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The present study was conducted to determine whether adipose derived mesenchymal stromal cells (AD-MSCs) or bone marrow
derived-MSCs (BM-MSCs) would provide superior tenogenic expressions when subjected to cyclical tensile loading. The results
for this would indicate the best choice of MSCs source to be used for cell-based tendon repair strategies. Both AD-MSCs and
BM-MSCs were obtained from ten adult donors (N =10) and cultured in vitro. At passaged-2, cells from both groups were
subjected to cyclical stretching at 1 Hz and 8% of strain. Cellular morphology, orientation, proliferation rate, protein, and gene
expression levels were compared at 0, 24, and 48 hours of stretching. In both groups, mechanical stretching results in similar
morphological changes, and the redirection of cell alignment is perpendicular to the direction of stretching. Loading at 8%
strain did not significantly increase proliferation rates but caused an increase in total collagen expression and tenogenic gene
expression levels. In both groups, these levels demonstrated no significant differences suggesting that in a similar loading
environment, both cell types possess similar tenogenic potential. In conclusion, AD-MSCs and BM-MSCs both demonstrate
similar tenogenic phenotypic and gene expression levels when subjected to cyclic tensile loading at 1 Hz and 8% strain, thus,

suggesting that the use of either cell source may be suitable for tendon repair.

1. Introduction

Mechanical forces are known to play a fundamental role in
cell behaviour and their adaptation to their environment.
These are particularly essential to maintain tissue homeosta-
sis [1]. In tendons, it has been demonstrated that stretching
produces superior repair outcomes [2-4], whereas disuse
atrophy and tissue degeneration will occur when these tis-
sues are not mechanically loaded for a long period of time
[5, 6]. These have shown to result in the complete loss of tis-
sue function [7]. It has become apparent that mechanical
cues play a vital role in cellular signalling, through a series
of molecular interactions, that results in genetic and protein
expressions that maintain cellular function [8, 9]. Using this
knowledge, a number of studies have attempted to exploit

this process, known as mechanotransduction, to manipulate
cell fate and outcomes [10-14]. One such attempt has
included the use of mechanical stimuli in regulating the cel-
lular differentiation of multipotent progenitor cells. The use
of human mesenchymal stromal cells (MSCs) has garnered
strong interest due to its ability to undergo self-renewable
and multilineage differentiation. As such, MSCs have been
sought after as a potential cell source to improve tissue
repair and regeneration since these cells also exhibit proheal-
ing and immunomodulatory effects [15-17]. Indeed, one
method by which these cells can promote tissue repair is
the differentiation of these cells that are implanted into dam-
aged sites, as proposed by other researchers [18, 19]. Once
MSCs are nested within the matrix of the target site, these
cells will differentiate towards the native resident cells
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thereby producing the necessary protein that would promote
local tissue healing [20, 21]. This process can be regulated
through several pathways such as local cytokine signalling,
cell-surface interaction, and local tissue mechanical impulses
[22]. From our own experience, intrainjection of autologous
MSCs in joints with damaged cartilage results in moderate to
good repair outcomes due to the presence of these cells
within the damaged sites [23]. There has been a study indi-
cating that 24% of injected MSCs were retained at the site of
injury after 24 hours [24], and that these cells may undergo
differentiation over time. The in vivo differentiation could be
further enhanced when mechanical loading is then per-
formed in the form of exercise regime [25]. In an attempt
to further understand the underlying mechanisms that pro-
mote cellular differentiation, cells seeded in scaffolds and
were subjected to mechanical loading in vitro [26], and the
study shows that the loaded construct demonstrates differ-
entiation expression, thus suggesting that mechanical load-
ing may be the main contributor to the cell differentiation
process.

In our previous studies, we were also able to demonstrate
that by subjecting MSCs to cyclical stretching, these cells
would undergo cellular differentiation and produce superior
tendon protein expression [27, 28]. Such changes have also
been observed in chondrocytes subjected to compressive
loading in other studies [29, 30]. Together with our previous
observation of cellular differentiation in damaged sites when
cells are injected into these areas, we can therefore suggest
that the mechanotransduction process that occurs in the
transplanted MSCs may have been responsible for the
observed positive outcomes [31]. Whilst the direct evidence
of the direct role of mechanotransduction remains debat-
able, what cannot be refuted is the fact that MSCs do provide
a significant positive musculoskeletal tissue repair outcome.

It is previously demonstrated that bone marrow has been
a traditional source for MSCs harvest since bone marrow
derived mesenchymal stromal cells (BM-MSCs) have dem-
onstrated predictable results in musculoskeletal tissue engi-
neering. There is a drawback in using BM-MSCs mainly
due to invasiveness of the procedure involved in extracting
these cells. It has been reported regularly that extraction
from bone marrow results in minor donor site morbidity
[32]. This, in addition to the low yield of cells from the bone
marrow stroma [33], results in many studies describing
alternative sources for MSCs. One such source is from adi-
pose tissues. Adipose tissue derived mesenchymal stromal
cells (AD-MSCs) have been shown to contain an abundance
of MSCs, and since subcutaneous fat deposits are in large
quantity in the human body, extracting these cells are easier
and less painful for the donor [34, 35]. Despite its many
promises, the potential use of AD-MSCs for the repair of
damaged tendon does not appear to be explored with
presently no previous works describing its potential when
subjected to mechanical stimulation, i.e., stretching. Fur-
thermore, while there has been some progress made in
better understanding on how mechanical signals are
sensed by MSCs [36, 37], the mechanotransduction pro-
cesses that occur during tensile loading have not been well
described.
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Therefore, to demonstrate the potential efficacy of AD-
MSCs as a source for tendon regeneration, a study was con-
ducted to determine the tenogenic expression potential of
these cells when subjected to cyclic tensile loading. This will
be compared to BM-MSCs, which is presently being used as
a therapeutic cell source for damaged tendons. It is hoped
that the study will be able to demonstrate as to whether
AD-MSCs can indeed be considered as a good candidate
for tendon repair, and that further studies to develop this cell
source should be conducted.

2. Materials and Methods

2.1. Bone Marrow and Adipose Tissue Harvesting from
Patients. Five grams of adipose tissue sample and 5cc of
bone marrow were collected each from donors (N = 10; for
MSCs isolation purpose) (meanage = 65.3; 6 females and 4
males) undergoing orthopaedic-related surgeries in Univer-
sity Malaya Medical Center with approval from the Medical
Ethics Committee of University Malaya Medical Center (ref-
erence number: 20149-563). These samples were kept on ice
throughout the transportation to the laboratory and proc-
essed for MSCs isolation within few hours after samples har-
vesting. From the 10 donors, 4 of the donors were used for
quantitative experiments including cell proliferation assess-
ment, total collagen assay, and gene expression assay, while
the other 6 donors were used for qualitative/semiqualitative
experiments including morphology assessment and MSCs
characterization.

2.2. Isolation and Culture of Human Adipose Derived-MSCs
(AD-MSCs). To isolate AD-MSCs, the harvested adipose tis-
sue sample was rinsed using 1X phosphate-buffered (PBS)
saline containing 1% penicillin-streptomycin until all visible
blood and excessive fluid were eliminated. Small vessels and
unwanted tissues were dissected away from the sample. Sub-
sequently, the mixture was added with 0.1% (v/w) type I col-
lagenase and incubated at 37°C for 1h to allow the
enzymatic digestion process to occur. After centrifugation,
the pellet at the bottom of the tube containing the stromal
vascular fraction (SVF) was collected (Figure 1) and trans-
ferred a cell culture flask containing complete cell growth
medium (low-glucose DMEM supplemented with 10% fetal
bovine serum, 1% of penicillin-streptomycin, and 1% Gluta-
MAX™-I) (Invitrogen-Gibco, USA) and incubated at 37°C in
a humidified 5% CO, incubator. After 4 days of culturing,
the digested tissue was then removed from the cell culture
flask and discarded completely. Culture medium was chan-
ged every 3 days until reaching 80-85% of cell confluency.
The AD-MSCs were subcultured up to passage 2 to be used
in our experiments.

2.3. Isolation and Culture of Human Bone Marrow-Derived-
MSCs (BM-MSCs). To isolate BM-MSCs, cell isolation was
performed using our standard laboratory protocol as
described in our previous publication [38, 39]. Briefly, bone
marrow specimen was diluted with 1X PBS and gently lay-
ered onto the top of the density of 1.077 g/mL Ficoll-paque
solution  (Amersham  Biosciences, Sweden). The
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FIGURE 1: Morphology of isolated human AD-MSCs and BM-MSCs from adipose fat pad and bone marrow, respectively. (a) Enzymatic
digestion of adipose tissue using collagenase type I, and the MSCs population isolated from the SVFE. (b) MSCs isolated from bone
marrow and the mononuclear cells isolated by Ficoll density centrifugation. At primary culture passage-0 (Day 6), fibroblastic as well as
small clear cells can be observed. The number of clear cells was reduced during the passages and fibroblastic cells appeared to be the

dominant cell type.

mononuclear cell layer was collected after undergoing gradi-
ent density centrifugation at 2,200 rpm for 25 min (Figure 1).
The cell pellet was then extracted after second centrifugation
and plated on a tissue culture flask containing complete cell
growth medium. The cells were maintained in a humidified
incubator at 37°C with 5% CO, on air. The subsequent
medium changes were conducted at 3 day-intervals until
80%-85% confluence was reached. Cells were serially pas-
saged until passage-2 prior to further experiments.

2.4. Characterization of Human AD-MSCs and BM-MSCs.
To determine whether cells obtained were hMSCs, various
tests including flow cytometry analysis for specific cell sur-
face markers, cell morphological images, and the ability of
the isolated cells to undergo trilineage differentiation were
conducted (cells from 6 donors).

2.4.1. Cellular Morphology. Serial microscopic examinations
were carried out at 3-day intervals in order to assess physical
characteristics of the cells. The cellular morphology of cul-
tured AD-MSCs and BM-MSCs at passage 0 (P0), passage
1 (P1), and passage 2 (P2) were captured using an inverted
phase contrast microscope (Olympus CKX 41, Japan).

2.4.2. In Vitro Trilineage Differentiation. The multipotent
capability of AD-MSCs and BM-MSCs were tested using
specific StemPro® differentiation supplements (Invitrogen-
Gibco, USA), inducing the cells into adipogenic, osteogenic,
and chondrogenic lineages, with triplicates for each lineage,
as described in our previous established protocol [28, 39].
The differentiation of these cells was confirmed through
their phenotypic expression. The confluent passaged-3 cells
were cultured with differentiation medium, respectively.
The differentiation medium was changed every 3 days.
Briefly, for the adipogenic differentiation, 14 days after
the culture initiation the cells were fixed with 4% parafor-
maldehyde for 30 min, rinsed with 60% isopropanol, and
stained with Oil Red O (Sigma-Aldrich, USA) for 10 min.

The slides were kept wet to keep the lipid vacuoles from dis-
rupting. The slides were viewed and captured using light
microscope (Nikon Eclipse TE2000-S, Japan). For osteo-
genic differentiation, 21 days after culture initiation, the fil-
tered 2% Alizarin Red solution (pH4.2) was added to the
fixed cells for 3min. Alizarin red staining was used to
observe the matrix mineralization. To induce chondrogenic
differentiation, pellet culture system was used. Twenty-
eight days after the initiation of the culture, each chondro-
genic cell pellet (1 x 10° passaged-3 cells) was fixed in 10%
neutral buffered formalin for 1 hour and went through tissue
processing (dehydrating in ascending concentrations of eth-
anol and clearing in xylene) overnight. The sample was then
embedded in paraffin wax and sectioning at 4 ym using a
microtome. The sections were then stained with 0.1% aque-
ous Safranin O for 5min.

2.4.3. Evaluation of Cell Surface Markers by Flow Cytometry.
Human AD-MSCs and BM-MSCs (1 x 10° cells/mL) were
trypsinized, and the cells were washed with 1X PBS and
resuspended in 100 4L of FASC stain buffer (BD Biosciences,
CA, USA) before being transferred into polystyrene round-
bottomed tube. Fluorescein isothiocyanate (FITC), or phy-
coerythrin  (PE), or peridinin chlorophyll protein
(PerCPCY5.5), or allophycocyanin-(APC-) conjugated anti-
marker mAbs were used to stain the cells for 15min in the
dark. The tested markers including CD44, CD73, CD90,
CD105, CD14, CD34, CD45, and HLA-DR were tested [38,
39]. After incubation, the cells were washed and then ana-
lysed using a flow cytometer (BD FACS Cantor II, BD Bio-
sciences, CA, USA) with FACS DIVA software (BD, NJ,
USA). Unstained and/or matched isotype controls were used
to set background fluorescence levels.

2.5. Cell Seeding and Mechanical Straining System Set up. A
total of 0.02% collagen type I (Sigma, St. Louis, USA) was
used to coat the autoclaved transparent elastic silicone
chambers (Strex, Japan). A total of 1x 10* cells/em® AD-



MSCs and BM-MSCs were seeded into each silicone cham-
ber, respectively. After 48h of culture, the medium was
replaced with medium containing 1% FBS for 24 h. This step
was conducted in order to synchronize the condition (by
arresting the cells at the GO/G1 stage of their cell cycle pro-
gression) at the beginning of each experiment. Following
24 h of synchronization, the cell culture medium with a stan-
dard growth medium containing 10% FBS with no addi-
tional differentiation growth factors was replaced prior to
mechanical stretching. The silicone chambers were mounted
on a mechanical stretch device (ST-140-10, Strex, Cupertino,
USA). A stretching rate of 1Hz and a strain of 8% were
applied to the AD-MSCs and BM-MSC seeded silicone
flasks. The specimens were collected at 24h and 48h.
Unstrained cells on silicone chambers in the same culture
environment were used as control for this study.

2.6. Microscopic Evaluation. Microscopic images of the
experimental cells at each time point were captured using
an inverted tissue culture CCD camera-assisted microscope
(Olympus CKX 41, Japan). Images from four visual fields
of the cells were randomly captured. The morphology and
alignment of the unstrained and strained cells on elasto-
meric substrate were then compared.

2.7. Cell Proliferation Assay. The alamarBlue® (AB) assay
was used to assess cell proliferation. This assay utilizes the
colorimetric quantitative analytical principle. At 0, 24, and
48h, 10% AB reagent was added to the unstrained and
strained cells in the culture medium. The samples were then
incubated for 4h at 37°C in a cell culture incubator, pro-
tected from direct light exposure. A total of 100 uL of the
alamar-containing medium was collected and transferred
to a 96-wells plate. The absorbance measurement was read
on a microtiter plate reader at 570 nm wavelength while
using 600 nm as a reference wavelength. Following the man-
ufacturer’s protocol, the percentage of AB reduction was cal-
culated. For background values, medium without cells was
used as the negative control group to correct the values of
% AB reduction.

lTM

2.8. Total Collagen Biochemical Assay. A Sircol™ collagen
assay kit (Biocolor, UK) was used to measure total extracel-
lular soluble collagen. At 24 and 48 h of the experiment, the
culture medium was collected from the experimental cells
and mixed with 1 mL of Sircol dye reagent with vigorous agi-
tation for 30 min. The mixtures were then centrifuged at
12,000 rpm for 10min to collect the collagen dye complex.
The unbound dye solutions were removed by draining the
tubes carefully and washed the dye with ice-cold acid-salt
wash reagent by centrifugation at 12,000 rpm for 10 min.
The dye (which was bounded to the collagen pellet) was sol-
ubilized by adding 1 mL of alkali reagent. The absorbance of
the samples was measured at 555 nm wavelength.

2.9. Gene Expression Assay. Total RNA from unstrained and
strained cells was extracted using the RNeasy mini kit (Qia-
gen, USA) according to the manufacturer’s instructions.
RNA concentration and purity were determined using spec-
trophotometer (Nano-Photometer, Germany) at the setting
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of A260/280. RNA integrity was verified by visualizing 18S
and 28S rRNA bands on formaldehyde-agarose gels. Only
samples with good quality were selected for RT? Profiler
PCR arrays downstream analysis. An equal amount of
RNA (500 ng) was used for reverse transcription using the
RT? First Strand Kit (Qiagen, USA) using protocol steps that
eliminated genomic DNA. qPCR experiments were per-
formed using the customised RT> Profiler PCR array (Cat
No./ID: CLAH22023) (SABioscience, USA) and RT? SYBR
Green qPCR Mastermix (Qiagen, USA) on a real-time PCR
instrument (CFX96, BioRad, USA). The temperature proto-
col included a start cycle for 10 min at 95°C, 40 cycles of
amplification (15s at 95°C and 155 at 60°C), followed by a
melt curve. The PCR array profiles the expression of selected
nine genes (Table 1) involved in mesenchyme lineage. The
housekeeping gene were PGKI (phosphoglycerate kinase 1)
and HPRTI (hypoxanthine phosphoribosyltransferase 1).
The housekeeping genes, RT controls, and PCR controls
were included in each run. Relative expression of target
genes was determined using the AACq method where the
unstrained cell is the control group.

2.10. Statistical Analysis. The assays (cell proliferation, total
collagen biochemical, and gene expression) were carried out
in technical triplicates (1) per experimental run, using four
independent samples from different donors (N) for each
group. The data is presented as mean * standard deviation
(SD). Student’s t-test was carried out to compare the differ-
ences in mean values. Statistical analyses were performed
using SPSS software version 15.0 (SPSS Inc, USA), which took
a probability value of p < 0.05 as statistically significant.

3. Results

3.1. Characterization of Human AD-MSCs and BM-MSCs.
Results revealed that the morphology, surface antigen
expression profiles, and the multidifferentiation capacity of
human AD-MSCs and BM-MSCs were similar and con-
formed to the International Society for Cellular Therapy
(ISCT) minimal characteristics of MSCs [40].

3.1.1. Plastic-Adherent Fibroblast-like Cells. After going
through the culturing process in standard growth medium
at 37°C incubation for 24 h, a proportion of the isolated cells
from both adipose tissue and bone marrow demonstrated
adherence to the plastic flask surface. Following medium
change after 5 days of culture, they aggregated to form
colony-forming-units. Rounded cells were observed to
change into fibroblast-like morphology where the cells
appeared spindle-shaped. Their appearance, however, var-
ied, with heterogeneous shapes were observed, with features
of elongated cells and multipolar projections. After 2 weeks
in culture, the cells started reaching confluency and demon-
strated fingerprint-like orientation. The cells appeared more
homogeneous after cell passaging. Both AD-MSCs and BM-
MSCs at passage-2 exhibited spindle-shaped morphology.
However, AD-MSCs apparently grew at a relatively higher
rapid rate compared with BM-MSCs, which could be
observed under light microscopy (Figure 1).
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TaBLE 1: The genes of interest were determined in this study.

Related marker Gene name Abbreviation Ref sequence Catalog number
Collagen type I, ol COLIAI NM_000088 PPHO1299F
Collagen type III, a1 COL3AI NM_000090 PPHO00439F
Tendon lineage Decorin DCN NM_001920 PPHO01900A
Tenascin C TNC NM_002160 PPHO02442A
Biglycan BGN NM_001711 PPHO1899A
Runt-related transcription factor 2 RUNX2 NM_001015051 PPHO01897C
. SRY-(sex determining region Y-) box 9 SOX9 NM_000346 PPHO02125A
Other mesenchyme lineage ) ] ) ;
Peroxisome proliferative activated receptor, gamma PPARG NM_005037 PPHO02291G
Transgelin TAGLN NM_001001522 PPH19531F
. Phosphoglycerate kinase 1 PGK1 NM_000291 PPHO02049A
Housekeeping gene . )
Hypoxanthine phosphoribosyltransferase 1 HPRTI NM_000194 PPHO01018C

3.1.2. In Vitro Trilineage Differentiation. Both AD-MSCs
and BM-MSCs showed positive results for the differentiation
experiments (Figure 2). This indicated that the MSCs iso-
lated from the two cell types had multipotent ability, having
the capacity to undergo trilineage differentiation which
included osteogenic, adipogenic, and chondrogenic meso-
dermal lineages.

In adipogenic culture conditions, small lipid droplets
appeared in both cell types on day 3, and they gradually
spread homogenously. Not surprisingly, AD-MSCs dis-
played highly adipogenic cells with abundant Oil Red O pos-
itive lipid droplets as compared to BM-MSCs. This indicated
that adipocyte formation was more extensive in AD-MSCs.
Lipid vacuoles were not present in control cultures of either
AD-MSCs or BM-MSCs. In osteogenic culture, nodule-like
structures were observed in certain regions. By using Aliza-
rin Red S, both cell types appeared red showing the presence
of mineral deposition. In comparison, no accumulation of
calcium oxalate crystals was observed in noninduced control
MSC cultures that were stained. In the pellet culture system
for chondrogenic differentiation, the size of the pelleted cells,
i.e,, AD-MSCs and BM-MSCs seemed to be increasing over
time. Using Safranin O, the matrix of the both cell types
demonstrated a pink-red colour, indicating sulphated pro-
teoglycans or glycosaminoglycan deposition.

3.1.3. Immunophenotype Expression. Cells derived from adi-
pose tissue and bone marrow expressed positive surface
markers for CD73, CD44, CD90, and CD105 (Figure 3),
which are markers for hMSCs (Table 2), particularly highly
expressed were CD44 and CD90. They were negative for
CD14, CD34, CD45, and HLA-DR marker expression. This
indicated that the cells were not of hematopoietic or leucocy-
tic in origin.

3.2. Effects of Cyclic Mechanical Stretch on Cell Morphology
and Alignment. To determine the effects of mechanical
stretch on cell morphology and organization, uniaxial cycli-
cal tensile loading at 1 Hz of frequency and 8% of strain was
applied on AD-MSCs and BM-MSCs. Mechanical stretch
markedly altered the morphology and alignment of cells.

The MSCs were randomly oriented before mechanical stim-
uli was applied (0h), while both the AD-MSCs and BM-
MSCs appeared to be perpendicular orientated to the direc-
tion of stretching after exposure to cyclic stretching. It also
appears that the changes correspond to the duration of
stretching (Figure 4). This may be due to the adaptation pro-
cess of the cells, where cellular tensegrity tends to minimise
the shape in order to reduce stresses in response to mechan-
ical forces. In contrast, both unstrained AD-MSCs and BM-
MSCs groups showed no specific cellular orientation, similar
with Oh group. The number of cells in all strained and
unstrained groups appeared to increase with time. The
increase in the number of cells was seen clearly especially
for unstrained cells at 48 h group compared to the 0h group.
However, changes of cell number appeared small in strained
cells compared to unstrained cells. Cells when strained
exhibited a different morphology than unstrained cells,
where the strained cells appeared elongated. There was no
difference in morphology between the AD-MSCs and BM-
MSCs strained group, where both cell types demonstrated
similar appearance of spindle-shaped cells.

3.3. Effects of Cyclic Mechanical Stretch on Cellular
Proliferation. The cellular proliferation rate of AD-MSCs
and BM-MSCs was compared using alamarBlue absorbance
reduction. Overall, alamarBlue® assay revealed that both
unstrained and strained threads support the growth of
human MSCs. Figure 5 shows that in unstrained conditions,
AD-MSCs have higher cell proliferation compared with BM-
MSCs, with statistically significant difference observed at 0 h
and 24 h. Both cell types demonstrated gradual proliferation
over time. However, when the MSCs were subjected to
stretching, there was no difference between AD-MSCs and
BM-MSCs either at the 24 h or 48 h time points. Mechanical
stretching at 1 Hz and 8% demonstrated not to enhance cell
proliferation in either cell group especially in AD-MSCs. In
contrast, BM-MSCs were enhanced by mechanical stimula-
tion after 24 hours of stretching, although it was not statisti-
cally significant. Nevertheless, a trend towards a decrease in
cell proliferation was observed after 48 hours of stretching.
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FIGURE 2: Trilineage differentiation potential of primary for (a) AD-MSCs and (b) BM-MSCs in adipogenic differentiation, osteogenic

differentiation, and chondrogenic differentiation.
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F1GURE 3: Immunophenotypic characterization of the surface of (a) AD-MSCs and (b) BM-MSCs using flow cytometry. The representative
images showed the both type of MSCs expressed at least 85% of double-positive expression, double-negative, or coexpressed its positive and

negative markers.

TaBLE 2: Flow-cytometric analysis of expanded passaged-2 AD-
MSCs and BM-MSCs.

Surface protein % positive AD-MSCs
Positive hMSCs markers

% positive BM-MSCs

CD73 92.5 94.8
CD44 99.1 98.8
CD90 100.0 100.0
CD105 96.9 97.0
Negative hMSCs markers

CD14 0.3 12
CD34 5.5 2.2
CD45 0.3 0.7
HLA-DR 1.2 2.4

These results suggest that the proliferation rate of human
MSCs is not influenced by stretching at 1 Hz and 8%, regard-
less whether MSCs derived from adipose tissue or bone
Marrow.

3.4. Effects of Mechanical Stretch on Total Collagen
Expression of MSCs. The results showed that uniaxial
stretching increased collagen production in cell cultures
(Figure 6). At 1Hz and 8% strain, when compared with
unstrained groups with a normalized value 1, an increase
in total collagen was noted in both AD-MSCs and BM-
MSCs at both 24h and 48 h. However, the increase of the
collagen production was only statistically significant
(p<0.05) at 48h. In terms of comparison between the
AD-MSC and BM-MSC group, the BM-MSC group pro-
duced more collagen than the AD-MSC group at both time
points, but only significantly different at 48 h.

3.5. Effects of Cyclic Mechanical Stretching on Mesenchyme
Differentiation of MSCs. To investigate the regulatory genes
during the tenogenic process when cells are subjected to
cyclic tensile loading, the mRNA level of COLI, COL3,
DCN, TNC, and BGN were determined. Both AD-MSCs
and BM-MSCs (Figure 7) were triggered by mechanical sim-
ulation towards tenogenic lineage, but not to other mesen-
chyme lineages including osteogenic  (RUNX2),
chondrogenic (SOX9), adipogenic (PPARG), and smooth
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F1GuURE 4: Effects of cyclic tensile loading on the morphology and orientation of both AD-MSCs and BM-MSCs. The strained cells presented
an orientation perpendicular to the strain axis. The substrate was stretched in the direction of the yellow arrow.
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FiGuRre 5: Comparison between the cellular proliferation of AD-MSCs and BM-MSCs with or without mechanical stimulation at different
durations of cell culture. The cell proliferation rate higher in AD-MSCs as compared to BM-MSCs when left to grow on silicone chambers.
This did not appear to be the case when cells were subjected to cyclical stretching at 8% and 1 Hz. There was no significant difference for
both these types of cells and when compared to unstrained cells when mechanical stimulation was applied. Significance (p < 0.05) was
indicated with an asterisk (%) which compared unstrained AD-MSCs and unstrained BM-MSCs in different duration, while significance
(p <0.05) was indicated with a hash (#) which comparison between strained AD-MSCs and strained BM-MSCs in different duration. N

=4, n=23. Error bar = +SD.

muscle (TAGLN). Instead, our investigation demonstrated a
downregulation of expression levels. Uniaxial strain regu-
lated matrix remodeling by increasing COLI and COL3
expression. The level of COL3 expressed was higher in

BM-MSCs than AD-MSCs. Compared to the collagen group,
DCN also showed a similar pattern, where the expression
was higher for a longer duration of stretching. The results
showed TNC and BGN expression were upregulated in the
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FIGURE 6: Extracellular collagen content analysis of AD-MSCs and BM-MSCs cultured at 1 Hz+8% at different duration of stretching.
Statistical significance (p < 0.05) was represented by an asterisk (*) which was compared to the unstrained cells represented by the Y axis
(indicated as 1.00). Statistical significance (p < 0.05) was also represented by a hash (#) which is a comparison between AD-MSCs and

BM-MSCs. N =4, n=3. Error bar = +SD.

both cells types, more notably at 48h. However, after
stretching, the BM-MSCs showed higher and faster teno-
genic gene expression than AD-MSCs although not signifi-
cantly. These results suggest that both AD-MSCs and BM-
MSCs have good potential to undergo tenogenic differentia-
tion through mechanical stimulation.

4. Discussion

The present study demonstrated that from the same donor,
no obvious differences can be observed between the mor-
phology and response towards mechanical stretching in both
AD-MSCs and BM-MSCs. These were also apparent in our
flow cytometry, morphometric analysis, and characteriza-
tion analysis. Although generally similar, there were some
minor differences such as CD34, a surface marker of hema-
topoietic cells, which appeared to be slightly higher
expressed in AD-MSCs, ie., 5.5%. This, however, is not
unexpected since such findings were also reported to be
present up to 8.23% of the cell population [41]. It was dem-
onstrated that the expression of CD34 in freshly isolated adi-
pose stem cells will reduce over several passages but will
retain some of its expression and not always completely
absent [42]. When investigations were made to determine
their proliferation and reorientation ability subjected to with
or without stretching, both cells demonstrated contrasting
outcomes. AD-MSCs proliferated better in static cultures.
This finding is similar to a previously reported study where
cell doubling time of AD-MSCs is 2 days as opposed to 7
days in BM-MSCs [41]. But when cyclic loading was applied,
there were no differences observed. This observation is not
unexpected, since we have demonstrated that lower strain

values produced higher proliferation rates [38]. In this study,
uniaxial cyclic strain modality is selected over other mechan-
ical strain methods as it is thought to better mimic the type
of mechanical strain experienced by MSCs in the human
body [43]. What is worth noting is that cyclic loading results
in the change in cellular proliferation rates to both MSCs
types, demonstrating similar levels. This suggests that the
internal mechanisms regulating cellular proliferation are
stretch sensitive and may reset or overcome the natural cel-
lular proliferation programming that exists in static culture
conditions. This, however, would need to be proven in a
more robust experiment.

Similar to in vivo conditions, both AD-MSCs and BM-
MSCs are mechanosensitive and will realign in an arrange-
ment perpendicular to the direction of loading. These changes
were also time dependent and produced more prominent
reorientation patterns over time. It has been suggested that
when subjected to cyclic loading, actomyosin fibres undergo
stretching that threatens cellular tensegrity [44]. The cell will
strive to survive by elongating its shape and thus minimizing
the energy required to maintain its integrity. The change in
cell alignment and of adaptive processes through morpholog-
ical changes are of natural physiological response and have
resulted in the reorganization of cells’ axes close to 100-110
degrees from the direction of loading [45, 46]. This in turn
would avoid cell detachment or cell anoikis, which ultimately
can lead to cell death [47, 48]. From our own experience, we
were able to demonstrate that uniaxial tensile strain can signif-
icantly increase the Young’s Modulus of the cell using cyclic
loading modality, owing to the increased alignment of cyto-
skeleton components including F-actin fibres, thereby reduc-
ing the chance of cell failure [28].
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In terms of their differentiation potential, both the pro-
tein and gene expression analyses demonstrated a distinctive
cellular differentiation towards tenogenic differentiation that
of any other mesenchymal lineage. Indeed, between the two,
BM-MSCs produced higher total collagen protein and Col3
gene expression than AD-MSCs at 48 hours, signifying an
increase of selected tenogenic expression rather than a global
tenogenic expression. It has been previously suggested that
appropriately managed mechanical loads at physiological
levels would positively influence the expression of ECM
and therefore stimulate the relevant mechanisms that will
trigger tendon regeneration. On the contrary, aberrant
mechanical loading alters the anabolic processes in tendons,
resulting in the differentiation of tendon stem cells into non-
tenocytes, such as osteocytes, which may lead to the develop-
ment of degenerative tendinopathy [48-50]. Our previous
studies demonstrated that the mechanical cyclic loading pro-
tocol used in this study, i.e., 8% strain at 1 Hz frequency pro-
duced the most optimal level of tenogenic differentiation for
BM-MSCs [38]. The assumption made in this study was that
AD-MSCs would respond in a similar manner to BM-MSCs
when subjected to the same loading regimes. There may be a
flaw in this assumption as the maximum tenogenic potential
of AD-MSCs using a different regime was neither really
explored nor revealed. Nevertheless, the present method
did demonstrate a comparable potency to BM-MSCs, which
was sufficient to answer our hypothesis.

In the present study, gene expression were the main
indicators demonstrating the effects of stretching and that
using COLI, COL3, DCN, TNC, and BGN as markers of
tenogenic differentiation, and the experiments proved our
hypothesis that stretching would indeed promote tenogenic
expression. Such assumptions were in fact demonstrated
previously in our prior report [38] and other studies such
as those reported by Youngstrom et al. [51]. The choice of
the panel of gene expression being investigated was reason-
able having understood that these would lead to the protein
expression which contributes to the matrix formation of ten-
don formation and repair. It is known that collagen type I is
the primary matrix component of mature tendon/ligament,
albeit not being exclusive to tendon tissue alone. Other
matrix molecules including collagen types III, XII, and
XIV; elastin; and proteoglycans may reflect the contents of
tendon, albeit is in lower volume and is varied. Nevertheless,
these are not specific to tendon as well. However, when these
are considered holistically, these markers inherently provide
sufficient indications of the ongoing repair process. In our
experiments, we have demonstrated an increase in the syn-
thesis of collagen types I and III at gene transcriptional
levels, of which in tendons, this ratio has been used as an
indicator of preferable tendon tissue repair outcomes [52,
53]. Such notion is supported further when several studies
have indicated that collagen type III is increased during pro-
cess of mechanotransduction process [54-56], which is apt



10

for the present experimental purposes. In general, the pres-
ence of collagen type I is important to resist mechanical
loading whilst collagen type III is found to be involved in
the early stages of tendon and ligament healing [53]. There-
fore it is understandable that the ratio of collagen type III to
collagen type I is being used in some studies, and that an
increase in this ratio indicates tissues are undergoing the
early stages of tendon healing [52, 57-59]. The use of other
protein expressing gene markers, such as Decorin, provides
further supporting evidence for the anticipated repair out-
comes since this protein is the predominant proteoglycan
component located in the tensile region of tendons which
implicated in lateral fibril growth [60]. This fibre has been
shown to correlate with size and density of collagen fibrils,
and thus of the mechanical strength of tendon tissue itself
[61]. Likewise, BGN is important for directing assembly of
collagens [62], in addition to be essential in the maintenance
of the putative tendon stem cell niche [63].

In considering the larger view of things, the relationship of
COL, DCN, and BGN in our current studies appears overarch-
ing and provides a good and comprehensive indicator of the
potential healing capacity of MSCs. In addition to expressing
specific tendon related proteins, mechanical stimulation also
triggers specific signalling pathways that lead to transcription
of the regulatory genes of resident progenitor cells and in
introducing MSCs into damaged tendon these cells, towards
the activation of tenogenesis differentiation pathway. The
mitogen-activated protein kinase (MAPK) pathway was found
to be up-regulated in MSCs exposed to cyclic tensile strain,
suggesting it as an important mechanotransductive pathway
in MSCs differentiation [64, 65]. Another study of Kearney
et al. found ERK and p38 to be involved in cyclic tension
mechanotransduction, and stretch-activated cation channels
are implicated to mediate collagen I gene expression [66].
Whilst there have been previous publications describing the
effects of mechanical straining on MSCs differentiation, these
mainly focuses on the differentiation of cells into smooth mus-
cle cells, chondrocytes, and osteoblasts [26, 67, 68]. Like previ-
ous reports, our study demonstrated that AD-MSCs had good
multilineage differentiation capacity and good cellular prolif-
eration that was comparable to bone marrow [69, 70]. Never-
theless, it became apparent from our gene expression that
uniaxial cyclical tensile loading on these two cells sources sup-
pressed adipogenesis, chondrogenesis, and osteogenesis and
instead strongly promoted tenogenesis. This appears to com-
plement the results from our previous study involving human
bone marrow MSCs [28]. Interestingly though, whilst prior
report had mentioned that AD-MSCs produced superior
mechanotransductive responses BM-MSCs when subjected
to mechanical stimulation, our study was not able to establish
this [41].

