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A linear barycentric rational collocation method (LBRCM) for solving Schrodinger equation (SDE) is proposed. According to the
barycentric interpolation method (BIM) of rational polynomial and Chebyshev polynomial, the matrix form of the collocation
method (CM) that is easy to program is obtained. ,e convergence rate of the LBRCM for solving the Schrodinger equation is
proved from the convergence rate of linear barycentric rational interpolation. Finally, a numerical example verifies the correctness
of the theoretical analysis.

1. Introduction

Schrodinger equation (SDE) is widely used in atomic
physics, nuclear physics and solid physics, quantum me-
chanics, and so on. SDE is only applicable to nonrelativistic
particles with low velocity, and there is no description of
particle spin. In this paper, we are concerned with solving
the numerical solution of the SDE:

ih
zφ(x, t)

zt
� −

h
2

2m

z
2φ(x, t)

zx
2 + V(x, t)φ(x, t) + f(x, t),

(1)

φ(x, 0) � g1(x),φ(x, t) � g2(x), x ∈ (a, b), (2)

φ(a, t) � h1(t),φ(b, t) � h2(t), 0< t<T, (3)

where h is reduced Planck constant and m denotes quality.
In [1], the fractional Schrodinger–Choquard equation with
blow-up criteria and instability of normalized standing
waves is studied. In [2], the finite-difference time-domain
(FDTD) method is studied to solve SDE. In [3], nonlinear
magnetic Schrodinger–Poisson type equation is studied. In
[4], high-order multiscale discontinuous Galerkin method

for one-dimensional stationary SDEs with oscillating solu-
tions is presented. In [5], sixth-order nonlinear SDE is
concerned by factorization formula and an analytical
method. In [6], nonlinear SDEs are solved by the iterative
method. In [7], the two-dimensional Klein–Gordon SDEs
are solved by linear compact alternating direction implicit
(CADI) scheme.

For getting the equidistant node of the barycentric
formula, Floater [8–10] has proposed a reasonable inter-
polation method; in particular, equidistant distribution
nodes and the quasi-equidistant nodes have high numerical
stability and accuracy of interpolation [11, 12]. In [13, 14],
the linear barycentric rational collocation method (LBRCM)
have been used to solve the integro-differential equation.
Wang et al. [15–17] have expanded the application fields of
the collocation method (CM), such as initial value problems,
plane elasticity problems, and nonlinear problems. LBRCM
for solving heat conduction equation and biharmonic
equation are studied in [18, 19].

In this paper, a LBRCM for solving SDE is proposed.
According to the barycentric interpolation method (BIM) of
rational polynomial and Chebyshev polynomial, the matrix
form of the collocation method that is easy to program is
obtained. ,e convergence rate of the LBRC method for
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solving the telegraph equation is proved from the conver-
gence rate of linear barycentric rational interpolation
(LBRI). Finally, a numerical example verifies the correctness
of the theoretical analysis.

,e remaining of this paper is planned as follows.
Section 2 presents the differentiation matrices, CM for SDE,
and the matrix form of CM. In Section 3, the convergence
rate is proved. Finally, a numerical example verifies the
theoretical analysis.

2. Differentiation Matrices of SDE

We partition the interval [a, b] and [0, T] into
a � x0 < x1 < · · · <xm � b and 0 � t0 < t1 < · · · < tn � T with
hi � xi − xi− 1, i � 0, 1, . . . , m, and τj � tj − tj− 1, j � 0, 1,

. . . , n, for the uniform partition with h � (b − a)/m and
τ � T/n. For Ω � [a, b] × [0, T] with (xi, tj), i � 0, 1,

. . . , m and j � 0, 1, . . . , n will be the uniform partition.
Consider the barycentric interpolation function (BIF) as

φ xi, t(  � φ xi( , i � 0, 1, . . . , m, (4)

and its barycentric interpolation approximation is

φ(x, t) � 
m

i�0


n

j�0
ri(x)rj(t)φij, (5)

where

ri(x) �
wi/ x − xi( 


n
k�0 wk/ x − xk( 

,

wi � 
k1∈Ji

(− 1)
i− d1 

k1+d1

h1�k1 ,h1≠i

1
xi − xh1




,

(6)

where Ji � k1 ∈ Im: i − d1 ≤ k1 ≤ i , Im � 0., . . . , m − d1 ,
and

rj(t) �
wj/ t − tj 


n
k�0 wk/ t − tk( 

, wj � 
k2∈Jj

(− 1)
j− d2 

k2+d2

h2�k2 ,h2≠j

1
tj − th2




,

(7)

where Jj � k2 ∈ In: j − d2 ≤ k2 ≤ j , In � 0. · · · , n − d2  is
the basis function, and φij is the value at point φ(xi, tj).
Combining equations (1) and (5), we obtain

i Im ⊗D
(1)

 

φ0

⋮

φm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ C

(2) ⊗ In 

φ0

⋮

φm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− In

φ0

⋮

φm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

f0

⋮

fm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(8)

and then, we have

iIm ⊗D
(1)

+ C
(2) ⊗ In  − Im ⊗ In Φ � F, (9)

and

LΦ � F, (10)

where

L � iIm ⊗D
(1)

+ C
(2) ⊗ In  − Im ⊗ In, (11)

and

D
(1)
ij �

wj/wi

ti − tj

, i≠ j,

− 
k ≠ i

D
(1)
ik , i � j,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(12)

and

C
(1)
ij �

wj/wi

xi − xj

, i≠ j,

− 
k≠i

C
(1)
ik , i � j,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

C
(2)
ij �

2C
(1)
ij D

(1)
ii −

1
xi − xj

 , i≠ j,

− 
k≠i

C
(2)
ik , i � j,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(13)

and ⊗ is Kronecher product of matrix. In the following, we
define the Kronecher product of matrix A � (aij)m×n and
B � (bij)k×l as

A⊗B � aijB 
m·k×n·l

, (14)

where

aijB �

aijb11 aijb12 · · · aijb1l

aijb21 aijb22 · · · aijb2l

⋮ ⋮ ⋮ ⋮

aijbk1 aijbk2 · · · aijbkl

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (15)

3. Convergence Rate and Error Analysis

,e barycentric rational interpolants of function (BRIF)
ϕ(x) with r(x) and its error convergence rate is

e(x) ≔ φ(x) − rn(x) � x − xi(  · · ·

· x − xi+d( φ xi, xi+1, . . . xi+d,x ,
(16)

and

e(x) �


n− d
i�0 λi(x) φ(x) − rn(x)( 


n− d
i�0 λi(x)

�
A(x)

B(x)
� O h

d+1
 ,

(17)

where
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A(x) ≔ 
n− d

i�0
(− 1)

iφ xi, xi+1, . . . xi+d,x , (18)

and

B(x) � 
n− d

i�0
λi(x), (19)

where

λi(x) �
(− 1)

i

x − xi(  · · · x − xi+d( 
. (20)

,e following Lemma was proved by Jean-Pau Berrut in
[11].

Lemma 1 (see [11]), For e(x) defined in (16), we have

|e(x)|≤Ch
d+1

, φ ∈ C
d+2

[a, b],

e′(x)


≤Ch
d
, φ ∈ C

d+3
[a, b],

e″(x)


≤Ch
d− 1

, φ ∈ C
d+4

[a, b], d≥ 1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(21)

For the BRIF φ(x, t) with r(x, t), we can get the bar-
ycentric rational interpolation (BRI):

rn(x, t) �


m
i�0 

n
j�0 wij/ x − xi(  t − tj  φij


m
i�0 

n
j�0 wij/ x − xi(  t − tj 

, (22)

where

wij � 
k1∈Ji


k2∈Jj

(− 1)
i− d1+j− d2 

k1+d1

h1�k1 ,h1≠i

1
xi − xh1






k2+d2

h2�k2 ,h2≠j

1
tj − th2




, (23)

and Ji � k1 ∈ Im: i − d1 ≤ k1 ≤ i , Im � 0. . . . , m − d1 ,

Jj � k2 ∈ In: j − d2 ≤ k2 ≤ j , In � 0. . . . , n − d2 . (24)

By the error term of Newton–Cotes rule for two-di-
mensional function, we have

e(x, t) ≔ φ(x, t) − r(x, t) � φ(x, t) − rn(x, t)

� x − xi(  · · · x − xi+d1
 φ xi, xi+1, · · · xi+d1 ,x 

+ t − tj  · · · t − tj+d2
 φ tj, tj+1, · · · tj+d2 ,t .

(25)

The following theorem has been proved in reference by
Li in [18].

Theorem 1. For e(x, t) defined in (25) and
φ(x, t) ∈ Cd1+2[a, b] × Cd2+2[0, T], we have

|e(x, t)|≤C h
d1+1

+ τd2+1
 . (26)

Corollary 1. For e(x, t) defined in (25),

ex(x, t)


≤C h
d1 + τd2+1

 , φ(x, t) ∈ C
d1+3

[a, b] × C
d2+2

[0, T],

et(x, t)


≤C h
d1+1

+ τd2 , φ(x, t) ∈ C
d1+2

[a, b] × C
d2+3

[0, T],

exx(x, t)


≤C h
d1− 1

+ τd2+1
 , φ(x, t) ∈ C

d1+4
[a, b] × C

d2+2
[0, T], d1 ≥ 1.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(27)

This corollary can be obtained similarly as Theorem 1,
where we omit it.

Let φ(x, t) be the solution of (1) and φ(xm, tn) be the
numerical solution; then, we have

Dφ xm, tn(  � f(x, t), (28)

and

lim
m,n⟶∞

Dφ xm, tn(  � f(x, t). (29)

According to the above lemma, the following theorem
can be proved.

Theorem 2. Let φ(xm, tn): Dφ(xm, tn) � f(x, t) and
f(x) ∈ C[a, b]; we have

φ(x, t) − φ xm, tn( 


≤C h
d1− 1

+ τd2 . (30)

Proof. As
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Dφ(x, t) − Dφ xm, tn( 

� iφt(x, t) − φ(x, t) + iφxx(x, t) − iφt xm, tn(  − φ xm, tn(  + iφxx xm, tn(  

� i φt(x, t) − φt xm, tn(   + − φ(x, t) + φ xm, tn(   + i φxx(x, t) − φxx xm, tn(  

≔ iR1(x, t) + R2(x, t) + iR3(x, t),

(31)

Table 1: Convergence rate of equidistant nodes with different d1 � 7 and t � 2.

n d2 � 2 d2 � 3 d2 � 4 d2 � 5

8 × 8 6.1237e − 01 8.7824e − 01 7.4433e − 01 1.1222e+ 00
16 × 16 1.7534e − 01 1.8042 1.0471e − 01 3.0682 3.0341e − 02 4.6166 4.9307e − 02 4.5084
32 × 32 3.3624e − 02 2.3826 6.6239e − 03 3.9826 2.3415e − 03 3.6957 7.0714e − 04 6.1236
64 × 64 6.0006e − 03 2.4863 4.5724e − 04 3.8567 1.1369e − 04 4.3643 1.0298e − 05 6.1016

Table 2: Convergence rate of equidistant nodes with different d2 � 7 and t � 2.

n d1 � 2 d1 � 3 d1 � 4 d1 � 5

8 × 8 1.6771 1.6716 1.6795 1.6782
16 × 16 1.5313e − 02 6.7751 1.6007e − 02 6.7064 1.6217e − 02 6.6944 1.6091e − 02 6.7045
32 × 32 1.4665e − 03 3.3843 7.1109e − 05 7.8144 8.4703e − 05 7.5809 7.2416e − 05 7.7957
64 × 64 1.8040e − 04 3.0231 2.9783e − 06 4.5775 6.9138e − 07 6.9368 2.4334e − 07 8.2172

Table 3: Convergence rate of quasi-equidistant nodes with different d1 � 7 and t � 2.

n d2 � 2 d2 � 3 d2 � 4 d2 � 5

8 × 8 5.1334e − 01 3.7631e − 01 1.1156e − 01 1.2259e − 01
16 × 16 2.8133e − 02 4.1896 1.1572e − 02 5.0232 4.8063e − 03 4.5368 2.5873e − 03 5.5663
32 × 32 2.8913e − 03 3.2825 5.4800e − 04 4.4003 1.4573e − 04 5.0435 2.1084e − 05 6.9392
64 × 64 3.2935e − 04 3.1340 3.0820e − 05 4.1523 4.1594e − 06 5.1308 2.5797e − 07 6.3528

Table 4: Convergence rate of quasi-equidistant nodes with different d2 � 7 and t � 2.

n d1 � 2 d1 � 3 d1 � 4 d1 � 5

8 × 8 2.8707e − 01 2.8566e − 01 2.8297e − 01 2.8323e − 01
16 × 16 1.0263e − 02 4.8059 5.7980e − 04 8.9445 5.0888e − 04 9.1191 5.0644e − 04 9.1274
32 × 32 6.1791e − 04 4.0539 2.9283e − 06 7.6293 1.1254e − 06 8.8207 1.0428e − 06 8.9237
64 × 64 7.9511e − 05 2.9582 1.3835e − 06 1.0817 1.4398e − 06 — 4.3847e − 06 —
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Figure 1: Error estimate of equidistant nodes with t � 2, m � n � 19, and d1 � d2 � 8.
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Figure 2: Error estimate of quasi-equidistant nodes with t � 2, m � n � 19, and d1 � d2 � 8.

Table 5: Convergence rate of equidistant nodes with different d1 � 7 and t � 1.

n d2 � 2 d2 � 3 d2 � 4 d2 � 5

8 × 8 1.7995e − 03 4.6557e − 04 1.5050e − 04 1.4417e − 04
16 × 16 5.5795e − 04 1.6894 6.5769e − 05 2.8235 1.1394e − 05 3.7235 1.5421e − 06 6.5467
32 × 32 1.1570e − 04 2.2698 5.2988e − 06 3.6337 4.9129e − 07 4.5355 2.8309e − 08 5.7675
64 × 64 2.1482e − 05 2.4291 4.7396e − 07 3.4828 2.3083e − 08 4.4117 5.7039e − 10 5.6332

Table 6: Convergence rate of equidistant nodes with different d2 � 7 and t � 1.

n d1 � 2 d1 � 3 d1 � 4 d1 � 5

8 × 8 1.6168e − 03 5.1505e − 04 1.7042e − 04 9.0483e − 05
16 × 16 1.9952e − 04 3.0185 2.1403e − 05 4.5888 8.2906e − 06 4.3615 1.2726e − 06 6.1518
32 × 32 2.5369e − 05 2.9754 1.2042e − 06 4.1516 2.4768e − 07 5.0649 1.4595e − 08 6.4461
64 × 64 3.4030e − 06 2.8982 7.6096e − 08 3.9842 8.0774e − 09 4.9384 3.4093e − 10 5.4198

Table 7: Convergence rate of quasi-equidistant nodes with different d1 � 7 and t � 1.

n d2 � 2 d2 � 3 d2 � 4 d2 � 5

8 × 8 2.1572e − 03 2.1324e − 04 2.9588e − 05 1.1861e − 05
16 × 16 1.7804e − 04 3.5989 6.5585e − 06 5.0230 9.5692e − 07 4.9505 7.8014e − 08 7.2482
32 × 32 1.2864e − 05 3.7907 4.1551e − 07 3.9804 3.2481e − 08 4.8807 1.0198e − 09 6.2574
64 × 64 1.3676e − 06 3.2336 2.2121e − 08 4.2314 8.0913e − 09 2.0051 2.4516e − 08 -

Table 8: Convergence rate of quasi-equidistant nodes with different d2 � 7 and t � 1.

n d1 � 2 d1 � 3 d1 � 4 d1 � 5

8 × 8 2.1937e − 03 5.6367e − 04 7.8737e − 05 6.3534e − 06
16 × 16 1.6769e − 04 3.7094 3.6712e − 06 7.2625 5.9101e − 07 7.0577 8.7629e − 08 6.1800
32 × 32 1.4478e − 05 3.5339 1.2449e − 07 4.8821 1.2882e − − 08 5.5198 4.5441e − 10 7.5913
64 × 64 7.0525e − 06 1.0376 6.1937e − 07 — 2.2631e − 07 — 1.0710e − 06 —
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we have
R1(x, t) � φt(x, t) − φt xm, tn( ,

R2(x, t) � φ(x, t) − φ xm, tn( ,

R3(x, t) � φxx(x, t) − φxx xm, tn( .

(32)

As, for R3(x, t), we have

R3(x, t) � φxx(x, t) − φxx xm, tn( 

� φxx(x, t) − φxx xm, t(  + φxx xm, t(  − φxx xm, tn( 

�


m− d1
i�0 (− 1)

iφxx xi, xi+1, . . . , xi+d1,x, t 


m− d1
i�0 λi(x)

+


n− d2
j�0 (− 1)

jφxx tj, tj+1, . . . , tj+d2 ,xm, t 


n− d2
j�0 λj(t)

� exx x, tn(  + exx xm, tn( .

(33)

By the corollary, we obtain

R3(x, t)


≤ exx x, tn(  + exx xm, tn( 


≤C h
d1+1

+ τd2+1
 .

(34)

Similarly, for R2(x, t) and R1(x, t), we have

R1(x, t) � φt(x, t) − φt xm, tn(  � et x, tn(  − et xm, tn( ,

(35)

R1(x, t)


≤ et x, tn(  + et xm, tn( 


≤C h
d1+1

+ τd2 ,

(36)

and

R2(x, t) � β φ(x, t) − φ xm, tn( 


≤C h
d1+1

+ τd2+1
 . (37)

Combining the identity equations (31), (34), (36), and
(37), the conclusion of theorem is obtained.

4. Numerical Examples

Example 1. 6e SDE a � 0, b � 1, t � 2, and

f(x, t) � 0, (38)

under condition g1(x) �
�
2

√
sin(πx); the analysis solution is

φ(x, t) �
�
2

√
e

− iπ2t/2 sin(πx). (39)

Tables 1 and 2 show the errors of the LBRCM for
equidistant nodes of space variables and time variables.

Tables 3 and 4 show the errors of the LBRCM for quasi-
equidistant nodes of space variables and time variables.

Example 2. 6e SDE a � 0, b � 1, t � 1, and

f(x, t) � x
2

− 2 e
iπ2t/4 cos

πx

2
  + 2π sin

πx

2
 , (40)

under condition g1(x) � x2 cos(πx/2); the analysis solution
is

φ(x, t) � e
− t sin x. (41)

In Figures 1 and 2, the error estimate of equidistant and
quasi-equidistant nodes with t � 2, m � n � 19, andd1
� d2 � 8 is presented. It can be seen from Figure 2 that the
barycentric rational interpolation collocation method has
higher accuracy in both quasi-equidistant and equidistant
nodes conditions.

Tables 5 and 6 show the errors of the LBRCM for
equidistant nodes of space variables and time variables.

Tables 7 and 8 show the errors of the LBRCM for quasi-
equidistant nodes of space variables and time variables.

5. Conclusion

In this paper, the LBRCM have been constructed to solve
SDE, while the time variable and space variable are obtained
at the same time. Numerical solution confirms the theorem
analysis.
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Barycentric rational collocation method is introduced to solve the Forchheimer law modeling incompressible fluids in porous
media. -e unknown velocity and pressure are approximated by the barycentric rational function. -e main advantages of this
method are high precision and efficiency. At the same time, the algorithm and program can be expanded to other problems. -e
numerical stability can be guaranteed. -e matrix form of the collocation method is obtained from the discrete numerical
schemes. Numerical analysis and error estimates for velocity and pressure are established. Numerical experiments are carried out
to validate the convergence rates and show the efficiency.

1. Introduction

Darcy flow in porous media is of great interest in many
science and engineering fields such as oil recovery and
groundwater pollution contamination. Darcy’s law,

μ
k

u(x) � −
dp(x)

dx
+ ρg(x), x ∈ (a, b), (1)

mainly describes the linear relationship between Darcy
velocity u and derivative of pressure p. Here, symbols μ, k, ρ,
and g(x) represent the viscosity coefficient, permeability,
the density of the fluids, and the gravitational term, re-
spectively. -is model is widely used and suitable for low
velocity, small porosity, and permeability fluids [1–4].

If the porosity is nonuniform and velocity is higher, a
second-order term is needed to be added, the non-Darcy re-
lationship has been researched by Forchheimer [1]. For ex-
ample, the high-speed Forchheimer flow of single-phase
incompressible fluid in porous medium is presented as follows:

μ
k

u(x) + βρ|u(x)|u(x) � −
dp(x)

dx
+ ρg(x), x ∈ (a, b).

(2)

Note that when Forchheimer number β � 0, nonlinear
model (2) degenerates to linear Darcy’s law (1).

Model (2) is also called Darcy–Forchheimer law [5–10].
In [6], a block-centered finite difference method has been
introduced to solve the Darcy–Forchheimer law. Discrete
numerical scheme and error estimates were given. Mixed
finite element method (MFEM) for equation (2) was studied
in [7, 8]. Using this method, velocity and pressure can be
approximated simultaneously. Two-grid and multigrid
block-centered finite difference method (FDM) for the
Darcy–Forchheimer flow in porous media was researched in
[10, 11], respectively.-is method can improve the efficiency
of dealing with nonlinear problems.-e barycentric formula
is obtained by the Lagrange interpolation formula [12–16]
and has been used to solve Volterra equation and Volterra
integro-differential equation [12, 17, 18]. Floater and Hor-
mann [19] have proposed a rational interpolation scheme
which has higher accuracy on equidistant and special dis-
tributed nodes. Wang et al. [20–22] successfully applied the
barycentric rational collocation method (BRCM) to solve
initial value problem, boundary value problem, plane
elasticity problem, and some nonlinear problems. -ese
research studies extended the application fields of

Hindawi
Journal of Mathematics
Volume 2021, Article ID 5514916, 8 pages
https://doi.org/10.1155/2021/5514916

mailto:zhaoqingliabc@163.com
https://orcid.org/0000-0001-5234-855X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5514916


barycentric rational collocation method. In recent papers, Li
et al. [23–27] have used the barycentric rational collocation
method to solve heat conduction equation, biharmonic
problem, and second-order Volterra integro-differential
equation.

In this paper, barycentric rational collocation method is
introduced to solve the incompressible Forchheimer flow.
We demonstrate that barycentric rational collocation
method is highly accurate for both velocity and pressure.
O(hd) error estimates for velocity and pressure are given.
Numerical experiments [28–32] are carried out to show the
convergence rates. -e paper is organized as follows. In
Section 2, notations and barycentric formula are given. In
Section 3, convergence analysis of barycentric rational
collocation method for Forchheimer law and error estimates
of velocity and pressure are presented. In Section 4, nu-
merical examples are carried out to verify the convergence
rates and show the efficiency. -roughout this paper, C

denotes a positive constant independent of h.

2. Notations and Barycentric
Rational Algorithm

-e partition of interval Ω � [a, b] is as follows:

a � x0 <x1 < · · · < xn− 1 < xn � b. (3)

Define

Ωi � xi− 1, xi , 1≤ i≤ n,

hi � xi − xi− 1, 1≤ i≤ n,

h � max
1≤i≤n

hi.

(4)

For the function u(x), the interpolation function r(x)

(d � 0, 1, . . . , n) is given as

r(x) �


n− d
i�0 λi(x)pi(x)


n− d
i�0 λi(x)

. (5)

Symbol pi(x) denotes the d-order interpolation poly-
nomial such that pi(xk) � u(xk) for k � i, i + 1, . . . , i + d,

pi(x) � 
i+d

k�i



i+d

j�i,j ≠ k

x − xj

xk − xj

uk, (6)

where uk � u(xk) and λi(x) is a blending function

λi(x) �
(− 1)

i

x − xi(  . . . x − xi+d( 
. (7)

For the numerator term in (5), we deduce that



n− d

i�0
λi(x)pi(x) � 

n− d

i�0
(− 1)

i


i+d

k�i



i+d

i,j≠ k

1
xk − xj

uk � 
n

k�0

ωk

x − xk

uk.

(8)

Here,

ωk � 
i∈Jk



i+d

j�i,j≠ k

1
xk − xj

, (9)

and Jk � i ∈ I; k − d≤ i≤ k{ }, I � 0, 1, . . . , n − d{ }.
Note that



i+d

k�i



i+d

j�i,j≠ k

x − xj

xk − xj

� 1, (10)

and for the denominator term in (5),



n− d

i�0
λi(x) � 

n

k�0

ωk

x − xk

. (11)

-rough further deduction, we get

r(x) �


n
j�0 ωj/x − xj uj


n
j�0 ωj/x − xj

� 
n

j�0
rj(x)uj. (12)

Here, ωk is described as (9). -e basis function rj(x) of
barycentric rational interpolation is

rj(x) �
ωj/x − xj


n
j�0 ωj/x − xj

, j � 0, 1, . . . , n. (13)

-en, we get the derivative formula at node xi as

u
(m)

xi(  ≔ u
(m)
i �

dm
u xi( 

dx
m � 

n

j�0
r

(m)
j xi( uj � 

n

j�0
D

(m)
ij uj, m � 0, 1, 2, . . . . (14)

Its matrix formulation can be given as

u(m)
� D(m)u, (15)

where

u(m)
� u

(m)
0 , u

(m)
1 , . . . , u

(m)
n ,

D
(m)
ij � r

(m)
j xi( .

(16)

-e derivative formulation of the basis function rj(x) at
node xi is
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rj
′ xi(  �

ωj/ωi

xi − xj

, j≠ i, (17)

ri
′ xi(  � − 

j≠ i

rj
′ xi( . (18)

According to induction (14)–(18), we obtain the re-
currence formula of D

(m)
ij as

D
(m)
ij � m D

(m− 1)
ii D

(1)
ij −

D
(m− 1)
ij

xi − xj

⎛⎝ ⎞⎠, i≠ j,

D
(m)
ii � 

j≠ i

D
(m)
ij .

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(19)

3. Convergence Rates and Error Estimates

Define the error between u(x) and barycentric rational
interpolation function r(x) as

e(x) � u(x) − r(x). (20)

According to rational interpolation error theory, we
know

e(x) � x − xi(  . . . x − xi+d( u xi, xi+1, . . . , xi+d, x .

(21)

Combing (21) with (5), we see

e(x) �


n− d
i�0 λi(x) u(x) − pi(x)( 


n− d
i�0 λi(x)

�
A(x)

B(x)
, (22)

where

A(x) � 
n− d

i�0
(− 1)

i
u xi, xi+1, . . . , xi+d, x , B(x) � 

n− d

i�0
λi(x).

(23)
Define the error norm of e(x)as

|e(x)| � max
a≤x≤b

|e(x)|. (24)

-e following lemma has been proved in [12].

Lemma 1 (see [12]). For the error e(x) defined as (20), we
have

|e(x)|≤Ch
d+1

, u ∈ C
d+2

[a, b],

ex(x)


≤Ch
d
, u ∈ C

d+3
[a, b].

⎧⎨

⎩ (25)

Now, we deal with the barycentric rational collocation
schemes for the following Forchheimer equations:

Dp ≔
dp(x)

dx
� −

μ
k

u(x) − βρ|u(x)|u(x) + ρg(x), x ∈ (a, b],

Du ≔
du(x)

dx
� f(x), x ∈ (a, b],

u(0) � u0,

p(0) � p0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)

For the second equation of (26), the approximate for-
mula is



n

j�0
rj
′(x)uj � f(x). (27)

Taking x � xi in (27), the numerical scheme is



n

j�0
rj
′ xi( uj � f xi( , i � 0, 1, . . . , n. (28)

For the first equation of (26), the approximate formula is
as follows:



n

j�0
rj
′(x)pj � −

μ
k

u(x) − βρ|u(x)|u(x) + ρg(x). (29)

-en, the calculation scheme is



n

j�0
rj
′ xi( pj � −

μ
k

ui − βρ ui


ui + ρg xi( , i � 0, 1, . . . , n.

(30)

Note that, in practical calculation, first step, we ap-
proximate the second equation of (26) and then the first
equation of (26).

Let u(xn) denote the numerical solution of u(x), then we
have

Du xn(  � f(x),

lim
n⟶∞

Du xn(  � f(x).
(31)

Based on the above states, the next theorem gives the
error analysis of Darcy velocity.

Theorem 1. Let u(xn): Du(xn) � f(x) and
f(x) ∈ C[a, b]. If u(x) ∈ Cd+3[a, b], then we have

u(x) − u xn( 


≤Ch
d
. (32)

Proof. For the second equation of (26), using the notation of
differential matrix, the discrete form of the collocation
method is

L1u � D(1)u � f , (33)

where
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L1 �

D
(1)
00 . . . D

(1)
0n

⋮ . . . ⋮

D
(1)
n0 . . . D

(1)
nn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

u � u0, u1, ·, un( 
T
,

f � f0, f1, ·, fn( 
T
.

(34)

Furthermore, we have

Du(x) − Du xn(  � ux(x) − ux xn(  �


n− d
j�0 (− 1)

j
ux xj, xj+1, . . . , xj+d, x 


n− d
j�0 λj(x)

� ex(x) � O h
d

 . (35)

-e proof of this theorem is completed.
Let p(xn) denote the numerical solution of p(x), then

we have

Dp xn(  � −
μ
k

u(x) − βρ|u(x)|u(x) + ρg(x),

lim
m⟶∞

Dp xn(  � −
μ
k

u(x) − βρ|u(x)|u(x) + ρg(x).

(36)

-e following theorem presents the error analysis of
pressure p.

Theorem 2. Let p(xn): Dp(xn) � − (μ/k)u(x) − βρ|u(x)|u

(x) + ρg(x) and f(x) ∈ C[a, b]. If p(x) ∈ Cd+3[a, b] and
u(x) ∈ Cd+3[a, b], then we have

p(x) − p xn( 


≤Ch
d
. (37)

Proof. For the first equation of (26), the discrete numerical
scheme is

L2p � D(1)p � b, (38)

where

L2 �

D
(1)
00 . . . D

(1)
0n

⋮ . . . ⋮

D
(1)
n0 . . . D

(1)
nn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

p � p0, p1, . . . , pn( 
T
,

b � b0, b1, . . . , bn( 
T
,

bj � −
μ
k

uj − βρ uj



uj + ρg xj , 0≤ j≤ n.

(39)

Furthermore, we see

Dp(x) − Dp xn(  � −
μ
k

u(x) − u xn( (  − βρ |u(x)|u(x) − u xn( 


u xn(   � E1 + E2. (40)

As E1, note that μ and k are positive constants, we have

E1


 � −
μ
k

u(x) − u xn( ( 



≤C u(x) − u xn( 


 � O h
d

 

(41)

Similarly, for E2, according to the monotonicity of the
nonlinear term, we know

E2


 � − βρ |u(x)|u(x) − u xn( 


u xn( 


≤C u(x) − u xn( 


 � O h
d

 . (42)

Combing (40)–(42), the proof is finished.

Remark 1. In the above proof of-eorem 2, coefficients μ, k, β,
and ρ are supposed to be positive constants. If they are functions
that depend on variable x and bounded, the proof is similar.

4. Numerical Experiments

In this section, we carry out some numerical experiments
using barycentric rational collocation method to solve the
Forchheimer equations.
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Example 1. Consider the following incompressible For-
chheimer model with Ω � [0, 1]:

u(x) +
3
10

|u(x)|u(x) � −
dp(x)

dx
+ g(x), x ∈ Ω,

du(x)

dx
� π cos(πx), x ∈ Ω,

u(0) � 0,

p(0) � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(43)

-e analysis solution is chosen to be

u(x) � 2 sin(πx),

p(x) � x
2

− x
13

.
(44)

Gravitational term g(x) is determined according to the
first equation of (43). Define absolute error and relative error
as

e1(u) � u(x) − u xn( 


,

er1(u) �
u(x) − u xn( 




|u(x)|
,

e2(u) � u(x) − u xn( 
����

����2,

er2(u) �
u(x) − u xn( 

����
����2

‖u(x)‖2
,

e1(p) � p(x) − p xn( 


,

er1(p) �
p(x) − p xn( 




|u(x)|
,

e2(p) � p(x) − p xn( 
����

����2,

er2(p) �
p(x) − p xn( 2

����
����

‖p(x)‖2
.

(45)

Numerical results are listed in Tables 1–4 . -e corre-
sponding approximate figures between analysis solution and
numerical solution can be seen in Figures 1 and 2. We test
the barycentric rational with the uniform nodes for the
direct methods. Tables 3 and 4 show that the convergence
rates of velocity and pressure are O(hd) with d � 1, 2, 3, 4.
-e theoretical convergence rate O(hd) is reflected.

