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Best proximity pair results are proved for noncyclic relatively u-continuous condensing mappings. In addition, best proximity
points of upper semicontinuous mappings are obtained which are also fixed points of noncyclic relatively u-continuous con-
densing mappings. It is shown that relative u-continuity ofT is a necessary condition that cannot be omitted. Some examples are
given to support our results.

1. Introduction

+e concept of measure of noncompactness was first in-
troduced by Kuratowski [1]. However, the interest in the
concept was revived in 1955 when Darbo [2] proved a
generalization of Schauder’s fixed point theorem using this
concept. Sadovskii [3], in 1967, defined condensing map-
pings and extended Darbo’s theorem. Since then a lot of
work has been done using this concept, and several inter-
esting results have appeared, see, for instance, [4–9].

Let (W, Z) be a nonempty pair in a Banach space (that is,
both W and Z are nonempty sets). A mapping
T: W∪Z⟶W∪Z is called noncyclic provided
T(W)⊆W and T(Z)⊆Z. If there exists (w, z) ∈W × Z

which satisfies w � T(w), z � T(z), and
‖w − z‖ � dist(W, Z), then we say that the noncyclic
mapping T has a best proximity pair. For a multivalued
nonself mapping S: W⟶ 2Z, a point w ∈W is called a
fixed point of S if w ∈ S(w). +e necessary condition for the
existence of a fixed point for such S is W∩Z≠∅. If
W∩Z � ∅, then dist(w, S(w))> 0 for each w ∈W. Best
proximity point theorems provide sufficient conditions for
the existence of at least one solution for the minimization
problem, minw∈Wdist(w, S(w)). If dist(w, S(w)) �

dist(W, Z), the point w is called a best proximity point of S.
+e existence results of best proximity points for

multivalued mappings were obtained in [10–14] and [15].
Best proximity point theorems for relatively nonexpansive
and relatively u-continuous were established by Elderd et al.
in [16, 17] and by Markin and Shahzad in [18]. In recent
years, the topics of best proximity points of single-valued
and multivalued mappings have attracted the attention of
many researchers, see, for example, the work in [6, 7, 19, 20]
and the references cited therein. In this paper, we prove best
proximity pair theorems for noncyclic relatively u-contin-
uous condensing mappings. In addition, we obtain best
proximity points of upper semicontinuous mappings which
are fixed points of noncyclic relatively u-continuous con-
densing mappings. Also, we give examples to support our
results and show by giving an example that relative
u-continuity of T is a necessary condition that cannot be
omitted. Our results extend and complement results of
[6, 7, 11].

2. Preliminaries

In this section, we present some notions and known results
which will be used in the sequel.

Definition 1. Let K be a bounded set in ametric space X. +e
Kuratowski noncompactness measure α(K) (or simply,
measure of noncompactness) is defined as follows:
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α(K) � inf η> 0: K⊆ ∪
m

l�1
Al: diam Al( 􏼁≤ η, ∀1≤ l≤m<∞􏼚 􏼛.

(1)

Theorem 1. Let X be a metric space. 0en, for any nonempty
bounded pair (C1, C2) in X (that is, both C1 and C2 are
nonempty and bounded sets), the following hold:

(1) α(C1) � 0 if and only if C1 is relatively compact
(2) C1 ⊆C2 implies α(C1)≤ α(C2)

(3) α(C1) � α(C1), where C1 denotes the closure of C1

(4) α(C1 ∪C2) � max α(C1), α(C2)􏼈 􏼉

(5) For a normed space X:

(i) α(C1 + x) � α(C1)

(ii) α(C1 + C2)≤ α(C1) + α(C2)

(iii) α(λC1) � |λ|α(C1), for any number λ
(iv) α(con(C1)) � α(con(C1)) � α(C1), where con(C1)

represents the convex hull of C1

Theorem 2. Let Fj􏽮 􏽯 be a decreasing sequence of nonempty
closed subsets of a complete metric space X. If α(Fj)⟶ 0 as
j⟶∞, then ∩ j∈NFj ≠∅.

For more details about the measure of noncompactness,
see [4].

Definition 2. Let (W, Z) be a nonempty pair in Banach
space X and T: W∪Z⟶W∪Z a mapping. +en, T is
said to be noncyclic relatively u-continuous. IfT is noncyclic
and for each ϵ> 0, there is c> 0 such that

‖T(w) − T(z)‖< ε + dist(W, Z)whenever ‖w − z‖

< c + dist(W, Z),
(2)

for each w ∈W and z ∈ Z.

Definition 3. Let (W, Z) be a nonempty convex pair in
Banach space X. A mapping T: W∪Z⟶W∪Z is said to
be affine if for each α, β ∈ [0, 1] with α + β � 1 and
x1, x2 ∈W (respectively, x1, x2 ∈ Z),

T αx1 + βx2( 􏼁 � αT x1( 􏼁 + βT x2( 􏼁. (3)

Definition 4. Let (W, Z) be a nonempty pair in Banach space
X and S: W⟶ 2Z a multivalued mapping on W, then S is
said to be upper semicontinuous if for each closed subset B

in Z, S− 1(B) � w ∈W: S(w)∩B≠∅{ } is closed in W.

Lemma 1. (see [21]). Let Y be a nonempty, convex, and
compact subset of a Banach space X. If f: Y⟶ 2Y can be
written as a finite composition of upper semicontinuous
multivalued mappings of nonempty, compact, and convex
values, then f has a fixed point.

Definition 5. Let T: W∪Z⟶W∪Z be a noncyclic rel-
atively u-continuous mapping and S: W⟶ KC(Z) be an

upper semicontinuous multivalued mapping (here, KC(Z)

denotes the collection of all nonempty, convex, and compact
subsets of Z ), then by the commutativity of T and S, we
mean that T(S(w))⊆S(T(w)) holds for each w ∈W.

Given (W, Z), a nonempty pair in Banach space, its
proximal pair (W0, Z0) is given by

W0 � w ∈W: w − z
∗����
���� � dist(W, Z) for some z

∗ ∈ Z􏽮 􏽯,

Z0 � z ∈ Z: w
∗

− z
����

���� � dist(W, Z) for somew
∗ ∈W􏽮 􏽯.

(4)

Moreover, if (W, Z) is a nonempty, convex, and compact
pair in X, then (W0, Z0) is also a nonempty, convex, and
compact pair.

Definition 6. Let X be a normed space. For a nonempty
subset C of X, the metric projection operator PC: X⟶ 2C

is given by

PC(u) ≔ v ∈ C: ‖u − v‖ � dist(u, C){ }. (5)

For a nonempty, convex, and compact subset C of a
strictly convex Banach space, PC is a single-valued mapping.
Furthermore, for a nonempty, convex, and compact subset C

of a Banach space X, PC is upper semicontinuous with
nonempty, convex, and compact values.

Lemma 2. (see [11]). Let (W, Z) be a nonempty, convex, and
compact pair in a strictly convex Banach space X. Let
T: W∪Z⟶W∪Z be a noncyclic relatively u-continuous
and P: W∪Z⟶W∪Z be a mapping given by

P(u) �
PZ(u), if u ∈W,

PW(u), if u ∈ Z.
􏼨 (6)

0en, T(P(u)) � P(T(u)) for each u ∈W0 ∪Z0.

Theorem 3. (see [18]). Let (W, Z) be a nonempty, convex,
and compact pair in a strictly convex Banach space X. If
T: W∪Z⟶W∪Z is a noncyclic relatively u-continuous
mapping. 0en, T has best proximity pair.

In [6], Gabeleh and Markin introduced the class of
noncyclic condensing operators.

Recall that a nonempty pair (W, Z) in a Banach space X

is called proximinal if W � W0 and Z � Z0.

Definition 7. Let (W, Z) be a nonempty convex pair in a
strictly convex Banach space X. A mapping T: W∪Z⟶
W∪Z is called noncyclic condensing operator provided that,
for any nonempty, bounded, closed, convex, proximinal, and
T-invariant pair (H1, H2)⊆(W, Z) with dist(H1, H2) � dist
(W, Z), there exists k ∈ (0, 1) such that

α T H1( 􏼁∪T H2( 􏼁( 􏼁≤ kα H1 ∪H2( 􏼁. (7)

Lemma 3. (see [11]). Let (W, Z) be a nonempty, convex, and
compact pair in a strictly convex Banach space X. If
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T: W∪Z⟶W∪Z is a noncyclic relatively u-continuous
mapping, then T is continuous on W0 and Z0.

3. Main Results

+roughout this paper, we will assume that X is a strictly
convex Banach space and α is the measure of non-
compactness on X.

Remark 1. Let T: W⟶W be condensing in the sense of
Definition 7 with k ∈ (0, 1). +en, for any bounded subset H

of W, T satisfies

α(T(H))≤ kα(H). (8)

To see this, in (7), set W � Z and H1 � H2 � H. Since
H⊆con(H), then

α(T(H))≤ α(T(con(H)))≤ kα(con(H)) � kα(H). (9)

Theorem 4. Let (W, Z) be a nonempty, convex, and closed
pair in X such that W is bounded and W0 is nonempty.
Suppose T: W∪Z⟶W∪Z is a noncyclic relatively
u-continuous, affine, and condensing mapping. 0en, there
exists (u0, v0) ∈W × Z such that T(u0) � u0, T(v0) � v0
and ‖u0 − v0‖ � dist(W, Z). Moreover, if S: W⟶ KC(Z)

is an upper semicontinuous multivalued mapping, T and S

commute, and for each x ∈W0, S(x)∩Z0 ≠∅, there exists
w ∈W such thatT(w) � w and dist(w, S(w)) � dist(W, Z).

Proof. We follow [6, 11]. Clearly, (W0, Z0) is a nonempty,
closed, convex, proximinal, and T-invariant pair. Let
(w0, z0) ∈W0 × Z0 be such that ‖w0 − z0‖ � dist(W, Z).
Suppose F is a family of nonempty, closed, convex, prox-
iminal, and T-invariant pairs (C, D)⊆(W, Z) such that
(w0, z0) ∈ (C, D), then F is nonempty. Set
(F1, F2) � ∩ (C,D)∈F(C, D), G1 � con(T(F1)∪ w0􏼈 􏼉), and
G2 � con(T(F2)∪ z0􏼈 􏼉). So, (w0, z0) ∈ G1 × G2 and
(G1, G2)⊆(F1, F2). Furthermore,T(G1)⊆G1 andT(G2)⊆G2,
that is, T is noncyclic on G1 ∪G2. Also, for x ∈ G1,
x � 􏽐

m−1
l�1 clT(wl) + cmw0, where for all l ∈ 1, 2, . . . , m − 1{ }

with cl ≥ 0 and 􏽐
m
l�1 cl � 1, wl ∈ F1 . Since (F1, F2) is

proximinal, there is zl ∈ F2 such that ‖wl − zl‖ � dist
(W, Z), for each l ∈ 1, 2, . . . , m − 1{ }. Set y � 􏽐

m−1
l�1 clT

(zl) + cmz0. +en, y ∈ G2. Moreover,

‖x − y‖ � 􏽘
m−1

l�1
clT wl( 􏼁 + cmw0

⎛⎝ ⎞⎠ − 􏽘
m−1

l�1
clT zl( 􏼁 + cmz0

⎛⎝ ⎞⎠

����������

����������

≤ 􏽘

m−1

l�1
cl T wl( 􏼁 − T zl( 􏼁

����
���� + cm w0 − z0

����
����

� dist(W, Z).

(10)

So, one can conclude that (G1)0 � G1. Similarly,
(G2)0 � G2, and hence, (G1, G2) ∈ F, that is, G1 � F1 and
G2 � F2. Notice that

α G1 ∪G2( 􏼁 � max α G1( 􏼁, α G2( 􏼁􏼈 􏼉 � max α con T F1( 􏼁∪ w0􏼈 􏼉( 􏼁( 􏼁, α con T F2( 􏼁∪ z0􏼈 􏼉( 􏼁( 􏼁􏼈 􏼉

� max α T F1( 􏼁( 􏼁, α T F2( 􏼁( 􏼁􏼈 􏼉 � α T F1( 􏼁∪T F2( 􏼁( 􏼁 � α T G1( 􏼁∪T G2( 􏼁( 􏼁≤ kα G1 ∪G2( 􏼁.
(11)

But k ∈ (0, 1), so α(G1 ∪G2) � 0. We conclude that
(G1, G2) is a nonempty, compact, and convex pair with
dist(G1, G2) � dist(W, Z). By +eorem 3, there exists
(u0, v0) ∈W × Z such that T(u0) � u0, T(v0) � v0 and
‖u0 − v0‖ � dist(W, Z).

Now, let Fix(T) � x ∈W∪Z: T(x) � x{ }, FixW(T) �

Fix(T)∩W0, and FixZ(T) � Fix(T)∩Z0. By the above
part, the pair (FixW(T), FixZ(T)) is nonempty. Also, it is a
convex pair. Indeed, for α , β ∈ [0, 1], with α + β � 1 and
x, y ∈ FixW(T) (respectively, FixZ(T)):

T(αx + βy) � αT(x) + βT(y) � αx + βy, (12)

and by convexity of W0 (respectively, Z0), we conclude that
αx + βy ∈ FixW(T) (respectively, FixZ(T)). Furthermore,
since T is condensing,

α FixW(T)∪ FixZ(T)( 􏼁 � α T FixW(T)( 􏼁∪T FixZ(T)( 􏼁( 􏼁

≤ kα FixW(T)∪ FixZ(T)( 􏼁,

(13)

which implies that the pair (FixW(T), FixZ(T)) is compact.
For x ∈ FixW(T) and u ∈ S(x), we have

T(u) ∈ T(S(x))⊆S(T(x)) � S(x), (14)

that is, S(x) is invariant underT. So, by the invariance of Z0
under T, S(x)∩Z0 ≠∅ is invariant under T. So, in view of
Remark 3.1, Darbo’s fixed point theorem guarantees the
existence of a fixed point for the continuous mapping T:
S(x)∩Z0⟶ S(x)∩Z0. +us, S(x)∩ FixZ(T)≠∅, for
x ∈ FixW(T). Define f: FixW(T)⟶ 2FixZ(T) by f(x) �

S(x)∩ FixZ(T), for each x ∈ FixW(T). +en, f is an upper
semicontinuous multivalued mapping with nonempty,
compact, and convex values. Moreover, PW: FixZ(T)⟶
FixW(T) is well-defined. Indeed, for y ∈ FixZ(T), there is
x ∈W such that ‖x − y‖ � dist(W, Z). So,

y � PZ(x) andx � PW(y). (15)

By relative u-continuity of T, we conclude that ‖T(x)−

T(y)‖ � dist(W, Z). +us, T(y) � PZ(T(x)) and T(x) �

PW(T(y)), by (15), T(x) � T(PW(y)) � PW(T(y)) �

PW(y). +en, PW(y) ∈ FixW(T). Consider PW°f : FixW
(T)⟶ 2FixW(T), by Lemma 1, there is w ∈ FixW(T) such
that w ∈ (PW°f)(w), that is, T(w) � w and w ∈ (PW(f

(w))). So, there is z ∈ f(w) ⊂ S(w)∩Z0 such that w � PW

(z). We conclude that ‖z − w‖ � dist(z, W). But since
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z ∈ Z0, there is w∗ ∈W such that ‖w∗ − z‖ � dist(W, Z).
+us,

dist(W, Z)≤ dist(w, S(w))≤ ‖w − z‖ � dist(z, W)

≤ z − w
∗����
���� � dist(W, Z).

(16)

Hence, dist(w, S(w)) � dist(W, Z). □

Example 1. Consider the Hilbert space X � ℓ2 over R with
the basis en: n ∈ N􏼈 􏼉 (the canonical basis) and let

W � ζ1e1 + ζ2e2: ζ1 ∈ [0, 4], ζ2 � −1􏼈 􏼉 andZ

� ζ1e1 + ζ2e2: ζ1 ≤ 0, ζ2 � 1􏼈 􏼉.
(17)

+en, (W, Z) be a nonempty, convex, and closed pair of
X such that W is bounded. Furthermore, dist(W, Z) � 2 and

W0 � −e2􏼈 􏼉 andZ0 � e2􏼈 􏼉. (18)

Define the mapping T: W∪Z⟶W∪Z by
T(ζ1e1 + ζ2e2) � (3ζ1/4)e1 + ζ2e2, for each ζ1e1+
ζ2e2 ∈W∪Z. +en, T is a noncyclic relatively u-continu-
ous, affine, and condensing mapping. Now, define
S: W⟶ KC(Z) by S(ζe1 − e2) � −ζe1 + e2􏼈 􏼉; then, S is an
upper semicontinuous multivalued mapping, T and S

commute, and for each x ∈W0, S(x)∩Z0 ≠∅. For
w � −e2 ∈W, we have T(w) � w and dist(w, S(w)) � dist
(W, Z).

Example 2. Consider the Hilbert space X � ℓ2 over R with
the basis en: n ∈ N􏼈 􏼉 and let

W � ζ1e1 + ζ2e2: ζ1 ∈ [0, 4], ζ2 ∈ [1, 5]􏼈 􏼉 and

Z � ζ1e1 + ζ2e2: ζ ≥ 0, ζ2 � 0􏼈 􏼉.
(19)

+en, (W, Z) be a nonempty, convex, and closed pair of
X such that W is bounded with dist(W, Z) � 1 and

W0 � ζ1e1 + e2: ζ1 ∈ [0, 4]􏼈 􏼉,

Z0 � ζe1: ζ ∈ [0, 4]􏼈 􏼉.
(20)

Define the mapping T: W∪Z⟶W∪Z by T(ζ1e1 +

ζ2e2) � ((2ζ1 + 1)/3)e1 + ζ2e2 for each ζ1e1 + ζ2e2 ∈W∪Z.
+en, T is a noncyclic relatively u-continuous, affine, and
condensing mapping. Furthermore, for (u0, v0) �

(e2, 0) ∈W × Z, we have T(u0) � u0, T(v0) � v0, and
‖u0 − v0‖ � dist(W, Z). Now, let S: W⟶ KC(Z) given by
S(ζ1e1 + ζ2e2) � ce1: c ∈ [ζ1, 4]􏼈 􏼉, then S is an upper sem-
icontinuous multivalued mapping, T and S commute, and
for each x ∈W0, S(x)∩Z0 ≠∅. For w � e1 + e2 ∈W, we
have T(w) � w and dist(w, S(w)) � dist(W, Z).

Remark 2. +e relative u-continuity of T is necessary in
+eorem 4.

To see this, consider the Hilbert space X � ℓ2 overRwith
the basis en: n ∈ N􏼈 􏼉 and let W � x ∈ X: ‖x‖≤ 1{ },
Z � ζe2: ζ ∈ [2, 3]􏼈 􏼉. +en, (W, Z) is a nonempty, convex,
and closed pair in X such that W is bounded. Obviously,
dist(W, Z) � 1 and

W0 � e2􏼈 􏼉,

Z0 � 2e2􏼈 􏼉.
(21)

Define the mapping T: W∪Z⟶W∪Z by

T(x) � 􏽘

∞

i�1

ζ i

2
ei, forx ∈W,

ζ2
2

+ 1􏼠 􏼡e2forx ∈ Z,􏼨 (22)

for x � (ζ1, ζ2, ζ3, . . .) ∈W∪Z. +en, T is a noncyclic, af-
fine, and condensing mapping. Let S: W⟶ KC(Z) given
by S((ζ1, ζ2, ζ3, . . .)) � (2 + |ζ1|)e2􏼈 􏼉. +en, S is an upper
semicontinuous multivalued mapping, T and S commute,
and for each x ∈W0, S(x)∩Z0 ≠∅. Here, w � (0, 0, 0, . . .)

is the only fixed point of T in W, but
dist(w, S(w))> dist(W, Z). Note that ‖e2 − 2e2‖<
dist(W, Z) + δ for all δ > 0 but ‖T(e2) − T(2e2)‖>
dist(W, Z) + (1/4).

+e following corollary follows immediately from
+eorem 4.

Corollary 1. Let (W, Z) be a nonempty, convex, and closed
pair in X such that W is bounded and W0 is nonempty.
SupposeT: W⟶W is a continuous, affine, and condensing
mapping. If S: W⟶ KC(W) is an upper semicontinuous
multivalued mapping, T and S commute, and then there is
w ∈W which satisfies w ∈ Fix(T)∩ Fix(S).

Theorem 5. Let (W, Z) be a nonempty, convex, and closed pair
in X such that W is bounded and W0 is nonempty. If
T1,T2: W∪Z⟶W∪Z are commuting, noncyclic relatively
u-continuous, affine, and condensing mappings, then there exists
(u0, v0) ∈W × Z such that T1(u0) � u0 � T2(u0), T1
(v0) � v0 � T2(v0), and ‖u0 − v0‖ � dist(W, Z).

Proof. Since W0 is nonempty and by relative u-continuity of
T1, for w0 ∈W0, there exists z0 ∈ Z such that
‖w0 − z0‖ � dist(W, Z). Consequently, ‖T1(w0)− T1(z0
)‖ � dist(W, Z). +at is, W0 is invariant under T1. +us,
Darbo’s fixed point theorem guarantees that there is u ∈W0
such that T1(u) � u. Notice T1(FixW(T1)) � FixW(T1) and
so α(FixW(T1)) � α(T1 (FixW(T1)))≤ kα (FixW(T1)).
+us, α(FixW(T1)) � 0, and thus, FixW(T1) is compact.
Furthermore, T1(T2(u)) � T2(T1(u)) � T2(u). So,
T2: FixW(T1)⟶ FixW(T1) is a continuous mapping on a
compact convex set. By Schauder’s fixed point theorem, there is
u0 ∈ FixW(T1) such that T2(u0) � u0, that is, u0 ∈ FixW

(T1)∩ FixW(T2). Let v0 inZ0 be the unique closest point to
u0. By relative u-continuity of T1 and T2, we infer that, since
‖u0 − v0‖ � dist(W, Z), ‖T1(u0) − T1(v0)‖ � dist(W, Z) and
‖T2(u0) − T2(v0)‖ � dist(W, Z). Hence, T1(u0) � u0 � T2
(u0), T1(v0) � v0 � T2(v0). □

Lemma 4. Let (W, Z) be a nonempty, convex, and closed
pair in X such that W is bounded and W0 is nonempty. LetC
be the collection of the commuting, noncyclic relatively
u-continuous, affine, and condensing mappings on W∪Z.
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0en, the mappings in C have common fixed points u0 ∈W0
and v0 ∈ Z0.

Proof. For each T ∈ C, consider Fix(T), FixW(T), and
FixZ(T) defined previously. +en, FixW(T) is nonempty,
compact, and convex. Let T1,T2, . . . ,Tk be a finite sub-
collection of C. Assume F � ∩ 1≤i≤kFixW(Ti)≠∅,
F1 � F∩ FixW(Tk+1) � ∩ 1≤i≤k+1FixW(Ti), and Fn+1 � Fn ∩
FixW(Tk+n+1) � ∩ 1≤i≤k+n+1FixW(Ti), for n ∈ N. +en, Fn􏼈 􏼉

is a decreasing sequence of compact subsets of X. Fur-
thermore, Fn ≠∅ for each n ∈ N. Indeed, for w ∈ F and each
m ∈ 1, 2, . . . , k{ }, then Tm(Tk+1(w)) � Tk+1(Tm(w)) �

Tk+1(w), and this implies that Tk+1(w) ∈ F. +us, F is
invariant underTk+1. By Schauder’s fixed point theorem, we
get that F1 ≠∅. Now, for each n ∈ N and
m ∈ 1, 2, . . . , k + n{ }, pick x ∈ Fn:

Tm Tk+n+1(x)( 􏼁 � Tk+n+1 Tm(x)( 􏼁 � Tk+n+1(x), (23)

that is, Tk+n+1(x) ∈ Fn. So, Tk+n+1: Fn⟶ Fn is continuous
on Fn, and then there is y ∈ Fn such that Tk+n+1(y) � y.
+erefore, y ∈ Fn+1 ≠∅. By+eorem 2, ∩ n∈NFn ≠∅. Hence,
∩ T∈CFixW(T)≠∅. Similarly, we can show that
∩ T∈CFixZ(T)≠∅. □

Theorem 6. Let (W, Z) be a nonempty, convex, and closed
pair in X such that W is bounded and W0 is nonempty. LetC
be the collection of the commuting, noncyclic, relatively
u-continuous, affine, and condensing mappings on W∪Z.
0en, there is (u0, v0) ∈W × Z such that, for each
T ∈ C: T(u0) � u0,T(v0) � v0, and ‖u0 − v0‖ � dist(W, Z).

Proof. Based on the previous lemma, the mappings in C

have a fixed point in common u0 ∈W, that is, T(u0) � u0,
for each T ∈ C. Let v0 ∈ Z be the unique closest point to u0.
By relative u-continuity of T, since ‖u0 − v0‖ � dist(W, Z),

u0 − T v0( 􏼁
����

���� � T u0( 􏼁 − T v0( 􏼁
����

����

� dist(W, Z), for eachT ∈ C.
(24)

Hence, T(v0) � v0. □

Theorem 7. Let (W, Z) be a nonempty, convex, and closed
pair in X such that W is bounded and W0 is nonempty. LetC
be the collection of the commuting, noncyclic relatively
u-continuous, affine, and condensing mappings on W∪Z. If
S: W⟶ KC(Z) is an upper semicontinuous multivalued
mapping such that, for each x ∈W0: S(x)∩Z0 ≠∅. If C
commutes with S, then there exists w ∈W such that

T(w) � w and dist(w, S(w)) � dist(W, Z). (25)

Proof. By Lemma 4, (∩ T∈CFixW(T), ∩ T∈CFixZ(T)) is a
nonempty compact convex pair. Also, in view to the proof of
+eorem 4, for T ∈ C and for each x ∈ FixW(T), we have
S(x) and Z0 are invariant under T. So,
S(x)∩ (∩ T∈CFixZ(T))≠∅.

Define f: ∩ T∈CFixW(T)⟶ 2∩ T∈CFixZ(T) by f(x) � S

(x)∩ (∩ T∈CFixZ(T)), for x ∈ ∩ T∈CFixW(T). +en, f is an

upper semicontinuous multivalued mapping with non-
empty, compact, and convex values. Moreover, PW:
∩ T∈CFixZ(T)⟶ ∩ T∈CFixW(T) is well-defined. Indeed,
for y ∈ ∩ T∈CFixZ(T), there exists x ∈W such that
‖x − y‖ � dist(W, Z). So,

y � PZ(x) andx � PW(y), (26)

By relative u-continuity of T, one can conclude that
‖T(x) − T(y)‖ � dist(W, Z). +us, T(y) � PZ(T(x)) and
T(x) � PW(T(y)), and by (26), T(x) � T(PW(y)) � PW

(T(y)) � PW(y). +us, PW(y) ∈ ∩ T∈CFixW(T). Note that
PW°f : ∩ T∈CFixW(T) ⟶ 2FixW(T), and by Lemma 1, there
is w ∈ ∩ T∈CFixW(T) such that w ∈ (PW°f)(w), that is, for
T ∈ C, we have T(w) � w and w ∈ (PW(f(w))). So, there
is z ∈ f(w) � S(w)∩ (∩ T∈CFixZ(T)) such that w � PW(z).
We infer that ‖z − w‖ � dist(z, W). But z ∈ Z0, then there is
w∗ ∈W such that ‖w∗ − z‖ � dist(W, Z). +en,

dist(W, Z)≤ dist(w, S(w)) ≤ ‖w − z‖≤ z − w
∗����
����

� dist(W, Z).
(27)

Hence, dist(w, S(w)) � dist(W, Z). □

Example 3. Let X � ℓ2 overR with the basis en: n ∈ N􏼈 􏼉 and
let

W � ζ1e1 + ζ2e2: ζ1 ∈ [−3, −1], ζ2 ∈ [−8, 8]􏼈 􏼉

andZ � ζ1e1 + ζ2e2: ζ1 ∈ [0, 3], ζ2 ∈ R􏼈 􏼉.
(28)

+en, (W, Z) be a nonempty, convex, and closed pair in
X such that W is bounded. Furthermore, dist(W, Z) � 1 and

W0 � −e1 + ζ2e2: ζ2 ∈ [−8, 8]􏼈 􏼉 andZ0 � ζ2e2: ζ2 ∈ [−8, 8]􏼈 􏼉.

(29)

Consider T1,T2: W∪Z⟶W∪Z given by

T1 ζ1e1 + ζ2e2( 􏼁 � ζ1e1 +
ζ2
2

e2 andT2 ζ1e1 + ζ2e2( 􏼁

� ζ1e1 +
ζ2
4

e2,

(30)

for each ζ1e1 + ζ2e2 ∈W∪Z.+en,T1 andT2 are noncyclic,
affine, and condensing mappings. Furthermore, T1 and T2
commute.

Define S: W⟶ KC(Z) by S(ζ1e1 + ζ2e2) � ce1 + ζ2􏼈

e2: c ∈ [0, −ζ1]}, then S is an upper semicontinuous mul-
tivalued mapping that commutes with T1 and T2 and
satisfies that, for each x ∈W0: S(x)∩Z0 ≠∅. For w � −e1
and z � 0,T1(w) � T2(w) � w and T1(z) � T2(z) � z.
Furthermore, ‖w − z‖ � dist(W, Z) and dist(w, S(w)) �

dist(W, Z).

4. Conclusion

We have proved some best proximity pair theorems for
noncyclic relatively u-continuous and condensing map-
pings. We have also obtained best proximity points of upper
semicontinuous mappings which are fixed points of non-
cyclic relatively u-continuous condensing mappings.
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Moreover, we have given some examples to support our
results. It has been shown that relative u-continuity ofT is a
necessary condition that cannot be omitted. We have ex-
tended recent results of [6, 11].
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Iterative methods for solving variational inclusions and fixed-point problems have been considered and investigated by many
scholars. In this paper, we use the Halpern-type method for finding a common solution of variational inclusions and fixed-point
problems of pseudocontractive operators. We show that the proposed algorithm has strong convergence under some
mild conditions.

1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and
induced norm ‖ · ‖. Let C be a nonempty closed and convex
subset of H. Let f: C⟶ H and g: H⟶ 2H be two
nonlinear operators. Recall that the variational inclusion
([1]) is to solve the following problem of finding x‡ ∈ 2H

verifying

0 ∈ (f + g)x
‡
. (1)

Here, use (f + g)− 1(0) to denote the set of solutions of (1).

Special Case 1. Let δC: H⟶ 0, +∞{ } be defined by

δC �
0, x ∈ C,

+∞, x ∉ C.
􏼨 (2)

Setting g � zδC, variational inclusion (1) reduces to find
x‡ ∈ C such that

〈f x
‡

􏼐 􏼑, x − x
‡〉≥ 0, ∀x ∈ C. (3)

Problem (3) is the well-known variational inequality
which has been studied, extended, and developed in a broad
category of jobs (see, e.g., [2–14]).

Special Case 2. Let φ: H⟶ R∪ +∞{ } be a proper lower
semicontinuous convex function and zφ be the sub-
differential of φ. Setting g � zφ, variational inclusion (1)
reduces to find x‡ ∈ H such that

〈f x
‡

􏼐 􏼑, x − x
‡〉 + φ(x) − φ x

‡
􏼐 􏼑≥ 0, ∀x ∈ H. (4)

Problem (4) is called the mixed quasi-variational in-
equality [15] which is a very significant extension of vari-
ational inequality (3) involving the nonlinear function φ. It is
well known that a large number of practical problems arising
in various branches of pure and applied sciences can be
formulated as the model of mixed quasi-variational in-
equality (4).

Hindawi
Journal of Mathematics
Volume 2021, Article ID 6635026, 7 pages
https://doi.org/10.1155/2021/6635026

mailto:ykwvnu@gmail.com
mailto:cfwen@kmu.edu.tw
https://orcid.org/0000-0001-7788-8157
https://orcid.org/0000-0001-8900-761X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6635026


Problem (1) plays a key role in minimization, convex
feasibility problems, machine learning, and others. A pop-
ular algorithm for solving problem (1) is the forward-
backward algorithm [16] generated by

xn+1 � (I + λg)
− 1

(I − λf)xn, n≥ 1, (5)

where I − λf is a forward step and (I + λg)− 1 is a backward
step with λ> 0. -is algorithm is a splitting algorithm which
solves the difficulty of calculating of the resolvent of f + g.

Recently, there has been increasing interest for studying
common solution problems relevant to (1) (see for ex-
ample, [17–27]). Especially, Zhao, Sahu, and Wen [28]
presented an iterative algorithm for solving a system of
variational inclusions involving accretive operators. Ceng
and Wen [29] introduced an implicit hybrid steepest-de-
scent algorithm for solving generalized mixed equilibria
with variational inclusions and variational inequalities. Li
and Zhao [30] considered an iterate for finding a solution of
quasi-variational inclusions and fixed points of non-
expansive mappings.

Motivated by the results in this direction, the main
purpose of this paper is to research a common solution
problem of variational inclusions and fixed point of pseu-
docontractions. We suggest a Halpern-type algorithm for
solving such problem. We show that the proposed algorithm
has strong convergence under some mild conditions.

2. Preliminaries

Let H be a real Hilbert space. Let g: H⟶ 2H be an op-
erator. Write dom(g) � x ∈ H: g(x)≠∅􏼈 􏼉. Recall that g is
called monotone if ∀x, y ∈ dom(g), u ∈ g(x) and v ∈ g(y),
〈x − y, u − v〉≥ 0.

A monotone operator g is maximal monotone if and
only if its graph is not strictly contained in the graph of any
other monotone operator on H.

For a maximal monotone operator g on H,

(i) Set g− 10 � x ∈ H: 0 ∈ g(x)􏼈 􏼉

(ii) Denote its resolvent by J
g

λ � (I + λg)− 1 which is
single-valued from H into dom(g)

It is known that g− 10 � Fix(J
g

λ ),∀λ> 0 and J
g

λ is firmly
nonexpansive, i.e.,

J
g

λx − J
g

λy
����

����
2 ≤ 〈Jg

λx − J
g

λy, x − y〉, (6)

for all x, y ∈ C.
Let C be a nonempty closed convex subset of a real

Hilbert space H. Recall that an operator T: C⟶ C is said
to be

(i) L-Lipschitz if there exists a positive constant L such
that

‖Tx − Ty‖≤L‖x − y‖, ∀x, y ∈ C. (7)

If L � 1, T is nonexpansive.
(ii) Pseudocontractive if

〈Tx − Ty, x − y〉≤ ‖x − y‖
2
, ∀x, y ∈ C. (8)

(iii) Inverse-strongly monotone if

〈Tx − Ty, x − y〉≥ α‖Tx − Ty‖
2
, ∀x, y ∈ C, (9)

where α> 0 is a constant and T is also called α-ism.
Recall that the projection PC is an orthographic pro-

jection from H onto C, which is defined by
‖x − PC(x)‖ � miny∈C‖x − y‖. It is known that PC is
nonexpansive.

Lemma 1 (see [23, 31]). Let C be a nonempty closed convex
subset of a real Hilbert space H. Let T: C⟶ C be an
L-Lipschitz pseudocontractive operator. <en,

(i) T is demiclosed, i.e., xn⇀p and T(xn)⟶ q⇒T

(p) � q

(ii) For 0< ζ < (1/(
�����
1 + L2

√
+ 1)), ∀x ∈ C and y ∈ Fix

(T), we have

‖T[(1 − ζ)x + ζT(x)] − y‖
2 ≤ ‖x − y‖

2
+(1 − ζ)‖x − T[(1 − ζ)x + ζT(x)]‖

2
. (10)

Lemma 2 (see [16, 32]). Let H be a real Hilbert space and let
g be a maximal monotone operator on H. <en, we have

J
g
s (x) − J

g
t (x)

����
����
2 ≤

s − t

t
〈Jg

s (x) − J
g
t (x), J

g
s (x) − x〉,

(11)

for all s, t> 0 and x ∈ H.

Lemma 3 (see [33]). Assume that a real number sequence
an􏼈 􏼉 ⊂ [0,∞) satisfies

an+1 ≤ 1 − cn( 􏼁an + δncn, (12)

where cn􏼈 􏼉 ⊂ (0, 1) and δn􏼈 􏼉 ⊂ (−∞, +∞) satisfy the fol-
lowing conditions:

(i) 􏽐
∞
n�1 cn �∞

(ii) lim supn⟶∞δn ≤ 0 or 􏽐
∞
n�1 |δncn|<∞

<en, limn⟶∞an � 0.

Lemma 4 (see [8]). Let sn􏼈 􏼉 ⊂ (0,∞) be a sequence. Assume
that there exists at least a subsequence sni

􏽮 􏽯 of sn􏼈 􏼉 verifying
sni
≤ sni+1 for all i≥ 0. Let τ(n){ } be an integer sequence defined

as τ(n) � max i≤ n: sni
< sni+1􏽮 􏽯. <en τ(n)⟶∞ as

n⟶∞ and
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max sτ(n), sn􏽮 􏽯≤ sτ(n)+1. (13)

3. Main Results

Let C be a nonempty closed convex subset of a real Hilbert
space H. Let the operator f: C⟶ H be an α-ism. Let
g: H⟶ 2H be a maximal monotone operator with
dom(g) ⊂ C. Let T: C⟶ C be an L−Lipschitz pseudo-
contractive operator with L> 1. Let αn􏼈 􏼉 ⊂ (0, 1) and
λn􏼈 􏼉 ⊂ (0,∞) be two sequences. Let ] and ζ be two
constants.

Next, we introduce a Halpern-type algorithm for finding
a common solution of variational inclusion (1) and fixed
point of pseudocontractive operator T.

Algorithm 1. Let u ∈ C be a fixed point. Choose x0 ∈ C. Set
n � 0.

Step 1. For given xn, compute yn by

yn � (1 − ])xn + ]T (1 − ζ)xn + ζTxn( 􏼁. (14)

Step 2. Compute xn+1 by

xn+1 � αnu + 1 − αn( 􏼁J
g

λn
I − λnf( 􏼁yn. (15)

Step 3. Set n: � n + 1 and return to Step 1.

Next, we prove the convergence of Algorithm 1.

Theorem 1. Suppose that Γ: � Fix(T) ∩ (f + g)− 1(0)≠∅.
Assume that the following conditions are satisfied:

limn⟶∞αn � 0 and 􏽐
∞
n�1 αn �∞

0<d1 < λn <d2 < 2α and 0< ]< ζ < (1/(
�����
1 + L2

√
+ 1))

<en, the sequence xn􏼈 􏼉 generated by Algorithm 1 con-
verges strongly to PΓ(u).

Proof. Let x∗ ∈ Fix(T)∩ (f + g)− 1(0). Set un � J
g

λn
(I − λn

f)yn, ∀n≥ 0. Since f is α-ism, we have

〈f yn( 􏼁 − f x
∗

( 􏼁, yn − x
∗〉 ≥ α f yn( 􏼁 − f x

∗
( 􏼁

����
����
2
. (16)

By the nonexpansivity of J
g

λn
, we have

un − x
∗����
����
2

� J
g

λn
I − λnf( 􏼁yn − J

g

λn
I − λnf( 􏼁x

∗
�����

�����
2

≤ yn − x
∗

− λn f yn( 􏼁 − f x
∗

( 􏼁􏼂 􏼃
����

����
2

� yn − x
∗����
����
2

− 2λn〈f yn( 􏼁 − f x
∗

( 􏼁, yn − x
∗〉 + λ2n f yn( 􏼁 − f x

∗
( 􏼁

����
����
2

≤ yn − x
∗����
����
2

− 2λnα f yn( 􏼁 − f x
∗

( 􏼁
����

����
2

+ λ2n f yn( 􏼁 − f x
∗

( 􏼁
����

����
2

� yn − x
∗����
����
2

− λn 2α − λn( 􏼁 f yn( 􏼁 − f x
∗

( 􏼁
����

����
2

≤ yn − x
∗����
����
2

− d1 2α − d2( 􏼁 f yn( 􏼁 − f x
∗

( 􏼁
����

����
2

(by condition (r2))

≤ yn − x
∗����
����
2
.

(17)

Using Lemma 1, we get

T((1 − ζ)I + ζT)xn − x
∗����
����
2 ≤ xn − x

∗����
����
2

+(1 − ζ) xn − T((1 − ζ)I + ζT)xn

����
����
2
. (18)

-is together with (14) implies that

yn − x
∗����
����
2

� (1 − ])xn + ]T((1 − ζ)I + ζT)xn − x
∗����
����
2

� (1 − ]) xn − x
∗

( 􏼁 + ] T((1 − ζ)I + ζT)xn − x
∗

( 􏼁
����

����
2

� (1 − ]) xn − x
∗����
����
2

+ ] T((1 − ζ)I + ζT)xn − x
∗����
����
2

− ](1 − ]) T((1 − ζ)I + ζT)xn − xn

����
����
2

≤ xn − x
∗����
����
2

− ](ζ − ]) T((1 − ζ)I + ζT)xn − xn

����
����
2

≤ xn − x
∗����
����
2
.

(19)

According to (15)-(19), we obtain

xn+1 − x
∗����
���� � αn u − x

∗
( 􏼁 + 1 − αn( 􏼁 un − x

∗
( 􏼁

����
����

≤ αn u − x
∗����
���� + 1 − αn( 􏼁 xn − x

∗����
����

≤ · · ·

≤max u − x
∗����
����, x0 − x

∗����
����􏽮 􏽯.

(20)

-en, the sequence xn􏼈 􏼉 is bounded. -e sequences un􏼈 􏼉

and yn􏼈 􏼉 are also bounded.
Again, by (15)-(19), we deduce
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xn+1 − x
∗����
����
2

� αn u − x
∗

( 􏼁 + 1 − αn( 􏼁 un − x
∗

( 􏼁
����

����
2

≤ αn u − x
∗����
����
2

+ 1 − αn( 􏼁 un − x
∗����
����
2 by the convexity of ‖ · ‖

2
􏼐 􏼑

≤ αn u − x
∗����
����
2

+ un − x
∗����
����
2

≤ αn u − x
∗����
����
2

+ xn − x
∗����
����
2

− d1 2α − d2( 􏼁 f yn( 􏼁 − f x
∗

( 􏼁
����

����
2

− ](ζ − ]) T((1 − ζ)I + ζT)xn − xn

����
����
2
.

(21)

It follows that

d1 2α − d2( 􏼁 f yn( 􏼁 − f x
∗

( 􏼁
����

����
2

+ ](ζ − ]) T((1 − ζ)I + ζT)xn − xn

����
����
2 ≤ αn u − x

∗����
����
2

+ xn − x
∗����
����
2

− xn+1 − x
∗����
����
2
. (22)

Since J
g

λn
is firmly nonexpansive, using (6), we have

un − x
∗����
����
2

� J
g

λn
I − λnf( 􏼁yn − J

g

λn
I − λnf( 􏼁x

∗
�����

�����
2

≤ 〈 I − λnf( 􏼁yn − I − λnf( 􏼁x
∗
, un − x

∗〉

�〈yn − x
∗
, un − x

∗〉 − λn〈un − x
∗
, f yn( 􏼁 − f x

∗
( 􏼁〉

�
1
2

yn − x
∗����
����
2

+ un − x
∗����
����
2

− yn − un

����
����
2

􏼒 􏼓 − λn〈yn − x
∗
, f yn( 􏼁 − f x

∗
( 􏼁〉 − λn〈un − yn, f yn( 􏼁 − f x

∗
( 􏼁〉

≤
1
2

yn − x
∗����
����
2

+ un − x
∗����
����
2

− yn − un

����
����
2

􏼒 􏼓 + λn un − yn

����
���� f yn( 􏼁 − f x

∗
( 􏼁

����
����,

(23)

which leads to

un − x
∗����
����
2 ≤ yn − x

∗����
����
2

− yn − un

����
����
2

+ 2λn un − yn

����
���� f yn( 􏼁 − f x

∗
( 􏼁

����
����

≤ xn − x
∗����
����
2

− yn − un

����
����
2

+ 2λn un − yn

����
���� f yn( 􏼁 − f x

∗
( 􏼁

����
����.

(24)

Combining (21) with (24), we obtain

xn+1 − x
∗����
����
2 ≤ αn u − x

∗����
����
2

+ un − x
∗����
����
2 ≤ αn u − x

∗����
����
2

+ xn − x
∗����
����
2

− yn − un

����
����
2

+ 2λn un − yn

����
���� f yn( 􏼁 − f x

∗
( 􏼁

����
����. (25)

which results in that

yn − un

����
����
2 ≤ αn u − x

∗����
����
2

+ xn − x
∗����
����
2

− xn+1 − x
∗����
����
2

+ 2λn un − yn

����
���� f yn( 􏼁 − f x

∗
( 􏼁

����
����. (26)

Next, we analyze two cases. (i)
∃n0 ∈ N such that ‖xn+1 − x∗‖≤ ‖xn − x∗‖, ∀n≥ n0. (ii) For
any n0 ∈ N, ∃m≥ n0 such that ‖xm − x∗‖≤ ‖xm+1 − x∗‖.

In case of (i), limn⟶∞‖xn − x∗‖ exists. From (22), we
deduce

limn⟶∞ f yn( 􏼁 − f x
∗

( 􏼁
����

���� � 0 (27)

and
limn⟶∞ T((1 − ζ)I + ζT)xn − xn

����
���� � 0. (28)

It follows from (14) that
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limn⟶∞ yn − xn

����
���� � limn⟶∞] T((1 − ζ)I + ζT)xn − xn

����
���� � 0.

(29)

On the basic of (26) and (27), we have

limn⟶∞ yn − un

����
���� � limn⟶∞ yn − J

g

λn
I − λnf( 􏼁yn

�����

����� � 0.

(30)

Note that ‖xn+1 − xn‖≤ αn‖u − xn‖ + (1 − αn)‖un − xn‖.
-anks to (29) and (30), we derive that

limn⟶∞ xn+1 − xn

����
���� � 0. (31)

However,

xn − Txn

����
����≤ T((1 − ζ)I + ζT)xn − xn

����
���� + Txn − T((1 − ζ)I + ζT)xn

����
����

≤ T((1 − ζ)I + ζT)xn − xn

����
���� + ζL xn − Txn

����
����,

(32)

We have

xn − Txn

����
����≤

1
1 − ζL

T((1 − ζ)I + ζT)xn − xn

����
����. (33)

-is together with (28) implies that

limn⟶∞ xn − Txn

����
���� � 0. (34)

Set p � PΓ(u). Next, we prove that

lim supn⟶∞〈u − p, xn+1 − p〉 ≤ 0. (35)

Since xn+1􏼈 􏼉 is bounded, there exists a subsequence
xni+1􏽮 􏽯 of xn+1􏼈 􏼉 satisfying

(1) xni+1⇀􏽥x (hence, xni
⇀􏽥x by (31))

(2) lim supn⟶∞〈u − p, xn+1 − p〉 � limi⟶∞〈u −

p, xni+1 − p〉

From (34) and Lemma 1, we obtain 􏽥x ∈ Fix(T).
Owing to (29) and (30), we have that yni

⇀􏽥x and

limi⟶∞ J
g

λni

I − λni
f􏼐 􏼑yni

− yni

������

������ � 0. (36)

Since λn ∈ (d1, d2), without loss of generality, we assume
that λni

⟶ λ† > 0(i⟶∞). Observe that

J
g

λni

I − λni
f􏼐 􏼑yni

− J
g

λ† I − λ†f􏼐 􏼑yni

������

������≤ J
g

λni

I − λni
f􏼐 􏼑yni

− J
g

λ† I − λni
f􏼐 􏼑yni

������

������

+ J
g

λ† I − λni
f􏼐 􏼑yni

− J
g

λ† I − λ†f􏼐 􏼑yni

�����

�����

≤ J
g

λni

I − λni
f􏼐 􏼑yni

− J
g

λ† I − λni
f􏼐 􏼑yni

������

������ + λni
− λ†

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 f yni
􏼐 􏼑

�����

�����.

(37)

Applying Lemma 2, we obtain

J
g

λni

I − λni
f􏼐 􏼑yni

− J
g

λ† I − λni
f􏼐 􏼑yni

������

������

2

≤
λni

− λ†

λ†
〈Jg

λni

I − λni
f􏼐 􏼑yni

− J
g

λ† I − λni
f􏼐 􏼑yni

, J
g

λni

I − λni
f􏼐 􏼑yni

− I − λni
f􏼐 􏼑yni
〉

≤
λni

− λ†
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

λ†
J

g

λni

I − λni
f􏼐 􏼑yni

− J
g

λ† I − λni
f􏼐 􏼑yni

������

������ J
g

λni

I − λni
f􏼐 􏼑yni

− I − λni
f􏼐 􏼑yni

������

������.

(38)

It follows that

J
g

λni

I − λni
f􏼐 􏼑yni

− J
g

λ† I − λni
f􏼐 􏼑yni

������

������≤
λni

− λ†
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

λ†
J

g

λni

I − λni
f􏼐 􏼑yni

− I − λni
f􏼐 􏼑yni

������

������. (39)
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-anks to (37) and (39), we get

J
g

λni

I − λni
f􏼐 􏼑yni

− J
g

λ† I − λ†f􏼐 􏼑yni

������

������≤ λni
− λ†

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 f yni
􏼐 􏼑

�����

����� +
λni

− λ†
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

λ†
J

g

λni

I − λni
f􏼐 􏼑yni

− I − λni
f􏼐 􏼑yni

������

������. (40)

Noting that λni
⟶ λ†(i⟶∞), from (36) and (40), we

get

limi⟶∞ yni
− J

g

λ† I − λ†f􏼐 􏼑yni

�����

����� � 0. (41)

By Lemma 1, we deduce that 􏽥x ∈ Fix(J
g

λ†(I − λ†f)) �

(f + g)− 1(0). -erefore, 􏽥x ∈ Γ and

lim supn⟶∞〈u − p, xn+1 − p〉 � limi⟶∞〈u − p, xni+1 − p〉 � 〈u − p, 􏽥x − p〉≤ 0. (42)

From (15), we have

xn+1 − p
����

����
2

� αn(u − p) + 1 − αn( 􏼁 un − p( 􏼁
����

����
2

≤ 1 − αn( 􏼁 un − p
����

����
2

+ 2αn〈u − p, xn+1 − p〉

≤ 1 − αn( 􏼁 xn − p
����

����
2

+ 2αn〈u − p, xn+1 − p〉.
(43)

Applying Lemma 3 to (43) to deduce xn⟶ p.
In case of (ii), let sn � ‖xn − x∗‖􏼈 􏼉. So, we have sn0

≤ sn0+1.
Define an integer sequence τ(n){ }, ∀n≥ n0, by τ(n) � max
i ∈ N|n0 ≤ i≤ n, si ≤ si+1􏼈 􏼉. It is obvious that limn⟶∞τ(n) �

∞ and sτ(n) ≤ sτ(n)+1 for all n≥ n0. Similarly, we can prove
that limn⟶∞‖xτ(n) − Txτ(n)‖ � 0 and limn⟶∞‖J

g

λτ(n)
(I−

λτ(n)f)xτ(n)‖ � 0. -erefore, all weak cluster points
ωw(xτ(n)) ⊂ Γ. Consequently,

lim supn⟶∞〈u − p, xτ(n) − p〉 ≤ 0. (44)

Note that sτ(n) ≤ sτ(n)+1. From (43), we deduce

s
2
τ(n) ≤ s

2
τ(n)+1 ≤ 1 − ατ(n)􏼐 􏼑s

2
τ(n) + 2ατ(n)〈u − p, xτ(n)+1 − p〉.

(45)

It follows that

s
2
τ(n) ≤ 2〈u − p, xτ(n)+1 − p〉. (46)

Combining (44) and (46), we have lim supn⟶∞sτ(n) ≤ 0
and hence

limk⟶∞sτ(k) � 0. (47)

From (45), we deduce that lim supn⟶∞s2τ(n)+1 ≤
lim supn⟶∞s2τ(n). -is together with (47) implies that
limn⟶∞sτ(n)+1 � 0. According to Lemma 4, we get
0≤ sn ≤max sτ(n), sτ(n)+1􏽮 􏽯. -erefore, sn⟶ 0 and
xn⟶ p. -is completes the proof. □

Remark 1. Since the pseudocontractive operator is non-
expansive, -eorem 1 still holds if T is nonexpansive.

Remark 2. Assumption (r1) imposed on parameter αn is
essential and we do not add any other assumptions.
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We propose and analyze a new iterative scheme with inertial items to approximate a common zero point of two countable
d-accretive mappings in the framework of a real uniformly smooth and uniformly convex Banach space. We prove some strong
convergence theorems by employing some new techniques compared to the previous corresponding studies. We give some
numerical examples to illustrate the effectiveness of the main iterative scheme and present an example of curvature systems to
emphasize the importance of the study of d-accretive mappings.

1. Introduction and Preliminaries

In this paper, we assume that E is a real Banach space and E∗

is the dual space of E. Suppose that C is a nonempty closed
and convex subset of E. (e symbols “〈x, f〉”, “→ ” and
“⇀” denote the value of f ∈ E∗ at x ∈ E, the strong con-
vergence, and the weak convergence either in E or E∗,
respectively.

(e normalized duality mapping JE: E→ 2E∗ is defined
as follows:

JE(x) � x
∗ ∈ E
∗
: 〈x, x

∗〉 � ‖x‖
2

� x
∗����
����
2

􏼚 􏼛, ∀x ∈ E.

(1)

Lemma 1 (see [1]). Assume that E is real uniformly convex
and uniformly smooth Banach space. 1en (1) JE is single-
valued and surjective and, for x ∈ E and k ∈ (0, +∞),
JE(kx) � kJE(x); (2) J− 1

E � JE∗ is the normalized duality
mapping from E∗ to E; (3) both JE and J− 1

E are uniformly
continuous on each bounded subset of E or E∗, respectively.

Definition 1 (see [2]). (e Lyapunov functional
ϕ: E × E→R+ is defined as follows:

ϕ(x, y) � ‖x‖
2

− 2〈x, jE(y)〉 +‖y‖
2
, ∀x, y ∈ E, jE(y) ∈ JE(y).

(2)

Similarly, the Lyapunov functional defined on E∗ × E∗

can be defined and denoted by ϕ.

Lemma 2 (see [3]). Let E be a uniformly smooth and uni-
formly convex Banach space, and let xn􏼈 􏼉 and yn􏼈 􏼉 be two
sequences in E. If either xn􏼈 􏼉 or yn􏼈 􏼉 is bounded and
ϕ(xn, yn)→ 0, as n→∞, then xn − yn→ 0, as n⟶∞.

Definition 2 (see [4]). Let Cn􏼈 􏼉 be a sequence of nonempty
closed and convex subsets of E; then

(1) s − liminfCn, which is called strong lower limit of
Cn􏼈 􏼉, is defined as the set of all x ∈ E such that there
exists xn ∈ Cn for almost all n and it tends to x as
n→∞ in the norm

(2) w − limsupCn, which is called weak upper limit of
Cn􏼈 􏼉, is defined as the set of all x ∈ E such that there
exists a subsequence Cnm

􏽮 􏽯 of Cn􏼈 􏼉 and xnm
∈ Cnm

for
every nm and it tends to x as nm→∞ in the weak
topology
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(3) If s − liminfCn � w − limsupCn, then the common
value is denoted by limCn

Lemma 3 (see [4]). Let Cn􏼈 􏼉 be a decreasing sequence of
closed and convex subsets of E, that is, Cn ⊂ Cm, if n≥m.
1en, Cn􏼈 􏼉 converges in E and limCn � ∩∞n�1Cn.

Definition 3 (see [1, 2]). Suppose that E is a real uniformly
smooth and uniformly convex Banach space and C is a
nonempty closed and convex subset of E; then, for each
x ∈ E, there exists a unique element v ∈ C such that
‖x − v‖ � inf ‖x − y‖: y ∈ C􏼈 􏼉. Such an element v is denoted
by PCx and PC is called the metric projection of E onto C.

Lemma 4 (see [5]). Suppose that E is a real uniformly
smooth and uniformly convex Banach space and Cn􏼈 􏼉 is a
sequence of nonempty closed and convex subsets of E. If limCn

exists and is not empty, then limn⟶∞PCn
x � PlimCn

x, for
∀x ∈ E.

Definition 4.
(1) A mapping T: E⟶ E is said to be accretive [6] if

〈Tu1 − Tu2, JE(u1 − u2)〉≥ 0, ∀ui ∈ E, i � 1, 2
(2) A mapping T: E⟶ E is said to be d-accretive [7] if

〈Tu1 − Tu2, JEu1 − JEu2〉≥ 0, ∀ui ∈ E, i � 1, 2

It is easy to see that accretive mappings and d-accretive
mappings are identical in a Hilbert space, while they are
different in a non-Hilbert space.

For a nonlinear mapping A: D(A) ⊂ E⟶ E, we use
Fix(A) � x ∈ D(A): Ax � x{ } and
A− 10 � x ∈ D(A): Ax � 0{ } to denote the fixed point set
and zero point set of A, respectively.

Lemma 5 (see [8, 9]). Suppose that E is a real uniformly
smooth and uniformly convex Banach space. Let A: E⟶ E

be d-accretive mapping such that R(I + A) � E. Under the
assumption that A− 10≠∅, one has the following:

(1) ∀x ∈ E∗, ∀z ∈ A− 10, and ∀r> 0,

ϕ JEz, JE∗ + rAJE∗( 􏼁
− 1

JE∗x􏼐 􏼑

+ ϕ JE∗ + rAJE∗( 􏼁
− 1

JE∗x, x􏼐 􏼑≤ ϕ JEz, x( 􏼁.
(3)

(2) If xn ∈ E∗, x ∈ E∗, xn⟶ x, and (JE∗ + rAJE∗)
− 1JE∗

xn⟶ x, as n⟶∞, then x � (JE∗ + rAJE∗)
− 1

JE∗x.

Definition 5 (see [10]). LetC be a nonempty closed subset ofE

and let Q be a mapping of E onto C. (en Q is said to be sunny
if Q(Q(x) + t(x − Q(x))) � Q(x), for all x ∈ E and t≥ 0. A
mapping Q: E⟶ C is said to be a retraction if Q(z) � z for
every z ∈ C. If E is a smooth and strictly convex Banach space,
then a sunny generalized nonexpansive retraction ofE ontoC is
uniquely decided, which is denoted by RC.

Definition 6 (see [3]). If E is a real uniformly smooth and
uniformly convex Banach space and C is a nonempty closed
and convex subset of E, then, for each x ∈ E, there exists a
unique element x0 ∈ C satisfying ϕ(x0, x) � inf ϕ(z, x)􏼈

: z ∈ C}. In this case, ∀x ∈ E, define πC: E⟶ C by
πCx � x0, and πC is called the generalized projection from E

onto C.

Lemma 6 (see [11]). Suppose that E is a real uniformly convex
Banach space and r ∈ (0, +∞). 1en there exists a continuous
and strictly increasing function g: [0, 2r]⟶ [0, +∞) with
g(0) � 0 satisfying

‖αx +(1 − α)y‖
2 ≤ α‖x‖

2
+(1 − α)‖y‖

2
− α(1 − α)g(‖x − y‖),

(4)

for ∀α ∈ [0, 1], ∀x, y ∈ E with ‖x‖≤ r and ‖y‖ ≤ r.

Accretive mappings have been extensively studied until
now and some works can be seen in [12–16] and the ref-
erences therein. However, until 2000, some valuable research
work has been done on d-accretive mappings. As we know,
in 2000, Alber and Reich [17] presented the following it-
erative schemes for d-accretive mapping T in a real uni-
formly smooth and uniformly convex Banach space:

xn+1 � xn − αnTxn, (5)

xn+1 � xn − αn

Txn

Txn

����
����
, n≥ 0. (6)

(ey proved that the iterative sequences xn􏼈 􏼉 generated
by (5) and (6) converge weakly to the zero point of T under
the assumption that T is uniformly bounded and
demicontinuous.

In 2006, Guan [18] presented the following projective
method for the d− accretive mapping T in a real uniformly
smooth and uniformly convex Banach space E:

x1 ∈ D(T),

yn � I + rnT( 􏼁
− 1

xn,

Cn � v ∈ D(T): ϕ v, yn( 􏼁≤ ϕ v, xn( 􏼁􏼈 􏼉,

Qn � v ∈ D(T): 〈xn − v, JEx1 − JExn〉≥ 0􏼈 􏼉,

xn+1 � πCn ∩Qn
x1, n≥ 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

It was shown that the iterative sequences xn􏼈 􏼉 generated
by (7) converge strongly to the zero point of T under the
assumptions that (1) R(I + T) � E, (2) T is demi-
continuous, and (3) JE is weakly sequentially continuous
and satisfies

ϕ p, I + rnT( 􏼁
− 1

x􏼐 􏼑≤ ϕ(p, x), (8)

for ∀x ∈ E and p ∈ T− 10. (e restrictions are extremely
strong, and it is hard for us to find such a d− accretive
mapping that is demicontinuous and satisfies (8).

In 2014, Wei et al. [7] presented the following block
iterative schemes for approximating common zero points of
d− accretive mappings Ti􏼈 􏼉

m
i�1 in a Banach space E:
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x1 ∈ E,

yn � 􏽘
m

i�1
ωn,i αn,ixn + 1 − αn,i􏼐 􏼑 I + rn,iTi􏼐 􏼑

− 1
xn􏼔 􏼕,

xn+1 � 􏽘

m

i�1
ηn,i βn,ixn + 1 − βn,i􏼐 􏼑 I + sn,iTi􏼐 􏼑

− 1
yn􏼔 􏼕, n ∈ N,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

x1 ∈ E,

un � 􏽘
m

i�1
ωn,i αn,ixn + 1 − αn,i􏼐 􏼑 I + rn,iTi􏼐 􏼑

− 1
xn􏼔 􏼕,

vn+1 � 􏽘

m

i�1
ηn,i βn,ixn + 1 − βn,i􏼐 􏼑 I + sn,iTi􏼐 􏼑

− 1
un􏼔 􏼕,

H1 � E,

Hn+1 � z ∈ Hn: ϕ un, z( 􏼁≤ ϕ xn, z( 􏼁􏼈 􏼉,

xn+1 � RHn+1
x1, n ∈ N.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

Under mild assumptions, xn􏼈 􏼉 generated by (9) is proved
to be weakly convergent to an element in ∩m

i�1T
− 1
i 0, while

(10) is proved to be strongly convergent to an element in
∩ m

i�1T
− 1
i 0.

In [19], the study on finite d-accretive mappings is ex-
tended to that for infinite d-accretive mappings
Ti􏼈 􏼉
∞
i�1 ⊂ E × E:

u1 � v ∈ E
∗
,

wn,i � I + sn,iJETiJE∗􏼐 􏼑
− 1

un,

U1 � E
∗
,

Un+1,i � z ∈ E
∗
: 〈JE∗ un − wn,i􏼐 􏼑, wn,i − z〉 ≥ 0􏽮 􏽯,

Un+1 � ∩
∞

i�1
Un+1,i􏼒 􏼓∩Un,

Vn+1 � z ∈ Un+1: ‖v − z‖
2 ≤ PUn+1

(v) − v
�����

�����
2

+ τn+1􏼚 􏼛,

un+1 ∈ Vn+1,

un � JE∗un, n ∈ N.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

(en, sequence un􏼈 􏼉 generated by (11) is proved to be
strongly convergent to an element in ∩mi�1T− 1

i 0.
A new idea can be seen in (11), where the iterative el-

ement un ∈ Vn can be chosen arbitrarily, which is different
from the traditional one, for example, (7) in [18]. However, it
is found that, for each iterative step n in (11), countable sets
Un+1,i should be evaluated for i ∈ N. To simplify it theo-
retically, the following iterative scheme is designed in [9]:

u1, e1 ∈ E
∗
,

wn � JE αnJE∗un + 1 − αn( 􏼁 􏽘

∞

i�1
bn,iJE∗ JE∗ + sn,iTiJE∗􏼐 􏼑

− 1
JE∗ un + en( 􏼁⎡⎣ ⎤⎦,

U1 � E
∗

� V1,

Un+1 � z ∈ Un: 〈JE∗wn − αnJE∗un − 1 − αn( 􏼁JE∗ un + en( 􏼁, z〉 ≥
wn

����
����
2

− αn un

����
����
2

− 1 − αn( 􏼁 un + en

����
����
2

2
⎧⎨

⎩

⎫⎬

⎭,

Vn+1 � z ∈ Un+1: u1 − z
����

����
2 ≤ PUn+1

u1( 􏼁 − u1

�����

�����
2

+ τn+1􏼚 􏼛,

un+1 ∈ Vn+1,

un � JE∗un, n ∈ N.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

(en, un􏼈 􏼉 generated by (12) is proved to be strongly
convergent to an element in ∩m

i�1T
− 1
i 0.

In 2020, Wei et al. [8] extended the discussion on
countable d-accretive mappings Ti􏼈 􏼉

∞
i�1 to that for two

groups of countable d-accretive mappings Ti􏼈 􏼉
∞
i�1 and Si􏼈 􏼉

∞
i�1

and construct two key groups of sets Vn􏼈 􏼉 and Yn􏼈 􏼉, where
the iterative elements yn􏼈 􏼉 and un􏼈 􏼉 can be chosen arbitrarily
in Vn􏼈 􏼉 and Yn􏼈 􏼉, respectively.
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u1 ∈ E
∗
, e1 ∈ E

∗
, ε1 ∈ E

∗
,

vn � JE αnJE∗un + 1 − αn( 􏼁 􏽘

∞

i�1
an,iJE∗ JE∗ + rn,iTiJE∗􏼐 􏼑

− 1
JE∗ un + en( 􏼁⎡⎣ ⎤⎦,

U1 � E
∗

� V1,

Un+1 � p ∈ Xn: 〈JE∗vn − αnJE∗un − 1 − αn( 􏼁JE∗ un + en( 􏼁, p〉 ≥
vn

����
����
2

− αn un

����
����
2

− 1 − αn( 􏼁 un + en

����
����
2

2
⎧⎨

⎩

⎫⎬

⎭,

Vn+1 � p ∈ Un+1: u1 − p
����

����
2 ≤ PUn+1

u1( 􏼁 − u1

�����

�����
2

+ λn+1􏼚 􏼛,

yn ∈ Vn+1,

zn � JE βnJE∗un + 1 − βn( 􏼁 􏽘

∞

i�1
bn,iJE∗ JE∗ + sn,iSiJE∗􏼐 􏼑

− 1
JE∗ yn + εn( 􏼁⎡⎣ ⎤⎦,

Xn+1 � p ∈ Un+1: 〈JE∗zn − βnJE∗un − 1 − βn( 􏼁JE∗ yn + εn( 􏼁, p〉 ≥
zn

����
����
2

− βn vn

����
����
2

− 1 − βn( 􏼁 yn + εn

����
����
2

2
⎧⎨

⎩

⎫⎬

⎭,

Yn+1 � p ∈ Xn+1: u1 − p
����

����
2 ≤ PXn+1

u1( 􏼁 − u1

�����

�����
2

+ δn+1􏼚 􏼛,

un+1 ∈ Yn+1,

un � JE∗un, n ∈ N.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

(en un􏼈 􏼉 generated by (13) is proved to be strongly
convergent to an element in (∩∞i�1T− 1

i 0)∩ (∩∞i�1S− 1
i 0).

Recall that the inertial-type algorithm was first
proposed by Polyak [20] as an acceleration process in
solving a smooth convex minimization problem. (e
inertial-type algorithm involves a two-step iterative
method where the next iterate is defined by making use of
the previous two iterates. For example, in 2015, Lorenz
and Pock [21] proposed the following inertial forward-
backward algorithm for approximating zero points of
T + S, where T and S are accretive-type mappings in
Hilbert space H:

u0, u1 ∈ H chosen arbitrarily,

vn � un + θn un − un− 1( 􏼁,

un+1 � I + rnT( 􏼁
− 1

vn − rnSvn( 􏼁, n ∈ N.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(14)

In (14), the term θn(un − un− 1) is called the inertial
term.

In this paper, motivated by the previous work, some new
work is done in the construction of new iterative schemes: (i)
the inertial term is inserted for the purpose of possible
acceleration; (ii) the combination expressions of Ti or Si are

different from those in (11)–(13). Numerical experiments are
conducted, and it is very interesting that the rate of con-
vergence is so quick that only eight steps are enough for
some special cases and for different choices of iterative el-
ements. To emphasize the importance of the topic, a kind of
curvature systems is studied and is taken as an example of
d-accretive mappings.

2. Iterative Schemes and Strong
Convergence Theorems

2.1. Iterative Schemes. In this section, we suppose that the
following conditions are satisfied:

(A1) E is a real uniformly convex and uniformly smooth
Banach space; JE: E⟶ E∗ and JE∗ : E∗ ⟶ E are the
normalized duality mappings.
(A2) Ti, Si: E⟶ E are d-accretive mappings such that
R(I + Ti) � E � R(I + Si), for each i ∈ N.
(A3) rn,i􏽮 􏽯, tn,i􏽮 􏽯, ξn􏼈 􏼉 and τn􏼈 􏼉 are real number se-
quences in (0, +∞), for i, n ∈ N. λn􏼈 􏼉 and ϑn􏼈 􏼉 are real
number sequences in (− ∞, +∞). αn􏼈 􏼉

∞
n�1 and βn􏼈 􏼉

∞
n�1

are real number sequences in [0, 1].
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(A4) a0, b0 ∈ (0, 1), an,i􏽮 􏽯
∞
i�0 and bn,i􏽮 􏽯

∞
i�0 are real

number sequences in (0, 1) such that
a0 + 􏽐

∞
i�1 an,i � b0 + 􏽐

∞
i�1 bn,i � 1.

(A5) ε(1)
n􏼈 􏼉 and ε(2)

n􏼈 􏼉 are the error sequences in E∗.
(A6)
􏽦Un � J− 1

E∗ a0JE∗ + 􏽐
∞
i�1 an,iJE∗[(JE∗ + rn,iTiJE∗)

− 1JE∗]􏽮 􏽯;

􏽦􏽦Un � J− 1
E∗ b0JE∗ + 􏽐

∞
i�1 bn,iJE∗􏽮 [(JE∗ + tn,iSiJE∗)

− 1JE∗]

[(JE∗ + tn,i− 1Si− 1JE∗)
− 1 JE∗ ] · · · [(JE∗ + tn,1S1JE∗ )

− 1

JE∗]}.

We construct the following iterative scheme:

x0, x1, ε
(1)
1 , ε(2)

1 ∈ E
∗
,

un � xn + λn xn − xn− 1( 􏼁,

zn � xn + ϑn xn − xn− 1( 􏼁,

vn � J
− 1
E∗ 1 − αn( 􏼁JE∗un + αnJE∗

􏽦Un zn + ε(1)
n􏼐 􏼑􏽨 􏽩,

V1 � W1 � E
∗
,

Vn+1 � p ∈ Vn: ϕ p, vn( 􏼁≤ 1 − αn( 􏼁ϕ p, un( 􏼁 + αnϕ p, zn + ε(1)
n􏼐 􏼑􏽮 􏽯,

Wn+1 � p ∈ Vn+1: x1 − p
����

����
2 ≤ PVn+1

x1( 􏼁 − x1

�����

�����
2

+ τn+1􏼚 􏼛,

yn ∈Wn+1 chosen arbitrarily,

wn � J
− 1
E∗ 1 − βn( 􏼁JE∗un + βnJE∗

􏽦􏽦Un yn + ε(2)
n􏼐 􏼑􏼔 􏼕,

U1 � X1 � E
∗
,

Un+1 � p ∈ Vn+1: ϕ p, wn( 􏼁≤ 1 − βn( 􏼁ϕ p, un( 􏼁 + βnϕ p, yn + ε(2)
n􏼐 􏼑􏽮 􏽯,

Xn+1 � p ∈ Un+1: x1 − p
����

����
2 ≤ PUn+1

x1( 􏼁 − x1

�����

�����
2

+ ξn+1􏼚 􏼛,

xn+1 ∈ Xn+1 chosen arbitrarily, n ∈ N.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

2.2. Strong Convergence 1eorems

Theorem 1. Consider (∩∞i�1T− 1
i 0)∩ (∩∞i�1S− 1

i 0)≠∅, infn

rn,i > 0, infntn,i > 0 for i ∈ N, αn↛0, βn↛0, τn⟶ 0, λn

↛ ± ∞, ϑn↛ ± ∞, ξn⟶ 0, τn⟶ 0, ε(1)
n ⟶ 0, and

ε(2)
n ⟶ 0, as n⟶∞. 1en, the iterative sequence xn � JE∗

xn⟶ JE∗ P∩∞
n�1Un

(x1) � JE∗P(∩∞
i�1(TiJE∗ )

− 10)∩ (∩∞
i�1(SiJE∗ )

− 10)

∈ (∩∞i�1T− 1
i 0)∩ (∩∞i�1S− 1

i 0), as n⟶∞.

Proof. (e proof is split into eight steps.

Step 1. ∩∞n�1Un ≠∅.

Since (∩∞i�1T− 1
i 0)∩ (∩∞i�1S− 1

i 0)≠∅, there exists
δ0 ∈ E such that Tiδ0 � Siδ0 � 0, ∀i ∈ N. It follows
from Lemma 1 that there exists η0 ∈ E∗ such that
JE∗η0 � δ0. (erefore, (∩∞i�1(TiJE∗)

− 10)∩
(∩∞i�1(SiJE∗)

− 10)≠∅.
Next, we shall use inductive method to prove that
(∩∞i�1(TiJE∗)

− 10)∩ (∩∞i�1(SiJE∗)
− 10) ⊂ Un, n ∈ N.

∀p ∈ (∩∞i�1(TiJE∗)
− 10)∩ (∩∞i�1(SiJE∗)

− 10). For n � 1,
it is obvious that p ∈ U1. Suppose that the result is true
for n � k. (en, if n � k + 1, it follows from the defi-
nition of the Lyapunov functional, the convexity of
‖ · ‖2, and Lemma 5 that
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ϕ p, vk( 􏼁 � ‖p‖
2

− 2 1 − αk( 􏼁〈p, JE∗uk〉 − 2αk〈p, JE∗
􏽦Uk zk + ε(1)

k􏼐 􏼑〉

+ 1 − αk( 􏼁JE∗uk + αkJE∗
􏽦Uk zk + ε(1)

k􏼐 􏼑
�����

�����
2

≤ ‖p‖
2

− 2 1 − αk( 􏼁〈p, JE∗uk〉 − 2αka0〈p, JE∗ zk + ε(1)
k􏼐 􏼑〉 − 2αk〈p, 􏽘

∞

i�1
ak,iJE∗ JE∗ + rk,iTiJE∗􏼐 􏼑

− 1
JE∗ zk + ε(1)

k􏼐 􏼑〉

+ 1 − αk( 􏼁 uk

����
����
2

+ αka0 zk + ε(1)
k

�����

�����
2

+ αk􏽘

∞

i�1
ak,i JE∗ + rk,iTiJE∗􏼐 􏼑

− 1
JE∗ zk + ε(1)

k􏼐 􏼑
�����

�����
2

� 1 − αk( 􏼁ϕ p, uk( 􏼁 + αka0ϕ p, zk + ε(1)
k􏼐 􏼑 + αk 􏽘

∞

i�1
ak,iϕ p, JE∗ + rk,iTiJE∗􏼐 􏼑

− 1
JE∗ zk + ε(1)

k􏼐 􏼑􏼒 􏼓

≤ 1 − αk( 􏼁ϕ p, uk( 􏼁 + αkϕ p, zk + ε(1)
k􏼐 􏼑.

(16)

(us, p ∈ Vk+1. Using Lemma 5 repeatedly, similar to
the above discussion, one has

ϕ p, wk( 􏼁≤ 1 − βk( 􏼁ϕ p, uk( 􏼁 + βkϕ p, 􏽦􏽦Uk yk + ε(2)
k􏼐 􏼑􏼒 􏼓

≤ 1 − βk( 􏼁ϕ p, uk( 􏼁

+ βkb0ϕ p, yk + ε(2)
k􏼐 􏼑 + βk 􏽘

∞

i�1
bk,iϕ p, yk + ε(2)

k􏼐 􏼑

� 1 − βk( 􏼁ϕ p, uk( 􏼁 + βkϕ p, yk + ε(2)
k􏼐 􏼑.

(17)

(en p ∈ Uk+1, which implies that ∩∞n�1Un ≠∅.
Step 2. Both Vn and Un are closed and convex subsets of
E∗, for n ∈ N.
If n � 1, the result is obvious. If n≥ 2, since

ϕ p, vn( 􏼁≤ 1 − αn( 􏼁ϕ p, un( 􏼁 + αnϕ p, zn + ε(1)
n􏼐 􏼑

⇔〈p, 1 − αn( 􏼁JE∗un + αnJE∗ zn + ε(1)
n􏼐 􏼑 − JE∗vn〉 ≤

αn zn + ε(1)
n

�����

�����
2

+ 1 − αn( 􏼁 un

����
����
2

− vn

����
����
2

2
.

(18)

Vn is a closed and convex subset of E∗, for n ∈ N. Since

ϕ p, wn( 􏼁≤ 1 − βn( 􏼁ϕ p, un( 􏼁 + βnϕ p, yn + ε(2)
n􏼐 􏼑

⇔〈p, 1 − βn( 􏼁JE∗un + βnJE∗ yn + ε(2)
n􏼐 􏼑 − JE∗wn〉 ≤

βn yn + ε(2)
n

�����

�����
2

+ 1 − βn( 􏼁 un

����
����
2

− wn

����
����
2

2
.

(19)

Un is a closed and convex subset of E∗, for n ∈ N.
Step 3.PUn

(x1)⟶ P∩∞
n�1Un

(x1), as n⟶∞.
(e result follows from the results of Steps 1 and 2 and
Lemmas 3 and 4.
Step 4.Wn ≠∅ and Xn ≠∅.
Since ‖PVn+1

(x1) − x1‖ � infq∈Vn+1
‖q − x1‖; then, for

τn+1, there exists θn+1 ∈ Vn+1 such that

x1 − θn+1
����

����
2 ≤ inf

q∈Vn+1
q − x1

����
����􏼠 􏼡

2

+ τn+1

� PVn+1
x1( 􏼁 − x1

�����

�����
2

+ τn+1.

(20)

(en Wn ≠∅. Similarly, Xn ≠∅. (is ensures that xn􏼈 􏼉

is well defined.
Step 5. xn⟶ P∩∞

n�1Un
(x1), as n⟶∞.
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Since xn+1 ∈ Xn+1,
‖x1 − xn+1‖

2 ≤ ‖PUn+1
(x1) − x1‖

2 + ξn+1. It follows from
Step 3 and ξn⟶ 0 that xn􏼈 􏼉 is bounded.

Since xn+1 ∈ Xn+1 ⊂ Un+1 and Un is convex, for
∀t ∈ (0, 1), tPUn+1

(x1) + (1 − t)xn+1 ∈ Un+1. Using
Lemma 6, one has

PUn+1
x1( 􏼁 − x1

�����

�����
2
≤ tPUn+1

x1( 􏼁 +(1 − t)xn+1 − x1

�����

�����
2

≤ t PUn+1
x1( 􏼁 − x1

�����

�����
2

+(1 − t) xn+1 − x1
����

����
2

− t(1 − t)g PUn+1
x1( 􏼁 − xn+1

�����

�����􏼒 􏼓.
(21)

(erefore, tg(‖PUn+1
(x1) − xn+1‖)≤ ‖xn +1 − x1‖

2 −

‖PUn+1
(x1) − x1‖

2 ≤ ξn+1⟶ 0, as n⟶∞. (erefore,
xn+1 − PUn+1

(x1)⟶∞, as n⟶∞. Combining with
Step 3, xn⟶ P∩∞

n�1Un
(x1), n⟶∞.

Step 6.un⟶ P∩∞
n�1Un

(x1), zn⟶ P∩∞
n�1Un

(x1), vn⟶
P∩∞

n�1Un
(x1), and yn⟶ P∩∞

n�1Un
(x1), as n⟶∞.

In fact, since un � xn + λn(xn − xn− 1) with λn↛ ± ∞,
un⟶ P∩∞

n�1Un
(x1), as n⟶∞. Similarly, zn⟶

P∩∞
n�1Un

(x1), as n⟶∞.
Since xn+1 ∈ Xn+1 ⊂ Un+1 ⊂ Vn+1,

ϕ xn+1, vn( 􏼁≤ 1 − αn( 􏼁ϕ xn+1, un( 􏼁 + αnϕ xn+1, zn + ε(1)
n􏼐 􏼑

� xn+1
����

����
2

+ 1 − αn( 􏼁 un

����
����
2

− 2 1 − αn( 􏼁〈xn+1, JE∗un〉 + αn zn + ε(1)
n

�����

�����
2

− 2αn〈xn+1, JE∗ zn + ε(1)
n􏼐 􏼑〉

� xn+1
����

����
2

− 1 − αn( 􏼁 un

����
����
2

− αn zn + ε(1)
n

�����

�����
2

+ 2 1 − αn( 􏼁〈un − xn+1, JE∗un〉

+ 2αn〈zn + ε(1)
n − xn+1, JE∗ zn + ε(1)

n􏼐 􏼑〉

≤ xn+1
����

����
2

− zn + ε(1)
n

�����

�����
2

􏼒 􏼓 + 1 − αn( 􏼁 zn + ε(1)
n

�����

�����
2

− un

����
����
2

􏼒 􏼓

+ 2 1 − αn( 􏼁 un

����
���� xn+1 − un

����
���� + 2αn zn + ε(1)

n

�����

����� zn + ε(1)
n − xn+1

�����

�����.

(22)

Since ε(1)
n ⟶ 0, it follows from Step 5 and Lemma 2

that xn+1 − vn⟶ 0, as n⟶∞. (erefore,
vn⟶ P∩∞

n�1Un
(x1), as n⟶∞.

Since xn+1 ∈ Xn+1 ⊂ Un+1,

βn ϕ xn+1, un( 􏼁 − ϕ xn+1, yn + ε(2)
n􏼐 􏼑􏽨 􏽩

≤ ϕ xn+1, un( 􏼁 − ϕ xn+1, wn( 􏼁⟶ 0.
(23)

Since βn↛0, there exists a subsequence of n{ }, which is
still denoted by n{ } such that ϕ(xn+1, un) −

ϕ(xn+1, yn + ε(2)
n )⟶ 0, and then xn+1−

(yn + ε(2)
n )⟶ 0, which ensures that

yn⟶ P∩∞
n�1Un

(x1), as n⟶∞.
Step 7. P∩∞

n�1Un
(x1) ∈ (∩∞i�1(TiJE∗)

− 10)∩ (∩∞i�1
(SiJE∗)

− 10).
∀q ∈ (∩∞i�1(TiJE∗)

− 10)∩ (∩∞i�1(SiJE∗)
− 10), and using

Lemma 5, we have

ϕ q, 􏽦Un zn + ε(1)
n􏼐 􏼑􏼐 􏼑≤ a0ϕ q, zn + ε(1)

n􏼐 􏼑 + 􏽘
∞

i�1
an,iϕ q, JE∗ + rn,iTiJE∗􏼐 􏼑

− 1
JE∗ zn + ε(1)

n􏼐 􏼑􏼒 􏼓

≤ a0ϕ q, zn + ε(1)
n􏼐 􏼑 + 􏽘

∞

i�1
an,i ϕ q, zn + ε(1)

n􏼐 􏼑 − ϕ JE∗ + rn,iTiJE∗􏼐 􏼑
− 1

JE∗ zn + ε(1)
n􏼐 􏼑, un + ε(1)

n􏼒 􏼓􏼔 􏼕

� ϕ q, zn + ε(1)
n􏼐 􏼑 − 􏽘

∞

i�1
an,iϕ JE∗ + rn,iTiJE∗􏼐 􏼑

− 1
JE∗ zn + ε(1)

n􏼐 􏼑, zn + ε(1)
n􏼒 􏼓.

(24)
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From iterative scheme (15), we know that

ϕ q, vn( 􏼁≤ 1 − αn( 􏼁ϕ q, un( 􏼁 + αnϕ q, 􏽦Un zn + ε(1)
n􏼐 􏼑􏼐 􏼑

≤ 1 − αn( 􏼁ϕ q, un( 􏼁 + αnϕ q, zn + ε(1)
n􏼐 􏼑 − αn 􏽘

∞

i�1
an,iϕ JE∗ + rn,iTiJE∗􏼐 􏼑

− 1
JE∗ un + ε(1)

n􏼐 􏼑, zn + ε(1)
n􏼒 􏼓,

(25)

which implies that

αn 􏽘

∞

i�1
an,iϕ JE∗ + rn,iTiJE∗􏼐 􏼑

− 1
JE∗ zn + ε(1)

n􏼐 􏼑, zn + ε(1)
n􏼒 􏼓

≤ 1 − αn( 􏼁ϕ q, un( 􏼁 + αnϕ q, zn + ε(1)
n􏼐 􏼑 − ϕ q, vn( 􏼁

≤ 1 − αn( 􏼁 un

����
����
2

+ αn zn + ε(1)
n

�����

�����
2

− vn

����
����
2

− 2 1 − αn( 􏼁〈q, JE∗un〉 − 2αn〈q, JE∗ zn + ε(1)
n􏼐 􏼑〉 + 2〈q, JE∗vn〉

≤ un

����
����
2

− vn

����
����
2

􏼒 􏼓 + αn zn + ε(1)
n

�����

�����
2

− un

����
����
2

􏼒 􏼓 + 2‖q‖ JE∗ zn + ε(1)
n􏼐 􏼑 − JE∗un

�����

����� + 2‖q‖ JE∗un − JE∗vn

����
����⟶ 0.

(26)

Since αn↛0, there exists a subsequence of n{ }, which is
still denoted by n{ } such that ϕ((JE∗+ rn,iTiJE∗)

− 1

JE∗(zn + ε(1)
n ), zn + ε(1)

n )⟶ 0. (en (JE∗+

rn,iTiJE∗)
− 1JE∗(un + ε(1)

n )⟶ P∩∞
n�1Vn

(x1), as
n⟶∞.

Using Lemma 5 again, we have P∩∞
n�1Un

(x1) � (JE∗ +

rn,iTiJE∗)
− 1JE∗P∩∞

n�1Un
(x1), ∀i ∈ N. (erefore, P∩∞

n�1Un

(x1) ∈ ∩∞i�1(TiJE∗)
− 10.

Similarly,

ϕ q, 􏽦􏽦Un yn + ε(2)
n􏼐 􏼑􏼒 􏼓≤ b0ϕ q, yn + ε(2)

n􏼐 􏼑

+ 􏽘
∞

i�1
bn,iϕ q, JE∗ + tn,iSiJE∗􏼐 􏼑

− 1
JE∗􏼔 􏼕 JE∗ + tn,i− 1Si− 1JE∗􏼐 􏼑

− 1
JE∗􏼔 􏼕 · · · JE∗ + tn,1S1JE∗􏼐 􏼑

− 1
JE∗􏼔 􏼕 yn + ε(2)

n􏼐 􏼑􏼒 􏼓

≤ b0ϕ q, yn + ε(2)
n􏼐 􏼑

+ 􏽘
∞

i�1
bn,iϕ q, JE∗ + tn,i− 1Si− 1JE∗􏼐 􏼑

− 1
JE∗􏼔 􏼕 . . . JE∗ + tn,1S1JE∗􏼐 􏼑

− 1
JE∗􏼔 􏼕 yn + ε(2)

n􏼐 􏼑􏼒 􏼓

− 􏽘
∞

i�1
bn,iϕ JE∗ + tn,iSiJE∗􏼐 􏼑

− 1
JE∗􏼔 􏼕 · · · JE∗ + tn,1S1JE∗􏼐 􏼑

− 1
JE∗􏼔 􏼕 yn + ε(2)

n􏼐 􏼑,􏼒

· JE∗ + tn,i− 1Si− 1JE∗􏼐 􏼑
− 1

JE∗􏼔 􏼕 · · · JE∗ + tn,1S1JE∗􏼐 􏼑
− 1

JE∗􏼔 􏼕 yn + ε(2)
n􏼐 􏼑􏼓.

(27)

From iterative scheme (15), we have
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ϕ q, wn( 􏼁≤ 1 − βn( 􏼁ϕ q, un( 􏼁 + βnϕ q, 􏽦􏽦Un yn + ε(2)
n􏼐 􏼑􏼒 􏼓

≤ 1 − βn( 􏼁ϕ q, un( 􏼁 + βnb0ϕ q, yn + ε(2)
n􏼐 􏼑

+ βn 􏽘

∞

i�1
bn,iϕ q, JE∗ + tn,i− 1Si− 1JE∗􏼐 􏼑

− 1
JE∗􏼒 􏼓 yn + ε(2)

n􏼐 􏼑⎛⎝

− βn 􏽘

∞

i�1
bn,iϕ JE∗ + tn,iSiJE∗􏼐 􏼑

− 1
JE∗􏼒 􏼓 · · · JE∗ + tn,1S1JE∗􏼐 􏼑

− 1
JE∗􏼒 􏼓 yn + ε(2)

n􏼐 􏼑,

· JE∗ + tn,i− 1Si− 1JE∗􏼐 􏼑
− 1

JE∗􏼒 􏼓 · · · JE∗ + tn,1S1JE∗􏼐 􏼑
− 1

JE∗􏼒 􏼓 yn + ε(2)
n􏼐 􏼑⎞⎠.

(28)

(erefore,

βn 􏽘

∞

i�1
bn,i ϕ JE∗ + tn,iSiJE∗􏼐 􏼑

− 1
JE∗􏼒 􏼓 · · · JE∗ + tn,1S1JE∗􏼐 􏼑

− 1
JE∗􏼒 􏼓 yn + ε(2)

n􏼐 􏼑,􏼔

JE∗ + tn,i− 1Si− 1JE∗􏼐 􏼑
− 1

JE∗􏼒 􏼓 · · · JE∗ + tn,1S1JE∗􏼐 􏼑
− 1

JE∗􏼒 􏼓 yn + ε(2)
n􏼐 􏼑􏼕

≤ 1 − βn( 􏼁ϕ q, un( 􏼁 + βnb0ϕ q, yn + ε(2)
n􏼐 􏼑 + βn 􏽘

∞

i�1
bn,iϕ q, yn + ε(2)

n􏼐 􏼑 − ϕ q, wn( 􏼁

≤ 1 − βn( 􏼁 un

����
����
2

+ βn yn + ε(2)
n

�����

�����
2

− wn

����
����
2

+ 2‖q‖ yn + ε(2)
n − un

�����

����� + 2‖q‖ un − wn

����
����⟶ 0.

(29)

Since βn↛0, there exists a subsequence of n{ }, which is
still denoted by n{ } such that

JE∗ + tn,iSiJE∗􏼐 􏼑
− 1

JE∗􏼒 􏼓 · · · JE∗ + tn,1S1JE∗􏼐 􏼑
− 1

JE∗􏼒 􏼓 yn + ε(2)
n􏼐 􏼑

− JE∗ + tn,i− 1Si− 1JE∗􏼐 􏼑
− 1

JE∗􏼒 􏼓 · · · JE∗ + tn,1S1JE∗􏼐 􏼑
− 1

JE∗􏼒 􏼓 yn + ε(2)
n􏼐 􏼑⟶ 0.

(30)

Repeating the above process,

JE∗ + tn,i− 1Si− 1JE∗􏼐 􏼑
− 1

JE∗􏼒 􏼓 · · · JE∗ + tn,1S1JE∗􏼐 􏼑
− 1

JE∗􏼒 􏼓 yn + ε(2)
n􏼐 􏼑

JE∗ + tn,i− 1Si− 2JE∗􏼐 􏼑
− 1

JE∗􏼒 􏼓 · · · JE∗ + tn,1S1JE∗􏼐 􏼑
− 1

JE∗􏼒 􏼓 yn + ε(2)
n􏼐 􏼑⟶ 0,

JE∗ + tn,i− 1Si− 2JE∗􏼐 􏼑
− 1

JE∗􏼒 􏼓 · · · JE∗ + tn,1S1JE∗􏼐 􏼑
− 1

JE∗􏼒 􏼓 yn + ε(2)
n􏼐 􏼑

− JE∗ + tn,i− 1Si− 3JE∗􏼐 􏼑
− 1

JE∗􏼒 􏼓 · · · JE∗ + tn,1S1JE∗􏼐 􏼑
− 1

JE∗􏼒 􏼓 yn + ε(2)
n􏼐 􏼑⟶ 0,

⋮

JE∗ + tn,1S1JE∗􏼐 􏼑
− 1

JE∗􏼒 􏼓 yn + ε(2)
n􏼐 􏼑 − yn + ε(2)

n􏼐 􏼑⟶ 0, n⟶∞.

(31)

Repeating (30), (31), and Lemma 5, one has
P∩∞

n�1Un
(x1) � (JE∗ + tn,iS iJE∗)

− 1JE∗ P∩∞
n�1Un

(x1),

∀i ∈ N. (erefore, JE∗P∩∞
n�1Un

(x1) ∈ (∩∞i�1T− 1
i 0)

∩ (∩∞i�1S− 1
i 0).

Step 8.xn � JE∗xn⟶ JE∗P∩∞
n�1Un

(x1) ∈ (∩∞i�1T− 1
i 0)∩

(∩∞i�1S− 1
i 0), as n⟶∞.

Using Steps 1 and 7, ‖P∩∞
n�1Un

(x1) − x1‖ � ‖P

(∩∞
i�1(TiJE∗)

− 10)∩ (∩∞
i�1(SiJE∗)

− 10)(x1) − x1‖. Since the metric
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projection is unique, P∩∞
n�1Un

(x1) �

P(∩∞
i�1(TiJE∗)

− 10)∩ (∩∞
i�1(SiJE∗)

− 10)(x1).

(is completes the proof. □

Remark 1. If λn � ϑn, then un � zn. Two-step inertial iter-
ative scheme (15) reduces to the traditional inertial iterative
scheme.

Remark 2. If λn � ϑn � 0, then un � zn � xn; and two-step
iterative scheme (15) extends the corresponding work of (13)
in [8].

Remark 3. If yn or xn+1 is chosen as PWn+1
x1 (or πWn+1

x1) or
PXn+1

x1 (or πXn+1
x1), (15) becomes a projection iterative

scheme with inertial items.

Corollary 1. In Hilbert space H, iterative scheme (15) be-
comes as follows:

x0, x1, ε
(1)
1 , ε(2)

1 ∈ H,

un � xn + λn xn − xn− 1( 􏼁,

zn � xn + ϑn xn − xn− 1( 􏼁,

vn � 1 − αn( 􏼁un + αnUn zn + ε(1)
n􏼐 􏼑,

V1 � W1 � H,

Vn+1 � p ∈ Vn: 2 1 − αn( 􏼁〈p, un〉 + 2αn〈p, zn + ε(1)
n 〉 − 2〈p, vn〉≤ 1 − αn( 􏼁 un

����
����
2

+ αn zn + ε(1)
n

�����

�����
2

− vn

����
����
2

􏼚 􏼛,

Wn+1 � p ∈ Vn+1: x1 − p
����

����
2 ≤ PVn+1

x1( 􏼁 − x1

�����

�����
2

+ τn+1􏼚 􏼛,

yn ∈Wn+1 chosen arbitrarily,

wn � 1 − βn( 􏼁un + βnUn yn + ε(2)
n􏼐 􏼑,

U1 � X1 � H,

Un+1 � p ∈ Vn+1: 2 1 − βn( 􏼁〈p, un〉 + 2βn〈p, yn + ε(2)
n 〉 − 2〈p, wn〉 ≤ 1 − βn( 􏼁 un

����
����
2

+ βn yn + ε(2)
n

�����

�����
2

− wn

����
����
2

􏼚 􏼛,

Xn+1 � p ∈ Un+1: x1 − p
����

����
2 ≤ PUn+1

x1( 􏼁 − x1

�����

�����
2

+ ξn+1􏼚 􏼛,

xn+1 ∈ Xn+1 chosen arbitrarily, n ∈ N,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(32)

where Un � a0I + 􏽐
∞
i�1 an,i(I + rn,iTi)

− 1 and Un � b0I +

􏽐
∞
i�1 bn,i(I + tn,iSi)

− 1 (I + tn,i− 1Si− 1)
− 1 · · · (I + tn,1S1)

− 1,
∀i, n ∈ N. Under the assumptions of 1eorem 1, the result of
1eorem 1 is still true.

3. Numerical Experiments

Theorem 2. Let E � (− ∞, +∞), Tix � (x/2i), and Six �

(x/i), ∀x ∈ (− ∞, +∞), ∀i ∈ N. Let a0 � (1/2) � b0, an,i �

(n + 2/2(n + i + 1)(n + i + 2)), bn,i � (n/2(n + 1)i), and
tn,i � rn,i � ni, ∀i, n ∈ N. Let α1 � β1 � 1; αn � βn �

(n − 1/n), (n≥ 2). λn � ϑn � τn � ξn � (1/n); ε(1)
n � ε(2)

n � 0,
∀n ∈ N. For initial value x0 � 1, x1 � (1/3), the iterative
sequence xn􏼈 􏼉 generated by (32) converges strongly to
0 ∈ (∩∞i�1T− 1

i 0)∩ (∩∞i�1S− 1
i 0) by the eighth step for two dif-

ferent choices of yn􏼈 􏼉 and xn􏼈 􏼉 in the corresponding sets Wn+1
and Xn+1, respectively.

Proof. For the special example, we can easily see that
all of the assumptions of Corollary 1 are satisfied;
and the iterative scheme (32) can be simplified as
follows:
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x0 � 1,

x1 �
1
3
,

V2 � V1 � (− ∞, +∞) � W1,

U1 � (− ∞, +∞) � X1,

un �
n + 1

n
xn −

1
n

xn− 1,

vn �
n + 5
2n + 4

un,

Vn+1 � Vn ∩ p: 2 un − vn( 􏼁p≤ un − vn( 􏼁 un + vn( 􏼁􏼈 􏼉,

Wn+1 � Vn+1 ∩ x1 −

�������������������

PVn+1
x1 − x1􏼐 􏼑

2
+

1
n + 1

􏽲

, x1 +

�������������������

PVn+1
x1 − x1􏼐 􏼑

2
+

1
n + 1

􏽲

􏼢 􏼣,

yn ∈Wn+1,

wn �
1
n

un +
(n − 1)(n + 3)

2n(n + 2)
yn,

set qn �
(1/n)u

2
n +(n − 1/n)y

2
n − w

2
n

2 (1/n)un +(n − 1/n( 􏼁yn − wn)
,

Un+1 � Vn+1 ∩ p: 2
un

n
+

n − 1
n

yn − wn􏼒 􏼓p≤
u
2
n

n
+

n − 1
n

y
2
n − w

2
n􏼨 􏼩,

Xn+1 � Un+1 ∩ x1 −

�������������������

PUn+1
x1 − x1􏼐 􏼑

2
+

1
n + 1

􏽲

, x1 +

�������������������

PUn+1
x1 − x1􏼐 􏼑

2
+

1
n + 1

􏽲

􏼢 􏼣,

xn+1 ∈ Xn+1, n ∈ N.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(33)

Now, compute step by step and choose two different
groups of values of yn and xn in Wn+1 and Xn+1, respectively;
we can get the two following tables. □

Remark 4. From Tables 1 and 2 derived from the numerical
experiments done in(eorem2,wemay find that (1)Wn+1 is an
interval that permits us to choose intermediate iterative element
yn􏼈 􏼉 flexibly; (2) two extreme values of yn􏼈 􏼉 inWn+1, the largest
and the smallest, are chosen, from which we can see that the
convergence of the iterative sequence xn􏼈 􏼉 is not affected.

4. Curvature Systems

To emphasize the importance of d-accretive mappings, the
connection among d-accretive mappings, iterative schemes,
and nonlinear boundary value problems is set up.

Definition 7 (see [22]). A single-valued mapping A: D(A) �

E⟶ E∗ is hemicontinuous if A(x + ty)⇀Ax, as t⟶ 0,
∀x, y ∈ E.

Definition 8 (see [22, 23]). A multivalued mapping
A: D(A) ⊂ E⟶ 2E∗ is monotone if 〈x − y, u − v〉≥ 0,
∀x, y ∈ D(A), u ∈ Ax, and v ∈ Ay. (e monotone operator
A is called maximally monotone if R(JE + λA) � E∗, ∀λ> 0.

Lemma 7 (see [22]). If A: D(A) � E⟶ E∗ is everywhere
defined, monotone, and hemicontinuous, then it is maximally
monotone.

Example 1. We shall investigate the following curvature
systems:
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− div 1 + ∇u(i)
􏼌􏼌􏼌􏼌􏼌
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∇u(i)
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mi − 1
∇u(i)

􏼢 􏼣 + ε u
(i)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
ri− 2

u
(i)

+ u
(i)

(x) � h(x), x ∈ Ω,

− < ], 1 + ∇u(i)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

􏼒 􏼓
si/2( )
∇u(i)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
mi − 1
∇u(i) > � 0, x ∈ Γ, i ∈ N,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(34)

where | · | and 〈·, ·〉 denote the norm and inner-product in
Rn, respectively. Ω is the bounded conical domain of
Rn (n≥ 1) with its boundary Γ ∈ C1, ] is the normal de-
rivative of Γ, ∇u(i) � ((zu(i)/zx1), . . . , (zu(i)/zxn)), ϵ is a
nonnegative constant, and h(x) is a given function. For
i ∈ N, mi + si + 1 � qi, mi ≥ 0, and (2n/n + 1)< qi ≤ 2. If

qi ≥ n, then suppose that 1≤ ri < +∞; if qi < n, then suppose
that 1≤ ri ≤ (nqi/n − qi). We use ‖ · ‖qi

′ and ‖ · ‖1,qi,Ω to denote
the norm in L

qi′(Ω) and W1,qi (Ω), respectively, ∀i ∈ N.

Lemma 8. For i ∈ N, define Bi: W
1,qi′(Ω)⟶ (W

1,qi′(Ω))∗

as follows: ∀u, v ∈W
1,qi′(Ω),

〈v, Biu〉 � 􏽚
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〈 1 + ∇ |u|

qi′− 1sgnu‖u‖
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′
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′􏼒 􏼓〉dx. (35)

1en, Bi is everywhere defined, hemicontinuous, and
monotone, ∀i ∈ N.

Proof. (e proof is split into three steps.

Step 1.Bi is everywhere defined.
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If si < 0, then
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2− qi
′

qi
′􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

mi+si

∇ |v|
qi′− 1sgnv‖v‖

2− qi
′

qi
′􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dx

≤ ∇ |u|
qi′− 1sgnu‖u‖

2− qi
′

qi
′􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

�������

�������

qi/qi
′) ∇ |v|

qi′− 1sgnv‖v‖
2− qi
′

qi
′􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

�������

�������1,qi
′,Ω

.􏼠

qi
′

(37)
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(us Bi is everywhere defined.
Step 2.Bi is monotone.

For ∀u, v ∈W
1,qi′(Ω),

〈u − v, Biu − Biv〉

� 􏽚
Ω
〈 1 + ∇ |u|

qi
′− 1sgnu‖u‖

2− qi
′

qi
′􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2
􏼠 􏼡

si/2( )

∇ |u|
qi
′− 1sgnu‖u‖

2− qi
′

qi
′􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

mi − 1
∇ |u|

qi
′− 1sgnu‖u‖

2− qi
′

qi
′􏼒 􏼓

− 1 + ∇ |v|
qi
′− 1sgnv‖v‖

2− qi
′

qi
′􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2
􏼠 􏼡

si/2( )

∇ |v|
qi
′− 1sgnv‖v‖

2− qi
′

qi
′􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

mi − 1
∇ |v|

qi
′− 1sgnv‖v‖

2− qi
′

qi
′􏼒 􏼓,∇ |u|

qi
′− 1sgnu‖u‖

2− qi
′

qi
′􏼒 􏼓

− ∇ |v|
qi
′− 1sgnv‖v‖

2− qi
′

qi
′􏼒 􏼓〉dx

≥􏽚
Ω

1 + ∇ |u|
qi
′− 1sgnu‖u‖

2− qi
′

qi
′􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2
􏼠 􏼡

si/2( )

∇ |u|
qi
′− 1sgnu‖u‖

2− qi
′

qi
′􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

mi
⎡⎢⎢⎣

− 1 + ∇ |v|
qi
′− 1sgnv‖v‖

2− qi
′

qi
′􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2
􏼠 􏼡 ∇ |v|

qi
′− 1sgnv‖v‖

2− qi
′

qi
′􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

mi

􏼣

× ∇ |u|
qi
′− 1sgnu‖u‖

2− qi
′

qi
′􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− ∇ |v|

qi
′− 1sgnv‖v‖

2− qi
′

qi
′􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼒 􏼓dx.

(38)

From the fact that h(t): � (1 + t2)(si/2)tmi , ∀t≥ 0 is
monotone; we know that Bi is monotone.
Step 3.Bi is hemicontinuous.

∀u, v, w ∈W
1,qi′(Ω) and t ∈ (0, 1); using Lebesgue’s

dominated convergence theorem, one has

0≤ lim
t⟶0
〈w, Bi(u + tv) − Biu〉

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

≤ 􏽚
Ω
lim

t⟶0
< 1 + ∇ |u + tv|

qi′− 1sgnu‖u + tv‖
2− qi
′

qi
′􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2
􏼠 􏼡

si

2 ∇ |u + tv|
qi′− 1sgnu‖u + tv‖

2− qi
′

qi
′􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

mi − 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

× ∇ |u + tv|
qi′− 1sgn(u + tv)‖u + tv‖

2− qi
′

qi
′􏼒 􏼓 − 1 + ∇ |u|

qi′− 1sgnu‖u‖
2− qi
′

qi
′􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2
􏼠 􏼡

si

2 ∇ |u|
qi′− 1sgnv‖u‖

2− qi
′

qi
′􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

mi− 1

· ∇ |u|
qi′− 1sgnv‖u‖

2− qi
′

qi
′􏼒 􏼓,∇ |w|

qi′− 1sgnw‖w‖
2− qi
′

qi
′􏼒 􏼓> dx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 0.

(39)

(erefore, Bi is hemicontinuous.
(is completes the proof. □

Lemma 9 (see [8]). For i ∈ N, define Ci: W
1,qi′(Ω)⟶

(W
1,qi′(Ω))∗ as follows: ∀u, v ∈W

1,qi′(Ω),

〈v, Ciu〉 � 􏽚
Ω

uvdx. (40)

1en Ci is maximally monotone, for ∀i ∈ N.

Lemma 10 (see [22]). For each i ∈ N, there exist the max-
imal monotone extension of Bi and the maximal monotone
extension of Ci, which are denoted by Bi: L

qi′(Ω)⟶ Lqi (Ω)

and Ci: L
qi′(Ω)⟶ Lqi (Ω), respectively.

Lemma 11 (see [24]). For i ∈ N, if qi
′ ≥ 2, then the nor-

malized duality mapping Ji: L
qi′(Ω)⟶ Lqi (Ω) is defined

by Jiu � |u|
qi′− 1sgnu‖u‖

2− qi
′

qi
′ , ∀u ∈ L

qi′(Ω). 1en, J− 1
i :

Lqi (Ω)⟶ L
qi′(Ω) is defined by J− 1

i u � |u|
qi′− 1sgnu,

∀u ∈ Lqi (Ω).
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Based on the above lemmas and imitating (eorems
3.10, 3.11, and 3.12 in [8], one has the following results.

Theorem 3. For i ∈ N, define Ti: Lqi (Ω)⟶ Lqi (Ω) as
follows: ∀u ∈ Lqi (Ω), Tiu � BiJ

− 1
i u(x). 1en Ti is d-accretive

and R(I + λTi) � Lqi (Ω), ∀λ> 0, i ∈ N.

Theorem 4. Define the mapping Si: Lqi (Ω)⟶ Lqi (Ω) by
Siu � CiJ

− 1
i u(x), ∀u(x) ∈ Lqi (Ω). 1en Si is d-accretive and

R(I + λSi) � Lqi (Ω), ∀λ> 0, i ∈ N.
Define the mapping Si: Lqi (Ω)⟶ Lqi (Ω) by

Siu � Siu(x) − |k|qi− 1sgnk, ∀u(x) ∈ Lqi (Ω), where k is a
constant. 1en Si is d-accretive and R(I + λSi) � Lqi (Ω),
∀λ> 0, i ∈ N.

Theorem 5. If, in (34), fi(x) ≡ ε|k|ri − 1sgnk + k, where k is a
constant, then u(i)(x) ≡ k􏼈 􏼉 is the solution of (34). Moreover,
u(i)(x) ≡ k􏼈 􏼉 ⊂ (∩∞i�1T− 1

i 0)∩ (∩∞i�1S− 1
i 0).

Proof. It is obvious that u(i)(x) ≡ k􏼈 􏼉 is the solution of
(34). If u(i)(x) ≡ k, then Tiu

(i)(x) � BiJ
− 1
i k � BiJ

− 1
i k � 0

and Siu
(i)(x) � CiJ

− 1
i k − |k|qi − 1sgnk � CiJ

− 1
i k − |k|qi − 1sgnk.

Since 〈v, CiJ
− 1
i k − |k|qi − 1sgnk〉 � 􏽒Ω(J− 1

i k − |k|qi− 1sgnk)

vdx � 0, u(i)(x) ≡ k􏼈 􏼉 ⊂ (∩∞i�1T− 1
i 0)∩ (∩∞i�1S− 1

i 0).
(is completes the proof. □

Remark 5. From (eorem 5, we can see the relationship
between the solution of curvature systems (34) and common
zero points of two groups of d-accretive mappings. (is will
help us to approximate the solution of curvature systems by
using iterative schemes introduced in Section 2.
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,is article deals with Hadamard inequalities for strongly (s, m)-convex functions using generalized Riemann–Liouville fractional
integrals. Several generalized fractional versions of the Hadamard inequality are presented; we also provide refinements of many
known results which have been published in recent years.

1. Introduction

Fractional calculus is related to the integrals and derivatives
of any arbitrary real or complex order. Its history starts from
the end of the seventeenth century, but now it has many
applications in almost every field of mathematics, science,
and engineering such as electromagnetic, viscoelasticity,
fluid mechanics, and signal processing. Fractional integral
and derivative operators are of great importance in frac-
tional calculus. ,e Riemann–Liouville fractional integrals
are playing key role in its development. Sarikaya et al. [1, 2]
studied Hadamard inequality through Riemann–Liouville
fractional integrals of convex functions. ,is study has
encouraged a number of researchers to work further in the
field of mathematical inequalities by using fractional integral
operators. As a consequence, Hadamard’s inequality is
generalized and extended by fractional integral operators in
many ways (see [3–9] and the references therein). ,e
following inequality is the well-known Hadamard inequality
for convex functions which is stated in [10].

Let f: I⟶ R be a convex function defined on an
interval I ⊂ R and x, y ∈ I where x<y. ,en, the following
inequality holds:

f
x + y

2
􏼒 􏼓≤

1
y − x

􏽚
y

x
f(v)dv≤

f(x) + f(y)

2
. (1)

For the history of this inequality, we refer the readers to
[11, 12]. Use of convex functions in the fields of statistics
[13], economics [14], and optimization [15] is of prime
importance because they play an important role in devel-
opment of new concepts and notions. Various scholars
extended the research on integral inequalities to fractal sets
[16]. In this paper, the Hadamard inequality is studied for
generalized Riemann–Liouville fractional integrals of
strongly (s, m)-convex functions; also, by using two integral
identities, some error bounds of already established frac-
tional inequalities are studied. Bracamonte et al. [17] defined
the strongly (s, m)-convex function as follows.

Definition 1. A function f: [0, +∞)⟶ R is said to be
strongly (s, m)-convex function with modulus c≥ 0 in
second sense, where (s, m) ∈ (0, 1]2, if

f(xt + m(1 − t)y)≤ t
s
f(x) + m(1 − t)

s
f(y)

− cmt(1 − t)|y − x|
2
,

(2)

holds for all x, y ∈ [0, +∞) and t ∈ [0, 1].

,e well-known definition of Riemann–Liouville frac-
tional integral is given as follows.

Definition 2 (see [18]) (see also [19]). Let f ∈ L[a, b]. ,en,
left-sided and right-sided Riemann–Liouville fractional
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integrals of a function f of order μ whereR(μ)> 0 are given
by

I
μ
a+ f(x) �

1
Γ(μ)

􏽚
x

a
(x − t)

μ− 1
f(t)dt, x> a, (3)

I
μ
b− f(x) �

1
Γ(μ)

􏽚
b

x
(t − x)

μ− 1
f(t)dt, x< b, (4)

where R(μ) is real part of μ and Γ(μ) � 􏽒
∞
0 e− zzμ− 1dz. ,e

following theorems are the fractional versions of Hadamard
inequality by Riemann–Liouville fractional integrals.

Theorem 1 (see [1]). Let f: [a, b]⟶ R be a positive
function with 0≤ a< b and f ∈ L[a, b]. If f is a convex
function on [a, b], then the following fractional integral in-
equality holds:

f
a + b

2
􏼠 􏼡≤

Γ(μ + 1)

2 (b − a)
μ I

μ
a+ f(b) + I

μ
b− f(a)􏽨 􏽩≤

f(a) + f(b)

2
,

(5)

with μ> 0.

Theorem 2 (see [2]). Under the assumptions of İeorem 1, the
following fractional integral inequality holds:

f
a + b

2
􏼠 􏼡≤

2μ− 1Γ(μ + 1)

(b − a)
μ I

μ
((a+b)/2)+ f(b) + I

μ
((a+b)/2)− f(a)􏼔 􏼕

≤
f(a) + f(b)

2
,

(6)

with μ> 0.

By establishing an integral identity, the following error
estimation of inequality (6) is proved.

Theorem 3 (see [1]). Let f: [a, b]⟶ R be a differentiable
mapping on (a, b) with a< b. If |f′| is convex on [a, b], then
the following fractional integral inequality holds:

f(a) + f(b)

2
−
Γ(μ + 1)

2(b − a)
μ I

μ
a+ f(b) + I

μ
b− f(a)􏽨 􏽩

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
b − a

2(μ + 1)
1 −

1
2μ

􏼒 􏼓 f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽨 􏽩.

(7)

A k-analogue of Riemann–Liouville integral is defined as
follows.

Definition 3 (see [20]). Let f ∈ L[a, b]. ,en, k-fractional
Riemann–Liouville integrals of order μ where R(μ)> 0,
k> 0, are defined as

kI
μ
a+ f(x) �

1
kΓk(μ)

􏽚
x

a
(x − t)

(μ/k)− 1
f(t)dt, x> a, (8)

kI
μ
b− f(x) �

1
kΓk(μ)

􏽚
b

x
(t − x)

(μ/k)− 1
f(t)dt, x< b, (9)

where Γk(.) is defined by [21]

Γk(μ) � 􏽚
∞

0
t
μ− 1

e
− tk/k( )dt, R(μ)> 0. (10)

If k � 1, (8) and (9) coincide with (3) and (4).
Two k-fractional versions of Hadamard inequality for

k-fractional Riemann–Liouville integrals are given in the
next two theorems.

Theorem 4 (see [22]). Let f: [a, b]⟶ R be a positive
function with 0≤ a< b. Iff is a convex function on [a, b], then
the following inequality for k-fractional integrals holds:

f
a + b

2
􏼠 􏼡≤

Γk(μ + k)

2(b − a)
(μ/k) kI

μ
a+ f(b) + kI

μ
b− f(a)􏽨 􏽩

≤
f(a) + f(b)

2
.

(11)

Theorem 5 (see [23]). Under the assumption of İeorem 4, the
following inequality for k-fractional integrals holds:

f
a + b

2
􏼠 􏼡≤

2(μ/k)− 1Γk(μ + k)

(b − a)
(μ/k) kI

μ
((a+b)/2)+ f(b) + kI

μ
((a+b)/2)− f(a)􏼔 􏼕≤

f(a) + f(b)

2
. (12)
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By establishing an integral identity, in the following
theorem, the error estimation of ,eorem 4 is proved.

