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Jesús Garćıa Falset, Spain
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Issues related to chaotic dynamics, stability of oscillations,
and their synchronization are widespread in nature, appear-
ing ubiquitously in physics, chemistry, biology, engineering,
and social science. Furthermore, potential applications in
delicate areas, for instance, secure communication where
transmitter and receiver are synchronized, explain the grow-
ing interest devoted to modeling and understanding.

In the current trend, collaborations and interdisciplinary
researches are essential keys for mathematicians, chemists,
physicists, biologists, and engineers to successfully investi-
gate dynamical state in complex systems. This special issue
addresses modeling, chaos, and synchronization processes
in complex systems, based upon hypothesis or data from
physics, chemistry, biophysics, and neuroscience. From 17
submissions, 5 papers are published in this special issue.
Each paper was reviewed by at least two referees and
revised accordingly by the authors.The themes include adap-
tive synchronization, stochastic chaotic systems, effective
synchronization, exponential feedback coupling, distributed
reduced-order observer-based protocol, nonlinear filtering,
chaos synchronization, stability analysis, and control.

When it comes to synchronizing oscillations, different
strategies have been investigated such as effective synchro-
nization, adaptive synchronization, inverse synchronization,
phase synchronization, and antiphase synchronization. This
diversity of schemes is necessary because of the variety
of systems under consideration. In Z. Wang et al.’s paper,
an adaptive sliding mode controller is designed to realize

the asymptotical synchronization in mean squares and the
almost surely synchronization for two different stochastic
chaotic systems, one with unknown parameters and another
with uncertain terms. The robustness and efficiency of the
technique are checked out using the Lorenz-Chen and Chen-
Lu systems.

The exponential function-based nonlinear controller can
also be utilized to achieve effective synchronization between
two drive-response systems surrounded by the random per-
turbations. Such a technique was considered in P. Louodop et
al.’s paper to obtain a newoptimized controller which can lead
to a much faster synchronization than the one based upon
fixed feedback gain. Moreover, the new controller is easy to
implement, for it does not need adaptation algorithm and it
is based on a simple electrical system.

In the master-slave system configuration, chaotic syn-
chronization can be effectively preserved via nonlinear fil-
tering process. The synchronization phenomenon can occur
in nonlinear interconnected structures that could have some
useful applications for some chaotic systems in filtering
waves. An example of application is the analysis of wave, orig-
inated from earthquakes and tsunamis inasmuch; they can
generate resonance at particular frequencies. Such systems
have been considered and investigated in J. S. González-Salas
et al.’s paper.

The stability analysis and control of chaotic oscillations
are also of great interest because of their impact in building
up practical applications as those addressed in G. Zhou
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et al.’s paper. Authors have considered in a new smooth
Chua’s system whose chaotic features are confirmed by the
Lyapunov exponents. A linear controller and an adaptive
controller are, respectively, proposed to globally synchronize
two identical smooth Chua’s systems estimated errors of
uncertain parameters converge to zero as time increases.

When it comes to coordination control of multiagent
systems, consensus problem is one of the most basic issues
for the environment information changes and the commu-
nication links between agents may become unreliable. This
particular matter concern is addressed in Y. Zhang et al.’s
paper who have investigated a group of agents with high-
dimensional linear coupling dynamics with an undirected
switching interaction scheme.

Together, these papers represent an insightful investiga-
tion into the state of art in these majors’ interdisciplinary
topics. We hope this special issue captures the attention of
the peers. We would like to acknowledge our gratitude to all
the authors and reviewers who have made this special issue
possible.

R. Yamapi
G. Filatrella

M. A. Aziz-Alaoui
H. G. Enjieu Kadji
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This paper investigates the problem of synchronization for two different stochastic chaotic systems with unknown parameters and
uncertain terms. The main work of this paper consists of the following aspects. Firstly, based on the Lyapunov theory in stochastic
differential equations and the theory of sliding mode control, we propose a simple sliding surface and discuss the occurrence of
the sliding motion. Secondly, we design an adaptive sliding mode controller to realize the asymptotical synchronization in mean
squares. Thirdly, we design an adaptive sliding mode controller to realize the almost surely synchronization. Finally, the designed
adaptive sliding mode controllers are used to achieve synchronization between two pairs of different stochastic chaos systems
(Lorenz-Chen and Chen-Lu) in the presence of the uncertainties and unknown parameters. Numerical simulations are given to
demonstrate the robustness and efficiency of the proposed robust adaptive sliding mode controller.

1. Introduction

In the past few years, chaotic synchronization has received
particular interests [1–3] mainly due to its wide applica-
tions in secure communications, ecological systems, system
identification, and so forth. During the past decades, many
methods and experimental techniques have been presented
to realize the synchronization of two identical chaotic sys-
tems [4–10], such as adaptive control [4, 5], sliding mode
control [6, 7], nonlinear feedback control [8, 9], and fuzzy
system based control [10]. Among all these methods, sliding
mode control method has been used widely to treat the
unknown parameters and uncertainties [11, 12]. For example,
synchronization and finite synchronization between two
different chaotic systems with uncertainties and unknown
parameters via sliding modemethod are discussed in [13, 14],
respectively. However, we have noted that in all of the above
mentioned papers, the chaotic systems are deterministic
differential equations without any random parameters or
random excitation.

Recently, the stochastic modeling has played an impor-
tant role in engineering application [15, 16] and there are
some works in the field of control and synchronization
on stochastic neural networks [17–25]. In accordance with
the Lyapunov control theory, synchronization of stochastic
delayed neural networks has been investigated in terms of
linear matrix inequalities in [17]. Reference [18] discussed
the adaptive lag synchronization between stochastic neural
networks with time delay and [19] discussed the lag synchro-
nization between stochastic neural networks with unknown
parameters using adaptive control method. Reference [20]
considered the robust decentralized adaptive control for
stochastic delayed Hopfield neural networks using sling
mode controlmethod and [21, 22] discussed the almost surely
exponential stability for stochastic neural networks. The
almost surely synchronization between different stochastic
chaotic systems is discussed in [23] using linearmatrix equal-
ity technique. However, the parameters of the system need to
be known, and the authors have not considered the chaotic
system contained unknown parameters and uncertainties.
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In [24], the authors designed an adaptive controller to
make sure the synchronization error trajectories between two
different stochastic Chua’s systems enter a small zone around
zero. The control of unstable periodic orbits of stochastic
chaos is discussed in [25] using sliding mode method. As
far as we know, there are no results on the asymptotical
synchronization and almost surely synchronization for two
different stochastic chaotic systems using adaptive sliding
mode control method.

In this paper, we discussed the asymptotical synchro-
nization and almost surely synchronization for two different
stochastic chaotic systems with unknown parameters and
uncertain terms using sliding mode method. The structure
of this paper is outlined as follows. In Section 2, we introduce
the model of chaotic systems with unknown parameters and
uncertain terms and give several assumptions, definitions,
and lemmas. Section 3 presents themain results of this paper;
we design two adaptive slidingmode controllers to realize the
synchronization. Numerical examples are given in Section 4
to show the effectiveness of our proposed results. Finally,
some concluding remarks are made in Section 5.

2. Problem Statement and
Mathematic Preliminaries

In this paper, we consider the following stochastic systems
with uncertain parameters in the following form:

d𝑥
𝑖
= (𝑓
𝑖
(𝑥
1
, . . . , 𝑥

𝑛
) + 𝐹
𝑖
(𝑥
1
, . . . , 𝑥

𝑛
) 𝜃

+Δ𝑓
𝑖
(𝑥
1
, . . . , 𝑥

𝑛
)) d𝑡

+ 𝜎
𝑖
(𝑥
1
, . . . , 𝑥

𝑛
) d𝑤 (𝑡) , 𝑖 = 1, 2, . . . , 𝑛

(1)

or, in a compact form:

d𝑥 = (𝑓 (𝑥) + 𝐹 (𝑥) 𝜃 + Δ𝑓 (𝑥)) d𝑡 + 𝜎 (𝑥) d𝑤 (𝑡) . (2)

We consider the model (1) as the drive system. The
response chaotic system is

d𝑦
𝑖
= (𝑔
𝑖
(𝑦
1
, . . . , 𝑦

𝑛
) + 𝐺
𝑖
(𝑦
1
, . . . , 𝑦

𝑛
) 𝜃

+Δ𝑔
𝑖
(𝑦
1
, . . . , 𝑦

𝑛
) + 𝑢
𝑖 (

𝑡)) d𝑡

+ 𝜎
𝑖
(𝑦
1
, . . . , 𝑦

𝑛
) d𝑤 (𝑡) , 𝑖 = 1, 2, . . . , 𝑛

(3)

or, in a compact form:

d𝑦 = (𝑔 (𝑦) + 𝐺 (𝑦) 𝜃 + Δ𝑔 (𝑦) + 𝑢 (𝑡)) d𝑡 + 𝜎 (𝑦) d𝑤 (𝑡) ,

(4)

where 𝑥, 𝑦 ∈ R𝑛 are the state vectors, 𝑢(𝑡) ∈ R𝑛 is
the control input, 𝑓(𝑥), 𝑔(𝑦) ∈ 𝐶

1
(R𝑛,R𝑛), 𝐹(𝑥), 𝐺(𝑦) ∈

𝐶
1
(R𝑛,R𝑛×𝑚), and 𝜎(𝑥), 𝜎(𝑦) ∈ 𝐶

1
(R𝑛,R𝑛×𝑝) are function

matrices of 𝑥 and 𝑦, respectively. 𝜃 ∈ R𝑚 and 𝜓 ∈ R𝑚

are the vectors of uncertain parameters, Δ𝑓(𝑥) and Δ𝑔(𝑦)

represent the nonlinear vectors that may include unknown
uncertainties and other external disturbances for the master
system and slave system, and 𝑤(𝑡) is a 𝑝-dimensional Brown

motion defined on a complete probability space (Ω,F,P)

with a natural filtration {F
𝑡
} generated by {𝑤(𝑠) : 0 ≤ 𝑠 ≤ 𝑡},

where we associate Ω with the canonical space generated by
{𝑤(𝑡)} and denotedF the associated 𝜎-algebra generated by
{𝑤(𝑡)} with the probability measureP. Here the white noise
d𝑤
𝑖
(𝑡) is independent of d𝑤

𝑗
(𝑡) for 𝑖 ̸= 𝑗.

(A1) The networks (2) and (4) are chaotic, and if 𝑥, 𝑦

are bounded, then |Δ𝑓
𝑖
(𝑥)|, |Δ𝑔

𝑖
(𝑥)| are bounded and

satisfy Δ𝑓
𝑖
(0) = Δ𝑔

𝑖
(0) = 0 for 𝑖 = 1, . . . , 𝑛, that is,





Δ𝑓
𝑖 (

𝑥)




≤ 𝛼
𝑖
,





Δ𝑔
𝑖 (

𝑥)




≤ 𝛽
𝑖
, (5)

where 𝛼
𝑖
and 𝛽

𝑖
are unknown parameters.

(A2) The noise intensity function matrices 𝜎
𝑖

: 𝑅
𝑛

→

𝑅
𝑝 are locally Lipschitz continuous and satisfying the

following condition. Moreover, 𝜎
𝑖
satisfies

[𝜎
𝑖 (

𝑥) − 𝜎
𝑖
(𝑦)]

T
[𝜎
𝑖 (

𝑥) − 𝜎
𝑖
(𝑦)] ≤

𝑛

∑

𝑗=1

𝑘
𝑖𝑗
(𝑥
𝑗
− 𝑦
𝑗
)

2

, (6)

where 𝑘
𝑖𝑗
are unknown parameters.

Remark 1. Note that condition (A1) is very weak. We do not
impose the usual conditions such as Lipschitz condition and
differentiability on the unknown uncertainties functions. It
can be discontinuous or even impulsive functions. Since the
trajectories of chaotic systems are always bounded, hence,
condition (A1) can be easily satisfied.

Remark 2. The condition (A2) is the linear growth condition
in fact, it is easy to see this condition is equivalent to the
condition in [23].

Throughout this paper, we always assume the nonlinear
function matrix satisfies 𝑓(0) = 𝑔(0) = 𝐹(0) = 𝐺(0) = 0. It
implies that (2) and (4) have a unique global solution on 𝑡 ≥ 0

for the initial conditions since (A1) and (A2) hold [26].
Let 𝑒(𝑡) = 𝑥(𝑡) − 𝑦(𝑡), then with subtracting (3) from (1)

the error dynamics is obtained as follows:

d𝑒
𝑖
= (𝑓
𝑖 (

𝑥) − 𝑔
𝑖
(𝑦) + 𝐹

𝑖 (
𝑥) 𝜃 − 𝐺 (𝑦)𝜓 + Δ𝑓

𝑖 (
𝑥)

−Δ𝑔
𝑖
(𝑦) − 𝑢

𝑖 (
𝑡)) d𝑡 + (𝜎

𝑖 (
𝑥) − 𝜎

𝑖
(𝑦)) d𝑤 (𝑡) .

(7)

It is clear that the synchronization problem can be
transformed to be the equivalent problem of stabilizing the
error system (7).

Remark 3. From themathematical point of view, themodel is
more general. If the noise intensity function matrices 𝜎(𝑥) =

𝜎(𝑦) = 0, (7) becomes the model in [13]. Furthermore, if
Δ𝑓(𝑥) = Δ𝑔(𝑦) = 0, the system will be the model in [14].
If Δ𝑓(𝑥) = Δ𝑔(𝑦) = 0 and 𝜃, 𝜓 are the known vectors, this
will be the model discussed in [23].

Definition 4 (see [19]). The error system (7) is said to be
globally stable in mean squares if for any given initial
condition such that

lim
𝑡→∞

𝐸‖𝑒 (𝑡)‖
2
= 0, (8)

where 𝐸[⋅] is the mathematical expectation.
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Definition 5 (see [26]). The trivial solution of the error system
(7) is said to be almost surely exponentially stable, if for
almost all sample paths of the solution 𝑒(𝑡), we have

lim sup
𝑡→∞

1

𝑡

log ‖𝑒 (𝑡)‖ < 0, (9)

that is, the the drive system and response system are almost
surely synchronization.

Remark 6. If 𝑒(𝑡) = 0, this means that 𝑥(𝑡) = 𝑦(𝑡), so
𝑢(𝑡) = 𝑓(𝑥) + 𝐹(𝑥)𝜃 + Δ𝑓(𝑥) − 𝑔(𝑦) − 𝐺(𝑦)𝜓 − Δ𝑔(𝑥) +

(𝜎(𝑥) − 𝜎(𝑦))𝑤(𝑡), where 𝑤(𝑡) = d𝑤(𝑡)/d𝑡. This implies that
𝑢(𝑡) directly depends on white Gaussian noises and it is an
accessible causal signal; this means that the synchronization
cannot be realized completely.

The purpose of this paper is to consider the adaptive
feedback synchronization problem for stochastic chaotic
systems with unknown parameters and uncertainties. The
main work of this paper consists of the following aspects.
(i) Design an adaptive controller such that the asymptotical
stability of the error system (7) can be achieved in mean
squares that lim

𝑡→∞
𝐸‖𝑒(𝑡)‖

2
= 0. (ii) Design an adaptive

control such that the error system (7) can be almost surely
stable, that means the almost surely synchronization could be
achieved between drive system and response system.

Before proposing the main results, we introduce some
lemmas which will be used in the following sections.

Lemma 7 (see [20, 27]). The trivial solution of a stochastic
differential equation as follows

d𝑥 (𝑡) = 𝑎 (𝑡, 𝑥) d𝑡 + 𝑏 (𝑡, 𝑥) d𝜔 (𝑡) , (10)

with 𝑎(𝑡, 𝑥) and 𝑏(𝑡, 𝑥) sufficiently differentiable maps, is
globally asymptotically stable in probability if there exists a
function𝑉(𝑡, 𝑥)which is positive definite in the Lyapunov sense
and satisfies

L𝑉 (𝑡, 𝑥) = 𝑉
𝑡 (

𝑡, 𝑥) + 𝑉
𝑥 (

𝑡, 𝑥) ⋅ 𝑎 (𝑡, 𝑥)

+

1

2

tr {𝑏T
(𝑡, 𝑥) 𝑉𝑥𝑥 (

𝑡, 𝑥) 𝑏 (𝑡, 𝑥)} < 0,

(11)

for 𝑥 ̸= 0, where𝑉
𝑡
(𝑡, 𝑥) = 𝜕𝑉(𝑡, 𝑥)/𝜕𝑡,𝑉

𝑥
(𝑡, 𝑥) = 𝜕𝑉(𝑡, 𝑥)/𝜕𝑥,

and 𝑉
𝑥𝑥

(𝑡, 𝑥) = (𝜕
2
𝑉(𝑡, 𝑥)/𝜕𝑥

𝑖
𝜕𝑥
𝑗
)
𝑛×𝑛

.

Lemma 8 (see [23, 26]). Suppose there exist a nonnegative
function 𝑉(𝑥, 𝑡) ∈ 𝐶

2,1
(𝑅
𝑛
× [𝑡
0
, +∞), 𝑅

+
) and three positive

numbers 𝑝, 𝛼, and 𝜆 such that, for all 𝑥 ̸= 0 and 𝑡 ≥ 𝑡
0
,

𝛼|𝑥|
𝑝

≤ 𝑉 (𝑥, 𝑡) , L𝑉 (𝑡, 𝑥) < −𝜆𝑉 (𝑡, 𝑥) (12)

holds, then for any 𝑥
0
∈ 𝑅
𝑛, the trivial solution of (10) is almost

surely exponentially asymptotically stable; that is,

lim sup
𝑡→∞

1

𝑡

log 



𝑥 (𝑡, 𝑡
0
, 𝑥
0
)




< −

𝜆

𝑝

(13)

holds almost surely.

3. Main Results

To design the adaptive feedback controller to realize the
synchronization for stochastic chaotic systemswith unknown
parameters and uncertainties, we use the sliding mode
control method. In this section, the nonsingular terminal
sliding mode is chosen as

𝑠
𝑖 (

𝑡) = 𝜆
𝑖
𝑒
𝑖 (

𝑡) , 𝑖 = 1, . . . , 𝑛, (14)

where 𝑠
𝑖
(𝑡) ∈ 𝑅, 𝑠(𝑡) = [𝑠

1
(𝑡), 𝑠
2
(𝑡), . . . , 𝑠

𝑛
(𝑡)]

T and 𝜆
𝑖
> 0 are

constants.

3.1. Design of an Adaptive Controller to Realize Asymptotical
Synchronization in Mean Squares. In this section, we are
going to design an adaptive controller with updating laws
such that the state trajectories will move to the sliding surface
in mean squares. To ensure the occurrence of the sliding
motion, an adaptive sliding mode controller is proposed as

𝑢
𝑖 (

𝑡) = 𝑓
𝑖 (

𝑥) + 𝐹
𝑖 (

𝑥)
̂
𝜃 − 𝑔
𝑖
(𝑦) − 𝐺

𝑖
(𝑦) �̂�

+ (�̂�
𝑖
+

̂
𝛽
𝑖
) sign (𝑠

𝑖 (
𝑡)) + 𝑘

𝑖
𝑠
𝑖 (

𝑡)

+

𝑛

∑

𝑗=1

𝜆
2

𝑗

𝜆
3

𝑖

̂
𝑘
𝑗𝑖
𝑠
𝑖 (

𝑡) , 𝑖 = 1, 2, . . . , 𝑛,

(15)

where ̂
𝜃, �̂�, �̂�

𝑖
, ̂𝛽
𝑖
, ̂𝑘
𝑖𝑗
are the estimations for 𝜃, 𝜓, 𝛼

𝑖
, 𝛽
𝑖
, 𝑘
𝑖𝑗
,

respectively. 𝑘
𝑖
> 0 is the switching gain and a constant, 𝑖 =

1, 2, . . . , 𝑛.
To tackle the uncertainties and unknown parameters,

appropriate adaptive laws are defined as follows:

̇
̂
𝜃 = 𝐹

T
(𝑥) 𝛾 (𝑡) ,

̂
𝜃 (0) =

̂
𝜃
0

̇
�̂� = −𝐺

T
(𝑦) 𝛾 (𝑡) , �̂� (0) = �̂�

0

̇
�̂�
𝑖
= 𝜆
𝑖





𝑠
𝑖 (

𝑡)




, �̂�

𝑖 (
0) = �̂�

𝑖0

̇
̂
𝛽
𝑖
= 𝜆
𝑖





𝑠
𝑖 (

𝑡)




,

̂
𝛽
𝑖 (

0) =
̂
𝛽
𝑖0

̇
̂
𝑘
𝑖𝑗

=

𝜆
2

𝑖

𝜆
2

𝑗

𝑠
2

𝑗
(𝑡) ,

̂
𝑘
𝑖𝑗 (

0) =
̂
𝑘
𝑖𝑗0

,

(16)

where 𝛾(𝑡) = [𝜆
1
𝑠
1
(𝑡), 𝜆
2
𝑠
2
(𝑡), . . . , 𝜆

𝑛
𝑠
𝑛
(𝑡)]

T, and ̂
𝜃
0
, �̂�
0
,

�̂�
𝑖0
, and ̂

𝛽
𝑖0
are the initial values of the update parameters,

respectively.
The proposed control input in (15) with the updat-

ing laws in (16) will guarantee the reaching condition
lim
𝑡→∞

𝐸‖𝑠(𝑡)‖
2
= 0 and ensure the occurrence of the sliding

motion, which is proved in the following theorem.

Theorem 9. Suppose that the assumption conditions (A1) and
(A2) hold; consider the error dynamics (7); this system is
controlled by 𝑢(𝑡) in (15) with updating laws in (16), then the
error system trajectories will converge to the sliding surface
𝑠(𝑡) = 0 in mean squares.
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Proof. Select a positive definite function as a Lyapunov
function candidate in the form of

𝑉 (𝑡) =

1

2

𝑛

∑

𝑖=1

(𝑠
2

𝑖
(𝑡) + (�̂�

𝑖
− 𝛼
𝑖
)
2
+ (

̂
𝛽
𝑖
− 𝛽
𝑖
)

2

)

+

1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

(
̂
𝑘
𝑖𝑗
− 𝑘
𝑖𝑗
)

2

+

1

2







̂
𝜃 − 𝜃







2

+

1

2





�̂� − 𝜓






2
.

(17)

Since d𝑠
𝑖
(𝑡) = 𝜆

𝑖
d𝑒
𝑖
(𝑡), by Itô’s differential rule, the stochastic

derivative of𝑉(𝑡) along trajectories of error system (7) can be
obtained as follows:

d𝑉 (𝑡) = L𝑉 (𝑡) d𝑡 +

𝑛

∑

𝑖=1

𝜆
𝑖
𝑠
𝑖 (

𝑡) (𝜎𝑖 (
𝑥) − 𝜎

𝑖
(𝑦)) d𝑤 (𝑡) ,

(18)

where the weak infinitesimal operatorL is given by

L𝑉 (𝑡)

=

𝑛

∑

𝑖=1

[𝜆
𝑖
𝑠
𝑖 (

𝑡) ((𝑓𝑖 (
𝑥) − 𝑔

𝑖
(𝑦) + 𝐹

𝑖 (
𝑥) 𝜃

−𝐺
𝑖
(𝑦) 𝜓 + Δ𝑓

𝑖 (
𝑥) − Δ𝑔

𝑖
(𝑦) − 𝑢

𝑖 (
𝑡)))]

+

𝑛

∑

𝑗=1

𝜆
2

𝑖
(𝜎
𝑖 (

𝑥 (𝑡)) − 𝜎
𝑖
(𝑦 (𝑡)))

T

× (𝜎
𝑖 (

𝑥 (𝑡)) − 𝜎
𝑖
(𝑦 (𝑡))) + (�̂�

𝑖
− 𝛼
𝑖
)

̇
�̂�
𝑖

+ (
̂
𝛽
𝑖
− 𝛽
𝑖
)

̇
̂
𝛽
𝑖

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

(
̂
𝑘
𝑖𝑗
− 𝑘
𝑖𝑗
)

̇
̂
𝑘
𝑖𝑗
+ (

̂
𝜃 − 𝜃)

T ̇
̂
𝜃 + (�̂� − 𝜓)

T ̇
�̂�

≤

𝑛

∑

𝑖=1

[𝜆
𝑖
𝑠
𝑖 (

𝑡) 𝐹𝑖 (
𝑥) (𝜃 −

̂
𝜃) − 𝜆

𝑖
𝑠
𝑖 (

𝑡) 𝐺𝑖
(𝑦) (𝜓 − �̂�)

+ 𝛼
𝑖
𝜆
𝑖





𝑠
𝑖 (

𝑡)




+ 𝛽
𝑖
𝜆
𝑖





𝑠
𝑖 (

𝑡)




− �̂�
𝑖
𝜆
𝑖





𝑠
𝑖 (

𝑡)





−
̂
𝛽
𝑖
𝜆
𝑖





𝑠
𝑖 (

𝑡)




− 𝑘
𝑖
𝜆
𝑖
𝑠
𝑖(
𝑡)
2

− 𝜆
𝑖
𝑠
𝑖 (

𝑡)

𝑛

∑

𝑗=1

𝜆
2

𝑗

𝜆
3

𝑖

̂
𝑘
𝑗𝑖
𝑠
𝑖 (

𝑡) +

𝑛

∑

𝑗=1

𝜆
2

𝑖
𝑘
𝑖𝑗
𝑒
2

𝑗
(𝑡)

+ (�̂�
𝑖
− 𝛼
𝑖
)

̇
�̂�
𝑖
+ (

̂
𝛽
𝑖
− 𝛽
𝑖
)

̇
̂
𝛽
𝑖
]

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

(
̂
𝑘
𝑖𝑗
− 𝑘
𝑖𝑗
)

̇
̂
𝑘
𝑖𝑗
+ (

̂
𝜃 − 𝜃)

T ̇
̂
𝜃 + (�̂� − 𝜓)

T ̇
�̂�.

(19)

Using the facts ∑
𝑛

𝑖=1
𝜆
𝑖
𝑠
𝑖
(𝑡)𝐹
𝑖
(𝑥)𝜃 = 𝜃

T
𝐹
T
(𝑥)𝛾(𝑡),

∑
𝑛

𝑖=1
𝜆
𝑖
𝑠
𝑖
(𝑡)𝐺
𝑖
(𝑥)𝜓 = 𝜓

T
𝐺
T
(𝑥)𝛾(𝑡) and the updating

laws in (16), one has

L𝑉 (𝑡) ≤ −

𝑛

∑

𝑖=1

𝑘
𝑖
𝜆
𝑖
𝑠
2

𝑖
= −

𝑛

∑

𝑖=1

𝜂
𝑖
𝑠
2

𝑖
= −𝜂𝑠

T
(𝑡) 𝑠 (𝑡) , (20)

where 𝜂
𝑖
= 𝑘
𝑖
𝜆
𝑖
, 𝑖 = 1, 2, . . . , 𝑛 and 𝜂 = min{𝜂

1
, 𝜂
2
, . . . , 𝜂

𝑛
} >

0.
Taking mathematical expectation on both sides of (20),

in view of (18) and the definition of 𝑉(𝑡), we obtain

1

2

𝐸‖𝑠 (𝑡)‖
2
≤ 𝐸𝑉 (𝑡) ≤ 𝐸𝑉 (0) − 𝜂∫

𝑡

0

𝐸‖𝑠 (𝜏)‖
2d𝜏. (21)

Based on the LaSalle invariance principle of stochastic dif-
ferential equation, which was developed in [28, 29], we have
𝑠(𝑡) → 0 when 𝑡 → ∞, which in turn illustrates that
lim
𝑡→∞

𝐸‖𝑠(𝑡)‖
2
= 0. This complete the proof.

Remark 10. If 𝜎(𝑥) = 𝜎(𝑦) = 0, this theorem is an extension
of Theorem 1 in [13]. If 𝜎(𝑥) = 𝜎(𝑦) = 0 and Δ𝑓(𝑥) = Δ𝑔(𝑥),
this is a similar result of Theorem 2 in [14].

Remark 11. Since the control law (15) contains the sign
function as a hard switcher, the undesirable chattering phe-
nomenon occurs. According to Lemma 2 and Remark 2 in
[13], we can replace the sign(𝑠

𝑖
) function by tanh(𝜖𝑠

𝑖
), 𝜖 > 0.

Remark 12. From the proof of Theorem 9, we know that
L𝑉(𝑡) ≤ 0 as long as 𝑠(𝑡) ̸= 0. Therefore, the trajectories 𝑠(𝑡)

will converge to 𝑠(𝑡) = 0 in mean squares. On the other hand,
from the adaptive law (18) we can see ̇

̂
𝜃, ̇

�̂�, ̇
�̂�
𝑖
, ̇
̂
𝛽
𝑖
, and ̂

𝑘
𝑖𝑗
turn

to zero when 𝑠(𝑡) = 0, which implies that ̂𝜃, �̂�, �̂�
𝑖
, ̂𝛽
𝑖
, and ̂

𝑘
𝑖𝑗

approach some constants as 𝑠(𝑡) → 0. However, this does not
elaborate that ̂𝜃 → 𝜃, �̂� → 𝜓. This point is consistent with
the results of [30].

In fact, the unknown parameters 𝜃, 𝜓 in (7) cannot
identify with ̂

𝜃, �̂�. We offer the following theorem.

Theorem 13. In Theorem 9, if Δ𝑓(𝑥) ̸= Δ𝑔(𝑦) and the syn-
chronization between (1) and (3) is realized, the unknown
parameters 𝜃, 𝜓 in (7) cannot identify with ̂

𝜃, �̂� in (17),
respectively.