Example 2. Consider the following incompressible For-
chheimer flow:

u(x) +
1
5

|u(x)|u(x) � −
dp(x)

dx
+ g(x), x ∈ Ω � [0, 1],

du(x)

dx
� e

x
[sin(8πx) + 8π cos(8πx)], x ∈ Ω � [0, 1],

u(0) � 0,

p(0) � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(46)

-e analytical solution is set to be

u(x) � e
x sin(8πx),

p(x) � (2x + cos(7πx))ln(x + 1).
(47)

Gravitational term g(x) is determined according to
the analytical solution. Numerical results are listed in

Table 1: Errors of velocity u with n � 20 for Example 1.

d e1(u) er1(u) e2(u) er2(u)

1 2.1667e – 03 1.0834e – 03 6.0702e – 03 3.0351e – 03
2 9.6414e – 05 4.8207e – 05 2.7904e – 04 1.3952e – 04
3 9.6877e – 06 4.8438e – 06 3.1901e – 05 1.5951e – 05
4 6.4868e – 07 3.2434e – 07 2.2867e – 06 1.1433e – 06
5 1.0361e – 07 5.1806e – 08 3.7468e – 07 1.8734e – 07
6 8.9755e – 09 4.4877e – 09 3.3227e – 08 1.6614e – 08
7 1.3998e – 09 6.9989e – 10 5.2848e – 09 2.6424e – 09
8 1.5167e – 10 7.5836e – 11 5.8167e – 10 2.9083e – 10
9 2.0588e – 11 1.0294e – 11 7.9930e – 11 3.9965e – 11
10 4.6402e – 12 2.3201e – 12 1.8986e – 11 9.4929e – 12
11 1.6687e – 12 8.3433e – 13 6.4924e – 12 3.2462e – 12

Table 2: Errors of pressure p with n � 20 for Example 1.

d e1(p) er1(p) e2(p) er2(p)

1 1.5603e – 01 2.5935e – 01 6.0581e – 01 1.0070e+ 00
2 5.5500e – 02 9.2256e – 02 2.2664e – 01 3.7673e – 01
3 2.0024e – 02 3.3284e – 02 8.3781e – 02 1.3926e – 01
4 7.0633e – 03 1.1741e – 02 3.0018e – 02 4.9897e – 02
5 2.3541e – 03 3.9130e – 03 1.0104e – 02 1.6796e – 02
6 7.3023e – 04 1.2138e – 03 3.1559e – 03 5.2458e – 03
7 2.0459e – 04 3.4008e – 04 8.8865e – 04 1.4772e – 03
8 5.1300e – 05 8.5273e – 05 2.2367e – 04 3.7180e – 04
9 1.0396e – 05 1.7281e – 05 4.5468e – 05 7.5580e – 05
10 2.0073e – 06 3.3367e – 06 8.7996e – 06 1.4627e – 05
11 1.3584e – 07 2.2580e – 07 5.9683e – 07 9.9209e – 07
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Table 3: Errors of velocity u and convergence rates for Example 1.

h d � 1 Rate d � 2 Rate d � 3 Rate d � 4 Rate
1/20 2.1667e – 03 — 9.6414e – 05 — 9.6877e – 06 – 6.4868e – 07 —
1/40 4.7993e – 04 2.17 9.7770e – 06 3.30 4.9514e – 07 4.29 1.2656e – 08 5.68
1/80 1.0884e – 04 2.14 1.0429e – 06 3.23 2.5616e – 08 4.27 2.8257e – 10 5.49
1/160 2.5226e – 05 2.11 1.1568e – 07 3.17 1.3571e – 09 4.24 6.7115e – 12 5.40
1/320 5.9548e – 06 2.08 1.3223e – 08 3.13 7.3897e – 11 4.20 1.7519e – 13 5.26

Table 4: Errors of pressure p and convergence rates for Example 1.

h d � 1 Rate d � 2 Rate d � 3 Rate d � 4 Rate
1/20 1.5603e – 01 — 5.5500e – 02 — 2.0024e – 02 — 7.0633e – 03 —
1/40 5.3988e – 02 1.53 1.0784e – 02 2.36 2.1501e – 03 3.22 4.1075e – 04 4.10
1/80 1.8789e – 02 1.52 1.9925e – 03 2.44 2.0891e – 04 3.36 2.0755e – 05 4.31
1/160 6.5786e – 03 1.51 3.5968e – 04 2.47 1.9340e – 05 3.43 9.7970e – 07 4.40
1/320 2.3128e – 03 1.51 6.4217e – 05 2.49 1.7487e – 06 3.47 4.4727e – 08 4.45

Velocity (h = 1/320, d = 1)

–0.5

0

0.5

1

1.5

2
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
x

u
ui

Figure 1: Solution of fluid velocity u for Example 1 (d � 1, h � 1/320).

Pressure (h = 1/320, d = 1)
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Figure 2: Solution of pressure p for Example 1 (d � 1, h � 1/320).
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Tables 5 and 6. -e corresponding approximate results
between analysis solution and numerical solution can be
seen in Figures 3 and 4. We test the barycentric rational
with the uniform nodes for the direct methods. Tables 5
and 6 show that the convergence rates are O(hd) with
d � 1, 2, 3, 4.

Remark 2. Numerical experiments using the barycentric
rational collocation method (BRCM) for the Forchhimer
equations show the consistency of the convergence rates
with the theoretical analysis. -e main advantages of this
BRCM are high precision and efficiency. -e algorithm and
program can be expanded to similar initial value problem
and boundary value problem. It can effectively avoid the
oscillation of other interpolation collocation methods. -e

numerical stability is guaranteed. We demonstrate that the
proposed numerical scheme is O(hd) accurate for both
Darcy velocity and pressure. In practical simulation, if the
parameter d is further increased, we can get more accurate
results. In the future, we will research higher-dimensional
Forchheimer law and compressible fluids Forchheimer
problems.
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Velocity (h = 1/1280, d = 1)
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Figure 3: Solution of velocity u for Example 2 (d � 1, h � 1/1280).
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Figure 4: Solution of pressure p for Example 2 (d � 1, h � 1/1280).

Table 5: Errors of velocity u and convergence rates for Example 2.

h d � 1 Rate d � 2 Rate d � 3 Rate d � 4 Rate
1/20 1.2945e+ 00 — 4.7246e – 01 — 1.7784e+00 — 1.6443e+ 00 —
1/40 4.1691e – 01 1.63 1.5098e – 01 1.65 1.6003e – 01 3.47 7.8148e – 03 7.71
1/80 1.4368e – 01 1.54 3.2078e – 02 2.23 1.2557e – 02 3.67 1.4539e – 03 2.43
1/160 5.0438e – 02 1.51 6.0933e – 03 2.40 1.0066e – 03 3.64 9.8861e – 05 3.89
1/320 1.7802e – 02 1.50 1.1117e – 03 2.45 8.3782e – 05 3.59 5.0523e – 06 4.29
1/640 6.2931e – 03 1.50 1.9941e – 04 2.48 7.1647e – 06 3.55 2.3727e – 07 4.41
1/1280 2.2254e – 03 1.50 3.5495e – 05 2.49 6.2243e – 07 3.52 1.0781e – 08 4.46

Table 6: Errors of pressure p and convergence rates for Example 2.

h d � 1 Rate d � 2 Rate d � 3 Rate d � 4 Rate
1/20 1.4816e+ 00 — 8.3941e – 01 — 2.6370e+ 00 — 2.1833e+ 00 —
1/40 4.6193e – 01 1.68 2.3137e – 01 1.86 2.0731e – 01 3.67 1.0082e – 02 7.76
1/80 1.5886e – 01 1.54 4.7049e – 02 2.40 1.5931e – 02 3.70 2.3613e – 03 2.09
1/160 5.5677e – 02 1.51 8.7653e – 03 2.42 1.2503e – 03 3.67 1.4833e – 04 3.99
1/320 1.9639e – 02 1.50 1.5856e – 03 2.47 1.0288e – 04 3.60 7.4072e – 06 4.32
1/640 6.9404e – 03 1.50 2.8326e – 04 2.48 8.7430e – 06 3.56 3.4459e – 07 4.43
1/1280 2.4540e – 03 1.50 5.0319e – 05 2.49 7.5707e – 07 3.53 1.5589e – 08 4.47
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Aiming at the puncture and drainage of clinical intracranial hematoma, we proposed an adaptive bifurcation algorithm based on
the hematoma point cloud and optimized the design of the drainage tube. Firstly, based on the CTdata of intracranial hematoma
patients, a three-dimensional hematomamodel was established, the point cloud on the surface of the hematoma was extracted and
simplified, and the location of the main drainage tube was located by using the long-axis extraction algorithm. Secondly, the Eight
Diagrams algorithm was used to identify the internal point cloud of hematoma, and the positions of multiple absorption points
were determined by the K-means clustering algorithm. -e locations of the bifurcation points of the main drainage tubes were
calculated by the numerical method, and the telescopic lengths and directions of multiple subdrainage tubes were obtained.
Finally, connect the main tube and the subtube, design an adaptive bifurcation drainage tube model, and apply it to intracranial
hematoma puncture and drainage surgery. -e algorithm can accurately determine the puncture point, puncture path, number,
and location of subdrainage tubes according to the geometric characteristics of hematoma, achieve a uniform and accurate dose
adjustment and drainage of intracranial hematoma, and accelerate the dissolution and drainage speed. -e application of an
adaptive bifurcation drainage tube can significantly reduce the risk of intracerebral hemorrhage, intracranial infection, and other
complications, which has certain guiding significance and application value in clinical practice.

1. Introduction

At present, craniotomy is often used clinically to remove
intracranial hematoma in patients. Patients with hematoma
have a long anterior and posterior diameter, which is dif-
ficult to expose during the operation, requires a larger bone
window, and repeatedly stretches the cortex. -e operation
is more difficult and the hematoma removal rate is low. -e
patient has a poor prognosis [1]. In recent years, minimally
invasive hematoma removal by hematoma puncture and
drainage can reduce the surgical incision, facilitate timely
removal of hematoma, quickly improve intracranial pres-
sure, do a good job in the prevention, control, and treatment
of secondary brain injury, and relieve the damage of he-
matoma tissue to nerve cells [2]. Neuronavigation hema-
toma puncture technology can quickly and accurately

remove an intracranial hematoma, intraoperative puncture
direction, puncture point, and puncture depth can be
controlled, and the drainage tube can be easily and accu-
rately placed into the hematoma cavity, avoiding the
blindness of traditional puncture [3]. It is an important
means for clinical treatment of cerebral hemorrhage and
improvement of prognosis. However, the small hole at the
end of the traditional drainage tube is embedded in the wall
of the main tube, and the diffusion rate is low and slow, thus
prolongs the operation time and increases the operation risk.
Moreover, uniform administration and drainage in different
directions could not be realized according to the shape of
hematoma.-erefore, this paper optimized the design of the
traditional drainage tube.

At present, the minimally invasive surgery for the
elimination of intracranial hematoma in clinical practice
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uses the traditional drug drainage tube. -e total length of
the main canal is 14 cm, and the diameter is 0.2 cm. -e end
of the main canal is closed, among which 1 cm and 1.5 cm
away from the end are provided with a hole with a diameter
of 1mm, respectively, these two small holes are symmet-
rically distributed on both sides of the main channel, as
shown in Figure 1.

-e small hole at the end of the traditional drainage tube
is embedded in the wall of the main tube so that the outer
surface of the main tube is fully smooth, thus reducing the
friction between the drainage tube and intracranial tissue
during the operation and ensuring that the drainage tube can
reach the center of the hematoma as quickly, safely, and
accurately as possible.

-e hemolytic agent can produce the interdiffusion
reaction with the hematoma.-e hemolytic agent drained by
the traditional drainage tube is mainly concentrated in the
small hole of the main tube, and the blood concentration in
the hematoma is also diffused in the direction of the orifice.
As a result, the interdiffusion efficiency of hemolytic agent
and hematoma is low and the speed is slow, thus prolongs
the operation time and increases the operation risk [4].

Cui proposed a multifunctional drainage tube for in-
tracerebral hematoma with multiple subtubes, which could
achieve telescopic subtubes in the common duct and 360°
rotation of drug delivery in the common duct, so as to
achieve the purpose of multipoint and multidirectional
uniform drug delivery and drainage [5]. Pan L proposed an
improved adaptive weighted particle swarm optimization
point cloud search algorithm to improve the efficiency and
accuracy of puncture point identification and applied it to
extract the optimal external axis, thus providing the optimal
path for hematoma drainage tubes [6]. Zhu puts forward
visual analysis of flow and diffusion of hemolytic agents and
hematomas, using COMSOL more physical software to
simulate the hemolysis agent bifurcate drainage tube in the
streamline distribution and hemolysis agent in the diffusion
behavior of hematoma [4]. Based on previous studies in our
team, the drainage tube was optimized, and the adaptive
bifurcation drainage tube was customized according to the
geometric characteristics of different intracranial
hematomas.

In this paper, an optimization model for the traditional
drainage tube was proposed. Based on the long-axis extraction
algorithm, the main position was determined, and the clus-
tering points were found according to the K-means clustering
analysis to accurately locate the position of the subdrainage
tube. -e optimized adaptive bifurcation drainage tube can
achieve uniform and accurate administration and drainage of
hematoma in different directions, reduce blood residue,
achieve the purpose of maximum drainage, accelerate the
dissolution and drainage of hematoma, and improve the safety
of surgery. -ree-dimensional real-time software simulation
technology is used to reconstruct anatomical sites, such as
hematoma, blood vessels, skull, and nerve tract. Clinicians can
use the adaptive bifurcated drainage tube designed in this paper
to conduct preoperative simulation, avoid important parts of
the brain, and achieve accurate puncture of hematoma, thus
reducing the risk and time of treatment [7–9].

2. Optimal Design of Main Drainage Tube
Based on Long-Axis Extraction Algorithm

2.1. Simplify the Surface Structure of Hematoma. In this
paper, CT data of intracranial hematoma patients were
extracted and preprocessed to achieve 3D reconstruction,
and point cloud datasets were extracted. Due to the
complexity of the shape of hematoma, the number of point
clouds, the location of scattered and discontinuous, and the
difficulty of calculation, and the surface hierarchy of he-
matoma are simplified. -e hematoma data were obtained
from Tangshan Gongren Hospital, as shown in Figures 2
and 3.

-is paper uses decimation of triangle meshes algo-
rithm, with valuation grid on local topology and geometry
properties of lattice; the lattice can be divided into simple
types; thus, it can be divided into interior and boundary of
two types. -e judgment of lattice deletion is based on
d<X, X is given to allow the deviation value, the interior
point d is the distance between candidate points to the
average plane, and the boundary point d is a candidate to
second neighbor points of attachment. Finally, the
neighborhood of the deleted grid points is repartitioned by
the method of the optimal split plane, and the time
complexity is linear [10].

By changing the smoothness of the surface of the he-
matoma, the surface structure of the hematoma is simplified,
and the overall structure of the space remains unchanged.
-e surface point cloud data is reduced, the algorithm is
regular and fast, and the effect of fidelity and detail pres-
ervation is good.-e simplified hematomamodel before and
after is shown in Figures 4 and 5.

2.2. Puncture Points Were Extracted Using the Optimized
Long-Axis Extraction Algorithm. By studying the long-axis
problem of complex geometry, it can be reduced to the farthest
point pair problem of the point cloud model [11], that is, the
line segment with the longest Euclidean distance between any
point pair. By using the long-axis extraction algorithm, the
distance function of discrete model is maximized to solve the
furthest point pair problem. -e distance function of the
geometric point cloud model is established to maximize the
maximum-minimum distance (max-min) and maximum-av-
erage distance (max-avg) between any point pairs. Assume that
the given point cloud is setV � v1, v2, . . . , vn  (nonnegative N
points), the distance between each point pair is the edge weight,
and each edge weight is nonnegative. -e edge weight of any
point with respect to vi, vj, vk (i≠ j≠ k) is called
w(vi, vj, vk). -e goal of the discrete problem is to locate p

points (p≤ n) among n points in the point cloud to maximize
the function of the distance between point pairs [12].

MAX-MIN points’ dispersion (MMPD): for the non-
negative distance w(vi, vj, vk) from any point in set V �

v1, v2, . . . , vN  to vi, vj, vk, there exists subset
P � vi1, vi2, vi3  (P ⊂ V) and an integer p(2≤p≤ n) so that
|P| � p can obtain the distance function:

f(P) � min
x,y,z∈p

w(x, y, z) . (1)
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Maximizing distance function:

F(P) � maxf(P) � max min
x,y,z∈p

w(x, y, z)  . (2)

MAX-AVG points’ dispersion (MAPD): there are sub-
sets P � vi1, vi2, . . . , vip (P ⊂ V) and integers p(2≤p≤ n)

which make |P| � p and get the average distance function:

g(P) �
2

p(p − 1)


x,y,z∈P
w(x, y, z). (3)

Maximizing average distance function:

G(P) � maxg(P) � max
2

p(p − 1)


x,y,z∈P
w(x, y, z)

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(4)

Number of point pairs in the point cloud:

p(p − 1)

2
. (5)

-erefore, the maximized average distance is equal to the
sum of the maximized distances.

-e distance specified in MMPD or MAPD satisfies the
triangle inequality, that is, any three different points vi, vj,
and vk satisfy

w vi, vj  + w vj, vk ≥w vi, vk( . (6)

Existence distance functions and average distance
functions: there are distance functions and average distance
functions:

f(P) � min
x,y,z∈p

w(x, y, z) ,

g(P) �
2

p(p − 1)


x,y,z∈P
w(x, y, z).

(7)

-e distance between pairs of points in space is Eu-
clidean distance:

dist(X, Y, Z) � w(x, y, z) �

������������������������������

x1 − x2( 
2

+ y1 − y2( 
2

+ z1 − z2( 
2



.

(8)
-e above hematoma model was taken as an example to

verify the algorithm, as shown in Figures 6 and 7.
From what has been discussed above, the long-axis

extraction algorithm can be used to solve the farthest point
pair problem in the point cloud model. -e long axis of the
model is the line segment with the longest Euclidean dis-
tance in the point cloud.-e algorithm has the advantages of
easy model iteration, low time consistency, convenient
storage of calculation results, easy expansion, and more
consistent with the geometry of the topology.

Preliminary results show that themain drainage tube can
determine the direction of puncture and drainage according
to the long axis of different hematomas so that the intro-
duction of hemolytic agent and the extraction of hematoma
fluid can be precise and avoid important brain functional
areas. -is design is far away from the dense area of the
middle cerebral artery and the important branch of the
external carotid artery in the scalp, which has little impact on
the normal physiological structure, reduces the difficulty of
surgery and reduces the risk of surgery.

2.3. Long-Axis Extraction Compared with the Horizontal
Optimization of the Previous Method. When using the long-
axis extraction algorithm to extract the point cloud data,
because there are many point cloud data in the initial ge-
ometry space, the method of simplifying the number of faces
is adopted to simplify the hematoma geometry. In order to
simplify the influence of different complexity degrees on the
long-axis operation time and accuracy, the simplified point
cloud data were used to conduct point cloud number sta-
tistics and time statistics, and the identification accuracy was
compared. Point cloud data with different complexities were
shown in Table 1.
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Figure 4: Before simplification hematoma model.
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Figure 5: Simplified hematoma model.
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-e transverse comparison (Table 1 and Figure 8) shows
that the number of point clouds is positively correlated with
the retrieval time, and the simplified data can meet the ac-
curacy requirements within the allowable range of the cal-
culation time, reduce the calculation time of the long axis of
the hematoma as much as possible, and meet the require-
ments of the calculation of puncture hematoma surgery.

In tests of different levels of complexity, although the
same number of iterations is used to find the long axis, it is
obviously not enough for graphics with more point cloud
data. For a graph with a complexity level of 7, a more ac-
curate long axis can be obtained faster with the same number
of iterations on the geometry, as shown in Figure 7.

3. Optimal Design of Adaptive Drainage
Branch Tube

3.1. Internal Points of IntracranialHematomaWere Extracted
Based on the Eight Diagrams Algorithm. -e internal points
of three-dimensional graphics are identified by using the
Eight Diagrams algorithm. -e points discussed in this
paper are composed of contour data points and internal data
points on the surface of geometry by graphic files for the 3D
point cloud array [13]. -e three-dimensional space is di-
vided into the eight diagrams, as shown in Figure 9. When
the target is close to the surface of the geometry, the tangent
plane is generated. -e target point and the geometry on the
tangent plane are in the space rectangular coordinate system
and at the side of the origin of the tangent plane. On the
other side of the plane, there is at least one hexagramwithout
a target and geometry, so the algorithm can be used for
hematoma interior-point discriminant Eight Diagrams.

Eight Diagrams algorithm is used in this paper to dis-
criminant of hematoma interior point, as shown in Fig-
ure 10. Take any target point a, vector representation of all
surface points bi with hematoma, remember to vector abi

,
and divide the space where the target point a is; it is divided
into eight hexagrams. If the vector exists in all eight
hexagrams, it is the internal point of the hematoma. Sim-
ilarly, if there is no vector abi

in at least one of the hexagrams,
it is the surface point or external point of the hematoma.

For example, the target point is zero: a(xa, xb, xc).
-e collection of surface points of hematoma is

Table 1: Number of hematoma point clouds and calculation time.

-e complexity Number of point clouds Time (s)
1 131,820 60.877
2 52,440 25.4564
3 34,566 16.6662
4 17,460 8.17811
5 8082 3.86515
6 3834 1.80199
7 1872 0.8607
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Figure 8: Different complexity of hematoma point cloud amount.
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Figure 6: Schematic diagram of the farthest point pair of intra-
cranial hematoma model.
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B � xb, xb, xb( |xb � xbi
, yb � ybi

, zb � zbi
, i ∈ [1, n] .

(9)

-e collection of internal points of the hematoma is

C � xc, xc, xc( |xc � xcj
, yc � ycj

, zc � zcj
, j ∈ [1, m] .

(10)

-e set of target point and hematoma surface point
vector is

D � aB{ } � abi

��→
| i ∈ [1, n] . (11)

To judge the internal point of hematoma, if any hexa-
grams of the spatial Eight Diagrams contain vectors in set D
and the symbols corresponding to each vector include the
symbols corresponding to the above Eight Diagrams, then
the target point is the internal point of hematoma. If there is
at least one hexagram in the spatial Eight Diagrams that does
not contain the vector in set D and there is at least one case in
which the hexagram corresponding symbol does not contain
the vector in set D, then the target point is the hematoma
surface point or the external point.

Taking the above intracranial hematoma as an example, the
Eight Diagrams algorithm was used to distinguish the internal
points of hematoma and extract the data set of internal points
and surface points of hematoma. -e yellow points were in-
ternal data points of hematoma, and the red points were surface

data points of hematoma. -e distribution of internal and
surface data points of hematoma is shown in Figures 11–13 .

3.2. Extraction of Hematoma Absorption Points Based on
K-Means Clustering Analysis Algorithm. K-means clustering
analysis algorithm clustered n data objects in the space
with K points as the center and classified the target points
closest to the center to get K clusters [14]. -rough the
iteration method, the coordinate values of each cluster
center are updated successively so that the similarity of
objects in the same cluster is high, while the similarity of
objects in different clusters is low, and the optimal cluster
center is obtained.

For example, we have n variables, x1, x2, . . . , xn, divided
into k classes, X1, X2, . . . , Xk, and Ni is the number of
variables in class Xi, i, and mi for the average:
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Figure 11: Schematic diagram of hematoma data points.

Figure 9: -e space Eight Diagrams corresponds to the diagram of
hexagrams.

Figure 10: Schematic diagram of hematoma under the Eight
Diagrams algorithm.
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(1) Select the initial center of k classes.
(2) Iterate for any sample, calculate the Euclidean dis-

tance to k center points, respectively, and group the
sample to the class where the center with the shortest
distance is located.
Euclidean distance:

d xj, mi  �

���������������



k

i�1


xj∈Kj

xj − mi 
2




. (12)

If d(xj, mi)<d(xi, mi), among them, 1≤p≤K,
i � 1, . . . , k, so assign xj to class p.

(3) Use the mean method to update the values of the
center of the k classes.

(4) For all k clustering centers, the abovementioned (2)
and (3) are repeated until each clustering center no
longer changes. -e iteration is finished and the
classification is completed.

Combined with the above intracranial hematoma data
set. K-means clustering analysis algorithm was adopted. -e
data objects of intracranial hematoma in space were clus-
tered with 4 points as the center, and the target points
nearest to the center were divided into 4 clusters. -rough
the iteration method, the coordinate values of each clus-
tering center are updated successively so that the similarity
of objects in the same clustering is higher, while the simi-
larity of objects in different clustering is smaller. Finally, four
optimal clustering centers are obtained. -e data set is
shown in Table 2.

K-means clustering analysis was performed on the in-
ternal data points of the hematoma, and the clustering re-
sults are shown in Figure 14. -e four clusters were yellow,
green, purple, and blue, and the four red dots were the

clustering centers, namely, the absorption points of the
hematoma.

3.3. Determine the Point of Branching of theHematoma on the
Main Drainage Tube. -e origin is O at the end of the long
axis, the major axis is the z-axis, and the outlet direction of
the main outlet is the positive direction of the Z-axis. -us, a
three-dimensional coordinate system O-XYZ is established.
Let the length of the long axis be L; divide the long axis into
points n and take a point ai , i ∈ [1, n] at every interval L/n;
vectors were made with four hematoma absorption sites Zij

�→
;

calculate the angle θ between each vector and the positive
direction of the z-axis z→.

Let the supervisor start with As � (xs, ys, zs).
-e main end is Ae � (xe, ye, ze).
-en, the leading vector is a � (xs − xe, ys − ye, zs − ze).
Supervisor above each point is ai � (a/n) × i, i ∈ [1, n].
-e set of vectors composed of each point on the main

axis is A � Ai |As + ai, i ∈ [1, n] .
Let the absorption point vector be

Pj � (xj, yj, zj), j ∈ [1, 4].
-en, the vector set from each point on the main to each

absorption point is

Z � Zij |Pj − Ai, i ∈ [1, n], j ∈ [1, 4] ,

cos〈Zij, z〉 �
Zij · z

Zij



 · |z|
,

θ � arccos〈Zij, z〉.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

In the error value calculation method, the measured
value θ, E is the normal value 45°:

The points on the surface of the training results
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Figure 13: Schematic diagram of data points on the surface of
hematoma.

Table 2: Internal data set of hematoma.

Data set Sample size Number of categories
Hematoma 6380 4
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Figure 14: Cluster analysis of hematoma.
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δ �
θ − E

E/100
. (14)

-e iterative calculation was carried out to make the
error value ε � 0.05 satisfied δ < ε by giving the error value δ.
-e four points with the smallest error were taken as the
branch bifurcation points of the main pipeline. By con-
necting the bifurcation point and absorption point, the
telescopic length and direction of the subdrainage tube were
obtained. -en, the overall structure of the bifurcation
drainage tube was designed.

4. Result Analysis

In this paper, an adaptive bifurcation algorithm based on
hematoma point cloud is proposed. To optimize the design
of puncture drainage tube for clinical intracranial hema-
toma, the following steps are followed:

Step 1: based on the CT scan data of patients with
intracranial hematoma, 3D reconstruction was per-
formed to establish a 3D hematoma model. -e point
cloud data set was extracted to simplify the hematoma
surface hierarchy and the surface point data set.
Step 2: use the long-axis extraction algorithm to
select the farthest point pair of Euclidean distance as
the two endpoints of the long axis to locate the
location of the main drainage tube, and the coor-
dinates of the two ends of the long axis are shown in
Table 3;
Step 3: Eight Diagrams algorithm was used to extract
internal point cloud of hematoma.
Step 4: the K-means clustering analysis algorithm is
used to determine the position of absorption points.
-e coordinates of the absorption point are shown in
Table 4;
Step 5: use numerical solution to calculate the branch
point of the upper branch of the main pipe. -e co-
ordinates of the bifurcation point are shown in Table 5;
Step 6: the expansion direction and length of the
adaptive bifurcation drainage tube were obtained by
connecting the bifurcation point with the absorption
point. -erefore, an adaptive bifurcation drainage tube
model was designed, as shown in Figure 15.
Step 7: the three-dimensional reconstruction model of
intracranial hematoma was imported into COMSOL.
On this basis, the adaptive branching drainage tube
model was introduced to obtain the visual simulation
diagram of the influence of the adaptive branching
drainage tube on hematoma, as shown in Figures 16
and 17.

In clinical medicine, the closed adaptive bifurcated
drainage tube is delivered to the intracranial hematoma
through a catheter, and the drainage tube is automatically
stretched in the hematoma. Among them, the drainage pipe
for special silicone material is soft in texture and small to
tissue damage. When the hemolysis agent passes through the
drainage tube into the hematoma, diffusion effect occurs

mainly in the export area around the four drainage tubes.
Multicast delivery drainage achieves the purpose of uniform
dosage and drainage, so as to speed up the blood clot dissolves
and drainage. And, pressure is applied to quickly remove the
main functional structure of the hematoma to reduce the
damage that causes the disease of cerebral hemorrhage.

5. The Error Analysis

5.1. Error Analysis of Simplified Hematoma Surface.
Hierarchy Structure Algorithm is used with the function
approximation to perform error analysis on the simplified
model and solve the geometric similarity measurement
problem [15].

L∞ and L2 norms are two commonly used error mea-
surement standards. Let the surface point function of the
original hematoma be f(t), -e simplified surface point
function of hematoma is g(t), we give a closed interval [a, b].
-e L∞ norm is used to indicate the maximum deviation
between two functions:

‖f − g‖∞ � max
a≤t≤b

|f(t) − g(t)|. (15)

-e L2 norm represents the average deviation between
two functions:

‖f − g‖2 �

����������������


b

a
(f(t) − g(t))

2dt



. (16)

After simplification, the surface point function of he-
matoma is g(t), which is considered to be optimal; the
similarity error measure of L∞ norm and L2 norm can be
used to measure the error between two triangular mesh
models. In the triangular mesh model, what is measured is

Table 3: -e coordinates of the two endpoints of the long axis.

X Y Z
Beginning of the long axis −11.090294 −14.673927 7.278137
End of the long axis 11.579253 18.623718 16.95636

Table 4: -e coordinates of absorption points.

X Y Z
Absorption point 1 2.573604 −0.012183 17.796954
Absorption point 2 0.204969 −9.975155 16.968944
Absorption point 3 −6.164021 −2.222222 8.910053
Absorption point 4 3.172662 9.568345 14.748201

Table 5: Bifurcation point coordinates.

X Y Z
Branch point 1 0.69787044 2.6408484 12.31081296
Branch point 2 5.68517078 9.9663303 14.44002202
Branch point 3 -2.0224752 -1.354869 11.1494262
Branch point 4 4.32499796 7.9684716 13.85932864
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the distance between the nearest point pairs, and the dis-
tance from point V to model M is defined as the distance
between point V and the nearest point W on model M;
among them, the ‖·‖ Euclidean distance between two
vectors:

dv(M) � min
w∈M

‖v − w‖. (17)

After testing, the original hematoma model was
simplified by 60% in this paper, and the geometric

similarity of the hematoma was within the error range.
-e simplified results could better simulate the original
hematoma model.

5.2. Error Analysis of Optimized Long-Axis Extraction
Algorithm. -e beginning end of the long axis As1 and the
end Ae1 are obtained by the initial long-axis algorithm; the
beginning end As2 and the end Ae2 of the long axis are
obtained by optimizing the long-axis algorithm.
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Figure 15: Adaptive bifurcation drainage tube.
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-e long-axis vector obtained by the initial long-axis
algorithm t1 � As1 − Ae1.

-e long-axis vector obtained by optimizing the long-
axis algorithm t2 � As2 − Ae2.

Let ε � 0.05, and there are

As1 − As2 < ε,

Ae1 − Ae2 < ε,

arccos
t1 · t2
t1


 · t2




 < ε.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

-rough testing, the positions and directions of the two
endpoints of the long axis before and after optimization in
this paper are within the error range, and the optimized
long-axis extraction algorithm has high computational ef-
ficiency, which reduces the preoperative planning time.