Theorem 6 (see [22]). Let f: [a, b]⟶ R be a differentiable
mapping on (a, b) with 0≤ a< b. If |f′| is convex on [a, b],
then the following inequality for k-fractional integrals holds:

f(a) + f(b)

2
−
Γk(μ + k)

2(b − a)
μ/k kI

μ
a+ f(b) + kI

μ
b− f(a)􏽨 􏽩

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

b − a

2((μ/k) + 1)
1 −

1
2(μ/k)

􏼠 􏼡 f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽨 􏽩. (13)

In the following, we recall the definition of generalized
Riemann–Liouville fractional integrals by a monotonically
increasing function.

Definition 4 (see [24]). Let f: [a, b]⟶ R be an integrable
function. Also, let ψ be an increasing and positive function on

(a, b], having a continuous derivative ψ′ on (a, b). 7e left-
sided and right-sided fractional integrals of a function f with
respect to another function ψ on [a, b] of order μ where
R(μ)> 0 are given by

I
μ,ψ
a+ f(x) �

1
Γ(μ)

􏽚
x

a
ψ′(t)(ψ(x) − ψ(t))

μ− 1
f(t)dt, x> a, (14)

I
μ,ψ
b− f(x) �

1
Γ(μ)

􏽚
b

x
ψ′(t)(ψ(t) − ψ(x))

μ− 1
f(t)dt, x< b. (15)

If ψ is identity function, then (14) and (15) coincide with
(3) and (4).

,e k-analogue of generalized Riemann–Liouville frac-
tional integral is defined as follows.

Definition 5 (see [25]). Let f: [a, b]⟶ R be an integrable
function. Also, let ψ be an increasing and positive function on
(a, b], having a continuous derivative ψ′ on (a, b). 7e left-
sided and right-sided fractional integrals of a function f with
respect to another function ψ on [a, b] of order μ where
R(μ)> 0, k> 0, are defined by

kI
μ,ψ
a+ f(x) �

1
kΓk(μ)

􏽚
x

a
ψ′(t)(ψ(x) − ψ(t))

(μ/k)− 1
f(t)dt, x> a, (16)

kI
μ,ψ
b− f(x) �

1
kΓk(μ)

􏽚
b

x
ψ′(t)(ψ(t) − ψ(x))

(μ/k)− 1
f(t)dt, x< b. (17)

For further study of fractional integrals, see [26, 27]. We
will utilize the following well-known hypergeometric, beta,
and incomplete beta functions in our results [28].

2F1[a, b; c; z] �
1

B(b, c − b)
􏽚
1

0
t
b− 1

(1 − t)
c− b− 1

(1 − zt)
− adt, c> b> 0, |z|< 1,

B(x, y) � 􏽚
1

0
t
x− 1

(1 − t)
y− 1dt �

Γ(x)Γ(y)

Γ(x + y)
,

B(x, y; z) � 􏽚
z

0
t
x− 1

(1 − t)
y− 1dt.

(18)
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,e rest of the paper is organized as follows. In Section
2, we obtain Hadamard inequalities for generalized
Riemann-Liouville fractional integrals of strongly
(s, m)-convex functions. Many specific cases are given as
outcomes of these inequalities; they are related to the re-
sults which have been published in different papers. In
Section 3, by using two integral identities for generalized
fractional integrals, the error bounds of fractional Hada-
mard inequalities are established for differentiable strongly
(s, m)-convex functions. ,is paper reproduces the results
which are explicitly given in [1, 2, 22, 23, 29–37].

2. Main Results

,is section is dedicated to the Hadamard inequality for
strongly (s, m)-convex functions via generalized
Riemann–Liouville fractional integrals. We will give two
versions of this inequality. First one is stated and proved in
the following theorem.

Theorem 7. Let f: [a, b]⟶ R, [a, b] ⊂ [0, +∞) be a
positive function and f ∈ L1[a, b]. Also, let f be strongly
(s, m)-convex function on [a, b] with modulus c, such that
(a/m), (a/m2), mb ∈ [a, b]. 7en, for k> 0 and
(s, m) ∈ (0, 1]2, the following k-fractional integral inequal-
ities hold for operators given in (16) and (17):

f
a + mb

2
􏼠 􏼡 +

cm

4(μ + k)(μ + 2k)
μ(μ + k)(b − a)

2
+ 2k

2 a

m
− mb􏼒 􏼓

2
􏼢 + 2kμ(b − a)

a

m
− mb􏼒 􏼓􏼕

≤
Γk(μ + k)

2s
(mb − a)

μ/k kI
μ,ψ
ψ− 1(a)+ (f ∘ψ) ψ− 1

(mb)􏼐 􏼑􏼔 + m
(μ/k)+1

kI
μ,ψ
ψ− 1(b)− (f°ψ) ψ− 1 a

m
􏼒 􏼓􏼒 􏼓􏼕

≤
μ[f(a) + mf(b)]

2s
(μ + sk)

+
mμB((μ/k), s + 1) f(b) + mf a/m2

􏼐 􏼑􏽨 􏽩

k2s −
cmkμ (b − a)

2
+ m b − a/m2

􏼐 􏼑􏼐 􏼑
2

􏼔 􏼕

2s
(μ + k)(μ + 2k)

,

(19)

with μ> 0.

Proof. ,e following inequality holds for strongly
(s, m)-convex functions.

f
x + my

2
􏼒 􏼓≤

f(x) + mf(y)

2s −
cm|y − x|

2

4
. (20)

By setting x � at + m(1 − t)b, y � (a/m)(1 − t) + tb,
t ∈ [0, 1], in (20), multiplying resulting inequality with
t(μ/k)− 1, and then integrating with respect to t, we get

k

μ
f

a + mb

2
􏼠 􏼡≤

1
2s 􏽚

1

0
f(at + m(1 − t)b)t

(μ/k)− 1dt + m 􏽚
1

0
f

a

m
(1 − t) + bt􏼒 􏼓t

(μ/k)− 1dt􏼢 􏼣

−
cm

4
k(b − a)

2

μ + 2k
+
2k

3
((a/m) − mb)

2

μ(μ + k)(μ + 2k)
+
2k

2
(b − a)((a/m) − mb)

(μ + k)(μ + 2k)
􏼢 􏼣.

(21)

By setting ψ(u) � at + m(1 − t)b and ψ(v) � (a/m)(1 −

t) + bt in (21) and by applying Definition 5, we get the
following inequality:

f
a + mb

2
􏼠 􏼡≤

Γk(μ + k)

2s
(mb − a)

μ/k kI
μ,ψ
ψ− 1(a)+ (f ∘ψ) ψ− 1

(mb)􏼐 􏼑􏼔 + m
(μ/k)+1

kI
μ,ψ
ψ− 1(b)− (f ∘ψ) ψ− 1 a

m
􏼒 􏼓􏼒 􏼓􏼕

−
cmμ
4

(b − a)
2

μ + 2k
+
2k

2
((a/m) − mb)

2

μ(μ + k)(μ + 2k)
+
2k(b − a)((a/m) − mb)

(μ + k)(μ + 2k)
􏼢 􏼣.

(22)
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,e above inequality leads to the first inequality of (19).
On the other hand, f is strongly (s, m)-convex function with
modulus c; for t ∈ [0, 1], we have the following inequality:

f(ta + m(1 − t)b) + mf
a

m
(1 − t) + tb􏼒 􏼓≤ t

s
[f(a) + mf(b)]

+ m(1 − t)
s

f(b) + mf
a

m
2􏼠 􏼡􏼢 􏼣 − cmt(1 − t) (b − a)

2
+ m b −

a

m2􏼒 􏼓
2

􏼢 􏼣.

(23)

By integrating (23) over [0, 1] after multiplying with
t(μ/k)− 1, the following inequality holds:

􏽚
1

0
t
(μ/k)− 1

f(ta + m(1 − t)b)dt + m 􏽚
1

0
t
(μ/k)− 1

f
a

m
(1 − t) + tb􏼒 􏼓dt

≤
[f(a) + mf(b)]k

μ + sk
+ m f(b) + mf

a

m
2􏼠 􏼡􏼢 􏼣B

μ
k

, s + 1􏼒 􏼓

−
cmk

2
(b − a)

2
+ m b − a/m2

􏼐 􏼑􏼐 􏼑
2

􏼔 􏼕

(μ + k)(μ + 2k)
.

(24)

Again using substitutions as considered in (21), we get

kΓk(μ)

(mb − a)
(μ/k) kI

μ,ψ
ψ− 1(a)+ (f°ψ) ψ− 1

(mb)􏼐 􏼑 + m(μ/k)+1
kI

μ,ψ
ψ− 1(b)− (f°ψ) ψ− 1 a

m
􏼒 􏼓􏼒 􏼓􏼔 􏼕

≤
[f(a) + mf(b)]k

μ + sk
+ m f(b) + mf

a

m
2􏼠 􏼡􏼢 􏼣B

μ
k

, s + 1􏼒 􏼓

−
cmk

2
(b − a)

2
+ m b − a/m2

􏼐 􏼑􏼐 􏼑
2

􏼒 􏼓

(μ + k)(μ + 2k)
.

(25)

,is leads to the second inequality of (19). □

Remark 1. Under the assumption of ,eorem 7, the fol-
lowing outcomes are noted.

(i) If s � 1, m � 1, then the inequality stated in [[32],
,eorem 9] is obtained.

(ii) If c � 0, s � 1, m � 1, and ψ is the identity function
in (19), then ,eorem 4 is obtained.

(iii) If c � 0, s � 1, m � 1, k � 1, and ψ is the identity
function in (19), then ,eorem 1 is obtained.

(iv) If k � 1, s � 1, m � 1, and ψ is the identity function
in (19), then refinement of ,eorem 1 is obtained.

(v) If μ � 1, k � 1, s � 1, m � 1, c � 0, and ψ is the
identity function in (19), then Hadamard in-
equality is obtained.

(vi) If m � 1, s � 1, and c � 0 in (19), then the in-
equality [[34], ,eorem 1] is obtained.

(vii) If c � 0, k � 1, m � 1, and s � 1 in (19), then the
inequality stated in [[33],,eorem 2.1] is obtained.

(viii) If s � 1, k � 1, and ψ is the identity function in (19),
then the inequality stated in [[31], ,eorem 6] is
obtained.

(ix) If k � 1, m � 1, s � 1, μ � 1, and ψ is the identity
function in (19), then the inequality stated in [[35],
,eorem 6] is obtained.
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(x) If α � 1, k � 1, c � 0, and ψ is the identity function
in (19), then the inequality stated in [[29],,eorem
2.1] is obtained.

Corollary 1. Under the assumption of 7eorem 7 with c � 0
in (19), the following inequality holds:

f
a + mb

2
􏼠 􏼡≤

Γk(μ + k)

2s
(mb − a)

(μ/k) kI
μ,ψ
ψ− 1(a)+ (f°ψ) ψ− 1

(mb)􏼐 􏼑 + m(μ/k)+1
kI

μ,ψ
ψ− 1(b)− (f°ψ) ψ− 1 a

m
􏼒 􏼓􏼒 􏼓􏼔 􏼕

≤
μ[f(a) + mf(b)]

2s
(μ + sk)

+
mμB((μ/k), s + 1) f(b) + mf a/m2

􏼐 􏼑􏽨 􏽩

k2s .

(26)

Theorem 8. Under the assumption of 7eorem 7, the fol-
lowing k-fractional integral inequality holds:

f
a + mb

2
􏼠 􏼡 +

cm

16(μ + k)(μ + 2k)
μ(b − a)

2
+

a

m
− mb􏼒 􏼓

2
μ2 + 5kμ + 8k

2
􏼐 􏼑 + 2μ(b − a)

a

m
− mb􏼒 􏼓(μ + 3k)􏼢 􏼣

≤
2(μ/k)− sΓk(μ + k)

(mb − a)
(μ/k) kI

μ,ψ
ψ− 1((a+mb)/2)+ (f°ψ) ψ− 1

(mb)􏼐 􏼑 + m(μ/k)+1
kI

μ,ψ
ψ− 1((a+mb)/2m)− (f°ψ) ψ− 1 a

m
􏼒 􏼓􏼒 􏼓􏼔 􏼕

≤
μ[f(a) + mf(b)]

22s
(μ + sk)

+
m2F1(− s, (μ/k), ((μ + k)/k); (1/2)) f(b) + mf a/m2

􏼐 􏼑􏽨 􏽩

2s −
cm(μ + 3k)μ (b − a)

2
+ m b − a/m2

􏼐 􏼑􏼐 􏼑􏽨 􏽩

2s+2
(μ + k)(μ + 2k)

,

(27)

with μ> 0.

Proof. By setting x � (at/2) + m((2 − t)/2)b, y � (a/m)

((2 − t)/2) + (bt/2), t ∈ [0, 1] in (20), multiplying resulting

inequality with t(μ/k)− 1, and then integrating with respect to
t, we get

k

μ
f

a + mb

2
􏼠 􏼡≤

1
2s 􏽚

1

0
f

at

2
+ m

2 − t

2
􏼒 􏼓b􏼒 􏼓t

(μ/k)− 1dt + m 􏽚
1

0
f

a

m

2 − t

2
􏼒 􏼓 +

bt

2
􏼠 􏼡t

(μ/k)− 1dt􏼢 􏼣

−
cm

4
(b − a)

2
k

4(μ + 2k)
􏼢 +

k((a/m) − mb)
2 μ2 + 5kμ + 8k

2
􏼐 􏼑

4μ(μ + k)(μ + 2k)
+

(b − a)((a/m) − mb)(μ + 3k)k

2(μ + k)(μ + 2k)
⎤⎦.

(28)
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By setting ψ(u) � (at/2) + bm((2 − t)/2) and
ψ(v) � (a/m)((2 − t)/2) + (bt/2) and by applying Definition
5, we get the following inequality:

k

μ
f

a + mb

2
􏼠 􏼡≤

2μ/kkΓk(μ)

2s
(mb − a)

μ/k kI
μ,ψ
ψ− 1((a+mb)/2)+ (f°ψ) ψ− 1

(mb)􏼐 􏼑 + m(μ/k)+1
kI

μ,ψ
ψ− 1((a+mb)/2m)− (f°ψ) ψ− 1 a

m
􏼒 􏼓􏼒 􏼓􏼔 􏼕

−
cm

4
k(b − a)

2

4(μ + 2k)
+

k((a/m) − mb)
2 μ2 + 5kμ + 8k

2
􏼐 􏼑

4μ(μ + k)(μ + 2k)
+

k(b − a)((a/m) − mb)(μ + 3k)

2(μ + k)(μ + 2k)
⎡⎣ ⎤⎦.

(29)

,e above inequality leads to the first inequality of (27).
On the other hand, f is strongly (s, m)-convex function with
modulus c; for t ∈ [0, 1], we have the following inequality:

f
at

2
+ m

2 − t

2
􏼒 􏼓b􏼒 􏼓 + mf

a

m

2 − t

2
􏼒 􏼓 +

bt

2
􏼠 􏼡≤

t

2
􏼒 􏼓

s

[f(a) + mf (b)]

+ m
2 − t

2
􏼒 􏼓

s

f(b) + mf
a

m
2􏼠 􏼡􏼢 􏼣 −

cmt(2 − t) (b − a)
2

+ m b − a/m2
􏼐 􏼑􏼐 􏼑

2
􏼔 􏼕

4
.

(30)

By integrating (30) over [0, 1] after multiplying with
t(μ/k)− 1, the following inequality holds:

􏽚
1

0
f

at

2
+ m

2 − t

2
􏼒 􏼓b􏼒 􏼓t

(μ/k)− 1dt + m 􏽚
1

0
f

a

m

2 − t

2
􏼒 􏼓 +

bt

2
􏼠 􏼡t

(μ/k)− 1dt

≤
k[f(a) + mf(b)]

2s
(sk + μ)

+
mk f(b) + f a/m2

􏼐 􏼑􏽨 􏽩2F1(− s, (1 + μ/k), (2 +(μ + k)/k); (1/2))

μ

−
cmk(μ + 3k) (b − a)

2
+ m b − a/m2

􏼐 􏼑􏼐 􏼑
2

􏼔 􏼕

4(μ + k)(μ + 2k)
.

(31)

Again using substitutions as considered in (28), we get
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2μ/kkΓk(μ)

(mb − a)
μ/k kI

μ,ψ
ψ− 1((a+mb)/2)+ (f°ψ) ψ− 1

(mb)􏼐 􏼑 + m(μ/k)+1
kI

μ,ψ
ψ− 1((a+mb)/2m)− (f°ψ) ψ− 1 a

m
􏼒 􏼓􏼒 􏼓􏼔 􏼕

≤
k[f(a) + mf(b)]

2s
(sk + μ)

+
mk f(b) + mf a/m2

􏼐 􏼑􏽨 􏽩2F1(− s, (μ/k), ((μ + k)/k); (1/2))

μ

−
cmk(μ + 3k) (b − a)

2
+ m b − a/m2

􏼐 􏼑􏼐 􏼑
2

􏼔 􏼕

4(μ + k)(μ + 2k)
.

(32)

,is leads to the second inequality of (27). □

Remark 2. Under the assumption of ,eorem 8, the fol-
lowing outcomes are noted.

(i) If s � 1 and m � 1 in (27), then the inequality stated
in [[32], ,eorem 10] is obtained.

(ii) If s � 1, m � 1, k � 1, c � 0, and ψ is the identity
function in (27), then ,eorem 2 is obtained.

(iii) If s � 1, m � 1, k � 1, and ψ is the identity function
in (27), then refinement of ,eorem 2 is obtained.

(iv) If s � 1, m � 1, k � 1, μ � 1, c � 0, and ψ is the
identity function in (27), then Hadamard inequality
is obtained.

(v) If s � 1, m � 1, c � 0, and ψ is the identity function
in inequality (27), then ,eorem 5 is obtained.

(vi) If s � 1, m � 1, and c � 0 in (27), then the inequality
stated in [[32], Corollary 5] is obtained.

(vii) If s � 1, k � 1, and ψ is the identity function in
inequality (27), then the inequality stated in [[31],
,eorem 7] is obtained.

Corollary 3. Under the assumption of 7eorem 8 with c � 0
in (27), the following inequality holds:

f
a + mb

2
􏼠 􏼡≤

2(μ/k)− sΓk(μ + k)

(mb − a)
(μ/k) kI

μ,ψ
ψ− 1((a+mb)/2)+ (f°ψ) ψ− 1

(mb)􏼐 􏼑 + m(μ/k)+1
kI

μ,ψ
ψ− 1((a+mb)/2m)− (f°ψ) ψ− 1 a

m
􏼒 􏼓􏼒 􏼓􏼔 􏼕

≤
μ[f(a) + mf(b)]

22s
(μ + sk)

+
m f(b) + mf a/m2

􏼐 􏼑􏽨 􏽩2F1(− s, (μ/k), ((μ + k)/k); (1/2))

2s .

(33)

3. Error Estimations of Hadamard
Inequalities via Strongly
(s, m)-Convex Functions

In this section, we will study error estimations of Hadamard
inequalities for generalized Riemann–Liouville fractional
integrals of strongly (s, m)-convex functions. ,e estima-
tions obtained here provide refinements of many well-
known results. ,e Mathematica program is used for in-
tegration. We recall the well-known Hölder’s integral
inequality.

Theorem 9 (see [38]). Let p> 1 and (1/p) + (1/q) � 1. If f

and g are real functions defined on [a, b] and if |f|p and |g|q

are integrable functions on [a, b], then

􏽚
b

a
|f(x)g(x)|dx≤ 􏽚

b

a
|f(x)|

pdx􏼠 􏼡

1/p

􏽚
b

a
g(x)

qdx􏼠 􏼡

1/q

,

(34)

with equality holding iff A|f(x)|p � B|g(x)|q almost ev-
erywhere, where A and B are constants.

In order to prove the next result, the following lemma is
useful.

Lemma 1 (see [34]). Let a< b and f: [a, b]⟶ R be a
differentiable mapping on (a, b). Also, suppose that
f′ ∈ L[a, b], ψ(x) is an increasing and positive monotone
function on (a, b], having a continuous derivative ψ′(x) on
(a, b), and α ∈ (0, 1). 7en, for k> 0, the following identity
holds:
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f(a) + f(b)

2
−
Γk(μ + k)

2(b − a)
(μ/k) kI

μ,ψ
ψ− 1(a)+ (f°ψ) ψ− 1

(b)􏼐 􏼑 + kI
μ,ψ
ψ− 1(b)− (f°ψ) ψ− 1

(a)􏼐 􏼑􏼔 􏼕

�
b − a

2
􏽚
1

0
(1 − t)

(μ/k)
− t

(μ/k)
􏽨 􏽩f′(ta +(1 − t)b)dt.

(35)

Theorem 10. Let f: [a, b]⟶ R, [a, b] ⊂ [0, +∞) be a
differentiable mapping on (a, b) such that f′ ∈ L1[a, b]. Also,
suppose that |f′| is strongly (s, m)-convex on [a, b] with

modulus c. 7en, for k> 0 and (s, m) ∈ (0, 1]2, the following
k-fractional integral inequality holds for operators given in
(16) and (17):

f(a) + f(b)

2
−
Γk(μ + k)

2(b − a)
(μ/k) kI

μ,ψ
ψ− 1(a)+ (f°ψ) ψ− 1

(b)􏼐 􏼑 + kI
μ,ψ
ψ− 1(b)− (f°ψ) ψ− 1

(a)􏼐 􏼑􏼔 􏼕

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
b − a

2
f′(a)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 2B

1
2
; s + 1,

μ
k

+ 1􏼒 􏼓 +
1 − (1/2)

s+(μ/k)

s +(μ/k) + 1
− B 1 + s, 1 +

μ
k

􏼒 􏼓􏼠 􏼡􏼢

+ m f′
b

m
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1 − (1/2)
s+(μ/k)+1

s +(μ/k) + 1
− 2F1(− s, 1 +(μ/k), 2 +(μ/k); (1/2))

21+(μ/k)
((μ/k) + 1)

⎛⎝ ⎞⎠

+ B(1 + s, 1 +(μ/k)) −
k k + μ + 2s

(k + ks + μ)( 􏼁2F1(− s, 1 +(μ/k), 2 +(μ/k); (1/2))

2s+(μ/k)+1
(sk + μ + k)(μ + k)

⎞⎠⎤⎥⎥⎦

−
c ((b/m) − a)

2

((μ/k) + 2)((μ/k) + 3)
1 −

(μ/k) + 4
2(μ/k)+2􏼠 􏼡,

(36)

with μ> 0 and 2F1(− s, 1 + (μ/k), 2 + (μ/k); (1/2)) being the
hypergeometric function.

Proof. By Lemma 1, it follows that

f(a) + f(b)

2
−
Γk(μ + k)

2(b − a)
μ/k kI

μ,ψ
ψ− 1(a)+ (f°ψ) ψ− 1

(b)􏼐 􏼑 + kI
μ,ψ
ψ− 1(b)− (f°ψ) ψ− 1

(b)􏼐 􏼑􏼔 􏼕

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
b − a

2
􏽚
1

0
(1 − t)

μ/k
− t

μ/k
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 f′(ta +(1 − t)b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌dt.

(37)

Since |f′| is strongly (s, m)-convex function on [a, b],
for t ∈ [0, 1], we have

f′(ta +(1 − t)b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ t
s

f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + m(1 − t)
s

f′
b

m
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− cmt(1 − t)

b

m
− a􏼠 􏼡

2

. (38)

Now using (38) in (37), we have
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f(a) + f(b)

2
−
Γk(μ + k)

2(b − a)
μ/k kI

μ,ψ
ψ− 1(a)+ (f°ψ) ψ− 1

(b)􏼐 􏼑 + kI
μ,ψ
ψ− 1(b)− (f°ψ) ψ− 1

(b)􏼐 􏼑􏼔 􏼕

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
b − a

2
􏽚
1

0
1 − t)

μ/k
− t

μ/k
􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 t
s

f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + m(1 − t)
s

f′
b

m
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− cmt(1 − t)

b

m
− a􏼠 􏼡

2
⎛⎝ ⎞⎠dt.

f(a) + f(b)

2
−
Γk(μ + k)

2(b − a)
μ/k kI

μ,ψ
ψ− 1(a)+ (f°ψ) ψ− 1

(b)􏼐 􏼑 + kI
μ,ψ
ψ− 1(b)− (f°ψ) ψ− 1

(b)􏼐 􏼑􏼔 􏼕

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
b − a

2
􏽚
1/2

0
1 − t)

μ/k
− t

μ/k
􏼐 􏼑 t

s
f′(a)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + m(1 − t)

s
f′

b

m
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− cmt(1 − t)

b

m
− a􏼠 􏼡

2
⎛⎝ ⎞⎠

+ 􏽚
1

1/2
t
μ/k

− (1 − t)
μ/k

􏼐 􏼑 t
s

f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + m(1 − t)
s

f′
b

m
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− cmt(1 − t)

b

m
− a􏼠 􏼡

2
⎛⎝ ⎞⎠dt

≤
b − a

2
f′(a)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽚

1/2

0
t
s

(1 − t)
μ/k

− t
μ/k

􏼐 􏼑dt + 􏽚
1

1/2
t
s

t
μ/k

− (1 − t)
μ/k

􏼐 􏼑dt􏼠 􏼡􏼢

+ m f′
b

m
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏽚
1/2

0
(1 − t)

s
(1 − t)

μ/k
− t

μ/k
􏼐 􏼑dt + 􏽚

1
1
2

(1 − t)
s

t
μ/k

− (1 − t)
μ/k

􏼐 􏼑dt⎛⎜⎝ ⎞⎟⎠

− cm
b

m
− a􏼠 􏼡

2

􏽚
1/2

0
t(1 − t) (1 − t)

μ/k
− t

μ/k
􏼐 􏼑dt + 􏽚

1

1/2
t(1 − t) t

μ/k
− (1 − t)

μ/k
􏼐 􏼑dt􏼠 􏼡⎤⎦.

(39)

We now evaluate integrals that appear on the right side
of the above inequality:

􏽚
1/2

0
t
s

(1 − t)
μ/k

− t
μ/k

􏼐 􏼑dt + 􏽚
1

1/2
t
s

t
μ/k

− (1 − t)
μ/k

􏼐 􏼑dt

� 2B
1
2
; s + 1,

μ
k

+ 1􏼒 􏼓 +
1 − (1/2)

s+(μ/k)

s +(μ/k) + 1
− B 1 + s, 1 +

μ
k

􏼒 􏼓,

(40)

􏽚
1/2

0
(1 − t)

s
(1 − t)

μ/k
− t

μ/k
􏼐 􏼑dt + 􏽚

1

1/2
(1 − t)

s
t
μ/k

− (1 − t)
μ/k

􏼐 􏼑dt

�
1 − (1/2)

s+(μ/k)+1

s +(μ/k) + 1
−

(1/2)
1+(μ/k)

2F1(− s, 1 +(μ/k), 2 +(μ/k); (1/2))

(μ/k) + 1
+ B(1 + s, 1 +(μ/k))

−
(1/2)

s+(μ/k)+1
k k + μ + 2s

( (k + ks + μ)2F1(− s, 1 +(μ/k), 2 +(μ/k); (1/2))

(sk + μ + k)(μ + k)
,

(41)

􏽚
1/2

0
t(1 − t) (1 − t)

μ/k
− t

μ/k
􏼐 􏼑dt + 􏽚

1

1/2
t(1 − t) t

μ/k
− (1 − t)

μ/k
􏼐 􏼑dt �

1 − ((μ/k) + 4)/2(μ/k)+2
􏼐 􏼑

((μ/k) + 2)((μ/k) + 3)
. (42)

Using (40)–(42) in (39), we get (36). □

Remark 3. Under the assumption of ,eorem 10, the fol-
lowing outcomes are noted.

(i) If s � 1 and m � 1 in (45), then the inequality stated
in [[32], ,eorem 11] is obtained.

(ii) If s � 1, m � 1, and c � 0 in (45), then the inequality
stated in [[32], Corollary 10] is obtained.
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(iii) If s � 1, m � 1, k � 1, and ψ is the identity function
in (45), then a refined error estimation of the
fractional Hadamard inequality is obtained.

(iv) If m � 1 and c � 0 in (45), then the inequality stated
in [[34], ,eorem 2] is obtained.

(v) If m � 1, s � 1, c � 0, and ψ is the identity function
in (45), then ,eorem 6 is obtained.

(vi) If k � 1, m � 1, s � 1, c � 0, and ψ is the identity
function in (45), then ,eorem 3 is obtained.

(vii) If k � 1, s � 1, and ψ is the identity function in (45),
then the inequality stated in [[31], ,eorem 8] is
obtained.

Corollary 5. Under the assumption of7eorem 10 with c � 0
in (3.10), the following inequality holds:

f(a) + f(b)

2
−
Γk(μ + k)

2(b − a)
μ/k kI

μ,ψ
ψ− 1(a)+ (f°ψ) ψ− 1

(b)􏼐 􏼑 + kI
μ,ψ
ψ− 1(b)− (f°ψ) ψ− 1

(a)􏼐 􏼑􏼔 􏼕

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
b − a

2
f′(a)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 2B

1
2
; s + 1,

μ
k

+ 1􏼒 􏼓 +
1 − (1/2)

s+(μ/k)

s +(μ/k) + 1
− B 1 + s, 1 +

μ
k

􏼒 􏼓􏼠 􏼡􏼢

+ m f′
b

m
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1 − (1/2)
s+(μ/k)+1

s +(μ/k) + 1
− 2F1(− s, 1 +(μ/k), 2 +(μ/k); (1/2))

21+(μ/k)
((μ/k) + 1)

⎛⎝

+ B 1 + s, 1 +
μ
k

􏼒 􏼓 −
k k + μ + 2s

(k + ks + μ)2( F1(− s, 1 +(μ/k), 2 +(μ/k); (1/2))

2s+(μ/k)+1
(sk + μ + k)(μ + k)

⎞⎠⎤⎥⎥⎦.

(43)

Corollary 6. Under the assumption of 7eorem 10 with
k � 1, μ � 1, s � 1, m � 1, and ψ as the identity function in
(3.10), the following inequality holds:

f(a) + f(b)

2
−

1
(b − a)

− 􏽚
b

a
f(])d]

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

b − a

8
f′(a)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + f′(b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽨 􏽩 −

c(b − a)
3

32
. (44)

Lemma 2. Let f: [a, b]⟶ R be a differentiable mapping
on (a, b) such that f′ ∈ L[a, b]. 7en, for k> 0 and

m ∈ (0, 1], the following identity holds for operators given in
(16) and (17):

2(μ/k)− 1Γk(μ + k)

(mb − a)
μ/k kI

μ,ψ
ψ− 1((a+mb)/2)+ (f°ψ) ψ− 1

(mb)􏼐 􏼑 + m(μ/k)+1
kI

μ,ψ
ψ− 1((a+mb)/2m)− (f°ψ) ψ− 1 a

m
􏼒 􏼓􏼒 􏼓􏼔 􏼕

−
1
2

f
a + mb

2
􏼠 􏼡 + mf

a + mb

2m
􏼠 􏼡􏼢 􏼣

�
mb − a

4
􏽚
1

0
t
μ/k

f′
at

2
+ m

2 − t

2
􏼒 􏼓b􏼒 􏼓dt − 􏽚

1

0
t
μ/k

f′
a

m

2 − t

2
􏼒 􏼓 +

bt

2
􏼠 􏼡dt􏼢 􏼣.

(45)

Proof. Let

I1 �
2(μ/k)− 1Γk(μ + k)

(mb − a)
(μ/k) kI

μ,ψ
ψ− 1((a+mb)/2)+ (f°ψ) ψ− 1

(mb)􏼐 􏼑􏼔 􏼕,

I2 �
m

(μ/k)+12(μ/k)− 1Γk(μ + k)

(mb − a)
(μ/k) kI

μ,ψ
ψ− 1((a+mb)/2m)− (f°ψ) ψ− 1 a

m
􏼒 􏼓􏼒 􏼓􏼔 􏼕.

(46)
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First, we evaluate I1:

I1 �
2(μ/k)− 1μ

k(mb − a)
(μ/k)

􏽚
ψ− 1(mb)

ψ− 1((a+mb)/2)
ψ′(u)(mb − ψ(u))

(μ/k)− 1
(f°ψ)(u))du􏼢 􏼣

�
− 2(μ/k)− 1

(mb − a)
(μ/k)

􏽚
ψ− 1(mb)

ψ− 1((a+mb)/2)
d(mb − ψ(u))

(μ/k)
􏼐 􏼑(f(ψ(u)))􏼢 􏼣.

(47)

Now integrating by parts, we have

I1 �
1
2

f
a + mb

2
􏼠 􏼡 +

1
2

􏽚
ψ− 1(mb)

ψ− 1((a+mb)/2)

2 (mb − ψ (u))

mb − a
􏼠 􏼡

μ/k

ψ′(u)f′(ψ (u))du. (48)

Substituting t � 2 (mb − ψ(u))/(mb − a), so that ψ(u) �

(at/2) + m ((2 − t)/2)b in (48), we get the following
inequality:

I1 �
1
2

f
a + mb

2
􏼠 􏼡 +

mb − a

4
􏽚
1

0
t
μ/k

f′
at

2
+ m

2 − t

2
􏼒 􏼓b􏼒 􏼓dt.

(49)

Now, we evaluate I2:

I2 �
m

(μ/k)+12(μ/k)− 1Γk (μ + k)

(mb − a)
(μ/k) kI

μ,ψ
ψ− 1((a+mb)/2m)− (f°ψ) ψ− 1 a

m
􏼒 􏼓􏼒 􏼓􏼔 􏼕

�
m

(μ/k)+1μ2(μ/k)− 1

k(mb − a)
(μ/k)

􏽚
ψ− 1((a+mb)/2m)

ψ− 1(a/m)
ψ′(v) ψ(v) −

a

m
􏼒 􏼓

(μ/k)− 1
(f°ψ)(v))dv􏼢 􏼣

�
m

(μ/k)+12(μ/k)− 1

(mb − a)
(μ/k)

􏽚
ψ− 1((a+mb)/2m)

ψ− 1(a/m)
f(ψ(v)) d ψ(v) −

a

m
􏼒 􏼓

(μ/k)

􏼠 􏼡􏼠 􏼡􏼢 􏼣.

(50)

Integrating by parts, we get

I2 �
m

2
f

a + mb

2m
􏼠 􏼡 −

m

2
􏽚
ψ− 1((a+mb)/2m)

ψ− 1(a/m)

2m (ψ(v)) − (a/m)

mb − a
􏼠 􏼡

μ/k
⎞⎠ψ′(v) f′(ψ(v))( 􏼁dv. (51)

Substituting s � 2m((ψ(v)) − (a/m))/(mb − a), so that
ψ(v) � (a/m)((2 − t)/2) + (bt/2) in (51), we get the fol-
lowing inequality:

I2 �
m

2
f

a + mb

2m
􏼠 􏼡 −

(mb − a)

4
􏽚
1

0
s
μ/k

f′
a

m

2 − s

2
􏼒 􏼓 +

bs

2
􏼠 􏼡ds. (52)
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Adding (49) and (52), (45) is obtained. □

Remark 4. Under the assumption of Lemma 2, the following
outcomes are noted.

(i) If k � 1 and ψ is the identity function in (45), then
the identity stated in [[30], Lemma 2.3] is obtained.

(ii) If m � 1 in (45), then the identity stated in [[32],
Lemma 2] is obtained.

(iii) Ifm � 1, k � 1, and ψ is the identity function in (45),
then the identity stated in [[2], Lemma 3] is
obtained.

(iv) If m � 1, k � 1, μ � 1, and ψ is the identity function
in (45), then the identity stated in [[2], Corollary 1]
is obtained.

(v) If m � 1 and ψ is the identity function in (45), then
the identity stated in [[23], Lemma 3.1] is obtained.

Theorem 11. Let f: [a, b]⟶ R, [a, b] ⊂ [0, +∞) be a
differentiable mapping on (a, b) such that f′ ∈ Ł[a, b]. Also,
suppose that |f′|q is strongly (s, m)-convex function on [a, b]

for q≥ 1. 7en, for k> 0 and (s, m) ∈ (0, 1]2, the following
k-fractional integral inequality holds for operators given in
(16) and (17):

2(μ/k)− 1Γk(μ + k)

(mb − a)
(μ/k) kI

μ,ψ
ψ− 1((a+mb)/2)+ (f°ψ) ψ− 1

(mb)􏼐 􏼑 + m(μ/k)+1
kI

μ,ψ
ψ− 1((a+mb)/2m)− (f °ψ) ψ− 1 a

m
􏼒 􏼓􏼒 􏼓􏼔 􏼕

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

−
1
2

f
a + mb

2
􏼠 􏼡 + mf

a + mb

2m
􏼠 􏼡􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
mb − a

4((μ/k) + 1)

1
2((μ/k) + 2)

􏼠 􏼡

1/q 2((μ/k) + 1)((μ/k) + 2) f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

2s
((μ/k) + s + 1)

+ 2m f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q μ

k
+ 2􏼒 􏼓􏼠 􏼡􏼢

×2F1 − s, 1 +
μ
k

, 2 +
μ
k

;
1
2

􏼒 􏼓 −
cm(b − a)2((μ/k) + 1)((μ/k) + 4)

2((μ/k) + 3)
􏼡

1/q

+ 2m
μ
k

+ 2􏼒 􏼓 f′
a

m2􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

q

2F1 − s, 1 +
μ
k

, 2 +
μ
k

;
1
2

􏼒 􏼓􏼒

+
2 ((μ/k) + 1)((μ/k) + 2) f′(b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

2s ((μ/k) + s + 1)
−

cm b − a/m2( 􏼁( 􏼁
2
((μ/k) + 1)((μ/k) + 4)

2 ((μ/k) + 3)
􏼡

1/q
⎤⎥⎥⎦,

(53)

with μ> 0 and (1/p) + (1/q) � 1.

Proof. We divide the proof in two cases. □

Case 1. Fix q � 1. Applying Lemma 2 and strongly
(s, m)-convexity of |f′|, we have

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2(μ/k)− 1Γk(μ + k)

(mb − a)
(μ/k) kI

μ,ψ
ψ− 1((a+mb)/2)+ (f°ψ) ψ− 1

(mb)􏼐 􏼑 + m(μ/k)+1
kI

μ,ψ
ψ− 1((a+mb)/2m)− (f°ψ) ψ− 1 a

m
􏼒 􏼓􏼒 􏼓􏼔 􏼕

−
1
2

f
a + mb

2
􏼠 􏼡 + mf

a + mb

2m
􏼠 􏼡􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

mb − a

4
􏽚
1

0
t
(μ/k)

f′
at

2
+ m

2 − t

2
􏼒 􏼓b􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dt􏼢 + 􏽚

1

0
t
μ/k

f′
a

m

2 − t

2
􏼒 􏼓 +

bt

2
􏼠 􏼡dt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼣

≤
mb − a

4
f′(a)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + m f′(b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

2s􏼠 􏼡 􏽚
1

0
t
(μ/k)+sdt􏼢 +

m f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + m f′ a/m2
􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

2s 􏽚
1

0
(2 − t)

s
t
μ/kdt

−
cm (b − a)

2
+ m b − a/m2

􏼐 􏼑􏼐 􏼑
2

􏼒 􏼓

4
􏽚
1

0
t
(μ/k)+1

(2 − t)dt􏼣≤
mb − a

4
k f′(a)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + m f′(b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

2s
(μ + sk + k)

⎡⎣

+
mk2F1(− s, 1 +(μ/k), 2 +(μ/k), (1/2)) f′(b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + m f′ a/m2

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

k + μ
−

cm (b − a)
2

+ m b − a/m2
􏼐 􏼑􏼐 􏼑

2
􏼒 􏼓((μ/k) + 4)

4((μ/k) + 2)((μ/k) + 3)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(54)
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Case 2. For q> 1. From Lemma 2 and using power mean
inequality, we get

|
2(μ/k)− 1Γk(μ + k)

(mb − a)
(μ/k) kI

μ,ψ
ψ− 1((a+mb)/2)+ (f°ψ) ψ− 1

(mb)􏼐 􏼑􏼔

+ m
(μ/k)+1

kI
μ,ψ
ψ− 1((a+mb)/2m)− (f°ψ) ψ− 1 a

m
􏼒 􏼓􏼒 􏼓􏼕 −

1
2

f
a + mb

2
􏼠 􏼡 + mf

a + mb
2m

􏼠 􏼡􏼢 􏼣|

≤
mb − a

4
􏽚
1

0
t
(μ/k)dt􏼠 􏼡

1− (1/q)

􏽚
1

0
t
(μ/k)

f′
at

2
+ m

2 − t

2
􏼒 􏼓b􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

q

dt􏼠 􏼡

(1/q)

⎡⎣

+ 􏽚
1

0
mt

(μ/k)
f′

a

m

2 − t

2
􏼒 􏼓 +

bt

2
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

q

dt􏼠 􏼡

(1/q)

⎤⎥⎦≤
mb − a

4((μ/k) + 1)
1/p

f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

2s 􏽚
1

0
t
s+(μ/k)dt􏼠􏼢

+
m f′(b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

2s
􏽚
1

0
(2 − t)

s
t
(μ/k)dt −

cm(b − a)2

4
􏽚
1

0
(2 − t)t

(μ/k)+1dt􏼡

(1/q)

+
mf′ a/m2

􏼐 􏼑

2s
⎛⎝

× 􏽚
1

0
(2 − t)

s
t
(μ/k)dt +

f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

2s
􏽚
1

0
t
s+(μ/k)dt −

cm b − a/m2( 􏼁( 􏼁
2

4
􏽚
1

0
(2 − t)t

(μ/k)+1dt􏼡

(1/q)

⎤⎥⎥⎥⎦

≤
mb − a

4((μ/k) + 1)
1/p

k f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

2s
(sk + μ + k)

+
mk f′(b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

2F1(− s, 1 +(μ/k), 2 +(μ/k), (1/2))

k + μ
􏼠􏼢

−
cm((μ/k) + 4)(b − a)2

4((μ/k) + 2)((μ/k) + 3)
􏼡

(1/q)

+
mk f′ a/m2

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
q

2F1(− s, 1 +(μ/k), 2 +(μ/k), (1/2))

k + μ
⎛⎝

+
k f′(b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

2s(sk + μ + k)
−

cm((μ/k) + 4) b − a/m2( 􏼁( 􏼁
2

4((μ/k) + 2)((μ/k) + 3)
􏼡

(1/q)

⎤⎥⎥⎥⎦

≤
mb − a

4((μ/k) + 1)
1/p

1
2((μ/k) + 1)((μ/k) + 2)

􏼠 􏼡

1/q 2k f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q
((μ/k) + 1)((μ/k) + 2)

2s
(sk + μ + k)

􏼠􏼢

+ 2m
μ
k

+ 2􏼒 􏼓 f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

2F1 − s, 1 +
μ
k

, 2 +
μ
k

,
1
2

􏼒 􏼓 −
cm((μ/k) + 4)((μ/k) + 1)(b − a)2

2((μ/k) + 3)
􏼡

1/q

+ 2m f′
a

m2􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

q μ
k

+ 2􏼒 􏼓2F1 − s, 1 +
μ
k

, 2 +
μ
k

,
1
2

􏼒 􏼓􏼒

+
2k((μ/k) + 1)((μ/k) + 2) f′(b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

2s(sk + μ + k)
−

cm((μ/k) + 1)((μ/k) + 4) b − a/m2( 􏼁( 􏼁
2

2((μ/k) + 3)
􏼡

1/q
⎤⎥⎥⎦.

(55)

Hence, we get (53).

Remark 5. Under the assumption of ,eorem 11, the fol-
lowing outcomes are noted.

(i) If s � 1 and m � 1 in (53), then the inequality stated
in [[32], ,eorem 12] is obtained.

(ii) If s � 1, k � 1, and ψ is the identity function in (53),
then the inequality stated in [[31], ,eorem 9] is
obtained.

(iii) If s � 1, k � 1, c � 0, and ψ is the identity function in
(53), then the inequality stated in [[30], ,eorem
2.4] is obtained.
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(iv) If c � 0, s � 1, m � 1, and ψ is the identity function
in (53), then the inequality stated in [[23], ,eorem
3.1] is obtained.

(v) If s � 1, m � 1, c � 0, k � 1, and ψ is the identity
function in (53), then the inequality stated in [[2],
,eorem 5] is obtained.

(vi) If q � 1, s � 1, m � 1, c � 0, k � 1, μ � 1, and ψ is the
identity function in (53), then the inequality stated
in [[36], ,eorem 2.2] is obtained.

Corollary 7. Under the assumption of7eorem 11 with c � 0
in (53), the following inequality holds:

|
2(μ/k)− 1Γk(μ + k)

(mb − a)
(μ/k) kI

μ,ψ
ψ− 1((a+mb)/2)+ (f°ψ) ψ− 1

(mb)􏼐 􏼑􏼔

+ m
(μ/k)+1

kI
μ,ψ
ψ− 1((a+mb)/2m)− (f°ψ) ψ− 1 a

m
􏼒 􏼓􏼒 􏼕 −

1
2

f
a + mb

2
􏼠 􏼡 + mf

a + mb
2m

􏼠 􏼡􏼢 􏼣|

≤
mb − a

4((μ/k) + 1)

1
2((μ/k) + 2)

􏼠 􏼡

1/q 2((μ/k) + 1)((μ/k) + 2) f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

2s
((μ/k) + s + 1)

+ 2m f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q
((μ/k) + 2)􏼠􏼢

× 2F1 − s, 1 +
μ
k

, 2 +
μ
k

;
1
2

􏼒 􏼓􏼓
1/q

+ 2m
μ
k

+ 2􏼒 􏼓 f′
a

m2􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

q

􏼒

× 2F1 − s, 1 +
μ
k

, 2 +
μ
k

;
1
2

􏼒 􏼓 +
2((μ/k) + 1)((μ/k) + 2) f′(b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

2s((μ/k) + s + 1)
􏼡

1/q
⎤⎥⎦.

(56)

Corollary 8. Under the assumption of 7eorem 11 with
k � 1, s � 1, m � 1, q � 1, μ � 1, and ψ as the identity
function in (53), the following inequality holds:

1
b − a

􏽚
b

a
f(v)dv − f

a + b

2
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

b − a

8
f′(a)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + f′(b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 −

5c(b − a)
2

12
􏼢 􏼣. (57)

Lemma 3 (see [39]). Let p≥ 1 be a real number. For
(x1, x2, . . . , xn) ∈ [0,∞) and n≥ 2, the following inequality
holds:

􏽘

n

i�1
x

p
i ≤ 􏽘

n

i�1
xi

⎛⎝ ⎞⎠

p

. (58)

Theorem 12. Let f: I⟶ R be a differentiable mapping
on (a, b) with a< b. Also, suppose that |f′|q is strongly
(s, m)-convex function on [a, b] for q> 1. 7en, for k> 0
and (s, m) ∈ (0, 1]2, the following k-fractional integral
inequality holds for operators given in (16) and (17):
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2(μ/k)− 1Γk(μ + k)

(mb − a)
(μ/k) kI

μ,ψ
ψ− 1((a+mb)/2)+ (f°ψ) ψ− 1

(mb)􏼐 􏼑 + m(μ/k)+1
kI

μ,ψ
ψ− 1((a+mb)/2m)− (f °ψ) ψ− 1 a

m
􏼒 􏼓􏼒 􏼓􏼔 􏼕

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

−
1
2

f
a + mb

2
􏼠 􏼡 + mf

a + mb

2m
􏼠 􏼡􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
mb − a

16
4

(μp/k) + 1
􏼠 􏼡

1/p

f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
4

2s(s + 1)
􏼠 􏼡

1/q
⎛⎝⎛⎝⎡⎢⎢⎣

+ f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
4m − 1 + 2s+1( 􏼁

2s(1 + s)
􏼠 􏼡

1/q
⎞⎠

q

−
2cm(b − a)2

3
⎞⎠

1/q

+ m f′
a

m
2􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

4m − 1 + 2s+1( 􏼁

2s(1 + s)
􏼠 􏼡

1/q
⎛⎝⎛⎝

+
4

2s(s + 1)
􏼠 􏼡

1/q

f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌⎞⎠

q

−
2cm(b − a)2

3
⎞⎠⎞⎠

1/q
⎤⎥⎥⎥⎥⎥⎦,

(59)

with μ> 0 and (1/p) + (1/q) � 1. Proof. By applying Lemma 2 and using the property of
modulus, we get

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2μ/k− 1Γk(μ + k)

(mb − a)
μ/k kI

μ,ψ
ψ− 1((a+mb)/2)+ (f°ψ) ψ− 1

(mb)􏼐 􏼑􏼔

+ m
(μ/k)+1

kI
μ,ψ
ψ− 1((a+mb)/2m)− (f°ψ) ψ− 1 a

m
􏼒 􏼓􏼒 􏼕 −

1
2

f
a + mb

2
􏼠 􏼡 + mf

a + mb
2m

􏼠 􏼡􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
mb − a

4
􏽚
1

0
t
(μ/k)

f′
at

2
+ m

2 − t

2
􏼒 􏼓b􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dt + 􏽚

1

0
t
(μ/k)

f′
a

m

2 − t

2
􏼒 􏼓 +

bt

2
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dt􏼢 􏼣.

(60)

Now applying Hölder’s inequality for integrals, we get

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2(μ/k)− 1Γk(μ + k)

(mb − a)
(μ/k) kI

μ,ψ
ψ− 1((a+mb)/2)+ (f°ψ) ψ− 1

(mb)􏼐 􏼑 + m(μ/k)+1
kI

μ,ψ
ψ− 1((a+mb)/2m)− ( f °ψ) ψ− 1 a

m
􏼒 􏼓􏼒 􏼕􏼔 􏼕

−
1
2

f
a + mb

2
􏼠 􏼡 + mf

a + mb

2m
􏼠 􏼡􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

b − a

4
1

(μp/k) + 1
􏼠 􏼡

1/p

􏽚
1

0
f′

at

2
+ m

2 − t

2
􏼒 􏼓b􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

q

dt􏼠 􏼡

1/q

+ 􏽚
1

0
f′

a

m

2 − t

2
􏼒 􏼓 +

bt

2
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

q

dt􏼠 􏼡

1/q
⎡⎣ ⎤⎦.

(61)

Using strongly (s, m)-convexity of |f′|q, we get
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2(μ/k)− 1Γk(μ + k)

(mb − a)
(μ/k) kI

μ,ψ
ψ− 1((a+mb)/2)+ (f°ψ) ψ− 1

(mb)􏼐 􏼑􏼔 + m
(μ/k)+1

kI
μ,ψ
ψ− 1((a+mb)/2m)− (f°ψ) ψ− 1 a

m
􏼒 􏼓􏼒 􏼕

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

−
1
2

f
a + mb

2
􏼠 􏼡 + mf

a + mb

2m
􏼠 􏼡􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
mb − a

4
1

(μp/k) + 1
􏼠 􏼡

1/p
f′(a)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

2s 􏽚
1

0
t
sdt +

m f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

2s 􏽚
1

0
(2 − t)

sdt􏼠􏼢

−
cm(b − a)2

4
􏽚
1

0
t(2 − t)dt􏼡

1/q

+
m f′ a/m2

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
q

2s 􏽚
1

0
(2 − t)

sdt +
f′(b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

2s 􏽚
1

0
t
sdt⎛⎝

−
cm b − a/m2( 􏼁( 􏼁

2

4
􏽚
1

0
t(2 − t)dt􏼡

1/q
⎤⎥⎥⎦ �

mb − a

4
1

(μp/k) + 1
􏼠 􏼡

1/p
f′(a)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

2s
(s + 1)

􏼠􏼢

+
m f′(b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

− 1 + 2s+1( 􏼁

2s(1 + s)
−

cm(b − a)2

6
􏼡

1/q

+
m f′ a/m2

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
q

− 1 + 2s+1
􏼐 􏼑

2s
(1 + s)

⎛⎝

+
f′(b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

2s(s + 1)
−

cm b − a/m2( 􏼁( 􏼁
2

6
􏼡

1/q
⎤⎥⎥⎦≤

mb − a

16
4

(μp/k) + 1
􏼠 􏼡

1/p 4 f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

2s
(s + 1)

􏼠􏼢

+
4m f′(b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

− 1 + 2s+1( 􏼁

2s(1 + s)
−
2cm(b − a)2

3
􏼡

1/q

+
4m f′ a/m2

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
q

− 1 + 2s+1
􏼐 􏼑

2s
(1 + s)

⎛⎝

+
4 f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

2s(s + 1)
−
2cm b − a/m2( 􏼁( 􏼁

2

3
􏼡

1/q
⎤⎥⎥⎦≤

mb − a

16
4

(μp/k) + 1
􏼠 􏼡

1/p

f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
4

2s(s + 1)
􏼠 􏼡

1/q
⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎡⎢⎢⎣

+ f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
4m − 1 + 2s+1( 􏼁

2s(1 + s)
􏼠 􏼡

1/q
⎞⎠

q

−
2cm(b − a)2

3
⎞⎠

1/q

+ m f′
a

m
2􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

4m − 1 + 2s+1( 􏼁

2s(1 + s)
􏼠 􏼡

1/q
⎛⎝

+
4

2s(s + 1)
􏼠 􏼡

1/q

f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌⎞⎠

q

−
2cm b − a/m2( 􏼁( 􏼁

2

3
⎞⎠

1/q
⎤⎥⎥⎥⎥⎥⎦.

(62)

Here we have used Lemma 3.,is completes the proof. □

Remark 6. Under the assumption of ,eorem 12, the fol-
lowing outcomes are noted.

(i) If s � 1 and m � 1 in (59), then the inequality stated
in [[32], ,eorem 13] is obtained.

(ii) If s � 1 and ψ is the identity function in (53), then
the inequality stated in [[31], ,eorem 10] is
obtained.

(iii) If s � 1, k � 1, c � 0, and ψ is the identity function in
(53), then the inequality stated in [[30], ,eorem
2.7] is obtained.

(iv) If c � 0, s � 1, m � 1, and ψ is the identity function
in (59), then the inequality stated in [[23], ,eorem
3.2] is obtained.

(v) If k � 1, s � 1, m � 1, c � 0, and ψ is the identity
function in inequality (59), then the inequality
stated in [[2], ,eorem 6] is obtained.

(vi) If k � 1, s � 1, m � 1, c � 0, μ � 1, and ψ is the
identity function in inequality (59), then the in-
equality stated in [[37], ,eorem 2.4] is obtained.

Corollary 9. Under the assumption of7eorem 12 with c � 0
in (61), the following inequality holds:
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2μ/k− 1Γk(μ + k)

(mb − a)
μ/k kI

μ,ψ
ψ− 1((a+mb)/2)+ (f°ψ) ψ− 1

(mb)􏼐 􏼑􏼔 + m
(μ/k)+1

kI
μ,ψ
ψ− 1((a+mb)/2m)− (f°ψ) ψ− 1 a

m
􏼒 􏼓􏼒 􏼕

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

−
1
2

f
a + mb

2
􏼠 􏼡 + mf

a + mb

2m
􏼠 􏼡􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
mb − a

16
4

(μp/k) + 1
􏼠 􏼡

1/p

f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
4

2s(s + 1)
􏼠 􏼡

1/q

+ f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
4m − 1 + 2s+1( 􏼁

2s(1 + s)
􏼠 􏼡

1/q
⎡⎣

+ f′
a

m
2􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

4m − 1 + 2s+1( 􏼁

2s(1 + s)
􏼠 􏼡

1/q

+
4

2s(s + 1)
􏼠 􏼡

1/q

f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠⎤⎥⎥⎦.

(63)

Corollary 10. Under the assumption of 7eorem 12 with
q⟶ 1 and p⟶∞ in (59), the following inequality holds:

2(μ/k)− 1Γk(μ + k)

(mb − a)
(μ/k) kI

μ,ψ
ψ− 1((a+mb)/2)+ (f°ψ) ψ− 1

(mb)􏼐 􏼑􏼔 + m
(μ/k)+1

kI
μ,ψ
ψ− 1((a+mb)/2m)− (f°ψ) ψ− 1 a

m
􏼒 􏼓􏼒 􏼓􏼕

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

−
1
2

f
a + mb

2
􏼠 􏼡 + mf

a + mb

2m
􏼠 􏼡􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
mb − a

16
4 f′(a)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + f′(b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

2s
(s + 1)

+
4m − 1 + 2s+1

􏼐 􏼑 f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + f′ a/m2
􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

2s
(1 + s)

−
4cm(b − a)

2

3
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(64)

4. Conclusion

In this article, we studied the Hadamard inequalities and
their estimations for generalized Riemann–Liouville frac-
tional integrals of strongly (s, m)-convex functions. ,ese
inequalities represent the generalizations and refinements of
a number of well-known inequalities stated in
[1, 2, 22, 23, 29–37]. ,e error estimations of Hadamard
inequalities for differentiable strongly (s, m)-convex func-
tions are better as compared to those which are obtained for
convex functions, strongly convex functions, and strongly
m-convex functions.
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)is paper establishes the existence and uniqueness of weak solutions for the initial-boundary value problem of anisotropic nonlinear
diffusion partial differential equations related to image processing and analysis. An implicit iterative method combined with a
variational approach has been applied to construct approximate solutions for this problem.)en, under some a priori estimates and a
monotonicity condition, the existence of unique weak solutions for this problem has been proven.)is work has been complemented
by a consistent and stable approximation scheme showing its great significance as an image restoration technique.

1. Introduction

In the last three decades, nonlinear diffusion equations have
inspired numerous research studies in various application
ranges. Perona andMalik [1] were the first to introduce such
equation in image processing and analysis in the following
manner:

zu

zt
− ∇ · [c(|∇u|)∇u] � 0, inΩ ×(0, T],

〈c(|∇u|)∇u, n〉 � 0, on zΩ ×(0, T],

u(x; 0) � u0(x), inΩ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where Ω is an image domain in R2 and c is a positive de-
creasing function defined on R+.

When it comes to processing a digital image, Perona and
Malik chose the above model to preserve meaningful features
such as edges while reducing irrelevant information such as
noise in the homogeneous area. Nevertheless, this model,
known as an isotropic nonlinear diffusion equation, handles

an image feature with the same amount of blurring in all its
directions. For instance, this process cannot successfully
eliminate noises at edges [2]. Accordingly, it might be wise to
consider the orientation of essential features by using an-
isotropic diffusion. Weickert [2] introduced this property by
defining an orientation descriptor using the structure tensor,
which is convenient to identify features such as corners and
T-junctions. Besides, digital images present some structural
difficulties; that is, they are discrete in space and image in-
tensity values. Accordingly, it would be of great interest to
adapt the diffusion to digital images’ structure by considering
vertical, horizontal, and diagonal differential operators. Due
to these reasons, we modeled and developed anisotropic
nonlinear diffusion equations using a novel diffusion tensor.

Various tools can be used to examine the existence of
solutions for nonlinear partial differential equations (PDEs),
such as variational techniques, monotonicity method, fixed-
point theorems, iterative methods, and truncation tech-
niques; for more detailed information, we refer to [3–7] and
the references therein. )ese PDEs have been motivated by
various applications such as image restoration and recon-
struction (see, for example, [3, 4, 8–11]). Moreover, the
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image processing of the brain allows the localization of
epileptogenic foci for the patient. A noninvasive method has
been examined numerically as an inverse problem in [12].

Under some challenging conditions, the existence and
uniqueness of weak solutions for the Perona and Malik
model have been investigated in the bounded variation space
BV(Ω) [3, 13]. In some other functional frameworks, Wang

and Zhou have thoroughly studied in [4] and proved the
existence and uniqueness of weak solutions in the Orlicz
space LlogL(Ω) using a new diffusion function c(s) � ((s +

(s + 1)log(s + 1))/(s(s + 1))) for all s≥ 0.
In this paper, we suppose that Ω is an open-bounded

domain of R2 with Lipschitz boundary zΩ, and T is a
positive number. We denote

zx1
u ≔ ux1

≔ ∇u · e1,

zx2
u ≔ ux2

≔ ∇u · e2,

zx12
u ≔ ux12

≔ ∇u ·
e1 + e2
e1 + e2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
,

zx− 12
u ≔ ux− 12

≔ ∇u ·
− e1 + e2
− e1 + e2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where (e1, e2) is the canonical basis of R2. We consider the
following anisotropic nonlinear parabolic initial-boundary
value problem:

zu

zt
− ∇ · D∇u∇u􏼂 􏼃 � 0, inΩ ×(0, T],

〈D∇u∇u, n〉 � 0, on zΩ ×(0, T],

u(x; 0) � u0(x), inΩ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where D∇u, the diffusion tensor, is a real symmetric positive
definite matrix of R2×2 defined as follows:

D∇u �

g ux1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 +
g ux12

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 + g ux− 12

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

2

g ux12

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 − g ux− 12

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

2

g ux12

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 − g ux− 12

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

2
g ux2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 +
g ux12

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 + g ux− 12

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4)

and g: R+⟶ R is a C1 positive decreasing function. )en,
we can define ϕ: R+⟶ R as a C2 function such that

ϕ(s) � 􏽚
s

0
rg(r)dr, s≥ 0, (5)

satisfying
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ϕ(0) � ϕ′(0) � 0, ϕ(s)> 0,ϕ′(s)> 0, for s ∈ R∗+,

ϕ″(s)≥ 0, sϕ″(s)≤ϕ′(s), for s ∈ R+,

0< lims⟶∞
ϕ(s)

s log(s)
<∞, 0< lims⟶∞

ϕ′(s)

log(s)
<∞,

lims⟶0+

ϕ′(s)

s
> 0, lims⟶∞

ϕ′(s)

s
� 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

To construct an adaptive diffusion tensor, the function g

is approximated numerically by a cubic Hermite spline [14]
that interpolates numeric data specified at
0 � k0 < k1 < · · · < km with m ∈ N∗:

g(s) �

pki
P1,kiki+1

(s) + vki
P2,kiki+1

(s) + pki+1
P1,ki+1ki

(s) + vki+1
P2,ki+1ki

(s), s ∈ ki, ki+1􏼂 􏼂

i ∈ 0, 1, . . . , m − 1{ },

pkm
gkm,1(s) + vkm

gkm,2(s), s ∈ km,∞􏼂 􏼂

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(7)

where p· and v· are the coefficients used to define the po-
sition and the velocity vector at a specific point, ki are the
threshold parameters, Pj,cd􏽮 􏽯 is the family of the basis
functions composed of polynomials of degree 3 used on the
interval [c, d[ such that

P1,cd(s) �
(s − d)

2
(2s + d − 3c)

(d − c)
3 ,

P2,cd(s) �
(s − d)

2
(s − c)

(d − c)
2 .

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(8)

And we may consider

gkm,1(s) �
km

log km( 􏼁 + 2
2s(log(s) + 1) − kmlog km( 􏼁

s
2 ,

gkm,2(s) �
k
2
m

log km( 􏼁 + 2
s(log(s) + 1) − km log km( 􏼁 + 1( 􏼁

s
2 .

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(9)
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From the definition of ϕ, we can deduce

ϕ(s) �

Ci + 􏽘
3

j�0

Akiki+1 ,j

j + 2
s

j+2
, s ∈ ki, ki+1􏼂 􏼂, i ∈ 0, 1, . . . , m − 1{ },

Akm,2s log(s) + Akm,1log(s) + Cm, s ∈ km,∞􏼂 􏼂,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(10)

where Ci and Cm are constants determined by the continuity
of ϕ at each ki. In this case, the values of the coefficients
Akiki+1 ,j are determined experimentally provided that ϕ
satisfying the above conditions on [0, km[. Besides, we may
introduce some sufficient conditions on km and Akm,.

that
guarantee the properties of ϕ on [km,∞[:

km ≥ 1,

Akm,2> 0,

Akm,1< kmAkm,2,

Akm,1≥ −
kmlog km( 􏼁

2
Akm,2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

Anisotropic diffusion model (3) allows strong directional
smoothing within the areas where |ux1

|, |ux2
|, |ux12

|, or |ux− 12
| is

small and prevents blurring boundaries, contours, or corners
that separate neighboring areas, where one or a combination of
these differential operators has significant value.

Moreover, the matrix D∇u has two eigenvalues λ+/− :

λ+/− �
1
2

g ux1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 + g ux2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 + g ux12

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 + g ux− 12

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓􏼒

±

������������������������������������������

g ux1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 − g ux2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓􏼒 􏼓
2

+ g ux12

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 − g ux− 12

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓􏼒 􏼓
2

􏽳

⎞⎠,

(12)

with θ+/− are the corresponding eigenvectors. We can then
expand the first equation of (3) into

zu

zt
� ∇ · λ+θ+θ

T
+∇u􏽨 􏽩 + ∇ · λ− θ− θ

T
− ∇u􏽨 􏽩. (13)

Accordingly, it is clear from the expression of λ+/− that
λ+ ≥ λ− > 0, which means that the diffusion towards θ+ is
privileged over θ− . In fact, the difference

(λ+ − λ− )2 � (g(|ux1
|) − g(|ux2

|))2 +

(g(|ux12
|) − g(|ux− 12

|))2 indicates the isotropic diffusion for
zero value and anisotropic diffusion for positive values.

Henceforth, we will assume that the initial value satisfies

u0 ∈ L
2
(Ω), (14)

and we will introduce the following Orlicz space:

LlogL
km (Ω) � u: Ω⟶ R|􏽚

Ω∩ |u|≥km{ }
|u|log(|u|)dx <∞􏼨 􏼩. (15)

Next, we define weak solutions for problem (3) on
QT ≔ Ω × (0, T] with T> 0:

Definition 1. A function u: QT⟶ R is a weak solution for
problem (3) if the following conditions are satisfied:

(i) u ∈ C([0, T]; L2(Ω))∩L1(0, T; W1,1(Ω)) with
zxi

u ∈ LlogLkm (Ω) for i � 1, 2.

(ii) For any φ ∈ C1(QT) with φ(., T) � 0, we have

− 􏽚
Ω

u0(x)φ(x, 0)dx + 􏽚
T

0
􏽚
Ω

− uφt + D∇u∇u · ∇φ􏼂 􏼃dxdt � 0.

(16)
Now, we state our main theorem.

Theorem 1. Under assumption (14), there exists a unique
weak solution for initial-boundary value problem (3).
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Inspired by [4], this paper will investigate the existence
and uniqueness of weak solutions for problem (3) according
to the following steps:

(i) First, we approximate nonlinear evolution problem
(3) by nonlinear elliptic problems using an implicit
iterative method (discretization in time-variable
only), and then we prove the existence of a unique
weak solution for each elliptic problem adopting a
variational approach. )ese solutions constitute
approximate solutions for problem (3).

(ii) Next, we show the uniqueness of solutions for
initial-boundary value problem (3) using the
monotonicity of the vector field
D∇∇.: u ∈ R2⟶ D∇u∇u ∈ R2.

(iii) Finally, passing to limits in some a priori energy
estimates and using the monotonicity condition
(17), we demonstrate the existence of weak solutions
for problem (3).

2. Preliminaries

In this section, we state some useful lemmas that will be used
later in the proofs.

Lemma 1. For all a≥ 0 and b≥ 1, we have ab≤ a exp
(a) + b log(b).

Proof. If b≤ exp(a), then ab≤ a exp(a)≤ a exp(a) + b

log(b).
If exp(a)< b, then a< log(b), which means

ab< b log(b)< a exp(a) + b log(b). □

Lemma 2. Suppose ϕ: R+⟶ R+ is a C2 convex function.
4en, for all ξ0, ξ1 ∈ R2, we have

Dξ1ξ1 − Dξ0ξ0􏼐 􏼑 · ξ1 − ξ0( 􏼁≥ 0. (17)

Proof. For each t ∈ [0, 1], we put ξt � (1 − t)ξ0 + tξ1. )en,
we have

Dξ1ξ1 − Dξ0ξ0 � 􏽚
1

0
d ξt · e1( 􏼁g ξt · e1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑e1􏽨 􏽩 + 􏽚

1

0
d ξt · e2( 􏼁g ξt · e2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑e2􏽨 􏽩

+ 􏽚
1

0
d ξt · e12( 􏼁g ξt · e12

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑e12􏽨 􏽩 + 􏽚

1

0
d ξt · e− 12( 􏼁g ξt · e− 12

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑e− 12􏽨 􏽩.

(18)

Since ϕ″(s) � g(s) + sg′(s), then we obtain

Dξ1ξ1 − Dξ0ξ0 � 􏽚
1

0
ϕ″ ξt · e1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑 ξ1 − ξ0( 􏼁 · e1( 􏼁e1􏽨 􏽩dt + 􏽚

1

0
ϕ″ ξt · e2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑 ξ1 − ξ0( 􏼁 · e2( 􏼁e2􏽨 􏽩dt

+ 􏽚
1

0
ϕ″ ξt · e12

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑 ξ1 − ξ0( 􏼁 · e12( 􏼁e12􏽨 􏽩dt + 􏽚

1

0
ϕ″ ξt · e− 12

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑 ξ1 − ξ0( 􏼁 · e− 12( 􏼁 e− 12􏽨 􏽩dt.

(19)

We conclude then

Dξ1ξ1 − Dξ0ξ0􏼐 􏼑 · ξ1 − ξ0( 􏼁 � 􏽚
1

0
ϕ″ ξt · e1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑 ξ1 − ξ0( 􏼁 · e1( 􏼁

2
􏽨 􏽩dt + 􏽚

1

0
ϕ″ ξt · e2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑 ξ1 − ξ0( 􏼁 · e2( 􏼁

2
􏽨 􏽩dt

+ 􏽚
1

0
ϕ″ ξt · e12

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑 ξ1 − ξ0( 􏼁 · e12( 􏼁

2
􏽨 􏽩dt

+ 􏽚
1

0
ϕ″ ξt · e− 12

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑 ξ1 − ξ0( 􏼁 · e− 12( 􏼁

2
􏽨 􏽩dt≥ 0,

(20)

which completes the proof. □

Lemma 3. Uniform integrability and weak convergence [15].
Assume Ω ⊂ R2 is bounded, and let ui􏼈 􏼉

∞
i�1 be a sequence

of functions in L1(Ω) satisfying

supi ui

����
����L1(Ω)
<∞. (21)

Suppose also

liml⟶∞supi􏽚
Ω∩ ui| |≥ l{ }

ui

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dx � 0. (22)

4en, there exist a subsequence uij
􏼚 􏼛
∞

j�1
and 􏽥u ∈ L1(Ω)

such that

uij
⇀ 􏽥u, weakly in L

1
(Ω). (23)
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Lemma 4. Assume Ω ⊂ R2 is bounded, and let ui􏼈 􏼉
∞
i�1 be a

sequence of functions in L1(Ω) such that

supi􏽚
Ω∩ ui| |≥ km{ }

ui

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌log ui

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑dx<∞. (24)

4en, there exist a subsequence uij
􏼚 􏼛
∞

j�1
and 􏽥u ∈ L1(Ω)

such that

uij
⇀ 􏽥u, weakly inL

1
(Ω), (25)

with 􏽥u ∈ LlogLkm (Ω).

Proof. Given M> 0, we may find an l≥ km such that
Ms≤ s log(s) for all s≥ l. Consequently,

􏽚
Ω

ui

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dx � 􏽚

Ω∩ ui| |< km{ }
ui

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dx + 􏽚

Ω∩ ui| |≥ km{ }
ui

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dx

≤ km|Ω| +
1

M
􏽚
Ω∩ ui| |≥ km{ }

ui

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌log ui

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑|dx,

(26)

which implies that

supi􏽚
Ω

ui

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dx<∞. (27)

On the other hand, there exists a positive constant C

such that

􏽚
Ω∩ ui| |≥ l{ }

ui

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dx≤

1
M

􏽚
Ω∩ ui| |≥ l{ }

ui

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌log ui

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑dx

≤
1

M
􏽚
Ω∩ ui| |≥ km{ }

ui

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌log ui

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑dx

≤
C

M
� ε,

(28)

which is true for all i and arbitrary ε> 0. It follows then that

liml⟶∞supi􏽚
Ω∩ ui| |≥ l{ }

ui

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dx � 0. (29)

)en, from Lemma 3, there exist a subsequence uij
􏼚 􏼛
∞

j�1of ui􏼈 􏼉
∞
i�1 and a function 􏽥u ∈ L1(Ω) such that

uij
⇀􏽥u, weakly in L

1
(Ω). (30)

It remains to prove that 􏽥u ∈ L log Lkm (Ω).
We know that the function f(s) � s log(s) for s≥ 1 is

increasing and convex, and then the function f(|s|) is also
convex for all s≥ 1. )erefore, we obtain

f(|􏽥u|)≤f uij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 + f′(|􏽥u|) 􏽥u − uij
􏼒 􏼓. (31)

Integrating the above inequality over ΩN ∩ |uij
|≥ km􏼚 􏼛

with ΩN � Ω∩ km ≤ |􏽥u|≤N􏼈 􏼉, we have

􏽚
ΩN

f(|􏽥u|)dx≤􏽚
Ω∩ uij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥ km􏼚 􏼛
f uij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓dx + 􏽚
ΩN ∩ uij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥ km􏼚 􏼛
f′(|􏽥u|) 􏽥u − uij

􏼒 􏼓dx

≤􏽚
Ω∩ uij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥ km􏼚 􏼛
f uij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓dx + 􏽚
Ω∩ uij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥ km􏼚 􏼛
f′(|􏽥u|)χ km ≤ |􏽥u|≤N{ } 􏽥u − uij

􏼒 􏼓dx.

(32)

Since f′(|􏽥u|)χ km ≤ |􏽥u|≤N{ } ∈ L∞(Ω) and passing to limits
as j⟶∞, we get

􏽚
ΩN

f(|􏽥u|)dx≤ lim inf j⟶∞􏽚
Ω∩ uij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥ km􏼚 􏼛
f uij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓dx<∞.

(33)

)en, passing to limits as N⟶∞, we deduce

􏽚
Ω∩ |􏽥u|≥km{ }

|􏽥u|log(|􏽥u|)dx<∞. (34)

It follows then 􏽥u ∈ LlogLkm (Ω). )is finishes the
proof. □

3. Approximate Solutions

In this section, we will discretize the time-variable interval
[0, T] to get approximate solutions for problem (3). We
denote h � (T/N) with N ∈ N∗, and we designate by un an
approximate solution at time nh. We define gradually from
n � 1, 2, . . . , N the following elliptic problems:

un − un− 1

h
− ∇ · D∇un

∇un􏽨 􏽩 � 0, inΩ,

〈D∇un
∇un,n〉 � 0, on zΩ.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(35)

To solve these equations step by step, we only need to
prove the existence and uniqueness of weak solutions of the
following elliptic problems:

u − u0

h
− ∇ · D∇u∇u􏼂 􏼃 � 0, inΩ,

〈D∇u∇u, n〉 � 0, on zΩ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(36)

where h> 0 and u0 ∈ L2(Ω).

Definition 2. A function u ∈ L2(Ω)∩W1,1(Ω) with
zxi

u ∈ LlogLkm (Ω) for i � 1, 2 is called a weak solution for
problem (36); if for any φ ∈ C1(Ω), we have

􏽚
Ω

u − u0

h
φdx + 􏽚

Ω
D∇u∇u · ∇φdx � 0. (37)

And when φ is a constant function, we obtain
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􏽚
Ω

udx � 􏽚
Ω

u0dx. (38)

In order to prove the existence and uniqueness of weak
solutions for problem (36), we consider the variational
problem

min E(u)|u ∈ U{ }, (39)

where

U � u ∈ L
2
(Ω)∩W

1,1
(Ω)|zxi

u ∈ LlogL
km (Ω)with i � 1, 2, 􏽚

Ω
udx � 􏽚

Ω
u0dx􏼚 􏼛, (40)

and when u ∈ U, the functional E is defined as

E(u) � 􏽚
Ω

ϕ ux1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 + ϕ ux2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 + ϕ ux12

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 + ϕ ux− 12

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓􏼔 􏼕 +
1
2h

􏽚
Ω

u − u0( 􏼁
2dx. (41)

It is easy to prove that (36) is the Euler–Lagrange
equations of the functional E [16].

Theorem 2. Problem (36) has a unique weak solution.

Proof. Since

0≤ inf
u∈U

E(u)≤E(0) �
1
2h

􏽚
Ω

u
2
0dx, (42)

then we can construct a minimizing sequence uq􏽮 􏽯
∞
q�1 in U

such that E(uq)<E(0) + 1 and

lim
q⟶∞

E uq􏼐 􏼑 � inf
u∈U

E(u). (43)

Besides,

􏽚
Ω

u
2
qdx � 􏽚

Ω
uq − u0 + u0􏼐 􏼑

2
dx

≤ 2􏽚
Ω

uq − u0􏼐 􏼑
2

+ 2􏽚
Ω

u
2
0dx

≤ 4h E uq􏼐 􏼑 + E(0)􏼐 􏼑

≤ 4h(2E(0) + 1).

(44)

It follows then

supq uq

�����

�����L2(Ω)
<∞. (45)

On the other hand, given ε0 > 0, wemay find l0 � km such
that

􏽚
Ω∩ zxi

uq

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ km􏽮 􏽯

zxi
uq

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌log zxi
uq

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓dx≤C􏽚
Ω∩ zxi

uq

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ km􏽮 􏽯

ϕ zxi
uq

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓dx

≤CE uq􏼐 􏼑<C(E(0) + 1)

(46)

with C � (ε0 + (1/Akm,2))> 0 and i � 1, 2. It follows then that
for i � 1, 2,

supq􏽚
Ω∩ zxi

uq

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ km􏽮 􏽯

zxi
uq

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌log zxi
uq

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓dx<∞. (47)

)erefore, thanks to Lemma 4 and the weak compactness

of L2(Ω), we can find a subsequence uqj
􏼚 􏼛

∞

j�1
of uq􏽮 􏽯

∞
q�1 and

a function u1 ∈ L2(Ω)∩W1,1(Ω) such that

uqj
⇀u1, weakly in L

2
(Ω), (48)

and for i � 1, 2,

zxi
uqj
⇀zxi

u1, weakly inL
1
(Ω),

zxi
u1 ∈ LlogL

km (Ω).
(49)

)erefore, we have

􏽚
Ω

u1dx � limj⟶∞􏽚
Ω

uqj
dx � 􏽚

Ω
u0dx,

􏽚
Ω

u1 − u0( 􏼁
2dx≤ liminfj⟶∞􏽚

Ω
uqj

− u0􏼒 􏼓
2
dx,

(50)

and following the reasoning in the proof of Lemma 4, it is
easy to show that for any a ∈ x1, x2, x12, x− 12􏼈 􏼉 and for a
fixed ϵ> 0, there exists l≥ km such that
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􏽚
Ω∩ zau1| |≥ l{ }

zau1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌log zau1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑dx≤ lim inf j⟶∞􏽚
Ω∩ zauqj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥ l􏼚 􏼛
zauqj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌log zauqj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓dx, (51)

􏽚
Ω∩ zau1| |≥ l{ }

ϕ zau1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑dx≤ ε + Akm,2􏼐 􏼑 ε +
1

Akm,2
􏼠 􏼡lim inf j⟶∞􏽚

Ω∩ zauqj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥ l􏼚 􏼛
ϕ zauqj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓dx. (52)

Similarly, since ϕ is increasing and convex in [0, l], then
we can prove that

􏽚
Ω∩ zau1| |< l{ }

ϕ zau1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑dx≤ lim inf j⟶∞􏽚
Ω∩ zauqj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌< l􏼚 􏼛
ϕ zauqj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓dx. (53)

)erefore, we obtain from (52) and (53) that

􏽚
Ω
ϕ zau1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑dx � 􏽚

Ω∩ zau1| |< l{ }
ϕ zau1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑dx + 􏽚

Ω∩ zau1| |≥ l{ }
ϕ zau1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑dx

≤ ε + Akm,2􏼐 􏼑 ε +
1

Akm,2
􏼠 􏼡lim inf j⟶∞􏽚

Ω
ϕ zauqj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓dx.

(54)

)us, by letting ε⟶ 0, we get

􏽚
Ω
ϕ zau1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑dx≤ lim inf j⟶∞􏽚

Ω
ϕ zauqj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓dx, (55)

for any a ∈ x1, x2, x12, x− 12􏼈 􏼉. It follows then that

E u1( 􏼁≤ lim inf j⟶∞E uqj
􏼒 􏼓 � inf

u∈U
E(u), (56)

which signifies that u1 ∈ U is a minimizer of the energy
functional E(u), i.e.,

E u1( 􏼁 � minu∈UE(u). (57)

Furthermore, for all φ ∈ C1(Ω) and t ∈ R, we have u1 +

t(φ − φΩ) ∈ U with φΩ � (1/|Ω|)􏽒Ωφdx. )en, ρ(0)≤ ρ(t)

where

ρ(t) � E u1 + t φ − φΩ( 􏼁( 􏼁. (58)

Hence, we have ρ′(0) � 0, which means

􏽚
Ω

u1 − u0

h
φ − φΩ( 􏼁dx + 􏽚

Ω
D∇u1
∇u1 · ∇φdx � 0. (59)

Because of (50), we get

􏽚
Ω

u1 − u0

h
φdx + 􏽚

Ω
D∇u1
∇u1 · ∇φdx � 0. (60)

We conclude then that u1 is a weak solution for problem
(36).

Now, assume that there is another weak solution 􏽢u of
(36). )en, for every φ ∈ C1(Ω), we have

􏽚
Ω

􏽢u − u0

h
φdx + 􏽚

Ω
D∇􏽢u∇􏽢u · ∇φdx � 0, (61)

which leads to

􏽚
Ω

􏽢u − u1

h
φdx + 􏽚

Ω
D∇􏽢u∇􏽢u − D∇u1

∇u1􏽨 􏽩 · ∇φdx � 0.

(62)

)en, if we choose φ � 􏽢u − u1 as a test function in (62),
we get

􏽚
Ω

􏽢u − u1( 􏼁
2

h
dx + 􏽚

Ω
D∇􏽢u∇􏽢u − D∇u1

∇u1􏽨 􏽩 · ∇􏽢u − ∇u1( 􏼁dx � 0. (63)

)anks to Lemma 2, we deduce that 􏽚
Ω

􏽢u − u1( 􏼁
2

h
dx � 0. (64)
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)erefore, 􏽢u � u1 a.e. in Ω.
In conclusion, we have shown that there exists a unique

weak solution un ∈ U satisfying (35) for every
n ∈ 1, 2, . . . , N{ }. Consequently, we define an approximate
solution uh for problem (3) as

uh(x, t) �

u0(x), t � 0,

u1(x), t ∈ (0, h],

. . . . . . . . . , . . . . . . ,

uj(x), t ∈ ((j − 1)h, jh],

. . . . . . . . . , . . . . . . ,

uN(x), t ∈ ((N − 1)h, T],

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(65)

for every h � (T/N). □

4. Existence and Uniqueness of Weak Solutions

Proof. of )eorem 1. In the beginning, we establish the
uniqueness of solutions for problem (3). For this purpose, we
suppose there exist two weak solutions u and v for problem
(3). )en, we obtain the following:

z(u − v)

zt
− ∇ · D∇u∇u − D∇v∇v􏼂 􏼃 � 0, inQT,

〈D∇u∇u − D∇v∇v, n〉 � 0, on zΩ ×(0, T],

(u − v)(x; 0) � 0, inΩ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(66)

Bymultiplying the first equation of the above problem by
(u − v) and integrating over Ω and [0, t], we get

1
2

􏽚
Ω

(u − v)
2
(t)dx + 􏽚

t

0
􏽚
Ω

D∇u∇u − D∇v∇v􏼂 􏼃 · ∇(u − v)dxdτ � 0, (67)

for every t ∈ (0, T]. Since the second term of the above
equation is nonnegative (thanks to Lemma 2), it follows then
u � v a.e. in QT.

Let us now find our weak solution for problem (3). We
intend to send h to zero and show that a subsequence of our
solutions uh of the approximate problems (35) converges to
a weak solution for problem (3). To this end, we need to find
some a priori estimates.

It follows from (35) that for every φ ∈ C1(Ω),

􏽚
Ω

un − un− 1

h
φdx + 􏽚

Ω
D∇un
∇un · ∇φdx � 0. (68)

)en, by taking un as a test function in (68) and using
unun− 1 ≤ ((u2

n + u2
n− 1)/2), we get

1
2

􏽚
Ω

u
2
ndx + h􏽚

Ω
D∇un
∇un · ∇undx≤

1
2

􏽚
Ω

u
2
n− 1dx. (69)

For each t ∈ (0, T], we can find j ∈ 1, . . . , N{ } such that
t ∈ ((j − 1)h, jh]. )en, by adding all the inequalities (69)
from n � 1 to n � j, we get

1
2

􏽚
Ω

u
2
jdx + h 􏽘

j

n�1
􏽚
Ω
D∇un
∇un · ∇undx≤

1
2

􏽚
Ω

u
2
0dx. (70)

)en, by definition of uh, we obtain for t ∈ ((j − 1)h, jh]

that

1
2

􏽚
Ω

u
2
h(x, t)dx + 􏽚

jh

0
􏽚
Ω
D∇uh
∇uh · ∇uhdxdτ ≤

1
2

􏽚
Ω

u
2
0dx.

(71)

Since D∇uh
is a symmetric positive definite matrix, we

have also

1
2

􏽚
Ω

u
2
h(x, t)dx + 􏽚

t

0
􏽚
Ω
D∇uh∇uh · ∇uhdxdτ ≤

1
2

􏽚
Ω

u
2
0dx.

(72)

)erefore, after taking the supremum over [0, T], we
deduce that

sup0≤t≤T􏽚
Ω

u
2
h(x, t)dx + 􏽚

T

0
􏽚
Ω
D∇uh
∇uh · ∇uhdxdτ ≤ 2􏽚

Ω
u
2
0dx. (73)

Recalling that 0≤ϕ(s)≤ sϕ′(s) for all s≥ 0, then we can
derive the following:

D∇uh
∇uh · ∇uh � ∇uh · e1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ϕ′ ∇uh · e1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑 + ∇uh · e2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ϕ′ ∇uh · e2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

+ ∇uh · e12
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌ϕ′ ∇uh · e12
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 + ∇uh · e− 12
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌ϕ′ ∇uh · e− 12
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑

≥ ϕ ∇uh · e1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 + ϕ ∇uh · e2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 + ϕ ∇uh · e12
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 + ϕ ∇uh · e− 12
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑.

(74)
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Besides, as in (46), for |zx1
uh|, |zx2

uh|≥ km, we may find a
positive constant C such that

zx1
uh

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌log zx1
uh

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 + zx2
uh

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌log zx2
uh

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓≤C ϕ ∇uh · e1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 + ϕ ∇uh · e2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑􏼐 􏼑

≤CD∇uh
∇uh · ∇uh.

(75)

)us, we conclude

sup0≤t≤T􏽚
Ω

u
2
h(x, t)dx<∞,

􏽚
T

0
􏽚
Ω∩ zx1uh

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ km􏽮 􏽯

zx1
uh

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌log zx1
uh

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓dxdτ <∞,

􏽚
T

0
􏽚
Ω∩ zx2uh

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ km􏽮 􏽯

zx2
uh

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌log zx2
uh

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓dxdτ <∞.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(76)

By Lemma 4, we can find a subsequence of uh􏼈 􏼉 (for
simplicity, we also denote it by uh) such that [17]

uh⇀u, weakly ∗ in L
∞ 0, T; L

2
(Ω)􏼐 􏼑,

uh⇀u, weakly in L
1 0, T; W

1,1
(Ω)􏼐 􏼑,

(77)

with

sup0≤t≤T􏽚
Ω

u
2
(x, t)dx <∞,

􏽚
T

0
􏽚
Ω∩ zx1u

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ km􏽮 􏽯

zx1
u

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌log zx1
u

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓dxdτ <∞,

􏽚
T

0
􏽚
Ω∩ zx2u

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ km􏽮 􏽯

zx2
u

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌log zx2
u

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓dxdτ <∞.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(78)

So, it remains to prove that u is just a weak solution for
problem (3). Let us now denote ξh � D∇uh

∇uh. We will show
that ξh is bounded in [L2(QT)]2, so we may find a

subsequence of ξh that converges weakly in [L2(QT)]2 to a
particular vector-valued function. )en, we will prove that
this vector-valued function is equal almost everywhere to
D∇u∇u in QT through monotonicity condition (17).

From the expression of D∇uh
, we can derive the

following:

ξh

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 �

zx1
uh

zx1
uh

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
ϕ′ zx1

uh

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓e1 +
zx2

uh

zx2
uh

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
ϕ′ zx2

uh

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓e2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+
zx12

uh

zx12
uh

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
ϕ′ zx12

uh

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓e12 +
zx− 12

uh

zx− 12
uh

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
ϕ′ zx− 12

uh

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓e− 12

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ 4ϕ′ zx1
uh

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + zx2
uh

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓.

(79)

Given ε1, ε2 > 0, we may find l1 � l2 � km such that

ϕ′(s)≤M log(s),

s≤ ε2s log(s),
(80)

for all s≥ km with M � (ε1 + Akm,2). )us, we can distinguish
two cases:

(i) If |zx1
uh| + |zx2

uh|< km then |ξh|2 ≤ (4ϕ′(km))2.
(ii) If |zx1

uh| + |zx2
uh|≥ km then

ξh

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 4M log zx1

uh

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + zx2
uh

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓,

ξh

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 ≤ (4M)

2 1 + ε2log(2)( 􏼁 zx1
uh

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌log zx1
uh

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 + zx2
uh

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌log zx2
uh

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓􏼒 􏼓,

ξh

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌exp

ξh

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

4M
􏼠 􏼡≤ 4M 1 + ε2log(2)( 􏼁 zx1

uh

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌log zx1
uh

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 + zx2
uh

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌log zx2
uh

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓􏼒 􏼓.

(81)

)en, ξh􏼈 􏼉 is bounded in [L2(QT)]2, which means that
we can find a subsequence of ξh􏼈 􏼉 (denote it also by ξh􏼈 􏼉) and
a function ξ ∈ [L2(QT)]2 such that

ξh⇀ξ, weakly in L
2

QT( 􏼁􏽨 􏽩
2
. (82)

Since s↦s exp(s)(s≥ 0) is increasing and convex, then
as in the proof of Lemma 4, we deduce that

􏽚
T

0
􏽚
Ω∩ zx1u

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌+ zx2u

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ km􏽮 􏽯

|ξ|exp
|ξ|

4M
􏼠 􏼡dxdt≤

liminfh⟶0 􏽚
T

0
􏽚
Ω∩ zx1uh

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌+ zx2uh

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ km􏽮 􏽯

ξh

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌exp

ξh

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

4M
􏼠 􏼡dxdt<∞.

(83)

)en, by using Lemma 1, we get
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􏽚
T

0
􏽚
Ω

|ξ · ∇u|dxdt≤ 􏽚
T

0
􏽚
Ω

|ξ||∇u|dxdt

≤ 􏽚
T

0
􏽚
Ω

|ξ| zx1
u

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + zx2
u

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓dxdt

≤ km 􏽚
T

0
􏽚
Ω∩ zx1u

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌+ zx2u

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌< km􏽮 􏽯

|ξ|dxdt

+ 􏽚
T

0
􏽚
Ω∩ zx1u

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌+ zx2u

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ km􏽮 􏽯

|ξ|exp
|ξ|

4M
􏼠 􏼡dxdt

+ 4M 1 + ε2( 􏼁 􏽚
T

0
􏽚
Ω∩ zx1u

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ km􏽮 􏽯

zx1
u

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌log zx1
u

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓dxdt⎡⎣

+ 􏽚
T

0
􏽚
Ω∩ zx2u

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ km􏽮 􏽯

zx2
u

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌log zx2
u

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓dxdt⎤⎦<∞.

(84)

It follows then ξ · ∇u ∈ L1(QT). Next, we will show that
ξ � D∇u∇u a.e. in QT.

For each φ ∈ C1(QT) with φ(., T) � 0, we take φ(x, nh)

as a test function in (35):

􏽚
Ω

un(x) − un− 1(x)

h
φ(x, nh)dx + 􏽚

Ω
D∇un
∇un · ∇φ(x, nh)dx � 0,

(85)

with n ∈ 1, 2, . . . , N{ }. By summing n from 1 to N, we obtain

−
1
h

􏽚
Ω

u0(x)φ(x, 0)dx + 􏽘
N− 1

n�0
􏽚
Ω

un(x)
φ(x, nh) − φ(x, (n + 1)h)

h
dx

+ 􏽘
N

n�1
􏽚
Ω
D∇un
∇un · ∇φ(x, nh)dx � 0.

(86)

From the definition of uh (65), we have

􏽘

N− 1

n�0
􏽚
Ω

un(x)
φ(x, nh) − φ(x, (n + 1)h)

h
dx � − 􏽘

N− 1

n�0
􏽚

(n+1)h

nh
􏽚
Ω

uh(x, t)
φt(x, t)

h
dxdt

� −
1
h

􏽚
T

0
􏽚
Ω

uh(x, t)φt(x, t)dxdt.

(87)

)erefore,

− 􏽚
Ω

u0(x)φ(x, 0)dx − 􏽚
T

0
􏽚
Ω

uh(x, t)φt(x, t)dxdt + 􏽚
T

0
􏽚
Ω

D∇uh
∇uh · ∇φdxdt

+ 􏽘
N

n�1
􏽚

nh

(n− 1)h
􏽚
Ω
D∇un
∇un · [∇φ(x, nh) − ∇φ(x, t)]dxdt � 0.

(88)

Letting h tend to zero, we get

􏽚
Ω

u0(x)φ(x, 0)dx + 􏽚
T

0
􏽚
Ω

uφtdxdt � 􏽚
T

0
􏽚
Ω
ξ · ∇φdxdt. (89)
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On the other hand, we let v ∈ L1(QT) with

􏽚
T

0
􏽚
Ω∩ zxi

v

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ km􏽮 􏽯

zxi
v

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌log zxi
v

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓dxdt<∞, (90)

for i � 1, 2. We sum up inequalities (69):

1
2

􏽚
Ω

u
2
h(T)dx + 􏽚

T

0
􏽚
Ω
D∇uh
∇uh · ∇uhdxdt≤

1
2

􏽚
Ω

u
2
0dx.

(91)

We have from Lemma 2 that

􏽚
T

0
􏽚
Ω

D∇uh
∇uh − D∇v∇v􏼐 􏼑 · ∇uh − ∇v( 􏼁dxdt≥ 0. (92)

)en, we obtain

1
2

􏽚
Ω

u
2
h(T)dx + 􏽚

T

0
􏽚
Ω
D∇uh∇uh · ∇vdxdt + 􏽚

T

0
􏽚
Ω
D∇v∇v · ∇uhdxdt

− 􏽚
T

0
􏽚
Ω
D∇v∇v · ∇vdxdt≤

1
2

􏽚
Ω

u
2
0dx.

(93)

Letting h⟶ 0 and noting that

􏽚
Ω

u
2
(T)dx≤ lim infh⟶0􏽚

Ω
u
2
h(T)dx, (94)

we obtain

1
2

􏽚
Ω

u
2
(T)dx + 􏽚

T

0
􏽚
Ω
ξ · ∇vdxdt + 􏽚

T

0
􏽚
Ω
D∇v∇v · ∇udxdt

− 􏽚
T

0
􏽚
Ω
D∇v∇v · ∇vdxdt≤

1
2

􏽚
Ω

u
2
0dx.

(95)

By using φ � u in (89), we get

1
2

􏽚
Ω

u
2
(T)dx +

1
2

􏽚
Ω

u
2
0dx � 􏽚

T

0
􏽚
Ω
ξ · ∇udxdt. (96)

Combining (95) with (96), we have

􏽚
T

0
􏽚
Ω

ξ − D∇v∇v( 􏼁 · (∇v − ∇u)dxdt≤ − 􏽚
Ω

u
2
(T)dx.

(97)

Now, setting v � u + λw for any λ> 0, w ∈W1,2(QT), we
derive from the above inequality that

􏽚
T

0
􏽚
Ω

ξ − D∇(u+λw)∇(u + λw)􏼐 􏼑 · ∇wdxdt≤ 0. (98)

By letting λ⟶ 0 and using Lebesgue’s dominated
convergence theorem, we obtain

􏽚
T

0
􏽚
Ω

ξ − D∇u∇u( 􏼁 · ψdxdt � 0, (99)

for every ψ ∈ [L2(Ω)]2. It follows then

ξ � D∇u∇u, a.e. inQT. (100)

)erefore, we conclude from (89) that

− 􏽚
Ω

u0(x)φ(x, 0)dx + 􏽚
T

0
􏽚
Ω

− uφt + D∇u∇u · ∇φ􏼂 􏼃dxdt � 0,

(101)

for any φ ∈ C1(QT) with φ(., T) � 0. Finally, we need to
prove that u ∈ C([0, T], L2(Ω)). If we choose φ ∈ C∞0 (QT)

in (89), we obtain

􏽚
T

0
􏽚
Ω

uφtdxdt � 􏽚
T

0
􏽚
Ω
ξ · ∇φdxdt. (102)

Since ξ ∈ [L2(QT)]2, we conclude that
ut ∈ L1(0, T; H− 1(Ω)) where H− 1(Ω) is the dual space of
W1,2

0 (Ω). Since

u � 􏽚
t

0
uτdτ + u0,

u0 ∈ L
2
(Ω)↪H

− 1
(Ω).

(103)

It follows then that u ∈ C(0, T; H− 1(Ω)). Besides, for
every h> 0, let vh(x, t) � u(x, t + h) be the weak solution for
problem (3) satisfying vh(x; 0) � u(x, h). )en, wh(x, t) �

u(x, t + h) − u(x, t) satisfies
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zwh

zt
− ∇ · D∇vh

∇vh − D∇u∇u􏽨 􏽩 � 0, inΩ ×(0, T],

〈D∇vh
∇vh − D∇u∇u,n〉 � 0, on zΩ ×(0, T],

wh(x; 0) � u(x, h) − u0(x), inΩ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(104)

For each t0 ∈ [0, T], we may choose wh as a test function
in the first equation for problem (104) over [0, t0]:

1
2

􏽚
Ω

w
2
h x, t0( 􏼁dx + 􏽚

t0

0
􏽚
Ω

D∇vh
∇vh − D∇u∇u􏼐 􏼑 · ∇vh − ∇u( 􏼁dxdt≤

1
2

􏽚
Ω

w
2
h(x, 0)dx. (105)

Because of Lemma 2, we deduce

􏽚
Ω

u x, t0 + h( 􏼁 − u x, t0( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2dx≤􏽚

Ω
u(x, h) − u0(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx. (106)

Now, in order to prove that u ∈ C([0, T], L2(Ω)), we
need to prove

lim suph⟶0+ 􏽚
Ω

u(x, h) − u0(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2dx � 0. (107)

We suppose that (107) is not true. )en, there exist a
positive number δ and a sequence hi􏼈 􏼉 with hi⟶ 0 as
i⟶∞ such that

limhi⟶ 0+􏽚
Ω

u x, hi( 􏼁 − u0(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2dx≥ δ. (108)

From estimate (72), we have

􏽚
Ω

u x, hi( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2dx≤􏽚

Ω
u0(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx. (109)

)en, from (108), we get

lim infhi⟶ 0+ 􏽚
Ω

u0(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2dx − 􏽚

Ω
u0(x)u x, hi( 􏼁dx􏼒 􏼓≥

δ
2
.

(110)

From (109), we conclude that u(x, hi)􏼈 􏼉 is a bounded
sequence in L2(Ω). )en, we may find a subsequence
(denote it also by u(x, hi)􏼈 􏼉) such that there exists a function
􏽥u0 ∈ L2(Ω) such that

u x, hi( 􏼁⇀􏽥u0, weakly inL
2
(Ω). (111)

Since u ∈ C(0, T; H− 1(Ω)), it follows that

u x, hi( 􏼁⇀u0, weakly inH
− 1

(Ω). (112)

)erefore, we must have 􏽥u0 � u0, and since
u ∈ C(0, T; H− 1(Ω)), it follows that

u x, hi( 􏼁⇀u0, weakly inL
2
(Ω), (113)

which is contradictory with (110). )erefore, we conclude
that (107) is true and u ∈ C([0, T], L2(Ω)). )is completes
the proof of )eorem 1. □

5. Numerical Implementation and
Experimental Results

5.1. Consistent and Stable Symmetric Finite Difference
Approximation. In this section, we provide a consistent and
stable discretization scheme using symmetric finite differ-
ence approximation: at time tn � nδt, n≥ 0, and the mesh
points xi � iδ, yj � jδ(0≤ i≤N + 1 and 0≤ j≤M + 1), and
we denote by un

i,j the finite difference approximation of
u(xi, yj; tn).)e time-space derivatives are discretized in the
following manner:
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ux1
xi, yj; tn􏼐 􏼑 �

u xi+(1/2), yj; tn􏼐 􏼑 − u xi− (1/2), yj; tn􏼐 􏼑

δ
+ O δ2􏼐 􏼑,

ux2
xi, yj; tn􏼐 􏼑 �

u xi, yj+(1/2); tn􏼐 􏼑 − u xi, yj− (1/2); tn􏼐 􏼑

δ
+ O δ2􏼐 􏼑,

ux12
xi, yj; tn􏼐 􏼑 �

u xi+(1/2), yj+(1/2); tn􏼐 􏼑 − u xi− (1/2), yj− (1/2); tn􏼐 􏼑
�
2

√
δ

+ O δ2􏼐 􏼑,

ux− 12
xi, yj; tn􏼐 􏼑 �

u xi− (1/2), yj+(1/2); tn􏼐 􏼑 − u xi+(1/2), yj− (1/2); tn􏼐 􏼑
�
2

√
δ

+ O δ2􏼐 􏼑,

ut xi, yj; tn􏼐 􏼑 �
u xi, yj; tn+1􏼐 􏼑 − u xi, yj; tn􏼐 􏼑

δt

+ O δt( 􏼁.

(114)

By assume δ � 1 and denote

g
n
Ni,j

� g ΔNu
n
i,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓,

g
n
Ei,j

� g ΔEu
n
i,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓,

g
n
Si,j

� g ΔSu
n
i,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓,

g
n
Wi,j

� g ΔWu
n
i,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓,

g
n
NEi,j

� g
ΔNEu

n
i,j

�
2

√

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠 􏼡,

g
n
SEi,j

� g
ΔSEu

n
i,j�

2
√

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠 􏼡,

g
n
SWi,j

� g
ΔSWu

n
i,j

�
2

√

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠 􏼡,

g
n
NWi,j

� g
ΔNWu

n
i,j

�
2

√

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠 􏼡,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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, with

ΔNu
n
i,j � u

n
i,j+1 − u

n
i,j,

ΔEu
n
i,j � u

n
i+1,j − u

n
i,j,

ΔSu
n
i,j � u

n
i,j− 1 − u

n
i,j,

ΔWu
n
i,j � u

n
i− 1,j − u

n
i,j,

ΔNEu
n
i,j � u

n
i+1,j+1 − u

n
i,j,

ΔSEu
n
i,j � u

n
i+1,j− 1 − u

n
i,j,

ΔSWu
n
i,j � u

n
i− 1,j− 1 − u

n
i,j,

ΔNWu
n
i,j � u

n
i− 1,j+1 − u

n
i,j.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(115)

)en, we may approximate problem (3) using the above
scheme to obtain the following nonlinear diffusion filter:

u
n+1
i,j � u

n
i,j + δt gNΔNu + gEΔEu + gSΔSu + gWΔWu +

gNEΔNEu + gSEΔSEu + gSWΔSWu + gNWΔNWu

2
􏼢 􏼣

n

i,j

, (116)
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for 1≤ i≤N, 1≤ j≤ 1≤ i≤M, and n≥ 0, with the initial
condition u0

i,j and the discrete Neumann boundary
condition:

u
n
0,j � u

n
1,j, u

n
N+1,j � u

n
N,j, for 1≤ j≤M,

u
n
i,0 � u

n
i,1, u

n
i,M+1 � u

n
i,M, for 1≤ i≤N,

u
n
0,0 � u

n
1,1, u

n
N+1,0 � u

n
N,1,

u
n
0,M+1 � u

n
1,M, u

n
N+1,M+1 � u

n
N,M.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(117)

A unique sequence (un)n∈N is produced when using filter
(116) on a particular initial image u0 [2]. Besides, due to the
continuity of the function g, the sequence un depends
continuously on u0 for every finite n. Furthermore, equation
(116) satisfies the following maximum-minimum principle,
which describes a stability condition for the discrete scheme.

Theorem 3. Discrete extremum principle [1, 2].
For an iteration step satisfying

0< δt <
1

6g(0)
, (118)

scheme (116) satisfies

mini,ju
0
i,j ≤ u

n
i,j ≤maxi,ju

0
i,j, (119)

for all 1≤ i≤N, 1≤ j≤M, and n ∈ N.

5.2. Experimental Results. )is section will show the per-
formance of proposed diffusion filter (116) in the image
denoising process, under the boundary and initial condi-
tions (117) while respecting the requirements concerning ϕ
(Section 1), and δt (118). We will use the Peak Signal-to-
Noise Ratio (PSNR that is a positive value) [18] and the
Structural SIMilarity Index (SSIM that lies in (0, 1)) [19] to
evaluate the quality of the restored images. )e best results
for the denoising process are equivalent to the higher value
of these metrics.

For comparative purposes, we will examine the proposed
diffusion function with another one that has the same
properties using the same filter (116). )erefore, we will use
the following diffusion functions:

(i) )e proposed diffusion function (m � 1 for
instance):

g(s) �
p0P1,0k(s) + v0P2,0k(s) + pkP1,k0(s) + vkP2,k0(s), s ∈ [0, k[,

pkgk,1(s) + vkgk,2(s), s ∈ [k,∞[.
􏼨 (120)

(ii) )e Wang and Zhou diffusion function (WZ) [4]:

g(s) �
1

s + 1
+
log(s + 1)

s
. (121)

Additionally, we will consider real test images Figure 1
and evaluate our model’s performance on these images,
which will be corrupted with different levels of Gaussian
white noises with zero mean and variance σ2.

Table 1 shows the quantitative results on real images,
corrupted with various Gaussian noises, filtered by discrete

model (116) using proposed diffusion function (120) and the
one proposed by WZ (121). )ese results are obtained using
the optimal parameters determined experimentally, as in
Table 2 for each diffusion function.

It can be seen from Table 1 and Figure 2 that the pro-
posed model shows remarkable results against the WZ
model. From a visual comparison, Figure 2 shows that the
restored images using the proposed diffusion function have
considerable noise removal and preserve the image essential
features better than the restored images by the WZ diffusion
function. Besides, compared with theWZ diffusion function,

(a) (b) (c)

Figure 1: Brain MRI scans: Patient30: sagittal T1 of a 30-year-old female patient [20]. Patient50: coronal T2 of a 50-year-old female patient
[21]. Patient55: axial T2 of a 55-year-old patient [22]. (a) Patient30, (b) Patient50, and (c) Patient55.
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Table 1: PSNR and SSIM values of the images in Figure 1 affected by different values of Gaussian noise σ2 and their corresponding iteration
number for both functions.

Noisy WZ [4] Proposed
σ2 PSNR SSIM PSNR SSIM Iter PSNR SSIM Iter

Patient30

0.005 23.4311 0.3426 33.3757 0.9114 30 33.8333 0.9372 13
0.010 20.6839 0.2432 31.3367 0.8766 41 31.5737 0.9145 21
0.015 19.1190 0.1960 30.1565 0.8521 48 30.2008 0.8980 24
0.020 17.9763 0.1660 29.0905 0.8298 56 29.0007 0.8825 26
0.100 12.0756 0.0596 22.6821 0.6535 117 21.8953 0.7389 56

Patient50

0.005 23.6686 0.4424 31.1185 0.8708 24 31.2934 0.8769 11
0.010 20.7561 0.3278 29.0893 0.8186 35 29.1527 0.8258 19
0.015 19.1313 0.2707 27.9137 0.7820 41 27.8981 0.7920 26
0.020 17.9838 0.2334 27.0011 0.7508 47 26.9714 0.7625 27
0.100 11.9985 0.0911 21.4469 0.5585 93 20.9674 0.5932 62

Patient55

0.005 24.0179 0.3867 31.3190 0.9021 26 31.4668 0.9258 19
0.010 21.2303 0.2892 29.1310 0.8600 36 29.0997 0.8887 28
0.015 19.5990 0.2403 27.6640 0.8221 44 27.5635 0.8561 35
0.020 18.4292 0.2096 26.7717 0.7938 49 26.5468 0.8305 42
0.100 12.2234 0.0882 20.6948 0.5642 98 20.1755 0.6237 99

Table 2: )e best possible parameters for different diffusion functions.

WZ [4] Proposed
σ2 δt δt k p0 pk v0 vk

Patient30

0.005 0.08331 0.14701 4.61411 1.13191 0.66151 − 0.00011 − 0.10441
0.010 0.08331 0.14991 5.00191 1.10891 0.45921 − 0.00011 − 0.04351
0.015 0.08331 0.15051 5.20221 1.10601 0.45671 − 0.00021 − 0.03851
0.020 0.08331 0.14701 5.86411 1.13281 0.46991 − 0.00021 − 0.03961
0.100 0.08331 0.15001 5.08081 1.10111 0.45791 − 0.00091 − 0.03951

Patient50

0.005 0.08331 0.14941 3.18011 1.09241 0.56271 − 0.00021 − 0.01151
0.010 0.08321 0.16231 1.89931 1.00171 0.56991 − 0.00001 − 0.00201
0.015 0.08331 0.16591 2.06951 0.99011 0.56981 − 0.00011 − 0.11471
0.020 0.08331 0.16101 1.79891 1.00001 0.56981 − 0.00011 − 0.01051
0.100 0.08331 0.15301 3.87001 0.98701 0.55511 − 0.00031 − 0.13411

Patient55

0.005 0.08321 0.14681 3.50081 1.12891 0.58971 − 0.00021 − 0.16571
0.010 0.08331 0.14701 3.31431 1.12621 0.58281 − 0.00131 − 0.17311
0.015 0.08331 0.15141 3.09991 1.09021 0.58881 − 0.01401 − 0.18991
0.020 0.08331 0.14881 3.39691 1.08721 0.53891 − 0.00011 − 0.15801
0.100 0.08331 0.14991 2.70091 1.08901 0.56861 − 0.00021 − 0.20951

(a) (b) (c)

(d) (e) (f )

Figure 2: Continued.

16 Journal of Mathematics



the results from Table 1 prove that the suggested approach
has higher values in SSIM, whereas the WZ model shows
significant results in PSNR while σ2-value increases.

6. Conclusion

)is paper principally investigates the class of anisotropic
diffusion partial differential equations related to image
processing and analysis. )e existence and uniqueness of
weak solutions for this problem have been proven under
sufficient conditions satisfied by ϕ. A consistent and stable
numerical approximation has been applied, and a discrete
nonlinear filter has been tested and revealed its efficiency in
the image restoration field.
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,e main aim of this work is to introduce the new concept of λ − (Υ, χ)-contraction self-mappings and prove the existence of
χ-fixed points for such mappings in metric spaces. Our results generalize and improve some results in existing literature.
Moreover, some fixed point results in partial metric spaces can be derived from our χ-fixed points results. Finally, the existence of
solutions of nonlinear integral equations is investigated via the theoretical results in this work.

1. Introduction and Preliminaries

One of the most famous metrical fixed point theorem is the
Banach contraction principle (BCP) which is the classical
tool for solving several nonlinear problems. Based on the
noncomplexity and the usefulness of this principle, many
mathematicians have improved, extended, and generalized it
into several directions. For instance, in [1], on the basis of the
probabilistic metric space and the S-metric space, Hu and
Gu introduced the concept of the probabilistic metric space,
which is called theMenger probabilistic S-metric space.,ey
also proved some fixed point theorems in the framework of
Menger probabilistic S-metric spaces. In [2], using the
notion of the cyclic representation of a nonempty set with
respect to a pair of mappings, Mohanta and Biswas obtained
coincidence points and common fixed points of a pair of
self-mappings satisfying a type of contraction condition
involving comparison functions and (w)-comparison
functions in partial metric spaces.

Many researchers attempted to introduce the new idea
on generalizations of a metric space and then they inves-
tigated fixed point results in new spaces.

In 1994, partial metric spaces were introduced initially
by Matthews [3]. One of the important points in this space is
the possibility of being nonzero the self-distance.

Definition 1 (see [3]). Let Π be a nonempty set. A mapping
W: Π ×Π⟶ [0,∞) is called a partial metric if and only if

(p1) W(X,X) � W(Y,Y) � W(X,Y)⇔X � Y,
(p2) W(X,X)≤W(X,Y),
(p3) W(X,Y) � W(Y,X),
(p4) W(X,Y)≤W(X,Z) + W(Z,Y) − W(Z,Z),

for any X,Y,Z ∈ Π. Moreover, the pair (Π,W) will be a
partial metric space.

Note that any metric space is a partial metric space but
the reverse is not true, in general. An example of a partial
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metric space is the pair ([0,∞),W), where W(X,Y) �

max X,Y􏼈 􏼉 for all X,Y ∈ [0,∞). We see that W(X,X)

may not to be zero for someX ∈ Π. For further examples of
a partial metric, we refer to [3].

Definition 2 (see [3]). Let (Π,W) be a partial metric space.

(1) Xn􏼈 􏼉⊆Π is said to be converging to a point X ∈ Π if
and only if limn⟶∞W(Xn,X) � W(X,X).

(2) Xn􏼈 􏼉⊆Π is called a Cauchy sequence if and only if
limn,m⟶∞W(Xn,Xm) exists and is finite.

(3) (Π,W) is said to be complete if and only if every
Cauchy sequence Xn􏼈 􏼉⊆Π converges to some point
X ∈ Π such that
limn,m⟶∞W(Xn,Xm) � limn⟶∞W(Xn,X) �

W(X, X).

Remark 1 (see [3]). If (Π,W) is a partial metric space, then
the pair (Π, dW) is a metric space where
dW: Π × Π⟶ [0,∞) is defined by
dW(X,Y) � 2W(X,Y) − W(X,X) − W(Y,Y) for all
X,Y ∈ Π.

Lemma 1 (see [3]). Let (Π,W) be a partial metric space.

(i) Xn􏼈 􏼉 is Cauchy in (Π,W) if and only if Xn􏼈 􏼉 is
Cauchy in (Π, dW).

(ii) $e partial metric space (Π,W) is complete if and
only if the metric space (Π, dW) is complete.

(iii) For each Xn􏼈 􏼉⊆Π and X ∈ Π,
limn⟶∞dW(Xn,X) � 0⇔limn,m⟶∞W(Xn,

Xm) � limn⟶∞W(Xn,X) � W(X,X).

According to the published work of Matthews [3], fixed
point results in partial metric spaces have been investigated
widely by many mathematicians. In 2014, the new concepts
of χ-fixed points, χ-Picard mappings, and weakly χ-Picard
mappings have been introduced by Jleli et al. [4]. Several
χ-fixed point results for mappings satisfying the generalized
Banach contractive condition based on the idea of new
control function are proved in [4]. Moreover, they also
claimed that some fixed point results in partial metric spaces
can be derived from these χ-fixed point results in metric
spaces. Next, we recall the definitions of χ-fixed points,
χ-Picard mappings, and weakly χ-Picard mappings. Before
presenting these definitions, some notations are needed.

Let Π be a nonempty set, χ: Π⟶ [0,∞) be a given
function, and Γ: Π⟶Π be a mapping.

,roughout this paper, unless otherwise specified, the set
of all fixed points of Γ is denoted by
F(Γ) � X ∈ Π|Γ(X) � X{ } and the set of all zeros of χ is
denoted by Zχ � X ∈ Π|χ(X) � 0􏼈 􏼉.

Definition 3 (see [4]). Let Π be a nonempty set,
χ: Π⟶ [0,∞) be a given function, and Γ: Π⟶Π be a
mapping.Z ∈ Π is called a χ-fixed point of Γ if and only ifZ
is a fixed point of Γ such that χ(Z) � 0, that is,
Z ∈ F(Γ)∩Zχ .

