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Endometrial cancer is a common malignant tumor in gynecology, and the prognosis of advanced patients is dismal. Recently,
many studies on the peroxisome proliferator-activated receptor pathway have elucidated its crucial involvement in endometrial
cancer. Copy number variation (CNA) and nucleotide mutations often occur in tumor tissues, leading to abnormal protein
expression and changes in protein structure. We analyzed the exon sequencing data of endometrial cancer patients in the
TCGA database and found that somatic changes in PPAR pathway-related genes (PPAR-related-gene) often occur in UCEC
patients. Patients with CNA or mutation changes in the exon region of the PPAR-related-gene usually have different
prognostic outcomes. Furthermore, we found that the mRNA transcription and protein translation levels of PPAR-related-gene
in UCEC are significantly different from that of adjacent tissues/normal uterus. The transcription level of some PPAR-related-
gene (DBI, CPT1A, CYP27A1, and ME]1) is significantly linked to the prognosis of UCEC patients. We further constructed a
prognostic predicting tool called PPAR Risk score, a prognostic prediction tool that is a strong independent risk factor for the
overall survival rate of UCEC patients. Comparing to the typical TNM classification system, this tool has higher prediction
accuracy. We created a nomogram by combining PPAR Risk score with clinical characteristics of patients in order to increase
prediction accuracy and promote clinical use. In summary, our study demonstrated that PPAR-related-gene in UCEC had
significant alterations in CNA, nucleotide mutations, and mRNA transcription levels. These findings can provide a fresh
perspective for postoperative survival prediction and individualized therapy of UCEC patients.

1. Introduction

One of the most prevalent malignancies in the female
reproductive system is uterine corpus endometrial carci-
noma (UCEC), and its incidence has been rising in the past
few years [1]. Most UCEC patients have a better prognosis
after hysterectomy and adjuvant therapy. However, for
advanced-stage patients, the benefit rate is less than 50% in
current treatment strategies [2]. Therefore, it is still neces-
sary to explore the pathogenesis of UCEC and treatments
for advanced patients.

Peroxisome proliferator-activated receptors (PPARs) are
transcription factors of the nuclear hormone receptor super-

family and play essential roles in the physiological and
pathological processes of cells [3]. PPARs have been demon-
strated to have an important function in the endometrial
trophoblast in studies [4, 5]. Therefore, PPAR pathway-
related genes (PPAR-related gene) also participate in the
occurrence and development of UCEC. Some PPAR ligands
have an antiproliferative activity against endometrial cancer
[6]. Inhibition of PPARy can promote the proliferation
of endometrial cancer cells through the Bcl-2/caspase3
pathway [7].

Tumor somatic variation includes gene copy number
alteration (CNA) and base mutation. Gene CNA includes
amplification and deep deletion, which usually leads to
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changes in the related protein expression. Intentional
mutations of genes include missense mutation, truncating
mutation, splice mutation, and inframe mutation. Gene
mutations can cause changes in protein amino acids, thereby
affecting their standard structure and function. We found
83% of serous endometrial carcinoma had PPAR-related
gene somatic variation, while 48% of endometrioid endome-
trial carcinoma had PPAR-related gene somatic variation.
This variation frequency is quite large, and further explora-
tion is needed.

In this study, we conducted a comprehensive analysis of
the CNA, nucleotide mutation, and transcription statuses of
the PPAR-related gene in UCEC. Furthermore, we discov-
ered that a substantial number of PPAR-related genes are
associated with patient prognosis. As a result, a PPAR risk
score was developed to predict the prognosis of UCEC
patients. It contributes to a better understanding of the
PPAR pathway’s function in UCEC and allows for a more
precise management of UCEC patients after surgery.

2. Materials and Methods

2.1. PPAR Pathway-Related Gene Acquisition. Sixty-nine
PPAR-related genes were obtained from a gene set (KEGG
PPAR signaling pathway) in the molecular signature database
(MSigDB) [8]. The systematic name of this pathway is
M13088. The specific details of the 69 PPAR-related genes
investigated in this study are listed in Supplementary Table S1.

2.2. Data Source and Study Population. A total of 539 puta-
tive copy number alteration data and 248 mutation data
from whole-exome sequencing for endometrial cancer sam-
ples in the TCGA database [9] were downloaded from cBio-
Portal [10]. The R package “TCGAbiolinks’ [11] was used to
download the gene expression data and clinical data for 548
endometrial cancer samples in the TCGA-UCEC cohort.
The Sankey plots used to display the samples’ clinical infor-
mation were drawn using the R package ‘ggalluvial’ [12].

2.3. Pathway Enrichment Analysis. The differentially
expressed genes between the PPAR-related gene CNA/muta-
tion altered group and the unaltered group were determined
by using the R package ‘edgeR.” Then, R package ‘clusterPro-
filer’ [13] was ulilized to perform gene set enrichment anal-
ysis (GSEA). The hallmark gene sets (h.all.v7.2.symbols.gmt)
were downloaded from the MSigDB.

2.4. Prognosis Analysis. The overall survival (OS) and
disease-free survival (DFS) of each group of patients were
calculated using Kaplan-Meier and log-rank analyses.

2.5. Immune Characteristic Analysis. We used the CIBER-
SORT [14] algorithm to calculate the infiltration status of
22 immune cells in the TCGA-UECE cohort and compared
the results in each group of patients. The neoantigens data
and of the TCGA-UCEC cohort are from previously pub-
lished articles. The total tumor-infiltrating lymphocytes
(TIL) regional fraction data and the neoantigens data of
the TCGA-UCEC cohort were obtained from an authorita-
tive article [15].
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2.6. Prediction of Chemotherapy Response. The R package
‘PRRophetic’ [16] and mRNA data were used to estimate
each patient group’s medication sensitivity. Among them,
ridge regression was used to determine the samples’ highest
half-inhibitory concentration (IC50), and tenfold cross-
validation was utilized to determine the accuracy.

2.7. PPAR Risk Score Generation. Through univariate and
multivariate Cox regression analyses, the PPAR-associated
gene most connected to patient prognosis was selected out.
The linear combinational of the signature gene expression
weighted by their regression coefficients was used to produce
the PPAR risk score for each patient. The ‘pheatmap’ R pack-
age was used to visualize the expression of each gene in
PPAR risk score. The survival rate was calculated using the
Kaplan-Meier method, and its statistical significance was
determined using the log-rank test.

2.8. PPAR Risk Score Verification. The prediction model
based on PPAR risk score was tested using univariate and
multivariate cox regression analyses to see if it was an inde-
pendent prognostic factor. The time-dependent receiver
operating characteristic curve (TDROC) in the ‘survival-
ROC’ [17] R package was used to examine PPAR risk score’s
prediction ability at 1, 3, and 5 years.

2.9. Statistical Analyses. The clinical variables of different
groups of patients were tested using Fisher’s exact test or
chi-square test. The Mann-Whitney U test or the Kruskal-
Wallis test was utilized to compare the abundance of
immune cell infiltration, neoantigens, and drug sensitivity
between PPAR-related gene CNA/mutation altered and
unaltered groups. P < 0.05 was considered statistically signif-
icant. The predictive nomogram was built with the R pack-
age ‘rms’ and lasonos’ guide [18]. R (version 4.0.3) or
GraphPad Prism 6.0 was used for all statistical tests and
visual analysis (GraphPad Software, USA).

