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Best proximity pair results are proved for noncyclic relatively u-continuous condensing mappings. In addition, best proximity
points of upper semicontinuous mappings are obtained which are also fixed points of noncyclic relatively u-continuous con-
densing mappings. It is shown that relative u-continuity of ¥ is a necessary condition that cannot be omitted. Some examples are

given to support our results.

1. Introduction

The concept of measure of noncompactness was first in-
troduced by Kuratowski [1]. However, the interest in the
concept was revived in 1955 when Darbo [2] proved a
generalization of Schauder’s fixed point theorem using this
concept. Sadovskii [3], in 1967, defined condensing map-
pings and extended Darbo’s theorem. Since then a lot of
work has been done using this concept, and several inter-
esting results have appeared, see, for instance, [4-9].

Let (W, Z) be a nonempty pair in a Banach space (that is,
both W and Z are nonempty sets). A mapping
TWUZ—WUZ is called noncyclic provided
T (W)CW and T (Z)cZ. If there exists (w,z) e WX Z
which satisfies w = T (w), z=%(z), and
lw—z|| = dist(W, Z), then we say that the noncyclic
mapping T has a best proximity pair. For a multivalued
nonself mapping S: W — 2%, a point w € W is called a
fixed point of S if w € S(w). The necessary condition for the
existence of a fixed point for such S is WnZ+@. If
WnZ =@, then dist(w,S(w)) >0 for each w € W. Best
proximity point theorems provide sufficient conditions for
the existence of at least one solution for the minimization
problem, min, g dist(w,S(w)). If dist(w,S(w)) =
dist(W, Z), the point w is called a best proximity point of S.
The existence results of best proximity points for

multivalued mappings were obtained in [10-14] and [15].
Best proximity point theorems for relatively nonexpansive
and relatively u-continuous were established by Elderd et al.
in [16, 17] and by Markin and Shahzad in [18]. In recent
years, the topics of best proximity points of single-valued
and multivalued mappings have attracted the attention of
many researchers, see, for example, the work in [6, 7, 19, 20]
and the references cited therein. In this paper, we prove best
proximity pair theorems for noncyclic relatively u-contin-
uous condensing mappings. In addition, we obtain best
proximity points of upper semicontinuous mappings which
are fixed points of noncyclic relatively u-continuous con-
densing mappings. Also, we give examples to support our
results and show by giving an example that relative
u-continuity of ¥ is a necessary condition that cannot be
omitted. Our results extend and complement results of
[6, 7, 11].

2. Preliminaries

In this section, we present some notions and known results
which will be used in the sequel.

Definition 1. Let K be abounded set in a metric space X. The
Kuratowski noncompactness measure «(K) (or simply,
measure of noncompactness) is defined as follows:
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a(K) = inf{r]>0: Kglﬁ Ap;: diam(4A) <y, V1 SlSm<oo}.
=1
(1)

Theorem 1. Let X be a metric space. Then, for any nonempty
bounded pair (C,,C,) in X (that is, both C, and C, are
nonempty and bounded sets), the following hold:

(1) a(Cy) =0 if and only if C, is relatively compact

(2) C, cC, implies a(C,) <a(C,)

(3) a(C,) = a(C,), where C, denotes the closure of C,

(4) a(C,UC,) = max{a(C,),a(C,)}

(5) For a normed space X:

(i) a(C, + x) = a(Cy)
(ii)) a(C; + Cy) <a(Cy) + a(Cy)
(iii) a(AC,) = |Ma(C,), for any number A

(iv) a(con(C,)) = a(con(C,)) = a(C,), where con(C,)
represents the convex hull of C,

Theorem 2. Let {F } be a decreasing sequence of nonempty
closed subsets of a complete metric space X. If a(F;) — 0 as
j— 00, then N \F;#+ Q.

For more details about the measure of noncompactness,
see [4].

Definition 2. Let (W,Z) be a nonempty pair in Banach
space X and T: WUZ — WUZ a mapping. Then, T is
said to be noncyclic relatively u-continuous. If T is noncyclic
and for each € >0, there is y >0 such that

12 (w) — T(2)|| < e+ dist (W, Z) whenever |w — z||

. (2)
<y +dist(W, 2),

for each w € W and z € Z.

Definition 3. Let (W,Z) be a nonempty convex pair in
Banach space X. A mapping T: WU Z — W U Z is said to
be affine if for each «,f € [0,1] with a+f=1 and
x;,%x, € W (respectively, x,, x, € Z),

T (ax; +x,) = aZ (%) + BT (x3). (3)

Definition 4. Let (W, Z) be a nonempty pair in Banach space
X and S: W — 27 a multivalued mapping on W, then S is
said to be upper semicontinuous if for each closed subset B
in Z, S (B) = {w e W: S(w)NB+ @&} is closed in W.

Lemma 1. (see [21]). Let Y be a nonempty, convex, and
compact subset of a Banach space X. If f: Y — 2¥ can be
written as a finite composition of upper semicontinuous
multivalued mappings of nonempty, compact, and convex
values, then f has a fixed point.

Definition 5. Let T: WUZ — W UZ be a noncyclic rel-
atively u-continuous mapping and S: W — KC(Z) be an

Journal of Mathematics

upper semicontinuous multivalued mapping (here, KC(Z)
denotes the collection of all nonempty, convex, and compact
subsets of Z), then by the commutativity of T and S, we
mean that T (S(w))<S (T (w)) holds for each w e W,

Given (W, Z), a nonempty pair in Banach space, its
proximal pair (W, Z,) is given by

W, :{w € W: |lw - z"|| = dist(W, Z) for some z" € Z},

Z, :{z €Z: ||w* - z" = dist (W, Z) for some w" € W}
(4)

Moreover, if (W, Z) is a nonempty, convex, and compact
pair in X, then (W, Z,) is also a nonempty, convex, and
compact pair.

Definition 6. Let X be a normed space. For a nonempty
subset C of X, the metric projection operator Pr: X — 2¢
is given by

Po(u) ={v e C: |lu—-v| = dist(u,C)}. (5)

For a nonempty, convex, and compact subset C of a
strictly convex Banach space, P is a single-valued mapping.
Furthermore, for a nonempty, convex, and compact subset C
of a Banach space X, P, is upper semicontinuous with
nonempty, convex, and compact values.

Lemma 2. (see [11]). Let (W, Z) be a nonempty, convex, and
compact pair in a strictly convex Banach space X. Let
T: WUZ — WUZ be a noncyclic relatively u-continuous
and P: WUZ — W UZ be a mapping given by

P,(u), ifuew,

Pu) = { Py (), ifucZ (©)

Then, T (P (u)) = P(Z (u)) for each u e Wy U Z,.

Theorem 3. (see [18]). Let (W, Z) be a nonempty, convex,
and compact pair in a strictly convex Banach space X. If
T: WUZ — WUZ is a noncyclic relatively u-continuous
mapping. Then, T has best proximity pair.

In [6], Gabeleh and Markin introduced the class of
noncyclic condensing operators.

Recall that a nonempty pair (W, Z) in a Banach space X
is called proximinal if W = W, and Z = Z,,.

Definition 7. Let (W, Z) be a nonempty convex pair in a
strictly convex Banach space X. A mapping T WUZ —
WU Z is called noncyclic condensing operator provided that,
for any nonempty, bounded, closed, convex, proximinal, and
C-invariant pair (H,, H,)< (W, Z) with dist(H,, H,) = dist
(W, Z), there exists k € (0, 1) such that

a(T(H,)UZ(H,))<ka(H, UH,). (7)

Lemma 3. (see [11]). Let (W, Z) be a nonempty, convex, and
compact pair in a strictly convex Banach space X. If
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T WUZ — WUZ is a noncyclic relatively u-continuous
mapping, then T is continuous on W, and Z,,.

3. Main Results

Throughout this paper, we will assume that X is a strictly
convex Banach space and « is the measure of non-
compactness on X.

Remark 1. Let £: W — W be condensing in the sense of
Definition 7 with k € (0, 1). Then, for any bounded subset H
of W, I satisfies

a (T (H)) <ka(H). (8)

To see this, in (7), set W = Z and H,
Hccon(H), then

a(Z (H)) < a(Z(con(H))) <ka(con(H)) = ka(H). (9)

= H, = H. Since

Theorem 4. Let (W, Z) be a nonempty, convex, and closed
pair in X such that W is bounded and W, is nonempty.
Suppose TWUZ — WUZ is a noncyclic relatively
u-continuous, affine, and condensing mapping. Then, there
exists (uy, vy) € W x Z such that T (uy) = u, T (vy) = v,
and |luy — vl = dist (W, Z). Moreover, if S: W — KC(Z)
is an upper semicontinuous multivalued mapping, T and S
commute, and for each x € W, S(x)NZ, + J, there exists
w € W such that T (w) = w and dist (w, S (w)) = dist (W, Z).

a(GUG,) =

But k€ (0,1), so a(G,UG,) =0. We conclude that
(G,,G,) is a nonempty, compact, and convex pair with
dist(G,,G,) = dist(W, Z). By Theorem 3, there exists
(ug,vy) € Wx Z such that T(uy) =1, T(vy) =v, and
g — voll = dist(W, Z).

Now, let Fix(Z) = {x e WU Z: T (x) = x}, Fixy, (T) =
Fix(T)nW,, and Fix, (Z) = Fix(T)NnZ,. By the above
part, the pair (Fixy, (), Fix, (T)) is nonempty. Also, it is a
convex pair. Indeed, for « ,f € [0,1], with a + =1 and
x, y € Fixy, (T) (respectively, Fix, (T)):

T (ax + Py) = aZ(x) + T (y) = ax + By, (12)
and by convexity of W, (respectively, Z,), we conclude that

ax + By € Fixy, () (respectively, Fix, (Z)). Furthermore,
since T is condensing,

o (Fixy, (T) UFix, (T)) = a (T (Fixy, (T)) U T (Fix, (T)))
< ka (Fixy, (T) UFix, (2)),
(13)

which implies that the pair (Fixy, (T), Fix, (¥)) is compact.
For x € Fixy, (T) and u € S(x), we have

Proof. We follow [6, 11]. Clearly, (W, Z,) is a nonempty,
closed, convex, proximinal, and <-invariant pair. Let
(wy,zy) € Wy x Z, be such that |lw, -zl = dist(W, 2).
Suppose & is a family of nonempty, closed, convex, prox-
iminal, and Z-invariant pairs (C, D)<(W,Z) such that
(wy,2zy) € (C,D), then % is nonempty.  Set
(F,F,)) = 0 cpyes (C, D), G, =con(T(F)U{wy}), and
G, =con(Z(F)U{z,}). So, (wyzy) €G, xG, and
(G, G,)S (Fy, F,). Furthermore, € (G,)<G, and  (G,)<G,,
that is, T is noncyclic on G,UG,. Also, for x € G,

x = Y e T (w)) + ¢, wy, where forall L € {1,2,...,m~1}
with ¢,>0 and Y[’ ¢ =1, w € F,. Since (F,F,) is
proximinal, there is z, € F, such that lw, —z(|l = dlst

(W,Z), for each € {l1,2,...,m—1}. Set y=3Y""c,T
() + ¢,,2y. Then, y € G,. Moreover,

m—1
CI +C mWo ZC Z[ + €20
=1

m—1

< [; CI”‘Z(wI) - ‘l(z[)" + cm“w0 - zo||

= dist(W, 2).

lx -yl =

(10)

So, one can conclude that (G;),=G,. Similarly,
(G,y)y = G,, and hence, (G,,G,) € F, thatis, G, = F; and
G, = F,. Notice that

max{a(G,), «(G,)} = max{a(con (Z (F,) U{w})), & (con (T (F,) U {zo}))}
= max{a (T (F))), a(T(F,))} = a(T(F)UE(F,)) = a(T(G,

(11)
YUZ(G,)) <ka(G,UG,).

T (u) € T(S(x)SS(T (x)) = S(x), (14)

that is, S(x) is invariant under . So, by the invariance of Z,
under &, S(x) N Z, # & is invariant under . So, in view of
Remark 3.1, Darbo’s fixed point theorem guarantees the
existence of a fixed point for the continuous mapping <T:
Sx)NZ, — S(x)NZ,. Thus, S(x)N FixZ (¥)+ 9, for
x € Fixy, (). Define f: Fixy, () — 223 by f(x) =
S(x) NFix, (), for each x € Fixy, (T). Then, f is an upper
semicontinuous multivalued mapping with nonempty,
compact, and convex values. Moreover, Py,: Fix, (T) —
Fixyy, () is well-defined. Indeed, for y € Fix, (), there is
x € W such that ||x — y| = dist(W, Z). So,

y =P, (x)and x = Py, (). (15)

By relative u-continuity of ¥, we conclude that [T (x)-
T ()l = dist(W, Z). Thus, T(y) = P, (T (x)) and T(x) =
PY(E (), by (15), T(x)=T(Py(y) =Py (T(y) =
Py (y). Then, Py, (y) € Fixy (F). Consider Py,°f: Fixy
() — 28w (D) by Lemma 1, there is w € Fixy, (¥) such
that w € (Py,°f)(w), that is, T(w) =w and w € (P, (f
(w))). So, there is z € f(w) ¢ S(w) N Z, such that w = Py,
(z). We conclude that |z - w| = dist(z, W). But since



z € Z, there is w* € W such that |w* - z| = dist(W, Z).
Thus,

dist(W, Z) < dist(w, S(w)) < |w — z| = dist(z, W) (16)
16

<z - w’| = dist(W, 2).
Hence, dist(w, S(w)) = dist(W, Z). O

Example 1. Consider the Hilbert space X = ¢, over R with
the basis {e,: n € N} (the canonical basis) and let

W ={C e, + {e,: ) € [0,4],{, =-1}and Z
={{ie + (650 (20, = 1}

Then, (W, Z) be a nonempty, convex, and closed pair of
X such that W is bounded. Furthermore, dist (W, Z) = 2 and

W, ={-e,}and Z, ={e,}. (18)

(17)

Define the mapping TWUZ-—WUZ by
T ((ie; +(hey) = (30 /4)e; + ey,  for  each  (ie+
(,e, €e WU Z. Then, € is a noncyclic relatively u-continu-
ous, affine, and condensing mapping. Now, define
§: W — KC(Z) by S({e, —e,) = {~(e, + e,}; then, Sis an
upper semicontinuous multivalued mapping, T and S
commute, and for each xe W, S(x)NnZ,#d. For
w=—e, € W, we have T(w) = w and dist(w, S(w)) = dist
(W, 2).

Example 2. Consider the Hilbert space X = ¢, over R with
the basis {e,: n € N} and let

W ={C e, + {ye,: ) € [0,4],{, € [1,5]}and

(19)
Z ={le; + {e,: (0,0, =0},

Then, (W, Z) be a nonempty, convex, and closed pair of
X such that W is bounded with dist(W,Z) =1 and

Wy ={{1e; +e,: {; € [0,4]},
Zy ={Cey: C € [0,4]}.

Define the mapping T: WUZ — WU Z by T({1e; +
(e,) = ((2¢, + 1)/3)e; + (ye, for each (e, + (e, e WU Z.
Then, ¥ is a noncyclic relatively u-continuous, affine, and
condensing mapping.  Furthermore, for  (uy,vy) =
(e,,0) e Wx Z, we have T(uy) =uy, <T(vy) =v, and
lug — voll = dist(W, Z). Now, let S: W — KC(Z) given by
S(C e + (ye,) = {ye;: y € [{},4]}, then S is an upper sem-
icontinuous multivalued mapping, T and S commute, and
for each x e W, S(x)NZ,#+ . For w=e;+e, € W, we
have € (w) = w and dist(w, S(w)) = dist(W, Z).

(20)

Remark 2. The relative u-continuity of T is necessary in
Theorem 4.

To see this, consider the Hilbert space X = ¢, over R with
the basis {e,;neN} and let W={xeX:|x]<1},
Z = {Ce,: { € [2,3]}. Then, (W, Z) is a nonempty, convex,
and closed pair in X such that W is bounded. Obviously,
dist(W,Z2) =1 and
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Wy ={es},

(21)
Zy ={2e,}.

Define the mapping T: WUZ — W UZ by

T (x) = 1 Z %e,-,forx ew, (%+ l)ezforx e”Z, (22)

i=1

for x = ({1,(,,{5,...) e WUZ. Then, € is a noncyclic, af-
fine, and condensing mapping. Let S: W — KC(Z) given
by S(({1,(5 5 ...)) ={(2+1{,De,}. Then, S is an upper
semicontinuous multivalued mapping, € and S commute,
and for each x e W, S(x)NZ, # . Here, w = (0,0,0,...)

is the only fixed point of T in W, but
dist(w, S(w)) >dist(W,Z). Note that e, —2e,] <
dist(W,Z)+6 for all 6>0 but [T (e,)—T(2e,)]>

dist(W, Z) + (1/4).
The following corollary follows immediately from
Theorem 4.

Corollary 1. Let (W, Z) be a nonempty, convex, and closed
pair in X such that W is bounded and W, is nonempty.
Suppose T: W — W is a continuous, affine, and condensing
mapping. If S W — KC(W) is an upper semicontinuous
multivalued mapping, T and S commute, and then there is
w € W which satisfies w € Fix(Z) N Fix(S).

Theorem 5. Let (W, Z) be a nonempty, convex, and closed pair
in X such that W is bounded and W is nonempty. If
T, WUZ — WU Z are commuting, noncyclic relatively
u-continuous, affine, and condensing mappings, then there exists
(ug,vy) e WX Z such that T, (uy) =uy=2=,(uy), T,
(v) = vy = Z, (vy), and |luy — vyl = dist (W, Z).

Proof. Since W, is nonempty and by relative u-continuity of
<, for w,eW,, there exists z,€Z such that
lwy — zoll = dist(W, Z). Consequently, [Z,(wy)- <,(z,
)| = dist(W, Z). That is, W, is invariant under ¥,. Thus,
Darbo’s fixed point theorem guarantees that there is u € W,
such that ¥, (1) = u. Notice T, (Fixy, (Z,)) = Fixyy, (T,) and
so  a(Fixy () = a(Z,  (Fixy (T4))) <ka  (Fixy (T))).
Thus, «(Fixy (Z,)) =0, and thus, Fix,, (T,) is compact.
Furthermore, T (T, wm) =T,(Z, () =T, (u). So,
<, Fixy, (T,) — Fixy,, (T,) is a continuous mapping on a
compact convex set. By Schauder’s fixed point theorem, there is
u, € Fixy, () such that &, (u,) = u,, that is, u, € Fixy,
(Z,) NFixy, (T,). Let v, in Z,, be the unique closest point to
u,. By relative u-continuity of T, and T,, we infer that, since
g — voll = dist(W, 2), I1Z, (1) — T, (vy)ll = dist(W, Z) and
12, (uy) — Z, ()l = dist(W, Z). Hence, T, (uy) =uy, =<,
(ug), T (vy) = vy = T, (V). O

Lemma 4. Let (W,Z) be a nonempty, convex, and closed
pair in X such that W is bounded and Wy is nonempty. Let €
be the collection of the commuting, noncyclic relatively
u-continuous, affine, and condensing mappings on WU Z.
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Then, the mappings in € have common fixed points u, € W,
and v, € Z,.

Proof. For each ¥ € @, consider Fix(%),Fix,, (Z), and
Fix, (Z) defined previously. Then, Fixy, (¥) is nonempty,
compact, and convex. Let T,,Z,,..., T, be a finite sub-
collection of €¥. Assume F=n,_,Fix, (T,)+3,
Fy = FnFixy (Ty,) = N iggen Fixyy (Ty), and Fpy = F, N0
Fixy (Tiner) = O icickinn Fixy (T;), for n € N. Then, {F,}
is a decreasing sequence of compact subsets of X. Fur-
thermore, F, # & for each n € N. Indeed, for w € F and each
me{l,2,...,k}, then < (T, (w)=2I,,(Z, (w)=
T, (w), and this implies that ¥, (w) € F. Thus, F is
invariant under ¥, ;. By Schauder’s fixed point theorem, we
get that F #&. Now, for each neN and
me{l,2,...,k+mn}, pick x € F;:

c‘zm (sk+n+1 (x)) = sk+n+1 (sm (x)) = E";"I«rnﬂ (x)) (23)

thatis, ¥;,,,, (x) € F,.. So, Ty,,..1: F,, — F,, is continuous
on F,, and then there is y € F, such that ., (») = y.
Therefore, y € F,,; # &. By Theorem 2, N, F, # &. Hence,
NgcgFixy (T)# . Similarly, we can show that
NggFix, (T) + . O

Theorem 6. Let (W, Z) be a nonempty, convex, and closed
pair in X such that W is bounded and W, is nonempty. Let €
be the collection of the commuting, noncyclic, relatively
u-continuous, affine, and condensing mappings on WU Z.
Then, there is (uy,vy) € WxZ such that, for each
T € EG: T(uy) =uy T(vy) = vy, and lluy — vl = dist (W, 2).

Proof. Based on the previous lemma, the mappings in €
have a fixed point in common u, € W, that is, T (1) = u,,
for each ¥ € €. Let v, € Z be the unique closest point to u,.
By relative u-continuity of &, since [u, — v, = dist(W, 2),

4o = T (o) = [T (o) = T (v)]

(24)
=dist(W,Z), foreach¥ € %.

Hence, T (v,) = v,. O

Theorem 7. Let (W, Z) be a nonempty, convex, and closed
pairin X such that W is bounded and W, is nonempty. Let €
be the collection of the commuting, noncyclic relatively
u-continuous, affine, and condensing mappings on W U Z. If
S: W — KC(Z) is an upper semicontinuous multivalued
mapping such that, for each x e Wy: S(x)NZy+ 3. If €
commutes with S, then there exists w € W such that

¥ (w) = wand dist (w, S (w)) = dist (W, Z). (25)

Proof. By Lemma 4, (NgcgFixy (), NggFix, (T)) is a
nonempty compact convex pair. Also, in view to the proof of
Theorem 4, for T € & and for each x € Fixy, (T), we have
S(x) and Z, are invariant wunder <. So,

Define f: NggFixy (F) — 2N () by f(x) =8
(%) N (N ggFix, (), for x € N g gFixy (). Then, fisan

upper semicontinuous multivalued mapping with non-
empty, compact, and convex values. Moreover, Py;:
NgexFix, (T) — NggFixy (T) is well-defined. Indeed,
for y € NggFix, (Z), there exists x € W such that
x — yll = dist(W, Z). So,

y =P, (x)andx = Py, (y), (26)

By relative u-continuity of ¥, one can conclude that
12 (x) - T ()| = dist(W, Z). Thus, T (y) = P, (T (x)) and
T (x) = Py (2 (y)), and by (26), T(x) = T(Py, (¥)) = Py
(Z(»)) = Py (). Thus, Py, (y) € NggFixy (T). Note that
Pyof: NgegFixy (T) — 2% @) and by Lemma 1, there
is w € NggFixy (T) such that w € (Py,°f) (w), that is, for
T € @, we have T (w) = w and w € (Py, (f (w))). So, there
isz € f(w) =S(w)N (NggFix, (T)) such that w = Py, (2).
We infer that |z — w|| = dist(z, W). But z € Z,, then there is
w* € W such that |w* — z| = dist(W, Z). Then,

dist (W, Z) < dist (w, S(w)) < lw - z|| < ||z —w"
= dist(W, 2).

(27)

Hence, dist(w, S(w)) = dist(W, Z). O

Example 3. Let X = ¢, over R with the basis {e,: n € N} and
let

W ={{ie; + ey §; € [-3,-1],(, € [-8,8]}
and Z ={(,e, + {,e,: {; € [0,3],{, € R}

Then, (W, Z) be a nonempty, convex, and closed pair in
X such that W is bounded. Furthermore, dist (W, Z) = 1 and

Wy ={-e, + (,e,: {, € [-8,8]}and Z, ={(se,: {, € [-8,8]}.
(29)

Consider ¥,,%,: WUZ — WU Z given by

T, (Cre) +Crey) = (reg + %‘32 and T, ({ e, + (ye,)
(30)

2
= (e, + e

foreach {,e; + (e, € WU Z. Then, T, and T, are noncyclic,
affine, and condensing mappings. Furthermore, ¥, and &,
commute.

Define S: W — KC(Z) by S({ e; + (ye,) = {ye; +,
e,: y € [0,—-(;]}, then S is an upper semicontinuous mul-
tivalued mapping that commutes with ¥, and <, and
satisfies that, for each x € W: S(x)NZ,+ J. For w = —¢,
and z2=0,2,(w) =%,(w)=w and T,(2) =ZF,(z) ==z.
Furthermore, |w —z| = dist(W,Z) and dist(w,S(w)) =
dist(W, Z).

4. Conclusion

We have proved some best proximity pair theorems for
noncyclic relatively u-continuous and condensing map-
pings. We have also obtained best proximity points of upper
semicontinuous mappings which are fixed points of non-
cyclic relatively u-continuous condensing mappings.



Moreover, we have given some examples to support our
results. It has been shown that relative u-continuity of T is a
necessary condition that cannot be omitted. We have ex-
tended recent results of [6, 11].
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Iterative methods for solving variational inclusions and fixed-point problems have been considered and investigated by many
scholars. In this paper, we use the Halpern-type method for finding a common solution of variational inclusions and fixed-point
problems of pseudocontractive operators. We show that the proposed algorithm has strong convergence under some

mild conditions.

1. Introduction

Let H be a real Hilbert space with inner product ¢-,-) and
induced norm | - |. Let C be a nonempty closed and convex
subset of H. Let f: C— H and g: H — 2H be two
nonlinear operators. Recall that the variational inclusion
([1]) is to solve the following problem of finding x* € 22

verifying
0e (f+gx" (1)

Here, use (f + g)~' (0) to denote the set of solutions of (1).

Special Case 1. Let §o: H — {0, +00} be defined by

0, x € C,
8¢ = (2)

+00, x ¢ C.

Setting g = 09, variational inclusion (1) reduces to find
x* € C such that

f(xF)x-x"y>0, vxeC (3)

Problem (3) is the well-known variational inequality
which has been studied, extended, and developed in a broad
category of jobs (see, e.g., [2-14]).

Special Case 2. Let ¢: H — R U {+00} be a proper lower
semicontinuous convex function and Jd¢ be the sub-
differential of ¢. Setting g = 0¢, variational inclusion (1)
reduces to find x* € H such that

(f(xi),x—xi>+<p(x)—(p(x¢)20, Vx € H. (4)

Problem (4) is called the mixed quasi-variational in-
equality [15] which is a very significant extension of vari-
ational inequality (3) involving the nonlinear function ¢. It is
well known that a large number of practical problems arising
in various branches of pure and applied sciences can be
formulated as the model of mixed quasi-variational in-
equality (4).
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Problem (1) plays a key role in minimization, convex
feasibility problems, machine learning, and others. A pop-
ular algorithm for solving problem (1) is the forward-
backward algorithm [16] generated by

Xpor = [+ 1) (I = A f)x,,

where I — Af is a forward step and (I +Ag)~" is a backward
step with A > 0. This algorithm is a splitting algorithm which
solves the difficulty of calculating of the resolvent of f + g.

Recently, there has been increasing interest for studying
common solution problems relevant to (1) (see for ex-
ample, [17-27]). Especially, Zhao, Sahu, and Wen [28]
presented an iterative algorithm for solving a system of
variational inclusions involving accretive operators. Ceng
and Wen [29] introduced an implicit hybrid steepest-de-
scent algorithm for solving generalized mixed equilibria
with variational inclusions and variational inequalities. Li
and Zhao [30] considered an iterate for finding a solution of
quasi-variational inclusions and fixed points of non-
expansive mappings.

Motivated by the results in this direction, the main
purpose of this paper is to research a common solution
problem of variational inclusions and fixed point of pseu-
docontractions. We suggest a Halpern-type algorithm for
solving such problem. We show that the proposed algorithm
has strong convergence under some mild conditions.

n>1, (5)

2. Preliminaries

Let H be a real Hilbert space. Let g: H — 2 be an op-
erator. Write dom (g) = {x € H: g(x) + @}. Recall that g is
called monotone if Vx, y € dom(g), u € g(x) and v € g(y),
(x—y,u—-vy=0.

A monotone operator g is maximal monotone if and
only if its graph is not strictly contained in the graph of any
other monotone operator on H.
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(i) Denote its resolvent by J§ = (I +1g)~' which is
single-valued from H into dom(g)

It is known that g‘IO = Fix(]f),V)L >0 and If is firmly
nonexpansive, i.e.,

=Ty < Ufx =y x =y, (6)

for all x, y € C.

Let C be a nonempty closed convex subset of a real
Hilbert space H. Recall that an operator T: C — C is said
to be

(i) L-Lipschitz if there exists a positive constant L such
that

ITx-Tyl<Llx-yll, Vx,yeC. (7)

If L =1, T is nonexpansive.

(ii) Pseudocontractive if

(Tx-Ty,x-yy<llx-yI>, Vx,yeC. (8)

(iii) Inverse-strongly monotone if

(Tx—Ty,x—y)ZcxllTx—Tyllz, Vx,y €C, 9)

where a >0 is a constant and T is also called a-ism.

Recall that the projection P, is an orthographic pro-
jection from H onto C, which 1is defined by
lx = Pc ()l = minjcllx — yll. It is known that Pg is
nonexpansive.

Lemma 1 (see [23, 31]). Let C be a nonempty closed convex
subset of a real Hilbert space H. Let T: C — C be an
L-Lipschitz pseudocontractive operator. Then,

(i) T is demiclosed, ie., x,—p and T (x,) — q=T

For a maximal monotone operator g on H, (P)=q
. 5 ‘
(i) Set g~10 = {x € H: 0 € g(x)} (ii) lz;r)’(:;(;;él/(\/l +L? +1)), Vx € C and y € Fix
ITIL = Ox + T ()] =yl < llx = yI? + (1 = Dllc = TI(1 = Ox + (T (]I (10)

Lemma 2 (see [16, 32]). Let H be a real Hilbert space and let
g be a maximal monotone operator on H. Then, we have

12 G0 = 72 GIF < 8 ) = I (0,72 (9 -
(11)
for all s,t>0 and x € H.

Lemma 3 (see [33]). Assume that a real number sequence
{a,} c [0, 00) satisfies

Apy1 S (1 - yn)an + 811)/71’ (12)

where {y,} ¢ (0,1) and {5,} c (oo, +00) satisfy the fol-
lowing conditions:

(l) Z;L..;l Yn =0
(ii) lim sup,__,.,6,<0 or ¥, 18,y,| <00

Then, lim,__, a, = 0.

Lemma 4 (see [8]). Let {s,} c (0,00) be a sequence. Assume
that there exists at least a subsequence {Sn,} of {s,} verifying
s, <s, 1 foralli>0. Let {T (n)} be an integer sequence defined
as 1(n) = max{ién: Sy <Sp.1f- Then T(n) — 00 as
n — oo and -
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max{sr(n),sn} < Sp(m1- (13)

3. Main Results

Let C be a nonempty closed convex subset of a real Hilbert
space H. Let the operator f: C — H be an a-ism. Let
g: H— 2" be a maximal monotone operator with
dom(g) c C. Let T: C — C be an L-Lipschitz pseudo-
contractive operator with L>1. Let {a,} c (0,1) and
{A,} € (0,00) be two sequences. Let v and { be two
constants.

Next, we introduce a Halpern-type algorithm for finding
a common solution of variational inclusion (1) and fixed
point of pseudocontractive operator T.

Algorithm 1. Let u € C be a fixed point. Choose x,, € C. Set
n=0.

Step 2. Compute x,,,, by
X1 = Ot + (L= ) I (I =4, f)p (15)

Step 3. Set n: =n+ 1 and return to Step 1.

Next, we prove the convergence of Algorithm 1.

Theorem 1. Suppose that I': = Fix(T)n (f + g)’l(O) + Q.
Assume that the following conditions are satisfied:

lim,  a,=0and Y’ a, =00
0<d; <A, <dy<2aand 0<v<{< (1/(V1+L? +1))

Then, the sequence {x,} generated by Algorithm 1 con-
verges strongly to P (u).

Proof. Let x* € Fix(T)N (f +g)~ ' (0). Set u,, =J{ (I-1,

)y, V¥n=0. Since f is a-ism, we have
Step 1. For given x,, compute y, by )= F )y =% ZOC"f(yn) ~F(x) 2 (16)
Vo= Q=v)x, +vT((1-x,+{Tx,). (14)
By the nonexpansivity of ]ffn, we have
* « |12
"un_‘x ? =||]§H(I_Anf)yn _]gn(l_)tnf)x
<y =% =4 5a) - FEOIF
:”yn -x" o 2/\n<f(yn) - f(x*)’yn - X*> +Aft||f(yn) - f(x*) ’
<yu=x"1" = 2000 £ () = £ N + 00015 () = £ (17)
=||yn -x ? —/\H(Z(X _)Ln)"f(yn) - f(x*) ’
< ||yn —xP - d, (2a - dz)”f (yn) - f(x9) 2 (by condition (r2))
<yu-xT
Using Lemma 1, we get
IT (1 =01+ ¢D)x, = x* [ < |2, = %7 + (1= Q% = T((1 = OI + D), || (18)
This together with (14) implies that According to (15)-(19), we obtain
%2 * |12
==l =0, (@ 01 4, = e e ) () (- x)
- ||(1 -9 (x, - x")+ (T (1 - )OI+ {T)x,, - x*) San”u 3 x*" f(1- “n)"xn e "
2 (20)

=(1 —v)”xn v v"T((l -OI+{T)x, — x"

—y(L=W|T (1= YT+ {T)x, - x|

Py (=T = DI +{T)x, - x|
2

<|x, - x"

<|x, - x"

(19)

<.
< max{“u = x| [|x0 - x*"}
Then, the sequence {x,} is bounded. The sequences {u,}

and {y,} are also bounded.
Again, by (15)-(19), we deduce
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||xn+1 - X* "2 =||‘xn (Ll - x*) + (1 - (Xn) (un - X*)Hz
2

g (by the convexity of || - IIZ)

<ayfu-x"|"+(1-a,)|u, - x"

™ 2 (21)
<afu—x"" +u, - =7

"= dy (2a=do)|f () - F ) - =A|T Q=01+, =,

%112 %
S(xn“u—x || +||xn—x

It follows that

d; (20 - dz)”f(yn) - f(x*)"2 +2(C - v)||T((1 -OI+{D)x, — xn"2 < (xn“u - x*”2 +||xn - x*"2 —||xn+1 - x*”Z. (22)

Since J is firmly nonexpansive, using (6), we have

2

’ :"]fn (I_Anf)yn_]i (I_Anf)x*

£ <(I _Anf)yn - (I_Anf)x*’un _x*>

*
s, — x

:<yn_X*’un_X*> _An<un_x*’f(yn) _f(x*)> (23)
= (D=5 =1 =6l ) =20 = £ 0 = F D) =it = 3 £ () = F (D)

1 ) #112 2 *
<2 (=" it = 2" =l =10l ) + Al = £ ) = £

which leads to

"un - x* 2 < ”yn - X* ’ _"yn - un'lz + 2An"un - yn"“f(yn) - f('x*) (24)
< ”xn - X* ? _"yn - un“Z + 2An"un - yn""f(yn) - f(x*) .
Combining (21) with (24), we obtain
||anrl - x*“Z < ocn“u — x| +||un —x*P< oc,,"u — x| +||x,, x| —Hyn - un”2 + 2/1n||un - yn””f(yn) - f (x| (25)
which results in that
"yn - unuz < (xn“u - X* "2 +I|xn - x* ? _"xn+1 - X*"2 + 2An“”n - yn""f(yn) - f(x*) . (26)
. limy, ol f () = f(x")] = 0 (27)
Next, we analyze two cases. (1)
dn, € Nsuchthat ||x,,,, — x*[| <llx, — x*|,Vn=n,. (ii) For and
any n, € N, 3m >n, such that |x,, — x*|| < |lx,,,,; — x* . lim, o ||T((1 = I +{T)x, - x,| = 0. (28)

In case of (i), lim,_,llx, — x*| exists. From (22), we
deduce It follows from (14) that
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vnT((l -OI+{T)x, - xnll =0.

(29)

hmn—>oo||yn - xnu = hmn—>oo

On the basic of (26) and (27), we have
Yn _]i (I_/\nf)yn

hmn—>oo“yn - un” = hmn—>oo

(30)

|, = Tx,| < |T (1 = OI +T)x,
<||T(@-01+¢7)x,

We have
||xn Tx ”< { HT ((1-OI+{T)x, - x || (33)
This together with (28) implies that
lim, . |x, - Tx,| = 0. (34)
Set p = P (u). Next, we prove that
limsup, . <{u— p,x,,, — p> <0. (35)

Since {x,,,} is bounded, there exists a subsequence
] oF L] satisying

= x| + T, = T((1 = OT +{T)x, |
- xn” + (L”xn

5

Note that ||xn+1 - xn” < (Xn”Ll - xn” + (1 - an)"un - xn”'
Thanks to (29) and (30), we derive that

- x,| =0. (31)

hmn*mo ”xnﬂ

However,

(32)
- Txn”,

1) Xy 1 —X (hence, x, —X by (31))

(2) limsup,_, {u— p,x,,, —p> =lim;,__, {u-

p xn,-+1 - P>

From (34) and Lemma 1, we obtain X € Fix(T).
Owing to (29) and (30), we have that Y —X and

limi_m"]fnx_(l =X f )Y = Yu =0

(36)

Since A,, € (d,,d,), without loss of generality, we assume
that )Lni — A'>0(i — 00). Observe that

P8 (=3 ) = (TN )| < 5 (=2 P - T (=2,
(=2 )y =T (1 =2T1), (37)
< “]Aﬂi I - An[f)yn,- - ]AW‘(I - An,»f)yn, +
Applying Lemma 2, we obtain
P8 (=2, 0)3 = T (T =2 )3
_f
Sn—‘r <]ii(1 - Anif)y”i - ])!Z’(I - A”if)y”i’ ]fn,.(l - A"if)y”i _(I - )L"if)y”) (38)
A, = M|
S IAT ||]gni(1 - A”if)y”i N ]f*(l N /\”if)y”i ]iﬁ([ - A"if)y”i _(I - A”if)y“i '
It follows that
- /\T| g
”])t I A f) (I A f) T ||]An[(I _A"if)y”i _(I _A”if)y“f ' (39)




Thanks to (37) and (39), we get

”h (=2 f)y = T (1 =2 f)y,,

Noting that Ani — A (i — o), from (36) and (40), we
get

lim,

RN )y,

=0. (41)

lim Sup, o <M - p’ X1

From (15), we have
“xn+1 - P"z = "an (Ll - p) + (1 - an) (un - P)"z
< (1 - ‘xn)"un - P||2 + 2an(u —PsXp — P>

<(1-a,)|x, - p”z +20,(ub = P, X1 — P)-
(43)

Applying Lemma 3 to (43) to deduce x, — p

In case of (ii), let s, = {llx, — x*[I}. So, we have s, <s,, ,;.
Define an integer sequence {r(n)}, Vn>n,, by 7(n) = max
{i eNlny<i<n, s;<s;,,}. It is obvious that lim, , 7(n) =
00 and s,(,) <8, (1 for all n>mn,. Similarly, we can prove
that lim, . lx; ) —Tx; )l =0 and hmn_,ooll]A ( -
Aray )%l = 0. Therefore, all weak cluster pomts
Wy (X () ) c I'. Consequently,

limsup, ., {u— p,x,(,y — p> <O. (44)

Note that s, (,) <5, (1. From (43), we deduce

2
“T(n))s‘r(n) + 2“1(n)<u - p xr(n)+1 - P>
(45)

S0 S St <(1-

It follows that

Sz(n) S2<u_p’ Xr(n)+1 _P> (46)

Combining (44) and (46), we have limsup, S, <0
and hence

limk*)mST(k) =0. (47)

From (45) we deduce that limsup, .7, <
limsup, .57, This together with (47) implies that
lim, ., S;ope1 =0. According to Lemma 4, we get
0<s, <max{s ) S (n)+1} Therefore, s, — 0 and
x,, — p. This completes the proof. O

Remark 1. Since the pseudocontractive operator is non-
expansive, Theorem 1 still holds if T is nonexpansive.

'A”i - /\T|||f(y”i

—py=lim_ (u—p,x,q—p)
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An ~ AT' g
e ||f =X )y = (=1, )y, (40)

|

By Lemma 1, we deduce that X € Fix(J}, (I - AT f) =
(f +9)" ' (0). Therefore, X € T and

:<u—p,)~C—p>S0. (42)

Remark 2. Assumption (rl) imposed on parameter «, is
essential and we do not add any other assumptions.
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We propose and analyze a new iterative scheme with inertial items to approximate a common zero point of two countable
d-accretive mappings in the framework of a real uniformly smooth and uniformly convex Banach space. We prove some strong
convergence theorems by employing some new techniques compared to the previous corresponding studies. We give some
numerical examples to illustrate the effectiveness of the main iterative scheme and present an example of curvature systems to
emphasize the importance of the study of d-accretive mappings.

1. Introduction and Preliminaries

In this paper, we assume that E is a real Banach space and E*
is the dual space of E. Suppose that C is a nonempty closed
and convex subset of E. The symbols “(x, f)”, “—” and
“—7 denote the value of f € E* at x € E, the strong con-
vergence, and the weak convergence either in E or E¥,
respectively.

The normalized duality mapping Jz: E — 2F is defined
as follows:

Je (%) ={x* € E*: {x,x") =|x|? =||x*||2}, Vx € E.
(1)

Lemma 1 (see [1]). Assume that E is real uniformly convex
and uniformly smooth Banach space. Then (1) Ji is single-
valued and surjective and, for x € E and k € (0,+00),
Jg (kx) = k] (x); (2) Jg' = Jp is the normalized duality
mapping from E* to E; (3) both Ji and J5' are uniformly
continuous on each bounded subset of E or E*, respectively.
Definition 1 (see [2]). 'The functional
¢: Ex E— R* is defined as follows:

Lyapunov

$(x, ) =lxl = 2¢x, jg () +Iyl°, Y,y € B, jp(y) € Jp(p).

(2)

Similarly, the Lyapunov functional defined on E* x E*
can be defined and denoted by ¢.

Lemma 2 (see [3]). Let E be a uniformly smooth and uni-
formly convex Banach space, and let {x,} and {y,} be two
sequences in E. If either {x,} or {y,} is bounded and
¢(x,, y,) =0, as n— oo, then x, — y, — 0, as n — oo.

Definition 2 (see [4]). Let {C,} be a sequence of nonempty
closed and convex subsets of E; then

(1) s —liminfC,, which is called strong lower limit of
{C,}, is defined as the set of all x € E such that there
exists x,, € C, for almost all n and it tends to x as
n— oo in the norm

(2) w - limsup C,, which is called weak upper limit of
{C,}, is defined as the set of all x € E such that there
exists a subsequence {Cnm} of {C,} and x, €C, for
every n,, and it tends to x as n,, — 0o in the weak
topology
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(3) If s —liminfC, = w - limsup C,,, then the common
value is denoted by limC,

Lemma 3 (see [4]). Let {C,} be a decreasing sequence of
closed and convex subsets of E, that is, C, C C,,, if n>m.
Then, {C,} converges in E and limC, = N, C,,.

Definition 3 (see [1, 2]). Suppose that E is a real uniformly
smooth and uniformly convex Banach space and C is a
nonempty closed and convex subset of E; then, for each
x € E, there exists a unique element v € C such that
lx = vIl = inf{llx — y[: y € C}. Such an element v is denoted
by Pox and P, is called the metric projection of E onto C.

Lemma 4 (see [5]). Suppose that E is a real uniformly
smooth and uniformly convex Banach space and {C,} is a
sequence of nonempty closed and convex subsets of E. IflimC,,
exists and is not empty, then lim Pe x = Pjjc %, for
Vx € E. ' '

n—-00

Definition 4.
(1) A mapping T: E — E is said to be accretive [6] if
<Tu1 - TMZ)]E (”1 - u2)> 20, Vui € E, 1 = 1,2
(2) A mapping T: E — E is said to be d-accretive [7] if
<TM1 - TMZ’]Eul - ]Eu2> >0, Vui €E i=12

It is easy to see that accretive mappings and d-accretive
mappings are identical in a Hilbert space, while they are
different in a non-Hilbert space.

For a nonlinear mapping A: D(A) ¢ E — E, we use
Fix(A) = {x € D(A): Ax = x} and
A710 = {x € D(A): Ax =0} to denote the fixed point set
and zero point set of A, respectively.

Lemma 5 (see [8, 9]). Suppose that E is a real uniformly
smooth and uniformly convex Banach space. Let A: E — E
be d-accretive mapping such that R(I + A) = E. Under the
assumption that A~'0+ &, one has the following:

(1) Vx € E*, Yz € A™'0, and Yr >0,
@(]EZ) (Jg- + ”A]E*)J]E*x)

_ _ (3)
+¢((Jge +7ATp) " o2, x) < §(J 2, x).
(2) Ifx, € E*, x € E*, x, — x, and (Jp. +1AJp.) T
X, — X, as n—> 00, then x= (Jp +rAJp.)""
J g x.

Definition 5 (see [10]). Let C be a nonempty closed subset of E
and let Q be a mapping of E onto C. Then Q is said to be sunny
fQQ(x)+t(x-—Q(x)) =Q(x),forall x€e Eand t>0. A
mapping Q: E — C is said to be a retraction if Q(z) = z for
every z € C. If E is a smooth and strictly convex Banach space,
then a sunny generalized nonexpansive retraction of E onto C is
uniquely decided, which is denoted by R.
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Definition 6 (see [3]). If E is a real uniformly smooth and
uniformly convex Banach space and C is a nonempty closed
and convex subset of E, then, for each x € E, there exists a
unique element x, € C satisfying ¢ (x,, x) = inf{¢ (z, x)
:z€C}. In this case, Vx € E, define n.: E— C by
ToX = X, and 7, is called the generalized projection from E
onto C.

Lemma 6 (see [11]). Suppose that E is a real uniformly convex
Banach space and r € (0, +00). Then there exists a continuous
and strictly increasing function g: [0,2r] — [0, +0c0) with
g(0) = 0 satisfying

lox + (1 = ) yl* < allxll” + (1 = )yl — a(1 - a)g (Ix - yl),
(4)
for Va € [0,1], Vx, y € E with x| <r and ||y| <r.

Accretive mappings have been extensively studied until
now and some works can be seen in [12-16] and the ref-
erences therein. However, until 2000, some valuable research
work has been done on d-accretive mappings. As we know,
in 2000, Alber and Reich [17] presented the following it-
erative schemes for d-accretive mapping T in a real uni-
formly smooth and uniformly convex Banach space:

Xps1 = X — “nTxn’ (5)
Xyl =X, — & Tt n>0
n+l = “*n n"Txn”’ =Y (6)

They proved that the iterative sequences {x,} generated
by (5) and (6) converge weakly to the zero point of T' under
the assumption that T is uniformly bounded and
demicontinuous.

In 2006, Guan [18] presented the following projective
method for the d—accretive mapping T in a real uniformly
smooth and uniformly convex Banach space E:

(x, € D(T),
Yu=T+7,0) %,

1 ¢, =1y € D (2 <9 () )
Q, ={v e D(T): {x, = v,Jpx; — Jpx,» >0},

[ Xni1 = 7c,nQ, X N1

It was shown that the iterative sequences {x, } generated
by (7) converge strongly to the zero point of T under the
assumptions that (1) R(I+T)=E, (2) T is demi-
continuous, and (3) J is weakly sequentially continuous
and satisfies

$(p, (I+7,T) 'x) < (p, ), (8)

for Vx € E and p € T~'0. The restrictions are extremely
strong, and it is hard for us to find such a d-accretive
mapping that is demicontinuous and satisfies (8).

In 2014, Wei et al. [7] presented the following block
iterative schemes for approximating common zero points of
d—accretive mappings {T,}\", in a Banach space E:
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x, € E,

m
Yn = Z wn,il:an,ixn +(1 - ‘xn,i)(I + rn,iTi)_lxn:I>
i=1

P i Wn,i[ﬁn,ixn +(1 - ﬁn,i)(l + Sn,iTi)_lyn:I,l’l €N,
i=1

)
[ x, € E,
mn -1
U, = Z wn,i[an,ixn +(1 - ‘Xn,i)(l + rn,iTi) xn]’
i=1
m -1
1 Vel = Z Mnji I:lsn,ixn +(1 —/3”’1-)(1 + Sﬂ,iTi) u”]’
i=1
H,=E,
H,y ={z € Hy: ¢(u,,2) < (x,2)},
| Xp1 =Ry, X, neN.
(10)

Under mild assumptions, {x, } generated by (9) is proved
to be weakly convergent to an element in N, T;'0, while
(10) is proved to be strongly convergent to an element in
nm To.

u,e; € EY,

U =E =V,

Then, {u,} generated by (12) is proved to be strongly
convergent to an element in N7, T;'0.

In 2020, Wei et al. [8] extended the discussion on
countable d-accretive mappings {T;}:°, to that for two

Un+1 = {Z € Un: <]E*wn - an]E*un - (1 - ‘xn)]E* (un + en)’z> =

In [19], the study on finite d-accretive mappings is ex-

tended to that for infinite d-accretive mappings
{T,}, CcExE:
(u, =veE,
-1
Wy, =(I + Sn,i]ETi]E*) Uy,
U, = E*,

Ui ={z €E": (g (un - wn,i),wm -2) 20},
o0
Un+1 = <iDI Un+1)i> n Un’

2 2
Vi ={z € Upais =2l <[Py, ) -+ + 7,0},

Upi1 € Vn+1 >

| u, = Jp-u,, neN.

(11)

Then, sequence {u,} generated by (11) is proved to be
strongly convergent to an element in N, T;'0.

A new idea can be seen in (11), where the iterative el-
ement u, € V, can be chosen arbitrarily, which is different
from the traditional one, for example, (7) in [18]. However, it
is found that, for each iterative step #n in (11), countable sets
U,..1,; should be evaluated for i € N. To simplify it theo-
retically, the following iterative scheme is designed in [9]:

w, =Jg |:0‘n]E*”n +(1-a,) Z bn,i]E*(]E* + Sn,iTi]E*)ile* (U, +e,) s
i=1

Jeonll” =l = (1 - o), + e } (12)
5 ,

2
Vi = {Z €U, "”1 - Z"2 < "PUn+1 (u,) - ”1" + Tn+1}’

groups of countable d-accretive mappings {T}.-, and {S;}:,

and construct two key groups of sets {V,} and {Y, }, where
the iterative elements {y,} and {u, } can be chosen arbitrarily
in {V,} and {Y,}, respectively.



(14, € E*,e, € E",¢, € E,

Ve ={p €Ut [ = oI <[Py

n+l

1 In € Vn+1’

i=1

Upiy € Yn+1 >

| 4, = Jpu,, neN.

Then {u,} generated by (13) is proved to be strongly
convergent to an element in (N T;10)N (N,S;10).

Recall that the inertial-type algorithm was first
proposed by Polyak [20] as an acceleration process in
solving a smooth convex minimization problem. The
inertial-type algorithm involves a two-step iterative
method where the next iterate is defined by making use of
the previous two iterates. For example, in 2015, Lorenz
and Pock [21] proposed the following inertial forward-
backward algorithm for approximating zero points of
T +S, where T and S are accretive-type mappings in
Hilbert space H:

uy, 4, € H chosen arbitrarily,
Vo = Uy + Gn (un - z’ln—l)’ (14)
ey = (T+1,T) " (v, = 1,8v,), neN.

In (14), the term 6, (u, -
term.

In this paper, motivated by the previous work, some new
work is done in the construction of new iterative schemes: (i)
the inertial term is inserted for the purpose of possible
acceleration; (ii) the combination expressions of T; or S, are

u, ) is called the inertial

n+1—{P€X JgeVy — @ Jpett, — (1= a,)] g (1, + €,), p> >

Xn+1 = {P € Un+1: <]E*zn_ﬂn]E*un_(1 _ﬁn)]E* (yn+sn)’p>2
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Y :]E|:(xn]E*un+(1_an)zan,i]E*(]E* + 7, TiJ e ) 1]E* (un+en) >
i=1

>

[ S ) R }
2

(u) - “1”2 + AnH}’

(13)

z,=Jg [ﬁn]E*”n +(1-B,) Z byl - (]E* * 5n,isi]E*)71]E* (at ‘Sn):|’

leall” = Bullval” = (1= By + &l }
5 :

Y= {P € Xy “”1 - P” “me (u,) - ”1”2 + 6n+1}’

different from those in (11)-(13). Numerical experiments are
conducted, and it is very interesting that the rate of con-
vergence is so quick that only eight steps are enough for
some special cases and for different choices of iterative el-
ements. To emphasize the importance of the topic, a kind of
curvature systems is studied and is taken as an example of
d-accretive mappings.

2. Iterative Schemes and Strong
Convergence Theorems

2.1. Iterative Schemes. In this section, we suppose that the
following conditions are satisfied:

(A,) Eis areal uniformly convex and uniformly smooth
Banach space; J;: E — E* and J.: E* — E are the
normalized duality mappings.

(A,) T}, S;: E — E are d-accretive mappings such that
R(I+T;)=E=R(I+S§,), for eachi e N.

(A3) {Tn,i}, {l‘n,i}, {&,} and {r,} are real number se-
quences in (0, +00), for i,n € N. {A,} and {9,} are real

number sequences in (0o, +00). {a,}r0; and {B,}>0,
are real number sequences in [0, 1].

n=1
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are real
that

(A agby € (0,1), {a,} and {b,}"
number  sequences  in (0,1) such

a0+21 1 nz_b +z: 1 nz_l'
(As) {eV} and {e(?} are the error sequences in E*.
(A¢)

U, = ]El{aofE* + 30 T g [ 47T ) e ]}

( 1 2 *
xo,xl,sl( ),51( ) e E°,

U, =x, + /\n ('xn - xnfl)’
Zy =Xy T ‘971 (xn - ‘xnfl)’

v, =Jp [(1-
V=W,

o)) pethy, + ] g U

=E",

y,, € W, chosen arbitrarily,

U =X, =E,

X1 € X,..1 chosen arbitrarily,

2.2. Strong Convergence Theorems

Theorem 1. Consider (N T;10)N (NS10)# D, inf,
wi >0, inf £, ;>0 for i€ N, a,-»0, B,+0, 7, — 0, /1
—Hioo, 9,»+to00, §,—0, 7,—0, ¢V — 0, and
el — 0, asn — oo. Then, the iterative sequence x,, = J -
x, — Jg-  Pj
e (N®T'0)n (

(xl) = JeP e (1,707 00 (0, (5,750)0)
§:10), as n — 0.

Proof. The proof is split into eight steps.

Step 1. N®,U, #@.

IWoa= {P €V “xl P” Hpvn+1 (%) - xll'z + Tn+1}’

wy, = ];1 [(1 _ﬁn)]E*un +ﬁn]E*

Xt =[P € Ui I - ol <o

_]E {b ]E +Zzlbnz]E
[(]E +tn1 181 1]E )7 ] ]
J g1}

We construct the following iterative scheme:

[(Jp +th]E) ]E]
[ (Jge +tn1S ]E)

Ty(zn+ <)),

Vi ={p € Vi $(pv) < (1= )6 (p1s,) + o, (P2, + €,

Uit ={p € Vir: $(prw,) < (1= BB (pow,) + B8P 7+ &7 )

(15)
oy, +52>)]
2
M(xl)"ﬁ" +£n+l}’
neN.
Since (N T;'0)N (NX,S;'0)+ D, there exists

8y € E such that T;6, =S;6, =0, Vi e N. It follows
from Lemma 1 that there exists #, € E* such that
J g1 = 6. Therefore, (NS (T;Tg)"'0)N
(NS (STp) 10)# 2.

Next, we shall use inductive method to prove that
(N (T Jg)” 0)m(m (ST pe)” 0)cUn,neN
Vpe (NX (TiJp)" 0)0(0 L (SiT g )" '0). For n=1,
it is 0bv1ous that p e U,. Suppose that the result is true
for n = k. Then, if n = k + 1, it follows from the defi-
nition of the Lyapunov functional, the convexity of
| -1, and Lemma 5 that



¢ (p.vi) =lpI” = 2(1 = @ )<, Jp-t> = 204, T - U (2 + &

+||(1 — o) et + “k]E*LTk(Zk + slil))”z
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<lIpl? = 2(1 - @ )<p. Tt — 204a0<p, T (2 + €1 )) = 204p. Y. @i (T + 7 Til ) T (2 + 67 ))

i=1

+(1- “k)"”k"2 + “k“o"zk + 819)”2 + “kOZO: ak,i”(]E* + 13T g )_IJE (21 + e,ﬁl))"
i=1

=(1-a)p(pug) + “ka0¢(P> Z, Sk ) + o Zaklﬂb(P’ (]E + 1) e ) 1]E*(Zk + elgl)))

< (1-a)p(pw) + “k</><P> Z + g ))~

Thus, p € Vy,,. Using Lemma 5 repeatedly, similar to
the above discussion, one has

d(pwe) < (1= (o) + ﬁk$<1” Uk()/k + 515 ))>
< (1= (pw)
+ /3kbo$(P’ Yt fziz)) + P Z bk,i%(p’ Y t 8152))

=(1-Bu)p(prwu) + ﬂk%(P’ Y t 5152))
(17)

(P v < (1-a,)p(pru,) + a,$(prz, +e1)

ep, (1-

V, is a closed and convex subset of E*, for n € N.

$(prw,) < (1= B¢ (poun) + Bub(pr v+ &,”)
<:><p’ (1 _ﬁn)]E*un +/5n]E*(yn +

U, is a closed and convex subset of E*, for n € N.

Step 3.Py (x,) — Py (%)), as n — oo.

The result follows from the results of Steps 1 and 2 and

Lemmas 3 and 4.

Step 4W,+ & and X, # .

Since [Py (x;) = x|l = infey llg—2x[; then, for
T,.1> there ‘exists 6 o1 € Vi such that

o, )] gty +oc]E(z +e! ) JE v><

2
sft )) —Jpw, <

(16)

Then p € Uy,,, which implies that N2 U, # .

Step 2. Both V,, and U,, are closed and convex subsets of
E*, for n e N.

If n = 1, the result is obvious. If n> 2, since

(18)
Al
5 .
Since

2 (19)

Bullpn+ &2 + (1= Blltall” =l

5 .

5 2

1 = 6, < (q;9£ lla- x1||> P

2
= "PV,Hl (1) = xl" T Tnil

Then W, # @. Similarly, X, # @. This ensures that {x,,}
is well defined.

Step 5. x, — Py (x,), as 1 — 00.
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Since X1 € X1 Since x,,, € X,,; <U,,; and U, 1is convex, for
o) = %, 17 < 1Py (x1) = x,1* +&,,,. It follows from vte (0,1), tPy (x)+ (1-1t)x,, €U,,. Using
Step 3 and £, — 0 that {x,} is bounded. Lemma 6, one has

n+l

” Uy (1) — x1|| 5||1‘PU”+l (1) + (1= 1)x,4 _xl"z

(21)
2 2
S t“PU,,H (x1) - xl" +(1 - t)erHl - xl” —t(l- t)g<“PUn+1 (%1) = X1 )
Therefore, tg(IIPU (x) = x,,D<lx, +1-x1*~ In fact, since u, = x,, + A,,(x,, — x,,_;) with A, + oo,
1Py, (x) - x,|*<é,.;, — 0, as n — co. Therefore, U, — Proy, (xl) as n — 00. Slmllarly, z, —
Xue1 — Py (%) — 00, as n — 0o. Combining with Pnoo v, (x1), as n — o0,
Step3x—>anU(x1)n—>oo SmcexnleancUnlcVnH,
Step 6.u,, — Ppe (x1), 2, — Proy, (%), v, —
Phey, (xl) and'y, — Ppe gy, (%), as n — co.
G (Xa1sv,) < (1= a,)P (00, ) + ¢( z, +£(1))
n+l> 'n n+1> Un nP\ Xn+1>
DI
= ||xn+ln + (1 - ‘xn)"u ” - 2(1 - an)<xn+1’ ]E*un> + a2, T 815
=20, {X 415 T e (z + e(l))>
=||xn+1“ _(1 _an)"un” - ay Zn+eii ) ' +2(1 _an)<un_xn+1’]E*un> (22)
+2an<zn+efll) X1 J e (z +£y(l))>
S(”xm" z, +e, ) ( z, +e )
¢ (1)
+2(1 = o)l 001 = ]| + 2012, + €, = X
Since ! — 0, it follows from Step 5 and Lemma 2 Since f3,,-+0, there exists a subsequence of {n}, which is
that x,,,-v,—0, as n— o0o. Therefore, still denoted by {n} such that ¢(x,,;,u,)-
Vv, — Pow g (X)), as 1 — oo, ¢ (xpp> v, +E2) — 0, and then X1~
Since x,,,, € X,,; CU,.1» (y, +e?) —0, which ensures that

o Y (2) yn_)ijj:’lU (xl) as 1 — O0.
Ful# Genrowr) = $(nrynr ) Step 7. Prgg,(w) € (N (TJp) 00 (N
Sa('x‘rﬁl’un) - a(xywl)wn) — 0. (S]E ) 0)
vge (N (Ti)p) 0)ﬂ(n V(ST g)” '0), and using
Lemma 5, we have

¢(q, (z + s( ))) Saog(q, z, + 8151)) +

gk

anz%(q’(]E* +1’m l]E) ]E (Z +£(1))>

]
—_

s

Il
—_

Saoa(q,zn+eﬁl))+ an,[¢(q,z +sfl)) </><(]E*+rm ,]E) IIE*(zn+s,Sl)),un+sf,1))] (24)

™2

—_

= $(q’ Zy 8151)) - an,i$((]b‘* i JE ) 1]E* (zn + 87(11))’Zn + 87(11)>'

i=
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From iterative scheme (15), we know that

$(@v) < (1= )¢ (g u,) + 0,8(a.U, (2, +¢,”))

_ (25)
s (l_an)(p(q’u )+‘xn¢(q Zp +€ ) Zanz¢<(]E i z]E) IIE*(un+€r(11))’Zn+£r(rl)>’
which implies that
(anan $((]E + 1, T:] g ) IJE*(Z,,+£,(1 )) z, +s(1)>
=
<(1-,)8( un>+an¢(q 5+ e’) - $(av,) oo
< (1-a,)||u, || +a,|z, + ! ||v || -2(1-a,)4q, J -1,y —20,{q, J v (z + el )>+2<q TV
< (Jaal =l ) + e[+ 2P =il ) + 2007 (2 + 57 = T, = Tpv| —o.
Since a,,-»0, there exists a subsequence of {n}, which is Using Lemma 5 again, we have Pw ; (x,) = (Jp-
still denot(elgi by {n%l)such that ¢ ((Jp.+ 7, TiJE- ) il ge)” P neo, U (x;), Vi € N. Therefore PmmU
Jp- (2, +€,"), 2z, + &) — 0. Then (Jpe+ -
roiTi) 5 ) g (un+sr(ll)) SN Pﬂ;"ian(xl)’ as (x) € N2 (T;] g ) 0.
" oco. = Similarly,

9.0 +e) ) <bup(a v + )
+ ibn’@(q, [(]E + 1,5 g ) 1]5*][(15* + tn)i_IS,-_JE*)_IIE*] [(]E + tn,181]E‘)_1]E*](yn +£r(12)))
<byd(q y, + )

00500 Ot )

M8

I
—_

_me(p([(]E +t,:57 )_IJE*}...[(]E* +tn)181]E*)_1]E*](yn+s,52)),

. [(]E * t”’i’ls"’le*)_ ]E‘] [(]E + tn,lsle*)_IIE*](yn + 8,52)))
(27)

From iterative scheme (15), we have
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5@mwsu—mﬁ@m)+m%qU0Mme
= (1 _ﬁn)$(q’un) +ﬁn 0¢(q’ Int &, ))

+ ﬁn(Z bn,i¢<q’ <]E* + tn,i—lsi—l]E”)_le* )()’n + 51(12))
i=1
_ﬁnzbn,ii((]E* +tnz 1]E ) 11E*><(IE* +tn,181]E*)_IIE*)(y +5(2))
i=1
((]E +tn,i,ls,.,1]E*)’1]E*)...<(}E* +tn,lsle*)’1]E*)(y +£(2))>

(28)

Therefore,

ﬁann,[ (e +tusiTe) T )+ (U +tuiSiTe) T )+ 62,
(e + tisScaTee) T ) oo (U + tiSiTe) T ) (4 o)
<(1-B,)6(qu,) +B,b o¢(q Yot tn )+ﬁnzbm¢(q yate) - (g w,)
< (1= Bl + By +

(29)

2)

n—wn" — 0.

Since 3,0, there exists a subsequence of {n}, which is
still denoted by {n} such that

<(]E* +1,;8) - )_ 1]5*) e ((]E + tn,lsle*)_llE* >(J’n + 5:;2))

—<(1 tty ST ) T )---((} w118 ) g )( @ w
gt 19i 1 JEr E* gt 191 InT &, )_’0'

Repeating the above process,

(( ni—lsi—JE*)_l]E*)“'((]E* +tn,131]E*)_1]E*>(J’n+5r(l )
(( ni—1si—2]E*)71]E*)"'<(]E* + tn,lSl]E*)ile*)(y" + sr(tz)) —0
(O #taicsSicaler) T ) (U + ta82) e ()

(31)
_<(]E* + tn,i,lsi,3]E*)_1]E*>...((]E* +tn)181]E*)_1]E*>(yn +s}§2)) —0,

((]E* +tn)181]E*)_1]E*>(yn +s,(12)) (y +s(2)) — 0,n — oo0.

Repeating (30), (31), and Lemma 5, one has

Step 8'x_’1‘ = Jp-%, — JpPpoy, (%)) € (NE T 'o)n
Pﬂ,.”":IUn(xl) = (Jg +t,;S Je) g Phwy, (x9), (N2,8710), as n — oo.
Vie N. Therefore, Jp.Pnwy (x)) € (NE T o) Using Steps 1 and 7, [[Pney (x)=x= [P

N (N;S;10). (3 (000 (12 (5.0 (¥1) = %1 [ Since the metric
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projection is unique, Proy (xy) =

P ) on (ne 5750 0) (¥1)-

This completes the proof. O

Remark 1. If A, =9, then u,, = z,. Two-step inertial iter-
ative scheme (15) reduces to the traditional inertial iterative
scheme.

Xg> X1» efl), efz) € H,

Uy = %, + Ay (X, = X001)5

2, = %, + 9, (%, = X1,

v, =(1-a,)u, + ocnU_n(zn + 621)),

V, =W, =H,

¥y, € W, chosen arbitrarily,

w, = (1 - ﬁn)un + ﬁnU_n(yn + sr(LZ))’
U, =X, =H,

[ X4, € X,y chosen arbitrarily, n € N,

where U, = agl + Y™ a,;(I+7,,T)"" and U, =b,I+
Y b (I +1,,8)7" (It S )™ e (T, 87
Vi,n € N. Under the assumptions of Theorem 1, the result of
Theorem 1 is still true.

3. Numerical Experiments

Theorem 2. Let E = (-00,+00), T;x = (x/2i), and S;x =
(x/i), Vx € (-00,+00), Vi € N. Let ay = (1/2) = by, a,; =
(n+22n+i+1)(n+i+2)), b,;=®2n+1)), and
t,=r,;=ni, VineN. Let a=p=1 a =8, =

n,i

Ve = {p €V, 2(1—a,){p,u,) + 20, {p,z, + > = 2{p,v,> < (1 - ocn)“u,,“2 +a,

2
I W = {P €V, "xl - P"2 < "PV,M (%) - x1|| + Tn+l}’

Un+1 :{p € Vn+1: 2(1 _ﬁn)<p’un> +2ﬁn<P>yn +£152)> - 2<p’wn> < (1 _ﬁn)"uﬂuz +ﬁ”

X1 = {P €U, “xl - P“z < “PU”+1 (%)) - xluz + fn+1}>

Journal of Mathematics

Remark 2. If A, =9, =0, then u, = z, = x,; and two-step
iterative scheme (15) extends the corresponding work of (13)
in [8].

Remark 3. 1f y, or x,,,, is chosen as Py, x; (or my, x;)or
Py x; (or my x;), (15) becomes a projection iterative
scheme with inertial items.

Corollary 1. In Hilbert space H, iterative scheme (15) be-
comes as follows:

R

(32)

(2)
Ynt &y

.}

(n=1/n), n22). A, =9,=1,=§,= (I/n); eV =2 =,
Vn € N. For initial value x, =1, x, = (1/3), the iterative
sequence {x,} generated by (32) converges strongly to
0e (NXT'0)N (N2, S10) by the eighth step for two dif-
ferent choices of {y,} and {x,} in the corresponding sets W,
and X,,.,, respectively.

Proof. For the special example, we can easily see that
all of the assumptions of Corollary 1 are satisfied;
and the iterative scheme (32) can be simplified as
follows:
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xy =1,
1
X1 = g,
V, =V, =(-00,+00) = W,
U, = (-00,+00) = X},
n+1 1
u, = n Xy _;xn—l’
n+5
T oAt
Vn+1 = Vn n {p Z(un - Vn)pS (un - Vn) (un + Vn)}’
2 1 2 1 (33)
T Woa =V,an|x - (PVMx1 —xl) +m,x1 + (Pvnﬂx1 —xl) +n+ Tl
yn € Wn+1’
1 (n-1)(n+3)
w, =—uU, +————"y
"on” 2n(n+2) Vn
2 2 2
setq, = (Inmu, + (n—1/n)y, —w,

" 2 (U, + (= 1)y, — w,)

u, n-1 u
Un+1 :Vn+ln p: 2(;+Tyn_wn>ps n

N
+
K
=
SN
|
g
B
—

L xn+1 EXnH’ neN.

Now, compute step by step and choose two different
groups of values of y, and x,, in W, and X,,,,, respectively;
we can get the two following tables. O

Remark 4. From Tables 1 and 2 derived from the numerical
experiments done in Theorem 2, we may find that (1) W, isan
interval that permits us to choose intermediate iterative element
{y,,} flexibly; (2) two extreme values of { y,,} in W, , the largest
and the smallest, are chosen, from which we can see that the
convergence of the iterative sequence {x,} is not affected.

4. Curvature Systems

To emphasize the importance of d-accretive mappings, the
connection among d-accretive mappings, iterative schemes,
and nonlinear boundary value problems is set up.

2 1 2 1
X =U,Nx — (PUmx1 - xl) +ﬁ,x1 + (PUmx1 - xl) + R

n+1

Definition 7 (see [22]). A single-valued mapping A: D (A) =
E — E* is hemicontinuous if A(x +ty)—Ax, ast — 0,
Vx,y € E.

Definition 8 (see [22, 23]). A multivalued mapping
A: D(A) c E—2F" is monotone if {(x-y,u—v)>0,
Vx, y € D(A), u € Ax,and v € Ay. The monotone operator
A is called maximally monotone if R(J; + AA) = E*, VA> 0.

Lemma 7 (see [22]). If A: D(A) = E — E* is everywhere
defined, monotone, and hemicontinuous, then it is maximally
monotone.

Example 1. We shall investigate the following curvature
systems:
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—div[(l +‘Vu(i)|2) (Si/Z)'Vu(i)|mi_1Vu(i)] + slu ’)i u? +u () =h(x), xeQ,
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(34)

—<v:<1 +'Vu(i)|2>(Sin)'v”(i)|mi_1v”(i) >=0, xel,ieN,

where | - | and (.,-) denote the norm and inner-product in
R", respectively. ) is the bounded conical domain of
R" (n>1) with its boundary T € C!, v is the normal de-
rivative of T, Vu® = ((au(i)/axl),..., (au(i)/axn)), €is a
nonnegative constant, and h(x) is a given function. For
i€eN, m+s;+1=gq, m=0, and (2n/n+1)<gq;<2. If

2> (51/2)

Then, B; is everywhere defined, hemicontinuous, and
monotone, Vi € N.

(v, Bjuy = JQ<<1 +‘V<|u|q”_18gnu||u||2,:q,")

Proof. The proof is split into three steps.

qir1—1 qu' mi=1
V| |u sgnu||u||q, g \Y
i

q; = n, then suppose that 1 <r; < + co; if g; < n, then suppose
that1<r; < (mg i/n—q;). Weuse || - || and || - ||1q o to denote
the norm in L™ (Q) and W4 (Q), respectlvely, Vi e N.

Lemmas8. Fori ¢ N, define B: W' (Q) — (W' (Q))*

as follows: Yu,v € W b (Q),

(|u|‘1”‘lsgnu||u||;r‘f'f)v(|v|‘7"‘lsgnv||v||;7‘f'f)>dx. (35)

Step 1.B; is everywhere defined.
If 5;>0, then

2 (S,-/Z) m;
[ Bas| < [ zmax{ = } (1l sgratll )| [0 gl s
) m;q;) (I/q1 (/‘1)

<26 w(lurt sgnata )" ax) (91 sgmnt )|

ar (V) , aiy (/)

([ o sgnaaty )" ) (fo 1 st 7)) )
<2 G0 (1™ sgoututl ) |} 919 sgnvtp} )|
i qi i 1,4,Q

+2 (si/2)

V(Iulq" sgnullull2 q’)

1,4,Q

If 5; <0, then

|<v,Biu)|SjQ’V<|u|q” sgnu||u|| )

<

-1 24
V(IVIq" sgnvilvil; q’)
1

V(1 sgoulul; q)]

L4,Q

m;+s;

a1 )
<|v|q" sgnv||v||z, q‘)‘dx
i

qi1—1 2— I;
o™ sgmvtbi )

(37)

]

1,4,Q2

(Qi/q’)

qi



Journal of Mathematics

Thus B; is everywhere defined.
Step 2.B; is monotone.

{u—v,Bju— B;v)

:JQ<(1+‘ <|u|qx sgnuIIuII ) >( "
—(1+‘ <|V|q, sgnvllvll ) >(S/2)

- v<|v|q'f lsgnv||v||2:4i>>dx
> (si12)

2JQ[<1+| (1t sgmatu? )

X

From the fact that h(t): = (1+¢)%2¢™, vt>0 is
monotone; we know that B; is monotone.

Step 3.B; is hemicontinuous.

0< tlim()](w, B;(u+tv) - Biu)|

;- a—d m;—1
V1wl gl )|V

41 2-q; il
V| vl sgm/IIVIIq,_ \

41 4\["
V( lul sgnullullqp

15

For Vi, v e W™ (Q),

I 24
(1wt g’ )

i1 2-4q 2-q;
<IVIq’ sgnvlivily ) <|ulq’ sgnullul; q)

(38)

( IVIq’ sgIWIIVII2 q)l )\V(IVIq,rlngVIIVII;df>‘ i]

vttt snaut’y )| |9 (11 sgriot ) v

Yu,v,w € wh () and t € (0,1); using Lebesgue’s
dominated convergence theorem, one has

2\~ m;—1
. -1 4. 2 -1 VAN
< j lim <<1 +‘V<|u 0] sgnuu + 1ol q)‘ ) lV(Iu 0" sgnuu + ]2 q)‘

Qt—0

N |2 _ 1
X V(Iu +tv] 1 sgn(u +tv)|lu + tvII2 q’) —(1 +’V<|u|qi'_ 1sgnulluII;f‘I’)l )2 lV(Iulqi' 1sgnv||u||‘21f_ %)l

(39)

Si

m;—1

i

-1 —d. -1 —d
V(Iulq" sgnvllullz,‘ q’), V(leq" sgnwllwllz,‘ q’) > dx' =0

Therefore, B; is hemicontinuous.
This completes the proof. O

Lemma 9 (see [8]). For i € N, deﬁne C;: wha Q) —
W~ b (Q))* as follows: Yu,v € wh Q)

v,Cuy = J uvdx. (40)
Q

Then C; is maximally monotone, for Vi € N.

Lemma 10 (see [22]). For each i € N, there exist the max-
imal monotone extension of B; and the maximal monotone
extension of C;, which are denoted by B;: LT (Q) — L% (Q)
and C;: LT(Q) — L% (Q), respectively.

Lemma 11 (see [24]). For i € N, if ¢;>2, then the nor-
malized duality mapping ] LY (Q) — L% (Q) is defined

by Ju= Iulq"flsgnullullz . VueL" (Q). Then, Ji:
L3(Q) — LY(Q) is deﬁned by J7'w=lul™ sgnu,
Yu € L% (Q).
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Based on the above lemmas and imitating Theorems
3.10, 3.11, and 3.12 in [8], one has the following results.

Theorem 3. For i€ N, define T;: LT (Q) — L% (Q) as
follows: Yu € L% (Q), T;u = B;J;'u(x). Then T; is d-accretive
and R(I +AT;) = L% (Q), VA >0,i € N.

Theorem 4. Define the mapping S;: L% (Q) — L% (Q) by
Siu = C]i‘lu(x), Yu(x) € L% (Q). Then S; is d-accretive and
R(I+AS;) = L% (Q), VA>0,i € N.

Define  the mapping S;: L1(Q) — L% (Q) by
Siu = Su(x) - Iqu"’lsgnk, Yu(x) € L% (Q), where k is a
constant. Then S; is d-accretive and R(I +AS;) = L1 (Q),
VA>0,i € N.

Theorem 5. If, in (34), f;(x) = s|k|”’_lsgnk + k, wherekisa
constant, then {u(i) (x) = k} is the solution of (34). Moreover,
{u®(x) =k} ¢ (N T0)N (NX,S;10).

Proof. It is obvious that {u”(x) =k} is the solution of
(34). If u(x) =k, then Tu'”(x)=B;J;'k=B;J;'k=0
and S;u' (x) = C;J; 'k - |k|% 'sgnk = C;J;'k — |k|%™ 'sgnk.
Since (1, CJ; 'k — kI sgnky = [, (J;'k - [K|%~sgnk)
vdx =0, {u (x) =k} ¢ (NO,T;10)N (NX,S;710).

This completes the proof. O

Remark 5. From Theorem 5, we can see the relationship
between the solution of curvature systems (34) and common
zero points of two groups of d-accretive mappings. This will
help us to approximate the solution of curvature systems by
using iterative schemes introduced in Section 2.
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This article deals with Hadamard inequalities for strongly (s, 7)-convex functions using generalized Riemann-Liouville fractional
integrals. Several generalized fractional versions of the Hadamard inequality are presented; we also provide refinements of many
known results which have been published in recent years.

1. Introduction

Fractional calculus is related to the integrals and derivatives
of any arbitrary real or complex order. Its history starts from
the end of the seventeenth century, but now it has many
applications in almost every field of mathematics, science,
and engineering such as electromagnetic, viscoelasticity,
fluid mechanics, and signal processing. Fractional integral
and derivative operators are of great importance in frac-
tional calculus. The Riemann-Liouville fractional integrals
are playing key role in its development. Sarikaya et al. [1, 2]
studied Hadamard inequality through Riemann-Liouville
fractional integrals of convex functions. This study has
encouraged a number of researchers to work further in the
field of mathematical inequalities by using fractional integral
operators. As a consequence, Hadamard’s inequality is
generalized and extended by fractional integral operators in
many ways (see [3-9] and the references therein). The
following inequality is the well-known Hadamard inequality
for convex functions which is stated in [10].

Let f: 1 — R be a convex function defined on an
interval I ¢ R and x, y € I where x < y. Then, the following
inequality holds:

x+y 1 y f)+ f(y)
f( : )sﬁjxf(v)dvsf. (1)

For the history of this inequality, we refer the readers to
[11, 12]. Use of convex functions in the fields of statistics
[13], economics [14], and optimization [15] is of prime
importance because they play an important role in devel-
opment of new concepts and notions. Various scholars
extended the research on integral inequalities to fractal sets
[16]. In this paper, the Hadamard inequality is studied for
generalized Riemann-Liouville fractional integrals of
strongly (s, m)-convex functions; also, by using two integral
identities, some error bounds of already established frac-
tional inequalities are studied. Bracamonte et al. [17] defined
the strongly (s,m)-convex function as follows.

Definition 1. A function f: [0,+0c0) — R is said to be
strongly (s,m)-convex function with modulus ¢>0 in
second sense, where (s,m) € (0,1]?, if

flxt+m1-0)y) <t f(x)+m(1-1)f(y)

2
—cmt(l—t)ly—xlz, @

holds for all x, y € [0,+00) and ¢ € [0, 1].

The well-known definition of Riemann-Liouville frac-
tional integral is given as follows.

Definition 2 (see [18]) (see also [19]). Let f € L[a,b]. Then,
left-sided and right-sided Riemann-Liouville fractional
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integrals of a function f of order y where R () > 0 are given
by
I f (x) = m j (x-0F ' F(Od, x>a,  (3)

1
I f(x) = r()J - f(0d, x<b,  (4)

where R (u) is real part of y and I' (y) = fgo e “z¢"'dz. The
following theorems are the fractional versions of Hadamard
inequality by Riemann-Liouville fractional integrals.

Theorem 1 (see [1]). Let f: [a,b] — R be a positive
function with 0<a<b and f € Lla,b]. If f is a convex
function on [a,b], then the following fractional integral in-
equality holds:

b\ T(u+1) (a) + f (b)
()R g o] L

(5)

with u>0.

Theorem 2 (see [2]). Under the assumptions of ieorem 1, the
following fractional integral inequality holds:

b\ 2 'T(u+1)
f(bl;r )S (b—Ha;" I#Mb)/zyf(b)u(M)/2 f(a)]

J@+ f(b),
2
(6)

with u> 0.

By establishing an integral identity, the following error
estimation of inequality (6) is proved.

Theorem 3 (see [1]). Let f: [a,b] — R be a differentiable
mapping on (a,b) with a<b. If | f'| is convex on [a,b], then
the following fractional integral inequality holds:
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A k-analogue of Riemann-Liouville integral is defined as
follows.

Definition 3 (see [20]). Let f € L[a,b]. Then, k-fractional
Riemann-Liouville integrals of order y where R (y)>0,
k>0, are defined as

() = krkl(#)j (k-0 FOd, x>a, (8)
1
i 0= ()J t-0WO L f(de, x<b, (9)

where I', (.) is defined by [21]

Ty (u) = J:ot"_le_(tk/k)dt, R (1) > 0. (10)

If k=1, (8) and (9) coincide with (3) and (4).

Two k-fractional versions of Hadamard inequality for
k-fractional Riemann-Liouville integrals are given in the
next two theorems.

Theorem 4 (see [22]). Let f: [a,b] — R be a positive
Sfunction with 0 <a <b. If f is a convex function on [a, b], then
the following inequality for k-fractional integrals holds:

a+b Ie(u+k)
f( 2 ) 20— a0 1

J@+ f)
2

L FO)+ I ()]
(11)

Theorem 5 (see [23]). Under the assumption of feorem 4, the
following inequality for k-fractional integrals holds:

b 1 (7)
a , ,
S2(‘14+1)< _2_14)“]( (a)|+|f (b)”
a+b\ 2WR-1p (p+ k) f(a)+f(b)
f( 2 )S (b- )(M/k) [ ((a+b)12)" f(b)+k1 ((a+b)12)” fla)]< ST (12)
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By establishing an integral identity, in the following
theorem, the error estimation of Theorem 4 is proved.

|f@+f®b) T (u+k)
|2 2(b - a)

In the following, we recall the definition of generalized

Riemann-Liouville fractional integrals by a monotonically

increasing function.

Definition 4 (see [24]). Let f: [a,b] — R be an integrable
function. Also, let y be an increasing and positive function on

[kll;f(b) + 1y f(a)]

Theorem 6 (see [22]). Let f: [a,b] — R be a differentiable
mapping on (a,b) with 0<a<b. If | f'| is convex on [a,b],
then the following inequality for k-fractional integrals holds:

b- 1 ) ,
SZ((y/k)a+ 5 (1 - 2Wk))“f (@) +|f (b)|]. (13)

(a,b), having a continuous derivative y' on (a,b). The left-
sided and right-sided fractional integrals of a function f with
respect to another function w on [a,b] of order yu where
R (4) >0 are given by

1Y f () = %ﬂ) [vouw-vor-sow e (14)
M=t [y 1 E(1)d b (15)
b,f(x)-mjxw<t>(w<t>—w(x)) F(Odt, x<b

If y is identity function, then (14) and (15) coincide with
(3) and (4).