Whilst the study design was sufficiently robust, there were
notable limitations to the present study. Firstly, inherent to
any in vitro study design, biological variations that may occur
due to the multiple donors for cell sources is unavoidable and
may have influenced the study results. In order to reduce this,
in most cases, we did our best to obtain both bone marrow and
adipose derived-MSCs from similar individuals. This
increased the likelihood to produce desirable observable
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related changes but does not address the variability of different
individuals. To reduce the variation effect, a large sample size
involving large population would be necessary, which in a lab-
oratory experiment would be logistically and economically
prohibitive. We accept this limitation in any in vitro experi-
ment and interpreted the results accordingly to merely dem-
onstrate the potential clinical efficacy prior to validating our
results into a larger scale preclinical and/or clinical studies.
Hence, we suggest a more robust and deeper investigation in
the near future that would be necessary verify the findings of
the present study before any further clinical implications can
be made. Secondly, our preliminary study has shown that
the size of cell culture chamber/device provide limited space
for cellular expansion and results in maximal size expansion
or confluency when experiments were conducted up to 48 to
a maximum of 72 hours. In our previous study, we were able
to demonstrate that the tenogenic differentiation of BM-
MSCs could be triggered as earlier as 24 hours and enhanced
phenotypic expression at 48 hours using the proposed
mechanical strain and frequency. This would have been suffi-
cient for the needs for the present experiments. To further
extend the study beyond this would result in aberrant results
as cells in culture would undergo proliferative contact inhibi-
tion. This was the rationale to limit the experiment to 48
hours. Moreover, considering that the continuous mechanical
stimulation is a form of accelerated outcome stimuli, any
results from this experiment would have been observed within
this time period.

5. Conclusions

The present study demonstrates that mechanical stretching
at 1 Hz and 8% strain did not promote cellular promotion
but enhance tenogenic differentiation and protein expres-
sion for both AD-MSCs and BM-MSCs equally, suggesting
that both cell sources are equally suitable in treating dam-
aged tendon.
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Regenerative dentistry has paved the way for a new era for the replacement of damaged dental tissues. Whether the causative
factor is dental caries, trauma, or chemical insult, the loss of the pulp vitality constitutes one of the major health problems
worldwide. Two regenerative therapies were introduced for a fully functional pulp-dentin complex regeneration, namely, cell-
based (cell transplantation) and cell homing (through revascularization or homing by injection of stem cells in situ or
intravenously) therapies, with each demonstrating advantages as well as drawbacks, especially in clinical application. The
present review is aimed at elaborating on these two techniques in the treatment of irreversibly inflamed or necrotic pulp,

which is aimed at regenerating a fully functional pulp-dentin complex.

1. Introduction

Dental tissue regeneration requires the presence of specialized
cells capable of the production of a tissue-specific extracellular
matrix (ECM) [1, 2]. Stem/progenitor cells used in regenera-
tive medicine are nonspecialized cells, demonstrating the
ability of self-renewal and multilineage differentiation [3].
The potential of stem/progenitor cells, whether endogenous
or exogenous, to adapt to various environmental niche could
be exploited in regenerative endodontics and pulp-dentin tis-
sue regeneration [4-6]. Therapeutic application of stem/pro-
genitor cells is mainly dependent on the utilization of the
transplanted cells, on suitable scaffolds and in combination
with various growth factors to generate fully functional biolog-
ical tissues [7]. Recently, the success demonstrated in animal
models to repair/regenerate dental structures has paved the
way for pulp-dentin organ regeneration approaches [8].

L.1. Cell-Based Transplantation for Pulp-Dentin Complex
Regeneration (Table 1 and Figure 1). A suggested approach
to address problems related to pulp-dentin tissue regenera-
tion relied principally on the use of various sources of stem/-
progenitor cells, combined with multiple scaffold systems
and growth factors [9]. Human mesenchymal stem/progeni-
tor cells (MSCs) have been extracted from many areas of the
human body, including the bone marrow, the skin as well as
the perivascular, the adipose, and the dental tissues [10-12].
Early trials and continuous animal studies were directed to
investigate the effectiveness of cell-based transplantation on
pulp healing and dentin regeneration [7, 13, 14]. Autologous
transplanted constructs of dental pulp stem/progenitor cells
(DPSCs) in combination with platelet-rich fibrin (PRF)
proved to promote the regeneration of pulp-dentin-like
tissue inside dogs’ root canals [15]. A further animal study
employing human DPSCs and platelet-derived growth factor
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Cell based transplantation

Sources of stem cells used for pulp-dentin complex regeneration

Dental tissues Bone marrow

sy
)

Stem cells +
Scaffolds +
Growth factors

Adipose tissue

Isolated stem cells

Perivascular Uterine & umbilical
tissue cord tissues

Regeneration of the
pulp-dentin complex

FIGURE 1: Cell-based transplantation method and sources of stem cells used for pulp-dentin complex regeneration.

(PDGF) constructs transplanted into the emptied root canals
of rats induced the creation of globular dentin-like structure
with odontoblastic cells and pulp-like tissues [16].

A trial to treat deliberately perforated pulp space of
premolars of dogs using autogenous DPSCs, embedded in tri-
calcium phosphate (TCP) or treated dentin matrix (TDM)
scaffolds, showed no dentin formation in all groups while
cementum and vascular connective tissues were evident in
all specimens [17]. A further study examined microvascular
endothelial cells (ECs) coimplanted with rat bone marrow
MSCs in pulpotomized rat models. Interestingly, after 14 days,
immunohistochemical examination demonstrated healing of
the pulp with complete dentin bridge formation in teeth
implanted with MSCs and ECs, while those implanted with
MSCs lacked the completion of the formed dentin bridge
[18]. A further noninvasive regenerative pulpal approach was
tested, using mobilized DPSCs freshly extracted from upper
canine teeth of dogs, followed by autologous DPSCs transplan-
tation in pulpectomized permanent teeth with apical closure.
The study revealed that pulp tissue was completely regener-
ated 90 days following cell transplantation [19]. A novel trial

on a rat model for dental pulp regeneration employed pulpo-
tomized rat teeth, which were treated using buildups of rat
bone marrow mesenchymal stem cells (BMMSCs). The tested
buildups were implanted into the pulpotomized pulp cham-
bers for 3, 7, or 14 days and then examined immunohisto-
chemically. At 7 days, the pulp tissue was regenerated in
almost the whole implantation area and regeneration continued
to progress for 14 days with differentiation of odontoblast-like
cells beneath the dentin at the margin of the implanted area evi-
denced by a detected nestin expression. Also, quantitative gene
expression analysis disclosed the expression of sialophospho-
protein mRNA in the implanted area, suggesting the abundance
of odontoblasts [20]. Chitosan hydrogel scaffold containing
autologous DPSCs was further transplanted in the necrotic
immature permanent teeth of dogs, regenerating pulp- and
dentin-like tissues with complete root maturation radiographi-
cally and histologically [21]. However, not all the reported
studies were successful. Implanting DPCs in TCP and TDM
scaffolds, combined with transforming growth factor f3, ascor-
bic acid 2-phosphate, and ascorbic acid 3-phosphate, did not
promote the formation of a dentin bridge [17]. Also, porcine



DPC:s failed to heal or regenerate partial pulpotomy defects of
minipigs. Moreover, hyperemia in the residual pulp and exter-
nal root resorptions were evident in the radicular area of all
the treated teeth [22]. On the contrary, another investigation
demonstrates that when combining collagen scaffold with gran-
ulocyte colony-stimulating factor (G-CSF), a total recovery of
the pulp tissue was achievable in the pulpectomized teeth [19].

It was appealing to seek more uncommon supplemen-
tary derivatives to enhance stem/progenitor cells” activation
and differentiation, dragging attention towards nondental
medications. An animal study reported that a common drug
used to treat hyperlipidemia, Simvastatin (SIM), succeeded
in stimulating canine DPSCs, promoting pulp and dentin
regeneration following pulpotomy [23]. Further animal stud-
ies suggested using glycogen synthase kinase (GSK-3) antago-
nists, a drug usually applied for the treatment of neurological
disorders, which proved successful as a capping material of
the pulpal exposure site, promoting dentin formation [24,
25]. Another animal study proved that pulp regeneration
was enhanced in aged dogs’ teeth by trypsin pretreatment of
allogenically transplanted mobilized DPSCs [26].

A case report treating accidental root perforation of a
mature permanent tooth, utilizing allogenic umbilical cord
mesenchymal stem cells (UCMSCs) encapsulated in a platelet-
poor plasma- (PPP-) based bio scaffold, demonstrated a clini-
cally normal pulpal tissue in terms of vitality testing, palpation,
and percussion testing at six-month and one-year follow-ups
[27]. Moreover, two case reports showed a successful manage-
ment of periapical lesions in permanent teeth treated with
stem/progenitor cells from human exfoliated deciduous teeth
(SHED), with the treated teeth responding normally to electric
pulp testing and periapical tissue healing observed and main-
tained up to one year [28].

Collectively, cell-based therapeutic applications in the
dental field and specifically dentin-pulp tissue regeneration
still face a number of challenges. Future strategies should
be directed towards overcoming these challenges and obsta-
cles using an ideal combination of growth factors with prop-
erly matching scaffolds [17, 22]. Secure and controllable
practice must be strictly followed to translate stem/progeni-
tor cell research into human models, starting from protocols
of stem/progenitor cells’ tissue harvesting, the biocompati-
bility of the used scaffolds and biomaterials involved, and
the safety of the technique itself and the predicted outcome
[29, 30]. Finally, the endless mix and match trials between
scaffolds of different origins, as well as electing the suitable
growth factor/biological mediator, could govern the success
or failure of regenerating a specialized tissue when employ-
ing the stem cell-based therapy [31].

1.2. Stem/Progenitor Cell Homing. As mentioned above for
pulp-dentin complex regeneration, two strategies could be
applied, namely, the cell-based transplantation therapy or
the cell homing. In the latter, the regeneration is accomplished
via chemotaxis of host endogenous cells to the injured tissue
via biological signaling molecules. Stem/progenitor cell hom-
ing can be defined as the potential of stem/progenitor cells,
whether endogenous or exogenous, to migrate into an envi-
ronmental niche. MSCs can be delivered in situ or intrave-
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nously, or they can be recruited to sites of injury, through
migration and homing [32]. Clinically, cell homing for pulp-
dentin complex regeneration might be simpler and more
economical to perform compared to the cell-based therapy
and readily performed by clinicians without special training.

1.3. Stem/Progenitor Cell Homing Mechanisms (Figure 2).
Homing approaches can be either systemic or nonsystemic.
In nonsystemic homing, MSCs are locally transplanted at
the selected tissue and are then directed to the region of
injury through a chemokine gradient. Oppositely, in systemic
homing, MSCs are delivered or recruited endogenously into
the circulation and then undergo a series of processes, leaving
the bloodstream and moving towards the site of injury. These
complex processes involve tethering and rolling, activation,
arrest, transmigration or diapedesis, and migration [33, 34].
Tethering is mediated by selectins on endothelial cells. MSCs
exhibit CD44, which binds to the selectins and starts rolling
along blood vessels [35]. This is followed by chemokine-
mediated activation [36]. MSCs express the chemokine recep-
tors CXCR4 [37] and CXCR7 [38, 39]. The stromal cell-
derived factor (SDF-1) is the ligand to these receptors, where
it binds to them to enhance homing to different tissues. Then,
comes the process of arrest mediated by integrins, mainly by
CD49d («4f31), which unites with VCAM-1 (CD106) present
on endothelial cells [40]. In order to cut across the endothelial
basement membrane, a process known as diapedesis or trans-
migration, MSCs produce matrix metalloproteinases (MMPs)
mainly MMP-1, which plays a crucial role in tissue infiltration
by MSCs [41]. Finally, MSCs migrate to injury sites. This step is
regulated by chemotactic signals, produced as a reaction to
tissue impairment. Numerous growth factors, such as insulin-
like growth factor IGF-1 and platelet-derived growth factor
(PDGF), can act as chemokines for MSCs [42]. Moreover,
tumor necrosis factor (TNF-«) increases MSCs movement
towards chemokines by increasing their expression of CCR3,
CCR4, and CCR?2 receptors [4, 43, 44]. In addition, the inflam-
matory cytokine interleukin- (IL-) 8 was proved to enhance
migration of MSCs towards regions of injury [45, 46] and
further promotes them to produce regenerative growth factors,
such as vascular endothelial growth factor (VEGF) [47].

1.4. Routes of Administration and Delivery Methods. One
important point in MSCs transplantation and their conse-
quent therapeutic efficiency is the route of administration to
provide the ultimate regenerative benefits with the least
adverse effects. The most common delivery methods for MSCs
are either by intravenous (IV) or intra-arterial infusion (IA) or
by direct intratissue injection [48]. Several experimental stud-
ies proved the superiority of IA and IV delivery modes over
other delivery routes [49, 50]. The IV route was proved to be
the most convenient route for MSCs transplantation. It is
less traumatic and reproducible and enhances widespread
distribution in the affected regions, enhancing various bio-
logical effects [51]. However, this delivery method in nearly
all cases causes entrapment of MSCs in the lungs, causing
undesirable adverse effects, including embolisms. The rea-
son for this lung entrapment relies probably on the amal-
gamation of physiological and mechanical factors, such as
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FIGURE 2: MSC homing mechanisms and different approaches for enhancing MSC homing.

the small size of blood capillaries, the vast network of cap-
illaries, and the great adhesive characteristics of MSCs. It
was also demonstrated that some cells could produce cal-
cium deposits within the capillaries [52].

On the contrary, the IA route can be more efficient, as it
provides a straightforward route to the injury site with an
increased degree of cellular endurance and engraftment
[53, 54]. Several studies proved the superiority of IA delivery
route over the IV one. They demonstrated enhanced func-
tional and histological results in IA delivery compared with
IV injection of MSCs [49, 55]. IA transplantation of MSCs
increases cellular migration, cellular density, and the num-
ber of homing MSCs to the target tissue, when compared
to IV injection [56, 57]. Du et al. in a comparative study
demonstrated greater angiogenesis and increased functional
recovery with IA transplantation compared to IV injection
utilizing human BM-MSCs in a rat model of ischemia [58].
Lundberg et al. confirmed these findings in a model of trau-
matic brain injury [59]. The main reason for the superiority
of IA transport over IV mode is that the IA approach can
bypass the pulmonary circulation and filtering organs, such
as liver and spleen [60], thereby avoiding MSCs entrapment
in lungs and liver [54], with a significant rise in number of
cells with a more consistent cellular dissemination in target
tissues [61, 62]. This will eventually lead to increased cell
homing and improved therapeutic outcomes [58].

However, a probable limitation for the IA route is the
possibility of vascular blockage in small arterioles and capil-
laries resulting in strokes. This may be attributed to the exis-
tence of large MSCs in the 20-50u size range [63, 64].
Several attempts have been performed to enhance the safety
of TA transplantation via regulating infusion velocity and cell
dosage [63, 65]. Moreover, real-time MRI could provide a
useful tool in making the procedure more accurate and pre-
dictable, which is of ultimate importance for translation to
clinical practice [66].

Direct injection delivery mode has the advantage of accu-
rate localization of cells, despite being invasive. However, it
has been proved that aside from the delivery route, only
1~5% of delivered cells disseminate within the target region
for regeneration. The count of cells in the target region may
thus be enhanced by maximizing the injection volume or
enriching the cell concentration in the injectable volume
[67-69]. In addition, the expression of adhesion molecules
can promote homing of delivered MSCs [70, 71]. In this
context, several approaches have been made to enhance
MSC homing efficacy.

1.5. Enhancing MSC Homing (Figure 2). Cellular homing relies
principally on specialized molecular interactions, not just pas-
sive diffusion. One of the main challenges facing MSCs thera-
peutic applications is enhancing their homing abilities [72].



Among the challenges is the fact that the expression of homing
molecules, as CXCR4, is relatively low on MSCs [37, 73], and
the in vitro expansion of MSCs further decreases the expres-
sion of their homing molecules [74, 75]. Thus, numerous
approaches have been suggested to enhance MSC homing.
Among these is targeted delivery, which relies on direct deliv-
ery of MSCs into the target region, employing nonsystemic
rather than systemic homing [76]. In addition, magnetic
guidance of MSCs to target tissues proved greater homing effi-
ciency [77]. Furthermore, genetic modifications of MSCs via
overexpression of homing factors such as VLA-4 and CXCR4
through viral transduction proved increased efficiency [78, 79].
Cell surface engineering approaches were suggested to modify
the selectin ligand CD44, via transforming it into HCELL (the
ligand for E- and L-selectin that MSCs utilize for homing), as
MSCs normally express CD44, but not HCELL [80]. It was
turther demonstrated that coating MSCs with hyaluronic acid
could upregulate CD44 expression [81]. Moreover, hypoxic
conditions enhance hypoxia-inducible factor- (HIF-) la,
which upregulates the expression of CXCR4 [82], CX3CR1
[83], and CXCR7 [84, 85].

A further strategy addressed modifying the target tissues,
via overexpression of chemokines or via implantation of
chemokine-coated scaffolds [86]. This allows tissues to be a
more appealing target for homing MSCs. Moreover, irradia-
tion of target tissues increases the expression of SDF-I,
upregulating in MSC engraftment [87, 88] and homing
[89]. Pulsed ultrasound applied to the target tissue may also
enhance MSC homing [90], via altering gene expression of
cytokines as bone morphogenic protein-2 (BMP-2), inter-
leukins (IL-1a, IL-6, and IL-10), TNF-a, and growth factors
such as epidermal growth factor (EGF), fibroblast growth
factor (FGF), VEGF, and PDGF [91], causing disorganiza-
tion of endothelial linings, enhancing vascular permeability,
increasing secretion of SDF-1 on the tissue of interest, and
upregulating CXCR4 expression [92].

1.6. Cell Homing for Pulp-Dentin Complex Regeneration
(Revascularization) (Table 2 and Figure 3). Regenerative
endodontics represents an alternative to root canal treatment,
which is aimed at replacing the inflamed and necrotic pulp
tissue with regenerated pulp-like tissue [93]. In this context,
revascularization approaches of affected dental pulp were
suggested as an innovative strategy to overcome the drawbacks
associated with classical root canal treatment methods (e.g.,
fracture of the teeth and loss of vitality) [94]. A human study
on mature necrotic teeth with large radiolucency concluded
that the regenerative endodontic approaches have a success
rate similar to nonsurgical endodontic treatment as a thera-
peutic alternative for mature necrotic teeth with radiolucency
[95]. It could maintain the pulp vitality, leading to a reduction
of apical periodontitis and enhance the periapical healing
mechanism [96]. Basically, pulp revascularization is the rees-
tablishment of angiogenesis inside the root canal but without
the repopulation of odontoblasts, while the pulp regeneration
means angiogenesis with presence of odontoblastic layer
lining the dentinal surface, nociceptive as well as parasympa-
thetic and sympathetic nerve fibers, interstitial fibroblasts,
and stem/progenitor cells, which replenish the pulp cells in
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the newly regenerated pulp tissue [97]. According to American
Association of Endodontists’ (AAE) Clinical Considerations
for a Regenerative Procedure, the primary goal should be the
resolution of clinical symptoms/signs and elimination of apical
periodontitis. The secondary goal should address the canal
wall thickening and/or continued root maturation [98].

Pulp revascularization could be considered a type of cell
homing strategy for pulp-dentin complex regeneration. This
clinical procedure depends on the delivery of a blood clot
(scaffold) inside the root canal, growth factors (mainly from
platelets and dentin), and stem/progenitor cells. The stem/-
progenitor cells of interest in revascularization are SCAP
(stem cells of apical papilla) because of their anatomical
positioning immediately adjacent to the termination of the
root canal system, permitting easy cell delivery to the root
canal [99, 100] and the greater superiority for dentin-like tis-
sue formation [101, 102]. The root canal system is first dis-
infected with a combination of antibiotics or calcium
hydroxide. In the second visit, the irrigation protocol during
this clinical procedure is very critical as for the regeneration
procedure to be successful; the irrigants should have bacter-
icidal/bacteriostatic properties as well as an ability to pro-
mote survival and proliferative capacity of the patient’s
stem/progenitor cells. The irrigation protocols that include
17% EDTA promoted SCAP survival and attachment to
the root canal dentinal wall [103].

Animal studies were performed to examine the tissues
formed after revascularization, demonstrating ingrowth of
cellular cementum-like tissues, formation of pulp-like tissue,
thickening of the canal walls, closure of the root apex, and dis-
appearance of periapical radiolucency [104, 105]. Histological
sections were also performed in humans after fracture of a
revascularized immature tooth (3.5 weeks after revasculariza-
tion), showing that the canal was filled with loose connective tis-
sue and a layer of flattened odontoblast-like cells lined along the
predentin. Layers of epithelial-like cells, similar to the Hertwig’s
epithelial root sheath, further surrounded the root apex [106].

Alternative endodontic therapy is now possible, using
the patient’s own blood samples, where PRF and PRP are
introduced inside the root canal. Easier and successful efforts
for pulp revascularization and pulp tissue regeneration were
reported by using evoked bleeding (EB), where the blood
clot acts as a protein scaffold and interacts with endogenous
stem cells and growth factors already abundant in the adja-
cent bone marrow tissues [107]. The highest reported cyto-
kines and growth factors found in PRF are IL-1p, IL-6, IL-
4, TNF-a, PDGF, VEGF, IGF-1, EGF, and transforming
growth factor 1 (TGFp1) [108], while PRP contains FGF,
PDGF, VEGF, IGF-1, EGF, and TGFf1 [109]. The superior-
ity of PRP came from releasing an elevated number of
proteins at early time intervals whereas PRF showed a sus-
tained production of bioactive molecules throughout a
duration of 10 days [110]. In the blood clot technique, the
growth factors are released from the dentin matrix after
conditioning of the dentin using EDTA (ethylene diamine
tetra acetic acid) 17%-pH 7.2 during the revascularization
technique. Thus, the dentin matrix acts as a reservoir of bio-
active molecules, which provides a vital source of cell signal-
ing molecules for initiating repair, including TGFf1, bone
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Bone marrow stem cells (BMSCS)

BMMSC:s are able to differentiate towards
connective tissue, bone, adipose, muscle
tissues, cartilage and endothelium and
also towards other lineages such as renal,
lung, hepatic and neural cells.

BMMSCs are the most experimented and
successful source of MSC for periodontal
and bone regeneration in respect with

other cell sources.

DFSCs
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F1Gure 3: Different sources of stem/progenitor cells in the oral cavity and steps of revascularization.

morphogenetic proteins (BMPs), and VEGF [111]. PRF has
proved to be an appropriate substitute to the blood clot tech-
nique, especially in cases where bleeding was very difficult to
be obtained [107]. PRP and blood clotting technique used as
scaffolds in immature traumatized permanent teeth with
necrotic pulps also gave very good results [112]. In a clinical
study on 30 patients with maxillary necrotic permanent
immature central incisors, treating one group with PRP
and the other with PRF scaffolds, teeth survived during the
12-month follow-up period. The teeth revealed marginal
increase in radiographic root width and length, an increased

periapical bone density, and a narrowing in apical diameter
[113]. Other studies compared the effect of PRF, PRP, and
the blood clot technique in the revascularization of necrotic
teeth with open apex, demonstrating continued root devel-
opment and maintenance of functionality, following differ-
ent follow-up periods, yet with some teeth not responding
to vital testing [2, 5, 6, 114-122]. A further investigation
induced bleeding in root canals and used PRF in mature
necrotic teeth, showing a regain in pulp sensibility [123].
In a further study, Kim et al. were able to regenerate tooth-
like structure using cell homing approach [124].
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Still, one of the drawbacks of the revascularization found
among cases treated with this approach is the occasional
intracanal calcification, which in some cases may progress
to complete obliteration of root canals, affecting the normal
function of the dental pulp tissues. This drawback could be
attributed to multiple contributing factors such as the type
of medicaments and the induction of intracanal bleeding
[125, 126]. A recent review article evaluated the long-term
outcomes of the apexification and the regenerative tech-
niques in treating traumatized immature teeth with pulp
necrosis and apical periodontitis, showing that the endodon-
tic regenerative techniques appeared superior to apexifica-
tion techniques in terms of root lengthening and root wall
thickening [127].

1.7. Cell-Free Approach for Pulp-Dentin Complex Regeneration.
Relying on “cell homing” concept, the cell-free approach is
aimed at regeneration by enhancing proliferation, migration,
and differentiation of intuitive stem/progenitor cells present
near the root apex [128]. It was proposed that stem/progenitor
cells’ niches could initiate an appropriate microenvironment
by releasing immunoregulatory molecules and enhancing
paracrine effects to promote the differentiation of endogenous
stem cells [129, 130]. Additionally, natural molecules and
bioactive compounds have been proved to promote dentino-
genesis [131, 132].

Conditioned medium (CM) can be described as the mole-
cules released from living cells into the surrounding extracellu-
lar environment [133]. CM was found to stimulate cellular
immunomodulation, proliferation, migration, and tissue regen-
eration [133-135] as it contains abundant amounts of proteins,
lipids, nucleic acid, growth factors, cytokines, chemokines, and
extracellular vesicles [136]. A recent study combined hDPSC
conditioned medium with MTA for direct vital pulp therapy.
It was assumed that the abundance of angiogenic growth factors
such as PDGF, FGF, and VEGF [137] and immunomodulatory
cytokines such as IL-6 and IL-8 [138] secreted by DPSCs and
collected in hDPSCs’ conditioned medium could modulate
the inflammatory and regenerative processes in the dental pulp
tissue, improve the orientation of the newly formed hard tissue,
and enhance formation of dentin bridges [139].

Extracellular vesicles (EVs) derived from MSCs function
as paracrine mediators in tissue regeneration and repair and
resemble to a great extent the therapeutic efficacy of parental
MSCs [140]. Extracellular vesicles (EVs) are defined by the
MISEV2014 and the updated MISEV2018 as “particles natu-
rally released from the cell that are delimited by a lipid
bilayer membrane and are incapable of self-replication, i.e.,
do not contain a functional nucleus.” EVs are a collective
name including many subtypes of cell-released, membra-
nous particles, known as microvesicles, microparticles, exo-
somes, oncosomes, ectosomes, and apoptotic bodies. EVs
are characterized by the presence of luminal and transmem-
brane proteins and attenuation of extracellular or cellular
non-EV proteins [141, 142]. The term “exosomes” usually
refers to EVs that are formed by the endosomal system,
opposite to ectosomes (microparticles and microvesicles)
that bud from the plasma membrane. Particularly, intralum-
inal vesicles are unleashed into the extracellular environ-
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ment as exosomes when the multivesicular body coalesces
with the plasma membrane [143]. Exosomes are identified
by their small diameter (40-100 nm) [144]. Moreover, they
possess large amounts of tetraspanins (CD81, CD9, and
CD63) and annexins, which are commonly used for their
characterization [145].

Additionally, exosome vesicles were claimed to possess the
ability to induce odontogenesis and augment dental pulp
regeneration [146]. Accordingly, a study based on extracted
exosome-like vesicles from rat Hertwig’s epithelial root sheath
(HERS) was tested. Dental pulp cells (DPCs) were united with
HERS cell-derived exosome-like vesicles in an in vivo tooth
root slice model, triggering the regeneration of hard reparative
dentin-like tissue and soft tissue rich in blood vessels and neu-
rons [147]. Moreover, in an interesting study, when SCAP-
derived exosomes (SCAP-Exo) were put into a root slice con-
taining BMMSCs and transplanted into immunocompro-
mised mice, dentin and dental pulp-like tissues were formed
in the root canal. Besides, when SCAP-Exo were evaluated
in vitro, it was reported that dentin sialophosphoprotein
expression and hard tissue deposition in BMMSCs treated
with SCAP-Exo were significantly upregulated [148]. In
another study, EVs were derived from DPSCs and EVs-
fibrin gel constructs were manufactured as an in situ delivery
system. Afterwards, DPSCs and endothelial cells were cocul-
tured in the constructs. It was reported that EVs-fibrin gels
promoted dental pulp regeneration by stimulating collagen
deposition and enhancing angiogenesis through upregulating
the expression of VEGF [149].

It is further well established that the usage of MSC-derived
EVs possesses numerous advantages. First, it overcomes the
ethical issues that limit the clinical translation of MSCs.
Second, transplanting cells, which might have mutated DNA,
can be avoided. Third, the dose of delivered MSCs rapidly
declines posttransplant, in contrast to MSC-derived vesicles,
which could attain a higher dose. Fourth, EVs are relatively
small and can circulate easily, opposite to MSCs, which are
too large to circulate smoothly via capillaries. However, the
main disadvantage of utilizing MSC-derived vesicles is that
they are static and cannot be produced in vivo. Moreover,
the efficacy of EVs requires standard parameters to produce
EVs of known content, develop storage techniques that
preserve vesicle efficacy, and assess their therapeutic potential
in well-controlled clinical trials [140].

2. Conclusion

Regenerative dentistry is no longer a dream, thanks to the cur-
rent efforts to imply stem/progenitor cell-based techniques to
enhance the regeneration of the pulp-dentin complex and to
replace conventional endodontic pulp therapy. Yet, such novel
therapies dictate careful testing first in vitro and in animal
models, prior to human clinical translation [150]. Cell-based
therapies still face many challenges, mainly economical and
ethical concerns. Thus, efforts started to target cell homing
for pulp-dentin complex regeneration as a simpler, safer, and
reasonably priced approach compared to the cell-based trans-
plantation therapy. However, the success and safety of MSCs
administered via IV or IA routs, as well as directing such cells
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towards the injured tissues, are not always guaranteed. Despite
the great advancements in pulp-dentin complex regeneration
through cell homing in the past years, they require further
investigations and development. Cell homing techniques need
to be examined in more realistic models, starting with animals
then humans. Moreover, clinical trials are crucial to point out
possible indications and contraindications. Thus, numerous
aspects still need to be resolved to make it applicable and with
predictable outcomes in clinical dental practice. The perspec-
tive of replacing conventional endodontic therapy, while
retaining the tooth vitality in a practical and relatively safe
way, provides hope for the clinical dental practice. Finally,
any minor step towards the future is counted as an additional
profit that must be preciously handled and searched thor-
oughly to be utilized later in the field of regenerative dentistry.

Abbreviations

AAE: American Association of Endodontists
BMMSCs: Bone marrow mesenchymal stem cells
BMPs: Bone morphogenetic proteins

BMP-2: Bone morphogenic protein-2

CCR2: C-C chemokine receptor type 2
CCR3: C-C chemokine receptor type 3
CCR4: C-C chemokine receptor type 4
CD105: Cluster of differentiation 105

CD44: Cluster of differentiation 44

CD49d (a4p1): Integrin a4

CD73: Cluster of differentiation 73

cDPSCs: Canine dental pulp stem cells

CRCT: Conventional root canal treatment
CX3CR1: CX3 chemokine receptor 1

CXCR4: C-X-C chemokine receptor type 4
CXCR?7: C-X-C chemokine receptor type 7
DPCs: Dental pulp cells

DPSCs: Dental pulp stem cells

EB: Evoked bleeding

ECs: Endothelial cells

EDTA: Ethylenediaminetetraacetic acid

EGF: Epidermal growth factor

FGF: Fibroblast growth factor

G-CSE: Granulocyte colony-stimulating factor
GSK-3: Glycogen synthase kinase

HCELL: Hematopoietic cell E-/L-selectin ligand
hDPSCs: Human dental pulp stem cells

HERS: Hertwig’s epithelial root sheath
HIF-1a: Hypoxia-inducible factor-1a

IA: Intra-arterial

IGF-1: Insulin-like growth factor-1
IL-la: Interleukin-1 alpha

IL-1B: Interleukin-1 beta

IL-4: Interleukin-4

IL-6: Interleukin-6

IL-8: Interleukin-8

IL-10: Interleukin-10

1V: Intravenous

MDPSCs: Mobilized dental pulp stem cells
MMP-1: Matrix metalloproteinase-1
MMPs: Matrix metalloproteinases
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MRI: Magnetic resonance imaging
MSCs: Mesenchymal stem/progenitor cells
MTA: Mineral trioxide aggregate
PDGE: Platelet-derived growth factor
pDPSCs: Pocrine dental pulp stem cells
PLLA: Poly L-lactic acid
PPP: Platelet-poor plasma
PRF: Platelet-rich fibrin
PRP: Platelet-rich plasma
RBMMSC: Rat bone marrow mesenchymal stem
cells
REP: Regenerative endodontic procedures
SC: Stem cell
SCAP: Stem cells of apical papilla
SDEF-1: Stromal cell-derived factor
SHED: Stem cells from human exfoliated
deciduous teeth
SL Signal intensity
SIM: Simvastatin
STRO-1: Stromal cell surface marker-1
TCP: Tricalcium phosphate
TDM: Treated dentin matrix
TGEpI: Transforming growth factor beta 1
TNF-a: Tumor necrosis factor
UCMSCs: Umbilical cord mesenchymal stem cells

VCAM-1 (CD106): Vascular cell adhesion molecule 1

VEGE: Vascular endothelial growth factor
VLA-4: Integrin VLA-4.
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Degenerative disc disease (DDD) can cause severe low back pain, which will have a serious negative impact on the ability to
perform daily tasks or activities. For the past few years, mesenchymal stem cell (MSC) transplantation has emerged as a
promising strategy for the treatment of DDD. However, the clinical efficacy of MSC in the treatment of DDD still lacks
clinical evidence and is controversial. We conducted a meta-analysis with randomized controlled trials (RCTs) to evaluate
the clinical efficacy and safety of MSC transplantation in patients with DDD. We searched major databases using terms
from the database’s inception through March 2021. The Cochrane bias risk assessment tool was used to assess quality. The
analysis showed that MSC therapy could decrease visual analog scale (VAS) scores (SMD =-0.50, 95%CI = —0.68 ~ —0.33,
P <0.00001) and Oswestry Disability Index (ODI) scores (SMD =-0.27, 95%CI = —0.44 ~ —0.09, P =0.003). The outcomes
with subgroup analysis showed that MSC therapy could decrease VAS scores in 3 months (P =0.001), 6 months (P =0.01), 12
months (P =0.02), and >24 months (P =0.002) and ODI scores in >24 months (P =0.006). Pooled analysis showed that MSC
therapy has a higher ratio of patients at most thresholds but particularly at the MIC (minimally important change) (P = 0.0002)
and CSC (clinically significant change) (P =0.0002) in VAS and MIC (P =0.0005) and CSC (P =0.001) pain responders in ODL
Adverse events (AE) of treatment-emergent adverse events (TEAE), back pain, arthralgia, and muscle spasms were not statistically
significant between the two groups. However, our further statistical analysis showed that MSC therapy may induce AE of TEAE
related to study treatment (OR =3.05, 95%CI =1.11 ~ 8.40, P =0.03). In conclusion, this study pooled the main outcomes and
showed that MSC therapy could significantly decrease VAS and ODI scores in patients with DDD. Distinctly, the findings of this
meta-analysis suggest a novel therapeutic strategy for patients with chronic low back pain (LBP) and lumbar dysfunction by DDD.