3. Results

3.1. The CNA Status of PPAR-Related Gene and Related
Clinical Features in UCEC Patients. We analyzed the CNA
status of each PPAR-related gene in UCEC. In general,
PPAR-related gene copy number changes are observed
in 80% of patients with serous endometrial carcinoma
(Figures 1(a)), which is much more than that of patients with
endometrioid endometrial carcinoma (less than 20%). The
PPAR-related gene most prone to copy number amplifica-
tion are EHHADH, SLC27A1, ACOX1, ANGPLT4, and
PLTP (Figures 1(b)). The PPAR-related gene most prone to
copy number deletion are CPT1B and LPL. However,
PPARA has undergone a large amount of copy number
amplification and deletion. As shown in Figures 1(c), there
is no difference in the PPAR-related gene CNA status among
all age groups and histological grades. However, CNA of
PPAR-related gene occurs more in serous type and III-IV
TNM stage patients. To evaluate the relationship between
the PPAR-related gene CNA status and the prognosis of
UCEC, we divided patients into the PPAR-related gene
altered and unaltered groups and compared their survival
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F1GURE 1: The CNA status of PPAR-related gene and related clinical features in UCEC patients. (a) The frequency of CNA alterations of
PPAR-related gene in patients with different histological types. (b) The CNA type ratio of each PPAR-related gene. (c) Sankey plots
show the clinical information of PPAR-related gene CNA and non-CNA patients. Kaplan-Meier curves show the correlation between
PPAR-related gene CNA status and overall survival (d) or disease-free survival (e) probability of UCEC patients.

probabilities. When PPAR-related gene CNA occurs, the  3.2. The Mutation Status of PPAR-Related Gene and Related
probability of OS and DFS of patients was lower than that  Clinical Features in UCEC Patients. In a similar way, we also
of CNA unaltered patients (Figures 1(d) and 1(e)). analyzed the mutation status of each PPAR-related gene in
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Fi1GURE 2: The mutation status of PPAR-related gene and related clinical features in UCEC patients. (a) The frequency of mutation
alterations of PPAR-related gene in patients with different histological type. (b) The mutation type ratio of each PPAR-related gene. (c)
Sankey plots shows the clinical information of PPAR-related gene mutated and nonmutated patients. Kaplan-Meier curves show the
correlation between PPAR-related gene mutation status and overall survival (d) or disease-free survival (e) probability of UCEC patients.

UCEC. In general, the mutation of the PPAR-related gene is SORBSI (Figure 2(b)). A fascinating phenomenon is that
higher in endometrioid endometrial carcinoma than in =~ EHHADH and LPL undergoes high copy number alterations
serous endometrial carcinoma (Figure 2(a)). Commonly and have high-frequency mutations in UCEC. As shown in
mutated PPAR-related genes are ACSL4, CPTIC, LPL, and  Figures 2(c), there is no difference in the mutation
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probability of PPAR-related gene among all age groups and
histological grades. Similarly, we divided patients into the
PPAR-related gene mutated and nonmutated groups and
compared their survival probabilities. Kaplan-Meier analysis
of OS and DES showed that the prognosis of patients with
PPAR-related gene mutation was better than that of nonmu-
tated patients (Figures 2(d) an(d) 2(e)).

3.3. Comparison of Transcriptomic Traits between PPAR-
Related Gene Altered and Unaltered Patients. To further ana-
lyze the potential biological changes in UCEC after PPAR-
related gene CNA or mutation, we used the hallmark gene
sets (h.all.v7.2.symbols.gmt) from the ‘MSigDB’ to perform
the GSEA between the PAPP-gene altered and nonaltered
groups. The full 50 pathways/gene sets enriched with were
presented in the Supplementary Materials—GSEA results.
Based on the adjusted P value and normalized enrichment
score, we selected the five pathways with the most significant
changes for display. The results of GSEA showed that E2F
TARGETS, G2M CHECKPOINT, and INTERFERON
ALPHA RESPONSE pathways were significantly upregu-
lated in the PPAR-related gene CNA altered group. In con-
trast, ESTROGEN RESPONSE pathways were significantly
downregulated (Figure 3(a)). When PPAR-related gene
mutations occur in UCEC patients, in addition to E2F TAR-
GETS, G2M CHECKPOINT, and INTERFERON GAMMA
RESPONSE pathways, the ALLOGRAFT REJECTION and
INFLAMMATORY RESPONSE pathways were also signifi-
cantly activated (Figure 3(b)).

3.4. Association between the PPAR-Related Gene Status and
Tumor Immune Characteristics. Through the analysis of
the CIBERSORT algorithm, we found that the tumor
microenvironment of UCEC patients with PPAR-related
gene CNA has changed. Nevertheless, in UCEC patients
with PPAR-related gene mutation, these changes were more
prominent. In PPAR-related gene CNA patients, the enrich-
ment of CD8" T cell, Treg, and M1 type macrophage was
reduced (Figure 4(a)). The total TIL fraction score did not
change, but patients in the CNA group had fewer neoanti-
gens (Figure 4(b)). In the PPAR-related gene mutation
group, CD8+ T cell, T helper, and M1 type macrophage
infiltration increased (Figure 4(c)). Also, in the PPAR-
related gene mutation group, the total TIL immersion score
increased, and more neoantigens (Figure 4(d)).

3.5. Prediction of Chemotherapy Therapy Outcomes in
Patients with Different PPAR-Related Gene Status. UCEC
patients use chemotherapy drugs for adjuvant treatment
after surgery. In order to explore whether PPAR-related
gene CNA and mutation status influence chemotherapy,
we used the R package ‘pRRophetic’ to evaluate the patient’s
(TCGA-UCEC cohort) sensitivity to the drugs. We selected
four chemotherapy drugs commonly used in UCEC patients
and predicted their IC50 for the PPAR-related gene alter-
nated and nonaltered patients (Supplementary Figure S1).
Cisplatin is a commonly used chemotherapy drug for
patients with endometrial cancer. Through bioinformatics
prediction, we found that patients with CNA and mutations

of PPAR-related genes may be more sensitive to cisplatin
(low IC50). Besides, we found that PPAR-related gene
CNA patients were more sensitive to paclitaxel (P < 0.001)
than unaltered patients but less sensitive to docetaxel
(P <0.001). There was no difference in sensitivity to doxoru-
bicin between the two groups. We did not find any statistical
difference in the above three drugs’ sensitivity between
patients with PPAR-related gene mutations and those with-
out mutations.

3.6. The Transcription and Protein Expression of PPAR-
Related Gene in UCEC Is Different from Normal
Endometrium. The CNA and mutation of genes ultimately
perform biological functions by differentially changed RNA
transcription and protein expression. We used RNA-seq
and CPTAC (clinical proteomic tumor analysis consortium)
protein expression data from UCEC patients and normal
endometrium for further analysis. Firstly, we used principal
component analysis (PCA) to describe the dimensionality
reduction features of 50 PPAR-related genes. In the two-
dimensional and three-dimensional PCA analysis results
(Figure 5(a)), we found that PPAR-related gene can well dis-
tinguish UCEC (TCGA-UCEC-tumor), paratumor tissue
(TCGA-UCEC-normal), and normal endometrium (GTEx-
uterus). The results show that the expression of PPAR-
related gene in these three tissues has different expression
characteristics. We describe the transcription level of each
gene in the PPAR-related gene set between UCEC paratu-
mor tissues, endometrioid UCEC, and serous UCEC
(Figure 5(b)). Similarly, we also analyzed the protein transla-
tion level of each PPAR-related gene (Supplementary Figure
S2). The results showed that the RNA expression of
EHHADH decreased in endometrioid UCEC and signifi-
cantly increased in serous UCEC. But at the level of protein
expression, we found that EHHADH was significantly
increased in both types of UCEC. The LPL gene has high
copy number deletions and missense mutations. Consistent
with this, we have also observed a decrease in its tran-
scriptome and proteome in UCEC. For other genes, some
of them have the same trend in the transcriptome and pro-
teome, but some are inconsistent.

3.7. The Transcription of PPAR-Related Gene Is Related to
the Prognosis of UCEC Patients. We performed univariate
Cox regression analysis using TCGA-UCEC mRNA
sequencing data and clinical data to investigate the relation-
ship between the expression of PPAR-related genes and
patient prognosis. As shown in Figure 6(a), we discovered
seven genes that are substantially related to UCEC patient
prognosis (P < 0.05, HR < 1 or HR > 1) and passed the pro-
posed bootstrap test. For dimension reduction, the seven
robust prognostic genes were subjected to multivariate Cox
regression analysis. We discovered that the model composed
of four genes functioned optimally (Figure 6(a)). Among
them, CYP21A1 has a hazard ratio of less than one, implying
that individuals who overexpress CYP21A1 live longer.
Three genes (DBI, CPT1A, and ME1) with hazard ratios
greater than one, on the other hand, have the opposite impli-
cation. We created a scoring system called PPAR risk score to
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predict the prognosis of UCEC patients based on the corre-

lation coefficient of each gene.

PPARRisk score = 0.54 # Exppp; +0.41 * EXprpria —

* EXpeypozar +0.20 * Expyp, -

0.35

(1)

We estimated the PPAR risk score for each UCEC
patient. Patients were divided into two groups (high risk
and low risk) according on their PPAR risk score, using the
cohort’s median as the cut-off value. Figure 6(c) illustrates
the distribution of PPAR risk score and patient survival sta-

tus. The relative mRNA levels of such four genes between
the two patient groups are depicted in Figure 6(d).