Proof. We prove it by its contrapositive proposition. On the
synchronization manifold 𝑥(𝑡) = 𝑦(𝑡), it follows 𝑠

𝑖
(𝑡) = 0 and

d𝑠
𝑖
= 0. From (7) and (15), we have

0 =
[

[

𝜆
𝑖
(𝐹
𝑖 (

𝑥) (𝜃 −
̂
𝜃) − 𝐺

𝑖
(𝑦) (𝜓 − �̂�) + Δ𝑓

𝑖 (
𝑥)

−Δ𝑔
𝑖
(𝑦) − (�̂�

𝑖
+

̂
𝛽
𝑖
) sign 𝑠

𝑖 (
𝑡) − 𝑘
𝑖
𝑠
𝑖 (

𝑡))

−

𝑛

∑

𝑗=1

𝜆
2

𝑗

𝜆
2

𝑖

̂
𝑘
𝑗𝑖
𝑠
𝑖 (

𝑡)
]

]

d𝑡 + 𝜆
𝑖
(𝜎
𝑖 (

𝑥 (𝑡)) − 𝜎
𝑖
(𝑦 (𝑡))) d𝑤 (𝑡) .

(22)

Suppose ̂
𝜃 = 𝜃 and �̂� = 𝜓; we haveΔ𝑓

𝑖
(𝑥) = Δ𝑔

𝑖
(𝑦) = Δ𝑔

𝑖
(𝑥);

this means Δ𝑓(𝑥) = Δ𝑔(𝑥), which is a contradiction. This
completes the proof.

If Δ𝑓(𝑥) = Δ𝑔(𝑦) = 0, we can get the following theorem.
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Theorem 14. Suppose that the assumption condition (A2)
holds. Then under the controller (15) with updating laws (16),
the response system and the drive system are asymptotical
synchronized in mean squares. Moreover, if 𝐹

𝑖𝑗
(𝑥), 𝐺

𝑖𝑗
(𝑦) are

linearly independent of the synchronization manifold, then
lim
𝑡→∞

(
̂
𝜃 − 𝜃) = lim

𝑡→∞
(�̂� − 𝜓) = 0.

Proof. It is easy to get the following error system:

d𝑒
𝑖
= (𝑓
𝑖 (

𝑥) − 𝑔
𝑖
(𝑦) + 𝐹

𝑖 (
𝑥) 𝜃 − 𝐺 (𝑦)𝜓 − 𝑢

𝑖 (
𝑡)) d𝑡

+ (𝜎
𝑖 (

𝑥) − 𝜎
𝑖
(𝑦)) d𝑤 (𝑡) .

(23)

Define the following Lyapunov function candidate

𝑉
1 (

𝑡) =

1

2

𝑛

∑

𝑖=1

𝑠
𝑖(
𝑡)
2
+

1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

(
̂
𝑘
𝑖𝑗
− 𝑘
𝑖𝑗
)

2

+

1

2







̂
𝜃 − 𝜃







2

+

1

2





�̂� − 𝜓






2
.

(24)

Since d𝑠
𝑖
(𝑡) = 𝜆

𝑖
d𝑒
𝑖
(𝑡), by Itô’s differential rule, the stochastic

derivative of𝑉(𝑡) along trajectories of error system (7) can be
obtained as follows:

d𝑉
1 (

𝑡) = L𝑉
1 (

𝑡) d𝑡 +

𝑛

∑

1

𝜆
𝑖
𝑠
𝑖
(𝜎
𝑖 (

𝑥) − 𝜎
𝑖
(𝑦)) d𝑤 (𝑡) , (25)

where the weak infinitesimal operatorL is given by

L𝑉
1 (

𝑡)

=

𝑛

∑

𝑖=1

[ 𝜆
𝑖
𝑠
𝑖 (

𝑡) ( (𝑓𝑖 (
𝑥) − 𝑔

𝑖
(𝑦)

+𝐹
𝑖 (

𝑥) 𝜃 − 𝐺
𝑖
(𝑦) 𝜓 − 𝑢

𝑖 (
𝑡)))]

+

𝑛

∑

𝑗=1

𝜆
2

𝑖
(𝜎
𝑖 (

𝑥 (𝑡)) − 𝜎
𝑖
(𝑦 (𝑡)))

T

× (𝜎
𝑖 (

𝑥 (𝑡)) − 𝜎
𝑖
(𝑦 (𝑡)))

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

(
̂
𝑘
𝑖𝑗
− 𝑘
𝑖𝑗
)

̇
̂
𝑘
𝑖𝑗
+ (

̂
𝜃 − 𝜃)

T ̇
̂
𝜃 + (�̂� − 𝜓)

T ̇
�̂�

≤

𝑛

∑

𝑖=1

[

[

𝜆
𝑖
𝑠
𝑖 (

𝑡) 𝐹𝑖 (
𝑥) (𝜃 −

̂
𝜃)

− 𝜆
𝑖
𝑠
𝑖 (

𝑡) 𝐺𝑖
(𝑦) (𝜓 − �̂�)

+ 𝛼
𝑖
𝜆
𝑖





𝑠
𝑖 (

𝑡)




+ 𝛽
𝑖
𝜆
𝑖





𝑠
𝑖 (

𝑡)





− �̂�
𝑖
𝜆
𝑖





𝑠
𝑖 (

𝑡)




−

̂
𝛽
𝑖
𝜆
𝑖





𝑠
𝑖 (

𝑡)




− 𝑘
𝑖
𝜆
𝑖
𝑠
𝑖(
𝑡)
2

− 𝜆
𝑖
𝑠
𝑖 (

𝑡)

𝑛

∑

𝑗=1

𝜆
2

𝑗

𝜆
3

𝑖

̂
𝑘
𝑗𝑖
𝑠
𝑖 (

𝑡)

+

𝑛

∑

𝑗=1

𝜆
2

𝑖
𝑘
𝑖𝑗
𝑒
𝑗(
𝑡)
2
]

]

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

(
̂
𝑘
𝑖𝑗
− 𝑘
𝑖𝑗
)

̇
̂
𝑘
𝑖𝑗

+ (
̂
𝜃 − 𝜃)

T ̇
̂
𝜃 + (�̂� − 𝜓)

T ̇
�̂�.

(26)

From the update laws (16), we can always choose the
appropriate initial values of �̂�

𝑖0
and ̂

𝛽
𝑖0
to make �̂�

𝑖
> 0 and

̂
𝛽
𝑖
> 0. Since �̂�

𝑖
𝑠
𝑖
(𝑡) sign(𝑠

𝑖
(𝑡)) ≥ 0 and ̂

𝛽
𝑖
𝑠
𝑖
(𝑡) sign(𝑠

𝑖
(𝑡)) ≥

0. Using the facts ∑
𝑛

𝑖=1
𝜆
𝑖
𝑠
𝑖
(𝑡)𝐹
𝑖
(𝑥)𝜃 = 𝜃

T
𝐹
T
(𝑥)𝛾(𝑡),

∑
𝑛

𝑖=1
𝜆
𝑖
𝑠
𝑖
(𝑡)𝐺
𝑖
(𝑥)𝜓 = 𝜓

T
𝐺
T
(𝑥)𝛾(𝑡) and the updating laws in

(18), with the same procedure of the proof of Theorem 9, we
also arrive at 𝐸‖𝑠(𝑡)‖

2
→ 0.

On the synchronization manifold 𝑥(𝑡) = 𝑦(𝑡), it follows
𝑠(𝑡) = 0 and d𝑠

𝑖
= 0. From (7) and (15), we have

0 = 𝜆
𝑖
[𝐹
𝑖 (

𝑥) (𝜃 −
̂
𝜃) − 𝐺

𝑖
(𝑦) (𝜓 − �̂�)] . (27)

Since 𝐹
𝑖𝑗
(𝑥), 𝐺

𝑖𝑗
(𝑦) are linearly independent on the synchro-

nization manifold, therefore, the above equality holds if and
only if ̂𝜃 = 𝜃 and �̂� = 𝜓.

Remark 15. Certainly, under the controller without (�̂�
𝑖
+

̂
𝛽
𝑖
) sign 𝑠

𝑖
(𝑡) term, the response system can also synchronize

the drive system in mean squares. However, under the
controller (15) with this term, it is more effective to realize
the synchronization with this term. If 𝑥

𝑖
(𝑡) > 𝑦

𝑖
(𝑡), this term

will help to increase 𝑦
𝑖
(𝑡), and if 𝑥

𝑖
(𝑡) < 𝑦

𝑖
(𝑡), this term will

help to decrease 𝑦
𝑖
(𝑡). Hence, this term (�̂�

𝑖
+

̂
𝛽
𝑖
) sign 𝑠

𝑖
(𝑡) can

enhance the synchronization speed.

3.2. Design of an Adaptive Controller to Realize Almost Surely
Synchronization. In this section, we are going to design an
adaptive controller with update laws such that the state
trajectories will move to the sliding surface almost surely. We
first introduce the following assumptions for the unknown
parameters.

(A3) The unknown parameters vectors 𝜃 and 𝜓 are norm
bounded with known bounds, that is,

‖𝜃‖ ≤ 𝜃,




𝜓




≤ 𝜓, (28)

where 𝜃 and 𝜓 are two known positive constants.
(A4) Assume (A1) and (A2) hold, and 𝛼

𝑖
, 𝛽
𝑖
, and 𝑘

𝑖𝑗
are

known positive constants.
To ensure the occurrence of the sliding motion, an

adaptive sliding mode controller is proposed as

𝑢
𝑖 (

𝑡) = 𝑓
𝑖 (

𝑥) + 𝐹
𝑖 (

𝑥)
̂
𝜃 − 𝑔
𝑖
(𝑦) − 𝐺

𝑖
(𝑦) �̂�

+ (𝛼
𝑖
+ 𝛽
𝑖
) sign (𝑠

𝑖 (
𝑡)) +

1

2

𝑘
𝑖
𝑠
𝑖 (

𝑡)

− 𝜂 (







̂
𝜃







2

+ 𝜃

2

+




�̂�





2
+ 𝜓
2
)

× (

𝑠
𝑖 (

𝑡)

𝜆
𝑖‖
𝑠 (𝑡)‖
2
) +

𝑛

∑

𝑗=1

𝜆
2

𝑗

𝜆
3

𝑖

𝑘
𝑗𝑖
𝑠
𝑖 (

𝑡) ,

(29)
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where ̂
𝜃, �̂� are the estimations for 𝜃, 𝜓, respectively. 𝜂

𝑖
=

𝑘
𝑖
𝜆
𝑖
, 𝑖 = 1, 2, . . . , 𝑛 and 𝜂 = min{𝜂

1
, 𝜂
2
, . . . , 𝜂

𝑛
} > 0, 𝑘

𝑖
> 0

are the switching gain and constants, 𝑖 = 1, 2, . . . , 𝑛.
To tackle the uncertainties and unknown parameters,

appropriate adaptive laws are defined as follows:

̇
̂
𝜃 = 𝐹

T
(𝑥) 𝛾 (𝑡) ,

̂
𝜃 (0) =

̂
𝜃
0

̇
�̂� = −𝐺

T
(𝑦) 𝛾 (𝑡) , �̂� (0) = �̂�

0
,

(30)

where 𝛾(𝑡) = [𝜆
1
𝑠
1
(𝑡), 𝜆
2
𝑠
2
(𝑡), . . . , 𝜆

𝑛
𝑠
𝑛
(𝑡)]

T, and ̂
𝜃
0
, �̂�
0
are

the initial values of the update parameters, respectively.
Based on the control input in (29) with the updating laws

in (30) to guarantee the reaching condition lim
𝑡→∞

𝑠(𝑡) =

0 almost surely holds and to ensure the occurrence of the
sliding motion, a theorem is proposed and proved.

Theorem 16. Suppose that the assumption conditions (A3)
and (A4) hold; consider the error dynamics (7); this system
is controlled by 𝑢(𝑡) in (29) with updating laws in (30), then
the error system trajectories will converge to the sliding surface
𝑠(𝑡) = 0 almost surely.

Proof. Select a positive definite function as a Lyapunov
function candidate in the form of

𝑉 (𝑡) =

1

2

𝑛

∑

𝑖=1

𝑠
𝑖(
𝑡)
2
+

1

2







̂
𝜃 − 𝜃







2

+

1

2





�̂� − 𝜓






2
. (31)

Since d𝑠
𝑖
(𝑡) = 𝜆

𝑖
d𝑒
𝑖
(𝑡), by Itô’s differential rule, the stochastic

derivative of𝑉(𝑡) along trajectories of error system (7) can be
obtained as follows:

d𝑉 (𝑡) = L𝑉 (𝑡) d𝑡 +

𝑛

∑

1

𝜆
𝑖
𝑠
𝑖 (

𝑡) (𝜎𝑖 (
𝑥) − 𝜎

𝑖
(𝑦)) d𝑤 (𝑡) ,

(32)

where the weak infinitesimal operatorL is given by

L𝑉 (𝑡)

=

𝑛

∑

𝑖=1

[𝜆
𝑖
𝑠
𝑖 (

𝑡)((𝑓𝑖 (
𝑥) − 𝑔

𝑖
(𝑦) + 𝐹

𝑖 (
𝑥) 𝜃

−𝐺
𝑖
(𝑦) 𝜓 + Δ𝑓

𝑖 (
𝑥) − Δ𝑔

𝑖
(𝑦) − 𝑢

𝑖 (
𝑡)))]

+

𝑛

∑

𝑗=1

𝜆
2

𝑖
(𝜎
𝑖 (

𝑥 (𝑡)) − 𝜎
𝑖
(𝑦 (𝑡)))

T
(𝜎
𝑖 (

𝑥 (𝑡)) − 𝜎
𝑖
(𝑦 (𝑡)))

+ (
̂
𝜃 − 𝜃)

T ̇
̂
𝜃 + (�̂� − 𝜓)

T ̇
�̂�

≤

𝑛

∑

𝑖=1

[

[

𝜆
𝑖
𝑠
𝑖 (

𝑡) 𝐹𝑖 (
𝑥) (𝜃 −

̂
𝜃) − 𝜆

𝑖
𝑠
𝑖 (

𝑡) 𝐺𝑖
(𝑦) (𝜓 − �̂�)

−

1

2

𝑘
𝑖
𝜆
𝑖
𝑠
𝑖(
𝑡)
2
− 𝜆
𝑖
𝑠
𝑖 (

𝑡)

𝑛

∑

𝑗=1

𝜆
2

𝑗

𝜆
3

𝑖

𝑘
𝑗𝑖
𝑠
𝑖 (

𝑡)

+ 𝜆
𝑖
𝑠
𝑖 (

𝑡) 𝜂 (







̂
𝜃







2

+ 𝜃

2

+




�̂�





2
+ 𝜓
2
)

×(

𝑠
𝑖 (

𝑡)

𝜆
𝑖‖
𝑠 (𝑡)‖
2
) +

𝑛

∑

𝑗=1

𝜆
2

𝑖
𝑘
𝑖𝑗
𝑒
2

𝑗
(𝑡)

]

]

+ (
̂
𝜃 − 𝜃)

T ̇
̂
𝜃 + (�̂� − 𝜓)

T ̇
�̂�.

(33)

Using the facts ∑
𝑛

𝑖=1
𝜆
𝑖
𝑠
𝑖
(𝑡)𝐹
𝑖
(𝑥)𝜃 = 𝜃

T
𝐹
T
(𝑥)𝛾(𝑡),

∑
𝑛

𝑖=1
𝜆
𝑖
𝑠
𝑖
(𝑡)𝐺
𝑖
(𝑥)𝜓 = 𝜓

T
𝐺
T
(𝑥)𝛾(𝑡) and the updating

laws in (30), one has

L𝑉 (𝑡)

≤ −

𝑛

∑

𝑖=1

1

2

𝑘
𝑖
𝜆
𝑖
𝑠
2

𝑖
+ 𝜂 (







̂
𝜃







2

+ 𝜃

2

+




�̂�





2
+ 𝜓
2
)

≤ −𝜂 [

1

2

𝑠
T
(𝑡) 𝑠 (𝑡) − (







̂
𝜃







2

+ 𝜃

2

) − (




�̂�





2
+ 𝜓
2
)] .

(34)

Since ‖
̂
𝜃 − 𝜃‖

2

≤ 2(‖
̂
𝜃‖

2

+ ‖𝜃‖
2
) ≤ 2(‖

̂
𝜃‖

2

+ 𝜃

2

) and similarly
we have ‖�̂� − 𝜓‖

2
≤ 2(‖�̂�‖

2
+ 𝜓
2
), so we can conclude that

−(‖
̂
𝜃‖

2

+𝜃

2

) ≤ −1/2‖
̂
𝜃 − 𝜃‖

2

and −(‖
̂
𝜃‖

2

+𝜃

2

) ≤ −1/2‖
̂
𝜃 − 𝜃‖

2

.
So it is easy to get

L𝑉 (𝑡) ≤ −𝜂 [

1

2

𝑠
T
(𝑡) 𝑠 (𝑡) +

1

2







̂
𝜃 − 𝜃







2

+

1

2







̂
𝜃 − 𝜃







2

] ≤ −𝜂𝑉 (𝑡) .

(35)

Then from Lemma 8, we can obtain: lim
𝑡→∞

𝑠(𝑡) = 0 almost
surely. This completes the proof.

Remark 17. From the proof, it is easy to see that the positive
numbers in (A4) also could be unknown; we just modify
the estimate parameters in the controller. To simplify, we
discussed the problem under condition (A4).

Remark 18. The controller in (30) contains a discontinuous
term 𝜂(‖

̂
𝜃‖

2

+𝜃

2

+‖�̂�‖
2
+𝜓
2
)(𝑠
𝑖
/𝜆
𝑖
‖𝑠‖
2
) and thus chattering is

unavoidable. In order to eliminate this chattering, this control
term can bemodified as 𝜂(‖̂𝜃‖

2

+𝜃

2

+‖�̂�‖
2
+𝜓
2
)(𝑠
𝑖
/(𝜆
𝑖
‖𝑠‖
2
+𝜖)),

where 𝜖 is a sufficiently small positive constant.

Remark 19. With the similar method in Theorem 13 and
Theorem 14, we can also discuss the problem of the identi-
fication between the unknown parameters 𝜃, 𝜓 in (7) and ̂

𝜃,
�̂� in (30).

4. Numerical Simulations

In this section, we will show that the proposed adaptive
controllers are efficient and that the theoretical results are cor-
rect. Numerical simulations are performed using MATLAB
software. The well-known stochastic chaos between Lorenz
system and Chen systems is synchronized using the adaptive
controller (15) in the first example. The synchronization
between Chen system and Lu system is shown in the second
example using the adaptive controller (29). The Lorenz,
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2
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Figure 1: The trajectories of the error system without control input
in Example 1.

Chen, and Lu systems are given by the following differential
equations, respectively,

{
{
{
{
{

{
{
{
{
{

{

̇𝑥
1
= 10 (𝑥

2
− 𝑥
1
)

̇𝑥
2
= 28𝑥

1
− 𝑥
2
− 𝑥
1
𝑥
3

̇𝑥
3
= 𝑥
1
𝑥
2
−

8𝑥
3

3

{
{
{
{

{
{
{
{

{

̇𝑥
1
= 35 (𝑥

2
− 𝑥
1
)

̇𝑥
2
= 28𝑥

2
− 7𝑥
1
− 𝑥
1
𝑥
3

̇𝑥
3
= 𝑥
1
𝑥
2
− 3𝑥
3

{
{
{
{

{
{
{
{

{

̇𝑥
1
= 36 (𝑥

2
− 𝑥
1
)

̇𝑥
2
= −20𝑥

2
− 𝑥
1
𝑥
3

̇𝑥
3
= 𝑥
1
𝑥
2
− 3𝑥
3
.

(36)

In all the cases, the uncertainties Δ𝑓(𝑥), Δ𝑔(𝑦), and
𝜎(𝑥) and the noise intensity function are given as follows,
respectively,

{
{
{
{

{
{
{
{

{

Δ𝑓
1 (

𝑥) = 0.5 sin (𝜋𝑥
1
) ,

Δ𝑓
2 (

𝑥) = 0.5 sin (2𝜋𝑥
2
) ,

Δ𝑓
3 (

𝑥) = 0.5 sin (3𝜋𝑥
3
) ,

5 10 15 20 25 30
𝑡

35

1
0.5

0
−0.5

𝑒 1

(a)

5 10 15 20 25 30
𝑡

35

1000

0

−1000

−2000

𝑒 2

(b)

5 10 15 20 25 30
𝑡

35

200
0

−200

−400

−600

𝑒 3

(c)

Figure 2: Time responses of error system under control input in
Example 1.

{
{
{
{

{
{
{
{

{

Δ𝑔
1
(𝑦) = −5 sin (𝜋𝑦

1
) ,

Δ𝑔
2
(𝑦) = −4 sin (2𝜋𝑦

2
) ,

Δ𝑔
3
(𝑦) = − sin (3𝜋𝑦

3
) ,

{
{
{
{

{
{
{
{

{

𝜎
1 (

𝑥) = 𝑥
2

2
+ 0.3𝑥

3
,

𝜎
2 (

𝑥) = 𝑥
3

1
+ 0.1𝑥

3
,

𝜎
3 (

𝑥) = 0.2𝑥
1
+ 𝑥
1
𝑥
2
.

(37)

In all simulations, we choose the initial value of the
adaptive parameters vectors ̂

𝜃
0

= [5, 5, 5]
T, �̂�
0

= [3, 3, 3]
T,

�̂�
𝑖0

=
̂
𝛽
𝑖0

=
̂
𝑘
𝑖𝑗0

= 2, the constants 𝑘
1
= 10 and 𝜖 = 0.01.

4.1. Example 1: Synchronization between Lorenz Systems and
Chen Systems. Thenonlinear part ofmaster and slave systems
can be rewritten in the form of (2) and (4) as follows:

𝑓 (𝑥) = (

0

−𝑥
1
𝑥
3
− 𝑥
2

𝑥
1
𝑥
2

) , 𝐹 (𝑥) = (

𝑥
2
− 𝑥
1

0 0

0 𝑥
1

0

0 0 −𝑥
3

) ,

𝑔 (𝑦) = (

0

−𝑦
1
𝑦
3

𝑦
1
𝑦
2

) , 𝐺 (𝑦) = (

𝑦
2
− 𝑦
1

0 0

−𝑦
1

𝑦
1
+ 𝑦
2

0

0 0 −𝑦
3

) .

(38)
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Figure 3: Time response of the control input in Example 1.
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Figure 4: Time responses of the sliding mode surface 𝑠(𝑡) in
Example 1.

Consequently, three sliding surfaces are chosen as

{
{
{
{

{
{
{
{

{

𝑠
1
= 10𝑒
1 (

𝑡) ,

𝑠
2
= 8𝑒
2 (

𝑡) ,

𝑠
3
= 2𝑒
3 (

𝑡) .

(39)
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𝑡
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Figure 5: The trajectories of the adaptive laws of the parameter ̂
𝜃 in

Example 1.

The stochastic Lorenz and Chen systems are started with
the initial conditions as follows: 𝑥

0
= [1, 1.5, 2]

T and 𝑦
0

=

[2, 2.5, 3]
T. The synchronization of the Lorenz and Chen

systems without control input is shown in Figure 1 and the
error simulation under the control input is shown in Figure 2.
As one can see the synchronization errors converge to zero
in mean squares. The control input is shown in Figure 3 and
the sliding mode surface is shown in Figure 4. The updated
vector parameters of �̂�,

̂
𝛽,

̂
𝜃, and �̂� are shown in Figures

5, 6, 7, and 8 and ̂
𝑘
𝑖𝑗
are depicted in Figures 9, 10, and 11,

respectively. Obviously, all of updated parameters approach
some constants.

4.2. Example 2: Synchronization between Chen Systems and Lu
Systems. The nonlinear part of master and slave systems can
be rewritten in the form of (2) and (4) as follows:

𝑓 (𝑥) = (

0

−𝑥
1
𝑥
3

𝑥
1
𝑥
2

) , 𝐹 (𝑥) = (

𝑥
2
− 𝑥
1

0 0

−𝑥
1

𝑥
1
+ 𝑥
2

0

0 0 −𝑥
3

) ,

𝑔 (𝑦) = (

0

−𝑦
1
𝑦
3

𝑦
1
𝑦
2

) , 𝐺 (𝑦) = (

𝑦
2
− 𝑦
1

0 0

0 −𝑦
2

0

0 0 −𝑦
3

) .

(40)

Consequently, the same sliding surfaces are chosen as in
Example 1. To simplify, we choose the noise intensity function
𝜎(𝑥) = [0.4𝑥

2
+ 0.3𝑥

3
, 0.2𝑥
1

+ 0.1𝑥
3
, 0.3𝑥
1

+ 0.2𝑥
2
]
T, so

it is easy to see 𝛼
𝑖

= 𝛽
𝑖

= 0.5 and 𝑘
11

= 𝑘
22

= 𝑘
33

=

0, 𝑘
12

= 0.4, 𝑘
13

= 0.3, 𝑘
21

= 0.2, 𝑘
23

= 0.1, 𝑘
31

=

0.3, and 𝑘
32

= 0.2. The stochastic Chen and Lu systems are
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Figure 6: Time responses of the adaptive update laws �̂� in Example
1.

0 5 10 15 20 25 30 35
0

5

𝛼
1

𝑡

(a)

0 5 10 15 20 25 30 35
0

5

𝛼
2

𝑡

(b)

𝛼
3

0 5 10 15 20 25 30 35
𝑡

3.5

3

2.5
2

(c)

Figure 7: The trajectories of the adaptive laws 𝛼 in Example 1.

started with the initial conditions as follows: 𝑥
0

= [8, 4, 7]
T

and 𝑦
0

= [−10, −4, 2]
T. The synchronization of the Chen

and Lu systems without control input is shown in Figure 12
and the error simulation under the control input is shown in
Figure 13. As one can see the synchronization errors converge
to zero almost surely. The control input is shown in Figure 14

2
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𝛽
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2
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6
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𝑡

𝛽
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𝛽
3

4

3.5

3
2.5

(c)

Figure 8: The trajectories of the adaptive laws 𝛽 in Example 1.
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3
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Figure 9: The trajectories of the adaptive laws 𝑘
11
, 𝑘
12
, and 𝑘

13
in

Example 1.

and the sliding mode surface is shown in Figure 15. The
updated vector parameters of ̂𝜃 and �̂� are depicted in Figures
16 and 17, respectively. Obviously, all of updated parameters
approach some constants.
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Figure 10: The trajectories of the adaptive laws 𝑘
21
, 𝑘
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, and 𝑘
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in

Example 1.
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Figure 11: The trajectories of the adaptive laws 𝑘
31
, 𝑘
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, and 𝑘

33
in

Example 1.

Remark 20. As it is observed in Figures 5, 6, 16, and 17, the
limits of unknown parameter vectors ̂

𝜃 and �̂� are not equal
to the vectors 𝜃 and 𝜓 in (36). This point is consistent with
the results of Theorem 13, Theorem 14, and Remark 19.
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Figure 12:The trajectories of the error systemwithout control input
in Example 2.
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𝑒 3 0
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Figure 13: Time responses of error system under control input in
Example 2.

5. Conclusion

In this paper, adaptive sliding mode controllers are designed
to realize the asymptotical synchronization in mean squares
and the almost surely synchronization for two different
stochastic chaotic systems with unknown parameters and
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Figure 14: Time responses of the control input in Example 2.
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Figure 15: Time responses of the sliding mode surface 𝑠(𝑡) in
Example 2.

uncertain terms, respectively. The designed controllers’
robustness and efficiency are proved between two different
pairs of stochastic chaos systems (Lorenz-Chen and Chen-
Lu) with unknown parameters and uncertainties.
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Figure 16: The trajectories of the adaptive laws of the parameter ̂
𝜃

in Example 2.
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Figure 17: The trajectories of the adaptive laws of the parameter �̂�

in Example 2.
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This paper is concerned with the stability analysis and control of a new smooth Chua’s system. Firstly, the chaotic characteristic
of the system is confirmed with the aid of the Lyapunov exponents. Secondly, it is proved that the system has globally exponential
attractive set and positive invariant set. For the three unstable equilibrium points of the system, a linear controller is designed
to globally exponentially stabilize the equilibrium points. Then, a linear controller and an adaptive controller are, respectively,
proposed so that two similar types of smooth Chua’s systems are globally synchronized, and the estimation errors of the uncertain
parameters converge to zero as 𝑡 tends to infinity. Finally, the numerical simulations are also presented.

1. Introduction

It is well known that Chua’s system is the first analog circuit
to realize chaos in experiments. The original Chua’s system is
described by the following ordinary differential equations [1]:

̇𝑥 = 𝑝 (𝑦 − 𝑥 − 𝑔 (𝑥)) ,

̇𝑦 = 𝑥 − 𝑦 + 𝑧,

̇𝑧 = −𝑞𝑦,

(1)

where 𝑥, 𝑦, 𝑧 ∈ 𝑅 are state variables and 𝑔(𝑥) = 𝐺
𝑏
𝑥 +

(1/2)(𝐺
𝑎
−𝐺
𝑏
)(|𝑥 − 𝐸| − |𝑥 − 𝐸|), 𝑝 > 0, 𝑞 > 0, and 𝐺

𝑎
, 𝐺
𝑏
are

constants. Due to the form of a simple circuit, there are a large
literature on the dynamical behavior of Chua’s system [2–8].
By changing the parameters or the corresponding functions
of Chua’s system, the chaotic phenomenon is very rich, and

it is more convenient to study the chaotic mechanism and
characteristics [6–8].

For the chaotic systems, Lagrange stability, stability of
equilibrium points and, synchronization are three important
problems which attracted more and more attention (refer
to [9–16] and the reference therein). In [11–13], the authors
studied the Lagrange stability by applying the attractive set
and positive invariant set of the chaotic systems. Moreover,
the researchers examined the stabilization of the unstable
equilibrium points and the synchronization control for the
chaotic systems with linear controllers [7, 14]. Recently, adap-
tive controllers are used in synchronous control of chaotic
systems when the parameters of the systems are uncertain
[15–17].

