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This paper focuses on the linear parameter varying (LPV) modeling and controller design for a flexible air-breathing hypersonic
vehicle (AHV). Firstly, by selecting the measurable altitude and velocity as gain-scheduled variables, the original longitudinal
nonlinear model for AHV is transformed into the LPV model via average gridding division, vertex trimming, Jacobian
linearization, and multiple linear regression within the entire flight envelope. Secondly, using the tensor product model
transformation method, the obtained LPV model is converted into the polytopic LPV model via high-order singular value
decomposition (HOSVD). Third, the validity and applicability of the HOSVD-based LPV model are further demonstrated by

designing a robust controller for command tracking control during maneuvering flight over a large envelope.

1. Introduction

Since the 50s and 60s of the 20th century, with the series of
events such as the advent of long-range ballistic missiles, the
successful return of manned spacecraft, and the X-15 test
aircraft velocity faster than Mach 6, it marked that mankind
formally entered the era of hypersonic velocity. The hyper-
sonic vehicle has taken advantages of both spacecraft and
aircraft and has become the new technological commanding
point in the 21st century aerospace field. It has been hailed
as the third epoch-making milestone in the history of avia-
tion in the world after the invention of aircraft and the
breakthrough of the sound barrier [1-3].

Compared with a conventional aircraft, the complex
aerodynamic characteristics of hypersonic vehicles and the
application of technologies such as scramjet engines and
integrated airframe/engine configuration make the coupling
more powerful between elastic bodies, propulsion systems,
aerodynamics, and structural dynamics of hypersonic vehi-
cles; besides, the physical model is more nonlinear. At pres-

ent, the main means of dynamic modeling for hypersonic
vehicles are computational fluid dynamics (CFD), wind tun-
nel tests, aircraft tests, and other test methods. Because of
the imperfection of hypersonic aerodynamic database and
CFD software, the low degree of wind tunnel test approxi-
mation, the high cost and risk of flight tests, and the limita-
tion of hypersonic vehicles modeling methods, the system
modeling has great structural and parameter uncertainties.
Second, the large-span flight envelope of hypersonic vehicles
not only requires the flight control system to adapt to differ-
ent flight environments but also requires to satisfy the strict
constraints such as more complex dynamic pressure, over-
load, flight envelopes, and actual physical characteristics
(e.g., actuator saturation). In summary, a hypersonic vehicle
is a highly dynamic, strongly coupled, fast time-varying, and
multivariable nonlinear system. Its control system design
not only faces the influence of model uncertainty and
external environment but also faces the constraints of actual
existence and the time-delay dynamic limitation, which
makes the control, stability, safety, rapidity, and accuracy
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of hypersonic vehicle systems face great challenges. It has
become one of the key issues to be solved and is also a hot
issue in the field of flight control, such as adaptive control
strategies based on the multiple Lyapunov function method
or using an auxiliary reaction control system for air-
breathing hypersonic vehicles [4-8].

Recently, the LPV controller has emerged as a reliable
alternative to classical gain scheduling approaches and pro-
vides guaranteed stability, robustness, or performance [9,
10]. Gain-scheduled control strategies for LPV systems have
been developed intensively and bring promising solutions in
many fields, such as missiles, aircrafts, spacecrafts, winding
systems, automated vehicles, and robotic systems [11-13,
14]. Zhang handled the reference tracking for a class of flexible
hypersonic vehicles using a novel switched LPV framework
[15]. Yang proposed a fault-tolerant controller based on
robust model-predictive control and A polytopic LPV model
for A hypersonic vehicle with external disturbances and actu-
ator loss of effectiveness faults [16]. Hu proposes a novel pas-
sive fault-tolerant control method using weighted tube-based
model predictive control via polytopic LPV for air-breathing
hypersonic vehicles [17]. However, the formulation of the
polytopic LPV model for nonlinear systems and controller
design for LPV systems with uncertainty and external distur-
bance remain difficult, which motivates our study.

This paper takes the flight control system design of the
hypersonic vehicle as the background. In the process of
modeling, it is necessary to deal with various factors that
affect the performance of the control system. Aircraft model-
ing errors, flight parameter changes of large package flight,
elastic vibration deformation of aircraft, and other factors
are regarded as internal factors leading to system uncer-
tainty. Factors such as the complex flight environment,
dynamic pressure effect, aerodynamic thermal effect, and
the frictional resistance effect are regarded as external distur-
bances. Then, the attitude stability and command tracking
issues during the hypersonic vehicle maneuvering flight in
large envelope are transformed into the robust controller
synthesis and guaranteed performance control of the uncer-
tain disturbance system. Firstly, for a nonlinear longitudinal
elasticity model of air-breathing hypersonic vehicles, the
altitude and velocity are selected as scheduling parameters,
uniform meshing is performed within the range of parame-
ter variation, and then, the LPV model of the aircraft is
obtained by Jacobi linearization and multivariate linear fit-
ting. Secondly, the LPV model of the aircraft is transformed
into a polytopic LPV model by the tensor product model
change method, which lays a foundation for the subsequent
aircraft controller design. Finally, a robust controller is
designed based on the obtained aircraft polytopic LPV
model, which verifies the effectiveness of the aircraft polyto-
pic LPV model in the command tracking control of aircraft
maneuvering flight in large envelopes.

2. Problem Formulation

2.1. Control-Oriented Model. The longitudinal elastic nonlin-
ear model of the hypersonic vehicle used in this paper is
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mainly based on the winged-cone model provided by
NASA’s Langley Research Center [18-20], which takes into
account the influence of the elastic modality of the aircraft.
The simplified longitudinal elastic nonlinear model of the
aircraft is as follows:

thsin(@—a),
. Tcosa—D
V=———  —gsin(0-a),

- gsin(0 — «)
d:—Ts1noc—L+Q+gc0s(9—oc),

mV |4 (1)
0=0Q,
. M
Q:I_)

»y

;= ~2wifl; — win; + N, i=1,2.

In equation (1), h represents the aircraft altitude, V' rep-
resents the aircraft velocity, « indicates the angle of attack, 8
denotes the pitch angle, Q represents the pitch rate, g indi-
cates the gravitational constant, M is the pitching moment,
I, represents the moment of inertia around the body axis,
T is the engine thrust, D represents resistance, L represents
lift, #,(i = 1, 2) represents the elastic mode, w;(i = 1, 2) repre-
sents the natural frequency of the elastic mode, ¢;(i=1,2)
represents the damping coefficient of the elastic mode, and
N;denotes the generalized force.

The approximate expressions of the above aerodynam-
ics, moments, thrusts, and generalized forces fitted near the
equilibrium point are shown in equation (2). In equation
(2), pindicates air density, S is the reference area, C,(a,d,)
represents the lift coefficient related to the angle of attack
and elevator deflection, Cp(a,d,) indicates the drag coeffi-
cient related to the angle of attack and elevator deflection,
Ciro(a) indicates the torque coeflicient related to the angle
of attack, Cy;5 (8,) indicates the torque coefficient related
to the elevator deflection, z; represents the coupling coeffi-
cient between thrust and pitching moment, C% represents
the thrust coefficient related to &/(i=1,2,3), N f‘J represents

the generalized force coefficients related to o/, and Nge
denotes the influence coefficient of elevator declination to
generalized force N,, and C} and N? represent constant
items in thrust and generalized forces, respectively.

1
L= 2 pV?SCy(w,3,),
1 2
D= EPV SCp(a,6,),
1
M=zT+ 2 PV2Se(Chra(@) + o (8,))s 2)
T~C8a®+Cla® + Cha+CY,
N, ~N¥a? + N%a + N9,

2 )
N, = NY o + NSa + N3, + NY,
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s
C, = C%a+C8,+C°

=L L% e

a2 o 5? 2 0 0
Cp=Cha" +Cha+Cys8;+C°6, + Cp,

_ o? 2 o 0
Cora = Chra® + Chp e+ Cop o

Cug, = .5,
g=0.5pV?
Cf =B, (hg)D+ By (h,q),
T =By(h QD+ By(h.q),
C§ = Bs(h Q)P+ B (. q),
Cr =B, (@)@ + By(h, g).

(3)

The relevant force and moment coefficients are shown in
equation (3), where 1/his the air density decay rate, C? and
CY are the constant term in C;(a,8,)and Cp(,8,),
respectively, C;' and Cjj are the ith-order coefficient of «
contribution to C,;(«,8,) and Cp(a,8,), respectively, Ci" is
the coeflicient of 8, contribution to C,(a,3,), C% is the
ith-order coefficient of 8, contribution to Cp(a, 8,), Cy, is
the ith order coefficient of « contribution to Cy,(a), C},,
is the constant term in Cy; (), q is the dynamic pressure,
and @ is the stoichiometrically normalized fuel-to-air ratio,
B.(h,q) is the ith thrust fit parameter. The parameter refer-
ence values of the elastic nonlinear model are detailed in
Hu et al. [21] and listed as Table 1.

Selectx(t) = [h, V, 2,0, Q, 1,7, 15,7, as state variables,
select u(t) = [@,8,]" as system inputs, and select z(t) = [V, h]"
as system outputs. Substitute equations (2) and (3) into (1) to
obtain the affine nonlinear model of the system as follows:

]T

x(t) = (%, u(t), 1) = [f, (% 1), (5 ), f5 (5 1), -ofy (%, £)] -
(4)

In equation (4), f;(x,f) (i=1,2,---,9) is shown on the
right side of equation (1). The equilibrium state of a hypersonic
vehicle is a specific flight condition under which the line
velocity, and angular velocity are constant or zero and the
acceleration is zero under the given constraints. Therefore,
the system equilibrium point sequence can be solved by
equation (5) as follows:

fix6)=0, i=1,2,---,9. (5)

Within the permissible range of parameters, the velocity
and altitude space of the selected scheduling variables are
gridded and each point on the grid is calculated and balanced
according to equation (5) to obtain the equilibrium working
point of the aircraft. A set of LTI systems is obtained by using
the Jacobian linearization method. Finally, these linearized

3
TaBLE 1: Nomenclature and nominal values.
Symbol Nominal value
m 300 slug/ft
I, 5x10°Ib- ft
¢ 17 ft
Po 6.7429 x 107 slugs - ft
h, 85000 ft
h 2.1358 x 10* ft
g 31.92 ft-s2
S 17 f2ft !
zp 8.36 ft
Cy 4.6773rad™!
c 0.76224 rad !
e -1.8714x 1072
cy 5.8224rad
(o —4.5315x 10 rad ™!
% 8.1993 x 10! rad
c 27699 x 10~ rad ™!
o 1.0131 x 1072
Coa 6.2926 rad 2
Cha 2.1335rad ™!
Chta 0.18979
c, —~1.2897 rad™*
B, -3.7693x10° Ib - ft™! - rad™
B, -3.7225x10*Ib - ft ™' - rad ™
B, 2.6814 x 10*Ib - ft ™! - rad >
B “1.7277 x 10* b - ft ™' - rad ™
Bs 3.5542x 10*Ib - ft™' - rad™>
Bs 24216 x10°Ib - ft™! - rad™
B, 6.3785x 10° b - ft ™!
Bs ~1.0090 x 10*Ib - ft ™!
N¢ 1.4013 % 10’ Ib - ft ™" - slug ™ - rad
Ni 45737 x 10°Ib - ft ™ - slug™®° - rad ™"
NY 1.1752x 10°1b - ft " - slug™®>
N -5.0227 x 10°Ib- ft ™" - slug ™ - rad ™
NS 2.8633x 10°Ib - ft ' - slug™®® - rad ™!
N‘} 1.2465x10° b - ft ! - slug™® - rad™*
N9 -44.201 x 10*Ib - ft ™" - slug

local systems are multivariate linearly fitted to obtain the LPV
model. The equidistant gridding method is chosen in this
paper. Five points are selected at equal intervals in the velocity
interval [7200  9600] ft/s, and four points are selected at equal



intervals in the altitude interval [80000
points, as shown in Figure 1.

By means of parameter meshing, Jacobian linearization,
and multivariate linear fitting, the LPV model of the hyper-
sonic vehicle with respect to the scheduling parameters is
shown in equation (6). The fitting results of partial LPV
model parameters are shown in Figure 2, and its corre-
sponding fitting results are listed as follows.

110000] ft, totaling 20

(Al [0 o0 -V V 0 0 0 0 0 J[h]
v Ay Ay Ay —g 00 0 0 0 v
& Ay Ay Ay 010 0 0 0 «
0 0 0 0 0 1 0 0 0 0 0
Q=45 As; A3 0 0 0 0 0 0 Q
i 0 0 0 0 0 0 1 0 0 m
i, 0 0 A; 0 0 - -2, 0 0 i
i 0 0 0 0 0 O 0 0 1 1,
Lib] LO 0 Ay 0 0 0 0 w3 =260, | L7, ]
0 0]
By By
By, By
0 0
@
+ BSI BSZ >
4,
0 0
0 0
0 0
Lo N
(6)

A, =0.005869328270053 + 0.000000350162259V/
—0.000000174371733h — 0.000000000008442V - h
+0.000000000022808 V2 + 0.0000000000014764,

A, = —0.023088159404555 — 0.000002004091776V
+0.000000734297646h + 0.000000000065894V - h
—0.000000000208165 V2 — 0.00000000000775042,

A, = —4.281455848712256 x 10? + 0.000203656246563
% 10?2V +0.000109797017027 x 10*h
—0.000000002665318 x 10°V - h + 0.000000008045619
x 10%V2 - 0.000000000711388 x 10?h?,

A, =0.108230120558901 x 107° + 0.000004011899188
x 107>V —0.000003114516949 x 10°h
—0.000000000147221 x 107V - i + 0.000000000376981
% 107°V? 4+ 0.000000000030249 x 10K,

A, = —0.457306127416146 x 107 + 0.000041821380304
x 107>V +0.000004391002007 x 10"k
+0.000000000788219 x 107>V - i — 0.000000005149628
x 107> V2 - 0.000000000076799 x 10K,
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A, =—-0.003787681755457 — 0.000001119856725V
+0.000000058391695k + 0.000000000008971V - h
—0.000000000041242 V% — 0.000000000000762k2,

Ag, =0.296461521297026 x 107 + 0.000017734787744
x 107V — 0.000008809870838 x 10™*h
—0.000000000429950 x 1074V - h + 0.000000001166841
x 107V2 4+ 0.000000000074731 x 10~*h?,

A, =—0.116805126192769 x 10> - 0.000010123132197
x 1073V +0.000003712711998 x 10k
+0.000000000334612 x 10V - h — 0.000000001060704
x 10 V2 - 0.000000000039242 x 103K,

A, = 5.802500675695122 — 0.000054761923165V
—0.000140973420646h + 0.000000002348128V - h
+0.000000030407243 V2 + 0.00000000086367 11,

A, = 4.841368923917495 x 10° — 0.000005151942352
x 10°V - 0.000006725356453 x 10°h
—0.000000001382188 x 10*V - i + 0.000000005761907
x 10°V2 +0.000000000136397 x 10°K?,

Ay, = 1.903890377392848 x 10° + 0.000018466182009
x 10°V + 0.000024105793090 x 10°h
+0.000000004954198 x 10°V - h — 0.000000020652486
x 10° V2 - 0.000000000488889 x 10°1?,

B,, = 29.298643129461226 — 0.000509535839514V
—0.000182979829453h — 0.000000042211072V - h
+0.000000177655838 V% + 0.000000004424883h2,

B,, = —2.492498015279544 x 10* — 0.000058628507583
x 10?V + 0.000067800689280 x 10%h + 0.000000001251828
x 10V - h — 0.000000006600229 x 10* V>
- 0.000000000504206 x 10%h?,

B, = —0.416859626570442 x 10~ + 0.000021770424271
% 1072V + 0.000008073449568 x 10k
+0.000000004341692 x 107>V - h — 0.000000020925782
% 1073V2 - 0.000000000294067 x 10732,

B, = —0.000000000019683 x 10~ — 0.145625062719996 x 107°V,

B;, = 0.149606059591807 — 0.000002276698805V
—0.000001007292996h — 0.000000000224446V - h

+0.000000000937140V? + 0.0000000000233614%,
B, = —0.000000167960940 x 10~ + 0.000000000036265
x 1077V +0.000000000000177 x 10~ h (7)
—0.251323593957002 x 1077 V2.

2.2. Polytopic LPV Model Transformation. Based on the LPV
model of the hypersonic vehicle longitudinal elastic nonlin-
ear model, the stability analysis and controller synthesis
problem of the system can be transformed into a convex
optimization problem within a set of LMI frameworks which
depend on the scheduling parameters. If it can be ensured
that the LMI is feasible on the entire continuous variable
parameter trajectory, the resulting controller can guarantee
the global stability of the closed-loop system and meet the
desired performance index. Since the spatial continuity of
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FIGURE 1: Scheduling parameter mesh division.

the scheduling parameters means that an infinite number of
LMIs are to be solved over the entire parameter trajectory,
which is obviously difficult to achieve, the scheduling parame-
ters can be spatially meshed to solve the problem of LMI at a
finite number of mesh vertices but the performance of this
method is more dependent on the mesh density; besides, the
determination of the mesh density not only lacks theoretical
proof but also is time-consuming. The polytopic set is a con-
vex set, which could describe the entire system. Through
transformation of the polytopic model, the problem of solving
infinitely many LMI problems can be attributed to solving the
LMI problem at a limited number of vertices, which can
greatly reduce the amount of computation. The controller
obtained by this method has continuous gain throughout the
workspace and has global action features ([11] [12, 22]).
The system equation (6) can be expressed as follows.

B(p(1))]- (8)

where S(p(t)) is a parameter-varying object and p(t) € Qisa
time-varying N dimensional parameter vector within the
closed hypercube Q=[a, b,] % [a, by] x ---x [ay by] CRY.
Parameter p(t) can also include some elements of x(t).
The (N + 2)-dimensional tensor S is constructed from LTI

vertex systems S;; .. .

An(pa() [x ! ] ©)

where the row vector A, (p, (t)) € R (n=1, -+, N) contains
one bounded variable and continuous weighting functions
a,; (p,) (i,=1--1,). The weighting function a,; (p,(t))
€ [0, 1] is the i, weighting function defined on the nth dimen-
sion of O, and p, (t) is the nth element of vector p(t) and

253:1%,1',, (p,(t))=1.1, (n=1,---,N) denotes the number of

the weighting functions used in the nth dimension of Q. The
symbol ® denotes the Kronecker product. The tensor product
model transformation method based on high-order singular
value decomposition is an effective LPV system polytopic
model transformation method. The brief process is as follows.
Firstly, mesh the variable parameters in the LPV model, and
then, discretize the system to form tensors. Finally, we per-
form high-order singular value decomposition. The related
theory of high-order singular value decomposition can refer
to the literature [23-25].

On the basis of the LPV model of the hypersonic vehicle
in equation (6), the tensor product model transformation
method is used to obtain the polyhedral description of the
LPV model of the hypersonic vehicle. By uniformly dividing
the altitude variable /& and velocity variable V in the LPV
model described in equation (6), the original system is
approached in the specified area (velocity interval [7200
9600] ft/s, altitude interval [80000 110000] ft), where the
number of sampling points is set to 200 x 200. Using the
high-order singular value method decomposition, the singu-
lar value decomposition of the expansion matrix is arranged
in a descending order, where N =2, I, =1, =3. Table 2
shows the top 5 largest singular values. All 6 (the remaining
singular values are relatively small or equal to 0) of the sin-
gular values are preserved. The resulting numerical model is
a convincing approximation of the original model, which
has 9 polytopic vertex systems. The resulting approximation
model is as follows:
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Ficure 2: The fitting effect of LPV model parameter.
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TaBLE 2: HOSVD decomposition results of the LPV model.

Expand The 1st-order singular The 2nd-order singular The 3rd-order singular The 4th-order singular The 5th-order singular
matrix value value value value value

A(1> 2.62023e + 06 81445.3 1850.49 6.95697¢ - 09 3.80140e - 10

A<2> 2.62101e + 06 50610.4 916.243 5.56458e — 10 3.59899¢ - 10

In equation (10), wy(V, h) =w;(V)w;(h), k € {1,2,---,9},
i,j € {1,2,3}. Based on the high-order singular value decom-
position results, the maximum modeling error of the approx-
imation model described in equation (8) can be calculated as
0.003679 and the average modeling error is 0.002499.

In order to verify the approximate equivalence between
the hypersonic elastic nonlinear model described in equation
(1) and the polytopic LPV model obtained by the transfor-
mation of the tensor product model described in equation
(8), an equilibrium state in the parameter variation interval
in Table 3 is used as an example. The system approximation
matrix at the equilibrium point is obtained by the Jacobian
linearization method which can locally approximate the
elastic nonlinear model and the tensor product model trans-
formation method in equation (8). The zero-pole distribu-
tion map of the system is shown in Figure 3.

Comparing the zero-pole positions of the two methods
at the same equilibrium point, we can find that the zero-
pole positions of the two methods are very close, which indi-
cates that the polytopic LPV model based on the transforma-
tion of the tensor product model accurately reflects the
dynamic characteristics of longitudinal elasticity nonlinear
models of the hypersonic vehicle.

The shape of the time-varying weight function w;(V, h)
(ke{1,2,---,9}) is shown in Figure 4.

The general distribution of the nine time-varying weight
functions shows that when any time-varying weight is 1, the
rest of the weights are 0, which indicates that the LPV model
weight function obtained by the tensor product model trans-
formation satisfies the requirement of convex coordinates.

3. Robust Controller Design

The LPV model of a hypersonic vehicle is as follows.
x(t) = A(0(1))x(t) + B(0(t))u(t) + Dw(t),
y(#) =Cx(1).

In equation (11), 8(t) = [V h]" denotes the scheduling var-
iables, A(0(t)) and B(6(t)) both are the corresponding
parameter-dependent system matrix, and the numerical expres-
sion is described in equation (6). C is the observation matrix, D
is the interference matrix, and w(t) denotes time-varying exog-
enous disturbance. The reference velocity and altitude of the air-
craft are recorded as r(t)=[V, h
output is recorded as y(¢) = [V, h,]". The controller design
goal of the hypersonic vehicle not only needs to ensure the sta-
bility of the aircraft but also requires that the output of the air-
craft can track a given command signal in real time. Therefore,
the design goal of the hybrid target robust controller is to design

(11)

T and the control

com com ]

TaBLE 3: Trim condition of the hypersonic vehicle.

Status Value Status  Value  Status Value

h 85000 ft 1, 1.5122 D 0.2514
% 7202.0808 ft/s , 0 0, 11.463 deg
o 1.5153 deg 1, 1.2144

6 1.5153 deg 7, 0

Q 0 deg/s

an effective controller within the whole flight envelope ensuring
that the output tracking error of the aircraft is 0.

Tim [y(t) - x(1)] =0, (12)

In order to evaluate the system’s steady-state error more
effectively, the following tracking error integral term is intro-
duced to eliminate the steady-state error in the feedback con-
trol strategy.

()= [ (o) - r(o) . (13)

According to the tracking error integral term and combin-
ing polytopic description and the LPV model of the hyper-
sonic vehicle, the extended system can be obtained as follows.

X(t) = A(0(t))X(t) + Byr(t) + B(O(¢))u(t) + Dw(t),

X(t) = [x(t)x,(1)]"

R A1) 0] 2 )
A(O(t) = (C(t)) 0}:;wk(v,h)Ak,
_ B(0 9
BO() - (O(t))] = YulVonB,
i- A 0] 15)
c o
B - Bk}
| 0
C=[C 0]
B1:[0 _I]T’
b=’ o’
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FIGURE 3: Zero-pole comparison diagram.
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According to the parallel distributed compensation X(t) = (A(6(1)) +B(6(t))K(6(1)))X(t) + B x(t) + Dw(t)
(PDC), the designed state feedback controller is as follows.

w()= Y wi(V,WKX(0) =KOOX(©). (16 (17)
k=1

The output tracking problem of the hypersonic vehicle is

transformed into the robust stability problem of the above

In equation (16), K(0(t)) = ¥;_,w,(V, h)K,. Substituting  extended system. When the closed-loop system described in
equation (16) into (14), the expression for the closed-loop sys-  equation (17) is robustly stable, the command tracking target
tem of a hypersonic vehicle can be obtained as follows. of the original system described in equation (9) can be achieved.
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4. Numerical Simulation

Under conditions of cruising flight of the hypersonic vehicle
(altitude 85000 ft, velocity 7702 ft/s), a robust model predic-
tive controller for state feedback of mixed performance
indicators was designed to achieve tracking control of veloc-
ity commands and altitude commands [26]. In the actual
control of the aircraft, the command must comprehensively
consider the physical constraints of the aircraft such as
structural stiffness and payload. In general, it is assumed that
the given velocity and altitude reference command signals
are generated by the second-order filters.

w2

H(s) .

2+ 2dw,s+w?’ (18)

In equation (18), the velocity instruction signal filtering
system natural frequency wy, =0.0195 and damping coeffi-
cient ¢y, =0.9. The altitude command signal filtering system
natural frequency w;, =0.0219 and damping coeflicient
(,=0.9. It is assumed that the initial equilibrium state
of the longitudinal dynamics of the aircraft is as follows.
The rigid state V, = 7702ft/s, h, = 85000ft, o, = 1.6262 deg,
0, =1.6262 deg, and Q=0. The elastic mode #, =0.9127,
7, =0, 1,=0.7623, and #,=0. The control input @ =
0.2666 and 6§, =12.4978 deg. The control input satisfies
the hard constraints of the actuator; the engine fuel equiv-

alence ratio and the range of the elevator declination angle
are 0.1 <®<1.4 and -30<4, <30.

The discretization sampling time T, of the continuous
system is 0.01s. The aerodynamic parameters in the aircraft
model are mainly obtained by computational fluid dynamics
simulations or wind tunnel experiments. Besides, the
unknown external environment and complex dynamic influ-
ences such as dynamic pressure effects, viscous effects, lean
gas effects, and atmospheric turbulence may be encountered
in the flight process. Therefore, the abovementioned factors
are assumed as uncertainties of model inertial parameters
and aerodynamic parameters. Similar to the literature [27],
the value of parameters lies within +10% of the nominal
value such as m=m(l+Am) where |Am|<0.07 and
p=p(1+Ap) where |Ap|<0.08. Compared with the ones
in Qin et al. [27], the uncertainties are more aggressive and
energy-bounded external disturbance is considered. When
the desired velocity V,=9200ft/s and desired altitude
h, = 104000 ft, the simulation results using the state feedback
controller design method are shown in Figures 5-9. The sim-
ulation results are compared with the results obtained
through Qin’s method [27] and Cai’s method [28]. In the
sequence, results obtained through the proposed method,
Qin’s method, and Cai’s method are depicted by a red line
marked by circles, blue dashed line marked by circles, and
green dashed line marked by asterisks. Since the tracking
curves are quite close, thus, only the tracking errors are given.
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In Figures 5 and 6, it can be seen that the robust control-
ler can ensure that a hypersonic vehicle achieves the fast and
accurate velocity and altitude command tracking during the
maneuvering flight of the large flight envelope. The above
controller has a smaller tracking error and a relatively
smooth state, which can effectively suppress the influence
of serious aerodynamic parameter uncertainties and elastic
modes in the flight process. Figures 7 and 8 show the varia-
tion curves of the angle of attack and pitch angle in the
whole process, respectively. In order to achieve a high degree
of climb while increasing the velocity, the hypersonic vehicle
in the initial trim state adds engine fuel input to the control-
ler output signal and the elevator is pulled up until the stable
command tracking is achieved again to reach the equilib-
rium state. The angle of attack and the pitch angle will be
stabilized in the new trim state. The curve of the control
input shown in Figure 9 indicates that the engine fuel equiv-
alence ratio and the elevator deflection angle all satisfy the
system control input hard constraints.