3.8. Independent Prognostic Value of the PPAR Risk score.
The PPAR risk score is then compared to patient clinical
data. The PPAR risk score was found to be a major indepen-
dent risk factor for the overall survival rate of UCEC patients
in both univariate and multivariate Cox regression analyses
(Figure 7(a)). The Kaplan-Meier curve revealed that patients
in the high-risk group had a significantly reduced survival
rate (Figure 7(b)). The PPAR risk score outperformed the
age, TMN stage, and pathological grade of UCEC patients
in a one-year, three-year, and five-year ROC analysis
(Figure 7(c)). These data imply that the PPAR risk score is
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a distinct prognostic factor that may be more effective in
predicting patient outcome than existing clinical measures.

3.9. Develop a Prognostic Nomogram Based on PPAR Risk
Score. We developed a nomogram that integrates PPAR

risk score and clinical prognostic factors to predict
patients’ 3- and 5-year survival rates (Figure 8(a)) in order
to improve prognosis accuracy and ease clinical use. The
patient’s prognosis can be calculated using the sum of
each factor’s contribution scores. Figure 8(b) shows that
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our nomogram outperforms an ideal model after three and
five years of calibration. The clinical utility of our nomo-
gram greatly outweighed the clinical features, according
to the decision curve analysis (Figure 8(c)). It was discov-
ered that using the PPAR risk score in combination with
clinical features to predict prognosis could benefit more
patients.

4. Discussion

Endometrial cancer is one of the primary gynecological
malignancies globally. Its high-risk factors include disease
stage, tumor size, grade, histological type, myometrial inva-
sion, and lymph node metastasis [19]. It usually occurs in
postmenopausal women, and the prognosis of late UCEC
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is very poor, which requires our focus. Like other cancers,
the incidence and progression of UCEC also entail compli-
cated molecular pathways [20]. Studies have demonstrated
that the PPAR pathway plays a key role in UCEC [4-7].
Through bioinformatics research, we detected a substantial
number of somatic mutations in the PPAR pathway-
related genes in UCEC. Therefore, it is crucial to compre-
hensively examine the CNA and mutation status of PPAR
pathway-related genes in UCEC.

This study found that a large proportion of PPAR-
related gene CNAs were observed in patients with serous
carcinoma. On the other hand, PPAR-related gene mutation
frequency is higher in endometrioid endometrial cancer but
not serous carcinoma. The PPAR-related gene most prone to
CNA amplification is EHHADH, one of the four enzymes of
the peroxisomal beta-oxidation pathway [21]. EHHADH
can promote cisplatin resistance in bladder cancer cells
[22]. Highly expressed EHHADH may play a similar func-
tion in UCEC, which requires more in-depth research.

To further analyze the biological changes in UCEC after
PPAR-related gene CNA and mutation, we performed GSEA
analysis. To further analyze the biological changes of UCEC
when the PPAR-related gene somatic mutation occurs, we
conducted pathway analysis. It can be concluded that when
a somatic mutation of the PPAR-related gene occurs in
UCEC, cell cycle-related pathways will be activated. Such
as the E2F pathway and G2/M DNA damage checkpoint-
related proteins. Gene expression in response to the
interferon-gamma (IFNy) pathway is significantly upregu-
lated, common in other tumors [23]. Immune checkpoint
blockade therapy can lead to upregulation of IFNy and ulti-
mately eliminate tumor cells. However, IENy signal can also
induce tumor ischemia and homeostasis program, and the
result is tumor clearance or tumor escape [24]. Therefore,
the significant activation of IFNy associated with PPAR-
related gene somatic mutations in UCEC is a complicated
research direction.

In the survival analysis, we found that PPAR gene CNA
patients’ survival time was significantly reduced compared
with patients with unaltered CNA. On the other hand, com-
pared with unaltered patients, PPAR-related gene mutation
patients’ survival time increased significantly. It is also an
important conclusion we reached. It indicates that the
somatic mutation status of PPAR-related gene may be an
ideal prognostic predictor of UCEC. Clinicians can perform
PPAR-related gene exon detection through the tumor tissue
removed during a hysterectomy to predict the patient’s prog-
nosis and guide postoperative review and treatment plans.

The systemic treatment of advanced UCEC is usually
chemotherapy and targeted therapy, but the outcome varies
from person to person. The mRNA expression profile and
the R software package ‘pRRophetic’ were utilized to predict
patients’ six drug sensitivities and controls in this investiga-
tion. Cisplatin is helpful in individuals with PPAR-related
gene somatic mutations, according to our findings. PPAR-
related gene CNA patients have high sensitivity to paclitaxel
but low sensitivity to docetaxel. These results may help
clinicians choose chemotherapeutics for UCEC patients with
PPAR-related gene somatic mutations.
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In recent years, it has been shown that immune cells and
inflammatory factors play a role in the tumor microenviron-
ment. Sufficient activation of effector T cells are a prerequi-
site for the body to kill tumor cells [25]. The expression of
programmed cell death-1 and programmed death ligand-1
are present in up to 80% of EC patients [26]. Immunother-
apy has become a promising solution for the treatment of
UCEC patients. T cells can recognize neoantigens (nonself-
antigens) through HLA molecules on the surface of tumor
cells. Many neoantigens provide opportunities for immuno-
therapy to trigger-specific and effective anticancer immune
responses [27]. We found that the total TIL infiltration in
the tumor microenvironment of patients with UCEC
PPAR-related gene mutations increased, and more neoanti-
gens were produced due to the mutations. It means that
patients who have PPAR-related gene mutations may benefit
from immunotherapy. It requires more clinical research
results of UCEC immunotherapy to confirm, but it is also
a good start.

The copy number alternation and mutation of genes
ultimately influence cell biological functions by differentially
changed RNA transcription and protein translation. In view
of the great changes in the PPAR-related gene at the genome
level, we further analyzed the RNA transcription and protein
translation levels of the PPAR-related gene. Unsurprisingly,
the RNA and protein expression levels of PPAR-related gene
in UCEC are very different from normal endometrium. In
some genes, we have observed consistent changes on these
three levels, but in other genes, the changes are not one-to-
one correspondence.

Because the expression of RNA can easily be measured
from the patient’s intraoperative pathological tissue, the
RNA expression levels of certain genes in tumor section
are new tools for predicting postoperative survival. PPAR-
related gene expression varies greatly in different patients.
We discovered that the PPAR-related gene panel is closely
related to patients’ postoperative survival time and can be
used to predict patient prognosis. We discovered that
CYP21A1, DBI, CPT1A, and MEI are strongly connected
to the prognosis of UCEC patients among the 50 PPAR-
associated genes. Among them, CYP21A1 has a hazard ratio
of less than one, implying that individuals who overexpress
CYP21A1 live longer. The other three genes with hazard
ratios greater than one, on the other hand, have the reverse
implication. PPAR risk score, a prognostic prediction tool,
was also developed. The PPAR risk score is a strong indepen-
dent risk factor for the overall survival rate of UCEC
patients, according to univariate and multivariate Cox
regression analysis. We also developed a nomogram with
PPAR risk score and clinical factors to make the findings of
this study more practical in the clinic (Figure 8). The nomo-
gram is a widely used method for predicting cancer progno-
sis. It combines the parameters of patients to predict their
prognosis using statistical approaches. The accuracy of a
nomogram is higher than that of a simple clinical profile of
patients due to a combination of factors [18, 28]. The nomo-
gram had better prediction accuracy and could benefit more
patients, according to the calibration and decision curve
analyses.
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This research still has certain limitations. First, the
study’s initial data comes from cohort sequencing, and the
findings must be confirmed by larger cohorts and molecular
investigations. Second, in order to determine the appropriate
cut-off value, the gene expression data used in this study
must be revised. Third, because this is a retrospective study,
the patient sample is heterogeneous, which could skew the
findings. To confirm the utility of the PPAR risk score and
nomogram established in this study, more clinical research
is needed. In subsequent research, we will investigate and
confirm the relation between the PPAR pathway and UCEC.