The k-analogue of generalized Riemann-Liouville frac-
tional integral is defined as follows.

1
wy —
kIa+ f(x) - ka (#)

b
Wl f () = kl"kl(ﬂ) | v owo-yen o,

For further study of fractional integrals, see [26, 27]. We
will utilize the following well-known hypergeometric, beta,
and incomplete beta functions in our results [28].

1
,Fila,b;c; z] _7B(b,c—b) Jo

1
B(x,y) = Jot’“ (1-1) 'dt =

B(x, y;z) = JO Pl - gy,

1
-7 -z,

Definition 5 (see [25]). Let f: [a,b] — R be an integrable
function. Also, let y be an increasing and positive function on
(a,b), having a continuous derivative y' on (a,b). The left-
sided and right-sided fractional integrals of a function f with
respect to another function y on [a,b] of order u where
R (u) >0, k>0, are defined by

r VO -y F(Od x>a, (16)

x<b. (17)

c>b>0,|z|<1,

() (y) (18)
T(x+y)’



The rest of the paper is organized as follows. In Section
2, we obtain Hadamard inequalities for generalized
Riemann-Liouville fractional integrals of strongly
(s,m)-convex functions. Many specific cases are given as
outcomes of these inequalities; they are related to the re-
sults which have been published in different papers. In
Section 3, by using two integral identities for generalized
fractional integrals, the error bounds of fractional Hada-
mard inequalities are established for differentiable strongly
(s,m)-convex functions. This paper reproduces the results
which are explicitly given in [1, 2, 22, 23, 29-37].
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2. Main Results

This section is dedicated to the Hadamard inequality for
strongly  (s,m)-convex functions via generalized
Riemann-Liouville fractional integrals. We will give two
versions of this inequality. First one is stated and proved in
the following theorem.

Theorem 7. Let f: [a,b] — R, [a,b] C [0,+00) be a
positive function and f € L,[a,b]. Also, let f be strongly
(s, m)-convex function on [a,b] with modulus c, such that
(a/m), (a/m*),mb € [a,b].  Then, for k>0 and
(s,m) € (0,1]% the following k-fractional integral inequal-
ities hold for operators given in (16) and (17):

a+mb cm 2 2 a 2 a
f( X >+4(‘u+k)(‘u+2k)[y(y+k)(b—a) +2k<a—mb>+2ky(b—a)<a—mb>]

rw“)V%MﬁMWwMMMWWWWMWGm (19)

T 25 (mb — a)*

m

_ulf@+mf®) muB ((u/k), s + 1)[ f (b) + mf (a/m®)] ) ka#[ (b-a)’ +m(b —(a/mz))z]

2° (u + sk) k2
with u>0.
Proof. The following inequality holds for strongly
(s, m)-convex functions.
2
f<x +2my)gf(x) -I;:nf(y)_cm|y4—x| . (20)

>

2°(p + k) (u + 2k)

By setting x =at+m(1-1t)b, y= (a/m)(1-1t)+1tb,
t € [0,1], in (20), multiplying resulting inequality with
tWk-1 and then integrating with respect to t, we get

k (a+mb) 1] (k-1 bo(a (ulk)-1
#f< . )szs Uof(at+m(l By -1y +mjof(m (1-1) + bt e
(21)
_om[k(b-a) 2K ((alm)—mb)* 2k (b-a)((alm) - mb)
4 | p+2k  plu+k)(u+2k) (p + k) (u+2k) '
By setting v (1) = at + m(1 —t)b and y(v) = (a/m) (1 -
t)+bt in (21) and by applying Definition 5, we get the
following inequality:
7 a+mb - T (p+k) [1,4,1// (fo )( 71(mb))+m(”/k)+l Y (fo )< —1(2))]
2 ) 2 (b ap [y @ VY ey LoV,
(22)

2k* ((alm) — mb)*

_emu[(b-a)’
4 | p+2k

p(p+ k) (u +2k)

2k(b - a)((alm) - mb)]
(u+k)(u+2k) ’
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The above inequality leads to the first inequality of (19).
On the other hand, f is strongly (s, m)-convex function with
modulus ¢; for t € [0, 1], we have the following inequality:

f(ta+m(1-1t)b) +mf<% (1 —t)+tb>st$[f(a)+mf(b)]
(23)
s a 2 a\?
+ﬂﬂ1—t)[f(wﬁﬁnf(—7>]—wmﬂ(l—t%(b—a)—rm(b——3>].
m m
By integrating (23) over [0,1] after multiplying with
tWk=1_the following inequality holds:
1 1
J t W71 £ (ta + m(1 - t)b)dt +m J t("”‘)’1f<z (1-1)+ tb)dt
0 0 m
[f (a) +mf (b)]k a <,u )
< it sk +m| f(b) +mf o Bk,s+1 (24)
cmk? [ (b-a)*+ m(b —(a/mz))z]
- (4 + k) (u + 2K)
Again using substitutions as considered in (21), we get
kT (@) v o -1 (WK)+1 iy o -1fa
@Efﬁmﬂhﬁﬁwawmﬂ(mwf”n” I (v ()]
[f(a)+mf (b)]k a 7

cmk2< (b-a)*+ m(b —(a/mz))z)
- (4 + k) (u + 2k)

This leads to the second inequality of (19). O

Remark 1. Under the assumption of Theorem 7, the fol-
lowing outcomes are noted.

(i) If s = 1, m = 1, then the inequality stated in [[32],

Theorem 9] is obtained.

(ii) Ifc = 0, s = 1,m = 1, and v is the identity function
in (19), then Theorem 4 is obtained.

(iii) If c=0,s=1,m=1, k=1, and v is the identity
function in (19), then Theorem 1 is obtained.

(iv) Ifk = 1,s = 1,m = 1, and vy is the identity function
in (19), then refinement of Theorem 1 is obtained.

WMIftu=1,k=1,s=1, m=1,c=0, and y is the
identity function in (19), then Hadamard in-
equality is obtained.

(vi)If m=1, s=1, and ¢ =0 in (19), then the in-
equality [[34], Theorem 1] is obtained.

(vii) If c=0, k=1, m=1, and s = 1 in (19), then the
inequality stated in [[33], Theorem 2.1] is obtained.

(viii) If s = 1,k = 1, and y is the identity function in (19),
then the inequality stated in [[31], Theorem 6] is
obtained.

(ix) Ifk=1,m=1,s=1, u=1, and y is the identity
function in (19), then the inequality stated in [[35],
Theorem 6] is obtained.
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(x) Ifa =1,k =1,c =0, and y is the identity function =~ Corollary 1. Under the assumption of Theorem 7 with ¢ = 0
in (19), then the inequality stated in [[29], Theorem in (19), the following inequality holds:
2.1] is obtained.

b r k + _
f<a +2m ) 2° (mkliwr ))”’k)k IV [(f Y)(y " (mb)) +m I (f°1//)<‘/’ 1<%)>]
4l @+ mf )

2° (u + sk) (26)

muB ((ulk), s + 1) [ f (b) + mf (a/m®)]
+
k2? '

Theorem 8. Under the assumption of Theorem 7, the fol-
lowing k-fractional integral inequality holds:

a+mb cm , (a 2, 5 a
f( 3 )+16(‘u+k)(/,t+2k)[”(b_a) +<;—mb) (y +5ky+8k)+2y(b—a)<m—mb>(y+3k)]
2T (u+ k)

© (mb-a)"

[kI (ameyy vy _l(mb))+mﬂ/k)+lkly ! ((@smby2my (F° l//)< (%))]

f(a) +mf ()] mFy (s (), (u+ k)/k); (1/2)) [f ®) +mf(aim®)] em(u+3ku](b-a) +m(b-(aim’))]
2% (u + sk) 2° 2 (u + k) (u + 2k)

>

(27)

with u>0. inequality with ¢ (#/0-1

t, we get

, and then integrating with respect to

Proof. By setting x = (at/2) +m((2-1t)/2)b, y = (a/m)
((2-t)/2) + (bt/2), t € [0,1] in (20), multiplying resulting

1 _ 1 —
5f<a+mb)£is“ f<a_t+m<u>b>t(y/k)—ldt+mj f(ﬁ<2 t) bt)t(,m 1dt]
U 2 2 0" \2 2 o \m\ 2

Cem[ (b-a)’k _k((alm) - mb)*(4* + Sku + 8K*) (b~ a)((a/m) - mb) (u + 3K)k
4 a2k 4 (e + k) (u + 2K) " 2+ k) (u + 2k)

(28)
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By  setting y(u) = (at/2) + bm((2 - 1)/2) and
v (v) = (a/m)((2 - t)/2) + (bt/2) and by applying Definition
5, we get the following inequality:

k (a+mb 2“MkT, (p) , -1 (u/)+1 a
(7)o [ =0 )+ 0 ()]
(29)
_om kw—af+k«ama—nwf@2+%w+sﬁ)+kw—axmhm—nwxy+3m
4(p +2k) 4p(p + k) (p + 2k) 2(p+k)(u+2k) ’
The above inequality leads to the first inequality of (27).
On the other hand, f is strongly (s, m)-convex function with
modulus ¢; for ¢ € [0, 1], we have the following inequality:
at 2-t a/2-t\ bt £\*
F(Gem(z3 ) +ms (m<z> +2>S<2> f @ +mf (b))
: (30)
2\ a cmt(2—t)[(b—a)2+m(b—(a/m2)) ]
+m<——){ﬂw+nﬁ(—a]— .
2 m 4
By integrating (30) over [0, 1] after multiplying with
tWh-1the following inequality holds:
1 _ 1 -
J f (a_t + m<u>b> WO=14¢ 1+ m J- f (i (Q) bt) FWR=1 44
0 2 2 0 m\ 2 2
kuuﬂ+mfwn+mkpxw+f(mm)kF(541+Wm(2+w+kym(um) -
31

2° (sk + p) Y

ek + 30| (b= a)? +m (b (aim”))']
- 4(u+k) (4 + 2k)

Again using substitutions as considered in (28), we get



2"k () [ oy
(mb — a)"* ¥

_klf (@) +mf®)] mk | f (b) + mf(a/m®)],F, (=s, (ulk), (u + K)/k); (1/2))
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° - k)+ 3 ° - a
1 aemry (LW (W (b)) 4 m @I - (F "’)(W 1(5))]

2° (sk + p)

u (32)

k(e + 30| (b= a)” + m (b (aim”))'|

4(p+ k) (p + 2k)

This leads to the second inequality of (27). O

Remark 2. Under the assumption of Theorem 8, the fol-
lowing outcomes are noted.

(i) If s = 1 and m = 1 in (27), then the inequality stated

in [[32], Theorem 10] is obtained.

(i) Ifs=1,m=1,k=1,c=0, and y is the identity
function in (27), then Theorem 2 is obtained.

(iii) If s = 1, m = 1, k = 1, and y is the identity function
in (27), then refinement of Theorem 2 is obtained.

(ivVIfs=1,m=1, k=1 u=1c=0, and y is the
identity function in (27), then Hadamard inequality
is obtained.

(v) If s=1,m =1, ¢ = 0, and v is the identity function
in inequality (27), then Theorem 5 is obtained.
(vi) If s = 1,m = 1,and ¢ = 0in (27), then the inequality
stated in [[32], Corollary 5] is obtained.
(vii) If s=1, k=1, and y is the identity function in
inequality (27), then the inequality stated in [[31],
Theorem 7] is obtained.

Corollary 3. Under the assumption of Theorem 8 withc = 0
in (27), the following inequality holds:

a+mb\ 2WO7ST (u+k) _ . A
f( )S o [kl[yl ey LY (D) 4 m @I “”’”("’ 1(5))]

2 (mb - a)“™

_klf (@) +mf(b)]
T 2% (u+sk)

(33)

LS ) mf (arm®)],Fy s @), @+ RIR): (112)

25

3. Error Estimations of Hadamard
Inequalities via Strongly
(s, m)-Convex Functions

In this section, we will study error estimations of Hadamard
inequalities for generalized Riemann-Liouville fractional
integrals of strongly (s,m)-convex functions. The estima-
tions obtained here provide refinements of many well-
known results. The Mathematica program is used for in-
tegration. We recall the well-known Hélder’s integral
inequality.

Theorem 9 (see [38]). Let p>1and (1/p)+ (1/q) = 1. If f
and g are real functions defined on [a,b] and if | f|¥ and |g|?
are integrable functions on [a,b], then

b b 1/p b 1/q
j |f(x>g(x)|dxs<j If(x)lpdx) (j g(X)qu> :

(34)

with equality holding iff Alf (x)|? = Blg(x)|? almost ev-
erywhere, where A and B are constants.

In order to prove the next result, the following lemma is
useful.

Lemma 1 (see [34]). Let a<b and f: [a,b] — R be a
differentiable mapping on (a,b). Also, suppose that
f' € Lla,bl, y(x) is an increasing and positive monotone
function on (a,b, having a continuous derivative y' (x) on
(a,b), and a € (0,1). Then, for k>0, the following identity
holds:
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f@+f) T(u+k)
2 2(b- a)®P ¥

(8%, P17 )+, I8 - (9 (v @)
(35)

_b- “I [(1-0)¥0 WO £ (ta + (1 - t)b)dt.

Theorem 10. Let f: [a,b] — R, [a,b] C [0,+00) be a modulus c. Then, for k>0 and (s,m) € (0, 112 , the following
differentiable mapping on (a,b) such that f' € L, [a,b]. Also,  k-fractional integral inequality holds for operators given in
suppose that |f'| is strongly (s,m)-convex on [a,b] with (16) and (17):

b I k
'f(a) ;’f( )_2(5(_#;—)(}4)/]() [ ~1(a)* (f 1/])( (b)) +kI‘u 1(b)™ (f W)( (a))]l

b a Y 1—(1/2) P Y
[lf (a)|(2B<S+1k >+S+(‘u/k)+1_B(1+S,1+k>)

) m‘f, ( b )‘ <1 — (2R (=5, 1+ (ul), 2 + (ulk); (1/2))> o)

s+ (ulk) +1 20 (fk) + 1)

FB(1+s,1+ (k) Ck(k+p+ 2" (k+ks+p),Fy (=s, 1+ (uk),2 + (ulk); (1/2)))]

25O (ke 4+ k) (u + k)

_ c((b/m) - a)’ (w4
((ﬂ/k) +2) ((M/k) +3) 2(#/k)+2 >

with u>0 and ,F, (=s,1 + (u/k),2 + (u/k); (1/2)) being the Proof. By Lemma 1, it follows that
hypergeometric function.

|f@+f®) Ti(u+k
|2 2(b - o)

["Iﬁ w LY )+ I (v (b))]‘
(37)
b a

J|(1 0% — ¥ (ta + (1 = D) de.

Since |f'| is strongly (s,m)-convex function on [a,b],
for t € [0,1], we have

2
'<b)‘—cmt(1—t)(b—a> ) (38)
m m

|f' (ta+ 1 -0)b)| <t'|f' (@)| + m(1 —2)°

Now using (38) in (37), we have
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[f(@)+f(b) T (u+k)
2 Z(b— )‘u/k

(2%, (v ) #1270 -1<b>)”

2
'(E)‘ —cmt (1 — t)(k— a) )dt.
m m

[ o3 ®) 1%, i O)]

b ; = J;|(1 — 1)k t*‘”‘)|<t5|f’ (@) +m(1 -t)°

|f@+f(b) Ti(u+k)

2 20-al
b—a [\ b b\
_ Wk ik s| ¢! sl 2 _ v
<2 (- )(t If @] +m(1-1) (m>‘ cmt (1 t)(m a) >
(39)
Lk K b b\
+ J (" = =) £ @] + m(1 -1y (-)‘ —cmt (1 —t)(——a) dt
1/2 m m
b-a @) JI/Z ts(( ik _t,u/k)dt +J / (ty/k ( ),u/k)dt
2 1/2
+ mlf'(b>~<r/2 (1= (1 -0 = )dt + Jl a-o'(#"* - -t)f‘”‘)dt)
m 0
2
b ? 172 /k /k ! Ik /k
—em|—-a J t1-0)( (- - )dt+J t =) (" = (1 -0 )de ) |.
m 0 1/2
We now evaluate integrals that appear on the right side
of the above inequality:
1/2 1
J £ -0 = )de + J (% = (1 -1y ) dt
0 1/2
b (40)
B 1 u 1—(1/2)* 7
= ZB(E,S'F 1,E+ 1) +W—B<1 +S,1+E>,
1/2 1
J (1= (1 —ty* - %)t +I (1=t (¢ = (1 - %) dt
0 1/2
1- (172 R (172) 0 B\ (=5, 1+ (u/k), 2 + (ulk); (1/2))
_ _ B(1+s,1
s+l +1 Wk + 1 +B(L+s 1+ (u/k) (41)
Q2O e (k20 (e ks + ), Fy (=, 1+ (ulk), 2 + (ulk); (12)
(sk+pu+k)(pu+k)
1/2 1 1 _(((#/k) + 4)/2(I4/k)+2)
t(1—=1)( (1 =tk - glk dt+J t(1-0)(t* - (1 -)“F)dt = . (42)
J, ramn(a-otoeta | a0t (@l +2) (i) + 3)
Using (40)-(42) in (39), we get (36). O (i) If s = 1 and m = 1 in (45), then the inequality stated
in [[32], Theorem 11] is obtained.
Remark 3. Under the assumption of Theorem 10, the fol- (i) If s = 1,m = 1,and ¢ = 0in (45), then the inequality

lowing outcomes are noted. stated in [[32], Corollary 10] is obtained.
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(iii) If s = 1,m = 1, k = 1, and v is the identity function (vi)If k=1, m=1,s=1,c=0, and vy is the identity
in (45), then a refined error estimation of the function in (45), then Theorem 3 is obtained.
fractional Hadamard inequality is obtained. (vii) Ifk = 1, s = 1, and vy is the identity function in (45),

(iv) If m = 1 and ¢ = 0in (45), then the inequality stated then the inequality stated in [[31], Theorem 8] is
n [[34], Theorem 2] is obtained. obtained.

(v) Ifm=1,s=1,c =0, and v is the identity function
in (45), then Theorem 6 is obtained. Corollary 5. Under the assumption of Theorem 10 withc = 0

in (3.10), the following inequality holds:

[f(@+f®b) T (u+k)
2 2(b- a)* ¥

. 1 u 1 - (1/2)WR < y)
2B | —; 1,-+1 —— - B(1+s,1+-
¢ < (2’$+ K" >+ s+ (ulk) + 1 HR”

[ i LW ) +, % - (Fey)(y (a))]l

43
N ml f ( b )' 1= (12" F, (=51 + (ulk), 2 + (ulk); (1/2)) (49
s+ (ulk) +1 250 (/i) + 1)
+B(1 rsl +ﬁ> _k(k+y+2 (k+l:(s/;:yl)2F (=8, 1+ (plk), 2 + (ulk); (1/2))
k 2N (o 4+ k) (e + k)
Corollary 6. Under the assumption of Theorem 10 with
k=1L u=1,s=1 m=1, and y as the identity function in
(3.10), the following inequality holds:
a)+ f(b 1 b c b a
L@ IO [ o] 5[ @l el ) - (11

Lemma 2. Let f: [a,b] — R be a differentiable mapping  m € (0, 1], the following identity holds for operators given in
on (a,b) such that f' € Lla,b). Then, for k>0 and (16) and (17):

2(y/k)flr (;4+k) _ + a
Tka)/‘/k[ Y 5 (s (F° V’)( l(mb))+m(ylk) lkI ! asmbyzmy (F° l//)( (E))]

_%[Jc(a +2mb>+mf<a;r;1b>] (45)
S [ (o [t (R 50 45 e

Proof. Let

29I (u+ k)

IIZW["I asmbyy (f° V/)( (mb))],

A A VIR [# ¥ o i a
(mb - a) (ulk) 1 ((a+mb)/2m)~ (f ‘//) 4 B .

(46)

5 =
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First, we evaluate I:

I 24 # v (mb) ' b (ulk)-1 d
= L] ¥ O )

_p (k-1 [ jwl (mb)

" (mb - a)®P

(d (mb -y (u)) ") (f(v/(u)))].

y~ 1 ((a+mb)/2)

Now integrating by parts, we have

b y~! (mb) b- K
__f<a+m ) %J (M) v () f (v (w)du.

-1 ((a+mb)/2) mb - a

Substituting t = 2 (mb — y (u))/ (mb — a), so that y (u) = Now, we evaluate I,:
(at/2)+m ((2-1)/2)b in (48), we get the following
inequality:

_ 1 _
:—f(a+Mb)+mb “J kg (a—t+m<£>b>dt.
4 0 2 2

(49)

_m(“/k)HZ(”/k T, (y+k) a
L (e )

(plh)+1 z(y/k)fl v ((a+mb)/2m) (ulk)-1
=%“ v (vm-2) (f°w)(v))dv]

k(mb - )P |yt (am
(plk)+1  (plk)-1 1 ((a+mb)/2m) (plk)
m 2 1 a\'\#
= d( - _) .
(mb - a)(ﬂ/k) [le(a/m) (f(VI(V)) ( W(V) m >>:|

Integrating by parts, we get

2m 2 )yt aim) mb— a

Substituting s = 2m ((y (v)) — (a/m))/ (mb — a), so that
y(v) = (a/lm)((2 -1)/2) + (bt/2) in (51), we get the fol-
lowing inequality:

1 ((a+mb)/2m) _ ulk
12 _ ﬂf (Cl + mb) _ﬂ JZ /2, (Zm (W(V)) (a/m)> >w! (V) (fl (W(V)))dv

(47)

(48)

(50)

(51)

(52)
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Adding (49) and (52), (45) is obtained. O

Remark 4. Under the assumption of Lemma 2, the following
outcomes are noted.

(i) If k = 1 and vy is the identity function in (45), then
the identity stated in [[30], Lemma 2.3] is obtained.

(ii) If m =1 in (45), then the identity stated in [[32],
Lemma 2] is obtained.

(iii) If m = 1, k = 1, and v is the identity function in (45),
then the identity stated in [[2], Lemma 3] is
obtained.

2WO7IT (u+ k)
(mb - a)*"

S ) ()]

-1 (ul+1 iy
[Iw-1<a+mb oy LWy (mb)) 4 m I Ly

2((ulk) + 1) ((ulk) +2)| ' (@)

13

(iv) If m =1,k =1, y = 1, and v is the identity function
in (45), then the identity stated in [[2], Corollary 1]
is obtained.

(v) If m = 1 and y is the identity function in (45), then
the identity stated in [[23], Lemma 3.1] is obtained.

Theorem 11. Let f: [a,b] — R, [a,b] C [0,+00) be a
differentiable mapping on (a,b) such that f' € L[a, b]. Also,
suppose that | f'|1 is strongly (s,m)-convex function on [a,b]
for q>1. Then, for k>0 and (s,m) € (0, 11%, the following
k-fractional integral inequality holds for operators given in
(16) and (17):

sy ()]

- mb—a 1 1q
“4((plk) + D\ 2((ulk) +2)

2°((ulk) +s+1)

2m|f’ (b)|q<%+2>)

(53)

U 141)
F 31 2+
%2 (S TRTTER2
I a | U
+<2m<z+2>’fl(ﬁ> ,F, ( s,1+k2+

cem (b - a)* (uk) + 1) (urk) + 4)\
2 ((ulk) +3)

ul)
K2

2 (k) + D (@WIK) + D|f' ®)| em (b-

25 ((wlk) +s+1)
with y>0 and (1/p) + (1/q9) = 1.

Proof. We divide the proof in two cases. O

(ulk)~ lr (y+k)
(mb — )

_% [f(a+2mb>+mf<a;”:nb)”£mb4 a“

(Wk)+1 iy
[klw L(asmbyy (F° ‘/’)(‘/’ (mb))“n” KLy ((armb)/2m)

o (S (25

m(]f’ ] +m|f’ (a/m®)

(arm?)) (ulk) + 1) ((ulk) + 4)\
2 ((ulk) +3) ’

Case 1. Fix q=1. Applying Lemma 2 and strongly
(s, m)-convexity of | f'|, we have

en(v(3)]
o e 525 )

Smb—a [(|f’(a)| +Sm|f' (b)|> Jlt(y/k)+sdt+
4 2 0

m ( (b-a)* + m(b —(a/mz))2>

4

+

1
J Wkl (5 _ t)dt] <
0

mk,F, (=s, 1+ (u/k), 2 + (u/k), (1/2))<| £ )] +ml f’(a/m2)|>

= D J; (2 - )tk dt

k(If' @) +mlf' ®)])
2°(y + sk + k)

mb—a
4

em( (b= a)” + m(b~(am®))”) (@Il +4)

k+uy

4((ulk) +2) ((ulk) + 3)

(54)
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Case 2. For ¢>1. From Lemma 2 and using power mean
inequality, we get

R TR e

o -1
(mb - a)(ﬂ/k) kIlV’l((qumb)/z)* (f ll/)(ll/ (mb))
Wi+ gt oo v 12 1[_(a+mb a+ mb
+mt lkI}I:/Y/l((qumb)/Zm)' (f 1!/)(1// 1(;))] —5[f< > )+mf< T |
1-(1/g) W)
Smb_“(r t(y/k)dt) 1 [(Jl t("/k)‘f'<at+m<2_t)b>rdt> 4
4 0 0 2 2

1 q (1/9) / 9 .1
i o @ (2-t\ bt mb—a [(|f (a)] sHulk)
+(Jomt f <m< )+ 2) dt) :|S4((y/k) | Jot dt

I ! (1/g) , 2
+M Jl (2—t)5t(”/k)dt—M Jl(z_t)t(ﬂlk)+ldt> +<M
0 0

2 >

i 2 (1/9)
x r 2 -1t)°t“Rdr + L &) Jl o) gy _ cm (b= (alm?)) Jl 2- t)t("/k)“dt) ]
0 25 0 4 0

mb-a K Kf @[ mk|f" O, F (=5, 1+ (ulk), 2 + (ulk), (1/2)) (55)

< 17 5 +
4((y/k)+1)P 2°(sk+p+k) k+p

cm ((ulk) +4) (b - a)* )“’q) <mk| ' (atm?)[',Fy (=5, 1+ (uik), 2.+ (uik), (1/2))

4 ((ulk) +2) ((ulk) + 3) k+u

KF O em(ui)+4) (0 - (am?)*\ "
2(sktptk) 4(ulk) +2) (k) +3)

. mb-a ( 1 )”q [(Zklf’ (@)|7 ((ulk) + 1) ((ulk) +2)
T 4((uk) + DYP\2((ulk) + 1) (k) +2) 2 (sk+p +k)

¢ v, b1
+2m<E+ 2>|f’ (b)|q2F1<—s,1 +5,2 +E’E> -

k
(o ()

2k (Gulk) + 1) (k) + DI B cm (i) + 1) (k) +4) (b = (alr?))? v
25(sk+p+k) 2((ulk) + 3) '

em (k) +4) (k) + 1) (b - a)*\ "
2((ulk) +3)

q 1
(fe2ho(nrhe )

Hence, we get (53). (ii) If s = 1, k = 1, and v is the identity function in (53),
then the inequality stated in [[31], Theorem 9] is

Remark 5. Under the assumption of Theorem 11, the fol- obtained.

lowing outcomes are noted. (iii) If s = 1,k = 1, ¢ = 0, and v is the identity function in
(53), then the inequality stated in [[30], Theorem
(i) If s = 1 and m = 1 in (53), then the inequality stated 2.4] is obtained.

in [[32], Theorem 12] is obtained.
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(iv) If c =0, s = 1,m = 1, and v is the identity function
in (53), then the inequality stated in [[23], Theorem
3.1] is obtained.

V) Ifts=1,m=1,¢c=0, k=1, and y is the identity
function in (53), then the inequality stated in [[2],
Theorem 5] is obtained.

2WOIT (u+ k)
(mb— )(y/k I ~1((a+mb)/2)* (f w)(

(ulk)+1
+m kI‘u 1 ((a+mb)/2m)~ (f V/)< <m>] -
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(vi) Ifg=1,s=1,m=1,c=0,k=1,4 = 1,and yis the
identity function in (53), then the inequality stated
in [[36], Theorem 2.2] is obtained.

Corollary 7. Under the assumption of Theorem 11 withc = 0
in (53), the following inequality holds:

! (mb))

(5 o))

__mb-a 1 Y2 (uik) + 1) (k) + 2)|f (@)
Sl + )\ 2wk + 2) (k) +s+1) "

D))l G

sz( 5,1+Z2

?T‘I"t

2m | (0)|" ((ulk) +2) (56)

><F< 1+ 2E1)+
T TRt T2

Corollary 8. Under the assumption of Theorem 11 with
k=1, s=1 m=1,q=1, uy=1, and y as the identity
function in (53), the following inequality holds:

o ()

Lemma 3 (see [39]). Let p>1 be a real number. For
(%1, %5, ...,%,) € [0,00) and n>2, the following inequality

holds:
n n P
Zx;og<2xi> . (58)

2((utk) + 1) (k) + 2] f' B\
25 ((ulk) +s +1) '

7[’ 2) (57)

e IRCRINCE

Theorem 12. Let f: I — R be a differentiable mapping
on (a,b) with a<b. Also, suppose that |f'|1 is strongly
(s,m)-convex function on [a,b] for g>1. Then, for k>0
and (s,m) € (0,11 the following k-fractional integral
inequality holds for operators given in (16) and (17):
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2WRIT (w4 k)

(mb — a)*“"

)5
el (EE)
o)) e (o ()
N (ﬁ)uqlf (b)|>q _ M > >Uql’

with u>0 and (1/p) + (1/q) = 1. Proof. By applying Lemma 2 and using the property of
modulus, we get

[kl’yl (aembyy (f p)(y ' (mb)) + m® 1 v (asmbyram) (f Qw)(wi 1 <%>)]

(4m(—1 + 2S+1))1’q

25(1+s)

"7 (u+ k)
(mb — a)*

i F0( () [ A(52) mi()|
s’”Z“U (g <;t>b>\d~1;f<wk>ff(:,,<z-f>+zf>idt]-

Now applying Hoélder’s inequality for integrals, we get

[kll;;’wl ((a+mb)12)* (fOV/)(V/_I (mb))

2T (W) _ . _
Wb_—m[kfﬂ«ww/zy (v b)) s m T e (v (5]

Ay o) | 5 )
(FenCea) ([ (a0 o)) ]

Using strongly (s, m)-convexity of |f'|9, we get
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2WRZIE (u+ k)
(mb - a)“" [

) ()|

<mb—a 1
T4 \(pplk)+1 2

4

1/p ! q / q
) [('f (@) Jltsdt+7m|f23(b)| Jl (2-t)'dt
0 0

v ' 2\|1
MJ t(2 t)dt) q+<rrlLf(ahn)|Jl(2 t)dt+|f( |qJ tdt
0

4

_cm(b-(alm?))’ J'l o t)dt)llq] _mb-a
0

25(1 +s) 6

+m|fl (b)lq(_l + 25+1) _cm(b— a)z)ll‘l +<

AC

17
" asmbyy (° ‘/’)( (mb))+ m IW (@smbyyzmy- (f° "’)< <r?1>]
25
1 1/p |f/ (a)lq
(uplk) +1 2°(s+1)
m|f'(a/m2)'q(—1 + 2s+1)
2°(1+s) (62)

cm (b - (arm?))*\ " Vel f (o))"
25(s+1) 6 16 (yp/k)+1 2°(s+ 1)

am|f O (-1+2) 2cm(b a)2 ”q

4m| f'(aim?)

(—1 +271)

25(1+s)

2°(1 +5s)

+§|s{;(+b)1l:_zcm(b_3(a/m2))) ] 16 ((ﬂp/k)+1) [((If(”(zs(s“))”q))

+|f <b>l<

—1+25t) Y ZCm(b a)’ a
25(1 +5) _2

4 A\ N\ 2em(b - (am?
(o) '““') S

Here we have used Lemma 3. This completes the proof. [

Remark 6. Under the assumption of Theorem 12, the fol-
lowing outcomes are noted.

(i) If s = 1 and m = 1 in (59), then the inequality stated
in [[32], Theorem 13] is obtained.

(ii) If s = 1 and y is the identity function in (53), then
the inequality stated in [[31], Theorem 10] is
obtained.

(iii) If s = 1,k = 1, ¢ = 0, and y is the identity function in
(53), then the inequality stated in [[30], Theorem
2.7] is obtained.

=) o
) l

<4m(—1 +2S+1)>“q

25(1+s)

(iv) If c =0, s = 1, m = 1, and v is the identity function
in (59), then the inequality stated in [[23], Theorem
3.2] is obtained.

W) Ifk=1s=1,m=1, c=0, and y is the identity
function in inequality (59), then the inequality
stated in [[2], Theorem 6] is obtained.

(vi)If k=1,s=1,m=1,¢=0, y=1, and v is the
identity function in inequality (59), then the in-
equality stated in [[37], Theorem 2.4] is obtained.

Corollary 9. Under the assumption of Theorem 12 withc = 0
in (61), the following inequality holds:
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2RI (e + k)

(mb — a)"’*
1 a+mb a+mb
Sl (5]
mb—a 4 Vp ,
T ((yp/k)+1) ['f (a)|<

()

Corollary 10. Under the assumption of Theorem 12 with
q — land p — oo in (59), the following inequality holds:

2907 (u+ k)
—#[k ! (asmbyy (SF° ‘/’)(

(mb - a) ™

e

)) (plh)+1 I/“V

Journal of Mathematics

[kl‘/’ ! ((a+mb)/2)* (f 1;/)(1// (mb))+mwk)ﬂkﬂ ! ((a+mb)/2m)” (f° ‘/’)< <m)]

(63)

4\ 4m (-1 +2:t1)\ "
25(s+1)> +f (b)i( 22(1+5) >

4m (-1 +2°1) 4 \"
( 25(1+5s) ) +(25(s+1)) G

L ((a+mb)/2m)~

sy ()]

(64)

_mb—a4(f' @] + |f’(b)|)+4’”(‘1+25“)(|f'(b)|+|f'(“/m2)'>_4cm(b—a)2

16 2°(s+1)

4. Conclusion

In this article, we studied the Hadamard inequalities and
their estimations for generalized Riemann-Liouville frac-
tional integrals of strongly (s,m)-convex functions. These
inequalities represent the generalizations and refinements of
a number of well-known inequalities stated in
[1, 2, 22, 23, 29-37]. The error estimations of Hadamard
inequalities for differentiable strongly (s,)-convex func-
tions are better as compared to those which are obtained for
convex functions, strongly convex functions, and strongly
m-convex functions.
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This paper establishes the existence and uniqueness of weak solutions for the initial-boundary value problem of anisotropic nonlinear
diffusion partial differential equations related to image processing and analysis. An implicit iterative method combined with a
variational approach has been applied to construct approximate solutions for this problem. Then, under some a priori estimates and a
monotonicity condition, the existence of unique weak solutions for this problem has been proven. This work has been complemented
by a consistent and stable approximation scheme showing its great significance as an image restoration technique.

1. Introduction

In the last three decades, nonlinear diffusion equations have
inspired numerous research studies in various application
ranges. Perona and Malik [1] were the first to introduce such
equation in image processing and analysis in the following
manner:

'(—;—I;—V- [c(IVul)Vu] =0, inQx(0,T],
(c(IVu)Vu,n) =0, ondq x (0,77, (D
L I/l(.x; 0) = Uy (x)x in Q,

where Q is an image domain in R? and c is a positive de-
creasing function defined on R,.

When it comes to processing a digital image, Perona and
Malik chose the above model to preserve meaningful features
such as edges while reducing irrelevant information such as
noise in the homogeneous area. Nevertheless, this model,
known as an isotropic nonlinear diffusion equation, handles

an image feature with the same amount of blurring in all its
directions. For instance, this process cannot successfully
eliminate noises at edges [2]. Accordingly, it might be wise to
consider the orientation of essential features by using an-
isotropic diffusion. Weickert [2] introduced this property by
defining an orientation descriptor using the structure tensor,
which is convenient to identify features such as corners and
T-junctions. Besides, digital images present some structural
difficulties; that is, they are discrete in space and image in-
tensity values. Accordingly, it would be of great interest to
adapt the diffusion to digital images’ structure by considering
vertical, horizontal, and diagonal differential operators. Due
to these reasons, we modeled and developed anisotropic
nonlinear diffusion equations using a novel diffusion tensor.

Various tools can be used to examine the existence of
solutions for nonlinear partial differential equations (PDEs),
such as variational techniques, monotonicity method, fixed-
point theorems, iterative methods, and truncation tech-
niques; for more detailed information, we refer to [3-7] and
the references therein. These PDEs have been motivated by
various applications such as image restoration and recon-
struction (see, for example, [3, 4, 8-11]). Moreover, the
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image processing of the brain allows the localization of
epileptogenic foci for the patient. A noninvasive method has
been examined numerically as an inverse problem in [12].

Under some challenging conditions, the existence and
uniqueness of weak solutions for the Perona and Malik
model have been investigated in the bounded variation space
BV (Q) [3, 13]. In some other functional frameworks, Wang
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and Zhou have thoroughly studied in [4] and proved the
existence and uniqueness of weak solutions in the Orlicz
space LlogL () using a new diffusion function c(s) = ((s +
(s+ Dlog(s+ 1))/ (s(s+1))) for all s>0.

In this paper, we suppose that ) is an open-bounded
domain of R* with Lipschitz boundary 0Q, and T is a
positive number. We denote

(O u=u, =Vu-e,
O u=u, =Vu-e,
: e +e (2)
axlzu ’ uxlz = ’ >
e + e,
—e; +
0, u=u, =Vu M,
| 12 12 I_el + e2|
where (e;,e,) is the canonical basis of R%. We consider the
following anisotropic nonlinear parabolic initial-boundary
value problem:
K
a—b: ~V.[Dg,Vu] =0, inQx(0,T],
. ) 3)
(Dy,Vu,n) =0, onoQ x(0,T],
u(x;0) = uy(x), inQ,

where Dy,,, the diffusion tensor, is a real symmetric positive
definite matrix of R*** defined as follows:

and g: R, — R s a C' positive decreasing function. Then,
we can define ¢: R, — R as a C* function such that

’ , (4)
o Al
6(s) = JO rg(rdr, s3>0, (5)
satistying
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[ $(0)=¢'(0)=0, ¢(s)>0,¢'(s)>0,

*
fors e R},

¢" (s)=>0, s¢" (s) < ¢' (s),

fors e R,,

1 ¢ (s)

0< hms_ms log ()

¢’ (s)

T %og (s)

<00, 0<lim

¢' ()

limSHm—S >0, lim

¢' ()

=0.
§—00 s

(6)

PPk, () + Vi Pak.,, (5) + P

g(s) =

Pr,9k,1 () + Vi i 2(5),

where p and v. are the coeflicients used to define the po-
sition and the velocity vector at a specific point, k; are the
threshold parameters, {P]-,Cd} is the family of the basis
functions composed of polynomials of degree 3 used on the
interval [c,d|[ such that

2
PLy(s) - (s=d)"(2s+d —3c)

Py

To construct an adaptive diffusion tensor, the function g
is approximated numerically by a cubic Hermite spline [14]
that  interpolates  numeric  data  specified  at
0=ky<k, <--- <k, with m e N*:

k() + v Pog i (s), se€ (ki ki [

ief0,1,...,m-1}, (7)

i+1

s € [k, 00]

And we may consider

(d-c)
(8)
(5= - d)*(s—c)
2,cd - (d— C)Z .
9t () = fog (k) + 2

k,, 2s(log(s) + 1) — k,,log(k,,)
k

2 >
N

(9)

K, s(log(s) + 1) — k,, (log(k,,) + 1)

It,2 () = log(k,,) + 2

2
N



From the definition of ¢, we can deduce

3 A
kiki 15 i
Ci + .x i1 ]5]+2
sy jt+2

>

¢(s) =
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s€|kpki [i€{0,1,...,m—1},
(10)

Ay s log(s) + A jlog(s) +C,, s € [k, 00,

where C; and C,, are constants determined by the continuity
of ¢ at each k;. In this case, the values of the coeflicients
Ag,,,; are determined experimentally provided that ¢
satistying the above conditions on [0, k,,,[. Besides, we may
introduce some sufficient conditions on k,, and A, that
guarantee the properties of ¢ on [k,,, col: 'A

[k, >1,
Akw2 >0,

11
Ag 1 <kn Ay o (1)

_klog(k,,)
2

| A, Ay o

=5 (o) o)) + () .

Anisotropic diffusion model (3) allows strong directional
smoothing within the areas where qu1 |, qu2 [, quul, or |”‘x712| is
small and prevents blurring boundaries, contours, or corners
that separate neighboring areas, where one or a combination of
these differential operators has significant value.

Moreover, the matrix Dy, has two eigenvalues A,,_:

)

u

X, u

X2

| (offe]) ol

with 0,,_ are the corresponding eigenvectors. We can then
expand the first equation of (3) into
0
ait‘ =V [1.0,67Vu] + V. [A6.6"Vu].  (13)
Accordingly, it is clear from the expression of A,,_ that
A, >A_>0, which means that the diffusion towards 0, is
privileged over 6. In fact, the difference

Llong"‘ (Q) = <lu: Q— [R|JQ

Next, we define weak solutions for problem (3) on
Qp = Qx (0,T] with T'>0:

Definition 1. A function u: Q; — R is a weak solution for
problem (3) if the following conditions are satisfied:

(i) u € C([0,T]; L*(Q)) N L' (0, T; WH () with
O u € LlogLk» (Q) for i = 1,2.

)) +(o(ls,

n{ul=k

)l ) )

(=) = (g, ) - g () +

(g(u, D - g(|ux712|))2 indicates the isotropic diffusion for

zero value and anisotropic diffusion for positive values.
Henceforth, we will assume that the initial value satisfies

u, € L*(Q), (14)

and we will introduce the following Orlicz space:

}Iullog(lul)dx<oo}. (15)

m

(ii) For any ¢ € C' (Qy) with ¢(.,T) = 0, we have

T
—J uy (x)p (x,0)dx + J J [-ug, + Dy, Vu - Vo]dxdt = 0.
Q 0JQ
(16)
Now, we state our main theorem.

Theorem 1. Under assumption (14), there exists a unique
weak solution for initial-boundary value problem (3).
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Inspired by [4], this paper will investigate the existence
and uniqueness of weak solutions for problem (3) according
to the following steps:

(i) First, we approximate nonlinear evolution problem
(3) by nonlinear elliptic problems using an implicit
iterative method (discretization in time-variable
only), and then we prove the existence of a unique
weak solution for each elliptic problem adopting a
variational approach. These solutions constitute
approximate solutions for problem (3).

(ii) Next, we show the uniqueness of solutions for
initial-boundary value problem (3) using the
monotonicity of the vector field
DyV.: u € R* — Dy, Vu € R2

(iii) Finally, passing to limits in some a priori energy
estimates and using the monotonicity condition
(17), we demonstrate the existence of weak solutions
for problem (3).

2. Preliminaries

In this section, we state some useful lemmas that will be used
later in the proofs.

Lemma 1. For all a>0 and b>1, we have ab<a exp
(a) + b log(b).

Proof. If b< exp(a), then ab<a exp(a)<a exp(a)+b
log (b).

If exp(a)<b, then a< log(b), which means
ab < b log(b) <a exp(a) + b log(b). O

Lemma 2. Suppose ¢: R, — R, is a C* convex function.
Then, for all £, &, € R* we have

(Dflfl - foogo) (& &) =0 (17)

Proof. Foreacht € [0,1], we puté, = (1 -1t)&, + t&. Then,
we have

D£151 - nggo = J; d[(ft : el)g(I& : e1|)e1] + J: d[(ft : ez)g(lft : ez|)e2]

. . (18)
+ .[o d[(‘ft ) e12)9(|£t ’ elZ')elz] + Jo d[(ft : e—12)9(|£r : e—lzl)e—12]~
Since ¢" (s) = g(s) + sg’ (s), then we obtain
1 1
DEI£1 - DEOEO = Jo [gb"(lft ’ ell) (('Sl - 50) ’ el)el]dt + JO [‘pﬁ(lft : e2|) ((51 - Eo) : ez)ez]dt
(19)

+ J; [‘/’”(Kr : elzl) (&1 - %) ‘elz)eu]dt + J:) [ﬁb”(lft : e—12|) ((§1-8p)-e_1) e—12]dt~

We conclude then

(Dflfl - D&,Eo) (6 -&) = J;[¢/l(|ft . e1|)((£1 -&)- el)z]dt+ J;[‘/’”(kt ) e2|)((fl &) ez)z]dt
" J;[¢,l(|£f'elzl)((fl _50)'e12)2]dt (20)
+ J;[‘N('E: . eqzl)((fl - fo) ce_ lz)z]dtZO,

Suppose also
limlﬁoosupij

which completes the proof. |

|u,-|dx =0. (22)
Lemma 3. Uniform integrability and weak convergence [15]. anlu| =1}
Assume Q € R? is bounded, and let {u;};°, be a sequence

(o]
Then, there exist a subsequence {ui} and i € L' (Q)
of functions in L' (Q) satisfying )

such that =1

u; — i, weaklyin L'(Q). (23)

supy[Jus] . (@) <0 (21) i



Lemma 4. Assume Q ¢ R? is bounded, and let {u,};", be a
sequence of functions in L' (Q) such that

. X 1 . )
Supljﬂn{lui|>km}|ul| 0g(|”1|)dx<oo (24)

[e¢]
Then, there exist a subsequence {uij} ~and e L'(Q)
such that =t
uijAﬁ, weakly in L! (Q), (25)

with @i € LlogL*» (Q).

Proof. Given M >0, we may find an [>k,, such that
Ms <s log(s) for all s>1. Consequently,
J |ui|dx = j |u,»|dx + J lu,-|dx
Q on{|u| <k, } onf|u| 2k}
(26)

<l + JQ R G

which implies that
supiJ |u;|dx < o0 (27)
Q

On the other hand, there exists a positive constant C
such that

Since f' (Iul)x{k <N} € L (Q) and passing to limits
as j — 00, we get

J f(Ja])dx <lim mf]HO"J'Qn{

>km}f<'”ij|>dx<oo'

Ui,
(33)
Then, passing to limits as N — o0, we deduce
tillog (|71])dx < co.
J o o8 1D (34

It follows then # € LlogL*"(Q). This finishes the
proof. O

3. Approximate Solutions

In this section, we will discretize the time-variable interval
[0, T] to get approximate solutions for problem (3). We
denote h = (T/N) with N € N, and we designate by u,, an
approximate solution at time nh. We define gradually from
n=12,...,N the following elliptic problems:

ol J ovo]
o

—

Journal of Mathematics

il
u;|log( |u;|)dx
Jongoron g o)
1
MJ. ], |ui|log<|ui|)dx (28)
C
<—=g5
M
which is true for all i and arbitrary € > 0. It follows then that
li ; ;|dx = 0.
lmlﬁmsup’J'Qmﬂqul}'uI' X (29)

[ee]
Then, from Lemma 3, there exist a subsequence {u }
of {;}7°, and a function % € L' (Q) such that =

u; =i, weakly in L' (Q). (30)
It remains to prove that % € L log L% (Q).
We know that the function f(s) =slog(s) for s>1 is
increasing and convex, and then the function f (|s]) is also
convex for all s> 1. Therefore, we obtain

fay< f{fug|) + f ap(a-u, ) (31)

Integrating the above inequality over Qy N {Iuijl > km}
with Qy = Qn{k,, <[i] <N}, we have
£ (-, e
u;, 2km} !
J
(32)
! ~ ~
(1D, < ey - 1, )dx.
o] s
U, — U, )
"Tl -V [Dy, Vu,| =0, inQ,
(35)
(Dy,, Vu,,n) =0, on Q.

To solve these equations step by step, we only need to
prove the existence and uniqueness of weak solutions of the
following elliptic problems:

U — u

inQ,
h mn

~ V. [Dy,Vu] =0,
(36)

(Dy,Vu,n) =0, ondQ),

where h>0 and u, € L?(Q).
Definition 2. A function u € L*(Q)NnW"(Q) with

o, ue€ Llong (Q) for i = 1,2 is called a weak solution for
problem (36); if for any ¢ € C' (Q), we have

J. v 0godx+J Dy, Vu - Vodx = 0. (37)
o h Q

And when ¢ is a constant function, we obtain
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J udx = J uydx. (38) min{E (u)|u € U}, (39)
Q Q
where
In order to prove the existence and uniqueness of weak
solutions for problem (36), we consider the variational
problem
U ={ue (@0 W (@), u e LogL™ () withi = 1,2,] udx = j odx}, (40)
! Q Q
and when u € U, the functional E is defined as
1 2
E(u) = J [(b('ux |> + ¢( u, ) + ¢<|ux ) + ¢<|ux )] +—J (1 —uy) dx. (41)
Q 1 2 12 -12 2h Q
2 _ 2
It is easy to prove that (36) is the Euler-Lagrange Jﬂuqu - Jg(uq ~ o +u0) dx
equations of the functional E [16]. )
SZJ (uq—uo) +ZJ uédx (44)
Theorem 2. Problem (36) has a unique weak solution. @ o
<4h(E(u,) + E(0))
Proof. Since <4h(2E(0) + 1).
. 1 2
0< inf E(u) <E(0) = h Jguodx, (42) It follows then
then we can construct a minimizing sequence {uq}:zl inU Supq””q 12y <% (45)

such that E(uq) <E(0)+1 and

lim E(uq) = L%E(”)' (43)  that

q—

Besides,

JQﬁ“aX,.uq' >km}'ax,-”q'log<|axiuq|>dx < CJQ“{'%M >km}¢<'axiuq'>dx

On the other hand, given ¢, > 0, we may find [ = k,,, such

(46)
<CE(u,) <C(E(0) +1)
Oy Ug —0y Uy, weaklyinLl(Q),
withC = (g, + (1/Akm,2)) >0andi = 1, 2. It follows then that o ' (49)
fori=1,2, 9, u, € LlogL" (Q).
suquﬂﬂ{lax,uql 2km}|axiuq|log<'E)x[qudx < 00. (47) Therefore, we have
J u,;dx = lim 4_)00J u, dx = J uydx,
Therefore, thanks to Lemma 4 and the weak compactness Q ] Q ¥ Q (50)
(o)
2 0 2
of L* (Q)), we can find a subsequence {qu}jd of {”q}q=1 and J’Q (“1 B uo)zdx < hminfj_mJ'Q<qu B u0> dx,

a function u, € L*(Q)NnW! (Q) such that

and fori=1,2,

and following the reasoning in the proof of Lemma 4, it is
—u weakly in L* (Q) (48)

L Y J easy to show that for any a € {x,x,,x,,,x_,} and for a
fixed € > 0, there exists [ > k,, such that
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aaqu'log< aa”qudx’ (51)

JQH{|Bau1| >1)

Ny 19

I T
J'Qﬂ{|aau1| 2l}(/>(|auul |)dx < (e + Akm,2)<£ + Km’z)hm mfj%"ojm{

Similarly, since ¢ is increasing and convex in [0, /], then
we can prove that

an{|auu1| <1}

Therefore, we obtain from (52) and (53) that

JQ¢(|aau1|)dx B Jm{

|Bau1| <l

< (s + Akm,2)<s +

Thus, by letting ¢ — 0, we get

JQ¢(|aau1 |)dx <lim infj_mjagb<

But | Jdx.  (59)

for any a € {x;,x,, X1, x_1,}. It follows then that
E(u,) <liminf, o, B(u, ) = inf B, (56)

which signifies that u; € U is a minimizer of the energy
functional E (u), i.e.,
E(u,) = min,E (). (57)

Furthermore, for all ¢ € C! (Q) and t € R, we have u; +

t(¢ - 9q) € U with ¢ = (1/|Q]) [ ,edx. Then, p(0) <p(t)
where

p(t)=E(u; +t(¢ - 9q)). (58)

Hence, we have p' (0) = 0, which means

J B0 (g - gg ) + J Dy, Vi, - Vodx = 0. (59)
a h Q

0,14, |log(|(')au1 |)dx <lim infj—mL) {

¢(|aa”1 |)dx <liminf;

y

aqu

¢< aau ) >dx. (52)
Aty 21} @
]—>00J00{ Buqu <l}¢( Baqu|)dx. (53)
3,u,|)d I 3.u,)d
DS ] o)
(54)
Y Viim inf a.u, |)d
A imin jﬂmjg(p( aqu|> X.
Because of (50), we get
J'Q% odx + JQDWIV”l -Vedx = 0. (60)

We conclude then that u, is a weak solution for problem
(36).

Now, assume that there is another weak solution # of
(36). Then, for every ¢ € C' (Q), we have

Lzu _h“o edx + JQDV;VQ -Vodx =0, (61)

which leads to

Jﬂu ‘h“1 pdx + JQ [Dv;Vﬁ - DWIVul] -Vodx = 0.
(62)

Then, if we choose ¢ = 7 — u; as a test function in (62),
we get

~ 2
L}@ dx + JQ [DyVai - Dy, Vu,| - (V& - Vuu, )dx = 0. (63)

Thanks to Lemma 2, we deduce that

—~ 2
I @dx o (64)
Q
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Therefore, ti = u; a.e. in Q.

In conclusion, we have shown that there exists a unique
weak solution u, €U satistying (35) for every
ne{l,2,...,N}. Consequently, we define an approximate
solution u;, for problem (3) as

[ 1y (x), t=0,
u(x),  te(0h]
P RN A, , .
WOEOSY L  teGe g, O
L UN (x)) te ((N - l)h) T]:
for every h = (T/N). O

4. Existence and Uniqueness of Weak Solutions

Proof. of Theorem 1. In the beginning, we establish the
uniqueness of solutions for problem (3). For this purpose, we
suppose there exist two weak solutions u and v for problem
(3). Then, we obtain the following:

-
(”at Y V. [Dg,Vu-Dg, 4] =0, inQy,

1 {Dy,Vu - Dy, Vv,n) =0, onoQ x (0,77,

[ (u-v)(x;0) =0, inQ.

(66)

By multiplying the first equation of the above problem by
(u —v) and integrating over Q and [0, t], we get

1 t
; jQ (= v (£)dx + jo JQ [Dy, Vit - Dy, V] - V (u - v)dxdr = 0, (67)

for every t € (0,T]. Since the second term of the above
equation is nonnegative (thanks to Lemma 2), it follows then
u=vae. in Q.

Let us now find our weak solution for problem (3). We
intend to send 4 to zero and show that a subsequence of our
solutions u;, of the approximate problems (35) converges to
a weak solution for problem (3). To this end, we need to find
some a priori estimates.

It follows from (35) that for every ¢ € C'(Q),

J Un =Wt o + J Dy, Vi, - Vodx = 0. (68)
a h o

Then, by taking u,, as a test function in (68) and using
U,y < (2 +u_))/2), we get

1 1
= J uﬁdx + hJ Dy, Vu, - Vu,dx<—- J ufﬂdx. (69)
2Ja o 2])a

For each t € (0,T], we can find j € {1,..., N} such that
t € ((j— 1)h, jh]. Then, by adding all the inequalities (69)
fromn=1to n=j, we get

T

SuPOgthjQUi (x,t)dx + Jo

Recalling that 0 < ¢ (s) < s¢' (s) for all s >0, then we can
derive the following:

1 2 J 1 2
5 J-Qujdx + h; JQDW"V”H - Vu,dx SE JQude. (70)

Then, by definition of u;,, we obtain for t € ((j — 1)h, jh]
that

1 jh 1
—J ufl (x,t)dx + J J Dy, Vu,, - VuhdxdTS—J uédx.
2)ao 0 Jao T 2Ja

(71)

Since Dy, is a symmetric positive definite matrix, we
have also

1 t 1
- j ufl (x,t)dx + J J- Dy, Vuy, - Vuhdxdrst' ugdx.
2Ja 0Ja 2)a

(72)

Therefore, after taking the supremum over [0,7], we
deduce that

J Dy, Vuy, - Vu,dxdr < ZJ uldx. (73)
Q

Q

Dy, Vi, - Vi, = |Vay, - e1|¢'(|Vuh . ell) +|Vu, ~e2|¢'(|Vuh ~e2|)
+|Vu, -e12|¢'(|Vuh : e12|) +|Vg, - e,12|¢'(|Vuh : e,12|) (74)
2</>(|Vuh : e1|) + ¢(|Vuh : e2|) + ¢(|Vuh : e12|) + ¢(|Vuh : e,12|).
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Besides, as in (46), for |ax1uh|, IBXZuhI > k,,, we may find a
positive constant C such that

|ax1uh|log<'axluh'> +|ax2uh|log(‘ax2uh'> SC(¢(|Vuh : e1|) + ¢(|Vuh : e2|))

Thus, we conclude

suPOStSTJQui (x,t)dx < 0o,

T
J JQn“b Y >k |a uh|log<‘a uh|>dxd‘r<oo, (76)

T
| JO JQ”{|axzuh| ka}|axz”h|log<‘axzuhDdxdT < 00.

By Lemma 4, we can find a subsequence of {u,} (for
simplicity, we also denote it by u;,) such that [17]

weakly_ * in LOO(O, T;L? (Q)),

A

u,—u,
1 L1 (77)
u,—u, weaklyinL (0, T,W> (Q)),

with

supOSthJQuz (x,t)dx < oo,
T
) J Jm“a u>k |a u|log<|a u|)dxd‘r<oo, (78)

oo

So, it remains to prove that u is just a weak solution for
problem (3). Let us now denote &;, = DW Vu,,. We will show
that &, is bounded in [L?(Q)]?, so we may find a

2 km} |axzu|log( |8x2u| )dxdr < 00.

|€x] <4M log('axluh| +'ax2uh|>,
|5h|z < (4M)* (1+ ezlog(z))<|axluh|log<.axluhD +|ax2uh'log< »

lfﬂexp(%) <4M(1+ ezlog(Z))<|axluh|log(|axluh‘> +|ax2uh|log< .

Then, {£,} is bounded in [L? (Qg)]% which means that
we can find a subsequence of {&,} (denote it also by {¢,}) and
a function & € [L?(Q;)]* such that

&,—&  weaklyin [L2 (QT)]Z. (82)

Since s—s exp (s) (s >0) is increasing and convex, then
as in the proof of Lemma 4, we deduce that

Journal of Mathematics

(75)
< CDvuhvuh . Vuh.

subsequence of &, that converges weakly in [L (QT)]2 toa
particular vector-valued function. Then, we will prove that
this vector-valued function is equal almost everywhere to
Dy, Vu in Q; through monotonicity condition (17).

From the expression of Dy, , we can derive the

following:
u
¢, ( |ax2uh'>e2
|

0
|£h| = uh| ('axluhoel + axz—h
<|ax 12”h'>e 12

' X
0, uy 0, uy
Lt <|ax12uh|>e12 + _'a X1

‘axlzuh' -12 h'
|ax2uh|>.

X2

<4¢/(p.
(79)
Given ¢,¢&, >0, we may find [, =1, = k,, such that
¢' (s)<M log(s),

(80)
s<es log(s),

forall s>k, with M =
two cases:
(@) If |0 uy| + 10, uy| <k, then 1,17 < (49" (K,))%.
(ii) If Iaxluhl + |ax2uh| >k, then

(& + Ay ). Thus, we can distinguish

) 1)

)
fo o
liminf,__,, JZ J'Qn {

x| ="m

5 l)
00,0, 00| 2K }|5h|exp( dxdt < oo.

Then, by using Lemma 1, we get
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T T
J J £ Vuldxdt<J J &IVl dxedt
0 0 Q
T
j J | |a u+ |>dxdt
0 Q
T
skmj J 1€l dxdr
0 Qn < <km}

(84)
Iflexp( i )d dt

+J§Jm ok}

+4M(1+ eZ)UOT Jm{la ok |a u|log<|a u')dxdt

o U +|E),Czu

+JT jmﬂa o |a u|log<'a u')dxdt:|<oo

1 (x,mnh) — @ (x, (n+1)h)
It follows then & - Vu € L' (Q;). Next, we will show that - ﬁj Uy (x)g (x, 0)dx + Z jﬂun(x) ¢ (Ph dx
& =Dy, Vu ae. in Q. "0
For each ¢ € C'(Qy) with ¢(.,T) = 0, we take ¢ (x,nh) N
as a test function in (35): + Z JQDVunVun - Vo (x,nh)dx = 0.
n=1
J M(p(x, nh)dx + j Dy, Vu, - Vo (x,nh)dx = 0, (86)
Q Q "
(85) From the definition of uj, (65), we have

withn € {1,2,..., N}. By summing n from 1 to N, we obtain

N-1 nh) — , Dh N-1 «(n+1)h Jt
Z Joun(x)q’(xn )—o(x, (n+1) )dx=—z j h jﬂuh(%t)%(x )dxdt

- h = h
n=0 0 (87)
1 T
- J j 1, (%, ), (x, t)dxdt
Therefore,
T T
- J uy (%)@ (x,0)dx — J J uy, (x, )@, (x,t)dxdt + J J Dy, Vuy, - Vodxdt
Q 0Ja 0Ja (88)

N nh
£y j J Dy, Vi, - [V (x, k) — Vo (x, B)]dxdt = 0.
- -Dh J Q "

Letting h tend to zero, we get

Jﬂuo (x)p (x,0)dx + JOT Jpr[dxdt = JOT Jﬂf- Vodxdt. (89)
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On the other hand, we let v € L' (Q;) with

Jo J-Qﬂ{laxiv| 2km}

for i = 1,2. We sum up inequalities (69):

1 T 1
—J u; (T)dx + J J Dy, Vuy, - Vu,dxdt S—J ugdx.
2Ja 0Ja " 2

o
(91)

Y

log( |8x[v| )dxdt <00, (90)

T

% jguﬁ (T)dx + j

0

0

Letting h — 0 and noting that

J W (T)dxgliminfhﬁOJ' 2(Tydx,  (94)
Q Q

J Dy, Vu,, - Vvdxdt + J
Q

T 1
- J J Dy, Vv - Vvdxdt <— J
Q 2

Journal of Mathematics

We have from Lemma 2 that

T
J J (Dy,, Vit = Dy, Vv) - (Vuy, — Vv)dxdt 0. (92)
0JQ

Then, we obtain

T

J Dy, Vv - Vu,dxdt
oJa
(93)

2
ugdx.

we obtain

T

T
lj u? (T)dx + J J & Vvdxdt + J J Dy, Vv - Vudxdt
2Ja 0oJa 0Ja

0

By using ¢ = u in (89), we get
1 2 1 2 r

—j u” (T)dx + —J uydx = J J. & . Vudxdt. (96)
2)a 2)a 0Ja

Combining (95) with (96), we have

JT J (£~ Dy, Vv) - (Vv - Vu)dxdt < — J u* (T)dx.
Q Q

0
(97)
Now, setting v = u + Aw for any A > 0, w € W? (Qy), we

derive from the above inequality that

JT J (f - ])V(u+)u,u)V (u+ /lw)) - Vwdxdt <0. (98)
0JQ

By letting A — 0 and using Lebesgue’s dominated
convergence theorem, we obtain

JT I (£ -Dy,Vu) - ydxdt =0, (99)
0Ja

for every y € [L? (Q)]%. Tt follows then

& =Dy, Vu, aeinQy. (100)

(95)

T 1
- J J Dy, Vv - Vvdxdt SEJ uédx.
Q

Q

Therefore, we conclude from (89) that
T

—j uy (x)¢ (x,0)dx + J J [-ug, + Dy, Vu - Vo]dxdt = 0,
Q Q

0
(101)

for any ¢ € C'(Qy) with ¢(.,,T) = 0. Finally, we need to
prove that u € C([0,T], L*(Q)). If we choose ¢ € CX (Qy)
in (89), we obtain

T T
J J ug,dxdt = J J. & - Vodxdt.
0Ja 0Ja

Since Ee [L2(Qp)% we conclude that
u, € L' (0, T; H 1 (Q)) where H™!(Q) is the dual space of
W(l)’2 (). Since

(102)

t
u=\| wudr+u,,
Io ‘ 0 (103)

uy € L*(Q) > H '(Q).

It follows then that u € C(0,T; H™'(Q)). Besides, for
every h>0,let v, (x,t) = u(x,t + h) be the weak solution for
problem (3) satisfying v, (x;0) = u(x, h). Then, wy, (x,t) =
u(x,t+h) —u(x,t) satisfies
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( awh .
= V- [Dy,, Vv), = Dy, Vu| =0, inQx(0,T],
) (Dy,, Vv, = Dy, Vu,n) = 0, onoQ x (0,717,
wy, (x;0) = u(x, h) — uy (x), in Q.
(104)

t,

1 0
—J w;, (x,ty)dx + J
2J)a 0

Because of Lemma 2, we deduce

JQ|u(x, to +h) —u(x ) dx < J0|u(x, h) - g (%) dx.

Now, in order to prove that u € C([0,T], L*(Q)), we
need to prove

lim suph_>0+J |u(x, h) —u, (x)l2dx =0. (107)
Q
We suppose that (107) is not true. Then, there exist a
positive number § and a sequence {h;} with h; — 0 as
i — 00 such that

lim, O+J 4 (20, ) — 1ty ()P 2 6. (108)
! Q
From estimate (72), we have
J jue ) dxs | Jup G (109)
o Q
Then, from (108), we get
1)
liminf, 0+<J |0 (x)|2dx - J ug (x)u (x, hi)dx> >
: o o 2
(110)

From (109), we conclude that {u(x,h;)} is a bounded
sequence in L*(Q). Then, we may find a subsequence
(denote it also by {u (x, h;)}) such that there exists a function
iy € L*(Q) such that

1
J (DW Vv, - DVMVu) - (Vv = Vu)dxdt g—J w;, (x,0)dx.
Q " 2J)a

13

For each t, € [0,T], we may choose wy, as a test function
in the first equation for problem (104) over [0, ¢,]:

(105)
(106)
u(x, h;) =iy, weaklyin L (Q). (111)

Since u € C(0,T; H™'(Q)), it follows that
u(x, h)—u,, weaklyin H™ ' (Q). (112)
Therefore, we must have #,=u, and since

u € C(0,T; H ' (Q)), it follows that

u(x, h;)—uy,  weaklyin L* (Q), (113)

which is contradictory with (110). Therefore, we conclude
that (107) is true and u € C ([0, T], L?(2)). This completes
the proof of Theorem 1. O

5. Numerical Implementation and
Experimental Results

5.1. Consistent and Stable Symmetric Finite Difference
Approximation. In this section, we provide a consistent and
stable discretization scheme using symmetric finite differ-
ence approximation: at time t, = nd,, n>0, and the mesh
points x; =id, y; = j6(0<i<N+1land0<j<M +1), and
we denote by u]; the finite difference approximation of
u(x;, y;;t,). The time-space derivatives are discretized in the
following manner:
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”(xn(uz):)/j; tn) - ”(xiﬂ/z): Vi fn)

Journal of Mathematics

2
u, (% yjit,) = 5 +0(8),
“(xi) Yi12)} tn) - “(xi’ Yi(12)} tn) 2
INERTSE ; co(s),
”(’%(1/2)’ Yi+(1/2)5 tn) - u(xi—(I/Z)’ Yi(12)} tn) 2
th, (% i ta) = NGRS +0(%), (114)
“(xif(m)’ Yi+(1/2)5 tn) - “(xn(uz)’ Yid12)) tn) 2
ux—lz(xi’yj; t”) = \/58 + @(6 )’
”(xv)’j; tn+1) - “(xis)/j§ tn)
ut(xi,yj; tn) = 5 +0(8,).
t
By assume § = 1 and denote
g, = g<|ANuZ,- )
g, = g<|AEu?,j )
( n n
ANu:l] Uil — Ui
n _ At
s, = g(' sUij )) " " "
Agu; = Uy~ Ui
n _.n n
g, = of[Bwis]). Mgy =y -
) Awthyj = Uiy =ty
< " ANEui,j 5 Wlth 9 (]-15)
= > n _ . n n
INE, g V2 ANgMij = Uipyj — Ui
,J i+1,j-1 i,j°
g = g( Aset )
SE,; > _
i V2 ASW”Z]‘ = ”?71,1'71 - qu’
Acotd” Anwtly; = Uy j — U ).
" swili g J J J
Isw,, =9 )
n B ANW”Z]‘
Inw,;, =9 V2 >
Then, we may approximate problem (3) using the above
scheme to obtain the following nonlinear diffusion filter:
ANgU + Aggu + Agwt + At "
uz-}-l _ uzj+6t gNANU+9EAE”+gsAs“+gwAw”+gNE NEY + JsEDsE ngw sw¥ + InwONw X (116)

i,j
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FIGURE 1: Brain MRI scans: Patient30: sagittal T1 of a 30-year-old female patient [20]. Patient50: coronal T2 of a 50-year-old female patient
[21]. Patient55: axial T2 of a 55-year-old patient [22]. (a) Patient30, (b) Patient50, and (c) Patient55.

for 1<i<N, 1<j<1<i<M, and n>0, with the initial
condition ugj and the discrete Neumann boundary
condition:

n o _ .n n _.n .
Ugj = Uy jlinyy,j = Uy TOr1<j<M,

n o_ . n n _.n .
Ujg = U Uy = Uiy fOr 1<i<N,
(117)

n o _ . n n _.n
Upo = U UN+10 = UND>

n _.n n _.n
UoM+1 = U1 v UN+ 1L M+1 — UNM-

A unique sequence (1), is produced when using filter
(116) on a particular initial image u° [2]. Besides, due to the
continuity of the function g, the sequence u" depends
continuously on u for every finite n. Furthermore, equation
(116) satisfies the following maximum-minimum principle,
which describes a stability condition for the discrete scheme.

Theorem 3. Discrete extremum principle [1, 2].
For an iteration step satisfying

1
0<8 <——

6g(0) (18)

scheme (116) satisfies

9(s) = { PoP 1ok (8) + VP (8) + PPy o (8) + VicPo ko (5),

Pk (8) + ViGr, (),

(ii) The Wang and Zhou diffusion function (WZ) [4]:
1 log(s+1)

= 4-° 121
9() s+1 " s ' (121)

Additionally, we will consider real test images Figure 1
and evaluate our model’s performance on these images,
which will be corrupted with different levels of Gaussian
white noises with zero mean and variance ¢?.

Table 1 shows the quantitative results on real images,

corrupted with various Gaussian noises, filtered by discrete

. 0 n 0
min; ju; ; S U; j < Max; i, ;, (119)

forall 1<i<N, 1<j<M, and n e N,

5.2. Experimental Results. This section will show the per-
formance of proposed diffusion filter (116) in the image
denoising process, under the boundary and initial condi-
tions (117) while respecting the requirements concerning ¢
(Section 1), and §, (118). We will use the Peak Signal-to-
Noise Ratio (PSNR that is a positive value) [18] and the
Structural SIMilarity Index (SSIM that lies in (0, 1)) [19] to
evaluate the quality of the restored images. The best results
for the denoising process are equivalent to the higher value
of these metrics.

For comparative purposes, we will examine the proposed
diffusion function with another one that has the same
properties using the same filter (116). Therefore, we will use
the following diffusion functions:

(i) The proposed diffusion function (m =1 for
instance):

se [0,k],

s€ [k,ool. (120)

model (116) using proposed diffusion function (120) and the
one proposed by WZ (121). These results are obtained using
the optimal parameters determined experimentally, as in
Table 2 for each diffusion function.

It can be seen from Table 1 and Figure 2 that the pro-
posed model shows remarkable results against the WZ
model. From a visual comparison, Figure 2 shows that the
restored images using the proposed diffusion function have
considerable noise removal and preserve the image essential
features better than the restored images by the WZ diffusion
function. Besides, compared with the WZ diffusion function,
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TasLE 1: PSNR and SSIM values of the images in Figure 1 affected by different values of Gaussian noise o2 and their corresponding iteration
number for both functions.

Noisy WZ [4] Proposed

o’ PSNR SSIM PSNR SSIM Iter PSNR SSIM Iter

0.005 23.4311 0.3426 33.3757 0.9114 30 33.8333 0.9372 13

0.010 20.6839 0.2432 31.3367 0.8766 41 31.5737 0.9145 21

Patient30 0.015 19.1190 0.1960 30.1565 0.8521 48 30.2008 0.8980 24
0.020 17.9763 0.1660 29.0905 0.8298 56 29.0007 0.8825 26

0.100 12.0756 0.0596 22.6821 0.6535 117 21.8953 0.7389 56

0.005 23.6686 0.4424 31.1185 0.8708 24 31.2934 0.8769 11

0.010 20.7561 0.3278 29.0893 0.8186 35 29.1527 0.8258 19

Patient50 0.015 19.1313 0.2707 27.9137 0.7820 41 27.8981 0.7920 26
0.020 17.9838 0.2334 27.0011 0.7508 47 26.9714 0.7625 27

0.100 11.9985 0.0911 21.4469 0.5585 93 20.9674 0.5932 62

0.005 24.0179 0.3867 31.3190 0.9021 26 31.4668 0.9258 19

0.010 21.2303 0.2892 29.1310 0.8600 36 29.0997 0.8887 28

Patient55 0.015 19.5990 0.2403 27.6640 0.8221 44 27.5635 0.8561 35
0.020 18.4292 0.2096 26.7717 0.7938 49 26.5468 0.8305 42

0.100 12.2234 0.0882 20.6948 0.5642 98 20.1755 0.6237 99

TaBLE 2: The best possible parameters for different diffusion functions.

WZ [4] Proposed
o o, S, k Po Pk Vo Vi
0.005 0.08331 0.14701 4.61411 1.13191 0.66151 —0.00011 —0.10441
0.010 0.08331 0.14991 5.00191 1.10891 0.45921 —-0.00011 —-0.04351
Patient30 0.015 0.08331 0.15051 5.20221 1.10601 0.45671 —0.00021 —-0.03851
0.020 0.08331 0.14701 5.86411 1.13281 0.46991 —0.00021 —-0.03961
0.100 0.08331 0.15001 5.08081 1.10111 0.45791 —0.00091 —-0.03951
0.005 0.08331 0.14941 3.18011 1.09241 0.56271 -0.00021 -0.01151
0.010 0.08321 0.16231 1.89931 1.00171 0.56991 ~0.00001 ~0.00201
Patient50 0.015 0.08331 0.16591 2.06951 0.99011 0.56981 —-0.00011 —-0.11471
0.020 0.08331 0.16101 1.79891 1.00001 0.56981 ~0.00011 -0.01051
0.100 0.08331 0.15301 3.87001 0.98701 0.55511 ~0.00031 —0.13411
0.005 0.08321 0.14681 3.50081 1.12891 0.58971 —0.00021 —0.16571
0.010 0.08331 0.14701 3.31431 1.12621 0.58281 —-0.00131 —-0.17311
Patient55 0.015 0.08331 0.15141 3.09991 1.09021 0.58881 —0.01401 —0.18991
0.020 0.08331 0.14881 3.39691 1.08721 0.53891 —0.00011 —0.15801
0.100 0.08331 0.14991 2.70091 1.08901 0.56861 —0.00021 —0.20951

(d) (e)

FiGgure 2: Continued.
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FIGURE 2: Visual comparison on different real images corrupted by Gaussian noise with 6> = 0.1 and restored images using both functions.
(a) Original-Patient30. (b) Original-Patient50. (c) Original-Patient55. (d) Noisy-Patient30. (e) Noisy-Patient50. (f) Noisy-Patient50. (g)
WZ-Patient30. (h) WZ-Patient50. (i) WZ-Patient55. (j) Proposed-Patient30. (k) Proposed-Patient50. (1) Proposed-Patient55.

the results from Table 1 prove that the suggested approach
has higher values in SSIM, whereas the WZ model shows
significant results in PSNR while ¢*-value increases.

6. Conclusion

This paper principally investigates the class of anisotropic
diffusion partial differential equations related to image
processing and analysis. The existence and uniqueness of
weak solutions for this problem have been proven under
sufficient conditions satisfied by ¢. A consistent and stable
numerical approximation has been applied, and a discrete
nonlinear filter has been tested and revealed its efficiency in
the image restoration field.
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The main aim of this work is to introduce the new concept of A — (Y, y)-contraction self-mappings and prove the existence of
x-fixed points for such mappings in metric spaces. Our results generalize and improve some results in existing literature.
Moreover, some fixed point results in partial metric spaces can be derived from our y-fixed points results. Finally, the existence of
solutions of nonlinear integral equations is investigated via the theoretical results in this work.

1. Introduction and Preliminaries

One of the most famous metrical fixed point theorem is the
Banach contraction principle (BCP) which is the classical
tool for solving several nonlinear problems. Based on the
noncomplexity and the usefulness of this principle, many
mathematicians have improved, extended, and generalized it
into several directions. For instance, in [1], on the basis of the
probabilistic metric space and the S-metric space, Hu and
Gu introduced the concept of the probabilistic metric space,
which is called the Menger probabilistic S-metric space. They
also proved some fixed point theorems in the framework of
Menger probabilistic S-metric spaces. In [2], using the
notion of the cyclic representation of a nonempty set with
respect to a pair of mappings, Mohanta and Biswas obtained
coincidence points and common fixed points of a pair of
self-mappings satisfying a type of contraction condition
involving comparison functions and (w)-comparison
functions in partial metric spaces.

Many researchers attempted to introduce the new idea
on generalizations of a metric space and then they inves-
tigated fixed point results in new spaces.

In 1994, partial metric spaces were introduced initially
by Matthews [3]. One of the important points in this space is
the possibility of being nonzero the self-distance.

Definition 1 (see [3]). Let IT be a nonempty set. A mapping
W 11 xI1 — [0, 00) is called a partial metric if and only if
PV V(X X) =W (YY) =W (L, )X =Y,
P2) W (X, ) <W (X, %),
P3) V(X Y) =W (¥ L),
P W (X U< (X, E)V+W (F,Y)-W (Z,Z),
for any &, %, Z € I1. Moreover, the pair (I, 7") will be a
partial metric space.

Note that any metric space is a partial metric space but
the reverse is not true, in general. An example of a partial
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metric space is the pair ([0,00),#"), where W (L, ¥) =
max{Z, ¥} for all X, % € [0,00). We see that 7' (X, X)
may not to be zero for some " € II. For further examples of
a partial metric, we refer to [3].

Definition 2 (see [3]). Let (II, 7#") be a partial metric space.

(1) {Z,}<ITis said to be converging to a point 2" € IT if
and only if lim, |, (L, X) =W (L, X).

(2) {&,}<I is called a Cauchy sequence if and only if
lim,,, % (X,,Z,) exists and is finite.

(3) (IL7') is said to be complete if and only if every
Cauchy sequence {2, }<IT converges to some point

L ell such that
lim,, . #(X,%,)=1lmn, W (L,X)=
W (X, ).

Remark 1 (see [3]). If (II, 7’) is a partial metric space, then
the pair (I, dgy) is a metric space where
doy: II x IT — [0, 00) is defined by
dy (X, Y) =2 (L, Y)-W (X, X)-W (¥, ¥) for all
X, Y ell

Lemma 1 (see [3]). Let (I, #') be a partial metric space.
(i) {Z,} is Cauchy in (IL,W) if and only if {Z,} is
Cauchy in (II,ds,).

(ii) The partial metric space (II, W) is complete if and
only if the metric space (II,ds,) is complete.

(iii) For each (2,1 and X e,
lim, . dsy (2, L) = 0lim, W (L,
X, =lim, W (LX) =W (L, X).

According to the published work of Matthews [3], fixed
point results in partial metric spaces have been investigated
widely by many mathematicians. In 2014, the new concepts
of y-fixed points, y-Picard mappings, and weakly y-Picard
mappings have been introduced by Jleli et al. [4]. Several
x-fixed point results for mappings satisfying the generalized
Banach contractive condition based on the idea of new
control function are proved in [4]. Moreover, they also
claimed that some fixed point results in partial metric spaces
can be derived from these y-fixed point results in metric
spaces. Next, we recall the definitions of y-fixed points,
x-Picard mappings, and weakly y-Picard mappings. Before
presenting these definitions, some notations are needed.

Let II be a nonempty set, y: II — [0, 00) be a given
function, and I': IT — II be a mapping.

Throughout this paper, unless otherwise specified, the set
of all fixed points of I is denoted by
F@) ={X e II|I'(Z) = &} and the set of all zeros of y is
denoted by Z, = {2 € |y (X) = 0}.

Definition 3 (see [4]). Let II be a nonempty set,
x: IT — [0, 00) be a given function, and I': IT — II be a
mapping. Z € ITis called a y-fixed point of T if and only if Z
is a fixed point of I' such that y(Z)=0, that is,
ZeF(NZ,
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Definition 4 (see [4]). Let II be a nonempty set and
x: I — [0,00) be a given function. A mapping
I: IT — II is called a y-Picard mapping if the following
conditions hold:

(i)F(F)ﬂsz{Z'}
(ii) " — Z as n — oo for any X € I1

Definition 5 (see [4]). Let II be a nonempty set and
x: I — [0,00) be a given function. A mapping
I I —1II is called a weakly y-Picard mapping if the
following conditions hold:

(i) T has at least one y-fixed point

(ii) The sequence {I"Z’} converges to some y-fixed point
of I for any & eIl

A new control function Y: [0,00)> — [0, c0) has been
introduced by Jleli et al. [4] where

(Y1) max{a,b} <Y (a,b,c), for all a,b,c € [0,00)
(Y2) Y(0,0,0)=0
(Y3) Y is continuous

Throughout this paper, unless otherwise is specified, the
class of all functions satisfying the properties (Y1) - (Y3) is
denoted by Y.

Example 1 (see [4]). Suppose that the mappings
Y,,Y,,Y;: [0,00)° — [0,00) are defined by Y, (a,b,c) =
a+b+cY,(a,b,c) =max{a, b} +¢,Y;(a,b,c) =
a+a’+b+cforall a,b,c € [0,00). Then, Y;,Y,,Y; €Y.

Using the notion of control functions in Y, Jleli et al. [4]
introduced the ideas of (Y, y)-contractions and (Y, y)-weak
contractions and proved existence of y-fixed point for such
mappings as follows.

Definition 6 (see [4]). Let (IL,d) be a metric space,
x: IT — [0, 00) be a given function, and Y € Y. A mapping
I: T — II is called an (Y, y)-contraction if and only if
there is k € (0,00) such that
Y (d (T2, TY), x (T2), x (TX) <KY (d (X, Yy (2),
x(¥Y)), for all I, % e IL

Definition 7 (see [4]). Let (II,d) be a metric space,
x: IT — [0, 00) be a given function, and Y € Y. A mapping
I': I — II is called an (Y, y)-weak contraction if and only
if there are ke (0,00) and L>0 such that
Y (d(TZ,TY), x (L), x (CU)) <kY (d (L, D), x (D
N+L (YL TD) (D TD) - Y(O.x (D) x
(TX))) for all X, ¥ € 1L

Theorem 1 (see [4]). Let (I1,d) be a complete metric space,
x: II — [0, 00) be a given function, and Y € Y. Assume that

(HI) y is lower semicontinuous
(H2) I': I — II is an (Y, x)-contraction mapping

Then, the following assertions hold:
(i) F(D<Z,
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(ii) T is a y-Picard mapping

(i) If X €Il and Z is a x-fixed point of I, then
dImZ,Z)< (k"/(1-k)Y
AT, ), x(ITX), x (X)), for all n e N

Theorem 2 (see [4]). Let (I1,d) be a complete metric space,
x: II — [0, 00) be a given function, and Y € Y. Assume that

(H1) yx is lower semicontinuous
(H2) I'II — 11 is an (Y,x)-weak contraction
mapping
Then, the following assertions hold:
(i) F(N<cZ,
(ii) I is a weakly x-Picard mapping
(i) If X €Il and Z is a y-fixed point of I, then

d(I"¥, F) < (k")/
A -k)Y (d(X, TL), x (L), x(TX)), for all n € N

Nowadays, many authors have extended the Banach
contractive condition in the BCP into many ways by using
various types of the control functions. In 2014, Jleli and Samet
[5] presented the new idea of a control function and proved
the fixed point results for mappings involving this new control
function. Here, we restate the idea of the control function
proposed in Jleli and Samet [5] and give the main work in [5]
which is the main inspiration in this paper.

