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In this paper, for the proposed extended Laguerre polynomials A
ðαÞ
q, n

ðxÞ
( )

, the generalized hypergeometric function of the type

qFq
, q > 2 and extension of the Laguerre polynomial are introduced. Similar to those related to the Laguerre polynomials, the

generating function, recurrence relations, and Rodrigue’s formula are determined. Some corollaries are also discussed at the end.

1. Introduction and Applications

Due to its wide applications, the study of orthogonal polyno-
mials has been a popular research topic for many years. Many
of these polynomials are generated by hypergeometric func-
tions. Indeed, the orthogonal polynomials have numerous
properties of interest, e.g., recurrence relations and differential
equations. Based on their Rodrigues formulae, generating
functions and solutions of integral equations with orthogonal
polynomials as kernels have been extensively investigated.

Generalizations and extensions of orthogonal polyno-
mials are in the another familiar direction of research. One
of the polynomial set which has been extended is a set of
Laguerre polynomials. Laguerre polynomials are well-
known to form an orthogonal set with respect to the weight
function zαe−z on the interval ð0,∞Þ.

A set of Laguerre polynomials is generated by well-
known confluent hypergeometric function 1F1. It can be also
generated by hypergeometric function 0F1. Another direc-
tion is the study of Laguerre polynomials based on more
than one variable which are often used in physical and statis-
tical model. One, too, combinatorial polynomial images,
moments, orthogonality relation, and a combinatorial
understanding Ikyrana coefficients Al-Salam and Chihara q
Laguerre polynomial, can study various aspects. Orthogonal
polynomials, namely, Hermite polynomials and Legendre

polynomials can also be studied through the finite series
involving Laguerre polynomials.

Laguerre polynomials are used to solve noncentral Chi-
square distribution. Laguerre polynomials are the orthogonal
polynomial satisfied the recurrence relations. Various special-
izations are studied with application to classical orthogonal
polynomials. Kinetic theory of particles based on Laguerre
polynomial macroscopic hydrodynamic quantities and kinetic
coefficients of different medium is used to set.

There are a large number of generalizations and exten-
sions of Laguerre polynomials, e.g., Shively’s polynomials.
Many of these generalizations are based on its Rodrigues for-
mulae in addition to hypergeometric functions. Recently, an
interesting integral representation of generalized hypergeo-
metric functions has been determined. It is now natural to
point to a generalization of Laguerre polynomials based on
such a discovery. This idea has motivated the current work.
Also, it will explore deeper investigation and extensions of
results which we proved in our early studies and research.

In this work, we discuss the features of Extending
Laguerre polynomial involving qFq

, q > 2. Extending

Laguerre polynomial set has been a popular research issue
well considered for years. There have a number of directions
to do so. One direction is to follow the definition of Laguerre
polynomials based on the confluent hypergeometric
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function, explicitly

L
αð Þ
n

xð Þ = 1 + αð Þn
n! 1F1 −n ; 1 + α ; xð Þ: ð1Þ

Shively [1] extended the Laguerre polynomials as

Rn a, xð Þ = að Þ2n
n! að Þn 1F1 −n ; a + n ; xð Þ: ð2Þ

He used a factor a + n instead of 1 + α in Laguerre polyno-
mials. In his study, he found a large number of its properties
including the result that a finite sum of Laguerre polynomials
is Shively’s polynomials. Habibullah [2] proved the Rodrigues
formula for Shively’s polynomials in the following form

Rn a + 1, xð Þ = exx−α−n

n!
Dn xα+2ne−x

� �
, ð3Þ

similar to the Rodrigues formula

L αð Þ
n xð Þ = exx−α

n!
Dn xα+ne−xð Þ, ð4Þ

for the Laguerre polynomials.
Researchers have also often based their generalization on

extension of Rodrigues formula and subsequently deter-
mined properties of extended polynomials. Chatterjea [3]
developed an extension of the Laguerre polynomial by
strengthening the Rodrigues formula. Chatterjea and Das
[4] restructured their definition and the resultant study by
considering another version of the Laguerre polynomials.

Chen and Srivastava [5] found a stronger Rodrigues for-
mula to develop a generalization of the Laguerre polynomial.

The forms generalized Rodrigues formulae by Chak [6]
show that robust following of this method of defining exten-
sions of the Laguerre polynomial. Since comprehensive liter-
ature is available on special functions, we follow Shively’s
tradition to introduce the definition of the extended
Laguerre polynomials set based on special functions similar
to that contained the original definition.

Dattoli et al. [7] used an exponential generating func-
tions approach involving Hermite polynomials and Bessel
functions introduced new families. He, too, studied their
respective recurrence relations and showed that they fulfill
different differential equations. Trickovic and Stankovic [8]
of the Jacobi and Laguerre polynomial orthogonality of
rational functions that have proved equally. Trickovic and
Stankovic [8] have proved the orthogonality of the Jacobi
and the Laguerre polynomials.

Khan and Shukla [9] have introduced a novel method to
give operator representations of certain polynomials. They
gave binomial and trinomial operators representations of
certain polynomials. Grinshpan [10] has shown that all solu-
tions to the equations of a family of integral equations fulfill
modulus inequality. Duenas et al. [11] a derivative of a Dirac
delta by adding a perturbation of a Laguerre-Hahn func-
tional gain catalog.

Kim et al. [12] have studied some interesting identities
and also studied Bernoulli and Euler’s numbers in connec-
tion with the properties of Laguerre polynomials. They
derived identities by using the orthogonality of Laguerre
polynomials w.r.t the relevant inner product. Marinkovic
et al. [13] have demonstrated the theory of deformed
Laguerre derivative defined by iterated deformed Laguerre
operator. Nowak et al. [14] convolution type Laguerre func-
tion expansions in order to prove the standard estimates has
developed a technique. Khan and Habibullah [15] have
introduced A2,nðxÞ = 2F2ð−n/2, ð−n + 1/2Þ ; 1/2, 1 ; x2Þ.

Khan and Kalim [16] have introduced

A αð Þ
3,m yð Þ = 1 + αð Þm

m! 3F3
−m
3

,
−m + 1

3
,
−m + 2

3
;
1 + α

3
,
2 + α

3
,
3 + α

3
; y3

� �
:

ð5Þ

Doha et al. [17] modified generalized Laguerre expan-
sion coefficients of the derivatives of a function in terms of
its original expansion coefficients, and an explicit expression
for the derivatives of modified generalized Laguerre polyno-
mials of any degree and for any order as a linear combina-
tion of modified generalized Laguerre polynomials
themselves is also deduced.

Dattoli et al. [18] applied operational techniques to intro-
duce suitable families of special functions. Andrews et al. [19],
Trickovic and Stankovic [20], Radulescu [21], and Doha and
Youssri [22] have done a lot of work for properties of Laguerre
polynomials. Akbary et al. [23] can be referred for other appli-
cations of Laguerre polynomials. Li [24], Aksoy et al. [25],
Wang [26], and Krasikov and Zarkh [27] have studied prob-
lems of permutation of polynomials, bijections that can induce
polynomials with integer coefficients is modulo m.

We organize our manuscript as: we present the proper-
ties and applications of extended polynomials in Section 2.
We give the extended Laguerre polynomials in Section 3.
We discuss the generating functions in Section 4. We pres-
ent the recurrence relations in Section 5. We give the differ-
ential equations in Section 6. We discuss the Rodrigues
formula in Section 7. We give the special properties in Sec-
tion 8. We present some other generating functions in Sec-
tion 9. We give the expansion of the polynomials in
Section 10. We present the conclusion in the last section.

2. Extended Polynomial Properties and
Application Elementary Results

Das [28] has modified the work of Al-Salam [29]. Carlitz [30]
has given a generating function and an explicit polynomial
expression for the polynomial Yc

nðx ; kÞ, a variant of Laguerre
polynomials. Srivastava [31] has derived the several bilinear
generating functions by using generalized hypergoemetric
functions. Explicitly, we can mention [Erdélyi p, 190] [32].

Dm xα+mL α+mð Þ
n xð Þ

h i
=
Γ α +m + n + 1ð Þ
Γ α + n + 1ð Þ xαL αð Þ

n xð Þ,D =
d
dx

:

ð6Þ
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One generalization of Laguerre polynomials is Rnða, xÞ as
Shively defined it by [Rainville p, 298] [33].

Rn a, xð Þ = að Þ2n
n! að Þn 1F1 −n ; a + n ; xð Þ, ð7Þ

he used these results as an integral equation involving Shively’s
polynomials. Karande and Thakare [34] have derived the gen-
erating functions, bilinear generating functions, and recur-
rence relations by using the biorthogonal set of Konhausar.
Panda [35] has studied a new generalization based on several
known polynomials systems belonging to the families of the
classical Jacobi, Hermite, and Laguerre polynomials. Parashar

[36] has introduced a new set of Laguerre polynomials Lðα,hÞn

ðxÞ related to the Laguerre polynomials LðαÞn ðxÞ. Sharma and
Chongdar [37] have proved an extension of bilateral generat-
ing functions of the modified Laguerre polynomials.

Lemma 1. If j ∈ℤ+ and n is any nonnegative integer, then

−n
q

� �
j

−n + 1
q

� �
j

⋯
−n + q − 1

q

� �
j

= −1ð Þqj n!
qqj n − qjð Þ! :

ð8Þ

Proof.

Lemma 2. If k ∈ℤ+ and n is any nonnegative integer, thus

αð Þkn = kkn
α

k

� �
n

α + 1
k

� �
n

⋯
α + k − 1

k

� �
n

, ð10Þ

Rainville [33] (p 22).

Lemma 3. If k ∈ℤ+ and n is any nonnegative integer, thus

〠
∞

n=0
〠
n

k=0
B k, nð Þ = 〠

∞

n=0
〠
∞

k=0
B k, n + kð Þ, ð11Þ

Rainville [33] (p 57).

Lemma 4. If k ∈ℤ+ and n is any nonnegative integer, then

〠
∞

n=0
〠
∞

k=0
B k, nð Þ = 〠

∞

n=0
〠
n

k=0
B k, n − kð Þ, ð12Þ

Rainville [33] (p 56).

3. The Extended Laguerre Polynomials A
ðαÞ
q, n

ðxÞ
We define the extended Laguerre polynomial set

A
ðαÞ
q, n

ðxÞ
( )

by

A
αð Þ
q, n

xð Þ = ex q + αð Þn
n! qFq

−n
q
,
−n + 1

q
,⋯,

−n + q − 1
q

;

;xq

q + α

q
,
q + 1 + α

q
,⋯,

2q + α − 1
q

0
BBBBB@

1
CCCCCA, ð13Þ

where α ∈ℝ, n, q ∈ℤ+.

Theorem 5. If A
ðαÞ
q, n

ðxÞ
( )

are the extended Laguerre poly-

nomials, then

A
αð Þ
q, n

xð Þ = ex q + αð Þn 〠
n
q½ �

j=0

−1ð Þqj
n − qjð Þ! q + αð Þqj

xð Þqj
qjð Þ! , α ∈ℝ, n ∈ℤ+:

ð14Þ

−n
q

� �
j

−n + 1
q

� �
j

⋯
−n + q − 1

q

� �
j

=
−n
q

� �
−n
q

+ 1
� �

−n
q

+ 2
� �

⋯
−n
q

+ j − 1
� �

,

−n + 1
q

� �
−n + 1

q
+ 1

� �
−n + 1

q
+ 2

� �
⋯

−n + 1
q

+ j − 1
� �

,

::⋯⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
−n + q − 1

q

� �
−n + q − 1

q
+ 1

� �
−n + q − 1

q
+ 2

� �
⋯

−n + q − 1
q

+ j − 1
� �

=
−n
q

� �
−n + q

q

� �
−n + 2q

q

� �
⋯

−n + qj − q
q

� �
,

−n + 1
q

� �
−n + q + 1

q

� �
−n + 2q + 1

q

� �
⋯

−n + qj − q + 1
q

� �
,

::⋯⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
−n + q − 1

q

� �
−n + 2q − 1

q

� �
−n + 3q − 1

q

� �
⋯

−n + qj − 1
q

� �
= −1ð Þqj n!

qjqj n − qjð Þ! :

ð9Þ
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Proof. Consider

A
αð Þ
q, n

xð Þ = ex q + αð Þn
n! qFq

−n
q
,
−n + 1

q
,⋯,

−n + q − 1
q

;

;xq

q + α

q
,
q + 1 + α

q
,⋯,

2q + α − 1
q

0
BBBBBB@

1
CCCCCCA

=
ex q + αð Þn

n!
× 〠

n
q½ �

j=0

−n/qð Þj −n + 1/qð Þj ⋯ −n + q − 1/qð Þj
q + α/qð Þj q + 1 + α/qð Þj ⋯ 2q + α − 1/qð Þj

( )
xð Þqj
qjð Þ! :

ð15Þ

By using Lemma 1

A
αð Þ
q, n

xð Þ = ex q + αð Þn
n!

× 〠
n
q½ �

j=0

−1ð Þqjn!
qqj n − qjð Þ! q + α/qð Þj q + 1 + α/qð Þj ⋯ 2q + α − 1/qð Þj

" #
xð Þqj
qjð Þ! :

ð16Þ

Then from Lemma 2, we have

A
αð Þ
q, n

xð Þ = ex q + αð Þn 〠
n
q½ �

j=0

−1ð Þqj
n − qjð Þ! q + αð Þqj

xð Þqj
qjð Þ! :

ð17Þ

4. Generating Functions

The following theorem formulates a generating function for

the extended Laguerre polynomials A
ðαÞ
q, n

ðxÞ.

Theorem 6. If n, j ∈ℤ+, then

〠
∞

n=0
〠
n
q½ �

j=0

−1ð Þqjextn
n − qjð Þ! q + αð Þqj

xð Þqj
qjð Þ!

= ex+t0Fq −−;
q + α

q
,
q + 1 + α

q
,⋯,

2q + α − 1
q

;
−xt
q

� �q� �
:

ð18Þ

Proof. By using Lemma 3, we acquire

〠
∞

n=0
〠
n
q½ �

j=0

−1ð Þqjextn
n − qjð Þ! q + αð Þqj

xð Þqj
qjð Þ! = 〠

∞

n=0
〠
∞

j=0

−1ð Þqjextn+qj
n! q + αð Þqj

xð Þqj
qjð Þ!

= ex 〠
∞

n=0

tn

n!

" #
〠
∞

j=0

−1ð Þqktqj
q + αð Þqj

xð Þqj
qjð Þ!

" #

= ex+t 〠
∞

j=0

−xtð Þqj
q + αð Þqj qjð Þ! :

ð19Þ

By using Lemma 2, we acquire

〠
∞

n=0
〠
n
q½ �

j=0

−1ð Þqjextn
n − qjð Þ! q + αð Þqj

xð Þqj
qjð Þ!

= ex+t 〠
∞

j=0

−xtð Þqj
qqj q + α/qð Þj q + 1 + α/qð Þj ⋯ 2q + α − 1/qð Þj qjð Þ!

= ex+t0Fq −−;
q + α

q
,
q + 1 + α

q
,⋯,

2q + α − 1
q

;
−xt
q

� �q� �
:

ð20Þ

Corollary 7. If α ∈ℝ and n, q, j ∈ℤ+, then

〠
∞

n=0

A
αð Þ
q, n

xð Þtn

q + αð Þn
= ex+t0Fq

−−;
−xt
q

� �q

q + α

q
,
q + 1 + α

q
,⋯,

2q + α − 1
q

;

0
BBBBB@

1
CCCCCA:

ð21Þ

Proof. From Equation (14), we acquire

〠
∞

n=0

A
αð Þ
q, n

xð Þ

q + αð Þn

2
6664

3
7775tn = 〠

∞

n=0
〠
n
q½ �

j=0

−1ð Þqj
n − qjð Þ! q + αð Þqj

" #
xð Þqj
qjð Þ!

2
4

3
5tn:

ð22Þ

A use of Theorem (18), therefore, shows that the
extended Laguerre polynomials have the generating function
given by

〠
∞

n=0

A
αð Þ
q, n

xð Þtn

q + αð Þn
= ex+t0Fq

−−;
−xt
q

� �q

q + α

q
,
q + 1 + α

q
,⋯,

2q + α − 1
q

;

0
BBBBB@

1
CCCCCA:

ð23Þ

Theorem 8. If c ∈ℤ+, then
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Proof. From Equation (22), we note that

〠
∞

n=0
cð Þn

A
αð Þ
q, n

xð Þ

q + αð Þn

2
6664

3
7775tn = 〠

∞

n=0
cð Þnex 〠

n
q½ �

j=0

−1ð Þqj
n − qjð Þ! q + αð Þqj

" #
xð Þqj
qjð Þ!

2
4

3
5tn:

ð25Þ

By using Lemma 3, we acquire

〠
∞

n=0

cð ÞnA
αð Þ
q, n

xð Þtn

q + αð Þn
= 〠

∞

n=0
〠
∞

j=0

cð Þn+qjextn+qj
n!

−1ð Þqj xð Þqj
q + αð Þqj qjð Þ!

= 〠
∞

j=0
〠
∞

n=0

c + qjð Þntn
n!

" #
cð Þqj

q + αð Þqj

" #
ex −xtð Þqj

qjð Þ! :

ð26Þ

Since ðcÞn+qj = ðc + qjÞnðcÞqj and ð1 − tÞ−m =∑∞
n=0ðmÞntn

/n!, it thus implies that

〠
∞

n=0

cð ÞnA
αð Þ
q, n

xð Þtn

q + αð Þn
= 〠

∞

j=0

cð Þqj
1 − tð Þc+qj� 	

q + αð Þqj

" #
ex −xtð Þqj

qjð Þ!

=
ex

1 − tð Þc 〠
∞

k=0

cð Þqj
q + αð Þqj

" #
1
qjð Þ!

−xt
1 − t

� �qj

:

ð27Þ

By using Lemma 2, we consequently obtain the required
result

〠
∞

n=0

cð ÞnA
αð Þ
q, n

xð Þtn

q + αð Þn
=

ex

1 − tð Þc qFq

�

c
q
,
c + 1
q

,⋯,
c + q − 1

q
;

−xt
1 − t

� �q

q + α

q
,
q + 1 + α

q
,⋯,

2q + α − 1
q

;

0
BBBBBBBBB@

1
CCCCCCCCCA
:

ð28Þ

Corollary 9. If α ∈ℝ and n,m, j ∈ℤ+, then

〠
∞

n=0
A

αð Þ
q, n

xð Þtn = 1
1 − tð Þq+α exp

x − 2xt
1 − t

� �
: ð29Þ

Proof. Put c = q + α in Equation (24), we obtain our desired
result.

5. Recurrence Relations

We describe the recurrence relations for the extended

Laguerre polynomials A
ðαÞ
q, n

ðxÞ.

Theorem 10. If α ∈ℝ and n, j ∈ℤ+, then

xDA
αð Þ
q, n

xð Þ = n + xð ÞA
αð Þ
q, n

xð Þ

− q + α + n − 1ð ÞA
αð Þ

q, n − 1
xð Þ,D =

d
dx

:

ð30Þ

〠
∞

n=0

cð ÞnA
αð Þ
q, n

xð Þtn

q + αð Þn
=

ex

1 − tð Þc qFq

c
q
,
c + 1
q

,⋯,
c + q − 1

q
;

−xt
1 − t

� �q

q + α

q
,
q + 1 + α

q
,⋯,

2q + α − 1
q

;

0
BBBBBBBB@

1
CCCCCCCCA
: ð24Þ
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Proof. From Equation (18)

〠
∞

n=0

A
αð Þ
q, n

xð Þtn

q + αð Þn
= ex+t0Fq

−−;
−xt
q

� �q

q + α

q
,
q + 1 + α

q
,⋯,

2q + α − 1
q

;

0
BBBBB@

1
CCCCCA:

ð31Þ

Let σq,nðxÞ = A
ðαÞ
q, n

ðxÞ/ðq + αÞn.
Suppose that

0Fq

−−;
−xt
q

� �q

q + α

q
,
q + 1 + α

q
,⋯,

2q + α − 1
q

;

0
BBBBB@

1
CCCCCA = ψ

xqtq

q

� �
:

ð32Þ

Then F = ex+tψ
xqtq

q

� �
= 〠

∞

n=0
σq,n xð Þtn, ð33Þ

provide that the series is uniformly convergent. By tak-
ing partial derivatives,

∂F
∂x

= ex+tψ + xq−1tqex+tψ′, ð34Þ

∂F
∂t

= ex+tψ + xqtq−1ex+tψ′, ð35Þ

x
∂F
∂x

− t
∂F
∂t

= xF − tF: ð36Þ

Now, since F =∑∞
n=0σq,nðxÞtn, therefore,

∂F
∂x

= 〠
∞

n=0
σq,n′ xð Þtn and t

∂F
∂t

= 〠
∞

n=0
nσq,n xð Þtn: ð37Þ

Equation (36) then yields

x〠
∞

n=0
σq,n′ xð Þtn − 〠

∞

n=0
nσq,n xð Þtn = x〠

∞

n=0
σq,n xð Þtn − 〠

∞

n=0
σq,n xð Þtn+1

= x〠
∞

n=0
σq,n xð Þtn − 〠

∞

n=1
σq,n−1 xð Þtn:

ð38Þ

We get σ2,0′ ðxÞ = 0, and for n > 1,

xσq,n′ xð Þ − nσq,n xð Þ = xσq,n xð Þ − σq,n−1 xð Þ: ð39Þ

This implies that

xDA
αð Þ
q, n

xð Þ = n + xð ÞA
αð Þ
q, n

xð Þ − q + α + n − 1ð ÞA
αð Þ

q, n − 1
xð Þ:

ð40Þ

Theorem 11. If α ∈ℝ and n ≥ 2 then

DA
αð Þ
q, n

xð Þ =DA
αð Þ

q, n − 1
xð Þ + A

αð Þ
q, n

xð Þ − 2A
αð Þ

q, n − 1
xð Þ:

ð41Þ

Proof. From Equation (29), we get the following

1 − tð Þ−q−α exp x
1 − 2t
1 − t

� �
 �
= 〠

∞

n=0
A

αð Þ
q, n

xð Þtn: ð42Þ

Let F = A tð Þ exp x
1 − 2t
1 − t

� �
 �
= 〠

∞

n=0
yq,n xð Þtn, ð43Þ

∂F
∂x

=
1 − 2t
1 − t

� �
A tð Þ exp x

1 − 2t
1 − t

� �
 �
, ð44Þ

1 − tð Þ ∂F
∂x

= 1 − 2tð ÞA tð Þ exp x
1 − 2t
1 − t

� �
 �
: ð45Þ

By using Equation (42), we obtain

1 − tð Þ ∂F∂x = 1 − 2tð ÞF: ð46Þ

Since F = 〠
∞

n=0
yq,n xð Þtn, therefore we have ∂F

∂x
= 〠

∞

n=0
yq,n′ xð Þtn:

ð47Þ
Equation (46) can be expressed as

〠
∞

n=0
yq,n′ xð Þtn − 〠

∞

n=0
yq,n′ xð Þtn+1 = 〠

∞

n=0
yq,n xð Þtn − 2〠

∞

n=0
yq,n xð Þtn+1,

ð48Þ

〠
∞

n=0
yq,n′ xð Þtn − 〠

∞

n=1
yq,n−1′ xð Þtn = 〠

∞

n=0
yq,n xð Þtn − 2〠

∞

n=1
yq,n−1 xð Þtn:

ð49Þ
We reach yq,0′ ðxÞ = 0, yq,1′ ðxÞ = 0 and for n > 2,

DA
αð Þ
q, n

xð Þ =DA
αð Þ

q, n − 1
xð Þ + A

αð Þ
q, n

xð Þ − 2A
αð Þ

q, n − 1
xð Þ:

ð50Þ
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Theorem 12. If α ∈ℝ and n ≥ q, then

DA
αð Þ
q, n

xð Þ = A
αð Þ
q, n

xð Þ − 〠
n−1

j=0
A

αð Þ
q, j

xð Þ: ð51Þ

Proof. Equation (46) can be written as

∂F
∂x

= 1 −
t

1 − t


 �
F: ð52Þ

By using Equation (42), we obtain

∂F
∂x

= 1 −
t

1 − t


 �
〠
∞

n=0
yq,n xð Þtn: ð53Þ

By using Equation (47), we obtain.

〠
∞

n=0
yq,n′ xð Þtn = 〠

∞

n=0
yq,n xð Þtn − 〠

∞

n=0
tn+1

" #
〠
∞

n=0
yq,n xð Þtn

" #

= 〠
∞

n=0
yq,n xð Þtn − 〠

∞

n=0
〠
∞

j=0
yq,j xð Þt jtn+1:

ð54Þ

Since ∑∞
n=0∑

∞
k=0Bðk, nÞ =∑∞

n=0∑
n
k=0Bðk, n − kÞ, (Rainville

[33], (p 56)).

〠
∞

n=0
yq,n′ xð Þtn = 〠

∞

n=0
yq,n xð Þtn − 〠

∞

n=0
〠
n

j=0
yq,j xð Þtn+1

= 〠
∞

n=0
yq,n xð Þtn − 〠

∞

n=1
〠
n−1

j=0
yq,j xð Þtn:

ð55Þ

It follows that yq,0′ ðxÞ = 0, yq,1′ ðxÞ = 0 and for n > q, yq,n′ ðx

Þ = yq,nðxÞ −∑n−1
j=0 yq,jðxÞ, and DA

ðαÞ
q, n

ðxÞ = A
ðαÞ
q, n

ðxÞ − ∑n−1
j=0

A
ðαÞ
q, j

ðxÞ.

Theorem 13. If α ∈ℝ and n ≥ q + 1, then

nA
αð Þ
q, n

xð Þ = 3x − q − αð ÞA
αð Þ

q, n − 1
xð Þ − q + α + n − 2ð ÞA

αð Þ
q, n − 2

xð Þ:

ð56Þ

Proof. We can have the following equation after eliminating
the derivatives from Equations (30) and (41).

0 = nA
αð Þ
q, n

xð Þ − xDA
αð Þ

q, n − 1
xð Þ

+ 2x − q − α − n + 1ð ÞA
αð Þ

q, n − 1
xð ÞnA

αð Þ
q, n

xð Þ

= xDA
αð Þ

q, n − 1
xð Þ − 2x − q − α − n + 1ð ÞA

αð Þ
q, n − 1

xð Þ:

ð57Þ

Now, by using Equation (30), we finally have

nA
αð Þ
q, n

xð Þ = n − 1 + xð ÞA
αð Þ

q, n − 1
xð Þ

− q + α + n − 2ð ÞA
αð Þ

q, n − 2
xð Þ

+ 2x − q − α − n + 1ð ÞA
αð Þ

q, n − 1
xð Þ,

ð58Þ

nA
αð Þ
q, n

xð Þ = 3x − q − αð ÞA
αð Þ

q, n − 1
xð Þ − q + α + n − 2ð ÞA

αð Þ
q, n − 2

xð Þ:

ð59Þ

Theorem 14. If α ∈ℝ and n, q, j ∈ℤ+, then

A
1 + αð Þ
q, n − 1

xð Þ + A
αð Þ
q, n

xð Þ = A
1 + αð Þ
q, n

xð Þ:: ð60Þ

Proof. From Equation (14), we obtain

A
1 + αð Þ
q, n − 1

xð Þ = ex q + 1 + αð Þn−1 〠
n−1
q½ �

j=0

−1ð Þqj
n − 1 − qjð Þ! q + 1 + αð Þqj

xqj

qjð Þ! ,

ð61Þ

so that A
ðαÞ
q, n

ðxÞ = exðq + αÞn∑½n/q�
j=0 ðð−1Þqj/ðn − qjÞ!ðq + αÞqjÞ

ðxqj/ðqjÞ!Þ.
By adding the above equations, we get

6. Differential Equation

Since the Extended Laguerre polynomial is a constant multi-
ple of hypergeometric functions qFq

, we may obtain the dif-

ferential equation.

Theorem 15. If α ∈ℝ and n ≥ q, then

xD2A
αð Þ
q, n

xð Þ + q + α − 3xð ÞDA
αð Þ
q, n

xð Þ

+ 2x + n − q − αð ÞA
αð Þ
q, n

xð Þ = 0:

ð63Þ
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Proof. By taking partial derivatives of Equation (30), we

have

xD2A αð Þ
q2,n xð Þ +DA αð Þ

q,n xð Þ = n + xð ÞDA αð Þ
q,n xð Þ + A αð Þ

q,n xð Þ
− q + α + n − 1ð ÞDA αð Þ

q,n−1 xð Þ:
ð64Þ

By using Equation (41), we have

xD2A
αð Þ
q, n

xð Þ +DA
αð Þ
q, n

xð Þ = n + xð ÞDA
αð Þ
q, n

xð Þ + A
αð Þ
q, n

xð Þ

− q + α + n − 1ð Þ DA
αð Þ
q, n

xð Þ − A
αð Þ
q, n

xð Þ + 2A
αð Þ

q, n − 1
xð Þ

" #
,

ð65Þ

or

xD2A
αð Þ
q, n

xð Þ + q + α − xð ÞDA
αð Þ
q, n

xð Þ = q + α + nð ÞA
αð Þ
q, n

xð Þ

− 2 q + α + n − 1ð ÞA
αð Þ

q, n − 1
xð Þ:

ð66Þ

By using Equation (30), we have

xD2A
αð Þ
q, n

xð Þ + q + α − xð ÞDA
αð Þ
q, n

xð Þ = q + α + nð ÞA
αð Þ
q, n

xð Þ

+ 2xDA
αð Þ
q, n

xð Þ − 2 n + xð ÞDA
αð Þ
q, n

xð Þ,

ð67Þ

or

xD2A
αð Þ
q, n

xð Þ + q + α − 3xð ÞDA
αð Þ
q, n

xð Þ + 2x + n − q − αð ÞA
αð Þ
q, n

xð Þ = 0:

ð68Þ

7. Rodrigues Formula

The Rodrigues formula for the Laguerre polynomials is pre-
sented as

L
αð Þ
n

xð Þ = x−αex

n!
Dn xα+ne−xð Þ, ð69Þ

but we intend to extend this Rodrigues formula.

A 1+að Þ
q,n−1 xð Þ + A að Þ

q,n xð Þ = ex q + 1 + αð Þn−1 〠
n−1
q½ �

j=0

−1ð Þqj
n − 1 − qjð Þ! q + 1 + αð Þqj

xqj

qjð Þ! + ex q + αð Þn 〠
n
q½ �

j=0

−1ð Þqj
n − qjð Þ! q + αð Þqj

xqj

qjð Þ!

= ex 〠
n−1
q½ �

j=0

q + α + n − 1ð Þ! −1ð Þqj
n − 1 − qjð Þ! q + α + qjð Þ!

xqj

qjð Þ! + 〠
n
q½ �

k=0

q + α + n − 1ð Þ! −1ð Þqj
n − qjð Þ! q + α + qj − 1ð Þ!

xqj

qjð Þ!

2
4

3
5

= ex 〠
n−1
q½ �

k=0

q + α + n − 1ð Þ! −1ð Þqj
n − 1 − qjð Þ! q + α + qjð Þ!

xqj

qjð Þ! + 〠
n−1
q½ �

j=0

q + α + n − 1ð Þ! −1ð Þqj
n − qjð Þ! q + α + qj − 1ð Þ!

xqj

qjð Þ! +
xqn

qnð Þ!

2
4

3
5

= ex
〠
n−1
q½ �

k=0

q + α + n − 1ð Þ!xqj −1ð Þqj
qjð Þ!

1
n − 1 − qjð Þ! q + α + qjð Þ! +

1
n − qjð Þ! q + α + qj − 1ð Þ!

� 
+

xqn

qnð Þ!

2
666664

3
777775

= ex 〠
n−1
q½ �

k=0

q + α + n − 1ð Þ! −1ð Þqj
n − qjð Þ! q + α + qjð Þ! q + α + nf g xqj

qjð Þ! +
xqn

qnð Þ!

2
4

3
5

= ex 〠
n−1
q½ �

j=0

q + α + nð Þ! −1ð Þqj
n − qjð Þ! q + α + qjð Þ!

xqj

qjð Þ! +
xqn

qnð Þ!

2
4

3
5 = ex q + 1 + αð Þn 〠

n
q½ �

j=0

−1ð Þqj
n − qjð Þ! q + 1 + αð Þqj

xqj

qjð Þ! = A
1 + αð Þ
q, n

xð Þ:

ð62Þ
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Theorem 16. If α ∈ℝ and n, j ∈ℤ+, then

A
αð Þ
q, n

xð Þ = x− q−1ð Þ−αe2x

n!
Dn x q−1ð Þ+α+ne−x

� �
: ð70Þ

Proof. Consider the extended Laguerre polynomials involv-
ing qFq

, q > 2

A
αð Þ
q, n

xð Þ = ex q + αð Þn
n! qFq

−n
q
,
−n + 1

q
,⋯,

−n + q − 1
q

;

xq

q + α

q
,
q + 1 + α

q
,⋯,

2q + α − 1
q

;

0
BBBBB@

1
CCCCCA:

ð71Þ

By Theorem (14), we have

A
αð Þ
q, n

xð Þ = ex

n!
〠
n
q½ �

j=0

n!
n − qjð Þ! qjð Þ!


 �
q + αð Þnxqj
q + αð Þqj

=
exx− q−1ð Þ−α

n!
〠
n
q½ �

j=0

−1ð Þqjn!
n − qjð Þ! qjð Þ!

" #
q +mð Þnxqj+α+ q−1ð Þ

q +mð Þqj
:

ð72Þ

Since Dn−qjðxn+α+ðq−1ÞÞ = ðq + αÞnxqj+α+ðq−1Þ/ðq + αÞqj,
therefore, we write it as

A
αð Þ
q, n

xð Þ = x− q−1ð Þ−αe2x

n!
〠
n
q½ �

j=0

n!
n − qjð Þ! qjð Þ!


 �
−1ð Þqje−x� 	

� Dn−qj xn+α+ q−1ð Þ
� �h i

=
x− q−1ð Þ−αe2x

n!
〠
n
q½ �

j=0

n

CqjD
n−qj

� xn+α+ q−1ð Þ
� �

Dqj e−xð Þ:
ð73Þ

Lastly, we use the Leibnitz formula for the nth derivative
to obtain the following

A
αð Þ
q, n

xð Þ = x− q−1ð Þ−αe2x

n!
Dn x q−1ð Þ+α+ne−x

� �
: ð74Þ

8. Special Properties

In this section, we determine the special features of the

extended Laguerre polynomials A
ðαÞ
q, n

ðxÞ.

Theorem 17. If α, β ∈ℝ and n, j, q ∈ℤ+, then

A
αð Þ
q, n

xð Þ = 〠
n
q½ �

j=0

α − βð ÞqjA
βð Þ

q, n − qj
xð Þ

qjð Þ! :
ð75Þ

Proof. From Equation (29)

〠
∞

n=0
A

αð Þ
q, n

xð Þtn = 1
1 − tð Þq+α exp x

1 − 2t
1 − t

� �� �
: ð76Þ

Also, consider

1
1 − tð Þq+α exp x

1 − 2t
1 − t

� �� �
= 1 − tð Þ− α−βð Þ 1 − tð Þ−q−β exp

� x
1 − 2t
1 − t

� �� �
,

ð77Þ

〠
∞

n=0
A

αð Þ
q, n

xð Þtn = 1 − tð Þ− α−βð Þ 〠
∞

n=0
A

βð Þ
q, n

xð Þtn

= 〠
∞

n=0

α − βð Þqntqn
qnð Þ! 〠

∞

n=0
A

βð Þ
q, n

xð Þtn

= 〠
∞

n=0
〠
∞

j=0

α − βð ÞqjtqjA
βð Þ
q, n

xð Þtn

qjð Þ! :

ð78Þ

By utilizing Lemma 4, we acquire

〠
∞

n=0
A

αð Þ
q, n

xð Þtn = 〠
∞

n=0
〠
n
q½ �

j=0

α − βð ÞqjtqjA
βð Þ

q, n − qj
xð Þtn−qj

qjð Þ!

= 〠
∞

n=0
〠
n
q½ �

j=0

α − βð ÞqjA
βð Þ

q, n − qj
xð Þtn

qjð Þ! :

ð79Þ

On comparing the coefficients of tn, we acquire

A
αð Þ
q, n

xð Þ = 〠
n
q½ �

j=0

α − βð ÞqjA
βð Þ

q, n − qj
xð Þ

qjð Þ! :
ð80Þ

Theorem 18. If α ∈ℝ and n, j ∈ℤ+, then

A
α + β + qð Þ

q, n
x + yð Þ = 〠

n
q½ �

j=0
A

βð Þ
q, n − qj

yð ÞA
αð Þ

q, qj
xð Þ: ð81Þ
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Proof. Consider

1 − tð Þ−q−α exp x
1 − 2t
1 − t

� �� �
1 − tð Þ−q−β exp y

1 − 2t
1 − t

� �� �

= 1 − tð Þ−q− α+β+qð Þ exp x + yð Þ 1 − 2t
1 − t

� �� 
:

ð82Þ

By using Equation (75), we acquire

〠
∞

n=0
A

αð Þ
q, n

xð Þtn 〠
∞

n=0
A

βð Þ
q, n

yð Þtn = 〠
∞

n=0
A

α + β + qð Þ
q, n

x + yð Þtn,

ð83Þ

〠
∞

n=0
A

α + β + qð Þ
q, n

x + yð Þtn = 〠
∞

n=0
〠
∞

j=0
A

βð Þ
q, n

yð Þtn A
αð Þ

q, qj
xð Þtqj:

ð84Þ
By using Lemma 4, we acquire

〠
∞

n=0
A

α + β + qð Þ
q, n

x + yð Þtn = 〠
∞

n=0
〠
n
q½ �

j=0
A

βð Þ
q, n − qj

yð ÞA
αð Þ

q, qj
xð Þtn:

ð85Þ

On comparing the coefficients of tn, we acquire

A
α + β + qð Þ

q, n
x + yð Þ = 〠

n
q½ �

j=0
A

βð Þ
q, n − qj

yð ÞA
αð Þ

q, qj
xð Þ: ð86Þ

Theorem 19. If α ∈ℝ and n, j ∈ℤ+, then

A
αð Þ
q, n

xyð Þ = 〠
n
q½ �

j=0

q + αð ÞnA
αð Þ

q, qj
xqð Þyqj

q + αð Þqj
1 − yð Þn−qj
n − qjð Þ! :

ð87Þ

Proof. Consider

ex+t0Fq

−−;

−xyt
q

� �q

q + α

q
,
q + 1 + α

q
,⋯,

2q + α − 1
q

;

0
BBBBBBB@

1
CCCCCCCA

= e 1−yð Þtex+yt0Fq

−−;

−xyt
q

� �q

q + α

q
,
q + 1 + α

q
,⋯,

2q + α − 1
q

;

0
BBBBBBB@

1
CCCCCCCA
:

ð88Þ

By using Equation (21), we get

〠
∞

n=0

A
αð Þ
q, n

xyð Þtn

q + αð Þn
= 〠

∞

n=0

1 − yð Þntn
n!

〠
∞

n=0

A
αð Þ
q, n

xð Þyntn

q + αð Þn

= 〠
∞

n=0
〠
∞

j=0

A
αð Þ

q, qj
xð Þyqjtqj

q + αð Þqj
1 − yð Þntn

n!
:

ð89Þ

By using Lemma 4, we acquire

〠
∞

n=0

A
αð Þ
q, n

xyð Þtn

q + αð Þn
= 〠

∞

n=0
〠
n
q½ �

j=0

A
αð Þ

q, qj
xð Þyqjtqj

q + αð Þqj
1 − yð Þn−qjtn−qj

n − qjð Þ!

= 〠
∞

n=0
〠
n
q½ �

j=0

A
αð Þ

q, qj
xð Þyqj

q + αð Þqj
1 − yð Þn−qjtn
n − qjð Þ! :

ð90Þ

On comparing the coefficients of tn, we get

A
αð Þ
q, n

xyð Þ = 〠
n
q½ �

j=0

q + αð ÞnA
αð Þ

q, qj
xqð Þyqj

q + αð Þqj
1 − yð Þn−qj
n − qjð Þ! :

ð91Þ

Theorem 20. If α ∈ℝ and n, j, q ∈ℤ+, then

〠
∞

n=0

n + qjð Þ!A
αð Þ

q, n + qj
xð Þtn

qjð Þ!n! = 1 − tð Þ−q−α−qj exp −xt
1 − t

� �
A

αð Þ
q, j

x
1 − t

� �
:

ð92Þ

Proof. Consider the series

〠
∞

j=0
〠
∞

n=0

n + qjð Þ!A
αð Þ

q, n + qj
xð Þtnyqj

qjð Þ!n! = 〠
∞

n=0
〠
n
q½ �

j=0

n!A
αð Þ
q, n

xð Þtn−qjyqj

qjð Þ! n − qjð Þ!

= 〠
∞

n=0
A

αð Þ
q, n

xð Þ〠
n
q½ �

j=0

n

Cqjt
n−qjyqj

= 〠
∞

n=0
A

αð Þ
q, n

xð Þ t + yð Þn

= 1 − t − yð Þ−q−α exp x 1 − 2y − 2tð Þ
1 − y − t

� �
:

ð93Þ
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Since ð1 − t − yÞ−q−α = ð1 − tÞ−q−αð1 − y/1 − tÞ−q−α

exp
x 1 − 2y − 2tð Þ

1 − t

� �
= exp xð Þ exp −x y + tð Þ

1 − t − yð Þ
� �

= exp xð Þ exp −xt
1 − t

� �
exp

� −x/1 − tð Þ y/1 − tð Þ
1 − y/1 − tð Þ

� �
:

ð94Þ

Therefore, Equation (93) becomes

〠
∞

j=0
〠
∞

n=0

n + qjð Þ!A
αð Þ

q, n + qj
xqð Þtnyqj

qjð Þ!n! = 1 − tð Þ−q−α

� 1 −
y

1 − t

� �−q−α
exp xð Þ exp −xt

1 − t

� �
exp

� −x/1 − tð Þ y/1 − tð Þ
1 − y/1 − tð Þ

� �
:

ð95Þ

By using Equation (29), we get

〠
∞

j=0
〠
∞

n=0

n + qjð Þ!A
αð Þ

q, n + qj
xqð Þtnyqj

qjð Þ!n! = 1 − tð Þ−q−α exp

� −xt
1 − t

� �
〠
∞

j=0
A

αð Þ
q, j

x
1 − t

� � y
1 − t

� �qj
:

ð96Þ

On comparing the coefficients of yqj, we get

〠
∞

n=0

n + qjð Þ!A
αð Þ

q, n + qj
xqð Þtn

qjð Þ!n! = 1 − tð Þ−q−α−qj exp

� −xt
1 − t

� �
A

αð Þ
q, j

x
1 − t

� �
:

ð97Þ

9. Other Generating Functions

In this section, we study some other generating functions.

Theorem 21. If α ∈ℝ and n, j, q ∈ℤ+, then

〠
∞

j=0

n!A
αð Þ
q, n

xð ÞA
αð Þ
q, n

yð Þtn

q + αð Þn
= 1 − tð Þ−q−α exp −xt

1 − t

� �
exp

x − yt
1−t

� �
0Fq

� −−;
q + α

q
,
q + 1 + α

q
,⋯,

2q + α − 1
q

;
�

� xyt
q 1 − tð Þ

� �q�
:

ð98Þ

Proof. Consider the series

〠
∞

n=0

n!A
αð Þ
q, n

xð ÞA
αð Þ
q, n

yð Þtn

q + αð Þn
= 〠

∞

n=0
〠
n
q½ �

j=0

n!yqjA
αð Þ
q, n

xð Þ −1ð Þqjtn

qjð Þ! n − qjð Þ! q + αð Þqj
:

ð99Þ

By using Lemma 3, we get

〠
∞

n=0

n!A
αð Þ
q, n

xð ÞA
αð Þ
q, n

yð Þtn

q + αð Þn
= 〠

∞

n=0
〠
∞

j=0

n + qjð Þ!yqjA
αð Þ

q, n + qj
xð Þ −1ð Þqjtn+qj

qjð Þ!n! q + αð Þqj
,

ð100Þ

= 〠
∞

j=0
〠
∞

n=0

n + qjð Þ!A
αð Þ

q, n + qj
xð Þtn

qjð Þ!n!
−ytð Þqj
q + αð Þqj

:
ð101Þ

By using Theorem (92), we get

〠
∞

j=0

n!A
αð Þ
q, n

xð ÞA
αð Þ
q, n

yð Þtn

q + αð Þn
= 〠

∞

j=0
1 − tð Þ−q−α−qj exp −xt

1 − t

� �
A

αð Þ
q, j

� x
1 − t

� � −ytð Þqj
q + αð Þqj

= 1 − tð Þ−q−α exp

� −xt
1 − t

� �
〠
∞

j=0
1 − tð Þ−qjA

αð Þ
q, j

� x
1 − t

� � −ytð Þqj
q + αð Þqj

= 1 − tð Þ−q−α exp

� −xt
1 − t

� �
× 〠

∞

j=0
A

αð Þ
q, j

� x
1 − t

� � −yt/1 − tð Þqj
qqj q + α/qð Þj q + 1 + α/qð Þj ⋯ 2q + α − 1/qð Þj

= 1 − tð Þ−q−α exp −xt
1 − t

� �
〠
∞

j=0
A

αð Þ
q, j

� x
1 − t

� � −yt/q 1 − tð Þð Þqj
q + α/qð Þ j q + 1 + α/qð Þj ⋯ 2q + α − 1/qð Þ j

:

ð102Þ
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By using Equation (21), we get

〠
∞

j=0

n!A
αð Þ
q, n

xð ÞA
αð Þ
q, n

yð Þtn

q + αð Þn
= 1 − tð Þ−q−α exp −xt

1 − t

� �
exp

x − yt
1−t

� �
0Fq

� −−;
q + α

q
,
q + 1 + α

q
,⋯,

2q + α − 1
q

;
�

� xyt
q 1 − tð Þ

� �q�
:

ð103Þ

Theorem 22. If jtj < 1, α ∈ℝ and c, n ∈ℤ+, then

1 − tð Þ−1−α exp x
1 − t

� �
1 −

yt
1 − t

� �−c

qFq

�

c
q
,
c + 1
q

,⋯,
c + q − 1

q
;

−x/ 1 − tð Þð Þ yt/1 − tð Þ
1 − yt/1 − t

� �q

q + α

q
,
q + 1 + α

q
,⋯,

2q + α − 1
q

;

0
BBBBBBBBB@

1
CCCCCCCCCA

= 〠
∞

n=0
2qFq

−n
q
,
−n + 1

q
,⋯,

−n + q − 1
q

,
c
q
,
c + 1
q

,⋯,
c + q − 1

q
;

q + α

q
,
q + 1 + α

q
,⋯,

2q + α − 1
q

; qyð Þq

0
BBB@

1
CCCAA

αð Þ
q, n

xð Þtn:

ð104Þ

Proof. Consider the series

〠
∞

j=0

n!A
αð Þ
q, n

xð ÞA
αð Þ
q, n

yð Þtn

q + αð Þn
= 1 − tð Þ−q−α exp − x + yð Þt

1 − t

� �
× 0Fq

� −−;
q + α

q
,
q + 1 + α

q
,⋯

2q + α − 1
q

;
�

� xyt
q 1 − tð Þ

� �q�
:

ð105Þ

Applying Equation (92), we get

ex

1 − tð Þc qFq

c
q
,
c + 1
q

,⋯,
c + q − 1

q
;

−xt
1 − t

� �q

q + α

q
,
q + 1 + α

q
,⋯,

2q + α − 1
q

;

0
BBBBBBBB@

1
CCCCCCCCA

= 〠
∞

j=0

cð ÞqjA
αð Þ

q, qj
xð Þtqj

q + αð Þqj
:

ð106Þ

Replacing x by xð1 − tÞ−1 and t by ytð1 − tÞ−1 yields

exp
x

1 − t

� �
1 −

yt
1 − t

� �−c

qFq

�

c
q
,
c + 1
q

,⋯,
c + q − 1

q
;

−x/ 1 − tð Þð Þ yt/1 − tð Þ
1 − yt/1 − t

� �q

q + α

q
,
q + 1 + α

q
,⋯,

2q + α − 1
q

;

0
BBBBBBBBB@

1
CCCCCCCCCA

= 〠
∞

j=0

cð ÞqjA
αð Þ

q, qj
x/1 − tð Þ yt/1 − tð Þqj

q + αð Þqj
,

ð107Þ

multiplying both sides by ð1 − tÞ−q−1 exp ð−xt/1 − tÞ

1 − tð Þ−q−α exp x
1 − t

� �
exp

−xt
1 − t

� �
1 −

yt
1 − t

� �−c

× qFq

c
q
,
c + 1
q

,⋯,
c + q − 1

q
;

−x/ 1 − tð Þð Þ yt/1 − tð Þ
1 − yt/1 − t

� �q

q + α

q
,
q + 1 + α

q
,⋯,

2q + α − 1
q

;

0
BBBBBBBBB@

1
CCCCCCCCCA

= 1 − tð Þ−q−α exp −xt
1 − t

� �2
〠
∞

j=0

cð ÞqjA
αð Þ

q, qj
x/1 − tð Þ yt/1 − tð Þqj

q + αð Þqj

= 〠
∞

j=0

cð ÞqjA
αð Þ

q, qj
x/1 − tð Þ 1 − tð Þ−q−α−qj exp −xt/1 − tð Þqyqjtqj

q + αð Þqj
:

ð108Þ

By using Lemma 4, we acquire

1 − tð Þ−1−α exp x
1 − t

� �
1 −

yt
1 − t

� �−c

qFq

�

c
q
,
c + 1
q

,⋯,
c + q − 1

q
;

−x/ 1 − tð Þð Þ yt/1 − tð Þ
1 − yt/1 − t

� �q

q + α

q
,
q + 1 + α

q
,⋯,

2q + α − 1
q

;

0
BBBBBBBBB@

1
CCCCCCCCCA

= 〠
∞

n=0
〠
n
q½ �

j=0

cð Þqjn!A
αð Þ

q, qj
xð Þtn−qjyqjtqj

qjð Þ! n − qjð Þ! q + αð Þqj
= 〠

∞

n=0
〠
n
q½ �

j=0

cð Þqj −nð ÞqjA
αð Þ

q, qj
xð Þtnyqj

qjð Þ! q + αð Þqj
:

ð109Þ

By using Lemma 1 and 2, we get our required result.
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10. Expansion of Polynomials

Since AðaÞ
q,nðxÞ forms an orthogonal set, the classical technique

for expanding a polynomial. As usual, we prefer to treat the
problem by obtaining first the expansion of xqn and then
using generating function techniques.

Theorem 23. If α ∈ℝ and n, j ∈ℤ+, then

xqn = e−x 〠
n
q½ �

j=0

n! q + αð ÞnA
αð Þ

q, qj
xð Þ

n − qjð Þ! q + αð Þqj
:

ð110Þ

Proof. Equation (21) then yields

0Fq −−;
q + α

q
,
q + 1 + α

q
,⋯

2q + α − 1
q

;
−xt
q

� �q� �

= e−x−t 〠
∞

n=0

A
αð Þ
q, n

xð Þtn

q + αð Þn
,

ð111Þ

〠
∞

n=0

−xt/qð Þqn
q + α/qð Þn q + 1 + α/qð Þn ⋯ 2q + α − 1/qð Þn qnð Þ!

= e−x 〠
∞

n=0

−1ð Þntn
n!

〠
∞

n=0

A
αð Þ
q, n

xð Þtn

q + αð Þn
,

ð112Þ

〠
∞

n=0

−xtð Þqn
q + αð Þqn qnð Þ! = e−x 〠

∞

n=0
〠
∞

j=0

−1ð ÞntnA
αð Þ

q, qj
xð Þtqj

n! q + αð Þqj
:

ð113Þ
By using Lemma 4, we get

〠
∞

n=0

−1ð Þnxntn
q + αð Þnn!

= e−x 〠
∞

n=0
〠
n
q½ �

j=0

−1ð ÞnA
αð Þ

q, qj
xð Þtn

n − qjð Þ! q + αð Þqj
:

ð114Þ

By equating the coefficient of tn, we get

xqn = e−x 〠
n
q½ �

j=0

n! q + αð ÞnA
αð Þ

q, qj
xð Þ

n − qjð Þ! q + αð Þqj
:

ð115Þ

11. Conclusion

Finally, in conclusion, we compromised the extended

Laguerre polynomials A
ðαÞ
q, n

ðxÞ
( )

based on the qFq
, q > 2.

We obtained generating functions, recurrence relations,
and Rodrigue’s formula for these extended Laguerre polyno-
mials. In future work, we can extend it and can get more
results. We will apply Laplace transformation, and Elzaki
transformation and the same more transformations can
apply on the results of extended Laguerre polynomials.
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The Szegö kernel has many applications to problems in conformal mapping and satisfies the Kerzman-Stein integral equation. The
Szegö kernel for an annulus can be expressed as a bilateral series and has a unique zero. In this paper, we show how to represent
the Szegö kernel for an annulus as a basic bilateral series (also known as q-bilateral series). This leads to an infinite product
representation through the application of Ramanujan’s sum. The infinite product clearly exhibits the unique zero of the Szegö
kernel for an annulus. Its connection with the basic gamma function and modified Jacobi theta function is also presented. The
results are extended to the Szegö kernel for general annulus and weighted Szegö kernel. Numerical comparisons on computing
the Szegö kernel for an annulus based on the Kerzman-Stein integral equation, the bilateral series, and the infinite product are
also presented.

1. Introduction

The Ahlfors map is a branching n-to-one map from an n
-connected region onto the unit disk. It is intimately tied
to the Szegö kernel of an n-connected region [1]. The
boundary values of the Szegö kernel satisfy the Kerzman-
Stein integral equation, which is a Fredholm integral equa-
tion of the second kind for a region with a smooth boundary
[2]. The boundary values of the Alhfors map are completely
determined from the boundary values of the Szegö kernel
[1–3]. For an annulus region Ω, the Szegö kernel can be
expressed as a bilateral series from which the zero can be
determined analytically [4]. The Kerzman-Stein integral
equation has been solved using the Adomian decomposition
method in [5] to give another bilateral series form for the
Szegö kernel for Ω that converges faster. There are various
special functions in the form of bilateral and basic bilateral
series [6–8]. For example, the bilateral basic hypergeometric
series contain, as special cases, many interesting identities
related to infinite products, theta functions, and Ramanu-

jan's identities. It is therefore natural to ask if the bilateral
series for the Szegö kernel for Ω can be summed as special
functions or an infinite product that exhibits clearly its zero.

In this paper, we show how to express the bilateral series
for the Szegö kernel for Ω as a basic bilateral series (also
known as q-bilateral series). Ramanujan’s sum is then
applied to obtain the infinite product representation for the
Szegö kernel for Ω. The product clearly exhibits the zero of
the Szegö kernel for Ω, and its connection with the q
-gamma function and the modified Jacobi theta function is
shown. Using the symmetry of Ramanujan’s sum, we show
how to easily transform the bilateral series for the Szegö ker-
nel for Ω in [4] to the bilateral series in [5].

The plan of the paper is as follows: After the presentation
of some preliminaries in Section 2, we derive the basic bilat-
eral series and infinite product representations for the Szegö
kernel for Ω in Section 3. We then derive a closed form of
the Szegö for Ω in terms of q-gamma function and the mod-
ified Jacobi theta function. In Section 4, we show how to
extend the representations in Section 3 to the general
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annulus using the transformation formula for the Szegö ker-
nel under conformal mappings. Similar q-analysis for the
weighted Szegö kernel for Ω is presented in Section 5. In
Section 6, we give numerical comparisons for computing
the Szegö kernel for Ω using bilateral series, infinite product,
and integral equation formulations.

2. Preliminaries

Let Ω = fz : ρ < jzj < 1g be an annulus with 0 < ρ < 1 and a
point a ∈Ω. The boundary Γ of Ω consists of two smooth
Jordan curves with the outer curve Γ0 oriented counter-
clockwise and the inner curve Γ1 oriented clockwise. The
positive direction of the contour Γ = Γ0 ∪ Γ1 is usually that
for which the region is on the left as one traces the boundary.

Let fφnðzÞg∞n=1 be an orthonormal basis for the Hardy
spaces H2ðΓÞ. Since the Szegö kernel Sðz, aÞ is the reproduc-
ing kernel for H2ðΓÞ, it can be written as [4]

S z, að Þ = 〠
∞

n=0
φn zð Þ �φn að Þ, a ∈Ω, ð1Þ

with absolute and uniform convergence on compact subsets
of Ω. An orthogonal basis for H2ðΓÞ is fzng∞n=−∞. Thus

znk k2 =
ð
Γ

zj j2n dzj j = 2π 1 + ρ2n+1
� �

, ð2Þ

where jdzj is the arc length measure. Therefore, an ortho-
normal basis for H2ðΓÞ is [3, 4]

znffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π 1 + ρ2n+1ð Þ

p
( )∞

n=−∞

: ð3Þ

Using (1) and (3), the series representation for the Szegö
kernel for Ω is given by [4]

S z, að Þ = 1
2π 〠

∞

n=−∞

z�að Þn
1 + ρ2n+1

, a ∈Ω, z ∈Ω ∪ Γ: ð4Þ

Series (4) is a bilateral series. It has a zero at z = −ρ/�a [4].
Another bilateral series representation for the Szegö

kernel for Ω is given by [5] (in an equivalent form)

S z, að Þ = 1
2π 〠

∞

n=−∞

−1ð Þnρn
ρ2n − z�a

, z ∈Ω ∪ Γ, a ∈Ω, ð5Þ

which is initially obtained by solving the Kerzman-Stein
integral equation using the Adomian decomposition
method. It is also shown in [5] how to derive (5) directly
from (4) using geometric series. It is illustrated in [5] that
series (5) converges faster than (4).

More generally, if Ω1 is any doubly connected region
with the smooth boundary Γ1, and f ðzÞ is a biholomorphic
map of Ω1 onto Ω, then the Szegö kernel for Ω1 can be
obtained via the transformation formula as [1]

S1 z, að Þ =
ffiffiffiffiffiffiffiffiffiffiffi
f ′ zð Þ

q
S f zð Þ, f að Þð Þ

�ffiffiffiffiffiffiffiffiffiffiffi
f ′ að Þ

q

=

ffiffiffiffiffiffiffiffiffiffiffi
f ′ zð Þ

q ffiffiffiffiffiffiffiffiffiffiffi
f ′ að Þ

q
2π 〠

∞

n=−∞

f zð Þ �f að Þ� �n
1 + ρ2n+1

, a ∈Ω1, z ∈Ω1 ∪ Γ1,

ð6Þ

where ρ is unknown but can be computed.
The Szegö kernel S1ðz, aÞ can also be computed without

using conformal mapping. The boundary values of the Szegö
kernel S1ðz, aÞ on Γ1 satisfy the Kerzman-Stein integral
equation [2, 4],

S1 z, að Þ +
ð
Γ

A z,wð ÞS1 w, að Þ dwj j = g zð Þ, z ∈ Γ1, ð7Þ

where

A z,wð Þ =
1
2π

T wð Þ
z −w

−
�T zð Þ

�z − �w

� �
, z ≠w ∈ Γ1,

0, z =w ∈ Γ1,

8><
>:

g zð Þ = −
1
2πi

�T zð Þ
�z − �a

, z ∈ Γ1,

T zð Þ = z′ tð Þ
∣z′ tð Þ ∣

, z ∈ Γ1,

ð8Þ

and zðtÞ is a parametrization of Γ1. The function Aðz,wÞ is
known as the Kerzman-Stein kernel, and it is continuous
on the boundary of Ω1 [9, 10]. In fact, the integral equation
(7) is also valid for an n-connected region.

Since bilateral series and basic bilateral series will be used
throughout this paper, we recall some facts about q-series
notations and results.

Let 0 < q < 1 and α ∈ℂ. The q-shifted factorial is defined
as [7]

qα ; qð Þn =

1, n = 0,
1 − qαð Þ 1 − qα+1

� �
⋯ 1 − qα+n−1

� �
, n = 1, 2,… ,

1
1 − qα−1ð Þ 1 − qα−2ð Þ⋯ 1 − qα−nð Þ , n = −1,−2,… :

8>>>><
>>>>:

ð9Þ

This notation yields the shifted factorial as a special case
through

lim
q⟶1

qα ; qð Þn
q ; qð Þn

= α α + 1ð Þ⋯ α + n − 1ð Þ, n = 1, 2,… : ð10Þ
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If α is written in place of qα, then (9) becomes

α ; qð Þn =

1, n = 0,
1 − αð Þ 1 − αqð Þ⋯ 1 − αqn−1

� �
, n = 1, 2,… ,

1
1 − αq−1ð Þ 1 − αq−2ð Þ⋯ 1 − αq−nð Þ , n = −1,−2,… :

8>>>><
>>>>:

ð11Þ

It can be shown that [7]

1 − α

1 − αqn
= α ; qð Þn

αq ; qð Þn
, n = 0,±1,±2,… : ð12Þ

If n⟶∞, it is standard to write

α ; qð Þ∞ =
Y∞
n=0

1 − αqnð Þ, ð13Þ

which is absolutely convergent for all finite values of α, real
or complex, when jqj < 1 [6]. This yields

α ; qð Þn =
α ; qð Þ∞
αqn ; qð Þ∞

: ð14Þ

Observe that ðα ; qÞ∞ would have zero as a factor if α = 1.
It would be zero also if α = q−1, q−2, q−3,… , but these are all
outside the circle jzj = 1 since jqj < 1 [8].

The bilateral basic hypergeometric series in base q with
one numerator and one denominator parameters is defined
by [6–8]

1ψ1 α ; β ; q ; zð Þ = 〠
∞

n=−∞

α ; qð Þn
β ; qð Þn

zn: ð15Þ

The series is convergent for jqj < 1 and jβ/αj < jzj < 1.
The classical Ramanujan’s 1ψ1 summation is given by [7, 8]

1ψ1 α ; β ; q ; zð Þ = αz ; qð Þ∞ q/αz ; qð Þ∞ β/α ; qð Þ∞ q ; qð Þ∞
z ; qð Þ∞ β/αz ; qð Þ∞ q/α ; qð Þ∞ β ; qð Þ∞

, β/αj j < zj j < 1:

ð16Þ

The special case β = αq of Ramanujan’s 1ψ1 summation
yields [8]

〠
∞

n=−∞

zn

1 − αqn
= αz ; qð Þ∞ q/αzð Þ ; qð Þ∞ q ; qð Þ2∞

z ; qð Þ∞ q/zð Þ ; qð Þ∞ α ; qð Þ∞ q/αð Þ ; qð Þ∞
,

ð17Þ

also known as Cauchy’s formula. Due to symmetry in α and z
on the right-hand side of (17), it implies [8]

〠
∞

n=−∞

zn

1 − αqn
= 〠

∞

n=−∞

αn

1 − zqn
: ð18Þ

The q-gamma function is defined as [7]

Γq xð Þ = q ; qð Þ∞
qx ; qð Þ∞

1 − qð Þ1−x, 0 < q < 1, x =ℂ − 0,−1,−2,…f g:

ð19Þ

Another important special function that is used in this
paper is the modified Jacobi theta function defined by [7]

θ x ; qð Þ = x ; qð Þ∞ q/x ; qð Þ∞, ð20Þ

where x ≠ 0 and jqj < 1. For a more detailed discussion on
q-series and historical perspectives, see, for example, [6–8]
and the references therein.

3. Szegö Kernel for an Annulus and Basic
Bilateral Series

In this section, we express the bilateral series (4) as a basic
bilateral series and derive the infinite product representation
of the Szegö kernel for Ω. It is given in the following
theorem.

Theorem 1. Let Ω be the annulus fz : ρ < jzj < 1g bounded
by Γ. For a ∈Ω, z ∈Ω ∪ Γ, the Szegö kernel for Ω can be rep-
resented by

S z, að Þ = 1
2π 1 + ρð Þ1

ψ1 −ρ;−ρ3 ; ρ2 ; �az
� �

, ð21Þ

= 1
2π

Y∞
n=0

1 + �azρ2n+1
� �

�az + ρ2n+1
� �

1 − ρ2n+2
� �2

1 − �azρ2nð Þ �az − ρ2n+2ð Þ 1 + ρ2n+1ð Þ2
: ð22Þ

The zero of Sðz, aÞ in Ω is the zero of the factor �az + ρ,
that is, z = −ρ/�a.

Proof. From (4), we have

S z, að Þ = 1
2π 〠

∞

n=−∞

�azð Þn
1 + ρ2n+1

= 1
2π 〠

∞

n=−∞

�azð Þn
1 − −ρð Þρ2n : ð23Þ

Letting α = −ρ and q = ρ2 yields

S z, að Þ = 1
2π 〠

∞

n=−∞

�azð Þn
1 − αqn

, ð24Þ

= 1
2π 1 − αð Þ 〠

∞

n=−∞

1 − α

1 − αqn
�azð Þn: ð25Þ

Applying (12) and (15) gives

S z, að Þ = 1
2π 1 − αð Þ 〠

∞

n=−∞

α, qð Þn
αq, qð Þn

�azð Þn

= 1
2π 1 − αð Þ1

ψ1 α ; αq ; q ; �azð Þ:
ð26Þ
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Note that the 1ψ1 series above is convergent because
jqj = ρ2 < 1 and jβ/αj = jαq/αj = jqj = ρ2 < j�azj < 1. Substitut-
ing α = −ρ and q = ρ2 into (26) gives (21).

Applying Ramanujan’s sum (16) to (26), gives

S z, að Þ = 1
2π 1 − αð Þ

α�az ; qð Þ∞ q/α�az ; qð Þ∞ q ; qð Þ2∞
�az ; qð Þ∞ q/�az ; qð Þ∞ q/α ; qð Þ∞ αq ; qð Þ∞

:

ð27Þ

But from (14), with n = 1, we have

1 − αð Þ αq ; qð Þ∞ = α ; qð Þ∞: ð28Þ

Thus, (27) becomes

S z, að Þ = 1
2π

α�az ; qð Þ∞ q/α�az ; qð Þ∞ q ; qð Þ2∞
�az ; qð Þ∞ q/�az ; qð Þ∞ q/α ; qð Þ∞ α ; qð Þ∞

, ð29Þ

= 1
2π

Y∞
n=0

1 − α�azqnð Þ 1 − qn+1/α�az
� �

1 − qn+1
� �2

1 − �azqnð Þ 1 − qn+1/�azð Þ 1 − qn+1/αð Þ 1 − αqnð Þ :

ð30Þ
Substituting α = −ρ and q = ρ2 into (30) gives (22).
The infinite product (22) would have poles if

1 − �azρ2n = 0 or �az − ρ2n+2 = 0, ð31Þ

which implies

z = 1
�aρ2n

or z = ρ2n+2

�a
: ð32Þ

But

1
aρ2nj j > 1, ρ

2n+2

�a

����
���� < ρ2n+1 < ρ: ð33Þ

Therefore, the poles are all outside Ω.
The infinite product (22) would have zeros if

1 + �azρ2n+1 = 0 or �az + ρ2n+1 = 0, ð34Þ

which implies

z = −
1

�aρ2n+1
or z = −

ρ2n+1

�a
: ð35Þ

For the first case

1
aρ2n+1j j >

1
ρ2n+1

> 1, ð36Þ

which is outside Ω. For the second case, observe that

ρ2n+1 < ρ2n+1

�a

����
���� = ρ2n+1

∣a ∣
< ρ2n, ð37Þ

which clearly has a zero inside Ω when n = 0. Thus, the infi-
nite product (22) for Sðz, aÞ has only one zero inside Ω at
z = −ρ/�a. This completes the proof.

We note that the series representation (21) for Sðz, aÞ is
valid only for ρ ≤ ∣z ∣ ≤1, while the infinite product represen-
tation (22) for Sðz, aÞ is meaningful for all z ∈ℂ except for
the infinitely many poles at z = 0, ρ−2n/�a, ρ2n+2/�a.

We next show that the Szegö kernel for Ω can also be
expressed in terms of the basic gamma function and modi-
fied Jacobi theta function. By applying (20) to (29) and
substituting α = −ρ and q = ρ2, we have

S z, að Þ = 1
2π

θ α�az ; qð Þ∞ q ; qð Þ2∞
θ �az ; qð Þ∞ q/α ; qð Þ∞ α ; qð Þ∞

= 1
2π

θ −ρ�az ; ρ2
� �

∞ ρ2 ; ρ2
� �2

∞

θ �az ; ρ2ð Þ∞ −ρ ; ρ2ð Þ2∞
:

ð38Þ

Applying (19) with q = ρ2, observe that

ρ2 ; ρ2
� �

∞
−ρ ; ρ2ð Þ∞

=
ρ2 ; ρ2
� �

∞
ρ2x ; ρ2ð Þ∞

=
Γρ2 xð Þ
1 − ρ2ð Þ1−x

, ð39Þ

where x satisfies ρ2x = −ρ. This equation may be written as

e 2x−1ð Þ ln ρ = eiπ, ð40Þ

which yields a solution

x = 1
2 + iπ

2 ln ρ
: ð41Þ

Thus, (38) becomes

S z, að Þ = Γρ2 λð Þ� 	2
2π 1 − ρ2ð Þ2 1−λð Þ

θ −ρ�az ; ρ2
� �

∞
θ �az ; ρ2ð Þ∞

, λ = 1
2 + iπ

2 ln ρ
:

ð42Þ

This can be regarded as a closed-form expression for the
Szegö kernel for Ω.

In the following, we show how to easily transform series
(4) to series (5) using (18). Letting α = −ρ and q = ρ2, (4)
becomes

S z, að Þ = 1
2π 〠

∞

n=−∞

�azð Þn
1 − αqn

= 1
2π 〠

∞

n=−∞

αn

1 − �azð Þqn , ð43Þ

where in the last step we have used (18). By replacing α = −ρ
and q = ρ2, we get

S z, að Þ = 1
2π 〠

∞

n=−∞

−1ð Þnρn
1 − �azð Þρ2n : ð44Þ
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Letting n = −m yields

S z, að Þ = 1
2π 〠

∞

m=−∞

−1ð Þ−mρ−m
1 − �azð Þρ−2m = 1

2π 〠
∞

m=−∞

−1ð Þmρm
ρ2m − �az

, ð45Þ

which is the same as (5).

4. Szegö Kernel for General Annulus

Consider the general annulus Ω2 = fz : r2 < jz − z0j < r1g
with boundary denoted by Γ2. The region Ω2 reduces to Ω
if z0 = 0, r2 = ρ, and r1 = 1:

Theorem 2. Let z0 ∈ℂ, z ∈Ω2 ∪ Γ2, and a ∈Ω2. The Szegö
kernel for Ω2 can be represented by the bilateral series as

S2 z, að Þ = 1
2π

〠
∞

n=−∞

�a − �z0ð Þn
r2n+11 + r2n+12

z − z0ð Þn, ð46Þ

= 1
2π

〠
∞

n=−∞

−1ð Þnrn+11 rn2
r2n2 r21 − r2n1 z − z0ð Þ �a − �z0ð Þ : ð47Þ

The zero of S2ðz, aÞ in Ω2 is z = z0 − r1r2/�a − �z0.

Proof. Observe that the function f ðzÞ = ðz − z0Þ/r1 maps Ω2
onto Ω with ρ = r2/r1.

Applying the transformation formula (6) yields

S2 z, að Þ =
ffiffiffiffiffiffiffiffiffiffiffi
f ′ zð Þ

q
S f zð Þ, f að Þð Þ

�ffiffiffiffiffiffiffiffiffiffiffi
f ′ að Þ

q

= 1ffiffiffiffi
r1

p S
z − z0
r1

, a − z0
r1

� � 1
�ffiffiffiffir1p

= 1
r1
S

z − z0
r1

, a − z0
r1

� �
:

ð48Þ

Applying (4) to (48) with z and a replaced by ðz − z0Þ/r1
and ða − z0Þ/r1, respectively, gives

S2 z, að Þ = 1
2πr1

〠
∞

n=−∞

z − z0ð Þ �az0ð Þ/r21
� �n
1 + r2/r1ð Þ2n+1 , ð49Þ

which simplifies to (46).
Applying (5) to (48) instead of z and a replaced by

ðz − z0Þ/r1 and ða − z0Þ/r1, respectively, gives

S2 z, að Þ = 1
2πr1

〠
∞

n=−∞

−1ð Þn r2/r1ð Þn
r2/r1ð Þ2n − z − z0ð Þ �az0ð Þ/r21

, ð50Þ

which simplifies to (47).
Using the fact that Sðz, aÞ has a zero at z = −ρ/�a for Ω,

the zero of S2ðz, aÞ for Ω2 is ðz − z0Þ/r1 = −ρ/ðð �az0Þ/r1Þ
which implies z = z0 − ðρr21/ð�a − �z0ÞÞ = z0 − ðr1r2/ðð�a − �z0ÞÞÞ.
This completes the proof.

Similarly, the infinite product representation of S2ðz, aÞ
for Ω2 can be obtained by applying (22) to (48) with z and
a replaced by ðz − z0Þ/r1 and ða − z0Þ/r1, respectively.

5. The Weighted Szegö Kernel for an Annulus
and Basic Bilateral Series

The weighted Szegö kernel is defined in [11] as

K̂
t
q z,wð Þ = 1

2π 〠
∞

n=−∞

�wzð Þn
1 + tq2n

, t > 0, q < zj j, wj j < 1: ð51Þ

To adopt the notations used in this paper, we change q to
ρ, w to a, and K̂

t
qðz,wÞ to Stρðz, aÞ in (51), which gives

Stρ z, að Þ = 1
2π 〠

∞

n=−∞

�azð Þn
1 + tρ2n

, t > 0, ρ < zj j, aj j < 1: ð52Þ

Note that Sρρðz, aÞ is exactly the kernel Sðz, aÞ for Ω dis-

cussed in Section 1. The zeros of the kernel Sρt ðz, aÞ are not
discussed in [11] but have expressed interest on the effect
of the weight on the location of its zeros. In the following
theorem, we express the weighted Szegö kernel Stρðz, aÞ as
a basic bilateral series and derive its associated infinite prod-
uct representation as well as its zeros.

Theorem 3. Let Ω be the annulus fz : ρ < jzj < 1g bounded
by Γ. For a ∈Ω, z ∈Ω ∪ Γ, and t > 0, the weighted Szegö ker-
nel Stρðz, aÞ for Ω can be represented by

Sρt z, að Þ = 1
2π 1 + tð Þ1

ψ1 −t;−tρ2 ; ρ2 ; �az
� �

, ð53Þ

= 1
2π

Y∞
n=0

1 + t�azρ2n
� �

�az + ρ2n+2/t
� �

1 − ρ2n+2
� �2

1 − �azρ2nð Þ �az − ρ2n+2ð Þ 1 + ρ2n+2/tð Þ 1 + tρ2nð Þ :

ð54Þ
The kernel Stρðz, aÞ has a zero in Ω only if t takes the form

t = ρ±ð2m+1Þ, m = 0, 1, 2,⋯. In both cases, the zero is z = −ρ/�a.

Proof. Observe that

Stρ z, að Þ = 1
2π 〠

∞

n=−∞

�azð Þn
1 − −tð Þρ2n : ð55Þ

Letting α = −t and q = ρ2, the above equation becomes

Stρ z, að Þ = 1
2π 〠

∞

n=−∞

�azð Þn
1 − αqn

, ð56Þ

which is exactly the same form as (24). Applying the result
(26) with α = −t, the above equation becomes

Stρ z, að Þ = 1
2π 1 + tð Þ1

ψ1 −t;−tq ; q ; �azð Þ: ð57Þ

Series (57) is convergent because jqj = ρ2 < 1 and
jβ/αj = j−tq/ð−tÞj = jqj < ρ2 < j�azj < 1. Substituting q = ρ2

gives (41).
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Applying the result (29) with α = −t to (57) yields

Stρ z, að Þ = 1
2π

−t�az ; qð Þ∞ q/ −tð Þ�az ; qð Þ∞ q ; qð Þ2∞
�az ; qð Þ∞ q/�az ; qð Þ∞ q/ −tð Þ ; qð Þ∞ −t ; qð Þ∞

:

ð58Þ

Replacing q = ρ2 and applying (13) give (54).
In the proof of Theorem 1, we have shown that the fac-

tors ð1 − �azρ2nÞð�az − ρ2n+2Þ have no zeros in Ω. The factors
ð1 + ρ2n+2/tÞð1 + tρ2nÞ would have zeros if

ρ2n+2/t = −1 or tρ2n = −1: ð59Þ

Since t > 0, we conclude that the kernel Stρðz, aÞ has no
poles in Ω for any t > 0. The factors ð1 + t�azρ2nÞð�az + ρ2n+2

/tÞ would have zeros if

1 + t�azρ2n = 0 or �az + ρ2n+2/t = 0, ð60Þ

which implies

z = −
1

t�aρ2n
or z = −

ρ2n+2

t�a
: ð61Þ

For the first case, observe that

1
tρ2n

< 1
t�aρ2nj j <

1
tρ2n+1

: ð62Þ

To have a zero in Ω, we must have the condition

ρ ≤
1

tρ2n
< 1

t�aρ2nj j <
1

tρ2n+1
≤ 1, ð63Þ

which means

t ≤
1

ρ2n+1
and t ≥ 1

ρ2n+1
: ð64Þ

Hence, we must have t = ρ−ð2n+1Þ. In this case, the zero of
Stρðz, aÞ in Ω is z = −ρ/�a.

For the second case, observe that

ρ2n+2

t
< ρ2n+2

t�aj j < ρ2n+1

t
: ð65Þ

To have a zero in Ω, we must have the condition

ρ ≤
ρ2n+2

t
< ρ2n+2

t�aj j < ρ2n+1

t
≤ 1, ð66Þ

which means

t ≤ ρ2n+1 and t ≥ ρ2n+1: ð67Þ

Hence, we must have t = ρ2n+1. In this case, the zero of Stρ
ðz, aÞ in Ω is also z = −ρ/�a. This completes the proof.

The weighted Szegö kernel can also be expressed in
terms of the basic gamma function and the modified Jacobi
theta function. By applying (20) to (58) with q = ρ2, we have

Stρ z, að Þ = 1
2π

θ −t�az ; ρ2
� �

∞ ρ2 ; ρ2
� �2

∞
θ �az ; ρ2ð Þ∞ ρ2/ −tð Þ ; ρ2ð Þ∞ −t ; ρ2ð Þ∞

: ð68Þ

Observe that

ρ2 ; ρ2
� �

∞
−t ; ρ2ð Þ∞

=
ρ2 ; ρ2
� �

∞
ρ2x ; ρ2ð Þ∞

=
Γρ2 xð Þ
1 − ρ2ð Þ1−x

, ð69Þ

where x satisfies ρ2x = −t. This equation may be written as

2x ln ρ = ln −tð Þ = ln −tj j + i arg −tð Þ = ln t + iπ, ð70Þ

which yields a solution

x = ln t + iπ
2 ln ρ

: ð71Þ

Observe also that

ρ2 ; ρ2
� �

∞
−ρ2/t ; ρ2ð Þ∞

=
ρ2 ; ρ2
� �

∞
ρ2y ; ρ2ð Þ∞

=
Γρ2 yð Þ
1 − ρ2ð Þ1−y

, ð72Þ

where y satisfies ρ2y = −ρ2/t. This equation may be written as

2y − 2ð Þ ln ρ = ln −
1
t

� �
= ln −

1
t

����
���� + i arg −

1
t

� �
= − ln t + iπ,

ð73Þ

which yields a solution

y = 1 + −ln t + iπ
2 ln ρ

: ð74Þ

Thus, (68) becomes

Stρ z, að Þ = Γρ2 μð ÞΓρ2 νð Þθ −t�az ; ρ2
� �

∞

2π 1 − ρ2ð Þ2−μ−νθ �az ; ρ2ð Þ∞
, μ

= ln t + iπ
2 ln ρ

, ν

= 1 + −ln t + iπ
2 ln ρ

:

ð75Þ

This can be regarded as a closed-form expression for the
weighted Szegö kernel for an annulus Ω. Observe that (75)
reduces to (42) when t = ρ.
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6. Numerical Computation of the Szegö
Kernel for an Annulus

In this section, we compare the speed of convergence of the
three formulas for computing the Szegö kernel for Ω based
on the two bilateral series (4) and (5) and the infinite prod-
uct (22).

To approximate (4) numerically, we calculate

S z, að Þ ≈ S10 z, að Þ = 1
2π 〠

10

k=−10

z�að Þk
1 + ρ2k+1

, ð76Þ

and S50 and S100.
To approximate (5) numerically, we calculate

S z, að Þ ≈ S∗10 z, að Þ = 1
2π 〠

10

k=−10

−1ð Þkρk
ρ2k − z�a

, ð77Þ

and S∗50.
To approximate (22) numerically, we compute

S z, að Þ ≈ S∗∗15 z, að Þ = 1
2π

Y15
k=0

1 + �azρ2k+1
� �

z�a + ρ2k+1
� �

1 − ρ2k+2
� �2

1 − z�aρ2k
� �

z�a − ρ2k+2
� �

1 + ρ2k+1
� �2 ,

ð78Þ

and S∗∗20 and S∗∗25 .
The approximations are then compared with the numer-

ical solution of the Kerzman-Stein Equation (7). To solve
(7), we used the Nyström method [5] with the trapezoidal
rule with n selected nodes on each boundary component
Γ0 and Γ1. The approximate solution is represented by ~Sn
where n is the number of nodes. All the computations were
done using MATHEMATICA 12.3. Four numerical exam-
ples are given for different values of a and ρ. The results
for the error norms are presented for each example.

We consider an annulus Ω bounded by

Γ0 : z0 tð Þ = eit ,
Γ1 : z1 tð Þ = ρe−it ,

ð79Þ

with 0 ≤ t ≤ 2π.

Table 1: Error norms between S10 and ~Sn, S50 and ~Sn, and S100 and
~Sn:

n S10 − ~Sn


 



∞ S50 − ~Sn


 



∞ S100 − ~Sn


 



∞

16 2.4536 (-02) 2.97754 (-03) 2.97758 (-03)

32 2.75019 (-02) 1.15906 (-05) 1.16299 (-05)

64 2.75136 (-02) 3.91113 (-08) 1.88349 (-10)

128 2.75136 (-02) 3.92996 (-08) 2.28878 (-15)

Table 2: Error norms between S∗10 and ~Sn and S∗50 and ~Sn.

n S∗10 − ~Sn


 



∞ S∗50 − ~Sn


 



∞

16 2.94797 (-03) 2.97758 (-03)

32 1.78995 (-02) 1.16299 (-05)

64 1.77628 (-04) 1.88351 (-10)

128 1.77628 (-04) 1.81497 (-15)

Table 3: Error norms between S∗∗15 and ~Sn, S
∗∗
20 and ~Sn, and S∗∗25 and

~Sn.

n S∗∗15 − ~Sn


 



∞ S∗∗20 − ~Sn


 



∞ S∗∗25 − ~Sn


 



∞

16 2.97758 (-03) 2.97758 (-03) 2.97758 (-03)

32 1.16296 (-05) 1.16299 (-05) 1.16299 (-05)

64 1.44308 (-10) 1.88038 (-10) 1.8835 (-10)

128 3.1999 (-10) 3.1275 (-13) 1.82618 (-15)

Table 4: Error norms between S10 and ~Sn, S50 and ~Sn, and S100 and
~Sn.

n S10 − ~Sn


 



∞ S50 − ~Sn


 



∞ S100 − ~Sn


 



∞

16 1.29695 (-02) 1.46732 (-03) 1.46732 (-03)

32 1.56432 (-02) 7.88666 (-06) 7.88666 (-06)

64 1.5646 (-02) 3.26124 (-08) 2.2539 (-10)

128 1.5646 (-02) 3.26942 (-08) 2.85127 (-15)

Table 5: Error norms between S∗10 and ~Sn and S∗50 and ~Sn.

n S∗10 − ~Sn


 



∞ S∗50 − ~Sn


 



∞

16 1.46686 (-03) 1.46732 (-03)

32 8.4009 (-06) 7.88666 (-06)

64 1.02367 (-06) 2.2539 (-10)

128 1.02367 (-06) 1.25883 (-15)

Table 6: Error norms between S∗∗5 and ~Sn, S
∗∗
10 and ~Sn, and S∗∗15 and

~Sn.

n S∗∗5 − ~Sn


 



∞ S∗∗10 − ~Sn


 



∞ S∗∗15 − ~Sn


 



∞

16 1.4675 (-03) 1.46732 (-03) 1.46732 (-03)

32 7.70793 (-06) 7.88666 (-06) 7.88666 (-06)

64 3.72977 (-07) 2.2434 (-10) 2.2539 (-10)

128 3.73107 (-07) 2.2023 (-12) 1.41308 (-15)

Table 7: Error norms between S10 and ~Sn, S50 and ~Sn, and S100 and
~Sn.

n S10 − ~Sn


 



∞ S50 − ~Sn


 



∞ S100 − ~Sn


 



∞

16 6.45804 (-02) 8.28061 (-03) 8.28061 (-03)

32 6.82534 (-02) 2.2673 (-04) 2.2673 (-04)

64 6.83565 (-02) 9.0045 (-06) 1.79491 (-07)

128 6.83565 (-02) 9.08614 (-06) 1.29631 (-10)
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Example 1. We consider an annulus Ω with a = 0:7i and
ρ = 0:5. The results for the error norms are presented in
Tables 1–3.

Example 2. We consider an annulus Ω with a = −0:4 − 0:6i
and ρ = 0:3. The results for the error norms are presented
in Tables 4–6.

Example 3. We consider an annulus Ω with a = −0:8 and
ρ = 0:4. The results for the error norms are presented in
Tables 7–9.

Example 4. We consider an annulus Ω with a = −0:4 − 0:5i
and ρ = 0:1. The results for the error norms are presented
in Tables 10–12.

The numerical results presented in Tables 1–12 show
that computations using the infinite product formula (22)
converge faster than the bilateral series formulas (4) and (5).

7. Conclusion

This paper has shown that the bilateral series for the Szegö
kernel forΩ is a disguised bilateral basic hypergeometric series

1ψ1. Ramanujan’s sum for 1ψ1 is then applied to obtain the
infinite product representation for the Szegö kernel for Ω.
The product clearly exhibits the zero of the Szegö kernel for
anΩ. The Szegö kernel can also be expressed as a closed form
in terms of the q-gamma function and the modified Jacobi
theta function. Similar q-analysis has also been conducted
for the Szegó kernel for general Ω and for the weighted Szegö
kernel forΩ. The numerical comparisons have shown that the
infinite product method converges faster than the bilateral
series methods for computing the Szegö kernel for Ω.

For future work, it is natural to devote further investigation
on the infinite product representation for the Szegö kernel for
doubly connected regions via the transformation formula (6)
and Theorem 1. This however requires knowledge of conformal
mapping of doubly connected regions to annulus [12–15]. For
some ideas on numerical methods for computing the zero of
the Szegö kernel for doubly connected regions, see [16]. Alter-
natively, perhaps some computational intelligence algorithms
can also be considered to compute the zero, like the monarch
butterfly optimization (MBO) [17], earthworm optimization
algorithm (EWA) [18], elephant herding optimization (EHO)
[19], moth search (MS) algorithm [20], slime mould algorithm
(SMA) [21], and Harris hawks optimization (HHO) [22].
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Table 8: Error norms between S∗10 and ~Sn and S∗50 and ~Sn.

n S∗10 − ~Sn


 



∞ S∗50 − ~Sn


 



∞

16 8.28737 (-03) 8.28061 (-03)

32 2.33562 (-04) 2.2673 (-04)

64 1.79806 (-05) 1.79491 (-07)

128 1.78806 (-05) 1.1287 (-15)

Table 9: Error norms between S∗∗5 and ~Sn, S
∗∗
10 and ~Sn, and S∗∗15 and

~Sn.

n S∗∗5 − ~Sn


 



∞ S∗∗10 − ~Sn


 



∞ S∗∗15 − ~Sn


 



∞

16 8.27577 (-03) 8.28061 (-03) 8.28061 (-03)

32 2.2189 (-04) 2.26729 (-04) 2.2673 (-04)

64 1.13437 (-05) 1.78984 (-07) 1.79491 (-07)

128 1.14253 (-05) 1.19798 (-09) 7.90864 (-14)

Table 10: Error norms between S10 and ~Sn, S50 and ~Sn, and S100 and
~Sn.

n S10 − ~Sn


 



∞ S50 − ~Sn


 



∞ S100 − ~Sn


 



∞

16 3.15879 (-03) 2.61429 (-04) 2.61429 (-04)

32 3.22447 (-03) 2.08805 (-07) 2.08805 (-07)

64 3.28124 (-03) 5.91022 (-11) 1.33153 (-13)

128 3.28124 (-03) 5.91168 (-11) 1.33233 (-15)

Table 11: Error norms between S∗10 and ~Sn and S∗50 and ~Sn.

n S∗10 − ~Sn


 



∞ S∗50 − ~Sn


 



∞

16 2.61429 (-04) 2.61429 (-04)

32 2.0879 (-07) 2.08805 (-07)

64 1.68217 (-11) 1.33183 (-13)

128 1.67281 (-11) 1.16606 (-15)

Table 12: Error norms between S∗∗5 and ~Sn, S
∗∗
10 and ~Sn, and S∗∗15

and ~Sn.

n S∗∗5 − ~Sn


 



∞ S∗∗10 − ~Sn


 



∞ S∗∗15 − ~Sn


 



∞

16 2.61429 (-04) 2.61429 (-04) 2.61429 (-04)

32 2.08805 (-07) 2.08805 (-07) 2.08805 (-07)

64 6.46416 (-13) 1.3313 (-13) 1.33121 (-13)

128 6.77069 (-13) 1.49882 (-15) 1.55654 (-15)
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The construction of circuits for the evolution of orbits and reduced quadratic irrational numbers under the action of Mobius groups
have many applications like in construction of substitution box (s-box), strong-substitution box (s.s-box), image processing, data
encryption, in interest for security experts, and other fields of sciences. In this paper, we investigate the behavior of reduced
quadratic irrational numbers (RQINs) in the coset diagrams of the set Q′′ð ffiffiffiffi

m
p Þ = fη/s : η ∈Q∗ð ffiffiffiffi

m
p Þ, s = 1, 2g under the action of

group H = <x′, y′ : x′2 = y′4 = 1 > , where m is square free integer and Q∗ð ffiffiffiffi
m

p Þ = fða′ + ffiffiffiffi
m

p Þ/c′, ða′, ða′2 −mÞ/c′c′Þ = 1, c′ ≠ 0g.
We discuss the type and reduced cardinality of the orbit Q′′ð ffiffiffi

p
p Þ. By using the notion of congruence, we give the general form of

reduced numbers (RNs) in particular orbits under certain conditions on prime p. Further, we classify that for a reduced number r
whether −r,�r, −�r lying in orbit or not. AMS Mathematics subject classification (2010): 05C25, 20G401.

1. Introduction and Preliminaries

Groups are very helpful algebraic structures, carrying other
algebraic structures on them. In abstract algebra, almost all typ-
ical structures are illustration of groups. The significance of
groups was derived from their action on special structures or
spaces. Cryptography is the technique of converting secret
knowledge into information and a type of data pretending to
reach its terminus without leaking data safely. Modern cryp-
tography is classified into several branches. Although there
are two main research fields such that symmetric and public
key cryptography, the public and private keys are used in pub-
lic key cryptography. The same keys are used at both ends to
encrypt and decrypt data/information in symmetric key cryp-

tography. It is well known that the substitution box is a stand-
out in symmetric key cryptography. Shahzad et al. investigated
the efficient technique for the construction of an S-box by using
action of a PSLð2, ZÞ. For constructing an S box, the vertices of
the coset diagram are considered in a special way. In this way,
the generated S box is highly safe and also closely meeting the
optimal values of the standard S-box. In [1–6], the construction
of substitution boxes based on coset graphs under the action of
modular group PSLð2, ZÞ has been discussed. In this piece of
work, we investigate the structure of coset graphs under the
action of modular group H: This work will be more helpful
for construction of strong substitution boxes.