5. Conclusions

In conclusion, we found that PPAR-related gene somatic
mutations often occur in UCEC patients. Patients with
PPAR-related gene mutations may benefit from immuno-
therapy and cisplatin therapy. Furthermore, we found that
the mRNA transcription level of PPAR-related gene in
UCEC is significantly different from that of adjacent tis-
sues/normal uterus. We constructed a scoring tool called
PPAR risk score which is a strong independent risk factor
for the overall survival rate of UCEC patients.
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Our previous study showed that the upregulation of peroxisome proliferator-activated receptor gamma (PPARG) could promote
chemosensitivity of hypopharyngeal squamous cell carcinoma (HSCC) in chemotherapeutic treatments. Here, we acquired two
more independent expression data of PPARG to validate the expression levels of PPARG in chemotherapy-sensitive patients
(CSP) and its individualized variations compared to chemotherapy-non-sensitive patients (CNSP). Our results showed that
overall PPARG expression was mildly downregulated (log fold change = —0.55; p value = 0.42; overexpression in three CSPs and
reduced expression in four CSPs), which was not consistent with previous results (log fold change=0.50; p=0.22;
overexpression in nine CSPs and reduced expression in three CSPs). Both studies indicated that PPARG expression variation
was significantly associated with the Tumor-Node-Metastasis (TNM) stage (p =7.45e — 7 and 6.50e — 4, for the first and second
studies, respectively), which was used as one of the predictors of chemosensitivity. The new dataset analysis revealed 51 genes
with significant gene expression changes in CSPs (LFC > 1 or <-1; p value < 0.01), and two of them (TMEM45A and RBP1)
demonstrated strong coexpression with PPARG (Pearson correlation coefficient > 0.6 or <-0.6). There were 21 significant genes
in the data from the first study, with no significant association with PPARG and no overlap with the 51 genes revealed in this
study. Our results support the connection between PPARG and chemosensitivity in HSCC tumor cells. However, significant
PPARG variation exists in CSPs, which may be influenced by multiple factors, including the TNM stage.

1. Introduction

Hypopharyngeal squamous cell carcinoma (HSCC) accounts
for about 5% of head and neck tumors and is one of the top
human malignancies in Europe and the United States [1].
Each year, HSCC causes about 10 cases per million people
in the world, with more than 160,000 new cases and 83,000
deaths [2, 3]. Due to the poor survival rate and the devastat-
ing impacts on swallowing and speech, the administration of
HSCC remains one of the most challenging topics [4].
Patients with HSCC are usually treated with chemoradio-
therapy to preserve the organ and its function [5]. PPARG

(peroxisome proliferator-activated receptor gamma) is a
protein-coding gene, which has been suggested to improve
chemosensitivity in human carcinomas, including HSCC
[6-9].

Our previous study showed that elevated PPARG expres-
sion could drive multiple molecules to increase the chemo-
sensitivity of multiple squamous carcinoma cells [9]. For
example, the activation of PPARG was shown to increase
the expression of BMP6, BMP7, and NME1 [10, 11], which
was positively related to the chemosensitivity of multiple
squamous carcinoma c5ells [12-14]. Moreover, PPARG has
been suggested to depress the expression of multiple
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chemosensitivity inhibitors, such as TERT, CFTR, and EGR1
[9], which form another type of pathway for the chemosensi-
tivity promotion role of PPARG [15-17].

Our previous study also showed that PPARG could dem-
onstrate increased expression levels in HSCC chemotherapy-
sensitive patients (CSP) compared to chemotherapy-non-
sensitive patients (CNSP) [9], supporting the role of PPARG
in chemosensitivity promotion. However, a significant vari-
ance was observed among the individuals within the CSP
group, resulting in a mild overall expression change. In this
study, we explored the expression changes of PPARG in the
CSP group by acquiring further expression data and tested
the potential influence of multiple clinical parameters. Our
results confirmed the association between PPARG and che-
mosensitivity in HSCC patients as well as its strong expres-
sion variance among individual HSCC subjects, which
suggested that PPARG may be among multiple factors that
influence the chemotherapy sensitivity of HSCC patients.

2. Materials and Methods

2.1. Patient Recruitment and Specimen Selection. In our pre-
vious study, microarray expression data of 21 HSCC patients
were acquired, including 12 CSPs and 9 CNSPs [9]. These
patients were undergoing induction chemotherapy for pri-
mary HSCC. We submitted our data to Gene Expression
Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) with
GEO ID GSE85608. Following the same data acquisition
workflow, we acquired the expression data of another 11
HSCC patients, which is also available on GEO (GEO ID
GSEB85607). We provided the clinical features of these HSCC
patients in Tables 1 and 2, respectively. For more details of
the two datasets, please refer to https://www.ncbi.nlm.nih
.gov/geo/query/acc.cgi?acc=GSE85608 and https://www
.1ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE85607,
respectively.

2.2. PPARG Expression and Potential Influential Factors. For
the two datasets, we renalyzed the expression levels of
PPARG at probe ILMN_1800225 (probe sequence: CCTG
AGCCACTGCCAACATTTCCCTTCTTCCAGTTGCAC
TATTCTGAGGG), focusing on its variation and potential
influential factors. We first compared the expression levels
in the CSP group and CNSP group in terms of log fold
change (LFC) using one-way ANOVA. Then, we employed
a multiple linear regression (MLR) model to study the poten-
tial connection between PPARG levels and multiple clinical
parameters, including age, TNM stage, histologic differentia-
tion (HD) degree, and chemotherapy response (CR). For the
nonnumeric variables, the original string value was changed
to a numeric value by indexing different values. Beta values,
95% confidence intervals of beta values, and parameter sig-
nificance in terms of p values were reported. All the analyses
were performed using MATLAB (version R2017a).

2.3. Coexpression Analysis. To explore the coinfluential genes
that play roles in the CSPs of HSCC disease, we first identi-
fied the genes that demonstrated a significant change in the
CSP group compared with the CNSP group (LFC>1 or
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<-1 and p <0.01) using one-way ANOVA (function “ana-
oval” in the statistics toolbox of MATLAB). Then, we calcu-
lated the pairwise linear correlation between PPARG
expression and that of these significant genes (function
“corr” in the statistics toolbox of MATLAB). The RHO
(Pearson’s correlation coefficient) value was used to evaluate
the strength of the coexpression: (1) strong correlation: abs(
RHO) € [0.6, 1]; (2) medium correlation: abs(RHO) € [0.4,
0.6]; (3) weak correlation: abs(RHO) € [0.2, 0.4]; and (4) no
correlation: abs(RHO) < 0.2. Here, abs(RHO) refers to the
absolute value of RHO. All analyses have been conducted
using MATLAB (version R2020a).

2.4. Pathway Analysis. To explore the functionality of the sig-
nificant genes in the CSP group that also presented coexpres-
sion with PPARG (abs(RHO) >0.2), we conducted Fisher’s
exact test-based pathway enrichment analysis (PEA)
(https://david.ncifcrf.gov/content.jsp?file=functional
annotation.html#fisher) against Gene Ontology (GO) [18].
In addition, a literature-based network analysis was conducted
using Pathway Studio (http://www.pathwaystudio.com) to
uncover potential cofunctional genes of PPARG. For the
detailed instructions regarding network analysis, please refer
to the supporting materials at https://supportcontent.elsevier
.com/Support%20Hub/Pathway%20Studio/Network%
20Builder%20basic%20_Interactive%20NB%20v114.pdf.

3. Results

3.1. PPARG Expression in the CSP Group. For the two data-
sets analyzed, we presented the expression of PPARG for all
HSCC patients in Figure 1, including both CSPs and CNSPs.
In dataset GSE85608, PPARG presented an overall increased
expression in the CSP group compared to the CNSP group
(LFC =0.50; p =0.22; see Figure 1(b)). However, in dataset
GSEB85607, PPARG presented an overall reduced expression
(LFC=-0.55; p=0.42), with more patients presented
decreased expression than overexpression (four vs. three;
see Figure 1(a)). Moreover, there were also significant vari-
ances among the CNSP group (green bars in Figures 1(a)
and 1(b)). These results suggested that there were influential
factors causing the variation of PPARG expression among
HSCC patients, which is worthy of further study.