Motivated by the previous results, the main purpose of
this paper is to construct a new smooth Chua’s system and
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Figure 1: The phase portraits of Chua’s system (2).

investigate the stability and control problems. More precisely,
we will consider the following smooth Chua’s system:

̇𝑥 = 𝑝 (𝑥 + 𝑦 − 𝑥 ln√1 + 𝑥2) ,

̇𝑦 = 𝑥 − 𝑦 + 𝑧,

̇𝑧 = −𝑞𝑦,

(2)

where 𝑥, 𝑦, 𝑧 ∈ 𝑅 are state variables and 𝑝 > 0, 𝑞 > 0 are
constants.

We will show that the chaotic characteristics are
depended on the parameters 𝑝 and 𝑞 and the initial state
values of the system (2). All equilibrium points of system (2)
are examined to be unstable when 𝑝 = 11 and 𝑞 = 14.87 (see
in Section 3). By computing with MATLAB, the maximum
Lyapunov exponent of the system (2) is 0.0021, where the
embedding dimension 𝑚 is 3 and the delay time 𝜏 is 5.
Since the maximum Lyapunov exponent is greater than 0,
the Chua’s system is chaotic. It will be of great significance
if the solution of (2) is ultimately bounded (Lagrange
asymptotically stable). The chaotic phase diagrams of such
system is obtained by simulation with MATLAB. Figure 1
shows the phase diagrams of the system (2) with 𝑥(0) = −3,
𝑦(0) = 2, and 𝑧(0) = 1, the phase diagrams of Chua’s system
exhibits chaotic.

The remains of this paper are organized as follows. The
existence of globally exponential attractive set and positive
invariant set for the system (2) will be discussed in Section 2.
The asymptotic stability of the equilibrium points will be
studied in Section 3, and the synchronization control for
two similar types of the Chua’s systems will be discussed in
Section 4. In Section 5, wewill give the numerical simulations
to demonstrate the correctness of our results, and finally we
will give the conclusions in Section 6.

2. Existence of Globally Exponential Attractive
Set and Positive Invariant Set

The Lagrange stability analysis of the system (2) will be stud-
ied in this section. To do so, we first give two definitions [7].

Definition 1. If there exists a radially unbounded, positive
definite Lyapunov function 𝑉(𝑋(𝑡)) and positive numbers
𝑙 > 0, 𝛼 > 0 such that for all 𝑋

0
∈ 𝑅
3, when 𝑉(𝑋

0
) > 𝑙,

the solution of the system (2), 𝑋(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) along
𝑉(𝑋(𝑡)) satisfies |𝑉(𝑋(𝑡)) − 𝑙| ≤ |𝑉(𝑥

0
) − 𝑙|𝑒

−𝛼(𝑡−𝑡0), then
system (2) has a globally exponential attractive set Ω ≜ {𝑋 |
𝑉(𝑋(𝑡)) < 𝑙}.

Definition 2. Let Ω ⊆ 𝑅
3, if ∀𝑋

0
∈ Ω and for all 𝑡 ≥ 𝑡

0
,

𝑋(𝑡, 𝑡
0
, 𝑋
0
) ⊆ Ω, then Ω is called positive invariant set of the

system (2).

It is easy to prove that the globally exponential attractive
set is positive invariant. A system with global attractive set is
always called Lagrange globally asymptotically stable system
or ultimately bounded dissipative system. For the system (2),
we will prove the following the Lagrange stability results.

Theorem3. The system (2) has the following globally exponen-
tial attractive and positive invariant set:

Ω =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

|𝑥| ≤




𝑥
𝑏





= min {


𝑥
𝑏1





,




𝑥
𝑏2





}

𝑦
2
+

1

𝑞

𝑧
2
− 𝜖𝑦𝑧 ≤

(5/4𝜂) 𝑥
2

𝑏

−𝜏
1
𝜇
𝑀
(𝐺
−

2
) /𝜆
𝑀
(𝐺
+

2
)





𝑥
𝑏1





>
√
𝑒
((2−(𝜖/4))

2
/(2−𝜖𝑞−(𝜖/4)))+(𝜖/4)+2

− 1





𝑥
𝑏2





= sup
Ω

|𝑥| ,

Ω ≜ {𝑥 |

1

𝑝

𝑥
2
+ 𝑦
2
+

1

𝑞

𝑧
2
− 𝜖𝑦𝑧

=

𝑥
2

𝑏1
ln (1 + 𝑥2

𝑏1
)

−𝜇
𝑀
(𝐺
−

1
(𝑥
𝑏1
)) /𝜆
𝑀
(𝐺
+

1
)

} ,

(3)
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where 0 < 𝜖 ≪ 1,

𝐺
+

1
≜

[

[

[

[

[

[

[

[

1

𝑝

0 0

0 1 −

𝜖

2

0 −

𝜖

2

1

𝑞

]

]

]

]

]

]

]

]

, 𝐺
+

2
≜

[

[

[

[

1 −

𝜖

2

−

𝜖

2

1

𝑞

]

]

]

]

, (4)

are symmetric positive definite matrices, and

𝐺
−

1
≜

[

[

[

[

[

[

[

2 (1 − ln√1 + 𝑥2
𝑏1
) 2 −

𝜖

2

2 𝜖𝑞 − 2

𝜖

2

−

𝜖

2

𝜖

2

−𝜖

]

]

]

]

]

]

]

,

𝐺
−

2
≜
[

[

[

𝜖𝑞 − 2

𝜖

2

𝜖

2

−𝜖

]

]

]

,

(5)

are symmetric negative definite matrices. 𝜆
𝑀
(𝐺
+

1
), 𝜇
𝑀
(𝐺
−

1
),

𝜆
𝑀
(𝐺
+

2
), and 𝜇

𝑀
(𝐺
−

2
) are the maximum eigenvalues of 𝐺+

1
,

𝐺
−

1
, 𝐺
+

2
, and 𝐺−

2
, respectively. 𝜖, 𝑥

𝑏1
, and 𝑥

𝑏2
in (3) are chosen

to guarantee that 𝐺+
1
, 𝐺
+

2
are positive definite and 𝐺−

1
, 𝐺
−

2
are

negative definite. 𝜏
1
, 𝜏
2
, and 𝜂 are chosen such that 𝜏

1
> 0,

𝜏
2
> 0, 𝜂 > 0, 𝜏

1
+ 𝜏
2
= 1, and 𝜏

2
𝜇
𝑀
(𝐺
−

2
) + 𝜂 ≤ 0.

Proof. The proof is divided into three steps.

Step I. The existence of 𝜖, 𝑥
𝑏1
such that𝐺+

1
is positive definite

and 𝐺−
1
is negative definite.

It is well known that 𝐺+
1
is positive definite if and only if

all the order principal minors of 𝐺+
1
are positive [18]. That is,

1

𝑝

> 0,















1

𝑝

0

0 1















> 0,



























1

𝑝

0 0

0 1 −

𝜖

2

0 −

𝜖

2

1

𝑞



























=

1

𝑝

(

1

𝑞

−

𝜖
2

4

) > 0.

(6)

Let |𝜖| < 2/√𝑞; it is easy to see that 𝐺+
1
is positive definite

since 𝑝 > 0, 𝑞 > 0.
Next, let

𝑆
11
=
[

[

2 (1 − ln√1 + 𝑥2
𝑏1
) 2

2 𝜖𝑞 − 2

]

]

,

𝑆
12
=
[

[

[

−

𝜖

2

𝜖

2

]

]

]

, 𝑆
21
= [−

𝜖

2

,

𝜖

2

] , 𝑆
22
= −𝜖.

(7)

Then,

𝐺
−

1
= [

𝑆
11
𝑆
12

𝑆
21
𝑆
22

] . (8)

From Schur theorem [18], 𝐺−
1
is negative definite if and

only if 𝑆
11
< 0, 𝑆

22
− 𝑆
21
𝑆
−1

11
𝑆
12
< 0. Let |𝜖|, 𝑥

𝑏1
satisfy

0 < 𝜖 ≪ 1,





𝑥
𝑏1





>
√e((2−(𝜖/4))2/(2−𝜖𝑞−(𝜖/4)))+(𝜖/4)+2 − 1.

(9)

It is easy to verify that 𝐺−
1
is negative definite.

Step II. Existence of globally exponential attractive set of 𝑥.
Let 𝜆

𝑚
(𝐺
+

1
) and 𝜆

𝑚
(𝐺
−

1
) be the minimum eigenval-

ues of 𝐺+
1
and 𝐺−

1
, respectively. By constructing a radially

unbounded Lyapunov function as follows:

𝑉 =

1

𝑝

𝑥
2
+ 𝑦
2
+

1

𝑞

𝑧
2
− 𝜖𝑦𝑧 =

[

[

𝑥

𝑦

𝑧

]

]

𝑇

𝐺
+

1
[

[

𝑥

𝑦

𝑧

]

]

, (10)

then, one can obtain that

𝜆
𝑚
(𝐺
+

1
) (𝑥
2
+ 𝑦
2
+ 𝑧
2
) ≤ 𝑉 ≤ 𝜆

𝑀
(𝐺
+

1
) (𝑥
2
+ 𝑦
2
+ 𝑧
2
) .

(11)

The time derivative of 𝑉 along the system (2) is given by

𝑑𝑉

𝑑𝑡








(2)

=

2

𝑝

𝑥 ̇𝑥 + 2𝑦 ̇𝑦 +

2

𝑞

𝑧 ̇𝑧 − 𝜖 ̇𝑦𝑧 − 𝜖𝑦 ̇𝑧

=

2

𝑝

𝑥𝑝 (𝑥 + 𝑦 − 𝑥 ln√1 + 𝑥2) + 2𝑦 (𝑥 − 𝑦 + 𝑧)

+

2

𝑞

(−𝑞𝑦) − 𝜖 (𝑥 − 𝑦 + 𝑧) 𝑧 − 𝜖𝑦 (−𝑞𝑦)

=
[

[

𝑥

𝑦

𝑧

]

]

𝑇[
[

[

[

[

[

[

2 (1 − ln√1 + 𝑥2) 2 −

𝜖

2

2 𝜖𝑞 − 2

𝜖

2

−

𝜖

2

𝜖

2

−𝜖

]

]

]

]

]

]

]

[

[

𝑥

𝑦

𝑧

]

]

=
[

[

𝑥

𝑦

𝑧

]

]

𝑇

𝐺
−

1
[

[

𝑥

𝑦

𝑧

]

]

− 2 (ln√1 + 𝑥2 − ln√1 + 𝑥2
𝑏1
)𝑥
2
.

(12)

If |𝑥| > |𝑥
𝑏1
|, one has

𝑑𝑉

𝑑𝑡








(2)

≤
[

[

𝑥

𝑦

𝑧

]

]

𝑇

𝐺
−

1
[

[

𝑥

𝑦

𝑧

]

]

≤

𝜇
𝑀
(𝐺
−

1
)

𝜆
𝑀
(𝐺
+

1
)

𝑉. (13)

Then, the following inequality holds

𝑉 (𝑋 (𝑡, 𝑡
0
, 𝑋
0
)) ≤ 𝑉 (𝑋

0
) e(𝜇𝑀(𝐺

−

1
)/𝜆𝑀(𝐺

+

1
))(𝑡−𝑡0)

. (14)
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Thus, the trajectory of the system (2) will exponentially decay
into the area 𝑈 = {𝑥 | |𝑥| ≤ |𝑥

𝑏1
|} if |𝑥| > |𝑥

𝑏1
|.

When the trajectory of the system (2) is in the area 𝑈, it
holds that

𝑑𝑉

𝑑𝑡








(2)

=
[

[

𝑥

𝑦

𝑧

]

]

𝑇

𝐺
−

1
[

[

𝑥

𝑦

𝑧

]

]

+ 2 (ln√1 + 𝑥2
𝑏1
− ln√1 + 𝑥2)𝑥2

≤

𝜇
𝑀
(𝐺
−

1
)

𝜆
𝑀
(𝐺
+

1
)

𝑉 + 2 (ln√1 + 𝑥2
𝑏1
− ln√1 + 𝑥2)𝑥2

≤

𝜇
𝑀
(𝐺
−

1
)

𝜆
𝑀
(𝐺
+

1
)

𝑉 + 𝑥
2

𝑏1
ln (1 + 𝑥2

𝑏1
)

=

𝜇
𝑀
(𝐺
−

1
)

𝜆
𝑀
(𝐺
+

1
)

(

𝑉 − 𝑥
2

𝑏1
ln (1 + 𝑥2

𝑏1
)

−𝜇
𝑀
(𝐺
−

1
) /𝜆
𝑀
(𝐺
+

1
)

) .

(15)

Let𝑉
𝑙
≜ (𝑥
2

𝑏1
ln(1+𝑥2

𝑏1
))/(−𝜇

𝑀
(𝐺
−

1
)/𝜆
𝑀
(𝐺
+

1
)). If𝑉(𝑋

0
) >

𝑉
𝑙
and 𝑉(𝑋(𝑡, 𝑡

0
, 𝑋
0
)) > 𝑉

𝑙
, it holds that

𝑉 (𝑋 (𝑡, 𝑡
0
, 𝑋
0
)) − 𝑉

𝑙
≤ (𝑉 (𝑋

0
) − 𝑉
𝑙
) 𝑒
(𝜇𝑀(𝐺

−

1
)/𝜆𝑀(𝐺

+

1
))(𝑡−𝑡0)

.

(16)

Let Ω ≜ {𝑋 | 𝑉(𝑋) = 𝑉
𝑙
}, |𝑥
𝑏2
| ≜ sup

𝑥∈Ω
|𝑥|. Then,

𝑉(𝑋(𝑡, 𝑡
0
, 𝑋
0
)) − 𝑉

𝑙
exponentially decays when |𝑥| ≥ |𝑥

𝑏
| ≜

min{|𝑥
𝑏1
|, |𝑥
𝑏2
|}. Thus, Ω

𝑥
≜ {𝑥 | |𝑥| ≤ |𝑥

𝑏
|} is the globally

exponential attractive set of 𝑥.

Step III. Existence of globally exponential attractive set of 𝑦
and 𝑧.

Let

𝐺
+

2
≜

[

[

[

[

1 −

𝜖

2

−

𝜖

2

1

𝑞

]

]

]

]

, 𝐺
−

2
≜
[

[

[

𝜖𝑞 − 2

𝜖

2

𝜖

2

−𝜖

]

]

]

, (17)

then, 𝐺+
2
is a positive matrix if 𝜖 ∈ (0, 2/√𝑞), and 𝐺−2 is a

negative matrix if 𝜖 ∈ (0, 8/(4𝑞 + 1)).
At the same time, it is easy to examine that 𝐺+

2
is positive

and 𝐺−
2
is negative if let 𝜖 ∈ (0, 8/(4𝑞 + 1)), since 𝑞 > 0 and

8/(4𝑞 + 1) = 2/(𝑞 + 1/4) ≤ 2/√𝑞.
Let 𝜆

𝑚
(𝐺
+

2
), 𝜆
𝑀
(𝐺
+

2
) be, respectively, minimum and

maximum eigenvalues of 𝐺+
2
, and let 𝜇

𝑚
(𝐺
−

2
) and 𝜇

𝑀
(𝐺
−

2
) be

the minimum and maximum eigenvalues of 𝐺−
2
, respectively.

Since |𝑥| ≤ |𝑥
𝑏
|, a radially unbounded and positive definite

Lyapunov function about 𝑦 and 𝑧 is constructed as follows:

𝑊 = 𝑦
2
+

1

𝑞

𝑧
2
− 𝜖𝑦𝑧 = [

𝑦

𝑧
]

𝑇

𝐺
+

2
[

𝑦

𝑧
] . (18)

Then, the time derivative of𝑊 along the system (2) yields

𝑑𝑊

𝑑𝑡








(2)

= 2𝑦 ̇𝑦 +

2

𝑞

𝑧 ̇𝑧 − 𝜖 ̇𝑦𝑧 − 𝜖𝑦 ̇𝑧

= [

𝑦

𝑧
]

𝑇

𝐺
−

2
[

𝑦

𝑧
] + 2𝑥𝑦 − 𝜖𝑥𝑧

≤ 𝜇
𝑀
(𝐺
−

2
) (𝑦
2
+ 𝑧
2
) + 2





𝑥
𝑏










𝑦




+ 𝜖




𝑥
𝑏





|𝑧|

≤ 𝜏
1
𝜇
𝑀
(𝐺
−

2
) (𝑦
2
+ 𝑧
2
) + 𝜏
2
𝜇
𝑀
(𝐺
−

2
) (𝑦
2
+ 𝑧
2
)

+ 𝜂𝑦
2
+

𝑥
2

𝑏

𝜂

+ 𝜂𝑧
2
+

𝑥
2

𝑏

4𝜂

≤

𝜏
1
𝜇
𝑀
(𝐺
−

2
)

𝜆
𝑀
(𝐺
+

2
)

𝑊 +(𝜏
2
𝜇
𝑀
(𝐺
−

2
) + 𝜂) (𝑦

2
+ 𝑧
2
)+

5

4𝜂

𝑥
2

𝑏

≤

𝜏
1
𝜇
𝑀
(𝐺
−

2
)

𝜆
𝑀
(𝐺
+

2
)

(𝑊 −

(5/4𝜂) 𝑥
2

𝑏

−𝜏
1
𝜇
𝑀
(𝐺
−

2
) /𝜆
𝑀
(𝐺
+

2
)

) ,

(19)

where 𝜏
1
, 𝜏
2
, and 𝜂 are chosen such that 𝜏

1
> 0, 𝜏
2
> 0, 𝜂 > 0,

𝜏
1
+ 𝜏
2
= 1, and 𝜏

2
𝜇
𝑀
(𝐺
−

2
) + 𝜂 ≤ 0.

Let𝑊
𝑙
≜ (5/4𝜂)𝑥

2

𝑏
/(−𝜏
1
𝜇
𝑀
(𝐺
−

2
)/𝜆
𝑀
(𝐺
+

2
)); if𝑊(𝑋

0
) > 𝑊

𝑙

and𝑊(𝑋(𝑡, 𝑡
0
, 𝑋
0
)) > 𝑊

𝑙
, it holds that

𝑊(𝑋 (𝑡, 𝑡
0
, 𝑋
0
)) − 𝑊

𝑙

≤ (𝑊(𝑋
0
) − 𝑊

𝑙
) 𝑒
(𝜏1𝜇𝑀(𝐺

−

2
)/𝜆𝑀(𝐺

+

2
))(𝑡−𝑡0)

.

(20)

Similarly, if𝑊(𝑋
0
) ≤ 𝑊

𝑙
, the state trajectory will stay in

the area such that𝑊(𝑋(𝑡, 𝑡
0
, 𝑋
0
)) ≤ 𝑊

𝑙
holds. Hence, 𝑦 and

𝑧 are exponentially decreased and ultimately enter into the
attractive region𝑊(𝑋(𝑡, 𝑡

0
, 𝑋
0
)) ≤ 𝑊

𝑙
, that is,

𝑦
2
+

1

𝑞

𝑧
2
− 𝜖𝑦𝑧 ≤

(5/4𝜂) 𝑥
2

𝑏

−𝜏
1
𝜇
𝑀
(𝐺
−

2
) /𝜆
𝑀
(𝐺
+

2
)

. (21)

Combining Steps I, II, and III,Theorem 3 is obtained and
the proof is completed.

Remark 4. In this section, a constructive method is proposed
to prove the main results of existence of globally exponential
attractive set and positive invariant set for the Chua’s systems.
By constructing the matrices 𝐺+

1
, 𝐺−
1
, 𝐺+
2
, 𝐺−
2
, and Lyapunov

function candidate 𝑉 and 𝑊, the problem is solved inge-
niously.

3. Global Linear Stabilization of
the Equilibrium Points

In this section, the stability of the equilibrium points for the
system (2) will be discussed with the aid of a linear controller.

Firstly, it is easy to examine that the system (2) has three
equilibrium points:

𝑆
0
= (0, 0, 0) , 𝑆

+
= (√𝑒

2
− 1, 0, −√𝑒

2
− 1) ,

𝑆
−
= (−√𝑒

2
− 1, 0, √𝑒

2
− 1) .

(22)



Abstract and Applied Analysis 5

Moreover, the equilibrium points of the system is indepen-
dent of parameters 𝑝 and 𝑞. It should be mentioned that,
however, the stability of the equilibrium points is depended
on 𝑝 and 𝑞. In the following, we will design a linear controller
to stabilize the unstable equilibrium points.

Let 𝑝 = 11, 𝑞 = 14.87, and (𝑥∗, 𝑦∗, 𝑧∗) be any equilibrium
point of the system (2), the corresponding Jacobian matrix is
given by

𝐽
0
=

[

[

[

[

𝑝(− ln√1 + 𝑥∗2 + 1

1 + 𝑥
∗2
) 𝑝 0

1 −1 1

0 −𝑞 0

]

]

]

]

. (23)

Then the characteristic equation of the corresponding local
linearization system of system (2) is as follows:

𝑎
0
𝜆
3
+ 𝑎
1
𝜆
2
+ 𝑎
2
𝜆 + 𝑎
3
= 0, (24)

where 𝑎
0
= 1, 𝑎

1
= 1 − 𝑝𝑤, 𝑎

2
= −𝑞 − 𝑝 − 𝑝𝑤, 𝑎

3
= 𝑝𝑞𝑤, and

𝑤 = − ln√1 + 𝑥∗2 + (1/(1 + 𝑥∗2)).

(i) If 𝑥∗ = 0, one has 𝑎
0
= 1 > 0, 𝑎

1
= −10 < 0. Accord-

ing to Hurwitz stability criterion [19], the necessary
condition of stable equilibrium point is the same
sign of the coefficients of the characteristic equation.
Consequently, the equilibrium 𝑆

0
is unstable.

(ii) If 𝑥∗ = ±√𝑒2 − 1, one has 𝑎
0
= 1, 𝑎

1
= 10.5113 > 0,

and 𝑎
2
= −16.3587 < 0. Similarly, one can obtain that

𝑆
+
and 𝑆
−
are the unstable equilibrium points.

Now, we will discuss how to design a linear feedback
controller such that the unstable equilibrium points are
exponentially stable. For this purpose, we add the control
terms to the system (2):

̇𝑥 = 𝑝 (𝑥 + 𝑦 − 𝑥 ln√1 + 𝑥2) + 𝑢
1
,

̇𝑦 = 𝑥 − 𝑦 + 𝑧 + 𝑢
2
,

̇𝑧 = −𝑞𝑦 + 𝑢
3
.

(25)

Let 𝑋∗ = (𝑥∗, 𝑦∗, 𝑧∗) be any of the three unstable equi-
librium points, let 𝑋(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) be the solution of
the system (25), and 𝑋(𝑡) = (𝑥, 𝑦, �̃�) = 𝑋(𝑡) − 𝑋∗, then the
error system is given by

̇
�̃� = 𝑝 (𝑥 + 𝑦 − 𝑥 ln√1 + 𝑥2 + 𝑥∗ ln√1 + 𝑥∗2) + 𝑢

1
,

̇
�̃� = 𝑥 − 𝑦 + �̃� + 𝑢

2
,

̇
�̃� = −𝑞𝑦 + 𝑢

3
.

(26)

Definition 5. ∀𝑋(0) = (𝑥(0), 𝑦(0), 𝑧(0)) ∈ 𝑅
3, if 𝑢

𝑖
(𝑖 =

1, 2, 3) is appropriately selected such that





𝑋 (𝑡, 𝑡

0
, 𝑋
0
)






≤




𝑋 (0) − 𝑋

∗



𝑒
−𝛼(𝑡−𝑡0) (27)

holds (𝛼 > 0). Then, the control input 𝑢
𝑖
(𝑖 = 1, 2, 3) can

globally exponentially stabilize the equilibrium point𝑋∗.

Theorem 6. If the following linear controller is added to the
error system (26),

𝑢
1
= −𝑝𝜎

𝑥
𝑥, 𝑢

2
= 𝑢
3
= 0, (28)

where 𝜎
𝑥
is any parameter given beforehand such that 𝜎

𝑥
> 2;

then the equilibrium point 𝑋∗ is globally exponentially stable.

Proof. The proof is divided into two steps.

(1) We will find the existence of 𝜖 > 0 such that 𝐺+
3
is

positive definite and 𝐺−
3
is negative definite, where

𝐺
+

3
≜

[

[

[

[

[

[

[

[

1

𝑝

0 0

0 1 −

𝜖

2

0 −

𝜖

2

1

𝑞

]

]

]

]

]

]

]

]

, 𝐺
−

3
≜

[

[

[

[

[

[

2 (1 − 𝜎
𝑥
) 2 −

𝜖

2

2 𝜖𝑞 − 2

𝜖

2

−

𝜖

2

𝜖

2

−𝜖

]

]

]

]

]

]

.

(29)

It is easy to obtain that 𝐺+
3
is positive definite if |𝜖| < 2/√𝑞.

Now we focus on choosing 𝜖 > 0 such that 𝐺−
3
is negative

definite. By the Schur theorem [18], 𝐺−
3
is negative definite if

and only if

𝜖 > 0,

𝜖𝑞 +

𝜖

4

− 2 < 0,

(2 (𝜎
𝑥
− 1) −

𝜖

4

) (2 − 𝜖𝑞 −

𝜖

4

) > (2 −

𝜖

4

)

2

,

(30)

that is
𝜖 > 0,

𝜖 <

8

4𝑞 + 1

,

𝜎
𝑥
>

64 − 16𝜖 + 𝜖
2

64 − 32𝜖𝑞 − 8𝜖

+ 1 +

𝜖

8

.

(31)

Obviously, 𝐺−
3
is negative definite if 0 < 𝜖 ≪ 1, 𝜎

𝑥
> 2.

(2) We construct a positive definite and radially
unbounded Lyapunov function to prove the stability
of closed-loop systems (26) with controller (28)
which is written as

𝑉
1
(𝑋 (𝑡, 𝑡

0
, 𝑋
0
)) =

1

𝑝

𝑥
2
+ 𝑦
2
+

1

𝑞

�̃�
2
− 𝜖𝑦�̃�

=
[

[

𝑥

𝑦

�̃�

]

]

𝑇

𝐺
+

3
[

[

𝑥

𝑦

�̃�

]

]

.

(32)

Suppose 𝜆
𝑚
(𝐺
+

3
) and 𝜆

𝑀
(𝐺
+

3
) are minimum and maxi-

mum eigenvalues of the positive definite matrix 𝐺+
3
, respec-

tively. Then, we have

𝜆
𝑚
(𝐺
+

3
) (𝑥
2
+ 𝑦
2
+ �̃�
2
) ≤ 𝑉
1
≤ 𝜆
𝑀
(𝐺
+

3
) (𝑥
2
+ 𝑦
2
+ �̃�
2
) .

(33)
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Let 𝑓(𝑥) = 𝑥 ln√1 + 𝑥2 − 𝑥∗ ln√1 + 𝑥∗2. Obviously,
𝑥 ln√1 + 𝑥2 is a monotonically increasing odd function.
Then,

(i) if 𝑥 ≥ 0, then 𝑓(𝑥) ≥ 0 and

0 ≤ 𝑥𝑓 (𝑥) ≤ +∞, (34)

(ii) if 𝑥 ≤ 0, then 𝑓(𝑥) ≤ 0 and

0 ≤ 𝑥𝑓 (𝑥) ≤ +∞. (35)

Thus

0 ≤ 𝑥𝑓 (𝑥) ≤ +∞, ∀𝑥 ∈ 𝑅. (36)

Differentiating 𝑉
1
with respect to time yields

𝑑𝑉
1

𝑑𝑡








(26)

=

2

𝑝

𝑥
̇
�̃� + 2𝑦

̇
�̃� +

2

𝑞

�̃�
̇
�̃� − 𝜖

̇
�̃��̃� − 𝜖𝑦

̇
�̃�

=
[

[

𝑥

𝑦

�̃�

]

]

𝑇

𝐺
−

3
[

[

𝑥

𝑦

�̃�

]

]

− 2𝑥𝑓 (𝑥)

≤ 𝜇
𝑀
(𝐺
−

3
) (𝑥
2
+ 𝑦
2
+ �̃�
2
)

= 𝜇
𝑀
(𝐺
−

3
)

𝜆
𝑀
(𝐺
+

3
)

𝜆
𝑀
(𝐺
+

3
)

(𝑥
2
+ 𝑦
2
+ �̃�
2
) ≤

𝜇
𝑀
(𝐺
−

3
)

𝜆
𝑀
(𝐺
+

3
)

𝑉
1
,

(37)

where 𝜇
𝑀
(𝐺
−

3
) is the maximum eigenvalues of the negative

definite matrix 𝐺−
3
. Then,

𝑉
1
(𝑋 (𝑡, 𝑡

0
, 𝑋
0
)) ≤ 𝑉

1
(𝑋
0
) 𝑒
(𝜇𝑀(𝐺

−

3
)/𝜆𝑀(𝐺

+

3
))(𝑡−𝑡0)

,

𝑥
2
(𝑡) + 𝑦

2
(𝑡) + �̃�

2
(𝑡) ≤

𝑉
1
(𝑋 (𝑡, 𝑡

0
, 𝑋
0
))

𝜆
𝑚
(𝐺
+

3
)

≤

𝑉
1
(𝑋
0
)

𝜆
𝑚
(𝐺
+

3
)

𝑒
(𝜇𝑀(𝐺

−

3
)/𝜆𝑀(𝐺

+

3
))(𝑡−𝑡0)

.

(38)

Hence, 𝑥2(𝑡), 𝑦2(𝑡), and �̃�2(𝑡) converge to zero exponen-
tially. According to Definition 5, the equilibrium point 𝑋∗ is
globally exponentially stable. The proof is complete.

Remark 7. A constructive method to stabilize the unstable
equilibrium points is proposed in this section, matrices
𝐺
+

3
, 𝐺−
3
, and Lyapunov function candidate 𝑉

1
are given.

Then, a linear controller is obtained to solve the problem.
Comparingwith nonlinear controller, linear controller is easy
to implement in reality.