In summary, in the case of external disturbances, param-
eter uncertainties, and elastic modal couplings during the
maneuvering flight, the designed controller has strong
robustness and ensures that the system can quickly track
the command signal.

5. Conclusion

Aiming at a type of hypersonic vehicle longitudinal elasticity
model disclosed in the existing literature, altitude and veloc-
ity are selected as the gain-scheduled variables, through a
series of sequential steps such as meshing within the range
of parameter variation, finding equilibrium points, Jacobian
linearization, and multivariate linear fitting; the continuous-
time LPV model of the aircraft is established. Then, using

the tensor product model transformation method, the gen-
eral LPV model is transformed into a polytopic LPV system
model with 9 vertices and the rationality of the LPV model is
verified. At the same time, regarding the maneuvering flight
command tracking problem for hypersonic vehicles, a state
teedback controller is used to translate the command track-
ing control problem into a robust stability problem for the
corresponding extended closed-loop system combined with
the obtained polytopic LPV system model. Simulation
results demonstrate that the obtained polytopic LPV model
based on high-order singular value decomposition in this
paper is effective in solving the maneuvering flight
command tracking and attitude stabilization control of
general complex nonlinear systems, such as hypersonic
vehicles. However, since the linearization process lose some
beneficial nonlinearities, some gain perturbations due to
finite word length or time delays of state or input might
bring unpredictable complexities. LPV nonfragile control
of air-breathing hypersonic vehicles with time delays needs
further studies.

Data Availability

The longitudinal elastic nonlinear model of the hypersonic
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The aeroelastic model of a folding wing varies with different configurations, so it actually represents a parameter-varying system.
Firstly, a new approach based on interpolation of local models is proposed to generate the linear parameter-varying model of a
folding wing. This model is capable of predicting the aeroelastic responses during the slow morphing process and is suitable
for subsequent control synthesis. The underlying inconsistencies among local linear time-invariant (LTI) models are solved
through the modal matching of structural modes and the special treatment of the rational functions in aerodynamic models.
Once the local LTI models are represented in a coherent state-space form, the aeroservoelastic (ASE) model at any operating
point can be immediately generated by the matrix interpolation technique. Next, based on the present ASE model, the design
of a parameterized controller for suppressing the gust-induced vibration is studied. The receptance method is applied to derive
fixed point controllers, and the effective independence method is adopted and modified for optimal sensor placement in
variable configurations, which can avoid solving ill-conditioned feedback gains. Numerical simulation demonstrates the
effectiveness of the proposed interpolation-based modeling approach, and the parameterized controller exhibits a good gust
mitigation effect within a wide parameter-varying range. This paper provides an effective and practical solution for modeling

and control of the parameterized aeroelastic system.

1. Introduction

Morphing aircraft has the ability to significantly change the
shape or structure during flight so that a single aircraft can
adapt to various mission scenarios [1]. Over the past
decades, morphing aircraft has received widespread atten-
tion in the aviation industry and aircraft manufacturers. A
variety of morphing concepts have emerged, including the
changing airfoil camber, wingspan and twist morphing,
and variable sweep angle [2, 3]. In 2003, the Defense
Advanced Research Projects Agency (DARPA), the Air
Force Research Laboratory (AFRL), and the National Aero-
nautics and Space Administration (NASA) jointly launched
the Morphing Aircraft Structures Program. Three contrac-
tors of this program, Lockheed Martin, NextGen Aeronau-
tics, and Raytheon Missile Systems, respectively, proposed
the concepts of a folding wing, flexible skin morphing wing,

and telescoping wing [1]. Among them, the folding wing
proposed by Lockheed Martin is an innovative morphing
design that allows the structure to switch smoothly between
the unfolded and folded configurations so that the optimal
configuration can be adopted according to different mission
requirements: the unfolded configuration is for efficient
cruising, and the folded configuration is for high-speed
diving [4].

Substantial changes in the structure and aerodynamic
shape of the folding wings introduce specific aeroelastic
behaviors that do not occur on traditional fixed wings [5].
Previous studies have provided a variety of modeling and
analysis methods to investigate these aeroelastic behaviors.
Lee and Weisshaar [6] used ZAERO software to generate a
linear aeroelastic model of a folding wing and investigated
the hinge stiffness effect on flutter dynamic pressure. Later
on, Lee and Chen [7] considered freeplay nonlinearity at
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the wing-fold hinge in this model and performed nonlinear
flutter analysis to predict the limit cycle oscillation. Wang
et al. [8] presented a general aeroelastic modeling method
that uses the strip theory unsteady aerodynamic model and
simplified structural model. This method can perform flutter
analysis on folding wings with any number of wing
segments. Zhao and Hu [9] proposed a parameterized aero-
elastic modeling method, which enables rapid flutter analysis
of a folding wing with different configurations. Tang and
Dowell [10] introduced the component modal analysis
method to efficiently and accurately derive the folding wing
model. In order to explain the limit cycle oscillation mea-
sured in the experiment, Attar et al. [11] extended this
model to include the geometric nonlinear effect. The ampli-
tude and dominant response frequency of the limit cycle
oscillation obtained by the computational analysis were in
good agreement with the experimental results. The afore-
mentioned parametric studies on folding wings were only
applicable to the case of slow morphing, and the dynamic
response calculation during the rapid morphing process
needs to further consider the time-varying effects on the
structural dynamic characteristics. Zhao and Hu [12] com-
bined the Craig-Bampton substructure synthesis technique
with the flexible multibody dynamic approach to investigate
the transient responses of a folding wing during rapid
morphing processes. Hu et al. [13] proposed an integrated
model by incorporating the Kriging agent model of the
unsteady aerodynamic force in the time domain with the
flexible multibody structural model and calculated the aero-
elastic responses of a folding wing during quasi-steady morph-
ing processes. Later on, they used this technique to study the
nonlinear aeroelastic response characteristics of a folding wing
with cubic stiffness [14]. The shortcoming of the Kriging
model they used is that the rational function expressions of
the unsteady aerodynamic force are not unique, which brings
risks to the use of agent-based interpolation. Recently, Ver-
straete et al. [15] built a simulating system of a folding wing,
which used the unsteady vortex lattice method and the finite
element method (FEM) to carry out the nonlinear aeroelastic
analyses in multiple flight configurations.

It can be seen that a large body of work on folding wings
focuses on flutter and dynamic response predictions. The
involved modeling methods can perform aeroelastic analyses
under fixed or time-varying parameters and can account for
miscellaneous nonlinear effects. Due to the large variation of
the folding wing configuration, the time-varying morphing
process, and the nonlinearity in the structure or aerodynam-
ics, most of the time-varying nonlinear modeling techniques
are quite complicated and generally far away from the
control-oriented modeling. Some studies on the morphing
aircraft control trend to use fixed configuration controllers
as a compromise [16-18]. When the wing shape changes,
the controller needs to switch online between different param-
eters to ensure the stability and performance of the closed-
loop system. Another promising solution is to describe the
nonlinear aeroelastic system as a linear parameter-varying
(LPV) model that approximately captures the complex behav-
ior during the morphing process. The LPV model simplifies
the nonlinear dynamic equations of the folding wing, espe-
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cially the controller can be designed in the linear system theory
framework [19, 20]. Theoretically, linearizing a nonlinear
model around equilibrium points in the parameter space can
directly generate an LPV model [21] or a set of linear time-
invariant (LTI) models for interpolation [22]. In practice,
however, the original nonlinear model may be completely
opaque or overly complex, making this method difficult to
implement [23]. Another approach is to use the global identi-
fication or local modeling technique [24]. The former allows
to generate the LPV model in a single step, but it requires
the control inputs and operating conditions to be constantly
changing in one experiment; such experimental conditions
do not always exist in practice. The latter is based on a set of
LTI models that are estimated under different fixed parame-
ters, and the LPV model is obtained by interpolating these
local LTT models. Since interpolation can be efficiently imple-
mented in real time, the local modeling technique is currently
the most convenient and effective method to establish the LPV
model of the aeroelastic system [25].

When using the local modeling technique, direct inter-
polation of the system matrices is usually infeasible. This is
because the state-space representation of a certain system
is not unique, which means that the state-space matrices
may be expressed in an incoherent form at different
parameter points. The common solution is to convert the
state-space models into a coherent form through the state
coordinate transformation. Two possible canonical forms
can be chosen: the companion form [23] and the modal
form [26]. However, the companion transformation requires
the controllability of the system inputs, and this form is
known to be poorly conditioned for large-scale systems
[27]. In another solution, using the modal form requires
pairing the decomposed modal matrices of the local models.
Most existing methods cannot handle systems with more
than one parameter and require the additional assumption
that the number of complex and real poles does not change
over the parameter range [28, 29]. There are other solutions
for coherent representation of the local state-space models,
including the balanced realization [30], the least-squares
approximation [31], and the SMILE technique proposed by
de Caigny et al. [32]. These methods more or less have
problems such as relying on experience, being difficult to
implement, or having harsh conditions.

A suitable aeroservoelastic open-loop model is of great
significance for studying the aeroelastic control of folding
wings. In order to solve the LPV modeling problem, this
paper proposes a practical local modeling technique for a
typical folding wing. This approach does not require the
difficult coordinate transformation of state-space LTI
models (usually necessary for interpolation) but deals with
the structural finite element model and the doublet lattice-
based aerodynamic model in a targeted manner. Firstly, a
general algorithm for structure modal matching is presented,
which converts the modal matching problem into a standard
linear sum assignment problem (LSAP). LSAPs are solved
immediately by the Hungarian algorithm so that the local
structural modes are aligned to continuously change with
the folding angle. Then, the rational function approximation
(RFA) results of the generalized aerodynamic force (GAF)
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matrices are scaled to transform the local aerodynamic
models into a coherent form suitable for interpolation. The
above steps eliminate all possible inconsistencies in local
models and ensure that the local system matrices are contin-
uously dependent on the scheduling parameters. In this way,
whether the scheduling parameters are folding angle or flight
parameters (e.g., flow speed), the state-space representation
naturally has a coherent form.

As the second task of this paper, the closed-loop analysis
of active aeroelastic control for the folding wing is also
studied through the present aeroservoelastic model. In
order to suppress the gust-induced vibration at different
configurations, a parameterized controller with a multi-
input multioutput (MIMO) static output feedback structure
is designed by using a receptance-based method. The recep-
tance method was originally proposed by Ram and Mot-
tershead [33, 34]. It provides a straightforward way for
vibration control of linear systems through partial pole
placement. Some studies have successfully used this method
to suppress the unstable aeroelastic responses due to the
flutter instability [35, 36], but its control effect on external
disturbances has not been evaluated. The advantage of the
receptance method is that the controller can be achieved
only by transfer functions from the available sensors and
actuators. Therefore, the tedious tasks of model order
reduction and state observer design in modern control
can be avoided. Moreover, the controller in the form of
static output feedback has a simple structure, so it is easy
to extend to the parameterized controller through interpo-
lation of local controllers. In this work, an additional step
of optimal sensor placement is introduced to find a proper
sensor layout suitable for the variable configuration of the
folding wing. For this purpose, we employed the effective
independence method and modified it so that it can be used
in the parameter-varying system. The sensor layout is opti-
mized by iteratively constructing the independence distri-
bution vector and eliminating the insignificant locations.
As a result, the proper sensor layout avoids solving the
ill-conditioned equations of the receptance method within
the parameter range. Numerical examples demonstrate that
the proposed modeling and control methods are effective
and reliable for the parameterized aeroelastic system in var-
iable configurations.

2. Description of the Parameterized
Aeroelastic Modeling

The schematic diagram of a folding wing geometry is shown
in Figure 1(a). The folding wing structure consists of three
components: the fuselage, the inboard wing, and the out-
board wing. The inboard wing and the outboard wing each
have a trailing-edge control surface (see Figure 1(b)). These
three substructures are connected by rotating hinges driven
by the servomechanism. The folding angle 6 between the
inboard and the fuselage can be varied from 0deg (fully
unfolded configuration) to 120 deg (fully folded configura-
tion). During the folding process, the outboard wing remains
parallel to the x—y plane, as shown in Figure 1(c).

Obviously, the equations of motion of the folding wing
depend on the parameter 0. Conventional nonparameterized
FEM is only applicable for fixed structural configurations.
When the folding angle changes, the finite element model
has to be reestablished, which leads to a huge amount of
repetitive modeling work. To solve this problem, Zhao and
Hu [9] proposed an efficient substructure synthesis method
to construct finite element models under different folding
angles. It only requires modeling each substructure once.
This paper adopts this method to establish the parameter-
ized finite element model under arbitrary folding angles.
To this end, the folding wing is divided into three substruc-
tures: the fuselage, the inboard wing, and the outboard wing.
Finite element models of the substructures are established in
their respective local coordinate systems, as shown in
Figure 2. The four-node CQUAD4 elements in NASTRAN
are used to discretize each substructure. For an arbitrary
folding angle 0, a coordinate transformation is used to
express each substructural model in the global coordinate
system. Substructure synthesis is performed according to
the compatibility conditions for the forces and displace-
ments at the interfaces of the substructures. In this way,
the finite element model of the entire structure at an arbi-
trary folding angle 0 is quickly obtained. The synthesized
structural model of the folding wing is expressed exactly as
a regular FEM equation as follows:

Mx, + Cx, + Kx = £, +f,, (1)

where x; is the displacement vector in global coordinates. M,
C,, and K| are the mass matrix, damping matrix, and stiffness
matrix, respectively, all of which depend on the parameter 0. f,
and f, are the unsteady aerodynamic forces induced by struc-

tural motion and gust disturbance, respectively.

The unsteady aerodynamic model is established by using
the doublet lattice method (DLM) [37]. In general, the aero-
dynamic boxes are independent of the finite element meshes,
but in this paper, the aerodynamic boxes of the folding wing
coincide with the finite element meshes. The aerodynamic
influence coefficient (AIC) matrix generated by DLM is used
to calculate the pressure coeflicients distributed on the lifting
surface under simple harmonic motion, and then the equiv-
alent aerodynamic forces acting on the structure are derived
from the force and displacement transfer relationships
between structural nodes and aerodynamic grid points.
Based on this, the unsteady aerodynamic forces in Equation
(1) have the following form [38]:

fS = qooGEsSij;ii(k’ Moo)Djk(k)Gksxs, (2)
T -1 wg
fg = qoonsSijaic<k’ Moo)q)Jg(k) U—ooa (3)

where A, is the AIC matrix, which is a function of the
reduced frequency k = wby /U, and the Mach number M.
w is the angular frequency of harmonic vibration, by is
the reference half chord length, and U, is the flow speed.
o, = 0.5p,, U%, is the dynamic pressure, and p_, is the air
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density. Sy is the integration matrix used to concentrate
the distributed pressures to the aerodynamic grid points.
Dj is the substantial differentiation matrix derived from
the airflow boundary conditions. Gy, is the spline matrix
obtained by the infinite plate spline method [39], which
is used for mesh deformation interpolation and equivalent
aerodynamic force calculation. ®;, is the gust mode vector,

including the time delay and amplitude ratio of the har-

monic gust excitation on each aerodynamic box [40]. w,

is the gust velocity disturbance at the gust reference point,
and the gust reference point is selected at the leading-edge
of the fuselage, i.e., x=0. It should be noted that in Equa-
tions (2) and (3), except that Dy and §;; are not related to

the folding angle 0, the rest of the matrices depend on 0.



International Journal of Aerospace Engineering

The structural motion can be expressed as the superposi-
tion of each modal motion. Taking the control surface
deflection modes into consideration, the following modal
coordinate transformation is introduced:

X, = [y (Dc]{ : } (4)

where @, is the structure modal matrix and § is the vector of
corresponding modal displacements. ®_ is the matrix of
control surface modes, which contains rigid displacements
due to the unit deflection of each control surface. § is the
vector of actual deflections of the control surfaces.

Combining Equations (1)-(4), the aeroelastic equation
of the folding wing in modal coordinates is obtained as fol-
lows:

Mhhi + Chhé +Kpp§ + ths

~ Wy (5)
- qothhz + qothc6 + qothg U_ >

where My, Cy;,, and Ky, are the modal mass, modal damping,
and modal stiffness matrices in the diagonal form, respec-
tively. M. is the mass coupling matrix, which represents the
inertial effect induced by the control surfaces. Qy;,, Qy,., and
Qg are the frequency-domain GAF matrices due to structural
modes, control surface modes, and gust modes, respectively.
Matrices in Equation (5) are expressed as follows:

M, = DI M, ®,,

Gy, = PLC,®,,

K, = D[ K @,

M, = O/ M D, (6)
Q= (DEGESSij;ilc(k’ M) D (k) G @y,
Q. = q)EGEsSij;ii (k> Moo)Djk(k)Gks‘Dc>

th = (I)EGEsSij71 (k, Moo)q)jg(k)'

aic

So far, the parameterized aeroelastic model of the folding
wing in modal coordinates has been initially established. All
the structural and aerodynamic matrices in Equation (5)
depend on parameter 6. For any fixed 0, system analysis and
response calculation are easy to carry out. Note that the aero-
dynamic forces in the current model are expressed in the fre-
quency domain. If time-domain aeroelastic analyses are
desired, the GAF matrices can be transformed into the time
domain through the RFA technique [41]. However, the cur-
rent model is not suitable for simulation under the time-
varying folding angle. It is extremely inefficient to perform
online substructure synthesis, structure modal decomposition,
and aerodynamic matrix calculation at each time step. There-
fore, a modeling method for quickly obtaining an aeroelastic
model at any point in the parameter space is desired.

3. Interpolation-Based Modeling Methodology

For the folding wing system, both the folding angle and the
aerodynamic parameters (e.g., flow speed) will undergo var-
iations. The response analysis and control synthesis are
expected to be carried out under the LPV framework. Using
a set of local models to compute an interpolating LPV model
is a practical and efficient modeling strategy [25]. This
method begins with the discretization of a given parameter
space, which generates a set of grid points called operating
points; then, the LTI models (local models) are prebuilt for
fixed operating conditions at each operating point; finally,
the LPV model is computed by interpolating these local
LTI models. Although the local LTI models are obtained
for fixed parameters and do not incorporate the time-
varying effects, in case the parameter variations are slow
relative to the dynamic characteristics of the system, the
dynamic parameter-dependent part in the system can be
ignored [32, 42]. Therefore, in this paper, while applying
the local modeling technique, we assume that the folding
process and flight conditions undergo slow and smooth
variations.

Model interpolation requires that all local models have a
coherent form; that is, the system matrix should change con-
tinuously over the considered parameter range. Note that
Equation (1) is expressed in the physical coordinate system.
The matrices in Equation (1) are continuously dependent on
the folding angle 8. However, this is not the case in the
modal coordinate system of Equation (5). It can be inferred
that only the structure modal matrix ®;, may cause inconsis-
tency. Since the mode crossing is a common phenomenon in
the parameter-varying system, the structural modes with the
same order cannot be directly interpolated because they
often do not change continuously (do not belong to the same
mode branch). Besides, the mode shapes may exhibit abrupt
sign changes, which will also make interpolation impossible.
Another inconsistency occurs in the subsequent RFA pro-
cedure for transforming the frequency-domain aerody-
namic forces into the time domain. The commonly used
minimum-state (MS) method generates nonunique coeffi-
cient matrices that cannot be directly interpolated. This sec-
tion presents a structure modal matching algorithm and a
coherent RFA representation method, which eliminates
the underlying inconsistencies in local models and paves
the way for model interpolation.

3.1. Modal Matching and Alignment. To perform the model
interpolation, a set of local aeroelastic models of the folding
wing are established under the n, folding angles 6,,---,0,,,

and the following structural eigenvalue problems are solved:

K, @, =M@, Q) [=1,-n, (7)
where
Qh,l = diag ( Wy w”]vl )’
(8)
Q= [(Pl,l ‘Pnh,l} .



Q, ; is a diagonal matrix whose elements are angular nat-
ural frequencies of the structure. The column vectors in
matrix ®,; are structural mode shapes normalized for
unit-generalized masses. ny, is the number of the retained
structural modes.

Typical eigenvalue solvers generally sort structural
modes by natural frequencies in ascending order. When
the mode crossing occurs, modes in matrix ®, ; should be
rearranged before interpolation to ensure continuous change
between parameter points. Considering that the structural
modes in the same branch have similar vibration patterns,
we can compare the natural frequencies and mode shapes
under the adjacent parameters and rearrange the orders to
match these dynamic properties. For the two adjacent fold-
ing angles 0,_; and 0, define the following distance metric
to measure the dynamic similarity between the two modes:

dy; = |wy, —wy|- (1 - /MACi)j), ij=1, -, (9)

where the modal assurance criterion (MAC) is calculated as

‘ 2

T
D119

MAC,, = :
((p}:l_lq)i,l—l) : ((PjT,l‘Pj,l)

(10)

The distance metric uses the linear distance of two natu-
ral frequencies and is weighted by the MAC. MAC takes
value in the interval [0, 1]; a larger MAC value indicates a
higher degree of linear correlation between the associated
mode shapes. Assuming that the modal data at point [ -1
has been sorted in a proper order, the goal of modal match-
ing is to compare the modal data at point [ with point /-1
and give a correct pairing by minimizing the total distance
metric. From the perspective of the graph theory, the struc-
tural modes to be investigated can be naturally divided into
the following two sets of vertices:

Via= {wl,z-l
V= {wl,l

wnh,l—l }’

(11)
Wy 1 }-

Define the edge set E; = V,_; x V; that is, any two verti-
ces in V;_; and V, are connected by a unique edge, thus
forming a complete bipartite graph G, = (V,_, V,;E,). The
distance metric d;; given in Equation (9) specifies the cost
of each edge. The modal matching problem is reformulated
as finding a perfect matching in the graph G;, which mini-
mizes the sum of the costs. This problem is a typical LSAP
and can be solved by the Hungarian algorithm, which is a
mature solution in the field of multiobject tracking [43].
The Hungarian algorithm was originally presented by Kuhn
[44]. An improved version based on the shortest augmenting
path technique [45] is currently more popular because it
achieves an O(n]) worst-case time complexity. Therefore,
the modal matching problem can be efficiently and
completely solved.
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Ficure 3: Illustration of the modal matching and alignment

procedure. Gray lines: distance metrics between each adjacent
mode. Black arrow lines: mode pairing with minimum total cost.

Figure 3 briefly illustrates the modal matching and align-
ment procedure. According to the modal matching results,
the precalculated natural frequencies and modal vectors are
aligned (reordered) successively for [=2, ---, n,. In order to
ensure numerical continuity, each aligned mode shape
vector should be adjusted to c;; - @;;, where the coefficient
¢;; is calculated by a signum function as

¢ =sign (@) 1@,), =1, m (12)

After modal matching and alignment, the set of aeroelas-
tic models established by Equation (5) have a coherent form
under all folding angles. Next, a method to construct coher-
ent time-domain models is given.

3.2. Coherent RFA Representation. The GAF matrices in
Equation (5) are expressed in the frequency domain. To
obtain the time-domain aeroelastic model, the frequency-
domain aerodynamic forces need to be converted to the
Laplace domain through the RFA technique. The RFA tech-
nique uses the tabulated GAF data at several discrete
reduced frequencies to fit a specific rational function of the
Laplace variable s. The most commonly used MS method
gives a general expression of RFA as [41]

Q(p)=A,+A,p+A,p* +D(pI -R) 'Ep, (13)

where p =sbp/U,, is the nondimensional Laplace variable
and Q is the combination of the following three GAF terms:

Qp) = [Qu() Quc(p) Quglp)]- (14)

Matrix R in Equation (13) is a diagonal matrix contain-
ing manually specified negative numbers called the aerody-
namic lag roots, and the other coefficient matrices are
solved by the nonlinear least-squares iterative procedure.
Although the fitting algorithm (irrespective of the way it is
implemented) gives an explicit RFA expression, the D and
E matrices in the lag term are not unique. Specifically, for
any nonsingular matrix T, the following equality always
holds:

D(pI-R)'E=DT(pI-T'RT) 'T'E.  (15)
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When building the parameterized system model, RFAs
are performed independently at each parameter point. The
nonuniqueness of the RFA expression brings inconsistency
between local aerodynamic models, which will lead to incor-
rect interpolation results. In fact, the right side of Equation
(15) contains all possible expressions. It can be further
proved that T"'RT =R if and only if T is a diagonal matrix.
Therefore, considering the prescribed matrix R, the uncer-
tainty of the RFA expression is limited to the case where T
is a diagonal matrix, and the nonuniqueness is manifested
in the arbitrary scaling of the column vectors of D and the
row vectors of E. Assuming that the matrix R is consistent
or changes continuously with the parameters, then a unique
scaling matrix T can be constructed according to the RFA
results under adjacent parameters so that the unique and
coherent RFA expression can be obtained.

Consider the case where the folding angle is the variable
parameter. For the two adjacent folding angles 0,_, and 6,
take the matrix D,_; at point [ - 1 as the standard reference,
and the diagonal matrix T; at point [ is constructed as
follows:

T, = diag (1 tut)s (16)
where 7, is the number of aerodynamic lag roots and the
diagonal element ¢;; is calculated as follows:

i1 ],

W - ,en,  (17)
], ’

. T
t;;=sign (di,l—ldi,l> )

where d;; | and d;; are the i-th column of matrices D, ; and
D,, respectively. After obtaining T, adjust the matrices D;
and E; according to Equation (15). The corresponding col-
umn vectors of the scaled matrix D; and the reference matrix
D,_, thus have the same 2-norm and consistent direction.

When the folding angle and Mach number are variable
parameters, the RFA data should be generated on the two-
dimensional parameter grid points. In this case, the process-
ing method for coherent RFA representation should be as
follows: first, fix the first Mach number and successively
adjust the coefficient matrices for the sequential folding
angles; then, fix each folding angle and successively adjust
the coefficient matrices for the sequential Mach numbers
in the same way.