3.2. TNM Stage and PPARG. MLR results by using data from
both GSE85607 and GSE85608 showed that the expression
levels of PPARG were significantly associated with the
TNM stage (p value = 6.37e — 4 and 7.57e — 7 for GSE85607
and GSE85608, respectively), as shown in Figure 2. However,
due to the limited sample size, TNM stages were not well
matched among samples within the two datasets. More data
with a larger sample size is needed to better understand the
linkage between TNM stage and PPARG expression levels.
To note, the p values for the beta factor of chemotherapy
response (CR) did not reach the significance level (p value =
0.16 and 0.26 for GSE85607 and GSE85608, respectively).
This was consistent with the mild overall expression changes
of PPARG in the CSP group compared with the CNSP group.
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TasLE 1: Clinical data of HSCC patients for GSE85608.
Subject ID Age TNM stage Histologic differentiation degree Chemotherapy response Gender
S1 69 T4aN2MO Moderately differentiated PR Male
S2 62 T4aN2MO Well differentiated PR Male
S3 69 T4N1IMO Poorly differentiated PR Male
S4 49 T3N2MO Moderately differentiated PR Male
S5 60 T4bN2MO Moderately differentiated PR Male
S6 69 T4aNOMO Moderately differentiated PR Male
S7 44 T2N2MO0 Poorly differentiated PR Male
S8 53 T4aNOMO Well differentiated PR Male
S9 49 T4aN2MO Moderately differentiated PR Male
S10 44 T4aN2MO Poorly differentiated PR Male
S11 60 T3N1IMO Moderately differentiated CR Male
S12 48 T4bN2MO Well differentiated PR Male
N1 65 T4aN2MO Well differentiated SD Male
N2 45 T2N3MO Moderately differentiated PD Male
N3 57 T4bN3M1 Well differentiated SD Male
N4 69 T3N2MO Well differentiated SD Male
N5 71 T4aN2MO Poorly differentiated SD Male
N6 43 T4bN2M1 Poorly differentiated SD Male
N7 69 T2N1MO Well differentiated SD Male
N8 71 T4aNOMO Well differentiated SD Male
N9 43 T4aN2MO Moderately differentiated SD Male

Note: CR (complete response): disappearance; confirmed at 4 weeks; PR (partial response): 50% decrease; confirmed at 4 weeks; SD (stable disease): neither PR
nor PD criteria are met; PD (progressive disease): 25% increase; no CR, PR, or SD documented before a progressed disease.

TaBLE 2: Clinical data of HSCC patients for GSE85607.

Subject ID Gender Age TNM stage Histologic differentiation degree Chemotherapy response
S1 Female 71 T2NOMO Poorly differentiated PR
S2 Male 68 T2NOMO Well differentiated PR
S3 Male 55 T4aNOMO Well differentiated PR
S4 Male 68 T3NOM1 Moderately differentiated PR
S5 Male 58 T3NOMO Well differentiated PR
S6 Male 52 T2NOMO Well differentiated PR
S7 Male 56 T2NOMO Well differentiated PR
N1 Male 58 T4aN3MO Poorly differentiated SD
N2 Male 61 T3N2MO Poorly differentiated SD
N3 Male 56 TINOMO Well differentiated SD
N4 Male 59 T3N2MO Moderately differentiated PD

Note: CR (complete response): disappearance; confirmed at 4 weeks; PR (partial response): 50% decrease; confirmed at 4 weeks; SD (stable disease): neither PR
nor PD criteria are met; PD (progressive disease): 25% increase; no CR, PR, or SD documented before a progressed disease.

Moreover, the other two parameters, namely, age and
histologic differentiation (HD) degree, were not significant
factors influencing PPARG expression levels (p value >
0.42). We presented the detailed results in Supplementary
Material PPARG_HSCC_CR=>MLR_GSE85607 and MLR _
GSE85608. The Supplementary Material PPARG_HSCC_
CR is a multiworksheet Excel file that contains additional
results of this study, including the MLR analysis results,
ANOVA and correlation analysis results, gene set enrich-
ment analysis results, and references for the network analysis.

3.3. Significant Genes and Coexpression Analysis. For dataset
GSE85607, 51 significant genes (LFC>1 or <-1; p<0.01)
were identified in the comparison between CSP and CNSP
groups. The number of significant genes for dataset
GSE85608 was 21. To note, there was no overlap between
the two groups of significant genes identified, indicating the
different overall genomic variances among the HSCC
patients recruited in the two studies. We provided the analy-
sis statistics in Supplementary Material PPARG_HSCC_
CR=>Corr_GSE85607 and Corr_GSE85608.
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FIGURE 1: PPARG expression in terms of log fold change (LFC) in chemotherapy-sensitive patients (CSP) among all HSCC patients: (a)
PPARG expression of HSCC patients in the dataset GSE85607; (b) PPARG expression of HSCC patients in the dataset GSE85608.
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FIGURE 2: Association between PPARG expression and TNM stage in HSCC patients: (a) association plot by using data of HSCC patients in
the dataset GSE85607; (b) association plot by using data of HSCC patients in the dataset GSE85608. The expression levels were log2-

transferred.
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F1Gurek 3: Cofunctional genes of PPARG to play roles in the chemosensitivity in HSCC patients. Nodes in red were positively correlated with
PPARG in terms of expression; nodes in blue were negatively correlated with PPARG.

Coexpression analysis showed that, in dataset GSE85607,
PPARG was strongly correlated with two genes (RBP1 and
TMEM45A) and also presented a weak to moderate correla-
tion with other 19 other genes. Interestingly, PPARG was
negatively correlated with the genes that demonstrated over-
expression in the CSP group and a positive correlation with
downregulated  genes. Please see PPARG_HSCC_
CR=>Corr_GSE85607 for details. This partially explains the
overall downregulation in dataset GSE85607.

In contrast, PPARG was only moderately correlated with
one gene (MYOM3; RHO = —0.46) that presented downreg-
ulation in the CSP group and weak correlation with seven
other genes (see PPARG_HSCC_CR=>Corr_GSE85608).
RHO here refers to Pearson’s correlation coefficients. More-
over, the genes that showed overexpression were mostly pos-
itively correlated with PPARG, while those with reduced
expression were all negatively correlated with PPARG. These
results partially explain the overall increased PPARG expres-
sion in the CSP group of GSE85608.

3.4. Pathway Enrichment Analysis and Network Analysis. For
the 29 CSP-significant PPARG coexpressed genes from both
datasets, we conducted a PEA against the Gene Ontology
(GO). However, none of these pathways passed the false dis-
covery rate (FDR) with g value = 0.05. We presented the
details in PPARG_HSCC_CR=>PEA. Our results suggested
that these genes may not be closely linked to each other in
terms of biological functionality.

Literature-based data mining showed that seven out of
the 29 CSP-significant genes were linked to PPARG and che-
mosensitivity, as shown in Figure 3. The network was built
based on a total of 334 references, which were provided in
PPARG_HSCC_CR=>Ref4Network, including titles and
sentences where a relationship has been identified.

It was worthy of mentioning that PPARG presented a
positive correlation with two out of three chemosensitivity
promoters (LRP8 and GCLC) and a negative correlation with
the three chemosensitivity inhibitors (PAX8, GPER, and
RBP1), which supports the chemosensitivity promotion role

of PPARG in HSCC patients that was proposed in our previ-
ous studies.

4. Discussion

Our previous study suggested the chemosensitivity promo-
tion role of PPARG in HSCC patients and also indicated
the variation of PPARG expression levels among individual
HSCC subjects. In this study, we confirmed our previous
findings by using two independent expression data of HSCC
chemotherapy-sensitive and nonsensitive patients and tested
multiple potential influential factors for PPARG expression.
Our results suggested that the expression of PPARG was
strongly influenced by TNM stage and was correlated with
multiple genes that show significant differential expression
in CSP/CNSP comparison.

The expression of PPARG was not consistent in the two
datasets. Specifically, most CSPs (9 out of 12) in GSE85608
showed overexpression, resulting in overall increased
PPARG expression levels in the CSP group. However, in
GSE85607, more CSPs (4 out of 7) presented decreased
expression, leading to reduced expression levels of PPARG,
as shown in Figure 1. These results suggested the variation
of PPARG expression in HSCC patients that is worthy of fur-
ther study.

MLR results showed that PPARG expression in HSCC
patients was significantly linked to the TNM stage
(Figure 2), which has been implicated as one of the clinical
features to predict chemosensitivity [19]. However, due to
the limited sample size, the TNM stage was not well matched
within the two datasets, which made it difficult to explain the
influence of different TNM stages on PPARG expression.
Specifically, the highest PPARG expression level was identi-
fied in an HSCC patient in the stage of TINOMO
(Figure 2(a)), which represented a stage that the tumor devel-
opment was at its earliest stage, with no significant influence
on the regional lymph nodes and no metastasis. The lowest
PPARG expression was observed from an HSCC patient in
a stage of T4aNOMO, which means that the tumor size and



extension of the primary tumor were at the late stage, but
with no influence on regional lymph nodes and no metasta-
sis. In contrast, for dataset GSE85608, the highest PPARG
expression was observed in an HSCC patient at the stage of
T4aN2M1, which means that the development of the tumor
in this patient was at its late stage with moderate influence
on the regional lymph nodes and early appearance of metas-
tasis. Studies with a larger sample size covering all different
TNM stages should be conducted to fully understand the cor-
relation between PPARG expression in HSCC patients and
their TNM stages.

