to both
the EU and the UK, during the BREXIT referendum, most
UK districts with low immigration voted mainly for Leave
[47]. The media, alongside a lower level of tolerance to
immigration, can be an important reason why, in ex-socialist
countries, the large fraction of voters oppose receiving even
a low overall fraction of immigrants. The probability rate
𝑝 can also reflect such economic factors as unemployment.
Thus we use equation [43] 𝑝∗ = 1 − exp(−𝑝𝜏) to calculate
the probability that a randomly chosen insider agent is being
influenced by the media.

Assumption ii (local influence of outsiders). In local elections
in Greece in November 2010, although the far-right Golden
Dawn party received only 5.3% of the vote, in some neighbor-
hoods of Athens with large immigrant communities the party
won nearly 20% [48]. This suggests that contacts between
insiders and outsiders do matter. Within our network model,
we maintain a constant number of 𝑁 insiders and then add
𝐼(0) outsiders.We then increase the number of outsiders with
an inflow 𝐽𝑡 at each moment 𝑡 (representing one month).
We randomly place newly arriving outsiders between insider
agents both of whom initially have an average number of
connections (i.e., a degree) 𝑘. The total number of outsiders
𝐼(𝑡) is obtained by summing the monthly 𝐽 values according
to 𝐼(𝑡) = 𝐼(0) + ∑𝑡𝑠=1 𝐽𝑠. At any given moment the fraction
of outsiders will equal 𝑓𝐼(𝑡) = 𝐼(𝑡)/(𝑁 + 𝐼(𝑡)). To account
for the effect of contacts between insiders and outsiders, we
assume that any insider agent 𝑖with 𝑘𝑖 total connections turns
to RWpopulism at a rate 𝑝󸀠 when this agent is surrounded by
at least 𝑚𝑖 = 𝑓󸀠𝐼𝑘𝑖 outsiders [43, 46, 49], where 0 < 𝑓󸀠𝐼 < 1
is a constant model parameter quantifying the toleration of
insiders. This assumption merits a few additional comments.

First, the probability that randomly chosen insider agent 𝑖
with 𝑘𝑖 connections is surrounded by𝑚𝑖 outsiders and there-
fore prone to RW populism is 𝑝1(𝑘𝑖, 𝑚𝑖, 𝑓𝐼) ≡ ∑𝑘𝑖𝑗=𝑚𝑖 𝑓

𝑗
𝐼 (1 −

𝑓𝐼)
𝑘𝑖−𝑗 ( 𝑘𝑖𝑘𝑖−𝑗 ). In this formula, 𝑓𝐼 is the true current state

of the network. However the information may be biased
and cause insiders to think there are more outsiders than is
actually the case. If the bias is Δ𝑓𝐼, then 𝑝1(𝑘𝑖, 𝑚𝑖, 𝑓𝐼 + Δ𝑓𝐼) >
𝑝(𝑘𝑖, 𝑚𝑖, 𝑓𝐼). This increased probability 𝑝(𝑘𝑖, 𝑚𝑖, 𝑓𝐼 + Δ𝑓𝐼)
implies that the tolerance parameter 𝑓󸀠𝐼 must decrease by
amount Δ𝑓󸀠𝐼 , which we estimate using condition 𝑝(𝑘𝑖, 𝑚𝑖 −
Δ𝑓󸀠𝐼𝑘𝑖, 𝑓𝐼) = 𝑝(𝑘𝑖, 𝑚𝑖, 𝑓𝐼 + Δ𝑓𝐼). An implicit assumption here
is that all insider agents are equally tolerant to immigrants
because the tolerance parameter 𝑓󸀠𝐼 is defined as a global
network property rather than an individual agent property.
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An alternative would be to assume a distribution of tolerance
levels, in which case 𝑓󸀠𝐼 would represent the mean [20].