1. Introduction

Degenerative disc disease (DDD) is a multifaceted, progres-
sive, and irreversible disease. It is an inescapable part of
aging and may lead to a series of diseases or symptoms such
as lumbar disc herniation, cervical spondylosis, discogenic
pain, spinal stenosis, and spinal segment instability [1, 2].
DDD often results in severe LBP that would have a severe
negative impact on the ability to perform daily tasks or activ-
ities [3]. This has developed into a public health problem
that seriously affects the socioeconomic and quality of life of
the people [4]. For patients who have failed conservative treat-

ments (nonsteroidal anti-inflammatory drugs (NSAIDs), non-
pharmacologic treatment with superficial heat, physical
therapy, chiropractic, and/or acupuncture), it is particularly
important to find new, safe, and effective treatment strategies
[5]. Currently, the surgical treatment options for DDD mainly
include laser, nucleus pulpoplasty, interbody fusion, and arti-
ficial disc replacement. Although these treatments have
achieved good short-term results, long-term outcomes are
affected by the high probability of recurrent pain. There is lit-
erature regarding the poor efficacy of spine fusion for treating
LBP [6]. In addition, none of the previously mentioned treat-
ment regimens could alleviate or reverse the course of disc
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degeneration. Disc removal could also lead to further deterio-
ration of the degeneration due to spinal instability [7, 8].

Therefore, the focus of current research on DDD is
increasingly turning to regenerative methods to slow down
continuous degenerative cascade. The degenerative disc
microenvironment must stabilize in order to achieve this
goal and eventually return to a normal physiological state.
So, the potential therapeutic strategies include (a) reversing
protein expression of proinflammatory cytokines/protei-
nases in intervertebral disc cells, (b) blocking proinflamma-
tory cytokines/proteases in extracellular matrix, (c)
producing new extracellular matrix in intervertebral disc
cells by intervention, and (d) addition of additional cells to
support regeneration in a degenerative intervertebral disc
environment [9]. One promising therapeutic strategy for
inducing intervertebral disc regeneration may be the use of
progenitor cells and stem cells [10]. In recent years, the use
of MSC for intervertebral disc regeneration has been most
widely studied [10]. MSC has excellent immune privilege
and immune evasion and suppresses ongoing immune
response in a way that is not restricted by the human leukocyte
antigen system [11, 12]. In the first place, we found that many
animal studies of mesenchymal stem cell transplantation for
DDD are particularly promising. Yim et al. [13] included 24
animal studies on MSC transplantation for DDD. All three
types of mesenchymal stem cells have certain advantages in
inhibiting intervertebral disc degeneration. To sum up, evi-
dence suggested that MSC transplantation could increase disc
space height in animal models. Bracingly, Orozco et al. [14]
studied the injection of bone marrow MSC in 10 patients diag-
nosed with DDD and chronic back pain. After MSC trans-
plantation treatment, 85% of patients had significantly
reduced lumbar pain and disability in 3 months. After 6 and
12 months, a significant increase in the water content of the
patient’s intervertebral discs was observed, with moderate
improvements [14]. Meanwhile, Noriega et al. [15] conducted
a RCT in which 24 patients had been diagnosed with DDD. In
the MSC group, bone marrow MSC were injected into each
intervertebral disc. Results showed that the pain and disability
of patients were significantly reduced at 3 months after MSC
transplantation. Of greatest concern, the results of the study
found no difference in VAS scores between the MSC trans-
plantation treatment group and the control group at 12
months. Another RCT result also found that after MSC+allo-
graft treatment, VAS score and ODI score decreased com-
pared to baseline, but there was no statistical difference in 3,
6, and 12 months, compared to the control group with stan-
dard graft material [16]. The clinical efficacy of MSC trans-
plantation in the treatment of DDD remains controversial.
Recently, Noriega et al. [17] published long-term 42-month
follow-up results of the RCT showing good differences after
MSC treatment. Our team believes that for patients with
DDD, choosing MSC transplantation is a positive effect on
improving patients’ VAS and ODI. However, there is currently
no high-quality evidence-based medicine to support. In order
to further explore the efficacy and safety of MSC transplanta-
tion in the treatment of DDD, we conducted this meta-
analysis of published RCT's to study the therapeutic evidence
of human MSC transplantation for DDD.
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2. Materials and Methods

The detailed protocol for this study was designed in accor-
dance with the Cochrane intervention review. The entire
project has been registered on the PROSPERO website
(CRD42021248707). The whole design and writing process
of this meta-analysis were done one-to-one according to
the of PRISMA.

2.1. Literature Search. We searched major databases includ-
ing PubMed, Embase, and ClinicalTrials.gov using terms
from the database’s inception through March 2021. We
screened the literature based on the participants, interven-
tions, comparisons, outcomes, and study (PICOS) approach.
The terms included the following: (1) degenerative disc dis-
ease, DDD, intervertebral disc repair, intervertebral disc
degeneration, lumbar disc degeneration, and disc degenera-
tion; (2) mesenchymal stem cell and allogeneic mesenchy-
mal precursor cells; and (3) randomized controlled trials.

2.2. Extraction of Study Data. Two data extractors (He RR
and Chen SC) screened the full text of MSC in the treatment
of DDD and extracted the main observation indicators. The
extraction of experimental data is mainly filled in the data
extraction form table designed in advance. Disputable data
were resolved through a third independent investigator (Xu
YX). The main aspects of data extraction were registration,
number of participants, age, treatment strategy, duration,
and observed outcome.

2.3. Risk Assessment of Bias in Included Studies. To further
address the risk of bias between included studies, we use
the Cochrane risk of bias tool to assess the quality of the lit-
erature one by one for the included studies.

2.4. Outcome Indicators. (1) The efficacy outcomes are as
follows: visual analog scale (VAS) of 3, 6, and 12 months
or >24 months and Oswestry Disability Index (ODI) of 3,
6, and 12 months or >24 months. (2) The other efficacy out-
comes are as follows: MIC and CSC of 6 and 12 months or
>24 months. (3) The safety outcomes are as follows: adverse
events (AE) of MSC therapy for DDD.

2.5. Inclusion and Exclusion Criteria. The inclusion criteria
are as follows: (1) RCTs of studies; (2) participants with
DDD; (3) the MSC group received MSC treatment and the
control group received HA or rehabilitation treatment; and
(4) follow-up time was longer than 3 months. Exclusion cri-
teria are as follows: (1) nonrandomized trials; (2) ongoing
RCTs without outcomes; (3) review, systematic review, or
meta-analysis; and (4) case reports, prospective, or retro-
spective cohort studies.

2.6. Data Synthesis and Analysis. In this study, Review Man-
ager 5.3 and Stata 12.0 were used to conduct statistics and
analysis on the data of multiple outcomes, respectively. If
the outcomes were dichotomous data, we analyzed the data
by odds ratio (OR) and 95% confidence intervals (ClIs).
The contiguous data to be merged were represented by a
standardized mean difference (SMD) and 95% CI. The x?
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Records identified through database searching
(n=270)

Records after duplicates removed (n = 187)

Records excluded (n = 157)

for the following reasons:

(a) Non-randomised trials,

(b) Review and meta-analysis,

(c) Case report, abstract, poster, case reports, cross-

sectional studies, cohortstudiesor presentation,
(d) Not patients with degenerative disc disease.

Full-text articles assessed for eligibility (n = 30)

Full-text articles excluded, with reasons (n = 27)
(a) Articles without reporting outcomes of primary

(c) Reporting rationale and design of the study.
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FiGURE 1: Flowchart of the retrieval strategy.

test and I* statistic were used to calculate the heterogeneity
among the studies. The quantitative value of I* < 25% indi-
cated mild inconsistency between the studies, and I that
ranged from 25% to 50% indicated moderate heterogeneity.
If the I* > 50%, this indicates that the study has serious het-
erogeneity. We would conservatively use the random-effect
model to evaluate the statistical significance of the pooled
outcomes, so as to reduce the influence of heterogeneity of
this study. If I* < 50%, the fixed-effect model was used for
analysis. Subgroup analyses was used to study effect size of
VAS of 3, 6, and 12 months or >24 months and ODI of 3,
6, and 12 months or >24 months.

3. Results

3.1. Screening of Studies. In this study, through the system-
atic retrieval of major databases, a total of 270 citations were
retrieved from the establishment of the database to March
2021. 83 duplicate studies were excluded after importing
the retrieved literature into NoteExpress. After reading the
abstracts, 157 studies were excluded for several reasons: (a)
nonrandomized trials; (b) systematic review or review; and
(c) case reports, cross-sectional studies, and prospective or
retrospective cohort studies. Next, after reading the full text,
we excluded 27 ongoing studies and studies that were only
basic principles and designs. In the end, we included three
studies on MSC transplantation in the treatment of DDD
for analysis (Figure 1).

3.2. Characteristics of Each Study. After screening of the
inclusion criteria, 3 studies [15, 17, 18] with 104 participants
were finally included in the analysis. The MSC group was
treated with MSC, and the control group was treat with
HA or mepivacaine. The registration numbers of two RCT's
were NCT01290367 and NCT01860417. The MSC therapy
was used in three RCTs that were allogeneic mesenchymal
precursor cells and allogeneic mesenchymal stem cells. The
amount of MSC transplants in the study of Amirdelfan
et al. [18] was 6 x 10° and 1.8 x 107. The dosage of MSC
transplants in the other RCT was 2.50 x 107. The efficacy
outcomes were VAS of 3, 6, and 12 months or >24 months
and ODI of 3, 6, and 12 months or >24 months. The other
efficacy outcomes were MIC and CSC of 6 and 12 months
or >24 months. The safety outcomes were AE of MSC ther-
apy for DDD (Table 1).

3.3. Quality Assessment of Study. The clinical trials of Amir-
delfan et al. [18] were divided into two groups according to a
central randomization schedule and randomization list. In
terms of selection bias, we assessed them as “low risk” stud-
ies. The study of Noriega et al. [15] did not explicitly address
the randomized approach, which we assessed as “unclear” of
selection bias. The clinical trial of Amirdelfan et al. [18]
reported that the participants and radiographic reviewer
were blinded to the assigned treatment but the investigator
was not blinded. So, we assessed it as “unclear risk” in selec-
tion bias and performance bias. The trial of Noriega et al.
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TaBLE 1: Characteristics of each study.

Registered Intervention
Study number Design Participants MSC group Control Dosage Follow-up ~ Outcomes
group

Amirdelfan et al. [18] 2021 NCT01290367  RCT 80 MSC+HA HA 6x10°5 1.8x107  36m Vléss’glﬁ}éE’
Noriega et al. [17] 2021 NCT01860417 RCT 24 MSC Mepivacaine 2.50 x 107 42 m VAS, ODI, AE
Noriega et al. [15] 2017 NCT01860417 RCT 24 MSC Mepivacaine 2.50 x 107 12m VAS, ODI, AE

Note: AE: adverse event; CSC: clinically significant change; HA: hyaluronic acid; ODI: Oswestry Disability Index; MIC: minimally important change; MSC:
mesenchymal stem cell; RCT: randomized controlled trial; VAS: visual analog scale.

Allocation concealment (selection bias)

Blinding of participants and personnel (performance bias)

. Random sequence generation (selection bias)

Amirdelfan, K et.al 2021

. Blinding of outcome assessment (detection bias)

Noriega, D C et al. 2017

Noriega, D Cetal. 2021 | 2

v
=
=l

—

)
5

=
o

?2|? ?
? ?2(°? ? ?
?2|? ? ?

‘ . . Incomplete outcome data (attrition bias)
. . . Selective reporting (reporting bias)

()

Random sequence generation (selection bias) _ |

Allocation concealment (selection bias) | |

Blending of participants and personnel (performance bias ) | |

Blinding of outcome assessment (detection) | _
Incomplete outcome data (attrition bias) _
Secctiv reporting eportng biss) [

Others bias | |

(®)

l T T T 1
0% 25% 50% 75% 100%

[ Low risk of bias
[] Unclear risk of bias
[l High of bias

FIGURE 2: Quality evaluation of studies by the Cochrane collaboration manual. (a) Item-by-item detailed analysis of the summary of the risk
of bias in studies. (b) The risk bias graph shows the quality summary of the study.

[15] reported that the participant, care provider, and out-
come assessor were blinded, but we did not find the specific
implementation plan for blinding, so we assessed it as
“unclear risk” in detection bias, selection bias, and perfor-

mance bias. Amirdelfan et al. [18] fully reported the out-
come measures including the number of people lost to
follow-up and the reasons for dropping out. We assessed it
as “low risk of bias” in attrition bias and reporting bias.
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Study or subgroup MSC therapy Control group Std. mean difference Std. mean difference
Mean  SD Total Mean  SD Total Weight 1V, fixed, 95% CI 1V, fixed, 95% CI

1.1.1 3 months
Amirdelfen, K et.al 2021 (18M) 3526 2447 27 5168 2393 19 86%  -0.67 [-1.27,-0.06] -
Amirdelfen, K et.al 2021 (6M)  30.28 24.54 29 5168 2393 19 85%  -0.87 [-1.47,-0.26] -
Noriega, D C et al. 2021 433118 12 46 2771 12 4.8% ~0.10 [-0.90, 0.70] T
Subtotal (95% CI) 68 50 22.0%  -0.62 [~0.99, —0.24] <&
Heterogeneity, Chi* = 2.29, df = 2 (P = 0.32); I*= 13%
Test for overall effect: Z = 3.21 (P = 0.001)

1.1.2 6 months
Amirdelfen, K et.al 2021 (18M)  34.6 24.58 30 4226 2393 19 9.4%  -0.31[-0.89,-0.27] T
Amirdelfen, K et.al 2021 (6M) 2593 245 28 4226 2393 19 87%  -0.66 [-1.26,-0.06] —_—
Noriega, D C et al. 2021 40 2771 12 51 2771 12 4.8% -0.38 [-1.19, 0.43] -1
Subtotal (95% CI) 70 50 22.9% -0.46 [-0.83, -0.09] ‘
Heterogeneity, Chi’ = 0.73, df = 2 (P = 0.69); I*= 0%
Test for overall effect: Z = 2.43 (P = 0.01)

1.1.2 12 months
Amirdelfen, K et.al 2021 (18M) 32.37 2447 27 46.56 2384 18 84%  -0.58[-1.18,-0.03] ]
Amirdelfen, K et.al 2021 (6M) 3148 24.46 27 4656 23.84 18 84%  -0.61[-1.22,-0.00] ]
Noriega, D Cet al. 2021 47 34.64 12 47 27.71 12 49% -0.00 [-0.80, 0.80] 1
Subtotal (95% CI) 66 48  21.7% ~0.46 [-0.84, -0.08] <&
Heterogeneity, Chi® = 1.64, df = 2 (P = 0.44); = 0%
Test for overall effect: Z = 2.37 (P = 0.02)

1.1.4 > 24 months
Amirdelfen, K et.al 2021 (18M) 37.63 2431 24 47.93 2345 15 7.4% -0.42 [-1.07,0.23] -
Amirdelfen, K et.al 2021 (18M)1 2824 24.1 21 42.14 2323 14 6.6% -0.57 [-1.26, 0.12] ]
Amirdelfen, K et.al 2021 (6M) 33 2441 26 4793 2345 15 7.4% -0.61 [-1.26, 0.04] —
Amirdelfen, K et.al 2021 (6M)1  35.69 24.41 26 42.14 2323 14 7.4% -0.26 [-0.92, 0.39] -1
Noriega, D C et al. 2021 30 41,57 12 93 2771 12 4.6% -0.63 [-1.45, 0.19] T
Subtotal (95% CI) 109 70 333%  -0.49 [-0.79, -0.18] <&
Heterogeneity, Chi® = 0.80, df=4 (P= 0.94); I’= 0%
Test for overall effect: Z = 3.11(P = 0.002)

Total (95% CI) 313 218 100.0%  -0.50 [-0.68,-0.33] *

Heterogeneity, Chi’ = 5.62, df= 13 (P= 0.95); I* = 0% T T T T

Test for overall effect: Z = 5.57 (P< 0.00001)
Test for subgroup differences: Chi’= 0.47, df=3 (P = 0.93), I*= 0%

MSC therapy  Control group

FIGURE 3: Forest plot of VAS scores between MSC therapy and control group.

The clinical trial of Noriega et al. [15] did not report the
number of people lost to follow-up or dropped out, so we
assessed it as “high risk of bias” in attrition bias and report-
ing bias (Figure 2).

3.4. Visual Analog Scale. VAS was reported in three studies
[15, 17, 18] of MSC therapy and control group. We used a
fixed-effect model to evaluate the statistical significance of
the pooled analysis after testing for heterogeneity
(I* =0<50%). The result of a meta-analysis showed that
MSC therapy could significantly decrease VAS scores
(SMD = -0.50, 95%CI =-0.68 ~—0.33, P <0.00001), com-
pared with the control group. Subgroup analysis of VAS
scores is as follows: the result with a fixed-effect model
showed that MSC therapy could significantly decrease VAS
scores in 3 months (SMD =-0.62, 95%CI = —0.99 ~ —0.24,
P=0.001), 6 months (SMD =-0.46, 95%CI=-0.83 ~—
0.09, P=0.01), 12 months (SMD =-0.46, 95%CI =—0.84
~—-0.08, P=0.02), and >24 months (SMD =-0.49, 95%CI
=-0.79 ~ -0.18, P =0.002) (Figure 3).

3.5. MIC and CSC Responders in VAS. We used a fixed-effect
model to evaluate the statistical significance of MIC and CSC
responders in VAS of patients. Pooled analysis showed that
MSC therapy has a high ratio of patients at most thresholds,
especially in MIC (change > 30% from baseline) (OR =2.16,
95%CI=1.43 ~3.25, P=0.0002) and CSC (change >50%

from baseline) (OR =2.18, 95%CI = 1.44 ~ 3.31, P = 0.0002)
thresholds. The pain responder rates of MIC and CSC for 2
groups in 6, 12, and >24 months are showed in Table 2.

3.6. Oswestry Disability Index. ODI scores were reported in
three studies [15, 17, 18] of MSC therapy and control group.
A fixed-effect model was used with heterogeneity analysis
(I* = 0%). The result of the meta-analysis showed that MSC
therapy could decrease ODI scores (SMD = -0.27, 95%CI =

—-0.44 ~—0.09, P=0.003) (Figure 4). Subgroup analysis of
ODI is as follows: the result with the fixed-effect model found
that MSC therapy could significantly decrease ODI scores in
>24 months (SMD =-0.43, 95%CI=-0.74~-0.12, P=

0.006) in patients with DDD (Figure 4). However, no statisti-
cal differences were found in the subgroup analysis in 3, 6, and
12 months.

3.7. MIC and CSC Pain Responders in ODI. We used a fixed-
effect model to evaluate the statistical significance of MIC
and CSC pain responders in ODI of patients. Pooled analysis
showed that MSC therapy has a high ratio of patients at
most thresholds, especially in MIC (change > 10 — point
ODI from baseline) (OR =2.06, 95%CI=1.37 ~3.10, P=
0.0005) and CSC (change > 15 — point ODI from baseline)
(OR=2.01, 95%CI=1.33~3.05, P=0.001) thresholds.
The pain responder rates of MIC and CSC in 6, 12, and
>24 months are showed in Table 2.
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TABLE 2: Subgroup analysis.

Responder analyses 6 months 12 months

24 months 36 months Overall effect

Pain responder

OR =2.53 [1.10, 5.84], OR=2.79 [1.22, 6.36],

MIC in VAS

OR =2.12 [0.93, 4.48],

OR=1.49 [0.67, 3.34], OR=2.16 [1.43, 3.25],

P=0.03 P=0.02 P=0.07 P=0.33 P =0.0002
CSC in VAS OR =2.59 [1.14, 5.90], OR=3.05[1.31,7.12], OR=1.78 [0.76, 4.16], OR=1.63 [0.71,3.71], OR=2.18 [1.44, 3.31],
n P=0.02 P=0.01 P=0.18 P=0.25 P =0.0002
ODI responder
MIC in ODI OR=2.16 [0.95, 492], OR=1.86[0.84, 4.15], OR=2.12[0.93, 4.84], OR=2.12 [0.93, 4.84], OR=2.06 [1.37, 3.10],
mn P=0.07 P=0.13 P=0.07 P=0.07 P =0.0005
CSC in ODI OR=1.60 [0.71, 3.58], OR=1.86 [0.82, 4.23], OR=2.04 [0.88, 4.47], OR=2.81[1.17, 6.74], OR=2.01 [1.33, 3.05],
n P=0.25 P=0.14 P=0.10 P=0.02 P=0.001
Study or Subgrou MSC therapy Control group Std. mean difference Std. mean difference
Y sroup Mean _ SD Total Mean _ SD Total Weight IV, fixed, 95% CI 1V, fixed, 95% CI
2.1.1 3 months
Amirdelfan, K et.al 2021 (18M) 32.89 1596 27 3484 159 19 89%  -0.12[-0.71,0.47] T
Amirdelfan, K et.al 2021 (6M)  32.59 1631 29 3484 159 19 9.1%  -0.14[-0.72,0.44] -
Noriega, D C et al. 2021 16 2078 12 25 1386 12  4.6%  -0.49[-1.31,0.32] I
Subtotal (95% CI) 68 50 22.6%  -0.20[-0.57,0.17] &
Heterogeneity:Chi® = 0.61, df = 2 (P = 0.74); I* = 0%
Test for overall effect: Z = 1.08 (P = 0.28)
2.1.2 6 months
Amirdelfan, K et.al 2021 (18M) 317 1634 30 3232 159 19  93%  —0.04[-0.61,0.54] I
Amirdelfan, K et.al 2021 (6M) 2825 163 28 3232 159 19  9.0%  -0.25[-0.83,0.34] —
Noriega, D C et al. 2021 20 2425 12 30 2078 12 47%  —0.43 [-1.24,0.38] — 1
Subtotal (95% CI) 70 50 22.9% 020 [-0.57,0.17] <
Heterogeneity: Chi? = 0.63, df = 2 (P = 0.73); I* = 0%
Test for overall effect: Z = 1.07 (P = 0.29)
2.1.3 12 months
Amirdelfan, K et.al 2021 (18M) 2959 16.25 27 3222 1584 18 8.6%  -0.16 [-0.76, 0.44] T
Amirdelfan, K et.al 2021 (6M)  31.85 16.25 27 3222 1584 18 8.6% -0.02 [-0.62, 0.57] 7
Noriega, D C et al. 2021 22 2425 12 34 2425 12 4.6% -0.48 [-1.29, 0.34] -1
Subtotal (95% CI) 66 48 21.8%  -0.17 [-0.55,0.20] <&
Heterogeneity: Chi*= 0.78, df = 2 (P = 0.68); I*= 0%
Test for overall effect: Z = 0.91 (P = 0.36)
2.1.4 > 24 months
Amirdelfan, K et.al 2021 (18M) 28.75 16.15 24 356 1558 15  7.2% -0.42 [-1.07,0.23] -
Amirdelfan, K et.al 2021 (18M)1 30.69 1623 26 33.14 1547 14  7.2% ~0.15 [-0.80,0.50] T
Amirdelfan, K et.al 2021 (6M)  29.69 1623 26 356 1558 14  7.5% -0.36 [-1.00,0.28] T
Amirdelfan, K et.al 2021 (6M)1 2495 16.03 21 33.14 1547 14  6.5% -0.51 [-1.19,0.18] "
Noriega, D C et al. 2021 13 1732 12 33 2425 12 43%  -0.92[-1.77,-0.07] -
Subtotal (95% CI) 109 70 32.6%  -0.43 [-0.74,-0.12] <&
Heterogeneity: Chi® = 2.06, df = 4 (P = 0.72); * = 0%
Test for overall effect: Z = 2.74 (P = 0.006)
Total (95)% CI) 313 218 100.0%  -0.27 [-0.44, —0.09] ¢
Heterogeneity: Chi®= 5.65, df =13 (P = 0.96); I* = 0% T T T T
Test for overall effect Z= 3.02 (P=0.003) -4 -2 0 2 4
Test for subgroup differences: Chi® = 1.56, df=3 (P = 0.67). I*= 0%
MSC therapy Control group

FIGURE 4: Forest plot of ODI scores between MSC therapy and control group.

3.8. Adverse Event. To further clarify the safety of MSC
transplantation for DDD, meta-analysis was performed on
the occurrence of AE. The result showed that AE of
treatment-emergent adverse events (TEAE) (OR =1.11, 95
%CI =0.40 ~ 3.07, P=0.84), back pain (OR =1.23, 95%CI
=0.55~2.76, P=0.62), arthralgia (OR=0.63, 95%CI =
0.19 ~2.11, P=0.45), and muscle spasms (OR =2.11, 95%
CI=0.40 ~ 11.01, P =0.38) were not statistically significant
between two groups. However, our further statistical analysis
showed that MSC therapy may induce AE of TEAE related

to study treatment (OR=3.05 95%CI=1.11~8.40, P=
0.03) (Table 3).

4. Discussion

4.1. Primary Efficacy Outcomes. Pain assessment is the pre-
requisite for pain treatment for chronic LBP by DDD. Accu-
rate and timely assessment of pain can provide necessary
guidance and assistance for clinical treatment and is the
key to effective pain treatment [19]. The VAS is the most
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TaBLE 3: Adverse event analysis.

AE OR and 95% CI P

TEAE OR (1.11), 95% CI (0.40, 3.07) 0.84
TEAE related to study treatment OR (3.05), 95% CI (1.11, 8.40) 0.03
Back pain OR (1.23), 95% CI (0.55, 2.76) 0.62
Arthralgia OR (0.63), 95% CI (0.19, 2.11) 0.45
Muscle spasms OR (2.11), 95% CI (0.40, 11.01) 0.38

commonly used scoring index in pain assessment [20]. The
specific practice of VAS is to draw a horizontal line of
10cm on the paper, and one end of the horizontal line is
0, indicating painless; the other end is 10, which means
severe pain; and the middle part represents different levels
of pain. The specific clinical assessment was as follows:
(1)Mild pain (1-3 points): the patient had pain but tolerable,
lived a normal life, and had no disturbance in sleep. (2)
Moderate pain (4-6 points): the pain is obvious and intolera-
ble, the patient is required to take analgesic drugs, and his
sleep is disturbed. (3) Severe pain (7-10 points): severe pain,
unbearable pain, need to use analgesic drugs, severe sleep
disturbance, autonomic nervous disorder, or passive posture.
Kumar et al. [21] performed a trial of 10 eligible DDD
patients. The result showed that primary efficacy outcomes
of VAS for low back pain were significantly reduced in 1
month, 3 months, and 6 months after adipose tissue-
derived MSC transplantation. The RCT of Noriega et al.
[15] showed that VAS scores were significantly reduced at
3 months and 6 months after MSC transplantation. Of great-
est concern, the study found that VAS scores increased at 12
months after MSC transplantation. Recently, Noriega et al.
[17] published long-term 42-month follow-up results of
the RCT. The result showed that MSC therapy could signif-
icantly decrease VAS scores at 42 months, compared with
the control group in patients with DDD. In this study, we
integrated the results of three RCTs, and the results showed
that MSC therapy could significantly decrease VAS scores
(P <0.00001). A subgroup analysis of VAS scores was used
for analysis. The result showed that MSC therapy could sig-
nificantly decrease VAS scores in 3 months (P=0.001), 6
months (P=0.01), 12 months (P =0.02), and >24 months
(P=0.002) in patients with DDD. Our study with a small
sample size also found that MSC therapy has a high ratio
of patients at most thresholds, especially in MIC
(P =0.0002) and CSC (P =0.0002) thresholds. Our research
results indicated that MSC therapy has shown excellent effi-
cacy in reducing the VAS score of patients with DDD,
whether it is short-term treatment or long-term follow-up.
ODI can accurately and reliably assess the treatment
effect of patients with chronic LBP and the lumbar dysfunc-
tion by DDD [22]. ODI is composed of 10 questions, includ-
ing the intensity of self-care, lifting objects, pain, sitting,
standing, walking, disturbing sleep, social activities, sex life,
and travel. There are 6 options for each question, and the
maximum score for each question is 5 points. The higher
the score, the more severe the patient’s dysfunction [23].
Pang et al. [24] studied the feasibility and safety of MSC
transplantation for patients with chronic discogenic LBP.

After 2 years of follow-up, it was found that after MSC trans-
plantation, the intervertebral disc pain was alleviated, and
the ODI score was also significantly reduced. The RCTs of
Noriega et al. [15, 17] showed that ODI scores were signifi-
cantly reduced at 3, 6, 12, and 42 months after MSC trans-
plantation. The results suggest that MSC transplantation is
a potential alternative for the treatment of chronic disco-
genic LBP. In our study, ODI scores were reported in four
studies of MSC therapy and control group. Pooled analysis
indicated that MSC therapy could significantly decrease
ODI scores (P =0.003). Subgroup analysis found that MSC
therapy could significantly decrease ODI scores in >24
months (P =0.006) in patients with DDD. However, there
was no statistically significant difference between 3, 6, and
12 months, but the ODI score had a tendency to decrease,
which we believe may be caused by the insufficient sample
size of the included studies. We evaluated the statistical
significance of MIC and CSC pain responders in ODI of
patients. Pooled analysis showed that MSC therapy has a
high ratio of patients at most thresholds, especially in MIC
(P=0.0005) and CSC (P =0.001) thresholds. To sum up,
the results of this meta-analysis suggest that MSC transplan-
tation could significantly alleviate pain and functional degra-
dation in patients with DDD.

4.2. Primary Safety Outcomes. MSC has strong attractiveness
and application prospects due to their low immunogenicity,
easy access, and immunosuppressive potential [25-27], but
the safety of MSC is still the first priority. Studies have
shown that the quality of MSC depends more on the isola-
tion conditions, cell culture technology, age of the donor,
genetic characteristics, and medical history between different
donors [28-30]. The quality difference of MSC is closely
related to the AE in patients. To further clarify the safety
of MSC transplantation for DDD, a meta-analysis was per-
formed on the occurrence of AE. The result showed that
AE of TEAE (P=0.84), back pain (P=0.62), arthralgia
(P =0.45), and muscle spasms (P = 0.38) was not statistically
significant between two groups. However, our further statis-
tical analysis showed that MSC therapy may induce AE of
TEAE related to study treatment (P =0.03). This study
showed that there were no differences in serious AE of
MSC transplantation for patient with DDD, compared with
the control group. However, it is vital to pay close attention
to whether the AE of patients is directly related to MSC
therapy.

4.3. Limitations and Publication Bias. We found that there
was mild inconsistency between the studies in VAS and



ODI scores. We analyzed the sensitivity of VAS and ODI
scores. The analysis showed that the conclusion was credible,
and there was no substantial change of the results with VAS
and ODI scores. However, it should not be ignored that a
few studies seriously limited the further analysis of publica-
tion bias and heterogeneity. To further address the risk of
bias between included RCTs, we evaluated the quality of
the literature using the Cochrane risk of bias tool. Our eval-
uation found that the included studies had a low risk of
selection bias of randomization. The study describes the gen-
eration method of a random assignment sequence in detail.
We believe that the results are reliable and stable to a certain
extent, but we cannot rule out publication bias caused by a
small sample size.

5. Conclusions

This meta-analysis pooled the main outcomes and showed
that MSC therapy could significantly decrease VAS and
ODI scores in patients with DDD. Distinctly, the findings
of this meta-analysis suggest a novel therapeutic strategy
for patients with chronic LBP and lumbar dysfunction by
DDD. But, what is the optimal dose, frequency, time, and
route of MSC transplantation at different stages of DDD?
These crucial problems urgently require more randomized
controlled trials to solve.
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Human bone marrow-derived mesenchymal stem cells (hBM-MSCs) have been studied for their application to manage various
neurological diseases, owing to their anti-inflammatory, immunomodulatory, paracrine, and antiapoptotic ability, as well as
their homing capacity to specific regions of brain injury. Among mesenchymal stem cells, such as BM-MSCs, adipose-derived
MSCs, and umbilical cord MSCs, BM-MSCs have many merits as cell therapeutic agents based on their widespread availability
and relatively easy attainability and in vitro handling. For stem cell-based therapy with BM-MSCs, it is essential to perform
ex vivo expansion as low numbers of MSCs are obtained in bone marrow aspirates. Depending on timing, before hBM-MSC
transplantation into patients, after detaching them from the culture dish, cell viability, deformability, cell size, and membrane
fluidity are decreased, whereas reactive oxygen species generation, lipid peroxidation, and cytosolic vacuoles are increased. Thus,
the quality and freshness of hBM-MSCs decrease over time after detachment from the culture dish. Especially, for neurological
disease cell therapy, the deformability of BM-MSCs is particularly important in the brain for the development of microvessels.
As studies on the traditional characteristics of hBM-MSCs before transplantation into the brain are very limited, omics and
machine learning approaches are needed to evaluate cell conditions with indepth and comprehensive analyses. Here, we provide
an overview of hBM-MSCs, the application of these cells to various neurological diseases, and improvements in their quality and
freshness based on integrated omics after detachment from the culture dish for successful cell therapy.

1. Introduction

Bone marrow-derived mesenchymal stem cells (BM-MSCs)
have many merits as cell therapeutic agents, such as compara-
bly easy in vitro handling, high plasticity, widespread availabil-
ity, and immunosuppressive activity [1-3]. In addition, they
have beneficial characteristics, such as anti-inflammatory,
immunomodulatory, paracrine, and antiapoptotic ability, as
well as homing capacity to the region of brain injury. Particu-
larly, BM-MSCs can suppress inflammatory conditions in the

central nervous system (CNS) and home to inflammatory
brain injury [4-9]. To date, there have been many drugs devel-
oped to reduce the symptoms of CNS diseases because of irre-
versible neurological damage and limited regeneration in the
brain, but these are associated with many adverse effects
[10-12]. Therefore, BM-MSCs are a promising approach to
treat neurological diseases, such as ischemia, traumatic brain
injury, and neurodegenerative diseases, owing to their anti-
inflammatory and immunomodulatory effects on such CNS
neurological diseases [3, 13-16].
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Most studies on BM-MSC-based therapies for neurologi-
cal diseases have focused on the paracrine effects, immuno-
modulatory effects, and neuronal replacement through
differentiation [17-19]. In addition, the MSC-based cell thera-
pies have been applied to neurological diseases, which have no
effective alternative treatments. Andrzejewska et al. summa-
rized the application of MSC on the neurological diseases,
including stroke, brain injury, Alzheimer’s disease (AD), Hun-
tington’s disease (HD), Parkinson’s disease (PD), amyotrophic
lateral sclerosis (ALS), multiple sclerosis (MS), and spinal cord
injury, with experimental and clinical aspect [20]. Mukai et al.
focused on clinical trial of the MSC transplantation in the neu-
rological diseases with detailed condition of the clinical trials
[21]. Moreover, Namestnikova et al. reported advantages of
combinatorial methods, which are combination of coadminis-
tration of different stem/progenitor cell types, for the neuro-
logical diseases in animal and clinical study [22]. However,
studies on the characteristics of human (hBM-MSCs) before
transplantation are very limited. Depending on timing, before
hBM-MSC transplantation into patients, after detaching these
cells from the culture dish, cell viability, deformability, cell
size, and membrane fluidity decrease, whereas reactive oxygen
species (ROS) generation, lipid peroxidation, and cytosolic
vacuoles increase, as shown in Figure 1 [9, 23].

hBM-MSC transplantation into patients is associated with
an inevitable time-delay after cell detachment from the culture
dish owing to various factors, including the injection formula-
tion, transportation, and surgery preparation. Thus, an assess-
ment of the quality and freshness of hBM-MSCs is important
for successful hBM-MSC-based cytotherapy outcomes, and
studies have tried to evaluate and preserve the quality and
freshness of hBM-MSCs [23, 25]. However, conventional
cell-based methods for evaluation, such as cell viability assays,
fluorescence-activated cell sorting-based methods, and ultra-
structural analysis, do not reveal the mechanism underlying
changes in the quality and freshness of hBM-MSCs. Thus,
omics, including genomics, transcriptomics, proteomics, and
metabolomics, yield comprehensive information and can be
interpreted using bioinformatic analysis [24, 26-31]. These
technologies have been introduced to analyze the mechanism
of changes in the hBM-MSCs status [9, 23]. Especially, the
integration of transcriptomics and metabolomics with amino
acid profiles is helpful to elucidate the quality and freshness
of hBM-MSCs over time after trypsinizing cells [23]. Recently,
advanced analysis has been used for the integration of omics,
identification and in silico prediction of biological functions,
and screening of upstream regulator molecules [32]. More-
over, discrimination methods, such as machine learning algo-
rithms, have been used for investigations of correlations
among each omics dataset, based on the large amount of data
acquired from multiomic analysis. To evaluate and maintain
the quality and freshness of hBM-MSCs, comprehensive
multiomic analysis (big data) and proper machine learning
algorithms for analyses of correlations within data are highly
recommended rather than target approaches, according to
the complexity of cellular changes after detachment from the
culture dish. Here, we review three topics as follows: (i)
hBM-MSCs, (ii) the application of hBM-MSCs to various neu-
rological diseases, and (iii) the improvement of the quality and
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freshness of BM-MSCs after detachment from the culture dish
for successful cell therapy.