Definition 4 (see [4]). Let Π be a nonempty set and
χ: Π⟶ [0,∞) be a given function. A mapping
Γ: Π⟶Π is called a χ-Picard mapping if the following
conditions hold:

(i) F(Γ)∩Zχ � Z{ }

(ii) ΓnX⟶Z as n⟶∞ for any X ∈ Π

Definition 5 (see [4]). Let Π be a nonempty set and
χ: Π⟶ [0,∞) be a given function. A mapping
Γ: Π⟶Π is called a weakly χ-Picard mapping if the
following conditions hold:

(i) Γ has at least one χ-fixed point
(ii) ,e sequence ΓnX{ } converges to some χ-fixed point

of Γ for any X ∈ Π

A new control function Υ: [0,∞)3⟶ [0,∞) has been
introduced by Jleli et al. [4] where

(Y1) max a, b{ }≤Υ(a, b, c), for all a, b, c ∈ [0,∞)

(Y2) Υ(0, 0, 0) � 0
(Y3) Υ is continuous

,roughout this paper, unless otherwise is specified, the
class of all functions satisfying the properties (Υ1) − (Υ3) is
denoted by Υ.

Example 1 (see [4]). Suppose that the mappings
Υ1,Υ2,Υ3: [0,∞)3⟶ [0,∞) are defined by Υ1(a, b, c) �

a + b + c,Υ2(a, b, c) � max a, b{ } + c,Υ3(a, b, c) �

a + a2 + b + c for all a, b, c ∈ [0,∞). ,en, Υ1,Υ2,Υ3 ∈ Υ.
Using the notion of control functions in Υ, Jleli et al. [4]

introduced the ideas of (Υ, χ)-contractions and (Υ, χ)-weak
contractions and proved existence of χ-fixed point for such
mappings as follows.

Definition 6 (see [4]). Let (Π, d) be a metric space,
χ: Π⟶ [0,∞) be a given function, and Υ ∈ Υ. A mapping
Γ: Π⟶Π is called an (Υ, χ)-contraction if and only if
there is k ∈ (0,∞) such that
Υ(d(ΓX, ΓY), χ(ΓX), χ(ΓY))≤ kΥ(d(X,Y), χ(X),

χ(Y)), for all X,Y ∈ Π.

Definition 7 (see [4]). Let (Π, d) be a metric space,
χ: Π⟶ [0,∞) be a given function, and Υ ∈ Υ. A mapping
Γ: Π⟶Π is called an (Υ, χ)-weak contraction if and only
if there are k ∈ (0,∞) and L≥ 0 such that
Υ(d(ΓX, ΓY), χ(ΓX), χ(ΓY))≤ kΥ(d(X,Y), χ(X), χ
(Y)) + L (Υ(d(Y, ΓX), χ(Y), χ(ΓX)) − Υ(0, χ(Y), χ
(ΓX))) for all X,Y ∈ Π.

Theorem 1 (see [4]). Let (Π, d) be a complete metric space,
χ: Π⟶ [0,∞) be a given function, and Υ ∈ Υ. Assume that

(H1) χ is lower semicontinuous
(H2) Γ: Π⟶ Π is an (Υ , χ)-contraction mapping

$en, the following assertions hold:

(i) F(Γ)⊆Zχ
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(ii) Γ is a χ-Picard mapping
(iii) If X ∈ Π and Z is a χ-fixed point of Γ, then

d(ΓnX,Z)≤ (kn/(1 − k))Υ
(d(ΓX,X), χ(ΓX), χ(X)), for all n ∈ N

Theorem 2 (see [4]). Let (Π, d) be a complete metric space,
χ: Π⟶ [0,∞) be a given function, and Υ ∈ Υ. Assume that

(H1) χ is lower semicontinuous
(H2) Γ: Π⟶ Π is an (Υ , χ)-weak contraction
mapping

$en, the following assertions hold:

(i) F(Γ)⊆Zχ

(ii) Γ is a weakly χ-Picard mapping
(iii) If X ∈ Π and Z is a χ-fixed point of Γ, then

d(ΓnX,Z)≤ ((kn)/
(1 − k))Υ(d(X, ΓX), χ(X), χ(ΓX)), for all n ∈ N

Nowadays, many authors have extended the Banach
contractive condition in the BCP into many ways by using
various types of the control functions. In 2014, Jleli and Samet
[5] presented the new idea of a control function and proved
the fixed point results for mappings involving this new control
function. Here, we restate the idea of the control function
proposed in Jleli and Samet [5] and give the main work in [5]
which is the main inspiration in this paper.

Let Λ be the set of all functions λ: [0,∞)⟶ [1,∞) so
that

(i) λ is non-decreasing
(ii) For each sequence ιn􏼈 􏼉 ⊂ [0,∞), limn⟶∞λ(ιn) � 1

if and only if limn⟶∞ιn � 0

(iii) ,ere exist r ∈ (0, 1) and l ∈ (0,∞] such that
limt⟶0+ ((λ(t) − 1)/tr) � l

Theorem 3 (see [5]). Let (Π, d) be a complete metric space
and Γ: Π⟶ Π be a given mapping. Suppose that there exist
λ ∈ Λ and k ∈ (0, 1) such that for all X,Y ∈ Π with
ΓX≠ ΓY, one has λ(d(ΓX, ΓY))≤ [λ(d(X,Y))]k. $en, Γ
possesses a unique fixed point.

Recall that χ: Π⟶ [0,∞) is lower semicontinuous at
x0 if lim infx⟶x0

χ(x)≥ χ(x0).
Note that there is no discussion so far on the combination

of several ideas of contraction mappings in the literature. ,e
goal of this work is to present the new concept of a
λ-(Υ, χ)-contraction self-mappings. ,e existence results of
χ-fixed points for such contraction mappings in metric spaces
are provided. ,e main results of Jleli and Samet [4] and Jleli
et al. [5] are particular cases of our main results. Furthermore,
we give some fixed point results in partial metric spaces which
can be derived from our χ-fixed points results. Finally, we apply
the theoretical results in this work to prove the existence of
solutions of nonlinear integral equations.

2. Main Results

To present the main result in this paper, we start with the
following definition which is larger than the idea of many
contraction mappings in the literature.

Definition 8. Let (Π, d) be a metric space, χ: Π⟶ [0,∞)

be a given function, Υ ∈ Υ, and λ ∈ Λ. A mapping
Γ: Π⟶Π is called a λ-(Υ, χ)-contraction if and only if
there exists k ∈ (0, 1) such that

λ (Υ (d (ΓX, ΓY), χ (ΓX), χ (ΓY)))≤ [λ(Υ (d (X,Y), χ (X), χ(Y)))]
k
, (1)

for all X,Y ∈ Π.
Now, we present the main results in this paper.

Theorem 4. Let (Π, d) be a complete metric space,
χ: Π⟶ [0,∞) be a given function, Υ ∈ Υ, and λ ∈ Λ.
Assume that

(i) χ is lower semicontinuous
(ii) Γ: Π⟶ Π is an λ-(Υ , χ)-contraction

$en, the following assertions hold:

(i) F(Γ)⊆Zχ

(ii) Γ is a χ-Picard mapping

Proof. Suppose that G ∈ Π is a fixed point of Γ. Appling (1)
with X � Y � G, we obtain λ(Υ(0, χ(G), χ(G)))≤ [λ(Υ(0,

χ(G), χ(G)])]k.,is implies λ(Υ(0, χ(G), χ(G))) � 1 and so
Υ(0, χ(G), χ(G)) � 0. ,en, χ(G)≤Υ(0, χ(G), χ(G)) � 0

which implies χ(G) � 0. ,us, we have proved (i). Now, let
X be an arbitrary point. From (1), we obtain

λ d ΓnX, Γn+1
X􏼐 􏼑􏼐 􏼑≤ λ Υ d ΓnX, Γn+1

X􏼐 􏼑, χ ΓnX( 􏼁, χ Γn+1
X􏼐 􏼑􏼐 􏼑􏼐 􏼑,

≤ λ Υ d Γn− 1
X, ΓnX􏼐 􏼑, χ Γn− 1

X􏼐 􏼑, χ ΓnX( 􏼁􏼐 􏼑􏼐 􏼑
k

⋮

≤ [λ(Υ(d(X, ΓX), χ(X), χ(ΓX)))]
kn

,

(2)

for all n ∈ N. If n⟶∞ in the above inequality, we obtain
limn⟶∞λ(d(ΓnX, Γn+1X)) � 1 and so
limn⟶∞d(ΓnX, Γn+1X) � 0. ,us, there exist r ∈ (0, 1) and
l ∈ (0,∞] such that

lim
n⟶∞

λ d ΓnX, Γn+1
X􏼐 􏼑􏼐 􏼑 − 1

d ΓnX, Γn+1
X􏼐 􏼑

r � l. (3)
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Similar to the proof of ,eorem 2.1 in [5], we deduce
ΓnX{ } is a Cauchy sequence. Since (Π, d) is complete, there
exists Z ∈ Π such that ΓnX⟶Z as n⟶∞. From (2),
we obtain
1≤ λ(χ(ΓnX))≤ [λ(Υ(d(X, ΓX), χ(X), χ(ΓX)))]kn

for all

n ∈ N. If n⟶∞ in the above inequality, we obtain
limn⟶∞λ(χ(ΓnX)) � 1 and so limn⟶∞χ(ΓnX) � 0. Since χ
is lower semicontinuous, we obtain χ(Z) � 0. Again, using
(1), we obtain

1≤ lim
n⟶∞

λ d Γn+1
X, ΓZ􏼐 􏼑􏼐 􏼑≤ lim

n⟶∞
λ Υ d ΓnX,Z( 􏼁, χ ΓnX( 􏼁, χ(Z)( 􏼁( 􏼁􏼂 􏼃

k
� [λ(Υ(0, 0, 0))]

k
� 1. (4)

,us, d(Z, ΓZ) � 0, that is, Z is a fixed point of Γ.
,erefore, Z is also a χ-fixed point of Γ.

To show the uniqueness of fixed point, let Z,Z′ be two
χ-fixed points of Γ. Applying (1) forX � Z,Y � Z′, we get
λ(Υ(d(Z,Z′), 0, 0))≤ [λ(Υ(d(Z,Z′), 0, 0))]k. ,is im-
plies λ(Υ(d(Z,Z′), 0, 0)) � 1 and so Υ(d(Z,Z′),
0, 0) � 0. ,erefore, d(Z,Z′)≤Υ(d(Z,Z′), 0, 0) � 0
which gives us d(Z,Z′) � 0. ,us, Z � Z′. ,erefore, we
have proved (ii).

Taking Υ(a, b, c) � a + b + c and χ ≡ 0 in the above
theorem, we have the following. □

Corollary 1. Let (Π, d) be a complete metric space and
λ ∈ Λ. Assume that

(i) $ere exists k ∈ (0, 1) such that

λ(Υ(d(ΓX, ΓY)))≤ [λ(Υ(d(X,Y)))]
k
, (5)

for all X,Y ∈ Π.

,en, the following assertions hold:

(i) F(Γ)⊆Zχ

(ii) Γ is a χ-Picard mapping

Taking λ(t) �
�
t

√
for all t≥ 0 in the above corollary, we

obtain the BCP.
Next, we present the second idea of the new mappings

satisfying the generalized contractive condition which is

similar to the first idea and then we prove the existence of a
χ-fixed point result for this mapping.

Definition 9. Let (Π, d) be a metric space, χ: Π⟶ [0,∞)

be a given function, Υ ∈ Υ, and λ ∈ Λ. A mapping
Γ: Π⟶Π is called a λ-(Υ, χ)-weak contraction if and only
if there exist k ∈ (0, 1) and L≥ 0 such that

λ(Υ(d(ΓX, ΓY), χ(ΓX), χ(ΓY)))≤ [λ(Υ(d(X,Y), χ(X), χ(Y)))]
k

[λ(Υ(d(Y, ΓX), χ(Y), χ(ΓX)) − Υ(0, χ(Y), χ(ΓX)))]
L
,

(6)

for all X, Y ∈ Π.

Theorem 5. Let (Π, d) be a complete metric space,
χ: Π⟶ [0,∞) be a given function, Υ ∈ Υ, and λ ∈ Λ.
Assume that

(i) χ is lower semicontinuous
(ii) Γ: Π⟶ Π is a λ-(Υ , χ)-weak contraction

$en, the following assertions hold:

(i) F(Γ)⊆Zχ

(ii) Γ is a weakly χ-Picard mapping

Proof. Suppose that G ∈ Π is a fixed point of Γ. Appling (6)
with X � Y � G, we obtain

λ(Υ(0, χ(G), χ(G)))≤ [λ(Υ(0, χ(G), χ(G)]]]
k
[λ(Υ(0, χ(G), χ(G)) − ΥΥ(0, χ(G), χ(G)))]

L

� [λ(Υ(0, χ(G), χ(G)))]
k
.

(7)

,is implies that λ(Υ(0, χ(G), χ(G))) � 1 and so
Υ(0, χ(G), χ(G)) � 0. ,en, χ(G)≤Υ(0, χ(G), χ(G)) � 0

which implies χ(G) � 0. ,us, we have proved (i). Now, let
X be an arbitrary point. From (6), we obtain

λ d ΓnX, Γn+1
X􏼐 􏼑􏼐 􏼑≤ λ Υ d ΓnX, Γn+1

X􏼐 􏼑, χ ΓnX( 􏼁, χ Γn+1
X􏼐 􏼑􏼐 􏼑􏼐 􏼑,

≤ λ Υ d Γn− 1
X, ΓnX􏼐 􏼑, χ Γn− 1

X􏼐 􏼑, χ ΓnX( 􏼁􏼐 􏼑􏼐 􏼑􏽨 􏽩
k

λ Υ d ΓnX, ΓnX( 􏼁( 􏼁, χ ΓnX( 􏼁, χ ΓnX( 􏼁( 􏼁 − Υ 0, χ ΓnX( 􏼁, χ ΓnX( 􏼁( 􏼁( 􏼁􏼂 􏼃
L

� λ Υ d Γn− 1
X, ΓnX􏼐 􏼑, χ Γn− 1

X􏼐 􏼑, χ ΓnX( 􏼁􏼐 􏼑􏼐 􏼑􏽨 􏽩
k

⋮
≤ [λ (Υ (d (X, ΓX), χ (X), χ (ΓX)))]

kn

.

(8)
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Taking the limit as n⟶∞ in the above inequality, it
gives us limn⟶∞λ(d(ΓnX, Γn+1X)) � 1 and so
limn⟶∞d(ΓnX, Γn+1X) � 0. ,us, there exist r ∈ (0, 1) and
l ∈ (0,∞] such that

lim
n⟶∞

λ d ΓnX, Γn+1
X􏼐 􏼑􏼐 􏼑 − 1

d ΓnX, Γn+1
X􏼐 􏼑

r � l. (9)

Similar to proof of ,eorem 2.1 in [5], we deduce ΓnX{ }

is a Cauchy sequence. Since (Π, d) is complete, there exists
Z ∈ Π such that ΓnX⟶Z as n⟶∞. From (8), we
obtain. 1≤ λ(χ(ΓnX))≤ [λ(Υ(d(X, ΓX), χ(X), χ(ΓX)))]kn

.

Taking n⟶∞, we obtain limn⟶∞λ(χ(ΓnX)) � 1 and
so limn⟶∞χ(ΓnX) � 0. Since χ is lower semicontinuous, we
obtain χ(Z) � 0. Again using (11), we obtain

1≤ lim
n⟶∞

λ d Γn+1
X, ΓZ􏼐 􏼑􏼐 􏼑

≤ lim
n⟶∞

λ Υ d ΓnX,Z( 􏼁, χ ΓnX( 􏼁, χ(Z)( 􏼁( 􏼁􏼂 􏼃
k

λ Υ d ΓnX,Z( 􏼁, χ ΓnX( 􏼁, χ(Z)( 􏼁 − Υ 0, χ ΓnX( 􏼁, χ(Z)( 􏼁( 􏼁􏼂 􏼃
L

� [λ(Υ(0, 0, 0))]
k

� 1.

(10)

,erefore, λ(d(Z, ΓZ)) � 1 which implies
d(Z, ΓZ) � 0, that is, Z is a fixed point of Γ.

Taking Υ(a, b, c) � a + b + c and χ ≡ 0 in the above
theorem, we have the following. □

Corollary 2. Let (Π, d) be a complete metric space and
λ ∈ Λ. Assume that

(i) $ere exist k ∈ (0, 1) and L≥ 0 such that

λ(Υ(d(ΓX, ΓY), χ(ΓX), χ(ΓY)))≤ [λ(Υ(d(X,Y)))]
k

· [λ(Υ(d(Y, ΓX)))]
L
,

(11)

for all X,Y ∈ Π.

$en, the following assertions hold:

(i) F(Γ)⊆Zχ

(ii) Γ is a χ-Picard mapping

Remark 2. Note that the advantage of Corollary 2 is that we
can choose the power L � 0 to obtain Corollary 1. ,at is,
Corollary 2 is more general than Corollary 1. Also, by taking
different functions λ, we can obtain many contractive
conditions in ,eorems 4 and 5.

Next illustrative example is furnished which demon-
strates the validity of the hypotheses and degree of utility of
,eorem 6 while previous results in the literature are not
applicable.

Example 2. Let Π � τn|n ∈ N∪ 0{ }􏼈 􏼉, where
τn � ((n(n + 1))/2) for all n ∈ N and τ0 � 0. Obviously,
(Π, d) is a complete metric space with the metric d: Π ×

Π⟶ [0,∞) defined by d(X,Y) � |X − Y| for all
X,Y ∈ Π. Define a mapping Γ: Π⟶Π by Γτn � τn− 1 for
all n ∈ N and Γτ0 � τ0 � 0. ,en, Γ is not a Banach con-
traction mapping, since

lim
n⟶∞

d Γτn, Γτ1( 􏼁

d τn, τ1( 􏼁
� lim

n⟶∞

τn− 1 − τ0
τn − τ1

� lim
n⟶∞

((n(n − 1))/2)

((n(n + 1))/2) − 1
� 1. (12)

,erefore, the BCP cannot be applied in this example.
Now, we define a function λ ∈ Λ by λ(t) � e

��
tet

√

for all
t ∈ [0,∞) and a function Υ ∈ Υ by Υ(a, b, c) � a + b + c for
all a, b, c ∈ [0,∞). Also, we define a function

χ: Π⟶ [0,∞) by χ(X) � X for allX ∈ Π. We shall show
that Γ is a λ-(Υ, χ)-contraction mapping. For any m, n ∈ N
with n>m, we have

d Γτn, Γτm( 􏼁 + Γτn + Γτm

d τn, τm( 􏼁 + τn + τm

e
d Γτn,Γτm( )+Γτn+Γτm − d τn,τm( )+τn+τm[ ]

�
((n(n − 1))/2) − ((m(m − 1))/2) +((n(n − 1))/2) +((m(m − 1))/2)

((n(n + 1))/2) − ((m(m + 1))/2) +((n(n + 1))/2) +((m(m + 1))/2)

· e
((n(n− 1))/2)− ((m(m− 1))/2)+((n(n− 1))/2)+((m(m− 1))/2)− [((n(n+1))/2)− ((m(m+1))/2)+((n(n+1))/2)+((m(m+1))/2)]

�
n(n − 1)

n(n + 1)
e

− 2n

≤ e
− 2

.

(13)
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Putting k � e− 1, the above inequality is equivalent to

d Γτn, Γτm( 􏼁 + Γτn + Γτm( 􏼁e
d Γτn,Γτm( )+Γτn+Γτm ≤ k

2 d τn, τm( 􏼁 + τn + τm( 􏼁e
d τn,τm( )+τn+τm , (14)

or equivalently

e

��������������������������
d Γτn,Γτm( )+Γτn+Γτm( )ed Γτn,Γτm( )+Γτn+Γτm

􏽰

≤ e
k

����������
d τn,τm( )+τn+τm

􏽰
ed τn,τm( )+τn+τm

.

(15)

,erefore, we obtain

λ Υ d Γτn, Γτm( 􏼁, χ Γτn( 􏼁, χ Γτm( 􏼁( 􏼁( 􏼁≤ λ Υ d τn, τm( 􏼁, χ τn( 􏼁, χ τm( 􏼁( 􏼁( 􏼁􏼂 􏼃
k
. (16)

,en, all hypotheses of ,eorem 7 hold and so Γ has a
unique χ-fixed point. Here, τ0 � 0 is the unique χ-fixed point
of Γ.

3. Applications of Theoretical Results

In this section, we give two applications of our main results
in the previous section. ,ese applications consist of two
parts. ,e first part is related to the fixed point results in
partial metric spaces. ,e second part shows the application
of theoretical results to solve the nonlinear integral equation.

Theorem 6. Let (Π,W) be a complete partial metric space
and Γ: Π⟶ Π be a mapping such that

λ(W(ΓX, ΓY))≤ [λ(W(X,Y))]
k
, (17)

for allX,Y ∈ Π, where k ∈ (0, 1). $en, Γ has a unique fixed
point Z. Moreover, χ(Z) � 0 implies W(Z,Z) � 0.

Proof. Define a metric dW: Π × Π⟶ [0,∞) by

dW(X,Y) � 2W(X,Y) − W(X,X) − W(Y,Y),

(18)

for allX,Y ∈ Π. In addition, we define a new metric d: Π ×

Π⟶ [0,∞) by

d(X,Y) � dW(X,Y)( 􏼁/2( 􏼁, (19)

for all X,Y ∈ Π. Also, we set a function χ: Π⟶ [0,∞)

and a function Υ ∈ Υ by

χ(X) �
W(X,X)

2
, for allX ∈ Π,

Υ(a, b, c) � a + b + c, for all a, b, c ∈ [0,∞).

(20)

,en, from (17), we have

λ(d(ΓX, ΓY) + W(ΓX, ΓX) + W(ΓY, ΓY))

≤ [λ(d(X,Y) + W(X,X) + W(Y,Y))]
k
,

(21)

for all X,Y ∈ Π. It yields that

λ(Υ(d(ΓX, ΓY), χ(ΓX), χ(ΓY)))≤ [λ(Υ(d(X,Y), χ(X), χ(Y)))]
k
, (22)

for allX,Y ∈ Π. By,eorem 7, Γ has a unique χ-fixed point
Z. It implies that Γ has a unique fixed point Z ∈ Π.
Moreover, χ(Z) � 0 implies W(Z,Z) � 0.

Based on the proof of the above theorem and,eorem 5,
we get the following result. □

Theorem 7. Let (Π,W) be a compete partial metric space
and Γ: Π⟶ Π be a mapping such that

λ(W(ΓX, ΓY))≤ [λ(W(X,Y))]
k
[λ(W(Y, ΓX) − W(Y,Y) − W(ΓX, ΓX))]

L
, (23)

for all X,Y ∈ Π, where k ∈ (0, 1). $en, Γ has a fixed point
Z. Moreover, W(Z,Z) � 0.

Next, we will consider the following nonlinear integral
equation:
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X(t) � ϕ(t) + 􏽚
b

a
Q(t, s,X(s))ds, (24)

where a, b ∈ R, X ∈ C[a, b] (the set of all continuous
functions from [a, b] to R), and ϕ: [a, b]⟶ R and
Q: [a, b] × [a, b] × R⟶ R are two given functions.

Theorem 8. Consider integral equation (24). Suppose that
the following conditions hold:

(i) Q: [a, b] × [a, b] × R⟶ R is continuous and

λ 􏽚
b

a
|Q(t, s, α)ds − Q(t, s, β)|ds􏼠 􏼡≤ 􏽚

b

a
λ(|Q(t, s, α) − Q(t, s, β)|)ds, (25)

for all t, s ∈ [a, b] and for all α, β ∈ R.
(ii) $ere exist λ ∈ Λ and k ∈ (0, 1) such that

λ(|Q(t, s, α) − Q(t, s, β)|)≤
[λ(|α − β|)]

k

b − a
, (26)

for all t, s ∈ [a, b] and for all α, β ∈ R.

,en, integral equation (24) has a unique solution.

Proof. Let Π � C[a, b]. Define the metric d on Π by
d(X,Y) � supt∈[a,b]|X(t) − Y(t)| for all X,Y ∈ Π. ,en,
(Π, d) is a complete metric space. Consider a mapping
Γ: Π⟶Π defined by (ΓX)(t) � ϕ(t) + 􏽒

t

a
Q(t, s,X(s))ds

for all X ∈ Π. Define the control function
Υ: [0,∞)3⟶ [0,∞) by Υ(a, b, c) � a + b + c for all

a, b, c ∈ [0,∞). Also, define χ: Π⟶ [0,∞) by χ(X) � 0
for all X ∈ Π. Let X,Y ∈ Π and t ∈ [a, b]. ,en, we have

λ(|ΓX(t) − ΓY(t)|) �λ 􏽚
t

a
Q(t, s,X(s))ds − 􏽚

t

a
Q(t, s,Y(s))ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠 􏼡

≤ 􏽚
b

a
λ(|Q(t, s,X(s)) − Q(t, s,Y(s))|)ds

≤ 􏽚
b

a

[λ(|X(s) − Y(s)|)]
k

b − a
ds

≤
1

b − a
􏽚

b

a
[λ(d(X,Y))]

kds

≤ [λ(d(X,Y))]
k
.

(27)

Since χ(X) � 0 for all X ∈ Π, we get

λ(d(ΓX, ΓY) + χ(ΓX) + χ(ΓY))≤ [λ(d(X,Y) + χ(X) + χ(Y))]
k
. (28)

,erefore,

λ(Υ(d(ΓX, ΓY), χ(ΓX), χ(ΓY)))≤ [λ(Υ(d(X,Y), χ(X), χ(Y)))]
k
. (29)

,us, Γ: Π⟶Π is a λ-(Υ, χ)-contraction mapping. By
,eorem 7, Γ has a unique χ-fixed point X ∈ Π, that is,
(ΓX)(t) � X(t) for all t ∈ [a, b] and χ(X) � 0 which means
that integral equation (24) has a unique solution. □

4. Conclusions

In this paper, we obtained some fixed point results first in a
metric space and then in a partial metric space as results. ,e
famous Banach contraction principle is a special case of our
results. ,ere are other terms such as d(X, ΓY), d(Y, ΓY),
and d(X, ΓX) which we can consider in future research. But,
certainly, we should also work with other control functions.
For more details in this direction, the readers can refer to [6].
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Kung and Traub conjectured that a multipoint iterative scheme without memory based on m evaluations of functions has an
optimal convergence order p � 2m− 1. In the paper, we first prove that the two-step fourth-order optimal iterative schemes of the
same class have a common feature including a same term in the error equations, resorting on the conjecture of Kung and Traub.
Based on the error equations, we derive a constantly weighting algorithm obtained from the combination of two iterative schemes,
which converges faster than the departed ones.)en, a new family of fourth-order optimal iterative schemes is developed by using
a new weight function technique, which needs three evaluations of functions and whose convergence order is proved to
be p � 23− 1 � 4.

1. Introduction

)e most basic problem in engineering and scientific
applications is to find the root of a given nonlinear
equation

f(x) � 0, (1)

where f ∈ C(I,R) and I ⊂ R is an interval we are interested
in, and we suppose that r ∈ I is a simple solution with f(r) �

0 and f′(r)≠ 0.
)e famous Newton method (NM) for iteratively solving

equation (1) is given by

xn+1 � xn −
f xn( 􏼁

f′ xn( 􏼁
, n � 0, 1, . . . , (2)

which is quadratically convergent. Due to its simplicity and
rapid convergence, the Newton method is still the first
choice to solve equation (1).

An extension of the NM to a third-order iterative scheme
was made by Halley [1]:

xn+1 � xn −
2f xn( 􏼁f′ xn( 􏼁

2f′ xn( 􏼁
2

− f xn( 􏼁f″ xn( 􏼁
. (3)

For the engineering design of the vibrating modes of an
elastic system, sometimes we may need to know the ei-
genvalues of a large-size square matrix, which results in a
highly nonlinear and high-order polynomial equation. More
often, the function f(x) is itself obtained from other
nonlinear ordinary differential equations or partial differ-
ential equations. In this situation, it is hard to calculate
f″(x) when we apply the Halley method to solve the
nonlinear problem.

Kung and Traub conjectured that a multipoint iteration
without memory based on m evaluations of functions has an
optimal convergence order p � 2m− 1. It means that the
upper bound of the efficiency index (E.I.)� p(1/m) is
2(1− 1/m) < 2. For m � 2, the NM is one of the second-order
optimal iterative schemes; however, with m � 3, the Halley
method is not the optimal one whose E.I.�1.44225 is low.

)e pioneering work of Newton has inspired a lot of studies
to solve nonlinear equations, whereby different fourth-order
iterative methods were developed for more quickly and stably
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solving nonlinear equations [2–9]. Many methods to construct
the two-step fourth-order optimal schemes were based on the
operations of [f(xn), f′(xn), f(yn)] where yn is obtained
from the first Newton step [2, 4–8, 10–14]. Recently, Chicharro
et al. [9] proposed a new technique to construct the optimal
fourth-order iterative schemes based on the weight function
technique.

2. Preliminaries

Before deriving the main results in the next section, we begin
with some standard terminologies.

Definition 1. Let the iterative sequence xn􏼈 􏼉 generated from
an iterative scheme converge to a simple root r. If there exists
a positive integer p and a real number C such that

lim
n⟶∞

xn+1 − r

xn − r( 􏼁
p � C, (4)

then p is the order of convergence and C is the asymptotic
error constant.

Let en � xn − r be the error in the nth iterate. )en, the
relation

en+1 � Ce
p
n + O e

p+1
n􏼐 􏼑, (5)

is called the error equation of an iterative scheme. For ex-
ample, for the Newton method, the error equation reads as

en+1 � c2e
2
n + O e

3
n􏼐 􏼑, (6)

where

cn ≔
f

(n)
(r)

n!f′(r)
, n � 2, . . . . (7)

Definition 2 (see [10]). An iterative scheme is said to have
the optimal order p, if p � 2m− 1 where m is the number of
evaluations of functions (including derivatives).

Definition 3. )e efficiency index (E.I.) of an iterative
scheme is defined by E.I.� p(1/m).

Definition 4. )e conjecture of Kung and Traub asserted
that a multipoint iteration without memory based on m

evaluations of functions has an optimal order p � 2m− 1 of
convergence [11]. It indicates that the upper bound of the
efficiency index is 2(1− 1/m) < 2.

Definition 5. )e iterative schemes are of the same class, if
they are of the same order p and have the same m evalu-
ations of the same functions.

3. Main Results

We begin with the error equation of the NM:

en+1 � c2e
2
n − A3e

3
n − A4e

4
n + · · · , (8)

where

A3 � 2c
2
2 − 2c3, (9)

A4 � 7c2c3 − 4c
3
2 − 3c4. (10)

Refer the papers, for instance, [6, 12, 13].
)roughout of the paper, we fix the following notation:

yn � xn −
f xn( 􏼁

f′ xn( 􏼁
, (11)

which is the first step of many two-step iterative schemes.
We summarize some fourth-order optimal iterative

schemes which were modified from the NM by Chun
[14]:

xn+1 � xn −
f xn( 􏼁

f′ xn( 􏼁
−

f xn( 􏼁

f xn( 􏼁 − f yn( 􏼁
􏼠 􏼡

2
f yn( 􏼁

f′ xn( 􏼁
,

en+1 � 2c
3
2 − c2c3􏼐 􏼑e

4
n + · · · ,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(12)

xn+1 � xn −
f xn( 􏼁

f′ xn( 􏼁
−

f
2

xn( 􏼁

f
2

xn( 􏼁 − 2f xn( 􏼁f yn( 􏼁 + 2f
2

yn( 􏼁

f yn( 􏼁

f′ xn( 􏼁
,

en+1 � 3c
3
2 − c2c3􏼐 􏼑e

4
n + · · · ,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(13)

by Chun [4]:

xn+1 � xn −
f xn( 􏼁

f′ xn( 􏼁
− 1 + 2

f yn( 􏼁

f xn( 􏼁
+

f
2

yn( 􏼁

f
2

xn( 􏼁
􏼠 􏼡

f yn( 􏼁

f′ xn( 􏼁
,

en+1 � 4c
3
2 − c2c3􏼐 􏼑e

4
n + · · · ,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(14)

xn+1 � xn −
f xn( 􏼁

f′ xn( 􏼁
− 1 + 2

f yn( 􏼁

f xn( 􏼁
􏼠 􏼡

f yn( 􏼁

f′ xn( 􏼁
,

en+1 � 5c
3
2 − c2c3􏼐 􏼑e

4
n + · · · ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(15)

by King [5]:

xn+1 � xn −
f xn( 􏼁

f′ xn( 􏼁
−

f xn( 􏼁 + cf yn( 􏼁

f xn( 􏼁 +(c − 2)f yn( 􏼁

f yn( 􏼁

f′ xn( 􏼁
,

en+1 � (1 + 2c)c
3
2 − c2c3􏽨 􏽩e

4
n + · · · ,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(16)
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where c ∈ R, by Chun and Ham [2]:

xn+1 � xn −
f xn( 􏼁

f′ xn( 􏼁
−
4f

2
xn( 􏼁 + 6f xn( 􏼁f yn( 􏼁 + 3f

2
yn( 􏼁

4f
2

xn( 􏼁 − 2f xn( 􏼁f yn( 􏼁 − f
2

yn( 􏼁

f yn( 􏼁

f′ xn( 􏼁
,

en+1 � 3c
3
2 − c2c3􏼐 􏼑e

4
n + · · · ,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(17)

by Kuo et al. [8]:

xn+1 � xn −
f
2

xn( 􏼁 + f
2

yn( 􏼁

f′ xn( 􏼁 f xn( 􏼁 − f yn( 􏼁􏼂 􏼃
,

en+1 � 3c
3
2 − c2c3􏼐 􏼑e

4
n + · · · ,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(18)

by Ostrowski [15]:

xn+1 � xn −
f xn( 􏼁 f xn( 􏼁 − f yn( 􏼁􏼂 􏼃

f′ xn( 􏼁 f xn( 􏼁 − 2f yn( 􏼁􏼂 􏼃
,

en+1 � c
3
2 − c2c3􏼐 􏼑e

4
n + · · · ,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(19)

by Maheshwari et al. [16]:

xn+1 � xn −
f xn( 􏼁

f′ xn( 􏼁

f
2

yn( 􏼁

f
2

xn( 􏼁
+

f xn( 􏼁

f xn( 􏼁 − f yn( 􏼁
􏼢 􏼣,

en+1 � 4c
3
2 − c2c3􏼐 􏼑e

4
n + · · · ,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(20)

and by Ghanbari [12]:

xn+1 � xn −
f xn( 􏼁

f′ xn( 􏼁
−

f xn( 􏼁 + 2f yn( 􏼁

f xn( 􏼁 + f yn( 􏼁
􏼠 􏼡

2
f yn( 􏼁

f′ xn( 􏼁
,

en+1 � 6c
3
2 − c2c3􏼐 􏼑e

4
n + · · · ,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(21)

xn+1 � xn −
f xn( 􏼁

f′ xn( 􏼁
−

f xn( 􏼁 + f yn( 􏼁

f xn( 􏼁 − f yn( 􏼁

f yn( 􏼁

f′ xn( 􏼁
,

en+1 � 3c
3
2 − c2c3􏼐 􏼑e

4
n + · · · .

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(22)

It is interesting that the iterative schemes (12)-(22) are of
the same class because they have same convergence order
p � 4 and operated with the same evaluations on
[f(xn), f′(xn), f(yn)]. )e efficiency index (E.I.) of the
above eleven iterative schemes is the same

�
43

√
� 1.5874, and

they are of the optimal fourth-order iterative schemes with
three evaluations of [f(xn), f′(xn), f(yn)] in the sense of
Kung and Traub, such that p � 2m− 1 � 4. )ey belong to the
same class with the error equations having a common type:

en+1 � aic
3
2 − c2c3􏼐 􏼑e

4
n + O e

5
n􏼐 􏼑, (23)

where ai are different constants for different optimal fourth-
order iterative schemes, which may be zero. Can we raise the
order to five by a suitable combination of these iterative
schemes? Later, we will reply to this problem.

Theorem 1. If the conjecture of Kung and Traub is true, then
the two-step optimal fourth-order iterative scheme

yn � xn −
f xn( 􏼁

f′ xn( 􏼁
,

xn+1 � xn − H f xn( 􏼁, f′ xn( 􏼁, f yn( 􏼁􏼂 􏼃,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(24)

which is based on the evaluations of [f(xn), f′(xn), f(yn)],
must have the following form of error equation:

en+1 � a0c
3
2 − c2c3􏼐 􏼑e

4
n + O e

5
n􏼐 􏼑, (25)

where a0 is some constant, which may be zero.

Proof. Suppose that equation (25) is not true, such that we
have

en+1 � a0c
3
2 − b0c2c3􏼐 􏼑 e

4
n + O e

5
n􏼐 􏼑, (26)

where b0 ≠ 1.
)e weighting factors w1, w2, and w3 are subjected to

w1 + w2 + w3 � 1. (27)

)en, we consider the weighting average of the error
equations in equation (23) with i � 1, 2 and equation (26) to
be zero in e4n:

w1 a1c
3
2 − c2c3􏼐 􏼑 + w2 a2c

3
2 − c2c3􏼐 􏼑 + w3 a0c

3
2 − b0c2c3􏼐 􏼑 � 0,

(28)

which leads to

a1w1 + a2w2 + a0w3 � 0,

w1 + w2 + b0w3 � 0.
(29)

)e determinant of the coefficient matrix of the linear
equations (27) and (29) is (b0 − 1)(a2 − a1)≠ 0 because
b0 ≠ 1 and a1 ≠ a2. From equations (27) and (29), we have the
unique solution of (w1, w2, w3). )us, we can derive a new
iterative scheme by a weighting combination of three op-
timal fourth-order iterative schemes with the solved factors
(w1, w2, w3) whose convergence order is raised to five. )is
contradicts the conjecture of Kung and Traub, who asserted
that the optimal order for the iterative scheme with m � 3 is
2m− 1 � 4 for a multipoint iteration without memory based
on m evaluations of functions.

Obviously,)eorem 1 demonstrates that we cannot raise
the convergence order to five by a weighting combination of
any three optimal fourth-order convergence iterative
schemes. □
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Theorem 2. 5e following two-step iterative scheme:

xn+1 � xn −
f xn( 􏼁

f′ xn( 􏼁
− H ηn( 􏼁

f yn( 􏼁

f′ xn( 􏼁
, (30)

for solving f(x) � 0 has fourth-order convergence, where yn

is computed by equation (11), and H is a weight function in
terms of

ηn ≔
f yn( 􏼁

f xn( 􏼁
, (31)

with

H(0) � 1,

H′(0) � 2.
(32)

5e corresponding error equation is

en+1 � 5 −
H″(0)

2
􏼠 􏼡c

3
2 − c2c3􏼢 􏼣e

4
n + O e

5
n􏼐 􏼑. (33)

Proof. For the proof of the convergence, we let r be a simple
solution of f(x) � 0, i.e., f(r) � 0 and f′(r)≠ 0. We
suppose that xn is sufficiently close to the exact solution r,
such that

en � xn − r (34)

is a small quantity, and it follows that

en+1 � en + xn+1 − xn. (35)

By using the Taylor series, we have

f xn( 􏼁 � f′(r) en + c2e
2
n + c3e

3
n + c4e

4
n + · · ·􏽨 􏽩, (36)

f′ xn( 􏼁 � f′(r) 1 + 2c2en + 3c3e
2
n + 4c4e

3
n + · · ·􏽨 􏽩. (37)

It immediately leads to

f xn( 􏼁

f′ xn( 􏼁
�

en + c2e
2
n + c3e

3
n + c4e

4
n + · · ·

1 + 2c2en + 3c3e
2
n + 4c4e

3
n + · · · + · · ·

� en − c2e
2
n + A3e

3
n + A4e

4
n + · · · . (38)

From equations (11) and (38), we have

yn � r + c2e
2
n − A3e

3
n − A4e

4
n + · · · , (39)

f yn( 􏼁 � f′(r) c2e
2
n − A3e

3
n − A4 − c

3
2􏼐 􏼑e

4
n + · · ·􏽨 􏽩. (40)

From equations (40), (37), and (36), it follows that

f yn( 􏼁

f′ xn( 􏼁
�

c2e
2
n − A3e

3
n − A4 − c

3
2􏼐 􏼑e

4
n + · · ·

1 + 2c2en + 3c3e
2
n + 4c4e

3
n + · · ·

� c2e
2
n + 2c3 − 4c

2
2􏼐 􏼑e

3
n + 13c

3
2 − 14c2c3 + 3c4􏼐 􏼑e

4
n + · · · , (41)

f yn( 􏼁

f xn( 􏼁
�

c2e
2
n − A3e

3
n − A4 − c

3
2􏼐 􏼑e

4
n + · · ·

en + c2e
2
n + c3e

3
n + c4e

4
n + · · ·

� c2en + 2c3 − 3c
2
2􏼐 􏼑e

2
n + 3c4 − 10c2c3 + 8c

3
2􏼐 􏼑e

3
n + · · · . (42)

From equations (31) and (42), we have

ηn � c2en + 2c3 − 3c
2
2􏼐 􏼑e

2
n + 3c4 − 10c2c3 + 8c

3
2􏼐 􏼑e

3
n + · · · .

(43)

Because the least order of the term (f(yn)/f′(xn)) as
shown in equation (41) is two, we only need to expand
H(ηn) around zero to the second-order by using equation
(43) and

H ηn( 􏼁 � H(0) + H′(0)ηn +
H″(0)

2
η2n + · · · � H(0) + c2H′(0)en +

c
2
2
2

H″(0) − 6H′(0)􏼂 􏼃 + 2c3H′(0)􏼢 􏼣e
2
n + · · · . (44)
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Inserting equations (11), (39), (44), and (41) into
equation (30), we have

en+1 � c2e
2
n − A3e

3
n − A4e

4
n − H(0) + c2H′(0)en +

c
2
2
2

H″(0) − 6H′(0)􏼂 􏼃 + 2c3H′(0)􏼢 􏼣e
2
n􏼠 􏼡,

× c2e
2
n + 2c3 − 4c

2
2􏽨 􏽩e

3
n + 13c

3
2 − 14c2c3 + 3c4􏽨 􏽩e

4
n􏼐 􏼑 + · · · .

(45)

)rough some manipulations, we can derive

en+1 � c2 − c2H(0)􏼂 􏼃e
2
n − 2c

2
2 − 4c

2
2H(0) + H′(0)c

2
2 + 2H(0)c3 − 2c3􏽨 􏽩e

3
n,

− 7c2c3 − 4c
3
2 − 3c4 + H(0) 13c

3
2 − 14c2c3 + 3c4􏼐 􏼑 + c2H′(0) 2c3 − 4c

2
2􏼐 􏼑􏽨 􏽩e

4
n,

− c2
c
2
2
2

H″(0) − 6H′(0)􏼂 􏼃 + 2c3H′(0)􏼢 􏼣e
4
n + · · · ,

(46)

which, due to equation (32), can be arranged to that in
equation (33). □

Theorem 3 (see [12]). İe following two-step iterative scheme:

xn+1 � xn −
f xn( 􏼁

f′ xn( 􏼁
−

f
2

xn( 􏼁 +(2 + α)f xn( 􏼁f xn( 􏼁 + θf
2

xn( 􏼁

f
2

xn( 􏼁 + αf xn( 􏼁f xn( 􏼁 + βf
2

xn( 􏼁

f yn( 􏼁

f′ xn( 􏼁
, (47)

for solving f(x) � 0 has fourth-order convergence, where yn

is computed by equation (11). 5e error equation reads as

en+1 � (5 + 2α − θ + β)c
3
2 − c2c3􏽨 􏽩e

4
n + O e

5
n􏼐 􏼑, (48)

which is not supplied in [12].

Proof. It is easy to check that the weight function in iterative
scheme (47):

H(η) �
1 +(2 + α)η + θη2

1 + αη + βη2
, (49)

satisfies equation (32); hence, iterative scheme (47) is a
special case of iterative scheme (30).

We can derive

H″(η) �
1

A
4
(η)

A
2
(η)[A(η)B′′(η) − B(η)A′(η)] − 2 A(η)B′(η) − B(η)A′(η)􏼂 􏼃A(η)A′(η)􏼚 􏼛, (50)

where

A ≔ 1 + αη + βη2,

B ≔ 1 +(2 + α)η + θη2.
(51)

Inserting A(0) � 1, A′(0) � α, A″(0) � 2β, B(0) � 1,

B′(0) � 2 + α, B″(0) � 2θ into equation (50) by taking
η � 0, we have

H″(0) � − 2(2α − θ + β). (52)

Inserting equation (52) into equation (33), we can derive

en+1 � (5 + 2α − θ + β)c
3
2 − c2c3􏽨 􏽩e

4
n + O e

5
n􏼐 􏼑. (53)

)is ends the proof of this theorem.
)eorem 2 includes those in [9, 17] as special cases. )e

family developed by Chicharro et al. [9]:

xn+1 � xn − G ηn( 􏼁
f xn( 􏼁

f′ xn( 􏼁
, (54)
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with G(0) � G′(0) � 1 and G″(0) � 4 is a special case be-
cause we can derive

H ηn( 􏼁ηn � G ηn( 􏼁 − 1. (55)

Accordingly,

H ηn( 􏼁 + ηnH′ ηn( 􏼁 � G′ ηn( 􏼁,

2H′ ηn( 􏼁 + ηnH″ ηn( 􏼁 � G″ ηn( 􏼁,
(56)

and H(0) � 1 and H′(0) � 2 imply G(0) � G′(0) � 1 and
G″(0) � 4. For H, we have only two constraints, but for G,
there are three constraints. Hence, iterative scheme (30) is
more general than the iterative scheme (54). Moreover, a
further differential of the last term in equation (56),

3H″ ηn( 􏼁 + ηnH″′ ηn( 􏼁 � G″′ ηn( 􏼁, (57)

leads to

3H″(0) � G″′(0), (58)

and hence the error equation of iterative scheme (54) is

en+1 � 5 −
G″′(0)

6
􏼠 􏼡c

3
2 − c2c3􏼢 􏼣e

4
n + O e

5
n􏼐 􏼑. (59)

In [9], Chicharro et al. derived the error equation as
en+1 � (5c32 − c2c3)e

4
n + O(e5n) (equation (2) in [9]), which is

incorrect to miss the term − (G″′(0)c32e
4
n/6) in the error

equation.

)e general function of H(η) is given by

H(η) � 1 + 2η + 􏽚
η

0
􏽚
ξ

0
F(z)dzdξ, (60)

where F(z) is any integrable function. )ere are two in-
teresting iterative schemes generated from F(z) � cos z

(COSM) and F(z) � sin z (SINM):

xn+1 � xn −
f xn( 􏼁

f′ xn( 􏼁
− 2 + 2

f yn( 􏼁

f xn( 􏼁
− cos

f yn( 􏼁

f xn( 􏼁
􏼠 􏼡

f yn( 􏼁

f′ xn( 􏼁
,

xn+1 � xn −
f xn( 􏼁

f′ xn( 􏼁
− 1 + 3

f yn( 􏼁

f xn( 􏼁
− sin

f yn( 􏼁

f xn( 􏼁
􏼠 􏼡

f yn( 􏼁

f′ xn( 􏼁
.

(61)□

4. Combinations of Iterative Schemes

In this section, we give some methods to combine the it-
erative schemes as listed in Table 1, which are special cases of
the iterative schemes (47) and (30).

From Table 1, we can observe that there exists a cubic
term c32 in the error equation for most iterative schemes.
Indeed, this term is a dominant factor to enlarge the error,
and thus we can combine two iterative schemes by elimi-
nating this term.

Theorem 4. For the following two-step iterative scheme:

xn+1 � xn −
f xn( 􏼁

f′ xn( 􏼁
− w1

f
2

xn( 􏼁 + 2 + α1( 􏼁f xn( 􏼁f yn( 􏼁 + θ1f
2

yn( 􏼁

f
2

xn( 􏼁 + α1f xn( 􏼁f yn( 􏼁 + β1f
2

yn( 􏼁

f yn( 􏼁

f′ xn( 􏼁

− w2
f
2

xn( 􏼁 + 2 + α2( 􏼁f xn( 􏼁f yn( 􏼁 + θ2f
2

yn( 􏼁

f
2

xn( 􏼁 + α2f xn( 􏼁f yn( 􏼁 + β2f
2

yn( 􏼁

f yn( 􏼁

f′ xn( 􏼁
,

(62)

if

a1 ≔ 5 + 2α1 − θ1 + β1 ≠ a2 ≔ 5 + 2α2 − θ2 + β2, (63)

w1 � −
a2

a1 − a2
,

w2 �
a1

a1 − a2
,

(64)

then the error equation reads as

en+1 � − c2c3e
4
n + O e

5
n􏼐 􏼑. (65)

Proof. )e weighting factors are subjected to

w1 + w2 � 1. (66)

We seek the combination of iterative scheme (47) with
two sets of the parameters (α1, β1, θ1) and (α2, β2, θ2) and
demand the coefficient preceding c32e

4
n being zero,

w1a1 + w2a2 � w1 5 + 2α1 − θ1 + β1( 􏼁 + w2 5 + 2α2 − θ2 + β2( 􏼁 � 0.

(67)

Solving equations (66) and (67), we can derive equation
(64), and the error equation (48) reduces to that in equation
(65).

We cannot exhaust all the combinations of the iterative
schemes; however, we list the following two: one is the
combination of equations (16) and (19), namely, the KOM:

xn+1 � xn +
f xn( 􏼁

2cf′ xn( 􏼁
+

1
2c

f xn( 􏼁 + cf yn( 􏼁

f xn( 􏼁 +(c − 2)f yn( 􏼁

f yn( 􏼁

f′ xn( 􏼁
−

(1 + 2c) f xn( 􏼁f xn( 􏼁 − f yn( 􏼁􏼂 􏼃

2cf′ xn( 􏼁 f xn( 􏼁 − 2f yn( 􏼁􏼂 􏼃
. (68)
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)e other one is the combination of equations (12) and
(19), namely, the COM:

xn+1 � xn +
f xn( 􏼁

f′ xn( 􏼁
+

f xn( 􏼁

f xn( 􏼁 − f yn( 􏼁
􏼠 􏼡

2
f yn( 􏼁

f′ xn( 􏼁
−
2f xn( 􏼁 f xn( 􏼁 − f yn( 􏼁􏼂 􏼃

f′ xn( 􏼁 f xn( 􏼁 − 2f yn( 􏼁􏼂 􏼃
. (69)

□
5. Second Family of Optimal Fourth-Order
Iterative Schemes

In )eorem 2, we have derived a new family of optimal
fourth-order iterative schemes with the assumption that the
H-function satisfies H(0) � 1 and H′(0) � 2. We can relax
the conditions to H(0) � 1 and derive the following result.

Theorem 5. Suppose that there are two different functions
H1(η) and H2(η) satisfying

H1(0) � 1,

H2(0) � 1,
(70)

H1′(0)≠H2′(0). (71)

5e following two-step iterative scheme:

xn+1 � xn −
f xn( 􏼁

f′ xn( 􏼁
− w1H1 ηn( 􏼁 + w2H2 ηn( 􏼁􏼂 􏼃

f yn( 􏼁

f′ xn( 􏼁
,

(72)

for solving f(x) � 0 has fourth-order convergence, where yn

is computed by equation (11), and η is defined by equation
(31). 5e corresponding error equation is

en+1 � 5 −
w1H1″(0) + w2H2″(0)

2
􏼠 􏼡c

3
2 − c2c3􏼢 􏼣e

4
n + O e

5
n􏼐 􏼑,

(73)

where

w1 �
H2′(0) − 2

H2′(0) − H1′(0)
,

w2 �
2 − H1′(0)

H2′(0) − H1′(0)
.

(74)

Proof. From equations (46) and (70), it follows that the error
equations corresponding to H1 and H2 are, respectively,

en+1 � 2 − H1′(0)􏼂 􏼃c
2
2e

3
n − A1e

4
n + · · · ,

en+1 � 2 − H2′(0)􏼂 􏼃c
2
2e

3
n − A2e

4
n + · · · ,

(75)

where

A1 ≔ 9c
3
2 − 7c2c3 + c2H1′(0) 2c3 − 4c

2
2􏼐 􏼑 + c2

c
2
2
2

H1″(0) − 6H1′(0)􏼂 􏼃 + 2c3H1′(0)􏼢 􏼣,

A2 ≔ 9c
3
2 − 7c2c3 + c2H2′(0) 2c3 − 4c

2
2􏼐 􏼑 + c2

c
2
2
2

H2″(0) − 6H2′(0)􏼂 􏼃 + 2c3H2′(0)􏼢 􏼣.

(76)

Table 1: )e comparison of different iterative schemes on the error equations.

Algorithm α β θ Error equation (en+1)

(12) –2 1 0 (2c32 − c2c3) e4n + O(e5n)

(13) –2 2 0 (3c32 − c2c3) e4n + O(e5n)

(14) 0 0 1 (4c32 − c2c3) e4n + O(e5n)

(15) 0 0 0 (5c32 − c2c3) e4n + O(e5n)

(16) c − 2 0 0 ((1 + 2c)c32 − c2c3) e4n + O(e5n)

(17) –1/2 –1/4 3/4 (3c32 − c2c3) e4n + O(e5n)

(18) –1 0 0 (3c32 − c2c3) e4n + O(e5n)

(19) –2 0 0 (c32 − c2c3) e4n + O(e5n)

(20) –1 0 –1 (4c32 − c2c3) e4n + O(e5n)

(21) 2 1 4 (6c32 − c2c3) e4n + O(e5n)

(22) –2 1 –1 (3c32 − c2c3) e4n + O(e5n)
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We seek a combination of the two iterative schemes
corresponding toH1 andH2 and ask the coefficient preceding
e3n to be zero, such that we have to solve w1 and w2 from

w1 + w2 � 1,

w1 2 − H1′(0)􏼂 􏼃 + w2 2 − H2′(0)􏼂 􏼃 � 0,
(77)

whose solutions are given by equation (74). At the same
time, the combined error equation is given by

en+1 � − w1A1e
4
n − w2A2e

4
n + · · · ,

� − 9c
3
2 − 7c2c3 + 2c2 2c3 − 4c

2
2􏼐 􏼑 +

c
3
2
2

w1H1″(0) + w2H2″(0)􏼂 􏼃 + 4c2c3 − 6c
3
2􏼢 􏼣e

4
n + · · · ,

(78)

which can be arranged to that in equation (73).
)e family in equation (72) includes some optimal

fourth-order iterative schemes with two parameters w1 and
w2, whose error equation again belongs to the type in
equation (23). It can be seen that the functions with H(0) �

1 are very general, and for this class of iterative schemes, the
conjecture of Kung and Traub is also true. □

6. Numerical Experiments

In this section, we give numerical tests of the proposed
combined iterative schemes. )e test examples are given by

f1(x) � x
3

+ 4x
2

− 10,

f2(x) � x
2

− e
x

− 3x + 2,

f3(x) � (x − 1)
3

− 2,

f4(x) � (x + 2)e
x

− 1,

f5(x) � sin2 x − x
2

+ 1.

(79)

)e corresponding solutions are, respectively,
r1 � 1.3652300134, r2 � 0.2575302854, r3 � 2.2599210499,
r4 � − 0.442854401002, and r5 � 1.4044916482.

In Table 2, for different functions, we list the number of
iterations (NI) obtained by the presently developed algo-
rithms, which are compared to the NM, the CM1 in equation
(12), the CM2 in equation (15), the KM in equation (16) with
c � 3, the OM in equation (19), the AM in equation (20), the

GM in equation (21), the KOM in equation (68) with c � 3,
and the COM in equation (69).

7. Conclusions

Employing a new weight function, the nonlinear equations
were solved by using a new family of the fourth-order it-
erative scheme, which is optimal according to the conjecture
of Kung and Traub, and it was proven to be of fourth-order
convergence with E.I.�1.5874. )eorem 1 indicated that if
one can develop a fourth-order iterative scheme based on the
evaluations of [f(xn), f′(xn), f(yn)] whose coefficient
preceding c2c3e

4
n is not − 1, then the Kung–Traub conjecture

would be disproved. We also proposed a combination of two
fourth-order iterative schemes of which the dominant term
c32e

4
n in the error equation is eliminated. Upon comparing

some examples to other methods, we found that the com-
bined iterative scheme converges faster.)e present iterative
scheme was competitive to other optimal fourth-order it-
erative schemes.
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Table 2: )e comparison of different methods for the number of iterations.

Functions f1, x0 � − 0.3 f2, x0 � 0 f3, x0 � 3 f4, x0 � 3.5 f5, x0 � 1

NM 55 5 7 11 7
KM 49 3 4 7 8
GM 38 3 6 7 11
CM1 12 3 4 5 4
CM2 24 3 4 6 5
OM 56 3 4 5 4
AM 24 3 4 7 5
COSM 45 2 3 6 5
SINM 45 2 3 6 5
KOM 5 3 4 5 6
COM 5 3 4 4 4
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+e preconditioned generalized shift-splitting (PGSS) iteration method is unconditionally convergent for solving saddle point
problems with nonsymmetric coefficient matrices. By making use of the PGSS iteration as the inner solver for the Newtonmethod,
we establish a class of Newton-PGSS method for solving large sparse nonlinear system with nonsymmetric Jacobian matrices
about saddle point problems. For the new presented method, we give the local convergence analysis and semilocal convergence
analysis under Hölder condition, which is weaker than Lipschitz condition. In order to further raise the efficiency of the algorithm,
we improve the method to obtain the modified Newton-PGSS and prove its local convergence. Furthermore, we compare our new
methods with the Newton-RHSS method, which is a considerable method for solving large sparse nonlinear system with saddle
point nonsymmetric Jacobian matrix, and the numerical results show the efficiency of our new method.

1. Introduction

In this paper, we will explore effective and convenient
methods for solving nonlinear nonsymmetric saddle-point
problem:

F(x) � 0, (1)

where F: D ⊂ Rn⟶ Rn is a continuous differentiable
nonlinear function and the function F � (F1, . . . , Fn+m)T

with Fi � Fi(x), i � 1, 2, . . . , and x � (x1, . . . , xn+m)T is
defined on an open convex subset of (n+m)-dimensional
real linear space Rn+m. Moreover, the Jacobian matrix F′(x)

is large, sparse, and nonsymmetric saddle point with the
form

F′(x) �
A(x) B(x)

− B
T
(x) 0

􏼠 􏼡, (2)

where A(x) ∈ Rn×n is a real positive definite matrix and
B(x) ∈ Rn×m is a full-column rank matrix (m< n). +is kind
of large sparse nonsymmetric saddle-point nonlinear sys-
tems (1) always arises in many scientific and engineering
computing areas, such as elastomechanics equations and

Stokes equation. Some of them have not been solved ana-
lytically, so we can only explore the method to obtain the
numerical simulation at our utmost.

In the past, researchers have developed some methods to
solve nonlinear function [1–10]. In these methods, the most
typical and popular method for solving the nonlinear system
(1) is the Newton method.+e principle of solving nonlinear
equations by the Newtonmethod is very simple. In each step,
we expand the nonlinear equation at xk by Taylor expansion
and take its linear part to construct the approximate
equation of the nonlinear equation. +en, we calculate the
zero point of the approximate equation as the next iteration
point, and it is represented as follows:

xk+1 � xk − F′ xk( 􏼁
− 1

F xk( 􏼁, k � 0, 1, . . . . (3)

+e sequence xk calculated by this iteration will converge
to the numerical solution eventually as k⟶ +∞ under
certain conditions. We know that an excellent algorithm is
not only accurate but also efficient. When the dimension n is
large, the cost of each step of the traditional Newton al-
gorithm is very expensive. +e reason for this phenomenon
is that, at each iterative step, a linear system
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F′ xk( 􏼁sk � − F xk( 􏼁, k≥ 0, sk � xk+1 − xk, (4)

must be exactly and accurately solved. We hope to give up a
little bit of “precision” in exchange for greater “efficiency.”
+is idea led to the development of inexact Newton methods
which were first proposed by Dembo et al. [11]. In recent
decades, the inexact Newton method has been extensively
studied and applied in some fields. +e linear equation (4)
can be solved efficiently by some methods which will discard
some precision, but the calculation amount and time will be
greatly reduced. In addition, we know that the traditional
Newton method is second-order convergence, and in-
creasing the order of convergence can make the algorithm
converge to the exact solution faster. +erefore, we consider
improving the Newton method to improve the order of
convergence. Next, we introduce the traditional Newton
method and the improved Newton method. In the inexact
Newton methods, the termination condition of the Newton
equation (4) is

F′ xk( 􏼁sk + F xk( 􏼁
����

����≤ ηk F xk( 􏼁
����

����, k≥ 0, (5)

where sk � xk+1 − xk is obtained by applying some linear
iterative methods.+e inexact Newtonmethods usually have
the unified form as shown in Algorithm 1 .

Here, F′(xk) is the Jacobian matrix and ηk ∈ [0, 1) is
commonly called forcing term which is used to control the
level of accuracy. +e algorithm mentioned above has
R-order of convergence two at least. +e researchers present
the modified Newton iteration to improve convergence
order as shown in Algorithm 2.

Fromwhat is mentioned above, inexact-modified Newton
methods only need to calculate F′(xk)− 1 once perm step and
have less computation compared with inexact-modified
Newton methods. +is kind of method has R-order of
convergence m+1 at least as the outer iteration and the PGSS
iteration method as the inner iteration. In this paper, we can
establish the modified Newton-PGSS as m� 2.

+e inexact Newton methods consist of two parts: inner
iteration and outer iteration. +e outer iteration is the
Newton method, which is used to solve nonlinear problems,
and each iteration has to solve a linear equation in order to
generate the sequence xk􏼈 􏼉. Linear iterative methods, such as
the classical splitting methods or the modern Krylov sub-
space methods [12, 13], are applied inside the Newton
methods to solve the Newton equations approximately. A
significant advantage of such inner-outer iterations is that
one can reduce the inverse of the Jacobian matrix storage
and calculation of each step, so as to improve the operation
efficiency. +erefore, this kind of inner-outer iterative
methods has been widely studied. Newton–Krylov subspace
[3] methods which utilize the Krylov subspace iteration
methods as the inner iterations have been effectively and
successfully used in many fields, see [14–16].

By introducing the inexact Newton method [1–4, 7, 8],
we know that the efficiency of the inner iteration will affect
the efficiency of the whole algorithm. +us, we want to
explore the excellent inner iteration to obtain efficient inner-
outer iterative methods. In other words, efficient linear

iteration should be employed to solve the Newton equation
(4) with real nonsymmetric saddle-point Jacobian matrix.
+ere are many ways to solve the saddle point linear
problem [3, 17–25]. Recently, Cao et al. [26–29] proposed a
method which is based on the shift-splitting iteration
method presented by Bai et al. [30] to solve the saddle-point
problem. +is method is more efficient than other algo-
rithms such as the Uzawa-type iteration methods, the
successive over-relaxation (SOR-like) iteration methods
[31, 32], and the Hermitian and skew-Hermitian splitting
(HSS) iteration methods [33–35]. In addition, the PGSS
iteration method is convergent unconditionally and the
preconditioner generated by it is also very excellent [26].
When applying the PGSS method for solving complex
linear system, at each iterative step, it needs to solve single
linear subsystem with their coefficient matrices being the
MPGSS one (1/2)(Ω + A). Furthermore, in order to in-
crease the efficiency of algorithm, we optimized the outer
iteration and then we propose modified Newton-PGSS
method to solve the saddle problems. Because there was no
Newton method to solve the saddle point system problem,
we compare the Newton-PGSS method with the traditional
methods, for example, the Newton-RHSS method
[31, 36, 37].

+e organization of the paper is as follows. In Section 3,
we introduce the Newton-PGSS method. In Sections 4 and 5,
we offer the convergence properties of this method. We
establish local convergence theorem and semilocal con-
vergence properties under some proper hypothesis for the
Newton-PGSS method, respectively. We show the modified
Newton-PGSS method in Section 6. Numerical examples are
presented to confirm the efficiency of our new method in
Section 7. Finally, in Section 8, some brief conclusions are
given.

2. Preliminaries

First of all, we review the PGSS method [26] for solving large
sparse nonsymmetric saddle-point linear system:

Ax � b, A ∈ R(n+m)×(n+m)
, x, b ∈ Rn

, (6)

whereA ∈ R(n+m)×(n+m) is a real nonsymmetric saddle-point
matrix.

$e PGSS Iteration Method [27]. Given an initial guess
x0 ∈ Rn+m, compute xk+1 for k � 0, 1, 2, . . . , using the fol-
lowing iteration scheme until xk􏼈 􏼉 satisfies the stopping
criterion:

(1) Let the initial guess x0 be given.
(2) For k � 0 until “convergence” do:

xk+1 � xk − F′(xk)− 1F(xk), k � 0, 1, . . . ,

Find some ηk ∈ [0, 1) and sk that satisfy
‖F(xk) + F′(xk)sk‖≤ ηk‖F(xk)‖.

(3) Set xk+1 � xk + sk.

ALGORITHM 1: Inexact Newton methods.
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1
2

(Ω + A)xk+1 �
1
2

(Ω − A)xk + b, (7)

whereΩ is a matrix with the form αI1 0
0 βI2

􏼠 􏼡, where I1 is a

n × n identity matrix and I2 is a m×m identity matrix and α
and β are real numbers greater than 0. We can get xk+1 from
(7) leading to the PGSS iterative scheme:

xk+1 � Mα,βxk + Gα,βb, (8)

where

Mα,β � (Ω + A)
− 1

(Ω − A),

Gα,β � (Ω + A)
− 1

.
(9)

Here, Mα,β is the iteration matrix of the PGSS iteration
method.

Theorem 1 (see [27]). A� b ∈∈R(n+m)×(n+m) is a nonsym-
metric saddle-point matrix, α is a nonnegative constant, and
β is a positive constant. +en, the iteration matrix Mα,β of
PGSS is

Mα,β � (Ω + A)
− 1

(Ω − A), (10)

which satisfies

ρ Mα,β􏼐 􏼑≤ maxλi∈λ Ω−(1/2)AΩ−(1/2)( )
1 − λi

1 + λi

≤ 1. (11)

3. The Newton-PGSS Method

In this section, we describe an inner-outer iteration method
for solving systems of nonlinear equations with complex
symmetric Jacobian matrices.

We use Newton methods as outer iteration and apply the
PGSS method as the inner solver for the modified Newton
method, in other words, the PGSS iteration is employed to
solve the following two linear systems:

F′ xk( 􏼁dk � − F xk( 􏼁, xk + 1 � xk + dk. (12)

+en, we get the Newton-PGSS method for solving
nonlinear system (1).

$e Newton-PGSS Method. Let F: D ⊂ Rn+m⟶ Rn+m be a
continuously differentiable function with the complex
symmetric Jacobian matrix F′(x) at any x ∈ D, and let

F′(x) �
A(x) B(x)

− B
T
(x) 0

􏼠 􏼡, (13)

where A(x) ∈ Rn×n is a real-positive definite matrix and
B(x) ∈ Rn×m is a full column rank matrix (m< n). Given an
initial guess x0 ∈ D, two positive constants α and β and
sequence lk􏼈 􏼉

∞
k�0 of positive integers, compute xk+1 for k �

0, 1, 2, . . . , until xk􏼈 􏼉 converges. +e algorithm can be
concluded as Algorithm 3.

4. Local Convergence of the
Newton-PGSS Method

In this section, we prove the local convergence of Newton-
PGSS method under the Hölder condition.

Let F: D ⊂ Rn⟶ Rn be G-differentiable on an open
neighborhood N0 ⊂ D. Suppose F′(x) � PPGSS(x)−

QPGSS(x) is modified generalized shift-splitting of the Ja-
cobian matrix F′(x), where PPGSS(x) � (1/2)

(Ω(x) + F′(x)) and QPGSS(x) � (1/2)(Ω(x) − F′(x)) and
V(x) and W(x) are defined as follows. Suppose F′(x) is
continuous and positive definite at a point x∗ ∈ D, at which
F(x∗) � 0.

Denote with N(x∗, r) an open ball centered at x∗ with
radius r> 0.

Assumption 1. For all x ∈ N(x∗, r) ⊂ N0, assume the fol-
lowing conditions hold.

(A1) +e bounded condition: there exist positive con-
stants δ and c such that

max A x∗( 􏼁
����

����, B x∗( 􏼁
����

����􏽮 􏽯≤ δ,

F′ x∗( 􏼁
− 1

�����

�����≤ c.
(14)

(A2) +e Hölder condition: there exist nonnegative
constants Kw and Kt such that

(1) Let the initial guess x0 be given.
(2) For k � 0 until “convergence” do:

xk,1 � xk − F′(xk)
− 1

F(xk),

xk,2 � xk,1 − F′(xk)
− 1

F(xk,1),

. . . ,

xk,m− 1 � xk,m− 2 − F′(xk)
− 1

F(xk,m− 2)

xk+1 � xk,m � xk,m− 1 − F′(xk)
− 1

F(xk,m− 1).

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Find some ηk ∈ [0, 1) and sk,i, i � 1, 2 . . . m that satisfy
‖F(xk,i) + F′(xk)sk,i‖≤ ηk,i‖F(xk)‖.

(3) Set xk,i � xk + sk,i.

ALGORITHM 2: Inexact-modified Newton methods.
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A(x) − A x∗( 􏼁
����

����≤Ka x − x∗
����

����
p
,

B(x) − B x∗( 􏼁
����

����≤Kb x − x∗
����

����
p
,

(15)

with the exponent p ∈ (0, 1].

Remark 1. We can know the fact that Lipschitz condition is
a special case of Hölder condition when p � 1, and we can
call Hölder condition Lipschitz. Hence, Lipschitz condition
is stronger than Hölder condition.

Now, under Assumption 1, we establish the local con-
vergence theorem for the Newton-PGSS, and we can know
the properties of function F around the numerical solution
x∗ and the information about the radius of the

neighborhood. +e properties and information mentioned
above will affect the given method about the local
convergence.

Lemma 1. Under Assumption 1, for all x, y ∈ N(x∗, r), if
r ∈ (0, (1/(cK)))(1/p), then F′(x)− 1 exists. And, the fol-
lowing inequalities hold with K: � Ka + Kb for all
x, y ∈ N(x∗, r):

F′(x) − F′ x∗( 􏼁
����

����≤K x − x∗
����

����
p
,

F′(x)
− 1����

����≤
c

1 − cK x − x∗
����

����
p,

‖F(x)‖≤
K

1 + p
x − x∗

����
����
1+p

+ 2δ x − x∗
����

����.

(16)

(1) Given an initial guess x0, a nonnegative constant α, a positive constant β, and a positive integer sequences lk􏼈 􏼉
∞
k�0.

(2) For k � 0, 1, . . . , until ‖F(xk)‖≤ tol‖F(x0)‖ do:
(2.1) Set dk,0 � 0.
(2.2) For l � 0, 1, . . . , lk − 1, apply algorithm PGSS to the linear system (12):

(Ω(xk) + F′(xk))dk,l+1 � (Ω (xk) − F′(xk))dk,l − F(xk),

and obtain dk,lk
such that

‖F(xk) + F′(xk)dk,lk
‖≤ ηk‖F(xk)‖, for some ηk ∈ [0, 1),

where

Ω(xk) �
αI1(xk) 0

0 βI2(xk)
􏼠 􏼡.

I1 is a n × n identitymatrix and I2 is a m × m identitymatrix
(2.3) Set

xk+1 � xk + dk,lk
.

obtain the following uniform expressions for dk,lk
,

dk,lk
� − 􏽐

lk − 1
j�0 Mα,β(Ω; xk)jGα,β(Ω; xk)F(xk),

where
Mα,β(Ω; x) � (Ω(x) + F′(x))− 1(Ω(x) − F′(x))),

and
Gα,β(Ω; x) � 2(Ω(x) + F′(x))− 1.

+en, the Newton-PGSS method can be rewritten as
xk+1 � xk − 􏽐

lk − 1
j�0 Mα,β(Ω; xk)jGα,β(Ω; xk)F(xk), k � 0, 1, 2, . . . ,

From the definitions of Mα,β(V; x) and Gα,β(V; x), we can obtain
Gα,β(Ω; x)

− 1
(I − Mα,β(Ω; x))

� Gα,β(Ω; x)
− 1

− Gα,β(Ω; x)
− 1

Mα,β(Ω; x)

� (1/2)(Ω(x) + F′(x)) − (1/2)(Ω(x) + F′(x))(Ω(x) + F′(x))
− 1

(Ω(x) − F′(x))

� (1/2)(Ω(x) + F′(x)) − (1/2)(Ω(x) − F′(x))

� F′(x).

+en, the Newton-PGSS method can be equivalently expressed as
xk+1 � xk − (I − Mα,β(Ω; xk)lk )F′(xk)− 1F(xk), k � 0, 1, 2, . . . ,

+e Jacobian matrix F′(x) can be rewritten as
F′(x) � Bα,β(Ω; x) − Cα,β(Ω; x),

with
Bα,β(Ω; x) � Gα,β(Ω; x)

− 1
,

Bα,β(Ω; x)
− 1

� (I − Mα,β(Ω; x))F′(x)
− 1

,

Cα,β(Ω; x) � Gα,β(V; x)
− 1

Mα,β(Ω; x).

ALGORITHM 3: N-PGSS (Newton-PGSS method).
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Proof

F′(x) − F′ x∗( 􏼁
����

����≤
A(x) − A x∗( 􏼁 B(x) − B x∗( 􏼁

− B
T
(x) − B

T
x∗( 􏼁􏼐 􏼑 0

⎛⎝ ⎞⎠

�
A(x) − A x∗( 􏼁 0

0 0
􏼠 􏼡

���������

���������
+

0 B(x) − B x∗( 􏼁

− B
T
(x) − B

T
x∗( 􏼁􏼐 􏼑 0

⎛⎝ ⎞⎠

����������

����������

� A(x) − A x∗( 􏼁
����

���� + B(x) − B x∗( 􏼁
����

����≤Ka x − x∗
����

����
p

+ Kb x − x∗
����

����
p

� K x − x∗
����

����
p
.

(17)

Since

F′(x)
− 1

F′(x) − F′ x∗( 􏼁( 􏼁
����

����≤ cK x − x∗
����

����
p < 1, (18)

by Banach lemma, F(x)− 1 exists and inequality

F′(x)
− 1����

����≤
c

1 − cK x − x∗
����

����
p, (19)

holds, and

F x∗( 􏼁
����

���� �
A x∗( 􏼁 B x∗( 􏼁

− B
T

x∗( 􏼁 0
⎛⎝ ⎞⎠

����������

����������

≤
A x∗( 􏼁 0

0 0
􏼠 􏼡

���������

���������
+

0 B x∗( 􏼁

− B
T

x∗( 􏼁􏼐 􏼑 0
⎛⎝ ⎞⎠

����������

����������

≤ A x∗( 􏼁
����

���� + B x∗( 􏼁
����

����≤ 2δ.

(20)

Moreover, since

F(x) � F(x) − F x∗( 􏼁 − F′ x∗( 􏼁 x − x∗( 􏼁 + F′ x∗( 􏼁 x − x∗( 􏼁

� 􏽚
1

0
F′ x∗ + t x − x∗( 􏼁( 􏼁 − F′ x∗( 􏼁dt x − x∗( 􏼁

+ F′ x∗( 􏼁 x − x∗( 􏼁,

(21)

it holds that

‖F(x)‖≤ 􏽚
1

0
F′ x∗ + t x − x∗( 􏼁( 􏼁 − F′ x∗( 􏼁

����
����dt x − x∗( 􏼁

+ F′ X∗( 􏼁
����

���� x − x∗( 􏼁
����

����

≤ 􏽚
1

0
kt

p
x − x∗

����
����

p+1dt x − x∗( 􏼁 + 2δ x − x∗
����

����

≤
K

1 + p
x − x∗

����
����
1+p

+ 2δ x − x∗
����

����.

(22)

+is completes the proof of Lemma 1.

Theorem 2. Under the assumptions of Lemma 1, suppose
r ∈ (0, r0) and define r0: � min1≤j≤3 r

(j)
+􏽮 􏽯, where

r
(1)
+ �

�������������
τθ

cK(1 + θ + τθ)

q

􏽳

,

r
(2)
+ �

������������������

1 − 2δ((τ + 1)θ)
l0

((4 + 2p)/(1 + p))Kc

q

􏽳

,

r
(3)
+ �

���
1

cK

q

􏽳

,

(23)

with l0 � liminfk⟶∞lk, and the constant l0 satisfies

l0 >⌊ −
ln 2 δ

ln((τ + 1)θ)
⌋, (24)

where the symbol ⌊·⌋ is used to denote the smallest integer no
less than the corresponding real number, τ ∈ (0, ((1 − θ)/θ))

is a prescribed positive constant, and

θ ≡ θ α, β; x∗( 􏼁 � Mα,β x∗( 􏼁
�����

�����≤ max
λi∈λ Ω(1/2)F′ x∗( )Ω(1/2)( )

1 − λi

1 + λi

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≡ σ α, β; x∗( 􏼁< 1,

(25)

where α, β are more than 0.
$en, for any x ∈ N(x∗, r) ⊂ N0, t ∈ (0, r) and c> l0, it

holds that

Mα,β(V; x)
�����

�����≤ (τ + 1)θ < 1,

g t
p
; c( 􏼁 �

c

1 − cKt
p

3 + p

1 + p
Kt

p
+ 2β[(τ + 1)θ]

c
􏼠 􏼡

≤g r
p
0 ; l0􏼐 􏼑< 1.

(26)

Proof. Denote

Bα,β(Ω; x) � Gα,β(Ω; x)
− 1

,

Cα,β(Ω; x) � Gα,β(Ω; x)
− 1

Mα,β(Ω; x),
(27)

then

Mα,β(V; x) � Bα,β(Ω; x)
− 1

Cα,β(Ω; x). (28)
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From the bounded condition, we have

Bα,β(Ω; x) − Bα,β Ω; x∗( 􏼁
�����

�����≤
1
2

F′(x) − F′ x∗( 􏼁
����

����

≤
K

2
x − x∗

����
����

p
,

Bα,β x∗( 􏼁
− 1

�����

����� � I − Mα,β x∗( 􏼁􏼐 􏼑F′ x∗( 􏼁
− 1

�����

�����≤ 2c,

(29)

and we can get the inequality

Bα,β x∗( 􏼁
− 1

Bα,β(Ω; x) − Bα,β Ω; x∗( 􏼁􏼐 􏼑
�����

�����≤Kc x − x∗
����

����
p < 1.

(30)

Hence, by making use of the Banach lemma, we can
obtain

Bα,β(x)
− 1

�����

�����≤
2c

1 − cK x − x∗
����

����
p. (31)

Similarly,

Cα,β(Ω; x) − Cα,β Ω; x∗( 􏼁
�����

�����≤
1
2

F′(x) − F′ x∗( 􏼁
����

����≤
K

2
x − x∗

����
����

p
.

Cα,β(Ω; x)
− 1

�����

�����≤
2c

1 − cK x − x∗
����

����
p.

(32)

+en, we have

Mα,β(Ω; x) − Mα,β Ω; x∗( 􏼁
�����

�����

� Bα,β(x)
− 1

Cα,β(x) − Bα,β x∗( 􏼁
− 1

Cα,β x∗( 􏼁
�����

�����

� Bα,β(x)
− 1

Cα,β(x) − Cα,β x∗( 􏼁􏼐 􏼑 + Bα,β(x)
− 1

− Bα,β x∗( 􏼁
− 1

􏼐 􏼑Cα,β x∗( 􏼁
�����

�����

� Bα,β(x)
− 1

Cα,β(x) − Cα,β x∗( 􏼁􏼐 􏼑 + Bα,β(x)
− 1

Bα,β Ω; x∗( 􏼁 − Bα,β(Ω; x)􏼐 􏼑Bα,β x∗( 􏼁
− 1

Cα,β x∗( 􏼁
�����

�����

≤ Bα,β(Ω; x)
− 1

�����

����� Cα,β(Ω; x) − Cα,β Ω; x∗( 􏼁
�����

����� + Bα,β(Ω; x) − Bα,β Ω; x∗( 􏼁
�����

����� Mα,β Ω; x∗( 􏼁
�����

�����􏼒 􏼓

≤
− 2c

1 − cK x − x∗
����

����
p

K

2
x − x∗

����
����

p
+

K

2
x − x∗

����
����

pθ􏼒 􏼓

�
(1 + θ)cK x − x∗

����
����

p

1 − cK x − x∗
����

����
p ≤ τθ.

(33)

We can use (33); hence,

Mα,β(Ω; x)
�����

�����≤ Mα,β(Ω; x) − Mα,β Ω; x∗( 􏼁
�����

�����

+ Mα,β Ω; x∗( 􏼁
�����

�����≤ (1 + τ)θ< 1.
(34)

Now, we turn to estimate the error about the Newton −

PGSS iteration xk􏼈 􏼉
∞
0 defined above. Clearly, it holds that

xk+1 − x∗ � xk − x∗ − I − Mα,β Ω; xk( 􏼁􏼐 􏼑
lk

F′ xk( 􏼁
− 1

F xk( 􏼁

� − F′ xk( 􏼁
− 1

F′ xk( 􏼁 − F′ x∗( 􏼁 − F′ x∗( 􏼁 xk − x∗( 􏼁( 􏼁

+ F′ xk( 􏼁
− 1

F xk( 􏼁 − F x∗( 􏼁( 􏼁 xk − x∗( 􏼁

+ Mα,β Ω; x
lk
k F′ xk( 􏼁

− 1
F xk( 􏼁􏼐 􏼑,

(35)

where

Mα,β Ω; xk( 􏼁
lk F′ xk( 􏼁

− 1
F xk( 􏼁 � Mα,β Ω; xk( 􏼁

lk F′ xk( 􏼁
− 1

· F xk( 􏼁 − F x∗( 􏼁 − F′ x∗( 􏼁(

· xk − x∗( 􏼁)

+ Mα,β Ω; xk( 􏼁
lk F′ x∗( 􏼁

· xk − x∗( 􏼁.

(36)

Hence, we can obtain
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Mα,β Ω; xk( 􏼁
lk F′ x∗( 􏼁 xk − x∗( 􏼁

�����

�����≤ Mα,β Ω; x
lk
k􏼐 􏼑

�����

����� F′ xk( 􏼁
− 1

�����

����� F xk − F x∗( 􏼁 − F′ x∗( 􏼁 xk − x∗( 􏼁( 􏼁
����

���� + F′ x∗( 􏼁 xk − x∗( 􏼁
����

����􏼐 􏼑

≤
c((τ + 1)θ)

lk

1 − cK xk − x∗
����

����
p

K

1 + p
xk − x∗

����
����
1+p

+ 2δ xk − x∗
����

����􏼠 􏼡,

xk+1 − x∗
����

����≤
c

1 − cK x − x∗
����

����
p

K

1 + p
xk − x∗

����
����
1+p

+ K|xk− x∗‖
1+p

􏼠 􏼡

+
c((τ + 1)θ)

lk

1 − cK x − x∗
����

����
p

K

1 + p
xk − x∗

����
����
1+p

+ 2δ xk − x∗
����

����􏼠 􏼡

�
c

1 − cK xk − x∗
����

����
p

3 + p

1 + p
K xk − x∗

����
����

p
+ 2δ[(τ + 1)θ]

lk􏼠 􏼡 ‖xk − x∗‖

� g xk − x∗
����

����
p
; lk􏼐 􏼑 xk − x∗

����
����,

(37)

where

g t
p
; c( 􏼁 �

c

1 − cKt
p

3 + p

1 + p
Kt

p
+ 2β[(τ + 1)θ]

c
􏼠 􏼡. (38)

+is function is about t increasing and about c de-
creasing; hence,

g xk − x∗
����

����
p
; lk􏼐 􏼑≤g r

p
0 ; l0􏼐 􏼑< 1. (39)

In fact, for k � 0, we have‖x0 − x∗‖< r< r0, as
x(0) ∈ N(x∗, r). It follows that

x1 − x∗
����

����≤g r
p
0 ; l0􏼐 􏼑 x0 − x∗

����
����≤ x0 − x∗

����
����< r0. (40)

Hence, x1 ∈ N(x∗, r), and by making use of mathe-
matical methods of induction, suppose xm ∈ N(x∗, r) is
valid for some positive integer k � m.+en, bymaking use of
the function above again, we can straightforwardly deduce
the estimate

xm+1 − x∗
����

����≤g r
p
0 ; l0􏼐 􏼑 xm − x∗

����
����, (41)

which show that it also holds true for k�m+1 as the fol-
lowing. In addition, we have

xm+1 − x∗
����

����≤g r
p
0 ;􏼐 􏼑 xm − x∗

����
����≤ x0 − x∗

����
����< r0, (42)

and, hence, xm+1 ∈ N(x∗, r0). Now, the conclusion what we
are proving above is as follows.

5. Semilocal Convergence of the
Newton-PGSS Method

Assumption 2. For all x ∈ N(x0, r) ⊂ N0, where r< (1/2)��������
(1/(Lc))p

􏽰
, assume the following conditions hold.

(A1) +e bounded condition: there exist positive con-
stants δ and c such that

max A x0( 􏼁
����

����, B x0( 􏼁
����

����􏽮 􏽯≤ β,

F′ x0( 􏼁
− 1

�����

�����≤ c,

F x0( 􏼁
����

����≤ δ.

(43)

(A2) +e Hölder condition: there exist nonnegative
constants La and Lb for all x, y ∈ N(x0, r) ∈ N0

‖A(x) − A(y)‖≤ La‖x − y‖
p
,

‖B(x) − B(y)‖≤ Lb‖x − y‖
p
,

(44)

with the exponent p ∈ (0, 1], and we define L: � La + Lb.

Lemma 2. Under Assumption 2, for all x, y ∈∈N(x∗, r), then
F′(x)− 1exists, and we have the following inequations:

F′(x) − F′(y)
����

����≤ L‖x − y‖
p
,

F′(x)
����

����≤ L x − x0
����

����
p

+ 2β,

Bα,β(Ω; x) − Bα,β(Ω; y)
�����

����� � Cα,β(Ω; x) − Cα,β(Ω; y)
�����

�����

Bα,β(Ω; x)
− 1

�����

�����≤
2c

1 − Lc‖x − y‖
p.

(45)

Proof. +e proof is omitted since it is the same as Lemma
1.

Theorem 3. Under Assumption 2, for all x, y ∈∈N(x∗, r),
then F′(x)− 1exists, and we have the inequations in (45).

Now, we construct the following sequence of functions:
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g(t) �
1

1 + p
at

1+p
− bt + c,

h(t) � at
p

− 1,

(46)

with the constants satisfying

a �
cL(1 + η)

1 + 2p
c
1+pδp

Lη
,

b � 1 − η,

c � 2cδ,

(47)

where η � maxk ηk􏼈 􏼉< 1 and r � min(r1, r2); let t0 � 0, and
the sequence tk are generated by the following formula:

tk+1 � tk −
g tk( 􏼁

h tk( 􏼁
. (48)

Some properties of the function g(t) and h(t) and the
sequence tk are given by the following lemmas.

Lemma 3. Assume that constants satisfy

δp
c

p+1
L≤

1 − η
2p 1 + η2􏼐 􏼑

, (49)

p

1 + p

��

b

a

p

􏽳

>
c

b
. (50)

Denote t∗ �
�����
(b/a)p

􏽰
, and then, when t ∈ [0, t∗], the fol-

lowing inequalities hold that

g(t)≥ 0,

g′(t)< 0,

g″(t)> 0,

h(t)<g′(t)< 0.

(51)

Proof. +e proof is omitted since it is straightforward.

Theorem 4. Under the assumptions of lemma in this section,
r: � min(r1, r2) with

r1 �

������������
θτ

cL(1 + τ + θτ)

p

􏽳

,

r2 �

��

b

a

p

􏽳

,

(52)

satisfying

r1 < r2. (53)

And, define l0 � liminfk⟶∞ lk, and the constant l0
satisfies

l0 >⌊ −
− ln η

ln((τ + 1)θ)
⌋, (54)

where the symbol ⌊·⌋ is used to denote the smallest integer no
less than the corresponding real number, τ ∈ (0, ((1 − θ)/θ))

a prescribed positive constant, and

θ ≡ θ α, β; x0( 􏼁 � Mα,β x0( 􏼁
�����

�����< 1. (55)

$en, the iteration sequence xk􏼈 􏼉
∞
k�0 generated by the

Newton − PGSS is well defined and converges to x∗, which
satisfies F(x∗).

Proof. Firstly, we construct the sequence

t0 � 0,

tk+1 � tk −
g tk( 􏼁

h tk( 􏼁
.

(56)

We have

g

��

b

a

p

􏽳

⎛⎝ ⎞⎠> 0. (57)

Furthermore, g(0) � c> 0; hence, we have r∗ which
satisfies g(r∗) � 0, where t1 � 2cδ because (49) and (50).
Hence, we have

g(2cδ)> 0,

t1 � 2cδ < r∗ <

��

b

a

p

􏽳

.

(58)

+erefore, we have

t0 < t1 < r∗. (59)

Now, we assume that tk− 1 < tk < r∗, and by making use of
mathematical methods of induction, we have

tk+1 � tk −
g tk( 􏼁

h tk( 􏼁
. (60)

Because

h tk( 􏼁≤g′ tk( 􏼁< 0,

g tk( 􏼁< 0,
(61)

hence

tk+1 > tk. (62)

Furthermore, m(t) � t − (g(t)/g′(t))⇒m′(t) � ((g(t)

g″(t))/g′(t)2); then, m′(t)is an increasing function
in(0,

�����
(b/a)p

􏽰
) and − (1/h(tk))≤ − (1/g′(tk)); hence, we

have tk+1 � tk − (g(tk)/h(tk))≤ tk− (g(tk)/g′(tk))≤ r∗−

(g(r∗)/g′(r∗))< r∗ < r2, and it exists as point
t∗liminfk⟶∞ rk.

Next, prove the following inference by mathematical
induction:

8 Journal of Mathematics



xk+1 − xk

����
����≤ tk+1 − tk,

F′ xk( 􏼁
����

����≤
1 − cLt

p

k

c(1 + η)
tk+1 − tk( 􏼁,

(63)

where

x1 − x0
����

����≤ F′ x0( 􏼁
− 1

F x0( 􏼁
�����

�����

+ Mα,β Ω; x0( 􏼁
l∗F′ x0( 􏼁

− 1
F x0( 􏼁

�����

�����≤ c 1 + θl∗􏼐 􏼑δ,

t1 − t0 � 2cδ,

F x0( 􏼁
����

����≤ δ ≤
2δ

1 + η
�
1 − cLt

p
0

c(1 + η)
t1 − t0( 􏼁,

F xk( 􏼁
����

����≤ F xk( 􏼁 − F xk− 1( 􏼁 − F′ xk( 􏼁 xk − xk− 1( 􏼁
����

����

+ F xk( 􏼁 + F′ xk− 1( 􏼁 xk − xk− 1( 􏼁
����

����

≤
L

1 + p
xk − xk− 1

����
����

p+1
+ η F xk− 1( 􏼁

����
����.

(64)

Because

δp
c

p+1
L≤

1 − η
2p

(1 + η)
≤
1
2p,

1
1 − cLt

p

k

≤
− 1

h tk( 􏼁
,

tk > t1 > 2cδ,

(65)

we can derive inequality

(1 − η)c
2

1 − cLt
p

k

≤
a

− h tk( 􏼁
. (66)

Hence,

c(1 + η)

1 − cLt
p

k

F xk( 􏼁
����

����≤
c(1 + η)

1 − cLt
p

k

2
1 + p

tk − tk− 1( 􏼁
1+p

+ η
1 − cLt

p

k− 1
c(1 + η)

tk − tk− 1( 􏼁􏼠 􏼡

≤
1

1 + p

a

− h tk( 􏼁
tk − tk− 1( 􏼁

p+1
+

η
− h tk( 􏼁

tk − tk− 1( 􏼁.

(67)

And because

a

1 + p
tk − tk− 1( 􏼁

p+1
+ η tk − tk− 1( 􏼁

≤g tk( 􏼁 − g tk− 1( 􏼁 − h tk− 1( 􏼁 tk − tk− 1( 􏼁

�
a

1 + p
t
p+1
k − t

p+1
k− 1􏼐 􏼑 − b tk − tk− 1( 􏼁 − at

p

k − 1􏼐 􏼑 tk − tk− 1( 􏼁,

�
1

1 + p
a t

p+1
k − − t

p+1
k− 1􏼐 􏼑 − at

p

k− 1 tk − tk− 1( 􏼁 + η tk − tk− 1( 􏼁,

(68)

we can give

c(1 + η)

1 − cLt
k

F xk( 􏼁
����

����≤
g tk( 􏼁 − g tk− 1( 􏼁 − h tk− 1( 􏼁 tk − tk− 1( 􏼁

− h tk( 􏼁

�
g tk( 􏼁

− h tk( 􏼁
� tk+1 − tk( 􏼁.

(69)

+en,

xk+1 − xk

����
����≤ 1 − Mα,β Ω; xk( 􏼁

l0􏼐 􏼑F′ tk( 􏼁
− 1

F xk( 􏼁
�����

�����

≤ 1 +((τ + 1)θ)
l∗􏼐 􏼑

c

1 − cLt
k

F xk( 􏼁
����

����,
(70)

and we can have inequality

(1 + η)c

1 − cLtk

F xk( 􏼁
����

����≤ tk+1 − tk. (71)

Since the sequence tk􏼈 􏼉
∞
k�0 converges to t∗ and

xk+1 − x0
����

����≤ xk+1 − xk

����
���� + xk − xk− 1

����
���� + · · · + x1 − x0

����
����

≤ tk+1 − tk + tk − tk− 1 + · · · + t1 − t0 ≤ r∗,

(72)

where r∗ <
�����
(b/a)p

􏽰
, the sequence xk also converges to x∗.+e

proof has been completed as above.

6. The Modified Newton-PGSS Method and Its
Local Convergence

In this section, we improve Newton-PGSS and introduce the
modified Newton-PGSS and prove the local convergence of
the modified Newton-PGSS method briefly.
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+e modified Newton method is a kind of algorithm
based on the Newton method. Its principle is to reduce the
calculation times of the inverse matrix of Jacobian matrix,
making the algorithm more efficient. It only needs to cal-
culate inverse matrix once every two steps.+e format of the
algorithm is shown below:

F′ xk( 􏼁dk � − F xk( 􏼁,

yk � xk + dk,

F′ xk( 􏼁hk � − F yk( 􏼁,

xk+1 � yk + hk.

(73)

+en, we get the modified Newton-PGSS method for
solving nonlinear system (1) (Algorithm 4).

Assumption 3. For all x ∈ N(x∗, r) ⊂ N0, assume the fol-
lowing conditions hold.

(A1) +e bounded condition: there exist positive con-
stants δ and c such that

max A x∗( 􏼁
����

����, B x∗( 􏼁
����

����􏽮 􏽯≤ δ,

F′ x∗( 􏼁
− 1

�����

�����≤ c.
(74)

(A2) +e Hölder condition: there exist nonnegative
constants Kw and Kt such that

A(x) − A x∗( 􏼁
����

����≤Ka x − x∗
����

����
p
,

B(x) − B x∗( 􏼁
����

����≤Kb x − x∗
����

����
p
,

(75)

with the exponent p ∈ (0, 1].

Lemma 4. Under Assumption 3, for all x, y ∈ N(x∗, r), if
r ∈ (0, (1/(cK)))(1/p), then F′(x)− 1 exists. And, the fol-
lowing inequalities hold with K: � Ka + Kb for all x, y
∈∈N(x∗, r):

F′(x) − F′ x∗( 􏼁
����

����≤K x − x∗
����

����
p
,

F′(x)
− 1����

����≤
c

1 − cK x − x∗
����

����
p,

‖F(x)‖≤
K

1 + p
x − x∗

����
����
1+p

+ 2δ y − x∗
����

����.

(76)

Theorem 5. Under the assumptions of Lemma 4, suppose
r ∈ (0, r0) and define r0: � min1≤j≤3 r

(j)
+􏽮 􏽯, where

r
(1)
+ �

�������������
τθ

cK(1 + θ + τθ)

q

􏽳

,

r
(2)
+ �

������������������

1 − 2δ((τ + 1)θ)
l0

((4 + 2p)/(1 + p))Kc

q

􏽳

,

r
(3)
+ �

���
1

cK

q

􏽳

,

(77)

with l0 � liminfk⟶∞lk, and the constant u satisfies

l0 > ⌊ −
ln 2 δ

ln((τ + 1)θ)⌋,
(78)

where the symbol ⌊·⌋ is used to denote the smallest integer no
less than the corresponding real number, τ ∈ (0, ((1 − θ)/θ))

is a prescribed positive constant, and

θ ≡ θ α, β; x∗( 􏼁 � Mα,β x∗( 􏼁
�����

�����

≤ max
λi∈λ Ω(1/2)F′ x∗( )Ω(1/2)( )

1 − λi

1 + λi

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≡ σ α, β; x∗( 􏼁< 1,

(79)

with α and β are more than 0.
$en, for any x ∈ N(x∗, r) ⊂ N0, t ∈ (0, r) and c> u, it

holds that

Mα,β(V; x)
�����

�����≤ (τ + 1)θ < 1,

g t
p
; c( 􏼁 �

c

1 − cKt
p

3 + p

1 + p
Kt

p
+ 2β[(τ + 1)θ]

c
􏼠 􏼡

≤g r
p
0 ; u􏼐 􏼑< 1.

(80)

Proof. It is the same as +eorem 2.
In +eorem 5, we get the fact that ‖x(1) − x∗‖≤

g(r
p
0 ; )‖x(0) − x∗‖ which is the modified Newton-PGSS has

the similar result as the following.

Theorem 6. Under the conditions of $eorem 5, we have the
fact that, for any x0 ∈ N(x∗, r)with corresponding
lk􏼈 􏼉
∞
k�0, mk􏼈 􏼉

∞
k�0 of positive integers, the iteration sequence

xk􏼈 􏼉
∞
k�0 which is generated by the modified Newton-PGSS

method is well defined and converges to x∗. Furthermore, it
has the following properties:

lim
t⟶∞

sup xk − x∗
����

����
(1/k) ≤g r

p
0 ; u􏼐 􏼑

2
. (81)

Proof. +e proof of ‖yk+1 − x∗‖≤g(‖xk − x∗‖
p; lk)‖xk − x

∗‖ is the same as ‖xk+1 − x∗‖≤g(‖xk − x∗‖
p; lk)‖xk − x∗‖ in
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+eorem 2. And, from the defination of xk and in Lemma 4,
we can easily get that

xk+1 − x∗
����

���� � yk − x∗ − I − M α, β; xk( 􏼁
mk( 􏼁F′ xk( 􏼁

− 1
F yk( 􏼁

�����

�����

� yk − x∗ − F′ xk( 􏼁
− 1

F yk( 􏼁
�����

����� + M α, β; xk( 􏼁
mk F′ xk( 􏼁

− 1
F yk( 􏼁

�����

�����,
(82)

(1) Given an initial guess x0, a nonnegative constant α, a positive constant β, and two positive integer sequences lk􏼈 􏼉
∞
k�0, mk􏼈 􏼉

∞
k�0.

(2) For k � 0, 1, . . . , until ‖F(xk)‖≤ tol‖F(x0)‖ do:
(2.1) Set dk,0 � hk,0: � 0.
(2.2) For l � 0, 1, . . . , lk − 1, apply algorithm PGSS to the linear system (12):

(Ω (xk) + F′(xk)) dk,l+(1/2) � (αΩ(xk) − F′(xk))dk,l − F(xk),

and obtain dk,lk
such that

‖F(xk) + F′(xk)dk,lk
‖≤ ηk‖F(xk)‖, for some ηk ∈ [0, 1).

(2.3) Set
yk � xk + dk,lk

.

(2.4) For m � 0, 1, . . . , mk − 1, apply algorithm PGSS to the linear system (12):
(Ω (xk) + F′(xk))hk,m+1 � (αΩ (xk) − F′(xk))dk,l − F(yk),

and obtain hk,mk
such that

‖F(xk) + F′(xk)mk,hk
‖≤ 􏽥ηk‖F(yk)‖, for some 􏽥ηk ∈ [0, 1).

(2.5) Set
xk+1 � yk + hk,mk

,

Where

Ω(xk) �
αI1(xk) 0

0 βI2(xk)
􏼠 􏼡.

I1 is a n × n i de ntity matrix an d I2 is a m × m i de ntity matrix

obtain the following uniform expressions for dk,lk
and hk,mk

,

dk,lk
� − 􏽘

lk − 1

j�0
Mα,β(Ω; xk)

j
Gα,β(Ω; xk)F(xk),

hk,mk
� − 􏽘

mk − 1

j�0
Mα,β(Ω; xk)

j
Gα,β(Ω; xk)F(yk),

Mα,β(Ω; x) and Gα,β(Ω; x) are defined as well as Section 3. +en, the modified Newton-PGSS method can be rewritten as

xk+1 � xk − 􏽘

lk − 1

j�0
Mα,β(Ω; xk)

j
Gα,β(Ω; xk)F(xk)

− 􏽘

mk − 1

j�0
Mα,β(Ω; xk)

j
Gα,β(Ω; xk)F(yk), k � 0, 1, 2, . . . ,

+e modified Newton-PGSS method can be equivalently expressed as

xk+1 � xk − (I − Mα,β(Ω; xk)
lk )F′(xk)

− 1
F(xk)

− (I − Mα,β(Ω; xk)
mk )F′(xk)

− 1
F(yk), k � 0, 1, 2, . . . ,

In the following, we analyze the local convergence, and its condition (including assumption) and local convergence theorem
are the same as +eorem 2 because their Mα,β(Ω; x) and Gα,β(Ω; x) are the same. +us, we only restate them now.

ALGORITHM 4: MN-PGSS (modified Newton-PGSS method).

Journal of Mathematics 11



where

yk − x∗ − F′ xk( 􏼁
− 1

F yk( 􏼁 � − F′ xk( 􏼁
− 1

F yk − F x∗( 􏼁 − F′ x(∗)􏼐 􏼑􏼐 􏼑􏼐 􏼑 yk − x∗( 􏼁

+ F′ xk( 􏼁
− 1

F′ xk( 􏼁 − F′ x∗( 􏼁( 􏼁 yk − x∗( 􏼁.
(83)

By Lemma 4 and similar to the proof of ‖F(x)‖, we can
get it:

yk − x∗ − F′ xk( 􏼁
− 1

F yk( 􏼁≤
c

1 − cK xk − x∗
����

����
p

K

1 + p
yk − x∗

����
����

p
+ K xk − x∗

����
����

p
􏼠 􏼡 yk − x∗

����
����

M α, β; xk( 􏼁
mk F′ xk( 􏼁

− 1
F yk( 􏼁

�����

����� � M α, β; xk( 􏼁
mk F′ xk( 􏼁

− 1
F yk( 􏼁 − F x∗( 􏼁 − F′ x∗( 􏼁 yk − x∗( 􏼁 + F′ x∗( 􏼁 yk − x∗( 􏼁( 􏼁

�����

�����

≤
c((τ + 1)θ)

mk

1 − cK xk − x − ∗
����

����
p

K

1 + p
yk − x∗

����
����
1+p

+ 2δ yk − x∗
����

����􏼠 􏼡.

(84)

Combining (84) with (85), we can obtain

xk+1 − x∗
����

����≤
cK

1 − cK xk − x∗
����

����
p

1 +((τ + 1)θ)
mk

1 + p
yk − x∗

����
����

p
+ xk − x∗

����
����

p
􏼠 􏼡⎛⎝

+
2δc((τ + 1)θ)

mk

1 − cK xk − x∗
����

����
p
⎞⎠ yk − x∗

����
����

≤
cg xk − x∗

����
����

p
; lk􏼐 􏼑

1 − cK xk − x∗
����

����
p

2Kg xk − x∗
����

����
p
; lk􏼐 􏼑

p

1 + p
yk − x∗

����
����

p
+ K xk − x∗

����
����

p⎛⎝

+ 2δ((τ + 1)θ)
mk ⎞⎠ xk − x∗

����
����

≤
cg xk − x∗

����
����

p
; lk􏼐 􏼑

1 − cK xk − x∗
����

����
p

3 + p

1 + p
K xk − x∗

����
����

p
+ 2δ((τ + 1)θ)

mk􏼠 􏼡 xk − x∗
����

����

� g xk − x∗
����

����
p
; lk􏼐 􏼑g xk − x∗

����
����

p
; mk􏼐 􏼑 xk − x∗

����
����

≤g r
p
0 ; u􏼐 􏼑

2
xk − x∗

����
����.

(85)

By utilizing mathematical induction, we can get the fact
that any x0 ∈ N(x∗, r) and nonnegative integer k, and we
have

xk+1 − x∗
����

����≤g r
p
0 ; u􏼐 􏼑

2
xk − x∗

����
����≤ · · ·

≤g r
p
0 ; u􏼐 􏼑

2k
x1 − x∗

����
����≤g r

p
0 ; u􏼐 􏼑

2k
x1 − x∗

����
����

≤g r
p
0 ; u􏼐 􏼑

2(k+1)
x0 − x∗

����
����.

(86)

Because g(r
p
0 ; u)< 1, we can make a conclusion that x0

converges to x∗ as n⟶ +∞ from (86. +e proof of
theorem is completed.

7. Numerical Example

In this section, we show the efficiency of the modified
Newton-PGSS method. Because such problems have not
been analyzed before, in this paper, the first step is that we
just compare the modified Newton-PGSS method with the
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Newton-PGSS method and Newton-RHSS as their inner
iterations are splitting methods. And, the second step, we
will discuss which is more effective as preconditioner in
Newton-GMRES algorithm. +e numerical results in

Example 1 were computed using MATLAB Version
R2011b, on an iMac with a 3.20 GHz Intel Core i5-6500
CPU, and 8.00GB RAM, with machine accuracy eps�

2.22 × 10− 16.

Table 1: Numerical results of inexact Methods for v � 0.1 and η � 0.4.

n Method Optimal values of α/(α, β) Error estimates CPU time (s) Outer IT Inner IT

16
Newton-PGSS (9.7, 7.8) 2.2284 × 10− 4 3.89 11 5
Newton-MPGSS (9.7, 7.8) 6.1064 × 10− 5 4.36 7 5
Newton-RHSS 14.4 2.3976 × 10− 4 7.12 13 10

20
Newton − PGSS (11.3, 9.2) 3.3053 × 10− 4 15.02 12 6
Newton-MPGSS (11.3, 9.2) 1.6762 × 10− 4 14.7 5 6.6
Newton − RHSS 17 3.3324 × 10− 4 26.92 13 13.6

32
Newton − PGSS (15.5, 9.9) 5.31 × 10− 4 227.52 13 10.3
Newton-MPGSS (11.3, 9.2) 1.4157 × 10− 4 227.8 7 14.4
Newton − RHSS 20.6 3.5082 × 10− 4 453.84 15 28.2

Table 2: Numerical results of inexact methods for v � 1 and η � 0.4.

n Method Optimal values of α/(α, β) Error estimates CPU time (s) Outer IT Inner IT

16
Newton-PGSS (8.8, 7.4) 1.6253 × 10− 4 20.74 15 44.7
Newton-MPGSS (11.3, 9.2) 1.1582 × 10− 4 30.8 8 39
Newton-RHSS 13.2 1.7534 × 10− 4 82.2 13 124.9

20
Newton − PGSS (7, 7) 2.6262 × 10− 4 195.01 14 85.9
Newton-MPGSS (13, 6) 3.2972 × 10− 4 140.59 7 45.4
Newton − RHSS 18 2.2695 × 10− 4 253 13 167.5

32
Newton − PGSS (9.4, 10.2) 2.297 × 10− 4 3562 15 153.3
Newton-MPGSS (11.4, 9.8) 8.8723 × 10− 5 3593 8 135.5
Newton − RHSS 21.7 3.596 × 10− 4 5488.3 13 327.5

Table 3: Numerical results of inexact methods for v � 0.1 and η � 0.2.

n Method Optimal values of α/(α, β) Error estimates CPU time (s) Outer IT Inner IT

16
Newton-PGSS (7, 7) 7.6864 × 10− 5 6.57 8 11.5
Newton-MPGSS (7.7, 9.6) 2.5763 × 10− 4 4.66 4 9
Newton-RHSS 18.6 9.8486 × 10− 5 8.34 9 16.1

20
Newton − PGSS (8.2, 9) 3.3090 × 10− 4 15.43 8 12.4
Newton-MPGSS (12, 6) 2.5400 × 104 14.4 4 8.4
Newton − RHSS 14.6 2.0703 × 10− 4 21.44 8 23.8

32
Newton − PGSS (8.2, 9.5) 2.2875 × 10− 4 394.4 8 29.2
Newton-MPGSS (10.8, 13.5) 1.7649 × 10− 4 346.78 4 21
Newton − RHSS 20.6 1.9104 × 10− 4 507.3 7 48.5

Table 4: Numerical results of inexact methods for v � 1 and η � 0.2.

n Method Optimal values of α/(α, β) Error estimates CPU time (s) Outer IT Inner IT

16
Newton-PGSS (8, 7.6) 2.7300 × 10− 4 41.67 9 75.9
Newton-MPGSS (20, 7) 1.2180 × 10− 4 33.15 5 47.2
Newton-RHSS 17.8 8.4271 × 10− 5 86.22 8 218.8

20
Newton − PGSS (8, 9) 3.3351 × 10− 4 174 9 112.4
Newton-MPGSS (8, 9.6) 3.5554 × 10− 5 93.2 5 142.3
Newton − RHSS 18 9.3834 × 10− 5 258 8 289.6

32
Newton − PGSS (8, 9.2) 1.95 × 10− 4 3784 9 304.9
Newton-MPGSS (10.8, 13.5) 1.485 × 10− 4 3679 5 219.2
Newton − RHSS 21.7 1.4216 × 10− 4 5944 8 564.5
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Example 1. Consider the Stokes flow problem. Find u and w
such that

− v△u +▽w � 􏽥f, inΩ,

▽ · u � 􏽥g, inΩ,

u(t, x, y) � 0, on (0, 1] ∈ zΩ ,

􏽚
Ω
w(x)dx � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(87)

where Ω � (0, 1) × (0, 1), with zΩ is the boundary of Ω,u is
a vector-valued function representing the velocity v > 0 is
the viscosity constant, △ is the componentwise Laplace
operator, and w is a scalar function representing the pres-
sure. By discreting the function above with the upwind
scheme, we obtain the saddle point problem in which

A �
I⊗T + T⊗ I 0

0 I⊗T + T⊗ I
􏼠 􏼡 ∈ R2p2×2p2

,

B �
I⊗F

F⊗ I
􏼠 􏼡 ∈ R2p2×p2

,

(88)

where

T �
v

h
2 · tridiag (− 1, 2, − 1) ∈ Rp×p

,

F �
1
h

· tridiag (− 1, 1, 0) ∈ R2p2×1
,

􏽥f � e
u11, e

u12, . . . , e
u21, . . . , e

upp
, e

v11,􏼐

e
v12, . . . , e

v21, . . . , e
vpp

􏼑
T
∈ Rp×p

,

􏽥g � (1, 1, . . . , 1)
T ∈ Rp2×1

,

(89)

with ⊗ being the Kronecker product symbol. By applying
the centered finite difference scheme on the equidistant
discretization grid with the step size Δt � h � (1/(N + 1)),
the system of nonlinear equations (1) is obtained with the
following form:

F(u) � Mu + Ψ(u) � 0, (90)

where

M �
A B

− BT 0
􏼠 􏼡,

Ψ(u) � e
u11, e

u12, . . . , e
u21, . . . , e

upp
, e

v11,􏼐

e
v12, . . . , e

v21, . . . , e
vpp

, − 1, − 1, . . . , − 1􏼑
T

.

(91)

+en, the Jacobian matrix is

F′(u) � M + diag e
− u11 , e

− u12 , . . . , e
− u21 ,((

. . . , e
− upp , e

− v11 , e
− v12 , . . . , e

− v21 , . . . , e
− vpp , 1, 1, . . . , 1􏼁􏼁.

(92)

Firstly, we compare the algorithms whose inner itera-
tions are splitting methods, such as Newton RHSS, Newton
PGSS, and modified Newton PGSS. +e parameters needed
in the problem are chosen by using the traversal method for
the purpose of comparison: the initial guess u0 � 0, the
stopping criterion for the outer iteration is set to be

F uk( 􏼁
����

����2

F u0( 􏼁
����

����2
≤ 10− 5

, (93)

and the prescribed tolerance ηk and 􏽥ηk for controlling the
accuracy of the iteration are both set to be η, which satisfies
inequality

F′ uk( 􏼁dk,lk
+ F uk( 􏼁

�����

�����2

F uk( 􏼁
����

����2
≤ η. (94)

For different inner tolerance η � 0.4, 0.2, and 0.1 and
problem parameters v � 1 and 0.1, the results about outer IT,
inner IT, and CPU are listed in the numerical tables cor-
responding to the referred inexact Newton methods. Be-
cause the linear matrix of the solution is different in each
iteration, there is no way to find the optimal parameters in
theory. +us, we get the most efficient algorithm by tra-
versing for the parameters of different algorithms, and then,
we tabulate these results. For the selection of a single pa-
rameter, we traverse the parameters from 0 with an interval
of 1 in the beginning. When the number of steps, time, and
error show an earlier increase and later decrease trend, the
iteration is stopped to determine the range of parameters.