The H-circuits of the set upon which the groups act are
the equivalence classes of group action. Group H can be
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written in the form of relations and generators as <x′, y′
: x′2 = y′4 = 1 > .

Assume that m is nonsquare integer, then Qð ffiffiffiffi
m

p Þ = fs
+ t

ffiffiffiffi
m

p
: s, t ∈Qg. In 1878, Cayley was the first who intro-

duced the technique of analysis of the groups through
graphs. To investigate the action of infinite groups generated
by finite elements on the infinite field by the coset diagram
was first introduced by Higman in 1978. A number β = s +
t
ffiffiffiffi
m

p
∈Qð ffiffiffiffi

m
p Þ is said to be ambiguous number (AN) if β

and �β have opposite signs. If β = s + t
ffiffiffiffi
m

p
is not ambiguous,

then it is either totally positive or negative. The real qua-
dratic irrational (RQI) numbers of the form ða′ + ffiffiffiffi

m
p Þ/c′,

where ða′, ða′2 −mÞ/c′, c′Þ = 1 and c′ is nonzero integer,
make the set represented as Q∗ð ffiffiffiffi

m
p Þ. A RQI number β = ð

a′ + ffiffiffiffi
m

p Þ/c′ is known as RQIN if β > 0 and −1 < �β < 0. In
this paper, we will denote the reduced number by r: If there
are k reduced numbers, then they are denoted by r1, r2, r3,
⋯rk. For β ∈Q′′ð ffiffiffiffi

m
p Þ, in the orbit of ðβÞH , the count of

RQINs is called the reduced length (RL), which is denoted
by jðβÞH jred. These numbers are very less in Q′′ð ffiffiffiffi

m
p Þ and

play a significant part in the circuit of an orbit. A circuit
made of vertices of a square and edges existing in H-orbits
of Q′′ð ffiffiffiffi

m
p Þ, under the Mobius group H in coset diagram.

If ððp1Þ0, ðq1Þ1, ðr1Þ2, ðp2Þ0, ðq2Þ1, ðr2Þ2 ⋯ ðpkÞ0, ðqkÞ1, ðrkÞ2Þ
is the type of a circuit, then it makes an element of group

h = ðx′y′Þp1 , ðx′y′2Þq1 , ðx′y′3Þr1 , ðx′y′Þp2 , ðx′y′2Þq2 , ðx′y′3Þr2
,⋯ðx′y′Þpk , ðx′y′2Þqk , ðx′y′3Þrk of H: This h fixes some ele-
ment exists in this circuit.

In [7, 8], Mushtaq and Aslam presented that there are
only finite number of ambiguous numbers (ANS); in the
coset diagram for the orbit of ðβÞH , the ambiguous numbers
form unique closed path. A cost diagram is introduced in [7,
8] to investigate the action of an infinite group H on the pro-
jective line over real quadratic field (RQF). Malik and Zafar
[9] investigated the properties of RQI numbers under the
action of H: Zafar and Malik [10, 11] investigated the type
and ambiguous lengths of the orbit of Q′′ð ffiffiffi

p
p Þ. Farkhanda

and Qamar discussed the real quadratic irrational and action

of M = <x′, y′ : x′2 = y′6 = 1 > . Razaq et al. [12, 13] investi-
gated the circuits of length 4 in PSLð2, ZÞ, group theoretic
construction of highly nonlinear substitution box, and its
applications in image encryption. Ali and Malik [14, 15] dis-
cussed the classification of PSLð2, ZÞ-circuits and investi-
gated the RQIN and types of G-circuits with length four
and six. Chen et al. [16] investigate reduced numbers which
play an important role in the study of modular group action
on the PSLð2, ZÞ-subset. For more studies of group action on
various field, we recommend reading of [17, 18]. The appli-
cation of group theory and group action is obvious to
encryption, physics, and mechanics to construct models
and their structures [5, 19–21]. Mateen et al. [22–27] inves-
tigated the structure of power digraphs associated with the
congruence xn ≡ yðmod mÞ, the partitioning of a set into
two or more disjoint subsets of equal sums, and the symme-
try of complete graphs and, moreover, investigated the
importance of power digraphs in computer science. Alolai-

yan et al. [28] discussed the homomorphic copies in coset
graphs for the modular group.

The major contributions of this paper are given below.

(1) This paper presents a graphical study of the action of
a Mobius group H on the real quadratic field (RQF)

(2) We discuss the classification of H-circuits and find
the numbers that play vital role in the structure of
H-circuits

(3) We investigate the RQINs and the types of H-cir-
cuits with different length

(4) We give the number of reduced numbers and their
general form in different orbits for different values
of p under a certain condition on p by using the con-
cept of congruences

Theorem 1. [29]. If <b1, b2, b2,⋯, bk > is symmetric contin-
ued fraction (CF) and <b1, b2, b2,⋯, bk > = ðR +

ffiffiffiffiffi
M

p Þ/s,
then M = R2 + S2:

Theorem 2. [9]. The set ℚ′′ð ffiffiffiffi
m

p Þ = fη/s : η ∈ℚ∗ð ffiffiffiffi
m

p Þ, s =
1, 2g is unchanged under the action of H.

Theorem 3. [10]. Let m ≡ 1ðmod 8Þ. Then, ℚ′′ð ffiffiffiffi
m

p Þ splits
into four H-subsets. In particular, ð ffiffiffiffi

m
p /1ÞH , ð ffiffiffiffi

m
p /−1ÞH ,

ðð1 + ffiffiffiffi
m

p Þ/2ÞH , and ðð1 + ffiffiffiffi
m

p Þ/4ÞH are at least four H
-orbits of ℚ′′ð ffiffiffiffi

m
p Þ.

Theorem 4. [9]. Let m ≡ 3ðmod 8Þ. Then, ℚ′′ð ffiffiffiffi
m

p Þ splits
into three H-subsets. In particular, ð ffiffiffiffi

m
p /1ÞH , ð ffiffiffiffi

m
p /−1ÞH ,

and ðð1 + ffiffiffiffi
m

p Þ/2ÞH are at least three H-orbits of ℚ′′ð ffiffiffiffi
m

p Þ.

Lemma 5. Every RQIN in ℚ′′ð ffiffiffiffi
m

p Þ is ambiguous number.

Theorem 6. [29]. If <b1, b2, b2,⋯, bk > is symmetric contin-
ued fraction and if <b1, b2, b2,⋯, bk > = ðR +

ffiffiffiffiffi
M

p Þ/S, then
M = R2 + S2:

Theorem 7. [9]. The set ℚ′′ð ffiffiffiffi
m

p Þ = fη/s : η ∈ℚ∗ð ffiffiffiffi
m

p Þ, s =
1, 2g is unchanged under the action of H.

Theorem 8. [10]. Let m ≡ 1ðmod 8Þ. Then, ℚ′′ð ffiffiffiffi
m

p Þ splits
into four H-subsets. In particular, ð ffiffiffiffi

m
p /1ÞH , ð ffiffiffiffi

m
p /−1ÞH ,

ðð1 + ffiffiffiffi
m

p Þ/2ÞH , and ðð1 + ffiffiffiffi
m

p Þ/4ÞH are at least four H
-orbits of ℚ′′ð ffiffiffiffi

m
p Þ.

Theorem 9. [9]. Let m ≡ 3ðmod 8Þ. Then, ℚ′′ð ffiffiffiffi
m

p Þ splits
into three H-subsets. In particular, ð ffiffiffiffi

m
p /1ÞH , ð ffiffiffiffi

m
p /−1ÞH ,

and ðð1 + ffiffiffiffi
m

p Þ/2ÞH are at least three H-orbits of ℚ′′ð ffiffiffiffi
m

p Þ.

Lemma 10. Every RQIN in ℚ′′ð ffiffiffiffi
m

p Þ is an ambiguous
number.
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Lemma 11. [14]. β = ða′ + ffiffiffiffi
m

p ′Þ/c′ is an ambiguous number

if and only if c′ < 0 and b′ = ða′2 −mÞ/c′ > 0 or b′ = ða′2 −
mÞ/c′ < 0, and c′ > 0:

Remark 12. [9]. Let βða′, b′, c′Þ ∈Q∗ð
ffiffiffiffiffi
n′

p
Þ and m ∈ℕ.

Then,

(1) ðx′y′ÞmðβÞ = ðβÞ +m = ðy′3x′Þ−mðβÞ:
(2) ðy′x′ÞmðβÞ = ðβÞ/ð1 − 2mðβÞÞ = ðx′y′3Þ−mðβÞ.
(3) hmðβÞ = ðβ1Þ ∈ ðβÞH :

Remark 13. It should be noted here that for a reduced num-
ber β = ða′ + ffiffiffiffi

m
p ′Þ/c′, we have a′ > 0, c′ > 0, and b′ < 0:

2. Properties of Reduced Quadratic Irrational
Numbers in Q′′ð ffiffiffiffi

m
p Þ

This section is devoted to study the behavior of reduced
numbers.

Lemma 14. If r ∈Q′′ð ffiffiffiffi
m

p Þ is an RQIN, then x′ðrÞ is an
ambiguous number but not RQIN.

Proof. Let r = ða′ + ffiffiffiffi
m

p Þ/c′ be a reduced quadratic irrational

number such that b′ < 0, a′ > 0, and c′ > 0, where b′ = ða′2
−mÞ/c′. Then, by using the Mobius transformation x′ðrÞ
= −1/2r, we have x′ðrÞ = ð−a′ + ffiffiffiffi

m
p Þ/2b′ = ða1 +

ffiffiffiffi
m

p Þ/b1,
where a1 < 0 and b1 < 0. Since b′ < 0 by using Remark 12,
x′ðrÞ is not RQIN.

Theorem 15. . Let p ≡ 1 or 5ðmod 8Þ such that p − 1 = s2:
Then, the circuit of a reduced number r ∈
ððb ffiffiffi

p
p c + ffiffiffi

p
p Þ/2ÞH has the type ð2 ffiffiffiffiffiffiffiffiffiffi

p − 1
p Þ2, ð

ffiffiffiffiffiffiffiffiffiffi
p − 1

p Þ0Þ:
Moreover, �r, −r, and −�r each exists on the turning points of
the circuit and not reduced.

Proof. r ∈ ððb ffiffiffi
p

p c + ffiffiffi
p

p Þ/2ÞH , r = ððb ffiffiffi
p

p c + ffiffiffi
p

p Þ/2Þ,
ðy′3x′Þ

ffiffiffiffiffiffi
p−1

p
−1ðrÞ = −�r, where ð ffiffiffiffiffiffiffiffiffiffi

p − 1p
− 1Þ is the number of

squares inside the circuit. x′ðy′2x′Þð−�rÞ = −r which shows
that one circuit is lying between the inside and outside

boundary of the circuit. x′ðy′x′Þ
ffiffiffiffiffiffi
p−1

p
−2ð−rÞ = −�r, whereffiffiffiffiffiffiffiffiffiffi

p − 1p
− 1 is the number of squares inside the circuit. y′2ð

�rÞ = r which implies that one of the squares is lying between
the inside and outside boundary of the circuit.

Theorem 16. For p ≡ 5 or 1ðmod 23Þ such that −1 + p = s2

and r=ðb ffiffiffi
p

p c + ffiffiffi
p

p Þ/2 be a reduced number, then �r, −r, and
−�r map onto the nonreduced number under the action of x′.

Proof. Let r = ffiffiffi
p

p + ðb ffiffiffi
p

p c − 1Þ/2 and −r = ðb ffiffiffi
p

p c + ffiffiffi
p

p Þ/−2.
By using linear fractional transformation x′ : β = −1/β and

Table 1, where β = ða + ffiffiffiffi
m

p Þ/c, x′ð−rÞ = ð−ðb ffiffiffi
p

p c − 1Þ +ffiffiffi
p

p Þ/c1 = ða1 +
ffiffiffiffi
m

p Þ/c1 where a1 = −ðb ffiffiffi
p

p c − 1Þ < 0: By
using Remark 12, it is not a reduced number. Similarly, x′ð
−rÞ is not a reduced number. �r = ð−ðb ffiffiffi

p
p c − 1Þ + ffiffiffi

p
p Þ/−2

and β = x′ð−rÞ = ð−ðb ffiffiffi
p

p c − 1Þ + ffiffiffi
p

p Þ/c′; c′ = 2b > 0 where
b > 0. By Remark 12, hence β is not a RQIN.

Theorem 17. Let r = ða′ + ffiffiffiffi
m

p Þ/c′ ∈Q′′ð ffiffiffiffi
m

p Þ be a RQIN
moved to 1/2ðða′ + ffiffiffiffi

m
p Þ/c′Þ ∈Q′′ð ffiffiffiffi

m
p Þ under a Mobius

transformation x′. Then,

c′ + ffiffiffiffi
m

p

a′

 !H

∩
a′ + ffiffiffiffi

m
p

c′

 !H

=Φ: ð1Þ

Proof. Suppose ða′ + ffiffiffiffi
m

p Þ/c′ ∈Q′′ð ffiffiffi
n

p Þ be RQIN under
Mobius transformation x′ moved to half of their conjugate,
i.e., x′ðða′ + ffiffiffiffi

m
p Þ/c′Þ = 1/2ða′ − ffiffiffiffi

m
p /c′Þ by using Table 1, as

m = ða′Þ2 + ðc′Þ2. By using Theorem 1, ða′ + ffiffiffiffi
m

p Þ/c′ and −
1/ð2½ða′ + ffiffiffiffi

m
p Þ/c′�Þ have symmetric periodic part, since, in

the form of continued fraction, every RQIN has unique
description. In similar fashion, ðc′ + ffiffiffiffi

m
p Þ/a′ and −1/2½ða′

−
ffiffiffiffi
m

p Þ/c′� with symmetric periodic parts are identical. By
Lemma 5 ða′ + ffiffiffiffi

m
p Þ/c′ and ðc′ + ffiffiffiffi

m
p Þ/a′ are not identical.

Hence, we conclude that

c′ + ffiffiffiffi
m

p

a′

 !H

∩
a′ + ffiffiffiffi

m
p

c′

 !H

=Φ: ð2Þ

Lemma 18. Let β = ða′ + ffiffiffiffi
m

p Þ/c′ ∈Q′′ð ffiffiffiffi
m

p Þ which moves to
half of their conjugate under the linear fractional transforma-
tion x′. Then, Q′′ð ffiffiffiffi

m
p Þ has at least 2 distinct circuits

c′ + ffiffiffiffi
m

p

a′

 !H

and
a′ + ffiffiffiffi

m
p

c′

 !H

: ð3Þ

Example 1 reflects Lemma 18.

Example 1. Suppose m = 13 and ð2 + ffiffiffiffi
m

p Þ/3 ∈Q′′ð ffiffiffiffiffi
13

p Þ be
reduced quadratic irrational transformed to half of their
conjugate under the x′ transformation and ð11, 20, 11, 12, 11
, 22, 11, 12Þ is the type of ðð2 + ffiffiffiffi

m
p Þ/3Þ. ð3 + ffiffiffiffi

m
p Þ/2 ∈Q′′ðffiffiffiffiffi

13
p Þ be reduced quadratic irrational transformed to half
of their conjugate under the x′ transformation and ð21, 1o,
32, 10, 11, 12, 30Þ is the type of ðð3 + ffiffiffiffi

m
p Þ/2Þ. It is easy to

see that ðð2 + ffiffiffiffi
m

p Þ/3Þ and ðð3 + ffiffiffiffi
m

p Þ/2Þ are not equivalent,
so that ðð2 + ffiffiffiffi

m
p Þ/3ÞT ðð3 + ffiffiffiffi

m
p Þ/2Þ = ϕ as shown in fig-

ures below.
Figures 1 and 2 reflect Lemma 18.
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3. Reduced Length of the H-Circuits of Q′′ð ffiffiffi
P

p Þ
The circuit generates an element of the form g = ðx′y′ jk+1Þmk

⋯ ðx′y′ j2+1Þm2ðx′y′ j1+1Þm1
of H and fixes some vertex of a

square on the closed orbit, and thus, the reduced length of
closed orbit is the count of RNs in this closed circuit.

Example 2. The circuit of the type ð12, 10, 12, 11, 22, 40, 22,
11, 12, 10, 11, 80Þ represents that the circuit generates an ele-

ment k = ðx′y′Þ8ðx′y′2Þðx′y′Þðx′y′3Þðx′y′2Þðx′y′3Þ2ðx′y′2Þ
ðx′y′3Þ2ðx′y′2Þðx′y′3Þðx′y′Þðx′y′3Þ of H and fixes the ver-
tex r1 = 4 +

ffiffiffiffiffi
19

p
. Suppose r1 = 4 +

ffiffiffiffiffi
19

p
:⋯⋯ ⋯ ð1Þ,

ðx′y′3Þr1 = β1, ðx′y′Þβ1 = ð3 + ffiffiffiffiffi
19

p Þ/5 = r2 ⋯⋯⋯ ::ð2Þ, ð
x′y′3Þr2 = ð−1 + ffiffiffiffiffi

19
p Þ/9 = β2, ðx′y′2Þβ2 = ð2 + ffiffiffiffiffi

19
p Þ/10 =

β3, ðx′y′
3Þ2β3 = ð−4 + ffiffiffiffiffi

19
p Þ/2 = β4, ðx′y′Þ

4
β4 = ð4 + ffiffiffiffiffi

19
p Þ/

2 = r3 ⋯⋯⋯ ::ð3Þ, ðx′y′3Þ2r3 = ð−2 + ffiffiffiffiffi
19

p Þ/10 = β5,

Table 1: Under the action of the group H. The images of elements of Q∗ð ffiffiffiffi
m

p Þ [11].

β = a′ + ffiffiffi
m

p
c′

a′ b′ c′

x′ βð Þ −1
2β −a′ −c′

2
2b′

y′ βð Þ −1
2 β + 1ð Þ −a′ − c′ −c′

2
2 2a′ + b′ + c′
� �

y′2 βð Þ
− β + 1ð Þ
2β + 1ð Þ −3a′ − 2a′ − c′ 2a′ + b′ + c′ 4a′ + 4b′ + c′

y′3 βð Þ
− 2β + 1ð Þ

2β −a′ + 2b′ 4a′ + 4b′ + c′
2

2 2a′ + b′ + c′
� �

x′y′ βð Þ β + 1 a′ + c′ 2a′ + b′ + c′ c

x′y′3 βð Þ
β

2β + 1 a′ + 2b′ b′ 4a′ + 4b′ + c′

y′x′ βð Þ β

1 − 2β a′ − 2b′ b′ −4a′ + 4b′ + c′

y′2x′ βð Þ
1 − 2β

2 −1 + βð Þ 3a′ − 2a′ − c′ −4a′ + 4b′ + c′
2

2 −2a′ + b′ + c′
� �

y′3x′ βð Þ β − 1 a′ − c′ −2a′ + b′ + c′ c′

3+ 13
−1

−1+ 13
3

1+ 13
−8

−2+ 13
−6

−3+ 13
−1

2+ 13
−3 2+ 13

−9

−1+ 13
−8

−2+ 13
−9

−2+ 13
2

−2+ 13
3

−3+ 13
8

3+ 13
8

2+ 13
3

2+ 13
2

1+ 13
3

Figure 1: Closed path of ðð2 + ffiffiffiffiffi
13

p Þ/3ÞH .
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ðx′y′2β5 = ð1 + ffiffiffiffiffi
19

p Þ/9 = β6, ðx′y′3Þβ6 = ð2 + ffiffiffiffiffi
19

p Þ/5 = r4
⋯ ::ð4Þ, ðx′y′2Þr4 = −4 +

ffiffiffiffiffi
19

p
= β7, ðx′y′

8Þβ7 = 4 +
ffiffiffiffiffi
19

p
=

r1. Equations (1), (2), (3), and (4) follow that r1, r2, r3, and
r4 are only reduced numbers in the orbit. Thus, the reduced
length of this orbit is 4.

Now, we investigate the reduced cardinalities of H
-orbits.

Theorem 19. Let p ≡ 1 or 5ðmod 8Þ such that p − 1 = s2 and
then the circuit of the reduced number
ðððb ffiffiffi

p
p c − 1Þ + ffiffiffi

p
p Þ/2ÞH has the type ðð ffiffiffiffiffiffiffiffiffiffi

p − 1
p

− 1Þ2, 11,
ð ffiffiffiffiffiffiffiffiffiffi

p − 1
p

− 1Þ0, 11Þ, and jððð ffiffiffiffiffiffiffiffiffiffiffib ffiffiffi
p

p cp
− 1Þ + ffiffiffi

p
p Þ/2ÞH jred = 1

Proof. In order to prove that it is enough to find k ∈H in
such a manner kððð ffiffiffiffiffiffiffiffiffiffiffib ffiffiffi

p
p cp

− 1Þ + ffiffiffi
p

p Þ/2Þ = ððð ffiffiffiffiffiffiffiffiffiffiffib ffiffiffi
p

p cp
− 1Þ

+ ffiffiffi
p

p Þ/2Þ. The proof was followed by the following four

steps: ðy′3x′Þ
ffiffiffiffiffiffi
p−1

p
−1ðrÞ = ðy′3x′Þ

ffiffiffiffiffiffi
p−1

p
−1ððð ffiffiffiffiffiffiffiffiffiffiffib ffiffiffi

p
p cp

− 1Þ + ffiffiffi
p

p Þ
/2Þ = ðð−ð ffiffiffiffiffiffiffiffiffiffiffib ffiffiffi

p
p cp

− 1Þ + ffiffiffi
p

p Þ/−2Þ = −�r, x′ðy′2x′Þ ð−�rÞ = x′ð
y′2x′Þ ðð−ð ffiffiffiffiffiffiffiffiffiffiffib ffiffiffi

p
p cp

− 1Þ + ffiffiffi
p

p Þ/−2Þ = ððð ffiffiffiffiffiffiffiffiffiffiffib ffiffiffi
p

p cp
− 1Þ + ffiffiffi

p
p Þ/

−2Þ = −r, x′ðy′x′Þ
ffiffiffiffiffiffi
p−1

p
−2
y′ð−rÞ = x′ðy′x′Þ

ffiffiffiffiffiffi
p−1

p
−2
y′ ðððffiffiffiffiffiffiffiffiffiffiffib ffiffiffi

p
p cp

− 1Þ + ffiffiffi
p

p Þ/−2Þ = ðð−ð ffiffiffiffiffiffiffiffiffiffiffib ffiffiffi
p

p cp
− 1Þ + ffiffiffi

p
p Þ/−2Þ =�r,

and y′2ð�rÞ = y′2 ðð−ð ffiffiffiffiffiffiffiffiffiffiffib ffiffiffi
p

p cp
− 1Þ + ffiffiffi

p
p Þ/−2Þ = ððð ffiffiffiffiffiffiffiffiffiffiffib ffiffiffi

p
p cp

−

1Þ + ffiffiffi
p

p Þ/2Þ = r: Thus, we obtain y′2x′ðy′x′Þ
ffiffiffiffiffiffi
p−1

p
−2
y′x′ðy′2

x′Þðy′3x′Þ
ffiffiffiffiffiffi
p−1

p
−1ððð ffiffiffiffiffiffiffiffiffiffiffib ffiffiffi

p
p cp

− 1Þ + ffiffiffi
p

p Þ/2Þ = ððð ffiffiffiffiffiffiffiffiffiffiffib ffiffiffi
p

p cp
− 1Þ

+ ffiffiffi
p

p Þ/2Þ . Hence, the circuit of the reduced number

ððð ffiffiffiffiffiffiffiffiffiffiffib ffiffiffi
p

p cp
− 1Þ + ffiffiffi

p
p Þ/2ÞH has the type

ð ffiffiffiffiffiffiffiffiffiffi
p − 1p

− 1Þ2, 11, ð
ffiffiffiffiffiffiffiffiffiffi
p − 1p

− 1Þ0, 11Þð . Now, we have to prove

that jððð ffiffiffiffiffiffiffiffiffiffiffib ffiffiffi
p

p cp
− 1Þ + ffiffiffi

p
p Þ/2ÞH jred = 1. Let r = ððð ffiffiffiffiffiffiffiffiffiffiffib ffiffiffi

p
p cp

− 1Þ + ffiffiffi
p

p Þ/2Þ be reduced number. Now, by using Theorem
15 and Theorem 16, the numbers �r,−�r, and −r are on the
turning point of the circuit and are not reduced numbers;
furthermore, when we will apply linear fractional transfor-
mation x′ on �r,−�r, and −r, then in result, we get no reduced
number. So, ððð ffiffiffiffiffiffiffiffiffiffiffib ffiffiffi

p
p cp

− 1Þ + ffiffiffi
p

p Þ/2Þ is only reduced num-

ber in ððð ffiffiffiffiffiffiffiffiffiffiffib ffiffiffi
p

p cp
− 1Þ + ffiffiffi

p
p Þ/2ÞH . Hence,

jððð ffiffiffiffiffiffiffiffiffiffiffib ffiffiffi
p

p cp
− 1Þ + ffiffiffi

p
p Þ/2ÞH jred1.

Example 3. Take a prime number p = 17 such that 17 − 1
= 42 and 17 ≡ 1ðmod 8Þ. It is observed from the coset dia-
gram given below that the reduced number ððð ffiffiffiffiffiffiffiffiffib17cp

− 1
Þ + ffiffiffiffiffi

17
p Þ/2Þ is fixed by the word ðx′y′2Þðy′x′Þ3ðx′y′2Þ

ðy′3x′Þ3ððð ffiffiffiffiffiffiffiffiffib17cp
− 1Þ + ffiffiffiffiffi

17
p Þ/2Þ = ððð ffiffiffiffiffiffiffiffiffib17cp

− 1Þ + ffiffiffiffiffi
17

p Þ/
2Þ ; this shows that type of the circuit

ððð ffiffiffiffiffiffiffiffiffib17cp
− 1Þ + ffiffiffiffiffi

17
p Þ/2ÞH is ð32, 11, 30, 11Þ, and it can be

seen from the coset diagram given below; ððð ffiffiffiffiffiffiffiffiffib17cp
− 1Þ

+
ffiffiffiffiffi
17

p Þ/2Þ is only reduced number in

ððð ffiffiffiffiffiffiffiffiffib17cp
− 1Þ + ffiffiffiffiffi

17
p Þ/2ÞH , and hence,

jððð ffiffiffiffiffiffiffiffiffib17cp
− 1Þ + ffiffiffiffiffi

17
p Þ/2ÞH jred = 1

Figure 3 depicted Theorem 19.

Example 4. Take a prime number p = 101 such that p − 1 =
102 and p ≡ 5ðmod 8Þ. It is observed from the coset diagram
given below that the reduced number ðð ffiffiffiffiffiffiffiffiffiffiffiffib101cp

− 1Þ +ffiffiffiffiffiffiffi
101

p
/2Þ is fixed by the word ðx′y′2Þðy′x′Þ10ðx′y′2Þ

ðy′3x′Þ10ðð ffiffiffiffiffiffiffiffiffiffiffiffib101cp
− 1Þ + ffiffiffiffiffiffiffi

101
p

/2Þ = ðð ffiffiffiffiffiffiffiffiffiffiffiffib101cp
− 1Þ +ffiffiffiffiffiffiffi

101
p

/2Þ; this shows that type of ðð ffiffiffiffiffiffiffiffiffiffiffiffib101cp
− 1Þ + ffiffiffiffiffiffiffi

101
p

/2ÞH

−3+ 13
2

1+ 13
4 3+ 13

21+ 13
6

1+ 13
−4

−3+ 13
−43+ 13

−4
−1+ 13

−4

−1+ 13
−6

3+ 13
−2

−3+ 13
−2

1+ 13
−6

−1+ 13
6−1+ 13

4
−3+ 13

4

3+ 13
4

Figure 2: Closed path of ðð3 + ffiffiffiffiffi
13

p Þ/2ÞH .
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of the circuit ðð ffiffiffiffiffiffiffiffiffiffiffiffib101cp
− 1Þ + ffiffiffiffiffiffiffi

101
p

/2ÞH is ð92, 11, 90, 11Þ,
and it can be seen from the coset diagram given below that
ðð ffiffiffiffiffiffiffiffiffiffiffiffib101cp

− 1Þ + ffiffiffiffiffiffiffi
101

p
/2Þ is only reduced number in

ðð ffiffiffiffiffiffiffiffiffiffiffiffib101cp
− 1Þ + ffiffiffiffiffiffiffi

101
p

/2ÞH , and hence,

jðð ffiffiffiffiffiffiffiffiffiffiffiffib101cp
− 1Þ + ffiffiffiffiffiffiffi

101
p

/2ÞH jred = 1
Figure 4 reflects Example 4.

Lemma 20. For p ≡ 5 or 3ðmod 23Þ such that −2 + p = s2,
then the orbits of reduced numbers ðs + ffiffiffi

p
p ÞH and

ððs + ffiffiffi
p

p Þ/4ÞH have the type ðððs − 1Þ/2Þ2, 11, ðs − 1Þ0, 11,
ððs − 1Þ/2Þ2, 2soÞ and jðs + ffiffiffi

p
p ÞH jred = 2 = jððs + ffiffiffi

p
p Þ/4ÞH jred .

Proof. To show that it is enough to discover k ∈H in such a
manner kðr1Þ = r1, where r1 = s + ffiffiffi

p
p

::⋯::ð1Þ using Remark

12(1) and (3), we obtain ðx′y′Þ−2sðr1Þ = −2s + r1 = −r + ffiffiffi
p

p

= −�ðr1Þ. Now, ðx′y′3Þðs−1Þ/2

ðr1Þ = ððs − 1Þðs2 − pÞ + s + ffiffiffi
p

p Þ/ððs − 1Þ½2s2 + ðs2 − pÞðs − 1Þ�
+ 1Þ = α and ðx′y′3Þ−ðs−1Þ/2ð−�ðr1Þ = ð−½ðs − 1Þðs2 − pÞ + s� +ffiffiffi
p

p Þ/ððs − 1Þ½2s + ðs2 − pÞðs − 1Þ� + 1Þ = −�ðαÞ. In Table 1, ðx′
y′2ðαÞ = ððs − 1Þðs2 − p + 1Þ + ffiffiffi

p
p Þ/ð−ðs2 − pÞÞ = β and

ðx′y′2Þ−1ð− �ðαÞÞ ðð−ðs − 1Þðs2 − p + 1Þ + ffiffiffi
p

p Þ/ð−ðs2 − pÞÞÞ =
−�β = ðr2Þ⋯ ::ð2Þ: Finally, ðx′y′Þ−ðs−1Þðr2Þ = ðx′y′Þ−ðs−1Þð−�βÞ
= ððs − 1Þðs2 − p + 1Þ + ffiffiffi

p
p Þ/ð−ðs2 − pÞÞ = β. ðx′y′Þ2s

ðx′y′3Þðs−1Þ/2ðx′y′2Þðx′y′Þs−1ðx′y′2Þðx′y′3Þðs−1Þ/2ðr1Þ = r1:
Hence, ðððs − 1Þ/2Þ2, 11, ðs − 1Þ0, 11, ððs − 1Þ/2Þ2, 2soÞ be the
type of circuit of reduce number ðs + ffiffiffi

p
p ÞH . Similarly, the

type of ððs + ffiffiffi
p

p Þ/4ÞH is same as first one and from equations

(1) and (2); hence, jðs + ffiffiffi
p

p ÞH jred = 2 = jððs + ffiffiffi
p

p Þ/4ÞH jred.

Example 5. Take a prime number p = 83 such that p − 2 = 92
and p ≡ 3ðmod 8Þ. It is observed from the coset diagram
given below that the reduced number ð9 + ffiffiffiffiffi

83
p Þ is fixed by

the word ðx′y′Þ18ðx′y′3Þ4ðx′y′2Þðx′y′Þ8ðx′y′2Þðx′y′3Þ4Þð9
+

ffiffiffiffiffi
83

p Þ = ð9 + ffiffiffiffiffi
83

p Þ; this shows that type of the circuit

ð9 + ffiffiffiffiffi
83

p ÞH is ð42, 11, 80, 11, 42, 180Þ, and it can be seen from
the coset diagram given below; ð9 + ffiffiffiffiffi

83
p Þ and ð8 + ffiffiffiffiffi

83
p Þ/2

are only reduced number in ð9 + ffiffiffiffiffi
83

p ÞH , and hence,

jð9 + ffiffiffiffiffi
83

p ÞH jred = 2.
Figure 5 reflects Lemma 20.

Lemma 21. If 4jp − 3 and 1 + p = s2, then ð ffiffiffi
p

p + b ffiffiffi
p

p cÞH and

ð ffiffiffi
p

p /−1ÞH circuits have the type ðso, s1Þ: Moreover

jðb ffiffiffi
p

p c + ffiffiffi
p

p ÞH jred = 1 and jð ffiffiffi
p

p /−1ÞH jred = 0:

Proof. Similar proof as of Lemma 20.

Remark 22. (i) It is not necessary that every circuit contains
reduced number. As we can see in the figure given below, the
circuit of ð ffiffiffi

p
p /−1Þ contains no reduced number.

Figure 6 reflects Remark 22(i).

3.1. Detection of Reduced Numbers. In the orbits of
ðs + ffiffiffi

p
p ÞH and ððs + ffiffiffi

p
p Þ/4ÞH of Q′′ð ffiffiffi

p
p Þ, where p ≡ 3 or 5

ðmod 8Þ such that p − 2 = s2, then

(i) ðs + ffiffiffi
p

p Þ and ðððs − 1Þ + ffiffiffi
p

p Þ/2Þ are only reduced

numbers in the circuit of ðs + ffiffiffi
p

p ÞH

3-times

3-times

3+ 17
2 3+ 17

8
3+ 17

–2

–3+ 17
–2

–3+ 17
–8

–3+ 17
2

–3+ 17
8

3+ 17
–8

Figure 3: Closed path of ðððb ffiffiffiffiffi
17

p c − 1Þ + ffiffiffiffiffi
17

p Þ/2ÞH .
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(ii) ðððs − 2Þ + ffiffiffi
p

p Þ/4Þ and ððs + ffiffiffi
p

p Þ/4Þ are only reduced
numbers in the circuit of ððr + ffiffiffi

p
p Þ/4ÞH

Remark 23. For p ≡ 3ðmod 23Þ such that −2 + p = s2.

(i) If a reduced number r ∈ ð ffiffiffi
p

p + sÞH , then its negative

conjugate −�r ∈ ð ffiffiffi
p

p + sÞH

(ii) If a reduced number r ∈ ðð ffiffiffi
p

p + sÞ/4ÞH then, its neg-

ative conjugate −�r ∈ ððs + ffiffiffi
p

p Þ/4ÞH

s + ffiffiffi
p

pð ÞH ∩
s + ffiffiffi

p
p
4

� �H

= ϕ: ð4Þ

Lemma 24. If p ≡ 7ðmod 23Þ and 2 + p = s2 then, the circuit
ððs − 1Þ + ffiffiffi

p
p ÞH of the reduced number has the type ð11,

ðððs − 1Þ/2Þ − 1Þo, 12, ðs − 1Þo, 12, ðððs − 1Þ/2Þ − 1Þo, 11, 2
ðs − 1ÞoÞ, and hence, jðs − 1Þ + ffiffiffi

p
p ÞH jred = 4

Proof. To illustrate this, it is sufficient to find k ∈H such that
kðr1Þ = r1 ⋯ :ðiÞ, where r1 = ðs − 1Þ + ffiffiffi

p
p

by Remark 12,

9-times

9-times

9+ 101
2 9+ 101

20
9+ 101

–2

–9+ 101
–2

–9+ 101
–20

–9+ 101
2

–9+ 101
20

–9+ 101
–20

Figure 4: Closed path of ðð ffiffiffiffiffiffiffiffiffiffiffiffib101cp
− 1Þ + ffiffiffiffiffiffiffi

101
p

/2ÞH .

= −9+ √83

18-times

4-times

8-times

4-times

–9+ 83
–4

–7+𝛼 =

𝛽 =

83
17

7+ 83
–4

−r1
= 9+ √83r1

8+ (83)
–19

–8+ (83)
–19

–8+ (83)
2

–𝛽 = 8+ (83)
2r2 =

–𝛼 = 7+ (83)
17

9+ 83
–4

–7+ 83
–4

Figure 5: Closed path of ð9 + ffiffiffiffiffi
83

p ÞH .
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then ðx′y′Þ−2ðs−1Þðr1Þ = ðx′y′Þ−2ðs−1Þððs − 1Þ + ffiffiffi
p

p Þ = −ðs − 1Þ
+ ffiffiffi

p
p Þ = −�r1; now, by using Table 1. ðx′y′2Þðr1Þ = ð2ðs2 − p

Þ − s + ffiffiffi
p

p Þ/ð2ðs2 − pÞÞ = β1 and ðx′y′2Þ−1ð−�r1Þ = ð−2ðs2 − p
Þ + s + ffiffiffi

p
p Þ/ð2ðs2 − pÞÞ = ð−�β1Þ = r2:⋯⋯ ⋯ ðiiÞ, again by

(1.1), we have ðx′y′Þðs−3Þ/2ðr2Þ = ðx′y′Þðs−3Þ/2ð−�β1Þ = ððs2 − p
Þðs − 1Þ − s + ffiffiffi

p
p Þ/ð2ðs2 − pÞÞ = r3 ⋯⋯⋯ :ðiiiÞ, and

ðx′y′Þ−ððs−3Þ/2Þðr2Þ = ðx′y′Þ−ððs−3Þ/2Þð−�β1Þ = ð−ðs2 − pÞðs − 1Þ
+ s + ffiffiffi

p
p Þ/ð2ðs2 + pÞÞ = −�r3, by Table 1, ðx′y′3Þðr3Þ = ðs3 + s

ðb − 3Þ + 1 + ffiffiffi
p

p Þ/ðs2 − pÞ = β2 and ðx′y′−1Þð−�r3Þ = ðs3 + sðp
+ 3Þ − 1 + ffiffiffi

p
p Þ/ðs2 − pÞ = −�β2 = r4 ⋯ :ðivÞ; finally, ðx′y′Þs−1

ðr4Þ = ðð2s − 1Þðs2 − p − 1Þ − s + ffiffiffi
p

p Þ/ðs2 − pÞ = β3, and β3 =
r4. Thus, ðx′y′Þ

2ðs−1Þðx′y′2Þðx′y′Þðððs−1Þ/2Þ−1Þðx′y′3Þðx′y′Þs−1
ðx′y′3Þðx′y′Þðððs−1Þ/2Þ−1Þðx′y′2Þðr1Þ = r1, and from equations
(i), (ii), (iii), and (iv), we get ðr1Þ, r2, r3, and r4 which are only
4 reduced numbers in the circuit of ððs − 1Þ + ffiffiffi

p
p ÞH .

Hence, jððs − 1Þ + ffiffiffi
p

p ÞH jred =4.

Example 6. Take a prime number p = 79 such that p + 2 = 92.
It is observed from the coset diagram given below that the

reduced number ð8 + ffiffiffiffiffi
79

p Þ is fixed by the word ðx′y′Þ16ðx′
y′2Þðx′y′Þ3ðx′y′3Þðx′y′Þ8ðx′y′3Þðx′y′Þ3ðx′y′2Þð8 + ffiffiffiffiffi

79
p Þ =

ð8 + ffiffiffiffiffi
79

p Þ; this shows that type of ð8 + ffiffiffiffiffi
79

p ÞH of the circuit
is ð11, 30, 12, 8o, 12, 30, 11, 16oÞ, and also, as can be seen from
the coset diagram given below, ð8 + ffiffiffiffiffi

79
p Þ, ð7 + ffiffiffiffiffi

79
p Þ/4, ð8

+
ffiffiffiffiffi
79

p Þ/2, and ð5 + ffiffiffiffiffi
79

p Þ/4 are only reduced number in

ð8 + ffiffiffiffiffi
79

p ÞH and hence jð8 + ffiffiffiffiffi
79

p ÞH jred = 4.

Figure 7 reflects Lemma 24.

Lemma 25. If p ≡ 7ðmod 23Þ and 2 + p = s2 then, the circuit
ðððs − 1Þ + ffiffiffi

p
p Þ/ð2s − 3ÞÞH of the reduced number has the

type ð12, ððs − 1Þ/2 − 1Þo, 11, 2ðs − 1Þo11, ððs − 1Þ/2 − 1Þo, 12,
ðs − 1Þo,Þ, and hence, jðððs − 1Þ + ffiffiffi

p
p Þ/2s − 3ÞH jred = 2.

Proof. Similar proof as of Lemma 24.

Example 7. Take p = 167 such that p + 2 = 132. It is observed
from the coset diagram given below that the reduced num-

ber ð12 + ffiffiffiffiffiffiffi
167

p Þ/23 is fixed by the word ðx′y′Þ12ðx′y′3Þ
ðx′y′Þ5ðx′y′2Þðx′y′Þ24ðx′y′2Þðx′y′Þ5ðx′y′3Þð12 + ffiffiffiffiffiffiffi

167
p Þ/23

= ð12 + ffiffiffiffiffiffiffi
167

p Þ/23; this shows that type of the circuit

ðð12 + ffiffiffiffiffiffiffi
167

p Þ/23ÞH is ð12o, 12, 50, 11, 24o, 11, 50, 12Þ, and it
can be seen from the coset diagram given below, ð12 +ffiffiffiffiffiffiffi
167

p Þ/23 and ð11 + ffiffiffiffiffiffiffi
167

p Þ/23 and are only reduced num-

bers in ðð12 + ffiffiffiffiffiffiffi
167

p Þ/23ÞH , and hence,

jðð12 + ffiffiffiffiffiffiffi
167

p Þ/23ÞH jred = 2.
Figure 8 reflects Lemma 25.

3.2. Detection of Reduced Numbers. In the circuits of
ððs − 1Þ + ffiffiffi

p
p ÞH and ðððs − 1Þ + ffiffiffi

p
p Þ/ðð2s − 3ÞÞÞH of Q′′ð ffiffiffi

p
p

Þ where 8jp − 7 and 2 + p = s2, then,

–1+ 3
–1

3
–2

3
6

1+ 3
3

–1+ 3
4

1+ 3
–11+ 3

4

3
–1

Figure 6: Closed path of ð ffiffiffi
3

p
/−1ÞH .
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(i) ððs − 1Þ + ffiffiffi
p

p Þ, ðððs − 2Þ + ffiffiffi
p

p Þ/4Þ, ðððs − 1Þ + ffiffiffi
p

p Þ/2Þ
, and ðððs − 4Þ + ffiffiffi

p
p Þ/4Þ are only reduced numbers in

the circuit of ððs − 1Þ + ffiffiffi
p

p ÞH

(ii) ðððs − 2Þ + ffiffiffi
p

p Þ/ðð2s − 3ÞÞÞ and ðððs − 1Þ + ffiffiffi
p

p Þ/ðð2s
− 3ÞÞÞ are only reduced numbers in the circuit of
ðððs − 2Þ + ffiffiffi

p
p Þ/ðð2s − 3ÞÞÞH

Remark 26. For p ≡ 7ðmod 23Þ such that 2 + p = s2.

(1) If r ∈ ððs − 1Þ + ffiffiffi
p

p ÞH then −�r ∈ ððs − 1Þ + ffiffiffi
p

p ÞH

(2) If r ∈ ðððs − 1Þ + ffiffiffi
p

p Þ/ðð2s − 3ÞÞÞH , then −�r ∈
ðððs − 1Þ + ffiffiffi

p
p Þ/ðð2s − 3ÞÞÞH

16-times

3-times

3-times 8-times

− 8+ √79
2

− 8+ √79
− 15

8+ √79
27+ √79

− 15

− 7+ √79
4

− 5+ √79
− 27

5+ √79
4

8+ √79
− 38

−8+ √79

8+ √79

–8+ 79
–30

5+ 79
–27

7+ 79
4

–7+ 79
–15

–5+ 79
4

Figure 7: Orbit of ðð8 + ffiffiffiffiffi
79

p Þ/1ÞH 520703).

−11+√167
–4

24-times

5-times

5-times 12-times

12+ 167
–1

–9+ 167
–4 9+ 167

23
11+ 167

–4

12+ 167
46

–9+ 167
43

11+√167
23

9+√167
–4–12+√167

–1

–11+√167
23

–12+√167
23

–12+√167
–2

12+√167
23

12+√167
–2

Figure 8: Closed path of ðð12 + ffiffiffiffiffiffiffi
167

p Þ/23ÞH .
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(3) ððs − 1Þ + ffiffiffi
p

p ÞH T ðððs − 1Þ + ffiffiffi
p

p Þ/ðð2s − 3ÞÞÞH = ϕ.

4. Conclusion

The idea of types of H-circuits in H-orbits of RQF by
Mobius group, which is given in this paper, is new and orig-
inal. We have presented type of H-circuits with different
length in H-orbits ðβÞH , where β is RQIN and H be Mobius
group. We have investigated properties of RQINs and classi-
fied H-orbits of different length. Furthermore, we proposed
reduced length and general form of reduced numbers in dif-
ferent orbits. This work can be extended for the Mobius

group M = <x′, y′ : x′2 = y′6 = 1 > and G = <x′, y′ : x′2 =
y′3 = 1 > as well as examined the M-circuits in M-orbits
and the G-circuits in G-orbits. Moreover, the reduced length
and general form of reduced numbers for different orbits can
be discussed.
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The goal of this paper is to study a new system of a class of variational inequalities termed as absolute value variational
inequalities. Absolute value variational inequalities present a rational, pragmatic, and novel framework for investigating a wide
range of equilibrium problems that arise in a variety of disciplines. We first develop a system of absolute value auxiliary
variational inequalities to calculate the approximate solution of the system of absolute variational inequalities, and then by
employing the projection technique, we prove the existence of solutions of the system of absolute value auxiliary variational
inequalities. By utilizing an auxiliary principle and the existence result, we propose several new iterative algorithms for solving
the system of absolute value auxiliary variational inequalities in the frame of four different operators. Furthermore, the
convergence of the proposed algorithms is investigated in a thorough manner. The efficiency and supremacy of the proposed
schemes is exhibited through some special cases of the system of absolute value variational inequalities and an illustrative
example. The results presented in this paper are more general and rehash a number of some previously published findings in
this field.

1. Introduction

The theory of variational inequalities, which was presented
in the 1960s, exhibits an exceptional evolution as a fascinat-
ing and stimulating branch of applied mathematics that
assumes a significant role in economics, finance, industry,
transportation, optimization, and network analysis. Stam-
pacchia [1] was the first to demonstrate the existence and
uniqueness of variational inequality solutions. Variational
inequalities have been utilized to examine problems that
occurred in a variety of basic and applied sciences since their
origin (see [2–6]). These significant applications prompted
researchers to develop and broaden variational inequalities
and associated optimization problems in various formations

employing advanced and innovative methodologies, which
include auxiliary principal technique, Wiener-Hopf equa-
tions, projection methods, and dynamical systems (see
[7–10] and the references therein). It is noted that the oper-
ator must be Lipschitz continuous and strongly monotone
for projection schemes to converge which is a very difficult
set of requirements to verify. This fact led researchers to
modify the projection method or to establish new ones.
Extragradient-type methods address this difficulty as their
convergence requires only the existence of solution and the
Lipschitz continuity of the monotone operator. Various
modified projection and extragradient-type algorithms have
been proposed for finding the solution of variational
inequalities. We would like to point out that the projection
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technique is not appropriate for some variational inequality
classes that include nonlinear functions which fail to be dif-
ferentiable. These factors prompted us to employ the auxil-
iary principle technique, presented by Glowinski et al. [11].
They employed this method to investigate the existence of
a mixed variational inequality solution. Adopting the fixed
point approach, this strategy finds the auxiliary variational
inequality and proves that the solution obtained from the
auxiliary problem is the same as the solution of the underly-
ing problem.

The system of variational inequalities is a natural and
useful generalization of variational inequalities because it
can be used to describe a variety of equilibrium problems,
including traffic equilibrium, spatial equilibrium, the Nash
equilibrium, and general equilibrium problems (see
[12–16]). The emergence of this approach can be noticed
as the simultaneous acquisition of two distinct figurations
of research; that is, it validates the qualitative features of
the solution of major types of problems, while also empow-
ering us to build useful and effective new problem-solving
strategies. Various iterative algorithms have been suggested
to solve the different systems of variational inequalities.
Agarwal et al. [17] considered a system of generalized non-
linear mixed quasi-variational inclusions and proved its
associated sensitivity analysis. However, Pang [18] has
shown that several equilibrium-type problems other than
the Nash equilibrium problem may also be stated as a varia-
tional inequality problem that is equivalent to a system of
variational inequalities. Thus, the variational inequality the-
ory gives a natural, comprehensive, ordered, and effective
framework for analyzing many linear and nonlinear
problems.

In recent years, another remarkable extension of the var-
iational inequalities known as absolute value variational
inequalities is introduced and studied by Batool et al. [9].
They have shown that the absolute value variational inequal-
ities can be transformed into a system of absolute value
equations if the underlying domain is the entire space. The
system of absolute value equations was proposed and ana-
lyzed by Mangasarian [19]. In fact, the system of absolute
value equations has become an appealing direction for
researchers as various mathematical and engineering prob-
lems including linear programs, quadratic programs, and
bimatrix games can be reduced into an absolute system of
equations (see [20–22] and the references therein). Inspired
by the significant boost in this field, in this investigation, the
approaches for constructing a novel system of absolute value
variational inequalities in connection with the fixed point
formulation were proposed with the help of the projection
method. By equivalency, several new projection algorithms
have been developed that are useful for solving the system
of absolute value variational inequalities. Moreover, we
examine the convergence of these algorithms under suitable
constraints. Various special cases are also considered. A test
example illustrates the graphical view of our proposed
results. The suggested methods associate a variety of iterative
algorithms in this direction. The findings in this study are
more invigorating and can be viewed as an improvement
and extension of the previously known results.

2. Results and Discussion

Let H be a real Hilbert space, whose norm and inner prod-
uct are denoted by k⋅k and h⋅ , ⋅i, respectively. Let K1 and K2
be two closed and convex sets in H : For given operators
T1, T2, B1, B2 : H ⟶H , consider the problem of finding
y ∈ K1 and x ∈ K2 such that

T1x + B1 xj j − f1, v − yh i ≥ 0, ∀v ∈ K1,
T2y + B2 yj j − f2, v − xh i ≥ 0, ∀v ∈ K2,

(
ð1Þ

where f1 and f2 are the continuous functionals defined onH

and j:j contains the absolute values of components of x, y
∈H . The system (Equation (1)) is called a system of abso-
lute value variational inequalities with four operators.

We will now discuss some special cases of the system of
absolute value variational inequalities (Equation (1)).

(1) If B1 = B2 = B, then system (Equation (1)) reduces to
find y ∈ K1 and x ∈ K2 such that

T1x + B xj j − f1, v − yh i ≥ 0, ∀v ∈ K1,
T2y + B yj j − f2, v − xh i ≥ 0, ∀v ∈ K2,

(
ð2Þ

which is called a system of absolute value variational
inequalities with three operators.

(2) If K1 = K2 = K , then system (Equation (2)) reduces
to find x, y ∈ K such that

T1x + B xj j − f1, v − yh i ≥ 0, ∀v ∈ K ,
T2y + B yj j − f2, v − xh i ≥ 0, ∀v ∈ K ,

(
ð3Þ

which is a system of absolute value variational inequalities.

(3) If B1jxj = B2jyj = 0, ∀x, y ∈H , then system (Equation
(1)) is equivalent to find y ∈ K1 and x ∈ K2 such that

T1x − f1, v − yh i ≥ 0, ∀v ∈ K1,
T2y − f2, v − xh i ≥ 0, ∀v ∈ K2,

(
ð4Þ

which is called the system of variational inequalities.

(4) If T1 = T2 = T , ∀x, y ∈H , then system (Equation (1))
is equivalent to find y ∈ K1 and x ∈ K2 such that

Tx + B1 xj j − f1, v − yh i ≥ 0, ∀v ∈ K1,
Ty + B2 yj j − f2, v − xh i ≥ 0, ∀v ∈ K2,

(
ð5Þ

which is a system of absolute value variational inequalities
with three operators.
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(5) If T1 = T2 = T and K1 = K2 = K , then system (Equa-
tion (2)) reduces to find x ∈ K such that

Tx + B xj j − f , y − xh i ≥ 0, ∀y ∈ K ð6Þ

is called an absolute value variational inequality.

(6) If Bjxj = 0, ∀x ∈H , then Equation (4) collapses to
find x ∈ K such that

Tx − f , y − xh i ≥ 0, ∀y ∈ K , ð7Þ

which are well-known classical variational inequalities,
introduced by Lions and Stampacchia [23, 24] and have
been studied extensively in many directions. Variational
inequalities are useful to formulate various equilibrium
problems.

(7) If K∗ = fx ∈ K : hx, yi ≥ 0, y ∈ Kg is the polar cone of
the closed and convex cone K in H , then Equation
(4) is equivalent to find x ∈ K such that

x ∈ K , Tx + B xj j − f ∈ K∗, Tx − B xj j, xh i = 0, ð8Þ

which is an absolute value complementarity problem. The
absolute value complementarity problem was introduced
and studied by Noor et al. [25].

(8) If Bjxj = 0,∀x ∈H , then Equation (6) reduces to find
x ∈ K such that

x ∈ K , Tx − f ∈ K∗, Tx − f , xh i = 0, ð9Þ

which is called a complementarity problem. The comple-
mentarity problem was introduced and studied by Lemke
[5] and has also been investigated by Cottle and Dantzig
[26].

(9) If T1 = T2 = T , B1 = B2 = B, and K1 = K2 =H , then
Equation (1) is equivalent to find x ∈H such that

Tx + B xj j = f , ð10Þ

which is known as the system of absolute value equations
and is addressed in Reference [27]. The system of absolute
value equations is widely applied in various branches of
engineering and mathematics. Hence, the proper choice of
operators and spaces may generate several known and new
types of absolute value variational inequalities and its variant
forms.

In order to obtain the main results of this paper, some
basic definitions and results are needed which are essential
for the further analysis.

Definition 1. T : H ⟶H is said to be strongly monotone,
if there exists a constant α > 0 such that

Tx − Ty, x − yh i ≥ α x − yk k2, ∀x, y ∈H : ð11Þ

Definition 2. An operator T : H ⟶H is said to be
Lipschitz continuous, if there exists a constant β > 0 such
that

Tx − Tyk k ≤ β x − yk k, ∀x, y ∈H : ð12Þ

Definition 3. An operator T : H ⟶H is said to be mono-
tone if

Tx − Ty, x − yh i ≥ 0, ∀x, y ∈H : ð13Þ

Definition 4. An operator T : H ⟶H is said to be pseudo-
monotone if

Tx, y − xh i ≥ 0 ð14Þ

implies

Ty, y − xh i ≥ 0, ∀x, y ∈H : ð15Þ

We now consider the well-known projection lemma
which is due to Reference [4]. The projection lemma trans-
forms the variational inequalities into a fixed point problem.

Lemma 5 (see [4]). Let K be a closed and convex set in H .
Then, for a given z ∈H , x ∈ K satisfies

x − z, y − xh i ≥ 0, ∀y ∈ K , ð16Þ

if and only if

x = PK z½ �, ð17Þ

where PK is the projection of H onto a closed and convex set
K in H .

It is notable that the projection operator PK is a nonex-
pansive operator, that is

PK x½ � − PK y½ �k k ≤ x − yk k, ∀x, y ∈H : ð18Þ

The above lemma is important to obtain the main results
of this paper.

Lemma 6 (see [28]). If fδng∞n=0 is a nonnegative sequence sat-
isfying the following inequality

δn+1 ≤ 1 − λnð Þδn + σn, ∀n ≥ 0, ð19Þ

with 0 ≤ λn ≤ 1, ∑∞
n=0λn =∞, and σn = 0ðλnÞ, then

limn⟶∞δn = 0.

Since the projection-type techniques could not be used
to suggest iterative algorithms for mixed variational
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inequalities, Glowinski et al. [11] suggested a new technique
for solving the variational inequalities. It is called auxiliary
principle technique which proved to be useful as it does
not depend on the projection. Also, it is worth mentioning
that unified descent algorithms for variational inequalities
can be suggested by using an auxiliary principle technique.

Hence, Equation (1) can easily be written in an equiva-
lent form by using the auxiliary principle technique, that is
to find y ∈ K1 and x ∈ K2 such that

γ1T1x + γ1B1 xj j − γ1 f1 + y − x, v − yh i ≥ 0, ∀v ∈ K1,
γ2T2y + γ2B2 yj j − γ2 f2 + x − y, v − xh i ≥ 0, ∀v ∈ K2,

(

ð20Þ

where γ1 > 0 and γ2 > 0 are the constants.
We use this equivalent system to suggest some new iter-

ative algorithms for solving the system of absolute value var-
iational inequalities and its alternative systems.

2.1. Main Results. In this section, we establish the equiva-
lence between system of absolute value Equation (20) and
the fixed point problems. We use this equivalent formulation
to suggest some iterative algorithms for solving the system of
absolute value equations. The convergence analysis of the
proposed methods is also demonstrated.

Lemma 7. The system of absolute value variational inequal-
ities (Equation (20)) has a solution y ∈ K1 and x ∈ K2 if and
only if y ∈ K1 and x ∈ K2 satisfy the relations:

y = PK1
x − γ1T1x − γ1B1 xj j + γ1 f1½ �, ð21Þ

x = PK2
y − γ2T2y − γ2B2 yj j + γ2 f2½ �, ð22Þ

where γ1 > 0 and γ2 > 0 are constants.

It is clear from Lemma 7 that the system (Equation (20))
is equivalent to the fixed point problems (Equations (21) and
(22)). This equivalent formulation is very important from
theoretical as well as from the numerical point of view (see
[29]). We propose and analyze some iterative schemes by
using the composition (Equations (21) and (22)).

Equations (21) and (22) can be rewritten in the following
equivalent forms:

y = 1 − ηnð Þy + ηnPK1
x − γ1T1x − γ1B1 xj j + γ1 f1½ �, ð23Þ

x = 1 − ζnð Þx + ζnPK2
y − γ2T2y − γ2B2 yj j + γ2 f2½ �, ð24Þ

where 0 ≤ ζn, ηn ≤ 1 for all n ≥ 0:
We use this equivalent formulation to suggest the follow-

ing iterative algorithms for solving the system of absolute
value variational inequalities (Equation (20)) and its related
formations.

Algorithm 1. For given y0 ∈ K2 and x0 ∈ K1, compute xn+1
and yn+1 by the iterative schemes:

yn+1 = 1 − ηnð Þyn + ηnPK1
xn − γ1T1xn − γ1B1 xnj j + γ1 f½ �1,

ð25Þ

xn+1 = 1 − ζnð Þxn + ζnPK2
yn − γ2T2yn − γ2B2 ynj j + γ2 f2½ �,

ð26Þ

where 0 ≤ ζn, ηn ≤ 1 for all n ≥ 0:

Algorithm 1 is known as a parallel algorithm which can
be considered as the Jacobi method for solving the system of
absolute value equations. It is proved that parallel algorithms
outperform the sequential schemes.

We now discuss some of the special cases of Algorithm 1.

(1) If B1 = B2 = B, then Algorithm 1 reduces to the fol-
lowing parallel algorithm to find the solution of the
system (Equation (2))

Algorithm 2. For given y0 ∈ K2 and x0 ∈ K1, compute xn+1
and yn+1 by the iterative schemes:

yn+1 = 1 − ηnð Þyn + ηnPK1
xn − γ1T1xn − γ1B xnj j + γ1 f1½ �,

xn+1 = 1 − ζnð Þxn + ζnPK2
yn − γ2T2yn − γ2B ynj j + γ2 f2½ �,

ð27Þ

where 0 ≤ ζn, ηn ≤ 1 for all n ≥ 0:

(2) If K1 = K2 = K , then Algorithm 2 reduces to the fol-
lowing projection algorithm to solve the system of
absolute value variational inequalities (Equation (3))

Algorithm 3. For given x0, y0 ∈ K , compute xn+1 and yn+1 by
the iterative schemes:

yn+1 = 1 − ηnð Þyn + ηnPK1
xn − γ1T1xn − γ1B xnj j + γ1 f1½ �,

xn+1 = 1 − ζnð Þxn + ζnPK2
yn − γ2T2yn − γ2B ynj j + γ2 f2½ �,

ð28Þ

where 0 ≤ ζn, ηn ≤ 1 for all n ≥ 0:

(3) If B1jxj = B2jyj = 0, ∀x, y ∈H , then Algorithm 2
reduces to the following projection algorithm to
solve the system of variational inequalities (Equa-
tion (4))
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Algorithm 4. For given y0 ∈ K2 and x0 ∈ K1, compute xn+1
and yn+1 by the iterative schemes:

yn+1 = 1 − ηnð Þyn + ηnPK1
xn − γ1T1xn + γ1 f1½ �,

xn+1 = 1 − ζnð Þxn + ζnPK2
yn − γ2T2yn + γ2 f2½ �,

ð29Þ

where 0 ≤ ζn, ηn ≤ 1 for all n ≥ 0:

(4) If T1 = T2 = T , then Algorithm 1 reduces to the fol-
lowing algorithm

Algorithm 5. For given y0 ∈ K2 and x0 ∈ K1, compute xn+1
and yn+1 by the iterative schemes:

yn+1 = 1 − ηnð Þyn + ηnPK1
xn − γ1Txn − γ1B1 xnj j + γ1 f1½ �,

xn+1 = 1 − ζnð Þxn + ζnPK2
yn − γ2Tyn − γ2B2 ynj j + γ2 f2½ �,

ð30Þ

where 0 ≤ ζn, ηn ≤ 1 for all n ≥ 0:

(5) If T1 = T2 = T and B1 = B2 = B, then Algorithm 2
reduces to the following parallel algorithm

Algorithm 6. For given y0 ∈ K2 and x0 ∈ K1, compute xn+1
and yn+1 by the iterative schemes:

yn+1 = 1 − ηnð Þyn + ηnPK1
xn − γ1Txn − γ1B xnj j + γ1 f1½ �,

xn+1 = 1 − ζnð Þxn + ζnPK2
yn − γ2Tyn − γ2B ynj j + γ2 f2½ �,

ð31Þ

where 0 ≤ ζn, ηn ≤ 1 for all n ≥ 0:

Several new and known iterative schemes can be sug-
gested for solving absolute value variational inequalities
and the associated problems by making proper and appro-
priate choice for operators and spaces.

We now examine the convergence analysis of Algo-
rithm 1 which is the key motivation of the next result.

Theorem 8. Let the operators T1, T2 : H ⟶H be strongly
monotone with constants αT1

> 0, αT2
> 0 and Lipschitz con-

tinuous with constants βT1
> 0, βT2

> 0 and the operators B1

, B2 : H ⟶H be Lipschitz continuous with constants βB1

> 0, βB2
> 0, respectively. If the following conditions

(1) ϕT1
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2γ1αT1

+ γ21β
2
T1

q
< 1

(2) ϕT2
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2γ2αT2

+ γ22β
2
T2

q
< 1

(3) 0 ≤ ζn, ηn ≤ 1∀n ≥ 0,

ζn − ηn ϕT1
+ ϕB1

� �
≥ 0,

ηn − ζn ϕT2
+ ϕB2

� �
≥ 0,

ð32Þ

such that

〠
∞

n=0
ζn − ηn ϕT1

+ ϕB1

� �� �
=∞,

〠
∞

n=0
ηn − ζn ϕT2

+ ϕB2

� �� �
=∞,

ð33Þ

where

ϕT1
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2γ1αT1

+ γ21β
2
T1

q
,

ϕT2
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2γ2αT2

+ γ22β
2
T2

q
,

ϕB1 = γ2βB2
,

ϕB2 = γ1βB1
,

ð34Þ

hold, then sequences fxng and fyng obtained from Algo-
rithm 1 converge to x and y, respectively.

Proof. Let x, y ∈H such that y ∈ K1 and x ∈ K2 be a solution
of the system (Equation (20)). Then, from Equation (23) and
Equation (26), we have the following:

xn+1 − xk k = 1 − ζnð Þxn + ζnPK2
yn − γ2T2yn − γ2B2 ynj j + γ2 f2½ �g − 1 − ζnð Þ��

� x − ζnPK2
y − γ2T2y − γ2B2 yj j + γ2 f2½ �k ≤ 1 − ζnð Þ xn − xk k

+ ζn PK2
yn − γ2T2yn − γ2B2 ynj j + γ2 f2½ � − PK2

y − γ2T2y − γ2B2 yj j½��
+ γ2 f2�k ≤ 1 − ζnð Þ xn − xk k + ζn yn − yð Þ − γ2 T2yn − T2yð Þk k
+ ζnγ2 B2 ynj j − B2 yj jk k:

ð35Þ

Since the operator T2 is strongly monotone and
Lipschitz continuous with constants αT2

> 0 and βT2
> 0,

respectively, then we have the following:

yn − yð Þ − γ2 T2yn − T2yð Þk k ≤ yn − yk k2
− 2γ2 T2yn − T2y, yn − yh i + T2yn − T2yk k2

≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2γ2αT2

+ γ22β
2
T2

q
yn − yk k2:

ð36Þ

Also, using the Lipschitz continuity of the operator B2
with constant βB2

> 0, we have the following:

B2 ynj j − B2 yj jk k ≤ βB2
yn − yk k: ð37Þ

Combining Equations (35), (36), and (37), we obtain the
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following:

xn+1 − xk k ≤ 1 − ζnð Þ xn − xk k
+ ζn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2γ2αT2

+ γ22β
2
T2

q
+ γ2βB2

� �
yn − yk k

= 1 − ζnð Þ xn − xk k + ζn ϕT2
+ ϕB2

� �
yn − yk k:

ð38Þ

In a similar way, from Equation (23) and Equation (25),
we have the following:

yn+1 − yk k = 1 − ηnð Þyn + ηnPK1
xn − γ1T1xn − γ1B1 xnj j½��

+ γ1 f1� − 1 − ηnð Þy − ηnPK1
x − γ1T1x − γ1B1 xj j½

+ γ1 f1�k ≤ 1 − ηnð Þ yn − yk k + ηn PK1
xn − γ1T1xn½��

− γ1B1 xnj j + γ1 f1� − PK1
x − γ1T1x − γ1B1 xj j½

+ γ1 f1�k ≤ 1 − ηnð Þ yn − yk k + ηn xn − xð Þk
− γ1 T1xn − T1xð Þk + ηnγ1 B1 xnj j − B1 xj jk k

≤ 1 − ηnð Þ yn − yk k + ηn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2γ1αT1

+ γ21β
2
T1

q
xnk

− xk + ηnγ1βB1
xn − xk k = 1 − ηnð Þ yn − yk k + ηn

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2γ1αT1

+ γ21β
2
T1

q
+ γ1βB1

� �
xn − xk k

= 1 − ηnð Þ yn − yk k + ηn ϕT1
+ ϕB1

� �
xn − xk k,

ð39Þ

where we have used the strong monotonicity of T1 with
constant αT1

> 0 and Lipschitz continuity of the operators T1
and B1 with constants βT1

> 0 and βB1
> 0, respectively.

Adding Equations (38) and (39), we have the following:

xn+1 − xk k + yn+1 − yk k
≤ 1 − ζn + ηn ϕT1

+ ϕB1

� �
xn − xk k

�
+ 1 − ηn + ζn ϕT2

+ ϕB2

� �� �
� yn − yk k ≤max 1 − ζn + ηn ϕT1

+ ϕB1

� �� �
, 1 − ηn + ζn ϕT2

+ ϕB2

� �� �n o
� xn − xk k + yn − yk kð Þ =max ξ1, ξ2ð Þ xn − xk k + yn − yk kð Þ

= ϕ xn − xk k + yn − yk kð Þ,
ð40Þ

where

ϕ =max ξ1, ξ2ð Þ,
ξ1 = 1 − ζn + ηn ϕT1

+ ϕB1

� �
,

ξ2 = 1 − ηn + ζn ϕT2
+ ϕB2

� �
:

ð41Þ

From assumption (iii), it follows that ϕ < 1. Hence, using
Lemma 6, we obtain from Equation (44) the following:

limn⟶∞ xn − xk k + yn − yk k½ � = 0: ð42Þ

This further implies that

limn⟶∞ xn − xk k = 0,
limn⟶∞ yn − yk k = 0,

ð43Þ

which is the required result.
We now propose and examine some new iterative

schemes for solving system of absolute value variational
inequalities, by employing a useful substitution.

It can easily be shown, by using Lemma 5, that x, y ∈H
such that y ∈ K1 and x ∈ K2 is a solution of the system of
absolute value variational inequalities (Equation (1)), if and
only if x, y ∈H : y ∈ K1, x ∈ K2 satisfies the following:

y = PK1
z½ �, ð44Þ

x = PK2
w½ �, ð45Þ

z = x − γ1T1x − γ1B1 xj j + γ1 f1, ð46Þ

w = y − γ2T2y − γ2B2 yj j + γ2 f2: ð47Þ
By using this alternative formation, we can propose and

examine the following iterative schemes to solve the system
(Equation (1)).

Algorithm 7. For given y0 ∈ K1 and x0 ∈ K2, find xn+1 and
yn+1 by the iterative schemes:

yn+1 = 1 − ηnð Þyn + ηnPK1
zn½ �, ð48Þ

xn+1 = 1 − ζnð Þxn + ζnPK2
wn½ �, ð49Þ

zn = xn − γ1T1xn − γ1B1 xnj j + γ1 f1, ð50Þ

wn = yn − γ2T2yn − γ2B2 ynj j + γ2 f2, ð51Þ
where 0 ≤ ζn, ηn ≤ 1 for all n ≥ 0:

By choosing the useful operators and proper spaces, one
can have various new as well as known iterative schemes for
solving the system of absolute value variational inequalities
and its variant forms. Now, we examine the convergence
analysis of Algorithm 7 by employing the approach of The-
orem 8.

Theorem 9. Let the operators T1, T2 : H ⟶H be strongly
monotone with constants αT1

> 0, αT2
> 0 and Lipschitz con-

tinuous with constants βT1
> 0, βT2

> 0 and the operators
B1, B2 : H ⟶H be Lipschitz continuous with constants
βB1

> 0, βB2
> 0, respectively. If the following conditions

(i) ϕT1
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2γ1αT1

+ γ21β
2
T1

q
< 1

(ii) ϕT2
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2γ2αT2

+ γ22β
2
T2

q
< 1

(iii) 0 ≤ ζn, ηn ≤ 1∀n ≥ 0
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ζn − ηn ϕT1
+ ϕB1

� �
≥ 0,

ηn − ζn ϕT2
+ ϕB2

� �
≥ 0,

ð52Þ

such that

〠
∞

n=0
ζn − ηn ϕT1

+ ϕB1

� �� �
=∞,

〠
∞

n=0
ηn − ζn ϕT2

+ ϕB2

� �� �
=∞,

ð53Þ

where

ϕT1
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2γ1αT1

+ γ21β
2
T1

q
,

ϕT2
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2γ2αT2

+ γ22β
2
T2

q
,

ϕB1
= γ2βB2

,
ϕB2

= γ1βB1
,

ð54Þ

hold, then sequences fxng and fyng obtained from Algo-
rithm 7 converge to x and y, respectively.

Proof. Let x, y ∈H such that y ∈ K1 and x ∈ K2 be a solution
of the system (Equation (20)). Then, from Equation (45) and

Equation (49), we have the following:

xn+1 − xk k = 1 − ζnð Þxn + ζnPK2
wn½ � − 1 − ζnð Þx − ζnPK2

w½ ��� ��
≤ 1 − ζnð Þ xn − xk k + ζn PK2

wn½ � − PK2
w½ ���

≤ 1 − ζnð Þ xn − xk k + ζn wn −wk k:
ð55Þ

In a similar way, from Equation (44) and Equation (48),
we have the following:

yn+1 − yk k = 1 − ηnð Þyn + ηnPK1
zn½ � − 1 − ηnð Þy − ηnPK1

z½ ��� ��
≤ 1 − ηnð Þ yn − yk k + ηn PK1

zn½ � − PK1
z½ ���

≤ 1 − ηnð Þ yn − yk k + ηn zn − zk k:
ð56Þ

From Equations (36), (37), (47), and (51), we have the
following:

wn −wk k = yn − yð Þ − γ2 T2yn − T2yð Þk k + B2 ynj j − B2 yj jk k
≤ ϕT2

+ ϕB2

� �
yn − yk k:

ð57Þ

Also, from Equations (39), (46), and (50), we have the
following:
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Figure 1: Graphical behaviour of T1ðxÞ, T2ðxÞ, B1ðxÞ, and B2ðxÞ.
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Figure 2: Behaviour of Theorem 8 via a three-dimensional plot satisfies Example 10.
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Figure 3: Behaviour of Theorem 9 via a three-dimensional plot satisfies Example 10 approach. The equivalence between the system of absolute
value variational inequalities and the system of fixed point problems has been established. Further, we suggested several innovative iterative
algorithms for solving our considered system of variational inequalities and the convergence of the proposed schemes has been analyzed under
some suitable conditions. Finally, to demonstrate the existence and convergence results, a numerical example was given. We also discussed some
special cases of the system of absolute value variational inequalities. The concept and technique of this paper may encourage researchers to
analyze the innovative and unique applications of the system of absolute value variational inequalities and its associated optimization problems.
In futuristic research, we extend this study to exponential absolute value variational inequalities and their variant forms.
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zn − zk k = xn − xð Þ − γ1 T1xn − T1xð Þk k + B1 xnj j − B1 xj jk k
≤ ϕT1

+ ϕB1

� �
xn − xk k:

ð58Þ

Combining Equations (55), (56), (57), and (58), we have
the following:

xn+1 − xk k ≤ 1 − ζnð Þ xn − xk k + ζn ϕT2
+ ϕB2

� �
yn − yk k,

ð59Þ

yn+1 − yk k ≤ 1 − ηnð Þ yn − yk k + ηn ϕT1
+ ϕB1

� �
xn − xk k:

ð60Þ
Addition of Equations (59) and (60) implies

xn+1 − xk k + yn+1 − yk k ≤ 1 − ζn + ηn ϕT1
+ ϕB1

� ��
� xn − xk k + 1 − ηn + ζn ϕT2

+ ϕB2

� �� �
yn − yk k

≤max 1 − ζn + ηn ϕT1
+ ϕB1

� �� �
, 1 − ηn + ζn ϕT2

+ ϕB2

� �� �n o
� xn − xk k + yn − yk kð Þ =max ξ1, ξ2ð Þ xn − xk k + yn − yk kð Þ

= ϕ xn − xk k + yn − yk kð Þ,
ð61Þ

where

ϕ =max ξ1, ξ2ð Þ,
ξ1 = 1 − ζn + ηn ϕT1

+ ϕB1

� �
,

ξ2 = 1 − ηn + ζn ϕT2
+ ϕB2

� �
:

ð62Þ

From assumption (iii), it follows that ϕ < 1. Hence, using
Lemma 6, we obtain from Equation (23) the following:

limn⟶∞ xn − xk k + yn − yk k½ � = 0: ð63Þ

This further implies that

limn⟶∞ xn − xk k = 0,
limn⟶∞ yn − yk k = 0,

ð64Þ

which is the required result.

Example 10. H =ℝ, K1 = ð−∞,0� and K2 = ½0,∞Þ:. Let T1,
T2 : H ⟶H be the single-valued mappings defined by
the following:

T1 xð Þ = 2x − 1
3 , T2 xð Þ = 5x − 2

6 , ∀x ∈H : ð65Þ

Also, the mappings B1, B2 : H ⟶H are defined by the
following:

B1 xð Þ = 3x − 2
5 , B2 xð Þ = 5x + 1

7 , ∀x ∈H : ð66Þ

Then, it can easily be verified that for each i = 1, 2, Ti is
strongly monotone and Lipschitz continuous with αT1

= 2/3
= βT1

and αT2
= 5/6 = βT2

, and Bi is strongly monotone and
Lipschitz continuous with αB1

= 3/5 = βB1
and αB2

= 5/7 = βB2
.

Then, for γ1, γ2 = 1,

ϕT1
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2γ1αT1

+ γ21β
2
T1

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2 2

3

� �
+ 2
3
2

s
= 2
3 < 1,

ϕT2
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2γ2αT2

+ γ22β
2
T2

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2 5

6

� �
+ 5
6
2

s
= 1
6 < 1:

ð67Þ

Also, for each n = 1, 2,

0 < 1
2 = ζn,

ηn =
1
2 < 1,

ð68Þ

we have the following:

Ω1 = ζn − ηn ϕT1
+ ϕB1

� �
= 1
2 −

1
2

1
3 + 3

5

� �
= 1
30 > 0,

Ω2 = ηn − ζn ϕT2
+ ϕB2

� �
= 1
2 −

1
2

1
6 + 5

7

� �
= 5
84 > 0,

ð69Þ

where ϕB1
= γ1βB1

= 3/5 and ϕB2
= γ2βB2

= 5/7. Clearly, we
see that all the assumptions of Theorem 8 and Theorem 9
are satisfied. Hence, by using Algorithm 1 and Algorithm 7,
the conclusions of Theorem 8 and Theorem 9 follow.

Figure 1 is the graphical representation of the operators
defined in Example 10. Figure 2 depicts the behaviour of
Theorem 8 satisfying Example 10. Similarly, Figure 3 inter-
prets the behaviour of Theorem 9 via a three-dimensional
plot satisfying Example 10.

3. Conclusion

In this paper, we have introduced a new system of varia-
tional inequalities, called the system of absolute value varia-
tional inequalities. To determine the approximate solution
of the system of absolute value variational inequalities, we
first built a system of absolute value auxiliary variational
inequalities. We demonstrate the existence of a solution to
the system of absolute value auxiliary variational inequalities
using the projection.
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The study of convex functions is one of the most researched of the classical fields. Analysis of the geometric characteristics of these
functions is a core area of research in this field; however, a paradigm shift in this research is the application of convexity in
optimization theory. The Jensen-Mercer type inequalities are studied extensively in recent years. In the present paper, we
extend Jensen-Mercer type inequalities for strong convex function. Some improved inequalities in Hölder sense are also
derived. The previously established results are generalized and strengthened by our results.

1. Introduction and Preliminary Results

Convex functions and their consequences are useful in the
establishment of different kinds of inequalities; therefore,
they are considered the base of theory of inequalities in
mathematical analysis. A real valued function ψ : I ⟶ℝ
is said to be convex on the interval I ⊂ℝ, if

ψ zx + 1 − zð Þyð Þ ≤ zψ xð Þ + 1 − zð Þψ yð Þ ð1Þ

holds for all x, y ∈ I and z ∈ ½0, 1�. The function ψ is said to
be concave if reverse of inequality (1) holds.

Convex functions are also very important in the fields of
mathematical analysis, mathematical statistics, and optimi-
zation theory. These functions motivate towards a nice the-
ory named convex analysis (see [1–3]). Convex functions
have been defined in various ways by using different tech-
niques, for example, by support function, by chords joining
two points, and Jensen’s inequality. Inequality (1) represents
the convex function analytically and provides encourage-
ment to define further general notions.

The study of convex functions [4–14] began with Jen-
sen’s thought-provoking concepts and interesting work over
the period from 1905 to 1906. It is used in the analysis as an
efficient tool for solving optimization issues. Additionally,
inequalities involving convex functions are very stimulating

in the development of different sections of mathematics,
such as mathematical finance, economics, management
sciences, and optimization theory.

If the function ψ : I ⊂ℝ is convex, then the inequality

ψ
c + d
2

� �
≤

1
d − c

ðd
c
ψ α1ð Þdα1 ≤

ψ cð Þ + ψ dð Þ
2 ð2Þ

is called the Hermite-Hadamard inequality [15, 16].

Definition 1 (Convex set) (see [17]). A set I is considered to
be convex if the line segment between any two points in I
lies in I; i.e., ∀α1, α2 ∈ I, ∀∈½0, 1�

lα1 + 1 − lð Þα2 ∈ I: ð3Þ

Authors [18–20] expanded on the idea of a strongly con-
vex function by replacing the nonnegative term with a real-
valued nonnegative function and defined it as follows:

Definition 2 (Strongly convex function (see [18])). A func-
tion ψ : I ⊂ℝ⟶ℝ is strongly convex, if
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ψ lα1 + 1 − lð Þα2ð Þ ≤ lψ α1ð Þ + 1 1 − lð Þψ α2ð Þ − l 1 − lð ÞM α1 − α2ð Þ
ð4Þ

holds for all α1, α2 ∈ I and l ∈ ½0, 1�.

Definition 3 (Riemann-Liouville fractional integral). For a
function ψ : I ⊂ℝ⟶ℝ, the Riemann-Liouville fractional
integral operator of order ξ ≤ 0 with c ≤ 0 is defined as

Jξcψ α1ð Þ = 1
Γξ

ðα1
c

α1 − lð Þζ−1ψ lð Þdl,

J0cψ α1ð Þ = ψ α1ð Þ:
ð5Þ

Many scholars have recently analyzed a variety of
inequalities by using the Riemann-Liouville fractional inte-
grals (see [21–24]).

Definition 4 (Hadamard fractional integral). For a function
ψ : I ⊂ℝ⟶ℝ, the Hadamard fractional integral of order
ζ ≤ℝ+ for all α1 > 1 is defined as

H J
−ζ
1,α1ψ α1ð Þ = 1

Γξ

ðα1
1
ln α1

l

� �ζ−1
ψ lð Þdl, ð6Þ

where Γζ =
Ð∞
0 e−l lζ−1dl.

Definition 5 (Conformable fractional integral). Let ζ ∈ ð0, 1Þ
and 0 ≤ c < d. A function ψ : ½c, d�⟶ℝ is ζ-fractional inte-
grable on ½c, d� if the integral

ðd
c
ψ α1ð Þdζα1 =

ðd
c
ψ α1ð Þαζ−11 ð7Þ

exists and is finite.

This paper is aimed at establishing Hermite-Jensen-
Mercer type inequalities and some other inequalities includ-
ing improved Hölder inequality for strong convex function.

2. New Hermite-Jensen-Mercer
Type Inequalities

Theorem 6. Let ζ, ξ > 0 and ψ : ½ϕ, φ�⟶ℝ be a strong con-
vex function. Then, the inequality

ψ ϕ + φ −
α1 + α2

2

� �
≤
2ζξ/k−1ζξ/kΓk ξ + kð Þ

α2 − α1ð Þζξ/k
ξ
k J

ζ

ϕ+φ−α1+α2/2ð Þ+ψ ϕð
�

+ φ − α2Þ + ξ
k J

ζ

ϕ+φ−α1+α2/2ð Þ+ψ ϕ + φ − α2ð Þ − a
2
M α2 − α1ð Þ

�

≤ ψ ϕð Þ + ψ φð Þ − ψ α2ð Þ + ψ α2ð Þ
2

� �
−
a
2
ψ ϕ + φ −

α1 − α2
2

� �
ð8Þ

holds for all α1, α2 ∈ ½ϕ, φ�:

Proof. To prove that the first inequality holds, take

ψ ϕ + φ −
α11 + α21

2
� �

= ψ
2ϕ + 2φ − α11 − α21

2

� �
: ð9Þ

Since ψ is a strong convex function, so

ψ ϕ + φ −
α11 + α21

2
� �

ψ ϕ + φ −
α11 + α21

2
� �

≤
1
2

� �
ψ

ϕ + φ − α11
2

� �
+ 1

2

� �
ψ

ϕ + φ − α21
2

� �

− a
1
2

� � 1
2

� �
α21 − α11

2
� �2

≤
1
2

� �
ψ

ϕ + φ − α11
2

� �
+ ψ

ϕ + φ − α21
2

� �
−

a
2
� � α21 − α11

2
� �2� �

:

ð10Þ

Suppose α11 = l/2α1 + ð2 − lÞ/2α2 and α21 = ð2 − lÞ/2α1 +
l/2α2; then, for α1, α2 ∈ ½ϕ, φ� and l ∈ ½0, 1�, we have

ψ
ϕ + φ − l/2α1 − 2 − l/2α2

2

� �
+ ψ

ϕ + φ − 2 − l/2α1 − l/2α2
2

� �

−
a
2

α1 − α2
2

� �2
1 − lð Þ22ψ ϕ + φ −

α11 + α21
2

� �
≤ ψ

ϕ + φ − α11
2

� �

+ ψ
ϕ + φ − α21

2

� �
−
a
2

α21 − α11
2

� �2
:

ð11Þ

Multiplying both sides of Equation (11) with

ð1 − ð1 − lÞζ/ζÞξ/k−1ð1 − lÞζ−1, we get

2ψ ϕ + φ −
α11 + α21

2
� �� � 1 − 1 − lð Þζ

ζ

 !ξ/k−1

1 − lð Þζ−1

≤ ψ
ϕ + φ − α11

2

� �
+ ψ

ϕ + φ − α21
2

� �

−
a
2

α21 − α11
2

� �2 1 − 1 − lð Þζ
ζ

 !ξ/k−1

1 − lð Þζ−1:

ð12Þ

Integrating the above inequality with respect to l over the
range ½0, 1� and then combining the result with the integral
operator yield
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2ψ ϕ + φ −
α11 + α21

2
� �ð1

0

1 − 1 − lð Þζ
ζ

 !ξ/k−1

1 − lð Þα−1

≤
ð1
0
ψ

ϕ + φ − α11
2

� �
+ ψ

ϕ + φ − α21
2

� �
−

c
2

α21 − α11
2

� �2�

� 1 − 1 − lð Þζ
ζ

 !ξ/k−1

1 − lð Þζ−1
3
5dl

=
ð1
0

ψ
ϕ + φ − α11

2

� � 1 − 1 − lð Þζ
ζ

 !ξ/k−1

1 − lð Þζ−1
2
4

3
5dl

+
ð1
0

ψ
ϕ + φ − α21

2

� � 1 − 1 − lð Þζ
ζ

 !ξ/k−1

1 − lð Þζ−1
2
4

3
5dl

−
ð1
0

a
2

α21 − α11
2

� �2 1 − 1 − lð Þζ
ζ

 !ξ/k−1

1 − lð Þζ−1
2
4

3
5dl:

ð13Þ

Now, by altering the variables, we can obtain

ðϕ+φ− α1+α2/2ð Þ

ϕ+φ−α2

1 − 2ϕ + 2φ − α1 + α2ð Þ − 2l1/ α2 − α2ð Þð Þζ
ζ

" #ξ/k−1

× 2ϕ + 2φ − α1 + α2ð Þ − 2l1
α2 − α1ð Þ

� �ζ−1
ψ l1ð Þ α2 − α1

2 dl

+
ðϕ+φ− α1+α2/2ð Þ

ϕ+φ−α1

1 − 2l2 − 2ϕ + 2φ − α1 + α2ð Þ/ α2 − α2ð Þð Þζ
ζ

" #ξ/k−1

× 2l2 − 2ϕ + 2φ − α1 + α2ð Þ
α2 − α1ð Þ

 !ζ−1

ψ l2ð Þ α2 − α1
2 dl

+
ðα1+α2
α1−α2

1 − 2l3/ α2 − α1ð Þð Þζ
ζ

" #ξ/k−1

� l3
α1 − α2

� �
aψ l3ð Þ α2 − α1ð Þdl:

ð14Þ

So,

ð1
0

1 − 1 − lð Þζ
ζ

 !ξ/k−1

1 − lð Þζ−1dl = 1
ξ/kζξ/k

,

ξ
κ J

ζ

ϕ+ψ α2ð Þ = 1
κΓκ ξð Þ

ðα2
ϕ

α2 − ϕð Þζ − l − ϕð Þζ
ζ

 !ξ/k−1
ψ lð Þ

l − ϕð Þ1−ζ
 !

dl,

ξ
κ J

ζ

φ−ψ α2ð Þ = 1
κΓκ ξð Þ

ðφ
ϕ

φ − α2ð Þζ − φ − lð Þζ
ζ

 !ξ/k−1
ψ lð Þ

φ − lð Þ1−ζ
 !

dl:

ð15Þ

Therefore,

2ψ ϕ + φ −
α1 + α2

2
� � 1

ξ/kζξ/k
≤

2
α2 − α1

� �ζξ/k

� Γk ξð Þξk Jζϕ+φ−α1+α2/2ð Þ+S ϕ + φ − α2ð Þ
n
+ Γk ξð Þξk Jζϕ+φ−α1+α2/2ð Þ−ψ ϕ + φ − α1ð Þ − a

2M α21 − α11ð Þ
o
:

ð16Þ

As a result, the first inequality of (8) is proved.
We can prove the second inequality of (8) by using

strong convexity of ψ for l over ½0, 1�:

ψ ϕ + φ − α1ð Þ = ψ ϕ + φð Þ + ψ α1ð Þ − 1
2 aM ϕ + φ − α1ð Þ,

ð17Þ

ψ ϕ + φ − α2ð Þ = ψ ϕ + φð Þ + ψ α1ð Þ − 1
2 aM ϕ + φ − α2ð Þ,

ð18Þ

ψ ϕ + φ −
l
2 α1 +

2 − l
2 α2

� �� �
= ψ ϕ + φð Þ

+ l
2ψα1 +

2 − l
2 ψα2

� �
−
a
2M ϕ + φ −

l
2 α1 +

2 − l
2 α2

� �� �
,

ð19Þ

ψ ϕ + φ −
2 − l
2 α1 +

5l
2 α2

� �� �
= ψ ϕ + φð Þ

+ 2 − l
2 ψα1 +

l
2ψα2

� �
−
a
2M ϕ + φ −

2 − l
2 α1 +

l
2 α2

� �� �
:

ð20Þ

Adding (17) and (20) leads to

ψ ϕ + φ −
l
2 α1 +

2 − l
2 α2

� �� �
+ ψ ϕ + φ −

2 − l
2 α1 +

l
2 α2

� �� �

≤ 2ψ ϕ + φð Þ + ψ
l
2 α1 +

2 − l
2 α2

� �
+ ψ

2 − l
2 α1 +

l
2 α2

� �� �

−
a
2 2ϕ + 2φ − α2 − α1ð Þð Þ:

ð21Þ

Multiply 9 with ð1 − ð1 − lÞζ/ζÞξ/k−1ð1 − lÞζ−1, and inte-
grating the obtained inequality w.r.t to l over [0,1] gives
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ð1
0

1 − 1 − lð Þζ
ζ

 !ξ/k−1

1 − lð Þζ−1 ψ ϕ + φ −
l
2 α1 +

2 − l
2 α2

� �� ��

+ ψ ϕ + φ −
2 − l
2 α1 +

l
2 α2

� �� ��
dl ≤ 2ψ ϕ + φð Þ

+ ψ
l
2 α1 +

2 − l
2 α2

� �
+ ψ

2 − l
2 α1 +

l
2 α2

� �� �

−
a
2 2ϕ + 2φ − α2 − α1ð Þ½ �

ð1
0

� 1 − 1 − lð Þζ
ζ

 !ξ/k1

1 − lð Þζ−1 − 2
α2 − α1

� �ζξ/k

× Γk ξð Þξk Jζϕ+φ−α1+α2/2ð Þ+ψ ϕ + φ − α2ð Þ
n

+ Γk ξð Þξk Jζϕ+φ−α1+α2/2ð Þ−ψ ϕ + φ − α1ð Þ − a
2M α21 − α11ð Þ

o
dl

≤
1

ξ/kζξ/k
2ψ ϕ + φð Þ − ψα1 + ψα2½ � − a

2 2ϕ + 2φ − α2 − α1ð Þ½ �:

ð22Þ

This completes the proof.