2. hBM-MSCs

MSCs were first discovered in the bone marrow by Friedenstein
in the 1970s [33, 34]. These cells are nonhematopoietic multi-
potent adult stem cells that are plastic-adherent with great
capacity for proliferation, self-renewal, and differentiation [35,
36]. MSCs can be obtained not only from bone marrow but also
from various tissues, such as adipose tissue, placenta, umbilical
cord, and peripheral blood [37-40]. Although MSCs can be of
different tissue origins, they must meet the minimal criteria pro-
posed by the Mesenchymal and Tissue Stem Cell Committee of
the International Society for Cellular Therapy (ISCT) as follows:
(1) maintenance of plastic adherence; (2) >95% of the MSCs
express surface molecules, such as CD73, CD90, and CD105,
and do not express surface molecules, such as CD19 and HLA
class T or CD11b, CD79a or CD45, CD34, and CD14; (3) capac-
ity of trilineage differentiation in vitro into adipocytes (fat),
osteoblasts (bone), and chondrocytes (cartilage); and (4) immu-
nomodulatory activity [17, 41-46]. Additionally, MSCs can be
differentiated into nonmesodermal-origin cells, including neu-
rons, hepatocytes, cardiomyocytes, hepatocytes, and epithelial
cells, which are of ectodermal and endodermal lineages [47-51].

Among MSCs, BM-MSC-based therapies have been
promising strategy in preclinical and clinical trials based
on tissue regeneration and wound healing attributed to the
cell engraftment and differentiation properties of MSC [45,
52-55]. However, recent approaches for BM-MSC therapies
have focused on paracrine effects in which MSC-derived
vesicles are secreted containing various contents, such as
soluble cytokines, growth factors, hormones, and miRNA,
from immune cells and damaged tissues. This effect finally
improves the efficacy of BM-MSC therapy [56-59]. As many
studies have been reported regarding the efficacy of using
exosomes derived from BM-MSCs on diverse diseases [59,
60], such BM-MSC-based therapies have been continuously
suggesting to be promising strategies for clinical application
to various neurological diseases [16, 20, 61, 62]. In addition,
obtaining hBM-MSCs from adult tissue can avoid contro-
versy regarding the ethical issues associated with the use of
embryonic sources [63, 64]. Owing to these advantages,
hBM-MSCs have strong potential in neurological diseases
as a therapeutic tool.

3. Application of hBM-MSCs in
Neurological Diseases

Neurological diseases, which cause neurological impairment,
are characterized by irreversibility and progressive disorders,
resulting in deterioration of the performance of regular
activities because of the limited regenerative capacity for lost
neurons and glial cells [16, 20, 65]. However, the landscape
of treatment is limited, with restricted treatment options
[16, 65]. Stem cell therapy, from preclinical to clinical trials
based on the fundamental characteristics of stem cells, has
shown promise as a potential treatment or to at least prevent
progressive deterioration with neurological diseases, spinal
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FiGURE 1: The quality and freshness of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) are decreased over time after
detachment from the culture dish. To evaluate the freshness and quality of hBM-MSCs, the metabolome is analyzed using gas
chromatography-mass spectrometry (GC/MS), the transcriptome is analyzed using microarray, deformability is analyzed using
microfluidics, and membrane fluidity is tested using differential interference contrast- (DIC-) total internal reflection fluorescence
microscopy (TIRFM) in combination based on previous reports [9, 24].

cord injury, and myocardial infarction [65-67]. Several dif-
ferent sources, including neural stem cells, human umbilical
cord blood cells, embryonic stem cells, hematopoietic stem
cells, and MSCs, have been utilized in stem cell therapy
[65]. Neural stem and embryonic stem cells have not been
easy to apply in clinical fields or research because of the eth-
ical issues (procured from aborted fetuses for allogenic
transplantation), allograft rejection, or tumorigenic capacity
[65, 68]. In recent years, more than half of registered stem
cell trials have been conducted using MSCs because they
are easy to acquire from the patients themselves, avoiding
the ethical concerns and the possibility of harmful events
[14, 65, 68]. In this section, we briefly review the neuropro-
tective and anti-inflammatory effects of hBM-MSCs via sys-

temic transplantation, such as intravenous or intraarterial
infusion, as shown in preclinical and clinical studies on
ischemic stroke, traumatic brain hemorrhage, and neurode-
generative diseases, such as AD, HD, and PD.

3.1. Ischemic Stroke. The transplantation of hBM-MSCs could
improve functional recovery and reduce the infarction size via
neuroprotective and immunomodulatory effects after ische-
mic stroke in rats [69-74], a nonhuman primate model [75],
and humans [14, 76-81]. Neuroprotection, nerve regenera-
tion, and angiogenesis result from the paracrine effect of neu-
rotrophic factors, including brain-derived neurotrophic factor
(BDNF), nerve growth factor (NGF), and vascular endothelial
growth factor (VEGF) [74, 82]. The local activation of



astrocytes and microglia/macrophages and the influx of leuko-
cytes, including T cytotoxic cells, are significantly reduced
[60]. Immunomodulatory effects as suppressors of inflamma-
tion were observed by decreasing the levels of proinflamma-
tory cytokines, namely, interleukin (IL)-1e«, IL-1?, IL-6, and
tumor necrosis factor (TNF)-a and by increasing the levels
of anti-inflammatory cytokines, including IL-4, IL-10, and
interferon (INF)-? [60, 83, 84]. Moreover, rat BM-MSCs can
suppress the inflammatory response by decreasing activated
microglia, which are resident immune cells of the brain that
produce proinflammatory cytokines at the cellular network
level [85]. Interestingly, in an ischemic stroke animal model,
hBM-MSCs were found to restore polyamine and free fatty
acid compositions from metabolic disturbance to a near-
normal state and maintain metabolic homeostasis [86, 87].
Migrated leucocytes aggravate neuroinflammation, enhancing
cell death, blood-brain barrier (BBB) disruption, and vasogenic
edema [71, 88, 89]. Leucocyte infiltration is facilitated by an
increase in BBB permeability and endothelial cell adhesion
molecule expression [89]. Leucocytes further enhance inflam-
mation, increase cell death, and lead to BBB disruption and
vasogenic edema [89]. Particularly, hBM-MSCs can decrease
BBB permeability in the damaged neural tissue [71] and pro-
vide BBB integrity and maintenance through interactions with
pericytes, astrocytes, and neurons [88].

An initial clinical trial of hBM-MSCs using autologous
stem cells was conducted in 2005 for five patients with mid-
cerebral artery occlusion, comparing results to those of
twenty-five patients without stem cell therapy [14]. To date,
phase I/II studies, including the first study, have reported the
safety and feasibility of autologous or allogenic hBM-MSCs
with long-lasting or transient neurological improvements
[14, 76-81], functional improvements [80], and a short-
term decrease in circulating T cells and inflammatory cyto-
kines [90].

Although serious complications of hBM-MSCs have not
been reported, there are some concerns about events such as
pulmonary embolism with the intravenous injection of adi-
pose MSCs [91] and allogeneic BM-MSCs [92], as well as
the possibility of microembolism risk due to the closure of
the lumens of small-diameter vessels related to the flow of
cerebral blood, cell dose, infusion velocity [92], and innate
procoagulant activity [67]. In addition, a previous study
revealed that the deformability of hBM-MSCs decreased,
and that the membranes of hBM-MSCs became stiffer via
the peroxidation of plasma membrane lipids over time
owing to the generation of ROS [23]. Cell dose and infusion
velocity are important factors that trigger embolism; how-
ever, changing the decreased deformability of hBM-MSCs
is an important contributing factor to these serious compli-
cations, considering cerebral infarction in patients with
sickle-cell disease, which decreases the deformability of red
blood cells [93]. Therefore, it is necessary to fully consider
the quality and freshness of hBM-MSCs after dissociation
from the cell culture dish.

3.2. hBM-MSCs in Traumatic Brain Injury. Traumatic brain
injury is caused by primary injury facilitated by an initial insult
and secondary injury occurring 1-3 days after the initial trau-
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matic event. Primary injury includes a direct response to the
initial insult, such as BBB disruption, cranial hemorrhage,
brain swelling, and an acute reaction mediated by oxidative
stress and excitotoxicity [94, 95]. Secondary injury is associated
with the release of excitatory amino acids, ionic imbalances,
intracellular calcium overload, mitochondrial dysfunction,
and several immunological and inflammatory responses. This
reaction induces ongoing neurodegeneration, diminished neu-
rogenesis, axonal damage, and cell death [96, 97]. Since the
complexity of injury-associated mechanisms has led to the
need for multi-target treatment, several studies have been
conducted using MSCs with various paracrine activities. In an
animal model, subjects treated with rat BM-MSCs showed
attenuated motor and cognitive deficits through the induction
of trophic factors, such as BDNF and NGF, which promoted
neurogenesis, neuroprotection, neural repair, immunomodula-
tory activity, and the secretion of bioactive factors, such as
exosomes [15, 98, 99]. Some other studies using hBM-MSCs
also showed functional improvements with immunomodula-
tory activity and the secretion of bioactive factors, such as
exosomes [100, 101].

Several clinical studies have been conducted based on
preclinical study results [102]. Cox et al. conducted intrave-
nous injections of human BM-mononuclear cells in 25
patients after severe traumatic brain injury. Based on the
results, there were no serious adverse events and the preser-
vation of functionally critical regions, and the downregula-
tion of inflammatory cytokines was observed [103]. Tian
et al. injected autologous hBM-MSCs via lumbar puncture
into 97 patients with subacute-stage traumatic brain injury
and showed the safety and effectiveness of this therapy
[104]. Zhang et al. conducted topical injection to the injured
area using autologous hBM-MSCs and also showed the
safety and feasibility of cell therapy [105].

3.3. hBM-MSCs in Neurodegenerative Disease. Neurodegen-
erative disease initially damages various types of neurons
or glial cells but ultimately specifically causes the loss of
function of certain cells, such as hippocampus and frontal
lobe dysfunction in AD, striatal dopaminergic neurons in
PD, or dysfunction of the striatal structure in HD. Although
there are treatments to relieve symptoms for some neurode-
generative diseases, no treatments have been found that can
modify the disease course [16, 20]. From this point of view,
many studies have been conducted using BM-MSCs, which
have the potential to replace lost cells and functional restora-
tion through various paracrine activities [16, 20, 65].

3.4. AD. AD is a clinical dementia-presenting disease, and neu-
roinflammation mediated by the accumulation of amyloid beta
plaques and neurofibrillary tangles is known as the main path-
ological mechanism [106, 107]. Based on this pathophysiology,
several studies have been conducted using MSCs. In animal
models, mouse or rat BM-MSC infusion improved cognitive
impairment through various mechanisms, such as enhancing
neurogenesis in the hippocampus [108, 109], increasing the
level of acetylcholine [110], stabilizing and regenerating the
synapse [111, 112], and modulating immunomodulatory activ-
ity [113]. Studies using hBM-MSCs have also shown reduced
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amyloid beta deposition [114, 115] and increased amyloid beta
clearance [116] and neurogenesis [117].

Based on animal research, several clinical trials are ongo-
ing [20, 118]. Initial clinical trials using human umbilical cord
or umbilical cord blood-derived MSCs (NCT01547689,
NCT01696591, and NCT02054208) showed safety, but no
positive results have been reported to improve the clinical
status of AD patients. In addition, similar clinical trials are
ongoing in several countries [20]. Although there have not
been many clinical trials using hBM-MSCs, if the major path-
ophysiology of AD is associated with neuroinflammation,
hBM-MSC therapy with paracrine effects might still be a
promising treatment option [118, 119]. In the future, we
expect that research using the replacement potential of BM-
MSCs or that using BM-MSCs for early-stage AD will be
performed.

3.5. PD. PD is a disease characterized by a gradual decrease in
dopamine-producing neuronal cell in the substantia nigra and
is accompanied by alpha synucleinopathy that results in the
formation of Lewi bodies [120]. In PD, there are treatments
to improve symptoms but no treatment options for the disease
itself. For these reasons, therapy using MSCs in a PD animal
model has been attempted. In experimental studies, rat BM-
MSC administration has resulted in improvements in motor
functions in PD animal models [121, 122], and other studies
have shown that these results are associated with elevated
dopamine levels in the striatum, enhanced neurogenesis,
inhibited transmission of alpha-synuclein, and immunomod-
ulatory effects [122-125]. A study has also shown that the
preconditioning of BM-MSCs is more effective [126].

In clinical trials, the safety of hBM-MSC therapy was
established in studies of transplantation through the stereotac-
tic surgical method and intra-arterial administration using the
cerebral artery, and improvements in motor function were
observed in some patients [62, 127]. Currently, a phase II
study is also being conducted for patients with idiopathic PD
(NCT04506073). As results of previous experimental studies
and preliminary data from clinical trials have shown that
hBM-MSC treatment is safe and helpful in improving motor
function, therapy using hBM-MSCs has the potential to com-
prise a disease-modifying treatment for PD patients.

3.6. HD. HD is a rare genetic disorder that causes cognitive
impairment and movement abnormalities due to a mutation
in the gene encoding the protein huntingtin, followed by
damage to the striatal structure secreting gamma aminobu-
tyric acid [128]. Effective treatment for HD has not been
found. In an animal model, BM-MSC injection was mainly
performed intracerebrally due to the selective damage to this
area in HD. Transplanted rat or mouse BM-MSCs has been
shown to activate endogenous neural stem cell proliferation
and reduce apoptotic cell death through increases in BDNF
or NGF levels in the striatal area, and as a result, the motor
and memory function of the HD-model mice treated with
MSCs were improved [129, 130]. Even with intranasal
administration, an HD mouse model treated with mouse
BM-MSCs showed an improved sleep cycle and survival
time mediated by an increase in striatal expression of the

factor associated with dopamine receptor protein and an
immunomodulatory effect [131].

Based on these experimental studies, therapy with MSCs
has been considered a potential disease-modifying treatment
option for patients with HD, like that for other neurodegener-
ative diseases [132], but clinical trials have not yet been
actively conducted. Zuccato et al. have reported low BDNF
levels in HD patients, and that these low levels, considered
one component of disease pathophysiology, are less useful as
a biomarker of disease onset and progression in HD patients
[133]. Owing to the complexity of symptomatology and path-
ophysiology, there have been observational clinical trials per-
formed to clarify the clinical symptoms and detect potential
therapeutic targets before cell therapy (NCT01937923). How-
ever, no positive results in humans have been found to date.
Thus, BM-MSC treatment will be a meaningful potential treat-
ment for HD patients, as previous experimental studies have
shown that this approach improves functional activity and
reduces brain atrophy.

3.7. Improvements in the Quality and Freshness of BM-MSCs
after Detachment from the Culture Dish. Although hBM-
MSCs are considered a potential therapeutic tool for various
neurological diseases, a major bottleneck in the clinical applica-
tion of hBM-MSCs is maintaining individual stem cell proper-
ties during ex vivo expansion, which is essential to achieve a
therapeutically relevant number of cells. This is because only
0.001-0.01% of cells in the bone marrow are mononuclear cells
[134]. After the expansion process, hBM-MSCs are detached
from the culture dish and subjected to a serum-starved condi-
tion, which is largely different than their original environment,
such as the MSC niche, and cells lose their useful properties
[135-138]. Previous reports evaluated the freshness of hBM-
MSCs kept in phosphate-buffered saline (PBS) over time after
trypsinization, which can mimic ex vivo storage conditions
[9,23]. The cell viability was decreased through membrane per-
oxidation, and the number of cytosolic vacuoles was increased,
depending on the PBS storage time, as shown in Figure 2 [9]. In
addition, the expression levels of apoptosis and stress-related
genes were significantly increased in hBM-MSCs after detach-
ment from the culture dish over time [9, 23]. As hBM-MSCs
are sensitive to microenvironmental conditions, stem cells
stored in long holding induced cell aggregation and affected
the differentiation potential of hBM-MSCs [23, 139, 140].
Therefore, hBM-MSCs should be transplanted as soon as pos-
sible after detachment from the culture dish. Even though the
quality and freshness of hBM-MSCs is highly dependent on
the preparation of cells and manufacturing practices, we have
previously shown that the maximum storage time for optimal
transplantation is within 6 h because profiles for transmission
electron microscopy (TEM) imaging, gene expression, defor-
mation index, storage time, cell viability, and metabolism are
altered after storing cells for 6h in holding conditions in the
hBM-MSC group compared to the control group (0 holding
stored hBM-MSC group) [9, 23].

The quality and freshness of hBM-MSCs after detachment
from the culture dish were also previously analyzed with respect
to viability, ultrastructure, deformability, cellular size, mem-
brane fluidity, transcriptomics, and metabolomics [9, 23]. Cell
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FIGURE 2: Representative images (x1,000) of starved human bone marrow-derived mesenchymal stem cells (hBM-MSCs). Cells were starved
in phosphate-buffered saline at room temperature for 0-12h in a previous report [9]. Scale bar = 2 ym.

deformability reflects the physicochemical changes in cellular
components, such as nuclear organization, the cytoskeleton,
and the membrane, in microfluidic devices [141]. For example,
the deformability of red blood cells (RBCs) in diabetes, sickle-
cell disease, and malaria is reduced, compared to that of healthy
RBCs [142]. This is one reason as to why oxidative stress and
lipid peroxidation reduce the deformability of RBCs [143]. It
was reported that hBM-MSC deformability, used to analyze
the quality and freshness of hBM-MSCs based on measure-
ments using microfluidic devices, was slightly decreased after
12h of storage [23] but was significantly reduced after 24 h of
storage in PBS [144]. These results also suggested a decrease
in cell deformability and membrane fluidity mediated by ROS
generation and lipid peroxidation over storage time after cell
detachment [23]. Therefore, these data suggest that for hBM-
MSC-based cell therapy for neurological diseases, cell deform-
ability in the brain with developing microvessels is one key
point that should be considered.

An analysis of genes related to the quality and freshness of
starved-hBM-MSCs for 6 and 12 h in PBS showed 27 genes that
were changed, when compared to their levels in control hBM-
MSCs (Table 1) based on previous reports [9, 23]. Compared to
that after storage for 6 h, the gene expression was highly altered
by storage for 12h. Thus, we analyzed the transcriptomes of
hBM-MSC:s after 12 h based on three main functions, the gen-
eration of reactive oxygen, lipid peroxidation, and cell viability.
The transcriptomic network related to each function in hBM-
MSCs stored for 12h was connected, and the functions were
algorithmically predicted using Ingenuity Pathway Analysis.
This in silico prediction indicated that ROS generation and
lipid peroxidation were increased, and cell viability was
decreased (Figure 3(a)). These data suggested that regulating
redox homeostasis will be one key point to keep hBM-MSCs
healthy and fresh in the pretransplantation stage.

Antioxidants can be used to eliminate ROS production.
Accumulating studies have found that antioxidants can
decrease the toxicity of ROS, including superoxide dismutase,
glutathione (GSH), peroxidase, and vitamin E [145, 146]. To
evaluate the effect of antioxidants and drug-targeting mole-
cules, transcriptomic networks based on a combination of
N-acetyl-L-cysteine (NAC) and glutathione were analyzed
with predictions (Figures 3(b) and 3(c)). NAC targeted BCL2
apoptosis regulator (BCL2), fibroblast growth factor receptor
2 (FGFR2), and CD36 molecule (CD36), which were downreg-
ulated in the transcriptomic network (Figure 3(b)). Moreover,
glutathione targeted BCL2 apoptosis regulator (BCL2), fibro-

blast growth factor receptor 2 (FGFR2), angiotensinogen
(AGT), and albumin (ALB), which were downregulated in
the transcriptomic network (Figure 3(c)). In silico prediction
of the transcriptomic network indicated that NAC is more
effective for the reduction of lipid peroxidation than glutathi-
one. With NAC treatment, the lipid peroxidation level was
suppressed, and the loss of cell viability was also slightly
decreased. For GSH, the increase in the former function was
less than that in the control, and the latter function showed
a similar tendency to that of NAC-treated hBM-MSCs. More-
over, one study showed that antioxidants inhibit ROS produc-
tion and help adipose tissue-derived mesenchymal stem cells
maintain their stemness and ability to differentiate multidirec-
tionally [145]. Taken together, it is highly possible that the
quality and freshness of cells can be enhanced in the presence
of antioxidants. Further studies require wet lab experiments to
verify this in silico prediction.

There have been holistic advancements in the quantifica-
tion of omics, including genomics, transcriptomics, small
RNA-omics, proteomics, metagenomics, phenomics, and
metabolomics [147]. Several layers of investigations, includ-
ing those of the proteome, metabolome, transcriptome,
genome, and epigenome, have resulted in the heterogeneity
and high dimensionality of biological data. Hence, omics
data could be combined in a sequential or simultaneous
way to decipher the interplay of molecules. Recently, several
studies have shown that the combined omics data lead to a
better understanding of the biological system [148-151].
Shin et al. reported that NAC, a ROS scavenger, can protect
hBM-MSCs from lipid peroxidation by integrating tran-
scriptomics and metabolomics with amino acid profiling.
Thus, they emphasized that multiomic analysis, such as the
integration of transcriptomics and metabolomics (metabo-
transcriptomics), can be one strategy to overcome the limita-
tions of conventional analyses of the condition of hBM-
MSCs [23]. Moreover, studies on the application of miRNA
to neurological disease have been reported based on post-
transcriptional gene repression or the degradation properties
of various miRNAs in multiple targets [152, 153]. Metabo-
transcriptomics integrated with small RNA-omic analysis
might provide a clear rationale with respect to the impor-
tance of maintaining the quality and freshness of hBM-
MSCs before clinical use.

Computational approaches, like machine learning, aid in
handling vast amounts of generated data, such as omic big data.
Machine learning can be classified into three types as follows:
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TaBLE 1: Genes related to the transcriptomic network of the quality and freshness of starved human bone marrow-derived mesenchymal

stem cells (hBM-MSCs).

Signal

Entrez gene name Symbol Affymetrix ID Location (fold (z:ghange)a

6h 12h
f;gf}f’t}l‘:t;ggﬁﬁﬁsg:;;z “bisphosphate 3-kinase PIK3CG 206370_at Cytoplasm 170 2242
erbb2 interacting protein ERBIN 232896_at Cytoplasm -1.10 -19.71
Solute carrier family 25 member 27 SLC25A27 230624 _at Cytoplasm -9.20 -12.39
BCL2 apoptosis regulator BCL2 207005_s_at Cytoplasm -7.73 -9.99
Peroxiredoxin 3 PRDX3 209766_at Cytoplasm 1.85 -9.27
NADPH oxidase 5 NOX5 1553023_a_at Cytoplasm 1.70 11.82
Neutrophil cytosolic factor 4 NCF4 205147_x_at Cytoplasm -1.19 12.5
Protein kinase AMP-activated catalytic subunit alpha 2 PRKAA2 238441_at Cytoplasm 12.61 2226
Phosphatase and tensin homolog PTEN 242622_x_at Cytoplasm 3.62 54.26
Angiotensinogen AGT 202834_at Extracellular Space 1.04 -27.13
TNF superfamily member 14 TNFSF14 233935_at Extracellular Space -1.19 -23.12
Albumin ALB 211298 s_at Extracellular Space 8.07 -20.19
Alpha-microglobulin/bikunin precursor AMBP 214425_at Extracellular Space -4.55 -10.51
Adiponectin, C1Q, and collagen domain containing ADIPOQ 207175_at Extracellular Space -3.15 -10.1
Serpin family B member 5 SERPINB5 1555551 _at Extracellular Space 6.58 10.19
Insulin-like growth factor 1 IGF1 209542 _x_at Extracellular Space 8.20 17.32
von Hippel-Lindau tumor suppressor VHL 203844_at Nucleus -1.33 -37.9
MacroH2A.1 histone MACROH2A1 1558779 _at Nucleus 1.76 12.75
Integrin subunit beta 1 ITGBI 215878_at Plasma Membrane 12.40 -36.23
Fibroblast growth factor receptor 2 FGFR2 211400_at Plasma Membrane 4.66 -15.37
Low-density lipoprotein receptor LDLR 217103_at Plasma Membrane  -12.50 -11.9
Glutamate metabotropic receptor 5 GRM5 207235_s_at Plasma Membrane  -10.02  -10.17
CD36 molecule CD36 242197_x_at Plasma Membrane 3.27 -9.46
Presenilin 1 PSEN1 1559206_at Plasma Membrane -2.64 9.57
Fc fragment of IgG receptor Ila FCGR2A 203561_at Plasma Membrane 13.11 13.69
Toll-like receptor 7 TLR7 220146_at Plasma Membrane 2.10 24.72
Prostaglandin E receptor 3 PTGER3 210375_at Plasma Membrane  -17.22 27.73

“Normalized ratio of fold change of the signal at 6 and 12 h of storage, relative to the corresponding signal of the control group.

(i) supervised, (ii) unsupervised, and (iii) semisupervised or
reinforcement. Among them, the unsupervised machine learn-
ing approach learns patterns from the unlabeled dataset and
groups them based on data resemblance [154]. Especially,
unsupervised methods of multivariate statistical analysis
include principal component analysis, self-organizing maps,
hierarchical clustering, and K-means. These methods reduce
the dimensionality of data and can be used to visualize clusters
(classifications) based on data similarity among samples. Par-
ticularly, K-means clustering is a traditional approach in unsu-
pervised machine learning that can handle huge datasets to
generate globular-shaped tight clusters using less computa-
tional time. Therefore, compared to other machine learning
algorithms, K-means clustering is a very useful algorithm for
the integration of omics data.

The integration of omics, advanced machine learning
algorithms, and bioinformatic tools enable researchers to
analyze feasible studies on the quality and freshness of

hBM-MSCs based on the accurate discrimination of changes
in the levels of omics data and the in silico prediction of phe-
nomena using integrated transcriptomics and metabolomics.
Therefore, to improve the efficacy of stem cell therapy with
respect to the quality and freshness of hBM-MSCs, studies
on comprehensive multiomic analysis (big data) and proper
machine learning are required to analyze correlations within
data. Moreover, in silico prediction is highly recommended,
rather than a targeted approach, according to the complexity
of dissociated hBM-MSCs.

In the review, we focused on describing strategies to
improve the quality and freshness of hBM-MSCs for the treat-
ment of neurological diseases. However, these factors are also
affected by additional variables such as elevated temperature,
high ionic strength, and nonoptimal substrate composition of
the storage solution [139]. For example, storage temperature
is an important factor affecting the quality of stored stem cells.
Several temperature conditions were evaluated such as cold
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FIGURE 3: Transcriptomic network related to the quality and freshness of starved human bone marrow-derived mesenchymal stem cells
(hBM-MSCs). (a) Analysis of the transcriptomic network with prediction using Ingenuity Pathway Analysis based on starved hBM-
MSCs in phosphate-buffered saline for 12h. Analysis of the transcriptomic network based on a combination of (b) N-acetyl-L-cysteine
(NAC) and (c) glutathione (GSH) administered for 12h. The analysis involved a fold change cut — off value + 9. Green and red nodes
indicate genes that were up and downregulated, respectively, compared to control levels. Orange and blue arrows indicate in silico
prediction of function as activation and inhibition, respectively. Details of the shape and color, which were created with Ingenuity
Systems (http://www.ingenuity.com), are described in the legends.
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storage (4'C), low temperature (16-20°C), room temperature
(25°C), physiological temperature (37°C), and cryopreservation
[-20°C, -80°C, and -196°C (liquid nitrogen)] [139, 155]. There
were advantages and disadvantages concerning the impact on
storable time, differentiation capacity, viability, and protein
secretion at the various temperatures [155].

Additionally, cryopreservation enables the storage of
MSCs for a comparably longer period (over a month) than
nonfreezing storage (one week). However, cryoprotective
agents such as small (e.g., dimethyl sulfoxide, glycerol, ethyl-
ene glycol, and propylene glycol) and high molecular weight
(e.g., sugars, polyvinylpyrrolidone, and hydroxyethyl starch)
penetrating and nonpenetrating agents, respectively, are
required to preserve the cellular functional and structural
integrity [156]. Cryoprotective agents such as serum and
serum alternatives have been used with dimethyl sulfoxide
[156]. Moreover, the use of cell containers, impact of the
freezing and thawing process, and the elution of cryoprotec-
tive agents should be considered during cryopreservation
[156]. Free radical scavengers, ion chelators, protease inhib-
itors, and Rho-kinase inhibitors (Pinacidil, FDA-approved)
have been used for the prevention of cryopreservation-
induced cell death [157, 158]. However, the duration of
storage time was the same in vitro, with improved therapeu-
tic effects of hBM-MSCs observed using earlier passage
(passage 2) than later passaged cells (passage 6) after intrave-
nous administration of ex vivo cultured hBM-MSCs in a rat
model for ischemic stroke [159]. Therefore, further studies
are required to evaluate the quality and freshness of stored
hBM-MSCs before use in human clinical trials.

4. Conclusion and Future Perspectives

Here, we reviewed hBM-MSCs, their application to neurologi-
cal diseases, and improvements in the quality and freshness of
these cells based on integrated omics after disassociation from
the culture dish for stem cell therapy. As classical approaches
are limited in terms of analyzing the quality and freshness of
dissociated hBM-MSCs, the omics and machine learning
approaches provide indepth and comprehensive information
on the characteristics of the quality and freshness of dissociated
hBM-MSCs. Therefore, further studies are needed regarding
the integrated multiomic analysis, including genomics, tran-
scriptomics, small RNA-omics, proteomics, phenomics, and
metabolomics, in various hBM-MSCs conditions. Since mul-
tiomic is big data, application of machine learning algorithms
for the multiomic analysis of hBM-MSCs will be one of the
approaches for accurate discrimination and in silico prediction
of the biological phenomena. Thus, these approaches will be
helpful to analyze cellular changes of dissociated hBM-MSCs
in the various conditions and improve their quality and fresh-
ness for successful stem cell therapy in neurological diseases.
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Cell therapy involves the transplantation of human cells to replace or repair the damaged tissues and modulate the mechanisms
underlying disease initiation and progression in the body. Nowadays, many different types of cell-based therapy are developed
and used to treat a variety of diseases. In the past decade, cell-free therapy has emerged as a novel approach in regenerative
medicine after the discovery that the transplanted cells exerted their therapeutic effect mainly through the secretion of paracrine
factors. More and more evidence showed that stem cell-derived secretome, i.e., growth factors, cytokines, and extracellular
vesicles, can repair the injured tissues as effectively as the cells. This finding has spurred a new idea to employ secretome in
regenerative medicine. Despite that, will cell-free therapy slowly replace cell therapy in the future? Or are these two modes of
treatment still needed to address different diseases and conditions? This review provides an indepth discussion about the values
of stem cells and secretome in regenerative medicine. In addition, the safety, efficacy, advantages, and disadvantages of using
these two modes of treatment in regenerative medicine are also critically reviewed.

1. Introduction

Cellular therapy, also known as “cell-based therapy,” involves
the transplantation of human cells to stimulate the regenera-
tion of damaged tissues and modulate the mechanisms
underlying disease initiation and progression. Multiple types
of human cells, including stem cells and progenitor cells,
have been used to treat different diseases. Stem cell therapies
using induced pluripotent stem cells (iPSCs) [1] embryonic

stem cells (ESCs) [2], and adult stem cells such as mesenchy-
mal stem cells (MSCs) [3] have been tested preclinically and
clinically for years. Nowadays, MSC is widely used in the field
of tissue engineering and regenerative medicine. In general,
stem cell therapy has grown to become an attractive option
to reduce the overall need for tissue transplantation and min-
imize the waiting time for patients [4]. Numerous clinical
studies have indicated that stem cell administration is a safe
and promising therapeutic approach. The transplanted cells
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can differentiate to restore the structure and function of
injured tissues [5, 6]. However, more and more evidence sug-
gested that the transplanted cells promote tissue regeneration
mainly through paracrine secretion.

Recent studies have shown that the transplanted cells
secrete paracrine factors that directed the proliferation and
differentiation of surrounding cells as well as produce che-
moattractants that attracted the migration of effector cells
to the injured sites. The “cell-free therapy” that utilizes the
therapeutic molecules, i.e., secretome, secreted by stem cells
has become more popular as it offers many advantages and
avoids many limitations bothering the cell-based therapy.
The composition of secretome is very dynamic, depending
on the cell type and stimulus from their surrounding micro-
environment [7]. Generally, stem cell-secreted secretome
comprises (i) a complex mixture of soluble components such
as growth factor and cytokines (obtained as the conditioned
medium), (ii) a vesicular portion composed of extracellular
vehicles (EVs), and (iii) cell organelles (e.g., mitochondria).
It has been suggested that secretome can promote cell-cell
communication, interact with other cells in their immediate
environment, and transfer functional biomolecules to initiate
tissue repair or regeneration. Generally, secretome has been
found to possess proangiogenic, antiapoptotic, antifibrotic,
anti-inflammatory, immunomodulatory, and proprolifera-
tive properties [8-10]. Nevertheless, extensive investigations
are still required to better understand the therapeutic mech-
anism of secretome transplantation, its safety issues, and the
clinical efficacy, mainly through clinical trials. In this review,
the focus is on the values of stem cells and secretome in
regenerative medicine, as well as discussing the latest insights
on the safety, efficacy, advantages, and disadvantages of using
these two modes of treatment.

2. Classification of Cell-Based Therapy

2.1. Stem Cell Therapy. Stem cell therapy can be categorized
into autologous and allogeneic based on the tissue donor. To
date, autologous stem cell transplantation has been performed
for a broad range of purposes, such as to promote cardiac and
cartilage regeneration, expedite wound healing, and improve
aesthetic appearance. Autologous stem cells are used as they
are readily available from many tissue sources and have a
lower risk of life-threatening complications such as graft-
versus-host disease (GVHD), free of ethical issues, and nonim-
munogenic. The adverse events reported in the transplanta-
tion of stem cells are most likely unrelated to the treatment
but to the underlying disease instead [11].

Allogeneic stem cell transplantation is gaining more
attention in the past decade due to its advantages, such as
reduction of functional variability through the pooling of cell
products from multiple donors in a master bank, and it is
readily available off-the-shelf for clinical applications. Allo-
geneic bone marrow-derived MSCs (BMSCs) mixed with
autologous chondrocytes have been transplanted into the
knee joint of patients with symptomatic cartilage defect,
and the results showed the regeneration of hyaline cartilage
with a high concentration of proteoglycans and type II colla-
gen at 12 months [12]. A clinical trial on end-stage liver cir-
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rhosis also revealed that allogeneic stem cell transplantation
positively affects the patients’ condition by improving the
serum albumin levels and model for end-stage liver disease
(MELD) scores after six months [13]. Paul et al. reported
the immunomodulatory benefit of allogeneic MSC infusion
by reducing the rejection of transplanted corneal during the
immediate posttransplant period [14].