4. Globally Exponential Synchronization of
Two Chua’s Systems

In this section, the globally exponential synchronization of
two Chua’s systems will be discussed. The drive system is
given by

̇𝑥
𝑑
= 𝑝(𝑥

𝑑
+ 𝑦
𝑑
− 𝑥
𝑑
ln√1 + 𝑥2

𝑑
) ,

̇𝑦
𝑑
= 𝑥
𝑑
− 𝑦
𝑑
+ 𝑧
𝑑
,

̇𝑧
𝑑
= −𝑞𝑦

𝑑
,

(39)

and the response system is described as follows:

̇𝑥
𝑟
= 𝑝(𝑥

𝑟
+ 𝑦
𝑟
− 𝑥
𝑟
ln√1 + 𝑥2

𝑟
) + 𝑢
1
,

̇𝑦
𝑟
= 𝑥
𝑟
− 𝑦
𝑟
+ 𝑧
𝑟
+ 𝑢
2
,

̇𝑧
𝑟
= −𝑞𝑦

𝑟
+ 𝑢
3
,

(40)

where the subscripts 𝑑 and 𝑟 denote the drive and response
systems and 𝑢

𝑖
(𝑖 = 1, 2, 3) is feedback control input which

satisfies 𝑢
𝑖
(0, 0, 0) = 0.

Let 𝑒
𝑥
= 𝑥
𝑟
−𝑥
𝑑
, 𝑒
𝑦
= 𝑦
𝑟
−𝑦
𝑑
, and 𝑒

𝑧
= 𝑧
𝑟
−𝑧
𝑑
; one obtains

that

̇𝑒
𝑥
= 𝑝(𝑒

𝑥
+ 𝑒
𝑦
− 𝑥
𝑟
ln√1 + 𝑥2

𝑟
+ 𝑥
𝑑
ln√1 + 𝑥2

𝑑
) + 𝑢
1
,

̇𝑒
𝑦
= 𝑒
𝑥
− 𝑒
𝑦
+ 𝑒
𝑧
+ 𝑢
2
,

̇𝑒
𝑧
= −𝑞𝑒

𝑦
+ 𝑢
3
.

(41)

Theorem 8. If the following controller is added to the error
system (41),

𝑢
1
= −𝑝𝛿

𝑥
𝑥, 𝑢

2
= 𝑢
3
= 0, (42)

where 𝛿
𝑥
is any parameter given beforehand with 𝛿

𝑥
> 2; then

the zero solution of (41) is globally exponentially stable and the
systems (39) and (40) are globally exponentially synchronized.

Proof. Since the proof of this theorem is parallel to that of
Theorem 6, we omit it here.

If the parameters 𝑝 and 𝑞 in the drive system are uncer-
tain, one can construct the following controlled response
system:

̇𝑥
𝑟
= 𝑝(𝑥

𝑟
+ 𝑦
𝑟
− 𝑥
𝑟
ln√1 + 𝑥2

𝑟
) + 𝑢
1
,

̇𝑦
𝑟
= 𝑥
𝑟
− 𝑦
𝑟
+ 𝑧
𝑟
+ 𝑢
2
,

̇𝑧
𝑟
= −𝑞𝑦

𝑟
+ 𝑢
3
,

(43)

where𝑝 and 𝑞 are the estimates of the uncertain parameters𝑝
and 𝑞, respectively. Let 𝑒

𝑥
= 𝑥
𝑟
−𝑥
𝑑
, 𝑒
𝑦
= 𝑦
𝑟
−𝑦
𝑑
, 𝑒
𝑧
= 𝑧
𝑟
−𝑧
𝑑
,
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𝑝 = 𝑝 − 𝑝, and 𝑞 = 𝑞 − 𝑞, then, the error system of (39) and
(43) is given by

̇𝑒
𝑥
= 𝑝(𝑒

𝑥
+ 𝑒
𝑦
− 𝑥
𝑟
ln√1 + 𝑥2

𝑟
+ 𝑥
𝑑
ln√1 + 𝑥2

𝑑
)

+ 𝑝(𝑥
𝑑
+ 𝑦
𝑑
− 𝑥
𝑑
ln√1 + 𝑥2

𝑑
) + 𝑢
1
,

̇𝑒
𝑦
= 𝑒
𝑥
− 𝑒
𝑦
+ 𝑒
𝑧
+ 𝑢
2
,

̇𝑒
𝑧
= −𝑞𝑒

𝑦
− 𝑞𝑦
𝑑
+ 𝑢
3
.

(44)

Theorem 9. If the following adaptive controller is added to the
error system (44),

𝑢
1
= −𝑝(𝑒

𝑥
+ 𝑒
𝑦
− 𝑥
𝑟
ln√1 + 𝑥2

𝑟
+ 𝑥
𝑑
ln√1 + 𝑥2

𝑑
) − 𝑒
𝑥
,

𝑢
2
= −𝑒
𝑥
− 𝑒
𝑧
,

𝑢
3
= 𝑞𝑒
𝑦
− 𝑒
𝑧
,

̇
�̂� =

̇
�̃� = −𝑒

𝑥
(𝑥
𝑑
+ 𝑦
𝑑
− 𝑥
𝑑
ln√1 + 𝑥2

𝑑
) ,

̇
�̂� =

̇
�̃� = 𝑒
𝑧
𝑦
𝑑
,

(45)

then, we have the following.

(1) The equilibrium points (𝑝 = 0, 𝑞 = 0, 𝑒
𝑥
= 0, 𝑒

𝑦
= 0,

𝑒
𝑧
= 0) of the system (44) with adaptive control law

(45) are globally stable; in addition, lim
𝑡→∞

𝑒
𝑥
= 0,

lim
𝑡→∞

𝑒
𝑦
= 0, and lim

𝑡→∞
𝑒
𝑧
= 0. And thus, the two

systems (39) and (44) are globally synchronized.
(2) The parameter estimates 𝑝 and 𝑞 will, respectively,

converge to 𝑝 and 𝑞 as 𝑡 tends to infinity.

Proof. The proof contains two steps.
Firstly, a Lyapunov function candidate is constructed as

follows:

𝑉
2
=

1

2

(𝑒
2

𝑥
+ 𝑒
2

𝑦
+ 𝑒
2

𝑧
+ 𝑝
2
+ 𝑞
2
) . (46)

Then, one has

𝑑𝑉
2

𝑑𝑡








(44)

= 𝑒
𝑥
̇𝑒
𝑥
+ 𝑒
𝑦
̇𝑒
𝑦
+ 𝑒
𝑧
̇𝑒
𝑧
+ 𝑝

̇
�̃� + 𝑞

̇
�̃�

= 𝑒
𝑥
(𝑝(𝑒

𝑥
+ 𝑒
𝑦
− 𝑥
𝑟
ln√1 + 𝑥2

𝑟

+𝑥
𝑑
ln√1 + 𝑥2

𝑑
) + 𝑢
1
)

+ 𝑒
𝑦
(𝑒
𝑥
− 𝑒
𝑦
+ 𝑒
𝑧
+ 𝑢
2
)

+ 𝑒
𝑧
(−𝑞𝑒
𝑦
+ 𝑢
3
) − 𝑞 (𝑒

𝑧
𝑦
𝑑
−
̇
�̃�)

+ 𝑝 (𝑒
𝑥
(𝑥
𝑑
+ 𝑦
𝑑
− 𝑥
𝑑
ln√1 + 𝑥2

𝑑
) +

̇
�̃�)

= − 𝑒
2

𝑥
− 𝑒
2

𝑦
− 𝑒
2

𝑧
≤ 0.

(47)

By LaSalle-Yoshizawa theorem [20], all the equilibrium
points of the closed-loop systems are globally stable. Addi-
tionally, lim

𝑡→∞
𝑒
𝑥
= 0, lim

𝑡→∞
𝑒
𝑦
= 0, and lim

𝑡→∞
𝑒
𝑧
=

0. And thus, the two systems (39) and (43) are globally
synchronized.

By referring to Lemma 4.1 in [21], lim
𝑡→∞

𝑝 = 0,
lim
𝑡→∞

𝑞 = 0 if there exist two functions 𝑓
1
(𝑡), 𝑓
2
(𝑡) which

satisfy persistency of excitation condition, such that

lim
𝑡→∞

̇
�̃� = 0, lim

𝑡→∞

̇
�̃� = 0,

lim
𝑡→∞

𝑝𝑓
1 (
𝑡) = 0, lim

𝑡→∞
𝑞𝑓
2 (
𝑡) = 0.

(48)

Since lim
𝑡→∞

𝑒
𝑥
= 0, lim

𝑡→∞
𝑒
𝑧
= 0, it is easy to obtain

from (45) that

lim
𝑡→∞

̇
�̃� = lim
𝑡→∞

− 𝑒
𝑥
(𝑥
𝑑
+ 𝑦
𝑑
− 𝑥
𝑑
ln√1 + 𝑥2

𝑑
) = 0,

lim
𝑡→∞

̇
�̃� = lim
𝑡→∞

𝑒
𝑧
𝑦
𝑑
= 0.

(49)

Add 𝑢
1
and 𝑢

3
from (45) to (44), we have

lim
𝑡→∞

̇𝑒
𝑥
= lim
𝑡→∞

− 𝑒
𝑥
+ 𝑝(𝑥

𝑑
+ 𝑦
𝑑
− 𝑥
𝑑
ln√1 + 𝑥2

𝑑
)

= lim
𝑡→∞

𝑝(𝑥
𝑑
+ 𝑦
𝑑
− 𝑥
𝑑
ln√1 + 𝑥2

𝑑
)

= 0,

lim
𝑡→∞

̇𝑒
𝑧
= lim
𝑡→∞

− 𝑒
𝑧
− 𝑞𝑦
𝑑

= lim
𝑡→∞

− 𝑞𝑦
𝑑

= 0.

(50)

Let 𝑓
1
(𝑡) ≜ 𝑥

𝑑
+ 𝑦
𝑑
− 𝑥
𝑑
ln√1 + 𝑥2

𝑑
and 𝑓

2
(𝑡) ≜ 𝑦

𝑑
; it is

easy to see that𝑓
1
(𝑡) and𝑓

2
(𝑡) satisfy persistency of excitation

condition [21]; thus, we have

lim
𝑡→∞

𝑝 = 0, lim
𝑡→∞

𝑞 = 0. (51)

The proof is complete.

Remark 10. Synchronization control methods for two Chua’s
systems are proposed in this section. A linear controller is
given when parameters 𝑝 and 𝑞 are known. In the case
of uncertain parameters 𝑝 and 𝑞, an adaptive controller is
proposed to solve the problem. Comparing with the results in
reference [22, 23], the output tracking error only converges to
a small neighborhood of the origin, yet the synchronization
errors of Chua’s systems can exponentially approach zero. On
the other hand, compared with [23], a novel exponentially
convergent method is used to solve the convergence of the
estimation error of the uncertain parameters.
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Figure 2: The asymptotic stability of 𝑆
0
with controller (28).
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Figure 3: The asymptotic stability of 𝑆
−
with controller (28).
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Figure 4: The synchronization errors of the system (39) and (40) with linear controller (42).

5. Numerical Simulations

In this section, several examples of numerical simulations
are proposed to illustrate the theoretical results obtained in
the previous sections. A fourth-order Runge-Kutta method is
used to obtain the simulation results with MATLAB.

Chua’s system (2) and the error systems (26), (41),
and (44) are considered in this section for the numerical
simulations. Let 𝑝 = 11, 𝑞 = 14.87, the initial state 𝑥(0) = −3,
𝑦(0) = 2, and 𝑧(0) = 1. Figure 2 shows the state trajectories

of the closed-loop system (26) with linear control input (28);
it is easy to see that the equilibrium point 𝑆

0
is asymptotically

stable. Similarly, Figure 3 shows that, with the corresponding
control input (28), the equilibrium point 𝑆

−
is asymptotically

stable. Figure 4 shows the synchronous errors of the system
(39) and (40) with linear controller (42); it is easy to see that
the two systems are globally asymptotically synchronized.
When parameters 𝑝 and 𝑞 are uncertain, by using adaptive
controller (45), the synchronous errors are asymptotically
convergent to 𝑒

𝑥
= 0, 𝑒

𝑦
= 0, 𝑒

𝑧
= 0 (see Figure 5),
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Figure 5: The synchronization errors of the system (39) and (43) with adaptive controller (45).
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Figure 6: The convergence of parameters 𝑝 and 𝑞.

and the estimate values of the uncertain parameters 𝑝 and 𝑞
asymptotically converge to the real values 𝑝 = 11, 𝑞 = 14.87
(see Figure 6).

6. Conclusions

A new smooth Chua’s system is constructed, and the chaotic
characteristics is confirmed by computing the Lyapunov
exponents of the system. A Constructive method is used
to prove the existence of globally exponential attractive set
and positive invariant set. For the three unstable equilibrium
points of the system, a linear controller is designed to achieve
globally exponential stability of the equilibrium points.Then,
a linear controller and an adaptive controller are, respectively,
proposed so that two similar types of smooth Chua’s systems
are globally synchronized, and the estimate errors of the
uncertain parameters converge to zero as 𝑡 tends to infinity.
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We discuss linear multiagent systems consensus problem with distributed reduced-order observer-based protocol under switching
topology. We use Jordan decomposition method to prove that the proposed protocols can solve consensus problem under directed
fixed topology. By constructing a parameter-dependent common Lyapunov function, we prove that the distributed reduced-
order observer-based protocol can also solve the continuous-time multi-agent consensus problem under the undirected switching
interconnection topology. Then, we investigate the leader-following consensus problem and propose a reduced-order observer-
based protocol for each following agent. By using similar analysis method, we can prove that all following agents can track the
leader under a class of directed interaction topologies. Finally, the given simulation example also shows the effectiveness of our
obtained result.

1. Introduction

Recently, a great number of researchers pay much attention
to the coordination control of the multiagent systems, which
have various subject background such as biology, physics,
mathematics, information science, computer science, and
control science in [1–4]. Consensus problem is one of the
most basic problems of the coordination control of the
multiagent systems, and the main idea is to design the dis-
tributed protocols which enable a group of agents to achieve
an agreement on certain quantities of interest. The well-
known early work [1] was done in the control systems com-
munity, which gave the theoretical explanation of the consen-
sus behavior of the very famous Vicsek model [2]. Till now,
many interesting results for solving similar or generalized
consensus problems have been obtained.

The interaction topologies among agents include fixed
and switching cases. Fixed topology may be easy to be han-
dled by using eigenvalue decomposition method [5, 6].
Saber and Murray established a general model for consensus
problems of themultiagent systems by introducing Lyapunov
method to reveal the contract with the connectivity of the
graph theory and the stability of the system in [7]. The

Lyapunov-based approach is often chosen to solve high-
order consensus problem [8, 9]. In most existing works, the
dynamics of agents is assumed to be first-, second-, and,
sometimes, high-order integrators, and the proposed con-
sensus protocols are based on information of relative states
among neighboring agents [10–13]. However, the interacting
topology between agents may change dynamically due to the
changes of environment, the unreliable communication links
and time-delay. It is more difficult to deal with switching
interaction topology in mathematics than fixed interaction
topology. The common Lyapunov method is fit to probe the
switching interaction topology [8]. Too many results have
been established for multiagent consensus under switching
topology [14–18]. Some other relevant research topics have
also been addressed, such as oscillator network [19], clus-
ter synchronization [20, 21], mean square consensus [22],
fractional-order multiagent systems [23], descriptor multia-
gent system [24], randomnetworks [25], and time-delay [26].

The leader-following configuration is very useful to
design the multiagent systems. Leader-following consensus
problems with first-order dynamics under jointly con-
nected interacting topology were investigated by [1]. Hong
et al. [8] considered a multiagent consensus problem with
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a second-order active leader and variable interconnection
topology. A distributed consensus protocol was proposed for
first-order agent with distributed estimation of the general
active leader’s unmeasurable state variables in [15], while [16]
extended the results of [15] to the case of communication
delays among agents under switching topology. In [17], the
authors considered leader-following problem in the mul-
tiagent system with general linear dynamics in both fixed
topology case and switching topology case, respectively. The
cooperative output regulation of linear multiagent systems
can be viewed as a generalization of some results of the leader-
following consensus problem of multiagent systems [27, 28].

In many practical systems, the state variables cannot be
obtained directly. To achieve the state consensus, the agent
has to estimate those unmeasurable state variables by output
variables. In [8], the authors proposed a distributed observer-
based tracking protocols for each first-order following agent.
Under the assumption that the active leader’s velocity cannot
be measured directly, [29] proposed a distributed observer-
based tracking protocol for each second-order following-
agent. To track the accelerated motion leader, [30] proposed
an observer-based tracking protocol for each second-order
follower agent to estimate the acceleration of the leader.
A robust adaptive observer based on the response system
was constructed to practically synchronize a class of uncer-
tain chaotic systems [31]. In [23], the author proposed an
observer-type consensus protocol to the consensus problem
for a class of fractional-order uncertain multiagent systems
with general linear dynamics. For the multiagent system with
general linear dynamics, [32] established a unified framework
and proposed an observer-type consensus protocol, and [33]
proposed a framework including full state feedback control,
observer design, and dynamic output feedback control for
leader-following consensus problem. The leader-following
consensus problem was investigated under a class of directed
switching topologies in [34]. In [35], distributed reduced-
order observer-based consensus protocols were proposed
for both continuous- and discrete-time linear multiagent
systems. Other observer-based previous works include [36–
38].

Motivated by the previousworks, especially by [35], we do
some further investigations on the reduced-order observer-
based consensus protocol problem which had been studied
by [35] under directed fixed interconnection topology. We
first correct some errors and propose a new proof of the main
result established in the aforementioned paper based on the
Jordan decomposition method. Moreover, by constructing a
parameter-dependent common Lyapunov function, we prove
that the proposed protocol can guarantee the multiagent
consensus system to achieve consensus under undirected
switching topology. Although the Lyapunov functionmethod
is conservative and is not easy to be constructed, it is fit
to solve the problem under the switching interconnection
topology. We propose distributed protocol to solve leader-
following consensus with a little simple modification to the
reduced-order observer-based consensus protocol. Similarly,
we can prove that all following agents can track the leader
under a class of directed interaction topologies. As the special
cases, the consensus conditions for balanced and undirected

interconnection topology cases can be obtained directly. Al-
though the leader-following consensus problem in this paper
has been studied in many papers with the aid of internal
model principle, we obtain a low-dimensional controller in
our model.

The paper is organized as follows. In Section 2, some no-
tations and preliminaries are introduced. Then, in Section 3
and Section 4, the main results on the consensus stability
are obtained for both leaderless and leader-following cases,
respectively. Following that, Section 5 provides a simulation
example to illustrate the established results, and finally, the
concluding remarks are given in Section 6.

2. Preliminaries

To make this paper more readable, we first introduce some
notations and preliminaries, most of which can be found in
[35]. Let 𝑅𝑚×𝑛 and 𝐶𝑚×𝑛 be the set of𝑚× 𝑛 real matrices and
complex matrices, respectively. Re(𝜉) denotes the real part of
𝜉 ∈ 𝐶. 𝐼 is the identity matrix with compatible dimension.
𝐴

𝑇 and 𝐴𝐻 represent transpose and conjugate transpose of
matrix 𝐴 ∈ 𝐶

𝑚×𝑛, respectively. 1
𝑛
= [1, . . . , 1]

𝑇
∈ 𝑅

𝑛. For
symmetric matrices 𝐴 and 𝐵, 𝐴 > (≥) 𝐵 means that 𝐴 − 𝐵
is positive (semi-) definite. ⊗ denotes the Kronecker product,
which satisfies (𝐴⊗𝐵)(𝐶⊗𝐷) = (𝐴𝐶)⊗ (𝐵𝐷) and (𝐴⊗𝐵)𝑇 =
𝐴

𝑇
⊗ 𝐵

𝑇. A matrix is said to be Hurwitz stable if all of its
eigenvalues have negative real parts.

A weighted digraph is denoted by G = {V, 𝜀, 𝐴}, where
V = {V

1
, V

2
, . . . , V

𝑛
} is the set of vertices, 𝜀 ⊂ V × V is the

set of edges, and a weighted adjacency matrix 𝐴 = [𝑎
𝑖𝑗
] has

nonnegative elements 𝑎
𝑖𝑗
. The set of all neighbor nodes of

node V
𝑖
is defined byN

𝑖
= {𝑗 | (V

𝑖
, V

𝑗
) ∈ 𝜀}.The degreematrix

𝐷 = {𝑑
1
, 𝑑

2
, . . . , 𝑑

𝑛
} ∈R𝑛×𝑛 of digraphG is a diagonalmatrix

with diagonal elements 𝑑
𝑖
= ∑

𝑗∈N𝑖
𝑎
𝑖𝑗
. Then, the Laplacian

matrix of G is defined as 𝐿 = 𝐷 − 𝐴 ∈ 𝑅𝑛×𝑛, which satisfies
𝐿1

𝑛
= 0. The Laplacian matrix has following interesting

property.

Lemma 1 (see [14]). The Laplacian matrix 𝐿 associated with
weighted digraph G has at least one zero eigenvalue and all
of the non-zero eigenvalues are located on the open right half
plane. Furthermore, 𝐿 has exactly one zero eigenvalue if and
only if the directed graph G has a directed spanning tree.

A weighted graph is called undirected graph if for all
(V

𝑖
, V

𝑗
) ∈ 𝜀, we have (V

𝑗
, V

𝑖
) ∈ 𝜀 and 𝑎

𝑖𝑗
= 𝑎

𝑗𝑖
. It is well known

that Laplacian matrix of weighted undirected graph is sym-
metric positive semidefinite, which can be derived from
Lemma 1 by noticing the fact that all eigenvalues of symmet-
ric matrix are real and nonnegative. Furthermore, Laplacian
matrix 𝐿 has exactly one zero eigenvalue if and only if the
undirected graphG is connected.

To establish our result, the well-known Schur Comple-
ment Lemma is introduced.

Lemma 2 (see [39]). Let 𝑆 be a symmetric matrix of the par-
titioned form 𝑆 = [𝑆

𝑖𝑗
] with 𝑆

11
∈ 𝑅

𝑟×𝑟, 𝑆
12
∈ 𝑅

𝑟×(𝑛−𝑟), and
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𝑆
22
∈ 𝑅

(𝑛−𝑟)×(𝑛−𝑟). Then, 𝑆 < 0 if and only if

𝑆
11
< 0, 𝑆

22
− 𝑆

21
𝑆
−1

11
𝑆
12
< 0, (1)

or equivalently,

𝑆
22
< 0, 𝑆

11
− 𝑆

12
𝑆
−1

22
𝑆
21
< 0. (2)

3. Multiagent Consensus Problem

Consider a multiagent system consisting of 𝑁 identical
agents, whose dynamics are modeled by

̇𝑥
𝑖
= 𝐴𝑥

𝑖
+ 𝐵𝑢

𝑖
, 𝑦

𝑖
= 𝐶𝑥

𝑖 , 𝑖 = 1, . . . , 𝑁, (3)

where 𝑥
𝑖
∈ 𝑅

𝑛 is the agent 𝑖’s state, 𝑢
𝑖
∈ 𝑅

𝑝 agent 𝑖’s control
input, and 𝑦

𝑖
∈ 𝑅

𝑞 the agent 𝑖’s measured output. 𝐴, 𝐵, and
𝐶 are constant matrices with compatible dimensions. It is
assumed that (𝐴, 𝐵) is stabilizable, (𝐴, 𝐶) is observable, and
𝐶 has full row rank.

To solve consensus problem, a weighted counterpart of
the distributed reduced-order observer-based consensus pro-
tocol proposed in [35] for agent 𝑖 is given as follows:

̇V
𝑖
= 𝐹V

𝑖
+ 𝐺𝑦

𝑖
+ T𝐵𝑢

𝑖
,

𝑢
𝑖
= 𝜅𝐾𝑄

1
∑

𝑗∈N𝑖(𝑡)

𝑎
𝑖𝑗 (
𝑡) (𝑦𝑖

− 𝑦
𝑗
)

+ 𝜅𝐾𝑄
2
∑

𝑗∈N𝑖(𝑡)

𝑎
𝑖𝑗 (
𝑡) (V𝑖 − V

𝑗
) ,

(4)

where V
𝑖
∈ 𝑅

𝑛−𝑞 is the protocol state, the weight 𝑎
𝑖𝑗
(𝑡) is

chosen as

𝑎
𝑖𝑗 (
𝑡) = {

𝛼
𝑖𝑗
, if agent 𝑖 is connected to agent 𝑗,

0, otherwise,
(5)

𝜅 is the coupling strength, and 𝐹 ∈ 𝑅(𝑛−𝑞)×(𝑛−𝑞), 𝐺 ∈ 𝑅(𝑛−𝑞)×𝑞,
𝑇 ∈ 𝑅

(𝑛−𝑞)×𝑛, 𝑄
1
∈ 𝑅

𝑛×𝑞 and, 𝑄
2
∈ 𝑅

𝑛×(𝑛−𝑞) are constant
matrices, which will be designed later.

For the multiagent system under consideration, the inter-
connection topology may be dynamically changing, which is
assumed that there are only finite possible interconnection
topologies to be switched. The set of all possible topology
digraphs is denoted as S = {G

1
,G

2
, . . . ,G

𝑀
} with index set

P = {1, 2, . . . ,𝑀}. The switching signal 𝜎 : [0,∞) → P is
used to represent the index of topology digraph; that is, at
each time 𝑡, the underlying graph isG

𝜎(𝑡)
. Let 0 = 𝑡

1
, 𝑡

2
, 𝑡

3
, . . .

be an infinite time sequence at which the interconnection
graph switches. Certainly, it is assumed that chattering does
not occur when the switching interconnection topology is
considered. The main objective of this section is to design
protocol (4), which is used to solve the consensus problem
under switching interconnection topology.

Let 𝑥 = [𝑥
𝑇

1
, 𝑥

𝑇

2
, . . . , 𝑥

𝑇

𝑁
]
𝑇 and V = [V𝑇

1
, V𝑇

2
, . . . , V𝑇

𝑁
]
𝑇.

Then, after manipulation with combining (3) and (4), the
closed-loop system can be expressed as

𝑑

𝑑𝑡

[

𝑥

V
]

=
[

[

𝐼
𝑁
⊗ 𝐴 + 𝐿

𝜎(𝑡)
⊗ (𝜅𝐵𝐾𝑄

1
𝐶) 𝐿

𝜎(𝑡)
⊗ (𝜅𝐵𝐾𝑄

2
)

𝐼
𝑁
⊗ (𝐺𝐶) + 𝐿𝜎(𝑡)

⊗ (𝜅𝑇𝐵𝐾𝑄
1
𝐶) 𝐼

𝑁
⊗ 𝐹 + 𝐿

𝜎(𝑡)
⊗ (𝜅𝑇𝐵𝐾𝑄

2
)

]

]

× [

𝑥

V
] .

(6)

We first discuss consensus problem under fixed intercon-
nection topology, which has been investigated by [35]. In this
case, the subscript 𝜎(𝑡) in closed-loop system (6) should be
dropped. Algorithm 3.1 in [35] is slightly modified to present
as follows, which is used to choose control parameters in
protocol (4).

Algorithm 3. Given (𝐴, 𝐵, 𝐶) with properties that (𝐴, 𝐵) is
stabilizable, (𝐴, 𝐶) is observable, and 𝐶 has full row rank 𝑞,
the control parameters in the distributed consensus protocol
(4) are selected as follows.

(1) Select a Hurwitz matrix 𝐹 ∈ 𝑅(𝑛−𝑞)×(𝑛−𝑞) with a set of
desired eigenvalues that contains no eigenvalues in common
with those of𝐴. Select𝐺 ∈ R(𝑛−𝑞)×𝑞 randomly such that (𝐹, 𝐺)
is controllable.

(2) Solve Sylvester equation

𝑇𝐴 − 𝐹𝑇 = 𝐺𝐶 (7)

to get the unique solution 𝑇, which satisfies that [ 𝐶
𝑇
] is

nonsingular. If [ 𝐶
𝑇
] is singular, go back to Step 2 to select

another 𝐺, until [ 𝐶
𝑇
] is nonsingular. Compute matrices 𝑄

1
∈

𝑅
𝑛×𝑞 and 𝑄

2
∈ 𝑅

𝑛×(𝑛−𝑞) by [𝑄
1
𝑄

2
] = [

𝐶

𝑇
]
−1.

(3) For a given positive definite matrix 𝑄, solve the fol-
lowing Riccati equation:

𝐴
𝑇
𝑃 + 𝑃𝐴 − 𝑃𝐵𝐵

𝑇
𝑃 + 𝑄 = 0, (8)

to obtain the unique positive definitematrix𝑃.Then, the gain
matrix𝐾 is chosen by𝐾 = −𝐵𝑇

𝑃.
(4) Select the coupling strength 𝜅 ≥ 1/(2min

𝜆𝑖 ̸=0
{Re(𝜆

𝑖
)}),

where 𝜆
𝑖
is the 𝑖th eigenvalue of Laplacian matrix 𝐿.

Remark 4. According to Theorem 8.M6 in [40], if 𝐴 and 𝐹
have no common eigenvalues, then the matrix [ 𝐶

𝑇
] is nonsin-

gular only if (𝐴, 𝐶) is observable and (𝐹, 𝐺) is controllable.
Thus, the assumptions that (𝐴, 𝐶) is detectable and (𝐹, 𝐺)
is stabilizable in Algorithm 3.1 of [35] may be questionable.
Step 3 of Algorithm 3.1 in [35] is an LMI inequality. Here, we
propose the Riccati equation to replace the LMI inequality in
Step 3 of the algorithm. If we use the LMI design approach
proposed by [35], all our following analysis process is also
right as long as we do some sight modification. The Riccati
equation has been widely studied in the subsequent centuries
and has known an impressive range of applications in control
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theory, which will make the condition expressed in Riccati
equation easy to be generalized to other cases such as descrip-
tor multiagent system. If (𝐴, 𝐵) is stabilizable and 𝑄 is a
positive definite matrix, the Riccati equation (8) has a unique
positive definite matrix𝑃, which can be found inmany books
such as [41]. On the other hand, it is convenient for us to solve
Riccati equation by using Matlab toolbox.