We now expand assumption (ii) with extension (A): when
the immigration inflow 𝐽 is below some threshold 𝐽󸀠 the
society becomes more tolerant. When 𝐽 < 𝐽󸀠 at a given
time moment, the tolerance parameter 𝑓󸀠𝐼 increases by an
amount Δ𝑓󸀠𝐼 = 𝛿 > 0; there is a balance between immigra-
tion and immigrant integration—outsiders are successfully
integrated—and insiders are able to acclimate to the changes
in their society. Figure 2(b) shows that the 𝐽󸀠 value for
Germany is approximately 10,000 people per month. Being
able to accurately determine the maximum 𝐽󸀠 value is highly
relevant to the success of globalization. According to our
model, immigration and integration can be the inevitable
consequences of globalization when 𝐽 < 𝐽󸀠. If this is not
the case, globalization will be threatened by the rise of RW
populism, the democratic system will enter an intolerant
mode, and cooperation between nations will be downgraded
on the list of political priorities.

Empirical evidence suggests that we add an opposite
extension (B): as the inflow of outsiders 𝐽 crosses some
threshold 𝐽󸀠󸀠 (which does not need to be equal to 𝐽󸀠)
society becomes less tolerant. Mathematically, extension (B)
indicates that when 𝐽 > 𝐽󸀠󸀠, the tolerance parameter 𝑓󸀠𝐼
decreases by

Δ𝑓󸀠𝐼 = −𝛾𝐽. (2)

Using the econometric models in (1), we decrease the
tolerance parameter proportional to inflow 𝐽, where 𝛾 is
a proportionality coefficient expressing the sensitivity of
insiders to high levels of outsider inflow. Figure 3(b) shows
threshold 𝐽󸀠󸀠 in terms of total population; that is, 𝐽󸀠󸀠 = 𝛼𝑁,
where 𝛼 is another proportionality coefficient. Figure 3(b)
estimates the 𝛼 value when all of the EU countries are hit
by the migrant crisis. The dashed line is annual inflow below
which countries have a mixed response to immigration and
above which support for RW populism increases. Because
𝛼 = 𝐽󸀠󸀠/𝑁 and, using Figure 3(b), 12𝐽󸀠󸀠/𝑁 ≈ 0.004, we obtain

𝛼 ≈ 0.00033. (3)

Extensions (A) and (B) are opposite limiting cases, one
in which immigration is slow and the other in which
immigration is rapid. Apart from the empirical evidence
that these extensions are needed, brain science, for example,
offers a physiological interpretation: political attitudes have a
counterpart in brain structure [50–52]. If outsiders increase
at a rate and in a manner perceived as controllable by
insiders, the prefrontal cortex of the human brain responsible
for decision making and for moderating social behavior
acclimates to the new circumstances, but if the insiders
perceive the outsiders to be invaders, the prefrontal cortex
is supplanted by the amygdala, which induces a fighting
reaction, and tolerance is suppressed.

Although with assumptions (i) and (ii) our model
accounts for the processes that affect individual insider opin-
ion, the expansion of RW populism can become extremely
rapid when insiders are influenced by their peers. This well-
documented phenomenon in human interactions is further

accelerated when social media is added. Thus the spread of
RW populism can be highly nonlinear, much like the spread
of a highly contagious disease. We include this nonlinear col-
lective spreading mechanism in our third model assumption.

Assumption iii (mutual insider contagion). At any given
moment 𝑡, an insider agent 𝑖 with 𝐾𝑖 connections to other
insiders turns to RW populism at rate 𝑝󸀠󸀠 if at time 𝑡 − 1
this agent has at least𝑀𝑖 = 𝐾𝑖/2 RW populist supporters in
their neighborhood. Note that, for simplicity, factor 1/2 plays
a role analogous to the tolerance parameter in assumption
(ii). Because of connections between insider agents, when
RW populism emerges anywhere in the network the populist
movement is able to spread like a contagion. This collective
spreading indicates that insider agents can become RW
populist supporters even when there are no outsiders in
the immediate neighborhood. Thus some EU countries with
almost no immigration are opposed to accepting even a small
group of immigrants. This may have affected the outcome
of the recent US presidential election in which the winning
candidate was often ridiculed in the mainstream media—an
attitude represented in our model by assumption (i).

The model here assumes imitative interactions, without
testing the validity of such an assumption. However, this
assumption could be tested by themethod of Agliari et al. [53]
if the required data were available. The authors use the tools
from statistical mechanics to determine from data the nature
of interactions in social customs such as local and mixed
marriages in Italy and neighboring European countries. The
fraction of actualmarriages satisfying a given condition scales
differently with the fraction of all possible couples that satisfy
the same condition depending on the nature of interactions
between agents. If the interactions are independent (one-
body model), the scaling is linear, whereas if the interactions
are imitative (two-body model), the scaling is square-rooted.