2.2. Stem Cell Derivatives/Secretome. In the field of regenera-
tive medicine, the therapeutic effects of stem cells are not
constricted to cell-cell interactions. A broad range of bioac-
tive molecules is found in stem cell secretion, including
growth factors, cytokines, chemokines, enzymes, extracellu-
lar matrix (ECM), and extracellular vesicles (EVs), collec-
tively known as the secretome [15]. The secretome is a
crucial component in exhibiting the therapeutic effect of stem
cells (Figure 1).

3. Stem Cells

3.1. Source of Stem Cells. The collection of pluripotent stem
cells (PSCs) such as ESCs is ethically controversial as it
involves the destruction of possible human life. Furthermore,
ESC is also considered an allogeneic source of cells which
may cause immune incompatibility. However, there is an
immediate solution to avoid ethical repercussions; the adult
somatic cells can be reprogrammed into iPSCs which essen-
tially functionally behaved as ESCs [16]. Genetically modi-
fied PSC is utilized in disease modeling to overcome the
species-specific differences as observed in an animal model.
It also serves as a potential cure to a currently permanent
condition such as thyroid disease [17-19], cardiovascular
disease [20], macular degeneration [21, 22], or Parkinson’s
disease that only can be managed with lifelong medications.
Unfortunately, PSC has raised safety concerns as some
research reported tumorigenicity [23] or epigenetic aberra-
tions posttreatment [24-26]. A fail-safe suicide gene known
as inducible caspase-9 (iCasp9) has been tested extensively
in vitro and in vivo as a potentially viable solution to remove
the residual pluripotent cell that may cause teratoma forma-
tion [27, 28].

On the other hand, multipotent cells have a narrower
spectrum of differentiation than pluripotent stem cells and
can differentiate into discrete cells of specific lineages. Exam-
ples of multipotent cells are hematopoietic stem cells (HSCs)
and MSCs. HSCs can be isolated from peripheral blood, bone
marrow, and umbilical cord blood, whereas MSCs can be
found in bone marrow, umbilical cord, cord blood, placental,
peripheral blood, adipose tissue, dental tissues, skin, salivary
gland, and synovial fluid [29-32]. Although there are varia-
tions in molecular composition, surface antigen expression,
differentiation capacity, and immunomodulatory property
in MSCs isolated from different tissue sources [23, 33], how-
ever, functional analyses showed that all the secretome have
similar functionality, i.e., to promote cell migration and
inhibit cell apoptosis [34].

3.2. Mechanism of Therapeutics. MSCs were thought to pro-
mote tissue regeneration via transdifferentiation to replace
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the damaged cells and cell fusion to save the dying cells.
However, many studies have found that these mechanisms
are insufficient, and MSCs seem to secrete a myriad of para-
crine factors, e.g.,, growth factors, chemokines, and cyto-
kines, to promote tissue regeneration and modulate the
immune response. This notion is supported by the low
engraftment of the transplanted cells at the target site and
rapid loss of the transplanted cells in vivo. The mechanisms
employed by MSCs in tissue repair and immunomodulation
have been excellently reviewed in previous publications [35-
39]. In this section, we will only provide a glimpse at their
mechanism of action in a short summary. In brief, MSCs
secrete anti-inflammation, antiapoptosis, antioxidative, anti-
fibrosis, proangiogenesis, promitosis, and chemotactic fac-
tors to stimulate tissue regeneration (Figure 2).

3.3. Multifactorial Crosstalk

3.3.1. Direct Signaling. Cell-cell signaling by direct contact
allows stem cells to communicate and respond to other cells.
It is not always necessary as stem cells have other soluble-
dependent crosstalk as well. In a mixed immune cell culture
such as peripheral blood mononuclear cells (PBMCs), cell
contact is not required for MSCs to exert their anti-
inflammatory effect. Contrastingly, when MSCs were intro-
duced to a lymphocyte-only culture and cell-cell contact

was prohibited, MSCs failed to induce FoxP3 and CD25
expressions in CD4" T cells [40]. The adhesion molecules
ICAM-1 and VCAM-1 will not form in the lack of direct
MSC-lymphocyte contact [41]. Moreover, MSCs require
direct contact with immune cells to upregulate cell-surface
proteins such as programmed death-ligand 1 (PD-L1) and
Fas ligand to suppress inflammation [42, 43]. As a result,
the immunoregulatory properties of MSC will not be exerted
to their full potential. The modulation of dendritic cell matu-
ration by MSCs also requires both direct cellular contact and
the soluble factor, interleukin (IL)-6. Loibl et al. reported bet-
ter results when endothelial progenitor cells were cocultured
with MSCs as it significantly upregulated the mature endo-
thelial cell marker, PECAM-1, relative to the transwell setup
[44]. The immunosuppression of B cells was more efficient in
direct cocultured with MSCs [45].

3.3.2. Secondary Crosstalk. Paracrine signaling is the main
mechanism of MSC therapy. It was initially thought that
MSC would migrate and engraft at the site of injury. None-
theless, most of the MSC administrated intravenously are
sequestered in the vasculature of the lungs, with only a few
MSCs homed to the tissue of interest. Studies have also noted
that exogenous MSCs unable to retain their population long
enough to completely replace the affected tissue. Hence, the
lasting reparative effect of MSCs is largely attributed to its
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ability to secrete trophic factors to ameliorate the inflamma-
tion in other parts of the body [35, 46-48]. Chin et al. claimed
that the anti-inflammatory cytokine levels remained elevated
from baseline up until six months post-MSC transfusion
[46]. MSCs are known to secrete immunosuppressive factors
such as transforming growth factor-beta (TGF-p3), vascular
endothelial growth factor (VEGF), IL-10, prostaglandin E2
(PGE2), indoleamine 2,3-dioxygenase (IDO), and galectin-1
into the circulatory system [47-51]. These molecules interact
with the immune cells such as T and B cells to suppress their
proliferation and differentiation, causing the polarization of
macrophage to an anti-inflammatory phenotype and reduc-
tion of the pro-inflammatory milieu consists of cytokines
such as tumor necrosis factor-alpha (TNF-«), interferon-
gamma (IFN-y), and IL-6 [46, 47, 49, 52-55].

3.3.3. Necrobiology. Necrobiology is a term used to describe
the life processes associated with morphological, biochemi-
cal, and molecular changes related to cell death and the

consequences and tissue response to cell death [56]. It
encompasses four mechanisms by which derivatives of MSCs
can retain significant clinical efficacy, including apoptosis,
autophagy, mitochondrial transfer, and extracellular vesicle
production [57]. The bioactive parts of dead or dying MSCs
can trigger immunomodulatory properties in the host with-
out the concern over cell survival and the formation of large
aggregates [58-60].

(1) Apoptosis. Apoptosis of cultured MSCs can be induced via
nutrient deprivation. In addition, some studies found that
IFN-y and TNF-« also can trigger MSC apoptosis through
the nitric oxide (NO) [61] and Fas [62] pathways, respec-
tively. One can consider inhibiting NO to prolong MSC sur-
vival, noting that it also will restrict the immunosuppression
capacity of MSCs on the lymphocytes. Interestingly, Man-
cuso et al’s study of knee osteoarthritis using an in vitro
model revealed that apoptotic MSCs were more immunosup-
pressive than healthy MSCs [63]. Moreover, Chang et al.
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found that apoptotic MSCs were more effective in attenuat-
ing organ damage in rat sepsis models compared to the
healthy MSCs [64]. Cheung et al. found that monocytes that
efferocytosed the apoptotic MSCs have higher expression of
IDO, PD-L1, and cyclooxygenase 2 (COX2), and these cells
secrete more PGE2 and IL-10 as well as lower TNF-« to sub-
side the inflammation. Then, they proceeded to monitor the
serum PGE2 levels of eight patients with severe steroid-
resistant GVHD who received MSC therapy. It was found
that the responders demonstrated increment in PGE2 levels
while the nonresponders showed not changes in PGE2 levels.
Albeit, in a small sample size of eight GVHD patients, this
study teased the possibility of apoptotic MSCs in transla-
tional medicine [65].

(2) Autophagy. In terms of stem cells, autophagy plays a piv-
otal role in maintaining genomic stability and retain its
potency and differentiation capacity [66]. Gao et al. discov-
ered that autophagy may regulate MSC immunoregulation
through TGF-f1 signaling. The proliferation of CD4" T
helper cells was inhibited when cocultured with autophagic
MSCs. However, when autophagy is inhibited, MSCs failed
to suppress the proliferation of T cells [67]. Additionally,
autophagy activation in MSC transplantation has protective
effects on the damaged tissues. These protective effects of
autophagy can be reversed using autophagy inhibitors such
as 3-methyladenine and chloroquine. Autophagy can be
induced by hypoxia and nutrient depletion, and it has been
shown to protect MSCs in vitro [68]. Furthermore, Zhang
et al. showed that hypoxic preconditioning on MSCs can
enhance its functional survival to restore cardiac function
in ischemia models [69]. Using rapamycin to induce the
autophagy mechanism, Wang et al. showed that MSC-
derived exosomes prevented acute kidney injury caused by
cisplatin [70]. Similarly, Hou et al. induced autophagy by
pretreating MSCs with starvation and rapamycin. In their
study, it was shown that autophagy prevented the autophagic
MSCs from irradiation injury and maintained the stemness
after exposure to reactive oxygen species- (ROS-) induced
damage [71]. Park et al. attributed the neuroprotective effects
of MSCs to the higher levels of autophagy in a parkinsonian
mice model and MPP" treated neuronal cell culture [72].

(3) Mitochondrial Transfer. MSCs are known to reprogram
the host cells by the transfer of mitochondria. It is a process
that requires direct cell-cell contact through tunneling nano-
tubes (TNT) or gap junctions [73]. Mitochondria also can be
transferred via secreted EVs [56]. The mitochondrial transfer
has a prominent role in protecting the recipient cells from oxi-
dative stress, radiation injury, and hypoxic injury as well as
recovering the mitochondrial membrane potential and aerobic
respiration and modulating the host immune response [74,
75]. Upregulation of Miro 1, a mitochondrial Rho-GTPase,
has been reported to enhance mitochondrial transfer, subse-
quently improve the MSC therapeutic efficacy [76].

(4) Extracellular Vesicles. According to MISEV 2018, EVs are
nonreplicating particles of size 100-200 nm and encapsulated
by a lipid bilayer [77]. MSC-derived EVs contain bioactive

molecules including genetic materials, microRNAs, enzymes,
signaling proteins, immunomodulatory factors, and growth
factors [78]. EVs have the potential to be developed into
cell-free therapy with the benefits of MSC immunomodula-
tion but without the concerns of maintaining the cell viability
or risk of immune rejection in allogeneic transplantation.
Many studies showed that MSC-derived EVs are as effective
as MSCs in treating diseases [79-81]. Apoptotic cells are
known to produce different types of EVs and apoptotic bod-
ies that can influence the surrounding cells. Apoptotic cell-
derived EVs are rich in spliceosomes that alter the RNA splic-
ing in recipient cells [82]. More data are showing that apo-
ptotic cell-derived EVs play a significant role in immune
modulation in autoimmunity, infection, and cancer, impli-
cating that they are not just cell debris [83]. All these findings
indicating that apoptotic cell-derived EVs could be an impor-
tant medium of communication between the dead and living
cells [84]. Nonetheless, to date, apoptotic cell-derived EVs
are not well studies. Thus, what we know is still very limited.

4. Secretome

Secretome is often referred as a group of biologically active
molecules or factors that are released by cells into their extra-
cellular environment [85]. Although MSCs derived from var-
ious anatomical sites may exhibit similar morphological and
immunophenotypic characteristics, numerous evidence
showed that they secrete a distinct set of secretome that is
normally associated with the host age and specific microenvi-
ronment that the cells were grown. The secretome may even
fluctuate in response to various physiological changes and
pathological circumstances. In general, MSC secretome is
made up of a variety of growth factors, cytokines, and EVs
that conferred its tissue repair and regenerative potential,
mainly attributed to their capability to stimulate cell prolifer-
ation, formation of new blood vessels, and their immuno-
modulatory effects (Figure 3) [85, 86].

4.1. Growth Factor. Different investigations have shown that
the growth factors present in MSC secretome may either
work synergistically to exert their tissue regenerative poten-
tial or the presence of individual growth factors could be suf-
ficient to achieve the desired therapeutic objective. For
instance, brain injury such as stroke usually involves brain
tissue damage due to a lack of blood supply. Hence, stroke
therapy usually requires the promotion of new blood vessel
formation and brain cell production, along with suppression
of further cell death and inflammatory processes [85]. These
have been successfully achieved via administration of BMSC
and adipose tissue-derived MSC (AT-MSC) secretome that
contain a mixture of hepatocyte growth factor (HGEF),
brain-derived neurotrophic factor (BDNF), fibroblast growth
factors (FGF), and platelet-derived growth factor (PDGF) [7,
87]. Meanwhile, another study by Ding et al. has suggested a
direct involvement of increased insulin-like growth factor-1
(IGF-1) levels that exhibited neuroprotective effect in a
mouse model of brain stroke through regulating its ischemic
and inflammatory condition to reduce the volume of brain
infarct while improving the function of brain cells [88].
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Similar observations also have been reported in Huntington’s
disease mouse model whereby transplantation of BMSCs led
to elevated expression of stromal cell-derived factor-1 (SDF-
1) to improve blood supply to the damaged brain striatum
tissue via stimulation of angiogenesis [89]. The neuroprotec-
tive role of SDF-1 had also been verified in another rat model
of Parkinson’s disease whereby the grafted BMSCs inhibited
apoptotic activities in the affected dopaminergic neuronal tis-
sue, which significantly recovered the behavior of the dis-
eased rats [90]. Besides brain injuries, therapeutic effects of
growth factors present in MSCs have also been investigated
for other pathologic conditions such as cutaneous injury,
whereby the use of AT-MSC secretome that contains VEGF,
HGF, transforming growth factor 8 (TGF-f), and keratino-
cyte growth factor (KGF) was able to induce greater cellular

proliferation, trigger cell migration, and decrease the wound
size at a faster rate [91-95]. The positive impact of these
diverse growth factors in promoting angiogenesis [96], regen-
erating muscle tissue [97], and reducing incidences of prema-
ture infant diseases such as periventricular leukomalacia,
retinopathy of prematurity, bronchopulmonary dysplasia,
and necrotizing enterocolitis [98] also has been implicated.

4.2. Cytokines. Whilst growth factors are more frequently
associated with induction of cellular proliferation or preven-
tion of cell death for tissue regeneration, cytokines present in
the MSC secretome play a more important role in regulating
inflammatory activities in pathologic conditions to attain the
therapeutic effect. In the MSC secretome, both anti-
inflammatory cytokines (such as tumor necrosis factor f1
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(TNF-f31), IL-10, IL-12 p70, IL-13, IL-18 binding protein, IL-
25, and IL-27) and proinflammatory cytokines (such as TNF-
a, interferon y (IFN-y), IL-1b, IL-6, IL-8, and IL-9) could be
present. The impact of MSC secretome on the inflammatory
process is usually governed by the balance of these anti- and
proinflammatory cytokines [86]. For example, the destruc-
tion of pancreatic cells in autoimmune diabetes mellitus type
1 disease by proinflammatory cytokines, including TNF-q,
IFN-y, and IL-1b, could be reversed by treating the primary
islet cells with MSC secretome containing significantly ele-
vated levels of anti-inflammatory cytokines (IL-4 and IL-
10), resulted in the prevention of cell apoptosis and improve-
ment in insulin secretion [99]. The importance of anti-
inflammatory cytokines produced by MSCs was further dem-
onstrated by Hsu et al. who utilized MSCs to suppress
inflammation-associated transplant arteriosclerosis through
the secretion of IL-10 [100]. In another study by Ogata
et al., MSC secretome was shown to stimulate bone healing
in a rat bone defect model by increasing the migration of
endogenous stem cells into the defect area. Subsequent anal-
ysis revealed the presence of various important cytokines in
the MSC secretome which are essential to suppress inflam-
mation as well as induce cell proliferation, angiogenesis,
recruitment, and osteogenesis. These cytokines include che-
mokine ligand 2, chemokine ligand 5, chemokine ligand 7,
and TNF-f [101].

4.3. Extracellular Vesicles. Other than growth factors and
cytokines, EVs are another important subset of MSC secre-
tome that play a crucial role in both normal and pathological
processes through maintenance of homeostasis as well as reg-
ulation of immune function, tissue regeneration processes,
and tumorigenesis. These EVs that carry therapeutic cargo,
including nucleic acids, proteins, and lipids, are originally a
method of communication between neighboring and distant
cells. They can be divided into two types depending on their
sizes, that is either exosomes (40-200 nm) or microvesicles
(50-1000nm) [4]. Example of the therapeutic proteins
abundantly present in EVs secreted by MSCs includes
osteoprotegerin and angiogenin that were found to be the
key players for bone regeneration in a rat model of bone
defect [101]. Besides proteins, microRNAs (miRNAs) inside
the EVs secreted by BMSCs, such as miR27a, miR196a, and
miR206, were also found to be crucial in triggering the
expression of osteogenic genes for acceleration of bone
regeneration in a rat model of calvarial bone defect [102].
On the other hand, miR133 is an important miRNA pro-
duced by MSCs to stimulate neuronal tissue remodeling
in a rat model of stroke disease [103, 104]. Meanwhile,
miR125b-5p is an example of miRNA that could exert antia-
poptotic effect as demonstrated by its ability to suppress
expression of proapoptotic BAK1 and p53 genes in a myocar-
dial infarction model, hence preventing the death of cardio-
myocytes and subsequently allowing the repair of the
ischemic tissue [105]. Apart from modulation of tissue regen-
eration, some miRNAs are also able to regulate the immune
system to suppress the extent of tissue injury. For instance,
miR15a, miR15b, and miR16 could inhibit the expression
of CX3CLI to prevent recruitment of macrophages to the

ischemic kidney, therefore reducing the inflammatory pro-
cess in the injured kidney [106].

5. Delivery and Homing of Stem Cells
and Secretome

Stem cells and secretome can be delivered via various routes of
administration to elicit their therapeutic actions. Thus far,
direct injection to the target site and intravenous injection is
most widely used as they deliver the biologics to the target tis-
sue more effective compared to other routes of administration.

Compared to exosomes, homing of stem cells to the tar-
get tissue is critical for the cells to exert their therapeutic
effects. The efficacy of stem cell homing to the target tissue
upon transplantation is very much dependent on the route
of administration. There is an intrinsic relationship
between different chemical factors and MSCs that influ-
ence its homing and reparative effects. Stromal-derived
factor-1 (SDF-1)/CXC chemokine receptor 4 (CXCR4) axis
is imperative in the recruitment of MSCs to the injured
tissue [107, 108] and inadvertently promotes neovasculari-
zation [109, 110]. The increased expression of SDF-1 after
tissue injury stimulates the expression of CXCR4 on MSCs
which improve stem cell homing and engraftment to the
injured site [111]. Besides, Qin et al. described that SDF-1
regulates the MSC immunomodulatory effects through
CXC chemokine receptor 7 (CXCR?7). In low concentration,
the proliferation of MSCs is induced, and the regulatory B
cells produce various cytokines including (IL-6, IL-10, IL-4,
IFN-y, TNF-a) [112]. Zheng et al. suspected enhanced hom-
ing of CXCR4-overexpressing MSCs to the site of colitis
resulted in the significant reduction of tumor formation
when compared to the untreated group [113]. Similarly,
Wang et al. observed improvement in cell migration using
CXCR4-overexpressing MSCs, and the progression of dia-
betic retinopathy was hampered [47]. Without CXCR4 gene
transfection, MSC is considerably less effective in repairing
cardiovascular damage as the necessary vascular cell adhe-
sion molecule-1 (VCAM-1), and intercellular adhesion
molecule-1 (ICAM-1) cannot be stimulated solely with
SDEF-1 [110, 114].

5.1. Direct Injection to the Target Tissue. Direct injection is a
straightforward approach to deliver stem cells to the target
tissue. For example, stem cells can be injected through the
intraspinal and intrathecal route to treat spinal cord injury
and intraarticularly to treat osteoarthritis [115, 116]. Direct
injection can increase the homing of stem cells to the target
tissue, and this is crucial as stem cells can self-renew and dif-
ferentiate into the desired cells to repopulate and regenerate
the injured or lost tissue. In addition, local delivery of stem
cells to the target tissue is necessary as the secreted bioactive
factors act in a paracrine manner and may be degraded in the
bloodstream before reaching the target tissue when adminis-
tered distantly. In the context of secretome such as exosomes,
direct injection is applicable as well. MSC exosomes were
effective in repairing critical size osteochondral defects in
immunocompetent rats, as evidenced by the increased cellu-
lar proliferation and infiltration, enhanced matrix synthesis,
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TaBLE 1: Recent studies applied secretome and its components via intravenous (IV) route.
Cell type Disease model Application method References
Cardiac stem cells Cardiac myopathy IV injection of 30x10° exosomes [122]
BMSCs Pulmonary hypertension IV injection of culture media (30 pg/100 uL) [123]
BMSCs Asthma IV injection of culture media (500 pg/mL) [124]
BMSCs Lung fibrosis IV injection of 10 ug EV's [125]
MSCs Myocardial inflammation IV injection of 200 uL of 300 yg exosomes [126]
iPSCs Limb ischemia IV injection of 200 yg exosomes [127]
hMSC544 cells Ovarian cancer IV injection of 100 uL exosomes [128]
Schwann cells Peripheral neuropathy caused by type 2 diabetic IV injection of 200 yL exosomes [129]
BMSCs COVID-19 IV injection of 15 mL exosomes [130]

and presence of regenerative immune phenotype [117].
These results are achieved via intraarticular injection of
exosomes.

Even though many researchers have analyzed the thera-
peutic efficacy of different routes of delivery for stem cell
therapy, however, there is still no congruous consensus on
the optimal delivery method among the different reports
[118]. Although direct injection of cell-based treatment
(either stem cell or secretome) to the affected tissue is
appealing and has long been documented, this approach
may accompany problematic complications if it is not care-
fully planned, performed, or managed. The migration of
stem cell or lymphatic drainage is the physiological process
that would reduce the number of injected cells or quantity
of secretome initially present in the target tissue vicinity. In
addition, the hostile wound environment with intense
inflammation is not ideal to support the survival of the
transplanted cells [119].

5.2. Intravenous Administration. Delivery of cells through
vein has been suggested in numerous preclinical studies
and clinical trials [120]. Intravenous administration is advan-
tageous because of its systemic distribution and ability to
reach deeper tissues. However, intravenous administration
also carries the risk of cell entrapment in the lung vascula-
ture, and the retention time for the cells and their effects
are short. The main concern of intravenous administration
is to get enough cells to the target tissues. Harting et al. man-
aged to infuse rats with MSCs intravenously to treat trau-
matic brain injury [121]. The group did not find cell
homing to the target tissue. However, the rats still showed
improvement in motor and cognitive functions. In terms of
secretome, delivery via the intravenous route is safe due to
the lower risk of embolism compared to the delivery of stem
cells. In the case of neurological disorders, emboli of admin-
istered cells in the cerebral microvascular can exacerbate the
disease and can be life-threatening. Intravenous administra-
tion of whole secretome or its components, i.e., exosomes,
has been reported to be safe and capable to ameliorate several
diseases (Table 1).

5.3. Scaffold. On top of that, new delivery strategies utilizing
the biomaterials such as polymeric scaffolds and cell sheets
can increase cell retention on top of providing a supporting

matrix to enhance cell survival and functionality [131]. The
polymeric scaffold stabilizes the stem cells and their soluble
factors as well as permits sustained delivery of these bioactive
factors. The structure also supports cell growth. The architec-
ture of the scaffolds including stiffness and pore arrangement
is an important regulator of stem cell differentiation. The
microarchitecture of the scaffold has an impact on the differ-
entiation of MSCs into cells of interest. Phadke et al. found
the randomly oriented pores were better suited for osteogenic
differentiation of MSCs when compared to the lamellar
column-arranged pore network [132]. Multiple studies have
focused on the development of insulin-producing cells to
treat diabetes. Enderami et al. noted a significantly higher
expression of glucose-regulating genes including Pdx1, insu-
lin, glucagon, and Ngn3 genes in poly-L-lactic acid and poly-
vinyl alcohol (PLLA/PVA) 3D scaffold than in the regular 2D
culture [133]. The 3D scaffold provides a supporting struc-
ture to maintain the cell-cell and cell-matrix interactions.
The stem cells cultured in nanofibrous scaffolds generate
pancreatic organoids which are morphologically and func-
tionally similar to the mature pancreatic 3-cells [134-136].
The main advantage of using cell sheets is the fabrication
techniques that will not disrupt the cell-cell and cell-matrix
contact [137]. Usage of cell sheets fabrication techniques
such as temperature-responsive culture surface, photore-
sponsive polymer, and ultrasound irradiation enables the
detached cells to maintain their cell surface proteins, cellular
junctions, and extracellular matrix [138]. Cell sheets may be
developed into an advanced cell delivery method for the
treatment of many tissue injuries, including cardiovascular
diseases, cutaneous wound healing, and tendon/ligament
injuries. The combination of multiple cell sources in the fab-
rication of cell sheets may mimic the natural state of tissue to
allow better grafting of cells and better tissue regeneration.

6. Stem Cells and Secretome Clinical Trials

6.1. Stem Cell Clinical Trials. Thus far, many clinical trials
using MSCs have been completed, and some of the therapies,
e.g., Cupistem®, Queencell®, Cartistem®, Cellgram®, Neuror-
ata-R®, Prochymal®, Stempeucel®, and MesestroCell, have
received market authorization in Korea, Canada, India, and
Iran [139]. A list of worldwide clinical studies using stem cells
in different phases can be found in National Institutes of
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Health Clinical Trials.gov website (https://www.clinicaltrials
.gov/) (Table 2).

6.1.1. Pluripotent Stem Cells. There are eight completed clin-
ical trials on ESC transplantation, and seven of them are
associated with eye disease and one for ischemic heart dis-
ease. The PSC clinical trials mainly focus on eye disease as
the tissue is easily accessible for transplantation, and serious
adverse events (SAEs) on the eye are less likely to be life-
threatening. Furthermore, PSC transplantation is associated
with higher risks of tumor formation. Since the eyeball is a
confined space that has few vasculature connections with
the rest of the body, the tumor is less likely to metastasize.
However, none of the studies listed is presented with results.
All these studies are either phase I or phase I/, indicating
that the translational research of PSC therapy is still in the
early phase.

6.1.2. Multipotent Stem Cells. There are more completed
MSC clinical trials compared to the PSC clinical trials as
the cells are safer and have fewer ethical concerns. Many
MSC clinical trials have published their results. Generally,
MSC therapy is found to be safe and well-tolerated by the
patients. In addition, some studies also reported the efficacy
of MSC therapy to treat a battery of diseases. MSC therapy
has received market authorization in several countries for
the treatment of diseases such as Crohn’s fistula, cartilage
defects, osteoarthritis, major adverse cardiac events, amyo-
trophic lateral sclerosis, aGvHD, and critical limb ischemia
[139]. Very recently, a parallel assigned controlled, nonran-
domized phase I clinical trial has been conducted to evaluate
the safety of human umbilical cord-derived mesenchymal
stem cell (UC-MSC) infusion to treat patients with moderate
and severe COVID-19 pulmonary disease [140]. Eighteen
hospitalized COVID-19 patients were enrolled on the study,
and nine of them received three cycles of intravenous infu-
sion of UC-MSCs (3 x 107 cells/infusion). Twenty-eight days
after the first infusion, no UC-MSC infusion associated SAEs
were observed except for one patient in the treatment group
that required mechanical ventilation compared to four
patients in the control group. All patients recovered follow-
ing the treatment and were discharged. These data showed
that intravenous UC-MSC infusion is safe and well-
tolerated in patients with moderate and severe COVID-19.

6.2. Secretome Clinical Trials. Clinical trials of cell-free ther-
apy are taking the emerging field from basic science to clini-
cal application. Numerous trials are/have been conducted for
a huge variety of conditions. While there are reviews that
have summarized previous clinical trials pertaining to the
use of cell-free therapy, we intend to highlight several clinical
studies that are recently published at the time of this writing
(Table 3). Unfortunately, to date, the results from many of
these clinical trials have yet to be published.

Overall, stem cell therapy has a longer history compared
to cell-free therapy. A review on the stem cell clinical trials
was published in the year 2011 [156]. One decade has passed
since then, and a significant change in the current trend of
stem cell clinical trials has been observed, most noticeably,

the quantity (Figure 4). In 2011, 123 clinical trials using
MSCs were recorded. Although some of the studies are in
the combination of phase I/II, the majority are in phase II.
The quantity of MSC clinical trials has grown tremendously,
circa 25 times since the past decade. Notwithstanding, a total
of 152 clinical trials using exosomes have also been recorded
in the last 10 years. Although there is a huge surge in the
number of clinical trials on MSCs and exosomes, the disease
treated has not varied significantly and most of which are
chronic diseases and disorders. While it is too hasty to draw
a conclusion of the efficacy of cell-based therapy, the early
observations of these trial results demonstrated that it is safe
and feasible.

However, the clinical applications of MSCs or secretome
are not without risks. Several pertaining concerns are pro-
moting the growth of cancerous cells and nonspecific and
undesirable differentiation of the transplanted cells at the tar-
get tissue. Perhaps, the most relevant risk of stem cell therapy
is the malignant transformation of the administered cells.
Many researchers have reported genomic instability in MSCs
at higher passage [157, 158]. Thus, genotyping might be rel-
evant to ensure the safety of the cells before transplantation.

7. Stem Cell vs. Secretome

7.1. Manufacturing. As a cellular product, the cell source
poses the first major challenge to reproducibly manufacture
clinically effective stem cells and secretome products. Stem
cell manufacturing has been critically reviewed and discussed
in the previous publication [159]. The production of stem
cells is indeed a quite straightforward process. The stem cells
can be grown on a large scale using bioreactors or large cell
culture flasks under specific culture conditions [160]. Large-
scale expansion is crucial to produce enough cells for down-
stream clinical application. Human platelet lysate (HPL) is
often recommended as an alternative to fetal bovine serum
(FBS) for good manufacturing practize- (GMP-) compliant
stem cell expansion. Generally, stem cells cultured with
HPL are smaller in size, display a tighter spindle-shaped
morphology, and increased cell growth [161]. In addition, a
chemically defined serum-free medium also can be used to
replace the serum-based medium to avoid the batch-to-
batch variation bothering the serum-based medium.

The manufacturing of clinically effective secretome is not
an easy process. Notably, the quality and quantity of secre-
tome are greatly influenced by the cell source and culture
condition. Although secretome has been proven to work as
effective as stem cells, nevertheless, it does not guarantee that
the secretome harvested could work in the same way or as
effective as the cultured cells. In vivo, transplanted stem cells
produce secretome that could regenerate/repair the tissue or
modulate the immune function in response to the signalling
from the surrounding tissue. In contrast, this does not hap-
pen when the cells are grown in the laboratory. Therefore,
it might be necessary to customize the culture condition that
mimics the pathophysiological environment to produce clin-
ically effective secretome [162].

When an appropriate cell source of clinically effective
secretome is identified, the consistency of the cell source for
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TaBLE 3: Cell-free treatment in clinical trials for various diseases.

13

Clinical trials

Target disease Cell identifier Administration Dosage Results
No observable side
effects in 30 days.
_ 10 ;
COVID-19 MSC-derived exosomes ~ NCT04491240  Inhalation 0.5-2>x10% Improvement in overall
exosomes treatment 1s not
insignificant compared
to standard therapy.
Chronic ulcer MSC conditioned media NCT04134676 Topical Unknown Not available
Keloid Umb.l l.lcal cord—MSC NCT04326959 Intralesional 1 mL/cm’® Not available
conditioned medium
Knee osteoarthritis MSC conldltloned NCT04314661 Int.r & ar'[.lcular 2mlL 25weeks after Not available
medium injection 5x10° MSC cells
SARS-CoV-2- 2.0x10®
associated MSC-derived exosomes NCT04276987 Inhalation vesicles/3 mL Not available
pneumonia for 5 days
Multiple organ failures 150 me exosomes
after surgical repair of =~ MSC-derived exosomes NCT04356300 Intravenous & Ongoing
o . for 2 weeks
aortic dissection
. . Platelet-rich plasma .
Chronic low back pain . NCT04849429 Intrathecal 2mL Ongoing
with exosomes
Qerebrovascular MSC-derived exosomes NCT03384433 Intravenous Not available Ongoing
disorders
COVID-19 MSC coqd1t1oned NCT04753476 Intramuscular  0.5-1mL (3 doses) Ongoing
medium
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FIGURE 4: Number of mesenchymal stem cell (MSC) and exosome clinical trials between 2011 and 2021 by clinical phase (source:
clinicaltrials.gov [accessed 5/5/2021]).
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all subsequent batches of secretome production must be
addressed. This could be achieved by pooling the cells from
the same tissue source of different healthy donors to produce
multiple batches of secretome, mitigating the challenges of
biological variation in tissue sources and donors [163]. Due
to the finite replication of the primary cells, a more practical
approach is to use “immortalized” cell lines or PSC-derived
stem cells. Although studies have reported that the regenera-
tive properties of secretome [164] and sEVs [165] harvested
from immortalized stem cells are not compromised. Never-
theless, all these must be carefully investigated to ensure that
the immortalized cells are stable and continue to produce
secretome products that are bioequivalent to those from non-
immortalized parental cells. In addition, secretome enrich-
ment protocols could also be employed to enhance the
production of secretome in the laboratory [166]. It should
be taken into consideration that the type of media used to
harvest secretome may also affect the quality and efficacy of
secretome. To avoid interference from HPL, basal media is
often employed to harvest the secretome to determine the
efficacy of stem cell secretome. Nevertheless, the sudden
switch from nutrient-rich to basal media may change the
cell’s behavior and subsequently modifying the secretome
profile. Would the basal media harvested secretome work as
effective as the stem cells in the host and whether the secre-
tome harvested from cells cultured in complete growth media
might have better clinical efficacy compared to the secretome
harvested from basal media are some of the questions that
remain to be answered. Based on the abovementioned argu-
ments, the quality of secretome preparation is dependent
on the source, culture condition, and secretome enrichment
protocol. Therefore, secretome manufactured using different
protocols may have different disease-relevant potency.

7.2. Quality Control. Quality control is crucial to ensure the
safety and efficacy of cell-based products. Adherence to the
GMP regulations assures the identity, strength, quality, and
purity of the products. Strict adherence to the quality man-
agement system helps to prevent contamination, mix-up,
deviation, failure, and error during production [167]. It is
important to note that a lot of efforts have been given to
establish GMP facilities to produce cellular products for clin-
ical applications [168]. Apart from the GMP facility, guide-
lines are in place to characterize the stem cells. For
instance, MSCs should be characterized according to the
guideline recommended by the International Society of Cel-
lular Therapy (ISCT) [169].

The quality control for secretome is way more complex
compared to the stem cells. As the secretome is a mixture
of EVs and soluble proteins, it is challenging to identify the
active components from this mixture and hence, more efforts
are required to characterize the secretome. For instance, pro-
teomic analysis is needed to identify the type of proteins and
their concentration in the preparation [96, 170]. For EVs,
particularly small EVs (sEVs), it needs to be characterized
according to the guidelines published by the International
Society of Extracellular Vesicles (ISEV). The identification
of size and number would require either zetasizer or nano-
particle tracking analysis (NTA). Notably, quantifiable met-
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rics defining the identity of SEV preparations should reflect
the cellular origin of the sEVs in preparation, the presence
of lipid membrane vesicles, and the degree of physical and
biochemical integrity of the vesicles. The combination of
these metrics could quantify the identity of sEVs and facili-
tate stratification and comparison of different secretome
preparations [77, 171]. As EVs contain miRNAs, the molec-
ular technique is also required to characterize the miRNA
profile [172, 173].