After obtaining a set of coherent local RFAs, the state-
space representation of the LPV system can be generated
by combining Equation (13) with the aeroelastic equation
given in Equation (5), as shown below:

%= A(p)x+B(p)u+ B, (p)#,, (18)

y=C(p)x + D, (p)Wg, (19)

where p is the vector of scheduling parameters including the
folding angle 6. The state vector x contains modal displace-
ment vector § and its time derivative é, as well as the aug-
menting aerodynamic states introduced by the RFA. The
motion of the control surfaces is generally determined by

the actuator model, and the above state-space equation also
integrates the actuator equation of the state-space form [46]
so that the control input vector u represents the control sur-
face deflection commands, while the actual deflections in &
are incorporated into x as the augmenting states. The gust
input vector w, contains gust velocity w, and its time deriv-

ative w,. There are various standard methods for generating

gust disturbances [47]. Two types of gust models, the 1-cos
discrete gust and the Dryden continuous gust, are used in
the following time-domain simulations. The system output
vector y may include responses at the FEM nodes (monitor-
ing points) and/or internal loads (bending moment, etc.).
For more details about constructing the state-space matrices,
see Ref. [48].

Taking the fixed altitude flight as an example, the sched-
uling parameters in p thus consist only of the folding angle 0
and the flow speed U_,. Depending on the local modeling
approach, the LPV model shown in Equations (18) and
(19) is established by local LTI models on the two-
dimensional parameter grid. The methods to deal with
structural modes and RFA coefficients proposed in this
section successfully solved the possible inconsistencies in
the local models. Whether it is the change of the folding
angle or the flow speed, the local models are guaranteed to
be numerically continuous. In this way, by interpolating
the state-space matrices, the model at any point in the
parameter space can be quickly obtained, and the LPV sim-
ulation and control synthesis can also be performed
efficiently.

4. Receptance-Based Active Aeroelastic Control

In this section, the receptance method [33, 34] is applied to
design a parameterized controller for the folding wing,
which is expected to reduce the structural vibration and
additional loads induced by gust disturbances. This method
uses the receptance transfer function extracted from the
analysis model or the identified model to design the control-
ler and achieves the active vibration control through partial
pole placement. The receptance-based controller is theoreti-
cally solved under fixed parameters, and the control strategy
under variable parameters can be realized by interpolation of
the local controllers. Compared with the standard LPV con-
trol design such as gain-scheduled control [49, 50], interpo-
lation of the fixed point controllers is easy to implement, but
the system performance cannot be guaranteed when param-
eters change rapidly. However, under the assumption of
slow parameter variation, the interpolation approach can
avoid introducing the conservativeness involved in the
LPV approaches and thus obtain a better control effect than
the gain-scheduled control [51].

In order to avoid blindly selecting the sensor locations,
an additional step of optimal sensor placement is introduced
in the control design strategy. As will be seen below, this step
also avoids solving the ill-conditioned equations of the
receptance method.

4.1. Receptance-Based Control. The receptance-based con-
troller is more suitable to be derived using the frequency-



domain equation. Converting Equation (5) into the Laplace
domain, we obtain

(Sthh +5Cyp, + Ky, — qothh(S))E(S)

5 (20)
= (_5 th + qothc(S>)6<S) + d(S),
where d(s) € C™ denotes the gust disturbances. Generally,
the dynamic model of the actuators driving the control
surfaces is represented by a specific transfer function as

8(s) =Hc(s)u(s), (21)

where u(s) € C" denotes the actuator commands and 8(s)
€ C" stands for the actual deflections of the control sur-
faces. The output equation of the system is

¥($) = @E(s), (22)

where y(s) € C™ is the output vector and ®, € R is the
sensor modal matrix. Let G4 and G, € R**"s be the pro-
portional displacement and velocity output feedback gains
to be solved, respectively. The feedback control law can be
written as

u(s) = (sGy + Gy)y(s). (23)

Set the control inputs and external disturbances to be
zero and solve Equation (20) to obtain the eigenvalues A,
and eigenvectors w; of the open-loop system, expressed as
(A My, + A,Cp + Ky, — 4, Qi (A) )W, =0,

i=1,-,2m,.

(24)

Due to the nonlinearity of the Qy;, term, Equation (24)
does not express a typical quadratic eigenvalue problem.
The number of eigenvalues is generally not equal to twice
the number of the structural modes. Consider that Equa-
tion (24) is also the equation used in linear flutter analysis.
The classical p-k method only finds n, solutions (ignoring
the complex conjugate) of the equation under each
dynamic pressure, which is enough to reveal the governing
modes of the aeroelastic system [52]. This paper uses the
RFA method instead of the flutter analysis method to cal-
culate the open-loop eigenvalues (more accurate unsteady
aerodynamic forces), but only the 2n, eigenvalues closely
related to the structural motion are retained.

The target for partial pole placement is to assign a part of
closed-loop eigenvalues to the desired values y;, i=1,---m,
through the feedback gains, where the assigned eigenvalues
are distinct from all open-loop eigenvalues; meanwhile, the
rest of the closed-loop eigenvalues are unchanged, i.e., y; =
A, i=m+1,---,2n,. Substituting Equations (21)-(23) into
Equation (20), the assigned eigenvalues y, and eigenvectors
v; of the closed-loop system should satisfy the following
equation:

vi = H(p)P(u) (1Gy + Gg) @V, i=1,-0m,  (25)
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where H(y;) and P(y;) are the values of the receptance
transfer function H(s) and the control channel transfer func-
tion P(s), respectively, defined as

-1
H(s) = (SZMhh +5Cy, + Ky, — qothh(S)) >

(26)
2
P(S) = (_S th + qothc (S))Hc(s)

The following in this subsection describes how to solve
the feedback gains. Introduce the weighting parameter vec-
tor a; € C" as follows:

o= (UG, +Gy)Pyv, i=1,-,m. (27)

The value in vector a; indicates the degree of participa-
tion of each control input for controlling the i-th mode.
Equation (25) can therefore be written as

=1, m. (28)

When q, is given in advance, the closed-loop eigenvector
v; is determined by Equation (28), and the pole placement
problem is transformed into finding feedback gains satisfy-
ing Equation (27). In addition, the unchanged closed-loop
eigenvalues also satisfy the following condition:

P(1,)(AG, +Gy)Pw,; =0, i=m+1,---,2n,.  (29)

Since P(s) can take various forms, Equation (29) is mod-
ified to the following sufficient condition:

(AG, + Gy)®w; =0, i=m+1,-,2n,. (30)

Combining Equations (27) and (30), the following linear

equation is deduced to solve the feedback gain matrix:

GY=X, (31)
where
G= [GV Gd }’
X:[al oAy, 0o --- 0}’
_ Mlq)svl numq)svm Am+1(l)s"vm+l AZnh (I)s"VZn}1
D, T DV, DWW, (DSWZnh
(32)

In case the number of sensors 7, is greater than or equal
to the number of structural modes #y, the proper selection of
sensor location will make the sensor modal matrix ®; have a
full column rank. Thus, the coefficient matrix Y in Equation
(31) is also a full column rank, and the solution of the equa-
tion must exist. That is to say, in theory, the weighting
parameters a; can be arbitrarily chosen (appear in conjugate
pairs), and the real feedback gains that meet the pole place-
ment conditions can always be obtained by Equation (31).

According to the discussion in Ref. [53], the minimum
control effort can be achieved by choosing the closed-loop
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eigenvectors v; equal to the open-loop eigenvectors w;.
When the number of control surfaces n, is less than the
number of structural modes #;,, Equation (28) shows that
it is unlikely to find an a; that exactly meets this condition.
Therefore, in this study, the following formula is used to
approximately obtain the «; so that the closed-loop eigen-
vectors v; and the open-loop eigenvectors w; are as close as
possible.

i=1,---,m, (33)

1 1

a;= (LTL) 'LTw,

where L, is the value of the transfer function H(s)P(s) at
point ;.

4.2. Optimal Sensor Placement. The number and placement
of sensors are critical to determining the existence of control
gains. Based on the locations of FEM nodes where sensors
are placed, the sensor modal matrix @, in Equation (22) is
formed from the structure modal matrix ®,. Normally, it
is easy to select a satisfactory @, to meet the control require-
ments through trial and error. However, for the folding wing
model, the @, corresponding to a certain sensor layout var-
ies with the folding angle. A sensor layout suitable for one
fixed folding angle may not meet the control requirements
at other folding angles.

In order to solve the sensor placement problem of the
morphing structure, based on the effective independence
method proposed by Kammer [54], this paper generalizes
the independence distribution vector to a function form.
Then, the problem of optimal sensor placement is settled
by optimizing the modified distribution vector in an iterative
manner. The optimization strategy of the effective indepen-
dence method is to quantitatively evaluate all possible sensor
locations and iteratively eliminate insignificant locations to
obtain the final sensor layout. First, define the Fisher infor-
mation matrix Q, € R™™ as a performance index of the
sensor distribution as

Q=D D, (34)

Only if the information matrix has a relatively small con-
dition number, the problem of observing target structural
modes through the sensor outputs is well-conditioned, and
Equation (31) does not appear to be ill-conditioned, and
the numerical solution exists. Moreover, a larger value of
Q, means that the signal energy output by sensors is larger,
which is beneficial for improving the sensor noise immunity
and implementing active control. It is commonly suggested
to use the trace norm or determinant as an overall index of
Q,. In order to evaluate the contribution of each sensor indi-
vidually, the independence distribution vector e € R™ is
defined as the diagonal elements of the projection matrix
formulated by @, as shown below:

e, = diag [d)s (d)STd)S)_l(DE} . (35)

Kammer [54] pointed out that each element in ep, repre-
sents the fractional contribution of the corresponding sensor

location to the linear independence of modes in ®; so that
removing sensor locations with smaller independence con-
tributions can maintain the determinant of the information
matrix. Poston and Tolson [55] later demonstrated that the
i-th element ep,; of the vector ey, has the following explicit
expression:

_ det (Q,) — det (Qy)
€pi = det (Q)

i=1,-,n (36)

where Qg is the information matrix constructed after
removing the i-th row of ®,. From the above formula, it
can be seen that 0 <ep; < 1, and ep; equal to 0 indicates that
the determinant of the information matrix remains
unchanged after removing the corresponding sensor loca-
tion, and ep; equal to 1 indicates that the information matrix
is singular after removing the corresponding sensor location.
Generally, removing the sensor location with the smallest
independence distribution value will maximize the determi-
nant of the information matrix while reducing the number
of sensors.

In the folding wing model, @, is a function of the folding
angle 0. In order to apply the effective independence method
to the morphing structure, the independence distribution vec-
tor defined in Equation (35) should also generalize to the func-
tion ey (6). This paper adopts a harmonic mean fashion to
construct the mean value e}, of the function ey, (6) as an inte-
grated performance index for the sensor placement, where the
i-th element epy; is calculated as

O 1 o
eDizl_(emax_Omin)<J9 lei(e)de> s =1 ng

h (37)

where 0,,;, and 0, are the lower and upper bounds of the
folding angle range, respectively. Compared with the arith-
metic mean, the above formula is more biased toward larger
values in the function curve. This is because the independence
distribution close to 1 means that the corresponding sensor
location is of great significance; the above index ensures that
as long as the function e, (0) has a value close to 1, then its
mean value ep; is also close to 1. In practice, the structural
models are established at #, discrete folding angles, and the
definite integral in Equation (37) is approximated by a finite

sum as
-1
) , i=1,-n,  (38)

where ep,; represents the i-th element of the independence
distribution vector at the I-th folding angle. To ensure numer-
ical accuracy, it is recommended to increase the number of
modal matrices @, by interpolating the coherent local models.

The procedure for optimal sensor placement based on
the effective independence method is as follows: (1) select
an initial candidate set of sensor locations and construct

o 1l-epy

&1
EDizl_nt<Z
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FIGURE 5: The matched structural modes (a) and the MAC between every two adjacent folding angles (b).

independence distribution vectors at each folding angle; (2)
construct the integrated distribution vector according to
Equation (38); (3) delete the sensor location with the smal-
lest value in the integrated distribution vector and then
reconstruct it; and (4) repeat the above process, deleting
one location each time until the required number of sensors
is reached.

5. Numerical Results and Discussions

5.1. Validation of the Interpolation-Based Modeling. In this
subsection, the effectiveness of the developed interpolation-
based modeling method is validated, and the LPV baseline
model for control synthesis and response prediction is estab-
lished. As mentioned above, the procedure of interpolation-
based modeling includes two steps: the structure modal
matching and the treatment of the RFA coeflicient matrices.

In the simulation, a set of 61 local aeroelastic models are
generated according to fixed folding angles, ranging from
Odeg to 120 deg with 2 deg intervals. The initial aeroelastic
model shown in Equation (5) includes the structural matri-
ces and the GAF matrices, and the coherency of these matri-
ces cannot be guaranteed. To verify the proposed modal
matching method, orders of the first 6 structural modes at
each parameter point are randomly assigned, as shown in
Figure 4(a). The MAC value in Figure 4(b) reveals that the
mode shapes between adjacent folding angles have extremely
low linear correlations. Hence, all the system matrices in

140
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S
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E
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z
20
01 . . . . :
0 20 40 60 80 100 120

Folding angle (deg)

FIGURE 6: Variations of the first ten natural frequencies with the
folding angle.

Equation (5) exhibit discontinuities. After implementing
the modal matching algorithm described in Section 3.1, it
can be seen from Figure 5 that the scrambled structural
modes are successively aligned. Thus, the obtained coherent
structure modal matrices are continuously dependent on the
folding angle.

Figure 6 exhibits the evolution of the first ten mode
branches. It is clear that the structural modes are signifi-
cantly affected by the folding angle, and the proposed modal
matching algorithm exactly tracks each mode branch. Com-
plex mode crossing phenomena occur in the high-order
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modes. Even so, the algorithm still gives the correct match-
ing result.

In the following, retain the first 6 matched structural
modes and continue to construct the state-space aeroelastic
model of the folding wing. At the incompressible flow condi-
tion, the GAF matrices are computed at 16 reduced frequen-
cies in the range of 0 to 1.5. Then, the MS method is applied
to fit the GAF matrices to the RFA expression shown in
Equation (13). The normal RFA is performed independently
at each folding angle, and the aerodynamic lag roots
required in the MS method are obtained by the following
empirical formula:

SN2
1 .
R =-1.7k (n n 1) , i=1,-my, (39)

a

where the number of aerodynamic lag roots n, is set to 6 and
the maximum reduced frequency k,,, is 1.5. In the MS pro-
cedure, a constant initial matrix D and 300 iterations are
used for all parameter points.

After the normal RFA procedure is completed, the
coefficient matrices are adjusted to a coherent form
according to the method described in Section 3.2. All
results shown below use the matched structural modes,
and the verification work focuses on the influence of the
coherent and normal RFA representations on the model-
ing results. As shown in Figure 7, the directly computed
GAF data (solid lines) vary smoothly with the folding
angle. The normal RFA (open triangles) and the coherent
RFA (filled triangles) are in good agreement with the
directly computed GAF data. Although the normal RFA
gives accurate fitting results at scattered parameter points,
the coefficient matrices D and E obtained by normal RFA
have dramatic jumps as the parameter varies (see
Figure 8(a)), which makes the aeroelastic state-space inter-
polation impossible. By comparison, it can be concluded
from Figure 8(b) that the proposed method for coherent
RFA representation successfully adjusts the RFA coefficient
matrices to a coherent form without changing the fitting
results. The continuously varying system matrices pave
the way for state-space model interpolation.
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Figure 9 is the comparison of the frequency response
functions of the interpolated model and the exact model.
In the figure, the flight conditions are fixed at flow speed
of 30m/s and sea level, and the system model at 6 = 65deg
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is obtained by linear interpolation of the local models at 0
=64 deg and 0 =66deg. The system inputs are the deflec-
tions of the outboard and inboard control surfaces as well
as the vertical gust disturbance, and the outputs are the first
two modal displacements of the structure (numbered
according to the mode branches in Figure 6). It can be seen
that the coherent system matrices construct an accurate
interpolated model. However, for the incoherent system
matrices constructed by unprocessed RFA coefficient matri-
ces, the interpolated model here brings serious modeling
errors, as shown by red dashed lines in Figure 9.

Using the parameterized modeling approach proposed
in this paper, an aeroelastic LPV model with two scheduling
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FIGURE 15: Determinant of the information matrix varying with the
folding angle under different sensor layouts.

parameters is established as the baseline model for the sub-
sequent simulation and control implementation. Here, the
folding angle and the flow speed are taken as the scheduling
parameters. In order to generate the local models, the two-
dimensional parameter space is divided into regular grids,
in which the folding angle parameter is still in the range of
0deg to 120 deg with 2 deg intervals, and the flow speed is
in the range of 10m/s to 60m/s with 1m/s intervals.
Figure 10 shows the frequency response curves for varying
folding angles and flow speeds, in which the system input
and output are the vertical gust disturbance and the first
structure modal displacement, respectively.

5.2. Implementation of the Receptance-Based Control. The
controller is designed to work at subcritical conditions, so
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only parameters below the flutter speed need to be consid-
ered. The first step in control design is to obtain the eigen-
values and eigenvectors of the open-loop system. Since the
GAF matrices have been converted to the RFA representa-
tion, solving the characteristic equation of Equation (24) is
equivalent to solving the eigenvalues of the state-space
matrix A in Equation (18). Similar to the structure modal
data, the initial eigenvalues at discrete parameter points
may not have a coherent order. Obviously, the structure
modal matching algorithm in Section 3.1 is also applicable
to the aeroelastic systems, and it only needs to replace the
natural frequency w and the mode shape ¢ in Equation (9)
with the eigenvalue A and the eigenvector w of the aeroelas-
tic system. Through the modal matching procedure, the
eigenvalues that vary smoothly with the parameter can be
obtained. This is useful to compute a continuous parameter-
ized controller through uniform pole placement.

According to the number of structural modes, 6 pairs of
complex conjugate eigenvalues are calculated. Based on this,
the flutter characteristics of the folding wing within the fold-
ing angle range are also obtained. As an example for 6 = 90
deg, Figure 11 shows the root locus of the matched eigen-
values with respect to the flow speed. The flutter speed is
identified by the critical point at which the real part of an
eigenvalue trajectory changes from negative to positive. At
0 =90deg, the 2nd mode firstly becomes unstable, and the
corresponding flutter speed U;=45.1m/s. Figure 12 is a
contour map where the real part of the eigenvalues is equal
to zero on the two-dimensional parameter plane. In the
entire folding angle range, only the 2nd and 4th modes have
eigenvalues with nonnegative real parts. Combining the crit-
ical contour lines of these two modes, the flutter boundary
and the stable region in the parameter space can be obtained.

The sensor layout should be determined before calculat-
ing the control gains. In the current example, the necessary
condition for the existence of the receptance controller is
that the number of sensors is greater than or equal to 6.
Therefore, we intend to find 7 sensor locations that maxi-
mize the information matrix Q defined in Section 4.2. To
apply the effective independence method, the initial candi-

date set of sensor locations is selected as the normal direc-
tion of the structural nodes on the inboard and outboard
wings. The 7 optimal locations are iteratively retained from
388 initial locations. Figure 13 shows the final sensor layouts
obtained by the standard method (fixed configuration) and
the modified method (parameter-varying version).
Figure 13(a) shows the optimal locations at fixed configura-
tions for 0 =0deg and 6 =60deg, and Figure 13(b) shows
the optimal locations obtained by integrating all folding
angles.

The information matrices related to the above three sen-
sor layouts are compared and shown in Figures 14 and 15.
As shown in Figure 14, the sensor layout obtained at fixed
0 = 0 deg causes a large condition number of the information
matrix at 21.3 deg; the sensor layout obtained at fixed 6 = 60
deg also encounters the same problem at 104.3 deg. Either of
these two sensor layouts will lead to ill-conditioned solutions
of Equation (31), and the resulting control gains will pro-
duce high control effort or invalid control at certain folding
angles. As a comparison, the modified method proposed in
this paper provides an improved sensor layout, and the con-
dition number of the information matrix has a relatively
small value in the entire folding angle range. Figure 15 also
shows the determinant of the information matrix varying
with the folding angle. It can be seen that under fixed folding
angles of 0=0deg and 0=60deg, the sensor layouts
obtained by the standard method are optimal at the each
given folding angle, but it cannot guarantee performances
for other angles. The modified method does not produce
the maximum determinant at most folding angles, but the
obtained sensor layout achieves good comprehensive perfor-
mance in the entire folding angle range.

The next step in control design is to manually assign the
eigenvalues of the closed-loop system. The system response
induced by gust disturbances is dominated by low-
frequency modes. Therefore, the first 4 eigenvalues of the
open-loop system are intended to be assigned to specified
values, while the 5th and 6th eigenvalues remain unchanged.
The assigned closed-loop eigenvalues are specified by the
known open-loop eigenvalues plus the real and imaginary
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disturbance to the displacements of structural nodes.

part increments, so there are 8 increments that need to be
given at each parameter point. In the two-dimensional
parameter space, the vector A composed of the increments
of the open-loop eigenvalues is uniformly given by the fol-
lowing polynomial:

Alx,y) = Z Pijxiyj> (40)

i+j=0

where x and y are the normalized parameters of 0 and U,
p;; is the coefficient vector, and  is the degree of the polyno-

mial. The way of specifying the closed-loop eigenvalues by

an explicit expression can make the controller change
continuously with the parameters. Set n=3, and then all
undetermined coefficients constitute 80 free variables, and
these variables will determine the final control gains and
closed-loop models. The influence of pole placement on
disturbance rejection can be evaluated by calculating the H,
-norm or H_, -norm of the closed-loop system. Unfortu-
nately, analytically assigning poles to minimize the system
norm is still an open problem, so this study uses the optimi-
zation method to obtain the coefficients in Equation (40).
The optimization is implemented by using the Nelder-
Mead simplex algorithm [56], which is a direct search
method that does not use gradients. The objective function
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FiGure 18: Dynamic responses of the open and closed-loop systems to the 1-cos discrete gust (8 =0deg, U, = 15m/s).

is set as the average value of the H,-norm of all local closed-
loop systems within the flutter boundary.

According to the above steps, the control gains are calcu-
lated one by one at each design parameter point. Based on
the interpolation of the local controllers, a parameterized
gust alleviation controller for the folding wing is finally
established. Figure 16 compares the H,-norm distribution
of the open-loop and closed-loop systems in the parameter
space under the vertical gust disturbance. The figure uses
different colors to indicate the system norm. The H,
-norm of the open-loop system at the flutter boundary
approaches infinity, so only the gust alleviation results
within the flutter boundary are investigated. In general,
increasing the folding angle can passively reduce the influ-
ence of the vertical gust disturbance. After the active con-
trol system works, the response energy of the closed-loop
system is significantly reduced, and the controller shows
a powerful control capability within a wide parameter-
varying range.

Figure 17 shows the frequency responses of the open-
loop and closed-loop systems at different folding angles. In
each subfigure, the folding angle is fixed, and a series of
curves represent the frequency response amplitude at differ-
ent flow speeds from 10m/s to the flutter speed U;. The
open-loop and closed-loop frequency responses are repre-
sented by gray and colored curves, respectively. It can be
seen that changing the first 4 eigenvalues of the system can
effectively reduce the low-frequency responses. The first-

order bending vibration of the wing is greatly reduced by
the parameterized controller.

In order to further verify the controller performance, the
time-domain dynamic responses of the folding wing to gust
excitations are calculated. Figures 18 and 19 show the
dynamic responses of the folding wing to the 1-cos discrete
gust under two sets of simulation parameters. The frequency
of the 1-cos gust is set to 10Hz, and the maximum gust
velocity is 1 m/s. The simulation results show that the dis-
placement and wing-root bending moment of the folding
wing are significantly reduced due to the driving of the
inboard and outboard control surfaces. In the flight condi-
tion of 0 =0deg and U_, = 15m/s, the maximum value of
the wing-tip displacement at node 641 is reduced by
62.00%, while the maximum value of the wing-root bending
moment is reduced by 43.88%. In the condition of 6 = 90 deg
and U, =30 m/s, the maximum values of the displacement
and the bending moment are reduced by 79.99% and
60.34%, respectively. Table 1 lists the detailed data of the
open-loop and closed-loop responses at four different fold-
ing angles.

For the continuous gust control, Table 2 shows an over-
view of the folding wing responses to the Dryden gust, as
well as the statistical comparisons of the open-loop and
closed-loop responses at different folding angles. The scale
of the Dryden gust is set to 5m, and the root mean square
(RMS) value of the gust velocity is 0.5 m/s. The RMS values
of the wing-tip displacement, the wing-root bending
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FIGURE 19: Dynamic responses of the open and closed-loop systems to the 1-cos discrete gust (6 = 90 deg, U, = 30 m/s).

TaBLE 1: Maximum values of the wing-tip displacement (D,,), wing-root bending moment (M), and outboard flap deflection (§) in discrete

gust responses.

Maximal value of the variable

0 (deg) Variable U =15mls . Uco =30m/s .
Reduction of the Reduction of the
Open-loop Closed-loop . Open-loop Closed-loop .
maximal value maximal value
D, (mm) 35.21 13.38 62.00% 77.57 35.08 54.77%
0 M, (Nemm) 340.86 191.28 43.88% 731.16 618.80 15.37%
0 (deg) — 14.62 — — 12.18 —
D, (mm) 27.00 7.99 70.40% Inf. 12.21 —
50 M, (Nemm) 292.28 117.68 59.74% Inf. 294.88 —
d (deg) — 10.98 — — 9.21 —
D,, (mm) 16.57 3.11 81.21% 28.24 5.65 79.99%
90 M, (Nemm) 205.04 48.23 76.48% 338.76 134.35 60.34%
8 (deg) - 11.31 — - 6.86 -
D, (mm) 11.82 2.88 75.65% 19.26 4.79 75.15%
120 M, (Nemm) 125.75 14.93 88.12% 199.03 19.75 90.08%
8 (deg) - 8.73 — — 4.66 —

moment, and the outboard control surface deflection are
listed in Table 2.

Through the fixed parameter simulations, it is clearly
seen that the controller is valid at all parameter points and
has good alleviation effects in both the discrete and continu-
ous gusts. Next, the time-varying system simulation and
control for the folding wing system are performed. As shown

in Figure 20, during the simulation time of 60 seconds, both
the folding angle and the flow speed change slowly and uni-
formly, where the folding angle changes from 0deg to
120 deg and the flow speed changes from 10m/s to 30 m/s.
The time-varying system simulation shows that the struc-
tural vibration and additional loads are alleviated in each
time period. In conclusion, the above results verify that the
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TaBLE 2: RMS values of the wing-tip displacement (D,,), wing-root bending moment (M, ), and outboard flap deflection () in continuous

gust responses.