We now turn to the simulation results and their impli-
cation. Figure 4 shows how in a network of 5000 agents the
fraction of RW populist supporters increases when there is
a constant inflow of outsiders; here 𝐽 = 2 per month. This
inflow is annually approximately 0.5% of the total population,
which is slightly more than the threshold value implied
in Figure 3(b). Simulations with 𝐽 = 2 per month are
designed to emulate the rapid limit in extension (B) described
above. After approximately 37 years of rapid globalization, the
network reaches a tipping point and abruptly shifts to amode
dominated by RW populism. RW populism dominates when
more than 50% of the network is made up of RW populist
supporters (i.e., 𝑃 > 0.5, where 𝑃 denotes the fraction of RW
populists). The threshold is 50% because in a democracy the
majority rules.

Figure 4 also shows how the simulated network under
assumptions (i)–(iii) responds to shocks (red curve). At this
stage, extension (B) does not yet operate.The constant annual
inflow of outsiders, 𝐽 = 2, is supplemented by two events
at times 𝑡1 and 𝑡2, when 𝐽 = 200. The state of the network,
characterized by the proportion of RWpopulists (𝑃), exhibits
a much stronger response at 𝑡2 than at 𝑡1, although the shock
inflow (𝐽 = 200) is the same. This occurs because at 𝑡2 the
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Figure 4: Nonlinearity, a tipping point, and the rise of right-wing
populism. Using a network of 𝑁 = 5,000 agents, each with an
average of 15 connections, we examine the effect of a constant
inflow of outsiders at rate 𝐽 = 2 at each time step. In this setup,
the total number of outsiders at any moment in time is 𝐼(𝑡) =
∑𝑖 𝐽𝑖 = ⟨𝐽⟩𝑡. As the fraction of outsiders, 𝑓𝐼 = 𝐼/(𝑁 + 𝐼),
approaches the tolerance parameter, 𝑓󸀠𝐼 = 0.15, the presence of a
tipping point causes the fraction of RW populist supporters to start
increasing nonlinearly and eventually undergo a sudden jump (i.e.,
a discontinuous change) at about 37 years (450 months) into the
simulation (black curve). The sudden jump happens much earlier
if the inflow of outsiders experiences shocks at times 𝑡1 and 𝑡2
at which 𝐽 = 200 outsiders enter the network. In particular, as
the network approaches the tipping point, the effect of exactly
the same shock becomes disproportionately higher (red curve). In
this case, however, the tolerance parameter is still kept constant.
Finally, we also examine the case in which shocks at times 𝑡1 and
𝑡2 affect the tolerance parameter, where responsiveness is controlled
by parameter 𝛾 = 0.0001. Here, the second shock at 𝑡2 is sufficient
to instantly tip the network into RW populism (green curve). Other
parameters are 𝑝 = 0.007, 𝜏 = 15, 𝑝󸀠 = 0.5, 𝑝󸀠󸀠 = 0.5, and 𝛼 = 0.001.

system is closer to the tipping point and consequently more
unstable than at 𝑡1. Because in real-world data the value of
𝐽 can be biased due to estimation errors or misinterpreted
information, our results suggest that approaching the tipping
point can be concurrent with strong nonlinear effects such
that even a small shock can trigger a transition to a mode
dominated by RWpopulism.This can be evenmore explosive
(in terms of 𝑃) if extension (B) is allowed to operate, that is,
if the tolerance parameter 𝑓󸀠𝐼 changes with 𝐽.

Figure 4 shows a third simulation (green curve) in
which the dynamics operate under assumptions (i)–(iii) with
extension (B). The tolerance parameter 𝑓𝐼 thus changes with
𝐽 as prescribed by (2). Because of the decreasing tolerance,
the second shock at 𝑡2 can now push the system beyond
the tipping point, and thus the dominance of RW populism
occurs earlier than in the two previous simulations.