The following theorem is a modified vision of Theo-
rem 3.3 in [35], which is the main result of [35]. To prove
Theorem 3.3 in [35], the authors mainly use the following
assumption. Let 𝑈 ∈ 𝑅

𝑁×𝑁 be such a unitary matrix that
𝑈

𝑇
𝐿𝑈 = Λ = [

0 0

0 Δ
], where the diagonal entries of Δ are the

nonzero eigenvalues of 𝐿. Unfortunately, this assumption is
not right.

Since Laplacian matrix 𝐿 of directed topology graph G
is not symmetric, it can only be assumed that there exists a
unitary matrix 𝑈 satisfying 𝑈𝐻

𝐿𝑈 = [
0 ∗

0 Δ
], where Δ is an

upper triangular matrix and ∗ is a nonzero row vector (see
[39]). Thus, I think the proof in [35] is not strict too. On the
other hand, the limit function of V

𝑖
(𝑡) in Theorem 3.3 of [35]

is not right, which should be 𝑇𝜛(𝑡). Now, we propose a strict
proof, which is based on Jordan decomposition and may be
easier to be understood. Before giving our proof, we present
the theorem as follows.

Theorem 5. For the multiagent system (3) whose interconnec-
tion topology graph G contains a directed spanning tree, the
dynamic protocol (4) constructed by Algorithm 3 can solve the
consensus problem. Moreover,

𝑥
𝑖 (
𝑡) → 𝜛 (𝑡) ≜ (𝑟

𝑇
⊗ 𝑒

𝐴𝑡
)
[

[

[

𝑥
1 (
0)

...
𝑥
𝑁 (
0)

]

]

]

= 𝑒
𝐴𝑡

𝑁

∑

𝑗=1

𝑟
𝑗
𝑥
𝑗 (
0) ,

V
𝑖
→ 𝑇𝜛 (𝑡) , 𝑖 = 1, 2, . . . , 𝑁, as 𝑡 → ∞,

(9)

where 𝑟 = (𝑟
1
, 𝑟

2
, . . . , 𝑟

𝑁
)
𝑇
∈ 𝑅

𝑁 is a nonnegative vector such
that 𝑟𝑇𝐿 = 0 and 𝑟𝑇1 = 1.

Proof. By Lemma 1, the assumption that G contains a
directed spanning tree means that zero is a simple eigenvalue
of 𝐿 and all other eigenvalues of 𝐿 have positive real parts.
From Jordan decomposition of 𝐿, let 𝑆 be nonsingular matrix
such 𝑆−1𝐿𝑆 = 𝐽 = [

0 0

0 𝐽1
], where the Jordan matrix 𝐽

1
∈

𝐶
(𝑁−1)×(𝑁−1) is an upper triangular matrix and the diagonal

entries of 𝐽
1
are the nonzero eigenvalues of 𝐿.

Let 𝑥 = (𝑆−1 ⊗ 𝐼
𝑛
)𝑥 and V = (𝑆−1 ⊗ 𝐼

𝑛−𝑞
)V. Then, system

(6) can be represented in terms of 𝑥 and V as follows:
𝑑

𝑑𝑡

[

𝑥

V
]

=
[

[

𝐼
𝑁
⊗ 𝐴 + 𝐽 ⊗ (𝜅𝐵𝐾𝑄

1
𝐶) 𝐽 ⊗ (𝜅𝐵𝐾𝑄

2
)

𝐼
𝑁
⊗ (𝐺𝐶) + 𝐽 ⊗ (𝜅𝑇𝐵𝐾𝑄1

𝐶) 𝐼
𝑁
⊗ 𝐹 + 𝐽 ⊗ (𝜅𝑇𝐵𝐾𝑄

2
)

]

]

× [

𝑥

V
] .

(10)

Certainly, system (10) can be divided into the following two
subsystems: one is

𝑑

𝑑𝑡

[

𝑥
0

V0
] = [

𝐴 0

𝐺𝐶 𝐹
] [

𝑥
0

V0
] (11)

and the other one is
𝑑

𝑑𝑡

[

𝑥
1

V1
]

=
[

[

𝐼
𝑁−1

⊗ 𝐴 + 𝐽
1
⊗ (𝜅𝐵𝐾𝑄

1
𝐶) 𝐽

1
⊗ (𝜅𝐵𝐾𝑄

2
)

𝐼
𝑁−1

⊗ (𝐺𝐶) + 𝐽1
⊗ (𝜅𝑇𝐵𝐾𝑄

1
𝐶) 𝐼

𝑁−1
⊗ 𝐹 + 𝐽

1
⊗ (𝜅𝑇𝐵𝐾𝑄

2
)

]

]

× [

𝑥
1

V1
] ,

(12)

where 𝑥 = [𝑥
0𝑇
, 𝑥

1𝑇
]
𝑇 and V = [V0𝑇, V1𝑇]𝑇 with 𝑥0 and v0

being their first 𝑛 and 𝑛 − 𝑝 column, respectively.
Denote 𝑧

𝑖
(𝑘) for agent 𝑖 as

𝑧
𝑖
= 𝑥

𝑖
−

𝑁

∑

𝑗=1

𝑟
𝑗
𝑥
𝑗
, 𝑖 = 1, . . . , 𝑁. (13)

Obviously, for all 𝑖, 𝑗 = 1, 2, . . . , 𝑁, 𝑧
𝑖
= 0 if and only if

𝑥
𝑖
= 𝑥

𝑗
; that is, the consensus is achieved. Let 𝑧 = [z

1

𝑇
,

𝑧
2

𝑇
, . . . , 𝑧

𝑁

𝑇
]
𝑇. Then, we have 𝑧 = ((𝐼

𝑁
− 1𝑟

𝑇
) ⊗ 𝐼

𝑛
)𝑥. Let

𝑧 = (𝑆
−1
⊗𝐼

𝑛
)𝑧. We know that 𝑧 = 0 if and only if 𝑧 = 0. Since

𝐿𝑆 = 𝑆𝐽, the first column of 𝑆 is right zero eigenvector 𝑤
𝑟
of

𝐿. Similarly, 𝑆−1𝐿 = 𝐽𝑆−1 implies that the first row of 𝑆−1 is
is left zero eigenvector 𝑤𝑇

𝑙
. Set 𝑆 = [𝑤

𝑟
, 𝑆

1
] and 𝑆−1 = [ 𝑤

𝑇

𝑙

𝑌1
].

Due to 𝑆−1𝑆 = 𝐼, we have 𝑤𝑇

𝑙
𝑤

𝑟
= 1, 𝑤𝑇

𝑙
𝑆
1
= 0, and 𝑌

1
𝑤

𝑟
= 0.

Since 1 and 𝑟𝑇 are the right and left zero eigenvectors of 𝐿,
respectively, and zero is simple eigenvalue of 𝐿, there exists
constant 𝛼 ̸=0 such that 𝑤

𝑟
= 𝛼1 and 𝑤

𝑙
= (1/𝛼)𝑟. Then, we

can verify directly that

𝑆
−1
(𝐼

𝑁
− 1𝑟𝑇) 𝑆 = 𝑆−1𝑆 − 𝑆−11𝑟𝑇𝑆 = 𝑆−1𝑆 − 𝑆−1𝑤

𝑟
𝑤

𝑇

𝑙
𝑆

= [

0 0

0 𝐼
𝑁−1

] .

(14)

Thus, we have

𝑧 = (𝑆
−1
⊗ 𝐼

𝑛
) 𝑧 = (𝑆

−1
⊗ 𝐼

𝑛
) ((𝐼

𝑁
− 1𝑟𝑇) ⊗ 𝐼

𝑛
) (𝑆 ⊗ 𝐼

𝑛
) 𝑥

= ([

0 0

0 𝐼
𝑁−1

] ⊗ 𝐼
𝑛
)𝑥 = [

0

𝑥
1] ,

(15)

From the previous analysis, we know that 𝑥
1
= 0 ⇔ 𝑧 = 0 ⇔

𝑧 = 0.Thus, the stability of system (12) implies thatmultiagent
system (6) can achieve consensus. Let 𝑇 = [ 𝐼𝑁−1⊗𝐼𝑛 0

−𝐼𝑁−1⊗𝑇 𝐼𝑁−1⊗𝐼𝑛−𝑞
],

which is nonsingular and 𝑇
−1

= [
𝐼𝑁−1⊗𝐼𝑛 0

𝐼𝑁−1⊗𝑇 𝐼𝑁−1⊗𝐼𝑛−𝑞
]. Let 𝜁 =

𝑇 [
𝑥
1

V1
]. By Step (2) of Algorithm 3, system (12) is equivalent

to the following system:

𝜁 = [

𝐼
𝑁−1

⊗ 𝐴 + 𝐽
1
⊗ (𝜅𝐵𝐾) 𝐽1

⊗ (𝜅𝐵𝐾𝑄
2
)

0 I
𝑁−1

⊗ 𝐹

] 𝜁 ≜ 𝐹𝜁. (16)
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The matrix 𝐹 is block upper triangular matrix with diagonal
blockmatrix entries𝐴+𝜅𝜆

𝑖
𝐵𝐾 (𝑖 = 2, 3, . . . , 𝑁) and𝐹. By Step

(3) and Step (4) of Algorithm 3, the unique positive definite
solution 𝑃 of Riccati equation (8) satisfies

(𝐴 + 𝜆
𝑖
𝜅𝐵𝐾)

𝐻
𝑃 + 𝑃 (𝐴 + 𝜆

𝑖
𝜅𝐵𝐾)

= −𝑄 + 𝑃𝐵𝐵
𝑇
𝑃 − 2Re (𝜆

𝑖
) 𝜅𝑃𝐵𝐵

𝑇
𝑃 ≤ −𝑄;

(17)

that is,𝐴+𝜅𝜆
𝑖
𝐵𝐾 (𝑖 = 2, 3, . . . , 𝑁) are stable.Thus,𝐹 is stable.

Moreover, system (12) is asymptotically stable; that is, the
consensus problem can be solved by protocol (4).

From the first equation of system (11), we have 𝑥0(𝑡) =
𝑒
𝐴𝑡
𝑥
0
(0) = 𝑒

𝐴𝑡
(𝑤

𝑇

𝑙
⊗ 𝐼

𝑛
) × [𝑥

𝑇

1
(0), 𝑥

𝑇

2
(0), . . . , 𝑥

𝑇

𝑁
(0)]

𝑇. In
addition, the solution of system (6) under fixed topology
satisfies 𝑥(𝑡) = (𝑆 ⊗ 𝐼

𝑛
)𝑥(𝑡) = [𝛼1 ⊗ 𝐼

𝑛
, 𝑆

1
⊗ 𝐼

𝑛
] [

𝑥
0
(𝑡)

𝑥
1
(𝑡)
] →

[𝛼1 ⊗ 𝐼
𝑛
, 𝑆

1
⊗ 𝐼

𝑛
] [

𝑥
0
(𝑡)

0
] = [

𝛼𝑥
0
(𝑡)...

𝛼𝑥
0
(𝑡)

], as 𝑡 → ∞. Thus,

𝑥
𝑖
(𝑡) → 𝛼𝑒

𝐴𝑡
(𝑤

𝑇

𝑙
⊗ 𝐼

𝑛
)[𝑥

𝑇

1
(0), 𝑥

𝑇

2
(0), . . . , 𝑥

𝑇

𝑁
(0)]

𝑇
= 𝑒

𝐴𝑡
(𝑟

𝑇
⊗

𝐼
𝑛
)[𝑥

𝑇

1
(0), 𝑥

𝑇

2
(0), . . . , 𝑥

𝑇

𝑁
(0)]

𝑇

= (𝑟
𝑇
⊗ 𝑒

𝐴𝑡
) [

𝑥1(0)...
𝑥𝑁(0)

], as 𝑡 →

∞. From the second equation of system (11), we have

𝑑

𝑑𝑡

(V
0
(𝑡) − 𝑇𝑥

0
(𝑡))

= 𝐹V
0
(𝑡) + 𝐺𝐶𝑥

0
(𝑡) − 𝑇𝐴𝑥

0
(𝑡) = 𝐹 (V

0
(𝑡) − 𝑇𝑥

0
(𝑡)) .

(18)

Since 𝐹 is Hurwitz stable, we know that lim
𝑡→∞

(V0(𝑡) −

𝑇𝑥
0
(𝑡)) = 0. Noticing that V = (𝑆 ⊗ 𝐼

𝑛−𝑞
)V, we can also obtain

V
𝑖
(𝑡) → 𝛼V0(𝑡), as 𝑡 → ∞.Thus, we have V

𝑖
(𝑡) → 𝛼𝑇𝑥

0
(𝑡) =

𝑇𝜛(𝑡), as 𝑡 → ∞. The proof is now completed.

Next, we probe the consensus problem under switching
interconnection topology. For the switching interconnection
topology case, we always assume that all interconnection
topology graphs G

𝑖
, 𝑖 ∈ P are undirected and connected.

Choose an orthogonal matrix with form 𝑈 = [(1/√𝑁)1, 𝑈
1
]

with 𝑈
1
∈ 𝑅

𝑁×(𝑁−1). Noticing that the Laplacian matrix 𝐿
𝑖
of

G
𝑖
(𝑖 ∈ P) is symmetric and 𝐿

𝑖
1 = 0, we have

𝑈
𝑇
𝐿
𝑖
𝑈 = (

0 0

0 �̃�
1𝑖

) := �̃�
𝑖
, (19)

where �̃�
1𝑖
is an (𝑁 − 1) × (𝑁 − 1) symmetric matrix. Since all

G
𝑖
are undirected and connected, 𝐿

𝑖
is positive semidefinite

and �̃�
1𝑖
is positive definite.

Then, we can define

𝜆 = min
𝑖∈P

{𝜆
2
(𝐿

𝑖
) | G

𝑖
is undirected and connected} > 0,

̃
𝜆=max

𝑖∈P
{𝜆max (𝐿 𝑖

) | G
𝑖
is undirected and connected}>0,

(20)

where 𝜆
2
(𝐿

𝑖
) is the second small eigenvalue of 𝐿

𝑖
. SinceP is

finite set, 𝜆 and ̃𝜆 are fixed and positive.
To measure the disagreement of 𝑥

𝑖
(𝑡) to the average state

of all agents, denote 𝑧
𝑖
(𝑡) for agent 𝑖 as

𝑧
𝑖
= 𝑥

𝑖
−

1

𝑁

𝑁

∑

𝑗=1

𝑥
𝑗
. (21)

Obviously, 𝑧
𝑖
= 0 for any 𝑖 = 1, 2, . . . , 𝑁 if and only if 𝑥

𝑖
= 𝑥

𝑗
,

for any 𝑖, 𝑗 = 1, 2, . . . , 𝑁; that is, the consensus is achieved.
Let 𝑧 = [𝑧𝑇

1
, 𝑧

𝑇

2
, . . . , 𝑧

𝑇

𝑁
]
𝑇. Then, we have
𝑧 = (𝐿

𝑜
⊗ 𝐼

𝑛
) 𝑥, (22)

where

𝐿
𝑜
= 𝐼

𝑁
−

1

𝑁

1
𝑁
1𝑇
𝑁
, (23)

which satisfies 𝐿
𝑜
1
𝑁
= 0. It can be verified that 𝑈𝑇1

𝑁
=

[√𝑁, 0, . . . , 0]
𝑇, from which we have

𝑈
𝑇
𝐿
𝑜
𝑈 = 𝑈

𝑇
𝑈 −

1

𝑁

𝑈
𝑇11𝑇𝑈 = [0 0

0 𝐼
𝑁−1

] ≜ �̃�
𝑜
. (24)

Let 𝑥 = (𝑈𝑇
⊗ 𝐼

𝑛
)𝑥, Ṽ = (𝑈𝑇

⊗ 𝐼
𝑛−𝑞
)V, and �̃� = (𝑈𝑇

⊗

𝐼
𝑛
)𝑧. Then, system (6) can be expressed in terms of 𝑥 and Ṽ as

follows:
𝑑

𝑑𝑡

[

𝑥

Ṽ
]

=
[

[

𝐼
𝑁
⊗ 𝐴 + �̃�

𝜎(t) ⊗ (𝜅𝐵𝐾𝑄1
𝐶) �̃�

𝜎(𝑡)
⊗ (𝜅𝐵𝐾𝑄

2
)

𝐼
𝑁
⊗ (𝐺𝐶) + �̃�𝜎(𝑡)

⊗ (𝜅𝑇𝐵𝐾𝑄
1
𝐶) 𝐼

𝑁
⊗ 𝐹 + �̃�

𝜎(𝑡)
⊗ (𝜅𝑇𝐵𝐾𝑄

2
)

]

]

× [

𝑥

Ṽ
] .

(25)
Similarly, system (25) can be divided into the following two
subsystems:

𝑑

𝑑𝑡

[

𝑥
0

Ṽ0
] = [

𝐴 0

𝐺𝐶 𝐹
] [

𝑥
0

Ṽ0
] , (26)

𝑑

𝑑𝑡

[

𝑥
1

Ṽ1
]

=[

[

𝐼
𝑁−1

⊗ 𝐴 + �̃�
1𝜎(𝑡)

⊗ (𝜅𝐵𝐾𝑄
1
𝐶) �̃�

1𝜎(𝑡)
⊗ (𝜅𝐵𝐾𝑄

2
)

𝐼
𝑁−1

⊗ (𝐺𝐶) + �̃�
1𝜎(𝑡)

⊗ (𝜅𝑇𝐵𝐾𝑄
1
𝐶) 𝐼
𝑁−1

⊗ 𝐹 + �̃�
1𝜎(𝑡)

⊗ (𝜅𝑇𝐵𝐾𝑄
2
)

]

]

× [

𝑥
1

Ṽ1
] ,

(27)

where 𝑥 = [𝑥
0𝑇
, 𝑥

1𝑇
]
𝑇 and Ṽ = [Ṽ0𝑇, Ṽ1𝑇]𝑇 with 𝑥0 and Ṽ0

being their first 𝑛 and 𝑛 − 𝑝 columns, respectively.
We know that �̃� = 0 if and only if 𝑧 = 0. On the other

hand, we have

�̃� = (𝑈
𝑇
⊗ 𝐼

𝑛
) 𝑧 = (𝑈

𝑇
⊗ 𝐼

𝑛
) (𝐿

𝑜
⊗ 𝐼

𝑛
) 𝑥

= (�̃�
𝑜
⊗ 𝐼

𝑛
) 𝑥 = [

0

𝑥
1] ,

(28)

from which we know that 𝑥1 = 0 is equivalent to 𝑧 = 0.
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Thus, the stability of the switching system (27) implies that
multiagent system (6) can achieve consensus.

Denote that 𝜉 = [
𝐼𝑁−1⊗𝐼𝑛 0

−𝐼𝑁−1⊗𝑇 𝐼𝑁−1⊗𝐼𝑛−𝑞
] [

𝑥
1

Ṽ1
]. By Step (2) of

Algorithm 3, system (27) is equivalent to the following
switching system:

̇
𝜉 = 𝐹

𝜎(𝑡)
𝜉, (29)

where

𝐹
𝜎(𝑡)

= [

𝐼
𝑁−1

⊗ 𝐴 + �̃�
1𝜎(𝑡)

⊗ (𝜅𝐵𝐾) �̃�1𝜎(𝑡)
⊗ (𝜅𝐵𝐾𝑄

2
)

0 𝐼
𝑁−1

⊗ 𝐹

] .

(30)

Next, we investigate consensus problem of multiagent
system under switching interconnection topology based on
convergence analysis of the switching system (29) and present
our main result as follows.

Theorem 6. For the multiagent system (3) whose interconnec-
tion topology graphG

𝜎(𝑡)
associated with any interval [𝑡

𝑗
, 𝑡

𝑗+1
)

is assumed to be undirected and connected, suppose that the
parameter matrices 𝐹, 𝐺, 𝑇, 𝐾, 𝑄

1
, and 𝑄

2
used in control

protocol (4) are constructed by Steps (1)–(3) of Algorithm 3 and
the coupling strength 𝜅 is satisfied as

𝜅 ≥

1

2𝜆

. (31)

Then, the distributed control protocol (4) can guarantee that
the multiagent system achieves consensus from any initial
condition. Moreover,

𝑥
𝑖 (
𝑡) → 𝜛 (𝑡) ≜ 𝑒

𝐴𝑡
[

[

1

𝑁

𝑁

∑

𝑗=1

𝑥
𝑗 (
0)
]

]

,

V
𝑖 (
𝑡) → 𝑇𝜛 (𝑡) , 𝑖 = 1, 2, . . . , 𝑁, as 𝑡 → ∞.

(32)

Proof. Till now, we know that the multiagent system achieves
consensus if the state 𝜉 of systems (29) satisfies lim

𝑡→∞
𝜉 =

0. Although system (29) is switching in [0,∞), it is time-
invariant in any interval [𝑡

𝑖
, 𝑡

𝑖+1
). Assume that 𝜎(𝑡) = 𝑝,

which belongs to P. Since G
𝑝
is undirected and connected,

�̃�
1𝑝

is positive definite. Let 𝑈
𝑝
be an orthogonal matrix such

that

𝑈
𝑝
�̃�
1𝑝
𝑈

𝑇

𝑝
= Λ

𝑝
≜ diag {𝜆

1𝑝
, 𝜆

2𝑝
, . . . , 𝜆

(𝑁−1)𝑝
} , (33)

where 𝜆
𝑖𝑝
is 𝑖th eigenvalue of matrix �̃�

1𝑝
.The unique positive

definite solution 𝑃 > 0 of Riccati equation (8) satisfies

(𝐴 + 𝜆
𝑖𝑝
𝜅𝐵𝐾)

𝑇

𝑃 + 𝑃 (𝐴 + 𝜆
𝑖𝑝
𝜅𝐵𝐾)

= −𝑄 + 𝑃𝐵𝐵
𝑇
𝑃 − 2𝜆

𝑖𝑝
𝜅𝑃𝐵𝐵

𝑇
𝑃 ≤ −𝑄,

(34)

from which we can obtain

[𝐼 ⊗ 𝐴 + Λ
𝑝
⊗ (𝜅𝐵𝐾)]

𝑇

(𝐼 ⊗ 𝑃) + (𝐼 ⊗ 𝑃)

× [𝐼 ⊗ 𝐴 + Λ
𝑝
⊗ (𝜅𝐵𝐾)] ≤ −𝐼 ⊗ 𝑄 < 0.

(35)

Pre- and postmultiplying inequality (63) by𝑈
𝑝
⊗𝐼 and its

transpose, respectively, we get

[𝐼 ⊗ 𝐴 + �̃�
1𝑝
⊗ (𝜅𝐵𝐾)]

𝑇

(𝐼 ⊗ 𝑃) + (𝐼 ⊗ 𝑃)

× [𝐼 ⊗ 𝐴 + �̃�
1𝑝
⊗ (𝜅𝐵𝐾)] ≤ −𝐼 ⊗ 𝑄 < 0.

(36)

In addition, for stable matrix 𝐹, there exist positive defi-
nite matrices 𝑄 and 𝑃 satisfying the Lyapunov equation

𝐹
𝑇
𝑃 + 𝑃𝐹 = −𝑄, (37)

or equivalently,

(𝐼
𝑁−1

⊗ 𝐹)
𝑇
(𝐼

𝑁−1
⊗ 𝑃) + (𝐼

𝑁−1
⊗ 𝑃) (𝐼

𝑁−1
⊗ 𝐹)

= − (𝐼
𝑁−1

⊗ 𝑄) .

(38)

Consider the parameter-dependent Lyapunov function
for dynamic system (29)

𝑉 (𝜉 (𝑡)) = 𝜉(𝑡)
𝑇
�̃�𝜉 (𝑡) , (39)

where matrix �̃� has the form

�̃� = (

1

𝜔

𝐼 ⊗ 𝑃 0

0 𝐼 ⊗ 𝑃

) (40)

with positive parameter𝜔. In interval [𝑡
𝑖
, 𝑡

𝑖+1
), the time deriv-

ative of this Lyapunov function along the trajectory of system
(29) is

𝑑

𝑑𝑡

𝑉 (𝜉) = 𝜉
𝑇
(𝐹

𝑇

𝜎
�̃� + �̃�𝐹

𝜎
) 𝜉 ≜ 𝜉

𝑇
𝑄

𝜎
𝜉, (41)

where

𝑄
𝜎
= (

1

𝜔

𝑄
1𝜎

1

𝜔

�̃�
1𝜎(𝑡)

⊗ (𝜅𝑃𝐵𝐾𝑄
2
)

1

𝜔

�̃�
𝑇

1𝜎(𝑡)
⊗ (𝜅𝑃𝐵𝐾𝑄

2
)
𝑇

𝐼 ⊗ (𝐹
𝑇
𝑃 + 𝑃𝐹

𝑇
)

) ,

𝑄
1𝜎
=

1

𝜔

[(𝐼 ⊗ 𝐴 + �̃�
1𝜎(𝑡)

⊗ (𝜅𝐵𝐾))

𝑇

(𝐼 ⊗ 𝑃)

+ (𝐼 ⊗ 𝑃) (𝐼 ⊗ 𝐴 + �̃�1𝜎(𝑡)
⊗ (𝜅𝐵𝐾)) ] .

(42)

From (64) and (65), we have

𝑄
𝜎
≤ (

−

1

𝜔

𝐼 ⊗ 𝑄

1

𝜔

�̃�
1𝜎(𝑡)

⊗ (𝜅𝑃𝐵𝐾𝑄
2
)

1

𝜔

�̃�
𝑇

1𝜎(𝑡)
⊗ (𝜅𝑃𝐵𝐾𝑄

2
)
𝑇

−𝐼 ⊗ 𝑄

).

(43)

Since the constant 𝜔 can be chosen large enough to satisfy

𝜔 >
̃
𝜆
2
𝜅
2
𝜆max (𝑄

−1
(𝑃𝐵𝐾𝑄

2
)
𝑇
𝑄

−1

(𝑃𝐵𝐾𝑄
2
)) , (44)
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this implies that

−

1

𝜔

(𝐼 ⊗ 𝑄) +

1

𝜔
2
[�̃�

1𝜎(𝑡)
⊗ (𝜅𝑃𝐵𝐾𝑄

2
)]

× (𝐼 ⊗ 𝑄

−1

) [�̃�
𝑇

1𝜎(𝑡)
⊗ (𝜅𝑃𝐵𝐾𝑄

2
)
𝑇
] < 0.

(45)

According to Lemma 2, we know that 𝑄
𝜎
is positive definite.

Because there are only finite interconnection topology graphs
to be switched, we know that system (29) is asymptotically
stable; that is, system (6) achieves consensus. Similarly, we can
prove that

𝑥
𝑖 (
𝑡) → 𝜛 (𝑡) ≜ 𝑒

𝐴𝑡
[

[

1

𝑁

𝑁

∑

𝑗=1

𝑥
𝑗 (
0)
]

]

,

V
𝑖
→ 𝑇𝜛 (𝑡) , 𝑖 = 1, 2, . . . , 𝑁, as 𝑡 → ∞.

(46)

The proof is now completed.

Remark 7. Here, the topological graph is assumed to be undi-
rected for convenience. If all graphs G

𝜎(𝑡)
are directed and

balanced with a directed spanning tree, we also have

𝑈
𝑇
𝐿
𝜎 (
𝑡) 𝑈 = (

0 0

0 �̃�
1𝜎(𝑡)

) , (47)

where �̃�
1𝜎(𝑡)

is positive definite (see [18]). Define

𝜆 = min
𝑙∈P

{

1

2

𝜆
2
(𝐿

𝑇

𝑙
+ 𝐿

𝑙
) | G

𝑙
is balanced and

has a directed spanning tree} > 0,
(48)

where 𝜆
2
(𝐿

𝑇

𝑙
+ 𝐿

𝑙
) is the second small eigenvalue of 𝐿𝑇

𝑙
+ 𝐿

𝑙
.

Following the similar line to analyze the directed topology as
Theorem 11 in the next section, it is not difficult to establish
similar condition to guarantee that the multiagent system
achieves consensus.

4. Multiagent Consensus Problem
with a Leader

In this section, we consider the multiagent system consisting
of𝑁 identical agent and a leader.The dynamics of the follow-
ing agents are described by system (3), and the dynamics of
the leader are given as

̇𝑥
0
= 𝐴𝑥

0
, 𝑦

0
= 𝐶𝑥

0
, 𝑥

0
∈ 𝑅

𝑛
, 𝑦

0
∈ 𝑅

𝑞
, (49)

where 𝑥
0
is the state of the leader, and 𝑦

0
is the measured

output of the leader.
Our aim is to construct the distributed control protocol

for each agent to track the leader; that is, 𝑥
𝑖
→ 𝑥

0
, 𝑡 → ∞

for any 𝑖 = 1, 2, . . . 𝑁. To this end,we propose a reduced-order

observer-based consensus protocol for each agent as follows:

̇V
𝑖
= 𝐹V

𝑖
+ 𝐺𝑦

𝑖
+ 𝑇𝐵𝑢

𝑖
,

𝑢
𝑖
= 𝜅𝐾𝑄

1
[

[

∑

𝑗∈N𝑖(𝑡)

𝑎
𝑖𝑗 (
𝑡) (𝑦𝑖

− 𝑦
𝑗
) + 𝑑

𝑖 (
𝑡) (𝑦𝑖

− 𝑦
0
)
]

]

+ 𝜅𝐾𝑄
2
[

[

∑

𝑗∈N𝑖(𝑡)

𝑎
𝑖𝑗 (
𝑡) (V𝑖 − V

𝑗
) + 𝑑

𝑖 (
𝑡) (V𝑖 − 𝑇𝑥0)

]

]

,

(50)

where V
𝑖
∈ 𝑅

𝑛−𝑞 is the protocol state, 𝜅 > 0 is the coupling
strength, 𝑎

𝑖𝑗
(𝑡) is chosen by (5), and 𝑑

𝑖
(𝑡) is chosen by

𝑑
𝑖 (
𝑡) = {

𝛽
𝑖
, if agent 𝑖 is connected to the leader at time 𝑡,

0, otherwise,
(51)

where 𝛽
𝑖
is positive connected weight of edge (𝑖, 0).