Consistent with the mild expression changes of PPARG
in the CSP group compared with the CNSP group, chemo-
therapy response (CR) was moderately correlated with the
expression of PPARG (p value = 0.16 and 0.26 for
GSE85607 and GSE85608, respectively). Moreover, age and
histologic differentiation (HD) degree were shown to be non-
significant factors for PPARG expression levels (p value >
0.42). Please refer to PPARG_HSCC_CR=>MLR_
GSE85607 and MLR_GSE85608 for more details of the
MLR results.

The significant variation of PPARG in HSCC CSPs sug-
gested that there were other factors cofunctioning with
PPARG to influence the chemosensitivity of HSCC
patients. However, among the genes that showed significant
expression variance in CSP/SNSP comparison, only a small
portion (9 out of 72 genes) showed a moderate to strong
correlation with that of PPARG (absolute value of RHO >
0.4). Please refer to PPARG_HSCC_CR=>Corr_GSE85607
and Corr_GSE85608 for the details of coexpression analy-
sis. Among these genes, 7 genes were implicated to have a
relation with PPARG and chemosensitivity, as shown in
Figure 3. These genes could be the cofunctional factors that
work with PPARG to influence the chemosensitivity of
HSCC patients. For instance, LRP8 was shown to activate
TNF and MARK14 [20, 21], which are promoters of che-
mosensitivity [22, 23]. In addition, overexpression of GCLC
mRNA suppresses the expression of MRP1 [24], which in
turn could improve the chemosensitivity in lung cancer
patients [25]. The positive correlation between PPARG
and LRP8 and GCLC indicated the cofunctionality of these
genes and PPARG in the chemosensitivity promotion of
HSCC patients. On the other hand, PPARG was negatively
correlated with multiple inhibitors of chemosensitivity,
including PAX8, GPERI, and RBPI. Yu et al. showed that
the blockage of GPER/ABCG?2 signaling could be a poten-
tial target for enhancing the chemosensitivity of breast can-
cer patients [26]. Chen et al. showed that RBP1 gene
transfection could significantly reverse L5-induced increases
in CASP3 [27], while overexpression of CASP3 has been
shown to enhance chemosensitivity in multiple cancer cells,
including breast cancer cells and hematological neoplastic
cells [28, 29]. This establishes a chemosensitivity inhibition
role of RBP1. Therefore, the negative correlation between
PPARG and RBPI supports the enhancement effect of
PPARG on chemosensitivity.

However, we also noticed that PPARG presented a weak
negative correlation with SELENBP1 (RHO = —0.24), which
has been shown to increase the chemosensitivity of gastric
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cancer cells [30]. This may add to the explanation of the var-
iation of PPARG in the CSP group of HSCC patients.

This study has several limitations that need further work.
First, although we employed two independent datasets, both
of them had small sample sizes. More studies with a larger
sample size should be conducted to validate the findings of
this study. Second, the identified coexpression factors of
PPARG lack replication in other studies regarding their rela-
tion to chemosensitivity, which needs further validation.

5. Conclusion

Our results support the previous finding that PPARG expres-
sion was linked to chemosensitivity in HSCC patients. How-
ever, both increased and reduced PPARG expression could
happen in chemotherapy-sensitive patients, which may be
influenced by factors including the TNM stage.
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Activation of PPARD has been shown to inhibit depressive behaviors and enhances neurogenesis. However, whether PPARD is
involved in the pathological development of major depressive disorder (MDD) is largely unknown. To explore the potential
connection between PPARD and MDD, we first conducted a literature-based data mining to construct a PPARD-driven MDD
regulating network. Then, we tested the PPARD expression changes in MDD patients from 18 independent MDD RNA
expression datasets, followed by coexpression analysis, multiple linear regression analysis, and a heterogeneity analysis to study
the influential factors for PPARD expression levels. Our results showed that overexpression of PPARD could inhibit
inflammatory cytokine signaling pathways and the ROS and glutamate pathways that have been shown to play important roles
in the pathological development of MDD. However, PPARD could also activate nitric oxide formation and ceramide synthesis,
which was implicated as promoters in the pathogenesis of MDD, indicating the complexity of the relationship between PPARD
and MDD. PPARG presented significant within- and between-study variations in the 18 MDD datasets (p value = 0.97), which
were significantly associated with the population region (country) and sample source (p < 2.67e —5). Our results suggested that
PPARD could be a potential regulator rather than a biomarker in the pathological development of MDD. This study may add

new insights into the understanding of the PPARD-MDD relationship.

1. Introduction

Major depressive disorder (MDD), also known as depression,
is a mental disorder characterized by at least two weeks of
pervasive low mood. The leading cause of MDD is believed
to be a combination of genetic and environmental factors
[1-7], with about 40% of the risk related to genetics [4].

Peroxisome proliferator-activated receptor beta/delta
(PPARD) is one of the three known PPARs (the others are
PPAR« and PPARY), which are part of the nuclear receptor
superfamily of transcription factors. PPARD governs diverse
biological processes [8] and shows a widespread brain
expression, with particularly high levels in the hippocampus,
entorhinal cortex, and hypothalamus [9, 10].

Several previous studies show that PPARD might be
involved in depression occurrences [11, 12]. Specifically, the
hippocampal genetic knockdown of PPARD has been shown
to cause depression-like behaviors and neurogenesis suppres-
sion [12], suggesting that PPARD plays a crucial role in neu-

rogenesis and regulates both depression and memory.
Moreover, hippocampal PPARD overexpression or activation
inhibits stress-induced depressive behaviors and enhances neu-
rogenesis [11]. However, so far, whether PPARD is involved in
MDD and its related underlying mechanism is largely unknown.

Here, we hypothesized that PPARD could play a role in the
pathological development of MDD. Our results supported this
hypothesis and indicated that deficiency of PPARD might be
involved in the pathogenesis of MDD by regulating cytokine-
related signaling pathways. However, our results also demon-
strate the variation of PPARD expressions in the cases of
MDD, which may be influenced by multiple factors, including
sample postulation regions. Our study might add new insights
into the understanding of the roles that PPARD plays in MDD.

2. Method

The rest of this study is organized as follows. First, we con-
ducted a systematic literature-based network analysis to
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explore the possible relationship between PPARD and MDD.
Then, we analyzed the expression of PPARD in 18 public
human RNA array-expression datasets linked with MDD
diagnosis. After that, we employed multiple linear regression
analysis to study the potential, influential factors of PPARD
expression in the cases of MDD. To facilitate the understand-
ing of the results presented, we provided additional support-
ing data and information in a supplementary material named
PPARD_MDD.

2.1. Literature-Based Pathway Analysis. Assisted by Path-
way Studio (PS) (http://www.pathwaystudio.com; version
12.3.0.16), we conducted a systematical pathway analysis to
uncover PPARD-driven MDD regulators at different levels,
including proteins, small molecules, complexes, and functional
classes. Owned by Elsevier Inc., the PS database ResNet [13]
contains functional relationships and pathways of mammalian
proteins, including human, mouse, and rat genes. The database
covers over 24 million PubMed abstracts and 3.5 million Else-
vier and 3rd part full-text papers.

The MDD regulators were identified by using the Shortest
Path Module within Pathway Studio (https://supportcontent
.elsevier.com/Support%20Hub/Pathway%20Studio/Guide%
20t0%20Building%20Pathways%20in%20Mammal%20with%
20Pathway%20Studio%20Web.pdf). Each relation between
MDD and its regulators was supported by one or more
references, as shown in Ref4Pathway in the Supplementary
Materials (available here). The sentences from each support-
ing reference were manually checked for quality control.
Following the same process, the items influenced by PPARD
were also identified, with the overlapped items used to build
the PPARD-driven MDD regulating network.

The following criteria were applied for the selection of
the PPARD-driven MDD regulators. (1) The direction is
from PPARD to MDD. (2) Each relationship (network edge)
has a signed polarity (positive or negative effect). (3) The
quality control of each relationship (network edge) was con-
ducted through manual inspection of the supporting refer-
ences. (4) The type of regulators includes genes (proteins),
functional class, and small molecules. For a relationship
with more than 10 supporting references, we inspected the
first 10 references. The relationships that passed the filtering
criteria were employed to construct the PPARD-driven sig-
naling pathways that may affect roles in the pathology of
MDD. We provided the details of these identified relation-
ships and the underlying supporting references in Ref4Path-
way in the Supplementary Materials, including the reference
title and the sentences where a relationship has been
identified.