Table 5: Numerical results of inexact methods for v � 0.1 and η � 0.1.

n Method Optimal values of α/(α, β) Error estimates CPU time (s) Outer IT Inner IT

16
Newton-PGSS (8.2, 7) 2.7447 × 10− 4 3 7 10.1
Newton-MPGSS (13, 6) 5.8466 × 10− 5 3.85 4 7.3
Newton-RHSS 14.4 2.0678 × 10− 4 6.35 7 20.6

20
Newton − PGSS (8.2, 7.6) 3.4582 × 10− 4 12.24 7 15.6
Newton-MPGSS (7.6, 11) 1.0698 × 10− 4 11.65 4 17.5
Newton − RHSS 16.8 2.6135 × 10− 4 23.68 7 28.3

32
Newton − PGSS (8.2, 7.5) 3.2225 × 10− 4 369 7 38.9
Newton-MPGSS (10.8, 13.4) 7.5135 × 10− 5 306 3 31
Newton − RHSS 20.2 4.4700 × 10− 4 648 6 62.7

14 Journal of Mathematics



We use this method to narrow the parameter range and get
“the best parameters at present” until the result (such as step)
does not change. For the selection of two parameters
(denoted them as α and β), first, we fix the parameter α and
traverse the parameter β by using the single parameter

traversal method. +en, we fix the parameter β and traverse
the parameter α. We repeat the process until the result does
not change. We can get information from Tables 1–6 that
Newton-PGSS performs better than Newton-RHSS in the
iterative CPU. Moreover, the Newton-MPGSS algorithm is

Table 8: Numerical results of preconditioned inexact Newton methods for v � 0.1 and η � 0.2.

n Preconditioner for GMRES Optimal values of α/(α, β) Error estimates CPU time (s) Outer IT Inner IT

16
− − 6.4114 × 10− 5 1.06 9 4.4

RHSS 14 2.6652 × 10− 4 3.2 9 1
PGSS (2, 2) 1.3215 × 10− 4 1.36 7 1

20
− − 1.2495 × 10− 4 1.06 10 6.3

RHSS 19 3.3791 × 10− 4 9.63 9 1.6
PGSS (3, 2) 3.0298 × 10− 4 1.83 7 1

32
− − 1.5261 × 10− 4 19.6 10 17.2

RHSS 22 2.6631 × 10− 4 165.6 10 1.9
PGSS (2, 1) 1.3380 × 10− 4 16.69 7 1

Table 7: Numerical results of preconditioned inexact Newton methods for v � 0.1 and η � 0.4.

n Preconditioner for GMRES Optimal values of α/(α, β) Error estimates CPU time (s) Outer IT Inner IT

16
− − 2.2319 × 10− 4 1.2 15 3.2

RHSS 27.5 2.6701 × 10− 4 4.3 13 1.1
PGSS (2, 1) 2.5914 × 10− 4 0.7 7 1

20
− − 2.4378 × 10− 4 3.97 21 3.95

RHSS 23 2.6537 × 10− 4 13.82 14 1.1
PGSS (8, 1) 1.6342 × 10− 4 2.58 8 1

32
− − 5.1384 × 10− 4 16.21 16 9.9

RHSS 24 4.0483 × 10− 4 180.06 15 1.7
PGSS (5, 1) 1.7622 × 10− 4 16.52 8 1

Table 9: Numerical results of preconditioned inexact Newton methods for v � 0.1 and η � 0.1.

n Preconditioner for GMRES Optimal values of α/(α, β) Error estimates CPU time (s) Outer IT Inner IT

16
− − 1.0703 × 10− 4 1.37 8 5.3

RHSS 12 1.9074 × 10− 4 3.33 8 1.1
PGSS (3, 2) 2.5352 × 10− 4 1.28 6 1

20
− − 2.1225 × 10− 4 1.81 7 8.4

RHSS 16 1.3363 × 10− 4 9.61 8 1.6
PGSS (3, 2) 1.1526 × 10− 4 2.25 7 1

32
− − 5.0033 × 10− 4 14.63 7 20.7

RHSS 30 4.1546 × 10− 4 138.9 7 2.7
PGSS (1, 1) 3.2577 × 10− 4 13.98 6 1

Table 6: Numerical results of inexact methods for v � 1 and η � 0.1.

n Method Optimal values of α/(α, β) Error estimates CPU time (s) Outer IT Inner IT

16
Newton-PGSS (8.2, 8.2) 2.5370 × 10− 4 40.885 7 96
Newton-MPGSS (11, 8.4) 3.9974 × 10− 5 40.9 4 85.4
Newton-RHSS 16 3.6266 × 10− 5 70.25 6 297.3

20
Newton − PGSS (8, 10.4) 3.4557 × 10− 4 156 7 145.1
Newton-MPGSS (11, 7.3) 7.1642 × 10− 6 134 4 155.2
Newton − RHSS 17.2 3.9646 × 10− 5 272 6 404.3

32
Newton − PGSS (10.7, 11.7) 5.1146 × 10− 4 3001 7 251.6
Newton-MPGSS (11.4, 7.6) 2.6628 × 10− 4 3241 4 308.8
Newton − RHSS 21.4 5.8568 × 10− 5 5907 6 790.7
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much better than Newton-RHSS in the number of gener-
ation steps.

As we known, Krylov subspace method is more effi-
cient than the stationary iterative methods in saddle point.
Secondly, we will compare the effects of PGSS and RHSS as
preconditioners on Newton-GMRES. In Tables 7–12, we
can find it that PGSS and RHSS are more efficient as
preprocessing operators than without them as using
GMRES methods. Furthermore the PGSS is more efficient
than RHSS as preconditioners. In the inner iteration,
RHSS and PGSS are treated as preprocessing operators,
and then the Krylov subspace method is used to solve the
problem, which is better than the Krylov subspace method
in CPU and step number. Although the effect of PGSS as
preconditioner is not much better than that of RHSS when
n is small, it can be seen that PGSS has great advantages in
both steps and CPU compared with RHSS with the in-
crease of n.

8. Conclusions

+e Newton-PGSS method is a considerable method for
solving large sparse nonlinear system with nonsymmetric
saddle point problems with the nonsymmetric Jacobian
matrix. +is is the first time to solve this kind of problem, and
we utilize the PGSS iteration as the inner solver for theNewton
equation. And, we establish a modified Newton-PGSSmethod
for solving large sparse nonlinear system with nonsymmetric
saddle point problems with the nonsymmetric Jacobian
matrix. We give the local convergence and semilocal con-
vergence analysis of the newmethod under proper conditions.
Finally, the numerical results show that the modified Newton-
PGSS outperforms the other splitting method in the sense of
CPU time and iterative steps. Furthermore, when we apply the
Newton-GMRES method to solve the problems, PGSS will
accelerate the algorithm as preconditioner and make it more
efficient than RHSS.

Table 10: Numerical results of preconditioned inexact Newton methods for v � 1 and η � 0.4.

n Preconditioner for GMRES Optimal values of α/(α, β) Error estimates CPU time (s) Outer IT Inner IT

16
− − 1.5522 × 10− 4 3.14 16 29.3

RHSS 18 1.7172 × 10− 4 4.07 13 1
PGSS (1, 3) 1.8162 × 10− 4 1.81 11 1

20
− − 2.0082 × 10− 4 9.91 17 50

RHSS 18 1.8359 × 10− 4 10.48 13 1
PGSS (1, 1) 2.8163 × 10− 4 3.32 9 1

32
− − 4.5286 × 10− 4 294.57 39 79.8

RHSS 26 3.3912 × 10− 4 138.79 15 1.07
PGSS (1, 3) 3.8558 × 10− 4 29.95 10 1

Table 11: Numerical results of preconditioned inexact Newton methods for v � 1 and η � 0.2.

n Preconditioner for GMRES Optimal values of α/ (α, β) Error estimates CPU time (s) Outer IT Inner IT

16
− − 7.5565 × 10− 5 2.78 11 39.5

RHSS 16 2.3989 × 10− 4 3.22 9 1
PGSS (3, 1) 2.1344 × 10− 4 1.48 7 1

20
− − 2.0648 × 10− 4 9.24 11 71.5

RHSS 19 3.4282 × 10− 4 8.92 9 1.2
PGSS (1, 2) 1.5814 × 10− 4 3.27 7 1

32
− − 3.9128 × 10− 4 264.06 35 80

RHSS 23 5.4007 × 10− 4 119.75 10 1.3
PGSS (2, 4) 5.0058 × 10− 4 29.61 7 1

Table 12: Numerical results of preconditioned inexact Newton methods for v � 1 and η � 0.1.

n Preconditioner for GMRES Optimal values of α/(α, β) Error estimates CPU time (s) Outer IT Inner IT

16
− − 1.2584 × 10− 4 2.23 8 53.9

RHSS 21 2.0586 × 10− 4 2.93 7 1.3
PGSS (1, 4) 1.3197 × 10− 4 1.09 5 1

20
− − 1.1186 × 10− 4 9.14 10 78.8

RHSS 18 2.6957 × 10− 4 8.32 7 1.6
PGSS (3, 2) 1.7341 × 10− 4 2.7 5 1

32
− − 3.9128 × 10− 4 265.38 35 80

RHSS 23 2.8212 × 10− 4 121.84 8 1.9
PGSS (2, 9) 3.2145 × 10− 4 26.51 5 1
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)e split feasibility problem (SFP) has received much attention due to its various applications in signal processing and image re-
construction. In this paper, we propose two inertial relaxed CQ algorithms for solving the split feasibility problem in real Hilbert spaces
according to the previous experience of applying inertial technology to the algorithm.)ese algorithms involve metric projections onto
half-spaces, and we construct new variable step size, which has an exact form and does not need to know a prior information norm of
bounded linear operators. Furthermore, we also establish weak and strong convergence of the proposed algorithms under certain mild
conditions and present a numerical experiment to illustrate the performance of the proposed algorithms.

1. Introduction

)e split feasibility problem in finite-dimensional Hilbert
spaces was first introduced by Censor and Elfving [1] in
1994, for modeling inverse problem that arises from the
phase retrievals and in medical image reconstruction [2].
)e split feasibility problem can also be used to model the
intensity-modulated radiation therapy [3].

Let H1 and H2 be two real Hilbert spaces with the
inner product 〈·, ·〉 and the induced norm ‖ · ‖. C and Q

are nonempty closed and convex subsets of real Hilbert
spaces H1 and H2, respectively, and A is a linear bounded
operator from H1 into H2. )e split feasibility problem
(SFP) is formulated as follows: find a point x ∈ H1
satisfying

x ∈ C,

Ax ∈ Q.
(1)

)e solution set of the problem (SFP) (1) is denoted by S;
that is,

S ≔ x ∈ C: Ax ∈ Q{ }. (2)

A very successful method that solves the (SFP) seems to
be the CQ algorithm of Byrne [4], which generates xn􏼈 􏼉 by
the iterative procedure: for any initial guess x1 ∈ H,

xn+1 � PC xn − cA
∗

I − PQ􏼐 􏼑Axn􏼐 􏼑, ∀n≥ 1, (3)

where PC and PQ are the metric projections onto C and Q,
respectively. A∗ is the adjoint operator of the linear operator
A, and the step size c is chosen in the open interval
(0, 2/‖A‖2). )e step size selection depends on the operator
norm (or the largest eigenvalue of A∗A ), which also is not a
simple work.

)e CQ algorithm (3) for solving the problem (SFP) (1)
can be obtained from optimization. If we introduce the
convex objective function

f(x) ≔
1
2

I − PQ􏼐 􏼑Ax
�����

�����
2
, x ∈ H1, (4)

then the CQ algorithm (3) comes immediately as a special
case of the gradient-projection algorithm (GPA), since the
convex objective function f is differentiable and has a
Lipschitz gradient given by

∇f(x) � A
∗

I − PQ􏼐 􏼑Ax. (5)
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To overcome the computational difficulties, many au-
thors have constructed the variable step size that does not
require the norm ‖A‖; see, for example, [5–12]. In particular,
Lopez et al. [7] introduced a new choice of the variable step
size sequence τn as follows:

τn ≔
ρnf xn( 􏼁

∇f xn( 􏼁
����

����
2, ∀n≥ 1, (6)

where ρn􏼈 􏼉 is a sequence of positive real numbers, take zero
for the lower bound and four for the upper bound. )e
advantage of the choice (6) of step size is that there is neither
prior information about the matrix norm A nor any other
conditions on Q and A.

Now let us consider the case when C and Q are level
subsets of convex functions, where C and Q are, respectively,
given by

C � x ∈ H1: c(x)≤ 0􏼈 􏼉,

Q � y ∈ H2: q(y)≤ 0􏼈 􏼉,
(7)

where c: H1⟶ (− ∞, +∞] and q: H2⟶ (− ∞, +∞] are
two lower semicontinuous convex functions, and zc and zq

are bounded operators. But the associated projections PC

and PQ do not have closed-form expressions, and the CQ

algorithm is that the iterative process cannot be performed.
In order to keep it going, Yang [13] made improvements to
these two-level subsets; here is how they are defined:

􏽦Cn � x ∈ H1: c xn( 􏼁 +〈ξn, x − xn〉 ≤ 0􏼈 􏼉, (8)

with ξn ∈zc(xn), and
􏽦Qn � y ∈ H2: q Axn( 􏼁 +〈ζn, y − Axn〉≤ 0􏼈 􏼉, (9)

with ζn ∈zq(Axn).
It is easy to see that 􏽦Cn and 􏽦Qn are both half-spaces, and

the projections P 􏽥
Cn

and P 􏽥
Qn

have closed-form expressions. In

what follows, for each n≥ 1, define

fn(x) ≔
1
2

I − P 􏽥
Qn

􏼒 􏼓Ax

�������

�������

2
,

∇fn(x) � A
∗

I − P 􏽥
Qn

􏼒 􏼓Ax.

(10)

Since these projections are easy to calculate, the algo-
rithm is very practical.

Afterwards, the inertial technique was developed by
Alvarez and Attouch in order to improve the performance of
proximal point algorithms [14]. Dang et al. [15] proposed an
inertial relaxed CQ algorithm xn􏼈 􏼉 for solving the problem
(SFP) in a real Hilbert space, which is generated as follows:
for any x0, x1 ∈ H,

wn � xn + θn xn − xn− 1( 􏼁,

xn+1 � P
Cn

wn − cA
T

I − P
Qn

􏼒 􏼓A wn( 􏼁􏼒 􏼓,

⎧⎪⎨

⎪⎩
(11)

where 0< c< (2/‖A‖2), and 0≤ θn ≤ θn with

θn � min θ,
1

max n
2

xn − xn− 1
����

����
2
, n

2
xn − xn− 1

����
����
2

􏼚 􏼛

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
, ∀n≥ 1, θ ∈ [0, 1),

Cn � x ∈ H1|c wn( 􏼁 +〈ξn, x − wn〉 ≤ 0􏼈 􏼉,

(12)

with ξn ∈zc(wn), and

Qn � y ∈ H2|q Awn( 􏼁 +〈ζn, y − Awn〉 ≤ 0􏼈 􏼉, (13)

with ζn ∈zq(Awn). )e algorithm xn􏼈 􏼉 converges weakly
to a point of a solution set of the problem (SFP), where
step size also depends on the matrix norm ‖A‖. It is
obvious that the calculation of operator norm is more
complicated, so Gibali et al. [16] has changed the step size
of (11).

λn �
ρnfn wn( 􏼁

η2n
,

ηn � max 1, ∇fn wn( 􏼁
����

����􏽮 􏽯, 0≤ θn ≤ θn,

(14)

where

θn �

min θ,
εn

xn − xn− 1
����

����
2

⎧⎨

⎩

⎫⎬

⎭, if xn ≠xn− 1,

θ, otherwise.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(15)

If 􏽐
∞
n�1 θn‖xn − xn− 1‖

2 <∞, then the sequence xn􏼈 􏼉

generated by (11) with step size λn converges weakly to a
point of a solution set of the problem (SFP). For recent
results on inertial algorithms (see [17–24]).

On the other hand, the CQ algorithm is the gradient-
projection method for the variational inequality problem. In
[25], Xu gave weak convergence in the setting of Hilbert
spaces. Wang and Xu [26] proposed the following algorithm:

xn+1 � PC 1 − αn( 􏼁 xn − c∇f xn( 􏼁( 􏼁􏼂 􏼃, (16)

where c ∈ (0, 2/‖A‖2). Under some conditions, it is proved
that the sequence generated by the algorithm (16) strongly
converges to the minimum-norm solution of the (SFP).
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Motivated and inspired by the work of [7, 27–29], the au-
thors of [30] introduced a self-adaptive CQ-type algorithm
for finding a solution of the (SFP) in the setting of infinite-
dimensional real Hilbert spaces; the advantage of this al-
gorithm lies in the fact that step sizes are dynamically chosen
and do not depend on the operator norm.)is algorithm can
be formulated as follows:

xn+1 � PCn
1 − βn( 􏼁 xn − λn∇fn xn( 􏼁( 􏼁􏼂 􏼃, (17)

where λn � (ρnfn(xn)/‖∇fn(xn)‖2). It is also proved that
the sequence generated by the algorithm (17) strongly
converges to the minimum-norm solution of the (SFP)

under some conditions.
Inspired by the works mentioned above, we propose a

new relaxed CQ algorithm to solve the (SFP) in a real Hilbert
space by using inertial technology. )e new step size pro-
posed in this algorithm is independent of the operator norm
in this paper, and we also establish weak convergence
theorem of the proposed algorithms under some mild
conditions in [31]. We add the inertial term on the basis of
the algorithm in [30] to construct a new iterative process, so
that the new algorithm strongly converges to a point in the
solution set under some conditions.

)e remainder of the paper is organized as follows.
Some useful definitions and results are collected in
Section 2 for the convergence analysis of the proposed
algorithm. In Section 3, new inertial algorithms of weak
and strong convergence for solving SFP are proposed,
followed by the convergence analysis. In Section 4, we
provide a numerical experiment to illustrate the per-
formance of the proposed algorithms. Finally, we end the
paper with some conclusion.

2. Preliminaries

Let H be a Hilbert space and let C be a nonempty closed
convex subset in H. )e strong (weak) convergence of a
sequence xn􏼈 􏼉 to x is denoted by xn⟶ x(xn⇀x), re-
spectively. For any sequence xn􏼈 􏼉 ⊂ H, ωw(xn) denotes the
weak ω − limit set of xn􏼈 􏼉; that is,

ωw xn( 􏼁 ≔ x ∈ H: xnj
⇀x􏼚 􏼛, for some subsequence nj􏽮 􏽯 of n{ }.

(18)

Definition 1. An operator T: C⟶ H is called the
following:

(i) Nonexpansive if

‖Tx − Ty‖≤ ‖x − y‖, ∀x, y ∈ C. (19)

(ii) Firmly nonexpansive if

‖Tx − Ty‖
2 ≤ ‖x − y‖

2
− ‖(I − T)x − (I − T)y‖

2
, ∀x, y ∈ C.

(20)

(iii) ]-inverse strongly monotone (]-ism) if there is ]> 0
such that

〈Tx − Ty, x − y〉≥ ]‖Tx − Ty‖
2
, ∀x, y ∈ C. (21)

For every element x ∈ H, there exists a unique nearest
point in C denoted by PCx, such that

x − PCx
����

���� � min ‖x − y‖ |y ∈ C􏼈 􏼉. (22)

)en operator PC is called the metric projection from H

onto C.
)e projection has the following well-known properties.

Lemma 1 (see [32, 33]). For all x, y ∈ H and z ∈ C, we have

(1) 〈x − PCx, z − PCx〉≤ 0
(2) ‖PCx − PCy‖≤ ‖x − y‖

(3) ‖PCx − PCy‖2 ≤ 〈x − y, PCx − PCy〉

(4) ‖PCx − z‖2 ≤ ‖x − z‖2 − ‖(I − PC)x‖2

Lemma 2. Let H be a real Hilbert space and x, y, z ∈ H,
t ∈ R; then

(1) ‖(1 − t)x + ty‖2 � (1 − t)‖x‖2 + t‖y‖2 − t(1 − t)

‖x − y‖2;
(2) ‖x − y‖2 � ‖y − z‖2 − ‖x − z‖2 + 2〈x − y, x − z〉.

Definition 2 (see [34]). Let H be a real Hilbert space and let
f: H⟶ (− ∞,∞) be a convex function. An element v ∈ H

is called the subgradient of f at x ∈ H if

〈v, x − x〉≤f(x) − f(x), ∀x ∈ H. (23)

)e collection of all the subgradients of f at x is called
the subdifferential of the function f at this point, which is
denoted by zf(x); that is,

zf(x) � v ∈ H: 〈v, x − x〉≤f(x) − f(x),∀x ∈ H􏼈 􏼉.

(24)

Definition 3. Let f: H⟶ (− ∞, +∞] be a proper function.

(i) f is lower semicontinuous at x if xn⟶ x implies

f(x)≤ lim inf
n⟶∞

f xn( 􏼁. (25)

(ii) f is weakly lower semicontinuous at x if xn⇀x

implies

f(x)≤ lim inf
n⟶∞

f xn( 􏼁. (26)

(iii) f is lower semicontinuous on H if it is lower
semicontinuous at every point x ∈ H; f is weakly
lower semicontinuous on H if it is weakly lower
semicontinuous at every point x ∈ H.

(iv) f is lower semicontinuous if and only if it is weakly
lower semicontinuous.
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Lemma 3 (see [34]). Let f: H⟶ (− ∞, +∞] be an
α-strongly convex function. >en, for all x, y ∈ H,

f(y) ≥f(x) +〈ξ, y − x〉 +
α
2

‖y − x‖
2
, ξ ∈zf(x). (27)

Lemma 4 (see [25]). Let t> 0 and x∗ ∈ H. >en the following
statements are equivalent:

(1) >e point x∗ solves the problem (SFP).
(2) >e point x∗ solves the fixed-point equation

x
∗

� PC x
∗

− tA
∗

I − PQ􏼐 􏼑Ax
∗

􏼐 􏼑. (28)

(3) >e point x∗ solves the variational inequality problem
with respect to the gradient of f; that is, find a point
x ∈ C such that

〈∇f(x), y − x〉≥ 0, ∀y ∈ C. (29)

Lemma 5 (see [16]). Let H be a real Hilbert space and let
xn􏼈 􏼉 be a sequence in H such that there exists a nonempty
closed and convex subset S of H satisfying the following
conditions:

(i) For all z ∈ S, limn⟶∞‖xn − z‖ exists
(ii) Any weak cluster point of xn􏼈 􏼉 belongs to S

>en there exists x∗ ∈ S such that xn􏼈 􏼉 converges weakly
to x∗.

Lemma 6 (see [35]). Let ϕn􏼈 􏼉 ⊂ [0,∞) and δn􏼈 􏼉 ⊂ [0,∞) be
two nonnegative real sequences satisfying the following
conditions:

(1) ϕn+1 − ϕn ≤ θn(ϕn − ϕn− 1) + δn

(2) 􏽐
∞
n�1 δn <∞

(3) θn􏼈 􏼉 ⊂ [0, θ], where θ ∈ [0, 1)

>en, ϕn􏼈 􏼉 is a converging sequence and
􏽐
∞
n�1 [ϕn+1 − ϕn]+<∞, where [t]+ � max t, 0{ } for any t ∈ R.

Lemma 7 (see [36, 37]). Let an􏼈 􏼉
∞
n�0 and cn􏼈 􏼉

∞
n�0 be sequences

of nonnegative real numbers such that

an+1 ≤ 1 − βn( 􏼁an + δn + cn, n≥ 1, (30)

where βn􏼈 􏼉
∞
n�0 is a sequence in (0, 1) and δn􏼈 􏼉

∞
n�0 is a real

sequence. Assume 􏽐
∞
n�1 cn <∞. >en the following results

hold:

(1) If δn ≤ βnM for some M≥ 0, then an􏼈 􏼉
∞
n�0 is a bounded

sequence
(2) If 􏽐

∞
n�1 βn �∞ and lim supn⟶∞(δn/βn)≤ 0, then

limn⟶∞an � 0

Lemma 8 (see [38]). Assume that sn􏼈 􏼉 is a sequence of
nonnegative real numbers such that

sn+1 ≤ 1 − αn( 􏼁sn + αnδn, n≥ 1,

sn+1 ≤ sn − λn + cn, n≥ 1,
(31)

where αn􏼈 􏼉 is a sequence in (0, 1), λn􏼈 􏼉 is a sequence of
nonnegative real numbers, and δn􏼈 􏼉 and cn􏼈 􏼉 are two se-
quences in R such that

(1) 􏽐
∞
n�1 αn �∞

(2) limn⟶∞cn � 0
(3) limk⟶∞λnk

� 0 implies lim supk⟶∞δnk
≤ 0 for any

subsequence nk􏼈 􏼉 of n{ }

>en limn⟶∞sn � 0.

3. Convergence Analysis

In this section, we consider the (SFP) in which C is given by

C � x ∈ H1|c(x)≤ 0􏼈 􏼉, (32)

where c: H1⟶ (− ∞, +∞] is an α-strongly convex func-
tion; the set Q is given by

Q � y ∈ H2|q(y)≤ 0􏼈 􏼉, (33)

where q: H2⟶ (− ∞, +∞] is a β-strongly convex func-
tion. We assume that the solution set S of the (SFP) is
nonempty, and c and q are lower semicontinuous convex
functions; furthermore, we also assume that zc and zq are
bounded operators (i.e., bounded on bounded sets).

We agree to build the following sets in our algorithms
according to [39]; that is, given the n-th iterative point wn,
we construct Cn as

Cn � x ∈ H1|c wn( 􏼁 +〈ξn, x − wn〉 +
α
2

x − wn

����
����
2 ≤ 0􏼚 􏼛, ​ ​

(34)

where ξn ∈zc(wn).

Qn � y ∈ H2|q Awn( 􏼁 +〈ζn, y − Awn〉 +
β
2

y − Awn

����
����
2 ≤ 0􏼨 􏼩, ​ ​

(35)

where ζn ∈zq(Awn).
If α � 0 and β � 0, then Cn and Qn are reduced to the

half-spaces Cn and Qn, respectively. If α> 0 and β> 0 , then
Cn and Qn are nonempty closed ball of radius

(1/α)

�������������

‖ξn‖2 − 2αc(wn)

􏽱

centred at wn − (1/α)ξn and

(1/β)

���������������

‖ζn‖2 − 2βq(Awn)

􏽱

centred at Awn − (1/β)ζn,
respectively.

In addition, for each n≥ 0, we define the following
functions:

fn(x) �
1
2

I − PQn
􏼐 􏼑Ax
�����

�����
2
,

∇fn(x) � A
∗

I − PQn
􏼐 􏼑Ax,

(36)

where Qn is given as in (35), fn is weakly lower semi-
continuous, convex, and differentiable, and its gradient ∇fn
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is Lipschitz continuous. Now we propose new relaxed CQ

algorithms for solving the (SFP).
Next, two inertial relaxed CQ algorithms will be in-

troduced. )e weak convergence of Algorithm 1 and the
strong convergence of Algorithm 2 will be proved under
different step sizes.

Algorithm 1. Choose positive sequence εn􏼈 􏼉 satisfying
􏽐
∞
n�0 εn <∞.
Let x0, x1 ∈ C be arbitrary. Given xn, xn− 1, update the

next iteration via

wn � xn + θn xn − xn− 1( 􏼁,

xn+1 � PCn
wn − τn∇fn wn( 􏼁( 􏼁,

(37)

where 0≤ θn < θn, and

θn �

min θ,
εn

max xn − xn− 1
����

����
2
, xn − xn− 1
����

����􏼚 􏼛

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
, if xn ≠ xn− 1,

θ, if xn � xn− 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(38)

and Cn and Qn are given as in (34) and (35).

τn �

σn

∇fn wn( 􏼁
����

����
, if ∇fn wn( 􏼁

����
����≠ 0,

0, if ∇fn wn( 􏼁
����

���� � 0,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(39)

where 􏽐
∞
n�1 σn �∞, 􏽐

∞
n�1 σ

2
n <∞.

If xn+1 � wn, then stop; otherwise, set n: � n + 1 and go
to the next iteration.

By assuming θn, we know

􏽘

∞

n�1
θn xn − xn− 1

����
����
2 <∞,

􏽘

∞

n�1
θn xn − xn− 1

����
����<∞,

(40)

which means

lim
n⟶∞

θn xn − xn− 1
����

����
2

� 0,

lim
n⟶∞

θn xn − xn− 1
����

���� � 0.
(41)

From ξn ∈zc(wn), applying Lemma 3, we get C⊆Cn; and
a similar way is used to get Q⊆Qn.

Now let us show that our proposed algorithm has a very
important property: if xn+1 � wn for some n> 0, then wn is a
solution of (SFP). Indeed, xn+1 ∈ Cn, so that wn ∈ Cn as wn �

xn+1 by assumption. So we get c(wn)≤ 0 from (34), that is,
wn ∈ C. On the other hand, according to the algorithm, we
have wn � PCn

(wn − τnA∗(I − PQn
)Awn), which together

with Lemma 4 implies that Awn ∈ Qn. It also implies that
q(Awn)≤ 0 from (35); then Awn ∈ Q. )e conclusion is
tenable.

Lemma 9. Let xn􏼈 􏼉 and wn􏼈 􏼉 be the sequences generated by
Algorithm 1. >en, for any z ∈ S, it follows that

xn+1 − z
����

����
2 ≤ wn − z

����
����
2

+ σ2n −
4σnfn wn( 􏼁

∇fn wn( 􏼁
����

����
. (42)

Proof. For z ∈ S, we have z ∈ C, Az ∈ Q; and we have
z � PCz � PCn

z, Az � PQAz � PQn
Az.

It follows from Lemma 1 that

xn+1 − z
����

����
2

� PCn
wn − τn∇fn wn( 􏼁( 􏼁 − z

�����

�����
2

≤ wn − z( 􏼁 − τn∇fn wn( 􏼁
����

����
2

− wn − xn+1( 􏼁 − τn∇fn wn( 􏼁
����

����
2

� wn − z
����

����
2

− wn − xn+1
����

����
2

− 2τn〈∇fn wn( 􏼁, wn − z〉 + 2τn〈∇fn wn( 􏼁, wn − xn+1〉,

(43)

where

2τn〈∇fn wn( 􏼁, wn − z〉 � 2τn〈 I − PQn
􏼐 􏼑Awn − I − PQn

􏼐 􏼑Az, Awn − Az〉

≥ 2τn I − PQn
􏼐 􏼑Awn

�����

�����
2

� 4τnfn wn( 􏼁,

2τn〈∇fn wn( 􏼁, wn − xn+1〉 ≤ 2τn ∇fn wn( 􏼁
����

���� · wn − xn+1
����

����

≤ wn − xn+1
����

����
2

+ τ2n ∇fn wn( 􏼁
����

����
2
.

(44)
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Hence, we have

xn+1 − z
����

����
2 ≤ wn − z

����
����
2

− wn − xn+1
����

����
2

− 4τnfn wn( 􏼁

+ wn − xn+1
����

����
2

+ τ2n ∇fn wn( 􏼁
����

����
2
.

(45)

If ‖∇fn(wn)‖ � 0, then τn � 0, so that

xn+1 − z
����

����
2 ≤ wn − z

����
����
2
. (46)

If ‖∇fn(wn)‖≠ 0, we have

xn+1 − z
����

����
2 ≤ wn − z

����
����
2

+ τ2n ∇fn wn( 􏼁
����

����
2

− 4τnfn wn( 􏼁

� wn − z
����

����
2

+ σ2n −
4σnfn wn( 􏼁

∇fn wn( 􏼁
����

����
.

(47)

)e proof is complete.

Theorem 1. Assume that θn satisfies the assumption. >en

there exists a subsequent xnj
􏼚 􏼛 of xn􏼈 􏼉 generated by Algo-

rithm 1 which weakly converges to a solution of (SFP).

Proof. We first show that, for any z ∈ S, the limit of
‖xn − z‖􏼈 􏼉 exists. By applying Lemma 9, we have

xn+1 − z
����

����
2 ≤ wn − z

����
����
2

+ σ2n −
4σnfn wn( 􏼁

∇fn wn( 􏼁
����

����
. (48)

From the construction of wn and Lemma 2, we have

wn − z
����

����
2

� 1 + θn( 􏼁 xn − z( 􏼁 − θn xn− 1 − z( 􏼁
����

����
2

� 1 + θn( 􏼁 xn − z
����

����
2

− θn xn− 1 − z
����

����
2

+ θn 1 + θn( 􏼁 xn − xn− 1
����

����
2
,

(49)

≤ 1 + θn( 􏼁 xn − z
����

����
2

− θn xn− 1 − z
����

����
2

+ 2θn xn − xn− 1
����

����
2
.

(50)

Combining (48) and (50) immediately, we get

xn+1 − z
����

����
2 ≤ 1 + θn( 􏼁 xn − z

����
����
2

− θn xn− 1 − z
����

����
2

+ 2θn xn − xn− 1
����

����
2

+ σ2n.
(51)

Denote ϕn � ‖xn − z‖2; from (51), we have

ϕn+1 − ϕn ≤ θn ϕn − ϕn− 1( 􏼁 + 2θn xn − xn− 1
����

����
2

+ σ2n, (52)

where

􏽘

∞

n�1
θn xn − xn− 1

����
����
2 <∞,

􏽘

∞

n�1
σ2n <∞.

(53)

Using Lemma 6, the limit of ϕn exists, and
􏽐
∞
n�1 (‖xn+1 − z‖2 − ‖xn − z‖2)+<∞, which implies that

􏽐
∞
n�1(‖xn+1 − z‖2 − ‖xn − z‖2)<∞, (‖xn+1 − z‖2 − ‖xn

− z‖2)+ � max ‖xn+1 − z‖2 − ‖xn − z‖2, 0􏽮 􏽯. )is also implies
that the sequence xn􏼈 􏼉 is bounded, so wn􏼈 􏼉 is bounded.

We next show that ωw(xn) ⊂ S. Since wn􏼈 􏼉 is bounded,
from the Lipschitz continuity of ∇fn, we get that
‖∇fn(wn)‖􏼈 􏼉 is bounded. From (48) and (50), we get

4σnfn wn( 􏼁

∇fn wn( 􏼁
����

����
≤ xn − z

����
����
2

− xn+1 − z
����

����
2

+ θn xn − z
����

����
2

− xn− 1 − z
����

����
2

􏼒 􏼓 + 2θn xn − xn− 1
����

����
2

+ σ2n, (54)

where 􏽐
∞
n�1(‖xn+1 − z‖2 − ‖xn − z‖2)<∞, 􏽐

∞
n�1 θn‖xn−

xn− 1‖
2 <∞, and 􏽐

∞
n�1 σ2n <∞, so we have

􏽘

∞

n�1

4σnfn wn( 􏼁

∇fn wn( 􏼁
����

����
<∞. (55)

But 􏽐
∞
n�1 σn �∞, so

lim inf
n⟶∞

fn wn( 􏼁 � 0,

i.e., lim inf
n⟶∞

I − PQn
􏼐 􏼑Awn

�����

�����
2

� 0.
(56)

On the other hand, since xn􏼈 􏼉 is bounded, the set ωw(xn)

is nonempty. Let x∗ ∈ ωw(xn); then there exists a subse-
quence xnk

􏽮 􏽯 of xn􏼈 􏼉 such that xnk
⇀x∗. Furthermore,

wn − xn

����
����
2

� θ2n xn − xn− 1
����

����
2 ≤ θn xn − xn− 1

����
����
2⟶ 0.

(57)

Let wnj
􏼚 􏼛 be a subsequence of the sequence wn􏼈 􏼉 such

that

lim inf
n⟶∞

I − PQn
􏼐 􏼑Awn

�����

�����
2

� lim
j⟶∞

I − PQnj
􏼒 􏼓Awnj

������

������

2
� 0.

(58)

Since wnj
􏼚 􏼛 is bounded, there exists a subsequence wnjm

􏼚 􏼛

of wnj
􏼚 􏼛, which converges weakly to x∗. Without loss of

generality, we can assume that wnj
⇀x∗, and A is a bounded

linear operator, so Awnj
⇀Ax∗.

From Lemma 1, we conclude that

〈wn − τn∇fn wn( 􏼁 − xn+1, z − xn+1〉 ≤ 0. (59)

Since τn⟶ 0 and ‖∇fn(wn)‖􏼈 􏼉 is bounded, we have
τn∇fn(wn)⟶ 0. Hence, we get
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〈xn+1 − wn, xn+1 − z〉 ≤ 〈τn∇fn wn( 􏼁, z − xn+1〉⟶ 0.

(60)

Since 􏽐
∞
n�1(‖xn+1 − z‖2 − ‖xn − z‖2)<∞ and

􏽐
∞
n�1 θn‖xn − xn− 1‖

2 <∞, from (50), we obtain

xn+1 − wn

����
����
2

� wn − z
����

����
2

− xn+1 − z
����

����
2

+ 2〈xn+1 − wn, xn+1 − z〉

≤ xn − z
����

����
2

− xn+1 − z
����

����
2

+ θn xn − z
����

����
2

− xn− 1 − z
����

����
2

􏼒 􏼓 + 2θn xn − xn− 1
����

����
2

+ 2〈xn+1 − wn, xn+1 − z〉⟶ 0.

(61)

)us,

xn+1 − xn

����
����≤ xn+1 − wn

����
���� + wn − xn

����
����⟶ 0. (62)

Since PQnj
Awnj
∈ Qnj

, by the definition of Qnj
,

q Awnj
􏼒 􏼓 +〈ζnj

, PQnj

Awnj
− Awnj
〉 +

β
2

PQnj

Awnj
− Awnj

������

������

2
≤ 0,

(63)

where ζnj
∈zq(Awnj

). From the boundedness assumption of
zq and limj⟶∞‖(I − PQnj

)Awnj
‖2 � 0, we have

q Awnj
􏼒 􏼓≤ ζnj

�����

����� · I − PQnj
􏼒 􏼓Awnj

������

������ −
β
2

I − PQnj
􏼒 􏼓Awnj

������

������

2
⟶ 0.

(64)

From the weak lower semicontinuity of the convex
function q, it follows that

q Ax
∗

( 􏼁≤ lim inf
j⟶∞

q Awnj
􏼒 􏼓≤ 0, (65)

which means that Ax∗ ∈ Q.
Furthermore, xnj+1 ∈ Cnj

, and, by the definition of Cnj
,

c wnj
􏼒 􏼓 +〈ξnj

, xnj+1 − wnj
〉 +

α
2

xnj+1 − wnj

�����

�����
2
≤ 0, (66)

where ξnj
∈zc(wnj

). From the boundedness assumption of zc

and ‖xnj+1 − wnj
‖⟶ 0, we have

c wnj
􏼒 􏼓≤ ξnj

�����

����� · wnj
− xnj+1

�����

����� −
α
2

xnj+1 − wnj

�����

�����
2
⟶ 0.

(67)

From the weak lower semicontinuity of the convex
function c, it follows that

c x
∗

( 􏼁≤ lim inf
j⟶∞

c wnj
􏼒 􏼓≤ 0, (68)

which means that x∗ ∈ C. )erefore, xnj
⇀x∗ ∈ S. )e proof

is complete.

Algorithm 2. Choose positive sequence εn􏼈 􏼉 satisfying
􏽐
∞
n�0 εn <∞.
Let x0, x1 ∈ C be arbitrary. Given xn, xn− 1, update the

next iteration via

wn � xn + θn xn − xn− 1( 􏼁,

xn+1 � βnu + PCn
1 − βn( 􏼁 wn − τn∇fn wn( 􏼁( 􏼁􏼂 􏼃,

τn �
ρnfn wn( 􏼁

∇fn wn( 􏼁
����

����
2,

(69)

where 0≤ θn < θn, and

θn �

min θ,
εn

max xn − xn− 1
����

����
2
, xn − xn− 1
����

����􏼚 􏼛

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
, if xn ≠xn− 1,

θ, if xn � xn− 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(70)

and Cn and Qn are given as in (34) and (35), βn􏼈 􏼉 ⊂ (0, 1),
limn⟶∞βn � 0, 􏽐

∞
n�1 βn �∞, and infnρn(4 − ρn)> 0.

If xn+1 � wn, then stop; otherwise, set n: � n + 1 and go
to the next iteration.

Theorem 2. Assume that infnρn(4 − ρn)> 0 and εn � o(βn).
>en the sequence xn generated by Algorithm 2 converges
strongly to z � PSu.

Proof. First, we show that, for any z ∈ S, the sequence xn􏼈 􏼉

is bounded. From the construction of wn, we have
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wn − z
����

���� � xn + θn xn − xn− 1( 􏼁 − z
����

����

≤ xn − z
����

���� + θn xn − xn− 1
����

����,

(71)

wn − τn∇fn wn( 􏼁 − z
����

����
2

� wn − z
����

����
2

+ τ2n ∇fn wn( 􏼁
����

����
2

− 2τn〈∇fn wn( 􏼁, wn − z〉

≤ wn − z
����

����
2

+ τ2n ∇fn wn( 􏼁
����

����
2

− 4τnfn wn( 􏼁

� wn − z
����

����
2

+
ρ2nf

2
n wn( 􏼁

∇fn wn( 􏼁
����

����
2 −

4ρnf
2
n wn( 􏼁

∇fn wn( 􏼁
����

����
2

� wn − z
����

����
2

− ρn 4 − ρn( 􏼁
f
2
n wn( 􏼁

∇fn wn( 􏼁
����

����
2

≤ wn − z
����

����
2
.

(72)

So, combining (71) and (72), we get

xn+1 − z
����

���� � βnu + PCn
1 − βn( 􏼁 wn − τn∇fn wn( 􏼁( 􏼁􏼂 􏼃 − z

�����

�����

� PCn
1 − βn( 􏼁 wn − τn∇fn wn( 􏼁( 􏼁􏼂 􏼃 − 1 − βn( 􏼁z + βn(u − z)

�����

�����

≤ PCn
1 − βn( 􏼁 wn − τn∇fn wn( 􏼁( 􏼁􏼂 􏼃 − 1 − βn( 􏼁z

�����

����� + βn‖u − z‖

≤ 1 − βn( 􏼁 wn − τn∇fn wn( 􏼁( 􏼁 − 1 − βn( 􏼁z
����

���� + βn‖u − z‖

≤ 1 − βn( 􏼁 wn − τn∇fn wn( 􏼁 − z
����

���� + βn‖u − z‖

≤ 1 − βn( 􏼁 wn − z
����

���� + βn‖u − z‖

≤ 1 − βn( 􏼁 xn − z
����

���� + θn xn − xn− 1
����

����􏽨 􏽩 + βn‖u − z‖

≤ 1 − βn( 􏼁 xn − z
����

���� + βn σn +‖u − z‖􏼂 􏼃,

(73)

where σn � (1 − βn)(θn/βn)‖xn − xn− 1‖. According to hy-
pothesis θn,

θn ≤
εn

xn − xn− 1
����

����
⇒
θn

βn

xn − xn− 1
����

����≤
εn

βn

⟶ 0. (74)

Note that

lim
n⟶∞

σn � lim
n⟶∞

1 − βn( 􏼁
θn

βn

xn − xn− 1
����

���� � 0, (75)

which implies that the sequence σn􏼈 􏼉 is bounded. Setting

M � max sup
n∈N

σn, ‖u − z‖􏼨 􏼩, (76)

as well as using Lemma 7, we conclude that the sequence
‖xn − z‖􏼈 􏼉 is bounded. )is shows that the sequence xn􏼈 􏼉 is
bounded and so is wn􏼈 􏼉.

Since ‖xn − z‖􏼈 􏼉 is bounded, assume that there exists a
constant M1 such that ‖xn − z‖≤M1. )us,

wn − z
����

����
2 ≤ xn − z

����
���� + θn xn − xn− 1

����
����􏼐 􏼑

2

� xn − z
����

����
2

+ θ2n xn − xn− 1
����

����
2

+ 2θn xn − xn− 1
����

���� · xn − z
����

����

≤ xn − z
����

����
2

+ θn xn − xn− 1
����

����
2

+ 2M1 · θn xn − xn− 1
����

����,

(77)

and we get
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xn+1 − z
����

����
2

� βnu + PCn
1 − βn( 􏼁 wn − τn∇fn wn( 􏼁( 􏼁􏼂 􏼃 − z

�����

�����
2

� PCn
1 − βn( 􏼁 wn − τn∇fn wn( 􏼁( 􏼁􏼂 􏼃 − 1 − βn( 􏼁z + βn(u − z)

�����

�����
2

≤ PCn
1 − βn( 􏼁 wn − τn∇fn wn( 􏼁( 􏼁􏼂 􏼃 − 1 − βn( 􏼁z

�����

�����
2

+ 2βn〈u − z, xn+1 − z〉

≤ 1 − βn( 􏼁 wn − τn∇fn wn( 􏼁( 􏼁 − 1 − βn( 􏼁z
����

����
2

+ 2βn〈u − z, xn+1 − z〉

≤ 1 − βn( 􏼁 wn − z
����

����
2

− ρn 4 − ρn( 􏼁
f
2
n wn( 􏼁

∇fn wn( 􏼁
����

����
2

⎡⎢⎢⎣ ⎤⎥⎥⎦ + 2βn〈u − z, xn+1 − z〉

≤ 1 − βn( 􏼁 xn − z
����

����
2

+ θn xn − xn− 1
����

����
2

+ 2M1 · θn xn − xn− 1
����

���� − ρn 4 − ρn( 􏼁
f
2
n wn( 􏼁

∇fn wn( 􏼁
����

����
2

⎡⎢⎢⎣ ⎤⎥⎥⎦ + 2βn〈u − z, xn+1 − z〉.

(78)

From (78),

xn+1 − z
����

����
2 ≤ 1 − βn( 􏼁 xn − z

����
����
2

+ βn

θn

βn

xn − xn− 1
����

����
2

+ 2M1􏼢

·
θn

βn

xn − xn− 1
����

���� + 2〈u − z, xn+1 − z〉􏼣,

xn+1 − z
����

����
2 ≤ xn − z

����
����
2

− ρn 4 − ρn( 􏼁
f
2
n wn( 􏼁

∇fn wn( 􏼁
����

����
2

+ θn xn − xn− 1
����

����
2

+ 2M1 · θn xn − xn− 1
����

����

+ 2βn〈u − z, xn+1 − z〉.
(79)

Let

sn � xn − z
����

����
2
;

δn �
θn

βn

xn − xn− 1
����

����
2

+ 2M1 ·
θn

βn

xn − xn− 1
����

����

+ 2〈u − z, xn+1 − z〉;

ηn � ρn 4 − ρn( 􏼁
f
2
n wn( 􏼁

∇fn wn( 􏼁
����

����
2;

cn � θn xn − xn− 1
����

����
2

+ 2M1 · θn xn − xn− 1
����

����

+ 2βn〈u − z, xn+1 − z〉.

(80)

)en (78) can reduce to the inequalities

sn+1 ≤ 1 − βn( 􏼁sn + βnδn, n≥ 1,

sn+1 ≤ sn − ηn + cn.
(81)

Furthermore, we know that

􏽘

∞

n�0
βn �∞, (82)

lim
n⟶∞

cn � lim
n⟶∞

θn xn − xn− 1
����

����
2

+ 2M1􏼔

· θn xn − xn− 1
����

���� + 2βn〈u − z, xn+1 − z〉􏽩 � 0.

(83)

Let nk􏼈 􏼉 be a subsequence of n{ } and suppose that

lim
k⟶∞

ηnk
� 0. (84)

)en, we have

lim
k⟶∞

ρnk
4 − ρnk

􏼐 􏼑
f
2
nk

wnk
􏼐 􏼑

∇fnk
wnk

􏼐 􏼑
�����

�����
2 � 0, (85)

which implies, by our assumption, that

f
2
nk

wnk
􏼐 􏼑

∇fnk
wnk

􏼐 􏼑
�����

�����
2⟶ 0, as k⟶∞. (86)

Since ‖∇fnk
(wnk

)‖􏽮 􏽯 is bounded, it follows that
fnk

(wnk
)⟶ 0 as k⟶∞, so we get

limk⟶∞‖(I − PQnk

)Awnk
‖ � 0.

We next show that ωw(xn) ⊂ S. Since xn􏼈 􏼉 is bounded,
the set ωw(xn) is nonempty. Let x∗ ∈ ωw(xn); then there
exists a subsequence xnk

􏽮 􏽯 of xn􏼈 􏼉 such that xnk
⇀x∗.

wn − xn

����
���� � xn + θn xn − xn− 1( 􏼁 − xn

����
���� � θn xn − xn− 1

����
����⟶ 0,

(87)

and then wnj
⇀x∗, and A is a bounded linear operator, so

Awnj
⇀Ax∗.

Since PQnj
Awnj
∈ Qnj

, we have

q Awnj
􏼒 􏼓 +〈ζnj

, PQnj

Awnj
− Awnj
〉 +

β
2

PQnj

Awnj
− Awnj

������

������

2
≤ 0,

(88)
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where ζnj
∈zq(Awnj

), and, by the boundedness of zq, we get

q Awnj
􏼒 􏼓≤ ζnj

�����

����� · I − PQnj
􏼒 􏼓Awnj

������

������ −
β
2

I − PQnj
􏼒 􏼓Awnj

������

������

2
⟶ 0,

(89)

and, using the weak lower semicontinuity of q,

q Ax
∗

( 􏼁≤ lim inf
j⟶∞

q Awnj
􏼒 􏼓≤ 0. (90)

)us, Ax∗ ∈ Q.
On the other hand,

xn+1 − wn

����
����≤ 1 − βn( 􏼁 wn − τn∇fn wn( 􏼁 − wn

����
���� + βn‖u − z‖

� 1 − βn( 􏼁 ·
ρnfn wn( 􏼁

∇fn wn( 􏼁
����

����
+ βn‖u − z‖⟶ 0.

(91)

Since (xnj+1 − βnj
u) ∈ Cnj

, we have

c wnj
􏼒 􏼓 +〈ξnj

, xnj+1 − βnj
u − wnj
〉 +

α
2

xnj+1 − βnj
u − wnj

�����

�����
2
≤ 0,

(92)

where ξnj
∈zc(wnj

), and, by the boundedness of zc, we get

c wnj
􏼒 􏼓≤ ξnj

�����

����� · wnj
− xnj+1 + βnj

u
�����

����� −
α
2

xnj+1 − wnj
− βnj

u
�����

�����
2

≤ ξnj

�����

����� · wnj
− xnj+1

�����

����� + βnj
‖u‖􏼔 􏼕

−
α
2

xnj+1 − wnj

�����

�����
2

+ β2nj
‖u‖

2
− 2〈xnj+1 − wnj

, βnj
u〉􏼔 􏼕⟶ 0,

(93)

and, using the weak lower semicontinuity of c,

c x
∗

( 􏼁≤ lim inf
j⟶∞

c wnj
􏼒 􏼓≤ 0. (94)

)us, x∗ ∈ C; then x∗ ∈ S, that is, ωw(xn) ⊂ S.
Next, we have

xn+1 − xn

����
����≤ 1 − βn( 􏼁 wn − τn∇fn wn( 􏼁 − xn

����
���� + βn u − xn

����
����

≤ 1 − βn( 􏼁 wn − xn

����
���� + τn ∇fn wn( 􏼁

����
����􏽨 􏽩 + βn xn − u

����
����

≤ wn − xn

����
���� +

ρnfn wn( 􏼁

∇fn wn( 􏼁
����

����
+ βn xn − u

����
����⟶ 0.

(95)

For z � PSu and xnk
⇀x∗ ∈ S, using Lemma 1,

〈u − z, x∗ − z〉≤ 0, so

lim sup
n⟶∞
〈u − z, xn − z〉 � lim sup

k⟶∞
〈u − z, xnk

− z〉

�〈u − z, x
∗

− z〉 ≤ 0,

(96)

and then

lim sup
n⟶∞
〈u − z, xn+1 − z〉

� lim sup
n⟶∞
〈u − z, xn+1 − xn〉 +〈u − z, xn − z〉( 􏼁≤ 0,

(97)

and thus

lim sup
k

δnk
� lim sup

k

θnk

βnk

xnk
− xnk− 1

�����

�����
2

+ 2M1􏼢

·
θnk

βnk

xnk
− xnk− 1

�����

����� + 2〈u − z, xnk+1 − z〉􏼣≤ 0.

(98)

From (82), (83), (98), and Lemma 8, we conclude that the
sequence xn􏼈 􏼉 converges strongly to z � PSu. )e proof is
complete.

4. Numerical Experiments

In this section, we present a numerical experiment to il-
lustrate the performance of the proposed algorithms. Our
numerical experiments are coded in MATLAB R2007
running on personal computer with 3.50GHz Intel Core i3
and 4GB RAM. In what follows, we apply our algorithms to
solve the problem of least absolute shrinkage and selection
operator, which requires solving a convex optimization
problem as

min
x∈Rn

,
1
2
‖Ax − y‖

2
,

s.t., ‖x‖1 ≤ t0,

(99)

where A ∈ Rm×n, y ∈ Rm, and t0 > 0 are given elements. In
our experiment, we first generate an m × n matrix A ran-
domly by a standardized normal distribution, and x is a
sparse signal with n elements, only K of which is nonzero,
which is also generated randomly. )e observation y is
generated as y � Ax. )e parameters in this experiment are
set with n � 512, m � 256, ε � 10− 4, and t0 � K. In this
situation, it is readily seen that C � x ∈ Rn: c(x)≤ 0{ } with
c(x) � ‖x‖1 − t0 and Q � y􏼈 􏼉, which in turn implies that

Cn � x ∈ Rn
: 〈ξn, x〉 ≤ 〈ξn, wn〉 − wn

����
����1 + t0􏽮 􏽯, (100)

where ξn is defined by

ξn( 􏼁i �

1, if ξn( 􏼁i> 0;

[− 1, 1], if ξn( 􏼁i � 0;

− 1, if ξn( 􏼁i< 0,

⎧⎪⎪⎨

⎪⎪⎩
(101)

standing for the subdifferential of ‖ · ‖1. As a half-space, the
associated projection onto Cn takes the following form:
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PCn
(x) �

x +
〈ξn, wn − x〉 − wn

����
����1 + t0

ξn

����
����
2 ξn, if x ∉ Cn

x, if x ∈ Cn.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(102)

To show the efficiency of our algorithm, we compare
it with the algorithm proposed in [40]. )e only dif-
ference of these two algorithms is that there are no in-
ertial terms in the algorithm proposed in [40]. For the
convenience, we denote Algorithm 1 by Algo. I and the
algorithm in [40] by Algo. II, respectively. In Algo-
rithm 1, we set

θn �

min 0.8,
1

n
2

xn − xn− 1
����

����
2

⎧⎨

⎩

⎫⎬

⎭, if xn ≠ xn− 1,

0.8, if xn � xn− 1,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

τn �

1
n A
∗

Awn − y( 􏼁
����

����
, if A

∗
Awn − y( 􏼁

����
����≠ 0,

0, if A
∗

Awn − y( 􏼁
����

���� � 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(103)

In Algo. II, we set θn ≡ 0 and τn is chosen the same as
above. )e stopping criterion is that ‖xk+1 − xk‖< ε. )e
initial points are x0 � (0, 0, . . . , 0)T and
x1 � 100(1, 1, . . . , 1)T. )e numerical results of these two
algorithms with different choices of the sparsity number K

are listed in Figures 1–4. It is easy to see that Algo. I
converges faster than Algo. II does, which indicates that our
modified algorithm indeed accelerates the convergence of
the original algorithm.
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Figure 1: Iterative results with K � 50.
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Figure 2: Iterative results with K � 40.
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Figure 3: Iterative results with K � 30.
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Figure 4: Iterative results with K � 20.
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5. Conclusions

In this paper, we present two inertial relaxed CQ algorithms
for solving split feasibility problems in Hilbert spaces by
adopting variable step size. )ese algorithms adopt the new
convex subset form, and it is easy to calculate the projections
onto these sets. Furthermore, step size selection in the al-
gorithms does not depend on the operator norm. )e
convergence theorems are established under some mild
conditions and a numerical experiment is given to illustrate
the performance of the proposed algorithms.
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In a linear programming for horizontally partitioned data, the equality constraint matrix is divided into groups of rows. Each
group of the matrix rows and the corresponding right-hand side vector are owned by different entities, and these entities are
reluctant to disclose their own groups of rows or right-hand side vectors. To calculate the optimal solution for the linear
programming in this case, Mangasarian used a randommatrix of full rank with probability 1, but an event with probability 1 is not
a certain event, so a random matrix of full rank with probability 1 does not certainly happen. In this way, the solution of the
original linear programming is not equal to the solution of the secure linear programming. We used an invertible random matrix
for this shortcoming. *e invertible random matrix converted the original linear programming problem to a secure linear
program problem. *is secure linear programming will not reveal any of the privately held data.

1. Introduction

Recently, people have become interested in privacy-pre-
serving classification and data mining [1–10] and have been
involved in the field of optimization, especially in linear
programming [11–15], where the data to be classified or
mined belongs to different entities that are not willing to
disclose the data. Mangasarian [13] proposed a random
matrix which make the original linear programming
problem into a secure linear programming problem. When
the random matrix is not full rank [16], especially when the
entities collide with each other, the original linear pro-
gramming problem is not equivalent to the secure linear
programming problem. We address this problem by using
an invertible matrix multiplied by the two sides of the
equality constraints of the linear program. *is procedure
converts the original linear program to an equivalent secure
linear program, and this security linearity does not reveal
any private data.*is solution vector can bemade public and
applied by all entities. On the contrary, this algorithm
prevents entities from colliding with each other.

Here, we define some symbols. If a vector is not
transposed to the row vector by the superscript T, the vector
will be a column vector. For a vector x ∈ Rn, the symbol xj

will represent the jth component or jth block of the com-
ponent. We will define the scalar (inner) product of two
vectors x and y in the n-dimensional real space Rn as xTy.
*e symbol A ∈ Rm×n will represent a real m × n matrix.
Similarly, AT will represent the transpose of A and Ai. will
represent the i row or i block of rows of A and A.j the jth

column or the jth block of columns of A. A zero vector in a
real space of any dimension will be denoted by 0.

2. Privacy-Preserving Linear Programming for
Horizontally Partitioned Data

Consider the following linear programming:

min z � c
T
x,

s.t.
Ax � b

x≥ 0.

(1)

Hindawi
Journal of Mathematics
Volume 2021, Article ID 6651480, 4 pages
https://doi.org/10.1155/2021/6651480

mailto:kongdebin@nanshan.edu.cn
https://orcid.org/0000-0001-9464-2650
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6651480


Here, A b( 􏼁 consists of the matrix A ∈ Rm×n and the
right-hand vector b ∈ Rm and is divided into p horizontal
blocks. *e number of rows of the p horizontal block is
recorded as m1, m2, . . . , mp, where m1 + m2 + · · · + mp � m.
Anm order identity matrix E is divided into pvertical blocks.
*e number of columns of the p vertical block is recorded as
m1, m2, . . . , mp, where m1 + m2 + · · · + mp � m. Each block
of rows of [A b] corresponding to the index sets
I1, I2, . . . , Ip, ∪

p

i�1Ii � 1, 2, . . . , m{ }, is owned by a distinct
entity that is unwilling to make its block of data public or
share it with the other entities. We will accomplish this goal
by the following transformation.

Each entity i, i � 1, 2, . . . , p, chooses its own private
random matrix B.Ii

∈ Rm×mi , whose corresponding index set
is Ii. *e value of each element in B.Ii

is in the interval(0, 1).
*e following decompositions can be obtained:

A �

AI1 .

AI2 .

⋮
AIp.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and b �

bI1
bI2
⋮
bIp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Define

B � B.I1
+ λE.I1

B.I2
+ λE.I2

· · · B.Ip
+ λE.Ip

􏼐 􏼑, λ ∈ R, λ≥ n.

(2)

Because the matrix B is an m order strictly diagonally
dominant matrix, we can easily conclude that the matrix B is
an invertible matrix [17]. Based on this fact, we define the
following operation:

BA � B.I1
+ λE.I1

B.I2
+ λE.I2

· · · B.Ip
+ λE.Ip

􏼐 􏼑

AI1 .

AI2 .

⋮

AIp.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� B.I1
+ λE.I1

􏼐 􏼑AI1 . + B.I2
+ λE.I2

􏼐 􏼑AI2 . + · · · + B.Ip
+ λE.Ip

􏼒 􏼓AIp.,

Bb � B.I1
+ λE.I1

B.I2
+ λE.I2

· · · B.Ip
+ λE.Ip

􏼐 􏼑

bI1

bI2

⋮

bIp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� B.I1
+ λE.I1

􏼐 􏼑bI1
+ B.I2

+ λE.I2
􏼐 􏼑bI2

+ · · · + B.Ip
+ λE.Ip

􏼒 􏼓bIp
.

(3)

According to the above discussion, the original linear
programming (1) was converted into the following secure
linear programming:

min z � c
T
x,

s.t.,
BAx � Bb

x≥ 0.

(4)

*e linear programming (1) and the linear programming
(4) have the same solution set since the matrix B is invertible.
*e linear programming (4) is quite safe since only the entity
i knows B.Ii

, i � 1, 2, . . . , p. Other entities cannot compute

AIi.
and bIi

from (B.Ii
+ λE.Ii

)AIi.
and (B.Ii

+ λE.Ii
)bIi

without
knowing the random matrix B.Ii

. We regard the linear
programming (4) as a secure linear programming. Whether
the linear programming (1) is equivalent to the linear
programming (4) or not? Let us discuss next.

Proposition 1. If the matrix B is an m order invertible
matrix; then, the secure linear program (4) is solvable if and
only if the linear program (1) is solvable in case the solution
sets of the two linear programs are identical.

Proof. As the matrix B is an m-order invertible matrix, the
following relation holds:

Ax � b⇔ BAx � Bb. (5)

*erefore, the feasible regions of the two linear programs
are the same. Again according to the objective functions of
the linear programming (1) and the linear programming (4),
we can conclude that the two linear programs have the same
solution set.

*e following algorithm can get the best solution of the
linear programming (1) without revealing any private
data. □

3. Formulation of the Privacy-
Preserving Algorithm

As shown in Section 2, the linear program (1) is divided
among p entities. We put forward the following algorithm:

Step 1. All entities choose a suitable real number λ, λ≥ n

together.
Step 2. Suppose the matrix AIi.

bIi
􏼐 􏼑 has mi rows,

where i � 1, 2, . . . , p. A randommatrix B.Ii
is generated

by the entity possessing the matrix AIi.
bIi

􏼐 􏼑, where
B.Ii
∈ Rm×mi . *e value of each element in B.Ii

is in the
interval (0,1), and B.Ii

is not public.
Step 3. *e entity that owns the matrix AI1. bI1􏼐 􏼑 is
responsible to compute (B.I1

+ λE.I1
)AI1. and

(B.I1
+ λE.I1

)bI1
, and the result is passed to the entity

that owns the matrix AI2. bI2􏼐 􏼑. *en, the entity that
owns the matrix AI2. bI2􏼐 􏼑 is responsible to compute
(B.I1

+ λE.I1
)AI1. + (B.I2

+ λE.I2
)AI2. and (B.I1

+ λE.I1
)

bI1
+ (B.I2

+ λE.I2
)bI2

, and the result is passed to the
entity that owns the matrix AI3. bI3􏼐 􏼑. And, finally, the
entity that owns the matrix AIp. bIp

􏼐 􏼑 is responsible to
compute the following:

BA � B.I1
+ λE.I1

􏼐 􏼑AI1. + B.I2
+ λE.I2

􏼐 􏼑AI2.

+ · · · + B.Ip
+ λE.Ip

􏼒 􏼓AIp.,
(6)

Bb � B.I1
+ λE.I1

􏼐 􏼑bI1
+ B.I2

+ λE.I2
􏼐 􏼑bI2

+ · · · + B.Ip
+ λE.Ip

􏼒 􏼓bIp
.

(7)

Step 4. Utilizing the linear programming (4) to calculate
the minimum value and the optimal solution of the
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objective function, which is theminimum value and the
optimal solution of the objective function of the linear
programming (1).

Remark 1. *rough this algorithm, the solution vector x can
be used publicly. However, it does not reveal any entity’s
data.

4. Numerical Experiments

A linear programming:

min z � −3x1 − 5x2,

s.t.

x1 + x3 � 8,

2x2 + x4 � 12,

3x1 + 4x2 + x5 � 36,

xi ≥ 0, i � 1, . . . , 5.

(8)

We can find that the optimal solution of (8) is x∗ �

(4, 6, 4, 0, 0)T.Let I1 � 1, 2{ }, I2 � 3{ }, AI1. �
1 0 1 0 0
0 2 0 1 0􏼠 􏼡,

AI2 . � 3 4 0 0 1( 􏼁, bI1
�

8
12􏼠 􏼡, bI2

� (36), and λ � 5.

Entity 1 generates a random matrix B.I1
which is not

published. Note that

B.I1
�

0.9501 0.7621

0.2311 0.7621

0.6068 0.7621

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (9)

Entity 1 makes public its matrix product
(B.I1

+ λE.I1
)AI1. and (B.I1

+ λE.I1
)bI1

.
Entity 2 generates a random matrix B.I2

which is not
published. Note that

B.I2
�

0.7621

0.7621

0.7621

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (10)

Entity 2 makes public its matrix product
(B.I2

+ λE.I2
)AI2. and (B.I2

+ λE.I2
)bI2

.
*ese products do not reveal any private data, but it can

be used to calculate the constraint matrix BA and the right-
hand side Bb of the secure linear programming. Next, we
derive a linear programming (11) from the linear pro-
gramming (4), which is equivalent to linear programming
(8):

min z � −3x1 − 5x2,

s.t.

8.2364x1 + 4.5726x2 + 5.9501x3 + 0.7621x4 + 0.7621x5 � 84.1816,

2.5174x1 + 14.5726x2 + 0.2311x3 + 5.7621x4 + 0.7621x5 � 98.4296,

17.8931x1 + 24.5726x2 + 0.6068x3 + 0.7621x4 + 5.7621x5 � 221.4352,

xi ≥ 0 i � 1, . . . , 5.

(11)

*e solution of this secure linear programming (11) is
the same as that of the linear programming (8).*is solution
can be made public without revealing any private data.

If we use Mangasarian’s study [13] which proposed the
algorithm of privacy-preserving horizontally partitioned
linear programs, the linear programming (8) needs to be
converted into the following linear programming:

min z � −3x1 − 5x2,

s.t.

3.2364x1 + 4.5726x2 + 0.9501x3 + 0.7621x4 + 0.7621x5 � 44.1816,

2.5174x1 + 4.5726x2 + 0.2311x3 + 0.7621x4 + 0.7621x5 � 38.4296,

2.8931x1 + 4.5726x2 + 0.6068x3 + 0.7621x4 + 0.7621x5 � 41.4352,

xi ≥ 0 i � 1, . . . , 5.

(12)

*e optimal solution to secure linear program (12) is
x
∗′ � (8, 4, 0, 0, 0)T. *is is not consistent with the optimal

solution for the original linear programming (8). *e reason
for this error is that the random matrix

B.I1
B.I2􏼐 􏼑 �

0.9501 0.7621 0.7621
0.2311 0.7621 0.7621
0.6068 0.7621 0.7621

⎛⎜⎝ ⎞⎟⎠ is not a full rank

matrix. In this way, the original linear programming (8) is
not equivalent to the secure linear program (12).
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In this paper, we aim to construct a new strong convergence algorithm for a split common fixed point problem involving the
demicontractive operators. It is proved that the vector sequence generated via the Halpern-like algorithm converges to a solution
of the split common fixed point problem in norm.)emain convergence results presented in this paper extend and improve some
corresponding results announced recently. )e highlights of this paper shed on the novel algorithm and the new
analysis techniques.

1. Introduction

Let H1 and H2 be the Hilbert spaces and C and Q be
nonempty closed and convex subsets of H1 and H2,
respectively.

)e split feasibility problem (SFP) is known to find

x ∈ C, such thatAx ∈ Q, (1)

where A: H1⟶ H2 is a linear bounded operator.
In [1], the split feasibility problem (SFP) in the finite-di-

mensional Hilbert spaces was introduced by Censor and
Elfving. )is problem is equivalent to a number of nonlinear
optimization problems and finds numerous real applications,
such as signal processing andmedical imaging (see, e.g., [2–7]).

For this split problem, simultaneous multiprojections
algorithm was employed by Censor and Elfving in the finite-
dimensional space Rn to obtain the algorithm as follows:

xn+1 � A
− 1

PQPA(C)Axn, (2)

where both C and Q are convex and closed subsets of Rn, the
linear bounded operator A of Rn is an n × n matrix, and PQ is
the orthogonal projection operator onto the sets Q.

)e above algorithm (2) involves the matrix A− 1 (one
always assumes the existence of A− 1) at every iterative step.
Calculating A− 1 is very much time-consuming, if the di-
mensions are large scale, in particular, and thus it does not
become popular.

In order to overcome the fault, Byrne [2, 8] proposed the
following novel algorithm CQ, which is under the spotlight
of recent research

xn+1 � PC xn − cA
∗

I − PQ􏼐 􏼑Axn􏼐 􏼑, n≥ 0, (3)

where PC and PQ are the orthogonal projection operators
onto the sets C and Q, respectively, and 0< c< (2/ρ) with ρ
being the spectral radius of the composite mapping A∗A. But,
the CQ algorithm’s step-size is fixed, and it is related to
spectral radius of A∗A. On the other hand, the orthogonal
projection onto the subsetsC andQ in Hilbert spaceH1 is not
easily calculated generally except the special cases, such as
balls and polyhedrals. With the real applications (intensity-
modulated radiation therapy andmedical imaging) of the SFP
in signal processing, the SFP has obtained much attention.
Now, the approximate solutions of the SFP have been studied
extensively by scholars and engineers (see, e.g., [9–13]).
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In (1), if C andQ are the intersections of fixed point sets
of finite many nonlinear operators, the SFP becomes the split
common fixed point problem (SCFPP). )e SCFPP was
studied first by Censor and Segal [14] in 2009, which consists
of finding an element x ∈ H1 with

x ∈ ∩
m

i�1
Fix Ti( 􏼁, s.t. Ax ∈ ∩

n

j�1
Fix Sj􏼐 􏼑, (4)

where Fix(Ti) denotes the fixed point set of Ti: H1⟶ H1
and Fix(Sj) denotes the fixed point sets of Si: H2⟶ H2,
respectively.

In particular, if m � n � 1, then

x ∈ Fix(T), s.t. Ax ∈ Fix(S), (5)

and T: H1⟶ H1, S: H2⟶ H2, and Fix(T) denotes the
fixed point set of T, and Fix(S) denotes the fixed point set
of S.

)e SCFPP becomes a specific case of SFP and closely
related to SFP. To solve this problem, the original algorithm
for the directed operator was introduced by Censor and
Segal [14] in 2009 as follows:

xn+1 � T xn − ρA
∗
(I − S)Axn( 􏼁, n≥ 0, (6)

where ρ satisfies the constraint condition 0< ρ< (2/‖A‖2),
and the authors got the weak convergence of the sequence
xn􏼈 􏼉 for solving the SCFPP (5) if the SCFPP consists, that is,
its solution set is nonempty.

Recently, Cui and Wang [15] studied the following al-
gorithm, and they got the weak convergence of the sequence
xn􏼈 􏼉 for solving the SCFPP (5):

xn+1 � Uλ xn − ρnA
∗
(I − T)Axn( 􏼁, (7)

where Uλ � (1 − λ)I + λU and ρn is given in the following
pattern:

ρn �

(1 − τ) (I − T)Axn

����
����
2

2 A
∗
(I − T)Axn

����
����
2 , Axn ≠T Axn( 􏼁,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

)e step-size of this algorithm ρn does not depend on the
norm of the operator A and searches automatically.

In 2015, Boikanyo [16] extended the main results of Cui
and Wang [15] and constructed the Halpern-type algorithm
for demicontractive operators that converge to a solution of
the SCFPP (5) strongly:

xn+1 � αnu + 1 − αn( 􏼁Uλ xn − ρnA
∗
(I − T)Axn( 􏼁, (9)

where ρn is given as (8). In this result, the resolvent I −

ρnA∗(I − T)A plays an important role. Indeed, the tech-
niques of resolvents is quite popular, and it acts as a bridge
between fixed point problems and a number of optimization
problems (see, e.g., [17–21] and the references therein).

Motivated by the above results, we propose a novel al-
gorithm on demicontractive operators for approximating a
solution of the SCFPP (5):

un � xn − ρnA
∗
(I − T)Axn,

xn+1 � 1 − αn( 􏼁 1 − ξn( 􏼁I + ξnU 1 − ηn( 􏼁I +ηnU􏼂 􏼃􏼈 􏼉un +αnu,

⎧⎨

⎩

(10)

where ρn is also obtained by (8). Our algorithm is also based
on the Halpern iteration. Indeed, it is a core for many al-
gorithms in split problems (see, e.g., [22–26]). We get the
strong convergence of the iterative sequence xn􏼈 􏼉 generated
by (10) for solving the SCFPP (5). Our main results are in
two folds. First, we construct a novel iterative algorithm to
solve the split common fixed point problem for the demi-
contractive operators. Second, we permit step-size to be
selected self-adaptively by the self-adaptive method, which
avoids to depend on the norm of the nonlinear operator A.
Our results extend and improve some results of Boikanyo
[16], Cui and Wang [15], Yao et al. [27], and many others.

2. Preliminaries

In this section, we will present some lemmas, which are
useful to prove our main results as follows.

Let H be a Hilbert space, which is endowed with the
inner product 〈·, ·〉, norm ‖ · ‖. )en, the following in-
equalities hold:

‖u + v‖
2 ≤ ‖u‖

2
+ 2〈v, u + v〉, ∀u, v ∈ H, (11)

‖tu +(1 − t)v‖
2

� t‖u‖
2

+(1 − t)‖v‖
2

− t(1 − t)‖u − v‖
2
,

∀t ∈ R and∀u, v ∈ H.

(12)

Definition 1. Let T: H⟶ H be an operator, then I − T

called demiclosed at zero, if the following implication holds
for any xn􏼈 􏼉 in H:

xn ⇀x

(I − T)xn ⟶ 0
􏼩⇒x � Tx. (13)

Note that the nonexpansive operator is demiclosed at
zero [28].

Lemma 1 (see [29]). Let an􏼈 􏼉 be a sequence of real non-
negative numbers with

an+1 ≤ 1 − cn( 􏼁an + δn, (14)

where cn􏼈 􏼉 is a sequence in (0, 1) and δn􏼈 􏼉 is a real sequence
such that

(i) 􏽐
∞
n�1 cn �∞

(ii) limsupn⟶∞(δn/cn)≤ 0 or 􏽐
∞
n�1 |δn|<∞

Then, limn⟶∞an � 0.

Lemma 2 (see [15]). Let A: H1⟶ H2 be a linear bounded
operator and T: H2⟶ H2 a τ− demicontractive mapping
with τ < 1. If A− 1Fix(T)≠∅, then it is as follows:
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(a) (I − T)A􏽢x � 0⇔A∗(I − T)A􏽢x � 0, ∀􏽢x ∈ H1.
(b) In addition, for z ∈ A− 1Fix(T),

x − z − ρA
∗
(I − T)A􏽢x

����
����
2

+
(1 − τ)

2
‖(I − T)A􏽢x‖

4

4 A
∗
(I − T)A􏽢x

����
����
2

≤ ‖􏽢x − z‖
2
,

(15)

where x ∈ H1, Ax≠T(Ax) and

ρ ≔
(1 − τ)‖(I − T)A􏽢x‖

2

2 A
∗
(I − T)A􏽢x

����
����
2 . (16)

Lemma 3 (see [30]). Let H be a Hilbert space and let T be an
L-Lipschitzian mapping defined on H with the module L≥ 1.
Set

K ≔ ξT(ηT +(1 − η)I) +(1 − ξ)I. (17)

If 0< ξ < η< (1/1 +
�����
1 + L2

√
), then the following con-

clusions hold:

(1) K is demiclosed at zero point 0, if T is demiclosed at
0

(2) Fix(T) � Fix(T(ηT + (1 − η)I)) � Fix(K)

(3) If T: H⟶ H is a quasi-pseudo-contractive oper-
ator, then the operator K is quasi-non-expansive

Lemma 4 (see [31]). Let sk􏼈 􏼉 be a real numbers sequence that
does not decrease at infinity in the sense that there exists a

subsequence skj
􏼚 􏼛 of sk􏼈 􏼉 such that skj

􏼚 􏼛< skj+1
􏼚 􏼛 for all j≥ 0.

Define an integer sequence mk􏼈 􏼉k≥ k0
by

mk � max k0 ≤ l≤ k: sl < sl+1􏼈 􏼉. (18)

Then, mk⟶∞ as k⟶∞ and

smk+1≥max smk
, sk􏽮 􏽯, (19)

for all k≥ k0.

3. Some Nonlinear Operators

Definition 2. An operator T: H⟶ H is said to be
L− Lipschitzian if and only if there exists L> 0 such that

‖Tx − Ty‖≤L‖x − y‖, (20)

for all x, y ∈ C.

Definition 3. An operator T: H⟶ H is said to be non-
expansive if and only if

‖Tx − Ty‖≤ ‖x − z‖, ∀x ∈ H. (21)

Definition 4. An operator T: H⟶ H is said to be quasi-
non-expansive if and only if Fix(T)≠∅ and

‖Tx − z‖≤ ‖x − z‖, ∀x ∈ H, ∀z ∈ Fix(T). (22)

Definition 5. An operator T: H⟶ H is said to be firmly
nonexpansive if and only if

‖Tx − Ty‖
2 ≤ ‖x − y‖

2
− ‖(I − T)x − (I − T)y‖

2
,

∀x, y ∈ H.
(23)

Definition 6. An operator T: H⟶ H is said to be firmly
quasi-non-expansive if and only if Fix(T)≠∅ and

‖Tx − z‖
2 ≤ ‖x − z‖

2
− ‖(I − T)x‖

2
, ∀x ∈ H, ∀z ∈ Fix(T).

(24)

Definition 7. An operator T: H⟶ H is said to be pseu-
docontractive if and only if

〈Tx − Ty, x − y〉≤ ‖x − y‖
2
, ∀x, y ∈ H. (25)

Note that T is pseudocontractive if and only if the op-
erator I − T is monotone. )ere is also an alternative def-
inition for pseudocontractive operators, that is, T is said to
be pseudocontractive if and only if

‖Tx − Ty‖
2 ≤ ‖x − y‖

2
+‖(I − T)x − (I − T)y‖

2
,

∀x, y ∈ H.
(26)

Definition 8. An operator T: H⟶ H is said to be quasi-
pseudo-contractive if and only if Fix(T)≠∅ and

Tx − x
∗����
����
2 ≤ x − x

∗����
����
2

+‖Tx − x‖
2
,

∀x ∈ H, ∀x∗ ∈ Fix(T).
(27)

Definition 9. An operator T: H⟶ H is said to be strictly
pseudocontractive if and only if there exists k ∈ [0, 1) such
that

‖Tx − Ty‖
2 ≤ ‖x − y‖

2
+ k‖(I − T)x − (I − T)y‖

2
,

∀x, y ∈ H.
(28)

Definition 10. A operator T: H⟶ H is said to be directed
if and only if

〈z − Tx, x − Tx〉≤ 0, ∀x ∈ H, ∀z ∈ Fix(T). (29)

Definition 11. An operator T: H⟶ H is said to be
τ− demicontractive with τ < 1 if and only if

‖Tx − z‖
2 ≤ ‖x − z‖

2
+ τ‖x − Tx‖

2
,

∀x ∈ H, ∀z ∈ Fix(T).
(30)

It is easy to obtain that (29) is equivalent to
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‖z − Tx‖
2

+‖x − Tx‖
2

− ‖x − z‖
2 ≤ 0,

∀x ∈ H, ∀z ∈ Fix(T).
(31)

Remark 1. )e classes of k-demicontrative mappings, di-
rected mappings, quasi-non-expansive mappings, and
nonexpansive mappings are closely related. By the above
definitions, we obtain the following conclusion relations
easily (see Figures 1–7).

(1) )e nonexpansive mapping with Fix(T)≠∅ is
quasi-non-expansive mapping

(2) )e quasi-non-expansive mapping is
0− demicontrative mapping

(3) )e firmly nonexpansive mapping is nonexpansive
mapping

(4) )e firmly quasi-non-expansive mapping is quasi-
non-expansive mapping

(5) )e firmly nonexpansive mapping is firmly quasi-
non-expansive mapping

(6) )e directed mapping is demicontractive mapping
(7) )e demicontractive mapping is quasi-pseudo-

contractive mapping
(8) )e strictly pseudocontractive mapping is pseudo-

contractive mapping
(9) )e pseudocontractive mapping is quasi-pseudo-

contractive mapping

4. Main Results

In this section, some assumptions are as follows:

(1) H1 and H2 are twoHilbert spaces, A: H1⟶ H2 is a
linear bounded operator, and A∗ is the adjoint of A

(2) U: H1⟶ H1 and T: H2⟶ H2 are two
L− Lipschitzian operators with L≥ 1, Fix(U)≠∅,
andFix(T)≠∅

(3) U: H1⟶ H1 is a κ-demicontractive operator
(κ< 1), and T: H2⟶ H2 is a τ-demicontractive
operator (τ < 1)

(4) I − U and I − T are two demiclosed operators at O

(5) )e set of solutions of SCFPP (5), denoted by S, is
nonempty

)e strong convergence of a sequence xn􏼈 􏼉 to a point
x ∈ H is denoted by xn⟶ x.

Now, we give the new algorithm to find x∗ ∈ S.where A

is a bounded and linear mapping, A∗ is the adjoint of op-
erator A, and ρn is obtained as follows:

ρn �

(1 − τ) (I − T)Axn

����
����
2

2 A
∗
(I − T)Axn

����
����
2 , Axn ≠T Axn( 􏼁,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(33)

Algorithm 1. H1 is a real Hilbert space, and Fix(U)≠∅.
Take an initial point x0 ∈ H1 arbitrarily, and fix u ∈ H1 and
θn􏼈 􏼉 ⊂ (0, 1). If the n− th iteration xn is available, then the

(n + 1)− th iteration is constructed via the following formula:

un � xn − ρnA
∗
(I − T)Axn,

xn+1 � θnu + 1 − θn( 􏼁 1 − μn( 􏼁I +μnU 1 − ]n( 􏼁I + ]nU􏼂 􏼃􏼈 􏼉un,

⎧⎨

⎩

(32)

Lemma 5. Assume that H1 is a Hilbert space, U: H1⟶ H1
is a κ-demicontractive operator with κ≤ 1, L− Lipschitzian

Quasi-non-expansive mapping

Non-expansive mapping

Figure 1: )e relations of some nonlinear operators.

Non-expansive mapping

Firmly non-expansive mapping

Figure 2: )e relations of some nonlinear operators.

Firmly non-expansive mapping

Firmly quasi-non-expansive mapping

Figure 3: )e relations of some nonlinear operators.
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mappings (L≥ 1), and Fix(U)≠∅. Denote Uμ,] ≔ (1 − μ)I +

μU[(1 − ])I + ]U] with 0< μ< ]< (2 − κ/1+�����������
1 + L2(2 − κ)

􏽰
). Gen, for all x ∈ H1,

z − Uμ,]

�����

�����
2
≤ ‖x − z‖

2
− μ] 2 − 2] − κ − ]2L2

􏼐 􏼑‖Ux − x‖
2
,

(34)

where z ∈ Fix(U). Moreover,

z − Uμ,]

�����

�����≤ ‖z − x‖. (35)

That is, Uμ,] is quasi-non-expansive.

Proof. Since z ∈ Fix(U), we get from (30) that

Directed mapping

Demicontractive mapping

Quasi-pseudo-contractive mapping

Figure 5: )e relations of some nonlinear operators.

Quasi-pseudo-contractive mapping

Pseudocontractive mapping

Strictly pseudocontractive mapping

Figure 6: )e relations of some nonlinear operators.

Quasi-non-expansive mapping

Firmly quasi-non-expansive
mapping

Figure 4: )e relations of some nonlinear operators.
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‖U[(1 − ])I + ]U]x − z‖
2

≤ ‖[(1 − ])I + ]U]x − z‖
2

+ κ‖[(1 − ])I + ]U]x − U[(1 − ])I + ]U]x‖
2

≤ ‖(1 − ])(x − z) + ](Ux − z)‖
2

+ κ‖[(1 − ])I + ]U]x − U[(1 − ])I + ]U]x‖
2
.

(36)

Based on the fact that U is L− Lipschitzian, we get

‖Ux − U[(1 − ])I + ]U]x‖≤ ]L‖x − Ux‖. (37)

Also, from (30) and (12), we can get

‖(1 − ])(x − z) + ](Ux − z)‖
2

� (1 − ])‖x − z‖
2

+ ]‖Ux − z‖
2

− ](1 − ])‖x − Ux‖
2

≤ (1 − ])‖x − z‖
2

+ ] ‖x − z‖
2

+ κ‖Ux − x‖
2

􏼐 􏼑

− ](1 − ])‖x − Ux‖
2

� ‖x − z‖
2

+ ](] + κ − 1)‖Ux − x‖
2
.

(38)

By (12) and (37), we get

‖[(1 − ])I + ]U]x − U[(1 − ])I + ]U]x‖
2

� ‖(1 − ])(x − U[(1 − ])I + ]U]x) + ](Ux − U[(1 − ])I + ]U]x)‖
2

� (1 − ])‖x − U[(1 − ])I + ]U]x‖
2

+ ]‖Ux − U[(1 − ])I + ]U]x‖
2

− ](1 − ])‖x − Ux‖
2

≤ (1 − ])‖x − U[(1 − ])I + ]U]x‖
2

+ ]]2L2
‖Ux − x‖

2

− ](1 − ])‖x − Ux‖
2

� (1 − ])‖x − U[(1 − ])I + ]U]x‖
2

− ] 1 − ] − ]2L2
􏼐 􏼑‖x − Ux‖

2
.

(39)

Quasi-pseudo-contractive mapping

0-demicontractive mapping

Quasi-non-expansive mapping

Non-expansive mapping

Figure 7: )e relations of some nonlinear operators.
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Substituting (38) and (39) into (36), we have

‖U[(1 − ])I + ]U]x − z‖
2

≤ ‖x − z‖
2

+ ](] + κ − 1)‖Ux − x‖
2

+(1 − ])‖x − U[(1 − ])I + ]U]x‖
2

− ] 1 − ] − ]2L2
􏼐 􏼑‖x − Ux‖

2

� ‖x − z‖
2

+(1 − ])‖x − U[(1 − ])I + ]U]x‖
2

− ] 2 − 2] − κ − ]2L2
􏼐 􏼑‖x − Ux‖

2
.

(40)

Since μ< ], combining (12) and (40), we get

‖(1 − μ)x + μU[(1 − ])I + ]U]x − z‖
2

� ‖(1 − μ)(x − z) + μ U[(1 − ])I + ]U]x − z{ }}‖
2

� (1 − μ)‖x − z‖
2

+ μ‖U[(1 − ])I + ]U]x − z‖
2

− μ(1 − μ)‖U[(1 − ])I + ]U]x − x‖
2

� (1 − μ)‖x − z‖
2

− μ(1 − μ)‖U[(1 − ])I + ]U]x − x‖
2

+ μ ‖x − z‖
2

+(1 − ])‖x − U[(1 − ])I + ]U]x‖
2

􏽨

− ] 2 − 2] − κ − ]2L2
􏼐 􏼑‖x − Ux‖

2

� ‖x − z‖
2

+ μ(μ − ])‖x − U[(1 − ])I + ]U]x‖
2

− ] 2 − 2] − κ − ]2L2
􏼐 􏼑‖x − Ux‖

2

≤ ‖x − z‖
2

− ] 2 − 2] − κ − ]2L2
􏼐 􏼑‖x − Ux‖

2
.

(41)

Since ]< (2 − κ/1 +
�����������
1 + L2(2 − κ)

􏽰
), we deduce

2 − 2] − κ − ]2L2 > 0. (42)

Hence,

‖(1 − μ)x + μU[(1 − ])I + ]U]x − z‖
2 ≤ ‖x − z‖

2
. (43)

)at is, Uμ,] is quasi-non-expansive. □

Theorem 1. Assume that problem (5) is consistent (S≠∅).
Let H1, H2, A, U, T, xn􏼈 􏼉 be the same as above. If θn ⊂ (0, 1)

satisfies limn⟶∞θn � 0 and 􏽐
∞
n�0 θn �∞, where a and b are

constants and μn􏼈 􏼉 and ]n􏼈 􏼉 satisfies 0< a< μn < ]n <
b< (2 − κ/1 +

�����������
1 + L2(2 − κ)

􏽰
), ∀n≥ 1, then the sequence

xn􏼈 􏼉 converges to a point x ∈ S in norm and x is the nearest
point S to u (x � tPSnu).

Proof. )is proof is split into three parts as follows. □

Step 1. Prove that xn􏼈 􏼉 is a bounded sequence.
Take p ∈ S. From )eorem 1, we know that Uμn,]n

is
quasi-non-expansive. From (32), we have

xn+1 − p
����

���� � θnu + 1 − θn( 􏼁Uμn,]n
un − p

�����

�����

� θn(u − p) + 1 − θn( 􏼁 Uμn,]n
un − p􏼐 􏼑

�����

�����

≤ θn‖u − p‖ + 1 − θn( 􏼁 Uμn,]n
un − p

�����

�����

≤ θn‖u − p‖ + 1 − θn( 􏼁 un − p
����

����

≤ θn‖u − p‖ + 1 − θn( 􏼁 xn − p
����

����.

(44)

By induction, we get

xn − p
����

����≤max ‖u − p‖, x0 − p
����

����􏽮 􏽯. (45)

)us, xn􏼈 􏼉 is bounded.

Step 2

xn+1 − x
����

����
2 ≤ 1 − θn( 􏼁 xn − x

����
����
2

+ 2θn〈u − x, xn+1 − x〉,
(46)

where x � PSu.
Consider the case ρn ≠ 0. From (32), (35), and (11), we get

xn+1 − x
����

����
2

� θnu + 1 − θn( 􏼁Uμn,]n
un − x

�����

�����

� θn(u − x) + 1 − θn( 􏼁 Uμn,]n
un − x􏼐 􏼑

�����

�����

≤ 1 − θn( 􏼁
2

Uμn,]n
un − x

�����

�����
2

+ 2θn〈u − x, xn+1 − x〉

≤ 1 − θn( 􏼁 Uμn,]n
un − x

�����

�����
2

+ 2θn〈u − x, xn+1 − x〉

≤ 1 − θn( 􏼁 un − x
����

����
2

+ 2θn〈u − x, xn+1 − x〉

≤ 1 − θn( 􏼁 xn − x
����

����
2

−
(1 − τ)

2

4
(I − T)Axn

����
����
4

A
∗
(I − T)Axn

����
����
2

⎡⎢⎢⎣ ⎤⎥⎥⎦

+ 2θn〈u − x, xn+1 − x〉

≤ 1 − θn( 􏼁 xn − x
����

����
2

+ 2θn〈u − x, xn+1 − x〉.

(47)

Hence,

xn+1 − x
����

����
2 ≤ 1 − θn( 􏼁 xn − x

����
����
2

+ 2θn〈u − x, xn+1 − x〉.
(48)

Consider the case ρn � 0. From (32) and (11), we get

xn+1 − x
����

����
2

� θnu + 1 − θn( 􏼁Uμn,]n
un − x

�����

�����

� θn(u − x) + 1 − θn( 􏼁 Uμn,]n
un − x􏼐 􏼑

�����

�����

≤ 1 − θn( 􏼁
2

Uμn,]n
un − x

�����

�����
2

+ 2θn〈u − x, xn+1 − x〉

≤ 1 − θn( 􏼁 Uμn,]n
un − x

�����

�����
2

+ 2θn〈u − x, xn+1 − x〉

≤ 1 − θn( 􏼁 un − x
����

����
2

+ 2θn〈u − x, xn+1 − x〉

≤ 1 − θn( 􏼁 xn − x
����

����
2

+ 2θn〈u − x, xn+1 − x〉.

(49)
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Hence,

xn+1 − x
����

����
2 ≤ 1 − θn( 􏼁 xn − x

����
����
2

+ 2θn〈u − x, xn+1 − x〉.
(50)

Step 3. Prove that xn⟶ x as n⟶∞.
)is step is divided into two cases. Denote

sn ≔ ‖xn − x‖2.

Case 1. Assume there exists a positive integer n0 and the
sequence sn􏼈 􏼉 is decreasing for any n≥ n0. )en, sn􏼈 􏼉 con-
verges to some point strongly by the monotonic bounded
principle.

First, we show that

limsup
n⟶∞
〈u − x, xn − x〉 ≤ 0. (51)

Using the choice (33) of the step-size ρn, (32), (34), (35),
and (11), we get

xn+1 − x
����

����
2

� θnu + 1 − θn( 􏼁Uμn,]n
un − x

�����

�����

� θn(u − x) + 1 − θn( 􏼁 Uμn,]n
un − x􏼐 􏼑

�����

�����

≤ 1 − θn( 􏼁
2

Uμn,]n
un − x

�����

�����
2

+2θn〈u − x,xn+1 − x〉

≤ Uμn,]n
un − x

�����

�����
2

+2θn〈u − x,xn+1 − x〉

≤ un − x
����

����
2

− μn]n 2 − 2]n − κ − ]2nL
2

􏼐 􏼑 Uun − un

����
����
2

+2θn〈u − x,xn+1 − x〉

≤ xn − x
����

����
2

−
(I − T)Axn

����
����
4

A
∗
(I − T)Axn

����
����
2

(1 − τ)
2

4

− μn]n 2 − 2]n − κ − ]2nL
2

􏼐 􏼑 Uun − un

����
����
2

+2θn〈u − x,xn+1 − x〉.
(52)

So,

μn]n 2 − 2]n − κ − ]2nL
2

􏼐 􏼑 Uun − un

����
����
2 ≤ sn − sn+1 + θnL,

0≤
(1 − τ)

2
(I − T)Axn

����
����
4

4 A
∗
(I − T)Axn

����
����
2 ≤ sn − sn+1 + θnL,

(53)

where L is a nonnegative real constant such that
supn∈N 2〈f(xn) − x, xn+1 − x〉􏼈 􏼉≤L. Based on the fact that
sn􏼈 􏼉 is convergent, we have

un − Uun

����
����⟶ 0, as n⟶∞, (54)

(I − T)Axn

����
����
2

A
∗
(I − T)Axn

����
����
⟶ 0, as n⟶∞. (55)

Moreover,

(I − T)Axn

����
����
2

A
∗
(I − T)Axn

����
����
≥

(I − T)Axn

����
����
2

(I − T)Axn

����
���� · ‖A‖
≥

(I − T)Axn

����
����

‖A‖
.

(56)

Hence,

Axn − TAxn

����
����⟶ 0. (57)

Since

xn − un

����
���� � ρn A

∗
(I − T)Axn

����
����

�
(1 − τ) (I − T)Axn

����
����
2

2 A
∗
(I − T)Axn

����
����
⟶ 0, as n⟶∞.

(58)

Since xn⇀q, we have un⇀ q due to (58). From (54) and
as I − U is demiclosed at zero, we have

q ∈ Fix(U). (59)

From (55) and I − T is demiclosed at zero, we have

Aq ∈ Fix(T). (60)

)us, q ∈ S by (59) and (60). Hence, it follows from x �

PSu that

limsup\limits n⟶∞〈u − x, xn − x〉

� 〈u − x, q − x〉≤ 0.
(61)

Secondly, we show that

xn+1 − xn

����
����⟶ 0, as n⟶∞. (62)

From (32), we have

Uμn,]n
un − un

�����

����� � μn un − U 1 − ]n( 􏼁I + ]nU􏼂 􏼃un

����
����

� μn un − Uun + Uun − U 1 − ]n( 􏼁I + ]nU􏼂 􏼃un

����
����

≤ μn un − Uun

����
���� + μn Uun − U 1 − ]n( 􏼁I + ]nU􏼂 􏼃un

����
����

≤ μn un − Uun

����
���� + μnL un − 1 − ]n( 􏼁I + ]nU􏼂 􏼃un

����
����

� μn un − Uun

����
���� + μn]nL un − Uun

����
����

� μn 1 + ]nL( 􏼁 un − Uun

����
����.

(63)

From the above equation and (32), (54), and (58), we
have
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xn+1 − xn

����
����≤ θn u − xn

����
���� + 1 − θn( 􏼁 xn − Uμn,]n

un

�����

�����

≤ θn u − xn

����
���� + xn − un

����
���� + un − Uμn,]n

un

�����

�����

≤ θn u − xn

����
���� + xn − un

����
���� + μn 1 + ]nL( 􏼁 un − Uun

����
����

≤ θn u − xn

����
���� + xn − un

����
���� + b(1 + bL) un − Uun

����
����.

(64)

Combining (54) and 58, we get

xn+1 − xn

����
����⟶ 0, as n⟶∞. (65)

)irdly, we show that xn⟶ x as n⟶∞.
Together with (51) and (62), we get

limsup
n⟶∞
〈u − x, xn+1 − x〉 ≤ 0. (66)

Applying Lemma 2 to (46), which together with the
assumption of θn􏼈 􏼉 and (66), we get xn⟶ x as n⟶∞
easily.

Case 2. Assume that there is no positive integer n0 and a
decreasing sequence sn􏼈 􏼉 for any n≥ n0. )at is, there is a
subsequence ski

􏽮 􏽯 of sk􏼈 􏼉 such that ski
< ski+1 for any i ∈ N.

From Lemma 4, we can define a nondecreasing sequence
mk􏼈 􏼉 ⊂ N such that mk⟶∞ as k⟶∞ and

smk
≤ smk+1. (67)

Firstly, we show

limsup
n⟶∞
〈u − x, xmk

− x〉 ≤ 0. (68)

It follows from (52) and (67) and the boundedness of
xmk

􏽮 􏽯 that

μmk
]mk

2 − 2]mk
− κ − ]2mk

L
2

􏼐 􏼑 Uumk
− umk

�����

�����
2
≤ smk

− smk+1 + αmk
L

≤ αmk
L,

0≤
(1 − τ)

2

4
(I − T)Axmk

�����

�����
4

A
∗
(I − T)Axmk

�����

�����
2 ≤ smk

− smk+1 + αmk
L

≤ αmk
L.

(69)

)us,

umk
− Uumk

�����

�����⟶ 0, as n⟶∞,

(I − T)Axmk

�����

�����
2

A
∗
(I − T)Axmk

�����

�����
⟶ 0, as n⟶∞.

(70)

Moreover,

1
‖A‖

(I − T)Axmk

�����

�����≤
(I − T)Axmk

�����

�����
2

‖A‖ · (I − T)Axmk

�����

�����
≤

(I − T)Axmk

�����

�����
2

A
∗
(I − T)Axmk

�����

�����
.

(71)

Hence,

Axmk
− TAxmk

�����

�����⟶ 0, (72)

due to

xmk
− umk

�����

����� � ρmk
A
∗
(I − T)Axmk

�����

�����

�
(1 − τ) (I − T)Axmk

�����

�����
2

2 A
∗
(I − T)Axmk

�����

�����
⟶ 0, as n⟶∞.

(73)

Since xmk
⇀q, then umk

⇀q. So, we have q ∈ S by the
similar proofs in Case 1. Hence, it follows from x � PSu that

limsup
n⟶∞
〈u − x, xmk

− x〉 � 〈u − x, q − x〉≤ 0. (74)

Secondly, we show

xmk+1 − xmk

�����

�����⟶ 0, as k⟶∞. (75)

From (32), we have

Uμmk
,]mk

umk
− umk

������

������

� μmk
umk

− U 1 − ]mk
􏼐 􏼑I + ]mk

U􏽨 􏽩umk

�����

�����

� μmk
umk

− Uumk
+ Uumk

− U 1 − ]mk
􏼐 􏼑I + ]mk

U􏽨 􏽩umk

�����

�����

≤ μmk
umk

− Uumk

�����

����� + μmk
Uumk

− U 1 − ]mk
􏼐 􏼑I + ]mk

U􏽨 􏽩umk

�����

�����

≤ μmk
umk

− Uumk

�����

����� + μmk
L umk

− 1 − ]mk
􏼐 􏼑I + ]mk

U􏽨 􏽩umk

�����

�����

� μmk
umk

− Uumk

�����

����� + μmk
]mk

L umk
− Uumk

�����

�����

� μmk
1 + ]mk

L􏼐 􏼑 umk
− Uumk

�����

�����.

(76)

By the above equation and (32), we have
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xmk+1 − xmk

�����

�����

≤αmk
u − xmk

�����

����� + 1 − αmk
􏼐 􏼑 xmk

− Uμmk
,]mk

umk

������

������

≤αmk
u − xmk

�����

����� + xmk
− umk

�����

����� + umk
− Uμmk

,]mk

umk

������

������

≤αmk
u − xmk

�����

����� + xmk
− umk

�����

����� +μmk
1+ ]mk

L􏼐 􏼑 umk
− Uumk

�����

�����

≤αmk
u − xmk

�����

����� + xmk
− umk

�����

����� + b(1+ bL) umk
− Uumk

�����

�����.

(77)

Combining (54) and the (58), we get

xmk+1 − xmk

�����

�����⟶ 0, as n⟶∞. (78)

)irdly, we show that xmk
⟶ x as n⟶∞.

Using (68) and (75), we get

limsup
n⟶∞
〈u − x, xmk+1 − x〉 ≤ 0. (79)

Based on smk
≤ smk+1, ∀k ∈ N and (46), we get

αmk
smk+1 + 1 − αmk

􏼐 􏼑 smk+1 − smk
􏼐 􏼑≤ 2αmk

〈u − x, xmk+1 − x〉.

(80)

So,

αmk
smk+1≤ 2αmk

〈u − x, xmk+1 − x〉, (81)

that is,

smk+1≤ 2〈u − x, xmk+1 − x〉. (82)

Taking the limit k⟶∞, using (79), we obtain

smk+1⟶ 0, as k⟶∞. (83)

)us,

sk⟶ 0, as k⟶∞, (84)

due to sk ≤ smk+1. )e proof is completed.

5. Numerical Example

In the section, we present a numerical experiment to
demonstrate the convergence of this algorithm.

Assume H1 � H2 � (R3, ‖ · ‖2) and T, U: R3⟶ R3 is
defined by

T

x

y

z

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�
1
3

x

y

z

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

U

a

b

c

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

0

a

b

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(85)

Let the bounded linear operator A be defined by

A �

5 − 5 − 7

− 4 2 − 4

− 7 − 4 5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (86)

Clearly, both U and T are 0− demicontractive mappings.
Choose the parameters as follows:

θn �
1
n

,

μn �
1
n

,

]n �
1
�
n

√ , ∀n≥ 1.

(87)

ρn is chosen in the following way:

ρn �

(1 − τ) (I − T)Axn

����
����
2

2 A
∗
(I − T)Axn

����
����
2 , Axn ≠T Axn( 􏼁,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(88)

where A is a bounded and linear mapping and A∗ is its
adjoint. )en, the iterative algorithm (10) becomes as
follows:

un � xn − ρnA
∗
(I − T)Axn,

xn+1 �
1
n

u + 1 −
1
n

􏼒 􏼓 1 −
1
n

􏼒 􏼓I +
1
n

U 1 −
1
�
n

√􏼠 􏼡I +
1
�
n

√ U􏼢 􏼣􏼨 􏼩un,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(89)

where u �

1
− 1
2

⎛⎜⎝ ⎞⎟⎠ is a fixed point in R3, and the initial point

x1 �

a1
b1
c1

⎛⎜⎝ ⎞⎟⎠ �

1
− 2
5

⎛⎜⎝ ⎞⎟⎠ and xn �

an

bn

cn

⎛⎜⎝ ⎞⎟⎠ is generated by the

algorithm (10). We plot the numbers of iterations and
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Figure 8: )e iterative curves of algorithm (21) under different n.
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‖xn+1 − xn‖2 in the following graphs (Figures 8 and 9), the
numbers of iterations and xn􏼈 􏼉 � an, bn, cn􏼈 􏼉.

6. Conclusion

In this paper, we proposed a new iteration algorithm (10)
and we obtained the strong convergence of the sequence
xn􏼈 􏼉 for split common fixed point problems (5). )e main
result is an extension of the related results announced in
[15, 16, 27]. )e research highlights of this paper are novel
algorithms and their analysis techniques. )e improvement
on the extension of the operator, such as the demicontractive
mappings, the directed operators, the quasi-non-expansive
operators, and quasi-pseudo-contractive operators will be of
interest for further research in the future.
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.e newest generalization of the Banach contraction through the notions of the generalized F-contraction, simulation function,
and admissible function is introduced..e existence and uniqueness of fixed points for a self-mapping on complete metric spaces
by the new constructed contraction are investigated..e results of this article can be viewed as an improvement of themain results
given in the references.

1. Introduction and Preliminaries

In 1922, Banach proved the following famous and funda-
mental result in fixed-point theory [1]. Let (X, d) be a
complete metric space. Let T be a contractive mapping on X;
that is, there exists q ∈ [0, 1) satisfying

d(Tx, Ty)≤ q.d(x, y), ∀x, y ∈ X. (1)

.en, there exists a unique fixed point x0 ∈ X of T.
.is theorem, which is called the Banach contraction
principle that is a forceful tool in nonlinear analysis [9–14]
and fixed-point theory, is a fascinating subject, with an
enormous number of algorithms and applications in
various fields of mathematics, see, e.g., [15–18]. .is
principle has been generalized in different directions by
various researchers. One of them is the following theorem
that is presented by Bryant.

Theorem 1 (see [2]). If f is a mapping of a complete metric
space into itself and if, for some positive integer k, fk is a
contraction, then f has a unique fixed point.

It is obvious that fk is continuous but there are examples
that show it cannot imply the continuity of f and so
.eorem 1 is a real extension of the Banach principle.

In 1969, Sehgal [19] proved the following interesting
generalization of .eorem 1.

Theorem 2 (see [19]). Let (X, d) be a complete metric space,
q ∈ [0, 1), and T: X⟶ X be a continuous mapping. If for
each x ∈ X there exists a positive integer k � k(x) such that

d T
k(x)

x, T
k(x)

y􏼐 􏼑≤ q d(x, y), (2)

for all y ∈ X, then T has a unique fixed point u ∈ X.
Moreover, for any x ∈ X, u � limn⟶∞Tnx.

Several researchers are interested to generalize Banach
contraction. Here, we state two of them. Wardowski [8]
generalized the Banach contraction as follows.

Definition 1 (see [8]). Let (X, d) be a metric space. .e
mapping T: X⟶ X is called an F-contraction, if there
exist F ∈F and τ > 0 such that, for all x, y ∈ X,

d(Tx, Ty)> 0⇒ τ + F(d(Tx, Ty))≤F(d(x, y)), (3)

where F: (0,∞)⟶R is strictly increasing limn⟶∞F(αn) �

− ∞ iff limn⟶∞αn � 0 and there exists a number k ∈ (0,1)

such that limα⟶0+αkF(α) � − ∞.
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Notation. .e family of all functions F: (0, +∞)⟶ R is
denoted byF (see [8]) if F satisfies the following conditions:

(F1) F is strictly increasing
(F2) for every sequence αn􏼈 􏼉 in (0, +∞), we have
limn⟶∞F(αn) � − ∞ iff limn⟶∞αn � 0
(F3) there exists a number k ∈ (0, 1) such that
limα⟶0+αkF(α) � − ∞

.e collection of all functions F: (0, +∞)⟶ R is
denoted by G ( [20]) if F satisfies the following conditions:

(G1) F is strictly increasing
(G2) there exists a sequence αn􏼈 􏼉 in (0, +∞) such that
limn⟶∞F(αn) � − ∞, or inf F � − ∞
(G3) F is a continuous mapping

Another way to generalize the Banach contraction is
through the following notion.

Definition 2 (see [3, 21]). Let ζ: [0,∞) × [0,∞)⟶ R be a
mapping, then ζ is called a simulation function if it satisfies
the following conditions:

(ζ1) ζ(0, 0) � 0
(ζ2) ζ(t, s)< s − t for all t, s> 0
(ζ3) if tn􏼈 􏼉, sn􏼈 􏼉 are sequences in (0,∞) such that
limn⟶∞tn � limn⟶∞sn > 0 and tn < sn for all n ∈ N,
then

limsup
n⟶∞

ζ tn, sn( 􏼁< 0 (4)

We denote the set of all simulation functions by Z.
Ozturk [4], by using the simulation function and

Wardowski [8] idea, extended .eorem 2 as follows.

Theorem 3 (see [4]). Let (X, d) be a complete metric space
and T: X⟶ X a mapping which satisfies the condition: If
there exist f ∈ F and τ > 0 such that for each x ∈ X there is a
positive integer n(x) such that for all y ∈ X,

d T
n(x)

(x), T
n(x)

(y)􏼐 􏼑> 0⇒ζ F(d(x, y)), τ(

+ F d T
n(x)

(x), T
n(x)

(y)􏼐 􏼑􏼐 􏼑􏼑≥ 0,

(5)

then T has a unique fixed point z ∈ X and Tn(x0)⟶ z for
each x0 ∈ X, as n⟶∞.

.e first aim of this paper is to generalize .eorem 2 by
introducing a more general contraction type mapping
through the notions of the generalized F-contraction,
simulation function, and admissible function. .en, by the
new constructed contraction and suitable conditions, the
existence and uniqueness of fixed points are investigated.

.e following definitions and preliminary results are
needed in the next section.

Definition 3 (see [6, 22]). Let α: X × X⟶ (0, +∞) be a
given mapping. .e mapping T: X⟶ X is said to be an
α-admissible, whenever α(Tx, Ty)≥ 1 provided α(x, y)≥ 1
and x, y ∈ X.

Definition 4 (see [23]). An α-admissible map T is said to
have the K-property, while for each sequence xn􏼈 􏼉⊆X with
α(xn, xn+1)≥ 1 for all n ∈ N0, the nonnegative integer
numbers, there exists a positive integer number k such that
α(Txn, Txm)≥ 1, for all m> n≥ k.

Lemma 1 (see [5]). Let F: (0, +∞)⟶ R be an increasing
function and αn􏼈 􏼉 be a sequence of positive real numbers.
5en, the following holds:

(a) if limn⟶∞F(αn) � − ∞, then limn⟶∞αn � 0
(b) if inf F � − ∞ and limn⟶∞αn � 0, then limn⟶∞

F(αn) � − ∞

Lemma 2 (see [24]). Let (X, d) be a metric space and xn􏼈 􏼉 be
a sequence in X such that limn⟶∞d(xn, xn+1) � 0. If xn􏼈 􏼉 is
not a Cauchy sequence, then there exist ε> 0 and two se-
quences of positive integers nk􏼈 􏼉 and mk􏼈 􏼉 with nk >mk > k

such that d(xmk
, xnk

)> ε, d(xmk
, xnk− 1)< ε, and

(1) limk⟶∞d(xmk
, xnk

) � ε
(2) limk⟶∞d(xmk− 1, xnk

) � ε
(3) limk⟶∞d(xmk

, xnk+1) � ε
(4) limk⟶∞d(xmk− 1, xnk+1) � ε

2. Main Results

In this section, the main achievements of this article are
presented. .e existence and uniqueness of fixed points of
the self-mappings on complete metric spaces satisfying the
generalized F-contraction (relation (6) of the following
theorem) with suitable assumptions are established by the
first theorem. .e second theorem can be viewed as a
generalized version of Suzuki’s theorem given in [21]. Of
course it ensures existence of fixed points for self-mappings
under suitable hypothesis.

Theorem 4 Let (X, d) be a complete metric space and
α: X × X⟶ (0, +∞) be a symmetric function, where
α(x, y)≥ 1 and T: X⟶ X be a continuous mapping
which satisfies the condition: if there exist F ∈ F, τ > 0,
L≥ 0, and simulation function ζ such that for all x ∈ X

there is a positive integer n(x) such that for all y ∈ X and
d(Tn(x)(x), Tn(x)(y))> 0,

ζ τ + α(x, y)F d T
n(x)

x, T
n(x)

y􏼐 􏼑􏼐 􏼑, F m(x, y) + LN1(x, y)( 􏼁􏼐 􏼑≥ 0,

(6)

where

2 Journal of Mathematics



m(x, y) � max d(x, y), d x, T
n(x)

x􏼐 􏼑, d y, T
n(x)

y􏼐 􏼑,
d x, T

n(x)
y􏼐 􏼑 + d y, T

n(x)
x􏼐 􏼑

2
⎧⎨

⎩

⎫⎬

⎭,

N1(x, y) � min d x, T
n(x)

x􏼐 􏼑, d x, T
n(x)

y􏼐 􏼑, d y, T
n(x)

x􏼐 􏼑􏽮 􏽯,

(7)

then T has a unique fixed point.

Proof. We shall built a recursive sequence xk􏼈 􏼉 as follows:
for the chosen arbitrary point x0 ∈ X with n0 � n(x0), we set
x1 � Tn0x0 and inductively we get xi+1 � Tni xi with
ni � n(xi).

We assert that xi ≠ xi+1 for all i ∈ N0. Suppose, on the
contrary, there exists i0 ∈ N0 such that xi0

� xi0+1 � Tni0xi0
.

.en, xi0
turns to be a fixed point of Tni0 . On the other hand,

Txi0
� T T

ni0xi0
􏼐 􏼑 � T

ni0 Txi0
􏼐 􏼑. (8)

.us,Txi0
form a fixed point ofTni0 . IfTxi0

� xi0
, then we

conclude that T has a fixed point and that terminate the
proof. Suppose, on the contrary, that Txi0

≠xi0
and hence

d(Tni0(Txi0
), Tni0(xi0

))> 0. .en, by (6), we have

0≤ τ + α xi0
, Txi0

􏼐 􏼑F d T
ni0xi0

, T
ni0Txi0

􏼐 􏼑􏼐 􏼑, F m xi0
, Txi0

􏼐 􏼑 + LN1 xi0
, Txi0

􏼐 􏼑􏼐 􏼑􏼐 􏼑,

≤F m xi0
, Txi0

􏼐 􏼑 + LN1 xi0
, Txi0

􏼐 􏼑􏼐 􏼑 − τ + α xi0
, Txi0

􏼐 􏼑F d T
ni0xi0

, T
ni0Txi0

􏼐 􏼑􏼐 􏼑􏼐 􏼑.
(9)

Hence,

τ + F d xi0
, Txi0

􏼐 􏼑􏼐 􏼑 � τ + F d T
ni0xi0

, T
ni0Txi0

􏼐 􏼑􏼐 􏼑

≤ τ + α xi0
, Txi0

􏼐 􏼑F d T
ni0xi0

, T
ni0Txi0

􏼐 􏼑􏼐 􏼑

≤F m xi0
, Txi0

􏼐 􏼑 + LN1 xi0
, Txi0

􏼐 􏼑􏼐 􏼑.

(10)

However,

m xi0
, Txi0

􏼐 􏼑 � max d xi0
, Txi0

􏼐 􏼑, d xi0
, T

ni0xi0
􏼐 􏼑, d Txi0

, T
ni0Txi0

􏼐 􏼑,
d xi0

, T
ni0Txi0

􏼐 􏼑 + d Txi0
, T

ni0xi0
􏼐 􏼑

2
⎧⎨

⎩

⎫⎬

⎭ � d xi0
, Txi0

􏼐 􏼑􏽮 􏽯,

N1 � min d xi0
, T

ni0xi0
􏼐 􏼑, d xi0

, T
ni0Txi0

􏼐 􏼑, d Txi0
, T

ni0xi0
􏼐 􏼑􏽮 􏽯 � 0.

(11)

.erefore,

τ + F d xi0
, Txi0

􏼐 􏼑􏼐 􏼑≤F d xi0
, Txi0

􏼐 􏼑􏼐 􏼑. (12)

So, τ ≤ 0, which is a contradiction. Consequently, we
deduce that for all i ∈ N0, xi ≠xi+1. .en, d(xi+1, xi)> 0, by
(6),

τ + F d xi+1, xi+2( 􏼁( 􏼁 � τ + F d T
ni xi, T

ni xi+1( 􏼁(

≤ τ + α xi, xi+1( 􏼁F d T
ni xi, T

ni xi+1( 􏼁(

≤F m xi, xi+1( 􏼁 + LN1 xi, xi+1( 􏼁( 􏼁

≤F m xi, xi+1( 􏼁 + L d xi+1, xi+1( 􏼁( 􏼁

� F m xi, xi+1( 􏼁( 􏼁.

(13)
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.en,

τ + F d xi+1, xi+2( 􏼁( 􏼁≤F m xi, xi+1( 􏼁( 􏼁. (14)

However,

m xi, xi+1( 􏼁 � max d xi, xi+1( 􏼁, d xi, T
ni xi( 􏼁, d xi+1, T

ni xi+1( 􏼁,
d xi, T

ni xi+1( 􏼁 + d xi+1, T
ni xi( 􏼁

2
􏼨 􏼩

� max d xi, xi+1( 􏼁, d xi+1, xi+2( 􏼁,
d xi, xi+2( 􏼁

2
􏼨 􏼩

≤max d xi, xi+1( 􏼁, d xi+1, xi+2( 􏼁,
d xi, xi+1( 􏼁 + d xi+1, xi+2( 􏼁

2
􏼨 􏼩

≤max d xi, xi+1( 􏼁, d xi+1, xi+2( 􏼁􏼈 􏼉.

(15)

If d(xi0+1, xi0+2)≥ d(xi0
, xi0+1) for some i0 ∈ N0, then

m xi0
, xi0+1􏼐 􏼑≤ d xi0+1, xi0+2􏼐 􏼑, (16)

and since F is strictly increasing,

F m xi0
, xi0+1􏼐 􏼑􏼐 􏼑≤F d xi0+1, xi0+2􏼐 􏼑􏼐 􏼑, (17)

so, it follows from (14) that

τ + F d xi0+1, xi0+2􏼐 􏼑􏼐 􏼑≤F d xi0+1, xi0+2􏼐 􏼑􏼐 􏼑. (18)

So, τ ≤ 0, which is a contradiction. Consequently,

d xi+1, xi+2( 􏼁<d xi, xi+1( 􏼁, ∀i ∈ N0. (19)

Hence, from (14) and (19), we have

τ + F(d xi+1, xi+2( 􏼁≤F d xi, xi+1( 􏼁( 􏼁 (20)

or

F(d xi+1, xi+2( 􏼁≤F d xi, xi+1( 􏼁( 􏼁 − τ. (21)

In general, one can get

F(d xi+1, xi+2( 􏼁≤F d x0, x1( 􏼁( 􏼁 − iτ. (22)

Hence,

lim
i⟶∞

F d xi, xi+1( 􏼁( 􏼁 � − ∞. (23)

So, from (F2), we have

lim
i⟶∞

d xi, xi+1( 􏼁 � 0. (24)

.erefore, with notice to (F3), there exists k ∈ (0, 1)

such that

lim
i⟶∞

d xi, xi+1( 􏼁( 􏼁
k
F d xi, xi+1( 􏼁( 􏼁 � 0. (25)

Now, (22) implies that

d xi, xi+1( 􏼁( 􏼁
k
F d xi, xi+1( 􏼁( 􏼁≤ d xi, xi+1( 􏼁( 􏼁

k
F d x0, x1( 􏼁( 􏼁 − iτ( 􏼁.