Remark 8. The leader’s dynamics is only based on itself, but
its system matrices are the same as all following agents. In
[17], the authors investigated this leader-following consensus
problem by using the distributed state feedback control
protocol. In this paper, we will solve the problem via the dis-
tributed reduced-order observer-based protocol (50), which
needs to be assumed that only the neighbors of leader can
obtain the state information of the leader.

In what follows, the digraph ̂G of order 𝑁 + 1 is intro-
duced to model interaction topology of the leader-following
multiagent system, whose nodes V

𝑖
, 𝑖 = 1, 2, . . . , 𝑁, are used

to label 𝑁 following agents and V
0
is labeled leader. In fact,

̂G contains graph G, which models the topology relation of
these𝑁 followers, and V

0
with the directed edges from some

agents to the leader describes the topology relation among all
agents. Node V

0
is said to be globally reachable, if there is a

directed path from every other node to node V
0
in digraph ̂G.

Let 𝐿
𝜎(𝑡)

be the Laplacian matrix of the interaction graph
G

𝜎(𝑡)
, and let 𝐵

𝜎(𝑡)
be an 𝑁 × 𝑁 diagonal matrix whose 𝑖th

diagonal element is 𝑑
𝑖
(𝑡) at time 𝑡. For convenience, denote

that𝐻
𝜎(𝑡)

= 𝐿
𝜎(𝑡)
+𝐵

𝜎(𝑡)
.Thematrix𝐻 has the following prop-

erty.

Lemma 9 (see [9]). Matrix𝐻 = 𝐿 + 𝐵 is positive stable if and
only if node 0 is globally reachable in ̂G.

Let 𝜀
𝑖
= 𝑥

𝑖
− 𝑥

0
, and 𝜀

𝑖
= V

𝑖
− 𝑇𝑥

0
. Then, the dynamics of

𝜀
𝑖
and 𝜀

𝑖
are described as follows:

̇𝜀
𝑖
= 𝐴𝜀

𝑖
+ 𝜅𝐵𝐾𝑄

1
𝐶 ∑

𝑗∈𝑁𝑖(𝑡)

𝑎
𝑖𝑗 (
𝑡) [(𝜀𝑖

− 𝜀
𝑗
) + 𝑑

𝑖 (
𝑡) 𝜀𝑖

]

+ 𝜅𝐾𝑄
2
[

[

∑

𝑗∈𝑁𝑖(𝑡)

𝑎
𝑖𝑗 (
𝑡) (𝜀𝑖

− 𝜀
𝑗
) + 𝑑

𝑖 (
𝑡) (𝜀𝑖

)
]

]

,

(52)
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̇
𝜀
𝑖
= ̇V

𝑖
− 𝑇 ̇𝑥

0
= 𝐹V

𝑖
+ 𝐺𝐶𝑥

𝑖
+ 𝜅𝐵𝐾𝑄

1
𝐶

×
[

[

∑

𝑗∈𝑁𝑖(𝑡)

𝑎
𝑖𝑗
(𝑥

𝑖
− 𝑥

𝑗
) + 𝑑

𝑖 (
𝑡) (𝑥𝑖

− 𝑥
0
)
]

]

+ 𝜅𝐾𝑄
2

×
[

[

∑

𝑗∈𝑁𝑖(𝑡)

𝑎
𝑖𝑗
(V

𝑖
− V

𝑗
) + 𝑑

𝑖 (
𝑡) (V𝑖 − 𝑇𝑥0)

]

]

− 𝑇𝐴𝑥
0
.

(53)

According to (7) and (53), we can obtain

̇
𝜀
𝑖
= 𝐹𝜀

𝑖
+ 𝐺𝐶𝜀

𝑖
+ 𝜅𝐵𝐾𝑄

1
𝐶

×
[

[

∑

𝑗∈𝑁𝑖(𝑡)

𝑎
𝑖𝑗 (
𝑡) (𝜀𝑖

− 𝜀
𝑗
) + 𝑑

𝑖 (
𝑡) 𝜀𝑖

]

]

+ 𝜅𝐾𝑄
2
[

[

∑

𝑗∈𝑁𝑖(𝑡)

𝑎
𝑖𝑗 (
𝑡) (𝜀𝑖

− 𝜀
𝑗
) + 𝑑

𝑖 (
𝑡) (𝜀𝑖

)
]

]

.

(54)

Let 𝜀 = (𝜀𝑇
1
, 𝜀

𝑇

2
, . . . , 𝜀

𝑇

𝑁
)
𝑇, 𝜀 = (𝜀𝑇

1
, 𝜀

𝑇

2
, . . . , 𝜀

𝑇

𝑁
)
𝑇, and 𝜉𝑇 =

(𝜀
𝑇
, 𝜀)

𝑇. From (52) and (54), the error dynamics can be rep-
resented as

̇𝜉 = [

[

𝐼𝑁 ⊗ 𝐴 +𝐻𝜎 ⊗ (𝜅𝐵𝐾𝑄1𝐶) 𝐻𝜎 ⊗ (𝜅𝐵𝐾𝑄2)

𝐼𝑁 ⊗ (𝐺𝐶) + 𝐻𝜎 ⊗ (𝜅𝑇𝐵𝐾𝑄1𝐶) 𝐼𝑁 ⊗ 𝐹 + 𝐻𝜎 ⊗ (𝜅𝑇𝐵𝐾𝑄2)

]

]

𝜉.

(55)

Let 𝜂 = [ 𝐼𝑁⊗𝐼𝑛 0

−𝐼𝑁⊗𝑇 𝐼𝑁⊗𝐼𝑛−𝑞
] 𝜉. Similarly, system (55) is equiva-

lent to the following switching system:

̇𝜂 = 𝐹
𝜎(𝑡)
𝜂, (56)

where

𝐹
𝜎(𝑡)

= [

𝐼
𝑁
⊗ 𝐴 + 𝐻

𝜎
⊗ (𝜅𝐵𝐾) 𝐻𝜎

⊗ (𝜅𝐵𝐾𝑄
2
)

0 𝐼
𝑁
⊗ 𝐹

] (57)

From the previous transformation, we know that the sta-
bility of error system (29) means that all following agents can
track the leader. First, we consider fixed topology case and
give the result as follows.

Theorem 10. For the leader-following multiagent systems (3)
and (49), whose interconnection topology graph ̂G is fixed and
has a globally reachable node V

0
, suppose that the parameter

matrices 𝐹, 𝐺, 𝑇, 𝐾, 𝑄
1
, and 𝑄

2
in the dynamic protocol

(50) are constructed by Steps (1)–(3) of Algorithm 3 and the
coupling strength 𝜅 is satisfied as

𝜅 ≥

1

2min
𝑖
{Re (𝜆

𝑖 (
𝐻))}

. (58)

Then, the distributed control protocol (50) guarantees that all
following agents can track the leader from any initial condition.

Proof. Of course, 𝜎(𝑡) in dynamical equation can also be
removed. According to Lemma 9, we know that𝐻 is positive
stable; that is, all eigenvalues𝜆

𝑖
(𝐻) of𝐻 satisfy Re(𝜆

𝑖
(𝐻))>0.

Similarly, we can do similarity transformation to matrix 𝐹,
which can be similar to block upper triangle matrix with
diagonal block matrix entries𝐴+𝜅𝜆

𝑖
(𝐻)𝐵𝐾 and 𝐹. Based on

Step (3) of Algorithm 3 and (58), we know that𝐴+𝜅𝜆
𝑖
(𝐻)𝐵𝐾

is stable. Thus, the error system ̇𝜂 = 𝐹𝜂 is stable.
Next, we probe the leader-following consensus problem

under switching interconnection topology.Unlike undirected
switching topology assumption in the previous section, we
assume that the interconnection topology switches in a class
of directed topologies. For convenience, the interconnection
topology switches in finite set, which is defined by

Γ = {
̂G

𝑖
| V

0
is globally reachable node

in graph ̂G
𝑖
and 𝐻𝑇

(
̂G

𝑖
) + 𝐻(

̂G
𝑖
)

is positive definite, 𝑖 ∈ P
0
}

(59)

with index setP
0
= {1, 2, . . . ,𝑀

0
}.

Therefore, define
̂
𝜆 := min

Ĝ∈Γ

{𝜆 (𝐻
𝑇
(
̂G) + 𝐻(̂G))} . (60)

Noticing that the set Γ is finite set and 𝐻𝑇
(
̂G) + 𝐻(̂G) is

positive definite, we know that ̂𝜆 is well defined, which is
positive and depends directly on the constants, all constants
𝑎
𝑖𝑗
and 𝛽

𝑖
(𝑖, 𝑗 = 1, 2, . . . , 𝑛) given in (5) and (51).

Theorem 11. For the leader-following multiagent system (3)
and (49), whose interconnection topology graph ̂G

𝜎(𝑡)
associ-

ated with any interval [𝑡
𝑗
, 𝑡

𝑗+1
) is assumed to have a globally

reachable node V
0
, suppose that the parameter matrices 𝐹, 𝐺,

𝑇, 𝐾, 𝑄
1
, and 𝑄

2
used in control protocol (50) are constructed

by Steps (1)–(3) of Algorithm 3 and the coupling strength 𝜅 is
satisfied as

𝜅 ≥

1

2
̂
𝜆

. (61)

Then, the distributed control protocol (50) guarantees that all
following agents can track the leader from any initial condition.

Proof. In time interval [𝑡
𝑖
, 𝑡

𝑖+1
), assume that 𝜎(𝑡) = 𝑝 ∈

P
0
. There exists an orthogonal transformation 𝑈

𝑝
such that

𝑈
𝑝
(𝐻

𝑇

𝑝
+𝐻

𝑝
)𝑈

𝑇

𝑝
is a diagonal matrixΛ

𝑝
= diag{𝜆

1𝑝
, 𝜆

2𝑝
, . . . ,

𝜆
𝑛𝑝
}, where 𝜆

𝑖𝑝
is 𝑖th eigenvalue of matrix𝐻𝑇

𝑝
+ 𝐻

𝑝
.

According to Algorithm 3 and condition (61), we can
know that the unique solution 𝑃 > 0 of Riccati equation
satisfies

𝑃(𝐴 +

1

2

𝜆
𝑖𝑝
𝜅𝐵𝐾)

𝑇

+ (𝐴 +

1

2

𝜆
𝑖𝑝
𝜅𝐵𝐾)𝑃

= −𝑄 + 𝑃𝐵𝐵
𝑇
𝑃 − 𝜆

𝑖𝑝
𝜅𝑃𝐶

𝑇
𝐶𝑃 ≤ −𝑄,

(62)

form which we can obtain the following inequality:

(𝐼 ⊗ 𝑃) (𝐼 ⊗ 𝐴 +

1

2

Λ
𝑝
⊗ (𝜅𝐵𝐾))

𝑇

+ (𝐼 ⊗ 𝐴 +

1

2

Λ
𝑝
⊗ (𝜅𝐵𝐾)) (𝐼 ⊗ 𝑃) ≤ −𝐼 ⊗ 𝑄 < 0.

(63)
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Figure 1: Three interconnection topology graphs.
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Figure 2: Trajectories 𝑥
𝑖(𝑗)
(𝑡) (𝑗 = 1, 2, 3) of four agents.
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Figure 4: Three interconnection topology graphs.

By pre- and postmultiplying (63)with𝑈
𝑝
⊗𝐼 and its transpose,

respectively, we have

(𝐼 ⊗ 𝑃) (𝐼 ⊗ 𝐴 +

1

2

(𝐻
𝑇

𝑝
+ 𝐻

𝑝
) ⊗ (𝜅𝐵𝐾))

𝑇

+ (𝐼 ⊗ 𝐴 +

1

2

(𝐻
𝑇

𝑝
+ 𝐻

𝑝
) ⊗ (𝜅𝐵𝐾)) (𝐼 ⊗ 𝑃) ≤ −𝐼 ⊗ 𝑄 < 0.

(64)

Since 𝑃𝐵𝐾 is a symmetric matrix, we know that the following
inequality holds:

(𝐼 ⊗ 𝑃) (𝐼 ⊗ 𝐴 + 𝐻𝑝
⊗ (𝜅𝐵𝐾))

𝑇

+ (𝐼 ⊗ 𝐴 + 𝐻
𝑝
⊗ (𝜅𝐵𝐾)) (𝐼 ⊗ 𝑃)

= (𝐼 ⊗ 𝑃) [𝐼 ⊗ 𝐴 +

1

2

(𝐻
𝑇

𝑝
+ 𝐻

𝑝
) ⊗ (𝜅𝐵𝐾)]

𝑇

+ [𝐼 ⊗ 𝐴 +

1

2

(𝐻
𝑇

𝑝
+ 𝐻

𝑝
) ⊗ (𝜅𝐵𝐾)] (𝐼 ⊗ 𝑃)

≤ −𝐼 ⊗ 𝑄 < 0.

(65)

Similarly, as the proof of the stability of system (29) in the
proof of Theorem 6, we can prove that the error system ̇𝜂 =

𝐹
𝜎(𝑡)
𝜂 is stable.

5. Simulation Example

The multiagent system contains four agents with each one
modeled by the following linear dynamics:



Abstract and Applied Analysis 11

0

2

4

6

8

−10

−8

−6

−4

−2

0 5 10 15

Tr
aj

ec
to

rie
s𝑥
𝑖(
1
)
−
𝑥
0
(
1
)

of
 fo

ur
 ag

en
ts

Agent 1
Agent 2

Agent 3
Agent 4

𝑡 (s)

(a)

0 5 10 15

0

5

10

15

−15

−10

−5

Tr
aj

ec
to

rie
s𝑥
𝑖(
2
)
−
𝑥
0
(
2
)

of
 fo

ur
 ag

en
ts

Agent 1
Agent 2

Agent 3
Agent 4

𝑡 (s)

(b)

10

0

2

4

6

8

−10

−8

−6

−4

−2

0 5 10 15

Tr
aj

ec
to

rie
s𝑥
𝑖(
3
)
−
𝑥
0
(
3
)

of
 fo

ur
 ag

en
ts

Agent 1
Agent 2

Agent 3
Agent 4

𝑡 (s)

(c)

Figure 5: Trajectories 𝑥
𝑖(𝑗)
(𝑡) − 𝑥

0(𝑗)
(𝑗 = 1, 2, 3) of four agents.

̇𝑥
𝑖 (
𝑡) =

[

[

−2.1622 1.1469 0.6921

−2.0497 0.9585 0.8159

−1.9817 1.1558 0.5047

]

]

𝑥
𝑖 (
𝑡) +

[

[

0

0

1

]

]

𝑢
𝑖 (
𝑡) ,

𝑦
𝑖 (
𝑡) = [

1 0 0

0 1 0
] 𝑥

𝑖 (
𝑡) .

(66)

The interconnection topologies are arbitrarily switched
with period 0.1 s among three graphs G

𝑖
(𝑖 = 1, 2, 3), which

are shown in Figure 1. For simplicity, all nonzero weighting
factors of the graphs are taken as (1).

Each agent uses the reduced-order observer-based pro-
tocol (4). Take 𝐹 = −0.8 and 𝐺 = [0.9 0.1]. To solve
the Sylvester equation (7), one can get 𝑇 = [9.1676 −

4.6282 − 1.9688], which satisfies that [ 𝐶
𝑇
] is nonsingu-

lar. Then, we know that 𝑄
1
= [

1.0000 0

0 1.0000

4.6564 −2.3508
] and 𝑄

2
=

[

0

0

−0.5079
]. Taking a positive definite matrix 𝑄 = 4𝐼, we have

𝐾 = [3.1532 − 3.2555 − 2.7856] by solving the Riccati
equation (8). Take 𝜅 = 1.0243, which satisfies condition (31).

Let 𝑥
𝑖(𝑗)
(𝑡) (𝑗 = 1, 2, 3) denote the 𝑗th component of

𝑥
𝑖
. The trajectories of 𝑥

𝑖(𝑗)
(𝑡) are depicted in Figure 2, which

shows that the multiagent system can achieve consensus.The
trajectories of V

𝑖
(𝑡) and V

𝑖
(𝑡) − 𝑇𝜛(𝑡) are depicted in Figure 3,

which is also shown that V
𝑖
(𝑡) → 𝑇𝜛(𝑡) as 𝑡 → ∞.

For simplicity, we consider the group to consist of four
followers and one leader; that is, 𝑁 = 4. Assume that the
interconnection topologies are arbitrarily switched among
three graphs ̂G

𝜎
(𝑖 = 1, 2, 3) and the communication graph

given by Figure 4. All nonzero weighting factors of the graphs
are taken as (1).

Take 𝜅 = 1.86, which satisfies condition (61). All other
parameters used in protocol (50) are chosen as aforemen-
tioned.The trajectories of 𝑥

𝑖(𝑗)
−𝑥

0(𝑗)
, 𝑗 = 1, 2, 3, are depicted

in Figure 5, which shows that the follower agents can track
the leader agent.
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6. Conclusion

In this paper, we investigate the consensus problem for a
group of agents with high-dimensional linear coupling
dynamics under undirected switching interaction topology.
We propose a strict proof of main result in [35] based on the
Jordan decomposition method and generalize the proposed
protocol to solve the consensus problem under undirected
switching interconnection topology. To solve the leader-
following consensus problem, we propose a neighbor-based
track law for each following agent with a little simple
modification to the reduced-order observer-based consensus
protocol. The control parameters used in protocol can be
constructed by solving the Riccati equation and the Sylv-
ester equation.Theparameter-dependent commonLyapunov
function method is involved to analyze the consensus prob-
lems under undirected switching topology. Since common
Lyapunov function method is conservative, the less con-
servative method should be probed. Of course, more gen-
eralized and interesting cases, such as switching directed
interaction topology, random interaction topology, jointly
connected convergence condition, and the effect of time
delays arising in the communication between agents, will be
investigated in our future work.
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We present a study on a class of interconnected nonlinear systems and give some criteria for them to behave like a filter. Some
chaotic systems present this kind of interconnected nonlinear structure, which enables the synchronization of amaster-slave system.
Interconnected nonlinear filters have been defined in terms of interconnected nonlinear systems. Furthermore, their behaviors have
been studied numerically and theoretically on different input signals.

1. Introduction

In the study of nonlinear dynamics, much research was
devoted to synchronization of chaotic systems, which have
been unidirectional coupling [1], and one of the main
applications is in secure communications systems [2]. Under
unidirectional coupling, there is a master system that forces
a slave system. Let us begin by considering a master system
whose temporal evolution is ruled by the following equation:

̇y = 𝑓 (y) , (1)

where y ∈ R𝑛 is the state vector, with 𝑓 defining a vector field
𝑓 : R𝑛 → R𝑛. The slave system is given by

̇x = 𝑔 (x, y) , (2)

where x ∈ R𝑚 is the state vector, and the function 𝑔 :

R𝑚 × R𝑛 → R𝑚 describes the dynamics of the slave system
and coupling. The master system behaves as an autonomous
system and the slave system is a forced system that under
certain conditions could behave as a nonautonomous system,
where its dynamic is completely determined by the master
system; that is, it means that the slave system acts in function

of the master system. Hence, the slave system can be seen as a
driven system by an external force, and then it can be studied
as a filter when the input signal comes from a master system
or any external signal unidirectional coupled.

There are several asymptotical behaviors reported based
on master-slave configuration. Some cases are summarized
as follows: Identical Synchronization (IS) implies coincidence
of the corresponding states of the interacting systems [1].
Lag Synchronization (LS) occurs when the trajectory of one
oscillator is delayed by a specific time and is identical to the
trajectory of the other oscillator [3]. Phase Synchronization
(PS) means the lock of chaotic oscillator phases, regardless of
their amplitudes [4]. Frequency Entrainment Synchronization
(FES) occurs when two systems are oscillating with the same
frequency [5]. Generalized Synchronization (GS) is defined
as the presence of some functional relationship between
the states of the slave and master systems [6]. Multimodal
Generalized Synchronization (MGS) is presented when there
are several basins of attraction for the slave system, and
generalized synchronization is also presented [7, 8]. The
aforementioned chaotic synchronization phenomena tell us
that some types of synchronization are stronger than others.
Another characteristic of these asymptotic behaviors is that
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they always can be described in terms of a functional
relationship. For example, let Φ be the GS function which
relates the master system with the slave system; that is, y =

Φ(x). In general, the way how synchronization phenomena
can be detected is by means of the auxiliary method [6]; thus
the way one can know that unidirectional coupled systems
present GS is when they present asymptotic behavior:

lim
𝑡→∞






x1 (𝑡) − x2 (𝑡)


= 0, (3)

where x1(𝑡) and x2(𝑡) are solutions of the slave and auxiliary
systems, respectively, initialized with different initial condi-
tion x1(0) ̸= x2(0). If this limit is satisfied, it indicates that the
slave system has lost its sensitivity to initial conditions, thus
losing their autonomy.Thence, the trajectory of the response
system depends on the input signal frommaster system. If we
consider the slave system as a forced system, then we will see
that its behavior depends on an external forcing, like a filter
does.

Forced Synchronization (FS) is defined as a phenomenon
that occurs when oscillations of several chaotic systems
x(1)(𝑡), x(2)(𝑡), . . . , x(𝑘)(𝑡) show correlated behavior because of
an external signal applied to these oscillators [9]. Meanwhile,
the conditions in order that a chaotic systembehaves as a filter
for an external signal under a specific coupling are given in
[10] where this phenomenon was called nonlinear filtering
(NF). So, these three phenomena (GS, FS, and NF) can be
recognized when the limit (3) is satisfied and can be studied
from the viewpoint of forced chaotic systems. GS containsNF
and MGS because these two phenomena present asymptotic
behavior. Nevertheless, there exists a difference between NF
and MGS. For MGS, the initial conditions determine the
basin of attraction where the trajectory of the slave system
converges, the fact despite that there exists a functional
relationship between the slave and the master systems, the
slave system does not behave like a filter. For NF, the slave
systemmust act in function of the external force and never in
function of its initial conditions.

Thedynamic of at least one state of several chaotic systems
has similar structure to low pass filter, for example, the first
equation of the Lorenz system ̇𝑥 = −𝜎𝑥 + 𝜎𝑦, where 𝑥 and 𝑦

can be seen as the output and input signals of a low pass linear
filter, respectively. The second equation of the Lorenz system
can be seen as a low pass nonlinear filter, ̇𝑦 = −𝑦 + 𝑥(𝜌 − 𝑧),
where 𝑦 is the output and 𝑥 and 𝑧 are the input signals of
a low pass nonlinear filter. Without loss of generality, from
the viewpoint of continuous dynamical systems, a filter can
be seen as a forced dynamical system in which its response
depends on its structure, given by their equations, and can
be linear or nonlinear. Then a natural question would be
the following: what is the effect on the response of forced
nonlinear system given an input signal? In order to answer
this question, wemake a study of a chaotic system forcedwith
different kinds of signals.

We are interested in explaining synchronization phe-
nomenon of chaotic systems based on nonlinear intercon-
nected structures, as these structures behave as a nonlinear
filter that allows synchronization ofmaster and slave systems.
Thereby, the target is not to put forward a new nonlinear

filter that can replace those designedwith the specific purpose
of preventing noise in the signal. Thus, the objective of this
research is to show how the synchronization phenomenon
underlies nonlinear interconnected structure. This kind of
structure which is immersed in some chaotic systems could
have some useful applications in filtering waves such as those
originated from earthquakes and tsunamis, because they can
be tuned to produce resonance at certain frequencies. So,
the target of this work is to give features of the nonlinear
filter as those given by the second and third equations of
the Lorenz system in function of the parameters of the input
signal 𝑢, which gives us a complementary perspective with
respect to the analysis made in [9], where it was only proved
and showed that a forced-chaotic system filters constant,
sinus, and random signals. To achieve this goal, we make a
study on the effect of nonlinear filter based on interconnected
nonlinear systems for different input signals𝑢, like sinusoidal,
chaotic, and random signals. Several chaotic systems that
have a similar structure to interconnected systems can be
analyzed like a nonlinear filtering phenomenon.

The paper is organized as follows: Section 2 contains basic
definitions of nonlinear filters based on 𝑛-interconnected
systems; Section 3 presents a way how tuning the parameters
of an 𝑛-interconnected system in order to the system behaves
as a nonlinear filter; in Section 4 is the study of the response
to amplitude and frequency of a nonlinear filter; Section 5
shows the response of the filter when the input signal is noise;
Section 6 presents a study case of correlation coefficient anal-
ysis; in Section 7, we present the relation between nonlinear
filters and chaotic systems; finally, conclusions are given in
Section 8.

2. Nonlinear Filter Structure

In the theory of linear systems, it is very well known that a
first-order low pass linear filter is given as follows:

̇𝑥
1
= 𝑘
1
𝑥
1
+ 𝑘
2
𝑢, (4)

where 𝑥
1

∈ R is the output of the filter, and 𝑘
1
, 𝑘
2

∈ R

are parameters of the filter (4). These parameters control
attenuation and amplitude of the input signal, respectively,
and 𝑢 ∈ R is the input signal to be filtered. Based on
the configuration of low pass filter given by (4), a low pass
nonlinear filter is defined as follows.

Definition 1. Let 𝑥
1
∈ R be an output signal, 𝑢 ∈ R an input

signal, and 𝑘
1
, 𝑘
2
, and 𝑘

3
∈ R parameters. Thus, a low pass

nonlinear filter can be defined as follows:

̇𝑥
1
= 𝑘
1
𝑥
1
+ (𝑘
2
+ 𝑘
3
𝑥
1
) 𝑢. (5)

The parameter 𝑘
3
in the above definition is used to control

the nonlinear term 𝑥
1
𝑢. Notice that when 𝑘

3
= 0, the

nonlinear term disappears, 𝑘
3
𝑥
1
𝑢, and then the nonlinear

filter (5) behaves as a linear filter. The structure of nonlinear
filters (5) has been used to generate chaos, as it can be seen
in the Lorenz system [11], but its states are interconnected.
Therefore, a natural question emerges around nonlinear
filtering: what are the characteristics of two nonlinear filters if
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they are interconnected and forced by the same signal 𝑢? An
interconnected system via nonlinear filters is given as follows:

Definition 2. Let 𝑥
1
, 𝑥
2
∈ R be output signals, 𝑢 ∈ R an input

signal, and 𝑘
1
, 𝑘
2
, 𝑘
3
, 𝑘
4
, 𝑘
5
, and 𝑘

6
∈ R parameters. So, let us

define an interconnected system via low pass nonlinear filters
as follows:

̇𝑥
1
= 𝑘
1
𝑥
1
+ (𝑘
2
+ 𝑘
3
𝑥
2
) 𝑢,

̇𝑥
2
= 𝑘
4
𝑥
2
+ (𝑘
5
+ 𝑘
6
𝑥
1
) 𝑢.

(6)

Thus the system (6) is called two-interconnected systems.

Now, in Definition 2, the parameters 𝑘
3
and 𝑘

6
are

coupling parameters for the outputs 𝑥
1
and 𝑥

2
, respectively.

In general, an 𝑛-interconnected system can be defined by
coupled 𝑥

𝑛
to the output 𝑥

𝑛+1
with 𝑛 > 2. This 𝑛-

interconnected system has a core based on low pass linear
filters ̇𝑥 = 𝐾x + 𝐵𝑢, where x ∈ R𝑛 is a state vector, 𝐾 ∈

R𝑛×𝑛 is a matrix, and 𝐵 ∈ R𝑛×1 is a constant vector. Thus,
we can define 𝑛-interconnected system with the following
expression:

̇𝑥 = 𝐾x + 𝐵𝑢 + 𝑓 (x, 𝑢) , (7)

where the nonlinear function 𝑓(x, 𝑢) ∈ R𝑛 is constituted
by terms 𝑘

𝑖
𝑥
𝑗
𝑢, 𝑖 ∈ {1, 2, . . . , 3𝑛}, 𝑗 ∈ {1, 2, . . . , 𝑛}. An 𝑛-

interconnected system (7) is studied in [12] where the authors
found that its model produces hyperbolic chaos when it is
forced by a sinusoidal wave. On the other hand, system (7)
is formed by a linear part 𝐾x, an input signal 𝐵𝑢, and a
nonlinear part 𝑓(x, 𝑢), which can induce sensitivity to initial
conditions (𝑥

1
(0), 𝑥
2
(0), . . . , 𝑥

𝑛
(0)). But a filter must act in

function of the input signal and not in function of the initial
condition. Therefore, it is important to find conditions in
order to guarantee that an interconnected system behaves as a
filter. Roughly speaking, the response of a filter only depends
on the kind of input signal and if the interconnected systems
depend on initial condition, this is classified as generalized
forced synchronization phenomenon by forced systems [9].
Therefore, according to context, a nonlinear filter is defined
in the next way.

Definition 3. Let x𝑖(𝑡) = (𝑥
𝑖

1
(𝑡), 𝑥
𝑖

2
(𝑡), . . . , 𝑥

𝑖

𝑛
(𝑡))
𝑇 be a vector

of output signals given by 𝑛-interconnected system (7) with
initial condition x𝑖(0) = (𝑥

𝑖

1
(0), 𝑥
𝑖

2
(0), . . . , 𝑥

𝑖

𝑛
(0))
𝑇. System

(7) is called an 𝑛-interconnected nonlinear filter if it always
presents asymptotic behavior:

lim
𝑡→∞






x(1) (𝑡) − x(2) (𝑡)


= 0. (8)

In Definition 3, if 𝑡 → ∞ and the output of the 𝑛-
interconnected system is independent of the initial condi-
tions, then system (7) is considered an 𝑛-interconnected
nonlinear filter.

