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,is research intends to numerically study the out-of-plane behaviour of confined dry-stacked masonry (CDSM) walls against
blast loading. CDSM is a mortarless interlocking masonry system consisting of Hydraform blocks laid in stretcher bond with
reinforced concrete (RC) confining elements. A nonlinear numerical model is developed using advanced finite element hydrocode
ANSYS-Autodyn to study the response of CDSMwalls subjected to explosive loads. Four different test cases using a charge weight
of 4 kg, 8 kg, 12 kg, and 16 kg ofWabox explosive are investigated numerically.,e results obtained from numerical simulation are
validated with the experimental tests results.,e numerical results are found in good agreement with the experimental results.,e
ability of the numerical model is studied to correctly predict the pressure-time history in pressure gauges installed on walls and
compared with experimental data. Peak incident overpressures obtained in these numerical tests ranged from 240 to 1000 kPa.
Likewise, the damage patterns obtained from the numerical simulations are compared with available experimental results which
show a satisfactory agreement.,is study helps to check the response of CDSM structures against blast load which can be used for
the construction of blast resisting design of buildings.

1. Introduction

Terrorism, after 9/11 in Pakistan, has become a devastating and
extremely harmful phenomenon. ,e human losses are more
than 70,000 and with economic cost of more than $68 billion
[1]. Terrorists mostly hit government lifeline structures such as
educational institutes, healthcare facilities, police and army
installations, and government infrastructures by bomb blasts
which are mainly built from masonry [2]. In these scenarios,
the performance of masonry walls is very critical for the
structural integrity of buildings. It is very challenging to study
experimentally the effects of blast load on structures due to
numerous input parameters, limited financial resources, time
constraints, and safety considerations. ,erefore, the best al-
ternative for such type of costly experiments is an efficient
computer software and codes such as ANSYS-Autodyn [3].

Besides conventional masonry, a new masonry system of
mortarless interlocking blocks, which is also known as dry-
stackmasonry, has recently been introduced in Pakistan.,e
typical shape of dry-stack masonry blocks (Hydraform
blocks) and their masonry assemblage is shown in Figure 1.
If this masonry system is confined by reinforced concrete
(RC) beam and columns, then it is termed as confined dry-
stack masonry (CDSM) system. ,e CDSM system was
found to be more ductile and reliable in strength for lateral
loads [4]. ,e structural strength and integrity of this ma-
sonry system depend on interlocking system of blocks be-
tween masonry units. ,e interlocking mechanism provides
stability, self-alignment, and levelling to the walls. Hydra-
form blocks are manufactured from mixture of soil with at
least 22% clay, 10% sand, and 6.7% cement by weight mixed
using a cement mixer. Approximately, 10% water is added to
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the mixture to achieve the desired consistency for block
pressing and after seven days of curing, it is used in con-
structing walls [5]. ,e construction process in this type of
masonry is simplified and highly economically competitive
due fast track construction and very effective where skilled
labor is expensive and even unavailable. Being a sustainable
building material, it is more energy efficient compared to
traditional clay-bricks which require three times more en-
ergy per square metre (406 kg of CO2 emission) than
Hydraform blocks (119 kg of CO2 emission) [6].

,e numerical modelling of CDSM walls is complex and
computationally expensive. ,e analysis complexity reasons
are modelling of the nonlinear behaviour of an RC confining
frame, modelling of the nonlinear behaviour of a dry-stacked
masonry panel, and modelling the interaction between
frame and masonry [7].

Several researchers in the past have studied the blast load
phenomenon on various structures numerically and ex-
perimentally such as Luccioni et al. [8] who conducted a
numerical study to analyse the structural failure of the
reinforced concrete building under the blast load.,e results
were compared with actual buildings that were damaged in
terrorist attacks. In another study [9], the same researcher
performed numerical analysis of blast load using hydrocodes
and compared the results with empirical models with a good
correlation. ,eobald and Nurick [10] performed numerical
and experimental study to investigate the performance of
tube-core claddings under blast loads. A numerical model
was developed in computer program ABAQUS/Explicit for
numerical simulations which shows satisfactory correlation
with experimental response. ,iagarajan et al. [11] con-
ducted numerical and experimental study to investigate the
performance of doubly reinforced concrete slabs against the
blast loads. ,ey employed the commercial program LS-
DYNA for numerical simulations, and their numerical and
experimental results were matched with a good agreement.
Wu et al. [12] conducted a 3D and 2D numerical study by
using commercial software Autodyn3D for the analysis of
infilled masonry in RC frame structures subjected to ground
excitations induced by blast waves. After comparison of
results, they concluded that 3D analysis captured the real
response of the structures. Ghaderi et al. [13] in 2015 used
ABAQUS as numerical analyses tools to represent unrein-
forced brick masonry walls strengthened with 1.5mm thick
FRP strips fixed in various formations and subjected to a
blast load based on scale-distance parameter. Finally, they

observed more damage to wall as the scale-distance de-
creased. Scaled distance (z) is parameter used for the in-
tensity level of blast load as defined by equation (1),
established by Hopkinson and Cranz [14], which relate
charge weight of equivalent TNT (W) and standoff distance
(R).

z �
R
��
W3

√ . (1)

Alsayed et al. [15] in 2016 carried out blast load tests on
block masonry wall specimen confined by a frame of
reinforced concrete. ,ey conducted five tests of various
charge size and standoff displacements in the field. In
conclusion, they found that the numerical results, obtained
from ANSYS-Autodyn, best matched for the blast load
parameters such as arrival time, peak incident, and peak
reflected overpressures and therefore, the numerical tech-
niques are the valid way to analyse the walls against blast
load. Edri and Yankelevsky [16] in 2018 considered a new
analytical model for the dynamic response in terms of time-
displacement history of one-way arching URM walls under
blast loads. ,eir SDOFmodel predictions have shown good
agreement after comparisons with experimental test results.
Michaloudis and Gebbeken [17] in 2019 presented in their
study a modelling strategy appropriate for masonry walls
subjected to far-field and contact detonations blasts to
capture the local damage and debris formation. ,ey
adopted a derived material model for brick masonry from a
concrete model which was already tested under blast load.
,eir proposed model shows good performance and com-
bines the advantages of fully Lagrangian approaches and
Smoothed Particle Hydrodynamic (SPH) approach. ,e
delivered numerical results of the model were in good
agreement with the result of experimental studies. It is
concluded from abovementioned discussion that most of the
recent research studies have focused on the performance
evaluation of conventional masonry and RC structures while
research on CDSM structures performance against blast load
is limited.

,e aim of this research study is to develop a 3D finite
element model to systematically study the out-of-plane
behaviour of CDSM wall against blast load. A full-scale
CDSM wall was developed in ANSYS-Autodyn and tested
against the blast loads generated fromWabox explosive. ,e
numerical simulations were performed for different test
cases. Finally, the results obtained from numerical analysis

(a) (b)

Figure 1: (a) Hydraform block. (b) Assemblage of dry-stacking Hydraform blocks.
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were compared with the data obtained from experimental
tests conducted by Ullah [18] on the same masonry wall.

2. Description of CDSM Test Wall

,e considered test model in this research is a CDSM wall
shown in Figure 2, which is representative of typical masonry
buildings constructed in Pakistan. ,e CDSM wall tested in
the field by Ullah [18] and the same wall was modelled in the
ANSYS-Autodyn. ,e CDSM wall panel is 7 ft (2.134m) tall,
7 ft (2.134m) wide, 8 inch (200mm) thick confined by
confining elements of 8 inch× 8 inch (200mm× 200m) with
typical 4-#4 (4φ12mm) steel longitudinal reinforcement and
#3 (φ10mm) rings provided at 6 inch (150mm) center-to-
center distance. All the steel rebars used in the wall specimen
are tested and are of 40,000 psi (420MPa) strength. Concrete
cylinder specimens were casted during construction of test
wall and tested for compressive strength after 28 days of
curing. On average, compressive strength of 3000 psi
(20.70MPa) was obtained for ordinary concrete. ,e
Hydraform blocks available in the local market of size 8
inch× 8 inch× 4 inch (200mm× 200mm× 100mm) have
been used to construct wall specimens. ,e gross area
compressive strength of Hydraform block is 1940 psi
(13.25MPa) whereas based on shoulder area it is 1240 psi
(8.50MPa). As the stress transfer in dry-stacking condition is
only through shoulders of the block, masonry prisms tested in
the laboratory by applying load on the shoulders and the
compressive strength of masonry were calculated as 730 psi
(5.00MPa). ,e Elastic Modulus from prism test was cal-
culated as 606,660 psi (4182.77MPa). All the test results are
adopted from the research study of Hafeez [19]. ,e cement
mortar with mix proportion of (1 : 6) has been used in the
construction of starter course of the masonry walls.

3. Description of Testing Setup

Wabox (TNT equivalent� 1.1) explosive is used in this re-
search study for blasting which is a nitroglycerine-based
dynamite manufactured byWANobel PVT Ltd. Rawalpindi,
Pakistan. ,e charge of Wabox explosive is situated 3 ft
(915mm) above the ground at a distance of 12 ft (3.66m)
from the wall as shown in Figure 3. ,ree pressure gauges
G-01, G-02, and G-03 are installed on the windward face of
the wall. ,e pressure gauges are installed to measure the
incident overpressures on the face of the wall.

Four blast tests on the same CDSM wall, namely, blast
tests #1, #2, #3, and #4, with varying charge weight were
conducted in field by Ullah [18] carried out in Risalpure
(Nowshera), Pakistan, and the same tests were modelled in
ANSYS-Autodyn for calibration. In these tests, the wall was
subjected to four blast load tests with increasing level of
intensity and scale-distance parameter has been used for
intensity level measurement; details are listed in Table 1.

4. Material Models for Simulations

ANSYS-Autodyn is a hydrocode which uses fundamental
law of physics such as law of conservation of mass,

momentum, and energy in the form of partial differential
equations (PDEs). ,ese governing PDEs including initial
and boundary conditions are used to predict the response of
the system materials for large deformation in nonlinear
dynamic problem. ,e mathematical relationships between
density, pressure, internal energy, stresses, and strains are
required for this analysis.,ese relationships are equation of
state (EOS), strength constitutive model, and failure criteria
for each material component. ,e following subsections
provide the details of the material models and parameters
used for numerical analysis.

4.1. Material Model for Air. In this study, the strength
models and failure criteria models are not required as it is air
blast and these parameters are usually required in under-
mining blast experiment. ,e following equation of state
(EOS), as given by equation (2), is used for the air as it was
assumed that the surrounded air is an ideal gas.

p � (c − 1)ρe. (2)

Here, p is the pressure, c is the constant of adiabatic
process, which is estimated to be 1.4 for ideal gas, ρ is the
specific mass, and e is the specific internal energy of the air.
,e parameters values of ideal gas EOS are listed in Table 2,
which are adopted from ANSYS-Autodyn material library.

4.2.MaterialModel forWaboxExplosive. ,e Jones-Wilkins-
Lee (JWL) [20] equation of state is formulated for the
modelling of Wabox explosive material. JWL equation of
states correlates chemical properties such as energy, volume,
and pressure of high energy explosive products. ,e JWL
equation of state in mathematical form is given by

p � A 1 −
ω

R1V
 e

R1V
+ B 1 −

ω
R2V

 e
R2V

+
ωe

V
, (3)

where A, B, R1, R2, ω are derived empirical constants which
have different values for different explosive materials, V
define the expansion of the detonating materials, and e is the
specific energy at detonation stage.

,e input parameters values of the JWL equation of state
used for Wabox explosive (TNT equivalent� 1.1) are taken
from Abbas et al. [21] and remaining properties are available
in ANSYS-Autodyn which are summarised in Table 3. In this
study, the Eulerian solver (multimaterial) was employed for
modelling both air and explosive material.

4.3. Material Model for Reinforced Concrete. In this study,
the Riedel–Hiermaier–,oma (RHT) material model of
Riedel et al. [22], implemented in ANSYS-Autodyn, has been
used for reinforced concrete. ,is model is extensively used
for concrete and brittle materials to predict their response
under blast load. In the RHT model for concrete, the two
basic parameters, compressive strength (fc) and tensile
strength (ft) obtained from uniaxially loaded cylinder test,
are required. ,e remaining parameters of concrete are
derived from these parameters. ,e concrete strength in

Mathematical Problems in Engineering 3
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Figure 3: Detail of explosive and pressure sensors for field tests. (a) Wabox explosive. (b) Installation of pressure sensors [18]. (c) Geometrical
description of test setup.
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Figure 2: Geometric description of test model wall with dimensions and reinforcement detail of RC confining frame.

4 Mathematical Problems in Engineering



RHT is controlled by three strength failure surfaces: initial
surface also called elastic limit surface, failure surface, and
postfailure surface (residual surface) as shown in Figure 4. In
this model, high tensile strength of concrete has been
adopted to incorporate the tensile strength of mild steel
reinforcement bars based on the study of Luccioni et al. [8].
,erefore, modified properties of reinforced concrete, as
listed in Table 4, have been used.

Based on the hydrostatic behaviour of porous concrete
the RHT model utilizes the p–α equation of state (EOS)
model of Herrmann [23]. EOS is a function that mathe-
matically correlates hydrostatic pressure, specific volume,
and internal energy. ,is equation of state model is adopted
in this research to capture the key global response of the wall.
,e input parameter values, that define the p-α equation of
state, are adopted from ANSYS-Autodyn materials library
which are listed in Table 4.

4.4. Material Model for Dry-Stack Masonry. In numerical
modelling, masonry walls can be modelled using either
micro- or macromodel. Micromodel is distinctive simula-
tion of masonry while macromodel is a homogenized
simulation. In this study, homogenized macromodel is used

for masonry wall to characterize Hydraform blocks and
joints properties [24–28]. ,e use of macromodelling for
masonry substantially optimises the computational time and
cost for simulation. ,erefore, it can be efficiently employed
when microscopic response is not important like in case of
extreme loads [29]. In this study, dry-stack masonry was
modelled as homogenous low-strength concrete as the wall
is constructed from concrete Hydraform blocks. ,e me-
chanical properties of Hydraform blocks and dry-stack
masonry are taken fromHafeez [19] and the remaining input
parameters are adopted from ANSYS-Autodyn material
library which are listed in Table 5.

5. Finite Element Model Parts

,e finite element model was developed in the software
which is composed of CDSMwall and air volume by the wall.
Due to symmetry, only half of the physical air domain and
wall was modelled to reduce the computation costs. ,e
model for CDSM wall is developed with three different
Lagrangian parts, i.e., RC footing, confining elements, and
dry-stack masonry wall. ,e 8-noded hexahedral solid el-
ements of size 50mm have been used in all three Lagrangian
parts. Figure 5 illustrates the finite element meshing grid of
the model, pressure gauge’s location, and detonation. In this
model, a fixed boundary condition was adopted by using
unbreakable connection between the confining frame and
footing, whereas stress-criteria based breakable connections
were assumed between the masonry and confining frame.
,e details of input parameters for breakable connection are
listed in Table 6.

,e surrounded air part of the model was modelled as
Eulerian, ideal gas. A three-dimensional (3D) domain of
cuboid-shaped was created for surrounded air. ,e sizes of
surrounded air domain are 4.22× 2.40× 2.20m.,e element
dimension for air volume is used as 25mm which is an
optimised size based on mesh convergence studies.

6. Erosion Criteria

As per the study carried out by researcher [32, 33], the
elements of the reinforced concrete confining frame were

Table 3: Material model parameter values for Wabox explosive
(equation of state: JWL).

EOS parameter Value
Reference density, ρ (kg/m3) 1.42E+ 3
State variable, A (MPa) 609.7E+ 3
State variable, B (MPa) 12.9E+ 3
State variable, R1 4.5
State variable, R2 1.4
State variable, w 0.2
Velocity of wave, ] (m/s) 8.2E+ 3
Specific energy, e (MJ/m3) 9.0E+3
Initial pressure, p (MPa) 28.0E+ 3

Compressive
Elastic Strength

Residual Surface

Failure Surface

Uniaxial Compression
Uniaxial Tension

Y

fc

ftTension
Elastic Strength

Elastic Limit Surface

P

Figure 4: Failure surfaces of RHT concrete model.

Table 1: Detail of parameters for blast load tests.

Test 1 Test 2 Test 3 Test 4
Wabox charge mass (kg) 4 8 12 16
Standoff distance (m) 3.66 3.66 3.66 3.66
Charge height (m) 0.91 0.91 0.91 0.91
Scaled distance (m/kg1/3) 2.23 1.77 1.55 1.41

Table 2: Material model parameter values for air (equation of state:
ideal gas).

EOS parameter Value
Reference density, ρ (kg/m3) 1.225
Heat capacity ratio, c 1.4
Adiabatic constant 0.0
Pressure shift 0.0
Ref. temp. (K) 288.2
Spec. heat (J/kg K) 717.6
Initial internal energy (kJ/kg) 2.0E+ 5
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permitted to erode from the system when the level of
geometric strain (instantaneous) reaches 0.5. But dry-stack
masonry geometric strain (instantaneous) of 0.02 was as-
sumed as a criterion for the erosion of wall elements. ,ese
erosion models are adopted in ANSYS-Autodyn to avoid
extreme and impractical deformation of mesh or grid system
and also to model the fragmentation of wall parts.

7. Blast Analysis in ANSYS-Autodyn

,e blast load analysis of the CDSM wall in ANSYS-
Autodyn was performed in two phases. ,e first phase,
which is a one-dimension (1D) analysis, simulates the early-
stage time expansion of blast wave in 1D using radial
symmetry. ,is expansion of pressure wave continues until
it hits the reflecting boundary. In the second phase, the
output of the 1D analysis is then transferred to the 3D
domain which is created independently. In this study, the
explosive material is installed at 0.92m above the ground
surface. ,erefore, it is considered as air blast and ground
shocks are ignored due to its negligible effects.

7.1. 1D ANSYS-Autodyn Analysis. In 1D analysis, the ex-
pansion of blast wave, generated after the explosive deto-
nation of material in the surrounding air, was first modelled
and simulated. ,e problem in this stage can be treated as
one-dimensional (1D) due to spherical symmetry, and a

wedge is defined for the problem domain. ,e wedge
geometric dimensions are specified on the basis of mass of
explosive material and standoff distance. ,e finite element
model of the wedge for the blast test of 16 kg Wabox at
3.66m standoff distance is shown in Figure 6. ,e inner
radius of the wedge is kept equal to 1mm to avoid the zero
thickness of the element at the origin. However, when this
correction is employed, it reduces the weight of the explosive
material, but its effect is insignificant due to small percentage
reduction. ,e wedge model is filled with explosive material
and surrounding air. ,e dimension of the elements in
wedge is taken as 2mm for achieving the desired level of
accuracy and less computational time [34].

,e output of this 1D analysis was later remapped in 3D
domain of the model which was developed separately. ,e
3D domain of the model represents the wall with occupied
air volume.,is remapping technique reduces drastically the
computational time and cost of the analysis. Figure 6 shows
the plot of pressure contours at the end of the 1D analysis for
16 kg Wabox at 3.66m standoff distance. ,e 1D blast
analysis was carried out for four different scaled distances
covering different charge weight of blast tests.

7.2. 3D ANSYS-Autodyne Analysis. ,e 1D analyses results
were remapped onto the 3D domain already modelled with
wall and surrounded air, separately. During remapping
process, the center position of explosive charge from wall,
that is, its standoff distance and height from ground, is
defined in the remap dialogue box of ANSYS-Autodyn. In
3D analysis, fully coupled simulation was assumed between
Lagrangian parts and air. ,e pressure waves at the start of
the 3D analysis for 12 kg Wabox test are shown in Figure 7.
All the foundation element nodes were assigned zero
translational velocities which simulates fixed boundary
condition for the wall at ground level. In ANSYS-Autodyn,
Eulerian boundaries adopt reflecting boundary condition by
default unless the specified boundary condition is assigned.
,erefore, flow-out boundary condition was first defined in
ANSYS-Autodyn and then assigned to the outer surfaces of

Table 4: Material properties for confining reinforced concrete (state equation: p–α, strength model: RHT).

EOS parameter Value Strength parameter Value
Initial density, ρo (kg/m3) 2.3E+ 3 Compressive strength, fc (MPa) 21.0
Reference density, ρo (kg/m3) 2.75E+ 3 Tensile strength, ft (MPa) 10.0
Porous sound speed (m/s) 2.75E+ 3 Failure surface constant, Ac 1.60
Initial compaction, Oc (MPa) 23.3 Failure surface exponent, Nc 0.61
Solid compaction, Os (MPa) 6.0E+ 3 Parameter, Qo 0.68
Compaction exponent, nc 3.0 Parameter, Q1 0.011
Bulk modulus, K (MPa) 35.2E+ 3 Fractured constant, Bc 1.60
State variable, A2 (MPa) 39.5E+ 3 Fractured exponent, Mc 0.61
State variable, A3 (MPa) 9.0E+ 3 Damage parameter, D1 0.04
State variable, Bo 1.22 Damage parameter, D2 1.00
State variable, B1 1.22 Failure strain (minimum), ϵf 0.01
State variable, T1 (MPa) 35.2E+ 3 Shear modulus fraction 0.13
State variable, T2 (MPa) 0.0 Principal tensile stress (MPa) 10.0
Reference temperature (K) 300.0 Fracture energy, Gf (J/m2) 100.0
Specific heat (J/kg K) 654.0 Erosion parameter Strain

Erosion limit 0.50

Table 5: Material properties used for dry-stack masonry (state
equation: p–α, strength model: RHT).

Strength parameter Value
Compressive strength, fc (kPa) 5.0E+ 3
Tensile strength, ft (kPa) 400
Principal tensile stress (kPa) 400
Elastic modulus, E (MPa) 4.2E+ 3
Softening criteria Nil
Erosion parameter Strain
Erosion limit 0.02
Remaining properties are the same as used for reinforced concrete.
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all air domain. ,e flow-out boundary condition allows the
exit of pressure waves from 3D air domain outer surfaces
without reflection of pressure waves back to the domain [35].

Moreover, the terminal time for the analysis was kept as
50.0ms for the blast traveling time between detonation point
and wall. For the complete analysis and response

Material Location
AIR

TNT

RC

Masenry

blast-on-wall
Cycle 0
Time 0.000E+000ms
Units mm, mg, ms 4 kg WA Box on Wall

(a) (b)

(c)

Figure 5: (a) Finite element (FE) model of the test specimen with meshing; (b) wall section enclosed in air domain with added pressure
gauges; (c) explosive material detonation.

Table 6: Breakable connection failure parameter detail [30, 31].

Connection Compressive
strength (Sn)

Shear strength (Ss)

Wall and confining
element interface Sn � Ss/3.1 Ss � 0.62

�����������

min(fc
′, fm
′ )



(MPa) whereas fc
′� confining concrete compressive strength

fm
′ � dry-stack masonry compressive strength

Velocity vectors (m/s)
7.432e+02

6.689e+02

5.946e+02

5.202e+02

4.459e+02

3.716e+02

2.973e+02

2.230e+02

1.486e+02

7.432e+01

0.000e+00

16 Kg WaBox on Wall

blast-on-wall
Cycle 10737
Time 2.000E+000 ms
Units mm, mg, ms
Axial symmetry

Figure 6: Pressure contours in 1D wedge filled with Wabox explosive and air.
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investigation of the wall specimen, this time is considered
enough and appropriate.

8. Results and Discussion

A total of four charge weights detonations were simulated, of
4 kg, 8 kg, 12 kg, and 16 kg of Wabox explosive material.
Furthermore, the gauge installed at mid locations was
considered for pressure-time history as per availability of the
experimental data. ,e analysis of explosive detonation and
CDSM response was carried out using software ANSYS-
Autodyn. ,e comparison of the results obtained from
ANSYS-Autodyn was made with experimental data from
Azmatullah [18] for pressure-time history and damage
pattern which will be discussed in the coming sections.