RMS value of the variable

0 (deg)  Variable U, =15m/s U, =30m/s
Open-loop Closed-loop Reduction of the RMS value Open-loop Closed-loop Reduction of the RMS value
D, (mm) 22.47 5.90 73.75% 67.73 16.67 75.39%
0 M, (Nemm) 272.53 111.24 59.18% 634.32 303.91 52.09%
8 (deg) — 5.82 — — 477 —
D, (mm) 17.01 3.95 76.80% Inf. 7.14 —
50 M, (Nemm) 217.84 67.33 69.09% Inf. 160.25 —
d (deg) — 4.18 — — 3.94 —
D, (mm) 9.60 1.50 84.33% 15.43 2.44 84.18%
90 M, (Nemm) 125.33 36.05 71.24% 209.29 114.84 45.13%
8 (deg) — 4.80 — — 4.02 —
D, (mm) 5.72 1.23 78.53% 9.29 3.01 67.56%
120 M, (Nemm) 58.12 6.20 89.33% 102.92 10.04 90.25%
8 (deg) — 3.34 — — 2.00 —

Displacement at node 641
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F1GURE 20: Dynamic responses of the open and closed-loop systems to continuous gust under the time-varying folding angle and flow speed.

proposed parameterized controller is valid for a wide range
of parameters. Under the assumption of slow parameter var-
iation, extending the receptance method to the parameter-
varying system is able to design a reliable and effective gust
alleviation controller.

6. Conclusions

To efficiently investigate the aeroelasticity and control of a
folding wing, this paper presents an interpolation-based
modeling strategy for parameterized aeroelastic systems.
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The key steps involved are the structure modal matching
and the manipulation of the RFA coeflicient matrices. The
main advantage of the proposed method is that the coherent
local models are obtained before constructing the aeroelastic
state-space matrices, which makes the coherent state-space
representation much easier. Based on the developed model-
ing strategy, the LPV model of the folding wing system is
constructed within the local modeling framework. Numeri-
cal examples demonstrate that the interpolation of incoher-
ent local models brings serious modeling errors, while the
proposed coherent representation method gives accurate
modeling results. Next, the aeroelastic control for the folding
wing under various flight conditions and structural configu-
rations is studied. For this purpose, the original receptance-
based control method for fixed configuration is extended to
the parameter-varying system, and a modified version of the
effective independence method is derived to select an opti-
mal sensor layout suitable for all folding angles. The simula-
tion results show that the designed parameterized controller
for gust alleviation achieves satisfactory closed-loop perfor-
mance in the given parameter space.
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The major advantage of the passive multiple-target tracking is that the sonars do not emit signals and thus they can remain covert,
which will reduce the risk of being attacked. However, the nonlinearity of the passive Doppler and bearing measurements, the
range unobservability problem, and the measurement to target data association uncertainty make the passive multiple-target
tracking problem challenging. To deal with the target to measurement data association uncertainty problem from multiple
sensors, this paper proposed a batch recursive extended Rauch-Tung-Striebel smoother- (RTSS-) based probabilistic multiple
hypothesis tracker (PMHT) algorithm, which can effectively handle a large number of passive measurements including clutters.
The recursive extended RTSS which consists of a forward filter and a backward smoothing is used to deal with the nonlinear
Doppler and bearing measurements. The target range unobservability problem is avoided due to using multiple passive
sensors. The simulation results show that the proposed algorithm works well in a passive multiple-target tracking system under
dense clutter environment, and its computing cost is low.

1. Introduction

Passive multiple-target tracking has gained more and more
attention in the fields of military and civilian, such as naviga-
tion, monitoring and early warning, and salvage [1-3]. How
to discover targets timely and to track targets accurately
becomes one of the hot topics. The aim of the multiple-
target tracking is to estimate the expected targets’ states,
such as position, velocity, and acceleration, from the linear
or nonlinear measurements [4-6]. The advantage of the pas-
sive target tracking is that the sonar can remain covert,
which will reduce the risk of being attacked. The challenges
for underwater passive multiple-target tracking include that
the measurements are usually nonlinear, the target range
may be unobservable, and the measurement to target data
association is complex [5, 6].

In general, the passive measurements include bearing,
Doppler, and bearing rate. So the passive multiple-target
tracking is a typically nonlinear tracking problem [7-15].
One method to handle the nonlinear measurements is the

pseudo linearization estimation (PLE) algorithm [16-18].
The other approach is the recursive nonlinear Bayesian filter
and smoother, such as the extended Kalman filter (EKF)
[19-22], the unscented Kalman filter (UKF) [23, 24], the
cubature Kalman filter (CKF) [11, 12], and the particle filter
(PF) [16]. EKF locally linearizes the targets’ state and mea-
surement equations using the first-order Taylor series
expansion of the nonlinear transformations around the pre-
dicted target state. The merit of the EKF is that it is very easy
to understand and apply to target tracking problem duo to
its linear approximations to the nonlinear system or mea-
surement function, and its computational cost is lower than
that of other nonlinear filter, such as UKF and PF. The dis-
advantage of the EKF is that the tracking performance may
be not good if the system model is seriously nonlinear or
non-Gaussian.

The UKF uses a deterministic sampling method to cap-
ture targets’ posterior distribution of mean and covariance
based on the unscented transform. So the UKF has better
tracking capability than the EKF to some extent, but its
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FIGURre 1: Multiple-target tracking scenario using Doppler and
bearing measurement.

computational cost is larger than that of the EKF. The PF
algorithm forms the Monte Carlo approximation to the
solution of the Bayesian filter. It uses a set of particle samples
to approximate the target distribution. The PF is used in the
cases that the tracking system is highly nonlinear or non-
Gaussian. The Bayesian filters only estimate the state of the
targets from the history of measurements. On the contrary,
the Bayesian smoother can use the forthcoming measure-
ments to estimate the current state of targets. Corresponding
to the Bayesian filter, the Bayesian smoother includes Rauch-
Tung-Striebel smoother (RTSS), extended RTSS, unscented
RTSS, and particle smoother [25].

The other challenge for passive sonar multiple-target
tracking is the complexity and particularity of the underwa-
ter environment, which is characterized by many of false
alarms caused by reverberation and multipath effect [3, 4].
Furthermore, the low target detection will cause tracking
uncertainty in target location. All of those will cause a data
association uncertainty problem. To handle the data associ-
ation uncertainty problem, some algorithms are proposed,
such as the multiple hypothesis trackers (MHT) [26], the
joint PDA filter (JPDA) [27], the probabilistic MHT
(PMHT) [28, 29], the random finite set framework-based
probability hypothesis density (PHD) [30], the cardinalized
PHD (CPHD) [31-33], and multi-Bernoulli filter (MBF).
The MHT makes all the data association hypotheses proba-
bility optimal. The JPDA makes multiple hypotheses into a
single hypothesis and performs the Kalman update with
composite measurements. The PMHT is based on the expec-
tation maximization (EM), which optimizes the multiple-
target states’ maximum a posteriori (MAP) estimation
[34-36]. Different from the data association algorithms, the
PHD, CPHD, and MBF are based on the random finite set
theory, which makes all the measurements a measurement
set and all the targets a target set.

The information entropy theories are also used to esti-
mate the target states. The fuzzy c-means clustering method
based on maximum information entropy and the probabilis-
tic data association filter (PDA) is proposed in [37], which
uses a value optimized by the maximum information
entropy to represent the measurement to target association

International Journal of Aerospace Engineering

TaBLE 1: Batch recursive multiple-sensor PMHT.

1. Initialization

Initialize the target states X,,(0]0) and P,,(0]0).

2. Set the EM iteration n = 1. Calculate the target state prediction
xﬁs)(t |t —1) and state covariance Pﬁ::)(t [t-1).

3. Calculate the posterior association probabilities wﬁ,:l,),(t, s) in
(15).

4. Evaluate the synthetic Doppler and bearing measurements z,,
(t) and covariance ﬁm’s(t) in (20) and (21).

5. Evaluate the innovation covariance and filter gain for each
target and passive sensor.

6. Update the target state x\) (t|t) and state prediction covariance

Py )(t | t) for each target m according to the extended RTSS.
7. Forward n = n + 1. Repeat the EM algorithm of steps 3 to 6 until
the iteration convergent.

probability. The multiple-target tracking problem is also
solved by the maximum entropy intuitionistic fuzzy data
association [38], cross entropy [39], maximum fuzzy
entropy-based Gaussian clustering algorithm [40], entropy
distribution and game theory based on the probability
hypothesis density (PHD) method [41], maximum entropy
fuzzy based on the fire-fly and PF [42], and the distributed
cross entropy-based §-generalized labelled multi-Bernoulli
filter [43].

As for the target range unobservability problem, the tar-
get range is observable from bearing and Doppler measure-
ments if and only if the bearings are not constant [44, 45].
So in order to avoid the range unobservability problem, this
paper uses multiple passive sensors to track targets. In addi-
tion, the target tracking accuracy of using multiple sensors is
better than that of the single sensor generally.

The most commonly used passive measurement is bear-
ing. In this paper, in order to improve the multiple targets’
range observability and tracking performance, we introduce
the nonlinear Doppler measurement and use multiple sen-
sors. The extended RTSS method is used to deal with the
nonlinear Doppler and bearing measurements. The batch
recursive multiple-sensor PMHT algorithm is used to handle
the measurement to target data association complexity
problem.

The remainder of this paper is as follows. The passive
multiple-target tracking system model and measurement
model are given in Section 2. Section 3 develops the
multiple-sensor PMHT algorithm which is suitable for
multiple-target tracking under dense clutter environment.
The simulation result is given in Section 4. At last, a sum-
mary is given in Section 5.

2. System Model and Measurement Model

We consider the passive multiple-target tracking problem in
a two-dimensional space.

2.1. Tracking System Model. Assume there are M targets in the
tracking space. The m™(m = 1,2,---,M) target’s state is x,,,(t)

= (xm(t)’ xm(t)’ym(t)’ym(t))T’ Where xm(t) and ym(t) are
the location of target m in the x and y coordinate, respectively,
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FIGURE 2: Sequential fusion implementation of multiple sensors.

TaBLE 2: The five targets’ initial position and velocity.

Target Position Velocity

1 (800, 2000) m (-22, -20) m/s
2 (1500, 1500) m (20, -30) m/s
3 (500, -500) m (23, 17) m/s
4 (0,0) m (-13, -27) m/s
5 (500, -1000) m (13, -20) m/s

and %,,(t) and y, () are the velocity of target m. Assume the
tracking time is from t=1 to t=N. The overview of the
multiple-target tracking using Doppler and bearing measure-
ments is shown in Figure 1.

Assume that all the targets move according to the follow-
ing constant velocity (CV) model or constant acceleration
(CA) model [46].

Xm(t)zFXm(t_l)+um(t)’ (1)
where u,,(¢) is the system process noise which is assumed as
Gaussian white noise. F is the system state transition matrix.
For the CV and CA models, F is denoted as F., and F,,
respectively, and

1 At 0 0
01 0 0
ch: > (2)
0 0 1 At
0 0 0 1
(1 At 0542 0 0 0 ]
0 1 At 0 0 0
0 0 1 0 0 0
Fey = .| (3)
0 0 0 1 At 0.5At
0 0 0 0 1 At
[0 0 0 0 0 1|

where At is the sampling interval.

The process noise covariance matrices for the CV and
CA models are denoted as Q¢y and Qc,, respectively, which
are given by

[ Attt AP i
- 0 0
4 2
A,
— AP0 0
QCV:(SZ > (4)
P 0 o At AP
4 2
AP?
0 0 — Af?
AP At AP i
- —— 0 0 0
20 8 6
At AP AP
- 0 0 0
8 3 2
AP A
- 5 At 0 0 0
Qca =96, ) (5)
’ 0 o o AP AP AP
20 8 6
0 0 0 At AP AP
8 3 2
AP AP
0 0 0o — —— At
L 6 2 i

where 812, is the process noise intensity.

2.2. Measurement Model for Multiple Sensors. Assume there
are S passive sensors in the target tracking space, and the s
sensor’s states is x,(¢) = (x,(t), x,(t), y,(t), 7,(t))", in which
x,(t) and y,(t) are the location of the sensor s and x(t)
and y (t) are the velocity of passive sensor s.

The Doppler and bearing measurements are nonlinear
with respect to targets’ states and sensors’ states, which are
given by

(6)

zm,s(t) = hm,s(t) + wm,s(t)’



in which w,, (t) is the measurement noise with a covariance
matrix R, ((t).
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The Doppler and bearing measurement function h,, ((t)
is given by

where ¢ is the sound speed in water, f, is targets’ radiation
frequency, and 6,, () is bearing from target m and sensor
s.

3. Multiple-Sensor PMHT

3.1. PMHT for Multiple Sensors. The following notations are
used in this section.

S is the total number of passive observers.

M is the total number of targets.

n, is the number of measurements.

T is the total number of tracking time.

X(t) = {x,,,(t)} is the set of target states at time .

Z(t) = {z,,(t)} is the set of measurements at time ¢.

K(t) = {k,,(t)} is the set of measurement-target assign-
ments at time ¢.

X ={X(t)} is the set of the target state for time 1,2, ---, T.

Z={Z(t)} is the set of measurements for time 1,2, ---, T.

K = {K(#)} is the set of measurement-target assignments
for time 1,2, -+, T.

The PMHT is a Bayesian framework-based batch recur-
sive algorithm, which obtains the maximum a posteriori
estimation of the target states based on the expectation max-
imization (EM) method [47].

Let k, (t) = m indicate that measurement r from sensor s
at time ¢ is associated with target m. Assume the measure-
ment to target assignment is independent from each other.

Define the prior probability of the " measurement from
the s sensor and m™ target as

p(kis(t) =m) =, (1). (8)

The MAP estimate of X is
XMAP =arg rr)l(axE{log (p(X1Z))}. (9)

In order to calculate the MAP, define the following aux-
iliary function as

Q(X(n+1) ;X(n)) =J log (p(X<"“),K | Z))
K

(10)
p (K | X", Z) dK,
where 7 is the number of EM iteration.
The goal is to maximize the auxiliary function over X'

using an initialized target state X(*). In each EM iteration step,
the goal of the PMHT is to solve the following equation.

n+1)

S N
pcizx) =PRSS T T wites. (9

From (12), (13), and (14), the posterior association proba-
bility is

wi) (8 5) 2 (K (1) 1%, (1), 2, (1))
T[mN{zr,s(t) ;im,s(t)’ Rm,s(t)} (15)
z]r:[:lnmN{zr,s(t) ;2m,s(t)’ Rm,s(t)}

in which

According to the conditional probabilistic theory,

P(KX,Z)

PRXIZ =)

(17)

Substituting equation (17) into equation (10), the defined
auxiliary function is calculated as
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FIGURE 3: The tracking scenario of multiple targets, given two passive static sensors, true target trajectories, and estimated tracks.

Q(X(”*” ;X<”>> = J log (p (K X, Z))
K

z) dK — log p(Z).

The log p(Z) has no effect with regard to maximizing the
(18 auxiliary function Q(X"*V ;X)) in (18). So it can be
removed from (18).

(n)
p (K | X So the auxiliary function is given by

Qp
XO) = 3 Y 2 Y o8 (1,9)
+log (Hi\::lp(xg’:‘“)(l))Hfzzp(xgsﬂ()|X”+1 t—l)) DD Zlelogp(z,(t)lx%’)(t))w’

Qx

Q( (n+1)

3

In order to maximize the auxiliary function, we compute
its derivative and set the derivative to zero.

It turns out that the X("*! is given by applying the
extended RTSS method, in which the synthetic measure-

ment z,, (t) and R, (t) are calculated by

Srawlih (6, 97,,(t) )

z,(t) =
Z"‘lw,(ﬂ),(t 5)

R ms(t)

i -

The implementation of the batch recursive multiple-
sensor extended RTSS-based PMHT is depicted in Table 1.

3.2. Recursive Extended RTSS. The recursive extended RTSS
is a linearized RTS smoother, which is based on analogous
approximation to the EKF. It is a Gaussian approximation to
the Bayesian smoother for the nonlinear target state and mea-
surement model. The extended RTSS firstly performs the
extended Kalman filter; then, a Kalman smoother is applied.
That is, the extended RTSS consists of a forward filter and a
backward smoother, which is summarized as follows:

Forward filter:

Fori=1,---, T,

Time update

%, (t1t-1) =K, (t-1|t-1), (22)

P,(t|t-1)=FP, (t-1|t-1)F' +Q,(¢). (23)



Measurement update

im(t | t) = im(t It— 1) + Gm,s(t)[zm,s(t) _hms(t |t 1)]’
(24)
Pm(t | t) = (I - Gm,s(t)Hm,s(t)) 'Pm(t |t- 1)
’ (I - Gm,s(t)Hm,s(t))T + Gm,s(t)Rm,s(t)Grj;l,s<t)’
(25)
where the filter gain is
G,5(1) = (f|t ) (1) [ ()Pm(”t—l)) (26)
H, ( (0]
oh,,(t)
Honel?) 0X,,,(1) | (H)=%,,(tIt-1) @7)
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Fori=T-1,---,1,
X,(t|T)= xEtlt)+C (DX, (t+1]T) (28)
—x,(t+1]1)],
Pm(tlT):Pm(tlt)+Cm(t)[TPm(t+l|T) (29)
=P, (t+1]¢)]C, (1),
where
C,(t)=P,(tIF'P(t+1]t). (30)

For the Doppler and bearing measurement, the measure-
ment Jacobian matrix is given by

_ahm,s(t) ahm,s(t) ahm,s<t) ahm,s(t)
H,,(t) = ; -
[y,,(t) = y,(t x,, (1) — x,(t
20 . al8) 508 . a1
0 fO[xm(t) xs(t)] 0 _fob)m(t) ys( )]
L cr cr
where r= \/(xm(t) —x, (1) + (0, (1) - 3, (D). ms(t10)= (1= G, (t)Hms(t)) P, i(t]1)
. , , (1= Gy (OH,,, (1)) (33)
3.3. Data Fusion for Multiple Sensors. For the tracking prob-
lem using multiple sensors, we need to fuse the target and + Gm,s( JR,,(1)G,, ms(0):
measurement information from multiple sensors. The most . .
used data fusion methods are parallel fusion and sequential where G, (¢) is the filter gain, and
fusion [48]. ~ R
In this paper, we use the sequential data fusion for mul- Ko (E18) =X, (E1E=1), P, o (E] 1) =Py (£ =1), (34)
tiple sensors which updates the target state and covariance
by each sensor sequentially. The multiple sensors deal with X,(t1t)=%x,5(t1t),P,(t|t)=P,s(t|t). (35)

the measurements one after another with an intermediate
target state and covariance at one time.

Let X, (t]t) and P, (t|t) denote the target state esti-
mation and corresponding covariance processed by the sen-
sor s. The Doppler and bearing measurements from the first
passive sensor are used to calculate the first intermediate tar-

get state x< 1(t]t) and covariance P (t | ) for each of the
targets usmg a single sensor filter. Then, the measurements
from the next passive sensor are used to update the interme-
diate target state and covariance as follows:

Ry (E11) = Ry (E11) + G ()[2,,5(F) = hy (£18)], (32)

m,s—1

The sequential fusion implementation of multiple sen-
sors is shown in Figure 2.

4. Simulation

Assume the targets move in the two-dimensional space, and
there are two static passive sensors. The two passive sensors
deal with Doppler and measurements from targets and clut-
ter. The two passive sensors located at (0, -3500) m and (0,
-5500) m, respectively.

Assume that the clutter number is a Poisson distribution,
and they are uniformly distributed in the Doppler and bear-
ing measurement space. The average number of clutter in
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FIGURE 5: Doppler measurements for two static passive sensors: (a) the true Doppler measurements without clutter; (b) synthetic Doppler

measurements with clutter.

each sampling scan is 20 in the Doppler and bearing mea-
surements domain. The target detection probability is the
same for all targets; here, we set it to 0.8. The tracking time
is 160 s with a sampling interval 1s. The Monte Carlo run is
200. The process noise intensity is 1 m. The Doppler mea-
surement noise variance is 1 Hz, and the bearing noise vari-
ance is 0.8°.

4.1. Case of the CV Model. The five targets’ initial position
and velocity for the CV model are given in Table 2.

For the CV model, the simulated initial position p and
velocity v are generated from the position p, and velocity
v, of ground truth with an estimation error such that p=
P, +¢€ and v=v, +e,, where ¢, =30m and e, =2m/s.

The tracking scenario of true target trajectories and
PMHT-estimated trajectories for the CV model is shown
in Figure 3. The true Doppler and measurements for two
static passive sensors without clutter and the PMHT syn-
thetic Doppler and bearing measurements under dense clut-
ter are given in Figures 4 and 5, respectively.
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FiGUure 7: The velocity RMSE versus time scans of five targets.

In Figure 3, the extended RTSS-based PMHT algorithm
can track all the five targets effectively; even if the target 1
and target 4 tracks are away from the true trajectory, the
proposed algorithm can get the true target track after several
time scans in the middle tracking time scan.

As seen in Figures 4 and 5, the density of Doppler and
bearing measurement from clutter is high, and the synthetic
Doppler and bearing measurement of the proposed algo-
rithm broadly consists of the true Doppler and bearing mea-
surements without clutter, which means that the proposed
algorithm has good declutter ability.

The position and velocity RMSE of the five targets are
given in Figures 6 and 7. Accordingly, the average position
and velocity RMSE are shown in Tables 3 and 4. As shown
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TaBLE 3: The average position RMSE of five targets.

Targets 1 2 3 4 5
RMSE (m) 34.94 9.93 23.71 20.23 13.25

TaBLE 4: The average velocity RMSE of five targets.

Targets 1 2 3 4 5

RMSE (m/s) 2.116 0.991 1.216 1.002 0.590
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FIGURE 8: The average NEES versus time scans for five targets.

in Figures 6 and 7, the position RMSE and velocity RMSE
for target 1 are increasing in the middle sampling scans,
and as time goes on, the RMSE is decreased to a low lever,
which is similar to other targets. This also can be seen from
Tables 3 and 4. The average position and velocity RMSE is
small which can meet the tracking accuracy requirement.

This paper uses the average normalized estimation error
squared (ANEES) to evaluate the consistency of the pro-
posed algorithm. For one target, the ANEES is defined as fol-
lows:

1 N,
ANEES(f) =

m =1

(36)

where N, is Monte Carlo runs, x'(¢) is the true target state,
%/(t) is the estimated target state, and P(¢) is the target state
covariance.

The ANEES for fives targets is shown in Figure 8. As can
be seen in Figure 8, the consistency of the proposed algo-
rithm is good.

4.2. Case of the CA Model. The four targets’ initial position,
velocity, and acceleration for the CA model are given in
Table 5.
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TaBLE 5: The five targets’ initial position and velocity.

Target Position Velocity Acceleration
1 (800, 2000) m (-22, -20) m/s (0.3, 0) m/s*
2 (1500, 1500) m (20, -30) m/s (0, -0.3) m/s’
3 (500, -500) m (23, 17) m/s (0.4, 0.4) m/s>
4 (0,0) m (-13,27) m/s (0.1, 0.1) m/s’
2000
Target 1
1000
0| Target3Target
-1000—
E 2000 Targe
>~
-3000—
*
-4000—
-5000—
*
6000 ,

T T T T 1
-2000 0 2000 4000 6000 8000 10000
x/m

True target
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FiGure 9: The tracking scenario of multiple targets, given two
passive static sensors, CA model, true target trajectories, and
estimated tracks.
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FiGure 10: The position RMSE for four targets (CA model).

For the CA model, the simulated initial position p, veloc-
ity v, and acceleration a are generated from the position p,,
velocity v,, and acceleration a,, of ground truth with an esti-
mation error such that p=p,+e;, v=v,+e,,anda=a, +
e;, where e, =30m, e, =2m/s, and e; = 0.5 m/s".
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FiGure 11: The velocity RMSE for four targets (CA model).

The tracking scenario of the CA model for target true
trajectories and the estimated tracks is shown in Figure 9.
Similar to the CV model, the estimated tracks are consistent
with the true targets’ trajectories.

The position RMSE and velocity RMSE for the CA
model are shown in Figures 10 and 11. As shown in
Figures 10 and 11, the position RMSE and velocity RMSE
for target 3 are increasing in the middle sampling scans,
and as time goes on, the RMSE is decreased to a low lever.
The average position and velocity RMSE for the CA model
is small which can meet the tracking accuracy requirement.

5. Conclusion

The major advantage of the passive sonars multiple-target
tracking is that the sonars do not emit signals, and thus they
can remain covert, which will reduce the risk of being
attacked. But there are also challenges. Firstly, the Doppler
and bearing measurements are nonlinear which makes the
multiple-target tracking difficult. Secondly, the target states
may be unobservable. Thirdly, the underwater environment
is with dense clutter which will cause the measurement to
target data association uncertainty problem. To deal with
those problems, this paper proposed the extended RTSS-
based batch PMHT method for multiple sensors and applied
it to the passive multiple-sensor tracking system under dense
clutter environment. This paper uses the extended RTSS
algorithm to handle the nonlinear Doppler and bearing
measurements. Multiple passive sonars are used to avoid
the target state range unobservable problem. The multiple-
sensor batch PMHT is used to deal with the data association
uncertainty problem under dense clutter. The experiment
results demonstrated that the proposed extended RTSS-
based multiple-sensor PMHT algorithm can track multiple
targets efficiently in the dense clutter environment, and the
computing time is low.
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Periodic cruise has the potential to improve the fuel-saving efficiency of hypersonic cruise vehicles but is difficult to optimize. In
this paper, hypersonic periodic cruise trajectory is analyzed theoretically and optimized by an improved Particle Swarm
Optimization algorithm. Firstly, through theoretical analysis, it is determined that the optimal throttle curve can be
parameterized as a switching function. Considering the optimization direction of algorithm, a new penalty function for the
constraints of periodic cruise is proposed. Then, PSO algorithm is improved and applied in periodic cruise trajectory
optimization. Numerical results demonstrate that optimized periodic cruise trajectory costs less fuel compared with steady-
state cruise trajectory, and without computing gradient information, the proposed method is also robust. Finally, the fuel-
saving mechanism of periodic cruise is explored by comparing with steady-state cruise, which reveals that periodic cruise

trajectory has higher impulse and lift-drag ratio, but lower mechanical energy loss rate.

1. Introduction

Hypersonic vehicle has a series of advantages and is attrac-
tive to researchers all over the world [1-3]. In hypersonic
flight, in order to satisfy multifarious constraints and reduce
fuel consumption at the same time, trajectory design is nec-
essary and significant [4, 5].

As far as hypersonic cruise vehicle is concerned, the
whole trajectory of is generally divided into ascending stage,
cruising stage, and gliding stage [6]. To carry out different
missions in different stages, the flight modes of hypersonic
vehicle are also quite different, which has been widely stud-
ied [7-11]. Generally speaking, the cruising stage accounts
for a large proportion in the whole trajectory, and it decides
the flight range to a great extent. To make the flight range
longer, improving the fuel efficiency is an effective method
and finding the cruise trajectory with higher fuel efficiency
has been the focus of many researchers [12].