Let A be the set of all functions A: [0, c0) — [1,00) so
that

(i) A is non-decreasing
(ii) For each sequence {1,} c [0,00), lim, A (s,) =1

if and only if lim 1, =0

n—~oo'n

(iii) There exist r € (0,1) and [ € (0,00] such that
lim,_ . (A(t) - 1/t") =1

Theorem 3 (see [5]). Let (II,d) be a complete metric space
and I': I — II be a given mapping. Suppose that there exist
AeA and ke (0,1) such that for all &, % €Il with
IL #IY, one has \(d (L, TY)) < Md(X, Y))]*. Then, T
possesses a unique fixed point.

Recall that y: II — [0, co) is lower semicontinuous at
x if liminf, . x(x) >y (xo).

Note that there is no discussion so far on the combination
of several ideas of contraction mappings in the literature. The
goal of this work is to present the new concept of a
A-(Y, x)-contraction self-mappings. The existence results of
x-fixed points for such contraction mappings in metric spaces
are provided. The main results of Jleli and Samet [4] and Jleli
et al. [5] are particular cases of our main results. Furthermore,
we give some fixed point results in partial metric spaces which
can be derived from our y-fixed points results. Finally, we apply
the theoretical results in this work to prove the existence of
solutions of nonlinear integral equations.

2. Main Results

To present the main result in this paper, we start with the
following definition which is larger than the idea of many
contraction mappings in the literature.

Definition 8. Let (Il, d) be a metric space, x: IT — [0, 00)
be a given function, Y€Y, and A€ A. A mapping
I: 1T — II is called a A- (Y, x)-contraction if and only if
there exists k € (0, 1) such that

A (Y (d (T2, TY), x (P),x TN < MY (d (X, D)oy (D), x (XN (1)

for all &', % e II.
Now, we present the main results in this paper.

Theorem 4. Let (II,d) be a complete metric space,
x: II — [0,00) be a given function, Y € Y, and A € A.
Assume that

(i) x is lower semicontinuous

(ii) I': I — 11 is an A- (Y, x)-contraction

Then, the following assertions hold:
(i) F(<Z,
(ii) I is a y-Picard mapping

Proof. Suppose that & € IT is a fixed point of I'. Appling (1)
with &' = % = &, we obtain A (Y (0, ¥ (£), x (£))) < [A (Y (0,
X(?),x(?)]}]k. This implies A (Y (0, y (£), ¥ (¥))) = 1 and so
Y (0,x(9),x(¥)) = 0. Then, x(¥)<Y(0,x(¥),x(%)) =0

which implies y (€) = 0. Thus, we have proved (7). Now, let

& be an arbitrary point. From (1), we obtain

Md(r"z, 1)) < A(Y(d(r 2, TZ), (), (T 7)),
(YA 2, 1) (1) x (1))

< MOV (AL, TD), x (2), x TN,
(2)

for all n € N. If n — oo in the above inequality, we obtain
lim AT, ) =1 and s0
lim, , d(I"2, ™) = 0. Thus, there exist r € (0,1) and
I € (0, 00] such that

n—:00

A (d (r”sr, r”“gr)) -1
d(ra, r““sz”)’

lim =1 (3)

n—a~oo



Similar to the proof of Theorem 2.1 in [5], we deduce
{I" 2} is a Cauchy sequence. Since (II, d) is complete, there
exists & € II such that I"¥ — Z as n — oo. From (2),
we obtain
1<A(x(I"X)) < [A(Y (d (&, FI),X(%),X(F%)))]"" for all

1< lim AT 2,TZ))< lim A(Y(d(I"Z, Z).x (") x ()"

n—~:o~o n—~o~o

Thus, d(Z,T'Z) =0, that is, Z is a fixed point of T.
Therefore, Z is also a y-fixed point of I.

To show the uniqueness of fixed point, let Z, Z' be two
x-fixed pomts of I'. Applying (1) for & = Z, ? Z', we get

AY(A(ZF, Z),0,00) <MY (d(Z, Z"),0, 0))] This im-
plies A(Y(d(Z,Z'),0,0)=1 and so Y(d(Z,Z'),
0,0) =0. ‘Therefore, d(Z,Z')<Y(d(Z,Z'),0,0)=0

which gives us d(Z, Z") = 0. Thus, Z = Z'. Therefore, we
have proved (ii).

Taking Y(a,b,c)=a+b+c and y =0 in the above
theorem, we have the following. O

Corollary 1. Let (II,d) be a complete metric space and
A € A. Assume that
(i) There exists k € (0,1) such that

MY (L, TN <A (E P (5)
forall X, % eIl

Then, the following assertions hold:

(@) F(D<z,

(ii) I' is a y-Picard mapping

Taking A (t) =
obtain the BCP.

Next, we present the second idea of the new mappings
satisfying the generalized contractive condition which is

V't for all £>0 in the above corollary, we

A(Y (0, x (9), x (£))) < [A(Y (O,
= [A(Y (0, x(9),

This implies that A(Y(0,x(¥%),x(%)))=1 and so
Y (0,x(%),x(%)) =0. Then, (€)<Y (0,x(¥),x(¥))=0

X (DL O IAY (0, X (9), x(£)) = YY (0, (£), x (O]
x (@1
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neN. If n— oo in the above inequality, we obtain
lim, |, A(y(I"X)) =1landsolim, , y(I"X) =0.Sincey
is lower semicontinuous, we obtain y (Z) = 0. Again, using
(1), we obtain

=[A(Y(0,0,0)]* = 1. (4)

similar to the first idea and then we prove the existence of a
x-fixed point result for this mapping.

Definition 9. Let (II,d) be a metric space, x: II — [0, 00)
be a given function, Ye€Y, and A€ A. A mapping
I': IT — IIis called a A- (Y, x)-weak contraction if and only
if there exist k € (0,1) and L>0 such that

A AT, TY),x T, x TY)) < VY (AL, D) 1 (D x (T
Y (d(YT2), x(Y), x (TL)) = Y (0, x(¥), x T,
(6)

for all X, ¥ € IL

Theorem 5. Let (II,d) be a complete metric space,
x: IT — [0,00) be a given function, Y €Y, and A € A.
Assume that

(i) x is lower semicontinuous
(ii) I': I — II is a A-(Y, x)-weak contraction

Then, the following assertions hold:

(i) F(<Z,
(ii) I is a weakly x-Picard mapping

Proof. Suppose that & € Il is a fixed point of I'. Appling (6)
with £ = % = &, we obtain

(7)

which implies y (%) = 0. Thus, we have proved (i). Now, let
Z be an arbitrary point. From (6), we obtain

Ad(rz, ) < /E(Y (d(T"2, T™2), x ("), x (")),
A

IN

[ (0 (d ("2 T°2)), x ("), x (I"2)) = Y (0, ("), x ()
=@ ) (I 2)ox (D))

(v(d(r'o,ra),x (I

'), x ()]
(8)

<A (Y (d (2,12, x (D), x 2.
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Taking the limit as # — co in the above inequality, it
gives us lim, , AAI"Z, ") =1 and so
lim, . d(I"2, ") = 0. Thus, there exist r € (0, 1) and
I € (0,00] such that
A(d(r"2, T 2)) -1

d(ra, )

&)

n—~oo

Similar to proof of Theorem 2.1 in [5], we deduce {I" 2’}
is a Cauchy sequence. Since (II, d) is complete, there exists
Z € 1I such that "Y' — & as n —> oco. From (8), we
obtain. 1 <A (y (T"2)) < [A(Y (d(Z, F.fl’),)((&l’),)((l“&")))]kﬂ,

Taking n — 00, we obtain lim, | A (x(I"Z)) = 1 and
solim, |y (I"Z) = 0. Since y is lower semicontinuous, we
obtain y (Z) = 0. Again using (11), we obtain

1< lim A(d(r"'2,rZ))

n—oo

< lim M(Y@@"Z, 2)x (D) x (D))

MY (A2, Z),x ("), 1 (2)) = Y (0, x ("), x (2)))]"
=AY (0,0,00)]1"
=1.
(10)
Therefore, AMAd(Z,TZE)) =1 which
d(Z,TZ) =0, that is, Z is a fixed point of T.

Taking Y (a,b,c) =a+b+c and y =0 in the above
theorem, we have the following. O

implies

Corollary 2. Let (II,d) be a complete metric space and
A € A. Assume that

lim d(I'r,,I't))

s d(g,T) e

Therefore, the BCP cannot be applied in this example.
Now, we define a function A € A by A(t) = eV for all
t € [0,00) and a function Y € Y by Y (a,b,¢) = a+b + c for
all a,b,ce[0,00). Also, we define a function

Tp-1 —

n—~aoo T}’l bl Tl

5
(i) There exist k € (0,1) and L >0 such that
MY (d(TL,TY), x (T, x TY))) < (Y (L, )]
PR CICA e 2]
(11)

forall X, Y eIl
Then, the following assertions hold:
(i) F(D<Z,
(ii) T is a y-Picard mapping

Remark 2. Note that the advantage of Corollary 2 is that we
can choose the power L = 0 to obtain Corollary 1. That is,
Corollary 2 is more general than Corollary 1. Also, by taking
different functions A, we can obtain many contractive
conditions in Theorems 4 and 5.

Next illustrative example is furnished which demon-
strates the validity of the hypotheses and degree of utility of
Theorem 6 while previous results in the literature are not
applicable.

Example 2. Let II={7,|ln e NU{0}}, where
7, = ((n(n+1))/2) for all neN and 7, =0. Obviously,
(IL,d) is a complete metric space with the metric d: IT x
IT — [0,00) defined by d(X, %)=L -%| for all
&, Y €1l Define a mapping I': IT — II by I't, = 7,_; for
all ne N and I'ty = 7, = 0. Then, I' is not a Banach con-
traction mapping, since

L (n(n-1))72)
- nh_r>noo (n(n+1))/2)-1 L (12)

x: IT — [0,00) by y(X) = X for all & € II. We shall show
that T is a A- (Y, y)-contraction mapping. For any m,n € N
with n>m, we have

d (rTn’ rTm) +I7,+TI7, 4 (Tr,07, )+T7, 407, — [d (7,7, ) 4T+ T, |
C

d(Ty,Ty) + T, + T,

_ ((n(n-1))/2) - (m(m - 1))/2) + ((n(n - 1))/2) + ((m(m - 1))/2)

T ((n(n+ 1)2) = (m(m+1)/2) + ((n(n+1))/2) + (m(m + 1))/2)

((n(n=1))/2)=((m (m=1))/2)+((n(n— 1))/2)(m (m— 1))/2)=[((n (n+1))/2)~ ((m (m+1))/2)H((n (n+1))/2)H(m (m+1))/2)] (13)

4

_n(n-1) _,,
T n(n+ l)e

<e 2.



Putting k = ™!, the above inequality is equivalent to

Journal of Mathematics

(d(r7,,TIr,,) +I7, + Frm)ed(rT”’rT'”)+rT“+rT'” <k (d(1,,7,,) + T, + Tm)ed(T”’T'")”””’", (14)

or equivalently

e \/ (d (F‘rn,l"rm )+l“‘r,, +I'1,, )ed (PrnLem) Lo T < ek \/d ( T T )+‘rn +7,,e (ntm)+ 7+t )

(15)

Therefore, we obtain

MY (d(T7,0Tr,,). x (T, X (T7,))) € MY (A (70 7)o x (7)o 1 (7)) (16)

Then, all hypotheses of Theorem 7 hold and so I has a
unique y-fixed point. Here, 7, = 0 is the unique y-fixed point
of T.

3. Applications of Theoretical Results

In this section, we give two applications of our main results
in the previous section. These applications consist of two
parts. The first part is related to the fixed point results in
partial metric spaces. The second part shows the application
of theoretical results to solve the nonlinear integral equation.

Theorem 6. Let (II, ") be a complete partial metric space
and I': I — II be a mapping such that

MW L, TY) < MW (L, YN (17)

forall X, Y € II, where k € (0,1). Then, I has a unique fixed
point Z. Moreover, x(Z) = 0 implies W (Z,Z) = 0.

Proof. Define a metric dgy: IT x II — [0, 00) by

doy (X, Y) =2W (X, Y) - W (X, 0) - W (Y, Y)s
(18)

for all &, % € II. In addition, we define a new metric d: IT x
IT — [0, 00) by

AL, Y) = ((dy (T, Y))12), (19)
for all X, % € I1. Also, we set a function y: IT — [0, c0)
and a function Y € Y by

W (X, X)

X(fi")=72 , forallZ €11,

(20)

Y(a,b,c)=a+b+c, foralla,b,c € [0,00).
Then, from (17), we have
AMATL,TY)+ W QX TX)+ W TY,TY))

SIMAUL. D +T7(LX) + W (YY),
(21)
for all ', % € Il. It yields that

MY (d(CZ,TY), x (T0), x YD) < VY (A (X, D), x (D), x (] (22)

forall &, % € II. By Theorem 7, I has a unique y-fixed point
Z. It implies that T' has a unique fixed point Z e IL
Moreover, y(Z) = 0 implies # (Z,Z) = 0.

Based on the proof of the above theorem and Theorem 5,
we get the following result. O

Theorem 7. Let (I, %) be a compete partial metric space
and I': I — II be a mapping such that

MW L, TY) < MW (L, YN WY TL) =W (YY) - W CL, T, (23)

forall ¥, Y € II, where k € (0, 1). Then, I' has a fixed point
F. Moreover, W (Z,F) = 0.

Next, we will consider the following nonlinear integral
equation:
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b
L) = (8 + j Q(ts, 2 (s))ds, (24)

where a,be R, X € Cla,b] (the set of all continuous
functions from [a,b] to R), and ¢: [a,b] — R and
@: [a,b] x [a,b] x R — R are two given functions.

Theorem 8. Consider integral equation (24). Suppose that
the following conditions hold:

(i) @: [a,b] x [a,b] x R —> R is continuous and

b b
A(J 16(t, s, a)ds - O (1, s,ﬁ)lds) < J A6t s, q) — G (s, B)ds, (25)

for all t,s € [a,b] and for all &, € R.
(ii) There exist A € A and k € (0,1) such that

(A(Ja - ﬂl)] (26)

A(l@(t,s, &) — b

Q(ts P <
for all t,s € [a,b] and for all a,f € R.

Then, integral equation (24) has a unique solution.

Proof. Let Il = C[a,b]. Define the metric d on II by
d(X, Y) = supsepup| X (t) =  (t)| for all X, % € I1. Then,
(I, d) is a complete metric space. Con51der a mapping
I': IT — II defined by (T'Y) (t) = ¢ (£) + I Q(t,s, I (s))ds

a,b,c € [0,00). Also, define y: IT — [0,00) by x(X) =0
for all X e IL. Let X, % €Il and ¢t € [a,b]. Then, we have

)

AL () - TY () :)t( r@(t, 5, 2 (s))ds — Jt Q(t,s, % (s))ds

b
< [ M@ s, 2 (s) - Ot s, Y (s)))ds

IA

I AT (s) - ?(S)I)]
a b-a

1
b-a

<

b
j A(d(Z, P)1kds

SCIEAN

for all 2 e€Il. Define the control function (27)
Y: [0,0)> — [0, 00) by Y(a,b,c)=a+b+c for all Since y () = 0 for all X € II, we get
MATL,TY) +x(TL) + x (TY)) < IMA(L, X)) + 3 () + x (). (28)
Therefore,
AY (dTL,TY), x T, x TY))) < MY (AL, D), x () x (DN (29)

Thus, I': IT — ITis a A- (Y, y)-contraction mapping. By
Theorem 7, I' has a unique y-fixed point & € II, that is,
(TX)(t) = X (t) forallt € [a,b] and y () = 0 which means
that integral equation (24) has a unique solution. O

4. Conclusions

In this paper, we obtained some fixed point results first in a
metric space and then in a partial metric space as results. The
famous Banach contraction principle is a special case of our
results. There are other terms such as d(2,I' %), d(%,T%),
and d (2, TZ) which we can consider in future research. But,
certainly, we should also work with other control functions.
For more details in this direction, the readers can refer to [6].
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Kung and Traub conjectured that a multipoint iterative scheme without memory based on m evaluations of functions has an
optimal convergence order p = 2~ 1. In the paper, we first prove that the two-step fourth-order optimal iterative schemes of the
same class have a common feature including a same term in the error equations, resorting on the conjecture of Kung and Traub.
Based on the error equations, we derive a constantly weighting algorithm obtained from the combination of two iterative schemes,
which converges faster than the departed ones. Then, a new family of fourth-order optimal iterative schemes is developed by using
a new weight function technique, which needs three evaluations of functions and whose convergence order is proved to

be p=231=4

1. Introduction

The most basic problem in engineering and scientific
applications is to find the root of a given nonlinear
equation

fx) =0, (1

where f € € (I,R) and I c R is an interval we are interested
in, and we suppose that € I is a simple solution with f (r) =
0 and f'(r)#0.

The famous Newton method (NM) for iteratively solving
equation (1) is given by

_f(x)
EACH)

which is quadratically convergent. Due to its simplicity and
rapid convergence, the Newton method is still the first
choice to solve equation (1).

An extension of the NM to a third-order iterative scheme
was made by Halley [1]:

X, =X n=0,1,..., (2)

n+l

P ¥ CATALCA B
T ) - F () ()

For the engineering design of the vibrating modes of an
elastic system, sometimes we may need to know the ei-
genvalues of a large-size square matrix, which results in a
highly nonlinear and high-order polynomial equation. More
often, the function f(x) is itself obtained from other
nonlinear ordinary differential equations or partial differ-
ential equations. In this situation, it is hard to calculate
f"(x) when we apply the Halley method to solve the
nonlinear problem.

Kung and Traub conjectured that a multipoint iteration
without memory based on m evaluations of functions has an
optimal convergence order p =2""'. It means that the
upper bound of the efficiency index (E.I)=p™ is
20=1m) <2 For m = 2, the NM is one of the second-order
optimal iterative schemes; however, with m = 3, the Halley
method is not the optimal one whose E.I. =1.44225 is low.

The pioneering work of Newton has inspired a lot of studies
to solve nonlinear equations, whereby different fourth-order
iterative methods were developed for more quickly and stably
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solving nonlinear equations [2-9]. Many methods to construct
the two-step fourth-order optimal schemes were based on the
operations of [f(x,), f' (x,), f(y,)] where y, is obtained
from the first Newton step [2, 4-8, 10-14]. Recently, Chicharro
et al. [9] proposed a new technique to construct the optimal
fourth-order iterative schemes based on the weight function
technique.

2. Preliminaries

Before deriving the main results in the next section, we begin
with some standard terminologies.

Definition 1. Let the iterative sequence {x,} generated from
an iterative scheme converge to a simple root r. If there exists
a positive integer p and a real number C such that

Xper — T
lim 1 =C, (4)
00 (x, = 1)
then p is the order of convergence and C is the asymptotic
error constant.

Let e, = x,, — r be the error in the nth iterate. Then, the

relation
e, = Cel + @(eﬁ“), (5)

is called the error equation of an iterative scheme. For ex-
ample, for the Newton method, the error equation reads as

€01 = Crel + @(32)> (6)
where
3 f(ﬂ) (r) ~
c, =7 n=2.... (7)

Definition 2 (see [10]). An iterative scheme is said to have
the optimal order p, if p = 2™~ where m is the number of
evaluations of functions (including derivatives).

Definition 3. The efficiency index (E.I) of an iterative
scheme is defined by E.I = p(//m),

Definition 4. The conjecture of Kung and Traub asserted
that a multipoint iteration without memory based on m
evaluations of functions has an optimal order p = 2" ! of
convergence [11]. It indicates that the upper bound of the
efficiency index is 2071 <2,

Definition 5. The iterative schemes are of the same class, if
they are of the same order p and have the same m evalu-
ations of the same functions.

3. Main Results

We begin with the error equation of the NM:
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€, = czei - A3ez - A4eﬁ +eee, (8)

where
Ay =265 - 2¢s, 9)
A, =7cyc5 - 4cg - 3¢y (10)

Refer the papers, for instance, [6, 12, 13].
Throughout of the paper, we fix the following notation:

LG
R E)

which is the first step of many two-step iterative schemes.

We summarize some fourth-order optimal iterative
schemes which were modified from the NM by Chun
[14]:

(11)

A C) _( £ (%) >2f(yn)
e " f, (xn) f(xn) - f(yn) f/ (xn),
€, = (26; - czc3)efl +ee,
(12)
ACH £ (x) S ()

X,

M) P ) 21 ) f () < 2f () £ G

3 4
€, =(3»c2 - c2c3)en +e

(13)
by Chun [4]:
A CH B U CA B A CAAWACH)
T (x) (1 ¥ () fz(xn))f'(xn)’

enr = (405 —crc3)en +- -,
(14)
RN e B (13 s S
enr =(563 — 665 )y + -+
by King [5]:
N A . N A G R T APV A 67

"of(x) f) =2 () £ (%)

€1 = [(1 + 2y)c§ - c2c3]ei e,
(16)
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where y € R, by Chun and Ham [2]:

Cf(x) A4S ()6 () () + 37 () £ ()

X =X

n+l n fr (xn)
€1 :(3c2 - 6263)62 +ee,

by Kuo et al. [8]:

R A COES 0
AR I TICA RN C)
eun =(36 — 63 )en + o,
by Ostrowski [15]:
v e S ) = f ()]
S A U CAREY ) R
enr =(S—cr03)et +-o-,
by Maheshwari et al. [16]:
. =x_fmJV%nh £ () ]
T ) L () fea) = f)] 0

(43 4
€, = (4c2 - czc3)en +e,

and by Ghanbari [12]:

. :x_f@»_(ﬂahdfwdffwa
T ) \F@) O ) ()

<

(g3 4
| €ni1 —(662 —c2c3)en +e,

(21)

v TC) S+ () S ()
< m " f/ (xn) f(xn) - f(yn) f/ (xn)) (22)

_ (2.3 4
| €11 —(3c2 - 6263)(2” +oee

It is interesting that the iterative schemes (12)-(22) are of
the same class because they have same convergence order
p=4 and operated with the same evaluations on
[f(x,), f (x,), f (y,)]. The efficiency index (E.I) of the
above eleven iterative schemes is the same /4 = 1.5874, and
they are of the optimal fourth-order iterative schemes with
three evaluations of [f(x,), f' (x,), f (y,)] in the sense of
Kung and Traub, such that p = 2™~ ! = 4. They belong to the
same class with the error equations having a common type:

€1 = (aic; - c2c3)eﬁ + @(efl), (23)
where g; are different constants for different optimal fourth-
order iterative schemes, which may be zero. Can we raise the
order to five by a suitable combination of these iterative
schemes? Later, we will reply to this problem.

4f2 (xn) - 2f (xn)f (yn) - fz (yn) fl (Xn))

(17)

Theorem 1. If the conjecture of Kung and Traub is true, then
the two-step optimal fourth-order iterative scheme

)
Yn = Xn fl (xn)’

(24)

Xn+1 = Xp — H[f (xn)’ f, (xn)’f(yn)]’

which is based on the evaluations of [f (x,), f' (x,)s f (y)],
must have the following form of error equation:

€1 = (aocg - c2c3)ef, + @(ef,), (25)

where a, is some constant, which may be zero.

Proof. Suppose that equation (25) is not true, such that we
have

€ns1 = (aocg - 505263) e+ @(6151)’ (26)

where b, # 1.
The weighting factors w;, w,, and w, are subjected to

w; +w, +w;y =1 (27)

Then, we consider the weighting average of the error
equations in equation (23) with i = 1,2 and equation (26) to
be zero in ek

3 3 3
wl(alc2 - c2c3) + wz(azc2 - c2c3) + w3(a0c2 - b0c2c3) =0,
(28)

which leads to

a,w; + a,w, +agw;z =0, (29)
w, + w, + byw; = 0.

The determinant of the coefficient matrix of the linear
equations (27) and (29) is (b, —1)(a, —a;)#0 because
b, # 1 and a, # a,. From equations (27) and (29), we have the
unique solution of (w,,w,,w;). Thus, we can derive a new
iterative scheme by a weighting combination of three op-
timal fourth-order iterative schemes with the solved factors
(w,, w,, w;) whose convergence order is raised to five. This
contradicts the conjecture of Kung and Traub, who asserted
that the optimal order for the iterative scheme with m = 3 is
2m=1 = 4 for a multipoint iteration without memory based
on m evaluations of functions.

Obviously, Theorem 1 demonstrates that we cannot raise
the convergence order to five by a weighting combination of
any three optimal fourth-order convergence iterative
schemes. O
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Theorem 2. The following two-step iterative scheme: Proof. For the proof of the convergence, we let r be a simple
solution of f(x)=0, ie, f(r)=0 and f'(r)+0. We
S (x) S (n)
Xpy1 = X, — o — H(n,) 7225, (30)  suppose that x,, is sufficiently close to the exact solution r,
[ (%) f1(x0) such that
for solving f (x) = 0 has fourth-order convergence, where y, e, =X,—r (34)
is computed by equation (11), and H is a weight function in
terms of is a small quantity, and it follows that
— f(yn) €ni1 = €y T Xy — Xy (35)
Mn = f(x )’ (31)
" By using the Taylor series, we have
with f(x) = f (e, +cren + csep +chey + 4], (36)
H(0) =1,
H' (0) = 2. (32) f'(x,)=f(r) [1 +2c,e, + 3c3e,21 + 4c4efl + ] (37)
The corresponding error equation is It immediately leads to
HI/ (0)
€, = [(5 - C - 6y05 eﬁ + @(ei). (33)
2 3 4
e, +Cye, +c3e, +cue, + e
f,(x") = posw A =e,— el + Ase) + Ager + - (38)
fi(x,)  1+2che, +3cse, +4cye, + -+
From equations (11) and (38), we have From equations (40), (37), and (36), it follows that
Yo =T+~ Ajer — A+, (39)
fOn) = (0]ere, - Ase, =(Ay = c)e, +-+] (40)
2 3 3\ 4
cye, —Ase, (A, —c)e, + -
f,(y") =2 T ( 24 2) K = el +(2c3 - 4c§)efl +(13c; — ldcye; + 3c4)ei e, (41)
fi(x,)  1+2cse, +3csel +4dcye, + -
2 3 3\ 4
cre, —Ase, —(Ay—c)e, + -
S ) _ 28 o ( - 2)4 L = cye, +(2c5 = 3¢ )ep +(3cy — 10c,¢5 + 8¢5 )ep + -+ (42)
f('xn) €y, T 68, T C3€, +Ch€ -
From equations (31) and (42), we have Because the least order of the term (f(y,)/f’ (x,)) as

shown in equation (41) is two, we only need to expand
H (n,) around zero to the second-order by using equation
(43) (43) and

N, = Cre, +(2c3 - 3c§)ei +(3c4 —10c,¢c5 + 8c§)ei +ee

n 2
H(n,) =H(0)+H'(0)n, + H (O)qﬁ +.--=H(0)+c,H' (0)e, + %2 [H" (0) - 6H' (0)] + 2¢;H' (0) & +---. (44)
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Inserting equations (11), (39), (44), and (41) into
equation (30), we have

2
€py = Cre” — Asel — Age —(H(O) +c,H' (0)e, + C2—2 [H" (0) - 6H' (0)] + 2¢;H' (0)]ei>,

(45)
X (czei + [2c3 - 4C§]ei + [13c; - l4cyc5 + 3c4]efl) +.ee.
Through some manipulations, we can derive
€1 = [y — czH(O)]efl = [2c§ - 4C§H(0) +H' (0)65 +2H (0)cy — 2c3]ez,
—[7es¢5 = 4c5 = 3¢y + H(0)(13¢5 — 14c,c5 + 3¢, ) + ¢, H' (0)(2¢; — 4¢3 ) e, (46)

2
—c, %Z[H” (0) = 6H' (0)] + 2¢,H' (0) | + -+,

which, due to equation (32), can be arranged to that in Theorem 3 (see [12]). fe following two-step iterative scheme:
equation (33). O

f(x) _ fr(x)+ @+ a)f (x,)f () + 0 (x,) f(ra)

Xnel = Xn — 1 - 7 > (47)
C ) P ) af ()f () + B () S ()
1+(2+a)y+ 0y
for solving f (x) = 0 has fourth-order convergence, where y, H(n) = %, (49)
is computed by equation (11). The error equation reads as +an+ B
e, = [(5 4 20— 6+[§)c§ _62C3]e:t n @(62)’ (48) satisfies equation (32); hence, iterative scheme (47) is a
special case of iterative scheme (30).
which is not supplied in [12]. We can derive
Proof. Itis easy to check that the weight function in iterative
scheme (47):
" 1 ! ! !
HY (1) = 5 {47 OO TACDBI ()= BpA ()] =2[AWB (1) = BODA' ] A4’ (] (50)
where Inserting equation (52) into equation (33), we can derive
A=1+an+pr, € = [(5+20¢—0+[3)C;—6263]ei+@(ei). (53)

(51)
2
B:=1+(2+a)y+0n. This ends the proof of this theorem.
Theorem 2 includes those in [9, 17] as special cases. The

family developed by Chicharro et al. [9]:

Xl = Xp — G('ln) f/(xn) >
H"(0) = 22— 6+ B). (52) f(x,)

Inserting  A(0)=1,A"(0) =a, A" (0) = 2B,B(0) = 1,
B'(0)=2+a, B"(0)=20 into equation (50) by taking
n = 0, we have

(54)



6
with G(0) =G’ (0) = 1 and G" (0) = 4 is a special case be-
cause we can derive
H("]n)r’n = G(r]n) - (55)
Accordingly,
H(rln) + ﬂnH, (nn) = G, (1111)’ (56)
2H' (n,) +n,H" (1) = G" (),
and H(0) =1 and H' (0) = 2 imply G(0) = G' (0) = 1 and

G" (0) = 4. For H, we have only two constraints, but for G,
there are three constraints. Hence, iterative scheme (30) is
more general than the iterative scheme (54). Moreover, a
further differential of the last term in equation (56),

3H" (n,) +n,H" (1,) = G"" (n,), (57)

leads to

3H" (0) =g" (0)’ (58)

and hence the error equation of iterative scheme (54) is

(et

In [9], Chicharro et al. derived the error equation as
1 = (56 — cyc3)et + O(e2) (equation (2) in [9]), which is
incorrect to miss the term (G"'(O)c2 %/6) in the error

(59)
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The general function of H () is given by

H(p)=1+2n+ J J F(z)dzd¢, (60)
where F(z) is any integrable function. There are two in-

teresting iterative schemes generated from F(z) = cosz
(COSM) and F(z) = sinz (SINM):

S (x4) (2+2f(yn)_ f(yn)) S (On)

Bt S5 T T ) S () ) F ()
N €YY BUNP G e AV WACT))
T (1 o) ))f'<xn>'

(68
4. Combinations of Iterative Schemes

In this section, we give some methods to combine the it-
erative schemes as listed in Table 1, which are special cases of
the iterative schemes (47) and (30).

From Table 1, we can observe that there exists a cubic
term ¢j in the error equation for most iterative schemes.
Indeed, this term is a dominant factor to enlarge the error,
and thus we can combine two iterative schemes by elimi-
nating this term.

equation. Theorem 4. For the following two-step iterative scheme:
Xppy = X, — f(xn) _ wlfz(xn) + (2 + “l)f('xn)f(yn) + elfz (yn) f(yn)
n+ n ! !
f (x”) f2 (xn) + alf(xn)f (yn) + /31](2 (yn) f (xﬂ) (62)
2f (x ) (2 + “Z)f (xn)f (yn) + 62f2 (yn) f(yn)
2 7 >
f (x ) + “2f (xn)f (yn) + BZf (yn) f (le)
i w, +w, = 1. (66)
i
_ _ a We seek the combination of iterative scheme (47) with
ay=5+20 -0 +pi#a,=5+20, -0, +f,, (63) two sets of the parameters (al,ﬁl, 6,) and (a,,f3,,6,) and
a, demand the coefficient preceding c3e 4 * being zero,
Wi = _al —az’ (64) wya, + wya, =w, (5+2a; -0, + ) +w,(5+2a, -6, +B,) =0.
w, = (67)
a, —a
b Solving equations (66) and (67), we can derive equation
then the error equation reads as (64), and the error equation (48) reduces to that in equation
_ 4 5 (65).
En1 = TC2C36, @(e”)' (65) We cannot exhaust all the combinations of the iterative

Proof. The weighting factors are subjected to

fl) 1 ) +vf ()

X

schemes; however, we list the following two: one is the
combination of equations (16) and (19), namely, the KOM:

SO A+ 29[ () f (%) = f )]

:xn+ + —

2yf" (x,)

n+1

f(xn) + (V - 2)f (yn) f, (xn)

27" () [f (%) = 25 (7)) (68)



Journal of Mathematics

TaBLE 1: The comparison of different iterative schemes on the error equations.

Algorithm o B 0 Error equation (e,,,)
(12) -2 1 0 (263 —cyc3) et + O(€)
13) -2 2 0 (3¢ —cyc3) et + O (e)
(14) 0 0 1 (4¢3 —cyc5) et + O (e)
15) 0 0 0 (5¢3 —cyc3) et + O (e)
(16) y-2 0 0 ((1+2y)c3 —cyc5) et + O(ed)
(17) -1/2 -1/4 3/4 (3c3 —cyc3) et + O(€3)
18) -1 0 0 (Bc —cyc5) et + O(e)
(19) -2 0 0 (3 —cye5) et +0(ed)
(20) -1 0 -1 (4¢3 —cyc3) et + O (e)
(21) 2 1 4 (63 —cyc5) et + O(e))
(22) -2 1 -1 (3cg —C5C3) eﬁ + @(efl)

The other one is the combination of equations (12) and
(19), namely, the COM:

X =X

C2f () (%) = F ()] (69)

n+1

T (=) )

5. Second Family of Optimal Fourth-Order
Iterative Schemes

In Theorem 2, we have derived a new family of optimal
fourth-order iterative schemes with the assumption that the
H-function satisfies H (0) = 1 and H' (0) = 2. We can relax
the conditions to H(0) = 1 and derive the following result.

Theorem 5. Suppose that there are two different functions
H, (n) and H, (n) satisfying

Hl (0) = 1’ (70)
Hz (0) =1,
H{(0)# H;(0). (71)

The following two-step iterative scheme:

S (n)

RACH) (f(xﬂxn)( )>2f(yn)

fl (xn) f, (xn) [f (xn) - 2f (yn)]

O
for solving f (x) = 0 has fourth-order convergence, where y,
is computed by equation (11), and n is defined by equation
(31). The corresponding error equation is

w,H{ (0) + w,H5 (0
en+1=[<5— 1H, (0) +w,H, (0) cg—czc3 6i+@(€2),

2
(73)
where
o = H,(0) -2
' H,(0) - H{(0)
(74)
2-H{(0)

Y2 = H1(0) - H|(0)

Proof. From equations (46) and (70), it follows that the error
equations corresponding to H, and H, are, respectively,

S (%,
Xpy1 = Xy — f,((xn)) [ (rln) + lU2H (’771)] ( n) €, = [2 H! (O)]cze - Alei e, (75)
(72) €ni1 = [2 H, (0)]626 - Azei +oee,
where
2
Ay = 9c§ —7¢,65 + (:ZHI'(O)(ZC3 - 4c§) +c, [22 [H!(0) - 6H/(0)] + 2C3H{(O)],
(76)

2
Ay = 96 = Te,05 + ¢ H3 (0)(2¢5 - 4¢2) + ¢, [%2 [H (0) - 6H.(0)] + 2¢,H] (0)].
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TaBLE 2: The comparison of different methods for the number of iterations.
Functions fix9=-0.3 frxo=0 f3x9=3 faxg=3.5 fsxg=1
NM 55 5 7 11 7
KM 49 3 4 7 8
GM 38 3 6 7 11
CM1 12 3 4 5 4
CM2 24 3 4 6 5
OM 56 3 4 5 4
AM 24 3 4 7 5
COSM 45 2 3 6 5
SINM 45 2 3 6 5
KOM 5 3 4 5 6
COM 5 3 4 4 4

We seek a combination of the two iterative schemes
corresponding to H, and H, and ask the coeflicient preceding
e’ to be zero, such that we have to solve w;, and w, from

w; +w, =1,

/ ! (77)
w,[2 - H{(0)] +w,[2 - H;(0)] =0,

4 4
€n1 = ~WiAje, —wyAze, + oo,

3

whose solutions are given by equation (74). At the same
time, the combined error equation is given by

(78)

c
= —{9¢) — 7cy05 + 2c2(2c3 - 4c§) + 52 [w,HY (0) + w,HY (0)] + 4c,¢5 — 6C5 € + -+,

which can be arranged to that in equation (73).

The family in equation (72) includes some optimal
fourth-order iterative schemes with two parameters w, and
w,, whose error equation again belongs to the type in
equation (23). It can be seen that the functions with H (0) =
1 are very general, and for this class of iterative schemes, the
conjecture of Kung and Traub is also true. O

6. Numerical Experiments

In this section, we give numerical tests of the proposed
combined iterative schemes. The test examples are given by

fi(x) = x> +4x* - 10,

frlx)=x"—e" —3x+2,
fi(x)=(x-1)°-2, (79)
fa(x)=(x+2)" -1,

fs(x) =sin® x — x> + 1.

The corresponding solutions are, respectively,
r; = 1.3652300134, r, = 0.2575302854, r; = 2.2599210499,
ry, = —0.442854401002, and r5 = 1.4044916482.

In Table 2, for different functions, we list the number of
iterations (NI) obtained by the presently developed algo-
rithms, which are compared to the NM, the CM1 in equation
(12), the CM2 in equation (15), the KM in equation (16) with
y = 3, the OM in equation (19), the AM in equation (20), the

GM in equation (21), the KOM in equation (68) with y = 3,
and the COM in equation (69).

7. Conclusions

Employing a new weight function, the nonlinear equations
were solved by using a new family of the fourth-order it-
erative scheme, which is optimal according to the conjecture
of Kung and Traub, and it was proven to be of fourth-order
convergence with E.I.=1.5874. Theorem 1 indicated that if
one can develop a fourth-order iterative scheme based on the
evaluations of [f(x,), f' (x,), f(y,)] whose coefficient
preceding c,c;e? is not —1, then the Kung-Traub conjecture
would be disproved. We also proposed a combination of two
fourth-order iterative schemes of which the dominant term
c3et in the error equation is eliminated. Upon comparing
some examples to other methods, we found that the com-
bined iterative scheme converges faster. The present iterative
scheme was competitive to other optimal fourth-order it-
erative schemes.
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The preconditioned generalized shift-splitting (PGSS) iteration method is unconditionally convergent for solving saddle point
problems with nonsymmetric coefficient matrices. By making use of the PGSS iteration as the inner solver for the Newton method,
we establish a class of Newton-PGSS method for solving large sparse nonlinear system with nonsymmetric Jacobian matrices
about saddle point problems. For the new presented method, we give the local convergence analysis and semilocal convergence
analysis under Holder condition, which is weaker than Lipschitz condition. In order to further raise the efficiency of the algorithm,
we improve the method to obtain the modified Newton-PGSS and prove its local convergence. Furthermore, we compare our new
methods with the Newton-RHSS method, which is a considerable method for solving large sparse nonlinear system with saddle

point nonsymmetric Jacobian matrix, and the numerical results show the efficiency of our new method.

1. Introduction

In this paper, we will explore effective and convenient
methods for solving nonlinear nonsymmetric saddle-point
problem:

F(x) =0, (1)

where F: D c R" — R" is a continuous differentiable
nonlinear function and the function F = (F,,...,F,.,)"
with F; =F;(x),i=1,2,..., and x = (x},...,X,,,) IS
defined on an open convex subset of (1 + m)-dimensional
real linear space R™"™. Moreover, the Jacobian matrix F’ (x)
is large, sparse, and nonsymmetric saddle point with the

form
, ~ A(x) B(x)
F(x)—(_BT(x) : ) @

where A(x) € R™" is a real positive definite matrix and
B(x) € R™™ is a full-column rank matrix (m < n). This kind
of large sparse nonsymmetric saddle-point nonlinear sys-
tems (1) always arises in many scientific and engineering
computing areas, such as elastomechanics equations and

Stokes equation. Some of them have not been solved ana-
Iytically, so we can only explore the method to obtain the
numerical simulation at our utmost.

In the past, researchers have developed some methods to
solve nonlinear function [1-10]. In these methods, the most
typical and popular method for solving the nonlinear system
(1) is the Newton method. The principle of solving nonlinear
equations by the Newton method is very simple. In each step,
we expand the nonlinear equation at x;. by Taylor expansion
and take its linear part to construct the approximate
equation of the nonlinear equation. Then, we calculate the
zero point of the approximate equation as the next iteration
point, and it is represented as follows:

Xie+1 =xk_F, (xk)ilF(xk), k=0, 1, (3)

The sequence x;, calculated by this iteration will converge
to the numerical solution eventually as k — + co under
certain conditions. We know that an excellent algorithm is
not only accurate but also efficient. When the dimension # is
large, the cost of each step of the traditional Newton al-
gorithm is very expensive. The reason for this phenomenon
is that, at each iterative step, a linear system
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F'(x)se = =F(xi), k20,8 = Xppy = X (4)
must be exactly and accurately solved. We hope to give up a
little bit of “precision” in exchange for greater “efficiency.”
This idea led to the development of inexact Newton methods
which were first proposed by Dembo et al. [11]. In recent
decades, the inexact Newton method has been extensively
studied and applied in some fields. The linear equation (4)
can be solved efficiently by some methods which will discard
some precision, but the calculation amount and time will be
greatly reduced. In addition, we know that the traditional
Newton method is second-order convergence, and in-
creasing the order of convergence can make the algorithm
converge to the exact solution faster. Therefore, we consider
improving the Newton method to improve the order of
convergence. Next, we introduce the traditional Newton
method and the improved Newton method. In the inexact
Newton methods, the termination condition of the Newton
equation (4) is

|F' (xi)si + F ()| < mi|F (i), k=0, (5)

where s, = x;,, — X is obtained by applying some linear
iterative methods. The inexact Newton methods usually have
the unified form as shown in Algorithm 1 .

Here, F' (x;) is the Jacobian matrix and #; € [0,1) is
commonly called forcing term which is used to control the
level of accuracy. The algorithm mentioned above has
R-order of convergence two at least. The researchers present
the modified Newton iteration to improve convergence
order as shown in Algorithm 2.

From what is mentioned above, inexact-modified Newton
methods only need to calculate F' (x;)” ' once per m step and
have less computation compared with inexact-modified
Newton methods. This kind of method has R-order of
convergence m+1 at least as the outer iteration and the PGSS
iteration method as the inner iteration. In this paper, we can
establish the modified Newton-PGSS as m =2.

The inexact Newton methods consist of two parts: inner
iteration and outer iteration. The outer iteration is the
Newton method, which is used to solve nonlinear problems,
and each iteration has to solve a linear equation in order to
generate the sequence {x;}. Linear iterative methods, such as
the classical splitting methods or the modern Krylov sub-
space methods [12, 13], are applied inside the Newton
methods to solve the Newton equations approximately. A
significant advantage of such inner-outer iterations is that
one can reduce the inverse of the Jacobian matrix storage
and calculation of each step, so as to improve the operation
efficiency. Therefore, this kind of inner-outer iterative
methods has been widely studied. Newton-Krylov subspace
[3] methods which utilize the Krylov subspace iteration
methods as the inner iterations have been effectively and
successfully used in many fields, see [14-16].

By introducing the inexact Newton method [1-4, 7, 8],
we know that the efficiency of the inner iteration will affect
the efficiency of the whole algorithm. Thus, we want to
explore the excellent inner iteration to obtain efficient inner-
outer iterative methods. In other words, efficient linear
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(1) Let the initial guess x, be given.
(2) For k = 0 until “convergence” do:
X =% — F (%) 'F(xp), k=0,1,...,
Find some 7, € [0,1) and s, that satisfy
IF (x) + F' Gesell < nilF (el
(3) Set xp,; = xp + S

ALGORITHM 1: Inexact Newton methods.

iteration should be employed to solve the Newton equation
(4) with real nonsymmetric saddle-point Jacobian matrix.
There are many ways to solve the saddle point linear
problem [3, 17-25]. Recently, Cao et al. [26-29] proposed a
method which is based on the shift-splitting iteration
method presented by Bai et al. [30] to solve the saddle-point
problem. This method is more efficient than other algo-
rithms such as the Uzawa-type iteration methods, the
successive over-relaxation (SOR-like) iteration methods
[31, 32], and the Hermitian and skew-Hermitian splitting
(HSS) iteration methods [33-35]. In addition, the PGSS
iteration method is convergent unconditionally and the
preconditioner generated by it is also very excellent [26].
When applying the PGSS method for solving complex
linear system, at each iterative step, it needs to solve single
linear subsystem with their coefficient matrices being the
Mpgss one (1/2)(Q + /). Furthermore, in order to in-
crease the efficiency of algorithm, we optimized the outer
iteration and then we propose modified Newton-PGSS
method to solve the saddle problems. Because there was no
Newton method to solve the saddle point system problem,
we compare the Newton-PGSS method with the traditional
methods, for example, the Newton-RHSS method
[31, 36, 37].

The organization of the paper is as follows. In Section 3,
we introduce the Newton-PGSS method. In Sections 4 and 5,
we offer the convergence properties of this method. We
establish local convergence theorem and semilocal con-
vergence properties under some proper hypothesis for the
Newton-PGSS method, respectively. We show the modified
Newton-PGSS method in Section 6. Numerical examples are
presented to confirm the efficiency of our new method in
Section 7. Finally, in Section 8, some brief conclusions are
given.

2. Preliminaries

First of all, we review the PGSS method [26] for solving large
sparse nonsymmetric saddle-point linear system:

dx=b, o Ry peR, (6)
where o € R"™X(1m) jq 3 real nonsymmetric saddle-point
matrix.

The PGSS Iteration Method [27]. Given an initial guess
x, € R™™ compute x;,, for k=0,1,2,..., using the fol-
lowing iteration scheme until {x;} satisfies the stopping
criterion:
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(3) Set xy; = xp + 5y

(1) Let the initial guess x, be given.

(2) For k = 0 until “convergence” do:
X1 = X~ F' (Xk)_lF(xk),
o = %1 = F ()7 F (xg))s

Xigmo1 = Xz = F' (1) 1F(xl§,m—2)
LT
Xjp1 = Xpem = Kot — F (%) F (Xp )

Find some #; € [0,1) and s;,i = 1,2...m that satisfy
IE (xie) + F' (ei)sicqll < i IF (i)l

ALGORITHM 2: Inexact-modified Newton methods.

1 1
E(Q+.52Y)xk+lzz(ﬂ—d)xk+b, (7)
where Q) is a matrix with the form ( océ ! /3(; ), where I, isa
2

n x n identity matrix and I, is a mx m identity matrix and «
and f are real numbers greater than 0. We can get x,; from
(7) leading to the PGSS iterative scheme:

Xpp1 = MopXp + Gopb, (8)
where
Mg =(Q+d) " (Q- ), ©
Gop=(Q+a)".

Here, Mz is the iteration matrix of the PGSS iteration
method.

Theorem 1 (see [27]). of =b ecRHmMx(nm) i 5 nonsym-
metric saddle-point matrix, « is a nonnegative constant, and
B is a positive constant. Then, the iteration matrix M, of
PGSS is

Mg =(Q+d) (Q-d), (10)
which satisfies
p(M ) < max -(112) oy ) {1/12) . Ai <l (11)
ap)= Aed (g )y A

3. The Newton-PGSS Method

In this section, we describe an inner-outer iteration method
for solving systems of nonlinear equations with complex
symmetric Jacobian matrices.

We use Newton methods as outer iteration and apply the
PGSS method as the inner solver for the modified Newton
method, in other words, the PGSS iteration is employed to
solve the following two linear systems:

F’ (xk)dk =-F (xk), X+ 1= X+ dk' (12)

Then, we get the Newton-PGSS method for solving
nonlinear system (1).

The Newton-PGSS Method. Let F: D ¢ R™" — R™™ be a
continuously differentiable function with the complex
symmetric Jacobian matrix F' (x) at any x € D, and let

v Alx) B(x)
F(x)_<—BT(x> 0 ) 1)

where A(x) € R™ is a real-positive definite matrix and
B(x) € R™™ is a full column rank matrix (1 <n). Given an
initial guess x, € D, two positive constants « and f and
sequence {I,}.2, of positive integers, compute x;,, for k =
0,1,2,..., until {x;} converges. The algorithm can be
concluded as Algorithm 3.

4. Local Convergence of the
Newton-PGSS Method

In this section, we prove the local convergence of Newton-
PGSS method under the Hélder condition.

Let F: D ¢ R" — R" be G-differentiable on an open
neighborhood Ny cD. Suppose F'(x) = Ppges (x)—
Qpggs (%) is modified generalized shift-splitting of the Ja-
cobian matrix  F' (x), where Ppass (x) = (1/2)
(Q(x) + F' (x)) and Qpggs (%) = (1/2) (Q(x) = F' (x)) and
V(x) and W(x) are defined as follows. Suppose F'(x) is
continuous and positive definite at a point x, € D, at which
F(x,)=0.

Denote with N(x,,r) an open ball centered at x, with
radius r > 0.

Assumption 1. For all x € N(x,,r) ¢ Ny, assume the fol-
lowing conditions hold.

(A1) The bounded condition: there exist positive con-
stants § and y such that

max{”A(x*)

, ||B(x*)||} <6,

(14)
I e |

(A2) The Holder condition: there exist nonnegative
constants K, and K, such that
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(2) Fork=0,1,..
(21) Set dk,O =0.

., until |F (x;)|| < tol||F (x,)|l do:

and obtain dy; such that

where

ol (xp) 0
Q(xk)—( 10 k BL, (x;) >

(2.3) Set
Xjp1 = Xp + dpy, -
obtain thel fc;llowing uniform expressions for d,
dk,lk == Z,-Eo Mm/; (€ xk)JGa,ﬁ (Q; x)F (x),
where
M 5(Q;x) = (Q(x) + F' ()" (Q(x) - F' (x))),
and
G (Q;%) = 2(Q(x) + F' (x)) 1.

G ()71 (I = M 5 (Q; %))
= G (%) 7" = G ()7 M 5 (5 x)

= (12)(Q(x) + F' (x)) - (1/2) (Q(x) - F' (x))
=F' (x).

The Jacobian matrix F' (x) can be rewritten as
F' (x) = By (03) = Copg (9 %),

with o

Ba,ﬁ(Q; X) = Ga,ﬁ(ﬂ;-x) >

B (Qix)™" = (I - My (Q 2))F (x),

Cop (%) = Gy (Vi) M, 5 (5 x).

(1) Given an initial guess x,, a nonnegative constant «, a positive constant 5, and a positive integer sequences {lk},ﬁo.
(2.2) For 1 =0,1,...,I; — 1, apply algorithm PGSS to the linear system (12):
(Q(x) + F' (xk))dk,l+1 = (Q (x) - F (xk))dk,z —F(x),

IF (x;) + F' (x ) I < 1l F (x|, for some ryy € [0, 1),

I, isan x nidentity matrix and I, is a m x m identity matrix

Then, the Ne\th(l)n—PGSS method can be rewritten as
Xpor = X = Xiog Mg (Q320) Gop (i x)F (), k=0,1,2,...,

From the definitions of Mg (V;x) and Gop (V; x), we can obtain

= (1/2)(Q(x) + F' (x)) = (1/2)(Q(x) + F (x)) (Q(x) + F' (x))” ' (Q(x) = F' (x))

Then, the Newton-PGSS method can be equivalently expressed as
X1 = X = (I = Mo (s x)")F (3) ' F(x,), k=0,1,2,...,

ALGORITHM 3: N-PGSS (Newton-PGSS method).

p

>

p

>

4G - A(x.)
|BCo - B(x.)

< Ka"x - X,

(15)

SKb"x - X,

with the exponent p € (0,1].

Remark 1. We can know the fact that Lipschitz condition is
a special case of Holder condition when p = 1, and we can
call Holder condition Lipschitz. Hence, Lipschitz condition
is stronger than Hoélder condition.

Now, under Assumption 1, we establish the local con-
vergence theorem for the Newton-PGSS, and we can know
the properties of function F around the numerical solution
x, and the information about the radius of the

*

neighborhood. The properties and information mentioned
above will affect the given method about the local
convergence.

Lemma 1. Under Assumption 1, for all x,y € N(x,,r), if
re (0, (1/(yK)) VP, then F'(x)"' exists. And, the fol-
lowing inequalities hold with K: =K, + K, for all
x,y € N(x,,7):

|F' (x) - F'(x.) p

>

SK“x - X,

Fr -1 _%)
“ (%) |l<1_VK"x_x*P (16)

IF (x)] < P4 28)x - x,

[ - x.,

1+p
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Proof
A(x) - A(x,)
F' F'
[FG) = ()] < ( (B (x) - B" (x, ))
H A(x) A(x ) 0
= ||A(x) - A(x,)
Since
|F' (x)"" (F' (x) - F'(x, <1, (18

by Banach lemma, F(x)™" exists and inequality

IF G| S1_+’ (19)
holds, and
A(x,) B(x,)
e i, )
<” A(x*) 0) +< B(n))"
- 0 ~(B"(x,)) o©
<[A(x)] +]B(x.)
(20)
Moreover, since
F(x):F(x)—F(x*)—F'(x*)(x—x*)+F'(x*)(x—x*)
- J:F’(x* Ft(x—x.)) — F' (x.)dt (x - x,)
+F'(x,)(x - x,),
(21)

it holds that
1
IF ()l < joup' (. +£(x - x,)) = F' ()] dt (x - x.)

+|F' (x

1
Sj
0

dr(x -

1+p

(22)

This completes the proof of Lemma 1.

Theorem 2. Under the assumptions of Lemma 1, suppose
r € (0,ry) and define ry: = minlgjg{m , wWhere

5
B(x) - B(x,)
0
0 B(x) - B(x,)
(17)
~(B" (x)- B (x,)) 0
—B(x*) <
r(l) _a 70
* yK (1 + 6+ 16)
o _ i 1-20(+ 19" (23)
* =\ @+ 2p) (T4 pIKY
NONN R
+ YK’
with I, = liminf,_, I, and the constant l, satisfies
AL ] 29

In((r+1)0)

where the symbol |-] is used to denote the smallest integer no
less than the corresponding real number, T € (0, ((1 - 6)/0))
is a prescribed positive constant, and

1-A
0=0(a,fB;x,) =Mz (x,)|< max !
( /3 ) || ’ﬁ( ) )L,»E/\(Q“/Z)F' (x*)Q(“Z)) 1 + )Ll’
=o(afix,)<1,
(25)

where «, 3 are more than 0.
Then, for any x € N(x,,r) ¢ Ny, t € (0,r) and c¢>1,, it
holds that

“Mm/; (V; x)" <(r+1)8<1,

3+ p
p. _ P c
g(tfic) = thP<1+p t +2ﬁ[(r+1)6]>
Sg(rg;lo) <l
(26)
Proof. Denote
Bos(Q:x) = Gy ()7,
“ e (27)
Cop (%) = Gup(Q;x) "M, 5 (Q; x),
then
M, 5(Vix) = By (Q;%)7 Cpp (s %). (28)



From the bounded condition, we have

< F - F ()

Ba)l; (07 x) - Ba,,B (Q, x*)

p

>

K
S—"x—x*
2

Bo ()| = (1= Mo (o)) () <2

(29)

and we can get the inequality
Byg (x*)_l(Ba,ﬂ (Q;%) = By ( x*))" <Ky|x - x, Peq
(30)

[ M (©2:3) ~ M (0 x,)

B (%) 'Cop(x) = Bog(x,) 'Cpp(x.)

<

Bays (250

Ca,ﬂ ((27 x) — Clx,ﬂ (Q, x*)

<~y (2 P
l—yK"x— x,

p

1+ H)yK"x -x,
= o<

1 —)/K"x - X,

We can use (33); hence,

[ Mo (9250 < [ Ml (€25 ) - M (@ %)

+||M“,,,3 (Qx,) Y

<(1+71)0<1.

Now, we turn to estimate the error about the Newton —
PGSS iteration {x;},” defined above. Clearly, it holds that

Xppl = Xo = X — X, —(I ~ M, 5(Q; xk))lkF’ (x) ™" F ()
= —F'(x)  (F () = F' (x.) = F' (%) (% = x.))
+F ()7 (F (i) = F(x,)) (= x.)
+Mlx)ﬁ(ﬂ;x§(kF' (xk)_lF(xk)),
(35)

B, p(x)” 1(Ca"g (%) = Cyp (x*)) + (Ba,ﬁ (x)"' - B,g (x*)fl)C[x,ﬁ (x,)

Byp () 1(Cm,ﬁ (%) = Cyp (., )) + By (x)” 1(B,X,ﬁ (Q;x,) = Bg (O x))Ba,/; (x,) ICa’ﬁ (x,)
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Hence, by making use of the Banach lemma, we can
obtain

2y

B Me— =
B (x) || 1— yK"x _ x*”p (31)
Similarly,
1, ., , K P
Cop (Q;%) = Cop (O x,) SE”F (x) - F'(x,) SE”x - x,
- 2y
C_ ,(Q; MNe——+
g (25) u<1—yK||x— x]°
(32)
Then, we have
(33)

'Mtx,ﬂ (Qv X*)

)

B(X,ﬂ (Q, x) - B(x,ﬂ (Q, x*)

where

M5 (Q ) F (x)”'F (%) = M5 (O ) F (%)
- (F(x) = F(x.) - F'(x,)
- (= x,))
+ Mg (Qx) F' (x,)
- (x = x,)-

(36)

Hence, we can obtain
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||Mo¢,[3 (5 x0)"F' (x.) (3 - ||Mo¢/5 (@ X "(“F(xk F(x,) = F'(x.) (o = )| +[F' (=) (i = %))
y(r+ 1)) ( K 1+ )
< - 26| x;, — ,
1-yK|x - x|/ \1+p [ * 20—,
Y K 1 +
||xk+1 x| < ! —yK"x —x*”‘D (1 T p X — X, P + K|x—x.| 1 P)
SCRTTUUNTR S I S M)
1— ')/K"X oy 1+ P k * k *
14 3+p p !
—g("xk— M = .|
(37)
where max{"A (xO)"’ ”B(xO)“} <
F (x) ! <, (43)
Py y 3+ p » “ 0
g(t’;c) 1—thP(1+p t? + 2B[(1 + 1)6]° ) (38) ||F(x0)||s5.

This function is about ¢ increasing and about ¢ de-
creasing; hence,

9(|lxx - )<g(rfl,) <1 (39)

In fact, for k=0, we havelx,—
x© e N(x,,r). It follows that

(ro,l )“xo

Hence, x, € N(x,,r), and by making use of mathe-
matical methods of induction, suppose x,, € N(x,,r) is
valid for some positive integer k = m. Then, by making use of
the function above again, we can straightforwardly deduce
the estimate

(ro,l )"x

which show that it also holds true for k=m+1 as the fol-
lowing. In addition, we have

s (rg,)”xm - X

and, hence, x,,,; € N(x,,7,). Now, the conclusion what we
are proving above is as follows.

xl<r<ry, as

(40)

||x1

(41)

“xm+1

(42)

||xm+1 -X

5. Semilocal Convergence of the
Newton-PGSS Method

Assumption 2. For all x € N(x,,7) ¢ N, where r< (1/2)
{/(1/(Ly)), assume the following conditions hold.

(A1) The bounded condition: there exist positive con-
stants § and y such that

(A2) The Holder condition: there exist nonnegative
constants L, and L, for all x, y € N(x,,7) € N,

A (x) = AN <L,lx - ylI”,
IB(x) - Bl <Lylx - ylI”,

with the exponent p € (0,1], and we define L: =L, + L,,.

(44)

Lemma 2. Under Assumption 2, for all x, y €eN(x,, 1), then
F' (x) 'exists, and we have the following inequations:

|F' (x) - F' (»)|| < Lllx - yII?,

||F' (x)“ < L||x - x0||p +2p,

B, (Q; %) = Bog (Q: )| =[Cap (%) - Cps (@3 )|
2y
R e T
(45)

Proof. The proof is omitted since it is the same as Lemma
1.

Theorem 3. Under Assumption 2, for all x, y €eN(x,,1),
then F' (x)™ ‘exists, and we have the inequations in (45).
Now, we construct the following sequence of functions:



— L+p
g(t) = 1+pat bt + ¢, o)
h(t) = atf -1,
with the constants satisfying
__yL(+n)
1420y P8P Ly
- (47)
¢ =2y,

where n = max{n;} <1 and r = min(r,r,); let t, = 0, and
the sequence t;. are generated by the following formula:

t
tk+l = tk - thllji (48)

Some properties of the function g(t) and h(t) and the
sequence t; are given by the following lemmas.

Lemma 3. Assume that constants satisfy

1_

p, ptl 77

oFy LS—ZP(1+112)) (49)
AN (50)
I+p\a b

Denote t, = X/ (b/a), and then, when t € [0,t,], the fol-
lowing inequalities hold that

g(t) =0,

g (t)<0,

g" (1)>0,
h(t)<g'(t)<o.

(51)

Proof. The proof is omitted since it is straightforward.

Theorem 4. Under the assumptions of lemma in this section,
r: =min(ry,r,) with

o or
"= yL(1+ 1+ 01)

(52)
o|b
ry = ;,
satisfying
ry <71y (53)

And, define 1y =liminf, I, and the constant I,
satisfies
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-In #

>l @ 0o

I8 (54)

where the symbol | -] is used to denote the smallest integer no
less than the corresponding real number, T € (0, ((1 - 6)/0))
a prescribed positive constant, and

0= 00t s x0) = [ Mo (30) | < 1. (55)

Then, the iteration sequence {x;},., generated by the
Newton — PGSS is well defined and converges to x,, which
satisfies F(x,).

Proof. Firstly, we construct the sequence
to =0,

_9(t) (56)

h(t)

b

Furthermore, g (0) = ¢>0; hence, we have r, which
satisfies g(r,) = 0, where ¢, = 2p8 because (49) and (50).
Hence, we have

g(2y8) >0,

(58)
t, =2y0<r, < (ﬁ
a

Therefore, we have

b = Iy

We have

ty<t, <r,. (59)

Now, we assume that t;_, <t; <r,, and by making use of
mathematical methods of induction, we have

t
trol =t — % (60)
Because
h(te)<g' (t) <0, (61)
g(t) <0,
hence
tipr > tre (62)

Furthermore, m(t) =t— (g(t)/g' (t))=m'(t)= ((g(t)
g" (t))/g’(t)z); then, m'(t)is an increasing function
in (0, ¥/(b/a)) and —(1/h(t}))< - (1/g' (t;)); hence, we
have ti,, =t — (gt )/h(t))<t,— (g(te)lg (t)<r.-
(g(r)lg' (r,)<r,<r,, and it exists as point
t liminf, | 7.

Next, prove the following inference by mathematical
induction:
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|1 = i) <t — o Because
1- 1
(63) SPyPiLe 1 o
th p P
|F' (x k)"—ﬁ teer =t 2(1+m) 2
_r 1 (65)
where LIt < ()
! -1
e = xo < "F (%) F(x(,)” bt > 20,
+”Moc,ﬁ (s xo)l*F, (xo)_lF(xo)“ sy (1 + 91*)& we can derive inequality
to—ty =290, (1—'7))’ a
e 1-ypLt] = —h(tk)' (66)
20 — yLt}
”F(Xo)“<8 1+7 y(l 1) (ti —to)s Hence,
IF (i)l < [F (i) = F (xict) = F' (i) (3 = 21|
+[[F () + F' (x51) (e = )|
L
1% b i — xk71”p+1 + 1| ()
(64)
y(1+11) y(1+11) 2 B Lip 1_)’“{;1 B
e P () e n s -t
(67)
1 a p+l n
T3 S m(tk ~ i) " Th) (te = te)-
. Io\ ! -1
And because [ =il < "(1 ~ Mo (05x1) )F (t) F(xk)”
I Y (70)
a .
1+ p(tk - tk‘l)PH + ’7(tk - tk—1) = (1 +((7+1)0) ) 1-— thk "F(xk)"’
<g(t) - g(ty) - htey) (te — tey) and we can have inequality
1 +n)y
F <tpyp — g 71
- 1 jp (t£+1 - tgjll) - b(tk - tk—l) —(atﬁ - 1) (tk - tk—l)’ 1-yLty " (xk)" e 7
Since the sequence {t;}.-, converges to ¢, and
1+ pa(tf” ——t")) = atfy (6= tiey) + 1 (1~ By loar = 2] < oo = 2l + ek = x|+ +[les = o]
(68) Sty ~ bt b — b+ H b —fp ST,
(72)

we can give

y(d+7n) _9() = g(tie) = h(te) (B — 1)
17 "F )" = —h (tk)

g(t)
~h(t;)

= (tk+1 - tk)'
(69)
Then,

where r, < {/ (b/a), the sequence x; also converges to x,. The
proof has been completed as above.

6. The Modified Newton-PGSS Method and Its
Local Convergence

In this section, we improve Newton-PGSS and introduce the
modified Newton-PGSS and prove the local convergence of
the modified Newton-PGSS method briefly.
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The modified Newton method is a kind of algorithm
based on the Newton method. Its principle is to reduce the
calculation times of the inverse matrix of Jacobian matrix,
making the algorithm more efficient. It only needs to cal-
culate inverse matrix once every two steps. The format of the
algorithm is shown below:

F' (xi)dy = =F (x;),
Vi = X +dp
F'(xi )l = =F (yx),
X1 = Vi + e

Then, we get the modified Newton-PGSS method for
solving nonlinear system (1) (Algorithm 4).

(73)

Assumption 3. For all x € N(x,,r) ¢ N, assume the fol-
lowing conditions hold.

(A1) The bounded condition: there exist positive con-
stants § and y such that

max{"A(x*)

B[} <0,

(74)
e

(A2) The Holder condition: there exist nonnegative
constants K, and K, such that

p

>

A - A(x,)
[B(x) - B(x.)

< Ka"x - X,

» (75)

>

SKb"x - X,

with the exponent p € (0,1].

Lemma 4. Under Assumption 3, for all x,y € N(x,,r), if
re (0, (1/(yK))) WP, then F'(x)"' exists. And, the fol-
lowing inequalities hold with K: =K, + K, for all x, y
€eN(x,,7):

[F' (x) = F' ()| < K|Jx - x. |,

[P o) <

)4
1-yK|x - x, r (76)

K

IIF(x)||S1+p

ey 26“)/ - x*"

[ - x.,

Theorem 5. Under the assumptions of Lemma 4, suppose
r € (0,7y) and define ry: = minlsjg{rﬂ , where

Journal of Mathematics

r(l) _a 70
* yK(1+0+16)

o _ o 1-20((z+ 1O)"

T, , (77)
((4+2p)/(1+ p)Ky
NON
+ YK
with Iy = liminf,__, I, and the constant u satisfies
_ In29 (78)
> In((z+ 1)) >

where the symbol | -] is used to denote the smallest integer no
less than the corresponding real number, T € (0, ((1 - 6)/0))
is a prescribed positive constant, and

6= 0(a f;x.) =My (x.)
12 (79)
1+A

< max
AiE)L(Q(]/Z)F, (x*)Q(l/Z))
with aand 8 are more than 0.
Then, for any x € N(x,,r) C Ny, t € (0,r) and c>u, it
holds that

[ Mo (Vi) < (z+ 1DO<1,

g(tPc)=—7 (3+P1<tp+zﬁ[(r+1)e]f)

1-yKtP\1+p
<g(rfiu)<1.
(80)

Proof. It is the same as Theorem 2.

In Theorem 5, we get the fact that [xV) —x, | <
g(rg; Mx©@ — x, || which is the modified Newton-PGSS has
the similar result as the following.

Theorem 6. Under the conditions of Theorem 5, we have the
fact that, for any x, € N(x,,r)with corresponding
{Lh2o {mitico of positive integers, the iteration sequence
{xi}eoy which is generated by the modified Newton-PGSS
method is well defined and converges to x,. Furthermore, it
has the following properties:

(1/k

th;n@ sup“xk - X, || ) <g (rg; u)z. (81)

Proof. The proof of |y, — x,. < g(lx; — x, 175 L)llx, — x
(|l is the same as [lx,, — x, 1 < g (lx = x, 175 L)l — x|l in
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(1) Given an initial guess x,, a nonnegative constant &, a positive constant 3, and two positive integer sequences {lk}f__’o, {mk}izo.
(2) For k=0,1,..., until ||F(x;)|| < tol||F (x,)] do:
(2.1) Setdyy = hyy: =0.
(2.2) For 1 =0,1,...,I; — 1, apply algorithm PGSS to the linear system (12):
(Q (xp) + F' (x1)) dk,l+(1/2) = (aQ(xy) - F' (xk))dyy = F (xy),
and obtain dy; such that
IF (x;) + F' (%) | <1l F (i), for some gy € [0, 1).
(2.3) Set
Vi = X+ dy,
(2.4) For m=0,1,...,m. — 1, apply algorithm PGSS to the linear system (12):
(Q () + F' (xk))hk,m+1 = (aQ) (x;) - F' (Xk))dk,z = F(yx)s
and obtain hy,, such that B
IF (x;) + F' (xk)mk)thI < lIF (y)ll, for some 7. € [0, 1).
(2.5) Set
X1 = Vit hk,mk’
Where

o al (xp) 0
Q(xk)—( 10 k IBIz(xk))'

I isanx ni de ntity matrixan d I, isam x mi de ntity matrix

obtain the following uniform expressions for dy; and hy,, ,
I-1

iy, == Y. Mg (Qx) G (Q ) F (53),
j=0
m—1 )
B, == Y. My (Q:xY G (0 x)F (7,
j=0

Mg (Q;x) :lanld Gop (Q; x) are defined as well as Section 3. Then, the modified Newton-PGSS method can be rewritten as
k— .
Xt = X = Y, Mg (Q %Gy (Q x0)F (x,)

j=0
m—1 )
= Y Mo (%) G (X )F (1), k= 0,12,
=0

The modified Newton-PGSS method can be equivalently expressed as

Xy = x5 = (I = Mg (5 )")F' (x)” ' F ()
—(I = Mo (Qx)"™)F (x) 'F(y), k=0,1,2,..,

In the following, we analyze the local convergence, and its condition (including assumption) and local convergence theorem
are the same as Theorem 2 because their Ma)[,v(Q:, x) and Ga)ﬁ (Q; x) are the same. Thus, we only restate them now.

ALGORITHM 4: MN-PGSS (modified Newton-PGSS method).

Theorem 2. And, from the defination of x; and in Lemma 4,
we can easily get that

= |y = . = (1= M (@ By )™ )F' () 'F (7))
=Hyk"x*"fﬂ(xk)_lF(ykﬂ'+“A4(“’ﬁ§xk)mde(xk)_lF(ykﬂL

||xk+l - X,
(82)
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where

=%~ F (x) 'F(ye) = F () (F(ye — F(x.) - F' (%)) 0 — %)

Journal of Mathematics

! -1 ! ! (83)
+F () (F () = F' () (7 = x.).
By Lemma 4 and similar to the proof of |[F (x)[l, we can
get it:
R e G (Y (RO R PSS
1 - yK|x; - x*“p l+p
[ M (o B )™ " (i)™ F ()| = [ M (0 B i) ™' (i)™ (F () = F () = F' (x.) (= %) + F (x.) (= %)) (89)
y((1+1)8)™ Lo e ~ )
_l—yK”xk—x— *”p(l"'P"yk X, +28||yk x| )
Combining (84) with (85), we can obtain
yK 1+((t+1)9)™
28y ((z+ 1)O)™ -
1 - yK]x - x, P>" o]
—x |50 (2Kg(|lx - x| 1)
ol elih) (2Kolbx )y e g,
1 - yK|x; - x, L+p
(85)

+28((r +1)O)™ >||xk - x|

<Y9(||xk—x* P;lk) <3+p
T 1-yK]|x - x,f \1+p

= g(”xk - X,

<g (rop;u)2||xk — X,

By utilizing mathematical induction, we can get the fact
that any x, € N(x,,r) and nonnegative integer k, and we
have

||xk+1 —X.|<g (rg; u)zuxk - X, <
<g (rbiu) %, - x| < g (B u) "%, - x,
<g(rb;u) Vx, - ..

(86)

Knxk - X,

P;lk)g("xk - X,

Pi28((r+ 1)0)mk>"xk - x,

p

;mk)“xk - X

Because g (r};u) < 1, we can make a conclusion that x,
converges to x, as n — + 0o from (86. The proof of
theorem is completed.

7. Numerical Example

In this section, we show the efficiency of the modified
Newton-PGSS method. Because such problems have not
been analyzed before, in this paper, the first step is that we
just compare the modified Newton-PGSS method with the
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TaBLE 1: Numerical results of inexact Methods for v=0.1 and # =0.4.
n Method Optimal values of a/ («, f3) Error estimates CPU time (s) Outer IT Inner IT
Newton-PGSS (9.7,7.8) 2.2284 x 107* 3.89 11 5
16 Newton-MPGSS (9.7,7.8) 6.1064 x 107 436 7 5
Newton-RHSS 14.4 2.3976 x 1074 7.12 13 10
Newton — PGSS (11.3,9.2) 3.3053 x 1074 15.02 12 6
20 Newton-MPGSS (11.3,9.2) 1.6762 x 107* 14.7 5 6.6
Newton — RHSS 17 3.3324 x 1074 26.92 13 13.6
Newton — PGSS (15.5,9.9) 531 x 1074 227.52 13 10.3
32 Newton-MPGSS (11.3,9.2) 1.4157 x 107* 227.8 7 14.4
Newton — RHSS 20.6 3.5082 x 107* 453.84 15 28.2
TaBLE 2: Numerical results of inexact methods for v=1 and 1 =0.4.
n Method Optimal values of o/ («, f) Error estimates CPU time (s) Outer IT Inner IT
Newton-PGSS (8.8,7.4) 1.6253 x 10~ 20.74 15 44.7
16 Newton-MPGSS (11.3,9.2) 1.1582 x 107 30.8 8 39
Newton-RHSS 13.2 1.7534 x 1074 82.2 13 124.9
Newton — PGSS (7,7) 2.6262 x 1074 195.01 14 85.9
20 Newton-MPGSS (13,6) 3.2972 x 1074 140.59 7 45.4
Newton — RHSS 18 2.2695 x 107* 253 13 167.5
Newton — PGSS (9.4,10.2) 2.297 x 1074 3562 15 153.3
32 Newton-MPGSS (11.4,9.8) 8.8723 x 107 3593 8 135.5
Newton — RHSS 21.7 3.596 x 1074 5488.3 13 327.5
TaBLE 3: Numerical results of inexact methods for v=0.1 and # =0.2.
n Method Optimal values of o/ («, f) Error estimates CPU time (s) Outer IT Inner IT
Newton-PGSS (7,7) 7.6864 x 1073 6.57 8 115
16 Newton-MPGSS (7.7,9.6) 2.5763 x 10~ 4.66 4 9
Newton-RHSS 18.6 9.8486 x 107° 8.34 9 16.1
Newton — PGSS (8.2,9) 3.3090 x 10~ 15.43 8 12.4
20 Newton-MPGSS (12,6) 2.5400 x 10* 14.4 4 8.4
Newton — RHSS 14.6 2.0703 x 10~* 21.44 8 23.8
Newton — PGSS (8.2,9.5) 2.2875x 107* 394.4 8 29.2
32 Newton-MPGSS (10.8,13.5) 1.7649 x 10~4 346.78 4 21
Newton — RHSS 20.6 1.9104 x 10~ * 507.3 7 48.5
TaBLE 4: Numerical results of inexact methods for v=1 and 1 =0.2.
n Method Optimal values of a/ («, f3) Error estimates CPU time (s) Outer IT Inner IT
Newton-PGSS (8,7.6) 2.7300 x 1074 41.67 9 75.9
16 Newton-MPGSS (20,7) 1.2180 x 107* 33.15 5 47.2
Newton-RHSS 17.8 8.4271 x 107° 86.22 8 218.8
Newton — PGSS (8,9) 3.3351x 1074 174 9 112.4
20 Newton-MPGSS (8,9.6) 3.5554 x 107> 93.2 5 142.3
Newton — RHSS 18 9.3834 x 10~ 258 8 289.6
Newton — PGSS (8,9.2) 1.95 x 107 3784 9 304.9
32 Newton-MPGSS (10.8,13.5) 1.485 x 107* 3679 5 219.2
Newton — RHSS 21.7 1.4216 x 107* 5944 8 564.5

Newton-PGSS method and Newton-RHSS as their inner
iterations are splitting methods. And, the second step, we
will discuss which is more effective as preconditioner in
Newton-GMRES algorithm. The numerical results in

Example 1 were computed using MATLAB Version
R2011b, on an iMac with a 3.20 GHz Intel Core i5-6500
CPU, and 8.00GB RAM, with machine accuracy eps=
2.22x 1071,
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TaBLE 5: Numerical results of inexact methods for v=0.1 and n =0.1.
n Method Optimal values of a/ («, 8) Error estimates CPU time (s) Outer IT Inner IT
Newton-PGSS (8.2,7) 2.7447 x 1074 3 7 10.1
16 Newton-MPGSS (13,6) 5.8466 x 107 3.85 4 7.3
Newton-RHSS 14.4 2.0678 x 1074 6.35 7 20.6
Newton — PGSS (8.2,7.6) 3.4582 x 1074 12.24 7 15.6
20 Newton-MPGSS (7.6,11) 1.0698 x 10~* 11.65 4 17.5
Newton — RHSS 16.8 2.6135x 1074 23.68 7 28.3
Newton — PGSS (8.2,7.5) 3.2225 x 107 369 7 38.9
32 Newton-MPGSS (10.8,13.4) 7.5135 x 107 306 3 31
Newton — RHSS 20.2 4.4700 x 1074 648 6 62.7
Example 1. Consider the Stokes flow problem. Find u and w A B
such that = )
~ ( -B" 0 )
_‘VAH+VW=f, inQ, ‘P(u) :(eull,euIZ).”)euzl’“.’eupp)evll’ (91)
V- -u= g, in Q, ) 1 » T
2 v, v
e’ ,...er,...er —-1,-1,...,-1) .
u(t,x,y) =0, on (0,1] €0Q), (87) )
J w(x)dx = 0, Then, the Jacobian matrix is
Q

where Q = (0,1) x (0, 1), with 0Q is the boundary of Q, u is
a vector-valued function representing the velocity v > 0 is
the viscosity constant, A is the componentwise Laplace
operator, and w is a scalar function representing the pres-
sure. By discreting the function above with the upwind
scheme, we obtain the saddle point problem in which

A:(I®T+T®I 0 )ERZPZXZPZ
0 I8T+T®I ’ (s8)
B (I@F) R2PP
= € s
F®l
where
T =h—v2-tridiag (-1,2,-1) € RPP,
r ... 2p?x1
F = ﬁ-trldlag (-1,1,0) e R R
?Z(eull)euﬂ).”’euzl’.“,eu},p’evll’ (89)
e et .,eVP‘D)T c RP*P,

G=11,...,0)" e RP,

with ® being the Kronecker product symbol. By applying
the centered finite difference scheme on the equidistant
discretization grid with the step size At = h = (1/(N + 1)),
the system of nonlinear equations (1) is obtained with the

following form:
F(u) = Mu+VY¥(u) =0, (90)

where

F'(u) = M +diag((e”"" e "2,...,e ™,

—U “Vu L7V ~Va
..,e PPle ,e e s€ ye e

e 11,0, 1)
(92)

Firstly, we compare the algorithms whose inner itera-
tions are splitting methods, such as Newton RHSS, Newton
PGSS, and modified Newton PGSS. The parameters needed
in the problem are chosen by using the traversal method for
the purpose of comparison: the initial guess u, = 0, the
stopping criterion for the outer iteration is set to be

£ o),
£ (o)l
and the prescribed tolerance #, and 7 for controlling the

accuracy of the iteration are both set to be #, which satisfies
inequality

1072, (93)

"F' (wi)dy, + F(”k)uz <
Fal, "

For different inner tolerance # =0.4, 0.2, and 0.1 and
problem parameters v =1 and 0.1, the results about outer IT,
inner IT, and CPU are listed in the numerical tables cor-
responding to the referred inexact Newton methods. Be-
cause the linear matrix of the solution is different in each
iteration, there is no way to find the optimal parameters in
theory. Thus, we get the most efficient algorithm by tra-
versing for the parameters of different algorithms, and then,
we tabulate these results. For the selection of a single pa-
rameter, we traverse the parameters from 0 with an interval
of 1 in the beginning. When the number of steps, time, and
error show an earlier increase and later decrease trend, the
iteration is stopped to determine the range of parameters.

(94)
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TABLE 6: Numerical results of inexact methods for v=1 and 5 =0.1.

15

n Method Optimal values of o/ («, f) Error estimates CPU time (s) Outer IT Inner IT
Newton-PGSS (8.2,8.2) 2.5370 x 107* 40.885 7 96
16 Newton-MPGSS (11,8.4) 3.9974 x 107° 40.9 4 85.4
Newton-RHSS 16 3.6266 x 107> 70.25 6 297.3
Newton — PGSS (8,10.4) 3.4557 x 1074 156 7 145.1
20 Newton-MPGSS (11,7.3) 7.1642 x 107° 134 4 155.2
Newton — RHSS 17.2 3.9646 x 10~ 272 6 404.3
Newton — PGSS (10.7,11.7) 5.1146 x 10~ 3001 7 251.6
32 Newton-MPGSS (11.4,7.6) 2.6628 x 1074 3241 4 308.8
Newton — RHSS 21.4 5.8568 x 10~° 5907 6 790.7
TaBLE 7: Numerical results of preconditioned inexact Newton methods for v=0.1 and  =0.4.
n Preconditioner for GMRES Optimal values of o/ (a, ) Error estimates CPU time (s) Outer IT Inner IT
- — 2.2319 x 1074 1.2 15 3.2
16 RHSS 27.5 2.6701 x 10~* 4.3 13 1.1
PGSS (2,1) 2.5914 x 10~ 0.7 7 1
- — 2.4378 x 1074 3.97 21 3.95
20 RHSS 23 2.6537 x 1074 13.82 14 1.1
PGSS (8,1) 1.6342 x 1074 2.58 8 1
- - 5.1384 x 10~* 16.21 16 9.9
32 RHSS 24 4.0483 x 107* 180.06 15 1.7
PGSS (5,1) 1.7622 x 10~* 16.52 8 1
TaBLE 8: Numerical results of preconditioned inexact Newton methods for v=0.1 and  =0.2.
n Preconditioner for GMRES Optimal values of o/ (a, ) Error estimates CPU time (s) Outer IT Inner IT
- - 64114 x 107 1.06 9 44
16 RHSS 14 2.6652 x 1074 3.2 9 1
PGSS (2,2) 1.3215x 104 1.36 7 1
- - 1.2495 x 10~ 1.06 10 6.3
20 RHSS 19 3.3791 x 1074 9.63 9 1.6
PGSS (3,2) 3.0298 x 10~ 1.83 7 1
- - 1.5261 x 10~ 19.6 10 17.2
32 RHSS 22 2.6631 x 1074 165.6 10 1.9
PGSS (2,1) 1.3380 x 104 16.69 7 1
TaBLE 9: Numerical results of preconditioned inexact Newton methods for v=0.1 and # =0.1.
n Preconditioner for GMRES Optimal values of a/ («, f3) Error estimates CPU time (s) Outer IT Inner IT
- - 1.0703 x 10~ * 1.37 8 5.3
16 RHSS 12 1.9074 x 10~* 3.33 8 1.1
PGSS (3,2) 2.5352x 107* 1.28 6 1
- - 2.1225x107* 1.81 7 8.4
20 RHSS 16 1.3363 x 10~* 9.61 8 1.6
PGSS (3,2) 1.1526 x 104 2.25 7 1
- - 5.0033 x 104 14.63 7 20.7
32 RHSS 30 4.1546 x 10~* 138.9 7 2.7
PGSS (1,1) 3.2577 x 10~ 13.98 6 1

We use this method to narrow the parameter range and get
“the best parameters at present” until the result (such as step)
does not change. For the selection of two parameters
(denoted them as a and f), first, we fix the parameter o and
traverse the parameter by using the single parameter

traversal method. Then, we fix the parameter 3 and traverse
the parameter a. We repeat the process until the result does
not change. We can get information from Tables 1-6 that
Newton-PGSS performs better than Newton-RHSS in the
iterative CPU. Moreover, the Newton-MPGSS algorithm is
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TaBLE 10: Numerical results of preconditioned inexact Newton methods for v=1 and  =0.4.
n Preconditioner for GMRES Optimal values of a/ («, 8) Error estimates CPU time (s) Outer IT Inner IT
- - 1.5522 x 10~* 3.14 16 29.3
16 RHSS 18 1.7172 x 107* 4.07 13 1
PGSS (1,3) 1.8162 x 1074 1.81 11 1
- - 2.0082 x 10~* 9.91 17 50
20 RHSS 18 1.8359 x 10~ * 10.48 13 1
PGSS (1,1) 2.8163 x 107 3.32 9 1
- - 4.5286 x 107 294.57 39 79.8
32 RHSS 26 3.3912x 1074 138.79 15 1.07
PGSS (1,3) 3.8558 x 10~ 4 29.95 10 1
TaBLE 11: Numerical results of preconditioned inexact Newton methods for v=1 and 1 =0.2.
n Preconditioner for GMRES Optimal values of o/ (a, ) Error estimates CPU time (s) Outer IT Inner IT
- - 7.5565 x 107° 2.78 11 39.5
16 RHSS 16 2.3989 x 107* 3.22 9 1
PGSS (3,1) 2.1344 x 1074 1.48 7 1
- - 2.0648 x 1074 9.24 11 71.5
20 RHSS 19 3.4282 x 1074 8.92 9 1.2
PGSS (1,2) 1.5814 x 104 3.27 7 1
- - 3.9128 x 1074 264.06 35 80
32 RHSS 23 5.4007 x 1074 119.75 10 1.3
PGSS (2,4) 5.0058 x 10~ 29.61 7 1
TaBLE 12: Numerical results of preconditioned inexact Newton methods for v=1 and # =0.1.
n Preconditioner for GMRES Optimal values of o/ (a, ) Error estimates CPU time (s) Outer IT Inner IT
- - 1.2584 x 10~4 223 8 53.9
16 RHSS 21 2.0586 x 107 2.93 7 1.3
PGSS (1,4) 1.3197 x 1074 1.09 5 1
- - 1.1186 x 10™* 9.14 10 78.8
20 RHSS 18 2.6957 x 10~ 4 8.32 7 1.6
PGSS (3,2) 1.7341 x 1074 2.7 5 1
- - 3.9128 x 107* 265.38 35 80
32 RHSS 23 2.8212x 1074 121.84 8 1.9
PGSS (2,9) 3.2145 x 1074 26.51 5 1

much better than Newton-RHSS in the number of gener-
ation steps.