From the simulations in Figure 4 alone, it is unclear
how much the local influence of outsiders (assumption (ii))
contributes to the rise of RW populism relative to the insider
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Figure 5: Breakdown of the causes of right-wing populism. Figure 4
shows that the probability of RW populism, 𝑃, suddenly increases
as society approaches a tipping point but remains silent on the
underlying causes. Here we discern between the contributions
of local outsider influence (assumption (ii)) and mutual insider
contagion (assumption (iii)). Far from the tipping point, 𝑃 mainly
responds to local outsider influence (ii). By contrast, as the network
approaches its tipping point, mutual insider contagion (iii) takes
over and accelerates the transition to RW populist dominance.
Parameter values are𝑁 = 5,000 with an average degree of 15, 𝐽 = 2,
𝑝 = 0.007, 𝜏 = 15, 𝑝󸀠 = 0.7, and 𝑝󸀠󸀠 = 0.8.

contagion (assumption (iii)). Figure 5 shows these contribu-
tions. After the initial transients fade, the local influence of
outsiders drives the increase in RW populists in the network.
The contribution of mutual insider contagion is relatively
small until the system approaches a tipping point. Near the
tipping point, contagion spreads rapidly and overtakes the
local outsider influence as the main contributor to the rise
of RW populism. Thereafter the RW populist movement can
sustain itself without support from the outside.

In the regime of moderate immigration inflows (𝐽󸀠 < 𝐽 <
𝐽󸀠󸀠), we can examine the dynamics of our complex network
using themean-field theory (MFT) analytic technique.When
the number of agent connections does not deviate greatly
from the network average, the probability 𝑃 that a randomly
chosen insider agent 𝑖 is an RWpopulist supporter due to any
of the processes underlying assumptions (i)–(iii) is

𝑃 = 𝑝∗ + 𝑝󸀠𝑝1 (𝑘𝑖, 𝑚𝑖, 𝑓𝐼) + 𝑝
󸀠󸀠𝑝1 (𝐾𝑖,𝑀𝑖, 𝑃)

− 𝑝∗𝑝󸀠𝑝1 (𝑘𝑖, 𝑚𝑖, 𝑓𝐼) − 𝑝
∗𝑝󸀠󸀠𝑝1 (𝐾𝑖,𝑀𝑖, 𝑃)

− 𝑝󸀠𝑝1 (𝑘𝑖, 𝑚𝑖, 𝑓𝐼) 𝑝
󸀠󸀠𝑝1 (𝐾𝑖,𝑀𝑖, 𝑃) ,

(4)

where the last three terms avoid double counting in accor-
dance with the probability theory formula 𝑃(𝐴 ∪ 𝐵 ∪ 𝐶) =
𝑃(𝐴) + 𝑃(𝐵) + 𝑃(𝐶) − 𝑃(𝐴)𝑃(𝐵) − 𝑃(𝐴)𝑃(𝐶) − 𝑃(𝐵)𝑃(𝐶) for
three mutually independent events 𝐴, 𝐵, and 𝐶 that cannot
occur simultaneously. In the MFT approximation, we can
drop index 𝑖 because no single agent is markedly different
from the collective average. Previously we set 𝑀 = 𝐾/2
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Figure 6: Predicting the timing of RW populism. We find that for a
broad range of outsider inflows (𝐽) and tolerance parameter values
(𝑓󸀠𝐼 ), (5) predicts the moment at which 𝑃 > 0.5 in a manner that
agrees favorably with the simulation results. Except for 𝛾 = 0, other
parameters are the same as in Figure 4.

for simplicity, but the peer pressure measured by the value
of the proportionality factor between 𝑀 and 𝐾 can differ
between countries or regions. In addition, parameters 𝑝󸀠 and
𝑝󸀠󸀠 are constants only in theory. The real social dynamics
are such that these parameters may change in response
to rumors, political manipulations, or outside shocks. If
parameters 𝑝󸀠 and 𝑝󸀠󸀠 substantially increase, the value of 𝑃
also increases, thus further improving the prospects for RW
populism dominance. In our framework, due to democracy’s
majority rule principle, when 𝑃 approaches 0.5 the nonlinear
processes embedded in assumptions (ii) and (iii) cause a
sudden transition to RW populist mode.