In cruising stage, there are two main cruise modes: steady-
state cruise and periodic cruise. Steady-state cruise means that
aircraft cruises at a constant altitude and velocity [13]. Thus,
steady-state cruise trajectory has only two degree-of-freedoms

(DOF) and is relatively easy to optimize [14]. However, it has
been demonstrated that steady-state cruise trajectory is not
the optimal in reducing fuel consumption [15]. Theoretically,
the optimal trajectory is a curve with infinite DOF, and as a
Two-Point Boundary Value Problem (TPBVP), it is quite diffi-
cult to be solved [16]. Therefore, to simplify the problem, peri-
odic cruise was raised by dividing the whole cruise trajectory
into a few phases. During periodic cruise, the curves of altitude
and velocity approximate a form of periodic function. And tra-
jectories in neighboring periods are nearly identical. At the end
of a cycle, flight states are the same as the initial states [17].

In the analysis of hypersonic periodic cruise trajectory,
angles of attack and throttle are control variables, which
are also functions about time and need to be determined to
minimize the objective, while these two variables are nonlin-
ear and discontinuous sometimes, which increases the diffi-
culty of obtaining the optimal solution [18]. From last
century, a few theoretic analysis methods for trajectory
design have been proposed [19, 20], but simplification and
approximation methods were widely adopted in these analy-
sis; otherwise, it was difficult to carry out because of the
complexity of hypersonic flight. With the development of
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computational science and intelligent algorithm, many opti-
mization methods have been proposed and applied in the
study of aerospace [21-23]. In recent years, evolution-
based algorithms and pseudo-spectral method are widely
applied in trajectory optimization [24-28], and it is demon-
strated that optimization method is effective to solve trajec-
tory optimization problems [29, 30].

Based on optimization methods, many researches about
periodic cruise trajectory have been carried out. Kang et al.
[31] studied the optimal periodic cruise trajectory by com-
bining genetic algorithm and direct shooting method; then,
a method of two-level optimization was developed to deal
with the parameters of initial state in the outer loop and
the control variables in the inner loop, respectively. Chen
et al. [32] divided periodic cruise trajectory into a boost
phase where engine was working and a coasting phase where
engine was closed. Then, different constraints were pro-
posed, and gradients of the cost were determined numeri-
cally. OTIS (Optimal Trajectories Implicit Simulation) was
also applied in the problem. In [33], periodic cruise trajec-
tory was divided into four parts, and different constraints
were added separately in different parts. The trajectories in
the four parts were optimized by GPOPS (Gauss Pseudo-
spectral OPtimization Software) and fitted into a harmonic
curve; then, the whole trajectory was obtained. Gao et al.
[17] regarded the highest point of periodic cruise trajectory
as the starting point and assumed that the curve of altitude
was approximately a cosine curve which was regarded as a
path constraint; then, the optimal control problem was
solved by GPOPS. In [18], trajectories in accelerating phase
and gliding phase were optimized separately; then, periodic
cruise trajectory with less fuel consumed was obtained.

However, most of the optimization methods proposed
for periodic cruise are based on gradient-based algorithm
or pseudo-spectral method, which are sensitive to the initial
guess value. If the initial guess is not suitable, the optimal
solution may be missed. On the contrary, evolutionary opti-
mization method does not need initial guess because the ini-
tial population is generated randomly, and it has more
advantages in global search ability [34]. Furthermore, the
derivative information is not required, which means that
the difficulty to construct Jacobian and Hessian matrix can
be avoided [35]. So far, there are few researches about the
direct application of evolutionary method in the optimiza-
tion of periodic cruise trajectory without combined with
gradient-based algorithm or pseudo-spectral method. There-
fore, this paper tries to directly apply evolutionary optimiza-
tion method in periodic cruise trajectory design, which can
optimize the trajectory robustly without initial guess or
derivative information computed.

In this paper, firstly, theoretical analysis for periodic
cruise is carried out, and it is determined that the optimal
throttle curve is a switching function; then, the time when
the engine switches on is regarded as an optimization vari-
able. To deal with the constraint of periodic cruise and con-
sidering the optimization direction of algorithm, a new
penalty function is proposed in the calculation of cost func-
tion. Then, to solve the problem effectively and efficiently,
Particle Swarm Optimization (PSO) algorithm is improved
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in several aspects and applied in periodic cruise trajectory
optimization. Finally, the difference of trajectory between
steady-state cruise and periodic cruise is discussed, and the
fuel-saving mechanism of periodic cruise is explored by con-
trast with steady-state cruise.

2. Models

The HL-20 aircraft model [36] is employed whose aerody-
namic coefficients are parameterized in (1) [37]. & means
the angle of attack, and M denotes Mach number. C; and
Cp denote the coefficient of lift and drag, respectively. The
coeflicient of drag at zero attack of angle, denoted by C,,
is equal to 0.008 when M > 10.

CL(M, @) = Cpy(M) + Cpo (M),
Cp(M, a) = Cpo(M) + K(M)C,?,
Cro(M) = ﬁ arctan [10(M - 1)] - 0.035, (1)

Cpo(M) = 0.057 exp (~0.654M) +0.014,

K (M) =1.85[1 — exp (~0.2356M)].

Thrust is calculated by thrust coefficient in (2) [37] and
is proportional to throttle denoted by s in (3). g means the
dynamic pressure, and S, is the area of engine whose value
is 9.02m”.

0.4736M'> + 1.6947M~* (M<4)

15(a +5)"%

CT max — 0.08 35 2 >
s - exp ~ 500" X <a+5— M_°~6> (M=4)

T:SqCT maxse' (3>

Impulse is calculated by (4), and fuel consumed per sec-
ond is calculated by (5), where h denotes flight altitude and g
denotes the acceleration of gravity whose value is 9.8 m/s>.

L [4500-10(-20) (M < 4) W
sp— > 4
P —245M + 5480 - 10(h - 20) (M > 4)

dm _ T

@ (5)

The 1976 U.S. Standard Atmosphere Model is used. An
altitude factor is defined by (6) [17], where R, means the
radius of earth.

He h
" 1+hR,

(6)

When flight altitude is in the range of 32 to 47 km, the
atmospheric density, denoted by p, is calculated in (7),
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where p, = 1.225kg/m’.

H - 39.7499
89.4107 ° (7)
p=3.2618x 107 p, W 132011,

W=1+

The earth is considered to be a homogeneous sphere.
Sound velocity, which is denoted by a, is also regarded as a
constant whose value is 340.294 m/s [37]. Then, the dynamic
model is described in (8). The flight-path angle is denoted by
y. T, L, and D are thrust, lift, and drag, respectively; 1 means
the mass of aircraft whose initial value is 89930kg, and r
denotes the flight range. Based on (8), the parameters of tra-
jectory can be computed by Four Order Runge-Kutta
method (RK-4), a numerical method for Ordinary Differen-
tial Equation (ODE).

dh—M a-sin

dr "

dM Tcosa—D-mgsiny

dr m-a ’

dy Tsina+L M-a g (8)
— = +coS Y| — ,

dt mM - a R,+h M-a

dr

_M Re
g = Macosy| o ).

e

Trajectory optimization is a classic optimal control prob-
lem. h, M, and y are regarded as state variables which is for-
mulated as x = (h, M, y)". a and s are regarded as control
variables which is formulated as u = (,s)". The limits of a
and s are showed in Table 1. The optimization of trajectory
is to determine the change of « and s to minimize the
objective.

3. Theoretical Analysis and
Optimization Method

3.1. Theoretical Analysis for Periodic Cruise. In order to sim-
plify the problem theoretically, the values of « and y are
regarded relatively small whose cosine value is set to 0 and
sine value is set to 1. Then, considering the directions of alti-
tude and range, the dynamic equations can be expressed in
the two directions as shown in (9) [38].

2
1
%—%—%(T—D),
ch_ 1, ®)
W—a( 9)

Make the transformation as shown in (10).

dr dh

X=X =m (10)

X =1x=hx;=

The control variables, a and s, are denoted by u, and u,;

3
TaBLE 1: The limits of control variables.
Variable Lower limit Upper limit
a (%) 0 15
s 0 1

thus, 0 <4, <15°, and 0 <u, <1. Then, L, D, and ISP are all
relative to x5, X3, x,, and u,, while T is relative to x,, x5, X,
uy, and proportional to u,. So the fuel consumption per sec-
ond can be expressed briefly as shown in (11), where k is a
lumped parameter of those which are relative to x,, x5, x4,
and u,.

d T Fep (%, %35 %4514y ) -

d7m gl Tng e )t = —k(xy, X3, X4 Uy ) - Uy
t 9y g sp(xZ’x3’x4’ul)
(11)

Then, the dynamic equations in (9) can be described as:

X) = X3
X, =Xy,
. 1
x=f(xou) =] = 5 k2 =D). (12)
X, = lL -9
X5
X5 = —ku,.

The constraints are as shown in (13).

The objective of optimal control is to minimize the fuel
consumption averaged by range in a whole period. In order
to construct the Hamilton function conveniently, it is regarded
as a multiobjective optimization problem, whose objectives are
maximum range and minimum fuel consumption. So the per-
formance index is as given in (14), where J; reflects the range
and J, reflects the fuel consumption. w is a weight coefficient.

ty

I=]1+w-]2=J (—x; — - &) dt
L (14
=J (=x; + w - ku,)dt.

ty

Therefore, the Hamilton function can be defined as (15),
and A is the Lagrange multipliers.
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H=L+\"-f=—x, + wku, + A, x; + A,x,
A A
+ 2 (kyu, = D) + 2L - A,g — Asku,
X5 X5
A (15
= (A = 1)x3 + Ayxy + = (kpuy = D) )
X5
Ay
+ —L-Ag+ (w—As)ku,.
X5
And the costate function can be expanded as (16).
0
A, 0k A, 0D A, OL ok
oy O P
X5 0X, X5 0X, X5 0X, 0x,
\ A; 0k A 0D A, OL ok
A= -4 -2ty + 2o - S (A —w) o,
X5 0X3 X5 0X3 X5 0X3 0x;
D L
oMk AOD AL 0k
X5 0X, X5 0X, X5 0, 0x4
A A
i zgm%—m+;§L ]

(16)

According to the optimality condition of Hamilton func-
tion:

H(x* (1), \(£), u’ (£)) = min H(x" (£),A(t),u(t)),  (17)

u(t)eU
due to

OH A,

— =k - Ak, 18

auz x5 T + ((O 5) ( )
let

0H A,
=_ =k — Ak, 19
£= 5 = ket (@1 (19)

thus when & > 0, H is positively correlated with u,. According
to the minimum principle, to minimize the value of H, when
&> 0, u, should be equal to its minimum value at 0; similarly,
when & <0, u, should be equal to its maximum value at 1.
Thus, (20) is obtained.

0, whené >0,
U = (20)

1, whené<0.

Therefore, it can be concluded that the optimal throttle is
either open or close totally, which is consistent with the results
obtained by optimization method in [17, 19]. Then, the
change of throttle can be parameterized by a switching func-
tion, whose coefficients are also regarded as optimization var-
iables in this paper.

Based on the theoretical analysis, the throttle is parameter-
ized by a switching function, and the time when engine starts
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and the duration when engine works are regarded as variables,
while the change of angle of attack is not clear. Thus, the angle
of attack needs to be parameterized as well. Then, the optimal
control problem of periodic cruise trajectory design is trans-
formed into a parameter optimization problem, and optimiza-
tion algorithm can be employed to solve it. PSO algorithm is
relatively easy to program, and it is reported well suited for
finding the optimal solution for nonlinear system. In this
paper, PSO algorithm is improved firstly and then applied to
solve the parameter optimization problem.

3.2. Optimization Problem of Periodic Cruise. In a periodic
cruise whose period is donated by ¢, the terminal con-
straints are illustrated in (21).

h(0) = h(t,),
v(0) = ¥(t,), (21)
y(0)=y(t,)

The objective of optimization is to minimize the fuel
consumption averaged by flight range in a cruise period,
which is as given in (22).

_ Jglmldt _ m(0) - m(t,)
[tcrdt re

(22)

Therefore, the optimization problem of periodic cruise
trajectory can be formulated as (23).

minimize | =

(
(
subjectto ¢ h(0
(
(

To parameterize the angle of attack, the Lagrange inter-
polation method is employed. The values of & when ¢t =0, ¢
=1/3t,, and t = 2/3¢_ are selected as control points, and the
value at the end of period is set equal to that in the initial
time to ensure continuity in neighboring periods. Thus,
there are four control points totally so that cubic Lagrange
interpolation can be achieved to calculate the value of « at
a certain moment. Based on the conclusion in last section,
the throttle is open or closed totally; thus, the engine
switch-on time t, and working duration ¢, are also regarded
as optimization variables. Therefore, there are 5 variables in
all, and the optimization objective is to minimize the fuel
consumption averaged by range in a period.

Periodic cruise requires that the initial state x;=
(hO,MO,yO)T is the same as the final state x;=

(hy, My, yf)T, which is a multiconstrained optimization



International Journal of Aerospace Engineering

problem. To deal with the constraints of periodic cruise,
generally the traditional strategy is to require |hy —hy[ <h,
and [M, — M| < M,, where h, and M, are acceptable small
difference. However, when h, and M, are determined, if h;
and M, are lower, it costs less fuel because less energy is

needed to recover the altitude and Mach number back to
the initial state. Thus, an optimization algorithm aiming at
fuel-saving trends to decrease hy and My, and the extreme

case is hy=hy—h, and M =M, - M, when |h,—hs[<h,
or |[M, — M| < M, is required; that is, the altitude and veloc-
ity in final state are lower than those in initial state. It is also
subjective to determine the value of h, and M,, which results
in affecting the accuracy of fuel consumption computation.
To avoid this, in this paper, hy>h, and M;>M, are
required instead. Now that the optimization algorithm aim-
ing at fuel-saving can naturally reduce h; and M; in the
optimization process, if hy > hy and M; > M, are required,
the extreme case is hy = hy and My =M, which is exactly
what is required for periodic cruise.

Therefore, there are three constraints that h; > hy, M
= My, and |y, -y | <y,, which are transformed into penalty
functions and included in the computation of cost function.
Thus, the cost function is as shown in (24)

my — my

cost=Fy + Fy + F, + -

(24)

Fy,, Fy, and F, are penalty functions for flight altitude,

Mach number, and flight-path angle, respectively, as given
in (25), where A,, A,, and A; are large positive numbers.

hy—h
AL ifhy>h
Fh: 1 ho 1 0> f’
0, else
My-M;
Az‘i, lfM0>Mf
FM: MO N (25)
0, else
= T WYY ‘>Ys
FY— 3 Y, o Frf .
0, else

Based on the description above, constraints are formu-
lated in a new form, and cost function is established; thus,
the periodic cruise problem is transformed into an optimiza-
tion problem as follows:
mgy — mf

minimize cost=F, + F), + Fy + r

0 “1’2’3 15 (26)
subjectiveto ¢ |0 | < | ¢, | < t
0

t, t.—t,

c

Then, the optimization can be carried out by optimiza-
tion algorithm, which is illustrated next.

3.3. PSO Algorithm and Improvement. Due to there are 5
optimization variables in total, PSO algorithm, which is
demonstrated suitable for optimization problem with high
dimensions [39, 40] and easy to program, is employed to
deal with the optimization problem. In order to improve
the speed and effect of the algorithm, several improvements
are implemented.

The core of PSO algorithm is to update the particle
velocity, whose formula is shown as (27), where r, and r,
are both random numbers between 0 and 1 and k is the
number of iteration.

Vi§+ 1

— k k k k k
=w-v; +C1'1’1'(pl- —xi) tCy 1y (pg—xi),

f” = x:-‘ + vf”.

(27)

Inertia weight, denoted by w, is used to adjust the global
and local search ability of algorithm. A larger inertia weight
could enhance the global search ability, while a smaller
weight could enhance the local search ability [41]. Therefore,
in this paper, w varies nonlinearly with k as shown in (28),
where k. is the maximum number of iteration and its
value is 100. The values of w,;, and w,,,, are 0.4 and 0.8,
respectively [42].

W =Wy, + (wmax - wmin) k

¢, and ¢, are learning factors which reflect the ability of
learning from individual and swarm, respectively [43]. In
the early stage, a larger ¢; and a smaller ¢, could improve
the global search performance. In the later stage, a smaller
¢; and a larger ¢, could make more particles close to the
optimal position and is conducive to accelerate convergence
[44]. Therefore, the learning factors are adjusted by linear
strategy in (29), where ¢, and ¢, equal to 0.8 and 1.5, while

¢y and ¢y equal to 2.5 and 0.5.

G = (le - Clo) Hax + Cio0

(29)

¢, = (ca5 — €20) . o

max

In order to reduce the possibility of falling into the local
optimal solution, a hybrid strategy is also implemented.
Based on the concept of genetic algorithm, there are a cer-
tain amount of particles selected to implement hybridization
according to a determined probability. The position and
velocity of the offspring particles can be obtained by random
pairwise hybridization of the parent particles [45, 46]. Thus,
the position and velocity of particles in the next iteration are
obtained by (30), where r; is a random number between 0
and 1.
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In addition, the maximum velocity is dynamically lim-
ited: the range of updating velocity is allowed to be relatively
larger at the initial stage of the algorithm to enhance swarm
diversity and to be slightly smaller in the middle and later
stages to prevent the updating velocity too large and away
from the optimal position. Maximum velocity of k-th itera-
tion is obtained by (31).

= {(1 - 0.9 sin (g%))}v&ax. (31)

Therefore, the process of the improved PSO algorithm is
as illustrated in Figure 1, and the details are as follows:

Step 1. Generate the initial position and velocity of swarm
randomly.

Step 2. Compute the cost value of each particle in the swarm.
Step 3. Select the particles to implement hybridization.

Step 4. Update the position and velocity of particle: the posi-
tion and velocity of selected particles are updated by (30),
while others are updated according to (27).

Step 5. Repeat Step 2 to Step 4 until the terminal condition is
satisfied.

In this paper, the swarm size is 800, and the maximum
iteration is 100. Then, based on the optimization problem
and improved PSO algorithm, the optimization for periodic
cruise trajectory can be carried out.

4. Results and Analysis

4.1. Optimization Results. To confirm the effect of the pro-
posed method and explore the performance of periodic
cruise, take the initial altitude of 45 km and the initial Mach
number of 14 as an example, numerical simulation is carried
out based on the improve PSO algorithm. The calculation is
implemented based on Intel Core i5-11300H CPU whose
main frequency is 3.10 GHz.

Set the initial altitude h, at 45km initial Mach number
M, at 14, the cruise period is roughly determined at 200s
according to [17, 19]. Figure 2 shows the change of cost
function in the optimization process. With identical initia-
tion and population size, the changes of cost function by
classic PSO algorithm, genetic algorithm (GA) and differen-
tial evolution algorithm (DE) are also displayed to validate
the effect of improvements. It can be seen that the classic
PSO, GA, and DE all converge after approximately 80 itera-
tions, while the improved PSO algorithm needs less than 40
iterations. And the classic PSO and GA as well as DE are
more likely to be stuck in a local optimal solution.
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Figure 3 shows the optimized trajectory parameters of
periodic cruise (PC) in red solid lines. In addition, parameters
of steady-state cruise (SC), which is computed by the method
in [6] at altitude of 45km and Mach number of 14, are also
displayed in dotted lines. It can be seen that periodic cruise
is demonstrated to be realized because state variables return
to its initial value at the end of period; thus, the new penalty
function for constraints is validated as well. The fuel consump-
tion averaged by range of periodic cruise is 1.5251kg/km,
while that value of steady-state cruise is 1.6855 kg/km; thus,
periodic cruise is more fuel-efficient, and 9.51% fuel can be
saved by periodic cruise. The proposed method is effective to
optimize periodic cruise trajectory.

Compared with optimized results in [17, 18], fuel-saving
performance of the proposed method in this paper is slightly
higher. And the reason should be that there are constraints
that the altitude curve is approaching a cosine function in
[17], and engine starts at the lowest points in [18]. Without
these additional constraints, the trajectory obtained by the
proposed method can be more flexible; thus, the fuel-
saving percentage is higher.
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TaBLE 2: Dispersions in the entry initial conditions.

State/parameter ~ Distribution =~ Mean  Standard deviation
hy (km) Normal 45 0.45

M, Normal 14 0.14

¥, (degree) Normal 0 0.1

my (ton) Normal 89.93 0.8993

To illustrate the stability of the optimization method,
dispersion simulations are carried out, and 100 Monte-
Carlo simulations are performed based on the case where
hy=45km and M, =14. The random initialization data
used in the dispersion model are tabulated in Table 2.

The histories of 100 dispersed trajectories obtained using
the proposed optimization method are plotted in Figure 4.
Simulation results show that most of the cases can success-
fully converge to the optimal solution, and their fuel-saving
percentages are all close to 9%. Thus, the proposed optimiza-
tion method is not sensitive with a random initialization.

In order to further verify the robustness and feasibility of
the proposed method, several cases whose initial altitudes
and Mach numbers are around the optimal values of
steady-state cruise are selected to be optimized. The optimal
altitude of steady-state cruise is 42.6km, and the optimal
Mach number is 14.38. Then, 6 points, whose altitudes are
40km and 45km and Mach numbers are 14, 14.38, and 15,
respectively, are selected as the initial points of periodic
cruise. Figure 5 displays the trajectories of these cases, and
their fuel-saving percentages are showed in Figure 6. It can
be seen that periodic cruise is realized in all the 6 cases.
When the initial altitude is relatively low, the altitude
increases firstly and then decreases, and the altitude varia-
tion range increases with Mach number. And the reason
should be that with a larger initial Mach number, a higher
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38
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FIGURE 4: One hundred dispersed trajectories for the state variables:
(a) altitude (km); (b) Mach number; (c) fight-path angle (degree);
(d) mass (ton).

altitude can be achieved to reduce atmospheric density and
then reduce drag. While when the initial altitude is relatively
high, the altitude decreases firstly and then increases, and the
altitude variation range decreases with Mach number. And
the reason is that if initial Mach number is large, it is not
appropriate to largely decrease altitude because drag will
increase a lot. From Figure 6, it can be seen that the periodic
cruise trajectories obtained in the all 6 cases consume less
fuel than corresponding steady-state cruise trajectories.
Therefore, the proposed method is effective to optimize peri-
odic cruise trajectory robustly.

4.2. Analysis of Periodic Cruise Trajectory. In the case of h,
=45km and M, = 14 above, a periodic cruise trajectory with
fuel saving rate of nearly 10% compared to that of steady-
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FIGURE 5: Trajectories at different initial Mach number: (a) h, =40 km; (b) hy = 45 km.
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FIGURE 6: Distribution of fuel-saving percentage of periodic cruise
at different initial points.

state cruise is obtained. Based on this case, the fuel-saving
mechanism of periodic cruise is analyzed in detail.

It can be seen from Figure 3 that the aircraft firstly decel-
erates and descends without power. When the flight altitude
approaches the lowest point, the engine ignites and starts to
accelerate. At this time, due to the low altitude and high
atmospheric density, the engine can capture more airflow
for combustion. Mach number is small at the same time.
According to (4), the specific impulse is larger with lower
altitude and smaller Mach number, which means a unit mass
of fuel could generate larger thrust. Therefore, when engine
is working, periodic cruise makes better use of impulse
performance.

Figure 7 shows the curve of L/D in steady-state cruise
and periodic cruise within a cycle. It can be found that L/D
of periodic cruise is in the range of 4.1 to 4.2, which is
greater than that of steady-state cruise at 3.9. Based on the
Breguet Range Equation [47], large L/D is beneficial to
enhance flight range. Thus, it reveals that periodic cruise
makes better use of aerodynamic characteristics of aircraft
to maintain high L/D, which is also a reasons for improving
fuel efficiency during cruise.

In Figure 8, the curves of drag and thrust of steady-state
cruise and periodic cruise are given, respectively. Thrust of
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FIGURE 7: The change of lift-drag ratio.

steady-state cruise is not shown in the figure because the
thrust and drag of steady-state cruise are roughly equal.
Combined with the Figure 3, it can be seen that the drag of
periodic cruise is the largest near the position where flight
altitude and Mach number reach the lowest point. After
the engine switches on, Mach number and altitude increase
gradually, and drag decreases conversely. It is interesting
that the drag of periodic cruise is not always lower than that
of steady-state cruise. There is still a large span when the
drag of periodic cruise is larger. However, from the perspec-
tive of energy conversion, the advantage of periodic cruise
can be revealed. Since the initial and final states of a cycle
are the same, if the mass change is ignored, the kinetic
energy and gravitational potential energy keep unchanged
in initial state and final state, which means that all the energy
generated by fuel combustion is used to overcome drag and
finally convert into heat energy. According to [48], the
mechanical energy loss rate could be evaluated by (32),
and its curve is displayed in Figure 9. The total mechanical
energy loss of cruise could be obtained by integrating the
curves. It is obvious that the total energy loss of periodic
cruise is smaller than that of steady-state cruise, whose rea-
son should be that from Figures 3 and 8, periodic cruise
Mach number is lower than that of steady-state cruise in
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the span when the drag of periodic cruise is larger than that
of steady-state cruise, which plays a role in reducing the
mechanical energy loss rate. Thus, periodic cruise needs less
energy supplement, and it is more fuel-efficient.

dE loss
dt

=D-V=D-M-a. (32)

Therefore, the trajectory of periodic cruise utilizes the
change of atmospheric density to reduce drag and enhance
impulse and adopts suitable flight states to achieve higher
lift-drag ratio and reduce the whole mechanical energy loss.
Therefore, less fuel is consumed compared with that of
steady-state cruise.

5. Conclusions

In this paper, based on the theoretical analysis, the design
problem of periodic cruise trajectory is transformed into
optimization problem by parameterizing the throttle and
angle of attack. An improved PSO algorithm is applied to
solve the optimization problem, and results with less fuel
consumed are obtained. Finally, the fuel-saving mechanism

of periodic cruise is analyzed. Conclusions can be drawn as
follows:

(1) The change of throttle is a switching function; thus,
the throttle is open totally when engine works in
periodic cruise

(2) The improved PSO algorithm can robustly optimize
trajectory of periodic cruise with less fuel consumed,
and the new form of constraints is effective for peri-
odic cruise

(3) Periodic cruise trajectory can enhance the impulse
and L/D and reduce the loss of mechanical energy
by matching velocity and drag properly
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In this study, we develop a method based on the Theory of Functional Connections (TFC) to solve the fuel-optimal problem in the
ascending phase of the launch vehicle. The problem is first transformed into a nonlinear two-point boundary value problem
(TPBVP) using the indirect method. Then, using the function interpolation technique called the TFC, the problem’s
constraints are analytically embedded into a functional, and the TPBVP is transformed into an unconstrained optimization
problem that includes orthogonal polynomials with unknown coefficients. This process effectively reduces the search space of
the solution because the original constrained problem transformed into an unconstrained problem, and thus, the unknown
coefficients of the unconstrained expression can be solved using simple numerical methods. Finally, the proposed algorithm is
validated by comparing to a general nonlinear optimal control software GPOPS-II and the traditional indirect numerical
method. The results demonstrated that the proposed algorithm is robust to poor initial values, and solutions can be solved in
less than 300 ms within the MATLAB implementation. Consequently, the proposed method has the potential to generate

optimal trajectories on-board in real time.