7.3. Cost of Production and Treatment. There is an argument
whether the cost of production and treatment is lower in
secretome therapy in comparison to stem cell therapy. For
stem cell therapy, the number of stem cells that could be iso-
lated from patients/donors is low; therefore, the harvested
cells are usually expanded in the laboratory to attain enough
cells for clinical applications. The process can take weeks to
months. During the cell expansion, media change is typically
done every 3-4 days. The high volume of spent media means
to be discarded is a potential source of secretome that can be
used clinically after proper processing. The preparation of
cell-free therapies from the spent media can greatly reduce
the cost of production. However, need to bear in mind that
the secretome or exosomes collected form the spent media
could have different biological components when the cells
are cultured in different conditions. Thus, it is imperative to
determine safety and efficacy as well as to characterize the
secretome or exosomes secreted by cells cultured in different
conditions. In another words, not all spent media can be
processed to produce safe and effective secretome and
exosomes.

Furthermore, as the secretome cannot self-replicate and
have a short half-life in vivo, thus, the secretome might need
to be given more frequently to exert its therapeutic effect. In
contrast, stem cells can self-renew and survive in the body for
a longer period. Stem cells can respond to the signaling mol-
ecules released by the injured cells by secreting the appropri-
ate paracrine factors to stimulate tissue regeneration. On the
other hand, the contents of secretome are already defined
in vitro. Thus, preconditioning of the cells at the culture con-
dition that mimic the disease pathophysiological condition
might be needed to produce clinically relevant secretome.
The used of specific instruments or biochemicals to replicate
the disease pathophysiological condition in vitro will incur
extra costs. Finally, the cost of secretome production is still
likely to be higher than the cells as it requires extra concen-
tration and purification steps [174].

7.4. Advantages and Disadvantages. The use of stem cells as
regenerative medicine for various diseases has been progres-
sing well since the past decade. However, the type of stem cell
suitable for different diseases is still under vigorous debate
since each stem cell subtype possesses its advantages and lim-
itations. For instance, ESCs can differentiate into various
types of tissue but its limitations, i.e., ethical dilemma, genetic
instability, and teratocarcinoma, might overweight the bene-
fits [175]. MSCs show several superior properties for thera-
peutic use compared to other types of stem cells, including
easy to harvest and expand, both autologous and allogeneic
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cells can be used with minimal risk of rejection, free from
ethical issues and have limited replicative lifespan, and hence
have lower risks of malignant formation. However, MSCs are
only capable to differentiate into certain lineages thus limit-
ing their usage to only certain diseases [176]. Notably, stem
cells could be differentiated into specific tissue as cell replace-
ment therapy [177, 178]. This is the main advantage of stem
cells over secretome. Another prominent property of stem
cells is their ability to migrate to the site of injury (homing
effect). Surprisingly, sEVs also possessed the homing ability.
Studies showed that MSC-EVs were mainly accumulated in
the inflamed kidneys [179] and injured brains [180, 181] in
the acute kidney injury model and intracerebral haemor-
rhage models, respectively. The accumulation of systemically
injected sEVs in the intracerebral hemorrhage model also
showed that sEVs can cross the blood-brain barrier (BBB).
Research also has indicated that stem cells could cross BBB.
MSCs integrated into the endothelium through the adhesion
molecules VCAM-1/VLA-4 and f1 integrin. After crossing
the endothelial barrier, MSCs invade the host tissue via plas-
mic podia [182]. MSCs were also found to cross BBB through
paracellular pathways that are normally inhibited by the
presence of tight junctions [183]. These showed that both
stem cells and secretome could be intravenously injected
and reach the brain. Nevertheless, the bioavailability of these
two subjects in the brain remains to be elucidated.

Accumulating evidence suggests that secretome possesses
many advantages over stem cell transplantation. Cell degen-
eration or senescence in the host after transplantation is not a
concern for secretome therapy. It was also reported that
secretome has lower cell surface proteins compared to stem
cells, which makes allogeneic secretome safer than allogeneic
stem cells because of the lower risk of immunogenicity [184].
Irreplicable property and absence of DNAs in secretome
greatly reduce the risk of DNA mutation and tumor forma-
tion in the host. The use of secretome also reduces the possi-
bility of vascular obstruction compared to larger stem cells.
The bioactive components of secretome can be easily modu-
lated by culturing the cells in different conditions. Secretome
is also easier to store compared to stem cells, i.e., stem cells
need to be stored in liquid nitrogen to maintain their viability
while secretome can be stored in -20°C. Finally, the require-
ment to evaluate the safety and dosage of secretome is less
stringent in comparison to the stem cells, making the journey
to the clinical setting smoother and faster. This is because
stem cells are living cells, and the fate of the transplanted cells
is more difficult to predict. Table 4 and Figure 5 summarize
the comparison between stem cells and secretome from the
perspective of manufacturing, quality control, cost of pro-
duction, and treatment, as well as their advantages and disad-
vantages in clinical applications.

8. Future Perspective

Currently, cell-based therapies face two great challenges; how
to anticipate decreased cell viability and biological functions
during in vitro culture and how to prolong survival of trans-
planted cells. Consequently, several strategies can be envis-
aged to increase survival, immunomodulatory potential,
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and regenerative functions of cell-based therapy. Precondi-
tioning, genetic modification, and tissue engineering are the
dominant strategies. Furthermore, combinatorial approaches
using nanotechnology could also improve the therapeutic
performance of stem cells and secretome.

8.1. Stem Cells

8.1.1. Genetic Modification. The combination of stem cell
biology and genetic engineering has great potential in
regenerative medicine. Through genetic modification, the
researcher could induce or determine the cell’s specific differ-
entiation pathway after injection or enhance the adhesion
potential of the stem cell to specific target. After transplanta-
tion, the fate of MSCs would be stochastically determined
based on the microenvironment and biochemical stimulation
of the host body; therefore, not all transplanted cells would
contribute to the regeneration of damaged organs. As
recently demonstrated in mice, transplanted MSCs could dif-
ferentiate into osteoblasts in the heart [185]. Although cell
differentiation can be achieved using the biochemical or bio-
physical stimulus in vitro, however, reverse differentiation
may occur after transplantation or withdrawal of stimulants
[186]. Therefore, genetic modification of the transplanted
stem cells would be the key to achieve a directed and irrevers-
ible differentiation into the desired lineage. Several studies
have been conducted on the therapeutic applicability of
genetically modified MSCs in animal models of diabetes,
myeloma bone disease, GvHD, and myocardial infarction.
Table 5 summarizes the modifiers, cell source, genetic engi-
neering method, and applications from various studies.

In addition to the ability to differentiate, MSCs can be
genetically engineered to home to the target tissue. For exam-
ple, MSCs transduced with CXCR4 demonstrated higher
homing in the mice model of myocardial infarction after
intravenous administration [110, 235]. The overexpression
of CXCR4 facilitated MSC aggregation and etching of collag-
enous tissue of the infarcted area [236]. Such strategies will
help in the development of noninvasive cell therapies, since
the route of administration is also important to avoid the for-
mation of heterotopic tissue, especially in the case of geneti-
cally modified MSCs. On the other hand, poor cell survival
after transplantation is a yet to resolved hurdle in MSC-
based therapies. Studies show that genetic modification of
MSCs with hypoxia-regulated heme oxygenase-1 (HO-1),
Aktl, and Bcl-2 increased cell survival after transplantation
in animal models by inhibiting cell apoptosis [236-238].
Thus, these strategies might be the possible solutions to
increase the survival of MSCs after transplantation.

8.1.2. Tissue Engineering Using MSCs. Another area of regen-
erative medicine is to combine cells and scaffolds to create a
3D implant. Tissue engineering seeks to recreate the in vivo
environment to promote the development of tissues needed
for transplantation. Various approaches have been studied,
including protein-impregnated scaffolds [239], gene vector-
incorporated templates [240], and cell-scaffold combinations
(Table 6). Scaffolding alone has been shown to help repair
certain types of damage [239]. However, incorporating MSCs
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TaBLE 4: Comparison between stem cell and secretome.

Aspect Stem cell

Secretome

(i) General culture condition is normally used but special
culture condition might be needed to produce specific

cells (e.g., chondrogenic media to produce

Manufacturing chondrogenic-differentiated MSCs)

for allogeneic stem cells

(iii) May contain elements of external sources (FBS, HPL)
(iv) Require a large number of cells for clinical applications

(i) Stem cell markers are well established

(ii) The consistency of the cell source has to be maintained

(i) General culture condition can be used but special culture
condition mimicking the pathophysiological condition
of the target diseases might be needed to produce the
“bioequivalent” secretome

(ii) The consistency of the cell source has to be maintained
(iii) Enrichment protocol might be needed to enhance the
production of secretome

(i) Secretome may contain elements of external sources
(FBS, HPL)

(ii) High volume of media is collected, and it needs to be
processed and concentrated for clinical applications

(i) The characterization is complex since secretome contain
many elements such as growth factors, cytokines, and

Quality (ii) The characterization techniques are well established extracellular vesicles
control (iii) Specific functionality assay is needed to determine the .. . o . .
officac (ii) Specific functionality assay is needed to determine its
Y efficacy
(i) Repetitive collection of secretome from spent culture
P P
media can greatly reduce the cost of production
. . . ii) E i e i f
Cost of (i) Cost can be reduced via large-scale expansion of (ii) Extra cost is needed or downstrea}'n processing o
production allogeneic stem cells secretome (concentration and purification)

and treatment  (ii) Treatment dose is easier to be justified by number of cells

(iii) Treatment dose is vague (protein amount vs number of
particles)

(iv) It is unsure which component(s) of the secretome are
exerting therapeutic effects

(i) Stem cells can be differentiated into specific lineages to
improve the therapeutic efficacy and treat different

diseases

(i) The therapeutic components of the secretome could be

(ii) Mesenchymal stem cells are easy to isolate and expand, customized by modifying the culture condition

have low immunogenicity (both autologous and

(preconditioning)

allogeneic cells can be used clinically), free from ethical (ii) Can cross BBB
issues, and have limited replicative lifespan, hence safe  (iii) Can circulate and home to the target tissue

from malignant formation
Advantages '8

(PSCs)
(iv) Can cross blood-brain barrier (BBB)

(iii) Can be reprogrammed into pluripotent stem cells

(iv) Low risk of mutation, carcinogenesis, and immunogenic
as they are not living cells
(v) Lower risk of vascular obstruction as they are smaller in
size compared to stem cells

(v) Can migrate and home to the target tissue in response to (vi) Easier to store

the signal release by the injured cells

(vii) Cell degeneration or senescence in the host after

(vi) Living cells can exert the therapeutic effects for a longer transplantation is not a concern
period. Thus, less frequency of administration is needed

(e.g., once in every 6 months)

(i) Higher risk of mutation and carcinogenesis
(especially the PSCs)
(i) Ethical issue (embryonic stem cells)

(iii) Might illicit host immune response to reject the
transplanted cells (especially the allogeneic stem cells)
(iv) Cell degeneration or senescence in the host after

Disadvantages transplantation
(v) Potential vascular obstruction

(vi) More stringent storage condition to maintain the cell

viability

(vii) More optimization is needed to improve the safety and

efficacy (e.g., optimum dosage and route of
administration)

(i) Cannot be used as cell-replacement therapy and relying
on the proliferation of host cells for tissue regeneration

(ii) Lack of understanding on its mechanism of action

(iii) Lack of long-term safety data

(iv) Lack of standardization

(v) Short half-life in the body. Thus, might need more
frequent administration

(vi) Difficult to purify the specific therapeutic components
(e.g., exosomes). Thus, the secretome products are
highly heterogeneous

into the scaffold improves the in situ repair process by acting
as the precursors and stimulators [241].

Over the decades, much effort has been devoted to study
the physical and chemical properties of various biomaterials,
as these properties affect the differentiation pathway and

adhesion capacity of MSCs. For example, the elasticity of a
polyacrylamide matrix seeded with MSCs determines their
differentiation pathway into neuronal, muscle, or bone line-
age based on crosslink density [247]. Furthermore, studies
indicated that the presence of carboxyl or hydroxyl groups
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Advantages

o Living cells

« Potency to differentiate and/or regenerate into the
tissue of interest.

« Ability to be reprogrammed into pluripotent cells

o Well-defined isolation, characterization and expansion
procedures

« Potential for bioengineering and/or
conditioning

o Availability of clinical trials safety
and efficacy

Mesenchymal
stem cell

Disadvantages

o Risk for immune rejection

o Lack of optimal dosage, route of administration, and
timing of injection.

o Risk for altered viability during cryopreservation
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Advantages
o Cell-free agents
« Minimal risk of malign transformation
«  Ability to pass blood-brain barrier
» Non immunogenic
o Ideal candidates for drug delivery
« Potential for bioengineering and/or
conditioning
o Fabrication as “of-the-shelf” products
i in large quantities
Presence of databases to provide
information about their composition
and functions
» Demonstrated efficacy in case
studies of certain diseases

|

Exosomes

R
oY

Disadvantages

« Inability to differentiate into any cell

» Lack of understanding on its mechanism
of action

« Systemic and diverse effects of miRNAs

o Lack of standardization for production
and characterization

o Short half-life in the blood after
administration

FIGURE 5: Advantages and disadvantages of MSCs and MSC-derived exosomes (created with BioRender.com).

on the scaffold surface prioritizes chondrogenic differenti-
ation, while amino and sulfhydryl groups promote bone
formation [248]. In addition to biometric properties, graft
angiogenesis is another important factor in ensuring cell
survival and therapeutic efficiency. The host’s blood vessels
can invade the transplant, but the process is very slow,
and it takes weeks to vascularize just a few millimeters.
Therefore, researchers incorporate angiogenesis-promoting
factors such as endothelial progenitor cells (EPCs) and VEGF
to hasten graft angiogenesis [249]. Unfortunately, no perfu-
sion was observed upon implantation [250]. Currently, there
are no established angiogenesis strategies available to support
transplantation of large tissue due to delayed angiogenesis
which resulted in cell apoptosis and necrosis. The approaches
mentioned above only could increase the likelihood of
angiogenesis.

8.2. Exosomes

8.2.1. Preconditioning. Both 3D culturing and pretreatment
of MSCs with cytokines, hypoxia, or chemicals are reliable
methods to increase exosome secretion (Figure 6) [251]. In
addition, MSC gene and cell surface modifications may be
used to improve the therapeutic effect of exosomes.

(1) Increasing Exosome Production. Increasing the secretion
of exosomes is an important but unmet process. Studies have

shown that 3D culturing methods such as bioreactors and
microcarriers could significantly increase the production of
exosomes by cultured MSCs [252]. Generally, MSCs are
processed on 2D surfaces in plastic dishes that do not reflect
the physiological niches of MSCs. Therefore, the use of a 3D
porous scaffold structure, such as beads, microfiber, or any
other type of carrier is an attractive method to increase exo-
some production. One study showed that antifungal agents,
i.e., imidazole and nitrefazole, significantly increase the pro-
duction of exosomes in prostate cancer cells [253]. In this
case, nitreprazole increased the level of the protein Rab27a,
which regulates MVB exocytosis. Other chemicals, such as
azole and pentetrazole, have also been shown to activate exo-
some biogenesis-related molecules, i.e., Alix and NSmas2.
The techniques may be employed to increase the production
of exosomes from MSCs by modulating the biogenesis and
release of exosomes [253]. On the other hand, gene editing
is another effective way to increase the production of exo-
somes. There are several important genes, such as phospho-
lipase D2, that are important for the biosynthesis and
secretion of exosomes, and the overexpression or dysfunction
of these genes promotes exosome secretion. For example, the
overexpression of phospholipase D2 led to a twofold increase
in the number of secreted exosomes [254].

(2) Hypoxia Preconditioning. Hypoxia culture is commonly
used to prime MSCs. Several studies found that exosomes
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TABLE 5: Genetic modifications in human MSCs and the disease models tested.

Factor overexpressed MSC source Method Disease Reference
Akt Human umbilical cord Adenovirus Acute myocardial infarction [187]
Angiotensin II type 2 receptor Human bone marrow Lentivirus LPS-induced acute lung injury [188]
Arginine decarboxylase Human adipose tissue Retrovirus Spinal cord injury [189]
Basic fibroblast growth factor (bFGF) Human bone marrow Lentivirus Angiogenesis [190]
Human umbilical cord Plasmid
. Neurological injury and disease 191
Brain-derived neurotrophic factor (BDNF) blood transfection & jury [191]
Human bone marrow Lentivirus Neuronal degeneration [192]
C-C chemokine receptor type 2 (CCR2) Human bone marrow Lentivirus Ischemic stroke [193]
CXC chemokine receptor 4 (CXCR4) Human umbilical cord Lentivirus Radiation- induced lung injury [194]
Cytosine deaminase (CD) and herpes Human umbilical cord .. .
simplex virus thymidine kinase (HSV-tk) blood Lentivirus Ovarian cancer [195]
Ephrin-B2 Human bone marrow Plasmlfl Ischemic tissues [196]
transfection
Forkhead box protein (Foxa2) Human adipose tissue Plasmid Acute liver injury [197]
transfection
) ) . Human adipose Lentivirus Renal interstitial fibrosis [198]
Glial-derived neurotrophic factor (GDNF) . . .
Human bone marrow Adenovirus Nephrotoxic serum nephritis [199]
Glucocorticoid-induced tumour necrosis Plasmid
factor-related receptor (GITR) Human bone marrow transfection Small cell lung cancer [200]
Granulocyte chemotactic protein-2 (GCP-2) Human adipose tissue Lentivirus Myocardial infarction [201]
Heme oxygenase-1 (HO-1) Human enllzﬁy onic stem Lentivirus Myocardial infarction [202]
Human bone marrow Retrovirus Bladder outlet obstruction [203]
Human umbilical cord Lentivirus Myocardial infarction [204]
Human bone marrow Adenovirus Liver fibrosis [205]
Hepatocyte growth factor (HGF) Human umbilical cord Adenovirus Injured sinonasal mucosa [206]
Human umbilical cord Adenovirus Parkinson’s disease [207]
Human umbilical cord Plasmid . .
blood transfection Liver fibrosis [208]
Human bone marrow Lentivirus Spinal cord injury [209]
Hepatocyte nuclear factor 4a (HNF 4a) Human umbilical cord Lentivirus Hepatocellular carcinogenesis [210]
Human N-cadherin Human Eﬁzglcal cord Lentivirus Myocardial infarction [211]
Hypoxia inducible factor-1a (HIF-1a) Human bone marrow Lentivirus Angiogenesis [212]
IL-4 Human adipose tissue Lentivirus Multiple sclerosis [213]
Human amniotic fluid Human a_mnlotlc Liver fibrosis [214]
IL-10 fluid
Human bone marrow AAV Acute ischemic stroke [215]
Leptin Human bone marrow Lentivirus Myocardial infarction [216]
hlsl\]iliglomeobox transcription factor islet-1 Human bone marrow Lentivirus Myocardial infarction [217]
miR-101-3p Human bone marrow Lentivirus Oral cancer [217]
miR-16-5p Human bone marrow Plasmlfi Colorectal cancer [218]
transfection
. Plasmid .
miR-199a Human bone marrow . Glioma [218]
transfection
miR-199a-3p Human bone marrow mlRNA Renal 1sche.rr}1a/reperfu510n [219]
transfection injury
miR-let-7d or miR-154 Human bone marrow Lentivirus Lung injury [220]
MiRNA-181 Human umbilical cord Lentivirus Myocardial ischemia-reperfusion [221]

blood

injury
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TaBLE 5: Continued.
Factor overexpressed MSC source Method Disease Reference
Neuregulin 1 (NRG1) Human adipose tissue Adenovirus Cerebral ischemia [222]
g\?rcflze; r factor (erythroid-derived 2)-like 2 Human amniotic fluid Lentivirus Acute lung injury [194]
Oct4 and Sox2 Human adipose tissue Plasmid Liver inju [223]
b transfection jury
PARKIN Human Wharton’s jelly Plasrm.d Parkinson’s disease [224]
transfection
Pigment epithelial-derived factor (PEDF) Human bone marrow Lentivirus Hepatocellular carcinoma [225]
SRC3-specific short hairpin RNA (sh-SRC3)  Human bone marrow Lentivirus Multiple myeloma [226]
Human adipose tissue Lentivirus Occupational asthma [227]
sST2 o
Human adipose tissue Lentivirus Endotoxin 1p(1.uced acute lung [228]
injury
Thioredoxin-1 (Trx-1) Human umbilical cord Adenovirus Acute radiation injury [229]
Tissue matrix metalloproteinase inhibitor 2 Human umbilical cord Lentivirus Myocardial infarction [230]
(TIMP2)
Human bone marrow Lentivirus Non-small-cell lung cancer [231]
TNF-related apoptosis-inducing ligand . . Plasmid
(TRAIL) Human adipose tissue transfection Non-small-cell lung cancer [232]
Human adipose tissue Lentivirus Glioblastoma multiforme [233]
Transforming growth factor bl (TGF-bl) Human bone marrow Lentivirus Angiogenesis [190]
Vascular endothelial growth factor (VEGF) ~ Human bone marrow Lentivirus Peripheral nerve injury [234]
TaBLE 6: Tissue engineering therapies using MSCs.
Disease Study organism Cell Scaffold Outcome Reference
. Injectable Cartilage filled the
Osteochondral defect Rabbit Autologous MSCs synthetic ECM full-thickness defect [242]
Enhanced ingrowth of
Spinal cord injury Rat Autologous MSCs Hydrogels axons in the lesion and [243]
improvement in function
Critical size bone defect Mouse OSX-modified murine MSCs ~ Collagen sponge  Enhanced bone formation [244]
C3H10T1/2 cells stably
Tendon defect Rat transfected with BMP-2 and  Collagen sponge Tendon regeneration [245]
active Smad8 variant
Articular cartilage defect Rabbit Autologous MSCs modified Chitosan scaffold Enhanced repair; defect [246]

with TGE-1

filled with hyaline cartilage

derived from MSCs cultured in hypoxic condition showed
greater angiogenic potential compared to exosomes secreted
by MSCs cultured in normoxic condition [255]. The exo-
somes secreted by hypoxia primed MSCs were uptaken more
effectively by the target cells compared to exosomes derived
from MSCs cultured in normoxic condition. The uptaken
exosomes promoted the VEGF expression and protein kinase
A signaling pathway activation in the target cells, which
resulted in improved angiogenesis [256, 257]. However, the
reason for these phenomena is still unclear, and how different
culture conditions influence the uptake of exosomes needs to
be further investigated.

(3) Chemical Preconditioning. In contrast to hypoxic prim-
ing, the effects and mechanisms of biomolecule priming in
exosomes are better studied. Various studies have compared

the therapeutic effect between lipopolysaccharides (LPS)
preconditioned and unconditioned exosomes. LPS condi-
tioned exosome showed higher regeneration potential for
liver disease preclinically by reducing the expression of IL-
6 and TNF-f [258] and upregulated the expression of
THP-1, which in turn stimulate the synthesis of more anti-
inflammatory cytokines and contributed to the polarization
of M2 macrophages [259]. A recent study has also shown
that macrophages cultivated with exosomes from LPS-
primed MSCs expressed higher levels of STAT3 gene, secre-
tion of cytokines (IL-10 and IL-15), and growth factors
(FLT-3 L) which play vital roles in cell regeneration and anti-
apoptosis [260]. Several other molecules have been tested as
preconditioners, including thrombin to improve fibroblast
proliferation, enhance anti-inflammatory effects, accelerate
wound healing [176] and melatonin to increase BCL2,
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FIGURE 6: Preconditioning approaches to enhance the secretion and therapeutic efficacy of exosomes. The yield of secretome can be increased
by preconditioning strategies such as introducing hypoxic and serum deprivation culture conditions and genetic modification using CRISPR
technology as well as overexpression of certain genes. LPS: lipopolysaccharides; NO: nitric oxide; IL: interleukin; miRNAs: micro RNAs; UV:

ultraviolet (created with BioRender.com).

HO1, IL-10, and VEGF expression, and suppress the expres-
sion of various apoptosis-related genes such as ICAMI,
HIF1, NFkB, and IL-1f in a rat model [261]. Exosomes
derived from deferoxamine-primed MSCs contained higher
levels of miR-126a that support angiogenesis [262].

8.2.2. Genetic Modification. In 2010, a study reported that the
paracrine factor secreted by MSC-overexpressed GATA-4
increased blood vessel formation and cell survival [263].
Next, in a mouse model of myocardial infarction, exosomes
secreted by the genetically modified stem cells with GATA-
4 were more effective in increasing angiogenesis and reduc-
ing the number of apoptotic cardiac cells compared to the
exosomes secreted by native stem cells [264]. MSC-derived
exosomes that overexpress GATA-4 and CXCR4 have been
shown to contain cardioprotective antiapoptotic miR-19a
that activates Akt and ERK signaling pathways [265, 266].
Similarly, exosomes from MSCs that overexpress SDF-1
have been shown to prevent apoptosis of cardiomyocytes
and exhibit improved cardiac regeneration properties
[267]. Genetic modification methods have also been inves-
tigated to improve the therapeutic potential of exosomes
for musculoskeletal disorders, liver and lung disorders,
and inflammation-related disorders.

8.2.3. Combining Nanoparticles, Exosomes, and Stem Cells.
Nanotechnology is the term used to cover the design, con-
struction, and utilization of functional structures with at least
one characteristic dimension measured in nanometers. In
recent years, the application of nanotechnology in stem cells
has made great advances. Currently, nanotechnology is uti-
lized to control the proliferation and differentiation of the
transplanted stem cells.

Carbon nanotubes (CNTs) are widely used in various
fields, including medicinal chemistry, molecular electronics,
and tissue engineering, due to their unique mechanical, phys-
ical, and chemical properties. CNTs can be designed and
filled with DNA or peptide molecules to improve their prop-
erties and functions, such as biocompatibility and recogni-
tion capability in the molecular treatment of diseases [268-
270]. In a study that examined the effect of CNTs on the pro-
liferation and differentiation of human stem cells, the result
showed that CNTs inhibit the proliferation of cells of the
embryonic kidney cell line HK293 and reduce the adhesion
efficiency of cells in a dose- and time-dependent manner,
but similar CNTs can stimulate the formation of bumps on
the surface of human osteoblasts and fibroblasts, which are
one of the active cells in the immune response [271]. Nano-
materials such as CNTs have enormous potential in the field
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of regenerative medicine in several areas, including (1) the
development of nanovehicles to deliver biomolecule-based
products to MSCs and (2) the creation of new biomedical
applications for electroactive CNTs in combination with
MSCs. However, despite the immense potential of nanoparti-
cles, the method of delivering nanoparticles to the target cells
was still a major problem. The maximum size of particles
entering cells is 25nm to 700 nmy; so, it is difficult for nano-
sized particles to penetrate cells due to the tension and adhe-
sion strength of the cell surface. As an alternative, the
nanoparticles can be bonded to the external cell membrane.

9. Conclusion

Regenerative medicine holds an immense potential for a vari-
ety of diseases in which there is a high unmet clinical need.
Regenerative medicine covered a wide range of subbranches
including cell and gene therapies and tissue engineering
applications. Stem cells have been the focus for years because
of their biological potential, and paracrine effect is the pivotal
mechanism in stem cell-based tissue regeneration. Thus, cell
secretome has attracted great attention as therapeutics in
recent years and has been suggested as alternative to stem cell
therapy as cell-free agents. The high degree of confidence in
cell-based therapy is vividly indicated by the significant
increase in the number of ongoing and planned clinical trials
worldwide. Despite the relatively slow rate of translational
success from laboratory to clinics, expectations, optimism,
and excitement surrounding this field remain great.
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Ischemic stroke (IS) is a serious cerebrovascular disease with high morbidity and disability worldwide. Despite the great efforts that
have been made, the prognosis of patients with IS remains unsatisfactory. Notably, recent studies indicated that mesenchymal stem
cell (MSCs) therapy is becoming a novel research hotspot with large potential in treating multiple human diseases including IS. The
current article is aimed at reviewing the progress of MSC treatment on IS. The mechanism of MSCs in the treatment of IS involved
with immune regulation, neuroprotection, angiogenesis, and neural circuit reconstruction. In addition, nutritional cytokines,
mitochondria, and extracellular vesicles (EVs) may be the main mediators of the therapeutic effect of MSCs. Transplantation of
MSCs-derived EVs (MSCs-EVs) affords a better neuroprotective against IS when compared with transplantation of MSCs alone.
MSC therapy can prolong the treatment time window of ischemic stroke, and early administration within 7 days after stroke
may be the best treatment opportunity. The deliver routine consists of intraventricular, intravascular, intranasal, and
intraperitoneal. Furthermore, several methods such as hypoxic preconditioning and gene technology could increase the homing
and survival ability of MSCs after transplantation. In addition, MSCs combined with some drugs or physical therapy measures
also show better neurological improvement. These data supported the notion that MSC therapy might be a promising

therapeutic strategy for IS. And the application of new technology will promote MSC therapy of IS.

1. Introduction

Stroke is the second leading cause of death in the world after
ischemic heart disease [1]. Ischemic stroke (IS) accounts for
87% of all stroke patients, and its incidence rate is still rising
[2]. Due to acute neurological deficits caused by focal cere-
bral ischemia, it has brought different degrees of disability
burden to a large number of patients. Currently, there are
few treatment options for ischemic stroke. Intravenous injec-
tion of tissue plasminogen activator (t-PA) can recanalize the
blocked vessels. However, this treatment is limited by a short
time window (< 4.5 hours) and the risk of secondary cerebral
hemorrhage [3]. Mechanical thrombectomy (MT) can
extend the treatment time window to 24 hours, but this kind
of special operation can only be performed in a few qualified
hospitals and needs to go through strict screening of indica-
tions and contraindications; only a few patients can accept
MT treatment [4]. In addition, rehabilitation treatment can
only bring limited functional improvement; there are still a
large number of patients with permanent disabilities [5].

Therefore, it is imperative to develop a new treatment for
ischemic stroke.

Stem cell therapy has been widely studied in different
central nervous system diseases (such as autoimmune
encephalomyelitis, spinal cord injury, and stroke) in recent
20 years [6-8]. There are many types of stem cells, including
embryonic stem cells, neural stem cells, hematopoietic stem
cells, and mesenchymal stem cells [9]. As early as 1970, Frie-
denstein et al. cultured fibroblast precursor from the cell sus-
pension of guinea pig spleen and bone marrow, which is now
called mesenchymal stem cell [10]. Later studies found that
these cells have the potential of multidirectional differentia-
tion. They can not only differentiate into mesoderm lineage
cells such as osteoblasts, chondrocytes, adipocytes, and mus-
cle cells [11-13] but also differentiate into endoderm and
neuroectoderm cells, including endothelial cells [14], hepato-
cytes [15], neurons [16], and glial cells [17]. MSCs lack HLA-
IT molecules and rarely express costimulatory molecules, so
they are nonimonogenic or hypoimmunogenic [18]. Due to
its pluripotent differentiation and immune tolerance, MSCs
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have become one of the most promising candidate cells in
stem cell therapy.

In 2006, the Mesenchymal and Tissue Stem Cell Com-
mittee of the International Society for Cellular Therapy
(ISCT) proposed a set of minimum standards for the defini-
tion of bone marrow MSCs: First, MSCs must show the prop-
erty of plastic adherence in standard culture conditions.
Second, MSCs must express endothelial surface markers
(CD73, CDY0, and CD105) and be negative for hematopoi-
etic markers (CD11b, CD14, CD19, CD34, CD45, CD79a,
and HLA-DR). Third, MSCs must be capable of differentiat-
ing to osteoblasts, adipocytes, and chondroblasts in vitro
[19].

In recent years, a large number of studies have proved
that the application of MSCs can reduce the area of cerebral
infarction after ischemia and promote the recovery of neural
tunction. The therapeutic mechanism of MSCs in IS has not
been fully understood, which may be related to its neuron
replacement, neurogenesis, angiogenesis, and anti-
inflammatory effects. The extracellular vesicles (EVs) pro-
duced by MSCs may also play an important role in this pro-
cess. A large number of preclinical studies have proved its
safety. However, there is no reliable and authoritative scheme
for MSCs in the treatment of IS. The best choice of MSCs in
source selection, treatment dose, treatment time window,
administration method, and treatment strategy needs to be
explored scientifically. This article will make a comprehen-
sive review on the progress of MSCs in the treatment of IS.

2. Method

Review the literature and summarize the effects, strategies,
related mechanisms, safety, and clinical application of MSCs
in IS treatment through searching the PubMed database with
key words: ((ischemic stroke[Title/Abstract]) OR (cerebral
ischemia[Title/Abstract]) OR (cerebral infarction[Title/Ab-
stract]) OR (middle cerebral artery occlusion[Title/Ab-
stract]) OR (ischemic brain injury[Title/Abstract])) AND
((Mesenchymal Stem Cells[Title/Abstract]) OR (Bone Mar-
row Stromal Cells[Title/Abstract])). And a total of 296 results
were presented over the past five years. We excluded 120
reviews, systematic review, comments, and irrelevant articles
and finally got 176 research articles.

3. Mechanism of MSCs in the Treatment of IS

3.1. Immunomodulatory. Inflammation and immune
response play an important role in the pathogenesis of stroke.
After focal cerebral ischemia, reactive oxygen species, proin-
flammatory cytokines, and chemokines are released from
damaged brain tissue, causing the activation of resident
inflammatory cells such as microglia and astrocytes [20]. At
the same time, a large number of inflammatory factors lead
to the destruction of the blood-brain barrier, and blood-
derived inflammatory cells enter the ischemic brain tissue,
which expands the inflammatory response and activates the
adaptive immune response [21, 22]. Although some studies
have shown that inflammation after ischemia can promote
the repair of brain tissue and the recovery of neural function
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in the chronic phase [23], more evidence supports the
adverse effects of inflammatory response. The continuous
infiltration of immune cells and the continuous expansion
of the inflammatory response can cause neuronal necrosis,
brain edema, and aggravate secondary brain injury [24, 25].

As mentioned above, inflammatory factors lead to the
destruction of blood-brain barrier after ischemia, and then
chemokines such as monocyte chemoattractant protein-1
(MCP-1) and stromal cell-derived factor-1 (SDF-1) can
attract large-scale invasion of peripheral immune cells [21].
Researchers found that transplanted MSCs can maintain
the integrity of blood-brain barrier and reduce the leakage
of inflammatory cells in brain parenchyma by downregulat-
ing the expression of aquaporin-4 and reducing the release
of neutrophil matrix metalloproteinase-9 (MMP-9) [26,
27]. In addition, MSCs can reduce the production of MCP-
1 by secreting anti-inflammatory cytokine TGF-f, thus
blocking the migration of CD68 + immune cells to the ische-
mic areas [28].