2.2. MDD RNA Expression Data Acquisition. To explore the
quantitative change of PPARD in MDD patients and test
whether PPARD could work as a biomarker for MDD, we
conducted an MDD RNA expression data-based analysis on
PPARD expression. We acquired MDD RNA array-
expression datasets from GEO (https://www.ncbi.nlm.nih
.gov/geo/). Initially, we searched with the keyword “major
depressive disorder” and identified 317 studies with series
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data. Then, the following criteria were applied to fulfill the
purpose of this study, including the following:

(1) The data type was RNA expression by array

(2) The organism of datasets was Homo sapiens

(3) The study design was MDD vs. healthy control
(4) The total number of samples was not less than 10

(5) The dataset and corresponding format files were
feasibly available and downloadable

There were 18 datasets that satisfied the selection criteria
and were included for expression analysis. We provided the
information employed in this study of these datasets in
Table 1, and the GEOID can be used to retrieve the detailed
description of each dataset at https://www.ncbi.nlm.nih
.gov/geo/.

2.3. Expression of PPARD in MDD RNA Expression Datasets.
In this study, the expression for PPARD was estimated for
each of the 18 datasets listed in Table 1. Specifically, we first
calculated the fold change that was defined as the ratio
between the mean expression of MDD cases and that of
healthy controls. Then, the log2-transferred fold change
(LFC) was used as effect size, such that fold changes lower
than one become negative, while those greater than one
become positive. The significance criteria were set as abs
(LEC)>1 and p < 0.05.

2.4. Coexpression Analysis. Using the 18 MDD RNA expres-
sion datasets, we also studied the coexpression between
PPARD and its driven genes regulating MDD. The purpose
of the coexpression analysis was to validate the relationships
between PPARD and its driven genes at the gene expression
level. In the datasets where PPARD showed a small effect size
(LFC € [-0.3,0.3]), we assumed that PPARD exerted no
influence on its driven genes. Thus, the analysis only focused
on PPARD with significant changes.

2.5. Heterogeneity Analysis of PPARD Expression. A hetero-
geneity analysis was conducted to study the variance within
and between different studies [14] to determine if there was
a significant between-study variance compared with within-
study variance. The analysis was conducted by using
MATLAB (R2017a) with the results presented in Expressio-
nOfPPARD in the Supplementary Materials.

2.6. Multiple Linear Regression Analysis. To investigate the
possible influential factors for the gene expression of PPARD
in the case of MDD, we conducted a multiple linear regres-
sion (MLR) analysis on five parameters, including sample
size, sample population region (country), sample source, data
acquisition platform, and study age. p value < 0.05 was set as
a significance criterion for the identification of significant
factors. The analysis was performed using the statistic tool-
box “regress()” in MATLAB (R2017a).
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TaBLE 1: The 18 major depression disorder RNA expression datasets from GEO.

g;tgslg Data contributors con trcj Jcases ountry S:ll;(:y Platform Sample source O?;:rlgifn

GSE12654 Iwamoto et al., 2008 15/11 Japan 13 GPL8300 Brodmann area Homo sapiens
GSE32280 Yi et al,, 2012 8/16 China 9 GPL570 Blood Homo sapiens
GSE44593 Sibille et al., 2016 14/14 USA 5 GPL570 Amygdala Homo sapiens
GSE53987 Lanz et al., 2014 18/16 USA 7 GPL570 Multiple brain region Homo sapiens
GSE54562 Sibille et al., 2014 10/10 USA 7 GPL6947 Anterior cingulate cortex Homo sapiens
GSE54563 Sibille et al., 2014 25/25 USA 7 GPL6947 Anterior cingulate cortex Homo sapiens
GSE54564 Sibille et al., 2014 21/21 USA 7 GPL6947 Amygdala Homo sapiens
GSE54565 Sibille et al., 2014 16/16 USA 7 GPL570 Anterijor cingulate cortex Homo sapiens
GSE54566 Sibille et al., 2014 14/14 USA 7 GPL570 Amygdala Homo sapiens
GSE54567 Sibille et al., 2014 14/14 USA 7 GPL570  Dorsolateral prefrontal cortex  Homo sapiens
GSE54568 Sibille et al., 2014 15/15 USA 7 GPL570  Dorsolateral prefrontal cortex ~ Homo sapiens
GSE54570 Sibille et al., 2014 13/13 USA 7 GPL96  Dorsolateral prefrontal cortex ~ Homo sapiens
GSE54571 Sibille et al., 2014 13/13 USA 7 GPL570 Anterior cingulate cortex Homo sapiens
GSE54572 Sibille et al., 2014 12/12 USA 7 GPL570 Anterior cingulate cortex Homo sapiens
GSE54575 Sibille et al., 2014 12/12 USA 7 Gpros Ot Vef;rrfixpreﬁomal Homo sapiens
GSE92538 Hagen;(;lleé etal, 56/29 USA 5  GPL10526 DLPFC Homo sapiens
GSE98793 Kelly et al., 2017 64/128 UK 4 GPL570 Blood Homo sapiens
GSE114852 Breen et al., 2018 85/31 USA 3 GPL10558 Blood Homo sapiens

Note: “study age” of a dataset was defined as the current year—the year of data submission.

3. Results

3.1. PPARD-Driven Network. Literature-based network anal-
ysis revealed nine entities regulated by PPARD that were also
upstream regulators of MDD, as shown in Figure 1. Among
these entities, increased PPARD could exert a major positive
influence on MDD by upregulation of one MDD inhibitors
(tetrahydrobiopterin) and downregulation of 6 MDD pro-
moters, including two cytokine genes (IL6 and TNF), two
small molecules (ROS and glutamate), and the two functional
classes (cytokine and inflammatory cytokine). These MDD
regulators were highlighted in green in Figure 1. However,
PPARD may also activate nitric oxide production (NO) and
ceramide, two promoters of MDD (highlighted in red in
Figure 1). Overall, these literature data mining-based relation-
ships suggested that the deficiency of PPARD might facilitate
the development of MDD by activating cytokine classes and
promoting the secretion of reactive oxygen species (ROS)
and glutamate. The pathways presented in Figure 1 were based
on over 300 independent studies. The reference information
was provided in Ref4Pathway in the Supplementary Materials.
To note, over 400 references were listed as some references
support multiple relationships.

Specifically, there were about 250 studies (references)
supporting the PPARD — cytokine genes — MDD pathways.
In vitro cell line expression studies of both human and animal
models showed that PPARD reduces the expression and secre-
tion of cytokines, including inflammatory cytokines and pro-
inflammatory cytokines. While clinical studies and animal
models showed that cytokines could induce sickness behavior

with depression-like symptoms, contribute to cognitive
decline, and induce MDD. Therefore, inhibition of cytokines
by PPARD supports the suppression role of PPARD in the
pathological development of MDD.

Moreover, there were 54 references that support the
PPARD — ROS — MDD pathway. In vitro human cell line
studies showed that activation of PPARD reduces radiation
and angiotensin II-induced ROS generation by modulating
the expression of SIRT1. And ROS have been suggested to
play an important role in the pathogenesis of MDD in clinical
studies and animal models.

In addition, 94 references support the PPARD — gluta-
mate —» MDD pathway. Both in vitro and human studies
show that heightened glutamate plays an important role in
the pathophysiology of MDD. In vitro cell line and animal
studies showed that activation of PPARD inhibits glutamate
release.

There were also two studies that suggested a PPARD — -
tetrahydrobiopterin — MDD pathway. Tetrahydrobiopterin
has been reported to improve clinical depression by increas-
ing TH activity. Activation of PPARD enhances the regener-
ative capacity of human endothelial progenitor cells by
stimulating the biosynthesis of tetrahydrobiopterin.

On the other hand, there were 22 studies (references) that
support the PPARD —NO — MDD relationship, and nine
studies (references) support the PPARD — ceramide — MDD
relationship. These studies suggested that increased PPARD
could increase the production of NO and ceramide in the
plasma of the human body. In clinical studies and animal model
studies, increased production of NO and ceramide has been
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FIGURE 1: PPARD-driven pathways involved in the pathology of MDD. The pathway was built through Pathway Studio-assisted literature
data mining, supported by over 400 references. The items highlighted in green are the ones that were driven by PPARD to suppress the
development of MDD, and the red ones were regulated by PPARD to promote MDD development.

shown to promote the development of neuroinflammation-
associated disorders, including MDD. Therefore, increased
PPARD may have the promotion effect on MDD through the
activation of NO and ceramide.