Remark 7. It is obvious from Theorem 6 that

(1) Theorem 2.1 of [25] is obtained if we take a = 0, α1
= x, and α2 = y in Theorem 6

(2) Theorem 2.1 of [26] is obtained if we take a = 0, k = 1
, α1 = θ, and α2 = ϑ in Theorem 6

(3) Theorem 2 of [27] is obtained by taking a = 0, α = k
= 1, α1 = θ, and α2 = ϑ in Theorem 6

Theorem 8. Let ζ, ξ > 0 and ψ : ½ϕ, φ�⟶ℝ be a strong con-
vex function. Then, the inequalities

ψ ϕ + φ −
α1 + α2

2

� �
≤ ψ ϕð Þ + ψ φð Þ − ζξ/kΓk ξ + kð Þ

2 α2 − α1ð Þζξ/k

× ξ
k J

ζ

ϕ+φ−α+1Þ
� ψ α2ð Þ + ξ

k J
ζ

ϕ+φ−α2ð Þ−ψ α1ð Þ − a
2
M α2 − α1ð Þ

	 


≤ ψ ϕð Þ + ψ φð Þ − ψ
α1 + α2

2

� �
−
a
2

α2 − α1ð Þ2

ð23Þ

and

ψ ϕ + φ −
α1 + α2

2

� �
≤

ζξ/kΓk ξ + kð Þ
2 α2 − α1ð Þζξ/k

× ξ
k J

ζ

ϕ+φ−α+1ð Þψ α2ð Þ + ξ
k J

ζ

ϕ+φ−α2ð Þ − ψ α1ð Þ − a
2
M α2 − α1ð Þ

	 


≤ ψ ϕð Þ + ψ φð Þ − ψ α1ð Þ + ψ α2ð Þ
2

� �
−
a
2

α2 − α1ð Þ2

ð24Þ

hold ∀α1, α2 ∈ ½ϕ, φ�.

Proof. The Jensen-Mercer inequality dictates that

ψ ϕ + φ −
α11 + α21

2
� �

≤ ψ ϕð Þ + ψ φð Þ − ψ α11ð Þ + ψ α21ð Þ
2

−
a
2M α2 − α1ð Þ,

ð25Þ

∀α11, α21 ∈ ½ϕ, φ�.

Taking α11 = lα1 + ð1 − lÞα2 and α21 = ð1 − lÞα1 + ðlÞα2 for
α1, α2 ∈ ½ϕ, φ� and l ∈ ½0, 1� in (25), we get

ψ ϕ + φ −
α1 + α2

2
� �

≤ ψ ϕð Þ + ψ φð Þ

−
ψ lα1 + 1 − lð Þα2ð Þ + ψ 1 − lð Þα1 + lð Þα2ð Þ

2
−
a
2M α2 − α1ð Þ:

ð26Þ

Multiplying the above inequality by ð1 − ð1 − lÞζ/ζÞξ/k
ð1 − lÞζ−1 and integrating the obtained inequality with
respect to l over [0,1] give

ψ ϕ + φ −
α1 + α2

2
� �ð1

0

1 − 1 − lað Þζ
ζ

 !ξ/k

1 − lð Þζ−1dl

≤
ð1
0

1 − 1 − lð Þζ
ζ

 !ξ/k

1 − lð Þζ−1

× ψ ϕð Þ + ψ φð Þ − ψ lα1 + 1 − lð Þα2ð Þ + ψ 1 − lð Þα1 + lð Þα2ð Þ
2

	

−
a
2M α2 − α1ð Þ

o
dl,

ð27Þ

that is,

ψ ϕ + φ −
α1 + α2

2
� �

≤ ψ ϕð Þ + ψ φð Þ − ζξ/kΓk ξ + kð Þ
2 α2 − α1ð Þζξ/k

× ξ
k J

ζ

α+1
ψ α2ð Þ + ξ

k J
ζ

α−2
ψ α1ð Þ − a

2M α1 + α2ð Þ
	 


:

ð28Þ

That proves the first inequality of (24).
To prove the second inequality of (24), from the defini-

tion of strong convexity of ψ, for l ∈ ½0, 1�, we get

ψ
α1 + α2

2
� �

= ψ
lα1 + 1 − lð Þα2 + 1 − lð Þα1 + lα2

2

� �

≤
ψ lα1 + 1 − lð Þα2ð Þ + ψ 1 − lð Þα1 + lα2ð Þ

2
−
a
2M α1 − α2ð Þ:

ð29Þ

Multiplying the above inequality by ð1 − ð1 − lÞζ/ζÞξ/k
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ð1 − lÞζ−1 and then integrating with respect to l over [0,1],
we have

ψ
α1 + α2

2
� �ð1

0

1 − 1 − lð Þζ
ζ

 !ξ/k

1 − lð Þζ−1

≤
ð1
0

1 − 1 − lð Þζ
ζ

 !ξ/k

1 − lð Þζ−1

× ψ lα1 + 1 − lð Þα2ð Þ + ψ 1 − lð Þα1 + lα2ð Þ
2 −

a
2M α1 − α2ð Þ

	 

dl,

ð30Þ

where

ψ
α1 + α2

2
� �

≤ ξ
k J

ζ

α+1
ψ α2ð Þ + kξ Jζα−2ψ α1ð Þ

	

−
a
2M α1 + α2ð ÞÞ



ζξ/kΓk ξ + kð Þ
2 α2 − α1ð Þζξ/k

ð31Þ

implies

−ψ
α1 + α2

2
� �

≥ − ξ
k J

ζ

α+1
ψ α2ð Þ + kξ Jζα−2ψ α1ð Þ a2M α1 + α2ð Þ

	 

ζξ/kΓk ξ + kð Þ
2 α2 − α1ð Þζξ/k

:

ð32Þ

Adding ψðϕÞ + ψðφÞ on both side of above inequality,

ψ ϕð Þ + ψ φð Þ − ψ
α1 + α2

2
� �

≥ ψ ϕð Þ + ψ φð Þ

− ξ
k J

ζ

α+1
ψ α2ð Þ + kξ Jζα−2ψ α1ð Þ

	 

ζξ/kΓk ξ + kð Þ
2 α2 − α1ð Þζξ/k

,
ð33Þ

which gives (23).
To prove (24), using strong convexity of ψ, we get

ψ ϕ + φ −
α11 + α21

2
� �

= ψ
ϕ + φ − α11 + ϕ + φ − α21

2

� �

≤ ψ
ϕ + φ − α11

2

� �
+ ψ

ϕ + φ − α21
2

� �

−
a
2M α2 − α1ð Þ,

ð34Þ

∀α11, α21 ∈ ϕ, φ½ �: ð35Þ

Let α11 = lα1 + ð1 − lÞα2 and α21 = ð1 − lÞα1 + lα2; then,

(34) leads

ψ ϕ + φ −
α1 + α2

2
� �

≤ ψ
ϕ + φ − lα1 + 1 − lð Þα2ð Þ

2

� �

+ ψ
ϕ + φ − 1 − lð Þα1 + lα2ð Þ

2

� �

−
a
2M α1 + α2ð Þ:

ð36Þ

Multiplying the above inequality by ð1 − ð1 − lÞζ/ζÞξ/k
ð1 − lÞζ−1 and then integrating with respect to l over [0,1],
we have

ψ ϕ + φ −
α1 + α2

2
� �ð1

0

1 − 1 − lð Þζ
ζ

 !ξ/k

1 − lð Þζ−1dl

≤
ð1
0

1 − 1 − lð Þζ
ζ

 !ξ/k

1 − lð Þζ−1 ψ
ϕ + φ − lα1 + 1 − lð Þα2ð Þ

2

� �	

+ ψ
ϕ + φ − 1 − lð Þα1 + lα2ð Þ

2

� �
−
a
2M α1 + α2ð Þ



dl,

ð37Þ

which can be written as

ψ ϕ + φ −
α1 + α2

2
� �

≤
ζξ/kΓk ξ + kð Þ
2 α2 − α1ð Þζξ/k

ξ
k J

ζ

α+1
ψ α2ð Þ + kξ Jζα−2ψ α1ð Þ

	

−
a
2M α1 + α2ð Þ



:

ð38Þ

If follows from the definition of strong convexity of
ψ that

ψ l ϕ + φ − α1ð Þ + 1 − lð Þ ϕ + φ − α2ð Þð Þ ≤ lψ ϕ + φ − α1ð Þ
+ 1 − lð Þψ ϕ + φ − α2ð Þ − l

a
2 1 − lð ÞM α1 − α2ð Þ,

ð39Þ

ψ 1 − lð Þ ϕ + φ − α1ð Þ + l ϕ + φ − α2ð Þð Þ ≤ 1 − lð Þψ ϕ + φ − α1ð Þ
+ lψ ϕ + φ − α2ð Þ − al 1 − lð ÞM α1 − α2ð Þ:

ð40Þ
Adding the above two inequalities and with the help

of Jensen-Mercer inequality, we have

ψ l ϕ + φ − α1ð Þ + 1 − lð Þ ϕ + φ − α2ð Þð Þ + ψ 1 − lð Þ ϕ + φ − α1ð Þð
+ l ϕ + φ − α2ð ÞÞ ≤ lψ ϕ + φ − α1ð Þ + 1 − lð Þψ ϕ + φ − α2ð Þ
− l 1 − lð ÞM α1 − α2ð Þ + 1 − lð Þψ ϕ + φ − α1ð Þ
+ lψ ϕ + φ − α2ð Þ − l 1 − lð ÞM α1 − α2ð Þ,
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ψ l ϕ + φ − α1ð Þ + 1 − lð Þ ϕ + φ − α2ð Þð Þ + ψ 1 − lð Þ ϕ + φ − α1ð Þð
+ ψ ϕ + φ − α2ð ÞÞ ≤ ψ ϕ + φ − α1ð Þ + ψ ϕ + φ − α2ð Þ
− 2al 1 − lð ÞM α2 − α1ð Þ ≤ 2 ψ ϕð Þ + ψ φð Þð Þ − ψ α1ð Þð
+ ψ α2ð ÞÞ − 2aM α2 − α1ð Þ:

ð41Þ

Multiplying the above inequality by ð1 − ð1 − lÞζ/ζÞξ/k
ð1 − lÞζ−1 and then integrating with respect to l over
[0,1], we have

ð1
0

1 − 1 − lð Þζ
ζ

 !ξ/k

1 − lð Þζ−1 S l ϕ + φ − α1ð Þ + 1 − lð Þ ϕ + φ − α2ð Þð Þ½

+ ψ 1 − lð Þ ϕ + φ − α1ð Þ + l ϕ + φ − α2ð Þð Þ�dl
≤ 2 ψ ϕð Þ + ψ φð Þð Þ − ψ α1ð Þ + ψ α2ð Þð Þ

−
a
2M α2 − α1ð Þ

ð1
0

1 − 1 − lð Þζ
ζ

 !ξ/k

1 − lð Þζ−1dl,

ð42Þ

that is,

ζξ/kΓk ξ + kð Þ
2 α2 − α1ð Þζξ/k

ξ
k J

ζ

α+1
ψ α2ð Þ+ξ

k J
ζ
α−2
ψ α1ð Þ − a

2M α1 + α2ð Þ
	 


≤ ψ ϕð Þ + ψ φð Þ − ψ α1ð Þ + ψ α2ð Þ
2

� �
−
a
2M α2 − α1ð Þ2:

ð43Þ

Combining (38) and (43) leads to (24).

Remark 9. Let a = 0, ζ = ξ = k = 1; then, Theorem 8 leads to

ψ ϕ + φ −
α1 + α2

2
� �

≤ ψ ϕð Þ + ψ φð Þ −
ð1
0
ψ lα1 + 1 − lð Þα2ð Þdl

≤ ψ ϕð Þ + ψ φð Þ − ψ
α1 + α2

2
� �

,

ð44Þ

ψ ϕ + φ −
α1 + α2

2
� �

≤
1

α2 − α2

ðα2
α1

ψ ϕ + φlð Þdl

≤ ψ ϕð Þ + ψ φð Þ − ψ
ψ α1ð Þ + ψ α2ð Þ

2

� �
,

ð45Þ

which was proved in Theorem 2.1 of [28].

Lemma 10. Let ζ, ξ > 0, ϕ < φ and ψ : ½ϕ, φ�⟶ R be a differ-
entiable mapping such that ψ′ ∈ L½ϕ, φ�: Then, the inequality

2ζξ/k−1ζξ/kΓk ξ + kð Þ
α2 − α1ð Þζξ/k

ξ
k J ϕ+φ−α1+α2/2ð Þψ ϕ + φ − α1ð Þ
n

+ ξ
k J ϕ+φ−α1+α2/2ð Þψ ϕ + φ − α2ð Þxψ ϕ + φ −

α1 + α2
2

� �o

= α2 − α1ð Þζξ/k
4

ð1
0

1 − 1 − lð Þζ
ζ

ξ/k
0
@

1
A

× ψ′ ϕ + φ −
2 − l
2

α1 +
l
2
α2

� �� �	

− ψ′ ϕ + φ −
l
2
α1 +

2 − l
2

α2

� �� �

ð46Þ

holds ∀α1, α2 ∈ ½ϕ, φ�.

Proof. Suppose

P = P1 − P2ð Þ α2 − α1
4 ζξ/k, ð47Þ

where

P1 =
ð1
0

1 − 1 − lð Þζ
ζ

 !ξ/k

ψ′ ϕ + φ −
2 − l
2 α1 +

l
2 α2

� �� �
dl,

P2 =
ð1
0

1 − 1 − lð Þζ
ζ

 !ξ/k

ψ′ ϕ + φ −
l
2 α1 +

2 − l
2 α2

� �� �
dl:

ð48Þ

Using integration by parts, we get

= −
2

ζξ/k α2 − α1ð Þ
ψ ϕ + φ −

α1 + α2
2

� �
+ 2ζξ/k
ζξ/k α2 − α1ð Þ

ð1
0

� 1 − 1 − lð Þζ
ζ

 !ξ/k

ψ′ ϕ + φ −
2 − l
2 α1 +

l
2 α2

� �� �
dl

= −
2

ζξ/k α2 − α1ð Þ
ψ ϕ + φ −

α1 + α2
2

� �

+ 2ζξ/k
ζξ/k α2 − α1ð Þζξ/k + 1

ðϕ+φ−α1
ϕ+φ−α1−α2

2

� α2 − α2
2

� �ζ
− l1 − ϕ + φ −

α1 + α2
2

� �ζ� �ξ/k−1 

× ψ l1ð Þ
α1 − ϕ + φ − α1 + α2/2ð Þ1−ζ

!
dl1

= −
2

ζξ/k α2 − α1ð Þ
ψ ϕ + φ −

α1 + α2
2

� �

+ 2
y − x

� �ζξ/k+1Γk ξ + kð Þ
ζξ/k−1

ξ

k

Jζϕ+φ−α1+α2/2+ψ ϕ + φ − α1ð Þ:

ð49Þ
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Similarly, using integration by parts for P2, we get

P2 =
ð1
0

1 − 1 − lð Þζ
ζ

 !ξ/k

ψ′ ϕ + φ −
l
2 α1 +

2 − l
2 α2

� �� �
dl

= 2
ζξ/k α2 − α1ð Þ

ψ ϕ + φ −
α1 + α2

2
� �

−
2

y − x

� �ζξ/k+1Γk ξ + kð Þ
ζξ/k−1

ξ

k

Jζϕ+φ−α1+α2/2ð Þ − ψ ϕ + φ − α2ð Þ:

ð50Þ

Therefore, inequality (43) follows from (47)–(50).

Remark 11.

(1) If we take K = 1, α1 = θ, and α2 = υ in Lemma 10,
then we can get Lemma 3.1 of [26]

(2) If we take ζ = K = 1, α1 = θ, and α2 = υ, then Lemma
10 reduces to Lemma 1.1 of [29]

Lemma 12. Let ζ, ξ > 0, ϕ < φ and ψ : ½ϕ, φ�⟶ℝ be a dif-
ferentiable mapping such that ψ′ ∈ ψ½ϕ, φ�. Then, the identity

ψ ϕ + φ − α1ð Þ + ψ ϕ + φ − α2ð Þ
2

−
ζξ/kΓk ξ+kð Þ

2 α2 − α1ð Þζξ/k

× ξ
k J

ζ

ϕ+φ−α2ð Þ + ψ ϕ + φ − α1ð Þ + ξ
k J

ζ

ϕ+φ−α2ð Þ + ψ ϕ + φ − α1ð Þ
	 


= α2 − α1ð Þζξ/k
2

ð1
0

1 − 1 − lð Þζ
ζ

 !ξ/k

−
1 − lð Þζ
ζ

 !ξ/k2
4

3
5

× ψ′ ϕ + φ − lα1 + 1 − lð Þα2ð Þð Þdl
ð51Þ

holds ∀α1, α2 ∈ ½ϕ, φ�.

Proof. Suppose

P = α2 − α1ð Þζξ/k
2

ð1
0

1 − 1 − lð Þζ
ζ

 !ξ/k

−
1 − lð Þζ
ζ

 !ξ/k2
4

3
5

× ψ′ ϕ + φ − lα1 + 1 − lð Þα2ð Þð Þdl

= α2 − α1ð Þζξ/k
2 P1 − P2f g:

ð52Þ

Then, we clearly see that

P1 =
ð1
0

1 − 1 − lð Þζ
ζ

 !ξ/k

× ψ′ ϕ + φ − lα1 + 1 − lð Þα2ð Þð Þdla

= 1
αξ/k

ψ ϕ + φ − α1ð Þ
α2 − α1

−
ξ/k

α2 − α1

ð1
0

1 − 1 − lð Þζ
ζ

 !ξ/k−1

× 1 − lð Þζ−1ψ ϕ + φ − lα1 + 1 − lð Þα2ð Þð Þdl

= 1
αξ/k

ψ ϕ + φ − α1ð Þ
α2 − α1

−
Γk ξ + kð Þ

α2 − α1ð Þζξ/k+1

� ζ
k J

ζ

ϕ+φ−α2ð Þ + ψ ϕ + φ − α2ð Þ
	 


,

ð53Þ

and

P2 =
ð1
0

1 − lð Þζ
ζ

 !ξ/k

× ψ′ ϕ + φ − lα1 + 1 − lð Þα2ð Þð Þdl

= −
1
ζξ/k

ψ ϕ + φ − α2ð Þ
α2 − α1

+ ξ/k
α2 − α1

ð1
0

1 − lζ

ζ

 !ξ/k−1

× lζ−1ψ ϕ + φ lα1 + 1 − lð Þyð Þð Þdl

= −
1
ζξ/k

ψ ϕ + φ − α2ð Þ
α2 − α1

+ Γk ξ + kð Þ
α2 − α1ð Þζξ/k+1

� ξ
k J

ζ

ϕ+φ−α2ð Þ − ψ ϕ + φ − α1ð Þ
	 


:

ð54Þ

Therefore, identity (51) follows from (52)–(54).

Corollary 13. If we take ζ = ξ = k = 1, then Lemma 12 leads
to the equality

ψ ϕ + φ − α1ð Þ + ψ ϕ + φ − α2ð Þ
2

−
1

α2 − α1

ðϕ+φ−α1
ϕ+φ−α2

ψ lað Þdl

= α2 − α1
2

ð1
0
2l − 1ð ÞS′ ϕ + φ − lα1 + 1 − lð Þyð Þð Þdl:

ð55Þ

Remark 14. If we take α1 = ϕ = θ and α2 = φ = υ in Corollary
13, then (55) becomes

ψ ϕð Þ + ψ φð Þ
2 −

1
φ − ϕ

ð1
0
ψ lð Þdl = ϕ − φ

2

ð1
0
2l − 1ð Þψ′ 1 − lð Þϕ + lφð Þdl,

ð56Þ

which was proved in Lemma 2.1 of [30].

Theorem 15. Let ζ, ξ > 0, ϕ < φ and ψ : ½ϕ, φ�⟶ℝ be a dif-

ferentiable mapping such that ψ′ ∈ L½ϕ, φ� and jψ′jq is a
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convex mapping on ½ϕ, φ�. Then, the inequality

2ζξ/k−1ζξ/kΓk ξ + kð Þ
α2 − α1ð Þζξ/k

ξ
k J

ζ

ϕ+φ−α2+α1/2ð Þ + ψ ϕ + φ − α1ð Þ
	�����

+ ξ
k J

ζ

ϕ+φ−α2+α1/2ð Þ + ψ ϕ + φ − α2ð Þ



− ψ ϕ + φ −
α2 + α1

2

� ������ ≤ α2 − α1
4

ζξ/k

� ψ′ ϕð Þ + ψ′ φð Þ�� ��� � 1

ζξ/k+1
B

ξ

k
+ 1, 1

ζ

� � !"

− ψ′ α1ð Þ�� �� 1

2ζξ/k+1
B

ξ

k
+ 1, 2

ζ

� �
+ B

ξ

k
+ 1, 1

ζ

� � ( )

+ ψ′ α2ð Þ�� �� 1

2ζξ/k+1
B

ξ

k
+ 1, 2

ζ

� �
− B

ξ

k
+ 1, 1

ζ

� � ( )

−
a
4

ð1
0

1 − 1 − lð Þζ
ζ

 !ξ/k

l 2 − lð Þdl + ψ′ ϕð Þ + ψ′ φð Þ�� ��� �

� 1

ζξ/k+1
B

ξ

k
+ 1, 2

ζ

� � !

− ψ′ α1ð Þ�� �� 1

2ζξ/k+1
B

ξ

k
+ 1, 1

ζ

� �
− B

ξ

k
+ 1, 2

ζ

� � ( )

+ ψ′ α2ð Þ�� �� 1

2ζξ/k+1
B

ξ

k
+ 1, 2

ζ

� �
+ B

ξ

k
+ 1, 1

ζ

� � ( )

−
a
4

ð1
0

1 − 1 − lð Þζ
ζ

 !ξ/k

l 2 − lð Þdl
3
5

ð57Þ

holds for all α2, α1 ∈ ½ϕ, φ�:

Proof. It follows from Lemma 10, Jensen-Mercer inequal-
ity, power mean inequality, and the convexity of function
jψ′jq that

2ζξ/k−1ζξ/kΓk ξ + kð Þ
α2 − α1ð Þζξ/k

ξ
k J

ζ

ϕ+φ−α2+α1/2ð Þ + ψ ϕ + φ − α1ð Þ
	�����

+ ξ
k J

ζ

ϕ+φ−α2+α1/2ð Þ + ψ ϕ + φ − α2ð Þ


− ψ ϕ + φ −

α2 + α1
2

� �����
≤
α2 − α1

4 ζξ/k
ð1
0

1 − 1 − lð Þζ
ζ

 !ξ/k

ψ′ ϕ + φ −
2 − l
2 α1 +

l
2 α2

� �� �����
����dl

8<
:

+
ð1
0

1 − 1 − lð Þζ
ζ

 !ξ/k

ψ′ ϕ + φ −
l
2 α1 +

2 − l
2 α2

� �� �����
����dl

8<
:

9=
;:

ð58Þ

Using the definition of strong convexity

≤
α2 − α1

4 ζξ/k
ð1
0

1 − 1 − lð Þζ
ζ

 !ξ/k
8<
: ψ′ ϕð Þ�� �� + ψ′ φð Þ�� ��n

−
2 − l
2 ψ′ α1jð Þ + l

2

����
����ψ′ α2jð Þ

� �
−
al
2

2 − l
2

� �
α2 − α1ð Þ2gdl

+
ð1
0

1 − 1 − lð Þζ
ζ

 !ξ/k

ψ′ ϕð Þ�� �� + ψ′ φð Þ�� �� − l
2 ψ′ α1jð Þ�� ���	8<

:
+ 2 − l

2 ψ′ α2jð Þ�� Þ − al
2

2 − l
2

� �
α2 − α1ð Þ2gdlg ≤ α2 − α1

4 ζξ/k

� ψ′ ϕð Þ�� �� + ψ′ φð Þ�� ��� �ð1
0

1 − 1 − lð Þζ
ζ

 !ξξ/k/k

dl

8<
:
− ψ′ α1ð Þ�� ��ð1

0

1 − 1 − lð Þζ
ζ

 !ξ/k 2 − l
2 dl + ψ′ α2ð Þ�� ��ð1

0

0
@

� 1 − 1 − lð Þζ
ζ

 !ξ/k
l
2 dlÞ − α2 − α1ð Þ2

ð1
0

1 − 1 − lð Þζ
ζ

 !ξ/k
al
2

� 2 − l
2

� �
dlg + ψ′ ϕð Þ�� �� + ψ′ φð Þ�� ��� �ð1

0

1 − 1 − lð Þζ
ζ

 !ξ/k

dl

8<
:

− ψ′ α1ð Þ�� ��ð1
0

1 − 1 − lð Þζ
ζ

 !ξ/k
l
2 dl

0
@

+ ψ′ α2ð Þ�� ��ð1
0

1 − 1 − lð Þζ
ζ

 !ξ/k 2 − l
2 dl

1
A − α2 − α1ð Þ2

ð1
0

� 1 − 1 − lð Þζ
ζ

 !ξ/k
al
2

2 − l
2

� �
dl

9=
;:

ð59Þ

Therefore, inequality (57) can be derived after some
simple calculation.

Remark 16. From Theorem 15, we clearly see that

(1) If we take a = 0, α1 = x, and α2 = y in Theorem 15,
then we get Theorem 3.1 of [25]

(2) If we take a = 0, ζ = k = 1, α1 = θ, and α2 = ϑ in The-
orem 15, then we get Theorem 3.1 of [26]

(3) If we take a = 0, ζ = k = 1, α1 = θ, and α2 = ϑ in The-
orem 15, then we get Theorem 5 of [29] in the case
of q = 1

Theorem 17. Let q > 1, ζ, ξ > 0, ϕ < 0 and ψ : ½ϕ, φ�⟶ℝ be
a differentiable mapping such that ψ′ ∈ L½ϕ, φ� and jψ′jq is a
convex mapping on ½ϕ, φ�. Then, the inequality

8 Journal of Function Spaces



2ζξ/k−1ζξ/kΓk ξ + kð Þ
α2 − α1ð Þζξ/k

+ ξ
kJ

ζ

ϕ+φ−α2+α1/2ð Þ + ψ ϕ + φ − α1ð Þ
	�����

+ξ
k J

ζ
ϕ+φ−α2+α1/2ð Þ + ψ ϕ + φ − α2ð Þ

o
− ψ ϕ + φ −

α2 + α1
2

� ������
≤
α2 − α1

4
ζξ/k
� 1

ζξ/k+1
B

ξ

k
+ 1, 1

ζ

� � !1−1/q

× ψ′ ϕð Þ�� ��q + ψ′ φð Þ�� ��q� � 1

ζξ/k+1
B

ξ

k
+ 1, 1

ζ

� � !(

− ψ′ α1ð Þ�� ��q 1

2ζξ/k+1
B

ξ

k
+ 1, 1

ζ

� �
+ B

ξ

k
+ 1, 2

ζ

� � ( )

+ ψ′ α2ð Þ�� ��q 1

2ζξ/k+1
B

ξ

k
+ 1, 2

ζ

� �
− B

ξ

k
+ 1, 1

ζ

� � ( )
−
a
4

ð1
0

� 1 − 1 − lð Þζ
ζ

 !ξ/k

l 2 − lð Þdl + ψ′ ϕð Þ�� ��q + ψ′ φð Þ�� ��q� �

� 1

ζξ/k+1
× B

ξ

k
+ 1, 2

ζ

� � !
− ψ′ α1ð Þ�� ��q 1

2ζξ/k+1
B

ξ

k
+ 1, 2

ζ

� � (

− B
ξ

k
+ 1, 1

ζ

� �)
+ ψ′ α2ð Þ�� ��q 1

2ζξ/k+1
B

ξ

k
+ 1, 1

ζ

� �
+ B

ξ

k
+ 1, 2

ζ

� � ( )

−
a
4

ð1
0

1 − 1 − lð Þζ
ζ

 !ξ/k

l 2 − lð Þdl
3
5
1/q

ð60Þ

holds for all α2, α1 ∈ ½ϕ, φ�.

Proof. It follows from Lemma 10, Jensen-Mercer inequality,
power-mean inequality, and the convexity of function jψ′jq
that

2ζξ/k−1ζξ/kΓk ξ + kð Þ
α2 − α1ð Þζξ/k

ξ
k J

ζ

ϕ+φ−α2+α1/2ð Þ + ψ ϕ + φ − α1ð Þ
	�����

+ ξ
k J

ζ

ϕ+φ−α2+α1/2ð Þ + ψ ϕ + φ − α2ð Þ − ψ ϕ + φ −
α1 + α2

2
� �
�����

≤
α2 − α1

4 ζξ/k
ð1
0

1 − 1 − lð Þζ
�

ζ

0
@

1
A

ξ/k

dl

0
B@

1
CA

1−1/q8>><
>>:

×
ð1
0

1 − 1 − lð Þζ
ζ

 !ξ/k

ψ′ ϕ + φ −
l
2 ζ +

2 − l
2 y

� �� �����
����
q

dl

0
@

1
A

1/q

+
ð1
0

1 − 1 − lð Þζ
ζ

 !ξ/k

dl

0
@

1
A

1−1/q

×
ð1
0

1 − 1 − lð Þζ
ζ

 !ξ/k0
@

� ψ′ ϕ + φ −
2 − la
2 ζ + l

2 y
� �� �����

����
q

dl
�1/q)

:

ð61Þ

Using definition of strong convexity, we have

≤
α2 − α1

4 ζξ/k
ð1
0

1 − 1 − lð Þζ
ζ

 !ξ/k
8<
: ψ′ ϕð Þ�� ��q + ψ′ φð Þ�� ��qn

−
2 − l
2 ψ′ α1ð Þ�� ��q + l

2 ψ′ α2ð Þ�� ��q� �
−
al
2

� 2 − l
2

� �
α2 − α1ð Þ2gdl +

ð1
0

1 − 1 − lð Þζ
ζ

 !ξ/k
8<
:

� ψ′ ϕð Þ�� ��q + ψ′ φð Þ�� ��q − l
2 ψ′ α1ð Þ�� ��q + 2 − l

2 ψ′ α2ð Þ�� ��q� �	

−
al
2

2 − l
2

� �
α2 − α1ð Þ2gdlg ≤ α2 − α1

4 ζξ/k

� ψ′ ϕð Þ�� ��q + ψ′ φð Þ�� ��q� �ð1
0

1 − 1 − lað Þζ
ζ

 !ξ/k

dl

8<
:

− ψ′ α1ð Þ�� ��qð1
0

1 − 1 − lð Þζ
ζ

 !ξ/k 2 − l
2 dl + ψ′ α2ð Þ�� ��qð1

0

0
@

� 1 − 1 − lð Þζ
ζ

 !ξ/k
l
2 dlÞ − α2 − α1ð Þ2

ð1
0

� 1 − 1 − lð Þζ
ζ

 !ξ/k
al
2

2 − l
2

� �
dl

9=
;

+ ψ′ ϕð Þ�� ��q + ψ′ φð Þ�� ��q� �ð1
0

1 − 1 − lð Þζ
ζ

 !ξ/k

dl

8<
:

− ψ′ α1ð Þ�� ��qð1
0

1 − 1 − lð Þζ
ζ

 !ξ/k
l
2 dl + ψ′ α2ð Þ�� ��qð1

0

0
@

� 1 − 1 − lð Þζ
ζ

 !ξ/k 2 − l
2 dlÞ − α2 − α1ð Þ2

ð1
0

� 1 − 1 − lð Þζ
ζ

 !ξ/k
al
2

2 − l
2

� �
dl

9=
;:

ð62Þ

Making simple simplification, we get (60) from (61).

Remark 18. Theorem 17 leads to

(1) If we take a = 0, α1 = x, and α2 = y in Theorem 17,
then we get Theorem 2.12 of [25]

(2) If we take a = 0, k = 1, α1 = x = ϕ, and α2 = y = φ in
Theorem 17, then we get Theorem 3.1 of [26]

(3) If we take a = 0, ζ = k = 1, α1 = x = ϕ, and α2 = y = φ
in Theorem 17, then we get Theorem 5 of [29] in
the case of q = 1
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Theorem 19. Let q > 1, ζ, ξ > 0, ϕ < 0 and ψ : ½ϕ, φ�⟶ℝ be
a differentiable mapping such that ψ′ ∈ L½ϕ, φ� and jψ′jq is a
convex mapping on ½ϕ, φ�. Then, the inequality

2ζξ/k−1ζξ/kΓk ξ + kð Þ
α2 − α1ð Þζξ/k

ξ
k J

ζ

ϕ+φ−α2+α1/2ð Þ + ψ ϕ + φ − α1ð Þ
	�����

+ξ
k J

ζ
ϕ+φ−α2+α1/2ð Þ + ψ ϕ + φ − α2ð Þ

o
− ψ ϕ + φ −

α2 + α1
2

� ������
≤
α2 − α1

4
ζξ/k

1

ζξ/kp+1
B

ξ

k
p + 1, 1

ζ

� � !1/p

� ψ′ ϕð Þ�� ��q + ψ′ φð Þ�� ��q − 3 ψ′α1
�� ��q + ψ′α2

�� ��q
4

 !
−
al
2

 (

� 2 − l
2

� �
α2 − α1ð Þ2

�!1/q

+ ψ′ ϕð Þ�� ��q + ψ′ φð Þ�� ��q −�

� ψ1 α1
� ��� �� + 3 ψ′ α2ð Þ�� �� !

−
al
2

2 − l
2

� �
α2 − α1ð Þ2

!1/q)
:

ð63Þ

Proof. It follows from Lemma 10, Jensen-Mercer inequality,
power mean inequality, and the convexity of function jψ′jq that

2ζξ/k−1ζξ/kΓk ξ + kð Þ
α2 − α1ð Þζξ/k

ξ
k J

ζ

ϕ+φ−α2+α1/2ð Þ + ψ ϕ + φ − α1ð Þ
	�����

+ ξ
k J

ζ

ϕ+φ−α2+α1/2ð Þ + ψ ϕ + φ − α2ð Þ − ψ ϕ + φ −
α1 + α2

2
� �
�����

≤
α2 − α1

4 ζξ/k
ð1
0

1 − 1 − lð Þζ
�

ζ

0
@

1
A

ξ/kp

dl

0
B@

1
CA

1/p8>><
>>:

×
ð1
0
ψ′ ϕ + φ −

2 − l
2 ζ + l

2 y
� �� �����

����
q

dl
� �1/q

+

�
ð1
0
ψ′ ϕ + φ −

l
2 ζ +

2 − l
2 y

� �� �����
����
q

dl
� �1/q)

:

ð64Þ

It follows from the strong convexity of jψ′jq

≤
α2 − α1

4 ζξ/k
ð1
0

1 − 1 − lð Þζ
ζ

 !ξ/kp

dl

0
@

1
A

1/p

×
ð1
0

ψ′ ϕð Þ�� ��q + ψ′ φð Þ�� ��q��	

−
2 − l
2 ψ′ α1ð Þ�� ��q + l

2 ψ′ α2ð Þ�� ��q� �
−
al
2

2 − l
2

� �
α2 − α1ð Þ2

�
Þ
1/q
dl

+
ð1
0

ψ′ ϕð Þ�� ��q + ψ′ φð Þ�� ��q − l
2 ψ′ α1ð Þ�� ��q + 2 − l

2 ψ′ α2ð Þ�� ��q� ���

−
al
2

2 − l
2

� �
α2 − α1ð Þ2

�
Þ
1/q
dl

)
≤
α2 − α1

4 ζξ/k
1

ζξ/kp+1
B

ξ

k
p + 1, 1

ζ

� � !1/p

� ψ′ ϕð Þ�� ��q + ψ′ φð Þ�� ��q − 3 ψ′α1
�� ��q + ψ′α2

�� ��q
4

 !
−
al
2

 (

� 2 − l
2

� �
α2 − α1ð Þ2

�
Þ
1/q

+ ψ′ ϕð Þ�� ��q + ψ′ φð Þ�� ��q −�

� ψ′ α1ð Þ�� �� + 3 ψ′ α2ð Þ�� �� !
−
al
2

2 − l
2

� �
α2 − α1ð Þ2

!1/q)
,

ð65Þ

which completes the proof.

Corollary 20. Let a = 0 and ξ = k = 1. Then, Theorem 19
leads to

1
α2 − α1

ðϕ+φ−α1
ϕ+φ−α2

ψ lð Þdl − ψ ϕ + φ −
α1 + α2

2

� ������
�����

≤
1

21/p
ψ′ ϕð Þ�� ��q + ψ′ φð Þ�� ��q − 3 ψ′α1

�� ��q + ψ′α2
�� ��q

4

 ! (

� −
al
2

2 − l
2

� �
α2 − α1ð Þ2

�!1/q

+ ψ′ ϕð Þ�� ��q + ψ′ φð Þ�� ��q − ψ′ α1ð Þ�� �� + 3 ψ′ α2ð Þ�� �� ! 

−
al
2

2 − l
2

� �
α2 − α1ð Þ2

�1/q
)
:

ð66Þ

Theorem 21. Let ζ, ξ > 0, p, q > 1 with 1/p + 1/q = 1, ϕ < φ
and ψ : ½ϕ, φ�⟶ℝ be a differentiable mapping such that
ψ′ ∈ L½ϕ, φ� and jψ′jq is a convex mapping on ½ϕ, φ�. Then,
the inequality

2ζξ/k−1ζξ/kΓk ξ + kð Þ
α2 − α1ð Þζξ/k

ξ
k J

ζ

ϕ+φ−α2+α1/2ð Þ + ψ ϕ + φ − α1ð Þ + ξ
k J

ζ

ϕ+φ−α2+α1/2ð Þ

	�����
+ ψ ϕ + φ − α2ð Þg − ψ ϕ + φ −

α2 + α1
2

� �
j ≤

α2 − α1ζ
ξ/k

� �
4

� ψ′ ϕð Þ�� ��q + ψ′ φð Þ�� ��q� � B ξ/k + 1, ξ/kð Þ
ξξ/k+1

 !(

−
B ξ/k + 1, 2/ξð Þ + B ξ/k + 1, 1/ξð Þ

2ζξ/k+1

 !
ψ′ α1ð Þ�� ��q 

+ B ξ/k + 1, 1/ξð Þ + B ξ/k + 1, 2/ξð Þ
2ζξ/k+1

 !
ψ′ α1ð Þ�� ��q

−
al
2

2 − l
2

� �
α2 − α1j j2

�1/q
+ ψ′ ϕð Þ�� ��q + ψ′ φð Þ�� ��q� �

� B ξ/k + 1, 1/ξð Þ
ξξ/k+1

 !
−

B ξ/k + 1, 1/ξð Þ − B ξ/k + 1, 2/ξð Þ
2ζξ/k+1

 !
S′ α1ð Þ�� ��q 

+ B ξ/k + 1, 2/ξð Þ + B ξ/k + 1, 1/ξð Þ
2ζξ/k+1

 !
ψ′ α2ð Þ�� ��q

−
al
2

2 − l
2

� �
α2 − α1j j2

�1/q
)

ð67Þ

holds ∀α1, α1 ∈ ½ϕ, φ�.
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Proof. It follows from Lemma 10, Jensen-Mercer inequality,
strong convexity of jψ′jq, and Holder integral inequality that

2ζξ/k−1ζξ/kΓk ξ + kð Þ
α2 − α1ð Þζξ/k

ξ
k J

ζ

ϕ+φ−α2+α1/2ð Þ + ψ ϕ + φ − α1ð Þ + ξ
k J

ζ

ϕ+φ−α2+α1/2ð Þ

	�����
+ ψ ϕ + φ − α2ð Þg − ψ ϕ + φ −

α2 + α1
2

� ������ ≤ α2 − α1ð Þζξ/k
4

�
ð1
0
1dl

� �1/p ð1
0

1 − 1 − lð Þζ
ζ

 !ξ/k

ψ′ ϕ + φ −ð��
0
@

8<
:

� 2 − l
2 α1 +

l
2 α2

� ��
j
q

dl
�1/q

+
ð1
0
1dl

� �1/p

×
ð1
0

1 − 1 − lð Þζ
ζ

 !ξ/k

ψ′ ϕ + φ −
l
2 α1 +

2 − l
2 α2

� �� �q����
����dl

0
@

1
A

1/q9=
;

≤
α2 − α1ð Þζξ/k

4

ð1
0

1 − 1 − lð Þζ
ζ

 !ξ/k

ψ′ ϕð Þ�� ��q + ψ′ φð Þ�� ��qh0
@

8<
:

−
2 − l
2 ψ′ α1ð Þ�� ��q + l

2 ψ′ α2ð Þ�� ��q� �
−
al
2

2 − l
2

� �
α2 − α1ð Þ2

�q�1/q

+
ð1
0

1 − 1 − lð Þζ
ζ

 !ξ/k

ψ′ ϕð Þ�� ��q + ψ′ φð Þ�� ��qh0
@

−
l
2 ψ′ α1ð Þ�� ��q + 2 − l

2 ψ′ α2ð Þ�� ��q� �
−
al
2

2 − l
2

� �
α2 − α1ð Þ2

�
dlÞ

1/q
)
:

ð68Þ

By making necessary changes, we get (67).

Theorem 22. Let ϕ < φ and ψ : ½ϕ, φ�⟶ℝ be a differentia-
ble mapping such that ψ′ ∈ L½ϕ, φ� and jψ′j is a convex map-
ping on½ϕ, φ�. Then, one has

ϕ + φ − α1ð Þ + ψ ϕ + φ − α2ð Þ
2

−
ζξ/kΓk ξ + kð Þ
2 α2 − α1ð Þζξ/k

�����
× ξ

k J
ζ

ϕ+φ−α2ð Þ + ψ ϕ + φ − α1ð Þ + ξ
k J

ζ

ϕ+φ−α1ð Þ + ψ ϕ + φ − α2ð Þ
	 
����

≤
α2 − α1ð Þζξ/k

2
ψ′ ϕð Þ + ψ′ φð Þ���� ��� � B 1/ξð Þ, ξ/k + 1ð Þ

ζξ/k+1

("

−
ψ′ α1ð Þ�� ��
ζξ/k+1

B1/2ζ
1
ζ
, ξ
k
+ 1

� �
+ B

2
ζ
, ξ
k
+ 1

� �
− B

1
ζ
, ξ
k
+ 1

� �	 


−
ψ′ α2ð Þ�� ��
ζξ/k+1

B1/2ζ
1
ζ
, ξ
k
+ 1

� �
− B

2
ζ
, ξ
k
+ 1

� �
− al 1 − lð Þ α2 − α1j j2

	 



+ ψ′ ϕð Þ + ψ′ φð Þ���� ��� � B 1/ξð Þ, ξ/k + 1ð Þ
ζξ/k+1

−
ψ′ α1ð Þ�� ��
ζξ/k+1

(

� B1/2ζ
1
ζ
, ξ
k
+ 1

� �
− B

2
ζ
, ξ
k
+ 1

� �	 

−

ψ′ α2ð Þ�� ��
ζξ/k+1

B1/2ζ
1
ζ
, ξ
k
+ 1

� �	

+ B
2
ζ
, ξ
k
+ 1

� �
− B

1
ζ
, ξ
k
+ 1

� �
− al 1 − lð Þ α2 − α1j j2


)#
,∀α2, α1 ∈ ϕ, φ½ �:

ð69Þ

Proof. By using Lemma 12 and similar arguments as in the
proofs of previous theorem, we have

ψ ϕ + φ − α1ð Þ + ψ ϕ + φ − α2ð Þ
2 −

ζξ/kΓk ξ + kð Þ
2 α2 − α1ð Þζξ/k

�����
× ξ

k J
ζ

ϕ+φ−α2ð Þ + ψ ϕ + φ − α1ð Þ+ξ
k J

ζ
ϕ+φ−α1ð Þψ ϕ + φ − α2ð Þ

	 
����
≤

α2 − α1ð Þζξ/k
2

ð1
0

1 − 1 − lað Þζ
ζ

 !ξ/k

−
1 − lð Þζ
ζ

 !ξ/k
������

������
× ψ′ ϕ + φ − lα1 + 1 − lð Þα2ð Þð Þ�� ��dl

≤
α2 − α1ð Þζξ/k

2

ð1
0

1 − 1 − lað Þζ
ζ

 !ξ/k

−
1 − lð Þζ
ζ

 !ξ/k
������

������
× ψ′ ϕð Þ�� �� + ψ′ φð Þ�� �� − l ψ′ α1ð Þ�� �� + 1 − lð Þ α2ð Þj j

� �n

− al 1 − lð Þ α2 − α1j j2gdl ≤ α2 − α1ð Þζξ/k
2

ð1/2
0

1 − 1 − lð Þζ
ζ

 !ξ/k2
4

2
4

−
1 − lð Þζ
ζ

 !ξ/k35 × ψ′ ϕð Þ�� �� + ψ′ φð Þ�� �� − l ψ′ α1ð Þ�� ���n

+ 1 − lð Þ α2ð Þj jÞ − al 1 − lð Þ α2 − α1j j2
o
dl +

ð1
1/2

� 1 − 1 − lð Þζ
ζ

 !ξ/k

−
1 − lð Þζ
ζ

 !ξ/k2
4

3
5

× ψ′ ϕð Þ�� �� + ψ′ φð Þ�� �� − l ψ′ α1ð Þ�� �� + 1 − lð Þ α2ð Þj j
� �n

− al 1 − lð Þ α2 − α1j j2
o
dl,

ð70Þ
which completes the proof.

3. New Inequalities by Improved
Hölder Inequality

Theorem 23. Let ξ, ζ > 0, p, q > 1 with 1/p + 1/q = 1, ϕ < φ
and ψ : ½ϕ, φ�⟶ℝ be a differentiable mapping such that
ψ′ ∈ l½ϕ, φ� and jψ′jq is a strong convex mapping on ½ϕ, φ�.
Then, one has

2ζξ/k−1ζξ/kΓk ξ + kð Þ
α2 − α1ð Þζξ/k

ξ
k J

ζ

ϕ+φ−α2+α1/2ð Þ + ψ ϕ + φ − α1ð Þ
	�����

+ ξ
k J

ζ

ϕ+φ−α2+α1/2ð Þψ ϕ + φ − α2ð Þ


− ψ ϕ + φ −

α2 + α1
2

� ������
≤

α2 − α1ð Þζξ/k
2

B 2/ζ, ξ/kp + 1ð Þ
ζξ/kp+1

 !1/p
ψ′ ϕð Þ�� ��q + ψ′ φð Þ�� ��q

2

 ("

−
5
12

ψ′ α1ð Þ�� ��q + 1
12

ψ′ α2ð Þ�� ��q� �
− a

5
144

α2 − α1ð Þ2Þ +

� B 1/ζ, ξ/kp + 1ð Þ − B 2/ζ, ξ/kp + 1ð Þ
ζξ/kp+1

 !1/p

� ψ′ ϕð Þ�� ��q + ψ′ φð Þ�� ��q
2

−
1
3
ψ′ α1ð Þ�� ��q + 1

6
ψ′ α2ð Þ�� ��q� � 
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− a
1
18

α2 − α1ð Þ2Þg + B 2/ζ, ξ/kp + 1ð Þ
ζξ/kp+1

 !1/p
ψ′ ϕð Þ�� ��q + ψ′ φð Þ�� ��q

2

 

−
1
12

ψ′ α1ð Þ�� ��q + 5
12

ψ′ α2ð Þ�� ��q� �
− a

5
144

α2 − α1ð Þ2Þ

+ B 1/ζ, ξ/kp + 1ð Þ − B 2/ζ, ξ/kp + 1ð Þ
ζξ/kp+1

 !1/p

× ψ′ ϕð Þ�� ��q + ψ′ φð Þ�� ��q
2

 

−
1
6

ψ′ α1ð Þ�� ��q + 1
3
ψ′ α2ð Þ�� ��q� �

− a
1
18

α2 − α1ð Þ2Þ
)#

: ð71Þ

Proof. It follows from Lemma 10, Jensen-Mercer inequality,
the convexity of jψ′jq, and Holder-Iscan integral inequality
given in Theorem 1.4 of [31] that

2ζξ/k−1ζξ/kΓk ξ + kð Þ
α2 − α1ð Þζξ/k

ξ
k J

ζ

ϕ+φ−α2+α1/2ð Þ + ψ ϕ + φ − α1ð Þ+ξ
k J

ζ
ϕ+φ−α2+α1/2ð Þ + ψ ϕ + φ − α2ð Þ

	 
�����
− ψ ϕ + φ −

α2 + α1
2

� �
j ≤ α2 − α1ð Þζξ/k

4

ð1
0
1 − lð Þ 1 − 1 − lð Þζ

ζ

 !ξ/kP

dl

0
@

1
A

1/P8<
:
2
4

×
ð1
0
1 − lð Þ ψ′ ϕ + φ −

2 − l
2 α1 +

l
2

� �� �����
����
q

dl
� �1/q ð1

0
l

1 − 1 − lð Þζ
ζ

 !ξ/kP

dl

0
@

1
A

1/P

×
ð1
0
lð Þ ψ′ ϕ + φ −

2 − l
2 α1 +

l
2

� �� �����
����
q

dl
� �1/q)

+
ð1
0
1 − lð Þ 1 − 1 − lð Þζ

ζ

 !ξ/kP

dl

0
@

1
A

1/P ð1
0
1 − lð Þ ψ′ ϕð���8<

:
+ φ −

l
2 α1 +

2 − l
2

� �
Þj
q

dlÞ
1/q ð1

0
l

1 − 1 − lð Þζ
ζ

 !ξ/kP

dl

0
@

1
A

1/P

×
ð1
0
lð Þ ψ′ ϕ + φ −

l
2 α1 +

2 − l
2

� �� �����
����
q

dl
� �1/q)#

: ð72Þ

Applying definition of strong convexity,

≤
α2 − α1ð Þζξ/k

4

ð1
0
1 − lð Þ 1 − 1 − lð Þζ

ζ

 !ξ/kP

dl

0
@

1
A

1/P ð1
0
1 − lð Þ

�8<
:
2
4

× ψ′ϕ
�� ��q + ψ′φ

�� ��q − 2 − l
2 ψ′α1
�� ��q + ψ′ l2

����
����
q� ��

−
al
2

2 − l
2

� �
α2 − α1ð Þ2�dlÞ

1/q

+
ð1
0
l

1 − 1 − lð Þζ
ζ

 !ξ/kP

dl

0
@

1
A

1/P ð1
0
lð Þ ψ′ϕ
�� ��q + ψ′φ

�� ��qh�

−
2 − l
2 ψ′α1
�� ��q + ψ′ l2

����
����
q

−
al
2

2 − l
2

� �
α2 − α1ð Þ2

� �
�
q

dl�
1/q
g

+
ð1
0
1 − lð Þ 1 − 1 − lð Þζ

ζ

 !ξ/kP

dl

0
@

1
A

1/P ð1
0
1 − lð Þ ψ′ϕ

�� ��qh�8<
:

+ ψ′φ
�� ��q − l

2 ψ′α1
�� ��q + 2 − l

2 ψ′α2
�� ��q�

−
al
2

2 − l
2

� �
α2 − α1ð Þ2Þ�

q

dlÞ
1/q

×
ð1
0
l

1 − 1 − lð Þζ
ζ

 !ξ/kP

dl

0
@

1
A

1/P ð1
0
lð Þ ψ′ϕ
�� ��qh�

+ ψ′φ
�� ��q − l

2 ψ′α1
�� ��q + 2 − l

2 ψ′α2
�� ��q� �

−
al
2

2 − l
2

� �
α2 − α1ð Þ2g�

q

dlÞ
1/q
)#

: ð73Þ

By some computations, one can get the required result.

Theorem 24. Let ξ, ζ > 0, p, q > 1 with 1/p + 1q = 1, ϕ < φ and
ψ : ½ϕ, φ�⟶ℝ be a differentiable mapping such that ψ′ ∈ l
½ϕ, φ� and jψ′jq is a strong convex mapping on ½ϕ, φ�. Then,
one has

2ζξ/k−1ζξ/kΓk ξ + kð Þ
α2 − α1ð Þζξ/k

ξ
k J

ζ

ϕ+φ−α2+α1/2ð Þψ ϕ + φ − α1ð Þ + ξ
k J

ζ

ϕ+φ−α2+α1/2ð Þψ ϕ + φ − α2ð Þ
	 
�����

− ψ ϕ + φ −
α2 + α1

2

� �
j ≤ α2 − α1ð Þζξ/k

4
B 2/ζ, ξ/k + 1ð Þ

ζξ/k+1

 !1−1/q("

× ψ′ ϕð Þ�� ��q + ψ′ φð Þ�� ��q� � B 2/ζ, ξ/k + 1ð Þ
ζξ/k+1

 ! 

−
1

2ζξ/k+1
ψ′ α1ð Þ�� ��q B

2
ζ
, ξ
k
+ 1

� �
+ B

3
ζ
, ξ
k
+ 1

� �� � 

+ 1

2ζξ/k+1
ψ′ α2ð Þ�� ��q B

2
ζ
, ξ
k
+ 1

� �
− B

3
ζ
, ξ
k
+ 1

� �� 

−
al

4ζξ/k+1
2 − l
2

� �
α2 − α1j j2ÞÞÞ

1/q
+ B 1/ζ, ξ/k + 1ð Þ − B 2/ζ, ξ/k + 1ð Þ

ζξ/k+1

 !
Þ
1−1/q

× ψ′ ϕð Þ�� ��q + ψ′ φð Þ�� ��q� � B 1/ζ, ξ/k + 1ð Þ − B 2/ζ, ξ/k + 1ð Þ
ζξ/k+1

 ! 

−
1

2ζξ/k+1
ψ′ α1ð Þ�� ��q B

1
ζ
, ξ
k
+ 1

� �
− B

3
ζ
, ξ
k
+ 1

� �� � 

+ 1

2ζξ/k+1
ψ′ α2ð Þ�� ��q B

1
ζ
, ξ
k
+ 1

� �
− 2B

2
ζ
, ξ
k
+ 1

� �
+ B

3
ζ
, ξ
k
+ 1

� �� �

−
al

4ζξ/k+1
2 − l
2

� �
α2 − α1j j2ÞÞÞ

1/q
g + B 2/ζ, ξ/k + 1ð Þ

ζξ/k+1

 !1−1/q(

× ψ′ ϕð Þ�� ��q + ψ′ φð Þ�� ��q� � B 2/ζ, ξ/k + 1ð Þ
ζξ/k+1

 ! 

−
1

2ζξ/k+1
ψ′ α1ð Þ�� ��q B

2
ζ
, ξ
k
+ 1

� �
− B

3
ζ
, ξ
k
+ 1

� �� � 

+ 1

2ζξ/k+1
ψ′ α2ð Þ�� ��q B

2
ζ
, ξ
k
+ 1

� �
− B

3
ζ
, ξ
k
+ 1

� �� � 

−
al

4ζξ/k+1
2 − l
2

� �
α2 − α1j j2ÞÞÞ

1/q
+ B 1/ζ, ξ/k + 1ð Þ − B 2/ζ, ξ/k + 1ð Þ

ζξ/k+1

 !1−1/q

× ψ′ ϕð Þ�� ��q + ψ′ φð Þ�� ��q� � B 1/ζ, ξ/k + 1ð Þ − B 2/ζ, ξ/k + 1ð Þ
ζξ/k+1

 ! 

−
1

2ζξ/k+1
ψ′ α1ð Þ�� ��q B

1
ζ
, ξ
k
+ 1

� �
− 2B

2
ζ
, ξ
k
+ 1

� �
+ B

3
ζ
, ξ
k
+ 1

� �� �

+ 1

2ζξ/k+1
ψ′ α1ð Þ�� ��q B

1
ζ
, ξ
k
+ 1

� �
− B

3
ζ
, ξ
k
+ 1

� �� � 

−
al

4ζξ/k+1
2 − l
2

� �
α2 − α1j j2ÞÞ Þ 1/q

)#
: ð74Þ

Proof. It follows from Lemma 10, Jensen-Mercer inequality,
the convexity of jψ′jq, and the improved power-mean inte-
gral inequality given in Theorem 1.5 of [31] that

2ζξ/k−1ζξ/kΓk ξ + kð Þ
α2 − α1ð Þζξ/k

ξ
k J

ζ

ϕ+φ−α2+α1/2ð Þ + ψ ϕ + φ − α1ð Þ+ξ
k J

ζ
ϕ+φ−α2+α1/2ð Þ

	�����
+ ψ ϕ + φ − α2ð Þg − ψ ϕ + φ −

α2 + α1
2

� �
j ≤ α2 − α1

4 ζξ/k

×
ð1
0

1 − 1 − lð Þζ
ζ

 !ξ/k
8<
: ψ′ ϕ + φ −

2 − l
2 α1 +

l
2 α2

� �� �����
����dl

+
ð1
0

1 − 1 − lð Þζ
ζ

 !ξ/k

ψ′ ϕ + φ −
l
2 α1 +

2 − l
2 α2

� �� �����
����dl

8<
:

9=
;:

ð75Þ
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Using definition of strong convexity,

≤
α2 − α1

4 ζξ/k
ð1
0

1 − 1 − lð Þζ
ζ

 !ξ/k
8<
: ψ′ ϕð Þ�� �� + ψ′ φð Þ�� ��n

−
2 − l
2 ψ′ α1jð Þ + l

2

����
����ψ′ α2jð Þ

� �
−
al
2

2 − l
2

� �
α2 − α1ð Þ2gdl

+
ð1
0

1 − 1 − lð Þζ
ζ

 !ξ/k

ψ′ ϕð Þ�� �� + ψ′ φð Þ�� �� − l
2 ψ′ α1jð Þ���	8<

:
+ 2 − l

2 jψ′ α2jð ÞÞ − al
2

2 − l
2

� �
α2 − α1ð Þ2gdlg ≤ α2 − α1

4 ζξ/k

× ψ′ ϕð Þ�� �� + ψ′ φð Þ�� ��� �ð1
0

1 − 1 − lð Þζ
ζ

 !ξ/k

dl

8<
:
− ψ′ α1ð Þ�� ��ð1

0

1 − 1 − lð Þζ
ζ

 !ξ/k 2 − l
2 dl + ψ′ α2ð Þ�� ��ð1

0

0
@

× 1 − 1 − lð Þζ
ζ

 !ξ/k
l
2 dlÞ − α2 − α1ð Þ2

ð1
0

1 − 1 − lð Þζ
ζ

 !ξ/k
al
2

× 2 − l
2

� �
dlg + ψ′ ϕð Þ�� �� + ψ′ φð Þ�� ��� �ð1

0

1 − 1 − lð Þζ
ζ

 !ξ/k

dl

8<
:

− ψ′ α1ð Þ ×�� ��ð1
0

1 − 1 − lð Þζ
ζ

 !ξ/k
l
2 dl

0
@

+ ψ′ α2ð Þ�� ��ð1
0

1 − 1 − lð Þζ
ζ

 !ξ/k 2 − l
2 dlÞ − α2 − α1ð Þ2

ð1
0

× 1 − 1 − lð Þζ
ζ

 !ξ/k
al
2

2 − l
2

� �
dlg: ð76Þ

4. Applications to Special Means

Means are important in applied and pure mathematics,
especially they are used frequently in numerical approxima-
tion. In literature, they are order in the following way:

H ≤G ≤ L ≤ I ≤ A: ð77Þ

The arithmetic mean of two numbers a, b such that a a
≠ b is defined as

A = A a, bð Þ = a + b
2 , a, b ∈ℝ: ð78Þ

The generalized logarithmic mean is defined as follows:

L = Lrr a, bð Þ = br+1 − ar+1

r + 1ð Þ b − að Þ , r ∈ℝ −1, 0½ �, a, b ∈ℝ, a ≠ b,

Lp a, bð Þ = bp+1 − ap+1

p + 1ð Þ b − að Þ

 !p" #
, p ∈ℝ −1, 0½ �

ð79Þ

Proposition 25. Assume a, b > 0 and a < b; then,

Mp a, bð Þ ≤ Lp−11−p a, bð Þ:Lpp a, bð Þ ≤ A ð80Þ

holds for p ∈ ð−∞,1Þ/0 where

Mp a, bð Þ = ap + bp

2

� �1/p" #
: ð81Þ

Proof. From Theorem 23, we have

ap + bp

2

� �1/p" #
≤

pB αð Þ
α bp − ap
� � CF

a I
α
ψ

� �
kð Þ + CF

a I
α
ψ

� �
kð Þ

h

−
2 1 − αð Þ
B αð Þ ψ kð Þ� ≤ ϕ að Þ + ϕ bð Þ

2 ,

ð82Þ

with ψðxÞ = ϕðxÞ/x1−p holds. Setting f ðxÞ = x, α = 1 and BðαÞ
= Bð1Þ = 1 in the above theorem, we obtain

ap + bp

2

� �1/p
≤
p b − að Þ
bp − ap

bp+1 − ap+1

p + 1ð Þ b − að Þ

" #
≤
a + b
2 : ð83Þ

Now use the following:

Lp a, bð Þ = bp+1 − ap+1

p + 1ð Þ b − að Þ

 !1/p

: ð84Þ

For p = p − 1, we have

Lp−1 a, bð Þ = bp − ap

p b − að Þ
� �1/p−1

: ð85Þ

This implies that

Lp−1p−1 a, bð Þ = bp − ap

p b − að Þ : ð86Þ

By using these means, we get

Mp a, bð Þ ≤ L1−pp−1 a, bð Þ:Lpp a, bð Þ ≤ A: ð87Þ

By using the results of Section 3, we get some application
to special means.

Proposition 26. Let a, b ∈ℝ+, a < b; then,

A a2, b2
� �

− pL1+pp+1 ap, bp
� ���� ��� ≤ bp − ap

p
aj jC1 a, bð Þ + bj jC2 a, bð Þ½ �:

ð88Þ

Proof.We obtain the result immediately from Theorem 23.
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Proposition 27. Let a, b ∈ℝ+, a < b, then

A an, bnð Þ − pLn−1+pn−p+1 ap, bp
� ���� ��� ≤ bp − ap

2p
an−1
�� ��C1 a, bð Þ

+ bn−1
�� ��C2 a, bð Þ�:

ð89Þ

Proof. We obtain the result immediately from Theorem 24.
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In this paper, we formulate the q-analogus of differential operator associated with q-Mittag-Leffler function. By using this newly
defined operator, we define a new subclass k −USm

q,γðα, βÞ, of analytic functions in conic domains. We investigate the number of
useful properties such that structural formula, coefficient estimates, Fekete–Szego problem and subordination result. We also
highlighted some known corollaries of our main results.

1. Introduction Definition

Let A denote the class of functions lðzÞ which are analytic in
the open unit disk E = fz ∈ℂ : jzj < 1g, satisfying the condi-
tion lð0Þ = 0 and l′ð0Þ = 1 , and for every l ∈A has the series
expansion of the form

l zð Þ = z + 〠
∞

n=2
anz

n: ð1Þ

Let S ⊂A be the class of all functions which are univalent
in E (see [1]). Also, P denotes the well-known Carathéodory
class of functions pwhich are analytic in open unit disk E and
has the series expansion of the form

p zð Þ = 1 + 〠
∞

n=1
cnz

n, ð2Þ

and satisfying the condition

p 0ð Þ = 1 andRep zð Þ > 0: ð3Þ

For the function l given by (1) and the function g defined
by gðzÞ = z +∑∞

n=2bnz
n, the Hadamard product (convolu-

tion) l ∗ g of the functions l and g stated by

l ∗ gð Þz = z + 〠
∞

n=2
anbnz

n: ð4Þ

For the analytic functions l,g, l is said to be subordinate to
g (indicated as l ≺ gÞ, if there exists a Schwarz function

w zð Þ = 〠
∞

n=1
cnz

n, ð5Þ

with

w 0ð Þ = 0 and w zð Þj j < 1, ð6Þ

such that

l zð Þ = g w zð Þð Þ: ð7Þ

Furthermore, if g is univalent in E, (see [2]); then, we have

l zð Þ ≺ g zð Þ if and only if l 0ð Þ = g 0ð Þ and l Eð Þ ⊂ g Eð Þ, z ∈ E:
ð8Þ

The class of starlike functions of order αðS∗ðαÞÞ in E and
the class of convex functions of order αðKðαÞÞ, 0 ≤ α < 1,
were defined as follows:
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S∗ αð Þ = l : l ∈ S and Re zl′ zð Þ
l zð Þ

 !
> α, 0 ≤ α < 1, z ∈ Eð Þ

( )
,

K αð Þ = l : l ∈ S and Re
z zl′ zð Þ
� �

′

l′ zð Þ

0
@

1
A > α, 0 ≤ α < 1, z ∈ Eð Þ

8<
:

9=
;:

ð9Þ

It should be noted that

S∗ 0ð Þ = S∗ andK 0ð Þ =K , ð10Þ

where S∗ and K are the well-known function classes of star-
like and convex functions, respectively.

In the year of 1991, Goodman [3] introduced the class
UCV of uniformly convex functions which was extensively
studied by Ronning [4], and its characterization was given
by Ma and Minda [5]. After that, Kanas and Wisniowska
[6] defined the class k-uniformly convex functions (k
-UCV Þ and a related class k − ST was defined by

l ∈ k −UCV ⟺ zl′ ∈ k − ST

⟺ l ∈A and Re
zl′ zð Þ
� �

′

l′ zð Þ

8<
:

9=
; > zl′′ zð Þ

l′ zð Þ

�����
�����, k ≥ 0ð Þ:

ð11Þ

From different viewpoints, the various subclasses of the
normalized analytic function of class A have been studied
in the field of Geometric Function Theory. To investigate
various subclasses of A , many authors have been used the
q-calculus as well as the fractional q-calculus. In 1910, Jack-
son [7] was among the one of few researchers who studied q
-calculus operator theory on q-definite integrals and also
Trjitzinsky in [8] studied about analytic theory of linear q
-difference equations. Curmicheal [9] studied general theory
of linear q-difference equations and the first use of q-calculus
operator theory in Geometric Function Theory in a book
chapter by Srivastava (see, for details, [10]). Recently,
Hussain et al. discussed the some applications of q-calculus
operator theory in [11], while in [12, 13], Ibrahim et al. used
the notion of quantum calculus and the Hadamard product
to improve an extended Sàlàgean q-differential operator and
defined some new subclasses of analytic functions in open
unit disk E. Govindaraj and Sivasubramanian [14] as well
as Ibrahim et al. [15, 16] employed the quantum calculus
and the Hadamard product to defined some new subclasses
of analytic functions involving the Sàlàgean q-differential
operator and the generalized symmetric Sàlàgean q-differ-
ential operator, respectively. Furthermore, Srivastava et al.
[17] defined q-Noor integral operator by using q-calculus
operator theory and investigated some subclasses of biuniva-
lent functions in open unit disk.

Here, we give some basic definitions and details of the q
-calculus and suppose that 0 < q < 1:

For any nonnegative integer n, the q-integer number ½n�q
is defined by

n½ �q =
1 − qn

1 − q
, 0½ �q = 0, ð12Þ

and for any nonnegative integer n, the q-number shift facto-
rial is defined by

n½ �q! = 1½ �q 2½ �q 3½ �q ⋯ n½ �q, 0½ �q! = 1
� �

: ð13Þ

We note that when q⟶ 1−, then ½n�! = n.
The q-difference operator was introduced by Jackson

(see in [7]). For l ∈A , the q-derivative operator or q-differ-
ence operator is defined as

∂ql zð Þ = l qzð Þ − l zð Þ
z q − 1ð Þ , z ∈ E, z ≠ 0, q ≠ 1: ð14Þ

It is readily deduced from (1) and (14) that

∂qz
n = n½ �qzn−1, ∂ql zð Þ = 1 + 〠

∞

n=2
n½ �qanzn−1: ð15Þ

We can observe that

lim
q⟶1−

∂ql zð Þ = l′ zð Þ: ð16Þ

The familiar Mittag-Leffler function HαðzÞ introduced
by Mittag-Leffler [18] and its generalization Hα,βðzÞ intro-
duced by Wiman [19] which are defined by

Hα zð Þ = 〠
∞

n=0

1
Γ αn + 1ð Þ z

n, α ∈ℂ, Re αð Þð Þ > 0,

Hα,β zð Þ = 〠
∞

n=0

1
Γ αn + βð Þ z

n, α, β ∈ℂ, Re αð Þ, Re βð Þð Þ > 0:

ð17Þ

Recently, Attiya [20] investigated some applications of
Mittag-Leffler functions and generalized k-Mittag-Leffler
studied by Rehman et al. in [21]. Moreover, Srivastava
et al. [22, 23] introduced the generalization of Mittag-
Leffler functions.

The q-Mittag-Leffler function was defined by (see [24]):

Hα,β z, qð Þ = 〠
∞

n=0

1
Γq αn + βð Þ z

n, α, β ∈ℂ, Re αð Þ, Re βð Þð Þ > 0:

ð18Þ

The q-Mittag-Leffler function has also been investigated
in [25, 26]. Since the q-Mittag-Leffler function Hα,βðz, qÞ
defined by (18) does not belong to the normalized analytic
function class A . Hence, we define the normalization of q-
Mittag-Leffler function as
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Mα,β z, qð Þ = zΓq βð ÞHα,β zð Þ = z + 〠
∞

n=2

Γq βð Þ
Γq α n − 1ð Þ + βð Þ z

n,

ð19Þ

where z ∈ E,Reα > 0, β ∈ℂ \ f0,−1,−2,−3⋯ gÞ: Correspond-
ing to Mα,βðz, qÞ and for l ∈A , we define the following q
-analogous of differential operator Dm

q ðα, βÞ: A ⟶A by

D0
q α, βð Þl zð Þ = l zð Þ ∗Mα,β z, qð Þ,

D1
q α, βð Þl zð Þ = z∂q l zð Þ ∗Mα,β z, qð Þ� �

,

D2
q α, βð Þl zð Þ =D D1 α, βð Þl zð Þ� �

,

Dm
q α, βð Þl zð Þ =D Dm−1 α, βð Þl zð Þ� �

:

ð20Þ

We note that

Dm
q α, βð Þl zð Þ = z + 〠

∞

n=2
n½ �mq T n α, qð Þanzn, ð21Þ

where

T n α, qð Þ = Γq βð Þ
Γq α n − 1ð Þ + βð Þ : ð22Þ

Note that

(i) For α = 0 and β = 1, we get Salagean q-differential
operator [14]

(ii) For q⟶ 1 − ,α = 0, and β = 1, we get Salagean
differential operator [27]

(iii) For m = 0, we get Eα,βðz, qÞ (see [24])
(iv) For m = 0, we get Eα,βðzÞ (see [22])

Definition 1. Let lðzÞ ∈A , then lðzÞ is in the class k −USm
q,γ

ðα, βÞ,γ ∈ℂ \ f0g, if it satisfies the condition

Re 1 + 1
γ

z∂qD
m
q α, βð Þl zð Þ

Dm
q α, βð Þl zð Þ − 1

 !( )

> k
1
γ

z∂qD
m
q α, βð Þl zð Þ

Dm
q α, βð Þl zð Þ − 1

 !�����
�����, z ∈ E:

ð23Þ

Remark 2.

(i) For α = 0 and β = 1, the class k −USm
q,γðα, βÞ = k −

USðq, γ,mÞ studied in [11]

(ii) For m = 0,α = 0,β = 1,q⟶ 1 − , and γ = 1/ð1 − ηÞ,
η ∈ℂ \ f1g, the class k −USm

q,γðα, βÞ = SDðk, ηÞ
studied in [28]

(iii) For m = 0,α = 0,β = 1,q⟶ 1 − , and γ = 2/ð1 − ηÞ,
η ∈ℂ \ f1g, the class k −USm

q,γðα, βÞ =KDðk, ηÞ,
studied in [29]

(iv) For k = 1,m = 0, α = 0,β = 1,q⟶ 1 − , and γ = ð1 −
ηÞ,η ∈ℂ \ f1g, the class k −USm

q,γðα, βÞ = SpðηÞ
studied in [30]

(v) For k = 1,m = 0,α = 0,β = 1,q⟶ 1 − , and γ = 2/ð1
− ηÞ,η ∈ℂ \ f1g, k −USm

q,γðα, βÞ =KpðηÞ, studied
in [30]

2. Geometric Interpretation

A function lðzÞ ∈A , belongs to k −USm
q,γðα, βÞ if and only if

z∂qD
m
q ðα, βÞlðzÞ/Dm

q ðα, βÞlðzÞ takes all the values in the
conic domain Ωk,γ = pk,γðEÞ, such that

Ωk,γ = γΩk + 1 − γð Þ, 0 ≤ γ < 1, k ≥ 0, ð24Þ

where

Ωk = u + iv : u2 > k2 u − 1ð Þ2 + v2
� �

: ð25Þ

The domain Ωk,γ is not always well defined because in
general ð1, 0Þ ∉Ωk,γ (for example, in particular ð1, 0Þ ∉
Ω2,0:5). We see that in [31], the conic domain Ωkð0, bÞ con-
cides with Ωk,b only when b is chosen according to

(i) For k = 0, we take b = 0

(ii) For k ∈ ð0, 1/ ffiffiffi
2

p Þ, we take b ∈ ½1/2k2 − 1, 1Þ
(iii) For k ∈ ½1/ ffiffiffi

2
p

1/
ffiffiffi
2

p
, 1�, we take b ∈ ð−∞,1Þ

(iv) For k ∈ ð1,∞Þ, we take b ∈ ð−∞,1/2k2 − 1�
This means that for Ωk,γ to contain the point ð1, 0Þ,γ

must be chosen according as follows:

γ ∈

0, 1ð Þ if 0 ≤ k ≤ 1,

0, 1 −
ffiffiffiffiffiffiffiffiffiffiffiffi
k2 − 1

p

k

" #
if k ≥ 0:

8>><
>>: ð26Þ

Since pk,γðzÞ is convex univalent, the above definition
can be written as

z∂qD
m
q α, βð Þl zð Þ

Dm
q α, βð Þl zð Þ ≺ pk,γ zð Þ, ð27Þ

where
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pk,γ zð Þ =

1 + z
1 − z

, for k = 0,

U1 γ, kð Þ, for k = 1,
U2 γ, kð Þ, for 0 < k < 1,
U3 γ, kð Þ, for k > 1,

8>>>>>><
>>>>>>:

ð28Þ

U1 γ, kð Þ = 1 + 2γ
π2 log 1 + ffiffiffi

z
p

1 − ffiffiffi
z

p
� 	2′

, ð29Þ

U2 γ, kð Þ = 1 + 2γ
1 − k2

sinh2 2
π
arccos k

� 	
arctan h

ffiffiffi
z

p
 �
,

ð30Þ

U3 γ, kð Þ = 1 + γ

k2 − 1
sin π

2R tð Þ
ðu zð Þffi

t
p

0

1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − txð Þ2

q dx

0
B@

1
CA + γ

1 − k2
:

ð31Þ

For more detail (see [32, 33]).

3. Set of Lemmas

Lemma 3. (see [34]). Let pðzÞ =∑∞
n=1pnz

n ≺ FðzÞ =∑∞
n=1dnz

n

in E: If FðzÞ is convex univalent in E, then

pnj j ≤ d1j j, n ≥ 1: ð32Þ

Lemma 4. (see [35]). Let k ∈ ½0,∞Þ be fixed and let pk,γðzÞ of
the form (28). If

pk,γ zð Þ = 1 +Q1z +Q2z
2+⋯, ð33Þ

where

Q1 =

2γA2

1 − k2
, 0 ≤ k < 1,

8γ
π2

, k = 1,

π2γ

4 1 + tð Þ ffiffi
t

p
K2 tð Þ k2 − 1

� � , k > 1,

8>>>>>>>><
>>>>>>>>:

ð34Þ

Q2 =

A2 + 2
3

Q1, 0 ≤ k < 1,

2
3
Q1, k = 1,

4K2 tð Þ t2 + 6t + 1
� �

− π2

24K2 tð Þ 1 + tð Þ ffiffi
t

p Q1, k > 1:

8>>>>>>>><
>>>>>>>>:

ð35Þ

Lemma 5. (see [36]). Let pðzÞ = 1 +∑∞
n=1cnz

n ∈P and let p
ðzÞ be analytic in E and satisfy Re ðpðzÞÞ > 0 for z in E, then

c2 − μc21
�� �� ≤ 2 max 1, 2μ − 1j jf g,∀μ ∈ℂ: ð36Þ

4. Main Results

Theorem 6. Let lðzÞ ∈ k −USm
q,γðα, βÞ: Then,

Dm
q α, βð Þl zð ÞÞ ≺ z exp

ðz
0

pk,γ w ξð Þð Þ − 1

ζ
dξ, ð37Þ

where wðzÞ is a Schwarz function given in (5): Moreover, for
jzj = ρ, we have

exp
ð1
0

pk,γ −ρð Þ − 1

ρ
dρ

� 	
≤

Dm
q α, βð Þl zð Þ

z

����
����

≤ exp
ð1
0

pk,γ ρð Þ − 1

ρ
dρ

� 	
,
ð38Þ

where pk,γðzÞ is given by (28).

Proof. If lðzÞ ∈ k −USm
q,γðα, βÞ, then by using (27), we obtain

∂qD
m
q α, βð Þl zð Þ

Dm
q α, βð Þl zð Þ −

1
z
=
pk,γ w zð Þð Þ − 1

z
: ð39Þ

Integrating (39) and after some simplification, we have

Dm
q α, βð Þl zð Þ ≺ z exp

ðz
0

pk,γ w ξð Þð Þ − 1
ζ

dξ: ð40Þ

This proves (37). We know that

pk,γ −ρ zj jð Þ ≤ Re pk,γ w ρzð Þð
n o

≤ pk,γ ρ zj jð Þ 0 < ρ ≤ 1, z ∈ Eð Þ:
ð41Þ

Using (40) and (41), we have

ð1
0

pk,γ −ρ zj jð Þ − 1
ρ

dρ ≤ Re
ð1
0

pk,γ w ρ zð Þð Þð − 1
ρ

dρ

≤
ð1
0

pk,γ ρ zj jð Þ − 1
ρ

dρ,
ð42Þ

for z ∈ E. From (40), we have

Dm
q α, βð Þl zð Þ

z
≺ exp

ðz
0

pk,γ w ξð Þð Þ − 1
ζ

dξ,
ð1
0

pk,γ −ρ zj jð Þ − 1
ρ

dρ ≤ log
Dm

q α, βð Þl zð Þ
z

����
���� ≤
ð1
0

pk,γ ρ zj jð Þ − 1
ρ

dρ,

exp
ð1
0

pk,γ −ρ zj jð Þ − 1
ρ

dρ ≤ exp log
Dm

q α, βð Þl zð Þ
z

����
����

� 	
≤ exp

ð1
0

pk,γ ρ zj jð Þ − 1
ρ

dρ,

ð43Þ
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which implies that

exp
ð1
0

pk,γ −ρð Þ − 1
ρ

dρ ≤
Dm

q α, βð Þl zð Þ
z

����
���� ≤ exp

ð1
0

pk,γ ρð Þ − 1
ρ

dρ:

ð44Þ

Corollary 7. (see [11]). Let lðzÞ ∈ k −USm
q,γð0, 1Þ: Then,

Dm
q l zð Þ

�
≺ z exp

ðz
0

pk,γ w ξð Þð Þ − 1

ζ
dξ, ð45Þ

where wðzÞ is a Schwarz function given in (5): Moreover, for
jzj = ρ, we have

exp
ð1
0

pk,γ −ρð Þ − 1

ρ
dρ

� 	
≤

Dm
q l zð Þ
z

����
���� ≤ exp

ð1
0

pk,γ ρð Þ − 1

ρ
dρ

� 	
:

ð46Þ

Theorem 8. If lðzÞ ∈ k −USm
q,γðα, βÞ: Then,

a2j j ≤ δ

2½ �mq 2½ �q − 1
n o

T 2 α, qð Þ
, ð47Þ

anj j ≤ δ

n½ �mq n½ �q − 1
n o

T n α, qð Þ
Yn−2
j=1

1 + δ

j + 1½ �q − 1

 !
, forn ≥ 3,

ð48Þ

where δ = jQ1j with Q1 and T nðα, qÞ are given by (34)
and (22).

Proof. Let

z∂qD
m
q α, βð Þl zð Þ

Dm
q α, βð Þl zð Þ = p zð Þ, ð49Þ

where pðzÞ is the analytic in E and pð0Þ = 1: Let pðzÞ = 1 +
∑∞

n=1cnz
n and Dm

q ðα, βÞlðzÞ is given by (21). Then, (49)
implies that

z + 〠
∞

n=2
n½ �m+1

q T n α, qð Þanzn = 〠
∞

n=0
cnz

n

 !
z + 〠

∞

n=2
n½ �mq T n α, qð Þanzn

 !
,

= 〠
∞

n=0
cnz

n+1 + 〠
∞

n=0
cnz

n

 !
〠
∞

n=2
n½ �mq T n α, qð Þanzn

 !
:

ð50Þ

Now comparing the coefficients of zn, we obtain

n½ �m+1
q T n α, qð Þan = n½ �mq T n α, qð Þan + 〠

n−1

j=1
j½ �mq

Γ βð Þ
Γq α j − 1ð Þ + βð Þ ajcn−j,

n½ �m+1
q T n α, qð Þan − n½ �mq T n α, qð Þan = 〠

n−1

j=1
j½ �mq

Γ βð Þ
Γq α j − 1ð Þ + βð Þ ajcn−j,

n½ �mq n½ �q − 1
n o

T n α, qð Þan = 〠
n−1

j=1
j½ �mq

Γ βð Þ
Γq α j − 1ð Þ + βð Þ ajcn−j,

ð51Þ

which implies

an =
1

n½ �mq n½ �q − 1
n o

T n α, qð Þ
〠
n−1

j=1
j½ �mq

Γ βð Þ
Γq α j − 1ð Þ + βð Þ ajcn−j:

ð52Þ

Using the results that jcnj ≤ jQ1j given in ([33]), we have

anj j ≤ Q1j j
n½ �mq n½ �q − 1
n o

T n α, qð Þ
〠
n−1

j=1
j½ �mq

Γ βð Þ
Γq α j − 1ð Þ + βð Þ aj

�� ��:
ð53Þ

Let us take δ = jQ1j: Then, we have

anj j ≤ δ

n½ �mq n½ �q − 1
n o

T n α, qð Þ
〠
n−1

j=1
j½ �mq

Γ βð Þ
Γq α j − 1ð Þ + βð Þ aj

�� ��:
ð54Þ

For n = 2 in (54), we have

a2j j ≤ δ

2½ �mq 2½ �q − 1
n o

T 2 α, qð Þ
〠
1

j=1
j½ �mq

Γ βð Þ
Γq α j − 1ð Þ + βð Þ aj

�� ��
= δ

2½ �mq 2½ �q − 1
n o

T 2 α, qð Þ
,

ð55Þ

Hence, for n = 2 the inequality (48) holds. To prove (48),
we use mathematical induction, for n = 3

a3j j ≤ δ

3½ �mq 3½ �q − 1
n o

T 3 α, qð Þ
1 + 2½ �mq T 2 α, qð Þ a2j j
n o

:

ð56Þ

By using (55), we have

a3j j ≤ δ

3½ �mq 3½ �q − 1
n o

T 3 α, qð Þ
1 + 2½ �mq T 2 α, qð Þ δ

2½ �mq 2½ �q − 1
n o

T 2 α, qð Þ

0
@

1
A

8<
:

9=
;:

ð57Þ
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Therefore,

a3j j ≤ δ

3½ �mq 3½ �q − 1
n o

T 3 α, qð Þ
1 + δ

2½ �q − 1

( )
: ð58Þ

Hence, (48) holds for n = 3. Now, we suppose that (48) is
true for n = t + 1, that is

atj j ≤ δ

t½ �mq t½ �q − 1
n o

T t α, qð Þ
Yt−2
j=1

1 + δ

j + 1½ �q − 1

 !
, n ≥ 3:

ð59Þ

Consider

at+1j j ≤ δ

t + 1½ �mq t + 1½ �q − 1
n o

T t+1 α, qð Þ
× 1 + 2½ �mq T 2 α, qð Þ a2j j + 3½ �mq T 3 α, qð Þ a3j j
n

+ 4½ �mq T 4 α, qð Þ a4j j+⋯+ t½ �mq T t α, qð Þ atj j
o

≤
δ

t + 1½ �mq t + 1½ �q − 1
n o

T t+1 α, qð Þ

� 1 + δ

2½ �q − 1 + δ

3½ �q − 1 1 + δ

2½ �q − 1

 !(

+⋯+ δ

t½ �q − 1
Yt−2
j=1

1 + δ

j + 1½ �q − 1

 !)

= δ

t + 1½ �mq t + 1½ �q − 1
n o

T t+1 α, qð Þ
Yt−1
j=1

1 + δ

j + 1½ �q − 1

 !
:

ð60Þ

Hence, (48) holds for n = t + 1: Hence, proof is complete.

Corollary 9. (see [11]). f lðzÞ ∈ k −USm
q,γð0, 1Þ: Then,

a2j j ≤ δ

2½ �mq 2½ �q − 1
n o

anj j ≤ δ

n½ �mq n½ �q − 1
n oYn−2

j=1
1 + δ

j + 1½ �q − 1

 !
, for n ≥ 3:

ð61Þ

Theorem 10. Let 0 ≤ k <∞ be fixed and let lðzÞ ∈ k −USm
q,γ

ðα, βÞ with the form (1), then, for μ ∈ℂ

a3 − μa22
�� �� ≤ Q1

2 3½ �mq T 3 α, qð Þ 3½ �q − 1
n o max 1, 2v − 1j j½ �,

ð62Þ

where Q1 and Q2 are given by (34) and (35).

Proof. Let lðzÞ ∈ k −USm
q,γðα, βÞ, then there exists a Schwarz

function wðzÞ given by (5), such that

z∂qD
m
q α, βð Þl zð Þ

Dm
q α, βð Þl zð Þ ≺ pk,γ zð Þ, z ∈ E ð63Þ

z∂qD
m
q α, βð Þl zð Þ

Dm
q α, βð Þl zð Þ = pk,γ w zð Þð Þ, z ∈ E: ð64Þ

Let pðzÞ ∈P be defined as

p zð Þ = 1 + c1z + c2z
2+⋯: ð65Þ

This gives

w zð Þ = c1
2 z + 1

2 c2 −
c21
2

� 	
z2+⋯ ð66Þ

pk,γ w zð Þð Þ = 1 + Q1c1
2 z + Q2c

2
1

4 + 1
2 c2 −

c21
2

� 	
Q1


 �
z2+⋯:

ð67Þ
z∂qD

m
q α, βð Þl zð Þ

Dm
q α, βð Þl zð Þ = 1 + 2½ �mq T 2 α, qð Þ 2½ �q − 1

n o
a2z

+ 3½ �mq T 3 α, qð Þ 3½ �q − 1
n o

a3
n

− 2½ �mq T 2 α, qð Þ
� �2

2½ �q − 1
n o

a22
o
z2:

ð68Þ
Using (67) in (64) and comparing with (68), we obtain

a2 =
Q1c1

2 2½ �mq T 2 α, qð Þ 2½ �q − 1
n o ,

a3 =
1

3½ �mq T 3 α, qð Þ 3½ �q − 1
n o Q1c2

2 + c21
4 Q2 −Q1 +

Q2
1

2½ �q − 1
n o

0
@

1
A

8<
:

9=
;:

a3 − μa22 =
1

3½ �mq T 3 α, qð Þ 3½ �q − 1
n o Q1c2

2 + c21
4 Q2 −Q1 +

Q2
1

2½ �q − 1
n o

0
@

1
A

8<
:

9=
;

− μ
Q1c1

2 2½ �mq T 2 α, qð Þ 2½ �q − 1
n o

0
@

1
A

2

:

ð69Þ
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For any complex number μ and after some calculation
we have

a3 − μa22 =
Q1

2 3½ �mq T 3 α, qð Þ 3½ �q − 1
n o c2 − vc21

� 
, ð70Þ

where

v = 1
2 1 − Q2

Q1
−Q1

1
2½ �q − 1

n o − μ
3½ �mq 3½ �q − 1
n o

2T 2 α, qð Þ 2½ �mq 2½ �q − 1
n o� �2

0
B@

1
CA

8><
>:

9>=
>;:

ð71Þ

Using a lemma (36) on (70), we have the required result.

Corollary 11. (see [11]). Let 0 ≤ k <∞ be fixed and let lðzÞ
∈ k −USm

q,γð0, 1Þ with the form (1.1), then, for μ ∈ℂ

a3 − μa22
�� �� ≤ Q1

2 3½ �mq 3½ �q − 1
n o max 1, 2v − 1j j½ �, ð72Þ

where

v = 1
2

1 −
Q2

Q1
−Q1

1

2½ �q − 1
n o − μ

3½ �mq 3½ �q − 1
n o

2 2½ �mq 2½ �q − 1
n o� �2

0
B@

1
CA

8><
>:

9>=
>;:

ð73Þ

Theorem 12. Let lðzÞ ∈A of the form (1) and satisfy the
condition

〠
∞

n=2
n½ �q − 1

n o
k + 1ð Þ + γj j

n o
T n α, qð Þj j n½ �mq

��� ��� anj j ≤ γj j,

ð74Þ

then, lðzÞ ∈ k −USm
q,γðα, βÞ:

Proof. Let we note that

z∂qD
m
q α, βð Þl zð Þ

Dm
q α, βð Þl zð Þ − 1

�����
����� = z∂qD

m
q α, βð Þl zð Þ −Dm

q α, βð Þl zð Þ
Dm

q α, βð Þl zð Þ

�����
�����

=
∑∞

n=2 n½ �mq T n α, qð Þ n½ �q − 1
n o

anz
n

z +∑∞
n=2 n½ �mq T n α, qð Þanzn

������
������

≤
∑∞

n=2 n½ �mq T n α, qð Þ n½ �q − 1
n o��� ��� anj j

1 − ∑∞
n=2 n½ �mq
��� ��� T n α, qð Þj j anj j

:

ð75Þ

From (74), we get

1 − 〠
∞

n=2
n½ �mq
��� ��� T n α, qð Þj j anj j > 0: ð76Þ

To show that lðzÞ ∈ k −USm
q,γðα, βÞ, it suffices that

k
γ

z∂qD
m
q α, βð Þl zð Þ

Dm
q α, βð Þl zð Þ − 1

 !�����
����� − Re 1

γ

z∂qD
m
q α, βð Þl zð Þ

Dm
q α, βð Þl zð Þ − 1

 !( )
≤ 1:

ð77Þ

From (Proof), we have

k
γ

z∂qD
m
q α, βð Þl zð Þ

Dm
q α, βð Þl zð Þ − 1

 !�����
����� − Re 1

γ

z∂qD
m
q α, βð Þl zð Þ

Dm
q α, βð Þl zð Þ − 1

 !( )

≤
k
γj j

z∂qD
m
q α, βð Þl zð Þ

Dm
q α, βð Þl zð Þ − 1

�����
����� + 1

γj j
z∂qD

m
q α, βð Þl zð Þ

Dm
q α, βð Þl zð Þ − 1

�����
�����

≤
k + 1ð Þ
γj j

z∂qD
m
q α, βð Þl zð Þ

Dm
q α, βð Þl zð Þ − 1

�����
�����

= k + 1ð Þ
γj j

z∂qD
m
q α, βð Þl zð Þ −Dm

q α, βð Þl zð Þ
Dm

q α, βð Þl zð Þ

�����
�����

≤
k + 1ð Þ
γj j

∑∞
n=2 n½ �mq T n α, qð Þ n½ �q − 1

n o��� ��� anj j
1 −∑∞

n=2 n½ �mq
��� ��� T n α, qð Þj j anj j

0
B@

1
CA ≤ 1:

ð78Þ

Because of (74).

Corollary 13. (see [11]). If a function lðzÞ ∈A of the form (1)
and satisfy the condition

〠
∞

n=2
n½ �mq n½ �q − 1

n o
k + 1ð Þ + γj j

n o
anj j ≤ γ, ð79Þ

then, lðzÞ ∈ k −USm
q,γð0, 1Þ:

Corollary 14. (see [28]). A function l ∈A of the form (1)
belongs to k −USð1 − 2ηÞ, if

〠
∞

n=2
n k + 1ð Þ − k + ηð Þf g anj j ≤ 1 − η, ð80Þ

where 0 ≤ η < 1 and k ≥ 0. Then, lðzÞ ∈ k −US0
q⟶1−,1−ηð0, 1Þ:

When q⟶ 1 − , then, m = 0,α = 0,β = 1,γ = 1 − η, with
0 ≤ η < 1 and k = 0.

Corollary 15. (see [37]). A function l ∈A of the form (1) is in
the class 0 −USð1 − ηÞ , if

〠
∞

n=2
n − ηð Þ anj j ≤ 1 − δ, 0 ≤ η < 1: ð81Þ
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Theorem 16. Let lðzÞ ∈ k −USm
q,γðα, βÞ: Then, lðEÞ includes

an open disk of radius

2½ �mT 2 α, qð Þ 2½ �q − 1
n o

2 2½ �mq 2½ �q − 1
n o

T 2 α, qð Þ + δ
, ð82Þ

where Q1 is given by (34).