1. Introduction

With the recent development in space exploration, launch
vehicles are very important as they are the only means for
humans to explore space from the earth. In general, a launch
vehicle mission has been planned over a long period, and the
trajectory was designed in advance, and it cannot be updated
during flight, which means it is not robust or flexible. The fast
launch and trajectory reconstruction are the main research of
the guidance system, and both need rapid trajectory planning
technology. Rapid trajectory planning can shorten the launch
mission cycle and quickly update the trajectory in case of
thrust failure during the flight of the vehicle to ensure the
success of the mission.

The primary aim of the trajectory planning algorithm is
to solve the optimal control problem that is generally based
on nonlinear dynamics, which achieves specific performance
indicators under the constraints of state and control vari-
ables. The solution of such problems is mainly achieved

using the indirect method [1-3] and the direct method
[4-6]. The direct method transforms the optimal control
problem of continuous space into a nonlinear programming
problem and uses a numerical method to directly optimize
the performance index [7-9]. Although the direct method,
represented by a sequential quadratic programming algo-
rithm with the pseudospectral discrete, has advanced a lot
over a period of time, it still has considerable issues between
the on-board application. The algorithm for the general
nonlinear programming, for example, the famous sequential
quadratic programming algorithm, had low algorithm effi-
ciency and low sensitivity to the initial value and was unable
to guarantee convergence in the past, but now, these issues
have easily resolved by using a convex optimization method.
Ralph Rockafellar, a renowned mathematician, pointed out
that the key determinant of the performance of a numerical
optimization algorithm is neither the linearity nor nonline-
arity of the problem, but the convexity or nonconvexity of
the problem [10]. In 2007, JPL proposed lossless convexity
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technology for the dynamic descent guidance of the Mars
lander [11]. After that, a systematic summary of the research
and development of lossless convexity technology is pre-
sented in [12]. The applicability of the lossless convexity
method is extended to general linear systems with multiple
state constraints using the concepts of control theory.
Unfortunately, only a few nonconvex constraints can be
used for lossless convexification, and there is no analytical
convexification method for the system dynamic constraints
in the trajectory optimization problem of aircraft. A method
based on the Newton-Kantorovich/pseudospectral and
sequence convexification is used for the ascending phase of
the launch vehicle [13]. However, the sequential convex
optimization algorithm is a convexification method based
on linearization, which increases the dependence on the ref-
erence trajectory. This not only offers higher requirements
for the reference trajectory but also annihilates the advan-
tage of the convex optimization algorithm that does not rely
on the good initial value. Nevertheless, considering the
rapidity of the convex optimization algorithm in solving
convex problems, in recent years, trajectory planning based
on the convex optimization algorithm, such as planetary
landing [14-16], rocket ascent guidance [17], and entry
guidance [18], has been widely studied.

The indirect method solves the optimal control problem
by using the classical variational method and the Pontryagin
Minimum Principle, derives the first-order necessary condi-
tions of the optimal control, and transforms the optimal
control problem into a two-point boundary value problem
(TPBVP) [19] that is comprised of initial conditions,
Hamiltonian differential equations, optimal conditions, and
terminal boundary conditions (including terminal transver-
sal conditions and terminal constraints). However, since
the convergence radius of the indirect method is small, and
the convergence of the numerical iteration is extremely sen-
sitive to the initial value estimation, which requires a higher
accuracy of the initial value estimation, determination of the
initial value is highly difficult. To overcome this problem, the
deep learning algorithm is used to obtain a higher accuracy
of initial value estimation and a better target shooting
success rate [20-22]. In general, the higher sensitivity of
TPBVP to the initial value makes the problem difficult to
solve. Therefore, although the indirect method yields a more
accurate solution, it is rarely used in practice.

Recently, a mathematical framework called the Theory
of Functional Connections (TFC) has been proposed in
[23] to derive the expressions with embedded constraints.
The expressions, called constrained expressions, are
composed of functionals and functions of functions. The
constrained expression is written as

k=1
y(t)=g(t)+ Y, De(t)py(0), (1)

where g(t) is a free function and @, (¢) are the switch func-
tions composed of the support function s (#) with unknown
coeflicients a.. The support function is a set of linearly inde-
pendent functions. If one of the switch functions is equal to
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1, the constraint it is referencing is evaluated; otherwise, that
is, if it is equal to 0, all other constraints are evaluated. The
switch functions can be expressed as®, (t) = s (t) ;. The pro-
jection functionals p, (¢) are derived by constraint functions.
The constrained optimization problem is transformed into
an unconstrained one using the constrained expressions,
which reduces the search space of the solution to the admis-
sible solutions that satisfy all constraints. Finally, using com-
mon basis functions such as Chebyshev polynomials or
Legendre polynomials to express the free function and then
using the least-square method to find its unknown coefficient,
the solution of the problem can be found. In [24, 25], the TFC
algorithm quickly solves the nonlinear differential equations
and obtains high-precision solutions. In [26, 27], it is applied
to fixed-time asteroid landing and optimal energy landing.
The results show that the solution time is basically less than
100 ms, which proves that the algorithm has real-time appli-
cation potential.

This paper is organized as follows. Section 2 gives a brief
description of the TFC mathematical framework to solving
TPBVP. In Section 3, the fuel-optimal ascent trajectory
problem is described in detail, and the necessary conditions
are derived. In Section 4, the fuel-optimal problem in the
ascending phase of the launch vehicle is formulated using
the TFC framework. Finally, the result and discussion are
provided in Section 5.

2. Theory of Functional Connections

In this section, we present an outline of the TFC mathe-
matical framework and a method for solving second-
order TPBVP with TFC.

2.1. TFC for TPBVP. In general, trajectory optimization prob-
lems are second-order TPBVP [28], which is expressed as

Y(to) = Yo
o , )’(tf)z}’f>
Bl y(0)5(0,5() =0 subjectto: 0 7 )
Y(to) = o»
(t) =p

where £, and #; represent the initial time and the terminal
time, respectively, and y,, Y Yo j/f are the initial and terminal
constraints, respectively. As mentioned earlier, the constraints
are expressed by (1), and then, (2) is simply rewritten as

y(t)=g(t) + Dy (t)p, + Dy(t)p, + Ds(t)ps + Py(t)py  (3)

where p,(t) is expressed as

Pt g:(1)) = yo, = 9i(to)>
ot g,(1) =y; = g,(ty) @
ps(t9:(t)) = o, = gi(to)>
Pu(t:g:(1)) =35 — 9:(ts)-
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The algorithm to derive the term of the constrained
expression is given as follows:

(1) Choose s.(t), which are k linearly independent
support functions

(2) Calculate switching functions @, (t) as a linear com-
bination of the support functions with k unknown
coeflicients

(3) Formulate a system of equations to solve for the
unknown coefficients based on @, (t)

The support functions are defined as s (k)=tF",
according to [28]. The switching function is then obtained
by solving equations. When the first switch function is
activated, the equations are

D (t) =1,
@, (t;) =0,
,(tf) )
Di(ty) =0,
@\(t;) =0

The equations of the first switch functions are com-
bined into the matrix form as

1oty o ] [ay 1
1t t}z( tj‘ | |0 (6)
0 1 26 32| |ay| |0
0 1 2t 3t7] |ay 0

Similarly, application of this method to the other three
switch functions yields the following matrix:

1ty tp t oy 0y Ay 1 000
14 t} t} Ky Gy O3 Gy 01 00
0 1 26, 32| |y @y ay am| |0 0 1 0
0 1 2t 37| [ay 0y gy ay 00 0 1

(7)

The coefficient a is obtained by matrix inversion, and
the expression of the switch functions is obtained as

1

D, (t) = m (—t} (3t —t7) +6totst =3(ty +1,)1* + 2t3>,
D,(t) = o) (ot = 3tf) = 6totst +3(tg + 1) £ = 2t7),

D4(t) = m (—tot} + e (2t + bt = (g +2t0) 8 + t3),
D,(t) = % (~toty + o (to +2t5)t = (2t + 1) £ + 7).

(tr—t)
(8)

The boundary conditions of (2) are effectively embed-
ded within the constrained expression by substituting (4)
and (8) into (3). Then, by substituting (3) into the vector
differential equation F(t, y(t), y(t), ¥(t)), the constrained
TPBVPs are transformed into an unconstrained problem.
According to (3), y(t) is replaced by g(t); thus, the origi-
nal vector differential equation F(t, y(¢), y(t), ¥(t)) is
transformed into F(t, g(t), g(t), §(t)), which is only a
function of ¢, the free functions g(t), and their derivatives

E(t,g(t), §(t), §(t)) = 0. )

As mentioned earlier, F(t,g(t),g(t),§(t)) is uncon-
strained because the boundary is represented by the switch
function @ (t) and the projection function p,(t).

After determining the switch function and the projection
function, we next discuss the free function g(t).

2.2. Definition of the Free Function. In selecting a free func-
tion, we are essentially looking for the best function approx-
imator. A natural choice for the free function is a linear
combination of basis functions, as this is capable of spanning
the entire function space that the basis spans, as the number
of basis functions approaches infinity. The free function is
expressed as

g(t)=&"h, (10)

where & are m x 1 unknown coefficients and h are m basis
functions.

Next, the problem domain ¢ is mapped to the domain of
the basis functions z, and Chebyshev and Legendre polyno-
mials are commonly used, the domains of which are defined
in [-1, 1]. To implement the basis functions, a map between
t and z is defined as

Zf_ZO tf_tO

z=2zy+ (t—ty) ot=ty+ (z—-zy). (11)

tr—t, zp -7

By using (11), the derivatives of g(t) are computed as

where k € [0, n], (12)

where ¢:=dz/dt = (z; - 2y)/(t; — 1)

2.3. Domain Discretization. For solving TPBVPs numeri-
cally, the domain t € [t,, ;] must be discretized by N +1
points. The common method is uniform distribution, but
the advantage of Chebyshev—Gauss-Lobatto collocation
points is that when the number of basis functions increases,
the condition number should also increase slowly, which is
useful for improving computational efficiency. The Cheby-
shev-Gauss-Lobatto collocation points are defined as

k
Z = — COs (Wﬂ) fork=1,2,---,N. (13)



Thus, the new vector differential equation F(t, g(t), g
(1), §(t)) becomes F(z, &), where the unknown coefficient &
is the variable that needs to be solved. F(z,£) is expressed
in the form of loss functions at each discrete point

Fi(zy,8)
Fi(zp§) - (14)

Fi(zy» )

By setting &; =0, the unknown coefficient & is solved
using optimization schemes such as iterative least-squares.

To solve the nonlinear least-square problem, we need the
Jacobian matrix of the loss function, which is written as

[ aﬁi(ZO’E) aj:i(ZO’E) aﬁi(zo’f)
a&, 08, 0¢;
_ | 0Fi(za:§)  0F(z4:8) OF;(28)
J(E) = % %, afj (15)
OF(2x,§) 0Fi(2y,9) OF(2x. &)
3, oF, oF |
The estimation is updated by
g =gt - A, (16)

-1
where AE = (J(£)"1(§)) J(§) ().

The iterative process stops when the convergence toler-
ance is met:

L[Z()] <5, (17)

where ¢ is the stopping criterion that is defined by the
user.

Figure 1 shows the outline of the TFC framework.

Recently, the position of numerical calculation in the
current guidance and control field is emphasized in [29],
which, based on numerical calculation, is called as the Com-
putational Guidance and Control (CG&C). The CG&C
replaces offline planning and closed-loop guidance with
on-board computing, which is more robust, more accurate,
and more flexible and can adapt to more complex environ-
ments and missions, but offers high requirements for com-
putational efficiency. As mentioned earlier, the algorithms
used in the CG&C are basically divided into two: direct
and indirect. In this study, we used the indirect method,
because the optimal control problem is transformed into
TPBVP, and then, the TFC method is used to transform
and solve the problem.
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We found that the TFC method is quite similar to the
collocation method in which all three methods using orthog-
onal polynomials over the global domain, according to the
different method. In the collocation method, the states and
costates are expanded by using orthogonal polynomials,
and the boundary conditions are considered as part of the
optimization scheme [30]. It is similar that the pseudospec-
tral method used orthogonal polynomials like Chebyshev or
Legendre polynomials to approximate the states and cost-
ates, and the boundary conditions are also considered as part
of the optimization scheme. The TFC method may use a
similar operation, but the fundamental difference between
the TFC method and the other two methods lies in handling
the constraints of the problem. The TFC method uses
orthogonal polynomials to expand the free function g(t) in
a constrained expression and then expresses the problem con-
straints analytically step by step as mentioned above, which
can reduce the search space of the solution and thus improve
the computational efficiency. In fact, the advantages of the
TFC method are presented in [27]; the results in [27] show
that the TFC method is two orders of magnitude faster than
the pseudospectral method in a fixed time optimal control
problem and one order of magnitude faster than the pseudos-
pectral method in a free time optimal control problem.

3. Fuel-Optimal Problem in the Ascending
Phase of the Launch Vehicle

In this section, the problem is transformed into a TPBVP,
and the first-order necessary conditions and transversal con-
ditions of the problem are derived using the Pontryagin
Minimum Principle.

3.1. Dynamical Model. In this section, the last stage of the
launching vehicle is studied. The dimensionless equations
of motion of a three-dimensional (3-D) launch vehicle can
be expressed in the Earth Center Inertial Coordinate System
as follows:

r=w,
= — + 5
Y (18)
. T
m= ,
Ispgo

where r is the inertial position, which is normalized by the
radius of the Earth R, =6378145m. v is the velocity, which
is normalized by /R,g,, in which g, =9.81 m/s? represents
the gravitational acceleration magnitude on the surface of
the Earth. The mass of the launch vehicle is denoted by m.
The thrust is denoted by T = TI,, where I, is the unit vector
of the body axis satisfying

1, = 1. (19)

For most launch vehicles, the mass flow is uncontrollable;
thus, the thrust magnitude T = || T'|| is constant and uncontrol-
lable during the same flight phase. The gravity acceleration
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E(t, y(t), y(1), y1) =0
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Switch function @, (¢)
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FiGure 1: TFC framework.

ay=-r/ 73, where r = ||r||. The specific impulse of the engine is

denoted by I,,. The differentiation of the equations in (18) is

with respect to dimensionless time normalized by /R,/g,.
As the mass flow is constant, the optimal ascent problem
is treated as a minimum-time problem:

min ] =t;, (20)
subject to
. . T . T
r=v, V= —+ ag, m= N
m Ispgo
21
r0)=rp ¥(0)=vp m(0)=my, 21)
r(tp)=rp v(ty) =v

3.2. First-Order Necessary Conditions. On the basis of the
Pontryagin Minimum Principle, the mass of the vehicle is
treated as a prescribed function of time instead of a state
variable. The Hamiltonian function is written as

il SR
m?b B

H=1+ATTV+A3<T r), (22)

where I, =—-A,/A, is called the primer’s vector, according to
Lawden’s theory [31]. Thus, (22) is rewritten as

T T
H=1e ATy D=2 (23)

rd

The first-order necessary conditions for optimality then
give the differential equations of the costate variables:

. 0H AT
Ar:_a—:LSr,

r r (24)
v W_ re

The transversality condition is expressed as

H(t;) =0. (25)

4. Solution via TFC

4.1. TPBVP in TFC Framework. As mentioned in the previ-
ous section, to find the optimal state, the following nonlinear
TPBVPs must be solved:

r=v, (26)
TA r
=—_2 27
mA, 13 (27)
- L (28)
Ispgo ’
. oH Al'r
= =v (29)
A or r°’
0H
=- (30)



() =1 X )0() - )] - 20 o

(31)
where (26) and (27) are subject to
r(0) =ro

r(ty) =rp

v(0) = vy,

v(tf) =vy.

m(0) = m,, (32)

Additionally, there is a redundant equation and can be
removed by the TFC constraints. The derivative of r(t) is
exactly the function v(#) because TFC constraints are analyt-
ical expressions; thus, (26) can be disregarded. The problem
is now reduced. The new equations are expressed as

. ALy
Zat)=a-1 - —=,
/lvTr
gr(t):/\r_ 5 > (33)
Z,()=A,+A,,
r T ALy
Ly=1+ M= —||A,) - 2

To solve the above equations, the TFC constraints with
r(t), A,(t), A, (t) need to be constructed by the TFC method.
The unknown coefficients in the TFC constraint expressions

are expressed as &, &, , &, ,and v(t), a(t), A,(t), A, (t) can be
obtained by taking the derivative of the TFC constraint
expression r(t), A,(t), A, (¢), respectively.

The initial and terminal constraints of the problem dis-
cussed in this paper are position and velocity constraints,
respectively. The TFC constraint expressions of r(t), v(t), a
(t) are written as

r(t) = g(t) + Dy (t)p; + Dy (t)p, + P3(1)ps + Pu(£)py

v(t) = g(t) + @y (1)p, + Dy ()p, + Ds(1)ps + Dy (1),
a(t) = g(t) + Dy (1)p, + Dy (1), + Ds(£)ps + Dy ()P
(34)
where the projection function is written as
pi(t) =19 -g(t)>
() =1 = g(tf), (35)
ps(t) =vo = g(to)s
( )-

Next, consider constructing a free function. According to
(10)-(12), the time domain is mapped to the Chebyshev
domain. However, it should be noted that in the time-free
TPBVP, the parameter c is a function of ¢;. Combined with
the TFC method, the new unknown variable &, is used to repre-
sent the parameter ¢, and the optimal time is obtained by solv-
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ing &,. In addition, to ensure the solved final time is positive, b is
used instead of b, where b” = c. Then, (t) is rewritten as

r(£) =1(2) = 4 ()7 + D(2)ry + D (2) 15 + y(2) 5
+ (h(2) - @y (2~ @2y — D ()~ Dy (2)H]) &,

v(t) = bv(z) = b [@{(z)ro FDY2)rs + @g(z)g + @Q(z)g

(W 2) - 02y~ 0ty ~ e by -0l .|

a(t) =b*r(z) =b* {(Dir(z)ro + @;’(z)rf + @;'(z)% + @Z(z)%
(0= 0](@), - 2ty -0l M- (2)hy) |
(36)

where hy = h(z,) and h; = h(z;).
The expression of the switch function is similar to (8):

D, (z) = (zf—lzo)3 <—z} (329 — 2f) + 620272 = 3(2y + 27) 2" + 223>,

D,(z) = ;3 (=20(z0 = 32f) — 62022 + 3(20 + 2) 2" = 22°),
(27 =)

Ds(2) = m (—zoz} +27 (22 + 2p) 2 = (20 +227) 2" + 23),

Q,(z) = ! 5 (—202f + 20 (20 + 227)2 = (229 +2)2° + 2°).

(2~ 2)
(37)

Next, the TFC constraint expressions of the costates are
constructed by the same steps as above:

t)=b*Al(z) = b*h' (2)"E,,

e

Substitution of the above TFC constraint expression into
the loss function yields the loss function with respect to
unknown coefficient &. Then, the solution of the problem
is obtained using the nonlinear least-square method. The
unknown coefficient £ is expressed as

T
T ¢T ¢T ¢T ¢T ¢T ¢T ¢T T 9m+1
e={a e g g e) erm
(39)
The loss function can be expressed as

T
L= { g; ggz 33;3 83\11 3/{2 3/{3 g}:ﬂ g/{z g}:ﬁ gH } ’
(40)
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To use the nonlinear least-square method, the partial
derivative of the loss function needs to be calculated as

a(t) =b*r(t) = b* {@{(z)ro + @;(z)rf + (D;(z)% +@)(2) :712‘

T
(" (2) - @l - @l - 0o (eh) e, |
(a1)

The terms of (41) are defined by

0%, 0%, 02, 0%, 0%, 02,
08, 0k, 0%, ot, 0, 0%,
|z, oz, 02, |z, oz, 32,
Joo =1 %g, @, @, |0 T |EE, @, W&, |
0L, 0%, 0%, 0L, 0%, 0%,
[ 08, 0%, 0%, | | 0¢, 9, 0%, |
;o[ 02, 02, !
o leg aE ey |
(0%, 0%, 0%, 0%, o]
08, 0%, 0%, ok,
oz, 0z, oz, |, %,
hee= g, e, o, | T 3t ’
3L, 8%, 3L, o o %%
| 08, 0%, 0%, | I 3, |
0% 1 oo -
—1 0 0 07,
aEVl aEt
3L, 0%,
he=| 0 = 0 has 38 |
0 0 ag’s agrs
i o€, | L 0§,
= 0 0o | [0, 0 0 ]
ok, ok,
oL, 2%,
]Awf, = 0 afr 0 ],\V)gv = 0 aEV 0
0 0 0L, 0 0 0Ly,
L 9, | L %, |
L _[32, 02, 0z, 1"
MOl e e |
[ (0L 0Ly 0Ly
M~ |0k, &, OE, |
[ [0y 0Ly 0Ly
HE& 7|0, 0, 0%, |
[ [0y 0Ly 0Ly ]
He |0, 0, 9, |
0Ly
Jng, = I, (42)

where all derivatives are

Appendix.

partial provided in the

4.2. Initialization. When using the iterative least-square
method to calculate, some parameters need to be estimated
reasonably, so that the iterative process of the algorithm
can go on without violating the basic mathematical princi-
ples. The simplest initialization is to set them equal to zero.
This is equivalent to connecting the boundary value problem
with the simplest interpolating expression. However, the A,
is related to the thrust direction; initialization of A, = 0 will
cause issues in the TFC method because I, =—-A,/A, and ||
I lI=1. Thus, the coeflicient &, is initialized using

r
Ev_ 0

vV
g, = 2 - Do
' el

=, (43)
*lvoll

In addition, the first guess of £,,&, is set equal to zero,
and for setting the first guess of &,, an estimate of the final
time ty is needed; in this paper, the initial ty is set to be
300, and the initial &, can be expressed as

[ 2
Et = tf — tO. (44)

These are uniformly discrete according to the number of
polynomials .

5. Simulations

In this section, we apply the proposed algorithm to the
ascent problem of the launch vehicle to verify the feasibility
of the algorithm, and the results are compared with those of
the GPOPS-II and classical indirect method solutions of the
other two algorithms. All numerical results are obtained on a
desktop with Intel Xeon E3-1230 3.4 GHz. Table 1 lists the
parameters of the launch vehicle and mission in the numer-
ical simulations.

Table 2 shows the initial and terminal parameters of
the experiment, where the orbital elements corresponding
to the terminal position and velocity are also given because
the launch vehicle generally uses the orbital elements for
the target.

To prove the validity and effectiveness of the algorithm
proposed in this study, the results of the algorithm pro-
posed in this paper are compared with those obtained by
the traditional indirect method and GPOPS-II. The final
time calculated by GPOPS-II is 300.97s, that obtained by
the single shooting method is 301.01s, and the final time
obtained by TFC is 301.25s. The locations of the vehicle
and the velocity vector are provided in Figures 2 and 3,
respectively. Figure 4 shows the thrust vector of the launch
vehicle. In the bottom part of Figure 4, the purple line
representing the sum of squares of thrust directions is
equal to 1, which also indicates the validity of the TFC
solution, and the other three lines are the vector of the
body axis. Considering that the pitch angle and yaw angle
are generally used as the guidance command of the launch
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TaABLE 1: Parameters for launch vehicle.

Parameter Value
Longitude of launch point (") 110.95
Latitude of launching point () 19.61
Launch azimuth (°) 90
The specific impulse, I, (m/s) 3365
Thrust, T (N) 2843599.98
Mass rate, ri (kg/s) 845.052

TABLE 2: Parameters of the boundary conditions.

Parameter

Value

Initial position, r, (m)
Initial velocity, v, (m/s)
Initial mass, m, (kg)
Semimajor (m)
Eccentricity

Inclination (°)

Ascending node (°)
Argument of perigee (*)
True anomaly (°)
Terminal position, rf (m)

Terminal velocity, vs (m/s)

[371973.739, 6493779.849, -13899.978]
[3652.033, 556.843, -2.666]
350306
6595487
0.0053
20.009
17.250
32.390
77.969
[1912866.558, 6304148.648, 2551.256]

[7457.930, -2220.619, 178.661]
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FIGURE 2: Vector of velocity solution by TFC, GPOPS-II, and single shooting.

vehicle, the results of pitch angle and yaw angle are also
given here. Figures 5 and 6 show the results of the height
and the velocity, respectively. It can be seen that the results

solved by the three methods are basically the same, which
again shows the validity of the TFC algorithm proposed in
this study. To quantify the accuracy of the TFC method,
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FIGURE 3: Vector of position solution by TFC, GPOPS-II, and single shooting.
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FIGURE 4: Vector of thrust solution by TFC.

Figure 7 shows the residual of acceleration, and it can be
seen that the residual of TEC is about 107'* or less for
the whole solution domain.

In this simulation, the cost time of the proposed method
is 0.23s and those of GPOPS-II and the single shooting
method are 3.88 and 0.34 s, respectively. It is also known that
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FiGure 5: Height solution by TFC, GPOPS-I], and single shooting.
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FIGURE 6: Velocity solution by TEC, GPOPS-II, and single shooting.

the MATLAB programming language is 10 times slower
than C++; thus, the algorithm proposed in this study has
online application potential. In terms of solution accuracy,
the TFC method is not dominant among the three methods,
but combined with the analysis of calculation efficiency, it
shows that the proposed method is an effective method.
The above results show the comparison between the
results of the proposed algorithm, GPOPS-II, and single
shooting method, which verifies the validity of the proposed
algorithm. Next, the effect of the number of discrete points
and polynomials on the algorithm is studied. Table 3 shows
that the excessive number of discrete points will not only
reduce the calculation efficiency, but also reduce the accu-
racy of the solution. In addition, the selection of the number
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TaBLE 3: Solutions of different discrete points and polynomial
numbers.