As we known, Krylov subspace method is more effi-
cient than the stationary iterative methods in saddle point.
Secondly, we will compare the effects of PGSS and RHSS as
preconditioners on Newton-GMRES. In Tables 7-12, we
can find it that PGSS and RHSS are more efficient as
preprocessing operators than without them as using
GMRES methods. Furthermore the PGSS is more efficient
than RHSS as preconditioners. In the inner iteration,
RHSS and PGSS are treated as preprocessing operators,
and then the Krylov subspace method is used to solve the
problem, which is better than the Krylov subspace method
in CPU and step number. Although the effect of PGSS as
preconditioner is not much better than that of RHSS when
n is small, it can be seen that PGSS has great advantages in
both steps and CPU compared with RHSS with the in-
crease of n.

8. Conclusions

The Newton-PGSS method is a considerable method for
solving large sparse nonlinear system with nonsymmetric
saddle point problems with the nonsymmetric Jacobian
matrix. This is the first time to solve this kind of problem, and
we utilize the PGSS iteration as the inner solver for the Newton
equation. And, we establish a modified Newton-PGSS method
for solving large sparse nonlinear system with nonsymmetric
saddle point problems with the nonsymmetric Jacobian
matrix. We give the local convergence and semilocal con-
vergence analysis of the new method under proper conditions.
Finally, the numerical results show that the modified Newton-
PGSS outperforms the other splitting method in the sense of
CPU time and iterative steps. Furthermore, when we apply the
Newton-GMRES method to solve the problems, PGSS will
accelerate the algorithm as preconditioner and make it more
efficient than RHSS.
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The split feasibility problem (SFP) has received much attention due to its various applications in signal processing and image re-
construction. In this paper, we propose two inertial relaxed CQ algorithms for solving the split feasibility problem in real Hilbert spaces
according to the previous experience of applying inertial technology to the algorithm. These algorithms involve metric projections onto
half-spaces, and we construct new variable step size, which has an exact form and does not need to know a prior information norm of
bounded linear operators. Furthermore, we also establish weak and strong convergence of the proposed algorithms under certain mild

conditions and present a numerical experiment to illustrate the performance of the proposed algorithms.

1. Introduction

The split feasibility problem in finite-dimensional Hilbert
spaces was first introduced by Censor and Elfving [1] in
1994, for modeling inverse problem that arises from the
phase retrievals and in medical image reconstruction [2].
The split feasibility problem can also be used to model the
intensity-modulated radiation therapy [3].

Let H, and H, be two real Hilbert spaces with the
inner product {-,-) and the induced norm |- |. C and Q
are nonempty closed and convex subsets of real Hilbert
spaces H, and H,, respectively, and A is a linear bounded
operator from H, into H,. The split feasibility problem
(SFP) is formulated as follows: find a point x € H,
satisfying

x € C,

Ax € Q. (W

The solution set of the problem (SFP) (1) is denoted by S;
that is,

S={xeC: Ax € Q}. (2)

A very successful method that solves the (SFP) seems to
be the CQ algorithm of Byrne [4], which generates {x,} by
the iterative procedure: for any initial guess x, € H,

Xnt1 = PC(xn - VA* (I - PQ)Ax”)’ Vnz1, (3)

where P and P, are the metric projections onto C and Q,
respectively. A* is the adjoint operator of the linear operator
A, and the step size y is chosen in the open interval
(0,2/||A||*). The step size selection depends on the operator
norm (or the largest eigenvalue of A*A), which also is not a
simple work.

The CQ algorithm (3) for solving the problem (SFP) (1)
can be obtained from optimization. If we introduce the
convex objective function

f(x) = %“(1 ~Po)Ax|, xeH, (4)

then the CQ algorithm (3) comes immediately as a special
case of the gradient-projection algorithm (GPA), since the
convex objective function f is differentiable and has a
Lipschitz gradient given by

Vf(x)=A"(I-Pg)Ax. (5)
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To overcome the computational difficulties, many au-
thors have constructed the variable step size that does not
require the norm || Al|; see, for example, [5-12]. In particular,
Lopez et al. [7] introduced a new choice of the variable step
size sequence 7, as follows:

puf (%)

T, = V>, (6)

19f P

where {p, } is a sequence of positive real numbers, take zero
for the lower bound and four for the upper bound. The
advantage of the choice (6) of step size is that there is neither
prior information about the matrix norm A nor any other
conditions on Q and A.

Now let us consider the case when C and Q are level
subsets of convex functions, where C and Q are, respectively,
given by

C={xeH;: c(x)<0},
Q={yeH,: q(y)<0},

where ¢: H; — (-00,+00] and q: H, — (—00, +00] are
two lower semicontinuous convex functions, and dc and dq

(7)

Journal of Mathematics

with &, €dc(x,,), and
Q. ={y € Hy: q(Ax,) +<{,, y = Ax,) <0}, (9)

with {, €dq(Ax,,). . .
It is easy to see that C,, and Q,, are both half-spaces, and
the projections PC~ and P ~ have closed-form expressions. In

n

what follows, for Z:ach n>1, define

fn(x) = %IKI - P@)Ax

2

>

(10)
Vi, (x)= A*(I - PQ:)Ax.

Since these projections are easy to calculate, the algo-
rithm is very practical.

Afterwards, the inertial technique was developed by
Alvarez and Attouch in order to improve the performance of
proximal point algorithms [14]. Dang et al. [15] proposed an
inertial relaxed CQ algorithm {x,} for solving the problem
(SEP) in a real Hilbert space, which is generated as follows:
for any x,, x, € H,

are bounded operators. But the associated projections P, w, =x,+0,(x, - x,1)
and PG do not have closed-form expressions, and the CQ T (11)
algorithm is that the iterative process cannot be performed. Xpe1 = P, C(wn —yA <I -P Q7>A (wn)>>
In order to keep it going, Yang [13] made improvements to 5 .
these two-level subsets; here is how they are defined: where 0 <y < (2/|A[%), and 0<6, <6, with
C,={x € H;: c(x,)+<{&, x - x,) <0}, (8)
_ . 1
0, = min- 6, , VYnx=1,0¢€¢[0,1),
2 2 2 2
max{n |, = % 1|5 7%, = x| } (12)
C,={x € Hlc(w,) +(&,,x —w,) <0},
with &, €dc(w,,), and min{ 0, 87”2 }, ifx,#x,
0, = 'xn - xn,1|| (15)

Q. ={y € Hylq(Aw,) +{{,, y - Aw,) <0}, (13)

with {,, €0q(Aw,,). The algorithm {x,} converges weakly
to a point of a solution set of the problem (SFP), where
step size also depends on the matrix norm [|A|. It is
obvious that the calculation of operator norm is more
complicated, so Gibali et al. [16] has changed the step size
of (11).

), = Pals gwn)’

o= max{L V£, )}, 026, <7,

where

0, otherwise.

If ¥ 6,lx,-x, ;1> <oo, then the sequence {x,}
generated by (11) with step size A, converges weakly to a
point of a solution set of the problem (SFP). For recent
results on inertial algorithms (see [17-24]).

On the other hand, the CQ algorithm is the gradient-
projection method for the variational inequality problem. In
[25], Xu gave weak convergence in the setting of Hilbert
spaces. Wang and Xu [26] proposed the following algorithm:

Xu = Pc [(1 - (xn) (xn - va (xn))]’ (16)

where y € (0,2/ IAlI%). Under some conditions, it is proved
that the sequence generated by the algorithm (16) strongly
converges to the minimum-norm solution of the (SFP).
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Motivated and inspired by the work of [7, 27-29], the au-
thors of [30] introduced a self-adaptive CQ-type algorithm
for finding a solution of the (SFP) in the setting of infinite-
dimensional real Hilbert spaces; the advantage of this al-
gorithm lies in the fact that step sizes are dynamically chosen
and do not depend on the operator norm. This algorithm can
be formulated as follows:

Xne1 = PC,, [(1 - /371) (xn ALV, (xn))]> (17)

where A, = (pnfn(xn)/IIan(xn)llz). It is also proved that
the sequence generated by the algorithm (17) strongly
converges to the minimum-norm solution of the (SFP)
under some conditions.

Inspired by the works mentioned above, we propose a
new relaxed CQ algorithm to solve the (SFP) in a real Hilbert
space by using inertial technology. The new step size pro-
posed in this algorithm is independent of the operator norm
in this paper, and we also establish weak convergence
theorem of the proposed algorithms under some mild
conditions in [31]. We add the inertial term on the basis of
the algorithm in [30] to construct a new iterative process, so
that the new algorithm strongly converges to a point in the
solution set under some conditions.

The remainder of the paper is organized as follows.
Some useful definitions and results are collected in
Section 2 for the convergence analysis of the proposed
algorithm. In Section 3, new inertial algorithms of weak
and strong convergence for solving SFP are proposed,
followed by the convergence analysis. In Section 4, we
provide a numerical experiment to illustrate the per-
formance of the proposed algorithms. Finally, we end the
paper with some conclusion.

2. Preliminaries

Let H be a Hilbert space and let C be a nonempty closed
convex subset in H. The strong (weak) convergence of a
sequence {x,} to x is denoted by x, — x(x,—x), re-
spectively. For any sequence {x,} ¢ H, w,,(x,) denotes the
weak w — limit set of {x,}; that is,

wy, (x,) = {x € H: xn]Ax},for some subsequence {nj} of {n}.

(18)

Definition 1. An operator T: C — H is called the
following:

(i) Nonexpansive if

ITx =Tyl <lx-yl, Vx,yeC. (19)

(ii) Firmly nonexpansive if
ITx = Tyl* <llx - yI° =I(I - T)x = (I - T)yl*, Vx,yeC.
(20)
(iil) »-inverse strongly monotone (v-ism) if there is >0
such that

(ITx-Ty,x—y)=2v|Tx - Ty||2, Vx,yeC. (21)

For every element x € H, there exists a unique nearest
point in C denoted by P.x, such that

”x - ch" = min{|lx - y| |y € C}. (22)

Then operator P is called the metric projection from H
onto C.
The projection has the following well-known properties.

Lemma 1 (see [32, 33]). Forallx,y € H and z € C, we have
(1) {x = Pex,z— Prx) <0
(2) IPcx = Peyll <llx = yll
(3) IPex — Peyll* < {x — y, Pox — Poy)
(4) |Pcx - 2| < lx - 2> = |(I - Po)x|?

Lemma 2. Let H be a real Hilbert space and x, y,z € H,
t € R; then
@1 =Bx + tyl? = (1=l + iyl -t (1-1)
I = ¥1I%
@) llx=yI> = lly = 2I” = llx = 21> + 2{x = y, x = 2).

Definition 2 (see [34]). Let H be a real Hilbert space and let
f: H— (—00,00) be a convex function. An element v € H
is called the subgradient of f at X € H if

hx-%)<f(x)- f(x), VxeH. (23)
The collection of all the subgradients of f at X is called

the subdifferential of the function f at this point, which is
denoted by o0 f (x); that is,

of () ={ve H: (v,x-%) < f(x) - f(X),Vx € H}.
(24)

Definition 3. Let f: H — (—00, +00] be a proper function.

(i) f is lower semicontinuous at x if x,, — x implies
f(x)< hnnLio%ff(x”)' (25)

(ii) f is weakly lower semicontinuous at x if x,—x
implies

f(x)< lim inf f (x,,). (26)

(iif) f is lower semicontinuous on H if it is lower
semicontinuous at every point x € H; f is weakly
lower semicontinuous on H if it is weakly lower
semicontinuous at every point x € H.

(iv) f is lower semicontinuous if and only if it is weakly
lower semicontinuous.



Lemma 3 (see [34]). Let f: H — (-00,+00] be an
a-strongly convex function. Then, for all x, y € H,

FO)2f(x)+Ey—x) +§||y —x’, Eedf(x). (27)

Lemma 4 (see [25]). Lett>0andx* € H. Then the following
statements are equivalent:

(1) The point x* solves the problem (SFP).
(2) The point x* solves the fixed-point equation

x" = Po(x" —tA"(I - Py)Ax"). (28)

(3) The point x* solves the variational inequality problem
with respect to the gradient of f; that is, find a point
x € C such that

(Vf(x),y—-x>=0, VyeC. (29)

Lemma 5 (see [16]). Let H be a real Hilbert space and let
{x,} be a sequence in H such that there exists a nonempty
closed and convex subset S of H satisfying the following
conditions:

(i) For all z € S, lim

(ii) Any weak cluster point of {x,} belongs to S

x, — z|| exists

n—»oo”

Then there exists x* € S such that {x,} converges weakly

*

to x~.

Lemma 6 (see [35]). Let {¢,} c [0,00) and {8,} c [0,00) be
two nonnegative real sequences satisfying the following
conditions:

(1) ¢n+1 - (/)n <6 (¢n - (pn—l) + 6n
(2) 220:1 8n <00
(3) {6,} c [0, 0], where 6 € [0,1)

Then, {¢,} is a converging sequence and
Yol (@01 — Dl < 00, where [t], = max{t,0} for any t € R.

Lemma 7 (see [36, 37]). Let {a,} o, and {y,} -, be sequences
of nonnegative real numbers such that

a1 <(1-Ba,+06,+y,, n>1, (30)

where {B,} 0, is a sequence in (0,1) and {8}, is a real
sequence. Assume Y .2y, <0o. Then the following results
hold:

(1) If 8, < B, M for some M >0, then {a,} ", is a bounded

sequence
) If ¥, B, =00 and lim sup,_,, (8,/B,) <0, then
lim, , a,=0

Lemma 8 (see [38]). Assume that {s,} is a sequence of
nonnegative real numbers such that

Journal of Mathematics

n>1,
(31)

Sn+l < (1 - (xn)sn + “n6n’
<s, nx1,

Sl S8, — An TV

where {a,} is a sequence in (0,1), {A,} is a sequence of
nonnegative real numbers, and {5,} and {y,} are two se-
quences in R such that

(1) X2y @y =00

(2) lim =0

(3) limy__, A, =0 implies lim sup;__,,0,, <0 for any
subsequence {n.} of {n}

Then lim

n—»oo)/n

s, =0.

n—oo+n

3. Convergence Analysis

In this section, we consider the (SFP) in which C is given by
C ={x € Hy|c(x) <0}, (32)

where ¢: H; — (—00, +00] is an a-strongly convex func-
tion; the set Q is given by

Q={y € Hylq(y)<0}, (33)

where gq: H, — (—00,+00] is a f-strongly convex func-
tion. We assume that the solution set S of the (SFP) is
nonempty, and ¢ and g are lower semicontinuous convex
functions; furthermore, we also assume that dc and dq are
bounded operators (i.e., bounded on bounded sets).

We agree to build the following sets in our algorithms
according to [39]; that is, given the n-th iterative point w,,
we construct C,, as

C,= {x € Hilc(w,) +{,,x —w,) + g"x - wn"2 < 0},
(34)

where &, €oc(w,)).

Q, = {y € H,lq(Aw,) +<{(,, y - Aw,,) +§||y - Awn"Z SO},
(35)
where (, €0q(Aw,,).
If « =0 and B =0, then C, and Q, are reduced to the
half-spaces C, and Q,,, respectively. If >0 and >0, then
C, and Q, are nonempty closed ball of radius

(La)\lIE, I - 2ac (w,,) w, — (1/a)§, and

(l/ﬂ)\/ll(n||2—2[3q(Awn) centred at Aw,- (1/B)(,,
respectively.

In addition, for each n>0, we define the following
functions:

centred at

1 2
n( ):_ I-P A >
Sfalx 2"( o) x" 36)

Vf,(x) = A"(I- P, )Ax,

where Q, is given as in (35), f, is weakly lower semi-
continuous, convex, and differentiable, and its gradient V£,
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is Lipschitz continuous. Now we propose new relaxed CQ
algorithms for solving the (SFP).

Next, two inertial relaxed CQ algorithms will be in-
troduced. The weak convergence of Algorithm 1 and the
strong convergence of Algorithm 2 will be proved under
different step sizes.

Algorithm 1. Choose positive sequence {¢,} satisfying
ZZ(:)O €, < 00.

Let x,,x; € C be arbitrary. Given x,, x,_;, update the
next iteration via

w, =x,+6,(x, - x,1)

(37)
Xpe1 = PC,, (wn - Tnvfn (wn))’
where 0<0, <0,, and
. g )
minA 0, ”2 , ifx, #x,
- maxc{ e, = ,.1[" e, = 0}
0, ifx,=x,1
(38)
and C, and Q,, are given as in (34) and (35).
o
—if Vf, (wn) #0,
o7, (o 1)
T, = (39)
0, if |V£, (w,)] =0,
where Y2, 0, = 00, Yoo, 0% < 00.

If x,., = w,, then stop; otherwise, set n: =n+ 1 and go
to the next iteration.
By assuming 0,, we know

||xn+1 - 2“2 = “PC,, (wn - Tnvfn (wn)) - Z"2

5
= 2
Z 6n||xn - xn,lu <00,
n=1
. (40)
Z Gn"xn - x,H” <00,
n=1
which means
lim Gn"xn - xn,lllz =0,

im 0,1, — x4 | = 0.

From ¢, €dc(w,), applying Lemma 3, we get C<C,; and
a similar way is used to get QCQ,.

Now let us show that our proposed algorithm has a very
important property: if x,,,; = w, for some n> 0, then w, is a
solution of (SFP).Indeed, x,,,, € C,, sothatw, € C, asw,, =
X, by assumption. So we get c(w,) <0 from (34), that is,
w, € C. On the other hand, according to the algorithm, we
have w, = P¢ (w, - 7,A" (I - Py JAw,), which together
with Lemma 4 implies that Aw, € Q,,. It also implies that
q(Aw,) <0 from (35); then Aw, € Q. The conclusion is
tenable.

Lemma 9. Let {x,} and {w,} be the sequences generated by
Algorithm 1. Then, for any z € S, it follows that

2 _ 4anfn (wn)

S O

[t~ =1 <, ~ <l +o )

Proof. For z €S, we have z € C,Az € Q; and we have
z=Pcz =Pz, Az = PoAz = P Az.
It follows from Lemma 1 that

< “(wn - Z) - Tnvfn (wn)||2 _”(wn - xn+1) - Tnvfn (wn)“z (43)

= "wﬂ - Z||2 - “w" - xﬂ+1|l2 - 2Tn<vfn (wn)’ w, - Z> + 2Tn<vfn (wn)’ Wy, — xn+1>’

where

27,(Vf,(w,),w, —z) =21, ((I - PQn)Awn —(I - PQn)Az, Aw, - Az)

>21,

(1 - PQn)Awn

2

= 4Tnfn (wn)’ (44)
21n<vfn (wn)’ wy, — xn+1> < 2Tn||vfn (wn)" : "wn - xn+1"

S "wn - xn+1||2 + sznvfn (wn)”Z'



Hence, we have

”xn+l - Z"2 < "wn - Z”Z _"w - rz+1”2 - 4Tnfn( n) 45)
Hw, =%l + 7]V Fu @]
If|Vf,(w)l =0, then 7, =0, so that
== < (0
If|Vf,(w)l+0, we have
”xrﬁ-l - ZHZ < “wn - Z"2 + Tfl"vfn )" 4Tnfn n)
2 2 4Unfn( n)
=|w,—z| +0, -
b=l o o, Gl
(47)

The proof is complete.

Theorem 1. Assume that 0, satisfies the assumption. Then
there exists a subsequent {xnj} of {x,} generated by Algo-
rithm 1 which weakly converges to a solution of (SEP).

Proof. We first show that, for any z € S, the limit of
{llx, — zll} exists. By applying Lemma 9, we have

_ 40, (W)
T a(wl

From the construction of w,, and Lemma 2, we have

s =2l < e, = 2| + @

40-71fﬂ (w
[VFu(wnl

where Y2 (lIx,,,, — z|* - Ix, - z|*) < co, Yooy O,llx,—
x,_1l° <00, and Y, 62 < 00, so we have
4
Z anfn (w (55)
AT
But Y2, 0, = 00, s0
lim inf fu(w,) =0,
(56)

ie., lim inf 'KI 12 )

n—a~oo

=0.

On the other hand, since {x,,} is bounded, the set w,, (x,,)
is nonempty. Let x* € w,,(x,); then there exists a subse-
quence {xnk} of {x,} such that x,, —x*. Furthermore,

e A e e ]

(57)
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“wn_z"2 =||(1+6n)(xn_z)_ n xn— Z)"
=(1+6)|x 2| - O —2F (49

+0,(1+6,)|x, - x,,_luz,

< (14 60,)|x, - 2| = Bullxs = 2| + 26,1, — x|

(50)
Combining (48) and (50) immediately, we get
b =l 0 8- =0 o
+ 29n||xn - x,H” + on.
Denote ¢, =[x, — z|I%; from (51), we have
¢n+1 - ¢n < en (¢n - ¢n—1) + zen”xn - xn—l"2 + 031’ (52)
where
& 2
Z Gn"xn - xn,1|| < 00,
n=1
. (53)
Z af, < 00.
n=1
Using Lemma 6, the limit of ¢, exists, and

> (%1 = 2lI* = lIx, — zl*), <00, which implies that
Yooy U = 2l% = llx, = 211%) < 00, (%1 = 217 = lx,
~z|*), = max{|x,,, - zI” - Ix, — zI*, 0}. This also implies
that the sequence {x,} is bounded, so {w,} is bounded.
We next show that w,, (x,) C S. Since {w,} is bounded,

from the Lipschitz continuity of Vf,, we get that
{IVf, (w,)I} is bounded. From (48) and (50), we get

L i S 0, (I = 2l =[5 = 2 ) + 20,5, = 5, + 0 (54)

Let {wnj} be a subsequence of the sequence {w,} such

that
= hm "(I PQ )

Since {wnj} is bounded, there exists a subsequence len, }

lim inf |(1 - Py, ) s,

n—~a~oo

(58)

of { w, }, which converges weakly to x*. Without loss of
generality, we can assume that w, —x", and A is a bounded

linear operator, so Aw,, —\Ax
From Lemma 1, we conclude that

<wn - Tnvfn (wn) -

Since 7, — 0 and {|Vf,(w,)|} is bounded, we have
7,V f,(w,) — 0. Hence, we get

Xnt1>Z — xn+1> <0. (59)
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Wy Xy — Z> < <Tnvfn (wn)’z - xn+1> —0
(60)

<xn-f—l

||xn+1 - wn”2 = ”wn - Z||2 _"xnﬂ - z“2 + 2<xn+1 = Wy X4

Thus,
Foues = 5l < B =l - — 0. (6
Since PQn_Awn]_ € an, by the definition of an,
]
q(Awnj) + <(n,> PQn]Awn] - Awn]> + gHPan ) b <0,
(63)

where (,, €dq(Aw, ). From the boundedness assumption of
0q and hm]HOOII(IJ PQ YAw,, ||2 0, we have

ol -, Yo | 8-, Yo,

From the weak lower semicontinuity of the convex
function g, it follows that

2

(64)

q(Ax") < lim infq(Awnj> <0, (65)
J—}OO

which means that Ax* € Q.
Furthermore, %41 € Gy and, by the definition of C,, ,
J

o 2
c(wnj) +<rfnj, Xp 41~ wnj> + 5' X1 = Wy | < 0, (66)

nj+1

where E eoc(w, ) From the boundedness assumption of oc

and IIxn 1~ Wy, || — 0, we have

(u,)s

From the weak lower semicontinuity of the convex
function ¢, it follows that

(24

cflw, —X - =
” n; n;+l 2

— 0.

&,

]

X - w
nj+1 n;

(67)

e(x") < lim infe(w, ) <0, (68)
J—00

-2)

e I TR I ( P

7
Since > (%1 — 217 = lIx, — 2I%) < 00 and
Yoo Ollx, — x,_1[I” < 0o, from (50), we obtain
2 2
- z|| + 20n||xn - xn_lu +2{x, — Wy, X, —2) — 0.
(61)

which means that x* € C. Therefore, x,, —\x € S. The proof
is complete.

Algorithm 2. Choose positive sequence {e,} satisfying
Y0 € < 00.

Let xy, x; € C be arbitrary. Given x,, x,_,, update the
next iteration via

w, =x,+ 6n (xn - xn—l)’
X =Pu+Pc |(1-6,)(w,-1,Vf,(w,))]
=B P[0 n VS @)
_ pufa(w)
n 22
V£ (w,)]
where 0<6, <0,, and
. &, .
_ min~ 6, P if x, # %15
7 - max{ [, = .1 e~ 5
0, ifx, = x,_,
(70)
and C, and Q,, are given as in (34) and (35), {8,} ¢ (0,1),

hmn_mﬁn 0, Y2, B, = 00, and inf,p, (4 — p,) > 0.
If x,., = w,, then stop; otherwise, set n: =n+ 1 and go

to the next iteration.

Theorem 2. Assume that inf,p, (4 —p,) >0 and ¢, = 0(f3,,).
Then the sequence x, generated by Algorithm 2 converges
strongly to z = Pqu.

Proof. First, we show that, for any z € S, the sequence {xn}
is bounded. From the construction of w,, we have
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lwn =2l =[x + 6 (0 = 1) = 2]

(71)
<[ = 2] + Ol = ]
"wn - Tnvfn (wn) - ZHZ = “wn - Z||2 + Ti"an (wn)||2
- 2Tn<vfn (wn)’ w, — z)
<fw, =2l + |V F ) = 47, (w,)
2
— “wn _ Z||2 + pnfn( n) _ 4Pnfn (wn) (72)

IVfu @) [V fn(w)|
fa(w,)

:wn_zz_n4_n72
b=l =n e ]

<, - oI

So, combining (71) and (72), we get

s = 2] = || + P, [(1 = B,) (w, = 7,9 £ (w,))] - 2]
=[[Pe,[(1 = B) (wn = 2,V Fu ()] = (1 = B,)z + B, (= 2)
<[|Pe,[(1 = B,) (w, = 2,V £ (w)] = (1 = B)z| + Byl — =l
<[(1=B,) (w, - 7,9, (w,)) - (1 - B,)z] + Bl — I 73
< (1=B)w, = 7,9 f, (w,) = 2| + Byllu - 2l
< (1= B,)|w, - 2] + B,llu -zl
< (1=B)[[1%n = 2] + 0]l = 2 ]]] + Bulle - 21
< (1=B,)|xn = 2| + Buloy +lu 2],

where o, = (1-,)(0,/8,)lx, - x,_,. According to hy- as well as using Lemma 7, we conclude that the sequence
pothesis 6, {lx, — 2|} is bounded. This shows that the sequence {x,} is
bounded and so is {w,}.
6, < || X1 <o, (74) Since {||x, — z||} is bounded, assume that there exists a
”x Xn- 1" ﬁn ﬁ" constant M, such that |x, - z|| < M,. Thus,
Note that

2
o = 2l < (o = 2l + 0], = %41
o = Jlim (1 =F)g b=l =0 09 ol + k= 26005 B2
2 2
which implies that the sequence {o,} is bounded. Setting <l =2l Ol = x|+ 200 B, - x"l"’( )
77

M = max{sup o llu— z||}>, (76) and we get
neN
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2
s =2

=79 fu(w,))] 2

=B+ P, [(1 - B,) (w
=[lpc,[(1 - B) (w
<||Pe,[(1-B.) (w
<|(1-B.)(

) f(n)

S(l_/jn)["w“_zn —Pn(4_Pn ”an( )”

<(1-) [uxn ol 4 By o o+ 20y B = o] - a4 )

From (78),

"xnﬂ - ZHZ = (1 - ﬁn)"xn - Z||2 + ﬁn [z)n“xn - xn—1"2 + 2M1

0
._n“x" _x”—lu +2Cu - 2, %, _Z>],
n

ACHE
IV @)l

xn_1||2 +2M, - 9,,||xn - xn_1||

||xn+1 - Zl'z < “'xn - Z"2 = Pn (4 = Pn

+ Gn"xn -

+2B,{u—2,%,,, —2).

(79)
Let
T
0 0
8, =Lx, - xn,1||2 +2M, ﬁ—" |, = %,
+2{u—2z,%,,, — 2);
£2w) o
w
My = Pu (4= Po) =
1V, )
Yn = 6n"'xn - xn—l“2 + 2]\/Il : Hn"xn - xn—l“
+ 2B, u—-2z,x,., —2).
Then (78) can reduce to the inequalities
n+1<(1 ﬂn)s +ﬁn n> 1’121, (81)

5n+1 ~Hn + Y-

Furthermore, we know that

w79 fu ()] = (1= B)z + B, (u =2
n_ Tnvfn (wn))] - (1 - /))n)z”z + 2ﬁn<u —Z,Xpp T Z>
W, = 1,V f (w,)) = (1= B)z|* + 2B, - 2, %, — 2)

:| 2ﬁn<u_z’xn+l _Z>

9
(78)
fa(w,) }
2B, v = 2, x4 — 2.
||an DI
2 Py =0, (82)
n=0
2
lim y, = hm [6 ”x ,H" +2M,
Bl % = X + 2B, 0 = 2%, — 2D ] = 0.
(83)
Let {n;} be a subsequence of {n} and suppose that
lim My, = O. (84)

k—00

Then, we have

2
m p, (4 —pnk)if"k(w”k) =0, (85)

V1 (w,)

which implies, by our assumption, that

fik (w”k)

5 — 0, ask — oo. (86)
||vf"k(w"k)

Since {IIV fnk(w )II} is bounded, it follows that
fn (W) — 0 as k — 00, ) we get
lim__o, (T - Po, JAw, | =

We next show that W, (x ) € S. Since {x,} is bounded,
the set w,, (x,) is nonempty. Let x* € w,, (x,); then there
exists a subsequence {xnk of {x,} such that X =%

xn” = Hn"xn -

k—>oo

||wn - xn” = ”xn + en (xn - 'xnfl) - xnfll' — 0,

(87)
and then w,, —\x

Aw, —Ax*.
ince P, Aw, €Q,, we have
nj j i

,and A is a bounded linear operator, so

2

B
q(Awnj) +(uPo, Aw, ~ Aw, ) + EHPQ”}_Awnj - Aw, | <0,

(88)
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where ( " €0q (Awnj), and, by the boundedness of dg, we get

ﬂ 2
o)<l - Yoo Yo o
(89)
and, using the weak lower semicontinuity of g,
q(Ax") < lim inf q<Awnj> <0. (90)
j—o

Thus, Ax* € Q.
On the other hand,

”xn+1 - wn" < (1 - ﬂn)“wn - Tnvfn (wn) - wn” + /Sn”u -zl
Pufn(W,)
=(1-8,)-L + B llu -zl — 0.
[V7, ()l
(91)
Since (xnj+1 - ﬁnju) €C,, we have
C(wnj) +<£nj’xn]+l - ﬁnju - wnj> +g xnjH - ﬁnj ~%n ’ <0,
(92)

where Enj eac(wn]_), and, by the boundedness of dc, we get

24 2
C(wnj> = || wn]- - xn)+1 + ﬁn]ui - E xn]+l - wn] - ﬁnju‘
< fnj : [ wnj _xnj+l +/3nj”u”]
@ 2 p2yon2
=S = wa |+ Bl = 23, 1 = B0 ] — 0.
(93)
and, using the weak lower semicontinuity of c,
c(x") < lim inf c( > <0. (94)
j—oo

Thus, x* € C; then x* € §, that is, w,, (x,) C S.
Next, we have

||xn+1 - xn" < (1 - ﬁn)"wn - Tnvfn (wn) - xn“ + ﬁn"u - xn”
< (1 _/")n)[“wn - xn” + Tn"an (wn)|” + Bn”xn - u“

Pufn (W)
V. (w,)]

<|w, = x| + 72—

+ﬁn||x u" — 0.
(95)

For z=Pgu and x,—x" €S,
{u—-2z,x*—2zy<0, so

using Lemma 1,

lim sup{u - z,x,

n—~oo

—-2z) =lim sup{u -z, Xy, — z)
k—00 (96)
=(u-z,x" -2z)<0,

and then

Journal of Mathematics

lim sup{u — z,x,,, — 2)

n—=oo

=lim sup((u—Z,X,,+1 _xn> +<1/l -2 Xy _Z>)S0’

n—~oo

(97)

and thus

2
Xy = xnk,1|| +2M,

lim sup g, =lim sup[
k /gnk

Xnk - xnk—l" + 2<u -z, x”k"’l - Z>] < 0.

Pa,
(98)

From (82), (83), (98), and Lemma 8, we conclude that the
sequence {x,} converges strongly to z = Psu. The proof is
complete.

4. Numerical Experiments

In this section, we present a numerical experiment to il-
lustrate the performance of the proposed algorithms. Our
numerical experiments are coded in MATLAB R2007
running on personal computer with 3.50 GHz Intel Core i3
and 4 GB RAM. In what follows, we apply our algorithms to
solve the problem of least absolute shrinkage and selection
operator, which requires solving a convex optimization
problem as

1 2
xeR"
(99)

s.t, x|, <t

where A € R™”, y € R™, and t, >0 are given elements. In
our experiment, we first generate an m xXn matrix A ran-
domly by a standardized normal distribution, and x is a
sparse signal with » elements, only K of which is nonzero,
which is also generated randomly. The observation y is
generated as y = Ax. The parameters in this experiment are
set with n=>512,m =256,¢=10"% and t, =K. In this
situation, it is readily seen that C = {x € R": ¢(x) <0} with
c(x) = |lxl, — £, and Q = {y}, which in turn implies that

C,={x e R" (&, x) <&, w,) —|w,|, + £},  (100)
where &, is defined by
1, if (¢,);>0;
(&)i=1 [-L1], if (&,),=0 (101)
-1, if (£,);<0,

standing for the subdifferential of || - ||;. As a half-space, the
associated projection onto C,, takes the following form:
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10° 4

1072
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FiGURE 1: Iterative results with K = 50.

&pw, —x) —||wn||1 + 1

&I

£, ifx¢C,
Pcn(x) =

X, ifx eC,.
(102)

To show the efliciency of our algorithm, we compare
it with the algorithm proposed in [40]. The only dif-
ference of these two algorithms is that there are no in-
ertial terms in the algorithm proposed in [40]. For the
convenience, we denote Algorithm 1 by Algo. I and the
algorithm in [40] by Algo. II, respectively. In Algo-
rithm 1, we set

mln{OS,zlz}, ifx,ﬁﬁxn,p
s = x|

| 0.8, ifx,=x,,,

1

— f|AT (Aw, - y)| #0,
n”A (Aw,,—y)" " ( )’)"

| 0, if A" (Aw, - y)| = 0.
(103)

In Algo. II, we set 8, = 0 and 7,, is chosen the same as
above. The stopping criterion is that [[x**! — x*|| <e. The
initial points are xy = (0,0,...,0)7 and
x; =100(1,1,..., DT, The numerical results of these two
algorithms with different choices of the sparsity number K
are listed in Figures 1-4. It is easy to see that Algo. I
converges faster than Algo. II does, which indicates that our
modified algorithm indeed accelerates the convergence of
the original algorithm.

(1R = g1l

[ = 21l

104

11

0 100 200 300 400 500 600 700 800 900 1000

104

Iteration numbers

-—- ALGOI
— ALGOII

FIGURE 2: Iterative results with K = 40.
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0 100 200 300 400 500 600 700 800 900 1000
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FiGure 3: Iterative results with K = 30.
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10° 4

1024

1074

T
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— ALGOII

FIGURE 4: Iterative results with K = 20.
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5. Conclusions

In this paper, we present two inertial relaxed CQ algorithms
for solving split feasibility problems in Hilbert spaces by
adopting variable step size. These algorithms adopt the new
convex subset form, and it is easy to calculate the projections
onto these sets. Furthermore, step size selection in the al-
gorithms does not depend on the operator norm. The
convergence theorems are established under some mild
conditions and a numerical experiment is given to illustrate
the performance of the proposed algorithms.
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In a linear programming for horizontally partitioned data, the equality constraint matrix is divided into groups of rows. Each
group of the matrix rows and the corresponding right-hand side vector are owned by different entities, and these entities are
reluctant to disclose their own groups of rows or right-hand side vectors. To calculate the optimal solution for the linear
programming in this case, Mangasarian used a random matrix of full rank with probability 1, but an event with probability 1 is not
a certain event, so a random matrix of full rank with probability 1 does not certainly happen. In this way, the solution of the
original linear programming is not equal to the solution of the secure linear programming. We used an invertible random matrix
for this shortcoming. The invertible random matrix converted the original linear programming problem to a secure linear

program problem. This secure linear programming will not reveal any of the privately held data.

1. Introduction

Recently, people have become interested in privacy-pre-
serving classification and data mining [1-10] and have been
involved in the field of optimization, especially in linear
programming [11-15], where the data to be classified or
mined belongs to different entities that are not willing to
disclose the data. Mangasarian [13] proposed a random
matrix which make the original linear programming
problem into a secure linear programming problem. When
the random matrix is not full rank [16], especially when the
entities collide with each other, the original linear pro-
gramming problem is not equivalent to the secure linear
programming problem. We address this problem by using
an invertible matrix multiplied by the two sides of the
equality constraints of the linear program. This procedure
converts the original linear program to an equivalent secure
linear program, and this security linearity does not reveal
any private data. This solution vector can be made public and
applied by all entities. On the contrary, this algorithm
prevents entities from colliding with each other.

Here, we define some symbols. If a vector is not
transposed to the row vector by the superscript T, the vector
will be a column vector. For a vector x € R”, the symbol x;
will represent the j™ component or j™ block of the com-
ponent. We will define the scalar (inner) product of two
vectors x and y in the n-dimensional real space R" as x y.
The symbol A € R™" will represent a real m x n matrix.
Similarly, AT will represent the transpose of A and A; will
represent the i row or i block of rows of A and A ; the "
column or the 7™ block of columns of A. A zero vector in a
real space of any dimension will be denoted by 0.

2. Privacy-Preserving Linear Programming for
Horizontally Partitioned Data

Consider the following linear programming:
minz = ¢’ x,
Ax=D (1

x=>0.

s.t.
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Here, (A b) consists of the matrix A € R" and the
right-hand vector b € R and is divided into p horizontal
blocks. The number of rows of the p horizontal block is
recorded as my,m,,...,m,, where m; + m, +---+m, = m.
Anm order identity matrix E is divided into pvertical blocks.
The number of columns of the p vertical block is recorded as

my,my,...,m,, where m; +m, +---+m, = m. Each block
of rows of [A b] corresponding to the index sets
I 11, Uf I, =1{1,2,...,m}, is owned by a distinct

entity that is unwilling to make its block of data public or
share it with the other entities. We will accomplish this goal
by the following transformation.

Each entity i,i =1,2,...,p, chooses its own private
random matrix B; € R™, whose corresponding index set
is I;. The value of each element in B 5 isin the interval (0, 1).

The following decompositions can be obtained:
A by
1 1
Ap by
A= 2 land b= -
AIP‘ bll’
Define
B :(B',l +AE; B +AE; --- B; +1E, ) LeR A>n.
(2)

Because the matrix B is an m order strictly diagonally
dominant matrix, we can easily conclude that the matrix B is
an invertible matrix [17]. Based on this fact, we define the
following operation:

A

Ap,
B, +AE, ) :

1

BA :(B',l +AE; B +AE; -

AIP.
+ (Blp + AE'IP)AIP')

=(By, +AE )A; +(B, +AE L)AL +

b,
by,
Bb =(B411 +AE; B +AE; - B, +/1E.,P) .
bfp
= (B,I, + /\E‘Il)bl1 +(B.,2 + )LE.IZ)bI2 + +(B.1p + )LE.IF)bIP.

(3)
According to the above discussion, the original linear
programming (1) was converted into the following secure
linear programming:
. T
min z =¢ x,
BAx = Bb (4)

x=>0.

s.t.,

The linear programming (1) and the linear programming
(4) have the same solution set since the matrix B is invertible.
The linear programming (4) is quite safe since only the entity
i knows B, i=1,2,..., p. Other entities cannot compute
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A; andb; from (B; +AE;)A; and (B +AE;)b; without
knowmg the random matrix B;. We' regard the linear
programming (4) as a secure linear programming. Whether
the linear programming (1) is equivalent to the linear
programming (4) or not? Let us discuss next.

Proposition 1. If the matrix B is an m order invertible
matrix; then, the secure linear program (4) is solvable if and
only if the linear program (1) is solvable in case the solution
sets of the two linear programs are identical.

Proof. As the matrix B is an m-order invertible matrix, the
following relation holds:

Ax =b © BAx = Bb. (5)

Therefore, the feasible regions of the two linear programs
are the same. Again according to the objective functions of
the linear programming (1) and the linear programming (4),
we can conclude that the two linear programs have the same
solution set.

The following algorithm can get the best solution of the
linear programming (1) without revealing any private
data.

3. Formulation of the Privacy-
Preserving Algorithm

As shown in Section 2, the linear program (1) is divided
among p entities. We put forward the following algorithm:

Step 1. All entities choose a suitable real number A, 1 >n
together.

Step 2. Suppose the matrix (AI,-. bl,-) has m; rows,
wherei=1,2,..., p. Arandom matrix B is generated
by the entity possessing the matrix (AI by, ), where
B, € R™™i. The value of each element in B is in the
interval (0,1), and B 1, is not public.

Step 3. The entity that owns the matrix (A11~ by, ) is
responsible to compute (B; +AE;)A;  and
(Bj, +AE; )by, and the result is passed to the entity
that owns the matrix (Alz- bfz ) Then, the entity that
owns the matrix (Alz‘ by, ) is responsible to compute
(B +AE;)A; + (B +AE;)A; and (B; +AE;)
b; + (B, +)LE b, and the result is passed to the
entlty that owns the matrix Ap,. by, ). And, finally, the
entity that owns the matrix AI' _ b[ is responsible to
compute the following:

BA=(B, +AE;)A; +(By, +AE; )A;

(6)
e+ (B‘Ip + AE’p)AIp’
Bb =(B, +AE,; )b; +(B; +AE )b,

(7)
+ <B,,p + )LE_IP>pr.

Step 4. Utilizing the linear programming (4) to calculate
the minimum value and the optimal solution of the
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objective function, which is the minimum value and the
optimal solution of the objective function of the linear
programming (1).

Remark 1. Through this algorithm, the solution vector x can
be used publicly. However, it does not reveal any entity’s
data.

4. Numerical Experiments
A linear programming:

min z = -3x; - 5x,,

X, +x3 =28,

2%, + x4 = 12, (8)
s.t.

3x, +4x, + x5 = 36,

x;20, i=1,...,5

We can find that the optimal solution of (8) is x* =

T ~ ~ (10100
(4,6,4,0,0) .LetI, = {1,2},1, = {3},A11_ = (0 20100/
8

AL =(3400 1),b,1=(12

),bI2 = (36), and A = 5.

min z = -3x; — 5x,,

Entity 1 generates a random matrix B; which is not
published. Note that

0.9501 0.7621

B, =| 02311 0.7621 |. (9)
0.6068 0.7621
Entity 1 makes public its matrix product

(Bj, +AE;)A; and (B; +AE; )by .
Entity 2 generates a random matrix B; which is not
published. Note that

0.7621
B, =| 07621 |. (10)
0.7621
Entity 2 makes public its matrix product

(B, +AE )AL and (B +AE; )by,

These products do not reveal any private data, but it can
be used to calculate the constraint matrix BA and the right-
hand side Bb of the secure linear programming. Next, we
derive a linear programming (11) from the linear pro-
gramming (4), which is equivalent to linear programming

(8):

8.2364x, + 4.5726x, + 5.9501x; + 0.7621x, + 0.7621x; = 84.1816,
2.5174x, + 14.5726x, + 0.2311x; + 5.7621x, + 0.7621x, = 98.4296, (11)
17.8931x, + 24.5726x, + 0.6068x; + 0.7621x, + 5.7621x; = 221.4352,

s.t.

x;20 i=1,...,5

The solution of this secure linear programming (11) is
the same as that of the linear programming (8). This solution
can be made public without revealing any private data.

min z = -3x; — 5x,,

If we use Mangasarian’s study [13] which proposed the
algorithm of privacy-preserving horizontally partitioned
linear programs, the linear programming (8) needs to be
converted into the following linear programming:

3.2364x, + 4.5726x, + 0.9501x; + 0.7621x, + 0.7621x; = 44.1816,
2.5174x, + 4.5726x, + 0.2311x; + 0.7621x, + 0.7621x; = 38.4296, (12)
2.8931x, + 4.5726x, + 0.6068x; + 0.7621x, + 0.7621x; = 41.4352,

s.t.

XIZO i=1,...,5.

The optimal solution to secure linear program (12) is
x" = (8,4,0,0,0)". This is not consistent with the optimal
solution for the original linear programming (8). The reason
for this error is that the random  matrix

0.9501 0.7621 0.7621
(B, By)= (0.2311 0.7621 0.7621) is not a full rank
0.6068 0.7621 0.7621

matrix. In this way, the original linear programming (8) is
not equivalent to the secure linear program (12).

Data Availability

The data used to support the findings of this study are in-
cluded within the article.
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In this paper, we aim to construct a new strong convergence algorithm for a split common fixed point problem involving the
demicontractive operators. It is proved that the vector sequence generated via the Halpern-like algorithm converges to a solution
of the split common fixed point problem in norm. The main convergence results presented in this paper extend and improve some
corresponding results announced recently. The highlights of this paper shed on the novel algorithm and the new

analysis techniques.

1. Introduction

Let H, and H, be the Hilbert spaces and C and Q be
nonempty closed and convex subsets of H, and H,,
respectively.

The split feasibility problem (SFP) is known to find

x € C, suchthat Ax € Q, (1)

where A: H; — H, is a linear bounded operator.

In [1], the split feasibility problem (SEP) in the finite-di-
mensional Hilbert spaces was introduced by Censor and
Elfving. This problem is equivalent to a number of nonlinear
optimization problems and finds numerous real applications,
such as signal processing and medical imaging (see, e.g., [2-7]).

For this split problem, simultaneous multiprojections
algorithm was employed by Censor and Elfving in the finite-
dimensional space R” to obtain the algorithm as follows:

Xy = A7 PP AR, 2)

where both C and Q are convex and closed subsets of R”, the
linear bounded operator A of R" is an n x n matrix, and P, is
the orthogonal projection operator onto the sets Q.

The above algorithm (2) involves the matrix A~! (one
always assumes the existence of A™!) at every iterative step.
Calculating A™! is very much time-consuming, if the di-
mensions are large scale, in particular, and thus it does not
become popular.

In order to overcome the fault, Byrne [2, 8] proposed the
following novel algorithm CQ, which is under the spotlight
of recent research

b = Pelr, A (1-P)Ax,), mz0, (3

where P and P, are the orthogonal projection operators
onto the sets C and Q, respectively, and 0 <y < (2/p) with p
being the spectral radius of the composite mapping A* A. But,
the CQ algorithm’s step-size is fixed, and it is related to
spectral radius of A*A. On the other hand, the orthogonal
projection onto the subsets C and Q in Hilbert space H, is not
easily calculated generally except the special cases, such as
balls and polyhedrals. With the real applications (intensity-
modulated radiation therapy and medical imaging) of the SFP
in signal processing, the SFP has obtained much attention.
Now, the approximate solutions of the SFP have been studied
extensively by scholars and engineers (see, e.g., [9-13]).
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In (1), if Cand Q are the intersections of fixed point sets
of finite many nonlinear operators, the SFP becomes the split
common fixed point problem (SCFPP). The SCFPP was
studied first by Censor and Segal [14] in 2009, which consists
of finding an element x € H, with

m no.
xe NFix(T), stAxe NFix(s) (4)

where Fix (T;) denotes the fixed point set of T;: H, — H,
and Fix(S;) denotes the fixed point sets of S;: H, — H,,
respectively.

In particular, if m = n = 1, then

x € Fix(T), s.t. Ax € Fix(S), (5)

and T: H, — H,, S: H, — H,, and Fix(T') denotes the
fixed point set of T, and Fix (S) denotes the fixed point set
of S.

The SCFPP becomes a specific case of SFP and closely
related to SFP. To solve this problem, the original algorithm
for the directed operator was introduced by Censor and
Segal [14] in 2009 as follows:

X = T(x,—pA*(I-9)Ax,), n>0, (6)
where p satisfies the constraint condition 0<p < (2/[|A[),
and the authors got the weak convergence of the sequence
{x,} for solving the SCFPP (5) if the SCFPP consists, that is,
its solution set is nonempty.

Recently, Cui and Wang [15] studied the following al-
gorithm, and they got the weak convergence of the sequence
{x,} for solving the SCFPP (5):

Xnt1 = U)L (xn - PnA* (I- T)Axn)’ (7)

where U, = (1 -A)I + AU and p,, is given in the following
pattern:

(1- T)"(I - T)Axn"2 Ax :/:T(Ax ),

- 2|A" (I - DAx,|* (8)

0, otherwise.

The step-size of this algorithm p,, does not depend on the
norm of the operator A and searches automatically.

In 2015, Boikanyo [16] extended the main results of Cui
and Wang [15] and constructed the Halpern-type algorithm
for demicontractive operators that converge to a solution of
the SCFPP (5) strongly:

Xy = ogu+ (1 - 0, )Uy (x, — p, A" (I - T)Ax,,), (9)

where p, is given as (8). In this result, the resolvent I —
p,A* (I -T)A plays an important role. Indeed, the tech-
niques of resolvents is quite popular, and it acts as a bridge
between fixed point problems and a number of optimization
problems (see, e.g., [17-21] and the references therein).

Motivated by the above results, we propose a novel al-
gorithm on demicontractive operators for approximating a
solution of the SCFPP (5):

Journal of Mathematics

u,=x,-p,A" (I-T)Ax,,
Xnt1 = (1 _(Xn){(l _En)l-'—fnU[(l - 77n)1+ nnU]}un +a,u,
(10)

where p,, is also obtained by (8). Our algorithm is also based
on the Halpern iteration. Indeed, it is a core for many al-
gorithms in split problems (see, e.g., [22-26]). We get the
strong convergence of the iterative sequence {xn} generated
by (10) for solving the SCFPP (5). Our main results are in
two folds. First, we construct a novel iterative algorithm to
solve the split common fixed point problem for the demi-
contractive operators. Second, we permit step-size to be
selected self-adaptively by the self-adaptive method, which
avoids to depend on the norm of the nonlinear operator A.
Our results extend and improve some results of Boikanyo
[16], Cui and Wang [15], Yao et al. [27], and many others.

2. Preliminaries

In this section, we will present some lemmas, which are
useful to prove our main results as follows.

Let H be a Hilbert space, which is endowed with the
inner product ¢-,-), norm | -|[. Then, the following in-
equalities hold:

lu+ I <llull® + 2{v,u+v), Vu,veH, (11)

ltw + (1 = OvI* = tlull® + (1 = O)IvlI* = £ (1 = O)llu - vII%,
Vt € RandVu,v € H.
(12)

Definition 1. Let T: H — H be an operator, then I - T
called demiclosed at zero, if the following implication holds
for any {x,} in H:

X, —Xx

(I-T)x }z)x:Tx. (13)

— 0

Note that the nonexpansive operator is demiclosed at
zero [28].

Lemma 1 (see [29]). Let {a,} be a sequence of real non-
negative numbers with

Apy1 S (1 - Yn)an + 811’ (14)

where {y,} is a sequence in (0, 1) and {9,} is a real sequence
such that

(i) Y1 Yn = 00
(ii) limsup,_,, (8,/7,) <0 or Y2, 18,] <o
Then, lim

n—socofn = 0.
Lemma 2 (see [15]). Let A: H, — H, be a linear bounded

operator and T: H, — H, a t—demicontractive mapping
with T< 1. If A”'Fix(T) # @, then it is as follows:
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(a) I-T)AX =0A" (I -T)AXx =0, VX € H,.

(b) In addition, for z € A~ 'Fix(T),

1- 7% - T)Ax|"
4|A™ (1 - DAR|

|x -2z - pA" (I - DAZ| + (

= 2
<lx -zl

(15)

where x € H,, Ax+T (Ax) and

(-0l - DAz
P - mazf (19

Lemma 3 (see [30]). Let H be a Hilbert space and let T be an
L-Lipschitzian mapping defined on H with the module L> 1.
Set

K= ET(qT +(1—mI) +(1- L. (17)

If 0<&<n< (1/1+ V1+L?), then the following con-
clusions hold:

(1) K is demiclosed at zero point 0, if T is demiclosed at
0

(2) Fix(T) = Fix(T (4T + (1 - n)I)) = Fix(K)

(3) If T: H — H is a quasi-pseudo-contractive oper-
ator, then the operator K is quasi-non-expansive

Lemma 4 (see [31]). Let {s;} be a real numbers sequence that
does not decrease at infinity in the sense that there exists a

subsequence {sk)} of {s} such that {skj} < {skm}for all j>0.
Define an integer sequence {myf,. s by
my = max{k, <I<k: s;<s;,} (18)
Then, m; — o0 as k — oo and
s

mk+12max{smk,sk}, (19)

for all k> k,.
3. Some Nonlinear Operators

Definition 2. An operator T: H — H 1is said to be
L-Lipschitzian if and only if there exists L >0 such that

ITx—Tyl<Llx -yl (20)

for all x, y € C.
Definition 3. An operator T: H — H is said to be non-
expansive if and only if

ITx -Tyl<lx-=zl, VxeH. (21)

Definition 4. An operator T: H — H is said to be quasi-
non-expansive if and only if Fix(T) # & and

ITx -zl <|x—z|, VxeH,Vz e Fix(T). (22)

Definition 5. An operator T: H — H is said to be firmly
nonexpansive if and only if

ITx — Tyl* <llx - yI* =I(I - T)x - (I - Tyl
Vx,y € H.

(23)

Definition 6. An operator T: H — H is said to be firmly

quasi-non-expansive if and only if Fix(T) #+ & and
ITx - zI* < Ilx - 2I* = I(I - T)xI’, Vx € H, Vz € Fix(T).

(24)

Definition 7. An operator T: H — H is said to be pseu-
docontractive if and only if

(Tx-Ty,x-yy<lx-yl>, Vx,yeH. (25)

Note that T' is pseudocontractive if and only if the op-
erator I — T is monotone. There is also an alternative def-
inition for pseudocontractive operators, that is, T' is said to
be pseudocontractive if and only if

ITx ~ Tyl* <lx - yI* +I(I = T)x - (I - T)yll’,
Vx,y € H.

(26)

Definition 8. An operator T: H — H is said to be quasi-

pseudo-contractive if and only if Fix(T) # & and

[ =" < = 1T - 51
(27)
Vx € H, Vx" € Fix(T).

Definition 9. An operator T: H — H is said to be strictly
pseudocontractive if and only if there exists k € [0, 1) such
that

ITx - Tyl* <llx - yI* + k(I - T)x - (I - T)yl?,
Vx,y € H.

(28)

Definition 10. A operator T: H — H is said to be directed
if and only if
{(z-Tx,x-Tx)<0, Vxe€ H, Vz e Fix(T). (29)

Definition 11. An operator T: H — H 1is said to be
T—demicontractive with 7< 1 if and only if

ITx - zI* < llx - 2I* + 7llx - Tx|%,

(30)
Vx € H, Vz € Fix(T).

It is easy to obtain that (29) is equivalent to



Iz = Tx|* +lx = Tx|* ~lx - 2I° <0,

(31)
Vx € H, Vz € Fix(T).

Remark 1. The classes of k-demicontrative mappings, di-
rected mappings, quasi-non-expansive mappings, and
nonexpansive mappings are closely related. By the above
definitions, we obtain the following conclusion relations
easily (see Figures 1-7).

(1) The nonexpansive mapping with Fix(T)+J is
quasi-non-expansive mapping

(2) The quasi-non-expansive
0—demicontrative mapping

mapping is

(3) The firmly nonexpansive mapping is nonexpansive
mapping

(4) The firmly quasi-non-expansive mapping is quasi-
non-expansive mapping

(5) The firmly nonexpansive mapping is firmly quasi-
non-expansive mapping

(6) The directed mapping is demicontractive mapping

(7) The demicontractive mapping is quasi-pseudo-
contractive mapping

(8) The strictly pseudocontractive mapping is pseudo-
contractive mapping

(9) The pseudocontractive mapping is quasi-pseudo-
contractive mapping

4. Main Results

In this section, some assumptions are as follows:

(1) H, and H, are two Hilbert spaces, A: H; — H, isa
linear bounded operator, and A* is the adjoint of A

2)U:H, —H, ad T:H,— H, are two
L-Lipschitzian operators with L>1, Fix(U)+ &,
andFix(T) + &

(3)U: H, — H, is a «-demicontractive operator
(k<1), and T: H, — H, is a t-demicontractive
operator (7<1)

(4) I-U and I — T are two demiclosed operators at O

(5) The set of solutions of SCFPP (5), denoted by S, is
nonempty

The strong convergence of a sequence {xn} to a point
x € H is denoted by x,, — x.

Now, we give the new algorithm to find x* € S.where A
is a bounded and linear mapping, A* is the adjoint of op-
erator A, and p,, is obtained as follows:

(1-2)|I - T)Ax,|*
2A" (1 - DAx,|*

Ax, #T (Ax,),

Pu= (33)

0, otherwise.
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Quasi-non-expansive mapping

Non-expansive mapping

FiGure 1: The relations of some nonlinear operators.

Non-expansive mapping

Firmly non-expansive mapping

FIGURE 2: The relations of some nonlinear operators.

Firmly quasi-non-expansive mapping

Firmly non-expansive mapping

FIGURE 3: The relations of some nonlinear operators.

Algorithm 1. H, is a real Hilbert space, and Fix(U) + &.
Take an initial point x,, € H, arbitrarily, and fix u € H, and
{6,} c (0,1). If the n—th iteration x,, is available, then the
(n + 1)—th iteration is constructed via the following formula:
{ u,=x,—-p,A" (I-T)Ax,,
Xpe1 = enu + (1 - Gn){(l _n“n)I +‘1,an [(1 - Vn)I+ an]}uw
(32)

Lemma 5. Assume that H, is a Hilbert space, U: H; — H,
is a k-demicontractive operator with k<1, L-Lipschitzian
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mappings (L >1), and Fix (U) # &. Denote Upy = (1-wI+

uU (1 —»)I +2U]

V1+L?*(2-«)). Then, for all x € H,,

'F_Uw

2
<lx - zl” = (2 = 2v - k= VL) [Ux — x|°,

Quasi-non-expansive mapping

Firmly quasi-non-expansive
mapping

FIGURE 4: The relations of some nonlinear operators.

Quasi-pseudo-contractive mapping

Demicontractive mapping

Directed mapping

FIGURE 5: The relations of some nonlinear operators.

Quasi-pseudo-contractive mapping

Pseudocontractive mapping

Strictly pseudocontractive mapping

F1GURE 6: The relations of some nonlinear operators.

O<p<v< (2-«/1+

where z € Fix(U). Moreover,

|P_UW

<l|lz = x| (35)

That is, U, , is quasi-non-expansive.

(34)  Proof. Sincez € Fix(U), we get from (30) that
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Quasi-pseudo-contractive mapping

0-demicontractive mapping

Quasi-non-expansive mapping

Non-expansive mapping

FiGURrE 7: The relations of some nonlinear operators.

[U[(1 =) +wU]x - 2|
<1 = I +wW]x - 2|
+ ]| [(1 = I +29U]x - U[(1 - I +2Ux|* (36)
<l(1 =) (x—2) +v(Ux - 2)|*
+ &l [(1 = I +29U]x - U[(1 = I +2U]x|".

Based on the fact that U is L-Lipschitzian, we get Also, from (30) and (12), we can get
[Ux -U[(1 =) +2WUlx| <vL||x — Ux]. (37)

I(1=9)(x = 2) +v(Ux - 2)I°
= (1=lx - zl* + Y|Ux = 2|I* = »(1 = »)llx - Ux|®
< (1= 9)llx = zl* + v(llx - 21 + c|Ux - x]°) (38)
- (1 -)lx - Ux|®

=lx -z +v(v+ k- D|Ux — x|*.

By (12) and (37), we get

111 = I +wUlx —U[(1 -1 +Ulx|
=[(1 =) (x = U[(1 = I +9Ulx) + v(Ux - U[(1 = %I +2U]x)|?
=(1=)|x-U[(Q =) +Wx|* + v|[Ux = U[(1 = »)I + W]x]|?
—v(1=)x - Ux|’ (39)
< (1 -M|x-U[(1 =1 +Wx|> + W L*|Ux — x|*
— (1 -)llx - Ux|’
=(1=9)lx - U1 =0T +U)x]* = »(1 - v = »*L?)|x - Ux|*.



Journal of Mathematics

Substituting (38) and (39) into (36), we have
[U[(1 = )] +Wlx - 2|
<llx-zl* +v(v+x - 1)|Ux - x|*
+(1=9)lx —U[(1 = I +W]x|?
(40)
-v(1-v=2"L%)|x - Ux|’
=llx = z[* + (1 = »)llx = U[(1 = »I + W]«
- v(2 -2V —K— szz)le - Ux|*
Since y < v, combining (12) and (40), we get
(1 = @)x + uU[(1 = »)I +W]x - 2|
=01 =) (x - 2) + p{U[(1 = NI +U]x - 23}
=(1-wlx —z|* + plU[(1 - I +WU]x - 2|
—u(1=w|U[(1 =) +W]x - x|
= (1 -wlx -zl - p(1 - WIU LA = I +2]x - x|
+ullx = zI? + (1= »)lx - U (1 =) + x|
- v(z -2y—Kk— szz)le —Ux|?
=lx = z|* + p(u - »)lx - U1 = »I + x|
- v(2 -2y —Kk— szz)IIx —Ux|?

<|x-z|* - v(2 -2v—Kk— szz)le - Ux|*

(41)
Since v< (2 —x/1+ /1 + L?(2 — k) ), we deduce
2-2y—xk—-7L*>0. (42)

Hence,
(1= wx +pU (1= +W]x -z <|lx—zl.  (43)

That is, U, is quasi-non-expansive.

Theorem 1. Assume that problem (5) is consistent (S# ).
Let H,H,, A,U,T,{x,} be the same as above. If 6, c (0,1)
satisfies lim,__, 0, = 0 and Y ,° 0, = co, where a and b are
constants and {u,} and {v,} satisfies 0<a<p,<v,<
b<(2-x/1++1+L*(2—-x)), Vn=>1, then the sequence
{x,} converges to a point X € S in norm and x is the nearest

point S to u (X = tPgnu).
Proof. This proof is split into three parts as follows. |

Step 1. Prove that {x,} is a bounded sequence.
Take p € S. From Theorem 1, we know that U, , is
quasi-non-expansive. From (32), we have

7
[%ni1 = 2 = (1-6,)U,,u, - p|
=116, (u—p) + (1~ en)(Uyn vUn ~ P)”
<Ol = pl+ (1-0,)|U,, - p]  (4¥
<B,lu— pll +(1-6,)]u, - p|
<O,llu—pll+(1-6,)|x, - p|-
By induction, we get
I, = pll < max{lie = pll |, - pl} (45)
Thus, {x,} is bounded.
Step 2
s =% < (1= 6,2, = = +26,<0 = X, %001 — %,
(46)

where X = Pgu.

Consider the case p,, # 0. From (32), (35), and (11), we get

vt =3 =B+ (1 =)0, 10, 5]
=%) +(1-6,)(U,, ., 1.~ %)
2 —_|? _ _
<(1-6,) |UM,.%”" - x” +20,{u—%,x,,, — %)
2
<(1-6,)|U, .1 - x” +20,(u—%, X, — X)
< (1-6,)u, — x| +26,<u - % %01 - %

”2 B (1- 1)2 ||(I - T)Ax”"4
4 AT (- DAx,|

)| %, - %

+20,{u—-%,x,,, —X)
< (1-6,)|x, =" +26,<u ~ %, x,,, — 3.
(47)
Hence,
2 2 _ _
|0 = %" < (1= 6,)|x, = x| + 26, <u - %, x,,,;, = %).

(48)

Consider the case p, = 0. From (32) and (11), we get

(1-6,)U

—2 —
s =] = ot = 5]

6,)(Up 00 = %)

2
E" +20,{u—-%,%,,, —X)

2

< (1-6,

yvn

[

1-6

n

0)
<(1-6,)
<(1-96,)
<(1-6,)

2
Uy, vy = x“ +20,{u—-%,x,,, —X)

”un - }"2 +20,{u—-%,x,,, —X)

1= 6,)||%, - %[ + 26,<u - X, %y, — %
(49)



Hence,

(B E"z <(1-6,)|x, - E”Z +20,(u - X, x,,, — X).

(50)

Step 3. Prove that x, — X as n — 0.
This step is divided into two
=12
s, = lx, = X"

cases. Denote

Case 1. Assume there exists a positive integer n, and the
sequence {s,} is decreasing for any n>mn,. Then, {s,} con-
verges to some point strongly by the monotonic bounded
principle.
First, we show that
limsup{u - %, x,, — x) <0. (51)

n—~aoo

Using the choice (33) of the step-size p,,, (32), (34), (35),
and (11), we get

||9anrl - E”z =||6,u+(1- Hn)UMMnun - Y"

6, (u=%)+(1-0,)(U, ,.u,~ )|

2 —|I? _ _
<(1-6,) |U,4,,,yn“n‘x|' +20,{u—%,x,,, -~ X»

<[ 87 28, 1= %o - %)
<Nt = = pry7a (229, = 5= VL7 Ut~ |
+20, (U =%, %, = %)

[I-DAx,|" (-7
|a(d-T)ax,|” 4

<, - -

—ynvn(z -2y, —Kk— vfle)"Uun - un"Z
+20,(u—%,x,,., —X).
(52)
So,
(2 =29, — = v, L?)|Uu, - un”2 <s, =Sy +0,L,

_ (-’ - DA, !
Co4|ATT - DAx|T

Sy =S +0,L,

(53)

where L is a nonnegative real constant such that
sup,en{2{f (x,) - X%, x,,; — X} <L. Based on the fact that
{s,} is convergent, we have
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Hun - Uun" — 0, asn— oo, (54)
2
—"(*I — T)Ax"" — 0, asn—> oo. (55)
A" (T -T)Ax,|

Moreover,

|0 -Dax,[" | Ju-DAx]d-1)Ax,|
> > .

A" (1 =T)Ax, |~ |(1 - DAx,| - 1A1~ 1Al
(56)
Hence,
|Ax, - TAx,|| — o. (57)
Since

||xn - un“ = pn| A" (I - T)Axn“

(-7 -T)Ax,|’
©2JAT I -T)Ax,|

— 0, asn— oo.

(58)

Since x,—¢, we have u, — q due to (58). From (54) and
as I — U is demiclosed at zero, we have

q € Fix (U). (59)
From (55) and I — T is demiclosed at zero, we have
Aq € Fix(T). (60)

Thus, g € S by (59) and (60). Hence, it follows from x =
Pgu that

limsup\limits_n — co{u — X, x,, — X) 1)
={u-%x,q-%x)<0.
Secondly, we show that
||x,,+1 - x,,“ — 0, asn— oo. (62)

From (32), we have

“Uyn,vnun — Uy

=ty = U[(1 = 2,)1 +2,U]u, |

= Uy, — Un,, + U, = U [(1 = v, )T +»,U]u, |
<, = Uny|| + ,|Un,, = U[(1 = %, )T +9,U]u, |
<ttty = Uty | + Lot = (1= 9,)T + 2,0 |

= ||t = Uns, || + v, L, — U, |

=ty (1+9,L) |, = U, |
(63)

From the above equation and (32), (54), and (58), we
have
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||xy,+1 - xnll SG,,”u - x,,” +(1-9,) U, ,u

Xn = Y, Un

< Gn”u - xn” +||xn - un” +

u, — Uy,,,vnun

< 9n||u - xn" +“xn - un" +u, (1+ v,,L)“un - Uun"
< Gn”u - xn” +||xn - un” +b(1+ bL)"un - Uun”.

(64)
Combining (54) and 58, we get
||anrl - xn“ — 0, asn—> oo. (65)
Thirdly, we show that x, — X as n — oo.
Together with (51) and (62), we get
limsup{u - %, x,,,; —x) <0. (66)

n—~oo

2
2 2
ymkvmk(Z =2, —k=v, L )"Uumk - umk" SSp,

Applying Lemma 2 to (46), which together with the
assumption of {6,} and (66), we get x, — X as n —> 00
easily.

Case 2. Assume that there is no positive integer n, and a
decreasing sequence {s,} for any n>n,. That is, there is a

subsequence {Sk,} of {s;} such that s, <s ,, for any i € N.
From Lemma 4, we can define a nondecreasing sequence
{m;} c N such that m;, — 00 as k — co and

smk SSmk+1' (67)
Firstly, we show

limsup<u - X, x,, —x) <0. (68)

n—~oo

It follows from (52) and (67) and the boundedness of
{xmk} that

- smk+1 + “ka

<a,, L,
4 (69)
(1-7)* [(I-T)Ax
5 |J (I- T)Ani Pt
<a,, L.
Thus, Since x,, —q, then u,, —q. So, we have q € S by the
similar proofs in Case 1. Hence, it follows from X = Pqu that
“umk - Uumk" — 0, asn— oo,
limsup{u - %, x,,, —X) ={u—-%x,q-x)<0. (74)
2 (70) n—00
||(1 - T)Ax,,
w—— — 0, asn — oo. Secondly, we show
A™(I-T)Ax,,
”xkarI - xmk” — 0, ask — oo (75)
Moreover,
" "2 “( - "2 From (32), we have
R (I- T)Axmk I-T)Ax,, ||U B
i |a-1)4x,, < AL [0 DAx, < 4 G=Dax, ] o i, = Y,
(71) :‘umk umk_U[(l _vmk)l+vmkU]umku
Hence, = ‘umk”umk -Uu,, +Uu,, - U[(l - vmk)l + vmkU]umk”
"Axmk a TAxmk“ —0 (72) <y, |[Uyn, — Uumk” + fhy, [|Uthyy, — U[(l - mG)l + mGU]”mk“
due to <ty Ui, — Uumk“ + o Lty — [(1 - vmk)l + mGU]umk'l
||xmk_umk =pmk|A* (I_T)Axmk" =u ”u -Uu,, || + t, ¥, L th,,, — Un ”
My ||y my My my e

Ca-ofa- T)Axmk"z
© 2ara- T)Ax,,

—> 0, asn — 00.

2

(73)

= ‘umk(l + vka)Humk - Uumk”.
(76)
By the above equation and (32), we have
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“xmkﬂ _xmk

X

+(1 —cxmk)

S R Y P

S0, U= X,

-U u
my ‘“mk’vmk My

'umk - U."lmk’ymkumk

< (xmk“u =Xy, +||xmk Uy, ||+ //‘mk(l + vka)”umk - Uumk
S(xmk“u X, +||xmk —u,, [ +b(1 +bL)||umk —Uu,, ||
(77)
Combining (54) and the (58), we get
”xmk+1 - xmk“ — 0, asn— oo. (78)
Thirdly, we show that x,, — X as n — oo.
Using (68) and (75), we get
limsup(u - X, x,,,, . — %) <0. (79)

n—=a~o0o
Based on s, <s,, ,1, Yk € N and (46), we get

QS 41 +(1 - ocmk)(skarl - smk) <201, (U =X, Xy 1 — X).

(80)
So,
Oy S 1 < 200, (U= X, X g — X)) (81)
that is,
Smr1 < 24U = X, X, g — X). (82)
Taking the limit k — o0, using (79), we obtain
Sm1 —— 0, ask — oo. (83)
Thus,
s, — 0, ask — o0, (84)

due to s <s,, ,;. The proof is completed.

5. Numerical Example

In the section, we present a numerical experiment to
demonstrate the convergence of this algorithm.

Assume H, = H, = (R%||-|,) and T,U: R>® — R® is
defined by

X X
1
T == >
y 3 y
z z
(85)
a 0
Ul b |=]| a
c b

Let the bounded linear operator A be defined by
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The value of ||x (n + 1) - x (n)||

FiGure 8: The iterative curves of algorithm (21) under different n.

5 -5 -7
A=| -4 2 -4 | (86)
—7 -4 5

Clearly, both U and T are 0—demicontractive mappings.
Choose the parameters as follows:

6, =",
n

_ l (87)
!’tn - 1’1’

1
v, =— Vnx>1l.
\/n

p,, is chosen in the following way:

2
(1- f)"(I - T)Axny , Ax, # T(Axn),
2T (- T)Ax,| (88)

0, otherwise,

where A is a bounded and linear mapping and A* is its
adjoint. Then, the iterative algorithm (10) becomes as
follows:

U, =Xy _PnA* (I_T)Ax'l’
sormyes (- (-G o
(89)

1
where u = ( -1 ) is a fixed point in R?, and the initial point
2

a, 1 a,
X, = < b, > = ( -2 ) and x,, = ( b, > is generated by the
c 5 c,

algorithm (10). We plot the numbers of iterations and
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0 20 40 60 80 100
Iteration steps

FIGURE 9: The iterative curves of algorithm (21) under different n.

lx,.1 — x,ll, in the following graphs (Figures 8 and 9), the
numbers of iterations and {x,} = {a,,b,,c,}.

6. Conclusion

In this paper, we proposed a new iteration algorithm (10)
and we obtained the strong convergence of the sequence
{x,} for split common fixed point problems (5). The main
result is an extension of the related results announced in
[15, 16, 27]. The research highlights of this paper are novel
algorithms and their analysis techniques. The improvement
on the extension of the operator, such as the demicontractive
mappings, the directed operators, the quasi-non-expansive
operators, and quasi-pseudo-contractive operators will be of
interest for further research in the future.
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The newest generalization of the Banach contraction through the notions of the generalized F-contraction, simulation function,
and admissible function is introduced. The existence and uniqueness of fixed points for a self-mapping on complete metric spaces
by the new constructed contraction are investigated. The results of this article can be viewed as an improvement of the main results

given in the references.

1. Introduction and Preliminaries

In 1922, Banach proved the following famous and funda-
mental result in fixed-point theory [1]. Let (X,d) be a
complete metric space. Let T be a contractive mapping on X;
that is, there exists g € [0, 1) satisfying

d(Tx,Ty)<qd(x,y), Vx,y € X. (1)

Then, there exists a unique fixed point x, € X of T.
This theorem, which is called the Banach contraction
principle that is a forceful tool in nonlinear analysis [9-14]
and fixed-point theory, is a fascinating subject, with an
enormous number of algorithms and applications in
various fields of mathematics, see, e.g., [15-18]. This
principle has been generalized in different directions by
various researchers. One of them is the following theorem
that is presented by Bryant.

Theorem 1 (see [2]). If f is a mapping of a complete metric
space into itself and if, for some positive integer k, f* is a
contraction, then f has a unique fixed point.

It is obvious that f* is continuous but there are examples
that show it cannot imply the continuity of f and so
Theorem 1 is a real extension of the Banach principle.

In 1969, Sehgal [19] proved the following interesting
generalization of Theorem 1.

Theorem 2 (see [19]). Let (X, d) be a complete metric space,
q € 10,1), and T: X — X be a continuous mapping. If for
each x € X there exists a positive integer k = k(x) such that

d(T"%, "V y) < qd (x, y), (2)

for all yeX, then T has a unique fixed point u € X.
Moreover, for any x € X, u =lim,_, T"x.

Several researchers are interested to generalize Banach
contraction. Here, we state two of them. Wardowski [8]
generalized the Banach contraction as follows.

Definition 1 (see [8]). Let (X,d) be a metric space. The
mapping T: X — X is called an F-contraction, if there
exist F € % and 7> 0 such that, for all x,y € X,

d(Tx,Ty)>0= 1+ F(d(Tx,Ty))<F(d(x,y)), (3)
where F: (0,00) — R is strictly increasing lim, | F(a,) =

—oo iff lim,_ &, =0 and there exists a number k€ (0,1)
such that lim,_.a*F (a) = —co0.


mailto:yhwang@zjnu.cn
https://orcid.org/0000-0001-5221-6741
https://orcid.org/0000-0002-8739-457X
https://orcid.org/0000-0003-4079-2850
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6687238

Notation. The family of all functions F: (0,+00) — R is
denoted by F (see [8]) if F satisfies the following conditions:
(F1) F is strictly increasing
(F2) for every sequence {a,} in (0,+0c0), we have
lim,  F(a,) = —co iff lim a,=0
(F3) there exists a number k€ (0,1) such that
lim, . aF (a) = —c0

n—o0

The collection of all functions F: (0,+00) — R is
denoted by & ( [20]) if F satisfies the following conditions:
(G1) F is strictly increasing
(G2) there exists a sequence {a,} in (0, +00) such that
lim F(a,) = —00, or inf F = —co

n——-00

(G3) F is a continuous mapping

Another way to generalize the Banach contraction is
through the following notion.

Definition 2 (see [3, 21]). Let {: [0,00) x [0,00) — R bea
mapping, then ( is called a simulation function if it satisfies
the following conditions:

(¢1)¢(0,0)=0
(£2)(t,s)<s—tforallt,s>0
(¢3) if {t,}, {s,} are sequences in (0,00) such that

lim, , t,=lim, | s,>0 and t,<s, for all neN,
then
limsup (¢, s,,) <0 (4)
n—~o0

We denote the set of all simulation functions by Z.
Ozturk [4], by using the simulation function and
Wardowski [8] idea, extended Theorem 2 as follows.

Theorem 3 (see [4]). Let (X,d) be a complete metric space
and T: X — X a mapping which satisfies the condition: If
there exist f € F and 1> 0 such that for each x € X thereisa
positive integer n(x) such that for all y € X,

d (Tn(x) (x), T"® (y)) >0=((F(d(x, y), T
+F(d(T"9 (), 7" (1)) 2 0,
(5)

then T has a unique fixed point z € X and T" (x,) — z for
each x, € X, as n — 00.

The first aim of this paper is to generalize Theorem 2 by
introducing a more general contraction type mapping
through the notions of the generalized F-contraction,
simulation function, and admissible function. Then, by the
new constructed contraction and suitable conditions, the
existence and uniqueness of fixed points are investigated.

The following definitions and preliminary results are
needed in the next section.
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Definition 3 (see [6, 22]). Let a: X x X — (0,+00) be a
given mapping. The mapping T: X — X is said to be an
a-admissible, whenever a(Tx,Ty)>1 provided a(x, y)>1
and x, y € X.

Definition 4 (see [23]). An a-admissible map T is said to
have the K-property, while for each sequence {x,} € X with
a(x,,x,,,)=>1 for all neN; the nonnegative integer
numbers, there exists a positive integer number k such that
a(Tx,, Tx,,)>1, for all m>n>k.

Lemma 1 (see [5]). Let F: (0,+00) — R be an increasing
function and {a,} be a sequence of positive real numbers.
Then, the following holds:

(a) if lim,_, F(a,) = —co, then lim, | a, =0
(b) if inf F = —co and lim
F(a,) = —00

resoo®y = 0, then lim, |

Lemma 2 (see [24]). Let (X, d) be a metric space and {x,,} be
a sequence in X such that lim,__, d(x,,x,,,) = 0. If {x,} is
not a Cauchy sequence, then there exist €>0 and two se-
quences of positive integers {n.} and {m;} with n.>my >k
such that d(xmk,xnk) > ¢, d(xmk,xnk_l) <e and

(1) limy_, o d (x,,,%,) = €
(2) limy_od (x,, 15 X,) = €
(3) limy_, o d (X, X, 1) = €

(4) lim;__,.d (xmk—l’xnk+1) =€

2. Main Results

In this section, the main achievements of this article are
presented. The existence and uniqueness of fixed points of
the self-mappings on complete metric spaces satisfying the
generalized F-contraction (relation (6) of the following
theorem) with suitable assumptions are established by the
first theorem. The second theorem can be viewed as a
generalized version of Suzuki’s theorem given in [21]. Of
course it ensures existence of fixed points for self-mappings
under suitable hypothesis.

Theorem 4 Let (X,d) be a complete metric space and
a: X x X — (0,400) be a symmetric function, where
a(x,y)=1 and T: X — X be a continuous mapping
which satisfies the condition: if there exist F € &, 7>0,
L>0, and simulation function { such that for all x € X
there is a positive integer n(x) such that for all y € X and
d(T"® (x), T ()) >0,

((T + a(x, y)F(d(T"(x)x, ") )), F(m(x, y) + LN, (x, y))) >0,
(6)

where
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n(x) n(x)
m(x,y) = max{d(x, ), d(x, Tn(x)x)’d(y) Tn(x)y))d(X,T y) ;— d(y,T x) }

(7)
N, (x,y) = min{d(x, T”(x)x), d(x, T”(x)y), d(y, T"(x)x)},

Tx;, = T(T"x; ) = T"(Tx, ). (8)
then T has a unique fixed point. ’ 0 0

Thus, Tx; forma fixed point of 7. If Tx; = x; , then we
. . Iy 0

Proof. We shall built a recursive sequence {xk} as follows: conclude that T has a fixed point and that terminate the
for the chosen arbitrary point x, € X withny =n(x,), weset  proof. Suppose, on the contrary, that Tx; i, # x;, and hence
x; =T"x, and inductively we get x;, =T"x; with  J(T" (Txio),T”io (x;)) >0. Then, by (6), we have
n; = n(x;).