6. Conclusion

In this paper, the traditional drainage tube was optimized into
an adaptive bifurcation drainage tube that could be cus-
tomized according to different hematoma conditions. It
makes the introduction of the hemolytic agent and the
derivation of hematoma fluid precise. CT data are obtained
from patients with intracranial hematoma to establish a three-
dimensional hematoma model and simplify the hematoma
surface hierarchy; then, the surface point cloud of hematoma
was extracted; using long-axis extraction algorithm, locate the
location of the main drainage tube. Accurately determine the
entrance and direction of the puncture of the main drainage
tube, using the Eight Diagrams algorithm and discriminating
the internal data sets of hematomas and the visual processing.

-e absorption points are determined by K-means clustering
analysis algorithm; among them, the number of absorption
points can be calculated according to the shape of hematoma.
-e telescopic direction and length of the subtube were
obtained by connecting the absorption point and the bifur-
cation point. Based on this, the self-adaptive bifurcation
drainage tube model was designed and finally applied to the
puncture and drainage of intracranial hematoma. -e algo-
rithm can accurately determine the puncture point, the
puncture path, and the location and number of subdrainage
tubes according to the geometric characteristics of hematoma,
achieve a uniform and accurate drug administration and
drainage of intracranial hematoma, and accelerate the dis-
solution and drainage speed of hematoma. -e adaptive
bifurcation algorithm proposed in this paper is based on the
idealized state, and it is necessary to consider the distribution
of peripheral nerves and other important parts of intracranial
hematoma in the application.

-e application of adaptive bifurcated drainage tubes
can effectively shorten the operative time of patients, reduce
intraoperative blood loss, improve the hematoma clearance
rate, and improve the neurological function and prognosis of
patients, with accurate, minimally invasive, and safe effects
[16]. It has clinical significance and application value for the
medical treatment of intracranial hematoma and provides
preoperative simulation. It can promote the subsequent
hematoma deformation research and visualization analysis
and provide important guidance and value for the formu-
lation of a puncture surgery plan and the reduction of
surgical risk.
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To find a solution of unconstrained optimization problems, we normally use a conjugate gradient (CG) method since it does not
cost memory or storage of second derivative like Newton’s method or Broyden–Fletcher–Goldfarb–Shanno (BFGS) method.
Recently, a new modification of Polak and Ribiere method was proposed with new restart condition to give a so-call AZPRP
method. In this paper, we propose a new modification of AZPRP CG method to solve large-scale unconstrained optimization
problems based on a modification of restart condition. +e new parameter satisfies the descent property and the global con-
vergence analysis with the strong Wolfe-Powell line search. +e numerical results prove that the new CG method is strongly
aggressive compared with CG_Descent method.+e comparisons are made under a set of more than 140 standard functions from
the CUTEst library. +e comparison includes number of iterations and CPU time.

1. Introduction

+e conjugate gradient (CG) method aims to find a solution
of optimization problems without constraint. Suppose that
the following optimization problem is considered:

minf(x), x ∈ Rn
, (1)

where f: Rn⟶ R is continuous, the function is differ-
entiable, and the gradient ∇f(x) is available. +e iterative
method is given by the following sequence:

xk+1 � xk + αkdk, k � 1, 2, . . . , (2)

where xk is the starting point and αk > 0 is a step length. +e
search direction dk of the CG method is defined as follows:

dk �
− ∇f(x), if k � 1,

− ∇f(x) + βkdk− 1, if k≥ 2,
 (3)

where ∇f(x) � g(xk) and βk is a parameter.
To obtain the step length, we normally use the inexact line

search, since the exact line search which is defined as follows,

f xk + αkdk(  � minf xk + αdk( , α> 0, (4)

requires many iterations to obtain the step length. Normally,
we use the strong version of Wolfe-Powell (SWP) [1, 2] line
search which is given by

f xk + αkdk( ≤f xk(  + δαkg
T
k dk, (5)

∇f xk + αkdk( 
T
dk



≤ σ g
T
k dk



, (6)
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where 0< δ < σ < 1.
+e weakWolfe-Powell (WWP) line search is defined by

(5) and

∇f xk + αkdk( 
T
dk ≥ σg

T
k dk, (7)

where ∇f � gk � g(xk). +e famous parameters of βk are
the Hestenes–Stiefel (HS) [3], Fletcher–Reeves (FR) [4], and
Polak–Ribière–Polyak (PRP) [5] formulas, which are given
by

βHS
k �

g
T
k yk

d
T
k− 1yk

,

βFRk �
g

T
k gk

gk− 1
����

����
2,

βPRPk �
g

T
k yk

gk− 1
����

����
2,

(8)

where yk � gk − gk− 1.
Powell [6] shows that there exists a nonconvex function

such that the PRP method does not globally converge.
Gilbert and Nocedal [7] show that if βPRP+

k � max 0, βPRPk 

with theWWP and the descent property is satisfied, then it is
globally convergent.

Al-Baali [8] proved that the CG method with FR coef-
ficient is convergent with SWP line search when σ ≤ 1/2.
Hager and Zhang [9, 10] presented a new CG parameter with
descent property, i.e., gT

k dk ≤ − (7/8)‖gk‖2. +is formula is
given as follows:

βHZ
k � max βN

k , ηk , (9)

where βN
k � (1/dT

k yk)(yk − 2dk(‖yk‖2/dT
k yk))Tgk; ηk �

− (1/‖dk‖min η, ‖gk‖ ); and η> 0 is a constant. In the nu-
merical experiments, they set η � 0.01 in (9). Al-Baali et al.
[11] compared βHZ

k with a new three-term CG method
(G3TCG).

Regarding the speed, memory requirements, number of
iterations, function evaluations, gradient evaluations, and
robustness to solve unconstrained optimization problems
which have prompted the development of the CG method,
the readers are advised to refer references [10–15] for more
information on these new formulas.

2. The New Formula and the Algorithm

Alhawarat et al. [15] presented the following simple formula:

βAZPRPk �

gk

����
����
2

− μk g
T
k gk− 1





gk− 1
����

����
2 , if gk

����
����
2 > μk g

T
k gk− 1



,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(10)

Dai and Laio [12] presented the following formula:

βDL+
k � max βHS

k , 0  − t
g

T
k sk− 1

d
T
k− 1yk− 1

, (11)

where sk− 1 � xk − xk− 1 and t≥ 0.

+e new formula is a modification of βAZPRPk and βDL+
k is

defined as follows:

βA
k �

gk

����
����
2

− μk g
T
k sk− 1





gk− 1
����

����
2 , if gk

����
����
2 > μk g

T
k sk− 1



,

− t
g

T
k sk− 1

d
T
k− 1yk− 1

, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

where μk � (‖sk− 1‖/‖yk− 1‖) and t> 0.
We obtain the following relations (Algorithm 1):

βA
k ≥ 0,

βA
k ≤

gk

����
����
2

− μk g
T
k sk− 1





gk− 1
����

����
2 ≤

gk

����
����
2

gk− 1
����

����
2 � βFRk .

(13)

3. Convergence Analysis of Coefficient βA
k with

CG Method

Assumption 1

(A) +e level set Ψ � x|f(x)≤f(x1)  is bounded, that
is, a positive constant T exists such that

‖x‖≤T, ∀x ∈ Ψ. (14)

(B) In some neighbourhoods N of Ψ, f is continuous
and the gradient is available and its gradient is
Lipschitz continuous; that is, for all x, y ∈ N, there
exists a constant L> 0 such that

‖g(x) − g(y)‖≤L‖x − y‖. (15)

+is assumption shows that there exists a positive
constant B such that

‖g(u)‖≤B, ∀u ∈ N. (16)

+e descent condition

g
T
k dk ≤ − gk

����
����
2
, ∀k≥ 1. (17)

(17) plays an important role in the CG method. +e
sufficient descent condition proposed by Al-Baali [8] is a
modification of (17) as follows:

g
T
k dk ≤ − c gk

����
����
2
, ∀k≥ 1, (18)

where c ∈ (0, 1). Note that the general form of the sufficient
descent condition is (18) with c> 0.
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3.1. Global Convergence for βA
k with the SWP Line Search.

+e following theorem demonstrates that βA
k ensures that the

sufficient descent condition (21) is satisfied with the SWP
line search.

+e following theorem shows that βA
k satisfies the descent

condition. +e proof is similar to that presented in [8].

Theorem 1. Let gk  and dk  be generated using (2), (3),
and βA

k � (‖gk‖2 − μk|gT
k sk− 1|/‖gk− 1‖

2), where αk is com-
puted by the SWP line search (5) and (6). If σ ∈ (0, 1/2], then
the sufficient descent condition (18) holds.

Algorithm 1 shows the steps to obtain the solution of
optimization problem using strong Wolfe-Powell line search.

Descent condition is (18) with c > 0.

Proof. By multiplying () by gT
k , we obtain

g
T
k dk � g

T
k − g

T
k + βkdk− 1  � − gk

����
����
2

+ βkg
T
k dk− 1. (19)

Divide (19) by ‖gk‖2; using

∇f xk + αkdk( 
T
dk



≤ σ g
T
k dk



, (20)

and (12), we obtain

− 1 + σ
g

T
k− 1dk− 1

gk− 1
����

����
2 ≤

g
T
k dk

gk

����
����
2 ≤ − 1 − σ

g
T
k− 1dk− 1

gk− 1
����

����
2 . (21)

From (3), we obtain gT
1 d1 � − ‖g1‖

2. Assume that it is
true until k − 1, i.e., gT

i di < 0, for i � 1, 2, . . . , k − 1. Re-
peating the process for (21), we obtain

− 
k− 1

j�0
σj ≤

g
T
k dk

gk

����
����
2 ≤ − 2 + 

k− 1

j�0
σj

. (22)

As



k− 1

j�0
(σ)

j <
1 − (σ)

k

1 − σ
, (23)

hence,

−
1 − (σ)

k

1 − σ
≤

g
T
k dk

gk

����
����
2 ≤ − 2 +

1 − (σ)
k

1 − σ
, (24)

and when σ ≤ (1/2), we obtain (1 − (σ)k/1 − σ)< 2. Let
c � 2 − (1 − (σ)k/1 − σ), then

c − 2≤
g

T
k dk

gk

����
����
2 ≤ − c. (25)

+e proof is complete. □

Theorem 2. Let gk  and dk  be obtained by using (2), (3),
and βA

k � − t(gT
k sk− 1/dT

k− 1yk− 1) where αk is computed by SWP
line search (5) and (6), then the descent condition holds.

Proof

βDL− HS
k � − μk

g
T
k sk− 1

d
T
k− 1yk− 1

. (26)

By multiplying (3) by gT
k , and substituting βA

k , we obtain

Start
Set a starting point x1.

Set the initial search direction
d1 = –g1. Let k: = 1.

Yes If a stopping criteria is satisfied

No

Compute dk based on (2) with (10).
Compute αk using (4) and (5).

Set k: = k + 1

End

ALGORITHM 1: Steps of CG method with new modification to obtain the stationary point of functions.
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g
T
k dk � − gk

����
����
2

− μk

αk− 1g
T
k dk− 1

d
T
k− 1yk− 1

g
T
k dk− 1

� − gk

����
����
2

− μk

αk− 1 g
T
k dk− 1

����
����
2

d
T
k− 1yk− 1

< 0,

(27)

which completes the proof.
Zoutendijk [16] presented a useful lemma for global

convergence property of the CG method. +e condition is
given as follows. □

Lemma 1. Let Assumption 1 hold and consider any method
in the form of (2) and (3), where αk is obtained by the WWP
line search (6) and (7), in which the search direction is descent.
�en, the following condition holds:



∞

k�0

g
T
k dk 

2

dk

����
����
2 <∞. (28)

Theorem 3. Suppose Assumption 1 holds. Consider any form
of equations (2) and (3), with the new formula (12), in which
αk is obtained from the SWP line search (5) and (6) with
σ ≤ 1/2. �en,

liminf
k⟶∞

gk

����
���� � 0. (29)

�e proof is similar to that presented in [8].

Proof. We will prove the theorem by contradiction. Assume
that the conclusion is not true, then a constant ε> 0 exists
such that

gk

����
����≥ ε, ∀k≥ 1. (30)

Squaring both sides of equation (3), we obtain

dk

����
����
2

� gk

����
����
2

− 2βkg
T
k dk− 1 + β2k dk− 1

����
����
2
. (31)

Divide (31) by ‖gk‖4, we get

dk

����
����
2

gk

����
����
4 �

1

gk

����
����
2 −

2βkg
T
k dk− 1

gk

����
����
4 +

β2k dk− 1
����

����
2

gk

����
����
4 . (32)

Using (6), (12), and (32), we obtain

dk

����
����
2

gk

����
����
4 ≤

dk− 1
����

����
2

gk− 1
����

����
4 +

1

gk

����
����
2 +

2σ g
T
k− 1dk− 1





gk− 1
����

����
2

gk

����
����
2 ≤

dk− 1
����

����
2

gk− 1
����

����
4 +

1 + 2σ(2 − c)

gk

����
����
2 .

(33)

Repeating the process for (33) and using the relationship
(1/‖g1‖) � (1/‖d1‖) yields

dk

����
����
2

gk

����
����
4 ≤ (1 + 2σ(2 − c)) 

k

i�1

1

gi

����
����
2. (34)

From (33), we obtain

gk

����
����
4

dk

����
����
2 ≥

ε2

k(1 + 2σ(2 − c))
. (35)

+erefore,



∞

k�0

gk

����
����
4

dk

����
����
2 �∞. (36)

+is result contradicts (32), thus liminfk⟶∞‖gk‖ � 0.
+e proof is complete. □

4. Numerical Results

To investigate the effectiveness of the new parameter,
several test problems in Table 1 from CUTEst [17] are
chosen. We performed a comparison with the CG_Descent
5.3 based on the CPU time and the number of iterations.
We employed the SWP line search with the line as men-
tioned in [1, 2] with δ � 0.01 and σ � 0.1. +e modified
CG_Descent 6.8 where the memory (mem) equals zero is
employed to obtain all results. +e code can be downloaded
from Hager web pagehttp://users.clas.ufl.edu/hager/
papers/Software/.

+e CG_Descent 5.3 results are obtained by run
CG_Descent 6.8 with memory which equals zero. +e host
computer is an AMD A4-7210 with RAM 4GB. +e results
are shown in Figures 1 and 2 in which a performance
measure introduced by Dolan and More [18] was employed.
As shown in Figure 1, formula A strongly outperforms over
CG_Descent in number of iterations. In Figure 2, we notice
that the new CG formula A is strongly competitive with
CG_Descent.

4.1. Multimodal Function with Its Graph. In this section, we
present six-hump camel back function, which is a multi-
modal function to test the efficiency of the optimization
algorithm. +e function is defined as follows:

functions :· f(x) � 4 − 2.1x
2
1 +

x
4
1
3

 x
2
1 + x1x2

+ − 4 + 4x
2
2 x

2
2.

(37)

+e number of variables (n) equals 2. +is function has
six local minima, with two of them being global. +us, this
function is a multimodal function usually used to test global
minima. Global minima are x∗1 � (− 0.0898, 0.7126) and
x∗2 � (0.0898, − 0.7126). +e function value is
f(x∗) � − 1.0316. As its name describes, this function looks
like the back of an upside down camel with six humps (see
Figure 3 for a three-dimensional graph); for more infor-
mation about two-dimensional functions, the reader can
refer to [19].

Finally, note that CG method can be applied in image
restoration problems and neural network and others. For
more information, the reader can refer to [20, 21].
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Table 1: +e test functions.

CG_Descent 5.3 βA
k

Function Dimension Number of iterations CPU time Number of iterations CPU time

AKIVA 2 10 0.02 8 0.02
ALLINITU 4 12 0.02 9 0.02
ARGLINA 200 1 0.02 1 0.02
ARGLINB 200 5 0.02 6 0.11
ARWHEAD 5000 7 0.02 6 0.03
BARD 3 16 0.02 12 0.02
BDQRTIC 5000 136 0.58 161 0.75
BEALE 2 15 0.02 11 0.02
BIGGS6 6 27 0.02 24 0.02
BOX3 3 11 0.02 10 0.02
BOX 1000 8 0.08 7 0.08
BRKMCC 2 5 0.02 5 0.02
BROWNAL 200 9 0.02 9 0.02
BROWNBS 2 13 0.02 10 0.02
BROWNDEN 4 16 0.02 16 0.02
BROYDN7D 5000 1411 5.47 64 0.37
BRYBND 5000 85 0.38 39 0.22
CHAINWOO 4000 318 0.866 379 1.08
CHNROSNB 50 287 0.02 340 0.02
CLIFF 2 18 0.02 10 0.02
COSINE 10000 11 0.19 14 0.26
CRAGGLVY 5000 103 0.45 104 0.48
CUBE 2 32 0.02 17 0.02
CURLY10 10000 47808 173.7 42454 145.16
CURLY20 10000 66587 383.94 67279 366.03
CURLY30 10000 79030 639.63 74375 509.59
DECONVU 63 400 2.00E − 02 227 0.02
DENSCHNA 2 9 0.02 6 0.02
DENSCHNB 2 7 0.02 6 0.02
DENSCHNC 2 12 0.02 11 0.02
DENSCHND 3 47 0.02 14 0.02
DENSCHNE 3 18 0.02 12 0.02
DENSCHNF 2 8 0.02 9 0.02
DIXMAANA 3000 7 0.02 6 0.02
DIXMAANB 3000 6 0.02 6 0.02
DIXMAANC 3000 6 0.02 6 0.02
DIXMAAND 3000 7 0.02 8 0.02
DIXMAANE 3000 222 0.33 218 0.33
DIXMAANF 3000 161 0.13 116 0.09
DIXMAANG 3000 157 0.12 173 0.14
DIXMAANH 3000 173 0.22 190 0.2
DIXMAANI 3000 3856 4.25 3160 3.34
DIXMAANJ 3000 327 0.36 360 0.39
DIXMAANK 3000 283 0.28 416 0.36
DIXMAANL 3000 237 0.2 399 0.36
DIXON3DQ 10000 10000 19.12 10000 19.12
DJTL 2 82 0.02 75 0.02
DQDRTIC 5000 5 0.02 5 0.02
DQRTIC 5000 17 0.03 15 0.03
EDENSCH 2000 26 0.03 32 0.05
EG2 1000 5 0.02 3 0.02
EIGENALS 2550 10083 178.36 7247 133.4
EIGENBLS 2550 15301 237 18846 290.3
EIGENCLS 2652 10136 174.19 11152 186.86
ENGVAL1 5000 27 0.06 23 0.12
ENGVAL2 3 26 0.02 26 0.02
ERRINROS 50 380 0.02 95504 2.36

Journal of Mathematics 5



Table 1: Continued.

CG_Descent 5.3 βA
k

Function Dimension Number of iterations CPU time Number of iterations CPU time

EXPFIT 2 13 0.02 9 0.02
EXTROSNB 1000 3808 1.25 2370 0.87
FLETCBV2 5000 1 0.02 1 0.02
FLETCHCR 1000 152 0.05 84 0.05
FMINSRF2 5625 346 1.09E + 00 485 1.4
FMINSURF 5625 473 1.51 542 1.64
FREUROTH 5000 25 0.11 29 0.19
GENROSE 500 1078 0.17 2098 0.45
GROWTHLS 3 156 0.02 109 0.02
GULF 3 37 0.02 33 0.02
HAIRY 2 36 0.02 17 0.02
HATFLDD 3 20 0.02 17 0.02
HATFLDE 3 30 0.02 13 0.02
HATFLDFL 3 39 0.02 21 0.02
HEART6LS 6 684 0.02 375 0.02
HEART8LS 8 249 0.02 253 0.02
HELIX 3 23 0.02 23 0.02
HIELOW 3 14 0.02 13 0.05
HILBERTA 2 2 0.02 2 0.02
HILBERTB 10 4 0.02 4 0.02
HIMMELBB 2 10 0.02 4 0.02
HIMMELBF 4 26 0.02 23 0.02
HIMMELBG 2 8 0.02 7 0.02
HIMMELBH 2 7 0.02 5 0.02
HUMPS 2 52 0.02 45 0.02
JENSMP 2 15 0.02 12 0.02
JIMACK 35449 8314 1182.25 7297 1030.3
KOWOSB 4 17 0.02 16 0
LIARWHD 5000 21 0.03 15 0.05
LOGHAIRY 2 27 0.02 26 0.02
MANCINO 100 11 0.08 11 0.08
MARATOSB 2 1145 0.02 589 0.02
MEXHAT 2 20 0.02 14 0.02
MOREBV 5000 161 0.41 161 0.38
MSQRTALS 1024 2905 8.64 2788 9.08
MSQRTBLS 1024 2280 6.91 2181 6.84
NCB20B 500 2035 46.36 4181 70.16
NCB20 5010 879 11.83 959 13
NONCVXU2 5000 6610 15.89 6379 15.92
NONDIA 5000 7 0.03 7 0.03
NONDQUAR 5000 1942 2.45 3058 3.88
OSBORNEA 5 94 0.02 82 0.02
OSBORNEB 11 62 0.02 57 0.02
PALMER1C 8 11 0.02 12 0.02
PALMER1D 7 11 0.02 10 0.02
PALMER2C 8 11 0.02 11 0.02
PALMER3C 8 11 0.02 11 0.02
PALMER4C 8 11 0.02 11 0.02
PALMER5C 6 6 0.02 6 0.02
PALMER6C 8 11 0.02 11 0.02
PALMER7C 8 11 0.02 11 0.02
PALMER8C 8 11 0.02 11 0.02
PARKCH 15 672 29.45 823 39.39
PENALTY1 1000 28 0.02 41 0.02
PENALTY2 200 191 0.05 200 0.03
PENALTY3 200 99 1.78 88 1.98
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Table 1: Continued.

CG_Descent 5.3 βA
k

Function Dimension Number of iterations CPU time Number of iterations CPU time

POWELLSG 5000 26 0.02 27 0.05
POWER 10000 372 0.76 543 1.2
QUARTC 5000 17 0.03 15 0.02
ROSENBR 2 34 0.02 28 0.02
S308 2 8 0.02 7 0.02
SCHMVETT 5000 43 0.23 40 0.27
SENSORS 100 21 0.25 50 0.8
SINEVAL 2 64 0.02 46 0.02
SINQUAD 5000 14 0.09 15 0.08
SISSER 2 6 0.02 5 0.02
SNAIL 2 100 0.02 61 0.02
SPARSINE 5000 18358 73 21328 83
SPARSQUR 10000 28 0.31 35 0.98
SPMSRTLS 4999 203 0.59 219 0.61
SROSENBR 5000 11 0.02 9 0.03
STRATEC 10 462 19.98 170 6.23
TESTQUAD 5000 1577 1.52E + 00 1573 1.42
TOINTGOR 50 135 0.02 120 0.02
TOINTGSS 5000 4 0.02 5 0.02
TOINTPSP 50 143 0.02 157 0.02
TOINTQOR 50 29 0.02 29 0.02
TQUARTIC 5000 14 0.03 11 0.03
TRIDIA 5000 782 0.84 783 1.11
VAREIGVL 23 0.02 24 0.02
VIBRBEAM 50 138 0.02 98 0.02
WATSON 8 49 0.02 61 0.02
WOODS 12 22 0.06 22 0.03
YFITU 4000 84 0.02 68 0.02
ZANGWIL2 3 1 0.02 1 0.02

t
e0 e1 e2 e3 e4

e0

CG_Descent
A

P S
 (t

)

Figure 1: Performance measure based on the number of iterations.
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5. Conclusions

In this study, a modified version of the CG algorithm (A) is
suggested and its performance is investigated. +e modified
formula is restarted based on the value of the Lipchitz constant.
+e global convergence is established by using SWP line search.
Our numerical results show that the new coefficient produces
efficient and competitive results compared with othermethods,
such as CG_Descent 5.3. In the future, an application of the
new version of CGmethodwill be combinedwith feed-forward
neural network (back-propagation (BP) algorithm) to improve
the training process and produce fast training multilayer al-
gorithm.+is will help in reducing time needed to train neural
network when the training samples are massive.
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Linear barycentric rational method for solving two-point boundary value equations is presented. -e matrix form of the
collocation method is also obtained. With the help of the convergence rate of the interpolation, the convergence rate of linear
barycentric rational collocationmethod for solving two-point boundary value problems is proved. Several numerical examples are
provided to validate the theoretical analysis.

1. Introduction

-e analysis of many physical phenomena and engineering
problems can be reduced to solving the boundary value
problem of differential equation, most of which need to be
solved by the numerical method. -e barycentric interpo-
lation method is a high precision calculation method, and a
strong form of collocation that relies on differential equa-
tion, which has been studied extensively by many scholars.
-e linear barycentric rational method (LBRM) [1–3] has
been used to solve certain problems such as delay Volterra
integro-differential equations [4], Volterra integral equa-
tions [5–7], biharmonic equation [8], beam force vibration
equation [9], boundary value problems [10], heat conduc-
tion problems [11], plane elastic problems [12], incom-
pressible plane elastic problems [13], nonlinear problems
[14], and so on [1, 15].

In this article, we pay our attention to the numerical
solution of two-point boundary value problems:

(Tu)(x) ≔ u″(x) + qu(x) � f(x), x ∈ (a, b), (1)

u(a) � uℓ, u(b) � ur. (2)

Let the interval [a, b] be partitioned into n uniform part
with h � (b − a)/n and x0, x1, . . . , xn with its related func-
tion f(xi), i � 0, 1, . . . , n. For any 0≤ d≤ n, with

P(xi), i � 0, 1, . . . , n − d, to be the interpolation function at
the point xi, xi+1, . . . , xi+d, then we have Pi(xk) �

f(xk), k � i, i + 1, . . . , i + d, and

r(x) �


n−d
i�0 λi(x)Pi(x)


n−d
i�0 λi(x)

, (3)

where

λi(x) �
(−1)

i

x − xi(  · · · x − xi+d( 
. (4)

Change the polynomial Pi(x) into the Lagrange inter-
polation form as

Pi(x) � 
i+d

k�i



i+d

j�i,j≠ k

x − xj

xk − xj

fk. (5)

Combining (7) and (5) together, we get



n−d

i�0
λi(x)Pi(x) � 

n−d

i�0
(−1)

i


i+d

k�i

1
x − xk



i+d

i,j≠ k

1
xk − xj

fk � 
n

k�0

wk

x − xk

fk,

(6)

where wk � 
i∈Jk

(−1)i
i+d
j�i,j≠k1/(xk − xj) and Jk � i ∈{

I; k − d≤ i≤ k}.
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-en we get

r(x) �


n
j�0 wj/ x − xj  fj


n
j�0 wj/ x − xj 

, (7)

where its basis function is

Lj(x) �
wj/ x − xj 


n
k�0 wk/ x − xk( 

. (8)

For the equidistant point, its weight function is

wj � (−1)
n−j

C
j
n. (9)

-e Chebyshev point of the second kind is

xj � cos
jπ
n

, j � 0, 1, . . . , n, (10)

and its weight function is

wj � (−1)
jδj, δj �

1
2
, j � 0, n,

1, ortherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(11)

Consider the barycentric interpolation function as

un(x) � 
n

j�0
Lj(x)uj, (12)

and the numerical scheme is given as



n

j�0
ujLj
″(x) + q 

n

j�0
ujLj(x) � f(x). (13)

By using the notation of the differential matrix, equation
(13) is denoted as matrices in the form of



n

j�0
D

(2)
ij uj + q 

n

j�0
δijuj � f xi( , (14)

where i � 1, 2, . . . , n.
Equation (13) is written as matrices in the form of

D(2)
+ qI u � f , (15)

where L ≔ D(2) + qI,u � [u0, u1, u2, . . . , un]T,D(k) �

[D
(k)
ij ](n+1)×(n+1),

D
(1)
ij �

ωj/ωi

xi − xj

, i≠ j,

− 
k≠ i

D
(1)
ik , i � j,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

D
(2)
ij �

2D
(1)
ij D

(1)
ii −

1
xi − xj

 , i≠ j,

− 
k≠ i

D
(2)
ik , i � j,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(16)

and q � diag[q], f � [f(x0), f(x1), f(x2), . . . , f(xn)]T.
Using interpolation formulas, boundary conditions can be
discretized into



n

j�0
D

(1)
1j uj � a, 

n

j�0
D

(1)
nj uj � b. (17)

2. Convergence and Error Analysis

With the error function of difference formula

e(x) ≔ u(x) − r(x) � x − xi(  · · · x − xi+d(  xi, xi+1, . . . , xi+d, x f,

(18)

and

e(x) �


n−d
i�0 λi(x) u(x) − Pi(x)( 


n−d
i�0 λi(x)

�
A(x)

B(x)
� O h

d+1
 ,

(19)

where A(x) ≔ 
n−d
i�0 (−1)i[xi, . . . , xi+d, x]f, B(x) ≔ 

n−d
i�0 λi

(x). Taking the numerical scheme



n

j�0
yjLj
″(x) + q 

n

j�0
yjLj(x) � f(x). (20)

Combining (20) and (1), we have

Te(x) ≔ e″(x) + qe(x) � Rf(x), (21)

where Rf(x) � f(x) − f(xk), k � 0, 1, 2, . . . , n.
-e following Lemma has been proved by Jean-Paul

Berrut in [13].

Lemma 1 (see [13]). For e(x) defined in (18), we have

|e(x)|≤Ch
d+1

, u ∈ C
d+2

[a, b],

e′(x)


≤Ch
d
, u ∈ C

d+3
[a, b],

e″(x)


≤Ch
d− 1

, u ∈ C
d+4

[a, b], d≥ 1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(22)

Let u(x) be the solution of (1) and un(x) is the numerical
solution, then we have

Tun xk(  � f xk( , k � 0, 1, 2, . . . , n, (23)

and

lim
n⟶∞

un(x) � u(x). (24)

-e results can be obtained in the reference of [14].
Based on the above lemma, we derive the following

theorem.

Theorem 1. Let un(x): Tun(x) � f(x), u∗n (x): Tu∗n (x) �

f∗(x), and f(x) ∈ C[a, b], we have

un(x) − u
∗
n (x)


≤Ch

d− 1
. (25)
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Proof. As L ≔ D(2) + QI, where

D2
�

D
(2)
00 D

(2)
01 D

(2)
02 D

(2)
03 · · · D

(2)
0n

D
(2)
10 D

(2)
11 D

(2)
12 D

(2)
13 · · · D

(2)
1n

D
(2)
20 D

(2)
21 D

(2)
22 D

(2)
23 · · · D

(2)
2n

D
(2)
30 D

(2)
31 D

(2)
32 D

(2)
33 · · · D

(2)
3n

. . . . . . . . . . . . . . . . . .

D
(2)
n−1,0 D

(2)
n−1,1 D

(2)
n−1,2 D

(2)
n−2,3 · · · D

(2)
n−1,n

D
(2)
n0 D

(2)
n1 D

(2)
n2 D

(2)
n3 · · · D

(2)
nn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (26)

and

L ≔ D2
+ QI �

q + D
(2)
00 D

(2)
01 D

(2)
02 D

(2)
03 · · · D

(2)
0n

D
(2)
10 q + D

(2)
11 D

(2)
12 D

(2)
13 · · · D

(2)
1n

D
(2)
20 D

(2)
21 q + D

(2)
22 D

(2)
23 · · · D

(2)
2n

D
(2)
30 D

(2)
31 D

(2)
32 D

(2)
33 · · · D

(2)
3n

. . . . . . . . . . . . . . . . . .

D
(2)
n−1,0 D

(2)
n−1,1 D

(2)
n−1,2 D

(2)
n−2,3 · · · D

(2)
n−1,n

D
(2)
n0 D

(2)
n1 D

(2)
n2 D

(2)
n3 · · · q + D

(2)
nn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(27)

Putting column 2, column 3, column n added to column
1, we have

D2
�

0 D
(2)
01 D

(2)
02 D

(2)
03 · · · D

(2)
0n

0 D
(2)
11 D

(2)
12 D

(2)
13 · · · D

(2)
1n

0 D
(2)
21 D

(2)
22 D

(2)
23 · · · D

(2)
2n

0 D
(2)
31 D

(2)
32 D

(2)
33 · · · D

(2)
3n

0 . . . . . . . . . . . . . . .