Proof. Let a nonzero complex number w0, such that lðzÞ ≠
w0 for z ∈ E: Then,

l1 zð Þ = w0l zð Þ
w0 − l zð Þ = z + a2 +

1
w0

� 	
z2+⋯: ð83Þ

Since l1ðzÞ is univalent, therefore

a2 +
1
w0

����
���� ≤ 2: ð84Þ

Now using (47), we have

1
w0

����
���� ≤ 2 + δ

2½ �mq 2½ �q − 1
n o

T 2 α, qð Þ
=

2 2½ �mq 2½ �q − 1
n o

T 2 α, qð Þ
� �

+ δ

2½ �mq 2½ �q − 1
n o

T 2 α, qð Þ
:

ð85Þ

Hence we have

w0j j ≥
2½ �mq 2½ �q − 1
n o

T 2 α, qð Þ
2 2½ �mq 2½ �q − 1

n o
T 2 α, qð Þ

� �
+ δ

: ð86Þ

When α = 0 and β = 1, then we have known result [11].

Corollary 17. Let lðzÞ ∈ k −USm
q,γð0, 1Þ: Then, lðEÞ includes

an open disk of radius

2½ �m 2½ �q − 1
n o

2 2½ �mq 2½ �q − 1
n o

+ δ
: ð87Þ

5. Conclusion

In this paper, we formulate the q-analogous of differential
operator associated with q-Mittag-Leffler function. By apply-
ing newly defined operator, we defined and investigated a
new subclass k −USm

q,γðα, βÞ, of analytic functions in conic
domains. We investigated the number of useful properties
such that structural formula, coefficient estimates, Fekete–
Szego problem, and subordination results. We also high-
lighted some known consequences of our main result. For
future work, one can employ the q-analogous of differential
operator (21) in different classes of analytic functions such
as the meromorphic and multivalent functions (see [38–42].
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In this article, we are interested in finding sufficient conditions on A, B, L, and η which ensure the normalized Coulomb wave
function to be Janowski starlike. Sufficient conditions are also obtained for gL,η/z ∈P ½A, B�, which readily yield conditions for

gL,η to be close-to-convex.

1. Introduction

Let A be the class of functions f which are analytic in the
open unit discU = fz : jzj < 1g and normalized by the condi-
tions f ð0Þ = f ′ð0Þ − 1 = 0: An analytic function f is subordi-
nate to an analytic function g (written as f ≺ gÞ if there exists
an analytic function w with wð0Þ = 0 and jwðzÞj < 1 for z ∈U
such that f ðzÞ = gðwðzÞÞ: In particular, if g is univalent in
U, then f ð0Þ = gð0Þ and f ðUÞ ⊂ gðUÞ: Let P ½A, B� denote
the class of analytic functions p such that pð0Þ = 1 and

p zð Þ ≺ 1 + Az
1 + Bz

,−1 ≤ B < A ≤ 1, z ∈U: ð1Þ

Note that for 0 ≤ β < 1,P ½1 − 2β,−1� is the class of
analytic functions p with pð0Þ = 1 satisfying Re pðzÞ > β in
U: For −1 ≤ B < A ≤ 1, the class S∗½A, B� defined by

S∗ A, B½ �≔ f ∈A :
zf ′ zð Þ
f zð Þ ≺

1 + Az
1 + Bz

, z ∈U
( )

, ð2Þ

is the class of Janowski starlike functions [13]. For 0 ≤ β < 1,
S∗½1 − 2β,−1�≔ S∗ðβÞ is the usual class of starlike functions
of order β:

S∗ 1 − β, 0½ �≔ S∗
β = f ∈A : zf ′ zð Þ/f zð Þ − 1

�� �� < 1 − β
n o

,

S∗ β,−β½ �≔ S∗ β½ � = f ∈A : zf ′ zð Þ/f zð Þ − 1
�� �� < β zf ′ zð Þ/f zð Þ + 1

�� ��o:n
ð3Þ

These classes have been studied in [6, 8]. A function f ∈A
is said to be close-to-convex of order β with respect to a func-
tion g ∈ S∗ ifRe ðzf ′ðzÞ/gðzÞÞ > β: In particular case, if f ∈A
and satisfies the condition Re f ′ðzÞ > β for all z in U, then f
ðzÞ is a close-to-convex of order β.

Let 1F1 denote the Kummer confluent hypergeometric
function. The regular Coulomb wave function is defined as

FL,η zð Þ = zL+1e−izCL ηð Þ1F1 L + 1 − iη, 2L + 2 ; 2izð Þ
= CL ηð Þ〠

n≥0
aL,nz

n+L+1, L, η ∈ℂ, z ∈ℂ, ð4Þ

where

CL ηð Þ = 2Le−πη/2 Γ L + 1 + iηð Þj j
Γ 2L + 2ð Þ =

2L
2L + 1ð Þ!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πQL

k=0 k2 + η2
� �

η e2πη − 1ð Þ ,
s

if η ≠ 0,

2LL!
2L + 1ð Þ! , if η = 0,

8>>>><
>>>>:

aL,0 = 1, aL,1 =
η

L + 1 , aL,n =
2ηaL,n−1 − aL,n−2
n n + 2L + 1ð Þ , n ∈ 2, 3,⋯f g,

ð5Þ
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which is the solution of following differential equation:

z2ω′′ zð Þ + z2 − 2ηz − L L + 1ð Þ� �
ω zð Þ = 0: ð6Þ

In this paper, we focus on the following normalized
form:

gL,η zð Þ = CL ηð Þ−1z−LFL,η zð Þ: ð7Þ

The function gL,ηðzÞ satisfies the following homogenous
second-order differential equation:

z2gL,η′ ′ zð Þ + 2LzgL,η′ zð Þ + z2 − 2ηz − 2L
� �

gL,η zð Þ = 0: ð8Þ

Baricz [9, 10] studied the Turan-type inequalites of reg-
ular Coulomb wave functions and zeros of a cross-product
of the Coulomb wave and Tricomi hypergeometric func-
tions, respectively. Baricz et al. [11] also investigated the
radii of starlikeness and convexity of regular Coulomb wave
functions. Recently, Aktas [1] has studied lemniscate and
exponential starlikeness of Coulomb wave functions. In
some recent papers [2–5, 12], the authors have discussed
certain geometric properties of some special functions. The
relationships of generalized Bessel function, Bessel-Struve
kernal function, and Struve function with the Janowski class
have also been studied by various researchers, see [7, 14, 17,
18]. Motivated by the above papers in this subject, in this
paper, our aim is to present some geometric results for the
normalized regular Coulomb wave function.

The following lemmas are needed in the paper.

Lemma 1 (see [15, 16]). Let Ω ⊂ℂ, and Ψ : ℂ2 ×U⟶ℂ
satisfy

Ψ iρ, σ ; zð Þ ∉Ω, ð9Þ

whenever z ∈U, ρ real, σ ≤ −ð1 + ρ2Þ/2. If p is analytic in U

with pð0Þ = 1, and Ψð= ðpðzÞ, zp′ðzÞ ; zÞ∈Ω for z ∈U, then
Re pðzÞ > 0 inU. In the case Ψ : ℂ3 ×U⟶ℂ, then the con-
dition in Lemma 1 generalized to

Ψ iρ, σ, u + iv ; zð Þ ∉Ω, ð10Þ

ρ real, σ + μ ≤ 0, and σ ≤ −ð1 + ρ2Þ/2.

Lemma 2 (see [19]). Let f ∈A . If

Re f zð Þ
z

> 0, ð11Þ

then

Re f ′ zð Þ > 0, ð12Þ

for jzj < ffiffiffi
2

p
− 1:

2. Inclusion of Generalized Coulomb Wave
Function in the Janowski Class

Our first result is related with Janowski starlikeness of
normalized Coulomb wave function.

Theorem 3. Let −1 ≤ B < A ≤ 1 and L,η ∈ℂ: Suppose that

Re 2L − 1ð Þ ≤ 1 + Að Þ
4

− Im Lð Þð Þ2 1 + A
2 + A

� 	
− 2 1 + ηj j + Lj jð Þfor − 1

= B < A ≤ 1,

ð13Þ

or, for −1 < B < A ≤ 1,

1 + 2 ηj j + 2 Lj jð Þ 1 + Bð Þ
1 + Að Þ −

1 + Að Þ
1 + Bð Þ −

A − Bð Þ
1 + Að Þ 1 + Bð Þ < Re 2L − 1ð Þ,

A − Bð Þ
2 1 − Bð Þ −

2
1 − Bð Þ − 1 + 2 ηj j + 2 Lj jð Þ 1 − Bð Þ

2
> Re 2L − 1ð Þ,

8>>><
>>>:

ð14Þ

2 Im Lð Þ 1 − ABð Þ½ �2 ≤ 1 + 1 + Að Þ 1 + Bð Þ
A − Bð Þ Re 2L − 1ð Þ




+ 1 + Að Þ2
A − Bð Þ −

1 + Bð Þ2
A − Bð Þ 1 + 2 ηj j + 2 Lj jð Þ

�

× 2 1 − Bð Þ
A − Bð Þ Re 2L − 1ð Þ − 1 + 4

A − Bð Þ



+ 1 − Bð Þ2
A − Bð Þ 1 + 2 ηj j + 2 Lj jð Þ

�
:

ð15Þ

If ð1 + BÞzgL,η′ ðzÞ ≠ ð1 + AÞgL,ηðzÞ, 0 ≠ gL,ηðzÞ and 0 ≠
gL,η′ ðzÞ, then gL,η ∈ S

∗½A, B�.

Proof. Define an analytic function p : U⟶ℂ by

p zð Þ≔
1 − Að ÞgL,η zð Þ − 1 − Bð ÞzgL,η′ zð Þ
1 + Bð ÞzgL,η′ zð Þ − 1 + Að ÞgL,η zð Þ

, p 0ð Þ = 1: ð16Þ

Then,

zgL,η′ zð Þ
gL,η zð Þ = 1 − Að Þ + 1 + Að Þp zð Þ

1 − Bð Þ + 1 + Bð Þp zð Þ , ð17Þ

zgL,η′ ′ zð Þ
gL,η′ zð Þ

= 2 A − Bð Þzp′ zð Þ
1 − Að Þ + 1 + Að Þp zð Þ½ � 1 − Bð Þ + 1 + Bð Þp zð Þ½ � − 1 +

zgL,η′ zð Þ
gL,η zð Þ :

ð18Þ
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A rearrangement of (18) gives.

zgL,η′ ′ zð Þ
gL,η′ zð Þ

 !
zgL,η′ zð Þ
gL,η zð Þ

 !
= 2 A − Bð Þzp′ zð Þ

1 − Bð Þ + 1 + Bð Þp zð Þ½ �2

−
1 − Að Þ + 1 + Að Þp zð Þ½ �
1 − Bð Þ + 1 + Bð Þp zð Þ½ �

+ 1 − Að Þ + 1 + Að Þp zð Þ½ �2
1 − Bð Þ + 1 + Bð Þp zð Þ½ �2 :

ð19Þ

Now, define a function qL,η : U⟶ℂ by

qL,η zð Þ =
zgL,η′ zð Þ
gL,η zð Þ : ð20Þ

This function qL,η is analytic in U and qL,ηð0Þ = 1: Sup-
pose that z ≠ 0: We know that gL,ηðzÞ ≠ 0: This function
satisfies the following equation:

z2gL,η′ ′ zð Þ
gL,η zð Þ + 2L

zgL,η′ zð Þ
gL,η zð Þ + z2 − 2ηz − 2L

� �
= 0: ð21Þ

which yields

zgL,η′ ′ zð Þ
gL,η′ zð Þ

 !
zgL,η′ zð Þ
gL,η zð Þ

 !
+ 2L

zgL,η′ zð Þ
gL,η zð Þ + z2 − 2ηz − 2L

� �
= 0:

ð22Þ

Substituting (17) and (19) in (22), we get

2 A − Bð Þzp′ zð Þ
1 − Bð Þ + 1 + Bð Þp zð Þ½ �2 + 1 − Að Þ + 1 + Að Þp zð Þ½ �2

1 − Bð Þ + 1 + Bð Þp zð Þ½ �2

+ 2L − 1ð Þ 1 − Að Þ + 1 + Að Þp zð Þ½ �
1 − Bð Þ + 1 + Bð Þp zð Þ½ �

+ z2 − 2ηz − 2L
� �

= 0,

ð23Þ

or equivalently

zp′ zð Þ + 2L − 1ð Þ
2 A − Bð Þ 1 − Að Þ + 1 + Að Þp zð Þf g 1 − Bð Þ + 1 + Bð Þp zð Þf g

 �

+ 1 −Að Þ + 1 + Að Þp zð Þ½ �2
2 A − Bð Þ

+ z2 − 2ηz − 2L
� �

2 A − Bð Þ 1 − Bð Þ + 1 + Bð Þp zð Þ½ �2 = 0:

ð24Þ

Now setting

Ψ p zð Þ, zp′ zð Þ ; z
� 

≔ zp′ zð Þ + 2L − 1ð Þ
2 A − Bð Þ 1 − Að Þ + 1 + Að Þp zð Þf g



� 1 − Bð Þ + 1 + Bð Þp zð Þf g
�

+ 1 − Að Þ + 1 + Að Þp zð Þ½ �2
2 A − Bð Þ

+ z2 − 2ηz − 2L
� �

2 A − Bð Þ 1 − Bð Þ + 1 + Bð Þp zð Þ½ �2:

ð25Þ

Then, for ρ ∈ℝand σ = −ð1 + ρ2Þ/2, we get

Re Ψ iρ, σ ; zð Þ = σ + Re 2L − 1ð Þ
2 A − Bð Þ 1 − Að Þ + 1 + Að Þiρf g



� 1 − Bð Þ + 1 + Bð Þiρf g
�

+ Re 1 −Að Þ + 1 + Að Þiρ½ �2
2 A − Bð Þ

+ Re z2 − 2ηz − 2L
� �

2 A − Bð Þ 1 − Bð Þ + 1 + Bð Þiρf g2

 �

≤ −
1 + ρ2
� �

2 + Re 2L − 1ð Þ
2 A − Bð Þ 1 − Að Þ 1 − Bð Þ½

− 1 +Að Þ 1 + Bð Þρ2� − 2 Im Lð Þ
A − Bð Þ 1 − AB½ �ρ

+ 1 −Að Þ2 − 1 + Að Þ2ρ2
2 A − Bð Þ

+ 1 + 2ηj j + 2Lj jð Þ
2 A − Bð Þ 1 − Bð Þ + 1 + Bð Þiρf g2�� ��

= −ρ2

1
2 + 1 + Að Þ 1 + Bð Þ

2 A − Bð Þ Re 2L − 1ð Þ + 1 + Að Þ2
2 A − Bð Þ

−
1 + Bð Þ2

2 A − Bð Þ 1 + 2ηj j + 2Lj jð Þ

2
66664

3
77775

−
2 Im Lð Þ
A − Bð Þ 1 − AB½ �ρ

+

1 −Að Þ 1 − Bð Þ
2 A − Bð Þ Re 2L − 1ð Þ − 1

2 + 1 − Að Þ2
2 A − Bð Þ

+ 1 − Bð Þ2
2 A − Bð Þ 1 + 2ηj j + 2Lj jð Þ

2
66664

3
77775

≤ −ρ2

1
2 + 1 + Að Þ 1 + Bð Þ

2 A − Bð Þ Re 2L − 1ð Þ + 1 + Að Þ2
2 A − Bð Þ

−
1 + Bð Þ2

2 A − Bð Þ 1 + 2ηj j + 2Lj jð Þ

2
66664

3
77775

−
2 Im Lð Þ
A − Bð Þ 1 − AB½ �ρ + 1 − Bð Þ

A − Bð Þ Re 2L − 1ð Þ − 1
2

+ 2
A − Bð Þ + 1 − Bð Þ2

2 A − Bð Þ 1 + 2ηj j + 2Lj jð Þ≔Q ρð Þ:

ð26Þ

To get the contradiction, we have to show QðρÞ ≤ 0 for
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ρ ∈ℝ: We split the proof into two cases. First, consider
the case B = −1 < A ≤ 1: Then, the function Q becomes

Q ρð Þ = −ρ2
2 + A
2


 �
− 2 Im Lð Þρ + 2

1 + Að Þ Re 2L − 1ð Þ − 1
2




+ 2
1 + Að Þ + 2

1 + Að Þ 1 + 2ηj j + 2Lj jð Þ
�
,

ð27Þ

that achieve its maximum at ρ0 = −2 Im ðLÞ/ð2 + AÞ,
and

Q ρ0ð Þ = 2 Im Lð Þð Þ2
2 + A½ � + 2

1 + Að Þ Re 2L − 1ð Þ − 1
2




+ 2
1 + Að Þ + 2

1 + Að Þ 1 + 2ηj j + 2Lj jð Þ
�
,

ð28Þ

which is nonpositive if and only if

Re 2L − 1ð Þ ≤ 1 + Að Þ
4 − Im Lð Þð Þ2 1 + A

2 + A

� 	
− 2 1 + ηj j + Lj jð Þ


 �
:

ð29Þ

Now, consider the case −1 < B < A ≤ 1: Rewriting Q in
the form

Q ρð Þ = −Pρ2 + Rρ − S = −P ρ −
R
2P

� 	2
+ 4PS − R2

4P2

( )
,

ð30Þ

where

P = 1
2 + 1 + Að Þ 1 + Bð Þ

2 A − Bð Þ Re 2L − 1ð Þ + 1 + Að Þ2
2 A − Bð Þ −

1 + Bð Þ2
2 A − Bð Þ 1 + 2ηj j + 2Lj jð Þ

" #
,

R = −
2 Im Lð Þ
A − Bð Þ 1 − AB½ �,

S = −
1 − Bð Þ
A − Bð Þ Re 2L − 1ð Þ − 1

2 + 2
A − Bð Þ + 1 − Bð Þ2

2 A − Bð Þ 1 + 2ηj j + 2Lj jð Þ
" #

:

ð31Þ

The inequality QðρÞ ≤ 0 holds for any real ρ, if P > 0,
S > 0 and R2 ≤ 4PS or

1 + 2ηj j + 2Lj jð Þ 1 + Bð Þ
1 + Að Þ −

1 + Að Þ
1 + Bð Þ −

A − Bð Þ
1 + Að Þ 1 + Bð Þ < Re 2L − 1ð Þ,

A − Bð Þ
2 1 − Bð Þ −

2
1 − Bð Þ − 1 + 2ηj j + 2Lj jð Þ 1 − Bð Þ

2 > Re 2L − 1ð Þ,

8>>><
>>>:

ð32Þ

and

2 Im Lð Þ 1 − ABð Þ½ �2 ≤ 1 + 1 + Að Þ 1 + Bð Þ
A − Bð Þ Re 2L − 1ð Þ + 1 + Að Þ2

A − Bð Þ

"

−
1 + Bð Þ2
A − Bð Þ 1 + 2ηj j + 2Lj jð Þ

#

× 2 1 − Bð Þ
A − Bð Þ Re 2L − 1ð Þ − 1 + 4

A − Bð Þ



+ 1 − Bð Þ2
A − Bð Þ 1 + 2ηj j + 2Lj jð Þ

�
,

≤ 1 + 1 + Að Þ 1 + Bð Þ
A − Bð Þ Re 2L − 1ð Þ + 1 + Að Þ2

A − Bð Þ

"

−
1 + Bð Þ2
A − Bð Þ 1 + 2ηj j + 2Lj jð Þ

#

× 2 1 − Bð Þ
A − Bð Þ Re 2L − 1ð Þ − 1 + 4

A − Bð Þ



+ 1 − Bð Þ2
A − Bð Þ 1 + 2ηj j + 2Lj jð Þ

�
,

ð33Þ

that holds by hypothesis (14) and (15). Thus, in both
cases, the function Ψ satisfies the hypothesis of lemma
(8) and hence Re pðzÞ > 0, or

1 − Að ÞgL,η zð Þ − 1 − Bð ÞzgL,η′ zð Þ
1 + Bð ÞzgL,η′ zð Þ − 1 + Að ÞgL,η zð Þ

≺
1 + z
1 − z

: ð34Þ

By definition of subordination, there exist a map ω in
Uwith ωð0Þ = 0, and

1 − Að ÞgL,η zð Þ − 1 − Bð ÞzgL,η′ zð Þ
1 + Bð ÞzgL,η′ zð Þ − 1 + Að ÞgL,η zð Þ

= 1 + ω zð Þ
1 − ω zð Þ , ð35Þ

which yields

zgL,η′ zð Þ
gL,η zð Þ = 1 + Aω zð Þ

1 + Bω zð Þ : ð36Þ

Hence,

zgL,η′ zð Þ
gL,η zð Þ ≺

1 + Az
1 + Bz

: ð37Þ

If take A = 1 − 2β and B = −1 for 0 ≤ β < 1 in Theorem 3,
we obtain following result.

Corollary 4. Let 0 ≤ β < 1 andL, η ∈ℂ: If

Re Lð Þ ≤ −
1 + β

4
− Im Lð Þð Þ2 1 − β

3 − 2β

� 	
− ηj j + Lj jð Þ, ð38Þ
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then the normalized Coulomb wave function gL,ηðzÞ is
starlike of order β:

Theorem 5. Let −1 ≤ B < A ≤ 1 and L, η ∈ℂ satisfy

If ð1 + BÞsL,η ≠ ð1 + AÞ, then gL,ηðzÞ/z ∈P ½A, B�:

Proof. Define a function sL,η : U⟶ℂ by

sL,η zð Þ =
gL,η zð Þ

z
: ð40Þ

The function sL,η is analytic inU and sL,ηð0Þ = 1: Suppose
that z ≠ 0:. This function satisfies the following equation:

z2sL,η′ ′ zð Þ + 2 L + 1ð ÞzsL,η′ zð Þ + z2 − 2ηz
� �

sL,η zð Þ = 0: ð41Þ

Define the analytic function p::U⟶ℂ by

p zð Þ = −
1 − Að Þ − 1 − Bð ÞsL,η zð Þ
1 + Að Þ − 1 + Bð ÞsL,η zð Þ : ð42Þ

Then, simple computation yields

sL,η zð Þ = 1 − Að Þ + 1 + Að Þp zð Þ
1 − Bð Þ + 1 + Bð Þp zð Þ , ð43Þ

sL,η′ zð Þ = 2 A − Bð Þp′ zð Þ
1 − Bð Þ + 1 + Bð Þp zð Þð Þ2 ,

ð44Þ

sL,η′ ′ zð Þ = 2 A − Bð Þ 1 − Bð Þ + 1 + Bð Þp zð Þð Þp′′ zð Þ − 4 1 + Bð Þ A − Bð Þp′2 zð Þ
1 − Bð Þ + 1 + Bð Þp zð Þð Þ3 :

ð45Þ
Thus, using (43)–(45), the differential equation (41) can

be rewritten as

z2p′′ zð Þ − 2z2 1 + Bð Þp′2 zð Þ
1 − Bð Þ + 1 + Bð Þp zð Þ + 2 L + 1ð Þzp′ zð Þ

+ 1 − Bð Þ + 1 + Bð Þp zð Þf g 1 − Að Þ + 1 + Að Þp zð Þf g
2 A − Bð Þ


 �
z2 − 2ηz
� �

= 0:

ð46Þ

Assume Ω = f0g and define Ψðr, s, t ; zÞ by

Ψ r, s, t ; zð Þ≔ t −
2 1 + Bð Þ

1 − Bð Þ + 1 + Bð Þr s
2 + 2 L + 1ð Þs

+ 1 − Bð Þ + 1 + Bð Þrf g 1 − Að Þ + 1 + Að Þrf g
2 A − Bð Þ


 �
z2 − 2ηz
� �

:

ð47Þ

It follows from (47) that ΨðpðzÞ, zp′ðzÞ, z2p′′ðzÞ ; zÞ ∈
Ω: To ensure Re pðzÞ > 0 for z ∈U, from Lemma 1, it is
enough to establish Re Ψðiρ, σ, μ + iν ; zÞ ≤ 0 in U for any
real ρ, σ ≤ −ð1 + ρ2Þ/2,, and σ + μ ≤ 0: Let z = x + iy ∈U:. A
computation yields

Re Ψ iρ, σ, μ + iv ; zð Þ

= μ −
2 1 + Bð Þ 1 − Bð Þσ2
1 − Bð Þ2 + 1 + Bð Þ2ρ2 + Re 2 L + 1ð Þσ

+ 1 − Bð Þ + 1 + Bð Þiρf g 1 − Að Þ + 1 + Að Þiρf g
2 A − Bð Þ

����
���� z2 − 2ηz
�� ��� �

:

ð48Þ

Since σ ≤ −ð1 + ρ2Þ/2: Thus,

Re Ψ iρ, σ, μ + iv ; zð Þ

≤ −
Re 2L + 1ð Þ 1 + ρ2

� �
2 −

1 − B2� �
1 + ρ2
� �2

2 1 − Bð Þ2 + 1 + Bð Þ2ρ2� �
+ 1 − Bð Þ + 1 + Bð Þiρf g 1 − Að Þ + 1 + Að Þiρf g

2 A − Bð Þ
����

���� z2 − 2ηz
�� ��� �

≤ −
Re 2L + 1ð Þ 1 + ρ2

� �
2 −

1 − B2� �
1 + ρ2
� �2

2 1 − Bð Þ2 + 1 + Bð Þ2ρ2� �
+ 1 − Bð Þ + 1 + Bð Þiρj j 1 − Að Þ + 1 + Að Þiρj j

2 A − Bð Þ

 �

1 + 2ηj jð Þ:

ð49Þ

The proof will be divided into four cases. Consider first
B = −1, B < A ≤ 3 − 2

ffiffiffi
2

p
. The inequality (49) reduces to

Re 2L + 1ð Þ ≥

1 + 2ηj jð Þ
1 + Að Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1 + A2ð Þ

q
+ 1 − Að Þ

� 	
, −1 = B < A ≤ 3 − 2

ffiffiffi
2

p
,

1 + 2ηj jð Þ 1 + Að Þ
2
ffiffiffiffi
A

p and Re 2L + 1ð Þ ≤ 1 + 2ηj jð Þ 1 + Að Þ
1 − Að Þ A ≠ 1ð Þ, B = −1, A > 3 − 2

ffiffiffi
2

p
,

1 + 2ηj jð Þ 1 + Að Þ 1 − Bð Þ2
A − Bð Þ 1 + Bð Þ −

1 − Bð Þ
1 + Bð Þ , −1 < B ≤ 0,

1 + 2ηj jð Þ 1 + Að Þ 1 + Bð Þ
A − Bð Þ −

1 − Bð Þ
1 + Bð Þ , B ≥ 0:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð39Þ
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Re Ψ iρ, σ, μ + iv ; zð Þ

≤ −
Re 2L + 1ð Þ 1 + ρ2

� �
2 + 1 − Að Þ + 1 + Að Þiρj j

1 + Að Þ

 �

1 + 2ηj jð Þ

≤ −
Re 2L + 1ð Þ 1 + ρ2

� �
2 + 1 + 2ηj jð Þ

1 + Að Þ 1 − Að Þ + 1 + Að Þ ρj j½ �

= −
Re 2L + 1ð Þ

2 ρ2 + 1 + 2ηj jð Þ ρj j + 1 − Að Þ
1 + Að Þ 1 + 2ηj jð Þ − Re 2L + 1ð Þ

2

= −
Re 2L + 1ð Þ

2 ρj j − 1 + 2ηj jð Þ
Re 2L + 1ð Þ

� 	2
+ 1 + 2ηj jð Þ2
2 Re 2L + 1ð Þ

+ 1 − Að Þ
1 + Að Þ 1 + 2ηj jð Þ − Re 2L + 1ð Þ

2 ≕ G ρð Þ:

ð50Þ

A quadratic function G takes nonpositive values for
any ρ, if

1 + 2ηj jð Þ2
2 Re 2L + 1ð Þ +

1 − Að Þ
1 + Að Þ 1 + 2ηj jð Þ − Re 2L + 1ð Þ

2 ≤ 0: ð51Þ

Last inequality can be rewritten as

− Re 2L + 1ð Þ½ �2 + 2 1 − Að Þ
1 + Að Þ 1 + 2ηj jð Þ Re 2L + 1ð Þ + 1 + 2ηj jð Þ2 ≤ 0,

ð52Þ

that holds, if

Re 2L + 1ð Þ ≥ 1 + 2ηj jð Þ
1 + Að Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Að Þ2 + 1 + Að Þ2

q
− 1 − Að Þ

� 	
,

ð53Þ

which reduces to the assumption. Therefore, the assertion
follows.

In second case, we consider B = −1, A > 3 − 2
ffiffiffi
2

p
:

According to (49), we have

Re Ψ iρ, σ, μ + iv ; zð Þ ≤ −
Re 2L + 1ð Þ 1 + ρ2

� �
2

+ 1 − Að Þ + 1 + Að Þiρj j
1 + Að Þ


 �
1 + 2ηj jð Þ

= −
Re 2L + 1ð Þ 1 + ρ2

� �
2

+ 1 + 2ηj jð Þ
1 + Að Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Að Þ2 + 1 + Að Þ2ρ2

q� 	
≕H ρð Þ:

ð54Þ

We note that the function H is even with respect to
ρ, and

H 0ð Þ = −
Re 2L + 1ð Þ

2 + 1 − Að Þ
1 + Að Þ 1 + 2ηj jð Þ, ð55Þ

that satisfies Hð0Þ ≤ 0, if

Re 2L + 1ð Þ ≥ 2 1 − Að Þ
1 + Að Þ 1 + 2ηj jð Þ: ð56Þ

Moreover, lim
ρ⟶∞

HðρÞ = −∞, and

H ′ ρð Þ = − Re 2L + 1ð Þρ + 1 + Að Þρ 1 + 2ηj jð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Að Þ2 + 1 + Að Þ2ρ2

q , ð57Þ

with H ′ðρÞ = 0 if and only if ρ = 0 or

ρ20 =
1 + 2ηj jð Þ2

Re2 2L + 1ð Þ −
1 − Að Þ2
1 + Að Þ2 : ð58Þ

We observe that ρ20 ≥ 0 by the inequality

1 + 2ηj jð Þ2
Re2 2L + 1ð Þ ≥

1 − Að Þ2
1 + Að Þ2 ,

ð59Þ

Re 2L + 1ð Þ ≤ 1 + Að Þ
1 − Að Þ 1 + 2ηj jð Þ: ð60Þ

Additionally,

H ′′ ρð Þ = − Re 2L + 1ð Þ + 1 − Að Þ2
1 + Að Þ2

Re3 2L + 1ð Þ
1 + 2ηj jð Þ2 ≤ 0, ð61Þ

in view of (60). Hence, Hðρ0Þ =max HðρÞ, and

H ρ0ð Þ = −
Re 2L + 1ð Þ

2 1 − 1 − A
1 + A

� 	2
" #

+ 1 + 2ηj jð Þ2
2 Re 2L + 1ð Þ ≤ 0,

ð62Þ

that holds if

Re 2L + 1ð Þ ≥ 1 + Að Þ
2
ffiffiffiffi
A

p 1 + 2ηj jð Þ: ð63Þ

Since,

1 + Að Þ
1 − Að Þ 1 + 2ηj jð Þ ≥ 1 + Að Þ

2
ffiffiffiffi
A

p 1 + 2ηj jð Þ ≥ 1 − Að Þ
1 + Að Þ 1 + 2ηj jð Þ,

ð64Þ

holds for 3 − 2
ffiffiffi
2

p
≤ A ≤ 1, then the condition (56), (60),

and (63) reduce to the assumption (39). Therefore, the
assertion follows. Let now −1 < B ≤ 0, A > B: By the fact
ð1 − AÞ/ð1 + AÞ < ð1 − BÞ/ð1 + BÞ, we get

1 − Að Þ + 1 + Að Þiρj j 1 − Bð Þ + 1 + Bð Þiρj j

= 1 + Að Þ 1 + Bð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − B
1 + B

� 	2
+ ρ2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − A
1 + A

� 	2
+ ρ2

s

≤ 1 + Að Þ 1 + Bð Þ 1 − B
1 + B

� 	2
+ ρ2

" #
:

ð65Þ
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Also, for B ≤ 0, we have ð1 + BÞ/ð1 − BÞ ≤ 1; therefore,

1 + ρ2

1 − Bð Þ2 + 1 + Bð Þ2ρ2 = 1
1 − Bð Þ2

1 + ρ2

1 + 1 + Bð Þ/ 1 − Bð Þð Þ2ρ2 ≥
1

1 − Bð Þ2 ,

ð66Þ

for any real ρ: Thus,

Re Ψ iρ, σ, μ + iv ; zð Þ ≤ −
Re 2L + 1ð Þ 1 + ρ2

� �
2 −

1 + Bð Þ 1 + ρ2
� �

2 1 − Bð Þ

+ 1 + 2ηj jð Þ
2 A − Bð Þ 1 + Að Þ 1 + Bð Þ 1 − B

1 + B

� 	2
+ ρ2

" #

= ρ2 −
Re 2L + 1ð Þ

2 −
1 + Bð Þ

2 1 − Bð Þ + 1 + 2ηj jð Þ
2 A − Bð Þ 1 + Að Þ 1 + Bð Þ

� 	

−
Re 2L + 1ð Þ

2 −
1 + Bð Þ

2 1 − Bð Þ
+ 1 + 2ηj jð Þ
2 A − Bð Þ 1 + Bð Þ 1 + Að Þ 1 − Bð Þ2::

ð67Þ

Since for B ≤ 0,,

−
Re 2L + 1ð Þ

2 −
1 + Bð Þ

2 1 − Bð Þ + 1 + 2ηj jð Þ
2 A − Bð Þ 1 + Að Þ 1 + Bð Þ

≤ −
Re 2L + 1ð Þ

2 −
1 + Bð Þ

2 1 − Bð Þ + 1 + 2ηj jð Þ
2 A − Bð Þ 1 + Bð Þ 1 + Að Þ 1 − Bð Þ2,

ð68Þ

and the last expression is nonpositive in view of (39);
then, the assertion follows. Finally, consider 0 ≤ B < A ≤ 1:
In this case β = ð1 + BÞ/ð1 − BÞ ≤ 1: Hence, setting t = β2

+ ρ2 with t ≥ β2 and using (65), we get from (49)

Re Ψ iρ, σ, μ + iv ; zð Þ ≤ −
Re 2L + 1ð Þ

2 1 − β2 + t
� �

−
β 1 − β2 + t
� �2

2t
+ 1 + 2ηj jð Þ

2 A − Bð Þ 1 + Að Þ 1 + Bð Þt

= t −
Re 2L + 1ð Þ

2 −
β

2 + 1 + 2ηj jð Þ
2 A − Bð Þ 1 +Að Þ 1 + Bð Þ

� �

−
Re 2L + 1ð Þ

2 1 − β2� �
−
β 1 − β2� �2

2t − β 1 − β2� �2,
ð69Þ

that is nonpositive due to inequality

Re 2L + 1ð Þ ≥ 1 + 2ηj jð Þ
A − Bð Þ 1 + Að Þ 1 + Bð Þ − 1 − Bð Þ

1 + Bð Þ , ð70Þ

that is equivalent to the assumption (39). Evidently, Ψ
satisfies the hypothesis of Lemma 1, and thus, Re pðzÞ >
0, that is

−
1 − Að Þ − 1 − Bð ÞsL,η zð Þ
1 + Að Þ − 1 + Bð ÞsL,η zð Þ ≺

1 + z
1 − z

: ð71Þ

Hence, there exists an analytic self-map ω of U with
ωð0Þ = 0 such that

−
1 − Að Þ − 1 − Bð ÞsL,η zð Þ
1 + Að Þ − 1 + Bð ÞsL,η zð Þ =

1 + ω zð Þ
1 − ω zð Þ , ð72Þ

which implies that

gL,η zð Þ
z

≺
1 + Az
1 + Bz

: ð73Þ

If we take A = 1 − 2β and B = −1 for 0 ≤ β < 1 in Theo-
rem 5, we obtain following result.

Corollary 6. Let 0 ≤ β < 1 and L, η ∈ℂ: If

1 + 2 ηj jð Þ 1 − βð Þ
2
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2β

p −
1
2
≤ Re Lð Þ

≤
1 + 2 ηj jð Þ 1 − βð Þ

2β
−
1
2
, 0 ≤ β <

ffiffiffi
2

p
− 1

� 
,

ð74Þ

Re Lð Þ ≥ 1
2
+ 1 + 2 ηj j
2 1 − βð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2β + 2β2

q
+ β

� 	
,

ffiffiffi
2

p
− 1 ≤ β < 1

� 
,

ð75Þ

then Re ðgL,ηðzÞ/zÞ > β, that is, z + Ð z0ðgL,ηðtÞ/tÞdt is
close-to-convex of order β:

Applying Corollary 6 for β = 0 and Lemma 2, the following
result for close-to-convexity of gL,ηðzÞ immediately follows.

Corollary 7. Let L, η ∈ℂ: If Re ðLÞ ≥ jηj, then gL,ηðzÞ is close-
to-convex (univalent) for jzj < ffiffiffi

2
p

− 1:
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This paper is aimed at presenting the unified integral operator in its generalized form utilizing the unified Mittag-Leffler function
in its kernel. We prove the boundedness of this newly defined operator. A fractional integral operator comprising a unified Mittag-
Leffler function is used to establish further Minkowski-type integral inequalities. Several related fractional integral inequalities that
have recently been published in various articles can be inferred.

1. Introduction

Integral operators are useful in the study of differential equa-
tions and in the formation of real-world problems in integral
equations. They also behave like integral transformations in
particular cases. In the past few decades, fractional integral
operators have been defined extensively (see [1–4]).
Recently, in [5] a unified integral operator is studied which
has interesting consequences in the theory of fractional inte-
gral operators.

This paper is aimed at presenting a unified integral oper-
ator in the more generalized form via the unified Mittag-
Leffler function introduced in [6]. The boundedness of the
newly defined integral operator is studied. By taking the
power function ξβ ; β > 1, a unified generalized extended
fractional integral operator is deduced and analyzed to con-
struct Minkowski-type integral inequalities. This is the
extension of our previous work on Minkowski-type integral
inequalities [7]. The connection of the results of this paper is
established with many published results of references [7–9].
We begin by reviewing several key Minkowski-type inequal-
ities as well as some definitions that will be useful in our sub-
sequent work.

The well-known Minkowski inequality is given as
follows:

Theorem 1. Let ϕ, ψ∈Lm½u, v�. Then for m ≥ 1, we have

ðv
u
ϕ ξð Þ + ψ ξð Þð Þmdξ

� �1/m
≤

ðv
u
ϕm ξð Þdξ

� �1/m
+

ðv
u
ψm ξð Þdξ

� �1/m
:

ð1Þ

Some more Minkowski-type inequalities are stated in the
next results.

Theorem 2. ([10]). Let ϕ, ψ∈Lm½u, v�. Also ϕ, ψ∈R+ such
that 0 < k1 ≤ ðϕðξÞÞ/ðψðξÞÞ ≤ k2∀ξ ∈ ½u, v�. Then for m ≥ 1,
the following inequality holds true

ðv
u
ϕm ξð Þdξ

� �1/m
+

ðv
u
ψm ξð Þdξ

� �1/m
≤ 1 + k2 − k1

k1 + 1ð Þ k2 + 1ð Þ
� � ðv

u
ϕ ξð Þ + ψ ξð Þð Þmdξ

� �1/m
:

ð2Þ

Theorem 3. ([11]). Under the assumptions of Theorem 2, we
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have the following inequality:

ðv
u
ϕm ξð Þdξ

� �2/m
+

ðv
u
ψm ξð Þdξ

� �2/m

≥
2 + k1 − 1ð Þ k2 + 1ð Þ

k2

� � ðv
u
ϕm ξð Þdξ

� �2/m ðv
u
ψm ξð Þdξ

� �2/m
:

ð3Þ

Theorem 4. ([9]). Let ω ∈ℝ, α, β, γ > 0, θ > λ > 0 with s ≥ 0
, r > 0 and 0 < k ≤ r + α. Let m ≥ 1 and ϕ, ψ ∈ Lm½u, v� be pos-
itive functions satisfying

0 < k1 ≤
ϕ ξð Þ
ψ ξð Þ ≤ k2, ξ ∈ u, v½ �: ð4Þ

Then the following inequality holds:

εϕmð Þ ξ ; sð Þ½ �1/m + εψmð Þ ξ ; sð Þ½ �1/m

≤ 1 + k2 − k1
k1 + 1ð Þ k2 + 1ð Þ

� �
ε ϕ + ψð Þmð Þ ξ ; sð Þ½ �1/m:

ð5Þ

Theorem 5. [9]. Let m, n > 1 such that 1/m + 1/n = 1. Then
under the assumptions of Theorem 4, we have

εϕð Þ ξ ; sð Þ½ �1/m εψð Þ ξ ; sð Þ½ �1/n ≤ k2
k1

� �1/mn

εϕ1/mψ1/n� �
ξ ; sð Þ� �

:

ð6Þ

A special function known as the Mittag-Leffler function
was introduced by a Swedish mathematician Gosta Mittag-
Leffler [12] by the following series:

Eα tð Þ = 〠
∞

l=0

tl

Γ αl + 1ð Þ , ð7Þ

where t, α ∈ℂ and RðαÞ > 0.
This function is a direct extension of the exponential

function that can be used to construct solutions of fractional
differential equations. Due to its wide range of applications,
this function has received considerable attention in recent
decades. Many researchers provided its numerous general-
ized forms due to its intriguing results. We refer the readers
to [2, 4, 13–16] for the study of generalized versions of the
Mittag-Leffler function. In [17], Bhatnagar et al. introduced
the generalization of Mittag-Leffler function in the form of
generalized Q function as follows:

Definition 6. The generalized Q function denoted by ð
Qλ,ρ,θ,k,n

α,β,γ,δ,μ,νÞð:;:,:Þ is defined by the following series:

Qλ,ρ,θ,k,n
α,β,γ,δ,μ,ν t ; a, bð Þ = 〠

∞

l=0

Πn
i=1B bi, lð Þ λð Þρl θð Þkltl

Πn
i=1B ai, lð Þ γð Þδl μð ÞνlΓ αl + βð Þ , ð8Þ

where a = ða1, a2,⋯, anÞ, b = ðb1, b2,⋯, bnÞ, α, β, γ, δ, μ, ν,

λ, ρ, θ, ai, bi ∈ℂ, k ∈ ð0, 1Þ ∪ℕ and min fRðαÞ,RðβÞ,RðγÞ
,RðθÞ,RðλÞ,RðδÞ,RðρÞg > 0.

Recently, in [7], we introduced the fractional integral
operator associated with generalized Q function as follows:

QI
ω,λ,ρ,θ,k,n
u+,α,β,γ,δ,μ,ν f ξ ; a, bð Þ =

ðξ
u
ξ − tð Þβ−1Qλ,ρ,θ,k,n

α,β,γ,δ,μ,ν ω ξ − tð Þα ; a, b� �
f tð Þdt,

ð9Þ

QI
ω,λ,ρ,θ,k,n
v− ,α,β,γ,δ,μ,ν f ξ ; a, bð Þ =

ðv
ξ

t − ξð Þβ−1Qλ,ρ,θ,k,n
α,β,γ,δ,μ,ν ω t − ξð Þα ; a, b� �

f tð Þdt:

ð10Þ
Andrić et al. in [2] introduced an extended and general-

ized Mittag-Leffler function along with the corresponding
fractional integral operator as follows:

Definition 7. The extended and generalized Mittag-Leffler

function ðEδ,μ,k,ν
α,β,γ Þ is defined by the following series:

Eλ,θ,k,r
α,β,γ t ; sð Þ = 〠

∞

l=0

Bs λ + lk, θ − λð Þ θð Þlktl
B λ, θ − λð Þ γð ÞlrΓ αl + βð Þ , ð11Þ

where t, α, β, γ, θ, λ ∈ℂ,RðαÞ,RðβÞ,RðγÞ,RðθÞ,RðλÞ > 0,
RðθÞ >RðλÞ with s ≥ 0, r > 0, 0 < k ≤ r +RðαÞ, and ðθÞlk =
ðΓðθ + lkÞÞ/ðΓðθÞÞ.

Definition 8. Let f ∈ L1½u, v�. Then for ξ ∈ ½u, v�, the fractional
integral operator corresponding to (11) is defined by the fol-
lowing integrals:

εω,λ,θ,k,ru+,α,β,γ f ξ ; sð Þ =
ðξ
u
ξ − tð Þβ−1Eλ,θ,k,r

α,β,γ, ω ξ − tð Þα ; s� �
f tð Þdt,

εω,λ,θ,k,rv− ,α,β,γ f ξ ; sð Þ =
ðv
ξ

t − ξð Þβ−1Eλ,θ,k,r
α,β,γ, ω ξ − tð Þα ; s� �

f tð Þdt:

ð12Þ

In [5], Farid defined the unified integral operator based
on the extended and generalized Mittag-Leffler function
(11) as follows:

Definition 9. Let ω, β, γ, λ, θ ∈ℂ,RðβÞ,RðγÞ > 0,RðθÞ >R

ðλÞ > 0 with s ≥ 0, α, r > 0 and 0 < k ≤ r + α. Let ϕ ∈ L1½u, v�,
0 < u < v <∞, be a positive function. Let g : ½u, v�⟶ℝ be
a differentiable function, strictly increasing. Also let ζðξÞ/ξ
be an increasing function on ½u,∞Þ and ξ ∈ ½u, v�. Then
the left-sided integral is defined by

ζ
gF

ω,λ,θ,k,r
u+,α,β,γ ϕ

� 	
ξ ; sð Þ =

ðξ
u

ζ g ξð Þ − g tð Þð Þ
g ξð Þ − g tð Þ Eλ,θ,k,r

α,β,γ ω g ξð Þ − g tð Þð Þα ; s� �
g′ tð Þϕ tð Þdt:

ð13Þ

In [6], we have presented a further generalized unified
Mittag-Leffler function and the associated fractional integral
operator as follows:
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Definition 10. For a = ða1, a2,⋯, anÞ, b = ðb1, b2,⋯, bnÞ, c =
ðc1, c2,⋯, cnÞ, where ai, bi, ci ∈ℂ ; i = 1,⋯, n such that Rðai
Þ,RðbiÞ,RðciÞ > 0. Also let , β, γ, δ, μ, ν, λ, ρ,θ, t ∈ℂ, min f
RðαÞ,RðβÞ,RðγÞ,RðδÞ,RðλÞ,RðθÞg > 0 and k ∈ ð0, 1Þ ∪
ℕ with s ≥ 0 . Let k +RðρÞ <Rðδ + ν + αÞ with Im ðρÞ =
Im ðδ + ν + αÞ, then the unified Mittag-Leffler function is
defined as follows

Mλ,ρ,θ,k,n
α,β,γ,δ,μ,ν t ; a, b, c, sð Þ = 〠

∞

l=0

Πn
i=1Bs bi, aið Þ λð Þρl θð Þkl

Πn
i=1B ci, aið Þ γð Þδl μð Þνl

tl

Γ αl + βð Þ :

ð14Þ

Definition 11. Let ϕ ∈ L1½u, v�. Then for ξ ∈ ½u, v�, the frac-
tional integral operators corresponding to (14) are defined
by

Iω,λ,ρ,θ,k,nu+,α,β,γ,δ,μ,νϕ ξ ; a, b, c, sð Þ =
ðξ
u
ξ − tð Þβ−1Mλ,ρ,θ,k,n

α,β,γ,δ,μ,ν ω ξ − tð Þα ; a, b, c, s� �
ϕ tð Þdt,

ð15Þ

Iω,λ,ρ,θ,k,nv− ,α,β,γ,δ,μ,νϕ ξ ; a, b, c, sð Þ =
ðv
ξ

t − ξð Þβ−1Mλ,ρ,θ,k,n
α,β,γ,δ,μ,ν ω t − ξð Þα ; a, b, c, s� �

ϕ tð Þdt:

ð16Þ
Fractional integral operators are used to extend different

types of integral inequalities such as Opial-type inequalities
[2, 18–22], Hadamard- and Fejér-Hadamard-type inequal-
ities [23–32], Pólya-Szegö-, Chebyshev-, and Grüss-type
inequalities [33–36] (see references therein), and
Minkowski-type fractional inequalities [7–9]. In this paper
we study Minkowski-type fractional inequalities via the uni-
fied Mittag-Leffler function.

In Section 2, we give the definition of further generalized
integral operator containing the unified Mittag-Leffler func-
tion. The boundedness of this integral operator is proved
under the conditions stated in the definition. In Section 3,
by applying a particular fractional integral operator for the
power function, Minkowski-type fractional integral inequal-
ities are established. In Section 4, reverse Minkowski-type
fractional integral inequalities are presented. The connection
of these inequalities with previous work is stated in the form
of remarks and corollaries.

2. Generalized Version of a Unified
Integral Operator

In this section, we introduce a generalized version of a uni-
fied integral operator containing a unified Mittag-Leffler
function in its kernel and also discuss its boundedness.

Definition 12. Let ω, a = ða1, a2,⋯, anÞ, b = ðb1, b2,⋯, bnÞ, c
= ðc1, c2,⋯, cnÞ, where ai, bi, ci ∈ℂ ; i = 1,⋯, n such that R
ðaiÞ,RðbiÞ,RðciÞ > 0∀i. Also let , γ, μ, λ,θ, t ∈ℂ,
minfRðβÞ,RðγÞ,RðμÞ,RðλÞ,RðθÞg > 0, ρ, δ, ν, α > 0 and
k ∈ ð0, 1Þ ∪ℕ. Let k + ρ < δ + ν + α with s ≥ 0. Let ϕ ∈ L1½u,
v�, 0 < u < v <∞ be a positive function, and let g : ½u, v�
⟶ℝ be a differentiable and strictly increasing function.
Also let ζðξÞ/ξ be an increasing function on ½u,∞� for ξ ∈ ½

u, v�. Then the unified integral operator in its generalized
form is defined by the following integral:

ζ
gΩ

ω,λ,ρ,θ,k,n
u+,α,β,γ,δ,μ,νϕ

� 	
ξ ; sð Þ =

ðξ
u

ζ g ξð Þ − g tð Þð Þ
g ξð Þ − g tð Þ Mλ,ρ,θ,k,n

α,β,γ,δ,μ,ν ω g ξð Þ − g tð Þð Þα ; s� �
g′ tð Þϕ tð Þdt:

ð17Þ

On a particular case, by taking ζðξÞ = ξβ ; β > 1 and
replacing ℂ by ℝ, the above operator takes the following
form:

gΩ
ω,λ,ρ,θ,k,n
u+,α,β,γ,δ,μ,νϕ

� 	
ξ ; sð Þ =

ðξ
u
g ξð Þ − g tð Þð Þβ−1Mλ,ρ,θ,k,n

α,β,γ,δ,u,ν ω g ξð Þ − g tð Þð Þα ; s� �
g′ tð Þϕ tð Þdt,

ð18Þ

where ω, a = ða1, a2,⋯, anÞ, b = ðb1, b2,⋯, bnÞ, c = ðc1, c2,⋯
, cnÞ, ai, bi, ci ∈ℝ ; i = 1,⋯, n such that ai, bi, ci > 0∀i. Also α
, γ, δ, μ, ν, λ, ρ,θ > 0, β > 1 and k ∈ ð0, 1Þ ∪ℕ with k + ρ < δ
+ ν + α and s ≥ 0.

Definition 13. By setting ai = l, s = 0 and ρ > 0 in (18), we will
get the following integral operator:

g
QΩ

ω,λ,ρ,θ,k,n
u+,α,β,γ,δ,μ,νϕ

� 	
ξ ; sð Þ =

ðξ
u
g ξð Þ − g tð Þð Þβ−1Qλ,ρ,θ,k,n

α,β,γ,δ,u,ν ω g ξð Þ − g tð Þð Þα ; s� �
g′ tð Þϕ tð Þdt:

ð19Þ

Remark 14.

(i) By considering n = 1, b1 = λ + lk, a1 = θ − λ, c1 = λ,
ρ = ν = 0, δ > 0 in (17), the unified integral operator
given in (13) is deduced

(ii) By considering the function g to be an identity
function in (19), the fractional integral operator
given in (9) is deduced

(iii) By considering n = 1, b1 = λ + lk, a1 = θ − λ, c1 = λ,
ρ = ν = 0, and δ > 0 in (18), the generalized frac-
tional integral operator ([8], Definition 1.4) is
deduced

(iv) By considering s = 0 = ω in (18), then the left-sided
Riemann-Liouville fractional integral operator of a
function ϕ with respect to another function g of
order β given in [1, 3] is deduced

(v) By considering g to be an identity function, (18) is
deduced to (15)

(vi) By considering g as identity function and setting n
= 1, b1 = λ + lk, a1 = θ − λ, c1 = λ, ρ = ν = 0, and δ
> 0, in (18), the generalized fractional integral oper-
ator (21) is deduced

For simplicity, we will use the following notations

throughout this paper: Mλ,ρ,θ,k,n
α,β,γ,δ,μ,ν ≔M, Iω,λ,ρ,θ,k,nu+,α,β,γ,δ,μ,ν = I, Q

Iω,λ,ρ,θ,k,nu+,α,β,γ,δ,μ,ν= QI, ζ
gΩ

ω,λ,ρ,θ,k,n
u+,α,β,γ,δ,μ,ν : = ζΩ, gΩ

ω,λ,ρ,θ,k,n
u+,α,β,γ,δ,μ,ν ≔Ω, g

Q

Ω
ω,λ,ρ,θ,k,n
u+,α,β,γ,δ,μ,ν : = QΩ.
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Next, we discuss the boundedness of the newly defined
generalized form of unified fractional integral operator.

Theorem 15. Let ω ∈ℝ, a = ða1, a2,⋯, anÞ, b = ðb1, b2,⋯,
bnÞ, c = ðc1, c2,⋯, cnÞ, ai, bi, ci ∈ℝ ; i = 1,⋯, n such that ai,
bi, ci > 0. Also α, β, γ, δ, μ, ν, λ, ρ, θ, t ∈ℝ, k ∈ ð0, 1Þ ∪ℕ and
min fα, β, γ, δ, λ, θg > 0 with k + ρ < δ + ν + α with s ≥ 0.
Let ϕ ∈ L1½u, v�, 0 < u < v <∞ be a positive function, and let
g : ½u, v�⟶ℝ be a differentiable and strictly increasing
function. Also let ζ/ξ be an increasing function on ½u,∞�.
Then for ξ ∈ ½u, v�, we get

ζΩϕ
� 	

ξ ; sð Þ ≤ ζ g ξð Þ − g uð Þð ÞM ω g ξð Þ − g uð Þð Þα ; s� �
ϕ u,ξ½ �,

ð20Þ

ζΩϕ
� 	

ξ ; sð Þ ≤ ζ g vð Þ − g ξð Þð ÞM ω g ξð Þ − g uð Þð Þα ; s� �
ϕ ξ,v½ �,

ð21Þ
where kϕk½u,ξ� = supt∈½u,ξ�jϕðtÞj and kϕk½ξ,v� = supt∈½ξ,v�jϕðtÞj.

Proof. According to the statement, ζ/ξ is an increasing func-
tion; therefore, the following inequality prevails:

ζ g ξð Þ − g tð Þð Þ
g ξð Þ − g tð Þ ≤

ζ g ξð Þ − g uð Þð Þ
g ξð Þ − g uð Þ : ð22Þ

Since g is differentiable and increasing and ϕ is a positive
function, so the above inequality remains preserved by mul-
tiplying it with g′ðtÞϕðtÞ. Therefore, we obtain the following
inequality:

ζ g ξð Þ − g tð Þð Þ
g ξð Þ − g tð Þ g′ tð Þϕ tð Þ ≤ ζ g ξð Þ − g uð Þð Þ

g ξð Þ − g uð Þ g′ tð Þϕ tð Þ: ð23Þ

Multiplying (23) by MðωðgðξÞ − gðtÞÞα ; sÞ and integrat-
ing over ½u, ξ� one can get

ζΩϕ
� 	

ξ ; sð Þ ≤ ζ g ξð Þ − g uð Þð Þ
g ξð Þ − g uð Þ ϕk k u,ξ½ �

ðξ
u
M ω g ξð Þ − g tð Þð Þα ; s� �

g′ tð Þdt:

ð24Þ

Solving the above definite integral, we get

ζΩϕ
� 	

ξ ; sð Þ ≤ ζ g ξð Þ − g uð Þð ÞM ω g ξð Þ − g uð Þð Þα ; s� �
ϕk k u,ξ½ �:

ð25Þ

Similarly, one can easily prove (21).

3. Unified Versions of Minkowski-Type
Fractional Integral Inequalities

In this section, we give proof of unified versions of general-
ized Minkowski-type integral inequalities.

Theorem 16. Let ω ∈ℝ, a = ða1, a2,⋯, anÞ, b = ðb1, b2,⋯,
bnÞ, c = ðc1, c2,⋯, cnÞ, ai, bi, ci ∈ℝ ; i = 1,⋯, n such that ai,
bi, ci > 0. Also α, γ, δ, μ, ν, λ, ρ,θ > 0, β > 1 and k ∈ ð0, 1Þ ∪ℕ
with k + ρ < δ + ν + α with s ≥ 0. Let g : ½u, v�⟶ℝ be a dif-
ferentiable and strictly increasing function, and let ϕ, ψ, ζ1, ζ2
be m − power integrable and positive functions on ½u, v� such
that the ratio ϕðξÞ/ψðξÞ is bounded above by ζ2 and bounded
below by ζ1∀ξ ∈ ½u, v�. Let m, n > 1 such that 1/m + 1/n = 1;
then

Ωϕð Þ ξ ; sð Þ½ �1/m Ωψð Þ ξ ; sð Þ½ �1/n

≤ Ωζ1/mn
2 ϕ1/mψ1/n

� 	
ξ ; sð Þ

h i1/m
Ωζ

− 1/mnð Þ
1 ϕ1/mψ1/n

� 	
ξ ; sð Þ

h i1/n
:

ð26Þ

Proof. According to the statement of the theorem, we have

0 < ζ1 tð Þ ≤ ϕ tð Þ
ψ tð Þ ≤ ζ2 tð Þ, t ∈ u, v½ �: ð27Þ

By considering the lower bound, the above inequality
produces

ψ tð Þ ≤ 1
ζ1/m1

ϕ1/m tð Þψ1/n tð Þ: ð28Þ

By multiplying both sides of the above inequality with
ðgðξÞ − gðtÞÞβ−1MðωðgðξÞ − gðtÞÞα ; sÞg′ðtÞ and integrating
on ½u, ξ�, we get

Ωψð Þ ξ ; sð Þ½ �1/n ≤ Ωζ
− 1/mnð Þ
1 ϕ1/mψ1/n

� 	
ξ ; sð Þ

h i1/n
: ð29Þ

Also, by considering the upper bound of inequality (27),
the following inequality holds:

ϕ tð Þ ≤ ζ1/n2 ϕ1/m tð Þψ1/n tð Þ: ð30Þ

Multiplying both sides of the above inequality with
ðgðξÞ − gðtÞÞβ−1MðωðgðξÞ − gðtÞÞα ; sÞg′ðtÞ and integrating
on ½u, ξ�, we get the following inequality:

Ωϕð Þ ξ ; sð Þ½ �1/m ≤ Ωζ1/mn
2 ϕ1/mψ1/n

� 	
ξ ; sð Þ

h i1/m
: ð31Þ

The product of (29) and (31) results in inequality (26).

Corollary 17. Under the assumptions of Theorem 16 along
with the condition that ζ1ðξÞ = k1 and ζ2ðξÞ = k2 with 0 < k1
< k2∀ξ ∈ ½u, v�, (26) takes the following form:

Ωϕð Þ ξ ; sð Þ½ �1/m Ωψð Þ ξ ; sð Þ½ �1/n ≤ k2
k1

� �1/mn

Ωϕ1/mψ1/n� �
ξ ; sð Þ� �

:

ð32Þ

Corollary 18. Under the assumptions of above theorem and
substituting ai = l, s = 0 and ρ > 0 in (26), we get the following
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inequality:

QΩϕ
� �

ξð Þ� �1/m
QΩψ
� �

ξð Þ� �1/n
≤ QΩζ1/mn

2 ϕ1/mψ1/n
� 	

ξð Þ
h i1/m

QΩζ
− 1/mnð Þ
1 ϕ1/mψ1/n

� 	
ξð Þ

h i1/n
:

ð33Þ

Remark 19.

(i) By setting n = 1, b1 = λ + lk, a1 = θ − λ, c1 = λ, ρ = ν
= 0, and δ > 0 in (32), the inequality given in [8],
Theorem 5, is deduced

(ii) By setting g, the identity function in (32) the
inequality [7], Theorem 4, is deduced

Iϕð Þ ξ ; sð Þ½ �1/m Iψð Þ ξ ; sð Þ½ �1/n ≤ k2
k1

� �1/mn

Iϕ1/mψ1/n� �
ξ ; sð Þ� �

ð34Þ

(iii) Under the assumptions of the Corollary 21 along
with the condition that ζ1ðξÞ = k1 and ζ2ðξÞ = k2
with 0 < k1 < k2∀ξ ∈ ½u, v� and setting the function
g to be an identity function, the inequality given
in [7], Corollary 1, is deduced

(iv) By setting n = 1, b1 = λ + lk, a1 = θ − λ, c1 = λ, ρ = ν
= 0, and δ > 0 in (34), the Minkowski-type inequal-
ity (6) is deduced

In the proof of our next result, we will use Young’s
inequality for x, y ≥ 0 with m, n > 1 satisfying m−1 + n−1 = 1:

xy ≤m−1xm + n−1yn: ð35Þ

Also, the following inequality will be required:

x + yð Þm ≤ 2m−1 xm + ymð Þ ; x, y ≥ 0 andm > 1: ð36Þ

Theorem 20. Under the assumptions of Theorem 16 the fol-
lowing inequality holds:

Ω ϕψð Þð Þ ξ ; sð Þ ≤m−12m−1 Ω ζ2
ζ2 + 1

� �m

ϕm + ψmð Þ
� �

ξ ; sð Þ

+ n−12n−1 Ω 1
ζ1 + 1

� �n

ϕn + ψnð Þ
� �

ξ ; sð Þ:

ð37Þ

Proof. Taking the left side of inequality (27), we obtain the
following form:

ψn tð Þ ≤ ζ1 + 1ð Þ−n ϕ tð Þ + ψ tð Þð Þn: ð38Þ

Multiplying both sides of inequality by ðgðξÞ − gðtÞÞβ−1
MðωðgðξÞ − gðtÞÞα ; sÞg′ðtÞ and integrating over ½u, ξ�, the

above inequality gives

n−1 Ωψnð Þ ξ ; sð Þ ≤ n−1 Ω ζ1 + 1ð Þ−n ϕ + ψð Þn� �
ξ ; sð Þ: ð39Þ

Also, by considering right side of inequality (27), we
have the following inequality:

ϕm tð Þ ≤ ζ2
ζ2 + 1

� �m

ψ tð Þ + ϕ tð Þð Þm: ð40Þ

Multiplying both sides of the above inequality by
ðgðξÞ − gðtÞÞβ−1MðωðgðξÞ − gðtÞÞα ; sÞg′ðtÞ, integrating
over ½u, ξ� and multiplying resulting inequality by m−1, we
get

m−1 Ωϕmð Þ ξ ; sð Þ ≤m−1 Ω ζ2
ζ2 + 1

� �m

ψ + ϕð Þm
� �

ξ ; sð Þ:

ð41Þ

By Young’s inequality, we have

ϕ tð Þψ tð Þ ≤m−1ϕm tð Þ + n−1ψn tð Þ: ð42Þ

Multiplying both sides of the above inequality by
ðgðξÞ − gðtÞÞβ−1MðωðgðξÞ − gðtÞÞα ; sÞg′ðtÞ and integrating
over ½u, ξ�, the above inequality takes the form

Ω ϕψð Þð Þ ξ ; sð Þ ≤m−1 Ωϕmð Þ ξ ; sð Þ + n−1 Ωψnð Þ ξ ; sð Þ: ð43Þ

Applying (43) to the sum of (39) and (41), we get the fol-
lowing inequality:

Ω ϕψð Þð Þ ξ ; sð Þ ≤m−1 Ω ζ2
ζ2 + 1

� �m

ϕ + ψð Þm
� �

ξ ; sð Þ

+ n−1 Ω 1
ζ1 + 1

� �n

ϕ + ψð Þn
� �

ξ ; sð Þ:

ð44Þ

Inequality (37) follows by using (36) in (44).

Corollary 21. Under the assumptions of Theorem 20 together
with the condition that ζ1ðξÞ = k1 and ζ2ðξÞ = k2 with 0 < k1
< k2∀ξ ∈ ½u, v�, (37) becomes

Ω ϕψð Þð Þ ξ ; sð Þ ≤m−12m−1 k2
k2 + 1

� �m

Ω ϕm + ψmð Þð Þ ξ ; sð Þ

+ n−12n−1
1

k1 + 1

� �n

Ω ϕn + ψnð Þð Þ ξ ; sð Þ:

ð45Þ

Corollary 22. Under the assumptions of the above theorem
and setting ai = l, s = 0 and ρ > 0 in (37), the following
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inequality holds true:

QΩ ϕψð Þ� �
ξð Þ ≤m−12m−1

QΩ
ζ2

ζ2 + 1

� �m

ϕm + ψmð Þ
� �

ξð Þ

+ n−12n−1 QΩ
1

ζ1 + 1

� �n

ϕn + ψnð Þ
� �

ξð Þ:

ð46Þ

Remark 23.

(i) By setting n = 1, b1 = λ + lk, a1 = θ − λ, c1 = λ, ρ = ν
= 0, and δ > 0 in (45), the inequality given in [8],
Theorem 6, is deduced

(ii) By setting g the identity function, (45) is deduced to
the following inequality given in [7]:

I ϕψð Þð Þ ξ ; sð Þ ≤m−12m−1 k2
k2 + 1

� �m

I ϕm + ψmð Þð Þ ξ ; sð Þ

+ n−12n−1 1
k1 + 1

� �n

I ϕn + ψnð Þð Þ ξ ; sð Þ

ð47Þ

(iii) Under the assumptions of Corollary 25 along with
the condition that ζ1ðξÞ = k1 and ζ2ðξÞ = k2 with 0
< k1 < k2∀ξ ∈ ½u, v� and setting the function g the
identity function, the inequality given in [7], Corol-
lary 2, is deduced

(iv) By setting n = 1, b1 = λ + lk, a1 = θ − λ, c1 = λ, ρ = ν
= 0, and δ > 0 in (47), the Minkowski-type inequal-
ity given in [9], Theorem 3.2, is deduced

Theorem 24. Suppose the assumptions of Theorem 16 hold;
then for m ≥ 1, the following inequalities hold:

Ω 1
ζ2

ϕψð Þ
� �� �

ξ ; sð Þ ≤ Ω 1
ζ1 + 1ð Þ ζ2 + 1ð Þ

� �
ϕ + ψð Þ2

� �
ξ ; sð Þ

≤ Ω 1
ζ1

ϕψð Þ
� �� �

ξ ; sð Þ:

ð48Þ

Proof. Considering right side of inequality (27), we get the
following inequalities:

ϕ tð Þ + ψ tð Þ ≤ ζ2 tð Þ + 1ð Þψ tð Þ, ð49Þ

ζ−12 tð Þ ζ2 tð Þ + 1ð Þϕ tð Þ ≤ ϕ tð Þ + ψ tð Þ: ð50Þ
Also, from the left side of inequality (27), we have the

following inequalities:

ϕ tð Þ + ψ tð Þ ≥ ζ1 tð Þ + 1ð Þψ tð Þ, ð51Þ

ζ−11 tð Þ ζ1 tð Þ + 1ð Þϕ tð Þ ≥ ϕ tð Þ + ψ tð Þ: ð52Þ

Combining the inequalities (49) and (51), the following
inequality holds

ζ1 tð Þ + 1ð Þψ tð Þ ≤ ϕ tð Þ + ψ tð Þ ≤ ζ2 tð Þ + 1ð Þψ tð Þ: ð53Þ

By the combining the inequalities (50) and (52), we get

ζ−12 tð Þ ζ2 tð Þ + 1ð Þϕ tð Þ ≤ ϕ tð Þ + ψ tð Þ ≤ ζ−11 tð Þ ζ1 tð Þ + 1ð Þϕ tð Þ:
ð54Þ

The product of the above two inequalities yields

ζ−12 tð Þ ϕ tð Þψ tð Þð Þ ≤ 1
ζ1 tð Þ + 1ð Þ ζ2 tð Þ + 1ð Þ

� �
ϕ tð Þ + ψ tð Þð Þ2

≤ ζ−11 tð Þ ϕ tð Þψ tð Þð Þ:
ð55Þ

Now, multiplying ðgðξÞ − gðtÞÞβ−1MðωðgðξÞ − gðtÞÞα ; s
Þg′ðtÞ with the above inequality and integrating over ½u, ξ�,
we get the required inequality (48).

Corollary 25. Under the assumptions of Theorem 24 and tak-
ing ζ1ðξÞ = k1 and ζ2ðξÞ = k2 with 0 < k1 < k2∀ξ ∈ ½u, v�, (48)
takes the following form:

1
k2

Ω ϕψð Þð Þ ξ ; sð Þ ≤ 1
k1 + 1ð Þ k2 + 1ð Þ Ω ϕ + ψð Þ2� �

ξ ; sð Þ

≤
1
k1

Ω ϕψð Þð Þ ξ ; sð Þ:

ð56Þ

Corollary 26. Under the assumptions of the above theorem
and considering ai = l, s = 0 and ρ > 0 in (48), the following
inequality holds:

QΩ
1
ζ2

ϕψð Þ
� �� �

ξð Þ ≤ QΩ
1

ζ1 + 1ð Þ ζ2 + 1ð Þ
� �

ϕ + ψð Þ2
� �

ξð Þ

≤ QΩ
1
ζ1

ϕψð Þ
� �� �

ξð Þ:

ð57Þ

Remark 27.

(i) By setting n = 1, b1 = λ + lk, a1 = θ − λ, c1 = λ, ρ = ν
= 0, and δ > 0 in (56), the inequality given in [8],
Theorem 16 is deduced

(ii) By setting g the identity function, (56) gives the fol-
lowing inequality [7]:

6 Journal of Function Spaces



1
k2

I ϕψð Þð Þ ξ ; sð Þ ≤ 1
k1 + 1ð Þ k2 + 1ð Þ I ϕ + ψð Þ2� �

ξ ; sð Þ ≤ 1
k1

I ϕψð Þð Þ ξ ; sð Þ

ð58Þ

(iii) Under the assumptions of Corollary 29 along with
the condition that ζ1ðξÞ = k1 and ζ2ðξÞ = k2 with 0
< k1 < k2∀ξ ∈ ½u, v� and setting the function g to
be the identity function, the inequality given in
[7], Corollary 3, is deduced

(iv) By setting n = 1, b1 = λ + lk, a1 = θ − λ, c1 = λ, ρ = ν
= 0, and δ > 0 in (58), the Minkowski-type inequal-
ity given in [9], Theorem 3.3, is deduced

Theorem 28. Let the assumptions of Theorem 16 hold true.
Also, let ϕ, ψ, ζ1, ζ2, f be m − power integrable and positive
functions on ½u, v� such that 0 < f ðtÞ < ζ1ðtÞ ≤ ϕðtÞ/ψðtÞ ≤ ζ2
ðtÞ∀t ∈ ½u, v�; then the following inequalities hold for m ≥ 1:

Ω ϕ − fψ
ζ2 − f

� �m� �
ξ ; sð Þ


 �1/m
+ Ω ζ2 ϕ − fψð Þ

ζ2 − f

� �m� �
ξ ; sð Þ


 �1/m

≤ Ωϕmð Þ ξ ; sð Þ½ �1/m + Ωψmð Þ ξ ; sð Þ½ �1/m

≤ Ω ϕ − fψ
ζ1 − f

� �m� �
ξ ; sð Þ


 �1/m
+ Ω ζ1 ϕ − fψð Þ

ζ1 − f

� �m� �
ξ ; sð Þ


 �1/m
:

ð59Þ

Proof. By the assumption of the theorem, we have

0 < f tð Þ < ζ1 tð Þ ≤ ϕ tð Þ
ψ tð Þ ≤ ζ2 tð Þ, t ∈ u, v½ �: ð60Þ

The above inequality can be arranged as follows:

ζ1 tð Þ − f tð Þ ≤ ϕ tð Þ − f tð Þψ tð Þ
ψ tð Þ ≤ ζ2 tð Þ − f tð Þ: ð61Þ

From which we can write

ϕ tð Þ − f tð Þψ tð Þð Þm
ζ2 tð Þ − f tð Þð Þm ≤ ψm tð Þ ≤ ϕ tð Þ − f tð Þψ tð Þð Þm

ζ1 tð Þ − f tð Þð Þm : ð62Þ

The following inequality follows by multiplying
ðgðξÞ − gðtÞÞβ−1MðωðgðξÞ − gðtÞÞα ; sÞg′ðtÞ throughout the
above inequality and integrating over ½u, ξ�:

Ω ϕ − fψ
ζ2 − f

� �m� �
ξ ; sð Þ


 �1/m
≤ Ωψmð Þ ξ ; sð Þ½ �1/m ≤ Ω ϕ − fψ

ζ1 − f

� �m� �
ξ ; sð Þ


 �1/m
:

ð63Þ

Also, from (60), one can have

ζ1 tð Þ − f tð Þ
ζ1 tð Þ ≤

ϕ tð Þ − f tð Þψ tð Þ
ϕ tð Þ ≤

ζ2 tð Þ − f tð Þ
ζ2 tð Þ , ð64Þ

which can also be written as

ζ2 tð Þ ϕ tð Þ − f tð Þψ tð Þð Þ
ζ2 tð Þ − f tð Þ ≤ ϕ tð Þ ≤ ζ1 tð Þ ϕ tð Þ − f tð Þψ tð Þð Þ

ζ1 tð Þ − f tð Þ :

ð65Þ

Taking the power m, after multiplying by
ðgðξÞ − gðtÞÞβ−1MðωðgðξÞ − gðtÞÞα ; sÞg′ðtÞ throughout the
above inequality and integrating over ½u, ξ�, one can get the
following inequality:

Ω ζ2 ϕ − fψð Þ
ζ2 − f

� �m� �
ξ ; sð Þ


 �1/m
≤ Ωϕmð Þ ξ ; sð Þ½ �1/m

≤ Ω ζ1 ϕ − fψð Þ
ζ1 − f

� �m� �
ξ ; sð Þ


 �1/m
:

ð66Þ

The sum of (63) and (66) produces the required inequal-
ity (59).

Corollary 29. Under the assumptions of Theorem 28 along
with the condition that f ðξÞ =m, ζ1ðξÞ = k1 and ζ2ðξÞ = k2
with 0 < k1 < k2∀ξ ∈ ½u, v� in (59), the following inequality
holds:

k2 + 1
k2 −m

Ω ϕ −mψð Þmð Þ ξ ; sð Þ½ �1/m

≤ Ωϕmð Þ ξ ; sð Þ½ �1/m + Ωψmð Þ ξ ; sð Þ½ �1/m

≤
k1 + 1
k1 −m

Ω ϕ −mψð Þmð Þ ξ ; sð Þ½ �1/m:

ð67Þ

Corollary 30. Under the assumptions of the above theorem
with the condition that ai = l, s = 0 and ρ > 0 in (59), the fol-
lowing inequality holds:

QΩ
ϕ − fψ
ζ2 − f

� �m� �
ξð Þ


 �1/m
+ QΩ

ζ2 ϕ − fψð Þ
ζ2 − f

� �m� �
ξð Þ


 �1/m

≤ QΩϕm
� �

ξ ; sð Þ� �1/m + QΩψm� �
ξð Þ� �1/m

≤ Ω ϕ − fψ
ζ1 − f

� �m� �
ξð Þ


 �1/m
+ Ω ζ1 ϕ − fψð Þ

ζ1 − f

� �m� �
ξð Þ


 �1/m
:

ð68Þ

Remark 31.

(i) By setting n = 1, b1 = λ + lk, a1 = θ − λ, c1 = λ, ρ = ν
= 0, and δ > 0 in (67), the inequality given in [8],
Theorem 8, is deduced

(ii) By setting g the identity function, (67) is deduced to
the following inequality [7]:
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k2 + 1
k2 −m

I ϕ −mψð Þmð Þ ξ ; sð Þ½ �1/m ≤ Iϕmð Þ ξ ; sð Þ½ �1/m + Iψmð Þ ξ ; sð Þ½ �1/m

≤
k1 + 1
k1 −m

I ϕ −mψð Þmð Þ ξ ; sð Þ½ �1/m

ð69Þ

(iii) Under the assumptions of Corollary 33 along with
the condition that ζ1ðξÞ = k1 and ζ2ðξÞ = k2 with 0
< k1 < k2∀ξ ∈ ½u, v� and setting the function g to
be the identity function, the inequality given in
[7], Corollary 4, is deduced

(iv) By setting n = 1, b1 = λ + lk, a1 = θ − λ, c1 = λ, ρ = ν
= 0, and δ > 0 in (69), the Minkowski-type inequal-
ity given [9], Theorem 3.4, is deduced

4. Reverse Minkowski-Type Fractional
Integral Inequalities

In this section, we state and prove some reverse versions of
Minkowski-type inequalities that are the generalizations of
(2), (3), and (5).

Theorem 32. Under the assumptions of Theorem 16, the fol-
lowing inequality holds for m ≥ 1:

Ωϕmð Þ ξ ; sð Þ½ �1/m + Ωψmð Þ ξ ; sð Þ½ �1/m

≤ Ω ζ2
1 + ζ2

� �m

ϕ + ψð Þm
� �� �

ξ ; sð Þ

 �1/m

+ Ω 1
1 + ζ1

� �m

ϕ + ψð Þm
� �� �

ξ ; sð Þ

 �1/m

:

ð70Þ

Proof. From (27), one can obtain the following inequality:

 ψm tð Þ ≤ 1
1 + ζ1 tð Þð Þm ϕ tð Þ + ψ tð Þð Þm: ð71Þ

Multiplying both sides of inequality by ðgðξÞ − gðtÞÞβ−1
MðωðgðξÞ − gðtÞÞα ; sÞg′ðtÞ and integrating on ½u, ξ�, the
above inequality can take the form as follows:

Ωψmð Þ ξ ; sð Þ½ �1/m ≤ Ω 1
1 + ζ1 tð Þð Þm ψ + ϕð Þm

� �� �
ξ ; sð Þ


 �1/m
:

ð72Þ

Also, by considering inequality (27), one can have the
following inequality:

ϕm tð Þ ≤ ζ2
1 + ζ2 tð Þ

� �m

ψ tð Þ + ϕ tð Þð Þm: ð73Þ

Multiplying both sides of the above inequality by
ðgðξÞ − gðtÞÞβ−1MðωðgðξÞ − gðtÞÞα ; sÞg′ðtÞ and integrating

over ½u, ξ�, we can get

Ωϕmð Þ ξ ; sð Þ½ �1/m ≤ Ω ζ2
1 + ζ2 tð Þ

� �m

ψ + ϕð Þm
� �� �

ξ ; sð Þ

 �1/m

:

ð74Þ

Adding (72) and (74), inequality (70) can be obtained.

Corollary 33. Under the assumptions of Theorem 32 along
with the condition that ζ1ðξÞ = k1 and ζ2ðξÞ = k2 with 0 < k1
< k2∀ξ ∈ ½u, v�, (70) takes the following form:

Ωϕmð Þ ξ ; sð Þ½ �1/m + Ωψmð Þ ξ ; sð Þ½ �1/m

≤ 1 + k2 − k1
k1 + 1ð Þ k2 + 1ð Þ

� �
Ω ϕ + ψð Þmð Þ ξ ; sð Þ½ �1/m:

ð75Þ

Corollary 34. Under the assumptions of the above theorem
and taking ai = l, s = 0, and ρ > 0 in (70), the following
inequality is obtained:

QΩϕm
� �

ξð Þ� �1/m + QΩψm� �
ξð Þ� �1/m

≤ QΩ
ζ2

1 + ζ2

� �m

ϕ + ψð Þm
� �� �

ξð Þ

 �1/m

+ QΩ
1

1 + ζ1

� �m

ϕ + ψð Þm
� �� �

ξð Þ

 �1/m

:

ð76Þ

Remark 35.

(i) By setting n = 1, b1 = λ + lk, a1 = θ − λ, c1 = λ, ρ = ν
= 0, and δ > 0 in (70), the inequality introduced by
Andric et. al [8] (Theorem 3) is generated

(ii) Taking g : ½u, v�⟶ℝ to be an identity function,
(75) gives the following inequality [7]:

Iϕmð Þ ξ ; sð Þ½ �1/m + Iψmð Þ ξ ; sð Þ½ �1/m

≤ 1 + k2 − k1
k1 + 1ð Þ k2 + 1ð Þ

� �
I ϕ + ψð Þmð Þ ξ ; sð Þ½ �1/m

ð77Þ

(iii) Under the assumptions of Corollary 37 along with
the condition that ζ1ðξÞ = k1 and ζ2ðξÞ = k2 with 0
< k1 < k2∀ξ ∈ ½u, v� and setting the function g to
be an identity function, we obtain the inequality as
in [7], Corollary 5

(iv) By setting n = 1, b1 = λ + lk, a1 = θ − λ, c1 = λ, ρ = ν
= 0, and δ > 0 in (77), Minkowski-type inequality
(5) is deduced
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Theorem 36. Under the assumptions of Theorem 16, for m
≥ 1, we have

Ωϕmð Þ ξ ; sð Þ½ �2/m + Ωψmð Þ ξ ; sð Þ½ �2/m

≥ Ω 1 + ζ2
ζ2

� �m

ϕm
� �

ξ ; sð Þ

 �1/m

Ω 1 + ζ1ð Þmψm� �
ξ ; sð Þ� �1/m

− 2 Ωϕmð Þ ξ ; sð Þ½ �1/m Ωψmð Þ ξ ; sð Þ½ �1/m:
ð78Þ

Proof. Inequalities (71) and (73) from the previous theorem
can be arranged in the following forms:

1 + ζ1 tð Þð Þmψm tð Þ ≤ ϕ tð Þ + ψ tð Þð Þm,
1 + ζ2 tð Þ
ζ2 tð Þ

� �m

ϕm tð Þ ≤ ψ tð Þ + ϕ tð Þð Þm:
ð79Þ

By multiplying with ðgðξÞ − gðtÞÞβ−1MðωðgðξÞ − gðtÞÞα
; sÞg′ðtÞ and integrating over ½u, ξ� and taking the power 1
/m of the resulting inequalities, the above inequalities further
take the following forms:

Ω 1 + ζ1ð Þmψm� �
ξ ; sð Þ� �1/m ≤ Ω ϕ + ψð Þmð Þ ξ ; sð Þ½ �1/m, ð80Þ

Ω 1 + ζ2
ζ2

� �m

ϕm
� �

ξ ; sð Þ

 �1/m

≤ Ω ψ + ϕð Þmð Þ ξ ; sð Þ½ �1/m:

ð81Þ
By multiplying (80) and (81), we get the following

inequality:

Ω 1 + ζ1ð Þmψm� �
ξ ; sð Þ� �1/m Ω 1 + ζ2

ζ2

� �m

ϕm
� �

ξ ; sð Þ

 �1/m

≤ Ω ψ + ϕð Þmð Þ ξ ; sð Þð Þ1/m
h i2

:

ð82Þ

Applying Minkowski’s inequality on the term within the
square brackets at the right side of the above inequality and
then using ða + bÞ2 = a2 + 2ab + b2, the above inequality
gives the required inequality (78).

Corollary 37. Under the assumptions of Theorem 36 along
with the condition that ζ1ðξÞ = k1 and ζ2ðξÞ = k2 with 0 < k1
< k2∀ξ ∈ ½u, v�, (78) takes the following form:

Ωϕmð Þ ξ ; sð Þ½ �2/m + Ωψmð Þ ξ ; sð Þ½ �2/m

≥
2 + k1 − 1ð Þ k2 + 1ð Þ

k2

� �
Ωϕmð Þ ξ ; sð Þ½ �1/m Ωψmð Þ ξ ; sð Þ½ �1/m:

ð83Þ

Corollary 38. Under the assumptions of above theorem
together with the condition ai = l, s = 0, and ρ > 0, (78) results

in the following inequality:

QΩϕm
� �

ξð Þ� �2/m + QΩψm� �
ξð Þ� �2/m

≥ QΩ
1 + ζss2

ζ2

� �m

ϕm
� �

ξð Þ

 �1/m

QΩ 1 + ζ1ð Þmψm� �
ξð Þ� �1/m

− 2 QΩϕm
� �

ξð Þ� �1/m
QΩψm� �

ξð Þ� �1/m
:

ð84Þ

Remark 39.

(i) By setting n = 1, b1 = λ + lk, a1 = θ − λ, c1 = λ, ρ = ν
= 0, and δ > 0 in (78), the inequality given in [8],
Theorem 4, is deduced

(ii) By setting g the identity function in (83), the follow-
ing inequality is deduced [7]:

Iϕmð Þ ξ ; sð Þ½ �2/m + Iψmð Þ ξ ; sð Þ½ �2/m

≥
2 + k1 − 1ð Þ k2 + 1ð Þ

k2

� �
Iϕmð Þ ξ ; sð Þ½ �1/m Iψmð Þ ξ ; sð Þ½ �1/m

ð85Þ

(iii) Under the assumptions of Corollary 13 along with
the condition that ζ1ðξÞ = k1 and ζ2ðξÞ = k2 with 0
< k1 < k2∀ξ ∈ ½u, v� and setting g the identity func-
tion, the inequality given in [7], Corollary 6, is
deduced

(iv) By setting n = 1, b1 = λ + lk, a1 = θ − λ, c1 = λ, ρ = ν
= 0, and δ > 0 in (85), the Minkowski-type inequal-
ity given in [9], Theorem 2.2, is deduced

Remark 40. All results of this paper hold for the right-sided
integral operator:

gΩ
ω,λ,ρ,θ,k,n
v− ,α,β,γ,δ,μ,νϕ

� 	
ξ ; sð Þ =

ðv
ξ

g tð Þ − g ξð Þð Þβ−1Mλ,ρ,θ,k,n
α,β,γ,δ,u,ν ω g tð Þ − g ξð Þð Þα ; s� �

g′ tð Þϕ tð Þdt:

ð86Þ

5. Conclusion

A generalized integral operator with the help of a unified
Mittag-Leffler function is defined, and its boundedness is
proved. By giving specific values to parameters and consid-
ering suitable functions involved in the kernel of this opera-
tor, various kinds of well-known integral and fractional
integral operators can be reproduced. For a fractional inte-
gral operator, we have constructed several Minkowski- and
reverse Minkowski-type inequalities. The particular cases
of the results of this paper are connected with many already
published results.
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.e purpose of this research article is to introduce new contractive conditions and to examine the existence and uniqueness of fixed points
of self-mappings in the context of b-metric spaces by applying these different contractive conditions. Furthermore, some examples are
given to illustrate its validity and superiority. Our results generalize and extend several well-known results in metric and b-metric spaces.

1. Introduction and Preliminaries

Many issues in engineering and science explained by
nonlinear equations may be tackled by confining them to
analogous fixed-point case. An operator sum Gx� 0 can be
proved as fixed-point sum Fx� x, wherein F is a self-defining
along with some relevant discipline. Fixed-point theory
endows with some key modes to resolving problems ensuing
from multiple offshoots of mathematical inspection such as
split feasibility issues, supportive problems, equilibrium
problems, and matching, as well as selective issues and such
others. .e theory of fixed points is the great vibrant and
energetic zone of the study. .is theory has previously been
exposed as an excessive and major deployment for cram-
ming nonlinear analysis. Specially, fixed-point procedures
are being applied in a diversity of fields, for example, biology,
chemistry, engineering, economics, physics, and game
theory. Functional analysis is a very useful and important
field of mathematics. Its results are supportive tools for other
fields to solve many problems. Many researchers have put
their efforts in obtaining these results; for further study, see
[1–12] and literature. Because of Banach [4], the Banach-
contraction theorem (1922) is indeed the most significant
consequence in the theory of fixed points in metric spaces.
.is theorem promises the presence and distinctiveness of
fixed points of self-mapping that satisfy the contraction
condition on complete metric spaces as well as dispense a

valuable approach for finding them. Since contractive
condition deduces the uniform continuity of an operator f,
so it was a natural question to raise the concern about
existence of fixed point in the absence of continuity of f. In
1968, Kannan [12] answered this question by the intro-
duction of Kannan contractive condition. One of the most
famous generalizations of metric spaces was given by
Bakhtin [3] in 1989. He presented the notion of b-metric
space in which triangular inequality has been relaxed. In
1993, Czerwik [7] drew out the results in b-metric space. By
accepting this idea, many researchers gave extensions of
Banach’s principle in b-metric space. Boriceanu [5], Czerwik
[7], Bota [13], and Pacurar [13] drew out the fixed-point
theorems in b-metric space. Moreover, many authors ex-
amined and derived the existence of fixed point of a con-
traction function in the context of b-metric spaces; for detail,
see [12, 14–17] and references therein. In this paper, we have
established fixed-point results in the context of b-metric
spaces for two different contractive conditions. Some direct
consequences from our main results are also presented. In
the support of these results, examples are created.

Definition 1 (see [4]). Consider a metric space Ω with
metric d. A function G: Ω⟶Ω is known as Banach
contraction on G if there exists a number α ∈ [0, 1) such
that ∀, a, b ∈ Ω:
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d(Ga, Gb)≤ αd(a, b). (1)

Definition 2 (see [9]). Consider (Ω, d) a metric space and
G: Ω⟶Ω is a function if ∃ α ∈ (0, 1/2) such that, for all
a1, a2 ∈ Ω, we have

d Ga1, Ga2( ≤ α d a1, Ga1(  + d a2, Ga2(  . (2)

.en, G is known as Kannan contraction.

Definition 3 (see [3]). Let Ω be any nonempty set and w≥ 1
be a real number. A function d: Ω ×Ω⟶ R+ is called
b-metric if axioms given below are fulfilled for all
μ, ], ξ ∈ Ω:

d(μ, ])≥ 0 and d(], μ) � 0 iff μ � ]
d(μ, ])≥ 0 and d(], μ) � 0 iff μ � ]
d(μ, ξ)≤w[d(μ, ]) + d(], ξ)]

.en, (Ω, d) is called b-metric space.
If we take w � 1, then b-metric space becomes ordinary

metric space. Hence, set of all metric spaces is a subset of set
of all b-metric spaces.

Example 1. Let Ω � R; then, d(ω1,ω2) � (ω1 − ω2)
2 is a

b-metric space with s � 2.

(1) Obviously, d(ω1, ω2) � (ω1 − ω2)
2 is real, finite, and

nonnegative.
(2) Consider d(ω1,ω2) � 0⇔ (ω1 − ω2)

2 � 0⇔ (ω1−

ω2) � 0⇔ω1 � ω2 and d(ω1,ω2) �

(ω1 − ω2)
2 � (ω2 − ω1)

2 � d(ω2,ω1).

So, d(ω1,ω2) � d(ω2,ω1).
(3) To solve the triangular property in b-metric space,

we will use the convexity of function, i.e.,
“If 1<p<∞, then convexity of function
f(a) � ap(a> 0) implies that (a + b/2)p ≤ ap/
2 + bp/bp, i.e.,

a + b

2
 

p

≤
a

p

2
+

b
p

b
p

(a + b)
p ≤ 2p− 1

a
p

+ b
p

( ,

(3)

holds,” and we have

d ω1,ω3(  � ω1 − ω3( 
2

� ω1 − ω2 + ω2 − ω3( 
2

� ω1 − ω2(  + ω2 − ω3(  
2
.