We assert that x; # x;,, for all i € N;. Suppose, on the
contrary, there exists iy € N, such that x; = x; ,; = T"x;
Then, x;, turns to be a fixed point of T"%. On the other hand

0< (T + oc(xio, Txio)F(d(T"‘oxio, T”"OTxio)), F(m(xio, Tx,-o) + LNl(xi0> Txio))),

9
< Fm{x;, T, ) + LN, (x,. T, )) =(-+ a3, T, JE(d(T"x,, T Tx, ). ©)

Hence, However,
T+ F(d(xio, Tx,-o)) =T+ F(d(T""OxiO, T""OTxiO))
<7+ oc(xiu, Tin)F(d(T""Oxiu, T""OTin))
< F(m(x,-o, Txio) + LN1<xi0> Tx,-o)).
(10)

m(xio’ T'xio) - max{d(xio’ T'xio)’d(xio’ Tni"’%)’d<Txi0’Tni°Txio)’d(xi0)T iOTxiO) ;d(TXiO,T ioxiO) } :{d(XiU’TxiO)})

Ny = min{d(x;, T"x; ), d(x;,, T"Tx;, ), d(Tx;,, T, )} = 0.

(11)
Therefore, So, <0, which is a contradiction. Consequently, we
deduce that for all i € N, x; # x;,,. Then, d (x;,,, x;) >0, by

T+F(d(xi0,Tx,-0)) SF(d(x,-o,Txio)). (12) 6)

4 F(d (o 502) = 7 F(d (T, T5,)
<t+a(x;x,)F(d(T"x;, T x;,4)
<F(m(x;x,,) + LN (x5, %;,1)) (13)
<F(m(x; XM) +L d(xm) xm))
= F(m(x;, x;,1)).



Then,

T+ F(d (x4, X54,)) < F (m(x;, x;,,)). (14)

m (xi’ xi+1) = max{d (xi’ xi+l)’ d (x,-, Tnixi)’ d(

X
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However,

d(x, T" x; d(x;,, T"x;
i+1>mei+l)’ (xl x1+1)+ (x1+1 xz)}

2

d(x;, xi15)
= max{d(xi, Xi1), d(xi+1>xi+2)’lTH2}
(15)
d(x;, x; +d(x.,,x;
§max{d(xi,xi+1),d(x,-+1,x,-+2), (xz x1+1) > (x1+1 x1+2)}
< max{d (x;, x;;1 ), d (Xp1> Xi2) -
If d(x; .1, X 12) 2d (x; , x; 1) for some iy € N, then Then, it can be easily seen that
m(xio’xio+1) Sd('xi(ﬁrl’ xiu+2)’ (16) lmol(d (xi’ xi+1))k =0. (27)
and since F is strictly increasing, So, there exists iy € N, such that
F(m(x, ,x; <F(d(x; ., x; s 17 1
( ( iy zo+1)) ( ( ig+l 10+2)) (17) d(xi,xiﬂ) Sm; Vis io~ (28)
so, it follows from (14) that !
Consequently, if m >n>n,, then
T+F(d(xi0+1,x,-0+2)) SF(d(x,-OH,x,»OJrZ)). (18) d Y ::l
So, 7<0, which is a contradiction. Consequently, d (X, X,,) < Zd(xj’xjﬂ)
j=n
d (X1 Xi45) <d (% X01), Vi€ Ny (19)
m
Hence, from (14) and (19), we have < Z% (29)
T+ F(d (x40, Xi45) < F (d (3 ;1)) (20) =]
or < 1
= Z (k)
F(d (15 Xi42) < F (d (3 Xi01)) = 7. (21) J=ro
In general, one can get Since k € (0,1), the series Y22, 1/j"/¥ is convergent.
. Therefore, {x;} is a Cauchy sequence, and since X is com-
F(d(xi1%i12) < F(d (%0, %)) 7. (22) plete, there exists u € X such that x; — uasi — 00.As a
Hence next step, we show that u is a fixed point of 7", Indeed, due
' to the continuity of T, we have
lim F(d(x;x;,,)) = —0co.
i (d (i, xi,1)) = —00 (23) d(Tu,u) = lim d(Tx;x;) = lim d(x;,%) =0, (30)
1—>00 1—>00
So, from (F,), we have
(Fy), we hav and so u is a fixed point of T. For proving the uniqueness of
lim d(x;,x;,,) =0. (24)  the fixed point, let us consider u and v be two distinct fixed

i—00

Therefore, with notice to (F5), there exists k € (0,1)
such that

. k
Jim (d (i, ;1)) F (d (%35 %141)) = 0. (25)
Now, (22) implies that

(d(x;, xi+l))kF (d (x5, x141)) < (d (x5 xi+1))k (F(d(xg, x,)) —i7).
(26)

points and #n = n(u). So, we have d (u, v) >0, and hence, we
get that d (Tu, Tv) > 0; then, by (6) and ({2),

0<{(t+a(u,v)F(d(Tu,Tv)),F(m(u,v) + LN, (4, v)))
<F(m(u,v) + LN, (u,v)) = (7 + a(u, v)F (d (Tu, Tv))).
(31)
Therefore,

7+ a(u, V)F(d(Tu, Tv)) <F(m(u,v) + LN, (u,v)). (32)
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Hence, (32) implies that
T+ F(d(u,v)) =1+ F(d(Tu, Tv))
<7+ a(u,v)F(d(Tu,Tv))
<F(m(u,v) + LN, (u,v))
<F(m(u,v) + Ld(u,Tu))
=F(m(u,v) +0)
=F(m(u,v)),

(33)

where

m(u,v) = max{d(u, v),d (u, Tu),d (v, Tv),d(u’ ) ; (v, Tu)}

= max{d (u) v)’ O’ O’M}

2
=d(u,v).
(34)
So, we have
7+ F(d(u,v)) <F(d(u,v)), (35)
which is a contradiction, as 7>0. So, u = v. O

Corollary 1. Theorem 3.3 of [7] of Theorem 4 by taking
n(x) = 1. Because in this case,

{(t+a(x, y)F(d(Tx,Ty)),F(m(x,y) + LN, (x,y))) >0
(36)
Now, by ({2), we have
0<{(r+a(x,y)F(d(Tx,Ty)),F(m(x,y) + LN, (x, )))
<F(m(x,y) + LN, (x, ) — ( + a(x, y)F (d(Tx, Ty))).
(37)
Therefore,
T+ a(x, y)F(d(Tx,Ty)) <F(m(x, y) + LN, (x, )).
(38)

Corollary 2. Theorem 3 is contained in Theorem 4 by taking
m(x,y) =d(x,y), a(x,y) =1, and L = 0. Also, Theorem 4 is
reduced to theorem [8] by setting n(x) = 1.

The following example shows that if the mapping T
satisfies the condition of Theorem 4, it cannot guarantee in
general the continuity of the mapping 7.

Example 1. Let X = R denote the real numbers with the
usual metric d. Define function T: X — X by

I, xeQ,
sz{ . (39)
0, xeQ".

Then, T discontinues at each point of X, and T? = 1. If «
is an arbitrary element of [0, 1), then

Vx e X,In, =2; VyeX: d(T"x,T™y)=0<ad(x,y).

(40)

Now, it is obvious that the function {(t,s) = as—t of
condition (6) of Theorem 4 on [0, 00) x [0, 00) is a simu-
lation function and T satisfies following condition:

¢(a(r”

but T discontinues at each point of X. Moreover, T satisfies
all the assumptions of Theorem 4, when L =0 and the
unique fixed point of T is x = 1 and Picard’s iteration of T;
that is, if y € X is an arbitrary point of X, then T"(y) is
convergent to the fixed point.

x, T"y),d(x,y)) >0, (41)

Theorem 5. Let (X,d) be a complete metric space and
a: X x X — (0,4+00) a symmetric function, where
a(x, y) > 1. Assume that T: X — X is a mapping in which
there exist F € &, >0, and the simulation function { such
that for all x,y € X with T"Wx £T"%)y, where n(x) is a
positive integer and 1/2d (x, T"®x) <d (x, y) implies

((T +a(x, y)F(d(T"(")x, T”(x)y)), F(m(x, y))) >0,
(42)

where m(x, y) is defined as in Theorem 4, satisfying the
following conditions:

(i) T is a-admissible,
(ii) there exists x, € X such that a(xy, Txy) =1,

(iii) if {x,} is a sequence in X such that x, — x as
n— 0o and a(x,,x,,,)=1 for all neN,, then
a(x,,x)>1 for all n e N, and

(iv) T has the K-property,
then T has a fixed point in X.

Proof. Let x, € X be an arbitrary point. The recursive se-
quence {x;} is inductively constructed as follows:
n, = n(x,), and we set x; = T™x, and inductively get x
T"x; with n; = n(x;).

We assert that x; #x;,, for all i € Nj. Suppose, on the
contrary, that there exists i, € N, such that
x;, = %X; 41 = T"x; . Then, x; turns to be a fixed point of T".

Iy

On the other hand,

i+l =

Tx;, = T(T"x; ) = T"(Tx, ). (43)

Thus, Tx; forma fixed point of 7. If Tx; = x; , then we
conclude that T has a fixed point and that terminate the
proof. Suppose, on the contrary, that Tx; #x; and hence
d(T" (Tx; ), T" (x; ) >0. Then, by (42), we have
0< (7+ oc(xio, Txio)F(d(T”"ﬂxio, T"‘UTxiO)), F(m(xio, Txio)),

< F(m(xio, Txio)) —(T + oc(xio, Tx,-o)F(d(T”’!’xio, T"’OTxio))).
(44)

Hence,



T+ F(d(xiu, Tx,-u)) =T+ F(d(T""Oxio, T""OTin))

(45)

m(xio, Txio) = max{ d(xio, Tx,-o), d(x,-o, T”"Oxio), d(Tx,-O, T""OTxiO),

= {d(xl-o, Txl-o)}.

Therefore,

T+ F(d(xiO,TxiO)) SF(d(x,»o,Txio)). (47)

So, 7<0, which is a contradiction. Consequently, we
deduce that, for alli € Ny, x; # x;,,. Then, d (x;,,, x;) >0, and
0

i+1

1 1
Ed(xi,T”"xi) = Ed(xi’ Xip1) S (x5 Xi41)- (48)

Now, by (42),

m(x;, X)) = max{d(xi, X1 ) d (x5 T %), d (X130, T X141 )

{d(x

I/\

x{id (xl’ x1+1) d(X,H, x1+2)

I/\

{d( 1+1) d('le’ z+2)}

If d(x; 41> X; 40) 2 d (X, x; ,1) for some iy € Ny, then

m(x > X; +1) = d(xigw xi0+2)’ (52)
and since F is strictly increasing,
F(m(x ) X; +1))SF(cl(xiuﬂ,)c,-()+2)), (53)
so, it follows from (50) that
T+ F(d(xioﬂ,xiﬁz)) SF(d(xi0+1>xio+2))~ (54)
Hence, 7<0, which is a contradiction. Therefore,
d(xip> %i10) <d (% x;1), Vi €N, (55)
Hence, from (50) and (55), we have
T+ F(d (11, X45) < F (d (3 ;1)) (56)

z+1>xi+2)’
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However,

d(xio’ TﬂioTxio) + d(TXiO, T”joxi())

!

2 (46)
T+F( ( Xiy1» X z+2)) T+F(d( x T xz+1)
<t+a(x,x;, ) Fd(Tx, T"x;,,)
<F(m(x; x;01))-
(49)
Hence,
T+ F(d (X1, x;41)) < F (m(x x,1))- (50)
However,
d(x T x1+1)+d(x1+1’T X)
2
d(xi,xi+2)}
2 (51)
d (% Xi41) + A (%1415 Xi42)
2
or
F(d) (%11, Xi42) < F (d (33 Xi41)) = 7. (57)
Consequently,
F(d (11 Xi42) < F (d (%0, x1)) = (58)
Hence,
Jim F(d(x;, x;,1)) = —00 (59)
So, from (G,), we have
Jim d(x;, x;,,) = 0. (60)

Now, we claim that {x;} is a Cauchy sequence. If it is not
true, then by Lemma 2, there exist ¢, >0 and two sequences
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of positive integers {n;} and {m,} with n, >m, > k such that
d (x> %) > €9, d (X, , %, 1) <&, and

(L1) limy__, o d (x,,, X, ) = &

(L2) limy_, o d (X, X, 1) = &

(L3) limy_, o d (%, 41 %,,) = €
(L4) limy_ood (X, 41 X, 1) = &

Therefore, the definition of m (x, y) implies

d(x T _1) + d(x LT"%x, )
klgnoo m(x,5 X, 1) = kl;mm max{d(xnk, xmk_l),d(xnk,T"(")xnk),d(xmk_l,T”<x>xmk_1), - . 5 = .
. d(xn > Xm ) + d(xm -1 Xy +1)
= 1141)'[100 max{d(x"k’ xmk—l)’d(x"k’x”k+1)’d(xmk‘1’xmk)’ - : 2 : -
&+ &
= max{sO,O,O, 0 3 0} =&
(61)
So, In fact, if we assume that, for some i, > 0, both of them
. are false, then
Jim (50 = 5 <6z

On the other hand, since lim;__, d(x, ,x,, ;) =& >0
k k
and limy__,d(x,,x, ) =0, with considering a subse-
quence if it is needed, one can suppose that there exists
k, € N such that for any k >k, and n >m; >k,

d(x,5 %, 1) <A(%,,%,, 1) (63)

So, it is obvious that, for all k> k; and n; >m, >k,

%d(x”k’ Tn(X)x”k) = %d(x”k’ xﬂk“) < d(x”k’ xmk—l)' (64)

Also, using the K-property, there exists k, € N such that
(X5 % 1) 21, Vh>k,. (65)
If k>max{k,, k,}, then it follows from (65) that
T+ F(d(T"(k)xnk, xmk,l)) <T+ oc(xnk, xmk,l)F
: (d(T”(x)xnk,T”(x)xmk_l))
SF(m(xnk, xmk,l)).
(66)

Letting n — 00, the continuity of F through (L1) and
(62) implies

7+ F (&) <F(g), (67)
which is contradicted by 7>0. Consequently, {x;} is a
Cauchy sequence in the complete metric space X. Hence,
there exists u € X such that x; — u, as n — oco. To
complete the proof, we show that u is a fixed point of T. We
first claim, for all n>0, that

1 1
Ed(x,-, xi1) <d(x;u), or zd (X341 Xi42) < d (X341 10).
(68)

S x0) > d(3 ), and Sd(x,00%,.2) > (i, 000).

(69)
Hence, (55) implies
d(xio,xioﬂ) < d(x,»o, u) + d(u,xioﬂ)
< %d(xio’ xi0+1) + %d(xi0+1> xi0+2)
(70)

< %d(x,-o, xi0+1) + %d(xio’ xi0+1)

= d(xio’ xi0+1)>

which is a contradiction and the claim is proved.
Now, let us begin with the first part of (68); that is,
suppose that

1
Ed(xi,xi+1)Sd(xi,u), (71)

and on the contrary, assume that Tu # u. Without loss of
generality, one can imagine that Tx; #Tu, for all i € N,
(because if x;,; = Tx; = Tu for infinite values of i, then
uniqueness of the limit concludes that Tu = u). Then, from
(45) and (iii), we get

7+ F(d(x;,1,Tu)) = 7+ F(d(Tx;, Tu))
<t+a(x,u)F(d(Tx;, Tu))  (72)
<F(m(x;,u)).

And since F is continuous on (0, +00), and d (u, Tu) > 0,
as i — 00, we get

7+ F(d(u, Tu))£F<,lim (m(x;,u)). (73)

However,



m(x;,u) = max{d (xu),d (x;, x14)> d (u, Tu),

(74)
d(x;, Tu) +d(u, x;,)
5 )
So, we have
lim;,  m(x;,u)= max{O, 0,d (u, Tu), w}
=d(u, Tu).
(75)

Therefore, if d (u, Tu) # 0, then from (73), we have
T+ F(d(u, Tu)) <F(d(u, Tu)), (76)

which is contradicted, as 7> 0. So, d (1, Tu) = 0, i.e.,, Tu = u.
Finally, if we assume that the second part of (68) is true, i.e.,

%d(xiJrl’xHZ) <d(x;0ou), (77)

then by using the same manner, we can prove that
d(u, Tu) =0, ie, Tu=u.

Suppose that u and v are two fixed points of T. If u # v,
then d(Tu,Tv)>0. Furthermore, «(u,v)>1, because
u,v € Fix(T). It is also clear that 1/2d (u, Tu) = 0<d (u,v).
Hence, (45) implies

T+ F(d(u,v)) =7+ F(d(Tu,Tv))
<7+ a(u,v)F(d(Tu, Tv)) (78)

<F(m(u,v)),

where

m(u,v) = max{d(u, v),d (u, Tu),d (v, Tv),d(u’ ) ; d( Tu)}

_ max{d(u, 0.0, OM}

2
=d(u,v).
(79)
So, we get
7+ F(d(u,v)) <F(d(u,v)), (80)
which is a contradicted by 7> 0 and so u = v. This completes

the proof. O

Corollary 3. If in Theorem 5, we put n(x) = 1, then
{(r+a(x, y)F(d(Tx,Ty)),F(m(x,y)))=0. (81)
Now, by ({2), we have

0<{(t+ a(x, y)F(d(Tx,Ty)),F(m(x,y)))

(82)
<F(m(x,y)) - (t+a(x, y)F(d(Tx, Ty))).

Therefore,

Journal of Mathematics

T+ a(x, y)F(d(Tx,Ty))<F(m(x,y)). (83)

Hence, we get Theorem 3.3 of [7].
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In this paper, we introduce a Halpern algorithm and a nonconvex combination algorithm to approximate a solution of the split
common fixed problem of quasi-¢-nonexpansive mappings in Banach space. In our algorithms, the norm of linear bounded
operator does not need to be known in advance. As the application, we solve a split equilibrium problem in Banach space. Finally,
some numerical examples are given to illustrate the main results in this paper and compare the computed results with other ones
in the literature. Our results extend and improve some recent ones in the literature.

1. Introduction

Let H, be a Hilbert space, and let C be the nonempty closed
convex subset of H,. Let H, be a real Hilbert space, and
let Q be the nonempty closed convex subset of H,. Let
A: H — H, be a linear bounded operator. In 1994,
Censor and Elfving [1] introduced the split feasibility
problem (SFP) as a generalization of convex feasibility
problem as follows:

findapoint x* € Csuch that Ax™ € Q. (1)

Recntly, the SFP and its variants have been investigated
by many authors due to its real applications such as medical
imaging, radiation therapy, and treatment planning; see, e.g.,
[2-5]. For solving SFP (1), it needs to get the inverse A™!
(assuming the existence of A™!) in algorithm of Censor and
Elfving [1]. However, few authors continue to study the
algorithm of Censor and Elfving since the difficulty of
computing A™', even if it exists. In fact, another algorithm
solving SFP (1) is more popular which is called CQ algorithm
given by Byrne [6, 7]. The CQ algorithm of Byrne is a
gradient projection method in convex minimization. Since
the CQ algorithm does need to compute A™! and only
involves the projections P and Py, it is easy to implement

when P and P have the closed-form expressions. How-
ever, the computations of Pi and P, are also difficult if these
projections did not have the closed-form expressions which
is such that the CQ algorithm of Byrne [6, 7] is not easy to
implement in this case. In 2010, Xu [8] investigated the CQ
algorithm from the ways of optimization and fixed point,
proposed Mann’s algorithm, and relaxed CQ algorithm to
solve SFP (1). In the relaxed CQ algorithm, the sets C and Q
are level sets of convex functions so that the projections
involved in the CQ algorithm are onto half-spaces, which
makes the algorithm implementable. Also, in 2010, Moudafi
[9] proposed an iterative method to solve a split common
fixed point problem for quasi-nonexpansive mappings in
which the projection is not involved which is such that the
algorithm is easy to implement. In 2014, Kraikaew and
Saejung [10] combined the Moudafi method and the Hal-
pern algorithm to propose a new iteration in which the
projection is not involved for solving the SFP. In the recent
years, many algorithms have been given to solve the SFP in
Hilbert spaces; see, for instance, [11-15] and the references
therein.

However, because of the complexity of properties in
Banach space, it is very difficulty to solve SFP (and fixed
point problem) in Banach spaces. Until now, only limited
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works on SFP (and fixed point problem) in Banach spaces
have been reported in the literature. For instance, the au-
thors in [16] gave an algorithm to solve SFP in Banach space.
In [17], Tang et al. introduced some iterative algorithms to
solve a split common fixed point problem for a quasi-strict
pseudocontractive mapping and an asymptotically non-
expansive mapping in two Banach spaces and obtained the
weak and strong convergence for the proposed algorithms.
In [18], Chen et al. proposed a new hybrid projection
method for solving split feasibility and fixed point problems
involved in Bregman quasi-strictly pseudocontractive
mapping in p-uniformly convex and uniformly smooth real
Banach spaces. They proved the strong convergence for the
proposed algorithm using the Bregman projection method.
On the feasible and common fixed point problem, the au-
thors also refer to [19-21].

Let E; be a 2-uniformly convex and 2-uniformly smooth
real Banach space with the best smoothness constant k > 0 and
E, be a uniformly smooth, strictly convex, and reflective Banach
space. Let S: E; — E; be a closed quasi-¢-nonexpansive
mappingand A: E;, — E, be alinear bounded operator. Very
recently, Ma et al. [22] proposed a hybrid projection algorithm
to solve the following split feasibility problem and fixed point
problem:

find x* € Csuchthat Ax" € Q, (2)

where C ={x € E;: x =Sx} and Q C E, is a nonempty
closed convex subset. Precisely, their algorithm to solve (2) is
as follows:

[ x, € E|,C, =E,,
Zy = ]_l(Jlxn + YA*]Z(PQ - I)Ax”)’
y, = ]—1 [(thzn +(1 - (xn)]lSzn],

Cont ={v € C,: ¢(v: 1) <4 (v, %), $(v:2,) <P (> )}
nx1,

A

| Xnt1 = HC,Mxl’

(3)

where {a} C [§,1) with §>0, y € (0, (1/]A*K2)), Py is the
metric projection of E, onto Q, and Il is the generalized
projection of E, in C,,,. The authors proved that the se-
quence generated by (3) strongly converges to a point which
solves (2).

On the contrary, the most algorithms of approximating
the fixed points of quasi-¢-nonexpansive mappings in
Banach spaces are constructed by the hybrid or shrinking
projection methods, see [23-25]. However, in 2018, Hieu
and Strodiot [26] introduced a new iterative algorithm for
solving pseudomonotone equilibrium problem involving the
fixed point problem for quasi-¢-nonexpansive mapping in
Banach space without using the hybrid or shrinking pro-
jection methods. More precisely, their algorithm is
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( 1
Y= argmin{lnf(xwy) t5¢(nx) v e C},

1
1 20 = argmin{ L. f (7 3) + 36 (2%,) : y € €},

Xnt1 = HC(]71 (“n]u + (1 - “n) (ﬁn]‘zn + (1 - ﬂn)]SZn)))’
(4)

where f: C x C — R is a pseudomonotone bifunction and
S§: C — C is a quasi-¢-nonexpansive mapping. The au-
thors proved that the sequence generated by (4) strongly
converges to a common point that solves the pseudomo-
notone equilibrium problem on f and is a fixed point of S.

In general, there are three kinds of iterations of strong
convergence that are used to approximate the fixed point of
the nonlinear operator. The iterations are the Halpern it-
eration, the viscosity iteration, and the hybrid projection
iteration. Recently, Hussain et al. [27] proposed a new
surprising iteration that strongly converges to a fixed point
of a nonexpansive mapping in Hilbert space. More precisely,
the iteration is

xy€H, x,,=0,1-pu,)x,+(1-0a,)Tx,n>1, (5
where H is a Hilbert space, T: H — H is a nonexpansive
mapping, and {a,}, {y,} ¢ (0,1] are the control sequences.
The authors proved that {x,} generated by (5) strongly
converges to a fixed point of T' under some certain condi-
tions on {a,,} and {u,}. Later on, Marino et al. [28] extended
(5) to strict pseudocontraction.

In this paper, motivated by the work of [22, 26, 27], we
introduce some algorithms to solve a split common fixed
point problem for two families of quasi-¢-nonexpansive
mappings in Banach spaces and prove the strong convergence
for the proposed algorithms. As the application, we solve a
split equilibrium problem in Banach space. Finally, we give a
numerical example in infinite dimension Banach space to
illustrate the main result of this paper. Our results extend the
one of Ma et al. [22] from one quasi-nonexpansive mapping
to two quasi-nonexpansive mappings and [27] from Hilbert
space to Banach space.

2. Preliminaries

Let E be a Banach space, and let E* be the dual space of E.
For all x € E and x* € E*, we denote the value of x* at x by
{x,x*). The duality mapping J on E is defined by

®
X

T ={x" € B Gax'y =l <]

2}, Vx € E.
(6)

It is known that J (x) is nonempty for all x € E. A Banach
space E is said to be smooth if the limit
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x+ty|l —llx
lim llc + Il =l

n—=o0o

(7)

exists for all x, y € S(E) = {z € E : ||z|| = 1}. The space E is
smooth if and only if the duality mapping ] is single-valued.

A Banach space E is said to be strictly convex if ([lx +
yll/2) <1 for x,y € E with |lx| =]yl =1 and x# y and
uniformly convex if for each € € (0, 2], there exists § > 0 such
that (lx + yl/2)<1 -6 for all x,y € E with [x]| = [yl =1

and |lx — yll >e. It is known that if E is smooth, strictly
convex, and reflexive, then the duality mapping J is single-
valued, one-to-one, and onto. Let E be a smooth Banach
space. The function ¢: E x E — R is defined by

$(x, y) =lxl* = 2¢x, Jyy +lylP, (8)

for all x, y € E. From the definition of ¢, it is easy to see that,
for all x, y,z € E, the following hold:

(lxll = Iy < ¢ (. ) < el + D%,
$(x. T (M) + (1= VJz) <A (x, y) + (1= D (x,2), A€ (0,1).

The following is an important property for the function
¢:
¢(x,y) =¢(z,y) +¢(x,2) +2{z - x, ]y - Jz),  (10)

for all x, y,z € E.

Lemma 1 (see [29]). Let E be a uniformly convex and
smooth Banach space, and let {x,} and {y,} be two sequences
of E. If ¢(x,, y,) — 0 and either {x,} or {y,} is bounded,
then ||x,, — y,| — 0.

For any bounded sequences {x,} and {y,} in a uniformly
convex and uniformly smooth Banach space, the following
hold:

¢ (% 1) — 00]x, = | — 0%, = Ty — 0.
(11)

Let II,: E— C be mapping called the generalized
projection [30] that assigns to an arbitrary element x € E the
minimum point of the functional ¢(x,y); that is,
[ex = argming, ¢ (3, x).

Lemma 2 (see [30]). Let E be a smooth, strictly convex, and
reflexive Banach space and C be a nonempty closed convex
subset of E. Then, the following conclusions hold:

(@) ¢(x,Tcy) + ¢ (Tley, ) <¢(x,y), Vx € C, Vy € E

(b) Forx € E, z = l-x ifand only if {z — y,Jx — Jz) 20,
VyeC

(c) For x,y € E, ¢(x,y) =0 if and only if x = y

Let E be a strictly convex and reflexive Banach space and

C be a nonempty closed and convex subset. The metric
projection

Pex = argmin, [y — xll, Vx €E. (12)

Lemma 3 (see [31]). Let E be a smooth, strictly convex, and
reflexive Banach space and C be a nonempty, closed convex
subset of E. Let x € E. Then,

(9)

z = Pcxifandonlyif (z - y,J(x —2)) 20, VyeC.

(13)

Let E be a strictly convex, smooth, and reflexive Banach
space. The duality mapping J* from E* onto E** = E coin-
cides with the inverse of the duality mapping J from E onto
E*, thatis, J* = ]~ !. Define a mappingV: E x E* — R [32]
by

V(xx") =lxl? - 2¢x, 6™ +])x"

, V(x,x")e EXE".
(14)

®
X

Lemma 4 (see [32]). Let E be a reflexive, smooth, and strictly
convex Banach space. Then,

V(x,x") <V (ex"+y") =20 %" - x, y%), (15)

for all xeE and  x*,y" € E*.
V(x,x*)=¢(x,] 'x*) for all x € E and x* € E.
Let E be a smooth Banach space. A mapping T: E — E
is said to be closed if for any sequence {x,} c E with
x, — x and Tx, — y, then Tx,=y. T is said to be
quasi-@-nonexpansive mapping if Fix(T) # & and

¢(p, Tx)<¢(p, x), (16)

for all p € Fix(T) and x € E. For a quasi-¢-nonexpansive
mapping T, Fix(T) is convex. If T' is closed, then Fix(T) is
closed, see [24].

Obviously,

Lemma 5 (see [33]). Let r>0. A real Banach space E is
uniformly convex if and only if there exists a continuous
strictly increasing function g: [0,00) — [0,00) with

g(0) = 0 such that
ltx + (1= Oy <tllxl® + (1= Olyl* = (1 =g (lx = yl),
(17)

for allt € [0,1] and x, y € B,, where B, = {x € E: ||x|| <r}.

Lemma 6 (see [33]). Letr > 0. Let E be a 2-uniformly smooth
Banach space with the best smoothness constants k> 0. Then,

e + 17 < ll® + 2¢y, T + 262Nyl (18)



for all x,y € E.

Lemma 7 (see [34]). Let {a,} be a sequence of nonnegative
real numbers. Suppose that

Ay < (1-v,)a,+79,0,, VneN, (19)
where {y,} c (0,1) and {8,} c R satisfy the conditions:

lim y, =0,
n—~0

e (20)
Z ¥,, = 00, and lim sup §, <0.
n=1 n—o00

Then, lim,__, . a, = 0.

Lemma 8 (see [35]). Let {a,} be a sequence of real numbers
such that there exists a subsequence {n;} of {n} such that
a, <a,,, for all i € N. Then, there exists a nondecreasing
sequence {my} ¢ N such that m;, — oo ask —> co, and the
following properties are satisfied by all (sufficiently large)
numbers k € N:

Ay <Oy 1andag<a,, . (21)

In fact, my, = max{jsk: aj<aj+1}.

Lemma 9 (see [36]). Suppose that {a,} and {b,} are se-
quences of nonnegative real numbers such that

a,.,<a,+b, nxl (22)

If Y21 b, <00, then lim a, exists.

n—oo'n

3. Main Results

In this section, let E; be a 2-uniformly convex and 2-uniformly
smooth real Banach space with the best smoothness constant
k>0 and E, be a uniformly smooth, strictly convex, and re-
flexive Banach space. Define the functions ¢, and ¢, by

¢1 (x>y) :"xlﬁ_2<x)]1y>1+”y||ia Vx;)/ € E])

2 2 (23)
¢, (u,v) =llully = 2<u, J,v), +lvl5,

Yu,v € E,,

where (x,],y>, (resp., {u,],v),) and ||x[|; (resp., llull,)
denote the value of J, y at x and norm of x (resp., the value of
J,v at u and norm of u ) in E, (resp. E,), respectively.
However, for convenience, we use the same symbols ¢, -),
|-, and ¢ in E, and E, without the confusion.

Let A: E, — E, be a linear bounded operator with
adjoint A*. Let S: E;, — E, and T: E, — E, be the
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quasi-¢-nonexpansive mappings. Consider the following
split common fixed point problem:

find x € Fix (S) such that Ax € Fix(T). (24)

Denote the set of solutions of the above split common
fixed point problem by Q. In this section, assume that S and
T are closedand I — Sand I — T are demiclosed at zeros in E,
and E,. Note that, from the closedness of S and T, it follows
that Fix (S) and Fix (T) are closed [24], which implies that Q
is closed. The convexity of Q) is from the convexity of Fix (S).
Assume that Q is nonempty.

Let x* = I140, where 0 is the zero element in E,;. We will
prove that sequence {x,} generated by the following algo-
rithm converges strongly to x*.

Algorithm 1. Take x, € E;, and define a sequence {x,} by
[ w, = TAx,,
Q, ={w € E;: ¢(w,w,) <¢(w, Ax,)},
320 = T (1% = 1A To(T - Pg, ) Ax,),
=T (BuJ iz + (1= B)]1S2,)
[ X1 = 11 (0, (1= ,)T 1%, + (1= ,)]17,),

n>1,
(25)

where {a,}, {8,} ¢ (0,1),{r,} c (z,1) with 7 € (0,1) and
[(Po, - 1)Ax,
2| ATy (1- Py )Ax,

2

5 if [(Po, - 1)Ax,| #0,

Vn

0, otherwise.
(26)

Lemma 10. The sequence {x,} is well-defined and bounded.

Proof. Since ¢(w,w,)<¢(w,Ax,) is equivalent to
2w, J,Ax, — J,w,) < ||Axn||2 - IIwnIIZ, it follows that Q,, is
closed and convex for each n> 1. For any p € Q, it follows
that Ap € Q, for all n>1. Hence, each Q, is nonempty
closed convex, which implies that {PQnAxn} is well-defined.
Now, we show that ”(PQn —-I)Ax,|#0 implies that
IA*], (Pq — I)Ax,|| #0. Assume that |A*], (Pg — I)Ax,,|l =
0. We have (Ap — P, Ax,, ], (Pq —I)Ax,) >0by Lemma 3
and hence

0=(p-x,A"T,(Py - I)Ax,) =(Ap - Ax,, ],(Po, —I)Ax,)
=(Ap - Pq Ax,,, J,(Pq, — I)Ax,) +(Po Ax, — Ax,, ],(Po —T)Ax,) 27)

=(Ap - Po Ax,, 5(Pq, — 1) Ax,) +[(Po, - T)Ax,

n

"2 |(Pg, - 1)Ax, |
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5
It is a contradiction. It follows that ”(PQn -1)Ax,|#0 Since E; is a 2-uniformly convex and 2-uniformly
implies that [|A*],(Pq — I)Ax,[|#0. Hence, {z,} is well- smooth real Banach space, Ej is 2-uniformly smooth real
defined. Furthermore, ixn} is well-defined. Banach space,and J; = (J 1‘)"1. From (25) and Lemma 6, we
have
d(x",z,) =|x"|" - 2<x", 1%, + 7, A ]z(PQ,, - I)Axn> +||]1xn +y,A ]Z(PQ;1 - I)Axn
< x| - 2¢x", T %, - 2yn<x*,A*]2(PQn - I)Axn> +||x,,||2
(28)
* * 2
+2,(x,, A", (Pg, — I)Ax,) + 2y,k* | AT, (P, —T)Ax,
* * * * 2
= ¢ (x",x,) = 2y,(x" = x,, A"J,(Pq, — I)Ax,) + 2y,k*|A"J,(Po —T)Ax,| .
Since Ax* €Q,, (Ax* - Py Ax,, ], (PQn -1)Ax,) >0.
Hence, we have
2(x" = x,, A"J,(Po, — I)Ax,) = 2{Ax" - Ax,, ],(Po, —I)Ax,)
* 2 2 (29)
= 2(Ax" = Pg Ax,, J,(Pg, — 1)Ax,) +2|[(Po, — I)Ax,| 22|(Pg, - 1)Ax, |
Combining (28) with (29), we obtain
¢ (x",z,) <P (x",x,) -2y, '(PQn - I)Ax, 4 26y, A" T, (P, — I)Ax, ’
4 30
* 'KPQn B I)Ax” * ( )
= ¢(x",x,) - T s<P(x", x,).
23| AT, (P, - T)Ax,
Furthermore, by Lemma 5, (25), and (30) we obtain
(" 7) =[x = 24" BT sz + (1= B)T1S2,> +|BuS 12 + (1= BTS2,
12 % 2 2
< ”x " - 2<x ’ﬁnjlzn + (1 - ﬁn)llszn> + ﬂn"zn” + (1 - ﬁn)"szn" - IBn (1 - ﬁn)g(ujlzn - ]lszn”)
= ﬁn¢ (x*’zn) + (1 - /31'1)(/5 (x*’ Szn) - ﬁn (1 - ﬁn)g("]lzn - ]lszn") (31)

4

[(Pq, - 1)Ax,
AT,(Po, - I)Ax,

S(p(x*’xn)_ z_ﬁn(l_ﬁn)g(njlzn_jlszﬂ")'

26*

It follows from (25), (31), and Lemma 5 that
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$(x" xp01) = ‘p(X*’]Il (o, (L= 1) ] 1, + (1= )1 ) )—"x “ =20, (1= 7,)<x7, J126,) = 2(1 = 0, )<x75 T, 90
+|I(xn(1 - Tn)llxn + (1 - (xn)Ilyniz Sx ’ n(l - Tn)<x*’]1xn> - 2(1 - ‘xn)<x*’]1yn>
+ ‘xn”(l - Tn)]lxnn2 + (1 an)l“lyn ’ = n (1 - Tn)<x*>]1xn> - 2(1 - ‘xn)<X*’ ]1yn>
(1= rll + (= )l = (1= 266" ) + (1~ )9 " 3) + |
: . [(Po, -
SOcn(l_‘rn)gb('x ’xn)+(1_‘xn) (/)(x ’xn)_ 5 z_ﬁn(l_ )g("]lzn_]lszrz")
24| AT (P, - T)Ax,
+a,T,[x" ||2
_ * * |2 ”(PQ,, - n
- (1 - ‘ann)(p(x ’xn) + anTn”x " - (1 - an) BT 2 + ﬁn(l - ﬁn)g("]lzn - ]lszn")
2k (Po, - I)Ax,
Smax{(p(x*,xn), x" 2}S Smax{(p( 5 x* 2}, n>1.
(32)
*, —lh < *’ 1_ *’
So, {¢(x*,x,)} is bounded. O ¢(x N ") o9 (x%x) + (1= )¢ (x", 3,)
<a,d(x'x,) +(1-a)p(x",x,) (39
Lemma 11. Let {x,} be the sequence generated by Algo- = ¢(x",x,).
rithm 1. Then, o
¢(x*’xn+1) < (1 - (ann)(p(x*’xn) + 2(ann<'x* - xn+1’le* Note that
+ (1 - (xn) (]lxn - ]1yn)> Xne1 = III ((1 - ‘ann)hn + “nTn(l - ‘xn) (]lyn - ]lxn))'
(33) (35)
By (34) and (35) and Lemma 4, we have
Proof. Let h, =wa,],x,+ (1 —a,)],y,. Then, by (31), we
have
(p(x*’xnﬂ) = ¢(X*’]I1 ((1 - ‘ann)hn + &, T, (1 - an) (]lyn - ]lxn)))
= V(x*’ (1 - anTn)hn + anTn(l - ‘xn) (]lyn - ]lxn))
SVv(x*’ (1 - Ochn)hn + ‘ann(l - 0(") (]lyn - ]lxn) + a7, (]lx* - (1 - ‘Xn) (]lyn - ]lxn)))
- 2<xn+l - x*’ X Th (]lx* - (1 - an) (]lyn - ]lxn))> = V(x*’ (1 - anTn)hn + anTnjlx*) (36)
- 2<xn+l -x", &, Ty, (]lxi< - (1 - an) (]1yn - ]lxn))> < (1 - ‘ann)(p(x*’];lhn) + “nTn(p (x*’x*)
- 2<xn+l - X*, X Ty (]lx* - (1 - ‘Xn) (]lyn - ]lxn))>
< (1 - ‘ann)(p(x*’xn) + 206,1‘['”<X* = Xnt1> IIX* - (1 - “n) (]lyn - ]lxn)>'
O

Theorem 1 If the following conditions hold:

lim «, =0,

(37)

Z(x = coand liminf 8, (1-8,)>0

n=1

then the sequence {x,} generated by Algorithm 1 converges
strongly to the element x*.

Proof. By (32), we have
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ol
2k |

AJ,(Pg, - I)Ax,

4

2 +ﬁn(1 _ﬁn)g(ujlzn - ]lszn")>

< (1= @) (5 50) ~ (" %) + a2 [ 6 (6 ,) — (6 x,00) + o, |7

Now, we show that [ x,, — x*|| — 0 by the following two
cases:

Case 1. Suppose that there exists 1, € N such that
{¢(x*,x,)},2, is nonincreasing. In this situation,
{¢(x*,x,)} is convergent. By (37) and (38), we have

KPQH - 1)Ax,
A'T,(Py, - T)Ax,

4

;= lim g(“]lzn - ]lsznu) =0,

n—o0 | n—>00

(39)

which implies that

"]lyn - ]lxn" < "]lyn - ]1zn|| +l|]1zn - ]lxn" :"]lyn - ]lzn" + Y

[(Po, - 1)Ax,

7
(38)
lim [[],2, - 1,8z, = 0. (40)
Since {||A*]2 (PQ” - I)Axnll} is bounded, we have
lim [(Pq, - I)Ax, | = 0. (41)

By (40), we have
“]lyn_llznn = (1 _ﬁn)"]lzn_llszrl” — 0. (42)

Combining (39) with (42), we obtain

AJ,(Pg, —T)Ax

n

2 (43)

=||]1yn - ]lzn" + 2K2'

On the contrary, from (25) and (43), it follows that

A ]z(PQn - I)Axn

||]12n - ]l'xn+1|| < "]lzn - ]1J’n" +”]1)’n = 1% " = "]lzn - ]1)’;1” + ‘Xn"(l —1,)]1%, — h)’n” — 0. (44)
Since E; is a 2-uniformly convex and 2-uniformly "PQ"AX” B "PQ”Ax" ~TAxn |0 (48
smooth real Banach space, J, is uniformly norm-to-norm H
continuous. From (40), (42), and (44), it follows that ence,
lim "Zn _ Szn" - lim |)’n _ Zn" - lim ”Zn _ xn+l|| —o. ||Axn - TAxn” < ”Ax,1 - Pq Ax, +”PQ”Axn -TAx,|| — 0.
n—=ao0 n—=aoo n—=ao0o (49)

(45)

Since {z,} is bounded, there exist a subsequence {znk}
of {z,} converging weakly to p € E; such that

limsup{x® ~z,,J;x") = lim (x" -z,,],x")
n—00 k—00 (46)
=<x* _P>]1x*>-

Now, we show that p € Q. First, by (45) and demi-
closeness principle at zero of S, we have p € Fix(S). On
the contrary, since Py Ax, €Q, and
||PQnAxn - Ax,|| — 0, we have

¢(Pg, Ax,, w,) < ¢(Pg, Ax,, Ax, ) — 0. (47)

By Lemma 1, it follows that

Since A is bounded and linear, by (45), we can conclude
that {Axnk +1} converges weakly to Ap € E,. By (49) and
demi-closedness principle of T, we obtain that
Ap € Fix(T). Hence, p € Q. Therefore, by (45) and
Lemma 3,

lim sup{x”™ — x,,41, J1x" ) = limsup{x" — z,,, J;x")
={(x" = p, J;x") <0.
(50)

Finally, the conclusionl|lx, — x*| — 0 follows from
the hypothesis on {a,,}, (33), (43), (50), and Lemma 4.

Case 2. Suppose that there exists a subsequence {n;} of
{n} such that



¢(x*,xn[) <¢(x*,xni+1), (51)

for all i € N.

Then, by Lemma 5, there exists a nondecreasing se-
quence {m;} c N such that m;, — oo:

O

4
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¢(x*, xmk) < ¢(x*, xmkﬂ) and ¢ (x", x;.)

(1-oum)

2k2|

< (p(x*, xmk) - (p(x*, xmkﬂ) + ocmk1’mk||x*”2 < “kamk|

Then, by a similar process with proving (43)-(50), we
can obtain that

kh;nm|‘]1xmk - ]Iymk” = 0and lim sup{x" - xmkﬂ,]lx*) <0.
(54)

Replacing #n with m; in (33), we have

A*]2<Pka+l - I)Axmk

(52)
< ¢(x*, xmkﬂ), Vk>1.
Replacing »n with m,. in (38), by (52), we have
7t ﬁmk(l - ﬁmk)g<"]12mk - ]lszmk )
(53)

2

*

X

¢<x*’xmk+l) = (1 - akamk)(P(x*’xmk)

+ ZOkaka<.x* - xmk+1’ ]lx* (55)
+(1 a ‘xmk)(]lymk a ]1xmk)>’

from which we obtain

% Ty (x*’ xmk) = ¢(x*’ xmk) - ¢(x*’ xmk+1) + zamk‘[mk<x* - xmk“’]lx* +(1 - amk)(Ilymk - ]1xmk)>

<20, T, X7 = X, 40, 167 +(1 - ocmk)(hymk - lemk)>.

Since a,, 7,, >0, by (54) and (56), we have
</>(x*,xmk) 26X = Xy i X

+(1=a )T 1D, = T1m ) — 0.
(57)

Furthermore, by (54), (55), and (57), it follows that

Jim ¢(x",x,,.0) = 0. (58)
However, ¢ (x*, x;) < IIxkarl —x*| for all k>1. So, we
conclude that ¢ (x*,x;) — 0 as k — oo and hence
lx, — x*| — 0 as k — oo by Lemma 1. The proof is
complete. O

Remark 1. If ”(PQn -DAx,| =0 for all n>1, then y, =0
and z, = x,, for all n>1. In this case, Ax, = P, Ax, and
¢ (Ax,, w,) = ¢ (Ax,, TAx,) < ¢ (Ax,, Ax,) = 0, which im-
plies that Ax,, = T Ax,, for all n> 1. The iterative scheme (25)
becomes

{ Yn = ]Il (ﬁnjlxn + (1 - ﬁn)jlsxn)’
Xnt1 :];1 (‘Xn(l_Tn)]lxn+(1 _‘Xn)]lyn)’ nzl
(59)

By the proof process above, we still can see that {x,}
converges strongly to x* = Pr; (5. Since A is linear and

(56)

bounded, Ax,, — Ax*, which implies that Ax,—x*. Note
that Ax, = TAx,, for all n>1, and Ax, - TAx, — 0 as
n — 00. By the hypothesis that I — T' is demi-closedness at
zero, we get Ax* = TAx". Hence, x* € Q. Hence, without
loss generality, we assume that y,, # 0 for all # > 1 in the proof
process.

Algorithm 2. Take u = x, € E,, and define a sequence {x,,}
by

[ w, = TAx,,
Q, ={w € E;: ¢(w,w,) < ¢(w, Ax,)},
i Zn = ]Il (]lxn - YnA*]Z(I - PQW)Axn)’ (60)
yn = ]Il (/311]1211 + (1 - ﬁn)]lszn)’
L xnﬂ =]Il (“n]1u+(1_“n)]1yn)> }121,
where {a,}, {8,} c (0,1) and
(g, - 1)Ax, |
o S 'Kan —I)Ax, | #0,
y, =4 22| ATTL(1 - P )Ax,
0, otherwise.
(61)



Journal of Mathematics 9

Lemma 12. {x,} is well-defined and bounded. bounded. By (29)-(31), (60), and Lemma 5, for any X € Q,
we have

Proof. By a similar proof lines of Lemma 10, we can show

that {x,} is well-defined. Now, we prove that {x,} is

(/)(55, xn+1) = ¢(55’ ];1 (‘anlu + (1 - ‘xn)]lyn)) = ”35”2 - 20‘n<52> ]11/l> - 2(1 - 06")<)?, ]1yn>
e Tyu+ (1= )yl <RI = 20,43, T 1) - 2(1 - @)%, 17,

il + (1= o)yl = 0,8 (R + (1= ) (%, 3,) < 0,8 (2w) + (1 - @)

' (gb(&’xn)_ 5
21|

<o, (xu) +(1-a,)9(X, x,) <o, (X,u) + §(X,x,), n>L

(62)
4

(P, - D)Ax,
A'T,(Pg - I)Ax,

2 _ﬁn(l _ﬁn)g("]lzn - ]lszn”))

By the hypothesis on {a,} and Lemma 9, it follows that  then {x,} generated by Algorithm 2 converges strongly to the
the limit of {¢ (%, x,)} exists. Hence, {x,} is bounded. O  element x* = lim,__, Tx,,.

Proof. We first show that {x,} is a Cauchy sequence and
hence converges strongly to some point x* € E,. Since the
interior of Q) is nonempty, there exist p € Q) and r >0 such

Theorem 2. Assume that S and T are closed. If the interior of
Q is nonempty and {a,} and {B,} satisfy the following

conditions that
z a, <ooand liminf B, (1-,) >0, (63) p+rheQ, (64)
=1 n—~oo
whenever ||h] < 1. By (10), we have
¢(P’ xn) = ¢(xn+1’ xn) + ¢(p’ xn+1) + 2<xn+1 - Db ]lxn - ]1xn+1> (65)
= @ (X1 %) + (P Xa1) + 2%y = (P +7H), Ty, = J1 X000 + 20K, 1%, = T1X00)-
On the contrary, by (10), again we have Combining (65) with (66), we obtain

(/)(p + T’h, xn) = ¢(xn+1’xn) + ¢(p + Th, x"+1)
+ 2<xn+1 - (P + T'h), ]1xn - ]lxn+1>'
(66)

2rhy 1% = J1 %) = 0(0s %) = (@ (K15 %) + (D5 X)) + 245000 — (P +1R), T 1%, = J1X,00))

= ¢(P> xn) - ¢(xn+1"xn) - ¢(P> xn+l) - ¢(P +rh, xn) + ()b(‘xnﬂ’xn) + ‘/’(P + rh’anrl) (67)

= (85 %) (D) + (P + %) (P + 7).

Since p +rh € Q, from (62) and (67), it follows that
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21’<h, ]lxn - ]lxn+1> < ¢(p’ 'xn) - ¢(p’xn+l) +a, ((/)(P + T’h, M) - ¢(p + T]’l, xn)) (68)
< (/)(p’ xn) - ¢(P’xﬂ+l) + an¢(P +rh, u)'
Since h with ||k <1 is arbitrary, we have So, for all m>n,
"]1 - Jix n+1|| = (¢ (P> x,) = ¢ (P> Xpi1)
(69)
+a,p(p+rh,u)).
“]lxn - ]l'xm" = "]lxn =X+ 1 X = = I X 1 X ]lxm"
m—1

< z "]1x ]1x1+1“ = Z (@ (P, x;) = d(ps Xi41) + ;0 (p + rh, 1)) (70)

—

= LN 6lp) - 9 +

i=n

Since the limit of {¢ (p, x,,)} existsand Y 2,
(70), we see

@, < 00, from

hr_n,m"]lxn ~J1%| = 0, (71)

mn

(P, - 1),
(1 - an) o . x - 2
27| A7 Ty (P, - T)Ax,

¢(p+rh u)

m—

h m
Z $(prx,) — ¢ (px,,) + ¢(p+r ”’Z

i=n i=n

which implies that {J, x,,} is a Cauchy sequence in E;. Hence,
{J1x,} converges strongly to some point in E;. Since E} hasa
Fréchet differentiable norm, then J Il is continuous on E7.
Hence, x,, converges strongly to some point x* in E;.

For any X € Q, by (62), we have

Ja(l7,2. - hSznll)>

(72)
< “n(/) (%, u) + (1 - (Xift)(/5 (ﬁ’ xn) - ¢ (2’ xn+1) < (Xn¢ (%,u) + ¢ ("AC) xn) - ¢ (52’ xn+1)'
- =y |A*T,(I-P
Since the limit of {¢ (%, x,,)} exists, by the hypothesis on 17120 =Tl =, ]2< Q")
{a,,} and {B,}, it follows that
' [(1-7q,) 76
(o, 1) G
* 2 - n*>oo (“]1 ]1SZ”") =
(P o~ 1 ) It follows that
73 Iz =%l — 0. (77)
which implies that Hence, {z,} converges strongly to x* € E,. Since S is
closed, by (75), we get x* = Sx*.
lim “(PQn .| =0and lim ||]1zn - IISzn” =0, Now, we show that Ax* = TAx*. From (49), it follows
e e that [|Ax, - TAx,| — 0. Since A is linear bounded,
(74) Ax, — Ax*. From the closedness of T, we get
and hence Ax* = TAx*. Therefore, x* € Q. Finally, we show that
x* =lim,_, Iqx,. In fact, since x* € Q, by Lemma 2, we
|z, = Sz.,| — o. (75)  have

On the contrary, by (60) and (73), we have

¢(x", Mgx,) <p(x7,x,) — 0. (78)
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It follows that x* =lim
complete.

Let Q be a nonempty closed convex subset of E,. In
Algorithms 1 and 2, if putting T = I and Q, = Q, we have
w, = Ax, and Q, = Q for all n>1. Then, we have the fol-
lowing results. d

IInx,. The proof is

n—-00 n*

Corollary 1. Let E, be a 2-uniformly convex and 2-uniformly
smooth real Banach space with the best smoothness constant
k>0 and E, be a uniformly smooth, strictly convex, and
reflexive Banach space with a nonempty closed convex subset
Q CE,. Let A: E, — E, be a linear bounded operator with
adjoint A*. Let S: E; — E, and Q C E, be a nonempty
subset. Assume that I —S is demi-closedness at zero and
I'+ D, where I = {x € E: x € Fix(S), Ax € Q}. Let x; € E,
and define a sequence {x,} by

Zp = ]Il<]1xn - YnA*]Z(I - PQ)Axn)’
Yn = ]Il (ﬁnjlzn + (1 - ﬁn)llszn)’

Xnt1 :III ((Xn(l_Tn)llxn+(1_(xn)11yn)> nzl,

(79)
where {a,},{B,} c (0,1),{r,} c (7,1) with T € (0,1) and

(Pq, - 1)Ax, ?

Py —1)Ax,|#0
R > [(Pa, -] #o.
y, =4 2| ATT(1 - Py )Ax,
0, otherwise.
(80)
If the following conditions hold,
lim «, =0,
o (81)
Z a, = ooand liminf B, (1 -B,) >0,
=1 n—=~o

then the sequence {x, } generated by (60) converges strongly to
the element x* = 110, where 0 is the zero element in E,.

Corollary 2. Let E, be a 2-uniformly convex and 2-uniformly
smooth real Banach space with the best smoothness constant
k>0 and E, be a uniformly smooth, strictly convex, and
reflexive Banach space with a nonempty closed convex subset
Q CE,. Let A: E, —> E, be a linear bounded operator with
adjoint A*. Let S: E, — E, and Q C E, be a nonempty
subset. Assume that S is closed and the interior of I is
nonempty, where I = {x € E;: x € Fix(S), Ax € Q}. Letu =
x, € E| and define a sequence {x,} by

2, =17 (1%, = yuATo(I - Po ) Ax,),
Yo =11 (Buli2 + (1= B)]1S2,), (82)
X1 = ]Il (anjlu + (1 - an)]lyﬂ)’ nzl,

11

where {a,},{B,}  (0,1) and y, = {l(Po, - DAx,I*/ 2K%|A*
J,(I= Py )Ax, |’ [(Pg, — Ax,|| #0,0, otherwise.

If the following conditions hold

lim «, =0,

@ (83)
Z a, <ooand liminf B, (1 - B,) >0,

n=1

then the sequence {x, } generated by (82) converges strongly to

.
some element x* = lim,__, I x,.

4. Application

Let E, and E, be two Banach spaces and f: E; xE;, — R
and f,: E, x E, — R be the bifunctions. Let A: E, — E,
be a linear bounded operator. In this section, we consider a
split equilibrium problem: find a point x* € E; such that

x" € EP(f,)and Ax" € EP(f,), (84)

where  EP(f,)={x€E;: f,(x,y)>0,Vy € E;} and
EP(f,) ={u € E,: f,(u,v) >0, Vv € E,}. We denote the set
of solution of problem (84) by A. That is,
A ={x € EP(f,): Ax € EP(f,)}.

The split equilibrium problem has been studied by many
authors in Hilbert space, see [37-41]. However, few results
on the split equilibrium problem in Banach space is reported
by far.

Lemma 13 (see [24]). Let E be a strictly convex, reflexive,
and uniform smooth Banach space and f: ExE — R be a
bifunction satisfying the following conditions:

(A1) f(x,x)=0 forall x € E.

(A2) f is monotone, i.e, f(x,y)+ f(y,x)<0 for all
x,y € E.

(A3) For all x,y,z € E,
limsup f (tz + (1 —t)x, ¥) < f(x, y). (85)

t—0*

(A4) For all x€E, f(x,) is convex and lower
semicontinuous.

For r>0 and x € E, define a mappingT,: E — E
as follows:

T{x={z CE f(z9) + - (y—2Jz - Jx)
’ (86)
>0forall y € E},

for all x € E. Then, the following hold:
(1) T{ is single-valued
(2) Fix(T/) = EP(f)
(3) EP(f) is closed and convex
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4) ¢(q, T{x) + gb(fo,x) <¢(g,x) for all x € E and
q € EP(f), which shows that T; is a quasi-
¢-nonexpansive mapping

Now, we show that the mapping I — T! is demi-
closedness at zero on a bounded subset of E.

Lemma 14. Let E be a strictly convex, reflexive, and uniform
smooth Banach space and f: Ex E — R be a bifunction
satisfying conditions (Al)-(A4). Let r>0 and define the
mapping T/ as (86). Assume that EP(f)+ Q. Then, I - T is
demi-closedness at zero on a bounded set. That is, if {x,} C E
is bounded and weakly converges to x € E and
llx,, fo Wl — 0 as n — oo, then x = fo

Proof. et {x,} C E be bounded and converges weakly to
x€E and |x, fo Jl— 0 as n— co. For each
x* e EP(f) = le(T ), since Tf is quasi-¢-nonexpansive,
we have

¢(x*,T{xn)s¢(x*,xn), n>1, (87)
which implies that {T{ xn} is bounded. On the contrary,
since J is uniformly norm-to-norm continuous on bounded
sets, it follows that

lim ‘

n—~oo

= 0. (88)
By (A2), we have

_<y T 1/1’1’1_‘f'xn_]xn>Z _f(T;ffxn’y)

Zf(y,T,fxn), Vy € E.

(89)
Letting n — 0 in (89), by (A4) and (88), we obtain
f(y,x)<0, VyeeE. (90)

ForO<t<land y € E, let y, =ty + (1 — t)x. Note that
(90) implies that f (y,,x)<0. By (Al), we have

0=Ff(yoy)<tf(yoy)+ (A =f (ypx)<tf (yp )

(91)
Dividing by ¢, we obtain
f(y»y)20, VyceE (92)
Let t — 0%, by (A3), we have
f(x,y)=20, VyeeE. (93)

It follows that x € EP(f). Thatis, x = fo by Lemma 13.
This completes the proof.

Based on the results in Section 3, we give the following
conclusion directly. O

Theorem 3. Let E| be a 2-uniformly convex and 2-uniformly
smooth real Banach space with the best smoothness constant
k>0 and E, be a uniformly smooth, strictly convex, and

Journal of Mathematics

reflexive Banach space. Let A: E, — E, be a linear bounded
operator with adjoint A*. Let f,: E;xE, — R and
fo: E; xE, — R be the bifunctions satisfying conditions
(A1)-(A4). Assume that A+, where
A={x € E;: x € EP(f,),Ax € EP(f,)}. Let r>0. Take
x, € E; and put Q, = E,. Define a sequence {x,} by
i w, = Trszxn,

Q, ={w e Q: ¢(w,w,) < ¢(w, Ax,)},
{2, =T (1%, + v, A T, (Po, — T)Ax,),

o [(1 _ﬁn)]lz + (1 _/’))n)] thlzn]’

[ %no =1 (0 (1= 7)1, + (1= @) 3,

nx1,

(94)

where {a,}, {B,} ¢ (0,1),{z,} c (7,1) with T € (0,1) and

(o, - 1)

; > [(Po,-
y, =4 28| ATT(1 - P )Ax,
0, else.
(95)
If the following conditions hold
lim «, =0,
(96)

Z(x = ooand llmlnfﬁn(l—ﬁn)>0

n=1

then the sequence {x,,} generated by (94) converges strongly to
the element x* = 11,0, where 0 is the zero element in E,.

Theorem 4. Let E, be a 2-uniformly convex and 2-uniformly
smooth real Banach space with the best smoothness constant
k>0 and E, be a uniformly smooth, strictly convex, and
reflexive Banach space. Let A: E, — E, be a linear bounded
operator with adjoint A*. Let f,:E,xE, — R and
f,t E; x E, — R be the bifunctions satisfying conditions
(AI)-(A4). Assume that the interior of A is nonempty, where
A={xe€E;: x € EP(f,),Ax € EP(f,)}. Let r>0. Take
u,x, € E; and put Q, = E,. Define a sequence {x,} by

w, = T/ Ax,,
Q, ={weQ,: ¢(w,w,) <¢(w Ax,)},
S ATV S
=Bz, + (1= BINT] 2,

)] 1Y)

\xn-v-l:]Il(an]lu'*'(l_ 1’121,

where {a,},{B,} c (0,1) and
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2
Py —T)A
[(Po, - 1)Ax, 5 [(Po, - T)ax,| #0,
y, =4 2| ATT(1 - Py )Ax,
0, else.
(98)
If the following conditions hold
n1£>noo % = 0,
(99)

Z a, <ooand liminf B, (1 -,)>0,

n=1

then the sequence {x, } generated by (97) converges strongly to
the element x* = lim I, x,,.

n—~oo

5. Numerical Examples

In this section, we give the following examples to illustrate
the effectiveness of Algorithms 1 and 2. The program is

X, X
w,=Po(3:7)

where
2

[(Po, - 1)Ax,
A*(I- Py )Ax,

5 if [(Po, - I)Ax,| #0,

2

Yn =

0, otherwise.
(101)

Xy
2
6 1
Yn = ;zn + %zn’
1 2n—-1

Xt T T T o

13

performed by Matlab R2016b running on a PC Desktop with
Core(TM) i5CPU M550 3.20 GHz with 4 GB Ram.

We first show the convergence of Algorithm 1 by the
following example which has been used by Ma et al. [22]. In
[22], the authors compare the computed results using their
algorithm (25) with algorithm (100) in Kraikaew and Sae-
jung [10] by the example. Here, we also compare the con-
vergence of our Algorithm 1 with algorithm (25) in [22] and
algorithm (100) in [10].

Example 1. Let E; =R, E,=R? Q= [0,00] x (-00,0),
Sx = (x/4),forallx € E;, Tx = Pox forall x € E,, where Pq
is the metric projection from E, onto Q, and A: E, — E,
be a mapping defined by Ax = (x/2,x/3) for all x € E,.
Then, A* (u,v) = (u/2) + (v/3), for all (u,v) € E,. It is easy
to see that Q = {x € E;: x € Fix(S), Ax € Fix(T)} = {0}.

Algorithm 3. Let {x,} be the sequence generated by (25) in
this paper with &, = 1/2n and 8, = 7, = 6/7. Then, scheme
(25) can be simplified as

X

0o or-l=[(372) ]

(100)

Ax, = <—,%>,zn =x, +7,A" (PQn - I)Axn,

Algorithm 4. Let {x,} be the sequence generated by algo-
rithm (100) in [10] with «,, = 1/2n and y = 1. Then, scheme
(100) in [10] can be simplified as

1 -1 .
x, € Elx,,, = Nt e (x,+ A" (T -1)Ax,), n>1.

(102)
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Iteration steps n

-+- Algorithm 1
—— Algorithm 2
—o— Algorithm 3

FiGure 1: Convergence for Algorithms 3-5 with different initial
points x; = 3.

e . T
1 2 3 4 5 6 7 8 9 10 11
Iteration steps n

-~- Algorithm 1
—— Algorithm 2
—— Algorithm 3

FiGure 2: Convergence for Algorithms 3-5 with different initial
points x; = 7.

1 2 3 4 5 6 7 8 9 10 11
Iteration steps n

-~ Algorithm 1

—— Algorithm 2

—— Algorithm 3

FIGure 3: Convergence for Algorithms 3-5 with different initial
points x; = -3.
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7 \ \ . . . . . .
1 2 3 4 5 6 7 8 9 10 11

Iteration steps n

-«- Algorithm 1
—— Algorithm 2
—— Algorithm 3

FiGure 4: Convergence for Algorithms 3-5 with different initial
points x; = -7.

Algorithm 5. Let {x,} be the sequence generated by algo-
rithm (25) in [22] with &, = 1/2n and y = 1. Then, scheme
(25) in [22] can be simplified as

[ x, € E,,

X, X
ax,=(2%)

z,=x,+A"(T-1)Ax,,

2n-1 1

= =z +—2z,
Vn 2n " 8m "

C. :{vn: C,: |yn - v| < |xn - v|, lzn - v| < |x,, - v|},

[ Xne1 = Pc x,, nzL

(103)

We perform schemes (100)-(103) with the different
initial points. Figures 1-4 show that the sequence {x,}
generated by (100)-(103) converge to 0.

Remark 2. (a) Although Theorem 1 in [22] requires that {a,,}
in Algorithm 5, i.e., algorithm (25) in [22], takes values in
[8,1) with & € (0, 1); here, for comparing the convergence
rate of three schemes, we put the same «, = 1/2n. This does
not affect the effectiveness of Algorithm 5 since the program
stops in finite iterations. (b) Figures 1-4 above show that the
convergence rate of Algorithm 3 is faster than that of Al-
gorithms 4 and 5.

Next, we illustrate Theorem 2 by the following example.

Example 2. Let E; = R* and E, = R. Define the mappings
S: E;, — E, by Sx = ((x,/2), x,) for all x = (x,x,) € E,,
andT: E, — E, byTx = x/2if|[x|<1land Tx = 1if x| > 1.
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TaBLe 1: Convergence for Algorithm 2 with initial point
x; = (3,6).

Iteration steps X,

1 (-2,-5)

2 (~1.48705, 5.00000)
3 (~1.13985, ~4.99999)
4 (~0.89031, ~4.99999)
5 (~0.70347, ~4.99999)
100 (=0.00085, —4.99999)
261 (~0.00012, ~4.99998)
262 (~0.00012, ~4.99998)
263 (~0.00011, ~4.99998)
264 (~0.00011, —4.99998)
265 (~0.00011, ~4.99998)
286 (=0.00009, —4.99998)

TaBLE 2: Convergence for Algorithm 2 with initial point
x; = (3,6).

Iteration steps X,

1 (3,6)

2 (2.23056, 0.99999)
3 (1.70977, 1.55555)
4 (1.33545, 1.83331)
100 (0.00128, 1.99985)
101 (0.00125,2.00024)
102 (0.00122,2.00022)
300 (0.00014, 1.99997)
301 (0.00013,2.00002)
302 (0.00013,2.00003)
303 (0.00013,1.99997)
349 (0.00010, 2.00002)
350 (0.00010, 2.00000)
351 (0.00009, 2.00003)

10! ' T =(2-5"  x,. = (0.00009, -4.99998) —

1074 ! ! ! !
0 50 100 150 200 250 300

Iteration steps n

- |l
— “'xn - Pan”

F1GUre 5: Convergence for Algorithm 2 with different initial points
x; = (=2,-2).

15
10! . , : . . .
%=0(,6
0
10 X435, = (0.00009, 2.00003)
1074 ) - L 1 1 1
0 50 100 150 200 250 300 350

Iteration steps n

- Il
— ||xn - Pﬂxn”

F1Gure 6: Convergence for Algorithm 2 with different initial points
x; = (3,6).

Let A: E, — E, be a mapping defined by Ax = x, for
all x = (x;,x,) € E,. Then, A is linear and bounded and
A*y=(y,0) for all yeE, It is easy to see that
Q = {(0,x,): x, € R}. All the conditions on S, T, and Q) are
satisfied for Theorem 2.

By Algorithm 2, we generate a sequence {x,} with a, =
1/n? and B, = 1/2(1 — e™?) for all n> 1. Theorem 2 shows
that {x,} will converge to the point P,,x,. We will stop the
program when |x,, — Pox,|| < 10~*. The computed results of
the sequence {x,,} are given in Tables 1 and 2. Figures 5 and 6
show the convergence of the sequence {x,}.

6. Conclusion

For finding a solution of the split common fixed problem of
quasi-¢-nonexpansive mappings in Banach space, we in-
troduced a Halpern algorithm and a nonconvex combina-
tion algorithm where the norm of the linear bounded
operator does not need to be known in advance. The con-
vergence of the algorithms was investigated and some nu-
merical examples were given to illustrate the convergence of
the algorithms.
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In this paper, we investigate the split equilibrium problem and fixed point problem in Hilbert spaces. We propose an iterative
scheme for solving such problem in which the involved equilibrium bifunctions f and g are pseudomonotone and monotone,
respectively, and the operators S and T are all pseudocontractive. We show that the suggested scheme converges strongly to a

solution of the considered problem.

1. Introduction

Let #, and 7, be two real Hilbert spaces. Let C and Q be
two nonempty, closed, and convex subsets of 7', and 7,
respectively. Let f: C x C — R be a bifunction. Recall that
the equilibrium problem is to find a point x* € C such that

f(x*,x)=0, VxeC. (1)

Use SEP (C, f) to denote the solution set of equilibrium
problem (1).

Equilibrium problems have been considered broadly in the
literature (see e.g. [1-5]). Now, it is known that variational
inequalities ([6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]) and fixed
point problems ([18, 19, 20, 21, 22, 23]) can be transformed in
the form of (1). For every ¢ > 0 and x € H, there exists a unique
point zeC such that f(z,y)+ (1/o){z—x,y—x)=>
0, Vy € C (see [2]). Thus, for solving equilibrium problem (1),
an important technique is to use the resolvent of bifunction f
([2]). Another important method for solving equilibrium
problem (1) is to use linear search technique [4].

Let S: C — C and T: Q — Q be two operators. Let
Fix (S) and Fix(T) be the fixed point sets of S and T, re-
spectively. Let g:QxQ — R be a bifunction. Let
A: H, — H, be a bounded linear operator. In this paper,
we concern the following split problem of finding a point
i € C such that

i € SEP(C, f) N Fix(S),

_ . (2)
Al € SEP(Q, g) nFix(T).

Denote the solution set of (2) by T, ie,
I = {x* € SEP(C, f) NFix(S), Ax* € SEP(Q, g) nFix(T)}.

The split problem has received many concerns (see
[13, 24-28]) due to its extensive applications in image re-
covery and signal processing, control theory, and so on. Note
that the split problem (2) includes the following split
problems as special cases:

(i) The split equilibrium problem studied in [29, 30] can
be formulated to find an element & € C such that
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7 € SEP(C, f),

_ (3)
Afi € SEP(Q, g).

The solution set of (3) is denoted by I,.

(ii) The split fixed point problem considered in
[31, 32, 33, 34] reduces to find a point # € C such that

7 € Fix(S),

S (4)
An € Fix(T).

The solution set of (4) is denoted by I',.

Numerical iterative algorithms have been proposed for
finding a split problem of the set of solutions of equilibrium
problems and the set of fixed points of nonexpansive op-
erators; see, for example, [35-39] and the references therein.
Recently, Yao et al. [40] proposed an iterative scheme for
solving the split problem (2) and they obtained the weak
convergence of the suggested scheme.

In this paper, we continuously study the split problem
(2) in which the involved equilibrium bifunctions f and g
are pseudomonotone and monotone, respectively, and the
operators S and T are all pseudocontractive. We propose an
iterative scheme for solving the split problem (2) and strong
convergence results are obtained.

2. Preliminaries

Let %, be a real Hilbert space with its inner product {-,-)
and norm | - ||. Let C be a nonempty, convex, and closed
subset of #,. Let P.: #; — C be the metric projection
defined by

P, (x) = argmin ||y — x|
¢ %/EC 4 (5)

P satisfies: for given x € H,
(x =P (x), y = Pc(x)) <0,

Let f: C x C — R be a bifunction. Recall that f is said
to be monotone if

f(uT,vT) + f(vT,uT) <0, vu',v ecC (7)

Vy e C. (6)

f is said to be pseudomonotone if
f(uT,vT)ZOimpliesf(vT,uT) <0, vu', v ecC. (8)

Let S: C — C be an operator. S is called pseudocon-

tractive if
IS = x| < [ = 1[” +[(T - $)x = (1= x|,
vx,x' e C.

9)

Sis called L-Lipschitz if there exists a constant L > 0 such
that

||Sx—SxT||sL||x—xT||, Vx,x' € C. (10)

If L = 1, then S is said to be nonexpansive. If L < 1, then S
is said to be L-contraction.
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In the sequel, we use the following symbols. Let {x*} be a
sequence in C:
(i) x*—x" means the weak convergence of x* to xT as

k— oo
(ii) x* — x' means the strong convergence of x* to x*

as k — oo
(iii) w,, (xF) = {x": "} c {x*} suchthatxh —x" (i—
00)}

Recall that f is said to be jointly sequently weakly

continuous on C x C, if for two sequences x* € Cand y* € C

satisfy x*—u' and = yf—vf, then we have

£ y9) — £ (o).

Let #, be areal Hilbert space with its inner product ¢, -)
and norm | - ||. Let Q be a nonempty, convex, and closed
subset of 7,. Let ¢: Q — (—00, +00] be a proper, lower
semicontinuous, and convex function. Then, the sub-
differential 0¢ of ¢ is defined by

09 (u) = {VT € H,: ¢(u) +00ut—uw) Sgo(z[r),‘v’uT € Q},
(11)
for each u € Q.
It is well known that
u' = arger(rglin{go(u)} =0 €a<p(uT) + NQ(uT), (12)

where N (u) = {w € Hy: {w,u—-u") <0,Vu € Q}.
The following lemma can be found in [41]. For the
completeness, we include the detail of proof.

Lemma 1 (see [41]). Let S: C — C be an L,-Lipschitz
pseudocontractive operator. Then, for all tie C and
u’ € Fix(S), we have

Ju' =S =i+ nsw)| < - u' |+ (1 - )
= S (1= i + nSw’,

(13)
where 0<n< (1/4/1+ L2 +1).

Proof. Since u' € Fiui(S), we have from (9) that

||S((1 -mI+nS)i— uT"z < ”(1 - r;)(ﬁ - tu*) + n(Sﬁ - uT)HZ
(1 = )iz + 1S = S (1 = )i + nSw),
(14)
s - | < & - u"|” +isa - @, (15)
for all & € C.
Since S is L,-Lipschitzian and % — ((1 — )i + nSt) =
n (i — tSnii), we have
ISz — S((1 — n)ii + nST)|| < nL, |7 — Sill. (16)

According to (15), we obtain
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“(1 3 W)(ﬁ B tu'f) N }7(317 B ”T)HZ Based on (16), we conclude
_ 2 _ 2 I
=(1- ’7)"“ - uT" + 17||Su - uT" -n(1-mlu- Su||2
2 2
<=l u' [+ - | 157 - )
-1 (1= n)la - sal?
=i —u'|* + Pl - al.
(17)
(1 = #)ai + S = S((1 - n)i + nSw)|*
=111 = ) (@ — S ((1 = )i + yS@)) + 1 (Si = S (1 = )i + nS@))|
= (1= i - S((1 = )i+ nSw)|* + llSi - S((1 - n)ii + nSu)|* (18)

— (1 - )l - Sl

< (1=l —S((1 - nyi+ S’ - n(1 -y - n’L; )i - Sl

By (14), (17), and (18), we obtain

IS =T +nS)a - u'|* <[ - u' | + 1l - Sl
+ (1=l = S((1 - n)i + nsw)|?
—n(1-n-n'L})li - Sal’ (19)
i - ' + (1 -l - S = I + nS)all?
- (1= 21— LYl - Sall>.

Since n7< (1/4/1+ L? + 1), 1 — 27— n*L? > 0. Hence, we
can deduce the desired result from (19). O

Lemma 2 (see [42]). Let S: C — C be a continuous
pseudocontractive operator. Then,

(i) Fix(S) c C is closed and convex
(ii) S is demiclosedness, i.e., ika—*ﬁ and Sx* — 2z as

k — oo, then Sii = z'.

Here, we state some conditions on f and g which will be
used in the sequel.

Let C and Q be two nonempty, closed, and convex
subsets of real Hilbert spaces #'; and %,, respectively. Let
f:CxC— R and g: Q xQ — R be two bifunctions.
Assume that

(i) (A1): f(zf,z")=0forallz" € C
(ii) (A2): f is pseudomonotone on SEP(C, f)
(iii) (A3): f is jointly sequently weakly continuous on
CxC

(iv) (A4): f(z%,-) is convex and subdifferentiable on C
forall zf € C

(v) B1): g(z',z") =0 forall z' € Q
(vi) (B2): g is monotone on Q

(vii) (B3): g(u,-) is convex and lower semicontinuous
on Q foreachu e Q

(viii) (B4): for all u,v,w € Q, limsup, og (Aw+ (1-A1)
u,v) < g(u,v)

Lemma 3 (see [1, 2]). Assume that g satisfies conditions
(B1)-(B4). For ¢>0 and u € H,, there exists w € Q such that

1
gw,v)+-{v-—w,w-uy>0, VveQ (20)
S
Let the operator J¢ be defined by

J? (u) :{w €Q: g(w,v) +l(v—w,w—u> >0,Vv € Q}.
S
(21)
We have the following conclusions:

(i) J¢ is single-valued and firmly nonexpansive, that is,
for any u,v € H,,



e -1 <0 -1 u-vy.  (22)

convex and

(ii) SEP(Q,g) is closed and
SEP(Q, ¢) = Fix(J9).
(iii) For ¢;,¢, >0 and u,v € H,, we have

2 - 12 ] <ol + 2= c1||\Jﬂ ) —.

(23)

Lemma 4 (see [4]). Assume that f satisfies conditions (Al)-
(A4). Let {B,} beasequencesatzsfymgﬁk e [B,B] ¢ (0,1]. For
given vk € C, let the sequence {y*} be generated by

LS et Y

Then the boundedness of {vk} implies that {y*} is
bounded.

yk = arg min{
uteC

Lemma 5 (see [5]). Assume that f satisfies conditions
(A1)-(A4). For given two points u,v € C and two sequences
{a*} ¢ Cand {b*} c C, ifa*—u and b*—7, respectively, then,
for any €>0, there exist 9>0 and N, € N such that

0,f(t".a") c 0, f (1) + 5B, (25)

for every k>N,, where B: ={b e H;: ||b] <1}.

Lemma 6 (see [43]). Let {a,} c (0,00), {b,} c (0,1), and
{c,} be three real number sequences. If

a, < (1-b,)a,+c, (26)
for alln>0 with Zn b, = co and limsup,,__, (c,/b,) <0 or
Y2, le,l < 0o, then lim, ., a, = 0.

3. Main Results

In this section, in order to solve problem (2), we first present
an iterative algorithm and consequently prove its strong
convergence.

Let %, and 7, be two real Hilbert spaces. Let C and Q
be two nonempty, closed, and convex subsets of | and 7,,
respectively. Assume that

(i) h: C —> C is a k-contractive operator

(ii) S: C — C is an L,-Lipschitz pseudocontractive
operator and T: Q — Q is an L,-Lipschitz pseu-
docontractive operator with L, >1 and L, >1

(iii) f and g are two bifunctions satisfying conditions
(A1)-(A4) and conditions (B1)-(B4), respectively

(iv) A: |, — , is abounded linear operator and A*
is its adjoint

Let {0}, {mich {Bis {7k {ah {Chs Ak} and {guy} be real

number sequences and «, 9, and y be constants. Next, we
introduce our iterative algorithm.
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Algorithm 1. Fix an initial point x° € C. Set k = 0.
Step 1: assume that x* is known and compute

= (1-68)x" + SkS[(l — )X+ nkak]. (27)
Step 2: compute

Yol T e

If y¥ = +%, then set u* = v* and go to Step 5. Otherwise,
go to Step 3.

yk = arg min«[f(v
yteC

Step 3: let my = min{1,2,...,k, ...} such that

m N7 o 2
GO RGP UL el BICD
where
2 = (1= 9 4 gy (30)

Write 9, = 9™ and z* = zk™
Step 4: compute

uk = Pc(vk -~ Tkzkvk), (31)

where v € 0, f (25,vF) and 1 = (f (25, V)/|[vF]1%).

Step 5:
For any v € Q, find w* such that
1
g(wk,v) +—(v—uF, w —Auk> >0. (32)
Sk
Compute

g =1 -+ (kT[(l A )w" + )Lkka]. (33)

Step 6: compute

X = ykh(xk) + (1= u)Pe [uk + yA*(qk - Auk)].
(34)

Step 7: set k: =k + 1 and return to Step 1.

In order to demonstrate the convergence of Algorithm 1,
we need some additional assumptions on the iterative pa-
rameters. Suppose that the following conditions are satisfied:

(C1): 0< 8 <8 <8<m <7< (1/4/1+L} +1)(Vk=0)
and o, 9 € (0,1)

(C2): Br € lypyal € (0,1)5 7
0<¢<g < +00

(C3): 0<{<( <{<M <A< (141 + L2 +1)(Vk>0)
and y € (0, 1/||fl§|| ) ¢

(C4): limy__,, optye = 0 and Y Spy = +00

€ [, 7,] € (0,2) and

We have the following remark which can be found in [4].

Remark 1
(1) If y* =¥, then y, € SEP(C, f)
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(2) The linesearch rule (29) is well defined Theorem 1. Suppose that I'#&. Then, the sequence {x*}
(3) 0 ¢ 9, f (5, V) generated by (34) converges strongly to q" = Prh(q").

(@) f(Z5v)>0
(5) |luk - p||2 << - p||2 1.2 Tk)(1k||vk||)2 for all Proof. Let x* e I. We have x* € SEP(C, f)NFix(S) and
p € SEP(C, f) Ax* € SEP(Q, g) NFix(T). By (27) and Lemma 1, we get

Next, we prove our main result.

[ = =1 - 80 (x* ~ x*) + 8(S[(1 — m)x* + mesd] - )|
B P LR A e e
(1= 80)8[S[(1 - m)a + mist] -
< (1=t x|+ 8 (1= m)|S[(1 — m)x® + miesa] - | (35)
8 =T = (1= 88 S[(1 - m)xt + mesa] - |
S S N | (R N B

2
e

From (31) and Remark 1, we have It follows that
T ) o a el acf ks o
< “vk o "2 G0 By virtue of (33) and Lemma 1, we obtain

According to (32) and Lemma 3, we have w* = JZ Au
and Ax* € Fix( ]?k). Since ]?k is firmly nonexpansive, we
deduce

ot - x| =g au -y x|
<7 Auk - ]9 Ax, A - Ax")
= (" - Ax", AuF - Ax™)
- g(nwk - x|+t - x| [t - Auk||2).

(37)

Jo - ax [ = Gt - ax) + G-t 4 ATl - x|
= (1= G|t - Ax" |+ G T[(1 - At + 2, Tw] - Ax'
- (1= Q)G T(1 = A + 4 Tw] - w"”z
<t Ax | + G (1 AT - Ak + AT - Wt (39)
(1= )T - Ak + 4]
=t - ax' - - o[- dget e dre] - o

2
< "wk - Ax*" )
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Thanks to (38) and (39), we get Consequently,

”qk - Ax” ”2 < "Auk - Ax"‘"2 —“wk - Auk”z. (40)

Wk —x* A (qk - Auk)> =(Au* - Ax*,qk - Ay
=(q" - Ax",q" - AU —”qk - Auk”2

=3[l A [ ol - - ax [

_qu ) Aukuz (41)
=3[l - [ st - ax [ gl -
< —glet -t gl -
Set tk = P [uF + pA* (¢* — AuF)] for all k> 0. In view of
(35), (36), and (41), using the nonexpansivity of P, we have
"tk -x" "2 = "PC [uk +pA” (qk - Auk)] - P¢ [x*]”2
< "uk -x"+ yA*(qk - Auk)"2
- "uk - x*”z +'|yA*(qk - Auk)”2 + 2y<A*(qk - Auk), uF - x™y
L Ly, e W
~yla* - | (42)
e P ool - -
< "xk - 35*"2 -7 (2 Tk)<‘k||1’k">2 = O (i - 5k)||s[(1 - ﬂk)xk * r]kak] - xk“2
(1= AP - A -t - Al
kx|
<
From (34), we get
P x*” = “yk(h(xk) - x*) +(1- yk)(tk - x*)”
Syk”h(xk) - h(x*)" + yk“h(x*) - x*” +(1- yk)"tk -x" "
< = el () =2+ (1 ) | - 27 (43)

=[1-(1- K)yk]"xk - x*" +|h (") = 7|

Smax{“x ] |n(x") -« ||}.