(26)

.en, it can be easily seen that

lim
i⟶∞

i d xi, xi+1( 􏼁( 􏼁
k

� 0. (27)

So, there exists i0 ∈ N0 such that

d xi, xi+1( 􏼁≤
1

i
1/k, ∀i≥ i0. (28)

Consequently, if m> n> n0, then

d xn, xm( 􏼁≤􏽘
m

j�n

d xj, xj+1􏼐 􏼑

≤􏽘
m

j�n

1
j

(1/k)

≤ 􏽘

∞

j�n0

1
j

(1/k)
.

(29)

Since k ∈ (0, 1), the series 􏽐
∞
j�n0

1/j(1/k) is convergent.
.erefore, xi􏼈 􏼉 is a Cauchy sequence, and since X is com-
plete, there exists u ∈ X such that xi⟶ u as i⟶∞.As a
next step, we show that u is a fixed point of Tn(u). Indeed, due
to the continuity of T, we have

d(Tu, u) � lim
i⟶∞

d Txi, xi( 􏼁 � lim
i⟶∞

d xi+1, xi( 􏼁 � 0, (30)

and so u is a fixed point of T. For proving the uniqueness of
the fixed point, let us consider u and v be two distinct fixed
points and n � n(u). So, we have d(u, v)> 0, and hence, we
get that d(Tu, Tv)> 0; then, by (6) and (ζ2),

0≤ ζ τ + α(u, v)F(d(Tu, Tv)), F m(u, v) + LN1(u, v)( 􏼁( 􏼁

≤F m(u, v) + LN1(u, v)( 􏼁 − (τ + α(u, v)F(d(Tu, Tv))).

(31)

.erefore,

τ + α(u, v)F(d(Tu, Tv))≤F m(u, v) + LN1(u, v)( 􏼁. (32)
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Hence, (32) implies that

τ + F(d(u, v)) � τ + F(d(Tu, Tv))

≤ τ + α(u, v)F(d(Tu, Tv))

≤F m(u, v) + LN1(u, v)( 􏼁

≤F(m(u, v) + L d(u, Tu))

� F(m(u, v) + 0)

� F(m(u, v)),

(33)

where

m(u, v) � max d(u, v), d(u, Tu), d(v, Tv),
d(u, Tv) + d(v, Tu)

2
􏼨 􏼩

� max d(u, v), 0, 0,
d(u, v) + d(v, u)

2
􏼨 􏼩

� d(u, v).

(34)

So, we have

τ + F(d(u, v))≤F(d(u, v)), (35)

which is a contradiction, as τ > 0. So, u � v. □

Corollary 1. 5eorem 3.3 of [7] of 5eorem 4 by taking
n(x) � 1. Because in this case,

ζ τ + α(x, y)F(d(Tx, Ty)), F m(x, y) + LN1(x, y)( 􏼁( 􏼁≥ 0.

(36)

Now, by (ζ2), we have

0≤ ζ τ + α(x, y)F(d(Tx, Ty)), F m(x, y) + LN1(x, y)( 􏼁( 􏼁

≤F m(x, y) + LN1(x, y)( 􏼁 − (τ + α(x, y)F(d(Tx, Ty))).

(37)

5erefore,

τ + α(x, y)F(d(Tx, Ty))≤F m(x, y) + LN1(x, y)( 􏼁.

(38)

Corollary 2. 5eorem 3 is contained in 5eorem 4 by taking
m(x, y) � d(x, y), α(x, y) � 1, and L � 0. Also,5eorem 4 is
reduced to theorem [8] by setting n(x) � 1.

.e following example shows that if the mapping T

satisfies the condition of .eorem 4, it cannot guarantee in
general the continuity of the mapping T.

Example 1. Let X � R denote the real numbers with the
usual metric d. Define function T: X⟶ X by

Tx �
1, x ∈ Q,

0, x ∈ Qc
.

􏼨 (39)

.en, T discontinues at each point of X, and T2 � 1. If α
is an arbitrary element of [0, 1), then

∀x ∈ X,∃nx � 2; ∀y ∈ X: d T
nx x, T

nx y( 􏼁 � 0≤ αd(x, y).

(40)

Now, it is obvious that the function ζ(t, s) � αs − t of
condition (6) of .eorem 4 on [0,∞) × [0,∞) is a simu-
lation function and T satisfies following condition:

ζ d T
n
x, T

n
y( 􏼁, d(x, y)( 􏼁≥ 0, (41)

but T discontinues at each point of X. Moreover, T satisfies
all the assumptions of .eorem 4, when L � 0 and the
unique fixed point of T is x � 1 and Picard’s iteration of T;
that is, if y ∈ X is an arbitrary point of X, then Tn(y) is
convergent to the fixed point.

Theorem 5. Let (X, d) be a complete metric space and
α: X × X⟶ (0, +∞) a symmetric function, where
α(x, y)≥ 1. Assume that T: X⟶ X is a mapping in which
there exist F ∈ G, τ > 0, and the simulation function ζ such
that for all x, y ∈ X with Tn(x)x≠Tn(x)y, where n(x) is a
positive integer and 1/2d(x, Tn(x)x)≤d(x, y) implies

ζ τ + α(x, y)F d T
n(x)

x, T
n(x)

y􏼐 􏼑􏼐 􏼑, F(m(x, y))􏼐 􏼑≥ 0,

(42)

where m(x, y) is defined as in 5eorem 4, satisfying the
following conditions:

(i) T is α-admissible,
(ii) there exists x0 ∈ X such that α(x0, Tx0)≥ 1,
(iii) if xn􏼈 􏼉 is a sequence in X such that xn⟶ x as

n⟶∞ and α(xn, xn+1)≥ 1 for all n ∈ N0, then
α(xn, x)≥ 1 for all n ∈ N0, and

(iv) T has the K-property,

then T has a fixed point in X.

Proof. Let x0 ∈ X be an arbitrary point. .e recursive se-
quence xk􏼈 􏼉 is inductively constructed as follows:
n0 � n(x0), and we set x1 � Tn0x0 and inductively get xi+1 �

Tni xi with ni � n(xi).
We assert that xi ≠xi+1 for all i ∈ N0. Suppose, on the

contrary, that there exists i0 ∈ N0 such that
xi0

� xi0+1 � Tni0xi0
. .en, xi0

turns to be a fixed point of Tni0 .
On the other hand,

Txi0
� T T

ni0xi0
􏼐 􏼑 � T

ni0 Txi0
􏼐 􏼑. (43)

.us,Txi0
form a fixed point ofTni0 . IfTxi0

� xi0
, then we

conclude that T has a fixed point and that terminate the
proof. Suppose, on the contrary, that Txi0

≠xi0
and hence

d(Tni0(Txi0
), Tni0(xi0

))> 0. .en, by (42), we have

0≤ (τ + α xi0
, Txi0

􏼐 􏼑F d T
ni0xi0

, T
ni0Txi0

􏼐 􏼑􏼐 􏼑, F m xi0
, Txi0

􏼐 􏼑􏼐 􏼑,

≤F m xi0
, Txi0

􏼐 􏼑􏼐 􏼑 − τ + α xi0
, Txi0

􏼐 􏼑F d T
ni0xi0

, T
ni0Txi0

􏼐 􏼑􏼐 􏼑􏼐 􏼑.

(44)

Hence,
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τ + F d xi0
, Txi0

􏼐 􏼑􏼐 􏼑 � τ + F d T
ni0xi0

, T
ni0Txi0

􏼐 􏼑􏼐 􏼑

≤ τ + α xi0
, Txi0

􏼐 􏼑F d T
ni0xi0

, T
ni0Txi0

􏼐 􏼑􏼐 􏼑

≤F m xi0
, Txi0

􏼐 􏼑􏼐 􏼑.

(45)

However,

m xi0
, Txi0

􏼐 􏼑 � max d xi0
, Txi0

􏼐 􏼑, d xi0
, T

ni0xi0
􏼐 􏼑, d Txi0

, T
ni0Txi0

􏼐 􏼑,
d xi0

, T
ni0Txi0

􏼐 􏼑 + d Txi0
, T

ni0xi0
􏼐 􏼑

2
⎧⎨

⎩

⎫⎬

⎭

� d xi0
, Txi0

􏼐 􏼑􏽮 􏽯.

(46)

.erefore,

τ + F d xi0
, Txi0

􏼐 􏼑􏼐 􏼑≤F d xi0
, Txi0

􏼐 􏼑􏼐 􏼑. (47)

So, τ ≤ 0, which is a contradiction. Consequently, we
deduce that, for all i ∈ N0, xi ≠ xi+1..en, d(xi+1, xi)> 0, and
so

1
2

d xi, T
ni xi( 􏼁 �

1
2

d xi, xi+1( 􏼁≤d xi, xi+1( 􏼁. (48)

Now, by (42),

τ + F d xi+1, xi+2( 􏼁( 􏼁 � τ + F(d T
ni xi, T

ni xi+1( 􏼁

≤ τ + α xi, xi+1( 􏼁F(d T
ni xi, T

ni xi+1( 􏼁

≤F m xi, xi+1( 􏼁( 􏼁.

(49)

Hence,

τ + F d xi+1, xi+1( 􏼁( 􏼁≤F m xi, xi+1( 􏼁( 􏼁. (50)

However,

m xi, xi+1( 􏼁 � max d xi, xi+1( 􏼁, d xi, T
ni xi( 􏼁, d xi+1, T

ni xi+1( 􏼁,
d xi, T

ni xi+1( 􏼁 + d xi+1, T
ni xi( 􏼁

2
􏼨 􏼩

� max d xi, xi+1( 􏼁, d xi+1, xi+2( 􏼁,
d xi, xi+2( 􏼁

2
􏼨 􏼩

≤max d xi, xi+1( 􏼁, d xi+1, xi+2( 􏼁,
d xi, xi+1( 􏼁 + d xi+1, xi+2( 􏼁

2
􏼨 􏼩

≤max d xi, xi+1( 􏼁, d xi+1, xi+2( 􏼁􏼈 􏼉.

(51)

If d(xi0+1, xi0+2)≥ d(xi0
, xi0+1) for some i0 ∈ N0, then

m xi0
, xi0+1􏼐 􏼑≤ d xi0+1, xi0+2􏼐 􏼑, (52)

and since F is strictly increasing,

F m xi0
, xi0+1􏼐 􏼑􏼐 􏼑≤F d xi0+1, xi0+2􏼐 􏼑􏼐 􏼑, (53)

so, it follows from (50) that

τ + F d xi0+1, xi0+2􏼐 􏼑􏼐 􏼑≤F d xi0+1, xi0+2􏼐 􏼑􏼐 􏼑. (54)

Hence, τ ≤ 0, which is a contradiction. .erefore,

d xi+1, xi+2( 􏼁< d xi, xi+1( 􏼁, ∀i ∈ N0. (55)

Hence, from (50) and (55), we have

τ + F(d xi+1, xi+2( 􏼁≤F d xi, xi+1( 􏼁( 􏼁 (56)

or

F(d) xi+1, xi+2( 􏼁≤F d xi, xi+1( 􏼁( 􏼁 − τ. (57)

Consequently,

F(d xi+1, xi+2( 􏼁≤F d x0, x1( 􏼁( 􏼁 − iτ. (58)

Hence,

lim
i⟶∞

F d xi, xi+1( 􏼁( 􏼁 � − ∞. (59)

So, from (G2), we have

lim
i⟶∞

d xi, xi+1( 􏼁 � 0. (60)

Now, we claim that xi􏼈 􏼉 is a Cauchy sequence. If it is not
true, then by Lemma 2, there exist ε0 > 0 and two sequences
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of positive integers nk􏼈 􏼉 and mk􏼈 􏼉 with nk >mk > k such that
d(xmk

, xnk
)> ϵ0, d(xmk

, xnk− 1)< ε0, and

(L1) limk⟶∞d(xnk
, xmk

) � ε0
(L2) limk⟶∞d(xnk

, xmk− 1) � ε0

(L3) limk⟶∞d(xnk+1, xmk
) � ε0

(L4) limk⟶∞d(xnk+1, xmk− 1) � ε0
.erefore, the definition of m(x, y) implies

lim
k⟶∞

m xnk
, xmk − 1􏼐 􏼑 � lim

k⟶∞
max d xnk

, xmk − 1􏼐 􏼑, d xnk
, T

n(x)
xnk

􏼐 􏼑, d xmk− 1, T
n(x)

xmk− 1􏼐 􏼑,
d xnk

, T
n(x)

xmk− 1􏼐 􏼑 + d xmk− 1, T
n(x)

xnk
􏼐 􏼑

2
⎧⎨

⎩

⎫⎬

⎭

� lim
k⟶∞

max d xnk
, xmk − 1􏼐 􏼑, d xnk

, xnk+1􏼐 􏼑, d xmk− 1, xmk
􏼐 􏼑,

d xnk
, xmk

􏼐 􏼑 + d xmk− 1, xnk+1􏼐 􏼑

2
⎧⎨

⎩

⎫⎬

⎭

� max ε0, 0, 0,
ε0 + ε0

2
􏼚 􏼛 � ε0.

(61)

So,

lim
k⟶∞

m xnk
, xmk− 1􏼐 􏼑 � ε0. (62)

On the other hand, since limk⟶∞d(xnk
, xmk− 1) � ε0 > 0

and limk⟶∞d(xnk
, xnk+1) � 0, with considering a subse-

quence if it is needed, one can suppose that there exists
k1 ∈ N such that for any k> k1 and nk >mk > k,

d xnk
, xnk+1􏼐 􏼑≤d xnk

, xmk− 1􏼐 􏼑. (63)

So, it is obvious that, for all k> k1 and nk >mk > k,
1
2

d xnk
, T

n(x)
xnk

􏼐 􏼑 �
1
2

d xnk
, xnk+1􏼐 􏼑< d xnk

, xmk− 1􏼐 􏼑. (64)

Also, using the K-property, there exists k2 ∈ N such that

α xnk
, xmk− 1􏼐 􏼑≥ 1, ∀k> k2. (65)

If k≥max k1, k2􏼈 􏼉, then it follows from (65) that

τ + F d T
n(k)

xnk
, xmk− 1􏼐 􏼑􏼐 􏼑≤ τ + α xnk

, xmk− 1􏼐 􏼑F

· d T
n(x)

xnk
, T

n(x)
xmk− 1􏼐 􏼑􏼐 􏼑

≤F m xnk
, xmk− 1􏼐 􏼑􏼐 􏼑.

(66)

Letting n⟶∞, the continuity of F through (L1) and
(62) implies

τ + F ε0( 􏼁≤F ε0( 􏼁, (67)

which is contradicted by τ > 0. Consequently, xi􏼈 􏼉 is a
Cauchy sequence in the complete metric space X. Hence,
there exists u ∈ X such that xi⟶ u, as n⟶∞. To
complete the proof, we show that u is a fixed point of T. We
first claim, for all n≥ 0, that

1
2

d xi, xi+1( 􏼁≤ d xi, u( 􏼁, or
1
2

d xi+1, xi+2( 􏼁≤ d xi+1, u( 􏼁.

(68)

In fact, if we assume that, for some i0 ≥ 0, both of them
are false, then
1
2

d xi0
, xi0+1􏼐 􏼑>d xi0

, u􏼐 􏼑, and
1
2

d xi0+1, xi0+2􏼐 􏼑> d xi0+1, u􏼐 􏼑.

(69)

Hence, (55) implies

d xi0
, xi0+1􏼐 􏼑≤d xi0

, u􏼐 􏼑 + d u, xi0+1􏼐 􏼑

<
1
2

d xi0
, xi0+1􏼐 􏼑 +

1
2

d xi0+1, xi0+2􏼐 􏼑

≤
1
2

d xi0
, xi0+1􏼐 􏼑 +

1
2

d xi0
, xi0+1􏼐 􏼑

� d xi0
, xi0+1􏼐 􏼑,

(70)

which is a contradiction and the claim is proved.
Now, let us begin with the first part of (68); that is,

suppose that
1
2

d xi, xi+1( 􏼁≤ d xi, u( 􏼁, (71)

and on the contrary, assume that Tu≠ u. Without loss of
generality, one can imagine that Txi ≠Tu, for all i ∈ N0
(because if xi+1 � Txi � Tu for infinite values of i, then
uniqueness of the limit concludes that Tu � u). .en, from
(45) and (iii), we get

τ + F d xi+1, Tu( 􏼁( 􏼁 � τ + F d Txi, Tu( 􏼁( 􏼁

≤ τ + α xi, u( 􏼁F d Txi, Tu( 􏼁( 􏼁

≤F m xi, u( 􏼁( 􏼁.

(72)

And since F is continuous on (0, +∞), and d(u, Tu) > 0,
as i⟶∞, we get

τ + F(d(u, Tu))≤F lim
i⟶∞

􏼒 m xi, u( 􏼁( 􏼁. (73)

However,
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m xi, u( 􏼁 � max d xi, u( 􏼁, d xi, xi+1( 􏼁, d(u, Tu),􏼨

d xi, Tu( 􏼁 + d u, xi+1( 􏼁

2
􏼩.

(74)

So, we have

limi⟶∞m xi, u( 􏼁 � max 0, 0, d(u, Tu),
d(u, Tu) + 0

2
􏼨 􏼩

� d(u, Tu).

(75)

.erefore, if d(u, Tu)≠ 0, then from (73), we have

τ + F(d(u, Tu))≤F(d(u, Tu)), (76)

which is contradicted, as τ > 0. So, d(u, Tu) � 0, i.e., Tu � u.
Finally, if we assume that the second part of (68) is true, i.e.,

1
2

d xi+1, xi+2( 􏼁≤d xi+1, u( 􏼁, (77)

then by using the same manner, we can prove that
d(u, Tu) � 0, i.e., Tu � u.

Suppose that u and v are two fixed points of T. If u≠ v,
then d(Tu, Tv)> 0. Furthermore, α(u, v)≥ 1, because
u, v ∈ Fix(T). It is also clear that 1/2d(u, Tu) � 0<d(u, v).
Hence, (45) implies

τ + F(d(u, v)) � τ + F(d(Tu, Tv))

≤ τ + α(u, v)F(d(Tu, Tv))

≤F(m(u, v)),

(78)

where

m(u, v) � max d(u, v), d(u, Tu), d(v, Tv),
d(u, Tv) + d(v, Tu)

2
􏼨 􏼩

� max d(u, v), 0, 0,
d(u, v) + d(v, u)

2
􏼨 􏼩

� d(u, v).

(79)

So, we get

τ + F(d(u, v))≤F(d(u, v)), (80)

which is a contradicted by τ > 0 and so u � v. .is completes
the proof. □

Corollary 3. If in 5eorem 5, we put n(x) � 1, then

ζ(τ + α(x, y)F(d(Tx, Ty)), F(m(x, y)))≥ 0. (81)

Now, by (ζ2), we have

0≤ ζ(τ + α(x, y)F(d(Tx, Ty)), F(m(x, y)))

≤F(m(x, y)) − (τ + α(x, y)F(d(Tx, Ty))).
(82)

5erefore,

τ + α(x, y)F(d(Tx, Ty))≤F(m(x, y)). (83)

Hence, we get 5eorem 3.3 of [7].
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[4] A. Öztürk, “A fixed point theorem for mappings with a
F-contractive iterate,” Advances in the 5eory of Nonlinear
Analysis and its Application, vol. 3, no. 3, pp. 231–235, 2019.

[5] H. Piri and P. Kumam, “Some fixed point theorems con-
cerning F-contraction in complete metric spaces,” Fixed Point
5eory and Applications, vol. 2014, p. 210, 2014.

[6] B. Samet, C. Vetro, and P. Vetro, “Fixed point theorems for
-contractive type mappings,” Nonlinear Analysis: 5eory,
Methods & Applications, vol. 75, no. 4, pp. 2154–2165, 2012.

[7] A. Taheri and A. P. Farajzadeh, “A new generalization of
$\alpha$-type almost-$F$-contractions and $\alpha$-type
$F$-Suzuki contractions in metric spaces and their fixed point
theorems,” Carpathian Mathematical Publications, vol. 11,
no. 2, pp. 475–492, 2019.

[8] D. Wardowski, “Fixed points of a new type of contractive
mappings in complete metric spaces,” Fixed Point 5eory and
Applications, vol. 2012, p. 94, 2012.

[9] L.-C. Ceng, A. Petrusel, A. Petruşel, J.-C. Yao, and Y. Yao,
“Hybrid viscosity extragradient method for systems of vari-
ational inequalities, fixed Points of nonexpansive mappings,
zero points of accretive operators in Banach spaces,” Fixed
Point 5eory, vol. 19, no. 2, pp. 487–502, 2018.

[10] Y. Yao, L. Leng, M. Postolache, and X. Zheng, “Mann-type
iteration method for solving the split common fixed point
problem,” Journal of Nonlinear and Convex Analysis, vol. 18,
pp. 875–882, 2017.

[11] Y. Yao, M. Postolache, and J. C. Yao, “An iterative algorithm
for solving the generalized variational inequalities and fixed
points problems,” Mathematics, vol. 7, p. 61, 2019.

[12] H. Zegeye, N. Shahzad, and Y. Yao, “Minimum-norm solu-
tion of variational inequality and fixed point problem in
Banach spaces,” Optimization, vol. 64, no. 2, pp. 453–471,
2015.

8 Journal of Mathematics



[13] N. Shahzad and H. Zegeye, “Convergence theorems of
common solutions for fixed point, variational inequality and
equilibrium problems,” Journal of Nonlinear and Variational
Analysis, vol. 3, pp. 189–203, 2019.

[14] B. Tan, S. Li, and S. Y. Cho, “Strong convergence of inertial
Mann algorithms for solving hierarchical fixed point prob-
lems,” Journal of Nonlinear and Variational Analysis, vol. 4,
pp. 337–355, 2020.

[15] L.-C. Ceng, A. Petrusel, A. Petruşel, J.-C. Yao, and Y. Yao,
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In this paper, we introduce a Halpern algorithm and a nonconvex combination algorithm to approximate a solution of the split
common fixed problem of quasi-ϕ-nonexpansive mappings in Banach space. In our algorithms, the norm of linear bounded
operator does not need to be known in advance. As the application, we solve a split equilibrium problem in Banach space. Finally,
some numerical examples are given to illustrate the main results in this paper and compare the computed results with other ones
in the literature. Our results extend and improve some recent ones in the literature.

1. Introduction

Let H1 be a Hilbert space, and let C be the nonempty closed
convex subset of H1. Let H2 be a real Hilbert space, and
let Q be the nonempty closed convex subset of H2. Let
A: H1⟶ H2 be a linear bounded operator. In 1994,
Censor and Elfving [1] introduced the split feasibility
problem (SFP) as a generalization of convex feasibility
problem as follows:

find a pointx
∗ ∈ C such thatAx

∗ ∈ Q. (1)

Recntly, the SFP and its variants have been investigated
by many authors due to its real applications such as medical
imaging, radiation therapy, and treatment planning; see, e.g.,
[2–5]. For solving SFP (1), it needs to get the inverse A− 1

(assuming the existence of A− 1 ) in algorithm of Censor and
Elfving [1]. However, few authors continue to study the
algorithm of Censor and Elfving since the difficulty of
computing A− 1, even if it exists. In fact, another algorithm
solving SFP (1) is more popular which is called CQ algorithm
given by Byrne [6, 7]. *e CQ algorithm of Byrne is a
gradient projection method in convex minimization. Since
the CQ algorithm does need to compute A− 1 and only
involves the projections PC and PQ, it is easy to implement

when PC and PQ have the closed-form expressions. How-
ever, the computations of PC and PQ are also difficult if these
projections did not have the closed-form expressions which
is such that the CQ algorithm of Byrne [6, 7] is not easy to
implement in this case. In 2010, Xu [8] investigated the CQ
algorithm from the ways of optimization and fixed point,
proposed Mann’s algorithm, and relaxed CQ algorithm to
solve SFP (1). In the relaxed CQ algorithm, the sets C and Q
are level sets of convex functions so that the projections
involved in the CQ algorithm are onto half-spaces, which
makes the algorithm implementable. Also, in 2010, Moudafi
[9] proposed an iterative method to solve a split common
fixed point problem for quasi-nonexpansive mappings in
which the projection is not involved which is such that the
algorithm is easy to implement. In 2014, Kraikaew and
Saejung [10] combined the Moudafi method and the Hal-
pern algorithm to propose a new iteration in which the
projection is not involved for solving the SFP. In the recent
years, many algorithms have been given to solve the SFP in
Hilbert spaces; see, for instance, [11–15] and the references
therein.

However, because of the complexity of properties in
Banach space, it is very difficulty to solve SFP (and fixed
point problem) in Banach spaces. Until now, only limited
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works on SFP (and fixed point problem) in Banach spaces
have been reported in the literature. For instance, the au-
thors in [16] gave an algorithm to solve SFP in Banach space.
In [17], Tang et al. introduced some iterative algorithms to
solve a split common fixed point problem for a quasi-strict
pseudocontractive mapping and an asymptotically non-
expansive mapping in two Banach spaces and obtained the
weak and strong convergence for the proposed algorithms.
In [18], Chen et al. proposed a new hybrid projection
method for solving split feasibility and fixed point problems
involved in Bregman quasi-strictly pseudocontractive
mapping in p-uniformly convex and uniformly smooth real
Banach spaces. *ey proved the strong convergence for the
proposed algorithm using the Bregman projection method.
On the feasible and common fixed point problem, the au-
thors also refer to [19–21].

Let E1 be a 2-uniformly convex and 2-uniformly smooth
real Banach space with the best smoothness constant k> 0 and
E2 be a uniformly smooth, strictly convex, and reflective Banach
space. Let S: E1⟶ E1 be a closed quasi-ϕ-nonexpansive
mapping andA: E1⟶ E2 be a linear bounded operator. Very
recently, Ma et al. [22] proposed a hybrid projection algorithm
to solve the following split feasibility problem and fixed point
problem:

findx
∗ ∈ C such thatAx

∗ ∈ Q, (2)

where C � x ∈ E1 : x � Sx􏼈 􏼉 and Q ⊂ E2 is a nonempty
closed convex subset. Precisely, their algorithm to solve (2) is
as follows:

x1 ∈ E1, C1 � E1,

zn � J
− 1

J1xn + cA
∗
J2 PQ − I􏼐 􏼑Axn􏼐 􏼑,

yn � J
− 1 αnJ1zn + 1 − αn( 􏼁J1Szn􏼂 􏼃,

Cn+1 � v ∈ Cn : ϕ v, yn( 􏼁≤ϕ v, xn( 􏼁, ϕ v, zn( 􏼁≤ϕ v, xn( 􏼁􏼈 􏼉,

xn+1 � ΠCn+1
x1, n≥ 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where α{ } ⊂ [δ, 1) with δ > 0, c ∈ (0, (1/‖A‖2k2)), PQ is the
metric projection of E2 onto Q, and ΠCn+1

is the generalized
projection of E1 in Cn+1. *e authors proved that the se-
quence generated by (3) strongly converges to a point which
solves (2).

On the contrary, the most algorithms of approximating
the fixed points of quasi-ϕ-nonexpansive mappings in
Banach spaces are constructed by the hybrid or shrinking
projection methods, see [23–25]. However, in 2018, Hieu
and Strodiot [26] introduced a new iterative algorithm for
solving pseudomonotone equilibrium problem involving the
fixed point problem for quasi-ϕ-nonexpansive mapping in
Banach space without using the hybrid or shrinking pro-
jection methods. More precisely, their algorithm is

yn � argmin λnf xn, y( 􏼁 +
1
2
ϕ y, xn( 􏼁 : y ∈ C􏼚 􏼛,

zn � argmin λnf yn, y( 􏼁 +
1
2
ϕ y, xn( 􏼁 : y ∈ C􏼚 􏼛,

xn+1 � ΠC J
− 1 αnJu + 1 − αn( 􏼁 βnJzn + 1 − βn( 􏼁JSzn( 􏼁( 􏼁􏼐 􏼑,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where f : C × C⟶ R is a pseudomonotone bifunction and
S : C⟶ C is a quasi-ϕ-nonexpansive mapping. *e au-
thors proved that the sequence generated by (4) strongly
converges to a common point that solves the pseudomo-
notone equilibrium problem on f and is a fixed point of S.

In general, there are three kinds of iterations of strong
convergence that are used to approximate the fixed point of
the nonlinear operator. *e iterations are the Halpern it-
eration, the viscosity iteration, and the hybrid projection
iteration. Recently, Hussain et al. [27] proposed a new
surprising iteration that strongly converges to a fixed point
of a nonexpansive mapping in Hilbert space. More precisely,
the iteration is

x1 ∈ H, xn+1 � αn 1 − μn( 􏼁xn + 1 − αn( 􏼁Txn, n≥ 1, (5)

where H is a Hilbert space, T : H⟶ H is a nonexpansive
mapping, and αn􏼈 􏼉, μn􏼈 􏼉 ⊂ (0, 1] are the control sequences.
*e authors proved that xn􏼈 􏼉 generated by (5) strongly
converges to a fixed point of T under some certain condi-
tions on αn􏼈 􏼉 and μn􏼈 􏼉. Later on, Marino et al. [28] extended
(5) to strict pseudocontraction.

In this paper, motivated by the work of [22, 26, 27], we
introduce some algorithms to solve a split common fixed
point problem for two families of quasi-ϕ-nonexpansive
mappings in Banach spaces and prove the strong convergence
for the proposed algorithms. As the application, we solve a
split equilibrium problem in Banach space. Finally, we give a
numerical example in infinite dimension Banach space to
illustrate the main result of this paper. Our results extend the
one of Ma et al. [22] from one quasi-nonexpansive mapping
to two quasi-nonexpansive mappings and [27] from Hilbert
space to Banach space.

2. Preliminaries

Let E be a Banach space, and let E∗ be the dual space of E.
For all x ∈ E and x∗ ∈ E∗, we denote the value of x∗ at x by
〈x, x∗〉. *e duality mapping J on E is defined by

J(x) � x
∗ ∈ E
∗
: 〈x, x

∗〉 � ‖x‖
2

� x
∗����
����
2

􏼚 􏼛, ∀x ∈ E.

(6)

It is known that J(x) is nonempty for all x ∈ E. A Banach
space E is said to be smooth if the limit
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lim
n⟶∞

‖x + ty‖ − ‖x‖

t
(7)

exists for all x, y ∈ S(E) � z ∈ E : ‖z‖ � 1{ }. *e space E is
smooth if and only if the duality mapping J is single-valued.

A Banach space E is said to be strictly convex if (‖x +

y‖/2)< 1 for x, y ∈ E with ‖x‖ � ‖y‖ � 1 and x≠y and
uniformly convex if for each ϵ ∈ (0, 2], there exists δ > 0 such
that (‖x + y‖/2)≤ 1 − δ for all x, y ∈ E with ‖x‖ � ‖y‖ � 1

and ‖x − y‖≥ ϵ. It is known that if E is smooth, strictly
convex, and reflexive, then the duality mapping J is single-
valued, one-to-one, and onto. Let E be a smooth Banach
space. *e function ϕ: E × E⟶ R is defined by

ϕ(x, y) � ‖x‖
2

− 2〈x, Jy〉 +‖y‖
2
, (8)

for all x, y ∈ E. From the definition of ϕ, it is easy to see that,
for all x, y, z ∈ E, the following hold:

(‖x‖ − ‖y‖)
2 ≤ϕ(x, y)≤ (‖x‖ +‖y‖)

2
,

ϕ x, J
− 1

(λJy) +(1 − λ)Jz􏼐 􏼑≤ λϕ(x, y) +(1 − λ)ϕ(x, z), λ ∈ (0, 1).
(9)

*e following is an important property for the function
ϕ:

ϕ(x, y) � ϕ(z, y) + ϕ(x, z) + 2〈z − x, Jy − Jz〉, (10)

for all x, y, z ∈ E.

Lemma 1 (see [29]). Let E be a uniformly convex and
smooth Banach space, and let xn􏼈 􏼉 and yn􏼈 􏼉 be two sequences
of E. If ϕ(xn, yn)⟶ 0 and either xn􏼈 􏼉 or yn􏼈 􏼉 is bounded,
then ‖xn − yn‖⟶ 0.

For any bounded sequences xn􏼈 􏼉 and yn􏼈 􏼉 in a uniformly
convex and uniformly smooth Banach space, the following
hold:

ϕ xn, yn( 􏼁⟶ 0⇔ xn − yn

����
����⟶ 0⇔ Jxn − Jyn

����
����⟶ 0.

(11)

Let ΠC : E⟶ C be mapping called the generalized
projection [30] that assigns to an arbitrary element x ∈ E the
minimum point of the functional ϕ(x, y); that is,
ΠCx � argminy∈Cϕ(y, x).

Lemma 2 (see [30]). Let E be a smooth, strictly convex, and
reflexive Banach space and C be a nonempty closed convex
subset of E. 2en, the following conclusions hold:

(a) ϕ(x,ΠCy) + ϕ(ΠCy, y)≤ϕ(x, y), ∀x ∈ C, ∀y ∈ E

(b) For x ∈ E, z � ΠCx if and only if 〈z − y, Jx − Jz〉≥ 0,
∀y ∈ C

(c) For x, y ∈ E, ϕ(x, y) � 0 if and only if x � y

Let E be a strictly convex and reflexive Banach space and
C be a nonempty closed and convex subset. *e metric
projection

PCx � argminy∈C‖y − x‖, ∀x ∈ E. (12)

Lemma 3 (see [31]). Let E be a smooth, strictly convex, and
reflexive Banach space and C be a nonempty, closed convex
subset of E. Let x ∈ E. 2en,

z � PCx if and only if 〈z − y, J(x − z)〉≥ 0, ∀y ∈ C.

(13)

Let E be a strictly convex, smooth, and reflexive Banach
space. 2e duality mapping J∗ from E∗ onto E∗∗ � E coin-
cides with the inverse of the duality mapping J from E onto
E∗, that is, J∗ � J− 1. Define a mapping V: E × E∗ ⟶ R [32]
by

V x, x
∗

( 􏼁 � ‖x‖
2

− 2〈x, x
∗〉 + x

∗����
����
2
, ∀ x, x

∗
( 􏼁 ∈ E × E

∗
.

(14)

Lemma 4 (see [32]). Let E be a reflexive, smooth, and strictly
convex Banach space. 2en,

V x, x
∗

( 􏼁≤V x, x
∗

+ y
∗

( 􏼁 − 2〈J− 1
x
∗

− x, y
∗〉, (15)

for all x ∈ E and x∗, y∗ ∈ E∗. Obviously,
V(x, x∗) � ϕ(x, J− 1x∗) for all x ∈ E and x∗ ∈ E.

Let E be a smooth Banach space. Amapping T: E⟶ E

is said to be closed if for any sequence xn􏼈 􏼉 ⊂ E with
xn⟶ x and Txn⟶ y, then Txn � y. T is said to be
quasi-ϕ-nonexpansive mapping if Fix(T)≠∅ and

ϕ(p, Tx)≤ϕ(p, x), (16)

for all p ∈ Fix(T) and x ∈ E. For a quasi-ϕ-nonexpansive
mapping T, Fix(T) is convex. If T is closed, then Fix(T) is
closed, see [24].

Lemma 5 (see [33]). Let r> 0. A real Banach space E is
uniformly convex if and only if there exists a continuous
strictly increasing function g : [0,∞)⟶ [0,∞) with
g(0) � 0 such that

‖tx +(1 − t)y‖
2 ≤ t‖x‖

2
+(1 − t)‖y‖

2
− t(1 − t)g(‖x − y‖),

(17)

for all t ∈ [0, 1] and x, y ∈ Br, where Br � x ∈ E : ‖x‖≤ r{ }.

Lemma 6 (see [33]). Let r> 0. LetE be a 2-uniformly smooth
Banach space with the best smoothness constants k> 0. 2en,

‖x + y‖
2 ≤ ‖x‖

2
+ 2〈y, Jx〉 + 2k

2
‖y‖

2
, (18)
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for all x, y ∈ E.

Lemma 7 (see [34]). Let an􏼈 􏼉 be a sequence of nonnegative
real numbers. Suppose that

an+1 ≤ 1 − cn( 􏼁an + cnδn, ∀n ∈ N, (19)

where cn􏼈 􏼉 ⊂ (0, 1) and δn􏼈 􏼉 ⊂ R satisfy the conditions:

lim
n⟶∞

cn � 0,

􏽘

∞

n�1
cn �∞, and lim sup

n⟶∞
δn ≤ 0.

(20)

2en, limn⟶∞an � 0.

Lemma 8 (see [35]). Let an􏼈 􏼉 be a sequence of real numbers
such that there exists a subsequence ni􏼈 􏼉 of n{ } such that
ani
< ani+1 for all i ∈ N. 2en, there exists a nondecreasing

sequence mk􏼈 􏼉 ⊂ N such that mk⟶∞ as k⟶∞, and the
following properties are satisfied by all (sufficiently large)
numbers k ∈ N:

amk
≤ amk+1 and ak ≤ amk+1. (21)

In fact, mk � max j≤ k : aj < aj+1􏽮 􏽯.

Lemma 9 (see [36]). Suppose that an􏼈 􏼉 and bn􏼈 􏼉 are se-
quences of nonnegative real numbers such that

an+1 ≤ an + bn, n≥ 1. (22)

If 􏽐
∞
n�1 bn <∞, then limn⟶∞an exists.

3. Main Results

In this section, let E1 be a 2-uniformly convex and 2-uniformly
smooth real Banach space with the best smoothness constant
k> 0 and E2 be a uniformly smooth, strictly convex, and re-
flexive Banach space. Define the functions ϕ1 and ϕ2 by

ϕ1(x, y) � ‖x‖
2
1 − 2〈x, J1y〉1 +‖y‖

2
1, ∀x, y ∈ E1,

ϕ2(u, v) � ‖u‖
2
2 − 2〈u, J2v〉2 +‖v‖

2
2, ∀u, v ∈ E2,

(23)

where 〈x, J1y〉1 (resp., 〈u, J1v〉2) and ‖x‖1 (resp., ‖u‖2)
denote the value of J1y at x and norm of x (resp., the value of
J1v at u and norm of u ) in E1 (resp. E2), respectively.
However, for convenience, we use the same symbols 〈·, ·〉,
‖ · ‖, and ϕ in E1 and E2 without the confusion.

Let A : E1⟶ E2 be a linear bounded operator with
adjoint A∗. Let S : E1⟶ E1 and T : E2⟶ E2 be the

quasi-ϕ-nonexpansive mappings. Consider the following
split common fixed point problem:

find x ∈ Fix(S) such thatAx ∈ Fix(T). (24)

Denote the set of solutions of the above split common
fixed point problem by Ω. In this section, assume that S and
T are closed and I − S and I − T are demiclosed at zeros in E1
and E2. Note that, from the closedness of S and T, it follows
that Fix(S) and Fix(T) are closed [24], which implies that Ω
is closed. *e convexity ofΩ is from the convexity of Fix(S).
Assume that Ω is nonempty.

Let x∗ � ΠΩθ, where θ is the zero element in E1. We will
prove that sequence xn􏼈 􏼉 generated by the following algo-
rithm converges strongly to x∗.

Algorithm 1. Take x1 ∈ E1, and define a sequence xn􏼈 􏼉 by

wn � TAxn,

Qn � w ∈ E2: ϕ w, wn( 􏼁≤ ϕ w, Axn( 􏼁􏼈 􏼉,

zn � J
− 1
1 J1xn − cnA

∗
J2 I − PQn

􏼐 􏼑Axn􏼐 􏼑,

yn � J
− 1
1 βnJ1zn + 1 − βn( 􏼁J1Szn( 􏼁,

xn+1 � J
− 1
1 αn 1 − τn( 􏼁J1xn + 1 − αn( 􏼁J1yn( 􏼁, n≥ 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

where αn􏼈 􏼉, βn􏼈 􏼉 ⊂ (0, 1), τn􏼈 􏼉 ⊂ (τ, 1) with τ ∈ (0, 1) and

cn �

PQn
− I􏼐 􏼑Axn

�����

�����
2

2k
2

A
∗
J2 I − PQn

􏼐 􏼑Axn

�����

�����
2, if PQn

− I􏼐 􏼑Axn

�����

�����≠ 0,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(26)

Lemma 10. 2e sequence xn􏼈 􏼉 is well-defined and bounded.

Proof. Since ϕ(w, wn)≤ ϕ(w, Axn) is equivalent to
2〈w, J2Axn − J2wn〉≤ ‖Axn‖2 − ‖wn‖2, it follows that Qn is
closed and convex for each n≥ 1. For any p ∈ Ω, it follows
that Ap ∈ Qn for all n≥ 1. Hence, each Qn is nonempty
closed convex, which implies that PQn

Axn􏽮 􏽯 is well-defined.
Now, we show that ‖(PQn

− I)Axn‖≠ 0 implies that
‖A∗J2(PQn

− I)Axn‖≠ 0. Assume that ‖A∗J2(PQn
− I)Axn‖ �

0. We have 〈Ap − PQn
Axn, J2(PQn

− I)Axn〉≥ 0 by Lemma 3
and hence

0 �〈p − xn, A
∗
J2 PQn

− I􏼐 􏼑Axn〉 �〈Ap − Axn, J2 PQn
− I􏼐 􏼑Axn〉

�〈Ap − PQn
Axn, J2 PQn

− I􏼐 􏼑Axn〉 +〈PQn
Axn − Axn, J2 PQn

− I􏼐 􏼑Axn〉

�〈Ap − PQn
Axn, J2 PQn

− I􏼐 􏼑Axn〉 + PQn
− I􏼐 􏼑Axn

�����

�����
2
≥ PQn

− I􏼐 􏼑Axn

�����

�����
2
.

(27)
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It is a contradiction. It follows that ‖(PQn
− I)Axn‖≠ 0

implies that ‖A∗J2(PQn
− I)Axn‖≠ 0. Hence, zn􏼈 􏼉 is well-

defined. Furthermore, xn􏼈 􏼉 is well-defined.

Since E1 is a 2-uniformly convex and 2-uniformly
smooth real Banach space, E∗1 is 2-uniformly smooth real
Banach space, and J1 � (J∗1 )− 1. From (25) and Lemma 6, we
have

ϕ x
∗
, zn( 􏼁 � x

∗����
����
2

− 2〈x∗, J1xn + cnA
∗
J2 PQn

− I􏼐 􏼑Axn〉 + J1xn + cnA
∗
J2 PQn

− I􏼐 􏼑Axn

�����

�����
2

≤ x
∗����
����
2

− 2〈x∗, J1xn〉 − 2cn〈x
∗
, A
∗
J2 PQn

− I􏼐 􏼑Axn〉 + xn

����
����
2

+ 2cn〈xn, A
∗
J2 PQn

− I􏼐 􏼑Axn〉 + 2c
2
nk

2
A
∗
J2 PQn

− I􏼐 􏼑Axn

�����

�����
2

� ϕ x
∗
, xn( 􏼁 − 2cn〈x

∗
− xn, A

∗
J2 PQn

− I􏼐 􏼑Axn〉 + 2c
2
nk

2
A
∗
J2 PQn

− I􏼐 􏼑Axn

�����

�����
2
.

(28)

Since Ax∗ ∈ Qn, 〈Ax∗ − PQn
Axn, J2(PQn

− I)Axn〉≥ 0.
Hence, we have

2〈x∗ − xn, A
∗
J2 PQn

− I􏼐 􏼑Axn〉 � 2〈Ax
∗

− Axn, J2 PQn
− I􏼐 􏼑Axn〉

� 2〈Ax
∗

− PQn
Axn, J2 PQn

− I􏼐 􏼑Axn〉 + 2 PQn
− I􏼐 􏼑Axn

�����

�����
2
≥ 2 PQn

− I􏼐 􏼑Axn

�����

�����
2
.

(29)

Combining (28) with (29), we obtain

ϕ x
∗
, zn( 􏼁≤ϕ x

∗
, xn( 􏼁 − 2cn PQn

− I􏼐 􏼑Axn

�����

�����
2

+ 2κ2c2
n A
∗
J2 PQn

− I􏼐 􏼑Axn

�����

�����
2

� ϕ x
∗
, xn( 􏼁 −

PQn
− I􏼐 􏼑Axn

�����

�����
4

2k
2

A
∗
J2 PQn

− I􏼐 􏼑Axn

�����

�����
2 ≤ ϕ x

∗
, xn( 􏼁.

(30)

Furthermore, by Lemma 5, (25), and (30) we obtain

ϕ x
∗
, yn( 􏼁 � x

∗����
����
2

− 2〈x∗, βnJ1zn + 1 − βn( 􏼁J1Szn〉 + βnJ1zn + 1 − βn( 􏼁J1Szn

����
����
2

≤ x
∗����
����
2

− 2〈x∗, βnJ1zn + 1 − βn( 􏼁J1Szn〉 + βn zn

����
����
2

+ 1 − βn( 􏼁 Szn

����
����
2

− βn 1 − βn( 􏼁g J1zn − J1Szn

����
����􏼐 􏼑

� βnϕ x
∗
, zn( 􏼁 + 1 − βn( 􏼁ϕ x

∗
, Szn( 􏼁 − βn 1 − βn( 􏼁g J1zn − J1Szn

����
����􏼐 􏼑

≤ϕ x
∗
, xn( 􏼁 −

PQn
− I􏼐 􏼑Axn

�����

�����
4

2k
2

A
∗
J2 PQn

− I􏼐 􏼑Axn

�����

�����
2 − βn 1 − βn( 􏼁g J1zn − J1Szn

����
����􏼐 􏼑.

(31)

It follows from (25), (31), and Lemma 5 that
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ϕ x
∗
, xn+1( 􏼁 � ϕ x

∗
, J

− 1
1 αn 1 − τn( 􏼁J1xn + 1 − αn( 􏼁J1yn( 􏼁􏼐 􏼑 � x

∗����
����
2

− 2αn 1 − τn( 􏼁〈x∗, J1xn〉 − 2 1 − αn( 􏼁〈x∗, J1yn〉

+ αn 1 − τn( 􏼁J1xn + 1 − αn( 􏼁J1yn

����
����
2 ≤ x

∗����
����
2

− 2αn 1 − τn( 􏼁〈x∗, J1xn〉 − 2 1 − αn( 􏼁〈x∗, J1yn〉

+ αn 1 − τn( 􏼁J1xn

����
����
2

+ 1 − αn( 􏼁 J1yn

����
����
2 ≤ x

∗����
����
2

− 2αn 1 − τn( 􏼁〈x∗, J1xn〉 − 2 1 − αn( 􏼁〈x∗, J1yn〉

+ αn 1 − τn( 􏼁 xn

����
����
2

+ 1 − αn( 􏼁 yn

����
����
2

� αn 1 − τn( 􏼁ϕ x
∗
, xn( 􏼁 + 1 − αn( 􏼁ϕ x

∗
, yn( 􏼁 + αnτn x

∗����
����
2

≤ αn 1 − τn( 􏼁ϕ x
∗
, xn( 􏼁 + 1 − αn( 􏼁 ϕ x

∗
, xn( 􏼁 −

PQn
− I􏼐 􏼑Axn

�����

�����
4

2k
2

A
∗
J2 PQn

− I􏼐 􏼑Axn

�����

�����
2 − βn 1 − βn( 􏼁g J1zn − J1Szn

����
����􏼐 􏼑⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

+ αnτn x
∗����
����
2

� 1 − αnτn( 􏼁ϕ x
∗
, xn( 􏼁 + αnτn x

∗����
����
2

− 1 − αn( 􏼁
PQn

− I􏼐 􏼑Axn

�����

�����
4

2k
2

A
∗
J2 PQn

− I􏼐 􏼑Axn

�����

�����
2 + βn 1 − βn( 􏼁g J1zn − J1Szn

����
����􏼐 􏼑⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

≤max ϕ x
∗
, xn( 􏼁, x

∗����
����
2

􏼚 􏼛≤ · · · ≤max ϕ x
∗
, x1( 􏼁, x

∗����
����
2

􏼚 􏼛, n≥ 1.

(32)

So, ϕ(x∗, xn)􏼈 􏼉 is bounded. □

Lemma 11. Let xn􏼈 􏼉 be the sequence generated by Algo-
rithm 1. 2en,

ϕ x
∗
, xn+1( 􏼁≤ 1 − αnτn( 􏼁ϕ x

∗
, xn( 􏼁 + 2αnτn〈x

∗
− xn+1, J1x

∗

+ 1 − αn( 􏼁 J1xn − J1yn( 􏼁〉.
(33)

Proof. Let hn � αnJ1xn + (1 − αn)J1yn. *en, by (31), we
have

ϕ x
∗
, J

− 1
1 hn􏼐 􏼑≤ αnϕ x

∗
, xn( 􏼁 + 1 − αn( 􏼁ϕ x

∗
, yn( 􏼁

≤ αnϕ x
∗
, xn( 􏼁 + 1 − αn( 􏼁ϕ x

∗
, xn( 􏼁

� ϕ x
∗
, xn( 􏼁.

(34)

Note that

xn+1 � J
− 1
1 1 − αnτn( 􏼁hn + αnτn 1 − αn( 􏼁 J1yn − J1xn( 􏼁( 􏼁.

(35)

By (34) and (35) and Lemma 4, we have

ϕ x
∗
, xn+1( 􏼁 � ϕ x

∗
, J

− 1
1 1 − αnτn( 􏼁hn + αnτn 1 − αn( 􏼁 J1yn − J1xn( 􏼁( 􏼁􏼐 􏼑

� V x
∗
, 1 − αnτn( 􏼁hn + αnτn 1 − αn( 􏼁 J1yn − J1xn( 􏼁( 􏼁

≤V x
∗
, 1 − αnτn( 􏼁hn + αnτn 1 − αn( 􏼁 J1yn − J1xn( 􏼁 + αnτn J1x

∗
− 1 − αn( 􏼁 J1yn − J1xn( 􏼁( 􏼁( 􏼁

− 2〈xn+1 − x
∗
, αnτn J1x

∗
− 1 − αn( 􏼁 J1yn − J1xn( 􏼁( 􏼁〉 � V x

∗
, 1 − αnτn( 􏼁hn + αnτnJ1x

∗
( 􏼁

− 2〈xn+1 − x
∗
, αnτn J1x

∗
− 1 − αn( 􏼁 J1yn − J1xn( 􏼁( 􏼁〉≤ 1 − αnτn( 􏼁ϕ x

∗
, J

− 1
1 hn􏼐 􏼑 + αnτnϕ x

∗
, x
∗

( 􏼁

− 2〈xn+1 − x
∗
, αnτn J1x

∗
− 1 − αn( 􏼁 J1yn − J1xn( 􏼁( 􏼁〉

≤ 1 − αnτn( 􏼁ϕ x
∗
, xn( 􏼁 + 2αnτn〈x

∗
− xn+1, J1x

∗
− 1 − αn( 􏼁 J1yn − J1xn( 􏼁〉.

(36)

□
Theorem 1 If the following conditions hold:

lim
n⟶∞

αn � 0,

􏽘

∞

n�1
αn �∞ and liminf

n⟶∞
βn 1 − βn( 􏼁> 0,

(37)

then the sequence xn􏼈 􏼉 generated by Algorithm 1 converges
strongly to the element x∗.

Proof. By (32), we have
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1 − αn( 􏼁
PQn

− I􏼐 􏼑Axn

�����

�����
4

2k
2

A
∗
J2 PQn

− I􏼐 􏼑Axn

�����

�����
2 + βn 1 − βn( 􏼁g J1zn − J1Szn

����
����􏼐 􏼑⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

≤ 1 − αnτn( 􏼁ϕ x
∗
, xn( 􏼁 − ϕ x

∗
, xn+1( 􏼁 + αnτn x

∗����
����
2 ≤ ϕ x

∗
, xn( 􏼁 − ϕ x

∗
, xn+1( 􏼁 + αnτn x

∗����
����
2
.

(38)

Now, we show that ‖xn − x∗‖⟶ 0 by the following two
cases:

Case 1. Suppose that there exists n0 ∈ N such that
ϕ(x∗, xn)􏼈 􏼉

∞
n�n0

is nonincreasing. In this situation,
ϕ(x∗, xn)􏼈 􏼉 is convergent. By (37) and (38), we have

lim
n⟶∞

PQn
− I􏼐 􏼑Axn

�����

�����
4

A
∗
J2 PQn

− I􏼐 􏼑Axn

�����

�����
2 � lim

n⟶∞
g J1zn − J1Szn

����
����􏼐 􏼑 � 0,

(39)

which implies that

lim
n⟶∞

J1zn − J1Szn

����
���� � 0. (40)

Since ‖A∗J2(PQn
− I)Axn‖􏽮 􏽯 is bounded, we have

lim
n⟶∞

PQn
− I􏼐 􏼑Axn

�����

����� � 0. (41)

By (40), we have

J1yn − J1zn

����
���� � 1 − βn( 􏼁 J1zn − J1Szn

����
����⟶ 0. (42)

Combining (39) with (42), we obtain

J1yn − J1xn

����
����≤ J1yn − J1zn

����
���� + J1zn − J1xn

����
���� � J1yn − J1zn

����
���� + cn A

∗
J2 PQn

− I􏼐 􏼑Axn

�����

�����

� J1yn − J1zn

����
���� +

PQn
− I􏼐 􏼑Axn

�����

�����
2

2κ2 A
∗
J2 PQn

− I􏼐 􏼑Axn

�����

�����
⟶ 0.

(43)

On the contrary, from (25) and (43), it follows that

J1zn − J1xn+1
����

����≤ J1zn − J1yn

����
���� + J1yn − J1xn+1

����
���� � J1zn − J1yn

����
���� + αn 1 − τn( 􏼁J1xn − J1yn

����
����⟶ 0. (44)

Since E1 is a 2-uniformly convex and 2-uniformly
smooth real Banach space, J1 is uniformly norm-to-norm
continuous. From (40), (42), and (44), it follows that

lim
n⟶∞

zn − Szn

����
���� � lim

n⟶∞
yn − zn

����
���� � lim

n⟶∞
zn − xn+1

����
���� � 0.

(45)

Since zn􏼈 􏼉 is bounded, there exist a subsequence znk
􏽮 􏽯

of zn􏼈 􏼉 converging weakly to p ∈ E1 such that

lim sup
n⟶∞
〈x∗ − zn, J1x

∗〉 � lim
k⟶∞
〈x∗ − znk

, J1x
∗〉

�〈x∗ − p, J1x
∗〉.

(46)

Now, we show that p ∈ Ω. First, by (45) and demi-
closeness principle at zero of S, we have p ∈ Fix(S). On
the contrary, since PQn

Axn ∈ Qn and
‖PQn

Axn − Axn‖⟶ 0, we have

ϕ PQn
Axn, wn􏼐 􏼑≤ϕ PQn

Axn, Axn􏼐 􏼑⟶ 0. (47)

By Lemma 1, it follows that

PQn
Axn − wn

�����

����� � PQn
Axn − TAxn

�����

�����⟶ 0. (48)

Hence,

Axn − TAxn

����
����≤ Axn − PQn

Axn

�����

����� + PQn
Axn − TAxn

�����

�����⟶ 0.

(49)

Since A is bounded and linear, by (45), we can conclude
that Axnk+1􏽮 􏽯 converges weakly to Ap ∈ E2. By (49) and
demi-closedness principle of T, we obtain that
Ap ∈ Fix(T). Hence, p ∈ Ω. *erefore, by (45) and
Lemma 3,

lim sup
n⟶∞
〈x∗ − xn+1, J1x

∗〉 � lim sup
n⟶∞
〈x∗ − zn, J1x

∗〉

�〈x∗ − p, J1x
∗〉 ≤ 0.

(50)

Finally, the conclusion‖xn − x∗‖⟶ 0 follows from
the hypothesis on αn􏼈 􏼉, (33), (43), (50), and Lemma 4.
Case 2. Suppose that there exists a subsequence ni􏼈 􏼉 of
n{ } such that
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ϕ x
∗
, xni

􏼐 􏼑<ϕ x
∗
, xni+1􏼐 􏼑, (51)

for all i ∈ N.
*en, by Lemma 5, there exists a nondecreasing se-
quence mk􏼈 􏼉 ⊂ N such that mk⟶∞:

ϕ x
∗
, xmk

􏼐 􏼑≤ ϕ x
∗
, xmk+1􏼐 􏼑 andϕ x

∗
, xk( 􏼁

≤ ϕ x
∗
, xmk+1􏼐 􏼑, ∀k≥ 1.

(52)

Replacing n with mk in (38), by (52), we have

1 − αmk
􏼐 􏼑

PQmk+1
− I􏼒 􏼓Axmk

������

������

4

2k
2

A
∗
J2 PQmk+1

− I􏼒 􏼓Axmk

������

������

2 + βmk
1 − βmk

􏼐 􏼑g J1zmk
− J1Szmk

�����

�����􏼒 􏼓
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤ϕ x
∗
, xmk

􏼐 􏼑 − ϕ x
∗
, xmk+1􏼐 􏼑 + αmk

τmk
x
∗����
����
2 ≤ αmk

τmk
x
∗����
����
2
.

(53)

*en, by a similar process with proving (43)–(50), we
can obtain that

lim
k⟶∞

J1xmk
− J1ymk

�����

����� � 0 and lim sup
n⟶∞
〈x∗ − xmk+1, J1x

∗〉 ≤ 0.

(54)

Replacing n with mk in (33), we have

ϕ x
∗
, xmk+1􏼐 􏼑≤ 1 − αmk

τmk
􏼐 􏼑ϕ x

∗
, xmk

􏼐 􏼑

+ 2αmk
τmk
〈x∗ − xmk+1, J1x

∗

+ 1 − αmk
􏼐 􏼑 J1ymk

− J1xmk
􏼐 􏼑〉,

(55)

from which we obtain

αmk
τmk

ϕ x
∗
, xmk

􏼐 􏼑≤ϕ x
∗
, xmk

􏼐 􏼑 − ϕ x
∗
, xmk+1􏼐 􏼑 + 2αmk

τmk
〈x∗ − xmk+1, J1x

∗
+ 1 − αmk

􏼐 􏼑 J1ymk
− J1xmk

􏼐 􏼑〉

≤ 2αmk
τmk
〈x∗ − xmk+1, J1x

∗
+ 1 − αmk

􏼐 􏼑 J1ymk
− J1xmk

􏼐 􏼑〉.
(56)

Since αmk
τmk
> 0, by (54) and (56), we have

ϕ x
∗
, xmk

􏼐 􏼑≤ 2〈x∗ − xmk+1, J1x
∗

+ 1 − αmk
􏼐 􏼑 J1ymk

− J1xmk
􏼐 􏼑〉⟶ 0.

(57)

Furthermore, by (54), (55), and (57), it follows that

lim
k⟶∞

ϕ x
∗
, xmk+1􏼐 􏼑 � 0. (58)

However, ϕ(x∗, xk)≤ ‖xmk+1 − x∗‖ for all k≥ 1. So, we
conclude that ϕ(x∗, xk)⟶ 0 as k⟶∞ and hence
‖xk − x∗‖⟶ 0 as k⟶∞ by Lemma 1. *e proof is
complete. □

Remark 1. If ‖(PQn
− I)Axn‖ � 0 for all n≥ 1, then cn � 0

and zn � xn for all n≥ 1. In this case, Axn � PQn
Axn and

ϕ(Axn, wn) � ϕ(Axn, TAxn)≤ϕ(Axn, Axn) � 0, which im-
plies that Axn � TAxn for all n≥ 1. *e iterative scheme (25)
becomes

yn � J
− 1
1 βnJ1xn + 1 − βn( 􏼁J1Sxn( 􏼁,

xn+1 � J
− 1
1 αn 1 − τn( 􏼁J1xn + 1 − αn( 􏼁J1yn( 􏼁, n≥ 1.

⎧⎨

⎩

(59)

By the proof process above, we still can see that xn􏼈 􏼉

converges strongly to x∗ � PFix(S)θ. Since A is linear and

bounded, Axn⟶ Ax∗, which implies that Axn⇀x∗. Note
that Axn � TAxn, for all n≥ 1, and Axn − TAxn⟶ 0 as
n⟶∞. By the hypothesis that I − T is demi-closedness at
zero, we get Ax∗ � TAx∗. Hence, x∗ ∈ Ω. Hence, without
loss generality, we assume that cn ≠ 0 for all n≥ 1 in the proof
process.

Algorithm 2. Take u � x1 ∈ E1, and define a sequence xn􏼈 􏼉

by

wn � TAxn,

Qn � w ∈ E2: ϕ w, wn( 􏼁≤ ϕ w, Axn( 􏼁􏼈 􏼉,

zn � J
− 1
1 J1xn − cnA

∗
J2 I − PQn

􏼐 􏼑Axn􏼐 􏼑,

yn � J
− 1
1 βnJ1zn + 1 − βn( 􏼁J1Szn( 􏼁,

xn+1 � J
− 1
1 αnJ1u + 1 − αn( 􏼁J1yn( 􏼁, n≥ 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(60)

where αn􏼈 􏼉, βn􏼈 􏼉 ⊂ (0, 1) and

cn �

PQn
− I􏼐 􏼑Axn

�����

�����
2

2k
2

A
∗
J2 I − PQn

􏼐 􏼑Axn

�����

�����
2, PQn

− I􏼐 􏼑Axn

�����

�����≠ 0,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(61)
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Lemma 12. xn􏼈 􏼉 is well-defined and bounded.

Proof. By a similar proof lines of Lemma 10, we can show
that xn􏼈 􏼉 is well-defined. Now, we prove that xn􏼈 􏼉 is

bounded. By (29)–(31), (60), and Lemma 5, for any 􏽢x ∈ Ω,
we have

ϕ 􏽢x, xn+1( 􏼁 � ϕ 􏽢x, J
− 1
1 αnJ1u + 1 − αn( 􏼁J1yn( 􏼁􏼐 􏼑 � ‖􏽢x‖

2
− 2αn〈􏽢x, J1u〉 − 2 1 − αn( 􏼁〈􏽢x, J1yn〉

+ αnJ1u + 1 − αn( 􏼁J1yn

����
����
2 ≤ ‖􏽢x‖

2
− 2αn〈􏽢x, J1u〉 − 2 1 − αn( 􏼁〈􏽢x, J1yn〉

+ αn‖u‖
2

+ 1 − αn( 􏼁 yn

����
����
2

� αnϕ(􏽢x, u) + 1 − αn( 􏼁ϕ 􏽢x, yn( 􏼁≤ αnϕ(􏽢x, u) + 1 − αn( 􏼁

· ϕ 􏽢x, xn( 􏼁 −
PQn

− I􏼐 􏼑Axn

�����

�����
4

2k
2

A
∗
J2 PQn

− I􏼐 􏼑Axn

�����

�����
2 − βn 1 − βn( 􏼁g J1zn − J1Szn

����
����􏼐 􏼑⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

≤ αnϕ(􏽢x, u) + 1 − αn( 􏼁ϕ 􏽢x, xn( 􏼁≤ αnϕ(􏽢x, u) + ϕ 􏽢x, xn( 􏼁, n≥ 1.

(62)

By the hypothesis on αn􏼈 􏼉 and Lemma 9, it follows that
the limit of ϕ(􏽢x, xn)􏼈 􏼉 exists. Hence, xn􏼈 􏼉 is bounded. □

Theorem 2. Assume that S and T are closed. If the interior of
Ω is nonempty and αn􏼈 􏼉 and βn􏼈 􏼉 satisfy the following
conditions

􏽘

∞

n�1
αn <∞ and lim inf

n⟶∞
βn 1 − βn( 􏼁> 0, (63)

then xn􏼈 􏼉 generated by Algorithm 2 converges strongly to the
element x∗ � limn⟶∞ΠΩxn.

Proof. We first show that xn􏼈 􏼉 is a Cauchy sequence and
hence converges strongly to some point x∗ ∈ E1. Since the
interior of Ω is nonempty, there exist p ∈ Ω and r> 0 such
that

p + rh ∈ Ω, (64)

whenever ‖h‖≤ 1. By (10), we have

ϕ p, xn( 􏼁 � ϕ xn+1, xn( 􏼁 + ϕ p, xn+1( 􏼁 + 2〈xn+1 − p, J1xn − J1xn+1〉

� ϕ xn+1, xn( 􏼁 + ϕ p, xn+1( 􏼁 + 2〈xn+1 − (p + rh), J1xn − J1xn+1〉 + 2r〈h, J1xn − J1xn+1〉.
(65)

On the contrary, by (10), again we have

ϕ p + rh, xn( 􏼁 � ϕ xn+1, xn( 􏼁 + ϕ p + rh, xn+1( 􏼁

+ 2〈xn+1 − (p + rh), J1xn − J1xn+1〉.
(66)

Combining (65) with (66), we obtain

2r〈h, J1xn − J1xn+1〉 � ϕ p, xn( 􏼁 − ϕ xn+1, xn( 􏼁 + ϕ p, xn+1( 􏼁 + 2〈xn+1 − (p + rh), J1xn − J1xn+1〉( 􏼁

� ϕ p, xn( 􏼁 − ϕ xn+1, xn( 􏼁 − ϕ p, xn+1( 􏼁 − ϕ p + rh, xn( 􏼁 + ϕ xn+1, xn( 􏼁 + ϕ p + rh, xn+1( 􏼁

�
1
2r

ϕ p, xn( 􏼁 − ϕ p, xn+1( 􏼁( 􏼁 + ϕ p + rh, xn+1( 􏼁 − ϕ p + rh, xn( 􏼁.

(67)

Since p + rh ∈ Ω, from (62) and (67), it follows that
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2r〈h, J1xn − J1xn+1〉≤ ϕ p, xn( 􏼁 − ϕ p, xn+1( 􏼁 + αn ϕ(p + rh, u) − ϕ p + rh, xn( 􏼁( 􏼁

≤ ϕ p, xn( 􏼁 − ϕ p, xn+1( 􏼁 + αnϕ(p + rh, u).
(68)

Since h with ‖h‖≤ 1 is arbitrary, we have

J1xn − J1xn+1
����

����≤
1
2r

ϕ p, xn( 􏼁 − ϕ p, xn+1( 􏼁(

+ αnϕ(p + rh, u)􏼁.

(69)

So, for all m> n,

J1xn − J1xm

����
���� � J1xn − J1xn+1 + J1xn+1 − · · · − J1xm− 1 + J1xm− 1 + J1xm

����
����

≤ 􏽘
m− 1

i�n

J1xi − J1xi+1
����

����≤
1
2r

􏽘

m− 1

i�n

ϕ p, xi( 􏼁 − ϕ p, xi+1( 􏼁 + αiϕ(p + rh, u)( 􏼁

�
1
2r

􏽘

m− 1

i�n

ϕ p, xi( 􏼁 − ϕ p, xi+1( 􏼁( 􏼁 +
ϕ(p + rh, u)

2r
􏽘

m− 1

i�n

αi � ϕ p, xn( 􏼁 − ϕ p, xm( 􏼁 +
ϕ(p + rh, u)

2r
􏽘

m− 1

i�n

αi.

(70)

Since the limit of ϕ(p, xn)􏼈 􏼉 exists and􏽐
∞
n�1 αn <∞, from

(70), we see

lim
m,n⟶∞

J1xn − J1xm

����
���� � 0, (71)

which implies that J1xn􏼈 􏼉 is a Cauchy sequence in E∗1 . Hence,
J1xn􏼈 􏼉 converges strongly to some point in E∗1 . Since E∗1 has a
Fréchet differentiable norm, then J− 1

1 is continuous on E∗1 .
Hence, xn converges strongly to some point x∗ in E1.

For any 􏽢x ∈ Ω, by (62), we have

1 − αn( 􏼁
PQn

− I􏼐 􏼑Axn

�����

�����
4

2k
2

A
∗
J2 PQn

− I􏼐 􏼑Axn

�����

�����
2 + βn 1 − βn( 􏼁g J1zn − J1Szn

����
����􏼐 􏼑⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

≤ αnϕ(􏽢x, u) + 1 − αn( 􏼁ϕ 􏽢x, xn( 􏼁 − ϕ 􏽢x, xn+1( 􏼁≤ αnϕ(􏽢x, u) + ϕ 􏽢x, xn( 􏼁 − ϕ 􏽢x, xn+1( 􏼁.

(72)

Since the limit of ϕ(􏽢x, xn)􏼈 􏼉 exists, by the hypothesis on
αn􏼈 􏼉 and βn􏼈 􏼉, it follows that

lim
n⟶∞

PQn
− I􏼐 􏼑Axn

�����

�����
4

A
∗
J2 PQn

− I􏼐 􏼑Axn

�����

�����
2 � lim

n⟶∞
g J1zn − J1Szn

����
����􏼐 􏼑 � 0,

(73)

which implies that

lim
n⟶∞

PQn
− I􏼐 􏼑Axn

�����

����� � 0 and lim
n⟶∞

J1zn − J1Szn

����
���� � 0,

(74)

and hence

zn − Szn

����
����⟶ 0. (75)

On the contrary, by (60) and (73), we have

J1zn − J1xn

����
���� � cn A

∗
J2 I − PQn

􏼐 􏼑Axn

�����

�����

�
I − PQn

􏼐 􏼑Axn

�����

�����
2

A
∗
J2 I − PQn

􏼐 􏼑Axn

�����

�����
⟶ 0.

(76)

It follows that

zn − xn

����
����⟶ 0. (77)

Hence, zn􏼈 􏼉 converges strongly to x∗ ∈ E1. Since S is
closed, by (75), we get x∗ � Sx∗.

Now, we show that Ax∗ � TAx∗. From (49), it follows
that ‖Axn − TAxn‖⟶ 0. Since A is linear bounded,
Axn⟶ Ax∗. From the closedness of T, we get
Ax∗ � TAx∗. *erefore, x∗ ∈ Ω. Finally, we show that
x∗ � limn⟶∞ΠΩxn. In fact, since x∗ ∈ Ω, by Lemma 2, we
have

ϕ x
∗
,ΠΩxn( 􏼁≤ ϕ x

∗
, xn( 􏼁⟶ 0. (78)
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It follows that x∗ � limn⟶∞ΠΩxn. *e proof is
complete.

Let Q be a nonempty closed convex subset of E2. In
Algorithms 1 and 2, if putting T � I and Q1 � Q, we have
wn � Axn and Qn � Q for all n≥ 1. *en, we have the fol-
lowing results. □

Corollary 1. Let E1 be a 2-uniformly convex and 2-uniformly
smooth real Banach space with the best smoothness constant
k> 0 and E2 be a uniformly smooth, strictly convex, and
reflexive Banach space with a nonempty closed convex subset
Q ⊂ E2. Let A: E1⟶ E2 be a linear bounded operator with
adjoint A∗. Let S: E1⟶ E1 and Q ⊂ E2 be a nonempty
subset. Assume that I − S is demi-closedness at zero and
Γ ≠∅, where Γ � x ∈ E1: x ∈ Fix(S), Ax ∈ Q􏼈 􏼉. Let x1 ∈ E1
and define a sequence xn􏼈 􏼉 by

zn � J
− 1
1 J1xn − cnA

∗
J2 I − PQ􏼐 􏼑Axn􏼐 􏼑,

yn � J
− 1
1 βnJ1zn + 1 − βn( 􏼁J1Szn( 􏼁,

xn+1 � J
− 1
1 αn 1 − τn( 􏼁J1xn + 1 − αn( 􏼁J1yn( 􏼁, n≥ 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(79)

where αn􏼈 􏼉, βn􏼈 􏼉 ⊂ (0, 1), τn􏼈 􏼉 ⊂ (τ, 1) with τ ∈ (0, 1) and

cn �

PQn
− I􏼐 􏼑Axn

�����

�����
2

2k
2

A
∗
J2 I − PQn

􏼐 􏼑Axn

�����

�����
2, PQn

− I􏼐 􏼑Axn

�����

�����≠ 0,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(80)

If the following conditions hold,

lim
n⟶∞

αn � 0,

􏽘

∞

n�1
αn �∞ and lim inf

n⟶∞
βn 1 − βn( 􏼁> 0,

(81)

then the sequence xn􏼈 􏼉 generated by (60) converges strongly to
the element x∗ � ΠΓθ, where θ is the zero element in E1.

Corollary 2. Let E1 be a 2-uniformly convex and 2-uniformly
smooth real Banach space with the best smoothness constant
k> 0 and E2 be a uniformly smooth, strictly convex, and
reflexive Banach space with a nonempty closed convex subset
Q ⊂ E2. Let A: E1⟶ E2 be a linear bounded operator with
adjoint A∗. Let S: E1⟶ E1 and Q ⊂ E2 be a nonempty
subset. Assume that S is closed and the interior of Γ is
nonempty, where Γ � x ∈ E1: x ∈ Fix(S), Ax ∈ Q􏼈 􏼉. Let u �

x1 ∈ E1 and define a sequence xn􏼈 􏼉 by

zn � J
− 1
1 J1xn − cnA

∗
J2 I − PQ􏼐 􏼑Axn􏼐 􏼑,

yn � J
− 1
1 βnJ1zn + 1 − βn( 􏼁J1Szn( 􏼁,

xn+1 � J
− 1
1 αnJ1u + 1 − αn( 􏼁J1yn( 􏼁, n≥ 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(82)

where αn􏼈 􏼉, βn􏼈 􏼉 ⊂ (0, 1) and cn � ‖(PQn
− I)Axn‖

2/􏽮 2k
2
‖A
∗

J2(I − PQn
)Axn‖2, ‖(PQn

− I)Axn‖≠ 0, 0, otherwise.

If the following conditions hold

lim
n⟶∞

αn � 0,

􏽘

∞

n�1
αn <∞ and lim inf

n⟶∞
βn 1 − βn( 􏼁> 0,

(83)

then the sequence xn􏼈 􏼉 generated by (82) converges strongly to
some element x∗ � limn⟶∞ΠΓxn.

4. Application

Let E1 and E2 be two Banach spaces and f1: E1 × E1⟶ R

and f2: E2 × E2⟶ R be the bifunctions. Let A: E1⟶ E2
be a linear bounded operator. In this section, we consider a
split equilibrium problem: find a point x∗ ∈ E1 such that

x
∗ ∈ EP f1( 􏼁 andAx

∗ ∈ EP f2( 􏼁, (84)

where EP(f1) � x ∈ E1: f1(x, y)≥ 0, ∀y ∈ E1􏼈 􏼉 and
EP(f2) � u ∈ E2: f2(u, v)≥ 0, ∀v ∈ E2􏼈 􏼉. We denote the set
of solution of problem (84) by Λ. *at is,
Λ � x ∈ EP(f1): Ax ∈ EP(f2)􏼈 􏼉.

*e split equilibrium problem has been studied by many
authors in Hilbert space, see [37–41]. However, few results
on the split equilibrium problem in Banach space is reported
by far.

Lemma 13 (see [24]). Let E be a strictly convex, reflexive,
and uniform smooth Banach space and f: E × E⟶ R be a
bifunction satisfying the following conditions:

(A1) f(x, x) � 0 for all x ∈ E.
(A2) f is monotone, i.e., f(x, y) + f(y, x)≤ 0 for all

x, y ∈ E.
(A3) For all x, y, z ∈ E,

lim sup
t⟶0+

f(tz +(1 − t)x, y)≤f(x, y). (85)

(A4) For all x ∈ E, f(x, ·) is convex and lower
semicontinuous.
For r> 0 and x ∈ E, define a mapping Tr: E⟶ E

as follows:

Tf
r x � z ∈ E: f(z, y) +

1
r

〈y − z, Jz − Jx〉􏼚

≥ 0 for ally ∈ E􏼉,

(86)

for all x ∈ E. 2en, the following hold:
(1) Tf

r is single-valued
(2) Fix(Tf

r ) � EP(f)

(3) EP(f) is closed and convex
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(4) ϕ(q, T
f
r x) + ϕ(T

f
r x, x)≤ϕ(q, x) for all x ∈ E and

q ∈ EP(f), which shows that T
f
r is a quasi-

ϕ-nonexpansive mapping
Now, we show that the mapping I − T

f
r is demi-

closedness at zero on a bounded subset of E.

Lemma 14. Let E be a strictly convex, reflexive, and uniform
smooth Banach space and f: E × E⟶ R be a bifunction
satisfying conditions (A1)–(A4). Let r> 0 and define the
mapping T

f
r as (86). Assume that EP(f)≠∅. 2en, I − T

f
r is

demi-closedness at zero on a bounded set. 2at is, if xn􏼈 􏼉 ⊂ E

is bounded and weakly converges to x ∈ E and
‖xn − Tf

r xn‖⟶ 0 as n⟶∞, then x � T
f
r x.

Proof. et xn􏼈 􏼉 ⊂ E be bounded and converges weakly to
x ∈ E and ‖xn − T

f
r xn‖⟶ 0 as n⟶∞. For each

x∗ ∈ EP(f) � Fix(T
f
r ), since T

f
r is quasi-ϕ-nonexpansive,

we have

ϕ x
∗
, T

f
r xn􏼐 􏼑≤ϕ x

∗
, xn( 􏼁, n≥ 1, (87)

which implies that T
f
r xn􏽮 􏽯 is bounded. On the contrary,

since J is uniformly norm-to-norm continuous on bounded
sets, it follows that

lim
n⟶∞

JT
f
r xn − Jxn

�����

����� � 0. (88)

By (A2), we have
1
r
〈y − T

f
r xn, JT

f
r xn − Jxn〉 ≥ − f T

f
r xn, y􏼐 􏼑

≥f y, T
f
r xn􏼐 􏼑, ∀y ∈ E.

(89)

Letting n⟶ 0 in (89), by (A4) and (88), we obtain

f(y, x)≤ 0, ∀y ∈ E. (90)

For 0< t≤ 1 and y ∈ E, let yt � ty + (1 − t)x. Note that
(90) implies that f(yt, x)≤ 0. By (A1), we have

0 � f yt, yt( 􏼁≤ tf yt, y( 􏼁 +(1 − t)f yt, x( 􏼁≤ tf yt, y( 􏼁.

(91)

Dividing by t, we obtain

f yt, y( 􏼁≥ 0, ∀y ∈ E. (92)

Let t⟶ 0+, by (A3), we have

f(x, y)≥ 0, ∀y ∈ E. (93)

It follows that x ∈ EP(f). *at is, x � T
f
r x by Lemma 13.

*is completes the proof.
Based on the results in Section 3, we give the following

conclusion directly. □

Theorem 3. Let E1 be a 2-uniformly convex and 2-uniformly
smooth real Banach space with the best smoothness constant
k> 0 and E2 be a uniformly smooth, strictly convex, and

reflexive Banach space. Let A: E1⟶ E2 be a linear bounded
operator with adjoint A∗. Let f1: E1 × E1⟶ R and
f2: E2 × E2⟶ R be the bifunctions satisfying conditions
(A1)–(A4). Assume that Λ≠∅, where
Λ � x ∈ E1: x ∈ EP(f1), Ax ∈ EP(f2)􏼈 􏼉. Let r> 0. Take
x1 ∈ E1 and put Q1 � E2. Define a sequence xn􏼈 􏼉 by

wn � T
f2
r Axn,

Qn � w ∈ Qn: ϕ w, wn( 􏼁≤ ϕ w, Axn( 􏼁􏼈 􏼉,

zn � J
− 1

J1xn + cnA
∗
J2 PQn

− I􏼐 􏼑Axn􏼐 􏼑,

yn � J
− 1 1 − βn( 􏼁J1zn + 1 − βn( 􏼁J1T

f1
r zn􏽨 􏽩,

xn+1 � J
− 1
1 αn 1 − τn( 􏼁J1xn + 1 − αn( 􏼁J1yn( 􏼁, n≥ 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(94)

where αn􏼈 􏼉, βn􏼈 􏼉 ⊂ (0, 1), τn􏼈 􏼉 ⊂ (τ, 1) with τ ∈ (0, 1) and

cn �

PQn
− I􏼐 􏼑Axn

�����

�����
2

2k
2

A
∗
J2 I − PQn

􏼐 􏼑Axn

�����

�����
2, PQn

− I􏼐 􏼑Axn

�����

�����≠ 0,

0, else.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(95)

If the following conditions hold

lim
n⟶∞

αn � 0,

􏽘

∞

n�1
αn �∞ and lim inf

n⟶∞
βn 1 − βn( 􏼁> 0,

(96)

then the sequence xn􏼈 􏼉 generated by (94) converges strongly to
the element x∗ � ΠΛθ, where θ is the zero element in E1.

Theorem 4. Let E1 be a 2-uniformly convex and 2-uniformly
smooth real Banach space with the best smoothness constant
k> 0 and E2 be a uniformly smooth, strictly convex, and
reflexive Banach space. Let A: E1⟶ E2 be a linear bounded
operator with adjoint A∗. Let f1: E1 × E1⟶ R and
f2: E2 × E2⟶ R be the bifunctions satisfying conditions
(A1)–(A4). Assume that the interior of Λ is nonempty, where
Λ � x ∈ E1: x ∈ EP(f1), Ax ∈ EP(f2)􏼈 􏼉. Let r> 0. Take
u, x1 ∈ E1 and put Q1 � E2. Define a sequence xn􏼈 􏼉 by

wn � T
f2
r Axn,

Qn � w ∈ Qn: ϕ w, wn( 􏼁≤ ϕ w, Axn( 􏼁􏼈 􏼉,

zn � J
− 1

J1xn + cnA
∗
J2 PQn

− I􏼐 􏼑Axn􏼐 􏼑,

yn � J
− 1 1 − βn( 􏼁J1zn + 1 − βn( 􏼁J1T

f1
r zn􏽨 􏽩,

xn+1 � J
− 1
1 αnJ1u + 1 − αn( 􏼁J1yn( 􏼁, n≥ 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(97)

where αn􏼈 􏼉, βn􏼈 􏼉 ⊂ (0, 1) and
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cn �

PQn
− I􏼐 􏼑Axn

�����

�����
2

2k
2

A
∗
J2 I − PQn

􏼐 􏼑Axn

�����

�����
2, PQn

− I􏼐 􏼑Axn

�����

�����≠ 0,

0, else.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(98)

If the following conditions hold

lim
n⟶∞

αn � 0,

􏽘

∞

n�1
αn <∞ and lim inf

n⟶∞
βn 1 − βn( 􏼁> 0,

(99)

then the sequence xn􏼈 􏼉 generated by (97) converges strongly to
the element x∗ � limn⟶∞ΠΛxn.

5. Numerical Examples

In this section, we give the following examples to illustrate
the effectiveness of Algorithms 1 and 2. *e program is

performed by Matlab R2016b running on a PC Desktop with
Core(TM) i5CPU M550 3.20GHz with 4GB Ram.

We first show the convergence of Algorithm 1 by the
following example which has been used by Ma et al. [22]. In
[22], the authors compare the computed results using their
algorithm (25) with algorithm (100) in Kraikaew and Sae-
jung [10] by the example. Here, we also compare the con-
vergence of our Algorithm 1 with algorithm (25) in [22] and
algorithm (100) in [10].

Example 1. Let E1 � R, E2 � R2, Q � [0,∞] × (− ∞, 0),
Sx � (x/4), for all x ∈ E1, Tx � PQx for all x ∈ E2, where PQ

is the metric projection from E2 onto Q, and A: E1⟶ E2
be a mapping defined by Ax � (x/2, x/3) for all x ∈ E1.
*en, A∗(u, v) � (u/2) + (v/3), for all (u, v) ∈ E2. It is easy
to see that Ω � x ∈ E1: x ∈ Fix(S), Ax ∈ Fix(T)􏼈 􏼉 � 0{ }.

Algorithm 3. Let xn􏼈 􏼉 be the sequence generated by (25) in
this paper with αn � 1/2n and βn � τn � 6/7. *en, scheme
(25) can be simplified as

x1 ∈ E1,

wn � PQ

xn

2
,
xn

3
􏼒 􏼓,

Qn � w ∈ E2: wn − w
����

����≤
xn

2
,
xn

3
􏼒 􏼓 − w

������

������􏼚 􏼛,

Axn �
xn

2
,
xn

3
􏼒 􏼓, zn � xn + cnA

∗
PQn

− I􏼐 􏼑Axn,

yn �
6
7
zn +

1
28

zn,

xn+1 �
1
14n

xn +
2n − 1
2n

yn, n≥ 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(100)

where

cn �

PQn
− I􏼐 􏼑Axn

�����

�����
2

2 A
∗

I − PQn
􏼐 􏼑Axn

�����

�����
2, if PQn

− I􏼐 􏼑Axn

�����

�����≠ 0,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(101)

Algorithm 4. Let xn􏼈 􏼉 be the sequence generated by algo-
rithm (100) in [10] with αn � 1/2n and c � 1. *en, scheme
(100) in [10] can be simplified as

x1 ∈ E1, xn+1 �
1
2n

x1 +
2n − 1
8n

xn + A
∗
(T − I)Axn( 􏼁, n≥ 1.

(102)
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Algorithm 5. Let xn􏼈 􏼉 be the sequence generated by algo-
rithm (25) in [22] with αn � 1/2n and c � 1. *en, scheme
(25) in [22] can be simplified as

x1 ∈ E1,

Axn �
xn

2
,
xn

3
􏼒 􏼓,

zn � xn + A
∗
(T − I)Axn,

yn �
2n − 1
2n

zn +
1
8n

zn,

Cn+1 � vn: Cn: yn − v
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ xn − v
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, zn − v
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ xn − v
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽮 􏽯,

xn+1 � PCn+1
x1, n≥ 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(103)

We perform schemes (100)–(103) with the different
initial points. Figures 1–4 show that the sequence xn􏼈 􏼉

generated by (100)–(103) converge to 0.

Remark 2. (a) Although*eorem 1 in [22] requires that αn􏼈 􏼉

in Algorithm 5, i.e., algorithm (25) in [22], takes values in
[δ, 1) with δ ∈ (0, 1); here, for comparing the convergence
rate of three schemes, we put the same αn � 1/2n. *is does
not affect the effectiveness of Algorithm 5 since the program
stops in finite iterations. (b) Figures 1–4 above show that the
convergence rate of Algorithm 3 is faster than that of Al-
gorithms 4 and 5.

Next, we illustrate *eorem 2 by the following example.

Example 2. Let E1 � R2 and E2 � R. Define the mappings
S: E1⟶ E1 by Sx � ((x1/2), x2) for all x � (x1, x2) ∈ E1,
and T: E2⟶ E2 by Tx � x/2 if |x|≤ 1 and Tx � 1 if |x|> 1.

Iteration steps n
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2
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Algorithm 1
Algorithm 2
Algorithm 3

Figure 1: Convergence for Algorithms 3–5 with different initial
points x1 � 3.
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Figure 2: Convergence for Algorithms 3–5 with different initial
points x1 � 7.
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Figure 3: Convergence for Algorithms 3–5 with different initial
points x1 � − 3.
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Figure 4: Convergence for Algorithms 3–5 with different initial
points x1 � − 7.

14 Journal of Mathematics



Let A: E1⟶ E2 be a mapping defined by Ax � x1 for
all x � (x1, x2) ∈ E1. *en, A is linear and bounded and
A∗y � (y, 0) for all y ∈ E2. It is easy to see that
Ω � (0, x2): x2 ∈ R􏼈 􏼉. All the conditions on S, T, andΩ are
satisfied for *eorem 2.

By Algorithm 2, we generate a sequence xn􏼈 􏼉 with αn �

1/n2 and βn � 1/2(1 − e(n/2)) for all n≥ 1. *eorem 2 shows
that xn􏼈 􏼉 will converge to the point PΩxn. We will stop the
program when ‖xn − PΩxn‖< 10− 4. *e computed results of
the sequence xn􏼈 􏼉 are given in Tables 1 and 2. Figures 5 and 6
show the convergence of the sequence xn􏼈 􏼉.

6. Conclusion

For finding a solution of the split common fixed problem of
quasi-ϕ-nonexpansive mappings in Banach space, we in-
troduced a Halpern algorithm and a nonconvex combina-
tion algorithm where the norm of the linear bounded
operator does not need to be known in advance. *e con-
vergence of the algorithms was investigated and some nu-
merical examples were given to illustrate the convergence of
the algorithms.

Data Availability

All data for our algorithms are included in this paper.
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In this paper, we investigate the split equilibrium problem and fixed point problem in Hilbert spaces. We propose an iterative
scheme for solving such problem in which the involved equilibrium bifunctions f and g are pseudomonotone and monotone,
respectively, and the operators S and T are all pseudocontractive. We show that the suggested scheme converges strongly to a
solution of the considered problem.

1. Introduction

Let H1 and H2 be two real Hilbert spaces. Let C and Q be
two nonempty, closed, and convex subsets of H1 and H2,
respectively. Let f: C × C⟶ R be a bifunction. Recall that
the equilibrium problem is to find a point x∗ ∈ C such that

f x
∗
, x( 􏼁≥ 0, ∀x ∈ C. (1)

Use SEP(C, f) to denote the solution set of equilibrium
problem (1).

Equilibrium problems have been considered broadly in the
literature (see e.g. [1–5]). Now, it is known that variational
inequalities ([6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]) and fixed
point problems ([18, 19, 20, 21, 22, 23]) can be transformed in
the form of (1). For every σ > 0 and x ∈ H, there exists a unique
point z ∈ C such that f(z, y) + (1/σ)〈z − x, y − x〉≥
0, ∀y ∈ C (see [2]). 1us, for solving equilibrium problem (1),
an important technique is to use the resolvent of bifunction f

([2]). Another important method for solving equilibrium
problem (1) is to use linear search technique [4].

Let S: C⟶ C and T: Q⟶ Q be two operators. Let
Fix(S) and Fix(T) be the fixed point sets of S and T, re-
spectively. Let g: Q × Q⟶ R be a bifunction. Let
A: H1⟶ H2 be a bounded linear operator. In this paper,
we concern the following split problem of finding a point
􏽥u ∈ C such that

􏽥u ∈ SEP(C, f)∩ Fix(S),

A􏽥u ∈ SEP(Q, g)∩ Fix(T).
(2)

Denote the solution set of (2) by Γ, i.e.,
Γ � x∗ ∈ SEP(C, f)∩ Fix(S), Ax∗ ∈ SEP(Q, g)∩ Fix(T)􏼈 􏼉.

1e split problem has received many concerns (see
[13, 24–28]) due to its extensive applications in image re-
covery and signal processing, control theory, and so on. Note
that the split problem (2) includes the following split
problems as special cases:

(i) 1e split equilibrium problem studied in [29, 30] can
be formulated to find an element 􏽥u ∈ C such that
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􏽥u ∈ SEP(C, f),

A􏽥u ∈ SEP(Q, g).
(3)

1e solution set of (3) is denoted by Γ1.
(ii) 1e split fixed point problem considered in

[31, 32, 33, 34] reduces to find a point 􏽥u ∈ C such that

􏽥u ∈ Fix(S),

A􏽥u ∈ Fix(T).
(4)

1e solution set of (4) is denoted by Γ2.
Numerical iterative algorithms have been proposed for

finding a split problem of the set of solutions of equilibrium
problems and the set of fixed points of nonexpansive op-
erators; see, for example, [35–39] and the references therein.
Recently, Yao et al. [40] proposed an iterative scheme for
solving the split problem (2) and they obtained the weak
convergence of the suggested scheme.

In this paper, we continuously study the split problem
(2) in which the involved equilibrium bifunctions f and g

are pseudomonotone and monotone, respectively, and the
operators S and T are all pseudocontractive. We propose an
iterative scheme for solving the split problem (2) and strong
convergence results are obtained.

2. Preliminaries

Let H1 be a real Hilbert space with its inner product 〈·, ·〉

and norm ‖ · ‖. Let C be a nonempty, convex, and closed
subset of H1. Let PC: H1⟶ C be the metric projection
defined by

PC(x) � argmin
y∈C

‖y − x‖. (5)

PC satisfies: for given x ∈ H1,

〈x − PC(x), y − PC(x)〉 ≤ 0, ∀y ∈ C. (6)

Let f: C × C⟶ R be a bifunction. Recall that f is said
to be monotone if

f u
†
, v

†
􏼐 􏼑 + f v

†
, u

†
􏼐 􏼑≤ 0, ∀u†

, v
† ∈ C. (7)

f is said to be pseudomonotone if

f u
†
, v

†
􏼐 􏼑≥ 0 impliesf v

†
, u

†
􏼐 􏼑≤ 0, ∀u†

, v
† ∈ C. (8)

Let S: C⟶ C be an operator. S is called pseudocon-
tractive if

Sx − Sx
†����
����
2
≤ x − x

†����
����
2

+ (I − S)x − (I − S)x
†����
����
2
,

∀x, x
† ∈ C.

(9)

S is called L-Lipschitz if there exists a constant L≥ 0 such
that

Sx − Sx
†����
����≤ L x − x

†����
����, ∀x, x

† ∈ C. (10)

If L � 1, then S is said to be nonexpansive. If L< 1, then S

is said to be L-contraction.

In the sequel, we use the following symbols. Let xk􏼈 􏼉 be a
sequence in C:

(i) xk⇀x† means the weak convergence of xk to x† as
k⟶∞

(ii) xk⟶ x† means the strong convergence of xk to x†

as k⟶∞
(iii) ωw(xk) � x†: ∃ xki􏼈 􏼉⊂ xk􏼈 􏼉suchthatxki⇀x†􏼈 (i⟶
∞)}

Recall that f is said to be jointly sequently weakly
continuous onC × C, if for two sequences xk ∈ C and yk ∈ C

satisfy xk⇀u† and yk⇀v†, then we have
f(xk, yk)⟶ f(u†, v†).

LetH2 be a real Hilbert space with its inner product 〈·, ·〉

and norm ‖ · ‖. Let Q be a nonempty, convex, and closed
subset of H2. Let φ: Q⟶ (− ∞, +∞] be a proper, lower
semicontinuous, and convex function. 1en, the sub-
differential zφ of φ is defined by

zφ(u) ≔ v
† ∈ H2: φ(u) +〈v†, u

†
− u〉 ≤φ u

†
􏼐 􏼑,∀u† ∈ Q􏽮 􏽯,

(11)

for each u ∈ Q.
It is well known that

u
†

� argmin
u∈Q

φ(u)􏼈 􏼉⟺ 0 ∈zφ u
†

􏼐 􏼑 + NQ u
†

􏼐 􏼑, (12)

where NQ(u†) � ω ∈ H2: 〈ω, u − u†〉≤ 0,∀u ∈ Q􏼈 􏼉.
1e following lemma can be found in [41]. For the

completeness, we include the detail of proof.

Lemma 1 (see [41]). Let S: C⟶ C be an L1-Lipschitz
pseudocontractive operator. 
en, for all 􏽥u ∈ C and
u† ∈ Fix(S), we have

u
†

− S((1 − η)􏽥u + ηS􏽥u)
����

����
2
≤ 􏽥u − u

†����
����
2

+(1 − η)

· ‖􏽥u − S((1 − η)􏽥u + ηS􏽥u)‖
2
,

(13)

where 0< η< (1/
�����

1 + L2
1

􏽱

+ 1).

Proof. Since u† ∈ Fi􏽥u(S), we have from (9) that

S((1 − η)I + ηS)􏽥u − u
†����
����
2
≤ (1 − η) 􏽥u − tu

†
􏼐 􏼑 + η S􏽥u − u

†
􏼐 􏼑

�����

�����
2

+‖(1 − η)􏽥u + ηS􏽥u − S((1 − η)􏽥u + ηS􏽥u)‖
2
,

(14)

S􏽥u − u
†����
����
2
≤ 􏽥u − u

†����
����
2

+‖S􏽥u − 􏽥u‖
2
, (15)

for all 􏽥u ∈ C.
Since S is L1-Lipschitzian and 􏽥u − ((1 − η)􏽥u + ηS􏽥u) �

η(􏽥u − tSn􏽥u), we have

‖S􏽥u − S((1 − η)􏽥u + ηS􏽥u)‖≤ ηL1‖􏽥u − S􏽥u‖. (16)

According to (15), we obtain
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(1 − η) 􏽥u − tu
†

􏼐 􏼑 + η S􏽥u − u
†

􏼐 􏼑
�����

�����
2

� (1 − η) 􏽥u − u
†����
����
2

+ η S􏽥u − u
†����
����
2

− η(1 − η)‖􏽥u − S􏽥u‖
2

≤ (1 − η) 􏽥u − u
†����
����
2

+ η 􏽥u − u
†����
����
2

+‖S􏽥u − 􏽥u‖
2

􏼒 􏼓

− η(1 − η)‖􏽥u − S􏽥u‖
2

� 􏽥u − u
†����
����
2

+ η2‖S􏽥u − 􏽥u‖
2
.

(17)

Based on (16), we conclude

‖(1 − η)􏽥u + ηS􏽥u − S((1 − η)􏽥u + ηS􏽥u)‖
2

� ‖(1 − η)(􏽥u − tSn((1 − η)􏽥u + ηS􏽥u)) + η(S􏽥u − S((1 − η)􏽥u + ηS􏽥u))‖
2

� (1 − η)‖􏽥u − S((1 − η)􏽥u + ηS􏽥u)‖
2

+ η‖S􏽥u − S((1 − η)􏽥u + ηS􏽥u)‖
2

− η(1 − η)‖􏽥u − S􏽥u‖
2

≤ (1 − η)‖􏽥u − S((1 − η)􏽥u + ηS􏽥u)‖
2

− η 1 − η − η2L2
1􏼐 􏼑‖􏽥u − S􏽥u‖

2
.

(18)

By (14), (17), and (18), we obtain

S((1 − η)I + ηS)􏽥u − u
†����
����
2
≤ 􏽥u − u

†����
����
2

+ η2‖􏽥u − S􏽥u‖
2

+(1 − η)‖􏽥u − S((1 − η)􏽥u + ηS􏽥u)‖
2

− η 1 − η − η2L2
1􏼐 􏼑‖􏽥u − S􏽥u‖

2

� 􏽥u − u
†����
����
2

+(1 − η)‖􏽥u − S((1 − η)I + ηS)􏽥u‖
2

− η 1 − 2η − η2L2
1􏼐 􏼑‖􏽥u − S􏽥u‖

2
.

(19)

Since η< (1/
�����

1 + L2
1

􏽱

+ 1), 1 − 2η − η2L2
1 > 0. Hence, we

can deduce the desired result from (19). □

Lemma 2 (see [42]). Let S: C⟶ C be a continuous
pseudocontractive operator. 
en,

(i) Fix(S) ⊂ C is closed and convex
(ii) S is demiclosedness, i.e., if xk⇀􏽥u and Sxk⟶ z† as

k⟶∞, then S􏽥u � z†.

Here, we state some conditions on f and g which will be
used in the sequel.

Let C and Q be two nonempty, closed, and convex
subsets of real Hilbert spaces H1 and H2, respectively. Let
f: C × C⟶ R and g: Q × Q⟶ R be two bifunctions.
Assume that

(i) (A1): f(z†, z†) � 0 for all z† ∈ C

(ii) (A2): f is pseudomonotone on SEP(C, f)

(iii) (A3): f is jointly sequently weakly continuous on
C × C

(iv) (A4): f(z†, ·) is convex and subdifferentiable on C

for all z† ∈ C

(v) (B1): g(z†, z†) � 0 for all z† ∈ Q

(vi) (B2): g is monotone on Q

(vii) (B3): g(u, ·) is convex and lower semicontinuous
on Q for each u ∈ Q

(viii) (B4): for all u, v, w ∈ Q, limsupλ↓0g(λw+ (1 − λ)

u, v)≤g(u, v)

Lemma 3 (see [1, 2]). Assume that g satisfies conditions
(B1)–(B4). For ς> 0 and u ∈ H2, there exists w ∈ Q such that

g(w, v) +
1
ς

〈v − w, w − u〉≥ 0, ∀v ∈ Q. (20)

Let the operator J
g
ς be defined by

J
g
ς (u) � w ∈ Q: g(w, v) +

1
ς

〈v − w, w − u〉≥ 0,∀v ∈ Q􏼨 􏼩.

(21)

We have the following conclusions:

(i) J
g
ς is single-valued and firmly nonexpansive, that is,
for any u, v ∈ H2,
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J
g
ς (u) − J

g
ς (v)

����
����
2 ≤ 〈Jg

ς (u) − J
g
ς (v), u − v〉. (22)

(ii) SEP(Q, g) is closed and convex and
SEP(Q, g) � Fix(J

g
ς ).

(iii) For ς1, ς2 > 0 and u, v ∈ H2, we have

J
g
ς1(u) − J

g
ς2(v)

�����

�����≤ ‖u − v‖ +
ς2 − ς1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

ς2
J

g
ς2(v) − v

�����

�����.

(23)

Lemma 4 (see [4]). Assume that f satisfies conditions (A1)-
(A4). Let βk􏼈 􏼉 be a sequence satisfying βk ∈ [β, β] ⊂ (0, 1]. For
given vk ∈ C, let the sequence yk􏼈 􏼉 be generated by

y
k

� argmin
u†∈C

f v
k
, u

†
􏼐 􏼑 +

1
2βk

v
k

− u
†

�����

�����
2

􏼨 􏼩. (24)

Then the boundedness of vk􏼈 􏼉 implies that yk􏼈 􏼉 is
bounded.

Lemma 5 (see [5]). Assume that f satisfies conditions
(A1)–(A4). For given two points u, v ∈ C and two sequences
ak􏼈 􏼉 ⊂ C and bk􏼈 􏼉 ⊂ C, if ak⇀u and bk⇀v, respectively, then,
for any ε> 0, there exist ϑ> 0 and Nε ∈ N such that

z2f b
k
, a

k
􏼐 􏼑 ⊂ z2f(v, tu) +

ε
ϑ

B, (25)

for every k≥Nε, where B: � b ∈ H1: ‖b‖≤ 1􏼈 􏼉.

Lemma 6 (see [43]). Let an􏼈 􏼉 ⊂ (0,∞), bn􏼈 􏼉 ⊂ (0, 1), and
cn􏼈 􏼉 be three real number sequences. If

an+1 ≤ 1 − bn( 􏼁an + cn, (26)

for all n≥ 0 with 􏽐
∞
n�1 bn �∞ and limsupn⟶∞(cn/bn)≤ 0 or

􏽐
∞
n�1 |cn|<∞, then limn⟶∞an � 0.

3. Main Results

In this section, in order to solve problem (2), we first present
an iterative algorithm and consequently prove its strong
convergence.

Let H1 and H2 be two real Hilbert spaces. Let C and Q

be two nonempty, closed, and convex subsets ofH1 andH2,
respectively. Assume that

(i) h: C⟶ C is a κ-contractive operator
(ii) S: C⟶ C is an L1-Lipschitz pseudocontractive

operator and T: Q⟶ Q is an L2-Lipschitz pseu-
docontractive operator with L1 > 1 and L2 > 1

(iii) f and g are two bifunctions satisfying conditions
(A1)–(A4) and conditions (B1)–(B4), respectively

(iv) A: H1⟶H2 is a bounded linear operator and A∗

is its adjoint

Let δk􏼈 􏼉, ηk􏼈 􏼉, βk􏼈 􏼉, τk􏼈 􏼉, ςk􏼈 􏼉, ζk􏼈 􏼉, λk􏼈 􏼉, and μk􏼈 􏼉 be real
number sequences and α, ϑ, and c be constants. Next, we
introduce our iterative algorithm.

Algorithm 1. Fix an initial point x0 ∈ C. Set k � 0.

Step 1: assume that xk is known and compute

v
k

� 1 − δk( 􏼁x
k

+ δkS 1 − ηk( 􏼁x
k

+ ηkSx
k

􏽨 􏽩. (27)

Step 2: compute

y
k

� argmin
y†∈C

f v
k
, y

†
􏼐 􏼑 +

1
2βk

v
k

− y
†

�����

�����
2

􏼨 􏼩. (28)

If yk � vk, then set uk � vk and go to Step 5. Otherwise,
go to Step 3.
Step 3: let mk � min 1, 2, . . . , k, . . .{ } such that

f z
k,mk , v

k
􏼐 􏼑 − f z

k,mk , y
k

􏼐 􏼑≥
α
2βk

v
k

− y
k

�����

�����
2
, (29)

where

z
k,mk � 1 − ϑmk( 􏼁v

k
+ ϑmk y

k
. (30)

Write ϑk � ϑmk and zk � zk,mk .
Step 4: compute

u
k

� PC v
k

− τkιk]
k

􏼐 􏼑, (31)

where ]k ∈ z2f(zk, vk) and ιk � (f(zk, vk)/‖]k‖2).
Step 5:

For any v ∈ Q, find wk such that

g w
k
, v􏼐 􏼑 +

1
ςk

〈v − w
k
, w

k
− Au

k〉≥ 0. (32)

Compute

q
k

� 1 − ζk( 􏼁w
k

+ ζkT 1 − λk( 􏼁w
k

+ λkTw
k

􏽨 􏽩. (33)

Step 6: compute

x
k+1

� μkh x
k

􏼐 􏼑 + 1 − μk( 􏼁PC u
k

+ cA
∗

q
k

− Au
k

􏼐 􏼑􏽨 􏽩.

(34)

Step 7: set k: � k + 1 and return to Step 1.

In order to demonstrate the convergence of Algorithm 1,
we need some additional assumptions on the iterative pa-
rameters. Suppose that the following conditions are satisfied:

(C1): 0< δ < δk < δ < ηk < η< (1/
�����

1 + L2
1

􏽱

+ 1)(∀k≥ 0)

and α, ϑ ∈ (0, 1)

(C2): βk ∈ [c1, c2] ⊂ (0, 1]; τk ∈ [τ1, τ2] ⊂ (0, 2) and
0< ς≤ ςk < +∞
(C3): 0< ζ < ζk < ζ < λk < λ< (1/

�����

1 + L2
2

􏽱

+ 1)(∀k≥ 0)

and c ∈ (0, 1/‖A‖2)

(C4): limk⟶+∞μk � 0 and 􏽐
+∞
k�0μk � +∞

We have the following remark which can be found in [4].

Remark 1
(1) If yk � vk, then yn ∈ SEP(C, f)
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(2) 1e linesearch rule (29) is well defined
(3) 0 ∉ z2f(zk, vk)

(4) f(zk, vk)> 0
(5) ‖uk − p‖2 ≤ ‖vk − p‖2 − τk(2 − τk)(ιk‖]k‖)2 for all

p ∈ SEP(C, f)

Next, we prove our main result.

Theorem 1. Suppose that Γ ≠∅. 
en, the sequence xk􏼈 􏼉

generated by (34) converges strongly to q† � PΓh(q†).

Proof. Let x∗ ∈ Γ. We have x∗ ∈ SEP(C, f)∩ Fix(S) and
Ax∗ ∈ SEP(Q, g)∩ Fix(T). By (27) and Lemma 1, we get

v
k

− x
∗

�����

�����
2

� 1 − δk( 􏼁 x
k

− x
∗

􏼐 􏼑 + δk S 1 − ηk( 􏼁x
k

+ ηkSx
k

􏽨 􏽩 − x
∗

􏼐 􏼑
�����

�����
2

� 1 − δk( 􏼁 x
k

− x
∗

�����

�����
2

+ δk S 1 − ηk( 􏼁x
k

+ ηkSx
k

􏽨 􏽩 − x
∗

�����

�����
2

− 1 − δk( 􏼁δk S 1 − ηk( 􏼁x
k

+ ηkSx
k

􏽨 􏽩 − x
k

�����

�����
2

≤ 1 − δk( 􏼁 x
k

− x
∗

�����

�����
2

+ δk 1 − ηk( 􏼁 S 1 − ηk( 􏼁x
k

+ ηkSx
k

􏽨 􏽩 − x
k

�����

�����
2

+ δk x
k

− x
∗

�����

�����
2

− 1 − δk( 􏼁δk S 1 − ηk( 􏼁x
k

+ ηkSx
k

􏽨 􏽩 − x
k

�����

�����
2

� x
k

− x
∗

�����

�����
2

− δk ηk − δk( 􏼁 S 1 − ηk( 􏼁x
k

+ ηkSx
k

􏽨 􏽩 − x
k

�����

�����
2

≤ x
k

− x
∗

�����

�����
2
.

(35)

From (31) and Remark 1, we have

u
k

− x
∗

�����

�����
2
≤ v

k
− x
∗

�����

�����
2

− τk 2 − τk( 􏼁 ιk ]k
�����

�����􏼒 􏼓
2

≤ v
k

− x
∗

�����

�����
2
.

(36)

According to (32) and Lemma 3, we have wk � J
g
ςk

Auk

and Ax∗ ∈ Fix(J
g
ςk

). Since J
g
ςk

is firmly nonexpansive, we
deduce

w
k

− Ax
∗

�����

�����
2

� J
g
ςk

Au
k

− J
g
ςk

Ax
∗

�����

�����
2

≤ 〈Jg
ςk

Au
k

− J
g
ςk

Ax
∗
, Au

k
− Ax
∗〉

�〈wk
− Ax
∗
, Au

k
− Ax
∗〉

�
1
2

w
k

− Ax
∗

�����

�����
2

+ Au
k

− Ax
∗

�����

�����
2

− w
k

− Au
k

�����

�����
2

􏼒 􏼓.

(37)

It follows that

w
k

− Ax
∗

�����

�����
2
≤ Au

k
− Ax
∗

�����

�����
2

− w
k

− Au
k

�����

�����
2
. (38)

By virtue of (33) and Lemma 1, we obtain

q
k

− Ax
∗

�����

�����
2

� 1 − ζk( 􏼁 w
k

− Ax
∗

􏼐 􏼑 + ζk T 1 − λk( 􏼁w
k

+ λkTw
k

􏽨 􏽩 − Ax
∗

􏼐 􏼑
�����

�����
2

� 1 − ζk( 􏼁 w
k

− Ax
∗

�����

�����
2

+ ζk T 1 − λk( 􏼁w
k

+ λkTw
k

􏽨 􏽩 − Ax
∗

�����

�����
2

− 1 − ζk( 􏼁ζk T 1 − λk( 􏼁w
k

+ λkTw
k

􏽨 􏽩 − w
k

�����

�����
2

≤ w
k

− Ax
∗

�����

�����
2

+ ζk 1 − λk( 􏼁 T 1 − λk( 􏼁w
k

+ λkTw
k

􏽨 􏽩 − w
k

�����

�����
2

− 1 − ζk( 􏼁ζk T 1 − λk( 􏼁w
k

+ λkTw
k

􏽨 􏽩 − w
k

�����

�����
2

� w
k

− Ax
∗

�����

�����
2

− λk − ζk( 􏼁ζk T 1 − λk( 􏼁w
k

+ λkTw
k

􏽨 􏽩 − w
k

�����

�����
2

≤ w
k

− Ax
∗

�����

�����
2
.

(39)
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1anks to (38) and (39), we get

q
k

− Ax
∗

�����

�����
2
≤ Au

k
− Ax
∗

�����

�����
2

− w
k

− Au
k

�����

�����
2
. (40)

Consequently,

〈uk
− x
∗
, A
∗

q
k

− Au
k

􏼐 􏼑〉 �〈Au
k

− Ax
∗
, q

k
− Au

k〉

�〈qk
− Ax
∗
, q

k
− Au

k〉 − q
k

− Au
k

�����

�����
2

�
1
2

q
k

− Ax
∗

�����

�����
2

+ q
k

− Au
k

�����

�����
2

− Au
k

− Ax
∗

�����

�����
2

􏼔 􏼕

− q
k

− Au
k

�����

�����
2

�
1
2

q
k

− Ax
∗

�����

�����
2

− Au
k

− Ax
∗

�����

�����
2

􏼔 􏼕 −
1
2

q
k

− Au
k

�����

�����
2

≤ −
1
2

w
k

− Au
k

�����

�����
2

−
1
2

q
k

− Au
k

�����

�����
2
.

(41)

Set tk � PC[uk + cA∗(qk − Auk)] for all k≥ 0. In view of
(35), (36), and (41), using the nonexpansivity of PC, we have

t
k

− x
∗

�����

�����
2

� PC u
k

+ cA
∗

q
k

− Au
k

􏼐 􏼑􏽨 􏽩 − PC x
∗

􏼂 􏼃
�����

�����
2

≤ u
k

− x
∗

+ cA
∗

q
k

− Au
k

􏼐 􏼑
�����

�����
2

� u
k

− x
∗

�����

�����
2

+ cA
∗

q
k

− Au
k

􏼐 􏼑
�����

�����
2

+ 2c〈A∗ q
k

− Au
k

􏼐 􏼑, u
k

− x
∗〉

≤ u
k

− x
∗

�����

�����
2

+ c
2
‖A‖

2
q

k
− Au

k
�����

�����
2

− c w
k

− Au
k

�����

�����
2

− c q
k

− Au
k

�����

�����
2

� u
k

− x
∗

�����

�����
2

− c 1 − c‖A‖
2

􏼐 􏼑 q
k

− Au
k

�����

�����
2

− c w
k

− Au
k

�����

�����
2

≤ x
k

− x
∗

�����

�����
2

− τk 2 − τk( 􏼁 ιk ]k
�����

�����􏼒 􏼓
2

− δk ηk − δk( 􏼁 S 1 − ηk( 􏼁x
k

+ ηkSx
k

􏽨 􏽩 − x
k

�����

�����
2

− c 1 − c‖A‖
2

􏼐 􏼑 q
k

− Au
k

�����

�����
2

− c w
k

− Au
k

�����

�����
2

≤ x
k

− x
∗

�����

�����
2
.

(42)

From (34), we get

x
k+1

− x
∗

�����

����� � μk h x
k

􏼐 􏼑 − x
∗

􏼐 􏼑 + 1 − μk( 􏼁 t
k

− x
∗

􏼐 􏼑
�����

�����

≤ μk h x
k

􏼐 􏼑 − h x
∗

( 􏼁
�����

����� + μk h x
∗

( 􏼁 − x
∗����
���� + 1 − μk( 􏼁 t

k
− x
∗

�����

�����

≤ μkκ x
k

− x
∗

�����

����� + μk h x
∗

( 􏼁 − x
∗����
���� + 1 − μk( 􏼁 x

k
− x
∗

�����

�����

� 1 − (1 − κ)μk􏼂 􏼃 x
k

− x
∗

�����

����� + μk h x
∗

( 􏼁 − x
∗����
����

≤max x
k

− x
∗

�����

�����,
h x
∗

( 􏼁 − x
∗����
����

(1 − κ)
􏼨 􏼩.

(43)
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By induction, we can obtain that ‖xk − x∗‖≤max ‖x0−􏼈

x∗‖, (‖h(x∗) − x∗‖/(1 − κ))}. 1us, the sequences xk􏼈 􏼉, uk􏼈 􏼉,
and vk􏼈 􏼉 are all bounded.

Based on (34), we have

x
k+1

− x
∗

�����

�����
2

� μk h x
k

􏼐 􏼑 − x
∗

􏼐 􏼑 + 1 − μk( 􏼁 t
k

− x
∗

􏼐 􏼑
�����

�����
2

≤ 1 − μk( 􏼁
2

t
k

− x
∗

�����

�����
2

+ 2μk〈h x
k

􏼐 􏼑 − x
∗
, x

k+1
− x
∗〉

≤ 1 − μk( 􏼁
2

t
k

− x
∗

�����

�����
2

+ 2μkκ x
k

− x
∗

�����

����� x
k+1

− x
∗

�����

����� + 2μk〈h x
∗

( 􏼁 − x
∗
, x

k+1
− x
∗〉

≤ 1 − μk( 􏼁
2

t
k

− x
∗

�����

�����
2

+ μkκ x
k

− x
∗

�����

�����
2

+ μkκ x
k+1

− x
∗

�����

�����
2

+ 2μk〈h x
∗

( 􏼁 − x
∗
, x

k+1
− x
∗〉.