0 D
(2)
n−1,1 D

(2)
n−1,2 D

(2)
n−2,3 · · · D

(2)
n−1,n

0 D
(2)
n1 D

(2)
n2 D

(2)
n3 · · · D

(2)
nn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (28)

which means the matrix D(2) is the singular matrix.
Similarly we have

L �

q D
(2)
01 D

(2)
02 D

(2)
03 · · · D

(2)
0n

q q + D
(2)
11 D

(2)
12 D

(2)
13 · · · D

(2)
1n

q D
(2)
21 q + D

(2)
22 D

(2)
23 · · · D

(2)
2n

q D
(2)
31 D

(2)
32 q + D

(2)
33 · · · D

(2)
3n

q . . . . . . . . . . . . . . .

q D
(2)
n−1,1 D

(2)
n−1,2 D

(2)
n−2,3 · · · D

(2)
n−1,n

q D
(2)
n1 D

(2)
n2 D

(2)
n3 · · · q + D

(2)
nn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (29)

and then we assume |L|≠ 0 with q≠ 0,
un(x) � 

n
j�0 Lj(x)fj, u∗n (x) � 

n
j�0 Lj(x)f∗j , where.

Un � (f(x0), f(x1), . . . , f(xn))T

andU∗n � (f∗(x0), f∗(x1), . . . , f∗(xn))T.

By

Un − U
∗
n � L− 1 LUn − F

∗
n( , (30)

which means

un(x) − u
∗
n (x) � 

n

j�0
Mj(x)Te(x), (31)

where Mj(x) is the element of matrix L− 1.
-en we have

un(x) − u
∗
n (x)


≤ 

n

j�0
Mj(x)




|Te(x)|≤Chd− 1

. (32)

-e proof is completed.
We know that the central difference method can achieve

quadratic convergence and the convergence order is the
same as that of d� 3. When d >3, the convergence of the
barycentric rational method is better than that of the central
difference method. □

3. Numerical Example

Example 1. Consider the two-point boundary value:

−y″ + 400y � −400 cos2 πx − 2π2 cos 2 πx, (33)

y(0) � y(1) � 0, (34)

and its analysis solution is

y(x) �
e

− 20

1 + e
−20e

20x
+

1
1 + e

− 20e
− 20x

− cos2 πx. (35)

In this example, we consider the two-point boundary
value equations with the boundary condition
y(0) � y(1) � 0. In Table 1, the convergence rate of equi-
distant nodes with different d is O(hd); in Table 2, the
convergence rate of the Chebyshev point of the second kind
with different d is O(hd+2), d≥ 2. From -eorem 1, the
convergence rate is O(hd− 1), and there are no convergence
rates as d � 1. Here the convergence rate is O(h) and O(h2)

in Tables 1 and 2 for d � 1, respectively, and we will give
exact analysis in other paper.

Example 2. Consider the two-point boundary value.

y″ + y′ sin x + ye
x

� −16π2 sin 4πx + 4π sin x cos 4πx

+ e
x
(2 + sin 4πx), −1<x< 1,

(36)

with the boundary condition

y(−1) + y′(−1) � 2 + 4π, y(1) + y′(1) � 2 + 4π, (37)

and its analysis solution is

y(x) � 2 + sin 4πx. (38)

In this example, we consider the variable coefficient of
two-point boundary value equations with the boundary
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condition y(−1) + y′(−1) � 2 + 4π, y(1) + y′(1) � 2 + 4π.
In Table 3, the convergence rate of equidistant nodes with
different d is O(hd); in Table 4, the convergence rate of the
Chebyshev point of second kind with different d is
O(hd+2), d≥ 2.

4. Concluding Remarks

In this paper, the numerical approximation of linear bar-
ycentric rational collocation method for solving two-point
boundary value equations is presented. -e matrix form of
the algorithm is given for the simple calculation; with the
help of Newton formula, the error function of the

convergence rate O(hd− 1) is also obtained. For the constant
coefficient and variable coefficient of two-point boundary
value equations, numerical results show that the conver-
gence rate can reach O(hd) for the equidistant nodes and
O(hd+2) for the Chebyshev point of the second kind with
d≥ 2. For the special case of d � 1, there are still convergence
rates with O(h), and the analysis of this phenomenon will be
presented in other papers.

Data Availability

-e data that support the findings of this study are available
from the corresponding author upon reasonable request.

Table 1: Errors of the equidistant nodes with different d.

n d � 1 d � 2 d � 3 d � 4 d � 5
10 5.6796e− 02 4.7174e− 02 3.6770e− 02 2.9692e− 02 2.5240e− 02
20 3.1866e− 02 2.0707e− 02 1.2295e− 02 7.5473e− 03 4.6949e− 03
40 1.1899e− 02 4.8530e− 03 1.8024e− 03 6.8958e− 04 2.6519e− 04
80 4.0465e− 03 8.2037e− 04 1.7027e− 04 3.6416e− 05 7.8060e− 06
160 1.4721e− 03 1.1821e− 04 1.2993e− 05 1.4706e− 06 1.6657e− 07
320 4.9182e− 04 1.5796e− 05 8.9500e− 07 5.2131e− 08 3.0430e− 09
640 1.5719e− 04 2.0375e− 06 5.8674e− 08 1.7409e− 09 5.1202e− 11

Table 2: Errors of the Chebyshev point with different d.

n d � 1 d � 2 d � 3 d � 4 d � 5
10 4.7235e− 02 3.4143e− 02 2.3198e− 02 1.0658e− 02 4.2299e− 03
20 2.0966e− 02 4.9675e− 03 2.3057e− 03 1.5490e− 03 1.0185e− 03
40 5.0812e− 03 3.3376e− 04 7.5530e− 05 3.1018e− 05 1.2517e− 05
80 1.2482e− 03 2.0099e− 05 2.1222e− 06 4.5138e− 07 9.5181e− 08
160 2.9995e− 04 1.2091e− 06 6.1512e− 08 6.5988e− 09 6.9630e− 10
320 7.3360e− 05 7.3634e− 08 1.8414e− 09 1.0610e− 10 2.8788e− 10
640 1.8092e− 05 4.5328e− 09 5.7970e− 11 1.5463e− 10 6.0430e− 09

Table 3: Errors of the equidistant nodes with different d.

n d � 1 d � 2 d � 3 d � 4 d � 5
10 3.1903e+ 00 5.8183e+ 00 4.2584e+ 00 3.3515e+ 00 3.8150e+ 00
20 9.0854e− 01 1.8487e− 01 4.7472e− 02 5.6182e− 02 2.1227e− 02
40 1.9690e− 01 3.8711e− 02 5.9273e− 04 1.9234e− 04 4.9300e− 05
80 4.4235e− 02 3.9481e− 03 4.9399e− 06 2.3577e− 06 2.4228e− 07
160 9.6887e− 03 3.4240e− 04 1.9523e− 07 1.9939e− 08 2.8181e− 09
320 2.0060e− 03 2.7549e− 05 5.5624e− 09 1.6331e− 09 7.9052e− 08
640 3.7877e− 04 2.1177e− 06 1.0976e− 09 2.1374e− 08 1.2137e− 06

Table 4: Errors of the Chebyshev point with different d.

n d � 1 d � 2 d � 3 d � 4 d � 5
10 1.3687e+ 01 1.0866e+ 02 2.9315e+ 02 6.7980e+ 02 1.4700e+ 03
20 2.9375e+ 00 2.2412e+ 01 2.0846e+ 01 2.2744e+ 00 3.1001e+ 01
40 1.0678e+ 00 4.9833e+ 00 9.5860e− 01 1.3524e+ 00 7.5788e− 01
80 4.4216e− 01 1.1571e+ 00 2.6706e− 02 9.3346e− 02 8.5273e− 03
160 1.9821e− 01 2.7788e− 01 1.7104e− 03 5.6811e− 03 2.5039e− 05
320 9.3181e− 02 6.8032e− 02 4.9655e− 04 3.4460e− 04 2.6914e− 06
640 4.5032e− 02 1.6827e− 02 7.8365e− 05 2.1132e− 05 1.3480e− 07
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+e classical composite midpoint rectangle rule for computing Cauchy principal value integrals on an interval is studied. By using
a piecewise constant interpolant to approximate the density function, an extended error expansion and its corresponding
superconvergence results are obtained. +e superconvergence phenomenon shows that the convergence rate of the midpoint
rectangle rule is higher than that of the general Riemann integral when the singular point coincides with some priori known
points. Finally, several numerical examples are presented to demonstrate the accuracy and effectiveness of the theoretical analysis.
+is research is meaningful to improve the accuracy of the collocation method for singular integrals.

1. Introduction

Singular integrals, especially Cauchy principal value inte-
grals, are usually encountered in the fields of Boundary
Element Method (BEM) [1–3], for example, the fluid me-
chanics, the elasticity and fracture mechanics, the acoustics,
and the electromagnetics. In these fields (including their
related physical problems), much attention has been paid to
the Cauchy principal value integrals [4–8]. We now consider
the following integral:

I(f; s) � c.p 
b

a

f(x)

x − s
dx � g(s), s ∈ (a, b), (1)

where f(x) is Holder continuous on the interval [a, b],
(f(x)/(x − s))is the density function, c.p 

b

a
denotes a

Cauchy principal value integral, and s is the singular point.
+ere are many ways to define equation (1). However, these
definitions can be proved to be mathematically equivalent.
In this paper, we adopt the following definition:

c.p 
b

a

f(x)

x − s
dx � lim

ε⟶0


s− ε

a

f(x)

x − s
dx + 

b

s+ε

f(x)

x − s
dx , s ∈ (a, b).

(2)

For this level of regularity of integrand, some methods
based on the Chebyshev series expansion are much effective.
+ey are easy to include the adaptive feature and can be
applied to much difficult integrands [9–11]. At the same
time, there are numerous works that have been devoted to
developing efficient quadrature formulas, such as the
Gaussian method [12,13], the Newton–Cotes method
[14–16], the spline method [17, 18], and some other methods
[19–25]. Usually, Gaussian rules have good accuracy if the
integrand is smooth, while Newton–Cotes rules are at-
tractive due to their ease of implementation and flexibility of
mesh. To improve the accuracy of boundary element
analysis, an efficient method called general (composite)
Newton–Cotes rule has been studied and used to compute
Cauchy principal value integrals and Hadamard finite-part
integrals [26, 27]. When the singular point s coincides with
some priori known points, Newton–Cotes rules can reach a
high-order convergence rate [28, 29]. +is is the so-called
pointwise superconvergence phenomenon of the New-
ton–Cotes rules.

In this paper, we will focus on the superconvergence
phenomenon of midpoint rectangle rules for Cauchy
principal integrals with the density function (f(x)/(x − s))

being replaced by the approximation function
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(f(xi)/(xi − s)), i � 0, 1, . . . , n − 1, where xi is the middle
point of each subinterval of [a, b]. Different from the idea
provided by Linz in [30] to calculate the hypersingular
integral on an interval, we will present a direct method to
compute the Cauchy principal integral. Based on the error
estimate [31–33], the error function is determined by a
certain special function S0(τ). We will also give the necessary
and sufficient conditions to be satisfied by the super-
convergence points. In addition, we will not only try to
obtain the error estimate of the superconvergence phe-
nomenon but also make some investigation about the
superconvergence points.

+e rest of this paper is organized as follows. In Section
2, some basic formulas of the midpoint rectangle rule are
introduced, and our main results are presented. In Section 3,
some lemmas are given and the proof of the main results is
completed. In Section 4, several numerical examples are
provided to validate our analysis. At last, the concluding
remarks are presented.

2. The Superconvergence of the Composite
Midpoint Rectangle Rule

Let a � x0 < x1 < · · · <xn− 1 <xn � b be a uniform partition
of the interval [a, b] with a mesh size h � ((b − a)/n). We
first define the piecewise constant interpolant for f(x):

fC(x) � f xi( , xi � xi +
h

2
, x ∈ xi, xi+1( , (3)

and then, we define a linear transformation:

x � xi(τ) ≔
(τ + 1) xi+1 − xi( 

2
+ xi, τ ∈ [− 1, 1], (4)

which maps the reference element [− 1, 1] onto the subin-
terval [xi, xi+1]. By replacing (f(x)/(x − s)) in equation (1)
with (fC(x)/(xi − s)), we can obtain the following com-
posite midpoint rectangle rule:

In(f; s) � c.p 
b

a

fC(x)

xi − s
dx � 

n− 1

i�0
wi(s)f xi( 

� c.p 
b

a

f(x)

x − s
dx − En(f; s),

(5)

where wi(s) denotes the Cotes coefficient given by wi(s) �

(h/xi − s) and En(f; s) is the error function.

Theorem 1 (see [5]). Assume that
f(x) ∈ Cα[a, b], α ∈ (0, 1]. For the midpoint rectangle rule
In(f; s) defined in equation (5), assume that
s ∈ [xm, xm+1], s≠ xm, m � 0, 1, 2, . . . , n − 1, and there
exists a positive constantC that is independent of h and s, such
that

En(f; s)


≤C(|ln h| +|ln c(τ)|)h
α
, (6)

where

c(τ) � min
0≤i≤n

s − xi




h
�
1 − |τ|

2
. (7)

Before presenting the main results, we first define

φ0(x) �

−
1
2x

c.p 
1

− 1

τ
τ − x

dτ, |x|< 1,

−
1
2x


1

− 1

τ
τ − x

dτ, |x|> 1,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S0(τ) ≔ φ0(τ) + 
∞

i�1
φ0(2i + τ) + φ0(− 2i + τ) , τ ∈ (− 1, 1).

(8)

Theorem 2. Assume that f(x) ∈ Cl[a, b], l≥ 2. For the
midpoint rectangle rule In(f; s) defined in equation (5), assume
that s � xm + (1 + τ)h/2, s≠ xm, m � 0, 1, 2, . . . , n − 1,
and there exists a positive constant C that is independent of h

and s, such that

En(f; s) � − f(s)S0(τ) + Rn(s), (9)

where

Rn(s)


≤C |ln h| + c
− 1

(τ) +
η(s)

h
l− 1 h

l
, (10)

where c(τ) is defined by equation (7) and

η(s) � max
1

s − a
 ,

1
b − s

. (11)

Remark 1. Under the same assumptions of+eorem 2, when
τ∗ is the zero of S0(τ∗), we have

En(f; s)


≤C |ln h| + c
− 1 τ∗(  + η(s)h

1− l
 h

l
. (12)

3. The Proof of the Main Results

In this section, we mainly complete the proof of +eorem 2.

3.1. Some Necessary Lemmas

Lemma 1. Under the same assumptions of 8eorem 2, there
holds that

xi − s( f(x) − (x − s)f xi(  � f(s) xi − x( 

+ 
l− 1

k�1

f
(k)

(s)

k!
(x − s)

k
xi − x( 

− 
l− 1

k�1


l− 1

j�k

f
(j)

(s)

k!(j − k)!
(x − s)

j− k+1
xi − x( 

k
+ Rf(x),

(13)

where
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Rf(x) � R
1
f(x) + R

2
f(x) + R

3
f(x), (14)

with

R
1
f(x) � −

f
(l) θ1( 

l!
(x − s) xi − x( 

l
,

R
2
f(x) �

f
(l) θ2( 

l!
(x − s)

l
xi − x( ,

R
3
f(x) � − 

l− 1

k�1

f
(l) θ3( 

k!(l − k)!
(x − s)

l− k+1
xi − x( ,

(15)

and θ1, θ2 ∈ (xi, xi+1), θ3 ∈ (x, s) or (s, x).

Proof. Note that f(x) ∈ Cl[a, b]. By applying the following
Taylor expansion to f(xi) at the point x, we obtain

f xi(  � f(x) + 
l− 1

k�1

f
(k)

(x)

k!
xi − x( 

k

+
f

(l) θ1( 

l!
xi − x( 

l
, θ1 ∈ xi, xi+1( .

(16)

Similarly, we have

f(x) � f(s) + 
l− 1

k�1

f
(k)

(s)

k!
(x − s)

k

+
f

(l) θ2( 

l!
(x − s)

l
, θ2 ∈ xi, xi+1( .

(17)

+us,

xi − s( f(x) − (x − s)f xi(  � f(s) xi − x( 

+ 
l− 1

k�1

f
(k)

(s)

k!
(x − s)

k
xi − x( 

− 

l− 1

k�1

f
(k)

(x)

k!
(x − s) xi − x( 

k
−

f
(l) θ1( 

l!
xi − x( 

l
(x − s)

+
f

(l) θ2( 

l!
(x − s)

l
xi − x( .

(18)

On the contrary, for k � 1, 2, . . . , l − 1, we have

f
(k)

(x) � f
(k)

(s) + f
(k+1)

(s)(x − s) + · · · +
f

(l) θ3( 

(l − k)!
(x − s)

l− k

� 
l− 1

j�k

f
(j)

(s)

(j − k)!
(x − s)

j− k
+

f
(l) θ3( 

(l − k)!
(x − s)

l− k
,

(19)

where θ3 ∈ (x, s) or (s, x). According to equations (18) and
(19), we can obtain equation (13). +e proof is completed.

Define the error function:

Em(x) � f(x) −
f xm( (x − s)

xm − s( 
−

f(s) xm − x( 

xm − s( 

− 
l− 1

k�1

f
(k)

(s)(x − s)
k

xm − x( 

k! xm − s( 

+ 
l− 1

k�1


l− 1

j�k

f
(j)

(s)(x − s)
j− k+1

xm − x( 
k

k!(j − k)! xm − s( 
.

(20)

□

Lemma 2. Assume that s ∈ (xi, xi+1) for the integerm and let
ci � (2(s − xi)/h − 1), 0≤ i≤ n − 1. 8en, we have

φ0 ci(  �

−
1
2

c.p 
xm+1

xm

xm − x

(x − s) xm − s( 
dx, i � m,

−
1
2


xi+1

xi

xi − x

(x − s) xi − s( 
dx, i≠m.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(21)

Proof. If i � m, by using the definition of equation (2) and
the linear transformation of equation (4), we have

c.p 
xm+1

xm

xm − x

(x − s) xm − s( 
dx

� lim
ε⟶0


s− ε

xm

xm − x

(x − s) xm − s( 
dx + 

xm+1

s+ε

xm − x

(x − s) xm − s( 
dx 

� c.p 
xm+1

xm

τ
cm τ − cm( 

dτ

� − 2φ0 cm( .

(22)

If i≠m, it can be proved by applying the same approach
to the corresponding Riemann integral. +e proof is
completed. □

Lemma 3. Under the same assumptions of8eorem 2, for the
function Em(x) in equation (20), there holds that

c.p 
xm+1

xm

Em(x)

x − s
dx




≤Ch

l
|ln c(τ)|, (23)

where c(τ) is defined in equation (7).

Proof. Since f(x) ∈ Cl[a, b], by using Taylor expansion, we
have

E
(i)
m (x)



≤Ch
l− i

, i � 0, 1. (24)

From the following defined relationship,

c.p 
b

a

f(x)

x − s
dx � 

b

a

f(x) − f(s)

x − s
dx + f(s)ln

b − s

s − a




,

(25)

we have
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c.p 
xm+1

xm

Em(x)

x − s
dx � 

xm+1

xm

Em(x) − Em(s)

x − s
dx

+ Em(s)ln
xm+1 − s

s − xm




.

(26)

Nowm we estimate equation (26) term by term:


xm+1

xm

Em(x) − Em(s)

x − s
dx




� 

xm+1

xm

Em
′ ξm( dx





≤Ch
l
, ξm ∈ xm, s(  or s, xm+1( ,

(27)

Em(s)ln
xm+1 − s

s − xm








≤Ch

l
|ln c(τ)|. (28)

From equations (26)–(28), we can obtain equation (23).
+e proof is completed. □

Lemma 4 (see [5]). For τ ∈ (− 1, 1) and m≥ 1, we have



∞

i�m

φ0(2i + τ) + 
∞

i�n− m+1
φ0(− 2i + τ)




≤Chη(s). (29)

3.2. Proof of 8eorem 2

Proof. By Lemma 1, we have


xm

a
+ 

b

xm+1

 
f(x)

x − s
dx − 

n− 1

i�0,i≠m

f xi( h

xi − s

� 
n− 1

i�0,i≠m


xi+1

xi

f(x)

x − s
−

f xi( 

xi − s
 dx

� 
n− 1

i�0,i≠m


xi+1

xi

xi − s( f(x) − (x − s)f xi( 

(x − s) xi − s( 
dx

� f(s) 
n− 1

i�0,i≠m


xi+1

xi

xi − x( 

(x − s) xi − s( 
dx + 

l− 1

k�1

f
(k)

(s)

k!


n− 1

i�0,i≠m


xi+1

xi

(x − s)
k− 1

xi − x( 

xi − s( 
dx

− 
l− 1

k�1


l− 1

j�k

f
(j)

(s)

k!(j − k)!


n− 1

i�0,i≠m


xi+1

xi

(x − s)
j− k

xi − x( 
k

xi − s( 
dx − 

n− 1

i�0,i≠m


xi+1

xi

f
(l) θ1(  xi − x( 

l

l! xi − s( 
dx

+ 
n− 1

i�0,i≠m


xi+1

xi

f
(l) θ2( (x − s)

l− 1
xi − x( 

l! xi − s( 
dx − 

l− 1

k�1


n− 1

i�0,i≠m


xi+1

xi

f
(l) θ3( (x − s)

l− k
xi − x( 

k

k!(l − k)! xi − s( 
dx.

(30)

From the definition of Em(x) in equation (20), we have

c.p 
xm+1

xm

f(x)

x − s
−

f xm( 

xm − s
 dx � c.p 

xm+1

xm

Em(x)

x − s
dx + f(s)c.p 

xm+1

xm

xm − x( 

(x − s) xm − s( 
dx

+ 
l− 1

k�1

f
(k)

(s)

k!
c.p 

xm+1

xm

(x − s)
k− 1

xm − x( 

xm − s( 
dx

− 
l− 1

k�1


l− 1

j�k

f
(j)

(s)

k!(j − k)!
c.p 

xm+1

xm

(x − s)
j− k

xm − x( 
k

xm − s( 
dx.

(31)

According to equations (30) and (31), we can obtain
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c.p 
b

a

f(x)

x − s
dx − 

n− 1

i�0

f xi( h

xi − s

� 
n− 1

i�0
c.p 

xi+1

xi

f(x)

x − s
−

f xi( 

xi − s
 dx

� 
n− 1

i�0,i≠m


xi+1

xi

f(x)

x − s
−

f xi( 

xi − s
 dx

+ c.p 
xm+1

xm

f(x)

x − s
−

f xm( 

xm − s
 dx

� − f(s)S0(τ) + Rn(s),

(32)

where

Rn(s) � R
(1)
n (s) + R

(2)
n (s) + R

(3)
n (s) + R

(4)
n (s), (33)

with

R
(1)
n (s) � 

l− 1

k�1

f
(k)

(s)

k!


n− 1

i�0,i≠m


xi+1

xi

(x − s)
k− 1

xi − x( 

xi − s( 
dx + c.p 

xm+1

xm

(x − s)
k− 1

xm − x( 

xm − s( 
dx⎡⎢⎣ ⎤⎥⎦

− 
l− 1

k�1


l− 1

j�k

f
(j)

(s)

k!(j − k)!


n− 1

i�0,i≠m


xi+1

xi

(x − s)
j− k

xi − x( 
k

xi − s( 
dx + c.p 

xm+1

xm

(x − s)
j− k

xm − x( 
k

xm − s( 
dx⎡⎢⎣ ⎤⎥⎦,

(34)

R
(2)
n (s) � − 

n− 1

i�0,i≠m


xi+1

xi

f
(l) θ1(  xi − x( 

l

l! xi − s( 
dx + 

n− 1

i�0,i≠m


xi+1

xi

f
(l) θ2( (x − s)

l− 1
xi − x( 

l! xi − s( 
dx

− 

l− 1

k�1


n− 1

i�0,i≠m


xi+1

xi

f
(l) θ3( (x − s)

l− k
xi − x( 

k

k!(l − k)! xi − s( 
dx,

(35)

R
(3)
n (s) � c.p 

xm+1

xm

Em(x)

x − s
dx, (36)

R
(4)
n (s) � f(s) 

∞

i�m

φ0(2i + τ) + 
∞

i�n− m+1
φ0(− 2i + τ)⎡⎣ ⎤⎦. (37)

Now, we estimate these four terms one by one. For
R(1)

n (s), by the definition of equation (2) and the linear
transformation of equation (4), we have



l− 1

k�1


l− 1

j�k

f
(j)

(s)

k!(j − k)!


n− 1

i�0,i≠m


xi+1

xi

(x − s)
j− k

xi − x( 
k

xi − s( 
dx + c.p 

xm+1

xm

(x − s)
j− k

xm − x( 
k

xm − s( 
dx⎡⎢⎣ ⎤⎥⎦





≤C 
l− 1

k�1


l− 1

j�k

f
(j)

(s)

k!(j − k)!

h

2
 

j



n− 1

i�0

1
ci




≤Ch

l
c

− 1
(τ).

(38)

+en, we obtain

c.p 
xm+1

xm

(x − s)
j− k

xm − x( 
k

xm − s( 
dx




≤C

1
cm

h

2
 

j

. (39)

Similarly, by applying the same approach to the corre-
sponding Riemann integral, we obtain
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xi+1

xi

(x − s)
j− k

xi − x( 
k

xi − s( 
dx




≤C

1
ci

h

2
 

j

. (40)
By substituting equations (39) and (40) into the second

part of R(1)
n (s), we can obtain
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j�k
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(j)

(s)

k!(j − k)!


n− 1

i�0,i≠m
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xi
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j− k

xi − x( 
k
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(x − s)
j− k

xm − x( 
k

xm − s( 
dx⎡⎢⎣ ⎤⎥⎦





≤C 
l− 1
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j�k

f
(j)

(s)

k!(j − k)!

h
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1
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≤Ch

l
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(τ).

(41)

In the same way, we can obtain
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(s)
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dx + c.p 

xm+1
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k�1
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(k)

(s)
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2
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n− 1

i�0

1
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≤Ch

l
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− 1
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(42)

As for R(2)
n (s), we have



n− 1

i�0,i≠m


xi+1

xi

f
(l) θ1(  xi − x( 

l

l! xi − s( 
dx




≤Ch

l


n− 1

i�0,i≠m


xi+1
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xi − s



dx≤Ch

l
[|ln h| + 1]. (43)

From equation (40), we can obtain



n− 1

i�0,i≠m


xi+1

xi

f
(l) θ2( (x − s)

l− 1
xi − x( 

l! xi − s( 
dx




≤C
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2
 

l
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1
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≤Ch
l
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(τ), (44)



l− 1

k�1


n− 1

i�0,i≠m


xi+1

xi

f
(l) θ3( (x − s)

l− k
xi − x( 

k

k!(l − k)! xi − s( 
dx




≤C

h

2
 

l



n− 1

i�0,i≠m

1
ci

≤Ch
l
c

− 1
(τ). (45)

According to Lemmas 3 and 4, we know

R
(3)
n (s)



≤Ch
l
|ln c(τ)|, (46)

R
(4)
n (s)



≤Chη(s). (47)

From the above estimates, equation (10) can be obtained.
+e proof is completed.

In addition, from [5], we know
S0(φ0, τ) � − (π/2)tan(π(τ + 1)/2). □

4. Numerical Examples

Example 1. We first consider the Cauchy principal value
integral with f(x) � x6, a � − 1, and b � 1. +e exact value
can be expressed as 2s5 + 2/3s3 + 2/5s + s6log(1 − s/1 + s).

We adopt the uniform mesh method to examine the
convergence rate of the midpoint rectangle rule In(x6, s)

with the dynamic points s � x[n/4] + (1 + τ)h/2 and
s � a + (1 + τ)h/2, respectively. For different values of n, the
error distributions are shown in Figure 1 and Figure 2,
respectively.
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When s � x[n/4] + (1 + τ)h/2, the convergence rate of the
midpoint rectangle rule is O(h2) at the superconvergence
points, and there is no convergence rate at the non-
superconvergence points, as shown in Table 1. When
s � a + (1 + τ)h/2, because of the influence of η(s), no
superconvergence phenomenon occurs at both the super-
convergence points and the non-superconvergence points,
which coincides with the theoretical analysis, as shown in
Table 2. For the case of l � 2, these numerical results agree
quite well with the theoretical results in +eorem 2.

Example 2. In the second example, we further study the
accuracy of the midpoint rectangle rule. We next consider
the Cauchy principal value integral with
f(x) � x2 − 1, a � − 1, b � 1. +e exact value can be
expressed as 2s + (1 − s2)log|1 + s/1 − s|.

We adopt the uniform mesh method to examine the
convergence rate of the midpoint rectangle rule In(x2 − 1, s)

with the dynamic points s � x[n/4] + (1 + τ)h/2 and
s � a + (1 + τ)h/2, respectively. For different values of n, the
error distributions are shown in Figure 3 and Figure 4,
respectively.

For the case of s � x[n/4] + (1 + τ)h/2, when the local
coordinate of singular point τ � ± 1, the convergence rate of
themidpoint rectangle rule isO(h2) at the superconvergence
points, and there is no convergence rate at the non-
superconvergence points, as shown in Table 3. For the case of
s � a + (1 + τ)h/2 because of the limitation of the boundary
conditionf(a) � f(b) � 0, the convergence rate is O(h) at
both the superconvergence points and the non-super-
convergence points, as shown in Table 4. +ese numerical
results are consistent with the theoretical results of l � 2 in
+eorem 2.
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Figure 1: Error distributions for the midpoint rectangle rule with s � x[n/4] + (1 + τ)h/2.
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Figure 2: Error distributions for the midpoint rectangle rule with s � a + (1 + τ)h/2.

Table 1: Errors and convergence for the midpoint rectangle rule with s � x[n/4] + (1 + τ)h/2.

n τ � 1 τ � − 1 τ � 1/2 τ � 2/3
32 6.2074e − 004 7.2296e − 004 2.6547e − 002 1.4010e − 002
64 1.6800e − 004 1.8082e − 004 3.6631e − 002 2.0390e − 002
128 4.3607e − 005 4.5210e − 005 4.2533e − 002 2.4147e − 002
256 1.1102e − 005 1.1303e − 005 4.5724e − 002 2.6186e − 002
512 2.8007e − 006 2.8257e − 006 4.7384e − 002 2.7249e − 002
1024 7.0330e − 007 7.0643e − 007 4.8230e − 002 2.7791e − 002
Convergence ratio 1.9571 1.9998 — —

Table 2: Errors and convergence for the midpoint rectangle rule with s � a + (1 + τ)h/2.

n τ � 1 τ � − 1 τ � 1/2 τ � 2/3
32 2.2989e − 002 — 2.3986e − 000 1.3505e − 000
64 2.9689e − 002 — 2.7767e − 000 1.5907e − 000
128 3.3079e − 002 — 2.9831e − 000 1.7230e − 000
256 3.4782e − 002 — 3.0909e − 000 1.7924e − 000
512 3.5635e − 002 — 3.1459e − 000 1.8280e − 000
1024 3.6062e − 002 — 3.1738e − 000 1.8460e − 000
Convergence ratio — — — —
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Figure 3: Error distributions for the midpoint rectangle rule with s � x[n/4] + (1 + τ)h/2.
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Figure 4: Continued.
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5. Conclusions

In this paper, the interpolation method and Taylor expan-
sionmethod are used to obtain the extended error expansion
of classical composite midpoint rectangle rule for the
computation of Cauchy principal value integrals. For the
case of f(x) ∈ Cl[a, b], l≥ 2, the error expansion and its
accuracy are analyzed by theoretical proofs and numerical
experiments. Based on the expansion of the error function,
some superconvergence results are obtained. It shows that
the increased rate of convergence occurs at the singular
points whose location changes are allowed. +is kind of
Cauchy principal value integral can be widely used in many
engineering areas, and the positions of singular points are
fixed in real applications. Moreover, it is very possible to
extend the above presented results to improve the accuracy

of the collocation method for singular integrals by choosing
the superconvergence points to be the collocation points.
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Table 3: Errors and convergence for the midpoint rectangle rule with s � x[n/4] + (1 + τ)h/2.

n τ � 1 τ � − 1 τ � 1/2 τ � 2/3
32 3.5138e − 004 4.3272e − 004 2.4969e+ 000 1.4503e+ 000
64 9.7712e − 005 1.0842e − 004 2.4282e+ 000 1.4065e+ 000
128 2.5746e − 005 2.7122e − 005 2.3926e+ 000 1.3837e+ 000
256 6.6071e − 006 6.7814e − e − 006 2.3745e+ 000 1.3721e+ 000
512 1.6735e − 006 1.6954e − 006 2.3654e+ 000 1.3662e+ 000
1024 4.2110e − 007 4.2385e − 007 2.3608e+ 000 1.3633e+ 000
Convergence ratio 1.9409 1.9991 — —

Table 4: Errors and convergence for the midpoint rectangle rule with s � a + (1 + τ)h/2.

n τ � 1 τ � − 1 τ � 1/2 τ � 2/3
32 4.4135e − 003 — 2.9313e − 001 1.8911e − 001
64 2.2443e − 003 — 1.4833e − 001 9.5823e − 002
128 1.1313e − 003 — 7.4603e − 002 4.8228e − 002
256 5.6792e − 004 — 3.7411e − 002 2.4193e − 002
512 2.8452e − 004 — 1.8733e − 002 1.2116e − 002
1024 1.4240e − 004 — 9.3735e − 003 6.0631e − 003
Convergence ratio 0.9908 — 0.9934 0.9926
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Figure 4: Error distributions for the midpoint rectangle rule with s � a + (1 + τ)h/2.
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.e numerical solution for a kind of third-order boundary value problems is discussed.With the barycentric rational interpolation
collocation method, the matrix form of the third-order two-point boundary value problem is obtained, and the convergence and
error analysis are obtained. In addition, some numerical examples are reported to confirm the theoretical analysis.