(1-x)
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By induction, we can obtain that lxk = x*|| < max{[|x’— Based on (34), we have
x*[l, (I (x*) = x*[|/ (1 - ))}. Thus, the sequences {x*}, {u*},
and {+} are all bounded.

K- x*"2 = "yk(h(xk) -x")+(1- ‘uk)(tk - x*)"2

<(1- /,tk)zntk - x*“z + Zyk<h(xk) — x5 Xy

<(1- yk)z"tk - x*“z + Zyk;c“xk - x*“ P x*H + 2 Ch () = x%, K - ) (44)

k+1 *“2
- X

<(1- yk)z"tk - x*nz + /le|'Xk - x*HZ + pkl|x
+ 2 (h(x7) = x5, X = x™,

It follows that

xk+1 *" < l_il;k ”t |'2+1f—[;ka||xk_x*"2+l /'Zc (h(x) x* x 1_x*>
: 11 :ﬁk [" *[ - 72 = ) (u] "Il) (1= yIAR)|¢ - A’

=& (1) — 8,()”8[(1 — )% + nkak] - xk"2 - y”wk - Auk"z]

Kl " k *"2 z.uk < ( ) ,Xk+1—x*>

1 Uik
, (45)
(- 2(1-x) =y )" ko *”2 (1— )y - )(lk"ka)
_< 1 — ey 1 — rpy S Hi
sl(1— k Sk — K| k. kP
st -ag Pl Mn = (1 —vnAHZ)w
k4 k|2
Y”w ykAu ” + (l_zﬂ )2<h(x )= %", %kt 5t >}
Set a, = [|x* — x*||%, by = (2(1 = ) — /1 — )y, and
2
(1) g - |
= 2((11 Kp;k) m ‘l‘Tk (2-7) o Y(l - Y||A||2)7” " H
_ y”wk B Auk”z + 2 > (h(x*) _ x*,xk+1 _ x*> (46)

Hre (1)

= (’7k - Sk) Uy

||s|l<1—nk>x"+nk8x"l\—xkllz},



for all k>0.
Since y. — 0ask — + oo, without loss of generality,
we assume that g, <1 —« for all k>0. From (46), we have

2 * * k+l *
< <h(x")-x",x " —-x
k 2(1—K)—yk<( ) ’
(47)
2 * * k+1 *
< h(x")-x -x|.
1—K|| (*") x
So, limsupy_, ¢ < +00. Next, we show that

limsup,_,, ¢ > — 1. Assume that limsup,_, ¢ < — 1.
Then, there exists a positive integer number K, such that
< -1 when k>K, We can rewrite (45) as
Agyr < (1= bpag + by Thus, for all k> K, from (45), we
deduce

limsupc, = lim ¢
k—s+00 i—+0co

(1 ‘#k,-)z
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(27} < (1 - bk)ak + bkck < a — bk’ (48)

which leads to ay,; <ag - z:‘:KO by. Therefore,

k
limsup ay,; <ag, —limsup Z by (49)

k—+00 k—+00 i=K,

Note that b = (2(1 —«) — /1 — kR )u = (1 — 10)py.
This together with the last inequality implies that
limsup,_,,, 0k, < —0co. It is impossible. Hence,
—1<limsup;_, ¢ < +00. As a result, we can select a
subsequence {k;} of {k} such that x*—p' and

2
ki . 12
(M) ot - 2]

- iingoo 2(1-x)— Uy, _Tki(z - Tki) Yk, Uy,
(50)
k.
‘Y(l—)’"A"z)”q! i + 2 2<h(x*)—x*,xk"+1 -x")
H, (1- )
SI(1—#; xk"+11 _Sxk" — Xk ?
_6ki(’7ki - 6ki) 'l [( k’) " ] || :
Mk,
Since the sequence {x**!} is bounded, without loss of
generality, we assume that lim, . (h(x*) — x*, x5 - x*)
exists. Consequently, from (50), we obtain
(s4]) [s[(1 ) + o] -
,gnfoo Tki(z - Tki) T + 8ki(’7ki - 6ki) : Yk :
(51)
K _oak ki _ Akl
+y(1-y1AP) il N m al }

exists. iir?oo |qkf - A " =0 (54)

By the assumptions, we have liminf; 7 (2 -7,)>0
and liminf; .0, (17 — 6) ) >0, Therefore, we deduce lim 'wki - Auk,-“ =0. (55)

1—>+00
; K| —
iir-{loo ‘k,-“V “ =0 (52) By (54) and (55), we get

Jim [s[(1-m )" st -5 =00 s Jim o -] =0 (56)
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In addition, from (31), we have
Huk - vk” = "Pc(vk - Tklkvk) - Pc(vk)” < TktkHvk". (57)

So, we get from (52) that

uki o “ = 0. (58)

iillloo
Observe that
5 - ] <o -s[0-np e s
5l - ]
<t - [0 o s - .
(59)

It follows that
1
1- LT’]k

"Sxk - xk“ < "S[(l — )% + qkak] - xk“. (60)

This together with (53) implies that

lim
i—+00

Sxki — xki " =0. (61)

In addition, by (27) and (53), we have
“vk" — " " < 64)8[(1 - rlki)xk" + nlexk’] - xk"H — 0.
(62)

Since {*} is bounded, by Lemma 4, {y*} is bounded.
Consequently, the sequence {zF} is bounded. Applying
Lemma 5, we deduce that {+*} is bounded. According to
(52), we derive

lim f(z%%) = lim (tk"vk")“vk“ = 0. (63)

i—+00 i—+00

Since f (zFi,-) is convex, we have

0= f(zki)zki) = f(zki) (1 - Ski)vki + Skiyk’)

(64)
< (1 - Ski)f(zk",vk") + Skif(zk",yk").
So, we get from (29) that
F( 4 28,14 -1 00)
(65)

it

Combining the above inequality with (63), we have

Tim 9 [V -y ||2 = 0. (66)
i—+o00
Note that xktépT € C. Then, it follows from (55), (58),
and (62) that uki—p’, vki—p', Auki—~Ap", Avii—Ap', and
whi—Ap' e Q.
There are two possible cases. O

Case 1. limsupy__,, o9 >0. Then, there exist 9>0 and a
subsequence of {SkiT’ still denoted by {Ski} such that for

9

some I, >0, 9 > 9 for all i >1,. Consequently, by (66), we
deduce

lim
i—+00

Vi yk" “ =0. (67)

Noting that v — pT, thus y%—p'. According to (28), we
obtain

Coky L . . .
0€d, /(") + 2 (F =)+ Ne(™) (o)
50, there exists 7 € 9, f (v, y%) such that

1

G,y — e OF

"—vk",y—yk‘)zo, Vy eC.

(69)

By the subdifferential inequality, we have

F(Fy) = F(0559)2 GRy =y wyec (o)
Therefore,
F(F ) = £ M) + /i GF =y -yz0 vyec
(71)
Since
RS LT LAy | B

from (71), we get
F) - ) g b=z

Lettingi — + oo in (73), from (A1), (A3), and (67), we
obtain

f(phy)=f(pp") =0,
hence p' € SEP(C, f).

Vy € C, (74)

Case 2. lim; 9 =0. Since the sequence {y%} is
bounded, without loss of generality, we may assume that
yki—73 as i —> + 00. Replacing y by v% in (71), we get
k ki Ly kw2
AN e ARl (75)
B,
According to (29), for my — 1, we have
2
FE) = () < =T
2B
From (75) and (76), we obtain

SO S - )] o)

Letting i — + 0o in (77) and noting that vki—pf,
yki—=F and 25! —=p' as i — + 0o, we obtain

f(p"7) szf(p*i)- (78)
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Therefore, f(p',7) =0 and lim, , [ly* — k| =o0.
Consequently, by the similar argument as that in Case 1, we
get p" € SEP(C, f).

At the same time, from (61), xki— p' and Lemma 2, we
deduce that p' e Fix(S). Therefore,
p' € Fix(S) N SEP (C, f).

Next, we show that p' € Fix(T) NSEP(Q, g). First, by
(39), we have

(Ak - (k)(k”T[(l - Ak)wk +/\kka] _ wk||2

2

< "wk ~ x|’ —”qk - Ax”

(79)

< - g ot - ax°] o - 4

Since liminf,__, o, (A — {x){ >0 and {w*} and {g*} are
bounded, from (56) and (79), we deduce that

lim
k—s+00

|T[(1 - Ak)wk + /lkka] - wk“ =0. (80)
Observe that
|rw* - wt| <[ r* - T[(1 - A)w* + A M|
+'IT[(1 - )Lk)wk + /\kka] - wk”
< Lz/\knka - wk” +|'T[(1 “ A )uw® + Akka] - wk“.
(81)
It follows that

|rw* - vt <

<t IO - aowt s ara] - ot

(82)

This together with (80) implies that
limkaOHka -wk| = 0. Combining this with wkf—\ApT
and the fact that I — T is demiclosed at zero (Lemma 2), it is
immediate that Ap" € Fix(T).

By Lemma 3, we have

|

Hence,

]fk(Auk) - ]‘g(Auk)" S%|

]fk(Auk) - Auk". (83)

”]f(Auk) - Auk” < ‘

I () = ] o () =2 ()]
<2| 7 (au¥) - aut|.
(84)
It follows from (55) that lim,__[JZAuf — Au¥| = 0.
Since J? is nonexpansive and Aufi—Ap’, we deduce that
Ap' € Fix(J?) = SEP(Q,g) by Lemma 3. So, p" €T and

w,, (xk) cT.
Replacing x* = Pch(q") in (45), we have
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2O Yot e

1 — xpy
2(1-x) - Pre 2
" 1 — ke MkXZ(I—K)—/,tk
-(h(Pch(q")) - Pch(q"), £ = Pch(q")).

(85)

Noting that limsup,__,,,{h(Pch(gh)) — Pch
("), x**! = Pch(q")) <0, applying Lemma 6 to the last
inequality, we deduce that x* — P.h(g"). This completes
the proof. O

Next, we can apply Algorithm 1 and Theorem 1 for
solving the split equilibrium problem (3). Setting S = I and
T =1 in Algorithm 1, we deduce that v* = x* and ¢* = wF.
Consequently, we have the following algorithm and
corollary.

Algorithm 2. Fix an initial point x° € C. Set k = 0.

Step 1: assume that x* is known and compute

. 1
= aryggém{f (=557 + 35l - yT"z}' (86)

If y* = xK, then set u* = x* and go to Step 4. Otherwise,
go to Step 2.

Step 2: let my, = min{1,2,...,k, ...} such that

ki k ki k @k K|?
f(Z k)x )—f(Z k)y )Zﬁ".x -y ' N (87)
k
where
2 = (1 - 9™)x" + 9™ y", (88)
Write 9, = 9™ and z* = zb™,
Step 3: compute
uk = Pc(vk - Tklkvk), (89)

where 7 € azf(zk,xk) and 4 = (f(zk,xk)/llvkllz).

Step 4: for any v € Q, find w* such that

1
g(wk,v) +a(v— wk,wk —Auk> >0. (90)

Step 5: compute
K = ,ukh(xk) + (1 = ) Pe [uk + yA*(wk - Auk)].
(1)

Step 6: set k: =k + 1 and return to Step 1.

Corollary 1. Assume that I'; # @. Then, the sequence {x*}
generated by (91) strongly converges to a solution

91 = Pr.h(q)).
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Next, we can apply Algorithm 1 and Theorem 1 for
solving the split fixed point problem (4). Setting f = 0 and
g = 0 in Algorithm 1, we deduce that y* = x* and w* = +*.
Consequently, we have the following algorithm and

corollary.

Algorithm 3. Fix an initial point x° € C. Define the sequence
{x*} iteratively by

Vo= (1- 5k)xk + 8kS[(1 - nk)xk + rlkak],
qk = (1 — Ck)Vk + (kT[(l —Ak)vk + /\kTVk],

= ph(xF) + (1= )P [ +yAT (4" - AXF)], k=0

(92)

Corollary 2. Assume that I', # &. Then, the sequence {x*}
generated by (92) strongly converges to a solution

9, = Pr,h(q,).
Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

All authors contributed equally and significantly in writing
this article. All authors read and approved the final
manuscript.

Acknowledgments

Li-Jun Zhu was supported by the National Natural Science
Foundation of China (grant no. 11861003) and the Natural
Science Foundation of Ningxia Province (grant nos.
NZ17015 and NXYLXK2017B09). Ching-Feng Wen was
supported by the grant of MOST 109-2115-M-037-001.

References

[1] E. Blum and W. Oettli, “From optimization and variational
inequalities to equilibrium problems,” The Mathematics
Student, vol. 63, pp. 123-145, 1994.

[2] P. L. Combettes and S. A. Hirstoaga, “Equilibrium pro-
gramming in hilbert spaces,” Journal of Nonlinear and Convex
Analysis, vol. 6, pp. 117-136, 2005.

[3] A. N. Iusem and V. Mohebbi, “Extragradient methods for
nonsmooth equilibrium problems in Banach spaces,” Opti-
mization, vol. 69, no. 11, pp. 2383-2403, 2020.

[4] T. D. Quoc, L. D. Muu, and N. V. Hien, “Extragradient al-
gorithms extended to equilibrium problems,” Optimization,
vol. 57, pp. 749-776, 2008.

[5] P. T. Vuong, J. J. Strodiot, and V. H. Nguyen, “On extra-
gradient-viscosity methods for solving equilibrium and fixed
point problems in a hilbert space,” Optimization, vol. 64,
no. 2, pp. 429-451, 2015.

[6] L.-C. Ceng, A. Petrusel, J.-C. Yao, and Y. Yao, “Hybrid vis-
cosity extragradient method for systems of variational

11

inequalities, fixed points of nonexpansive mappings, zero
points of accretive operators in banach spaces,” Fixed Point
Theory, vol. 19, no. 2, pp. 487-502, 2018.

[7] L.-C. Ceng, A. Petrusel, J.-C. Yao, and Y. Yao, “Systems of
variational inequalities with hierarchical variational in-
equality constraints for lipschitzian pseudocontractions,”
Fixed Point Theory, vol. 20, no. 1, pp. 113-133, 2019.

[8] Y. Yao, M. Postolache, and J.-C. Yao, “Iterative algorithms for
generalized variational inequalities,” UPB Scientific Bulletin,
Series A, vol. 81, no. 2, pp. 3-16, 2019.

[9] Y. Yao, Y.-C. Liou, and J.-C. Yao, “Iterative algorithms for the
split variational inequality and fixed point problems under
nonlinear transformations,” Journal of Nonlinear Sciences and
Applications, vol. 10, no. 2, pp. 843-854, 2017.

[10] Q.-L. Dong, A. Gibali, and D. Jiang, “A modified subgradient
extragradient method for solving the variational inequality
problem,” Numerical Algorithms, vol. 79, no. 3, pp. 927-940,
2018.

[11] Y. Shehu, X.-H. Li, and Q.-L. Dong, “An efficient projection-
type method for monotone variational inequalities in Hilbert
spaces,” Numerical Algorithms, vol. 84, no. 1, pp. 365-388,
2020.

[12] Y. Yao, M. Postolache, Y.-C. Liou, and Z. Yao, “Construction
algorithms for a class of monotone variational inequalities,”
Optimization Letters, vol. 10, no. 7, pp. 1519-1528, 2016.

[13] X. P. Zhao, J.-C. Yao, and Y. Yao, “A proximal algorithm for
solving split monotone variational inclusions,” UPB Scientific
Bulletin, Series A, vol. 82, pp. 43-52, 2020.

[14] X.P.Zhaoand Y. Yao, “Modified extragradient algorithms for
solving monotone variational inequalities and fixed point
problems,” Optimization, vol. 69, pp. 1987-2002, 2020.

[15] A. Gibali and Y. Shehu, “An efficient iterative method for
finding common fixed point and variational inequalities in
Hilbert spaces,” Optimization, vol. 68, no. 1, pp. 13-32,
2019.

[16] Q.-L. Dong, Y.-Y. Lu, and J. Yang, “The extragradient algo-
rithm with inertial effects for solving the variational in-
equality,” Optimization, vol. 65, no. 12, pp. 2217-2226, 2016.

[17] H. Zegeye, N. Shahzad, and Y. Yao, “Minimum-norm solu-
tion of variational inequality and fixed point problem in
banach spaces,” Optimization, vol. 64, no. 2, pp. 453-471,
2015.

[18] S. Y. Cho, X. Qin, J.-C. Yao, and Y. Yao, “Viscosity ap-
proximation splitting methods for monotone and non-
expansive operators in hilbert spaces,” Journal of Nonlinear
and Convex Analysis, vol. 19, pp. 251-264, 2018.

[19] Y. Yao, Y.-C. Liou, and M. Postolache, “Self-adaptive algo-
rithms for the split problem of the demicontractive opera-
tors,” Optimization, vol. 67, no. 9, pp. 1309-1319, 2018.

[20] W. Takahashi, N. C. Wong, and J.-C. Yao, “Iterative common
solutions for monotone inclusion problems, fixed point
problems and equilibrium problems,” Fixed Point Theory and
Applications, vol. 2012181 pages, 2012.

[21] W. Takahashi and J.-C. Yao, “Strong convergence theorems by
hybrid methods for two noncommutative nonlinear map-
pings in Banach spaces,” Numerical Functional Analysis and
Optimization, vol. 41, no. 10, pp. 1149-1171, 2020.

[22] Y. Yao, X. Qin, and J.-C. Yao, “Projection methods for firmly
type nonexpansive operators,” Journal of Nonlinear and
Convex Analysis, vol. 19, pp. 407-415, 2018.

[23] S.Y. Cho, “A monotone Bregan projection algorithm for fixed
point and equilibrium problems in a reflexive Banach space,”
Filomat, vol. 34, pp. 1487-1497, 2020.



12

[24] Y. Censor, T. Elfving, N. Kopf, and T. Bortfeld, “The multiple-
sets split feasibility problem and its applications for inverse
problems,” Inverse Problems, vol. 21, no. 6, pp. 2071-2084,
2005.

[25] S.-s.Chang, J.-C. Yao, C.-F. Wen, and L.-c. Zhao, “On the split
equality fixed point problem of quasi-pseudo-contractive
mappings without a priori knowledge of operator norms with
applications,” Journal of Optimization Theory and Applica-
tions, vol. 185, no. 2, pp. 343-360, 2020.

[26] W. Takahashi, C.-F. Wen, and J.-C. Yao, “Iterative methods
for the split common fixed point problem with families of
demimetric mappings in banach spaces,” Journal of Nonlinear
and Convex Analysis, vol. 19, no. 1, pp. 1-18, 2018.

[27] J. Zhao and Y. S. Liang, “On solving general split equality
variational inclusion problems in Banach space,” The Journal
of Nonlinear Sciences and Applications, vol. 10, no. 07,
pp. 3619-3629, 2017.

[28] J. Zhao, Y. Liang, and Z. Liu, “Strong convergent iterative
techniques for 2-generalized hybrid mappings and split
equilibrium  problems,”  Filomat, vol. 33, no. 18,
pp. 5851-5862, 2019.

[29] J. K. Kim and P. Majee, “Modified krasnoselski-mann iterative
method for hierarchical fixed point problem and split mixed
equilibrium problem,” Journal of Inequalities and Applica-
tions, vol. 2020227 pages, 2020.

[30] O.K. Oyewole, O. T. Mewomo, L. O. Jolaoso, and S. H. Khan,
“An extragradient algorithm for split generalized equilibrium
problem and the set of fixed points of quasi-¢-nonexpansive
mappings in Banach spaces,” Turkish Journal of Mathematics,
vol. 44, no. 4, pp. 1146-1170, 2020.

[31] Y. Censor and A. Segal, “The split common fixed point
problem for directed operators,” Journal of Convex Analysis,
vol. 16, pp. 587-600, 2009.

[32] Z. He and W. S. Du, “Nonlinear algorithms approach to split
common solution problems,” Fixed Point Theory and Ap-
plications, vol. 2012130 pages, 2012.

[33] A. Moudafi, “The split common fixed point problem for
demicontractive mappings,” Inverse Problems, vol. 26, Article
ID 055007, 2010.

[34] Y. Yao, L. Leng, M. Postolache, and X. Zheng, “Mann-type
iteration method for solving the split common fixed point
problem,” Journal of Nonlinear and Convex Analysis, vol. 18,
pp. 875-882, 2017.

[35] M. Alansari, K. R. Kazmi, and R. Ali, “Hybrid iterative scheme
for solving split equilibrium and hierarchical fixed point
problems,” Optimization Letters, vol. 14, no. 8, pp. 2379-2394,
2020.

[36] S. A. Harisa, M. A. A. Khan, and F. Mumtaz, “Shrinking

cesaro means method for the split equilibrium and fixed point

problems in hilbert spaces,” Advances in Difference Equations,

vol. 2020345 pages, 2020.

W. Inthakon and N. Niyamosot, “The split equilibrium

problem and common fixed points of two realtively quasi-

nonexpansive mappings in banach spaces,” Journal of non-

linear and convex analysis, vol. 20, pp. 685-702, 2019.

[38] L. O. Jolaoso and I. Karahan, “A general alternative regula-
rization method with line search technique for solving split
equilibrium and fixed point problems in hilbert spaces,”
Journal of Computational and Applied Mathematics,
vol. 39150 pages, 2020.

[39] N. Petrot, M. Rabbani, M. Khonchaliew, and V. Dadashi, “A
new extragradient algorithm for split equilibrium problems
and fixed point problems,” Journal of Inequalities and Ap-
plications, vol. 2019137 pages, 2019.

(37

Journal of Mathematics

[40] Y. Yao, H. Li, and M. Postolache, “Iterative algorithms for
split equilibrium problems of monotone operators and fixed
point problems of pseudo-contractions,” Optimizationl page,
2020.

[41] Y. Yao, Y. C. Liou, and J.-C. Yao, “Split common fixed point
problem for two quasi-pseudocontractive operators and its
algorithm construction,” Fixed Point Theory and Applications,
vol. 2015127 pages, 2015.

[42] H. Zhou, “Strong convergence of an explicit iterative algo-
rithm for continuous pseudo-contractions in banach spaces,”
Nonlinear Analysis: Theory, Methods & Applications, vol. 70,
no. 11, pp. 4039-4046, 2009.

[43] H.-K. Xu, “Iterative algorithms for nonlinear operators,”
Journal of the London Mathematical Society, vol. 66, no. 1,
pp. 240-256, 2002.



Hindawi

Journal of Mathematics

Volume 2021, Article ID 6617738, 7 pages
https://doi.org/10.1155/2021/6617738

Hindawi

Research Article
Coupled Fixed-Point Theorems in Theta-Cone-Metric Spaces

Sahar Mohamed Ali Abou Bakr

Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Egypt

Correspondence should be addressed to Sahar Mohamed Ali Abou Bakr; saharm_ali@yahoo.com

Received 5 December 2020; Revised 6 January 2021; Accepted 7 January 2021; Published 28 January 2021
Academic Editor: Xiaolong Qin

Copyright © 2021 Sahar Mohamed Ali Abou Bakr. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

This paper gives further generalizations of some well-known coupled fixed-point theorems. Specifically, Theorem 3 of the paper is
the generalization of the Baskar-Lackshmikantham coupled fixed-point theorem, and Theorem 5 is the generalization of the Sahar

Mohamed Ali Abou Bakr fixed-point theorem, where the underlying space is complete 6-cone-metric space.

1. Introduction and Preliminaries

Since 1922, the pioneering fixed-point principle of Banach
[1] showed exclusive interest of researchers because it has
many applications, including variational linear inequalities
and optimization, and applications in differential equations,
in the field of approximation theory, and in minimum norm
problems.

Since then, several types of contraction mappings have
been introduced and many research papers have been
written to generalize this Banach contraction principle.

In 1987, Guo and Lakshmikantham [2] introduced one
of the most interesting concepts of coupled fixed point.

Definition 1. An element (x,y) € ExE is said to be a
coupled fixed point of the mapping T: E x E — E if and
only if T(x, y) = x and T'(y,x) = y.

In 2006, Bhaskar and Lakshmikantham [3] introduced
the concept of the mixed monotone property as follows.

Definition 2. Let (E, <) be a partially ordered set and T'be a
mapping from E x E to E. Then,

(1) T is said to be monotone nondecreasing in x if and
only if, for any y € E,

if x,x, € Eand x; <x,, then T (x,, ¥) <T(x,, ¥),
(1)
(2) T is said to be monotone nonincreasing in y if and
only if, for any x € E,

if y,, 5, € Eand y, < y,, then T (x, y,) =T (x, y,),
(2)

(3) T is said to have a mixed monotone property if and
only if T (x, y) is both monotone nondecreasing in x
and monotone nonincreasing in y

Definition 3. An element (x, y,) € Ex E is said to be a

lower-anti-upper coupled point of the mapping
T: Ex E — E if and only if
x < T (x0, yo) and yo 2 T (o, Xo)- (3)

A mapping T: E x E — E is said to have a lower-upper
property if and only if T' has at least one lower-anti-upper
coupled point.

Definition 4. Let (E, <,||.|) be a partially ordered normed
space. Then,

(1) E is said to be a sequentially lower ordered space if it
fulfills the condition: If {x,},.y is a nondecreasing
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sequence in E such that {x,},.\ converges strongly
to x, then x,<x forallne N

(2) Eis said to be a sequentially upper-ordered space if it
fulfills the condition: If {y,}, 5 is a nonincreasing
sequence in E such that {y,} .\ converges strongly
to y, then y, >y foralln e N

(3) E is said to be a sequentially lower-upper ordered
space if it is both a lower- and upper-ordered space

In 2006, Bhaskar and Lakshmikantham [3] proved the
existence of coupled fixed points for mixed monotone
mappings with weak contractivity assumption in a partial-
ordered Banach space (E,|.|l, <) as follows.

Theorem 1 (see [3]). Let E be a sequentially both lower- and
upper-ordered Banach space and T: EXE — E be a
mapping with mixed monotone and lower-upper properties. If
there is a real number 0<k <1 such that

k
IT (%, y) = T (2wl <5 [lIx = 2l +1ly - wll,

Vx, y,z,w € E,z<x, and y <w,

(4)
then T has coupled fixed points in E.

In 2013, Mohamed Ali [4] introduced novel contraction
type of mappings and proved the following fixed-point
theorem.

Theorem 2 (see [4]). Let (E, ||.|l) be a Banach space and T be
a mapping from E x E into E, and we suppose there are three
constants a,b,c € [0,1) and a+b + c< 1 such that

IT (x, y) =T (y, 2l <alx -yl +bIT (x, y) - x|

+c|T(y,2) - yll, Vx,y,z €E.

(5)

Then, there is a unique point x, € E such that
T (x9, %) = X

There are many interesting coupled fixed-point theo-
rems concerning some other type of contraction mappings,
see [5-10].

Recently, more advanced approaches for studying
coupled fixed points have been presented by the authors in
[11-13].

In 2007, Huang and Zhang [14] introduced the concept
of cone-metric spaces as follows: First, a subset M of the real
Banach space & is said to be a cone in & if and only if

(1) M is nonempty closed and M # {®}, where © is the
zero (neutral) element of &

(2) AM +uM c M for all nonnegative real numbers A, y
(3) MN-M = {®}

Journal of Mathematics

If intM is the set of all interior points of M, then a cone
M in a normed space & induces the following ordered
relations:

u<vev-ueM, u<ve(v-ue M,andu+v),

u< ,vev —u € intM.
(6)

If E is a nonempty set, the distance d (x, y) between any
two elements x, y € E is defined to be a vector in the cone M,
and the space (E, d) is said to be a cone-metric space if and
only if d satisfied the three axioms of metric but using the
ordered relation < induced by M for the triangle inequality
instead. They studied the topological characterizations of
such a defined space, and then, they applied their concept to
have more generalizations of some previous fixed-point
theorems for contractive type of mappings.

A mapping T: E — E is said to be a contraction if and
only if there is a constant « € [0, 1) such that

d(T(x), T(y))<ad(x,y), Vx,yeE. (7)

In 2019, Mohamed Ali Abou Bakr [15] proved the ex-
istence of a unique common fixed point of generalized joint
cyclic Banach algebra contractions and Banach algebra
Kannan type of mappings on cone quasimetric spaces.

In 2013, Khojasteh et al. [10] introduced the notion of
O-action function, 6: [0,00) x [0,00) — [0, 00), the con-
cept of O-metric, and then, they studied the topological
structures of O-metric spaces in detail. Their work led to a
step-forward generalization of metric spaces.

In 2020, Mohamed Ali Abou Bakr [16] replaced [0, c0)
by a cone M in a normed space and used the ordered relation
induced by this cone to introduce the following analogous
generalization of f-action function.

Definition 5. Let (&, <) be an ordered normed space, where
< is an ordered relation induced by some cone M ¢ & and
0: M x M — M be a continuous mapping with respect to
each variable, and we denote

Im(60) ={t: t € M suchthat Ju;, v, € E,  0(uy,v,) =t}

(8)

Then, 0 is said to be an ordered action mapping on & if
and only if it satisfies the following conditions:

(1) 6(0,0) =© and 0(u,v) = 0(v,u) for every u,v € M
()
u<wandv<t;
0(u,v) < 0(w,t) if either4 or 9)

u<wandv<t

(3) For every u € Im(60) and every ® <v<u, there is
® < w<u such that 0(v,w) = u

(4) 6(u,®)<u for every u € (M/{O})

Because x — ® € M for every x € M, one can write in-
stead @ < x for every x € M, (® < x for every x € (M/{®})).
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In addition, Mohamed Ali Abou Bakr [16] gave further
replacement, replaced the set of nonnegative real numbers
R" by a cone M in a normed space, and used 0-ordered
actions to introduce the concept of 6-cone-metric space as
follows.

Definition 6 (see [16]). Let (&,<) be an ordered normed
space, where < is the ordered relation induced by some cone
M c &, and 0 be an ordered action on &. If E is a nonempty
set, then the function dy: EXE — M is said to be a
0-cone-metric on E if and only if d, satisfies the following
conditions:

(1) dg(x,y)=@ox=y
(2) do(x,y) =dy(y,x),Yx,y € E
(3) dg(x, ¥) < 0(dg(x,2),dg(2, ),

The double (E,dy) is defined to be a 0-cone-metric
space.

Vx,y,z € E

The author has further given some topological charac-
terizations of this space and then generalized some previous
fixed-point theorems in this setting.

Remark 1. If 6(u,v) = u + v, then we have a cone-metric
space.

In this paper, we extend and generalize the coupled
fixed-point theorem of Baskar-Lackshmikantham (1.5) to a
more general one (2.1), where the underlying space (E, d) is
a complete 0-cone-metric space. On the other side, if T: E x
E — E is a continuous mapping in the second argument
and there are three constants a,b,c € [0,1) anda+b+c<1
such that

do (T (x, ), T (y,2)) < ady(x, y) + bdy (T (x, y), x)
+ Cd0 (T ()’> Z)) y)) Vx) }/,Z € E’
(10)

then we proved that T has a unique fixed point in the sense
that there is a unique point x € E such that T'(x, x) = x.

We also claim that some results of [6-10, 17] can be
proved in the case of 0-cone-metric spaces.

2. Main Results

Let (E,dy, <) be a partially ordered 0-cone-metric space.
Then, the following relation defines a partial-ordered rela-
tion on E x E:

(x,y) < (z,w)ex<z,andw<y. (11)

We have the following coupled fixed-point theorem.

Theorem 3. Let (E,dy, <) be a partially ordered, sequen-
tially lower-upper ordered complete 0-cone-metric space and
G: Ex E — E be a mapping having mixed monotone and
lower-upper properties on E. We assume that there exists
r € [0,1) with

dg(G(x,1),G (2 w)) < — [dy(x,2) + dy (y, )],
2 (12)

V(x, y) < (z,w).

Then, G has coupled fixed points in E.

Proof. Since G has a lower-upper property, then there exist
Xo» Vo € E such that

xy < G (0, ¥p) and G (¥, xo) < yo- (13)

We denote x; = G(x,, ¥,) and y; = G(y,, x,) and then
give notations for the elements of the following inductively
constructed sequences:

G’ (xo’yo >

)
G’ (Yo %o)
)
)

x, = G(xp, ¥y
y2=G(ypx
x3=G(x3 9,
y3=G(ynx

G (%0, o
G (J’o>xo >

>

)=
)=
)=
)= (14)

n+1

X1 = G('xn’ yn) =G (xO’ yO)’
Yur1 = G (Y x,) = G (Yo X0)>

Using the mixed monotonicity property of G insures that
each step leads to the next step in each of the following:

=G (%0, ¥0) <G (x1,¥0) <G (x1, 1) = x5,
¥2=G(y1,x1) <G(y1,%0) <G (¥, X0) = 1< Yo
x1 <%, = G(xp, 1) <G (x5 p5) = x5,
¥3 =Gy %) <G(y1x1) =y,

Xg <,

(15)

Xp+l = G(xn’yn)SG(xnfl’yn—l) =X
Ynr1 = G(yn’xn)SG(yn—l’xn—l) =Vw

The mixed monotonicity property, the contractiveness of
G, and the inductive process prove the following for every
neN:

Ao(G" (%0030 G (300 30)) < [ 5] [46(G (s ). %) + 5 (G (3 30), o)

A(G" (700 0):G" (%)) < [5] 16 (G (700 30), 70) + g (G (s 7o) 30)]

(16)



Consequently, we have

n@m dG(GnH (%0, ¥0)> G" (%05 yO))
n+ n (17)
- nleoode(G "0 %), G (yO’xO)) =0.

Hence, we claim that both {G"(xy, o)}y and
{G™" (59> x¢)},,cn are Cauchy sequences in E. Indeed, if one of
them, say {G"(xy, ¥o)}cn» 1s DOt Cauchy, then there exist

v< de(Gi" (x> ¥0), G (x5 )’o))
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v € Im(6), ® <v and sequences of natural numbers {i,},
and {j,},.cy such that, for any i, > j, >n,

v< de(Gi" (05 ¥0)> G (o )’o))’
de(Gi"_l (%0s ¥o)> G (xo’J’o)) <v.

Since any subsequence of  {dy(G"™" (xq, yo),
G" (x> ¥o))}hnen 18 convergent to ©, the properties of 6 imply
the following contradiction:

(18)

< e(de(Glfl (x0» ), G (x0» )’0))> de(Gi" ("0>)’0)>Gi"71 (%0, )’0)))
<9(V’ da(Gin (’Co’;"o))Gi"_1 (xo’yo))) (19)

< 9(% nlilnoo do(Gi" (05 ¥0), G (%0, )’0)))

<O0(v,0) <

Similarly, the sequence {G" (y,, xy)},.cn is also Cauchy.
Since E is a complete O-cone-metric space, there exist
x, y € E such that

tim_dy (6" (x 70),%) = ©,

. . (20)
nlgnoo dg(G" (yo» %), ) = ©.

Now, we are going to show that (x, y) is a coupled fixed
point of G. Since the sequence {G"(xy, ¥y) = X,},en iS
nondecreasing  with  lim,_, G"(x,, ¥,) =%, then
G" (xy, ¥,) < x, and since the sequence {G" (¥4, x() = Y }en
is nonincreasing with lim, , G"(yy,x,) =y, then
y<G" (¥4, x,) for every n € N, and accordingly, we have

dg (G (x, ), %) < 0(dg(G (x, ), G"" (05 ¥0))> de(G™" (05 ¥0)s %))

= 6(dy (G (x, ), G (%, 7)) do(G™" (0, ¥0)> %))

<6 [5] 1o () + ds (3. )1 o( G (00 0). )

(21)

<0 [5] 10 (6. 6" (i 30)) + o (726 (70 20 )) ] (G (5 30 ) )

Taking the limit as # — oo with the help of equation
(20), we find that

dy (G (x, ), %) < 9( [g] [©+ @],@) - 6(0,0) = 0.

(22)
Hence, dy(G(x,y),x) =0; therefore, G(x,y) = x.
Similarly, G(y, x) = y. O

If the partial-ordered relation on E x E is defined as

(x,y) <, (z,w)ex>2, and y <w, (23)

then the following theorem is similarly proved.

Theorem 4. Let (E,dy, <) be a partially ordered, sequen-
tially lower-upper ordered complete 0-cone-metric space and

G: EXE — E be a mapping having mixed monotone
property, and we suppose that there are x,, y, € E such that
T (x> o) <xgand yo <T (v, xo). If there exists r € [0,1)
with

dy(G(x, y),G(z,w)) < g [dy(x,2) +dy (3, w)],
(24)

V(x, y) <, (2, w),
then G has coupled fixed points in E.

Corollary 1. Let E be a sequentially both lower- and upper-
ordered Banach space and T: E x E — E be a mapping with
mixed monotone and lower-upper properties. If there is a real
number 0 <k <1 such that
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IT (x, y) = T (2, w)l <5 [llx - zll +]ly - wl],

N

Vx, y,z,w € E,z<x, and y<w,
(25)
then T has coupled fixed point in E.

Proof. We just notice that any Banach space (E,|.||) is a
0-cone-metric space (E,dy), where (&,<) = (R,|.|) is the
Banach space of real numbers with the absolute value metric
and with the usual ordered relation of real numbers,

O(u,v) =u+v, 0:[0,00)x [0,00) — [0,00), and the
metric dgy is the metric induced by the norm |.| on E,
dg(x,y) = llx = yl. O

Remark 2. Corollary 1 is Baskar-Lackshmikantham coupled
fixed-point Theorem 1. This proves that Theorem 3 is a quite
good generalization of the Baskar-Lackshmikantham cou-
pled fixed-point theorem.

On the other side, we have the following results:

Lemma 1. Let (E,dy) be a 0-cone-metric space and T be a
mapping, T: ExE — E. It is supposed that there are
constants a,b,c € [0,1) and a + b + c< 1 such that
do (T (x, 9), T (y,2)) <adg(x, y) + bdy (T (x, y), x)
+cdy(T(y,2),y), Vx,y,z€E.

(26)

If x, and x, are arbitrary elements in E, then the se-
quence {x,} >, defined iteratively by

X, =T (X1, %Xp), VneN,n>2, (27)

which satisfies the following:

dg (x40, x,) <tdg(x,,x,,), Yn>2, (28)

do(x,01,%,) <t"dg(xp,x,), VYn>2, (29)

wheret = (a + ¢/1 - b). Moreover, the sequence {x,},,. ,isa

Cauchy sequence.

Proof. Using the contractiveness property of the given
mapping gives

d@ (xn+1’ xn) = (d0 (T ('xn’ xn+1))’ T (xn—l’ xn—Z))
< adﬁ (xn> xn—l) + bd@ ('xn+1’ xn) (30)
+ CdG ('xn’ xn—l)'

Hence,

d@ (xrwl"x’.n)< <‘11j;>d6‘ ('xn’xn—l)’ vn>2, (31)

and repeating the last step n—2 times with the term
dg(x,, x,_;) proves the inequalities given in (29). To prove
that the sequence (27) is Cauchy, we take the limit of both
sides of (29) asn — oo gives lim,_, dy(x,,1>X,) = © and
suppose that {x,},.y is not Cauchy; then, there exist
v € Im(6), ® <v and sequences of natural numbers {i, },.

and {j,},cn such that, for any i, > j, >n,
v<dg(x;,x; ),
9( iy Jn) (32)

d@(xin—l’ xjn) <.
Since any subsequence of {dg(x,,,X,)},cn IS conver-
gent to O, the continuity and the properties of 8 imply the
following contradiction:

v<dy(xi, ;) <0(do(xi 0%, ) o1, %, 1))

33
< 9(1/, dg(xin,xin,l)) — 0(v,®) <. B

n—~oo

O

Theorem 5. Let (E,dy) be a complete 0-cone-metric space
and T: E x E — E be a continuous mapping in the second
argument, and we suppose there are three constants
a,b,c € [0,1) and a+ b+ c<1 such that

do(T (x, ), T (y,2)) <ady(x, y) + bdg(T (x, y), x)
+Cd0 (T(y) Z)) )’), vx) y,z € E’
(34)
and then, T has a unique fixed point in the sense that there is a
unique point x, € E such that T (x,, x,) = x,.

Proof. Since (E,dy) is complete, the Cauchy sequence
{x,}725 given in Lemma 1 is converging to some element x,
in E. We show that x, is fixed point of T. Using the
properties of 6 and the continuity of T, we see that
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dg (T (x0> X0)> %0) < 0 (d (T (x5 %), X,,)> dg (%, X))

<0(8(dg (T (x0>%0)> T (x0> X,51))» dg (T (0> Xp-1)> X)) g (%112 X))

= 0(0(dg (T (x0> %1 ) T (X1, X,,2) ) Ao (T (05 %0 ) T (X5 X,1-1)))»

= 0(6dgT (0 X1 T (X115 %2))> Ao (T (%0 X0)> T (%05 X,1-1) ) (0 X))

<0(6(adg (xo, x,-1) + bdg (T (x0, %1 ), Xg) + cdg (T (-1, X2)> X1
dg (T (x0, %), T (X0 X,-1)))> dg (X, %0))

< 0(6(adg (xo, x,,-1) + bdg (T (x0> X1 ), Xo) + cdg (%, X,1), (35)
dg (T (x0, %0)> T (%0, X,1-1)))» dg (X0 %0)) — p—co

<0(0(a® +bdy (T (x4, %), xg) + €O, dg (T (%0, %) T (x5 %)) )> ®)

<0(0(a® +bdy (T (x4, x,), %) + €O, 0),0),

= 0(0(bdy (T (x0, X)), %), ©), ©)

< G(bde (T (x0> Xo)> xo)’ ®)

<bdy (T (x5 %0)> Xo)-

Since b < 1, we get dy (T (x, x,), X,) = ©; consequently,
T (xy, xy) = xy. Now, let x and y be two arbitrarily distinct
elements in E with T(x,x) = x and T(y, y) = y, and we
have

dg (T (x, ), x) < 0(dgT (x,x), T (x, y)),dg (T (x, x), x)
<0(bdy(T (x,x),x) + cdy (T (x, y),x),dg (T (x, %), x))
<0 (bO +cdy(T (x, ), x),0)
<cdy (T (x, y), x).
(36)
Thus, dy (T (x, y), x) = O, that is, T (x, y) = x. Similarly,
we get T'(y, x) = y; therefore, (x, y) is a coupled fixed point

of T. On the other hand, we have the following
contradiction:

dg(x,y) =dg(T (x,x), T (y,y))
<0(dg(T (x,x), T (x, ), dg(T (x, ¥), T (¥, ¥)))
<0(cdy (T (x,y),x),adg(x, y) + bdy (T (x, ), x))
< 0(cdg(x,x),ady(x, y) + bdg(x, x))
<0(0,ady(x,y) + ©) <ady(x, y).
(37)

Since a < 1, we have dy(x, y); consequently, x = y. O

We conclude the following.

Corollary 2. Let (E,|.ll) be a Banach space and T be a
mapping from E x E into E, and we suppose that there are
three constants a,b,c € [0,1) and a + b + c< 1 such that

IT(x, y) =T (y, 2l <allx -yl +bIT (x, y) - x|

(38)
+c|T(y,2) - yl, Vx,y,z €E.

Then, there is a unique point x; € E such that
T (x> Xg) = Xo-

Proof. It can be proved in a similar way of Corollary 1 with
the same notice. O

Remark 3. Corollary 2 is the fixed-point theorem of
Mohamed Ali Abou Bakr; accordingly, Theorem 5 is a
generalization of fixed-point Theorem 2 in the setting of a
complete O-cone-metric space.

3. Conclusions

This paper gives further generalizations of some well-known
coupled fixed-point theorems. Specifically, Theorem 3
generalizes the Baskar-Lackshmikantham coupled fixed-
point theorem [3], and Theorem 5 generalizes the Sahar
Mohamed Ali Abou Bakr fixed-point theorem [4]; the
underlying space (E, dy) is a complete 6-cone-metric space,
and we claim that some results of [6-10] can be proved in the
case of 0-cone-metric spaces.
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In this study, we introduce and study a generalized complementarity problem involving XOR operation and three classes of
generalized variational inequalities involving XOR operation. Under certain appropriate conditions, we establish equivalence
between them. An iterative algorithm is defined for solving one of the three generalized variational inequalities involving XOR

operation. Finally, an existence and convergence result is proved, supported by an example.

1. Introduction

It is well known that the many unrelated free boundary value
problems related to mathematical and engineering sciences can
be solved by using the techniques of variational inequalities. In a
variational inequality formulation, the location of the free
boundary becomes an intrinsic part of the solution, and no
special devices are needed to locate it. Complementarity theory
is an equally important area of operations research and ap-
plication oriented. The linear as well as nonlinear programs can
be distinguished by a family of complementarity problems. The
complementarity theory have been elongated for the purpose of
studying several classes of problems occurring in fluid flow
through porous media, economics, financial mathematics,
machine learning, optimization, and transportation equilib-
rium, for example, [1-5].

The correlations between the variational inequality problem
and complementarity problem were recognized by Lions [6]
and Mancino and Stampacchia [7]. However, Karamardian
[8, 9] showed that both the problems are equivalent if the
convex set involved is a convex cone. For more details on
variational inequalities and complementarity problems, refer to
[6, 10-12].

The exclusive “XOR,” sometimes also exclusive dis-
junction (short: XOR) or antivalence, is a Boolean operation

which only outputs true if only exactly one of its both inputs
is true (so, if both inputs differ). There are many applications
of XOR terminology, that is, it is used in cryptography, gray
codes, parity, and CRC checks. Commonly, the ® symbol is
used to denote the XOR operation. Some problems related to
variational inclusions involving XOR operation were studied
by [13-16].

Influenced by the applications of all the above discussed
concepts in this study, we introduce and study a generalized
complementarity problem involving XOR operation with
three classes of generalized variational inequalities involving
XOR operation. Some equivalence relations are established
between them. An existence and convergence result is
proved for one of the three types of generalized variational
inequalities involving XOR operation. For illustration, an
example is provided.

2. Some Basic Concepts and Formulation of
the Problem

Throughout this study, we assume E to be real ordered
Banach space with norm || -| and E* be its dual space.
Suppose that d is the metric induced by the norm, 2 (re-
spectively, CB (E)) is the family of nonempty (respectively,
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closed and bounded) subsets of E. The Hausdorff metric
D(.,.) on CB(E) is defined as

D(A, %) = max{supd(x,gg),supd(&i, ¥) }, VoA, B € CB(E),

xed yERB
(1)
where d(x,RB) = infyeggd(x, ¥), and
d(d,y) =inf . ,d(x, y).

Let C be a pointed closed convex positive cone in E, and
{t,x) denotes the value of the linear continuous function
t € E* at x.

The following definitions and concepts are required to

achieve the goal of this study, and most of them can be found
in [17, 18].

»

Definition 1. The relation “<” is called the partial order
relation induced by the cone C, that is, x < y if and only if
y-xeC.

Definition 2. For arbitrary elements x, y € E, if x<y (or
y <x) holds, then x and y are said to be comparable to each
other (denoted by x o< y).

Definition 3. For arbitrary elements x, y € E, lub {x, y} and
glb {x, y} mean the least upper bound and the greatest upper
bound of the set {x, y}. Suppose lub {x, y} and glb {x, y}
exist, then some binary operations are defined as
(i) xvy = lub {x, y}

(if) xAy = glb {x, y}

(iii) x®y = (x — yI)V(y — x)

(iv) x0y = (x = Y)A(y — x)

The operations V, A, ®, and © are called OR, AND, XOR,
and XNOR operations, respectively.

Proposition 1. Let ® be an XOR operation and © be an
XNOR operation. Then, the following relations hold:
(i) x0x=0,x0y=y0x
(ii) if x o< 0, then —x®0 < x < x®0
(iii)) 0 < x®y, if x o y
(iv) If x oc y, then x@y =0 if and only if x = y
(v) x@y = yox
(vi) x&x =0
(vii) 0 < x®0
(viii) If x<y and u<v, then (x +u)< (y+v)

(ix) If x < y, then (x@0)® (y&0) < (x®y)d0 = x®y, for
all x, y,u,ve E and A € R

Proposition 2. Let C be a cone in E; then, for each x,y € E,
the following relations hold:

(i) lo@Oof =0l = 0
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(i) vyl < llxlVIyl < lxll + Iyl
(iii) [xeyl < |x - yl
(iv) If x < y, then ||x®y| = x - yl

Definition 4. Let A: E — E be a single-valued mapping,
then

(i) Ais said to be a comparison mapping, if x o< y, then
A(x)ocA(y), xoxcA(x), and yocA(y), for all
x,y€E

(ii) Ais said to be a strongly comparison mapping, if A is
a comparison mapping and A(x) o A(y), if and
only if x ¢ y, for any x,y € E

Definition 5. Let f: E — R U {+00} be a proper functional.
A vector w* € E* is called subgradient of f at x € domf, if

(W, y—xy<f(y)- f(x), forallyeE. (2)
The set of all subgradients of f at x is denoted by 0 f (x).
The mapping df : E — 2" defined by
of (x) ={w" € E": {w",y = x)< f(y) = f (x), forally ¢ E}
(3)

is called subdifferential of f.

Definition 6. The resolvent operator jﬁf associated with 0 f
is given by

F(x)=[I+pofI '(x), forallxcE,  (4)

where p >0 is a constant, and I is the identity operator.
It is well known that the resolvent operator jgf is
single-valued as well as nonexpansive.

Definition 7. A mapping f: C — R is said to be

(i) Positive homogeneous if, for all «>0 and x € C,
flax) = af (x)
(ii) Convex, if x, y € C and all A € [0,1]

fAx+(1=-)y)<Af(x) + (1 =) f (). (5)

Definition 8. A multivalued mapping F: C — 25'\{@} is
said to be

(i) Upper semicontinuous at x € C if, for every open set
V' containing F(x), there exists an open set U
containing x such that F(U)CV, where E* is
equipped with w* topology

(ii) Upper semicontinuous on C if it is upper
semicontinuous at every point of C
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(iii) Upper hemicontinuous on C if its restriction to line
segments of C is upper semicontinuous

(iv) Monotone if, for every x,y € C

(t)—ty, y—x) >0, forallt; € F(y),t, € F(x). (6)

Definition 9. A multivalued mapping F: E — 2F is said to
be D-Lipschitz continuous, if there exists a constant A, >0
such that

D(F (x),F(y)) S)LDFIIx - yl, forallx,y € E. (7)

Definition 10. A multivalued mapping F: E — 2F is said to
be relaxed Lipschitz continuous, if there exists a constant
k>0 such that
(w, —wy, x—y) < —kllx - y||2, forallw, € F(x),w, € F(y).
(8)
Let F: C — 2F"\{&} be a multivalued mapping with
nonempty values and f: C — RU{+co} be a proper
functional. We consider the following generalized com-
plementarity problem involving XOR operation.
Find x € C, t € F(X) such that

{tx)ef (x) =0,
G tyyaf ()20, ©)
Yy eC.
We denote by S, the solution set of generalized
complementarity problem involving XOR operation (9).

We mention some special cases of problem (9) as
follows.

(i) If we replace ® by + and f by f: C — R, then
problem (9) reduces to the problem of finding ¥ € C
and f € F(x) such that

¢tx) + f(X) =0,
Gty + f(9) 20, (10)
Vy eC.
Problem (10) is called generalized f complemen-

tarity problem, introduced and studied by Huang
et al. [19].

(ii) If f =0, then problems (9) as well as (10) reduce to
the problem of finding X € C and ¥ € F (%) such that
(t,tx)y =0,
{t,ty) 20, (11)
VyeC.

Problem (11) can be found in [20, 21].

We remark that for suitable choices of operators in-
volved in the formulation of (9), a number of known

complementarity problems can be obtained easily, for ex-
ample, [17, 22-24].

Simultaneously, we also study the following three types
of generalized variational inequalities involving XOR
operation.

(1) Find X € C such that

FHeF(x), VyeC (tyn—goe(f(y)-f(x)=0;
(12)

(2) Find x € C such that

VyeC, FteF(X): {(tyn—gxye(f(y)- f(X))=0;
(13)

(3) Find x € C such that

VyeC, VteF(y):<ty-%o(f(y)-f(x)=0.
(14)
We denote the solution set of (12) by Sy, (13) by S,q, and
(14) by S;.
Many known variational inequality problems can be

obtained from problems (12)-(14), for example, [25-29] and
the references therein.

3. Equivalence Results

We establish the equivalence among problems (9), (12)-(14).
First, we establish the equivalence between generalized
complementarity problem involving XOR operation (9) and
generalized variational inequality problem involving XOR
operation (12).

Theorem 1. Let F: C — 25" \{@} be a multivalued map-
ping with nonempty values and f: C — RU{+oo} be a
proper functional. Then, the following statements are true:

(i) If <t,tx) o f (%), then SeCSiq
(ii) If f is positive homogeneous, then S,4CScg

Proof
(i) Let X € Si, then X € C, and there exists f € F(X)
such that
e f(x) =0,

(L tyyef(y)=0. (15)

Since (t,tx) o f (%), by (iv) of Proposition 1, we
have

& txy = f (%),
Alsoas (¢, tyyef (y) =0, (16)
&tyyof (ef (y)208f (),

which implies that



(Etyy = (). (17)

By using (16) and (17), we have
(Etyn—qxy =t
Etyn—gre(f(y) - f) 2 (f(y) - f@e(f () - f(X),
(18)

that is,
(G tyn—gxye(f(y) - f(%)) =0, (19)

which implies that X € ;. So, we have S-;<Sq.

(ii) Let X € S, then X € C, and there exists € F(X)
such that

(tyn—gxye(f(y) - f (%)) >0,

Since C is a pointed closed convex positive cone, clearly
y=2x€C and y = (1/2)x € C. Putting y = 2X in gener-
alized variational inequality involving XOR operation (12)
and using positive homogenity of f, we get

(tyn—gye(f(y) - (%) =0,
(&, t2nxq - hxye (f (2%) - f (%)) 20, (21)
(¢ txyef (%) =0.

Vy e C. (20)

Now, putting y = (1/2)x in generalized variational in-
equality involving XOR operation ((12)) and using positive
homogenity of f, we get

{ttyn—qgxye(f(y) - f(x)20,
{Etyn—qgxye(f(y) - fE)e(f(y) - fZ)20o(f () - f (X))

(22)
which implies that
&y-%2(f () - f&),
1 1_ —
@y-02(1(;7) 1) 2
_ 1 |
<t —£X> > _Ef(x)’
thus,
<f’ tx%) < f (%), "
txyef (X)< f(x)ef (%) =0,
that is,
(L txye f (%) <0. (25)

Combining (21) and (25), we have
¢ txyef (%) =0. (26)

From generalized variational inequality involving XOR
operations (12) and (16), we have
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(Etyn—gore(f(y) - f (%) =20,
(tyn—gye((f(y) - fE)e(f(y) - fFE)) 200 (f(y) - f (X)),

(27)
which implies that
(ttyn—gxye0=08(f (y) - f (X)),
{tyn—qx) > (f(y) - f (%),
(ttyy =<t (28)

&tyy - f(R) = f(y) - f (),
Gty = f(y),
Gtyyef (p)= f(y)ef(y) =0,

thus, we have <f,ty)@f (y) = 0. So, we have X € S. That is,
S16SSce- 0

Theorem 2. The following statements are true.
(i) 816555
(ii) If F is monotone, then S,uCS;q

(iii) If F is upper hemicontinuous and f is convex, then
$30SS20

Proof

(i) Is trivial
(ii) Let X € S,q. Then, for all y € C, there exists t € F ()
such that

{Etyn—qgxye(f(y) - f(x)=0. (29)

Since F is monotone, for every y € C,t € F(y), and
using the above inequality, we have

{t-t,y—%x)=0,
Ly -%) =, tyn— gx),
(ty-%8(f(y) - f@) =& tyn—gre(f(y) - f(x) =0,
(30)

which implies that {t,y —-X)&(f(y) - f (%)) =0.
Thus, X € S;,.

(iii) Suppose that the conclusion is not true. Then, there
exists X € C such that X € S;; and ¥ ¢ S,,. Then, for
some y € C and t € F(X), we have

ty-xe(f(y) - f(x)<0. (31)

Since F is upper hemicontinuous and f is convex, setting
x; =Ay + (1 - )X and taking A — 0, we have
{tpy-De(f(y) - f(X)<0, ¥t eF(x),
oy - ((f(y) - fFNe(f (y) - f () <0e(f (y) - f (),
(32)

which implies that
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oy =% <(f(») - f()s

=% <(f (1) - f (),
o =%e(f(x) - f3)<(f () - F@)e(f (x) - F (),
(33)

thus,
<t)t,xl—Y>®(f(xl\)—f(f))<0, (34)
which contradicts that X € S;,. Thus, X € S,;, and (iii) is
true. O

Remark 1. If we replace ® by + and dropping the concepts
related to @ operation, then with slight modification in
Theorems 1 and 2, one can obtain some results of Huang
et al. [19]. Additionally, for suitable choices of operators in
Theorems 1 and 2, one can obtain some results of Farajzadeh
and Harandi [30].

4. Existence and Convergence Result

In this section, we first establish the equivalence between the
generalized variational inequality problem involving XOR
operation (12) and a nonlinear equation. Based on this
equivalence, we construct an iterative algorithm for solving
generalized variational inequality problem involving XOR
operation (12).

Lemma 1. The generalized variational inequality problem
involving XOR operation (12) admits a solution (X,tt),x € C
and t € F(X), if and only if the following relation is satisfied:

x=7g

where p >0 is a constant, ]af = [I+p0f] " is the resolvent
operator associated with f, Pand I is the identity operator.

[x + tpnt], (35)

Proof. From the definition of resolvent operator jaf as-
sociated with f and relation (35), we have

x=g)[x

(36)
=[I +paf]71 [x
which implies that X + pf € X + pdf (%), that is,
fedf (%) (37)

By the definition of subdifferential operator 0 f (x) and
(37), we have

(f) - f(X) =& tyn—gx). (38)
Using (vi) of Proposition 1, we have
Etyn—qgoye(f(y) - f(x) =t
(L tyn—gxye(f(y) - f (%) =0.

Thus, the generalized variational inequality problem
involving XOR operation (12) is satisfied.

(39)

Conversely, suppose that generalized variational in-
equality problem involving XOR operation (12) is satisfied.

That is,
<f> tyn—qx)®( f (») - f (%) =0, (40)
(t,tyn — gxyat

that is, (f(y) - f (X)) > (%, tyn — gx), which implies that
feof (%),
pt € pof (%),
X+ptex+pof
X+pte[I+paf](X), (41
=[I+pof]'[x
x =70 [+ ptl,

that is, the relation (35) is satisfied.

Based on Lemma 1, we develop the following iterative
algorithm for solving the generalized variational inequality
problem involving XOR operation (12). O

Iterative Algorithm 1. Let C C E be a pointed closed convex

positive cone. Suppose that , ocf,_;, forn =1,2,. ... Let for
X, € C, there exists t, € F (X,), such that

_ _ Of r— —

X =(l-a)x, + ocjpf [, + pto]- (42)

Since , € F(X,) € CB(E), by Nadler [31], there exists
t, € F(x,), using (iv) of Proposition 2, and as f, ocf;, we
have

[Eot,|| =|lE0 — 7, || < D(F (%,), F (,)). (43)

Continuing this way, compute the sequences {X,} and
{t,} by the following scheme:

X, = (1 - a)x, + ocj?f (%, + pt,], (44)

“zneezn—l “ = ”Zn - En—l" < D(F (xn)’F(%n—l))’ (45)

for n=1,2,..., where X, € C, f, € F(X,) can be chosen
arbitrarily, « € [0,1], D(.,.) is the Hausdorff metric on
CB(E), and p >0 is a constant.

Now, we prove our main result.

Theorem 3. Let E be a real ordered Banach space and C be a
pointed closed convex positive cone in E with partial ordering

” Let f: C — RU{+c0} be a functional such that the
resolvent operator jaf associated with f is strongly com-
parison and contznuous Suppose that F: C — 2E'\{@} isa
multivalued mapping such that F is the relaxed Lipschitz
continuous with constant k>0 and D-Lipschitz continuous
with constant Ap_>0. Let X, ocX,_, and t,oct, |, where
t, € F(x,) and t € F(x,,_l) n=12,... such that for
p>0, the followmg condition is satisfied:



k

-
Ab,

k

<——. (46)
A,

:

Then, the sequences {X,} and {f,} strongly converge to
x* and t*, respectively, the solutions of generalized varia-
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Proof. Since X, X, for n=1,2,..., using (iii) of
Proposition 1, we evaluate

0<%, &%,
= [(1 - a)X, + ocjﬁf [x, + pf,,]]ea[(l - )X, + ocjﬁf [%,_1 + p?,,,l]]

= (1 - 06) (fyﬂ)f”_l) + a[j;a)f [f” + P?n]eajif [En—l +PEn—l]]'

tional inequality problem involving XOR operation (12). (47)
From (47), it follows that

_ _ — of 1— - of 1— -

||xn+le;xn|| = “(1 - 0() (xn@xn—l) + a[]pf [xn + ptn]@jpf [xn—l + Ptn—l]] || (48)
< (1 - “)“En@fn—ln + a“jﬁf [En + an]@fif [En—l + an—l]"'

% +pt, ) oc I (%, | + pt, ] 49
As X, OC X1 t,oct, obviously, T [t plul o 77 [Facs + ol (49)
X, +pt, <X, | +pt, ;, for n=1,2,.... Since the resolvent Using above facts, (iv) of Proposition 2 and non-

operator jgf is strongly comparison, we have

expansiveness of 797 (48) becomes

[ = %l < (1 = @&, = %o | + a7 (% + pE] = 73 (Rt + P

< (1 - (x)"xn - En—l” + OC” [xn + pfn] - [xn—l + pzn—l] " (50)

=(1- a)“fn - ynflu + “”xn Xt P(En B Z"’l)“'

Since the multivalued mapping F is the relaxed Lipschitz
continuous with constant k>0, D-Lipschitz continuous

with constant A, >0, and using (45) of Iterative Algorithm
1, we have

“Yn —Xu1 +P(¥n - anl)"Z = “fn - xn—luz + 2p<fn - En—l’fn - xn—1> + qufn - En—l“2

<% = T = 20K% = T | + A, [T~ T (51)

=(1-2pk + p"2}, )%, - %[

thus,

“fn - xn—l + P(En - Enfl)" < \/(1 - 2Pk + pzA%)F)"En - %n—ln

= Huxn - xn—1"’

(52)
where 0 = /1 - 2pk + pz/\zDF.
Combining (50) and (52), we have
%01 =%, < (1= @)%, - %, | + 2B |x, - %, 53
<(1-a+ad)|x, -%, |
thus, we have
[%ir =%l <" [7 - %o (54)

where y = (1 — a + af). Hence, for m>n>0, we have

m-1 m-1
7o -Full < 2 [Rr -E <R =% Y v (59)
i=n i=n

It is clear from condition (46) that 0 <y <1, and con-
sequently, we have ||X,, - X,,,[| — 0, as n — co. Thus, {x,,}
is a Cauchy sequence in E, and as E is complete,
X, — x* € E, as n —> co. From (45) of Iterative Algo-
rithm 1, we have

||fn$fn_1” = “En - Zﬂ—lu
<D(F(x,),F(x,,)) (56)

SADF "xn - Xn—lu’

thus, {f,} is also a Cauchy sequence in E such that
t, — t* € E,asn —> 00. Now, we will show that (x*,¢*) is
a solution of generalized variational inequality problem
involving XOR operation (12). As X, — x*,f, — t*, and
resolvent operator jﬁf is continuous, we can write
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x" = lim X,

= lim [(1- @)%, + a7 [%, + pf,]]

=(l-a) lim En+(xj2f[ lim x,+p lim fn]
=(1-a)x" + (xfgf [x" +pt"].
(57)

Thus, the relation (35) is satisfied. It remains to show that
t* € F(x*). Since f, € F(x,), we have

At F(x) <t -5 +d(En F(x"))
<[e -5, + D(F () F(x7)) (58)

<

* T — *
t —tn||+ADF||xn—x ||—>O, asn — 00.

Hence d(t*,F(x*)) — 0, t* € F(x*) as F(x*)e
CB(E). By Lemma 1, x* € C, t* € F(x*) is a solution of
generalized variational inequality problem involving XOR
operation (12). This completes the proof. O

Remark 2. Combining Theorems 1 and 3, we assert that the
solution X € C,t € F(X) of generalized variational inequality
involving XOR operation (12) is also a solution of gener-
alized complementarity problem involving XOR operation

9).

5. Numerical Example

In this section, we construct a numerical example in support
of Theorem 3. Finally, the convergence graphs and the
computation tables are provided for the sequences generated
by Iterative Algorithm 1.

Example 1. Let E = E* = R with the usual inner product and
norm. Let C = {x € tRn: q0h <4, <71} be a pointed closed
convex positive cone in R. Let f: C — RU{+00} be a
functional, df: R — 2® be the subdifferential of f,
F: C —> 2R®\{&} be a multivalued mapping, and jgf be the

resolvent operator associated with f such that

f@® =2%+1,
Fo-[F) e !
=t )
Then,
of (%) ={4x},
. B (60)
j;(x)—{1+4p}, VX € C.

One can easily verify that the resolvent operator j?f isa
strongly comparison mapping and continuous.
For X,y € C, w;, € F(X), and w, € F(y), we have

7
oy =(- Y5
(W —wy, X =) =( -2+ 53X y)
-ty (61)
= —|[x —
7 y
L 2
< - —J®-tyl’
-yl
that is,
1
(w) —w,, X = y) < —Enx—tyuz. (62)
Thus, F is the relaxed Lipschitz continuous with constant
k = (1/10).
Also,

D(F(x),F(y)) = max{ sup d(x,tFn(y)), sup d(F(x),y) }
XeF () Y€F ()

SMERTEE]
7 7 7 7
1 _ _
= - max{lx - ty], I - 1}
<2 lx-yl
<z IE- )
(63)
that is,
1
D(F(Y),F(y))sgllx—tyll. (64)

Thus, F is the D-Lipschitz continuous with constant
Ap, = (1/5).

Let us take p = 1, then for k = (1/10) and )LDF = (1/5),
the condition (46)

k

2
Ab,

k

<—, (65)
A,

p-

is satisfied.

Furthermore, for p=1 and a = (1/3), we obtain the
sequences {X,} and {f,} generated by the Iterative Algorithm
1as

X1 = (1- )X, + a7 [X, + ph, ]

(66)
2_ 1.
= gxn +E [Xn + tn]’

where £, € F(X,), and thus, f, = — (x,,/7). It is clear that the
sequence {X,} converges to x* =0, and consequently, the

sequence {f,} also converges to t* = 0.
For initial values X, = 5,10, and 15, we have the fol-
lowing convergence graphs, which ensure that the sequences
{x,} and {f,} converge to 0. Two computation tables are
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TABLE 1: The values of x,, with initial values x, = 5, x, = 10, and x, = 15.

No. of For x, =5 For x, = 10 For x, = 15
Iteration X, X, X,
n=1 5 10 15
n=2 3.61904761904762 7.23809523809524 10.8571428571429
n=3 2.61950113378685 5.23900226757370 7.85850340136055
n=4 1.89601986826477 3.79203973652953 5.68805960479430
n=5 1.37235723798212 2.74471447596423 4.11707171394635
n=6 0.993325238920389 1.98665047784078 2.97997571676117
n=7 0.718978268170948 1.43795653634190 2.15693480451284
n=10 0.272639416260542 0.545278832521084 0.817918248781626
n=14 0.0748317352528748 0.149663470505750 0.224495205758624
n=18 0.0205391747010088 0.0410783494020177 0.0616175241030265
n=21 0.00778853666217476 0.0155770733243495 0.0233656099865243
n=25 0.00213773093232492 0.00427546186464984 0.00641319279697477
n=26 0.00154731000815899 0.00309462001631798 0.00464193002447697
n=27 0 0 0
n=28 0 0 0
TaBLE 2: The values of ¢, with initial values x;, = 5, x, = 10, and x, = 15.

No. of For x, =5 For x, = 10 For x, =15
Iteration t, t, t,
n=1 —0.714285714285714 —1.42857142857143 —2.14285714285714
n=2 0.102040816326531 0.204081632653061 0.306122448979592
n=3 —0.0145772594752187 —0.0291545189504373 —0.0437317784256560
n=4 0.00208246563931695 0.00416493127863390 0.00624739691795085
n=>5 —0.000297495091330993 —0.000594990182661986 —0.000892485273992979
n=6 4.24992987615704e — 05 8.49985975231408¢ - 05 0.000127497896284711
n=7 —6.07132839451006e — 06 —-1.21426567890201e-05 —1.82139851835302¢ - 05
n=10 —-1.23904661112450e — 07 3.54013317464143¢ - 08 5.31019976196215e — 08
n=14 —5.16054398635777e - 11 1.47444113895936¢ — 11 2.21166170843905e — 11
n=18 —2.14933110635476e — 14 6.14094601815645¢ — 15 9.21141902723467¢ - 15
n=21 6.26627144709842¢ — 17 -1.79036327059955¢ — 17 —2.68554490589932¢ — 17
n=25 2.60985899504307e — 20 5.21971799008614e — 20 7.82957698512922¢ - 20
n=26 —3.72836999291867e — 21 —7.45673998583735¢ - 21 —-1.11851099787560e — 20
n=27 0 0 0
n=28 0 0 0

15 : : : ,

|
1
10 F% *l‘ 4
(|
P
X, **
sl X\ ]
%
yk
W ¥
22y

—*— Xy=5
—— xp=10
—%— xy=15

FiGure 1: The convergence graph of the sequence {x,} with initial values x, = 5, x, = 10, and x, = 15.
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F1GURE 2: The convergence graph of the sequence {f,} with initial
values x, = 5, x, = 10, and x, = 15.

provided for the iterations (Tables 1 and 2) of the sequences
{x,} and {f,} (Figures 1, and 2).

6. Conclusion

In this study, we introduce and study a generalized com-
plementarity problem involving XOR operation with three
classes of generalized variational inequalities involving XOR
operation. Some equivalence relations are established be-
tween them. Finally, a generalized variational inequality
problem involving XOR operation (12) is solved in real
ordered Banach spaces. A numerical example is constructed
with convergence graphs and computation tables for illus-
tration of our main result.

We remark that our results may be further extended
using other tools of functional analysis.
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In this paper, we consider the split common fixed point problem in Hilbert spaces. By using the inertial technique, we propose a
new algorithm for solving the problem. Under some mild conditions, we establish two weak convergence theorems of the
proposed algorithm. Moreover, the stepsize in our algorithm is independent of the norm of the given linear mapping, which can

further improve the performance of the algorithm.

1. Introduction

In recent years, there has been growing interest in the study
of the split common fixed point problem because of its
various applications in signal processing and image re-
construction [1-3]. More specifically, the problem consists
in finding ¥ € H, satisfying

x € F(U),

Ax € F(T), )

where F(U) and F(T) stand for the fixed point sets of
mappings U: H, — H, and T: H, — H,, respectively,
and A: H; — H, is a bounded linear mapping. Here, H,
and H, are two Hilbert spaces. In particular, if we let the
mappings in (1) be the projections, then it is reduced to the
well-known split feasibility problem (SFP): find X € H, such
that

xe€C,Ax € Q, (2)
where CC H, and Q< H, are two nonempty closed convex

subsets and A: H, — H, is a bounded linear mapping; see,
e.g. [1, 4-7].

There are several algorithms for solving the split com-
mon fixed point problem. Among them, Censor and Segal
[8] introduced an algorithm as

M =U(5F - AT (- T)AXY), (3)

where I stands for the identity mapping, A* is the adjoint
mapping of A, and the stepsize 7 is a constant in (0, 2JAl172).
In particular, when U =P and T = Py, then the above
algorithm is reduced to the well-known CQ algorithm for
solving the split feasibility problem [4]. Note that this choice
of the stepsize requires the exact value or estimation of the
norm ||AJ. To avoid the calculation of | A]|, Cui and Wang [9]
proposed a variable stepsize as

] .
B ”A* (I- T)Ax"”z'

It is readily seen that the above choice of the stepsize does
not need any prior knowledge of the linear operator. Re-
cently, Wang [10] introduced a new method for solving (1)
as
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= xF o, [(I —U)XF+ AT (I - T)Axk], (5)
where the stepsize is set as
- U)xk||2 +|a- T)Ax"”2

e ||(1 —UxF+ AT - T)Axk“T ©

Recently, the above algorithms were further extended to
the general case; see, e.g., [2, 10-17].

The inertial method was first introduced in [18], and
now, it has been successfully applied to solving various
optimization problems arising from some applied sciences
[19, 20]. In particular, this method was also applied for
solving the split feasibility problem [21, 22]. By applying the
inertial technique, Dang et al. [21] recently proposed the
inertial relaxed CQ algorithm, which is defined as

ka :xk+9k(xk—xk71),

(7)

= po(w' - A" (1- Py)Au®),
where 0< 6, <0<land 0<7< (2/1Al1%). 1t is clear that the
constant stepsize requires the estimation of the norm | Al|. To
avoid the estimation of the norm, Gibali et al. [23] modified
the above stepsize as

- ro)ant
Tk = Pk 2 >
Um (8)

= max(l, ”A*(I - PQ)Awk"),

with 0 <p, <4. It is shown that the inertial relaxed CQ al-
gorithm converges weakly toward a solution of the SFP
provided that Y72, lelxk — x*1)? < 00. The main advantage
of the inertial method is that it can indeed speed up the
convergence of the original algorithm. It is thus natural to
extend it to the split common fixed point problem. Recently,
Cui et al. [24] proposed a modified algorithm of (3) as

ka:xk+6k(xk—xk_l),

9
oUW -1 AT (T-T)Aw®),

where 0 <0 <0< 1 and 7, is defined as in (6). It was shown
that algorithm (9) converges weakly to a solution of the
problem provided that Y22, lelxk - %12 < 0.

In this paper, we aim to continue the study of the split
common fixed point problem in Hilbert spaces. Motivated
by the inertial method, we propose a new algorithm for
solving the split common fixed point problem that greatly
improves the performance of the original algorithm.
Moreover, the stepsize in our algorithm is independent of
the norm ||AJ|. Under some mild conditions, we establish two
weak convergence theorems of the proposed algorithm.

2. Preliminary

In the following, we shall assume that problem (1) is con-
sistent, that is, its solution set denoted by £ is nonempty. The
notation “ — ” stands for strong convergence, “—” weak
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convergence, and w,,{x,} the set of weak cluster points of a
sequence {x,}. Let C be a nonempty closed convex subset.
For a mapping T defined on C, we Ilet
F(T) = {x € C: Tx = x} be its fixed point setand T' =1 - T
be its complement.

Definition 1. A mapping T: C — H is said to be non-
expansive if

ITx-Tyll<llx-yll, Vx,yeC. (10)

T is called quasi-nonexpansive if F(T) + &, and

ITx -yl <llx-yl, VxeC,yeF(T). (11)

Definition 2. Let T: C — H be a mapping with F (T') # &.
Then, T' is said to be demiclosed at 0 if, for any {x*} in C,
there holds the following implication:

k
o —x € F(T). (12)
T'x" — 0
It is well known that if T is a nonexpansive mapping,
then T' is demiclosed at 0; see [25].

Lemma 1 (see [25]). If T: C — H is quasi-nonexpansive,
then

2x—2z,T'x)> ||T'x||2, Vz € F(T),x € C. (13)

Lemma 2 (see [25]). Assume that {x*} is a sequence in H
such that

(i) For each z € C, the limit of {||x* - z||} exists
(ii) Any weak cluster point of {x*} belongs to C

Then, {x*} is weakly convergent to an element in C.

Lemma 3 (see [18]). Let {¢;} and {8} be two nonnegative
real sequences such that Y2, 0, < 0o and

Prar = P < Ok (B — Prr) + o (14)

where 0< 0, <0< 1. Then, the sequence {¢} is convergent.

Lemma 4 (see [25]). Let s,t € R and x, y € H. It then fol-
lows that

ltx +syl* = £t +s)lxl” +s(t +s)lyl* —tsllx - ylI*.
(15)

3. The Proposed Algorithm

k

Algorithm 1. Let x°, x' be arbitrary. Given x*, x*~1, choose

0, € [0,1], and set
wk ="+ Hk(xk - xkil). (16)

If [U'wk + A*T' Aw*| = 0, then stop; otherwise, update
the next iteration via
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K =k - T [U’wk + A*T'Awk], (17)
where
L R

o s ATl o

Remark 1. In comparison, our stepsize (18) is independent
of the norm || Al| so that the calculation or estimation of || Al
is avoided.

Remark 2. If |U'wk + A*T' Aw¥| = 0 for some k € N, then

wk is a solution of the problem. To see this, let z € £. It then

follows from Lemma 1 that [|U' w¥||* < 2¢U"w*, w* - z), and
|77 Awk| < 241" Ak, Awk — Az) = (AT AwF k- 2.
(19)
Combining these inequalities yields
[ w7 + |1 At <2¢U'wk + AT Auk, 0 - 2)
<2|U'w* + AT Awt||w* - 2.
(20)

This yields [[U'wX| = |T' Aw¥|| =0, which implies
wk e /.

If we let 6, = 0 in (16), then we get a new algorithm for
problem (1).
Algorithm 2. Let x° be arbitrary. Given xX, if
[U'x* + A*T' Ax¥|| = 0, then stop; otherwise, update the
next iteration via

K= X T [U/xk + A*T'Axk], (21)
where

o ra]

T (22)

Cou AT Al

4. Convergence Analysis

In this section, we shall establish the convergence of the
proposed algorithm. By Remark 2, we may assume that
Algorithm 1 generates an infinite iterative sequence. To
proceed, we first prove the following lemma.

Lemma 5. Let {x*} and {wX} be the sequences generated by
Algorithm I Let
8 = (1/(4(1 + [AI?) (IU'wk|)* + T Awk||). Then, for any
z €S, it follows that

Proof. Since U is quasi-nonexpansive, we have

K z”z < “wk - z"2 - 6. (23)

P z”z = ”wk - T [U'wk + A*T'Awk] - z”z

= “wk - z“z + 1, |U'wk + A*T'AwkH2

21 (U'wk, 0 - 2) — 21, (T Au®, AuF - Az)

2 2
< ka - z” + T}2<| U'w + A*T'Awk”

2 2
e -

(24)

In view of (18), we have

’ o (st ofrawt)

alut v a T A
To finish the proof, it suffices to note that
(lorw[ +fraw]')

vk + A*T'Awk||2

ol <ot @)

(o[ sfrean ')
>

(lore] sranfr sty (26)
(Jors] |t )

‘@meQWﬁwqpqu)

(e

" HAr T auf[)

This completes the proof. O

Theorem 1. Assume that U is quasi-nonexpansive such that
U' is demiclosed at 0, and T is quasi-nonexpansive such that
T' is demiclosed at 0. If, for each k € N, 6, <0< 1 such that

(c1) 32, Bllxk — x5 1* < 00,

then the sequence {x*} generated by Algorithm 1
converges weakly to an element in £.

Proof. We first show that the sequence {[x* - z|} is con-
vergent for any z € £. From Lemma 4, we deduce

"wk - z“z = “(1 + Gk)(xk - z) - Gk(xkfl - z)”z
ORI NS e
+60,(1+ Gk)“xk - xk_1||2.

By Lemma 5, this yields

K- z”2 <(1+ Gk)”xk - z"2 - Gk”xk’1 - 2”2

: (28)
+ 26k||xk - xk_IH - 0y



Let ¢ = [|lx* - z||*. Then, the above inequality can be
rewritten as

Pt — B <O (1 — b)) + 26k||xk - xk—1||2 -0 (29

By condition (c1), we then apply Lemma 3 to deduce that
{#)} is convergent, and so is the sequence {[x* - z||}.

We next show that each weak cluster point of {x}
belongs to £. Since {¢,} is convergent, this implies that ¢, —
¢4 converges to 0 as n — 00. It then follows from (29)
that

)
8 < (b = Brsr) + Ok (P — bpy) + 29k'|xk — % 1"
2
<|br = bra |+ — bia| + Zekﬂxk —xF 1" )
Note that limkekllxk X2 =0 by condition (c1). By

passing to the limit in the above inequality, we have &)
converging to 0 so that

(30)

lim [U'w!| = lim |1"Aw®| = 0. (31)
k—00 k—00
Moreover, it is clear that {x*} is bounded; thus, the set
w,, (x,) is nonempty. Now, take any x € w, (x), and take a
subsequence {x¥} such that it weakly converges to x. On the
contrary, we deduce from (cl) that

R E P

so that {wh} also weakly converges to x and {Aw*} weakly
converges to Ax. Since U’ and T" are both demiclosed at 0,
this together with (31) indicates x € F(U) and Ax € F(T);
that is, x is an element in /.

Finally, by Lemma 2, the sequence {x*} converges weakly
to a solution of problem (1). O

Remark 3. We now construct a sequence satisfying condi-
tion (cl1). For each k € N, let

min(O.S, . lk 1 2),
]

0.5, X =x

(33)
We next study the convergence of Algorithm 1 under

another condition. To proceed, we need the following
lemma.

Lemma 6. Let {x*} and {wX} be the sequences generated by
Algorithm 1. For any ze€ f, let ¢, =|x*—z|* -6,
"1 = 21> + (0,/2) (3 + O )llxk — x5 Y. If {6} is nonde-
creasing, then
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Pio,  (34)

2(dp — Prar) = (1 —40;,, - 9;2<+1)||xk — Xk

where &, is defined as in Lemma 5.

Proof. In view of (17) and (18), we get

o (] o aw)

“xk“ —wk" = o (35)
a|urwt + AT Aut|
It then follows from inequality (25) that
“xkﬂ B Z"Z < "wk B Z”Z _ %"xkﬂ _ wknz B %6]{. (36)

Moreover, it follows from (27) that
[ ] < 1+ 0~ o] -t ]

# 2o~ - - 2

On the contrary, we have

2 2
k_ kel :”xk_xk+1+9k(xk_xk 1)”

|«

2 2

_ ka VY ei”xk ik 1“
+ 26k<xk _ Rk ey

2 2
S “xk VY ei”xk ik IH

_ 29kuxk ke 'xk _ Xk—l“
2 -
+ Gi”xk ok 1H”z
2 2
o -T)

g 0 (1- Qk)uxk - xk_l"z.

> “xk _ xk+1
B Gk(”xk _ ke

_ (1 _ ek)”xk _ xk+1

(38)
Substituting this into (21), we have
[t =] < 1+ B~ o] -t ]
+6,(1+ Ok)"xk - xk””z
(39)

2

—% (1- Hk)')xk — 5

I N

Since {6,} is nondecreasing, this implies
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[ - z||2 < (1+6)|x" - z||2

— gt % (3+ ) -

_% (1- 0" - = g %ak

< (14 Q)| - 2 - 8 - 2
% (34 ) - [
1

) (1- 0k+1)”xk - K

2 1
- =0,
7%

(40)

From the definition of ¢,, we get the desired
inequality. O

Theorem 2. Assume that U is quasi-nonexpansive such that
U' is demiclosed at 0, and T is quasi-nonexpansive such that
T' is demiclosed at 0. If

(c2) {6} is nondecreasing and
6 € [0,V5-2),

then the sequence {x*} generated by Algorithm 1
converges weakly to an element in £.

converges  to

Proof. We first show that {Ika —z||} is convergent for each
z € f. It then follows from Lemma 6 and the range of 8, that

2(¢x = b)) = (1-46 - 92)"xk e 8 =0 (41

so that {¢,} is nonincreasing. From the definition of ¢, we
get

[ o <O - o+ g <0 o 4 g @)

By induction, we have

2 2 ¢
R I e (43)
Thus, {x*} is bounded. Moreover, from the definition of
s
L 2”2 = _”xk - 2"2 > |« - Z”2 - 1(616,
(44)

which implies that {¢,} is bounded from below, and thus, it
is convergent. Passing to the limit in (41) yields

lim 6, = kh;nm|'xk+l - =0 (45)

k—00

On the contrary,
Oufl" =2l -~
K e B (S R R VD
< (el ) — o
from which it follows that

lim =2 = —— lim ¢ (47)

= 1
k—00 1-0 ko

Here, we used the fact (by the definition of ¢, ) that

o = g (v - et - o) - S ), (a9

1-6,

Thus, {|x* - z||} is convergent.