(44)

It follows that

x
k+1

− x
∗

�����

�����
2
≤

1 − μk( 􏼁
2

1 − κμk

t
k

− x
∗

�����

�����
2

+
κμk

1 − μkκ
x

k
− x
∗

�����

�����
2

+
2μk

1 − κμk

〈h x
∗

( 􏼁 − x
∗
, x

k+1
− x
∗〉

≤
1 − μk( 􏼁

2

1 − κμk

x
k

− x
∗

�����

�����
2

− τk 2 − τk( 􏼁 ιk ]k
�����

�����􏼒 􏼓
2

− c 1 − c‖A‖
2

􏼐 􏼑 q
k

− Au
k

�����

�����
2

􏼢

− δk ηk − δk( 􏼁 S 1 − ηk( 􏼁x
k

+ ηkSx
k

􏽨 􏽩 − x
k

�����

�����
2

− c w
k

− Au
k

�����

�����
2
􏼕

+
κμk

1 − μkκ
x

k
− x
∗

�����

�����
2

+
2μk

1 − κμk

〈h x
∗

( 􏼁 − x
∗
, x

k+1
− x
∗〉

� 1 −
2(1 − κ) − μk

1 − κμk

μk􏼠 􏼡 x
k

− x
∗

�����

�����
2

+
1 − μk( 􏼁

2μk

1 − κμk

− τk 2 − τk( 􏼁

ιk ]k
�����

�����􏼒 􏼓
2

μk

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

− δk ηk − δk( 􏼁
S 1 − ηk( 􏼁x

k
+ ηkSx

k
􏽨 􏽩 − x

k
�����

�����
2

μk

− c 1 − c‖A‖
2

􏼐 􏼑
q

k
− Au

k
�����

�����
2

μk

−
c w

k
− Au

k
�����

�����
2

μk

+
2

1 − μk( 􏼁
2 〈h x

∗
( 􏼁 − x

∗
, x

k+1
− x
∗〉

⎫⎪⎬

⎪⎭
.

(45)

Set ak � ‖xk − x∗‖2, bk � (2(1 − κ) − μk/1 − κμk)μk, and

ck �
1 − μk( 􏼁

2

2(1 − κ) − μk

− τk 2 − τk( 􏼁

ιk ]k
�����

�����􏼒 􏼓
2

μk

− c 1 − c‖A‖
2

􏼐 􏼑
q

k
− Au

k
�����

�����
2

μk

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

−
c w

k
− Au

k
�����

�����
2

μk

+
2

1 − μk( 􏼁
2 〈h x

∗
( 􏼁 − x

∗
, x

k+1
− x
∗〉

− δk ηk − δk( 􏼁
S 1 − ηk( 􏼁x

k
+ ηkSx

k
�����

����� − x
k

�����

�����
2

μk

⎫⎪⎬

⎪⎭
.

(46)
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for all k≥ 0.
Since μk⟶ 0 as k⟶ +∞, without loss of generality,

we assume that μk ≤ 1 − κ for all k≥ 0. From (46), we have

ck ≤
2

2(1 − κ) − μk

〈h x
∗

( 􏼁 − x
∗
, x

k+1
− x
∗〉

≤
2

1 − κ
h x
∗

( 􏼁 − x
∗����
���� x

k+1
− x
∗

�����

�����.

(47)

So, limsupk⟶+∞ck < +∞. Next, we show that
limsupk⟶+∞ck ≥ − 1. Assume that limsupk⟶+∞ck < − 1.
1en, there exists a positive integer number K0 such that
ck < − 1 when k≥K0. We can rewrite (45) as
ak+1 ≤ (1 − bk)ak + bkck. 1us, for all k≥K0, from (45), we
deduce

ak+1 ≤ 1 − bk( 􏼁ak + bkck ≤ ak − bk, (48)

which leads to ak+1 ≤ aK0
− 􏽐

k
i�K0

bk. 1erefore,

limsup
k⟶+∞

ak+1 ≤ aK0
− limsup

k⟶+∞
􏽘

k

i�K0

bk. (49)

Note that bk � (2(1 − κ) − μk/1 − κμk)μk ≥ (1 − κ)μk.
1is together with the last inequality implies that
limsupk⟶+∞ak+1 ≤ − ∞. It is impossible. Hence,
− 1≤ limsupk⟶+∞ck < +∞. As a result, we can select a
subsequence ki􏼈 􏼉 of k{ } such that xki⇀p† and

limsup
k⟶+∞

ck � lim
i⟶+∞

cki

� lim
i⟶+∞

1 − μki
􏼐 􏼑

2

2(1 − κ) − μki

− τki
2 − τki

􏼐 􏼑

ιki
]ki

�����

�����􏼒 􏼓
2

μki

−
c w

ki − Au
ki

�����

�����
2

μki

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

− c 1 − c‖A‖
2

􏼐 􏼑
q

ki − Au
ki

�����

�����
2

μki

+
2

1 − μki
􏼐 􏼑

2 〈h x
∗

( 􏼁 − x
∗
, x

ki+1 − x
∗〉

− δki
ηki

− δki
􏼐 􏼑

S 1 − ηki
􏼐 􏼑x

ki + ηki
Sx

ki􏽨 􏽩 − x
ki

�����

�����
2

μki

⎫⎪⎬

⎪⎭
.

(50)

Since the sequence xki+1􏼈 􏼉 is bounded, without loss of
generality, we assume that limi⟶+∞〈h(x∗) − x∗, xki+1− x∗〉

exists. Consequently, from (50), we obtain

lim
i⟶+∞

τki
2 − τki

􏼐 􏼑

ιki
]ki

�����

�����􏼒 􏼓
2

μki

+ δki
ηki

− δki
􏼐 􏼑

S 1 − ηki
􏼐 􏼑x

ki + ηki
Sx

ki􏽨 􏽩 − x
ki

�����

�����
2

μki

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

+ c 1 − c‖A‖
2

􏼐 􏼑
q

ki − Au
ki

�����

�����
2

μki

+
c w

ki − Au
ki

�����

�����
2

μki

⎫⎪⎬

⎪⎭
,

(51)

exists.
By the assumptions, we have liminf i⟶+∞τki

(2 − τki
)> 0

and liminf i⟶+∞δki
(ηki

− δki
)> 0, 1erefore, we deduce

lim
i⟶+∞

ιki
]ki

�����

����� � 0, (52)

lim
i⟶+∞

S 1 − ηki
􏼐 􏼑x

ki + ηki
Sx

ki􏽨 􏽩 − x
ki

�����

����� � 0, (53)

lim
i⟶+∞

q
ki − Au

ki

�����

����� � 0, (54)

lim
i⟶+∞

w
ki − Au

ki

�����

����� � 0. (55)

By (54) and (55), we get

lim
i⟶+∞

q
ki − w

ki

�����

����� � 0. (56)
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In addition, from (31), we have

u
k

− v
k

�����

����� � PC v
k

− τkιk]
k

􏼐 􏼑 − PC v
k

􏼐 􏼑
�����

�����≤ τkιk ]k
�����

�����. (57)

So, we get from (52) that

lim
i⟶+∞

u
ki − v

ki

�����

����� � 0. (58)

Observe that

Sx
k

− x
k

�����

�����≤ Sx
k

− S 1 − ηk( 􏼁x
k

+ ηkSx
k

􏽨 􏽩
�����

�����

+ S 1 − ηk( 􏼁x
k

+ ηkSx
k

􏽨 􏽩 − x
k

�����

�����

≤Lηk Sx
k

− x
k

�����

����� + S 1 − ηk( 􏼁x
k

+ ηkSx
k

􏽨 􏽩 − x
k

�����

�����.

(59)

It follows that

Sx
k

− x
k

�����

�����≤
1

1 − Lηk

S 1 − ηk( 􏼁x
k

+ ηkSx
k

􏽨 􏽩 − x
k

�����

�����. (60)

1is together with (53) implies that

lim
i⟶+∞

Sx
ki − x

ki

�����

����� � 0. (61)

In addition, by (27) and (53), we have

v
ki − x

ki

�����

�����≤ δki
S 1 − ηki

􏼐 􏼑x
ki + ηki

Sx
ki􏽨 􏽩 − x

ki

�����

�����⟶ 0.

(62)

Since vk􏼈 􏼉 is bounded, by Lemma 4, yk􏼈 􏼉 is bounded.
Consequently, the sequence zk􏼈 􏼉 is bounded. Applying
Lemma 5, we deduce that ]k􏼈 􏼉 is bounded. According to
(52), we derive

lim
i⟶+∞

f z
ki , v

ki􏼐 􏼑 � lim
i⟶+∞

ιki
]ki

�����

�����􏼒 􏼓 ]ki

�����

����� � 0. (63)

Since f(zki , ·) is convex, we have

0 � f z
ki , z

ki􏼐 􏼑 � f z
ki , 1 − ϑki

􏼐 􏼑v
ki + ϑki

y
ki􏼐 􏼑

≤ 1 − ϑki
􏼐 􏼑f z

ki , v
ki􏼐 􏼑 + ϑki

f z
ki , y

ki􏼐 􏼑.
(64)

So, we get from (29) that

f z
ki , v

ki􏼐 􏼑≥ ϑki
f z

ki , v
ki􏼐 􏼑 − f z

ki , y
ki􏼐 􏼑􏽨 􏽩

≥
α
2βki

ϑki
v

ki − y
ki

�����

�����
2
.

(65)

Combining the above inequality with (63), we have

lim
i⟶+∞

ϑki
v

ki − y
ki

�����

�����
2

� 0. (66)

Note that xki⇀p† ∈ C. 1en, it follows from (55), (58),
and (62) that uki⇀p†, vki⇀p†, Auki⇀Ap†, Avki⇀Ap†, and
wki⇀Ap† ∈ Q.

1ere are two possible cases. □

Case 1. limsupk⟶+∞ϑki
> 0. 1en, there exist ϑ> 0 and a

subsequence of ϑki
􏽮 􏽯, still denoted by ϑki

􏽮 􏽯 such that for

some I0 > 0, ϑki
> ϑ for all i≥ I0. Consequently, by (66), we

deduce

lim
i⟶+∞

v
ki − y

ki

�����

����� � 0. (67)

Noting that vki⇀p†, thus yki⇀p†. According to (28), we
obtain

0 ∈ z2f v
ki , y

ki􏼐 􏼑 +
1
βki

y
ki − v

ki􏼐 􏼑 + NC y
ki􏼐 􏼑, (68)

so, there exists 􏽢]ki ∈ z2f(vki , yki ) such that

〈􏽢]ki , y − y
ki〉 +

1
βki

〈yki − v
ki , y − y

ki〉 ≥ 0, ∀y ∈ C.

(69)

By the subdifferential inequality, we have

f v
ki , y􏼐 􏼑 − f v

ki , y
ki􏼐 􏼑≥ 〈􏽢]ki , y − y

ki〉, ∀y ∈ C. (70)

1erefore,

f v
ki , y􏼐 􏼑 − f v

ki , y
ki􏼐 􏼑 +

1
βki

〈yki − v
ki , y − y

ki〉 ≥ 0, ∀y ∈ C.

(71)

Since

〈yki − v
ki , y − y

ki〉 ≤ y
ki − v

ki

�����

����� y − y
ki

�����

�����, (72)

from (71), we get

f v
ki , y􏼐 􏼑 − f v

ki , y
ki􏼐 􏼑 +

1
βki

y
ki − v

ki

�����

����� y − y
ki

�����

�����≥ 0. (73)

Letting i⟶ +∞ in (73), from (A1), (A3), and (67), we
obtain

f p
†
, y􏼐 􏼑≥f p

†
, p

†
􏼐 􏼑 � 0, ∀y ∈ C, (74)

hence p† ∈ SEP(C, f).

Case 2. limi⟶+∞ϑki
� 0. Since the sequence yki􏼈 􏼉 is

bounded, without loss of generality, we may assume that
yki⇀y as i⟶ +∞. Replacing y by vki in (71), we get

f v
ki , y

ki􏼐 􏼑≤ −
1
βki

y
ki − v

ki

�����

�����
2
. (75)

According to (29), for mki
− 1, we have

f z
ki,mki

− 1
, v

ki􏼐 􏼑 − f z
ki,mki

− 1
, y

ki􏼐 􏼑<
α

2βki

y
ki − v

ki

�����

�����
2
. (76)

From (75) and (76), we obtain

f v
ki , y

ki􏼐 􏼑≤
2
α

f z
ki,mki

− 1
, y

ki􏼐 􏼑 − f z
ki,mki

− 1
, v

ki􏼐 􏼑􏽨 􏽩. (77)

Letting i⟶ +∞ in (77) and noting that vki⇀p†,
yki⇀y and zki,mki

− 1⇀p† as i⟶ +∞, we obtain

f p
†
, y􏼐 􏼑≤

2
α

f p
†
, y􏼐 􏼑. (78)
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1erefore, f(p†, y) � 0 and limi⟶+∞‖yki − vki ‖ � 0.
Consequently, by the similar argument as that in Case 1, we
get p† ∈ SEP(C, f).

At the same time, from (61), xki⇀p† and Lemma 2, we
deduce that p† ∈ Fix(S). 1erefore,
p† ∈ Fix(S)∩ SEP(C, f).

Next, we show that p† ∈ Fix(T)∩ SEP(Q, g). First, by
(39), we have

λk − ζk( 􏼁ζk T 1 − λk( 􏼁w
k

+ λkTw
k

􏽨 􏽩 − w
k

�����

�����
2

≤ w
k

− Ax
∗

�����

�����
2

− q
k

− Ax
∗

�����

�����
2

≤ w
k

− q
k

�����

����� w
k

− Ax
∗

�����

����� + q
k

− Ax
∗

�����

�����􏼔 􏼕.

(79)

Since liminfk⟶+∞(λk − ζk)ζk > 0 and wk􏼈 􏼉 and qk􏼈 􏼉 are
bounded, from (56) and (79), we deduce that

lim
k⟶+∞

T 1 − λk( 􏼁w
k

+ λkTw
k

􏽨 􏽩 − w
k

�����

����� � 0. (80)

Observe that

Tw
k

− w
k

�����

�����≤ Tw
k

− T 1 − λk( 􏼁w
k

+ λkTw
k

􏽨 􏽩
�����

�����

+ T 1 − λk( 􏼁w
k

+ λkTw
k

􏽨 􏽩 − w
k

�����

�����

≤L2λk Tw
k

− w
k

�����

����� + T 1 − λk( 􏼁w
k

+ λkTw
k

􏽨 􏽩 − w
k

�����

�����.

(81)

It follows that

Tw
k

− w
k

�����

�����≤
1

1 − L2λk

T 1 − λk( 􏼁w
k

+ λkTw
k

􏽨 􏽩 − w
k

�����

�����.

(82)

1is together with (80) implies that
limk⟶+∞‖Twk − wk‖ � 0. Combining this with wki⇀Ap†

and the fact that I − T is demiclosed at zero (Lemma 2), it is
immediate that Ap† ∈ Fix(T).

By Lemma 3, we have

J
g
ςk

Au
k

􏼐 􏼑 − J
g
ς Au

k
􏼐 􏼑

�����

�����≤
ςk − ς
ςk

J
g
ςk

Au
k

􏼐 􏼑 − Au
k

�����

�����. (83)

Hence,

J
g
ς Au

k
􏼐 􏼑 − Au

k
�����

�����≤ J
g
ςk

Au
k

􏼐 􏼑 − Au
k

�����

����� + J
g
ςk

Au
k

􏼐 􏼑 − J
g
ς Au

k
􏼐 􏼑

�����

�����

≤ 2 J
g
ςk

Au
k

􏼐 􏼑 − Au
k

�����

�����.

(84)

It follows from (55) that limk⟶∞‖J
g
ς Auk − Auk‖ � 0.

Since J
g
ς is nonexpansive and Auki⇀Ap†, we deduce that

Ap† ∈ Fix(J
g
ς ) � SEP(Q, g) by Lemma 3. So, p† ∈ Γ and

ωw(xk) ⊂ Γ.
Replacing x∗ � PCh(q†) in (45), we have

x
k+1

− PCh q
†

􏼐 􏼑
�����

�����
2
≤ 1 −

2(1 − κ) − μk

1 − κμk

μk􏼠 􏼡 x
k

− PCh q
†

􏼐 􏼑
�����

�����
2

+
2(1 − κ) − μk

1 − κμk

μk ×
2

2(1 − κ) − μk

· 〈h PCh q
†

􏼐 􏼑􏼐 􏼑 − PCh q
†

􏼐 􏼑, x
k+1

− PCh q
†

􏼐 􏼑〉.

(85)

Noting that limsupk⟶+∞〈h(PCh(q†)) − PCh

(q†), xk+1 − PCh(q†)〉≤ 0, applying Lemma 6 to the last
inequality, we deduce that xk⟶ PCh(q†). 1is completes
the proof. □

Next, we can apply Algorithm 1 and 1eorem 1 for
solving the split equilibrium problem (3). Setting S � I and
T � I in Algorithm 1, we deduce that vk � xk and qk � wk.
Consequently, we have the following algorithm and
corollary.

Algorithm 2. Fix an initial point x0 ∈ C. Set k � 0.

Step 1: assume that xk is known and compute

y
k

� argmin
y†∈C

f x
k
, y

†
􏼐 􏼑 +

1
2βk

x
k

− y
†

�����

�����
2

􏼨 􏼩. (86)

If yk � xk, then set uk � xk and go to Step 4. Otherwise,
go to Step 2.
Step 2: let mk � min 1, 2, . . . , k, . . .{ } such that

f z
k,mk , x

k
􏼐 􏼑 − f z

k,mk , y
k

􏼐 􏼑≥
α
2βk

x
k

− y
k

�����

�����
2
, (87)

where
z

k,mk � 1 − ϑmk( 􏼁x
k

+ ϑmk y
k
. (88)

Write ϑk � ϑmk and zk � zk,mk .
Step 3: compute

u
k

� PC v
k

− τkιk]
k

􏼐 􏼑, (89)

where ]k ∈ z2f(zk, xk) and ιk � (f(zk, xk)/‖]k‖2).
Step 4: for any v ∈ Q, find wk such that

g w
k
, v􏼐 􏼑 +

1
ςk

〈v − w
k
, w

k
− Au

k〉 ≥ 0. (90)

Step 5: compute

x
k+1

� μkh x
k

􏼐 􏼑 + 1 − μk( 􏼁PC u
k

+ cA
∗

w
k

− Au
k

􏼐 􏼑􏽨 􏽩.

(91)

Step 6: set k: � k + 1 and return to Step 1.

Corollary 1. Assume that Γ1 ≠∅. 
en, the sequence xk􏼈 􏼉

generated by (91) strongly converges to a solution
q1 � PΓ1h(q1).
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Next, we can apply Algorithm 1 and 1eorem 1 for
solving the split fixed point problem (4). Setting f � 0 and
g � 0 in Algorithm 1, we deduce that yk � xk and wk � vk.
Consequently, we have the following algorithm and
corollary.

Algorithm 3. Fix an initial point x0 ∈ C. Define the sequence
xk􏼈 􏼉 iteratively by

v
k

� 1 − δk( 􏼁x
k

+ δkS 1 − ηk( 􏼁x
k

+ ηkSx
k

􏽨 􏽩,

q
k

� 1 − ζk( 􏼁v
k

+ ζkT 1 − λk( 􏼁v
k

+ λkTv
k

􏽨 􏽩,

x
k+1

� μkh x
k

􏼐 􏼑 + 1 − μk( 􏼁PC x
k

+ cA
∗

q
k

− Ax
k

􏼐 􏼑􏽨 􏽩, k≥ 0.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(92)

Corollary 2. Assume that Γ2 ≠∅. 
en, the sequence xk􏼈 􏼉

generated by (92) strongly converges to a solution
q2 � PΓ2h(q2).
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,is paper gives further generalizations of some well-known coupled fixed-point theorems. Specifically, ,eorem 3 of the paper is
the generalization of the Baskar–Lackshmikantham coupled fixed-point theorem, and,eorem 5 is the generalization of the Sahar
Mohamed Ali Abou Bakr fixed-point theorem, where the underlying space is complete θ-cone-metric space.

1. Introduction and Preliminaries

Since 1922, the pioneering fixed-point principle of Banach
[1] showed exclusive interest of researchers because it has
many applications, including variational linear inequalities
and optimization, and applications in differential equations,
in the field of approximation theory, and in minimum norm
problems.

Since then, several types of contraction mappings have
been introduced and many research papers have been
written to generalize this Banach contraction principle.

In 1987, Guo and Lakshmikantham [2] introduced one
of the most interesting concepts of coupled fixed point.

Definition 1. An element (x, y) ∈ E × E is said to be a
coupled fixed point of the mapping T: E × E⟶ E if and
only if T(x, y) � x and T(y, x) � y.

In 2006, Bhaskar and Lakshmikantham [3] introduced
the concept of the mixed monotone property as follows.

Definition 2. Let (E, ≤ ) be a partially ordered set and T be a
mapping from E × E to E. ,en,

(1) T is said to be monotone nondecreasing in x if and
only if, for any y ∈ E,

if x1, x2 ∈ E andx1 ≤ x2, thenT x1, y( 􏼁≤T x2, y( 􏼁,

(1)

(2) T is said to be monotone nonincreasing in y if and
only if, for any x ∈ E,

if y1, y2 ∈ E andy1 ≤y2, thenT x, y1( 􏼁≥T x, y2( 􏼁,

(2)

(3) T is said to have a mixed monotone property if and
only if T(x, y) is both monotone nondecreasing in x

and monotone nonincreasing in y

Definition 3. An element (x0, y0) ∈ E × E is said to be a
lower-anti-upper coupled point of the mapping
T: E × E⟶ E if and only if

x0 ≤T x0, y0( 􏼁 andy0 ≥T y0, x0( 􏼁. (3)

Amapping T: E × E⟶ E is said to have a lower-upper
property if and only if T has at least one lower-anti-upper
coupled point.

Definition 4. Let (E, ≤ , ‖.‖) be a partially ordered normed
space. ,en,

(1) E is said to be a sequentially lower ordered space if it
fulfills the condition: If xn􏼈 􏼉n∈N is a nondecreasing
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sequence in E such that xn􏼈 􏼉n∈N converges strongly
to x, then xn ≤x for all n ∈ N

(2) E is said to be a sequentially upper-ordered space if it
fulfills the condition: If yn􏼈 􏼉n∈N is a nonincreasing
sequence in E such that yn􏼈 􏼉n∈N converges strongly
to y, then yn ≥y for all n ∈ N

(3) E is said to be a sequentially lower-upper ordered
space if it is both a lower- and upper-ordered space

In 2006, Bhaskar and Lakshmikantham [3] proved the
existence of coupled fixed points for mixed monotone
mappings with weak contractivity assumption in a partial-
ordered Banach space (E, ‖.‖, ≤ ) as follows.

Theorem 1 (see [3]). Let E be a sequentially both lower- and
upper-ordered Banach space and T: E × E⟶ E be a
mapping with mixed monotone and lower-upper properties. If
there is a real number 0≤ k< 1 such that

‖T(x, y) − T(z, w)‖≤
k

2
[‖x − z‖ +‖y − w‖],

∀x, y, z, w ∈ E, z≤x, andy≤w,

(4)

then T has coupled fixed points in E.

In 2013, Mohamed Ali [4] introduced novel contraction
type of mappings and proved the following fixed-point
theorem.

Theorem 2 (see [4]). Let (E, ‖.‖) be a Banach space and T be
a mapping from E × E into E, and we suppose there are three
constants a, b, c ∈ [0, 1) and a + b + c< 1 such that

‖T(x, y) − T(y, z)‖≤ a‖x − y‖ + b‖T(x, y) − x‖

+ c‖T(y, z) − y‖, ∀x, y, z ∈ E.

(5)

,en, there is a unique point x0 ∈ E such that
T(x0, x0) � x0.

,ere are many interesting coupled fixed-point theo-
rems concerning some other type of contraction mappings,
see [5–10].

Recently, more advanced approaches for studying
coupled fixed points have been presented by the authors in
[11–13].

In 2007, Huang and Zhang [14] introduced the concept
of cone-metric spaces as follows: First, a subset M of the real
Banach space E is said to be a cone in E if and only if

(1) M is nonempty closed and M≠ Θ{ }, where Θ is the
zero (neutral) element of E

(2) λM + μM ⊂M for all nonnegative real numbers λ, μ

(3) M∩−M � Θ{ }

If intM is the set of all interior points of M, then a cone
M in a normed space E induces the following ordered
relations:

u≺ v⇔ v − u ∈M, u< v⇔(v − u ∈M, and u≠ v),

u≺ ≠ v⇔v − u ∈ intM.

(6)

If E is a nonempty set, the distance d(x, y) between any
two elements x, y ∈ E is defined to be a vector in the cone M,
and the space (E, d) is said to be a cone-metric space if and
only if d satisfied the three axioms of metric but using the
ordered relation ≺ induced by M for the triangle inequality
instead. ,ey studied the topological characterizations of
such a defined space, and then, they applied their concept to
have more generalizations of some previous fixed-point
theorems for contractive type of mappings.

A mapping T: E⟶ E is said to be a contraction if and
only if there is a constant α ∈ [0, 1) such that

d(T(x), T(y))≺ αd(x, y), ∀x, y ∈ E. (7)

In 2019, Mohamed Ali Abou Bakr [15] proved the ex-
istence of a unique common fixed point of generalized joint
cyclic Banach algebra contractions and Banach algebra
Kannan type of mappings on cone quasimetric spaces.

In 2013, Khojasteh et al. [10] introduced the notion of
θ-action function, θ: [0,∞) × [0,∞)⟶ [0,∞), the con-
cept of θ-metric, and then, they studied the topological
structures of θ-metric spaces in detail. ,eir work led to a
step-forward generalization of metric spaces.

In 2020, Mohamed Ali Abou Bakr [16] replaced [0,∞)

by a coneM in a normed space and used the ordered relation
induced by this cone to introduce the following analogous
generalization of θ-action function.

Definition 5. Let (E,≺ ) be an ordered normed space, where
≺ is an ordered relation induced by some cone M ⊂ E and
θ: M × M⟶M be a continuous mapping with respect to
each variable, and we denote

Im(θ) � t: t ∈M such that∃u0, v0 ∈ E, θ u0, v0( 􏼁 � t􏼈 􏼉.

(8)

,en, θ is said to be an ordered action mapping on E if
and only if it satisfies the following conditions:

(1) θ(Θ,Θ) � Θ and θ(u, v) � θ(v, u) for every u, v ∈M

(2)

θ(u, v)< θ(w, t) if either

u<w and v≺ t;

or

u≺w and v< t

⎧⎪⎪⎨

⎪⎪⎩
(9)

(3) For every u ∈ Im(θ) and every Θ≺ v≺ u, there is
Θ≺w≺ u such that θ(v, w) � u

(4) θ(u,Θ)≺ u for every u ∈ (M/ Θ{ })

Because x − Θ ∈M for every x ∈M, one can write in-
stead Θ≺ x for every x ∈M, (Θ<x for every x ∈ (M/ Θ{ })).
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In addition, Mohamed Ali Abou Bakr [16] gave further
replacement, replaced the set of nonnegative real numbers
R+ by a cone M in a normed space, and used θ-ordered
actions to introduce the concept of θ-cone-metric space as
follows.

Definition 6 (see [16]). Let (E,≺ ) be an ordered normed
space, where ≺ is the ordered relation induced by some cone
M ⊂ E, and θ be an ordered action on E. If E is a nonempty
set, then the function dθ: E × E⟶M is said to be a
θ-cone-metric on E if and only if dθ satisfies the following
conditions:

(1) dθ(x, y) � Θ⇔x � y

(2) dθ(x, y) � dθ(y, x),∀x, y ∈ E

(3) dθ(x, y)≺ θ(dθ(x, z), dθ(z, y)), ∀x, y, z ∈ E

,e double (E, dθ) is defined to be a θ-cone-metric
space.

,e author has further given some topological charac-
terizations of this space and then generalized some previous
fixed-point theorems in this setting.

Remark 1. If θ(u, v) � u + v, then we have a cone-metric
space.

In this paper, we extend and generalize the coupled
fixed-point theorem of Baskar–Lackshmikantham (1.5) to a
more general one (2.1), where the underlying space (E, dθ) is
a complete θ-cone-metric space. On the other side, if T: E ×

E⟶ E is a continuous mapping in the second argument
and there are three constants a, b, c ∈ [0, 1) and a + b + c< 1
such that

dθ(T(x, y), T(y, z))≺ adθ(x, y) + bdθ(T(x, y), x)

+ cdθ(T(y, z), y), ∀x, y, z ∈ E,

(10)

then we proved that T has a unique fixed point in the sense
that there is a unique point x ∈ E such that T(x, x) � x.

We also claim that some results of [6–10, 17] can be
proved in the case of θ-cone-metric spaces.

2. Main Results

Let (E, dθ, ≤ ) be a partially ordered θ-cone-metric space.
,en, the following relation defines a partial-ordered rela-
tion on E × E:

(x, y)≪ (z, w)⇔x≤ z, andw≤y. (11)

We have the following coupled fixed-point theorem.

Theorem 3. Let (E, dθ, ≤ ) be a partially ordered, sequen-
tially lower-upper ordered complete θ-cone-metric space and
G: E × E⟶ E be a mapping having mixed monotone and
lower-upper properties on E. We assume that there exists
r ∈ [0, 1) with

dθ(G(x, y), G(z, w))≺
r

2
dθ(x, z) + dθ(y, w)􏼂 􏼃,

∀(x, y)≪ (z, w).

(12)

,en, G has coupled fixed points in E.

Proof. Since G has a lower-upper property, then there exist
x0, y0 ∈ E such that

x0 ≤G x0, y0( 􏼁 andG y0, x0( 􏼁≤y0. (13)

We denote x1 � G(x0, y0) and y1 � G(y0, x0) and then
give notations for the elements of the following inductively
constructed sequences:

x2 � G x1, y1( 􏼁 ≔ G
2

x0, y0( 􏼁,

y2 � G y1, x1( 􏼁 ≔ G
2

y0, x0( 􏼁,

x3 � G x2, y2( 􏼁 ≔ G
3

x0, y0( 􏼁,

y3 � G y2, x2( 􏼁 ≔ G
3

y0, x0( 􏼁,

. . .

xn+1 � G xn, yn( 􏼁 ≔ G
n+1

x0, y0( 􏼁,

yn+1 � G yn, xn( 􏼁 ≔ G
n+1

y0, x0( 􏼁,

. . .

(14)

Using themixedmonotonicity property of G insures that
each step leads to the next step in each of the following:

x0 ≤x1 � G x0, y0( 􏼁≤G x1, y0( 􏼁≤G x1, y1( 􏼁 � x2,

y2 � G y1, x1( 􏼁≤G y1, x0( 􏼁≤G y0, x0( 􏼁 � y1 ≤y0,

x1 ≤x2 � G x1, y1( 􏼁≤G x2, y2( 􏼁 � x3,

y3 � G y2, x2( 􏼁≤G y1, x1( 􏼁 � y2 ≤y1

. . .

xn+1 � G xn, yn( 􏼁≤G xn−1, yn−1( 􏼁 � xn,

yn+1 � G yn, xn( 􏼁≤G yn−1, xn−1( 􏼁 � yn,

. . .

(15)

,emixedmonotonicity property, the contractiveness of
G, and the inductive process prove the following for every
n ∈ N:

dθ G
n+1

x0, y0( 􏼁, G
n

x0, y0( 􏼁􏼐 􏼑≺
r

2
􏼔 􏼕

n

dθ G x0, y0( 􏼁, x0( 􏼁 + dθ G y0, x0( 􏼁, y0( 􏼁􏼂 􏼃,

dθ G
n+1

y0, x0( 􏼁, G
n

y0, x0( 􏼁􏼐 􏼑≺
r

2
􏼔 􏼕

n

dθ G y0, x0( 􏼁, y0( 􏼁 + dθ G x0, y0( 􏼁, x0( 􏼁􏼂 􏼃.

(16)
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Consequently, we have

lim
n⟶∞

dθ G
n+1

x0, y0( 􏼁, G
n

x0, y0( 􏼁􏼐 􏼑

� lim
n⟶∞

dθ G
n+1

y0, x0( 􏼁, G
n

y0, x0( 􏼁􏼐 􏼑 � Θ.
(17)

Hence, we claim that both Gn(x0, y0)􏼈 􏼉n∈N and
Gn(y0, x0)􏼈 􏼉n∈N are Cauchy sequences in E. Indeed, if one of
them, say Gn(x0, y0)􏼈 􏼉n∈N, is not Cauchy, then there exist

v ∈ Im(θ), Θ< v and sequences of natural numbers in􏼈 􏼉n∈N
and jn􏼈 􏼉n∈N such that, for any in > jn > n,

v≺ dθ G
in x0, y0( 􏼁, G

jn x0, y0( 􏼁􏼐 􏼑,

dθ G
in− 1

x0, y0( 􏼁, G
jn x0, y0( 􏼁􏼐 􏼑< v.

(18)

Since any subsequence of dθ(Gn+1(x0, y0),􏼈

Gn(x0, y0))}n∈N is convergent toΘ, the properties of θ imply
the following contradiction:

v≺ dθ G
in x0, y0( 􏼁, G

jn x0, y0( 􏼁􏼐 􏼑

≺ θ dθ G
in− 1

x0, y0( 􏼁, G
jn x0, y0( 􏼁􏼐 􏼑, dθ G

in x0, y0( 􏼁, G
in− 1

x0, y0( 􏼁􏼐 􏼑􏼐 􏼑

< θ v, dθ G
in x0, y0( 􏼁, G

in− 1
x0, y0( 􏼁􏼐 􏼑􏼐 􏼑

< θ v, lim
n⟶∞

dθ G
in x0, y0( 􏼁, G

in− 1
x0, y0( 􏼁􏼐 􏼑􏼒 􏼓

< θ(v,Θ)< v.

(19)

Similarly, the sequence Gn(y0, x0)􏼈 􏼉n∈N is also Cauchy.
Since E is a complete θ-cone-metric space, there exist
x, y ∈ E such that

lim
n⟶∞

dθ G
n

x0, y0( 􏼁, x( 􏼁 � Θ,

lim
n⟶∞

dθ G
n

y0, x0( 􏼁, y( 􏼁 � Θ.
(20)

Now, we are going to show that (x, y) is a coupled fixed
point of G. Since the sequence Gn(x0, y0) � xn􏼈 􏼉n∈N is
nondecreasing with limn⟶∞Gn(x0, y0) � x, then
Gn(x0, y0)≤x, and since the sequence Gn(y0, x0) � yn􏼈 􏼉n∈N
is nonincreasing with limn⟶∞Gn(y0, x0) � y, then
y≤Gn(y0, x0) for every n ∈ N, and accordingly, we have

dθ(G(x, y), x)≺ θ dθ G(x, y), G
n+1

x0, y0( 􏼁􏼐 􏼑, dθ G
n+1

x0, y0( 􏼁, x􏼐 􏼑􏼐 􏼑,

� θ dθ G(x, y), G xn, yn( 􏼁( 􏼁, dθ G
n+1

x0, y0( 􏼁, x􏼐 􏼑􏼐 􏼑

≺ θ
r

2
􏼔 􏼕 dθ x, xn( 􏼁 + dθ y, yn( 􏼁􏼂 􏼃, dθ G

n+1
x0, y0( 􏼁, x􏼐 􏼑􏼒 􏼓

≺ θ
r

2
􏼔 􏼕 dθ x, G

n
x0, y0( 􏼁( 􏼁 + dθ y, G

n
y0, x0( 􏼁( 􏼁􏼂 􏼃, dθ G

n+1
x0, y0( 􏼁, x􏼐 􏼑􏼒 􏼓.

(21)

Taking the limit as n⟶∞ with the help of equation
(20), we find that

dθ(G(x, y), x)≺ θ
r

2
􏼔 􏼕[Θ + Θ],Θ􏼒 􏼓 � θ(Θ,Θ) � Θ.

(22)

Hence, dθ(G(x, y), x) � Θ; therefore, G(x, y) � x.
Similarly, G(y, x) � y. □

If the partial-ordered relation on E × E is defined as

(x, y)≪ 2(z, w)⇔x≥ z, andy≤w, (23)

then the following theorem is similarly proved.

Theorem 4. Let (E, dθ, ≤ ) be a partially ordered, sequen-
tially lower-upper ordered complete θ-cone-metric space and

G: E × E⟶ E be a mapping having mixed monotone
property, and we suppose that there are x0, y0 ∈ E such that
T(x0, y0)≤x0 and y0 ≤T(y0, x0). If there exists r ∈ [0, 1)

with

dθ(G(x, y), G(z, w))≺
r

2
dθ(x, z) + dθ(y, w)􏼂 􏼃,

∀(x, y)≪ 2(z, w),

(24)

then G has coupled fixed points in E.

Corollary 1. Let E be a sequentially both lower- and upper-
ordered Banach space and T: E × E⟶ E be a mapping with
mixed monotone and lower-upper properties. If there is a real
number 0≤ k< 1 such that
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‖T(x, y) − T(z, w)‖≤
k

2
[‖x − z‖ +‖y − w‖],

∀x, y, z, w ∈ E, z≤x, andy≤w,

(25)
then T has coupled fixed point in E.

Proof. We just notice that any Banach space (E, ‖.‖) is a
θ-cone-metric space (E, dθ), where (E,≺ ) � (R, |.|) is the
Banach space of real numbers with the absolute value metric
and with the usual ordered relation of real numbers,
θ(u, v) � u + v, θ: [0,∞) × [0,∞)⟶ [0,∞), and the
metric dθ is the metric induced by the norm ‖.‖ on E,
dθ(x, y) � ‖x − y‖. □

Remark 2. Corollary 1 is Baskar–Lackshmikantham coupled
fixed-point,eorem 1.,is proves that,eorem 3 is a quite
good generalization of the Baskar–Lackshmikantham cou-
pled fixed-point theorem.

On the other side, we have the following results:

Lemma 1. Let (E, dθ) be a θ-cone-metric space and T be a
mapping, T: E × E⟶ E. It is supposed that there are
constants a, b, c ∈ [0, 1) and a + b + c< 1 such that

dθ(T(x, y), T(y, z))≺ adθ(x, y) + bdθ(T(x, y), x)

+ cdθ(T(y, z), y), ∀x, y, z ∈ E.

(26)

If x1 and x2 are arbitrary elements in E, then the se-
quence xn􏼈 􏼉

∞
n�3 defined iteratively by

xn � T xn−1, xn−2( 􏼁, ∀n ∈N, n> 2, (27)

which satisfies the following:
dθ xn+1, xn( 􏼁≺ tdθ xn, xn−1( 􏼁, ∀n> 2, (28)

dθ xn+1, xn( 􏼁≺ t
n
dθ x2, x1( 􏼁, ∀n> 2, (29)

where t � (a + c/1 − b). Moreover, the sequence xn􏼈 􏼉n∈N is a
Cauchy sequence.

Proof. Using the contractiveness property of the given
mapping gives

dθ xn+1, xn( 􏼁 � dθ T xn, xn+1( 􏼁( 􏼁, T xn−1, xn−2( 􏼁( 􏼁

≺ adθ xn, xn−1( 􏼁 + bdθ xn+1, xn( 􏼁

+ cdθ xn, xn−1( 􏼁.

(30)

Hence,

dθ xn+1, xn( 􏼁≺
a + c

1 − b
􏼒 􏼓dθ xn, xn−1( 􏼁, ∀n> 2, (31)

and repeating the last step n − 2 times with the term
dθ(xn, xn−1) proves the inequalities given in (29). To prove
that the sequence (27) is Cauchy, we take the limit of both
sides of (29) as n⟶∞ gives limn⟶∞dθ(xn+1, xn) � Θ and
suppose that xn􏼈 􏼉n∈N is not Cauchy; then, there exist
v ∈ Im(θ), Θ< v and sequences of natural numbers in􏼈 􏼉n∈N
and jn􏼈 􏼉n∈N such that, for any in > jn > n,

v≺ dθ xin
, xjn

􏼐 􏼑,

dθ xin−1, xjn
􏼐 􏼑< v.

(32)

Since any subsequence of dθ(xn+1, xn)􏼈 􏼉n∈N is conver-
gent to Θ, the continuity and the properties of θ imply the
following contradiction:

v≺dθ xin
, xjn

􏼐 􏼑≺ θ dθ xin−1, xjn
􏼐 􏼑, dθ xin

, xin−1􏼐 􏼑􏼐 􏼑

< θ v, dθ xin
, xin−1􏼐 􏼑􏼐 􏼑⟶ n⟶∞θ(v,Θ)< v.

(33)

□

Theorem 5. Let (E, dθ) be a complete θ-cone-metric space
and T: E × E⟶ E be a continuous mapping in the second
argument, and we suppose there are three constants
a, b, c ∈ [0, 1) and a + b + c< 1 such that

dθ(T(x, y), T(y, z))≺ adθ(x, y) + bdθ(T(x, y), x)

+ cdθ(T(y, z), y), ∀x, y, z ∈ E,

(34)

and then, T has a unique fixed point in the sense that there is a
unique point x0 ∈ E such that T(x0, x0) � x0.

Proof. Since (E, dθ) is complete, the Cauchy sequence
xn􏼈 􏼉
∞
n�3 given in Lemma 1 is converging to some element x0

in E. We show that x0 is fixed point of T. Using the
properties of θ and the continuity of T, we see that
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dθ T x0, x0( 􏼁, x0( 􏼁≺ θ dθ T x0, x0( 􏼁, xn( 􏼁, dθ xn, x0( 􏼁( 􏼁

≺ θ θ dθ T x0, x0( 􏼁, T x0, xn−1( 􏼁( 􏼁, dθ T x0, xn−1( 􏼁, xn( 􏼁( 􏼁, dθ xn, x0( 􏼁( 􏼁,

� θ θ dθ T x0, xn−1( 􏼁, T xn−1, xn−2( 􏼁( 􏼁, dθ T x0, x0( 􏼁, T x0, xn−1( 􏼁( 􏼁( 􏼁( ,

� θ θdθT x0, xn−1( 􏼁, T xn−1, xn−2( 􏼁( 􏼁, dθ T x0, x0( 􏼁, T x0, xn−1( 􏼁( 􏼁dθ xn, x0( 􏼁􏼁

≺ θ θ adθ x0, xn−1( 􏼁 + bdθ T x0, xn−1( 􏼁, x0( 􏼁 + cdθ T xn−1, xn−2( 􏼁, xn−1( 􏼁,((

dθ T x0, x0( 􏼁, T x0, xn−1( 􏼁( 􏼁􏼁, dθ xn, x0( 􏼁􏼁

≺ θ θ adθ x0, xn−1( 􏼁 + bdθ T x0, xn−1( 􏼁, x0( 􏼁 + cdθ xn, xn−1( 􏼁,((

dθ T x0, x0( 􏼁, T x0, xn−1( 􏼁( 􏼁􏼁, dθ xn, x0( 􏼁􏼁⟶ n⟶∞

≺ θ θ aΘ + bdθ T x0, x0( 􏼁, x0( 􏼁 + cΘ, dθ T x0, x0( 􏼁, T x0, x0( 􏼁( 􏼁( 􏼁,Θ( 􏼁

≺ θ θ aΘ + bdθ T x0, x0( 􏼁, x0( 􏼁 + cΘ,Θ( 􏼁,Θ( 􏼁,

� θ θ bdθ T x0, x0( 􏼁, x0( 􏼁,Θ( 􏼁,Θ( 􏼁

≺ θ bdθ T x0, x0( 􏼁, x0( 􏼁,Θ( 􏼁

≺ bdθ T x0, x0( 􏼁, x0( 􏼁.

(35)

Since b< 1, we get dθ(T(x0, x0), x0) � Θ; consequently,
T(x0, x0) � x0. Now, let x and y be two arbitrarily distinct
elements in E with T(x, x) � x and T(y, y) � y, and we
have

dθ(T(x, y), x)≺ θ dθT(x, x), T(x, y)( 􏼁, dθ(T(x, x), x)

≺ θ bdθ(T(x, x), x) + cdθ(T(x, y), x), dθ(T(x, x), x)( 􏼁

≺ θ bΘ + cdθ(T(x, y), x),Θ( 􏼁

≺ cdθ(T(x, y), x).

(36)

,us, dθ(T(x, y), x) � Θ, that is, T(x, y) � x. Similarly,
we get T(y, x) � y; therefore, (x, y) is a coupled fixed point
of T. On the other hand, we have the following
contradiction:

dθ(x, y) � dθ(T(x, x), T(y, y))

≺ θ dθ(T(x, x), T(x, y)), dθ(T(x, y), T(y, y))( 􏼁

≺ θ cdθ(T(x, y), x), adθ(x, y) + bdθ(T(x, y), x)( 􏼁

≺ θ cdθ(x, x), adθ(x, y) + bdθ(x, x)( 􏼁

≺ θ Θ, adθ(x, y) + Θ( 􏼁≺ adθ(x, y).

(37)

Since a< 1, we have dθ(x, y); consequently, x � y. □

We conclude the following.

Corollary 2. Let (E, ‖.‖) be a Banach space and T be a
mapping from E × E into E, and we suppose that there are
three constants a, b, c ∈ [0, 1) and a + b + c< 1 such that

‖T(x, y) − T(y, z)‖≤ a‖x − y‖ + b‖T(x, y) − x‖

+ c‖T(y, z) − y‖, ∀x, y, z ∈ E.
(38)

,en, there is a unique point x0 ∈ E such that
T(x0, x0) � x0.

Proof. It can be proved in a similar way of Corollary 1 with
the same notice. □

Remark 3. Corollary 2 is the fixed-point theorem of
Mohamed Ali Abou Bakr; accordingly, ,eorem 5 is a
generalization of fixed-point ,eorem 2 in the setting of a
complete θ-cone-metric space.

3. Conclusions

,is paper gives further generalizations of some well-known
coupled fixed-point theorems. Specifically, ,eorem 3
generalizes the Baskar–Lackshmikantham coupled fixed-
point theorem [3], and ,eorem 5 generalizes the Sahar
Mohamed Ali Abou Bakr fixed-point theorem [4]; the
underlying space (E, dθ) is a complete θ-cone-metric space,
and we claim that some results of [6–10] can be proved in the
case of θ-cone-metric spaces.
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In this study, we introduce and study a generalized complementarity problem involving XOR operation and three classes of
generalized variational inequalities involving XOR operation. Under certain appropriate conditions, we establish equivalence
between them. An iterative algorithm is defined for solving one of the three generalized variational inequalities involving XOR
operation. Finally, an existence and convergence result is proved, supported by an example.

1. Introduction

It is well known that the many unrelated free boundary value
problems related to mathematical and engineering sciences can
be solved by using the techniques of variational inequalities. In a
variational inequality formulation, the location of the free
boundary becomes an intrinsic part of the solution, and no
special devices are needed to locate it. Complementarity theory
is an equally important area of operations research and ap-
plication oriented.)e linear as well as nonlinear programs can
be distinguished by a family of complementarity problems.)e
complementarity theory have been elongated for the purpose of
studying several classes of problems occurring in fluid flow
through porous media, economics, financial mathematics,
machine learning, optimization, and transportation equilib-
rium, for example, [1–5].

)e correlations between the variational inequality problem
and complementarity problem were recognized by Lions [6]
and Mancino and Stampacchia [7]. However, Karamardian
[8, 9] showed that both the problems are equivalent if the
convex set involved is a convex cone. For more details on
variational inequalities and complementarity problems, refer to
[6, 10–12].

)e exclusive “XOR,” sometimes also exclusive dis-
junction (short: XOR) or antivalence, is a Boolean operation

which only outputs true if only exactly one of its both inputs
is true (so, if both inputs differ).)ere are many applications
of XOR terminology, that is, it is used in cryptography, gray
codes, parity, and CRC checks. Commonly, the ⊕ symbol is
used to denote the XOR operation. Some problems related to
variational inclusions involving XOR operation were studied
by [13–16].

Influenced by the applications of all the above discussed
concepts in this study, we introduce and study a generalized
complementarity problem involving XOR operation with
three classes of generalized variational inequalities involving
XOR operation. Some equivalence relations are established
between them. An existence and convergence result is
proved for one of the three types of generalized variational
inequalities involving XOR operation. For illustration, an
example is provided.

2. Some Basic Concepts and Formulation of
the Problem

)roughout this study, we assume E to be real ordered
Banach space with norm ‖ · ‖ and E∗ be its dual space.
Suppose that d is the metric induced by the norm, 2E (re-
spectively, CB(E)) is the family of nonempty (respectively,
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closed and bounded) subsets of E. )e Hausdorff metric
D(., .) on CB(E) is defined as

D(A,B) � max sup
x∈A

d(x,B), sup
y∈B

d(A, y)
⎧⎨

⎩

⎫⎬

⎭, ∀A,B ∈ CB(E),

(1)

where d(x,B) � infy∈Bd(x, y), and
d(A, y) � infx∈Ad(x, y).

Let C be a pointed closed convex positive cone in E, and
〈t, x〉 denotes the value of the linear continuous function
t ∈ E∗ at x.

)e following definitions and concepts are required to
achieve the goal of this study, andmost of them can be found
in [17, 18].

Definition 1. )e relation “≤ ” is called the partial order
relation induced by the cone C, that is, x≤y if and only if
y − x ∈ C.

Definition 2. For arbitrary elements x, y ∈ E, if x≤y (or
y≤x) holds, then x and y are said to be comparable to each
other (denoted by x∝y).

Definition 3. For arbitrary elements x, y ∈ E, lub x, y􏼈 􏼉 and
glb x, y􏼈 􏼉 mean the least upper bound and the greatest upper
bound of the set x, y􏼈 􏼉. Suppose lub x, y􏼈 􏼉 and glb x, y􏼈 􏼉

exist, then some binary operations are defined as

(i) x∨y � lub x, y􏼈 􏼉

(ii) x∧y � glb x, y􏼈 􏼉

(iii) x⊕y � (x − y)∨(y − x)

(iv) x⊙y � (x − y)∧(y − x)

)e operations ∨,∧, ⊕, and ⊙ are called OR, AND, XOR,
and XNOR operations, respectively.

Proposition 1. Let ⊕ be an XOR operation and ⊙ be an
XNOR operation. 5en, the following relations hold:

(i) x⊙ x � 0, x⊙y � y⊙ x

(ii) if x∝ 0, then − x⊕0≤ x≤x⊕0
(iii) 0≤x⊕y, if x∝y

(iv) If x∝y, then x⊕y � 0 if and only if x � y

(v) x⊕y � y⊕x
(vi) x⊕x � 0
(vii) 0≤x⊕0
(viii) If x≤y and u≤ v, then (x + u)≤ (y + v)

(ix) If x∝y, then (x⊕0)⊕(y⊕0)≤ (x⊕y)⊕0 � x⊕y, for
all x, y, u, v ∈ E and λ ∈ R

Proposition 2. Let C be a cone in E; then, for each x, y ∈ E,
the following relations hold:

(i) ‖0⊕ 0‖ � ‖0‖ � 0

(ii) ‖x∨y‖≤ ‖x‖∨‖y‖≤ ‖x‖ + ‖y‖

(iii) ‖x⊕y‖≤ ‖x − y‖

(iv) If x∝y, then ‖x⊕y‖ � ‖x − y‖

Definition 4. Let A: E⟶ E be a single-valued mapping,
then

(i) A is said to be a comparison mapping, if x∝y, then
A(x)∝A(y), x∝A(x), and y∝A(y), for all
x, y ∈ E

(ii) A is said to be a strongly comparisonmapping, if A is
a comparison mapping and A(x)∝A(y), if and
only if x∝y, for any x, y ∈ E

Definition 5. Let f: E⟶ R∪ +∞{ } be a proper functional.
A vector ω∗ ∈ E∗ is called subgradient of f at x ∈ domf, if

〈ω∗, y − x〉 ≤f(y) − f(x), for ally ∈ E. (2)

)e set of all subgradients of f at x is denoted by zf(x).
)e mapping zf : E⟶ 2E∗ defined by

zf(x) � ω∗ ∈ E
∗
: 〈ω∗, y − x〉 ≤f(y) − f (x), for ally ∈ E􏼈 􏼉

(3)

is called subdifferential of f.

Definition 6. )e resolvent operatorJzf
ρ associated with zf

is given by

J
zf
ρ (x) � [I + ρ zf]

− 1
(x), for allx ∈ E, (4)

where ρ> 0 is a constant, and I is the identity operator.
It is well known that the resolvent operator Jzf

ρ is
single-valued as well as nonexpansive.

Definition 7. A mapping f: C⟶ R is said to be

(i) Positive homogeneous if, for all α> 0 and x ∈ C,
f(αx) � αf(x)

(ii) Convex, if x, y ∈ C and all λ ∈ [0, 1]

f(λx +(1 − λ)y)≤ λf(x) +(1 − λ)f(y). (5)

Definition 8. A multivalued mapping F: C⟶ 2E∗∖ ∅{ } is
said to be

(i) Upper semicontinuous at x ∈ C if, for every open set
V containing F(x), there exists an open set U

containing x such that F(U)⊆V, where E∗ is
equipped with ω∗ topology

(ii) Upper semicontinuous on C if it is upper
semicontinuous at every point of C
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(iii) Upper hemicontinuous on C if its restriction to line
segments of C is upper semicontinuous

(iv) Monotone if, for every x, y ∈ C

〈t1 − t2, y − x〉 ≥ 0, for all t1 ∈ F(y), t2 ∈ F(x). (6)

Definition 9. A multivalued mapping F: E⟶ 2E is said to
be D-Lipschitz continuous, if there exists a constant λDF

> 0
such that

D(F(x), F(y)) ≤ λDF
‖x − y‖, for allx, y ∈ E. (7)

Definition 10. Amultivaluedmapping F: E⟶ 2E is said to
be relaxed Lipschitz continuous, if there exists a constant
k> 0 such that

〈w1 − w2, x − y〉 ≤ − k‖x − y‖
2
, for allw1 ∈ F(x), w2 ∈ F(y).

(8)

Let F: C⟶ 2E∗∖ ∅{ } be a multivalued mapping with
nonempty values and f: C⟶ R∪ +∞{ } be a proper
functional. We consider the following generalized com-
plementarity problem involving XOR operation.

Find x ∈ C, t ∈ F(x) such that

〈t, tx〉⊕f(x) � 0,

〈t, ty〉⊕f(y)≥ 0,

∀y ∈ C.

(9)

We denote by SC⊕ the solution set of generalized
complementarity problem involving XOR operation (9).

We mention some special cases of problem (9) as
follows.

(i) If we replace ⊕ by + and f by f: C⟶ R, then
problem (9) reduces to the problem of finding x ∈ C

and t ∈ F(x) such that

〈t, tx〉 + f(x) � 0,

〈t, ty〉 + f(y) ≥ 0,

∀y ∈ C.

(10)

Problem (10) is called generalized f complemen-
tarity problem, introduced and studied by Huang
et al. [19].

(ii) If f ≡ 0, then problems (9) as well as (10) reduce to
the problem of finding x ∈ C and t ∈ F(x) such that

〈t, tx〉 � 0,

〈t, ty〉 ≥ 0,

∀y ∈ C.

(11)

Problem (11) can be found in [20, 21].

We remark that for suitable choices of operators in-
volved in the formulation of (9), a number of known

complementarity problems can be obtained easily, for ex-
ample, [17, 22–24].

Simultaneously, we also study the following three types
of generalized variational inequalities involving XOR
operation.

(1) Find x ∈ C such that

∃t ∈ F(x), ∀y ∈ C: 〈t, tyn − qx〉⊕(f(y) − f(x))≥ 0;

(12)

(2) Find x ∈ C such that

∀y ∈ C, ∃t ∈ F(x): 〈t, tyn − qx〉⊕(f(y) − f(x))≥ 0;

(13)

(3) Find x ∈ C such that

∀y ∈ C, ∀t ∈ F(y): 〈t, y − x〉⊕(f(y) − f(x))≥ 0.

(14)

We denote the solution set of (12) by S1⊕, (13) by S2⊕, and
(14) by S3⊕.

Many known variational inequality problems can be
obtained from problems (12)–(14), for example, [25–29] and
the references therein.

3. Equivalence Results

We establish the equivalence among problems (9), (12)–(14).
First, we establish the equivalence between generalized
complementarity problem involving XOR operation (9) and
generalized variational inequality problem involving XOR
operation (12).

Theorem 1. Let F: C⟶ 2E∗∖ ∅{ } be a multivalued map-
ping with nonempty values and f: C⟶ R∪ +∞{ } be a
proper functional. 5en, the following statements are true:

(i) If 〈t, tx〉∝f(x), then SC⊕⊆S1⊕
(ii) If f is positive homogeneous, then S1⊕⊆SC⊕

Proof

(i) Let x ∈ SC⊕, then x ∈ C, and there exists t ∈ F(x)

such that

〈t, tx〉⊕f(x) � 0,

〈t, ty〉⊕f(y)≥ 0.
(15)

Since 〈t, tx〉∝f(x), by (iv) of Proposition 1, we
have

〈t, tx〉 � f(x),

Also as 〈t, ty〉⊕f(y)≥ 0,

〈t, ty〉⊕f(y)⊕f(y) ≥ 0⊕f(y),

(16)

which implies that
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〈t, ty〉 ≥f(y). (17)

By using (16) and (17), we have

〈t, tyn − qx〉 � 〈t

〈t, tyn − qx〉⊕(f(y) − f(x))≥ (f(y) − f(x))⊕(f(y) − f(x)),

(18)

that is,

〈t, tyn − qx〉⊕(f(y) − f(x))≥ 0, (19)

which implies that x ∈ S1⊕. So, we have SC⊕⊆S1⊕.
(ii) Let x ∈ S1⊕, then x ∈ C, and there exists t ∈ F(x)

such that

〈t, tyn − qx〉⊕(f(y) − f(x))≥ 0, ∀y ∈ C. (20)

Since C is a pointed closed convex positive cone, clearly
y � 2x ∈ C and y � (1/2)x ∈ C. Putting y � 2x in gener-
alized variational inequality involving XOR operation (12)
and using positive homogenity of f, we get

〈t, tyn − qx〉⊕(f(y) − f(x))≥ 0,

〈t, t2nxq − hx〉⊕(f(2x) − f(x))≥ 0,

〈t, tx〉⊕f(x)≥ 0.

(21)

Now, putting y � (1/2)x in generalized variational in-
equality involving XOR operation ((12)) and using positive
homogenity of f, we get

〈t, tyn − qx〉⊕(f(y) − f(x))≥ 0,

〈t, tyn − qx〉⊕(f(y) − f(x))⊕(f(y) − f(x))≥ 0⊕(f(y) − f(x)),

(22)

which implies that

〈t, y − x〉≥ (f(y) − f(x)),

〈t,
1
2

x − x〉 ≥ f
1
2

x􏼒 􏼓 − f(x)􏼒 􏼓,

〈t, −
1
2

x〉 ≥ −
1
2

f(x),

(23)

thus,

〈t, tx〉≤f(x),

〈t, tx〉⊕f(x)≤f(x)⊕f(x) � 0,
(24)

that is,

〈t, tx〉⊕f(x)≤ 0. (25)

Combining (21) and (25), we have

〈t, tx〉⊕f(x) � 0. (26)

From generalized variational inequality involving XOR
operations (12) and (16), we have

〈t, tyn − qx〉⊕(f(y) − f(x))≥ 0,

〈t, tyn − qx〉⊕((f(y) − f(x))⊕(f(y) − f(x)))≥ 0⊕(f(y) − f(x)),

(27)

which implies that

〈t, tyn − qx〉⊕0≥ 0⊕(f(y) − f(x)),

〈t, tyn − qx〉≥ (f(y) − f(x)),

〈t, ty〉 − 〈t

〈t, ty〉 − f(x)≥f(y) − f(x),

〈t, ty〉 ≥f(y),

〈t, ty〉⊕f(y)≥f(y)⊕f(y) � 0,

(28)

thus, we have 〈t, ty〉⊕f(y)≥ 0. So, we have x ∈ SC⊕. )at is,
S1⊕⊆SC⊕. □

Theorem 2. 5e following statements are true.

(i) S1⊕⊆S2⊕
(ii) If F is monotone, then S2⊕⊆S3⊕
(iii) If F is upper hemicontinuous and f is convex, then

S3⊕⊆S2⊕

Proof

(i) Is trivial
(ii) Let x ∈ S2⊕. )en, for all y ∈ C, there exists t ∈ F(x)

such that

〈t, tyn − qx〉⊕(f(y) − f(x))≥ 0. (29)

Since F is monotone, for every y ∈ C, t ∈ F(y), and
using the above inequality, we have

〈t − t, y − x〉≥ 0,

〈t, y − x〉≥ 〈t, tyn − qx〉,

〈t, y − x〉⊕(f(y) − f(x))≥ 〈t, tyn − qx〉⊕(f(y) − f(x))≥ 0,

(30)

which implies that 〈t, y − x〉⊕(f(y) − f(x))≥ 0.
)us, x ∈ S3⊕.

(iii) Suppose that the conclusion is not true. )en, there
exists x ∈ C such that x ∈ S3⊕ and x ∉ S2⊕. )en, for
some y ∈ C and t ∈ F(x), we have

〈t, y − x〉⊕(f(y) − f(x))< 0. (31)

Since F is upper hemicontinuous and f is convex, setting
xλ � λy + (1 − λ)x and taking λ⟶ 0, we have

〈tλ, y − x〉⊕(f(y) − f(x))< 0, ∀tλ ∈ F xλ( 􏼁,

〈tλ, y − x〉⊕((f(y) − f(x))⊕(f(y) − f(x)))< 0⊕(f(y) − f(x)),

(32)

which implies that
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〈tλ, y − x〉 <(f(y) − f(x)),

〈tλ, xλ − x〉 < f xλ( 􏼁 − f(x)( 􏼁,

〈tλ, xλ − x〉⊕ f xλ( 􏼁 − f(x)( 􏼁< f xλ( 􏼁 − f(x)( 􏼁⊕ f xλ( 􏼁 − f(x)( 􏼁,

(33)

thus,

〈tλ, xλ − x〉⊕ f xλ( 􏼁 − f(x)( 􏼁< 0, (34)

which contradicts that x ∈ S3⊕. )us, x ∈ S2⊕, and (iii) is
true. □

Remark 1. If we replace ⊕ by + and dropping the concepts
related to ⊕ operation, then with slight modification in
)eorems 1 and 2, one can obtain some results of Huang
et al. [19]. Additionally, for suitable choices of operators in
)eorems 1 and 2, one can obtain some results of Farajzadeh
and Harandi [30].

4. Existence and Convergence Result

In this section, we first establish the equivalence between the
generalized variational inequality problem involving XOR
operation (12) and a nonlinear equation. Based on this
equivalence, we construct an iterative algorithm for solving
generalized variational inequality problem involving XOR
operation (12).

Lemma 1. 5e generalized variational inequality problem
involving XOR operation (12) admits a solution (x, tt), x ∈ C

and t ∈ F(x), if and only if the following relation is satisfied:

x � J
zf
ρ [x + tρnt], (35)

where ρ> 0 is a constant, Jzf
ρ � [I + ρ zf]− 1 is the resolvent

operator associated with f, and I is the identity operator.

Proof. From the definition of resolvent operator Jzf
ρ as-

sociated with f and relation (35), we have

x � J
zf
ρ [x

� [I + ρ zf]
− 1

[x
(36)

which implies that x + ρt ∈ x + ρ zf(x), that is,

t ∈zf(x). (37)

By the definition of subdifferential operator zf(x) and
(37), we have

(f(y) − f(x))≥ 〈t, tyn − qx〉. (38)

Using (vi) of Proposition 1, we have

〈t, tyn − qx〉⊕(f(y) − f(x))≥ 〈t

〈t, tyn − qx〉⊕(f(y) − f(x))≥ 0.
(39)

)us, the generalized variational inequality problem
involving XOR operation (12) is satisfied.

Conversely, suppose that generalized variational in-
equality problem involving XOR operation (12) is satisfied.
)at is,

〈t, tyn − qx〉⊕(f(y) − f(x))≥ 0,

〈t, tyn − qx〉⊕〈t
(40)

that is, (f(y) − f(x))≥ 〈t, tyn − qx〉, which implies that

t ∈zf(x),

ρt ∈ ρ zf(x),

x + ρt ∈ x + ρ zf

x + ρt ∈ [I + ρ zf](x),

x � [I + ρ zf]
− 1

[x

x � J
zf
ρ [x + ρt],

(41)

that is, the relation (35) is satisfied.
Based on Lemma 1, we develop the following iterative

algorithm for solving the generalized variational inequality
problem involving XOR operation (12). □

Iterative Algorithm 1. Let C ⊂ E be a pointed closed convex
positive cone. Suppose that tn∝ tn− 1, for n � 1, 2, . . .. Let for
x0 ∈ C, there exists t0 ∈ F(x0), such that

x1 � (1 − α)x0 + αJzf
ρ x0 + ρt0􏼂 􏼃. (42)

Since t0 ∈ F(x0) ∈ CB(E), by Nadler [31], there exists
t1 ∈ F(x1), using (iv) of Proposition 2, and as t0∝ t1, we
have

t0⊕t1
����

���� � t0 − t1
����

����≤D F x0( 􏼁, F x1( 􏼁( 􏼁. (43)

Continuing this way, compute the sequences xn􏼈 􏼉 and
tn􏼈 􏼉 by the following scheme:

xn+1 � (1 − α)xn + αJzf
ρ xn + ρtn􏼂 􏼃, (44)

tn⊕tn− 1
����

���� � tn − tn− 1
����

����≤D F xn( 􏼁, F xn− 1( 􏼁( 􏼁, (45)

for n � 1, 2, . . ., where xn ∈ C, tn ∈ F(xn) can be chosen
arbitrarily, α ∈ [0, 1], D(., .) is the Hausdorff metric on
CB(E), and ρ> 0 is a constant.

Now, we prove our main result.

Theorem 3. Let E be a real ordered Banach space and C be a
pointed closed convex positive cone in E with partial ordering
“≤ .” Let f: C⟶ R∪ +∞{ } be a functional such that the
resolvent operator Jzf

ρ associated with f is strongly com-
parison and continuous. Suppose that F: C⟶ 2E∗∖ ∅{ } is a
multivalued mapping such that F is the relaxed Lipschitz
continuous with constant k> 0 and D-Lipschitz continuous
with constant λDF

> 0. Let xn∝ xn− 1 and tn∝ tn− 1, where
tn ∈ F(xn) and tn− 1 ∈ F(xn− 1), n � 1, 2, . . ., such that for
ρ> 0, the following condition is satisfied:
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ρ −
k

λ2DF

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
<

k

λ2DF

. (46)

)en, the sequences xn􏼈 􏼉 and tn􏼈 􏼉 strongly converge to
x∗ and t∗, respectively, the solutions of generalized varia-
tional inequality problem involving XOR operation (12).

Proof. Since xn+1∝ xn, for n � 1, 2, . . ., using (iii) of
Proposition 1, we evaluate

0≤xn+1⊕xn

� (1 − α)xn + αJzf
ρ xn + ρtn􏼂 􏼃􏽨 􏽩⊕ (1 − α)xn− 1 + αJzf

ρ xn− 1 + ρtn− 1􏼂 􏼃􏽨 􏽩

≤ (1 − α) xn⊕xn− 1( 􏼁 + α J
zf
ρ xn + ρtn􏼂 􏼃⊕Jzf

ρ xn− 1 + ρtn− 1􏼂 􏼃􏽨 􏽩.

(47)

From (47), it follows that

xn+1⊕xn

����
���� � (1 − α) xn⊕xn− 1( 􏼁 + α J

zf
ρ xn + ρtn􏼂 􏼃⊕Jzf

ρ xn− 1 + ρtn− 1􏼂 􏼃􏽨 􏽩
�����

�����

≤ (1 − α) xn⊕xn− 1
����

���� + α J
zf
ρ xn + ρtn􏼂 􏼃⊕Jzf

ρ xn− 1 + ρtn− 1􏼂 􏼃
�����

�����.
(48)

As xn∝xn− 1, tn∝ tn− 1, obviously,
xn + ρtn∝ xn− 1 + ρtn− 1, for n � 1, 2, . . .. Since the resolvent
operator Jzf

ρ is strongly comparison, we have

J
zf
ρ xn + ρtn􏼂 􏼃∝Jzf

ρ xn− 1 + ρtn− 1􏼂 􏼃. (49)

Using above facts, (iv) of Proposition 2 and non-
expansiveness of Jzf

ρ , (48) becomes

xn+1 − xn

����
����≤ (1 − α) xn − xn− 1

����
���� + α J

zf
ρ xn + ρtn􏼂 􏼃 − J

zf
ρ xn− 1 + ρtn− 1􏼂 􏼃

�����

�����

≤ (1 − α) xn − xn− 1
����

���� + α xn + ρtn􏼂 􏼃 − xn− 1 + ρtn− 1􏼂 􏼃
����

����

� (1 − α) xn − xn− 1
����

���� + α xn − xn− 1 + ρ tn − tn− 1( 􏼁
����

����.

(50)

Since the multivalued mapping F is the relaxed Lipschitz
continuous with constant k> 0, D-Lipschitz continuous

with constant λDF
> 0, and using (45) of Iterative Algorithm

1, we have

xn − xn− 1 + ρ tn − tn− 1( 􏼁
����

����
2

� xn − xn− 1
����

����
2

+ 2ρ〈tn − tn− 1, xn − xn− 1〉 + ρ2 tn − tn− 1
����

����
2

≤ xn − xn− 1
����

����
2

− 2ρk xn − xn− 1
����

����
2

+ ρ2λ2DF
xn − xn− 1

����
����
2

� 1 − 2ρk + ρ2λ2DF
􏼐 􏼑 xn − xn− 1

����
����
2
,

(51)

thus,

xn − xn− 1 + ρ tn − tn− 1( 􏼁
����

����≤
���������������

1 − 2ρk + ρ2λ2DF
􏼐 􏼑

􏽱

xn − xn− 1
����

����

� θ xn − xn− 1
����

����,

(52)

where θ �
�������������
1 − 2ρk + ρ2λ2DF

􏽱
.

Combining (50) and (52), we have

xn+1 − xn

����
����≤ (1 − α) xn − xn− 1

����
���� + αθ xn − xn− 1

����
����

≤ (1 − α + αθ) xn − xn− 1
����

����,
(53)

thus, we have

xn+1 − xn

����
����≤ c

n
x1 − x0

����
����, (54)

where c � (1 − α + αθ). Hence, for m> n> 0, we have

xn − xm

����
����≤ 􏽘

m− 1

i�n

xi+1 − xi

����
����≤ x1 − x0

����
���� 􏽘

m− 1

i�n

c
i
. (55)

It is clear from condition (46) that 0< c< 1, and con-
sequently, we have ‖xn − xm‖⟶ 0, as n⟶∞. )us, xn􏼈 􏼉

is a Cauchy sequence in E, and as E is complete,
xn⟶ x∗ ∈ E, as n⟶∞. From (45) of Iterative Algo-
rithm 1, we have

tn⊕tn− 1
����

���� � tn − tn− 1
����

����

≤D F xn( 􏼁, F xn− 1( 􏼁( 􏼁

≤ λDF
xn − xn− 1

����
����,

(56)

thus, tn􏼈 􏼉 is also a Cauchy sequence in E such that
tn⟶ t∗ ∈ E, as n⟶∞. Now, we will show that (x∗, t∗) is
a solution of generalized variational inequality problem
involving XOR operation (12). As xn⟶ x∗, tn⟶ t∗, and
resolvent operator Jzf

ρ is continuous, we can write
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x
∗

� lim
n⟶∞

xn+1

� lim
n⟶∞

(1 − α)xn + αJzf
ρ xn + ρtn􏼂 􏼃􏽨 􏽩

� (1 − α) lim
n⟶∞

xn + αJzf
ρ lim

n⟶∞
xn + ρ lim

n⟶∞
tn􏼔 􏼕

� (1 − α)x
∗

+ αJzf
ρ x
∗

+ ρt
∗

􏼂 􏼃.

(57)

)us, the relation (35) is satisfied. It remains to show that
t∗ ∈ F(x∗). Since tn ∈ F(xn), we have

d t
∗
, F x
∗

( 􏼁( 􏼁≤ t
∗

− tn

����
���� + d tn, F x

∗
( 􏼁( 􏼁

≤ t
∗

− tn

����
���� + D F xn( 􏼁, F x

∗
( 􏼁( 􏼁

≤ t
∗

− tn

����
���� + λDF

xn − x
∗����
����⟶ 0, as n⟶∞.

(58)

Hence d(t∗, F(x∗))⟶ 0, t∗ ∈ F(x∗) as F(x∗) ∈
CB(E). By Lemma 1, x∗ ∈ C, t∗ ∈ F(x∗) is a solution of
generalized variational inequality problem involving XOR
operation (12). )is completes the proof. □

Remark 2. Combining )eorems 1 and 3, we assert that the
solution x ∈ C, t ∈ F(x) of generalized variational inequality
involving XOR operation (12) is also a solution of gener-
alized complementarity problem involving XOR operation
(9).

5. Numerical Example

In this section, we construct a numerical example in support
of )eorem 3. Finally, the convergence graphs and the
computation tables are provided for the sequences generated
by Iterative Algorithm 1.

Example 1. Let E � E∗ � R with the usual inner product and
norm. Let C � x ∈ tRn: q0h≤ xx ≤ 71􏼈 􏼉 be a pointed closed
convex positive cone in R. Let f: C⟶ R∪ +∞{ } be a
functional, zf : R⟶ 2R be the subdifferential of f,
F: C⟶ 2R∖ ∅{ } be a multivalued mapping, and Jzf

ρ be the
resolvent operator associated with f such that

f(x) � 2x
2

+ 1,

F(x) � −
x

7
􏼚 􏼛, ∀x ∈ C.

(59)

)en,

zf(x) � 4x{ },

J
zf
ρ (x) �

x

1 + 4ρ
􏼨 􏼩, ∀x ∈ C.

(60)

One can easily verify that the resolvent operatorJzf
ρ is a

strongly comparison mapping and continuous.
For x, y ∈ C, w1 ∈ F(x), and w2 ∈ F(y), we have

〈w1 − w2, x − y〉 �〈 −
x

7
+

y

7
, x − y〉

� −
1
7
‖x − ty‖

2

≤ −
1
10

‖x − ty‖
2
,

(61)

that is,

〈w1 − w2, x − y〉 ≤ −
1
10

‖x − ty‖
2
. (62)

)us, F is the relaxed Lipschitz continuous with constant
k � (1/10).

Also,

D(F(x), F(y)) � max sup
x∈F(x)

d(x, tFn(y)), sup
y∈F(y)

d(F(x), y)
⎧⎨

⎩

⎫⎬

⎭

≤max −
x

7
+

y

7

�������

�������
, −

y

7
+

x

7

�������

�������
􏼨 􏼩

�
1
7
max ‖x − ty􏼈

����, ‖x − y‖}

≤
1
7

‖x − y‖

≤
1
5

‖x − y‖,

(63)

that is,

D(F(x), F(y))≤
1
5

‖x − ty‖. (64)

)us, F is the D-Lipschitz continuous with constant
λDF

� (1/5).
Let us take ρ � 1, then for k � (1/10) and λDF

� (1/5),
the condition (46)

ρ −
k

λ2DF

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
<

k

λ2DF

, (65)

is satisfied.
Furthermore, for ρ � 1 and α � (1/3), we obtain the

sequences xn􏼈 􏼉 and tn􏼈 􏼉 generated by the Iterative Algorithm
1 as

xn+1 � (1 − α)xn + αJzf
ρ xn + ρtn􏼂 􏼃

�
2
3
xn +

1
15

xn + tn􏼂 􏼃,

(66)

where tn ∈ F(xn), and thus, tn � − (xn/7). It is clear that the
sequence xn􏼈 􏼉 converges to x∗ � 0, and consequently, the
sequence tn􏼈 􏼉 also converges to t∗ � 0.

For initial values x0 � 5, 10, and 15, we have the fol-
lowing convergence graphs, which ensure that the sequences
xn􏼈 􏼉 and tn􏼈 􏼉 converge to 0. Two computation tables are
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Table 1: )e values of xn with initial values x0 � 5, x0 � 10, and x0 � 15.

No. of For x0 � 5 For x0 � 10 For x0 � 15
Iteration xn xn xn

n� 1 5 10 15
n� 2 3.61904761904762 7.23809523809524 10.8571428571429
n� 3 2.61950113378685 5.23900226757370 7.85850340136055
n� 4 1.89601986826477 3.79203973652953 5.68805960479430
n� 5 1.37235723798212 2.74471447596423 4.11707171394635
n� 6 0.993325238920389 1.98665047784078 2.97997571676117
n� 7 0.718978268170948 1.43795653634190 2.15693480451284
n� 10 0.272639416260542 0.545278832521084 0.817918248781626
n� 14 0.0748317352528748 0.149663470505750 0.224495205758624
n� 18 0.0205391747010088 0.0410783494020177 0.0616175241030265
n� 21 0.00778853666217476 0.0155770733243495 0.0233656099865243
n� 25 0.00213773093232492 0.00427546186464984 0.00641319279697477
n� 26 0.00154731000815899 0.00309462001631798 0.00464193002447697
n� 27 0 0 0
n� 28 0 0 0

Table 2: )e values of tn with initial values x0 � 5, x0 � 10, and x0 � 15.

No. of For x0 � 5 For x0 � 10 For x0 � 15
Iteration tn tn tn

n� 1 − 0.714285714285714 − 1.42857142857143 − 2.14285714285714
n� 2 0.102040816326531 0.204081632653061 0.306122448979592
n� 3 − 0.0145772594752187 − 0.0291545189504373 − 0.0437317784256560
n� 4 0.00208246563931695 0.00416493127863390 0.00624739691795085
n� 5 − 0.000297495091330993 − 0.000594990182661986 − 0.000892485273992979
n� 6 4.24992987615704e − 05 8.49985975231408e − 05 0.000127497896284711
n� 7 − 6.07132839451006e − 06 − 1.21426567890201e-05 − 1.82139851835302e − 05
n� 10 − 1.23904661112450e − 07 3.54013317464143e − 08 5.31019976196215e − 08
n� 14 − 5.16054398635777e − 11 1.47444113895936e − 11 2.21166170843905e − 11
n� 18 − 2.14933110635476e − 14 6.14094601815645e − 15 9.21141902723467e − 15
n� 21 6.26627144709842e − 17 − 1.79036327059955e − 17 − 2.68554490589932e − 17
n� 25 2.60985899504307e − 20 5.21971799008614e − 20 7.82957698512922e − 20
n� 26 − 3.72836999291867e − 21 − 7.45673998583735e − 21 − 1.11851099787560e − 20
n� 27 0 0 0
n� 28 0 0 0

0 5 10 15 20 25 30 35
0

5

10

15

Xn

x0 = 5
x0 = 10
x0 = 15

Figure 1: )e convergence graph of the sequence xn􏼈 􏼉 with initial values x0 � 5, x0 � 10, and x0 � 15.
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provided for the iterations (Tables 1 and 2) of the sequences
xn􏼈 􏼉 and tn􏼈 􏼉 (Figures 1, and 2).

6. Conclusion

In this study, we introduce and study a generalized com-
plementarity problem involving XOR operation with three
classes of generalized variational inequalities involving XOR
operation. Some equivalence relations are established be-
tween them. Finally, a generalized variational inequality
problem involving XOR operation (12) is solved in real
ordered Banach spaces. A numerical example is constructed
with convergence graphs and computation tables for illus-
tration of our main result.

We remark that our results may be further extended
using other tools of functional analysis.

Data Availability

)e data used to support the findings of this study are in-
cluded within the article.

Conflicts of Interest

)e authors declare that they have no conflicts of interest.

Acknowledgments

)is work was supported by the National Natural Science
Foundation of China (Grant no. 11671365) and the Natural
Science Foundation of Zhejiang Province (Grant no.
LY14A010011).

References

[1] N. T. An, N. M. Nam, and X. Qin, “Solving k-center problems
involving sets based on optimization techniques,” Journal of
Global Optimization, vol. 76, no. 1, pp. 189–209, 2020.

[2] T. H. Cuong, J. C. Yao, and N. D. Yen, “Qualitative properties
of the minimum sum-of-squares clustering problem,” Opti-
mization, vol. 69, pp. 2131–2154, 2020.

[3] L. V. Nguyen and X. Qin, “)e Minimal time function as-
sociated with a collection of sets,” ESAIM: Control, Optimi-
sation and Calculus of Variations, vol. 26, p. 93, 2020.

[4] X. Qin and N. T. An, “Smoothing algorithms for computing
the projection onto a Minkowski sum of convex sets,”
Computational Optimization and Applications, vol. 74, no. 3,
pp. 821–850, 2019.

[5] D. R. Sahu, J. C. Yao, M. Verma, and K. K. Shukla, “Con-
vergence rate analysis of proximal gradient methods with
applications to composite minimization problems,” Optimi-
zation, vol. 2020, Article ID 1702040, 2020.

[6] J. Lions, Optimal Control of Systems Governed by Partial
Differential Equations, Springer-Verlag, Berlin, Germany,
1971.

[7] O. G. Mancino and G. Stampacchia, “Convex programming
and variational inequalities,” Journal of Optimization 5eory
and Applications, vol. 9, no. 1, pp. 3–23, 1972.

[8] S. Karamardian, “)e complementarity problem,”Mathematical
Programming, vol. 2, no. 1, pp. 107–129, 1972.

[9] S. Karamardian, “Generalized complementarity problem,”
Journal of Optimization 5eory and Applications, vol. 8, no. 3,
pp. 161–168, 1971.

[10] S. Y. Cho, X. Qin, and L. Wang, “Strong convergence of a
splitting algorithm for treating monotone operators,” Fixed
Point 5eory and Applications, vol. 2014, p. 94, 2014.

[11] X. Qin, S. Y. Cho, and L. Wang, “A regularization method for
treating zero points of the sum of two monotone operators,”
Fixed Point 5eory and Applications, vol. 2014, p. 75, 2014.

[12] X. Qin, L. Wang, and J. C. Yao, “Inertial splitting method for
maximal monotone mappings,” Journal of Nonlinear and
Convex Analysis, vol. 21, pp. 2325–2333, 2020.

[13] I. Ahmad, C. T. Pang, R. Ahmad, and M. Ishtyak, “System of
Yosida inclusions involving XOR-operation,” Journal of
Nonlinear and Convex Analysis, vol. 18, pp. 831–845, 2017.

[14] H. G. Li, “A nonlinear inclusion problem involving
(α, λ)-NODM set-valued mappings in ordered Hilbert space,”
Applied Mathematics Letters, vol. 25, pp. 1384–1388, 2012.

[15] H. G. Li, D. Qiu, and Y. Zou, “Characterizations of weak-ANODD
set-valued mappings with applications to approximate solution of
GNMOQV inclusions involving ⊕ operator in ordered Banach
spaces,” Fixed Point 5eory and Applications, vol. 2013, p. 241,
2013.

[16] H. G. Li, L. P. Li, and M. M. Jin, “A class of nonlinear mixed
ordered inclusion problems for ordered (αA, λ)-ANODM set
valued mappings with strong comparison mapping A,” Fixed
Point 5eory and Applications, vol. 2014, p. 79, 2014.

[17] X. P. Ding and F. Q. Xia, “A new class of completely gen-
eralized quasi-variational inclusions in Banach spaces,”
Journal of Computational and Applied Mathematics, vol. 147,
no. 2, pp. 369–383, 2002.

[18] H. G. Li, “Nonlinear inclusion problems for ordered RME
set-valued mappings in ordered Hilbert spaces,” Non-
linear Functional Analysis and Applications, vol. 16,
pp. 1–8, 2001.

[19] N.-j. Huang, J. Li, and D. O’Regan, “Generalized comple-
mentarity problems in Banach spaces f complementarity

0 5 10 15 20 25 30 35
–4

–2

0

2

4

6

8

10

12

14

16

tn

x0 = 5
x0 = 10
x0 = 15

Figure 2: )e convergence graph of the sequence tn􏼈 􏼉 with initial
values x0 � 5, x0 � 10, and x0 � 15.

Journal of Mathematics 9



problems in Banach spaces,” Nonlinear Analysis: 5eory,
Methods & Applications, vol. 68, no. 12, pp. 3828–3840,
2008.
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In this paper, we consider the split common fixed point problem in Hilbert spaces. By using the inertial technique, we propose a
new algorithm for solving the problem. Under some mild conditions, we establish two weak convergence theorems of the
proposed algorithm. Moreover, the stepsize in our algorithm is independent of the norm of the given linear mapping, which can
further improve the performance of the algorithm.

1. Introduction

In recent years, there has been growing interest in the study
of the split common fixed point problem because of its
various applications in signal processing and image re-
construction [1–3]. More specifically, the problem consists
in finding x ∈ H1 satisfying

x ∈ F(U),

Ax ∈ F(T),
(1)

where F(U) and F(T) stand for the fixed point sets of
mappings U: H1⟶ H1 and T: H2⟶ H2, respectively,
and A: H1⟶ H2 is a bounded linear mapping. Here, H1
and H2 are two Hilbert spaces. In particular, if we let the
mappings in (1) be the projections, then it is reduced to the
well-known split feasibility problem (SFP): find x ∈ H1 such
that

x ∈ C, Ax ∈ Q, (2)

where C⊆H1 and Q⊆H2 are two nonempty closed convex
subsets and A: H1⟶ H2 is a bounded linear mapping; see,
e.g., [1, 4–7].

,ere are several algorithms for solving the split com-
mon fixed point problem. Among them, Censor and Segal
[8] introduced an algorithm as

x
k+1

� U x
k

− τA
∗
(I − T)Ax

k
􏼐 􏼑, (3)

where I stands for the identity mapping, A∗ is the adjoint
mapping of A, and the stepsize τ is a constant in (0, 2‖A‖− 2).
In particular, when U � PC and T � PQ, then the above
algorithm is reduced to the well-known CQ algorithm for
solving the split feasibility problem [4]. Note that this choice
of the stepsize requires the exact value or estimation of the
norm ‖A‖. To avoid the calculation of ‖A‖, Cui andWang [9]
proposed a variable stepsize as

τk �
(I − T)Ax

k
�����

�����
2

A
∗
(I − T)Ax

k
�����

�����
2. (4)

It is readily seen that the above choice of the stepsize does
not need any prior knowledge of the linear operator. Re-
cently, Wang [10] introduced a new method for solving (1)
as
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x
k+1

� x
k

− τk (I − U)x
k

+ A
∗
(I − T)Ax

k
􏽨 􏽩, (5)

where the stepsize is set as

τk �
(I − U)x

k
�����

�����
2

+ (I − T)Ax
k

�����

�����
2

(I − U)x
k

+ A
∗
(I − T)Ax

k
�����

�����
2. (6)

Recently, the above algorithms were further extended to
the general case; see, e.g., [2, 10–17].

,e inertial method was first introduced in [18], and
now, it has been successfully applied to solving various
optimization problems arising from some applied sciences
[19, 20]. In particular, this method was also applied for
solving the split feasibility problem [21, 22]. By applying the
inertial technique, Dang et al. [21] recently proposed the
inertial relaxed CQ algorithm, which is defined as

⎡⎣
w

k
� x

k
+ θk( x

k
− x

k− 1
),

x
k+1

� PC w
k

− τA
∗
( I − PQ )Aw

k
􏼐 􏼑,

(7)

where 0≤ θk < θ < 1 and 0< τ < (2/‖A‖2). It is clear that the
constant stepsize requires the estimation of the norm ‖A‖. To
avoid the estimation of the norm, Gibali et al. [23] modified
the above stepsize as

τk � ρk

I − PQ􏼐 􏼑Aw
k

�����

�����
2

η2k
,

ηk � max 1, A
∗

I − PQ􏼐 􏼑Aw
k

�����

�����􏼒 􏼓,

(8)

with 0< ρk < 4. It is shown that the inertial relaxed CQ al-
gorithm converges weakly toward a solution of the SFP
provided that 􏽐

∞
k�1 θk‖xk − xk− 1‖2 <∞. ,e main advantage

of the inertial method is that it can indeed speed up the
convergence of the original algorithm. It is thus natural to
extend it to the split common fixed point problem. Recently,
Cui et al. [24] proposed a modified algorithm of (3) as

⎡⎣
w

k
� x

k
+ θk( x

k
− x

k− 1
),

x
k+1

� U( w
k

− τkA
∗
( I − T )Aw

k
),

(9)

where 0≤ θk < θ< 1 and τk is defined as in (6). It was shown
that algorithm (9) converges weakly to a solution of the
problem provided that 􏽐

∞
k�1 θk‖xk − xk− 1‖2 <∞.

In this paper, we aim to continue the study of the split
common fixed point problem in Hilbert spaces. Motivated
by the inertial method, we propose a new algorithm for
solving the split common fixed point problem that greatly
improves the performance of the original algorithm.
Moreover, the stepsize in our algorithm is independent of
the norm ‖A‖. Under somemild conditions, we establish two
weak convergence theorems of the proposed algorithm.

2. Preliminary

In the following, we shall assume that problem (1) is con-
sistent, that is, its solution set denoted byf is nonempty.,e
notation “⟶ ” stands for strong convergence, “⇀” weak

convergence, and ωw xn􏼈 􏼉 the set of weak cluster points of a
sequence xn􏼈 􏼉. Let C be a nonempty closed convex subset.
For a mapping T defined on C, we let
F(T) � x ∈ C: Tx � x{ } be its fixed point set and T′ � I − T

be its complement.

Definition 1. A mapping T: C⟶ H is said to be non-
expansive if

‖Tx − Ty‖≤ ‖x − y‖, ∀x, y ∈ C. (10)

T is called quasi-nonexpansive if F(T)≠∅, and

‖Tx − y‖≤ ‖x − y‖, ∀x ∈ C, y ∈ F(T). (11)

Definition 2. Let T: C⟶ H be a mapping with F(T)≠∅.
,en, T′ is said to be demiclosed at 0 if, for any xk􏼈 􏼉 in C,
there holds the following implication:

x
k⇀x

T′xk⟶ 0
⎤⎦⇒x ∈ F(T). (12)

It is well known that if T is a nonexpansive mapping,
then T′ is demiclosed at 0; see [25].

Lemma 1 (see [25]). If T: C⟶ H is quasi-nonexpansive,
then

2〈x − z, T′x〉 ≥ T′x
����

����
2
, ∀z ∈ F(T), x ∈ C. (13)

Lemma 2 (see [25]). Assume that xk􏼈 􏼉 is a sequence in H

such that

(i) For each z ∈ C, the limit of ‖xk − z‖􏼈 􏼉 exists
(ii) Any weak cluster point of xk􏼈 􏼉 belongs to C

7en, xk􏼈 􏼉 is weakly convergent to an element in C.

Lemma 3 (see [18]). Let ϕk􏼈 􏼉 and δk􏼈 􏼉 be two nonnegative
real sequences such that 􏽐

∞
k�0 δk <∞ and

ϕk+1 − ϕk ≤ θk ϕk − ϕk−1( 􏼁 + δk, (14)

where 0≤ θk ≤ θ < 1. 7en, the sequence ϕk􏼈 􏼉 is convergent.

Lemma 4 (see [25]). Let s, t ∈ R and x, y ∈ H. It then fol-
lows that

‖tx + sy‖
2

� t(t + s)‖x‖
2

+ s(t + s)‖y‖
2

− ts‖x − y‖
2
.

(15)

3. The Proposed Algorithm

Algorithm 1. Let x0, x1 be arbitrary. Given xk, xk− 1, choose
θk ∈ [0, 1], and set

w
k

� x
k

+ θk x
k

− x
k− 1

􏼐 􏼑. (16)

If ‖U′wk + A∗T′Awk‖ � 0, then stop; otherwise, update
the next iteration via
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x
k+1

� w
k

− τk U′wk
+ A
∗
T′Aw

k
􏽨 􏽩, (17)

where

τk �
U′wk

�����

�����
2

+ T′Aw
k

�����

�����
2

2 U′wk
+ A
∗
T′Aw

k
�����

�����
2. (18)

Remark 1. In comparison, our stepsize (18) is independent
of the norm ‖A‖ so that the calculation or estimation of ‖A‖

is avoided.

Remark 2. If ‖U′wk + A∗T′Awk‖ � 0 for some k ∈ N, then
wk is a solution of the problem. To see this, let z ∈ f. It then
follows from Lemma 1 that ‖U′wk‖2 ≤ 2〈U′wk, wk − z〉, and

T′Aw
k

�����

�����
2
≤ 2〈T′Aw

k
, Aw

k
− Az〉 �〈A∗T′Aw

k
, w

k
− z〉.

(19)

Combining these inequalities yields

U′wk
�����

�����
2

+ T′Aw
k

�����

�����
2
≤ 2〈U′wk

+ A
∗
T′Aw

k
, w

k
− z〉

≤ 2 U′wk
+ A
∗
T′Aw

k
�����

����� w
k

− z
�����

�����.

(20)

,is yields ‖U′wk‖ � ‖T′Awk‖ � 0, which implies
wk ∈ f.

If we let θk ≡ 0 in (16), then we get a new algorithm for
problem (1).

Algorithm 2. Let x0 be arbitrary. Given xk, if
‖U′xk + A∗T′Axk‖ � 0, then stop; otherwise, update the
next iteration via

x
k+1

� x
k

− τk U′xk
+ A
∗
T′Ax

k
􏽨 􏽩, (21)

where

τk �
U′xk

�����

�����
2

+ T′Ax
k

�����

�����
2

2 U′xk
+ A
∗
T′Ax

k
�����

�����
2. (22)

4. Convergence Analysis

In this section, we shall establish the convergence of the
proposed algorithm. By Remark 2, we may assume that
Algorithm 1 generates an infinite iterative sequence. To
proceed, we first prove the following lemma.

Lemma 5. Let xk􏼈 􏼉 and wk􏼈 􏼉 be the sequences generated by
Algorithm 1. Let
δk � (1/(4(1 + ‖A‖2)))(‖U′wk‖2 + ‖T′Awk‖2). 7en, for any
z ∈ S, it follows that

x
k+1

− z
�����

�����
2
≤ w

k
− z

�����

�����
2

− δk. (23)

Proof. Since U is quasi-nonexpansive, we have

x
k+1

− z
�����

�����
2

� w
k

− τk U′wk
+ A
∗
T′Aw

k
􏽨 􏽩 − z

�����

�����
2

� w
k

− z
�����

�����
2

+ τ2k U′wk
+ A
∗
T′Aw

k
�����

�����
2

− 2τk〈U′w
k
, w

k
− z〉 − 2τk〈T′Aw

k
, Aw

k
− Az〉

≤ w
k

− z
�����

�����
2

+ τ2k U′wk
+ A
∗
T′Aw

k
�����

�����
2

− τk U′wk
�����

�����
2

− τk T′Aw
k

�����

�����
2
.

(24)

In view of (18), we have

x
k+1

− z
�����

�����
2
≤ w

k
− z

�����

�����
2

−
U′wk

�����

�����
2

+ T′Aw
k

�����

�����
2

􏼒 􏼓
2

4 U′wk
+ A
∗
T′Aw

k
�����

�����
2 . (25)

To finish the proof, it suffices to note that

U′wk
�����

�����
2

+ T′Aw
k

�����

�����
2

􏼒 􏼓
2

U′wk
+ A
∗
T′Aw

k
�����

�����
2

≥
U′wk

�����

�����
2

+ T′Aw
k

�����

�����
2

􏼒 􏼓
2

U′wk
�����

����� +‖A‖ T′Aw
k

�����

�����􏼒 􏼓
2

≥
U′wk

�����

�����
2

+ T′Aw
k

�����

�����
2

􏼒 􏼓
2

1 +‖A‖
2

􏼐 􏼑 U′wk
�����

�����
2

+ T′Aw
k

�����

�����
2

􏼒 􏼓

�
1

1 +‖A‖
2 U′wk

�����

�����
2

+ T′Aw
k

�����

�����
2

􏼒 􏼓.

(26)

,is completes the proof. □

Theorem 1. Assume that U is quasi-nonexpansive such that
U′ is demiclosed at 0, and T is quasi-nonexpansive such that
T′ is demiclosed at 0. If, for each k ∈ N, θk ≤ θ< 1 such that

(c1) 􏽐
∞
k�1 θk‖xk − xk− 1‖2 <∞,

then the sequence xk􏼈 􏼉 generated by Algorithm 1
converges weakly to an element in f.

Proof. We first show that the sequence ‖xk − z‖􏼈 􏼉 is con-
vergent for any z ∈ f. From Lemma 4, we deduce

w
k

− z
�����

�����
2

� 1 + θk( 􏼁 x
k

− z􏼐 􏼑 − θk x
k− 1

− z􏼐 􏼑
�����

�����
2

� 1 + θk( 􏼁 x
k

− z
�����

�����
2

− θk x
k− 1

− z
�����

�����
2

+ θk 1 + θk( 􏼁 x
k

− x
k− 1

�����

�����
2
.

(27)

By Lemma 5, this yields

x
k+1

− z
�����

�����
2
≤ 1 + θk( 􏼁 x

k
− z

�����

�����
2

− θk x
k− 1

− z
�����

�����
2

+ 2θk x
k

− x
k− 1

�����

�����
2

− δk.

(28)
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Let ϕk: � ‖xk − z‖2. ,en, the above inequality can be
rewritten as

ϕk+1 − ϕk ≤ θk ϕk − ϕk−1( 􏼁 + 2θk x
k

− x
k− 1

�����

�����
2

− δk. (29)

By condition (c1), we then apply Lemma 3 to deduce that
ϕk􏼈 􏼉 is convergent, and so is the sequence ‖xk − z‖􏼈 􏼉.

We next show that each weak cluster point of xk􏼈 􏼉

belongs to f. Since ϕk􏼈 􏼉 is convergent, this implies that ϕk −

ϕk+1 converges to 0 as n⟶∞. It then follows from (29)
that

δk ≤ ϕk − ϕk+1( 􏼁 + θk ϕk − ϕk−1( 􏼁 + 2θk x
k

− x
k− 1

�����

�����
2

≤ ϕk − ϕk+1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + ϕk − ϕk−1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 2θk x
k

− x
k− 1

�����

�����
2
.

(30)

Note that limkθk‖xk − xk− 1‖2 � 0 by condition (c1). By
passing to the limit in the above inequality, we have δk

converging to 0 so that

lim
k⟶∞

U′wk
�����

����� � lim
k⟶∞

T′Aw
k

�����

����� � 0. (31)

Moreover, it is clear that xk􏼈 􏼉 is bounded; thus, the set
ωw(xn) is nonempty. Now, take any x ∈ ωw(xk), and take a
subsequence xkl􏼈 􏼉 such that it weakly converges to x. On the
contrary, we deduce from (c1) that

w
k

− x
k

�����

�����
2

� θ2k x
k

− x
k− 1

�����

�����≤ θk x
k

− x
k− 1

�����

�����⟶ 0 (32)

so that wkl􏼈 􏼉 also weakly converges to x and Awkl􏼈 􏼉 weakly
converges to Ax. Since U′ and T′ are both demiclosed at 0,
this together with (31) indicates x ∈ F(U) and Ax ∈ F(T);
that is, x is an element in f.

Finally, by Lemma 2, the sequence xk􏼈 􏼉 converges weakly
to a solution of problem (1). □

Remark 3. We now construct a sequence satisfying condi-
tion (c1). For each k ∈ N, let

θk �

min 0.5,
1

(k + 1)
2

x
k

− x
k− 1

�����

�����
2

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠, x
k ≠x

k− 1
,

0.5, x
k

� x
k− 1

.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(33)

We next study the convergence of Algorithm 1 under
another condition. To proceed, we need the following
lemma.

Lemma 6. Let xk􏼈 􏼉 and wk􏼈 􏼉 be the sequences generated by
Algorithm 1. For any z ∈ f, let ϕk � ‖xk − z‖2 − θk

‖xk− 1 − z‖2 + (θk/2)(3 + θk)‖xk − xk− 1‖2. If θk􏼈 􏼉 is nonde-
creasing, then

2 ϕk − ϕk+1( 􏼁≥ 1 − 4θk+1 − θ2k+1􏼐 􏼑 x
k

− x
k+1

�����

�����
2

+ δk, (34)

where δk is defined as in Lemma 5.

Proof. In view of (17) and (18), we get

x
k+1

− w
k

�����

�����
2

�
U′wk

�����

�����
2

+ T′Aw
k

�����

�����
2

􏼒 􏼓
2

4 U′wk
+ A
∗
T′Aw

k
�����

�����
2 . (35)

It then follows from inequality (25) that

x
k+1

− z
�����

�����
2
≤ w

k
− z

�����

�����
2

−
1
2

x
k+1

− w
k

�����

�����
2

−
1
2
δk. (36)

Moreover, it follows from (27) that

x
k+1

− z
�����

�����
2
≤ 1 + θk( 􏼁 x

k
− z

�����

�����
2

− θk x
k− 1

− z
�����

�����
2

+ 2θk x
k

− x
k− 1

�����

�����
2

−
1
2

x
k+1

− w
k

�����

�����
2

−
1
2
δk.

(37)

On the contrary, we have

w
k

− x
k+1

�����

�����
2

� x
k

− x
k+1

+ θk x
k

− x
k− 1

􏼐 􏼑
�����

�����
2

� x
k

− x
k+1

�����

�����
2

+ θ2k x
k

− x
k− 1

�����

�����
2

+ 2θk〈x
k

− x
k+1

, x
k

− x
k− 1〉

≥ x
k

− x
k+1

�����

�����
2

+ θ2k x
k

− x
k− 1

�����

�����
2

− 2θk x
k

− x
k+1

�����

����� x
k

− x
k− 1

�����

�����

≥ x
k

− x
k+1

�����

�����
2

+ θ2k x
k

− x
k− 1

�����

�����‖
2

− θk x
k

− x
k+1

�����

�����
2

+ x
k

− x
k− 1

�����

�����
2

􏼒 􏼓

� 1 − θk( 􏼁 x
k

− x
k+1

�����

�����
2

− θk 1 − θk( 􏼁 x
k

− x
k− 1

�����

�����
2
.

(38)

Substituting this into (21), we have

x
k+1

− z
�����

�����
2
≤ 1 + θk( 􏼁 x

k
− z

�����

�����
2

− θk x
k− 1

− z
�����

�����
2

+ θk 1 + θk( 􏼁 x
k

− x
k− 1

�����

�����
2

−
1
2

1 − θk( 􏼁 x
k

− x
k+1

�����

�����
2

+
θk

2
1 − θk( 􏼁 x

k
− x

k− 1
�����

�����
2

−
1
2
δk.

(39)

Since θk􏼈 􏼉 is nondecreasing, this implies
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x
k+1

− z
�����

�����
2
≤ 1 + θk( 􏼁 x

k
− z

�����

�����
2

− θk x
k− 1

− z
�����

�����
2

+
θk

2
3 + θk( 􏼁 x

k
− x

k− 1
�����

�����
2

−
1
2

1 − θk( 􏼁 x
k

− x
k+1

�����

�����
2

−
1
2
δk

≤ 1 + θk+1( 􏼁 x
k

− z
�����

�����
2

− θk x
k− 1

− z
�����

�����
2

+
θk

2
3 + θk( 􏼁 x

k
− x

k− 1
�����

�����
2

−
1
2

1 − θk+1( 􏼁 x
k

− x
k+1

�����

�����
2

−
1
2
δk.

(40)

From the definition of ϕk, we get the desired
inequality. □

Theorem 2. Assume that U is quasi-nonexpansive such that
U′ is demiclosed at 0, and T is quasi-nonexpansive such that
T′ is demiclosed at 0. If

(c2) θk􏼈 􏼉 is nondecreasing and converges to
θ ∈ [ 0,

�
5

√
− 2 ),

then the sequence xk􏼈 􏼉 generated by Algorithm 1
converges weakly to an element in f.

Proof. We first show that ‖xk − z‖􏼈 􏼉 is convergent for each
z ∈ f. It then follows from Lemma 6 and the range of θk that

2 ϕk − ϕk+1( 􏼁≥ 1 − 4θ − θ2􏼐 􏼑 x
k

− x
k+1

�����

�����
2

+ δk ≥ 0 (41)

so that ϕk􏼈 􏼉 is nonincreasing. From the definition of ϕk, we
get

x
k

− z
�����

�����
2
≤ θk x

k− 1
− z

�����

�����
2

+ ϕk ≤ θ x
k− 1

− z
�����

�����
2

+ ϕ1. (42)

By induction, we have

x
k

− z
�����

�����
2
≤ x

0
− z

����
����
2

+
ϕ1

1 − θ
. (43)

,us, xk􏼈 􏼉 is bounded. Moreover, from the definition of
ϕk,

ϕk+1 ≥ − θk+1 x
k

− z
�����

�����
2
≥ − x

k
− z

�����

�����
2
≥ − x

0
− z

����
����
2

−
ϕ1

1 − θ
,

(44)

which implies that ϕk􏼈 􏼉 is bounded from below, and thus, it
is convergent. Passing to the limit in (41) yields

lim
k⟶∞

δk � lim
k⟶∞

x
k+1

− x
k

�����

����� � 0. (45)

On the contrary,

θk x
k− 1

− z
�����

�����
2

− x
k

− z
�����

�����
2􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

� θk x
k− 1

− z
�����

����� − x
k

− z
�����

�����

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 x
k− 1

− z
�����

����� + x
k

− z
�����

�����􏼒 􏼓

≤ x
k− 1

− x
k

�����

����� x
k− 1

− z
�����

����� + x
k

− z
�����

�����􏼒 􏼓⟶ 0,

(46)

from which it follows that

lim
k⟶∞

x
k

− z
�����

�����
2

�
1

1 − θ
lim

k⟶∞
ϕk. (47)

Here, we used the fact (by the definition of ϕk ) that

x
k

− z
�����

�����
2

�
1

1 − θk

ϕk + θk x
k− 1

− z
�����

�����
2

− x
k

− z
�����

�����
2

􏼒 􏼓 −
θk 3 + θk( 􏼁

2
x

k
− x

k− 1
�����

�����
2

􏼠 􏼡. (48)

,us, ‖xk − z‖􏼈 􏼉 is convergent.
We next show that the sequence xk􏼈 􏼉 converges weakly

to a solution of problem (1). By Lemma 2, it suffices to show
that each weak cluster point of xk􏼈 􏼉 belongs to f. Moreover,
it is clear that xk􏼈 􏼉 is bounded; thus, the set ωw(xn) is
nonempty. Now, take any x ∈ ωw(xk). On the contrary, we
deduce from (16) and (45) that

w
k

− x
k

�����

����� � θk x
k

− x
k− 1

�����

�����≤ x
k

− x
k− 1

�����

�����⟶ 0. (49)

In a similar way, we deduce that x ∈ F(U) and
Ax ∈ F(T); that is, x is an element in f. Hence, the proof is
complete.

If we let θk ≡ 0, then it satisfies (c1) and (c2). As a result,
we get the following conclusion. □

Corollary 1. Assume that U is quasi-nonexpansive such that
U′ is demiclosed at 0, and T is quasi-nonexpansive such that

T′ is demiclosed at 0. 7en, the sequence xk􏼈 􏼉 generated by
Algorithm 2 converges weakly to an element in f.

5. Concluding Remarks

,e main contribution of this paper is to propose a new
algorithm for solving the split common fixed point problem
in Hilbert spaces. ,ere are two advantages of the proposed
algorithm. Compared with the original algorithm for solving
the problem, our proposed algorithm is faster in conver-
gence rate. Furthermore, the stepsize in the proposed al-
gorithm is independent of the norm of the given linear
mapping, which can further improve its performance.
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In this paper, we present some theorems on impulsive periodic boundary value problems with fractional derivative dependence. In
particular, we discuss the existence of solutions of a class of fractional-order impulsive periodic boundary values with nonlinear
terms and impulsive terms satisfying certain growth conditions. -ree examples are provided to illustrate our results.

1. Introduction

-is paper considers the existence of solutions of the fol-
lowing fractional-order impulsive periodic boundary value
problem:

c
D

q
t u(t) � f t, u(t),

c
D

c
t u(t)( 􏼁, t ∈ J′,

Δu tk( 􏼁 � Ik u tk( 􏼁,
c
D

c
t u tk( 􏼁( 􏼁,

Δc
D

c
t u tk( 􏼁 � Jk u tk( 􏼁,

cc
D

c

t u tk( 􏼁( 􏼁, k � 1, 2, . . . , m,

au(0) − bu(1) � 0, aD
c
t u(0) − bD

c
t u(1) � 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

where cD
q
t and cD

c
t represent the common Caputo deriv-

atives of orders q and c, and 1< q< 2, 0< c< 1, and J �

[0, 1], 0 � t0 < t1 < t2 < · · · < tm < tm+1 � 1, J′ � J\

t1, t2, . . . , tm􏼈 􏼉. Here, f: J × R × R⟶ R and Ik, Jk: R × R

⟶ R are continuous functions. Now, Δu(tk) � u(t+
k ) − u

(t−
k ), where u(t+

k ) and u(t−
k ) denote the right limit and the

left limit of u(t) at the impulsive point tk. Also,
ΔcD

c
t u(tk) � cD

c
t u(t+

k ) − cD
c
t u(t−

k ), where cD
c
t u(t+

k )

and cD
c
t u(t−

k ) denote the right limit and the left limit of
cD

c
t u(t) at the impulsive point tk. If u(t−

k ) and cD
c
t u(t−

k )

exist, we let u(tk) � u(t−
k ) and cD

c
t u(tk) � cD

c
t u

(t−
k ), wherek � 1, 2, . . . , m. Also, a and b are two real con-

stants with b> a> 0.

-e theory of fractional differential equation has re-
ceived a lot of attention because of its wide application in
mathematical models (see [1–27] and the references
therein). Fractional-order impulsive differential equations
are a natural generalization of the case of nonimpulses and
are used to describe sudden changes in their states, such as in
optimal control, population dynamics, biological systems,
financial systems, and mechanical systems with impact. We
refer the reader to [28–36] and the references therein. In
particular, Bai et al. [37] investigated a mixed boundary
value problem of nonlinear impulsive fractional differential
equation:

c
D

q

0+ u(t) � f(t, u(t)), t ∈ J′,

Δu tk( 􏼁 � Ik u tk( 􏼁( 􏼁,Δu′ tk( 􏼁 � Jk u tk( 􏼁( 􏼁, k � 1, 2, . . . , m,

u(0) + u(1) � 0,

u′(0) + u′(1) � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(2)

and some sufficient conditions on the existence and
uniqueness of solutions for problem (2) are obtained under
Lipschitz conditions. In [38], Zhang and Xu studied the
following impulsive periodic boundary value problem with
the Caputo fractional derivative:
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c
D

q

t u(t) � f(t, u(t)), t ∈ J′,

Δu tk( 􏼁 � Ik u tk( 􏼁( 􏼁,Δu′ tk( 􏼁 � Jk u tk( 􏼁( 􏼁, k � 1, 2, . . . , m,

au(0) − bu(1) � 0,

au′(0) − bu′(1) � 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

using Green’s function in [36], and via the symmetry
property of Green’s function and topological degree theory,
the authors obtained the existence of positive solutions for
(3) when the growth of f is superlinear and sublinear.

Inspired by the above research studies, in this paper, we
consider fractional-order impulsive differential equations
with generalized periodic boundary value conditions (1),
where the nonlinear term, impulse terms, and periodic
boundary conditions all depend on unknown functions and
the lower-order fractional derivative of unknown functions.
-is is obviously more general and more widely applied, but
it is also more complex and difficult to solve. Compared with
(1), the nonlinear term, pulse term, and periodic boundary
conditions of (3) are all independent of fractional deriva-
tives, so it is a special form of (1). In this paper, we first give
an equivalent integral form of solutions for problem (1)
using some new Green’s functions. Next, we present some
sufficient conditions for the existence of solutions for
problem (1), where the nonlinear and impulse terms satisfy
some nonlinear and linear growth conditions, which are
different from the conditions in [36–38]. Finally, we present
three examples to illustrate our main results.

2. Preliminaries and Lemmas

In this section, we only present some necessary definitions
and lemmas about fractional calculus.

Definition 1 (see [39, 40]). -e Riemann–Liouville frac-
tional integral of order α> 0 for a function f: (0,∞)⟶ R

is defined as

I
α
0+f(t) �

1
Γ(α)

􏽚
t

0
(t − s)

α− 1
f(s)ds, (4)

where Γ(·) is the Euler gamma function.

Definition 2 (see [39, 40]). -e Caputo fractional derivative
of order α> 0 for a continuous and n-order differentiable
function f: (0,∞)⟶ R is defined as

c
D

α
t f(t) �

1
Γ(n − α)

􏽚
t

0
(t − s)

n− α− 1
f

(n)
(s)ds, (5)

where Γ(·) is the Euler gamma function and
n � [α] + 1, where [α] is the smallest integer greater than or
equal to α.

Lemma 1 (see [39, 40]). Let α> 0. /e differential equation
cDα

t u(t) � 0 has a unique solution:

u(t) � c0 + c1t + · · · + cn− 1t
n− 1

, (6)

for some ci ∈ R(i � 0, 1, 2, . . . , n − 1), where n � [α] + 1.

Lemma 2 Let y ∈ C(J) and 1< q< 2. /e unique solution of
the following periodic boundary value problem

c
D

q

t u(t) � y(t), t ∈ J′,

Δu tk( 􏼁 � Ik,Δc
D

c
t u tk( 􏼁 � Jk, k � 1, 2, . . . , m,

au(0) − bu(1) � 0, aD
c
t u(0) − bD

c
t u(1) � 0, 0< a< b,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(7)

is expressed by

u(t) � 􏽚
1

0
K1(t, s)y(s)ds + 􏽘

m

i�1
K2 t, ti( 􏼁Ji + 􏽘

m

i�1
K3 t, ti( 􏼁Ii, t ∈ J,

(8)

where

K1(t, s) �

(t − s)
q− 1

Γ(q)
−

b(1 − s)
q− 1

(b − a)Γ(q)
−
Γ(2 − c)(1 − s)

q− c− 1

Γ(q − c)
t −

b

b − a
􏼠 􏼡, 0≤ s≤ t≤ 1,

−
b(1 − s)

q− 1

(b − a)Γ(q)
−
Γ(2 − c)(1 − s)

q− c− 1

Γ(q − c)
t −

b

b − a
􏼠 􏼡, 0≤ t≤ s≤ 1,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

K2 t, ti( 􏼁 �

aΓ(2 − c)ti

(b − a)t
1− c
i

, 0< ti < t≤ 1, i � 1, 2, . . . , m,

Γ(2 − c)

t
1− c
i

bti

b − a
− t􏼠 􏼡, 0≤ t≤ ti < 1, i � 1, 2, . . . , m,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

K3 t, ti( 􏼁 �

−
a

a − b
, 0< ti < t≤ 1, i � 1, 2, . . . , m,

−
b

a − b
, 0≤ t≤ ti < 1, i � 1, 2, . . . , m.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(9)

2 Journal of Mathematics



Furthermore,

c
D

c

t u(t) � 􏽚
t

0
H1(t, s)y(s)ds + 􏽘

m

i�1
H2 t, ti( 􏼁Ji, (10)

where

H1(t, s) �

(t − s)
q− c− 1

Γ(q − c)
−

(1 − s)
q− c− 1

t
1− c

Γ(q − c)
, 0≤ s≤ t≤ 1,

−
(1 − s)

q− c− 1
t
1− c

Γ(q − c)
, 0≤ t≤ s≤ 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

H2 t, ti( 􏼁 �

0, 0< ti < t≤ 1, i � 1, 2, . . . , m,

t

ti

􏼠 􏼡

1− c

, 0≤ t≤ ti < 1, i � 1, 2, . . . , m.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(11)

Proof. Suppose u is a general solution of (7) on each interval
(tk, tk+1](k � 0, 1, 2, . . . , m). -en, using Lemma 1, (7) can
be transformed into the following equivalent integral
equation:

u(t) � I
q
0+y(t) − ck − dkt, t ∈ tk, tk+1( 􏼃, (12)

where t0 � 0 and tm+1 � 1. Also, we have

c
D

c

t u(t) � I
q− c
0+ y(t) − dk

t
1− c

Γ(2 − c)
, t ∈ tk, tk+1( 􏼃. (13)

From (12) and (13), according to (7), we obtain

ac0 − bcm � bdm − bI
q
0+y(1), (14)

dm � Γ(2 − c)I
q− c
0+ y(1). (15)

Applying the right fractional-order impulsive condition
of (7), we obtain

dk− 1 − dk �
Γ(2 − c)

t
1− c

k

Jk, (16)

ck− 1 − ck � Ik −
Γ(2 − c)

t
1− c

k

Jk. (17)

From (15) and (16), after a recursive calculation, we have

d0 � dm + Γ(2 − c) 􏽘

m

i�1

Ji

t
1− c

i

� Γ(2 − c)I
q− c
0+ y(1) + Γ(2 − c) 􏽘

m

i�1

Ji

t
1− c
i

.