Because a theoretical model is more useful if it has
predictive power [54, 55], we show how a network of agents
under assumptions (i)–(iii) leads to a simple formula for the
timing at which RW populism starts to dominate,

𝑡𝑡ℎ =
𝑁𝑓󸀠𝐼

𝐽 (1 − 𝑓󸀠𝐼 )
− 𝐼 (0)

𝐽
. (5)

Gaining this result involves three steps. First, if the immi-
gration inflow is constant, then the number of outsiders
in the network after 𝑡 time steps is 𝐼(0) + 𝐽𝑡. Second, the
total population size thus equals 𝑁 + 𝐼(0) + 𝐽𝑡. Finally, (5)
follows if the current fraction of outsiders (𝐼(0) + 𝐽𝑡)/(𝑁 +
𝐼(0) + 𝐽𝑡) is equated with the critical parameter 𝑓󸀠𝐼 . Figure 6
shows that, for a number of immigration inflow-tolerance
parameter pairs (𝐽, 𝑓󸀠𝐼 ), the simulated timing of the shift to
RW populist mode (i.e., 𝑃 > 0.5) fits theoretical predictions.
In conjunction with the empirical data on tolerance towards
immigrants in the EU countries, the formula in (5) could be
used to provide an estimate of when a given country might
be approaching a possible tipping point to RW populism
dominance.

Numerical simulations allow us to examine not only iso-
lated single networks, but also the interdependence between
two or more networks. Note that there is a potential for a cas-
cade effect when an RW populist movement in one network
causes the rise of RW populist movements in other networks.
This cascade effect is growing in relevance because expanding
globalization is causing countries to become increasingly
similar to each another, and this similarity increases in such
supranational organizations as the EU in which borders
between nation states are rapidly fading.

To examine how interdependence affects the rise of RW
populism, we set up two random, economically equivalent
ER networks (equal 𝑝 in the model) with different tolerance
levels towards outsiders (different 𝑓󸀠𝐼 in the model). To
the usual intraconnections within each network we add
interconnecting agents that linkwith their counterparts in the
other network. Apart from this addition, we retain the same
model assumptions as previously held.

To examine the effects of interconnectedness, we first run
numerical simulations of two independent networks without
interconnections [see Figure 7(a)]. As expected, when the
inflow level of outsiders is the same (𝐽 = 2) the network
with a higher tolerance parameter (𝑓󸀠𝐼,1 = 0.4) reaches the
tipping point much later than the network with a lower
tolerance parameter (𝑓󸀠𝐼,2 = 0.2). When the networks are
interconnected and the more tolerant network experiences
an increased inflow (𝐽2 = 4) and a shock (𝐽 = 500) at time
𝑡1 = 500 its susceptibility to RW populism increases and
it also affects the other network and shortens the time of
transition to RW populism [see Figure 7(b)]. It would appear
that countries do not want to be the first to cross the line, but
in an interconnected world being second is easier.

4. Discussion and Conclusion

Why some countries (e.g., the ex-socialist EU countries)
strongly oppose receiving immigrants while others (e.g., the
USA) have a long history of receiving immigrants is an
important topic in the social sciences and, more recently, a
major issue for the EU. Perhaps receiving immigrants has
been an ongoing pattern in the USA because there is no
single dominant ethnicity and thus a clear distinction ismade
between USA national identity and the country of origin
of its citizens. In addition, because USA citizens are people
from all over the world, there is no single dominant religious,
ethnic, or cultural group that can organize and threaten the
established social order. In France we find the opposite.There
is a large group of immigrants with different language and
religion from the French majority, whose presence can instill
fear among themajority. Fear exacerbated by an inflow rate of
immigrants that exceeds the rate of their integration can lead
to a volatile situation, one that is often resolved in one of two
ways. Either there is an immigrant uprising as exemplified
by the Visigoth immigrants and their ex-Roman commander
AlaricwhoplunderedRome in 410 or themajority population
suppresses the inflow of immigrants. Currently this second
option is often accomplished by supporting populist right-
wing parties.
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Figure 7: Interconnected networks or why “somebody else’s problem” easily turns into “my problem.” In (a) we show the case when there are
no interlinks between networks. The tolerance parameters between the two networks differ, 𝑓𝐼,1 = 0.2 and 𝑓𝐼,1 = 0.4, while the inflows into
both networks are the same, 𝐽1 = 𝐽2 = 2. (b) More tolerant network is now exposed to a higher inflow, 𝐽2 = 4, and a shock at 𝑡1 = 500. The
average number of connections for intraconnections (interconnections) in both networks equals 15 (10). The other parameters are the same
as in Figure 4.