We next show that the sequence {x*} converges weakly
to a solution of problem (1). By Lemma 2, it suffices to show
that each weak cluster point of {x*} belongs to £. Moreover,
it is clear that {x} is bounded; thus, the set w, (x,) is
nonempty. Now, take any x € w,, (x¥). On the contrary, we
deduce from (16) and (45) that

o - 0 s 0 )

In a similar way, we deduce that x € F(U) and
Ax € F(T); that is, x is an element in £. Hence, the proof is

complete.
If we let 8, = 0, then it satisfies (c1) and (c2). As a result,
we get the following conclusion. O

Corollary 1. Assume that U is quasi-nonexpansive such that
U' is demiclosed at 0, and T is quasi-nonexpansive such that

T' is demiclosed at 0. Then, the sequence {x*} generated by
Algorithm 2 converges weakly to an element in f£.

5. Concluding Remarks

The main contribution of this paper is to propose a new
algorithm for solving the split common fixed point problem
in Hilbert spaces. There are two advantages of the proposed
algorithm. Compared with the original algorithm for solving
the problem, our proposed algorithm is faster in conver-
gence rate. Furthermore, the stepsize in the proposed al-
gorithm is independent of the norm of the given linear
mapping, which can further improve its performance.
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In this paper, we present some theorems on impulsive periodic boundary value problems with fractional derivative dependence. In
particular, we discuss the existence of solutions of a class of fractional-order impulsive periodic boundary values with nonlinear
terms and impulsive terms satisfying certain growth conditions. Three examples are provided to illustrate our results.

1. Introduction

This paper considers the existence of solutions of the fol-
lowing fractional-order impulsive periodic boundary value
problem:

‘Dlu(t) = f(t,u(t),’Dlu(t)),
M) = T (68D (1)
ADlu(ty) = Ji (u(te)“Dlu(ty)), k=12,...,m,
au (0) — bu(1) = 0,aD}u(0) — bD}u(1) = 0,

te],

(1)

where °D{ and D] represent the common Caputo deriv-
atives of orders g and y, and 1<q<2,0<y<1, and ] =
[0,1],0 = to<t, <t,< .- <t,< twa = LT =]\
{ti,ty,.. .5t} Here, f: JXRxR — Rand I}, J,: RxR
— R are continuous functions. Now, Au(t;) = u(t{) —u
(t;), where u(tf)and u(t;) denote the right limit and the
left limit of wu(t) at the impulsive point t,. Also,
ADJu(t,) = CDfu(t,’;) - ‘Dtyu(t;), where CDtyu(t;;)
and CDfu(t,;) denote the right limit and the left limit of
°Dlu(t) at the impulsive point t,. If u(ty) and“Dfu(t,;)
exist, we let u(t)= u(t;)anchfu(tk) = “Dlu
(t;), wherek = 1,2,...,m. Also, aand b are two real con-
stants with b>a > 0.

The theory of fractional differential equation has re-
ceived a lot of attention because of its wide application in
mathematical models (see [1-27] and the references
therein). Fractional-order impulsive differential equations
are a natural generalization of the case of nonimpulses and
are used to describe sudden changes in their states, such as in
optimal control, population dynamics, biological systems,
financial systems, and mechanical systems with impact. We
refer the reader to [28-36] and the references therein. In
particular, Bai et al. [37] investigated a mixed boundary
value problem of nonlinear impulsive fractional differential
equation:

‘Dlu(t)=f(tu(t), te],
Au(te) = I (u(t), Au' (t) = Je (u(te),  k=12,....m,
u(0)+u(l) =0,
u' (0)+u' (1) =0,
(2)

and some sufficient conditions on the existence and
uniqueness of solutions for problem (2) are obtained under
Lipschitz conditions. In [38], Zhang and Xu studied the
following impulsive periodic boundary value problem with
the Caputo fractional derivative:
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2
‘Dlu(t) = f(t,u(t), te],
Au(ty) = I (u(t), Au' (1) = T (u(ty), k=1,2,....m,
au(0) —bu(l) =0,
au' (0)—bu' (1) =0,
(3)

using Green’s function in [36], and via the symmetry
property of Green’s function and topological degree theory,
the authors obtained the existence of positive solutions for
(3) when the growth of f is superlinear and sublinear.

Inspired by the above research studies, in this paper, we
consider fractional-order impulsive differential equations
with generalized periodic boundary value conditions (1),
where the nonlinear term, impulse terms, and periodic
boundary conditions all depend on unknown functions and
the lower-order fractional derivative of unknown functions.
This is obviously more general and more widely applied, but
it is also more complex and difficult to solve. Compared with
(1), the nonlinear term, pulse term, and periodic boundary
conditions of (3) are all independent of fractional deriva-
tives, so it is a special form of (1). In this paper, we first give
an equivalent integral form of solutions for problem (1)
using some new Green’s functions. Next, we present some
sufficient conditions for the existence of solutions for
problem (1), where the nonlinear and impulse terms satisfy
some nonlinear and linear growth conditions, which are
different from the conditions in [36-38]. Finally, we present
three examples to illustrate our main results.

2. Preliminaries and Lemmas

In this section, we only present some necessary definitions
and lemmas about fractional calculus.

Definition 1 (see [39, 40]). The Riemann-Liouville frac-
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I, F (1) = ﬁ jo (t— 9™ 1 f(s)ds, (@)

where I'(-) is the Euler gamma function.

Definition 2 (see [39, 40]). The Caputo fractional derivative
of order a >0 for a continuous and n-order differentiable
function f: (0,00) — R is defined as

C & _ 1 ! _gnmal (n)
D)=t |, =9V 0as®)

where TI'(-) is the Euler gamma function and
n = [a] + 1, where [«] is the smallest integer greater than or
equal to a.

Lemma 1 (see [39, 40]). Let a> 0. The differential equation
‘Diu(t) = 0 has a unique solution:

u(t)=co+cyt+---+c,  t" " (6)

for some c; e R(i=0,1,2,...,n—1), where n = [a] + 1.

Lemma 2 Let y € C(J) and 1 < q<2. The unique solution of
the following periodic boundary value problem

‘Dlu(t)=y(t), te],
Au(tk):Ik,AcDIu(tk):]k, k:1,2,...,m,
au(0) —bu (1) = 0,aD/u(0) - bD/u(1) =0, 0<a<b,

()
is expressed by

1 m m
u(t) = JOKI (t,8)y(s)ds + ZKZ (tt)]; + ZK3 (tt)I, te],

i=1 i=1

8
tional integral of order a > 0 for a function f: (0,00) — R ®
is defined as where

_4)a1 _g)! _ _ )11
(t=9)"" b(1-9)"" TQ-p(A-5s) (t— b )) O<s<t<l,
I'(qg (b-a)l(q) I(g-y) b-a
I<1(t)s)=<
_ 1! _ _ -1
b -9 _r(2 y)(l 9 (t— b >, 0<t<s<l,
(b-a)X(q) I'(q-y) b-a
M 0<t;<t<l,i=1,2,...,m,
(b-ax,”’ 9)
Ky (t:t;) =1
Fr2-y/( bt .
tilfy (b—a_t , 0<t<t;<1,i=12,...,m,
a .
- , 0<t;<t<1,i=12,...,m,
a-b
Ky (t:t;) =
b

p 0st<ti<lLi=12...m.
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Furthermore,

chu(t)=J H, (69)y()ds + Y Hy ()]s (10)

i=1

where
f_5)d vl 1— )V 1y
( ) —( S) , 0<s<t<l,
I'(qg-y) I'(qg-y)
H, (t,s) = -
(1-9)T V1Y
—_— 0<t<s<l,
I'(g-y)
0, 0<t;<t<l,i=1,2,...,m,
Hz(tt): " 1-y
(t—) , 0<t<t;<1,i=1,2,...,m.
L\

(11)

Proof. Suppose u is a general solution of (7) on each interval
(tiotyr 1 (k=0,1,2,...,m). Then, using Lemma 1, (7) can
be transformed into the following equivalent integral
equation:

u(t) =ILy(t) —c, —dit, te (toti] (12)

where t, = 0andt,,,, = 1. Also, we have
-y

cryy _ 197 _
Dju(t) =1, y(t) dkl‘(2—y)’

te (tote) (13)

From (12) and (13), according to (7), we obtain

k
b
Ck=¢ —Z[Ii -TQ-ptT] b a [1E,y(1) -

i=1

a
b-a

™M~

+
i

11
—

For t € J, = [t,t;], substituting (18) and (20) into (12)
and (13), we obtain

[L-TQ@-ptT]+

3
co—bc,, =bd,, - bIg+y(1), (14)
m=T2- Y)Io+ y(1). (15)

Applying the right fractional-order impulsive condition
of (7), we obtain

-y
dgy —di = 1——1/)}]](’ (16)
£y
T2-1y)
ko1 — 6 = I —tl;_y)/]z« (17)
k

From (15) and (16), after a recursive calculation, we have

dy=d,+T(2- y)zt{’ =TQ-PI y(1)+T(2- VZ1
i=11; =1t i

(18)

Similar to (18), we see that

- Ji a-y < ]i
dk=do-r(z-y)ztw=r(z—y)1r0+ y()+T2-y) Y 4 -
i=1"% i=k+1

(19)

From (13), (14), and (16), we have

Co =7

- Ig+y(1) rQ- I, y(1)+Z(I—F(2 T |

(20)

From (17) and (20), after a recursive calculation, we have

L(2-pIg y(1)]
(21)

Z [I, -T2 -t

b b\ .
w(®) =1,y (0) -1, y(1) -T2 - y)(t : m);ggy(l)

mT(Z ) bt; b &
_Z ; y ( _b—a)]i_b—agli

b\ L[ \a-9 !
—r(z—w(t—b_a)(Jo*L)r(q—yy

(s)ds + i r(t21__y 12 (bb_tia _

i=1 i

R

i=1
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t m m
= J. K, (t,8)y(s)ds + ZKz ()] + ZK3 (t. )
0 i=1 i=1

‘Dlu(t) =I{"y(®) - [Iq Ty(1) + Z p V]

111

t( s)qyl t 1 (1_S)qufltlfy mofy I-y
107( )y(s)ds—(JO+L)—r(q_w y(s)ds—;<t—i) Ti

=I H, (@, s)y(s)ds+ZH2 (65

i=1

Where Kl (t, S), Kz (t, ti)’ K3 (t) tj)) H] (t) 5)> and H2 (t) tl) are
defined by (7) and (9).

b
w(t) = 13,y ~ L1y -T2 - y)(

’“1"(2 )
z )’

(22)

For J; = [t tim L k=1,2,. ..
(18) into (11) and (12), we have

,m, substituting (20) and

t——

b\ .
b_a>13+yy(l)

k
4 AW
to— ;r(z VT -

_r (t-s1"
“Jo T 7

i=1 i

b t
(s)ds = (JO

1 _5)a!
+L )%y(gds -r2- y)(t - %)

t (1—s)q y-1
. (Jo +Jt )71“(61 7 y(s)ds+ o

Ii:_[ K, (t, s)y(s)ds+ZK2 (t.t)]; +ZK3 (.t

S
[N
Q
™M=
I~
|
S
[~
Q
M=

Il
—_

Il
—

Dlu(t) = Iy (1) - [Iglyy(l) +) {iy}tly

i=1 ti

I res(/)

=j H, (t, s)y(s)ds+ZH (t,t)]5

i=1

where K, (t,5), K, (t,t;), K5 (t,t;), H, (t,s), and H, (¢,t;) are
defined by (9) and (11). The proof is completed. O

Lemma 3. Let 0O<a<b< +o0. Then,
K, (t,s) + K, (t,t;)and K5 (t,t;) and H,(t,s)and H,(t,t;)

a

kF(Z)tm(Z)
e SRR (5

i=1 1 i

_t>,i

(23)

i=1 i=1

(1 -V mo e\
S ooe(i)

i=1

defined as in (9) and (11) are continuous, and the following
inequalities hold:

(i) |K,(t,s)| < ((2b- a)(l—s)q Y/(b-a)(q) + ((2b

~a) L 2-y) (1 =-9)T"/(b-a) (q-y), H, (¢, s)|
<QA-9)T" I (g-y), t,se]
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(i) |K, (t,t)| <bI'(2-y)/b—a, |H,(t, ;)| <1,|K; (8, 1;)] Proof. Directly observe that
<b/b-a, tt; €]

1-9T" b(1-97"! r(z—y)(l—s)q“( b )
+ 1+
b-a

K, (t, <
K69~ b ar T(q-y)

_@b-a)(-9T" @b-are-pa-9T!

G-al@ '~ G-ar@-p "5

-1 (=T Y (1471 -9T a1 - gt !
+ < , <

I'(g-y) I'(g-y) I'(g-y) I'(g-y)

r@2-y) b, SbT(Z—y)tYSbF(Z—y)

t/’ b-a b-a b-a

lHl(t,s)|S( s €],

(24)

K, (t.t;)| < , Lt €],

b
K, (t.1;)| < — bLe)

I-y
t
|H2(t,ti)|s(t—) <1, tt €]

1

Let E={w]—RueC('), <Dlu(t)eC(J'), Lemma 4. If the function f(t,u,“D}u(t)) is continuous,
andu(t;),u(t,ﬁ),CDZu(t,;), and CD}'u(t,’;) exist, where then u € E is a solution of (1) if and only if u € E is a solution
k=1,2,...,m}. Note [35] that E is a Banach space equipped  of the following integral equation:
with the norm

llull = sup [u(#)| + sup|"D}u (t)|. (25)
te] te]

u(t) = Jl K, (t,5)f (s,u(s),Dlu(s))ds + i K, (t,1,)]; (u(t;), "Dy u(t;))
0 i=1
(26)

-3 K () (). Dl (1),

i=1

Proof. Assume that u satisfies (1). From Lemma 2, we see ~ computation, it follows that the solution given by (26) and
that u satisfies integral equation (26). (2) satisfies (1).

Conversely, assume that u satisfies integral equation Define an operator T: E — E as
(26). Applying Definition 2, by a direct fractional derivative

1 m
(Tw) (£) = JO Ky (6,90 (5 (), Dlu())ds + Y K, (6,87, (u(t,), ‘Dl (t))

i=1

. (27)
+ Z K (6,1 (u(t;), "Dy u(t;)),
i=1
(‘DI'Tu)(t) = J; H,(t,s)f (s;u(s), " Dlu(s))ds + in (t,t)]; (u(t;), “Dlu(t,)). (28)

i=1



It is easy to prove that the function u is a solution of (1) if
and only if u is a fixed point of the operator T.
For convenience, we list some hypotheses:

(Bl) 0<a<b< +00,1<q<2,0<y<1 withg-y>1

(B2) f: JxRxR —Rand I, J;: RxR — R are
continuous functions O

Lemma 5. Assume that (BI1) and (B2) hold. Then, the op-
erator T: E — E defined as in (27) is completely continuous.

Journal of Mathematics

Proof. We divide the proof into three steps. Set
Q, = {u € E, |ul <r} for some r > 0. The steps are as follows:

(i) Step 1. T is continuous from the continuity of the
functions K, K,, K5, H\, Hy, f, I}, Ji-

(ii) Step 2. T is uniformly bounded. Now, for u € Q, we
have |f (t,u,°D}u)| <my,|J| <m,, |I;] <m;, where
m;>0,i=1,2,3.

In fact, for each te], =[t,ty, lLuecQ,
k=0,1,2,...,m, from Lemma 3, we have

1 m
\(Tw) (8)] < jo|1<1 (£,5)F (52(5),“DYu()]ds + YK, (6,6, (), ‘Dl ()]

m

i=1

1 m m
+ Z|K3 (t,t); (u(t;), Dlu (tl))l <my JO|K1 (t, s)|ds +m, Z]Kz (t, ti)l +my, Z|K3 (¢, ti)|,

i=1 i=1

(29)
1 m
|“DI'Tu) (1) < JolHl (t,8) f (s,u(s),"Dlu(s))|ds + Z|H2 (t )] (u(t;), "Dl u(t,))]
1 m
<m, JolHl (t,5)|ds +m, Z|H2 (t.t;)
i=1
which and Lemma 4 imply that
ITu| = su}) [(Tu) (¢)] + su})|(chTu) (t)l
te te
1 m m 1 m
<m, j KL s oy YK (6] + s YK (6] + m, J0|H1 (8, 9)|ds +my Y |H, (6,8,
i=1 i=1 i=1
1 m m
<oy [ (1K, (6] #l, )]s+ my Y1 (6] + [ ()] ., Y IR (18]
i=1 i=1
(30)
. Il [ (2b-a)(1-5)T" L @-are-ya Tt 201 - s)q‘V‘l]d
o (b-a)l'(q) (b-a)l(qg-7y) I'(g-v)
(bT' (2 - y) +b—almm, bmm; (2b-a) 2b-a)(2-y) 2
* b-—a Thoa ™M (b—a)F(q+1)+(b—a)F(q—y+1)+F(q—y+1)
. [bI' (2 —y) + b — a]lmm, . bmmy _
b-a b-a
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(iii) Step 3. T is equicontinuous. For any Then,
t,t, € Jiok=0,1,...,m, fixed s € ] and for any
€>0, there exists a constant >0 such that for
|t, —t,] <8, we have

€
Ky (t15) = Ky (£25)] <6_ml’

€
|K2 (tit;) = Ky (tys ti)| < 6mym’

€
K5 (£),1;) — K, (tz’ti)|<6m3m’ (31)

€
|H1 (tl»s) -H, (t2»5)| <4—m1’

€
|H, (£, 1;) = Hy (£5,1;)] <

4m,m

1
(Tu) (t,) - (Tu) (1) = jo (K1 (t155) = Ky (t29)) f (s:u(s), “Dfu(s))ds

m

+ Z (K, (t1,1;) = Ky (£ 1))]; (u(t;), “Dyu(t;))

i=1
m

+ Z (K5 (t1,1;) = Ky (£ 1)) (u(t,), “Diu(t;))

i=1

1
=m JO|K1 (t,s) = K, (ts 5)|d5 + mzlez (tt;) = Ky (£ ti)l

(32)
€ € € €
+ m3m|K3 (tl’ tl) - K3 (tz, tl)l < g + g + g = E,
1
(“DITu) (t,) - ("DiTu) (t,)] = IJO (Hy (t1,5) = Hy (t2,5)) f (5, u(s), “Dyu(s))ds
+ ) (Hy (t1,1) = Hy (8, 1:)); (u (8:), ‘D u(t;))
i=1
1 € e €
<m, IO|H1 (1105) = H, (12, 9)[ds + momH (11,8 = o (1, 1)] <5+ 5 =5
Thus, Lemma 6 (Schauder fixed-point theorem, see [41, 42]). Let
X be a real Banach space, C C X be a nonempty closed
”(Tu) (t,) - (Tu) (t2)|| <e (33)  bounded and convex subset, and F: C — C be compact.

Then, T has at least one fixed point in C.

which implies that T(Q,) is equicontinuous on any
subinterval Ji,k =0,1,...,m. Lemma 7 (Krasnoselskii fixed point theorem, see [41, 42]). Let

From the Arzela-Ascoli theorem, we deduce that  Q be a closed convex and nonempty subset of a Banach space
T: E — E is completely continuous. X. Let @ and¥ be the operators such that (i) Ox +Vy € Q
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whenever x,y € ; (i) ©: Q — X is compact and con- contraction, i.e., |Fx — Fy| <k|x — y| for some k € (0,1) and
tinuous; and (iii) ¥ is a contraction mapping. Then, there  all x, y € Q. Then, F has a unique fixed point in Q.
exists an z € Q such that z = Oz + Vz.
3. Existence of the Solutions
Lemma 8 (Banach’s fixed point theorem, see [43]). Let E be
a Banach space, Q) C E be closed, and F: O — Q be a strict  For convenience, we give the following symbols:

@2b-a)(1-9T" @b-al2-y)(1-s5)T"" 2(1-5T 7!
A; = J + + a; (s)ds,
of (b-aX(g) (b-al(g-y) I'(g-v)
B, - [bl“(2—y)+b—a]mbi) (34)
b-a
be.
C, = ;”_C’, i=0,1,2.
Now, we present our main theorems. (C1) There exist three nonnegative functions
agy, a;,a, € L(J) and two constants A;, A, € (0, 1) such
Theorem 1 Assume that (B1) and (B2) hold, and the fol- that
lowing hypotheses are satisfied:
|f () <ay(8) +ay Olul" +ay O, Ve ], uveR, (35)
(C2) There exist eight positive constants by, b,,c¢,,¢c, >0
and py, 4y, 1, v, € (0,1) such that
|Ii (u, v)| <by + by lul +b,|v*,
(36)
;v <co+cylul™ + v, i=1,2,...,m Yu,v e R.
Then, (1) has at least one solution in E. Proof. Let
Ry 2max{7(A0 + By +Cy), (7A1)1/1_A1’ (7A2)1/1_AZ’ (731)1/1_#1’ (732)1/1_H2’ (7C1)1/1_V1> (7C1)1/1_V2}>
(37)

Qp, ={u € E: |ul <R}

Now, Qp is a closed bounded convex subset of E. For each u € Qp, from (C1) and (C2), we have

1 m
[(Tw) (1) < JolKl (t,9)f (s, u(s),"Dlu(s))|ds + Z|K2 (tt)]; (u(t;),“Dlu(t,))]

i=1

m 1
+ Z|K3 (t ) (u(t,), “Dlu(t;))| < JO|K1 (t,9)| [ao () +a, (Hus)M +a, (5)|0Dtyu(s)|/\2]ds

i=1
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+ ) |K, (t:1)|[bo + by lu (I + b, DYu ()| ] + Y |Ks (8.1)| [co + €, [u ()™ + & DYu(s)] ],
i=1 i=1
1 m
(°DITu) (1) < JO|H1 (£,5)F (5,29, “DYu(s))]ds + ¥ JH, (67, (u(t), DYu (£,)|
i=1

1
< JO|H1 (t,9)|

a0 (5) + ay (N (" +a, (9] DY ()] [

+ Y [H, ()| [by + by [u ()| + b, "D u(s)[]. (38)

i=1

From Lemma 3, we obtain that

ITull = sup |u ()] + sup|(“D} Tu) (t)|
te] te]

1
< JO(|K1 (&, 9)] +[H, (£ 9)]) (a9 () + ay ()ul™ + a, (s)ual™ )ds

m

+ ) (K ()] +|Ha (6,1)]) (By + byl + by [1ull*)
= (39)

m
+ Z|K3 (t. ;)] (co + e llul™ + 5 llull™)
i=1

< Ag+ AR " + AR | + By + By R, + BRI

+Cy+ OB, [" + CoJR | <R,

which implies that T (Qg ) € Qp .
From Lemmas 5 and 6, T has at least one fixed point in

Qg,» 50 (1) has at least one solution in E. lf(tuvl<ay(®), VteluveR (40)
Theorem 2. Assume that (B1) and (B2) hold, and the fol- (C4) There exist four positive constants by, b,,c;,¢, >0
lowing hypotheses are satisfied: such that

(C3) There exists a nonnegative function a, € L(]), such
that

I (up,vy) = I (o v,)| € By Juy — | + by vy = v,|s Vg, up, v, vy € Ri=1,2,...,m, (41)
i (upvy) = T (ugevy)| St |uy =] + o|vy =], Yupupv v, €Ri=1,2,...,m.

If A=Y7,(B;+C;)<1/2, then (1) has at least one  Proof. We first define the operators. For u € E, let
solution in E.
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1
(Du)(t) = ,[o K, (t,s)f (s;u(s), “Dlu(s))ds,

1
(@) (8) = JO H, (6,5)f (s,u(s), ‘D (s))ds

(42)
(Wu)(f)—ZKz(t £ (u(t), “Dyu(t)) + ZK3(tt i (u(t), “Dyu(t)),
i=1 i=1
(Fyu) (1) = ZHz (6. t:)]; (u(t;), “Diu(t;)).
i=1
Now,
(Tw) () = (Du) (£) + (V) (1), (43)
(‘DI'Tu) (t) = ‘D) (Du) () + ‘DY (Yu) (£) = (Dyu) () + (¥, u) (1)
Let Note that Q is a nonempty bounded closed convex
subset of E.
M, = fngiif,lli(o’ 0, (44) From Lemma 5, ® is completely continuous (i.e., con-
_ dition (ii) of Lemma 7 is satisfied).
M, = ;(0,0)|.
2 1msigl|]' (0,0) For any u,v € Qp , from hypothesis (C4), we have
Let
R22max{2A0, 29 },

Qp, ={u € E: |ull <R,}.

[(Pu) () — (Pv) ()| < Z|K2||(t t)]; (u(t;),"Dlu(t;)) - J; (v(t:),“Dlv(t,))]
+ZIK (& £)1; (s (1), ‘DY (1)) = 1 (v (1), “Dlv (8)]

Z|K2 (t.t; )|(cllu(s) —v(s)| + c2|CDtyu(s) - Cva(s)D

i=1

YK (8,8)](Bylu(s) = v(s)] + by| D} (s) - “DJv(s)|)
i=1

(46)

m

|K, (8, 1)| (cy + cx)lu = vl + i|K3 (t:1)| (by +by)llu = v,

i=1 i=1

(%) (8) - (¥,9) (1)] < iIHzII(t, £)]; (u(t), “Diu(t)) = J; (v(t:), ‘D v(t))|

M

< Z|H2 (t, ti)|(c1|u(s) —v(s)| + | D} u(s) - CDZV(S)D
-1

< Z|H2 (t, ti)| (c1 +¢)llu = .

i=1



Journal of Mathematics

Therefore,

Yu - ¥y = ntlgx [Yu - ¥v| + ntqee}x|‘l’1u - ‘I’1v|
m
< Z HKZ (£, ti)| +|H2 (, ti)i] (c; +¢)llu—vl
i=1

+ Y K (8.1,)]| (by +by)llu
i=1

<(C,+C,+ By +By)llu—vll = Allu -,
(47)

and since A<1/2, V¥ is a contraction (so condition (iii) of
Lemma 7 is satisfied).
For each u € Qp , from hypothesis (C3), we have

1
[(Du) (t)] < ,[()lKl (t,8)f (s,u(s),’Dlu (s))|ds

1

< J K, (1, 5)|ag (s)ds,
J

! (48)
|(®yu) ()| < 0|H1 (t,8) f (s, u(s), "D} u(s))|ds

1

< UHI (t,9)|ao (s)ds.
Consequently,
® (1 H ds< Ay <2
I ullsjo(l | (9] +H, (£,9)])ag (s)ds < 0<%
(49)

11

For each v € Q) , we have

IC¥V < I10¥0) = (¥ +(I(YO)|

< A0 = vl + Y (1K, (6:t,)] +|H, (t:1,)]) ntlea]X|]i (0,0)|

i=1

m
+ Y K5 (6:t)| max|I; (0,0)| < Allvl + ©,
i=1

where

T(2— _
0= m(b (2 )’) +b aMz + b Ml)-
b-a a

Thus, for any u,v € Qp , we obtain
(@) + (¥V)[[ < (D) +[I(FV) < Ag + Allvl + O <R,
(52)

which implies that ®u+W¥v e Qp (so condition (i) of
Lemma 7 is satisfied).

In view of Lemma 7, there exists a u € Qp such that
Ou + Wu = u, so (1) has at least one solution in E. O

Theorem 3. Assume that (B1), (B2), and (C4) hold and the
following hypothesis is satisfied:

(C5) There exist two nonnegative functions a,,a, € L(J)
such that

|f (s vy) = f(Bugvy)| <ay (D]uy —uy| + ay |y, —vy|, VE € Lug,uy, vy, v, € R (53)
Ry>— {A'M, + B'} (54)
If M=(A+4,) +[bI'Q-y)+b-al(c;+¢c)+ 3T1T11 0 ’
b(b, +b,)/b—a< 1, then (1) has a unique solution in E.
where
Proof. Choose
M, = max|f (£,0,0)],
te]
M, = 1max|1,-(0,0)|,
M, = max|],;(0,0)|,
2 1sism|]’( Il (55)
, (2b-a) 2b-a)'(2-y) 2

T b-ar@+D) (b-al(g-p+1) T(g-yp+1)

BI
b-a

_WT(2-y)M, +bM, +b-a



12 Journal of Mathematics

First, ~we show that TQg CQ,  where
Qp, = {u€E, |lull<R;}. Foru e Qg,» from hypotheses (C4)
and (C5), we obtain

1
|(Tw) ()| < jolK1 (& 9)|[|f (s, u(s),°Dlu(s)) - £ (£,0,0)| +|f (£,0,0)]ds

+ Y |K (&) [|T: (u(t), ‘DY u(t;)) = J;(0,0)] +]7;(0,0))
i=1
+ Z|K3 (t.1)] [IIi (u(t;), “Du(t;)) = I;(0,0)| +]1; (0, O)I]
i=1
1 m
< JolKl (9| [(ar (1) + a, () lull + My]ds + Y[, (68| (e, + )l + M ]

i=1

+ YK (64 [(B) + byl + M, ], (56)

i=1

1
|“D}Tu) (1)| < JolH1 (& 9)|[|f (s, u(s),’Dlu(s)) - £ (£,0,0)| +|f (£,0,0)]ds
+ Z|Hz (t.1;)] [|]i (u(t,), “Du(t;)) - J:(0,0)] +]J; (0, 0)”
i=1

1
< JolHl (t,9)|[(ax (£) + ay (O) Jull + M, ]ds

m

+ leHz (t.1)| [(e1 + o) llull + M)

Then,
1
[Tul < JO [|[K (&, 9)] +|H, (&, 9)]] [(a) () + ay (8)) lull + M,]ds

+ Z “Kz (t.t:)| +|H, (8, ti)” [(cr +ex)llull + M,] (57)
i=1

+ 2 K5 (64| [(by +b,)llull + M, ] <TDJlull + A'M, + B' <R,
i=1

s0 TQp, € Qp.. Furthermore, from hypotheses (C4) and (C5), for all

u,v € Qp , we have

[(Tu) (£) = (Tv) (1)| < 1|I<1 (t:9)||f (5,u(s), “D}u(s)) = f (s, v(s), “D}v(s))|ds
0
+ Z|K2 (t || (u(t), “DYu(t;) = J; (v(5:), "Dl v (t))]
i=1

+ §|K3 (t,t)|| L (u(t,), “Diu(s;)) - I (v(t,), “Div(t,))]
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1 m
< JO|K1 (t, s)| (a, (t) + a, (t))llu — viids + Z]Kz (¢, t,-)] (c; +¢)llu—vl
i=1

+ Z|K3"(t’ t;) (by +by)llu — Vi,

i=1

1
|“DTu) (1) - (‘D] Tv) ()| < J0|H1 (& 9)||f (s;u(s), “D}u(s)) = f (s, v(s),"Dlv(s))|ds

+ §|H2 (t,t)||]i (u(t,), “Dlu(t;)) - J; (v(t,), “Div(t,))]

13

t m
< JoiHl (t, s)| (a; (&) + ay ())llu — viids + ZIHZ (t, t,»)| (c1 +¢))llu =l (58)
i=1
Thus,
1
[Tu - Tv| < JO [|IK, (&, 9)] +|H, (t,9)]] (@, (£) + a, () lu - vIds
+ Y [1Ky (6 5)] + o (1 4)]] (1 + e)llull + K (6:£) (b, + by)lul (59)
i=1 i=1
<Iffu = v,
where IT< 1, so T is a contraction. Lemma 8 guarantees that 4, Examples
T has a unique fixed point in Qg , which is the unique
solution of (1) in E. This completes the proof. O In(l),letg=125y=015a=1b=2t =05 andk=1

and then, we obtain the following fractional-order impulsive

differential equation:

(D u(t) = f(tu(®), D u(t)), te (0,1),t#0.5,

0.15

Au(0.5) = I,(u(0.5),°D; " (0.5)),
1 A°D}°u(0.5) = J,(u(0.5), ‘D] *u(0.5)),
1(0) - 2u(1) = 0,

[ “DYu(0) - 2°D*u(1) = 0.

By a direct observation, note that 0<a<b< +0o0,  Example 1. In (60), let
1<q<2,0<yp<1l with g—y>1, so hypothesis (Bl) is
satisfied.

o015 ~ et (1 _ t)2 (u(t))o,z eZt(cD;)Alsu(t))Oﬁ
f(6u(®),° Dy u()) = = 100 + 50 ,

1+2u(0.5)" +3("D!u(0.5)
150 ’

Au(0.5) = sin(

1+3u(0.5)% +2(°Du(0.5))
120 ’

AD;*u(0.5) = sin<

(60)

(61)
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so hypothesis (B2) is satisfied. Set “D?’lsu(t) =v(t), and
then, we obtain

Journal of Mathematics

t 2
e (1-1)" o2 0.3 0.2 0.3
If(t,u,V)I35+ 100 || 2—00|V| =ay(t) +a; Ol +a, (O,
|1<wvﬂ_ﬁﬁ ;g ul™ + —ﬁW4—bo+bh4 +byI™, (62)
|71 (w,v)| < N AL
YIS0 T 0 60 o S
which implies that (C1) and (C2) are satisfied. Thus, all the (1-s)? B
hypotheses in Theorem 1 are satisfied, so (60) has at least one |f (tuv)l < 50 %o (),
solution in E. 1
|1 (s v1) = 1 (”2>V2)|S%| ”2l+50' -
Example 2. In (60), let (64)
( 2 (1) + D> () =by|uy — 1y + by|vy = vy,
1-s u(t)+ "D, "u(t
t,u(t), D™ u(t)) = X t , 1 1
f( u(t), D, u()) 50 1+u(t)+CDO'15u(t) |]1(u1,v1)—]1(u2,v2)|SE| —u2|+60| —v2|
A(05) = 1+2u(0.5) +3°D} 1 (0.5) = ¢fuy — | + 6|y, =y,
150 o5 which implies that (C3) and (C4) are satisfied. Also, note that
AD54(0.5) = 1+3u(0.5) +2°D, "u(0.5) A =0.179707 < 0.5. Then, all the hypotheses in Theorem 2
120 ’ are satisfied, so (60) has at least one solution in E.
(63)

so hypothesis (B2) is satisfied. Set “D*"u(t) = v(t), and
then, we obtain

t

Example 3. In (60), let

(1-s)? u(t) | NTEDR % ‘5u(t)

fult ’cDO.IB " =€_
F(6u(®,°D; " u ) = 55 100 200
0.15
1+2u(0.5)+3°D, 0.5
Au(0.5) = 124 )1“50 u(0.5) (65)
1+3u(0.5) +2°D{ 1 (0.5
AD 015 1(0.5) = + 3u( );0 u( )’
so hypothesis (B2) is satisfied. Set ”D?‘lsu(t) =v(t), and
then, we obtain
(1-5)° VI=s
|f (tuy,vy) = f (ugv,)] SWWI —uy| + W'Vl —vy| = a, (O|uy —uy| + ay (O], - v,),
1 1 (66)
|11 (uv) =1, (”2>V2)| S%l’h - ”2' +%|Vl - Vzl = bll”l - ”2| + b2|V1 - Vzl’

|]1 (”1>V1) - (”2>V2)|

<y ]+ |y
T40Mt T g0l

- V2| = C1|”1 —u2| +Cz|V1 - Vzla
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which implies that (C4) and (C5) are satisfied. Note that
IT = 0.787135 < 1. Then, all the hypotheses in Theorem 3 are
satisfied, so (60) has a unique solution in E.

5. Conclusion

In this paper, we use fixed-point theorems to study
fractional-order impulsive differential equation (1) with
generalized periodic boundary value conditions. Very
little is known on fractional-order impulsive differential
equations with generalized periodic boundary value
conditions where nonlinear terms and impulse terms
depend on the unknown function and the lower-order
fractional derivative of the unknown function. Our main
results are obtained under some nonlinear and linear
growth conditions corresponding to the relevant linear
operators where the symmetry property of a Green’s
function is not required, so our results generalize and
improve works in the literature.
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The purpose of this paper is to introduce the extragradient methods for solving split feasibility problems, generalized equilibrium
problems, and fixed point problems involved in nonexpansive mappings and pseudocontractive mappings. We establish the
results of weak and strong convergence under appropriate conditions. As applications of our three main theorems, when the
mappings and their domains take different types of cases, we can obtain nine iterative approximation theorems and corollas on

fixed points, variational inequality solutions, and equilibrium points.

1. Introduction

Let H, and H, be two real Hilbert spaces, and let C and Q be
two nonempty closed and convex subsets of H, and H,,
respectively. Let A: H; — H, be a bounded linear oper-
ator with its adjoint A*. The split feasibility problem (SFP) is
to find a point x such that

xeC, AxeQ. (1)

We denote the solution set of the split feasibility problem
(SFP) by

Q={xeC: AxcQ}=CnA'Q. (2)

Problem (1) was first introduced by Censor and Elfving
[1] in the finite-dimensional spaces and further has been
studied by many researchers (see, for example, [2-6]) and
the references therein. To solve the SFP, Byrne [2, 7] first
introduced the so-called CQ algorithm as follows:

xy € Hy,
{ X1 = Po(I-AA*(I - Py)A)x,, Yn20, ®

where 0 <A <2/p(A*A), P denotes the projection onto C,
and p (A* A) is the spectral radius of the self-adjoint operator
A*A. Many authors continue to study the CQ algorithm in
its various forms (see, for example, [8-14]). The CQ algo-
rithm can be viewed from two different but equivalent ways:
optimization and fixed point [6]. From the view of opti-
mization point, x* € Q in (2) if and only if x* is a solution of
the following minimization problem with zero optimal value
min, . f (x) = (1/2)|Ax - PQAxIIZ, where f is a differen-
tiable convex function and has a Lipschitz gradient given by
Vf(x) = A" (I - Py)A, with Lipschitz constant L = p (A A).
Thus, x* solves the (SFP) if and only if x* solves the var-
iational inequality problem of finding x* € C such that
(Vf(x*),y—x")=0forall y eC.

Xu [6] considered the following Tikhonov regularized
problem:
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. 1 1
min fo(x) = E”Ax - PQAx”2 + Eallxllz, (4)

where a > 0 is the regularization parameter. We observe that
the gradient

Vie(x)=Vf(x)+al = A"(I-Py)A+al,  (5)

is (a+ ||A||2)—Lipschitz continuous and a-strongly mono-
tone. The fixed point approach method to solve the SFP is
based on the following observations. Let A >0, and assume
that x* € Q. Then, Ax* € Q, which implies that (I-—
PQ)Ax* =0, and thus, AA*(I —PQ)Ax* = 0. Hence, we
have the fixed point equation (I —AA* (I - Py)A)x" = x*.
Requiring that x* € C, we consider the fixed point equation

Po(I-AVf)x" = Po(I-AA"(I-Py)A)x" =x".  (6)

In [6], it is proved that the solutions of fixed point
equation (6) are precisely the solutions of the SFP.

Let A: C — H be a nonlinear mapping and F be a
bifunction from CxC to R, where R is the set of real
numbers. The generalized equilibrium problem is to find
x* € C such that F (x*, y) + (Ax*, y —x*) >0, Vy € C. The
set of solutions is denoted by GEP(F,A). If A =0, then
GEP(F,A) is denoted by EP(F). If F(x,y) =0 for all
x,y €C, then GEP(F,A) is denoted by VI(C,A)=
{x* € C: (Ax*,y —x*) >0, Vy € C}. This is the set of so-
lutions of the variational inequality for A (see, for example,
[15-21]). If C = H, then VI(H,A) = A"'(0) where A™!
(0) ={x € H: Ax =0}.

In 2008, Takahashi and Takahashi [15] have suggested
the following iterative method. Let {x,} be a sequence
generated by

x, €C,
1
F(yy) +{A%0 Y = yu> + =Xy = Y Y= X 20, ¥y €C,

Xn+1 :anxn+(1 _an)T[ﬁnu"'(l_ﬁn)yn]’ Vnz1.

(7)

Under some appropriate conditions, they proved that
the sequence {xn} converges strongly to a point
Pr(1ynGEP (F,) Y-

Motivated and inspired by the above works, we will
investigate the weak and strong convergence methods for
solving the split feasibility problems, generalized equilib-
rium problems, and fixed point problems involved in
nonexpansive mappings and pseudocontractive mappings.
As applications of our three main theorems, when the
mappings and their domains take different types of cases, we
can obtain nine iterative approximation theorems and
corollaries on fixed points, variational inequality solutions,
and equilibrium points. So, our results in this paper gen-
eralize and improve upon the corresponding modern results
of many other authors.
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2. Preliminaries

Let H be a real Hilbert space with the inner product ¢-,-) and
norm | - || and C be a nonempty, closed, and convex subset of
H. Recall that a mapping A: C — H is said to be monotone
if (Au — Av,u—v)>0forallu,v e C[18,19]. A mapping A
is said to be a-strongly monotone whenever there exists a
positive real number « such that {(Au-—-Av,u-—v)>
allu—v|]* forallu,v € C. A mapping A is said to be a-inverse
strongly monotone if there exists a positive real number «
such that (Au — Av,u —v) >al|Au — Av|)? for all u,v € C.
Recall that the classical variational inequality problem,
which we denote by VI(C, A), is to find x € C such that
(Ax,y —x) >0, for all y € C [16, 17]. It is well known that,
for any x € H, there exists a unique nearest point in C,
denoted by P.(x), such that [x—Pq(x)|= inf},ec
lx =yl =:d(x,C). It is well known that P, is a non-
expansive and monotone mapping from H onto C and
satisty the following:

(1) {<x=Pcx,z—Pcxy<0forall x e H,zeC

@) llx - zlI* = lx - Pex|* + |z — Pox|* for all
x€H,zeC
(3) The relation (Pex—Prz,x—2z)>|Pcx - PCZ||2

holds for all z,x € H

Let A be a monotone mapping of C into H. In the
context of the variational inequality problem, it is easy to see
from (2) that

peVI(C,A)e p=P-(p-AAp), VA>O0. (8)

For solving the equilibrium problem, we assume that F
satisfies the following conditions:

(1) (AF(x,x)=0forall x e C
(ii) (A,)F ismonotone, thatis, F(x, y) + F(y, x) <0 for
all x,y e C
(iii) (A;) for each x,y,z € C, lim,_  F(tz+ (1 —1t)x,
Y)<F(x,y)
(iv) (A,) for each x € C, the function y — F(x, y) is
convex and lower semicontinuous

If F(x, y) = (Ax, y — x) for every x, y € C, we see that
the equilibrium problem is reduced to the variational in-
equality problem.

Lemma 1 (see [22]). Let C be a nonempty, closed, and convex
subset of H, and let F be a bifunction from CxC to R
satisfying (A;) — (A,). For r>0 and x € H, consider the
mapping T,.: H — C defined by

T (x) :{z €C:F(zy)+i(y-22-x)30, Vye c}.
r

9)

Then, T, (x) + @ forall x € H, T, is single-valued, EP (F)

is closed and convex, F(T,)=EP(F), and T, is firmly

nonexpansive, that is, |T,(x)-T, (y)II2 <(T,(x)-
T,(y),x—yy forall x,y € H.
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Lemma 2 (see [23]). Let C be a nonempty, closed, and convex
subset of H, F be a bifunction from C x C to R satisfying
(A, — A,), ad A be a multivalue mapping from H into itself
defined by Apx={z€C:F(z,y)<{(y-x,2),VyeC}
whenever x € C and Apx =& otherwise. Then, Ap is a
maximal monotone operator with the domain T,(x) =
(I+rAp)""'x, for all x € H and r> 0.

Definition 1. Let T: H — H be a nonlinear operator.

(1) T is said to be L-Lipschitz whenever there exists L >0
such that |Tu - Tv|<Lllu—-v|, YVu,v e H. If L = 1,
we call T is nonexpansive, and T is said to be a
contraction if L< 1.

(2) T is said to be firmly nonexpansive if 2T -1 is
nonexpansive and I is the identity mapping, or
equivalently, (Tu — Tv,u — v) > ||Tu - Tv|?, Yu,v €
H. Alternatively, T is firmly nonexpansive if and only
if T can be expressed as T = (1/2)(I +S), where
S: H — H is nonexpansive.

(3) T is said to be a-averaged nonexpansive mapping, if
there exists a nonexpansive mapping S, such that
T=1-a)+aS, where a€ (0,1). Thus, firmly
nonexpansive  mappings are  (1/2)-averaged
mapping.

(4) T is said to be pseudocontractive if and only if
ITw = Tvl* < llu = vI* + 11 = T)u= (I =TWI, Vu,
veH.

(5) T is said to be k-strictly pseudocontractive if and
only if there exists 0 <k <1, such that

1T~ Tvl* <llu—vI* +KI(I = T)u — (I - v,
Yu, v € H.
(10)

Remark 1 (see [2]). Let T: C — C be a given mapping:

(i) T is nonexpansive if and only if the complement
I-T is (1/2)-inverse strongly monotone.

(ii) If T is a-inverse strongly monotone, then for
y>0,yT is (a/y)-inverse strongly monotone.

(iii) T is averaged if and only if the complement I — T is
a-inverse strongly monotone for some a > 1/2. In-
deed, for a € (0,1),T is a-averaged if and only if
I-T is (1/2a)-inverse strongly monotone.

We denote by F (T') the set of fixed points of T. Note that
every a-inverse strongly monotone mapping T is Lipschitz
and [|[Tu — Tv|| < (1/a)|lu — v|. Every nonexpansive mapping
is a k-strictly pseudocontractive mapping and every
k-strictly pseudocontractive mapping is pseudocontractive.
Assume that T: C — C is a strictly pseudocontractive. If
A =1-T, we easily find that A is (1 — k/2)-inverse strongly
monotone and F(T) = VI(C, A). Note that T is pseudo-
contractive if and only if A=I-T is monotone, and
F(T)= A"'(0) = {x € H: Ax = 0}. There are a lot works

associated with the fixed point algorithms for nonexpansive
mappings and pseudocontractive mappings (see, for ex-
ample, [24-28]).

A set-valued mapping T: H — 2H is called monotone
if for all x,ye€H,feTx, and heTy imply (x-
¥, f —h) >0. A monotone mapping T: H — 2 is maxi-
mal if the graph G(T) of T is not properly contained in the
graph of any other monotone mappings. Also, a monotone
mapping T: H — 2" is maximal if and only if, for
(x, f)e HxH,{x—y, f —h) >0 for every (y,h) e G(T)
implies f € Tx. Let A: C— H be an inverse strongly
monotone mapping and let Nu be the normal cone to C at
ueC,ie, Nou={ve H: {u-—w,v) >0, Yw € C}. Define

{ Au + Ncu,
Tu =
g, u¢cC.

uecC,

(11)

It is known that T is maximal monotone and 0 € Tu if
and only if u € VI(C, A) [29, 30].

Lemma 3 (see [8]). Let C and Q be nonempty, closed, and
convex subsets of real Hilbert spaces H, and H,, respectively,
and let A: H — H, be a bounded linear operator and
f: H — R be a continuous differentiable function. If a >0
and A € (0, (1/|Al]*)), then

(D) Vf(x)=Vf(x)+al =A"(I - Py)A+al is
(1/a + ||A))-inverse strongly monotone mapping
2)I-AVf,is (A(a+ ||A||2)/2)—averaged

(3) Po(I-AVf,) is (-averaged, with (= 2+A(a+
IAI%)/4)

(4) Po (I -AVf,) is nonexpansive

Lemma 4 (see [31]). Let H be a real Hilbert space, C be a
closed convex subset of H, and T: C — C be a continuous
pseudocontractive mapping. Then,

(i) F(T) is a closed convex subset of C

(ii) (I —T) is demiclosed at zero, i.e., if {x,} is a sequence
in C such that x, — x and Tx, —x, — 0; as
n — oo, then x = T (x).

Lemma 5 (see [32]). Let H be a real Hilbert space. Then, for
all x;j € H and a;j € [0,1], for j=1,2,3 such that
a, + a, + as = 1, the following equality holds:

2 2 2 2
layx, + ayxe, + asxs|” = ay|x; | + auf|x, | + s x|
2
1<i,j<3
(12)

Lemma 6 (see [33]). Let C be a nonempty closed and convex
subset of a real Hilbert space H and T: C — C be a non-
expansive mapping. Then, I — T is demiclosed at zero.



Lemma 7 (see [34]). Let {x,} and {y,} be sequences of
nonnegative real numbers satisfying x,.,; <X, + Y. If Y20 Vn
converges, then lim X,, exists.

n—~oo " 'n

Lemma 8 (see [35]). Let C be a nonempty closed convex
subset of a real Hilbert space H and let T: C — C be a
k-strictly pseudocontraction with a fixed point. Define
§:C— CbySx =ax+ (1 —a)Tx for each x € C. Then, as
a € [k, 1),S is nonexpansive such that F(S) = F(T).

Lemma 9 (see [36]). Let {x,} be a sequence of nonnegative
real numbers satisfying x,,.; < (1 = f,)x,, + B,Vn + &, where
{B.} € (0,1) and {y,} is a sequence such that ¥, f3, = o,
limsup, oY, <0 or Y 2o ly,Bal <00, and Y20, <co
where «, >0. Then, lim x, =0.

n—-00

Lemma 10 (see [37]). Let {x,}, {&,}, and {a,} be the se-
quences in [0,00) such that

Xy SX, + &, (%, - x,) + @, Vn>0, (13)
Yoo &, <00, and there exists a real number ¢ with
0<e,<e<1 for all n>0. Then, the following holds:

(i) Y20 [x, — x,_1], <0co, where [t], = max{t, 0}

(ii) There exists x* € [0,00) such that lim,_,  x, = x*

Lemma 11 (see [31]). Let H be a real Hilbert space. Then, for
any given x,y € H, the following inequality holds:
lx + yI? < el + 2¢y, x + p).

3. Weak and Strong Convergence Results

Now, we are ready to state and prove some of our main
results in this section.

Theorem 1. Assume that C and Q are 2 nonempty, closed,
and convex subsets of real Hilbert spaces H, and H,, re-
spectively. Let A: H — H, be a bounded linear oper-
ator, f: H; — R be a continuous differentiable function, F
be a bifunction from C x C to R satisfying (A,) — (A,), M be
an a-inverse strongly monotone mapping from C into H,,
S: C — C be a nonexpansive mapping, and T: C — C be
a strictly pseudocontractive mapping with constant k such
that ' = F(T)NF(S)NQNGEP(F, M) #@. Let {x,}, {y,},
{z,}, and {v,} be sequences generated by the following
extragradient algorithm:

Journal of Mathematics
[ x, =x €C,
1
F(v,, y) +{Mx,, y — v, +r—(y — V¥, — x,0 20,
Vy eC,
2, = Pe(1= L,V fo YV

Yn = PC(Vn - Anvfotnzn)’

Vn=0,
(14)

{ Xnt1 = AnXo + bnxn + Cn ((1 - ﬁn)syn + ﬁnTnZn)’

where T, = (1-vy,)I+vy,T and vy, € (k,1). Suppose the
following conditions are satisfied:

(6!) ZZ.;O &, < 00, hmn—»ooan =0, Zgzl a, = o

(b) {B,} < [Bi, B3] for some By, By € (0,1)
(c) {A,} € le,d] for some e,d € (0, (1/]|AlI*))
(d) 0<a,<a’ <1,0<b<b,<b <1,0<c<c,<c' <1
and a, +b,+c, =1,
(e) 0<q,<r,<gq,<2ax
Then, {x,} converges strongly to the point u = P (x,)
provided lim -x,l=0.

n—»oo"xn+1

Proof. For any fixed u € T, we find that u = P (I - AV f)u
for A € (0, (1/]|A*)) and Su = u. We see from Lemma 8 that
T, is nonexpansive and F(T',,) = F(T). It is observed that v,
can be rewritten as v, =T, (x,-r,Mx,), n>0. From
condition (e) and Lemma 1, we have

v, —ul” =|

-

T, (x,-1,Mx,) - u"2

T, (x,—r,Mx,) T, (u- rnMu)"2

<|(x, - r,Mx,) = (u - 1',,Mu)||2 (15)
=|x, - u"2 +1,(r, - 2a)|Mx, - Mu||2
2
< ||xn - u" .
From (14), (15), and Lemma 3, it follows that
2 = ull =|Pc(T = A,V fo ) = Pe (1= 1,9 )
<[Pe(T =AY fo )= Pe(T = AV £, )
+|Po(T =19 f 4 Ju - Pc(1-1,9f)u (16)

< ”vn - u|| + H(I - )Lana”)u -(I- )t,,Vf)u”
< ||vn - u|| + A0, llull

<|lx, = uf) + Al



Journal of Mathematics

By the property of metric projection, we have

Vi = )anfa,l (Zn) - uuz - ’

Hyn - u"2 = Vi = /\Vlvfocnzn ~Yn

<[ =’ ~[v = 3l + 20,C9 o () = 30
<N =t = v = 3l + 24,4V f, (2)
~Vfo Wu-2z,)
+ 2, (CV fo, (W) u = 2,)
+ 20,V fo, (20): 20 = ¥))
<[y = sl == 2l + 20,V f o 1= 2,
+ 24,V f o, (20): 20 = V)
v =t =y =yl + 20,4 + Ve — 2,
+ 20,V fo, (20): 20 = V)
<=l =V = vl + 2hun 1 = 2,
+ 20,V fo, (20): 20 = V)
=y = ull =V = 2zl - 2% = 20020 = 3>
“llz. - I
+ 20, [0, st = 2,3 + <V f o (20220 = ¥) ]
=y, = uf =~z
+ 200, = L,V f o (20) = 2 Y = Z0)

+ 24,0, (uu -2,y ||z, - J’nHZ'
(17)

Furthermore, by the property of metric projection, we
have

V=0V S o, (20) = 20 Y = 20
=V =MV fo, (V) = 20 Y = 200
+ AV f o, (V) =XV fo, (20)s ¥ = 20
SV fo, (V) = AV fo, (20) Y = 200
Ve, (V) = Vo (2)

g/\n(ocn +||A||2)||vn A S §

(18)

<A,

"yn - zn"

Hence, we have

Ly =l <[lv =l ~[lv - 2|
+ 2V, = A,V f o, (20) = 2 Vi = 2Z0)
|20 = vl + 200, 1 — 2,
<[ = ] = v = 2l + 20, (s, +1412)
Jvn = zally - 2l
2 =yl + 22,0l - 2,
< v = ] = [vn = 2l + A2, +IAI)’
Nvu=zall +y - 2l
[z = yall” + 22,00, sl = 2,
= [ =l + (¥ 41AIY = 1) - 2
+ 24,0, llull|[u - z,|
<|v, - u||2 + 24,0, llull|[u - z,|
<[v, =l + 22, lull (|, = 4] + ety llul)
<[lv, = ul]* + ah e v, — ] + A2 ul’?
= (= + 20,
(19)
So, from (15), we obtain
Iy = ul” < (1, = uf + 24,0, lull ). (20)
We find from (14) and (16) and the last inequality that

a1 = ul =[lanxo + bux, + ¢, (1= Bo)Sy, + B.T2,) — 1
< an"xo - u“ + bn”xn - u“
6 [(1=BISy, =t + BTz, — u]]
< an"xo - un + bn”xn - un
+6u[(1= By = ull + Bullzw v
< an"xo - u“ + bn”xn - u“
0 (1= B ([P = ] + 22,0, 1)
+ ([l = ] + A lul)
<ayxo =l +(1-a,)x, - uf + 2,0, ul

< max{”xo = ul), |x, - u”} + 2000, [|ull

< |xo = uf + 24lull ) ;.

i=0
(21)
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Consequently, from condition (a), we deduce that {x,,}is  {y,}. Put t, = (1-,)Sy, + B,T,z, for all n>0. We find
bounded and so there exist the sequences {z,}, {v,}, and  from (15), (16), (19), and Lemma 5 that

”tn - unz = “(1 _ﬂn)syn +ﬁnTnzn - uuz
< (1 _ﬁn)"Syn - I/l”2 + Bn"Tnzn - uuz _ﬁn(l - ﬁn)”syn - TnZn"Z
= (1 - ﬁn)"yn - u"2 + ﬁn”zn - u"2 - ﬁn(l _ﬁn)usyn - Tnznuz

< (1= B) [0 =l + (M2t +1APY = 1) = 2 7, (1= 20) M, = Ml + 2,0z, - o]

(22)
Bl = uf + Ayt ) = By (1= B[Sy, ~ Tz
<J =l + (22 +0A1) = 1) v, - 2
+r,(r,— 20c)||Mxn - Mu”2 + 24,0, lull ||zn - u“
+ 20 lull|x, — ul + A2l = B, (1 = B)SYn — Tzl
From (14) and the last inequality, we conclude that
||xn+1 - u||2 = ||anx0 +b,x, +c,t, — u"2
<a,|x, - u||2 +b,|x, - u||2 +ct, - u||2 = b,cu|x, - tn||2
< an“xo - u"2 + bn"xn - u"2 - bncn”xn - tn"2
¢l = (N2 +BAPY = 1), = 2+ 1, (1 = 200 M, = Mulf + 2,0 |z, ]
# 20,0l = ] + bl = B, (1 - By, - Tz
<a,|x, - u||2 +(1-a,)|x, - u||2 = b,c,|x, - tn||2
(23)

+ (A +1AP) = 1), = 2, + 20,00z, - ]
+ 24,0, lull|x, — u + 7, (r, - 20) | Mx,, - Mu”2

+ /\721“;21”1'{”2 - Cnﬁn (1 - ﬁn)"syn - Tnzn||2

L e I R R A A
+ e, (A, +1APY = 1), = 2, + 24,0z, - ]
+ 24,0, lull|x, — u + 7, (r, - 20) | Mx,, - Mu”2

+ 202Ul = B (1= B)Syn — Tzl
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This yields that

From (97) and the condition (a)-(d), we also obtain

Syn“ = lim ||Mx —Mu” = lim ”x -t ||

C<1 - dz(‘xn + ”A"Z)z)”Vn - an|2 + Cb”xn - tn”z nh—r>noo||T Zn n—s00 n—s00
12— 1) |Mx, - Mul + B, (1= B,)e| Tz — Sy, = lim [lv, -z, =
<c (1 - )Lz(oc +||A||2)2)||V -z ||2 +c,b ||xn - tn”2 (26)
+1,(2a-r,)|Mx, —Mu“ +¢,B, (1 =BTz, Sy,,u2 It is observe that
2
subo-dl b | b=l =[Pl AT 0) - Pl A5+ )
+ 24,0, llull( |z, — ul +|x, — u|| + A0, llull).
( (24) SHVa — Anvfocn (Zn) _(Vn - /lnvftx,l (Vn))
. i N = An " (Zn) - Vfan (Vn)
Since lm;—’“’”x”“ —anu = 0 we have <A, (o +IAP) |2, = v, — 0, asn — co.
[, = ] ~[lsr = (27)
< U= =l =) Using L 1 and (14), we h
sing Lemma 1 an , we have
(A B ) (25)
< e = 2l ([ = 2] + 01 = 1) — 0,
asn — 0o.
v, - u"2 = -r,Mx,) =T, (u- rnMu)“2
<{(x, - r,Mx,) — (u—-r,Mu),v, —u)
1 2 1 2
= E”(x” -r,Mx,) - (u—- rnMu)" + E“Vﬂ - u"
1
_ EH(xn -r,Mx,) - (u—r,Mu) - (v, - u)“z (28)

<3 [l + I =l -,

1
"2

- o, - Mul? ]

- 2r,(Mzx, - Mu)| ]

[t =l =l [ = + 20, = v, M, = M)



It follows that

||vn - u"z < ||xn - u“z —||x,, - vn”Z +2r,{x, =V, Mx,, — Mu).

(29)
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From (19) and (29), we find that

[t =l =1 = B.)Sy, + BTz, ~ i’
< (1=B)Syn—ul + BTz~ ulf
< (U= By~ + Bl - ul’
< (1= B) [, -l + 22,0l - 2, 0

+ /3n<||x,, - u||2 —”xn - vnllz +2r,{x, — V,, Mx,, — Mu))

< ||xn - u"2 + ZAnanIIuIIHu - zn"

Bt =l 20, G, v M, ~ M) )

From (14) and the last inequality, we conclude that

”xwr1 - u“z = ||anx0 +b,x, +c,t, - u"2

< an"xo - u"2 + bn"xn - u”z + cn”tn - u”2

2 2
< an"xo - u" + bn"xn - u”

+ cn[nxn - u"z + ZAnanllullnu - zn" + ﬁn<—||xn - vn"2 +2r,{x, —v,, Mx, — Mu))]

(31)

< an"xo - u"2 +(1- an)"x,, - u"2 - cnﬁn"xn - vn"2

+c, [Z)LnocnlluH”u - zn" + 2r,{x,, = V,, Mx, — Mu)).

This yields that
Cnﬁn"xn - Vn”z = a,,”xo - ””2 +(1- an)”xn - ”"2 —”an - ””2
+c, [Z)Lnocnllullnu - z,,” +2r,{x, = v,, Mx, — Mu)].
(32)

It follows from condition (a) and lim,,_,llx, — x4/ =

lim, |, IMx, — Mu| = 0 that

Jim [, = v, | = 0. (33)
Since |lx, — z,ll < lIx, = v, + v, = 2, 1Tz, — 2, <

”Tnzn - xn” + "xn - Zn"’ "Tnzn - xn" < "Tnzn - tn" + ||tn_

X 1Tz, = t,ll = (1 = BIIT .2, — Sy,ll, we obtain ||T,z, —

t,ll — 0asn — oo. Note that 1 — 8, > 0. This implies that

Jim [Tz, -z, = 0. (34)

Also, from |y, -x,lI<ly,—-z.l+lz,-x,, ISy,—

xn” < ”S)’n - tn” + "tn - xn”’ "Syn - tn" = ﬂn"syn - Tnzn”’
and [Sy,, — v, <SSy, — x|l + Ix,, — ¥,.l, we get

lim [[Sy,, - y,[ =o. (35)

Since Vf = A*(I — Py)A is Lipschitz continuous, we
obtain lim, , IIVf(z,)-Vf(y)l=0.
Next, we show that

limsup{x, — u, x,, — u) <0, (36)

n—~oo

where u = P (x,). To show it, choose a subsequence {xnk} of
{x,} such that

linris)gop<xo - U, X, — Uy = kli_r)n()()(xo X, U (37)

Since {xn } is bounded, there exists a subsequence {xnk}
of {xnk}, converges weakly to x*. Without loss of generalit]y,
we assume that x, — x". Since lx, —v,Il — 0,
Ix, = v, — 0, ]x, — z,| — 0asn — 00, we obtain that
Y —x" v, =X, 2, —x". Since {ynk} c C and C is closed
and convex, we obtain x* € C. First, we show that
x* € F(T)NF(S). Then, from (34), (35), Lemma 6, and
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Lemma 4, we have that x* € F(T) N F(S). We now show that
x* € GEP(F,M). By v, =T, (x, —r,Mx,), we know that

F(v,, y) +{Mx,, y —v,) +i<y—vn,vn—xn>20,
T (38)

Vy eC.
It follows from (A,) that
(Mx, y = v, +ri (V=Y va— %) 2F(pv,), VyeC.
" (39)

Hence,

v

- X
nj nj

>2F(;V, an>’ Yy eC.

(40)

<Mxnj’y - Vn}-> +<y - an’ r
1

For t with 0<t<1 and y € C, let v, =ty + (1 —t)x".
Since y € Cand x* € C, we obtain v, € C. So, from (74), we
have

v = vnj,Mvt> > <Vt - vnj,Mvt> -, - Vi Mxnj)

:(vt - vnj,Mvt —Mvn])

+<vt = Vi Mvnj - Mxnj>

(P~ Yuo ¥ 2P~ ¥ VF ()

2P =Y V(D)) ~{P~ Y
24P = Yo V(D)) <P~ Yy

==Y V(D) =V(3, )

Since |lv, — x, | — 0, we have |[Mv, — Mx, || — 0.
Furthermore, from the inverse strongly monotonicity of M,
we have (v, —v, , Mv, — Mv, > >0. It follows from condi-
tion (A,) and (énj - xnj/rnj) ~>0and vn]_Ax*, we have

vy =x",Mv,)>F(v,,x"), (42)
as j — oo. From (A,) and (A,), we have
0=F(v,v)
<tF(v, y) + (1 —t)F (v, x"
StFEv:,j§+E1 —t;(v(t t—x*,)Mvt) (43)
=tF(v, y) +(1 =)t (y — x", Mv,),
and hence,
0<F(v,y)+(1-t){y—x", Mv,). (44)
Letting t — 0, we have, for each y € C,
F(x",y)+<{y - x",Mx") >0. (45)

This implies that x* € GEP(F, M). Next, we show that
x* € Q (1). Let

T’p:={

Then, T’ is maximal monotone and 0 € T' p if and only if
p e VI(C,Vf) [29]. Let G(T') be the graph of T', let
(p,v) € G(T"). Then, we have ve T (p) =Vf(p)+ Ncp
and hence v — V£ (p) € N p. Therefore, we have {p — w, v —
V£ (p)) =0 for all w e C. By the property of metric pro-
jection, from y, = P-(v,—A,Vf, z,) and p € C, we have
PV In— V=AM Vfoz,))2 0, and hence,
Yn = Vn

A

Vf(p)+ Ncp,
@)

peC,

46
pecC (49

P~V +Vfo 2,020 (47)

n

From (p-w,v-Vf(p))>0foralw e Cand y, €C,
we have

+<P - )’nk’ vf(ynk) - Vf(z”k)>

Z <p = Vo Vf(ynk) - vf(znk)> _<p Vo

Y, = Vi,
\Y
Ank + fzxnznk
Ve = Vn
k/‘ £+ Vf(an)> - "‘nk<P - ynk’znk
3
(48)
Y, = Vn
_<p_ynk’ k/\ k> _‘xnk<p_ynk’znk>
Mk
Vg = Vi,

1 > - ‘xnk<p_ynk’znk :

3
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Thus, we obtain (p —x*,v) >0 as k — . Since T' is
maximal monotone, we have x* €T’ O and hence,
x* € VI(C,Vf). This implies x* € Q. This implies that
x* € T. Thanks to (37), we arrive at

—u)

limsup x, -
n—aoo

U,x, —uy = kli_r)n()()(x0 — U, X,

(49)

={xy—u,x" —uy<0.
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Next, we show that x, — u as n — 00. Observe that

w =)

S 1 - ﬁn)"syn - u“ + ﬁn"Tnzn - I/l“
< (L=Byu—ul + Bullzn - ul

(50)
< (1= B,)(Jlx, - u + 24,0, l1ul)
+ B[ = v + Anet, lul)
< ||xn - u|| +2A, 0, lull.
With the help of (14), we obtain
||xn+1 - u"2 ={a,xy +b,x, +c,t, — U, X, —u)
<a,(xg— U, X, —uy +<b, (x, —u) +c,(t, —u), X, —uy
<a, Xy — Uy Xy — U +(bnnxn - un + cn"t,, - u")”xn+1 - u”
<a, Xy — Uy Xy — U +(bn||xn —ul| + ¢, |lx, — uf + 24,0, ull) [,y - u] (51)

<a,(xg = 1 %, ) +((1-a,)|x,

—ul| + 2)tnocn||u||)||xn+1 —u

<a,{xy— U, X, — Uy + 24,0, |lul ||xn+1 - u||

) (e, ot ),

which implies that
%1 — u”2 <(1-a,)|x, - u"2 +2a,{xy — U, X, — U

+ 4d, 00, [ull|x,0y — .

(52)
It follows from condition (a) and Lemma 9 that
Jim [lx, - uf =0 (53)

Therefore, from |[x, -z, — 0, ||lx, -y, — 0, we
can conclude that {x,}, {z,}, {v,}, and {y,} converge
strongly to the same point u = Pp(x,). The proof is
complete. O

In the following, we will discuss the weak convergence of
the sequence of the new iteration.

Theorem 2. Assume that C and Q are 2 nonempty, closed,
and convex subsets of real Hilbert spaces H, and H,, re-
spectively. Let A: H, — H, be a bounded linear operator
andf: H — R be a continuous differentiable function.
Assume that C and Q are 2 nonempty, closed, and convex
subsets of real Hilbert spaces H, and H,, respectively. Let
A;: H — H, bounded linear operators, f;: H — R bea
continuous differentiable function, i=1,2, and F be a
bifunction from C x C to R satisfying (A,) — (A,), M be an
a-inverse strongly monotone mapping from C into H,,
S: C — C be a nonexpansive mapping, and T: C — C be
a strictly pseudocontractive mapping with constant k such
that I = F(T) N F(S)NGEP(F, M) N (NZ,Q;) # . Suppose
{x,} and {z,} are sequences generated by the following
extragradient algorithm:
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xy=x €C,

Suppose the following conditions are satisfied:

(@) Y020 0y <00, Y205, < 00

(b) {B,} < [k, 7] for some r,k € (0,1), {A,} C [e,d] for
some e, d € (0, (1/]| Al*))

(©) {yn} c [t,m] for some t,m € (0,1), {8,} c [6},85]
for some 67,8, € (0,1)

(d) 0<a<a,<a <1, 0<bs<b,<b <1 and
0<c<c,<c'<landa,+b,+c,=1

(e) 0<q,<r,<q, <2«

Then, {x,} converges weakly to an element u € I.

Proof. For any fixed u € I, we find that u = P (I - AV f)u
for Ae (0, (1/|AJ*)) and Su=wu. Let Y, =Pc(I-
MV i) t,=Pc(I-4Vfy)x,, and T,=(1-
B+ B, T. We see from Lemma 8 that T, is nonexpansive
and F(T,) = F(T). From (54) and Lemma 3, it follows that

“yn - ”“ < “PC(I - Anvflan)xn - PC(I - Anvflan)u"
| Pe(1=2,9f 10 Ju = Po (I = AV £ )u
< ||xn - u" +“(I - Aanhxn)u -(I- )Lanl)u“

< ||xn - u" + A0 lull.
(55)

In a similar way, we have
It = ull < [Pe(T = AV £, )%, = Po(I =1,V £ Ju
#Pe(1 =2, f2 Ju = P (1= 1,V £,)u
<o = uf) + (1= 2,9 f2 Ju = (1= 1,V £,)u

< ||x,, - u" + A8, lull.
(56)

{ Xpt1 = ApXy T bn ((1 - ﬁn)zn + ﬁnTzn) T ¢ ((1 - 8n)vn + 6nsvn)’

Zy = anc(xn - /lnvflanxn) + (1 - Yn)PC(xn - AanZSnxn)’

1
F(v,, y) +{Mz,t,nyqg —hv,y + —y - tv,n,qv,h — z,) >0, Vy €C,
r

11
(54)
Vn>0.
This implies that
2 =l <vallys = ul + (=)0 = ]
< yn(“xn - u" + AnanIIuH) +(1-y,) (7)

(I = ] + Ay, )
< [ = ] + Al (t, +5,):
Observe  that v, can be  rewritten as

v, =T, (z,-1,Mz,), n>0. From (e) and Lemma 1, we
have

T, (z,~-r,Mz,) - u”z

v, -l =
:(Tr” (z,—r,Mz,) =T, (u- rnMu))2
<||(z, - r,Mz,) - (u- rnMu)“2 (58)

=|z. - u”z +1,(r, - 20)|Mz, - Mu”2

<[z~ ulf

<||x, = uf| + Al (o, + s,)-

We find from (54) and the last inequality that
- u” s “nllxn - “" + bn”TnZn B u“

+ Cn((l - 6n)|lvn - ”” + 57!“8"" - u”)

”xn+1
< an“xn - u|| +(1- an)"zn - u”
<a,|x, —ul +(1- an)(”xn = uf| + A, llull (o, + sn))
<%, = uf) + Al (e, + 5,)-
(59)
Consequently, from condition (a) and Lemma 7, we
deduce that, for every u € T, lim,__, [lx,, — ull exists and the

sequences {x,} and{z,} are bounded. It follows from (55),
(56), and Lemma 5 that
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”zn - u"2 SYn”yn - u”Z + (1 - Yn)”tn - u“Z ~Vn (1 - Yn)“yn - tn"2

<Y = ul + Al + (1 =y, ) ([ = 2] + Ayl

2

- yn(l - yn)”yn - tn“

(60)
< yn<2||xn - u"2 + 2Aiai||u||2> + (1 - yn)<2||xn - u”2 + 2Aisfl||u||2>
- Vn(l - yn)”yn - tnllz
<[ = + 22000 (@5 + 53) = v (L= v [y — -
Let S,v,= (1-6,)v, +3,Sv,. We find from (54), (58),
and Lemma 5 and the last inequality that
||xn+1 - u"2 = ||anxn +b,T,z,+c,((1-6,)v,+9,5v,) - u||2
< an"xn - u"2 + bn"Tnzn - u“z + cn[(l - 6n)||vn - u"2 + 6n||Svn - u"2
- (1 - é\n)é\n"Vn - Svn“z - anbnnxn - Tnzn"2 - ancn“xn - Snvnuz
<a,|x, - u"2 +(1-a,)|z, - u||2 +1,(r, - 20)|Mz, - Mu||2
—Cy (1 - 6n)8n||vn - Svnuz - anbn"xn - Tnzrl"2 - ancn"xn - SnVn"2
< an"xn - u"2 +(1-a,) ”xn - u||2 + 2/1f,||u||2(ocfl + sfl) (61)

~Vn (1 - Yn)"yn - tn||2 —Cy (1 - 8n)6n||vn - Svn“z

- a,b,||x, - Tnzn"2 - a,c,|x, - Snvn”2 +1,(r, - 2a)|Mz, - Mu”2
< "xn - uuz + ZAft"u"2<a2 + Sfl) - (1 - an)Yn (1 - yn)"yn - tn"Z
— Gy (1 - (Sn)anllvn - Svnuz - anbn"xn - Tnzn||2

- ancnnxn - Snvnn2 +1,(r, - Zoc)ann - Mu||2.

From conditions (b)-(e) and (61), we also obtain
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(1=a")t (1 =m)||y, -t + ab||x, - Tz, +c (1= 8,)8 v, - v,
v aclxy Syl + 1 (20— 1) [ Mz, - Mul
< (1=a,)y, (L= p)|yn = tul +ca(1=8,)8, v, = v, (62)
va b~ T+ 0,6, - S+ 1 2 )|z, - M

< ”xn - u||2 —||xn+1 - u"2 + 2Ai||u||2(oci + sfl)

Since lim,_,|lx,, — ul| existsand Y2 (a,, + s,,) < 00, we Since |x,.; — x,1<b,lx, - T,z +c,lx, - S,v,| and

see that Iz, = vl <y, = t,ll Iz, = t, I <lly, —t,ll, it follows that

Jim o, =S = i =T, = i 1y, ] im e, -] = tim [y, -2 = tim Je, -2, =0
= lim |x, = S,v,| = lim |Mz, - Mu| = 0. (64)

n—=aoo n—~oo
(63) Using Lemma 1 and (58), we have
2
v, - u"2 =\T, (z, - r,Mz,) =T, (u~ rnMu)“

<{(z,-r,Mz,) - (u—r,Mu),v, — u)

1 1
=z = rz,) = = r M)+ S, -l

1 , (65)
- E”(zn - rann) - (u - rnMu) - (vn - u)"
<3 [l =l #l =l =l = ) - 2, (M2, - Mw)[]
1
= ["zn - u||2 +||v,, - u"2 —“zn - vn"z +2r,{z, = v, Mz, — Mu) — rfl”Mxn - Mu"z].
It follows that We find from (54) and (66) that
||vn - u||2 < ||zn - u||2 —||zn - vn"z +2r,{z, = v,, Mz, — Mu).
(66)
||xn+1 - u"2 = ”anxn +b,T,z,+c,((1-6,)v,+9,5v,) - u||2
<al, - ul + BTz~ ul + e, (1= 8~ ul + 8, fsv, — ul
< annxn - u“z +(1- an)nzn - u"2 - cn”zn - Vn“2 +2r,{z, — v, Mz, — Mu)
< annxn - u||2 +(1- an)["xn - u"2 + ZAﬁIIuIIZ((xi + si)] (67)

- cn"zn - vn"2 +2r,{z, = v,, Mz, — Mu)
< ||xn - u"2 +(1- an)ZAiHuIIZ((xi + si)

- cn"zn - vn"2 +2r,{z, — v,, Mz, — Mu).
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This yields that
Jou =5l <t =l s~ + 20 (<)

+2r,{z, = v,, Mz, — Mu).

(68)

It follows from condition (a), lim,_, . [IMz, — Mu]|| = 0,
and lim, | [lx, — u|| exists that

ngnoonzn B Vn" =0. (69)

Also, from |T,z,-z,<IT,z, - x,| +lx, —z,Il, |v,—

xpll < llv, = Spvull + llx,, = S, vl and v, = Sy, [l < v, = Sv,
we get
lim ||Tnzn - zn" = lim ”vn - xn" =0. (70)
n—~oo n—aoo

Note that ||x, — y,l < lx, — 2z, + Iz, = ¥, Ix, — £, <

lx, — z,ll + lz,, = t, I, BTz, — z,ll = IT 2z, — z,,Il. This im-
plies that
Tim -l = lim 6] = lim [Tz, -2, =0
(71)

Since Vf = A" (I - Py)A is Lipschitz continuous, we
obtain lim, , [IVf(x,)-Vf(y,)Il=0.

Since {x,} is bounded, there exists a subsequence {xnk}
of {x,} such that it converges weakly to some x*. Since
Ix, =yl — 0, llx, — 2, — 0, and |x, - v, — 0 as
n —> 00, we obtain that y, —x",z, —x", and v, —x".
Since { ynk} c C and C is closed and convex, we obtain
x* € C. First, we show that x* € F(T)NF(S). Then, from
(63), (71), Lemma 6, and Lemma 4, we have that
x* € F(T)NF(S). We now show x* e GEP(F,M). By
v, =T, (z,-r,Mz,), we know that

1
F(vn,y)+<Mz,,,y—vn>+r—(y—vn,vn—zn>20, vy eC.

(72)

It follows from (A,) that

1
Mz, y-v,) +r_<J’_Van -x,y>F(y,v,), VyeC.
(73)
Hence,

Vy, —

z,
(Mznj,y—vnj) +<y—vnj, ])2F<y,vnj), VyeC.

Tnj

(74)

For t with 0<t<1 and y € C, let v, =ty + (1 —t)x".
Since y € C and x* € C, we obtain v, € C. So, from (74), we
have

Journal of Mathematics

vy — Vi Mv,y >{v, - Vi Myv,y — v, - Vi Mznj>

v, — 2
nj nj

- <Vt - an)

>+ F<vt,vnj)

={v, - vnj,Mvt - Mvn])

nj

+<{v, — an)Man - Mzn])

-z
nj nj

>+ F<vt, vn]_>.
(75)

- <vt - an:

-
nj

Since ||v, -z, | — 0, we have |Mv, - Mz, | — 0.
Furthermore, from the inverse strongly monotonicity of M,
we have (v, —v, ,Mv, — Mv, ) >0. It follows from A, and
(an - z,,j/rnj) — 0 and vnjix*, and we have

vy =v,Mv,) >F(v;,x"), (76)

as j — oo. From (A4,) and (A,), we have

0="F(v,v)
<tF(v, y) + (1 =t)F (v, x")
. (77)
<tF (v, y) + (1 = t)<v, — x*, Mv,)
=tF (v, y) +(1 =)ty — x", Mv,),
and hence,
0<F(v,y)+(1-t){y—x", Mv,). (78)
Letting t — 0, we have, for each y € C,
F(x", y)+{(y —x",Mx") >0. (79)

This implies that x* € GEP(F, M). Next, we show that
x* €Nz, Q; (1). Fori=1,2, let

/ {Vfi(P)*'NCP’ peC
Tp::

, 80
’ @, p¢C. (50

Then, T' is maximal monotone and 0 € T'p if and only if

p € VI(C,Vf,) [29]. Let G(T;) be the graph of T}, and
(p,v) € G(T?). Then, we have v € T;(p) = Vf,;(p) + Ncp,
and hence, v-Vf;(p) € Ncop. Therefore, we have
(p-w,v=Vf;(p))=0 for all we C. By the property of
metric projection, from y,=P-(x,-1,Vf,, x,) and
peC, we have {p—-y,,y,— (x, -1, Vfi, x,)) =0, and
hence, '
Yn = %n

<p_yn’ A

+Vf1%xn>20. (81)

n

From (p—w,v—Vfl(p)>20forallweCandynk e C,
we have
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P~ Yo 24P = up V1 (PD)

2P = Yo VI (D)) =P = Y
24P = Yup VI (P)) =P = Y

:<p_ynk’vfl(p)_vfl(ynk)>_<p_ynk’ 2

15
Ve = %n
kA “+ Vfloz,,xnk>
My
Y, = Xn,
An + Vfl(xnk)> - “nk<p = Vo Xy
(82)

Y, = Xn,

) - "‘nk<P = Ve X,

3

+<P = Vnp Vfl(ynk) - Vfl(x"k)>

2<P_ynk’vfl(ynk)_vfl(xnk)>_<p_ynk’ 2

Thus, we obtain {p — x*,v) >0 as k — oo. Since T is
maximal monotone, we have x* € T;'0, and hence,
x* € VI(C, Vf,). Similarly, we have x* € VI(C, Vf,). This
implies x* € (; for i=1,2. This implies that x* eT.
Therefore, from |x, — z,|l — 0, we can conclude that {x,},
{z,,}, and {v,} converge weakly to a point u € I'. The proof is
complete. O

Theorem 3. Let C and Q be nonempty, closed, and convex
subsets of real Hilbert spaces H, and H,, respectively. Let
A: H, — H, be a bounded linear operator, S: C — Cbea
nonexpansive map, and T: C — C be a strictly pseudo-
contractive mapping with  constant k such that
I'=F(I)NF(S)NQ+@. Suppose {x,}, {v,}, and {z,} are
sequences generated by the following extragradient algorithm:

xy=x €C,
Vp =X, T &, (xn - xn—l)’
12, =Pc(I-A,Yfy Vo (83)

Xyl = ApXy + bn ((1 _ﬁn)zn + ﬁnTzn)
| +6,SPc(v, — A,V S, 2,), Vnz0.

Suppose the following conditions are satisfied:
(a) Y320 &y <00, 320 b, <00

(b) {B,} c [k,r] for some r,k € (0,1)

(c) {A,} < [e.d] for some e,d € (0, (1/|Al*))

Y = Xn,

)= ank<p = Yo Xy 7+

My

(d)0<a<a,<a' <1,0<b,<b' <1,0<c<c,<c' <1
anda,+b,+c, =1

(e) {e,} c [0,€] and € € [0,1), Y2 € llx, — x4l <00

Then, {x,} converges weakly to an element u € I.