(18)

Similar to (18), we see that

dk � d0 − Γ(2 − c) 􏽘

k

i�1

Ji

t
1− c
i

� Γ(2 − c)I
q− c
0+ y(1) + Γ(2 − c) 􏽘

m

i�k+1

Ji

t
1− c
i

.

(19)

From (13), (14), and (16), we have

c0 �
b

b − a
I

q
0+y(1) − Γ(2 − c)I

q− c
0+ y(1) + 􏽘

m

i�1
Ii − Γ(2 − c)t

c

i Ji( 􏼁⎡⎣ ⎤⎦.

(20)

From (17) and (20), after a recursive calculation, we have

ck � c0 − 􏽘
k

i�1
Ii − Γ(2 − c)t

c
i Ji􏼂 􏼃 �

b

b − a
I

q
0+y(1) − Γ(2 − c)I

q− c
0+ y(1)􏼂 􏼃

+
a

b − a
􏽘

k

i�1
Ii − Γ(2 − c)t

c
i Ji􏼂 􏼃 +

b

b − a
􏽘

m

i�1
Ii − Γ(2 − c)t

c
i Ji􏼂 􏼃.

(21)

For t ∈ J0 � [t0, t1], substituting (18) and (20) into (12)
and (13), we obtain

u(t) � I
q
0+y(t) −

b

b − a
I

q
0+y(1) − Γ(2 − c) t −

b

b − a
􏼠 􏼡I

q− c
0+ y(1)

− 􏽘
m

i�1

Γ(2 − c)

t
1− c
i

t −
bti

b − a
􏼠 􏼡Ji −

b

b − a
􏽘

m

i�1
Ii

− Γ(2 − c) t −
b

b − a
􏼠 􏼡 􏽚

t

0
+􏼠 􏽚

1

t
􏼡

(1 − s)
q− c− 1

Γ(q − c)
y(s)ds + 􏽘

m

i�1

Γ(2 − c)

t
1− c
i

bti

b − a
− t􏼠 􏼡Ji −

b

b − a
􏽘

m

i�1
Ii
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� 􏽚
t

0
K1(t, s)y(s)ds + 􏽘

m

i�1
K2 t, ti( 􏼁Ji + 􏽘

m

i�1
K3 t, ti( 􏼁Ii,

c
D

c

t u(t) � I
q− c
0+ y(t) − I

q− c
0+ y(1) + 􏽘

m

i�1

Ji

t
1− c
i

⎡⎣ ⎤⎦t
1− c

� 􏽚
t

0

(t − s)
q− c− 1

Γ(q − c)
y(s)ds − 􏽚

t

0
+􏼠 􏽚

1

t
􏼡

(1 − s)
q− c− 1

t
1− c

Γ(q − c)
y(s)ds − 􏽘

m

i�1

t

ti

􏼠 􏼡

1− c

Ji

� 􏽚
t

0
H1(t, s)y(s)ds + 􏽘

m

i�1
H2 t, ti( 􏼁Ji,

(22)

where K1(t, s), K2(t, ti), K3(t, ti), H1(t, s), andH2(t, ti) are
defined by (7) and (9).

For Jk � [tk, tk+1], k � 1, 2, . . . , m, substituting (20) and
(18) into (11) and (12), we have

u(t) � I
q
0+y(t) −

b

b − a
I

q
0+y(1) − Γ(2 − c) t −

b

b − a
􏼠 􏼡I

q− c
0+ y(1)

+
a

b − a
􏽘

k

i�1
Γ(2 − c)t

c

kJi − 􏽘
m

i�1

Γ(2 − c)

t
1− c
i

t −
bti

b − a
􏼠 􏼡Ji −

a

b − a
􏽘

k

i�1
Ii −

b

b − a
􏽘

m

i�1
Ii

� 􏽚
t

0

(t − s)
q− 1

Γ(q)
y(s)ds −

b

b − a
􏽚

t

0
+􏼠 􏽚

1

t
􏼡

(1 − s)
q− 1

Γ(q)
y(s)ds − Γ(2 − c) t −

b

b − a
􏼠 􏼡

· 􏽚
t

0
+􏼠 􏽚

1

t
􏼡

(1 − s)
q− c− 1

Γ(q − c)
y(s)ds +

a

b − a
􏽘

k

i�1

Γ(2 − c)ti

t
1− c
i

Ji + 􏽘
m

i�1

Γ(2 − c)

t
1− c
i

bti

b − a
− t􏼠 􏼡Ji

−
a

b − a
􏽘

k

i�1
Ii −

b

b − a
􏽘

m

i�1
Ii � 􏽚

t

0
K1(t, s)y(s)ds + 􏽘

m

i�1
K2 t, ti( 􏼁Ji + 􏽘

m

i�1
K3 t, ti( 􏼁Ii,

c
D

c

t u(t) � I
q− c
0+ y(t) − I

q− c
0+ y(1) + 􏽘

m

i�1

Ji

t
1− c

i

⎡⎣ ⎤⎦t
1− c

� 􏽚
t

0

(t − s)
q− c− 1

Γ(q − c)
y(s)ds − 􏽚

t

0
+􏼠 􏽚

1

t
􏼡

(1 − s)
q− c− 1

t
1− c

Γ(q − c)
y(s)ds − 􏽘

m

i�1

t

ti

􏼠 􏼡

1− c

Ji

� 􏽚
1

0
H1(t, s)y(s)ds + 􏽘

m

i�1
H2 t, ti( 􏼁Ji,

(23)

where K1(t, s), K2(t, ti), K3(t, ti), H1(t, s), ​ andH2(t, ti) are
defined by (9) and (11). -e proof is completed. □

Lemma 3. Let 0< a< b< +∞. /en,
K1(t, s) + K2(t, ti)andK3(t, ti) and H1(t, s)andH2(t, ti)

defined as in (9) and (11) are continuous, and the following
inequalities hold:

(i) |K1(t, s)| ≤ ((2b − a)(1 − s)
q− 1/(b − a)Γ(q)) + ((2b

− a)Γ(2 − c)(1 − s)
q− c− 1/(b − a)Γ(q − c)), |H1(t, s)|

≤ (2(1 − s)
q− c− 1/Γ(q − c)), t, s ∈ J
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(ii) |K2(t, ti)|≤ bΓ(2 − c)/b − a, |H2(t, ti)|≤ 1, |K3(t, ti)|

≤ b/b − a, t, ti ∈ J

.

Proof. Directly observe that

K1(t, s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
(1 − s)

q− 1

Γ(q)
+

b(1 − s)
q− 1

(b − a)Γ(q)
+
Γ(2 − c)(1 − s)

q− c− 1

Γ(q − c)
1 +

b

b − a
􏼠 􏼡

≤
(2b − a)(1 − s)

q− 1

(b − a)Γ(q)
+

(2b − a)Γ(2 − c)(1 − s)
q− c− 1

(b − a)Γ(q − c)
, t, s ∈ J,

H1(t, s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
(1 − s)

q− c− 1

Γ(q − c)
+

(1 − s)
q− c− 1

t
1− c

Γ(q − c)
≤

1 + t
1− c

􏼐 􏼑(1 − s)
q− c− 1

Γ(q − c)
, ≤

2(1 − s)
q− c− 1

Γ(q − c)
, t, s ∈ J,

K2 t, ti( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
Γ(2 − c)

t
1− c
i

bti

b − a
≤

bΓ(2 − c)

b − a
t
c
i ≤

bΓ(2 − c)

b − a
, t, ti ∈ J,

K3 t, ti( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
b

a − b
, t, ti ∈ J,

H2 t, ti( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
t

ti

􏼠 􏼡

1− c

≤ 1, t, ti ∈ J.

(24)

Let E � u: J⟶ R|u ∈ C(J′),􏼈 cD
c
t u(t) ∈ C(J′),

and u(t−
k ), u(t+

k ), cD
c
t u(t−

k ), and cD
c
t u(t+

k ) exist, where
k � 1, 2, . . . , m}. Note [35] that E is a Banach space equipped
with the norm

‖u‖ � sup
t∈J

|u(t)| + sup
t∈J

c
D

c

t u(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (25)

Lemma 4. If the function f(t, u, cD
c
t u(t)) is continuous,

then u ∈ E is a solution of (1) if and only if u ∈ E is a solution
of the following integral equation:

u(t) � 􏽚
1

0
K1(t, s)f s, u(s),

c
D

c

t u(s)( 􏼁ds + 􏽘
m

i�1
K2 t, ti( 􏼁Ji u ti( 􏼁,

c
D

c

t u ti( 􏼁( 􏼁

+ 􏽘
m

i�1
K3 t, ti( 􏼁Ii u ti( 􏼁,

c
D

c

t u ti( 􏼁( 􏼁.

(26)

Proof. Assume that u satisfies (1). From Lemma 2, we see
that u satisfies integral equation (26).

Conversely, assume that u satisfies integral equation
(26). Applying Definition 2, by a direct fractional derivative

computation, it follows that the solution given by (26) and
(2) satisfies (1).

Define an operator T: E⟶ E as

(Tu)(t) � 􏽚
1

0
K1(t, s)f s, u(s),

c
D

c

t u(s)( 􏼁ds + 􏽘
m

i�1
K2 t, ti( 􏼁Ji u ti( 􏼁,

c
D

c

t u ti( 􏼁( 􏼁

+ 􏽘
m

i�1
K3 t, ti( 􏼁Ii u ti( 􏼁,

c
D

c

t u ti( 􏼁( 􏼁,

(27)

c
D

c

t Tu( 􏼁(t) � 􏽚
t

0
H1(t, s)f s, u(s),

c
D

c

t u(s)( 􏼁ds + 􏽘
m

i�1
H2 t, ti( 􏼁Ji u ti( 􏼁,

c
D

c

t u ti( 􏼁( 􏼁. (28)
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It is easy to prove that the function u is a solution of (1) if
and only if u is a fixed point of the operator T.

For convenience, we list some hypotheses:

(B1) 0< a< b< +∞, 1< q< 2, 0< c< 1 with q − c> 1
(B2) f: J × R × R⟶ R and Ik, Jk: R × R⟶ R are
continuous functions □

Lemma 5. Assume that (B1) and (B2) hold. /en, the op-
erator T: E⟶ E defined as in (27) is completely continuous.

Proof. We divide the proof into three steps. Set
Ωr � u ∈ E, ‖u‖≤ r{ } for some r> 0. -e steps are as follows:

(i) Step 1. T is continuous from the continuity of the
functions K1, K2, K3, H1, H2, f, Ik, Jk.

(ii) Step 2. T is uniformly bounded. Now, for u ∈ Ωr we
have |f(t, u, cD

c
t u)|≤m1, |Jk|≤m2, |Ik|≤m3, where

mi > 0, i � 1, 2, 3.
In fact, for each t ∈ Jk � [tk, tk+1], u ∈ Ωr,

k � 0, 1, 2, . . . , m, from Lemma 3, we have

|(Tu)(t)| ≤ 􏽚
1

0
K1(t, s)f s, u(s),

c
D

c

t u(s)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌ds + 􏽘
m

i�1
K2 t, ti( 􏼁Ji u ti( 􏼁,

c
D

c

t u ti( 􏼁( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

+ 􏽘
m

i�1
K3 t, ti( 􏼁Ii u ti( 􏼁,

c
D

c

t u ti( 􏼁( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤m1 􏽚
1

0
K1(t, s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ds + m2 􏽘

m

i�1
K2 t, ti( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + m3 􏽘

m

i�1
K3 t, ti( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

c
D

c

t Tu( 􏼁(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 􏽚
1

0
H1(t, s)f s, u(s),

c
D

c

t u(s)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌ds + 􏽘
m

i�1
H2 t, ti( 􏼁Ji u ti( 􏼁,

c
D

c

t u ti( 􏼁( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤m1 􏽚
1

0
H1(t, s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ds + m2 􏽘

m

i�1
H2 t, ti( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

(29)

which and Lemma 4 imply that

‖Tu‖ � sup
t∈J

|(Tu)(t)| + sup
t∈J

c
D

c

t Tu( 􏼁(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤m1 􏽚
1

0
K1(t, s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ds + m2 􏽘

m

i�1
K2 t, ti( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + m3 􏽘

m

i�1
K3 t, ti( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + m1 􏽚

1

0
H1(t, s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ds + m2 􏽘

m

i�1
H2 t, ti( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

≤m1 􏽚
1

0
K1(t, s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + H1(t, s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽨 􏽩ds + m2 􏽘

m

i�1
K2 t, ti( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + H2 t, ti( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽨 􏽩 + m3 􏽘

m

i�1
K3 t, ti( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

≤m1 􏽚
1

0

(2b − a)(1 − s)
q− 1

(b − a)Γ(q)
+

(2b − a)Γ(2 − c)(1 − s)
q− c− 1

(b − a)Γ(q − c)
+
2(1 − s)

q− c− 1

Γ(q − c)
􏼢 􏼣ds

+
[bΓ(2 − c) + b − a]mm2

b − a
+

bmm3

b − a
� m1

(2b − a)

(b − a)Γ(q + 1)
+

(2b − a)Γ(2 − c)

(b − a)Γ(q − c + 1)
+

2
Γ(q − c + 1)

􏼢 􏼣

+
[bΓ(2 − c) + b − a]mm2

b − a
+

bmm3

b − a
� M.

(30)
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(iii) Step 3. T is equicontinuous. For any
t1, t2 ∈ Jk, k � 0, 1, . . . , m, fixed s ∈ J and for any
ϵ> 0, there exists a constant δ > 0 such that for
|t1 − t2|< δ, we have

K1 t1, s( 􏼁 − K1 t2, s( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌<
ϵ

6m1
,

K2 t1, ti( 􏼁 − K2 t2, ti( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌<
ϵ

6m2m
,

K3 t1, ti( 􏼁 − K3 t2, ti( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌<
ϵ

6m3m
,

H1 t1, s( 􏼁 − H1 t2, s( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌<
ϵ

4m1
,

H2 t1, ti( 􏼁 − H2 t2, ti( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌<
ϵ

4m2m
.

(31)

-en,

(Tu) t1( 􏼁 − (Tu) t2( 􏼁 � 􏽚
1

0
K1 t1, s( 􏼁 − K1 t2, s( 􏼁( 􏼁f s, u(s),

c
D

c

t u(s)( 􏼁ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+ 􏽘
m

i�1
K2 t1, ti( 􏼁 − K2 t2, ti( 􏼁( 􏼁Ji u ti( 􏼁,

c
D

c

t u ti( 􏼁( 􏼁

+ 􏽘
m

i�1
K3 t1, ti( 􏼁 − K3 t2, ti( 􏼁( 􏼁Ii u ti( 􏼁,

c
D

c

t u ti( 􏼁( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤m1 􏽚
1

0
K1 t1, s( 􏼁 − K1 t2, s( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ds + m2m K2 t1, ti( 􏼁 − K2 t2, ti( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

+ m3m K3 t1, ti( 􏼁 − K3 t2, ti( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌<
ϵ
6

+
ϵ
6

+
ϵ
6

�
ϵ
2
,

c
D

c

t Tu( 􏼁 t1( 􏼁 −
c
D

c

t Tu( 􏼁 t2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 􏽚
1

0
H1 t1, s( 􏼁 − H1 t2, s( 􏼁( 􏼁f s, u(s),

c
D

c

t u(s)( 􏼁ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+ 􏽘
m

i�1
H2 t1, ti( 􏼁 − H2 t2, ti( 􏼁( 􏼁Ji u ti( 􏼁,

c
D

c

t u ti( 􏼁( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤m1 􏽚
1

0
H1 t1, s( 􏼁 − H1 t2, s( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ds + m2m H2 t1, ti( 􏼁 − H2 t2, ti( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌<
ϵ
4

+
ϵ
4

�
ϵ
2
.

(32)

-us,

(Tu) t1( 􏼁 − (Tu) t2( 􏼁
����

����< ε. (33)

which implies that T(Ωr) is equicontinuous on any
subinterval Jk, k � 0, 1, . . . , m.
From the Arzela–Ascoli theorem, we deduce that
T: E⟶ E is completely continuous.

Lemma 6 (Schauder fixed-point theorem, see [41, 42]). Let
X be a real Banach space, C ⊂ X be a nonempty closed
bounded and convex subset, and F: C⟶ C be compact.
/en, T has at least one fixed point in C.

Lemma 7 (Krasnoselskii fixed point theorem, see [41, 42]). Let
Ω be a closed convex and nonempty subset of a Banach space
X. Let Φ andΨ be the operators such that (i) Φx + Ψy ∈ Ω
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whenever x, y ∈ Ω; (ii) Φ: Ω⟶ X is compact and con-
tinuous; and (iii) Ψ is a contraction mapping. /en, there
exists an z ∈ Ω such that z � Φz + Ψz.

Lemma 8 (Banach’s fixed point theorem, see [43]). Let E be
a Banach space, Ω ⊂ E be closed, and F: Ω⟶Ω be a strict

contraction, i.e., |Fx − Fy|≤ k|x − y| for some k ∈ (0, 1) and
all x, y ∈ Ω. /en, F has a unique fixed point in Ω.

3. Existence of the Solutions

For convenience, we give the following symbols:

Ai � 􏽚
1

0

(2b − a)(1 − s)
q− 1

(b − a)Γ(q)
+

(2b − a)Γ(2 − c)(1 − s)
q− c− 1

(b − a)Γ(q − c)
+
2(1 − s)

q− c− 1

Γ(q − c)
􏼢 􏼣ai(s)ds,

Bi �
[bΓ(2 − c) + b − a]mbi

b − a
,

Ci �
mbci

b − a
, i � 0, 1, 2.

(34)

Now, we present our main theorems.

Theorem 1 Assume that (B1) and (B2) hold, and the fol-
lowing hypotheses are satisfied:

(C1) /ere exist three nonnegative functions
a0, a1, a2 ∈ L(J) and two constants λ1, λ2 ∈ (0, 1) such
that

|f(t, u, v)|≤ a0(t) + a1(t)|u|
λ1 + a2(t)|v|

λ2 , ∀t ∈ J, u, v ∈ R, (35)

(C2) /ere exist eight positive constants b1, b2, c1, c2 ≥ 0
and μ1, μ2, ]1, ]2 ∈ (0, 1) such that

Ii(u, v)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ b0 + b1|u|
μ1 + b2|v|

μ2 ,

Ji(u, v)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ c0 + c1|u|
]1 + c2|v|

]2 , i � 1, 2, . . . , m, ∀u, v ∈ R.
(36)

-en, (1) has at least one solution in E. Proof. Let

R1 ≥max 7 A0 + B0 + C0( 􏼁, 7A1( 􏼁
1/1− λ1 , 7A2( 􏼁

1/1− λ2 , 7B1( 􏼁
1/1− μ1 , 7B2( 􏼁

1/1− μ2 , 7C1( 􏼁
1/1− ]1 , 7C1( 􏼁

1/1− ]2􏽮 􏽯,

ΩR1
� u ∈ E: ‖u‖≤R1􏼈 􏼉.

(37)

Now, ΩR1
is a closed bounded convex subset of E. For each u ∈ ΩR1

, from (C1) and (C2), we have

|(Tu)(t)| ≤ 􏽚
1

0
K1(t, s)f s, u(s),

c
D

c

t u(s)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌ds + 􏽘
m

i�1
K2 t, ti( 􏼁Ji u ti( 􏼁,

c
D

c

t u ti( 􏼁( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

+ 􏽘
m

i�1
K3 t, ti( 􏼁Ii u ti( 􏼁,

c
D

c

t u ti( 􏼁( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 􏽚
1

0
K1(t, s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 a0(s) + a1(s)|u(s)|

λ1 + a2(s)
c
D

c

t u(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
λ2􏼔 􏼕ds
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+ 􏽘
m

i�1
K2 t, ti( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 b0 + b1|u(s)|

μ1 + b2
c
D

c

t u(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
μ2􏽨 􏽩 + 􏽘

m

i�1
K3 t, ti( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 c0 + c1|u(s)|

]1 + c2
c
D

c

t u(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
]2􏽨 􏽩,

c
D

c

t Tu( 􏼁(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 􏽚
1

0
H1(t, s)f s, u(s),

c
D

c

t u(s)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌ds + 􏽘

m

i�1
H2 t, ti( 􏼁Ji u ti( 􏼁,

c
D

c

t u ti( 􏼁( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ 􏽚
1

0
H1(t, s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 a0(s) + a1(s)|u(s)|

λ1 + a2(s)
c
D

c

t u(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
λ2􏼔 􏼕ds

+ 􏽘
m

i�1
H2 t, ti( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 b0 + b1|u(s)|

μ1 + b2
c
D

c

t u(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
μ2􏽨 􏽩. (38)

From Lemma 3, we obtain that

‖Tu‖ � sup
t∈J

|u(t)| + sup
t∈J

c
D

c

t Tu)(t( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ 􏽚
1

0
K1(t, s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + H1(t, s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑 a0(s) + a1(s)‖u‖

λ1 + a2(s)‖u‖
λ2􏼐 􏼑ds

+ 􏽘
m

i�1
K2 t, ti( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + H2 t, ti( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑 b0 + b1‖u‖

μ1 + b2‖u‖
μ2( 􏼁

+ 􏽘
m

i�1
K3 t, ti( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 c0 + c1‖u‖

]1 + c2‖u‖
]2( 􏼁

≤A0 + A1 R1
����

����
λ1 + A2 R1

����
����
λ2 + B0 + B1 R1

����
����
μ1 + B2 R1

����
����
μ2

+ C0 + C1 R1
����

����
]1 + C2 R1

����
����
]2 ≤R1,

(39)

which implies that T(ΩR1
) ⊂ ΩR1

.
From Lemmas 5 and 6, T has at least one fixed point in
ΩR1

, so (1) has at least one solution in E.

Theorem 2. Assume that (B1) and (B2) hold, and the fol-
lowing hypotheses are satisfied:

(C3) /ere exists a nonnegative function a0 ∈ L(J), such
that

|f(t, u, v)|≤ a0(t), ∀t ∈ J, u, v ∈ R. (40)

(C4) /ere exist four positive constants b1, b2, c1, c2 ≥ 0
such that

Ii u1, v1( 􏼁 − Ii u2, v2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ b1 u1 − u2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + b2 v1 − v2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, ∀u1, u2, v1, v2 ∈ R, i � 1, 2, . . . , m,

Ji u1, v1( 􏼁 − Ji u2, v2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ c1 u1 − u2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + c2 v1 − v2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, ∀u1, u2, v1, v2 ∈ R, i � 1, 2, . . . , m.
(41)

If Λ � 􏽐
2
i�1(Bi + Ci)< 1/2, then (1) has at least one

solution in E.
Proof. We first define the operators. For u ∈ E, let
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(Φu)(t) � 􏽚
1

0
K1(t, s)f s, u(s),

c
D

c

t u(s)( 􏼁ds,

Φ1u( 􏼁(t) � 􏽚
1

0
H1(t, s)f s, u(s),

c
D

c

t u(s)( 􏼁ds

(Ψu)(t) � 􏽘
m

i�1
K2 t, ti( 􏼁Ji u ti( 􏼁,

c
D

c

t u ti( 􏼁( 􏼁 + 􏽘
m

i�1
K3 t, ti( 􏼁Ii u ti( 􏼁,

c
D

c

t u ti( 􏼁( 􏼁,

Ψ1u( 􏼁(t) � 􏽘
m

i�1
H2 t, ti( 􏼁Ji u ti( 􏼁,

c
D

c

t u ti( 􏼁( 􏼁.

(42)

Now,

(Tu)(t) � (Φu)(t) +(Ψu)(t),

c
D

c

t Tu( 􏼁(t) �
c
D

c

t (Φu)(t) +
c
D

c

t (Ψu)(t) � Φ1u( 􏼁(t) + Ψ1u( 􏼁(t).
(43)

Let

M1 � max
1≤i≤m

Ii(0, 0)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

M2 � max
1≤i≤m

Ji(0, 0)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌.
(44)

Let

R2 ≥max 2A0,
2Θ

1 − 2Λ
􏼚 􏼛,

ΩR2
� u ∈ E: ‖u‖≤R2􏼈 􏼉.

(45)

Note that ΩR2
is a nonempty bounded closed convex

subset of E.
From Lemma 5, Φ is completely continuous (i.e., con-

dition (ii) of Lemma 7 is satisfied).
For any u, v ∈ ΩR2

, from hypothesis (C4), we have

|(Ψu)(t) − (Ψv)(t)|≤ 􏽘
m

i�1
K2 t, ti( 􏼁

���� Ji u ti( 􏼁,
c
D

c

t u ti( 􏼁( 􏼁 − Ji v ti( 􏼁,
c
D

c

t v ti( 􏼁( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

+ 􏽘
m

i�1
K3 t, ti( 􏼁

���� Ii u ti( 􏼁,
c
D

c

t u ti( 􏼁( 􏼁 − Ii v ti( 􏼁,
c
D

c

t v ti( 􏼁( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ 􏽘
m

i�1
K2 t, ti( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 c1|u(s) − v(s)| + c2

c
D

c

t u(s) −
c
D

c

t v(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑

· 􏽘

m

i�1
K3 t, ti( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 b1|u(s) − v(s)| + b2

c
D

c

t u(s) −
c
D

c

t v(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑

≤ 􏽘
m

i�1
K2 t, ti( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 c1 + c2( 􏼁‖u − v‖ + 􏽘

m

i�1
K3 t, ti( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 b1 + b2( 􏼁‖u − v‖,

Ψ1u( 􏼁(t) − Ψ1v( 􏼁(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 􏽘
m

i�1
H2 t, ti( 􏼁

���� Ji u ti( 􏼁,
c
D

c

t u ti( 􏼁( 􏼁 − Ji v ti( 􏼁,
c
D

c

t v ti( 􏼁( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ 􏽘
m

i�1
H2 t, ti( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 c1|u(s) − v(s)| + c2

c
D

c

t u(s) −
c
D

c

t v(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑

≤ 􏽘
m

i�1
H2 t, ti( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 c1 + c2( 􏼁‖u − v‖.

(46)
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-erefore,

‖Ψu − Ψv‖ � max
t∈J

|Ψu − Ψv| + max
t∈J
Ψ1u − Ψ1v

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

≤ 􏽘
m

i�1
K2 t, ti( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + H2 t, ti( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽨 􏽩 c1 + c2( 􏼁‖u − v‖

+ 􏽘
m

i�1
K3 t, ti( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 b1 + b2( 􏼁‖u − v‖

≤ C1 + C2 + B1 + B2( 􏼁‖u − v‖ � Λ‖u − v‖,

(47)

and since Λ< 1/2, Ψ is a contraction (so condition (iii) of
Lemma 7 is satisfied).

For each u ∈ ΩR2
, from hypothesis (C3), we have

|(Φu)(t)| ≤ 􏽚
1

0
K1(t, s)f s, u(s),

c
D

c

t u(s)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌ds

≤ 􏽚
1

0
K1(t, s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌a0(s)ds,

Φ1u( 􏼁(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 􏽚
1

0
H1(t, s)f s, u(s),

c
D

c

t u(s)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌ds

≤ 􏽚
1

0
H1(t, s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌a0(s)ds.

(48)

Consequently,

‖Φu‖≤ 􏽚
1

0
|H1(t, s)| + H1(t, s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑a0(s)ds≤A0 ≤

R2

2
.

(49)

For each v ∈ ΩR2
, we have

‖(Ψv)‖≤ ‖(Ψ0) − (Ψv)‖ +‖(Ψ0)‖

≤Λ‖0 − v‖ + 􏽘

m

i�1
|K2 t, ti( 􏼁| + H2 t, ti( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑max

t∈J
Ji(0, 0)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

+ 􏽘
m

i�1
K3 t, ti( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌max

t∈J
Ii(0, 0)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤Λ‖v‖ + Θ,

(50)

where

Θ � m
bΓ(2 − c) + b − a

b − a
M2 +

b

b − a
M1􏼠 􏼡. (51)

-us, for any u, v ∈ ΩR2
, we obtain

‖(Φu) +(Ψv)‖≤ ‖(Φu)‖ +‖(Ψv)‖≤A0 + Λ‖v‖ + Θ≤R2,

(52)

which implies that Φu + Ψv ∈ ΩR2
(so condition (i) of

Lemma 7 is satisfied).
In view of Lemma 7, there exists a u ∈ ΩR2

such that
Φu + Ψu � u, so (1) has at least one solution in E. □

Theorem 3. Assume that (B1), (B2), and (C4) hold and the
following hypothesis is satisfied:

(C5) /ere exist two nonnegative functions a1, a2 ∈ L(J)

such that

f t, u1, v1( 􏼁 − f t, u2, v2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ a1(t) u1 − u2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + a2(t) v1 − v2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, ∀t ∈ J, u1, u2, v1, v2 ∈ R. (53)

If Π � (A1 + A2) +[bΓ(2 − c) + b − a](c1 + c2) +

b(b1 + b2)/b − a< 1, then (1) has a unique solution in E.

Proof. Choose

R3 ≥
1

1 − Π
A′M0 + B′􏼈 􏼉, (54)

where

M0 � max
t∈J

|f(t, 0, 0)|,

M1 � max
1≤i≤m

Ii(0, 0)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

M2 � max
1≤i≤m

Ji(0, 0)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

A′ �
(2b − a)

(b − a)Γ(q + 1)
+

(2b − a)Γ(2 − c)

(b − a)Γ(q − c + 1)
+

2
Γ(q − c + 1)

,

B′ �
bΓ(2 − c)M2 + bM1 + b − a

b − a
.

(55)
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First, we show that TΩR3
⊂ ΩR3

, where
ΩR3

� u ∈ E, ‖u‖≤R3􏼈 􏼉. For u ∈ ΩR3
, from hypotheses (C4)

and (C5), we obtain

|(Tu)(t)| ≤ 􏽚
1

0
K1(t, s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 f s, u(s),

c
D

c

t u(s)( 􏼁 − f(t, 0, 0)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +|f(t, 0, 0)|􏽨 􏽩ds

+ 􏽘
m

i�1
K2 t, ti( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 Ji u ti( 􏼁,

c
D

c

t u ti( 􏼁( 􏼁 − Ji(0, 0)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + Ji(0, 0)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽨 􏽩

+ 􏽘

m

i�1
K3 t, ti( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 Ii u ti( 􏼁,

c
D

c

t u ti( 􏼁( 􏼁 − Ii(0, 0)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + Ii(0, 0)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽨 􏽩

≤ 􏽚
1

0
K1(t, s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 a1(t) + a2(t)( 􏼁‖u‖ + M0􏼂 􏼃ds + 􏽘

m

i�1
K2 t, ti( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 c1 + c2( 􏼁‖u‖ + M2􏼂 􏼃

+ 􏽘
m

i�1
K3 t, ti( 􏼁

���� b1 + b2( 􏼁‖u‖ + M1􏼂 􏼃,

c
D

c

t Tu( 􏼁(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 􏽚
1

0
H1(t, s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 f s, u(s),

c
D

c

t u(s)( 􏼁 − f(t, 0, 0)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +|f(t, 0, 0)|􏽨 􏽩ds

+ 􏽘
m

i�1
H2 t, ti( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 Ji u ti( 􏼁,

c
D

c

t u ti( 􏼁( 􏼁 − Ji(0, 0)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + Ji(0, 0)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽨 􏽩

≤ 􏽚
1

0
H1(t, s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 a1(t) + a2(t)( 􏼁‖u‖ + M0􏼂 􏼃ds

+ 􏽘
m

i�1
H2 t, ti( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 c1 + c2( 􏼁‖u‖ + M2􏼂 􏼃.

(56)

-en,

‖Tu‖≤ 􏽚
1

0
K1(t, s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + H1(t, s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽨 􏽩 a1(t) + a2(t)( 􏼁‖u‖ + M0􏼂 􏼃ds

+ 􏽘
m

i�1
K2 t, ti( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + H2 t, ti( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽨 􏽩 c1 + c2( 􏼁‖u‖ + M2􏼂 􏼃

+ 􏽘
m

i�1
K3 t, ti( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 b1 + b2( 􏼁‖u‖ + M1􏼂 􏼃≤Π‖u‖ + A′M0 + B′ ≤R3,

(57)

so TΩR3
⊂ ΩR3

. Furthermore, from hypotheses (C4) and (C5), for all
u, v ∈ ΩR3

, we have

|(Tu)(t) − (Tv)(t)|≤ 􏽚
1

0
K1(t, s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 f s, u(s),

c
D

c

t u(s)( 􏼁 − f s, v(s),
c
D

c

t v(s)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌ds

+ 􏽘

m

i�1
K2 t, ti( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 Ji u ti( 􏼁,

c
D

c

t u ti( 􏼁( 􏼁 − Ji v ti( 􏼁,
c
D

c

t v ti( 􏼁( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

+ 􏽘
m

i�1
K3 t, ti( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 Ii u ti( 􏼁,

c
D

c

t u ti( 􏼁( 􏼁 − Ii v ti( 􏼁,
c
D

c

t v ti( 􏼁( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
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≤ 􏽚
1

0
K1(t, s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 a1(t) + a2(t)( 􏼁‖u − v‖ds + 􏽘

m

i�1
K2 t, ti( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 c1 + c2( 􏼁‖u − v‖

+ 􏽘
m

i�1
K3 t, ti( 􏼁

���� b1 + b2( 􏼁‖u − v‖
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

c
D

c

t Tu( 􏼁(t) −
c
D

c

t Tv( 􏼁(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 􏽚
1

0
H1(t, s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 f s, u(s),

c
D

c

t u(s)( 􏼁 − f s, v(s),
c
D

c

t v(s)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌ds

+ 􏽘
m

i�1
H2 t, ti( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 Ji u ti( 􏼁,

c
D

c

t u ti( 􏼁( 􏼁 − Ji v ti( 􏼁,
c
D

c

t v ti( 􏼁( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ 􏽚
t

0
H1(t, s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 a1(t) + a2(t)( 􏼁‖u − v‖ds + 􏽘

m

i�1
H2 t, ti( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 c1 + c2( 􏼁‖u − v‖. (58)

-us,

‖Tu − Tv‖≤ 􏽚
1

0
K1(t, s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + H1(t, s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽨 􏽩 a1(t) + a2(t)( 􏼁‖u − v‖ds

+ 􏽘
m

i�1
K2 t, ti( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + H2 t, ti( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽨 􏽩 c1 + c2( 􏼁‖u‖ + 􏽘

m

i�1
K3 t, ti( 􏼁

���� b1 + b2( 􏼁‖u‖

≤Π‖u − v‖,

(59)

where Π< 1, so T is a contraction. Lemma 8 guarantees that
T has a unique fixed point in ΩR3

, which is the unique
solution of (1) in E. -is completes the proof. □

4. Examples

In (1), let q � 1.25, c � 0.15, a � 1, b � 2, t1 � 0.5, and k � 1
and then, we obtain the following fractional-order impulsive
differential equation:

c
D

1.25
t u(t) � f t, u(t),

c
D

0.15
t u(t)􏼐 􏼑, t ∈ (0, 1), t≠ 0.5,

Δu(0.5) � I1 u(0.5),
c
D

0.15
t u(0.5)􏼐 􏼑,

Δc
D

0.15
t u(0.5) � J1 u(0.5),

c
D

0.15
t u(0.5)􏼐 􏼑,

u(0) − 2u(1) � 0,

c
D

0.15
t u(0) − 2c

D
0.15
t u(1) � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(60)

By a direct observation, note that 0< a< b< +∞,

1< q< 2, 0< c< 1 with q − c> 1, so hypothesis (B1) is
satisfied.

Example 1. In (60), let

f t, u(t),
c
D

0.15
t u(t)􏼐 􏼑 �

e
t

50
+

(1 − t)
2
(u(t))

0.2

100
+

e
2t c

D
0.15
t u(t)􏼐 􏼑

0.3

200
,

Δu(0.5) � sin
1 + 2(u(0.5))

0.5
+ 3 c

D
0.15
t u(0.5)􏼐 􏼑

0.4

150
⎛⎝ ⎞⎠,

Δc
D

0.25
t u(0.5) � sin

1 + 3(u(0.5))
0.2

+ 2 c
D

0.15
t u(0.5)􏼐 􏼑

0.1

120
⎛⎝ ⎞⎠,

(61)
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so hypothesis (B2) is satisfied. Set cD0.15
t u(t) � v(t), and

then, we obtain

|f(t, u, v)|≤
e

t

50
+

(1 − t)
2

100
|u|

0.2
+

e
2t

200
|v|

0.3
� a0(t) + a1(t)|u|

0.2
+ a2(t)|v|

0.3
,

I1(u, v)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
1
150

+
1
75

|u|
0.5

+
1
50

|v|
0.4

� b0 + b1|u|
0.5

+ b2|v|
0.4

,

J1(u, v)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
1
120

+
1
40

|u|
0.2

+
1
60

|v|
0.1

� c0 + c1|u|
0.2

+ c2|v|
0.1

,

(62)

which implies that (C1) and (C2) are satisfied. -us, all the
hypotheses in-eorem 1 are satisfied, so (60) has at least one
solution in E.

Example 2. In (60), let

f t, u(t),
c
D

0.15
t u(t)􏼐 􏼑 �

(1 − s)
2

50
×

u(t) +
c
D

0.15
t u(t)

1 + u(t)+
c
D

0.15
t u(t)

,

Δu(0.5) �
1 + 2u(0.5) + 3c

D
0.15
t u(0.5)

150
,

Δc
D

0.15
t u(0.5) �

1 + 3u(0.5) + 2c
D

0.15
t u(0.5)

120
,

(63)

so hypothesis (B2) is satisfied. Set cD0.15
t u(t) � v(t), and

then, we obtain

|f(t, u, v)|≤
(1 − s)

2

50
� a0(t),

I1 u1, v1( 􏼁 − I1 u2, v2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
1
75

u1 − u2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
1
50

v1 − v2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

� b1 u1 − u2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + b2 v1 − v2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

J1 u1, v1( 􏼁 − J1 u2, v2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
1
40

u1 − u2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
1
60

v1 − v2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

� c1 u1 − u2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + c2 v1 − v2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

(64)

which implies that (C3) and (C4) are satisfied. Also, note that
Λ � 0.179707< 0.5. -en, all the hypotheses in -eorem 2
are satisfied, so (60) has at least one solution in E.

Example 3. In (60), let

f t, u(t),
c
D

0.15
t u(t)􏼐 􏼑 �

e
t

50
+

(1 − s)
2
u(t)

100
+

������
(1 − s)

􏽰
c
D

0.15
t u(t)

200
,

Δu(0.5) �
1 + 2u(0.5) + 3c

D
0.15
t u(0.5)

150
,

Δc
D

0.15
t u(0.5) �

1 + 3u(0.5) + 2c
D

0.15
t u(0.5)

120
,

(65)

so hypothesis (B2) is satisfied. Set cD0.15
t u(t) � v(t), and

then, we obtain

f t, u1, v1( 􏼁 − f t, u2, v2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
(1 − s)

2

100
u1 − u2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +

����
1 − s

√

200
v1 − v2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � a1(t) u1 − u2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + a2(t) v1 − v2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

I1 u1, v1( 􏼁 − I1 u2, v2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
1
75

u1 − u2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
1
50

v1 − v2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � b1 u1 − u2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + b2 v1 − v2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

J1 u1, v1( 􏼁 − J1 u2, v2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
1
40

u1 − u2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
1
60

v1 − v2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � c1 u1 − u2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + c2 v1 − v2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

(66)
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which implies that (C4) and (C5) are satisfied. Note that
Π � 0.787135< 1. -en, all the hypotheses in -eorem 3 are
satisfied, so (60) has a unique solution in E.

5. Conclusion

In this paper, we use fixed-point theorems to study
fractional-order impulsive differential equation (1) with
generalized periodic boundary value conditions. Very
little is known on fractional-order impulsive differential
equations with generalized periodic boundary value
conditions where nonlinear terms and impulse terms
depend on the unknown function and the lower-order
fractional derivative of the unknown function. Our main
results are obtained under some nonlinear and linear
growth conditions corresponding to the relevant linear
operators where the symmetry property of a Green’s
function is not required, so our results generalize and
improve works in the literature.
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,e purpose of this paper is to introduce the extragradient methods for solving split feasibility problems, generalized equilibrium
problems, and fixed point problems involved in nonexpansive mappings and pseudocontractive mappings. We establish the
results of weak and strong convergence under appropriate conditions. As applications of our three main theorems, when the
mappings and their domains take different types of cases, we can obtain nine iterative approximation theorems and corollas on
fixed points, variational inequality solutions, and equilibrium points.

1. Introduction

Let H1 and H2 be two real Hilbert spaces, and let C and Q be
two nonempty closed and convex subsets of H1 and H2,
respectively. Let A: H1⟶ H2 be a bounded linear oper-
ator with its adjoint A∗.,e split feasibility problem (SFP) is
to find a point x such that

x ∈ C, Ax ∈ Q. (1)

We denote the solution set of the split feasibility problem
(SFP) by

Ω � x ∈ C : Ax ∈ Q{ } � C∩A
− 1

Q. (2)

Problem (1) was first introduced by Censor and Elfving
[1] in the finite-dimensional spaces and further has been
studied by many researchers (see, for example, [2–6]) and
the references therein. To solve the SFP, Byrne [2, 7] first
introduced the so-called CQ algorithm as follows:

x0 ∈ H1,

xn+1 � PC I − λA
∗

I − PQ􏼐 􏼑A􏼐 􏼑xn, ∀n≥ 0,

⎧⎨

⎩ (3)

where 0< λ< 2/ρ(A∗A), PC denotes the projection onto C,
and ρ(A∗A) is the spectral radius of the self-adjoint operator
A∗A. Many authors continue to study the CQ algorithm in
its various forms (see, for example, [8–14]). ,e CQ algo-
rithm can be viewed from two different but equivalent ways:
optimization and fixed point [6]. From the view of opti-
mization point, x∗ ∈ Ω in (2) if and only if x∗ is a solution of
the following minimization problem with zero optimal value
minx∈Cf(x) ≔ (1/2)‖Ax − PQAx‖2, where f is a differen-
tiable convex function and has a Lipschitz gradient given by
∇f(x) � A∗(I − PQ)A, with Lipschitz constant L � ρ(A∗A).
,us, x∗ solves the (SFP) if and only if x∗ solves the var-
iational inequality problem of finding x∗ ∈ C such that
〈∇f(x∗), y − x∗〉≥ 0 for all y ∈ C.

Xu [6] considered the following Tikhonov regularized
problem:
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min
x∈C

fα(x) ≔
1
2

Ax − PQAx
����

����
2

+
1
2
α‖x‖

2
, (4)

where α> 0 is the regularization parameter. We observe that
the gradient

∇fα(x) � ∇f(x) + αI � A
∗

I − PQ􏼐 􏼑A + αI, (5)

is (α + ‖A‖2)-Lipschitz continuous and α-strongly mono-
tone. ,e fixed point approach method to solve the SFP is
based on the following observations. Let λ> 0, and assume
that x∗ ∈ Ω. ,en, Ax∗ ∈ Q, which implies that (I −

PQ)Ax∗ � 0, and thus, λA∗(I − PQ)Ax∗ � 0. Hence, we
have the fixed point equation (I − λA∗(I − PQ)A)x∗ � x∗.
Requiring that x∗ ∈ C, we consider the fixed point equation

PC(I − λ∇f)x
∗

� PC I − λA
∗

I − PQ􏼐 􏼑A􏼐 􏼑x
∗

� x
∗
. (6)

In [6], it is proved that the solutions of fixed point
equation (6) are precisely the solutions of the SFP.

Let A: C⟶ H be a nonlinear mapping and F be a
bifunction from C × C to R, where R is the set of real
numbers. ,e generalized equilibrium problem is to find
x∗ ∈ C such that F(x∗, y) + 〈Ax∗, y − x∗〉≥ 0, ∀y ∈ C. ,e
set of solutions is denoted by GEP(F, A). If A � 0, then
GEP(F, A) is denoted by EP(F). If F(x, y) � 0 for all
x, y ∈ C, then GEP(F, A) is denoted by VI(C, A) �

x∗ ∈ C: 〈Ax∗, y − x∗〉≥ 0, ∀y ∈ C􏼈 􏼉. ,is is the set of so-
lutions of the variational inequality for A (see, for example,
[15–21]). If C � H, then VI(H, A) � A− 1(0) where A− 1

(0) � x ∈ H: Ax � 0{ }.
In 2008, Takahashi and Takahashi [15] have suggested

the following iterative method. Let xn􏼈 􏼉 be a sequence
generated by

x1 ∈ C,

F yn, y( 􏼁 +〈Axn, y − yn〉 +
1
rn

〈y − yn, yn − xn〉 ≥ 0, ∀y ∈ C,

xn+1 � anxn + 1 − an( 􏼁T βnu + 1 − βn( 􏼁yn􏼂 􏼃, ∀n≥ 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

Under some appropriate conditions, they proved that
the sequence xn􏼈 􏼉 converges strongly to a point
PF(T)∩GEP(F,A)u.

Motivated and inspired by the above works, we will
investigate the weak and strong convergence methods for
solving the split feasibility problems, generalized equilib-
rium problems, and fixed point problems involved in
nonexpansive mappings and pseudocontractive mappings.
As applications of our three main theorems, when the
mappings and their domains take different types of cases, we
can obtain nine iterative approximation theorems and
corollaries on fixed points, variational inequality solutions,
and equilibrium points. So, our results in this paper gen-
eralize and improve upon the corresponding modern results
of many other authors.

2. Preliminaries

Let H be a real Hilbert space with the inner product 〈·, ·〉 and
norm ‖ · ‖ andC be a nonempty, closed, and convex subset of
H. Recall that a mappingA: C⟶ H is said to bemonotone
if 〈Au − Av, u − v〉≥ 0 for all u, v ∈ C [18, 19]. A mapping A

is said to be α-strongly monotone whenever there exists a
positive real number α such that 〈Au − Av, u − v〉≥
α‖u − v‖2 for all u, v ∈ C. A mapping A is said to be α-inverse
strongly monotone if there exists a positive real number α
such that 〈Au − Av, u − v〉≥ α‖Au − Av‖2 for all u, v ∈ C.
Recall that the classical variational inequality problem,
which we denote by VI(C, A), is to find x ∈ C such that
〈Ax, y − x〉≥ 0, for all y ∈ C [16, 17]. It is well known that,
for any x ∈ H, there exists a unique nearest point in C,
denoted by PC(x), such that ‖x − PC(x)‖ � infy∈C
‖x − y‖ �: d(x, C). It is well known that PC is a non-
expansive and monotone mapping from H onto C and
satisfy the following:

(1) 〈x − PCx, z − PCx〉≤ 0 for all x ∈ H, z ∈ C

(2) ‖x − z‖2 ≥ ‖x − PCx‖2 + ‖z − PCx‖2 for all
x ∈ H, z ∈ C

(3) ,e relation 〈PCx − PCz, x − z〉≥ ‖PCx − PCz‖2

holds for all z, x ∈ H

Let A be a monotone mapping of C into H. In the
context of the variational inequality problem, it is easy to see
from (2) that

p ∈ VI(C, A)⇔p � PC(p − λAp), ∀λ> 0. (8)

For solving the equilibrium problem, we assume that F

satisfies the following conditions:

(i) (A1)F(x, x) � 0 for all x ∈ C

(ii) (A2)F is monotone, that is, F(x, y) + F(y, x)≤ 0 for
all x, y ∈ C

(iii) (A3) for each x, y, z ∈ C, limt⟶0F(tz + (1 − t)x,

y)≤F(x, y)

(iv) (A4) for each x ∈ C, the function y⟶ F(x, y) is
convex and lower semicontinuous

If F(x, y) � 〈Ax, y − x〉 for every x, y ∈ C, we see that
the equilibrium problem is reduced to the variational in-
equality problem.

Lemma 1 (see [22]). LetC be a nonempty, closed, and convex
subset of H, and let F be a bifunction from C × C to R

satisfying (A1) − (A4). For r> 0 and x ∈ H, consider the
mapping Tr: H⟶ C defined by

Tr(x) � z ∈ C : F(z, y) +
1
r

〈y − z, z − x〉≥ 0, ∀y ∈ C􏼚 􏼛.

(9)

,en, Tr(x)≠∅ for all x ∈ H, Tr is single-valued, EP(F)

is closed and convex, F(Tr) � EP(F), and Tr is firmly
nonexpansive, that is, ‖Tr(x) − Tr(y)‖2 ≤ 〈Tr(x) −

Tr(y), x − y〉 for all x, y ∈ H.
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Lemma 2 (see [23]). Let C be a nonempty, closed, and convex
subset of H, F be a bifunction from C × C to R satisfying
(A1 − A4), ad AF be a multivalue mapping from H into itself
defined by AFx � z ∈ C: F(z, y)≤ 〈y − x, z〉, ∀y ∈ C􏼈 􏼉

whenever x ∈ C and AFx � ∅ otherwise. 4en, AF is a
maximal monotone operator with the domain Tr(x) �

(I + rAF)− 1x, for all x ∈ H and r> 0.

Definition 1. Let T: H⟶ H be a nonlinear operator.

(1) T is said to be L-Lipschitz whenever there exists L≥ 0
such that ‖Tu − Tv‖≤ L‖u − v‖, ∀u, v ∈ H. If L � 1,
we call T is nonexpansive, and T is said to be a
contraction if L< 1.

(2) T is said to be firmly nonexpansive if 2T − I is
nonexpansive and I is the identity mapping, or
equivalently, 〈Tu − Tv, u − v〉≥ ‖Tu − Tv‖2, ∀u, v ∈
H. Alternatively,T is firmly nonexpansive if and only
if T can be expressed as T � (1/2)(I + S), where
S: H⟶ H is nonexpansive.

(3) T is said to be α-averaged nonexpansive mapping, if
there exists a nonexpansive mapping S, such that
T � (1 − α)I + αS, where α ∈ (0, 1). ,us, firmly
nonexpansive mappings are (1/2)-averaged
mapping.

(4) T is said to be pseudocontractive if and only if
‖Tu − Tv‖2 ≤ ‖u − v‖2 + ‖(I − T)u− (I − T)v‖2, ∀u,

v ∈ H.
(5) T is said to be k-strictly pseudocontractive if and

only if there exists 0≤ k< 1, such that

‖Tu − Tv‖
2 ≤ ‖u − v‖

2
+ k‖(I − T)u − (I − T)v‖

2
,

∀u, v ∈ H.

(10)

Remark 1 (see [2]). Let T: C⟶ C be a given mapping:

(i) T is nonexpansive if and only if the complement
I − T is (1/2)-inverse strongly monotone.

(ii) If T is α-inverse strongly monotone, then for
c> 0, cT is (α/c)-inverse strongly monotone.

(iii) T is averaged if and only if the complement I − T is
α-inverse strongly monotone for some α> 1/2. In-
deed, for α ∈ (0, 1), T is α-averaged if and only if
I − T is (1/2α)-inverse strongly monotone.

We denote by F(T) the set of fixed points of T. Note that
every α-inverse strongly monotone mapping T is Lipschitz
and ‖Tu − Tv‖≤ (1/α)‖u − v‖. Every nonexpansive mapping
is a k-strictly pseudocontractive mapping and every
k-strictly pseudocontractive mapping is pseudocontractive.
Assume that T: C⟶ C is a strictly pseudocontractive. If
A � I − T, we easily find that A is (1 − k/2)-inverse strongly
monotone and F(T) � VI(C, A). Note that T is pseudo-
contractive if and only if A � I − T is monotone, and
F(T) � A− 1(0) � x ∈ H: Ax � 0{ }. ,ere are a lot works

associated with the fixed point algorithms for nonexpansive
mappings and pseudocontractive mappings (see, for ex-
ample, [24–28]).

A set-valued mapping T: H⟶ 2H is called monotone
if for all x, y ∈ H, f ∈ Tx, and h ∈ Ty imply 〈x −

y, f − h〉≥ 0. A monotone mapping T: H⟶ 2H is maxi-
mal if the graph G(T) of T is not properly contained in the
graph of any other monotone mappings. Also, a monotone
mapping T: H⟶ 2H is maximal if and only if, for
(x, f) ∈ H × H, 〈x − y, f − h〉≥ 0 for every (y, h) ∈ G(T)

implies f ∈ Tx. Let A: C⟶ H be an inverse strongly
monotone mapping and let NCu be the normal cone to C at
u ∈ C, i.e., NCu � v ∈ H: 〈u − w, v〉≥ 0, ∀w ∈ C{ }. Define

Tu ≔
Au + NCu, u ∈ C,

∅, u ∉ C.
􏼨 (11)

It is known that T is maximal monotone and 0 ∈ Tu if
and only if u ∈ VI(C, A) [29, 30].

Lemma 3 (see [8]). Let C and Q be nonempty, closed, and
convex subsets of real Hilbert spaces H1 and H2, respectively,
and let A: H1⟶ H2 be a bounded linear operator and
f: H1⟶ R be a continuous differentiable function. If α> 0
and λ ∈ (0, (1/‖A‖2)), then

(1) ∇fα(x) � ∇f(x) + αI � A∗(I − PQ)A + αI is
(1/α + ‖A‖2)-inverse strongly monotone mapping

(2) I − λ∇fα is (λ(α + ‖A‖2)/2)-averaged
(3) PC(I − λ∇fα) is ζ-averaged, with ζ � (2 + λ(α+

‖A‖2)/4)

(4) PC(I − λ∇fα) is nonexpansive

Lemma 4 (see [31]). Let H be a real Hilbert space, C be a
closed convex subset of H, and T: C⟶ C be a continuous
pseudocontractive mapping. 4en,

(i) F(T) is a closed convex subset of C

(ii) (I − T) is demiclosed at zero, i.e., if xn􏼈 􏼉 is a sequence
in C such that xn⟶ x and Txn − xn⟶ 0; as
n⟶∞, then x � T(x).

Lemma 5 (see [32]). Let H be a real Hilbert space. 4en, for
all xj ∈ H and aj ∈ [0, 1], for j � 1, 2, 3 such that
a1 + a2 + a3 � 1, the following equality holds:

a1x1 + a2x2 + a3x3
����

����
2

� a1 x1
����

����
2

+ a2 x2
����

����
2

+ a3 x3
����

����
2

− 􏽘
1≤i,j≤3

aiaj xi − xj

�����

�����
2
.

(12)

Lemma 6 (see [33]). Let C be a nonempty closed and convex
subset of a real Hilbert space H and T: C⟶ C be a non-
expansive mapping. 4en, I − T is demiclosed at zero.
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Lemma 7 (see [34]). Let xn􏼈 􏼉 and cn􏼈 􏼉 be sequences of
nonnegative real numbers satisfying xn+1 ≤xn + cn. If 􏽐

∞
n�0 cn

converges, then limn⟶∞xn exists.

Lemma 8 (see [35]). Let C be a nonempty closed convex
subset of a real Hilbert space H and let T: C⟶ C be a
k-strictly pseudocontraction with a fixed point. Define
S : C⟶ C by Sx � ax + (1 − a)Tx for each x ∈ C. 4en, as
a ∈ [k, 1), S is nonexpansive such that F(S) � F(T).

Lemma 9 (see [36]). Let xn􏼈 􏼉 be a sequence of nonnegative
real numbers satisfying xn+1 ≤ (1 − βn)xn + βncn + αn, where
βn􏼈 􏼉 ⊂ (0, 1) and cn􏼈 􏼉 is a sequence such that 􏽐

∞
n�0 βn �∞,

limsupn⟶∞cn ≤ 0 or 􏽐
∞
n�0 |cnβn|<∞, and 􏽐

∞
n�0 αn <∞

where αn ≥ 0. 4en, limn⟶∞xn � 0.

Lemma 10 (see [37]). Let xn􏼈 􏼉, εn􏼈 􏼉, and αn􏼈 􏼉 be the se-
quences in [0,∞) such that

xn+1 ≤xn + εn xn − xn− 1( 􏼁 + αn, ∀n≥ 0, (13)

􏽐
∞
n�0 αn <∞, and there exists a real number ε with

0≤ εn ≤ ε< 1 for all n≥ 0. 4en, the following holds:

(i) 􏽐
∞
n�0 [xn − xn− 1]+<∞, where [t]+ � max t, 0{ }

(ii) 4ere exists x∗ ∈ [0,∞) such that limn⟶∞xn � x∗

Lemma 11 (see [31]). Let H be a real Hilbert space. 4en, for
any given x, y ∈ H, the following inequality holds:
‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉.

3. Weak and Strong Convergence Results

Now, we are ready to state and prove some of our main
results in this section.

Theorem 1. Assume that C and Q are 2 nonempty, closed,
and convex subsets of real Hilbert spaces H1 and H2, re-
spectively. Let A: H1⟶ H2 be a bounded linear oper-
ator,f: H1⟶ R be a continuous differentiable function, F

be a bifunction from C × C to R satisfying (A1) − (A4), M be
an α-inverse strongly monotone mapping from C into H1,
S: C⟶ C be a nonexpansive mapping, and T: C⟶ C be
a strictly pseudocontractive mapping with constant k such
that Γ � F(T)∩F(S)∩Ω∩GEP(F, M)≠∅. Let xn􏼈 􏼉, yn􏼈 􏼉,
zn􏼈 􏼉, and vn􏼈 􏼉 be sequences generated by the following
extragradient algorithm:

x0 � x ∈ C,

F vn, y( 􏼁 +〈Mxn, y − vn〉 +
1
rn

〈y − vn, vn − xn〉 ≥ 0,

∀y ∈ C,

zn � PC I − λn∇fαn
􏼐 􏼑vn,

yn � PC vn − λn∇fαn
zn􏼐 􏼑,

xn+1 � anx0 + bnxn + cn 1 − βn( 􏼁Syn + βnTnzn( 􏼁, ∀n≥ 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

where Tn � (1 − cn)I + cnT and cn ∈ (k, 1). Suppose the
following conditions are satisfied:

(a) 􏽐
∞
n�0 αn <∞, limn⟶∞an � 0, 􏽐

∞
n�1 an �∞

(b) βn􏼈 􏼉 ⊂ [β∗1 , β∗2 ] for some β∗1 , β∗2 ∈ (0, 1)

(c) λn􏼈 􏼉 ⊂ [e, d] for some e, d ∈ (0, (1/‖A‖2))

(d) 0< an ≤ a′ < 1, 0< b≤ bn ≤ b′ < 1, 0< c≤ cn ≤ c′ < 1
and an + bn + cn � 1,

(e) 0< q1 ≤ rn ≤ q2 < 2α

4en, xn􏼈 􏼉 converges strongly to the point u � PΓ(x0)

provided limn⟶∞‖xn+1 − xn‖ � 0.

Proof. For any fixed u ∈ Γ, we find that u � PC(I − λ∇f)u

for λ ∈ (0, (1/‖A‖2)) and Su � u. We see from Lemma 8 that
Tn is nonexpansive and F(Tn) � F(T). It is observed that vn

can be rewritten as vn � Trn
(xn − rnMxn), n≥ 0. From

condition (e) and Lemma 1, we have

vn − u
����

����
2

� Trn
xn − rnMxn( 􏼁 − u

�����

�����
2

� Trn
xn − rnMxn( 􏼁 − Trn

u − rnMu( 􏼁
�����

�����
2

≤ xn − rnMxn( 􏼁 − u − rnMu( 􏼁
����

����
2

� xn − u
����

����
2

+ rn rn − 2α( 􏼁 Mxn − Mu
����

����
2

≤ xn − u
����

����
2
.

(15)

From (14), (15), and Lemma 3, it follows that

zn − u
����

���� � PC I − λn∇fαn
􏼐 􏼑vn − PC I − λn∇f( 􏼁u

�����

�����

≤ PC I − λn∇fαn
􏼐 􏼑vn − PC I − λn∇fαn

􏼐 􏼑u
�����

�����

+ PC I − λn∇fαn
􏼐 􏼑u − PC I − λn∇f( 􏼁u

�����

�����

≤ vn − u
����

���� + I − λn∇fαn
􏼐 􏼑u − I − λn∇f( 􏼁u
�����

�����

≤ vn − u
����

���� + λnαn‖u‖

≤ xn − u
����

���� + λnαn‖u‖.

(16)
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By the property of metric projection, we have

yn − u
����

����
2 ≤ vn − λn∇fαn

zn( 􏼁 − u
�����

�����
2

− vn − λn∇fαn
zn − yn

�����

�����
2

≤ vn − u
����

����
2

− vn − yn

����
����
2

+ 2λn〈∇fαn
zn( 􏼁, u − yn〉

≤ vn − u
����

����
2

− vn − yn

����
����
2

+ 2λn〈∇fαn
zn( 􏼁

− ∇fαn
(u), u − zn〉

+ 2λn 〈∇fαn
(u), u − zn〉􏼐

+ 2λn〈∇fαn
zn( 􏼁, zn − yn〉􏼑

≤ vn − u
����

����
2

− vn − yn

����
����
2

+ 2λn〈∇fαn
(u), u − zn〉

+ 2λn〈∇fαn
zn( 􏼁, zn − yn〉

� vn − u
����

����
2

− vn − yn

����
����
2

+ 2λn〈 αnI + ∇f( 􏼁u, u − zn〉

+ 2λn〈∇fαn
zn( 􏼁, zn − yn〉

≤ vn − u
����

����
2

− vn − yn

����
����
2

+ 2λnαn〈u, u − zn〉

+ 2λn〈∇fαn
zn( 􏼁, zn − yn〉

� vn − u
����

����
2

− vn − zn

����
����
2

− 2〈vn − zn, zn − yn〉

− zn − yn

����
����
2

+ 2λn αn〈u, u − zn〉 +〈∇fαn
zn( 􏼁, zn − yn〉􏽨 􏽩

� vn − u
����

����
2

− vn − zn

����
����
2

+ 2〈vn − λn∇fαn
zn( 􏼁 − zn, yn − zn〉

+ 2λnαn〈u, u − zn〉 − zn − yn

����
����
2
.

(17)

Furthermore, by the property of metric projection, we
have

〈vn − λn∇fαn
zn( 􏼁 − zn, yn − zn〉

�〈vn − λn∇fαn
vn( 􏼁 − zn, yn − zn〉

+〈λn∇fαn
vn( 􏼁 − λn∇fαn

zn( 􏼁, yn − zn〉

≤ 〈λn∇fαn
vn( 􏼁 − λn∇fαn

zn( 􏼁, yn − zn〉

≤ λn ∇fαn
vn( 􏼁 − ∇fαn

zn( 􏼁
�����

����� yn − zn

����
����

≤ λn αn +‖A‖
2

􏼐 􏼑 vn − zn

����
���� yn − zn

����
����.

(18)

Hence, we have

yn − u
����

����
2 ≤ vn − u

����
����
2

− vn − zn

����
����
2

+ 2〈vn − λn∇fαn
zn( 􏼁 − zn, yn − zn〉

− zn − yn

����
����
2

+ 2λnαn〈u, u − zn〉

≤ vn − u
����

����
2

− vn − zn

����
����
2

+ 2λn αn +‖A‖
2

􏼐 􏼑

· vn − zn

����
���� yn − zn

����
����

− zn − yn

����
����
2

+ 2λnαn‖u‖ u − zn

����
����

≤ vn − u
����

����
2

− vn − zn

����
����
2

+ λ2n αn +‖A‖
2

􏼐 􏼑
2

· vn − zn

����
����
2

+ yn − zn

����
����
2

− zn − yn

����
����
2

+ 2λnαn‖u‖ u − zn

����
����

� vn − u
����

����
2

+ λ2n αn +‖A‖
2

􏼐 􏼑
2

− 1􏼒 􏼓 vn − zn

����
����
2

+ 2λnαn‖u‖ u − zn

����
����

≤ vn − u
����

����
2

+ 2λnαn‖u‖ u − zn

����
����

≤ vn − u
����

����
2

+ 2λnαn‖u‖ vn − u
����

���� + λnαn‖u‖􏼐 􏼑

≤ vn − u
����

����
2

+ 4λnαn‖u‖ vn − u
����

���� + 4λ2nα
2
n‖u‖

2

� vn − u
����

���� + 2λnαn‖u‖􏼐 􏼑
2
.

(19)

So, from (15), we obtain

yn − u
����

����
2 ≤ xn − u

����
���� + 2λnαn‖u‖􏼐 􏼑

2
. (20)

We find from (14) and (16) and the last inequality that

xn+1 − u
����

���� � anx0 + bnxn + cn 1 − βn( 􏼁Syn + βnTnzn( 􏼁 − u
����

����

≤ an x0 − u
����

���� + bn xn − u
����

����

+ cn 1 − βn( 􏼁 Syn − u
����

���� + βn Tnzn − u
����

����􏽨 􏽩

≤ an x0 − u
����

���� + bn xn − u
����

����

+ cn 1 − βn( 􏼁 yn − u
����

���� + βn zn − u
����

����􏽨 􏽩

≤ an x0 − u
����

���� + bn xn − u
����

����

+ cn 1 − βn( 􏼁 xn − u
����

���� + 2λnαn‖u‖􏼐 􏼑

+ cnβn xn − u
����

���� + λnαn‖u‖􏼐 􏼑

≤ an x0 − u
����

���� + 1 − an( 􏼁 xn − u
����

���� + 2λnαn‖u‖

≤max x0 − u
����

����, xn − u
����

����􏽮 􏽯 + 2λnαn‖u‖

⋮

≤ x0 − u
����

���� + 2 d‖u‖ 􏽘
∞

i�0
αi.

(21)
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Consequently, from condition (a), we deduce that xn􏼈 􏼉 is
bounded and so there exist the sequences zn􏼈 􏼉, vn􏼈 􏼉, and

yn􏼈 􏼉. Put tn � (1 − βn)Syn + βnTnzn for all n≥ 0. We find
from (15), (16), (19), and Lemma 5 that

tn − u
����

����
2

� 1 − βn( 􏼁Syn + βnTnzn − u
����

����
2

≤ 1 − βn( 􏼁 Syn − u
����

����
2

+ βn Tnzn − u
����

����
2

− βn 1 − βn( 􏼁 Syn − Tnzn

����
����
2

≤ 1 − βn( 􏼁 yn − u
����

����
2

+ βn zn − u
����

����
2

− βn 1 − βn( 􏼁 Syn − Tnzn

����
����
2

≤ 1 − βn( 􏼁 xn − u
����

����
2

+ λ2n αn +‖A‖
2

􏼐 􏼑
2

− 1􏼒 􏼓 vn − zn

����
����
2

+ rn rn − 2α( 􏼁 Mxn − Mu
����

����
2

+ 2λnαn‖u‖ zn − u
����

����􏼔 􏼕

+ βn xn − u
����

���� + λnαn‖u‖􏼐 􏼑
2

− βn 1 − βn( 􏼁 Syn − Tnzn

����
����
2

≤ xn − u
����

����
2

+ λ2n αn +‖A‖
2

􏼐 􏼑
2

− 1􏼒 􏼓 vn − zn

����
����
2

+ rn rn − 2α( 􏼁 Mxn − Mu
����

����
2

+ 2λnαn‖u‖ zn − u
����

����

+ 2λnαn‖u‖ xn − u
����

���� + λ2nα
2
n‖u‖

2
− βn 1 − βn( 􏼁 Syn − Tnzn

����
����
2
.

(22)

From (14) and the last inequality, we conclude that

xn+1 − u
����

����
2

� anx0 + bnxn + cntn − u
����

����
2

≤ an x0 − u
����

����
2

+ bn xn − u
����

����
2

+ cn tn − u
����

����
2

− bncn xn − tn

����
����
2

≤ an x0 − u
����

����
2

+ bn xn − u
����

����
2

− bncn xn − tn

����
����
2

+ cn xn − u
����

����
2

+ λ2n αn +‖A‖
2

􏼐 􏼑
2

− 1􏼒 􏼓 vn − zn

����
����
2

+ rn rn − 2α( 􏼁 Mxn − Mu
����

����
2

+ 2λnαn‖u‖ zn − u
����

����􏼔

+ 2λnαn‖u‖ xn − u
����

���� + λ2nα
2
n‖u‖

2
− βn 1 − βn( 􏼁 Syn − Tnzn

����
����
2
􏼕

≤ an x0 − u
����

����
2

+ 1 − an( 􏼁 xn − u
����

����
2

− bncn xn − tn

����
����
2

+ cn λ2n αn +‖A‖
2

􏼐 􏼑
2

− 1􏼒 􏼓 vn − zn

����
����
2

+ 2λnαn‖u‖ zn − u
����

����

+ 2λnαn‖u‖ xn − u
����

���� + rn rn − 2α( 􏼁 Mxn − Mu
����

����
2

+ λ2nα
2
n‖u‖

2
− cnβn 1 − βn( 􏼁 Syn − Tnzn

����
����
2

≤ an x0 − u
����

����
2

+ xn − u
����

����
2

− bncn xn − tn

����
����
2

+ cn λ2n αn +‖A‖
2

􏼐 􏼑
2

− 1􏼒 􏼓 vn − zn

����
����
2

+ 2λnαn‖u‖ zn − u
����

����

+ 2λnαn‖u‖ xn − u
����

���� + rn rn − 2α( 􏼁 Mxn − Mu
����

����
2

+ λ2nα
2
n‖u‖

2
− cnβn 1 − βn( 􏼁 Syn − Tnzn

����
����
2
.

(23)
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,is yields that

c 1 − d
2 αn + ‖A‖

2
􏼐 􏼑

2
􏼒 􏼓 vn − zn

����
����
2

+ cb xn − tn

����
����
2

+ rn 2α − rn( 􏼁 Mxn − Mu
����

����
2

+ β1 1 − β2( 􏼁c Tnzn − Syn

����
����
2

≤ cn 1 − λ2n αn +‖A‖
2

􏼐 􏼑
2

􏼒 􏼓 vn − zn

����
����
2

+ cnbn xn − tn

����
����
2

+ rn 2α − rn( 􏼁 Mxn − Mu
����

����
2

+ cnβn 1 − βn( 􏼁 Tnzn − Syn

����
����
2

≤ an x0 − u
����

����
2

+ xn − u
����

����
2

− xn+1 − u
����

����
2

+ 2λnαn‖u‖ zn − u
����

���� + xn − u
����

���� + λnαn‖u‖􏼐 􏼑.

(24)

Since limn⟶∞‖xn+1 − xn‖ � 0, we have

xn − u
����

����
2

− xn+1 − u
����

����
2

≤ xn − u
����

���� − xn+1 − u
����

����􏼐 􏼑

· xn − u
����

���� + xn+1 − u
����

����􏼐 􏼑

≤ xn+1 − xn

����
���� xn − u

����
���� + xn+1 − u

����
����􏼐 􏼑⟶ 0,

as n⟶∞.

(25)

From (97) and the condition (a)–(d), we also obtain

lim
n⟶∞

Tnzn − Syn

����
���� � lim

n⟶∞
Mxn − Mu

����
���� � lim

n⟶∞
xn − tn

����
����

� lim
n⟶∞

vn − zn

����
���� � 0.

(26)

It is observe that

yn − zn

����
���� � PC vn − λn∇fαn

zn( 􏼁􏼐 􏼑 − PC vn − λn∇fαn
vn( 􏼁􏼐 􏼑

�����

�����

≤ vn − λn∇fαn
zn( 􏼁 − vn − λn∇fαn

vn( 􏼁􏼐 􏼑
�����

�����

� λn ∇fαn
zn( 􏼁 − ∇fαn

vn( 􏼁
�����

�����

≤ λn αn +‖A‖
2

􏼐 􏼑 zn − vn

����
����⟶ 0, as n⟶∞.

(27)

Using Lemma 1 and (14), we have

vn − u
����

����
2

� Trn
xn − rnMxn( 􏼁 − Trn

u − rnMu( 􏼁
�����

�����
2

≤ 〈 xn − rnMxn( 􏼁 − u − rnMu( 􏼁, vn − u〉

�
1
2

xn − rnMxn( 􏼁 − u − rnMu( 􏼁
����

����
2

+
1
2

vn − u
����

����
2

−
1
2

xn − rnMxn( 􏼁 − u − rnMu( 􏼁 − vn − u( 􏼁
����

����
2

≤
1
2

xn − u
����

����
2

+ vn − u
����

����
2

− xn − vn( 􏼁 − 2rn Mxn − Mu( 􏼁
����

����
2

􏼔 􏼕

�
1
2

xn − u
����

����
2

+ vn − u
����

����
2

− xn − vn

����
����
2

+ 2rn〈xn − vn, Mxn − Mu〉􏼔

− r
2
n Mxn − Mu
����

����
2
􏼕.

(28)
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It follows that

vn − u
����

����
2 ≤ xn − u

����
����
2

− xn − vn

����
����
2

+ 2rn〈xn − vn, Mxn − Mu〉.

(29)

From (19) and (29), we find that

tn − u
����

����
2

� 1 − βn( 􏼁Syn + βnTnzn − u
����

����
2

≤ 1 − βn( 􏼁 Syn − u
����

����
2

+ βn Tnzn − u
����

����
2

≤ 1 − βn( 􏼁 yn − u
����

����
2

+ βn zn − u
����

����
2

≤ 1 − βn( 􏼁 xn − u
����

����
2

+ 2λnαn‖u‖ u − zn

����
����􏼔 􏼕

+ βn xn − u
����

����
2

− xn − vn

����
����
2

+ 2rn〈xn − vn, Mxn − Mu〉􏼒 􏼓

≤ xn − u
����

����
2

+ 2λnαn‖u‖ u − zn

����
����

+ βn − xn − vn

����
����
2

+ 2rn〈xn − vn, Mxn − Mu〉􏼒 􏼓.

(30)

From (14) and the last inequality, we conclude that

xn+1 − u
����

����
2

� anx0 + bnxn + cntn − u
����

����
2

≤ an x0 − u
����

����
2

+ bn xn − u
����

����
2

+ cn tn − u
����

����
2

≤ an x0 − u
����

����
2

+ bn xn − u
����

����
2

+ cn xn − u
����

����
2

+ 2λnαn‖u‖ u − zn

����
���� + βn − xn − vn

����
����
2

+ 2rn〈xn − vn, Mxn − Mu〉􏼒 􏼓􏼔 􏼕

≤ an x0 − u
����

����
2

+ 1 − an( 􏼁 xn − u
����

����
2

− cnβn xn − vn

����
����
2

+ cn 2λnαn‖u‖ u − zn

����
���� + 2rn〈xn − vn, Mxn − Mu〉􏽨 􏼑.

(31)

,is yields that

cnβn xn − vn

����
����
2 ≤ an x0 − u

����
����
2

+ 1 − an( 􏼁 xn − u
����

����
2

− xn+1 − u
����

����
2

+ cn 2λnαn‖u‖ u − zn

����
���� + 2rn〈xn − vn, Mxn − Mu〉􏽨 􏽩.

(32)

It follows from condition (a) and limn⟶∞‖xn − xn+1‖ �

limn⟶∞‖Mxn − Mu‖ � 0 that

lim
n⟶∞

xn − vn

����
���� � 0. (33)

Since ‖xn − zn‖≤ ‖xn − vn‖ + ‖vn − zn‖, ‖Tnzn − zn‖≤
‖Tnzn − xn‖ + ‖xn − zn‖, ‖Tnzn − xn‖≤ ‖Tnzn − tn‖ + ‖tn−

xn‖, ‖Tnzn − tn‖ � (1 − βn)‖Tnzn − Syn‖, we obtain ‖Tnzn −

tn‖⟶ 0 as n⟶∞. Note that 1 − βn > 0. ,is implies that

lim
n⟶∞

Tzn − zn

����
���� � 0. (34)

Also, from ‖yn − xn‖≤ ‖yn − zn‖ + ‖zn − xn‖, ‖Syn−

xn‖≤ ‖Syn − tn‖ + ‖tn − xn‖, ‖Syn − tn‖ � βn‖Syn − Tnzn‖,
and ‖Syn − yn‖≤ ‖Syn − xn‖ + ‖xn − yn‖, we get

lim
n⟶∞

Syn − yn

����
���� � 0. (35)

Since ∇f � A∗(I − PQ)A is Lipschitz continuous, we
obtain limn⟶∞‖∇f(zn) − ∇f(yn)‖ � 0.

Next, we show that

limsup
n⟶∞
〈x0 − u, xn − u〉 ≤ 0, (36)

where u � PΓ(x0). To show it, choose a subsequence xnk
􏽮 􏽯 of

xn􏼈 􏼉 such that

limsup
n⟶∞
〈x0 − u, xn − u〉 � lim

k⟶∞
〈x0 − u, xnk

− u〉. (37)

Since xnk
􏽮 􏽯 is bounded, there exists a subsequence xnkj

􏼚 􏼛

of xnk
􏽮 􏽯, converges weakly to x∗. Without loss of generality,

we assume that xnk
⟶ x∗. Since ‖xn − vn‖⟶ 0,

‖xn − yn‖⟶ 0, ‖xn − zn‖⟶ 0 as n⟶∞, we obtain that
ynk
⇀x∗, vnk

⇀x∗, znk
⇀x∗. Since ynk

􏽮 􏽯 ⊂ C and C is closed
and convex, we obtain x∗ ∈ C. First, we show that
x∗ ∈ F(T)∩F(S). ,en, from (34), (35), Lemma 6, and
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Lemma 4, we have that x∗ ∈ F(T)∩F(S). We now show that
x∗ ∈ GEP(F, M). By vn � Trn

(xn − rnMxn), we know that

F vn, y( 􏼁 +〈Mxn, y − vn〉 +
1
rn

〈y − vn, vn − xn〉 ≥ 0,

∀y ∈ C.

(38)

It follows from (A2) that

〈Mxn, y − vn〉 +
1
rn

y − vn, vn − xn( 􏼁≥F y, vn( 􏼁, ∀y ∈ C.

(39)

Hence,

〈Mxnj
, y − vnj
〉 +〈y − vnj

,
vnj

− xnj

rnj

〉 ≥F y, vnj
􏼒 􏼓, ∀y ∈ C.

(40)

For t with 0< t≤ 1 and y ∈ C, let vt � ty + (1 − t)x∗.
Since y ∈ C and x∗ ∈ C, we obtain vt ∈ C. So, from (74), we
have

〈vt − vnj
, Mvt〉≥ vt − vnj

, Mvt􏼒 􏼓 − 〈vt − vnj
, Mxnj
〉

− vt − vnj
,
vnj

− xnj

rnj

⎛⎝ ⎞⎠ + F vt, vnj
􏼒 􏼓

� vt − vnj
, Mvt − Mvnj

􏼒 􏼓

+ vt − vnj
, Mvnj

− Mxnj
􏼒 􏼓

− vt − vnj
,
vnj

− xnj

rnj

⎛⎝ ⎞⎠ + F vt, vnj
􏼒 􏼓.

(41)

Since ‖vnj
− xnj

‖⟶ 0, we have ‖Mvnj
− Mxnj

‖⟶ 0.
Furthermore, from the inverse strongly monotonicity of M,
we have 〈vt − vnj

, Mvt − Mvnj
〉≥ 0. It follows from condi-

tion (A4) and (vnj
− xnj

/rnj
)⟶ 0 and vnj

⇀x∗, we have

〈vt − x
∗
, Mvt〉 ≥F vt, x

∗
( 􏼁, (42)

as j⟶∞. From (A1) and (A4), we have

0 � F vt, vt( 􏼁

≤ tF vt, y( 􏼁 +(1 − t)F vt, x
∗

( 􏼁

≤ tF vt, y( 􏼁 +(1 − t) vt − x
∗
, Mvt( 􏼁

� tF vt, y( 􏼁 +(1 − t)t y − x
∗
, Mvt( 􏼁,

(43)

and hence,

0≤F vt, y( 􏼁 +(1 − t)〈y − x
∗
, Mvt〉. (44)

Letting t⟶ 0, we have, for each y ∈ C,

F x
∗
, y( 􏼁 +〈y − x

∗
, Mx
∗〉 ≥ 0. (45)

,is implies that x∗ ∈ GEP(F, M). Next, we show that
x∗ ∈ Ω (1). Let

T′p ≔
∇f(p) + NCp, p ∈ C,

∅, p ∉ C.
􏼨 (46)

,en, T′ is maximal monotone and 0 ∈ T′p if and only if
p ∈ VI(C,∇f) [29]. Let G(T′) be the graph of T′, let
(p, v) ∈ G(T′). ,en, we have v ∈ T′(p) � ∇f(p) + NCp

and hence v − ∇f(p) ∈ NCp. ,erefore, we have 〈p − w, v −

∇f(p)〉≥ 0 for all w ∈ C. By the property of metric pro-
jection, from yn � PC(vn − λn∇fαn

zn) and p ∈ C, we have
〈p − yn, yn − (vn − λn∇fαn

zn)〉≥ 0, and hence,

〈p − yn,
yn − vn

λn

+ ∇fαn
zn〉 ≥ 0. (47)

From 〈p − w, v − ∇f(p)〉≥ 0 for all w ∈ C and ynk
∈ C,

we have

〈p − ynk
, v〉 ≥ 〈p − ynk

,∇f(p)〉

≥ 〈p − ynk
,∇f(p)〉 − 〈p − ynk

,
ynk

− vnk

λnk

+ ∇fαn
znk
〉

≥ 〈p − ynk
,∇f(p)〉 − 〈p − ynk

,
ynk

− vnk

λnk

+ ∇f znk
􏼐 􏼑〉 − αnk

〈p − ynk
, znk
〉

�〈p − ynk
,∇f(p) − ∇f ynk

􏼐 􏼑〉 − 〈p − ynk
,
ynk

− vnk

λnk

〉 − αnk
〈p − ynk

, znk
〉

+〈p − ynk
,∇f ynk

􏼐 􏼑 − ∇f znk
􏼐 􏼑〉

≥ 〈p − ynk
,∇f ynk

􏼐 􏼑 − ∇f znk
􏼐 􏼑〉 − 〈p − ynk

,
ynk

− vnk

λnk

〉 − αnk
〈p − ynk

, znk
〉.

(48)
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,us, we obtain 〈p − x∗, v〉≥ 0 as k⟶∞. Since T′ is
maximal monotone, we have x∗ ∈ T′

− 10, and hence,
x∗ ∈ VI(C,∇f). ,is implies x∗ ∈ Ω. ,is implies that
x∗ ∈ Γ. ,anks to (37), we arrive at

limsup
n⟶∞

x0 − u, xn − u〉 � lim
k⟶∞
〈x0 − u, xnk

− u〉

�〈x0 − u, x
∗

− u〉 ≤ 0.

(49)

Next, we show that xn⟶ u as n⟶∞. Observe that

tn − u
����

���� � 1 − βn( 􏼁 Syn − u( 􏼁 + βn Tnzn − u( 􏼁
����

����

≤ 1 − βn( 􏼁 Syn − u
����

���� + βn Tnzn − u
����

����

≤ 1 − βn( 􏼁 yn − u
����

���� + βn zn − u
����

����

≤ 1 − βn( 􏼁 xn − u
����

���� + 2λnαn‖u‖􏼐 􏼑

+ βn xn − u
����

���� + λnαn‖u‖􏼐 􏼑

≤ xn − u
����

���� + 2λnαn‖u‖.

(50)

With the help of (14), we obtain

xn+1 − u
����

����
2

�〈anx0 + bnxn + cntn − u, xn+1 − u〉

≤ an〈x0 − u, xn+1 − u〉 +〈bn xn − u( 􏼁 + cn tn − u( 􏼁, xn+1 − u〉

≤ an〈x0 − u, xn+1 − u〉 + bn xn − u
����

���� + cn tn − u
����

����􏼐 􏼑 xn+1 − u
����

����

≤ an〈x0 − u, xn+1 − u〉 + bn xn − u
����

���� + cn xn − u
����

���� + 2λnαn‖u‖􏼐 􏼑 xn+1 − u
����

����

≤ an〈x0 − u, xn+1 − u〉 + 1 − an( 􏼁 xn − u
����

���� + 2λnαn‖u‖􏼐 􏼑 xn+1 − u
����

����

≤ an〈x0 − u, xn+1 − u〉 + 2λnαn‖u‖ xn+1 − u
����

����

+
1 − an( 􏼁

2
xn − u

����
����
2

+ xn+1 − u
����

����
2

􏼒 􏼓,

(51)

which implies that

xn+1 − u
����

����
2 ≤ 1 − an( 􏼁 xn − u

����
����
2

+ 2an〈x0 − u, xn+1 − u〉

+ 4λnαn‖u‖ xn+1 − u
����

����.

(52)
It follows from condition (a) and Lemma 9 that

lim
n⟶∞

xn − u
����

���� � 0. (53)
,erefore, from ‖xn − zn‖⟶ 0, ‖xn − yn‖⟶ 0, we

can conclude that xn􏼈 􏼉, zn􏼈 􏼉, vn􏼈 􏼉, and yn􏼈 􏼉 converge
strongly to the same point u � PΓ(x0). ,e proof is
complete. □

In the following, we will discuss the weak convergence of
the sequence of the new iteration.

Theorem 2. Assume that C and Q are 2 nonempty, closed,
and convex subsets of real Hilbert spaces H1 and H2, re-
spectively. Let A: H1⟶ H2 be a bounded linear operator
andf: H1⟶ R be a continuous differentiable function.
Assume that C and Q are 2 nonempty, closed, and convex
subsets of real Hilbert spaces H1 and H2, respectively. Let
Ai: H1⟶ H2 bounded linear operators, fi: H1⟶ R be a
continuous differentiable function, i � 1, 2, and F be a
bifunction from C × C to R satisfying (A1) − (A4), M be an
α-inverse strongly monotone mapping from C into H1,
S: C⟶ C be a nonexpansive mapping, and T: C⟶ C be
a strictly pseudocontractive mapping with constant k such
that Γ � F(T)∩F(S)∩GEP(F, M)∩ (∩ 2i�1Ωi)≠∅. Suppose
xn􏼈 􏼉 and zn􏼈 􏼉 are sequences generated by the following
extragradient algorithm:
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x0 � x ∈ C,

zn � cnPC xn − λn∇f1αn
xn􏼐 􏼑 + 1 − cn( 􏼁PC xn − λn∇f2sn

xn􏼐 􏼑,

F vn, y( 􏼁 +〈Mznt, nyq − hvn〉 +
1
rn

〈y − tvnn, qvnh − zn〉 ≥ 0, ∀y ∈ C,

xn+1 � anxn + bn 1 − βn( 􏼁zn + βnTzn( 􏼁 + cn 1 − δn( 􏼁vn + δnSvn( 􏼁, ∀n≥ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(54)

Suppose the following conditions are satisfied:

(a) 􏽐
∞
n�0 αn <∞, 􏽐

∞
n�0 sn <∞

(b) βn􏼈 􏼉 ⊂ [k, r] for some r, k ∈ (0, 1), λn􏼈 􏼉 ⊂ [e, d] for
some e, d ∈ (0, (1/‖A‖2))

(c) cn􏼈 􏼉 ⊂ [t, m] for some t, m ∈ (0, 1), δn􏼈 􏼉 ⊂ [δ∗1 , δ∗2 ]

for some δ∗1 , δ∗2 ∈ (0, 1)

(d) 0< a≤ an ≤ a′ < 1, 0< b≤ bn ≤ b′ < 1 and
0< c≤ cn ≤ c′ < 1 and an + bn + cn � 1

(e) 0< q1 ≤ rn ≤ q2 < 2α

4en, xn􏼈 􏼉 converges weakly to an element u ∈ Γ.

Proof. For any fixed u ∈ Γ, we find that u � PC(I − λ∇f)u

for λ ∈ (0, (1/‖A‖2)) and Su � u. Let yn � PC(I −

λn∇f1αn
)xn, tn � PC(I − λn∇f2sn

)xn, and Tn � (1 −

βn)I + βnT. We see from Lemma 8 that Tn is nonexpansive
and F(Tn) � F(T). From (54) and Lemma 3, it follows that

yn − u
����

����≤ PC I − λn∇f1αn
􏼐 􏼑xn − PC I − λn∇f1αn

􏼐 􏼑u
�����

�����

+ PC I − λn∇f1αn
􏼐 􏼑u − PC I − λn∇f1( 􏼁u

�����

�����

≤ xn − u
����

���� + I − λn∇f1αn
􏼐 􏼑u − I − λn∇f1( 􏼁u
�����

�����

≤ xn − u
����

���� + λnαn‖u‖.

(55)

In a similar way, we have

tn − u
����

����≤ PC I − λn∇f2sn
􏼐 􏼑xn − PC I − λn∇f2sn

􏼐 􏼑u
�����

�����

+ PC I − λn∇f2sn
􏼐 􏼑u − PC I − λn∇f2( 􏼁u

�����

�����

≤ xn − u
����

���� + I − λn∇f2sn
􏼐 􏼑u − I − λn∇f2( 􏼁u
�����

�����

≤ xn − u
����

���� + λnsn‖u‖.

(56)

,is implies that

zn − u
����

����≤ cn yn − u
����

���� + 1 − cn( 􏼁 tn − u
����

����

≤ cn xn − u
����

���� + λnαn‖u‖􏼐 􏼑 + 1 − cn( 􏼁

· xn − u
����

���� + λnsn‖u‖􏼐 􏼑

≤ xn − u
����

���� + λn‖u‖ αn + sn( 􏼁.

(57)

Observe that vn can be rewritten as
vn � Trn

(zn − rnMzn), n≥ 0. From (e) and Lemma 1, we
have

vn − u
����

����
2

� Trn
zn − rnMzn( 􏼁 − u

�����

�����
2

� Trn
zn − rnMzn( 􏼁 − Trn

u − rnMu( 􏼁􏼐 􏼑
2

≤ zn − rnMzn( 􏼁 − u − rnMu( 􏼁
����

����
2

� zn − u
����

����
2

+ rn rn − 2α( 􏼁 Mzn − Mu
����

����
2

≤ zn − u
����

����
2

≤ xn − u
����

���� + λn‖u‖ αn + sn( 􏼁.

(58)

We find from (54) and the last inequality that

xn+1 − u
����

����≤ an xn − u
����

���� + bn Tnzn − u
����

����

+ cn 1 − δn( 􏼁 vn − u
����

���� + δn Svn − u
����

����􏼐 􏼑

≤ an xn − u
����

���� + 1 − an( 􏼁 zn − u
����

����

≤ an xn − u
����

���� + 1 − an( 􏼁 xn − u
����

���� + λn‖u‖ αn + sn( 􏼁􏼐 􏼑

≤ xn − u
����

���� + λn‖u‖ αn + sn( 􏼁.

(59)

Consequently, from condition (a) and Lemma 7, we
deduce that, for every u ∈ Γ, limn⟶∞‖xn − u‖ exists and the
sequences xn􏼈 􏼉 and zn􏼈 􏼉 are bounded. It follows from (55),
(56), and Lemma 5 that
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zn − u
����

����
2 ≤ cn yn − u

����
����
2

+ 1 − cn( 􏼁 tn − u
����

����
2

− cn 1 − cn( 􏼁 yn − tn

����
����
2

≤ cn xn − u
����

���� + λnαn‖u‖􏼐 􏼑
2

+ 1 − cn( 􏼁 xn − u
����

���� + λnsn‖u‖􏼐 􏼑
2

− cn 1 − cn( 􏼁 yn − tn

����
����
2

≤ cn 2 xn − u
����

����
2

+ 2λ2nα
2
n‖u‖

2
􏼒 􏼓 + 1 − cn( 􏼁 2 xn − u

����
����
2

+ 2λ2ns
2
n‖u‖

2
􏼒 􏼓

− cn 1 − cn( 􏼁 yn − tn

����
����
2

≤ xn − u
����

����
2

+ 2λ2n‖u‖
2 α2n + s

2
n􏼐 􏼑 − cn 1 − cn( 􏼁 yn − tn

����
����
2
.

(60)

Let Snvn � (1 − δn)vn + δnSvn. We find from (54), (58),
and Lemma 5 and the last inequality that

xn+1 − u
����

����
2

� anxn + bnTnzn + cn 1 − δn( 􏼁vn + δnSvn( 􏼁 − u
����

����
2

≤ an xn − u
����

����
2

+ bn Tnzn − u
����

����
2

+ cn 1 − δn( 􏼁 vn − u
����

����
2

+ δn Svn − u
����

����
2

􏼔

− 1 − δn( 􏼁δn vn − Svn

����
����
2
􏼕 − anbn xn − Tnzn

����
����
2

− ancn xn − Snvn

����
����
2

≤ an xn − u
����

����
2

+ 1 − an( 􏼁 zn − u
����

����
2

+ rn rn − 2α( 􏼁 Mzn − Mu
����

����
2

− cn 1 − δn( 􏼁δn vn − Svn

����
����
2

− anbn xn − Tnzn

����
����
2

− ancn xn − Snvn

����
����
2

≤ an xn − u
����

����
2

+ 1 − an( 􏼁 xn − u
����

����
2

+ 2λ2n‖u‖
2 α2n + s

2
n􏼐 􏼑􏼔

− cn 1 − cn( 􏼁 yn − tn

����
����
2
􏼕 − cn 1 − δn( 􏼁δn vn − Svn

����
����
2

− anbn xn − Tnzn

����
����
2

− ancn xn − Snvn

����
����
2

+ rn rn − 2α( 􏼁 Mzn − Mu
����

����
2

≤ xn − u
����

����
2

+ 2λ2n‖u‖
2 α2n + s

2
n􏼐 􏼑 − 1 − an( 􏼁cn 1 − cn( 􏼁 yn − tn

����
����
2

− cn 1 − δn( 􏼁δn vn − Svn

����
����
2

− anbn xn − Tnzn

����
����
2

− ancn xn − Snvn

����
����
2

+ rn rn − 2α( 􏼁 Mzn − Mu
����

����
2
.

(61)

From conditions (b)–(e) and (61), we also obtain
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1 − a′( 􏼁t(1 − m) yn − tn

����
����
2

+ ab xn − Tnzn

����
����
2

+ c 1 − δ2( 􏼁δ1 vn − Svn

����
����
2

+ ac xn − Snvn

����
����
2

+ rn 2α − rn( 􏼁 Mzn − Mu
����

����
2

≤ 1 − an( 􏼁cn 1 − cn( 􏼁 yn − tn

����
����
2

+ cn 1 − δn( 􏼁δn vn − Svn

����
����
2

+ anbn xn − Tnzn

����
����
2

+ ancn xn − Snvn

����
����
2

+ rn 2α − rn( 􏼁 Mzn − Mu
����

����
2

≤ xn − u
����

����
2

− xn+1 − u
����

����
2

+ 2λ2n‖u‖
2 α2n + s

2
n􏼐 􏼑.

(62)

Since limn⟶∞‖xn − u‖ exists and 􏽐
∞
n�0(αn + sn)<∞, we

see that

lim
n⟶∞

vn − Svn

����
���� � lim

n⟶∞
xn − Tnzn

����
���� � lim

n⟶∞
yn − tn

����
����

� lim
n⟶∞

xn − Snvn

����
���� � lim

n⟶∞
Mzn − Mu

����
���� � 0.

(63)

Since ‖xn+1 − xn‖≤ bn‖xn − Tnzn‖ + cn‖xn − Snvn‖ and
‖zn − yn‖≤ ‖yn − tn‖, ‖zn − tn‖≤ ‖yn − tn‖, it follows that

lim
n⟶∞

xn+1 − xn

����
���� � lim

n⟶∞
yn − zn

����
���� � lim

n⟶∞
tn − zn

����
���� � 0.

(64)

Using Lemma 1 and (58), we have

vn − u
����

����
2

� Trn
zn − rnMzn( 􏼁 − Trn

u − rnMu( 􏼁
�����

�����
2

≤ 〈 zn − rnMzn( 􏼁 − u − rnMu( 􏼁, vn − u〉

�
1
2

zn − rnMzn( 􏼁 − u − rnMu( 􏼁
����

����
2

+
1
2

vn − u
����

����
2

−
1
2

zn − rnMzn( 􏼁 − u − rnMu( 􏼁 − vn − u( 􏼁
����

����
2

≤
1
2

zn − u
����

����
2

+ vn − u
����

����
2

− zn − vn( 􏼁 − 2rn Mzn − Mu( 􏼁
����

����
2

􏼔 􏼕

�
1
2

zn − u
����

����
2

+ vn − u
����

����
2

− zn − vn

����
����
2

+ 2rn〈zn − vn, Mzn − Mu〉 − r
2
n Mxn − Mu
����

����
2

􏼔 􏼕.

(65)

It follows that

vn − u
����

����
2 ≤ zn − u

����
����
2

− zn − vn

����
����
2

+ 2rn〈zn − vn, Mzn − Mu〉.
(66)

We find from (54) and (66) that

xn+1 − u
����

����
2

� anxn + bnTnzn + cn 1 − δn( 􏼁vn + δnSvn( 􏼁 − u
����

����
2

≤ an xn − u
����

����
2

+ bn Tnzn − u
����

����
2

+ cn 1 − δn( 􏼁 vn − u
����

����
2

+ δn Svn − u
����

����
2

􏼔 􏼕

≤ an xn − u
����

����
2

+ 1 − an( 􏼁 zn − u
����

����
2

− cn zn − vn

����
����
2

+ 2rn〈zn − vn, Mzn − Mu〉

≤ an xn − u
����

����
2

+ 1 − an( 􏼁 xn − u
����

����
2

+ 2λ2n‖u‖
2 α2n + s

2
n􏼐 􏼑􏼔 􏼕

− cn zn − vn

����
����
2

+ 2rn〈zn − vn, Mzn − Mu〉

≤ xn − u
����

����
2

+ 1 − an( 􏼁2λ2n‖u‖
2 α2n + s

2
n􏼐 􏼑

− cn zn − vn

����
����
2

+ 2rn〈zn − vn, Mzn − Mu〉.

(67)
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,is yields that

zn − vn

����
����
2 ≤ xn − u

����
����
2

− xn+1 − u
����

����
2

+ 2λ2n‖u‖
2 α2n + s

2
n􏼐 􏼑

+ 2rn〈zn − vn, Mzn − Mu〉.
(68)

It follows from condition (a), limn⟶∞‖Mzn − Mu‖ � 0,
and limn⟶∞‖xn − u‖ exists that

lim
n⟶∞

zn − vn

����
���� � 0. (69)

Also, from ‖Tnzn − zn‖≤ ‖Tnzn − xn‖ + ‖xn − zn‖, ‖vn−

xn‖≤ ‖vn − Snvn‖ + ‖xn − Snvn‖, and ‖vn − Snvn‖≤ ‖vn − Svn‖,
we get

lim
n⟶∞

Tnzn − zn

����
���� � lim

n⟶∞
vn − xn

����
���� � 0. (70)

Note that ‖xn − yn‖≤ ‖xn − zn‖ + ‖zn − yn‖, ‖xn − tn‖≤
‖xn − zn‖ + ‖zn − tn‖, βn‖Tzn − zn‖ � ‖Tnzn − zn‖. ,is im-
plies that

lim
n⟶∞

xn − yn

����
���� � lim

n⟶∞
xn − tn

����
���� � lim

n⟶∞
Tzn − zn

����
���� � 0.

(71)

Since ∇f � A∗(I − PQ)A is Lipschitz continuous, we
obtain limn⟶∞‖∇f(xn) − ∇f(yn)‖ � 0.

Since xn􏼈 􏼉 is bounded, there exists a subsequence xnk
􏽮 􏽯

of xn􏼈 􏼉 such that it converges weakly to some x∗. Since
‖xn − yn‖⟶ 0, ‖xn − zn‖⟶ 0, and ‖xn − vn‖⟶ 0 as
n⟶∞, we obtain that ynk

⇀x∗, znk
⇀x∗, and vnk

⇀x∗.
Since ynk

􏽮 􏽯 ⊂ C and C is closed and convex, we obtain
x∗ ∈ C. First, we show that x∗ ∈ F(T)∩F(S). ,en, from
(63), (71), Lemma 6, and Lemma 4, we have that
x∗ ∈ F(T)∩F(S). We now show x∗ ∈ GEP(F, M). By
vn � Trn

(zn − rnMzn), we know that

F vn, y( 􏼁 +〈Mzn, y − vn〉 +
1
rn

〈y − vn, vn − zn〉 ≥ 0, ∀y ∈ C.

(72)

It follows from (A2) that

〈Mzn, y − vn〉 +
1
rn

〈y − vn, vn − xn〉 ≥F y, vn( 􏼁, ∀y ∈ C.

(73)

Hence,

〈Mznj
, y − vnj
〉 +〈y − vnj

,
vnj

− znj

rnj

〉 ≥F y, vnj
􏼒 􏼓, ∀y ∈ C.

(74)

For t with 0< t≤ 1 and y ∈ C, let vt � ty + (1 − t)x∗.
Since y ∈ C and x∗ ∈ C, we obtain vt ∈ C. So, from (74), we
have

〈vt − vnj
, Mvt〉 ≥ 〈vt − vnj

, Mvt〉 − 〈vt − vnj
, Mznj
〉

− 〈vt − vnj
,
vnj

− znj

rnj

〉 + F vt, vnj
􏼒 􏼓

�〈vt − vnj
, Mvt − Mvnj

〉

+〈vt − vnj
, Mvnj

− Mznj
〉

− 〈vt − vnj
,
vnj

− znj

rnj

〉 + F vt, vnj
􏼒 􏼓.

(75)

Since ‖vnj
− znj

‖⟶ 0, we have ‖Mvnj
− Mznj

‖⟶ 0.
Furthermore, from the inverse strongly monotonicity of M,
we have 〈vt − vnj

, Mvt − Mvnj
〉≥ 0. It follows from A4 and

(vnj
− znj

/rnj
)⟶ 0 and vnj

⇀x∗, and we have

〈vt − v, Mvt〉≥F vt, x
∗

( 􏼁, (76)

as j⟶∞. From (A1) and (A4), we have

0 � F vt, vt( 􏼁

≤ tF vt, y( 􏼁 +(1 − t)F vt, x
∗

( 􏼁

≤ tF vt, y( 􏼁 +(1 − t)〈vt − x
∗
, Mvt〉

� tF vt, y( 􏼁 +(1 − t)t〈y − x
∗
, Mvt〉,

(77)

and hence,

0≤F vt, y( 􏼁 +(1 − t)〈y − x
∗
, Mvt〉. (78)

Letting t⟶ 0, we have, for each y ∈ C,

F x
∗
, y( 􏼁 +〈y − x

∗
, Mx
∗〉 ≥ 0. (79)

,is implies that x∗ ∈ GEP(F, M). Next, we show that
x∗ ∈ ∩ 2i�1Ωi (1). For i � 1, 2, let

Ti
′p ≔
∇fi(p) + NCp, p ∈ C,

∅, p ∉ C.
􏼨 (80)

,en, Ti
′ is maximal monotone and 0 ∈ Ti

′p if and only if
p ∈ VI(C,∇fi) [29]. Let G(Ti

′) be the graph of Ti
′, and

(p, v) ∈ G(Ti
′). ,en, we have v ∈ Ti

′(p) � ∇fi(p) + NCp,
and hence, v − ∇fi(p) ∈ NCp. ,erefore, we have
〈p − w, v − ∇fi(p)〉≥ 0 for all w ∈ C. By the property of
metric projection, from yn � PC(xn − λn∇f1αn

xn) and
p ∈ C, we have 〈p − yn, yn − (xn − λn∇f1αn

xn)〉≥ 0, and
hence,

〈p − yn,
yn − xn

λn

+ ∇f1αn
xn〉≥ 0. (81)

From 〈p − w, v − ∇f1(p)〉≥ 0 for all w ∈ C and ynk
∈ C,

we have
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〈p − ynk
, v〉 ≥ 〈p − ynk

,∇f1(p)〉

≥ 〈p − ynk
,∇f1(p)〉 − 〈p − ynk

,
ynk

− xnk

λnk

+ ∇f1αn
xnk
〉

≥ 〈p − ynk
,∇f1(p)〉 − 〈p − ynk

,
ynk

− xnk

λnk

+ ∇f1 xnk
􏼐 􏼑〉 − αnk

〈p − ynk
, xnk
〉

�〈p − ynk
,∇f1(p) − ∇f1 ynk

􏼐 􏼑〉 − 〈p − ynk
,
ynk

− xnk

λnk

〉 − αnk
〈p − ynk

, xnk
〉

+〈p − ynk
,∇f1 ynk

􏼐 􏼑 − ∇f1 xnk
􏼐 􏼑〉

≥ 〈p − ynk
,∇f1 ynk

􏼐 􏼑 − ∇f1 xnk
􏼐 􏼑〉 − 〈p − ynk

,
ynk

− xnk

λnk

〉 − αnk
〈p − ynk

, xnk
〉.

(82)

,us, we obtain 〈p − x∗, v〉≥ 0 as k⟶∞. Since T1′ is
maximal monotone, we have x∗ ∈ T′− 11 0, and hence,
x∗ ∈ VI(C,∇f1). Similarly, we have x∗ ∈ VI(C,∇f2). ,is
implies x∗ ∈ Ωi for i � 1, 2. ,is implies that x∗ ∈ Γ.
,erefore, from ‖xn − zn‖⟶ 0, we can conclude that xn􏼈 􏼉,
zn􏼈 􏼉, and vn􏼈 􏼉 converge weakly to a point u ∈ Γ. ,e proof is
complete. □

Theorem 3. Let C and Q be nonempty, closed, and convex
subsets of real Hilbert spaces H1 and H2, respectively. Let
A: H1⟶ H2 be a bounded linear operator, S: C⟶ C be a
nonexpansive map, and T: C⟶ C be a strictly pseudo-
contractive mapping with constant k such that
Γ � F(T)∩F(S)∩Ω≠∅. Suppose xn􏼈 􏼉, vn􏼈 􏼉, and zn􏼈 􏼉 are
sequences generated by the following extragradient algorithm:

x0 � x ∈ C,

vn � xn + εn xn − xn− 1( 􏼁,

zn � PC I − λn∇fαn
􏼐 􏼑vn,

xn+1 � anxn + bn 1 − βn( 􏼁zn + βnTzn( 􏼁

+ cnSPC vn − λn∇fαn
zn􏼐 􏼑, ∀n≥ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(83)

Suppose the following conditions are satisfied:

(a) 􏽐
∞
n�0 αn <∞, 􏽐

∞
n�0 bn <∞

(b) βn􏼈 􏼉 ⊂ [k, r] for some r, k ∈ (0, 1)

(c) λn􏼈 􏼉 ⊂ [e, d] for some e, d ∈ (0, (1/‖A‖2))

(d) 0< a≤ an ≤ a′ < 1, 0< bn ≤ b′ < 1, 0< c≤ cn ≤ c′ < 1
and an + bn + cn � 1

(e) εn􏼈 􏼉 ⊂ [0, ε] and ε ∈ [0, 1), 􏽐
∞
n�0 εn‖xn − xn− 1‖<∞

4en, xn􏼈 􏼉 converges weakly to an element u ∈ Γ.

Proof. For any fixed u ∈ Γ, we find that u � PC(I − λ∇f)u

for λ ∈ (0, (1/‖A‖2)) and Su � u. Putting Tn � (1−

βn)I + βnT, we see from Lemma 8 that Tn is nonexpansive
and F(Tn) � F(T). We observe that

vn − u
����

���� � xn + εn xn − xn− 1( 􏼁 − u
����

����

≤ xn − u
����

���� + εn xn − xn− 1
����

����.
(84)

From (83) and Lemma 3, it follows that

zn − u
����

���� � PC I − λn∇fαn
􏼐 􏼑vn − PC I − λn∇f( 􏼁u

�����

�����

≤ PC I − λn∇fαn
􏼐 􏼑vn − PC I − λn∇fαn

􏼐 􏼑u
�����

�����

+ PC I − λn∇fαn
􏼐 􏼑u − PC I − λn∇f( 􏼁u

�����

�����

≤ vn − u
����

���� + I − λn∇fαn
􏼐 􏼑u − I − λn∇f( 􏼁u
�����

�����

≤ vn − u
����

���� + λnαn‖u‖.

(85)

Put yn � PC(vn − λn∇fαn
(zn)) for all n≥ 0. ,en, by

property of metric projection, we have
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yn − u
����

����
2 ≤ vn − λn∇fαn

zn( 􏼁 − u
�����

�����
2

− vn − λn∇fαn
zn − yn

�����

�����
2

≤ vn − u
����

����
2

− vn − yn

����
����
2

+ 2λn〈∇fαn
zn( 􏼁, u − yn〉

≤ vn − u
����

����
2

− vn − yn

����
����
2

+ 2λn〈∇fαn
zn( 􏼁 − ∇fαn

(u), u − zn〉

+ 2λn 〈∇fαn
(u), u − zn〉 +〈∇fαn

zn( 􏼁, zn − yn〉􏼐 􏼑

≤ vn − u
����

����
2

− vn − yn

����
����
2

+ 2λn〈∇fαn
(u), u − zn〉

+ 2λn〈∇fαn
zn( 􏼁, zn − yn〉

≤ vn − u
����

����
2

− vn − yn

����
����
2

+ 2λn〈 αnI + ∇f( 􏼁u, u − zn〉

+ 2λn〈∇fαn
zn( 􏼁, zn − yn〉

≤ vn − u
����

����
2

− vn − yn

����
����
2

+ 2λnαn〈u, u − zn〉

+ 2λn〈∇fαn
zn( 􏼁, zn − yn〉

� vn − u
����

����
2

− vn − zn

����
����
2

− 2〈vn − zn, zn − yn〉 − zn − yn

����
����
2

+ 2λn αn〈u, u − zn〉 +〈∇fαn
zn( 􏼁, zn − yn〉􏽨 􏽩

� vn − u
����

����
2

− vn − zn

����
����
2

+ 2〈vn − λn∇fαn
zn( 􏼁 − zn, yn − zn〉

+ 2λnαn〈u, u − zn〉 − zn − yn

����
����
2
.

(86)

Furthermore, by property of metric projection, we have

〈vn − λn∇fαn
zn( 􏼁 − zn, yn − zn〉

�〈vn − λn∇fαn
vn( 􏼁 − zn, yn − zn〉 +〈λn∇fαn

vn( 􏼁 − λn∇fαn
zn( 􏼁, yn − zn〉

≤ 〈λn∇fαn
vn( 􏼁 − λn∇fαn

zn( 􏼁, yn − zn〉

≤ λn ∇fαn
vn( 􏼁 − ∇fαn

zn( 􏼁
�����

����� yn − zn

����
����

≤ λn αn +‖A‖
2

􏼐 􏼑 vn − zn

����
���� yn − zn

����
����.

(87)

Hence, we have
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yn − u
����

����
2 ≤ vn − u

����
����
2

− vn − zn

����
����
2

+ 2〈vn − λn∇fαn
zn( 􏼁 − zn, yn − zn〉

− zn − yn

����
����
2

+ 2λnαn〈u, u − zn〉

≤ vn − u
����

����
2

− vn − zn

����
����
2

+ 2λn αn +‖A‖
2

􏼐 􏼑 vn − zn

����
���� yn − zn

����
����

− zn − yn

����
����
2

+ 2λnαn‖u‖ u − zn

����
����

≤ vn − u
����

����
2

− vn − zn

����
����
2

+ λ2n αn +‖A‖
2

􏼐 􏼑
2

vn − zn

����
����
2

+ yn − zn

����
����
2

− zn − yn

����
����
2

+ 2λnαn‖u‖ u − zn

����
����

� vn − u
����

����
2

+ λ2n αn +‖A‖
2

􏼐 􏼑
2

− 1􏼒 􏼓 vn − zn

����
����
2

+ 2λnαn‖u‖ u − zn

����
����

≤ vn − u
����

����
2

+ 2λnαn‖u‖ u − zn

����
����

≤ vn − u
����

����
2

+ 2λnαn‖u‖ vn − u
����

���� + λnαn‖u‖􏼐 􏼑

≤ vn − u
����

����
2

+ 4λnαn‖u‖ vn − u
����

���� + 4λ2nα
2
n‖u‖

2

� vn − u
����

���� + 2λnαn‖u‖􏼐 􏼑
2
.

(88)

We find from (83), (84), and (85) and the last inequality
that

xn+1 − u
����

���� � anxn + bnTnzn + cnSPC vn − λn∇fαn
zn( 􏼁􏼐 􏼑 − u

�����

�����

≤ an xn − u
����

���� + bn Tnzn − u
����

���� + cn Syn − u
����

����

≤ an xn − u
����

���� + bn zn − u
����

���� + cn yn − u
����

����

≤ an xn − u
����

���� + bn vn − u
����

���� + λnαn‖u‖􏼐 􏼑 + cn vn − u
����

���� + 2λnαn‖u‖􏼐 􏼑

≤ an xn − u
����

���� + 1 − an( 􏼁 vn − u
����

���� + 2λnαn‖u‖􏼐 􏼑

≤ xn − u
����

���� + εn xn − xn− 1
����

���� + 2λnαn‖u‖.