3.2. Expression Variation of PPARD in 18 MDD Expression
Datasets. To explore the expression changes of PPARD in
the cases of MDD, we calculated the LFC of PPARD in the
MDD patients compared to healthy controls using 18 different
RNA expression datasets, as shown in Figure 2(a). The
expression of PPARD demonstrated varies among different
studies, ranging from -0.38 to 0.61 (LFC=0.013+0.19).
Among these datasets, seven presented mild decreased expres-
sion (LFC = -0.13 + 0.11). The majority of datasets (10 out of
18) showed increased expression of PPARD in MDD patients
compared to healthy controls (LFC =0.13 + 0.17). However,
none of these changes was identified as significant. The data-
sets were collected from four different countries, eight differ-
ent sample sources, and six different platforms, which may
well represent different cases of MDD. Our results suggested
that PPARD might not present significant changes among
MDD patients. For more details of the PPAR expression data
analysis, please refer to ExpressionOfPPARD in the Supple-
mentary Materials.

3.3. Coexpression Analysis. For the datasets that showed the
lowest PPARD expression levels (GSE32280: LFC = —0.38)
and highest expression levels (GSE12654: LFC=0.60),
PPARD demonstrated a significant negative correlation with
IL6 (Fisher Z transferred Pearson r =-0.41; p=0.030) and
TNF (Fisher Z transferred Pearson r=-0.38; p=0.035).
These results indicated that when PPARD expression got acti-
vated, TNF expression was inhibited, helping the suppression

of MDD. On the other hand, when PPARD was downregu-
lated, IL6 presented overexpression, promoting the develop-
ment of MDD. We assumed that, when PPARD showed
small expression changes (LFC € (-0.3,0.3)), it had limited
influence on either TNF or IL6. Thus, coexpression analysis
was not effective in evaluating the relation between PPARD
and these two genes. We provided the results in Expressio-
nOfPPARD in the Supplementary Materials. Our results
support the PPARD — TNF and PPARD=>IL6 regulation
identified in Figure 1.

3.4. Multiple Linear Regression Analysis Results. MLR results
showed that out of the five factors tested, only the population
region (country) and sample source were significant influen-
tial factors (p =4.47E — 07 and 2.67E — 05, respectively) for
PPARD expression in MDD patients, as shown in Figure 3.
However, the other three factors, namely, sample size, study
age, and platform, were not significant factors for the expres-
sion of PPARD in the case of MDD (p > 0.15). For the details
of MLR results, please refer to MLR_Results in the Supple-
mentary Materials.

3.5. Heterogeneity Analysis. The heterogeneity analysis was
employed to test whether the total variance mainly resulted
from between-study variance or from both within- and
between-study variance. The analysis results showed that the
total variance among different studies was 7.9, which was
smaller than the expected variance (17) given that all studies
have the same actual effect. Our results indicated that the
between-study variance was not the primary source contribut-
ing to total variance among these studies (p value = 0.96). In
other words, there were significant within-study variances
among these datasets, as shown in Figure 4. To note, the
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dataset GSE12654 that presented the highest averaged expres-
sion levels (LFC =0.60) also demonstrated the most signifi-
cant within-study variance (STD = 1.63). For more details of
these results, please refer to ExpressionOfPPARD in the
Supplementary Materials. Our results indicated that the varia-
tion might partially cause the overall nonobvious expression
changes of PPARD in MDD patients among samples within
each study.

4. Discussion

In this study, we explored the possible relationship between
PPARD and MDD through literature-based network analysis
and RNA expression variation analysis of PPARD in the
cases of MDD. Moreover, we employed multiple linear
regression analysis and heterogeneity analysis to study the
potential, influential factors of PPARD expression in the
cases of MDD. Coexpression analysis between PPARD and
its driven genes was conducted to provide partial validation
of the PPARD-driven MDD regulating pathway. The
literature-based pathway in Figure 1 supports the hypothesis
that PPARD might be involved in the pathogenesis of MDD
by regulating cytokine-related signaling pathways. However,
our results also demonstrated the variation of PPARD
expressions in the cases of MDD, which may be influenced
by multiple factors, including sample postulation regions
and sample sources. These results suggested that PPARD
might be a regulator rather than a biomarker for the patho-
logical development of MDD.

Firstly, literature-based network analysis showed that
PPARD might influence multiple molecules that functionally
regulate MDD, mostly in a beneficial way (Figure 1). Our
results were consistent with previous studies that PPARG
plays a crucial role in regulating depression and depressive
behaviors [11, 12]. Most noticeably, PPARG was shown to
inhibit multiple cytokine signaling pathways, which have
been demonstrated to play an important role in the
pathophysiology of MDD [15]. On the one hand, PPARD
activation blocks the synthesis of inflammatory cytokines,

including IL1, IL6, and TNF« [16], which explains the fact
that PPARD agonists downregulate the expression of these
cytokines [17]. On the other hand, serum TNF«, IL6, and
IL1B were implicated as important factors in the psychopa-
thology of acute-phase MDD [18], which were found to stim-
ulate behavioral changes of MDD [19]. These findings
support the PPARD-cytokine signaling-MDD pathways,
where increased expression of PPARD plays an inhibitive
role in MDD.

Moreover, the pathway analysis also revealed that PPARD
inhibits two small molecules that were the promoters of MDD,
namely, free oxygen radicals (ROS) and glutamate (Figure 1).
Activation of PPARD was found to counteract angiotensin II-
induced ROS generation and modulates glutamate release
[20-22], which have been suggested to play essential roles in
the pathophysiology of MDD [23, 24]. PPARD activation also
stimulates the biosynthesis of tetrahydrobiopterin [25], which
was implicated to play a role in clinical depression [26]. These
findings suggested additional pathways where PPARD plays
beneficial functions in the pathological development of MDD.

However, our pathway analysis also revealed that PPARD
activation promotes the nitric oxide (NO) formation and
ceramide synthesis [27, 28], which were found to play impor-
tant roles in the neurobiology of major depression [29, 30].
These findings suggested the complicity of the relationship
between PPPARD and MDD.

Coexpression analysis suggested that decreased expres-
sion of PPARD in MDD patients might lead to elevated IL6
expression, while overexpression of PPARD could suppress
the expression of TNF. Both IL6 and TNF encode cytokines
that have been shown to play a key role in the pathogenesis
of MDD [31]. These findings support a potential PPARD — -
cytokine — MDD signaling pathway that has been identified
through literature data mining (Figure 1).

Expression data analysis showed that PPARD only dem-
onstrated mild variations among 18 different MDD datasets
(LFC =-0.38t0 0.61), with 55.56% of studies presenting over-
expression and 44.44% studies showing reduced expression.
As the datasets were collected from four different countries
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and eight different sample sources and using six different plat-
forms, our study results may well represent different cases of
MDD. Our results suggested that PPARD might not be a bio-
marker for the pathological development of MDD. Although
the deficiency of PPARD might lead to depression-like behav-
iors and promote the development of MDD, it may not natu-
rally happen in the majority of MDD patients. We presented
the details of the PPAR expression in ExpressionOfPPARD
in the Supplementary Materials.

MLR analysis showed that the population region (coun-
try) and sample source were significant, influential factors
(p=4.47E-07 and 2.67E - 05, respectively) of PPARD
expression levels in the case of MDD. Moreover, a heteroge-
neity analysis indicated that significant within-study variance
might exist among individual MDD patients (see Figure 4),
which is worthy of further study. However, due to the lack
of clinical information of the 18 expression datasets, the
related analysis was not conducted in this study.

This study has several limitations that need further investi-
gation. First, the pathways built (Figure 1) were based on previ-
ous studies. Although coexpression analysis provided partial
validation of the pathway, biology experiments are needed to
test the relationships identified. Second, more clinical parame-
ters (e.g., age, gender, disease stage, and drug status) should be
tested regarding their influence on MDD expression variation.

5. Conclusion

This study was among the first studies to explore the relation-
ship between PPARD and MDD. The literature-based path-
way built here supported a potential PPARD — MDD
relationship that is worthy of further investigation. However,
PPARD might not be a biomarker for MDD at the gene
expression level.
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