Although globalization was conceived to allow capital
and labor to move freely across national borders, real-world
globalization is affected by a multitude of noneconomic
factors such as ethnicity, culture, and religion. With so many
factors at play, globalization is an enormously complex pro-
cess and often noneconomic factors do not align with purely
economic factors. This misalignment can lead to frustrations
that feed populist movements. By opposing the collaboration
that comes with globalization, populist movements act as
a feedback mechanism that pushes the general population
towards becoming more ideologically rigid, and this, in
turn, further accelerates the populism [56]. A strengthened
populist movement can also trigger tectonic shifts in world
affairs as exemplified by BREXIT in the UK and the recent
2016 US presidential election.

Problems in a globalized world rarely confine themselves
to one place. Interdependencemakes the developed countries
more alike and synchronizes their social dynamics. This
synchronization can cause political shifts in one country to
spill over into other countries, and this is what enables the rise
of RW populism to spread across large regions of the world.
After BREXIT and the 2016 US presidential election, political
elites should not expect to continue business as usual. Being
the first to adopt amajor political shift with a high probability
of negative economic consequences is difficult, but once that
line has been crossed the interdependence of globalization
makes cascades (domino effects) an active possibility. No one
wants to be first, but many are ready to be second.

The tipping point that brings on the rise of RW populism
may be reached more quickly when voters face a binary
choice, for example, the “yes” or “no” choice in the UK
BREXIT referendum and the two major-party candidates in
the recent US presidential election. In both cases the populist
option secured a narrow victory. As mentioned above, the
polls indicate that the populist party in Austria can expect to
receive 34% of the votes, but the populist party candidate in
the presidential race can expect close to 51%. A simple way
to understand these percentages is to assume that political
attitudes of voters are approximately symmetrical in their

distribution across the political spectrum from left to right.
Consequently, if leftist voters comprise 𝜓𝐿% of the total
population, then RW populist voters will maintain a similar
presence; that is, 𝜓𝑅% ≈ 𝜓𝐿%. Facing this binary choice, the
centrist voters have no one representing their views and thus
are likely to vote evenly between the two available options.
An implication is that when 𝜓𝐿% ≈ 𝜓𝑅% ≈ 33%, even a
slight (statistically significant) imbalance in favor of𝜓𝑅%over
𝜓𝐿% can tip the society towards RW populism. In Austria
𝜓𝑅% ≈ 36% seems to be sufficient to make the RW populist
candidate a front runner in the presidential race.

The final outcome of the battle between the conflicting
factors surrounding globalization will almost surely have
tremendous economic implications. If a country approaches
its tipping point, how will the ensuing volatility affect its
long-term credit rating? If a domino effect cascades across
a large region of the EU or the entire EU, how will that
affect the Euro and the common banking system? Without
a proper resolution of the migrant crisis, what will be the
impact on systemic risk? In an attempt to shed light on
some of the factors and underlying processes that affect
the success of globalization, we offer an empirically backed
theoretical model of the rise of RW populism in response to
unsustainable immigration inflows.

Our model emphasizes the need for controlled globaliza-
tion in which immigration inflows into a society are balanced
with the ability of the society to integrate the immigrants.
This ability is arguably improved when immigrants mix
with the native population, which is a principle practiced
in Singapore where immigrant hubs are discouraged, and
tenants in government-built housing (comprising 88% of
all housing) must be of mixed ethnic origin [20]. Because
tolerance towards immigrants is conditional, when immigra-
tion inflows overshadow integration rates the society can be
tipped into RWpopulism, an intolerant mode of functioning.
The rise of RW populism can occur because elections are
by their nature stochastic, and they resemble a mathematical
random walker. Left to its own devices, a random walker
will eventually hit an absorbing barrier. Here this barrier,
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of course, is a metaphor for the demise of globalization,
ironically at the very hands of the progressive system (i.e.,
democracy) thatmade globalization possible in the first place.
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