Studies have shown that the immunomodulatory effect of
MSCs is related to the regulation of proinflammatory and
anti-inflammatory cytokines. By coculturing MSCs with oxy-
gen- and glucose-deprived (OGD) neurons, Huang et al.
found that MSCs may play an anti-inflammatory role by
secreting IL-6 and reducing the expression of proinflamma-
tory cytokine TNF-a [29]. The potential signaling pathway
may be related to the inhibition of NF-«B activity by MSCs
[30]. Similarly, in the animal model of IS, researchers also
confirmed that MSCs can reduce the levels of proinflamma-
tory cytokines TNF-a and IL-1/ and reduce the infarct vol-
ume after focal cerebral ischemia [31]. Studies have shown
that intra-arterial application of MSCs can inhibit the activa-
tion of acid sensing ion channels (ASICs) and then decrease
the expression of the inflammasome, which leads to the inhi-
bition of the activation of IL-1f [32]. Liu et al. reported that
transplanted MSCs could alleviate nerve injury after focal
cerebral ischemia by upregulating the expression of anti-
inflammatory cytokine IL-10 and downregulating the expres-
sion of proinflammatory cytokine TNF-a [33]. A recent
study showed that the above immunoregulation effect is
achieved by MSCs enhancing Wnt/f-catenin signaling path-
way, which is also related to MSCs mediated reduction of
apoptotic cells after IS [34]. The cytokines involved in the
immunoregulation of MSCs also include IL-23 and IL-17.
In ischemic stroke, the inflammatory IL-23/IL-17 axis has
been proved to be related to ischemia-reperfusion injury
[35]. The experimental results of Ma et al. showed that MSCs
injected via the caudal vein could reduce the infarct volume
and promote the recovery of neurological function by down-
regulating the IL-23/IL-17 axis [36]. The above evidence sug-
gests that MSCs can regulate the balance of proinflammatory
and anti-inflammatory factors in the ischemic areas, and the
same phenomenon is also observed in peripheral blood [37].

The activation of resident immune cells has a great
impact on the inflammatory response after stroke. Previous
in vitro experiments showed that MSCs could promote
microglia to transform from a harmful neurotoxic pheno-
type, mainly releasing proinflammatory molecules to a bene-
ficial neuroprotective  phenotype  producing anti-
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inflammatory molecules through CX3CL1 release [38].
Recently, Tobin et al. found that microglia in ischemic lesions
of MSC-treated rats showed the same morphology of small
cell bodies and a large number of branchings as that of inac-
tive ones [39]. Similarly, the experimental results of Oh et al.
showed that intravenous injection of MSCs could induce
proinflammatory M1 microglia to differentiate into anti-
inflammatory M2 microglia after IS and exert anti-
inflammatory effects by increasing the expression of IL-1ra
(an anti-inflammatory cytokine) [40]. Further studies show
that the activation of cAMP-response element binding pro-
tein (CREB) induced by MSCs may be related to it [40]. In
vivo and in vitro studies by McGuckin and colleagues have
shown that MSCs can cause low expression of microglia acti-
vation markers (ED1 and Iba) and astrocyte proliferation
markers (GFAP) [41]. It is suggested that the immunomodu-
latory effect of MSCs may be related to the inhibition of these
two kinds of brain resident inflammatory cells, which may be
related to a noncanonical JAK-STAT signaling of unpho-
sphorylated STAT3 [41].

The proinflammatory effect of MSCs has also been
reported. The experimental results of Li et al. showed that
the release of inflammatory factors in the infarct lesions of
MSC transplantation group increased on the second day after
the establishment of the middle cerebral artery occlusion
(MCAO) model but decreased on the seventh day [42]. Guan
et al. reported that MSC transplantation increased the pro-
portion of TNF-1a and IL-1f positive immune cells in the
infarcted cortex of MCAO rats, which supported the
immune-promoting effect of MSCs in the early stage of
infarction [43]. However, MSC transplantation is still benefi-
cial to the functional recovery of MCAO rats on the second
day [42]. Therefore, more effort is required to further explore
the exact mechanism of MSC-mediated immunoregulation
in the pathological process following IS in the further.

3.2. Neuroprotection. After the occurrence of IS, the ischemic
focus of brain tissue was formed, which was divided into the
central ischemic core and the surrounding ischemic penum-
bra. Most cells died in the ischemic core, and the structure of
the ischemic penumbra changed, but the neurons still sur-
vived [20]. With the prolongation of infarct time, hypoxia
and hypoglycemia lead to the decrease of ATP production
and cell death in ischemic penumbra neurons. Moreover,
high levels of glutamate from the ischemic core can induce
the production of apoptosis mediators such as nitric oxide
and oxygen free radicals in ischemic penumbra and cause
neuronal apoptosis [20]. Therefore, the protection of neu-
rons in the ischemic penumbra is the key to the treatment
of IS.

By inducing MCAO in rats, the researchers found that
compared with the control group, the expression of antia-
poptotic factor Bcl-2 protein in MSC group was significantly
increased, and the expression of p53 protein was significantly
decreased (the induction of p53 is related to neuronal apo-
ptosis) [44]. In addition, the density of neurons around the
ischemic area increased after MSC transplantation [44].
These evidences suggest that administration of MSCs can
reduce neuronal apoptosis.

After transplantation, MSCs directly release or increase
the release of endogenous neurotrophic factors such as
brain-derived neurotrophic factor (BDNF) [45, 46], nerve
growth factor (NGF) [47], glial cell line-derived neurotrophic
factor (GDNF) [48], and basic fibroblast growth factor
(bFGF) [49] to achieve neuroprotective effect. Chen et al.
found that MSC treatment significantly increased bFGF in
the ischemic border area of rats with middle cerebral artery
occlusion, accompanied by a significant decrease of apoptotic
cells in the ischemic border area [49]. In addition, the
researchers found that transplantation of BDNF gene-
modified MSCs could further increase the level of BDNF in
the lesion area and further reduce neuronal apoptosis [45,
46]. The same enhancement effect was also observed in
GDNF gene modified MSCs [48].

Studies have shown that fibronectin plays a neuroprotec-
tive role after IS. Fibronectin gene knockout mice show
increased neuronal apoptosis and infarct size after transient
focal cerebral ischemia [50]. The researchers found that six
weeks after transplantation, transplanted MSCs still retained
their fibronectin producing properties, suggesting that fibro-
nectin may be involved in the neuroprotective effect induced
by MSCs [51]. The imbalance of calcium ions in ischemic
brain tissue after stroke can trigger the over activation of cal-
cineurin (CaN) and cause neuronal apoptosis. Researchers
found that MSC transplantation reduced the expression of
CaN in the lesion, resulting in decreased neuronal apoptosis
after IS [52].

In addition to apoptosis, MSCs can also play a neuropro-
tective role by alleviating parthanatos and necroptosis. By
coculturing MSCs with OGD neurons, Kong et al. found that
MSCs could protect neurons from parthanatos by reducing
the nuclear translocation of apoptosis inducing factor (AIF)
[53]. Moreover, the decrease of neuronal necrosis kinase
RIP1 and RIP3 induced by MSCs was highly correlated with
the decrease of neuronal necroptosis [53]. In addition, the
experimental results of Nazarinia et al. showed that trans-
planted MSCs could reduce neuronal autophagy by increas-
ing the expression of mTOR, thus playing a neuroprotective
role after cerebral ischemia [54].

3.3. Angiogenesis. After IS, capillaries were destroyed, blood-
brain barrier permeability increased, aggravating the inflam-
matory reaction, neuronal necrosis, and brain edema. Neo-
vascularization after stroke helps to restore the blood and
oxygen supply of the affected brain tissue, thus promoting
nerve recovery, which may be a key factor in the survival of
ischemic neurons [55]. The researchers found that patients
with higher microvessel density at the edge of the ischemic
area had a longer survival time, suggesting that poststroke
angiogenesis plays an indispensable role in the prognosis of
stroke patients [55].

Through three-dimensional analysis of the capillaries in
the lesions, the researchers found that the number of new
capillaries at the edge of the lesions in MCAO mice trans-
planted with MSCs increased significantly, which proved
the role of MSCs in promoting angiogenesis [56, 57]. Studies
have shown that neovascularization is mainly composed of
endogenous endothelial cells but rarely differentiated from



transplanted MSCs [57]. Moreover, there was no significant
correlation between the microvessel density and the number
of mesenchymal stem cells in the peri-infarct area [58].
Therefore, the replacement of vascular endothelial cells may
not be the main mechanism of MSCs. The current view is
that MSCs transplanted into the infarcted areas can promote
angiogenesis by directly releasing or increasing endogenous
nutrients such as vascular endothelial growth factor (VEGF)
[29], angiopoietin-1 (Ang-1) [59], placental growth factor
(PIGF) [60], and basic fibroblast growth factor (bFGF) 45-
47 [61]. Both Ang-1 and VEGF have strong angiogenic
effects, but their effects are not exactly the same. VEGF can
promote the formation of immature vascular trunk, and
Ang-1 participates in the maturation and stability of vessels
[62, 63]. It has been reported that MSCs can reduce infarct
size by releasing Ang-1 and VEGF to promote angiogenesis.
Interleukin-1 may play an important role in this process
[64]. Toyama et al. investigated the effects of Ang-1 gene-
modified MCSs (Ang-MCS), VEGF gene-modified MCSs
(VEGF-MCSs), and Ang-1 gene combined with VEGF
gene-modified HMCS (Ang-VEGF-MCSs) on angiogenesis
in infarcted area of MCAO rats and compared their thera-
peutic effects [56]. Both Ang-MCS group and Ang-VEGF-
MCS group showed an increase in capillary volume and a
decrease in infarct size, of which the Ang-VEGF-MCS group
achieved the greatest benefit [56]. Surprisingly, transplanta-
tion of VEGF overexpressed MSCs can lead to increased
infarct size and neurological deficits, which suggests that
angiogenesis may require the coexpression of vascular endo-
thelial growth factor and angiotensin-1 [56].

The signaling pathway of angiogenesis induced by trans-
planted MSCs remains to be explored. After induction of
MCAO model, Guo et al. first confirmed the increase of neo-
vascularization in the infarcted area of MSC-treated rats [65].
In addition, by Western blotting and double immunofluores-
cence staining, they found that the level of Notch 1 protein
and Notch 1 positive microvessels in the lesion area increased
significantly, suggesting that MSCs promote angiogenesis by
activating the Notch signaling pathway in the endothelial cell
of ischemic brain tissue after stroke [65]. Further study by
Zhu et al. showed that the activation of Notch signal may
be related to the secretion of VEGF-A by endothelial cells
[66]. The administration of DAPT (a gamma secretase inhib-
itor, which can inhibit the activation of Notch signal) led to
the decrease of vascular endothelial growth factor-A and
the inhibition of angiogenesis after MSCs transplantation
[66]. By coculturing the supernatant of MSC culture with
human aortic endothelial cells, Hong et al. found that the for-
mer could inhibit hypoxia-induced endothelial cell apoptosis
and promote angiogenesis [67]. This beneficial effect may be
related to the activation of PI3K Akt signaling pathway,
which may be one of the potential signaling pathways for
MSCs to promote angiogenesis after IS [67].

3.4. Neural Circuit Reconstruction. Under suitable condi-
tions, MSCs can differentiate into neurons and glial cells
[68]. The original idea is that bone marrow mesenchymal
stem cells can differentiate and replace damaged nerve cells
after transplantation. However, although MSCs transplanted
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into the cortex around the infarcted area can express neuron-
specific markers, the differentiated neurons are immature,
with round shape and few fiber processes [51]. More impor-
tantly, they lack the voltage-gated ion channels needed to
generate action potentials [69]. Therefore, the neural replace-
ment mechanism may not be one of the mechanisms of
MSCs in the treatment of IS.

After cerebral ischemia, endogenous neurogenesis occurs
in the subventricular zone (SVZ) and the subgranular zone
(SGZ) of the hippocampus. The newly formed neural pro-
genitor cells can migrate to the infarcted area and further dif-
ferentiate into neurons [70]. However, due to the unfavorable
microenvironment full of inflammatory mediators and lack
of nutrients after ischemia, most of these neural progenitor
cells are facing the fate of rapid apoptosis, which limits the
reconstruction of the neural network in the damaged area
[70]. It is reported that MSCs can increase the number of
neural progenitor cells and promote endogenous neurogen-
esis after IS [71, 72]. Through the electrophysiological
recording of evoked field potentials, Song et al. found that
the activity of neuronal circuits in the peri-infarct cortex of
mice treated with MSCs was significantly increased [72]. Fur-
ther studies have shown that MSCs can promote the migra-
tion and survival of neuroblasts to the ischemic penumbra
and increase the number of neurons in the ischemic penum-
bra [72]. The increased expression of SDF-1 and polysializa-
tion enzyme induced by MSCs mediates the increased
migration of neuroblasts to the injured site [73]. In addition,
it is speculated that BDNF secreted by MSCs can promote the
proliferation of neural stem cells in SVZ, increase the number
of neural progenitor cells, and play a nutritional role in the
process of proliferation, differentiation, and migration of
neural progenitor cells, so as to prevent premature apoptosis
(71, 74].

After IS, axonal sprouting and synaptic connection
reconstruction of intact neurons promote the repair of neural
function. However, the formation of glial scars in the ische-
mic area and the production of axon inhibitory proteins limit
the reconstruction of the neural network [75, 76]. Liu et al.
confirmed that the interhemispheric and intracortical axonal
connections in the motor cortex around the infarction
increased after stroke, and the application of MSCs signifi-
cantly enhanced this effect [77]. Shen et al. demonstrated that
MSC treatment significantly reduced the axonal loss and
increased the expression of synaptophysin [78]. Further
studies showed that MSCs could promote the reorganization
of neural connections by reducing the thickness of the glial
scars and the expression of Nogo-A (an inhibitor of axon
growth) [78]. In addition, MSCs transplanted into the lesion
may also promote axonal growth by downregulating the
expression of neurocan (an axon elongation inhibitory mole-
cule) and upregulating the expression of tPA in reactive
astrocytes in the glial scars [75, 79, 80]. The above evidence
indicates that MSC treatment can weaken the physical and
chemical barrier effect of glial scars on axonal regeneration
after infarction.

The transplanted MSCs may also promote axonal growth
after cerebral ischemia by releasing nutrients. Song et al.
showed that the expression of axon growth associated
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protein-43 (GAP-43) increased, and the expression of axon
growth inhibitory proteins rock II and NG2 decreased in
the cortex around the infarction in the MSC-treated mice,
accompanied by the increase of axon density in this area.
Further experiments showed that the increased expression
of GAP-43 may be related to bFGF secreted by MSCs. In
addition, in view of the role of BDNF in promoting and
maintaining axonal branching, the effect of MSCs on axonal
growth may also be related to the release of BDNF [81, 82].

After cerebral ischemia, the neural circuit reconstruction
is affected by myelin reformation. It has been reported that
transplanted MSCs can increase the number of oligodendro-
cyte progenitor cells in the peri-infarct area, corpus callosum,
and SVZ [83, 84]. Recent reports by Tobin et al. also con-
firmed the above views. By measuring myelin basic protein
in ipsilateral hemispheric tissue lysates of MCAO rats, the
authors found that the total amount of myelin basic protein
increased significantly after MSC treatment, suggesting that
the role of MSCs in promoting neural circuit reconstruction
also includes promoting myelin formation [39]. In conclu-
sion, MSCs contribute to the reconstruction of neural circuits
by inducing endogenous neurogenesis, promoting axonal
budding and myelin regeneration, and specific signaling
pathways remain to be investigated.

3.5. Mitochondrial Transfer. Transferring healthy mitochon-
dria to damaged cells may be one of the mechanisms of MSCs
in the treatment of ischemic stroke. Tunnel nanotubes
(TNTs) are nanoscale tubular structures that connect adja-
cent cells. As a new intercellular communication mechanism,
they can promote the exchange of components between adja-
cent cells [85]. By coculturing MSCs with human umbilical
vein endothelial cells subjected to oxygen glucose deprivation
and reoxygenation (OGD/RO), Liu et al. found that TNTs
could be formed between MSCs and endothelial cells. More-
over, under the induction of OGD/RO, the functional mito-
chondria in MSCs transport to endothelial cells in a single
direction, thus protecting endothelial cells from hypoxia
injury [86]. In a paper published in 2019, the same author
demonstrated that MSC transplantation after IS can also pro-
tect cerebral vascular endothelial cells through this intercellu-
lar connection. Their experimental results show that MSCs
transplanted into the peri-infarct area can transfer their
active mitochondria to the damaged microvascular endothe-
lial cells, thus promoting angiogenesis, reducing infarct size,
and improving neurological function [58]. Furthermore, the
application of TNT inhibitors significantly reversed this
effect, suggesting that TNTs play an important role in the
mitochondrial transfer of this activity [58].

Besides vascular endothelial cells, MSCs can also transfer
mitochondria to astrocytes and neurons damaged by oxida-
tive stress, promoting their survival and proliferation [87,
88]. This beneficial effect also depends on the direct contact
between cells, because the survival rate of neurons decreased
after MSCs and neurons were separated by porous trans-
membrane [88]. In addition, Mirol, a mitochondrial Rho-
GTPase 1, was upregulated in oxidative injured neurons
and promoted the transfer of mitochondria from MSCs to
neurons [87]. By coculturing Mirol overexpressing MSCs

with damaged neurons, the researchers found that more neu-
rons survived, while Mirol inhibited MSCs caused the oppo-
site result [88]. Further in vivo experiments showed that
Mirol overexpressing MSCs could significantly improve
neurological function compared with normal MSCs after
transplanted into cerebral infarction animals [88]. In conclu-
sion, the increased expression of Mirol in neurons after IS
can cause transplanted MSCs to transfer their healthy mito-
chondria to damaged neurons, thus increasing the metabolic
activity or survival of neurons. The direct contact between
MSCs and neurons and the establishment of TNT connec-
tions play an important role in this process.

3.6. EV Transfer. Mesenchymal stem cell-derived EVs (MSC-
EVs) are spherical cytoplasmic components secreted by mes-
enchymal stem cells, which contain a large number of soluble
bioactive components such as lipids, proteins, mRNAs, and
microRNAs [89]. It can regulate the activity and function of
target cells by combining with target cells and transferring
the above cell components and genetic genes into target cells
[89]. As a key messenger between MSCs and injured cells,
MSC-EVs play an important role in the treatment of IS with
MSCs.

By coculturing MSCs with OGD neurons and brain
microvascular endothelial cells (BMEC), the researchers
found that the former could reduce the apoptosis of damaged
neurons and restore the tube formation of BMEC [90]. The
addition of GW4869 (an inhibitor of EV's secret) can reverse
this beneficial effect, which suggests that MSC-EVs may be
the main mediator of the neuroprotective and angiogenic
effects of MSCs [90]. Xin et al. injected rats with MSCs-EV's
via the tail vein 24 hours after the induction of IS [91]. Com-
pared with the control group, the density of axons and synap-
tophysin immunoreactive areas increased in the treatment
group [91]. Immunofluorescence staining showed that the
number of doublecortin (marker of neuroblasts) positive
and von Willebrand factor (marker of endothelial cells) pos-
itive cells increased [91]. These evidences suggest that MSC-
EVs can induce angiogenesis, neurogenesis, and neural cir-
cuit reconstruction after IS. Zhao et al. explored the anti-
inflammatory effect of exosomes, the main components of
MSC-EVs, in ischemic cerebral infarction. They confirmed
that intravenous injection of MSC-derived exosomes 2 hours
after IS resulted in a significant decrease in neurological
severity score (NSS) and a significant improvement in motor
function 7 days later [92]. In vitro, OGD microglia were
cocultured with MSC-derived exosomes. It was found that
the latter could inhibit the activation of M1 microglia,
increase the number of M2 microglia, downregulate the
levels of proinflammatory cytokines (TNF-q, IL-13, and IL-
12), and upregulate the levels of anti-inflammatory cytokines
(TGF-f and IL-10) [92]. These data suggest that MSC-EVs
are involved in immunomodulation, neuroprotection, angio-
genesis, and neural circuit remodeling after transplantation
of MSCs into the ischemic brain.

MSC-EVs may play a role by mediating the transfer of
microRNA. First, Moon et al. demonstrated that 24 hours
after MCAO induction, intravenous injection of MSC-EV's
produced angiogenesis and neurogenesis, and this effect



was positively correlated with the dose of MSC-EVs [93]. The
contents of miR-184 and miR-210 in MSC-EVs were more
abundant than those in fibro EVs [93]. Transfection of
miR-184 and miR-210 into neural stem cells and human
umbilical vein endothelial cells could increase the prolifera-
tion of these two cells, suggesting that MSC-EV's may induce
the proliferation of vascular endothelial cells and neural stem
cells after IS through miR-184 and miR-210 [93]. Secondly,
MSC-EVs containing miR-29b-3p inhibitor could increase
the apoptosis of oxygen-glucose-deprived neurons and
decrease the angiogenesis of BMEC, while MSC-EV's overex-
pressing miR-29b-3p had the opposite effect [90]. This sug-
gests that miR-29b-3p may mediate the neuroprotective
and angiogenic effects of MSC-EVs. Mir-29b-3p may play a
role by inhibiting PTEN and then activating Akt signaling
pathway [90]. Furthermore, the experimental results of Geng
et al. showed that MSC-EV's overexpressing miR-126 signifi-
cantly increased the number of doublecortin positive and von
Willebrand factor positive cells compared with normal exo-
somes [94], which suggests that miR-126 may be involved
in EV-mediated angiogenesis and neurogenesis. Finally,
MSC-EVs may play an indirect role in nerve repair after IS.
In vitro experiments by Xin et al. showed that MSC-EV's
overexpressing miR-133b could increase the secretion of exo-
somes by astrocytes, while the latter could significantly
increase the number and length of axons [95].

In conclusion, immunoregulation, neuroprotection,
angiogenesis, and neural circuit reconstruction may be the
main mechanisms of MSCs in the treatment of IS, while the
secretion of nutritional cytokines, the transfer of mitochon-
dria, and the transfer of extracellular vesicles may be the
main ways of MSCs acting (Figure 1).

4. Selection of MSCs

4.1. Different Sources of MSCs. Bone marrow is the first tissue
to isolate MSCs. However, the production of MSCs in bone
marrow is low. The proliferation and differentiation potential
of bone marrow-derived MSCs (BM-MSCs) decrease with
age, and invasive bone marrow puncture is needed to obtain
them [96], which makes bone marrow may not be the best
source of MSCs. Besides, bone marrow, MSCs were also iso-
lated from other tissues, including adipose tissue, placenta,
umbilical cord, and dental pulp.

There are a large number of functional mesenchymal
stem cells in adult adipose tissue. Adipose-derived MSCs
(AD-MSCs) can be obtained by collagenase digestion of adi-
pose tissue. Compared with BM-MCS, AD-MSCs are easier
to obtain and cultivate enough autologous grafts [97]. Immu-
nogenicity of human allogeneic AD-MSCs is lower than that
of allogeneic BM-MCS [98], while autologous AD-MSCs
show lower immunogenicity [99]. Due to its considerable
clinical transformation potential, AD-MSCs are the most
studied MSCs in IS besides BM-MSCs. Studies have shown
that after the establishment of MCAO model, intravenous
injection of AD-MSCs has the same curative effect as injec-
tion of BM-MSCs, and AD-MSC has even more advantages
in reducing infarct size and improving neurological function
[100]. Many other animal experiments have also proved that
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AD-MSC transplantation after IS has immunomodulatory
effects [101-103], neuroprotective effects [102], angiogenesis
effects [104], and neural circuit reconstruction effects [104].
It is worth noting that the experiment of Mangin et al.
showed that intravenous injection of AD-MSCs could not
improve the infarct size and neurological function after IS
in diabetic or hypertensive mice [105]. Frutos et al. reported
that intravenous transplantation of AD-MSCs can improve
the function of hyperglycemic rats after cerebral infarction
but has no effect on hypertensive rats [106, 107].

Dental pulp provides an accessible, noninvasive, high
proliferation potential source of mesenchymal stem cells
[108]. The extracted wisdom teeth are similar to the adipose
tissue on the operating table. If they are not used for stem cell
extraction or other purposes, these tissues will be discarded
as clinical waste. Similar to BM-MSCs, the beneficial effect
of dental pulp-derived MSCs (DP-MSCs) may be mediated
by paracrine mechanisms rather than substitution [108,
109]. Song et al. compared the therapeutic effects of intrave-
nous injection of human DP-MSCs and human BM-MSCs in
MCAO model rats. There was no significant difference in the
improvement of neurological function between the two
groups, but the DP-MSC group showed smaller infarct vol-
ume [110]. In addition, the experimental results of Wu
et al. showed that periodontal ligament stem cells (PDLSCs)
were more effective than DP-MSCs in promoting the recov-
ery of neural function after cerebral ischemia [111]. It is
worth noting that a recent study reported that human DP-
MSCs have the ability to produce action potentials after dif-
ferentiation into neurons in vitro [112]. Whether they can
be converted into functional neurons in animal models of
IS remains to be explored.

Umbilical cord-derived mesenchymal stem cells (UC-
MSCs) were extracted from umbilical cord perivascular tis-
sue and Wharton’s jelly (mucoid connective substance sur-
rounding umbilical cord vessels). As the same as placenta,
umbilical cord is easy to obtain as the waste after delivery,
and there is no ethical problem. A number of studies have
compared MSCs derived from the umbilical cord, dental
pulp, bone marrow, and adipose tissue and found that MSCs
derived from the umbilical cord have stronger proliferation
activity [113, 114]. Studies have shown that UC-MSCs and
placenta-derived MSCs (PL-MSCs) can alleviate neurological
deficits after cerebral ischemia in rats, and their potential
mechanisms are similar to those described above [96, 115-
117]. It is worth noting that the data of Liao et al. showed that
after transplantation of human UC-MSCs, more than 90% of
the blood vessels around the cerebral ischemic area contained
transplanted mesenchymal stem cells, which were integrated
into the blood vessels and partially differentiated into endo-
thelial cells [115]. The authors suggest that UC-MSCs can
play the role of vascular remodeling by directly differentiat-
ing into vascular cells, which is not common in the experi-
ment of using BM-MSCs.

Most of the BM-MSCs were extracted from long bone or
iliac bone. Abiko et al. extracted BM-MSCs from rat skull and
used them in MCAO model rats [118]. Their experimental
results showed that compared with normal BM-MSCs, rats
transplanted with skull-derived MSCs showed better
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neurological recovery, which may be related to the latter’s
ability to secrete more BDNF and VEGF [118, 119]. Interest-
ingly, MSCs were also extracted from human turbinate. Lim
et al. found that MSCs derived from human turbinate can
promote neurogenesis after cerebral ischemia in rats, and
the effect of improving neural function after IS is similar to
that of AD-MSCs transplantation [120]. However, it is not
easy to obtain MSCs from human skull and turbinate, and
its clinical application potential is limited.

In addition to BM-MSCs, MSCs from adipose, dental
pulp, umbilical cord, and placenta are the most promising
types of MSCs for clinical treatment due to their easy avail-
ability and strong expansion ability. Future research also
needs to clarify the consistency and difference of the mecha-
nism of MSCs from different sources, and which kind of
MSCs can obtain the maximum efficacy and the minimum
adverse reactions in IS, so as to determine the most suitable
source of MSCs for clinical application.

4.2. Autologous or Allogenic? Although autologous MSCs are
the safest, allogeneic MSCs have more advantages. First of all,
autologous MSCs need a long time to culture and expand,
which limits its application in the acute stage of IS, while allo-
geneic MSCs can be obtained and expanded from the freezer
more quickly, thus avoiding the delay of time window. Sec-
ond, patients with IS usually take antiplatelet or anticoagu-
lant drugs, and the application of autologous MSCs may
lead to secondary hemorrhage. Allogeneic MSCs from
healthy donors have no such concerns. Third, age is a factor
that affects the physiological characteristics of MSCs. Studies
have shown that MSCs from elderly donors have decreased
proliferation and differentiation ability, and the ability to
secrete nutrients such as BDNF, VEGF, and insulin-like

growth factor (IGF) is also affected [121-123]. Animal
experiments have proved that transplantation of BM-
MSCs from old people can improve the neurological func-
tion of rats after cerebral infarction and less than trans-
plantation of MSCs from young people, and the effects
of BM-MSCs from young people on anti-inflammation,
angiogenesis, and secretion of nutritional factors are more
significant [123]. However, IS patients are generally older,
so allogeneic MSCs obtained from young healthy donors
may be more effective.

5. Routes of Transplantation

5.1. Intraparenchymal Delivery. Intracerebral transplantation
is effective in the treatment of experimental ischemic stroke
[27, 124]. Direct injection of MSCs into the brain paren-
chyma can lead to the largest number of MSCs in the lesion
area [27], with less side effects outside the brain, and may
bring the best neurological improvement [124]. A meta-
analysis of 46 articles showed that different routes of admin-
istration affected the therapeutic effect of MSCs in the treat-
ment of IS [125]. Intracerebral administration was the best,
followed by intra-arterial administration, and finally intrave-
nous administration. However, neurosurgery is not accept-
able to all patients [125]. Although the application of
stereotactic technology can avoid craniotomy, it may still
persecute the local brain parenchyma and blood-brain bar-
rier, lead to additional neuronal damage and inflammatory
reactions, and even cause complications such as hemorrhage
and epilepsy. Therefore, whether the intracerebral delivery
pathway is suitable for clinic application remains to be fur-
ther studied and discussed.



5.2. Intraventricular/Intrathecal Delivery. Intraventricular or
intrathecal injection of MSCs can spread to various parts of
the central nervous system through cerebrospinal fluid. Lim
et al. injected MSCs into the lumbar spinal cord sheath of rats
with IS and found that compared with intravenous injection,
MSCs injected intrathecally could effectively migrate to the
infarcted area and could differentiate neurons and astrocytes,
which promoted the improvement of motor function of rats
with cerebral infarction [126]. A recent study reported that
MSCs injected into the corpus callosum could migrate not
only to the infarcted areas but also to the choroid plexus
(CP) [127]. In vitro, the coculture of CP and MSCs showed
that they could promote each other’s proliferation, and this
interaction may be related to neurogenesis [127]. Therefore,
the authors suggest that MSC injected into the lateral ventri-
cle containing CP is an appropriate way of transplantation.
Although intraventricular or intrathecal administration is
less likely to cause secondary injury than intraparenchymal
administration, it is still more invasive than intravascular
administration, and its inconvenient operation limits its clin-
ical application.

5.3. Intravenous Delivery. The advantage of intravenous
injection is that it avoids intracranial invasion, less trauma,
and is simple and easy to operate. Many preclinical trials of
MSCs in the treatment of IS have used intravenous injection
and achieved good results, including the reduction of infarct
volume and improvement of neurological function.
Although different studies have reported that the therapeutic
effect of the intravenous injection route on ischemic cerebral
infarction may be the smallest, the benefits are still consider-
able [124, 125]. The limitation of intravenous injection is that
it needs to reach the artery through the systemic venous cir-
culation and then enter the brain through blood-brain bar-
rier. The result of long-distance migration is that only a
small part (4%) of MSCs injected intravenously can be
located in ischemic brain tissue, and most of them stay in
peripheral organs such as the lung, liver, spleen and kidney,
and especially the lungs [47, 128]. Due to its large volume
(18 yum diameter), AD-MSCs have a higher pass clearance
rate through the pulmonary circulation. The risk of intravas-
cular injection lies in the possibility of pulmonary embolism.
Cases of pulmonary embolism caused by intravascular injec-
tion of AD-MSCs have been reported in a journal, although it
is not used for the treatment of IS [129].

5.4. Intra-arterial Delivery. Intra-arterial injection is another
method of intravascular administration; most of the studies
take internal carotid artery injection. Intra-arterial injection
not only retains the advantages of minimally invasive intra-
vascular administration but also can bypass the pulmonary
circulation and improve the concentration of MSCs in the
lesion. Li et al. injected 2 x 10 MSCs into rats through the
internal carotid artery and found that 21% of MSCs entered
the brain and promoted the improvement of function after
cerebral ischemia [130]. Zhang et al. compared the effects
of intra-arterial, intravenous, and intracerebral transplanta-
tion in MCAO model rats and found that the intra-arterial
pathway showed the greatest degree of neural function recov-
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ery [131]. The disadvantage of intra-arterial injection is that
it may lead to the formation of intra-arterial emboli, decrease
of cerebral blood flow, and cerebral microvascular embolism,
and it is related to the dose of injected cells [132]. Clinical tri-
als have proved the effectiveness and safety of intra-arterial
injection of MSCs in patients with IS [133], so intra-arterial
injection may be another suitable intravascular route.

5.5. Intraperitoneal Delivery. Intraperitoneal injection is a
less used way of MSC administration. This way of adminis-
tration can cause a large number of MSCs to accumulate in
the abdominal cavity, while the number of MSCs migrating
to other organs is very small [134]. An experiment in rats
with hypoxic ischemic encephalopathy (HIE) model showed
that the number of MSCs injected intraperitoneally homed to
the ischemic area was less than that injected intravenously
[135]. However, Barzegar et al. showed that intraperitoneal
injection of MSCs showed a high survival rate [116]. These
authors further demonstrated that intraperitoneal injection
of MSCs into MCAO mice also showed an effective neuro-
protective effect, which may be related to the significant
recovery of cerebral blood flow after administration [116].

5.6. Intranasal Delivery. Intranasal route is a new way of stem
cell transplantation. MSCs transplanted intranasally can
bypass the blood-brain barrier at the nasal mucosa and then
enter the brain through the olfactory sensory nerves or fur-
ther transfer to other intracranial regions through cerebro-
spinal fluid [136]. Chau et al. reported that intranasal
administration of MSCs reached the peri-infarct area 6 hours
after delivery, and MSCs transplanted intranasally could
reduce the infarct volume and promote the recovery of neu-
rological function [137]. Zhao et al. showed that intranasal
administration of MSCs can improve the permeability of
blood-brain barrier and promote the recovery of neurological
function after IS, which may be related to the promotion of
revascularization in the infarcted area [138]. Researchers
found that intranasal administration of MSCs in neonatal
hypoxic-ischemic injury model mice can show the recovery
of cognitive, sensory, and motor functions [139]. It is worth
noting that intranasal administration of less MSCs can
achieve the same effect as intracranial administration [139].
The advantages of intranasal injection lie in its noninvasive,
simple operation, and repeated administration. However,
compared with rodents, the human olfactory bulb is smaller.
Whether intranasal administration of MSCs to IS patients
can achieve the same effect as experimental animals remains
to be proved by clinical trials.

In conclusion, in the current research on MSCs in the
treatment of IS, intraparenchymal, intravenous, and intra-
arterial administration are the three most widely used
methods, and different administration methods have their
own advantages and disadvantages (Table 1). Intravascular
injection may be an appropriate route for MSC administra-
tion. Intranasal administration, as a new way of stem cell
transplantation, has great potential in clinical application.
Future studies need to evaluate and compare the safety and
effectiveness of different ways of administration, so as to
select the most suitable way of administration.
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TaBLE 1: Advantages and disadvantages of different MSC transplant approaches.