Discrete  State and costate ~ First-order tCi:r(;S; Iteration
points polynomial numbers optimality () number
100 10, 4 0.414 0.15 61
100 30, 4 0.00138 0.16 14
100 60, 4 2.09e-06 0.23 15
100 80, 4 0.00526 0.29 14
100 80, 10 2.13e-05 0.42 29
100 60, 60 50.3 — Max
50 10, 4 0.349 0.16 54
50 30, 4 5.94e-05 0.23 45
50 50, 4 0.000555 0.25 26

of polynomials is also analyzed in this paper. In [28], the
number of state polynomials and costate polynomials is the
same and not studied separately. In our simulation, the
results show that the selection of the number of state poly-
nomials and costate polynomials can be different, and a
better result can be obtained. If the number of the state poly-
nomials is selected too much, then not only the calculation
performance will be degraded but also the accuracy of the
solution will be greatly affected. It is seen from Table 3 that
when the number of costate polynomials is as large as the
number of state polynomials, the allowed iteration number
is reached and the iteration progress will not converge; it
means the solution of the problem cannot be solved. In addi-
tion, appropriately increasing the number of costate polyno-
mials can increase the accuracy of the solution, but it will
reduce the computational efficiency. Thus, the number of
discrete points and polynomials should be select carefully.
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6. Conclusion

In this study, we proposed a new approach to solve the fuel-
optimal problem in the ascending phase of the launching
vehicle using TFC. The main conclusions can be summa-
rized as follows:

(1) The first-order necessary condition of the optimiza-
tion problem is constructed by the indirect method;
the problem’s constraints are embedded in the
expression by using the TFC method

(2) The constrained optimization problem is trans-
formed into an unconstrained optimization problem
by using the TFC method, which reduces the search
space of the solution, and a simple root-finding algo-

Z(hf(z) hVT(Z)Ai) -

11

rithm can be used to obtain the solution of the
problem

(3) The residual of the solution is about 107'* or less; for
obtaining more accurate numerical solutions, the
number of discrete points and polynomials should
be selected carefully

(4) The proposed algorithm has the potential for online
application. The calculation time of the algorithm is
within 300 ms with MATLAB programming

Appendix
Partial Derivative of Loss Functions

The partial derivative of loss functions is
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Periodic cruise has the potential to improve the fuel-saving efficiency of hypersonic cruise vehicle but is difficult to optimize. In this
paper, a two-level optimization method for the trajectory of periodic cruise is proposed. Due to that the periodic cruise trajectory
can be divided into an acceleration phase where engine works and a glide phase where engine is off, the two-level optimization
method is proposed to optimize the trajectory in each phase by the corresponding level. In the first level, Downhill Simplex
Method (DSM) is employed to find an optimal angle of attack in the acceleration phase. Subsequently, the optimal trajectory in
glide phase is obtained by the Pseudo-Spectral Method (PSM) in the second optimization level. Numerical results demonstrate
the effectiveness of the proposed method. Finally, through comparing with steady-state cruise, it is concluded that periodic

cruise makes full use of the change of atmospheric density and lift-drag ratio; thus, fuel saving is achieved.

1. Introduction

Hypersonic vehicle generally refers to the aircraft flying at
Mach number above 5 [1], which has a series of advantages
such as high flight altitude, fast speed, and strong penetration
ability, and it has a far-reaching impact on the development
of aerospace technology in the foreseeable future [2]. There-
fore, the research on hypersonic technology has been widely
concerned by researchers all over the world [3, 4].

As one of the important components of hypersonic flight
technology, the design of flight trajectory is based on the
aerodynamic characteristics of hypersonic vehicle and the
complex flight environment, and it is aimed at minimum fuel
consumption, longest range, or shortest flight time, with satis-
tying the complex path constraints including heating rate,
acceleration load, dynamic pressure, and other terminal con-
straints [5]. Through reasonable design, the optimal flight tra-
jectory can improve the efficiency of subsystem in the aircraft
and reduce the cost of the whole flight. At the same time, it can
provide guidance in the structural and material selection of the
aircraft, which is conducive to the overall design of aircraft.

The whole trajectory of hypersonic cruise vehicle is gen-
erally divided into ascending stage, cruising stage, and gliding

stage. Due to the difference of mission performed by hyper-
sonic vehicle in each stage, the flight modes are also quite dif-
ferent. Therefore, it is necessary to establish appropriate
performance indices for different stages, which makes the
research face different problems [6]. The direction and mag-
nitude of aerodynamic force in the ascending stage are
closely related to the direction of thrust, and it is necessary
to control the load caused by aerodynamic force [7]; in the
cruising stage, it is difficult for hypersonic vehicle to maintain
high maneuverability [8], while the constraints of terminal
velocity and flight-path angle are very important to the gliding
stage [9, 10]. Therefore, many researches can be carried out to
solve these problems. Generally speaking, the cruising stage
accounts for a large proportion in the whole flight process of
hypersonic cruise vehicle, and the flight range depends on
the cruising stage to a great extent. Therefore, it is of great sig-
nificance to study the design of trajectory in the cruising stage.

To make the range of aircraft longer, an effective method
is to improve the fuel efficiency of aircraft in the cruising
stage. Finding the cruise trajectory with the highest fuel effi-
ciency has been the focus of many researchers [11]. In these
researches, steady-state cruise and periodic cruise are two
main cruise modes. Steady-state cruise refers to the cruise
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with constant altitude and speed [12]. Thus, it is relatively
easy to optimize the trajectory of steady-state cruise because
it is a two-degree-of-freedom (DOF) problem [13], while
Irons et al. [14] have demonstrated that this trajectory is
not optimal. The theoretically optimal trajectory is an infinite
DOF curve, whose theoretical analysis is quite difficult as a
two-point boundary value problem (TPBVP). Therefore,
researchers tried to find a trajectory with better performance
by dividing the cruise trajectory into a few phases which were
uniform, and then, the concept of periodic cruise was raised.
During periodic cruise, the trajectory approximates the form
of a periodic function. The engine switches on and off
according to a periodic law, which makes the powered pro-
pulsion and unpowered glide alternate, and the altitude,
velocity, and other state variables change periodically. At
the end of a cycle, the parameters of flight state are the same
as that of the initial state [15].

There are many researches about the optimization of tra-
jectory by theoretic analysis [16], but many of them are based
on simplification; otherwise, it is difficult to carry out because
of the complex characteristics of hypersonic flight. With the
development of computational science and intelligent algo-
rithm, many researchers have introduced optimization
method to the field of aerospace [17, 18]. A number of trajec-
tory optimization methods were proposed, which were well
reviewed by [19], and it is validated that optimization
method is effective to solve trajectory optimization problems
[20]. In many researches about the optimization of cruise tra-
jectory, it is generally considered that the trajectory of steady-
state cruise is a suboptimal initial guess for the optimization
of trajectory in periodic cruise [21], and the performance
index of them is always used for comparison to draw relevant
conclusions [22]. Many researches find that a certain amount
of fuel can be saved through periodic cruise compared with
steady-state cruise, and the trajectory of periodic cruise is
more flexible. However, due to the complex characteristics
of hypersonic flight, trajectory optimization is a multiobjec-
tive, multiconstraint, strong-coupling, and highly nonlinear
optimization problem [23], which increases the difficulty of
obtaining the optimal solution. In the optimization of peri-
odic cruise trajectory, angle of attack and throttle are the
two control variables, which are also functions about time
and need to be determined to minimize the objective. While
these two variables are nonlinear and discontinuous some-
times, thus, it is not easy to deal with them at the same time
in an optimization algorithm unless new constraints are
added. So far, there is no effective indirect numerical method
and professional software that can deal with the problem of
periodic cruise trajectory design in a unified framework
[15]. Therefore, it is significant to explore new method to
optimize the trajectory of periodic cruise.

In order to obtain the optimization result of periodic
cruise trajectory quickly and robustly, many researchers
introduced the idea of hierarchical optimization to separate
optimization variables and optimize them, respectively, by
different algorithms. Earlier, Subbarao and Shippey [24] pro-
posed a trajectory optimization method by combining the
collocation method with the genetic algorithm. The initial
values of variables were selected by genetic algorithm to
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improve the optimization efficiency, and then, the trajectory
was optimized by the collocation method. Kang et al. [25]
studied the optimal periodic cruise trajectory by combining
genetic algorithm and direct shooting method; then, a
method of two-level optimization was developed to deal with
the parameters of initial state in the outer loop and the con-
trol variables in the inner loop, respectively. In recent years,
many new effective two-level trajectory optimization
methods have been proposed and applied in trajectory opti-
mization. Chai et al. [26] formulated and solved a con-
strained space maneuver vehicle trajectory optimization
problem using a three-layer-hybrid optimal control solver,
and good performance was obtained. Liu et al. [6] developed
a two-level optimization algorithm to solve the optimal
steady-state cruise trajectory by combining PSO algorithm
with sequential quadratic programming. In [27], deep neural
network was trained by generated trajectories from fuzzy
multiobjective transcription method; then, a two-step strat-
egy for real-time trajectory planning was proposed with fea-
sibility and reliability confirmed. In this paper, due to the
complexity of periodic cruise trajectory design, the concept
of hierarchical optimization is also employed.

Considering that there are an acceleration phase and a
glide phase in a period of periodic cruise, which can provide
convenience to optimize the trajectory if the two phases can
be optimized separately, a two-level optimization method
which deals with the optimization problems in different
phases by different levels, respectively, is proposed in this
paper. The first level optimizes the acceleration phase, and
the glide phase is optimized by the second level, and it is
required that the fuel consumption averaged by range is low-
est in the period. The second part of this paper introduces the
models including parameterized aircraft model and dynamic
equations. The description of optimization problem as well
as method is also illustrated in detail. The solution of
steady-state cruise and optimized result of periodic cruise
are displayed in the third part. Finally, the difference of tra-
jectory between steady-state cruise and periodic cruise is dis-
cussed, and the fuel-saving mechanism of periodic cruise is
explored by contrast with steady-state cruise.

2. Models and Methods

2.1. Model of Hypersonic Vehicle. The HL-20 aircraft model
[28] is widely employed in the research of trajectory optimi-
zation [29], and the aerodynamic coefficients are given in (1)
[30]. Mach number is denoted by M. The coefficient of lift
and drag are denoted by C; and Cp), respectively. Cp,, means
the drag coefficient at zero attack of angle whose value is
0.008 when M > 10.

Cr(M, &) = Cpy(M) + Cpo(M)a,
Cp(M, @) = Cpy(M) + K(M)C,?,
Cro(M) = ﬁ arctan [10(M - 1)] - 0.035, (1)

Cpo(M) = 0.057 exp (~0.654M) +0.014,

K(M) =1.85[1 - exp (-0.2356M)).
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Thrust coefficient is calculated in (2) [30], and the value
of thrust force is calculated by (3), where s denotes the throt-
tle, ¢ means the aerodynamic pressure, and S, is the reference
area of engine whose value is 9.02m> Angle of attack is
denoted by «, and the unit is degree.

0.4736M"' + 1.6947M > (M < 4),

M (i ’ M>4
P T o00 C s ) | (M=4)

T =59Cy .xSe- (3)

The specific impulse of engine is computed by (4), and
fuel consumption per second is calculated by (5), where
h denotes flight altitude and g denotes the acceleration
of gravity.

4500 — 10(h — 20) (M < 4), W
§ = 4
P | -245M + 5480 - 10(h— 20) (M >4),
dm T
@ gl (5)

The 1976 U.S. Standard Atmosphere Model is used.
An altitude factor is defined by [21], where R, means
the radius of earth.

He h
1+h/R,

(6)

When flight altitude is in the range of 32 to 47 km, the
atmospheric density, denoted by p, is calculated in (7),
where p, = 1.225kg/m’.

H —39.7499
89.4107 (7)
p=3.2618 x 1073P0W713‘2011.

W=1+

For the sake of simplicity, the earth is considered to be
a homogeneous sphere, and the acceleration of gravity is a
constant at 9.8m/s>. The velocity of sound, which is
denoted by a, can be regarded as a constant whose value
is 340.294 m/s [30]. Then, the dynamic model is described
in (8). The flight-path angle is denoted by y. T, L, and D
are thrust, lift, and drag, respectively; m means the mass
of aircraft whose value is 89930kg, and r denotes the flight
range. Based on (8), the trajectory of aircraft can be
simulated.

3
TaBLE 1: The limits of control variables.
Variable Lower limit Upper limit
a () 5 20
s 0 1
Periodic cruise
Acceleration phase trajectory
=
Glide phase
Steady-state
cruise trajectory
t(s)
FiGure 1: The flight plan of periodic cruise.
dh M .
— =M-a-siny,
dt v
dM  Tcosa—D-mgsiny
at m-a ’
; (8)
dy Tsina+L M-a g
— = ——— +C0sYy - ,
dt mM - a R,+h M-a
dr R
—=M-a-cosy ).
dt R, +

The optimization of aircraft trajectory is a kind of clas-
sic optimal control problem. For a periodic dynamic sys-
tem whose period is f, the dynamic equation can be
formulated as (9), where x denotes the array of state var-
iables and u means the array of state variables.

= f(x(t), u(t)). (9)

The function of u(t) needs to be determined in order
to minimize the index function in (10) with the terminal
constraints in (11) satisfied.

I=[ ot uwya (10)

0

x(0) =x(t,). (11)

Therefore, in the optimization of trajectory, h, M, and
y are regarded as state variables, which is formulated as
x=(h,M, y)T. a and s are regarded as control variables,
which is formulated as u=(a,s)". And the optimization
of trajectory is to determine the function of « and s to
minimize the objective which is relative to the parameters
of trajectory.
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FIGURE 2: The process of two-level optimization.

2.2. Method for Steady-State Cruise. To compare with the
result of periodic cruise, the trajectory of steady-state cruise
needs to be solved first.

In steady-state cruise, y is 0 and h and M remain
unchanged. The first three equations in (8) should be equal
to 0. While y is 0 so that the first formula is naturally satisfied,
thus, (12) is obtained. L and D are related to h, M, and «,
while T is related to h, M, &, and s. Overall, there are two
equations with four variables.

dM Tcosa—D
_27:0,

dt m-a

dy Tsina+L M-a g

- = + - =
dt mM - a R,+h M-a

(12)

0.

Given the value of h and M, the other two variables can be
solved and the fuel consumption averaged by range can also
be obtained. Firstly, T can be eliminated by (12), and then,
(13) can be obtained.

(M-a)® _
ERRG (13)

e

Dtana+L-mg+m

Then, a transcendental equation which is only related to
« can be obtained by substituting (14) into (13). After the
value of « is obtained, s can be also calculated by (12).

3.5
g 3
a
£
2
= 2.5
(=}
Q
o)
=3
- 2

45

40
M 10 35 h (km)

F1Gure 3: The distribution of fuel consumption averaged by range at
different flight altitudes and Mach numbers.

1
L=C,- 5p(M~a)2-S,

’ (14)
D=Cy- 5p(M~a)2-S.

Owning to that y is 0 while & and M remain unchanged.
The fuel consumption averaged by flight range can be simpli-
fied as in (15) and [6]. Thus, all parameters in the trajectory
of steady-state cruise can be solved.

]—7T 1+h (15)
_gfspM'a( R_)'

(4
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FIGURE 4: The local optimal parameters of steady-state cruise at different flight altitudes.

2.3. Optimization Problem of Periodic Cruise. In a periodic
cruise whose period is donated by ¢, the terminal constraints
are illustrated in (16).

h(0) =h(t.),
v(0) =v(t,), (16)
y(0) =y(t.)

The objective of optimization is to minimize the fuel con-
sumption averaged by flight range in a cruise period, which is

[y lmldt  m(0)-m(t)
[ecrdt re

(17)

The limits of a and s are determined according to the
original data benchmark [15], as shown in Table 1.

Therefore, the optimization problem of periodic cruise
trajectory can be formulated as (18).

Minimize = ") =m(0)

>

(
(
subjectto ¢ h(0
(
(

In [31], based on a simplified dynamic model, the value
of throttle in periodic cruise was solved by the minimum
principle. It proved that the value of throttle was only 0 or
1, and the engine only started once in a cycle. Gao et al.
[15] regarded the highest point of periodic cruise trajectory

as the starting point and assumed that the curve which
depicted the change of altitude was approximately a cosine
curve with the increase of range. The cosine curve was intro-
duced into the optimal control problem as a path constraint,
and the parameters which determined the shape of cosine
curve were regarded as the augmented state. The optimized
results were similar to that in [31]: the throttle switched
between 0 and 1. Based on the results of above references,
the flight plan of periodic cruise selected in this paper is as
shown in Figure 1: the engine switches on when y is equal
to 0, and it lasts for 60 seconds; then, the aircraft begins to
glide. The throttle is 1 when starting, and the rest is 0.

2.4. Two-Level Optimization Method for Periodic Cruise. As
shown in Figure 1, during the period, the engine switches
on and off periodically; thus, the whole trajectory in a period
can be divided into two phases. One is the acceleration phase
when engine switches on and aircraft speeds up, and the
other is the glide phase when engine switches off and aircraft
glides without propulsion. Due to a relatively small propor-
tion of acceleration phase [31], the angle of attack in this
phase is regarded unchanged, and its value is regarded as a
variable which needs to be optimized. Therefore, when
studying the acceleration phase, it is a kind of parameter opti-
mization problem. In this paper, the optimization about the
angle of attack in the acceleration phase is carried out in
the first level of the two-level method by the Downbhill Sim-
plex Method (DSM). The DSM is a geometrically intuitive
algorithm. In two dimensions, the simplex is a triangle and
it is a tetrahedron in three dimensions. As the algorithm pro-
ceeds, the simplex makes way downward toward the location
of the minimum through series of steps.

The glide phase accounts for a large proportion in the
whole flight period, and the angle of attack in this phase can-
not be regarded as a constant. Therefore, it is a dynamic opti-
mal control problem whose variables change with the
increase of time. In the glide phase, there is no propulsion
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and the throttle is 0; thus, the angle of attack is the only one
control variable. In recent years, direct methods, especially
Pseudo-Spectral Methods (PSMs), have become increasingly
mature with the development of computers and optimization
algorithm. A number of improvements for PSM and combi-
nations with other algorithms were proposed [32]. The
GPOPS (Gauss Pseudo-spectral Optimization Software),
which is based on PSM and some effective nonlinear pro-
gramming methods such as sequential quadratic program-
ming (SQP), has been successfully applied in trajectory
optimization problems. To optimize the angle of attack in
the glide phase quickly and accurately, the GPOPS is
employed as the second-level optimization, whose target is
the longest flight range in the glide phase and the terminal
constraint is (16).

Therefore, due to the division of the whole trajectory, the
whole optimization is divided into a parameter optimization
problem and an optimal control problem, which are solved in
different levels, respectively. Thus, the two levels of the opti-
mization method are mainly divided by different phases of
trajectory. Aiming at the minimal fuel consumption averaged
by flight range, the process of two-level optimization is
shown in Figure 2 and the details are as follows:

Step 1. Set the initial value of angle of attack in the accelera-
tion phase, and calculate the trajectory by the forth order
Runge-Kutta (RK-4) method.

Step 2. Take the terminal point of acceleration phase as the
starting point, and optimize the angle of attack in glide phase
by the GPOPS, whose target is the longest flight range.

Step 3. Calculate the fuel consumption averaged by range in
the whole period, and the result is fed back to the Downbhill
Simplex Method.
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Step 4. Adjust the angle of attack in the acceleration phase by
Downbhill Simplex Method, and calculate the trajectory.

Step 5. Repeat Step 2 to Step 4 until the algorithm converges.

3. Results and Analysis

3.1. Result of Steady-State Cruise. In steady-state cruise, the
distribution of fuel consumption averaged by range at differ-
ent flight altitudes and Mach numbers is displayed in
Figure 3. It can be seen that there is a minimal fuel consump-
tion, whose value is 2 kg/km lower than the maximum. Thus,
the optimization of trajectory is significant to reduce fuel
consumption.

At a constant flight altitude, with the change of Mach
number, there is an optimal flight state whose fuel consump-
tion is the minimum, and it is named the local optimum,
while the state with the minimal fuel consumption at all flight
altitudes is named the global optimum. Some parameters of
local optimums at different flight altitudes are displayed in
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Figure 4. With the enhancement of flight altitude, the local
optimal Mach number and angle of attack as well as throttle
increase, while the fuel consumption averaged by range
decreases firstly and then increases. Thus, it can be concluded
that the global optimal flight altitude of steady-state cruise is
around 43 km.

Figure 5 displays the change of lift, drag, and thrust with
the increase of flight altitude. It can be seen that all forces
decease if flight altitude is higher; thus, the increase of flight
altitude tends to reduce the value of drag, which is also ben-
eficial to reduce fuel consumption. However, from Figure 4, a
higher flight altitude is accompanied with a higher flight
Mach number, which will cause the decrease of impulse
according to (4) and thus the efficiency of engine reduces.
Therefore, there is an intervening flight altitude between
the two aspects to obtain a relatively lower drag and a rela-
tively higher impulse, and that is the point where the global
optimum locates. Overall, the global optimal parameters of
steady-state cruise trajectory are a result of the combination
of the two aspects; thus, minimal fuel is consumed.

By the method of traversal, the flight altitude of the global
optimum in steady-state cruise is at 42.6km and the Mach
number is 14.4. The fuel consumption averaged by range is
1.556 kg/km. Figure 6 shows the contour of fuel consumption
at different flight altitudes and Mach numbers. It can be seen
that if one of the flight altitudes or Mach numbers is away
from the global optimal point, more fuel will be consumed,

and the total flight range will decrease. However, a hyper-
sonic vehicle usually cannot always work at a state around
the optimal point because of the constraints of structure
and the requirements of mission. Therefore, it is significant
to explore periodic cruise whose trajectory is more flexible
with the fuel consumption reduced.

3.2. Optimization Results of Periodic Cruise. Based on the
two-level optimization method, the starting point is set in
the flight altitude at 41km and Mach number at 14.4. The
initial value of optimization variable in the first level is set
as 5% then, the whole two optimization levels are imple-
mented. Figure 7 shows the change of angle of attack in the
acceleration phase during the optimization process, which
is convergent at 5.337" after 12 iterations of optimization.
The complete trajectory and flight parameters in a whole
period are displayed in Figure 8, where the trajectory of accel-
eration phase is depicted by red lines while that of glide phase
is described by black lines. The fuel consumption averaged by
range in the whole period is 1.514 kg/km, whose fuel-saving
efficiency is 5.1% compared with that of steady-state cruise
at 1.596 kg/km at the same flight altitude and Mach number.
Therefore, periodic cruise has more advantages in fuel
saving, and the two-level optimization method is validated
as well.

In last section, it is found that the flight altitude of
optimal steady-state cruise point with the minimal fuel
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consumption is at 42.6 km and the Mach number is 14.4. To
further validate the two-level optimization method and
explore the performance of periodic cruise, optimization of
periodic cruise is carried out at the optimal point of steady-
state cruise. The initial value of angle of attack in the acceler-
ation phase is set as 5° as well. Figure 9 shows the optimized
trajectory and flight parameters in the whole periodic cruise.
The optimal value of angle of attack in the acceleration phase
is 5.751°%, and the fuel consumption averaged by range in the
whole period is 1.511 kg/km, whose fuel-saving efficiency is
2.92% compared with that of steady-state cruise at 1.556
kg/km. A result with less fuel consumption can be obtained
by the two-level optimization even at the optimal steady-

state cruise point; thus, the effectiveness of optimization
method proposed is proved further.

3.3. Analysis of Parameters in Method. To detail the influence
of the GPOPS on the whole method, the distribution of mesh
points with different tolerance is displayed in Figure 10. It
can be seen that more mesh points are needed to achieve a
higher accuracy. It is worth mention that the angle of attack
in the acceleration phase changes in the optimization pro-
cess, which generates different trajectories of the acceleration
phase. Thus, the optimization of the trajectory in glide phase
by the GPOPS is implemented in different starting points
during the optimization process, while generally the GPOPS
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needs a lot of time to obtain a robust result with a small tol-
erance at most starting points. Thus, the optimization would
cost more time if smaller tolerance is required, and the toler-
ance should be selected to balance computational accuracy
and speed.

In addition, the length of duration when engine works,
denoted by t,, is set at 60 s in previous study. To detail the
effect of ¢; on the method, a parameter variation of ¢, is car-
ried out. When that value of ¢, is 60s, 65, and 70s, the opti-
mal angle of attack in the acceleration phase is obtained by
the proposed method and the value is 5.295°, 5.291°, and
5.288° respectively, which decrease slightly. And the reason
should be that a high velocity can be guaranteed at the end
of acceleration phase if t; is large, while a small angle of
attack is beneficial to enhance the impulse and reduce the

drag. As shown in Figure 11, different optimal trajectories
are obtained by the proposed method, which confirm the
applicability and feasibility.

3.4. Analysis of Periodic Cruise Trajectory. When the flight
altitude of starting point is at 41 km and the Mach number
is 14.4, a fuel-saving efficiency more than 5% is achieved by
periodic cruise. Take this as an example to explore the mech-
anism of fuel saving in periodic cruise.

Figure 12 shows the change of drag during periodic cruise
and steady-state cruise, respectively. Combined with
Figure 8, it can be seen that the aircraft accelerates and
ascents with the propulsion provided by engine. Then, the
engine switches off, and the aircraft begins to glide without
power. At this time, the flight altitude is relatively high and
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the atmospheric density is low, which is suitable for glide
because of the small drag as shown in Figure 12. When the
flight altitude is relatively low, the engine switches on again
and the acceleration phase starts. At this time, the atmo-
spheric density is large, which is beneficial for combustion
in engine, and larger impulse is achieved according to (4).
Therefore, the whole trajectory of periodic cruise shuttles
between an atmosphere layer with relatively high density
and an atmosphere layer with relatively low density, and it
is similar to the ducks and drakes. The trajectory of periodic
cruise makes full use of the change of atmospheric density to
reduce drag in the glide phase and enhance impulse in the
acceleration phase; thus, less fuel is consumed compared with
that of steady-state cruise.

According to the Breguet Range Equation [33], a large
lift-drag ratio is beneficial for a longer flight range. The
change of lift-drag ratio in periodic cruise and steady-state

International Journal of Aerospace Engineering

cruise is displayed in Figure 13. It can be seen that the value
of lift-drag ratio in periodic cruise is mostly between 4.1
and 4.2, while that of steady-state cruise is around 4.0, which
is also a reason why fuel saving is achieved in periodic cruise.

Therefore, the trajectory of periodic cruise utilizes the
change of atmospheric density to reduce drag and enhance
impulse and adopts flight states with higher lift-drag ratio
to enhance flight range. Therefore, less fuel is consumed
compared with that of steady-state cruise.

4. Conclusions

Based on the characteristic of periodic cruise trajectory that
the whole trajectory can be divided into an acceleration phase
and a glide phase, a two-level optimization method which
combines the Downhill Simplex Method with the Pseudo-
Spectral Method is proposed in this paper; then, the trajec-
tory of periodic cruise for hypersonic vehicle is optimized
and analyzed. Conclusions can be drawn as follows:

(1) The proposed optimization method can deal with the
design problem of periodic cruise trajectory with fea-
sibility confirmed

(2) The fuel consumption averaged by range in periodic
cruise trajectory is less than that of steady-state cruise
trajectory, which means periodic cruise can save a
certain amount of fuel and make range longer

(3) The trajectory of periodic cruise makes more use of
atmospheric density and lift-drag ratio of aircraft,
and therefore, fuel saving is achieved

In future work, the length of duration when engine works
can be also regarded as an optimization variable, while more
improvements are needed to make sure credible results can
be obtained by PSM. To enhance the accuracy of results
and make the method more robust, new method, such as ini-
tial guess generator technique, can be introduced.
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As an emerging topic, the swarm of autonomous unmanned aerial vehicles (UAVs) has been attracting great attention. Due to the
indeterminacy of sensors, distributed cooperative swarms have been considered to be efficient and robust but challenging to design
and test. To facilitate the development of distributed swarms, it has been proposed to utilise a simulation platform for cooperative
UAVs using imperfect perception. However, the existing simulation platforms cannot satisfy this demand due to a few reasons.
First, they are designed for a specific purpose, and their functionalities are difficult to extend. Second, the existing platforms lack
compatibility to be applied to different types of scenarios. Third, the modelling of these platforms is too simplified to simulate
flight motion dynamic and noisy communication accurately, which may cause a difference in performance between the
simulation and real-world application. To address the mentioned issues, this paper models the problem and proposes a
simulation platform for distributed swarm cooperative perception, which addresses software engineering concerns and provides
a set of extendable functionalities of a cooperative swarm, including communication, estimation, perception fusion, and path
planning. The applicability of the proposed platform is verified by simulations with the real-world application. The simulation

results demonstrate that the proposed system is viable.