8.1. Pressure-Time History. ,e pressure-time history
comparisons between the experimental data and numerical
simulation resulting from 4 kg, 8 kg, 12 kg, and 16 kg Wabox
explosive detonation are shown in Figure 8. Minor dis-
crepancies have been observed in Figure 8 between the
numerical simulation and experimental graphs. Experi-
mental graphs of pressure-time history display some
roughness in curves while smooth pressure profile has been
obtained from the numerical simulation. Moreover, the
pressure peaks and arrival time do not match by small
margin. ,ese minor differences are mainly due to the re-
flection effects of blast waves from ground, which can be
detected by pressure sensors installed on the wall. ,ese
miner reflections were not considered in the ANSYS-
Autodyn model. However, there is still a general agreement
between the pressure profiles of the numerical simulation
and experimental tests. ,is validates that the numerical
simulation in ANSYS-Autodyn is a reliable alternative for
blast load tests on structures. From these graphs a com-
parison of incident overpressure and arrival time is illus-
trated in the coming subsections. ,e results were also
calibrated with empirical model developed by Kingery-
Bulmash [36] for incident overpressure and arrival time.,e

Kingery-Bulmash equations have also been automated in the
computer program CONWEP used for analysis of blast load.

8.1.1. Comparison of Peak Incident Overpressure. ,e
summary of incident peak overpressure for different scaled
distances obtained from ANSYS-Autodyn, experimental
tests by Ullah [18], and Kingery-Bulmash model is given in
Table 7 and is also plotted in Figure 9.

It is observed from Figure 9 that pressure variation trend
for the three different model is nearly the same.,e incident
pressure values are also in close range except for the near
field blast (z� 1.41m/kg1/3).

8.1.2. Comparison of Arrival Time. Summary of results in
terms of arrival time obtained from ANSYS-Autodyn, ex-
perimental tests, and Kingery-Bulmash empirical model is
listed in Table 8.

,e results comparison chart, as illustrated in Figure 10,
displays the variation in arrival time values. However, the
arrival time obtained from all three sources still shows a
good correlation with slight variation which can be ignored
for such type of large deformation or strain phenomenon.

8.2. Damage Pattern of Wall. ,e validation of the ANSYS-
Autodyn 3D results with the experimental tests conducted
by Ullah [18] was carried out through damage or failure
pattern. ,e failure pattern is based on the damage level
contours obtained from numerical analysis at the end of each
simulation which shows damage zones of the specimen. ,e
numerical values for damage level contour ranges from 0.0
to 1.0 which represents no damage and full damage, re-
spectively. ,e failure pattern obtained from the numerical
simulation shows a good correlation with the experimental
results as illustrated in the coming sections.

8.2.1. Damage Pattern of Blast Test #1. In the first blast test,
the CDSM wall was subjected to a blast of 4 kg explosive of
Wabox at an altitude of 0.92m and standoff distance of

1.068e+02

2.137e+02

3.205e+02

4.273e+02

5.341e+02

6.410e+02

7.478e+02

8.546e+02

9.615e+02

1.068e+03
PRESSURE (kPa)

0.000e+00

12 Kg WA Box Blast on Wall

blast-on-wall
Cycle 400
Time 2.035E+000 ms
Units mm, mg, ms

Figure 7: Pressure contours in 3D air domain after remapping from 1D output.
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Figure 8: Pressure-time history comparison for (a) 4 kg Wabox Blast; (b) 8 kg Wabox Blast; (c) 12 kg Wabox Blast; (d) 16 kg Wabox Blast.

Table 7: Summary of results of peak incident overpressure for wall specimen.

Test
case

Scaled distance,
z � R/

���
We

3


(m/kg1/3)
Numerical peak incident

overpressure (kPa)
Experimental peak incident

overpressure (kPa)
Kingery-Bulmash peak incident

overpressure (kPa)

1 2.23 240 260 221
2 1.77 490 498 375
3 1.55 630 590 512
4 1.41 895 1015 638
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3.66m.,is blasting test of scaled distance, 2.23m/kg1/3, was of
very low intensity; therefore, no damage has been observed to
the wall as shown in Figure 11. After that, higher level intensity
blast has been applied to the same wall specimen in the second
blast which was named as blast test (#2).

8.2.2. Damage Pattern after Blast Test #2. It was found that
for wall after 8 kg Wabox Blast (scaled distance of 1.77m/
kg1/3) minor cracked are observed at the interface of the

masonry and confining frame as shown in Figure 12, which
confirms the experimental result. ,e damage was minor;
therefore, the same wall was used for the third blast test.

8.2.3. Damage Pattern after Blast Test #3. Further damage
was observed and the cracks between confining element and
masonry interface were increased after 12 kg (scaled distance
of 1.55m/kg1/3) blast. However, for the wall specimen with
increased intensity level of blast load, the wall was still intact,
and no global failure has been observed. ,is result also
shows a good comparison with the experimental results as
shown in Figure 13.

8.2.4. Damage Pattern after Blast Test #4. In the final 16 kg
Wabox explosion (scaled distance of 1.41m/kg1/3), the
CDSM wall was completely damaged due to joint failure of
the confining elements. ,e experienced damage level was
high due to the debonding of the confining elements and
blocks of the wall. ,is result also shows good conformance
with the experimental test as shown in Figure 14. Although
the left joint of the confining frame is intact, the right side
joint failed by stress concentration whichmay be due to poor
construction.

Based on the above simulations, a decent correlation has
been attained between the obtained damage patterns of
numerical analysis and field experiments of all four blast
tests on the CDSM wall. ,is shows the validity of the
numerical modelling analyses in capturing the real behav-
iour of CDSM wall exposed to blast loads.
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Table 8: Results summary of blast arrival time.

Test
case

Scaled distance,
z � R/

���
We

3


(m/kg1/3)
Numerical peak incident

overpressure (ms)
Experimental peak incident

overpressure (ms)
Kingery-Bulmash peak incident

overpressure (ms)

1 2.23 3.97 4.00 3.41
2 1.77 3.25 3.50 2.79
3 1.55 2.85 2.55 2.48
4 1.41 2.50 2.45 2.28
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Figure 10: Arrival time comparison for different blast tests.
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Figure 11: Damage pattern comparison for 4 kg Wabox Blast: (a) numerical results; (b) experimental results.
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Figure 12: Damage pattern comparison for 8 kg Wabox Blast: (a) numerical results; (b) experimental results.
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Figure 13: Damage pattern comparison for 12 kg Wabox Blast: (a) numerical results; (b) experimental results.
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Figure 14: Damage pattern comparison for 16 kg Wabox Blast: (a) numerical results; (b) experimental results.
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9. Conclusion

Four different test cases of explosive charge detonation and
blast wave propagation in open space on CDSM wall were
investigated numerically using ANSYS-Autodyn software.
From this numerical simulation study, the following were
concluded.

(i) ,e complex wave structure of blasts was analysed
and pressure-time history records on walls were
described and compared with experimental records
which shows good agreement.

(ii) ,e incident overpressure and arrival time values
obtained from pressure-time history records were
compared with experimental data and empirical
models for calibration. ,e numerical model output
values show good correlation with experimental and
empirical models.

(iii) ,e numerical analysis is able to predict damage
pattern with reasonable accuracy. ,us, the ob-
tained damage patterns for each test were compared
with experimental damage map which shows good
correlation. ,erefore, this numerical model can
also be employed for parametric study on CDSM
walls.

(iv) It is observed from the results of numerical analysis
that the out-of-plane flexure capacity of CDSM
walls against blast loads has been increased by
providing proper confining elements. ,is also
confirms the response of CDSM walls observed in
the experimental tests conducted in the field.
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'e problem of existence and generalized Ulam–Hyers–Rassias stability results for fractional differential equation with
boundary conditions on unbounded interval is considered. Based on Schauder’s fixed point theorem, the existence and
generalized Ulam–Hyers–Rassias stability results are proved, and then some examples are given to illustrate our
main results.

1. Introduction and Position of Problem

'ere are various, not equivalent, definitions of fractional
derivatives according to Grunwald Letnikov, Weil,
Caputo, and Riemann–Liouville, etc. Ordinary and partial
differential order equations (with fractional derivatives of
Caputo and Riemann–Liouville) have awakened in recent
years with considerable interest both in mathematics and
in applications. Let us describe the abstract Cauchy
problem:

D
c
t u(t) � Au(t), m − 1< c≤m ∈ N,

dκ

dt
κ u(0) � ξκ, κ � 0, . . . , m − 1,

(1)

where the corresponding solutions are represented through
the Mittag–Leffler function. In mathematical papers on
fractional differential equations, the Riemann–Liouville
approach to the concept of a fractional order derivative c≥ 0
is usually used as follows:

D
c
u(t) �

d
dt

 

m 1
Γ(m − c)


t

0
(t − r)

m− c− 1
u(r)dr,

m − 1< c≤m ∈ N.

(2)

'e fractional Riemann-Liouville derivative is the left
inverse to the corresponding fractional integral, which is a
natural generalization of the Cauchy formula for the anti-
derivative function u(t). 'e initial conditions, of the initial
value problem for ordinary differential equations of frac-
tional order c with fractional derivatives in the Rie-
mann–Liouville form, are given in terms of fractional
integrals:

1
Γ(m − κ − c)


0+

0
0+ − r( 

m− κ− c− 1
u

(κ)
(r)dr,

κ � 0, . . . , m − 1.

(3)

To satisfy the physical requirements, Caputo introduced
an alternative definition of the fractional differential de-
rivative. It was adopted by Caputo and Mainardi as
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c
D

c
t u(t) �

1
Γ(m − c)


t

0
(t − r)

m− c− 1
u

(m)
(r)dr,

m − 1< c≤m.

(4)

'e advantage of this definition is a more natural so-
lution for the problem of initial conditions for solving
integro-differential equations of noninteger orders.

'e cases of Caputo derivative for 0< c< 1 was called the
regularized fractional derivative of order c.

'is paper concerns the existence with Ulam stability for
the following equation:

D
β
0+ u(t) + f(t, u(t)) + θ(t)g(u(t)) � 0, t≥ 0. (5)

For a continuous function u(t) together with boundary
conditions,

u(0) � 0,

u′(0) � 0,

D
β− 1
0+ u(+∞) � bu(ξ) + λ

σ

0
u(s)ds,

(6)

where 2< β≤ 3, 0≤ λ, b<∞, we fix 0≤ ξ < σ <∞, the
functions f: R+ × R⟶ R and g: R⟶ R are contin-
uous and θ is a continuous decreasing positive function
such that 0< θ(t)≤ 1, for all t ∈ [0, +∞). D

β
0+ is the

standard Riemann–Liouville fractional derivative of
order β.

2. Literature Overview

Fractional differential equations, which are often encoun-
tered in mathematical modeling of various processes in
natural and technical sciences, play an important role in
describingmany phenomena in physics, bioengineering, and
engineering applications. 'e properties of such equations
were investigated in many reviews (among them, we refer
[1–6]).

Regarding the existence, we mention the work by Zhao
and Ge [7], where the authors used the well-known Leray
Schauder nonlinear alternative theorem to prove the exis-
tence of positive solutions to the problem

D
α
0+ u(t) + f(t, u(t)) � 0, t ∈ [0, +∞), 1< α≤ 2,

u(0) � 0, D
α− 1
0+ u(+∞) � βu(ξ),

⎧⎨

⎩ (7)

where f ∈ C([0, +∞) × R, [0, +∞)), 0≤ ξ, β< +∞. Next,
Wang et al. [8] extended the above results and discussed
the question of existence for solutions of (7) with
condition:

D
α− 1
0+ u(+∞) � λ

τ

0
u(s)ds, (8)

where 0≤ λ, τ < +∞. Shen et al. [9] considered the existence
of solution for boundary value problem of nonlinear mul-
tipoint fractional differential equation:

D
c
0+ u(t) � f t, u(t), D

c
0+ u(t)( , t ∈ [0, +∞),

u(0) � 0, u′(0) � 0, D
c− 1
0+ u(+∞) � 

m− 2

i�1
βiu ξi( ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(9)

where

2< c≤ 3,

f ∈ C R+ × R × R,R( ,

Γ(β) − 
m− 2

i�1
βiξ

c− 1
i .

(10)

SM Ulam in 1940 was the first to raise the question of
stability for functional equations. After his lecture, this
question became popular for many specialists in mathe-
matical analysis. It became an area of in-depth research (see
for more details [10–12]). Next, many mathematicians
turned in their studies to two types of stability—according to
Ulam–Hyers and according to Ulam–Hyers–Rassias. 'is
kind of study has become one of the central and most
important in the fields of fractional differential equations.
Details of recent advances in Ulam–Hyers sustainability and
according to Ulam–Hyers for differential equations can be
found in [13, 14] and in articles [15–17]. However, as far as
we know, most authors discussed Ulam stability of some
fractional differential problem on bounded/unbounded
intervals, while the present paper discusses the existence of
solutions and stability in the sense of Ulam–Hyers–Rassias
for nonlinear fractional differential equations boundary
conditions, for which research is just beginning, please see
[18–23].

3. Preliminaries

Here, we present some notations, definitions, auxiliary
lemmas concerning fractional calculus, fixed point theo-
rems, and some preliminary concepts of fractional calculus.

Definition 1 (see [4, 24]). 'e Riemann–Liouville fractional
integral of order β for a function f is defined as

I
β
0+ f(t) �

1
Γ(β)


t

0
(t − s)

β− 1
f(s)ds, (11)

provided the right side is pointwise defined on (0; +∞).

Lemma 1 (see [25]). Let U ⊂ X be a bounded set. U is said to
be relatively compact in a space E if

(i) ∀u ∈ U, the function u(t)/(1 + tβ− 1) is equi-
continuous on any compact subinterval of J.

(ii) ∀ε> 0, there exists a constant T � T(ε)> 0 such that

u t2( 

1 + t
β− 1
2

−
u t1( 

1 + t
β− 1
1




< ε, t1, t2 ≥T and u ∈ U. (12)
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Lemma 2 (see [4, 24]). Assume that x ∈ C(J)∩ L1(J) with a
fractional derivative of order β> 0. =en,

I
β
0+ D

β
0+ x(t) � x(t) − C1t

β− 1
− C2t

β− 2
− · · · − Cnt

β− n
,

(13)

where C1, C2, . . . , CN ∈ R with n � [β] + 1.

Lemma 3. Let us define the following space:

E � u ∈ C[0, +∞): sup
t≥0

|u(t)|

1 + t
β− 1 < +∞ , (14)

equipped with the norm

‖u‖E � sup
t≥0

|u(t)|

1 + t
β− 1. (15)

'en, clearly (E, ‖ · ‖E) is a Banach space.

Lemma 4. u is a solution of the problem (5)-(6) if and only if
u satisfies the following integral equation:

u(t) � 
+∞

0
H(t, s)[f(s, u(s)) + θ(s)g(u(s))]ds, (16)

where

H(t, s) �

−
(t − s)

β− 1

Γ(β)
+
Γ(β + 1) − bβ(ξ − s)

β− 1
− λ(σ − s)

β
 t

β− 1

Γ(β) Γ(β + 1) − λσβ − bβξβ− 1
 

, s≤ t, s≤ ξ,

Γ(β + 1) − bβ(ξ − s)
β− 1

− λ(σ − s)
β

 t
β− 1

Γ(β) Γ(β + 1) − λσβ − bβξβ− 1
 

, t≤ s≤ ξ ≤ σ,

−
(t − s)

β− 1

Γ(β)
+
Γ(β + 1) − λ(σ − s)

β
 t

β− 1

Γ(β) Γ(β + 1) − λσβ − bβξβ− 1
 

, ξ ≤ s≤ t, s≤ σ,

Γ(β + 1) − λ(σ − s)
β

 t
β− 1

Γ(β) Γ(β + 1) − λσβ − bβξβ− 1
 

, ξ ≤ s< σ, t≤ s

−
(t − s)

β− 1

Γ(β)
+

Γ(β + 1)t
β− 1

Γ(β) Γ(β + 1) − λσβ − bβξβ− 1
 

, ξ ≤ σ ≤ s≤ t,

βt
β− 1

Γ(β + 1) − λσβ − bβξβ− 1, s≥ t, s≥ σ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

Proof. Using Lemma 2, we have

u(t) � − I
β
0+ [f(t, u(t)) + θ(t)g(u(t))]

+ c1t
β− 1

+ c2t
β− 2

+ c3t
β− 3

.
(18)

By the first and second conditions, we get

c3 � 0,

c2 � 0.
(19)

Consequently,

u(t) � − I
β
0+ [f(t, u(t)) + θ(t)g(u(t))] + c1t

β− 1
. (20)

From the third boundary condition, it follows that

D
β− 1
0+ u(t) � − I

β− β+1
0+ [f(t, u(t)) + θ(t)g(u(t))] + c1Γ(β)

� − 
t

0
[f(s, u(s)) + θ(s)g(u(s))]ds + c1Γ(β).

(21)

On the other hand, we have
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bu(ξ) + λ
σ

0
u(s)ds � − bI

β
0+ [f(ξ, u(ξ)) + θ(ξ)g(u(ξ))] + c1bξ

β− 1

− λ
σ

0
I
β
0+ [f(s, u(s)) + θ(s)g(u(s))]ds + λ

σ

0
c1s

β− 1ds

� − bI
β
0+ [f(ξ, u(ξ)) + θ(ξ)g(u(ξ))] + c1bξ

β− 1

− λI
β+1
0+ [f(σ, u(σ)) + θ(σ)g(u(σ))] +

λσβ

β
c1.

(22)

'en, we deduce

c1 �
β

Γ(β + 1) − λσβ − bβξβ− 1 
+∞

0
[f(s, u(s)) + θ(s)g(u(s))]ds

− bI
β
0+ [f(ξ, u(ξ)) + g(u(ξ))] − λI

β+1
0+ [f(σ, u(σ)) + θ(σ)g(u(σ))].

(23)

By substituting the values of c1, c2, and c3 in (18), we get
the following integral equation:

u(t) � − 
t

0

(t − s)
β− 1

Γ(β)
[f(s, u(s)) + θ(s)g(u(s))]ds

+
βt

β− 1

Γ(β + 1) − λσβ − bβξβ− 1 
+∞

0
[f(s, u(s)) + θ(s)g(u(s))]ds

−
bβt

β− 1

Γ(β + 1) − λσβ − bβξβ− 1 
ξ

0

(ξ − s)
β− 1

Γ(β)
[f(s, u(s)) + θ(s)g(u(s))]ds

−
λβt

β− 1

Γ(β + 1) − λσβ − bβξβ− 1 
σ

0

(σ − s)
β

Γ(β + 1)
[f(s, u(s)) + θ(s)g(u(s))]ds.

(24)

'en, we get (16).
Conversely, suppose that (16) is satisfied. To get (5), we

use the following appropriate relationships:

D
β
0+ I

β
0+ [f(t, u(t)) + θ(t)g(u(t))] � f(t, u(t)) + θ(t)g(u(t)),

D
β
0+ t

β− 1
� 0.

(25)

'e present paper is organized as follows. In Section 4,
we prove the existence of the solution for problem (5)-(6) in
the Banach space. 'e generalized Ulam–Hyers stable is
stated and proved in Section 5. Finally, an illustrative ex-
ample is given. □

4. Existence Result

In order to prove the existence of the solution for problem
(5)-(6), we transform problem (5)-(6) into the fixed point
problem Pu � u, where P is an operator defined on

B(r) � u ∈ E, ‖u‖E ≤ r , (26)

by

Pu(t) � 
+∞

0
H(t, s)[f(s, u(s)) + θ(s)g(u(s))]ds. (27)

Theorem 1. Let f: [0, +∞) × R⟶ R and g: R⟶ R are
two functions such that
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(A1) Γ(β + 1)> λσβ + bβξβ− 1.
(A2) =ere exist a nonnegative measurable function ψ1
defined on [0, +∞) and a real constant L> 0 such that:

|f(t, u(t)) − f(t, v(t))|≤ψ1(t)|u(t) − v(t)|, u, v ∈ R,

|g(u(t)) − g(v(t))|≤ L|u(t) − v(t)|, u, v ∈ R,

β
+∞

0
1 + t

β− 1
  ψ1(t) + ψ2(t) dt< Γ(β + 1) − λσβ − bβξβ− 1

(28)

with

ψ2(t) � θ(t)L, for each t ∈ [0, +∞). (29)

(A3) Let ϕ1(t) � |f(t, 0)| and ϕ2(t) � θ(t)|g(0)|,
t ∈ [0, +∞) such that


+∞

0
ϕ1(t) + ϕ2(t) dt< +∞. (30)

'en, problem (5)-(6) has at least one solution in
[0, +∞).

Lemma 5. If (A1) holds, then the Green function H(t, s)

satisfiesfor all ξ, σ, s, t ∈ [0, +∞), we have

H(t, s)

1 + t
β− 1 ≤

β
Γ(β + 1) − λσβ − bβξβ− 1. (31)

Proof. If s≤ t, and s≤ ξ, we get

H(t, s)

1 + t
β− 1 � −

(t − s)
β− 1

1 + t
β− 1

 Γ(β)

+
Γ(β + 1) − bβ(ξ − s)

β− 1
− λ(σ − s)

β
 t

β− 1

Γ(β) Γ(β + 1) − λσβ − bβξβ− 1
  1 + t

β− 1
 

≤
Γ(β + 1)t

β− 1

Γ(β) Γ(β + 1) − λσβ − bβξβ− 1
  1 + t

β− 1
 

≤
β

Γ(β + 1) − λσβ − bβξβ− 1.

(32)

All other cases of H(t, s) are simple. 'is completes the
proof of Lemma 5. □

Proof. of 'eorem 1. We shall use Schauder’s fixed point
theorem, which is divided into three steps. □

Step 1. Let r> 0 such that

r≥
β 

+∞
0 ϕ1(p) + ϕ2(p) dp

Γ(β + 1) − λσβ − bβξβ− 1
− β

+∞
0 1 + p

β− 1
  ψ1(p) + ψ2(p) dp

.

(33)

If u is a continuous function on J, then Pu ∈ C(J). In
order to show P(Br) ⊂ Br, let u ∈ Br, t ∈ R+. 'en,

Pu(t)

1 + t
β− 1




� 

+∞

0

H(t, s)

1 + t
β− 1 [f(s, u(s)) + θ(s)g(u(s))]ds





≤
β

Γ(β + 1) − λσβ − bβξβ− 1 
+∞

0
[f(s, u(s)) + θ(s)g(u(s))]ds





≤
β

Γ(β + 1) − λσβ − bβξβ− 1×

· 
+∞

0
[|f(s, u(s)) − f(s, 0)| + θ(s)|g(u(s)) − g(0)| +|f(s, 0)| +|θ(s)g(0)|]ds

≤
β

Γ(β + 1) − λσβ − bβξβ− 1 
+∞

0
ψ1(s)|u(s)| + θ(s)L|u(s)| + ϕ1(s) + ϕ2(s) ds

≤
β

Γ(β + 1) − λσβ − bβξβ− 1 
+∞

0
ϕ1(s) + ϕ2(s) ds

+
β‖u‖E

Γ(β + 1) − λσβ − bβξβ− 1 
+∞

0
1 + s

β− 1
  ψ1(s) + ψ2(s) ds

≤
β

Γ(β + 1) − λσβ − bβξβ− 1 
+∞

0
ϕ1(s) + ϕ2(s) ds

+
βr

Γ(β + 1) − λσβ − bβξβ− 1 
+∞

0
1 + s

β− 1
  ψ1(s) + ψ2(s) ds

≤ r.