3. Tuning of the Parameters

We select the entries of the matrices 𝐾 and 𝐵 in order for
condition (8) to be satisfied. Let us start by considering

𝛿(𝑡) = x(1)(𝑡) − x(2)(𝑡), and then ̇
𝛿(𝑡) = ̇x(1)(𝑡) − ̇x(2)(𝑡). Now,

by using (7) we deduce that ̇𝛿 = 𝐾𝛿(𝑡) +𝑓(x(1), 𝑢) −𝑓(x(2), 𝑢)
which can be rewritten as follows:

𝛿 (𝑡) = 𝛿 (0) 𝑒
𝐾𝑡

+ 𝑒
𝐾𝑡

∫

𝑡

0

𝑒
𝐾𝑠

(𝑓 (x(2), 𝑢)

−𝑓 (x(1), 𝑢)) 𝑑𝑠.

(9)

In order to describe the asymptotic behavior of (9), we state
the following theorem.

Theorem 4. If system (7), forced by signal 𝑢, satisfyies the
following conditions:

(1) there exists a positive constant 𝑘 such that Re{𝜆} ≤ −𝑘,
for every eigenvalue 𝜆 of the linear part of system (7);

(2) 𝑓(x, 𝑢) is a continuous Lipschitz; that is, there exists
a positive function 𝐶[𝑢] < ∞ such that |𝑓(x(2), 𝑢) −

𝑓(x(1), 𝑢)| ≤ 𝐶[𝑢]|x(2) − x(1)|,

then, system (7) is a filter for 𝑢, provided that 𝑘 > 𝐶[𝑢], where

𝐶[𝑢] := lim
𝑡→∞

1

𝑡

∫

𝑡

0

𝐶 [𝑢 (𝑠)] 𝑑𝑠. (10)

Proof. Let x(1)(𝑡), x(2)(𝑡), and 𝛿(𝑡) defined be before.Wewant
to prove that 𝑘 > 𝐶[𝑢] implies lim

𝑡→∞
|𝛿(𝑡)| = 0. From (9)

we have the following estimate:

|𝛿 (𝑡)| ≤





𝑒
𝐾𝑡




|𝛿 (0)| +






𝑒
𝐾𝑡





× ∫

𝑡

0






𝑒
𝐾(−𝑠)










𝑓 (x(2), 𝑢) − 𝑓 (x(1), 𝑢)


𝑑𝑠

≤ 𝑒
‖𝐾‖|𝑡|

|𝛿 (0)| + 𝑒
‖𝐾‖|𝑡|

× ∫

𝑡

0

𝑒
‖𝐾‖|−𝑠| 




𝑓 (x(2), 𝑢) − 𝑓 (x(1), 𝑢)


𝑑𝑠.

(11)

Using hypothesis (1), we obtain from the previous inequality
the following estimate:

|𝛿 (𝑡)| ≤ 𝑒
−𝑘𝑡

|𝛿 (0)|

+ 𝑒
−𝑘𝑡

∫

𝑡

0

𝑒
𝑘𝑠 




𝑓 (x(2), 𝑢) − 𝑓 (x(1), 𝑢)


𝑑𝑠.

(12)

If we multiply by 𝑒
𝑘𝑡, the last expression results in

𝑒
𝑘𝑡

|𝛿 (𝑡)| ≤ |𝛿 (0)| + ∫

𝑡

0

𝑒
𝑘𝑠 




𝑓 (x(2), 𝑢) − 𝑓 (x(1), 𝑢)


𝑑𝑠. (13)

Using the hypothesis (2), it follows that

𝑒
𝑘𝑡

|𝛿 (𝑡)| ≤ |𝛿 (0)| + ∫

𝑡

0

𝑒
𝑘𝑠
𝐶 [𝑢] |𝛿 (𝑠)| 𝑑𝑠. (14)

Application of Gronwall’s inequality yields

|𝛿 (𝑡)| ≤ |𝛿 (0)| 𝑒
−𝑡(𝑘−(1/𝑡) ∫

𝑡

0
𝐶[𝑢(𝑠)]𝑑𝑠)

, (15)

which proves the theorem.
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Figure 1: The maximal range of values of the filter (5) in function of its parameters when it is forced by 𝑢 = sin 𝑡: (a) 𝑅(𝑘
1
, 𝑘
2
) and (b)

𝑅(𝑘
1
, 𝑘
3
).

We can infer from the above theorem that all elements of
the matrix 𝐾 must be negative; that is, 𝑘

𝑖
< 0 for 𝑖 = 1, . . . , 𝑛.

On the other hand, due to the fact that (9) does not depend
on matrix 𝐵, then its terms are not conditioned and they can
take any real value.These will be carried out in the remainder
of this paper.

3.1. A Low Pass Nonlinear Filter. The analyzed case is the
one-interconnected system given by (7); this case is confined
to the particular case of the filter given by (5); where its
elements are 𝑥 = 𝑥

1
∈ R, 𝐴

1×1
= 𝑘
1
, 𝐵
1×1

= 𝑘
2
, and

𝑓(𝑥
1
, 𝑢) = 𝑢𝑘

3
. According to the first condition of the above

theorem, we have 𝑘
1
< 0, and now considering the nonlinear

part of the filter, if the Lipschitz condition is satisfied when
|𝑓(𝑥
1
)
(1)

− 𝑓(𝑥
1
)
(2)

| ≤ |𝑘
3
||𝑢||𝛿(𝑡)|, giving as a result 𝑐[𝑢] =

|𝑘
3
||𝑢|, therefore the parameter 𝑘

3
can be any real value. Now,

the interest is that the one-interconnected system behaves as
a nonlinear filter; then Theorem 4 needs to be satisfied by
𝑘
1
< −|𝑘

3
||𝑢|. If the input signal is a constant, 𝑢 = 𝜇 (𝜇 ∈ 𝑍)

and 𝜇 ≤ −𝑘
1
/|𝑘
3
|, then the response of the filter converges

to zero; otherwise it diverges. Another case is when the input
signal is 𝑢 = 𝜇 sin(𝜔𝑡), we have the following:

|𝛿 (𝑡)| ≤ |𝛿 (0)| 𝑒
𝑘1𝑡+|𝑘3| ∫

𝑡

0
|𝜇 sin(𝜔𝑠)|𝑑𝑠

≤ |𝛿 (0)| 𝑒
𝑘1𝑡+|𝑘3||𝜇| ∫

𝑡

0
𝑑𝑠
,

(16)

which converges 𝜇 ≤ −𝑘
1
/|𝑘
3
|. Generally, condition (8) is

always satisfied for oscillating functions 𝑢 with |𝑢(𝑡)| ≤ 𝑀.
However, for the case that 𝑢 is a polynomial of grade greater
than 1, that is, 𝑢 = 𝑎

𝑛
𝑡
𝑛
+𝑎
𝑛−1

𝑡
𝑛−1

+⋅ ⋅ ⋅+ 𝑎
0
for 𝑛 > 1, condition

(8) is not satisfied.
Due to the fact that our interest is to tune the value of the

parameters 𝑘
1
, 𝑘
2
, and 𝑘

3
, we make a numerical study on the

effect of these parameters on the response of𝑥
1
when the one-

interconnected system (7) is being forced by the sinusoidal

input signal 𝑢 = sin(𝑡). After a transient time, we calculate
themaximal range of values of the one-interconnected system
(7) by obtaining 𝑅(𝑘

𝑖
, 𝑘
𝑗
) = MAX{𝑥

1
(𝑡)}−MIN{𝑥

1
(𝑡)} (𝑖 ̸= 𝑗),

where MAX{𝑥
1
(𝑡)} and MIN{𝑥

1
(𝑡)} are the maximum and

minimum values, respectively, of the response time series
𝑥
1
(𝑡) in function of the parameters 𝑘

𝑖
, 𝑘
𝑗
. For example, if

we want to calculate 𝑅(𝑘
1
, 𝑘
2
), then we fix the value of 𝑘

3

and simulate different time series of the one-interconnected
system (7) for different values of 𝑘

1
, 𝑘
2
. In general, the value of

𝑅(𝑘
𝑖
, 𝑘
𝑗
) is calculated in function of the parameters which are

varied and in each case condition (8) is verified if it is satisfied.
Figures 1(a) and 1(b) show the graphs of 𝑅(𝑘

1
, 𝑘
2
) for 𝑘

3
= −1

and 𝑅(𝑘
1
, 𝑘
3
) for 𝑘

2
= 1, respectively. These graphs show that

the one-interconnected system (7) increments exponentially
the amplitude of its responsewhen the parameter 𝑘

3
increases

its magnitude; meanwhile, the amplitude of 𝑥
1
is mildly

incremented in a linear rate in function of the magnitude of
the parameter 𝑘

2
.

3.2. Interconnected Nonlinear Filters. Now, the first case is a
two-interconnected system (6); the matrices 𝐾

2×2
, 𝐵
2×1

, and
the nonlinear function 𝑓(x, 𝑢) : R2 × R → R2 are assumed
as follows:

𝐾 = (

𝑘
1

0

0 𝑘
4

) , 𝐵 = (

𝑘
2

𝑘
5

) ,

𝑓 (x, 𝑢) = (

𝑘
3
𝑢𝑥
2

𝑘
6
𝑢𝑥
1

) .

(17)

System (6) is asked to behave as a nonlinear filter, so the
conditions of Theorem 4 are used to select the value of the
parameters {𝑘

𝑖
}. From the first condition of the theorem, we

realize that 𝑘
1
, 𝑘
4

< 0, {𝑘
2
, 𝑘
5
} ∈ R, and if 𝐴 > 𝐵∫

𝑡

0
|𝑢|𝑑𝑠,

where 𝐴 = max{𝑘
1
, 𝑘
4
} and 𝐵 = max{𝑘

3
, 𝑘
6
}, then system (6)

is a filter for the signal 𝑢. In order to know more about the
characteristics of the values of the parameters, we calculate
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Figure 2: The maximal range of values of the filter (17) in function of its parameters when the filter is forced by 𝑢 = sin 𝑡. (a) 𝑅(𝑘
1
, 𝑘
4
) and

(b) 𝑅(𝑘
2
, 𝑘
5
).

the eigenvalues of the Jacobian of system (6), which results in
the following:

𝜆
1,2

=

1

2

(𝑘
1
+ 𝑘
4

±√(𝑘
1
+ 𝑘
4
)
2
− 4 (𝑘

1
𝑘
4
− 𝑘
3
𝑘
6
𝑢
2
)) .

(18)

Our purpose is that system (6) converges; then Re{𝜆
𝑖
}

must be negative.Therefore, we need to guarantee that 𝑘
1
𝑘
4
≥

𝑘
3
𝑘
6
𝑢
2 is true. Due to 𝑢

2
≥ 0, then the parameters 𝑘

3
and

𝑘
6
need to be opposite sign, that is, either 𝑘

3
< 0, 𝑘

5
> 0 or

𝑘
3
> 0, 𝑘

6
< 0.We choose arbitrarily the first relation of signs.

The effect of the parameters {𝑘
𝑖
} on the response 𝑥 of

the interconnected nonlinear filters is computed by 𝑅(𝑘
𝑖
, 𝑘
𝑗
)

when system (6) is forced by 𝑢 = sin(𝑡). Several calculations
were made and for each of them we verify that the non-
linear filtering condition (8) was satisfied. Figure 2(a) shows
𝑅(𝑘
1
, 𝑘
4
) when the parameters of the filter (6) are fixed to

𝑘
2

= 𝑘
5

= 𝑘
6

= 1, 𝑘
3

= −1. Figure 2(b) shows 𝑅(𝑘
2
, 𝑘
5
) for

𝑘
1
= 𝑘
4
= 𝑘
3
= −1 and 𝑘

6
= 1.

In the remainder of this paper, we studied the effect of
the parameters input signal 𝑢 on the response of the coupled
filter (6); that is, we tune the parameters of the filter, vary the
parameter’s values of the input signal, and observe the effect
of the response. Therefore, we need to fix 𝑘

𝑖
(𝑖 = 1, . . . , 6).

Our interest is focus on the study of the response to the input
𝑢when the linear filters 𝑥

1
, 𝑥
2
are coupled in a nonlinear way.

Without loss of generality and seeking clarity in our study, we
consider 𝑘

5
= 0. The rest of the parameter values could vary

in the intervals 𝑘
1
< 0, 𝑘

4
< 0, 𝑘

3
𝑘
6
< 0, {𝑘

2
, 𝑘
5
} ∈ R, which

is a rich variety of values where the filter works.We can select
any value in these intervals and produce similar responses;
nevertheless, we fix the values to 𝑘

1
= −1, 𝑘

2
= 28, 𝑘

3
= −1,

𝑘
4
= −2.66, 𝑘

5
= 1, which will be used in the rest of the paper.

4. Response to the Amplitude and Frequency

In this section, we present a study on the effect of the
filter’s response (6) as function of parameter’s values of the
sinusoidal input signal 𝑢(𝑡) = 𝜇 sin(𝜔𝑡). Figure 3(a) shows
the output signals of the 𝑛-interconnected nonlinear filter for
the cases 𝜇 = 1, 𝜔 = 3 and 𝜇 = 1, 𝜔 = 5. One can see that
the orbits have a form of a Lissajous curve and the amplitude
of the output signal as the frequency of the input signal is
increased. In general, to see the effect of amplitude 𝜇 on the
filter’s response, we calculate the length of the Lissajous 𝐿 in
this way

𝐿 = ∫

𝑇

0

√( ̇𝑥
1
)
2
+ ( ̇𝑥
2
)
2
𝑑𝑡, (19)

where 𝑇 is the period of the orbit (𝑥
1
(𝑡), 𝑥
2
(𝑡)). The effect of

the input signal’s frequency 𝜔 on the length 𝐿 of the orbit
of the filter’s response is shown in Figure 3(b). Thus, 𝐿 falls
exponentially according to the increment of the frequency 𝜔.
System (6) presents a rejection to high frequencies because it
is a low pass filter.

Now, fixing the frequency to 𝜔 = 1.0 and varying the
amplitude 𝜇, we observe that new frequency components
appear in the Fourier Transform (FT) of the output signal 𝑥

1
.

When the amplitude increases, thenmore peaks of frequency
appear as multiples of the input signal’s frequency. As is
shown in Figures 4(a) and 4(b), 𝜇 = 1 and 5, respectively.
This is a characteristic of a nonlinear filter that linear filters
do not present.

The nonlinear filters display assorted behaviors, that
is, contrary to the example shown in Figure 4, where the
amplitude is fixed to𝜇 = 10 and frequency𝜔 is varied. Figures
5(a) and 5(b) show the FT of the response of the filter (6)
for 𝜔 = 1 and 𝜔 = 2, respectively. Comparing both plots of
Figure 5, we see that frequency peaks appear at multiples of
input signal’s frequency 𝜔.
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Figure 3: (a) The orbits of two Lissajous curves calculated by forcing system (6) with 𝜇 = 1 and 𝜔 = 1, 3. (b) We can see how the size of the
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Figure 4: Both plots are the FT for the state 𝑥
1
of the filter (6) when it is filtering the input signal 𝑢 = 𝜇 sin(𝑡) for the cases (a) 𝜇 = 1.0 and (b)

𝜇 = 5. These graphs show that when 𝜇 is incremented, new component frequency peaks appear in the power spectrum of the filter’s response.

4.1. A Theoretical Justification. For the purpose of giving a
theoretical justification of the behavior of the filter (6) when
it is forced by the sinusoidal signals, we can see in the
interconnected nonlinear filter (6) that ̇𝑥

1
and ̇𝑥

2
are linear

first-order differential equationswhich can be rewritten in the
next form:

𝑥
1 (

𝑡) = 𝜇𝑒
𝑘1𝑡

(𝑘
2
∫ 𝑒
−𝑘1𝑡 sin (𝜔𝑡) 𝑑𝑡

+𝑘
4
∫ 𝑒
−𝑘1𝑡 sin (𝜔𝑡) 𝑥2 (

𝑡) 𝑑𝑡) ,

(20)

𝑥
2 (

𝑡) = 𝑘
6
𝜇𝑒
𝑘5𝑡

∫ 𝑒
−𝑘5𝑡 sin (𝜔𝑡) 𝑥1 (

𝑡) 𝑑𝑡. (21)

Without loss of generality and for seeking clarity, we consider
the parameter 𝑘

5
= 0. Applying integration by parts to (20)

and considering that the states 𝑥
1
(𝑡) and 𝑥

2
(𝑡) are functions

that depend on time and frequency and that 𝜇 is a constant,
we have the following:

𝑥
1 (

𝑡) =

−𝜇

𝜔
2
+ 𝑘
2

1

(𝑘
2
(𝑘
1
sin (𝜔𝑡) + 𝜔 cos (𝜔𝑡))

+ 𝑘
3
(𝑘
1
sin (𝜔𝑡) + 𝜔 cos (𝜔𝑡) 𝑥2 (

𝑡))

−𝑘
4
𝑒
𝑘1𝑡

∫ 𝑒
−𝑘1𝑡

(𝑘
1
sin (𝜔𝑡)

+𝜔 cos (𝜔𝑡) ) ̇𝑥
2
𝑑𝑡) .

(22)
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Figure 5: Both plots are the FT of the state 𝑥
1
of the filter (6) when it is filtering the input signal 𝑢 = 10 sin(𝜔𝑡) for the cases (a) 𝜔 = 1 and

(b) 𝜔 = 2.

And for (21) we have

𝑥
2 (

𝑡) =

−𝜇𝑘
6

𝜔
2
+ 𝑘
2

5

((𝑘
5
sin (𝜔𝑡) + 𝜔 cos (𝜔𝑡)) 𝑥1 (

𝑡)

− 𝑒
𝑘5𝑡

∫ 𝑒
−𝑘5𝑡

(𝑘
5
sin (𝜔𝑡)

+𝜔 cos (𝜔𝑡) ) ̇𝑥
1
𝑑𝑡) .

(23)

Note that in (22) and (23), the magnitude values of
𝑥
1
(𝑡) and 𝑥

2
(𝑡) decrease when the frequency 𝜔 increases.

Furthermore, since the terms

𝑒
𝑘1𝑡

∫ 𝑒
−𝑘1𝑡

(𝑘
1
sin (𝜔𝑡) + 𝜔 cos (𝜔𝑡)) ̇𝑥

2
𝑑𝑡,

𝑒
𝑘5𝑡

∫ 𝑒
−𝑘5𝑡

(𝑘
5
sin (𝜔𝑡) + 𝜔 cos (𝜔𝑡)) ̇𝑥

1
𝑑𝑡

(24)

have factors (𝜔
2

+ 𝑘
2

5
)
𝑛, (𝜔
2

+ 𝑘
2

1
)
𝑛 for 𝑛 ≤ −2, then we

approximate (22) and (23) to

𝑥
1 (

𝑡) ≈ −

𝜇

𝜔
2
+ 𝑘
2

1

(𝑘
2
𝐺
1 (

𝑡) + 𝑘
3
𝐺
1 (

𝑡) 𝑥2 (
𝑡)) , (25)

𝑥
2 (

𝑡) ≈ −

𝜇𝑘
6

𝜔
2
+ 𝑘
2

5

𝐺
2 (

𝑡) 𝑥1 (
𝑡) , (26)

where 𝐺
1
(𝑡) = 𝑘

1
sin(𝜔𝑡) + 𝜔 cos(𝜔𝑡), 𝐺

2
(𝑡) = 𝑘

5
sin(𝜔𝑡) +

𝜔 cos(𝜔𝑡) are periodic functions with period given by the
input signal. Substituting (25) in (26), we have

𝑥
1 (

𝑡) ≈ −

𝜇𝑘
2
𝐺
1 (

𝑡)

𝜔
2
+ 𝑘
2

1

+

𝜇
2
𝑘
4
𝑘
8
𝐺
1 (

𝑡) 𝐺2 (
𝑡)

(𝜔
2
+ 𝑘
2

1
) (𝜔
2
+ 𝑘
2

5
)

𝑥
1 (

𝑡) . (27)

0

0

1

2
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5

5
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𝑥
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10 15 20

Figure 6: Comparison of Lissajouses. Lissajous with solid line
corresponds to the solution of system (6) and Lissajous with dashed
line corresponds to its approximated solution plotted with the
parametric equations (28) and (29).

Now, solving for 𝑥
1
(𝑡) from (27), it results that

𝑥
1 (

𝑡) ≈

−𝜇𝑘
2
(𝜔
2
+ 𝑘
2

5
)𝐺
1 (

𝑡)

𝜔
4
+ (𝑘
2

1
+ 𝑘
2

5
) 𝜔
2
+ 𝑘
2

1
𝑘
2

5
− 𝜇
2
𝑘
3
𝑘
6
𝐺
1 (

𝑡) 𝐺2 (
𝑡)

.

(28)

And for 𝑥
2
(𝑡) it results that

𝑥
2 (

𝑡) ≈

𝜇
2
𝑘
2
𝑘
6
𝐺
1 (

𝑡) 𝐺2 (
𝑡)

𝜔
4
+ (𝑘
2

5
+ 1) 𝜔

2
+ 𝑘
2

5
− 𝜇
2
𝑘
3
𝑘
6
𝐺
1 (

𝑡) 𝐺2 (
𝑡)

. (29)

Figure 6 shows the orbit of the solution of (28) and (29)
and the orbit of the numerical solution of the filter (6) when
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Figure 7: Plots of the filter’s response (6) when a random input signal 𝑢 = 10𝜂(𝑡) is filtered. (a) The phase space (𝑥
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, 𝑥
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). The time series (b)

𝑥
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Figure 8: Response of the filter (6) when it is forced by the random signal 𝑢 = 𝜂(𝑡). (a) Graphs of the histograms of the state 𝑥

1
(continuous

line) and histogram of the external input signal 𝑢 (dotted line). (b) TF of the component 𝑥
1
.
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Figure 9: Range of values of the state 𝑥
1
in function of the 𝜅 when

system (6) filters random signal.

𝜇 = 1.0 and 𝜔 = 1.0. The thin Lissajous curve is calculated
with (6) and another with (28) and (29). We can see that
both orbits oscillate in a Lissajous curve of one knot and the
same symmetric form with respect to the 𝑦-axis, but slightly
different amplitude.

Now, we analyze the FT of the equations of system (6)
which are given as follows:

𝑗Ω𝑋
1 (

Ω) = 𝑘
1
𝑋
1 (

Ω) + 𝑘
2
FT {𝑢} + 𝑘

3
FT {𝑢𝑥

2
} , (30)

𝑗Ω𝑋
2 (

Ω) = 𝑘
5
𝑋
2
+ 𝑘
6
FT {𝑢𝑥

1
} (Ω) , (31)

where FT{𝑥
𝑖
} = 𝑋

𝑖
(Ω) is the FT of the signal 𝑥

𝑖
. For the case

when 𝑢 = 𝜇 sin(𝜔𝑡), we have

Ω𝑋
1 (

Ω) = − 𝑗𝑘
1
𝑋
1 (

Ω) +

𝑘
3
𝜇

2

(𝑋
2 (

Ω + 𝜔) − 𝑋
2 (

Ω − 𝜔))

+ 𝑘
2
𝜇𝜋 (𝛿 (Ω + 𝜔) − 𝛿 (Ω − 𝜔)) ,

Ω𝑋
2 (

Ω) = −𝑗𝑘
5
𝑋
2 (

Ω) +

𝑘
6
𝜇

2

(𝑋
1 (

Ω + 𝜔) − 𝑋
1 (

Ω − 𝜔)) .

(32)

Now, solving for 𝑋
1
(Ω) and 𝑋

2
(Ω), we have

𝑋
1 (

Ω)

=

𝜇

Ω + 𝑗𝑘
1

[𝑘
2
𝜋 (𝛿 (Ω + 𝜔) − 𝛿 (Ω − 𝜔))

+

𝑘
3

2

(𝑋
2 (

Ω + 𝜔) − 𝑋
2 (

Ω − 𝜔))] ,

(33)

𝑋
2 (

Ω) =

𝜇𝑘
6

2 (Ω + 𝑗𝑘
5
)

[𝑋
1 (

Ω + 𝜔) − 𝑋
1 (

Ω − 𝜔)] . (34)

Equations (33) and (34) show that variables 𝑥
1
, 𝑥
2
have the

form of low pass filters (as we commented previously). Thus,
the terms 𝑋

2
(Ω − 𝜔) and 𝑋

2
(Ω + 𝜔) in (33) are as follows:

𝑋
2 (

Ω − 𝜔) =

𝑘
6
𝜇

2 (Ω − 𝜔 + 𝑗𝑘
5
)

[𝑋
1 (

Ω) − 𝑋
1 (

Ω − 2𝜔)] ,

𝑋
2 (

Ω + 𝜔) =

𝑘
6
𝜇

2 (Ω + 𝜔 + 𝑗𝑘
5
)

[(𝑋
1 (

Ω + 2𝜔) − 𝑋
1 (

Ω))] ,

(35)

and using (33) and (35), we obtain

𝑋
1 (

Ω) =

𝜇𝐷

Ω + 𝑗𝑘
1

[𝑘
2
𝜋 (𝛿 (Ω + 𝜔) − 𝛿 (Ω − 𝜔)) +

𝜇𝑘
3
𝑘
6

2

×(

𝑋
1 (

Ω + 2𝜔)

2 (Ω + 𝜔 + 𝑗𝑘
5
)

+

𝑋
1 (

Ω − 2𝜔)

2 (Ω − 𝜔 + 𝑗𝑘
5
)

)] ,

(36)

where

𝐷 =

2 ((Ω + 𝑗𝑘
5
)
2
− 𝜔
2
) (Ω + 𝑗𝑘

1
)

2 (((Ω + 𝑗𝑘
5
)
2
− 𝜔
2
) (Ω + 𝑗𝑘

1
) + 𝜇
2
𝑘
3
𝑘
6
(Ω + 𝑗𝑘

5
))

⋅

(37)

Equation (36) has the terms 𝑋
1
(Ω − 2𝜔) and 𝑋

1
(Ω + 2𝜔),

which are calculated by developing recursively (33), giving as
a result

𝑋
1 (

Ω − 2𝜔)

=

𝜇

Ω − 2𝜔 + 𝑗𝑘
1

[𝑘
2
𝜋 (𝛿 (Ω − 𝜔) − 𝛿 (Ω − 3𝜔))

+

𝑘
3

2

(𝑋
2 (

Ω − 𝜔) − 𝑋
2 (

Ω − 3𝜔))] ,

𝑋
1 (

Ω + 2𝜔)

=

𝜇

Ω + 2𝜔 + 𝑗𝑘
1

[𝑘
2
𝜋 (𝛿 (Ω + 3𝜔) − 𝛿 (Ω + 𝜔))

+

𝑘
3

2

(𝑋
2 (

Ω + 3𝜔) − 𝑋
2 (

Ω + 𝜔))] .

(38)

Equations (33) and (38) show that 𝑋
1
(Ω) have terms

which contain factors 𝛿(Ω − 3𝜔), 𝛿(Ω − 𝜔), 𝛿(Ω + 𝜔), and
𝛿(Ω + 3𝜔) and if we develop recursively 𝑛 times (33), then
new terms of the form 𝜇

|𝑘|
𝛿(Ω− (2𝑘 + 1)𝜔)𝐷

𝑘
for −𝑛 ≤ 𝑘 ≤ 𝑛

appear in the solution of 𝑋
1
(Ω), where 𝐷

𝑘
is a so complex

factor which depends on every parameter and variable of
(32) and for 𝜇 < 1.0 the quotient |𝜇

𝑘
|/|𝐷
𝑘
| ≈ 0. Therefore,

when the amplitude 𝜇 is incremented, then the amplitude
of the peaks 𝛿(Ω − (2𝑘 + 1)𝜔) does too. For this reason,
the numerical evidence shows that if the parameter input
signal 𝜇 is incremented, then apparently new components of
frequency appear in the spectrum 𝑋

1
(Ω). These frequencies

always form part of 𝑋
1
(Ω) but with a very small amplitude.

They are so small that they look like noise.
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Figure 10: Correlation between the response of the filter (6) and the input signal 𝑢 = 𝜇 ∈ (𝜔𝑡): (a) 𝐶
𝑢𝑥1

and (b) 𝐶
𝑢𝑥2

.
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Figure 11: Correlation in function of the parameter of the random
input signal 𝜅. Dashed line and continuous line correspond to 𝐶

𝑢𝑥1

and 𝐶
𝑢𝑥2

, respectively.

5. Response to Random Signals

Now, let 𝑢 = 𝜅𝜂(𝑡), where 𝜂(𝑡) is a random signal equidis-
tributed on the interval [−1, 1] and 𝜅 is its amplitude. When
𝑢 = 10𝜂(𝑡) is the input signal of the filter (6), the phase space
of the response is a limit cycle that has the form of a quarter
moon which is shown in Figure 7(a). As a first glimpse the
filter’s response seems to be a periodic orbit like in the case
of the sinusoidal input signal, but the time series 𝑥

1
(𝑡) and

𝑥
2
(𝑡), which are respectively shown in Figures 7(b) and 7(c),

are aperiodic signals.
The following remarks are pertinent.

(i) The output signal of the filter has a normal (or Gaus-
sian) distribution when the input signal is random
with uniform distribution. For the case 𝑢 = 𝜂(𝑡),
Figures 8(a) and 8(b) show the histogram and the FT

of the 𝑥
1
signal, respectively, where one can see that

the FT of the response has an exponential decay.
(ii) The filter presents saturation after a threshold value

of the amplitude of input signal 𝑢 = 𝜅𝜂(𝑡). Figure 9
shows the range of values 𝑅(𝜅) = MAX{𝑥

1
} −

MIN{𝑥
1
} of the response 𝑥

1
versus the amplitude of

the parameter 𝜅.