Proof. For any fixed u € I', we find that u = P (I - AV f)u
for Ae (0, (1/JAI?) and Su=u. Putting T, = (1-
B + B, T, we see from Lemma 8 that T, is nonexpansive
and F(T,) = F(T). We observe that

v =l =l + 0 o = ) = ]

(84)
o e |

From (83) and Lemma 3, it follows that

Iz = ull = |Pe(1 = AV £, ) = Pe (T =, 9 f)u|
<[Pe(1 =AY fo ) = Pe(T= AV £ )
| Pe(1= 1,9 f 4, Ju = P (1= 1,9 )u
<[ = ] (1= 1,9 f o Ju = (1= A,V f)u
< ||v,, - u" + A, llul.
(85)

Put y, = Pc(v,-1,Vf, (z,) for all n>0. Then, by
property of metric projection, we have
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2
Vi = /\nvftxnzn ~Vn

Vi = Aan(xn (Zn) - u"Z -

= uf <
<[ =] =7 = 2l + 2AC f, (Z) = 3,
<[ =] =7 =yl + 20 f, (20) = Vo, W) - 2,)
+ 2,(V fo, W= 2, +<V fo (2,): 2, = V)
<=l =7 =yl + 20T o (1= 2,
+ 20,V f o (20): 20 = ¥
<[ = el = = vl + 200 (@] + Vs u = 2, 56
+ 20,V f o (20)s 20 = ¥
<y = sl = =2l + 2he i1 = 2,)
+ 20,V f o (20)s 20 = V)
= v = sl v = zall” = 200 = 20020 = 3> |2 = 2l
20, [0, = 2,) + (Vo (2): 20— )]
= v = ] v = 2l + 2400 = 1,V f o (2) = 2o Y = 20

+2M,0,{u,u — z,,) _"Zn - )’n"z-

Furthermore, by property of metric projection, we have

V=MV o, (20) = 20 Y — 20

= = AV f o, (V) = 2 V= 200 + AV fo, (V) = AV fo (20)s Y = 200

<V fa, (V) =2V o, (20)s Y — 200 (87)
Vfa, (va) = Vo, (20)|[yn — 2l
<A, AP ) v, = 2ol = 2l

<A,

Hence, we have
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Ly =l <[vn =l =9 = 2l + 2€00 = AV f o, (20) = 20 Y = 20
20 = vl + 220t — 2,
<[y =l v = 2l + 20 (a0 +1AI) [, = 20~ 2
Nz = 3l + 20l e~ 2,
<[ =l == zall”+ W2 (0 1A Y 7, = 2 +170 = 2l
Nz = yall” + 2000, il - 2, (88)
==l + (X3 +1AP) = 1), = 20l + 20,0 bl - 2,
<|v, - u||2 + 24,0, llull|[u - z,|
<[v =]} + 2,0, (v — 1] + Ayl
<|v, =l + A lull|v, - ] + A2l

= ([ = uf + 20, ).

We find from (83), (84), and (85) and the last inequality
that

|1 — u| =||la,x, + b, Tz, + cnSPc(vn -ALVfo (zn)) - u"

< an"xn - u" + bn"Tnzn - u” + cn”Syn - u"

<ay|x, = ul + bz, v + ey~
(89)

<a,|x, = u| + b,(|v, — ] + Apeylluall) + ¢, (||, = uf) + 24,0, lual)

<ay|x, —ul + (1= a,)([|v. - ] + 22, ]lul)

< = ) + el = x| + 24,01l

Consequently, from conditions (a) and (e) and Lemma
10, we deduce that, for every u € I, lim,__, llx,, — ull exists
and the sequences {x,}, {z,}, and {y,} are bounded. We find
from (83), (84), (85), (88), Lemma 5, and Lemma 11 that
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s =]} =8 + BTz + €uSPC(v~ AV f o (2)) — |
<y, = ull + BTz, ] + Sy, — ]’
B e R
<a v, =~ + ble, —ull + ey, - ul
—ab,x, =Tz~ ae v, =Sy’
<y, = ull + b, (v — ] + Lyt )’
[ R CH O FUD I T o
= a5 =Tzl = gl =Syl + 260,z - u]
<a ey~ + b, (2w, - ] + 22’
# 6ol =ull + (A3, +1AP) = 1) v, = 2, + 28,0, bulz, - u]

- ab %, - Tz - ae,|x, - Sy,

< (14 B, =t + 20202 1ull” +2(2b,, + €)% = Xop_1s Vg — 1) (90)
+ e (o ALY = D)= 20 + o (Robul? 4]z, - o)
— b %, - Tz - ae,|x, - Sy,

n'n-n

# e (Mo HBAPY = D) = 20 + ()1l + (v, = ] + 2,0t

<(1+b,)|x, - u"2 +2b L |ull® +2(2b, + cn)Enllxn = % |||V — 4|

—a,b%, = Tzl - ase,x, = Syl
< (1+B,) |, — ] + 26, 2 ull> +2(2b,, + €)% — Xt || — 1]
# (A2 +VAPY = 1), = 2l + (A0l + 2], =+ 22 hul?)
= a,blx, =Tz - ase %, = Syl
< (146, 4+ 2a,)x, -l + ¢, (e, +141°) = 1), - 2,
F ANl (1 + 26,0, + 262) = @b, %, — Tozol = ancall, - Syl

+2(2b, + ¢, + 2at,)e,||x,, — x4 |||V = |-

From conditions (b) and (d), we obtain

(1= d(a, +1AP) )l = 2 + b, ~ T + acl, - 7,
<c(1-22(a 1AL Y = 2 + @b, = Tzl + e, = Syl o
< (1+b,+2a,)|x, - u“2 %1 = u"z + ocn/\f,||u||2<l + 20(31)

+2(2b, + ¢, + 20,)8,|x, = x4 ||V — 1))

From conditions (a) and (e), we also obtain
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lim ”xn - Syn” = lim "xn - Tnzn"

n—oo n—~oo
= lim |v, - z,| =0.
n—~oo

By the definition of {v,} and (e), we have

lim ”vn - xn" = lim sn”xn - x,H" =0. (93)

n—~oo n—~oo
This implies that
Iz, = x| < |20 = V|| + [0 = %] — 0, asn —> 0.
(94)

It is observe that
1 = 2all = |Pc(vn = 2V fa, (20)) = Pe(v = 2V fo, ()]
Vo= AV fo (20) = (Vo = 1Y o, (v)]
= M|V, (20) = Vo, (V)

S)Ln(ocn +||A||2)Hzn - vn" — 0, asn— 00.
(95)

<

Also, from |T,z, - z,I< Tz, — x| + Ix,, — 2, Iy, —
x <y, =zl + 1z, = x,I, and |y, - v, I <y, -z, +lz,
—v,ll, we get

lim ||Tnzn - zn“ = lim ||yn - xn“ = lim ||yn - vn” =0.
(96)
Note that ISy, — vl < Sy, — x, 0l + lIx, — v,

BTz, - z,|l =Tz, — z,|. This implies that

(P~ Yuo ¥ 2P~ ¥ VF ()

2= Yuo V(D)) P~ Y
24P = Yuo V(D)) =P~ V>

=<p_ynk’vf(p)_vf(ynk)>_<p_ynk’ 2

19

Jim [y, =y, = lim [Tz, -z, =0 (97)

Since Vf = A*(I — Py)A is Lipschitz continuous, we
obtain lim, , IVf(z,)-Vf(y,)l=0.

Since, {x,} is bounded, there exists a subsequence {xnk}
of {x,} such that it converges weakly to some x*. Since
lx, =yl — 0, lIx, — 2z, — 0, and |[x,—- v, — 0 as
n — ©o, we obtain that y, —x",z, —x*, and v, —x".
Since {ynk} c C and C is closed and convex, we obtain
x* € C. First, we show that x* € F(T)NF(S). Then, from
(97), Lemma 6, and Lemma 4, we have that
x* € F(T)NF(S). We now show x* € Q (1). Let

peC,

T’p — {Vf(P)+NCP: (98)

2, pécC.

Then, T’ is maximal monotone and 0 € T' p if and only if
p € VI(C,Vf) [29]. Let G(T") be the graph of T', and let
(p,v) € G(T"). Then, we have v € T' (p) = Vf(p) + Ncp,
and hence, v-Vf(p) € Ncp. Therefore, we have
(p—w,v=Vf(p))=0 forall w € C. By property of metric
projection, from y, =P (v,-1,Vf,z,) and peC, we
have {p - y,, y, = (v, =4,V f, 2,)> 20, and hence,

Yn=Vn

<P_yn> 1

From (p-w,v-Vf(p))=20forallweCand y, €C,
we have

+Vf 2,020, (99)

n

Ve =™V,

1 + Vf‘xnkznk

My

Yn, = Vi,

2 + Vf(znk)> - “nk<P = Vo Zn,
3
(100)
Y, =V,

> - (Xnk<p = Vo 2y

Lo

P = Yo VI (30) ~Vf(2,)

= <P = Vupo Vf(ynk) - Vf(znk)> _<P Vo

Thus, we obtain (p — x*,v) >0 as k — 0. Since T is
maximal monotone, we have x* € T' 0, and hence,
x* € VI(C, V). This implies that x* € Q. This implies that

Yn, = Vn
k/l k> - ank<P_ynk’an .

3

x* eT. Therefore, from lx, -z, — 0 and
Ix, — v, — 0, we can conclude that {x,}, {z,}, and {v,}
converge weakly to a point u € I'. The proofis complete. [
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4. Applications

If, in Theorem 3 and Theorem 1, we assume that C = H,
then we can get the following theorems.

Theorem 4. Let H, and H, be real Hilbert spaces,
A;: H — H, be a bounded linear operator, for i = 1,2,
S:H, — H, be a nonexpansive mapping, and
T: H, — H, a strictly pseudocontractive mappmg with
constant k such that T =F(T)NF(S)N2,(Vf) '0+@.
Suppose {x,} and {z,} are sequences generated by the fol-
lowing extragradient algorithm:

xy =x €C,
Zy = YH(xn - /\nvfltxnxn) + (1 - yn)(xn - /\nvaS,‘xn)’
Xp1 = pXy + bn ((1 - /';n)zn + ﬁnTZn)
+c,((1-9,)z,+9,52,), VYn>0.

(101)

If conditions (a) — (d) are satisfied, then {x,} converges
weakly to an element u € I

Proof. We have (Vf,)"'0=VI(H,,Vf,) for i=1,2 and
Py, =I; by Theorem 3, we obtain the desired result. O

Theorem 5. Let H, and H, be real Hilbert spaces,
A: H, — H, be a bounded linear operator, S: H, — H,
be a nonexpansive map, and T: H, — H, be a strictly
pseudocontractive mapping with constants k such that
I'=F(MNE®S)N(Vf)'0#3. Suppose {x,}, {v,}, and
{z,} are sequences generated by the following extragradient
algorithm:

[ x,=x€C,
Vo = X+ 8, (%, = %,0),
{20 =(I= AV f o )V (102)
Xps1 = 8%, + b, (1= B,)2, + B.T7,)
| + cnS(vn - )Lanaﬂzn), Vn=0.

If conditions (a) — (e) are satisfied, then {
weakly to an element u € I

x,} converges

Proof. We have (Vf)™'0=VI(H,,Vf) and Py =1I; by
Theorem 3, we obtain the desired result. O

Theorem 6. Let H, and H, be real Hilbert spaces,
A: H, — H, be a bounded linear operator, S: H, — H,
be a nonexpansive map, and T: H — H, be a strictly
pseudocontractive mapping with constant k such that
I'=F(T)NE®S)N (Vf) '0#3. Suppose {x,}, {y,}, and
{z,} are sequences generated by the following extragradient
algorithm:
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xo=x €C,
2, =(I-1,9f, )%,
Yn = Xn— Anvfotnzw

xn+1 = anxO + bn‘xn + Cn ((1 - ﬁn)syn + ﬁnTnzn)’ Vi’l = O’

(103)

where T, = (1 -y, ) +y,T and vy, c (k,1). If conditions
(a) — (d) are satisfied, then {x,} converges strongly to the
point u = Pr(x,).

Proof. We have (Vf)™'0=VI(H,,Vf) and Py =1 by
Theorem 1, we obtain the desired result.

Let B: H — 2H be a maximal monotone mapping.
Then, for any x€H and >0, consider
JBx ={y € H: x = y + rBy}. Likewise, a J® is called the
resolvent of B and is denoted by J? = (I + rB)"!

Theorem 7. Let H, and H, be real Hilbert spaces,
B;: H, — 281 be maximal monotone mappings, fori = 1, 2

A H — H, be bounded linear operators, fori=1,2, P

be the resolvents of B, for each r >0, and T: H, — H, be a
strictly pseudocontractive mapping with constant k such that
I'=F(T)NE(S)NB'on (Vf;) '0#S. Suppose {x,} and
{z,} are sequences generated by the following extragradient
algorithm:

xy=x€C,
Zp = Yn]fl (xn - Anvflanxn) + (1 - yn)]fz (xn - AanZS,,xn)’
Xpp1 = ApXpy + bn ((1 - ﬁn)zn + ﬂnTZn) + €2, VN0

(104)

If conditions (a) — (d) are satisfied, then {x,} converges
weakly to an element u € I

Proof. We have F(J5) = B0, (Vf)'0=VI(H,,Vf,) for
i=1,2 and Py =I; by Theorem 3, we obtain the desired
result. .

Theorem 8. Let H, and H, be real Hilbert spaces,
A: H, — H, be a bounded linear operator, B: H; — 2H:
be a maximal monotone mapping, ]2 be the resolvent of B for
eachr>0, and T: H, — H, be a strictly pseudocontractive
mapping with constant k such that
I'=F(T)nB'0n (Vf) '0#&. Suppose {x,}, {v,}, and
{z,} are sequences generated by the following extragradient
algorithm:

[ xy =x€C,
- xn—l)’
12, =(I-1Vf, IV

Xn+1 = Xy + bn ((1

v, = x, +&,(x,
(105)

= Bu)z, + BTz,)

[ + C,Jf(vn ~AVfoz,), ¥n=0.

If conditions (a) — (e) are satisfied, then {x,} converges
weakly to an element u € I.
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Proof. We have F(JB) = B~10, (Vf)"'0 = VI(H,,Vf), and
PHl = I; by Theorem 3, we obtain the desired result. O

Theorem 9. Let H, and H, be real Hilbert spaces,
A: H, — H, be a bounded linear operator, B: H;, — 2
be a maximal monotone mapping, J® be the resolvent of B for
each r>0, and T: H, — H, be a strictly pseudocontractive
mapping  with  constant 'k such that I =F(T)n
B 10N (Vf) '0+ . Suppose {x,}, {y,}, and {z,} are se-
quences generated by the following extragradient algorithm:

xy=x€C,

2, =(I1- 1,V f, )%,

= T7 (%0 = AV f o, 20):

X1 = @y X + by, + ¢, (1= B)y, + BuTuz,), V120,
(106)

where T, = (1-y)I+y,T and y, c (k,1). If conditions
(a) — (d) are satisfied, then {x,} converges strongly to the
point u = Pr(xg).

Proof. We have F(J8) = B~'0, (Vf)"'0 = VI(H}, V), and
Py = I; by Theorem 1, we obtain the desired result. [0

If in Theorems 3 and 1 we assume that T is non-
expansive, then we have that T is strictly pseudocontractive
with k = 1, and hence, we get the following corollaries.

Corollary 1. Let C and Q be nonempty, closed, and convex
subsets of real Hilbert spaces H, and H,, respectively. Let
A; Hy — H, be bounded linear operators for i=1,2,
S: C — C be a nonexpansive mapping, and T: C — C be
a nonexpansive  mapping such that I =F(T)N
F(SNE ,0#D. Suppose {x,} and {z,} are sequences
generated by the following extragradient algorithm:

[ x, =x €C,
Zy = YnPC(xn - Anvflanxn)
1t (1 - yn)pC(xn - /\nvaS,,xn)’
Xpp1 = ApX, + b, ((1 - ﬁn)zn + ﬁnTzn)

[ +¢,((1-9,)z, +9,52,),

(107)

Vn=>0.

If conditions (a) — (d) are satisfied, then {x,} converges
weakly to an element u € I

Corollary 2. Let C and Q be nonempty, closed, and convex
subsets of real Hilbert spaces H, and H,, respectively. Let
A: H, — H, be a bounded linear operator, S: C — Cbea
nonexpansive mapping, and T: C — C be a nonexpansive
mapping such that I = F(T)NF(S)NQ+ . Suppose that
{x,}, {v,}, and {z,} are sequences generated by the following
extragradient algorithm:

21
[ x, =x€C,
Vy =X, + &, (X, — X,_1),
12, =Pc(I-1Vfo )Vu (108)

Xpy1 = GpXy + bn ((1 - ﬁn)zn + ﬁnTZn)
| +6,SPe(v, =N,V S, z,), VYn=0.

If conditions (a) — (e) are satisfied, then {x,} converges
weakly to an element u € I

Corollary 3. Let C and Q be nonempty, closed, and convex
subsets of real Hilbert spaces H, and H,, respectively. Let
A: H, — H, be a bounded linear operator, S: C — Cbea
nonexpansive map, and T: C — C be nonexpansive such
thatT = F(T)NF(S)NQ# @. Let {x,} and {z,,} be sequences
generated by the following extragradient algorithm:

xy=x€C,
2, = Pc(1- 1,V f, )%,
Yn = PC(xn - Anvfanzn)’

xn+1 = aVl'xO + bnxn + Cn ((1 - ﬁn)syn + ﬂﬂTVlZVI)’ vn 2 0’

(109)

where T, = (1L -y, ) +y,T and vy, C (k,1). If conditions
(a) — (d) are satisfied, then {x,} converges strongly to the
point u = Pr(x,).
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In this paper, some characterizations are given in terms of the boundary value and Poisson extension for the Dirichlet-type space

D (). The multipliers of @ (4) and Hankel-type operators from 2 (u) to L2 (P,dA) are also investigated.

1. Introduction

Let D be the unit disk of complex plane C. For 0 < p < 0o, the
Hardy space, denoted by HP, is the space consists of all
f € H(D) such that

P _ i JZH i0\|P
£ = sup 5 | | f(re”)|"d0< co. (1)
Here, H (D) is the space of analytic functions on D.

Let 0D denote the boundary of D and dA denote the
normalized Lebesgue measure on D. Let y be a positive Borel
measure on 0D. An f € H (D) is said to belong to the space
D (u), called the Dirichlet-type space, if

j |f (z)|2PH (2)dA(z) < 00, (2)
D

where

21 —z|* du(t)

P,(z)=| —=— :

@ = RN 3

The space 9 (y) was introduced by Richter in [1] for

studying analytic two isometrics. It was shown in [1] that
D (u) ¢ H?. The norm on P (u) is defined as follows:

£, =12 + jD| f PP, (2dAG). ()
The space 2 (u) is a Hilbert space with
Do =<fs P+ JDf’ (2)g' (2)P,(2)dA(2), (5)

D (u) = H*> when p = 0. If du = dm, then P (y) coincides
with the Dirichlet space . By (Proposition 2.2 in [1]), we
have

| pinau=| | @fr@dae.  ©

Here,

2n

_ 1 f(e)-£©
D((f)—ﬂj e“—(

Let f € L*(0D). We say that f € L*(u) if

o 0\ 2
LDJ Wd()dy(fkoo. (8)

0 |2

2
de. (7)

0

The norm of the space L? (u) is given by
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2w |F(€9) - F O
—f(e ) f|2 | dédu (0).

2 2
- n
1Nz oy =112 o) _[a[[ JO |ei9

(9)

The space & (4) has been investigated by many authors.
In [2], Richter and Sundberg studied the cyclic vectors of
2 (p). Shimorin studied the reproducing kernels and
extremal functions of @ (u) in [3], see [4-6], for the study of
Carleson measure for & (y). The study of composition
operators and Toeplitz operators on 2 (u) can be found in
[7, 8], respectively, see [9-11], for more study of the space
P (4).

In this paper, we provided some characterizations for the
space D (u) by the boundary value and Poisson extension.
Moreover, we study the multipliers of & (¢) and the Hankel-
type operator from 9 (u) to L2 (P#dA).

In this paper, we always assume that 4 is a positive Borel
measure on 0D and C is a positive constant that may differ
from one occurrence to the other. The notation F <G means
that there exists a C such that F <CG. The notation F=G
indicates that GS F and also F<G.

2. Characterizations of the Space 9 (u)
Let f € L' (dD). The Poisson extension of f, denoted by f, is

—~ 2m . - 2
f(Z>=J0 )L e o)

. 2~
t
| - 2| 27

It is well known that f is a harmonic function on D.
Let C! (D) denote the space of all functions on D with
continuous partial derivatives. For f € C! (D), the gradient

of f is defined by
of of
— (2L 91, 11
vf (ax ay) (1)
First, we state some lemmas.
Lemma 1 (see [6, 8]). Let f € L?(dD). Then,
| D <o, (12)
if and only if

JDW?(Z)'ZP" (2)dA(2) < oo. (13)
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Remark 1. Let f € L*(0D) and F € C'(D) such that
lim,_,,F(re) = f(e")(ae.) for ¢ €dD. Then,

r—1
LDD( (NduQ<IfIZ o) + jDWF(z)FPﬂ (2)dA(2).
(14)

For f € H?, let f, denote the boundary value of f.

Corollary 1. Let f € H. Then, f € D (u) if and only if

£y € L* ().
Proof. Since f € H?, then f = f,. The desired result follows
from Lemma 1. O

Lemma 2. Let f € L*(dD). Then, the following statements
are equivalent:

(@) [ 3D (Fdu(O) <o,

(b) [oIVS (2P, (2)dA(2) < co.

(c) lim,Hl,fD (f1*(2) - If (2)|")dy, (2) < 00, where

i) PR (15)
N T w()dA(2).

du,(2) = |
Proof. (a)e(b) This implication follows by Lemma
1. O

Proof. (b)e=(c) For z € D,r € (0, 1), set
2(1 —12P
b0 [ TUTED)

o |- rzl
From [11], we see that P, (2) is subharmonic with

du (). (16)

lim P, (2) = P, (2). (17)

By Green’s formula, we obtain
2

2 d
Py (2) = n JD ( auﬁwP”’ (w)log

1 deA(w)
w-z

1-wz

rz(l —rz)
:JDJBD ¢ - rwl du (Olog

‘dA(w).
w-z

(18)

According to (17) and (18) and Hardy-Littlewood’s
identity (see page 238 in [12]), we have
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| W7 ()PP, (2284 (2) = tim.

D

I
.é’_..‘

D
The proof is complete. O

Theorem 1. Let f € H%. Then, the following statements are
equivalent:

(a) f € D(w). )
(b) lim,__y [, f - F (@) (2)du, (2) < co.
(©) ;D¢ (I fNdu({) < 0o and

lim J <|f| (2) - |f(z)|2>dy,(z)<oo. (20)

(d) faDD{(|f|)d‘u(()<oo and there exists a harmonic
function g such that |f|< g on D and

lim [ (#@-1f @)@ <0 Q1)

Proof. (a)e (b) This implication follows by Lemma 2 and

|}T2(z) -If@F =1f - (@) (2). (22)
(a)=(c) If f € D (p), then JaDD[(IfDdy(C) < 00. Since
|z |d5|)

—z* 2n

(71 (2))? =(j If(C)I

U -lzP 1de [ 112 14 (23)
gjmv(m - ﬁjanw—a 1d¢]
= 1P (2).

We get (c¢) from Lemma 2 and Corollary 1.
(c)=(d) Inequality (20) implies

lim j ((IfI(Z)) If(Z)|2>dyr(Z)<00- (24)

Let g = [f]. Then, g*>< ([f])% Thus,

|
= lim_ J'Dlvf(Z)'Z(J-DJ-aDK_;l;

D(j IVF (2)Plog|-

IVf(2)’P, (z)dA(z)

m | (1P @) =17 (0P )d, (w),

3
?(1-1%) 1-wz
dy(()logli‘dA(w) dA(z)
w-z
(19)
r2(1—r2)
\dA( ) jmmdmocm(w)
Jim_ JD( (9(2))° -1 f (@)*)du, (2) < c0. (25)

(d)=(a) By Lemma 2,
tim [ (17P@ - ([l ) @ <0 @6)

Assume that g is a harmonic function such that | f| < g.
Note that [f] is the least harmonic function equal to or
greater than | f| (see [12]); hence, |f| <g.ByLemmas 1 and 2
and Corollary 1, f € D (u). The proof is complete. O

3. Multipliers of & (u)
Let I ¢ 0D. The Carleson box S(I) is
S(I)={r(eD: 1-|I|<r<1;{ eI} (27)

Assume that v is a positive Borel measure on D. If
sup;eap (v(S(I))/|1]) < 0o, then we say that v is a Carleson
measure.

If there exists a constant C >0 (see [4, 5])

JDIf(z)Izdv(z)gCIIfllgz(H), forall f € D(u), (28)

then we call that v is a y-Carleson measure.

Let g € L (dD) and f € L*(u). g is called the pointwise
multipliers of L? () if g f € L? (u). We denote the space of all
pointwise multipliers of L* (4) by M (L*(u)).

Lemma 3. Let v be a positive Borel measure on D. Then, visa
u-Carleson measure if and only if

| lg@rav@sigl. ,, (29)
D

for all g € L* ().

Proof. First, we assume that v is a p-Carleson measure.
Suppose that g € L (u). Without loss of generality, let g be a
real-valued function. Suppose that g is the harmonic con-
jugate of g. Set f = g +ig. Then, IVf(z)I If' ()| by the
Cauchy-Riemann equation. From Lemma 2.3 in [7] and
Lemma 1, we obtain



j |g(z)|2dv(z>sj If (@)Pdv(2)
D D
S”f”%g;(m
It + [ |f @FPu2da@)  GO)
D
SIFO)F + j Vg (2)1P, (2)dA(2)
D

2
<lgliz. "

Conversely, for f € 2 (u), by Corollary 1, f, € L* (1)
and f = f,. Then,

2 2 2
| r@Pe @il s, 6D
which implies that v is a y-Carleson measure. O

Theorem 2. g € M (L*(u)) if and only if g € L™ (0D) and
IVglzPﬂdA is a y-Carleson measure.

Proof. Assume that g e L*(dD) and |V§|2P#dA is a
p-Carleson measure. Let f € L? (). By Remark 1, we obtain

1£gl2 <l £ gl oy + jDW(?g) (2)P*P, (2)dA (2)
<N gl op + jD@(z)VW?(z)VPM (2)dA(2)

+ J If @)FIVg(2)1’P, (2)dA(2).
D
(32)

By Lemma 1 and Corollary 1, we obtain

j |f (2)'IVg (2)I’P, (z)dA(z)scj (IV(f9) @ +13@PIVf (2)]*)P,(2)dA(2)
D D

2
<CIfI -

which implies that |V§|2PHdA is a u-Carleson measure.
By Theorem 2, we obtain the following result. O

Corollary 2. Let f € H* Then, f € M (D (w)) if and only if
fp € M(L?* ().

4. Hankel-Type Operators on < (u)

Let & denote the set of all polynomials on D. From [1, 2], we
see that 9 is dense in D (). Let

(w)
Pr@)= | AR (38)
D(1 - wz)

From Theorem 1.10 in [13], we see that P: L? (D) — A?
is a bounded projection. Here, A? is the Bergman space
which  consists of all feH(D) such that
JDIf(z)IZdA (z) < c0. For f € A%, we define a Hankel-type
operator hy on & by
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JDIQ(Z)IZIVT(Z)IZP# (2)dA (2) <ClGI2 oyl F12
(33)

In addition, since IVglzPﬂdA is a y-Carleson measure, by
Lemma 3, we have

j 7 @PIVG ()PP, ()dA() <Cl L, (34)
D

Combining (32)-(34), we obtain that g € M (L* (u)).

Conversely, assume that g € M (L?(u)). Then, by The-
orem 2.7 in [6], we see that g € L® (dD). For f € & (y), by
the Closed Graph Theorem, Lemma 1, and Corollary 1, we
obtain

ij (f8) (IPP, (2)dA(2) <Clf gl ) <Cl fl2

<CIfI%
(35)

Next, we show that |[Vg|*P,dA is a u-Carleson measure.
From the fact that |V f|=|f' ()|, we obtain

| ls@rvs@Pp, @@ c| Ivf@Pp, (1A
D D

zch| £ @, (2)dA(2)

<CIfI%) -
(36)
Then, by (35) and (36),
(37)
hi(9) =P(fg), g€ (39)

Lemma 4 (see Theorem 2.3 in [10]). Let 7,0 > — 1. Then,
f € D(u) if and only if

2

where dA, (z) = (1 - |z|*)°dA(z).

Lemma 5 (see Theorem 3.4 in [10]). Let T be the operator
defined by

lg (W)l

Tg(2 = JDH - wzl2 dA ),

geL* (D). (41)

Then, T: 12 (P,dA) — I? (P,dA) is bounded.
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Theorem 3. Let g € L* ([D) such that |g|* P,dAis a y-Car-  for all f € D(u). So, it is enough to show that
leson measure. Then, |Tgl|* P,dAis a y- Carleson measure. , R
J |f (2)Tg(2) =T (fg)(2)I"P,(2)dA(2) <Cl fll5
Proof. Suppose that | g|2P”dA is a p-Carleson measure. v
Then, by Lemma 5, (43)
5 ) for every f € D (u).
J,ruo@rr@aa@sc| 1/ @@ @aAE B inequality, we have
<Clf 1
(42)
|f (2) = f (w) ’
If (2)Tg(2) =T (fg) ()| < (J % |g(w)|dA(w)>
D - wz|
<[ tgiraa| ww w) (44)
D —

_ 2
- ||g||;(mjn“c(z)74

Consequently, by Lemma 4, we obtain

jD| f(DTg(2) - T(f9) (2P, (2)dA(2)

If (2) - f (W)’
<lgli o[ [ &) = JOOI 45 ()P, (2)dA (2)
pJo |1- wz|
< ||g||iz<D) "f"g%z(m
(45)
The desired result follows. O
Theorem 4. Let ue€ A% Then, the operator

h,: D(u) — L? (PﬂdA) is bounded if and only iquIZPHdA is
a pu-Carlson measure.

J W)l dA (w).

|1 - wz|

Proof. Suppose that |ul* P,dA is a p-Carlson measure. Let
g € D (u). Then, ug € L? (P dA). By Lemma 4, we get that
h,(g) € L? (P,dA) and

I, (9], (p,a4) S 1T WD (5 44) < ClGl 2 (5 1)
<Clgllz -

So, h,: D (u) — LZ(P dA) is bounded.
Conversely, assume that h,: D) — L? (P dA) is
bounded. We need to prove that

(46)

14G11 2 (,44) < Cl9l5 > forany g € D (u). (47)

By Hoélder’s inequality we have

u(w)(g(z) - g(w)) ’ 2 lg(2) - g(w)®
JD (1- wz) < JD|”(w)| dA(w)jDﬁdA( w)
(48)
=||u||isz'~‘7(|"‘)_f’(|“’)'dA< w).
Since gl (0 < ||u||izjmjmwux< WP, (2)dA(2)
u(2)g@ - h @@ = | ((ffZ)w;)i ) 4 w), N,
(49)

by Lemma 4 and the fact that h,: D () — L*(P,dA) is
bounded, we obtain

s(llulliz +||hu||2>||9"§z<m'
(50)



The proof is complete. O
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In this paper, we are interested to deal with unified integral operators for strongly ¢-convex function. We will present refinements
of bounds of these unified integral operators and use them to get associated results for fractional integral operators. Several known

results are connected with particular assumptions.

1. Introduction and Preliminaries

Convex functions play an important role in the formation of
new definitions of related functions which help to give the
generalization of classical results. Therefore, in recent years,
many generalizations of convex functions are defined and
utilized to study the Hadamard and other well-known in-
equalities (see [1-9]). In this paper, we deal with the strongly
@-convex functions to study the bounds of unified integral
operators. The obtained results are compared with already
known results.

First, we give some definitions of functions which are
necessary for the findings of this paper.

Definition 1 (see [7]).
convex on I if

flu+(1 =) <cf(u)+(1-¢)f (v), (1)

A function f: I — R is said to be

holds for all u,v € I and ¢ € [0, 1], where ICR is an interval.
Reverse of inequality (1) defines f as concave function.

Definition 2 (see [10]). A function f: I — R is said to be
strongly convex with modulus A >0 if

flau+(-om<efw+1-9f(v)-Ac(1-¢)(v-w?
(2)
holds for all u,v € I and ¢ € [0, 1].

Definition 3 (see [3]). A function f: I — R is said to be
@-convex on I if

flu+(1 =)< f(v)+co(f (), f(v), (3)

holds for all u,v € I and ¢ € [0, 1], where ¢ is a bifunction.

Definition 4 (see [2]). A function f: I — R is said to be
strongly ¢-convex on I if

Flau+(I=oM<f(M+ep(f (W), f (1) -Ac(1=¢) (v—u)’, (4)

holds for all u,veI and ¢e [0,1], A>0, where ¢ is a
bifunction.

It is to be noted that for ¢(x,y)=x—-y, strongly
p-convex function reduces to strongly convex function.
Farid in [11] defined the unified integral operators (5) and
(6) and has proved the continuity and the boundedness of
these integral operators. The aim of this paper is the study of
integral inequalities for strongly ¢-convex functions via
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unified integral operators. Next, we give definition of the
unified integral operators.

Definition 5. Let f,g: [u,v] — R where 0 <u <v be the
tunction such that fis positive and integrable over [u, v] and

Journal of Mathematics

g is differentiable and strictly increasing. Also, let ¥/x be an
increasing function on [u,00) and o, &,y,{ € C, p,pu ,6>0
and 0<k<§+py. Then, for x € [u,v], the left and right
integral operators are defined as follows:

<g ::ffff)(x m;p) = I (E,ﬁiIE(,g;W)g’ N (y)dy, (5)
<g ;/aykazf)(xw P)—j Ty (E,ﬁftE(,g;W)g’ NS (y)dy, (6)
where —f(“V)(@ﬂ;{ﬁ;’i’(l)(u,mp)+< FYING )(M p))
fy(’f,fi?(’gv‘l’)—% R (g () = g (1) p). <<g Z’Ig‘f{f)w P)+<g fofff)("”ﬂp)
(7)

By choosing specific functions ¥ and g and fixing pa-
rameters involved in the Mittag-Leffler function
Eyék (n(g(x)—g(y); p), various known fractional in-
tegrals can be reproduced (see [5], Remarks 6 and 7). In [4],
by using unified integral operators, we have obtained in-
tegral inequalities for @-convex functions. In the following,
we give these inequalities in the form of Theorems 1-3.

Theorem 1. Let f: [u,v] — R be a positive @-convex
function and g: [u,v] — R be differentiable and strictly
increasing function. Also, let Y/x be an increasing function on
(u,v, naé&y,(eC, puv820, 0<k<S+u, and
0<k<6é+v. Then, for x € [u,v], we have

(g :!?fff)(x G P)+<9 jlo?favk(f>(x>’7;17)

<EP (4(g(x) ~ g (w)'s p)¥ (9(x) — g (W)  (x)

+ 12(EES % ) (£ 00, £ () U (5 9) ~ g (1)
+ ELSE (g () - 9(0))'5 p)¥ (g (1) - g (<) ()

+ 1, (Ezglgz)g%‘l’)fp(f(X),f(V))(I(x, v;g) — g(x)).
(8)

Theorem 2. Along with the assumptions of Theorem 1, if
fu+v-x)=f(x)and ¢(x,y) = x + y, then the following
result holds:

<2 (g(v) - g)ELSE (g (v) = g(W)'s p) f ()

#2(£ )+ £ DT ELRE ) (T vi ) = g )
9)

Also, the following result holds for the convolution of
functions f and g.

Theorem 3. Let f,g: [u,v] — R be two differentiable
functions such that |f'| is ¢-convex and g be strictly in-
creasing for 0 <u <v. Also, ¥/x be an increasing function on
[u,v] and a,&,9,{ € C, p,u,7,8>0 and 0<k<8+py and
0<k< 8+ Then, for x € (u,v), we have

(Pear ) o (F225 g ) )
<EPR(n(g(x) - g ) p)¥ (g ()~ g )£ ()]
v 1B g ol @l | ) U 0.2 9) - g w)
+ P (g (1) - 9(x)": p)¥ (g () - g ()| f' )
+ T(EE g Jo(If LI ) U (v ) = 9 (o).
(10)

Although we follow the same method which was adopted
to prove the results of [4], here we will get refinements of
these results by using strongly ¢-convex functions. In
Section 2, we give the refinements of bounds of unified
integral operators given in Definition 5. In Section 3, we will
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present refinements of bounds of fractional integral 2, Main Results

operators.
Throughout this section, we have adopted the following

notations:

v

I(u,v; g) = L J g(t)dt,

v—u

(11)
+ -y W,y,0,k,( . W,y,0,k, .
S(wvu',v )= (ng,mW f) (%, 115 p) +<ngf,v, f) (115 p)-
Theorem 4. If f is positive strongly ¢-convex function with
modulus 1> 0, along with other assumptions of Theorem 1,
then we have
(v, v ) S EVEt (g (x) - gw))'; p)¥ (g (x) - g (w) f (x)
+ ]ﬁ(EZji’fg’( . g ‘I’>{<p( F @), £ )T (x5 9) = g ()-A(x = ) (21 (1, x;159) = (x + )] (11, x; 9))}
(12)
+ P (g () - g ()5 p)¥ (g () — g () f (¥)
+ J:(Ezgﬁ;’g" . g ‘I’){<p(f(x), FONUI(xv;.9) = g())-A(v = x) (21 (x,v; L;g) = (v + )1 (x,v; )}
where 1 is the identity function. Proof. For the kernel defined in (7) and the strongly

@-convexity of the function f on [u,x], the following in-
equalities hold, respectively:

T a0)g < (E0 g ¥)g (0 o€ lwxlxe (w, (13)
x—¢ X—-¢\[/¢—u 2
FOf@+22g(f, f ) -A(Z=2) () w- w2 (14)

The aforementioned inequalities are used to obtain the
following integral inequality:

| rs(m 0)a' O F de reor (25 g w) [ ' (0de

+ —go(f(u)’f(x))]i(EV"s’k’( g; ‘I’) r (x=¢)g' (9)dg (15)

Xx—1u wat I

(B 0i¥) | (e 06 0
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In view of Definition 5 and applying integration by parts,
from inequality (15), we get the following upper bound of the
right-sided unified integral operator:

(F288 £ ) oo ) < B (9 (6) = 9 )5 p)Y (9(6) = g () ()
(16)

+ T ELES 909 Yo (F ). £ () (1 (0, x: 9) = 9 )= (x = ) (21 (5 19)

—(x+u)(I(u,x; 9)))}

Again for the kernel defined in (7) and the strongly The aforementioned inequalities (17) and (18) are used to
@-convexity of the function f on (x,v], the following in-  obtain the following integral inequality:

equalities hold, respectively:

B g w)g @<n (B g )g 0. a7)

FOF+ =200 f0N =M )(E25) (-2
(18)

| r(E5a0e)g ©F 0dc

< (Eyék(’g;q,)(f(v) J:g,(c)dc+¢(fix_),3{(v)) J‘v

v,
at M

(v-9yg' (c)dc> (19)

€

- A (Eysk(,g; ‘I’) J:(V -9 (c-x)g' (¢)ds.

In view of Definition 5 and applying integration by parts,
from inequality (19), we get the following upper bound of the
left-sided unified integral operator:

(22887 o p) < ELaE (19 (0) = 9 ()5 )Y (9 (0) = 9 () f ()

9" vaév
+T(BLF 09 Yo (F (0, F T (w1 9) = gGN-A (v = ) (21 (3 vi149) = (v + 9T (x,7: 9))}
(20)

Inequality (12) will be obtained by combining (16) and  Corollary 1. By setting u = v in (12), we get
(20). O
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S (o, v7 ) S EVRE (g (x) = g ()" p)¥ (9 (%) — g (w) f ()

# T(ELES 909 Yo (F o) f () (13 9) = 9 ()= (x = ) (21 (4, %3 Tg) = (x4 0) (1 (a3 1)}

o

+ B (1 (g () - g ()5 ) (g () ~ g (<) f (¥)

+ ]f(Ey’a’k’(, g; ‘I’){(p(f(x), FONUT(x,v;9) — g(x)-A(v—x) (2L (x,v;1;9) — (v + x)I (x,v; 9))}-

o

Remark 1. For A =0 in (12), we get inequality (8) of
Theorem 1; if 2I (u,x;1;9)> (x +u) (I (u,
x;9)) and 2I(x,v;1;9)> (v+ x)I(x,v; g),
then we will get the refinement of (8).

For ¢(x,y)=x-y in (21), we get the result for

strongly convex function.

For ¢(x, y) = x — y and A = 0 in (21), we get the result
of Theorem 8 in [5].

We will use the following lemma for our next result.

1(5) Gz ol =

A
=f(u+v—x)+%q)(f(x),f(u+v—x))—

Using the condition f(x) = f(u+v—x) in the above
inequality, we get (22). O

Remark 2. For A =0, Lemma 1 reduces to Lemma 1 of [4].
For A >0, we get its refinement.

For ¢(x,y) =x—y and A =0, Lemma 1 reduces to
Lemma 21 of [5].

1 u+vy Au-v)’ V.84
E(f( 2 >+ 4 ((ﬂme’V’ !

(21)

Lemma 1. Let f be strongly @-convex function with modulus
A>0. If f(x) = f(u+v—x), then

A — )
(B <1500 fey -2, @)
holds for x € [u,v].
Proof. Strongly ¢-convexity of f implies
y—x xX—u y—x A(u—v)?
+v—uu>’f<v—uu+v—uv>)_ 4 (23)

(u-v)’
4

Theorem 5. Let f(u+v—x)= f(x) and ¢(x,y)=x+y
in addition with the assumptions of Theorem 4. Then, the

following inequality holds:

>(u,11;p) +<gF;ii€ff1) (v,n;p))

<S(uvut,v ) <2¥(g(v) — gW)EE (g (v) - gw)*; p) f (v)

+2(f () + f(V))I’V‘(EV"S’k’(,g;‘I’

g

uf .0,k
-~ ]v<Eﬂ)mE ,

068
(24)

)(I(u, vig) - g ()

g \P) (v =) (21 (1, v; 14g) = (u + V)1 (w,v; 9)).
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Proof. For the kernel defined in equation (7) and the The aforementioned inequalities are used to obtain the
strongly ¢-convexity of the function f on [u,v], the fol-  following integral inequality:
lowing inequalities hold, respectively:

]Z(E’y‘ﬁ’,’?(,g; ‘I’)g' (x)s]Z(Ei:i’)’?,g;‘P)g' (%), x¢€ (u,v),
(25)

f(x)Sf(v)+%¢(f(u),f(v))—A(v—x)(x—u).
(26)

| 1B w) £ g e s Fori(E2E g ) | g Goax

¢ QLT (ot g ) [ (- 09’ ()x @7)

v—1u v\ Tuwat 0D

- M”J(EZZ??(, g: T) J (v=x)(x —u)g' (x)dx.

In view of Definition 5, applying integration by parts,  following upper bound of the left-sided unified integral
and using ¢ (x, y) = x + y, from inequality (27), we get the  operator:

( FYrokd f)(u, 1 ) < EY5 (1(g(v) = g ) p)¥ (g (v) — g () f ()

9" wa v o

+ Ji‘(EV"”"‘, g; ‘P) (f W)+ fF W)U (u,v; g) — g(w) 28)

7R3

- )L];‘(Ez:i”lg’(, g; ‘I’) (v—u)(2I (u,v,I;9) — (v + w) (u, v, g)).

Also, the following inequality holds: The aforementioned inequalities (26) and (29) are used
to obtain the following integral inequality:
]ﬁ(EZ:i’)’g’(,g; ‘I’)g' (x) Slz(Ez:i:]g’(,g; ‘P)g' (x), x€ (u,v).
(29)
j ]f(EZ:if’(, g; w) g (x)f (x)dx

u Sk, 4 u S v v
<Ji (B0 g ‘I’)<f(v) | g Pl T 1) [ g ww- x)dx) (30)

u - u

-V ) [ - (e
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In view of Definition 5 and applying integration by parts,
from inequality (30), we get the following upper bound of
the right-sided unified integral operator:

(S8R ) o < B (19 0) - g ) )¥ (9 - g ) £ ()

+ f?( Zi?c,g, )(f(u)+f(V))(I(u,V;g)—g(u))

-\, (E;:i];(, g;‘I’) (v—u)(2I (u, v, I9) — (v+ ) (u, v, g)).

Now, using Lemma 1, we can write

I:f<uzv>1x(EZi’§(’g, )g’ (x)dx
< J:] (EZ(;'Ef,g; )9 (x)f (x)dx + = J T <E}'il;(g7 )g’ (0 (f (0, £ (xdx

A(u—v)? ,
_ %J‘ ] (E‘Zilgf)g7\y)g (x)dx.

In view of Definition 5 and ¢ (x, y) = x + y, from (32), Also, from Lemma 1, we can write
we get the following upper bound of the left-sided unified
integral operator:

A5 (GEE22E0 ) wams p) <2 (FE2E5 ) e p)

Au - v)? Vyoki '
- 4 (9F#,a,E,V’ 1) (u, 73 p)-

(33)

[ (50 n(mls gw) g oax
< JI (Eﬁilgf,g; )g () f (x)dx + j I (Exlgc’g%‘l’)g'(x)<p(f(x),f(x))dx

2
_AMu-v) J Jx (EZi’?,g;‘I’)g'(x)dx‘

4

In view of Definition 5 and ¢ (x, y) = x + y, from (34),
we get the following upper bound of the right-sided unified
integral operator:

f<u+v>< F\y”kﬁ)(v,n P)<2( \mk{f>(v>mp) _/\(u; i (9FW’%&k)(1>(V”7;p)'

2 wo&ut woo,&ut wad,ut

(31)

(32)

(34)

(35)



Inequality (24) will be obtained by using (28), (31), (33),
and (35). O
Remark 3. For A =0 in (24), we get (9) of Theorem 2; if

2I(u,v;1;9) > (u+v)I(u,v;g), then we

will get refinement of (9).

For ¢(x,y)=x-y in (24), we get the result for
strongly convex function.

Journal of Mathematics

For ¢(x, y) = x — y and A = 0 in (24), we get the result
of Theorem 22 in [5].

Theorem 6. If | f'| is strongly g-convex with modulus A >0
along with other assumptions of Theorem 3, then the
inequality

\(9 I\fsz(f g>(x"7 p)+<g f!ff(f*g)(x,n;p)’

<EV (n(g(x) = g p)¥ (g (x) = g )| ()]

+ T(ELES :9 Mo(lr ol | (0]) (1 x: 9) = g )

—A(x —u) (21 (u, x;1;9) — (x + W) (u, x; g))} (36)

+ B2 (1(g(v) - g ()" p)¥ (g (1)~ g ()| f ()]

+ 1B 0¥ )o(lf L1 @) U rg) - g ()

“A(v=x)(2I(x,v;1;9) — (v + x)I (x,v; g))}

holds for x € (u,v), where

(s g) o) = | 15(E1SE 0)g' OF (9 (37)

(g i g)(x,n p) = j I (Ezj’g‘,g;W)g%c)f'(c)dc, (38)

and 1 is the identity function.

| @] <|f ()] +

Using absolute value property, we can write

(15 ol +

<(I7 col+

“So(f WL ) - Ax = (s -,

Proof. Using strongly ¢-convexity of | f'| over [u, x] gives

¢ € [ux]. (39)

oI @bl @) -2 (=) < £

(40)

(I Gl 1f ) =M= 9 -w) )
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The aforementioned inequality (13) and second in-
equality of (40) are used to obtain the following integral
inequality:

[ r(maw)g @r e (B2 ) (17 | o 0

, , (41)
N o(lf @l f' )])

X—-Uu

[ =99 @ds-2 [ x-9c-wg (c)dc>.

. N (P2 s g) (e p)
In view of (37) and applying integration by parts, from 9" paku

inequality (41), we get the following upper bound: [Ey‘sgz(n(g(x) — )" p)¥ (g (x) - gu)|f ()|
oo ’
(g ;P:;f(f g)(x "; P) 10kl
A (1 5 - g P00 o . + J <E/mf ,g;‘P){ (|f )|, |f' x)|)(1(ux g) —g(u)
<E,; (n(g(x)—gw);p)¥(g(x)-gu "(x

et " “A(x —u) (21 (1, x;1,59) — (x + W) (1, x5 9))}].
+ 7B g5 ) (I Gl | GO) (T s 9) = 9 ) (43)
—A(x —u) (21 (u, x5 1,59) — (x + w)l (u, x; g))}. Now, using ¢-convexity of | f'| over (x,v], we have

(42)

Also, inequality (13) and the first inequality of (40) are
used to obtain the following integral inequality:

If' | <|f W)+ :;so(lf’(X)I,lf’(V)I)—)t(v—c)(c—x), e (x,v]. (44)

Inequalities (17), (38), and (44) are used to obtain the
following upper bounds:

(g fl;f{f g)(x,q p)
< EP (g (v) — g(0)"; p)¥ (g (v) — g ()| f )]

(45)
+ 1Bt g9 Mol L L ) U Gxv: 9) - g ()
A(v=x) 2L (x,v; 139) - (v + x)I (x,v; 9))}»
(g \:Jaygavk(f 9>(x”7 j2)
yék(
> ~[E25 (1) - g (0)": P)¥ (9 () - g (DLF ) »

+ I (B g9 oll7 L P ) TG vi )~ g ()
“A(v=x)(2I(x,v;1;9) = (v+ x)I (x,v; 9))}].

Inequality (36) will be obtained by wusing  Corollary 2. By setting u=v in (36), we get the following
(42)-(46). O inequality:



10 Journal of Mathematics

I(u,x;g) and 2I(x,v; I;g9)> (v + x)I(x,

FYroke FYpOkE o+ .
|(g bt f g) X1 p) (9 kv f g)(x,n,p) v; g), then we will get the refinement of (10).

<Ey5k((17(g(x) 9" p)¥ (g (x) - gw)|f' ()| For ¢(x,y)=x—y in (47), we get the result for
o strongly convex function.
+J (EV £ 9 ) {o(lf" Gl (X)D I, x;9) — g (u) For ¢ (x, y) = x — y and A = 0 in (47), we get the result
A (x = u) (21 (%3 1,9) — (x + )] (4, x; )} of Theorem 25 in [5].
0.k.¢ .
+ Epog (1) =g ()i P (g () — g )| f" ) 3. Results for Fractional Integral Operators
y&k( i i . _ . . . :
v\ Epag 0 95 x ; n this section, we give the bounds of some of the fractiona
+ (B g o QLI DN T vig) = 96D 1y this sect give the bounds of f the fractional
(v —x) (21 (x,v: 1,9) I(x,v: ). integral operators which will be deduced from the results of
(=) 2L vilag) = v+ )1 (v ) Section 2. Throughout this section, we assume that

Remark 4. For A =0 in (36), we get inequality (10) of = Proposition 1. Under the assumptions of Theorem 4, the
Theorem 3; if 2I(u,x;1;9)> (x+u)  following result holds:

T@((G1,, f) ) +(51, £) ()< (g(x) = g@)*f (x) + (g (v) = g ()" f ()
+(g(x) = g ()" o (f (), £ () (I (1, x; g) = g (w)-A (x — ) (21 (u x; I;g) — (x + W) (u, x; 9))}
+(g() = g () Ho (f (x), FM T (x,v: 9) = g(x)-A(v = x) (21 (x, v; I;9) — (v + X)I (x,v; 9))}.
(48)

Proof. For V¥ (¢) =¢% wherea>0, Theorem 4 gives Proposition 2. Under the assumptions of Theorem 4, the
(48). O  following inequality holds:

T(@) (4 Ty f) (%) + (- Iy f) (%))
lI’(x u)

<Y(x—u)f(x)+ @ (f (W), f(x) + ¥ (v=x)f (v) (49)

_ 2
\I’(v ‘P(f(x)f(v))—‘i’(x— )A(x u)’ \P(v—x))t(v6x)_

Proof. For g as identity function, Theorem 4 gives (49). O Corollary 3. For ¥ (s) = ((¢**)/(kI'.())), (5) and (6) re-
duce to the fractional integral operators given in [5]. Further,
the following bound for a >k is also satisfied:

a o 1 o 29
G £) 0 +(C1E £) () e [(9(x) = g@)™ f (x) + (g(») = g (N £ (v)

+(90) =g @) o (f (), f (N T @ x:9) - g W) =M =) (2 (w5 Lg) 5

— (x + )] (u, x; g))} + (g (v) — g (x)) @O

Ap(f (%), fF (W)U (x,v;9) — g(x)-A(v = x) (21 (x,v;1;9) — (v + x)[ (x,v; 9))}].
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Corollary 4. For ¥ (¢) = ¢%, where a>1, and g as identity
function, (5) and (6) give fractional integrals defined in [12].
Further, the following bound is also satisfied:

T (@) ("L ) () + (°L- ) ()

s(x-u)“f(x)+(v-x)“f(v)+(x 9" o (f )y £ () (51)
Y L )9t2 L\ at2
(v—x) <p(f(x),f(v))—/1(x 6u) b 696)

Corollary 5. Using ¥ () = ((¢¥%)/ (KT} (@) and g as operators given in [13]. Further, the following bound is also
identity functions, (5) and (6) reduce to the fractional integral ~ satisfied:

alk
KL @)((“L £) () + (I £) () < (e =)™ £ () + (v =07 £ (1) + (x 2u)
alk alk+2
o (f ), f oy + 22 x) o(f (x), f(¥) - % (52)
(v_x)ot/k+2

-A
6

Corollary 6. For Y (c) =¢%, wherea>0, and g(x) = xP/ operators given in [14]. Further, the following bound is also
p> wherep >0, (5) and (6) reduce to the fractional integral  satisfied:

("I ) ) + I f) (%)

Sf%w)[(xp—up)af(x)+(vp—xp)af(v)+(xp—up)“71(go(f(u),f(x)
KPPt D\, z(x"*z—u"”) (x+u)(xp+1 —u"“)
'<(x—u)(p+1)_u>_ p+2 - p+1 (53)
, a1 Vp+1 _xp+1 ,
+ (vP - x") (‘P(f(@»f(ﬂ)(m‘x )

N 2(1/’”2 —x’”z) (v+x)(vp+1 —x”“)
- p+2 - p+1 ’

Corollary 7. For VY(c) =", wherea>0, and g(x)=
((x*1)/ (s + 1)), wheres >0, (5) and (6) give the following
fractional integral operators:

- .y _
(FS T £) () = (T8 f) (x) = % J (& =g ¢ (Qds,

(54)

l-a .y
(Fif‘“)/(r(“)))’gf)(x) (I f)( )_% J (Cs+1 _xSH)a_lef(C)dc-
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Further, the following bound is also satisfied:

(s+ 1)“F(oc)((slz+f)(x) +(SI:, f)(x)) < (x5+1 _ 5+1) F0)
" u5+2 s+1>

+(Vs+1 s+1) f(V)+< s+l s+1) < <f(u) f(x)((xu)(5+2)

s+3 _ s+3 s+2 st2
_A<2(x u )_ (x+u)(x u )>>+(Vs+1_xs+1)a-1

s+3 s+ 2

S+2 s+2
v X s+1 )

<‘P(f(x) f(V))(w

A<2(Vs+3 _ xs+3) (V + x)(vs+2 _ xs+2)>>

s+3 s+2
(55)

fractional integral operators given in [15]. Further, the fol-

Corollary 8. For ¥ (¢) = ((¢“¥)/kI' (a)) and g(x) =
lowing bound is also satisfied:

((x1)/ (s + 1)), wheres>0, (5) and (6) reduce to the

(L £) () + (I f) ()

1 s+l s+1 alk s+l s+1 alk
s (st 1)tx/kkrk(“)(x ) f(x)+ ( ) f)

S+2 s+2
s+1 s+1 (a7k)—1 u s+1
+(x = u) ( (f(u) f(x)<7(x T ))

_/\<2(x3+3 B us+3) _ (x + u)(xﬁz B uﬁz))) +(Vs+1 _ xs+1)(a/k)-1 (56)

s+3 s+2

s+2 s+2
v X s+1
(‘P(f(x) f(v))(x)(s-l-2) X )

/\(2(1/51-3 _ xs+3) (V + X)(VS+2 _ xs+2)>>

s+3 s+2

fractional integral operators given in [16]. Further, the fol-

Corollary 9. For ¥ (¢) = ¢*, wherea>0, g(x) = ((xP)/
lowing bound is also satisfied:

(B+5)), wherefands>0, (5) and (6) reduce to the
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(15 5) @+ (1% £) 0
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< [(xﬁﬂ - uﬁ”)“f(x) +(vﬁ+s - xﬁﬂ)“f(v)

+ (xﬁJrs _ uﬁ+5)0¢—1(¢(f(u),f(9€))< (x

uﬁ+s+2) (X + u)(x[}+s+1 _

xﬁ+s +1- uﬂ+s+1 s
—u)(f+s+1)

B+s+2

_)L<2(xﬁ+s+2 _

+ (Vﬁ+s _ xﬁ+s)al<§0(f(x),f(1/))< !

xﬂ+s+2)

v+ x)

B+s+1

u[3+s+1)>> (57)

Vﬁ+s+1_xﬁ+s+1 s
(v=x)(B+s+1)

(Vﬁ+s+1

B+s+2

N <2(Vﬁ+s+2 _

Corollary 10. Using ¥ (¢) = ¢* and g(x) = ((x —uw)’)/p in
(5) and g(x) = (- (v—x)")/p in (6), where p >0, fractional

(L)) + (T N5 s

P (x =)+ (v =XV f () + o (f (%), f ()

Aot

/1—
(p+1)(p+2)

Corollary 11. For ¥ (¢) = ((c"‘/k)/(kfk(oc))), where o > k,
and g(x) = ((x—u)f)/pin (5) and g(x) = (-(v—-x)")/pin

(12 £) 0+ (L ) < s

h
Mo Do)
P

A(p+1)(p+2)

Remark 5

For A =0, all the results of Section 3 reduce to the
results of Section 3 in [4]; if A > 0, then all the results of
Section 3 give the refinements of the results of Section 3
in [4].

For ¢(x, y) = x — y and A = 0, all the results of Section
3 reduce to the propositions and corollaries of [5].

[ (= V™ £ (x) + o f (1), f(x))(xp%

(x =)™ £ (x) + 9 (f (W), f (x))

)p(oc/k)+2

(x-u

B+s+1

)

integral operators given in [17] are obtained. Further, the

following bound is also satisfied:

)P

(" x)pa (58)

(6), where p > 0, fractional integral operators given in [18] are
obtained. Further, the following bound is also satisfied:

( _ u)pa/k
+1

_palk (v—- x)p‘x/k (59)
+(v-x) f(V)+<P(f(x))f(V))7p+l

( _ x)p(oc/k)+2

Further, various bounds can be obtained by applying
Theorems 5 and 6 which we leave for the reader.

4. Concluding Remarks

The paper presents bounds of unified integral operators (5)
and (6) for strongly g-convex functions. These bounds are
refinements of bounds obtained for unified integral
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operators for ¢-convex functions in [4]. The results for
fractional integral operators have been deduced which
provide bounds for Riemann-Liouville and other well-
known fractional integral operators.
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In this manuscript, we propose some sufficient conditions for the existence of solution for the multivalued orthogonal
F-contraction mappings in the framework of orthogonal metric spaces. As a consequence of results, we obtain some interesting
results. Also as application of the results obtained, we investigate Ulam’s stability of fixed point problem and present a solution for
the Caputo-type nonlinear fractional integro-differential equation. An example is also provided to illustrate the usability of the

obtained results.

1. Introduction and Preliminaries

The theory of multivalued mappings has an important role
in mathematics and allied sciences because of its many
applications, for instance, in real and complex analysis as
well as in optimal control problems. Over the years, this
theory has increased its significance, and hence in the lit-
erature, there are many papers focusing on the discussion of
abstract and practical problems involving multivalued
mappings. As a matter of fact, amongst the various ap-
proaches utilized to develop this theory, one of the most
interesting approaches is based on methods of fixed point
theory.

Acknowledging the work of Nadler [1], Gordji et al. [2],
and Wardowski [3-5], the aim of this paper is to introduce
the notion of multivalued orthogonal % -contraction map-
pings in the framework of orthogonal metric space and to
establish some sufficient conditions for the existence of fixed
points for such class of mappings. Many researchers [6-11]
proved the existence of fixed points using the concept of
F-contraction introduced by Wardowski [3-5]. In 1974,
Reich [12, 13] asked whether we can take into account
nonempty closed and bounded set instead of nonempty
compact set. Although a lot of fixed point theorists studied
this problem, it has not been completely solved. There are

some partial affirmative answers to this problem, for in-
stance, Mizoguchi et al. [14] and Olgun et al. [15]. We
provide a partial solution to Reich’s original problem using
multivalued orthogonal F-contraction mappings in the
setting of orthogonal metric spaces. Also, as application of
the interesting and new results obtained, we investigate
Ulam’s stability of fixed point problem and present a so-
lution for a Caputo-type nonlinear fractional integro-dif-
ferential equation.

Recently, Gordji et al. [2] introduced the concept of an
orthogonal set (briefly, O-set) and presented some fixed
point theorems in orthogonal metric spaces.

Definition 1. Let X # P and L ¢ X x & be a binary relation.
If 1 satisfies the following condition: there exists x, € &
such thatforall y € X, yL xy, orforall y € X, x, Ly, then it
is called an orthogonal set (briefly O-set). We denote this
O-set by (Z, 1).

Example 1. Let £ = Z. Define m.Ln if there exists k € Z
such that m = kn. It is easy to see that 0Ln for all n € Z.
Hence, (X, L) is an O-set [2].

Example 2. Let (', d) be a metric space and 7: & — &
be a Picard operator, that is, 7 has a unique fixed point
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x* e Zand lim I ,(y) =x"forall y € &. We define the
binary relation 1"on & by x Ly if

i o —
hinmd(x,Jn(y))—O. (1)

n

Then, (2, 1) is an O-set [2].

Example 3. Let & be an inner product space with the inner
product {.,.). Define the binary relation 1L on & by xLy if
{x,y) = 0. It is easy to see that 0_Lx for all x € 2. Hence,
(Z, 1) is an O-set [2].

For more interesting examples for an O-set, see [2].

Definition 2. Let (2, 1) be an O-set. A sequence {x,}, is
called an orthogonal sequence (briefly, O-sequence) if for all
n,x,L1x,.,, or for all n,x, ;Lx,.

Definition 3. Let (X, L,d) be an orthogonal metric space
((X,1) is an O-set, and (Z,d) is a metric space). Then
T: X — X is said to be orthogonally continuous (or
L-continuous) at a € & if, for each O-sequence {a,} in X
with a,, — a, we have I (a,,) — T (a). Also, 7 is said to
be L-continuous on X if  is L-continuous for eacha € .

It is easy to see that every continuous mapping is
L -continuous, but the converse is not true [2].

Definition 4. Let (X, 1,d) be an orthogonal set with the
metric d. Then X is said to be orthogonally complete
(briefly, O-complete) if every Cauchy O-sequence is
convergent.

It is easy to see that every complete metric space is
O-complete, but the converse is not true [2].

Definition 5. Let (Z,L) be an O-set. A mapping
T: X — X is said to be L-preserving if T (x)LT (),
whenever xLy. Also, 7: &' — X is said to be weakly
L-preserving if 7 (x)LT (y) or I (y)LTJ (x), whenever
xLly.

It is easy to see that every L-preserving mapping is
weakly L-preserving. But the converse is not true [2].

Definition 6. (see [3, 5]). Let F: (0,+00) — R be a
mapping satistying the following:
(F1) For all a,b>0, a>b implies F(a) > F(b)
(F2) For every sequence {a,} in R*, we have
lim, ,,a, =0 if and only if lim F(a,) = —0c0
(F3) There exists a number k € (0,1) such that
lim, ,.a"F(a)=0

n—=+00

If lim, ,.F(t)=-0c0, then using (F1), we have
E(t,) — —oo=>t, — 0 [5, 11].

Inspired by the work of Wardowski [3-5], we denote F
be the family of all the functions F: (0,+0c0) — R
satisfying (F1) and (F3)

We denote F1 be the family of all the functions
F: (0,+00) — R satisfying (F1), (F3), and (F4)
F(infA) = inf F(A) for all A c (0, 00) with infA>0
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Here, lim._; F(c) = F(d-0) =lim, ;. F(d-¢) (left
limitatd)andlim,__ ;. F(c) = F(d +0) = lim,_ ;. F(d +¢)
(right limit at d) for all d € (0,+00). From mathematical
analysis, the following is true for all d € (0, +00):

F(d-0)<F(d)<F(d+0). (2)

Example 4. Let functions F, F,, F5: (0,+00) — R defined
as follows:

(1) F,(a) = (-1/+/a), for all a> 0.
(2) F,(a) =1na, for all a>0.
(3) F5(a) =a+1na, for all a>0.

Then F|,F,,F; € #.

Let (X,d) be a metric space and H be a Haus-
dorff-Pompeiu metric induced by metric d on a set X.
Denote P (X') the family of all nonempty subsets of &,
B (L) the family of all nonempty, and closed and
bounded subsets of & and F# (') the family of all nonempty
compact subsets of X. H: B (L) x 6B (L) — R de-
fined by, for every A,B € €%B(X):

H(A,B) = max{supd(x, B),supd(y, A) ]», (3)
x€A y€B

where d(x, A) = inf{d (x, y): y € A}.

2. Multivalued Results

In this section, we establish some results on the existence of
fixed point for weak orthogonal multivalued contraction
mappings using conditions of Wardowski [3-5].

Now, we define the following orthogonal relation be-
tween two nonempty subsets of an orthogonal set.

Definition 7. Let A and B be two nonempty subsets of an
orthogonal set (', L). The set A is orthogonal to set B is
denoted by L, and defined as follows: ALl,B, if for every
ac€Aand be B, alb.

It is easy to observe the following results.

Lemma 1. Let (X, L1,d) be an orthogonal metric space,
x € and A € H(X). Then there exists a € A such that
d(x,A) =d(x,a).

Lemma 2. Let (X, L,d) be an orthogonal metric space, and
A,Be (L), aec A Then there exists b€ B such that
d(a,b)<H(A,B).

Now, we are ready to present our first result.

Theorem 1. Let (X, 1,d) be an O-complete orthogonal
metric space and T : X' — K (X)) be a multivalued map-
ping on X. Assume that the following conditions are satisfied:

(i) There exists x, € X such that {xy}L,Tx, or
T xoLy {xo}
(ii) For all x,y € &, xLy implies TxL,Ty
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(iii) If {x,} is an orthogonal sequence in I such that
x, — x* € X, then x,1x* or x* Lx, for alln e N

(iv) If F € &, there exists >0 such that for all x,y € &
with xLy satisfying the following:

H(Tx,Jy)>0, 1+ F(H(Tx,Jy)<F(d(x, y)).
(4)

Then T has at least a fixed point.

Proof. By assumption (i), there exists x; € I x; such that
XxoLx, or x; Lx,. By assumption (ii), we get 7 x,, L, 7 x,; that
is, there exists x, € Ix; such that x,1x, or x,Llx,. If
x; € Ix,, then x; is a fixed point of . Suppose that
x; ¢ T x,. Since Tx, is compact, d(x,,Tx,)>0. As
d(x,,Tx,)<H(Ixy, T x,), using (F1), we have F(d(x,,
T x,)) <F(H(T xy, T x,)). Therefore, using (iv), we get

F(d(x;,Tx,))<F(H(T x0T x,))<F(d(x¢%,)) - 7.
(5)

Continuing this process inductively, we can construct an
orthogonal sequence {x,} in 2 such that x,,,; € T x,,, for all
n e NU{0}. Thus we have x,lx,,, or x,,Llx, for all
n € NU{0}.

If x; € T x; for some k € NU {0}, then x, is a fixed point
of 7.

So, we may assume that x, ¢ 7 x,, for all n e NU{0}.
Since Jx, is closed, we have d(x,,Jx,)>0, for all
n e NU{0}. Also d(x,,Tx,)<H(Ix,_,,T x,). So using
(F1), we have F (d (x,, I x,,)) < F(H(J x,_;, I x,)). Further
from (iv) and for every n>1, we have

F(d (xn’ 9xn)) = F(H (gxn—l’ gxn)) < F(d (xn—l’ xn)) -T
(6)

Hence from the strictly increasing property of F, we get
H(Ix,,9x,_,)<d(x,,x,,). We know that x,,, € Ix,,
d(x,,x,1) =d(x,, Tx,) <H(T x,_1, T x,) <d(x,_;,X,).
Therefore, the sequence {d(x,,,,x,)} is strictly decreasing
sequence. Suppose that t, =d(x,,;,x,) — t, for some

t>0.
Furthermore, for all n>n,, we have

T+ F(d (xn+1>xn)) =T+ F(H (936,,, ‘G/vxn—l))

SF(d(xn’ xn—l))' (7)

Takingn — + oo in (7), we get 7+ F(t +0) <F(t +0),

which is contradiction, and hence t,, = d (x,,,,, x,,) — 0. By
(F3), there exists k € (0, 1) such that
lim tF(t,) =o. (8)
n—=+00

Using (6), we get

F(t,)<F(t,,)-71<F(t,,)-21< ... <F(ty) —nt.
9)
From (9), the following holds for all n € N:

t°F (t,) - tF (t,) < - t'nr<0. (10)
Letting n — o0 in (10), we get lim,__,  ntk = 0. Hence
there exists n; € N such that ntk <1 for all n>n,. So, we have

all for all n>n;:

1

S iy (11)

Now, we have to show that {x,} is a Cauchy orthogonal
sequence. Consider m,n € N such that m >n>n,. Using the
triangle inequality and (11), we have

d(xn’ xm) < d(xn’ xn+1) +d ('xn+17 'xn+2) L d(xm—l’ xm)’

m-1 +00

+00
1
:tn+tn+1+"'+tm—l = z tiS Ztig zi(l/k)'
i=n

i=n =n

(12)

By the convergence of series, Y. (1/i'/¥), passing to
limit n — + co, we get d(x,, x,,) — 0.

This shows that {x,} is a Cauchy orthogonal sequence.
Since & is O-complete, there exists x* € & such that

lim, ., x,=x"
Now, we claim that x* €  x*. Assume the contrary that
x* ¢ Ix*. Hence there exists n; € N such that

x* ¢ {xp}sn H(T x,, Tx*) > 0. Therefore, further by our
assumption, x, Lx* or x* Lx,, and using (iv), we get

F(d(x,1,Tx"))<t+F(H(Ix,,Tx"))<F(d(x,,x")).
(13)

Now using strict increasing property of F and 7> 0, we
get d(x,,,,Tx*)<d(x,,x*). Taking n — + 00, we get
x* € Tx* = J x*. Hence, the result is obtained.

Here it should be noted that in Theorem 1, Jx is
compact for all x € 2. Now, we have the following result in
which we give a partial answer to Reich’s problem for a
closed and bounded set. O

Theorem 2. Let (X, 1,d) be an O-complete orthogonal
metric space and T: X —> CRB (L) be a multivalued
mapping on L. Assume that the following conditions are
satisfied:
(i) There exists x, € X such that {xy}L,Tx, or
T xoL1{xo}
(ii) For all x,y € &, xLy implies TxL1,T y
(iii) If {x,} is an orthogonal sequence in I such that
x, — x* € X, then x,1Lx* or x* Lx,, for alln € N.
(iv) If F € 1, there exists >0 such that forall x,y € &
with x Ly satisfying the following:
H(Tx,9y)>0,1+F(H(Tx,7y)<F(d(x,y). (14)

Then T has at least a fixed point.

Proof. Let x, € & Since I x is nonempty for all x € X, by
assumption (i), we can choose x, € I x, such that x,Lx, or
x;1x,. If x; € Tx,, then x, is a fixed point of . Let



xq; ¢ T x,. Then d(x,, T x;) >0 since T x, is closed. Since
d(x,,Tx,) <H (T xy, T x,), then from (F1), we get

F(d(x,,Tx,))<F(H(Txy T x,)). (15)
Using (iv), we get
F(d(x;,Tx,))<F(H(T x0T x,))<F(d(xp%,)) - 7.
(16)

From (F4), we get F(d(x,,Tx,)) = irolf F(d(xy, y)).
So from (16), we have rera

F(d(x,,Tx,))= inf F(d(x,,y))<F(H (T x0T x,)),
yeT x;
<F(d(x0,x1)) -1, (17)
<F(d(xp3)) =3

By assumption (ii), we get 7 x,1,9 x,. Continuing this
process, we construct an orthogonal sequence {x,} in &
such that x,,, € Ix, for all ne NU{0}. Thus we have
x,Llx,., or x,,,1x, for all n e NU{0}.

If x; € T x; for some k € NU {0}, then x;, is a fixed point
of 7, and so the proof is completed.

So, we may assume that x, ¢ 7 x,, for all n e NU{0}.
Since Jx, is closed, we have d(x,,J x,)>0, for all
n e NU{0}. Also d(x,,7x,)<H(Ix,_,,T x,), and from
(F1), we get F(d(x,, I x,)) <F(H(I x,_,T x,)).

Furthermore, using (iv), we have

F(d (% Tx,)) < F(H(T %, T %11))

SF(A (% %)) = T<F(d (% %00)) =
(18)

Since F(d(x,,Jx,)) = irclf F(d(x,,y)). Therefore,
using (18), we get YT

F(d(x,7%,))= inf F(d(x,7)<F(H((Tx,,Tx,))
yeTx,

<F(d(x00%,) =5
(19)

So from (19), we can get a sequence {x,} in 2 such that
there exists x,,,; € 7 x, and F(d (x,, x,,,)) <F(d(x,_;,x,))
for all n € N. Now, proceeding on the same lines of Theorem
1, we get the result. O

3. Consequences

In this section, we give some interesting consequences of the
results proved in the previous section.

The following result is an immediate consequence of
Theorem 1.

Corollary 1. Let (X, L1,d) be an O-complete orthogonal
metric space and T: X — K (X). Assume that the fol-
lowing conditions are satisfied:
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(i) There exists x, € X such that {xy}L,Tx, or
T xoL1{xo}
(ii) For all x,y € X, xLy implies Tx1,T y
(iii) If {x,} is an orthogonal sequence in I such that
x, — x* € X, then x,1x* or x* Lx, for alln € N.

(iv) There exists some 1; >0, i = 1,2,3 such that for all
x,y € X with xLy, H(Tx,J y) >0, either of the
following contractive conditions hold:

7, +H(Tx,T y)<d(x, y);

1 1
T, - < - ;
> H(IxTy)~ d(xy) (20)
1 - 1
BT ATy =] Ay

Then I has at least a fixed point in each of these
cases.

Proof. As each functions F,(r) =r, F,(r) = (-1/r), and
Fi(r)= (1/1—-¢€"), where r=d(x,y)>0, is strictly in-
creasing on (0, +00), so the proof immediately follows from
Theorem 1.

As a consequence of Theorem 1, we have the following
result for single-valued mapping by replacing condition (iii)
with I is L-continuous. O

Corollary 2. Let (X,L1,d) be an O-complete orthogonal
metric space and T: X — X. Assume that the following
conditions are satisfied:

(i) There exists some 7>0, such that for all x,y € &
with xLy, d(Tx,T y)>0:

1+ F(d(Tx,Ty)<F(d(x,y)), (21)

where F € &.
(ii) There exists x, € & such that x, LT x, or T xyLx,.
(iii) For all x,y € X, xLy implies Tx1T y
(iv) T is L-continuous

Then, T has a fixed point.

Proof. Here, we can choose  as a multivalued mapping by
considering I x is a singleton set for every x € 2. Arguing
on the same lines of Theorem 1, we consider {x,,} is a Cauchy
orthogonal sequence and lim x,=x*. As T s
L-continuous, we have
d(x",Tx")= lim d(J«

n—-+00

n—00

T x") =0, (22)
i.e., x* is a fixed point of 7.

As a consequence of Corollary 2, we have the following
result by taking F(r) = Inr, r>0. O

Corollary 3. Let (X,1,d) be an O-complete orthogonal
metric space and T: X — X. Assume that the following
conditions are satisfied:
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(i) There exists some 7>0, such that for all x,y € &
with x1y, d(Tx,T y)>0:

d(Tx,Ty)<e "d(x,y), (23)

where F € F.
(ii) There exists x, € X such that x, LT x, or T x,Lx,.
(iii) For all x,y € X, xLy implies Tx1T y.
(iv) T is L-continuous.

Then T has a fixed point.

4. Illustration

In this section, we illustrate an example which shows that 7
is a multivalued orthogonal mapping and satisfies the
condition (iv) of Theorem 1, but it is not multivalued or-
thogonal contraction (H (9 x, J y) <kd(x, y),fork € [0,1)
with x1y).

Example 5. Let & = {S, = (n(n+1)/2): n € N} and d: I x
X — [0, 00) be a mapping defined by d (x, y) = |x — y| for
all x,y e X.

Define a relation L on X by xLly if and only if
xy e {x,y} < ={S,}.

Thus (X, 1,d) is an O-complete orthogonal metric
space. Now, we define a mapping 7: &' — F () by

9x={{xl}) o (24)
{xi, . 0oxqbh x=x,n>1

We claim that 7 is a multivalued orthogonal mapping
satistfying condition (iv) of Theorem 1 with respect to F (&) =
a +In(a), a>0and 7 = 1. To see this, we have the following
cases.

First, we observe that for all m,n e N, H(7 x,J y) >0 if
and onlyif m>2andn=1orm>n>1.

Case 1. For m>2 and n = 1, we have

o o
H(‘/ Xin> J xl) eH(gxm,Fxl)—d(xm,xl)

d(xm’xl)
Xy — X _ m -m-2 _ _ 1
— m—1 1exm,1 Xp 5 e m<e m<e
X, — X; m +m-—2
(25)

Case 2. For m>n>1, we get

H (9xm’ 9xn) eH (gxm,f]”xn)—d (xm,xn)

d(xm’xn)
X, 1 — X, _ _ _
_ Zm-1 n lexm,l Xy = Xyt Xy (26)
Xm = Xn
m+n—-1 ,_ - -
=7€n m<en mSe 1.
m+n+1

This shows that I satisfies (iv) of Theorem 1. Hence,
has a fixed point.

On the contrary, J is not multivalued orthogonal
contraction (H (I x,J y)<kd(x,y), k € [0,1)), as

H(Ix,T -1
fim A% Tx) o K1 (27)
n—+00 d(xn,xl) n—+co X, —
5. Applications

In this section, we present the Ulam stability and solve a
nonlinear fractional differential-type equation using Cor-
ollary 3.

5.1. Ulam Stability. The Ulam [16, 17] stability has attracted
attention of several authors in fixed point theory [18]. On
orthogonal metric space (X,1,d), : X — I, we in-
vestigate the fixed point equation:

Tv=nw, (28)
and the inequality (for &> 0):
d(Tx,x)<e (29)
Equation (28) is called the Ulam stable if it satisfies the
following condition:

(A) There is a constant § >0, for each £¢>0, and for
every solution x* of the inequality (29), there is a
solution v* € X for equation (28) such that

d(v',x") < 6e (30)

Theorem 3. Under the hypothesis of Corollary 3, the fixed
point equation (28) is Ulam stable.

Proof. On account of Corollary 3, we guarantee a unique
v* € X such that v* = Iv*, that is, v* € 2 forms a solution
of (28). Let >0 and x* € 2 be an e-solution, that is,

d(Tx",x")<e (31)
We have
d(v,x")=d(Tv",x")
<d(Iv,Tx")+d(Tx",x") (32)

<e d(vi,x")+e

Hence, d(v*,x*)< (1/1 —e ")e = ke, where k= (1/1
—e~ ") > 0. Therefore, equation (28) is Ulam stable. O

5.2. Application to Nonlinear Fractional Integro-Differential
Equation. Here, we give a solution for a Caputo-type
nonlinear fractional integro-differential equation. For more
details on fractional calculus, see [19-25] and references
cited therein.

The Caputo derivative of a continuous mapping
g: [0,00) — R (order § >0) is given by



Jt g(ﬂ)(s)ds
T'(n- 6) 0 (t— S)é—ml’ (33)

°p’g(r) =

n—-1<d<nn=[6] +1,

where I' represents the gamma function and [d] refers to the
integer part of the positive real number 6.

In this section, we examine the nonlinear fractional
integro-differential equation of the Caputo type:

CDu(t) = C(t,u(t)), tel=[0,1],1<86<2,
(34)

0
1(0) = 0,u(1) = j u(s)ds,
0

where u € (C[0,1],R), 8 € (0,1),and €: I xR — R is a
continuous function (for more details, see [20]).

We consider & = {u: u € (C[0, 1], R)} with supremum
norm [lul| = sup;c (ot (£)]. So (X, |[.[) is a Banach space.

The space 2: = C([0,1],R) endowed with the metric
d: T xXL —> [0,00) defined as d(u,v)=|u-v|=
supyefo] (Dlu(t) = v(t)| and define an orthogonal relation
ulvifandonlyifuv>0,forallu,v € 2. Then (X, L,d)isan
orthogonal metric space.

Clearly, a solution of equation (34) is a fixed point of the
integral equation:

Ju(t) = %5) J; (t- 5)87 1?((s,u(s)))ds,

_L ! -1
(2-6)r J0(1 ST F (s uls)ds,

+ m J:(J; (s— m)‘s*l? (s,u (m))dm)ds.

(35)

\Tu(t) - Tv(D)] = | Jt (t = )19 (s,u(s))ds -
0

I'(s)

+#
(2-6°)r )

- <L Jt (t- s)‘s_l?(s, v(s))ds —

INE)

0
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Theorem 4. Assume that &: I x R — R is a continuous
function satisfying

re+1) _,

|G (s,u(s)) — G (s,v(s)] < e |lu(s)—v(s)l

(36)

for each s € [0,1], for some v>0 and for all u,ve
C([0,1],R). Then the fractional differential equation (34)
with given boundary conditions has a solution.

Proof. The space 2: = C([0,1],R) endowed with the
metric d: X' x X — [0,00) defined as
d(u,v) = sup;c(olu(t) =v(t)l, for all u,v € Z. Define an
orthogonal relation uLv if and only if uv >0, for all u, v € Z.
Then (Z,1,d) is an orthogonal metric space. Define
I X — X as in (35). So T is L-continuous. First, we
show that I is L-preserving, let u(¢)Lv(¢) for all t € [0, 1].
Now, from (35). we have

Tu(t) :ﬁ J; (t—5)""% (s, (s))ds,

2t ! o-1
MR jo (1-9°1% (s,u(s))ds,

2t (s 5-1
Ry jo(jo (s—m) ?(s,u(m))dm)ds>0,
(37)

which implies that Tu LT v.
Now, we have to show that I satisfies (i) of Corollary 2
for F(r) =Inr, r>0. For all t € [0,1], u(t)Lv(t), we have

2 I
(2—92)F(8)J0(1 $)° € (s,u(s))ds

J:(J; (s- m)é— 1?(5’”(m))dWI)ds,

2t 1 51
m JO (1-5)" "Z(s,v(s))ds

N (z%t)r(a) J:(IO (s—m)’ e (s, v(m))dm)ds)l,
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<L Jt (t - s)é_llf'?(s u(s)) — € (s,v(s))|ds o Jl (1- s)a_llg(s u(s)) — C(s,v(s))|ds
"I Jo ’ ’ (2-6)r () Jo ’ ’
T je(r( )1 (5, (m) - 5 (5, v (m)ldm )
—— s—m s,u(m)) — @ (s,v(m))|dm )ds,
(2-6°)r(® Jo\o
1 (! 51[F(8+1) .
<—= (t—s ———¢ " sup |u(s)—v(s)||ds
ol R sup (9 V(9
2t Jl 51[r(5+ n _, ]
——— | (1-3%) ——¢ " sup |u(s)—v(s)||ds
(2-6°)re©) Jo 5 o]
2 O (s r 1
+ft J (J (s—m)a_l[Me_T sup Iu(s)—v(s)l]dm)ds,
(2-6°)re) Jo\Jo 5 se[01]
rege+1) _; I 51 2t ! 51
<|——e " su Iu(s)—v(s)l]x su —J (t—2s) ds—ij (1-9)""ds
[ 5 el te[o§]<r(6) 0 (2-6°)re©®) Jo
+ 2 J0<JS (s m)‘sfldm>ds <e " sup |u(s)—v(s)| =e "du,v)
N e - = u - = > >
(2-6)r(©® Jo\o celo
(38)
for all u,v € X. Therefore, the condition (i) of Corollary 2 References
holds. Accordingly, all axioms of Corollary 2 are verified,
and 7 has a fixed point. The Caputo-type nonlinear frac- (1] S. Nadler, “Multi-valued contraction mappings,” Pacific

tional differential equation (34) possesses a solution is

yielded. (2]
6. Conclusions 53]
In this manuscript, we prove some existence results for the
multivalued orthogonal mappings using the conditions (F1) 4]
and (F2) of Wardowski’s and obtain the stability of a fixed
point problem and a solution for the Caputo-type nonlinear
fractional differential equation. [5]
Now, we have an open question, whether we can obtain
Theorems 1 and 2 with condition (F1) only of Wardowski in
the setting of orthogonal metric space? (6]
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