(34)
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'erefore, ‖P‖E ≤ r; thus, P(Br) ∈ Br. Step 2. P: Br⟶ Br is continuous. Let un  be a sequence
which converges to u in Br. 'en, for all t ∈ [0, +∞),

Pun(t) − Pu(t)

1 + t
β− 1





� 
+∞

0

H(t, s)

1 + t
β− 1 f s, un(s)(  − f(s, u(s)) + tθn(s)q g un(s)( ( − g(u(s))(  ds





≤
β

Γ(β + 1) − λσβ − bβξβ− 1 
+∞

0
f s, un(s)(  − f(s, u(s)) + tθn(s)q g un(s)( ( − g(u(s))( 


ds

≤
β

Γ(β + 1) − λσβ − bβξβ− 1 
+∞

0
f s, un(s)(  − f(s, u(s)) + θg un(s)(  − g(u(s)) ds

≤
β un − u

����
����E

Γ(β + 1) − λσβ − bβξβ− 1 
+∞

0
ψ1(s) + ψ2(s)  1 + s

β− 1
 ds

< un − u
����

����E
.

(35)

So, we conclude that ‖Pun − Pu‖E⟶ 0 as n⟶ +∞.
Hence, P is a continuous operator on E.

Step 3. We have two claims to verify that P(Br) is a rela-
tively compact set.

First claim: let I ⊂ J be a compact interval, t1, t2 ∈ I with
t1 < t2. 'en, for any u ∈ Br, we have

Pu t2( 

1 + t
β− 1
2

−
Pu t1( 

1 + t
β− 1
1





≤ 
+∞

0

H t2, s( 

1 + t
β− 1
2

−
H t1, s( 

1 + t
β− 1
1




|f(s, u(s)) + θ(s)g(u(s))|ds

≤ 
+∞

0

H t2, s( 

1 + t
β− 1
2

−
H t1, s( 

1 + t
β− 1
1




ψ1(s) + ψ2(s)  1 + s

β− 1
 ‖u‖E + ϕ1(s) + ϕ2(s) ds.

(36)

Since it is continuous on J × J, we have that H(t, s)/(1 +

tβ− 1) is a uniformly continuous function on the compact set
I × I.

For s≥ t, the function depends only on t, then it is
uniformly continuous on I × (J/I). 'erefore, we have
∀s ∈ J and t1, t2 ∈ I; the next property holds.
∀ε> 0, there is δ(ε)> 0 such that, if |t1 − t2|< δ, then

H t2, s( 

1 + t
β− 1
2

−
H t1, s( 

1 + t
β− 1
1




≤ ε. (37)

'is property, together with (36) and the fact that


+∞

0
1 + s

β− 1
  ψ1(s) + ψ2(s) r + ϕ1(s) + ϕ2(s) ds<∞,

(38)

means that Pu(t)/(1 + tβ− 1) is equicontinuous on I.

Second claim: in order to achieve (ii) of Lemma 1, we
use
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lim
t⟶+∞

H(t, s)

1 + t
β− 1 �

1
Γ(β) Γ(β + 1) − λσβ − bβξβ− 1

 

×

λ σβ − (σ − s)
β

  + bβ ξβ− 1
− (ξ − s)

β− 1
 , s≤ t, s≤ ξ,

Γ(β + 1) − bβ(ξ − s)
β− 1

− λ(σ − s)
β
, t≤ s≤ ξ ≤ σ,

λ σβ − (σ − s)
β

  + bβξβ− 1
, ξ ≤ s≤ σ,

Γ(β + 1) − λ(σ − s)
β
, ξ ≤ t, s< σ,

λσβ + bβξβ− 1
, ξ ≤ σ ≤ s≤ t,

βΓ(β), s≥ σ, s≥ t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(39)

From (39), it is not hard to see, ∀ε> 0, there exists a
dependent constant T � T(ε)> 0 such that, for t1, t2 ≥T and
s ∈ J, we have

H t2, s( 

1 + t
β− 1
2

−
H t1, s( 

1 + t
β− 1
1




≤ ε. (40)

Now, from (36) and (38), the same property holds for
Pu(t)/(1 + tβ− 1), uniformly for u ∈ Br. 'en, P(Br) is
equiconvergent at ∞.

'us, Lemma 1 implies that P(Br) is relatively compact.
'erefore, the operator P has a fixed point on Br. 'en,

from Schauder’s fixed point theorem, we conclude that
problem (5)-(6) has at least one solution.

5. Stability Result

Before stating and proving our main stability results, let us
consider the following integration formula:

v(t) � 
+∞

0
H(t, s)[f(s, v(s)) + θ(s)g(v(s))]ds, (41)

for continuous function H, θ. Here, we suppose that
v ∈ C([0, +∞), E) has a fractional derivative of order β,
where 2< β≤ 3, f: [0, +∞) × E⟶ R and g: E⟶ R are
two continuous functions, and let us define the following
nonlinear continuous operator:

F: [0, +∞) × E⟶ R,

Fv(t) � D
β
0+ v(t) + f(t, v(t)) + θ(t)g(v(t)),

(42)

Definition 2 (see [26, 27]). For any ϵ> 0 and for each so-
lution v of (5)–(6), such that

‖Fv‖E ≤ ϵ, (43)

problem (5)-(6) is said to be Ulam–Hyers stable, if we can
find a positive real number Cf > 0 and a solution
u ∈ C([0, +∞), E) of (5)-(6) satisfying the inequality

‖u − v‖E ≤ ϵCf. (44)

Definition 3 (see [26, 27]). Let Cf ∈ C(R+,R+) with
ξ(0) � 0, for each solution v of (5)–(6), we can find a so-
lution u ∈ C([0, +∞), E) of (5)-(6) such that

‖u − v‖E ≤Cf(ϵ). (45)

'en, problem (5)-(6), is called generalized Ulam–Hyers
stable.

Definition 4 (see [26, 27]). For any ϵ> 0 for each solution v

of (5)-(6), problem (5)-(6) is called Ulam–Hyers–Rassias
stable with respect to Φ ∈ C([0, +∞),R+) if

‖Fv‖E ≤ ϵΦ(t) t ∈ [0, +∞), (46)

and there exists a real number Cf,Φ > 0 and a solution
u ∈ C([0, +∞), E) of (5)-(6) such that

‖u − v‖E ≤ ϵCf,ΦΦ(t), t ∈ [0, +∞). (47)

Definition 5 (see [26, 27]). For any ϵ> 0 and for each so-
lution v of (5)-(6), problem (5)-(6) is called generalized
Ulam–Hyers–Rassias stable with respect to
Φ ∈ C([0, +∞),R+) if

‖Fv‖E ≤Φ(t) t ∈ [0, +∞), (48)

and there exists Cf,Φ > 0 and a solution u ∈ C([0, +∞), E) of
(5)–(6) such that

‖u − v‖E ≤Cf,ΦΦ(t), t ∈ [0, +∞). (49)

Theorem 2. If the assumptions (A1) and (A2) hold, then
problems (5)-(6) are generalized Ulam–Hyers stable.

Proof. By the equivalence between the operators (I d − P)

and F and the assumptions (A1), (A2), we find

Mathematical Problems in Engineering 7



|v(t) − u(t)|≤ |v(t) − Pv(t)| +|Pv(t) − u(t)|

� |(I d − P)v(t)| +|Pv(t) − Pu(t)|

� |Fv(t)| + | 
+∞

0
H(t, s)[f(s, v(s)) − f(s, u(s))]ds,

− 
+∞

0
H(t, s)θ(s)[g(v(s)) − g(u(s))]ds|

≤ |Fv(t)| + 
+∞

0
H(t, s)[f(s, v(s)) − f(s, u(s))]ds





+ 
+∞

0
H(t, s)θ(s)[g(v(s)) − g(u(s))]ds




.

(50)

'en,

‖v − u‖E ≤ ‖Fv‖E +
β‖v − u‖E

Γ(β + 1) − λσβ − bβξβ− 1×

· 
+∞

0
ψ1(s) + ψ2(s)  1 + s

1− β
 ds

≤ ϵ +
β‖v − u‖E

Γ(β + 1) − λσβ − bβξβ− 1×

· 
+∞

0
ψ1(s) + ψ2(s)  1 + s

1− β
 ds.

(51)

Consequently,

‖v − u‖E

≤
Γ(β + 1) − λσβ − bβξβ− 1

Γ(β + 1) − λσβ − bβξβ− 1
− β

+∞
0 ψ1(s) + ψ2(s)  1 + s

β− 1
 ds

ε.

(52)

'us, we get the Ulam–Hyers stability of (5)–(6).'en, if
we take Cf(ε) equal to the right hand side of (52), we obtain
the generalized Ulam–Hyers stability of (5)-(6). □

Theorem 3. Assume that the hypotheses (A1) and (A2) hold.
In addition, the following hypotheses hold:

(A4) =ere exist two positive constants p and q such that

ψ1(t)≤
p

‖v − u‖E

Φ(t),

ψ2(t)≤
q

‖v − u‖E

Φ(t).

(53)

(A5) =ere exists a positive real number CΦ such that,
for each t ∈ [0, +∞), we have

Φ(t)≤ 
∞

0
1 + s

β− 1
 Φ(s)ds≤CΦΦ(t). (54)

'en, problems (5) and (6) are generalized
Ulam–Hyers–Rassias stable.

Proof. By exploiting the assumptions (A2), (A3), (A4), and
(A5), then we get

|v(t) − u(t)|≤ |v(t) − Pv(t)| +|Pv(t) − u(t)|

≤ |Fv(t)| +|Pv(t) − Pu(t)|

≤ |Fv(t)|

+ 
+∞

0
H(t, s)[f(s, v(s)) − f(s, u(s))]ds





+ 
+∞

0
H(t, s)θ(s)[g(v(s)) − g(u(s))]ds




.

(55)

'en,

‖u − v‖E ≤ ‖Fv‖E + 
∞

0

H(t, s)

1 + t
1− β [f(s, v(s)) − f(s, u(s))]ds





+ 
∞

0

H(t, s)

1 + t
1− β θ(s)[g(v(s)) − g(u(s))]ds





≤Φ(t) +
β

Γ(β + 1) − λσβ − bβξβ− 1 
+∞

0
|f(s, v(s)) − f(s, u(s))|ds

+
β

Γ(β + 1) − λσβ − bβξβ− 1 
+∞

0
θ(s)|g(v(s)) − g(u(s))|ds
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≤ 
∞

0
1 + s

β− 1
 Φ(s)ds +

β
Γ(β + 1) − λσβ − bβξβ− 1 

+∞

0
|f(s, v(s)) − f(s, u(s))|ds

+
β

Γ(β + 1) − λσβ − bβξβ− 1 
+∞

0
θ(s)|g(v(s)) − g(u(s))|ds

≤CΦΦ(t) +
β(p + q)

Γ(β + 1) − λσβ − bβξβ− 1 
+∞

0
(1 + s)

1− βΦ(s)ds

≤ 1 +
β(p + q)

Γ(β + 1) − λσβ − bβξβ− 1
⎛⎝ ⎞⎠CΦΦ(t)

� Cf,ΦΦ(t).

(56)

Hence, problems (5) and (6) are generalized
Ulam–Hyers–Rassias stable. □

Example 1.

D
5/2
0+ u(t) �

e
− t

+ sin(u(t))

100 1 + t
2

  1 + t
3/2

 
+

1 + sin(u(t))

100(1 + t)
2 1 + t

3/2
 

t ∈ [0, +∞),

u(0) � 0, u′(0) � 0, D
3/2
0+ u(+∞) � bu(1) + λ

2

0
u(s)ds.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(57)

In this example, we have

f(t, u(t)) �
e

− t
+ sin(u(t))

100 1 + t
2

  1 +
t

 
,

g(u(t)) � 1 + sin(u(t)),

|f(t, u(t)) − f(t, v(t))|≤
1

100 1 + t
2

  1 + t
3/2

 
|u(t) − v(t)|,

|g(u(t)) − g(v(t))|≤ |u(t) − v(t)|,

L � 1,

θ(t) �
1

100(1 + t)
2 1 + t

3/2
 

,

ψ1(t) �
1

100 1 + t
2

  1 + t
3/2

 
,

ψ2(t) �
1

100(1 + t)
2 1 + t

3/2
 

.

(58)

Since ξ and σ are fixed, then λ and b are chosen so that
hypothesis (A1) is satisfied. So, we have
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b<
Γ(β + 1) − λσβ

βξβ− 1 ,

λ<
Γ(β + 1)

σβ
.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(59)

In our example, we have β � (5/2), ξ � 1, σ � 2. 'en,

b<
2(Γ(7/2) − 4

�
2

√
)

5
≈ 0.19,

λ<
Γ(7/2)

4
�
2

√ ≈ 0.58.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(60)

So, we can choose λ � 1/2 and b � 1/10.
By simple computation, we get

β
+∞

0
1 + t

β− 1
  ψ1(t) + ψ2(t) dt �

5
200


+∞

0

dt

1 + t
2 +

5
200


+∞

0

dt

(1 + t)
2

�
5
200

arctan(t) −
1

1 + t
 

+∞

0

�
5
200

π
2

+ 1  ≈ 0.06,

Γ(β + 1) − λσβ − bβξβ− 1 ≈ 0.25.

(61)

'us, (A2) is satisfied.
Now, it remains to verify (A3). We have


+∞

0
ϕ1(t) + ϕ2(t) dt≤ 

+∞

0

1
1 + t

2
 

+
1

(1 + t)
2

⎛⎝ ⎞⎠dt

�
π
2

+ 1< +∞.

(62)

All hypotheses of 'eorem 1 are satisfied. 'erefore,
boundary value problems (5)-(6) has at least one solution in
R.
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An electronic implementation of a novelWien bridge oscillation with antiparallel diodes is proposed in this paper. As a result, we show
by using classical nonlinear dynamic tools like bifurcation diagrams, Lyapunov exponent plots, phase portraits, power density spectra
graphs, time series, and basin of attraction that the oscillator transition to chaos is operated by intermittency and interior crisis. Some
interesting behaviors are found, namely, multistability, hyperchaos, transient chaos, and bursting oscillations. In comparison with
some memristor-based oscillators, the plethora of dynamics found in this circuit with current-voltage (i–v) characteristic of diodes
mounted in the antiparallel direction represents a major advance in the knowledge of the behavior of this circuit. A suitable
microcontroller based design is built to support the numerical findings as these experimental results are in good agreement.

1. Introduction

An evidence fact in the research community is that the
electronic circuits containing nonlinear elements exhibit
rich dynamic behavior and it has been described in nu-
merous books [1–4]. 'e research of chaotic memristive
circuits is a hot topic of academic research in these recent
years [5–8] due to their tremendous engineering applica-
tions. We can cite the field applications of communication
systems, neural networks, image security, and so on.
Memristor-based circuits are famous for displaying a rich
variety of behaviors, including multiperiodic, quasiperiodic,
and chaotic oscillations as well as self-pulsing and the

coexistence of multiple attractors and hidden attractors
[9–14]. 'e Wien bridge oscillator among many types of
memristor-based oscillators appears to be one of the most
studied recently with good standing papers published
[15–17]. Memristor-based circuits are famous for displaying
a rich variety of behaviors. 'ese striking scenarios are
defined as follows.

(i) Multistability is a critical property of nonlinear
dynamical systems, where a variety of behaviors
such as coexisting attractors can appear for the same
parameters, but different initial conditions. 'e
flexibility in the system’s performance can be
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achieved without changing parameters. 'is strik-
ing scenario has been witnessed in numerous fields
of engineering ranging across physics [18], biology
[19], chemistry [20], electronics [21–23], and me-
chanics, as well as reported applications in oscil-
lators and secure communications.

(ii) Quasiperiodicity is the property of a system that
displays irregular periodicity [24]. Quasiperiodic
behavior is a pattern of recurrence with a compo-
nent of unpredictability that does not lend itself to
precise measurement. It has been witnessed in rare
systems such as the acoustic field [25], laser [26],
and neural network [27].

(iii) Hyperchaotic scenario in the dynamical system is
defined as a chaotic system with more than one
positive Lyapunov exponent; this implies that its
chaotic dynamics extend in several different di-
rections simultaneously [24]. 'erefore, comparing
with the traditional chaotic system, the hyperchaotic
system has more complex dynamical behaviors
which can be used to enhance the security of the
chaotic communication system [28]. Consequently,
the topic of theoretical design and circuitry reali-
zation of various hyperchaotic systems has recently
become a hotspot in the nonlinear research field.
Hyperchaos has been found numerically and ex-
perimentally such as Chua’s circuit [29], Chen
system [30], or Lorenz equation [31].

(iv) Bursting oscillations are defined as complex oscil-
lations consisting of spiking (cluster of spikes or
rapid oscillations) separated by periods of relative
quiescence [32]. 'ey have been observed in many
practical systems and found a multitude of appli-
cations in areas such as electromechanics [33],
electronics [34], biology [35], and bioengineering of
artificial organs [36]. 'ey have been discovered in
many fields, magnetohydrodynamics [37], plasma
confinement [25], and X-ray pulsar emission [26].
In biological neurons and cells electrophysiology,
bursting oscillations play an important role in in-
formation processing. Moreover, in biological
neurons, bursting oscillations are important for
motor pattern generation and synchronization.

(v) Transient chaos is a dynamical behavior that dis-
plays the existence of chaotic behavior on finite time
[38]. Generally, the phenomenon of transient chaos
can be observed in dynamical system with boundary
crisis [39] and also in families of the logistic and
Hénon maps.
Zhijun and Yicheng [40] employed a piecewise
linear memristor to construct a fourth-order
memristor-based Wien bridge circuit with hyper-
chaotic dynamics. Wu et al. [41] constructed an
active generalized memristor, in which a fourth-
order Wien bridge chaotic oscillator was designed
further. In recent years, the electronic research team
focused on the infinitely differentiable characteristic

equation of the diode component in electronic
chaotic circuits replacing nonsmooth ones. 'e
synthesis are well presented in [42, 43] just to name
some well-standing papers. Some rare and inter-
esting dynamics are found, namely, coexisting
hidden attractors, quasi periodicity with anti-
monotonicity, and hyperchaos. As we recall, finding
chaotic circuits, (i) which modeled some important
unsolved problems in nature, (ii) shed insight on
that problems, and (iii) exhibited some behavior
previously unobserved [44], is still a major interest.
For this purpose, we explore the 5D Wien bridge
memristive oscillator with antiparallel diodes with
smooth (i–v) characteristics not yet explored in this
circuit with interesting dynamics discover:

(i) Intermittency route to chaos
(ii) Transient chaos
(iii) Hyperchaos with offset boosting and partial

amplitude control
(iv) Multistability
(v) Bursting oscillations
(vi) 'e successful microcontroller implementation

'e (i–v) characteristic model without approximations
of the behavior of the nonlinear element diodes connected in
antiparallel direction, therefore, constitutes an advance in
the field of research for this Wien bridge oscillator.

'e rest of this paper is organized as follows. In Section
2, the model and analysis of a memristive Wien bridge
oscillator are presented. It is followed in Section 3 by the
numerical analyses highlighting transitions to chaos. 'en,
in Section 4, some complex dynamics are discovered in this
oscillator. We then continue with the microcontroller
implementation in Section 5 to verify the numerical findings.
'e paper ends with some concluding remarks.

2. Modelling and Analysis of aMemristiveWien
Bridge Oscillator

'e schematic diagram of a memristive circuit based on the
5D Wien bridge oscillator is presented in Figure 1.

2.1.7eModel of theCircuit. 'e circuit of Figure 1 consists of
three capacitors C1, C2, C3; an inductor L1 with its internal
resistor R1; an operational amplifier; two antiparallel diodesD1,
D2; three resistors R2, R3, R4; and a flux-controlled memristor
ω(φ). 'e authors in [16, 45] used a piecewise linear function
to describe the voltage-current characteristics of two antipar-
allel diodes. 'e exponent of the internal state of the flux-
controlled memristor was set to first order as in [46]. In this
work, the current-voltage characteristic of two antiparallel
diodes D1 and D2 is described without any approximation:

id � iS(eρ(u1− u3) − 1)− iS(e− ρ(u1− u3) − 1) � 2iS sinh(ρ(u1
− u3)), where ρ � 1/(ηVT), the parameters is � 2.682 nA,
and VT � 26mV stand for the reverse saturation current,
ideality factor, and the thermal voltage of the diodes, re-
spectively. 'e exponent of the internal state of the mem-
ristor here is set to second order as in [47]. 'e five dynamic
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elements C1, C2, C3, L, and memristor correspond to each
state variable u1, u2, u3, i1, and ϕ, respectively. For analysis of
the circuit, Kirchhoff’s law is applied to the circuit of Figure 1
to reveal five sets of first-order differential equations:

C1
du1

dt′
�

R4

R2R3
u1 − w(ϕ)u1 −

1
R2

u2 − 2iSsinh ρ u1 − u3( ( ,

(1a)

C2
du2

dt′
�

R4

R2R3
u1 −

1
R2

u2,

(1b)

C3
du3

dt′
� 2iSsinh ρ u1 − u3( (  − i1,

(1c)

L1
di1

dt′
� u3 − RLi1, (1d)

dϕ
dt′

� − u1 − αϕ + u
2
1ϕ, (1e)

where the parameter α is associated with the memristor and
w(ϕ) � (a + 3b′ϕ2) is the memristance. Let us define

x � u1/ρ, y � u2/ρ, z � u3/ρ, w � i1
�����
R2R3


/ρ,

v � ϕ/(ρC1
�����
R2R3


)t � t′/C1

�����
R2R3


, b � R2R3(C1ρ)2b′,

c � R4/
�����
R2R3


, d �

�����
R3/R2


, e �

�����
R2R3


f � ρC1, g � 2is/ρ,

k � R2R3C1/L, δ � ρ2, C1 � C2 � C3 by inserting the nor-
malized parameters in the set of equations (1a)–(1e); the
dimensionless set of equations (1a)–(1e) is given by equa-
tions (2a)–(2e) suitable for numerical studies:

dx

dt
� c − e a + 3bv

2
  x − dy − eg sinh(x − z), (2a)

dy

dt
� cx − dy, (2b)

dz

dt
� eg sinh(x − z) − w, (2c)

dw

dt
� kz, (2d)

dv

dt
� − x + ef − α + δx

2
 v. (2e)

2.2. Mathematical Analysis. System (2a)–(2e) is invariant
under the transformation: S(x, y, z, w, v)⟶ S(− x, − y,

− z, − w, − v); therefore, system (2a)–(2e) is symmetry about
the origin. 'e origin of the state space is a trivial equi-
librium point E(0, 0, 0, 0, 0) meaning that the solution shows
twin symmetric around the origin. 'e other equilibrium
points of system (2a)–(2e) are obtained by solving
dx/dt � 0, dy/dt � 0, dz/dt � 0, dw/dt � 0, dv/dt � 0, which
gives

z
∗

� 0, (3a)

y
∗

�
cx
∗

d
, (3b)

w
∗

� eg sinh x
∗

( , (3c)

+

-

-+

-

+
-

+

id

c2

u2

u1

C3 u3

C1

R2

R3 R4

L1,R1

D1

D2

i1

w (φ)

Figure 1: 'e memristive Wien bridge circuit.
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a +
3b x
∗

( 
2

(ef)
2

− α + δ x
∗

( 
2

 
2

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦x
∗

+ g sinh x
∗

(  � 0. (3d)

Equation (3d) cannot be solved analytically. 'en, the
Newton–Raphsonmethod [48] is used to find the value of x∗

for the chosen value a� 0.05, b� 0.03, f� 1, g � 1, α� 2,
delta� 1, e� 2, and the method yield x∗� − 3.08e − 18
resulting in the trivial E. By linearizing system (2a)–(2e)
around E, we obtain

Jac �

c − e a + 3bv
2

   − eg cosh(x − z) − d eg cosh(x − z) 0 − 6ebvx

c − d 0 0 0

eg cosh(x − z) 0 − eg cosh(x − z) − 1 0

0 0 k 0 0

(− 1 + 2efδxv) 0 0 0 ef − α + δx
2

 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4)

where Jac is the Jacobian matrix. 'us, the stability of E can
be determined by solving the characteristic equation
det(Mj − λI5) � 0, where I5represents the 5× 5 identity
matrix. Table 1 illustrates the eigenvalues obtained by the
Newton–Raphson method.