(89)

Consequently, from conditions (a) and (e) and Lemma
10, we deduce that, for every u ∈ Γ, limn⟶∞‖xn − u‖ exists
and the sequences xn􏼈 􏼉, zn􏼈 􏼉, and yn􏼈 􏼉 are bounded. We find
from (83), (84), (85), (88), Lemma 5, and Lemma 11 that
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xn+1 − u
����

����
2

� anxn + bnTnzn + cnSPC vn − λn∇fαn
zn( 􏼁􏼐 􏼑 − u

�����

�����
2

≤ an xn − u
����

����
2

+ bn Tnzn − u
����

����
2

+ cn Syn − u
����

����
2

− anbn xn − Tnzn

����
����
2

− ancn xn − Syn

����
����
2

≤ an xn − u
����

����
2

+ bn zn − u
����

����
2

+ cn yn − u
����

����
2

− anbn xn − Tnzn

����
����
2

− ancn xn − Syn

����
����
2

≤ an xn − u
����

����
2

+ bn vn − u
����

���� + λnαn‖u‖􏼐 􏼑
2

+ cn vn − u
����

����
2

+ λ2n αn +‖A‖
2

􏼐 􏼑
2

− 1􏼒 􏼓 vn − zn

����
����
2

􏼔 􏼕

− anbn xn − Tnzn

����
����
2

− ancn xn − Syn

����
����
2

+ 2cnλnαn‖u‖ zn − u
����

����

≤ an xn − u
����

����
2

+ bn 2 vn − u
����

����
2

+ 2λ2nα
2
n‖u‖

2
􏼒 􏼓

+ cn vn − u
����

����
2

+ λ2n αn +‖A‖
2

􏼐 􏼑
2

− 1􏼒 􏼓 vn − zn

����
����
2

+ 2λnαn‖u‖ zn − u
����

����􏼔 􏼕

− anbn xn − Tnzn

����
����
2

− ancn xn − Syn

����
����
2

≤ 1 + bn( 􏼁 xn − u
����

����
2

+ 2bnλ
2
nα

2
n‖u‖

2
+ 2 2bn + cn( 􏼁εn〈xn − xn− 1, vn − u〉

+ cn λ2n αn +‖A‖
2

􏼐 􏼑
2

− 1􏼒 􏼓 vn − zn

����
����
2

+ αn λ2n‖u‖
2

+ zn − u
����

����
2

􏼒 􏼓􏼔 􏼕

− anbn xn − Tnzn

����
����
2

− ancn xn − Syn

����
����
2

≤ 1 + bn( 􏼁 xn − u
����

����
2

+ 2bnλ
2
nα

2
n‖u‖

2
+ 2 2bn + cn( 􏼁εn xn − xn− 1

����
���� vn − u
����

����

+ cn λ2n αn +‖A‖
2

􏼐 􏼑
2

− 1􏼒 􏼓 vn − zn

����
����
2

+ αn λ2n􏼐 􏼑‖u‖
2

+ vn − u
����

���� + λnαn‖u‖􏼐 􏼑
2

􏼔 􏼕

− anbn xn − Tnzn

����
����
2

− ancn xn − Syn

����
����
2

≤ 1 + bn( 􏼁 xn − u
����

����
2

+ 2bnλ
2
nα

2
n‖u‖

2
+ 2 2bn + cn( 􏼁εn xn − xn− 1

����
���� vn − u
����

����

+ cn λ2n αn +‖A‖
2

􏼐 􏼑
2

− 1􏼒 􏼓 vn − zn

����
����
2

+ αn λ2n‖u‖
2

+ 2 vn − u
����

����
2

+ 2λ2nα
2
n‖u‖

2
􏼒 􏼓

− anbn xn − Tnzn

����
����
2

− ancn xn − Syn

����
����
2

≤ 1 + bn + 2αn( 􏼁 xn − u
����

����
2

+ cn λ2n αn +‖A‖
2

􏼐 􏼑
2

− 1􏼒 􏼓 xn − zn

����
����
2

+ αnλ
2
n‖u‖

2 1 + 2bnαn + 2α2n􏼐 􏼑 − anbn xn − Tnzn

����
����
2

− ancn xn − Syn

����
����
2

+ 2 2bn + cn + 2αn( 􏼁εn xn − xn− 1
����

���� vn − u
����

����.

(90)

From conditions (b) and (d), we obtain

c 1 − d
2 αn +‖A‖

2
􏼐 􏼑

2
􏼒 􏼓 vn − zn

����
����
2

+ abn xn − Tnzn

����
����
2

+ ac xn − Syn

����
����
2

≤ cn 1 − λ2n αn +‖A‖
2

􏼐 􏼑
2

􏼒 􏼓 vn − zn

����
����
2

+ anbn xn − Tnzn

����
����
2

+ ancn xn − Syn

����
����
2

≤ 1 + bn + 2αn( 􏼁 xn − u
����

����
2

− xn+1 − u
����

����
2

+ αnλ
2
n‖u‖

2 1 + 2α2n􏼐 􏼑

+ 2 2bn + cn + 2αn( 􏼁εn xn − xn− 1
����

���� vn − u
����

����.

(91)

From conditions (a) and (e), we also obtain
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lim
n⟶∞

xn − Syn

����
���� � lim

n⟶∞
xn − Tnzn

����
����

� lim
n⟶∞

vn − zn

����
���� � 0.

(92)

By the definition of vn􏼈 􏼉 and (e), we have

lim
n⟶∞

vn − xn

����
���� � lim

n⟶∞
εn xn − xn− 1

����
���� � 0. (93)

,is implies that

zn − xn

����
����≤ zn − vn

����
���� + vn − xn

����
����⟶ 0, as n⟶∞.

(94)

It is observe that

yn − zn

����
���� � PC vn − λn∇fαn

zn( 􏼁􏼐 􏼑 − PC vn − λn∇fαn
vn( 􏼁􏼐 􏼑

�����

�����

≤ vn − λn∇fαn
zn( 􏼁 − vn − λn∇fαn

vn( 􏼁􏼐 􏼑
�����

�����

� λn ∇fαn
zn( 􏼁 − ∇fαn

vn( 􏼁
�����

�����

≤ λn αn +‖A‖
2

􏼐 􏼑 zn − vn

����
����⟶ 0, as n⟶∞.

(95)

Also, from ‖Tnzn − zn‖≤ ‖Tnzn − xn‖ + ‖xn − zn‖, ‖yn −

xn‖≤ ‖yn − zn‖ + ‖zn − xn‖, and ‖yn − vn‖≤ ‖yn − zn‖ + ‖zn

− vn‖, we get

lim
n⟶∞

Tnzn − zn

����
���� � lim

n⟶∞
yn − xn

����
���� � lim

n⟶∞
yn − vn

����
���� � 0.

(96)

Note that ‖Syn − yn‖≤ ‖Syn − xn‖ + ‖xn − yn‖,

βn‖Tzn − zn‖ � ‖Tnzn − zn‖. ,is implies that

lim
n⟶∞

Syn − yn

����
���� � lim

n⟶∞
Tzn − zn

����
���� � 0. (97)

Since ∇f � A∗(I − PQ)A is Lipschitz continuous, we
obtain limn⟶∞‖∇f(zn) − ∇f(yn)‖ � 0.

Since, xn􏼈 􏼉 is bounded, there exists a subsequence xnk
􏽮 􏽯

of xn􏼈 􏼉 such that it converges weakly to some x∗. Since
‖xn − yn‖⟶ 0, ‖xn − zn‖⟶ 0, and ‖xn − vn‖⟶ 0 as
n⟶∞, we obtain that ynk

⇀x∗, znk
⇀x∗, and vnk

⇀x∗.
Since ynk

􏽮 􏽯 ⊂ C and C is closed and convex, we obtain
x∗ ∈ C. First, we show that x∗ ∈ F(T) ∩F(S). ,en, from
(97), Lemma 6, and Lemma 4, we have that
x∗ ∈ F(T)∩F(S). We now show x∗ ∈ Ω (1). Let

T′p ≔
∇f(p) + NCp, p ∈ C,

∅, p ∉ C.
􏼨 (98)

,en, T′ is maximal monotone and 0 ∈ T′p if and only if
p ∈ VI(C,∇f) [29]. Let G(T′) be the graph of T′, and let
(p, v) ∈ G(T′). ,en, we have v ∈ T′(p) � ∇f(p) + NCp,
and hence, v − ∇f(p) ∈ NCp. ,erefore, we have
〈p − w, v − ∇f(p)〉≥ 0 for all w ∈ C. By property of metric
projection, from yn � PC(vn − λn∇fαn

zn) and p ∈ C, we
have 〈p − yn, yn − (vn − λn∇fαn

zn)〉≥ 0, and hence,

〈p − yn,
yn − vn

λn

+ ∇fαn
zn〉 ≥ 0. (99)

From 〈p − w, v − ∇f(p)〉≥ 0 for all w ∈ C and ynk
∈ C,

we have

〈p − ynk
, v〉 ≥ 〈p − ynk

,∇f(p)〉

≥ 〈p − ynk
,∇f(p)〉 − 〈p − ynk

,
ynk

− vnk

λnk

+ ∇fαnk

znk
〉

≥ 〈p − ynk
,∇f(p)〉 − 〈p − ynk

,
ynk

− vnk

λnk

+ ∇f znk
􏼐 􏼑〉 − αnk

〈p − ynk
, znk
〉

�〈p − ynk
,∇f(p) − ∇f ynk

􏼐 􏼑〉 − 〈p − ynk
,
ynk

− vnk

λnk

〉 − αnk
〈p − ynk

, znk
〉

+〈p − ynk
,∇f ynk

􏼐 􏼑 − ∇f znk
􏼐 􏼑〉

≥ 〈p − ynk
,∇f ynk

􏼐 􏼑 − ∇f znk
􏼐 􏼑〉 − 〈p − ynk

,
ynk

− vnk

λnk

〉 − αnk
〈p − ynk

, znk
〉.

(100)

,us, we obtain 〈p − x∗, v〉≥ 0 as k⟶∞. Since T′ is
maximal monotone, we have x∗ ∈ T′

− 10, and hence,
x∗ ∈ VI(C,∇f). ,is implies that x∗ ∈ Ω. ,is implies that

x∗ ∈ Γ. ,erefore, from ‖xn − zn‖⟶ 0 and
‖xn − vn‖⟶ 0, we can conclude that xn􏼈 􏼉, zn􏼈 􏼉, and vn􏼈 􏼉

converge weakly to a point u ∈ Γ. ,e proof is complete. □
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4. Applications

If, in ,eorem 3 and ,eorem 1, we assume that C � H1,
then we can get the following theorems.

Theorem 4. Let H1 and H2 be real Hilbert spaces,
Ai: H1⟶ H2 be a bounded linear operator, for i � 1, 2,
S: H1⟶ H1 be a nonexpansive mapping, and
T: H1⟶ H1 a strictly pseudocontractive mapping with
constant k such that Γ � F(T)∩F(S)∩ 2i�1(∇fi)

− 10≠∅.
Suppose xn􏼈 􏼉 and zn􏼈 􏼉 are sequences generated by the fol-
lowing extragradient algorithm:

x0 � x ∈ C,

zn � cn xn − λn∇f1αn
xn􏼐 􏼑 + 1 − cn( 􏼁 xn − λn∇f2sn

xn􏼐 􏼑,

xn+1 � anxn + bn 1 − βn( 􏼁zn + βnTzn( 􏼁

+ cn 1 − δn( 􏼁zn + δnSzn( 􏼁, ∀n≥ 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(101)

If conditions (a) − (d) are satisfied, then xn􏼈 􏼉 converges
weakly to an element u ∈ Γ.

Proof. We have (∇fi)
− 10 � VI(H1,∇fi) for i � 1, 2 and

PH1
� I; by ,eorem 3, we obtain the desired result. □

Theorem 5. Let H1 and H2 be real Hilbert spaces,
A: H1⟶ H2 be a bounded linear operator, S: H1⟶ H1
be a nonexpansive map, and T: H1⟶ H1 be a strictly
pseudocontractive mapping with constants k such that
Γ � F(T)∩F(S)∩ (∇f)− 10≠∅. Suppose xn􏼈 􏼉, vn􏼈 􏼉, and
zn􏼈 􏼉 are sequences generated by the following extragradient
algorithm:

x0 � x ∈ C,

vn � xn + εn xn − xn− 1( 􏼁,

zn � I − λn∇fαn
􏼐 􏼑vn,

xn+1 � anxn + bn 1 − βn( 􏼁zn + βnTzn( 􏼁

+ cnS vn − λn∇fαn
zn􏼐 􏼑, ∀n≥ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(102)

If conditions (a) − (e) are satisfied, then xn􏼈 􏼉 converges
weakly to an element u ∈ Γ.

Proof. We have (∇f)− 10 � VI(H1,∇f) and PH1
� I; by

,eorem 3, we obtain the desired result. □

Theorem 6. Let H1 and H2 be real Hilbert spaces,
A: H1⟶ H2 be a bounded linear operator, S: H1⟶ H1
be a nonexpansive map, and T: H1⟶ H1 be a strictly
pseudocontractive mapping with constant k such that
Γ � F(T)∩F(S)∩ (∇f)− 10≠∅. Suppose xn􏼈 􏼉, yn􏼈 􏼉, and
zn􏼈 􏼉 are sequences generated by the following extragradient
algorithm:

x0 � x ∈ C,

zn � I − λn∇fαn
􏼐 􏼑xn,

yn � xn − λn∇fαn
zn,

xn+1 � anx0 + bnxn + cn 1 − βn( 􏼁Syn + βnTnzn( 􏼁, ∀n≥ 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(103)

where Tn � (1 − cn)I + cnT and cn ⊂ (k, 1). If conditions
(a) − (d) are satisfied, then xn􏼈 􏼉 converges strongly to the
point u � PΓ(x0).

Proof. We have (∇f)− 10 � VI(H1,∇f) and PH1
� I; by

,eorem 1, we obtain the desired result. □

Let B: H⟶ 2H be a maximal monotone mapping.
,en, for any x ∈ H and r> 0, consider
JB

r x � y ∈ H: x � y + rBy􏼈 􏼉. Likewise, a JB
r is called the

resolvent of B and is denoted by JB
r � (I + rB)− 1.

Theorem 7. Let H1 and H2 be real Hilbert spaces,
Bi: H1⟶ 2H1 be maximal monotone mappings, for i � 1, 2,
Ai: H1⟶ H2 be bounded linear operators, for i � 1, 2, J

Bi
r

be the resolvents of Bi for each r> 0, and T: H1⟶ H1 be a
strictly pseudocontractive mapping with constant k such that
Γ � F(T)∩F(S)∩B− 1

i 0∩ (∇fi)
− 10≠∅. Suppose xn􏼈 􏼉 and

zn􏼈 􏼉 are sequences generated by the following extragradient
algorithm:

x0 � x ∈ C,

zn � cnJ
B1
r xn − λn∇f1αn

xn􏼐 􏼑 + 1 − cn( 􏼁J
B2
r xn − λn∇f2sn

xn􏼐 􏼑,

xn+1 � anxn + bn 1 − βn( 􏼁zn + βnTzn( 􏼁 + cnzn, ∀n≥ 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(104)

If conditions (a) − (d) are satisfied, then xn􏼈 􏼉 converges
weakly to an element u ∈ Γ.

Proof. We have F(J
Bi
r ) � B− 1

i 0, (∇fi)
− 10 � VI(H1,∇fi) for

i � 1, 2 and PH1
� I; by ,eorem 3, we obtain the desired

result. □

Theorem 8. Let H1 and H2 be real Hilbert spaces,
A: H1⟶ H2 be a bounded linear operator, B: H1⟶ 2H1

be a maximal monotone mapping, JB
r be the resolvent of B for

each r> 0, and T: H1⟶ H1 be a strictly pseudocontractive
mapping with constant k such that
Γ � F(T)∩B− 10∩ (∇f)− 10≠∅. Suppose xn􏼈 􏼉, vn􏼈 􏼉, and
zn􏼈 􏼉 are sequences generated by the following extragradient
algorithm:

x0 � x ∈ C,

vn � xn + εn xn − xn− 1( 􏼁,

zn � I − λn∇fαn
􏼐 􏼑vn,

xn+1 � anxn + bn 1 − βn( 􏼁zn + βnTzn( 􏼁

+ cnJ
B
r vn − λn∇fαn

zn􏼐 􏼑, ∀n≥ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(105)

If conditions (a) − (e) are satisfied, then xn􏼈 􏼉 converges
weakly to an element u ∈ Γ.
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Proof. We have F(JB
r ) � B− 10, (∇f)− 10 � VI(H1,∇f), and

PH1
� I; by ,eorem 3, we obtain the desired result. □

Theorem 9. Let H1 and H2 be real Hilbert spaces,
A: H1⟶ H2 be a bounded linear operator, B: H1⟶ 2H1

be a maximal monotone mapping, JB
r be the resolvent of B for

each r> 0, and T: H1⟶ H1 be a strictly pseudocontractive
mapping with constant k such that Γ � F(T) ∩
B− 10∩ (∇f)− 10≠∅. Suppose xn􏼈 􏼉, yn􏼈 􏼉, and zn􏼈 􏼉 are se-
quences generated by the following extragradient algorithm:

x0 � x ∈ C,

zn � I − λn∇fαn
􏼐 􏼑xn,

yn � J
B
r xn − λn∇fαn

zn􏼐 􏼑,

xn+1 � anx0 + bnxn + cn 1 − βn( 􏼁yn + βnTnzn( 􏼁, ∀n≥ 0,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(106)

where Tn � (1 − cn)I + cnT and cn ⊂ (k, 1). If conditions
(a) − (d) are satisfied, then xn􏼈 􏼉 converges strongly to the
point u � PΓ(x0).

Proof. We have F(JB
r ) � B− 10, (∇f)− 10 � VI(H1,∇f), and

PH1
� I; by ,eorem 1, we obtain the desired result. □

If in ,eorems 3 and 1 we assume that T is non-
expansive, then we have that T is strictly pseudocontractive
with k � 1, and hence, we get the following corollaries.

Corollary 1. Let C and Q be nonempty, closed, and convex
subsets of real Hilbert spaces H1 and H2, respectively. Let
Ai: H1⟶ H2 be bounded linear operators for i � 1, 2,
S: C⟶ C be a nonexpansive mapping, and T: C⟶ C be
a nonexpansive mapping such that Γ � F(T)∩
F(S)∩ 2i�1,2Ωi ≠∅. Suppose xn􏼈 􏼉 and zn􏼈 􏼉 are sequences
generated by the following extragradient algorithm:

x0 � x ∈ C,

zn � cnPC xn − λn∇f1αn
xn􏼐 􏼑

+ 1 − cn( 􏼁PC xn − λn∇f2sn
xn􏼐 􏼑,

xn+1 � anxn + bn 1 − βn( 􏼁zn + βnTzn( 􏼁

+ cn 1 − δn( 􏼁zn + δnSzn( 􏼁, ∀n≥ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(107)

If conditions (a) − (d) are satisfied, then xn􏼈 􏼉 converges
weakly to an element u ∈ Γ.

Corollary 2. Let C and Q be nonempty, closed, and convex
subsets of real Hilbert spaces H1 and H2, respectively. Let
A: H1⟶ H2 be a bounded linear operator, S: C⟶ C be a
nonexpansive mapping, and T: C⟶ C be a nonexpansive
mapping such that Γ � F(T)∩F(S)∩Ω≠∅. Suppose that
xn􏼈 􏼉, vn􏼈 􏼉, and zn􏼈 􏼉 are sequences generated by the following
extragradient algorithm:

x0 � x ∈ C,

vn � xn + εn xn − xn− 1( 􏼁,

zn � PC I − λn∇fαn
􏼐 􏼑vn,

xn+1 � anxn + bn 1 − βn( 􏼁zn + βnTzn( 􏼁

+ cnSPC vn − λn∇fαn
zn􏼐 􏼑, ∀n≥ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(108)

If conditions (a) − (e) are satisfied, then xn􏼈 􏼉 converges
weakly to an element u ∈ Γ.

Corollary 3. Let C and Q be nonempty, closed, and convex
subsets of real Hilbert spaces H1 and H2, respectively. Let
A: H1⟶ H2 be a bounded linear operator, S: C⟶ C be a
nonexpansive map, and T: C⟶ C be nonexpansive such
that Γ � F(T)∩F(S)∩Ω≠∅. Let xn􏼈 􏼉 and zn􏼈 􏼉 be sequences
generated by the following extragradient algorithm:

x0 � x ∈ C,

zn � PC I − λn∇fαn
􏼐 􏼑xn,

yn � PC xn − λn∇fαn
zn􏼐 􏼑,

xn+1 � anx0 + bnxn + cn 1 − βn( 􏼁Syn + βnTnzn( 􏼁, ∀n≥ 0,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(109)

where Tn � (1 − cn)I + cnT and cn ⊂ (k, 1). If conditions
(a) − (d) are satisfied, then xn􏼈 􏼉 converges strongly to the
point u � PΓ(x0).
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In this paper, some characterizations are given in terms of the boundary value and Poisson extension for the Dirichlet-type space
D(μ). ,e multipliers of D(μ) and Hankel-type operators from D(μ) to L2(PμdA) are also investigated.

1. Introduction

LetD be the unit disk of complex planeC. For 0<p<∞, the
Hardy space, denoted by Hp, is the space consists of all
f ∈ H(D) such that

‖f‖
p

Hp � sup
0<r<1

1
2π

􏽚
2π

0
f re

iθ
􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
p
dθ<∞. (1)

Here, H(D) is the space of analytic functions on D.
Let zD denote the boundary of D and dA denote the

normalized Lebesgue measure onD. Let μ be a positive Borel
measure on zD. An f ∈ H(D) is said to belong to the space
D(μ), called the Dirichlet-type space, if

􏽚
D

f′(z)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
Pμ(z)dA(z)<∞, (2)

where

Pμ(z) � 􏽚
2π

0

1 − |z|
2

e
it

− z
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
dμ(t)

2π
. (3)

,e space D(μ) was introduced by Richter in [1] for
studying analytic two isometrics. It was shown in [1] that
D(μ) ⊂ H2. ,e norm on D(μ) is defined as follows:

‖f‖
2
D(μ) � ‖f‖

2
H2 + 􏽚

D
f′(z)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
Pμ(z)dA(z). (4)

,e space D(μ) is a Hilbert space with

〈f, g〉D(μ) � 〈f, g〉H2 + 􏽚
D

f′(z)g′(z)Pμ(z)dA(z), (5)

D(μ) � H2 when μ � 0. If dμ � dm, then D(μ) coincides
with the Dirichlet space D. By (Proposition 2.2 in [1]), we
have

􏽚
zD

Dζ(f)dμ(ζ) � 􏽚
D

f′(z)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
Pμ(z)dA(z). (6)

Here,

Dζ(f) �
1
2π

􏽚
2π

0

f eit( 􏼁 − f(ζ)

eit − ζ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

dt. (7)

Let f ∈ L2(zD). We say that f ∈ L2(μ) if

􏽚
zD

􏽚
2π

0

f e
iθ

􏼐 􏼑 − f(ζ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

e
iθ

− ζ
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2 dθ dμ(ζ)<∞. (8)

,e norm of the space L2(μ) is given by
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‖f‖
2
L2(μ) � ‖f‖

2
L2(zD) + 􏽚

zD
􏽚
2π

0

f e
iθ

􏼐 􏼑 − f(ζ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

e
iθ

− ζ
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2 dθdμ(ζ).

(9)

,e space D(μ) has been investigated by many authors.
In [2], Richter and Sundberg studied the cyclic vectors of
D(μ). Shimorin studied the reproducing kernels and
extremal functions ofD(μ) in [3], see [4–6], for the study of
Carleson measure for D(μ). ,e study of composition
operators and Toeplitz operators on D(μ) can be found in
[7, 8], respectively, see [9–11], for more study of the space
D(μ).

In this paper, we provided some characterizations for the
space D(μ) by the boundary value and Poisson extension.
Moreover, we study the multipliers ofD(μ) and the Hankel-
type operator from D(μ) to L2(PμdA).

In this paper, we always assume that μ is a positive Borel
measure on zD and C is a positive constant that may differ
from one occurrence to the other. ,e notation F≲G means
that there exists a C such that F≤CG. ,e notation F≍G

indicates that G≲F and also F≲G.

2. Characterizations of the Space D(μ)

Let f ∈ L1(zD). ,e Poisson extension of f, denoted by 􏽢f, is

􏽢f(z) � 􏽚
2π

0
f e

it
􏼐 􏼑

1 − |z|
2

e
it

− z
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
dt

2π
, z ∈ D. (10)

It is well known that 􏽢f is a harmonic function on D.
Let C1(D) denote the space of all functions on D with

continuous partial derivatives. For f ∈ C1(D), the gradient
of f is defined by

∇f �
zf

zx
,
zf

zy
􏼠 􏼡. (11)

First, we state some lemmas.

Lemma 1 (see [6, 8]). Let f ∈ L2(zD). 0en,

􏽚
zD

Dζ(f)dμ(ζ)<∞, (12)

if and only if

􏽚
D

|∇􏽢f(z)|
2
Pμ(z)dA(z)<∞. (13)

Remark 1. Let f ∈ L2(zD) and F ∈ C1(D) such that
limr⟶1F(reiθ) � f(eiθ)(a.e.) for eiθ ∈ zD. ,en,

􏽚
zD

Dζ(f)dμ(ζ)≲‖f‖
2
L2(zD) + 􏽚

D
|∇F(z)|

2
Pμ(z)dA(z).

(14)

For f ∈ H2, let fb denote the boundary value of f.

Corollary 1. Let f ∈ H2. 0en, f ∈ D(μ) if and only if
fb ∈ L2(μ).

Proof. Since f ∈ H2, then f � 􏽢fb. ,e desired result follows
from Lemma 1. □

Lemma 2. Let f ∈ L2(zD). 0en, the following statements
are equivalent:

(a) 􏽒
zD

Dζ(f)dμ(ζ)<∞.
(b) 􏽒

D
|∇􏽢f(z)|2Pμ(z)dA(z)<∞.

(c) limr⟶1− 􏽒
D

(
􏽣

|􏽢f|2(z) − |􏽢f(z)|2)dμr(z)<∞, where

dμr(z) � 􏽚
zD

r
2 1 − r

2
􏼐 􏼑

|ζ − rz|
dμ(ζ)dA(z). (15)

Proof. (a)⟺(b) ,is implication follows by Lemma
1. □

Proof. (b)⟺(c) For z ∈ D, r ∈ (0, 1), set

Pμr
(z) � 􏽚

zD

r
2 1 − |z|

2
􏼐 􏼑

|ζ − rz|
2 dμ(ζ). (16)

From [11], we see that Pμr
(z) is subharmonic with

lim
r⟶1−

Pμr
(z) � Pμ(z). (17)

By Green’s formula, we obtain

Pμr
(z) �

2
π

􏽚
D

(
z
2

zwz w
Pμr

(w) )log
1 − wz

w − z

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dA(w)

≍􏽚
D

􏽚
zD

r
2 1 − r

2
􏼐 􏼑

|ζ − rw|
dμ(ζ)log

1 − wz

w − z

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dA(w).

(18)

According to (17) and (18) and Hardy-Littlewood’s
identity (see page 238 in [12]), we have
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􏽚
D

|∇􏽢f( z )|
2
Pμ( z )dA( z ) � lim

r⟶1−
􏽚
D

|∇􏽢f( z )|
2
Pμr

( z )dA( z )

≍ lim
r⟶1−

􏽚
D

|∇􏽢f( z )|
2

􏽚
D

􏽚
zD

r
2
( 1 − r

2
)

|ζ − rw|
dμ( ζ )log

1 − wz

w − z

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dA( w )􏼠 􏼡dA( z )

� lim
r⟶1−

􏽚
D

􏽚
D

|∇􏽢f( z )|
2log

1 − wz

w − z

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dA( z )􏼒 􏼓􏽚

zD

r
2
( 1 − r

2
)

|ζ − rw|
dμ( ζ )dA( w )

� lim
r⟶1−

􏽚
D

􏽣
|􏽢f|

2
( w ) − |􏽢f( w )|

2
􏼒 􏼓dμr( w ).

(19)

,e proof is complete. □

Theorem 1. Let f ∈ H2. 0en, the following statements are
equivalent:

(a) f ∈ D(μ).
(b) limr⟶1− 􏽒

D
|f − 􏽢f(z)|2(z)dμr(z)<∞.

(c) 􏽒
zD

Dζ(|f|)dμ(ζ)<∞ and

lim
r⟶1−

􏽚
D

􏽣|f|
2
(z) − |f(z)|

2
􏼒 􏼓dμr(z)<∞. (20)

(d) 􏽒
zD

Dζ(|f|)dμ(ζ)<∞ and there exists a harmonic
function g such that |f|≤g on D and

lim
r⟶1−

􏽚
D

g
2
(z) − |f(z)|

2
􏼐 􏼑dμr(z)<∞. (21)

Proof. (a)⇔(b) ,is implication follows by Lemma 2 and

􏽣
|f|

2
(z) − |f(z)|

2
� |f − 􏽢f(z)|

2
(z). (22)

(a)⇒(c) If f ∈ D(μ), then 􏽒
zD

Dζ(|f|)dμ(ζ)<∞. Since

(􏽣|f|(z))
2

� 􏽚
zD

|f(ζ)|
1 − |z|2

|ζ − z|2
|dζ|

2π
􏼠 􏼡

2

≤􏽚
zD

|f(ζ)|
21 − |z|

2

|ζ − z|
2

|dζ|

2π
􏽚

zD

1 − |z|
2

|ζ − z|
2

|dζ|

2π

�
􏽣

|f|
2
(z).

(23)

We get (c) from Lemma 2 and Corollary 1.
(c)⇒(d) Inequality (20) implies

lim
r⟶1−

􏽚
D

􏽤
(􏽣|f|( z ))

2
− |f( z )|

2
􏼒 􏼓dμr( z )<∞. (24)

Let g � 􏽣|f|. ,en, g2 ≤ 􏽤
(􏽣|f|)2. ,us,

lim
r⟶1−

􏽚
D

(g(z))
2

− |f(z)|
2

􏼐 􏼑dμr(z)<∞. (25)

(d)⇒(a) By Lemma 2,

lim
r⟶1−

􏽚
D

􏽣
|f|

2
(z) − (􏽣|f|(z))

2
􏼒 􏼓dμr(z)<∞. (26)

Assume that g is a harmonic function such that |f|≤g.
Note that 􏽣|f| is the least harmonic function equal to or
greater than |f| (see [12]); hence, 􏽣|f|≤g. By Lemmas 1 and 2
and Corollary 1, f ∈ D(μ). ,e proof is complete. □

3. Multipliers of D(μ)

Let I ⊂ zD. ,e Carleson box S(I) is

S(I) � rζ ∈ D: 1 − |I|< r< 1; ζ ∈ I{ }. (27)

Assume that ] is a positive Borel measure on D. If
supI⊂zD(](S(I))/|I|)<∞, then we say that ] is a Carleson
measure.

If there exists a constant C> 0 (see [4, 5])

􏽚
D

|f(z)|
2d](z)≤C‖f‖

2
D(μ), for allf ∈ D(μ), (28)

then we call that ] is a μ-Carleson measure.
Let g ∈ L∞(zD) and f ∈ L2(μ). g is called the pointwise

multipliers of L2(μ) if gf ∈ L2(μ). We denote the space of all
pointwise multipliers of L2(μ) by M(L2(μ)).

Lemma 3. Let ] be a positive Borel measure onD. 0en, ] is a
μ-Carleson measure if and only if

􏽚
D

|􏽢g(z)|
2d](z)≲‖g‖

2
L2(μ), (29)

for all g ∈ L2(μ).

Proof. First, we assume that ] is a μ-Carleson measure.
Suppose that g ∈ L2(μ). Without loss of generality, let g be a
real-valued function. Suppose that 􏽥g is the harmonic con-
jugate of 􏽢g. Set f � 􏽢g + i􏽥g. ,en, |∇􏽢f(z)|≍|f′(z)| by the
Cauchy–Riemann equation. From Lemma 2.3 in [7] and
Lemma 1, we obtain
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􏽚
D

|􏽢g(z)|
2d](z)≤􏽚

D
|f(z)|

2d](z)

≲‖f‖
2
D(μ)

� ‖f‖
2
H2 + 􏽚

D
f′(z)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
Pμ(z)dA(z)

≍|f(0)|
2

+ 􏽚
D

|∇􏽢g(z)|
2
Pμ(z)dA(z)

≲‖g‖
2
L2(μ).

(30)

Conversely, for f ∈ D(μ), by Corollary 1, fb ∈ L2(μ)

and f � 􏽢fb. ,en,

􏽚
D

|f(z)|
2d](z)≲ fb

����
����
2
L2(μ)
≲‖f‖

2
D(μ), (31)

which implies that ] is a μ-Carleson measure. □

Theorem 2. g ∈M(L2(μ)) if and only if g ∈ L∞(zD) and
|∇􏽢g|2PμdA is a μ-Carleson measure.

Proof. Assume that g ∈ L∞(zD) and |∇􏽢g|2PμdA is a
μ-Carleson measure. Let f ∈ L2(μ). By Remark 1, we obtain

‖fg‖
2
L2(μ)≲‖fg‖

2
L2(zD) + 􏽚

D
|∇(􏽢f􏽢g)(z)|

2
Pμ(z)dA(z)

≤ ‖fg‖
2
L2(zD) + 􏽚

D
|􏽢g(z)|

2
|∇􏽢f(z)|

2
Pμ(z)dA(z)

+ 􏽚
D

|􏽢f(z)|
2
|∇􏽢g(z)|

2
Pμ(z)dA(z).

(32)

By Lemma 1 and Corollary 1, we obtain

􏽚
D

|􏽢g(z)|
2
|∇􏽢f(z)|

2
Pμ(z)dA(z)≤C‖􏽢g‖

2
L∞(D)‖f‖

2
L2(μ).

(33)

In addition, since |∇􏽢g|2PμdA is a μ-Carleson measure, by
Lemma 3, we have

􏽚
D

|􏽢f(z)|
2
|∇􏽢g(z)|

2
Pμ(z)dA(z)≤C‖f‖

2
L2(μ). (34)

Combining (32)–(34), we obtain that g ∈M(L2(μ)).
Conversely, assume that g ∈M(L2(μ)). ,en, by ,e-

orem 2.7 in [6], we see that g ∈ L∞(zD). For f ∈ D(μ), by
the Closed Graph ,eorem, Lemma 1, and Corollary 1, we
obtain

􏽚
D

|∇(f􏽢g)(z)|
2
Pμ(z)dA(z)≤C‖fg‖

2
L2(μ) ≤C‖f‖

2
L2(μ)

≤C‖f‖
2
D(μ).

(35)

Next, we show that |∇􏽢g|2PμdA is a μ-Carleson measure.
From the fact that |∇f|≍|f′(z)|, we obtain

􏽚
D

|􏽢g(z)|
2
|∇f(z)|

2
Pμ(z)dA(z)≤C􏽚

D
|∇f(z)|

2
Pμ(z)dA(z)

≍C􏽚
D

f′(z)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
Pμ(z)dA(z)

≤C‖f‖
2
D(μ).

(36)

,en, by (35) and (36),

􏽚
D

|f(z)|
2
|∇􏽢g(z)|

2
Pμ(z)dA(z)≤C􏽚

D
|∇(f􏽢g)(z)|

2
+|􏽢g(z)|

2
|∇f(z)|

2
􏼐 􏼑Pμ(z)dA(z)

≤C‖f‖
2
D(μ),

(37)

which implies that |∇􏽢g|2PμdA is a μ-Carleson measure.
By ,eorem 2, we obtain the following result. □

Corollary 2. Let f ∈ H2. 0en, f ∈M(D(μ)) if and only if
fb ∈M(L2(μ)).

4. Hankel-Type Operators on D(μ)

LetP denote the set of all polynomials onD. From [1, 2], we
see that P is dense in D(μ). Let

Pf(z) � 􏽚
D

f(w)

(1 − wz)
2 dA(w). (38)

From,eorem 1.10 in [13], we see that P: L2(D)⟶ A2

is a bounded projection. Here, A2 is the Bergman space
which consists of all f ∈ H(D) such that
􏽒
D

|f(z)|2dA(z)<∞. For f ∈ A2, we define a Hankel-type
operator hf on P by

hf(g) � P(fg), g ∈ P. (39)

Lemma 4 (see Theorem 2.3 in [10]). Let τ, σ > − 1. 0en,
f ∈ D(μ) if and only if

􏽚
D

􏽚
D

|f(z) − f(w)|
2

|1 − zw|
4+σ+τ Pμ(z)dAσ(z)dAτ(w)<∞, (40)

where dAσ(z) � (1 − |z|2)σdA(z).

Lemma 5 (see Theorem 3.4 in [10]). Let T be the operator
defined by

Tg(z) � 􏽚
D

|g(w)|

|1 − wz|
2 dA(w), g ∈ L

2
(D). (41)

0en, T: L2(PμdA)⟶ L2(PμdA) is bounded.
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Theorem 3. Let g ∈ L2(D) such that |g|2PμdA is a μ-Car-
leson measure. 0en, |Tg|2PμdA is a μ-Carleson measure.

Proof. Suppose that |g|2PμdA is a μ-Carleson measure.
,en, by Lemma 5,

􏽚
D

|T(fg)(z)|
2
Pμ(z)dA(z) ≤C􏽚

D
|f(z)g(z)|

2
Pμ(z)dA(z)

≤C‖f‖
2
D(μ),

(42)

for all f ∈ D(μ). So, it is enough to show that

􏽚
D

|f(z)Tg(z) − T(fg)(z)|
2
Pμ(z)dA(z)≤C‖f‖

2
D(μ),

(43)

for every f ∈ D(μ).
By Hölder’s inequality, we have

|f(z)Tg(z) − T(fg)(z)|
2 ≤ 􏽚

D

|f(z) − f(w)|

|1 − wz|2
|g(w)|dA(w)􏼠 􏼡

2

≲􏽚
D

|g(w)|
2dA(w)􏽚

D

|f(z) − f(w)|
2

|1 − wz|
4 dA(w)

� ‖g‖
2
L2(D)􏽚

D

|f(z) − f(w)|
2

|1 − wz|
4 dA(w).

(44)

Consequently, by Lemma 4, we obtain

􏽚
D

|f(z)Tg(z) − T(fg)(z)|
2
Pμ(z)dA(z)

≤ ‖g‖
2
L2(D)􏽚

D
􏽚
D

|f(z) − f(w)|
2

|1 − wz|
4 dA(w)Pμ(z)dA(z)

≤ ‖g‖
2
L2(D)‖f‖

2
D(μ).

(45)

,e desired result follows. □

Theorem 4. Let u ∈ A2. 0en, the operator
hu: D(μ)⟶ L2(PμdA) is bounded if and only if |u|2PμdA is
a μ-Carlson measure.

Proof. Suppose that |u|2PμdA is a μ-Carlson measure. Let
g ∈ D(μ). ,en, ug ∈ L2(PμdA). By Lemma 4, we get that
hu(g) ∈ L2(PμdA) and

hu(g)
����

����
L2 PμdA( 􏼁

≤ ‖T(ug)‖
L2 PμdA( 􏼁

≤C‖ug‖
L2 PμdA( 􏼁

≤C‖g‖D(μ).
(46)

So, hu: D(μ)⟶ L2(PμdA) is bounded.
Conversely, assume that hu: D(μ)⟶ L2(PμdA) is

bounded. We need to prove that

‖ug‖
L2 PμdA( 􏼁

≤C‖g‖D(μ), for any g ∈ D(μ). (47)

By Hölder’s inequality we have

􏽚
D

u(w)(g(z) − g(w))

(1 − wz)2
dA(w)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

≤􏽚
D

|u(w)|
2dA(w)􏽚

D

|g(z) − g(w)|
2

|1 − wz|
4 dA(w)

� ‖u‖
2
A2􏽚

D

|g(z) − g(w)|
2

|1 − wz|
4 dA(w).

(48)

Since

u(z)g(z) − hu(g)(z) � 􏽚
D

u(w)(g(z) − g(w))

(1 − wz)
2 dA(w),

(49)

by Lemma 4 and the fact that hu: D(μ)⟶ L2(PμdA) is
bounded, we obtain

‖ug‖
2
L2 PμdA( 􏼁

≤ ‖u‖
2
A2􏽚

D
􏽚
D

|g(z) − g(w)|
2

|1 − wz|
4 dA(w)Pμ(z)dA(z)

+ hu

����
����
2
‖g‖

2
D(μ)

≲ ‖u‖
2
A2 + hu

����
����
2

􏼒 􏼓‖g‖
2
D(μ).

(50)
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,e proof is complete. □
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In this paper, we are interested to deal with unified integral operators for strongly φ-convex function. We will present refinements
of bounds of these unified integral operators and use them to get associated results for fractional integral operators. Several known
results are connected with particular assumptions.

1. Introduction and Preliminaries

Convex functions play an important role in the formation of
new definitions of related functions which help to give the
generalization of classical results. -erefore, in recent years,
many generalizations of convex functions are defined and
utilized to study the Hadamard and other well-known in-
equalities (see [1–9]). In this paper, we deal with the strongly
φ-convex functions to study the bounds of unified integral
operators. -e obtained results are compared with already
known results.

First, we give some definitions of functions which are
necessary for the findings of this paper.

Definition 1 (see [7]). A function f: I⟶ R is said to be
convex on I if

f(ςu +(1 − ς)v)≤ ςf(u) +(1 − ς)f(v), (1)

holds for all u, v ∈ I and ς ∈ [0, 1], where I⊆R is an interval.
Reverse of inequality (1) defines f as concave function.

Definition 2 (see [10]). A function f: I⟶ R is said to be
strongly convex with modulus λ> 0 if

f(ςu +(1 − ς)v)≤ ςf(u) +(1 − ς)f(v) − λς(1 − ς)(v − u)
2
,

(2)

holds for all u, v ∈ I and ς ∈ [0, 1].

Definition 3 (see [3]). A function f: I⟶ R is said to be
φ-convex on I if

f(ςu +(1 − ς)v)≤f(v) + ςφ(f(u), f(v)), (3)

holds for all u, v ∈ I and ς ∈ [0, 1], where φ is a bifunction.

Definition 4 (see [2]). A function f: I⟶ R is said to be
strongly φ-convex on I if

f(ςu +(1 − ς)v)≤f(v) + ςφ(f(u),f(v)) − λς(1 − ς)(v − u)
2
, (4)

holds for all u, v ∈ I and ς ∈ [0, 1], λ≥ 0, where φ is a
bifunction.

It is to be noted that for φ(x, y) � x − y, strongly
φ-convex function reduces to strongly convex function.
Farid in [11] defined the unified integral operators (5) and
(6) and has proved the continuity and the boundedness of
these integral operators. -e aim of this paper is the study of
integral inequalities for strongly φ-convex functions via
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unified integral operators. Next, we give definition of the
unified integral operators.

Definition 5. Let f, g: [u, v]⟶ R where 0< u< v be the
function such that f is positive and integrable over [u, v] and

g is differentiable and strictly increasing. Also, let Ψ/x be an
increasing function on [u,∞) and α, ξ, c, ζ ∈ C, p, μ ,δ ≥ 0
and 0< k≤ δ + μ. -en, for x ∈ [u, v], the left and right
integral operators are defined as follows:

gF
Ψ,c,δ,k,ζ
μ,α,ξ,u+

f􏼒 􏼓(x, η; p) � 􏽚
x

u
J

y
x E

c,δ,k,ζ
μ,α,ξ , g;Ψ􏼒 􏼓g′(y)f(y)dy, (5)

gF
Ψ,c,δ,k,ζ
μ,α,ξ,v−

f􏼒 􏼓(x, η; p) � 􏽚
v

x
J

x
y E

c,δ,k,ζ
μ,α,ξ , g;Ψ􏼒 􏼓g′(y)f(y)dy, (6)

where

J
y
x E

c,δ,k,ζ
μ,α,ξ , g;Ψ􏼒 􏼓 �

Ψ(g(x) − g(y))

g(x) − g(y)
E

c,δ,k,ζ
μ,α,ξ η(g(x) − g(y))

μ
; p( 􏼁.

(7)

By choosing specific functions Ψ andg and fixing pa-
rameters involved in the Mittag-Leffler function
E

c,δ,k,ζ
μ,α,ξ (η(g(x) − g(y))μ; p), various known fractional in-

tegrals can be reproduced (see [5], Remarks 6 and 7). In [4],
by using unified integral operators, we have obtained in-
tegral inequalities for φ-convex functions. In the following,
we give these inequalities in the form of -eorems 1–3.

Theorem 1. Let f: [u, v]⟶ R be a positive φ-convex
function and g: [u, v]⟶ R be differentiable and strictly
increasing function. Also, letΨ/x be an increasing function on
[u, v], η, α, ξ, c, ζ ∈ C, p, μ, ], δ ≥ 0, 0< k≤ δ + μ, and
0< k≤ δ + ]. >en, for x ∈ [u, v], we have

gF
Ψ,c,δ,k,ζ
μ,α,ξ,u+

f􏼒 􏼓(x, η; p) + gF
Ψ,c,δ,k,ζ
],α,ξ,v−

f􏼒 􏼓(x, η; p)

≤E
c,δ,k,ζ
μ,α,ξ η(g(x) − g(u))

μ
; p( 􏼁Ψ(g(x) − g(u))f(x)

+ J
u
x E

c,δ,k,ζ
μ,α,ξ , g;Ψ􏼒 􏼓φ(f(u), f(x))(I(u, x; g) − g(u))

+ E
c,δ,k,ζ
],α,ξ η(g(v) − g(x))

]
; p( 􏼁Ψ(g(v) − g(x))f(v)

+ J
x
v E

c,δ,k,ζ
],α,ξ , g;Ψ􏼒 􏼓φ(f(x), f(v))(I(x, v; g) − g(x)).

(8)

Theorem 2. Along with the assumptions of >eorem 1, if
f(u + v − x) � f(x) and φ(x, y) � x + y, then the following
result holds:

1
2

f
u + v

2
􏼒 􏼓 gF

Ψ,c,δ,k,ζ
μ,α,ξ,v−

1􏼒 􏼓(u, η; p) + gF
Ψ,c,δ,k,ζ
μ,α,ξ,u+

1􏼒 􏼓(v, η; p)􏼒 􏼓

≤ gF
Ψ,c,δ,k,ζ
μ,α,ξ,v−

f􏼒 􏼓(u, η; p) + gF
Ψ,c,δ,k,ζ
μ,α,ξ,u+

f􏼒 􏼓(v, η; p)

≤ 2Ψ(g(v) − g(u))E
c,δ,k,ζ
μ,α,ξ η(g(v) − g(u))

μ
; p( 􏼁f(v)

+ 2(f(u) + f(v))J
u
v E

c,δ,k,ζ
μ,α,ξ , g;Ψ􏼒 􏼓(I(u, v; g) − g(u)).

(9)

Also, the following result holds for the convolution of
functions f and g.

Theorem 3. Let f, g: [u, v]⟶ R be two differentiable
functions such that |f′| is φ-convex and g be strictly in-
creasing for 0< u< v. Also, Ψ/x be an increasing function on
[u, v] and α, ξ, c, ζ ∈ C, p, μ, ], δ ≥ 0 and 0< k≤ δ + μ and
0< k≤ δ + ]. >en, for x ∈ (u, v), we have

gF
Ψ,c,δ,k,ζ
μ,α,ξ,u+

f
∗
g􏼒 􏼓(x, η; p) + gF

Ψ,c,δ,k,ζ
],α,ξ,v−

f
∗
g􏼒 􏼓(x, η; p)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤E
c,δ,k,ζ
μ,α,ξ η(g(x) − g(u))

μ
; p( 􏼁Ψ(g(x) − g(u)) f′(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

+ J
u
x E

c,δ,k,ζ
μ,α,ξ , g;Ψ􏼒 􏼓φ f′(u)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, f′(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑(I(u, x; g) − g(u))

+ E
c,δ,k,ζ
],α,ξ η(g(v) − g(x))

]
; p( 􏼁Ψ(g(v) − g(x)) f′(v)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

+ J
x
v E

c,δ,k,ζ
],α,ξ , g;Ψ􏼒 􏼓φ f′(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, f′(v)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑(I(x, v; g) − g(x)).

(10)

Although we follow the samemethod which was adopted
to prove the results of [4], here we will get refinements of
these results by using strongly φ-convex functions. In
Section 2, we give the refinements of bounds of unified
integral operators given in Definition 5. In Section 3, we will
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present refinements of bounds of fractional integral
operators.

2. Main Results

-roughout this section, we have adopted the following
notations:

I(u, v; g) ≔
1

v − u
􏽚

v

u
g(t)dt,

S μ, ], u
+
, v

−
( 􏼁 � gF

Ψ,c,δ,k,ζ
μ,α,ξ,u+

f􏼒 􏼓(x, η; p) + gF
Ψ,c,δ,k,ζ
],α,ξ,v−

f􏼒 􏼓(x, η; p).

(11)

Theorem 4. If f is positive strongly φ-convex function with
modulus λ≥ 0, along with other assumptions of >eorem 1,
then we have

S μ, ], u
+
, v

−
( 􏼁≤E

c,δ,k,ζ
μ,α,ξ η(g(x) − g(u))

μ
; p( 􏼁Ψ(g(x) − g(u))f(x)

+ J
u
x E

c,δ,k,ζ
μ,α,ξ , g;Ψ􏼒 􏼓 φ(f(u), f(x))(I(u, x; g) − g(u))− λ(x − u) 2I u, x; Idg( 􏼁 − (x + u)I(u, x; g)( 􏼁􏼉􏼈

+ E
c,δ,k,ζ
],α,ξ η(g(v) − g(x))

]
; p( 􏼁Ψ(g(v) − g(x))f(v)

+ J
x
v E

c,δ,k,ζ
],α,ξ , g;Ψ􏼒 􏼓 φ(f(x), f(v))(I(x, v; g) − g(x))− λ(v − x) 2I x, v; Idg( 􏼁 − (v + x)I(x, v; g)( 􏼁􏼉,􏼈

(12)

where Id is the identity function. Proof. For the kernel defined in (7) and the strongly
φ-convexity of the function f on [u, x], the following in-
equalities hold, respectively:

J
ς
x E

c,δ,k,ζ
μ,α,ξ , g;Ψ􏼒 􏼓g′(ς)≤ J

u
x E

c,δ,k,ζ
μ,α,ξ , g;Ψ􏼒 􏼓g′(ς), ς ∈ [u, x], x ∈ (u, v), (13)

f(ς)≤f(x) +
x − ς
x − u

φ(f(u), f(x)) − λ
x − ς
x − u

􏼒 􏼓
ς − u

x − u
􏼒 􏼓(u − x)

2
. (14)

-e aforementioned inequalities are used to obtain the
following integral inequality:

􏽚
x

u
J
ς
x E

c,δ,k,ζ
μ,α,ξ , g;Ψ􏼒 􏼓g′(ς)f(ς)dς≤f(x)J

u
x E

c,δ,k,ζ
μ,α,ξ , g;Ψ􏼒 􏼓 􏽚

x

u
g′(ς)dς

+
φ(f(u), f(x))

x − u
J

u
x E

c,δ,k,ζ
μ,α,ξ , g;Ψ􏼒 􏼓 􏽚

x

u
(x − ς)g′(ς)dς

− λJ
u
x E

c,δ,k,ζ
μ,α,ξ , g;Ψ􏼒 􏼓 􏽚

x

u
(x − ς)(ς − u)g′(ς)dς.

(15)
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In view of Definition 5 and applying integration by parts,
from inequality (15), we get the following upper bound of the
right-sided unified integral operator:

gF
Ψ,c,δ,k,ζ
μ,α,ξ,u+

f􏼒 􏼓(x, η; p)≤E
c,δ,k,ζ
μ,α,ξ η(g(x) − g(u))

μ
; p( 􏼁Ψ(g(x) − g(u))f(x)

+ J
u
x E

c,δ,k,ζ
μ,α,ξ , g;Ψ􏼒 􏼓 φ(f(u), f(x))(I(u, x; g) − g(u))− λ(x − u) 2I u, x; Idg( 􏼁(􏼈

− (x + u)(I(u, x; g))􏼁􏼉.

(16)

Again for the kernel defined in (7) and the strongly
φ-convexity of the function f on (x, v], the following in-
equalities hold, respectively:

J
x
ς E

c,δ,k,ζ
],α,ξ , g;Ψ􏼒 􏼓g′(ς)≤ J

x
v E

c,δ,k,ζ
],α,ξ , g;Ψ􏼒 􏼓g′(ς), (17)

f(ς)≤f(v) +
v − ς
v − x

φ(f(x), f(v)) − λ
v − ς
v − x

􏼒 􏼓
ς − x

v − x
􏼒 􏼓(x − v)

2
.

(18)

-e aforementioned inequalities (17) and (18) are used to
obtain the following integral inequality:

􏽚
v

x
J

x
ς E

c,δ,k,ζ
],α,ξ , g;Ψ􏼒 􏼓g′(ς)f(ς)dς

≤ J
v
x E

c,δ,k,ζ
],α,ξ , g;Ψ􏼒 􏼓 f(v) 􏽚

v

x
g′(ς)dς +

φ(f(x), f(v))

v − x
􏽚

v

x
(v − ς)g′(ς)dς􏼠 􏼡

− λJ
v
x E

c,δ,k,ζ
],α,ξ , g;Ψ􏼒 􏼓 􏽚

v

x
(v − ς)(ς − x)g′(ς)dς.

(19)

In view of Definition 5 and applying integration by parts,
from inequality (19), we get the following upper bound of the
left-sided unified integral operator:

gF
Ψ,c,δ,k,ζ
],α,ξ,v−

f􏼒 􏼓(x, η; p)≤E
c,δ,k,ζ
],α,ξ η(g(v) − g(x))

]
; p( 􏼁Ψ(g(v) − g(x))f(v)

+ J
x
v E

c,δ,k,ζ
],α,ξ , g;Ψ􏼒 􏼓 φ(f(x), f(v))(I(x, v; g) − g(x))− λ(v − x) 2I x, v; Idg( 􏼁 − (v + x)I(x, v; g)( 􏼁􏼉.􏼈

(20)

Inequality (12) will be obtained by combining (16) and
(20). □

Corollary 1. By setting μ � ] in (12), we get
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S μ, μ, u
+
, v

−
( 􏼁≤E

c,δ,k,ζ
μ,α,ξ η(g(x) − g(u))

μ
; p( 􏼁Ψ(g(x) − g(u))f(x)

+ J
u
x E

c,δ,k,ζ
μ,α,ξ , g;Ψ􏼒 􏼓 φ(f(u), f(x))(I(u, x; g) − g(u))− λ(x − u) 2I u, x; Idg( 􏼁 − (x + u)(I(u, x; g))( 􏼁􏼉􏼈

+ E
c,δ,k,ζ
μ,α,ξ η(g(v) − g(x))

μ
; p( 􏼁Ψ(g(v) − g(x))f(v)

+ J
x
v E

c,δ,k,ζ
μ,α,ξ , g;Ψ􏼒 􏼓 φ(f(x), f(v))(I(x, v; g) − g(x))− λ(v − x) 2I x, v; Idg( 􏼁 − (v + x)I(x, v; g)( 􏼁􏼉.􏼈

(21)

Remark 1. For λ � 0 in (12), we get inequality (8) of
-eorem 1; if 2I(u, x; Idg)> (x + u)(I(u,

x; g)) and 2I(x, v; Idg)> (v + x)I(x, v; g),
then we will get the refinement of (8).

For φ(x, y) � x − y in (21), we get the result for
strongly convex function.
For φ(x, y) � x − y and λ � 0 in (21), we get the result
of -eorem 8 in [5].

We will use the following lemma for our next result.

Lemma 1. Let f be strongly φ-convex function with modulus
λ≥ 0. If f(x) � f(u + v − x), then

f
u + v

2
􏼒 􏼓≤f(x) +

1
2
φ(f(x), f(x)) −

λ(u − v)
2

4
, (22)

holds for x ∈ [u, v].

Proof. Strongly φ-convexity of f implies

f
u + v

2
􏼒 􏼓≤f

x − u

v − u
u +

v − x

v − u
v􏼒 􏼓 +

1
2
φ f

x − u

v − u
v +

v − x

v − u
u􏼒 􏼓, f

x − u

v − u
u +

v − x

v − u
v􏼒 􏼓􏼒 􏼓 −

λ(u − v)
2

4

� f(u + v − x) +
1
2
φ(f(x), f(u + v − x)) −

λ(u − v)
2

4
.

(23)

Using the condition f(x) � f(u + v − x) in the above
inequality, we get (22). □

Remark 2. For λ � 0, Lemma 1 reduces to Lemma 1 of [4].
For λ> 0, we get its refinement.

For φ(x, y) � x − y and λ � 0, Lemma 1 reduces to
Lemma 21 of [5].

Theorem 5. Let f(u + v − x) � f(x) and φ(x, y) � x + y

in addition with the assumptions of >eorem 4. >en, the
following inequality holds:

1
2

f
u + v

2
􏼒 􏼓 +

λ(u − v)
2

4
􏼠 􏼡 gF

Ψ,c,δ,k,ζ
μ,α,ξ,v−

1􏼒 􏼓(u, η; p) + gF
Ψ,c,δ,k,ζ
μ,α,ξ,u+

1􏼒 􏼓(v, η; p)􏼒 􏼓

≤ S μ, ], u
+
, v

−
( 􏼁≤ 2Ψ(g(v) − g(u))E

c,δ,k,ζ
μ,α,ξ η(g(v) − g(u))

μ
; p( 􏼁f(v)

+ 2(f(u) + f(v))J
u
v E

c,δ,k,ζ
μ,α,ξ , g;Ψ􏼒 􏼓(I(u, v; g) − g(u))

− 2λJ
u
v E

c,δ,k,ζ
μ,α,ξ , g;Ψ􏼒 􏼓(v − u) 2I u, v; Idg( 􏼁 − (u + v)I(u, v; g)( 􏼁.

(24)
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Proof. For the kernel defined in equation (7) and the
strongly φ-convexity of the function f on [u, v], the fol-
lowing inequalities hold, respectively:

J
u
x E

c,δ,k,ζ
μ,α,ξ , g;Ψ􏼒 􏼓g′(x)≤ J

u
v E

c,δ,k,ζ
μ,α,ξ , g;Ψ􏼒 􏼓g′(x), x ∈ (u, v),

(25)

f(x)≤f(v) +
v − x

v − u
φ(f(u), f(v)) − λ(v − x)(x − u).

(26)

-e aforementioned inequalities are used to obtain the
following integral inequality:

􏽚
v

u
J

u
x E

c,δ,k,ζ
μ,α,ξ , g;Ψ􏼒 􏼓f(x)g′(x)dx≤f(v)J

u
v E

c,δ,k,ζ
μ,α,ξ , g;Ψ􏼒 􏼓 􏽚

v

u
g′(x)dx

+
φ(f(u), f(v))

v − u
J

u
v E

c,δ,k,ζ
μ,α,ξ , g;Ψ􏼒 􏼓 􏽚

v

u
(v − x)g′(x)dx

− λJ
u
v E

c,δ,k,ζ
μ,α,ξ , g;Ψ􏼒 􏼓 􏽚

v

u
(v − x)(x − u)g′(x)dx.

(27)

In view of Definition 5, applying integration by parts,
and using φ(x, y) � x + y, from inequality (27), we get the

following upper bound of the left-sided unified integral
operator:

gF
Ψ,c,δ,k,ζ
μ,α,ξ,v−

f􏼒 􏼓(u, η; p)≤E
c,δ,k,ζ
μ,α,ξ η(g(v) − g(u))

μ
; p( 􏼁Ψ(g(v) − g(u))f(v)

+ J
u
v E

c,δ,k,ζ
μ,α,ξ , g;Ψ􏼒 􏼓(f(u) + f(v))(I(u, v; g) − g(u))

− λJ
u
v E

c,δ,k,ζ
μ,α,ξ , g;Ψ􏼒 􏼓(v − u) 2I u, v, Idg( 􏼁 − (v + u)I(u, v, g)( 􏼁.

(28)

Also, the following inequality holds:

J
x
v E

c,δ,k,ζ
μ,α,ξ , g;Ψ􏼒 􏼓g′(x)≤ J

u
v E

c,δ,k,ζ
μ,α,ξ , g;Ψ􏼒 􏼓g′(x), x ∈ (u, v).

(29)

-e aforementioned inequalities (26) and (29) are used
to obtain the following integral inequality:

􏽚
v

u
J

x
v E

c,δ,k,ζ
μ,α,ξ , g;Ψ􏼒 􏼓g′(x)f(x)dx

≤ J
u
v E

c,δ,k,ζ
μ,α,ξ , g;Ψ􏼒 􏼓 f(v) 􏽚

v

u
g′(x)dx +

φ(f(u), f(v))

v − u
􏽚

v

u
g′(x)(v − x)dx􏼠 􏼡

− λJ
u
v E

c,δ,k,ζ
μ,α,ξ , g;Ψ􏼒 􏼓 􏽚

v

u
(v − x)(x − u)g′(x)dx.

(30)
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In view of Definition 5 and applying integration by parts,
from inequality (30), we get the following upper bound of
the right-sided unified integral operator:

gF
Ψ,c,δ,k,ζ
μ,α,ξ,u+

f􏼒 􏼓(v, η; p)≤E
c,δ,k,ζ
μ,α,ξ η(g(v) − g(u))

μ
; p( 􏼁Ψ(g(v) − g(u))f(v)

+ J
u
v E

c,δ,k,ζ
μ,α,ξ , g;Ψ􏼒 􏼓(f(u) + f(v))(I(u, v; g) − g(u))

− λJ
u
v E

c,δ,k,ζ
μ,α,ξ , g;Ψ􏼒 􏼓(v − u) 2I u, v, Idg( 􏼁 − (v + u)I(u, v, g)( 􏼁.

(31)

Now, using Lemma 1, we can write

􏽚
v

u
f

u + v

2
􏼒 􏼓J

u
x E

c,δ,k,ζ
μ,α,ξ , g;Ψ􏼒 􏼓g′(x)dx

≤ 􏽚
v

u
J

u
x E

c,δ,k,ζ
μ,α,ξ , g;Ψ􏼒 􏼓g′(x)f(x)dx +

1
2

􏽚
v

u
J

u
x E

c,δ,k,ζ
μ,α,ξ g;Ψ􏼒 􏼓g′(x)φ(f(x), f(x))dx

−
λ(u − v)

2

4
􏽚

v

u
J

u
x E

c,δ,k,ζ
μ,α,ξ , g;Ψ􏼒 􏼓g′(x)dx.

(32)

In view of Definition 5 and φ(x, y) � x + y, from (32),
we get the following upper bound of the left-sided unified
integral operator:

f
u + v

2
􏼒 􏼓 gF

Ψ,c,δ,k,ζ
μ,α,ξ,v−

1􏼒 􏼓(u, η; p)≤ 2 gF
Ψ,c,δ,k,ζ
μ,α,ξ,v−

f􏼒 􏼓(u, η; p)

−
λ(u − v)

2

4 gF
Ψ,c,δ,k,ζ
μ,α,ξ,v−

1􏼒 􏼓(u, η; p).

(33)

Also, from Lemma 1, we can write

􏽚
v

u
f

u + v

2
􏼒 􏼓J

x
v E

c,δ,k,ζ
μ,α,ξ , g;Ψ􏼒 􏼓g′(x)dx

≤ 􏽚
v

u
J

x
v E

c,δ,k,ζ
μ,α,ξ , g;Ψ􏼒 􏼓g′(x)f(x)dx +

1
2

􏽚
v

u
J

x
v E

c,δ,k,ζ
μ,α,ξ , g;Ψ􏼒 􏼓g′(x)φ(f(x), f(x))dx

−
λ(u − v)

2

4
􏽚

v

u
J

x
v E

c,δ,k,ζ
μ,α,ξ , g;Ψ􏼒 􏼓g′(x)dx.

(34)

In view of Definition 5 and φ(x, y) � x + y, from (34),
we get the following upper bound of the right-sided unified
integral operator:

f
u + v

2
􏼒 􏼓 gF

Ψ,c,δ,k,ζ
μ,α,ξ,u+

1􏼒 􏼓(v, η; p)≤ 2 gF
Ψ,c,δ,k,ζ
μ,α,ξ,u+

f􏼒 􏼓(v, η; p) −
λ(u − v)

2

4 gF
Ψ,c,δ,k,ζ
μ,α,ξ,u+

1􏼒 􏼓(v, η; p). (35)
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Inequality (24) will be obtained by using (28), (31), (33),
and (35). □

Remark 3. For λ � 0 in (24), we get (9) of -eorem 2; if
2I(u, v; Idg)> (u + v)I(u, v; g), then we
will get refinement of (9).

For φ(x, y) � x − y in (24), we get the result for
strongly convex function.

For φ(x, y) � x − y and λ � 0 in (24), we get the result
of -eorem 22 in [5].

Theorem 6. If |f′| is strongly φ-convex with modulus λ≥ 0
along with other assumptions of >eorem 3, then the
inequality

gF
Ψ,c,δ,k,ζ
μ,α,ξ,u+

f
∗
g􏼒 􏼓(x, η; p) + gF

Ψ,c,δ,k,ζ
],α,ξ,v−

f
∗
g􏼒 􏼓(x, η; p)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤E
c,δ,k,ζ
μ,α,ξ η(g(x) − g(u))

μ
; p( 􏼁Ψ(g(x) − g(u)) f′(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

+ J
u
x E

c,δ,k,ζ
μ,α,ξ , g;Ψ􏼒 􏼓 φ f′(u)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, f′(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑(I(u, x; g) − g(u))􏽮

− λ(x − u) 2I u, x; Idg( 􏼁 − (x + u)I(u, x; g)( 􏼁􏼉

+ E
c,δ,k,ζ
],α,ξ η(g(v) − g(x))

]
; p( 􏼁Ψ(g(v) − g(x)) f′(v)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

+ J
x
v E

c,δ,k,ζ
],α,ξ , g;Ψ􏼒 􏼓 φ f′(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, f′(v)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑(I(x, v; g) − g(x))􏽮

− λ(v − x) 2I x, v; Idg( 􏼁 − (v + x)I(x, v; g)( 􏼁􏼉

(36)

holds for x ∈ (u, v), where

gF
Ψ,c,δ,k,ζ
μ,α,ξ,u+

f
∗
g􏼒 􏼓(x, η; p) � 􏽚

x

u
J
ς
x E

c,δ,k,ζ
μ,α,ξ , g;Ψ􏼒 􏼓g′(ς)f′(ς)dς, (37)

gF
Ψ,c,δ,k,ζ
],α,ξ,v−

f
∗
g􏼒 􏼓(x, η; p) � 􏽚

v

x
J

x
ς E

c,δ,k,ζ
],α,ξ , g;Ψ􏼒 􏼓g′(ς)f′(ς)dς, (38)

and Id is the identity function. Proof. Using strongly φ-convexity of |f′| over [u, x] gives

f′(ς)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ f′(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
x − ς
x − u

φ f′(u)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, f′(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 − λ(x − ς)(ς − u), ς ∈ [u, x]. (39)

Using absolute value property, we can write

− f′(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
x − ς
x − u

φ f′(u)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, f′(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 − λ(x − ς)(ς − u)􏼒 􏼓≤f′(ς)

≤ f′(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
x − ς
x − u

φ f′(u)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, f′(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 − λ(x − ς)(ς − u)􏼒 􏼓.

(40)
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-e aforementioned inequality (13) and second in-
equality of (40) are used to obtain the following integral
inequality:

􏽚
x

u
J
ς
x E

c,δ,k,ζ
μ,α,ξ , g;Ψ􏼒 􏼓g′(ς)f′(ς)dς≤ J

u
x E

c,δ,k,ζ
μ,α,ξ , g;Ψ􏼒 􏼓 f′(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽚

x

u
g′(ς)dς􏼒

+
φ f′(u)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, f′(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

x − u
􏽚

x

u
(x − ς)g′(ς)dς − λ􏽚

x

u
(x − ς)(ς − u)g′(ς)dς⎞⎠.

(41)

In view of (37) and applying integration by parts, from
inequality (41), we get the following upper bound:

gF
Ψ,c,δ,k,ζ
μ,α,ξ,u+

f
∗
g􏼒 􏼓(x, η; p)

≤E
c,δ,k,ζ
μ,α,ξ η(g(x) − g(u))

μ
; p( 􏼁Ψ(g(x) − g(u)) f′(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

+ J
u
x E

c,δ,k,ζ
μ,α,ξ , g;Ψ􏼒 􏼓 φ f′(u)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, f′(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑(I(u, x; g) − g(u))􏽮

− λ(x − u) 2I u, x; Idg( 􏼁 − (x + u)I(u, x; g)( 􏼁􏼉.

(42)

Also, inequality (13) and the first inequality of (40) are
used to obtain the following integral inequality:

gF
Ψ,c,δ,k,ζ
μ,α,ξ,u+

f
∗
g􏼒 􏼓(x, η; p)

≥ − E
c,δ,k,ζ
μ,α,ξ η(g(x) − g(u))

μ
; p( 􏼁Ψ(g(x) − g(u)) f′(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼔

+ J
u
x E

c,δ,k,ζ
μ,α,ξ , g;Ψ􏼒 􏼓 φ f′(u)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, f′(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑(I(u, x; g) − g(u))􏽮

− λ(x − u) 2I u, x; Idg( 􏼁 − (x + u)I(u, x; g)( 􏼁􏼉􏼃.

(43)

Now, using φ-convexity of |f′| over (x, v], we have

f′(ς)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ f′(v)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
v − ς
v − x

φ f′(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, f′(v)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 − λ(v − ς)(ς − x), ς ∈ (x, v]. (44)

Inequalities (17), (38), and (44) are used to obtain the
following upper bounds:

gF
Ψ,c,δ,k,ζ
],α,ξ,v−

f
∗
g􏼒 􏼓(x, η; p)

≤ E
c,δ,k,ζ
],α,ξ η(g(v) − g(x))

]
; p( 􏼁Ψ(g(v) − g(x)) f′(v)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

+ J
x
v E

c,δ,k,ζ
],α,ξ , g;Ψ􏼒 􏼓 φ f′(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, f′(v)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑(I(x, v; g) − g(x))􏽮

− λ(v − x) 2I x, v; Idg( 􏼁 − (v + x)I(x, v; g)( 􏼁􏼉,

(45)

gF
Ψ,c,δ,k,ζ
],α,ξ,v−

f
∗
g􏼒 􏼓(x, η; p)

≥ − E
c,δ,k,ζ
],α,ξ η(g(v) − g(x))

]
; p( 􏼁Ψ(g(v) − g(x)) f′(v)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼔

+ J
x
v E

c,δ,k,ζ
],α,ξ , g;Ψ􏼒 􏼓 φ f′(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, f′(v)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑(I(x, v; g) − g(x))􏽮

− λ(v − x) 2I x, v; Idg( 􏼁 − (v + x)I(x, v; g)( 􏼁􏼉􏼃.

(46)

Inequality (36) will be obtained by using
(42)–(46). □

Corollary 2. By setting μ � ] in (36), we get the following
inequality:
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gF
Ψ,c,δ,k,ζ
μ,α,ξ,u+

f
∗
g􏼒 􏼓(x, η; p) + gF

Ψ,c,δ,k,ζ
μ,α,ξ,v−

f
∗
g􏼒 􏼓(x, η; p)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤E
c,δ,k,ζ
μ,α,ξ η(g(x) − g(u))

μ
; p( 􏼁Ψ(g(x) − g(u)) f′(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

+ J
u
x E

c,δ,k,ζ
μ,α,ξ , g;Ψ􏼒 􏼓 φ􏼈 f′(u)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, f′(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑(I(u, x; g) − g(u))

− λ(x − u) 2I u, x; Idg( 􏼁 − (x + u)I(u, x; g)( 􏼁􏼉

+ E
c,δ,k,ζ
μ,α,ξ η(g(v) − g(x))

μ
; p( 􏼁Ψ(g(v) − g(x)) f′(v)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

+ J
x
v E

c,δ,k,ζ
μ,α,ξ , g;Ψ􏼒 􏼓 φ f′(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, f′(v)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑(I(x, v; g) − g(x))􏽮

− λ(v − x) 2I x, v; Idg( 􏼁 − (v + x)I(x, v; g)( 􏼁􏼉.

(47)

Remark 4. For λ � 0 in (36), we get inequality (10) of
-eorem 3; if 2I(u, x; Idg)> (x + u)

I(u, x; g) and 2I(x, v; Idg)> (v + x)I(x,

v; g), then we will get the refinement of (10).
For φ(x, y) � x − y in (47), we get the result for
strongly convex function.
For φ(x, y) � x − y and λ � 0 in (47), we get the result
of -eorem 25 in [5].

3. Results for Fractional Integral Operators

In this section, we give the bounds of some of the fractional
integral operators which will be deduced from the results of
Section 2. -roughout this section, we assume that
p � η � 0.

Proposition 1. Under the assumptions of >eorem 4, the
following result holds:

Γ(α)
α
gI

u+
f􏼐 􏼑(x) +

α
gI

v−
f􏼐 􏼑(x)􏼐 􏼑≤ (g(x) − g(u))

α
f(x) +(g(v) − g(x))

α
f(v)

+(g(x) − g(u))
α− 1 φ(f(u), f(x))(I(u, x; g) − g(u))− λ(x − u) 2I u, x; Idg( 􏼁 − (x + u)I(u, x; g)( 􏼁􏼉􏼈

+(g(v) − g(x))
α− 1 φ(f(x), f(v))(I(x, v; g) − g(x))− λ(v − x) 2I x, v; Idg( 􏼁 − (v + x)I(x, v; g)( 􏼁􏼉.􏼈

(48)

Proof. For Ψ(ς) � ςα, where α> 0, -eorem 4 gives
(48). □

Proposition 2. Under the assumptions of >eorem 4, the
following inequality holds:

Γ(α) u+ IΨf( 􏼁(x) + v− IΨf( 􏼁(x)( 􏼁

≤Ψ(x − u)f(x) +
Ψ(x − u)

2
φ(f(u), f(x)) + Ψ(v − x)f(v)

+
Ψ(v − x)

2
φ(f(x), f(v)) − Ψ(x − u)

λ(x − u)
2

6
− Ψ(v − x)

λ(v − x)
2

6
.

(49)

Proof. For g as identity function, -eorem 4 gives (49). □ Corollary 3. For Ψ(ς) � ((ςα/k)/(kΓk(α))), (5) and (6) re-
duce to the fractional integral operators given in [5]. Further,
the following bound for α≥ k is also satisfied:

α
gI

k

u+
f􏼐 􏼑(x) +

α
gI

k

v−
f􏼐 􏼑(x)≤

1
kΓk(α)

(g(x) − g(u))
α/k

f(x) +(g(v) − g(x))
α/k

f(v)􏽨

+ (g(x) − g(u))
(α/k)− 1 φ(f(u), f(x))(I(u, x; g) − g(u)) − λ(x − u) 2I u, x; Idg( 􏼁(􏼈

− (x + u)I(u, x; g))} +(g(v) − g(x))
(α/k)− 1

· φ(f(x), f(v))(I(x, v; g) − g(x))− λ(v − x) 2I x, v; Idg( 􏼁 − (v + x)I(x, v; g)( 􏼁􏼉􏼃.􏼈

(50)
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Corollary 4. For Ψ(ς) � ςα, where α≥ 1, and g as identity
function, (5) and (6) give fractional integrals defined in [12].
Further, the following bound is also satisfied:

Γ(α)
α
Iu+ f( 􏼁(x) +

α
Iv− f( 􏼁(x)( 􏼁

≤ (x − u)
α
f(x) +(v − x)

α
f(v) +

(x − u)
α

2
φ(f(u), f(x))

+
(v − x)

α

2
φ(f(x), f(v)) − λ

(x − u)
α+2

6
− λ

(v − x)
α+2

6
.

(51)

Corollary 5. Using Ψ(ς) � ((ςα/k)/(kΓk(α))) and g as
identity functions, (5) and (6) reduce to the fractional integral

operators given in [13]. Further, the following bound is also
satisfied:

kΓk(α)
α
I

k

u+ f􏼐 􏼑(x) +
α
I

k

v− f􏼐 􏼑(x)􏼐 􏼑≤ (x − u)
α/k

f(x) +(v − x)
α/k

f(v) +
(x − u)

α/k

2

φ(f(u), f(x)) +
(v − x)

α/k

2
φ(f(x), f(v)) − λ

(x − u)
α/k+2

6

− λ
(v − x)

α/k+2

6
.

(52)

Corollary 6. For Ψ(ς) � ςα, where α> 0, and g(x) � xρ/
ρ, where ρ> 0, (5) and (6) reduce to the fractional integral

operators given in [14]. Further, the following bound is also
satisfied:

ρ
I
α
u+ f( 􏼁(x) +

ρ
I
α
v− f( 􏼁(x)

≤
1

ραΓ(α)
x
ρ

− u
ρ

( 􏼁
α
f(x) + v

ρ
− x

ρ
( 􏼁

α
f(v) + x

ρ
− u

ρ
( 􏼁

α− 1
(φ(f(u), f(x)􏽨

·
x
ρ+1

− u
ρ+1

(x − u)(ρ + 1)
− u

ρ
􏼠 􏼡 − λ

2 x
ρ+2

− u
ρ+2

􏼐 􏼑

ρ + 2
−

(x + u) x
ρ+1

− u
ρ+1

􏼐 􏼑

ρ + 1
⎛⎝ ⎞⎠⎞⎠

+ v
ρ

− x
ρ

( 􏼁
α− 1 φ(f(x), f(v))

v
ρ+1

− x
ρ+1

(v − x)(ρ + 1)
− x

ρ
􏼠 􏼡􏼠

− λ
2 v

ρ+2
− x

ρ+2
􏼐 􏼑

ρ + 2
−

(v + x) v
ρ+1

− x
ρ+1

􏼐 􏼑

ρ + 1
⎛⎝ ⎞⎠⎞⎠⎤⎥⎥⎦.

(53)

Corollary 7. For Ψ(ς) � ςα, where α> 0, and g(x) �

((xs+1)/(s + 1)), where s> 0, (5) and (6) give the following
fractional integral operators:

F
ςα( )/(Γ(α))( ),g

u+ f􏼐 􏼑(x) �
s
I
α
u+ f( 􏼁(x) �

(s + 1)
1− α

Γ(α)
􏽚

x

u
x

s+1
− ςs+1

􏼐 􏼑
α− 1

ςs
f(ς)dς,

F
ςα( )/(Γ(α))( ),g

v− f􏼐 􏼑(x) �
s
I
α
v− f( 􏼁(x) �

(s + 1)
1− α

Γ(α)
􏽚

v

x
ςs+1

− x
s+1

􏼐 􏼑
α− 1

ςs
f(ς)dς.

(54)
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Further, the following bound is also satisfied:

(s + 1)
αΓ(α)

S
I
α
u+ f􏼐 􏼑(x) +

S
I
α
v− f􏼐 􏼑(x)􏼐 􏼑≤ x

s+1
− u

s+1
􏼐 􏼑

α
f(x)

+ v
s+1

− x
s+1

􏼐 􏼑
α
f(v) + x

s+1
− u

s+1
􏼐 􏼑

α− 1
φ f(u), f(x)

x
s+2

− u
s+2

(x − u)(s + 2)
− u

s+1
􏼠 􏼡􏼠􏼠

− λ
2 x

s+3
− u

s+3
􏼐 􏼑

s + 3
−

(x + u) x
s+2

− u
s+2

􏼐 􏼑

s + 2
⎛⎝ ⎞⎠⎞⎠ + v

s+1
− x

s+1
􏼐 􏼑

α− 1

· φ(f(x), f(v))
v

s+2
− x

s+2

(v − x)(s + 2)
− x

s+1
􏼠 􏼡􏼠

− λ
2 v

s+3
− x

s+3
􏼐 􏼑

s + 3
−

(v + x) v
s+2

− x
s+2

􏼐 􏼑

s + 2
⎛⎝ ⎞⎠⎞⎠.

(55)

Corollary 8. For Ψ(ς) � ((ςα/k)/kΓk(α)) and g(x) �

((xs+1)/(s + 1)), where s> 0, (5) and (6) reduce to the
fractional integral operators given in [15]. Further, the fol-
lowing bound is also satisfied:

s
kI

α
u+ f( 􏼁(x) +

s
kI

α
v− f( 􏼁(x)

≤
1

(s + 1)
α/k

kΓk(α)
x

s+1
− u

s+1
􏼐 􏼑

α/k
f(x) + v

s+1
− x

s+1
􏼐 􏼑

α/k
f(v)

+ x
s+1

− u
s+1

􏼐 􏼑
(α/k)− 1

φ f(u), f(x)
x

s+2
− u

s+2

(x − u)(s + 2)
− u

s+1
􏼠 􏼡􏼠􏼠 􏼡

− λ
2 x

s+3
− u

s+3
􏼐 􏼑

s + 3
−

(x + u) x
s+2

− u
s+2

􏼐 􏼑

s + 2
⎛⎝ ⎞⎠⎞⎠ + v

s+1
− x

s+1
􏼐 􏼑

(α/k)− 1

· φ(f(x), f(v))
v

s+2
− x

s+2

(v − x)(s + 2)
− x

s+1
􏼠 􏼡􏼠

− λ
2 v

s+3
− x

s+3
􏼐 􏼑

s + 3
−

(v + x) v
s+2

− x
s+2

􏼐 􏼑

s + 2
⎛⎝ ⎞⎠⎞⎠.

(56)

Corollary 9. For Ψ(ς) � ςα,where α> 0, g(x) � ((xβ+s)/
(β + s)), where β and s> 0, (5) and (6) reduce to the

fractional integral operators given in [16]. Further, the fol-
lowing bound is also satisfied:
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s
βI

α
u+

f􏼐 􏼑(x) +
s
βI

α
v−

f􏼐 􏼑(x)

≤ x
β+s

− u
β+s

􏼐 􏼑
α
f(x) + v

β+s
− x

β+s
􏼐 􏼑

α
f(v)􏼔

+ x
β+s

− u
β+s

􏼐 􏼑
α− 1

φ(f(u), f(x))
x
β+s

+ 1 − u
β+s+1

(x − u)(β + s + 1)
− u

β+s
􏼠 􏼡􏼠

− λ
2 x

β+s+2
− u

β+s+2
􏼐 􏼑

β + s + 2
−

(x + u) x
β+s+1

− u
β+s+1

􏼐 􏼑

β + s + 1
⎛⎝ ⎞⎠⎞⎠

+ v
β+s

− x
β+s

􏼐 􏼑
α− 1

φ(f(x), f(v))
v
β+s+1

− x
β+s+1

(v − x)(β + s + 1)
− x

β+s
􏼠 􏼡􏼠

− λ
2 v

β+s+2
− x

β+s+2
􏼐 􏼑

β + s + 2
−

(v + x) v
β+s+1

− x
β+s+1

􏼐 􏼑

β + s + 1
⎛⎝ ⎞⎠⎞⎠⎤⎥⎥⎦.

(57)

Corollary 10. Using Ψ(ς) � ςα and g(x) � ((x − u)ρ)/ρ in
(5) and g(x) � (− (v − x)ρ)/ρ in (6), where ρ> 0, fractional

integral operators given in [17] are obtained. Further, the
following bound is also satisfied:

ρ
I
α
u+ f( 􏼁(x) +

ρ
I
α
v− f( 􏼁(x)≤

1
ραΓ(α)

(x − u)
ρα

f(x) + φ(f(u), f(x))
(x − u)

ρα

ρ + 1
􏼢

− λ
ρ

(ρ + 1)(ρ + 2)
(x − u)

ρα+1
+(v − x)

ρα
f(v) + φ(f(x), f(v))

(v − x)
ρα

ρ + 1

− λ
ρ

(ρ + 1)(ρ + 2)
(v − x)

ρα+1
􏼣.

(58)

Corollary 11. For Ψ(ς) � ((ςα/k)/(kΓk(α))), where α> k,
and g(x) � ((x − u)ρ)/ρ in (5) and g(x) � (− (v − x)ρ)/ρ in

(6), where ρ> 0, fractional integral operators given in [18] are
obtained. Further, the following bound is also satisfied:

ρ
kI

α
u+ f􏼐 􏼑(x) +

ρ
kI

α
v− f􏼐 􏼑(x)≤

1
ρα/kkΓk(α)

(x − u)
ρα/k

f(x) + φ(f(u), f(x))
(x − u)

ρα/k

ρ + 1
􏼢

− λ
ρ

(ρ + 1)(ρ + 2)
(x − u)

ρ(α/k)+2
+(v − x)

ρα/k
f(v) + φ(f(x), f(v))

(v − x)
ρα/k

ρ + 1

− λ
ρ

(ρ + 1)(ρ + 2)
(v − x)

ρ(α/k)+2
􏼣.

(59)

Remark 5

For λ � 0, all the results of Section 3 reduce to the
results of Section 3 in [4]; if λ> 0, then all the results of
Section 3 give the refinements of the results of Section 3
in [4].
For φ(x, y) � x − y and λ � 0, all the results of Section
3 reduce to the propositions and corollaries of [5].

Further, various bounds can be obtained by applying
-eorems 5 and 6 which we leave for the reader.

4. Concluding Remarks

-e paper presents bounds of unified integral operators (5)
and (6) for strongly φ-convex functions. -ese bounds are
refinements of bounds obtained for unified integral
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operators for φ-convex functions in [4]. -e results for
fractional integral operators have been deduced which
provide bounds for Riemann–Liouville and other well-
known fractional integral operators.
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In this manuscript, we propose some sufficient conditions for the existence of solution for the multivalued orthogonal
F-contraction mappings in the framework of orthogonal metric spaces. As a consequence of results, we obtain some interesting
results. Also as application of the results obtained, we investigate Ulam’s stability of fixed point problem and present a solution for
the Caputo-type nonlinear fractional integro-differential equation. An example is also provided to illustrate the usability of the
obtained results.

1. Introduction and Preliminaries

(e theory of multivalued mappings has an important role
in mathematics and allied sciences because of its many
applications, for instance, in real and complex analysis as
well as in optimal control problems. Over the years, this
theory has increased its significance, and hence in the lit-
erature, there are many papers focusing on the discussion of
abstract and practical problems involving multivalued
mappings. As a matter of fact, amongst the various ap-
proaches utilized to develop this theory, one of the most
interesting approaches is based on methods of fixed point
theory.

Acknowledging the work of Nadler [1], Gordji et al. [2],
and Wardowski [3–5], the aim of this paper is to introduce
the notion of multivalued orthogonal F-contraction map-
pings in the framework of orthogonal metric space and to
establish some sufficient conditions for the existence of fixed
points for such class of mappings. Many researchers [6–11]
proved the existence of fixed points using the concept of
F-contraction introduced by Wardowski [3–5]. In 1974,
Reich [12, 13] asked whether we can take into account
nonempty closed and bounded set instead of nonempty
compact set. Although a lot of fixed point theorists studied
this problem, it has not been completely solved. (ere are

some partial affirmative answers to this problem, for in-
stance, Mizoguchi et al. [14] and Olgun et al. [15]. We
provide a partial solution to Reich’s original problem using
multivalued orthogonal F-contraction mappings in the
setting of orthogonal metric spaces. Also, as application of
the interesting and new results obtained, we investigate
Ulam’s stability of fixed point problem and present a so-
lution for a Caputo-type nonlinear fractional integro-dif-
ferential equation.

Recently, Gordji et al. [2] introduced the concept of an
orthogonal set (briefly, O-set) and presented some fixed
point theorems in orthogonal metric spaces.

Definition 1. LetX≠∅ and⊥ ⊂ X × X be a binary relation.
If ⊥ satisfies the following condition: there exists x0 ∈ X
such that for all y ∈ X, y⊥x0, or for all y ∈ X, x0⊥y, then it
is called an orthogonal set (briefly O-set). We denote this
O-set by (X,⊥).

Example 1. Let X � Z. Define m⊥n if there exists k ∈ Z
such that m � kn. It is easy to see that 0⊥n for all n ∈ Z.
Hence, (X,⊥) is an O-set [2].

Example 2. Let (X, d) be a metric space and T: X⟶ X

be a Picard operator, that is, T has a unique fixed point
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x∗ ∈ X and lim
n⟶+∞

Tn(y) � x∗ for all y ∈ X. We define the
binary relation ⊥ on X by x⊥y if

lim
n⟶∞

d x,Tn(y)( 􏼁 � 0. (1)

(en, (X,⊥) is an O-set [2].

Example 3. Let X be an inner product space with the inner
product 〈., .〉. Define the binary relation ⊥ on X by x⊥y if
〈x, y〉 � 0. It is easy to see that 0⊥x for all x ∈ X. Hence,
(X,⊥) is an O-set [2].

For more interesting examples for an O-set, see [2].

Definition 2. Let (X,⊥) be an O-set. A sequence xn􏼈 􏼉n∈N is
called an orthogonal sequence (briefly, O-sequence) if for all
n, xn⊥xn+1, or for all n, xn+1⊥xn.

Definition 3. Let (X,⊥, d) be an orthogonal metric space
((X,⊥) is an O-set, and (X, d) is a metric space). (en
T: X⟶ X is said to be orthogonally continuous (or
⊥-continuous) at a ∈ X if, for each O-sequence an􏼈 􏼉 in X

with an⟶ a, we haveT(an)⟶ T(a). Also, T is said to
be ⊥-continuous onX ifT is ⊥-continuous for each a ∈ X.

It is easy to see that every continuous mapping is
⊥-continuous, but the converse is not true [2].

Definition 4. Let (X,⊥, d) be an orthogonal set with the
metric d. (en X is said to be orthogonally complete
(briefly, O-complete) if every Cauchy O-sequence is
convergent.

It is easy to see that every complete metric space is
O-complete, but the converse is not true [2].

Definition 5. Let (X,⊥) be an O-set. A mapping
T: X⟶ X is said to be ⊥-preserving if T(x)⊥T(y),
whenever x⊥y. Also, T: X⟶ X is said to be weakly
⊥-preserving if T(x)⊥T(y) or T(y)⊥T(x), whenever
x⊥y.

It is easy to see that every ⊥-preserving mapping is
weakly ⊥-preserving. But the converse is not true [2].

Definition 6. (see [3, 5]). Let F: (0, +∞)⟶ R be a
mapping satisfying the following:

(F1) For all a, b> 0, a> b implies F(a)>F(b)

(F2) For every sequence an􏼈 􏼉 in R+, we have
limn⟶+∞an � 0 if and only if limn⟶+∞F(an) � −∞
(F3) (ere exists a number k ∈ (0, 1) such that
lima⟶0+ akF(a) � 0
If limt⟶0+ F(t) � −∞, then using (F1), we have
F(tn)⟶ −∞⇒tn⟶ 0 [5, 11].
Inspired by the work ofWardowski [3–5], we denoteF
be the family of all the functions F: (0, +∞)⟶ R

satisfying (F1) and (F3)
We denote F1 be the family of all the functions
F: (0, +∞)⟶ R satisfying (F1), (F3), and (F4)
F(infA) � inf F(A) for all A ⊂ (0,∞) with infA> 0

Here, limc⟶d− F(c) � F(d − 0) � limε⟶0+ F(d − ε) (left
limit at d) and limc⟶d+ F(c) � F(d + 0) � limε⟶0+ F(d + ε)
(right limit at d) for all d ∈ (0, +∞). From mathematical
analysis, the following is true for all d ∈ (0, +∞):

F(d − 0)≤F(d)≤F(d + 0). (2)

Example 4. Let functions F1, F2, F3: (0, +∞)⟶ R defined
as follows:

(1) F1(a) � (−1/
��
a

√
), for all a> 0.

(2) F2(a) � ln a, for all a> 0.
(3) F3(a) � a + ln a, for all a> 0.

(en F1, F2, F3 ∈ F.
Let (X, d) be a metric space and H be a Haus-

dorff–Pompeiu metric induced by metric d on a set X.
Denote P(X) the family of all nonempty subsets of X,
CB(X) the family of all nonempty, and closed and
bounded subsets ofX andK(X) the family of all nonempty
compact subsets of X. H: CB(X) × CB(X)⟶ R de-
fined by, for every A, B ∈ CB(X):

H(A, B) � max sup
x∈A

d(x, B), sup
y∈B

d(y, A)
⎧⎨

⎩

⎫⎬

⎭, (3)

where d(x, A) � inf d(x, y): y ∈ A􏼈 􏼉.

2. Multivalued Results

In this section, we establish some results on the existence of
fixed point for weak orthogonal multivalued contraction
mappings using conditions of Wardowski [3–5].

Now, we define the following orthogonal relation be-
tween two nonempty subsets of an orthogonal set.

Definition 7. Let A and B be two nonempty subsets of an
orthogonal set (X,⊥). (e set A is orthogonal to set B is
denoted by ⊥1 and defined as follows: A⊥1B, if for every
a ∈ A and b ∈ B, a⊥b.

It is easy to observe the following results.

Lemma 1. Let (X,⊥, d) be an orthogonal metric space,
x ∈ X and A ∈K(X). �en there exists a ∈ A such that
d(x, A) � d(x, a).

Lemma 2. Let (X,⊥, d) be an orthogonal metric space, and
A, B ∈K(X), a ∈ A. �en there exists b ∈ B such that
d(a, b)≤H(A, B).

Now, we are ready to present our first result.

Theorem 1. Let (X,⊥, d) be an O-complete orthogonal
metric space and T: X⟶K(X) be a multivalued map-
ping onX. Assume that the following conditions are satisfied:

(i) �ere exists x0 ∈ X such that x0􏼈 􏼉⊥1Tx0 or
Tx0⊥1 x0􏼈 􏼉

(ii) For all x, y ∈ X, x⊥y implies Tx⊥1Ty
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(iii) If xn􏼈 􏼉 is an orthogonal sequence in X such that
xn⟶ x∗ ∈ X, then xn⊥x∗ or x∗⊥xn for all n ∈ N

(iv) If F ∈F, there exists τ > 0 such that for all x, y ∈ X
with x⊥y satisfying the following:

H(Tx,Ty)> 0, τ + F(H(Tx,Ty))≤F(d(x, y)).

(4)

�en T has at least a fixed point.

Proof. By assumption (i), there exists x1 ∈ Tx0 such that
x0⊥x1 or x1⊥x0. By assumption (ii), we getTx0⊥1Tx1; that
is, there exists x2 ∈ Tx1 such that x1⊥x2 or x2⊥x1. If
x1 ∈ Tx1, then x1 is a fixed point of T. Suppose that
x1 ∉ Tx1. Since Tx1 is compact, d(x1,Tx1)> 0. As
d(x1,Tx1)≤H(Tx0,Tx1), using (F1), we have F(d(x1,

Tx1))≤F(H(Tx0,Tx1)). (erefore, using (iv), we get

F d x1,Tx1( 􏼁( 􏼁≤F H Tx0,Tx1( 􏼁( 􏼁≤F d x0, x1( 􏼁( 􏼁 − τ.

(5)

Continuing this process inductively, we can construct an
orthogonal sequence xn􏼈 􏼉 inX such that xn+1 ∈ Txn, for all
n ∈ N∪ 0{ }. (us we have xn⊥xn+1 or xn+1⊥xn for all
n ∈ N∪ 0{ }.

If xk ∈ Txk for some k ∈ N∪ 0{ }, then xk is a fixed point
of T.

So, we may assume that xn ∉ Txn for all n ∈ N∪ 0{ }.
Since Txn is closed, we have d(xn,Txn)> 0, for all
n ∈ N∪ 0{ }. Also d(xn,Txn)≤H(Txn−1,Txn). So using
(F1), we have F(d(xn,Txn))≤F(H(Txn−1,Txn)). Further
from (iv) and for every n≥ 1, we have

F d xn,Txn( 􏼁( 􏼁≤F H Txn−1,Txn( 􏼁( 􏼁≤F d xn−1, xn( 􏼁( 􏼁 − τ.

(6)

Hence from the strictly increasing property of F, we get
H(Txn,Txn−1)< d(xn, xn−1). We know that xn+1 ∈ Txn,
d(xn, xn+1) � d(xn,Txn)≤H(Txn−1,Txn)< d(xn−1, xn).
(erefore, the sequence d(xn+1, xn)􏼈 􏼉 is strictly decreasing
sequence. Suppose that tn � d(xn+1, xn)⟶ t, for some
t≥ 0.

Furthermore, for all n≥ n0, we have

τ + F d xn+1, xn( 􏼁( 􏼁≤ τ + F H Txn,Txn−1( 􏼁( 􏼁

≤F d xn, xn−1( 􏼁( 􏼁.
(7)

Taking n⟶ +∞ in (7), we get τ + F(t + 0)≤F(t + 0),
which is contradiction, and hence tn � d(xn+1, xn)⟶ 0. By
(F3), there exists k ∈ (0, 1) such that

lim
n⟶+∞

t
k
nF tn( 􏼁 � 0. (8)

Using (6), we get

F tn( 􏼁≤F tn−1( 􏼁 − τ ≤F tn−2( 􏼁 − 2τ ≤ . . . ≤F t0( 􏼁 − nτ.

(9)

From (9), the following holds for all n ∈ N:

t
k
nF tn( 􏼁 − t

k
nF t0( 􏼁≤ − t

k
nnτ ≤ 0. (10)

Letting n⟶∞ in (10), we get limn⟶+∞ntk
n � 0. Hence

there exists n1 ∈ N such that ntk
n ≤ 1 for all n≥ n1. So, we have

all for all n≥ n1:

tn ≤
1

n
(1/k)

. (11)

Now, we have to show that xn􏼈 􏼉 is a Cauchy orthogonal
sequence. Consider m, n ∈ N such that m> n≥ n1. Using the
triangle inequality and (11), we have

d xn, xm( 􏼁≤ d xn, xn+1( 􏼁 + d xn+1, xn+2( 􏼁 + · · · + d xm−1, xm( 􏼁,

� tn + tn+1 + · · · + tm−1 � 􏽘
m−1

i�n

ti ≤ 􏽘
+∞

i�n

ti ≤ 􏽘
+∞

i�n

1
i
(1/k)

.

(12)

By the convergence of series, 􏽐
+∞
i�n (1/i1/k), passing to

limit n⟶ +∞, we get d(xn, xm)⟶ 0.
(is shows that xn􏼈 􏼉 is a Cauchy orthogonal sequence.

Since X is O-complete, there exists x∗ ∈ X such that
limn⟶+∞xn � x∗.

Now, we claim that x∗ ∈ Tx∗. Assume the contrary that
x∗ ∉ Tx∗. Hence there exists n1 ∈ N such that
x∗ ∉ xn􏼈 􏼉n≥ n1

, H(Txn,Tx∗)> 0. (erefore, further by our
assumption, xn⊥x∗ or x∗⊥xn, and using (iv), we get

F d xn+1,Tx
∗

( 􏼁( 􏼁≤ τ + F H Txn,Tx
∗

( 􏼁( 􏼁≤F d xn, x
∗

( 􏼁( 􏼁.

(13)

Now using strict increasing property of F and τ > 0, we
get d(xn+1,Tx∗)<d(xn, x∗). Taking n⟶ +∞, we get
x∗ ∈ Tx∗ � Tx∗. Hence, the result is obtained.

Here it should be noted that in (eorem 1, Tx is
compact for all x ∈ X. Now, we have the following result in
which we give a partial answer to Reich’s problem for a
closed and bounded set. □

Theorem 2. Let (X,⊥, d) be an O-complete orthogonal
metric space and T: X⟶ CB(X) be a multivalued
mapping on X. Assume that the following conditions are
satisfied:

(i) �ere exists x0 ∈ X such that x0􏼈 􏼉⊥1Tx0 or
Tx0⊥1 x0􏼈 􏼉

(ii) For all x, y ∈ X, x⊥y implies Tx⊥1Ty

(iii) If xn􏼈 􏼉 is an orthogonal sequence in X such that
xn⟶ x∗ ∈ X, then xn⊥x∗ or x∗⊥xn for all n ∈ N.

(iv) If F ∈F1, there exists τ > 0 such that for all x, y ∈ X
with x⊥y satisfying the following:

H(Tx,Ty)> 0, τ + F(H(Tx,Ty))≤F(d(x, y)). (14)

�en T has at least a fixed point.

Proof. Let x0 ∈ X. Since Tx is nonempty for all x ∈ X, by
assumption (i), we can choose x1 ∈ Tx0 such that x0⊥x1 or
x1⊥x0. If x1 ∈ Tx1, then x1 is a fixed point of T. Let
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x1 ∉ Tx1. (en d(x1,Tx1)> 0 since Tx1 is closed. Since
d(x1,Tx1)≤H(Tx0,Tx1), then from (F1), we get

F d x1,Tx1( 􏼁( 􏼁≤F H Tx0,Tx1( 􏼁( 􏼁. (15)

Using (iv), we get

F d x1,Tx1( 􏼁( 􏼁≤F H Tx0,Tx1( 􏼁( 􏼁≤F d x0, x1( 􏼁( 􏼁 − τ.

(16)

From (F4), we get F(d(x1,Tx1)) � inf
y∈Tx1

F(d(x1, y)).
So from (16), we have

F d x1,Tx1( 􏼁( 􏼁 � inf
y∈Tx1

F d x1,y( 􏼁( 􏼁≤F H Tx0,Tx1( 􏼁( 􏼁,

≤F d x0,x1( 􏼁( 􏼁 − τ,

<F d x0,x1( 􏼁( 􏼁 −
τ
2
.

(17)

By assumption (ii), we get Tx0⊥1Tx1. Continuing this
process, we construct an orthogonal sequence xn􏼈 􏼉 in X

such that xn+1 ∈ Txn for all n ∈ N∪ 0{ }. (us we have
xn⊥xn+1 or xn+1⊥xn for all n ∈ N∪ 0{ }.

If xk ∈ Txk for some k ∈ N∪ 0{ }, then xk is a fixed point
of T, and so the proof is completed.

So, we may assume that xn ∉ Txn for all n ∈ N∪ 0{ }.
Since Txn is closed, we have d(xn,Txn)> 0, for all
n ∈ N∪ 0{ }. Also d(xn,Txn)≤H(Txn−1,Txn), and from
(F1), we get F(d(xn,Txn))≤F(H(Txn−1,Txn)).

Furthermore, using (iv), we have

F d xn,Txn( 􏼁( 􏼁≤F H Txn,Txn+1( 􏼁( 􏼁

≤F d xn, xn+1( 􏼁( 􏼁 − τ <F d xn, xn+1( 􏼁( 􏼁 −
τ
2
.

(18)

Since F(d(xn,Txn)) � inf
y∈Txn

F(d(xn, y)). (erefore,
using (18), we get

F d xn,Txn( 􏼁( 􏼁 � inf
y∈Txn

F d xn,y( 􏼁( 􏼁≤F H (Txn−1,Txn( 􏼁( 􏼁

<F d xn−1,xn( 􏼁( 􏼁 −
τ
2
.

(19)

So from (19), we can get a sequence xn􏼈 􏼉 in X such that
there exists xn+1 ∈ Txn and F(d(xn, xn+1))<F(d(xn−1, xn))

for all n ∈ N. Now, proceeding on the same lines of (eorem
1, we get the result. □

3. Consequences

In this section, we give some interesting consequences of the
results proved in the previous section.

(e following result is an immediate consequence of
(eorem 1.

Corollary 1. Let (X,⊥, d) be an O-complete orthogonal
metric space and T: X⟶K(X). Assume that the fol-
lowing conditions are satisfied:

(i) �ere exists x0 ∈ X such that x0􏼈 􏼉⊥1Tx0 or
Tx0⊥1 x0􏼈 􏼉

(ii) For all x, y ∈ X, x⊥y implies Tx⊥1Ty

(iii) If xn􏼈 􏼉 is an orthogonal sequence in X such that
xn⟶ x∗ ∈ X, then xn⊥x∗ or x∗⊥xn for all n ∈ N.

(iv) �ere exists some τi > 0, i � 1, 2, 3 such that for all
x, y ∈ X with x⊥y, H(Tx,Ty)> 0, either of the
following contractive conditions hold:

τ1 + H(Tx,Ty)≤ d(x, y);

τ2 −
1

H(Tx,Ty)
≤ −

1
d(x, y)

;

τ3 +
1

1 − e
H(Tx,Ty)

≤
1

1 − e
d(x,y)

.

(20)

�en T has at least a fixed point in each of these
cases.

Proof. As each functions F1(r) � r, F2(r) � (−1/r), and
F3(r) � (1/1 − er), where r � d(x, y)> 0, is strictly in-
creasing on (0, +∞), so the proof immediately follows from
(eorem 1.

As a consequence of (eorem 1, we have the following
result for single-valued mapping by replacing condition (iii)
with T is ⊥-continuous. □

Corollary 2. Let (X,⊥, d) be an O-complete orthogonal
metric space and T: X⟶ X. Assume that the following
conditions are satisfied:

(i) �ere exists some τ > 0, such that for all x, y ∈ X
with x⊥y, d(Tx,Ty)> 0:

τ + F(d(Tx,Ty))≤F(d(x, y)), (21)

where F ∈ F.
(ii) �ere exists x0 ∈ X such that x0⊥Tx0 or Tx0⊥x0.
(iii) For all x, y ∈ X, x⊥y implies Tx⊥Ty

(iv) T is ⊥-continuous

�en, T has a fixed point.

Proof. Here, we can chooseT as a multivalued mapping by
considering Tx is a singleton set for every x ∈ X. Arguing
on the same lines of(eorem 1, we consider xn􏼈 􏼉 is a Cauchy
orthogonal sequence and limn⟶∞xn � x∗. As T is
⊥-continuous, we have

d x
∗
, Tx
∗

( 􏼁 � lim
n⟶+∞

d Txn,Tx
∗

( 􏼁 � 0, (22)

i.e., x∗ is a fixed point of T.
As a consequence of Corollary 2, we have the following

result by taking F(r) � lnr, r> 0. □

Corollary 3. Let (X,⊥, d) be an O-complete orthogonal
metric space and T: X⟶ X. Assume that the following
conditions are satisfied:
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(i) �ere exists some τ > 0, such that for all x, y ∈ X
with x⊥y, d(Tx,Ty)> 0:

d(Tx,Ty)≤ e
− τ

d(x, y), (23)

where F ∈F.
(ii) �ere exists x0 ∈ X such that x0⊥Tx0 or Tx0⊥x0.
(iii) For all x, y ∈ X, x⊥y implies Tx⊥Ty.
(iv) T is ⊥-continuous.

�en T has a fixed point.

4. Illustration

In this section, we illustrate an example which shows thatT
is a multivalued orthogonal mapping and satisfies the
condition (iv) of (eorem 1, but it is not multivalued or-
thogonal contraction (H(Tx,Ty)≤ k d(x, y), for k ∈ [0, 1)

with x⊥y).

Example 5. Let X � Sn � (n(n + 1)/2): n ∈ N􏼈 􏼉 and d: X ×

X⟶ [0,∞) be a mapping defined by d(x, y) � |x − y| for
all x, y ∈ X.

Define a relation ⊥ on X by x⊥y if and only if
xy ∈ x, y􏼈 􏼉⊆X � Sn􏼈 􏼉.

(us (X,⊥, d) is an O-complete orthogonal metric
space. Now, we define a mapping T: X⟶K(X) by

Tx �
x1􏼈 􏼉, x � x1,

x1, . . . , xn−1􏼈 􏼉, x � xn, n≥ 1.
􏼨 (24)

We claim that T is a multivalued orthogonal mapping
satisfying condition (iv) of(eorem 1 with respect to F(α) �

α + ln(α), α> 0 and τ � 1. To see this, we have the following
cases.

First, we observe that for all m, n ∈ N, H(Tx,Ty)> 0 if
and only if m> 2 and n � 1 or m> n> 1.

Case 1. For m> 2 and n � 1, we have

H Txm,Tx1( 􏼁

d xm, x1( 􏼁
e

H Txm,Tx1( )− d xm,x1( )

�
xm−1 − x1

xm − x1
e

xm−1− x1 �
m

2
− m − 2

m
2

+ m − 2
e

− m < e
− m < e

− 1
.

(25)

Case 2. For m> n> 1, we get

H Txm,Txn( 􏼁

d xm, xn( 􏼁
e

H Txm,Txn( )− d xm,xn( )

�
xm−1 − xn−1

xm − xn

e
xm−1− xn−1− xm+xn

�
m + n − 1
m + n + 1

e
n− m < e

n− m ≤ e
− 1

.

(26)

(is shows that T satisfies (iv) of (eorem 1. Hence, T
has a fixed point.

On the contrary, T is not multivalued orthogonal
contraction (H(Tx,Ty)≤ k d(x, y), k ∈ [0, 1)), as

lim
n⟶+∞

H Txn,Tx1( 􏼁

d xn, x1( 􏼁
� lim

n⟶+∞

xn−1 − 1
xn − 1

� 1. (27)

5. Applications

In this section, we present the Ulam stability and solve a
nonlinear fractional differential-type equation using Cor-
ollary 3.

5.1. Ulam Stability. (e Ulam [16, 17] stability has attracted
attention of several authors in fixed point theory [18]. On
orthogonal metric space (X,⊥, d), T: X⟶ X, we in-
vestigate the fixed point equation:

Tv � v, (28)

and the inequality (for ε> 0):

d(Tx, x)≤ ε. (29)

Equation (28) is called the Ulam stable if it satisfies the
following condition:

(A) (ere is a constant δ > 0, for each ε> 0, and for
every solution x∗ of the inequality (29), there is a
solution v∗ ∈ X for equation (28) such that

d v
∗
, x
∗

( 􏼁≤ δε. (30)

Theorem 3. Under the hypothesis of Corollary 3, the fixed
point equation (28) is Ulam stable.

Proof. On account of Corollary 3, we guarantee a unique
v∗ ∈ X such that v∗ � Tv∗, that is, v∗ ∈ X forms a solution
of (28). Let ε> 0 and x∗ ∈ X be an ε-solution, that is,

d Tx
∗
, x
∗

( 􏼁≤ ε. (31)

We have

d v
∗
, x
∗

( 􏼁 � d Tv
∗
, x
∗

( 􏼁

≤d Tv
∗
,Tx
∗

( 􏼁 + d Tx
∗
, x
∗

( 􏼁

≤ e
− τ

d v
∗
, x
∗

( 􏼁 + ε.

(32)

Hence, d(v∗, x∗)≤ (1/1 − e− τ)ε � kε, where k � (1/1
−e− τ)> 0. (erefore, equation (28) is Ulam stable. □

5.2. Application to Nonlinear Fractional Integro-Differential
Equation. Here, we give a solution for a Caputo-type
nonlinear fractional integro-differential equation. For more
details on fractional calculus, see [19–25] and references
cited therein.

(e Caputo derivative of a continuous mapping
g: [0,∞)⟶ R (order δ > 0) is given by
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C
D

δ
g(t) ≔

1
Γ(n − δ)

􏽚
t

0

g
(n)

(s)ds

(t − s)
δ−n+1,

n − 1≤ δ < n, n � [δ] + 1,

(33)

where Γ represents the gamma function and [δ] refers to the
integer part of the positive real number δ.

In this section, we examine the nonlinear fractional
integro-differential equation of the Caputo type:

CD
δ
u(t) � G(t, u(t)), t ∈ I � [0, 1], 1< δ ≤ 2,

u(0) � 0, u(1) � 􏽚
θ

0
u(s)ds,

⎧⎪⎪⎨

⎪⎪⎩
(34)

where u ∈ (C[0, 1],R), θ ∈ (0, 1), and G: I × R⟶ R is a
continuous function (for more details, see [20]).

We consider X � u: u ∈ (C[0, 1],R){ } with supremum
norm ‖u‖ � supt∈[0,1]|u(t)|. So (X, ‖.‖) is a Banach space.

(e space X: � C([0, 1],R) endowed with the metric
d: X × X⟶ [0,∞) defined as d(u, v) � ‖u − v‖ �

supt∈[0,1](t)|u(t) − v(t)| and define an orthogonal relation
u⊥v if and only if uv≥ 0, for all u, v ∈ X.(en (X,⊥, d) is an
orthogonal metric space.

Clearly, a solution of equation (34) is a fixed point of the
integral equation:

Tu(t) �
1
Γ(δ)

􏽚
t

0
(t − s)

δ− 1
G((s, u(s)))ds,

−
2t

2 − θ2􏼐 􏼑Γ(δ)
􏽚
1

0
(1 − s)

δ− 1
G(s, u(s))ds,

+
2t

2 − θ2􏼐 􏼑Γ(δ)
􏽚
θ

0
􏽚

s

0
(s − m)

δ− 1
G(s, u(m))dm􏼒 􏼓ds.

(35)

Theorem 4. Assume that G: I × R⟶ R is a continuous
function satisfying

|G(s, u(s)) − G(s, v(s))|≤
Γ(δ + 1)

5
e

− τ
|u(s) − v(s)|,

(36)

for each s ∈ [0, 1], for some τ > 0 and for all u, v ∈
C([0, 1],R). �en the fractional differential equation (34)
with given boundary conditions has a solution.

Proof. (e space X: � C([0, 1],R) endowed with the
metric d: X × X⟶ [0,∞) defined as
d(u, v) � supt∈[0,1]|u(t) − v(t)|, for all u, v ∈ X. Define an
orthogonal relation u⊥v if and only if uv≥ 0, for all u, v ∈ X.
(en (X,⊥, d) is an orthogonal metric space. Define
T: X⟶ X as in (35). So T is ⊥-continuous. First, we
show that T is ⊥-preserving, let u(t)⊥v(t) for all t ∈ [0, 1].
Now, from (35). we have

Tu(t) �
1
Γ(δ)

􏽚
t

0
(t − s)

δ−1
G(s,u(s))ds,

−
2t

2−θ2􏼐 􏼑Γ(δ)
􏽚
1

0
(1− s)

δ−1
G(s,u(s))ds,

+
2t

2−θ2􏼐 􏼑Γ(δ)
􏽚
θ

0
􏽚

s

0
(s − m)

δ−1
G(s,u(m))dm􏼒 􏼓ds>0,

(37)

which implies that Tu⊥Tv.
Now, we have to show that T satisfies (i) of Corollary 2

for F(r) � ln r, r> 0. For all t ∈ [0, 1], u(t)⊥v(t), we have

|Tu(t) − Tv(t)| � |
1
Γ(δ)

􏽚
t

0
(t − s)

δ− 1
G(s, u(s))ds −

2t

2 − θ2􏼐 􏼑Γ(δ)
􏽚
1

0
(1 − s)

δ− 1
G(s, u(s))ds

+
2t

2 − θ2􏼐 􏼑Γ(δ)
􏽚
θ

0
􏽚

s

0
(s − m)

δ− 1
G(s, u(m))dm􏼒 􏼓ds,

−
1
Γ(δ)

􏽚
t

0
(t − s)

δ− 1
G(s, v(s))ds −

2t

2 − θ2􏼐 􏼑Γ(δ)
􏽚
1

0
(1 − s)

δ− 1
G(s, v(s))ds⎛⎝

+
2t

2 − θ2􏼐 􏼑Γ(δ)
􏽚
θ

0
􏽚

s

0
(s − m)

δ− 1
G(s, v(m))dm􏼒 􏼓ds⎞⎠|,
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≤
1
Γ(δ)

􏽚
t

0
(t − s)

δ− 1
|G(s, u(s)) − G(s, v(s))|ds −

2t

2 − θ2􏼐 􏼑Γ(δ)
􏽚
1

0
(1 − s)

δ− 1
|G(s, u(s)) − G(s, v(s))|ds

+
2t

2 − θ2􏼐 􏼑Γ(δ)
􏽚
θ

0
􏽚

s

0
(s − m)

δ− 1
|G(s, u(m)) − G(s, v(m))|dm􏼒 􏼓ds,

≤
1
Γ(δ)

􏽚
t

0
(t − s)

δ− 1 Γ(δ + 1)

5
e

− τ sup
s∈[0,1]

|u(s) − v(s)|􏼢 􏼣ds

−
2t

2 − θ2􏼐 􏼑Γ(δ)
􏽚
1

0
(1 − s)

δ− 1 Γ(δ + 1)

5
e

− τ sup
s∈[0,1]

|u(s) − v(s)|􏼢 􏼣ds

+
2t

2 − θ2􏼐 􏼑Γ(δ)
􏽚
θ

0
􏽚

s

0
(s − m)

δ− 1 Γ(δ + 1)

5
e

− τ sup
s∈[0,1]

|u(s) − v(s)|􏼢 􏼣dm􏼠 􏼡ds,

≤
Γ(δ + 1)

5
e

− τ sup
s∈[0,1]

|u(s) − v(s)|􏼢 􏼣 × sup
t∈[0,1]

1
Γ(δ)

􏽚
t

0
(t − s)

δ− 1ds −
2t

2 − θ2􏼐 􏼑Γ(δ)
􏽚
1

0
(1 − s)

δ− 1ds⎛⎝

+
2t

2 − θ2􏼐 􏼑Γ(δ)
􏽚
θ

0
􏽚

s

0
(s − m)

δ− 1dm􏼒 􏼓ds⎞⎠≤ e
− τ sup

s∈[0,1]

|u(s) − v(s)| � e
− τ

d(u, v),

(38)

for all u, v ∈ X. (erefore, the condition (i) of Corollary 2
holds. Accordingly, all axioms of Corollary 2 are verified,
and T has a fixed point. (e Caputo-type nonlinear frac-
tional differential equation (34) possesses a solution is
yielded.

6. Conclusions

In this manuscript, we prove some existence results for the
multivalued orthogonal mappings using the conditions (F1)
and (F2) of Wardowski’s and obtain the stability of a fixed
point problem and a solution for the Caputo-type nonlinear
fractional differential equation.

Now, we have an open question, whether we can obtain
(eorems 1 and 2 with condition (F1) only of Wardowski in
the setting of orthogonal metric space?
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