1. Introduction

A swarm of autonomous unmanned aerial vehicles (UAVs) has
been an emerging topic in the fields of manufacture, disaster
rescue, and the military [1]. Autonomous unmanned swarms
are expected to outperform a single complex UAV in terms of
flexibility and robustness, thus offering enhanced adaptability,
survivability, and fault tolerance. For instance, in strike coordi-
nation and reconnaissance missions, a swarm of UAVs can
cover a given area in a shorter time than a single one, and a fail-
ure of any swarm member will not cause a failure of the entire
mission, as shown in Figure 1. However, due to the complexity
of the joint decision, the larger the swarm is, the higher the
demand for cooperative planning and perception algorithm will
be. To achieve the aforementioned benefits, the interswarm
cooperative planning and perception algorithm, as well as many
other factors, need to be studied in-depth.

First, the interswarm planning and perception algorithm
should be fully distributed. Otherwise, the swarm is vulnera-
ble to the failure of certain member. Take a centralised swarm
as a counterexample, where a swarm is controlled by a central
member (leader), who fuses the perceptions of members and
makes a planning decision for them. Once the leader fails, the
swarm also fails; thus, the swarm is considered to be nonresi-
lient. Second, the interswarm planning and perception algo-
rithm should be intelligent. The swarm performance should
increase with the swarm scale. Lastly, to be applicable in the
real-world, physical constraints of the swarm, such as packet
loss in communication and noise influenced sensor percep-
tion, need to be taken into account.

Studies on the swarm cooperative planning and percep-
tion have been limited by many factors, such as the difficulty
of a real-world experiment due to the lack of funds to build a
UAV swarm, a risk of damage caused by a fall down [2] of a
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FiGure 1: Illustration of a swarm of UAVs executing strike coordination and reconnaissance missions.

UAV in the swarm, and the regulation that constrains UAV
flight in urban areas. Therefore, simulation-based validation
and testing can significantly facilitate the study of multiple
UAYV swarm planning and control. Vésarhelyi et al. [3] opti-
mised the parameters of the proposed decentralised guiding
algorithm, which enabled large swarms of autonomous
drones to navigate in confined spaces seamlessly. The opti-
mised algorithm was tested in real-world applications using
a swarm of 30 drones, and the obtained test results coincided
well with the expectations. Researchers in the ETH-MAV
team in the 2017 Mohamed Bin Zayed International Robotics
Challenge tested their swarming algorithm for competition
[4] before a real flight using Gazebo [5] as the simulation
environment. In most studies, the proposed algorithms have
been verified only by numerical simulation. Researchers from
the US Air Force Research Laboratory [6] proposed a multi-
ple autonomous vehicle visiting routine planning (VRP)
algorithm and validated it by numerical simulations. A
framework for generating feasible trajectories in motion
coordination problems proposed in [7] was also validated
by simulations. Shao et al. [8, 9] developed a state
estimator-based minimal learning parameter (SE-MLP)
observer using simulation verification to deal with uncer-
tainties appearing in individual quadrotors of the swarm.
Currently, there are many commercial and open-source
simulation platforms for multi-UAV planning and control.
The MultiUAV?2 [10] released by the US Air Force Research
Laboratory, which is part of the MATLAB and Simulink soft-

ware, represents a simulation platform capable of simulating
multiple UAVs that cooperate to accomplish tactical mis-
sions. However, this platform may cause a copyright problem
to the research group without a commercial license. The
CoUAV [11] enables rapid implementation of simulation
for multiple UAVs, and its source code and demo are avail-
able for public access, but in this platform, a member in a
UAYV swarm is controlled by a ground control centres, which
forms a centralised rather than a distributed scheme. The
“Infoplanner” simulation platform that was open-sourced
by Schlotfeldt et al. [12] is capable of simulating decentralised
cooperative planning using an imperfect sensor. However,
due to its specific design and lack of documentation, exten-
sions to the system, such as an extension of a sensor model
or communication setting, are challenging. An expandable,
maintainable, and commercial license-free simulation plat-
form is unavailable nowadays.

To address the mentioned challenges, this paper pro-
poses a simulation platform that provides flexibility in
defining varieties of motion dynamics, sensor models,
and communication settings; convenience in integration
different objectivities with planning algorithm; out-of-the-
box trajectory plotting and multiround Monte Carlo simu-
lation; and no requirement of commercial license. The
proposed simulation platform is developed with software
engineering concerns, such as maintainability and
expansibility, and is applied in a military operation study
[13, 14].
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TaBLE 1: Simulation parameters.
Parameter Value Parameter Value
Area of interest 100 km x 100 km Target start position (200, 500)
Unit length 100 m Unit logical step 1 min
xE+6cos 9

P, (X1 | %) = f (%) + noise,

True target motion model PP, noise, ~ N(0, D)
0 ~ bl

3
D in noise,

0

(-170, -400) (-300, -550)

UAV start position (-430, -4.00) (-300, -250)

UAV linear speed v=90km/h
Constant fuel consumption c=3ml
Turning fuel consumption d=2ml
Number of particles n, =200
Sensor parameter y u=0.38
Sensor parameter « a ~ Rayleigh(0.96)
Sensor parameter g, () g,(y) ~t(1)

Planning target motion model PP

xi" +6sin 9°

Determined part of target state transition f(x;)

Qe+

(44

P/(X4,, | X;) = x; + noise,
noise; ~ N(0, 15)

UAV start heading @, =0
UAV start energy amount (fuel) Yo = 1500 ml
Control space (turning option) u={-15°,0°15"}
Number of samples for planning n, =200
Sensor parameter Pfov Prov= 30°
Sensor parameter & £=0.25
Sensor parameter g () 9c(v) ~N(0,2)
Objective weight #, (y) 3.5y

The remainder of this paper is organised as follows.
Section 2 introduces the system modelling. Section 3 presents
simulation cases of cooperative locating radio emitter with an
airborne radio receiver to demonstrate the usefulness of the
proposed platform. Lastly, Section 4 concludes the paper
and presents future work directions.

2. System Modelling

2.1. Overview. In this section, the swarm planning and per-
ception procedure is modelled in a general pattern, as
shown in Figure 2. Also, the system design and architec-
ture of the simulation platform which are aimed at sup-
porting  rapid and  robust  development and
implementation are introduced, and they are shown in
Figure 3. To apply the simulation platform to different
scenarios, UAV platforms, perception apparatus, and tar-
get motion characteristics, the system modelling adopts a
highly abstract way which highlights the interaction
among the UAVs, targets, perception, and communication.
Every part of the modelling can be further replaced with a
specific detailed model. The replacement is also known as
concrete implementation of an abstract representation in
software engineering.

2.2. Problem Formulation. The problem is formulated in a
lockstep discrete way wherein the states of each module
are computed synchronically. This design enabled that
the simulation can run faster or slower than real time
and pause at any time. Consider a swarm consisting of

n, UAVs with a discrete motion dynamic. Then, it can
be written that

S =f (o up)s i€ A={Lemg}, (1)
where vector s; € §'=R" represents the n, dimensional
state of UAV i at time k and vector u} € %' is the control
action applied to the UAV i at time k, which is one of all
possible decisions %'.

Further, consider #, targets with Markovian state transi-
tion so that

x;ﬁ-l ~ ]Pt (X;ﬁ-llxi)’ jE T= {1""’nt}> (2>

where x], is the state vector of a target j at time k, X, is the set
of all possible states of the target j, and IP,(-) is the transition
probability of the target j. It should be noted that the semi-
Markovian system can be converted into the Markovian sys-
tem by extending the state. According to real-world applica-
tion experience, it is assumed that a target has no awareness
of the existence of the swarm and that its own underlay state
transition model is unavailable for the swarm. Considering
the Bayesian interference, a swarm model target state transi-

tion can be expressed as X{m ~TP, (X£+1,|,X{;),j eT={1,-,
n,}, where IP', is derived from the swarm’s prior knowledge,
and in the most accurate case, it holds that that P’, = P,.

In a realistic application, perceptions of a UAV are

imperfect. The perception result obtained based on the states
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of UAVs i and target j and environmental noise can be
modelled as follows:

= h(soxivi(sxt) ). ()

where ‘y, € R denotes the perception result of a target j
observed by a UAV i at time k, v, is the noise dependent
on the state and environment, and h(-) models the properties
of perception.

This work considers an imperfect interswarm communi-
cation network, where every two members /, m € A, can share
their states, perceptions, and control decisions if needed. Due

to the environment interference and packet loss, the commu-
nication between UAV can be modelled as a probabilistic
model of the received packet. Assume !z, is the received
packet sent by UAV m to UAV [ at time k, Y}" is the UAV

m’s perception result of all targets and i,le is the set of all
cases of | z,. In addition, denote the probability function of
communication distribution as PP, (-). Then,

! ! ! !
mZe ~ P, <mZk|Y]'c” 38> Sp> U u,T), LmeT={L1,--n,}.

(4)
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FIGURE 5: Average RMSE and mutual information of 100 simulation runs.

TaBLE 2: Mean and standard deviation of RMSE at the end of
simulation and mutual information during the simulation from
100 simulation runs.

Mean and standard deviation of RMSE at the end of
simulation and mutual information during the

Scenario simulation

RMSE RMSg . Mutual _ Mutual

mean (m) Stdev information mean  information
(nat) Stdev

7=0 11.871 0.3922 2.322 0.4538
7=2 11.200  0.3948 2.893 0.4209
T=4 10.360 0.3454 3.348 0.4702
T=6 8.505 0.3512 3.746 0.4317

In this work, the decision process on cooperative plan-
ning and perception is considered as a distributed optimal
control problem with the above constraints. Assume that a
quantity of interest ¥ represents the yields of the behaviours
of UAV members; then, it can be written that

U* =argmax¥(s;X;y;2),
U

N { (1), (2), (3): (4), (%)

u e,

where U* denotes the optimal control decision of all UAV
members in a swarm, U is the set of all control decisions
available for UAVs, and (s;x;y;z) is a set consisting of the
UAV state, target state, perception result, and communica-
tion packet. The underlying form of ¥ is determined by the
mission of a swarm. For instance, in the motion planning
problem, ¥ can be defined as a negative integration of the

throttle along the path under the preference of saving energy.
A distributed control decision is made individually by a
swarm member aiming to maximise the union quantity of
yields of the entire team. The decision can be made by one
of the three possible approaches of the control theory:
closed-loop control (feedback rule), open-loop control (plan-
ning once), and open-loop feedback control (planning and
replanning along the receding horizon). Due to the distrib-
uted scheme of the problem, every UAV makes a decision
based on only its own information and received packet. Let

‘f’i be the local estimation of the union yield of a swam by
UAV i. The problem can be rewritten as

* — 7 . .
u; =argmax ¥(s;3;52;),

u;

(1 (2), (3), (4) ©

std el
ie{l,-n,},

where (s;;y,;2;) is the set consisting of the ith UAV’s state,
perception results of UAV i, and all communication packets
received by UAV i.

2.3. Platform Implementation. During the implementation of
the simulation platform, issues concerning maintainability
and functional encapsulation were addressed. Since the sim-
ulation platform development is a complex task for a small
research group, the main purpose of the system design pro-
cess is to manage complexity and reuse codes while ensuring
that the previously formulated problem can be implemented
[15].

The Python programming language is chosen as the pri-
mary programming language because its popularity ensures
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displayed in the linear scale.

the availability to developers in small research groups, devel-
opment productivity, an abundance of relevant packages,
and ampleness of reference cases. Namely, Python is a
developer-friendly language, which is easy to learn and code
even for a beginner, and a novice researcher can learn Python
basics in a relatively short time. In contrast, the other alterna-
tive high-level languages, such as C++ and Java, and emerg-
ing programming languages, such as Go, requires much
more time to master, so a small research group may lack a
developer with enough experience in programming in these
languages. In addition, unlike MATLAB that requires a paid
license, Python has a prosperous open-source community
providing many free-of-charge implementations of an inter-
preter. The features of Python language, including dynamic
typing, being object-oriented, and coroutine supporting,
which are included in all Python versions since version 3.7,
can greatly improve development productivity. Being well-
known, one of the main Python tendencies is to writes less
code with the help of concise and expressive grammar. The
packages managed in PyPI or other source code hosting sites
such as GitHub also promote Python, thus increasing its
popularity. The SciPy adds efficient matrix and statistics
manipulation function to Python, while the SimPy makes
building a discrete-time simulation much easier for Python
using coroutine.

The key to managing complexity is constructing a
domain model representing the essentials of a problem to
be addressed [16]. As the distributed cooperative planning
and perception problem has been formulated before, the next
step is to refine concepts from the problem formulation and
to design the information flow between components. The
overall structure of a domain model is displayed in
Figure 3. The presented structure uses ubiquitous language
during the implementation of the proposed platform and
bridges the gap between the formula and code.

A class, which originates from object-oriented program-
ming (OOP), helps a developer to integrate data with func-
tion, enabling structure reuse and keeping the interface
intact while preserving the ability to modify details and
implementations. Being well-known, the scattered duplicated

codes can significantly jeopardise the maintainability of soft-
ware and lead to certain defects; in particular, codes cannot
be reused directly before certain modifications. To prevent
the deterioration of code in advance, the structure presented
in Figure 3 is encapsulated in a class in the proposed simula-
tion platform. It should be noted that the object-oriented
syntax of Python is concise and expressive.

The proposed platform consists of two major top-level
components, Environments and Autonomy UAV. The Envi-
ronments component enacts the pivotal role as a simulator
of the real world and preserves the whole ground truth data
in its subcomponents. Being isolated from the ground truth
data in the Environment, Autonomy UAV has multiple
instances enacting each UAV in a swarm and retrieving
noise-contaminated data generated by the Noise component
and ground truth data from Environment. Subcomponents
of Environment are UAVs, Targets, Communication Channel,
and Noise. Information exchange between UA Vs is facilitated
by introduction of the Communication Channel component,
which judges the availability of packets according to the com-
munication model. The subcomponents of Environment,
UAVs, and Targets compute the state evolution using the
dynamics assigned by Simulation. Note that in the proposed
solution, the dynamic can be different from that in Plan Algo-
rithm in that a simplified proxy model can be used in plan-
ning. Sensor component in Autonomy UAV defines the
format of perception data and provides a likelihood model
for the Fusion component and Plan Algorithm component.
Combining the perception data and Fusion model, the Esti-
mator component estimates the target state using the target
model assigned to Autonomy UAV component, which is also
not necessarily the same as that in Targets. The Plan Algo-
rithm provides the control based on the UAV state, estima-
tion result, and packed data obtained from Communication
Channel component. The control action, UAV state, and
estimation are gathered as packed data and sent to the other
Autonomy UAV components, as well as to the Environment
component, to change the UAV state.

The remaining three components of the top level are Simn-
ulation, Simulation Clock, and Performance Clock.



Simulation loads parameters in config files, calls functions to
initialize the simulation, and saves simulation data for plot-
ting. Simulation Clock maintains a discrete event priority
queue and drives the simulation forward. Performance Clock
records the computation resource usage data when a feature
is enabled. This component is implemented in the aspect-
oriented scheme using “Wrapper” (a.k.a. decorator), a tool
in Python, which allows performance monitoring without
modification in a simulation code.

3. Cooperative Locating Radio Emitter with
Airborne Radio Receiver

This section introduces the simulation platform configured
to model a simulation case of real-world applications, where
a swarm of UAVs equipped with an airborne radio receiver
attempts to locate a moving ground target emitting radio sig-
nals with limited airborne fuel. The main properties of this
task are as follows. First, and most importantly, the swarm
is completely autonomous and distributed, so trajectories of
UAVs in the swarm are planned online according to the dis-
tributed cooperative decision of the swarm rather than pre-
defined by operators. Second, due to the nonlinearity and
presence of non-Gaussian noise in sensor perception, the
posterior distribution is highly nonunimodal, and the stan-
dard deviation criteria have a limited guiding significance
in the planning of swarm trajectories. Thus, a quantity of
interest must be designed to indicate the location of a moving
target, as well as energy conservation. Lastly, due to the man-
oeuvrability constraint of a fixed-wing UAYV, the planning of
swam trajectories must consider future returns in advance.

3.1. Energy-Aware Motion Model of UAV in Swarm. It is
assumed that during the locating process, swarm members
are flying at fixed speed and height [17] and action candi-
dates are at finite discrete yaw angle, which is expressed as

sp + v cos (¢, )At 0
N T skN +vsin (¢, )At 0
Skr1 = [5k+1 Sker1 Pt Yk+1] = + uy,
o At
P —c- At d- At

where s* and sV denote a swarm member’s coordinates in a
north-east coordinate plane, which is defined by the air zone;
v is a fixed velocity; ¢ is the yaw angle; y > 0 is a real number
representing the remaining energy or power of a UAV (once
y=0,aUAV fails); ¢ > 0 is a fix energy consumption ratio for
flying; and, lastly, d =#(u) denotes the steering cost.

3.2. Radio Emitter Target Model. In the simulation scenario,
two different models of a radio emitter are used in the Envi-
ronment and Planning components of the platform for com-
puting the ground truth and the planning of UAYV,
respectively. The state vector of a moving target can be
expressed as x = [xf  xN q]”, where xF, x" are the target

coordinates in the north-east coordinate plane, the same as
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that of swarm members, and & > 0 is an unknown constant
relating to the transmit power of the radio emission. It should
be noted that the swarm has no prior knowledge about P,.

3.3. Sensor Model of Airborne Radio Receiver. The airborne
radio receiver is assumed to precept the range and bearing
of a radio emitter based on the emission signal’s strength
and direction-of-arrival. The perceptions are polluted by
noise, and in accordance with reality, the bearing perception
is polluted by non-Gaussian noise.

The strength perception of radio emission can be mod-
elled using the relative emission electronic power as follows:

rss = plog, ((sE—xE)2 + (sN—xN)Z) -a, (8)

where y > 0 is a constant related to the performance of a sig-
nal receiver and « is a Rayleigh distribution noise introduced
by the environmental and thermal noise in the radio receiver
[18]. It should be noted that radio emission is undetectable
when rss <0, representing the fact that the sensitivity of a
radio receiver is limited.

The bearing perception is modelled as follows:

NN
bear = tan™! <xE — zE > +w, (9)

where w denotes the non-Gaussian noise introduced by a
random distortion of the radio waveform. The random vari-
able w is generated from a weighted mixture of Gaussian dis-
tribution and a “long-trailing” noise distribution (Student ¢
distribution) [19], which can be expressed as

©=8g,(y) + (1-8)gs(¥), (10)

where g, is the probability density function of the ¢ distribu-
tion, g is the probability density function of the Gaussian
distribution, and £ € [0, ,,1] is the weight representing the
non-Gaussian degree. It should be noted that, in real-world
scenarios, radio emission can be detected only in a limited
range of direction-of-arrival due to the structural characteris-
tics of a radio receiver antenna.

Thus, the sensor model of an airborne radio receiver can
be defined as

Iss

Yi = bear (11)

] ifrss>0, [bear—¢| <o,

a, else,

where ¢, is a constant representing the maximum angle of
the field of view with respect to the yaw of the UAV.

3.4. Channel Model of Interswarm Communication. The
detection, a.k.a. perception results, are sent with the UAV
states s to other UAV members via a packet loss channel.
The packet loss probability is directly proportional to the dis-
tance between the two communicating UAVs. The two out-
comes, succeed to reach and fail to reach, follow the
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Bernoulli distribution, whose parameters can be obtained
from empirical data [20]. Assume lmﬁk(sfc, sy'), where m rep-
resents a UAV and [ represents the ground vehicle, and lm By

(st, s/") denotes the probability distribution of the Bernoulli
distribution at time k; then, it can be expressed as

(ASE)2 + (ASN)2 -

a

lm[J’k (sfc, sf) =0.5 x erfc - a,,

(12)
where «; represents constant experimental parameter.
Then, (9) can be written as

if 2y = (> st ui' )

1 I m
mPx <Sk> Sk )

P, <ZmZk|s§<’ s,’f) = . 1 1
1-1 B, (sk, s;"), if! 7, = @.

(13)

3.5. Bayesian Inference-Based Site Locating. There are many
uncertainty sources along with the perception information
flow from a UAV to the ground vehicle, including noise, fault
detection, and communication loss. To estimate the location
of alost pilot, as well as the estimation accuracy, a distributed
iterative particle filter is utilised. Assuming there is poor prior
information about the location of the lost pilot, the prior dis-
tribution P(s,) is chosen as a uniform distribution on the

map. Particle sets with weights (sF, w*) are sampled from
the prior distribution. The particle set evolves with each
perception result or packet reception by the forward state
prediction (13) and weight update, which can be expressed as

W oc W P(Z | s,). (14)

In order to mitigate the particle degeneracy problem, a
standard importance resampling step is introduced after the
particles’ weights are updated.

3.6. Quantity of Interest for Cooperative Decision. As a char-
acterization of uncertainty, the mutual information of the
radio emitter state and accumulated perceptions is chosen
as one of the two quantities of interest used to evaluate per-
ception quantity. Due to the imperfectness and nonlinearity
of UAV perceptions, the radio emitter location acquired by
the Bayesian inference is always a nonunimodal probability
distribution. In such a situation, other measures like covari-
ance are not appropriate [21]. Another quantity of interest
is the sum of distances between the target and UAVs with a
negative coefficient related to energy Y.

Assumedis; = Y " \2/(st —xN)? + (sf —xF)* represents the

E_
sum of distances between the UAVs and the target; then,
the objective ¥ in (10) can be expressed as

¥ = VIV Z) +n(y,) - dis, ) (15)

whereI(-) denotes the mutual information that can be
derived from [22]; & is the union set of perceptions of a
UAV member perceived by itself and received from other
members, which can be further decomposed as £ = {,Z, ,Z
s Z}; and 7(y) <0 is the coefficient that characterizes

the tendency to approach the target with respect to the
remaining energy.

3.7. Distributed Cooperative Planning. It is hard to obtain a
solution to (15) in the closed form. First, except for a special
form of a dynamic system, it is hard to obtain an optimal
feedback law of U™ as a closed form even in a centralised
scheme [23]. In this study, the global optimal control law is
approximated with an open-loop independent decision series
in a time receding horizon 7, which is resolved in each time
step. Assume ¥, =I,(Y,Z)+n(y,) -dis, represents the
quantity of interest at time k; then, ¥ in (10) can be approx-
imated by

LN (16)

k

where u}, ,u},,, -, ul__are the independent decision series
of a UAV i. A detailed explanation of coordinate descent was
given in [12], and the receding horizon control in cooperative
perception was presented in detail in [24].

The last problem to solve is the estimation of the quantity
of interest in the receding horizon k+1,k+2,---,k+ 7. In
this work, the sampling-based method [25] is used. Assume

that samples of the target state are i,@ ~p(x; | x;_;) and

94 ~ B(ye | X uy), where p(x; | x,_;) and p(yy |, uy) are
derived from the weighted particle set generated by the
Bayesian inference; then, an approximation of ¥, is
expressed as

N AR
¥ <, = NZ\F(x}f),yff),uk). (17)

Inspired by the motion primitive method, a motion
primitive graph can be constructed by taking s, as the root
node, selecting or sampling u} from the available control
action space %' as the edge, connecting edge u} to the candi-
date node 3, |, and calculating the quantity of interest ¥} in
each candidate node si,, as the weight of the edge. Because
the decision space is discrete and ¥ can be enumerating
and evaluated, the scale of the motion primitive graph is lim-
ited. The optimal control action sequence can be obtained by
a search algorithm like Ax.

3.8. Simulation Results. The simulation is conducted in a
square area of interest of 10,000 km?. The UAV swarm is
formed by four small fixed winged UAVs with a two-
cylinder propeller. The target is moving in a constant linear
velocity of 18km/h and a turning rate of 9 degrees/min.
The target’s motion is also disturbed in speed and turning
rate (see noise, in Table 1). The UAVs have no prior
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knowledge of the target’s motion and assume the target is
randomly walking (see planning target motion model PP in
Table 1). The parameters of the airborne sensor for percep-
tion and other parameters for simulation initialization are
given in Table 1. To eliminate the randomness and explore
the effect of 7, four simulation scenarios with different T were
designed, and simulations were conducted 100 times for each
scenario.

The trajectory snaps of one of the simulations four differ-
ent 7 values are presented in Figure 4. Due to the uncertainty
property, the trajectories of both the target and the swarm are
different in each run. Thus, the overall estimation perfor-
mances, including accuracy and credibility, are depicted in
an average performance of 100 simulation runs (see
Figure 5 and Table 2). The accuracy was measured by the
average root mean square error relating to the target true
position (the lower the error was, the better the performance

was),  which  was  calculated by  RMSE, =

\/(Ef —xE)? + (& — xN)?, where xF, %) are the maximum a
posteriori estimation values. The credibility was measured
by the average mutual information derived from the particle
set of the swarm member; the higher the amount of the aver-
age mutual information was, the better the credibility was.

The results in Figure 5 and Table 2 show that the higher T
resulted in higher mutual information and lower RMSE. This
indicates that the increase in the time horizon 7 can help to
improve the performance of the swarm in the way of earlier
turning for gaining more quantity of interest and avoiding
extra turns.

The computation resource consumption of the simula-
tion is plotted in Figure 6. Based on the results in Figure 6,
the improvements in accuracy and credibility were obtained
at the cost of an exponential increase in the computation
cost. In addition, under the exhausting energy (see the end
part of Figure 5), the swarm tended more to approaching
the target than gathering the perception, which coincides well
with the designer expectation.

4. Conclusion

This paper presents an extensible and maintainable simula-
tion platform for distributed swarm cooperative perception
planning considering the uncertainty in communication
and perception. Simulation cases of evaluating the Bayesian
inference-based estimation under imperfect perception and
evaluating distributed cooperative planning are considered
to demonstrate the operating principle and usefulness of
the proposed simulation platform.

Since the modelling and implementation of the simula-
tion consider the real-world constraint, such as unstable
communication and noisy perception, the proposed solution
can be beneficial to distributed cooperative swarm develop-
ment and application.

However, the proposed simulation platform can be fur-
ther improved by implementing additional mode functional-
ities, such as a new sensor model, communication model in
complex terrain, and cooperative planning algorithm based

International Journal of Aerospace Engineering

on reinforcement learning, which will be part of our future
work.
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