'e screening parameter α is kept in the range 1.4< α< 2
while the other parameters of the model are the ones defined
previously.

We can conclude that, for α belonging to the interval, the
system can develop self-excited attractors.

'e overview of the stability of system (2a)–(2e) is
performed by plotting the stability diagram versus param-
eters a and α.

In Figure 2, we can notice that the unstable area is limited
to the stable area at a critical value of a around 0.75; this helps
to choose the value of the parameter for numerical analyses.

3. Numerical Analysis

3.1. 2D Bifurcation Diagrams. Numerical analyses of the
dynamical system can be obtained by plotting the 2-D MLE
when varying simultaneously two parameters to provide
global information about the dynamic behavior of the
system under investigation [49].

'e colors on these diagrams of the model of our os-
cillator vary according to the value of the MLE computed
using the well-known method of Wolf et al. [50]. In these
figures, the light green, cyan, and magenta characterize a
chaotic motion while the dark-green yellow and dark red
represent periodic or quasiperiodic motion. It is therefore
visible that parameters c, d, and g provide many diverse
dynamics in contrary to the parameter e that is monotone.
For these reasons, we choose them in their interesting in-
terval to study the scenario toward chaos (Figure 3).

3.2.Transitions toChaos. In this section, intensive numerical
analyses are performed by monitoring the bifurcation pa-
rameter α and initial states. We plot the local maxima of the
coordinate x (xmax) and record the Lyapunov spectra. We
noticed sparse chaotic windows alternating with periodic
ones while increasing or decreasing the bifurcation

parameter α.'e red curve is obtained during the increasing
path of α while the red one is during the decreasing path.

In this manner, the hysteresis firstly discovered in dy-
namical systems by Berglund [51] occurs in Figure 4(a) while
the red and black curve does not overlap. It is used here to
discover symmetric or multiple attractors.

'e chaos behavior is obtained as we can see by the
intermittency route. We note that this phenomenon is rarely
found in dynamical system interring chaotic dynamics [52].
It is described as a scenario involving several frequencies and
spontaneously becomes chaotic while varying the bifurca-
tion parameter. 'e sudden changes in the quality behavior
(competition between several frequencies and chaos) are
revealed in detail in Figure 5 where some phase portraits
with corresponding power density spectra are plotted.

According to Figure 5, we can reveal to the reader the
transition to chaos (in forward and in the reversed directions
of the bifurcation parameter α) from Figure 5(j) €
Figure 5(k). We can observe a periodic behavior suddenly
followed by chaotic dynamics by a tiny variation of α.

In this numerical research, it is usually during the in-
termittency route to encounter the same scenario while time
elapsed. In this situation, chaos can appear and disappear to
become periodic: this scenario is called transient chaos and it
is very rare in dynamical systems.

3.2.1. Transient Chaos Behavior. 'e findings of transients’
chaos are of great interest since they are believed to be the
culprit for disastrous such as voltage collapse in electric
power systems [53] and species extinction in ecology. We
choose the set of system parameters a � 0.05, b � 0.03, c � 6,
d � 3, e � 2, f � 1, g � 1, k � 2, α � 1.3, delta � 1 and plot
the time trace of the dynamical system in Figure 6.

In Figure 6, one can notice that starting the system at
t� 0, the behavior of the system is chaotic until t� 600 s.'is
description is revealed by the chaotic attractor in (b) with the
corresponding power density spectra. Passing the critical
time 600 s, the system becomes regular as shown in
Figure 6(d).'is phenomenon is also reported inmemristive
systems [54] including Chua’s [55] and Duffing oscillators
[56] and deserves to be shared.
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3.2.2. Intermittency Route to Chaos during Symmetric In-
terior Crisis. Another interesting dynamic found in this
system is the interior crisis. It describes the bifurcation
events in which a chaotic attractor suddenly expands in size.
It was initially observed by Grebori et al. [57].

In Figure 7, when the control parameter is varied, we
noticed the expansion in size of the red and black attractors until
theymerged to form a unique huge attractor in Figure 7(f).'is
striking phenomenon is shown with the time traces of the black
and red attractors in the right column of Figure 7.

'e description of the multiple routes to chaos observed
in system (2a)–(2e) rise to a very interesting and complex
behavior as we revealed in the next section.

3.3. Complex Dynamics of the Oscillator

3.3.1. Multistability. 'e famous and interesting behavior of
multistability in the dynamical systemwas shown in the optical
chain by [58] and in the isolation of a new defect in n-type
silicon [59, 60]. It was recently encountered in well-known
systems such as Chua ([61]) and Sprott [62], jerk system [63]. A
simple technique to detect this property is to scan the bifur-
cation diagram upward and downward using the same control
parameter (see Figure 4). In the light of this technique, one can
obverse in Figure 4(a) some windows where the black curve
and the red curve do not overlap showing the multistability
phenomenon. We draw a zoom in the interesting interval of
the control parameter to share this scenario, Figure 8(a).

In Figures 8(b1) and (b2), one can see that the 4
attractors coexist for the same set of system parameters. 'e
red ones are obtained with positive initial conditions while
black attractors are obtained with negative initial conditions.
'e basin of attraction showing the space of initial condi-
tions resulting from each coexisting steady state is plotted in
Figure 9. Recall that the basin of attraction associated with
attractors red or black is the closure of the set of initial points
that, taken as initial conditions, converge to red or black
attractors when time increases to infinity. 'is subset-plane
of initial points are determined using the computation of
maximum Lyapunov Exponent (MLE) using the well-known
algorithm byWolf et al. [50]. For the 5D system under study,
we fixed the initial points x2(0)� x3(0)� x4(0)� 1. 'e sys-
tem parameters are set in the caption of Figure 9 and remain
unchanged during the computation. For any couple of
starting points.

− 4< x1(0)< 4 and − 10< x5(0)< 10, the long-term be-
havior of system (1a)–(1e) is computed using the Run-
g–Kutta algorithm, and the MLE is determined using the
Wolf et al.’s method. 'en, it is saved. If:

(a) MLE> 0, we plot on the substate space the point with
magenta color for positive chaotic attractors while
the blue color area is for negative ones.

(b) MLE≤ 0, we plot on the substate space the point with
black color (for negative limit cycles) and red color
(for positive limit cycles) for initial conditions that
led to periodic attractors.

In Figure 9, the reader can discover the fractal form of
the substate space resulting in the complexity of system
(1a)–(1e). Note that other planes are not plotted for sim-
plicity purposes.

3.3.2. Hyperchaos. 'e new memristive Wien Bridge os-
cillator, as in Figure 1, generates hyperchaotic attractor with
two positive Lyapunov exponents. In Table 2, Lyapunov
exponents and dynamics of system (1a)–(1e) for different
values of α are given.

Figure 10 displays the phase portraits of the hyperchaotic
attractors.

As we can see, the spiraling trajectories are much denser
than those in the chaotic ones, showing to the reader the
striking phenomenon of hyperchaos. In Table 2, there are
two Lyapunov exponents greater than zero.

Table 1: Eigenvalues and stability nature of the equilibrium point E computed for some discrete values of the parameter α.

α λ1 λ2 λ3 λ4 λ5 Stability nature of E

2 − 4.0000 0.8727 + 1.3475i 0.8727–1.3475i − 1.4227 + 1.6926i − 1.4227–1.6926i Instable
2.5 − 5.0000 0.8727 + 1.3475i 0.8727–1.3475i − 1.4227 + 1.6926i − 1.4227–1.6926i Instable
2.8 − 5.6000 0.8727 + 1.3475i 0.8727–1.3475i − 1.4227 + 1.6926i − 1.4227–1.6926i Instable
3 − 6.0000 0.8727 + 1.3475i 0.8727–1.3475i − 1.4227 + 1.6926i − 1.4227–1.6926i Instable
3.2 − 6.4000 0.8727 + 1.3475i 0.8727–1.3475i − 1.4227 + 1.6926i − 1.4227–1.6926i Instable
3.3 − 6.6000 0.8727 + 1.3475i 0.8727–1.3475i − 1.4227 + 1.6926i − 1.4227–1.6926i Instable
1 − 2.0000 0.8727 + 1.3475i 0.8727–1.3475i − 1.4227 + 1.6926i − 1.4227–1.6926i Instable
1.2 − 2.4000 0.8727 + 1.3475i 0.8727–1.3475i − 1.4227 + 1.6926i − 1.4227–1.6926i Instable
1.4 − 2.8000 0.8727 + 1.3475i 0.8727–1.3475i − 1.4227 + 1.6926i − 1.4227–1.6926i Instable

stable region

unstable region

2

1a

0
0.5 1 1.5 2

α

Figure 2: Stability diagram of the Wien bridge oscillator in the
plane (α, a) highlighting the stable regions (blue) and unstable
regions (red) of system (1a)–(1e).
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Figure 3: 2Dmaximum Lyapunov exponent (MLE) bifurcation diagrams in the plane: (a) (g, α); (b) (d, α); (c) (d, c); and (d) (α, c) depicting
the region of complex dynamics of system (2a)–(2e) with respect to the MLE (right column bar); the system parameters are: a� 0.05;
b� 0.03; c� 6; d� 3; e� 2; g � 1; k� 2. Initial conditions are (x0; y0; z0; w0; v0)� (1; 1; 1; 0.1; 1) (color figure online).
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Figure 4: Bifurcation (2a)–(2e) of the system showing local maxima of the coordinate xmax versus the parameter α black curve for increasing
parameter α and red for decreasing parameter α. (b): the corresponding graphs of Lyapunov exponent spectra. 'e system parameters are
a� 0.05, b� 0.03, c� 6, d� 3, e� 2, g� 1, k� 2, and f� 1. Initial conditions are (x0; y0; z0; w0; v0)� (1; 1; 1; 0.1; 1) (color figure online).
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Figure 5: Phased portrait revealing the transition to chaos in column (i) with their corresponding power density spectra in column (ii): (a)
the pair of chaotic attractors with α � 0.01; (b) symmetric attractor period-8 with α � 0.1; (c) symmetric attractor period-2 with α � 0.2; (d)
symmetric attractor period-15 with α � 0.3; (e) two-wing symmetric chaotic attractor with α � 0.4; (f ) four-wing symmetric chaotic
attractor with α � 0.5; (g) two-wing symmetric period-20 attractor with α � 0.9; (h) two-wing symmetric full chaotic attractor with α � 1; (i)
four-wing period-9 attractor with α � 1.6; (j) four-wing period-2 attractor with α � 1.9; (k) four-wing merge chaotic attractor with α � 3.2.
Initial conditions: (1, 1, 1, 0.1, ±1).
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Figure 8: Zoom in the bifurcation diagram (a) and the corresponding discovery of coexistence of 4 attractors (2 symmetric chaotic and 2
symmetric periodic attractors) for the same set of parameters α� 0.9, a� 0.05, b� 0.03, c� 6, d� 3, e� 2, f� 1, g � 1, k� 2, α� 1.3, δ � 1. Initial
conditions are (x0; y0; z0; w0; v0) � ( ± 1; ± 1; ± 1; ± 0.1; ± 1).
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Figure 7: 3D projection of the attractors of system (3a)–(3d) in the (x, y, z) plane (i) and the corresponding time traces (ii) illustrating crisis
transitions: the transition from (e)⇒(f ) indicates the interior crisis behavior while α is varied. Initial conditions (1; 1; 1; 1; 0.01): (a) period-2
for α � 0.2, (b) period-6 for α � 0.3, (c) period-5 for α � 0.35, (d) symmetric chaotic attractors for α � 0.4, (e)α � 0.42, and (f) chaotic single
band for α � 0.43.
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3.3.3. Offset Boosting. 'e flexibility of the Wien Bridge
oscillator can be used as a chaotic encoding circuit by means of
varying parameters. For this purpose, we exploit the rescaling
factor k to illustrate the displaced attractor on the w axis as
follows: w⟶w+µ. System (2a)− (2e) is written as follows:

dx

dt
� c − e a + 3bv

2
  x − dy − eg sinh(x − z), (5a)

dy

dt
� cx − dy, (5b)

dz

dt
� eg sinh(x − z) − (w + µ), (5c)

dw

dt
� kz, (5d)

dv

dt
� − x − ef − α + δx

2
 v. (5e)

In Figure 11, the attractor moved in the z-axis in ac-
cordance with the offset variable μ.

3.3.4. Amplitude Control. In this section, we show that the
amplitude of the attractor of the oscillator can be varied by
means of the scaling factor m. In Figure 12, one can see that
the dimension attractor can be shrunk or expanded in ac-
cordance with the amplitude control factor m.
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Figure 9: Basin of attraction plotted in the plane (x1(0), x5(0)) showing the initial conditions that lead to each coexisting steady state: the
orange area is for positive chaotic attractor while the blue area is for negative ones.'e black and red zones are for initial conditions that led
to periodic attractors. System parameters are a� 0.05, b� 0.03, c� 6, d� 3, e� 2, f� 1, g � 1, k� 2, α� 1.3, δ� 1. 'e other initial conditions
are X2(0)� 1, X3(0)� 1, X4(0)� 1 (color version online).
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Figure 10: Phase portraits of the four-scroll hyperchaotic attractor for (a)α � 0.525 (LE1 � 0.119381 and LE2 � 0.00107263) and
(b)α � 0.69 (LE1 � 0.107339 and LE2 � 0.001000881) initial conditions (x0; y0; z0; w0; v0) � (1; 1; 1; 0.1; 1).

Table 2: Lyapunov exponents and dynamics of system (2a)–(2e) with parameter alpha varying.

α LE1 LE2 LE3 LE4 LE5 Dynamics Figure
0.525 0.119 0.00107 − 0.156 − 1.368 − 1.5 Hyperchaos Figure 10
0.69 0.107 0.001 − 0.105 − 1.462 − 1.612 Hyperchaos
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As we can see, the striking amplitude behavior can be
exploited in engineering instrumentation.

3.3.5. Bursting Oscillations. By selecting some discrete
values of the parameter α� 0.01, the time series and phase
portraits of y versus x and z versus y are displayed in
Figures 13(iii) and (iv) illustrating the periodic bursting
oscillations. According to these figures, one can observe that
sometimes, the system is fast while other times, it is slow in
regular space by a constant period, T� 50 s.

4. Electronic Implementation of a Memristive
Wien Bridge Oscillator

In this section, the objective of the study is to verify some
interesting behaviors found during the numerical simulation
of the model of the Wien bridge oscillator with real anti-
parallel diodes.

It is important to note that recently, numerous advan-
tages of digital components like FPGA, FPAA, DSP, and
SOC have made them suitable for the implementation of
chaotic systems just to name a few compared to the analog
electronics component. Among them, the microcontrollers
offer more flexibility for setting control parameters and
initial conditions accurately, reducing the system to a
portable source code, and realizing complicated mathe-
matical operations or algorithms without needing special
tools. 'ese features increase the number of realizable
chaotic systems and simplify the implementation process
[64–67].

For this purpose, the experimental setup is drawn in
Figure 14.

'e experimental setup is composed of an Arduino
MEGA board powered by a 9V DC battery. 'e computer is
connected to the USB port of the Arduino card built with an
ATMEGA2560 microprocessor. It is connected to the
computer to display data from the ArduinoMEGA interface.
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Figure 11: Offset boosting dynamics in w axis (i.e., w � w+ µ): (a) phase portraits in (w, x) plane and (b) the time series of w(t) for discrete
values of the boosted parameter µ: µ� − 3 red; µ� 0 blue; µ�+ 3 green. Initial conditions: x(0)� 1, y(0)� 1, z(0)� 1, w(0)� 1, v(0)� 0.01.'e
rest of the system (2a)–(2e) parameters are in Figure 2.
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bymeans of (a) phase portraits in (z, w) plane and (b) (x, z) plane for discrete values of the amplitude parameterm:m� 0.5 red;m� 0.2 blue;
m� 30 black. 'e rest of the system (3a)–(3d) parameters are in Figure 2; t is the dimensionless time.
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'e memristive Wien bridge oscillator described by system
(1a)–(1e) is transformed in numerical form by means of the
4th order Runge–Kutta numerical method with a tiny step
time of 0.005 s, typed in the Arduino software, and

downloaded in the Arduino MEGA. 'e resulting real state
variables x, y, z, w, v are sent to the serial monitor of the
software from the analog signal. Figures 15 and 16 show the
phase planes obtained from the microcontroller.
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Figure 13: Periodic bursting oscillations of the Wien Bridge Oscillator: (i) + (ii) time traces of y and z; (iii) + (iv) 2D phase portraits.
Parameters of the system are α� 0.01; the other ones are in Figure 8.

PC Running Arduino So�ware
1.8.2

Screen Shot of COM4 of PC

ISOLATE ARDUINO Running
Wien-bridge OScillator

Figure 14: Microcontroller experiment workbench of the Wien bridge oscillator.
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As the reader can see, the experimental design produces
on the screen of the computer data that are captured and
plotted in MATLAB software for comparison purposes and
similar results are recovered.

4.1. Intermittency Route to Chaos with Symmetry Crisis
Verification

4.2. Hyperchaotic Behavior. As we can see, Figure 15 re-
produces the intermittency scenario and Figure 16 the
hyperchaotic dynamic of the real component.

5. Conclusion

In this contribution, a new Wien bridge oscillator was
introduced and analyzed. 'e investigations show that
some additional behavior found apart from those already
revealed in this oscillator was discovered, namely,

intermittency route to chaos, transient chaos, hyperchaos
with offset boosting, partial amplitude control, and
bursting oscillations. 'e route to chaos is intermittent,
transient chaos with some multistability characterized by
the coexistence of up to 4 attractors for the same set of
parameters. A basin of attraction is the plot to highlight
this scenario. Experiment results based on an isolated
Arduino card-built ATMEGA2560 processor producing a
digital output of each state variable of the Wien bridge
oscillator are consistent with theoretical and numerical
predictions. With the research on fracmemristor [68, 69]
increasing with high interest, the outlook of this paper is to
propose the fractional version of the circuit in Figure 1
with fracmemristor to increase the complexity of the
nonlinear Wien bridge oscillator because it can increase
the number of disconnected attractors of the Wien bridge.
'e dimension of the system under scrutinizing is 5D
greater than the ones in the literature, but the presence of
4-wing hyperchaotic attractors is an important metric for
the system to be used as an image encryption oscillator
embedded on an Arduino microcontroller. 'erefore, we
are planning in the nearest future to experiment with this
fascinating application.
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)e main purpose of this study is to compare two-dimensional (2D) and three-dimensional (3D) two-phase models for both
stratified and slug flows.)ese two flow regimes interest mainly the petroleum and chemical industries.)e volume of fluid (VOF)
approach is used to predict the interface between the two-phase flows. )e stratified turbulent flow corresponds to the oil-water
phases through a cylindrical pipe. To simulate the turbulent stratified flow, the k−ω turbulence model is used. )e slug laminar
flow concerns the kerosene-water phases through a rectangular microchannel. )e simulated results are validated using the
previous experimental results available in the literature. For the stratified flow, the axial velocity and the water volume fraction
profiles obtained by 2D and 3D models approximate the measurement profiles at the same test section. Also, the T-junction in
a 2Dmodel affects only the inlet vicinity. For downstream, the 2D and 3Dmodels lead to the same axial velocity and water volume
distribution. For the slug flow, the simulated results show that the 3D model predicts the thin film wall contrary to the 2D model.
Moreover, the 2D model underestimates the slug length.

1. Introduction

)e stratified and the slug flows are particular two-phase
phenomena existing in many applications such as petroleum
transportation and chemical microreactors (see Desir et al.
[1] and Santos et al. [2]). Using the slug flow, the transfer
distance is reduced and the mixing process is enhanced
along a microchannel. In the production pipelines, the
pressure drop has a great effect on the operational costs and
depends on the phase flow rates, the pipe diameter, and fluid
properties (surface tension, density, and viscosity).

)e two-phase flow can be divided into two kinds: the
gas-liquid flow and the liquid-liquid flow. )e gas-liquid
flow regimes are the most studied regimes numerically and

experimentally [3]. Since the pioneer experimental study of
a liquid-liquid flow regime conducted by Charles et al. in [4],
many other investigations have been conducted. Following
the experimental investigation of Angeli and Hewitt in [5],
different flow characteristics of two-phase immiscible fluids
are measured including phase distribution and phase holdup
of oil and water in horizontal pipe. Based on the experi-
mental study conducted by Elseth in [6], the stratified flow
occurs under low mixture velocity, and when the mixture
velocity increases, the dispersed regime is observed. )e
contribution of the wall film associated with the slug flow on
the mass transfer was demonstrated experimentally by
Arsenjuk et al. in [7]. )e available analytical solution is
limited to a particular flow pattern. In the literature, different
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formulations for the determination of the pressure drop are
available for core-annular flow with a laminar core and
turbulent annulus [8].

)e recent advances in computational fluid dynamics
(CFD) have led to various numerical studies of the complex
unsteady two-phase flow, overcoming the lack of laboratory
information in some operating conditions. Al-Jadidi in [9]
investigated a three-dimensional (3D) two-phase model
with a large eddy simulation (LES) to better reproduce the
turbulent structure to simulate the heavy oil and water flow
regimes. )e primary annular flow is identified and dis-
tinguished into three configurations: sudden contraction or
sudden expansion and horizontal channel orifice. Carlos in
[10] developed a numerical model of oil and water flow in
horizontal pipes in order to study the transition between
semidispersed and fully dispersed flows. )e T-junction
geometry in 2D and 3D models is the most used method to
investigate the CAF and stratified and slug flows [11, 12].
Senapati and Dewangan in [13] used a 2D T-junction model
to study the stratified flow with three different approaches to
capture the interface between the oil and water phase. )e
coupled level set and volume of fluid (CLSVOF) can better
reproduce the flow characteristics. For all these simulations,
the k−ω turbulence model was adopted. 3D Reynolds
Average Navier–Stokes (RANS) equations combined with
the VOF method were used by Al-Yaari and Abu-Sharkh in
[14] to simulate the oil and water stratified flow. )e oil
enters perpendicular to the water inlet along a T-junction
configuration. After a comparative study between the dif-
ferent k− ε turbulence variants, the re-normalization group
(RNG) k− ε is chosen. )e pressure drop associated to the
slug flow was investigated experimentally by Kashid and
Agar in [15] using a Y-junction as inlet configuration of the
oil and water fluids. Desamala et al. in [16] conducted an
experimental study to identify the transition of various flow
regimes: plug to slug flow, slug to stratified wavy flow, and
stratified wavy to stratified mixed flow. Based on 2D T-
junction inlet configuration, the different transition flow
patterns were validated. )e RANS coupled with the VOF
model and the k− ε turbulence model were used.

)e majority of numerical studies focused on the effects
of the mixture velocity, the water-cut, the fluid properties,
and the wetting properties on the flow regime. )e two and
three-dimensional flow nature is rarely analyzed. In this
study, the numerical results of 2D and 3D models are
compared for both turbulent stratified and laminar slug

flows.)is comparative study permits to identify the effect of
the lateral dimension on the prediction of the interface
interaction for oil-water stratified flow and kerosene-water
slug flows.

2. Problem Description

In order to validate and examine the stratified and slug
flows in 2D and 3D, we consider the following geometric
configurations previously studied experimentally. Figure 1
illustrates the T-junction adopted to study the water and oil
stratified flow regime using a 2D model. )e flow direction
is along the z-axis.)e diameter of the pipe is the same as in
the experimental study conducted by Elseth in [6] and is
equal to D � 0.05575m. )e length of the main pipe is
L1 � 5m, and the branch pipe dimensions are as follows:
D1 � 0.76 D, B1 � 2.26 D, B2 � 0.72 D, andB3 � 1.45 D.
)e stratified flow is simulated for the mixture velocity
Um � 0.68m/s and the water-cut Cw � 0.5, which corre-
sponds to the following inlet velocities of water and oil
imposed, respectively, at boundaries (1) and (2):
Uw,in � Uo,in � (Um/2) × (D/D1) � 0.45m/s. In the present
3D model, we suppose that the stratified flow is axisym-
metric. Hence, the computational domain is composed of
only the half cylinder as shown in Figure 2.