(4)

Using (3),

d ω1,ω3( ≤ 2 d ω1,ω2(  + d ω2,ω3(  . (5)

Hence, d(ω1,ω2) � (ω1 − ω2)
2 is a b-metric with s � 2.

Example 2 (see [5]). .e set lp with 0<p< 1, where lp �

xn  ⊂ R: 
∞
ι�1 |μι|

p <∞ , together with the function
d: lp × lp⟶ [0,∞), is

d(μ, ]) � 
∞

ι�1
μι − ]ι



p⎛⎝ ⎞⎠

1/p

, (6)

where μ � μι  and ] � ]ι  ∈ lp is b-metric space with
w � 21/p > 1. Notice that the abovementioned result holds
with 0<p< 1.

Definition 4 (see [5]). Let (Ω, d) be b-metric space and zn 

be a sequence in Ω. .en,

(1) zn  is called a convergent sequence if and only if
there exists z ∈ Ω, such that for any r> 0 ∃ n(r) ∈ N

such that, for all n≥ n(r), we get d(zn, z)< r. In this
case, we write lim

n⟶∞
zn � z.

(2) zn  is said to be a Cauchy sequence if and only if for
any r> 0 ∃ n(r) ∈ N such that, for each i, j≥ n(r), we
get d(zi, zj)< r.

(3) Ω is called complete if every Cauchy sequence inΩ is
convergent in Ω.

Let Ω be a nonempty set and R: Ω⟶Ω be a self-map.
We say that x ∈ Ω is a fixed point of R if R(x) � x.

Let Ω be any set and R: Ω⟶Ω be a self-map. For any
given x ∈ Ω, we define Rn(x) inductively by R0(x) � x and
Rn+1(x) � R(Rn(x)), and we recall Rn(x), the nth iterative of
x under R. For any x0 ∈ Ω, the sequence xn n≥ 0 ⊂ Ω is
given by

xn � Rxn− 1 � R
n
x0, n � 1, 2, . . . (7)

which is known as the sequence of successive approxima-
tions, where x0 is the initial value. .is is also known as the
Picard iteration starting at x0.

2. Fixed Points for Contractive Mappings

.is section consists of our main results. We investigate the
existence and uniqueness of fixed points of some new
contractive conditions in the context of b-metric spaces.
Moreover, results are supported with example.

Theorem 1. Let (Ω, d) be a complete b-metric space with
coefficient ≥1. Let R be a function R: Ω⟶ Ω such that

d(Rx, Ry)≤ ad(x, y) + bmax
d(x, Rx), d(y, Ry), d(x, Ry),

d(y, Rx)
 ,

(8)

where a, b> 0 such that a + 2sb< 1, ∀x, y ∈ Ω and s≥ 1.

7en, there is a unique fixed point of R.

Proof. Let ɤ0 ∈ Ω and ɤn 
∞
n�1 be a sequence in Ω defined by

the recursion:

ɤn � Rɤn− 1 � R
nɤ0, n � 1, 2, 3, 4, . . . . (9)

By (8) and (9),
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d ɤn, ɤn+1(  � d Rɤn− 1, Rɤn( , (10)

≤ ad ɤn− 1, ɤn(  + bmax
d ɤn− 1, Rɤn− 1( , d ɤn, Rɤn( , d ɤn− 1, Rɤn( ,

d ɤn, Rɤn− 1( 
 , (11)

� ad ɤn− 1, ɤn(  + bmax
d ɤn− 1, ɤn( , d ɤn, ɤn+1( , d ɤn− 1, ɤn+1( ,

d ɤn, ɤn( 
 . (12)

So,

d ɤn, ɤn+1( ≤ ad ɤn− 1, ɤn(  + bmax d ɤn− 1, ɤn( , d ɤn, ɤn+1( , d ɤn− 1, ɤn+1(  ,

d ɤn, ɤn+1( ≤ ad ɤn− 1, ɤn(  + bM,
(13)

where M � max d(ɤn− 1, ɤn), d(ɤn, ɤn+1),

d(ɤn− 1, ɤn+1), }. □

Case 1. If M � d(ɤn− 1, ɤn), then

d(ɤn, ɤn+1)≤ ad (ɤn− 1, ɤn) + bd (ɤn− 1, ɤn)

d(ɤn, ɤn+1)≤ (a + b)d(ɤn− 1, ɤn)

Let k � (a + b)< 1; then, d(ɤn, ɤn+1)≤ kd(ɤn− 1, ɤn) and

d(ɤn, ɤn+1)≤ knd(ɤ0, ɤ1).

Case 2. If M � d(ɤn, ɤn+1), then

d ɤn, ɤn+1( ≤ ad ɤn− 1, ɤn(  + bd ɤn, ɤn+1( , (14)

(1 − b)d ɤn, ɤn+1( ≤ ad ɤn− 1, ɤn( , (15)

d ɤn, ɤn+1( ≤
a

(1 − b)
d ɤn− 1, ɤn( . (16)

Let k � a/(1 − b)< 1; then,

d ɤn, ɤn+1( ≤ kd ɤn− 1, ɤn( , (17)

d ɤn, ɤn+1( ≤ k
n
d ɤ0, ɤ1( . (18)

Case 3. If M � d(ɤn− 1, ɤn+1), then

d ɤn, ɤn+1( ≤ ad ɤn− 1, ɤn(  + bd ɤn− 1, ɤn+1( ,

d ɤn, ɤn+1( ≤ ad ɤn− 1, ɤn(  + b s d nn− 1, ɤn(  + d ɤn, ɤn+1( (  ,

(19)

d ɤn, ɤn+1( ≤ ad ɤn− 1, ɤn(  + sbd ɤn− 1, ɤn(  + sbd ɤn, ɤn+1( ,

(1 − sb)d ɤn, ɤn+1( ≤ (a + sb)d ɤn− 1, ɤn( ,
(20)

d ɤn, ɤn+1( ≤
(a + sb)

(1 − sb)
d ɤn− 1, ɤn( . (21)
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Let k � (a + sb)/(1 − sb)< 1 ; then,

d ɤn, ɤn+1( ≤ kd ɤn− 1, ɤn( , (22) d ɤn, ɤn+1( ≤ k
n
d ɤ0, ɤ1( . (23)

Cases 1–3 show that R is a contractive-type mapping.
Let m, n ∈ N and m> n; then,

d ɤn, ɤm( ≤ s d ɤn, ɤn+1(  + d ɤn+1, ɤm(  ,

d ɤn, ɤm( ≤ sd ɤn, ɤn+1(  + sd ɤn+1, ɤm( ,

d ɤn, ɤm( ≤ sd ɤn, ɤn+1(  + sd ɤn+1, ɤm( ,

d ɤn, ɤm( ≤ sd ɤn, ɤn+1(  + sd ɤn+1, ɤm( ,

d ɤn, ɤm( ≤ sd ɤn, ɤn+1(  + s s d ɤn+1, ɤn+2(  + d ɤn+2, ɤm(  ( ,

d ɤn, ɤm( ≤ sd ɤn, ɤn+1(  + s
2
d ɤn+1, ɤn+2(  + s

2
d ɤn+2, ɤm( .

(24)

Continue in the following way:

d ɤn, ɤm( ≤ sd ɤn, ɤn+1(  + s
2
d ɤn+1, ɤn+2(  + s

3
d ɤn+2, ɤn+3(  + · · · + s

m− n
d ɤm− 1, ɤm( . (25)

By Cases 1–3,

d ɤn, ɤm( ≤ sk
n
d ɤ0, ɤ1(  + s

2
k

n+1
d ɤ0, ɤ1(  + s

3
k

n+2
d ɤ0, ɤ1( 

+ · · · + s
m− n

k
m− 1

d ɤ0, ɤ1( ,

� d ɤ0, ɤ1(  sk
n

+ s
2
k

n+1
+ s

3
k

n+2
+ · · · + s

m− n
k

m− 1
 .

(26)

Since skn + s2kn+1 + s3kn+2 + · · · + sm− nkm− 1 is geometric
series with common ratio less than 1, so

d ɤn, ɤm( ≤
sk

n 1 − (sk)
n

( 

1 − sk
 d ɤ0, ɤ1( ≤

sk
n

1 − sk
 d ɤ0, ɤ1( . (27)

As n⟶∞ and k< 1, (skn/1 − sk)⟶ 0.

Hence,

d ɤn, ɤm( ⟶ 0. (28)

Hence, ɤn  is a Cauchy sequence in Ω. Due to com-
pleteness of Ω, there exists ɤ∗ ∈ Ω such that

ɤn⟶ ɤ∗, as n⟶∞. (29)
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Now,

d ɤ∗, Rɤ∗( ≤ s d ɤ∗, ɤn+1(  + d ɤn+1, Rɤ∗(  ,

d ɤ∗, Rɤ∗( ≤ sd ɤ∗, ɤn+1(  + sd ɤn+1, Rɤ∗( ,

d ɤ∗, Rɤ∗( ≤ sd ɤ∗, ɤn+1(  + sd Rɤn, Rɤ∗( ,

d ɤ∗, Rɤ∗( ≤ sd ɤ∗, ɤn+1(  + s ad ɤn, ɤ∗(  + bmax 

d ɤn, Rɤn( , d ɤ∗, Rɤ∗( , d ɤn, Rɤ∗( 

d ɤ∗, Rɤn( 

⎧⎨

⎩

⎫⎬

⎭,

d ɤ∗, Rɤ∗( ≤ sd ɤ∗, ɤn+1(  + s ad ɤn, ɤ∗(  + bMo ,

(30)

where Mo � max d(ɤn, Rɤn), d (ɤ∗, Rɤ∗),
d(ɤn, Rɤ∗), d(ɤ∗, Rɤn)}.

Case 4. If Mo � d(ɤn, Rɤn), then

d ɤ∗, Rɤ∗( ≤ sd ɤ∗, ɤn+1(  + asd ɤn, ɤ∗(  + bsd ɤn, Rɤn( ,

d ɤ∗, Rɤ∗( ≤ sd ɤ∗, ɤn+1(  + asd ɤn, ɤ∗(  + bsd ɤn, ɤn+1( .
(31)

As n⟶∞ and ɤn⟶ ɤ∗, so

d ɤ∗, Rɤ∗( ⟶ 0. (32)

Hence,

ɤ∗ � Rɤ∗. (33)

ɤ∗ is a fixed point of R.

Case 5. If Mo � d(ɤ∗, Rɤ∗), then

d ɤ∗, Rɤ∗( ≤ sd ɤ∗, ɤn+1(  + asd ɤn, ɤ∗(  + bsd ɤ∗, Rɤ∗( ,

(1 − bs)d ɤ∗, Rɤ∗( ≤ sd ɤ∗, ɤn+1(  + asds ɤn, ɤ∗( ,

d ɤ∗, Rɤ∗( ≤
s

(1 − bs)
d ɤ∗, ɤn+1(  +

as

(1 − bs)
d ɤn, ɤ∗( .

(34)

As n⟶∞ and ɤn⟶ ɤ∗, so

d ɤ∗, Rɤ∗( ⟶ 0. (35)

Hence, ɤ∗ � Rɤ∗. ɤ∗ is a fixed point of R.

Case 6. If Mo � d(ωn, Rω∗), then

d ɤ∗, Rɤ∗( ≤ sd ɤ∗, ɤn+1(  + asd ɤn, ɤ∗(  + bsd ɤn, Rɤ∗( ,

d ɤ∗, Rɤ∗( ≤ sd ɤ∗, ɤn+1(  + asd ɤn, ɤ∗(  + bs s d ɤn, ɤ∗(  + d ɤ∗, Rɤ∗(  ( ,

1 − s
2
b d ɤ∗, Rɤ∗( ≤ sd ɤ∗, ɤn+1(  + as + s

2
b d ɤn, ɤ∗( ,

d ɤ∗, Rɤ∗( ≤
s

1 − s
2
b 

d ɤ∗, ɤn+1(  + as + s
2
b / 1 − s

2
b d ɤn, ɤ∗( .

(36)

As n⟶∞ and ɤn⟶ ɤ∗, so

d ɤ∗, Rɤ∗( ⟶ 0. (37)

Hence, ɤ∗ � Rɤ∗.
Hence, ɤ∗ is a fixed point of R.
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Case 7. If Mo � d(ɤ∗, Rɤn), then

d n
∗
, Rɤ∗( ≤ sd ɤ∗, ɤn+1(  + asd ɤn, ɤ∗(  + bsd ɤ∗, Rɤn( ,

d ɤ∗, Rɤ∗( ≤ sd ɤ∗, ɤn+1(  + asd ɤn, ɤ∗(  + bsd ɤ∗, ɤn+1( ,

d ɤ∗, Rɤ∗( ≤ (s + bs)d ɤ∗, ɤn+1(  + asd ɤn, ɤ∗( .

(38)

As n⟶∞ and ɤn⟶ ɤ∗, so

d Υ∗, Rɤ∗( ⟶ 0. (39)

Hence, ɤ∗ � Rɤ∗. ɤ∗ is a fixed point of R.
Now, assume that ɤ’ is another fixed point of R, i.e.,

Rɤ′ � ɤ′. Consider

d ɤ∗, ɤ′(  � d Rɤ∗, Rɤ′( ,

d ɤ∗, ɤ′( ≤ ad ɤ∗, ɤ′(  + bmax d ɤ∗, Rɤ∗( , d ɤ′, Rɤ′( , d ɤ∗, Rɤ′( , d ɤ′, Rɤ∗(  ,

d ɤ∗, ɤ′( ≤ ad ɤ∗, ɤ′( ɤ′ + bmax d ɤ∗, ɤ∗( , d ɤ′, ɤ′( , d ɤ∗, ɤ′( , d ɤ′, ɤ∗(  ,

d ɤ∗, ɤ′( ≤ ad ɤ∗, ɤ′(  + bmax d ɤ∗ɤ′( , d ɤ′, ɤ∗(  ,

d ɤ∗, ɤ′( ≤ ad ɤ∗, ɤ′(  + b d ɤ∗, ɤ′( ,

(40)

d(ɤ∗, ɤ′)≤ (a + b)d(ɤ∗, ɤ′), where a, b> 0. .at is not
possible; therefore, ɤ∗ � ɤ′. Hence, ɤ∗ is unique fixed point
of R.

Example 3. Suppose X � 1, 2, 3{ }; we define σ: X × X⟶R

as below:

σ (1, 1)� σ (2, 2)� σ (3, 3)� 0
σ (1, 2)� σ (2, 1)� σ (2, 3)� σ (3, 2)� 1
σ (1, 3)� σ (3, 1)� z≥ 2

.en, (X, σ) is a b-metric space with coefficient z/2,
where z≥ 2.

Define R: X⟶ X by R(x) � x3 − 6x2 + 11x − 4,

for allx ∈ X.

.en, all conditions of the above theorems are satisfied
for a � 1/4, b � 1/6, and 2≤ z< 4.5. Hence, 2 ∈ X is the
unique fixed point of R.

In the following, some direct consequences of.eorem 1
are as follows.

Corollary 1 (Banach-contraction theorem in b-metric
space). Let (Ω, d) be a complete b-metric space with coef-
ficient s≥ 1. Let R be a self-function on Ω such that

d(Rx, Ry)≤ · · · ad(x, y), (41)

where 0≤ a< 1, ∀x, y ∈ Ω. 7en, there exists a unique fixed
point of R.

Proof. In .eorem 1, by putting b� 0, the required result
will be obtained. □

Corollary 2. Let (Ω, d) be a complete metric space and a
function R: Ω⟶ Ω such that

d(Rx, Ry)≤ ad(x, y) + bmax
d(x, Rx), d(y, Ry), d(x, Ry),

d(y, Rx)
 , (42)

where a, b> 0 such that a + 2b< 1, ∀x, y ∈ Ω. 7en, there
exists a unique fixed point of R.

Proof. Since every b-metric space is a metric space by taking
s� 1, so the proof is obvious. □

Corollary 3 (Banach-contraction theorem in metric
space). Let (Ω, d) be a complete metric space. Let R be a
function R: Ω⟶ Ω such that

d(Rx, Ry)≤ ad(x, y), (43)
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where 0≤ a< 1, ∀x, y ∈ Ω. 7en, there exists a unique fixed
point of R.

Proof. In Corollary 2, by putting b� 0, the required will be
obtained. □

Theorem 2. Let (Ω, d) be a complete b-metric space. Let R be
a mapping R: Ω⟶ Ω such that

d(Rx, Ry)≤ amax d(x, Ry), d(y, Rx), d(x, y) 

+ b[d(x, Rx) + d(y, Ry)],
(44)

where a, b> 0 such that 2as + 2b< 1, ∀x, y ∈ Ωand s≥ 1.
7en, there exists a unique fixed point of R.

Proof. Let ω0 ∈ Ω and ωn  be a sequence in Ω defined as

ωn � Rωn− 1 � R
nω0, n � 1, 2, 3, . . . (45)

By (44) and (45), we obtain that

d ωn,ωn+1(  � d Rωn− 1, Rωn( ,

d ωn,ωn+1( ≤ amax d ωn− 1, Rωn( , d ωn, Rωn− 1( , d ωn− 1,ωn(   + b d ωn− 1, Rωn− 1(  + d ωn, Rωn(  ,

d ωn,ωn+1( ≤ amax d ωn− 1,ωn+1( , d ωn, xn( , d ωn− 1,ωn(   + b d ωn− 1,ωn(  + d ωn,ωn+1(  ,

(46)

d ωn,ωn+1( ≤ aM + b d ωn− 1,ωn(  + d ωn,ωn+1(  , (47)

where

M � max d ωn− 1,ωn+1( , d ωn,ωn( , d ωn− 1,ωn(  , (48)

M � max d(ωn− 1,ωn+1), d(ωn− 1,ωn) . □

Case 8. If M � d(ωn− 1,ωn+1), then (44) becomes

d ωn,ωn+1( ≤ ad ωn− 1,ωn+1(  + b d ωn− 1,ωn(  + d ωn,ωn+1(  ,

d ωn,ωn+1( ≤ as d ωn− 1,ωn(  + d ωn,ωn+1(   + bd ωn− 1,ωn(  + bd ωn,ωn+1( ,

d ωn,ωn+1( ≤ asd ωn− 1,ωn(  + asd ωn,ωn+1(  + bd ωn− 1,ωn(  + bd ωn,ωn+1( ,

(1 − b − as)d ωn,ωn+1( ≤ (as + b)d ωn− 1,ωn( ,

d ωn,ωn+1( ≤ (as + b/1 − b − as)d ωn− 1,ωn( ,

d ωn,ωn+1( ≤ kd ωn− 1,ωn( ,

(49)

where k � (as + b/1 − b − as)< 1.
Continuing in this way,

d ωn,ωn+1( ≤ k
2
d ωn− 2,ωn− 1( , (50)

d ωn,ωn+1( ≤ k
n
d ω0,ω1( . (51)

Case 9. If M � d(ωn− 1,ωn), then (47) becomes

d ωn,ωn+1( ≤ ad ωn− 1,ωn(  + b d ωn− 1,ωn(  + d ωn,ωn+1(  ,

d ωn,ωn+1( ≤ ad ωn− 1,ωn(  + bd ωn− 1,ωn(  + bd ωn,ωn+1( ,

(1 − b)d ωn,ωn+1( ≤ (a + b)d ωn− 1,ωn( ,

d ωn,ωn+1( ≤
a + b

1 − b
 d ωn− 1,ωn( ,

d ωn,ωn+1( ≤ kd ωn− 1,ωn( ,

(52)

where k � (a + b/1 − b)< 1.

Continuing in this way,

d ωn,ωn+1( ≤ k
2
d ωn− 2,ωn− 1( , (53)
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d ωn,ωn+1( ≤ k
n
d ω0,ω1( . (54)

Cases 8 and 9 show that R is a contractive-type mapping.
Now, letm and n be any two natural numbers andm> n;

then,

d ωn,ωm( ≤ s d ωn,ωn+1(  + d ωn+1,ωm(  ,

d ωn,ωm( ≤ sd ωn,ωn+1(  + sd ωn+1,ωm( ,

d ωn,ωm( ≤ sd ωn,ωn+1(  + s s d ωn+1,ωn+2(  + d ωn+2,ωm(  ( ,

d ωn,ωm( ≤ sd ωn,ωn+1(  + s
2

d ωn+1,ωn+2(  + s
2
d ωn+2,ωm( .

(55)

Continuing in this way,

d ωn,ωm( ≤ sd ωn,ωn+1(  + s
2
d ωn+1,ωn+2(  + s

3
d ωn+2,ωn+3(  + · · · + s

m− n
d ωm− 1,ωm( , (56)

By Cases 1 and 2,

d ωn,ωm( ≤ sk
n
d ωn,ωn+1(  + s

2
k

n+1
d ωn+1,ωn+2(  + s

3
k

n+2
d ωn+2,ωn+3(  + · · · + s

m− n
k

m− 1
d ωm− 1,ωm( ,

d ωn,ωm( ≤d ω0,ω1(  sk
n

+ s
2

k
n+1

+ s
2

k
n+2

+ · · · + s
m− n

k
m− 1

 .
(57)

Since skn + s2 kn+1 + s2 kn+2 + · · · + sm− nkm− 1 is a geo-
metric series with common ratio less than 1, so d(ωn,ωm)≤
d(ω0,ω1)(skn(1 − (sk)n)/1 − sk)≤d(ω0,ω1)(skn/1 − sk).

As n⟶∞, (skn/1 − sk)⟶ 0, so

d ωn,ωm( ⟶ 0. (58)

Hence, ωn  is a Cauchy sequence in Ω. Due to com-
pleteness ofΩ, there exists ω∗ inΩ such that ωn⟶ ω∗. Now,

d ω∗, Rω∗( ≤ s d ω∗,ωn+1(  + d ωn+1, Rω∗(  ,

d ω∗, Rω∗( ≤ sd ω∗,ωn+1(  + sd ωn+1, Rω∗( ,

d ω∗, Rω∗( ≤ sd ω∗,ωn+1(  + sd Rωn, Rω∗( .

(59)

By (44),

d ω∗, Rω∗( ≤ sd ω∗,ωn+1(  + samax d ωn, Rω∗( , d ω∗, Rωn( , d ωn,ω∗(   + sb d ωn, Rωn(  + d ω∗, Rω∗(  , (60)

d ω∗, Rω∗( ≤ sd ω∗,ωn+1(  + saM0 + sb d ωn, Rωn(  + d ω∗, Rω∗(  , (61)

where M0 � max d(ωn, Rω∗), d(ω∗, Rωn), d(ωn,ω∗) . Case 10. If M0 � d(ωn, Rω∗), then (61) becomes

d ω∗, Rω∗( ≤ sd ω∗,ωn+1(  + sa d ωn, Rω∗(  + sb d ωn, Rωn(  + d ω∗, Rω∗(  ,

d ω∗, Rω∗( ≤ sd ω∗,ωn+1(  + sab d ωn,ω∗(  + d ω∗, Rω∗(   + sb d ωn, Rωn(  + d ω∗, Rω∗(  ,

d ω∗, Rω∗( ≤ sd ω∗,ωn+1(  + sabd ωn,ω∗(  + sabd ω∗, Rω∗(  + sbd ωn, Rωn(  + sbd ω∗, Rω∗( ,

(1 − sb − sab)d ω∗, Rω∗( ≤ sd ω∗,ωn+1(  + sabd ωn,ω∗(  + sbd ωn,ωn+1( ,

d ω∗, Rω∗( ≤
s

1 − sb − sab
 d ω∗,ωn+1(  +

sab

1 − sb − sab
 d ωn,ω∗(  +

sb

1 − sb − sab
 d ωn,ωn+1( .

(62)
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As n⟶∞, d(ω∗, Rω∗)⟶ 0. Hence,

ω∗ � Rω∗. (63)

ω∗ is a fixed point of R.

Case 11. If M0 � d(ω∗, Rωn), then (61) becomes

d ω∗, Rω∗( ≤ sd ω∗,ωn+1(  + sad ω∗, Rωn(  + sb d ωn, Rωn(  + d ω∗, Rω∗(  ,

d ω∗, Rω∗( ≤ sd ω∗,ωn+1(  + sab d ω∗,ωn+1(  + d ωn+1, Rωn(   + sb d ωn, Rωn(  + d ω∗, Rω∗(  ,

d ω∗, Rω∗( ≤ sd ω∗,ωn+1(  + sab d ω∗,ωn+1(  + sabd ωn+1, Rωn(  + sbd ωn, Rωn(  + sbd ω∗, Rω∗( ,

d ω∗, Rω∗( ≤ sd ω∗,ωn+1(  + sab d ω∗,ωn+1(  + sab d ωn+1,ωn+1(  + sb d ωn,ωn+1(  + sb d ω∗, Rω∗( ,

d ω∗, Rω∗( ≤ sd ω∗,ωn+1(  + sabd ω∗,ωn+1(  + sbd ωn,ωn+1(  + sbd ω∗, Rω∗( ,

(1 − sb)d ω∗, Rω∗( ≤ (s + sab)d ω∗,ωn+1(  + sbd ωn,ωn+1( ,

d ω∗, Rω∗( ≤
s + sab

1 − sb
 d ω∗,ωn+1(  +

sb

1 − sb
 d ωn,ωn+1( .

(64)

As n⟶∞, d(ω∗, Rω∗)⟶ 0. Hence,

ω∗ � Rω∗. (65)

ω∗ is a fixed point of R.

Case 12. If M0 � d(ωn,ω∗), then (61) becomes

d ω∗, Rω∗( ≤ sd ω∗,ωn+1(  + sad ωn,ω∗(  + sb d ωn, Rωn(  + d ω∗, Rω∗(  ,

d ω∗, Rω∗( ≤ sd ω∗,ωn+1(  + sad ωn,ω∗(  + sbd ωn, Rωn(  + sbd ω∗, Rω∗( ,

d ω∗, Rω∗( ≤ sd ω∗,ωn+1(  + sad ωn,ω∗(  + sbd ωn,ωn+1(  + sbd ω∗, Rω∗( ,

(1 − sb)d ω∗, Rω∗( ≤ sd ω∗,ωn+1(  + sad ωn,ω∗(  + sbd ωn,ωn+1( ,

d ω∗, Rω∗( ≤
s

1 − sb
 d ω∗,ωn+1(  +

sa

1 − sb
 d ωn,ω∗(  +

sb

1 − sb
 d ωn,ωn+1( .

(66)

As n⟶∞, d(ω∗, Rω∗)⟶ 0. Hence,

ω∗ � Rω∗, (67)

where ω∗ is a fixed point of R.

For uniqueness, assume that ω′ is another fixed point of
R, i.e., Rω′ � ω′. Consider

d ω∗,ω′(  � d Rω∗, Rω′( . (68)

By (44),

d ω∗,ω′( ≤ amax d ω∗, Rω′( , d ω′, Rω∗( , d ω∗,ω′(   + b d ω∗, Rω∗(  + d ω′, Rω′(  ,

d ω∗,ω′( ≤ amax d ω∗,ω′( , d ω′,ω∗( , d ω∗,ω′(   + b d ω∗,ω∗(  + d ω′,ω′(  ,

d ω∗,ω′( ≤ amax d ω∗,ω′( , d ω′,ω∗( , d ω∗,ω′(   + 0,

d ω∗,ω′( ≤ ad ω∗,ω′( ,

(69)
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which is a contradiction. Hence,

ω∗ � ω′, (70)

where ω∗ is unique fixed point of R.

Example 4. Suppose X � 1, 2, 3{ }, and we define
σ: X × X⟶ R as below:

σ(1, 1) � σ(2, 2) � σ(3, 3) � 0,

σ(1, 2) � σ(2, 1) � σ(2, 3) � σ(3, 2) � 1.
(71)

σ (1, 3)� σ (3, 1)� z≥ 2.

.en, (X, σ) is a b-metric space with coefficient z/2,
where z≥ 2.

Define T: X⟶ X by T(x) � x3 − 6x2 + 11x − 3,

for allx ∈ X.

.en, all conditions of the above theorems are satisfied
for a � 1/4, b � 1/8 , and 2≤ z< 3. Hence, 3 ∈ X is the
unique fixed point of T.

Corollary 4. (Kannan-contraction theorem in b-metric
space). Let (Ω, d) be a complete b-metric space. Let R be a
mapping R: Ω⟶ Ω such that

d(Rx, Ry)≤ b[d(x, Rx) + d(y, Ry)], (72)

where 0< b< 1/2, ∀x, y ∈ Ω, and s≥ 1. 7en, R has a unique
fixed point.

Proof. By putting a� 0 in .eorem 2, we get the required
result. □

Corollary 5. Let (Ω, d) be a complete metric space and R be a
mapping R: Ω⟶ Ω such that

d(Rx, Ry)≤ amax d(x, Ry), d(y, Rx), d(x, y)  + b[d(x, Rx) + d(y, Ry)], (73)

where a, b> 0 such that 2a + 2b< 1, ∀x, y ∈ Ω. 7en, there
exists a unique fixed point of R.

Corollary 6. (Kannan-contraction theorem in metric space).
Let (Ω, d) be a complete metric space and a self-mapping
R: Ω⟶ Ω such that

d(Rx, Ry)≤ b[d(x, Rx) + d(y, Ry)]. (74)

where 0< b< 1/2 and ∀x, y ∈ Ω . 7en, there exists a unique
fixed point of R.

Proof. By putting a� 0 in Corollary 5, we get the required
result. □

3. Conclusion

We have established and proved fixed-point results for
different contractive conditions in b-metric space. To fur-
nish, these results supportive examples are created. .is
generalization will be helpful for further investigation and
applications. We conclude this paper by indicating, in the
form of open questions, some directions for further in-
vestigation and work:

(1) Can the conditions a + 2sb in.eorem 1 and 2as + 2b
in .eorem 2 be relaxed?

(2) If the answer to 1 is yes, then what hypotheses on a
and b are needed to guarantee the existence of fixed
points?

(3) Can the concept of fixed point for these contractions
be extended to more than one mapping?
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,is paper establishes the reality of a fixed point of Kannan’s prequasinorm contraction mapping on the variable exponent
function space of complex variables, demonstrating that it satisfies the property (R) and possesses a prequasinormal structure. We
have established the presence of a fixed point of Kannan prequasinorm nonexpansive mapping on it and Kannan prequasinorm
contraction mapping in the prequasi-Banach operator ideal, created by this function space and s-numbers. Finally, we provide
some applications for solutions to summable equations and illustrate instances to corroborate our findings.

1. Introduction

Manymathematicians have worked on feasible extensions to
the Banach fixed point theorem since the publication of book
[1] on the Banach fixed point theorem. Kannan [2] approved
an instance of a class of operators that perform the same
fixed point operations as contractions but with a continuous
flop. Ghoncheh [3] made the first attempt to characterize
Kannan operators in modular vector spaces. ,e variable
exponent Lebesgue spaces L(r) contain Nakano sequence
spaces. ,roughout the second half of the twentieth century,
it was assumed that these variable exponent spaces provided
an acceptable framework for the mathematical components
of several problems for which the conventional Lebesgue
spaces were insufficient. Due to the relevance of these spaces
and their effects, they have become a well-known and ef-
ficient tool for solving a variety of problems; nowadays, the
area of L(r)(Ω) spaces is a burgeoning area of research, with
ramifications extending into a wide variety of mathematical
specialties [4]. ,e study of variable exponent Lebesgue
spaces L(r) received additional impetus from the mathe-
matical description of non-Newtonian fluid hydrodynamics
[5, 6]. Non-Newtonian fluids, also known as

electrorheological fluids, have various applications ranging
from military science to civil engineering and orthopedics.
Operator ideal theory has a variety of applications in Banach
space geometry, fixed point theory, spectral theory, and
other branches of mathematics, among other branches of
knowledge; for more details, see [7–13]. Bakery and
Mohamed [14] investigated the concept of a prequasinorm
on Nakano sequence space with a variable exponent in the
range (0, 1]. ,ey discussed the adequate circumstances for
it to generate prequasi-Banach and closed space when
endowed with a definite prequasinorm and the Fatou
property of various prequasinorms on it. Additionally, they
established the existence of a fixed point for Kannan pre-
quasinorm contraction mappings on it and the prequasi-
Banach operator ideal generated from s-numbers belonging
to this sequence space. Also, in [15], they found some fixed
points results of Kannan nonexpansive mappings on gen-
eralized Cesàro backward difference sequence space of
nonabsolute type. For more recent developments in con-
tractive mappings and the existence of fixed points of
nonlinear operators in various Banach spaces, Nguyen and
Tram [16] examined various fixed point results with ap-
plications to involution mappings. Dehici and Redjel [17]
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introduced some fixed point results for nonexpansive
mappings in Banach spaces. Benavides and Ramı́rez [18]
presented some fixed points for multivalued nonexpansive
mappings.

We denote the set of complex numbers by C and N0 �

0, 1, 2, . . .{ } Assuming that r � (ra)n∈N0
∈ (0,∞)N0 , Bakery

and El Dewaik [19] defined the following function space:

Hw ra( ( ( ψ � f: f(z) � 
∞

y�0

fyz
y ∈ C, for every z ∈ C andψ(ϖf)<∞, for someϖ> 0

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (1)

where

ψ(f) � 

∞

y�0

fy

y + 1





ry

. (2)

,ey developed a multitude of topological and geometric
characteristics for this variable exponent weighted formal
power series space, as well as the prequasi-ideal construction
utilizing s-number and Hw((pn)). Upper bounds for
s-numbers of infinite series of the weighted n-th power
forward shift operator on (Hw((ra)))ψ were also introduced
for some entire functions. Further, they evaluated Caristi’s
fixed point theorem in (Hw((ra)))ψ. For extra information
on formal power series spaces and their behaviors, see
[20–23]. ,e purpose of this paper is to develop an insight
into how to think about the existence of a fixed point of
Kannan prequasinorm contractionmapping in the prequasi-
Banach special space of formal power series, where
(Hw((ra)))ψ satisfies the property (R) and (Hw((ra)))ψ
possesses the ψ-normal structure property. It has been
established that a fixed point of the Kannan prequasinorm
nonexpansive mapping exists in the prequasi-Banach special
space of formal power series. Additionally, we discuss the
Kannan prequasinorm contraction mapping in terms of the
prequasioperator ideal. ,e existence of a fixed point of the
Kannan prequasi norm contraction mapping in the prequasi
Banach operator ideal S(Hw((ra)))ψ

is offered, where S(Hw((ra)))ψ
is the class of all bounded linear mappings between any two
Banach spaces with the sequence s-numbers. Finally, we
discuss several applications of solutions to summable
equations and illustrate our findings with some instances.

2. Definitions and Preliminaries

Definition 2.1 (see [19]). ,e linear space H �

h: h(z) � y� 0∞ hyzy ∈ C, for every z ∈ C} is called a
special space of formal power series (or in short (ssfps), if it
shows the following settings:

(1) e(m) ∈H, for all m ∈ N0, where

e(m)(z) � 
∞
y�0


e

(m)
y zy � zm .

(2) If g ∈H and | hy|≤ | gy|, for every y ∈ N0, then
h ∈H.

(3) Suppose h ∈H; then h[.] ∈H, with
h[.](z) � 

∞
b�0

h[b/2]z
b and [b/2] marks the integral

part of b/2.

Definition 2.2 (see [19]). A subspaceHψ ofH is said to be a
premodular (ssfps), if there is a function ψ: H⟶ [0, t∞)

that verifies the next conditions:

(i) For h ∈H, we have ψ(h)≥ 0 and h � θ⇔ψ(h) � 0,
where θ is the zero function of H.

(ii) Suppose h ∈H and ϖ ∈ R; then there is q≥ 1 with
ψ(ϖh)≤ |ϖ|qψ(h).

(iii) Let f, g ∈H; then there is A≥ 1 such that
ψ(f + g)≤A(ψ(f) + ψ(g)).

(iv) Suppose | fb|≤ | gb|, for every b ∈ N0; then
ψ(f)≤ψ(g).

(v) ,ere is K0 ≥ 1 so that ψ(f)≤ψ(f[.])≤K0ψ(f).
(vi) F � Hψ, where F indicates the space of finite

formal power series; that is, for h ∈ F, we have
l ∈ N0 with h(z) � 

l
y�0

hyzy.
(vii) One has ξ > 0 with ψ(λe(0))≥ ξ|λ|ψ(e(0)), where

λ ∈ R.

It is worth noting that the continuity of ψ(f) at θ is due
to condition (ii). Condition (1) in Definition 2.1 and con-
dition (vi) in Definition 2.2 analyze the notion that
(e(m))m∈N0

is a Schauder basis for Hψ .
,e (ssfps)Hψ is called a prequasinormed (ssfps) if ψ

shows conditions (i)–(iii) of Definition 2.2, and if the
space H is complete under ψ, then Hψ is called a pre-
quasi-Banach (ssfps). By L, we denote the ideal of all
bounded linear operators between any arbitrary Banach
spaces. Also, L(X,Y) marks the space of all bounded
linear operators from a Banach space X into a Banach
space Y.

Definition 2.3 (see [24]). A function s: L(X,Y)⟶ [0,∞)N0

is said to be an s-number, if the sequence (sb(B))∞a�0, for all
B ∈ L(X,Y), shows the following settings:

(a) If B ∈ L(X,Y), then ‖B‖ � s0(B)≥ s1(B)

≥ s2(B)≥ . . . ≥ 0.
(b) sb+a− 1(B1 + B2)≤ sb(B1) + sa(B2), for every

B1, B2 ∈ L(X,Y), b, a ∈ N0.
(c) ,e inequality sa(ABD)≤ ‖A‖sa(B)‖D‖ holds, if

D ∈ L(X0,X), B ∈ L(X,Y), and A ∈ L(Y,Y0),
where X0 and Y0 are arbitrary Banach spaces.

(d) Suppose A ∈ L(Y,Y0) and λ ∈ R; then
sa(λA) � |λ|sa(A).
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(e) Let rank(A)≤ b; then sb(A) � 0, whenever
A ∈ L(Y,Y0).

(f ) Assume that Iλ denotes the identity mapping on the
λ-dimensional Hilbert space ℓλ2; then sr≥λ(Iλ) � 0 or
sr<λ(Iλ) � 1.

Definition 2.4 (see [7]). A class U⊆L is said to be an operator
ideal if every vector U(X,Y) � U∩ L(X,Y) shows the
following settings:

(i) F⊆U, where F is the ideal of all finite rank operators
between any arbitrary Banach spaces.

(ii) U(X,Y) is linear space on R.
(iii) If D ∈ L(X0,X), B ∈ U(X,Y), and A ∈ L(Y,Y0),

then ABD ∈ U(X0,Y0).

Definition 2.5 (see [10]). A function g: U⟶ [0, t∞) is
called a prequasinorm on the idealU if it shows the following
settings:

(1) For each A ∈ L(X,Y), g(A)≥ 0 and
g(A) � 0⇔A � 0.

(2) One has M≥ 1 with g(βA) ≤M|β|g(A), for all β ∈ R
and A ∈ U(X,Y).

(3) One hasK≥ 1 with g(A1 + A2)≤K[g(A1) + g(A2)],
for every A1, A2 ∈ U(X,Y).

(4) ,ere is C≥ 1 so that if A ∈ L(X0,X), B ∈ U(X,Y),
and D ∈ L(Y,Y0), then g(DBA)≤C‖D‖g(B)‖A‖,
where X0 and Y0 are normed spaces.

Definition 2.6 (see [19])

(a) ,e prequasinormed (ssfps) η on (Hw((rn)))η is said
to be η-convex, if
η(εg + (1 − ε)h)≤ εη(g) + (1 − ε)η(h), for all
ε ∈ [0, 1] and g, h ∈ (Hw((rn)))η.

(b) h(y) y∈N0
⊆(Hw((ry)))η is η-convergent to

h ∈ (Hw((rn)))η, if and only if
limy⟶∞η(h(y) − h) � 0. If the η-limit exists, then it
is unique.

(c) h(y) y∈N0
⊆(Hw((ry)))η is η-Cauchy, if

limx,y⟶∞η(h(x) − h(y)) � 0.
(d) Y ⊂ (Hw((ry)))η is η-closed, if

limy⟶∞η(h(y) − h) � 0, where h(y) y∈N0
⊂ Y; then

h ∈ Y.
(e) Y ⊂ (Hw((ry)))η is η-bounded, if

δη(Y) � sup η(g − h): g, h ∈ Y <∞.
(f ) ,e η-ball of radius l≥ 0 and center g, for all

g ∈ (Hw((ry)))η, is defined as

Bη(g, l) � h ∈ Hw ry   η: η(g − h)≤ l . (3)

(g) A prequasinormed (ssfps) η onHw((ry)) verifies the
Fatou property, if for every sequence

h(y) ⊆(Hw((ry)))η with lim
y⟶∞

η(h(y) − h) � 0 and
every f ∈ (Hw((ry)))η,

η(f − g)≤ supj inf
y≥j

η f − g
(y)

 . (4)

Take note that the Fatou property determined the η-balls’
closedness. By ℓ∞ and mi↗, we denote the space of real
bounded sequences and the space of all monotonic in-
creasing sequences of positive reals.

Lemma 2.7 (see [19]). ,e function ψ(f) � [
∞
r�0 | fr/r+

1|pr ]1/K, for all f ∈ (Hw((ry)))η, verifies the Fatou property,
when (rn) ∈ mi↗ ∩ ℓ∞.

Lemma 2.8 (see [19]). If (rn) ∈ mi↗ ∩ ℓ∞, then the fol-
lowing settings hold:

(1) 4e function space (Hw((ry)))η is a prequasiclosed
and Banach (ssfps), with

ψ(h) � 
∞

y�0

hy

y + 1





ry

, for all h ∈Hw ry  . (5)

(2) 4e class (S(Hw((ry)))ψ
,Ψ) is a prequasi-Banach and

closed operator ideal, where Ψ(P) � ψ(fs) �


∞
y�0 |sy(P)/y + 1|ry , where fs(z) � 

∞
y�0 sy(P)zy

∈ C, for every z ∈ C.

Lemma 2.9. 4e following inequalities will be utilized in the
continuation:

(i) [25] If b≥ 2 and for each f, g ∈ C, then

f + g

2





b

+
f − g

2





b

≤
1
2

|f|
b

+ |g|
b

 . (6)

(ii) [26] Let 1< b≤ 2, and for every f, g ∈ C with
|f| + |g|≠ 0; then

f + g

2





b

+
b(b − 1)

2
f − g

|f| +|g|





2− b
f − g

2





b

≤
1
2

|f|
b

+|g|
b

 .

(7)

(iii) [27] Assume by > 0 and fy, gy ∈ C, for each y ∈ N0;
then |fy + gy|by ≤ 2K− 1(|fy|by + |gy|by ), where
K � max 1, supyby .

3. Some Topological and Geometric Properties

In this section, first, we will talk about the uniform convexity
(UUC 2) defined in [28] of the prequasinormed (ssfps)
(Hw((ra)))ψ.

Definition 3.1 (see [4, 29]). We define the prequasinorm ψ’s
uniform convexity type behavior as follows:

(1) [30] Suppose λ> 0 and β> 0. Let
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V1(λ, β) � (f, g): f, g ∈ Hw ra( ( ( ψ,ψ(f)≤ λ,ψ(g)≤ β,ψ(f − g)≥ λβ . (8)

When V1(λ, β)≠∅, we put

V1(λ, β) � inf 1 −
1
λ
ψ

f + g

2
 : (f, g) ∈ V1(λ, β) .

(9)

When V1(λ, β)≠∅, we put V1(λ, β) � 1. ,e
function ψ holds the uniform convexity (UC) if for
each λ> 0 and β> 0, we have V1(λ, β)> 0. Observe

that, for all λ> 0, then V1(λ, β)≠∅, for very small
β> 0.

(2) [28] ,e function ψ verifies (UUC) if for every c≥ 0
and β> 0, there is ζ1(c, β) with

V1(λ, β)> ζ1(c, β)> 0, for λ> c. (10)

(3) [28] Suppose λ> 0 and β> 0. Let

V2(λ, β) � (f, g): f, t ∈ Hw ra( ( ( ψ,ψ(f)≤ λ,ψ(g)≤ λ,ψ
f − g

2
 ≥ λβ . (11)

When V2(λ, β)≠∅, we put

V2(λ, β) � inf 1 −
1
λ
ψ

f + g

2
 : (f, g) ∈ V2(λ, β) .

(12)

When V2(λ, β) � ∅, we place V2(λ, β) � 1. ,e
function ψ satisfies (UC 2) if for every λ> 0 and β> 0,
one has V2(λ, β)> 0. Observe that, for each λ> 0,
V2(λ, β)≠∅, for very small β> 0.

(4) [28] ,e function ψ verifies (UUC 2) if for all c≥ 0
and β> 0, there is ζ2(c, β) with

V2(λ, β)> ζ2(c, β)> 0, for λ> c. (13)

(5) [30] ,e function ψ is strictly convex (SC), if for all
f, t ∈ (Hw((ra)))ψ so that ψ(f) � ψ(g) and
ψ((f + t)/2) � (ψ(f) + ψ(g))/2, we get f � g.

We will require the following comment here and in the
next: ψB(f) � [m∈B|fm/m + 1|rm ]1/K, for every B ⊂ N0 and
f ∈ (Hw((ra)))ψ. When B � ∅, we put ψB(f) � 0.

Theorem 3.2. 4e function ψ(f) � [
∞
a�0 (|fa|/a + 1)ra ]1/K,

for all f ∈ (Hw((ra)))ψ, is (UUC2), if (ra) ∈ mi↗ ∩ ℓ∞ with
r0 > 1.

Proof. Let the condition be satisfied, b> 0, and a>p≥ 0.
Suppose f, g ∈ (Hw((ra)))ψ so that

ψ(f)≤ a,

ψ(g)≤ a,

ψ
f − g

2
 ≥ ab.

(14)

From the definition of ψ, we have

ab≤ψ
f − g

2
  � 

∞

d�0
(d + 1)

− rd

fd − gd

2





rd

⎡⎣ ⎤⎦

1
K
≤ 2− r0 

∞

d�0
(d + 1)

− rd fd − gd




rd⎡⎣ ⎤⎦

1
K

≤ 2
−

r0

K 

∞

d�0
(d + 1)

− rd |fd|
rd⎡⎣ ⎤⎦

1
K

+ 
∞

d�0
(d + 1)

− rd | gd|
rd⎡⎣ ⎤⎦

1
K⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � 2
−

r0

K(ψ(f) + ψ(g))≤ 2a,

(15)

and this implies b≤ 2. Consequent, let
Q � x ∈ N0: 1< rx < 2  and P � x ∈ N0: rx ≥ 2  � N0∖Q.
For every w ∈ (Hw((ra)))ψ, we get
ψK(w) � ψK

P (w) + ψK
Q(w). From the setup, one has ψP(f −

g/2)≥ ab/2 or ψQ(f − g/2)≥ ab/2. Assume first
ψP(f − g/2)≥ ab/2. By using Lemma 2.9, condition (i), we
obtain

ψK
P

f + g

2
  + ψK

P

f − g

2
 ≤

ψK
P (f) + ψK

P (g)

2
. (16)

,is explains

ψK
P

f + g

2
 ≤

ψK
P (f) + ψK

P (g)

2
−

ab

2
 

K

. (17)

As
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ψK
Q

f + g

2
 ≤

ψK
Q(f) + ψK

Q(g)

2
, (18)

by adding inequalities 2 and 3, and from inequality 1, we
have

ψK f + g

2
 ≤

ψK
(f) + ψK

(g)

2
−

ab

2
 

K

≤ a
K 1 −

b

2
 

K

⎛⎝ ⎞⎠.

(19)

,is gives

ψ
f + g

2
 ≤ a 1 −

b

2
 

K

⎛⎝ ⎞⎠

1
K

.
(20)

Next, suppose ψQ((f − g)/2)≥ ab/2. Set B � (b/4)K,

Q1 � d ∈ Q: fd − gd



≤B fd



 + gd


   andQ2 � Q: Q1.

(21)

As B≤ 1 and the power function is convex,

ψK
Q1

f − g

2
 ≤ 

d∈Q1

B
rd (d + 1)

− rd

fd



 + gd




2





rd

≤
B

2
 

r0

ψK
Q1

(f) + ψK
Q1

(g) ≤
B

2
ψK

Q(f) + ψK
Q(g) ≤

B

2
ψK

(f) + ψK
(g) ≤Ba

K
.

(22)

Since ψQ((f − g)/2)≥ ab/2, we get

ψK
Q2

f − g

2
  � ψK

Q

f − g

2
  − ψK

Q1

f − g

2
 ≥ a

K b

2
 

K

−
b

4
 

K

⎛⎝ ⎞⎠.

(23)

For any d ∈ Q2, we have

r0 − 1< r0 r0 − 1( ≤ · · · ≤ rd− 1 rd− 1 − 1( ≤ rd rd − 1(  andB<B
2− rd <

fd − gd

fd



 + gd








2− rd

. (24)

By Lemma 2.9, condition (ii), we have

(d + 1)
− rd

fd + gd

2





rd

+
r0 − 1( B

2
(d + 1)

− rd

fd − gd

2





rd

≤
1
2

(d + 1)
− rd fd




rd

+(d + 1)
− rd gd



rd . (25)

Hence,

ψK
Q2

f + g

2
  +

r0 − 1( B

2
ψK

Q2

f − g

2
 ≤

ψK
Q2

(f) + ψK
Q2

(g)

2
.

(26)

,is investigates

ψK
Q2

f + g

2
 ≤

ψK
Q2

(f) + ψK
Q2

(g)

2
−

r0 − 1( B

2
a

K b

2
 

K

−
b

4
 

K

⎛⎝ ⎞⎠.

(27)

Since

ψK
Q1

f + g

2
 ≤

ψK
Q1

(f) + ψK
Q1

(g)

2
, (28)

by adding inequalities (27) and (28), one has

ψK
Q

f + g

2
 ≤

ψK
Q(f) + ψK

Q(g)

2
−

r0 − 1( B

2
a

K b

2
 

K

−
b

4
 

K

⎛⎝ ⎞⎠

≤
ψK

Q(f) + ψK
Q(g)

2
−

r0 − 1( 

2
b

4
 

2K

a
K 2K

− 1 

≤
ψK

Q(f) + ψK
Q(g)

2
−

r0 − 1( 

2K
− 1

b

4
 

2K

a
K

.

(29)

Since

ψK
P

f + g

2
 ≤

ψK
P (f) + ψK

P (g)

2
, (30)

by adding inequalities (29) and (30) and from inequality 1,
we obtain
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ψK f + g

2
 ≤

ψK
(f) + ψK

(g)

2
−

r0 − 1( 

2K
− 1

b

4
 

2K

a
K ≤ a

K 1 −
r0 − 1( 

2K
− 1

b

4
 

2K

⎡⎣ ⎤⎦. (31)

,is implies

ψ
f + g

2
 ≤ a 1 −

r0 − 1( 

2K − 1
b

4
 

2K

⎡⎣ ⎤⎦

1
K

.
(32)

It is clear that

1< r0 ≤K< 2K⇒0<
r0 − 1
2K

− 1
< 1. (33)

By using inequalities 4 and 9 and Definition 3.1, we put

ζ2(p, b) � min 1 − 1 −
b

2
 

K

⎛⎝ ⎞⎠

1
K

, 1 − 1 −
r0 − 1( 

2K − 1
b

4
 

2K

⎡⎣ ⎤⎦

1
K⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(34)

,erefore, we have V2(a, b)> ζ2(p, b)> 0, and we con-
clude that ψ is (UUC2).We will examine the property (R) of
the prequasinormed (ssfps) (Hw((ra)))ψ in this second
part. □

Theorem 3.3. Let (ra) ∈ mi↗ ∩ ℓ∞ with r0 > 1; then the next
setups are satisfied:

(1) Assume that Λ⊆(Hw((ra)))ψ, Λ≠∅, ψ-closed and
ψ-convex, where ψ(f) � [

∞
a�0 (|fa|/(a + 1))ra ]1/K,

for all f ∈ (Hw((ra)))ψ. Supposef ∈ (Hw((ra)))ψ so
that

dψ(f,Λ) � inf ψ(f − g): g ∈ Λ <∞. (35)

Hence, one has a unique λ ∈ Λ with
dψ(f,Λ) � ψ(f − λ).

(2) (Hw((ra)))ψ satisfies the property (R). 4is means
that, for every decreasing sequence Λx x∈N0

of
ψ-closed and ψ-convex nonempty subsets of
(Hw((ra)))ψ such that supx∈N0

dψ(f,Λx)<∞, for
some f ∈ (Hw((ra)))ψ, then ∩ x∈N0

Λx ≠∅.

Proof. Suppose the setups are satisfied. To show (1), let
f ∉ Λ as Λ is ψ-closed.,en, one has A: � dψ(f,Λ)> 0. So,
for every p ∈ N0, we have gp ∈ Λ with
ψ(f − gp)<A(1 + 1/p). Assume gp/2  is not ψ-Cauchy.
,erefore, one obtains a subsequence gh(p)/2  and b0 > 0 so
that ψ((gh(p) − gh(q))/2)≥ b0, for all p> q≥ 0. Furthermore,
one has V2(A(1 + 1/p), b0/2A)> ξ: � β2(A(1+

1/p), b0/2A)> 0, for each p ∈ N0. As

max h f − gh(p) , h f − gh(q)  ≤A 1 +
1

h(q)
 , (36)

and

ψ
gh(p) − gh(q)

2
 ≥ b0 ≥A 1 +

1
h(q)

 
b0

2A
. (37)

Under p> q≥ 0, we get

ψ f −
gh(p) + gh(q)

2
 ≤A 1 +

1
h(q)

 (1 − ξ). (38)

,erefore,

A � dψ(f,Λ)≤A 1 +
1

h(q)
 (1 − ξ), (39)

with q ∈ N0. If we let q⟶∞, we get

0<A≤A 1 +
1

h(q)
 (1 − ξ)<A. (40)

We have a contradiction. ,en gp/2  is ψ-Cauchy. As
(Hw((ra)))ψ is ψ-complete, gp/2 ψ converges to some g.
For all q ∈ N0, we have the sequence gp + gq/2 ψ that
converges to g + gq/2. As Λ is ψ-closed and ψ-convex, one
gets g + gq/2 ∈ Λ. Surely g + gq/2ψ converges to 2g, so
2g ∈ Λ. For λ � 2g and using ,eorem 2.7, since ψ satisfies
the Fatou property, we get

dψ(f,Λ)≤ψ(f − λ)≤ supi inf
q≥i

ψ f − g +
gq

2
  ≤ supi inf

q≥i
supi inf

p≥i
ψ f −

gp + gq

2
 

≤
1
2
supi inf

q≥i
supi inf

p≥i
ψ f − gp  + ψ f − gq   � dψ(f,Λ).

(41)

,erefore, ψ(f − λ) � dψ(f,Λ). As ψ is (UUC2), so it is
SC, which implies that λ is unique. To show (2), let f ∉ Λp0

,
for some p0 ∈ N0. (dψ(f,Λp))p∈N0

∈ ℓ∞ is increasing. Let
lim

p⟶∞
dψ(f,Λp) � A. Suppose A> 0. Else f ∈ Λp, for every

p ∈ N0. By using Part (1), we have one point gp ∈ Λp with
dψ(f,Λp) � ψ(f − gp), for every p ∈ N0. A consistent proof
will show that gp/2 ψ converges to some g ∈ (Hw((ra)))ψ.

When Λp  are ψ-convex, decreasing, and ψ-closed, we get
2g ∈ ∩ p∈N0

Λp.
,is third part discusses the prequasinormed structure’s

ψ-normal structure feature (ssfps) (Hw((ra)))ψ. □

Definition 3.4. (Hw((ra)))ψ satisfies the ψ-normal structure
property if for all nonempty ψ-bounded, ψ-convex, and
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ψ-closed subset Λ of (Hw((ra)))ψ did not decrease to one
point, we have f ∈ Λ with

supg∈Λψ(f − g)< δψ(Λ): � sup ψ(f − g): f, g ∈ Λ <∞.

(42)

Theorem 3.5. If (ra) ∈ mi↗ ∩ ℓ∞ with r0 > 1, then
(Hw((ra)))ψ holds the ψ-normal structure property, where
ψ(f) � [

∞
a�0 (|fa|/(a + 1))ra ]1/K, for every

f ∈ (Hw((ra)))ψ.

Proof. Assume the setups are satisfied.,eorem 3.2 explains
that ψ is (UUC2). Let Λ be a ψ-bounded, ψ-convex, and
ψ-closed subset of (Hw((ra)))ψ not decreased to unique
point. Hence, δψ(Λ)> 0. Let A � δψ(Λ). Suppose f, g ∈ Λ
with f≠g. So ψ((f − g)/2) � b> 0. For all λ ∈ Λ, one
obtains ψ(f − λ)≤A and ψ(g − λ)≤A. Since Λ is ψ-convex,
one has (f + g)/2 ∈ Λ. Hence,

ψ
f + g

2
− λ  � ψ

(f − λ) +(g − λ)

2
 ≤A 1 − V2 A,

b

A
  .

(43)

For all λ ∈ Λ,

supλ∈Λψ
f + g

2
− λ ≤A 1 − V2 A,

b

A
  <A � δψ(Λ).

(44)
□

4. Kannan Contraction Mapping

In the prequasinormed space, we now develop Kannan
ψ-Lipschitzian mapping (ssfps). We study enough condi-
tions on (Hw((ra)))ψ with a defined prequasinorm such that
Kannan prequasinorm contraction mapping has a unique
fixed point.

Definition 4.1. An operator
W: (Hw((ra)))ψ⟶ (Hw((ra)))ψ is called a Kannan
ψ-Lipschitzian, if there is κ≥ 0, so that

ψ(Wf − Wg)≤ κ(ψ(Wf − f) + ψ(Wg − g)). (45)

For all f, g ∈ (Hw((ra)))ψ, one has the following:

(1) If κ ∈ [0, 1/2), then the operator W is said to be
Kannan ψ-contraction.

(2) If κ � 1/2, then the operatorW is said to be Kannan
ψ-nonexpansive.

A vector g ∈ (Hw((ra)))ψ is called a fixed point of W,
when W(g) � g.

Theorem 4.2. If (ra) ∈ mi↗ ∩ ℓ∞ and
W: (Hw((ra)))ψ⟶ (Hw((ra)))ψ is Kannan ψ-contraction
mapping, where ψ(f) � [

∞
a�0 (|fa|/(a + 1))ra ]1/K, for all

f ∈ (Hw((ra)))ψ, then W has a unique fixed point.

Proof. Let the setups be satisfied. For every
f ∈ (Hw((ra)))ψ, then Wpf ∈ (Hw((ra)))ψ. Since W is a
Kannan ψ-contraction mapping, we have

ψ W
p+1

f − W
p
f ≤ κ ψ W

p+1
f − W

p
f  + ψ W

p
f − W

p− 1
f  ⇒

ψ W
p+1

f − W
p
f ≤

κ
1 − κ

ψ W
p
f − W

p− 1
f ≤

κ
1 − κ

 
2
ψ W

p− 1
f − W

p− 2
f ≤ · · · ≤

κ
1 − κ

 
p

ψ(Wf − f).

(46)

,erefore, for every p, q ∈ N0 with q>p, then we get

ψ W
p
f − W

q
f( ≤ κ ψ W

p
f − W

p− 1
f  + ψ W

q
f − W

q− 1
f  ≤ κ

κ
1 − κ

 
p− 1

+
κ

1 − κ
 

q− 1
 ψ(Wf − f). (47)

So Wpf  is a Cauchy sequence in (Hw((ra)))ψ. As the
space (Hw((ra)))ψ is prequasi-Banach (ssfps). ,erefore,
there is g ∈ (Hw((ra)))ψ such that limp⟶∞W

pf � g. To

prove that Wg � g, by ,eorem 2.7, ψ holds the Fatou
property, and we have

ψ(Wg − g)≤ supi inf
p≥i

ψ W
p+1

f − W
p
f ≤ supi inf

p≥i

κ
1 − κ

 
p

ψ(Wf − f) � 0. (48)
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Hence, Wg � g. ,en g is a fixed point of W. To show
that the fixed point is unique, assume we have two different
fixed points f, g ∈ (Hw((ra)))ψ of W. ,en, one has

ψ(f − g)≤ψ(Wb − Wt)≤ κ(ψ(Wf − f) + ψ(Wg − g)) � 0.

(49)

,erefore, f � g. □

Corollary 4.3. Let (ra) ∈ mi↗ ∩ ℓ∞ and
W: (Hw((ra)))ψ⟶ (Hw((ra)))ψ be Kannan ψ-contrac-
tion mapping, where ψ(f) � [

∞
a�0 (|fa|/(a + 1))ra ]1/K, for

all f ∈ (Hw((ra)))ψ; then W has one and only one fixed
point g with ψ(Wpf − g)≤ κ(κ/(1 − κ))p− 1ψ(Wf − f).

Proof. It is obvious, so it is omitted. □

Definition 4.4. Assume (Hw((ra)))ψ is a prequasinormed
(ssfps) and W: (Hw((ra)))ψ⟶ (Hw((ra)))ψ. ,e opera-
tor W is called ψ sequentially continuous at
g ∈ (Hw((ra)))ψ, if and only if when lim

a⟶∞
ψ(f(a) − g) � 0,

lim
a⟶∞

ψ(Wf(a) − Wg) � 0.

Theorem 4.5. Let (ra) ∈ mi↗ ∩ ℓ∞ with r0 > 1 and
W: (Hw((ra)))ψ⟶ (Hw((ra)))ψ, where
ψ(f) � 

∞
a�0 (|fa|/(a + 1))ra , for all f ∈ (Hw((ra)))ψ. 4e

point f ∈ (Hw((ra)))ψg ∈ (Hw((ra)))ψ is the unique fixed
point of W, if the following conditions are satisfied:

(a) W is Kannan ψ-contraction mapping.
(b) W is ψ sequentially continuous at g ∈ (Hw((ra)))ψ.
(c) One has f ∈ (Hw((ra)))ψ with the sequence of it-

erates Wpf  having a subsequence Wpi f  con-
verging to g.

Proof. Suppose the settings are verified. If g is not a fixed
point ofW, thenWg≠g. By conditions (b) and (c), we have

lim
pi⟶∞

ψ W
pi f − g(  � 0,

lim
pi⟶∞

ψ W
pi+1f − Wg  � 0.

(50)

Since the mappingW is Kannan ψ-contraction, one can
see

0<ψ(Wg − g) � ψ Wg − W
pi+1f  + W

pi f − g(  + W
pi+1f − W

pi f  

≤ 22supiri− 2ψ W
pi+1f − Wg  + 22supiri − 2ψ W

pi f − g(  + 2supiri − 1κ
κ

1 − κ
 

pi− 1
ψ(Wf − f).

(51)

Since pi⟶∞, one has a contradiction. Hence, g is a
fixed point ofW. To explain that the fixed point g is unique,
suppose we have two different fixed points
g, b ∈ (Hw((ra)))ψ of W. ,erefore, one gets

ψ(g − b)≤ψ(Wg − Wb)≤ κ(ψ(Wg − g) + ψ(Wb − b)) � 0.

(52)

So, g � b. □

Theorem 4.6. Assume (ra) ∈ (0, 1)N0 is an increasing, and
W: (Hw((ra)))ψ⟶ (Hw((ra)))ψ, where
ψ(f) � [

∞
a�0 (|fa|/(a + 1))ra ]1/r0 , for all f ∈ (Hw((ra)))ψ.

4e point g ∈ (Hw((ra)))ψ is the only fixed point ofW, if the
following conditions are satisfied:

(a) W is Kannan ψ-contraction mapping.

(b) W is ψ sequentially continuous at g ∈ (Hw((ra)))ψ.
(c) One has f ∈ (Hw((ra)))ψ so that the sequence of

iterates Wpf  has a subsequence Wpi f  converging
to g.

Proof. Let the conditions be verified. If g is not a fixed point
of W, then Wg≠g. By conditions (b) and (c), we have

lim
pi⟶∞

ψ W
pi f − g(  � 0,

lim
pi⟶∞

ψ W
pi+1f − Wg  � 0.

(53)

As the operatorW is Kannan ψ-contraction, one can see

0<ψ(Wg − g) � ψ Wg − W
pi+1f  + W

pi f − g(  + W
pi+1f − W

pi f  

≤ 22r− 1
0 − 2ψ W

pi+1f − Wg  + 22r− 1
0 − 2ψ W

pi f − g(  + 2r− 1
0 − 1κ

κ
1 − κ

 
pi − 1

ψ(Wf − f).

(54)

Since pi⟶∞, one obtains a contradiction. Hence, g is
a fixed point of W. To explain that the fixed point g is
unique, assume we have two different fixed points
g, b ∈ (Hw((ra)))ψ of W. ,en, one gets

ψ(g − b)≤ψ(Wg − Wb)≤ κ(ψ(Wg − g) + ψ(Wb − b)) � 0.

(55)

So, g � b. □
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Example 4.7. Pick up W: (Hw(((a + 1)/
(2a + 4))∞a�0))ψ⟶ (Hw(((a + 1)/(2a + 4))∞a�0))ψ, where
ψ(f) � a∈N0

|fa/(a + 1)|(a+1)/(2a+4), for all
f ∈Hw(((a + 1)/(2a + 4))∞a�0) and

W(f) �

f

18
, ψ(f) ∈ [0, 1),

f

20
, ψ(f) ∈ [1,∞).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(56)

For all f1, f2 ∈ ((((a + 1)/(2a + 4))∞a�0))ψ with
ψ(f1),ψ(f2) ∈ [0, 1), we have

ψ Wf1 − Wf2(  � ψ
f1

18
−

f2

18
 ≤

1
���
[4]

√
17

ψ
17f1

18
  + ψ

17f2

18
   �

1
���
[4]

√
17

ψ Wf1 − f1(  + ψ Wf2 − f2( ( . (57)

For all f1, f2 ∈ (Hw((a + 1)/(2a + 4))∞a�0)ψ with
ψ(f1),ψ(f2) ∈ [1,∞), we have

ψ Wf1 − Wf2(  � ψ
f1

20
−

f2

20
 ≤

1
���
[4]

√
19

ψ
19f1

20
  + ψ

19f2

20
   �

1
���
[4]

√
19

ψ Wf1 − f1(  + ψ Wf2 − f2( ( . (58)

For all f1, f2 ∈ (Hw((a + 1)/(2a + 4))∞a�0)ψ with
ψ(f1) ∈ [0, 1) and ψ(f2) ∈ [1,∞), we have

ψ Wf1 − Wf2(  � ψ
f1

18
−

f2

20
 ≤

1
���
[4]

√
17

ψ
17f1

18
  +

1
���
[4]

√
19

ψ
19f2

20
 ≤

1
���
[4]

√
17

ψ
17f1

18
  + ψ

19f2

20
  

�
1

���
[4]

√
17

ψ Wf1 − f1(  + ψ Wf2 − f2( ( .

(59)

Hence, W is Kannan ψ-contraction mapping. By ,e-
orem 2.7, the function ψ satisfies the Fatou property. By
,eorem 4.2, the map W has a unique fixed point
θ ∈ (Hw((a + 1)/(2a + 4))∞a�0)ψ.

Let f(n) ⊆(Hw((a + 1)/(2a + 4))∞a�0)ψ with limn⟶∞
ψ(f(n) − f(0)) � 0, where f(0) ∈ (Hw((a + 1)/
(2a + 4))∞a�0)ψ and ψ(f(0)) � 1. Since the prequasinorm ψ is
continuous, one gets

lim
n⟶∞

ψ Wf
(n)

− Wf
(0)

  � lim
n⟶∞

ψ
f

(n)

18
−

f
(0)

20
  � ψ

f
(0)

180
 > 0.

(60)

,erefore, W is not ψ sequentially continuous at f(0).
,en, the map W is not continuous at f(0).

If ψ(f) � [a∈N0
|fa/(a + 1)|(a+1)/(2a+4)]4, for all

f ∈ (Hw((a + 1)/(2a + 4))∞a�0). For all f1, f2 ∈ (Hw((a

+1)/(2a + 4))∞a�0)ψ with ψ(f1),ψ(f2) ∈ [0, 1), one obtains

ψ Wf1 − Wf2(  � ψ
f1

18
−

f2

18
 ≤

8
17

ψ
17f1

18
  + ψ

17f2

18
   �

8
17

ψ Wf1 − f1(  + ψ Wf2 − f2( ( . (61)
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For all f1, f2 ∈ (Hw((a + 1)/(2a + 4))∞a�0)ψ with
ψ(f1),ψ(f2) ∈ [1,∞), we have

ψ Wf1 − Wf2(  � ψ
f1

20
−

f2

20
 ≤

8
19

ψ
19f1

20
  + ψ

19f2

20
   �

8
19

ψ Wf1 − f1(  + ψ Wf2 − f2( ( . (62)

For all f1, f2 ∈ (Hw((a + 1)/(2a + 4))∞a�0)ψ with
ψ(f1) ∈ [0, 1) and ψ(f2) ∈ [1,∞), we have

ψ Wf1 − Wf2(  � ψ
f1

18
−

f2

20
 ≤

8
17

ψ
17f1

18
  +

8
19

ψ
19f2

20
 ≤

8
17

ψ
17f1

18
  + ψ

19f2

20
  

�
8
17

ψ Wf1 − f1(  + ψ Wf2 − f2( ( ( .

(63)

,erefore, the mapW is Kannan ψ-contractionmapping

and Wp(f) �
f/18p

, ψ(f) ∈ [0, 1),

f/20p
, ψ(f) ∈ [1,∞).



Obviously, W is ψ sequentially continuous at
θ ∈ (Hw((a + 1)/(2a + 4))∞a�0)ψ and Wpf  has a subse-
quence Wpi f  converging to θ. By ,eorem 4.5, the point
θ ∈ (Hw((a + 1)/(2a + 4))∞a�0)ψ is the unique fixed point of
W.

Example 4.8. Assume W: (Hw((a + 1)/
(2a + 4))∞a�0)ψ⟶ (Hw((a + 1)/(2a + 4))∞a�0)ψ, where

ψ(f) �

�����������������������

a∈N0
|fa/(a + 1)|(2a+3)/(a+2)



, for all
v ∈ (Hw((a + 1)/(2a + 4))∞a�0) and

W(f) �

f

4
, ψ(f) ∈ [0, 1),

f

5
, ψ(f) ∈ [1,∞).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(64)

For all f1, f2 ∈ (Hw((a + 1)/(2a + 4))∞a�0)ψ with
ψ(f1),ψ(f2) ∈ [0, 1), we have

ψ Wf1 − Wf2(  � ψ
f1

4
−

f2

4
 ≤

1
���
[4]

√
27

ψ
3f1

4
  + ψ

3f2

4
   �

1
���
[4]

√
27

ψ Wf1 − f1(  + ψ Wf2 − f2( ( . (65)

For all f1, f2 ∈ (Hw((a + 1)/(2a + 4))∞a�0)ψ with
ψ(f1),ψ(f2) ∈ [1,∞), we have

ψ Wf1 − Wf2(  � ψ
f1

5
−

f2

5
 ≤

1
���
[4]

√
64

ψ
4f1

5
  + ψ

4f2

5
   �

1
���
[4]

√
64

ψ Wf1 − f1(  + ψ Wf2 − f2( ( . (66)

For all f1, f2 ∈ (Hw((a + 1)/(2a + 4))∞a�0)ψ with
ψ(f1) ∈ [0, 1) and ψ(f2) ∈ [1,∞), we have

ψ Wf1 − Wf2(  � ψ
f1

4
−

f2

5
 ≤

1
���
[4]

√
27

ψ
3f1

4
  +

1
���
[4]

√
64

ψ
4f2

5
 ≤

1
���
[4]

√
27

ψ
3f1

4
  + ψ

4f2

5
  

�
1

���
[4]

√
27

ψ Wf1 − f1(  + ψ Wf2 − f2( ( .

(67)
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Hence, W is Kannan ψ-contraction mapping. From
,eorem 2.7, the function ψ satisfies the Fatou property. By
,eorem 4.2, the map W has a unique fixed point
θ ∈ (Hw((a + 1)/(2a + 4))∞a�0)ψ.

Let f(n) ⊆(Hw((a + 1)/(2a + 4))∞a�0)ψ with limn⟶∞
ψ(f(n) − f(0)) � 0, where f(0) ∈ (Hw((a + 1)/
(2a + 4))∞a�0)ψ and ψ(f(0)) � 1. Since the prequasinorm ψ is
continuous, we have

lim
n⟶∞

ψ Wf
(n)

− Wf
(0)

  � lim
n⟶∞

ψ
f

(n)

4
−

f
(n)

5
  � ψ

f
(0)

20
 > 0. (68)

,erefore, W is not ψ sequentially continuous at f(0).
So, the map W is not continuous at f(0).

Suppose ψ(f) � [a∈N0
|fa/(a + 1)|(a+1)/(2a+4)]4, for all

f ∈Hw((a + 1)/(2a + 4))∞a�0. For all

f1, f2 ∈ (Hw((a + 1)/(2a + 4))∞a�0)ψ with ψ(f1),ψ(f2)

∈ [0, 1), we have

ψ Wf1 − Wf2(  � ψ
f1

4
−

f2

4
 ≤

2
��
27

√ ψ
3f1

4
  + ψ

3f2

4
   �

2
��
27

√ ψ Wf1 − f1(  + ψ Wf2 − f2( ( . (69)

For all f1, f2 ∈ (Hw((a + 1)/(2a + 4))∞a�0)ψ with
ψ(f1),ψ(f2) ∈ [1,∞), we have

ψ Wf1 − Wf2(  � ψ
f1

5
−

f2

5
 ≤

1
4

ψ
4f1

5
  + ψ

4f2

5
   �

1
4

ψ Wf1 − f1(  + ψ Wf2 − f2( ( . (70)

For all f1, f2 ∈ (Hw((a + 1)/(2a + 4))∞a�0)ψ with
ψ(f1) ∈ [0, 1) and ψ(f2) ∈ [1,∞), we have

ψ Wf1 − Wf2(  � ψ
f1

4
−

f2

5
 ≤

2
��
27

√ ψ
3f1

4
  +

1
4
ψ

4f2

5
 ≤

2
��
27

√ ψ
3f1

4
  + ψ

4f2

5
  

�
2
��
27

√ ψ Wf1 − Wf1(  + ψ Wf2 − Wf2( ( .

(71)

So, the map W is Kannan ψ-contraction mapping and

Wp(f) �
f/4p

, ψ(f) ∈ [0, 1),

f/5p
, ψ(f) ∈ [1,∞).



Obviously, W is ψ sequentially continuous at
θ ∈ (Hw((a + 1)/(2a + 4))∞a�0)ψ and Wpf  has a subse-
quence Wpi f  converging to θ. By ,eorem 4.5, the point
θ ∈ (Hw((a + 1)/(2a + 4))∞a�0)ψ is the unique fixed point of
W.

Example 4.9. Let W: (Hw((a + 1)/
(2a + 4))∞a�0)ψ⟶ (Hw((a + 1)/(2a + 4))∞a�0)ψ, where

ψ(f) � [a∈N0
|fa/(a + 1)|(a+1)/(2a+4)]4, for all

f ∈Hw((a + 1)/(2a + 4))∞a�0 and

W(f) �

1
18

(1 + f), f0∈ − ∞,
1
17

 ,

1
17

, f0 �
1
17

,

1
18

, f0 ∈
1
17

,∞ .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(72)

For all f, g ∈ (Hw((a + 1)/(2a + 4))∞a�0)ψ with
f0, g0 ∈ (− ∞, 1/17), we have

ψ(Wf − Wg) � ψ
1
18

(f − g) ≤
8
17

ψ
17f

18
  + ψ

17g

18
  ≤

8
17

(ψ(Wf − f) + ψ(Wg − g)). (73)
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For all f, g ∈ (Hw((a + 1)/(2a + 4))∞a�0)ψ with
f0, g0 ∈ (1/17,∞) and then for any ε> 0, we have

ψ(Wf − Wg) � 0≤ ε(ψ(Wf − f) + ψ(Wg − g)). (74)

For all f, g ∈ (Hw((a + 1)/(2a + 4))∞a�0)ψ with
f0 ∈ (− ∞, 1/17) and g0 ∈ (1/17,∞), we have

ψ(Wf − Wg) � ψ
f

18
 ≤

1
17

ψ
17f

18
  �

1
17

ψ(Wf − f)≤
1
17

(ψ(Wf − f) + ψ(Wg − g)). (75)

Hence, W is Kannan ψ-contraction mapping. Clearly,
W is ψ sequentially continuous at
1/17 ∈ (Hw((a + 1)/(2a + 4))∞a�0)ψ, and there is
f ∈ (Hw((a + 1)/(2a + 4))∞a�0)ψ with f0 ∈ (− ∞, 1/17) such
that the sequence of iterates Wpf  � 

p
n�1 1/18n +1/18pf}

has a subsequence Wpi f  � 
p
n�1 1/18n + 1/18pf 

converging to 1/17. By ,eorem 4.5, the map W has one
fixed point 1/17 ∈ (Hw((a + 1)/(2a + 4))∞a�0)ψ. Note that
W is not continuous at 1/17 ∈ (Hw((a + 1)/(2a + 4))∞a�0)ψ.

If ψ(f) � a∈N0
|fa/(a + 1)|(a+1)/(2a+4), f ∈Hw((a + 1)

/(2a + 4))∞a�0. For all f, g ∈ (Hw((a + 1)/(2a + 4))∞a�0)ψ
with f0, g0 ∈ (− ∞, 1/17), we have

ψ(Wf − Wg) � ψ
1
18

(f − g) ≤
1

���
[4]

√
17

ψ
17f

18
  + ψ

17g

18
  

≤
1

���
[4]

√
17

(ψ(Wf − f) + ψ(Wg − g)).

(76)

For all f, g ∈ (Hw((a + 1)/(2a + 4))∞a�0)ψ with
f0, g0 ∈ (1/17,∞) and then for any ε> 0, we have

ψ(Wf − Wg) � 0≤ ε(ψ(Wf − f) + ψ(Wg − g)). (77)

For all f, g ∈ (Hw((a + 1)/(2a + 4))∞a�0)ψ with
f0 ∈ (− ∞, 1/17) and g0 ∈ (1/17,∞), we have

ψ(Wf − Wg) � ψ
f

18
 ≤

1
���
[4]

√
17

ψ
17f

18
  �

1
�����
[4]4]

√
17

ψ(Wf − f)≤
1

���
[4]

√
17

(ψ(Wf − f) + ψ(Wg − g)). (78)

So, W is Kannan ψ-contraction mapping. By ,eorem
2.7, the function ψ satisfies the Fatou property. By ,eorem
4.2, the map W has a unique fixed point
1/17 ∈ (Hw((a + 1)/(2a + 4))∞a�0)ψ.

Example 4.10. Let W: (Hw((a + 1)/(2a + 4))a�

0∞)ψ⟶ (Hw((a + 1)/(2a + 4))∞a�0)ψ, where
ψ(f) � a∈N0

|fa/(a + 1)|(a+1)/(2a+4), for all
v ∈Hw((a + 1)/(2a + 4))∞a�0 and

W(f) �

1
4

z + tf( , f0 ∈ − ∞,
1
3

 ,

1
3

z, f0 �
1
3
,

1
4

z, f0 ∈
1
3
,∞ .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(79)

For all f, g ∈ (Hw((a + 1)/(2a + 4))∞a�0)ψ with
f0, g0 ∈ (− ∞, 1/3), we have

ψ(Wf − Wg) � ψ
1
4

(f − g) ≤
2
��
27

√ ψ
3f

4
  + ψ

3g

4
  

≤
2
��
27

√ (ψ(Wf − f) + ψ(Wg − g)).

(80)

For all f, g ∈ (Hw((a + 1)/(2a + 4))∞a�0)ψ with
f0, g0 ∈ (1/3,∞) and then for any ε> 0, we have

ψ(Wf − Wg) � 0≤ ε(ψ(Wf − f) + ψ(Wg − g)). (81)

For all f, g ∈ (Hw((a + 1)/(2a + 4))∞a�0)ψ with
f0 ∈ (− ∞, 1/3) and g0 ∈ (1/3,∞), we have
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ψ(Wf − Wg) � ψ
f

4
 ≤

1
��
27

√ ψ
3f

4
  �

1
��
27

√ ψ(Wf − f)≤
1
��
27

√ (ψ(Wf − f) + ψ(Wg − g)). (82)

Hence,W is Kannan ψ-contraction mapping. Evidently,
W is ψ sequentially continuous at
1/3z ∈ (Hw((a + 1)/(2a + 4))∞a�0)ψ and there is
f ∈ (Hw((a + 1)/(2a + 4))∞a�0)ψ with f0 ∈ (− ∞, 1/3) such
that the sequence of iterates Wpf  � 

p
n�1 1/4nz + 1/4pf 

has a subsequence Wpi f  � 
pi

n�1 1/4nz + 1/4pi f  con-
verging to 1/3z. By ,eorem 4.5, the map W has one fixed

point 1/3z ∈ (Hw((a + 1)/(2a + 4))∞a�0)ψ. Note that W is
not continuous at 1/3z ∈ (Hw((2a + 3/a + 2)∞a�0))ψ.

If ψ(f) � a∈N0
|fa/(a + 1)|(2a+3)/(a+2),

f ∈Hw((2a + 3/a + 2)∞a�0). For all
f, g ∈ (Hw((2a + 3/a + 2)∞a�0))ψ with f0, g0 ∈ (− ∞, 1/3),
we have

ψ(Wf − Wg) � ψ
1
4

(f − g) ≤
1

���
[4]

√
27

ψ
3f

4
  + ψ

3g

4
  

≤
1

���
[4]

√
27

(ψ(Wf − f) + ψ(Wg − g)).

(83)

For all f, g ∈ (Hw((2a + 3/a + 2)∞a�0))ψ with
f0, g0 ∈ (1/3,∞) and then for any ε> 0, we have

ψ(Wf − Wg) � 0≤ ε(ψ(Wf − f) + ψ(Wg − g)). (84)

For all f, g ∈ (Hw((2a + 3/a + 2)∞a�0))ψ with
f0 ∈ (− ∞, 1/3) and g0 ∈ (1/3,∞), we have

ψ(Wf − Wg) � ψ
f

4
 ≤

1
���
[4]

√
27

ψ
3f

4
  �

1
���
[4]

√
27

ψ(Wf − f)≤
1

���
[4]

√
27

(ψ(Wf − f) + ψ(Wg − g)). (85)

Hence, W is Kannan ψ-contraction mapping. By ,e-
orem 2.7, the function ψ satisfies the Fatou property. By
,eorem 4.2, the map W has a unique fixed point
1/3z ∈ (Hw((2a + 3/a + 2)∞a�0))ψ.

5. Kannan Nonexpansive Mapping

We examine enough conditions on the prequasinormed
(ssfps) (Hw((ra)))ψ for the Kannan prequasinorm non-
expansive mapping on it to have a fixed point in this section.

Lemma 5.1. Allow the prequasinormed (ssfps) (Hw((ra)))ψ
to validate the (R) and ψ-quasi-normal properties. If Ξ is a
nonempty ψ-bounded, ψ-convex, and ψ-closed subset of
(Hw((ra)))ψ, suppose W: Ξ⟶ Ξ is a Kannan ψ-non-
expansive mapping. For y> 0, let
Gy � f ∈ Ξ: ψ(f − W(f))≤y ≠∅. Let

Ξy � ∩ Bψ(λ, c): W Gy  ⊂Bψ(λ, c) ∩Ξ. (86)

,en, Ξy is a nonempty, ψ-convex, ψ-closed subset of Ξ
and

W Ξy  ⊂ Ξy ⊂ Gy,

δψ Ξy ≤y.
(87)

Proof. AsW(Gy) ⊂ Ξy, this gives Ξy ≠∅. As the ψ-balls are
ψ-convex and ψ-closed, one has Ξy is a ψ-closed and
ψ-convex subset of Ξ. To prove that Ξy ⊂ Gy, suppose
f ∈ Ξy. If ψ(f − W(f)) � 0, we get f ∈ Gy. Otherwise,
suppose ψ(f − W(f))> 0. Let

λ � sup ψ(W(w) − W(f)): w ∈ Gy . (88)

From the definition of λ, W(Gy) ⊂Bψ(W(f), λ). So,
Ξy ⊂Bψ(W(f), λ), and we have ψ(f − W(f))≤ λ. As-
sume η> 0. Hence, there is w ∈ Gy so that
λ − η≤ψ(W(w) − W(f)). ,en,

ψ(f − W(f)) − η≤ λ − η≤ψ(W(w) − W(f))≤
1
2

(ψ(f − W(f))) + ψ(w − W(w))≤
1
2

(ψ(f − W(f)) + y). (89)
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Since η is randomly positive, we obtain
ψ(f − W(f))≤y, so we have f ∈ Gy. AsW(Gy) ⊂ Ξy, one
has W(Ξy) ⊂W(Gy) ⊂ Ξy; this indicates that Ξy is
W-invariant, consequent to prove that δψ(Ξy)≤y, as

ψ(W(f) − W(g))≤
1
2

(ψ(f − W(f)) + ψ(g − W(g))).

(90)

For every f, g ∈ Gy, let f ∈ Gy. Hence,
W(Gy) ⊂Bψ(W(f), y). ,e definition of Ξy provides
Ξy ⊂Bψ(W(f), y). Hence, W(f) ∈ ∩ g∈ΞyBψ(g, y). So,
one has ψ(g − w)≤y, for every g, w ∈ Ξy, this means
δψ(Ξy)≤y. ,is completes the proof. □

Theorem 5.2. Let the prequasinormed (ssfps) (Hw((ra)))ψ
verify the ψ-quasi-normal property and the (R) property.
Assume Ξ is a nonempty, ψ-convex, ψ-closed, and ψ-bounded
subset of (Hw((ra)))ψ. Suppose W: Ξ⟶ Ξ is a Kannan
ψ-nonexpansive mapping. Hence, W has a fixed point.

Proof. Suppose d0 � inf ψ(f − W(f)): f ∈ Ξ  and
dt � d0 + 1/t, for every t≥ 1. By using the definition of d0, we
have Gdt

� f ∈ Ξ: ψ(f − W(f))≤ dt ≠∅, with t≥ 1. As-
sume Ξdt

is described as in Lemma 5.1. Obviously, Ξdt
  is a

decreasing sequence of nonempty ψ-bounded, ψ-closed, and
ψ-convex subsets of Ξ. ,e property (R) proves that
Ξ∞ � ∩ t≥1Ξdt

≠∅. Assume f ∈ Ξ∞; one can see
ψ(f − W(f))≤ dt, for every t≥ 1. Suppose p⟶∞; we
have ψ(f − W(f))≤ d0; this gives ψ(f − W(f)) � d0.
,erefore, Gd0

≠∅. We have d0 � 0. Else, d0 > 0; this gives
that W fails to have a fixed point. Let Ξd0

be defined as in
Lemma 5.1. As W misses to have a fixed point and Ξd0

is
W-invariant, so Ξd0

has more than one point, which implies,
δψ(Ξd0

)> 0. By the ψ-quasinormal property, there is f ∈ Ξd0
so that

ψ(f − g)< δψ Ξd0
 ≤d0. (91)

□

For all g ∈ Ξd0
, by Lemma 5.1, we have Ξd0

⊂ Gd0
. By

definition of Ξd0
, then W(f) ∈ Gd0

⊂ Ξd0
. Obviously, we

have

ψ(f − W(f))< δψ Ξd0
 ≤d0, (92)

which contradicts the definition of d0. So d0 � 0, which
implies that any point in Gd0

is a fixed point ofW; that is,W
has a fixed point in Ξ.

In view of ,eorems 3.3, 3.5, and 5.2, it is easy to
conclude the following theorem.

Theorem 5.3. If (ra) ∈ mi↗ ∩ ℓ∞ with r0 > 1, Ξ is a non-
empty, ψ-convex, ψ-closed, and ψ-bounded subset of
(Hw((ra)))ψ, where ψ(f) � [

∞
a�0 (|fa|/(a + 1))ra ]1/K, for

every (Hw((ra)))ψ, and W: Ξ⟶ Ξ is a Kannan ψ-non-
expansive mapping. 4en, W has a fixed point.

Example 5.4. Let W: Ξ⟶ Ξ with

W(f) �
f/4, ψ(f) ∈ [0, 1),

f/5, ψ(f) ∈ [1 , t∞),
 where

Ξ � f ∈ (Hw((2a + 3/a + 2)∞a�0))ψ: f0 � f1 � 0  and

ψ(f) �

�����������������������

a∈N0
|fa/(a + 1)|(2a+3)/(a+2)



, for all
f ∈ (Hw((2a + 3/a + 2)∞a�0))ψ. In view of example 4.8, the
map W is Kannan ψ-contraction mapping. ,is implies
Kannan ψ-nonexpansive mapping. Evidently, Ξ is a non-
empty, ψ-convex, ψ-closed, and ψ-bounded subset of
(Hw((2a + 3/a + 2)∞a�0))ψ. By ,eorem 5.3, the map W has
one fixed point (f � θ) in Ξ.

6. Kannan Contraction Mappings on the
Operator Ideal

We study in this section the presence of a fixed point for the
Kannan prequasinorm contractionmapping in the prequasi-
Banach operator ideal defined by the (Hw((ra)))ψ and
s-numbers.

Notations 6.1. [19]

SH: � SH(X,Y); XandY are Banach Spaces , where

SH(X,Y): � P ∈ L(X,Y): fs ∈H, wherefs(z) � 
∞

y�0
sy(P)z

y ∈ C, for any z ∈ C
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(93)

Definition 6.2. If X and Y are Banach spaces, a pre-
quasinorm Ψ on the ideal S(Hw((ra)))ψ

, where Ψ(W) � ψ(fs)

and fs(z) � 
∞
a�0 sa(W)za converge for any z ∈ C, satisfies

the Fatou property if for every sequence
Wa a∈N0

⊆S(Hw((ra)))ψ
(X,Y) with lima⟶∞Ψ(Wa − W) � 0

and any V ∈ S(Hw((ra)))ψ
(X,Y),

Ψ(V − W)≤ supa inf
i≥a
Ψ V − Wi( . (94)

Theorem 6.3. Suppose X and Y are Banach spaces. 4e
prequasinorm Ψ(W) � [

∞
a�0 (sa(W)/(a + 1))ra ]1/K, for all

W ∈ S(Hw((ra)))ψ
(X,Y) does not satisfy the Fatou property, if

(ra) ∈ mi↗ ∩ ℓ∞.

Proof. Let the condition be satisfied and
Wp 

p∈N0
⊆S(Hw((ra)))ψ

(X,Y) with limp⟶∞Ψ(Wp − W) � 0.
By ,eorem 2.8, the space S(Hw((ra)))ψ

is a prequasiclosed
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ideal, and then W ∈ S(Hw((ra)))ψ
(X,Y). Hence, for all

V ∈ S(Hw((ra)))ψ
(X,Y), we have

Ψ(V − W) � 

∞

a�0

sa(V − W)

a + 1
 

ra

⎡⎣ ⎤⎦

1
K ≤ 

∞

a�0

s[a/2] V − Wi( 

a + 1
 

ra

⎡⎣ ⎤⎦

1
K

+ 

∞

a�0

s[a/2] W − Wi( 

a + 1
 

ra

⎡⎣ ⎤⎦

1
K

≤ 2
1
Ksupp inf

i≥p


∞

a�0

sa V − Wi( 

a + 1
 

ra

⎡⎣ ⎤⎦

1
K

� 2
1
Ksupp inf

i≥p
Ψ V − Wi( .

(95)

Hence, Ψ does not satisfy the Fatou property. □

Definition 6.4. Suppose X and Y are Banach spaces. For the
prequasinorm Ψ on the ideal S(Hw((ra)))ψ

, where
Ψ(W) � ψ(fs), where fs(z) � 

∞
a�0 sa(W)za converges for

any z ∈ C, an operator
G: S(Hw((ra)))ψ

(X,Y)⟶ S(Hw((ra)))ψ
(X,Y) is called a

Kannan Ψ-Lipschitzian, if there is κ≥ 0, so that

Ψ(GW − GA)≤ κ(Ψ(GW − W) + Ψ(GA − A)), (96)

for all W, A ∈ S(Hw((ra)))ψ
(X,Y). An operator G is said to

be

(1) Kannan Ψ-contraction, when κ ∈ [0, 1/2).
(2) Kannan Ψ-nonexpansive, when κ � 1/2.