To justify the exponential decay of the filter’s responsewhen it
is forced with random signal, we consider FT{𝑢} = 𝐾

1
, where

𝐾
1
is a constant which depends on 𝜅, the amplitude of the

random signal, and 𝑥
3

≪ FT{𝑢}. Thus the following terms
of (30) are 𝑘

2
FT{𝑢} = 𝑘

2
𝐾
1
and FT{𝑢𝑥

2
} ≈ 𝐾

2
, where 𝐾

2

depends on 𝜅 too. So, the FT results are

𝑗Ω𝑋
1 (

Ω) ≈ −𝑋
1 (

Ω) − 𝐾
2
+ 𝑟𝐾
1
, (39)

and for the magnitude of 𝑋
1
(Ω) we have





𝑋
1 (

Ω)




≈










𝑟𝐾
1
+ 𝐾
2

1 + Ω
2










. (40)

Figure 8(b) shows the form of the curve |𝑋
1
(Ω)| which

corresponds to (40).

6. Correlation Coefficient

Because a filter acts in function of the input signal, another
way to characterize the effect of the input signal on the filter’s
response is to compute the correlation between the input and
output signals. If we have time series of𝑁data, the correlation
coefficient 𝐶

𝑥𝑦
of series 𝑥(𝑖) and 𝑦(𝑖) is defined as

𝐶
𝑥𝑦

=

∑
𝑁

𝑖=1
(𝑥 (𝑖) − 𝑥) (𝑦 (𝑖) − 𝑦)

(𝑁 − 1) 𝑆𝑥
𝑆
𝑦

, (41)

where 𝑥, 𝑦 are the means and 𝑠
𝑥
, 𝑠
𝑦
are the standard devi-

ations of the series 𝑥(𝑖) and 𝑦(𝑖), respectively. We calculate
correlation coefficients for different input signals and the
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Figure 12: (a) Orbit of the filter (43) when the external input is 𝑢 = 𝑦
1
of system (42). (b) The maximal range of response of system (43).
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, respectively.

Table 1: Coefficient correlations between different input signals and
the responses 𝑥

1
, 𝑥
2
of the filter (6).

External force 𝑢 𝐶
𝑥1𝑢

𝐶
𝑥2𝑢

sin(𝑡) 0.7455 −0.0021

The state variable 𝑥
1
of the Rössler system 0.7453 0.0574

𝜂(𝑡) 0.1160 0.0630

output signals 𝑥
1
and 𝑥

2
which are given in Table 1. The first

two cases in Table 1 correspond to a periodic and chaotic
signals, 𝐶

𝑢𝑥1
≈ 0.745 and 𝐶

𝑢𝑥2
≈ 0.0, and the last case

considers a random signal as an input signal.
We make a further numerical study of the coefficient

correlation in function of the parameters of the sinusoidal

input signal. In Figure 10(a), we can see that the correlation
between sinusoidal external signals is not constant and that
it depends on both parameters 𝜇 and 𝜔. On the contrary,
Figure 10(b) shows that the absence of correlation between
the response 𝑥

2
and their respective forces is independent

of almost the whole range of values of the input signal
parameters.

On the other hand, the last row in Table 1 shows that
𝐶
𝑢𝑥1

≈ 0.1160 and 𝑅
𝑢𝑥2

≈ 0.0630. This means that the
filter’s response (6) does not have correlation when the input
is a random signal. Despite the fact that the amplitude of the
parameter 𝜅 is increased, the output signal of the filter does
not have correlation with input signal (random), as shown
in Figure 11. Therefore, the correlation between the input
random signal and its filter’s response cannot be induced
by incrementing the value of its amplitude. A similar result
occurs for the sinusoidal signal and its response 𝑥

2
.

7. Low Pass Filters in Chaotic Systems

The Lorenz system is a very well-known third-order chaotic
system [11] which is defined as

̇𝑦
1
= −𝜎𝑦

1
+ 𝜎𝑦
2
,

̇𝑦
2
= 𝑟𝑦
1
− 𝑦
2
− 𝑦
1
𝑦
3

= −𝑦
2
+ (𝑟 − 𝑦

3
) 𝑦
1
,

̇𝑦
3
= 𝑦
1
𝑦
2
− 𝑏𝑦
3
= −𝑏𝑦

3
+ 𝑦
2
𝑦
1
,

(42)

where y = (𝑦
1
, 𝑦
2
, 𝑦
3
)
𝑇 is the state vector and 𝜎, 𝑟, and 𝑏

are parameters. Each component of system (42) is defined
based on low pass filters. For example, the first equation is
a linear low pass filter, where the state variables 𝑦

1
and 𝑦

2

are the input and output signals, respectively.The second and
third equations comprise a 𝑡𝑤𝑜-interconnected nonlinear
filter whose outputs are 𝑦

2
and 𝑦

3
, and the input signal is



12 Abstract and Applied Analysis

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

𝑟

−1

−0.8

−0.6

−0.4

−0.2

𝐶

(a)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.2

0.4

0.6

0.8

1

1.2

𝑏

−0.2

𝐶

(b)

Figure 14: Correlations between the state variables of the Lorenz system (42) against the parameters (a) 𝑟 and (b) 𝑏. Each continuous line
and dashed line correspond to 𝐶

𝑦1𝑦2
, 𝐶
𝑦1𝑦3

, respectively.

𝑢 = 𝑦
1
.The 𝑡𝑤𝑜-interconnected nonlinear filter of the Lorenz

system (42) can be rewritten in terms of (7) as follows:

𝐾 = (

−1 0

0 −𝑏
) , 𝐵 = (

𝑟

0
) ,

𝑓 (𝑥, 𝑢) = (

𝑢𝑦
3

𝑢𝑦
2

) ,

(43)

where 𝑥
1

= 𝑦
2
, 𝑥
2

= 𝑦
3
, and 𝑢 = 𝑦

1
. The projection

of the Lorenz attractor onto the plane (𝑦
1
, 𝑦
2
) is shown in

Figure 12(a) for the following parameter’s values: 𝜎 = 10, and
𝑏 = 2.66, and 𝑟 = 28.0. In order to study the response of the
interconnected system (43) when the input signal is the state
variable 𝑦

1
, we have calculated 𝑅(𝜎) which is the maximal

range of values of the time series 𝑦
2
. In Figure 12(b), we can

see that 𝑅 ≈ 0 for 0 ≤ 𝜎 ≤ 5; this means that the solution
converges to a fixed point. For 𝜎 ∈ [5, 7], there is a transition
period in the behavior of the filter, and for 𝜎 ≥ 7 the range of
values of the filter’s response is approximately constant.

When calculating the correlation coefficient between the
components of the 𝑡𝑤𝑜-interconnected system (43), it results
that 𝐶

𝑦1𝑦2
= 0.9022, 𝐶

𝑦1𝑦3
= −0.0384, and 𝐶

𝑦2𝑦3
= −0.0424.

The high correlation between the state variables 𝑦
1
and 𝑦

2

occurs because of 𝑦
1
is a simple low pass lineal filter for the

signal 𝑦
2
without any nonlinear term included in its equation

(see ̇𝑦
1
in (42)). On the other hand, the time series 𝑦

1
has no

correlation with 𝑦
3
which could be induced by the nonlinear

term settles in the equation ̇𝑦
3
of system (42). Now, we put a

parameter to control the amplitude of the input signal such
that 𝑢 = 𝜅

1
𝑦
1
and calculate 𝐶

𝑦1𝑦2
and 𝐶

𝑦2𝑦3
as a function

of the parameter 𝑘
1
. In Figure 13, it is shown that only 𝐶

𝑦1𝑦2

is affected when the value of 𝜅
1
is incremented, while the

absence of correlation between states 𝑦
2
and 𝑦

3
remains for

all values of 𝜅
1
. For 𝜅

1
> 32, the trajectories of system (43)

diverge.

We have shown by means of numerical experiments in
previous sections that the absence of correlation between the
external force 𝑢 and the state variable 𝑥

2
of the filter response

generally does not depend on the parameters of the input
signal. Similar result occurs when the Lorenz autonomous
system is considered like a 𝑡𝑤𝑜-interconnected system which
is forced by the signal 𝑢 = 𝑦

1
. As shown in Figure 13, there

exists a high correlation between the state variables 𝑦
1
and 𝑦
2
,

and an absence of correlation between state variables 𝑦
2
and

𝑦
3
. But can the correlation between the state variables 𝑦

1
and

𝑦
2
be incremented by changing the value of the parameters

of the Lorenz system? With the purpose of answering this
question, we have calculated 𝐶

𝑦1𝑦2
, 𝐶
𝑦1𝑦3

as a function of the
autonomous Lorenz system parameter 𝑟 keeping the value of
the parameter 𝑏 constant and vice versa. Figure 14(a) shows
that for 𝑟 < 15 approximately, correlations 𝐶

𝑦1𝑦2
, 𝐶
𝑦1𝑦3

have
a transition period, and for 𝑟 ≥ 15, the correlations return to
their previously showed behavior: 𝐶

𝑦1𝑦2
≈ 1.0 and 𝐶

𝑦1𝑦3
≈ 0.

Figure 14(b) shows that the parameter 𝑏 does not affect the
correlation between 𝑦

1
and the responses 𝑦

2
, 𝑦
3
.

If Lorenz system parameters are tuned so that the Lorenz
system behaves as a filter and can be used as a slave system,
then generalized synchronization ofmaster and slave systems
always appears.

8. Conclusions

An 𝑛-interconnected nonlinear system given by (6) always
behaves as a filter if the condition given by Theorem 4 is
satisfied. Despite of the nonlinearities in the structure of
𝑛-interconnected nonlinear system, its dynamical behavior
does not depend on the initial conditions but it does as a
function of the input signal. The nonlinear filter’s response
to sinusoidal input signal presents several interesting phe-
nomena such as (i) frequency components at multiples of the
input signal’s frequency (ii) when the amplitude of the input
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signal increases, the number of peaks of the filter’s response
increases (iii) the amplitude of the filter’s response falls
exponentially as a function of the input signal’s frequency.

The Lorenz system is described in terms of low pass
filters which consists of a linear low pass filter and a 𝑡𝑤𝑜-
interconnected nonlinear low pass filter. This gives us the
possibility to describe all the systems that conform the Lorenz
family and others with similar structure in terms of low pass
filters.

In several studies of chaos synchronization, specifically in
forced systems ̇x = 𝑓(x, 𝑢), x ∈ R𝑛, it has been found that
generalized synchronization of response systems occurs for
specific external signals 𝑢, but all these cases satisfy condition
(8). Then, the general synchronization phenomenon and the
phenomenon of nonlinear filter are seen to be the same.
Nevertheless, condition (8), in generalized synchronization
phenomenon, could not be satisfied, because of the trajecto-
ries generated with different initial conditions asymptotically
could go to a different basin of attractions.This characteristic
is different to the phenomenon of nonlinear filter which by
definition condition (8) needs to be always satisfied if a system
behaves like a nonlinear filter. Several chaotic systems have
a similar structure to 𝑛-interconnected system, so that we
conjecture that this study can help to distinguish between
generalized synchronization behavior and nonlinear filtering
behavior of an 𝑛-interconnected system.
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[8] L. Ontañón-Garćıa, E. Campos-Cantón, R. Femat, I. Campos-
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A robust exponential function based controller is designed to synchronize effectively a given class of Chua’s chaotic systems. The
stability of the drive-response systems framework is proved through the Lyapunov stability theory. Computer simulations are given
to illustrate and verify the method.

1. Introduction

Shortly after Pecora and Carroll showed the possibility of
synchronizing chaotic elements [1], applications stretched out
in many fields [2–4] giving rise to interdisciplinary research,
since this phenomenon appears in many systems in a variety
of ways [5–12]. Much research was done developing different
strategies in the quest of effective synchronization such as
adaptive synchronization [13–15], inverse synchronization
[16], and antisynchronization [17–24]. The robustness of
many of these methods, as surprising as it may appear, has
already been demonstrated in many cases in the presence of
noise, perturbations, or parameter mismatches [25–27].

For applications such as telecommunications, where the
transmission of messages is not possible unless transmitter
and receiver are synchronized [10–12], the investigation of
new chaotic systems as well as the most effective means
of synchronization is always of great importance. Thus,
mathematical models [28, 29], mechanical systems [30], and
electronic circuits [10, 13] are continually built. One of the
best known electronic circuits is the Chua’s oscillator [31, 32].
Although Chua’s circuit is one of the simplest circuits in the

literature, it has various complex chaotic dynamics properties
which has made it a topic of extensive study [31–34]. A
modified version of the circuit has also been topic of attention
[33–35]. Its theoretical analysis and numerical simulations
agree very well with experimental results.

Recently, some authors proposed a nonlinear controller
in order to force synchronization with the purpose of saving
energy [22, 23]. The nonlinear controllers used are based
on bounded nonlinear functions [22, 23]. In this work we
apply the exponential function based nonlinear controller to
achieve synchronization between the drive-response systems
when disturbances are present. Our controller has certain
properties which makes it more advantageous to use it,
such as the following properties: (1) it is easy to implement
in practice; (2) it needs no adaptation algorithm; hence
its electrical circuit remains simple; (3) it is faster than
the synchronization based on fixed feedback gain which is
usually used.

This work is organized as follows. In Section 2, the prob-
lem is formulated and the assumptions are given. Section 3
presents the main results. We use Lyapunov stability theory
to study the robustness of our proposed controller. We show
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Figure 1: Scheme of the circuit for the whole system: transmitter (blue box), controller (red box), and receiver (green box).

that with this controller the drive and response systems
are practically synchronized—the errors between the master
system and the slave system do not tend to zero but to
a limit value. In this case, it is shown that the derivative
of Lyapunov function is contained in a closed domain to
which the error between master and slave system converges.
Since the error is sufficiently small, using the principle
of the “ultimate boundedness property,” we arrive to the
conclusion that the system is globally stable because the
derivative of the Lyapunov function is negatively definite.
Ultimate boundedness is in particular compatible with local
instability about zero and implies global stability. This was
demonstrated by Ding and Cheng in [36]. They proposed
a new criterion of globally uniformly ultimate boundedness
for discrete-time nonlinear systems which helps to relax the
condition of stability based on Lyapunov function. The same
ideas were successfully applied by de la Sen and Alonso [37],
while in [38], Bitsoris et al. work on the robust positive
invariance and ultimate boundedness of nonlinear systems
with unknownparameters and disturbances, where only their
bounds of variance are known. In Section 4, numerical results
are presented and we compare the given scheme with that
using the simple fixed gain based controller. The conclusions
are given in Section 5.

2. Formulation of the Problem

In this paper, we study the master-slave synchronization of
a class of Chua’s chaotic systems, represented in Figure 1 and
described by the equations that follow.

The master system is given by:

̇𝑥
1 (

𝜏) = 𝛼 [𝑥
2 (

𝜏) − 𝑥
1 (

𝜏) − 𝑅𝑓 (𝑥
1 (

𝜏))] + 𝑑 (𝜏) ,

̇𝑥
2 (

𝜏) = 𝛽 [𝑥
1 (

𝜏) − 𝑥
2 (

𝜏) + 𝑅𝑥
3 (

𝜏)] ,

̇𝑥
3 (

𝜏) = 𝛾 [V (𝜏) − 𝑥
2 (

𝜏)] ,

(1)

where 𝜏 is a dimensionless time, 𝑥
𝑖
(𝑡), 𝑖 = 1, 2, 3, are

the state variables, V(𝜏) is an external force, and 𝛼, 𝛽, 𝛾,
and 𝑅 are positive constant parameters of the system. The
function 𝑓(𝑥

1
(𝜏)) represents the nonlinearity of the system

and 𝑑(𝜏) the disturbances. The function 𝑓(𝑥
1
(𝜏)) defines

Chua’s circuit, which is given by 𝑓(𝑥
1
) = 𝑎

2
𝑥(𝜏) + 0.5(𝑎

1
−

𝑎
2
)(|𝑥
1
(𝜏) + 1| − |𝑥

1
(𝜏) − 1|) [31, 33, 34], while the modified

Chua’s system is obtained using 𝑓(𝑥
1
(𝜏)) = 𝑎𝑥

3

1
[12] or

𝑓(𝑥
1
(𝜏)) = 𝑎

1
(𝑥
1

− 𝑏)
3

− 𝑎
2
(𝑥
1

− 𝑏) + 𝑎
3
[32]. The

latter represents the behavior of a tunnel diode [32]. For an
autonomous system V(𝜏) is constant and 𝑑(𝜏) = 0.

The slave system is given by

̇𝑦
1
(𝜏) = 𝛼 [𝑦

2 (
𝜏) − 𝑦

1 (
𝜏) − 𝑅𝑓 (𝑦

1 (
𝜏))] + 𝑈 (𝜏) ,

̇𝑦
2
(𝜏) = 𝛽 [𝑦

1 (
𝜏) − 𝑦

2 (
𝜏) + 𝑅𝑦

3 (
𝜏)] ,

̇𝑦
3
(𝜏) = 𝛾 [V (𝜏) − 𝑦

2 (
𝜏)] ,

(2)

where 𝑦
𝑖
(𝜏), 𝑖 = 1, 2, 3, is the slave state variables and𝑈(𝜏) the

feedback coupling.
Here we present a scheme to solve the synchronization

problem for system (1). That is to say, if the uncertain system
(1) is regarded as the drive system, a suitable response system
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should be constructed to synchronize it with the help of the
driving signal 𝑥. In order to do so, we assume the following:

(i) There is a bounded region U ⊂ 𝑅
3 containing the

whole basin of the drive system (1) such that no orbit
of system (1) ever leaves it.

(ii) The disturbance 𝑑(𝜏) is bounded by an unknown
positive constant𝐷, namely,

‖𝑑 (𝜏)‖ ≤ 𝐷, (3)

where ‖ ⋅ ‖ denotes the euclidian norm of a vector.
(iii) All chaotic systems are supposed to be confined to a

limited domain; hence there exists a positive constant
𝐿 such that




𝑓 (𝑦
1 (

𝜏)) − 𝑓 (𝑥
1 (

𝜏))




≤ 𝐿





𝑦
1 (

𝜏) − 𝑥
1 (

𝜏)




. (4)

We will now try to synchronize the systems described in
(1) and (2) designing an appropriate control 𝑈(𝜏) in system
(2) such that





𝑦
𝑖 (
𝜏) − 𝑥

𝑖 (
𝜏)





≤ 𝑟, for 𝜏 → ∞, (5)

where 𝑟 is a sufficiently small positive constant.
Let us define the state errors between the transmitter and

the receiver systems as

𝑒
𝑖 (
𝜏) = 𝑦

𝑖 (
𝜏) − 𝑥

𝑖 (
𝜏) , with 𝑖 = 1, 2, 3, (6)

and the feedback coupling as

𝑈 (𝜏) = −𝜑 (exp (𝑘𝑒
1 (

𝜏)) − 1) , (7)

where 𝜑 and 𝑘 are positive fixed constants.
Introducing the definition of the systems (1), (2), and (7)

into (2), the dynamics of the error states (6) becomes

̇𝑒
1 (

𝜏) = 𝛼 [𝑒
2 (

𝜏) − 𝑒
1 (

𝜏) − 𝑅 (𝑓 (𝑦
1
) − 𝑓 (𝑥

1
))]

− 𝑑 (𝜏) − 𝜑 (exp (𝑘𝑒
1
) − 1) ,

̇𝑒
2 (

𝜏) = 𝛽 [𝑒
1 (

𝜏) − 𝑒
2 (

𝜏) + 𝑅𝑒
3 (

𝜏)] ,

̇𝑒
3 (

𝜏) = −𝛾𝑒
2 (

𝜏) .

(8)

The problem is now reduced to demonstrating that with
the chosen control law 𝑈(𝜏), the error states 𝑒

𝑖
, 𝑖 = 1, 2, 3, in

(8) are at most a sufficiently small positive constant 𝑟, which
will prove the proposition.

3. Main Results

If we consider the master-slave chaotic systems (1) and (2)
with all the aforementioned assumptions (3) and with the
exponential function based feedback coupling given by the
relation (7), we will show that the overall system will be
practically synchronized, that is, ‖𝑦

𝑖
(𝜏) − 𝑥

𝑖
(𝜏)‖ ≤ 𝑟, where

𝑟 is a sufficiently small positive constant for large enough 𝜏.
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Figure 2: 3D chaotic attractor of the tunnel diode based modified
Chua’s system.

In order to do so, let us consider the following Lyapunov
function:

𝑉 =

1

2

[

𝑒
2

1

𝛼

+

𝑒
2

2

𝛽

+

𝑅𝑒
2

3

𝛾

] . (9)

Differentiating the function 𝑉 with respect to time yields

𝑉 = 2𝑒
1
𝑒
2
− 𝑒
2

1
− 𝑒
2

2
− 𝑅 (𝑓 (𝑦

1
) − 𝑓 (𝑥

1
)) 𝑒
1

−

𝑑 (𝜏)

𝛼

𝑒
1
−

𝜑

𝛼

[exp (𝑘𝑒
1
) − 1] 𝑒

1

= − (𝑒
1
− 𝑒
2
)
2
− 𝑅 (𝑓 (𝑦

1
) − 𝑓 (𝑥

1
)) 𝑒
1

−

𝑑 (𝜏)

𝛼

𝑒
1
−

𝜑

𝛼

[exp (𝑘𝑒
1
) − 1] 𝑒

1
.

(10)

Expanding the exponential function as follows:

exp(𝑘𝑒
1
) − 1 ≃ 𝑘𝑒

1
+

𝑛

∑

𝑖=1

(𝑘𝑒
1
)
2𝑖

2𝑖!

+

𝑛

∑

𝑖=1

(𝑘𝑒
1
)
2𝑖+1

(2𝑖 + 1)!

+ 𝜃 (𝑒
1
) + 𝜁 (𝑒

1
) ,

(11)

where 𝜃(𝑒
1
) and 𝜁(𝑒

1
) constitute the rest of the expansion in

order greater than 𝑛 for odd part and for even part of the
development, respectively, and substituting by the maximum
value of the disturbance,𝐷, it follows that

𝑉 ≤ 𝑅𝐿𝑒
2

1
+

𝐷

𝛼





𝑒
1






−

𝜑

𝛼

(𝑘𝑒
1
+

𝑛

∑

𝑖=1

(𝑘𝑒
1
)
2𝑖

2𝑖!

+ 𝜃 (𝑒
1
)) 𝑒
1
.

(12)

Hence, we have

𝑉 ≤ (𝑅𝐿 −

𝜑

𝛼

𝑘) 𝑒
2

1

+

1

𝛼

(𝐷 + 𝜑

𝑛

∑

𝑖=1

(𝑘




𝑒
1





)
2𝑖

2𝑖!

+




𝜃 (𝑒
1
)




)





𝑒
1





,

(13)

𝑉 ≤ (𝑅𝐿 −

𝜑

𝛼

𝑘) 𝑒
2

1

+

1

𝛼

(𝐷 + 𝜑

𝑛

∑

𝑖=1

(𝑘𝑟)
2𝑖

(2𝑖)!

+ Θ (𝑟)) 𝑟,

(14)

where Θ(𝑟) ≥ max(𝜃(𝑒
1
)).
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Figure 3: Time evolution of the master system (solid lines) and slave system (dashed lines) from Matlab simulations (left) and Pspice
simulations (right).

Here we use 𝑟 as an upper bound for the error in each axis.
Then we see that the derivative of the Lyapunov function (12)
is lower than that in (13), which in turn is smaller than the
one given by (14). Thus expression (14) is maximized and the
radius of the close domain to which the error is attracted is
determined. Defining

𝜑 ≥

𝛼𝑅𝐿

𝑘

, 𝜙 = (

𝐷 + Θ (𝑟)

𝛼

+

𝑅𝐿

𝑘

𝑛

∑

𝑖=1

(𝑘𝑟)
2𝑖

(2𝑖)!

) 𝑟, (15)

one obtains

𝑉 ≤ −𝜓𝑒
2

1
+ 𝜙, where 𝜓 =









𝑅𝐿 −

𝜑

𝛼

𝑘









. (16)

Equation (16) is in principle a formof the ultimate bound-
edness property in the sense that if the error is sufficiently

small, then the system is globally stable because the upper-
bound is negative [36]. From (16), it follows that if





𝑒
1





> √

𝜙

𝜓

(17)

therefore, 𝑉(𝜏) < 0; hence 𝑉(𝜏) decreases, which implies
that ‖𝑒

1
‖ decreases. It then follows from standard invariance

arguments as in [23] that asymptotically for increasing time
the error satisfies the following bound





𝑒
1





< 𝐶, (18)

for any 𝐶 > √𝜙/𝜓.
So if 𝜙 is sufficiently small, the bound for the syn-

chronization error will also be sufficiently small. Therefore,
the synchronization state error would be contained within
a neighborhood of the origin, as we wanted to prove. In



Abstract and Applied Analysis 5

0 50 100 150
−0.01

0

0.01

0.02

0.03

𝜏

𝑒 1
(𝜏

)

(a)

0 0.2 0.4 0.6 0.8 1 ×10−3
−0.01

−0.005

0

0.005

0.01

Time (s)

𝑒 1
(V

)

(b)

0 50 100 150
−0.03

−0.02

−0.01

0

0.01

𝜏

𝑒 2
(𝜏
)

(c)

0 0.2 0.4 0.6 0.8 1 ×10−3
−0.01

−0.005

0

0.005

0.01

Time (s)

𝑒 2
(V

)

(d)

0 50 100 150
−4

−2

0

2

4

×10−3

𝜏

𝑒 3
(𝜏
)

(e)

0 0.2 0.4 0.6 0.8 1 ×10−3

×10−3

−2

0

2

Time (s)

𝑒 3
(A

)

(f)

Figure 4: Time evolution of the synchronization errors fromMatlab simulations (left) and Pspice simulations (right).

addition as𝑉(𝜏) decreases, then there exists a continuous and
strictly increasing function  and a finite integer 𝜂, such that

𝑉 (𝑒 (𝜏 + 𝜂) , 𝜏 + 𝜂) − 𝑉 (𝑒 (𝜏) , 𝜏) ≤ − (‖𝑒 (𝜏)‖) , (19)

where 𝑒(𝜏) = (𝑒
1
(𝜏), 𝑒
2
(𝜏), 𝑒
3
(𝜏)).

Thus, the Lyapunov function respects [36, Theorem 3.1]
and then (8) is globally uniformly ultimate bounded near the
origin.

4. Numerical Simulations

4.1. Chaotic Systems. In this section, we present some numer-
ical results for the circuit shown in Figure 1, to illustrate
the effectiveness of the proposed scheme, where the three-
dimensional tunnel diode based modified Chua’s system [35]
is used as transmitter (blue box) and receiver (green box), the
controller appears inside the red box. With the initial con-
ditions selected as (𝑥

1
(0), 𝑥
2
(0), 𝑥
3
(0)) = (0.15, 0.27, 0.008)

and (𝑦
1
(0), 𝑦
2
(0), 𝑦
3
(0)) = (0.18, 0.24, 0.006) and with the

given system’s parameters: 𝛼 = 2.507463, 𝛽 = 0.2985075,
𝛾 = 0.20875, 𝑅 = 16, 𝑒 = 0.250, 𝑎

1
= 1.3242872, 𝑎

2
=

0.06922314, 𝑎
3
= 0.00539, and 𝑏 = 0.167, the systems behave

chaotically as shown in Figure 2. The disturbances 𝑑(𝜏) are
given by the relation 𝑑(𝜏) = 0.001wgn(1, 1, 1)(𝑥

1
(𝜏)+𝑥

2
(𝜏)),

where wgn(1, 1, 1) is Matlab white gaussian noise generator.

4.2. Simulation Results and Discussion. The controller’s
parameters are 𝜑 = 10 and 𝑘 = 3. The controller circuit
was realized through the following relations: 𝑘 = 𝑅

5
/𝑉
𝑇
𝑅
3
=

𝑅
6
/𝑉
𝑇
𝑅
4
and 𝜑 = 𝑅

7
𝐼
𝑠
where 𝑉

𝑇
≃ 0.026 Volt and 𝐼

𝑠
≃ 10
−12

are diode characteristics. The Voltage controlled current
source (VCCS) is used to minimize as much as possible the
mutual influence of between the slave system (Green box)
and the controller (Red box) and to only generate the current
which obliges the response system to follow the drive system.
The graphs of Figures 3 and 4 show that the synchronization
is reached around the dimensionless time 𝜏 = 60.

Remark 1. In Pspice simulations, the synchronization is
reached for high values of 𝑅

7
particularly if 𝑅

7
> 100 kΩ.

𝑅
7
role is to increase the value of the VCCS output current by

increasing the value of the voltage at its landmarks.

Considering the case without disturbances, if we compare
the proposed scheme with the one for which the controller is
given by the following relation:

𝑈 (𝑡) = −𝜁𝑒
1 (

𝜏) , (20)

where 𝜁 is a positive constant chosen equal to 𝜑, it appears
that, as one can visually appreciate on the graphs of Figures 5
and 6, the exponential function based nonlinear controller is
faster than the linear controller with fixed gain.
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Figure 5: Time evolution of the synchronization errors norm with the propose scheme (7).
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Figure 6: Time evolution of the synchronization errors norm with linear controller (20).

5. Conclusion

In this paper the synchronization between two different
delayed chaotic systems is studied via a simple—exponential
function based—nonlinear controller. Although different
initial conditions and disturbances make synchronization
more difficult, a simple exponential function based nonlinear
controller is designedwhich facilitates the task.This is proven
through the Lyapunov stability theory; it is shown that both
master-slave systems should be practically synchronized. It
is important to note that the proposed scheme improves the
linear controller with fixed gain usually used. To show the
effectiveness of the proposed strategy, some numerical sim-
ulations are given; they show the efficiency of the proposed
strategy in front of the linear fixed gain based controller. The
electronic circuit of the used controller is also given followed
by some simulations.
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