)e geometric configuration of T-junction to simulate
the 2D slug flow is illustrated in Figure 3. )e same con-
figuration was investigated experimentally by Cherlo et al. in
[17]. )emain and the branch microchannels meet at a right
angle. )e diameter of the microchannel is D � 590 μm.)e
water and kerosene inlets have the following length:
B4 � 5 D. )e length of the main channel L � 17 D. For the
3D slug flowmodel, the dimension of the rectangular pipe in
the x-direction is equal to h � 500 μm. )e inlet for water
and kerosene at boundaries (1) and (2) is
Uw,in � Uk,in � 10ml/h.

3. Mathematical Model

3.1. Governing Transport Equations. For turbulent flow, the
transport equations for the two immiscible phases are the
Reynolds Average Navier–Stokes (RANS) equations written
in terms of the mixture properties. )ese equations concern
the average mass conservation equation and the average
momentum conservation equations and can be written in
the following form [11]:

zρ
zt

+
z

zxj

ρUj  � 0, j � 1, 2, 3,

z

zt
ρUi(  +

z

zxj

ρUjUi  � −
zP

zxi

+
z

zxj

μ + μt( 
zUi

zxj

  + gi + Fi, i, j � 1, 2, 3,

(1)

where ρ is the density of the mixture and µ is the dynamic
molecular viscosity of the mixture defined by
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ρ � ρ1α1 + ρ2α2,

μ � μ1α1 + μ2α2,
(2)

where ρ1 and ρ2 are, respectively, the densities of phases 1
and 2; μ1 and μ2 are, respectively, the dynamic viscosities of
phases 1 and 2; α1 and α2 are the volume fractions of each
phase such that α1 + α2 � 1; Ui are the mean velocity
components; P is the mean pressure; μt is the dynamic
turbulent viscosity (μt � 0 for the laminar slug flow); gi is the
gravity acceleration field; and Fi are the components of
external force per unit volume associated to the interfacial
tension.

Depending on the flow configuration, the better closure
turbulent model can be chosen. In the present study, the
k−ω model with shear stress transport (SST) is adopted as
indicated by Shi et al. in [11]. Following this model, the
turbulent viscosity μt is defined as follows [18]:

μt � fμ
ρk

ω
. (3)

Two added transport equations are needed to compute
μt: for the turbulent kinetic energy, k, and for the specific
dissipation rate, ω:
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where Pk is the volumetric production rate of k:

Pk �
μt

ρ
zUi

zxj

+
zUj

zxi

 
zUi

zxj

, (5)

where fμ, f1, and f2 are low Reynolds damping functions.
)e turbulent dissipation rate is given by

ε � CDωk. (6)

)e following constants are commonly used:

σk � 2.0,

σω � 2,

CD � 0.09,

C1ω �
5
9
,

C2ω �
3
40

.

(7)

At high Reynolds numbers, the damping functions are
set to unity and given by

z

y

D

L1

D1

B3

D1

B1 B2
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(3)(1)

Figure 1: Sketch of 2D geometry of the T-junction adopted to simulate the stratified flow.
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Figure 2: Sketch of 3D half cylinder adopted to simulate the
stratified flow.
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fμ �
1/40 + Re,t/Rk

1 + Re,t/Rk

, Rk � 6.0,

f1 �
1

fμ

0.1 + Re,t/Rω

1 + Re,t/Rω
, Rω � 2.7,

f2 �
5/18 + Re,t/RB 

4

1 + Re,t/RB 
4 , RB � 8.0,

(8)

where Re,t is the turbulent Reynolds number defined as

Re,t �
ρk

μω
. (9)

At high Reynolds numbers, the damping functions fμ,
f1, and f2 tend to unity.

)e surface tension at the interface between the two
phases (the oil-water for stratified flow and the kerosene-
water for the slug flow) can be transformed to a continuum
surface force (CSF) as indicated by Brackbill et al. [19].
Following this model, the surface tension force is pro-
portional to the curvature κ:

F
⇀

� σκ
ρ∇
⇀
α1

1/2 ρ1 + ρ2( 
, (10)

where κ is the interface curvature computed by the di-
vergence of the unit normal as

κ � ∇
⇀

.
n
⇀

n
⇀ . (11)

)e surface normal is given by the gradient of the volume
fraction of the first phase:

n
⇀

� ∇
⇀
α1. (12)

For the stratified flow, investigated experimentally by
Elseth in [6], the surface tension between the oil and water
phases is σ � 0.043N/m. For the slug flow, investigated
experimentally by Cherlo et al. in [17], the surface tension
between the kerosene and water phases is σ � 0.045N/m and
the contact angle θ � 10. )ese flow regimes are investigated
through an academic version of a computational fluid

dynamics code.)e following fluid properties are used in the
simulations:

(a) For the stratified flow, the fluid density and dynamic
viscosity of each phase are as follows.

)e first phase (oil): ρ1 � 790 kg/m3

and μ1 � 0.00164 Pa.s.
)e second phase (water): ρ2 � 1000 kg/m3

and μ2 � 0.00102 Pa.s.

(b) For the slug flow, the fluid density and dynamic
viscosity of each phase are as follows.

)e first phase (kerosene): ρ1 � 780 kg/m3

and μ1 � 0.001 Pa.s.
)e second phase (water): ρ2 � 998 kg/m3

and μ2 � 0.001 Pa.s.

3.2. Initial and Boundary Conditions. For the stratified flow,
the horizontal pipe is filled with water at the initial time of
simulation (t � 0 s). In the case of the slug flow, the rect-
angular cross section channel is filled with the kerosene
phase. For all simulated cases, at the pipe wall, a no-slip
boundary condition is considered. At the outlet, denoted as
(3) as indicated in Figures 1–3, zero pressure is specified. For
the turbulent stratified flow, the turbulent kinetic energy and
the specific dissipation rate at the inlet are calculated by the
following equations:

k � (IU)
2
,

ω �
ε

CDk
,

ε �
C
3/4
D k

3/2

0.1H
,

(13)

where H is a characteristic inlet dimension as the hydraulic
radius.

3.3. Numerical Methods. For the stratified flow, the com-
putational domain contains 17,640 cells for 2D geometry
and 495,000 cells for the half-cylinder geometry.)e first cell
layer in the cross section of the pipe is located at 0.2mm in

z

y

(1)

(2)

(3)

L3

D2

D2

B4

B4

Figure 3: Side view of the computational domain adopted to simulate the slug flow.
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order to satisfy that y+ < 5. For the laminar slug flow, a local
grid refinement is needed to well predict the velocity gra-
dient near the wall. )e grid numbers are 5100 and 71,400,
respectively, for 2D and 3D T-junction geometries. )e
velocity-pressure coupling is solved by the PISO algorithm
(pressure implicit with splitting of operator). For all solved
variables, the residual is fixed to 10− 5. )e geometric re-
construction (piecewise-linear) method is chosen to accu-
rately capture the interface variation between the two
immiscible phases. )e same method was adopted by Shi
et al. in [20]. A variable time step is chosen with initial time
step Δt � 10− 5s. For all simulated cases, the fully developed
flow (FDF) is attained if the maximum axial velocity is
unchanged with time.

4. Validation of the Numerical Results

4.1. Stratified Flow. )e main differences between strati-
graphic simulations by 2D and 3Dmodels will be analyzed in
terms of axial mixture velocity and water volume fraction.
)e simulated 2D stratified flow characteristics are com-
pared to the experimental results of Elseth in [6] when the
fully developed flow is attained. )e axial velocities at the
pipe axis and at z � 72D � 4m are represented in Figure 4.
)ere is a satisfactory agreement, but the faster flow in the oil
region is not well reproduced. Figure 5 shows the predicted
and measured water volume fractions. )e sharp interface is
correctly simulated. However, the existing waves at the oil
and water interface cannot be predicted by the VOF model.
To compare the effect of the inlet configuration, Figure 6
presents the water volume fraction in the axial plane of the
pipe. )e effect of the T-junction in the 2D model is only
limited to the vicinity of the junction. )e recirculation zone
induced by the junction and by the expansion creates a water
droplet having a dimension around twice the pipe diameter.
)ere is no difference between these profiles far
downstream.

4.2. Slug Flow. )e slug flow is validated using the time
evolution water volume distribution and the static pres-
sure profiles for the 2D and 3D models. As confirmed by
Cherlo et al. in [17], the mechanism of the slug formation
can be explained through the following three stages
(Figures 7(a)–7(e)).

(a) )e water phase enters into the top microchannel:
for the 2Dmodel, this stage continues until the water
stream blocks almost the entire cross section of the
main channel (Figures 7(a), 7(b), 7(f), and 7(g)). For
the 3D model, the water phase is separated from the
wall at the junction (Figure 7(g)) and a thinner water
interface at the main channel.

(b) For the 2D model, the water phase progresses in the
main channel with a continuous oil entering from
the low inlet channel. )e shear stress and the
pressure gradients exerted by the oil phase distorted
the water stream at the end of the water inlet
channel. A thin water layer connecting the two water
streams is formed. )e oil phase flows through the
space between the wall and the water phase with high
velocity (Figure 7(c)). For the 3D model, the water
slug breaks up before the instant t � 0.50 s and a thin
kerosene layer adjacent to the wall is observed
contrary to the 2D model.

(c) )e thickness of the water layer is extremely reduced
and breaks up to form a separate slug along the main
channel (Figures 7(d) and 7(i)).

)e formed slug progresses downstream, and a new
droplet is formed when the break-up of the water layer at the
junction occurs (Figures 7(e) and 7(j)). Experimentally, the
slug length in the same operating conditions taken in the
present simulation is equal to Ls � 2.5mm.)e length, Ls, is
the measured distance between the upstream and down-
stream points along the plug interface at the developed
regime flow. )e calculated slug lengths are 2.0mm and
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y (m)
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W
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)

Elseth (2001)
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Figure 4: Comparison between the simulated axial velocity profile and the experimental results conducted by Elseth in [6] for a stratified
flow.
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2.2mm, respectively, for 2D and 3D models. It seems that
the 2D model underestimates the slug length.

In order to validate the pressure drop in the 3D model,
the computed static pressure will be compared to the
Young–Laplace value. )e variation of the static pressure
along the axis of the microchannels at the instant t � 0.80 s is
represented in Figure 8. )e computed static pressure is
higher in the dispersed phase (water) compared to the
continuous phase (oil), and the increase of the pressure at
the junction is due to the decrease of the velocity. )e
simulated pressure drop is around 310 Pa which approxi-
mates the Young–Laplace value calculated by the following
equation:

Δp �
2σ cos θ

R2
� 305 Pa, (14)

where σ is the surface tension (σ � 0.045N/m); θ is the
contact angle (θ � 1°); and R is the radius of the curvature
equal to half width of the channel (R2 � D2/2 � 0.295mm).

)e 3D model takes into account the two radii of cur-
vature. Hence, the pressure drop for this model is ap-
proximately twice the simulated value for the 2D model
which is around 147 Pa (Figure 8). In the latest model, only
one radius of curvature contributes to the pressure drop and
the second radius is infinity.

To show the effect of the surface tension on the slug
regime, we consider the extreme case where σ � 0N/m.
Figure 9 illustrates the water volume fraction at two different
instants simulated by the 2D model. Compared to the
simulated case shown in Figure 7(e), the slug regime
disappeared.
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Figure 5: Comparison between the simulated water volume fraction profile and the experimental results conducted by Elseth in [6] for
a stratified flow.
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Figure 6: Water volume fraction at yz-plane simulated by 2D and 3D models for the fully developed stratified flow.
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Figure 7: Water volume fraction simulated by 2D and 3D models at different times for the slug flow σ � 0.045N/m. (a) t � 0.35 s.
(b) t � 0.39 s. (c) t � 0.50 s. (d) t � 0.55 s. (e) t � 0.80 s. (f ) t � 0.35 s. (g) t � 0.39 s. (h) t � 0.50 s. (i) t � 0.55 s. (j) t � 0.80 s.
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5. Conclusions and Perspectives

)e present two-phase flow model is based on RANS
equations coupled with the VOF model and k−ω for tur-
bulent flow. )is model can predict the stratified flow
characteristics by the 2D and 3D models. As expected, the
surface tension has a crucial effect on the flow pattern.
Without surface tension, the slug regime disappeared. )e
slug length obtained by the 2D model is slightly different
from the 3D model; however, the thin film is not predicted
by the 2D model.

As perspectives of this study, we can illustrate the fol-
lowing aspects:

(1) Investigation of the slug flow for multiple ducts.
(2) Development of a two-phase model taking into ac-

count the phase transfer.
(3) )e effect of other inlet configurations such as Y-

junction can be tested.

(4) )e extension of this proposed model to study the
effects of the air injection flow rate on the oil, water,
and gas flow regimes and pressure drop through
horizontal pipelines.

(5) Analysis of the effect of the microchannel inclination
on the flow regimes.
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In light of the previous recent studies by Jaume Llibre et al. that dealt with the finite cycles of generalized differential Kukles
polynomial systems using the first- and second-order mean theorem such as (Nonlinear Anal., 74, 1261–1271, 2011) and (J. Dyn.
Control Syst., vol. 21, 189–192, 2015), in this work, we provide upper bounds for the maximum number of limit cycles bifurcating
from the periodic orbits of Hamiltonian system using the averaging theory of first order.

1. Introduction

Among the many interesting problems in the qualitative
theory of planar polynomial differential systems is the study
of their limit cycles (see [1, 2]). In particular, concerning
Kukles differential system of the form,

_x � − y,

_y � f(x, y),
(1)

has a long history, where f(x, y) is a polynomial with real
coefficients of degree n. Since it was first introduced in
Kukles 1944, many researchers have concentrated on its
maximum number of limit cycles and their location. See, for
example, [3–5].

In [6], Llibre and Mereu studied the maximum number
of limit cycles using the averaging theory as follows:

_x � y,

_y � − x − 
k⩾1

εk
fk(x) + gk(x)y + hk(x)y

2
+ dky

3
 ,

⎧⎪⎪⎨

⎪⎪⎩

(2)

where, for every k, the polynomials fk(x), gk(x), and hk(x)

have degree n1, n2, and n3, respectively. dk
0 ≠ 0 is a real

number and ε is a small parameter.
Also, Makhlouf and Menaceur [7] studied the maximum

number for the more generalized polynomial Kukles dif-
ferential systems in the form

_x � y,

_y � − x − 
k⩾1

εk
fk(x) + gk(x)y + hk(x)y

2
+ gk(x)y

3
 .

⎧⎪⎪⎨

⎪⎪⎩

(3)
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)e number of limit cycles bifurcating from the center
_x � − y2p− 1 and _y � x2q− 1, where p, q are positive integers,
for the following two kinds of polynomial differential
systems,

_x � − y
2p− 1

,

_y � x
2q− 1

− εf(x)y
2n− 1

,

⎧⎨

⎩

_x � − y
2p− 1

− εpxf(x, y),

_y � x
2q− 1

− εqyf(x, y),

⎧⎨

⎩

(4)

were investigated in the works [8, 9], respectively. In the
current study, we discuss the maximum number of limit
cycles of the following differential system:

_x � − y
2p− 1

,

_y � x
2q− 1

− ε f(x) + g(x)y
2n− 1

+ h(x)y
2n

+ l(x)y
2n+1

 ,

⎧⎨

⎩

(5)

where p, q, and n are positive integers, the polynomials
f(x), g(x), h(x), and l(x) have degree n1, n2, n3, and n4,
respectively, and ε is a small positive parameter. Clearly,
system (5) with ϵ � 0 is an Hamiltonian system with

H(x, y) �
1
2q

x
2q

+
1
2p

y
2p

. (6)

Our main theorems are given as follows.

Theorem 1. For the sufficiently small |ε|, system (5), using
averaging theory of first order, has at most

max
n2

2
 p,

n4

2
 p + q , (7)

>e limit cycles bifurcating from the periodic orbits of the
center are _x � − y2p− 1 and _y � x2q− 1, where [.] denotes the
integer part function.

)e proof of )eorem 1 is given in Section 3.

Theorem 2. Consider system (5) with q � lp, l is a positive
integer, and |ε| sufficiently small; let H(ni, l) denote the
maximum number of limit cycles of the polynomial differ-
ential system (5) bifurcating from the periodic orbits of the
center _x � − y2p− 1 and _y � x2lp− 1 using the averaging theory
of first order; then,

(a) H ni, l(  �
n2

2
  +

n4

2
  + 1, if

n2

2
 < l,

(b) H ni, l(  �
n4

2
  + l + 1, if l≤

n2

2
 ≤ l +

n4

2
 ,

(c) H ni, l(  �
n2

2
 , if l +

n4

2
 <

n2

2
 .

(8)

)e proof of )eorem 2 is given Section 4.

2. First-Order Averaging Method

)e averaging theory is an interesting method to research
the limit cycles. Here, some specific function, associated to
the initial system, is stated.

Theorem 3. >e two initial value problems are as follows:

_x � εR(t, x) + ε2G(t, x, ε), x(0) � x0, (9)

_y � εf0
(y), y(0) � x0, (10)

where x, y and x0 ∈ D which is an open domain of R,
t ∈ [0,∞), ε ∈ (0, ε0], R and G are periodic functions with
their period T with its variable t, and f0(y) is the average
function of R(t, y) with respect to t, i.e.,

f
0
(y) �

1
T


T

0
R(t, y)dt. (11)

Assume that

(i) R, zR/zx, z2R/zx2, G, and zG/zx are well defined,
continuous, and bounded by a constant independent
by ε ∈ (0, ε0] in [0,∞) × D.

(ii) T is a constant independent of ε.
(iii) y(t) belongs to D on the time scale 1/ε. >en, the

following statements hold:
(i) On the time scale 1/ε, we have

x(t) − y(t) � O(ε), as ε⟶ 0. (12)

(ii) If p is an equilibrium point of the averaged system
(10), such that

zf0

zy
|y�p ≠ 0, (13)

then system (9) has a T-periodic solution
ϕ(t, ε)⟶ p as ε⟶ 0.

(iii) If (11) is a negative, therefore, the corresponding
periodic solution ϕ(t, ε) of equation (9) according
to (t, x) is asymptotically stable, for all ε suffi-
ciently small; if (11) is a positive, then it is
unstable.

For more information about the averaging theory, see
[10–12].

3. Proof of Theorem 1

Here, we need to transform system (5) to the canonical
from (9). Doing the change of (p, q)-polar coordinates
x � rpCsθ and y � rqSnθ (see Appendix) and taking θ
as an independent variable, then system (5) can be
written as
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_r � − εr− q+1
(Snθ)

2p− 1

f r
p
Csθ(  + g r

p
Csθ( (Snθ)

2n− 1
r

q(2n− 1)

+h r
p
Csθ( (Snθ)

2n

r
2qn

+ l r
p
Csθ( (Snθ)

2n+1
r

q(2n+1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

θ
.

� r
pq− p− q

− εpr
− q

Csθ

f r
p
Csθ(  + g r

p
Csθ( (Snθ)

2n− 1
r

q(2n− 1)

+h r
p
Csθ( (Snθ)

2n
r
2qn

+l r
p
Csθ( (Snθ)

2n+1
r

q(2n+1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

If we write

f(x) � 

n1

k�0
akx

k
,

g(x) � 

n2

k�0
bkx

k
,

h(x) � 

n3

k�0
ckx

k
,

l(x) � 

n4

k�0
dkx

k
,

(15)

then system (14) becomes

_r � − εr− q+1


n1

k�0
ak(Csθ)

k
(Snθ)

2p− 1
r

pk
+ 

n2

k�0
bk(Csθ)

k
(Snθ)

2(p+n− 1)
r

pk+q(2n− 1)⎡⎣

+ 

n3

k�0
ck(Csθ)

k
(Snθ)

2(p+n)− 1
r

pk+2qn
+ 

n4

k�0
dk(Csθ)

k
(Snθ)

2(p+n)
r

pk+q(2n+1)⎤⎦,

θ
.

� r
pq− p− q

− εpr
− q



n1

k�0
ak(Csθ)

k+1
r

pk
+ 

n2

k�0
bk(Csθ)

k+1
(Snθ)

2n− 1
r

pk+q(2n− 1)⎡⎣

+ 

n3

k�0
ck(Csθ)

k+1
(Snθ)

2n
r

pk+2qn
+ 

n4

k�0
dk(Csθ)

k+1
(Snθ)

2n+1
r

pk+q(2n+1)⎤⎦.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

where θ is the independent variable we get from system (16).
From

dr

dθ
� εR(r, θ) + O ε2 , (17)

where

R(r, θ) � − r
− pq+p+1



n1

k�0
ak(Csθ)

k
(Snθ)

2p− 1
r

pk
+ 

n2

k�0
bk(Csθ)

k
(Snθ)

2(p+n− 1)
r

pk+q(2n− 1)

+ 

n3

k�0
ck(Csθ)

k
(Snθ)

2(p+n)− 1
r

pk+2qn
+ 

n4

k�0
dk(Csθ)

k
(Snθ)

2(p+n)
r

pk+q(2n+1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (18)

According to the notation introduced in Section 2, we
have
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f
0
(r) � −

r
− pq+p+1

T



n1

k�0
akr

pk


T

0
(Csθ)

k
(Snθ)

2p− 1dθ

+ 

n2

k�0
bkr

pk+q(2n− 1)


T

0
(Csθ)

k
(Snθ)

2(p+n− 1)dθ

+ 

n3

k�0
ckr

pk+2qn


T

0
(Csθ)

k
(Snθ)

2(p+n)− 1dθ

+ 

n4

k�0
dkr

pk+q(2n+1)


T

0
(Csθ)

k
(Snθ)

2(p+n)dθ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (19)

and we write

f
0
(r) � −

r
− pq+p+1

T



n1

k�0
akIk,2p− 1r

pk
+ 

n2

k�0
bkIk,2(p+n− 1)r

pk+q(2n− 1)

+ 

n3

k�0
ckIk,2(p+n)− 1r

pk+2qn
+ 

n4

k�0
dkIk,2(p+n)r

pk+q(2n+1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (20)

where

Ii,j � 
T

0
Cs

iθSn
jθdθ. (21)

It is known that

Ii,j � 0, if i or j is odd,

Ii,j > 0, if i and j are even.
(22)

Hence,

f
0
(r) � −

r
q(2n− p− 1)+p+1

T


k�0
k even

n2bkIk,2(p+n− 1)r
pk

+ 

k�0
k even

n4dkIk,2(p+n)r
pk+2q

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (23)

we obtain

f
0
(r) � −

r
q(2n− p− 1)+p+1

T


n2/2[ ]

s�0
b2sI2s,2(p+n− 1)r

2ps⎡⎢⎢⎢⎢⎣

+ 

n4/2[ ]

s�0
d2sI2s,2(p+n)r

2(ps+q)⎤⎥⎥⎥⎥⎦.

(24)

For the simplicity of calculation, let Bs � b2sI2s,2(p+n− 1)

and Ds � d2sI2s,2(p+n); therefore, (24) can be reduced to

f
0
(r) � −

r
q(2n− p− 1)+p+1

T


n2/2[ ]

s�0
Bsr

2ps
+ 

n4/2[ ]

s�0
Dsr

2(ps+q)⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦.

(25)

As we all know, the number of positive roots of f0(r) is
equal to that of

N(r) � 

n2/2[ ]

s�0
Bsr

2ps
+ 

n4/2[ ]

s�0
Dsr

2(ps+q)
. (26)

)en, to find the real positive roots of N(r), wemust find
the zeros of a polynomial in the variable ρ � r2:

M(ρ) � 

n2/2[ ]

s�0
Bsρ

ps
+ 

n4/2[ ]

s�0
Dsρ

ps+q
. (27)

So, the degree of M(ρ) is bounded by
μ � max [n2/2]p, [n4/2]p + q , we conclude that f0(r) has
at most μ positive root r. Hence, )eorem 1 is proved.