Definition 6.5. Suppose X and Y are Banach spaces. For the
prequasinorm Ψ on the ideal S(Hw((ra)))ψ

, where
Ψ(W) � ψ(fs), where fs(z) � 

∞
a�0 sa(W)za converges for

any z ∈ C, G: S(Hw((ra)))ψ
(X,Y)⟶ S(Hw((ra)))ψ

(X,Y) and
B ∈ S(Hw((ra)))ψ

(X,Y). ,e operator G is said to be Ψ se-
quentially continuous at B, if and only if when
lim

p⟶∞
Ψ(Wp − B) � 0, lim

p⟶∞
Ψ(GWp − GB) � 0.

Theorem 6.6. Suppose X and Y are Banach spaces. Let
(ra) ∈ mi↗ ∩ ℓ∞ and G: S(Hw((ra)))ψ

(X,Y)⟶
S(Hw((ra)))ψ

(X,Y), where Ψ(W) � [
∞
a�0 (sa(W)/

(a + 1))ra ]1/K, for all W ∈ S(Hw((ra)))ψ
(X,Y). 4e point

A ∈ S(Hw((ra)))ψ
(X,Y) is the unique fixed point of G, if the

following conditions are satisfied:

(a) G is Kannan Ψ-contraction mapping.
(b) G is Ψ sequentially continuous at a point

A ∈ S(Hw((ra)))ψ
(X,Y).

(c) 4ere is B ∈ S(Hw((ra)))ψ
(X,Y) so that the sequence of

iterates GpB{ } has a subsequence Gpi B{ } converging to
A.

Proof. Let the conditions be verified. If A is not a fixed point
of G, then GA≠A. From conditions (b) and (c), we have

lim
pi⟶∞
Ψ G

pi B − A(  � 0,

lim
pi⟶∞
Ψ G

pi+1B − GA  � 0.
(97)

Since G is Kannan Ψ-contraction mapping, one can see

0<Ψ(GA − A) � Ψ GA − G
pi+1B  + G

pi B − A(  + G
pi+1B − G

pi B  

≤ 2
1
KΨ G

pi+1B − GA  + 2
2
KΨ G

pi B − A(  + 2
2
Kκ

κ
1 − κ

 
pi − 1
Ψ(GB − B).

(98)

As pi⟶∞, we have a contradiction. ,erefore, A is a
fixed point of G. To show that the fixed point A is unique. Let
us have two different fixed points A, D ∈ S(Hw((ra)))ψ

(X,Y)

of G. ,erefore, one has

Ψ(A − D)≤Ψ(GA − GD)≤ κ(Ψ(GA − A) + Ψ(GD − D)) � 0.

(99)

So, A � D. □

Example 6.7. Suppose X and Y are Banach spaces;
G: S(Hw(((a+1)/(a+2))∞a�0))ψ

(X,Y)⟶ S(Hw(((a+1)/(a+2))∞a�0))ψ

(X,Y), where Ψ(W) � 
∞
a�0 (sa(W)/(a + 1))a+1/a+2, for

every W ∈ S(Hw(((a+1)/(a+2))∞a�0))ψ
(X,Y) and

G(W) �

W

26
, Ψ(W) ∈ [0, 1),

W

37
, Ψ(W) ∈ [1,∞).

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(100)

For all W1, W2 ∈ S(Hw(((a+1)/(a+2))∞a�0))ψ
with

Ψ(W1),Ψ(W2) ∈ [0, 1), we have
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Ψ GW1 − GW2(  � Ψ
W1

26
−

W2

26
 ≤

2
5
Ψ

25W1

26
  + Ψ

25W2

26
   �

2
5
Ψ GW1 − W1(  + Ψ GW2 − W2( ( . (101)

For all W1, W2 ∈ S(Hw(((a+1)/(a+2))∞a�0))ψ
with

Ψ(W1),Ψ(W2) ∈ [1,∞), we have

Ψ GW1 − GW2(  � Ψ
W1

37
−

W2

37
 ≤

1
3
Ψ

36W1

37
  + Ψ

36W2

37
   �

1
3
Ψ GW1 − W1(  + Ψ GW2 − W2( ( . (102)

For all W1, W2 ∈ S(Hw(((a+1)/(a+2))∞a�0))ψ
with

Ψ(W1) ∈ [0, 1) and Ψ(W2) ∈ [1,∞), we have

Ψ GW1 − GW2(  � Ψ
W1

26
−

W2

37
 ≤

2
5
Ψ

25W1

26
  +

1
3
Ψ

36W2

37
 ≤

2
5
Ψ

25W1

26
  + Ψ

36W2

37
  

�
2
5
Ψ GW1 − W1(  + Ψ GW2 − W2( ( .

(103)

Hence, G is Kannan Ψ-contraction mapping and

Gp(W) �
W/26p

, Ψ(W) ∈ [0, 1),

W/37p
, Ψ(W) ∈ [0, 1).



Evidently, G is Ψ sequentially continuous at the zero
operator Θ ∈ S(Hw(((a+1)/(a+2))∞a�0))ψ

and GpW{ } has a subse-
quence Gpi W{ } converging to Θ. By ,eorem 6.6, the zero
operator Θ ∈ S(Hw(((a+1)/(a+2))∞a�0))ψ

is the only fixed point of
G. Assume W(n) ⊆S(Hw(((a+1)/(a+2))∞a�0))ψ

with
lim

n⟶∞
Ψ(W(n) − W(0)) � 0, where

W(0) ∈ S(Hw(((a+1)/(a+2))∞a�0))ψ
and Ψ(W(0)) � 1. Since the

prequasinorm Ψ is continuous, one obtains

lim
n⟶∞
Ψ GW

(n)
− GW

(0)
  � lim

n⟶∞
Ψ

W
(n)

26
−

W
(0)

37
  � Ψ

11W
(0)

962
 > 0.

(104)

,erefore, G is not Ψ sequentially continuous at W(0).
,en, the map G is not continuous at W(0).

Example 6.8. If X and Y are Banach spaces,
G: S(Hw(((2a+1)/(a+3))∞a�0))ψ

(X,Y)⟶ S(Hw(((2a+1)/(a+3))∞a�0))ψ

(X,Y), where Ψ(W) �

������������������������


∞
a�0 (sa(W)/(a + 1))2a+1/a+3



, for
every W ∈ S(Hw(((2a+1)/(a+3))∞a�0))ψ

(X,Y) and

G(W) �

W

263170
, Ψ(W) ∈ [0, 1),

W

263171
, Ψ(W) ∈ [1,∞).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(105)

For all W1, W2 ∈ S(Hw(((2a+1)/(a+3))∞a�0))ψ
with

Ψ(W1),Ψ(W2) ∈ [0, 1), we have

Ψ GW1 − GW2(  � Ψ
W1

263170
−

W2

263170
 ≤

�
2

√

���
[6]

√
263169

Ψ
263169W1

263170
  + Ψ

263169W2

263170
  

�

�
2

√

���
[6]

√
263169

Ψ GW1 − W1(  + Ψ GW2 − W2( ( .

(106)

For all W1, W2 ∈ S(Hw(((2a+1)/(a+3))∞a�0))ψ
with

Ψ(W1),Ψ(W2) ∈ [1,∞), we have

Ψ GW1 − GW2(  � Ψ
W1

263171
−

W2

263171
 ≤

�
2

√

���
[6]

√
263170

Ψ
263170W1

263171
  + Ψ

263170W2

263171
  

�

�
2

√

���
[6]

√
263170

Ψ GW1 − W1(  + Ψ GW2 − W2( ( .

(107)
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For all W1, W2 ∈ S(Hw(((2a+1)/(a+3))∞a�0))ψ
with

Ψ(W1) ∈ [0, 1) and Ψ(W1) ∈ [1,∞), we have

Ψ GW1 − GW2(  � Ψ
W1

263170
−

W2

263171
 ≤

�
2

√

���
[6]

√
263169
Ψ

263169W1

263170
  +

�
2

√

���
[6]

√
263170
Ψ

263170W2

263171
 

≤
�
2

√

���
[6]

√
263169

Ψ
263169W1

263170
  + Ψ

263170W2

263171
   �

�
2

√

���
[6]

√
263169

Ψ GW1 − W1(  + Ψ GW2 − W2( ( .

(108)

Hence, G is Kannan Ψ-contraction mapping and

Gp(W) �
W/263170p

, Ψ(W) ∈ [0, 1),

W/263171p
, Ψ(W) ∈ [1 , t∞).



Obviously, G is Ψ sequentially continuous at the zero
operator Θ ∈ S(Hw(((2a+1)/(a+3))∞a�0))ψ

and GpW{ } has a sub-
sequence Gpi W{ } converging to Θ. By ,eorem 6.6, the zero

operator Θ ∈ S(Hw(((2a+1)/(a+3))∞a�0))ψ
is the only fixed point of

G. Suppose W(n) ⊆S(Hw(((2a+1)/(a+3))∞a�0))ψ
with

lim
n⟶∞
Ψ(W(n) − W(0)) � 0, where

W(0) ∈ S(Hw(((2a+1)/(a+3))∞a�0))ψ
and Ψ(W(0)) � 1. Since the

prequasinorm Ψ is continuous, one gets

lim
n⟶∞
Ψ GW

(n)
− GW

(0)
  � lim

n⟶∞
Ψ

W
(n)

263170
−

W
(0)

263171
  � Ψ

W
(0)

69258712070
 > 0. (109)

,erefore, G is not Ψ sequentially continuous at W(0).
,en, the map G is not continuous at W(0).

7. Application to Nonlinear
Summable Equations

Numerous authors have examined nonlinear summable
equations such as (10); see [31–33]. ,is section is dedicated to
locating a solution to (10) in (Hw((ra)))ψ, where (ra) ∈
mi↗ ∩ ℓ∞ and ψ(g) � [

∞
a�0 (| ga|/(a + 1))ra ]1/K, for every

g ∈ (Hw((ra)))ψ. Take a look at the equations that are
summable:

ga � pa + 

∞

m�0
A(a, m)f m, gm( , (110)

and assume W: (Hw((ra)))ψ⟶ (Hw((ra)))ψ defined by

W(g) � 
∞

a�0
pa + 
∞

m�0
A(a, m)f m, gm( ⎛⎝ ⎞⎠z

a
. (111)

Theorem 7.1. 4e summable equation (10) has one solution
in (Hw((ra)))ψ, if A: N2

0⟶ C, f: N0 × C⟶ C,
p: N0⟶ C, t: N0⟶ C, and for every a ∈ N0, we have
κ ∈ [0, 1/2), with


m ∈ N0

A(a, m) f m, gm(  − f m, tm( ( |
ra ≤ κK pa − ga + 

∞

m�0
A(a, m) f m, gm( ( 





ra

+ pa − ta + 
∞

m�0
A(a, m) f m, tm( ( 





ra

⎡⎣ ⎤⎦.



(112)

Proof. Let the setups be verified. Consider the mapping
W: (Hw((ra)))ψ⟶ (Hw((ra)))ψ defined by (11).We have

ψ(Wg − Wt) � 
a∈N0

m∈N0
A(a, m) f m, gm(  − f m, tm(  





a + 1
⎛⎝ ⎞⎠

ra

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

1
K

≤ κ 
a∈N0

pa − ga + 
∞
m�0 A(a, m)f m, gm( 




a + 1
 

ra

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

1
K

+ 
a∈N0

pa − ta + 
∞
m�0 A(a, m)f m, tm( 




a + 1
 

ra

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

1
K⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� κ(ψ(Wg − g) + ψ(Wt − t)).

(113)
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According to,eorem 4.2, one obtains a unique solution
of equation (10) in (Hw((ra)))ψ. □

Example 7.2. Assume the function space
(Hw((a + 1)/(a + 2))∞a�0)ψ, where ψ(f) �

a∈N0
(|fa|/a + 1)a+1/a+2, for all f ∈Hw((a + 1)/(a + 2))∞a�0.

Consider the summable equation

ga � 5− (2a+3i)
+ 

∞

m�0
(− 1)

ai+3m cos ga




sinh ga


 + sinma + 1

 

q

,

(114)

where q> 0 and i2 � − 1 and let
W: (Hw((a + 1/a + 2))∞a�0)ψ⟶ (Hw((a + 1/a + 2))∞a�0)ψ
defined by

W(g) � 
∞

a�0
5− (2a+3i)

+ 
∞

m�0
(− 1)

ai+3m cos ga




sinh ga


 + sinma + 1

 

q

⎛⎝ ⎞⎠z
a
.

(115)

It is easy to see that



∞

m�0
(− 1)

ai cos ga




sinh ga


 + sinma + 1

 

q

(− 1)
3m

− (− 1)
3m

 





a + 1
a + 2

≤
1
3
5− (2a+3i)

− ga + 
∞

m�0
(− 1)

ai+3m cos ga




sinh ga


 + sinma + 1

 

q



a + 1
a + 2

+
1
3
5− (2a+3i)

− ta + 
∞

m�0
(− 1)

ai+3m cos ta




sinh ta


 + sinma + 1

 

q



a + 1
a + 2

.

(116)

By ,eorem 7.1, the summable equation (114) has one
solution in (Hw((a + 1/a + 2))∞a�0)ψ.

Example 7.3. Given the function space
(Hw((2a + 1/a + 3))∞a�0)ψ, where

ψ(g) �
�������������������


a∈N0

(| ga|/a + 1)2a+1/a+3


, for all g ∈Hw((2a+

1/a + 3))∞a�0, consider the summable equation (12). It is easy
to see that



∞

m�0
(− 1)

ai cos | ga|

sinh| ga| + sinma + 1
 

q

(− 1)
3m

− (− 1)
3m

 





2a+1/a+3

≤
1
9
5− (2a+3i)

− ga + 
∞

m�0
(− 1)

ai+3m cos | ga|

sinh| ga| + sinma + 1
 

q




2a+1/a+3

+
1
9
5− (2a+3i)

− ta + 

∞

m�0
(− 1)

ai+3m cos | ta|

sinh| ta| + sinma + 1
 

q




2a+1/a+3

.

(117)
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By ,eorem 7.1, the summable equation (114) has one
solution in (Hw((a + 1/a + 2))∞a�0)ψ.

Example 7.4. Given the function space
(Hw((2a + 3/a + 2))∞a�0)ψ, where
ψ(f) �

�������������������


a∈N0

(|fa|/a + 1)2a+3/a+2


, for all f ∈Hw((2a+

3/a + 2))∞a�0, consider the summable equation (114) with
a≥ 2 and let W: Ξ⟶ Ξ, where Ξ � f ∈Hw((2a+

3/a + 2))∞a�0:
f0 � f1 � 0}, defined by

W(f) � 

∞

a�2
5− (2a+3i)

+ 

∞

m�0
(− 1)

ai+3m
cos fa





sinh fa



 + sinma + 1
⎛⎝ ⎞⎠

q

⎛⎝ ⎞⎠z
a
.

(118)

Clearly, Ξ is a nonempty, ψ-convex, ψ-closed, and
ψ-bounded subset of (Hw((2a + 3/a + 2))∞a�0)ψ. It is easy to
see that



∞

m�0
(− 1)

ai cos | ga|

sinh| ga| + sinma + 1
 

q

(− 1)
3m

− (− 1)
3m

 





2a+3/a+2

≤
1
9
5− (2a+3i)

− ga + 

∞

m�0
(− 1)

ai+3m cos | ga|

sinh| ga| + sinma + 1
 

q




2a+3/a+2

+
1
9
5− (2a+3i)

− ta + 
∞

m�0
(− 1)

ai+3m cos | ta|

sinh| ta| + sinma + 1
 

q




2a+3/a+2

.

(119)

By ,eorem 7.1 and ,eorem 5.3, the summable equation
(114) with a≥ 2 has a solution in Ξ.

In this part, we search for a solution to nonlinear matrix
(120) at D ∈ S(Hw((ra)))ψ

(X,Y), where X and Y are Banach
spaces, (ra) ∈ mi↗ ∩ ℓ∞, and
Ψ(G) � [

∞
a�0 (sa(G)/a + 1)ra ]1/K, for all

G ∈ S(Hw((ra)))ψ
(X,Y). Consider the summable equation

sa(G) � sa(P) + 

∞

m�0
A(a, m)f m, sm(G)( , (120)

and suppose W: S(Hw((ra)))ψ
(X,Y)⟶ S(Hw((ra)))ψ

(X,Y)

defined by

W(G) � 
∞

a�0
sa(P) + 

∞

m�0
A(a, m)f m, sm(G)( z

a
. (121)

Theorem 7.5. 4e summable equation (120) has one solution
in S(Hw((ra)))ψ

(X,Y), if the following conditions are satisfied:

(a) A: N2
0⟶ C, f: N0 × [0, t∞)⟶ C, P ∈ L(X,Y),

T ∈ L(X,Y), and for every a ∈ N0, one has
κ ∈ [0, t1n/2), with


m∈N0

A(a, m) f m, sm(G)(  − f m, sm(T)( ( 





ra

≤ κK
sa(P) − sa(G) + 

∞

m�0
A(a, m)f m, sm(G)( 





ra

+ sa(P) − sa(T) + 
∞

m�0
A(a, m)f m, sm(T)( 





ra

⎡⎣ ⎤⎦.

(122)

(b) W is Ψ sequentially continuous at a point
D ∈ S(Hw((ra)))ψ

(X,Y).
(c) 4ere is B ∈ S(Hw((ra)))ψ

(X,Y) so that the sequence of
iterates WpB{ } has a subsequence Wpi B{ } converging to
D.

Proof. Suppose the settings are verified. Consider the
mapping W: S(Hw((ra)))ψ

(X,Y)⟶ S(Hw((ra)))ψ
(X,Y) de-

fined by (16). We have
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ψ(WG − WT) � 
a∈N0

m∈N0
A(a, m) f m, sm(G)(  − f m, sm(T)( ( 





a + 1
⎛⎝ ⎞⎠

ra

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

1/K

≤ κ 
a∈N0

sa(P) − sa(G) + 
∞
m�0 A(a, m)f m, sm(G)( 




a + 1
 

ra

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

1/K

+ κ 
a∈N0

sa(P) − sa(T) + 
∞
m�0 A(a, m)f m, sm(T)( 




a + 1
 

ra

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

1/K

� κ(ψ(WG − G) + ψ(WT − T)).

(123)

In view of ,eorem 6.6, one obtains a unique solution of
(120) at D ∈ S(Hw((ra)))ψ

(X,Y). □

Example 7.6. Assume the function space
(Hw((a + 1/a + 2))∞a�0)ψ, where ψ(g) �


a∈N0

(| ga|/a + 1)a+1/a+2, for all g ∈Hw((a + 1/a + 2))∞a�0.
Consider the nonlinear difference equation

ga � e
− (2a+3i)

+ 
∞

m�0

tan(2m + 1)cosh(3mi − a)cosp
|ga− 2|

sinhq
|ga− 1| + sinma + 1

,

(124)

where g− 2, g− 1, p, q> 0, i2 � − 1, and let
W: (Hw((a + 1/a + 2))∞a�0)ψ⟶ (Hw((a + 1/a + 2))∞a�0)ψ
defined by

W(g) � 

∞

a�0
e

− (2at+n3qi)
+ 

∞

m�0

tan(2mt + n1)cosh(3mtin − qa)cosp
|ga− 2|

sinhq
|ga− 1| + sinma + 1

⎛⎝ ⎞⎠z
a
. (125)

It is easy to see that



∞

m�0

cosh(3mi − a)cosp| ga− 2|

sinhq|ga− 1| + sinma + 1
(tan(2m + 1) − tan(2m + 1))





a+1/a+2

≤
1
5

e
− (2a+3i)

− ga + 
∞

m�0

tan(2m + 1)cosh(3mi − a)cosp| ga− 2|

sinhq|ga− 1| + sinma + 1





a+1/a+2

+
1
5

e
− (2a+3i)

− ta + 
∞

m�0

tan(2m + 1)cosh(3mi − a)cosp|ta− 2|

sinhq| ta− 1| + sinma + 1





a+1/a+2

.

(126)

By ,eorem 7.1, the nonlinear difference equation (124)
has one solution in (Hw((a + 1/a + 2))∞a�0)ψ.

Example 7.7. Given the function space
(Hw((2a + 1/a + 3))∞a�0)ψ, where ψ(g) � a∈N0

(| ga|/
a + 1)a+1/a+2, for all g ∈Hw((2a + 1/a + 3))∞a�0, consider the
nonlinear difference equation (17). It is easy to see that
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∞

m�0

cosh(3mi − a)cosp| ga− 2|

sinhq|ga− 1| + sinma + 1
(tan(2m + 1) − tan(2m + 1))





2a+1/a+3

≤
1
25

e
− (2a+3i)

− ga + 
∞

m�0

tan(2m + 1)cosh(3mi − a)cosp| ga− 2|

sinhq|ga− 1| + sinma + 1





2a+1/a+3

+
1
25

e
− (2a+3i)

− ta + 
∞

m�0

tan(2m + 1)cosh(3mi − a)cosp|ta− 2|

sinhq| ta− 1| + sinma + 1





2a+1/a+3

.

(127)

By ,eorem 7.1, the nonlinear difference equation (124)
has one solution in (Hw((2a + 1/a + 3))∞a�0)ψ.

Example 7.8. Given the function space
(Hw((2a + 3/a + 2))∞a�0)ψ, where

ψ(g) � 
a∈N0

(| ga|/a + 1)a+1/a+2, for all
g ∈Hw((2a + 3/a + 2))∞a�0, consider the nonlinear differ-
ence equation (124) with a≥ 1 and let W: Ξ⟶ Ξ, where
Ξ � g ∈Hw((2a + 3/a + 2))∞a�0: g0 � 0 , defined by

W(g) � 
∞

a�1
e

− (2at+n3qi)
+ 
∞

m�0

tan(2mt + n1)cosh(3mtin − qa)cosp
|ga− 2|

sinhq
|ga− 1| + sinma + 1

⎛⎝ ⎞⎠z
a
. (128)

Clearly, Ξ is a nonempty, ψ-convex, ψ-closed, and
ψ-bounded subset of (Hw((2a + 3/a + 2))∞a�0)ψ. It is easy to
see that



∞

m�0

cosh(3mi − a)cosp| ga− 2|

sinhq|ga− 1| + sinma + 1
(tan(2m + 1) − tan(2m + 1))





2a+1/a+3

≤
1
25

e
− (2a+3i)

− ga + 
∞

m�0

tan(2m + 1)cosh(3mi − a)cosp| ga− 2|

sinhq|ga− 1| + sinma + 1





2a+1/a+3

+
1
25

e
− (2a+3i)

− ta + 
∞

m�0

tan(2m + 1)cosh(3mi − a)cosp|ta− 2|

sinhq| ta− 1| + sinma + 1





2a+1/a+3

.

(129)

By ,eorem 7.1 and ,eorem 5.3, the nonlinear dif-
ference equation (124) with a≥ 1 has a solution in Ξ.

8. Conclusion

,is paper studies the existence of a fixed point for
Kannan’s prequasinorm contractive mappings in function
spaces of complex variables. We have studied the exis-
tence of fixed points of Kannan prequasinorm non-
expansive mapping and the existence of Kannan’s
prequasinorm contractive mapping in the prequasi-
Banach operator ideal created by this function space and
s-numbers. We have also presented some applications of
summable equations. Several numerical experiments were
introduced to illustrate our results. Moreover, some
successful applications to the existence of solutions of
nonlinear difference equations are discussed. ,is paper
has several advantages for researchers, such as studying
the fixed points of any contraction mappings on this

prequasinormed function space, which is a generalization
of the quasinormed function space, examining the ei-
genvalue problem in these new settings and noting that
the closed operator ideals are certain to play an important
function in the principle of Banach lattices.
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[6] M. Ruẑiĉka, “Electrorheological fluids. Modeling and math-
ematical theory,” in Lecture Notes in Mathematicsp. 1748,
Springer, Berlin, Germany, 2000.

[7] A. Pietsch, Operator Ideals, ” North-Holland Publishing
Company, Amsterdam-New York-Oxford, 1980.

[8] A. Pietsch, “Small ideals of operators,” Studia Mathematica,
vol. 51, no. 3, pp. 265–267, 1974.

[9] B. M. Makarov and N. Faried, “Some properties of operator
ideals constructed by s numbers (In Russian),” pp. 206–211,
Academy of Science, Siberian section, Novosibirsk, Russia, 1977.

[10] N. Faried and A. A. Bakery, “Small operator ideals formed by s
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In a complex domain, the investigation of the quantum differential subordinations for starlike functions is newly considered by
few research studies. In this note, we arrange a set of necessary conditions utilizing the concept of the quantum differential
subordinations for starlike functions related to the set of parametric Julia functions. Our method is based on the usage of quantum
Jack lemma, where this lemma is generalized recently by the quantum derivative (Jackson calculus). We illustrate a starlike
formula dominated by different types of Julia functions. /e sufficient conditions are computed in the quantum and the Julia
fractional parameters. We indicate a relationship between these two parameters.

1. Introduction

/e notion of differential subordination and super-
ordination (DSS) shows a dynamic model in the investi-
gation of geometric possessions of holomorphic functions in
the open unit disk. Lindelof first presented it, while Little-
wood [1] did the extraordinary exertion in this area of study.
Numerous investigators added information in the applica-
tion of DSS. Antiquity and the improvement of mechanisms
in the area connected with DSS are concisely designated and
incorporated in the hardcover by Miller and Mocanu [2].
/e main growth in the area of derivative of DSS began by
Miller et al. [3]. Generally, the concept is defined for uni-
valent function ω by

φ≺ψ⇔φ(0) � ψ(0), (1)

and φ(ω) ⊂ ψ(ω). In general, if there is a function with the
properties ω(0) � 0, |ω(ξ)|< |ξ|, satisfying φ(ξ) � ψ(ω(ξ)),
then

φ(ξ)≺ψ(ξ), (2)

where ξ ∈ ⊔ ≔ ξ ∈ C: |ξ|< 1{ }.
Ismail et al. [4] presented a class of complex functions for

each fractional number q, 0< q< 1 as the class of analytic
functions φ on the open unit disk (⊔), φ(0) � 0,φ′(0) � 1,
and |φ(qξ)|≤ |φ(ξ)| on ⊔. /is class is investigated, as well as
the links between it and other analytic function classes.
Agrawal and Sahoo [5] extended this notion by suggesting
the q-starlike functions family in a logical order. Srivastava
et al. [6] explored the link between the Janowski functions
and several known types of q-starlike functions. /e
Janowski functions are a novel subclass of q-starlike func-
tions that they introduced and presented. Recent investi-
gations can be located in works by Mahmood et al. [7] and
Ul-Haq et al. [8].

Parametric Julia functions are usually utilized to de-
termine the upper bound solutions of different types of
differential equations of a complex variable [4–11]. In the
recent study, we shall extend this concept applying the
quantum calculus (Jackson calculus) and employ it to define
special classes of analytic function types normalized ana-
lytically in the open unit disk (φ(0) � 0,φ′(0) � 1) and
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dominated by different kinds of the parametric Julia func-
tions. Our method is based on the quantum Jack lemma.

2. Quantum Starlike Formula

/e effort of Ma and Minda [12] in this area of studies is
not minor as they considered the normalized analytic
function p(0) � 1 and the condition of a positive real part
R(p′(ξ))> 0. /ey have formulated the famous sub-
classes for starlike and convex functions, as follows,
respectively:

S
∗
(p) � φ ∈ Δ:

ξφ′(ξ)

φ(ξ)
≺p(ξ), ξ ∈ ⊔ ,

C(p) � φ ∈ Δ:
ξφ″(ξ)

φ′(ξ)
+ 1≺p(ξ), ξ ∈ ⊔

⎧⎨

⎩

⎫⎬

⎭,

(3)

where Δ indicates the class of normalized function
φ(0) � 0 � φ′(0) − 1.

Quantum calculus (QC) is the novel part of mathe-
matical analysis and its applications and is correspondingly
significant for its appearances, both in physics and in
mathematics as well. Jackson [13,14] formulated the func-
tions of q-differentiation and q-integration and decorated
their meanings for the first stage. Later, Ismail et al. [4]
contributed the indication of q-calculus in geometric
function theory.

Nowadays, different classes of Ma and Minda are sug-
gested and developed, using QC by researchers. For instant,
Seoudy and Aouf [15] introduced subclass of quantum
starlike functions involving q-derivative. Recently, Zainab
et al. [16] presented a sufficient condition for q-starlikeness
using a special curve. In addition, different differential and
integral operators are generalized utilizing QC [17–20].

Definition 1. Jackson derivative is indicated in the following
difference operator:

zqh (ξ) �
h(ξ) − h(qξ)

ξ(1 − q)
, q ∈ (0, 1), (4)

such that

zq ξv
(  �

1 − q
v

1 − q
 ξv− 1

. (5)

Moreover, Maclaurin’s series representation takes the
sum

zqh (ξ) � 
∞

ℓ�0
hℓ[ℓ]qξ

ℓ− 1
, (6)

where

[ℓ]q ≔
1 − q

ℓ

1 − q
. (7)

Note that

lim
q⟶1−

zqh (ξ) � h′(ξ). (8)

/e multiplication rule takes the following formula:

zq(f(ξ)g(ξ)) � g(ξ)zqf(ξ) + f(qξ)zqg(ξ)

� g(qξ)zqf(ξ) + f(ξ)zqg(ξ).
(9)

We proceed to define our q-starlike class using the
q-parametric Julia functions and connecting with the sub-
class of normalized functions in ⊔ (Figure 1):

J
(β)
1 (ξ) � 1 + ξ − βξ3 (10)

J
(β)
2 (ξ) � 1 + ξ − βξ2 

2
, (11)

J
(β)
3 (ξ) � 1 + ξ − βξ2,

(β ∈ C, ξ ∈ ⊔)
(12)

Definition 2. For a normalized function φ(ξ) ∈ Δ of the
formula

φ(ξ) � ξ + 

∞

n�2
φnξ

n
, ξ ∈ ⊔, (13)

the q-starlike is defined by the subordination formula:

ξ zqφ (ξ)

φ(ξ)
≺J(β)

i (ξ)

(i � 1, 2, 3, q ∈ (0, 1), β ∈ C).

(14)

We denote the subclass of these functions by Δ(β)
q , where

zqφ  � 1 + 
∞

n�2
φn

1 − q
n

1 − q
 ξn

. (15)

Moreover, a function φ ∈ Δ is called q-bounded turning
if it satisfies the inequality

zqφ(ξ)≺J(β)

i (ξ). (16)

We denote this class by B(β)
q .

We aim to find the range of β in terms of q satisfying the
inequality (14). For this purpose, we need the following
result.

Lemma 1 (see [21]). Let ϖ be analytic in ⊔, such that
ϖ(0) � 0. <en, the upper value of ϖ on the circle |ξ| � 1 at
the point ξ0 � reiθ, θ ∈ [− π, π], q ∈ (0, 1), is

ξ0 zqϖ ξ0(   � μϖ ξ0( , μ≥ 1. (17)

3. Results

In this section, we shall illustrate the sufficient conditions on
functions φ ∈ Δ to be in Δ(β)

q .
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Theorem 1. Let the function ρ ∈ ⊔, such that ρ(0) � 1 and

1 + ξ zqρ(ξ) ≺
����
1 + ξ


, ξ⊔. (18)

If one of the cases

β≠
q + 1

q
2

− q + 1
, β<

q + 1 +
�
2

√

q
2

− q + 1
, β>

q + 1 −
�
2

√

q
2

− q + 1
, q ∈ (0, 1), (19)

holds, then

ρ(ξ)≺J(β)
1 (ξ) � 1 + ξ − βξ3. (20)

Proof. Define a function ϱ as follows:

ϱ(ξ) ≔ 1 + ξ zqρ(ξ) . (21)

By the assumption (18) and the definition of the sub-
ordination, we have

1 + ξ zqρ(ξ)  �
�������
1 + ϖ(ξ)


, ϖ(0) � 0, |ϖ(ξ)|≤ |ξ|< 1,

(22)

which leads to

ϖ(ξ) � ϱ2(ξ) − 1. (23)

We aim to show that |ϱ2(ξ) − 1|< 1 for some values
ξ0 ∈ ⊔, such that

ρ(ξ) � 1 + ϖ(ξ) − βϖ3(ξ). (24)

Assume not; then, the above conclusion implies that

ϱ(ξ) � 1 + ξ zq 1 + ϖ(ξ) − βϖ3(ξ)  . (25)

By using the rules of Jackson derivative, we obtain

zqϖ
2
(ξ) � zqϖ(ξ)[ϖ(ξ) + ϖ(qξ)],

zqϖ
3
(ξ) � zqϖ(ξ) ϖ2(ξ) + ϖ(ξ)ϖ(qξ) + ϖ2(qξ) .

(26)

Consequently, we get

ϱ(ξ) � 1 + Wq(ξ) ξzqϖ(ξ) , (27)

where

Wq(ξ) ≔ ϖ(ξ) + ϖ(qξ) − β ϖ2(ξ) + ϖ(ξ)ϖ(qξ) + ϖ2(qξ) . (28)

But

ϖ(qξ) � ϖ(ξ) − (1 − q)ξ zqϖ(ξ) . (29)

Hence, this yields

Wq(ξ) � ϖ(ξ)[2 − 3βϖ(ξ)] + ξzqϖ(ξ) − (1 − q) +(3 − q)ϖ(ξ) − β(1 − q)
2ξzqϖ(ξ) . (30)
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Figure 1: Plot of J
(β)

i , i � 1, 2, 3 for β � 1/2, 1/3, 1/4 and β � 1, respectively. /e plot is connected when β ∈ (0, 1]; otherwise, it is
disconnected.
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Suppose that there exists a point ξ0 ∈ ⊔, such that

max
|ξ|≤ ξ0| |

|ϖ(ξ)| � ϖ ξ0( 


 � 1,

ξ0 zqϖ ξ0(   � μϖ ξ0( , μ≥ 1.

(31)

By Jack Lemma 1 and by letting ϖ(ξ0) � eiθ, we have

Wq ξ0( 


 � ϖ(ξ)[2 − 3βϖ(ξ)] + ξzqϖ(ξ) − (1 − q) + β(3 − q)ϖ(ξ) − β(1 − q)
2ξzqϖ(ξ) 



ξ�ξ0

� e
iθ 2 − 3βe

iθ
  + μe

iθ
− (1 − q) + β(3 − q)e

iθ
− β(1 − q)

2μe
iθ

 




≥R e
iθ 2 − 3βe

iθ
  + μe

iθ
− (1 − q) + β(3 − q)e

iθ
− β(1 − q)

2μe
iθ

  

� cos(θ)[2 − 3β cos(θ)] + μ cos(θ) − (1 − q) + β(3 − q)cos(θ) − β(1 − q)
2μ cos(θ) 

� β − 3 + μ(3 − q) − μ(1 − q)
2

 cos2(θ) +[2 − μ(1 − q)]cos(θ)

� β μ 3 − q − (1 − q)
2

  − 3 cos2(θ) +[2 − μ(1 − q)]cos(θ).

(32)

Accordingly, we conclude that

ϱ(ξ)
2

− 1


ξ�ξ0
� 1 + Wq(ξ) ξzqϖ(ξ)  

2
− 1



ξ�ξ0

≥ Wq ξ0(  ξ0zqϖ ξ0(   
2

− 1




� μβ μ 3 − q − (1 − q)
2

  − 3 cos3(θ) + μ[2 − μ(1 − q)]cos2(θ) 
2

− 1




≥ β 3 − q − (1 − q)
2

  − 3  +[1 + q] 
2

− 1


≥ 1,

(33)

provided one of the following cases holds

Υ≤ −
�
2

√
,Υ � 0,Υ≥

�
2

√
, (34)

where
Υ ≔ β 3 − q − (1 − q)

2
  − 3  +[1 + q]. (35)

Hence, we obtain one of the following arguments:

β �
q + 1

q
2

− q + 1
, β≥

q + 1 +
�
2

√

q
2

− q + 1
, β≤

q + 1 −
�
2

√

q
2

− q + 1
, (36)

which are all contradict (19), that is

ρ(ξ)≺J(β)
1 (ξ) � 1 + ξ − βξ3. (37)

□

As a special case, we have the following result.

Corollary 1. Let φ ∈ Δ be satisfied the subordination:

1 + ξ zq

ξzqφ(ξ)

φ(ξ)
  ≺

����
1 + ξ


, ξ ∈ ⊔. (38)

If one of the cases in (21) is occurred, then φ ∈ Δ(β)
q .

Proof. Assume

ρ(ξ) �
ξzqφ(ξ)

φ(ξ)
 . (39)

Obviously, ρ(0) � 1. /us, in virtue of /eorem 1, we
have φ ∈ Δ(β)

q . □

Similarly, by assuming ρ(ξ) � zqφ(ξ),φ ∈ Δ, we have the
following result.

Corollary 2. Let φ ∈ Δ be the satisfied subordination:

1 + ξ zqφ(ξ) ≺
����
1 + ξ


, ξ ∈ ⊔. (40)

If one of the cases in (21) is occurred, then φ ∈ B(β)
q .

Theorem 2. Let the function h ∈ ⊔, such that h(0) � 1 and

1 + ξ zqh(ξ) ≺
����
1 + ξ


, ξ ∈ ⊔, (41)

if one of the cases

β≠
1

q + 1
, β≠ 2, (42)

where for 0.418341< q< 1,
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0.5 2q +

����������������������

(2q + 3)
2

− 10.3784(q + 1)



  +3) 

q + 1
≥ β

≥
0.5 2q −

����������������������

(2q + 3)
2

− 5.62159(q + 1)



  + 3 

q + 1
,

(43)

and for 0< q< 0.418341,

0.5 2q +

����������������������

(2q + 3)
2

− 10.3784(q + 1)



  + 3 

q + 1
≥ β

≥
0.5 2q −

����������������������

(2q + 3)
2

− 10.3784(q + 1)



  + 3 

q + 1
,

(44)

hold; then,

h(ξ)≺J(β)
2 (ξ) � 1 + ξ − βξ2 

2
. (45)

Proof. Define a function p as follows:

p(ξ) ≔ 1 + ξ zqh(ξ) . (46)

By the assumption (41) and the meninges of the sub-
ordination, we have

1 + ξ zqh(ξ)  �
�������
1 + w(ξ)


, w(0) � 0, |w(ξ)|≤ |ξ|< 1,

(47)

which yields

w(ξ) � p
2
(ξ) − 1. (48)

We have to prove that

|w(ξ)| � p
2
(ξ) − 1


< 1, (49)

for some values ξ0 ∈ ⊔, such that

h(ξ) � 1 + w(ξ) − βw
2
(ξ) 

2
. (50)

Assume not; then, the above conclusion imposes

p(ξ) � 1 + ξ zq 1 + w(ξ) − βw
2
(ξ) 

2
 . (51)

By using the rules of Jackson derivative and the facts

w(qξ) � w(ξ) − (1 − q)ξzqw(ξ),

zqw
2
(ξ) � zqw(ξ) 2w(ξ) − (1 − q)ξzqw(ξ) ,

(52)

we obtain

zq 1 + w(ξ) − βw
2
(ξ) 

2
� 1 + w(ξ) − βw

2
(ξ) zq 1 + w(ξ) − βw

2
(ξ) 

+ 1 + w(qξ) − βw
2
(qξ) zq 1 + w(ξ) − βw

2
(ξ)  � 2 1 + w(ξ) − βw

2
(ξ) 

zqw(ξ) − βzqw(ξ) 2w(ξ) − (1 − q)ξzqw(ξ)   � 2 1 + w(ξ) − βw
2
(ξ) 

zqw(ξ) 1 − β 2w(ξ) − (1 − q)ξzqw(ξ)  .

(53)

Consequently, we get

p(ξ) � 1 + 2ξ 1 + w(ξ) − βw
2
(ξ) zqw(ξ) 1 − β 2w(ξ) − (1 − q)ξzqw(ξ)  . (54)
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Suppose that there exists a point ξ0 ∈ ⊔, such that

max
|ξ|≤ ξ0| |

|w(ξ)| � w ξ0( 


 � 1,

ξ0 zqw ξ0(   � μw ξ0( , μ≥ 1.

(55)

We aim to show that

|w(ξ)| � p
2
(ξ) − 1


< 1. (56)

Our method is based on Jack Lemma 1. Assume not.
/en, by consuming w(ξ0) � eiθ, we get

p
2 ξ0(  − 1


 � 1 + 2ξ 1 + w(ξ) − βw

2
(ξ) zqw(ξ) 1 − β 2w(ξ) − (1 − q)ξzqw(ξ)   

2
− 1



ξ�ξ0

≥ 4 1 + e
iθ

− βe
2iθ

 
2
μe

iθ 1 − β 2e
iθ

− (1 − q)μe
iθ

   
2

− 1




≥R 4 1 + e
iθ

− βe
2iθ

 
2
μe

iθ 1 − β 2e
iθ

− (1 − q)μe
iθ

   
2

− 1 

� 4 1 + cos(θ) − β cos2(θ) 
2
(μ cos(θ)(1 − β[2 cos(θ) − (1 − q)μ cos(θ)]))

2
− 1≥ 1.

(57)

/en, the solution when cos(θ) � 1 of

4 1 + cos(θ) − β cos2(θ) 
2
(μ cos(θ)(1 − β[2 cos(θ) − (1 − q)μ cos(θ)]))

2
− 1



≥ 1 (58)

brings one of the following cases:

⋏ � 0,⋏≥
�
2

√
,⋏≤ −

�
2

√
, (59)

where

⋏: � 4(2 − β)
2
(1 − β(1 + q))

2
. (60)

Hence, we obtain one of the following arguments:

β �
1

q + 1
, β � 2, (61)

and for 0.418341< q< 1,

0.52q +

����������������������

(2q + 3)
2

− 10.3784(q + 1)



  + 3 

q + 1
≤ β

≤
0.5 2q −

����������������������

(2q + 3)
2

− 5.62159(q + 1)



  + 3 

q + 1
.

(62)

Moreover, for 0< q< 0.418341, we have

0.5 2q +

����������������������

(2q + 3)
2

− 10.3784(q + 1)



  + 3 

q + 1
≤ β

≤
0.5 2q −

����������������������

(2q + 3)
2

− 10.3784(q + 1)



  + 3 

q + 1
.

(63)

All the above inequalities contradict the assumptions of
the theorem, which lead to

h(ξ)≺J(β)
2 (ξ) � 1 + ξ − βξ2 

2
. (64)

□

Corollary 3. Let φ ∈ Δ be the satisfied subordination:

1 + ξ
ξ zqφ(ξ) 

φ(ξ)
⎛⎝ ⎞⎠≺

����
1 + ξ


. (65)

If one of the assumptions of <eorem 2 is occurred, then
φ ∈ Δ(β)

q .

Proof. Assume

p(ξ) �
ξzqφ(ξ)

φ(ξ)
 . (66)

Obviously, p(0) � 1. /us, according to /eorem 2, we
get φ ∈ Δ(β)

q . □

In the same manner of the above result, we obtain the
next one when p(ξ) � zqφ(ξ),φ ∈ Δ.

Corollary 4. Let φ ∈ Δ be the satisfied subordination:

1 + ξ zqφ(ξ) ≺
����
1 + ξ


. (67)

If one of the assumptions of <eorem 2 is occurred, then
φ ∈ B(β)

q .

Theorem 3. Let the function g ∈ ⊔, such that g(0) � 1 and

1 + ξ zqg(ξ) ≺
����
1 + ξ


, ξ ∈ ⊔. (68)

If one of the cases
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β≠
1

q + 1
;

β≥ −
1.18921

����������
1/(q + 1)

2
 


q + 1.18921

����������
1/(q + 1)

2
 


− 1

(q + 1)
, 0< q< 1,

β≤
1.18921

����������
1/(q + 1)

2
 


q + 1.18921

����������
1/(q + 1)

2
 


+ 1

(q + 1)
, 0< q< 1,

(69)

holds, then

g(ξ)≺J(β)
3 (ξ) � 1 + ξ − βξ2 . (70)

Proof. Define a function σ as follows:

σ(ξ) ≔ 1 + ξ zqg(ξ) . (71)

By the assumption (68) and the meninges of the sub-
ordination, we have

1 + ξ zqg(ξ)  �
�������
1 + u(ξ)


, u(0) � 0, |u(ξ)|≤ |ξ|< 1,

(72)

which yields

u(ξ) � σ2(ξ) − 1. (73)

We have to prove that

|u(ξ)| � σ2(ξ) − 1


< 1, (74)

for some values ξ0 ∈ ⊔, such that

g(ξ) � 1 + u(ξ) − βu
2
(ξ) . (75)

Assume not; then, the above conclusion imposes

σ(ξ) � 1 + ξ zq 1 + u(ξ) − βu
2
(ξ)  . (76)

By employing the rules of Jackson derivative and the
facts

u(qξ) � u(ξ) − (1 − q)ξzqu(ξ),

zqu
2
(ξ) � zqu(ξ) 2u(ξ) − (1 − q)ξzqu(ξ) ,

(77)

we obtain

zq 1 + u(ξ) − βu
2
(ξ)  � zqu(ξ) − βzqu(ξ) 2u(ξ) − (1 − q)ξzqu(ξ)  

� zqu(ξ) 1 − β 2u(ξ) − (1 − q)ξzqu(ξ)  .
(78)

Following the above structure, we get

σ(ξ) � 1 + ξzqu(ξ) 1 − β 2u(ξ) − (1 − q)ξzqu(ξ)  . (79)

Suppose that there exists a point ξ0 ∈ ⊔, such that

max
|ξ|≤ ξ0| |

|u(ξ)| � u ξ0( 


 � 1, (80)

ξ0 zqu ξ0(   � μu ξ0( , μ≥ 1. (81)

We aim to show that
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|u(ξ)| � σ2(ξ) − 1


< 1. (82) Our method is based on Jack Lemma 1. Assume not.
/en, by consuming u(ξ0) � eiθ, we get

σ2 ξ0(  − 1


 � 1 + ξzqu(ξ) 1 − β 2u(ξ) − (1 − q)ξzqu(ξ)   
2

− 1


ξ�ξ0

≥ ξzqu(ξ) 1 − β 2u(ξ) − (1 − q)ξzqu(ξ)   
2

− 1


ξ�ξ0

� ξ0zqu ξ0(  1 − β 2u ξ0(  − (1 − q)ξ0zqu ξ0(    
2

− 1




� μe
iθ 1 − β 2e

iθ
− (1 − q)μe

iθ
   

2
− 1



≥R μe
iθ 1 − β 2e

iθ
− (1 − q)μe

iθ
   

2
− 1 

� (μ cos(θ)(1 − β[2 cos(θ) − (1 − q)μ cos(θ)]))
2

− 1≥ 1.

(83)

/us, for cos(θ) � 1, μ � 1, the solution of

(μ cos(θ)(1 − β[2 cos(θ) − (1 − q)μ cos(θ)]))
2

− 1


≥ 1,

(84)

provided one of the following cases:

⋎ � 0,⋎≥
�
2

√
,⋎≤ −

�
2

√
, (85)

where

⋎ ≔ (1 − β(1 + q))
2
. (86)

Hence, we obtain one of the following arguments:

β �
1

q + 1
;

β ≤ −
1.18921

����������
1/(q + 1)

2
 


q + 1.18921

����������
1/(q + 1)

2
 


− 1

(q + 1)
, 0< q< 1,

β ≥
1.18921

����������
1/(q + 1)

2
 


q + 1.18921

����������
1/(q + 1)

2
 


+ 1

(q + 1)
, 0< q< 1.

(87)

All the above inequalities contradict the assumptions of
the theorem, which mean that

g(ξ)≺J(β)
3 (ξ) � 1 + ξ − βξ2 . (88)

□

Corollary 5. Let φ ∈ Δ be the satisfied subordination:

1 + ξ
ξ zqφ(ξ) 

φ(ξ)
⎛⎝ ⎞⎠≺

����
1 + ξ


. (89)

If one of the assumptions of <eorem 3 occurred, then
φ ∈ Δ(β)

q .

Proof. Assume

σ(ξ) �
ξzqφ(ξ)

φ(ξ)
 . (90)

Obviously, σ(0) � 1. /us, according to /eorem 3, we
obtain φ ∈ Δ(β)

q . □

Similarly, for σ(ξ) � zqφ(ξ), we have the following
consequence.

Corollary 6. Let φ ∈ Δ be the satisfied subordination:

1 + ξ zqφ(ξ) ≺
����
1 + ξ


. (91)

If one of the assumptions of <eorem 3 is occurred, then
φ ∈ B(β)

q .

4. Conclusion

From above, we investigate the sufficient conditions to
obtain the q-subordination of the q-starlike class

ξzqφ(ξ)

φ(ξ)
 ≺J(ξ), ξ ∈ ⊔, (92)

where J(ξ) � J
(β)

i , i � 1, 2, 3. Differential inequalities are
illustrated, involving the q-differential subordination. Nice
geometric presentation is included describing the connected
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Julia functions of different orders. Our class is called 2D
parametric subclass of analytic function, and β is given in
terms of q. Note that the case of 1D parametric subclass is
given by

J(ξ) �
1 + ξ
1 − qξ

. (93)

It is studied in [21], while null parametric subclass is
formulated by

J(ξ) � 1 +
4
3
ξ +

2
3
ξ2, (94)

and it is investigated in [16].
For future works, one can suggest any types of para-

metric analytic functions (geometric functions) in the open
unit disk. /e above q-differential subordination formula
can be suggested to study the solution of many classes of
generalized differential equations such as the class of Briot-
Bouquet differential equation (2).
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The new outcomes of the present paper are q-analogues (q stands for quantum calculus) of Hermite-Hadamard type inequality,
Montgomery identity, and Ostrowski type inequalities for s-convex mappings. Some new bounds of Ostrowski type functionals
are obtained by using Hölder, Minkowski, and power mean inequalities via quantum calculus. Special cases of new results
include existing results from the literature.

1. Introduction

Integral inequalities provide a notable role in both pure and
applied mathematics in the light of their wide applications in
numerous regular and human sociologies, while convexity
hypothesis has stayed a significant apparatus in the founda-
tion of the theory of integral inequalities. The classical
inequalities are helpful in numerous down-to-earth issues.
In recent years, many authors (see [1–12]) proved numerous
inequalities associated with the functions of bounded varia-
tion, Lipschitzian, monotone, absolutely continuous, convex
functions, s-convex, h-convex, and n-times differentiable
mappings with error estimates. Integral inequalities have
been studied extensively by several researchers either in clas-
sical analysis or in the quantum one. In many practical prob-
lems, it is important to bound one quantity by another
quantity. The classical inequalities including Hermite-
Hadamard and Ostrowski type inequalities are very useful
for this purpose (see [13–24]). Ostrowski type inequalities
are well known to study the upper bounds for approxima-
tion of the integral average by the value of the function. In
[25], Dragomir and Fitzpatrick have constructed Hermite-
Hadamard’s inequality which is specified to s-convex func-
tions in the second sense as follows:

Theorem 1. Suppose Φ : ℝ+ ⟶ℝ is an s-convex function in
second sense, s ∈ ð0, 1Þ, and suppose ℘, υ ∈ℝ+,℘<υ. If Φ′ ∈
L1ð½℘,υ�Þ, then the integral inequality is valid:

2s−1Φ
℘+υ
2

� �
≤

1
υ−℘

ðυ
℘
Φ wð Þdw ≤

Φ ℘ð Þ +Φ υð Þ
s + 1

, ð1Þ

where ℝ+ = fw ∈ℝ ∣w ≥ 0g.

The following Montgomery equality is established by
Alomari (see [26]):

Lemma 2. Assume that Φ : J ⊂ℝ+ ⟶ℝ is differentiable
function on ð℘, υÞ in which ℘, υ ∈ J for ℘<υ. If Φ′ ∈ L½℘,υ�,
then we have the equality:

Φ wð Þ − 1
υ−℘

ðυ
℘
Φ ζð Þdζ = w−℘ð Þ2

υ−℘

ð1
0
ζΦ′ ζw + 1 − ζð Þ℘ð Þ

� dζ − υ −wð Þ2
υ−℘

ð1
0
ζΦ′ ζw + 1 − ζð Þυð Þdζ,

ð2Þ

for each w ∈ ½℘,υ�.
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By using Lemma 2, Alomari et al. in [26] had proved the
Ostrowski type inequality, which holds for s-convex mappings
in second sense as follows:

Theorem 3. Assume Φ : J ⊂ℝ+ ⟶ℝ is a differentiable on
ð℘, υÞ and Φ′ ∈ L½℘,υ� such that ℘, υ ∈ J for ℘<υ: If jΦ′j is
s-convex mapping in the second sense on ½℘, υ� unique s ∈
ð0, 1� and jΦ′ðwÞj ≤M,w ∈ ½℘,υ�, then the following result
holds:

Φ wð Þ − 1
υ−℘

ðυ
℘
Φ ζð Þdζ

�����
����� ≤ M

υ−℘
w−℘ð Þ2 + υ −wð Þ2

s + 1

" #
, ð3Þ

for each w ∈ ½℘,υ�.

Theorem 4. Suppose that Φ : J ⊂ℝ+ ⟶ℝ is the differentia-
ble on ð℘, υÞ and Φ′ ∈ L½℘,υ�, where ℘, υ ∈ J with ℘<υ: If
absolute value of ðΦ′Þm is s-convex function in the second
sense in ½℘, υ� for unique s ∈ ð0, 1�, m > 1, n =m/m − 1 and j
Φ′ðwÞj ≤M,w ∈ ½℘,υ�, then following integral inequality
holds:

Φ wð Þ − 1
υ−℘

ðυ
℘
Φ ζð Þdζ

�����
����� ≤ M

1 + nð Þ1/n
2

s + 1

� �1/m w−℘ð Þ2 + υ −wð Þ2
υ−℘

" #
,

ð4Þ

for each w ∈ ½℘,υ�:

Theorem 5. Suppose that Φ : J ⊂ℝ+ ⟶ℝ is differentiable
on ð℘, υÞ and Φ′ ∈ L½℘,υ�, in which ℘, υ ∈ J for ℘<υ: If the
absolute value of ðΦ′Þm is s-convex function in ½℘, υ� for static
s ∈ ð0, 1�,m ≥ 1 and jΦ′ðwÞj ≤M,w ∈ ½℘,υ�, then the following
integral inequality holds:

Φ wð Þ − 1
υ−℘

ðυ
℘
Φ ζð Þdζ

�����
����� ≤M

2
s + 1

� �1/m w−℘ð Þ2 + υ −wð Þ2
2 υ−℘ð Þ

" #
,

ð5Þ

for each w ∈ ½℘,υ�:

Theorem 6. Suppose Φ : J ⊂ℝ+ ⟶ℝ be the differentiable
on ð℘, υÞ and Φ′ ∈ L½℘,υ�, in which ℘, υ ∈ J for ℘<υ: If abso-
lute value of ðΦ′Þm is a s-convex mapping in second sense on
½℘, υ� for static s ∈ ð0, 1�,m > 1 and n =m/m − 1, we have

Φ wð Þ − 1
υ−℘

ðυ
℘
Φ ζð Þdζ

�����
����� ≤ 2 s−1ð Þ/m

1 + nð Þ1/n υ−℘ð Þ
� w−℘ð Þ2 Φ′ w+℘

2

� ���� ��� + υ −wð Þ2 Φ′ υ +w
2

� ���� ���h i
,

ð6Þ

for each w ∈ ½℘,υ�:

The renowned mathematician Euler started the investi-
gation of q-calculus in the eighteenth century by presenting

Newton’s work of limitless series. This subject has gotten
extraordinary consideration by numerous specialists, and
consequently, it is considered an in-corporative subject
among math and material science. In the mid-20th century,
Jackson (1910) has begun a symmetric investigation of cal-
culus and presented q-distinct integrals. The subject of
quantum analytic has various applications in different spaces
of arithmetic and physical science like number hypothesis,
combinatorics, symmetrical polynomials, essential hyper-
mathematical functions, quantum theory, and mechanics
and in the hypothesis of relativity. Quantum calculus can
be seen as a scaffold among arithmetic and material science.
It has been shown that quantum calculus is a subfield of the
more general mathematical field of time scales calculus.
Time scales provide a unified framework for studying
dynamic equations on both discrete and continuous
domains. In [27, 28], q-Bernoulli and dynamic inequalities
associated with Leibniz integral rule on time scales were
studied. In studying quantum calculus, we are concerned
with a specific time scale, called the q-time scale. The study
of q-integral inequalities is also of great importance. Integral
inequalities have been studied extensively by several
researchers either in classical analysis or in the quantum
one.

The following q-Hermite-Hadamard and q-Ostrowski
type integral inequalities were proved by Tariboon and
Ntouyas (see Theorems 3.2 and 3.5 [29]):

Theorem 7. Let Φ : J ⟶ℝ be a q-differentiable function
with DqΦ continuous on ½℘, υ� and 0 < q < 1. Then, we have

Φ
℘+υ
2

� �
≤

1
υ−℘

ðυ
℘
Φ ζð Þ℘dqζ ≤

Φ ℘ð Þ + qΦ υð Þ
q + 1

: ð7Þ

Theorem 8. Suppose Φ : J ⟶ℝ, where ½℘,υ� ⊆ℝ is an
interval, be a q-differentiable in open interval ℘, υ belonging
to interior I for ℘<υ. If jDqΦðwÞj ≤M for all w ∈ ½℘,υ� and
0 < q < 1, then the integral inequality is valid:

Φ wð Þ − 1
υ−℘

ðυ
℘
Φ ζð Þ℘dqζ

�����
�����

≤M
2q
1 + q

w − 3q − 1ð Þ℘+ 1 + qð Þυð Þ/4qð Þ
υ−℘

� �2

+ −q2 + 6q − 1
� �

8q 1 + qð Þ
� �" #

,

ð8Þ

for all w ∈ ½℘,υ�: The least value of constant on RHS of
inequality (8) is ð−q2 + 6q − 1Þ/8qð1 + qÞ.

The following q-Ostrowski type integral inequalities for
convex functions were proved by Noor et al. (see [30]):

Theorem 9. Let Φ : J ⊂ℝ+ ⟶ℝ be q-differentiable map-
ping for ð℘, υÞ and DqΦ ∈ L½℘,υ�, in which ℘, υ ∈ J for ℘<υ:
If jDqΦj is convex mapping ½℘, υ� for some static q ∈ ð0, 1Þ
and jDqΦðwÞj ≤M,w ∈ ½℘,υ�, then we have the following q
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-integral inequality:

1
q

Φ wð Þ − 1
υ−℘

ðυ
℘
Φ ζð Þ℘dqζ

 !�����
����� ≤ M

υ−℘
w−℘ð Þ2 + υ −wð Þ2

q + 1

" #
,

ð9Þ

for each w ∈ ½℘,υ�:

Theorem 10. Assume that Φ : J ⊂ℝ+ ⟶ℝ is q-differen-
tiable mapping on ð℘, υÞ and DqΦ ∈ L½℘,υ�, in which ℘, υ ∈
J for ℘<υ: If jDqΦjm is a convex function in second sense
on ½℘, υ� unique q ∈ ð0, 1Þ,m > 1,n =m/m − 1, and jDqΦðwÞj
≤M,w ∈ ½℘,υ�, then we have the q-integral inequality:

1
q

Φ wð Þ − 1
υ−℘

ðυ
℘
Φ ζð Þ℘dqζ

 !�����
�����

≤
M

n + 1½ �ð Þ1/n
w−℘ð Þ2 + υ −wð Þ2

υ−℘

" #
,

ð10Þ

for each w ∈ ½℘,υ�:

The aim of this work is to find q-analogues of Hermite-
Hadmard and Ostrowski type integral inequalities for func-
tions whose q-derivatives are s-convex in the second sense.
An interesting feature of our results is that they provide
new estimates and good approximation on such types of
inequalities involving q-integrals.

2. Basic Essentials

2.1. Convex Function. Let Φ be the function; it is said to be
convex function on intervalJ if

Φ Ωw + 1 −Ωð Þρð Þ ≤ΩΦ wð Þ + 1 −Ωð ÞΦ ρð Þ ð11Þ

holds for all w, ρ ∈ J and Ω ∈ ½0, 1�.
In [31], s-convex functions in the second sense have

been introduced by Hudzik and Maligranda as follows:

2.2. s-Convex Function. A mapping Φ : ℝ+ ⟶ℝ is said to
be s-convex if

Φ Ωw + 1 −Ωð Þρð Þ ≤ΩsΦ wð Þ + 1 −Ωð ÞsΦ ρð Þ, ð12Þ

for each w, ρ ∈ℝ+, Ω ∈ 0, 1� and for unique s ∈ ð0, 1�:
2.3. q-Derivative [32]. For a continuous mapping Φ : ½℘,υ�
⟶ℝq-derivative at w ∈ ½℘,υ� is

℘Dq
Φ wð Þ = Φ wð Þ −Φ qw + 1 − qð Þ℘ð Þ

1 − qð Þ w−℘ð Þ  w ≠ ℘: ð13Þ

Also, for n ≥ 1, one may find the following evaluations:

w−℘ð Þnq = w−℘ð Þ w − q℘ð Þ w − q2℘
� �

⋯ w − qn−1℘
� �

,

℘−wð Þnq = ℘−qwð Þ ℘−q2w
� �

⋯ ℘−qn−1w
� �

,

Dq w−℘ð Þnq = n½ � w−℘ð Þn−1q ,

Dq ℘−wð Þnq = − n½ � ℘−qwð Þn−1q ,

℘−qwð Þnq = −
1

n+1½ �Dq ℘−wð Þn+1q ,

Dq ℘−wð Þnq = − n½ � ℘−qwð Þn−1q ,
ð

℘−wð Þnqdqw = −
q ℘−q−1w
� �n+1

q

n+1½ �   ℘ ≠ −1ð Þ:

ð14Þ

Here,

n½ � = qn − 1
q − 1 , ð15Þ

and also, we have

1−℘ð Þnq =
Yn
j=0

1 − qj℘
� �

: ð16Þ

2.4. q-Antiderivative [32]. Suppose that Φ : ½℘,υ�⟶ℝ be
the continuous mapping. Then, q-definite integral on ½℘, υ�
is stated as

ðw
℘
Φ ζð Þ℘dqζ = 1 − qð Þ w−℘ð Þ〠

∞

n=0
qnΦ qnw + 1 − qnð Þ℘ð Þ,

ð17Þ

for w ∈ ½℘,υ�.
2.5. The Formula of q-Integration by Parts [29]. Let Φ, g : ½
℘,υ�⟶ℝ be the continuous functions ℘∈ℝ and w, c ∈ ½℘,
υ�, Then, the formula of q-integration by parts is stated asðw

c
Φ ζð Þ℘Dqg ζð Þdqζ =Φ wð Þg wð Þ −Φ cð Þg cð Þ

−
ðw
c
g qζ + 1 − qð Þ℘ð Þ℘DqΦ ζð Þdqζ:

ð18Þ

Theorem 11. q-Hölder Inequality ([4], Theorem 2). Let Φ
and g be q-integrable on ½℘, υ� and 0 < q < 1 and ð1/nÞ + ð1/
mÞ = 1 with m > 1; then, one may obtain the following:

ðυ
℘
Φ ζð Þg ζð Þj j℘dqζ ≤

ðυ
℘
Φ ζð Þj jn℘dqζ

( )1/n ðυ
℘
g ζð Þj jm℘dqζ

( )1/m

:

ð19Þ

Using (19), the following is valid.
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2.6. q-Minkowski’s Inequality. Let ℘, υ ∈ℝ and n > 1 be a real
number then for continuous functions Φ, g : ½℘,υ�⟶ℝ,

ðυ
℘

Φ ζð Þ + g ζð Þð Þj jn℘dqζ
( )1/n

≤
ðυ
℘
Φ ζð Þj jn℘dqζ

( )1/n

+
ðυ
℘
g ζð Þj jn℘dqζ

( )1/n

:

ð20Þ

Proof.

ð℘
υ

Φ + gð Þ ζð Þj jndqζ =
ð℘
υ

Φ + gð Þ ζð Þj jn−1 Φ + gð Þ ζð Þj jdqζ

≤
ð℘
υ

Φ + gð Þ ζð Þj jn−1 Φ ζð Þj jdqζ +
ð℘
υ

Φ + gð Þ ζð Þj jn−1

� g ζð Þj jdqζ≤
ð℘
υ

Φ ζð Þj jndqζ
	 
1/n ð℘

υ

Φ + gð Þ ζð Þj jm n−1ð Þdqζ
	 
1/n

+
ð℘
υ

g ζð Þj jndqζ
	 
1/n ð℘

υ

Φ + gð Þ ζð Þj jm n−1ð Þdqζ
	 
1/m

=
ð℘
υ

Φ ζð Þj jndqζ
	 
1/n

+
ð℘
υ

g ζð Þj jndqζ
	 
1/n

" #

�
ð℘
υ

Φ + gð Þ ζð Þj jm n−1ð Þdqζ
	 
1/m
" #

,

ð21Þ

which gives the required result for positive real numbers
m, n such that ð1/mÞ + ð1/nÞ = 1.

The classical power mean inequality for integrals has the
following form for q-integral.

2.7. q-Power Mean Inequality. Let ð1/nÞ + ð1/mÞ = 1 for real
numbers n,m > 1. Let ℘, υ ∈ℝ and Φ, g : ½℘,υ�⟶ℝ be
continuous functions; then,

ðυ
℘
Φ ζð Þg ζð Þj j℘dqζ ≤

ðυ
℘
Φ ζð Þj j℘dqζ

( )1− 1/mð Þ

�
ðυ
℘
Φ ζð Þj j g ζð Þj jm℘dqζ

( )1/m

:

ð22Þ

Proposition 12. [33]. For each k, r ∈ℕðorℤ q ∈ℝ×Þ, we
have

k + r½ �q = k½ �q + qk r½ �q: ð23Þ

3. Main Results

3.1. q-Hermite-Hadamard Inequality

Theorem 13. Suppose Φ : ℝ+ ⟶ℝ is a s-convex mapping
in the second sense, in which s, q ∈ ð0, 1Þ, and let ℘, υ ∈ℝ+,

℘<υ: If DqΦ ∈ Lð½a, b�Þ, then the integral inequality is valid:

2s−1Φ
℘+υ
2

� �
≤

1
υ−℘

ðυ
℘
Φ ζð Þ℘dqζ ≤

Φ υð Þq 1 − 1 − q−1
� �s+1� �

+Φ ℘ð Þ
s + 1½ � :

ð24Þ

Proof. By definition of s-convex functions,

Φ ζ℘+ 1 − ζð Þυð Þ ≤ ζsΦ ℘ð Þ + 1 − ζð ÞsΦ υð Þð1
0
Φ ζ℘+ 1 − ζð Þυð Þ0dqζ ≤Φ ℘ð Þ

ð1
0
ζs0dqζ +Φ υð Þ

ð1
0
1 − ζð Þs0dqζ,

ð1
0
Φ ζ℘+ 1 − ζð Þυð Þ0dqζ =

1 − qð Þ υ−℘ð Þ
υ−℘ 〠

∞

n=0
qnΦ qn℘+ 1 − qnð Þυð Þ

= 1
υ−℘

ðυ
℘
Φ ζð Þ0dqζ ≤Φ ℘ð Þ

ð1
0
ζs0dqζ +Φ υð Þ

ð1
0
1 − ζð Þs0dqζ

=
Φ ℘ð Þ + q 1 − 1 − q−1

� �s+1� �
Φ υð Þ

s + 1½ � :

ð25Þ

Hence,

1
υ−℘

ðυ
℘
Φ ζð Þ0dqζ ≤

Φ ℘ð Þ + q 1 − 1 − q−1
� �s+1� �

Φ υð Þ
s + 1½ � : ð26Þ

Let w = ζ℘+ð1 − ζÞυ and ζ = ζυ + ð1 − ζÞ℘ in Φððw + ζÞ/
2Þ ≤ ððΦðwÞ +ΦðζÞÞ/2sÞ to get

Φ
ζ℘+ 1 − ζð Þυ + ζυ + 1 − ζð Þ℘

2

� �

≤
Φ ζ℘+ 1 − ζð Þυð Þ +Φ ζυ + 1 − ζð Þ℘ð Þ

2s ,

Φ
℘+υ
2

� �
≤

1
2s

ð1
0
Φ ζ℘+ 1 − ζð Þυð Þ0dqζ +

ð1
0
Φ ζυ + 1 − ζð Þ℘ð Þ0dqζ

� �

= 1
2s

1
℘−υ

ð℘
υ

Φ ζð Þ0dqζ +
1

υ−℘

ðυ
℘
Φ ζð Þ0dqζ

 !
,

ð27Þ

2s−1Φ ℘+υ
2

� �
≤

1
υ−℘

ðυ
℘
Φ ζð Þ0dqζ, ð28Þ

From (26) and (28), the desired result is

2s−1Φ ℘+υ
2

� �
≤

1
υ−℘

ðυ
℘
Φ ζð Þ℘dqζ ≤

Φ ℘ð Þ + q 1 − 1 − q−1
� �s+1� �

Φ υð Þ
s + 1½ � :

ð29Þ

3.2. q-Ostrowski Type Inequalities. To prove some q-
Ostrowski type inequalities, it needs to establish the follow-
ing Montgomery identity for q-integrals:
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Lemma 14. Let Φ : J ⊂ℝ⟶ℝ be a q-differentiable on J∘ in
which ℘, υ ∈ J for ℘<υ. If DqΦ ∈ L½℘,υ�, we have the following
q-integral equality which is valid:

1
q

Φ wð Þ − 1
υ−℘

ðυ
℘
Φ ζð Þ℘dqζ

" #
= w−℘ð Þ2

υ−℘

ð1
0
ζDqΦ ζw + 1 − ζð Þ℘ð Þ

�0 dqζ −
υ −wð Þ2
υ−℘

ð1
0
ζDqΦ ζw + 1 − ζð Þυð Þ0dqζ,

ð30Þ

for each w ∈ ½℘,υ�:
By using Lemma 14, we have constructed the following

Ostrowski type inequalities, which hold for s-convex functions
in the second sense:

Theorem 15. Let Φ : J ⊂ℝ+ ⟶ℝ is a q-differentiable map-
ping on J∘ and DqΦ ∈ L½℘,υ�, in which ℘, υ ∈ J for ℘<υ: If the
absolute value of DqΦðwÞ is s-convex in second sense on ½℘, υ�
for unique s ∈ ð0, 1� and DqΦðwÞ is bounded by M, w ∈ ½℘,υ�,
we have been seeing that the following q-integral inequality is
valid:

1
q

Φ wð Þ − 1
υ−℘

ðυ
℘
Φ ζð Þ℘dqζ

" #�����
����� ≤M

w−℘ð Þ2 + υ −wð Þ2
υ−℘

� −
q

s + 1½ � 1 − q−1
� �s+1

q
+
q 1 − q−1
� �s+2

q

s + 2½ � −
q

s + 2½ �

0
@

1
A + 1

s + 2½ �

2
4

3
5,
ð31Þ

for each w ∈ ½℘,υ�:

Proof. Since jDqΦj is s-convex function in the second sense
on ½℘, υ�, therefore, Lemma 14 gives the following:

1
q

Φ wð Þ − 1
υ−℘

ðυ
℘
Φ ζð Þ℘dqζ

" #�����
�����

≤
w−℘ð Þ2
υ−℘

ð1
0
ζ DqΦ ζw + 1 − ζð Þ℘ð Þ�� ��

0dqζ

+ υ −wð Þ2
υ−℘

ð1
0
ζ DqΦ ζw + 1 − ζð Þυð Þ�� ��

0dqζ

≤
w−℘ð Þ2
υ−℘

ð1
0
ζs+1q DqΦ wð Þ�� ��

0dqζ +
ð1
0
ζ 1 − ζð Þsq DqΦ ℘ð Þ�� ��

0dqζ

+ υ −wð Þ2
υ−℘

ð1
0
ζs+1q DqΦ wð Þ�� ��

0dqζ +
ð1
0
ζ 1 − ζð Þsq DqΦ υð Þ�� ��

0dqζ

= M w−℘ð Þ2
υ−℘

ð1
0
ζs+1q 0dqζ +

ð1
0
ζ 1 − ζð Þsq0dqζ

� �

+ υ −wð Þ2
υ−℘

ð1
0
ζs+1q 0dqζ +

ð1
0
ζ 1 − ζð Þsq0dqζ

� �

=M
w−℘ð Þ2 + υ −wð Þ2

υ−℘

ð1
0
ζs+10dqζ +

ð1
0
ζ 1 − ζð Þsq0dqζ

� �
,

ð1
0
ζs+1q 0dqζ =

1
s + 2½ � , ð32Þ

= −
q

s + 1½ �
ð1
0
ζDq 1 − q−1ζ
� �s+1

q 0
dqζ

= −
1

q s + 1½ � ζ 1 − q−1ζ
� �s+1

q

��� ���1
0
−
ð1
0
1 − ζð Þs+1q :10dqζ

� �

= −
q

s + 1½ � 1 − q−1
� �s+1

q
+
q 1 − q−1
� �s+2

q

s + 2½ � −
q
s+2½ �

2
4

3
5

= −
q

s + 1½ � 1 − q−1
� �s+1

q
+
q 1 − q−1
� �s+2

q

s + 2½ � −
q

s + 2½ �

2
4

3
5 + 1

s + 2½ �

=M
w−℘ð Þ2 + υ −wð Þ2

υ−℘

� −
q

s + 1½ � 1 − q−1
� �s+1

q
+
q 1 − q−1
� �s+2

q

s + 2½ � −
q

s + 2½ �

0
@

1
A + 1

s + 2½ �

2
4

3
5:

ð33Þ

Theorem 16. Suppose that Φ : J ⊂ℝ+ ⟶ℝ is a q-differen-
tiable on J∘ and DqΦ ∈ L½℘,υ�, in which ℘, υ ∈ J for ℘<υ: If
jDqΦjm is a s-convex function in second sense on ½℘, υ� for
some static s ∈ ð0, 1�,m > 1,n =m/m − 1 and DqΦðwÞ is
bounded byM,w ∈ ½℘,υ�, then the q-integral inequality is valid:

1
q

Φ wð Þ − 1
υ−℘

ðυ
℘
Φ ζð Þ℘dqζ

" #�����
�����

≤
M

n + 1½ �1/n
1 + q 1 − 1 − q−1

� �s+1� �
s + 1½ �

2
4

3
5
1/m

× w−℘ð Þ2 + υ −wð Þ2
υ−℘

" #
,

ð34Þ

for each w ∈ ½℘,υ�:

Proof. From Lemma 14 and keeping in view the well-known
q-analogue of Hölder inequality, we have

1
q

Φ wð Þ − 1
υ−℘

ðυ
℘
Φ ζð Þ℘dqζ

" #�����
����� ≤ w−℘ð Þ2

υ−℘

ð1
0
ζ DqΦ ζw + 1 − ζð Þ℘ð Þ�� ��

�0 dqζ +
υ −wð Þ2
υ−℘

ð1
0
ζ DqΦ ζw + 1 − ζð Þυð Þ�� ��

0dqζ

≤
w−℘ð Þ2
υ−℘

ð1
0
ζnq0dqζ

� �1/n ð1
0
DqΦ ζw + 1 − ζð Þ℘ð Þ�� ��m

0dqζ
� �1/m

+ υ −wð Þ2
υ−℘

ð1
0

ð1
0
ζnq0dqζ

� �1/n ð1
0
DqΦ ζw + 1 − ζð Þυð Þ�� ��m

0dqζ
� �1/m

,
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ð1
0
DqΦ ζw + 1 − ζð Þ℘ð Þ�� ��m

0dqζ ≤
ð1
0
ζsq DqΦ wð Þ�� ��m

0dqζ

+
ð1
0
1 − ζð Þsq DqΦ ℘ð Þ�� ��m

0dqζ ≤Mm ζs+1q

s + 1½ �

�����
�����
1

0

−
q 1 − q−1ζ
� �s+1

q

s + 1½ �

������
������
1

0

0
@

1
A

=Mm 1
s + 1½ � −

q 1 − q−1
� �s+1

q

s + 1½ � + q
s + 1½ �

0
@

1
A =Mm

1 + q 1 − 1 − q−1
� �s+1

q

� �
s + 1½ �

0
@

1
A,

ð1
0
DqΦ ζw + 1 − ζð Þυð Þ�� ��m

0dqζ ≤
ð1
0
ζsq DqΦ wð Þ�� ��m

0dqζ

+
ð1
0
1 − ζð Þsq DqΦ υð Þ�� ��m

0dqζ ≤Mm ζs+1q

s + 1½ �

�����
�����
1

0

−
q 1 − q−1ζ
� �s+1

q

s + 1½ �

������
������
1

0

0
@

1
A

=Mm 1
s + 1½ � −

q 1 − q−1
� �s+1

q

s + 1½ � + q
s + 1½ �

0
@

1
A =Mm

1 + q 1 − 1 − q−1
� �s+1

q

� �
s + 1½ �

0
@

1
A

≤M
1

1 + n½ �
� �1/n 1 + q 1 − 1 − q−1

� �s+1
q

� �
s + 1½ �

0
@

1
A

1/m
w−℘ð Þ2 + υ −wð Þ2

υ−℘

" #
:

ð35Þ

It completes the proof.

Theorem 17. Let Φ : J ⊂ℝ+ ⟶ℝ is a q-differentiable map-
ping on J∘ such as DqΦ ∈ L½℘,υ�, in which ℘, υ ∈ J for ℘<υ: If
the absolute value of ðDqΦðwÞÞm is a s -convex mapping in
the second sense on ½℘, υ� for unique s ∈ ð0, 1�, m ≥ 1, and j
DqΦðwÞj ≤M, w ∈ ½℘,υ�, we have seen that the q-integral
inequality is valid:

1
q

Φ wð Þ − 1
υ−℘

ðυ
℘
Φ ζð Þ℘dqζ

" #�����
����� ≤M

w−℘ð Þ2 + υ −wð Þ2
υ−℘

 !

� 1
2½ �

� �1− 1/mð Þ
−

q
s + 1½ � 1 − q−1

� �s+1
q

+
q 1 − q−1
� �s+2

q

s + 2½ � −
q

s + 2½ �

0
@

1
A

2
4

3
5
1/m

,

ð36Þ

for each w ∈ ½℘,υ�:

Proof. Lemma 14 and keeping in view the well-known q
-analogue of power-mean inequality, we have

1
q

Φ wð Þ − 1
υ−℘

ðυ
℘
Φ ζð Þ℘dqζ

" #�����
����� ≤ w−℘ð Þ2

υ−℘

ð1
0
ζ DqΦ ζw + 1 − ζð Þ℘ð Þ�� ��

0dqζ

+ υ −wð Þ2
υ−℘

ð1
0
ζ DqΦ ζw + 1 − ζð Þυð Þ�� ��

0dqζ ≤
w−℘ð Þ2
υ−℘

ð1
0
ζ0dqζ

� �1− 1/mð Þ

�
ð1
0
ζ DqΦ ζw + 1 − ζð Þ℘ð Þ�� ��m

0dqζ
� �1/m

+ υ −wð Þ2
υ−℘

ð1
0
ζ0dqζ

� �1− 1/mð Þ

�
ð1
0
ζ DqΦ ζw + 1 − ζð Þυð Þ�� ��m

0dqζ
� �1/m

,

ð1
0
ζ DqΦ ζw + 1 − ζð Þ℘ð Þ�� ��m

0dqζ

≤
ð1
0
ζs+1q DqΦ wð Þ�� ��m

0dqζ +
ð1
0
ζ 1 − ζð Þsq DqΦ ℘ð Þ�� ��m

0dqζ

≤Mm
ð1
0
ζ0dqζ

� �1− 1/mð Þ ð1
0
ζs+1q 0dqζ +

ð1
0
ζ 1 − ζð Þsq0dqζ

� �

=M
w−℘ð Þ2 + υ −wð Þ2

υ−℘

�
ð1
0
ζ0dqζ

� �1− 1/mð Þ ð1
0
ζs+10dqζ +

ð1
0
ζ 1 − ζð Þsq0dqζ

� �
,

ð1
0
ζs+1q 0dqζ =

1
s + 2½ � ,

−
q

s + 1½ �
ð1
0
ζDq 1 − q−1ζ
� �s+1

q 0
dqζ = −

q
s + 1½ �

� ζ 1 − q−1ζ
� �s+1

q

��� ���1
0
−
ð1
0
1 − ζð Þs+1q :10dqζ

� �

= −
q

s + 1½ � 1 − q−1
� �s+1

q
+
q 1 − q−1
� �s+2

q

s + 2½ � −
q

s + 2½ �

2
4

3
5

= −
q

s + 1½ � 1 − q−1
� �s+1

q
+
q 1 − q−1
� �s+2

q

s + 2½ � −
q

s + 2½ �

2
4

3
5

=M
w−℘ð Þ2 + υ −wð Þ2

υ−℘

 !
1
2½ �

� �1− 1/mð Þ

� −
q

s + 1½ � 1 − q−1
� �s+1

q
+
q 1 − q−1
� �s+2

q

s + 2½ � −
q

s + 2½ �

0
@

1
A

2
4

3
5
1/m

:

ð37Þ

It completes the proof.

Theorem 18. Suppose that Φ : J ⊂ℝ+ ⟶ℝ is a q-differ-
entiable mapping on J∘ such that DqΦ ∈ L½℘,υ�, in which
℘, υ ∈ J for ℘<υ: If jDqΦjm is s-convex function in second
sense on ½℘, υ� for some s ∈ ð0, 1�,q > 1 and m > 1 and n =
m/m − 1, then the q-integral inequality is valid:

1
q

Φ wð Þ − 1
υ−℘

ðυ
℘
Φ ζð Þ℘dqζ

" #�����
�����

≤
2 s−1/mð Þ

1 + n½ �1/n υ−℘ð Þ w−℘ð Þ2 DqΦ
w+℘
2

� ���� ���h
+ υ −wð Þ2 DqΦ

υ +w
2

� ���� ����,
ð38Þ

for each w ∈ ½℘,υ�:
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Proof. Lemma 3.1 and keeping in view the familiar q-ana-
logue of Hölder inequality, we have

1
q

Φ wð Þ− 1
℘+υ

ðυ
℘
Φ ζð Þ℘dqζ

" #�����
�����

≤
w−℘ð Þ2
υ−℘

ð1
0
ζ DqΦ ζw + 1 − ζð Þ℘ð Þ�� ��

0dqζ

+ υ −wð Þ2
υ−℘

ð1
0
ζ DqΦ ζw + 1 − ζð Þυð Þ�� ��

0dqζ

≤
w−℘ð Þ2
υ−℘

ð1
0
ζnq0dqζ

� �1/n ð1
0
DqΦ ζw + 1 − ζð Þ℘ð Þ�� ��m

0dqζ
� �1/m

+ υ −wð Þ2
υ−℘

ð1
0

ð1
0
ζnq0dqζ

� �1/n ð1
0
DqΦ ζw + 1 − ζð Þυð Þ�� ��m

0dqζ
� �1/m

,
ð1
0
DqΦ ζw + 1 − ζð Þ℘ð Þ�� ��mdζ ≤ 2s−1 DqΦ

w+℘
2

� ���� ���m
ð1
0
DqΦ ζw + 1 − ζð Þυð Þ�� ��mdζ ≤ 2s−1 DqΦ

υ +w
2

� ���� ���m

≤
2 s−1/mð Þ

1 + n½ �1/n υ−℘ð Þ w−℘ð Þ2 DqΦ
w+℘
2

� ���� ��� + υ −wð Þ2 DqΦ
υ +w
2

� ���� ���h i
:

ð39Þ

Remark 19. In Theorem 13, if we choose q = 1, then (24)
diminishes the inequality (1) of Theorem 1.

Remark 20. In Theorem 13, if we choose s = 1, then (24)
diminishes the inequality (7) of Theorem 7.

Remark 21. In Theorem 15, if we fixed q = 1, then (31)
reduces the inequality (3) of Theorem 3.

Remark 22. In Theorem 15, if we take s = 1, then (31) dimin-
ishes the inequality (9) of Theorem 9.

Remark 23. In Theorem 16, if we take q = 1, then (34)
reduces the inequality (4) of Theorem 4.

Remark 24. In Theorem 16, if we choose s = 1, then (34)
diminishes the inequality (10) of Theorem 10.

Remark 25. In Theorem 17, if we take q = 1, then (36) dimin-
ishes the inequality (5) of Theorem 5.

Remark 26. In Theorem 18, if we take q = 1, then (38) dimin-
ishes the inequality (6) of Theorem 6.

4. Conclusion

By the virtue of q-calculus, some integral inequalities are
proved, which provides a method to study more properties
of q-integrals via other classes of integral inequalities. q-Her-
mite-Hadmard and q-Ostrowski type integral inequalities
have provided new estimates and good approximations in
comparison with existing Hermite-Hadamard and
Ostrowski inequalities. In similar fashion, the same methods

can be applied to other inequalities, including Simpson’s and
trapezoidal inequalities for different classes of s-convex
functions.
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The intention of this note is to investigate some new important estimates for the Jensen gap while utilizing a 4-convex
function. We use the Jensen inequality and definition of convex function in order to achieve the required estimates for the
Jensen gap. We acquire new improvements of the Hölder and Hermite–Hadamard inequalities with the help of the main
results. We discuss some interesting relations for quasi-arithmetic and power means as consequences of main results. At
last, we give the applications of our main inequalities in the information theory. The approach and techniques used in the
present note may simulate more research in this field.

1. Introduction

The theory of convex functions performs an extremely sig-
nificant and consequential role in several areas of pure and
applied sciences. Due to its numerous and extensive applica-
tions, the concept of convex functions has been extended
and generalized in many directions. The most important
and elegant aspect of the class of convex functions, which
attracted many researchers, is its deep relation with theory
of inequalities [1–3]. In the literature, there are several
well-known inequalities which are the direct consequences
and applications of convexity [4, 5]. In this respect, some
of the noted inequalities associated with the class of convex
functions are majorization, Hermite–Hadamard and Jen-
sen–Mercer inequalities [6]. Among these inequalities, one
of the considerable and vital inequalities which are studied
very widely in the literature is the Jensen inequality. This
celebrated inequality reads as follows:

Theorem 1. Assume that I is an interval of real numbers and
Ψ is a convex function on I. If yj ∈ I and wj > 0 for j = 1, 2,
⋯, n with W =∑n

j=1wj, then

Ψ
1
W

〠
n

j=1
wjyj

 !
≤

1
W

〠
n

j=1
wjΨ yj

� �
: ð1Þ

Inequality (1) will be true in the reverse direction, if the
function Ψ is concave on I.

The Jensen inequality has multitudinous applications in
Mathematics [7–11], Statistics [12], Economics [13] and
Information Theory [14], etc. The most interesting and
attractive applications of this inequality is that it generalized
the classical convexity. Moreover, there are several inequal-
ities which are the direct consequences of this inequality
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such as Ky Fan, Cauchy, Hermite–Hadamard and Hölder
inequalities. Due to the vast applications of the Jensen
inequality, many researchers dedicated their work to this
inequality. This inequality has been extended, improved,
and refined in multidirections by using different techniques
and principals. For some more extensive literature concern-
ing to the Jensen inequality, see [15, 16].

2. Main Results

In the present part, we discuss the main results. Let us begin
this section with the following theorem, in which we acquire
an upper bound for the Jensen gap.

Theorem 2. Assume that I is an interval in ℝ, xi ∈ I and pi >
0 for i = 1, 2,⋯, n with Pn ≔∑n

i=1pi and �x = 1/Pn∑pixi. If Ψ is
a twice differentiable function such thatΨ is 4-convex on I, then

1
Pn

〠
n

i=1
piΨ xið Þ −Ψ �xð Þ ≤ 1

6Pn
〠
n

i=1
pi �x − xið Þ2 2Ψ″ �xð Þ +Ψ″ xið Þ

� �
:

ð2Þ

Inequality (2) will be true in the opposite direction, if the
function Ψ is 4-concave.

Proof. Without misfortune of sweeping statement, assume
that �x ≠ xi for i = 1, 2,⋯, n. Utilizing integration by parts,
we have

1
Pn

〠
n

i=1
pi �x − xið Þ2

ð1
0
tΨ″ t�x + 1 − tð Þxið Þdt

= 1
Pn

〠
n

i=1
pi �x − xið Þ2 t

�x − xi
Ψ′ t�x + 1 − tð Þxið Þ 1

0
���

−
1

�x − xi

ð1
0
Ψ′ t�x + 1 − tð Þxið Þdt

�

= 1
Pn

〠
n

i=1
pi �x − xið Þ2 Ψ′ �xð Þ

�x − xi
−

t

�x − xið Þ2 Ψ t�x + 1 − tð Þxið Þ 1
0
�� !

= 1
Pn

〠
n

i=1
pi �x − xið Þ2 Ψ′ �xð Þ

�x − xi
−

t

�x − xið Þ2 Ψ �xð Þ −Ψ xið Þð Þ
 !

= 1
Pn

〠
n

i=1
pi �x − xið ÞΨ′ �xð Þ − 1

Pn
〠
n

i=1
pi Ψ �xð Þ −Ψ xið Þð Þ

= 1
Pn

〠
n

i=1
piΨ xið Þ −Ψ �xð Þ,

ð3Þ

which implies that

1
Pn

〠
n

i=1
piΨ xið Þ −Ψ �xð Þ = 1

Pn
〠
n

i=1
pi xi − �xð Þ2

ð1
0
tΨ″ t�x + 1 − tð Þxið Þdt:

ð4Þ

Since, the function Ψ is 4-convex on I. Therefore, using
the definition of convex function on the right hand side of

(4), we receive

1
Pn

〠
n

i=1
piΨ xið Þ −Ψ �xð Þ

≤
1
Pn

〠
n

i=1
pi xi − �xð Þ2

ð1
0
t2Ψ″ �xð Þ + t 1 − tð ÞΨ″ xið Þ
� �

dt

= 1
Pn

〠
n

i=1
pi �x − xið Þ2 Ψ″ �xð Þ

ð1
0
t2dt +Ψ″ xið Þ

ð1
0
t − t2
� �

dt
� �

= 1
Pn

〠
n

i=1
pi �x − xið Þ2 1

3Ψ
″ �xð Þ + 1

6Ψ
″ xið Þ

� �
,

ð5Þ

which is equivalent to (2).

The integral version of (2) is stated in the following
theorem.

Theorem 3. Assume that I is an interval in ℝ,Ψ : I ⟶ℝ
that is a twice differentiable function such that Ψ is 4-
convex and ϕ, φ : ½a, b�⟶ I are integrable functions with φ
≥ 0 on ½a, b�. Also, assume that Ψ ∘ ϕ : ½a, b�⟶ℝ is an inte-
grable function, �φ≔

Ð b
aφðxÞdx > 0 and ϕ≔ 1

φ

Ð b
aφðxÞϕðxÞdx.

Then

1
φ

ðb
a
φ xð ÞΨ ∘ ϕ xð Þdx −Ψ ϕ

� �

≤
1
6�φ

ðb
a
φ xð Þ ϕ − ϕ xð Þ� �2

2Ψ″ ϕ
� �

+Ψ″ ϕ xð Þð Þ
� �

dx:

ð6Þ

Inequality (6) will be true in the reverse sense, if Ψ is a 4-
concave function.

In the next theorem, we acquire a lower bound for the
Jensen gap while utilizing the Jensen inequality.

Theorem 4. Assume that all the suppositions of Theorem 2
are valid, then

1
Pn

〠
n

i=1
piΨ xið Þ −Ψ �xð Þ ≥ 1

2Pn
〠
n

i=1
pi �x − xið Þ2Ψ″ 2�x + xi

3

� �
:

ð7Þ

Inequality (7) will become true in the reverse direction, if
the function Ψ is 4-concave.

Proof. Since, the function Ψ is 4-convex on I. Therefore,
applying integral Jensen’s inequality on the right of (4), we
get
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1
Pn

〠
n

i=1
piΨ xið ÞΨ �xð Þ

= 1
Pn

〠
n

i=1
pi �x − xið Þ2

Ð 1
0tΨ″ t�x + 1 − tð Þxið ÞdtÐ 1

0tdt

 !