1. Introduction

Differential equations can give full play to their mathe-
matical advantages in various disciplines. Combining the
theory of differential equations with practical problems can
build models of practical problems. Many engineering and
physical problems can be transformed into the initial
boundary value problems of differential equations. In these
problems, only a few simple cases can be solved analytically,
and most engineering problems need to be solved by nu-
merical methods. Compared with polynomial interpolation,
rational function interpolation has higher interpolation
accuracy and can effectively overcome the instability of
interpolation [1–4]. Barycentric rational interpolation not
only has high interpolation accuracy on special distributed
nodes but also has high interpolation accuracy for equi-
distant nodes [5–7]. .is method has been used to solve
certain problems such as Volterra integral equations [2, 8, 9],
delay Volterra integrodifferential equations [10, 11], plane
elastic problems [12], nonlinear problems [13], heat con-
duction equation [14], and so on [15–17].

.e third-order differential equation has a wide range of
applications and important theoretical values in many

scientific fields, such as applied mathematics and physics.
.erefore, the third-order boundary value problem has been
widely concerned by many scholars [18–20]. In this paper,
we consider the numerical solution of the third-order two-
point boundary value problem,

u
‴

(x) + pu″(x) + qu′(x) + ru(x) � f(x), a< x< b,

(1)

u(a) � A, u′(a) � B, u′(b) � C, (or)
u(a) � A, u′(a) � B, u″(a) � C,

(2)

by the barycentric rational interpolation collocationmethod.
Barycentric rational interpolation collocation method

means using barycentric interpolation polynomials to find
the differential matrix of a function at each discrete point;
thus, the solution of the differential equation can be obtained
by matrix operation. .e barycentric rational interpolation
has excellent numerical stability and high approximation
accuracy, and the barycentric rational interpolation formula
has a compact calculation formula of all order derivatives.
.erefore, the barycentric rational interpolation collocation
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method is an effective method for solving boundary value
problems of differential equations.

2. Formula of the Barycentric Interpolation
Collocation Method

Discretize the interval [a, b] into n uniform parts with
h � ((b − a)/n), and suppose u1, u2, . . . , un is the function
value of an unknown function u at discrete nodes
x1, x2, . . . , xn.

For any 0≤ d≤ n, P(xi), i � 0, 1, . . . , n − d, is the inter-
polation function at the point xi, xi+1, . . . , xi+d; then, we
have Pi(xk) � f(xk), k � i, i + 1, . . . , i + d, and

r(x) �


n−d
i�0 λi(x)Pi(x)


n−d
i�0 λi(x)

, (3)

where

λi(x) �
(−1)

i

x − xi(  · · · x − xi+d( 
. (4)

By changing the polynomial Pi(x) into the Lagrange
interpolation form as

Pi(x) � 
i+d

k�i



i+d

j�i,j≠ k

x − xj

xk − xj

fk (5)

and combining (4) and (5) together, we get



n−d

i�0
λi(x)Pi(x) � 

n−d

i�0
(−1)

i


i+d

k�i

1
x − xk



i+d

j�i,j≠ k

1
xk − xj

fk � 
n

k�0

wk

x − xk

fk, (6)

where wk � i∈Jk
(−1)i

i+d
j�i,j≠k(1 /xk − xj), Jk � i ∈ I; k−{

d≤ i≤ k}.
.en, we get

r(x) �


n
j�0 wj/x − xj fj


n
j�0 wj/x − xj 

, (7)

where its basis function is

Lj(x) �
wj/x − xj 


n
k�0 wk/x − xk( 

. (8)

For the equidistant point, the weight function is

wj � (−1)
n− j

C
j
n. (9)

For the Chebyshev point of the second kind,

xj � cos
jπ
n

, j � 0, 1, . . . , n, (10)

the weight function is

wj � (−1)
jδj, δj �

1
2
, j � 0, n,

1, otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(11)

By formula (8), the m-th order derivative of u(x) at the
nodes x1, x2, . . . , xn can be expressed as

u
(m)

xj  :� u
(m)
i �

d
m

u xj 

dx
m � 

n

k�1
L

(m)
k xj uk

� 
n

k�1
D

(m)
ij uk, m � 1, 2, . . . ,

(12)

and then (12) can be written in the matrix form as

u
(m)

� D
(m)

u, (13)

where u(m) � [u
(m)
1 , u

(m)
2 , . . . , u(m)

n ]T and
u � [u1, u2, . . . , un]T.

By using the barycentric interpolation function as

un(x) � 
n

j�0
Lj(x)uj, (14)

equation (1) can be written in the numerical form as



n

j�0
ujL
″′
j(x) + p 

n

j�0
ujLj
″(x) + q 

n

j�0
ujLj
′(x) + r 

n

j�0
ujLj(x) � f(x). (15)
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By using the notation of the differential matrix, (15) can
also be denoted as



n

j�0
D

(3)
ij uj + p 

n

j�0
D

(2)
ij uj + q 

n

j�0
D

(1)
ij uj + r



n

j�0
δijuj � f xi( , i � 1, 2, . . . , n,

(16)

or the simple matrix form

D
(3)

+ pD
(2)

+ qD
(1)

+ rI u � f . (17)

Boundary conditions (2) can be divided into

u1 � A, u′ x1(  � 
n

j�0
D

(1)
1j uj � B,

u′ xn(  � 
n

j�0
D

(1)
nj uj � C, (or)

u1 � A, u′ x1(  � 
n

j�0
D

(1)
1j uj � B,

u″ x1(  � 
n

j�0
D

(2)
1j uj � C,

(18)

where D(k) � [D
(k)
ij ](n+1)×(n+ 1),

D
(1)
ij �

wi

xi − xj

, i≠ j,

− 
k≠i

D
(1)
ik , i � j,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D
(2)
ij �

2 D
(1)
ii D

(1)
ij −

D
(1)
ij

xi − xj

⎛⎝ ⎞⎠, i≠ j,

− 
k≠i

D
(2)
ik , i � j,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

D
(3)
ij �

3 D
(2)
ii D

(1)
ij −

D
(2)
ij

xi − xj

⎛⎝ ⎞⎠, i≠ j,

− 
k≠i

D
(3)
ik , i � j.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u � u0, u1, . . . , un 
T
,

f � f x0( , f x1( , . . . , f xn(  
T
.

(19)

3. Convergence and Error Analysis

In this section, we will consider the error problem of
equidistant interpolation nodes:

xi � a +
(b − a)

n
i, i � 0, 1, . . . , n. (20)

Let u(x) be the solution of (1); for any 0≤ d≤ n, suppose
P(xi), i � 0, 1, . . . , n − d, to be the barycentric interpolation
function at the point xi, xi+1, . . . , xi+d; then, we have
Pi(xk) � f(xk), k � i, i + 1, . . . , i + d, and

r(x) �


n−d
i�0 λi(x)Pi(x)


n−d
i�0 λi(x)

, (21)

where

λi(x) �
(−1)

i

x − xi(  · · · x − xi+d( 
. (22)

.en, the error function is defined as

e(x) :� u(x) − P(x) � x − xi(  · · ·

x − xi+d(  xi, xi+1, . . . , xi+d, x f,
(23)

and

e(x) �


n−d
i�0 λi(x) u(x) − Pi(x)( 


n−d
i�0 λi(x)

�
A(x)

B(x)
� O h

d+1
 ,

(24)

where A(x): � 
n−d
i�0 (−1)i[xi, . . . , xi+d, x]f andB(x):

� 
n−d
i�0 λi(x).
Taking the numerical form,



n

j�0
ujL
″′
j(x) + p 

n

j�0
ujLj
″(x) + q 

n

j�0
ujLj
′(x) + r



n

j�0
ujLj(x) � f(x),

(25)

and combining (24) and (1), we get

e″′(x) + pe″(x) + qe′(x) + re(x) � Rf(x), (26)

where Rf(x) � f(x) − f(xk), k � 0, 1, 2, . . . , n.

Lemma 1. For e(x) defined in (23), we have

|e(x)|≤Ch
d+1

, u ∈ C
d+2

[a, b],

e′(x)


≤Ch
d
, u ∈ C

d+2
[a, b],

e″(x)


≤Ch
d− 1

, u ∈ C
d+3

[a, b], d≥ 1,

e″′(x)


≤Ch
d− 2

, u ∈ C
d+4

[a, b], d≥ 2.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(27)

Let u(x) be the solution of (1) and un(x) be the nu-
merical solution; then, we have

u
″′
n xk(  + pun

″ xk(  + qun
′ xk(  + run xk( 

� f xk( , k � 0, 1, 2, . . . , . . . n . . . ,
(28)
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and

lim
n⟶∞

un(x) � u(x). (29)

.e results can be obtained in [1].
Based on Lemma 1, we can get the following theorem.

Theorem 1. Let f(x) ∈ C[a, b], Tu(x): � u″′(x) + pu″
(x) + qu′(x) + ru(x), and

un(x): Tun(x) � f(x), u∗n (x): Tu∗n (x) � f∗(x); then, we
have

un(x) − u
∗
n (x)


≤Ch

d− 2
. (30)

Proof. Let L: � D(3) + pD(2) + qD(1) + rI

�

D
(3)
00 + pD

(2)
00 + qD

(1)
00 + r D

(3)
01 + pD

(2)
01 + qD

(1)
01 · · · D

(3)
0n + pD

(2)
0n + qD

(1)
0n

D
(3)
10 + pD

(2)
10 + qD

(1)
10 D

(3)
11 + pD

(2)
11 + qD

(1)
11 + r · · · D

(3)
1n + pD

(2)
1n + qD

(1)
1n

· · · · · · · · · · · ·

D
(3)
n0 + pD

(2)
n0 + qD

(1)
n0 D

(3)
n1 + pD

(2)
n1 + qD

(1)
n1 · · · D

(3)
nn + pD

(2)
nn + qD

(1)
nn + r

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (31)

Add column 2, column 3,. . ., column n to column 1, and
we have

L �

r D
(3)
01 + pD

(2)
01 + qD

(1)
01 · · · D

(3)
0n + pD

(2)
0n + qD

(1)
0n

r D
(3)
11 + pD

(2)
11 + qD

(1)
11 + r · · · D

(3)
1n + pD

(2)
1n + qD

(1)
1n

· · · · · · · · · · · ·

r D
(3)
n1 + pD

(2)
n1 + qD

(1)
n1 · · · D

(3)
nn + pD

(2)
nn + qD

(1)
nn + r

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (32)

.en, we have |L|≠ 0 with r≠ 0, un(x) � 
n
j�0 Lj

(x)fj, and u∗n (x) � 
n
j�0 Lj(x)f∗j , where Un � (f(x0), f

(x1), . . . , f(xn))T andU∗n � (f∗(x0),

f∗(x1), . . . , f∗(xn))T.

By

Un − U
∗
n � L− 1 LUn − F

∗
n( , (33)

which means

un(x) − u
∗
n (x) �  Mj(x)Te(x), (34)

where Mj(x) is the element of matrix L− 1, we have

un(x) − u
∗
n (x)


≤  Mj(x)



|Te(x)|≤Ch
d− 2

. (35)

.e proof is completed. □

4. Numerical Example

As an example, we consider the two-point boundary value
problem:

y″′ + y � f(x), −1< x< 1, (36)

y(−1) � 0, y(1) � 0, y′(−1) � 0. (37)

For this problem, we can find a function f(x) such that
the analysis solution is

y � 1 − x
2

 (1 + x)e
λx

, (38)

where λ is a freely selected parameter.
Substituting (38) into (36), we get

f(x) � −6 − 6λ(1 + 3x) + 3λ2 1 − 2x − 3x
2

 

+ λ3 1 + x − x
2

− x
3

  + 1 − x
2

 (1 + x)e
λx

.

(39)
For different values of d and different number of nodes,

we can calculate the corresponding relative error and
convergence rate; some of the data are shown in Tables 1 and
2.

In Table 1, the convergence rate of equidistant nodes
with different d is O(hd− 2); in Table 2, the convergence rate
of the Chebyshev point of the second kind with different d is
O(hd+2), d≥ 2.

For different values of λ and different number of nodes,
we can calculate the corresponding relative error; some of
the data are shown in Tables 3 and 4.

From Tables 3 and 4, we can find that, for different values
of λ, the convergence rate can reach O(hd+2)(d≥ 2) both for
equidistant and nonequidistant nodes.

4 Journal of Mathematics



Table 2: Errors and convergence rate of the Chebyshev point with different d.

(λ � 2)

n
d � 2 d � 3 d � 4 d � 5

Error hα Error hα Error hα Error hα

10 2.4329e+ 00 1.3897e+ 00 2.5216e− 01 1.1033e− 01
20 8.8604e− 01 1.4572 1.3680e− 02 6.6665 4.5076e− 03 5.8058 1.5195e− 03 6.1821
40 1.8242e− 01 2.2801 2.8639e− 03 2.2561 1.4419e− 04 4.9664 7.2659e− 06 7.7082
80 3.2188e− 02 2.5026 1.7517e− 04 4.0311 3.0543e− 06 5.5610 1.0125e− 07 6.1652
160 5.2215e− 03 2.6240 8.5892e− 06 4.3501 5.9098e− 08 5.6916 1.0071e− 06 —
320 8.0770e− 04 2.6926 2.9760e− 07 4.8511 1.9760e− 06 — 2.2948e− 05 —
640 1.2077e− 04 2.7416 2.8632e− 06 — 6.856e− 05 — 1.0211e− 03 —
1280 1.7925e− 05 2.7522 7.4861e− 05 — 1.2910e− 02 — 9.6669e− 02 —

Table 3: Errors and convergence rate of the equidistant nodes with different λ.

(d � 4)

n
λ � −5 λ � 1 λ � 5 λ � 20

Error hα Error hα Error hα Error hα

10 3.6809e+ 01 2.2939e− 01 2.1508e+ 02 3.0238e+ 08
20 1.3259e+ 01 1.4731 2.6894e− 02 3.0925 6.1838e+ 01 1.7983 8.0305e+ 08 —
40 2.2319e+ 00 2.5707 2.7208e− 03 3.3052 9.5448e+ 00 2.6957 6.7632e+ 08 2.4778e− 01
80 2.6875e− 01 3.0539 2.5675e− 04 3.4056 1.1054e+ 00 3.1101 1.6623e+ 08 2.0246
160 2.7599e− 02 3.2835 2.3416e− 05 3.4548 1.1147e− 01 3.3098 2.4028e+ 07 2.7904
320 2.6249e− 03 3.3943 2.1009e− 06 3.4784 1.0509e− 02 3.4070 2.7001e+ 06 3.1536

Table 4: Errors and convergence rate of the Chebyshev point with different λ.

(d � 4)

n
λ � −5 λ � 1 λ � 5 λ � 20

Error hα Error hα Error hα Error hα

10 1.0975e+ 01 1.8992e− 02 4.4245e+ 01 1.3431e_01
20 1.5012e− 01 6.1919 2.6112e− 04 6.1845 1.3603e+ 00 5.0235 2.5740e+ 08 2.3835
40 5.5289e− 03 4.7630 8.0762e− 06 5.0149 4.7712e− 02 4.8334 1.4800e+ 07 4.1204
80 1.1729e− 04 5.5589 1.6777e− 07 5.5891 1.0350e− 03 5.5267 3.5715e+ 05 5.3729
160 2.2528e− 06 5.7022 1.8130e− 08 3.2100 2.3528e− 05 5.4591 8.3139e+ 03 5.4249
320 1.3043e− 05 — 2.5236e− 06 — 2.4682e− 06 3.2529 2.1982e+ 02 5.2411

Table 1: Errors and convergence rate of the equidistant nodes with different d.

(λ � 2)

n
d � 2 d � 3 d � 4 d � 5

Error hα Error hα Error hα Error hα

10 7.1976e+ 00 4.6412e+ 00 2.4217e+ 00 1.1522e+ 00
20 3.5555e+ 00 1.0175 1.2336e+ 00 1.9117 3.6419e− 01 2.7333 9.9594e− 02 3.5322
40 1.4588e+ 00 1.2853 2.6378e− 01 2.2254 4.1431e− 02 3.1359 6.0309e− 03 4.0456
80 5.5050e− 01 1.4060 5.1045e− 02 2.3695 4.1384e− 03 3.3236 3.1073e− 04 4.2786
160 2.0058e− 01 1.4566 9.4229e− 03 2.4375 3.8810e− 04 3.4146 1.4799e− 05 4.3921
320 7.1879e− 02 1.4806 1.7004e− 03 2.4703 3.5301e− 05 3.4586 6.7836e− 07 4.4473
640 2.5569e− 02 1.4912 3.0357e− 04 2.4858 3.1616e− 06 3.4810 3.1718e− 08 4.4187
1280 9.0650e− 03 1.4960 5.3912e− 05 2.4933 2.8666e− 07 3.4632 1.2685e− 08 1.3222
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5. Conclusion

In this paper, the barycentric rational collocation method for
solving third-order two-point boundary value equations is
presented, and the error function of the convergence rate
O(hd− 2) is also obtained. For the constant coefficient and
variable coefficient of two-point boundary value equations,
numerical results show that the convergence rate can reach
O(hd− 2) for the equidistant nodes and Chebyshev point of
the second kind with d≥ 2, so the barycentric rational
collocation method is an effective method. Compared with
other methods, the advantage of this method is that the
matrix equation can be easily obtained, the program is
simple, and high computational accuracy can be obtained by
using a few points.
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An exact solution is proposed to study the time-harmonic torsional vibration of an elastic pile embedded in a radially inho-
mogeneous saturated soil. +e radially inhomogeneous saturated soil is composed of inner disturbed and outer semi-infinite
undisturbed concentric annular regions, with the shear modulus of the inner region changing in an exponential form along the
radial direction. +e governing equation of each region of the saturated soil is solved through rigorous mathematical derivation
and the soil torsional impedance is derived with an exact and explicit expression. Making use of the boundary and continuity
conditions of the pile-soil system, the torsional complex stiffness at the pile top is obtained in an exact closed form in the frequency
domain. Selected numerical results are presented to investigate the influence of the radial inhomogeneity of the surrounding soil
on the vibration characteristics of the pile-soil system.

1. Introduction

Soil-structure dynamic interaction problem, including the
interaction between a loaded rigid disc (footing) and the
adjacent soil and the interaction between the pile and
surrounding soil, has been the subject of extensive studies in
civil engineering for many years. For these interaction
problems, the establishment of a dynamic model of the soil
medium and the corresponding solution is the key to study
the vibration characteristics of the soil-structure system. For
instance, Pan et al. [1] and Zhang and Pan [2] used fun-
damental solutions of the surface/buried annular patch
torsional load on/in the soil medium and then solved the
dynamic impedance of the rigid circular disc via integral
least-square approach. Pak and Abedzadeh [3] used
boundary integral technique to determine the reaction of the
soil and finally proposed the solution for the rigid circular
disc under time-harmonic torsional load. For the pile-soil
dynamic interaction problem, the analytical method [4, 5]
and numerical method [6] are developed to solve the tor-
sional vibration of an elastic pile embedded in a homoge-
neous or layered soil medium.

It should be pointed out that when studying pile-soil
torsional vibration problems, the surrounding soil was
mostly regarded as a radially uniform medium. However, in
actual engineering, no matter precast piles or cast-in-place
piles, they are bound to disturb or squeeze the surrounding
soil in a certain range during the construction process.
+erefore, the properties of the soil around the pile body
(e.g., shear modulus of the soil) inevitably have continuous
variation, so the soil shows obvious radial inhomogeneity. In
an early study, Novak and Sheta [7] proposed a radially
inhomogeneous medium model based on the assumption of
plane strain and analyzed the torsional and longitudinal
impedance of the weakened soil in the inner region induced
by the construction of the pile. Afterwards, researchers
conducted detailed analyses on the torsional and longitu-
dinal vibration characteristics of the radially inhomogeneous
soils. However, these studies regarded the foundation soil as
a single-phase medium [8–13].

It is worth noting that saturated soil is very common in
engineering practice. Since Biot [14, 15] established the
theory of wave propagation in fluid-saturated porous me-
dium, this theory has been widely used in engineering. Li
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et al. [16] studied the torsional vibration of an elastic pile
embedded in an inhomogeneous saturated soil, but the
solution is actually semianalytical due to the fact that the
surrounding soil is subdivided into many sublayers to
simulate the continuous change of soil properties. Con-
sidering the deficiencies of previous research, the objective
of the present study is to propose an exact solution to study
the time-harmonic torsional vibration of an elastic pile
embedded in a radially inhomogeneous saturated soil with
soil modulus changing in an exponential form along the
radial direction. Based on the derived solution, the influence
of the characteristic parameters of the radially inhomoge-
neous soil on the torsional impedance of the soil and the
torsional complex stiffness at the pile top is analyzed in
detail. +e exact solution presented in this study can be
served as benchmarks for future numerical simulations.

2. Statement of the Boundary-Value Problem

2.1. Geometric Model and Assumptions. +e problem to be
solved is illustrated in Figure 1, where an elastic circular pile
of radius r0 and length H is embedded in a radially inho-
mogeneous saturated soil. +e elastic pile is subjected to a
time-harmonic torsional load T0e

iωt, in whichω and t are the
circular frequency of excitation and time variable, respec-
tively. In view of the symmetry of the problem, the cylin-
drical coordinate system (r, θ, z) is attached to the saturated
soil layer with its origin at the center of the pile top and on
the surface of soil layer. Considering the influence of con-
struction disturbance in pile driving process, the sur-
rounding saturated soil can be modeled as two concentric
annular regions: one is a disturbed soil region with a radial
thickness tm, and the other is a radially semi-infinite, un-
disturbed uniform soil region. +e distance from the in-
terface of the two regions to the center of the pile is R0. In
order to establish a mathematical model for this problem, it
is assumed that the pile is well bonded with the surrounding
soil, and the interface between two regions is also in perfect
contact. Based on the study by Dotsos and Veletsos [10], the
shear modulus of the soil in the inner disturbed region is
assumed to change in an exponential form along the radial
direction.

In order to simulate the exponential change of the shear
modulus of the soil in the inner region along the radial

direction (see Figure 2), the complex shear modulus of the
soil in the inner and outer regions can be expressed as

G
∗
s (r) �

Gsm 1 + iDsm(  r/r0( 
m

, r0 ≤ r≤R0( ,

Gs0 1 + iDs0( , r≥R0( ,

⎧⎨

⎩ (1)

where Gs0 and Gsm are, respectively, the shear moduli of the
soil in the outer undisturbed region and at the pile-soil
interface; Ds0 and Dsm are the corresponding soil damping
coefficients, respectively; i � (− 1)0.5;m is a real number with
m≠1 representing the continuous change of shear modulus
in an exponential form and m� 1 representing the con-
tinuous change of shear modulus in a reduced linear form.

Considering the continuous change of the soil shear
modulus and according to equation (1), the following re-
lationship exists at the interface between the inner and outer
soil regions:

Gsm

R0

r0
 

m

� Gs0. (2)

2.2. Governing Equation. According to the dynamic con-
solidation theory proposed by Biot [14, 15], the equation of
motion of the soil under dynamic torsional load can be
written as

zσrθ

zr
+

zσθz

zz
+ 2

σrθ

r
� ρ

z
2
uθ(r, z, t)

zt
2 + ρf

z
2
wθ(r, z, t)

zt
2 , (3)

where uθ (r, t) and wθ (r, t) are, respectively, the circum-
ferential displacement of the solid phase and that of the fluid
phase relative to the solid phase; σij (i, j� r, θ, z) represents
the total stress components; ρs and ρf are the densities of soil
phase and pore fluid, respectively; ρ � (1 − n)ρs + nρf is the
density of the soil, with n being the porosity of the soil.

Militano and Rajapakse [17] pointed out that neglecting
the gradient of the soil stress component along z direction
has negligible influence on the dynamic response of the pile.
+erefore, under the same assumptions and considering the
continuous change of the shear modulus of the soil, the
equation of motion of the soil can be further expressed as

G
∗
s (r)

z
2
uθ(r, t)

zr
2 +

1
r

zuθ(r, t)

zr
−

uθ(r, t)

r
2  +

dG
∗
s (r)

dr

zuθ(r, t)

zr
−

uθ(r, t)

r
 

�ρ
z
2
uθ(r, t)

zt
2 + ρf

z
2
wθ(r, t)

zt
2 .

(4)
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Substituting equation (1) into equation (4), we have

Gsm 1 + iDsm( 
r

r0
 

m
z
2
uθ(r, t)

zr
2 +

1
r

zuθ(r, t)

zr
−

uθ(r, t)

r
2  +

mGsm 1 + iDsm( 

r0

r

r0
 

m− 1
zuθ(r, t)

zr
−

uθ(r, t)

r
 

� ρm

z
2
uθ(r, t)

zt
2 + ρfm

z
2
wθ(r, t)

zt
2 , r0 ≤ r≤R0( ,

(5)

Gs0 1 + iDs0( 
z
2
uθ(r, t)

zr
2 +

1
r

zuθ(r, t)

zr
−

uθ(r, t)

r
2  � ρ0

z
2
uθ(r, t)

zt
2 + ρf0

z
2
wθ(r, t)

zt
2 , r≥R0( , (6)

where ρm � (1 − nm)ρsm + nmρfm and
ρ0 � (1 − n0)ρs0 + n0ρf0 are the densities of soil in disturbed
and undisturbed regions, respectively; ρsm (ρs0), ρfm (ρf0), and
nm (n0) are the densities of solid phase and fluid phase and

porosities in disturbed (and undisturbed) regions,
respectively.

+e fluid motion equation of the saturated soil medium
can be expressed in the following simplified form [18, 19]:

0

Inner
disturbed

region

Underlying saturated soil

Inner
disturbed

region

Outer semi-infinite
undisturbed

region

Outer semi-infinite
undisturbed

region

T0eiωt

f (z)eiωt

tm

R0

2r0

z

H

r

Figure 1: Dynamic torsional interaction between an elastic pile and a radially inhomogeneous saturated soil.

r

Inner disturbed
regionPile Outer semi-infinite

undisturbed region

Interface between
the inner and outer

regionstm

R0

r0

r00

Gs0

Gs(r)

Gsm

Figure 2: Diagrammatic sketch of the radially inhomogeneous soil.
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ρfmg

kdm

zwθ(r, t)

zt
+ ρfm

z
2
uθ(r, t)

zt
2 +

ρfm

nm

z
2
wθ(r, t)

zt
2 � 0, r0 ≤ r≤R0( ,

ρf0g

kd0

zwθ(r, t)

zt
+ ρf0

z
2
uθ(r, t)

zt
2 +

ρf0

n0

z
2
wθ(r, t)

zt
2 � 0, r≥R0( ,

(7)

where kdm and kd0 are the horizontal dynamic permeability
coefficients of saturated soil in disturbed and undisturbed
regions, respectively, and g is the acceleration of gravity.

Due to the time-harmonic vibration of the pile-soil
system, uθ (r, t) and wθ (r, t) can be further expressed as

uθ(r, t) � uθ(r)e
iωt

� uθe
iωt

,

wθ(r, t) � wθ(r)e
iωt

� wθe
iωt

,

⎧⎨

⎩ (8)

where uθ � uθ (r) and wθ � wθ (r) are, respectively, the
amplitude of circumferential displacement of the solid phase
and that of the relative circumferential displacement of the
fluid phase to the solid phase.

Combining equations (5)–(8) and introducing ξ � r/r0,
the governing equation for the radially inhomogeneous
saturated soil can be expressed as

ξ2
d
2
uθ

dξ2
+ ξ(1 + m)

duθ

dξ
− 1 + m + λ2mξ

2− m
 uθ � 0, 1≤ ξ ≤ ξ0( ,

ξ2
d
2
uθ

dξ2
+ ξ

duθ

dξ
− 1 + λ20ξ

2
 uθ � 0, ξ ≥ ξ0( ,

(9)

where

bm �
nmρfmg

kdm

,

b0 �
n0ρf0g

kd0
,

λm � iωr0
1

Gsm 1 + iDsm( 
ρm +

nmρfmω

ibm/ρfm  − ω
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

(1/2)

,

λ0 � iωr0
1

Gs0 1 + iDs0( 
ρ0 +

n0ρf0ω

ib0/ρf0  − ω
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

(1/2)

,

ξ0 �
R0

r0
.

(10)

Given that the elastic pile is forced to vibrate under the
action of the time-harmonic torsional load at the pile top, the
equation of motion of pile can be expressed as

Gp

z
2

zz
2 ϕ(z)e

iωt
  +

4f(z)e
iωt

r
2
0

� ρp

z
2

zt
2 ϕ(z)e

iωt
 , (11)

where ρp, Gp, and r0 are the density, shear modulus, and
radius of the pile, respectively, and f (z) is the amplitude of
the circumferential shear stress at the pile-soil interface.

2.3. Boundary and Continuity Conditions of Pile-Soil System.
Given that the displacement of the soil at infinity tends to
zero, the following relationship holds:

uθ(r⟶∞) � 0. (12)

It is assumed that the soil at the interface between inner
and outer soil regions (i.e., r�R0) is well bonded. +en,
continuity conditions at r�R0 can be written as

uθ r � R0−(  � uθ r � R0+( ,

τrθ r � R0−(  � τrθ r � R0+( .
(13)

+e boundary conditions of the pile can be expressed as

dϕ(z)

dz
|z�0 � −

T0

GpIp

,

dϕ(z)

dz
+
ϕ(z)kpb

GpIp

 |z�H � 0,

(14)

where Ip � (πr40/2) is the polar moment of inertia of the pile.
It is noted that it is reasonable to use the static stiffness of the
disc with the same radius on the surface of the elastic half-
space to simulate the stiffness of the pile bottom [17]. +at is
to say, the supporting stiffness coefficient kpb of the pile
bottom is taken as (16Gsbr30/3) with Gsb being the shear
modulus of the soil at the bottom of the pile.

+e continuity conditions between pile and soil interface
can be expressed as

uθ|r�r0
� ϕ(z)r0,

τrθ|r�r0
� Gsm 1 + iDsm( 

duθ

dr
−

uθ

r
 |r�r0

� f(z).

(15)

3. Solution of the Pile-Soil System

Whenm≠2, the solutions of equation (9) can be expressed as

uθ � ξ(− m/2)
A1K2κ− 1 κλmξ

(1/κ)
  + B1I2κ− 1 κλmξ

(1/κ)
  , 1≤ ξ ≤ ξ0( ,

uθ � C1K1 λ0ξ(  + D1I1 λ0ξ( , ξ ≥ ξ0( ,
(16)
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where

κ �
2

2 − m
 . (17)

Substituting the boundary condition given in equation
(12) into equation (16) and making use of the behavior of the
modified Bessel function, we have

D1 � 0. (18)

Substituting the continuity condition given in equation
(13) into equation (16) yields

A1K2κ− 1 κλmξ
(1/κ)
0  + B1I2κ− 1 κλmξ

(1/κ)
0  � C1ξ

(m/2)
0 K1 λ0ξ0( , (19)

− A1K2κ κλmξ
(1/κ)
0  + B1I2κ κλmξ

(1/κ)
0  � − C1

������������
1 + iDs0

GR 1 + iDsm( 



K2 λ0ξ0( , (20)

where A1, B1, and C1 are undetermined constants;
GR �Gsm/Gs0 reflects the softening or hardening degree of
the soil. GR � 1 denotes the homogeneous soil, GR > 1
denotes the strengthened soil, and GR < 1 denotes the
weakened soil. It is noted that, for the weakened soil,

smaller GR is associated with the larger softening degree,
while for the strengthened soil, greater GR is corre-
sponding to the larger hardening degree.