4. Proof of Theorem 2

Consider the polynomial differential system (5) with q � lp;
from equation (25) we obtain
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f
0
(r) � −

r
lp(2n− p− 1)+p+1

T


n2/2[ ]

s�0
Bsr

2ps
+ 

n4/2[ ]

s�0
Dsr

2p(s+l)⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦.

(28)

As we all know, the number of positive roots of f0(r) is
equal to that of

G(r) � B0 + B1r
2p

+ B2r
4p

+ · · · + B n2/2[ ]r
2p n2/2[ ]

+ D0r
2pl

+ D1r
2p(l+1)

+ D2r
2p(l+2)

+ · · ·

+ D n4/2[ ]r
2p l+ n4/2[ ]( ).

(29)

To find the number of positive roots of polynomials
G(r), we distinguish 3 cases.

f
0
(r) � −

r
6n− 4

T
B0 + B1r

2
+ B2r

4
+ D0r

6
+ D1r

8
+ D2r

10
 ,

(33)

where Bs � b2sI2s,2 and Ds � d2sI2s,4. Using (A.3) of the
Appendix, we obtain

I0,2 � 2.1033,

I2,2 � 0.60460,

I4,2 � 0.32339,

I0,4 � 0.63098,

I2,4 � 0.15115,

I4,4 � 6.9298 × 10− 2
.

(34)

Case 1. For [n2/2]< l, the number terms in polynomial (29)
is [n2/2] + [n4/2] + 2. Now, we shall apply the Descartes
theorem of the Appendix, we can choose the appropriate
coefficients Bi and Dj so that the simple positive roots’
number of G(r) is at most [n2/2] + [n4/2] + 1. Hence, (a) of
)eorem 2 is proved.

Case 2. For l≤ [n2/2]≤ l + [n4/2], the number terms in
polynomial (29) is

n2

2
  +

n4

2
  + 2 −

n2

2
  − l + 1  �

n4

2
  + l + 1. (30)

By Descartes )eorem, we can choose the appropriate
coefficients Bi and Dj so that the simple positive roots’
number of G(r) is at most [n4/2] + l. Hence, (b) of )eorem
2 is proved.

Case 3. For l + [n4/2]< [n2/2], the number terms in poly-
nomial (29) is [n2/2] + 1; by Descartes )eorem, we can
choose the appropriate coefficients Bi and Dj so that the
simple positive roots number of G(r) is at most [n2/2].
Hence, (c) of )eorem 2 is proved.

Example 1. We consider system (5), with p � 1, q � 3, n � 1,
and

f(x) � 
2

k�0
akx

k
,

g(x) � 
4

k�0
bkx

k
,

h(x) � 
2

k�0
ckx

k
,

l(x) � 
4

k�0
dkx

k
,

(31)

where

a0 � 1,

a1 � 2.3,

a2 � 4.7,

b0 � − 0.5,

b1 � 1.1,

b2 � 6.3,

b3 � 2.5,

b4 � − 15.32,

c0 � 2.2,

c1 � − 6.4,

c2 � 7.3,

d0 � 4.65,

d1 � 3.4,

d2 � − 5.24,

d3 � 6.4,

d4 � 1.13.

(32)

In this case, Csθ and Snθ are T-periodic function with
period T � 8.4131. From equation (28), we obtain

So,

f
0
(r) � −

r
2

T

− 1.0517 + 3.8083r
2

− 4.9553r
4

+2.9320r
6

− 0.79257r
8

+ 7.8473 × 10− 2
r
10

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦.

(35)

)is polynomial has four positive real roots:
r1 � 0.6, r2 � 0.8, r3 � 1.1, r4 � 1.3, and r5 � 2. According to
statement (a) of )eorem 2, the system has exactly 5 limit
cycles bifurcating from the periodic orbits of the center _x �

− y and _y � x5, using the averaging theory of first order.

5. Conclusion

In this work, by using averaging theory of the first order, we
have proved upper bounds for the maximum number of
limit cycles bifurcating from the periodic orbits of the
Hamiltonian system. In addition, in the next work, a new
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condition with a new method will be used to prove our main
result in this study.

Appendix

1-p, q)-Polar Coordinates

Following Lyapunov [13], we introduce the (p, q)-trigo-
nometric functions u(θ) � Csθ and v(θ) � Snθ as the so-
lution of the following initial value problem:

_u � − v
2p− 1

,

_v � u
2q− 1

,

u(0) �

��
1
p

2q



,

v(0) � 0.

(A.1)

Moreover, they satisfy the following properties:

(i) )e functions Csθ and Snθ are T-periodic with

T � 2p
− 1/2q

q
− 1/2p Γ(1/2p)Γ(1/2q)

Γ((1/2p) +(1/2q))
, (A.2)

where Γ is the gamma function.
(ii) For p � q � 1, we have Csθ � cos θ and Snθ � sin θ.
(iii) pCs2pθ + qSn2qθ � 1.
(iv) Let Csθ and Snθ be the (1.q)-trigonometrical

functions, for i and j are both even (see [1]):

Ii;j � 
T

0
Cs

iθSn
jθdθ � 2q

− (j+1/2) Γ(i + 1/2q)Γ(j + 1/2)

Γ((i + 1/2q) +(j + 1/2))
.

(A.3)

2-Descartes Theorem

)e purpose of the Descartes theorem is to provide an in-
sight on how many real roots a polynomial P(x) may have.

Theorem A.1 (see [14]). Consider the real polynomial

p(x) � al1
xl1

+ al2
xl2

+ · · · + alk
xlk

, (A.4)

with 0≤ l1 < l2 < . . . < lk and ali
≠ 0 real constants, for

i ∈ 1, 2, 3, . . . , k{ }. When ali
ali+1
< 0, we say that ali

and ali+1
have a variation of sign. If the number of variations of signs is
n, then p(x) has at most m positive real roots. Moreover, it is
always possible to choose the coefficients of p(x) in such a way
that p(x) has exactly k − 1 positive real roots.
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In this paper, we demonstrate using a counterexample for a theorem of the small amplitude limit cycles in some Liénard systems
and show that that there will be no solutions unless we add an extra condition. A new condition is derived for some specific
Liénard systems where a violation of the small amplitude limit cycles theorem takes place.

1. Introduction

A lot of previous works consider studies on a limit cycles’
existence for Liénard systems [1–3]. It represents a very
important class of nonlinear systems due to its appearance in
some branches of science and engineering as well as in some
ecological models, planar physical models, and even in some
chemical models, where using a suitable transformation can
change these systems into nonlinear Liénard systems.
However, an extensive attention has been also devoted to the
question of its uniqueness [4–6]; this uniqueness can be
verified using different ways of methods based on Poin-
care–Bendixson theorem. In [4], Zhou et al. proposed a set
of theorems for the limit cycles’ uniqueness for the Liénard
systems; the proposed theorems represent a guarantee to
complete the proof of some previous works’ propositions. In
[7], Sabatini and Gabriele studied the uniqueness of limit
cycles for a class of planar dynamical systems taking into
account those which are equivalent to Liénard systems, and
they have also proved a theorem for limit cycles of a class of
plane differential systems. In the paper proposed by Li and

Llibre [8], the authors proved that for any classical Liénard
differential equation of degree four, there exists at most one
hyperbolic limit cycle. In [9], a sufficient condition for the
existence and the uniqueness of limit cycles for Liénard
systems has been proposed for some applications.

In the theory of small amplitude limit cycles, Liénard
systems have n solutions, However, in this paper, we use a
counterexample to demonstrate that the existence of n so-
lutions for some systems is not true unless we add an extra
new condition.

We consider in our study the systems given by the
following form:

_x � y − F(x),

_y � −g(x),
 (1)

where F and g are polynomials of order n of x and y. For
several classes of such systems and in cases where the critical
point is under perturbation of the coefficients in F and g, the
maximum number of limit cycles that can bifurcate out can
be formulated in terms of the degree of F and g [10–12].
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2. Bendixon Criterion

We consider the following autonomous system:

_x � P(x, y),

_y � Q(x, y).
 (2)

Let X � (P, Q) be the vector field and
divX � zP/zx + zQ/zy.

Theorem 1. Let D be a simply connected open subset ofR. If
divX � zP/zx + zQ/zy is of constant sign and not identically
zero in D, then the system defined by 2 has no periodic orbit
lying entirely in the region D.

Proof. If c is a periodic orbit in D, then
P(x, y)dy − Q(x, y)dx � 0 on c. Since the interior U of c is
simply connected, we can apply Greenâs theorem to obtain
the following:

0 � (P(x, y)dy − Q(x, y)dx) � B zP

zx
(x, y) +

zQ

zy
(x, y) dxdy.

(3)

&is is a contradiction since our hypothesis implies that
the integral on the right cannot be zero. □

Proof. If we suppose that the system given by 2 has a
periodic solution of a period T, then it has a closed orbit Γ in
D. Let G be the interior of Γ, we can apply Greens theorem to
obtain the following:

I � B
G

zP

zx
(x, y) +

zQ

zy
(x, y) dxdy

� 
Γ
P(x, y)dy − Q(x, y)dx,

� 
T

0
P(x(t), y(t))

dy

dt
− Q(x(t), y(t))

dx

dt
 dt

� 
T

0
(P(x(t), y(t))Q(x(t), y(t))

− Q(x(t), y(t))P(x(t), y(t)))dt � 0.

(4)

Since divX is either >0 or <0, then J
G
divX dxdy will

not be zero; therefore, there are no periodic solutions. □

3. A Note on Liénard Equations Theory

We consider the following system:

_x � y + c2y
2

+ · · · + cLy
L

  − a1x + a3x
3

+ · · · + a2n+1x
2n+1

 ,

_y � − x + b2x
2

+ · · · + bNx
N

 ,

⎧⎪⎨

⎪⎩

(5)

where c2, c3, . . . , cL, a1, a3, . . . , a2n+1, b2, b3, . . . and bN are
real coefficients.

Theorem 2 (see [1]). For the system of form (2), there are at
most n small-amplitudes limit cycles. If a1, a3, . . . , a2n+1 are so
chosen that

a1


≪ a3


≪ · · · ≪ a2n+1


,

a2j−1a2j+1 < 0 (j � 1, . . . , n),
(6)

then there are exactly n small-amplitudes limit cycles.

Proof. (counterexample).
We suppose the following system:

_x � X � ϕ(y) − F(x),

_y � Y � −g(x),
 (7)

where

F(x) � 
n

j�0

(−1)
j

(2j + 1)1010(n−j)
x
2j+1

, n � 2m,

g(x) � x + b2x
2

+ · · · + bNx
N

,

ϕ(y) � y + c2y
2

+ · · · + cLy
L
.

(8)

By putting a2j+1 � (−1)j/(2j + 1)1010(n−j), we obtain

a2j−1

a2j+1




�
1/(2j − 1)1010(n− j+1)

1/(2j + 1)1010(n−j)
�
2j + 1
2j − 1

10−10
. (9)

As

a2j−1

a2j+1




�
2j + 1
2j − 1

10− 10 ≤ 3 × 10− 10≪ 1, for j � 1, . . . , n,

(10)

then

a1


≪ a3


≪ · · · ≪ a2n+1


,

a2j−1a2j+1 < 0, for j � 1, . . . , n.
(11)

However,

div(X, Y) �
z ϕ(y) − 

n
j�0 a2j+1x

2j+1
 

zx
+

z(−g(x))

zy
,

� − 
n

j�0

(−1)
j

1010(n−j)
x
2j

� − 
n/2−1

j�0
x
2

−
1

1010
cos

2j + 1
n + 1

π 
2

+
1

1020
sin2

2j + 1
n + 1

π < 0,

(12)
because
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f(x) � 
n

j�0

(−1)
j

1010(n−j)
x
2j

,

� 

n/2−1

j�0
x − 10− 5

e
i(2j+1)π/2n+2

  x − 10− 5
e

− i(2j+1)π/2n+2
  x + 10− 5

e
i(2j+1)π/2n+2

  x + 10− 5
e

− i(2j+1)π/2n+2
 

� 
n/2−1

j�0
x
2

−
1

1010
cos

2j + 1
n + 1

π 
2

+
1

1020
sin2

2j + 1
n + 1

π .

(13)

□

Theorem 3 (see [2]). We consider the following equation:

_r � r v0 + v1r
2

+ v2r
4

+ · · · + vnr
2n

 . (14)

If the focus values vj given in equation (3) satisfy the
following conditions:

vjvj+1 < 0, and vj



≪ vj+1



≪ 1, for j � 0, 1, 2, . . . , n − 1,

(15)

then the polynomial equation given by _r � 0 in equation (3)
has n positive real roots for r2.

Proof. (counterexample).
We consider the following equation:

_r � f(r) � r 
n

j�0

(−1)
j

1010(n−j)+10r
2j

. (16)

By putting vj � (−1)j/1010(n−j)+10, we obtain

vjvj+1 < 0, and vj



≪ vj+1



≪ 1, for j � 0, 1, 2, . . . , n − 1,

(17)

because

vj

vj+1
�
1010(n−j−1)+10

1010(n−j)+10 � 10−10≪ 1, for j � 0, 1, 2, . . . , n − 1, and vn


 � 10− 10≪ 1. (18)

However,

f(r)

r
� 

n

j�0

(−1)
j

1010(n−j)+10r
2j

� 10− 10


n/2−1

j�0
r
2

−
1

1010
cos

2j + 1
n + 1

π 
2

+
1

1020
sin2

2j + 1
n + 1

π ≠ 0, ∀r ∈ R.

(19)

□
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4. Examples

In this section, by using the counterexample, we can
demonstrate that &eorems 2 and 3 are not true. However,
the previous theorems will be true if we add the following
condition: a0/a2≪ a2/a4≪ a4/a6≪ a6/a8≪ · · · ≪ a2j−2/a2j,
j � 1, . . . , n.

Example 1. We consider the following equation:

_r � f(r),

or

f(r) � 

4

j�0
vjr

2j+1
� r

1
1050

−
1

1040
r
2

+
1

1030
r
4

−
1

1020
r
6

+
1

1010
r
8

 .

(20)

We have

vjvj+1 < 0, and vj



≪ vj+1



≪ 1, for j � 0, 1, . . . , 3,

(21)

because
vj

vj+1
� 10− 10≪ 1, for j � 0, 1, . . . , 3, and v4


 � 10− 10≪ 1.

(22)

However,

f(r)

r
� 10− 10

r −
1
105

cos
π
10

+ i sin
π
10

   r −
1
105

cos
3π
10

+ i sin
3π
10

  ,

r −
1
105

cos
7π
10

+ i sin
7π
10

   r −
1
105

cos
9π
10

+ i sin
9π
10

  

r −
1
105

cos
11π
10

+ i sin
11π
10

   r −
1
105

cos
13π
10

+ i sin
13π
10

  

r −
1
105

cos
17π
10

+ i sin
17π
10

   r −
1
105

cos
19π
10

+ i sin
19π
10

  ≠ 0, ∀r ∈ R,

(23)

where the system roots are given by

r1 �
1
105

cos
π
10

+ i sin
π
10

  � 9.5106 × 10− 6
+ 3.0902 × 10− 6

i,

r2 �
1
105

cos
3π
10

+ i sin
3π
10

  � 5.8779 × 10− 6
+ 8.0902 × 10− 6

i,

r3 �
1
105

cos
7π
10

+ i sin
7π
10

  � −5.8779 × 10− 6
+ 8.0902 × 10− 6

i,

r4 �
1
105

cos
9π
10

+ i sin
9π
10

  � −9.5106 × 10− 6
+ 3.0902 × 10− 6

i,

r5 �
1
105

cos
11π
10

+ i sin
11π
10

  � −9.5106 × 10− 6
− 3.0902 × 10− 6

i,

r6 �
1
105

cos
13π
10

+ i sin
13π
10

  � −5.8779 × 10− 6
− 8.0902 × 10− 6

i,

r7 �
1
105

cos
17π
10

+ i sin
17π
10

  � 5.8779 × 10− 6
− 8.0902 × 10− 6

i,

r8 �
1
105

cos
19π
10

+ i sin
19π
10

  � 9.5106 × 10− 6
− 3.0902 × 10− 6

i.

(24)
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Example 2. Let us consider now the following system:

_r � f(r) � r 
4

j�0

(−1)
j

104
(4−j)+1r

2j
� r

1
101024

−
1

10256
r
2

+
1

1064
r
4

−
1

1016
r
6

+
1
104

r
8

 , (25)

with positive roots such as

r1 � 10− 6

r2 � 10− 24

r3 � 10− 96

r4 � 10− 384

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (26)

because

vjvj+1 < 0, and vj



≪ vj+1



≪ 1, for j � 0, 1, . . . , 3,

vj

vj+1
≪

vj+1

vj+2
≪ 1, for j � 0, . . . , 2.

(27)

Example 3. We suppose the following system:

_x � y − ε b1x + b3x
3

+ b5x
5

+ b7x
7

+ b9x
9

 ,

_y � −x,

⎧⎪⎨

⎪⎩

or

b1 � 2 10− 196
 ,

b3 � −
8
3

10− 192
+ 10− 152

+ 10− 132
+ 10− 112

 ,

b5 �
16
5

10− 148
+ 10− 128

+ 10− 110
+ 10− 88

+ 10− 68
+ 10− 48

 ,

b7 � −
128
35

10− 4
+ 10− 44

+ 10− 64
+ 10− 84

 ,

b9 �
256
63

.

(28)

By putting a2j+1 � εb2j+1, j � 0, 4, we obtain

_x � y − a1x + a3x
3

+ a5x
5

+ a7x
7

+ a9x
9

 ,

_y � −x,

⎧⎨

⎩ (29)

and by applying the first-order averaging method [13, 14] on
(14), we obtain

f
0
(r) � r r

8
− 10−4

+ 10−44
+ 10−64

+ 10−84
 r

6
+ 10−148

+ 10−128
+ 10−110

+ 10−88
+ 10−68

+ 10−48
 r

4


− 10−192
+ 10−152

+ 10−132
+ 10−112

 r
2

+ 10−196
.

(30)

f0(r) � 0 implied r1 � 10−2, r2 � 10−22, r3 � 10−32, and
r4 � 10−42, then there are exactly 4 small-amplitudes limit
cycles ri, i � 1, 4

Note that a2j+1/a2j+3 � b2j+1/b2j+3≪ 1 for j � 0, . . . , 3
and b2j+1/b2j+3≪ b2j+3/b2j+5 for j � 0, . . . , 2.

5. Conclusion

In this work, by using a counterexample for a theorem of the
small amplitude limit cycles in some Liénard systems, we
have shown that that there will be no solutions unless an
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extra condition is added. In addition, a new condition is
derived for some specific Liénard systems where a violation
of the small amplitude limit cycles theorem takes place.
However, these theorems will be true if we add the following
condition: a0/a2≪ a2/a4≪ a4/a6≪ a6/a8≪ · · · ≪ a2j−2/a2j,
j � 1, . . . , n.
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In this paper, the trajectory tracking control and the field programmable gate array (FPGA) implementation between a recurrent
neural network with time delay and a chaotic system are presented. ,e tracking error is globally asymptotically stabilized by
means of a control law generated from the Lyapunov–Krasovskii and Lur’e theory. ,e applicability of the approach is illustrated
by considering two different chaotic systems: Liu chaotic system and Genesio–Tesi chaotic system. ,e numerical results have
shown the effectiveness of obtained theoretical results. Finally, the theoretical results are implemented on an FPGA, confirming
the feasibility of the synchronization scheme and showing that it is hardware realizable.

1. Introduction

Neural networks can be considered as nonlinear mathe-
matical functions whose parameters are adjusted to describe
the behavior of a static or dynamic system [1]. According to
their structure, neural networks can be classified as static
neural networks or dynamic neural networks. ,e static
neural networks are capable of approximating any function
using static mapping [2]. Meanwhile, dynamic neural net-
works, also called recurrent neural networks, have feedback
connections that give them higher capability than static
neural networks. For example, recurrent neural networks
can reproduce the dynamic response of a dynamic system
due to their feedback connection. ,ey can also overcome
many problems related to static neural networks, such as
extreme global search, and consequently, have better ap-
proximation properties [3]. Recently, due to the richness of
dynamic behaviors from recurrent neural networks, they
have received much attention and been investigated in a
wide variety of applications in diverse fields such as in as-
sociative memory [4], neurodynamic optimization problems

[5], pattern recognition [6], image processing [7], and so on
[8, 9].

It is well known that the time-delay phenomenon is an
inherent feature of many physical processes such as nuclear
reactors, chemical processes, and biological systems. Usu-
ally, it is considered a source of oscillation and divergence,
leading to system performance degradation or even gen-
erating instability [9]. A delayed neural network can gen-
erate complicated dynamic behaviors such as boundedness,
periodicity, stability, chaos, and synchronization [10].
Synchronization is a fundamental behavior of recurrent
neural networks. Hence, many researchers devote their ef-
fort to studying the delay effect on drive-response syn-
chronization. Indeed, the drive-response synchronization of
recurrent neural networks cannot be achieved individually,
so external input signals should be considered in the neural
network response. Many efficient control approaches have
been designed to control or achieve the synchronized state in
the literature, such as linear feedback control, active control,
intermittent control, adaptive control, event-triggered
control, pinning control, and impulsive control, among
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others [11–13]. In particular, the Lyapunov–Krasovskii
approach has demonstrated to be an efficient method to deal
with the global asymptotic stability of recurrent neural
networks with time delay. In [14], the global synchronization
of multiple recurrent neural networks with time delays
under a switching topology via impulsive interaction is
given. An exponential H∞ synchronization method for an
uncertain drive and response neural networks with mixed
time delays was presented based on a Lyapunov–Krasovskii
functional and free-weighting matrices [15]. ,e synchro-
nization of delayed neural networks with hybrid couplings
by employing the Lyapunov functional method and the
Kronecker product technique is used to guarantee the global
synchronization in coupled networks [16]. In [17], the global
asymptotic synchronization for a class of delayed neural
networks is investigated. In [18], the pinning synchroniza-
tion in an array of coupled delayed neural networks with
both constant and delayed couplings is presented, showing
that the network can be pinned to a homogenous state by
applying adaptive feedback control. It is worth noting that
the Lyapunov–Krasovskii approach has been demonstrated
to be an efficient method to deal with the global asymptotic
stability of a recurrent neural network with time delay
[19, 20]. In [21], the stability of linear continuous-time
systems with time delay by employing new Lyapu-
nov–Krasovskii functionals is presented. New Lyapu-
nov–Krasovskii functionals are proposed to achieve the
synchronization behavior of delay neural networks with two
time scales for the fixed and adaptive coupling schemes [22].
Some new Lyapunov–Krasovskii functionals are developed
by nonuniformly dividing the delay interval into multiple
segments and choosing proper functionals with different
weightingmatrices corresponding to different sections in the
Lyapunov–Krasovskii functionals proposed in [23]. In [24],
the global stability of a system composed by identical
Hopfield neural networks with time-delayed connections is
presented by constructing a Lyapunov–Krasovskii
functional.

Inspired by all the above works, this paper focuses on the
problem of tracking a given reference trajectory. It proposes
a trajectory tracking scheme in which a time-delay neural
network is forced to follow a chaotic system’s reference
signal, achieving a drive-response synchronization state
between the neural network and the chaotic system. ,e
control law that guarantees the trajectory tracking problem
solution is obtained by using the Lyapunov–Krasovskii and
Lur’e approach. ,e pertinence of the approach is dem-
onstrated by considering two numerical examples. In each
example, synchronization with one chaotic oscillator is
addressed, and the derived control laws are tested via nu-
merical experimentation. ,e Genesio–Tesi and Liu systems
are considered. Although the proposed scheme could be
useful to follow other nonlinear systems, we decide to re-
strict this work using only these two chaotic systems because
their tracking can be more challenging than other tracking
problems such as the reproduction of the gait cycle in
humanoids [25] or the trajectory tracking in different me-
chanical systems [26] and complex systems [27]. In all the
former cases, the movement may be softer and periodic.