≥
1
2Pn

〠
n

i=1
pi �x − xið Þ2Ψ″

Ð 1
0t t�x + 1 − tð Þxið ÞdtÐ 1

0tdt

 !

= 1
2Pn

〠
n

i=1
pi �x − xið Þ2Ψ″ �x

Ð 1
0t

2dt + xi
Ð 1
0 t − t2
� �

dtÐ 1
0tdt

 !

= 1
2Pn

〠
n

i=1
pi �x − xið Þ2Ψ″ 2�x + xi

3

� �
,

ð8Þ

which is the required inequality.

The analogous inequality of (7) is given in the following
theorem.

Theorem 5. Suppose that all the hypotheses of Theorem 3 are
true. Then

1
�φ

ðb
a
φ xð ÞΨ ∘ ϕ xð Þdx −Ψ ϕ

� �

≥
1
2�φ

ðb
a
φ xð Þ ϕ − ϕ xð Þ� �2

Ψ″ 2ϕ + ϕ xð Þ
3

 !
dx:

ð9Þ

If the function Ψ is 4-concave, then the inequality (9)
holds in the opposite direction.

3. Numerical Experiments

In this section, we are going to provide some simple exam-
ples to show how sharp our estimates for the Jensen gap.

Example 6. Consider the functions ΨðxÞ = x4, ϕðxÞ = x and
φðxÞ = 1 for all x ∈ ½0, 1�. Then, Ψ″ðxÞ = 12x2 ≥ 0 andΨ‴′ðxÞ
= 24 > 0 on½0, 1�. This verifies that the function Ψ is convex
as well as 4-convex. Now, utilizing (6) for ΨðxÞ = x4, ϕðxÞ
= x, φðxÞ = 1, a = 0, and b = 1, we get

0:1375 < 0:15: ð10Þ

Using above functions with the given interval in inequal-
ity (4) in [17], we acquire

0:1375 < 0:25: ð11Þ

From inequalities (10) and (11) it is clear that the bounds
given in (6) provide a good and better estimate for the Jen-
sen gap. Moreover, the inequality (10) shows that the value
of the obtained estimate for the Jensen gap given in (6) is
very close to the value of the Jensen gap.

Example 7. Consider the functions ΨðxÞ = ð1 − xÞ5, φðxÞ = 1,
and ϕðxÞ = 1 for all x ∈ ½0, 1�. Then, Ψ″ðxÞ = 20ð1 − xÞ3and
Ψ″″ðxÞ = 120ð1 − xÞ. Clearly, both Ψ″ andΨ″″ are nonneg-
ative on [0,1]. This shows that the function ΨðxÞ = ð1 − xÞ5
is convex as well as 4-convex. Utilizing ΨðxÞ = ð1 − xÞ5,Ψ″
ðxÞ = 20ð1 − xÞ3, φðxÞ = 1 and ϕðxÞ = 1 in (6), we obtain

0:1345 < 0:1666: ð12Þ

Now, using the chosen functions in the inequality (4) in
[17], we acquire

0:1345 < 0:4166: ð13Þ

From (12) and (13) it is clear that the inequality (6) pro-
vides an efficient and superior estimate as compared to the
inequality (4) in [17].

Example 8. Assume that the functions ΨðxÞ = exp x, φðxÞ = 1
, and ϕðxÞ = x are defined on [0,1]. Then, Ψ′′ðxÞ = exp x
and Ψ′′′′ðxÞ = exp x. Obviously, both the functions Ψ′′
and Ψ′′′′ are nonnegative on ∈½0, 1�. This confirms the con-
vexity and 4-convexity of the function ΨðxÞ = exp x. Choos-
ing ΨðxÞ = exp x,Ψ′′ ðxÞ = exp x, φðxÞ = 1 and ϕðxÞ = x in
(6), we obtain

0:0695 < 0:0704: ð14Þ

Now, using the given functions in the inequality (4) in
[17], we acquire

0:0695 < 0:0996: ð15Þ

Again, from (14) and (15), it is obvious that the estimate
provided by inequality (6) for the Jensen gap is better than
the estimate provided by inequality (4) in [17]. Moreover,
the value of the estimate for the Jensen gap in (6) is very
close to the value of the Jensen gap.

Remark 9. The authors in [17] compared the value of esti-
mate for the Jensen gap in the inequality (4) with the value
of the estimates for the Jensen gap in inequalities (5) and
(8) in [18]. From the comparison, the authors declared that
the estimate for the Jensen gap in inequality (4) in [17] is
better than the estimates for the Jensen gap in inequalities
(5) and (8) in [18]. Hence from this, we can also conclude
that our estimate for the Jensen gap may be better than the
estimates for the Jensen gap in (5) and (8) in [18].

4. Applications for Classical Inequalities

This section is devoted to the consequences of main results.
In this section, we obtain some improvements for the Hölder
and Hermite–Hadamard inequalities with the help of our
main results. Furthermore, we acquire different relations
for the power and quasi-arithmetic means with the utiliza-
tion of our obtained results.
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In the following proposition, we give an improvement
for the Hölder inequality with the help of Theorem 2.

Proposition 10. Let m1 = ðζ1, ζ2,⋯,ζnÞ and m2 = ðγ1, γ2,⋯,
γnÞ be two positive n-tuples and p, q > 1, such that p ∉ ð2, 3Þ
. If 1/p + 1/q = 1, then

〠
n

i=1
ζpi

 !1/p

〠
n

i=1
γqi

 !1/q

− 〠
n

i=1
γiζi

≤
p p − 1ð Þ

6
〠
n

i=1
γqi

∑n
i=1γiζi
∑n

i=1γ
q
i

− ζiγi
−q/p

� �2
"

× ∑n
i=1γiζi
∑n

i=1γ
q
i

− ζiγi
−q/p

� �	1/p
〠
n

i=1
γqi

 !1
q

:

ð16Þ

Proof. Since the function Ψ = xp is convex as well as 4-
convex on (0,∞) for all p > 1, p ∉ ð2, 3Þ. Therefore, utilizing
(2) by choosing ΨðxÞ = xp and pi = γqi , xi = ζiγi

−q/p for all i
∈ f1, 2,⋯,ng and then taking power 1/p, we get

〠
n

i=1
ζpi

 !
〠
n

i=1
γqi

 !p−1

− 〠
n

i=1
γiζi

 !p !1/p

≤
p p − 1ð Þ

6 〠
n

i=1
γqi

∑n
i=1γiζi
∑n

i=1γ
q
i

− ζiγi
− q/pð Þ

� �2"

× ∑n
i=1γiζi
∑n

i=1γ
q
i

− ζiγi
− q/pð Þ

� �	1/p
〠
n

i=1
γqi

 !1/q

:

ð17Þ

As the inequality

al − bl ≤ a − bð Þl ð18Þ

holds, for all a, b ≥ 0 and l ∈ ½0, 1�, thus using (18) for a = ð
∑n

i=1ζ
p
i Þð∑n

i=1γ
q
i Þp−1, b = ð∑n

i=1γiζiÞpand l = 1/p, we obtain

〠
n

i=1
ζpi

 !1/l

〠
n

i=1
γqi

 !1/q

− 〠
n

i=1
γiζi

≤ 〠
n

i=1
ζpi

 !
〠
n

i=1
γqi

 !p−1

− 〠
n

i=1
γiζi

 ! !1/p

:

ð19Þ

Now, comparing (17) and (19), we acquire (16).

Another consequence of Theorem 2 is given in the fol-
lowing corollary, in which we provide a relation for the
Hölder inequality.

Corollary 11. Let m1 = ðζ1, ζ2,⋯,ζnÞ and m2 = ðγ1, γ2,⋯,γnÞ
be two positive n-tuples, 0 < p < 1 and q = p/ðp − 1Þ such that
1/p ∉ ð2, 3Þ. If 1/p + 1/q = 1, then

〠
n

i=1
γiζi − 〠

n

i=1
ζpi

 !1/p

〠
n

i=1
γqi

 !1/q

≤
1 − p
6p2

〠
n

i=1
γqi

∑n
i=1ζ

p
i

∑n
i=1γ

q
i

− ζpi γ
−q
i

 !2

× ∑n
i=1ζ

p
i

∑n
i=1γ

q
i

− ζpi γ
−q
i

 !
:

ð20Þ

Proof. For p ∈ ð0, 1Þ such that 1/p ∉ ð2, 3Þ, the function Ψðx
Þ = x1/p is convex as well as 4-convex on [0,∞]. Therefore,
utilizing (2) by choosing ΨðxÞ = x1/p, pi = γi

q, and xi = γi
−q

ζi
p, we get (20).

As a consequence of Theorem 4, we acquire another
improvement for the Hölder inequality which is stated in
the following corollary.

Corollary 12. Assume that m1 = ðγ1, γ2,⋯,γnÞ and m2 = ðζ1
, ζ2,⋯,ζnÞ are two n-tuples such that γi, ζi > 0 for all i ∈ f1,
2,⋯,ng. If p ∈ ð0, 1Þ and q = p/ðp − 1Þ such that 1/p ∉ ð2, 3Þ,
then

〠
n

i=1
γiζi − 〠

n

i=1
ζpi

 !1/p

〠
n

i=1
γqi

 !1/q

≥
1 − p
2p2

〠
n

i=1
γqi

∑n
i=1ζ

p
i

∑n
i=1γ

q
i

− ζpi γ
−q
i

 !2

× 2∑n
i=1ζ

p
i + ζpi γ

−q
i ∑n

i=1γ
q
i

3∑n
i=1γ

q
i

 !
:

ð21Þ

Proof. The function ΨðxÞ = x1/p is both convex and 4-convex
for x ≥ 0 with p ∈ ð0, 1Þ such that 1/p ∉ ð2, 3Þ. Therefore,
inequality (21) can easily be acquired by putting ΨðxÞ =
x1/p, pi = γi

q, and xi = γi
−qζpi in (7).

Now, we recall the definition of power mean.

Definition 13. Let m1 = ðγ1, γ2,⋯,γnÞ and m2 = ðζ1, ζ2,⋯,ζnÞ
be two n-tuples such that γi, ζi ∈ ð0,∞Þ for all i ∈ f1, 2,⋯,ng
with �γ =∑n

i=1γi. Then, the power mean of order p ∈ℝ is
defined by

Mp m1,m2ð Þ =
1
γ

〠
n

i=1
γiζ

p
i

 !1/p

, p ≠ 0

Yn
i=1

ζ
γi
i

 !1
γ , p = 0:

8>>>>>><
>>>>>>:

ð22Þ

As a consequence of Theorem 2, in the following corol-
lary, we give bound for the power mean.

Corollary 14. Let m1 = ðγ1, γ2,⋯,γnÞ and m2 = ðζ1, ζ2,⋯,ζnÞ
be two positive n-tuples such that �γ =∑n

i=1γi and r and t be
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nonzero real numbers. Then the following statements are
true:

(i) If r > 0 with t ≥ 3r or 2r ≥ t ≥ r or 0 > t, then

Mr
r m1,m2ð Þ −Mt

r m1,m2ð Þ ≤ t t − rð Þ
6r2�γ

〠
n

i=1
γi M

r
r m1,m2ð Þ − ζri

� �2
× Mt−2r

r m1,m2ð Þ + ζt−2i

� �
:

ð23Þ

(ii) If r < 0 with t ≤ 3r or 2r ≤ t ≤ r or 0 < t, then (23)
holds.

(iii) If r > 0 with 3r > t > 2r or r < 0 with 3r < t < 2r, then
(23) holds in the reverse direction.

Proof.

(i) For x > 0, the function ΨðxÞ = xt/r is 4-convex with
the given conditions.

Therefore, using (2) by taking ΨðxÞ = xt/r , pi = γi, and xi
= ζri , we obtain (23)

(ii) If the given conditions are hold, then the function
ΨðxÞ = xt/r will be 4-convex on (0,∞). Thus, (23)
can easily be obtained by adopting the procedure
of (i)

(iii) The function ΨðxÞ = xt/r is 4-concave on (0,∞) for
the given values of r and t. Therefore, we can get
the reverse inequality in (23) by adopting the proce-
dure of (i).

In the following result, we present an application of The-
orem 4.

Corollary 15. Let m1, m2, and �γ be the same as that of Cor-
ollary 14 and r, t ∈ℝ − f0g. Then

(A) If the conditions given in (i) and (ii) are satisfied,
then

Mt
t m1,m2ð Þ −Mt

r m1,m2ð Þ

≥
t t − rð Þ
2�γr2

〠
n

i=1
γi M

r
r m1,m2ð Þ − ζri

� �2

· 2Mr
r m1,m2ð Þ + ζt−2i

3

 !t/r−2

:

ð24Þ

(B) If the conditions in (iii) are fulfilled, then (24) holds
in the reverse direction.

Proof.

(A) Since, the function ΨðxÞ = xt/r is 4-convex on (0,∞)
for the conditions given in (i) and (ii) of Corollary
14. Therefore, using (7) for ΨðxÞ = xt/r , pi = γi, and
xi = ζri , we obtain (24)

(B) If the condition on r and t mentioned in (iii) of Cor-
ollary 14 is true, then the function ΨðxÞ = xt/r will be
4-concave for x > 0. Thus, utilizing (7) while choos-
ing ΨðxÞ = xt/r , pi = γi, and xi = ζri , we obtain the
reverse inequality in (24).

In the following corollary, we obtain an interesting rela-
tion for different means as a consequence of Theorem 2.

Corollary 16. Let m1 = ðγ1, γ2,⋯,γnÞ and m2 = ðζ1, ζ2,⋯,ζnÞ
be positive n-tuples with �γ =∑n

i=1γi. Then

M1 m1,m2ð Þ
M0 m1,m2ð Þ ≤ exp 1

6�γ
〠
n

i=1
γi M1 m1,m2ð Þ − ζið Þ2 M1

−2 m1,m2ð Þ + ζ−2i

� �" #
:

ð25Þ

Proof. Let ΨðxÞ = −ln x, x > 0. Then, Ψ″ðxÞ = 1/x2 andΨ″ð
xÞ = 6/x4. Clearly, both Ψ″ðxÞandΨ″″ðxÞ are positive for
all x > 0. This confirms that the function ΨðxÞ is convex as
well as 4-convex on (0,∞). Therefore, putting ΨðxÞ = −ln
x, pi = γi, and xi = ζi in (2), we acquire (25).

In the following corollary, a relation for distinct means is
obtain with the help of Theorem 2.

Corollary 17. Let hypotheses of Corollary 16 hold. Then

Mt
t m1,m2ð Þ −M0 m1,m2ð Þ

≤
1
6�γ

〠
n

i=1
γi M1 m1,m2ð Þ − Inζið Þ2 2M0 m1,m2ð Þ + ζið Þ:

ð26Þ

Proof. Consider function ΨðxÞ = exp x, x ∈ℝ. Then clearly,
Ψ″ðxÞ = exp x > 0 andΨ″″ðxÞ = exp x > 0. This shows that
the given function is convex as well as 4-convex. Thus,
applying (2) by choosing pi = γi, xi = ln ζi, and ΨðxÞ = exp
x, we get (26).

An application of Theorem 4 is acquired in the below
corollary.

Corollary 18. Suppose that all the assumptions of Corollary
16 are true, then

M1 m1,m2ð Þ
M0 m1,m2ð Þ ≥ exp 1

2�γ
〠
n

i=1
γi M1 m1,m2ð Þ − ζið Þ2 3

2M1 m1,m2ð Þ + ζi

� �2
" #

:

ð27Þ
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Proof. Put ΨðxÞ = −ln x, pi = γi, and xi = ζi in (7), we get
(27).

The following is another relation for distinct means
which is the consequence of Theorem 4.

Corollary 19. Let the hypotheses of Corollary 16 be fulfilled.
Then

M1 m1,m2ð Þ −M0 m1,m2ð Þ

≥
1
2�γ

〠
n

i=1
γi M0 m1,m2ð Þ − Inζið Þ2 exp

· 2M0 m1,m2ð Þ + Inζi
3

� �
:

ð28Þ

Proof. Utilizing (7) for pi = γi, xi = ln ζi, and ΨðxÞ = exp x,
we get (28).

Now, we give the definition of quasiarithmetic mean.

Definition 20. Let m1 = ðγ1, γ2,⋯,γnÞ and m2 = ðζ1, ζ2,⋯,ζnÞ
be positive n-tuples with �γ =∑n

i=1γi andφ be strictly mono-
tonic continuous function. Then the quasi-arithmetic mean
is defined as

Mφ m1,m2ð Þ = φ−1 1
γ

〠
n

i=1
γiφ ζið Þ

 !
: ð29Þ

In the following corollary, we obtain a relation for the
quasi-arithmetic mean with the help of Theorem 2.

Corollary 21. Let m1 = ðγ1, γ2,⋯,γnÞ and m2 = ðζ1, ζ2,⋯,ζnÞ
be positive n-tuples with �γ =∑n

i=1γi. Also, let φ be strictly
monotonic continuous function and Ψ°φ−1 be 4-convex on
(0,∞). Then

1
γ

〠
n

i=1
γiΨ ζið Þ −Ψ Mφ m1,m2ð Þ� �

≤
1
6�γ

〠
n

i=1
γi φ Mφ m1,m2ð Þ� �

− φ ζið Þ� �2
× 2 Ψ ∘ φ−1� �″ φ Mφ m1,m2ð Þ� �� �

+ Ψ ∘ φ−1� �″φ ζið Þ
� �

:

ð30Þ

Proof. Since, the function Ψ ∘ φ−1 is 4-convex on (0,∞).
Therefore, choosing Ψ =Ψ ∘ φ−1, pi = γi, and xi = ϕðζiÞ in
(2), we obtain (30).

As an application of Theorem 4, in the following corol-
lary, we present a relation for the quasi-arithmetic mean.

Corollary 22. Let the hypotheses of Corollary 21 hold. Then

1
γ

〠
n

i=1
γiΨ ζið Þ −Ψ Mφ m1,m2ð Þ� �

≥
1
2�γ

〠
n

i=1
γi φ Mφ m1,m2ð Þ� �

− φ ζið Þ� �2

× Ψ ∘ φ−1� �′′ 2φ Mφ m1,m2ð Þ� �
+ φ ζið Þ

3

 ! !
:

ð31Þ

Proof. Using (7) for Ψ =Ψ ∘ φ−1, pi = γi, and xi = φðζiÞ, we
obtain (31).

In the following corollaries, we present some improve-
ments for the Hermite–Hadamard inequalities with the sup-
port of our main results.

Corollary 23. Let Ψ : ½a, b�⟶ℝ be a 4-convex function.
Then

1
b − a

ðb
a
Ψ xð Þdx −Ψ

a + b
2

� �

≤
1

6 b − að Þ
ðb
a

a + b
2

− x
� �2

2Ψ″ a + b
2

� �
+Ψ″ xð Þ

� �
dx:

ð32Þ

If the function Ψ is 4-concave, then the inequality (32)
holds in the reverse direction.

Proof. Since, the function Ψ is 4-convex on ½a, b�. Therefore,
using (6) for φðxÞ = 1 and ϕðxÞ = x, we get (32).

Corollary 24. Assume that the function Ψ : ½a, b�⟶ R is 4-
convex, then

1
b − a

ðb
a
Ψ xð Þdx −Ψ

a + b
2

� �

≥
1

2 b − að Þ
ðb
a

a + b
2

− x
� �2

Ψ″ a + b + x
3

� �
dx:

ð33Þ

Inequality (33) will be true in the opposite sense, if the
function Ψ is 4-concave.

Proof. Inequality (33) can easily be deduced by choosing ϕð
xÞ = x and φðxÞ = 1 in (9).

Remark 25. The integral version of the above discrete
improvements of Hölder and Hermite–Hadamard inequal-
ities and relations for different means can easily be achieved
by using Theorems 3 and 5.

5. Applications in Information Theory

In this part of the note, we are going to discuss some appli-
cations of the main inequalities in information theory. These
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applications involve some bounds for different divergences,
the Bhattacharyya coefficient and the Shannon entropy.

Definition 26. Let Φ be a real valued function defined on ½a
, b� ⊂ R and m1 = ðγ1, γ2,⋯,γnÞ and m2 = ðζ1, ζ2,⋯,ζnÞ be
two n-tuples such that ζi/γi ∈ ½a, b� and γi > 0 for all i ∈ f1,
2,⋯,ng. Then the Csisźar divergence is defined by

Dc m1,m2ð Þ = 〠
n

i=1
γiΦ

ζi
γi

� �
: ð34Þ

Theorem 27. Assume that the function Φ : ½a, b�⟶ R is 4-
convex and m1 = ðγ1, γ2,⋯,γnÞ and m2 = ðζ1, ζ2,⋯,ζnÞ are
two n-tuples such that ∑n

i=1ζi/∑n
i=1γi, ζi/γi ∈ ½a, b� and γi > 0

for all i ∈ f1, 2,⋯,ng, then

Dc m1,m2ð Þ −Φ
∑n

i=1ζi
∑n

i=1γi

� �
〠
n

i=1
γi

≤
1
6
〠
n

i=1
γi

∑n
i=1ζi

∑n
i=1γi

−
ζi
γi

� �2

2Φ″ ∑n
i=1ζi

∑n
i=1γi

� �
+Φ″ ζi

γi

� �� �
:

ð35Þ

Proof. All the hypotheses of this theorem are same as that of
Theorem 2.

Thus, using (2) by taking Ψ =Φ, pi = γi/∑
n
i=1γi, and xi =

ζi/γi, we obtain (35).

Theorem 28. Suppose that all the assumptions of Theorem 27
are satisfied, then

Dc m1 −m2ð Þ −Φ
∑n

i=1ζi
∑n

i=1γi

� �
〠
n

i=1
γi

≥
1
2
〠
n

i=1
γi

∑n
i=1ζi

∑n
i=1γi

−
ζi
γi

� �2

Φ″ 2
∑n

i=1ζi
3∑n

i=1γi
+ ζi
3γi

� �
:

ð36Þ

Proof. Since, the function Φ is 4-convex. Therefore, utilizing
(7) for Ψ =Φ, pi = γi/∑

n
i=1γi, and xi = ζi/γi, we get (36).

Definition 29. For any δ ∈ ½0,∞Þ such that δ ≠ 1 and arbi-
trary positive probability distributions m1 = ðγ1, γ2,⋯,γnÞ
and m2 = ðζ1, ζ2,⋯,ζnÞ, the Rényi divergence is defined by

Dre m1,m2ð Þ = 1
δ − 1 log 〠

n

i=1
γδi ζ

1−δ
i

 !
: ð37Þ

Corollary 30. Assume that m1 = ðγ1, γ2,⋯,γnÞ and m2 = ðζ1
, ζ2,⋯,ζnÞ are two positive probability distributions and δ >
1, then

Dre m1,m2ð Þ − 1
δ − 1

〠
n

i=1
γδi log

γi
ζi

� �δ−1

≤
1
6
〠
n

i=1
γi 〠

n

i=1
γδi ζ

1−δ
i −

γi
ζi

� �δ−1
 !2

× 2
δ − 1

〠
n

i=1
γδi ζ

1−δ
i

 !−2

+ 1
δ − 1

γi
ζi

� �2−2δ
 !

:

ð38Þ

Proof. Let ΦðxÞ = 1/ðδ − 1Þ log x, x > 0. Then, Φ″ðxÞ = 1/ððδ
− 1Þx2Þ andΦ″″ðxÞ = 6/ððδ − 1Þx4Þ. Clearly, Φ″ðxÞ > 0 and
Φ″″ðxÞ > 0 for all x ∈ ð0,∞Þ. Thus, this verifies that the
function ΦðxÞ = 1/ðδ − 1Þ log x is convex as well as 4-
convex on (0,∞). Therefore, using (2) for ΦðxÞ = 1/ðδ − 1Þ
log x, pi = γi, and xi = ðγi/ζiÞδ−1, we get (38).

Corollary 31. Let the hypotheses of Corollary 30 hold. Then

Dre m1,m2ð Þ − 1
δ − 1

〠
n

i=1
γδi log

γi
ζi

� �δ−1

≥
1

2 δ − 1ð Þ〠
n

i=1
γi 〠

n

i=1
γδi ζ

1−δ
i −

γi
ζi

� �δ−1
 !2

× 3

2∑n
i=1γ

δ
i ζ

1−δ
i + γi/ζið Þδ−1

 !2

:

ð39Þ

Proof. Using ΦðxÞ = 1/ðδ − 1Þ log x, pi = γi and xi = ðγi/ζiÞδ−1
in (7), we get (39).

Definition 32. Let m2 = ðζ1, ζ2,⋯,ζnÞ be a probability distri-
bution with positive entries. Then the Shannon entropy is
defined by

Es m2ð Þ = −〠
n

i=1
ζi log ζi: ð40Þ

Corollary 33. Suppose that m2 = ðγ1, γ2,⋯,γnÞ is a probabil-
ity distribution such that γi > 0 for all i ∈ f1, 2,⋯,ng, then

log n − Es m2ð Þ ≤ 1
6
〠
n

i=1
γi n −

1
γi

� �2 2
γ2i

+ γ2i

� �
: ð41Þ

Proof. Since the function ΦðxÞ = −log x is both convex and
4-convex on (0,∞) because ΦðxÞ = 1/x2 and Φ″″ðxÞ = 6/x4
are positive for x > 0, therefore (41) can easily be obtained
by putting ΦðxÞ = −log x and ζi = 1 ði = 1, 2,⋯,nÞ in (35).

Corollary 34. Assume that the conditions of Corollary 33 are
fulfilled, then

log n − Es m2ð Þ ≥ 1
2
〠
n

i=1
γi n −

1
γi

� �2 3γi
2nγi + 1

� �2

: ð42Þ
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Proof. Utilizing the function ΦðxÞ = −log x and ζi = 1 ð1, 2,
⋯,nÞ in (36), we obtain (42).

Definition 35. Let m1 = ðγ1, γ2,⋯,γnÞ and m2 = ðζ1, ζ2,⋯,ζnÞ
be arbitrary probability distributions such that γi, ζi > 0 for
all i ∈ f1, 2,⋯,ng. Then, the Kullback–Liebler divergence is
defined by

Dkl m1,m2ð Þ = 〠
n

i=1
ζi log

ζi
γi

� �
: ð43Þ

Corollary 36. Assume that m1 = ðγ1, γ2,⋯,γnÞ and m2 = ðζ1
, ζ2,⋯,ζnÞ are positive probability distributions, then

Dkl m1,m2ð Þ ≤ 1
6
〠
n

i=1
γi 1 −

ζi
γi

� �2

2 + γi
ζi

� �
: ð44Þ

Proof. The function ΦðxÞ = x log x is convex and 4-convex
on (0,∞) because Φ″ðxÞ = 1/x > 0 and Φ″″ðxÞ = 2/x3 > 0
for all x ∈ ð0,∞Þ. Thus, using (35) by taking ΦðxÞ = x log x,
we get (44).

Corollary 37. Let the postulates of Corollary 36 be true. Then

Dkl m1,m2ð Þ ≥ 3
2
〠
n

i=1

γi − ζið Þ2
2γi − ζi

: ð45Þ

Proof. Substituting ΦðxÞ = x log x, x > 0 in (36), we acquire
(45).

Definition 38. For any positive probability distributions m1
= ðγ1, γ2,⋯,γnÞ and m2 = ðζ1, ζ2,⋯,ζnÞ, the Bhattacharyya
coefficient is defined as

Cb m1,m2ð Þ = 〠
n

i=1

ffiffiffiffiffiffiffi
γiζi

q
: ð46Þ

Corollary 39. Assume that m1 = ðγ1, γ2,⋯,γnÞ and m2 = ðζ1
, ζ2,⋯,ζnÞ are positive probability distributions; then

1 − Cb m1 −m2ð Þ ≤ 1
24

〠
n

i=1
γi 1 −

ζi
γi

� �2

2 + γi
ζi

� �3/2
 !

: ð47Þ

Proof. If ΦðxÞ = −
ffiffiffi
x

p , x > 0, then Φ″ðxÞ = ð1/4Þx−3/2 and
Φ″″ðxÞ = ð15/16Þx−7/2. Thus, this shows that both Φ″ and
Φ″″ are positive on (0,∞). Hence, this confirms the convex-
ity as well as 4-convexity of the function ΦðxÞ = −

ffiffiffi
x

p
. There-

fore, using (35) by choosing ΦðxÞ = −x, we obtain (47).

Corollary 40. Suppose that the assumptions of Corollary 39
hold, then

1 − Cb m1,m2ð Þ ≥ 1
2
〠
n

i=1

γi − ζið Þ2
γi

3γi
2γi + ζi

� �3/2
: ð48Þ

Proof. Using ΦðxÞ = −
ffiffiffi
x

p , x > 0, in (36), we obtain (48).

Remark 41. The analogous form of above discrete forms for
different divergences, Shannon entropy and Bhattacharyya
coefficient, can easily be obtained by utilizing Theorems 3
and 5.

6. Conclusion

There are extensive literature devoted to the Jensen inequal-
ity concerning different refinements, extensions, and
improvements. Also, there are many bounds obtained for
the Jensen gap which provides many interesting and valu-
able estimates for the Jensen gap. In this note, we proposed
a novel technique of obtaining of some significant estimates
for Jensen’s gap while utilizing a 4-convex function. We
obtained the required estimates for the Jensen gap by utiliz-
ing the definition of convex function and the famous Jensen
inequality. For the support of our main results, we provided
some examples for taking some particular convex functions.
We presented some consequences of the main results in
which some new important improvements for the Hölder
and Hermite–Hadamard inequalities are acquired. Further-
more, for some more consequences of the main results, we
obtain several relations for power and quasiarithmetic
means. Applications of the main results are discussed in
the information theory. These applications give many inter-
esting estimates for several divergences, Bhattacharyya coef-
ficient and Shannon entropy.
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In the present exploration, the authors define and inspect a new class of functions that are regular in the unit disc D≔ fς ∈ℂ
: jςj < 1g, by using an adapted version of the interesting analytic formula offered by Robertson (unexploited) for starlike
functions with respect to a boundary point by subordinating to an exponential function. Examples of some new subclasses are
presented. Initial coefficient estimates are specified, and the familiar Fekete-Szegö inequality is obtained. Differential
subordinations concerning these newly demarcated subclasses are also established.

1. Introduction and Preliminary Results

Let H be the class comprising of all holomorphic functions
in the unit disc D≔ fς ∈ℂ : jςj < 1g. Also, let A signify the
subclass of H entailing of functions h ∈A be of the form

h ςð Þ = ς + 〠
∞

n=2
anς

n, ς ∈D, ð1Þ

with the normalization hð0Þ = h′ð0Þ − 1 = 0. Denote by S ,
the subclass of A comprising univalent functions. Two con-
versant subclasses of A are familiarized by Robertson [1],
are defined with their analytical description as

S∗ αð Þ≔ h ∈A : R
ςh′ ςð Þ
h ςð Þ

 !
> α, ς ∈D

( )
,

C αð Þ≔ h ∈A : R 1 + ςh′′ ςð Þ
h′ ςð Þ

 !
> α, ς ∈D

( )
,

ð2Þ

and are correspondingly known as starlike and convex func-
tions of order αð0 ≤ α < 1Þ. It is well known that S∗ðαÞ ⊂ S

and CðαÞ ⊂ S: In interpretation of Alexander’s relation, h
∈CðαÞ⇔ ςh′ðςÞ ∈ S∗ðαÞ for ς ∈D: For α = 0, the class S∗

≔ S∗ð0Þ condenses to the well-known class of normalized
starlike univalent functions, and C ≔Cð0Þ reduces to the
normalized convex univalent functions.

A function f ∈H is subordinate to g ∈H written as f
≺ g if there exists ω ∈H with ωð0Þ = 0 and ωðDÞ ⊂D such
that f ðςÞ = gðωðςÞÞ for every ς ∈D: In precise, if g is univa-
lent, then f ≺ g if and only if f ð0Þ = gð0Þ and f ðDÞ ⊂ gðDÞ:

Let P symbolize the class of functions p ∈H with the
normalization pð0Þ = 1, i.e., of the form

p ςð Þ = 1 + 〠
∞

n=1
pnς

n, ς ∈D, ð3Þ

and such thatRpðςÞ > 0 for ς ∈D: Functions in P are called
familiarly as the Carathéodory class of functions. Ma and
Minda [2] proposed a appropriate subclass of P denoted
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by P ∗ð1Þ comprising of all Φ that is univalent in D with

Φ 0ð Þ = 1 ;Φ′ 0ð Þ > 0, ð4Þ

ΦðDÞ is symmetric with respect to the real axis

(2) Starlike with respect to 1

He also represented the class Φ ∈P ∗ð1Þ by

Φ ςð Þ = 1 + 〠
∞

n=1
Bnς

n, B1 > 0 ; ς ∈D: ð5Þ

The class P ∗ð1Þ plays a vital part in defining generalized
form of holomorphic functions. Ma and Minda [2] consid-
ered the function Φ ∈P ∗ð1Þ and defined S∗ðΦÞ as the class
of all h ∈A such that ςh′ðςÞ/hðςÞ ≺ΦðςÞ for ς ∈D: The
above functions defined are called as functions of Ma and
Minda kind. Observe that S∗ðαÞ = S∗ðΦÞ with ΦðςÞ = ð1 +
ð1 − 2αÞςÞ/ð1 − ςÞ, ς ∈D:

There are recent articles ([3–6]) where subclasses of A
were defined by using subordination satisfying the relation
ςh′ðςÞ/hðςÞ ≺ΦðςÞ for ς ∈D (see also [7, 8]). In particular,
the exponential function ΦeðςÞ = eς ≔ exp ðςÞ, an entire
function in ℂ has positive real part in D, Φeð0Þ = 1,
Φe′ð0Þ = 1, and ΦeðDÞ = fw ∈ℂ : jlog wj < 1g, is symmetric
with respect to the real axis and starlike with respect to 1.
Further, Φe ∈P

∗ð1Þ and therefore, it is now to make a
remark that the class

Se = f ∈A :
ςf ′ ςð Þ
f ςð Þ ≺Φe ςð Þ = eς, ς ∈D

( )
ð6Þ

is well defined. For an attractive study on starlike functions
connected with the exponential function, an individual can
refer to Mendiratta et al. [9, 10] (see also the works of
[11–13]).

We recall the class of close-to-convex functions denoted
by K introduced and studied by Kaplan [14]. A function h
∈H is called to be close-to-convex if and only if there exist
a function ψ ∈C and β ∈ ð−π/2, π/2Þ such that

R
eiβh′ ςð Þ
ψ′ ςð Þ

 !
> 0, ς ∈D: ð7Þ

Remarking at this time that even though starlikeness of a
fixed order has been discussed and well thought-out in detail
in countless articles in excess of a elongated stage of period,
class of univalent functions g ∈H that mapsD ontoΩ, star-
like domain with reverence to a boundary point is still a con-
ception that is not exclusively explored. Robertson [15]
recognized this examination and introduced a new subclass

G∗ = g ∈H : R eiδg ςð Þ
� �

> 0 ; δ ∈ℝ;∀ς ∈D
n o

, ð8Þ

with

g 0ð Þ = 1, g 1ð Þ≔ lim
r⟶1−

g rð Þ = 0, ð9Þ

and maps (univalently) D onto a domain starlike with
respect to the origin. Presume in addition that the constant
function g ≡ 1 ∈ G∗, in addition, Robertson through a con-
jecture that G∗ coincides with the class G of all g ∈H of
the structure

g ςð Þ = 1 + 〠
∞

n=1
ϑnς

n, ς ∈D, ð10Þ

such that

R
2ςg′ ςð Þ
g ςð Þ + 1 + ς

1 − ς

 !
> 0, ς ∈D, ð11Þ

proving that G ⊂ G∗: Definitely, in the same article Rob-
ertson shown that if g ∈ G and g≢1, then g ∈K and so uni-
valent inD. It is importance of citing that (11) was identified
by much erstwhile by Styer [16]. This surmise of Robertson
that G∗ coincide with the class G was soon after proved by
Lyzzaik [17], where he established that G∗ ⊂ G :

A different analytical categorization of starlike functions
with respect to a boundary point was proposed by Lecko
[18] proving the necessity. The sufficiency part of the catego-
rization was afterwards proved by Lecko and Lyzzaik [19]
(see [[20], Chapter VII] as well). Encouraged by the article
of Robertson [15], Aharanov et al. [21] (see also [22]) inves-
tigated about the class of functions that are sprirallike with
respect to a boundary point. Let

P ς ;Mð Þ≔ 4ςffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ςð Þ2 + 4ς/M

q
+ 1 − ς

� �2 ,
ffiffiffi
1

p
≔ 1, ς ∈D,

ð12Þ

be the Pick function. By using the Pick function Pðς ;MÞ, the
author in [23] considered another closely related class to G ,
the family GðMÞ,M > 1, comprising of all g ∈H of the form
(10) such that

R
2ςg′ ςð Þ
g ςð Þ + ςP′ ς ;Mð Þ

P ς ;Mð Þ

 !
> 0, ς ∈D: ð13Þ

In [24], Todorov established a structural formula and
coefficient estimates by associating G with a functional f ðς
Þ/1 − ς for ς ∈D: For g ∈H in (10), Obradovic̆ and Owa
[25] and Silverman and Silvia [26] separately introduced
the classes

Gα = R
ςg′ ςð Þ
g ςð Þ + 1 − αð Þ 1 + ς

1 − ς

 !
> 0, ς ∈D

( )
, ð14Þ
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where α ∈ ½0, 1Þ: The authors in [26] confirmed a
remarkable fact that for each α ∈ ½0, 1Þ, the class Gα is a sub-
class of G∗: Clearly, G1/2 =G and appealing coefficient
inequalities of G were established in [27].

For g ∈H assumed as in (10) and −1 < E ≤ 1 ; −E < F ≤ 1
, Jakubowski and Włodarczyk [28] defined the class GðE, FÞ
as

R J ςð Þð Þ > 0, ς ∈D, ð15Þ

where

J ςð Þ = 2ςg′ ςð Þ
g ςð Þ + 1 + Eς

1 − Fς
: ð16Þ

By desirable quality of the initiative proposed in [2],
Mohd and Darus in [29] presented a new class S∗

b ðΦÞ, where
Φ ∈P ∗ð1Þ, of all g ∈H of the form (10) such that

2ςg′ ςð Þ
g ςð Þ + 1 + ς

1 − ς
≺Φ ςð Þ, ς ∈D: ð17Þ

An additional appealing class on the above direction was
in recent times analyzed by Lecko et al. [30].

The most important intend of the present article is to
illustrate and do a organized inquiry of the function class
defined as below.

Definition 1. For g ∈H and as assumed in (10), we let a new
class Ge as

Ge = g ∈H :
2ςg′ ςð Þ
g ςð Þ + 1 + ς

1 − ς
≺ eς, ς ∈D

( )
: ð18Þ

Remark 2. Note that the condition (18) is well defined, for

p ςð Þ≔ 2ςg′ ςð Þ
g ςð Þ + 1 + ς

1 − ς
, ς ∈D ð19Þ

is holomorphic in D:

Based on the description of the class Ge and on the ana-
lytical characterization of the class G∗ of starlike functions
with respect to a boundary point, we can prepare the next
result.

2. Representation Theorem and
Coefficient Results

Let us start the section with the following representation the-
orem which in fact offers a handy procedure to build func-
tions in our new class Ge.

Theorem 3. A function g ∈ G e if and only if there exists p
∈H such that p ≺Φe and

g ςð Þ = 1 − ςð Þ exp 1
2

ðς
0

p ζð Þ − 1
ζ

dζ
� �

, ς ∈D: ð20Þ

Proof. Let us suppose that g ∈ G e, then, a function p defined
by (19) is holomorphic and satisfies p ≺Φe: Also, (19) can be
rewritten in the type

2g′ ςð Þ
g ςð Þ + 2

1 − ς
= p ςð Þ − 1

ς
, ς ∈D: ð21Þ

This upon integration give

log g ςð Þð Þ2
1 − ςð Þ2 =

ðς
0

p ζð Þ − 1
ζ

dζ, ς ∈D,  log 1≔ 0: ð22Þ

This in essence gives

g ςð Þð Þ2 = 1 − ςð Þ2 exp
ðς
0

p ζð Þ − 1
ζ

dζ
� �

, ς ∈D, ð23Þ

which imply (20).☐

Let us presume p ≺Φe. By defining a function g as in
(20), and by observing that pð0Þ = 1, it is noticeable that g
is holomorphic in D: A working out shows that g satisfies
(21); so, (19). Thus, g ∈ G e, which ends the confirmation of
the theorem.

Let Ψe be a holomorphic function which is the solution
of the differential equation (see also [[10], p. 367])

ςΨe ′ ςð Þ
Ψe ςð Þ = eς, ς ∈D, Ψe 0ð Þ = 0, Ψe ′ 0ð Þ = 1, ð24Þ

i.e.,

Ψe ςð Þ = ς exp
ðς
0

eζ − 1
ζ

dζ

 !
= ς + ς2

+ 3
4 ς

3 + 17
36 ς

4+⋯, ς ∈D:

ð25Þ

Next, we present few examples for the class Ge:

Example 4.

(1) For a specified A ∈ℝ and ς ∈D, let us name

pA ςð Þ≔ 1 + Aς,

gA ςð Þ≔ 1 − ςð Þ exp Aς
2

� �
, ς ∈D:

ð26Þ
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Note down that gA ∈H with gAð0Þ = 1. Observe that

2ςgA′ ςð Þ
gA ςð Þ + 1 + ς

1 − ς
= pA ςð Þ, ς ∈D: ð27Þ

We finish that gA ∈ Ge for ∣A ∣ ≤1 − 1/e.

(2) Given −1 < A ≤ 1 and −A < B < 1, define

w = pA,B ςð Þ≔ 1 + Aς
1 − Bς

, ς ∈D: ð28Þ

Then, we identify that pA,BðDÞ is an open disk symmet-
rical with respect to the real axis centered at ð1 + ABÞ/ð1 −
B2Þ of radius ðA + BÞ/ð1 − B2Þ. In particular, for B = A, this
disk is given by

w −
1 + A2

1 − A2

����
���� < 2A

1 − A2 , ð29Þ

with diametric end points xL ≔ ð1 − jAjÞ/ð1 + jAjÞ and xR
≔ ð1 + jAjÞ/ð1 − jAjÞ. Since xL ≥ 1/e and xR ≤ e iff jAj ≤ ðe
− 1Þ/ðe + 1Þ, we perceive that then pA,A ≺Φe: As a result, a
function g ∈H with gð0Þ = 1 defined by

2ςg′ ςð Þ
g ςð Þ + 1 + ς

1 − ς
= pA,A ςð Þ, ς ∈D, ð30Þ

i.e., the function

g ςð Þ = 1 − ς

1 − Aς
, ς ∈D, ð31Þ

belongs to the class Ge for ∣A ∣ ≤ðe − 1Þ/ðe + 1Þ.

Theorem 5. Let 0 < r < 1: If g ∈ G e, then

(i)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Ψe −rð Þ

r

r
1 − rð Þ ≤ ∣g ςð Þ∣ ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ψe −rð Þ

r

r
1 + rð Þ, ∣ς∣ = r:

ð32Þ

(ii)

arg g ς0ð Þ
1 − ς0ð Þ2

����
���� ≤ 1

2 max
∣ς∣=r

arg Ψe ςð Þ
ς

, ∣ς0∣ = r,  arg 1≔ 0:

ð33Þ

Proof. Let g ∈ Ge.

(i) Describe the function

h ςð Þ≔ ς g ςð Þð Þ2
1 − ςð Þ2 , ς ∈D: ð34Þ

Obviously, h is a holomorphic function in D, and an
uncomplicated working out yields

ςh′ ςð Þ
h ςð Þ = 2ςg′ ςð Þ

g ςð Þ + 1 + ς

1 − ς
, ς ∈D: ð35Þ

It is straightforward to witness from the above that g ∈
G e if and only if

ςh′ ςð Þ
h ςð Þ ≺ eς, ς ∈D: ð36Þ

By the result of Corollary 1′ of [2], we obtain

−Ψe −rð Þ ≤ ∣h ςð Þ∣ ≤Ψe rð Þ, ∣ς∣ = r, ð37Þ

i.e., by using (34),

−Ψe −rð Þ ≤ ς g ςð Þð Þ2
1 − ςð Þ2

����
���� ≤Ψe rð Þ, ∣ς∣ = r, ð38Þ

which gives (32).

(ii) By (36), a function h defined by (34) belongs to S∗

ðΦeÞ. Due to Corollary 3′ of [2], the inequality

arg h ς0ð Þ
ς0

����
���� ≤max

∣ς∣=r
arg Ψe ςð Þ

ς
, ∣ς0∣ = r ð39Þ

is valid. Using now (34) in turn yields (33).☐

Next, we ascertain some coefficient results for the class
g ∈ G e. Let B≔ fω ∈H : jωðςÞj ≤ 1, ς ∈Dg and B0 be the
subclass of B consisting of functions ω such that ωð0Þ = 0:
We comment at this time that the elements of B0 are
termed as Schwarz functions.

We will pertain two lemmas below to prove our main
results.

Lemma 6. (see [2]). If p ∈P is of the form (3), then for μ ∈ℂ,

p2 − μp21
�� �� ≤ 2 max 1, 2μ − 1j jf g: ð40Þ

In particular, if μ is a real number, then

p2 − μp21
�� �� ≤

−4μ + 2, μ ≤ 0,
2, 0 ≤ μ ≤ 1,
4μ − 2, μ ≥ 1:

8>><
>>: ð41Þ

When μ < 0 or μ > 1, the equality holds true if and only if
pðςÞ = ð1 + ςÞ/ð1 − ςÞ≕LðςÞ, ς ∈D, or one of its rotations.
If 0 < μ < 1, then the equality holds true if and only if pðς
=Lðς2Þ,ς ∈D, or one of its rotations. If μ = 0, the equality
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holds true if and only if

p ςð Þ = 1
2 1 + λð ÞL ςð Þ + 1

2 1 − λð ÞL −ςð Þ, ς ∈D, ð42Þ

where 0 ≤ λ ≤ 1, or one of its rotations. If μ = 1, then the
equality holds true if p is a reciprocal of one of the functions
such that the equality holds true in the case when μ = 0.

Lemma 7. (see [31]). If p ∈P is of the form (3) and βð2β
− 1Þ ≤ δ ≤ β, then

p3 − 2βp1p2 + δp31
�� �� ≤ 2: ð43Þ

At the moment, we are in a position to state the theorem
which give a few better bounds for early coefficients and the
Fekete-Szegö inequalities for f ∈ Ge.

Theorem 8. If g ∈ G e is of the form (10), then

ϑ1 + 1j j ≤ 1
2
, ð44Þ

ϑ1j j ≤ 3
2
, ð45Þ

2ϑ2 − ϑ21 + 1
�� �� ≤ 1

2
, ð46Þ

∣ϑ2∣ ≤
3
4
, ð47Þ

3ϑ3 − 3ϑ1ϑ2 + ϑ31 + 1
�� �� ≤ 1

2
, ð48Þ

and for δ ∈ℝ,

ϑ2 − δϑ21
�� �� ≤ 1

4
max 1, δ − 1j jf g + 2 2δ − 1j j + 4 δj jð Þ: ð49Þ

Inequalities (44), (45), (46), (47), and (48) are sharp.

Proof. In view of (18), there exists ω ∈B0 such that

2ςg′ ςð Þ
g ςð Þ + 1 + ς

1 − ς
=Φe ω ςð Þð Þ = exp ω ςð Þð Þ, ς ∈D: ð50Þ

By an application of (10), one can easily obtain with sim-
ple computation that

2ςg′ ςð Þ
g ςð Þ + 1 + ς

1 − ς
= 1 + 2 ϑ1 + 1ð Þς + 2 2ϑ2 − ϑ21 + 1

� 	
ς2

+ 2 3ϑ3 − 3ϑ1ϑ2 + ϑ31 + 1
� 	

ς3+⋯, ς ∈D:

ð51Þ

Define the function p by

p ςð Þ = 1 + ω ςð Þ
1 − ω ςð Þ = 1 + p1ς + p2ς

2+⋯, ς ∈D: ð52Þ

Clearly, p ∈P : Moreover,

ω ςð Þ = p ςð Þ − 1
p ςð Þ + 1 = p1

2 ς + p2
2 −

p21
4

� �
ς2

+ p3
2 −

p1p2
2 + p31

8

� �
ς3+⋯, ς ∈D:

ð53Þ

Hence,

exp ω ςð Þð Þ = 1 + ω ςð Þ + ω ςð Þð Þ2
2 + ω ςð Þð Þ3

6 +⋯ = 1 + p1ς
2

+ p2
2 −

p21
8

� �
ς2 + p3

2 −
p1p2
4 + p31

48

� �
ς3+⋯, ς ∈D:

ð54Þ

☐

Substituting (51) and (54) into (50), by comparing the
corresponding coefficients, we obtain

2 ϑ1 + 1ð Þ = p1
2 , ð55Þ

2 2ϑ2 − ϑ21 + 1
� 	

= p2
2 −

p21
8 , ð56Þ

2 3ϑ3 − 3ϑ1ϑ2 + ϑ31 + 1
� 	

= p3
2 −

p1p2
4 + p31

48 :
ð57Þ

Since (e.g., ([[32]], Vol. I, p. 80)),

pnj j ≤ 2, n ∈ℕ: ð58Þ

From (55), we obtain (44). Rewriting (55) as ϑ1 = p1/4 − 1,
(45) easily follows. Further, (56) together with (40) yields

2 2ϑ2 − ϑ21 + 1
� 	�� �� = p2

2 −
p21
8

����
���� ≤ 1, ð59Þ

which proves (46).
Upon applying (55) for ϑ1 in (56), we get

4ϑ2 =
p2
2 − p1: ð60Þ

Hence, by applying (41), we obtain (47).
An application of (43) in (57) gives

6ϑ3 − 6ϑ1ϑ2 + 2ϑ31 + 2
�� �� = p3

2 −
p1p2
4 + p31

48

����
���� ≤ 1, ð61Þ

i.e., the inequality (48).
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Using (60) and making use of the expression for ϑ1 and
in turn by applying (41) and (58), we get

ϑ2 − δϑ21
�� �� ≤ 1

8 p2 −
δ

2 p
2
1

����
���� + 2 2δ − 1j j p1j j + 8 δj j

� �
, δ ∈ℝ,

ð62Þ

which leads to the inequality (49).
Equalities in (44) and (45) hold for the function p =L ;

in (46) for the function pðςÞ =Lðς2Þ, ς ∈D, in (47) for the
function pðςÞ =Lð−ςÞ, ς ∈D and in (48) for the function p
ðςÞ =Lðς3Þ, ς ∈D:

3. Differential Subordination Results
Involving Ge

In this segment, we derive certain differential subordination
result concerning the class Ge.

To demonstrate differential subordination results, we
recollect the next lemma (see ([[33]], Theorem 8.4 h, p.
132)).

Q is starlike univalent in D, or
h is convex univalent in D

Lemma 9. Suppose q is univalent in D,θ and φ be holo-
morphic in a domain D containing qðDÞ with φðwÞ ≠ 0 when
w ∈ qðDÞ. Let QðςÞ≔ ςq′ðςÞφðqðςÞÞ and hðςÞ≔ θðqðςÞÞ +Q
ðςÞ for ς ∈D: Suppose that either

Assume also that
(iii)

R
ςh′ ςð Þ
Q ςð Þ > 0, ς ∈D: ð63Þ

If p ∈H with pð0Þ = qð0Þ,pðDÞ ⊂D, and

θ p ςð Þð Þ + ςp′ ςð Þφ p ςð Þð Þ ≺ θ q ςð Þð Þ + ςq′ ςð Þφ q ςð Þð Þ, ς ∈D,
ð64Þ

then p ≺ q and q are the best dominant.

Theorem 10. Let g ∈H and gð0Þ = 1. If g satisfies the subor-
dination condition,

2ςg′ ςð Þ
g ςð Þ + 1 + ς

1 − ς
≺ 1 + ς, ς ∈D: ð65Þ

Then,

p ςð Þ≔ g ςð Þð Þ2
1 − ςð Þ2 ≺ eς, ς ∈D: ð66Þ

Proof. Let D≔ℂ \ f0g: Let θðwÞ≔ 1,w ∈ℂ and φðwÞ≔ 1/

w,w ∈D: Note that ΦeðDÞ ⊂D and θ and φ are holo-
morphic in D: Thus,

Q ςð Þ≔ ςΦe′ ςð Þφ Φe ςð Þð Þ = ςΦe ′ ςð Þ
Φe ςð Þ = ς, ς ∈D ð67Þ

is well defined and holomorphic. Clearly, Q is a univalent
starlike function and so for a function hðςÞ≔ θðΦeðςÞÞ +Q
ðςÞ = 1 +QðςÞ,ς ∈D, we achieve

R
ςh′ ςð Þ
Q ςð Þ =R

ςQ′ ςð Þ
Q ςð Þ = 1 > 0, ς ∈D: ð68Þ

Hence, for any function p belonging to H with pð0Þ =
Φeð0Þ = 1 such that pðDÞ ⊂D, i.e., for p nonvanishing in D

, by applying Lemma 9, we infer that from the subordination

1 + ςp′ ςð Þ
p ςð Þ ≺ 1 + ςΦe′ ςð Þ

Φe ςð Þ = 1 + ς, ς ∈D, ð69Þ

it follows the subordination p ≺Φe:☐

Next, we at this time take g ∈H with gð0Þ = 1 and gðςÞ
be nonzero for ς ∈D satisfying (65). Let a function p be
taken as in (66). Then, one can notice that pð0Þ =Φeð0Þ = 1
, pðςÞ ≠ 0, for ς ∈D, and p is holomorphic. Since

1 + ςp′ ςð Þ
p ςð Þ = 2ςg′ ςð Þ

g ςð Þ + 1 + ς

1 − ς
, ς ∈D, ð70Þ

from (69), the conclusion (66) follows, which complete the
proof.

Theorem 11. Let g ∈H with gð0Þ = 1. If g satisfies

2ςg′ ςð Þ
g ςð Þ + 1 + ς

1 − ς
≺ eς + ς, ς ∈D, ð71Þ

then

p ςð Þ≔ ς
g ςð Þ
1 − ς

� �2 ðς
0

g ζð Þ
1 − ζ

� �2

dζ

 !−1

≺ eς, ς ∈D: ð72Þ

Proof. Let D≔ℂ \ f0g: Let ϕðwÞ≔w,w ∈ℂ, and ψðwÞ≔ 1
/w,w ∈D: Note that ΦeðDÞ ⊂D and ϕ and ψ are holo-
morphic in D: Thus, the function Q defined by (67), i.e.,
the identity function, is univalent starlike. Hence, for a func-
tion hðςÞ≔ θðΦeðςÞÞ +QðςÞ =ΦeðςÞ +QðςÞ,ς ∈D, we obtain

R
ςh′ ςð Þ
Q ςð Þ =R

ςΦe′ ςð Þ
Q ςð Þ +R

ςQ′ ςð Þ
Q ςð Þ

=RΦe ςð Þ +R
ςQ′ ςð Þ
Q ςð Þ > 0, ς ∈D:

ð73Þ

Thus, for any function p ∈H with pð0Þ =Φeð0Þ = 1 such
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that pðDÞ ⊂D, i.e., pðςÞ ≠ 0 for ς ∈D, by applying Lemma 9,
we deduce that from the subordination

p ςð Þ + ςp′ ςð Þ
p ςð Þ ≺Φe ςð Þ + ςΦe′ ςð Þ

Φe ςð Þ = eς + ς, ς ∈D, ð74Þ

it follows the subordination p ≺Φe:☐

Let now take g ∈H with gð0Þ = 1 and gðςÞ ≠ 0 for ς ∈D
satisfying (65). Define a function p as in (72). We see that

p 0ð Þ = lim
ς⟶0

ς
g ςð Þ
1 − ς

� �2 ðς
0

g ζð Þ
1 − ζ

� �2
dζ

 !−1

= g 0ð Þð Þ2 lim
ς⟶0

ς
ðς
0

g ζð Þ
1 − ζ

� �2
dζ

 !−1

= 1 =Φe 0ð Þ,
ð75Þ

pðςÞ=0 for ς ∈D and p is holomorphic. Since

p ςð Þ + ςp′ ςð Þ
p ςð Þ = 2ςg′ ςð Þ

g ςð Þ + 1 + ς

1 − ς
, ς ∈D, ð76Þ

from (74), (71) follows which completes the proof.
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We study a new subclass of functions with symmetric points and derive an equivalent formulation of these functions in term of
subordination. Moreover, we find coefficient estimates and discuss characterizations for functions belonging to this new class. We
also obtain distortion and growth results. We relate our results with the existing literature of the subject.

1. Introduction and Definitions

Let HðΔÞ represent analytic functions f in the disc Δ≔ fz
: ∣z∣<1g and A ⊂HðΔÞ be defined as:

A ≔ f ∈H Δð Þ: f zð Þ = z + a2z
2+⋯ z ∈ Δð Þ� �

: ð1Þ

Let Q denote “Carathéodory functions” h such that h
ð0Þ = 1, Re ðhðzÞÞ > 0 and hðzÞ = 1 + h1z + h2z

2 +⋯,z ∈ Δ:
The Möbius function k0ðzÞ = ð1 + zÞ/ð1 − zÞ ∈Q or its rota-
tion acts as an extremal function for the class Q and maps
Δ onto Re ðk0ðzÞÞ > 0. Recall that QðεÞ ⊂Q, 0 ≤ ε < 1 con-
sists of functions h ∈Q such that Re ðhðzÞÞ > ε in Δ: For
f , g ∈H , we say that the function f is subordinate to g
and write f ≺ g, if for

Φ ∈H Δð Þ, withΦ 0ð Þ = 0 and ∣Φ zð Þ∣ < 1, f zð Þ = g Φ zð Þð Þ:
ð2Þ

For a univalent function g, f ≺ g if and only if f ð0Þ
= gð0Þ and f ðΔÞ ⊂ gðΔÞ: For reference, see [1]. Applying
subordination, Janowski [2] defined the class Q½A, A1� for
−1 ≤ A1 < A ≤ 1. A function h ∈Q½A, A1�, if

h zð Þ = 1 + AΦ zð Þ
1 + A1Φ zð Þ ≺

1 + Az
1 + A1z

z ∈ Δð Þ: ð3Þ

Geometrically, the image hðΔÞ lies inside the disk cen-
tered on ImðzÞ = 0, and diameter ends at hð−1Þ and hð1Þ.
Clearly, Q½A, A1� ⊂Qðð1 − AÞ/ð1 − A1ÞÞ: The class Q½A, A1�
is related with the class Q as: h ∈Q iff, we write

A + 1ð Þh zð Þ − A − 1ð Þ
A1 + 1ð Þh zð Þ − A1 − 1ð Þ ∈Q A, A1½ �: ð4Þ

Also Λk, k ≥ 0 is given by Λk = fΦ = u + iv : u > kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu − 1Þ2 + v2

q
g, represents various plane curves for the

specific values of k. Let S be the class of complex-valued
injective functions and S∗ represents the class of starlike
functions whereas C denotes the class of convex functions.
A function f ∈ S is close-to-convex, if and only if there
exists a function g ∈C such that

Re zf ′ zð Þ
g zð Þ

( )
∈Q, z ∈ Δ: ð5Þ

We denote the class of close-to-convex functions by K

. This class was introduced by Kaplan in [3]. Sakaguchi
(see [4]) defined the class SSP as:
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Definition 1. Let f ∈ S: Then, f ∈ SSP, if

Re 2zf ′ zð Þ
f zð Þ − f −zð Þ

 !
> 0, z ∈ Δð Þ: ð6Þ

For f ∈A , f ∈CSP [5] iff zf ′∈SSP, where CSP is the class
of convex functions with respect to symmetric points. Various
authors studied the class CSP and its subclasses, for detail, see
[3, 6–8]. Obviously, it represents the univalent functions.
Moreover, it includes the class of convex and odd starlike
functions, see [4]. This and other classes are investigated in
the literature of the subject; for example, see [9–14].

Definition 2. Let f be analytic in Δ defined by (1). We say
that f ∈KSPðεÞ, 0 ≤ ε < 1, if for g ∈ S∗ð1/2Þ we have

Re z2 f ′ zð Þ
g zð Þg −zð Þ

 !
< −ε, z ∈ Δð Þ: ð7Þ

For more details, see [15]. We see that KSPð0Þ =KSP,
whereKSP is the class of functions defined in [16]. We study
a new class KSPðε, ηÞ involving g ∈ S∗ð1/2Þ.

Definition 3. Let f ∈A . Then, f
∈KSPðε, ηÞ, 0 ≤ ε < 1, 0 ≤ η ≤ 1 if for g ∈ S∗ð1/2Þ we have

Re zf ′ zð Þ + ηz2 f ′′ zð Þ
1 − ηð ÞG zð Þ + ηzG′ zð Þ

 !
< −ε z ∈ Δð Þ, ð8Þ

where GðzÞ = gðzÞgð−zÞ/z: By a simple calculations, we see
that (8) is equivalent to

zf ′ zð Þ + ηz2 f ′′ zð Þ
1 − ηð ÞG zð Þ + ηzG′ zð Þ

+ 1
�����

����� < zf ′ zð Þ + ηz2 f ′′ zð Þ
1 − ηð ÞG zð Þ + ηzG′ zð Þ

− 1 + 2ε
�����

�����, z ∈ Δð Þ:

ð9Þ

From [16], we have the following lemma.

Lemma 4. For g ∈ S∗ð1/2Þ such that

g zð Þ = z + 〠
∞

k=2
bkz

k, z ∈ Δð Þ, ð10Þ

if we put

zG zð Þ = g zð Þg −zð Þ = z2 + 〠
∞

k=1
ck+1z

2k+1, ð11Þ

where

ck = 2b2k−1 − 2b2b2k−2 + ::⋯ + −1ð Þk2bk−1bk+1 + −1ð Þk+1b2k,
ð12Þ

then G ∈ S∗:

Remark 5. Since g ∈ S∗ð1/2Þ, then Lemma 4 proves that G
∈S∗: Also from (8), we see that KSPðε, ηÞ contains close-
to-convex functions.

2. Main Results

In the following theorem, we have an equivalent formulation
of condition (9) in terms of subordination.

Theorem 6. A function f ∈KSPðε, ηÞð0 ≤ ε < 1, 0 ≤ η ≤ 1Þ iff
for g ∈ S∗ð1/2Þ, we write

−zf ′ zð Þ − ηz2 f ′′ zð Þ
1 − ηð ÞG zð Þ + ηzG′ zð Þ

≺
1 + 1 − 2εð Þz

1 − z
, z ∈ Δð Þ, ð13Þ

where GðzÞ = gðzÞgð−zÞ/z:

Proof. Let f ∈KSPðε, ηÞ: Then, for g ∈ S∗ð1/2Þ, we write

zf ′ zð Þ + ηz2 f ′′ zð Þ
1 − ηð ÞG zð Þ + ηzG′ zð Þ

+ 1
�����

����� < zf ′ zð Þ + ηz2 f ′′ zð Þ
1 − ηð ÞG zð Þ + ηzG′ zð Þ

− 1 + 2ε
�����

�����, z ∈ Δð Þ,

ð14Þ

or

Re −zf ′ zð Þ − ηz2 f ′′ zð Þ
1 − ηð ÞG zð Þ + ηzG′ zð Þ

 !
> ε, z ∈ Δð Þ, ð15Þ

where GðzÞ = gðzÞgð−zÞ/z: Using subordination, we write

H zð Þ = −zf ′ zð Þ − ηz2 f ′′ zð Þ
1 − ηð ÞG zð Þ + ηzG′ zð Þ

≺
1 + 1 − 2εð Þz

1 − z
, z ∈ Δ, ð16Þ

because k0ðε, zÞ = ð1 + ð1 − 2εÞzÞ/ð1 − zÞ∈S and Hð0Þ = k0
ðε, 0Þ = 1, where GðzÞ = gðzÞgð−zÞ/z: Conversely, we
assume that (13) holds. Then, there exists Φ with Φð0Þ = 0
and jΦðzÞj < 1 such that

−zf ′ zð Þ − ηz2 f ′′ zð Þ
1 − ηð ÞG zð Þ + ηzG′ zð Þ

= 1 + 1 − 2εð ÞΦ zð Þ
1 −Φ zð Þ : ð17Þ

Hence, using jΦðzÞj < 1, we obtain (9) equivalent to (8), so
f ∈KSPðε, ηÞ:

Now, we prove sufficient conditions for f ∈KSPðε, ηÞ:

Theorem 7. Let g ∈ S∗ð1/2Þ be a function given by (10) and
0 ≤ ε < 1, 0 ≤ η ≤ 1: If f defined by (1) satisfies.

2〠
∞

k=2
k + ηk k − 1ð Þ½ � akj j + 1 − 2εj j + 1ð Þ〠

∞

k=2
2η k − 1ð Þ + 1½ � ckj j ≤ 2 1 − εð Þ,

ð18Þ

where the coefficients ck are given by (12), then f ∈KSPðε, ηÞ.
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In particular, if

〠
∞

k=2
k + ηk k − 1ð Þ½ � akj j ≤ 1 − ε, ð19Þ

then f ∈KSPðε, ηÞ:

Proof. We set Fðη, zÞ =zf ′ðzÞ + ηz2 f ′′ðzÞ for f given by (1),
zGðzÞ =gðzÞgð−zÞ where g is defined by (10) and have

Λ = F η, zð Þ − 1 − ηð ÞG zð Þ + ηzG′ zð Þ�� ��
− F η, zð Þ − 1 − 2ηð Þ 1 − ηð ÞG zð Þ + ηzG′ zð Þ

h i��� ���
= 〠

∞

k=2
k + ηk k − 1ð Þ½ �akzk − 〠

∞

k=2
2η k − 1ð Þ + 1½ �ckz2k−1

�����
�����

− 2 − 2εð Þz + 〠
∞

k=2
k + ηk k − 1ð Þ½ �akzk

�����
+ 1 − 2εð Þ〠

∞

k=2
2η k − 1ð Þ + 1½ �ckz2k−1

�����:
ð20Þ

Hence, for z ∈ Δ, we have the inequality

Λ ≤ 〠
∞

k=2
k + ηk k − 1ð Þ½ � akj j zj jk + 〠

∞

k=2
2η k − 1ð Þ + 1½ � ckj j zj j2k−1

− 2 − 2εð Þ zj j + 〠
∞

k=2
k + ηk k − 1ð Þ½ � akj j zj jk

+ 1 − 2εj j〠
∞

k=2
2η k − 1ð Þ + 1½ � ckj j zj j2k−1

= − 2 − 2εð Þ zj j + 〠
∞

k=2
2 k + ηk k − 1ð Þ½ � akj j zj jk

+ 1 − 2εj j + 1ð Þ〠
∞

k=2
2η k − 1ð Þ + 1½ � ckj j zj j2k−1

≤ − 2 − 2εð Þ + 〠
∞

k=2
2 k + ηk k − 1ð Þ½ � akj j + 1 − 2εj j + 1ð Þ

� 〠
∞

k=2
2η k − 1ð Þ + 1½ � ckj j ≤ 0:

ð21Þ

From these calculations, we see that Λ < 0. Also by (20),
we can write

F η, zð Þ − 1 − ηð ÞG zð Þ + ηzG′ zð Þ
h i��� ���

< F η, zð Þ + 1 − 2ηð Þ 1 − ηð ÞG zð Þ + ηzG′ zð Þ
h i��� ���, ð22Þ

which is equivalent to (9) and (8). Thus, f ∈KSPðε, ηÞ, and it
completes the proof.

The next theorem deals with the coefficient estimates f ∈
KSPðε, ηÞ:

Theorem 8. Let 0 ≤ ε < 1 and 0 ≤ η ≤ 1: Suppose that f given
by (1) and g ∈ S∗ð1/2Þ given by (10) are such that (8) holds.
Then, for k = 2, 3,⋯ we have

2k2 1 + η 2k − 1ð Þf g2 − 2 1 − εð Þ2 ≤ 1 − εð Þ

� 〠
n

k=2
2 2k − 1ð Þη2k a2k−1j j c2k−1j j + 2ε − 1j j + 1ð Þη2k c2k−1j j2,

ð23Þ

where ηk = 1 + 2ηðk − 1Þ and ck is defined by (12). In particu-
lar, if gðzÞ = z, then

k 1 + ηð 2k − 1ð Þ a2kj j ≤ 1 − ε: ð24Þ

Proof. If f ∈KSPðε, ηÞ for some g ∈ S∗ð1/2Þ, then (9) holds.
Using Lemma 4, with α = β = 1, we have

zf ′ zð Þ + ηz2 f ′′ zð Þ
1 − ηð ÞG zð Þ + ηzG′ zð Þ

= 1 + 2ε − 1ð ÞzΦ zð Þ
1 + zΦ zð Þ , z ∈ Δ, ð25Þ

where Φ is an analytic function in Δ, jΦðzÞj ≤ 1 for z ∈ Δ,
and G is given by (11). Then

ηz2 f ′′ zð Þ + zf ′ zð Þ − 2ε − 1ð Þ 1 − ηð ÞG zð Þ + ηzG′ zð Þ
n oh i

� zΦ zð Þ = 1 − ηð ÞG zð Þ + ηzG′ zð Þ − zf ′ zð Þ − ηz2 f ′′ zð Þ:
ð26Þ

Now, zΦðzÞ =∑∞
k=1s

kzk: We see that jΦðzÞj ≤ jzj for z ∈
Δ: Thus

2 − 2εð Þz + 〠
∞

k=2
k + ηk k − 1ð Þ½ �akzk − 2ε − 1ð Þ〠

∞

k=2
2η k − 1ð Þ + 1½ �ckz2k−1

" #

� 〠
∞

k=1
skzk = 〠

∞

k=2
2η k − 1ð Þ + 1½ �ckz2k−1 − 〠

∞

k=2
k + ηk k − 1ð Þ½ �akzk:

ð27Þ

Equating coefficients in (27), for k ≥ 2, we can also write

2 − 2εð Þz + 〠
n−1

k=1
2kη2ka2kz2k + 〠

n

k=2
ηk 2k − 1ð Þa2k−1 − 2ε − 1ð Þc2k−1½ �z2k−1

" #

� zΦ zð Þ = 〠
n

k=2
ηk c2k−1 − 2k − 1ð Þa2k−1½ �z2k−1 − 〠

k

k=1
2kη2ka2kz2k

+ 〠
∞

k=2k+1
ckz

k,

ð28Þ

where ηk = 1 + 2ηðk − 1Þ and η2k = 1 + ηð2k − 1Þ:
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Then, we square and integrate along jzj = r < 1: After
using the fact jΦðzÞj ≤ jzj < 1, we obtain

〠
n

k=2
ηk c2k−1 − 2k − 1ð Þa2k−1½ �j j2r4k−2

+ 〠
k

k=1
2kη2ka2kj j2r4k

+ 〠
∞

k=2k+1
ckj j2r2k < 2 − 2εj j2r2 + 〠

n−1

k=1
2kη2ka2kj j2r4k

+ 〠
n

k=2
ηk 2k − 1ð Þa2k−1 − 2ε − 1ð Þc2k−1½ �j j2r4k−2:

ð29Þ

Letting r⟶ 1, we have

〠
n

k=2
ηk c2k−1 − 2k − 1ð Þa2k−1½ �j j2 + 〠

k

k=1
2kη2ka2kj j2 < 2 − 2εj j2

+ 〠
k−1

k=1
2kη2ka2kj j2 + 〠

n

k=2
ηk 2k − 1ð Þa2k−1 − 2ε − 1ð Þc2k−1½ �j j2:

ð30Þ

Hence,

4k2 1 + η 2k − 1ð Þf g2 − 4 1 − εð Þ2

≤ 〠
n

k=2
ηk 2k − 1ð Þa2k−1 − 2ε − 1ð Þc2k−1½ �j j2 − ηk c2k−1 − 2k − 1ð Þa2k−1½ �j j2� �

≤ 2 1 − εð Þ〠
n

k=2
2η2k a2k−1c2k−1j j + 2ε − 1j j + 1ð Þη2k c2k−1j j2:

ð31Þ

Thus, we have the inequality (23) which finishes the proof.

In the following theorem, we prove the growth and dis-
tortion theorems for f in the class KSPðε, ηÞ:

Theorem 9. If f ∈KSPðε, ηÞ, where 0 ≤ ε < 1 and 0 ≤ η ≤ 1,
then

χ1 r, εð Þ ≤ f ′ zð Þ�� �� ≤ χ2 r, εð Þ, ð32Þ

where

χ1 r, εð Þ = 1 − 1 − 2εð Þr
1 + rð Þ 1 + r2ð Þ −

−1ð Þ1/η 1 − εð Þ 1 + 1 + rð Þ arctanh rf
r1/η 1 + rð Þ ,

χ2 r, εð Þ = 1 + 1 − 2εð Þr
1 − rð Þ 1 − r2ð Þ −

−1ð Þ1/η 1 − εð Þ
4r1/η

� ln 1 + r
1 − r

� 	
−

1 − εð Þ −1ð Þ1/η 1 − εð Þ + 1
� �
2r1/η 1 − rð Þ2 :

ð33Þ

Also, we have

χ3 r, ε, ηð Þ ≤ f zð Þj j ≤ χ4 r, ε, ηð Þ + χ5 r, ε, ηð Þ, ð34Þ

where

χ3 r, ε, ηð Þ = 1 − εÞ ln 1 + rffiffiffiffiffiffiffiffiffiffiffi
1 + r2

p

+ ε arctan r −
η

η − 1
r− 1/ηð Þ+1 − −1ð Þ1/η ln 1 + rj j,

χ4 r, ε, ηð Þ = ε

2
ln 1 + r

1 − r
+ 2 − εð Þr

1 − r
−
η −1ð Þ1/η 1 − εð Þ

4 η − 1ð Þ

� ln 1 + r
1 − r

� 	
r− 1/ηð Þ+1 − ln 1 + rj j −1ð Þ1/η

1 − rj j

" #
,

χ5 r, ε, ηð Þ = −
1 − ε

2
η

η − 1
−1ð Þ1/η + 1

� �
r− 1/ηð Þ+1




− −1ð Þ1/η + 1
� ��

ln 1 − rj j,

ð35Þ

and jzj = r, 0 ≤ r < 1:

Proof. If f ∈KSPðε, ηÞ, then for g ∈ S∗ð1/2Þ, (8) holds. It fol-
lows from Lemma 4 that G in (11) is an odd starlike func-
tion. Then

r
1 + r2

≤ G zð Þj j ≤ r
1 − r2

, zj j = r, 0 ≤ r < 1, ð36Þ

1 − r2

1 + r2ð Þ2
≤ G′ zð Þ�� �� ≤ 1 + r2

1 − r2ð Þ2
, zj j = r, 0 ≤ r < 1: ð37Þ

For detail, see [17]. From (8), we obtain a function h
with real part greater then ε such that

zf ′ zð Þ + ηz2 f ′′ zð Þ
1 − ηð ÞG zð Þ + ηzG′ zð Þ

= h zð Þ, z ∈ Δ: ð38Þ

It is known, see [18], that

1 − 1 − 2εð Þr
1 + r

≤ h zð Þj j ≤ 1 + 1 − 2εð Þr
1 − r

, zj j = r, 0 ≤ r < 1:

ð39Þ

Thus, from (36), (38), and (39), we obtain (32). From
(32) for z = teiθ, we have
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f zð Þj j =
ðz
0
f ′ sð Þds

����
���� ≤
ðr
0
f ′ teiθ
� ��� ���

� dt ≤
ðr
0

1 + 1 − 2εð Þt
1 − tð Þ2 1 + tð Þ −

−1ð Þ1/η 1 − εð Þ
4t1/η

"

� ln 1 + r
1 − r

� 	
−

1 − εð Þ −1ð Þ1/η 1 − εð Þ + 1
� �
2t1/η 1 − tð Þ2

�

� dt = ε

2 ln 1 + r
1 − r

+ 2 − εð Þ r
1 − r

−
η −1ð Þ1/η 1 − εð Þ

4 η − 1ð Þ

� ln 1 + r
1 − r

� 	
r− 1/ηð Þ+1 − ln 1 + rj j −1ð Þ1/η

1 − rj j

" #

−
1 − ε

2
η

η − 1 −1ð Þ1/η + 1
� �

r− 1/ηð Þ+1 − −1ð Þ1/η + 1
� �
 �

ln 1 − rj j:

ð40Þ

This gives us the right-hand side of the inequality (34).
To prove the left-hand side of the inequality (34), we must
show that it holds for the nearest point f ðzoÞ from zero,
where jzoj = r and 0 < r < 1: Moreover, we have j f ðzÞj ≥ j
f ðzoÞj for jzj = r: Since f ∈K , we know that the function
f is univalent in the unit disc Δ: We conclude that the
original image of the line segment

f zð Þj j =
ð
f Cð Þ

dΦj j =
ð
C
f ′ zð Þ�� �� d zð Þj j

≥
ðr
0

1 − 1 − 2εð Þt
1 + tð Þ 1 + t2ð Þ −

−1ð Þ1/η 1 − εð Þ 1 + 1 + rð Þ arctanh tf
t1/η 1 + tð Þ

" #

� dt = 1 − εð Þ ln 1 + rffiffiffiffiffiffiffiffiffiffiffi
1 + r2

p

+ ε arctan r −
η

η − 1 r
− 1/ηð Þ+1 − −1ð Þ1/η ln 1 + rj j:

ð41Þ

This finishes the proof of the inequality (34).

3. Conclusions

In this research, we studied a new subclass of functions with
symmetric points and derived an equivalent formulation of
these functions in terms of subordination. Moreover, we deter-
mined coefficient estimates and discussed characterizations for
functions belonging to this new class. We also obtained distor-
tion and growth results. We observed that our findings are
related with the existing literature of the subject.
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A complex intuitionistic fuzzy set (CIFS) can be used to model problems that have both intuitionistic uncertainty and periodicity.
A diagram composed of nodes connected by lines and labeled with specific information may be used to depict a wide range of real-
life and physical events. Complex intuitionistic fuzzy graphs (CIFGs) are a broader type of diagram that may be used to
manipulate data. In this paper, we define the key operations direct, semistrong, strong, and modular products for complex
intuitionistic fuzzy graphs and look at some interesting findings. Further, the strong complex intuitionistic fuzzy graph is
defined, and several significant findings are developed. Furthermore, we study the behavior of the degree of a vertex in the
modular product of two complex intuitionistic fuzzy graphs.

1. Introduction

Obscurity is a common occurrence in everyday life. This is not
a world of precise calculations and ideas. For human intellect,
this judgment mistake is extremely tough. To tackle this prob-
lem, a variety of mathematical techniques and ideas, such as
fuzzy sets and complex fuzzy sets, have been developed. A
group system with uncertain information was used to create
the complex fuzzy logic. Due to the elastic potential of
advanced intuitionistic fuzzy sets (IFSs) to control unreliabil-
ity, this event is considered wonderfully great for humanistic
logic underlying wrong reality and infinite knowledge.
Because it allows for more erroneous information to be given,
this theory is a cornerstone of classical complex fuzzy sets
because it provides for more suitable answers to a range of
situations. In cases when we must deal with relatively limited
alternatives, such as yes or no, these specialized sets generated
beneficial models. Another essential feature of this knowledge
is that it allows man to evaluate the negative and positive ele-
ments of erroneous ideas. To deal with uncertainty, Zadeh [1]
introduced the fuzzy set theory. Following that, a number of
academics looked into the theory of fuzzy sets and fuzzy logic
in order to deal with a variety of real-world problems involv-
ing an uncertain and ambiguous environment. Atanassov [2]
came up with the concept of intuitionistic fuzzy sets (IFSs),

which are fuzzy sets with a new component. With the addition
of the degree of truth and falsity membership, the concept of
IFSs has become more relevant and vivid. The applications
of these sets have gotten a lot of attention in fields like multi-
criteria decision-making and image processing. Furthermore,
when data is phase-shifted, the ambiguity and uncertainty in
the data come from everyday life. As a result, taking this infor-
mation into account is theoretically insufficient, and informa-
tion is lost as a result of the procedure. To handle this
uncertainty, Ramot et al. [3] introduced the elongated form
the fuzzy set by including a phase term part, called complex
fuzzy set. The competency of complex fuzzy logic in the sense
of membership has a very significant role to address concrete
problems. It is not only a vital source for measuring uneven-
ness but also very effective mode to deal with ambiguous ideas.
Besides its usefulness, we still have massive problems regard-
ing the physical properties of complex membership-based
functions. It is highly demanding to design an additional
theory of complex fuzzy set in the sense of set knotty mem-
bers. This logic is straight development of conventional fuzzy
logic that naturally develops problem basing fuzzy logic which
is not suitable for the artificial function of membership. This
certain set has core role in various applications especially in
modern commanding systems which foreshadows periodic
phenomenon wherein a series of fuzzy variables are
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interlinked in a complicated way and it cannot be properly run
by fuzzy operations. Owing to the feature of handling the
information regarding both periodicity and uncertainty, the
complex fuzzy sets gained the special attentions in the latest
trends of fuzzy sets, bipolar fuzzy sets, and IFSs. By using these
models, both periodicity and uncertainty may be presented in
a single set. Atanassov [2] added new components to the con-
cept of a fuzzy set that specifies the degree of nonmembership.
Fuzzy sets provide membership degrees, while IFSs provide
both membership and nonmembership degrees, which are
more or less independent of one another. The sole require-
ment is that the total of the two degrees is less than one. IFSs
have been used in economics, chemistry, medicine, engineer-
ing, and computer science. Therefore, the studies regarding
complex fuzzy sets got a broad spectrum both in theoretical
aspects as well as application aspects. Many researchers inves-
tigated the extensive applications of complex fuzzy sets in
signal processing applications, time series, solar activity, and
forecasting problems (for instance, see [4–8]). Complex num-
bers and complex fuzzy sets were utilized by Buckley [9].
Alkouri and Salleh [10] developed the concept of complex
Atanassov’s intuitionistic fuzzy relation and complex Atanas-
sov’s intuitionistic fuzzy sets. Rosenfeld coined the term “fuzzy
subgroups” and established a connection between group the-
ory and fuzzy set theory. As a result, several academics devel-
oped fuzzy algebraic structures based on fuzzy sets,
intuitionistic fuzzy sets (IFSs), and CIFs (for detail, see
[11–18]). Several real and tangible circumstances can be illus-
trated using a diagram composed of a collection of nodes with
lines joining specific pairs of these nodes. The nodes could
select individuals, with lines connecting pairs of friends, or pri-
mary health care facilities, with lines representing beneficia-
ries’ streets or roads in the region. Fuzzy graph modeling is a
useful mathematical tool for solving combinatorial issues in
a variety of fields, such as image capturing, computer network,
electric network, operations research, social science, road
network, topology, optimization, algebra, computer science,
environmental science, and scheduling problem. Fuzzy graph
theory has an intuitive and aesthetic appeal because of the dia-
grammatic representation. Due to the natural presence of
vagueness and ambiguity, fuzzy graphical models are far supe-
rior to graphical models. We needed fuzzy set theory at first to
deal with numerous complicated phenomena that had inade-
quate information. Based on Zadeh’s fuzzy connection, Kauff-
man [19] was the first to coin the term “fuzzy graph.”
Rosenfeld [20] went on to invent fuzzy vertex, fuzzy edge,
and theoretical fuzzy graph ideas like routes, connectedness,
and cycle, among other things. Following Mordeson and
Chang-Shyh’s [21] discussion of fuzzy graph operations, Bhu-
tani and Battou’s [22] research of M-strong fuzzy graphs was
published. Following that, Eslahchi and Onagh [23], Gani
and Malarvizhi [24], Mordeson and Nair [25], and Mathew
and Sunitha [26] propose a slew of concepts and definitions,
primarily under the headings of vertex strength of fuzzy
graphs, fuzzy trees, isomorphism on fuzzy graphs, fuzzy
subgraphs, fuzzy paths, and complement of a fuzzy graph.
Because the membership function was insufficient to express
the complexity of object features, a nonmembership function
was created. By combining the nonmembership and hesitation

qualities, Atanassov [2] constructed the intuitionistic fuzzy set
theory, which was an elaboration of the basic set theory. This
idea has been used to a variety of domains, including
computer programming, medical fields, decision-making
problems, marketing evaluation, and banking issues. In 2006,
Parvathi and Karunambigai [27] proposed an intuitionistic
fuzzy graph as a variant of Atanassov’s IFG. Thirunavukarasu
et al. [28] built on this concept by incorporating complex fuzzy
graphs. Shannon and Atanassov [29] defined and discussed
intuitionistic fuzzy graphs. Later on, a number of authors
worked on intuitionistic fuzzy graphs and made several
important contributions to the subject (for instance, see
[30–33]). Sahoo and Pal discussed different types of products
on intuitionistic fuzzy graphs in [34]. Using the concept of a
complex intuitionistic fuzzy set, Yaqoob et al. [35] constructed
complex intuitionistic fuzzy graphs (CIFGs).

This paper’s structure is as follows: the second section
dives into some basic definitions. In Section 3, we define
the direct product of two CIFGs. We define strong CIFG.
We show that the direct product of two CIFGs is a CIFG
as well. At the end of this section, we show that if the direct
product of two CIFGs is strong, then at least one of them is
strong. In Section 4, we define the semidirect product of two
CIFGs. This section demonstrates that the semidirect prod-
uct of two CIFGs is also a CIFG. At the end of this section,
we demonstrate that if the semidirect product of two CIFGs
is strong, then at least one of them is strong. The strong
product of two CIFGs is defined in the fifth section. We
demonstrate that the strong direct product of two CIFGs is
CIFG. Furthermore, we demonstrated that if the strong
product of two CIFGs is strong, then at least one of them
is strong. In the last section of this paper, we define the mod-
ular product of two CIFGs and examine some intriguing
results. We also investigate how the degree of vertex behaves
in the modular product of two CIFGs.

2. Preliminaries

We go over some basic definitions that will assist us in our
future discussions.

Definition 1 [1]. A fuzzy set (FS) X of a nonempty set A is a
function, X : A⟶ ½0, 1�:

Definition 2 [2]. An intuitionistic fuzzy set (IFS) X of a uni-
verse of discourse A is a triplet of the form X = fha,mXðaÞ,
nXðaÞi ∣ a ∈ Ag, where the functions mXðaÞ: A⟶ ½0, 1� and
nXðaÞ: A⟶ ½0, 1� are the membership function (degree of
truthfulness) and nonmembership functions (degree of
falsity), respectively. These functions must fulfill the condi-
tion 0 ≤mXðaÞ + nXðaÞ ≤ 1:

Definition 3 [36]. The object of the form

X = a,mX að ÞeiαX að Þ, nX að ÞeiβX að Þ
� �

: a ∈ A
n o

, ð1Þ

is a complex intuitionistic fuzzy set (CIFS) defined on
universe of discourse A.
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Here,

i =
ffiffiffiffiffiffi
−1

p
,mX að Þ, nX að Þ ∈ 0, 1½ �, αX að Þ, βX að Þ ∈ 0, 2π½ � and 0

≤mX að Þ + nX að Þ ≤ 1:
ð2Þ

Definition 4 [27]. An intuitionistic fuzzy graph is of the form
G = ðB, C, X, YÞ on the crisp graph G∗ with vertex set B and
edge set C, where

(1) B = fb1, b2,⋯, bng and X = ðmX , nXÞ such that
mX : B⟶ ½0, 1� and nX : B⟶ ½0, 1� denote the
membership value (MV) and nonmembership
value (NMV) of the element bi ∈ B, respectively,
such that mXðbiÞ + nXðbiÞ ≤ 1 for all bi ∈ B

(2) C ⊆ B × B and Y = ðmY , nYÞ where mY : C⟶ ½0, 1�
and nY : C⟶ ½0, 1� are defined by mYðbi, bjÞ ≤mX

ðbiÞ ∧mXðbjÞ and nYðbi, bjÞ ≤ nXðbiÞ∨nXðbjÞ such
that mYðbi, bjÞ + nYðbi, bjÞ ≤ 1, ∀ðbi, bjÞ ∈ C

Definition 5 [35]. A complex intuitionistic fuzzy graph
(CIFG) with an underlaying vertex set B and edge set C is
defined to be a pair G = ðB, C, X, YÞ, where X is a CIFS on
B and Y is a CIFS on C ⊆ B × B such that

mY bi, bj
� �

eiαY bi ,bjð Þ ≤min mX bið Þ,mX bj
� �� �

ei min αX bið Þ,αX bjð Þf g,

nY bi, bj
� �

eiβY bi ,bjð Þ ≤max mX bið Þ, nX bj
� �� �

ei max βX bið Þ,βX bjð Þf g,
ð3Þ

for all bi, bj ∈ B.

Definition 6 [35]. Let G = ðB, C, X, YÞ be the given CIFG.
The degree of a vertex bi in G is defined by

degG bið Þ = 〠
bi ,bjð Þ∈C

mY bi,wbj
� �

eiαY bi ,bjð Þ, 〠
bi ,bjð Þ∈C

nY bibj
� �

eiβY bi,bjð Þ
0
@

1
A:

ð4Þ

3. Direct Product of Two CIFGs

Definition 7. The direct product of two CIFGs, G1 = ðB1,
C1, X1, Y1Þ and G2 = ðB2, C2, X2, Y2Þ such that B1 ∩ B2 = ϕ
is defined to be CIFG G1oG2 = ðB, C, X1oX2, Y1oY2Þ where

B = B1 × B2andC = C1 × C2

= bi1 , bj1
� �

, bi2 , bj2
� �n �

bi1 , bi2
� �

∈ C1, bj1 , bj2
� �

∈ C2

			
o
:

ð5Þ

The MV and NMV for the vertex ðbi1 , bi2Þ in G1oG2 are
given by

mX1
eiαX1 omX2

eiαX2
� �

bi1 , bi2
� �

=mX1
bi1
� �

eiαX1 bi1ð Þ ∧mX2
bi2
� �

eiαX2 bi2ð Þ

=min mX1
bi1
� �

,mX2
bi2
� �� �

ei min αX1 bi1ð Þ,αX2 bi2ð Þf g,

nX1
eiβX1 onX2

eiβX2

� �
bi1 , bi2
� �

= nX1
bi1
� �

eiβX1 bi1ð Þ ∧ nX2
bi2
� �

eiβX2 bi2ð Þ

=max nX1
bi1
� �

, nX2
bi2
� �� �

ei max βX1 bi1ð Þ,βX2 bi2ð Þf g:
ð6Þ

The NM and NMV for the edge ðu = ðbi1 , bj1Þ, v = ðbi2 ,
bj2ÞÞ in G1ΠG2 are given by

mY1
eiαY1ΠmY2

eiαY2
� �

u, vð Þ =mY1
uð ÞeiαmY1 uð Þ ∧mY2

vð ÞeiαmY2 vð Þ

=min mY1
uð Þ,mY2

vð Þ� �
ei min αY1 uð Þ,αY2 vð Þf g,

ð7Þ

nY1
eiβY1ΠnY2

eiβY2

� �
u, vð Þ = nY1

uð ÞeiβY1 uð Þ∨nY2
vð ÞeiβY2 vð Þ

=max nY1
uð Þ, nY2

vð Þ� �
ei max βY1 uð Þ,βY2 vð Þf g:

ð8Þ
Now we define the strong CIFG.

Definition 8. A CIFG G = ðB, C, X, YÞ is called strong CIFG if

mY u, vð ÞeiαY u,vð Þ = mX uð ÞeiαX uð Þ ∧mX vð ÞeiαX vð Þ
n o

=min mX uð Þ,mX vð Þf gei min mX uð Þ,mX vð Þf g,
ð9Þ

nY u, vð ÞeiβB u,vð Þ = nX uð ÞeiβX uð Þ∨nX vð ÞeiβX vð Þ
n o

=max nX uð Þ, nX vð Þf gei max βX uð Þ,βX vð Þf g:

ð10Þ
Theorem 9. Let G1 = ðB1, C1, X1, Y1Þ and G2 = ðB2, C2, X2,
Y2Þ be two strong CIFGs; then, G1ΠG2 is also a strong CIFG.