Combining equations (19) and (20), the following re-
lationship between A1 and B1 can be determined:

Q1 �
A1

B1
�

������������������������
1 + iDs0( / GR 1 + iDsm( ( ( 


K2 λ0ξ0( I2κ− 1 κλmξ

(1/κ)
0  + ξ(m/2)

0 K1 λ0ξ0( I2κ κλmξ
(1/κ)
0 

−
�����������������������
1 + iDs0( / GR 1 + iDsm( ( ( 


K2 λ0ξ0( K2κ− 1 κλmξ

(1/κ)
0  + ξ(m/2)

0 K1 λ0ξ0( K2κ κλmξ
(1/κ)
0 

. (21)

+e circumferential shear stress at the pile-soil interface
(i.e., at r� r0) can be further expressed as

τrθ r � r0(  �
Gsm 1 + iDsm( 

r0

duθ

dξ
−

uθ

ξ
 |ξ�1

�
1
r0

Gsm 1 + iDsm( λmξ
− (m/2)+(1/κ)− 1

B1 − Q1K2κ κλmξ
(1/κ)

  + I2κ κλmξ
(1/κ)

  .

(22)

+e torsional impedance of the soil can be defined as

Kθ � −
2πr

3
0τrθ r � r0( 

uθ r � r0( 
� 2πGsm 1 + iDsm( λmr

2
0

Q1K2κ κλm(  − I2κ κλm( 

Q1K2κ− 1 κλm(  + I2κ− 1 κλm( 
, (23)

where Kθ is the torsional impedance of the soil.
For the convenience of subsequent analysis, Kθ can be

further expressed as follows:

Kθ � Gs0r
2
0 Sw1 + iSw2( , (24)

where Sw1 and Sw2 are the stiffness and damping parts of the
torsional impedance of the radially inhomogeneous soil,
respectively.

Based on equations (16) and (21), the circumferential
displacement of the solid phase at the pile-soil interface can
be expressed as

uθ r � r0(  � B1 Q1K2κ− 1 κλm(  + I2κ− 1 κλm(  . (25)

Substituting the continuity condition given in equation
(15) into equation (25) results in
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B1 �
ϕ(z)r0

Q1K2κ− 1 κλm(  + I2κ− 1 κλm( 
. (26)

+en, the shear stress at the pile-soil interface can be
further expressed as

τrθ r � r0(  � Gsm 1 + iDsm( λm

− Q1K2κ κλm(  + I2κ κλm( 

Q1K2κ− 1 κλm(  + I2κ− 1 κλm( 
ϕ(z).

(27)

Substituting equation (27) into equation (11), the gov-
erning equation of the pile under time-harmonic torsional
load can be rewritten as

d
2ϕ(z)

dz
2 +

4Gsm 1 + iDsm( λm

Gpr
2
0

− Q1K2κ κλm(  + I2κ κλm( 

Q1K2κ− 1 κλm(  + I2κ− 1 κλm( 
+
ρpω

2

Gp

⎡⎢⎣ ⎤⎥⎦ϕ(z) � 0. (28)

+e general solution of ordinary differential equation
(28) can be expressed as

ϕ(z) � α1 cos c1z(  + α2 sin c1z( , (29)

in which

c1 �
4Gsm 1 + iDsm( λm

Gpr20

− Q1K2κ κλm(  + I2κ κλm( 

Q1K2κ− 1 κλm(  + I2κ− 1 κλm( 
+
ρpω2

Gp

 

(1/2)

,

(30)

where α1 and α2 are constants to be determined by the
boundary conditions.

Substituting the boundary conditions of the pile given in
equation (14) into equation (29), we have

α1 � −
T0

GpIpc1 tan c1H − φ1( 
,

α2 � −
T0

GpIpc1
,

(31)

where φ1 � arc tan[kpb/c1H] is the phase angle and kpb �

(kpbH/GpIp) is the dimensionless pile bottom supporting
coefficient.

According to the definition of the torsional complex
stiffness at the pile top proposed by Militano and Rajapakse
[17], the dimensionless torsional complex stiffness kT at the
pile top can be expressed as

kT �
3T0

16Gs0r
3
0ϕ(z � 0)

�
3πr0μc1 tan c1H − φ1( 

32
, (32)

where μ � (Gp/Gs0) is the pile-soil modulus ratio.
For the convenience in the subsequent analysis, the

torsional complex stiffness at the pile top can be expressed in
the following dimensionless form:

kT � kT1 + ikT2, (33)

where kT1 is the real part of the complex stiffness at the pile
top, which represents the real stiffness of the pile, and kT2 is
the imaginary part of the complex stiffness at the pile top,
which reflects the energy dissipation.

It is noted that the above solution is corresponding to the
case where m≠2. When m� 2, the denominator in equation
(17) is equal to zero, and the above solution does hold.
+erefore, the solution corresponding to m� 2 is listed in
Appendix A.

4. Results and Discussion

4.1. Torsional Impedance of the Soil. +is section will mainly
study the influence of soil radial heterogeneity caused by pile
driving on the torsional impedance of the soil. It is worth
noting that when the value of m is given (see equation (2)),
there is a definite relationship between tm/r0 and GR�Gsm/
Gs0, and these two values cannot be changed arbitrarily. +e
soil parameters used in the following calculation are listed in
Table 1.

We first compare the reduced radially inhomogeneous
single-phase medium solution (i.e., dry soil solution with
setting ρf � n� 0) with the homogeneous single-phase so-
lution of Novak et al. [20] to study the changing trend of soil
torsional impedance corresponding to different softening
and hardening degree of the soil. It can be seen from Figure 3
that, in the whole frequency range, the stiffness and damping
parts of the torsional impedance (e.g., GR� 0.25) corre-
sponding to the weakened soil case are lower than those of
the homogeneous medium solution by Novak et al. [20]. It is
indicated that the torsional impedance of the weakened soil
is remarkably lower than that of the undisturbed soil.
Meanwhile, it can also be observed from Figure 3 that the
stiffness and damping parts (e.g., GR� 2) corresponding to
the strengthened soil case are greater than those of the
homogeneous medium solution by Novak et al. [20]. It
means that the torsional impedance of the strengthened soil
is remarkably greater than that of the undisturbed soil.
Hence, it is important to consider the radial inhomogeneity
of the soil when the surrounding soil is disturbed during the
construction.

Figure 4 depicts the comparison of soil torsional im-
pedance between the radially inhomogeneous saturated soil
and the corresponding dry soil. It can be seen from Figure 4
that, in the entire frequency range, the torsional impedance
of the saturated soil is significantly different from that of the
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dry soil, no matter it is a weakened or strengthened soil. +e
stiffness part of the torsional impedance of the saturated soil
is lower than that of the dry soil, and the damping part of the
saturated soil is greater than that of the dry soil. +is in-
dicates that the pore fluid in the saturated soil can increase
the damping during the vibration process. +erefore, it is
important to consider the dynamic interaction between the

solid phase and the pore fluid when the voids of soil are filled
with water.

4.2. Torsional Complex Stiffness at the Pile Top. +is section
mainly analyzes the influence of the characteristic param-
eters of soil radial heterogeneity on the torsional complex

Table 1: Calculation parameters of the saturated soil.

Gs0 (MPa) ρs (kg/m3) ρf (kg/m3) n kd (m/s)
20 2650 1000 0.4 10–7
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Figure 3: Comparison of the present reduced single-phase medium solution with the homogeneous medium solution (Dsm �Ds0 � 0,
r0 � 0.3m).
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Figure 4: Comparison of torsional impedance of saturated soil solution with the reduced dry soil solution for a radially inhomogeneous soil
(Dsm �Ds0 � 0, tm/r0 � 0.5, r0 � 0.3m).
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stiffness at the pile top.+e calculation parameters of the pile
and pile bottom soil are taken as ρp � 2500 kg/m3,
Gp � 12.1GPa, H� 10m, r0 � 0.3m, and Gsb � 20MPa. Fig-
ure 5 describes the influence of the ratio of the shear
modulus of the outer soil to that at the pile-soil interface (i.e.,
GR) on the complex stiffness at the pile top when the inner
soil is weakened. It can be seen from Figure 5 that, in the
whole frequency range, the real stiffness and dynamic
damping at the pile top decrease with the increase of
softening degree of the inner soil.

Figure 6 shows the influence of GR on the complex
stiffness at the pile top when the inner soil is strengthened. It
can be seen from Figure 6 that, in the whole frequency range,
the real stiffness and dynamic damping at the pile top in-
crease with increasingGR. Compared with Figure 5, it can be
observed that the real stiffness and dynamic damping cor-
responding to the strengthened soil are greater than those
corresponding to the weakened soil, which indicates that the
weakened soil can reduce the dynamic torsional resistance of
the pile-soil system. +erefore, it is of great importance to
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Figure 5: Influence of the shear modulus ratio GR�Gsm/Gs0 on the complex stiffness at the pile top when the inner soil is weakened
(Dsm �Ds0 � 0, tm/r0 � 0.25).
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Figure 6: Influence of the shear modulus ratio GR�Gsm/Gs0 on the complex stiffness at the pile top when the inner soil is strengthened
(Dsm �Ds0 � 0, tm/r0 � 0.25).
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consider the softening degree of the inner soil in the dynamic
foundation design.

Figure 7 illustrates the influence of the disturbance range
on the complex stiffness at the pile top when the inner soil is
weakened. It can be seen that, in the low frequency range, the
real stiffness and dynamic damping at the pile top decrease
with the increase of tm/r0. However, as the frequency further
increases, the real stiffness and dynamic damping show
certain fluctuation when tm/r0 is large (e.g., tm/r0 � 2). It can
be concluded from Figure 7 that, in the low frequency range
concerned in the dynamic foundation design (0–50Hz),
greater disturbance range will reduce the resistance of the
pile-soil system to the torsional deformation for the

weakened soil, which should be paid special attention in the
related design.

Figure 8 shows the influence of the disturbance range on
the complex stiffness at the pile top when the inner soil is
strengthened. It can be seen from Figure 8 that, in the low
frequency range, the real stiffness and dynamic damping at
the pile top increase with the increase of tm/r0. However,
when frequency is relatively high, the dynamic damping
shows certain fluctuation with larger tm/r0.

Figures 9 and 10 reflect the influence of the material
damping of the inner soil on the complex stiffness at the pile
top corresponding to the weakened and strengthened soil
cases. It can be seen that, for both weakened and
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Figure 7: Influence of the disturbance range tm/r0 on the complex stiffness at the pile top when the inner soil is weakened (Dsm �Ds0 � 0,
GR� 0.5).
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Figure 8: Influence of the disturbance range tm/r0 on the complex stiffness at the pile top when the inner soil is strengthened (Dsm �Ds0 � 0,
GR� 2).
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strengthened soils, when the excitation frequency is small,
the material damping of the soil in the inner region basically
has negligible effect on the real stiffness. With the increase of
the excitation frequency, the greater the material damping of
the soil in the inner region is, the smaller the real stiffness is.
Meanwhile, it can be also observed that, in the entire fre-
quency range, the dynamic damping increases with the
increase of the material damping of the inner soil. +erefore,
in general, for dynamic foundation design, the damping of
the soil has limited influence on the torsional complex
stiffness at the pile top.

5. Conclusions

Based on the dynamic consolidation theory proposed by
Biot, the exact solution for the torsional vibration of an
elastic pile embedded in a radially inhomogeneous saturated
soil with shear modulus changing in an exponential form
along the radial direction is developed. +is exact solution
can be further served as benchmarks for future numerical
methods. +rough detailed calculation and analysis, it is
found that when considering the dynamic interaction be-
tween the solid phase and pore fluid, the torsional
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Figure 9: Influence of material damping of the inner disturbed soil on the complex stiffness at the pile top when the inner soil is weakened
(GR� 0.5, tm/r0 � 0.5).
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Figure 10: Influence of material damping of the inner disturbed soil on the complex stiffness at the pile top when the inner soil is
strengthened (GR� 2, tm/r0 � 0.5).
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impedance of the saturated soil is different from that of the
dry soil. In addition, the softening/hardening degree and the
disturbance range of the saturated soil have marked influ-
ence on the torsional complex stiffness at the pile top.
However, for dynamic foundation design (i.e., the low
frequency range is concerned), the damping of the soil has
limited influence on the torsional complex stiffness at the
pile top.

Appendix

A. The Solution for the Pile-Soil System
When m= 2

+e solution of equation (9) can be expressed as

uθ � A2ξ
δ1 + B2ξ

δ2 , 1≤ ξ ≤ ξ0( ,

uθ � C2K1 λ0ξ(  + D2I1 λ0ξ( , ξ ≥ ξ0( ,
(A.1)

where

δ1 � − 1 +

������

4 + λ2m


; δ2 � − 1 −

������

4 + λ2m


. (A.2)

Substituting the boundary condition given in equation
(12) into equation (A.1) and using the properties of the
modified Bessel function, we have D2 � 0. Substituting the
continuity condition in equation (13) into equation (A.1), we
have

Q2 �
A2

B2
�

− ξδ20 δ2 − 1( K1 λ0ξ0(  − λ0ξ
δ2+1
0 K2 λ0ξ0( 

ξδ10 δ1 − 1( K1 λ0ξ0(  + λ0ξ
δ1+1
0 K2 λ0ξ0( 

.

(A.3)

+e circumferential shear stress amplitude at the pile-
soil interface can then be derived, and the torsional im-
pedance of the soil can be written as

Kθ � −
2πr30τrθ

uθ
|ξ�1 � − 2πGsm 1 + iDsm( r

2
0
Q2 δ1 − 1(  + δ2 − 1( 

Q2 + 1
.

(A.4)

According to the continuity conditions at the pile-soil
interface, the governing equation for an elastic pile under
time-harmonic torsional load can be further expressed as

d2ϕ(z)

dz
2 +

Gsm 1 + iDsm( 

Q2ξ
δ1 + ξδ2

Q2 δ1 − 1(  + δ2 − 1(   +
ρpω

2

Gp

⎧⎨

⎩

⎫⎬

⎭ϕ(z) � 0.

(A.5)

+e solution of ordinary differential equation (A.5) can
be expressed as

ϕ(z) � α3 cos c2z(  + α4 sin c2z( , (A.6)

in which

c2 �
Gsm 1 + iDsm( 

Q2ξ
δ1 + ξδ2

Q2 δ1 − 1(  + δ2 − 1(   +
ρpω2

Gp

 

(1/2)

,

(A.7)

where α3 and α4 are the constants to be determined by the
boundary conditions.

Substituting the boundary conditions of the pile into
equation (A.6), we have

α1 � −
T0

GpIpc2 tan c2H − φ2( 
,

α2 � −
T0

GpIpc2
,

(A.8)

where

φ � arctan
kpb

c2H( 
⎡⎣ ⎤⎦,

kpb �
kpbH

GpIp

.

(A.9)

+e dimensionless torsional complex stiffness kT at the
pile top can be finally expressed as

kT �
3T0

16Gs0r
3
0ϕ(z � 0)

�
3πr0μc2 tan c2H − φ( 

32
. (A.10)
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loading,” Géotechnique, vol. 49, no. 1, pp. 91–109, 1999.

[18] O. C. Zienkiewicz, C. T. Chang, and P. Bettess, “Drained,
undrained, consolidating and dynamic behaviour assump-
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In this paper, a kind of node_face frictional contact FM-BEMpenalty functionmethod is presented for 3D elastic frictional contact
nonlinear problems. According to the principle of minimum potential energy, nonpenetrating constraints are introduced into the
elastic frictional contact system as a penalty term. By using the least square method and penalty function method, an optimization
mathematical model and a mathematical programming model with a penalty factor are established for the node_face frictional
contact nonlinear system. For the two models, a penalty optimization IGMRES (m) algorithm is proposed, and the influences of
different penalty factors on the solution of the whole system are analyzed. Finally, a numerical simulation is carried out for two
elastic frictional contact objects, and some important results including displacements, pressures, friction forces, and friction slips
in the contact area are presented. *eoretical analysis and numerical experiment show that the newly presented FM-BEM penalty
function method not only is efficient and practical but also has much superiority. It is easy to implement, and it is fast convergent
with good stability.

1. Introduction

Elastic frictional contact is a multiple nonlinear problem
[1, 2], and it is necessary to accurately track the motion of the
object before contact and the interaction between objects
after contact, which includes the correct simulation of
friction and deformation behavior between contact surfaces
and the analysis of the possible energy conversion problem.
For the contact problems, only very few of them can be
solved by analytical methods, and most of them need to be
simulated by numerical methods such as the Finite Element
Method (FEM) [3, 4] and the Boundary Element Method
(BEM) [5, 6]. *e FEM is relatively mature and widely used
[7–10]. However, the BEM has the advantages of dimension
reduction, singularity adaptation, high precision, and so on
[11–14].

*e penalty function method [15, 16] is a common
method to solve optimization problems, and it is also one of
the effective methods to solve an elastic contact problem
[17–19]. Without increasing the system’s Degree of Freedom
(DOF), this method can be used to directly apply constraints

to the two contact objects. Many scholars have used it to
solve the frictional contact problems in different fields
[20–23]. In engineering, gradient-based optimization algo-
rithms, for example, the existing FEM such as the Lagrange
multiplier method and penalty function method, are often
used to solve the contact problems. For the case of non-
frictional contact, sufficiently stable results can be obtained.
For the case of frictional contact, severe numerical oscilla-
tion may occur with the change of loads or meshes, and it
will be very difficult to obtain a stable result unless special
treatments are made. In addition, the procedures of existing
numerical algorithms are usually complicated and much
memory space and computing time are required, so repeated
checking and revision are needed to obtain suitable results.
At present, various kinds of commercial computing software
often fail to give accurate and reliable results for the analysis
of frictional contact. *erefore, it is very urgent to develop
some stable and efficient numerical algorithms [24–27].

In recent years, the Fast Multipole Boundary Element
Method (FM-BEM) [28, 29] has attracted much attention as
a kind of new and efficient numerical method [30–34]. Our
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research group studied the mathematical and mechanical
theories of the FM-BEM from the perspective of funda-
mental solution. By using the superiorities of FM-BEM such
as high precision, high computational efficiency and being
suitable for large-scale computing, we have successfully
applied it to the numerical analysis of elastic frictional
contact problems and have completed some simulations
[35–38], for example, the interference fit between taper
sleeve and roll neck of an oil film bearing and a surface force
field of screw pair in a rolling mill.

For the study of elastic frictional contact problems, the
penalty function method in the existing literature was used
to solve some optimization problems with a node_node
contact mode. *e BEM and FM-BEM focused on the
modeling and numerical analysis for the nonpenetrating
contact mode and often failed to give numerical results for
the penetrating contact mode. According to the above-
mentioned analysis, we will present a kind of FM-BEM
penalty function method to solve the elastic node_face
frictional contact problems. As the same time, we will es-
tablish a mathematical programming model with a penalty
factor and propose a penalty optimization algorithm. In this
method, some important factors will be synthetically con-
sidered, which include the deformation and stress condition
in a contact process, the nonlinearity of boundary condition
for the contact surface, the size and mutual position of the
contact area, the change of contact state, and so on. *e
research work will involve some mathematical, mechanical,
and physical problems that are closely related to the fric-
tional contact. *e purpose is to provide new ideas and
numerical methods for the solution of elastic frictional
contact problems.

*is paper is organized as follows. In Section 1, basic
thought of the Penalty Function Method is introduced. In
Section 2, fundamental formulas and frictional contact
condition for the 3D elastic frictional contact FM-BEM are
presented. In Section 3, interpolation constraints are ana-
lyzed for the node_face frictional contact nonlinear system.
*en, an optimization mathematical model and a mathe-
matical programming model with a penalty factor are
established by using the least square method and penalty
function method. In Section 4, a penalty optimization
IGMRES (m) algorithm is proposed. In Section 5, a

simulation of two elastic objects’ frictional contact process is
provided and numerical analysis is completed. At last, the
concluding remarks are presented.

2. Basic Idea of the Penalty Function Method

For the optimization problem

min f(x)

s.t. hi(x) � 0, i � 1, 2, . . . , l,
 (1)

we introduce a parameter λ and define an augmented ob-
jective function as follows:

F(x, λ) � f(x) + λ
l

i�1
hi(x) 

2
, (2)

where F(x, λ) is called a penalty function and the parameter
λ is called a penalty factor that is a very large positive
number. When hi(x) � 0, (i � 1, 2, . . . l), the penalty
function F(x, λ) is just equal to the objective function f(x)

in equation (1); otherwise, its value will be very large and
equation (1) will be transformed into the following un-
constrained problem:

minF(x, λ) � min f(x) + λ

l

i�1
hi(x) 

2⎧⎨

⎩

⎫⎬

⎭. (3)

3. 3D Elastic Frictional Contact FM-BEM

3.1. Fundamental Formulas. For 3D elastic frictional contact
problems, the boundary integral equation without consid-
eration of body force is expressed as follows [6]:

cijuj(x) + 
Γ
Tij(x, y)uj(y)dΓ � 

Γ
Uij(x, y)tj(y)dΓ,

(4)

where x indicates a source node, y indicates an arbitrary
node in boundary Γ, cij indicates a boundary shape coef-
ficient, and Uij(x, y) and Tij(x, y) indicate the kernel
functions of displacement and surface force fundamental
solutions, respectively. By the FM-BEM, equation (4) can be
discretized as follows [29]:

cijuj x
q

(  + Rijm x
q

(  
k,l,s

1
x

q
− yc




u
kl
j ϕ

l ξs
( nm y ξs

(  J y ξs
(  ωs

 +

Sim x
q

(  
k,l,s

1
x

q
− yc




u
kl
j ϕ

l ξs
( nm y ξs

(  yj ξs
( J y ξs

(  ωs
 −

Pij x
q

(  
k,l,s

1
x

q
− yc




t
kl
j ϕ

l ξs
( J y ξs

(  ωs
 −

Qi x
q

(  
k,l,s

1
x

q
− yc




t
kl
j ϕ

l ξs
( yj ξs

( J y ξs
(  ωs

  � 0,

(5)
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where xq indicates a source node, yc indicates a multiple
central node, s indicates an element integral node, ωs in-
dicates the integral weight function of ξs, and J [y(ξs

)]

indicates a Jacobian determinant.
With the given boundary conditions, equation (5) can be

transformed into the following system of equation:

Ax � b, (6)

where x indicates an unknown column vector for dis-
placements and surface force.

3.2. Frictional Contact Condition. When two objects contact
each other, in order to ensure the balance and stability, the
contact system must be satisfied with nonpenetrating con-
straints, as is shown in Figure 1.

Namely, the following expression is satisfied:

ΔuA · n≤ τ, (7)

where Δ uA indicates the displacement vector increment of
the node A, n indicates the unit normal vector, and τ in-
dicates the tolerance of contact distance. Otherwise, once
penetration occurs in the contact area, the system solution
will not be carried out normally.

4. Modeling and Optimization for the
Node_Face Frictional Contact System Using
the FM-BEM Penalty Function Method

4.1. Analysis of Node_Face Frictional Contact. We consider
two objects A and B in contact with each other. We suppose
that object A (with fixed displacement constraints) is passive
and object B is active. *e numbers of discrete nodes are
represented as NA and NB, respectively. Also, the numbers
of contact nodes are represented as Nc

A and Nc
B, respectively.

For the traditional BEM, the DOF of the final system of
equations is 3 (NA + NB) and the displacements and surface
force for each contact node are unknown. As a result, for
each contact node, three supplement equations must be
established.

For each contact node of object B, it contacts with some
element of object A, and its displacement can be obtained by
the interpolation of its contact element nodes’ displace-
ments. *en, displacement constraints are established.
According to Coulomb’s Law of Friction, if relative slip
occurs between the contact node and its contact surface,
tangential displacement constraints can be replaced by
tangential friction ones. *e node_face frictional contact
constraints are shown in the following expressions:

Stick state:

U
B
k � 

M

l�1
φl ξ1, ξ2( U

A
kl, (k � 1, 2, 3). (8)

Slip state:

T
B
1 � −Tt cos θ,

T
B
2 � −Tt sin θ,

U
B
3 � 

M

l�1
φl ξ1, ξ2( U

A
3l.

(9)

For each contact node of object A, it contacts with some
element of object B, and its surface force can be obtained by
the interpolation of its contact element nodes’ force. *en,
surface force constraints are established. Similarly, if relative
slip occurs between the contact node and its contact surface,
tangential surface force constraints can be replaced by
tangential friction ones. *e node_face frictional contact
constraints are shown in the following expressions:

Stick state:

T
A
k � − 

M

l�1
φl ξ1, ξ2( T

B
kl, (k � 1, 2, 3). (10)

Slip state:

T
A
1 � Tt cos θ,

T
A
2 � Tt sin θ,

T
A
3 � − 

M

l�1
φl ξ1, ξ2( T

B
3l.

(11)

In equations (8)–(11), UB
k indicates k-direction dis-

placement of each node in object B, UA
k l indicates k-direction

displacement of node l in object A, TA
k indicates k-direction

surface force of each node in object A, M indicates the node
number of a contact element, φl indicates the interpolation
function, Tt indicates the friction at t moment, (ξ1, ξ2)
indicates the local coordinate, and θ indicates a slip angle.
Here, ξ1, ξ2, θ can be predetermined by the least square
method. According to equations (8)–(11), three supplement
equations can be established for each contact node.*en, the
total DOF of the contact system becomes
3(NA + NB + Nc

A + Nc
B). For convenience, it can be written

as NF.

4.2. Optimization Mathematical Model for Node_Face Fric-
tional Contact. Node_face frictional contact constraints
show high nonlinearity, which results in a very difficult and
time-consuming solution procedure. To accelerate the it-
erative convergence, nonlinear contact constraints will be
linearized. At first, the least square method is applied to
equations (8)–(11) to obtain ξ1, ξ2, θ while the contact be-
havior is precisely simulated. *en, mathematical pro-
gramming is conducted on the frictional contact system and
an optimization mathematical model is established. *e
detailed process is as follows:

For the object B, the system of equations formed by the
traditional BEM can be expressed as A′x � b′, where
A′ � (aij

′), b′ � (bi
′). Let
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f
B
i xj  � bi

′ − 
NF

j�1
aij
′xj, i � 1, 2, . . . , 3NB; j � 1, 2, . . . ,NF( . (12)

After equations (8) and (9) have been linearized,
according to equation (12), they can be rewritten as

f
B
ik xj  � U

B
ik − 

M

l�1
φl ξ1, ξ2( U

A
ikl, i � 1, 2, . . . , 3N

c
B; j � 1, 2, . . . ,NF; k � 1, 2, 3( , (13)

f
B
i1 xj  � T

B
i1 + Tit cos θ, f

B
i2 xj  � T

B
i2 + Tit sin θ, f

B
i3 xj  � U

B
i3 − 

M

l�1
φl ξ1, ξ2( U

A
i3l, i � 1, 2, . . . , 3N

c
B; j � 1, 2, . . . ,NF( .

(14)

For the object A, the system of equations formed by the
traditional BEM can be expressed as A〞x � b〞, where
A〞 � (a〞ij ), b〞 � (b〞i ). Let

f
A
i xj  � b

〞
i − 

NF

j�1
a
〞
ij xj, i � 1, 2, . . . , 3NA; j � 1, 2, . . . ,NF( . (15)

After equations (10) and (11) have been linearized,
according to equation (15), they can be rewritten as

f
A
ik xj  � T

A
ik + 

M

l�1
φl ξ1, ξ2( T

B
ikl, i � 1, 2, . . . , 3N

c
A; j � 1, 2, . . . , NF; k � 1, 2, 3( , (16)

f
A
i1 xj  � T

A
i1 − Tit cos θ,

f
A
i2 xj  � T

A
i2 − Tit sin θ,

f
A
i3 xj  � T

A
i3 + 

M

l�1
φl ξ1, ξ2( T

B
i3l, i � 1, 2, . . . , 3N

c
A; j � 1, 2, . . . , NF( .

(17)

According to equations (12)–(17), let
x � (xj) (j � 1, 2, . . . ,NF), and we define an objective

function for the nonlinear analysis of node_face frictional
contact as follows:

Object 2

Object 1

n
A

ΔuA

τ τ

Figure 1: A sketch of nonpenetrating constraints.
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3NB

i�1
f

B
i (x) 

2
+ 

3Nc
B

i�1


3

k�1




f
B
ik(x) 

2
+ 

3NA

i�1
f

A
i (x) 

2
+ 

3Nc
A

i�1


3

k�1
f

A
ik(x) 

2
. (18)

According to equations (12)–(18), an optimization
mathematical model for the node_face frictional contact
system can be established as follows:

min ‖f(x)‖,

f
B
i (x) � 0, i � 1, 2, . . . , 3NB( ,

f
B
i (x) � 0, i � 1, 2, . . . , 3N

c
B( ,

f
A
i (x) � 0, i � 1, 2, . . . , 3NA( ,

f
A
i (x) � 0, i � 1, 2, . . . , 3N

c
A( .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

4.3. Penalty Factor Programming Model for Node_Face
Frictional Contact. From the abovementioned analysis,
when the contact system is stable, the involved objects satisfy
nonpenetrating constraints shown in equation (7); other-
wise, the penalty function method can be used to apply

contact constraints. We suppose that there is a “spring”
between a possible contact node and its contact surface and
its compressive stiffness is very large while the tensile
stiffness is zero. *e stiffness is taken as a penalty factor and
written as α. According to the principle of minimum po-
tential energy, when two objects contact each other, if
equation (7) is satisfied, the work performed by the spring
will be zero, namely, the penalty factor α � 0, and the contact
system will be stable with minimum potential energy
(written as E0). Otherwise, the spring will prevent the objects
from contacting and do work, so the potential energy
(written as Ec) will sharply increase. For the node_face
frictional contact system, let

f(x) � b − Ax, x � xj , (j � 1, 2, . . . , NF). (20)

We construct an energy objective function as follows:

E � E0 + Ec, (21)

where

E0 � ‖f(x)‖
2
2 � 

3NB

i�1
f

B
i (x) 

2
+ 

3Nc
B

i�1
f

B
i (x) 

2
+ 

3NA

i�1
f

A
i (x) 

2
+ 

3Nc
A

i�1
f

A
i (x) 

2
,

Ec �
1
2
α

NF

i�1
δi di − π( 

2
, δi �

1, di − τ > 0,

0, di − τ ≤ 0,

⎧⎪⎨

⎪⎩

(22)

where di indicates the distance between a contact node and
its contact surface.

For the node_face frictional contact system, we suppose
the contact surface is smooth and the deformation is very
small. According to equations (3) and (19)–(21), a penalty
factor programming model can be established as follows:

minE � min E0 + Ec( . (23)

So, the solution of node_face frictional contact is
transformed into an unconstrained optimization problem.

4.4. Selection of Penalty Factor. From equations (3) and (23),
we know the optimization of penalty factor α is very im-
portant. For each factor α, a corresponding objective
function value can be obtained, and it will increase with the
increase of α. When α � 0, equation (23) has the same
solution as equation (6). While α⟶∞, the solution of
equation (23) will converge to the analytical solution, and

abnormalities may occur for a too large factor α. So, the
penalty factor α should not be taken as a too large value.
From energetics point of view, the penalty factor α is
equivalent to spring stiffness. When an object is subjected to
fixed loads, the factor α will be inversely proportional to the
deformation increments within the elastic range. For ex-
ample, if two elastic objects contact each other, the rela-
tionship of the factor α and the objective function value can
be as shown in Figure 2.