Additionally, the FPGA technology is used to implement
the proposed scheme by using a NI c-RIO-9068 device with a
Xilinx Zynq-7000 XC7Z020 FPGA. ,e hardware imple-
mentation results confirm the feasibility of the proposed
scheme. We decided to implement the entire scheme on the
same chip, i.e., the system to be tracked, the recurrent neural
network with time delay, and the derived control law are
implemented on the same FPGA chip.

,is article is organized as follows. In Section 2, the
construction of themathematical model is given.,e control
law of delayed neural network and global asymptotic sta-
bility conditions are shown in Section 3. ,e numerical
results showing the applicability of the theory are given in
Section 4. Section 5 provides experimental results based on
FPGA implementations. Finally, we conclude the paper in
the last section.

2. Preliminaries

Consider the following time-delay neural network model:

_x(t) � Ax(t) + Wϕ[x(t − τ)] + u(t), (1)

where x(t) � [x1(t), x2(t), . . . , xn(t)]T ∈ Rn is the state
vector associated with the neurons;
A � diag(− λ1, − λ2, . . . , − λn) with λi with i � 1, . . . , n being
positive constants representing the rate with at which the
neural network will reset its potential to the resting state
when disconnected from the external input;
W � [wij] ∈ Rn × Rn represents the delayed connection
weight matrix; ϕ(x) � [ϕ1(x1), ϕ2(x2), . . . ,ϕn(xn)]T ∈ Rn

is the activation function; τ > 0 is the transmission delay; and
u(t) � (u1(t), u2(t), . . . , un(t))T ∈ Rn is an external input
vector.

,e following properties are assumed for the activation
function [28, 29]:

(1) ϕ(x) is bounded and monotonically nondecreasing
on R.

(2) ,e activation function ϕ(x) is Lipschitz continuous,
that is, there exists constant Lϕ > 0 such that

|ϕ(x) − ϕ(y)|≤ Lϕ|x − y|, ∀x, y ∈ R. (2)

,e system to be tracked by the recurrent neural network
with time delay (driving system) is defined as an autono-
mous n-dimensional dynamical system given by

_xr(t) � f xr(t)( , (3)

where xr(t) � [xr1
(t), xr2

(t), . . . , xrn
(t)]T ∈ Rn is a n-di-

mensional state vector, with f(xr(t)) defining a vector field
f(xr(t)): Rn⟶ Rn. In this paper, (3) is a nonlinear
system that generates chaotic behavior.

We continue by presenting the Lyapunov–Krasovskii
approach.,is method is the natural extension of the second
Lyapunov approach associated with the stability analysis of
functional differential equations [30]. It consists of con-
sidering functionals of the form V(t; xt) that are positive
definite and decreasing along the trajectories of system
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_x(t) � f(t, x(t), xt). ,e Lyapunov–Krasovskii theorem is
expressed as follows.

Theorem 1 (see [30]). Let u, v, and w: R+⟶ R+ be
nondecreasing functions such that u(θ) and v(θ) are strictly
positive for all θ> 0. Let h ∈ R+ and β: C[− h; 0]⟶ Rn.
Assume that the vector field f(·) of _x(t) � f(t, x(t), xt) is
bounded for bounded values of its arguments. If there exists a
continuous and differentiable functional
V: R × C[− h; 0]⟶ R+ such that

(a) u(‖β(0)‖)≤V(t, β)≤ v(‖β‖)

(b) _V(t, β)≤ − w(‖β(0)‖) for all trajectories of
x(t) � f(t, x(t), xt)

V(t + θ, β(t + θ))≤V(t, β(t)), ∀θ ∈ [− h, 0], (4)

then the solution xt � 0 is uniformly stable for
_x(t) � f(t, x(t), xt).

Finally, we add two definitions that will be used to analyze
equilibrium points.

Definition 1. An equilibrium E∗ is called a saddle point of
index 1 if E∗ has one eigenvalue with nonnegative real part
(unstable).

Definition 2. An equilibrium E∗ is called a saddle point of
index 2 if E∗ has two unstable eigenvalues.

3. Trajectory Tracking for a Recurrent Neural
Network with Time Delay

While the main objective of the work is to present the
proposed tracking scheme and its hardware implementation,
the main objective of this section is to develop a control law
such that the delayed neural network (1) tracks the solution
of the dynamical system (3).

3.1. Dynamical Analysis Error. Define the tracking error as
e(t) � x(t) − xr(t), where the respective error dynamics are

_e(t) � _x(t) − _xr(t). (5)

Substituting (1) and (3) in (5), the dynamics of the error
are governed by the following equation:

_e(t) � Ax(t) + Wϕ[x(t − τ)] + u(t) − f xr(t)( . (6)

Adding and subtracting to (6) the terms Axr(t),
Wϕ[xr(t − τ)], and α(t), we have

_e(t) � Ae(t) + W ϕ[x(t − τ)] − ϕ xr(t − τ) ( 

+(u(t)) − α(t) + Axr(t) + Wϕ xr(t − τ)  + α(t) 

− f xr(t)( ,

(7)

where α(t) is the function to be determined. In order to
guarantee that the neural network given in (1) can track the

reference trajectory of dynamical system (3), the following
assumption has to be satisfied [31].

,ere exist functions ρ(t) and α(t) such that

_ρ(t) � Aρ(t) + Wϕ[ρ(t − τ)] + α(t),

ρ(t) � xr(t).
(8)

,erefore, from (3) and (8), we obtain that

Axr(t) + Wϕ xr(t − τ)  + α(t) � f xr(t)( , (9)

and then

α(t) � f xr(t)(  − Axr(t) − Wϕ xr(t − τ) , (10)

so that (7) becomes

_e(t) � Ae(t) + Wφϕ(t − τ) + u(t), (11)

with Wφϕ(t − τ) � W(ϕ[x(t − τ)] − ϕ[xr(t − τ)]) and
u(t) � (u(t) − α(t)). It is clear that e(t) � 0 is an equilib-
rium point of (11) when u(t) � 0. In this way, the tracking
problem can be expressed as a global asymptotic stabiliza-
tion problem for system (11).

3.2. Error Stabilization and Control Design. In order to es-
tablish the convergence of (11) to e(t) � 0, a Lyapu-
nov–Krasovskii functional is proposed ensuring the desired
tracking. ,e Lyapunov–Krasovskii analysis is a Lyapunov-
inspired method that consists of proposing a functional
V(t, x(t)) of the state x(t), which should be positive and
decreasing definite along the trajectories of the system. ,is
is essential for the design of a globally and asymptotically
stabilizing control law for time-delay systems [20]. In this
work, the following Lyapunov–Krasovskii functional is
proposed as in [19, 32]:

V(e) � 
n

i�1


ei

0
φ ξ, xr( dξ + 

t

t− τ
φT
ϕ(s)W

T
Wφϕ(s) ds,

(12)

where the expression 
n
i�1 

ei

0 φ(ξ, xr)dξ is proposed to
analyze the stability related to error _e(t), whereas the ex-
pression 

t

t− τ(φ
T
ϕ(s)WTWφϕ(s))ds is envisioned to analyze

the effect of the delay τ; note that this term vanishes as
τ⟶ 0.

In this manner, the time derivate of (12), along the
trajectories of (11), was computed using the fundamental
theorem of calculus as follows:

_V(e) �
zV(e)

ze
_e � φ e, xr( 

T
_e + φT

ϕW
T
Wφϕ

− φT
ϕ(t − τ)W

T
Wφϕ(t − τ).

(13)

Substituting (11) in (13), we get

_V(e) � φ e, xr( 
T
Ae + φ e, xr( 

T
W ϕ[x(t − τ)](

− ϕ xr(t − τ)  + φ e, xr( 
T

u + φT
ϕW

T
Wφϕ

− φT
ϕ(t − τ)W

T
Wφϕ(t − τ).

(14)
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Regarding φϕ(t − τ) � (ϕ[x(t − τ)] − ϕ[xr(t − τ)]),
equation (14) can be denoted as

_V(e) � − λφ e, xr( 
T
e + φ e, xr( 

T
Wφϕ(t − τ) + φ e, xr( 

T
u

+ φT
ϕW

T
Wφϕ − φT

ϕ(t − τ)W
T
Wφϕ(t − τ).

(15)

Consider the inequality [19]:

P
T
Q + Q

T
P≤P

TΛP + Q
TΛ− 1

Q, (16)

which holds for all matrices P, Q ∈ Rn×k and a positive
definite matrix Λ ∈ Rn×n. To prove the inequality (16), we
considerF ≡ PTΛP + QTΛ− 1Q − PTQ − QTP≥ 0. Denoting
v1 � Λ(1/2)Pv and v2 � Λ− (1/2)Qv, we obtain F � vT

1 v1−

vT
2 v2 − 2vT

1 v2 � ‖v1 − v2‖
2 ≥ 0.

Applying (16) with Λ � I to the term
φ(e, xr)

TWφϕ(t − τ), we get

_V(e)≤ − λφ e, xr( 
T
e +

1
2
φ e, xr( 

Tφ e, xr( 

+
1
2
φT
ϕ(t − τ)W

T
Wφϕ(t − τ) + φ e, xr( 

T
u

+ φT
ϕW

T
Wφϕ − φT

ϕ(t − τ)W
T
Wφϕ(t − τ).

(17)

Simplifying (17), the following is obtained:

_V(e)≤ − λφ e, xr( 
T
e +

1
2
φ e, xr( 

Tφ e, xr( 

−
1
2
φT
ϕ(t − τ)W

T
Wφϕ(t − τ) + φ e, xr( 

T
u

+ φT
ϕW

T
Wφϕ.

(18)

Because φ(e, xr) is a sector function with respect
to e(t), there exist positive constants k1 and k2 such
that k1‖e‖2 ≤φ(e, xr)

T ≤ k2‖e‖2, where ‖ · ‖ is used to de-
note the Euclidean norm. From φϕ(t) � (ϕ(x(t))−

ϕ(xr(t))),

φϕ(t)
�����

����� ϕ(x(t)) − ϕ xr(t)( 
����

����

≤ Lϕ x(t) − xr(t)
����

����

� Lϕ‖e(t)‖.

(19)

,en, there exists a positive constant Lϕ such that
φ(e, xr)

Tφ(e, xr)≤L2
ϕ‖e‖2. Henceforth, (18) can be written

as follows:

_V(e)≤ − λk1 −
1
2
L
2
ϕ ‖e‖

2
−
1
2
φT
ϕ(t − τ)W

T
Wφϕ(t − τ)

+ φ e, xr( 
T

u + φT
ϕW

T
Wφϕ.

(20)

Simplifying (20), we have

_V(e)≤ − λk1 −
1
2
L
2
ϕ ‖e‖

2
+ φ e, xr( 

T
u + φT

ϕW
T
Wφϕ. (21)

Since φϕ is Lipschitz, we consider (20) applied to
φT
ϕWTWφϕ, obtaining

φT
ϕW

T
Wφϕ ≤ φT

ϕW
T
Wφϕ

�����

�����≤L
2
ϕ‖W‖

2
‖e‖

2
, (22)

with L2
ϕ being the Lipschitz constant of ϕ(·).

Replacing (22) in equation (21), the following expression
is obtained:

_V(e)≤ − λk1 −
1
2
L
2
ϕ ‖e‖

2
+ L

2
ϕ‖W‖

2
‖e‖

2
+ φ e, xr( 

T
u.

(23)

Now we consider the control law given as follows:

u � − 2 + 2L
2
ϕ‖W‖

2
 φ e, xr( . (24)

,en, substituting (24) in (23), we obtain

_V(e)≤ − λ + L
2
ϕ + L

2
ϕ‖W‖

2
 ‖e‖

2
. (25)

,en, _V(e)< 0 for all e≠ 0. ,is means that the proposed
control law can globally and asymptotically stabilize the
error system, thus ensuring the tracking of (1) by (3)
achieving the synchronization, which means that
limt⟶∞‖x(t) − xr(t)‖ � 0 holds; moreover, this implies
that the both systems have reached the synchrony state
(synchronization).

Finally, the control action driving the recurrent neural
network is given by

u � − 2 + 2L
2
ϕ‖W‖

2
 φ e, xr(  + f xr(  − Axr − Wϕ xr(t − τ) .

(26)

We summarize the developed analysis in the following
theorem.

Theorem 2. ?e control law defined as u in (26) ensures that
the time-delay neural network established in (1) tracks the
dynamical behavior generated by the reference system (cha-
otic system) (3).

4. Numerical Simulations

In this section, computer simulations are presented to
confirm the applicability of the results proposed previously,
which are applied to two dynamical systems that generate
chaotic behavior.

4.1. Synchronization between Delayed Neural Network and
Genesio–Tesi System. In 1992, Genesio and Tesi proposed a
chaotic system known as the Genesio–Tesi system [33]. It is
described by the following simple three-dimensional au-
tonomous system with only one quadratic nonlinear term:

_xr1
� xr2

,

_xr2
� xr3

,

_xr3
� − a1xr1

− a2xr2
− a3xr3

+ a4x
2
r1

,

(27)
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where xr � [xr1
, xr2

, xr3
] ∈ R3 is the vector state and ai with

(i � 1, . . . , 4) are positive real parameters. System (27) has
two equilibrium points E1(0, 0, 0) and E2(a1/a4, 0, 0). ,e
parameters and initial conditions of (27) are chosen as
a1 � 1, a2 � 1.1, a3 � 0.44, a4 � 1, and
[xr1

(0), xr2
(0), xr3

(0)]T � [0.1, 0.1, 0.1]T. ,e correspond-
ing eigenvalues of equilibria E1, E2 and their stability are
described in Table 1. ,e Lyapunov exponents for system
(27) are LE1 � 0.0818, LE2 � 0, LE3 � − 0.5227 which
according to [34] make the system chaotic. ,e algorithm

employed for determining Lyapunov exponents was pro-
posed in [35]. Its Kaplan–Yorke dimension is DKY � 2.1564,
and the phase plane of the chaotic system is displayed in
Figure 1. In addition, the bifurcation diagrams of system (27)
in terms of the parameters a1 and a3 are plotted in
Figures 2(a) and 2(b), respectively. Moreover, the bifurca-
tion diagrams are obtained by plotting the local maximal of
the state variable xr1 denoted as x in Figures 2(a) and 2(b).

By considering the following delayed neural network
defined as in equation (1), we get

x1
.

x2
.

x3
.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

− 1 0 0

0 − 1 0

0 0 − 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x1

x2

x3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

0.3
4
5

0

2
5

0.3 0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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, (28)

where u � [u1, u2, u3]
T is the control action applied to the

recurrent neural network defined as in (24) and defined by

u1

u2

u3
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tanh xr1
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,

(29)

where ψ is a real constant defined as follows:

ψ � 2 + 2

��������



n

i�1


n

j�1
w2

ij




⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2

. (30)

,e initial values of the delayed neural network are taken
as (2, − 1, − 2); also, we consider a delay τ � 15 s. In Figure 3,
the results are shown.

Figure 3(a) shows the time evolution of the state vari-
ables xr (purple line) and x (olive line) that corresponds to
the chaotic system and delayed neural network, respectively,
and we observe that both solutions evolve independently
until τ � 15 s, that is, when the control law begins to activate.
In Figure 3(b), the error between the state variables xri

and xi

with i � 1, 2, 3 are given, respectively.

4.2. Synchronization between Delayed Neural Network and
Liu System. Now, in this instance, we demonstrate the
applicability of the discussed results considering the delayed
neural network (1) described as in the previous example, i.e.,
equation (28), where the reference model to be tracked is the
Liu system.

Liu et al. introduced in 2009 a three-dimensional au-
tonomous chaotic system which is based on two multipliers
and one quadratic term to introduce the nonlinearity nec-
essary for folding trajectories [36]. ,e Liu chaotic oscillator
is defined as follows:

_xr1
� − axr1

− m1x
2
r2

,

_xr2
� bxr2

− m2xr1
xr3

,

_xr3
� − cxr3

+ m3xr1
xr2

,

(31)

where a, b, c, m1, m2, m3 ∈ R. Its parameters are chosen as
a � m1 � 1, b � 2.5, c � 5, and m2 � m3 � 4. ,e equilib-
rium points, eigenvalues, and stability of the system are
represented in Table 1. By considering the following initial
conditions [xr1

(0), xr2
(0), xr3

(0)]T � [− 1, − 0.5, 0.5]T, the
Lyapunov exponents are LE1 � 0.4155, LE2 �

0, LE3 � − 3.8586, which according to [34] confirm that the
Liu system is a chaotic oscillator. ,e algorithm employed
for determining Lyapunov exponents was proposed in [35].
Its Kaplan–Yorke dimension is DKY � 2.1077. ,e phase
planes of Liu chaotic oscillator are displayed in Figure 4. In
addition, the bifurcation diagrams of system (31) with the
parameters b and c are displayed in Figures 5(a) and 5(b),
respectively. Moreover, the bifurcation diagrams are ob-
tained by plotting the local maximum of the state variable
xr1 denoted as x in Figures 5(a) and 5(b).
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Table 1: Stability of equilibrium points from Genesio–Tesi and Liu chaotic systems.

Chaotic system Equilibria Eigenvalues Stability

Genesio–Tesi
E1 � (0, 0, 0)

λ1 � − 0.7503 Saddle point of index 2λ2,3 � 0.1551 ± 1.1440j

E2 � (1, 0, 0)
λ1 � 0.5871 Saddle point of index 1λ2,3 � − 0.5136 ± 1.1997j

Liu

E1 � (0, 0, 0)
λ1 � 2.5 Saddle pointλ2 � − 1; λ3 � − 5

E2 � (− 0.8838, − 0.9401, 0.6647)
λ1 � − 4.3878 Saddle point of index 2λ2,3 � 0.4439 ± 3.3464j

E3 � (− 0.8838, 0.9401, − 0.6647)
λ1 � − 4.3878 Saddle point of index 2λ2,3 � 0.4439 ± 3.3464j
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Figure 1: ,e Genesio–Tesi chaotic attractor in the phase plane with initial conditions [xr1
(0), xr2

(0), xr3
(0)]T � [0.1, 0.1, 0.1]T. (a) xr1

−

xr2
phase plane. (b) xr1

− xr3
phase plane. (c) xr2

− xr3
phase plane.
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Figure 2: (a) Bifurcation diagram of Genesio–Tesi system with varying parameter a1. (b) Bifurcation diagram of Genesio–Tesi system with
varying parameter a3.
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Figure 3: (a) Time evolution for the Genesio–Tesi reference states xr1
, xr2

, and xr3
with initial conditions (0.1, 0.1, 0.1) (purple line) and time

evolution for the neural network states x1, x2, and x3 with initial conditions (2, − 1, − 2) (green line). (b) Error between states xi − xri
with

i � 1, 2, 3.
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Figure 4: ,e Liu chaotic oscillator in the phase plane with initial conditions [xr1
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Figure 5: (a) Bifurcation diagram of Liu system with varying parameter b. (b) Bifurcation diagram of Liu system with varying parameter c.
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,e initial values of the delayed neural network are taken
as (0.1, 0.2, − 0.1); also, we consider a delay τ � 15 s. Sim-
ulation results are presented in Figure 6.

Here we consider the control law u defined as

u1

u2

u3
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,

(32)

where ψ is a real constant given as in (30). Furthermore,
Figure 6(a) presents the time-evolution of the delayed neural
network (28) and the chaotic system (31), where they evolve
independently until τ � 15 seconds; at that time, the pro-
posed control (32) law is incepted. Finally, in Figure 6(b), the
error between xi − xri

states is displayed.

5. FPGA-Based Implementation

,e digital implementations of chaotic systems have
attracted increasing interest in the last few years [37, 38].
,ey provide certain advantages in comparison with analog-
based systems, like accuracy and possible integration in
embedded applications, especially in data encryption and
secure communications, which exhibit various practical
difficulties like the sensitivity of components to temperature,
aging, etc. Recently, the digital-based chaotic imple-
mentations are realized considering different numerical
circuit-based integrated systems like digital signal pro-
cessors (DSPs), application specific integrated circuits
(ASIC), and FPGA. But the FPGA implementation de-
signs overcome the problems related to AISC and DSP-
based applications; this is due to the excellent trade-off
between computational power and the performance and
reliability which it provides.

In this section, the FPGA realizations for the systems
previously shown are addressed. We present two imple-
mentations: one of them implements the systems shown in
Section 4.1 and the other implements those shown in Section
4.2. Both implementations were done into a Xilinx Zynq-7000
XC7Z020 FPGA chip. ,e LabVIEW FPGA compiler soft-
ware and the National Instruments cRIO-9068 hardware were
used. cRIO-9068 has attached the FPGA chip and theNI-9264
module. ,e NI-9264 module allows each design to have six
analog outputs from 0 to 10 volts. Both designs use the states
of the neural network and the chaotic system as outputs.

5.1. Description of the Designs. All the mathematical oper-
ations were done using fixed-point (FXP) arithmetic. FXP
was chosen to reduce the hardware cost and achieve higher

speeds. We use 30 bits to represent each state of the neural
network and the chaotic system; specifically, we use 7 bits for
the integer part and 23 bits for the fractional part. In digital
systems, the chaotic behavior may be affected by time dis-
cretization or low-resolution FXP arithmetic. In our case, we
compute the maximum Lyapunov exponent (MLE) from the
FXP sequences related to the implemented Liu and Gene-
sio–Tesi systems by employing TISEAN package software
[39]. ,e obtained values were as follows: MLE� 0.0664 for
the Genesio–Tesi system and MLE� 0.0782 for the Liu
system. ,e positive value for each MLE confirms chaotic
behavior and validates the FXP resolution and the sampling
time used.

5.1.1. Top Level. ,e top-level description of each imple-
mentation is shown in Figure 7, where k represents the
sample index. In this work, the top-level description used
allows to implement the tracker and the system to be tracked
on the same chip, and is composed of the following modules:
(a) the chaotic system to be tracked, (b) the delayed neural
network, (c) the control law, and (e) the integration method.
Note that the block diagram in Figure 7 applies to both
designs.

5.1.2. Secondary Level. ,e dynamics of the chaotic system,
which are represented in the dashed block labeled as (a) in
Figure 7, are given by the time-discrete version of (27):

f1[k] � xr2
[k],

f2[k] � xr3
[k],

f3[k] � − xr1
[k] − 1.1xr2

[k] − 0.44xr3
[k] + x

2
r1

[k],

(33)

for the Genesio–Tesi case, and by the discrete version of (31):

f1[k] � − xr1
[k] − x

2
r2

[k],

f2[k] � 2.5xr2
[k] − 4xr1

[k]xr3
[k],

f3[k] � − 5xr3
[k] + 4xr1

[k]xr2
[k],

(34)

for the Liu case. In both cases, FXP multipliers and adders
were used to perform the arithmetic operations involved.

,e dynamics of the delayed neural network, which are
represented in the dashed block labeled as (b) in Figure 7, are
given by the discrete version of (1):

η1[k] � − x1[k] + 
3

i�1
w1,itanh xi[k − m](  + u1[k],

η2[k] � − x2[k] + 
3

i�1
w2,itanh xi[k − m](  + u2[k],

η3[k] � − x3[k] + 

3

i�1
w3,itanh xi[k − m](  + u3[k],

(35)

where the tanh(·) function was approximated by its fourth-
order Taylor series, and FIFO buffers implemented on the
block RAMof the device were used to perform the delay of m

samples in the three states. Six FIFO registers were used,
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each one with 16384 elements of 30 bits each. With this
configuration, a delay of m � 16384 samples is generated in
all the states.