Routes Advantages Disadvantages Reference

Intraparenchymal Highest homing rate; low off-brain side effect Highly 1nva51vene(sizr:1<;1;l;t1onal brain tissue (27, 124]

Intraventricular/intrathecal Allow for migration to different parts of CNS; high Invasiveness [126]

homing rate

Stagnation in peripheral tissue; pulmonary  [128,

Int Low i i H ti .
ntravenous oW invasiveness; easy operation embolism 129]
. . . . . . . [130,
Intra-arterial Low invasiveness; considerable homing rate Microvascular occlusion 132]
. . . . . . [116,
Intraperitoneal Low invasiveness; high survival rate Low homing rate 134]
Intranasal Noninvasiveness; casy operation; repeated Lack of clinical trial evidence [136-
administration 138]

6. Timing of Transplantation

Different laboratories have studied the efficacy of MSCs
transplanted at different time points after IS. Omori et al.
divided the rats into two groups; one group was injected with
3 x 10° MSCs at 6 hours after stroke induction, and the other
group was injected with 1 x 10® MSCs at 6 hours, 24 hours,
and 48 hours, respectively [140]. The researchers found that
the two groups achieved the same improvement in neurolog-
ical function, suggesting that the time window of MSCs for
the treatment of IS can be extended to 48 hours after cerebral
infarction [140]. Hess et al. reported in a clinical trial that
early administration of MSCs within 24-48 hours of the onset
of symptoms of acute ischemic cerebral infarction may lead
to a better one-year prognosis. Ishizaka et al. injected 1 x
10 MSCs into the internal carotid artery of rats on days 1,
4, and 7 after MCAO induction (D1, D4, and D7). They
found that the D1 group showed the earliest improvement
of motor function, followed by the D4 group, but the D7
group did not recover. There was no significant difference
in the degree of recovery between the D1 and the D4 groups
[141]. This study expanded the treatment time window of
MSCs to 4 days after IS and suggested that the early applica-
tion of MSCs may get faster recovery. After intranasal
administration of 1x 10° MSCs on the 3rd, 4th, 5th, and
6th day after IS, Chau et al. found that the motor function
of mice was significantly improved on the 14th day, which
suggested that the administration of MSCs in the delayed
phase of IS was still beneficial [137]. In addition, it has been
reported that MSCs can still significantly improve the neuro-
logical function of rats after 1 month of infarction, although
it is used in a relatively large dose (3 x 10°) [142].

Due to the different ways of administration, dosage, and
evaluation of neurological function in different studies, the
best administration time cannot be obtained objectively. A
meta-analysis involving 141 articles divided the administra-
tion time of these studies into four groups: 0-6 hours, 12-24
hours, 2-7 days, and > 7 days [143]. It was found that com-
pared with the 12-24 hours group and > 7 days group, the
score of comprehensive neurological function was signifi-
cantly improved in the 2-7 days groups [143]. Moreover,

there was no significant difference between 0-6 hours and
2-7 days, which suggests that 0-6 hours and 2-7 days after
IS may be the best time for administration [143]. On one
hand, in the early stage after IS, local brain tissue lacks oxy-
gen and energy, and the inflammatory reaction is strong,
which leads to the low survival rate of MSCs. Therefore,
administration between 2-7 days after IS may increase the
survival rate of MSCs, so that MSCs can play a greater role.
On the other hand, the significant improvement of neural
function induced by administration of MSCs at 0-6 hours
may be related to the timely rescue of neurons in the ischemic
penumbra, early intervention of inflammatory cells, and acti-
vation of the inflammatory cascade. In addition, the study
also found that, compared with other groups, 0-6 hours
administration caused the most significant improvement in
sensorimotor outcomes [143]. Therefore, early administra-
tion within 7 days after stroke may be the best time for
treatment.

Although the best time for MSCs to treat IS is still contro-
versial, it is undeniable that MSCs expand the treatment time
window of ischemic stroke, so that those patients who cannot
receive tPA thrombolytic therapy for more than 4.5 hours
can benefit from MSCs.

7. Doses of Transplantation

Studies have shown that intravenous transplantation of
MSCs between 5x 10° and 3 x 10° is effective in rodent
stroke models [144]. In a preclinical study, MSCs were given
at doses of 1 x 10°, 5 x 105, and 1 x 10° 24 hours after stroke
induction. It was found that compared with the control
group, only rats in the 1 x 10° group showed improved neu-
rological function [40]. There are also studies using a rela-
tively large dose (3x10°) of MSCS, which found that
compared with the 1 x 10° group, the infarct size of rats in
the high dose group decreased by 20% and showed better
neurological recovery. A phase I clinical trial has proved that
intravenous infusion of 0.5x 10%, 1.0 x 10°, and 1.5 x 10°
MSCs/kg allogeneic MSCs is safe and effective in patients
with chronic ischemic stroke.
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Is the greater the dose of MSCs, the greater the benefit?
Lin et al. injected 1x10° and 4 x 10° human UC-MSCs
intravenously 24 hours after MCAO in mice and found that
a high dose of human UC-MSCs did not cause a more signif-
icant reduction of infarct size. The authors suggest that this
may be due to the fact that most of MSCs remain in periph-
eral tissues after intravenous injection of a large doses of
MSCs, so that the number of MSCs eventually reaching the
central nervous system is not as much as expected [145]. A
meta-analysis showed that the benefit of neurological func-
tion may not be directly proportional to the dose of MSCs
but may be inverse U-shaped, as the benefit of behavioral
function decreases at the highest dose of MSCs [125], which
may be related to the disadvantages of intravascular adminis-
tration. When MSCs are given a large dose via an artery or
veins, it may cause microvascular obstruction or embolus
formation and then decrease the perfusion of the brain or
other organs. Therefore, it is necessary to grasp the relation-
ship between effectiveness and safety to obtain the optimal
dosage. More clinical and preclinical studies are needed to
get the dose value corresponding to the apex of the inverse
U-shape.

8. Therapeutic Strategy

Although MSCs have great potential in the treatment of
ischemic stroke, due to the low homing rate, survival rate,
and poor differentiation ability after transplantation, the
effect of MSCs in the recovery of neurological function after
cerebral infarction is still unsatisfactory, so researchers devel-
oped a variety of strategies to increase the efficacy of MSCs in
ischemic infarction from different perspectives. The main
strategies include pretreatment, gene transformation or over-
expression, combination  therapy, and MSC-EV
transplantation.

8.1. Pretreatment of MSCs. Pretreatment is a strategy to
change the culture environment of MSCs in different ways
before transplantation to enhance their functional character-
istics. Hypoxic culture is one of the most commonly used
pretreatment methods for MSCs. Adapting to the hypoxic
environment in advance may make MSCs play a better role
in the face of barren environment in vivo. An appropriate
hypoxia environment can increase the proliferation rate of
MSCs and promote their differentiation into different mesen-
chymal cell lines in vitro [146]. By transplant of normoxic
and hypoxic cultured MSCs into MCAO model animals,
Hu et al. found that compared with the normoxic group, hyp-
oxic preconditioning resulted in increased migration to the
ischemic penumbra and improved survivability in adverse
environments [147]. These benefits may be related to the
increased expression of C-X-C chemokine receptor type 4
(CXCR4) in MSCs after hypoxia. As a ligand of SDF-1, the
increased expression of CXCR4 promotes MSCs homing to
the infarcted area [147]. Chen et al. showed that the
enhanced migration and survival of MSCs after hypoxic pre-
conditioning may be related to the inhibition of caspase-3
activation and the increased expression of hypoxia inducible
factor-la (HIF-1a) [148]. In addition, the expression of
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BDNF and VEGF in MSCs pretreated by hypoxia increased
more significantly and promoted angiogenesis and nerve
regeneration more significantly [148]. Moreover, the authors
think that 8 hours is the best time for hypoxic precondition-
ing [148]. Kong et al. reported that MSCs cultured in a hyp-
oxic environment expressed higher levels of CD200, which
may be related to the decreased activation of microglia and
the increased expression of anti-inflammatory cytokines such
as IL-10 and TGEF-p after MSC transplantation, suggesting
that hypoxic preconditioning may enhance the immuno-
modulatory ability of MSCs after IS [117]. It should be noted
that the transplantation of conditioned medium and exo-
somes derived from hypoxic preconditioning MSCs into
MCAO model animals also showed a greater reduction of
infarct size and improvement of neurological function [149,
150]. Moreover, hypoxic preconditioning can also improve
the protective effect of conditioned medium derived from
aged BM-MSCs on ischemic neurons, thus partially offsetting
the adverse effect of age on the transplantation of autologous
bone marrow stem cells [151].

In addition to culture in a hypoxic environment, there are
many ways to pretreat MSCs. In vitro studies suggest that IL-
1-treated MSCs can secrete more granulocyte colony stimu-
lating factor (G-CSF) and reduce the secretion of inflamma-
tory mediators in activated microglia [152]. The same
authors injected medium derived from IL-1-treated MSCs
into MCAO model animals and found that the conditioned
medium could reduce the infarct volume by 30% 48 hours
after stroke and improve the neurological function score
[153]. The above evidence suggests that IL-1 pretreatment
could induce MSCs to transform into anti-inflammatory
and pronutritional phenotypes and play a beneficial role in
cerebral infarction. Tobin et al. compared the efficacy of
interferon-y pretreated MSCs and normal MSCs in MCAO
model animals and found that although there was no signif-
icant difference in functional improvement between the two,
interferon-y pretreated MSCs may have more advantages,
which reflected in the fact that interferon-y pretreated MSCs
can induce activated microglia to secrete less proinflamma-
tory cytokines and induce oligodendrocyte differentiation
and myelination more effectively [39]. VX-765 is a selective
caspase-1 inhibitor. Sun et al. found that transplantation of
VX-765 pretreated MSCs resulted in more anti-
inflammatory cytokines and less proinflammatory cytokines
and apoptotic cells than nonpretreated MSCs. The enhanced
anti-inflammatory and antiapoptotic effects of VX-765 may
be related to the activation of autophagy by regulating
AMPK/mTOR signaling pathway [154]. Different from the
mechanism mentioned above, the authors believe that the
increase of autophagy is beneficial to the treatment of IS by
MSCs. Therefore, the role of autophagy in the treatment of
is by MSCs remains to be further studied and explored.

MSCs-EV is one of the important mechanisms of MSCs
in the treatment of IS. Cholesterol, as an important compo-
nent of EVs, participates in the production, secretion, and
functional regulation of EVs [155]. Barzegar et al. cultured
human PL-MSCs with cholesterol lipid supplemented media
and found that human PL-MSCs treated with cholesterol
lipid could release more EVs, and the survival rate of vein
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transplantation was also significantly improved [116]. When
1 x 10° human PL-MSCs treated with cholesterol lipid were
intravenously injected into mice after MCAO induction for
1 hour, the researchers found that they could reduce the
infarct size and restore neurological function, while the same
low dose of common human PL-MSCs did not show any pro-
tective effect [116]. These evidences suggest that pretreat-
ment of MSCs with cholesterol lipids can improve the
efficacy of MSCs in the treatment of IS by enhancing the
release and survival ability of EVs.

Three-dimensional (3D) aggregation is a new method
of MSC culture. MSCs cultured in this way form a spher-
oid composed of 500-10000 tightly packed cells. Compared
with 2D adherent MSCs, their migration ability and sur-
vival ability in hypoxia environment were enhanced, and
the release of anti-inflammatory and nutritional factors
was increased [156]. Yuan et al. verified the above charac-
teristics of 3D aggregate-derived MSCs in MCAO model
animals and showed smaller infarct size after transplanta-
tion of 3D aggregate-derived MSCs, suggesting that 3D
aggregation is an effective pretreatment measure to
enhance the efficacy of MSCs after IS [157]. Most stem
cell studies use fetal bovine serum (FBS) to culture MSCs.
Moon et al. compared the efficacy of MSCs cultured in
fetal bone serum, normal health control serum, and stroke
patient serum in MCAO model animals and found that
rats transplanted with MSCs cultured in stroke patient
serum showed more significant angiogenesis and neuro-
genesis, which is an inspiration for the way of autologous
MSC transplantation [158].

8.2. Gene Transfection or Overexpression. It is a potential
therapeutic strategy to enhance the therapeutic effect of
MSCs in the treatment of IS by transfecting specific genes
with viral vectors or plasmids to make MSCs overexpress cer-
tain molecules or proteins. After IS, the homing of trans-
planted MSCs is mainly mediated by the interaction
between chemokine receptors on the surface of MSCs and
high levels of chemokines in ischemic lesions. C-C motif che-
mokine ligand 2 (CCL2) is one of the most expressed chemo-
kines in the ipsilateral cerebral hemisphere after IS. It
mediates the transfer of a variety of cells to the brain by inter-
acting with C-C motif receptor 2 (CCR2). Huang et al. trans-
planted CCR2 transgenic MSCs in MCAO model animal and
found that this kind of CCR2 overexpression MSCs can more
effectively migrate to ischemic lesions and mediate the pro-
tection of blood-brain barrier and the more significant
improvement of neural function [159]. In addition, Lee
et al. found that transplantation of CCL2 overexpressed
MSCs resulted in a more significant increase in angiogenesis
and neurogenesis and a more significant reduction in inflam-
matory response [160]. Moreover, the researchers also
reported that overexpression of the neurogenic transcription
factor neurogenin-1 can upregulate the expression of chemo-
kine receptors CCR1, CCR2, and CXCR4 in MSCs, thus
increasing the homing of MSCs to ischemic regions and pro-
moting the further improvement of neural function [161].
The above evidence suggests that the more MSCs migrate
to ischemic lesions, the more beneficial it will be. Promoting

11

the homing of MSCs by genetic means is a potential thera-
peutic strategy.

Immunomodulation is an important mechanism of
MSCs in the treatment of IS. As mentioned above, trans-
planted MSCs can regulate the inflammatory response after
IS by upregulating the level of anti-inflammatory cytokines
and downregulating the level of proinflammatory cytokines.
Nakajima et al. reported that intravenous injection of IL-10
overexpressing MSCs resulted in a more significant reduction
of infarct size and a more significant improvement of neuro-
logical function than normal MSCs [162]. Specifically, this
kind of transgenic MSCs can lead to higher levels of anti-
inflammatory cytokine IL-10 in lesions, which can inhibit
the activation of microglia and the secretion of proinflamma-
tory cytokines more effectively [162].

The repair of neural circuits is another important mech-
anism of MSCs in the treatment of IS. Noggin is an extracel-
lular bone morphogenetic protein (BMP) antagonist, which
promotes neurogenesis by inhibiting BMP signaling [163].
Chen et al. transplanted Noggin gene transfected MSCs
intravenously 6 hours after induction of MCAO model and
found that compared with the normal MSC group, this kind
of MSC:s could significantly increase noggin level in rat brain
and more significant neurogenesis in ipsilateral SVZ [164].
Interestingly, Lu et al. transplanted MSCs cotransfected with
BDNF gene and Noggin gene and found that these MSCs did
not show additional antiapoptotic effects but showed addi-
tional anti-inflammatory effects [165]. Specifically, compared
with MSCs transfected with BDNF gene or Noggin gene
alone, CO transfected MSCs more effectively inhibited the
activation of TLR4/MyD88 pathway and the expression of
MMP-9 and reactive oxygen species (ROS) [165].

Since MSCs may play a therapeutic role mainly through
paracrine, many researchers choose to overexpress some
cytokines or nutritional factors to increase the therapeutic
effect. Fibroblast growth factor 1 (FGF1), as a member of
the paracrine FGF family, is abundant in neurons and can
mediate neuroprotection [166, 167]. Ghazavi et al. investi-
gated the effect of AD-MSCs transfected with FGF1 and
found that compared with normal AD-MSCs, the former
could increase the level of FGFI1 in the ischemic lesions,
reduce apoptotic cells, and infarct size more significantly
[61]. In addition, Linares et al. found that FGF21 transfected
MSCs have strong antiapoptotic ability in vitro in the face of
oxidative stress and inflammatory environment, which sug-
gests that FGF21 transfected MSCs may have stronger sur-
vival ability and neuroprotective ability in infarcted lesions
[168]. LV et al. found that transplanted MSCs overexpressing
HIF-1a had increased viability in ischemic lesions and
showed a more significant reduction of infarct size and
recovery of neurobehavior, which was related to the further
decrease of proinflammatory cytokines and increase of neu-
rotrophic factors [169]. HIF-1« is a protective regulatory fac-
tor produced by cells in the face of hypoxic environment. The
therapeutic effect of HIF-1a overexpressing MSCs coincides
with that of hypoxic preconditioning MSCs mentioned
above. As mentioned in the mechanism section above, trans-
plantation of VEGF expressing transgenic MSCs is not con-
ducive to the treatment of IS. However, a recent study
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reported the opposite results. In this study, transplantation of
VEGF expressing transgenic MSCs resulted in smaller infarct
size, more significant angiogenesis, and neurological
improvement [170]. The reasons for the two results are
unknown, which may be related to different administration
methods, administration timing, and measurement time
points. Other studies transfected with different cytokines,
such as BDNF, GDNF, PLGF, and hepatocyte growth factor
(HGF), are shown in Table 2.

8.3. Combination Therapy. In recent years, the research focus
of MSC treatment strategy is to enhance the efficacy of MSCs
in the treatment of IS by combining with other drugs or treat-
ment measures. Minocycline is a kind of tetracycline antibi-
otic. Due to its anti-inflammatory and antiapoptotic effects
and good blood-brain barrier penetration, many studies have
reported its beneficial effects in the central nervous system
[171, 172]. Cho et al. showed that compared with transplant-
ing MSCs alone, the combination therapy showed smaller
infarct size and more significant improvement in neurologi-
cal function, which may be related to minocycline enhancing
the neurogenesis and angiogenesis of MSCs [173]. Simva-
statin, as a class of HMG-CoA reductase inhibitors, was ini-
tially used to reduce cholesterol, and its application alone
has also been proved to improve the prognosis after IS. Cui
et al. found that Simvastatin can significantly increase the
expression of the chemokine CXCR4 in MSCs, promote the
homing of MSCs, and further promote angiogenesis and neu-
ral function recovery [174]. Combined therapy can also be
achieved by intranasal administration. Shen et al. adminis-
tered MSCs combined with IGF-1 into the nose and found
that this strategy increased the ability of MSCs to promote
angiogenesis and neurogenesis and further increased the
cerebral blood flow in the ischemic area [175].

Because the repair of blood-brain barrier leads to the
decrease of the passing rate of peripheral drugs, the drug
treatment in the chronic stage of stroke often cannot achieve
the desired effect. Although it has been reported that intrave-
nous injection of MSCs at 1 month after stroke can improve
motor function, this beneficial result may be attributed to the
relatively large drug dose (3.0 x 10%) [142]. It has been
reported that mannitol combined with temozolomide can
inhibit the increase of blood-brain barrier permeability
caused by endothelial tight junction proteins [176]. Choi
et al. applied this strategy to MSCs in the treatment of IS
and found that although MSCs were not detected in the brain
parenchyma; these two drugs combined with MSCs could
improve the behavior defect by increasing the brain paren-
chyma metastasis of MSC-derived microvesicles (a type of
MSC-EVs), which was not observed in the MSCs only treat-
ment group [177]. This combined strategy provides a new
method for the treatment of chronic stroke.

Many traditional Chinese medicines have been proved to
enhance the efficacy of MSCs in the treatment of IS. Radix
Angelica Sinensis is a kind of Chinese herbal medicine with
neuroprotective effects. Sodium ferulate (SF) and n-
butylidenephthalide (BP) are the two main active compo-
nents of Radix Angelica Sinensis. Study has shown that BP
can enhance the interaction of SDF-1a/CXCR-4, promote
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MSCs to move to an ischemic focus, and promote MSCs to
differentiate into astrocytes more effectively [178]. Zhang
et al. injected SF, BP, and MSCs intravenously into MCAO
rats and found that this combination therapy can further
increase the levels of VEGF and BDNF in ischemic lesions
and more effectively promote angiogenesis and neural func-
tion recovery [179]. Other research groups have also con-
firmed the enhancement effect of angelica extract on the
efficacy of MSCs [180]. Tetramethylpyrazine (TMP), an
active component extracted from Chinese herb Rhizoma
Chuanxiong, has also been shown to increase the expression
of CXCR4 in MSCs, thus promoting the homing of MSCs to
infarcted brain tissue [181]. In the MCAO model animal, the
combined application of TMP and MSCs further promoted
the expression of VEGF and BDNF, resulting in a more sig-
nificant improvement of neurological function score [182].
Other laboratory studies have shown that this enhancement
effect may be related to the anti-inflammatory and neurogen-
esis effects of TMP on MSCs [183]. Other herbs with
enhanced effects on MSCs in the treatment of IS include Sal-
via miltiorrhiza [184], Icariin [185], and Borneol [186].

In addition to drugs, some physical therapies combined
with MSCs have also been proved to be beneficial. Morimoto
implanted the electrical stimulator into the inner and outer
sides of the cranial cavity of rats [187]. It was found that elec-
trical stimulation could increase the movement of MSCs
injected into the corpus callosum toward the ischemic focus,
which was related to the increased level of SDF-1a. The rats
in the combined group showed a smaller infarct size [187].
Electroacupuncture (EA) is a physical therapy that combines
traditional acupuncture and electrical stimulation. Studies
have shown that EA can increase the expression of BDNF
and VEGF mRNA in a cerebral ischemia animal models
and promote functional recovery [188]. Kim et al. treated
mice with EA once a day from day 5 to day 16 after MCAO
and found that EA combined with MSC transplantation
could significantly improve the motor function of mice after
cerebral infarction, which may be related to the promotion of
neurotrophic factor secretion and neurogenesis [189].
Another report from the same laboratory showed that EA
could increase the differentiation of TrkB gene transfected
MSCs into mature neurons and increase the levels of BDNF
and neurotrophin-4/5 more significantly [190]. Bi et al.
placed the head on an ice bag for 3 hours immediately after
MCAO induction and injected 1 x 10 MSCs into the ventri-
cle 24 hours later [191]. It was found that this mild hypother-
mia treatment increased the homing efficiency and
angiogenesis ability of MSCs and significantly reduced the
neurological function score [191]. In addition, MSC treat-
ment combined with exercise or rehabilitation also showed
a beneficial effect on the efficacy of MSCs [192, 193].

The rise of nanotechnology is of great help to regenera-
tive medicine. Some new nanomaterials are used in the
research of MSCs in the treatment of ischemic stroke. In vitro
experiments showed that nitrogen-doped carbon nanocages
(NCNCs) could enhance the inhibitory effect of MSCs on
microglia activation [194]. Compared with transplanted
MSCs alone, intravenous injection of MSCs combined with
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TaBLE 2: Gene transfection in the treatment of IS with MSCs.
Transfected Transfected Cell Dose Transplantation Admlr.nstratlon Outcome (compared with normal MSCs) ~ Reference
gene vector type route time
N Adei T g It dounatr o ol sl
MSCs injection MCAO > 1mp . &
function
. hBM- 7 Intravenous 3 hours after ~ Smaller infarcted volume; higher function

1.0x 10 ’

GDNF Adenovirus MSCs % injection MCAO recovery [48]
HGE Helgj(ef’iiﬁ_ BM- 1.0 x 10° Intracerebral 2 or 24 hours Fewer apoptotic cells; smaller infarcted [208]
b type-1 MSCs injection after MCAO volume; higher function recovery

. hBM- 7 Intravenous 3 hours after More angiogenesis; smaller infarcted
PIGE Adenovirus MSCs 1010 injection MCAO volume; higher function recovery [60]
FGE1 pCMVe6-  AD- 20x 106  ntravenous 0.5 hour after Fewer apoptotic cells; smaller infarcted [61]
entry vector MSCs injection MCAO volume; higher function recovery
Ang/Ang+ VEGF: more angiogenesis;
Ang; VEGF; Adenovirus hBM- 1.0 % 10° Intravenous 6 hours after smaller infarcted volume; higher function [56]
Ang+ VEGF MSCs injection MCAO recovery. VEGF: infarct size increased;
function deteriorated
. BM- ¢ Intracerebral 24 hours after More angiogenesis; smaller infarcted
1.0x 10
VEGE Adenovirus MSCs X injection MCAO volume; higher function recovery [170]
Lower level of proinflammatory cytokines;
Hif-1a Lentivirus BM- 1.0 x 10° In.trz}cerhebral 24 hours after higher level of neurotrophins; smaller [169]
MSCs injection MCAO . . .
infarcted volume; higher function recovery
. BM- ¢ Intravenous 3 hours after Higher levels of Ang-1 and vWF; more
Tspa Lentivirus MSCs 2010 injection MCAO angiogenesis; higher function recovery [209]
Adepo— hBM.- . Intravenous 0 or 3 hours Lower. level .of prglnﬂgmmatory cytokmes
IL-10 associated 1.0x 10 R and microglial activation; smaller infarcted [162]
. MSCs injection after MCAO . .
virus volume; higher function recovery
. BM- ¢  Intravenous 24 hours after More homing; less BBB leakage; higher
20x1
CCR2 Lentivirus MSCs 0> 10 injection MCAO function recovery [159]
More homing; more angiogenesis and
hUC- ¢  Intravenous 1 and 4 days neurogenesis; less neuroinflammation;
CCL2 None MSCs 1.0x10 injection after MCAO smaller infarcted volume; higher function [160]
recovery
Ngil Rewovis DM gy Inmareral  2howrsafier MR SR B O e
& MSCs injection MCAO » Mg
recovery
. . BM- 6 Intravenous 6 hours after More neurogenesis; smaller infarcted
. 1
Noggin Adenovirus MSCs 5010 injection MCAO volume; higher function recovery [164]

NCNC:s in mice with cerebral infarction showed higher levels
of IL-10, lower levels of TNF-«, and smaller infarct volume
[194]. Nazarian et al. found that modafinil-coated gold nano-
particles (AuNPs) can promote the antiapoptotic ability of
MSCs and further reduce the area of cerebral infarction,
which is accompanied by a significant increase in the levels
of BDNF and GDNF [195]. Zuo et al. reported that the com-
bination of cerium oxide nanoparticles with human UC-
MSCs could obtain the antioxidant effect of the former and
enhance the anti-inflammatory effect of the latter. Specifi-
cally, the levels of ROS and inflammatory factors (TNF-a,
IL-6, and IFN-y) in the brain tissue of rats with cerebral
infarction after transplantation of human UC-MSCs labeled
with nanoceria were significantly decreased [196]. Yao et al.
proposed a new nanoplatform to load MSCs. This method

allows us to quantitatively detect cell migration by SPECT
imaging after transplantation, and it can continuously release
cobalt protoporphyrin IX to protect cells from oxidative
stress, thus increasing the survival of MSCs in ischemic
lesions [197]. The MCAO model mice transplanted with
MSCs through this method showed better neurological
recovery [197].

8.4. MSC-EV Transplantation. MSC-EVs may be one of the
main mechanisms of MSCs in the treatment of IS. In recent
years, many studies have used isolated MSC-EVs alone in
the treatment of IS, showing that the curative effect is no
worse than that of MSCs alone. Some studies even reported
that injection of MSC-EVs alone showed more significant
improvement in neurological function than MSC
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transplantation [93]. Therefore, transplantation of MSC-EVs
alone seems to be a good alternative strategy, which has many
advantages compared with MSCs. First of all, MSC-EVs
injected intravenously can reach the infarct lesion more effec-
tively [93]. Because of its smaller volume and lipid double-
layer vesicle structure, MSC-EVs do not stay in peripheral
organs like MSCs after intravenous injection and are easier
to cross the blood-brain barrier. Secondly, the risk of vascular
occlusion and microvascular thrombosis is reduced after
transplantation, and MSC-EVs do not have the potential of
tumor transformation because they cannot self-replicate.
Third, MSC-EV has a robust structure and can be stored at
-80° for a long time without loss of biological activity [198].
Finally, intravenous injection of MSC-EVs can reduce the
peripheral immunosuppression (i.e., the decrease of B cells,
NK cells, and T cells) after IS [95]. In addition, MSC-EVs
can also be enhanced by genetic engineering. As mentioned
above, MSC-EVs overexpressing certain miRNAs have stron-
ger efficacy. Combination therapy also appears to be feasible,
as AD-MSCs combined with AD-MSC derived exosomes
intravenously administered 3 hours after IS resulted in
smaller infarct size and better improvement in neurological
function than either alone [199]. Therefore, MSC-EVs may
be an effective alternative to MSCs, which has great potential
in the treatment of ischemic stroke. At present, there are few
clinical trials on MSC-EVs, and its efficacy and safety in
stroke patients need to be further evaluated.

9. Clinical Trial

A large number of preclinical data have proved the feasibility
of MSCs in the treatment of IS, and the clinical administra-
tion of stem cell therapy is also expected. A number of clini-
cal trials have proved the effectiveness and safety of MSCs in
the treatment of IS. The earliest clinical trial included only 30
subjects, five of whom received 1 x 108 MSCs at 5-7 weeks
after acute stroke. During the 1-year observation period, no
adverse events were reported in these five patients. And the
Basel index (BI) of these five patients was significantly
improved, suggesting a certain improvement in neurological
function [200]. Lee et al. enrolled 85 patients with severe IS.
During the five-year follow-up, MSC treatment group had
higher cumulative survival rate, more patients with low mod-
ified Rankin Scale (mRS) score (0-3), and no adverse reac-
tions [201]. Additionally, a randomized controlled trial
conducted by Jaillard et al. showed that although intravenous
injection of autologous mesenchymal stem cells did not
improve BI, mRS, and National Institutes of Health Stroke
Scale (NIHSS) 2 years later, it promoted the improvement
of motor function score [202].

In recent years, more and more different clinical trials
have shown the possibility of diversified clinical transforma-
tion. A phase I/II clinical trial by Levy et al. demonstrated for
the first time that a single intravenous injection of allogeneic
BM-MSCs is safe and effective. None of the 15 serious
adverse reactions during follow-up may be related to stem
cell therapy. In addition, intravenous injection of 1.5 million
cells/kg allogeneic MSCs in phase 2 showed significant
improvement in BI score and NIHSS score [203]. Deng
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et al. conducted a phase II clinical trial to evaluate the safety
and efficacy of intrathecal infusion of allogeneic BM-MSCs in
the treatment of IS for the first time. 59 subjects received
intrathecal infusion of allogeneic BM-MSCs four times a
week (1 x 10° cells/kg body weight), mainly to evaluate the
mRS score and the occurrence of adverse events after 90 days
of treatment [204]. The project is still in progress. Some liter-
atures have also reported the clinical trials of modified MSCs
in the treatment of IS. Steinberg et al. transplanted SB623
cells, BM-MSCs transfected with Notch-1 gene, into the
brain of 18 patients with chronic stroke; results showed sig-
nificant improvements in the European Stroke Scale (ESS)
score, NIHSS score, Fugl-Meyer (F-M) total score, and F-M
Exercise Scale score after 24 months of treatment [205].
There is a table of clinical trials of MSCs in the treatment of
patients with IS (Table 3).

10. Discussion

In this study, we mainly focused on the mechanism, applica-
tion parameters, and treatment strategies of MSCs in the
treatment of ischemic stroke IS. On the one hand, the mech-
anism of MSCs in the treatment of IS was the focus of previ-
ous reviews [206, 207], but most of the previous articles in
this area were not detailed enough. Here, we make a relatively
comprehensive review and summary of the mechanism of
action of MSCs and reviewed the research hotspots of the
mechanism of action in recent years, namely, mitochondrial
transfer and extracellular vesicles. We believe that this will
provide a significant reference for the follow-up study of
the mechanism of MSCs. On the other hand, application
parameters and treatment strategies are the key to the clinical
transformation of MSCs in the treatment of IS, but little
attention of previous review was paid to these two aspects.
This manuscript also makes a comprehensive review and
summary of these two aspects, including the summary of
the best application parameters of MSCs (i.e., the optimal
dose and the optimal time window) and the display of the lat-
est optimized treatment measures (i.e., pretreatment and
combined treatment). We believe that this is of great signifi-
cance to the development of follow-up clinical trials. In a
word, we hope that both basic research and clinical trials
can obtain useful information from this manuscript, so as
to promote the progress of MSCs in the treatment of IS.
Immunomodulation, neuroprotection, angiogenesis, and
neural circuit reconstruction are the main mechanisms of
MSCs in the treatment of IS. Except for paracrine, mitochon-
drial transfer or extracellular vesicle transfer may also be the
main pathway through which MSCs act, and MSC-EVs may
be an effective alternative strategy for MSCs in the treatment
of IS. MSC therapy extends the time window for treatment of
ischemic stroke, and early administration within 7 days after
stroke may be the best time for treatment. Intravascular
injection of MSCs may be an appropriate way for clinical
application, but we should pay attention to their adverse
reactions. Intranasal administration is also a promising way
of MSC transplantation. The optimal dose for treatment with
MSCs is uncertain, but there is no positive linear correlation
between dose and efficiency. There are a lot of researches on
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TaBLE 3: Clinical trials of MSCs in the treatment of patients with IS.
Time of
Type Dose/single (S adm.
of SIrole(e Szin;fsle Cell type ) or multiple Route  from Fogow- Result Reference
trial YP (M) stroke P
onset
Significant improvement in BL. No
RCT Acute IS 30 BM- 5x107/M v 4-5 weeks year  significant difference in NIHSS [200]
MSCs/autologous 7-9 weeks
and MRI scan
BM- 5 weeks No significant side effects. Patients
RCT Acute IS 85 5% 107/M v 5 years with mRS 0-3 significant [201]
MSCs/autologous 7 weeks )
increased
OL-  Chronic 12 BM- 0.6-1.6x 108 v 36-133 car No side effects. Decreasing of [210]
PT IS MSCs/autologous /S days ¥ infarct volume by>20% at 1 week
OL-  Subacute BM- 6 7-30 6 No side effects. Improvement in
1
PT IS 1 MSCs/autologous 851075 v days months NIHSS, BI, and mRS [211]
B BM 180 No side effects. No significant
. ) 1.59 x 108/ - i i i
CT Acute IS 20 VINGs jautologous 9 x 10°/ IA  5-9 days days differences in peurologlcal [212]
function
OL-  Chronic BM- 6 12 No side effects. Significant
1.5x10°/S
PT IS 36 MSCs/allogeneic x10% IV >60 days months  improvement in BI and NIHSS [213]
2.5% 105/S All experienced at least 1
OL-  Chronic SB623 ' 6 24 treatment-emergent adverse
5.0x10°/S
PT IS 18 cells/allogeneic 10 : 1 06//5 IC >60 days months event. Significant improvements [205]
in NIHSS F-M and ESS
No significant improvements in
Subacute BM- 1.0 x 10°/8 S
RCT IS 31 MNCs/autologous 3.0 x 1 05/S IV <2 weeks 2 years ‘NIHSS, BI, anq mRs. S1gn1ﬁce}nt [202]
improvements in motor function
. No side effects. Significant
OL-  Chronic BM- . 3-24 . .
PT IS 12 MNCs/autologous Not provided IV months 4 years improvements in mBI at 156 and ~ [214]

208 weeks

RCT: random control trial; OL-PT: open label prospective trial; SB-CT: simple blinded control trial; IV: intravenous; IA: intra-arterial; IC: intracerebral; adm:

administration.

enhancing the therapeutic strategies of MSCs, but whether it
is pretreatment or gene modification, combination therapy,
or MSC-EVs, they are mainly based on the mechanism of
MSCs in the treatment of IS. Clarifying the mechanism of
action, molecular regulation, and signal pathways of MSCs
will promote the discovery of more beneficial therapeutic
strategies.

10.1. Limitation. Several limitations of the current review
should not be ignored. First, we only reviewed the relevant
literatures in PubMed database. Some articles not included
in this database may be omitted, resulting in incomplete
review. Secondly, in this study, there is no in-depth investiga-
tion and summary on MSC-EVs and micro-RNA which is
the research hotpot of MSCs recently. Thirdly, the safety of
MSCs in the treatment of IS, which is crucial to clinical trans-
formation, has not been investigated in this study.

10.2. Future Directions. MSC therapy extends the time win-
dow for treatment of ischemic stroke, and early administra-
tion within 7 days after stroke may be the best time for
treatment. Although the application of intravascular injec-
tion of MSCs may be an appropriate treatment for IS, more
efforts might be required to determine the potential adverse

reactions. And delivery MSCs through the intranasal route
could also be a promising way of MSC transplantation. Fur-
thermore, the optimal dose for treatment with MSCs needs to
be investigated. Additionally, there are many different treat-
ment strategies to optimize the efficacy of MSCs; researchers
should carry out clinical trials in this area to achieve better
clinical transformation in the future.

11. Conclusion

In summary, MSC transplantation provides hope for the
treatment of IS. Further study of its mechanism and optimi-
zation of its treatment strategy will lay a solid foundation for
the clinical transformation of MSC therapy.
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