According to Figure 2, when the penalty factor α varies
within the range between 10 and 108, the objective function
value will be close to zero, namely, the nonpenetrating
constraints expressed in equation (7) can be satisfied and the
system will be stable. So, the penalty factor α can be taken as
108. While penalty factor α is larger than 108, the objective
function value will increase sharply, namely, equation (7)
cannot be satisfied, and the “spring” will carry out pun-
ishments on the contact. *en, the system cannot be solved
properly.
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5. Penalty Optimization IGMRES
(m) Algorithm

To solve equation (23), a penalty optimization IGMRES (m)
algorithm is presented. *e detailed process is as follows:

(1) Initialization: for a fixed parameter m, we set an
appropriate precision ε and a parameter q

(2≤ q≤m). We take an initial value x(0) and
compute

r
(0)

� b − Ax
(0)

, β � r
(0)

�����

�����, v1 �
r

(0)

β
, V1 � v1 , E

(0)
� E( x

(0)
)

�����

�����. (24)

(2) Iteration: for j � 1, 2, . . . , m, we have (1) Incomplete orthogonalization:

hij � Avj, vi  i � j0, . . . , j( , vj+1 � Avj − 

j

i�j0

hijvi, j0 � max 1, j − q − 1 . (25)

(2) Standardization:

hj+1,j � vj+1

�����

�����, vj+1 �
vj+1

hj+1,j

. (26)

(3) Updation of Vj+1 and Hj:

Vj+1 � Vj, vj+1 ,

Hj �
Hj−1 hij

0 hj+1,j

⎛⎝ ⎞⎠

(j+1)×j

,
(27)

where Hj indicates an upper Hessenberg matrix.
*en, we have

AVm � Vm+1Hm. (28)

When j � 1, the first column will be omitted.
(3) We solve the following least square problem to

obtain ym:

r
(m)

�����

����� � min
ym∈Cm

βe1 − Hmym

����
����. (29)

(4) We construct the approximate solution:

x
(m)

� x
(0)

+ Vmym. (30)

(5) *e modules of residual vectors and the value of
energy objective function are computed.

r
(m)

�����

����� � f − Ax
(m)

�����

�����, E
(m)

� E x
(m)

 
�����

�����. (31)

(6) Restart judgment: if ‖r(m)‖≤ ε and E(m) <E(0), then
let x � x(m) and stop. Otherwise, reset x(0) � x(m)

and return to the initialization step.

6. Numerical Example

We consider two elastic objects A and B in contact with each
other. A is a support with a width W� 50mm, a height
H� 30mm, and a length L1� 50mm. B is a half cylinder
with a radius R� 15mm and a length L2� 60mm. *e two
objects are isotropic with Young’s modulus E� 210Gpa,
Poisson’s ratio ]� 0.3, and a frictional coefficient f� 0.1. *e
object B is subjected to a uniform load. *e total load is
divided into six steps, and the contact distance tolerance is
τ � 0.0001mm. *e computation model and discrete mesh
are shown in Figure 3, and the discrete data are shown in
Table 1.

When the object B is subjected to a uniform load P that
is not more than 1 GPa, the penalty factor is taken as a
value that ranges from 10 to 108, and the obtained results
agree well with the theoretical analysis. *e solution
process is very stable. When P � 100MPa, the distribu-
tions of contact displacement, pressure and friction force,
and the friction slip field are presented, as is shown in
Figures 4–7.*ese results agree well with the experimental
analysis. In addition, the contact displacements and
pressures under different loads are compared, as is shown
in Figures 8, and 9, which shows that the edge effect is
becoming more and more obvious with the load increase.

When P � 1GPa and the penalty factor α is taken as 109,
the solution procedure is abnormal and the friction directions
of some contact nodes change, as is shown in Figure 10(a).
When P � 10GPa and the penalty factor α is taken as 1010, the
solution procedure is more abnormal, as is shown in
Figure 10(b). When P≥ 100GPa and the penalty factor α is
taken as a value ranging from 1.0 × 1011 to 2.1 × 1011, the
solution will be impossible. *e reason why the solution is
impossible or abnormal is that penetration occurs when two
objects contact each other, namely, equation (7) is not satisfied.
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Figure 3: Computation model and discrete mesh.

Table 1: Discrete data.

Objects Totality Contact area DOFNode number Element number Node number Element number
A 1650 1648 567 520 6651
B 1198 1196 459 468 4971
Total 2848 2844 1026 988 11622

0.01
0.009
0.008
0.007
0.006
0.005
0.004

0.01
0.009

0.008
0.007

0.006
0.005
0.00435

30
25

20

15
10 5

15
25

35
45

W
idth (mm)

Axial length (mm)

D
isp

la
ce

m
en

ts 
(m

m
)

D
isp

la
ce

m
en

ts 
(m

m
)

Figure 4: Displacement distributions in the contact area.
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Figure 6: Friction distributions in the contact area.
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Figure 10: Friction slip field in the contact area. (a) Friction slip (P �1GPa). (b) Friction slip (P �10GPa).
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In addition, numerical experiments show that when the loads
increase gradually, if the penalty factor α is taken as an in-
appropriate value, the computation time will sharply increase,
as is shown in Figure 11.

7. Conclusions

Based on the FM-BEM, a node_face frictional contact mode
was analyzed and nonpenetrating constraints were presented
for 3D elastic frictional contact problems. For the case of
frictional contact without penetration, nonlinear contact
constraints were linearized by use of the least square method
and an optimization mathematical model with node_face
frictional contact mode was established. For the case of fric-
tional contact with penetration, according to the principle of
minimum potential energy, a penalty function method was
used to apply the contact constraints and an energy objective
function was constructed; then, a node_face frictional contact
analysis was transformed into an unconstrained optimization
problem. For the elastic frictional contact FM-BEM problem,
nonpenetrating constraints were introduced into the system as
a penalty term. Without increasing the system variables, a
penalty factor mathematical programming model was estab-
lished by the penalty functionmethod.*e influence of penalty
factor on the solution process was analyzed, and a penalty
optimization IGMRES (m) algorithm was presented. *e
frictional contact of two elastic objects under different loads
was numerically simulated, and the results of displacements,
pressures, friction forces and friction slips in the contact area
were obtained. *eoretical analysis and numerical experiment
showed that the new method had much superiority in effi-
ciency, applicability, easy numerical implementation, fast
convergence, stability, etc. *e proposed FM-BEM penalty
functional method could provide new ideas and methods for
the solution of frictional contact problems and related math-
ematical, mechanical, and physical problems.
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[22] R. Ortega, J. C. Garćıa Orden, M. Cruchaga, and C. Garćıa,
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Aluminum alloy material is an important component material in the safe flight of aircraft. It is very important and necessary to
predict the fatigue crack growth between holes of aviation aluminum alloy materials. At present, the investigation on the
prediction of the cracks between two holes and multiholes is a key problem to be solved. Due to the fact that the fatigue crack
growth test of aluminum alloy plate with two or three holes was carried out by the MTS fatigue testing machine, the crack length
growth data under different test conditions were obtained. In this paper, support vector regression (SVR) was used to fit the crack
data, and the parameters of SVR are optimized by the grid search algorithm at the same time. And then the model of SVR to
predict the crack length was established. Discussion on the results shows that the prediction model is effective. Furthermore, the
crack growth between three holes was predicted accurately through the model of the crack law between two holes under the same
load form.

1. Introduction

As we all know, the aluminum alloy material studied in this
paper, as an important component material in the aviation
field, is widely used in the aviation industry [1] and plays an
important role in ensuring the safety of the aviation aircraft
flight. ,erefore, we should attach great importance to carry
out relevant research work on it.

,e investigation on fatigue crack growth prediction has
a history of several decades. ,e study of fatigue originated
from the embryonic period of the European industrial
revolution in the first half of the 19th century. As early as the
middle of the 19th century, Wohler, a German railway en-
gineer, put forward the concept of stress-life (S-N) curve and
fatigue limit and pointed out the influence degree of factors
affecting materials fatigue. After that, some researchers
developed Wohler’s investigation [2–5] from 1870 to 1890.
After decades of development, there are much research on
fatigue crack propagation, which is microinvestigation on
materials and mechanism analysis by the finite element
method. As we all know, fatigue failure of materials needs to

go through three stages: crack initiation, crack stable
propagation, and crack instability propagation. ,e total
fatigue life is also composed of these three parts. Generally,
the (da/dN) − ΔK curve in the double logarithmic coor-
dinate system is used to describe the fatigue crack growth
rate.

In Figure 1, zone 1 is a low rate region, zone 2 is a
medium rate region, and zone 3 is a high rate region. In the
medium rate region (i.e., zone 2), (da/dN) − ΔK has a good
logarithmic linear relationship, which is the focus of fatigue
crack growth research in this paper.

,e rapid development of fracturemechanics in the early
20th century provides a theoretical basis for the study of
fatigue crack growth. In 1961, Paris et al. [6] put forward the
Paris formula suitable for the medium rate region on the
basis of the fracture mechanics method to express the law of
crack propagation, which is the most widely used method in
engineering. Besides, Alshamma and Jassim [7] confirmed
all parameters of the Paris Law in the experiment and found
the crack growth speed through the experiment and analysis.
On the basis of the previous studies, the investigation on
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crack growth and fracture is in the ascendant in recent years
[8–12], and the main progress is described as follows: Lei
[13] takes 2024-T4 aluminum alloy as the investigation
object and uses the finite element method to investigate the
influence rule and mechanism of overload condition on the
change trend of subsequent fatigue crack growth rate (da/
dN). For the problem of crack propagation in a plate with a
single hole central crack, Zhang andWang [14] introduced a
new Z fracture criterion which can well predict the crack
propagating direction of mode I crack in carbon-fiber
reinforced composite laminates and proposed new concepts
of in-plane average strain, in-plane dilatational strain energy
density factor, and reciprocal characteristic function. Fur-
thermore, Hajimohamadi and Ghajar [15] investigated the
analytical solution of the stress field and stress intensity in an
infinite plane with elliptical holes with an unequal length of
prefabricated cracks. For the crack growth problem of two
holes plate, Bhargava and Jangid [16] proposed a mathe-
matical model of two unequal-collinear crack growth. Ad-
ditionally, Singh et al. [17] proposed an improved strip
saturation model based on the combination of two internal
electric saturation bands and studied two-dimensional (2D)
arbitrarily polarized semipermeable dielectric analytically.
For the crack growth problem of the porous plate. Zhao et al.
[18] applied the basic principle of the complex stress
function method and its approximate superposition method
to the solution of stress intensity factor of collinear multiple
cracks in infinite plates and made a preliminary exploration
on the solution of porous cracks. Moreover, Li et al. [19] used
the Eshelby inclusion theory and weight function method to
give the approximate analytical solution of stress intensity
factor of the typical porous multicrack problem and com-
bined with Paris crack growth formula to predict the fatigue
crack growth life. Zhu et al. [20–22] conducted an in-depth
study on the stress intensity factor and crack opening dis-
placement of interpore crack by using the complex variable
function and relevant integral method and then obtained the
relevant laws of stress intensity factor and crack opening
displacement. Li et al. [23–25] carried out theoretical in-
novation on the numerical calculation methods used in the
fatigue crack growth problem, providing the possibility of

solving such problems more accurately in theory. ,ese
investigations on the prediction of fatigue crack growth are
based on the empirical formula, analytical method and the
finite element method. Based on the existing mechanism
investigation and crack growth performance, the analytical
expression of crack growth law is obtained. In view of the
fact that dealing with the actual aviation crack data which is
an urgent proposition to find as way to find a way to get the
crack growth law by data-driven method [26], the intelligent
algorithm model of aviation fatigue crack growth based on
the data-driven method will be built in the focus of this
paper.

On the other hand, the support vector regression (SVR)
algorithm is an extension of the support vector machine
algorithm in regression problem, which was first proposed
by Drucker et al. [27]. After years of development, the SVR
algorithm is widely used in all aspects of scientific investi-
gation.,e application of the SVR algorithm in crack growth
and life prediction is as follows: based on grey theory and
support vector regression method, Yang et al. [28] proposed
GMSVR model and parameter optimization method of the
artificial bee colony and applied it to FCG prediction of 7075
aluminum alloy. Furthermore, Song et al. [29] used XFEM
and SVR to predict the fatigue life of plate cracks. SVR
algorithm has a large number of kernel functions to use, so it
can be very flexible to solve various nonlinear regression
problems. In addition, the SVR algorithm is based on the
principle of structural risk minimization, which avoids
overlearning problem and has strong generalization ability.
Moreover, it is a convex optimization problem, so the local
optimal solution must be the global optimal solution. ,e
SVR algorithm is used to study the crack growth of the
aluminum alloy plate. We just use the SVR model estab-
lished from the data to get the prediction result of crack
growth, which avoids the discussion of crack growth
mechanism based on the empirical formula. ,erefore, it is
feasible to apply the SVR algorithm to the crack growth
prediction of aluminum alloy plate, which has the advantage
of solving such problems.

In order to predict the interhole crack growth length of
the aeronautical aluminum alloy plate by data-driven
method, it is necessary to collect the crack growth length and
the corresponding cycle number under different load
spectrum and initial crack conditions. ,e support vector
regression (SVR) [30, 31] algorithm, especially, is a data-
driven based method, which is used to fit the crack growth
data obtained from the fatigue load test in this paper. Under
the same load form, a model which can predict the crack rule
between three circular holes by the crack rule between two
holes is established, and its fitting effect is tested. ,e avi-
ation aluminum alloy plate with two or three holes is the test
materials of the fatigue load test. First of all, the data of crack
length and cycle number of plate crack growth under
constant amplitude load and variable amplitude load are
collected in this experiment. After that, to get the general
rule of crack growth, data exploration, data preprocessing,
and so on are carried out. Finally, the applicable support
vector regression algorithm is used to fit the crack growth
data to get the prediction results of the model and evaluate
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Figure 1: (da/dN) − ΔK curve.
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the effect of the model. ,is model can be used in the field of
fatigue crack growth prediction of the porous edge of alu-
minum alloy materials for aircraft. It can predict the crack
growth length by the number of cycles and can also predict
the number of cycles by the crack growth length through the
model. ,e establishment of the crack prediction model for
the aviation aluminum alloy plate can predict three-hole
crack rule from two-hole crack and solve the prediction
problem of unknown crack growth rule between holes. It is a
breakthrough in crack prediction between holes based on a
data-driven method. ,is model not only provides the basis
for the prediction of the crack law of aviation aluminum
alloy materials but also can be applied to the prediction of
safe flight and life of aviation aircraft and guide the pre-
diction of the crack growth law between holes of actual
aviation aluminum alloy plate.

2. Test Content

2.1.Test Introduction. In this section, to investigate the crack
growth law of aviation aluminum alloy plate with two holes
and three holes under constant amplitude load and variable
amplitude load, respectively, is one purpose of this exper-
imental investigation. And, on the other hand, to use the
suitable support vector regression algorithm to fit and an-
alyze the experimental data is another purpose of this ex-
perimental investigation. Besides, MTS fatigue testing
machine system is used in this test, which is used in fatigue
test and crack growth test of typical aviation connection
structure with multiple cracks. Moreover, the crack growth
behavior was measured by a high power optical microscope.
Figures 2 and 3 show the MTS fatigue testing machine
system.

In addition, the most commonly used aluminum-lith-
ium alloy on the active advanced aircraft is the experimental
materials used in this test. In order to explore the propa-
gation law of cracks between holes in the aviation aluminum
alloy plate, the aviation aluminum alloy plate is divided into
two holes and three holes. Besides, the schematic diagram of
the two types of aviation aluminum alloy plates used is
shown in Figures 4 and 5.

Besides, the diameters of the small circular holes in the
aluminum alloy plate specimens are 4mm, while the distance
between points B and C in the figure and the distance between
points D and E are 12mm, which is shown in Figures 4 and 5.
,e parameters of the fatigue load test are shown in Table 1.

Points A, B, C, D, E, and F in Figures 4 and 5 preset the
initial crack length, respectively, so as to obtain the crack
growth in the test.

,e aircraft aluminum alloy plate we use has two holes
and three holes. For the load, there are two categories of
constant amplitude load and variable amplitude load. For
the statistics of the initial crack prefabrication of aviation
aluminum alloy plates, we divided the constant amplitude
and variable amplitude into two categories, respectively, and
then distinguished the configuration of two-hole and three-
hole cracks in each category; then, there is the following
statistical table of crack prefabrication. Among them, there
are 11 constant amplitude plate specimens and 9 variable

Figure 2: MTS fatigue testing machine system.

Figure 3: Test diagram of two-hole plate specimen.

A
B
C
D

Figure 4: Schematic diagram of two-hole plate specimen.
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amplitude plate specimens. As shown in Tables 2 and 3, the
statistics of crack preset of plate specimen under constant
amplitude load (the crack length refers to the length of crack
propagation with the initial crack tip as the origin, unit:
mm):

It can be seen that Tables 4 and 5 (unit: mm) show the
statistics of the preset cracks of the plate specimen under
variable amplitude load.

,e vertical line of points B and C is taken as the axis of
symmetry for two-hole aluminum alloy plate in this paper. It
can be seen that point A corresponds to point D and point B
corresponds to point C. If the initial crack length of the four
points is the same, it is regarded as the case of initial crack

symmetry. Similarly, the vertical line of point C and point D
is taken as the axis of symmetry for three-hole aluminum
alloy plate. It can be seen that point A corresponds to point
F, point B corresponds to point E, and point C corresponds
to point D. Whether the initial crack is symmetrical or not
will have different results in the study of crack propagation
mechanism. In the data exploration stage, the symmetry of
the initial crack will directly affect the speed of the subse-
quent crack growth. ,erefore, it is necessary to discuss
whether the crack is symmetrical or not, whether it is in the
relevant mechanical mechanism or the collected data ex-
ploration images. In the case of the above initial crack
configuration, the type of the initial crack length at each hole
edge of the two-hole aluminum alloy plate is involved in this
paper. In this way, the random configuration of the initial
crack can be considered. In this paper, the initial crack
random configuration here means that the subsequent crack
length adopts the cumulative crack length between holes.
,e initial crack configuration has certain randomness,
which weakens the influence of the initial crack length
configuration between holes on the crack growth law, so
more attention is paid to the growth law of the crack ac-
cumulation length. With such a random initial crack con-
figuration, a general prediction model of interpore crack
length under the same load spectrum (considering only the
cumulative crack length) can be established. It can provide
the basis for the follow-up investigation work through the
above analysis.

2.2. Test Process. Firstly, the abovementioned constant
amplitude fatigue load spectrum and variable amplitude
fatigue load spectrum (see Table 1) which are suitable for
laboratory use are adopted. Secondly, the fatigue crack
growth test of porous plate specimen under constant am-
plitude load spectrum is carried out. ,e fatigue crack
growth data of multiple cracks are collected, and the growth
rule is analyzed. Finally, the fatigue crack growth test of plate
specimen with porous edge cracks under variable amplitude
load is carried out. ,erefore, the data of crack length and
number of cycles are collected to provide test data for the

Table 1: Table of fatigue load test parameters.

Load
range
(kN)

Load
median
(kN)

Load
amplitude

(kN)

Median of
variable
amplitude
load (kN)

Amplitude
of variable
amplitude
load (kN)

Constant
amplitude
load

1.3–13 7.15 5.85 — —

Variable
amplitude
load

1.3–13 7.15 5.85 14.3 11.7

Table 2: Initial preset cracks of two-hole specimen with constant
amplitude.

Serial number A B C D
01 1 1 0 0
02 1 1.5 0 0
03 1 1 1 1
04 1 1.5 1 1
05 1 1.5 1.5 1
06 0.5 1.5 0.5 0.5
07 0.5 1.5 1.5 0.5
08 0.5 0.5 0.5 0.5
09 0.5 1.5 0 0
10 0.5 1.5 1.5 0.5
11 0.5 0.5 0 0

Table 3: Initial preset cracks of three-hole specimen with constant
amplitude.

A B C D E F
0.5 0.5 1.5 1.5 0.5 0.5

Table 4: Initial preset cracks of two-hole specimen with variable
amplitude.

Serial number A B C D
01 0.5 0.5 0 0
02 0.5 1.5 0 0
03 0.5 0.5 0.5 0.5
04 0.5 1.5 0.5 0.5
05 0.5 1.5 1.5 0.5

Table 5: Initial preset cracks of three-hole specimen with variable
amplitude.

A B C D E F
0.5 0.5 1.5 0.5 0.5 0.5

A
B
C
D
E
F

Figure 5: Schematic diagram of three-hole plate specimen.
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prediction of crack length. According to the previous so-
lution, it also can even establish the life of fatigue multicrack
propagation law.

2.3. ExperimentalData. In this section, the test data of crack
growth length and cycle times of 20 groups of aluminum
alloy specimens are obtained, which are saved in 20 Excel
files, respectively, through the above fatigue loading test.
Some original data of crack growth for the abovementioned
aluminum alloy specimens are presented in this paper. ,e
initial cracks at points A, B, C, and D in the constant
amplitude two-hole test specimen 03 are all 1.0mm test data,
some of which are shown in Table 6 (the data in the first
column of the table is the number of cycles, and the rest is in
mm).

,e initial crack configuration of the constant amplitude
three-hole specimen is as follows: the initial crack at points
A, B, E, and F is 0.5mm and the initial crack at point C and
point D is 1.5mm. Some of the data are shown in Table 7 (the
data in the first column of the table is the number of cycles,
and the rest is in mm).

For the sample with variable amplitude, it should be clear
that the effect of retardation after the application of overload
will occur. ,e intuitionistic crack growth image of variable
amplitude specimen is obviously different from that under
constant amplitude load, which will experience a long slow
growth period, thus prolonging the life of the component,
while the crack growth rate under constant amplitude load
will continue to increase, and its life is shorter than that
under variable amplitude load. ,ese features are visually
shown in Figures 6–9.

However, the initial cracks at points A, B, C, and D in the
two-hole variable amplitude test specimen 03 (complement)
are all 0.5mm test data, some of which are shown in Table 8
(the data in the first column of the table is the number of
cycles, and the rest is in mm).

,e initial crack configuration of the variable amplitude
three-hole specimen is as follows: the initial crack at points
A, B, D, E, and F is 0.5mm and the initial crack at point C is
1.5mm. Some of the data are shown in Table 9 (the data in
the first column of the table is the number of cycles, and the
rest is in mm).

3. The Theory of Support Vector Regression

As we know, support vector regression (SVR) is a de-
velopment of the support vector machine algorithm,
which was first extended to support vector regression by
Drucker et al. [27]. Support vector regression is a small
specimen learning method with a solid theoretical basis.
And the traditional process from induction to deduction
can be avoided by it. By this means, SVR simplified greatly
the usual regression problem. ,e support vector re-
gression algorithm avoids “dimension disaster” in a sense
and has good robustness. ,e main principles of SVR are
as follows.

Given training samples T � (x1, y1), (x2, y2), . . . ,

(xm, ym)}, yi ∈ R. ,e regression model shaped as (f(x) �

wTx + b) is the learning objective function. Moreover, the
model parameters which make f(x) as close as possible to y,
w, and b are to be determined.

Next, support vector regression [30] assumes that we can
tolerate the maximum deviation of ε between f(x) and y .
,at is to say, the loss is only calculated when the absolute
value of the difference between f(x) and y is greater than
(ε). As shown in Figure 10, this is equivalent to building a
spacing band (i.e., the part sandwiched between the two

Table 6: Partial test data of constant amplitude two-hole test
specimen 03.

A B C D
13000 0.6 0.9 0.9 0.9
13200 0.6 0.9 0.9 1
13400 0.7 1 1.1 1
13600 0.8 1 1.1 1.05
13800 0.8 1.2 1.2 1.05

. . .

18900 5 4.7 5 5.6
18925 5.2 4.7 5 5.9
18950 5.5 4.7 5 6.2
18975 5.7 4.7 5 6.6
19000 6 4.7 5 7

Table 7: Partial test data of constant amplitude three-hole test
specimen.

A B C D E F
5000 0 0 0 0 0 0
28000 0 0 0 0 0 0
28500 0 0 0 0.1 0 0
29000 0 0 0 0.2 0 0
29500 0 0 0 0.3 0 0

. . .

64250 3.4 2 8 7.2 2.8 6.6
64500 3.7 2 8 7.2 2.8 7.5
64750 4 2 8 7.2 2.8 7.6
64973 6.2 2 8 7.2 2.8 10.2
64976 17.2 2 8 7.2 2.8 16.8
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Normalized data of two holes with constant amplitude

Figure 6: Normalized data of two holes with constant amplitude.
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dashed lines in the figure) with a width of (ε) centered on
f(x) (i.e., the solid line in the figure). On the contrary, if the
training samples fall into this interval, they are considered to
be correctly predicted.

,erefore, the SVR problem can be formalized as

min
w,b

1
2
‖w‖

2
+ b, (1)

where b � C 
m
i�1 lε(f(xi) − yi) and C is the regularization

constant. It can be seen from Figure 11 that lε is the ε-in-
sensitive loss function:

lε(z) �
0, if |z|≤ ε,

|z| − ε, otherwise.
 (2)

By introducing relaxation variables ξi and ξi , (1) can be
rewritten as

min
w,b,ξi ,

ξi

1
2
‖w‖

2
+ C 

m

i�1
ξi + ξi ,

s.t.

f xi(  − yi ≤ ε + ξi,

yi − f xi( ≤ ε + ξi,

ξi ≥ 0, ξi ≥ 0, i � 1, 2, . . . , m.

(3)

Table 8: Partial test data of variable amplitude two-hole test
specimen 03 (complement).

A B C D
11000 0 0.1 0.1 0.1

Added a variant

11500 0 0.1 0.1 0.1
12000 0.1 0.1 0.1 0.1
12500 0.1 0.1 0.1 0.1
13000 0.1 0.2 0.2 0.1

. . .

15750 0.5 0.5 0.6 0.6
16000 0.6 0.5 0.6 0.6
16500 0.6 0.5 0.6 0.6

. . .. . .

42100 6.3 4.8 6.2 7.2
42200 6.5 4.8 6.2 7.5
42300 7 4.8 6.2 7.8
42400 8 4.8 6.2 9
42448 17.1 4.8 6.2 18.2
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Figure 7: Normalized data of three holes with constant amplitude.
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Figure 8: Normalized data of two holes with variable amplitude.
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Figure 9: Normalized data of three holes with variable amplitude.

Table 9: Partial test data of variable amplitude three-hole test
specimen.

A B C D E F
5000 0 0 0 0 0 0

Added a variant

10000 0 0 0 0 0 0
15000 0 0 0 0 0 0
20000 0 0 0 0 0 0
25000 0 0 0 0 0 0

. . .

46000 0 0.1 1.8 1.1 0.2 0
47000 0 0.1 1.9 1.2 0.2 0
48000 0 0.1 1.9 1.2 0.2 0

. . .

132500 6.3 2.8 7.2 8.7 2.3 5.3
133000 8 2.8 7.2 8.7 2.3 5.9
133250 9.1 2.8 7.2 8.7 2.3 6.7
133500 10.5 2.8 7.2 8.7 2.3 7.7
133532 17.3 2.8 7.2 8.7 2.3 18
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,erefore, the solution of SVR can be obtained by the
Lagrange multiplier method as follows:

f(x) � 
m

i�1
αi − αi( xT

i x + b. (4)

Furthermore, the samples of (αi − αi)≠ 0 in equation (4)
are the support vectors of SVR, which must fall outside the
ε-interval. Obviously, support vectors in SVR are only a part
of the training samples; that is, its solution is still sparse.

If the feature mapping form f(x) � wTϕ(x) + b is
considered, then the corresponding solution can be obtained
by the Lagrange multiplier method:

w � 
m

i�1
αi − αi( ϕ xi( . (5)

Substituting equation (5) into f(x) � wTϕ(x) + b, SVR
can be expressed as

f(x) � 
m

i�1
αi − αi( κ x, xi(  + b, (6)

where κ(xi, xj) � ϕ(xi)
Tϕ(xj) represent the kernel function.

,e kernel function used in this paper is Gauss kernel
function, whose expression is κ(xi, xj) � exp(− (‖xi

− xj‖
2/2σ2)). Where σ > 0 stand for the width of the Gaussian

kernel.

4. Prediction of Crack Length by SVR

4.1. Data Standardization. As we all know, the input data to
be normalized is required in the SVR algorithm.,erefore, it
is necessary to normalize the data to be processed. ,e data
to be used needs to be determined before normalization.
According to the data exploration in the early stage, we can
know from the visual graph that the crack length data is in
the state of nonexpansion when the number of cycles is
small. ,at is, a large number of zero values in the original
data have no impact on the prediction results, so it can be
discarded. After a certain length that the crack length rea-
ches, the crack length remains unchanged when the number
of cycles in the later period is large.,erefore, this part of the
data can be discarded and only part of the data with
changing rules can be retained. ,e influence of point A and
point D of the two-hole plate and point A and point F of
three-hole plate on interpore crack propagation is ignored in
this test. ,erefore, the following investigating contents only
consider the crack growth between holes. We also add the
initial crack length of each crack to each row of crack data, so
that the crack data has a certain physical significance.

For convenience, standardization methods in data
standardization are as follows:

Transform sequence (x1, x2, . . . , xn) x∗i � ((xi − min
1≤j≤nxj)/(max1≤j≤nxj − min1≤j≤nxj)), the new sequence
(x∗1 , x∗2 , . . . , x∗n ∈ [0, 1]) is dimensionless. ,e data can be
standardized first for data preprocessing.

Using the Matplotlib Library in Python to draw the image
and get the relevant statistics for each test specimen. Data
preprocessing images between holes cracks of the above
specimen are presented in this paper. Each image drawn
below does not consider the zero-value data in the front part
of the data file, and the number of cycles is processed by the
above normalization method. ,e abscissa is the number of
cycles after normalization and the ordinate is the crack length
in mm, as expected in Figures 6–9 for the specific image.

After the above-standardized treatment, the crack length
is treated as follows: the crack data of point B and point C are
added to get the cumulative crack length, which is recorded
as IBC, and the cumulative crack length is about 12mm for
the two-hole crack specimen. Meanwhile, the crack data of
points B, C, D, and E are added and record as IBCDE to get the
cumulative crack length, which is about 25mm for the three-
hole crack specimen.

l (
z)

z

z2

lε (z)

0
0

Figure 11: (ε)-insensitive loss function.

y

x

f(x) = 0
f(x) = 1
f(x) =–1

Training data
Support vectors

Figure 10: Schematic diagram of support vector regression.
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After the abovementioned processing, the preprocessing
image of crack growth data of each test piece is obtained.,e
abscissa is the number of cycles, and the ordinate is the sum
of crack length between holes IBC or IBCDE data whose unit

is mm in all the following figures. See Figures 12–15 for the
specific image.

4.2. Prediction Steps of SVR. Obviously, the steps of using
support vector regression to predict the crack length are as
follows: first, establish the support vector regression model
for the normalized IBC crack data of the constant amplitude
two-hole specimen, obtain the training and testing errors,
and then test the effect of the model on the constant am-
plitude two-hole specimen. ,en, the support vector re-
gression model was established and predicted for IBCDE
crack data of normalized constant amplitude three-hole
specimen, observe the error and deviation, and verify the
prediction effect of the model. Finally, the prediction model
is established for the variable amplitude specimen similar to
the above prediction steps.

,e SVR algorithm in scikit-learn is used to build the
SVR model for crack prediction of aviation aluminum alloy
plate by adjusting the parameters such as kernel (i.e., specify
the kernel type to be used in the algorithm), gamma (i.e., for
kernel coefficient), and C (i.e., for penalty parameter C of
error term) in this paper.

Furthermore, this paper adopts the grid search opti-
mization algorithm when adjusting the parameters. Grid
search optimization algorithm is a kind of exhaustive search
algorithm which optimizes the parameters by cross-vali-
dation and then obtains the optimal learning algorithm, that
is to say, to traverse and search the corresponding per-
mutation and combination values of each parameter in a
given range, and each group of combination results con-
stitutes a “grid.” ,en, each combination is applied to the
training learning algorithm, and the evaluation results are
obtained by cross-validation. After traversing and training
all the parameter combinations, the grid search algorithm
will automatically return the best parameter combination
with the highest score, and its corresponding learning model
is the optimal regression model.

It is known that the kernel, gamma, and C parameters
need to be adjusted in SVR. For the kernel, that is, the type of
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Figure 14: Cumulative length of two holes with variable amplitude.
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the kernel function, we specify using the radial basis kernel
function. For gamma and C parameters, we use the Grid-
SearchCV method in scikit-learn to optimize the grid search
parameters and get the optimal parameters in this paper,
where the value range of gamma is set as
0.01, 0.1, 1, 10, 100{ }, that is, (gamma ∈ 0.01, 0.1,{

1, 10, 100}), and the value range of C is set as
1, 10, 100, 1000{ }, that is C ∈ 1, 10, 100, 1000{ }. According to
the range of gamma and C from the above, there are 20 grid
points in this method.

4.3.Evaluating Indicator. Data set partition standard: for the
division of data sets under different load spectra, this paper
uses two-hole data under the corresponding load spectrum
as training data and three-hole data as test data.