,e control law u1[k], u2[k], u3[k]  applied to the
neural network (35) is represented in the dashed block la-
beled as (c) in Figure 7. It was implemented as follows:

u1[k] � ψe1[k] + f1[k] − xr1
[k] − 

3

i�1
w1,itanh xri

[k − m] ,

u2[k] � ψe2[k] + f2[k] − xr2
[k] − 

3

i�1
w2,itanh xri

[k − m] ,

u3[k] � ψe3[k] + f3[k] − xr3
[k] − 

3

i�1
w3,itanh xri

[k − m] ,

(36)

where ej[k] � xj[k] − xrj
[k] for j � 1, 2, 3 denotes the error

sequence.
Finally, shift registers were used to perform the nu-

merical integration. In order to use an integration time of H

seconds, a mod-M counter is inferred to derive an enable
tick for all the registers each H seconds, where M � 4560
ticks. ,e Euler method is based on the definition of the
derivative operator and was selected to perform the nu-
merical integration in order to reduce the complexity of the
design due to its maximum simplicity. ,e block description
of this method is presented in the dashed block labeled as (d)
in Figure 7, which is described as

xri
[k + 1] � xri

[k] + Hfi[k],

xi[k + 1] � xi[k] + Hηi[k],
(37)

where i � 1, 2, 3.

5.2. Implementation Results. ,e resources used for each
design are presented in Table 2. ,e total amount of resources
employedwas obtained from theNI-FPGAcompiler report.,e
minimal amount of ticks M � 4560 needed to get a new valid
sample was computed using the LabVIEW FPGA tick count
function. Its value was the same for both designs addressed.,e
achieved latencies for both designs are expressed as L � 114 μs.

,e states of the chaotic system and the neural network
were scaled to six analog outputs of the NI-9264 module
within the range of 0 to 10 volts. ,ese outputs were
monitored by a Tektronix TDS5104B digital oscilloscope.
,e results for the system implementation are given in
Figures 8(a)–8(d). ,e phase portraits xr1

[k] − xr3
[k] ,

xr1
[k] − xr2

[k] , and xr2
[k] − xr3

[k]  are described in
Figures 8(a)–8(c). ,e time evolution of xr1

[k], xr2
[k], and

xr3
[k] is shown in Figure 8(d). Regarding the performance of

the neural network, the phase portraits xr1
[k] − x1[k] ,

xr2
[k] − x2[k] , and xr3

[k], − x3[k]  are shown in
Figures 9(a)–9(c). Note that each phase portrait evidences a
45° line, which is related to the correct tracking performed by
the time-delay neural network. Additional evidence of the
tracking is shown in Figure 9(d) where the time evolution of
xr1

[k] and x1[k] and its error e1[k] is described.
In addition, similar results were achieved for the Liu system.

,e results for the Liu system are shown in Figures 10 and 11 .

5.3. Comparison with Other Works. Synchronization is an
emerging behavior in neural networks. It has received ac-
ademic attention because of a wide variety of applications
[3, 8]. Schemes that consider chaotic systems and delayed
recurrent neural networks are of particular interest due to
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Figure 6: (a) Time evolution for the Liu reference states xr1
, xr2

, and xr3
with initial values (− 1, − 0.5, 0.5) (purple line) and time evolution for

the neural network states x1, x2, and x3 with initial condition (0.1, 0.2, − 0.1) (green line). (b) Error between states xi − xri
with i � 1, 2, 3.
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the high complexity depicted in their sensibility to initial
conditions, parameters, and time delays. For that reason,
synchronizing or controlling these schemes is challenging
work; even more, the practical implementation is not a

trivial task. In this section, we perform a survey to dem-
onstrate the pertinence of the proposed control method and
the digital implementation. In Table 3, some synchroniza-
tion schemes in a drive-response configuration are displayed

Hf1

Hf2

d

d

d

q

q

d q

q
xr1[k+1] xr1[k]

d q
xr2[k+1] xr2[k]

Hf3

Hη1

u1

u2

u3

Hη2

Hη3

d q
xr3[k+1]

x1[k+1] x1[k]

x2[k+1] x2[k]

x3[k+1] x3[k]

xr3[k]

(a)

(b)

(c)

(d)

Figure 7: Block diagram describing the top-level description of the proposed implementation for the Genesio–Tesi and Liu trackers, where
the dashed blocks represent (a) the chaotic system to be tracked given in (31) or (32), (b) the delayed neural network given in (33), (c) the
control law given in (34), and (d) the Euler integration method (35).

Table 2: FPGA chip resource usage for the Xilinx Zynq-7000 XC7Z020 FPGA chip (the resources used for both implementations are shown
in the table).

Genesio–Tesi Liu
Used Total Percent (%) Used Total Percent (%)

Slice registers 24372 106400 22.9 24253 106400 22.8
Slice LUT 27543 53200 51.8 28550 53200 53.7
DSP48s 173 220 78.6 201 220 91.4
Block RAMs 103 140 73.6 103 140 73.6
Clock 40MHz 40MHz
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with their respective control approaches. From the infor-
mation depicted in Table 3, reference [40] considers the
implementation of a synchronization scheme on an Arduino
chip while the rest of the references only consider numerical
results. In this paper, we implement the chaotic system (27),
the delayed recurrent neural network (28), and the control
laws (29) and (30) in an FPGA.

Table 4 presents a brief review, including some FPGA-
based implementations of chaotic systems over the last ten
years. Table 4 does not include detailed characteristics like
the chip resource usage and the achieved performance be-
cause these parameters are hardware dependent. Instead, it
includes generalized details like a brief description of the
application, the numerical representation, the integration
method, and the hardware used.

From Table 4, it can be seen that the implementation of a
single chaotic system is a common practice. However, recent
works include a chaotic node as a module of a bigger scale

system, for example, a complex network in [38], an OFDM
transmission system in [52], or a tracking scheme (this
work).

It can also be seen that fixed-point (FXP) and floating-
point (IEEE-754 FLP) implementations are equally used.
,e numerical representation selected in each work is
related to a trade-off between accuracy and resource usage.
It is evident that, in general, FXP representations require
fewer resources and achieve better time performance,
while an FLP representation has better numerical accuracy
than FXP.

,e integration method is used to implement a discrete
version of the system. In Table 4, we found a prevalence of
the following methods: fourth-order Runge–Kutta (RK4),
forward Euler, and Heun. Note that the numerical inte-
gration method is not correlated to the date of the work, as
we can see recent works using forward Euler and older works
using a more complicated RK4 algorithm. Again, as the
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Figure 8: Response of the Genesio–Tesi chaotic oscillator implemented, with initial conditions [xr1
[0], xr2

[0], xr3
[0]]T � [0.1, 0.1, 0.1]T. (a)

xr1
− xr2

phase plane. (b) xr1
− xr3

phase plane. (c) xr2
− xr3

phase plane. (d) Time evolution of xr1
(brown line “CH1”), xr2

(blue line “CH2”),
and xr3

(purple line “CH3”).
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numerical representation, the integration algorithm selec-
tion is based on a trade-off between the accuracy and
complexity of the design.

,ere is a diversity of devices and software platforms
used for the FPGA fast prototyping. Some devices are dis-
played in the last column of Table 4, while some examples of

the software platforms are the Matlab HDL Coder (used in
[48]), the LabVIEW FPGA software (used in [46]), and
Xilinx design suites like ISE and Vivado (used in [49, 52]). In
this work, we use LabVIEW FPGA environment. ,is
programming environment is well suited for the system-
level design of prototypes.
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Figure 9: Synchronization of the time-delay neural network and the Genesio–Tesi oscillator, with initial conditions
[xr1

[0], xr2
[0], xr3

[0]]T � [0.1, 0.1, 0.1]T and [x1[0], x2[0], x3[0]]T � [1, 1, 1]T. (a) xr1
− x1 phase plane. (b) xr2

− xr2
phase plane. (c) xr3

−

x3 phase plane. (d) Time evolution of xr1
(brown line “CH1”), x1 (blue line “CH2”), and e1 (orange line “Math1”).
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Figure 10: Response of the Liu chaotic oscillator implemented, with initial conditions [xr1
[0], xr2

[0], xr3
[0]]T � [0.1, 0.1, 0.1]T. (a) xr2

− xr1
phase plane. (b) xr1

− xr3
phase plane. (c) xr2

− xr3
phase plane. (d) Time evolution of xr1

(brown line “CH1”), xr2
(blue line “CH2”), and xr3

(purple line “CH3”).

Mathematical Problems in Engineering 13



Tek FastAcq

Ch1

2
1

1.2Y Ch2 M 4.0s 13.0 MS/s
A Ch1 / 5.54Y

40.0 µs/pt1.2Y

Sample 0 Acqs

(a)

Tek FastAcq

Ch1 1.2Y Ch2
1

M 4.0s 13.0 MS/s
A Ch1 / 5.54Y

40.0 µs/pt1.2Y

Sample 0 Acqs

(b)
Tek FastAcq

Ch1
1

1.2Y Ch2 M 4.0 s 13.0 MS/s
A Ch1 / 5.54Y

40.0 µs/pt1.2Y

Sample 0 Acqs

(c)

Tek Run

Ch1

M1

1

2

5.0Y
Math1 5.0Y 20.0ms

Ch2 M 20.0 ms 2.5 kS/s
A Ch1 / 2.6Y

400 µs/pt5.0Y

Sample 276 Acqs

(d)

Figure 11: Synchronization of the time-delay neural network and the Liu oscillator, with initial conditions [xr1
[0], xr2
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Table 3: Some synchronization schemes proposed in the literature.

Reference Approach Synchronization scheme Implementation

[40] Extended Kalman filter Drive-response between Genesio–Tesi multiscroll and recurrent
neural network

Digital: Arduino uno
microcontroller

[41] Inverse optimality Drive-response between chaotic time-delay recurrent neural
networks None

[19] V-stability and Lyapunov
theory

Drive-response between a delayed recurrent neural network and
a complex dynamical network None

[42] Quantized sliding-mode
control Drive-response between delayed memristive neural networks None

[43] Adaptive intermittent control Drive-response between chaotic systems with time-varying delay None

Proposed Lyapunov–Krasovskii and
Lur’e theory

Drive-response between Liu-delayed recurrent neural network
and Genesio–Tesi and delayed recurrent neural networks

Digital: FPGA Xilinx Zynq-
7000 XC7Z020
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6. Conclusions

In this paper, the trajectory tracking for a nonlinear system
with a time-delay neural network was obtained. In particular,
neural networks are forced to follow reference signals gen-
erated by a chaotic system, thus achieving the synchronization
state. ,e control law that guarantees trajectory tracking was
obtained by considering the Lyapunov–Krasovskii and Lur’e
theory. ,e applicability of the approach was illustrated by
considering two different chaotic systems: Liu’s chaotic system
and Genesio–Tesi chaotic system. Numerical simulations and
FPGA implementations were presented to show the effec-
tiveness of obtained theoretical results. ,e results obtained
allowed us to demonstrate the successful implementation of
these trajectory tracking examples on FPGA. Moreover, we
confirm that the Lyapunov–Krasovskii theory is an efficient
method to deal with the global asymptotic stability of a
recurrent neural network with time delay. ,e synchroni-
zation of chaotic systems and the neural networks on dif-
ferent chips streamed through a physical channel could be
addressed in a future continuation of this work. It should
consider the channel and its properties, and it may be useful
in the area of secure communications, where it is common to
use the synchronization of chaotic systems as an encryption
tool.
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In this study, a modified fractional-order Lorenz chaotic system is proposed, and the chaotic attractors are obtained. Meanwhile,
we construct one electronic circuit to realize the modified fractional-order Lorenz chaotic system.Most importantly, using a linear
resistor and a fractional-order capacitor in parallel coupling, we suggested one chaos synchronization scheme for this modified
fractional-order Lorenz chaotic system. &e electronic circuit of chaos synchronization for modified fractional-order Lorenz
chaotic has been given. &e simulation results verify that synchronization scheme is viable.

1. Introduction

In the last twenty years, many fractional-order systems
[1–9] have been used to discuss the dynamics, wave
stability, initials, and boundary effect. Many real-world
physical systems can be more accurately described by
fractional-order differential equations (FODE)
[3–6, 10, 11], e.g., diffusion-wave, super diffusion, heat
conduction, dielectric polarization, viscoelasticity, and
electromagnetic waves. &e complex behavior such as
chaos has been observed in many physical fractional-
order systems, e.g., the fractional-order brushless DC
motor chaotic system [6], the fractional-order Lorenz
chaotic system [7], the fractional-order Chua’s circuit [8],
the fractional-order Duffing chaotic system [9], the
fractional-order multistable locally active memristor [12],
the fractional-order gyroscopes system [10], and the
fractional-order microelectromechanical chaotic system
[11]. Meanwhile, synchronization of chaotic systems has
attracted extensive attention in recently years, and many
synchronization strategies [10, 11, 13–15] have been

widely used in information processing, image encryption,
network safety, secure communication, and machine
learning.

On the other hand, many chaotic systems and syn-
chronization strategies have been realized by electronic
circuits [16–18]. So, synchronization between chaotic sys-
tems can be transferred to the synchronization between
chaotic electronic circuits. Referring to synchronization
between chaotic electronic circuits, the linear resistor cou-
pling between two electronic circuits can realize the linear
state variable coupling between chaotic systems, and the
linear capacitive coupling or linear inductor coupling be-
tween two electronic circuits can realize the first derivative of
state variable linear coupling. Up to now, many scholars
[19–23] have proposed some synchronization approaches on
integer-order chaotic electronic circuits by linear resistor
coupling or linear capacitive coupling or a linear inductor
coupling. However, to the best of our knowledge, there are
little results on synchronization fractional-order chaotic
electronic circuits coupled by a linear resistor or linear
capacitive or linear inductor. Motivated by the
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abovementioned discussion, we have studied the modified
fractional-order Lorenz chaotic system based on the integer-
order Lorenz chaotic system. Furthermore, using a linear
resistor and a fractional-order capacitor in parallel coupling,
the chaos synchronization of modified fractional-order
Lorenz chaotic electronic circuits has been achieved, while
the linear resistor, capacitor, or inductor coupling is usually
used in the existing works.

&e rest of this study is as follows. In Section 2, a
modified fractional-order Lorenz chaotic system is pro-
posed, and its chaotic electronic circuits is designed. In
Section 3, chaos synchronization between two modified
fractional-order Lorenz chaotic systems is realized via a
linear resistor and a fractional-order capacitor in parallel
coupling, and the circuit experiment is obtained. Conclu-
sions are drawn in Section 4.

2. A Modified Fractional-Order Lorenz Chaotic
System and Its Circuit Realization

A modified Lorenz chaotic system [24] is described as
follows:

dy1

dt
� 40 y2 − y1( ,

dy2

dt
� 10y1 + 25y2 − y1y3,

dy3

dt
� y1y2 − 3y3.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

Based on this integer-order Lorenz chaotic system (1),
the modified fractional-order Lorenz chaotic system is ob-
tained as follows:

dq
y1

dt
� 40 y2 − y1( ,

dq
y2

dt
� 10y1 + 25y2 − y1y3,

dq
y3

dt
� y1y2 − 3y3,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where q � 0.95 is the fractional order. Herein, the Caputo
fractional-order derivatives are used. It is defined as

dq
f(t)

dt
�

1
Γ(1 − q)


t

0

f′(τ)

(t − τ)
q dτ, 0< q< 1. (3)

&e Lyapunov exponents for this modified fractional-
order Lorenz chaotic system (2) can be calculated by the
numerical method [25, 26], and the Lyapunov exponents are
(2.6245, −0.0461, −5.9568).&e positive Lyapunov exponent
indicates that chaotic attractors are emerged in system (2).
Let q � 0.95, and the chaotic attractors of the fractional-
order system (2) are shown in Figure 1.

Up to now, circuit implementation of chaotic systems
has attracted more and more attentions. Many chaotic
circuits have been reported. Now, we discuss the circuit
implementation for the fractional-order chaotic system
(2). Limited by the output of the operational amplifier, the
amplitude of every variable in system (1) must be de-
creased, and we can choose y1 � 10x1, y2 � 10x2, and
y3 � 10x3. So, system (2) can be changed as the following
system:

dq
x1

dt
� 40 x2 − x1( ,

dq
x2

dt
� 10x1 + 25x2 − 10x1x3,

dq
x3

dt
� 10x1x2 − 3x3.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

Recently, the guidelines to design circuits for fractional-
order chaotic systems have been proposed in many studies
[26–29]. To ordinary differential equation (ODE), we can use
the linear capacitor C to realize the first-order differential
unit (dyi/dt), i � 1, 2, 3. &erefore, compared to the design
of the first-order differential circuit unit in ODE, in order to
realize the fractional-order differential unit (dqxi/dt),

i � 1, 2, 3, we use the fractional-order capacitor F replacing
the linear capacitor C in the first-order differential circuit
unit in this study. According to [29], the fractional-order
capacitor F is shown as Figure 2, and it can realize the
operator (dq/dt). In Figure 2, C1 � 3.616 μF, C2 � 4.602 μF,

C3�1.267 μF, Ra � 15.1 kΩ, Rb � 1.51MΩ, Rc � 692.9MΩ.
Based on the circuitry design method for fractional-

order nonlinear systems in [25–29], the circuit diagram to
realize the fractional-order nonlinear chaotic system (4) is
presented as Figure 3.

In Figure 3, the operational amplifiers are the type of
LF353N, the multipliers are the type of AD633, and the
power is supplied by ±15V, and R1 � 10 kΩ, R2 � 2.5 kΩ,
R3 � 4 kΩ, and R4 � 33.3 kΩ. Using electronics workbench
(EWB), we can obtain the chaotic attractors in the fractional-
order chaotic circuit, and the chaotic attractors are shown in
Figure 4.

According to the results in Figures 1 and 4, the frac-
tional-order Lorenz chaotic system (4) has been circuit
implementation as Figure 3.

3. Synchronization of the Fractional-order
Chaotic System (4) via a Linear Resistor and
Fractional-Order Capacitor in
Parallel Coupling

In this section, synchronization of the chaotic system (4) is
discussed. Let system (4) as the driving system.&e response
system is as follows:
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Figure 2: Circuit unit of the fractional-order capacitor F for q � 0.95.
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Figure 3: &e circuit diagram to realize the fractional-order system (4) for q� 0.95.
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Figure 1: &e chaotic attractors of the fractional-order system (2) for q1 � q2 � q3 � 0.95. (a) &e y1y2 phase diagram. (b) &e y1y3 phase
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dq
y1

dt
� 40 y2 − y1( ,

dq
y2

dt
� 10y1 + 25y2 − 10y1y3,

dq
y3

dt
� 10y1y2 − 3y3.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

According to Section 2, circuit implementation of the
fractional-order chaotic system (5) is the same as Figure 3.
Now, we discuss how to realize the chaos synchronization
between the drive system (4) and response system (5) via

circuit implementation. In this study, the state variable x2 in
the driving system (4) and the state variable y2 in the re-
sponse system (5) are coupled via linear resistor Rk and
fractional-order capacitor F in parallel, and its circuit dia-
gram is shown in Figure 5. &e green box in Figure 5 is the
coupling part, and resistor R5 �100 kΩ.

According to Figure 5, one can obtain the following:

u � KR x2 − y2(  +
dq

x2

dt
−
dq

y2

dt
 . (6)

Here, variable KR � 100 kΩ/Rk. Now, according to
Figure 5, the coupled driving system and coupled response
system are shown as follows:

dq
x1

dt
� 40 x2 − x1( ,

dq
x2

dt
� 10x1 + 25x2 − 10x1x3 − KR x2 − y2(  −

dq
x2

dt
−
dq

y2

dt
 ,

dq
x3

dt
� 10x1x2 − 3x3,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

dq
y1

dt
� 40 y2 − y1( ,

dq
y2

dt
� 10y1 + 25y2 − 10y1y3 + KR x2 − y2(  +

dq
x2

dt
−
dq

y2

dt
 ,

dq
y3

dt
� 10y1y2 − 3y3.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)
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Figure 4: &e circuit experiment phase portraits of the fractional-order chaotic system (4) for q� 0.95. (a) &e x1x2 phase diagram. (b) &e
x1x3 phase diagram.
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Next, we discuss how to realize chaos synchronization
between the drive system (7) and response system (8) via linear
resistor Rk or variable KR � 100 kΩ/Rk. Let synchronization
errors ei � xi − yi (i� 1, 2, 3), and we can obtain the error
system as follows:

dq
e1

dt
� 40 e2 − e1( ,

dq
e2

dt
�

10e1 + 25 − 2KR( e2 + 10e1e3 − 10e1x3 − 10e3x1 

3
,

dq
e3

dt
� −3e3 − 10e1e2 + 10e1x2 + 10e2x1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

According to the error system (9), ei � 0 (i� 1, 2, 3) is the
equilibrium point of the error system (9). If the equilibrium
point ei � 0 (i� 1, 2, 3) is asymptotic stability, then chaotic
synchronization between the driving system (7) and response
system (8) can be achieved. &is result indicates that the
synchronization of the fractional-order chaotic system (4) can
be realized via the linear resistor Rk and fractional-order ca-
pacitor F in parallel coupling. On the other hand, if all the
Lyapunov exponents (LEs) in system (9) are negative, then
chaos synchronization is achieved. In this study, the Lyapunov
exponents (LEs) are used to check the chaos synchronization.

Now, MATLAB is used to study the QR decomposition to
analyze the synchronization problem of variable parameter KR.
&e Jacobi matrix of the error system (9) is as follows:

J �

−40 40 0

10 + 10e3 − 10x3( 

3
25 − 2KR( 

3
10e1 − 10x1( 

3

−10e2 + 10x2 −10e1 + 10x1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(10)

&e maximum Lyapunov exponents (CLEs) [24, 25]
related to Rk is shown in Figure 6. It can be seen that the
maximumCLEs are negative if KR � 0.05 ∼ 20. So, choosing
linear resistor Rk � (20 ∼ 0.05) × 100 kΩ, the chaos syn-
chronization between the drive system (7) and response
system (8) can be obtained.

Choose KR � 1, then Rk � 100 kΩ. We can yield that
all the CLEs of the error system (9) are λ1 � −2.4781,
λ2 � −3.2007, and λ3 � −5.7004. So, the chaos synchro-
nization between the drive system (7) and response
system (8) can be achieved. Take the initial driving signals
x � (2, 2, 2) and the initial response signals
y � (−2, −5, 5), and the synchronization results are shown
in Figure 7.

Choose KR � 10 and then Rk � 10 kΩ. According to
Figure 6, themaximumCLEs of the error system (9) is negative.
So, the chaos synchronization between the drive system (7) and
response system (8) can be achieved. Taking the initial driving
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Figure 5: &e circuit realization of chaos synchronization between the drive system (4) and response system (5).
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signals x � (2, 2, 2) and the initial response signals
y � (−2, −5, 5), the synchronization results are shown in
Figure 8.

In summary, the chaos synchronization of the fractional-
order chaotic system (4) can be realized via the linear resistorRk
and fractional-order capacitor F in parallel coupling, and the

maximum CLEs of the error system (9) with the linear resistor
Rk are obtained. Furthermore, we find that chaotic synchro-
nization cannot be reached via state variable x1 and y1 coupling
or via state variable x3 and y3 coupling. In addition, we find that
chaotic synchronization can be arrived via only linear resistor
coupling or via only fractional-order capacitor coupling.
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4. Conclusions

In this study, based on one modified Lorenz chaotic system,
a modified fractional-order Lorenz chaotic system is sug-
gested. We find that chaotic attractors are emerged in this
modified fractional-order Lorenz chaotic system for
q � 0.95. Furthermore, we discussed the circuit imple-
mentation for this fractional-order chaotic system, and the
circuit diagram to realize the fractional-order nonlinear
chaotic system (4) is presented. More importantly, a syn-
chronization scheme is suggested to realize the chaos syn-
chronization on this modified fractional-order Lorenz
chaotic system for q � 0.95 via a linear resistor Rk and a
fractional-order capacitor F in parallel coupling, which has
not been used in the existing study. &e electronic circuits
for chaos synchronization of the modified fractional-order
Lorenz chaotic system have been given. &e simulation
results verify that synchronization of the chaotic electronic
circuit can be achieved. In the following study, whether
inductive coupling can achieve synchronization is worth
discussing.
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