,e commonly used cross-validationmethod inmachine
learning is used for the aspect of model evaluation in data set
partition. In view of the fact that the half-fold cross-vali-
dation method [32] is specifically used in this paper, the
reliable evaluation of the model effect is obtained by making
full use of the data set, so as to verify the performance of the
established SVR model for crack prediction of aviation
aluminum alloy plate.

Additionally, error analysis indicators, mean square error
[33], root mean square error, [34] and other error analysis
indicators, are commonly used in regression problems. Vari-
ance, standard deviation, mean square error, and root mean
square error are the error evaluation indicators used in this
paper. ,e calculation formulas of each indicator are as follows:

Variance (S2):

S
2

�
1
m



m

i�1
yi − y( 

2
. (7)

Standard deviation (S):

S �

�����

1
m



m

i�1




yi − y( 
2

. (8)

Mean square error (MSE):

MSE �
1
m



m

i�1
yi − yi( 

2
. (9)

Root mean square error (RMSE):

RMSE �

�����

1
m



m

i�1




yi − yi( 
2

, (10)

where m, yi, yi, and y are the total number of samples, the
predicted value of the model, the real value, and the sample
mean value, respectively.

It is significant to compare variance and standard de-
viation with MSE and RMSE. For example, if the MSE of
prediction error is almost equal to the variance of the target
(or RMSE is almost equal to the standard deviation of the
target), this indicates that the prediction algorithm is not

effective. By simply averaging the target value to replace the
prediction algorithm, almost the same effect can be achieved.
If the prediction error RMSE is about half of the actual target
standard deviation, this is already pretty good performance.
Because the variance and MSE comparison and the standard
deviation and RMSE comparison have a certain correlation,
thus, the comparison between standard deviation and RMSE
is the main error indicator used in this paper.

4.4. Result Analysis. According to the previous solution, this
paper presents a visual image of the results of predicting the
crack length of three-hole aluminum alloy plate specimens
under the same load spectrum. In the visualization image,
Figures 16 and 17 are the images of test data and prediction
data. Besides, Figures 18 and 19 are the learning curve
images. In the images in Figures 16 and 17, the red lines are
the line graph of test data, and the blue lines are the line
graph of support vector regression prediction data.

However, through the optimization of SVR parameters
by the grid search algorithm, we get the optimal SVR model
for aluminum alloy plate under constant amplitude. ,e
parameters of it are as follows: SVR (C� 100.0,
cache_size� 200, coef0� 0.0, degree� 3, epsilon� 0.1,
gamma� 10.0, kernel� “RBF,” max_iter� − 1, shrinking� -
true, tol� 0.001, verbose� false). Among them,
kernel� “RBF” is the setting parameter, C� 100.0 and
gamma� 10.0 are the optimization parameters of the grid
search algorithm. And other parameters are the default
values. A simple interpretation can be given as follows.

Figures 16 and 18 show the results of constant amplitude
three-hole specimen.

,e standard deviation is about 10.11 and the RMSE of
this model is about 0.64 which is far less than the standard
deviation. It is easily found that the effect of this model is
very well. ,e results of half-fold cross-validation are
0.99942329, 0.99940067, 0.9994369, 0.9991129, 0.9994331,
and the mean value is 0.9993613737263342, which also
shows that the prediction effect of the model is good. In this
way, the model can be used for this problem.

Moreover, through the optimization of SVR parameters
by the grid search algorithm, we get the optimal SVR model
for aluminum alloy plate under variable amplitude. ,e
parameters of it are as follows: SVR (C� 1000.0,
cache_size� 200, coef0� 0.0, degree� 3, epsilon� 0.1,
gamma� 1.0, kernel� “RBF,” max_iter� − 1, shrinking� -
true, tol� 0.001, verbose� false). Among them,
kernel� “RBF” is the setting parameter, and C� 1000.0 and
gamma� 1.0 are the optimization parameters of the grid
search algorithm. And other parameters are the default
values. A simple interpretation can be given as follows.

Figures 17 and 19 show the results of variable amplitude
three-hole specimen:

,e standard deviation is about 9.56, and the RMSE of
this model is about 0.86 which is far less than the
standard deviation. It is easily found that the effect of this
model is very well. ,e results of half-fold cross-vali-
dation are 0.99930434, 0.99930836, 0.99873057,
0.999125, and 0.9991911, with the mean value of
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0.9991318738985194, which also shows that the predic-
tion effect of the model is good. In this way, the model
can be used for this problem.

Additionally, through the establishment, implementa-
tion, and evaluation of the above models, it can be seen that
the constant amplitude data and the variable amplitude data
are two different types of models. ,e crack propagation law
between the holes of the two-hole aluminum alloy plate and
three-hole aluminum alloy plate has roughly the same trend

in each type of model. ,erefore, three-hole crack data can
be predicted by two-hole crack data under the same load
form. In practical application, we can refer to the crack
configuration form of the specimen in this paper and find a
crack configuration form model similar to the actual situ-
ation. In addition, we can get the crack growth prediction
results through the model. In addition, in the actual aviation
aluminum alloy interhole crack prediction problem, under
the same load spectrum situation, only two-hole plate test is
needed to predict the corresponding three-hole plate crack
propagation through the established SVR model. And the
prediction accuracy of this model is high so that it can
effectively improve the efficiency of solving such problems
and reduce various costs.

5. Conclusion

,e SVR model can be used to predict the crack between
holes in similar aluminum alloy plates. Using different
models under different conditions can make the prediction
more accurate: use the model with a higher score in constant
amplitude model under constant amplitude condition and
use the model with a higher score in variable amplitude
model under variable amplitude condition. According to the
results, we can know that two-hole and three-hole alu-
minum alloy plate have roughly the same crack propa-
gation law under the same load spectrum. It leads us to
predict the crack law between three holes with constant
amplitude by the crack law between two holes with
constant amplitude. And at the same time, we also can
predict the crack law between three holes with variable
amplitude by the crack law between two holes with var-
iable amplitude. Alternatively, the data-driven SVR al-
gorithm model for crack growth prediction is a useful
supplement to the existing methods for crack growth
prediction in this paper. In the practical prediction of
interpore crack growth, the results of the method in this
paper and the existing methods can be considered com-
prehensively, and the more reliable prediction results can
be obtained through mutual verification. ,e accuracy of
the model can meet the accuracy requirements of the
aviation crack growth problem. In view of this, the
established model can be modified into the aviation crack
growth prediction method to a certain extent and can
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guide the actual prediction of the law of the aviation
cracks between holes.
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In this paper, we study the existence of nontrivial solutions for the 2nth Lidstone boundary value problem with a sign-changing
nonlinearity. Under some conditions involving the eigenvalues of a linear operator, we use the topological degree theory to obtain
our main results.

1. Introduction

In this paper, we investigate the existence of nontrivial
solutions for the following 2nth Lidstone boundary value
problem with a sign-changing nonlinearity:

(− 1)
n
u

(2n)
(t) � f t, u(t), − u″(t), . . . , (− 1)

n− 1
u

(2n− 2)
(t) , 0< t< 1,

u
(2i)

(0) � u
(2i)

(1) � 0, i � 0, 1, . . . , n − 1,

⎧⎪⎨

⎪⎩
(1)

where the nonlinearity f satisfies the following condition:

(i) (C0) f ∈ C([0, 1] × Rn,R) and there exist three
nonnegative functions
a(t), b(t), andK(x1, x2, . . . , xn)( ≡ 0) such that

f t, x1, x2, . . . , xn( ≥ − a(t) − b(t)K x1, x2, . . . , xn( ,

for t ∈ [0, 1], xi ∈ R, i � 1, 2, . . . , n.

(2)

/e Lidstone boundary value problem arises in many
different areas of applied mathematics and physics. When
n � 2, problem (1) describes the deformation of an elastic
beam in which both ends are simply supported. Recently,
this problem has been extensively studied, and the authors
refer the reader to [1–11] and references cited therein. For
example, in [1], the authors used a cone-theoretic fixed point
theorem to study the existence of nontrivial solutions for the
nonlinear Lidstone boundary value problem:
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y
(2m)

(t) � λa(t)f y(t), . . . , y
(2j)

(t), . . . y
(2(m− 1))

(t) , 0< t< 1,

y
(2i)

(0) � 0 � y
(2i)

(1), i � 0, . . . m − 1,

⎧⎪⎨

⎪⎩
(3)

where (− 1)mf> 0 is continuous and a is nonnegative. In [2],
the authors investigated the existence and uniqueness of
positive solutions for the following generalized Lidstone
boundary value problem:

(− 1)
n
u

(2n)
� f t, u, − u″, . . . , (− 1)

n− 1
u

(2n− 2)
 ,

α0u
(2i)

(0) − β0u
(2i+1)

(0) � 0(i � 0, 1, 2, . . . , n − 1),

α1u
(2i)

(1) − β1u
(2i+1)

(1) � 0(i � 0, 1, 2, . . . , n − 1),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

where αj ≥ 0, βj ≥ 0(j � 0, 1) and α0α1 + α0β1 + α1β0 > 0. In
view of symmetry, these results demonstrate that problem
(4) is essentially identical with Dirichlet boundary condition
(1).

Meanwhile, we also note that there are a large number of
papers in the literature devoted to sign-changing nonline-
arities, and some results can be found in a series of papers
[12–32] and the references cited therein. For example, in
[12], the authors studied the following higher-order non-
linear fractional boundary value problem involving Rie-
mann–Liouville fractional derivatives:

D
α
0+u(t) � − f t, u(t), D

β1
0+u(t), D

β2
0+u(t), . . . , D

βn − 1
0+ u(t) , 0< t< 1,

u(0) � u′(0) � · · · � u
(n− 2)

(0) � D
β
0+u(1) � 0,

⎧⎪⎨

⎪⎩

(5)

where f is a sign-changing nonlinearity. Under some
appropriate conditions involving the eigenvalues of the
relevant linear operators, they utilized the topological
degree to obtain a nontrivial solution for (5). In [13], the
authors adopted the similar method in [12] to study the
existence of nontrivial solutions for the following system
of fractional q-difference equations with q-integral
boundary conditions:

D
α
qx(t) + f1(t, y(t)) � 0, t ∈ (0, 1),

D
α
qy(t) + f2(t, x(t)) � 0, t ∈ (0, 1),

x(0) � 0, Dqx(0) � 0, D
v
qx(1) � 

1

0
h(t)D

v
qx(t))dqt,

y(0) � 0, Dqy(0) � 0, D
v
qy(1) � 

1

0
h(t)D

v
qy(t)dqt,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

where α ∈ (2, 3), v ∈ (1, 2), andDα
q is the α-order Rie-

mann–Liouville’s fractional q-derivative.
Inspired by the aforementioned works, in this paper, we

study the existence of nontrivial solutions for (1) where the
nonlinearity f is sign-changing. Under some conditions
involving the eigenvalues of the revelent linear operators, we
use the topological degree to obtain our results.

2. Preliminaries

Let E: � C([0, 1],R), ‖v‖: � maxt∈[0,1]|v(t)|, P: � v ∈ E:{

v(t) ≥ 0,∀t ∈ [0, 1]}, Br � v ∈ E: ‖v‖< r{ } for r> 0. Clearly,
(E, ‖ · ‖) is a real Banach space and P is a solid cone in E. In
(1), let (− 1)n− 1u(2n− 2)(t) � v(t) and from [2, P224], we can
obtain that (1) is equivalent to the following integral
equation:

v(t) � 
1

0
G1(t, s)f s, 

1

0
Gn− 1(s, τ)v(τ)dτ, . . . ,


1

0
G1(s, τ)v(τ)dτ, v(s)ds,

(7)

where

G1(t, s) �
t(1 − s), 0≤ t≤ s≤ 1,

s(1 − t), 0≤ s≤ t≤ 1,


Gi(t, s) � 
1

0
G1(t, τ)Gi− 1(τ, s)dτ, i � 2, 3, . . . .

(8)

Next, we provide a lemma, which expresses some vital
properties of the functions Gi(i � 1, 2, . . .).

Lemma 1 (i) Gi are nonnegative continuous functions on
[0, 1]2, and Gi(t, s)> 0, (t, s) ∈ (0, 1)2

(ii) G1 has the inequalities t(1 − t)G1(s, s)≤G1(t, s)

≤G1(s, s),∀t, s ∈ [0, 1]

(iii) Gi(t, s) � Gi(s, t), ∀t, s ∈ [0, 1]

(iv) 
1
0 Gi(t, s)sin πsds � (1/π2)i sin πt, t ∈ [0, 1], and


1
0 Gi(t, s)sin πtdt � (1/π2)i sin πs, s ∈ [0, 1]

Proof. We only prove (iii) and (iv). For (iii), i � 1 holds
obviously. From the definition of Gi, we have
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Gi(s, t) � 
1

0
G1 s, τ1( Gi− 1 τ1, t( dτ1

� 
1

0

1

0
G1 s, τ1( G1 τ1, τ2( Gi− 2 τ2, t( dτ2dτ1

� · · ·

� 
1

0
· · · 

1

0√√√√√√
i− 1

G1 s, τ1( G1 τ1, τ2( G1 τ2, τ3(  · · · G1 τi− 1, t( dτi− 1 · · · dτ2dτ1

� 
1

0
· · · 

1

0√√√√√√
i− 1

G1 t, τi− 1(  · · · G1 τ3, τ2( G1 τ2, τ1( G1 τ1, s( dτi− 1 · · · dτ2dτ1

� Gi(t, s), for t, s ∈ [0, 1].

(9)

For (iv), when i � 1, we have


1

0
G1(t, s)sin πs ds � 

t

0
s(1 − t)sin πs ds + 

1

t
t(1 − s)sin πs ds

�
1
π2

sin πt.

(10)

Noting that G1(s, t) � G1(t, s), we have


1

0
G1(t, s)sin πt dt � 

1

0
G1(s, t)sin πt dt �

1
π2 sin πs.

(11)

When i≥ 1, we have


1

0
Gi(t, s)sin πsds � 

1

0
· · · 

1

0√√√√√√
i

G1 t, τi− 1(  · · · G1 τ3, τ2( G1 τ2, τ1( G1 τ1, s( sin πsdsdτi− 1 · · · dτ2dτ1

�
1
π2


1

0
· · · 

1

0√√√√√√
i− 1

G1 t, τi− 1(  · · · G1 τ3, τ2( G1 τ2, τ1( sin πτ1dτi− 1 · · · dτ2dτ1

� · · ·

�
1
π2 

i

sin πt.

(12)

Using the symmetry of Gi, we easily have


1

0
Gi(t, s)sin πtdt �

1
π2

 
i

sin πs. (13)

/is completes the proof.
Let αi ≥ 0 with 

n
i�1 α

2
i ≠ 0. /en, we have the following

equations:


1

0
Gα1 ,...,αn

(t, s)sin πsds � α1
1
π2

 
n

+ · · · + αn

1
π2 

1
 sin πt,

t ∈ [0, 1],

(14)


1

0
Gα1 ,...,αn

(t, s)sin πtdt � α1
1
π2

 
n

+ · · · + αn

1
π2 

1
 sin πs,

s ∈ [0, 1],

(15)

where

Gα1 ,...,αn
(t, s) � α1Gn(t, s) + · · · + αnG1(t, s), for t, s ∈ [0, 1].

(16)

Lemma 2. Let (Lv)(t) � 
1
0 G1(t, s)v(s)ds, for t ∈ [0, 1].

2en, if v ∈ P, we have Lv ∈ P0, where

P0 � v ∈ P: v(t)≥ t(1 − t)‖v‖, ∀t ∈ [0, 1]{ }. (17)

/is is a direct result from Lemma 1 (ii), so we omit its
proof.

Remark 1. sin πt ∈ P0, for t ∈ [0, 1].

Lemma 3 (see [33], /eorem 1 [3]). Let Ω be a bounded
open set in a Banach space E and T: Ω⟶ E be a continuous
compact operator. If there exists x0 ∈ E\ 0{ } such that
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x − Tx≠ μx0, ∀x ∈zΩ , μ≥ 0, (18)

then the topological degree deg(I − T,Ω, 0) � 0.

Lemma 4 (see [33], Lemma 4 [1]). Let Ω be a bounded open
set in a Banach space E with 0 ∈ Ω and T: Ω⟶ E be a
continuous compact operator. If

Tx≠ μx, ∀x ∈zΩ , μ≥ 1, (19)

then the topological degree deg(I − T,Ω, 0) � 1.

3. Main Results

Define the operator A: E⟶ E by

(Av)(t) � 
1

0
G1(t, s)f s, 

1

0
Gn− 1(s, τ)v(τ)dτ, . . . ,


1

0
G1(s, τ)v(τ)dτ, v(s)ds.

(20)

Moreover, the continuity of f implies that A is com-
pletely continuous and the existence of solutions for (1) is
equivalent to that of fixed points of A.

Now, we list some assumptions for the functions f and
K:

(C1) /ere exist βi ≥ 0(i � 1, 2, . . . , n) with 
n
i�1 β

2
i ≠ 0

such that

lim
β1 x1| |+β2 x2| |+···+βn xn| |⟶ +∞

K x1, x2, . . . , xn( 

β1 x1


 + β2 x2


 + · · · + βn xn




� 0.

(21)

(C2) liminfβ1|x1|+β2||x2|+···+βn
|xn|⟶ +∞(f(t, x1, x2,

. . . , xn)/ (β1|x1| + β2|x2| + · · · + βn|xn|))>
λβ1 ,β2 ,...,βn

, uniformly for t ∈ [0, 1].
(C3) /ere exist ci ≥ 0(i � 1, 2, . . . , n) with 

n
i�1 c2

i ≠ 0
such that

limsup
c1 x1| |+c2 x2| |+···+cn xn| |⟶ 0

f t, x1, x2, . . . , xn( 




c1 x1


 + c2 x2


 + · · · + cn xn



< λc1,c2 ,...,cn

,

(22)

where

λ− 1
β1 ,β2 ,...,βn

� β1
1
π2

 
n

+ · · · + βn

1
π2

 
1
,

λ− 1
c1 ,c2 ,...,cn

� c1
1
π2

 
n

+ · · · + cn

1
π2 

1
.

(23)

Theorem 1. Suppose that (C0)–(C3) hold. 2en, (1) has at
least one nontrivial solution.

Proof. We divide the following two steps:

(i) Step 1. By (C3), there exist ε1 ∈ (0, λc1 ,c2 ,...,cn
) and r> 0

such that

f t, x1, x2, . . . , xn( 


≤ λc1 ,c2 ,...,cn
− ε1  c1 x1


 + c2 x2




+ · · · + cn xn


,

(24)

for all t ∈ [0, 1], xi ∈ R(i � 1, 2, . . . , n) with
0≤ c1|x1| + c2|x2| + · · · + cn|xn|≤ r. Substituting this
inequality into (20), we have

|(Av)(t)|≤ 
1

0
G1(t, s) f s, 

1

0
Gn− 1(s, τ)v(τ)dτ, . . . , 

1

0
G1(s, τ)v(τ)dτ, v(s) 




ds

≤ λc1 ,c2 ,...,cn
− ε1  

1

0
G1(t, s) c1 

1

0
Gn− 1(s, τ)v(τ)dτ




+ · · · + cn− 1 

1

0
G1(s, τ)v(τ)dτ




+ cnv(s) ds

≤ λc1 ,c2 ,...,cn
− ε1  

1

0
c1Gn(t, s) + · · · + cn− 1G2(t, s) + cnG1(t, s)( |v(s)|ds

� λc1 ,c2 ,...,cn
− ε1  

1

0
Gc1 ,...,cn

(t, s)|v(s)|ds.

(25)

Now for this r, we claim

Av ≠ λv, ∀v ∈zBr, λ≥ 1. (26)

Suppose the contrary. /en, there exist v0 ∈zBr and
λ0 ≥ 1 such that Av0 � λ0v0 /erefore, we obtain

v0(t)


≤ λ0 v0(t)


 � Av0( (t)


≤ λc1 ,c2 ,...,cn
− ε1 


1

0
Gc1 ,...,cn

(t, s) v0(s)


ds.
(27)

Multiply by sin πt on both sides and integrate over
[0, 1] and use (15) to obtain
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1

0
v0(t)


sin πtdt≤ λc1 ,c2 ,...,cn

− ε1  
1

0

1

0
Gc1 ,...,cn

(t, s) v0(s)


sin πtdtds

� λc1 ,c2 ,...,cn
− ε1 λ− 1

c1 ,c2 ,...,cn

1

0
v0(s)


sin πsds.

(28)

/is indicates that 
1
0 |v0(t)|sin πtdt � 0, and thus,

|v0(t)| ≡ 0, t ∈ [0, 1]. /is contradicts to v0 ∈zBr.
Consequently, (26) holds and Lemma 4 yields that

deg I − A, Br, 0(  � 1. (29)

Step 2. By virtue of (C2), there exist ε2 > 0 and X0 > 0
such that

f t, x1, x2, . . . , xn( ≥ λβ1 ,β2 ,...,βn
+ ε2 

· β1 x1


 + β2 x2


 + · · · + βn xn


 ,

(30)

for all t ∈ [0, 1] and β1|x1| + β2|x2| + · · · + βn|xn|>X0. For
any given ε with ε2 − ‖b‖ε> 0, and using (C1), there exists
X1 >X0 such that

K x1, x2, . . . , xn( ≤ ε β1 x1


 + β2 x2


 + · · · + βn xn


 ,

for all β1 x1


 + β2 x2


 + · · · + βn xn


>X1.

(31)

Consequently, when t ∈ [0, 1], β1|x1| + β2|x2| + · · · +

βn|xn|>X1, we have

f t, x1, x2, . . . , xn( ≥ λβ1,β2 ,...,βn
+ ε2  β1 x1


 + β2 x2


 + · · · + βn xn


  − a(t) − b(t)K x1, x2, . . . , xn( 

≥ λβ1,β2 ,...,βn
+ ε2  β1 x1


 + β2 x2


 + · · · + βn xn


  − a(t) − b(t)ε β1 x1


 + β2 x2


 + · · · + βn xn


 

≥ λβ1,β2 ,...,βn
+ ε2 − ‖b‖ε  β1 x1


 + β2 x2


 + · · · + βn xn


  − a(t).

(32)

Noting that when t ∈ [0, 1],
β1|x1| + β2|x2| + · · · + βn|xn|≤X1,
f(t, x1, . . . , xn), andK(x1, . . . , xn) are bounded, we can let

CX1
� max

0≤t≤1,β1 x1| |+β2 x2| |+···+βn xn| |≤X1

f t, x1, . . . , xn( 




+ λβ1 ,β2 ,...,βn
+ ε2 − ‖b‖ε X1,

K
∗

� max
β1 x1| |+β2 x2| |+···+βn xn| |≤X1

K x1, . . . , xn( .

(33)

/en, we can obtain

f t, x1, x2, . . . , xn( ≥ λβ1 ,β2 ,...,βn
+ ε2 − ‖b‖ε 

· β1 x1


 + β2 x2


 + · · · + βn xn


 

− a(t) − CX1
,

(34)

for all t ∈ [0, 1], xi ∈ R, i � 1, 2, . . . , n. Note that ε can be
chosen arbitrarily small, and let

R>max

1
0 G1(s, s) a(s) + K

∗
b(s) + CX1

 ds

1 − ‖b‖εmaxt∈[0,1] 
1
0 Gβ1 ,...,βn

(t, τ)dτ
, S1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

(35)

where

S1 �

1
0 λβ1 ,β2 ,...,βn

+ ε2 − ‖b‖ε  + ε2 − ‖b‖ε( G1(y, y)  a(y) + K
∗
b(y) + CX1

 dy

ε2 − ‖b‖ε(  1 − ‖b‖εmaxt∈[0,1] 
1
0 Gβ1 ,...,βn

(t, τ)dτ  − ε λβ1 ,β2 ,...,βn
+ ε2 − ‖b‖ε  

1
0 b(y) 

n
i�1 

1
0 βiGn− i(y, τ)dτdy

, (36)

and G0(y, τ) ≡ 1. Now, we claim

v − Av ≠ μφ, ∀v ∈zBR, μ≥ 0, (37)

where φ(t) � sin πt, t ∈ [0, 1]. Suppose that (37) is not
satisfied. /en, there exist v1 ∈zBR and μ1 > 0 such that

v1 − Av1 � μ1φ. (38)
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Let

v(t) � 
1

0
G1(t, s) a(s) + b(s)K 

1

0
Gn− 1(s, τ)v1(τ)dτ, . . . , 

1

0
G1(s, τ)v1(τ)dτ, v1(s)  + CX1

 ds. (39)

/en, from Lemma 2, we have v ∈ P0. Now, we estimate
the norm of v. Noting that v1 ∈zBR(‖v1‖ � R), we obtain

v(t)≤ 
1

0
G1(t, s) a(s) + b(s) ε β1 

1

0
Gn− 1(s, τ)v1(τ)dτ




+ · · · + βn− 1 

1

0
G1(s, τ)v1(τ)dτ




+ βn| v1(s)


  + K

∗
  + CX1

 ds

≤ 
1

0
G1(s, s) a(s) + K

∗
b(s) + CX1

 ds +‖b‖ε
1

0
Gβ1 ,...,βn

(t, τ) v1(τ)


dτ

≤ 
1

0
G1(s, s) a(s) + K

∗
b(s) + CX1

 ds +‖b‖ v1
����

����ε max
t∈[0,1]


1

0
Gβ1 ,...,βn

(t, τ)dτ

<R.

(40)

We calculate v1 + v. By (38) we have

v1(t) + v(t) � Av1( (t) + μ1φ(t) + v(t)

� 
1

0
G1(t, s) f s, 

1

0
Gn− 1(s, τ)v1(τ)dτ, . . . , 

1

0
G1(s, τ)v1(τ)dτ, v1(s) 

+ a(s) + b(s)K 
1

0
Gn− 1(s, τ)v1(τ)dτ, . . . , 

1

0
G1(s, τ)v1(τ)dτ, v1(s)  + CX1

ds + μ1φ(t).

(41)

Using (C0), Lemma 2 and Remark 1, we find

v1 + v ∈ P0. (42)

/erefore, (34) enables us to calculate

Av1( (t) + v(t) ≥ λβ1 ,β2 ,...,βn
+ ε2 − ‖b‖ε  

1

0
G1(t, s) β1 

1

0
Gn− 1(s, τ)v1(τ)dτ




+ · · · + βn− 1 

1

0
G1(s, τ)v1(τ)dτ




+ βn v1(s)


 ds

− 
1

0
G1(t, s) a(s) + CX1

 ds

+ 
1

0
G1(t, s) a(s) + b(s)K 

1

0
Gn− 1(s, τ)v1(τ)dτ, . . . , 

1

0
G1(s, τ)v1(τ)dτ, v1(s)  + CX1

 ds

≥ λβ1 ,β2 ,...,βn
+ ε2 − ‖b‖ε  

1

0
G1(t, s) β1 

1

0
Gn− 1(s, τ)v1(τ)dτ




+ · · · + βn− 1 

1

0
G1(s, τ)v1(τ)dτ




+ βn v1(s)


 ds

� λβ1,β2 ,...,βn
+ ε2 − ‖b‖ε  

1

0
Gβ1 ,...,βn

(t, s)v1(s)ds





≥ λβ1 ,β2 ,...,βn
+ ε2 − ‖b‖ε  

1

0
Gβ1 ,...,βn

(t, s)v1(s)ds.

(43)
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Consequently, we have

λβ1 ,β2 ,...,βn
+ ε2 − ‖b‖ε  

1

0
Gβ1 ,...,βn

(t, s) v1(s) + v(s)( ds � λβ1 ,β2 ,...,βn
+ ε2 − ‖b‖ε  

1

0
Gβ1 ,...,βn

(t, s) v1(s) + v(s)( ds

− λβ1 ,β2 ,...,βn
+ ε2 − ‖b‖ε  

1

0
Gβ1 ,...,βn

(t, s)v(s)ds

� λβ1 ,β2 ,...,βn

1

0
Gβ1 ,...,βn

(t, s) v1(s) + v(s)( ds + ε2 − ‖b‖ε( 


1

0
Gβ1 ,...,βn

(t, s) v1(s) + v(s)( ds

− λβ1 ,β2 ,...,βn
+ ε2 − ‖b‖ε  

1

0
Gβ1 ,...,βn

(t, s)v(s)ds.

(44)

Now, we estimate (ε2 − ‖b‖ε) 
1
0 Gβ1 ,...,βn

(t, s)

(v1(s) + v(s))ds − (λβ1 ,β2 ,..., βn + ε2 − ‖b‖ε) 
1
0 Gβ1 ,...,βn

(t, s)v(s)ds. From (42), we have v1(t) + v(t)≥ t(1 − t)‖v1 +

v‖≥ t (1 − t)(‖v1‖ − ‖v‖), t ∈ [0, 1], and using G1(t, s)≤
t(1 − t), t, s ∈ [0, 1], we have

ε2 − ‖b‖ε(  
1

0
Gβ1,...,βn

(t, s) v1(s) + v(s)( ds − λβ1,β2 ,...,βn
+ ε2 − ‖b‖ε  

1

0
Gβ1 ,...,βn

(t, s)v(s)ds

≥ ε2 − ‖b‖ε(  
1

0
Gβ1,...,βn

(t, s)s(1 − s) v1
����

���� − ‖v‖ ds

− λβ1 ,β2 ,...,βn
+ ε2 − ‖b‖ε  

1

0
Gβ1 ,...,βn

(t, s)

· 
1

0
s(1 − s) a(y) + b(y) ε β1 

1

0
Gn− 1(y, τ)v1(τ)dτ




+ · · · + βn− 1 

1

0
G1(y, τ)v1(τ)dτ




+ βn v1(y)


  + K

∗
  + CX1

 dyds

≥ 
1

0
Gβ1 ,...,βn

(t, s)s(1 − s)ds

· ε2 − ‖b‖ε(  v1
����

���� − ‖v‖  − λβ1 ,β2 ,...,βn
+ ε2 − ‖b‖ε  

1

0
a(y) + b(y) ε v1

����
���� 

n

i�1

1

0
βiGn− i(y, τ)dτ + K

∗⎛⎝ ⎞⎠ + CX1
⎛⎝ ⎞⎠dy⎡⎢⎢⎣ ⎤⎥⎥⎦

≥ 0.

(45)

As a result, by means of (43) and (44), we obtain

Av1( (t) + v(t) ≥ λβ1 ,β2 ,...,βn

1

0
Gβ1 ,...,βn

(t, s) v1(s) + v(s)( ds.

(46)

Combining this with (38), we have

v1(t) + v(t) � Av1( (t) + μ1φ(t) + v(t)

≥ λβ1 ,β2 ,...,βn

1

0
Gβ1 ,...,βn

(t, s) v1(s) + v(s)( ds + μ1φ(t)

≥ μ1φ(t).

(47)

Define μ∗ � supS � sup μ> 0: v1 + v≥ μφ . /en,
S≠∅(μ1 ∈ S) and μ∗ ≥ μ1. Hence, from (14), we have

v1(t) + v(t)≥ λβ1,β2 ,...,βn

1

0
Gβ1 ,...,βn

(t, s) v1(s) + v(s)( ds + μ1φ(t)

≥ λβ1,β2 ,...,βn

1

0
Gβ1 ,...,βn

(t, s)μ∗φ(s)ds + μ1φ(t)

� λβ1 ,β2 ,...,βn
λ− 1
β1 ,β2,...,βn

μ∗φ(t) + μ1φ(t)

� μ∗ + μ1( φ(t),

(48)

which contradicts the definition of μ∗. /erefore, (37) holds,
and from Lemma 3, we obtain

deg I − A, BR, 0(  � 0. (49)

Now, (29) and (49) together imply that

deg I − A,
BR

Br

, 0  � deg I − A, BR, 0(  − deg I − A, Br, 0(  � − 1.

(50)
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/erefore, the operator A has at least one fixed point in
BR/Br. Equivalently, (1) has at least one nontrivial solution.
/is completes the proof.

4. Conclusion

In this paper, we use the topological degree to study the
nontrivial solutions for the 2nth Lidstone boundary value
problem (1). To the best of our knowledge, there are few
works that deal with the problem where the nonlinear terms
may be unbounded and sign-changing. Moreover, it is
remarked that the main result is discussed under some
conditions concerning the first eigenvalues corresponding to
the relevant linear operators. /ese mean that our main
result is an improvement in some related works.
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