Proof. As G1 = ðB1, C1, X1, Y1Þ and G2 = ðB2, C2, X2, Y2Þ are
strong CIFGs, so by (9) and (10), we have

mY1
u1, v1ð ÞeiαY1 u1,v1ð Þ =min mX1

u1ð Þ,mX1
v1ð Þ� �

ei min αX1 u1ð Þ,αX1 v1ð Þf g�
,

nY1
u1, vð ÞeiβY1 u1,v1ð Þ =max nX1

u1ð Þ, nX1
v1ð Þ� �

ei max βX1 u1ð Þ,βX1 v1ð Þf g�
,

8><
>:

mY2
u2, v2ð ÞeiαY2 u2,v2ð Þ =min mX2

u2ð Þ,mX2
v2ð Þ� �

ei min αX2 u2ð Þ,αX2 v2ð Þf g�
,

nY2
u2, v2ð ÞeiβY2 u2,v2ð Þ =max nX2

u2ð Þ, nX2
v2ð Þ� �

ei max βX2 u2ð Þ,βX2 v2ð Þf g�
,

8><
>:

ð11Þ

for all ðu1, v1Þ ∈ E1 and ðu2, v2Þ ∈ E2:
Now from (7) and (8), we have

mY1
eiαY1ΠmY2

eiαY2
� �

bi1 , bj1
� �

, bi2 , bj2
� �� �

=mY1
bi1 , bi1
� �

eiαY1 bi1 ,bj1ð Þ ∧mY2
bj2 , vj2

� �
eiαY2 bi2 ,bj2ð Þ
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= mX1
bi1
� �

eiαX1 bi1ð Þ ∧mX1
bj1

� �
eiαX1 bj1ð Þh i

∧ mX2
bi2
�

eiαX2 ∧mX2
bj2

� �
eiαX2 bj2ð Þh i

= mX1
bi1
� �

eiαX1 bi1ð Þ ∧mX2
bj2

� �
eiαX2 bj2ð Þh i

∧ mX1
bj2

� �
eiαX1 bj2ð Þ ∧mX2

bj2

� �
eiαX2 bj2ð Þh i

= mX1
eiαX1Πmx2

eiαX2
� �

bi1 , bj1
� �

∧ mX1
eiαX1ΠmX2

eiαX2
� �

bi2 , bj2
� �

: ð12Þ

In addition for nonmembership,

nY1
eiβY1onY2

eiβY2
� �

bi2 , bj1
� �

, bi2 , bj2
� �� �

= nY1
bi1 , bj1

� �
eiβY1 bi1 ,bj1ð Þ∨nY2

bi2 , bj2
� �

eiβY2 bi2 ,bj2ð Þ

= nX1
bi1
� �

eiβX1 bi1ð Þ∨nX1
bi2
� �

eiαX1 bj1ð Þh i

∨ nX2
bi2e

iβX2 ∧ nX2
bj2

� �
eiβX2 bj2ð Þ�h i

= nX1
bi1
� �

eiβX1 bi1ð Þ∨nX2
bj2

� �
eiβX2 bj2ð Þh i

∨ nX1
bj2

� �
eiβX1 bj2ð Þ ∧ nX2

bj2

� �
eiβX2 bj2ð Þh i

= nX1
eiβX1ΠnX2

eiβX2
� �

bi1 , bj1
� �

∨ nX1
eiαX1ΠnX2

eiβX2
� �

bi2 , bj2
� �

: ð13Þ

This completes the proof.

Theorem 10. Let G1 = ðB1, C1, X1, Y1Þ and G2 = ðB2, C2, X2,
Y2Þ be two CIFGs, such that G1ΠG2 is strong; then, at least
one of G1 or G2 must be strong CIFG.

Proof. Suppose G1 and G2 are not strong CIFGs. Thus, there
exists at least one ðbi1 , bj1Þ ∈ B1, ðbi2 , bj2Þ ∈ B2 such that

mY1
bi1 , bj1

� �
eiαY1 bi1 ,bj1ð Þ <mX1

bi1
� �

eiαX1 bi1ð Þ ∧mX1
bj1

� �
eiαX1 bj2ð Þ,

nY1
bi1 , bj1

� �
eiβY1 bi1 ,bj1ð Þ < nX1

bi1
� �

eiβX1 bj1ð Þ∨nX1
bj1

� �
eiβX1 bj1ð Þ,

mY2
bi2 , bj2

� �
eiαY2 bi2 ,bj2ð Þ <mX2

bi2
� �

eiαX2 bi2ð Þ ∧mX2
bj2

� �
eiαX2 bj2ð Þ,

nY2
bi2 , bj2

� �
eiβY2 bi2 ,bj2ð Þ < nX2

bi2
� �

eiβX2 bj2ð Þ∨nX2
bj2

� �
eiβX2 bj2ð Þ:

ð14Þ

Let ðu = ðbi1 , bj1Þ, v = ðbi2 , bj2ÞÞ ∈ B1 × B2; then,

mY1
eiαY1ΠmY2

eiαY2
� �

u, vð Þð Þ =mY1
uð ÞeiαY1 uð Þ ∧ mY2

�
vð ÞeiαY2 vð Þ

< mX1
bi1
� �

eiαX1 bi1ð Þ ∧mX1
bj1

� �
eiαX1 bj1ð Þh i

∧ mX2
bi2
� �

eiαX2 bi2ð Þ ∧mX2
bj2

� �
eiαX2 bi2ð Þh i

= mX1
bi1
� �

eiαX1 bi1ð Þ ∧mX2
bi1
� �

eiαA2 bj1ð Þh i

∧ mA1
bi2
� �

eiαA1 bi1ð Þ ∧mA2
bi2
� �

eiαA2 bi2ð Þh i

= mX1
eiαX1ΠmX2

eiαX2
� �

bi1 , bj1
� �

∧ mX1
eiαX1ΠmX2

eiαX2
� �

bi2 , bj2
� �

:

ð15Þ

Therefore,

mY1
eiαY1ΠmY2

eiαY2
� �

u = bi1 , bj1
� �

, v = bi2 , bj2
� �� �

< mX1
eiαX1ΠmX2

eiαX2
� �

bi1 , bj1
� �

∧ mX1
eiαX1ΠmX2

eiαX2
� �

bi2 , bj2
� �

:

ð16Þ

Again, let ðu = ðbi1 , bj1Þ, v = ðbi2 , bj2ÞÞ ∈ B1 × B2; then,

nY1
eiβY1ΠnY2

eiβY2
� �

u, vð Þð Þ = nY1

�
uð ÞeiβY1 uð Þ∨ nY2

�
vð ÞeiβY2 vð Þ

< nX1
bi1
� �

eiβX1 bi1ð Þ∨nX1
bj1

� �
eiβX1 bj1ð Þh i

∨ nX2
bi2
� �

eiβX2 bi2ð Þ∨nX2
bj2

� �
eiβX2 bi2ð Þh i

= nX1
bi1
� �

eiβX1 bi1ð Þ∨nX2
bi1
� �

eiβX2 bj1ð Þh i

∨ nX1
bi2
� �

eiβX1 bi1ð Þ∨nX2
bi2
� �

eiβX2 bi2ð Þh i

= nX1
eiβX1ΠnX2

eiβX2

� �
bi1 , bj1

� �

∨ nX1
eiβX1ΠnX2

eiβX2

� �
bi2 , bj2

� �
:

ð17Þ

Therefore,

nY1
eiβY1ΠnY2

eiβY2

� �
u = bi1 , bj1

� �
, v = bi2 , bj2

� �� �

< nX1
eiβX1ΠnX2

eiβX2
� �

bi1 , bj1
� �

∨ nX1
eiβX1ΠnX2

eiβX2

� �
bi2 , bj2

� �
:

ð18Þ

This shows that G1ΠG2 is not strong, which is
contradiction.

This completes the proof.

4. Semistrong Product of Two CIFGs

Definition 11. The semistrong product of two CIFGs G1 =
ðB1, C1, X1, Y1Þ and G2 = ðB2, C2, X2, Y2Þ such that B1 ∩
B2 = ϕ is defined to be the CIFG as G1♦G2 = ðB, C, X1♦

4 Journal of Function Spaces



X2, Y1♦Y2Þ, where B = B1 × B2 andC = fððbi1 , bi2Þ, ðbj1 , bj2ÞÞ
∣ ðbi1 , bj1Þ∈ B1 and bi2 = bj2orðbi1 , bj1Þ∈ B1 and ðbi2 , bj2Þ ∈ B2g:

The MV and NMV of the vertex ðu, vÞ in G1♦G2 are
given as

mX1
eiαX1♦mx2

eiαX2
� �

u, vð Þ =mX1
uð ÞeiαX1 uð Þ ∧mX2

vð ÞeiαX2 vð Þ

=min mX1
uð Þ,mX2

vð Þ� �
ei min αX1 uð Þ,αX2 vð Þf g,

ð19Þ

nX1
eiβX1♦nX2

eiβX2

� �
u, vð Þ = nX1

uð ÞeiβX1 uð Þ∨nX2
vð ÞeiβX2 vð Þ

=max nX1
uð Þ, nX2

vð Þ� �
ei max βX1 uð Þ,βX2 vð Þð g:

ð20Þ
The MV and NMV for the edge ðu, v1Þ, ðu, v2Þ and ðu1,
v1Þ, ðu2, v2Þ ∈ C in G1♦G2 are given by as follows:

mY1
eiαY1♦mY2

eiαB2
� �

u, v1ð Þ, u, v2ð Þð Þ
=mX1

uð ÞeiαA1 uð Þ ∧mY2
v1, v2ð ÞeiαY2 v1,v2ð Þ,

ð21Þ

mY1
eiαB1♦mY2

eiαB2
� �

u1, v1ð Þ, u2, v2ð Þð Þ
=mY1

u1, u2ð ÞeiαB1 uð Þ ∧mY2
v1, v2ð ÞeiαY2 v1,v2ð Þ,

ð22Þ

mY1
eiαB1♦mY2

eiαY2
� �

u, v1ð Þ, u, v2ð Þð Þ
=mX1

uð ÞeiαX1 uð Þ ∧mY2
v1, v2ð ÞeiαY2 v1,v2ð Þ,

ð23Þ

mY1
eiαY1♦mY2

eiαY2
� �

u1, v1ð Þ, u2, v2ð Þð Þ
=mY1

u1, u2ð ÞeiαY1 uð Þ ∧mY2
v1, v2ð ÞeiαY2 v1,v2ð Þ:

ð24Þ

Theorem 12. If G1 = ðB1, C1, X1, Y1Þ and G2 = ðB2, C2, X2,
Y2Þ are strong CIFGs, then G1♦G2 is also strong.

Proof. If ððu, v1Þ, ðu, v2ÞÞ ∈ C, then using (19) and (20), we
have

mY1
eiαY1♦mY2

eiαY2
� �

u, v1ð Þ, u, v2ð Þð Þ
=mX1

uð ÞeiαX1 uð Þ ∧mX2
v1, v2ð ÞeiαY2 v1,v2ð Þ

=mX1
uð ÞeiαX1 uð Þ ∧ mX2

v1ð ÞeiαX2 v1ð Þ ∧mX2
v2ð ÞeiαX2 v2ð Þ

� �

= mX1
uð ÞeiαX1 uð Þ ∧mX2

v1ð ÞeiαX2 v1ð Þ
� �

∧ mX2
uð ÞeiαA2 uð Þ ∧mX2

v2ð ÞeiαA2 v2ð Þ
� �

= mX1
eiαX1♦mX2

eiαX2
� �

u, v1ð Þ
∧ mX1

eiαX1♦mX2
eiαA2

� �
u, v2ð Þ:

ð25Þ

Similar, we can show that ðnB1
eiβB1♦nB2e

iβB2Þððu, v1Þ, ðu,
v2ÞÞ = ðnA1

eiαA1♦nA2
eiαA2Þðu, v1Þ∨ðnA1

eiαA1♦nA2
eiαA2Þðu, v2Þ.

Again, if ððu1, v1Þ, ðu2, v2ÞÞ ∈ E, then using (22) and (24),
we have

mY1
eiαY1♦mY2

eiαY2
� �

u1, v1ð Þ, u2, v2ð Þð
=mY1

u1, v1ð ÞeiβY1 u1,v2ð Þ ∧mY2
u2, v2ð ÞeiβY2 u2,v2ð Þ

= mX1
u1ð ÞeiαX1 u1ð Þ ∧mX2

v1ð ÞeiαX2 v1ð Þ
� �

∧ mX2
u2ð ÞeiαX2 u2ð Þ ∧mX2

v2ð ÞeiαX2 v2ð Þ
� �

= mX1
eiαX♦mX2

eiαX2
� �

u1, v1ð Þ
∧ mX1

eiαA1♦mX2
eiαX2

� �
u2, v2ð Þ:

ð26Þ

Similarly, we can show that

nY1
eiβY1♦nY2

eiβY2

� �
u1, v1ð Þ, u2, v2ð Þð Þ

= nX1
eiβX1♦nX2

eiβX2
� �

u1, v1ð Þ∨ nX1
eiβX1♦nX2

eiβX2
� �

u2, v2ð Þ:
ð27Þ

This completes the proof.

Theorem 13. If G1 = ðB1, C1, X1, Y1Þ and G2 = ðB2, C2, X2,
Y2Þ are two CIFG, such that G1♦G2 is strong, then at least
one of G1 or G2 must be strong.

5. Strong Product of Two CIFGs

Definition 14. The strong product of two CIFGs is G1 =
ðB1, C1, X1, Y1Þ and G2 = ðB2, C2, X2, Y2Þ such that B1 ∩
B2 = ϕ is defined to be CIFGG1 ⊗G2 = ðB, C, X1 ⊗ X2, Y1
⊗ Y2Þ where B = B1 × B2 and C = fðu, v1Þ, u, v2Þ ∣ u ∈ C1,
ðv1, v2Þ∈ C2g∪ fðu1, vÞ, u2, vÞ ∣ u1Þ, u, v2Þ ∈ C1g∪ fððu1, u2Þ,
ðv1, v2ÞÞ ∣ ðu1, u2Þ ∈ C1, ðv1, v2Þ ∈ C2g. The MV and NMV
for the vertex ðu, vÞ in G1 ⊗G2 are given by

mX1
eiαX1 ⊗mX2

eiαX2
� �

u, vð Þ =mX1
uð ÞeiαX1 uð Þ ∧mX2

vð ÞeiαA2 vð Þ,
ð28Þ

nX1
eiβX1 ⊗ nX2

eiβX2

� �
u, vð Þ = nX1

uð ÞeiβX1 uð Þ∨nX2
vð ÞeiβX2 vð Þ:

ð29Þ

The MV and NMV for edges in G1 ⊗G2 are given by
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Theorem 15. If G1 = ðB1, C1, X1, Y1Þ and G2 = ðB2, C2, X2,
Y2Þ are strong CIFGs, then G1 ⊗ G2 is also strong.

Theorem 16. If G1 = ðB1, C1, X1, Y1Þ and G2 = ðB2, C2, X2,
Y2Þ are two CIFGs, such that G1 ⊗ G2 is strong, then at least
one of G1 or G2 must be strong.

Definition 17. A CIFG G = ðB, C, X, YÞ is said to be
complete if

mY u, vð ÞeiαY u,vð Þ =mX uð ÞeiαX uð Þ ∧mX vð ÞeiαX vð Þ

nY u, vð ÞeiβY u,vð Þ = nX uð ÞeiαX uð Þ ∧ nX vð ÞeiαX vð Þ:
ð32Þ

for all u, v ∈ B:

Theorem 18. If G1 = ðB1, C1, X1, Y1Þ and G2 = ðB2, C2, X2,
Y2Þ are two CIFGs, then G1 ⊗G2 is complete.

Proof. As a strong product of CIFGs is CIFG, and every pair
of vertices is adjacent. If ððu, v1Þ, ðu, v2ÞÞ ∈ C, then using (29)
and (30), we have

mY1
eiαY1 ⊗mY2

eiαY2
� �

u, v1ð Þ, u, v2ð Þð Þ
=mX1

uð ÞeαX1 uð Þ ∧mY2
v1, v2ð ÞeαY2 v1,v2ð Þ

=mX1
uð ÞeαX1 uð Þ ∧ mX2

v1ð ÞeiαX2 v1ð Þ ∧mX2 v2ð Þe
iαX2 v2ð Þ

� �

= mX1
uð ÞeiαX1 uð Þ ∧mX2

v1ð ÞeiαX2 v1ð Þ
� �

∧ mX1
uð ÞeiαX1 uð Þ ∧mX2

v2ð ÞeiαX2 v2ð Þ
� �

= mX1
eiαX1 ⊗mX2

eiαX2
� �

u, v1ð Þ
∧ mX1

eiαX1 ⊗mX2
eiαX2

� �
u, v1ð Þ:

ð33Þ

And by (31), it follows that

nY1
eiβY1 ⊗ nY2

eiβY2

� �
u:v1ð Þ, u, v2ð Þð Þ

= nX1
uð ÞeβX1 uð Þ∨nY1

v1, v2ð ÞeβY2 v1,v2ð Þ

= nX1
uð ÞeβX1 uð Þ∨nY1

v1, v2ð ÞeβY2 v1,v2ð Þ

= nX1
uð ÞeβX1 uð Þ∨ nX2

v1ð ÞeiβX2 v1ð Þ∨nX2 v2ð Þe
iβX2 v2ð Þ

h i

= nX1
uð ÞeiβX1 uð Þ∨nX2

v1ð ÞeiβX2 v1ð Þ
� �

∨ nX1
uð ÞeiβX1 uð Þ∨nX2

v2ð ÞeiβX2 v2ð Þ
� �

= nX1
eiβX1 ⊗ nX2

eiβX2

� �
u, v1ð Þ

∨ nX1
eiβX1 ⊗ nX2

eiβX2

� �
u, v1ð Þ:

ð34Þ

If ððu1, vÞ, ðu2, vÞÞ ∈ C, then

mY1
eiαY1 ⊗mY2

eiαY2
� �

u1, vð Þ u2, vð Þð Þ
=mY1

u1, v2ð ÞeiαY1 u1,v2ð Þ ∧mX2
vð ÞeiαX2 vð Þ

= mX1
u1ð ÞeiαX1 u1ð Þ ∧mX1

v1ð ÞeiαX2 u2ð Þ
� �

∧ mX2
vð ÞeiαX2 vð Þ ∧mX2

vð ÞeiαX2 vð Þ
� �

= mX1
eiαX1 ⊗mX2

eiαX2
� �

u1, vð Þ
∧ mX1

eiαX1 ⊗mX2
eiαX2

� �
u2, vð Þ:

ð35Þ

Similarly,

nY1
eiβY1 ⊗ nY2

eiβY2
� �

u1, vð Þ u2, vð Þð Þ = nX1
eiβX1 ⊗ nX2

eiβX2

� �
u1, vð Þ,

∨ nX1
eiβX1 ⊗ nX2

eiβX2
� �

u2, vð Þ:
ð36Þ

Again if ððu1, v1Þ, ðu2, v2ÞÞ ∈ C, then

mY1
eiαY1 ⊗mY2

eiαY2
� �

u, v1ð Þ, u, v2ð Þð Þ = mX1
uð ÞeiαX1 uð Þ ∧mY2

v1, v2ð ÞeiαY2 v1,v2ð Þ,

mY1
eiαY1 ⊗mY2

eiαY2
� �

u1, vð Þ, u2, vð Þð Þ = mY1
u1, u2ð ÞeiαY1 u1,u2ð Þð Þ ∧mX2

vð ÞeiαX2 vð Þ,

mY1
eiαY1 ⊗mY2

eiαY2
� �

u1, v1ð Þ, u2, v2ð Þð Þ = mY1
u1, v2ð ÞeiαY1 u1,v2ð Þð Þ ∧mY2

u1, v2ð ÞeiαY2 u1,v2ð Þ,

8>>><
>>>:

ð30Þ

nY1
eiβY1 ⊗ nY2

eiβY2

� �
u, v1ð Þ, u, v2ð Þð Þ = nX1

uð ÞeiβX1 uð Þ∨nY2
v1, v2ð ÞeiβY2 v1,v2ð Þ,

nY1
eiβY1 ⊗ nY2

eiβY2

� �
u1, vð Þ, u2, vð Þð Þ = nY1

u1, u2ð ÞeiβY1 u1,u2ð Þð Þ∨nX2
vð Þeiβx2 vð Þ,

nY1
eiβY1 ⊗ nY2

eiβY2

� �
u1, v1ð Þ, u2, v2ð Þð Þ = nY1

u1, v2ð ÞeiβY1 u1,v2ð Þð Þ∨nY2
u1, v2ð ÞeiβY2 u1,v2ð Þ:

8>>>>><
>>>>>:

ð31Þ
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mY1
eiαY1 ⊗mY2

eiαY2
� �

u1, v1ð Þ u2, v2ð Þð Þ
=mY1

u1, v1ð ÞeiαY1 u1,v1ð Þ ∧mY2
v1, v2ð ÞeiαY2 u2,v2ð Þ

= mX1
u1ð ÞeiαX1 u1ð Þ ∧mX1

v2ð ÞeiαX2 v2ð Þ
� �

∧ mX2
v1ð ÞeiαX2 v1ð Þ ∧mX2

v2ð ÞeiαX2 v2ð Þ
� �

= mX1
u1ð ÞeiαX1 u1ð Þ ∧mX2

u1ð ÞeiαX2 v1ð Þ
� �

∧ mX1
u2ð ÞeiαX2 u2ð Þ ∧mX2

v2ð ÞeiαX2 v2ð Þ
� �

= mX1
eiαX1 ⊗mX2

eiαX2
� �

u1, v1ð Þ
∧ mX1

eiαX1 ⊗mX2
eiαX2

� �
u2, v2ð Þ:

ð37Þ

Similarly,

nY1
eiβY1 ⊗ nB2e

iβY2

� �
u1, v1ð Þ u2, v2ð Þð Þ = nX1

eiβX1 ⊗ nX2
eiβX2

� �
u1, v1ð Þ,

∨ nX1
eiβX1 ⊗ nX2

eiβX2
� �

u2, v2ð Þ:
ð38Þ

This completes the proof.

6. Modular Product of CIFGs

Definition 19. Let G1 = ðB1, C1, X1, Y1Þ and G2 = ðB2, C2,
X2, Y2Þ be two CIFGs with underlying vertex sets B1 and
B2 and edge sets C1 and C2, respectively. Then, modular
product of G1 and G2 is G1eG2 = ðB1eB2, C1eC2, X1eX2,
X1eX2Þ with underlying vertex set B1eB2 = fðx1, y1Þjx1 ∈
B1, y1 ∈ B2g and underlying edge set C1eC2 = fðx1, y1Þx2,
y2jðx1, x2Þ ∈ C1, ðy1, y2Þ ∈ C2 or ðx1, x2Þ ∉ C1, ðy1, y2Þ ∉ C2g
with

mX1
eiαX1 emX2

eiαX2 x1, y1ð Þ =mX1
x1ð ÞeiαX1 x1ð Þ ∧mX2

y1ð ÞeiαX2 y1ð Þ

=min mX1
x1ð Þ,mX2

y1ð Þ� �
ei min αX1 x1ð Þ,αX2 y1ð Þf g,

nX1
eiβX1 enX2

eiβX2

� �
x1, y1ð Þ = nX1

x1ð ÞeiβX1 x1ð Þ∨nX2
y1ð ÞeiβX2 y1ð Þ

=max nX1
x1ð Þ, nX2

y1ð Þ� �
ei max βX1 x1ð Þ,βX2 y1ð Þf g:

ð39Þ

Here, x1 ∈ B1 and y1 ∈ B2.

The MV and NMV for edges in G1eG2 are given by

mY1
eiαY1 emY2

eiαY2 x1, y1ð Þ, x2, y2ð Þð Þ

=

mY1
x1, x2ð ÞeiαY1 x1,x2ð Þ ∧mY2

x1, x2ð ÞeiαY2 x1,x2ð Þ,

if x1, x2ð Þ ∈ C1, y1y2ð Þ ∈ C2,

mX1
x1ð ÞeiαX1 x1ð Þ x1ð Þ ∧mX1

x2ð ÞeiαX1 x2ð Þ ∧mX2
y1ð ÞeiαX2 y1ð Þ ∧mY2

y2ð ÞeiαY2 x1ð Þ,

if x1, x2ð Þ ∉ C1, y1, y2ð Þ ∉ C2,

8>>>>>>><
>>>>>>>:

ð40Þ

nY1
eiβY1 enY2

eiβY2 x1, y1ð Þ, x2, y2ð Þð Þ

=

nY1
x1, x2ð ÞeiβY1 x1,x2ð Þ∨nY2

x1, x2ð ÞeiβY2 x1,x2ð Þ,

if x1, x2ð Þ ∈ C1, y1, y2ð Þ ∈ C2,

nX1
x1ð ÞeiβX1 x1ð Þ x1ð Þ∨nX1

x2ð ÞeiβX1 x2ð Þ∨nX2
y1ð ÞeiβX2 y1ð Þ∨nY2

y2ð ÞeiβY2 x1ð Þ,

if x1, x2ð Þ ∉ C1, y1, y2ð Þ ∉ C2:

8>>>>>>><
>>>>>>>:

ð41Þ
Theorem 20. Let G1 = ðB1, C1, X1, Y1Þ and G2 = ðB2, C2,
Y2, Y2Þ be the CIFGs; then, modular product G1⨀G2 is
also a CIFGs.

Proof. Let G1 = ðB1, C1, X1, Y1Þ and G2 = ðB2, C2, X2, Y2Þ be
the CIFGs. We have to prove that G1⨀G2 is CIFG. By the
definition, X1⨀X2 is CIFS on B1⨀B2 and Y1⨀Y2 is CIFS
on C1⨀C2. From (40) and (41), we have

mY1
eiαY1 emY2

eiαY2 x1, y1ð Þ, x2, y2ð Þð Þ
=mY1

x1, x2ð ÞeiαY1 x1,x2ð Þ

∧mY2
x1, x2ð ÞeiαY2 x1,x2ð Þif x1, x2ð Þ ∈ C1, y1y2 ∈ C2

≤mX1
x1ð ÞeiαX1 x1ð Þ x1ð Þ ∧mX1

x2ð ÞeiαX1 x2ð Þ

∧mX2
y1ð ÞeiαX2 y1ð Þ ∧mY2

y2ð ÞeiαY2 x1ð Þ:

ð42Þ

Since G1 and G2 are CIFGs,

nY1
eiβY1⨀nY2

eiβY2 x1, y1ð Þ, x2, y2ð Þð Þ
= nY1

x1, x2ð ÞeiβY1 x1,x2ð Þ∨nY2
x1, x2ð ÞeiβY2 x1,x2ð Þ

if x1, x2ð Þ ∈ C1, y1y2ð Þ ∈ C2

≤nX1
x1ð ÞeiβX1 x1ð Þ x1ð Þ∨nX1

x2ð ÞeiβX1 x2ð Þ

∨nX2
y1ð ÞeiβX2 y1ð Þ∨nY2

y2ð ÞeiβY2 x1ð Þ: ð43Þ

Since G1 and G2 are CIFGs,

mY1
eiαY1⨀mY2

eiαY2 x1, y1ð Þ, x2, y2ð Þð Þ
=mX1

x1ð ÞeiαX1 x1ð Þ x1ð Þ ∧mX1
x2ð ÞeiαX1 x2ð Þ

∧mX2
y1ð ÞeiαX2 y1ð Þ

∧mY2
y2ð ÞeiαY2 x1ð Þif x1, x2ð Þ ∉ C1, y1, y2ð Þ ∉ C2

=mY1
eiαY1⨀mY2

eiαY2 x1, y1ð Þ, x2, y2ð Þð Þ:

ð44Þ

Since G1 and G2 are CIFGs,

nY1
eiβY1⨀nY2

eiβY2 x1, y1ð Þ, x2, y2ð Þð Þ
= nX1

x1ð ÞeiβX1 x1ð Þ x1ð Þ∨nX1
x2ð ÞeiβX1 x2ð Þ

∨nX2
y1ð ÞeiβX2 y1ð Þ

∨nY2
y2ð ÞeiβY2 x1ð Þif x1, x2ð Þ ∉ C1, y1, y2ð Þ ∉ C2

= nY1
eiβY1⨀nY2

eiβY2 x1, y1ð Þ, x2, y2ð Þð Þ:

ð45Þ
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Hence,

mY1
eiαY1⨀mY2

eiαY2 x1, y1ð Þ, x2, y2ð Þð Þ
≤mX1

eiαX1⨀mX2
eiαX2 x1, y1ð Þ ∧mX1

eiαX1⨀mX2
eiαX2 x2, y2ð Þ,

nY1
eiβY1⨀nY2

eiβY2 x1, y1ð Þ, x2, y2ð Þð Þ
≤ nX1

eiβX1⨀mX2
eiβX2 x1, y1ð Þ∨nX1

eiβX1⨀nX2
eiβX2 x2, y2ð Þ:

ð46Þ

Hence, G1eG2 is CIFG.

Theorem 21. Let G1 = ðB1, C1, X1, Y1Þ and G2 = ðB2, C2,
X2, Y2Þ be strong CIFGs. Then, modular product G1⨀G2
is also a strong CIFG.

Theorem 22. Let G1 = ðB1, C1, X1, Y1Þ and G2 = ðB2, C2,
X2, Y2Þ be two complete CIFGs.

(1) If mY1
ðxÞ ≤mY2

ðxÞ, αY1
ðxÞ≤ αY2

ðxÞ and nY1
ðxÞ ≥

nY2
ðxÞ, βY1

ðxÞ ≥βY2
ðxÞ, then degG1eG2

ðx, yÞ = degG1

ðxÞ
(2) If mY1

ðxÞ ≥mY2
ðxÞ, αY1

ðxÞ ≥ αY2
ðxÞ and nY1

ðxÞ ≤
nY2

ðxÞ, βY1
ðxÞ ≤ βY2

ðxÞ, then degG1eG2
ðx, yÞ = degG2

ðxÞ

Proof.

(1) Let G1 = ðB1, C1, X1, Y1Þ and G2 = ðB2, C2, X2, Y2Þ
be two complete CIFGs. The degree of vertex ðx,
yÞ ∈ B1⨀B2 is degG1⨀G2

ðx, yÞ = ðdeg1G1⨀G1
ðx, yÞ, de

g2G1⨀G1
ðx, yÞÞ: From (4), we have

Since both G1 and G2 are complete CIFGs, it follows that
deg1G1⨀G2

ðx1, y1Þ = deg1G1⨀G2
ðx1Þ.

Similarly,

Since both G1 and G2 are complete CIFGs, it follows that
deg1G1⨀G2

ðx1, y1Þ = deg1G1⨀G2
ðx1Þ.

(2) Omitted

7. Conclusions

Graphs are a strong and adaptable data structure for repre-
senting real-world connections between different types of
data. Graph operations take existing graphs and build new

ones. In this investigation, we looked at some interesting
results from the key operations direct, semistrong, strong,
and modular products for complex intuitionistic fuzzy
graphs. A strong complex intuitionistic fuzzy graph is also
defined, as well as a number of noteworthy findings. We also
look at how a vertex’s degree behaves in the modular prod-
uct of two complex intuitionistic fuzzy graphs.
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d1G1⨀G2
x1, y1ð Þ = 〠

x1x2ð Þ∈C1, y1y2ð Þ∈C2

mY1
x1, x2ð Þ ∧mY2

y1, y2ð Þ� �
eαY1 x1,x2ð Þ∧mY2 y1,y2ð Þ

+ 〠
x1x2ð Þ∉C1, y1y2ð Þ∉C2

mX1
x1ð Þ ∧mX1

x2ð Þ ∧mX2
y1ð Þ ∧mX2

y1ð Þ� �
eαX1 x1ð Þ∧αX1 x2ð Þ∧αX2 y1ð Þ∧αX2 y2ð Þ

= 〠
x1x2ð Þ∈C1, y1y2ð Þ∈C2

mY1
x1, x2ð Þ ∧mY2

y1, y2ð Þ� �
eαY1 x1,x2ð Þ∧αY2 y1,y2ð Þ:

ð47Þ

deg1G1⨀G2
x1, y1ð Þ = 〠

x1,x2ð Þ∈C1, y1,y2ð Þ∈C2

mY1
x1, x2ð Þ ∧mY2

y1, y2ð Þ� �
eαY1 x1,x2ð Þ∧mY2 y1,y2ð Þ

+ 〠
x1,x2ð Þ∉C1, y1,y2ð Þ∉C2

mX1
x1ð Þ ∧mX1

x2ð Þ ∧mX2
y1ð Þ ∧mX2

y1ð Þ� �
eαX1 x1ð Þ∧αX1 x2ð Þ∧αX2 y1ð Þ∧αX2 y2ð Þ

= 〠
x1,x2ð Þ∈C1, y1,y2ð Þ∈C2

mY1
x1, x2ð Þ ∧mY2

y1, y2ð Þ� �
eαY1 x1,x2ð Þ∧αY2 y1,y2ð Þ:

ð48Þ

8 Journal of Function Spaces



Conflicts of Interest

The authors declare no conflicts of interest.

Acknowledgments

This study was supported by The University of the Lahore,
Pakistan.

References

[1] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8,
no. 3, pp. 338–353, 1965.

[2] K. Atanassov, “Intuitionistic fuzzy sets,” in VII ITKR’s Session,
V. Sgurev, Ed., Sofia, 1983.

[3] D. Ramot, R. Milo, M. Friedman, and A. Kandel, “Complex
fuzzy sets,” IEEE Transactions on Fuzzy Systems, vol. 10,
pp. 171–186, 2002.

[4] C. Li, T. Wu, and F. T. Chan, “Self-learning complex neuro-
fuzzy system with complex fuzzy sets and its application to
adaptive image noise canceling,” Neurocomputing, vol. 94,
pp. 121–139, 2012.

[5] C. Li andW. Chiang, “Complex fuzzy computing to time series
prediction A multi-swarm PSO learning approach,” in Asian
Conference on Intelligent Information and Database Systems,
pp. 242–251, Springer, Berlin, Heidelberg, 2011.

[6] P. Thirunavukarasu, R. Suresh, and P. Thamilmani, “Applica-
tions of complex fuzzy sets,” JP Journal of Applied Mathemat-
ics, vol. 6, no. 1, pp. 5–22, 2013.

[7] M. Xueling, J. Zhan, M. Khan, M. Zeeshan, S. Anis, and A. S.
Awan, “Complex fuzzy sets with applications in signals,” Com-
putational and Applied Mathematics, vol. 38, no. 4, pp. 1–34,
2019.

[8] L. Chunshien and T. W. Chiang, “Complex neurofuzzy
ARIMA forecasting a new approach using complex fuzzy sets,”
IEEE Transactions on Fuzzy Systems, vol. 21, no. 3, pp. 567–
584, 2012.

[9] J. Buckley, “Fuzzy complex numbers,” Fuzzy Sets and Systems,
vol. 33, no. 3, pp. 333–345, 1989.

[10] A. M. Alkouri and A. R. Salleh, “Complex Atanassov’s intuitio-
nistic fuzzy relation,” In Abstract and Applied Analysis,
vol. 2013, pp. 287–382, 2013.

[11] W. J. Liu, “Fuzzy invariant subgroups and fuzzy ideals,” Fuzzy
Sets and Systems, vol. 8, pp. 133–139, 1982.

[12] M. Gulzar, F. D. D. Alghazzawi, and M. H. Mateen, “A note on
complex fuzzy subfield,” Indonesian Journal of Electrical Engi-
neering and Computer Science, vol. 21, pp. 1048–1056, 2021.

[13] M. Gulzar, D. Alghazzawi, M. H. Mateen, and N. Kausar, “A
certain class of t-intuitionistic fuzzy subgroups,” IEEE access,
vol. 8, pp. 163260–163268, 2020.

[14] U. M. Swamy and K. L. N. Swamy, “Fuzzy prime ideals of
rings,” Journal of Mathematical Analysis and Applications,
vol. 134, no. 1, pp. 94–103, 1988.

[15] M. Gulzar, M. H. Mateen, D. Alghazzawi, and N. Kausar, “A
novel applications of complex intuitionistic fuzzy sets in group
theory,” IEEE Access, vol. 8, pp. 196075–196085, 2020.

[16] M. Gulzar, M. H. Mateen, Y. M. Chu, D. Alghazzawi, and
G. Abbas, “Generalized direct product of complex intuitionis-
tic fuzzy subrings,” International Journal of Computational
Intelligence Systems, vol. 14, no. 1, pp. 582–593, 2021.

[17] K. Hur, S. Y. Jang, and H. W. Kang, “Intuitionistic fuzzy sub-
groups and cosets,” Honam Mathematical Journal, vol. 26,
pp. 17–41, 2004.

[18] A. Rosenfeld, “Fuzzy groups,” Journal of Mathematical Analy-
sis and Applications, vol. 35, pp. 512–517, 1971.

[19] A. Kauffman, Introductionà la théorie des sous-ensembles flous
à l’usage des ingenieurs, 1973.

[20] A. Rosenfeld, “Fuzzy graphs,” in In Fuzzy sets and their
applications to cognitive and decision processes, pp. 77–95,
Academic press, 1975.

[21] N. J. Mordeson and P. Chang-Shyh, “Operations on fuzzy
graphs,” Information Sciences, vol. 79, pp. 159–170, 1994.

[22] K. R. Bhutani and A. Battou, “On M-strong fuzzy graphs,”
Information Sciences, vol. 155, no. 1-2, pp. 103–109, 2003.

[23] C. Eslahchi and B. N. Onagh, “Vertex-strength of fuzzy
graphs,” International Journal of Mathematics and Mathemat-
ical Sciences, vol. 2006, 9 pages, 2006.

[24] A. N. Gani and J. Malarvizhi, “Isomorphism on fuzzy graphs,”
International Journal of Computational and Mathematical Sci-
ences, vol. 2, no. 4, pp. 190–196, 2008.

[25] J. N. Mordeson and P. S. Nair, “Fuzzy graphs and fuzzy hyper-
graphs,” Physica, vol. 46, 2012.

[26] S. Mathew and M. S. Sunitha, “Types of arcs in a fuzzy graph,”
Information Sciences, vol. 179, no. 11, pp. 1760–1768, 2009.

[27] R. Parvathi and M. G. Karunambigai, “Intuitionistic fuzzy
graphs,” in Computational Intelligence, Theory and applica-
tions, pp. 18–20, International Conference in Germany, 2006.

[28] P. Thirunavukarasu, R. Suresh, and K. K. Viswanathan,
“Energy of a complex fuzzy graph,” Int. J. Math. Sci. Eng. Appl.,
vol. 10, pp. 243–248, 2016.

[29] A. Shannon and K. T. Atanassov, “A first step to a theory of the
intuitionistic fuzzy graphs,” in Proceeding of Fuzzy Based
Expert System, D. Lakov, Ed., pp. 59–61, Springer, Berlin, 1994.

[30] S. Zeng, M. Shoaib, S. Ali, F. Smarandache, H. Rashmanlou,
and F. Mofidnakhaei, “Certain properties of single-valued neu-
trosophic graph with application in food and agriculture orga-
nization,” International Journal of Computational Intelligence
Systems, vol. 14, no. 1, pp. 1516–1540, 2021.

[31] A. N. Gani and S. S. Begum, “Degree, order and size in intuitio-
nistic fuzzy graphs,” International JournalAlgorithm of Com-
puter Mathematics, vol. 3, no. 3, pp. 11–16, 2010.

[32] S. Sahoo andM. Pal, “Intuitionistic fuzzy competition graphs,”
Journal of Applied Mathematics and Computing, vol. 52, no. 1,
pp. 37–57, 2016.

[33] S. Sahoo and M. Pal, “Intuitionistic fuzzy tolerance graphs
with application,” Journal of Applied Mathematics and Com-
puting, vol. 55, no. 1, pp. 495–511, 2017.

[34] S. Sahoo and M. Pal, “Different types of products on intuitio-
nistic fuzzy graphs,” Pacific Science Review A: Natural Science
and Engineering, vol. 17, no. 3, pp. 87–96, 2015.

[35] N. Yaqoob, M. Gulistan, S. Kadry, and H. A. Wahab, “Com-
plex intuitionistic fuzzy graphs with application in cellular net-
work provider companies,” Mathematics, vol. 7, no. 1, p. 35,
2019.

[36] A. M. Alkouri and A. R. Salleh, “Complex intuitionistic fuzzy
sets,” AIP Conf. Proc., vol. 1482, pp. 464–470, 2012.

9Journal of Function Spaces



Research Article
Fourth Hankel Determinant for a Subclass of Starlike Functions
Based on Modified Sigmoid

Wali Khan Mashwani ,1 Bakhtiar Ahmad ,2 Nazar Khan,3 Muhammad Ghaffar Khan ,1

Sama Arjika ,4,5 Bilal Khan ,6 and Ronnason Chinram 7

1Institute of Numerical Sciences, Kohat University of Science and Technology, Kohat, Pakistan
2Govt. Degree College Mardan, 23200 Mardan, Pakistan
3Department of Mathematics, Abbottabad University of Science and Technology, Abbottabad 22010, Pakistan
4Department of Mathematics and Informatics, University of Agadez, Agadez, Niger
5International Chair of Mathematical Physics and Applications (ICMPA-UNESCO Chair), University of Abomey-Calavi,
Post Box 072, Cotonou 50, Benin
6School of Mathematical Sciences and Shanghai Key Laboratory of PMMP, East China Normal University, 500 Dongchuan Road,
Shanghai 200241, China
7Algebra and Applications Research Unit, Division of Computational Science, Faculty of Science, Prince of Songkla University,
Hat Yai, Songkhla 90110, Thailand

Correspondence should be addressed to Sama Arjika; rjksama2008@gmail.com

Received 22 May 2021; Revised 11 August 2021; Accepted 30 November 2021; Published 16 December 2021

Academic Editor: John R. Akeroyd

Copyright © 2021 Wali Khan Mashwani et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

In our present investigation, we obtain the improved third-order Hankel determinant for a class of starlike functions connected
with modified sigmoid functions. Further, we investigate the fourth-order Hankel determinant, Zalcman conjecture, and also
evaluate the fourth-order Hankel determinants for 2-fold, 3-fold, and 4-fold symmetric starlike functions.

1. Introduction and Motivation

Denoted by A , the class of functions f which are analytic in

U = z : z ∈ℂ and zj j < 1f g, ð1Þ

and are of the form

f zð Þ = z + 〠
∞

n=2
anz

n ∀z ∈Uð Þ: ð2Þ

Also, let S be a subclass of class A , containing all univa-
lent functions in U, and be normalized by the conditions

f 0ð Þ = 0,
f ′ 0ð Þ = 1:

ð3Þ

In 1916, working on the coefficients an of class S , Bieber-
bach conjectured that

anj j ≤ n n = 2, 3,⋯,ð Þ, ð4Þ

which was proved by De Branges in 1984 (see [1]). From 1916
to 1984, for some subclasses of S, many researchers used dif-
ferent techniques and established a number of results. The
classes S∗, K , and R, namely, the classes of convex, starlike,
and bounded turning functions, respectively, are some major
subclasses of the class S. These classes are defined as follows:
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S∗ = f ∈ S : Re
zf ′ zð Þ
f zð Þ

 !
> 0 ∀z ∈Uð Þ

( )
,

K = f ∈ S : Re
zf ′ zð Þ
� �

′

f ′ zð Þ

0
@

1
A > 0 ∀z ∈Uð Þ

8<
:

9=
;,

R = f ∈ S : Re f ′ zð Þ
h i

> 0 ∀z ∈Uð Þ
n o

:

ð5Þ

Furthermore, we say that an analytic function f1ðzÞ is
subordinated to f2ðzÞ in U and is symbolically written as

f1 zð Þ ≺ f2 zð Þ ∀z ∈Uð Þ, ð6Þ

if there exists a Schwartz function uðzÞ with properties that

u zð Þj j ≤ 1,
u 0ð Þ = 1,

ð7Þ

such that

f1 zð Þ = f2 u zð Þð Þ: ð8Þ

Moreover, if f2ðzÞ is in the class S. Due to [2, 3], we get the
following equivalence relation

f1 0ð Þ = f2 0ð Þ,
f1 Uð Þ ⊆ f2 Uð Þ:

ð9Þ

Now, by using the principle of subordination, a general-
ized set of the classes S∗,K , and R are given, respectively,
as follows:

S∗ ψð Þ = f ∈ S :
zf ′ zð Þ
f zð Þ ≺ ψ zð Þ = 1 + z

1 − z
∀z ∈Uð Þ

( )
, ð10Þ

K ψð Þ = f ∈ S :
zf ′ zð Þ
� �

′

f ′ zð Þ
≺ ψ zð Þ = 1 + z

1 − z
∀z ∈Uð Þ

8<
:

9=
;,

ð11Þ

R ψð Þ = f ∈ S : f ′ zð Þ ≺ ψ zð Þ = 1 + z
1 − z

∀z ∈Uð Þ
� �

: ð12Þ

By changing the right-hand side in (10), several familiar
classes can be obtained such as if we keep ψðzÞ = ð1 + AzÞ/
ð1 + BzÞ, we get the class of starlike functions associated with
the Janowski functions (see [4]). Moreover, if we take

A = 1,
B = 1 − 2α 0 < α < 1ð Þ,

ð13Þ

then, we have a class of starlike functions of order α (see
[5]). Also, for the choice of ψðzÞ = 1 + ð2/π2Þ
ðlog ðð1 + ffiffiffi

z
p Þ/ð1 − ffiffiffi

z
p ÞÞÞ2, a corresponding class of starlike

functions is obtained, which was introduced by Ronning (see
[6]). Furthermore, if we take ψðzÞ = ffiffiffiffiffiffiffiffiffiffi

1 + z
p

, the class of star-
like functions related with the lemniscate of Bernoulli
domain is resulted which was introduced and investigated
by Jangteng et al. [7, 8]. Next, if we take ψðzÞ = 1 + sin ðzÞ,
the family of starlike functions connected with the sine func-
tion is obtained (see [9]). Mendiratta et al. [10] obtained a
subclass of strongly starlike functions associated with expo-
nential functions for the choice of ψðzÞ = ez. Sharma et al.
[11] derived a class of starlike functions associated with a
cardioid domain by taking ψðzÞ = 1 + ð4/3Þz + ð2/3Þz2:

Moreover, several more subclasses of starlike functions
have recently been presented in [12–15] through selecting
specific functions for ψ, like functions associated with conic
domains, shell-like curves associated with Fibonacci num-
bers, and functions related with Bell numbers.

Lately, based on the techniques of Ma and Minda [16],
Goel and Kumar in [17] defined the class S∗

SG, based on
the subordination principle, as follows:

zf ′ zð Þ
f zð Þ ≺

2
1 + e−z

∀z ∈Uð Þ, ð14Þ

and studied its various important geometric properties.
For a function f of the form (2), Pommerenke [18, 19]

defined Hankel determinant Hq,nð f Þ, parameter q, with n
∈ℕ = f1, 2, 3,⋯g, as follows:

Hq,n fð Þ =

an an+1 ⋯ an+q−1

an+1 an+2 ⋯ an+q

⋮ ⋮ ⋯ ⋮

an+q−1 an+q ⋯ an+2q−2

�����������

�����������
: ð15Þ

The growth of Hq,nð f Þ for fixed integer q and n was eval-
uated for different subfamilies of univalent functions. Jang-
teng et al. [7, 20] investigated the sharp bound of the
determinant H2,2ð f Þ = ja2a4 − a23j for each of the classes K ,
S∗, and R, while sharp estimation for the family of close-
to-convex functions is still unknown (see [21]). On the other
hand, Krishna et al. [22] proved the best estimate of jH2,2ð f Þj
for the class of Bazilevic̆ functions. More detailed work on
H2,2ð f Þ can be seen in [23–27] and also the references cited
therein.

The determinant,

H3,1 fð Þ =
1 a2 a3

a2 a3 a4

a3 a4 a5

��������

��������
, ð16Þ

is known as third-order Hankel determinant and the estima-
tion of this determinant jH3,1ð f Þj is more difficult and hence
a potential attraction for a lot of researchers who focus on
this field. In 1966–1967, Pommerenke defined this Hankel
determinant but was an open problem till 2010. In 2010,

2 Journal of Function Spaces



Babalola [28] was the first researcher who worked on H3,1ð
f Þ and successfully obtained the upper bound of jH3,1ð f Þj
for the functions belonging to the classes S∗,K , and R: A
few mathematicians further expanded on this work to
include other subclasses of holomorphic and univalent func-
tions (see for example [29–35]). Zaprawa [36] enhanced
their work in 2017 by demonstrating

H3,1 fð Þ�� �� ≤
1, f ∈ S∗ð Þ,
49
540 , f ∈Kð Þ,
41
60 , f ∈Rð Þ,

8>>>>><
>>>>>:

ð17Þ

and asserted that these inequalities are still nonsharp. Addi-
tionally, for the sharpness, he thought about the subfamilies
of S∗,K , and R comprising of functions with m-fold sym-
metry and acquired the sharp bounds. Recently, in 2018,
Kowalczyk et al. [37] and Lecko et al. [38] got the sharp
inequalities which are

H3,1 fð Þ�� �� ≤ 4
135 ,

H3,1 fð Þ�� �� ≤ 1
9 ,

ð18Þ

for the classes K and S∗ð1/2Þ, respectively, where the sym-
bol S∗ð1/2Þ indicates the family of starlike functions of
order 1/2.

The main goal of this paper is to investigate the neces-
sary and sufficient conditions for functions to get into the
class S∗

SG in the form of coefficient inequality, convolution
results, and the essential third-order Hankel determinant
for this class in (6) and also for its 2-, 3-, and 4-fold symmet-
ric functions:

2. A Set of Lemmas

Let P be the family of functions p that are holomorphic in U

with ReðpðzÞÞ > 0 and its series form is as follow:

p zð Þ = 1 + 〠
∞

n=1
cnz

n ∀z ∈Uð Þ: ð19Þ

Lemma 1. If p ∈P and it is of the form ((19)), then,

cnj j ≤ 2 n ≥ 1ð Þ, ð20Þ

cn+k − δcnckj j ≤ 2 0 ≤ δ ≤ 1ð Þ, ð21Þ

c2 − ξc21
�� �� ≤ 2 max 1 ; 2ξ − 1j jf g ξ ∈ℂð Þ: ð22Þ

Further results related to Lemma 1 can be found in [39, 40].

Lemma 2 (see [41]). Let p ∈ P have the series expansion of the
form ((19)). Then, for x, σ, ρ ∈ �U =U ∪ f1g,

2c2 = c21 + x 4 − c21
� 	

,

4c3 = c31 + 2 4 − c21
� 	

c1x − c1 4 − c21
� 	

x2 + 2 4 − c21
� 	

1 − xj j2� 	
σ,

8c4 = c41 + 4 − c21
� 	

x c21 x2 − 3x + 3
� 	

+ 4x

 �

− 4 4 − c21
� 	

· 1 − xj j2� 	
c x − 1ð Þσ + �xσ2 − 1 − σj j2� 	

ρ

 �

:
ð23Þ

Lemma 3 (see [42]). Let m, n, l satisfy the inequalities 0 <m
< 1, 0 < r < 1, and

8r 1 − rð Þ mn − 2lð Þ2 + m r +mð Þ − nð Þ2
 �
+m 1 −mð Þ n − 2rmð Þ2 ≤ 4m2 1 −mð Þ2r 1 − rð Þ:

ð24Þ

If p ∈P and has power series (19), then,

lp41 + rp22 + 2mp1p3 −
3
2
np21p2 − p4

����
���� ≤ 2: ð25Þ

3. Improve Upper Bound H3,1ð f Þ for the
Class S∗

SG

To prove Theorem 6, we need the following two lemmas
(Lemma 4 and Lemma 5).

Lemma 4 (see [43]). If f ∈ S∗
SG and is of the form (2), then,

a3 − a22
�� �� ≤ 1

4
: ð26Þ

Lemma 5 (see [43]). Let f ∈ S∗
SG be of the form (2), and then,

a2a3 − a4j j ≤ 1
6
: ð27Þ

We now state and prove Theorem 6.

Theorem 6. Let f ∈ S∗
SG be of the form (2), and then,

a6j j ≤ 21 797
57 600

≃ 0:378 42,

a7j j ≤ 1424 429
2073 600

≃ 0:686 94,

a2a4 − a23
�� �� ≤ 1

16
:

ð28Þ

The result is sharp for function

f zð Þ = z exp
ðz
0

et
2 − 1

t et2 + 1
� 	 dt

 !
= z + 1

4
z3+⋯: ð29Þ

Proof. Since f ∈ S∗
SG, then, there exists a Schwarz function

wðzÞ, given in (7) such that
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zf ′ zð Þ
f zð Þ = 2

1 + e−w zð Þ : ð30Þ

Let

Ψ w zð Þð Þ = 2
1 + e−w zð Þ , ð31Þ

k zð Þ = 1 + c1z + c2z
2+⋯ = 1 +w zð Þ

1 −w zð Þ : ð32Þ

Obviously, the function kðzÞ ∈P and

w zð Þ = k zð Þ − 1
k zð Þ + 1 : ð33Þ

This gives

w zð Þ = k zð Þ − 1
k zð Þ + 1 = c1z + c2z

2 + c3z
3+⋯

2 + c1z + c2z2 + c3z3+⋯
: ð34Þ

From (31) and (34), we have

2
1 + e−w zð Þ = 1 + 1

4 c1z +
1
4 c2 −

1
8 c

2
1

� 
z2 + 11

192 c
3
1 −

1
4 c2c1 +

1
4 c3

� 
z3

+ −
3
128 c

4
1 +

11
64 c

2
1c2 −

1
4 c3c1 −

1
8 c

2
2 +

1
4 c4

� 
z4+⋯,

ð35Þ

while

zf ′ zð Þ
f zð Þ = 1 + a2z + 2a3 − a22

� 	
z2 + a32 − 3a2a3 + 3a4

� 	
z3

+ −a42 + 4a22a3 − 4a2a4 − 2a23 + 4a5
� 	

z4

+ 5a6 − 5a2a5 + a52 − 5a3a4 − 5a32a3 + 5a22a4 + 5a2a23
� 	

z5

+
6a7 − 6a2a6 + 6a22a5 − 6a3a5 + 12a2a3a4 − a62 − 6a32a4

−3a24 + 2a33 − 9a22a23 + 6a42a3

 !
z6

+⋯:

ð36Þ

On equating coefficients of (35) and (36), we get

a2 =
1
4 c1,

ð37Þ

a3 =
1
8 c2 −

1
32 c

2
1, ð38Þ

a4 =
7

1152 c
3
1 −

5
96 c2c1 +

1
12 c3,

ð39Þ

a5 = −
17

18 432 c
4
1 +

7
384 c

2
1c2 −

1
24 c3c1 −

3
128 c

2
2 +

1
16 c4,

ð40Þ

a6 = −
257

1843 200 c
5
1 −

107
23 040 c

3
1c2 +

31
1920 c3c

2
1 +

139
7680 c1c

2
2

−
11
320 c4c1 −

19
480 c3c2 +

1
20 c5,

ð41Þ

a7 =
33 599

132 710 400 c
6
1 −

73
2211 840 c

4
1c2 −

79
17 280 c

3
1c3

−
1451

184 320 c
2
1c

2
2 +

109
7680 c4c

2
1 +

47
1440 c1c2c3 −

7
240 c5c1

+ 55
9216 c

3
2 −

13
384 c4c2 −

5
288 c

2
3 +

1
24 c6:

ð42Þ

Now from (41), we have

a6j j =

1
96 c5 −

9
10 c1c4

� 
+ 19
480 c5 − c1c4ð Þ + 31

1920 c
2
1 c3 −

107
372 c1c2

� 

−
257

1843200 c
5
1 +

139
7680 c1c2

���������

���������
≤

1
96 c5 −

9
10 c1c4

����
���� + 19

480 c5 − c1c4j j + 31
1920 c1j j2 c3 −

107
372 c1c2

����
����

+ 257
1843200 c1j j5 + 139

7680 c1j j c2j j:

ð43Þ

By applying (20) and (21) to above we get

a6j j ≤ 21 797
57 600 : ð44Þ

Now from (42), we have

a7j j =

1
24 c6 −

5
12 c

2
3

� 
−

13
384 c2 c4 −

55
312 c

2
2

� 
−

7
240 c1 c5 −

109
224 c1c4

� 

+ 47
1440 c1c2 c3 −

1451
6016 c1c2

� 
+ 33 599
132 710 400 c

6
1 −

73
2211 840 c

4
1c2 −

79
17 280 c

3
1c3

���������

���������
≤

1
24 c6 −

5
12 c

2
3

����
���� + 13

384 c2j j c4 −
55
312 c

2
2

����
���� + 7

240 c1j j c5 −
109
224 c1c4

����
���� + 47

1440 c1j j c2j j

� c3 −
1451
6016 c1c2

����
���� + 33 599

132 710 400 c1j j6 + 73
2211 840 c1j j4 c2j j + 79

17 280 c1j j3 c3j j:

ð45Þ

By applying (20) and (21) to the above, we get

a7j j ≤ 1424 429
2073 600 : ð46Þ

Now, from (37)–(39), we have

a2a4 − a23
�� �� = 5

9216 c
4
1 −

1
192 c

2
1c2 +

1
48 c3c1 −

1
64 c

2
2

����
����: ð47Þ
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Using Lemma 2, we get

a2a4 − a23
�� �� = −

7
9216 c

4
1 −

1
192 c

2
1x

2 4 − c21
� 	���� −

1
256 x

2 4 − c21
� 	2

+ 1
96 c1 4 − c21

� 	
1 − xj j2� 	

z
����:

ð48Þ

Let jxj = y,y ∈ ½0, 1�,c1 = c,c ∈ ½0, 2�, and jzj = 1, along with
triangle inequality, and we have

a2a4 − a23
�� �� ≤ 7

9216 c
4 + 1

192 c
2y2 4 − c2
� 	

+ 1
256 y

2 4 − c2
� 	2

+ 1
96 c 4 − c2
� 	

1 − y2
� 	

=G c, yð Þ:
ð49Þ

Differentiating (49) partially with respect to y, we have

∂G c, yð Þ
∂y

= c2 − 8c + 12
� 	

4 − c2
� 	

y

384 > 0, ð50Þ

showing thatGðc, yÞis an increasing function in inter-
valy ∈ ½0, 1�,c ∈ ½0, 2�,so the maximum is attained aty = 1,
that is,

max G c, yð Þ =G c, 1ð Þ = 7
9216 c

4 + 1
192 c

2 4 − c2
� 	

+ 1
256 4 − c2

� 	2 = F cð Þ:
ð51Þ

Now

F ′ cð Þ = 7
2304 c

3 + 1
96 c 4 − c2
� 	

−
1
96 c

3 −
1
64 c 4 − c2
� 	

= 7
2304 c

3 −
1
192 c 4 − c2

� 	
−

1
96 c

3,
ð52Þ

since F ′ðcÞ = 0 has root at c = 0 and also

F ′′ cð Þ = −
1
48 < 0, ð53Þ

so the maximum is attained atc = 0; therefore, we have

F cð Þ = 1
16 : ð54Þ

Hence,

a2a4 − a23
�� �� ≤ F cð Þ = 1

16 : ð55Þ

For the third Hankel determinant, we need the following
result.

Lemma 7 (see [17]). Let f ∈ S∗
SG be of the form (2). Then,

a2j j ≤ 1
2
,

a3j j ≤ 1
4
,

a4j j ≤ 1
6
,

a5j j ≤ 1
8
:

ð56Þ

Theorem 8. Let f ∈ S∗
SG be of the form (2). Then,

H3,1 fð Þ�� �� ≤ 43
576

≃ 0:07465: ð57Þ

Proof. Since from (16), we have

H3,1 fð Þ = a3 a2a4 − a23
� 	

− a4 a4 − a2a3ð Þ + a5 a3 − a22
� 	

, ð58Þ

by applying triangle inequality, we obtain

H3,1 fð Þ�� �� ≤ a3j j a2a4 − a23
�� �� + a4j j a4 − a2a3j j + a5j j a3 − a22

�� ��:
ð59Þ

Now, using Lemmas 4–7 and Theorem 6 in conjunction
with (59), we can get the required result.

4. Bounds of H4,1ð f Þ for the Class S∗
SG

In recent years, researchers has started to evaluate the
fourth-order Hankel determinant for different subclasses of
analytic functions. The trend of finding the fourth-order
Hankel determinant in geometric function theory started
in 2018, when Arif et al. [44] studied and obtained the upper
bound for the class of bounded turning functions. Recently
Zhang and Tang [31] studied the fourth-order Hankel deter-
minant for a subclass of starlike functions associated with
the sine function. Inspired from the recent research going
on and from the above works, we discuss here the fourth-
order Hankel determinant for the class S∗

SG:
From (15), we can write H4,1ð f Þ as

H4,1 fð Þ = a7H3,1 fð Þ − a6δ1 + a5δ2 − a4δ3, ð60Þ

where

δ1 = a3 a2a5 − a3a4ð Þ − a4 a5 − a2a4ð Þ + a6 a3 − a22
� 	

, ð61Þ

δ2 = a3 a3a5 − a24
� 	

− a5 a5 − a2a4ð Þ + a6 a4 − a2a3ð Þ, ð62Þ

δ3 = a4 a3a5 − a24
� 	

− a5 a2a5 − a3a4ð Þ + a6 a4 − a2a3ð Þ:
ð63Þ
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Theorem 9. Let f ∈ S∗
SG be of the form (2), and then,

a2a5 − a3a4j j ≤ 5
36

: ð64Þ

Proof. From equations (37), (38), (39), and (40), we get

a2a5 − a3a4j j = −
1

24 576 c
5
1 +

5
2304 c

3
1c2 −

1
128 c3c

2
1

���� + 1
1536 c1c

2
2

+ 1
64 c4c1 −

1
96 c3c2

���� = 5
2304 c

3
1 c2 −

3
360 c

2
1

� ����
+ 1
64 c1 c4 −

1
2 c1c3

� 
−
1
96 c2 c3 −

1
16 c1c2

� ����
≤

5
2304 c1j j3 c2 −

3
360 c

2
1

����
���� + 1

64 c1j j c4 −
1
2 c1c3

����
����

+ 1
96 c2j j c3 −

1
16 c1c2

����
����:

ð65Þ

Now, making use of (20), (21), and (22) in conjunction
with (65), we can get the required result.

Theorem 10. Let f ∈ S∗
SG be of the form (2), and then,

a5 − a2a4j j ≤ 1
8
: ð66Þ

Proof. From equations (37), (39), and (40), we get

a5 − a2a4j j = 1
16

5
128 c

4
1 −

1
2 c

2
1c2 + c3c1 +

3
8 c

2
2 − c4

����
����: ð67Þ

Applying Lemma 3 to the last term, we get the required
result.

Theorem 11. Let f ∈ S∗
SG be of the form (2), and then,

a3a5 − a24
�� �� ≤ 7405

82 944
: ð68Þ

Proof. From equations (37), (39), and (40), we get

a3a5 − a24
�� �� = −

43
5308 416 c

6
1 −

23
442 368 c

4
1c2 +

1
3456 c

3
1c3

����
+ 11
36 864 c

2
1c

2
2−

1
512 c4c

2
1 +

1
288 c1c2c3 −

3
1024 c

3
2

+ 1
128 c4c2 −

1
144 c

2
3

���� = −
43

5308 416 c
6
1

����
−

23
442 368 c

4
1c2 −

1
144 c3 c3 −

1
2 c1c2

� 

−
3

1024 c
2
2 c2 −

11
108 c

2
1

� 
+ 1
128 c4 c2 −

1
4 c

2
1

� 

+ 1
3456 c

3
1 c3 −

23
128 c1c2

� ���� ≤ 43
5308 416 c1j j6

+ 23
442 368 c1j j4 c2j j + 1

144 c3j j c3 −
1
2 c1c2

����
����

+ 3
1024 c2j j2 c2 −

11
108 c

2
1

����
���� + 1

128 c4j j c2 −
1
4 c

2
1

����
����

+ 1
3456 c1j j3 c3 −

23
128 c1c2

����
����:

ð69Þ

Now, making use of (20), (21), and (22) in conjunction
with (69), we can get the required result.

Theorem 12. Let f ∈ S∗
SG be of the form (2), and then,

H4,1 fð Þ�� �� ≤ 16 431 024 581
119 439 360 000

≃ 0:137 57: ð70Þ

Proof. From (15), we have

H4,1 fð Þ = a7H3,1 fð Þ − a6δ1 + a5δ2 − a4δ3, ð71Þ

where δ1,δ2, and δ3 are defined in (61), (62), and (63),
respectively. Now, using triangle inequalities, we have

H4,1 fð Þ�� �� ≤ a7j j H3,1 fð Þ�� �� + a6j j δ1j j + a5j j δ2j j + a4j j δ3j j,
ð72Þ

since

δ1j j = a3 a2a5 − a3a4ð Þ − a4 a5 − a2a4ð Þ + a6 a3 − a22
� 	�� ��

≤ a3j j a2a5 − a3a4j j + a4j j a5 − a2a4j j + a6j j a3 − a22
�� ��:

ð73Þ

By applying Lemmas 4 and 7 and Theorems 6, 9, and 10,
we get

δ1j j ≤ 34 597
230 400 : ð74Þ

And also,

δ2j j = a3 a3a5 − a24
� 	

− a5 a5 − a2a4ð Þ + a6 a4 − a2a3ð Þ�� ��
≤ a3j j a3a5 − a24

�� �� + a5j j a5 − a2a4j j + a6j j a4 − a2a3j j:
ð75Þ

Using Lemmas 5 and 7 and Theorems 6, 10, and 11 we
get

δ2j j ≤ 837 853
8294 400 : ð76Þ
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Also, again,

δ3j j = a4 a3a5 − a24
� 	

− a5 a2a5 − a3a4ð Þ + a6 a4 − a2a3ð Þ�� ��
≤ a4j j a3a5 − a24

�� �� + a5j j a2a5 − a3a4j j + a6j j a4 − a2a3j j,
ð77Þ

Using Lemmas 5 and 7 and Theorems 6, 9, and 11, we
get

δ3j j ≤ 1185 817
12 441 600 : ð78Þ

Now, using the values of (74), (76), and (78) along with
Theorem 6 and Lemma 7 to (72), we get the desired the
estimate.

5. Zalcman Conjecture for Class S∗
SG

One of the main conjectures in the geometric function
theory, suggested by Lawrence Zalcman in 1960, is that the
coefficients of class S satisfy the inequality

∣a2n − a2n−1∣ ≤ n − 1ð Þ2: ð79Þ

Only the well-known Koebe function kðzÞ = z/ð1 − zÞ2
and its rotations have equality in the above form. For the
popular Fekete-Szego inequality, when n = 2, the equality
holds. Recently, Khan et al. [43] evaluated the Zalcman con-
jecture for the class of starlike functions with respect to sym-
metric points associated with the sine function. Many
researchers have studied the Zalcman function in the litera-
ture [45–47].

Theorem 13. Let f ∈ S∗
SG be of the form (2), and then,

a5 − a23
�� �� ≤ 1

8
: ð80Þ

The result is sharp for function

f zð Þ = z exp
ðz
0

et
4 − 1

t et4 + 1
� 	 dt

 !
= z + 1

8
z5+⋯: ð81Þ

Proof. From equations (37) and (40), we get

a5 − a23
�� �� = 1

16 −
35
1152 c

4
1 +

5
12 c

2
1c2 −

2
3 c3c1 −

5
8 c

2
2 + c4

����
����:
ð82Þ

Using Lemma 3 and equation (82), we can get the
required result.

6. Bounds of H4,1ð f Þ for 2-Fold, 3-Fold, and 4-
Fold Symmetric Functions

Let m ∈ℕ = f1, 2, 3,⋯,g: It is called m-fold symmetric if a
rotation of domain U about the origin through an angle 2π

/m carries itself on the domain U. It is obvious that in U,
an analytic function f is m-fold symmetric if

f e
2π
mz

� �
= e

2π
m f zð Þ ∀z ∈Uð Þ: ð83Þ

The set of m-fold symmetric univalent functions with
the following series:

f zð Þ = z + 〠
∞

k=2
amk+1z

mk+1 ∀z ∈Uð Þ, ð84Þ

is referred to as SðmÞ.
The subclass S∗ðmÞ

SG is a collection of m-fold symmetric
starlike functions associated with the modified sigmoid func-
tion. More precisely, an analytic function f of the form (84)

belongs to class S∗ðmÞ
SG if and only if

zf ′ zð Þ
f zð Þ = 2

1 + e− p zð Þ−1ð Þ/p zð Þ+1ð Þ p ∈P mð Þ
� �

, ð85Þ

where the set P ðmÞ is defined by

P mð Þ = p ∈P : p zð Þ = 1 + 〠
∞

k=1
cmkz

mk ∀z ∈Uð Þ
( )

: ð86Þ

Theorem 14. If f ∈ S∗ð2Þ
SG and be of the form (84), then,

a3a7 − a25
�� �� ≤ 751

21 504
: ð87Þ

Proof. Since f ∈ S∗ð2Þ
SG , therefore, there exists a function p ∈

P ð2Þ such that

zf ′ zð Þ
f zð Þ = 2

1 + e− p zð Þ−1ð Þ/p zð Þ+1ð Þ : ð88Þ

Using the series forms (84) and (86), when m = 2 in the
above relation, we have

a3 =
1
8 c2,

ð89Þ

a5 =
1
16 c4 −

3
128 c

2
2, ð90Þ

a7 =
55

10 752 c
3
2 −

13
448 c4c2 +

1
28 c6:

ð91Þ
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Now, using (89), (90), and (91), we get

a3a7 − a25
�� �� = 31

344 064 c
4
2 −

5
7168 c

2
2c4 +

1
224 c6c2 −

1
256 c

2
4

����
����

= 31
344 064 c

4
2 +

1
224 c2 c6 −

5
32 c2c4

� 
−

1
256 c

2
4

����
����

≤
31

344 064 c2j j4 + 1
224 c2j j c6 −

5
32 c2c4

����
���� + 1

256 c4j j2:

ð92Þ

Now, using (20) and (21) to the above, we get the
required result.

Theorem 15. If f ∈ S∗ð2Þ
SG and be of the form (84), then,

a5 − a23
�� �� ≤ 1

8
: ð93Þ

Proof. Using (89) and (90), we have

a5 − a23
�� �� = 1

16 c4 −
5
8 c

2
2

����
����: ð94Þ

Using (21) to the above, we get the required result.

Theorem 16. If f ∈ S∗ð2Þ
SG and be of the form (84), then,

H4,1 fð Þ�� �� ≤ 751
172 032

: ð95Þ

Proof. Since f ∈ S∗ð2Þ
SG , therefore, a2 = a4 = a4 = 0 and we have

H4,1 fð Þ = a5 − a23
� 	

a3a7 − a25
� 	

: ð96Þ

Then,

H3,1 fð Þ�� �� = a5 − a23
�� �� a3a7 − a25

�� ��, ð97Þ

Using (87) and (93), we get the required result.

Theorem 17. If f ∈ S∗ð3Þ
SG and be of the form (84), then,

H4,1 fð Þ�� �� ≤ 1
432

: ð98Þ

Proof. Since f ∈ S∗ð3Þ
SG , therefore, there exists a function p ∈

P ð3Þ such that

zf ′ zð Þ
f zð Þ = 2

1 + e− p zð Þ−1ð Þ/p zð Þ+1ð Þ : ð99Þ

Using the series forms (84) and (86), when m = 3 in the
above relation, we have

a4 =
1
12 c3,

a7 =
1
24 c6 −

5
288 c

2
3:

ð100Þ

Now,

H4,1 fð Þ = a24 a24 − a7
� 	

: ð101Þ

Therefore,

H4,1 fð Þ�� �� = −
1

3456 c
2
3 c6 −

7
12 c

2
3

� ����
���� = 1

3456 c3j j2 c6 −
7
12 c

2
3

����
����:

ð102Þ

Using (20) and (21), we get the desired result.

Theorem 18. If f ∈ S∗ð4Þ
SG and be of the form (84), then,

H4,1 fð Þ�� �� ≤ 1
64

: ð103Þ

Proof. Since f ∈ S∗ð4Þ
SG , therefore, there exists a function p ∈

P ð4Þ such that

zf ′ zð Þ
f zð Þ = 2

1 + e− p zð Þ−1ð Þ/p zð Þ+1ð Þ : ð104Þ

Using the series forms (84) and (86), when m = 4 in the
above relation, we have

a5 =
1
16 c4: ð105Þ

Since f ∈ S∗ð4Þ
SG , therefore, a2 = a3 = a4 = a6 = a7 = 0 and

we have

H4,1 fð Þ = a25,

H4,1 fð Þ = 1
256 c

2
4:

ð106Þ

Now,

H4,1 fð Þ�� �� = 1
256 c4j j2: ð107Þ

Using (20) to the above, we get the required result.

7. Conclusion

In our present investigation, we have obtained the improved
third-order Hankel determinant for a class of starlike
functions connected with modified sigmoid functions. Fur-
thermore, we have investigated the fourth-order Hankel
determinant and Zalcman conjecture and also evaluated
fourth-order Hankel determinants for 2-fold, 3-fold, and 4-
fold symmetric starlike functions.
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Bessel functions are related with the known Bessel differential equation. In this paper, we determine the radius of starlikeness for
starlike functions with symmetric points involving Bessel functions of the first kind for some kinds of normalized conditions. Our
prime tool in these investigations is the Mittag-Leffler representation of Bessel functions of the first kind.

1. Introduction and Definitions

Let Eðz0, rÞ = fz ∈ℂ : jz − z0j < rg and Eð0, 1Þ ⊂ Eðz0, rÞ
denote the interior of the unit circle with center at origin.
Suppose that A represent functions f in Eð0, 1Þ:

f zð Þ = z + a2z
2+⋯: ð1Þ

Obviously, f ð0Þ = 0 along with f ′ð0Þ = 1. The subclass
S ⊂A only contains univalent (one-to-one) functions and
S∗ ⊂ S represent the set of starlike functions. A function f
for which f ðEð0, 1ÞÞ is star-shaped is starlike if Re fzf ′ðzÞ/
f ðzÞg > 0. Also, f ∈ S s if

Re 2zf ′ zð Þ
f zð Þ − f −zð Þ

( )
> 0, z ∈ E 0, 1ð Þ, ð2Þ

and f ∈ S sðηÞ if

Re 2zf ′ zð Þ
f zð Þ − f −zð Þ

( )
> η, 0 ≤ η < 1, z ∈ E 0, 1ð Þ: ð3Þ

Let

r∗ fð Þ = sup r > 0 : Re 2zf ′ zð Þ
f zð Þ − f −zð Þ

( )
> 0, z ∈ E 0, rð Þ

( )
,

r∗η fð Þ = sup r > 0 : Re 2zf ′ zð Þ
f zð Þ − f −zð Þ

( )
> η, z ∈ E 0, rð Þ

( )

ð4Þ

be the radii of the classes defined above. We note that r∗ is
the maximum value of the radius such that f ðEð0, r∗ð f ÞÞÞ
∈ S∗ and r∗η is the maximum value of the radius such that
f ðEð0, r∗η ð f ÞÞÞ ∈ S∗ with symmetric points. Consider the
following representation of the function bμ as in [1], which
satisfies the well-known Bessel differential equation:

bμ zð Þ =〠
j≥0

−1ð Þj
j!Γ j + μ + 1ð Þ

z
2
� �2j+μ

= 〠
j≥0j!

−1ð Þj
j + μð Þ!

z
2
� �2j+μ

, ð5Þ

where z, μ ∈ℂ such that μ ≠ −1, −2, −3,⋯. Observe that
bμðzÞ ∉A. Thus, we consider the following normalizations:

f μ zð Þ = 2μΓ μ + 1ð Þbμ zð Þ� �1/μ, μ ≠ 0, ð6Þ
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kμ zð Þ = 2μΓ μ + 1ð Þz1−μbμ zð Þ, ð7Þ

ℓμ zð Þ = 2μΓ μ + 1ð Þz1− μ/2ð Þbμ
ffiffiffi
z

p� �
: ð8Þ

Clearly, the function f μ,kμ,ℓμ ∈A . We see that

f μ zð Þ = exp 1
μ
log 2μΓ μ + 1ð Þbμ zð Þ� �	 


: ð9Þ

The geometric behavior and properties of the functions f μ,
kμ, and ℓμ were studied by Brown, Kreyszig, Robertson, and
many others (for detail, see [2–4] and also the references
therein). The related problems were also studied in [3, 5–8]
with references therein. We study the radius problems for
the functions f μ, kμ, and ℓμ starlike with symmetric points.
Mittag-Leffler expansion for Bessel functions is used as a
prime tool along with the conclusion that the specific positive
roots of the Dini functions are always smaller than the related
zeros bμðzÞ, for reference, see [9].

2. Preliminaries

Lemma 1. Let f : Eð0, 1Þ⟶ℂ be a transcendental function
having the following expansion:

f zð Þ = z
Y
j≥1

1 −
z
zj

 !
, ð10Þ

where zj : jzjj > 1 have the same argument. For a univalent
function f in Eð0, 1Þ, we have

〠
j≥1

1

zj
�� �� − 1

≤ 1: ð11Þ

This result holds if and only if f ∈ S∗, and each of its
derivatives is close to convex in the open unit disk Eð0, 1Þ.
Furthermore, for zj′, the zeroes of the derivative of f , f , and
f ′ are univalent in Eð0, 1Þ and for Eð0, 1Þ,f ðEð0, 1ÞÞ is a
convex-shaped if and only if

〠
j≥1

1
zj′
�� �� − 1

≤ 1: ð12Þ

Lemma 2. The function

ℓμ zð Þ = 2μΓ μ + 1ð Þz1−μ/2bμ
ffiffiffi
z

p� �
∈ S∗ ηð Þ ð13Þ

and each of its derivative is close to convex in Eð0, 1Þ if and
only if μ > μ0ðηÞ, where μ0ðηÞ ≃ 0:5623⋯ is a unique zero
of ℓμð1Þ = 0 on ð−1,∞Þ:

The proof of Lemma 1 and Lemma 2 is found in [10].

Lemma 3. The function

f μ zð Þ = 2μΓ μ + 1ð Þbμ zð Þ� �1/μ ∈ S∗ ηð Þ ð14Þ

in Eð0, 1Þ if and only if μ > μ1ðηÞ, where 0 < μ1ðηÞ <∞ is the
unique solution of

1 − ηð Þμbμ 1ð Þ = bμ+1 1ð Þ: ð15Þ

In particular, f μ ∈ S
∗ in Eð0, 1Þ if and only if μ > μ1ð0Þ,

where μ1ð0Þ ≃ 0:3908⋯ is a unique zero of

μbμ 1ð Þ = bμ+1 1ð Þ: ð16Þ

Lemma 4. The function

kμ zð Þ = 2μΓ μ + 1ð Þbμ zð Þz1−μ ∈ S∗ ηð Þ, 0 ≤ η < 1, ð17Þ

in Eð0, 1Þ if and only if μ > μ2ðηÞ, where μ2ðηÞ is the unique
zero of

1 − ηð Þbμ 1ð Þ = bμ+1 1ð Þ, ð18Þ

lies in ð~μ,∞Þ, where ~μ ≃ −0:7745⋯ is the unique root of
bμ,1 = 1 and bμ,1 is the first positive zero of bμ: In particular,
kμ ∈ S

∗ in Eð0, 1Þ if and only if μ > μ2ð0Þ, where μ2ð0Þ ≃
−0:3397 ⋯ is a unique zero of

bμ 1ð Þ = bμ+1 1ð Þ: ð19Þ

The proof of Lemma 3 and Lemma 4 can be seen
in [11].

Lemma 5. If z ∈ℂ and η ∈ℝ : η > jzj, then

zj j
η − zj j ≥ Re z

η − z

� 
: ð20Þ

For the detail of the above Lemma 5, we refer to [3]:

3. Main Results

Theorem 6. Let 1 > η ≥ 0, and μ ∈ ð−1, 0Þ: Then, r∗η ðIμÞ, is a
unique positive zero of

zIμ′ zð Þ − ημIμ zð Þ = 0, ð21Þ

where IμðzÞ = i−μbμðizÞ. Moreover, if μ > 0, then r∗η ðbμÞ is the
least positive zero of

zbμ′ zð Þ − ημbμ zð Þ = 0: ð22Þ

Proof. Using Lemma 3, we see that the function f μðzÞ =
ð2μΓðμ + 1ÞbμðzÞÞ1/μ∈S∗ðηÞ in Eð0, 1Þ with respect to z iff
μ > μ1ðηÞ, where μ1ðηÞ is a unique zero of
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1 − ηð Þμbμ 1ð Þ = bμ+1 1ð Þ, ð23Þ

lies in ð0,∞Þ: Suppose bμ,j is the jth positive root of bμðzÞ.
By using infinite product representation,

bμ zð Þ = 1
Γ 1 + μð Þ

z
2
� �μY

j≥1
1 − z2

b2μ,j

 !
: ð24Þ

Also, as given in [12], we see that f μ has the following form:

f μ zð Þ = z
Y
j≥1

1 − z

b2μ,j

 !

= 〠
j≥0

−1ð ÞjΓ 1 + μð Þ
j!Γ μ + j + 1ð Þ z

μ+2j
" #1/μ

= z −
1

4μ μ + 1ð Þ z
3+⋯, μ ≠ 0:

ð25Þ

From Lemma 3, we see that for μ > μ∗ ≃ −0:7745⋯ the
unique value of the root of f μð1Þ = 0 or bμ,1 = 1, we have
bμ,1 > 1, and bμ,j > 1,j = 1, 2,⋯. The above result is immedi-
ate, if bμ,1 is increasing on ð−1,∞Þ: Using (24) and (25), we
can write

−bμ zð Þ = bμ −zð Þ,
−bμ′ zð Þ = bμ′ −zð Þ:

ð26Þ

Also, from (6), we have

−f μ zð Þ = f μ −zð Þ,
f μ′ −zð Þ = −1ð Þf μ′ zð Þ,

ð27Þ

which in the context of zbμ′ðzÞ − μbμðzÞ = −zbμ+1ðzÞ is equiv-
alent to the Mittag-Leffler representation:

1
bμ zð Þ bμ+1 zð Þ =〠

j≥1

2z
b2μ,j − z2

: ð28Þ

Consequently,

bμ+1 −zð Þ
bμ −zð Þ = −

bμ+1 zð Þ
bμ zð Þ : ð29Þ

In view of (6), (25), and (27), we can write

zf μ′ −zð Þ
f μ −zð Þ = −1 + 1

μ
〠
j≥1

2z2
b2μ,j − z2

= − = −
1
μ

zbμ′ zð Þ
bμ zð Þ : ð30Þ

Using Lemma 1, we find that for j ∈ℕ, μ = −1, and
z ∈ Eð0, bμ,1Þ, the following inequality

zj j2
b2μ,j − zj j2

≥ Re z2

b2μ,j − z2

 !
ð31Þ

implies that

Re
zf μ′ −zð Þ
f μ −zð Þ ≤ −1 + 1

μ
〠
j≥1

2 zj j2
b2μ,j − zj j2

= −
zj jf μ′ zj jð Þ
f μ zj jð Þ : ð32Þ

When jzj < bμ,1, we observe that

Re
zf μ′ −zð Þ
f μ −zð Þ

( )
≤ −1 + 1

μ
〠
j≥1

2r2
b2μ,j − r2

≤ −1 + 1
μ
〠
j≥1

2
b2μ,j − 1

= −
f μ′ 1ð Þ
f μ 1ð Þ :

ð33Þ

As in [12], we see that bμ,j′ > 0 on ð0,∞Þ for a fixed

j ∈N: Thus, f μ′ð1Þ/f μð1Þ is increasing on ð0,∞Þ, and

−ð f μ′ð1Þ/f μð1ÞÞ is decreasing on ð0,∞Þ. Also,

−
f μ′ 1ð Þ
f μ 1ð Þ < −η⇔ μ < μ1 ηð Þ, ð34Þ

where μ1ðηÞ is the unique zero of

f μ′ 1ð Þ = ηf μ 1ð Þ or ημbμ 1ð Þ = bμ′ 1ð Þ or 1 − ηð Þμbμ 1ð Þ = bμ+1 1ð Þ:
ð35Þ

We also note that

zf μ′ −zð Þ
f μ −zð Þ = 1 −

bμ+1 zð Þ
μbμ zð Þ , ð36Þ

when μ ∈ ð−1, 0Þ: For −1 < μ < −∞, the Dini function
zbμ′ðzÞ + ηbμðzÞ has real roots except a pair of complex
conjugate roots (for detail, see [1]). Thus,

f μ −zð Þ ∈ S∗ ηð Þ, η ∈ −1, 0ð Þ, ð37Þ

in Eð0, 1Þ if and only if μ < μ1ðηÞ: Considering (5),
(30), (33), and (36), we have

2zf μ′ zð Þ
f μ zð Þ − f μ −zð Þ =

2zf μ zð Þbμ′ zð Þ
μ f μ zð Þ + f μ zð Þ
� �

bμ zð Þ

= 1
μ

zbμ′ zð Þ
bμ zð Þ

= 1 − 1
μ
〠
j≥1

2z2
b2μ,j − z2

:

ð38Þ
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Also, from (38), it is obvious that

Re
2zf μ′ zð Þ

f μ zð Þ − f μ −zð Þ ≥ 1 − 1
μ
〠
j≥1

2 zj j2
b2μ,j − zj j2

=
zj jf μ′ zj jð Þ
f μ zj jð Þ

= Re
zf μ′ zð Þ
f μ zð Þ :

ð39Þ

As in [1], for 1 > η ≥ 0 and μ ∈ ð−1, 0Þ, r∗η ðIμÞ is the

unique value of positive zero of zIμ′ðzÞ − ημIμðzÞ = 0:
Moreover, if μ > 0, then we have r∗ηðbμÞ which is the

least positive zero of zbμ′ðzÞ − ημbμðzÞ = 0:

Theorem 7. If μ > −1, then r∗η ðkμÞ > 0 is the smallest zero of

zbμ′ zð Þ + 1 − η − μð Þbμ zð Þ = 0, ð40Þ

where kμðzÞ = 2μΓðμ + 1ÞbμðzÞðzÞ1−μ:

Proof. By Lemma 4, the function

kμ zð Þ = 2μΓ μ + 1ð Þ bμ zð Þ� �1−μ ∈ S∗ ηð Þ, ð41Þ

for η ∈ ð−1, 0Þin the open unit disk Eð0, 1Þ if and only if
μ < μ2ðηÞ, where μ2ðηÞ is the unique value of the zero of
the following equation:

1 − ηð Þbμ 1ð Þ = bμ+1 1ð Þ: ð42Þ

Suppose that bμ,j is the jth positive zero of bμðzÞ given
by (24) and (25). Consider the normalization (7) such that

kμ −zð Þ = −1ð Þkμ zð Þ: ð43Þ

We write

zkμ′ −zð Þ
kμ −zð Þ = −

zkμ′ zð Þ
kμ zð Þ = −1 + μ − ∂ bμ

� �
zð Þ = −1 +

zbμ+1 zð Þ
bμ zð Þ :

ð44Þ

For μ > −1 and r = jzj < bμ,1, we see that

Re
zkμ′ −zð Þ
kμ −zð Þ ≤ −

zkμ′ rð Þ
kμ rð Þ = −1 +〠

j≥1

2 zj j2
b2μ,j − zj j2

= −
kμ′ 1ð Þ
kμ 1ð Þ :

ð45Þ

For detail, we refer to [12]. Since the function bμ,j′ > 0
on ð−1,∞Þ for fixed j ∈ℕ, thus kμ′ð1Þ/kμð1Þ is increasing

on ð~μ,∞Þ, and −ðkμ′ð1Þ/kμð1ÞÞ is decreasing on ð~μ,∞Þ

and −ðkμ′ð1Þ/kμð1ÞÞ < −η if and only if μ < μ2ðηÞ, where
μ2ðηÞ is the unique value of the root of

kμ′ 1ð Þ = ηkμ 1ð Þor 1 − μ − ηð Þbμ 1ð Þ + bμ′ 1ð Þ
= 0 or 1 − ηð Þbμ 1ð Þ
= bμ+1 1ð Þ:

ð46Þ

Thus,

zbμ′ −zð Þ
bμ −zð Þ = −1 + Re 〠

j≥1

2z2
b2μ,j − z2

≤ −1 +〠
j≥1

2 zj j2
b2μ,j − zj j2

= −
zj jkμ′ zj jð Þ
kμ zj jð Þ

= − Re
zkμ′ zð Þ
kμ zð Þ ,

ð47Þ

and equality holds for jzj = r: The above inequality implies
that the function kμð−zÞ∈S∗ðηÞ,η ∈ ð−1, 0Þ, in Eð0, 1Þ if
and only if μ < μ2ðηÞ. Considering normalization in (7),
we can write

kμ −zð Þ = −1ð Þkμ zð Þ 2zkμ′ zð Þ
kμ zð Þ − kμ −zð Þ

=
zbμ′ zð Þ
bμ zð Þ + 1 − μð Þ

= 1 −〠
j≥1

2z2
b2μ,j − z2

:

ð48Þ

From (48), it is known that

Re
2zkμ′ zð Þ

kμ zð Þ − kμ −zð Þ

( )
= 1 − Re 〠

j≥1

2z2
b2μ,j − z2

≥ 1 −〠
j≥1

2 zj j2
b2μ,j − zj j2

=
zj jkμ′ zj jð Þ
kμ zj jð Þ

= Re
zkμ′ zð Þ
kμ zð Þ :

ð49Þ

For1 > η ≥ 0 and μ > −1, we see that r∗η ðkμÞ is the least
positive zero of the following equation:

zbμ′ zð Þ + 1 − η − μð Þbμ zð Þ = 0, ð50Þ

where kμðzÞ = 2μΓðμ + 1ÞbμðzÞðzÞ1−μ:

4 Journal of Function Spaces



Theorem 8. If μ > −1 and 1 > η ≥ 0, then r∗ηðℓμÞ is the least
positive zero of the differential equation zbμ′ðzÞ + ð2 − 2η − μÞ
bμðzÞ = 0, where ℓμðzÞ = 2μΓðμ + 1Þbμð

ffiffiffi
z

p ÞðzÞ1−μ/2:

Proof. Assume that bμ,j is the jth positive zero of bμðzÞ given
by (24) and (25). Considering the normalization given in (7),
we write

ℓμ −zð Þ = 2μΓ μ + 1ð Þbμ
ffiffiffiffiffi
−z

p� �
−zð Þ1− μ/2ð Þ: ð51Þ

Since

ℓμ zð Þ = 2μΓ μ + 1ð Þbμ
ffiffiffi
z

p� �
zð Þ1− μ/2ð Þ

=〠
j≥0

−1ð ÞjΓ 1 + μð Þ
4j j!Γ μ + j + 1ð Þ z

1+j

= z
Y
j≥1

1 − z

b2μ,j

 !
,

ð52Þ

so we can write

Re
zℓμ′ zð Þ
ℓμ zð Þ = 1 − μ

2 + Re 1
2 ffiffiffi

z
p zbμ′

ffiffiffi
z

p� �
bμ

ffiffiffi
z

p� � = 1 − Re 〠
j≥1

z

b2μ,j − z
:

ð53Þ

This result shows that

Re
zℓμ′ −zð Þ
ℓμ −zð Þ = −1 + μ

2 −
1

2 ffiffiffiffiffi
−z

p −zbμ′
ffiffiffiffiffi
−z

p� �
bμ

ffiffiffiffiffi
−z

p� �
= −1 +〠

j≥1

−z
b2μ,j + z

,
ð54Þ

or

Re
zℓμ′ −zð Þ
ℓμ −zð Þ = −1 − Re〠

j≥1

z

b2μ,j + z

≤ −1 +〠
j≥1

zj j
b2μ,j − zj j

= −
zj jℓμ′ zj jð Þ
ℓμ zj jð Þ

= − Re
zℓμ′ zð Þ
ℓμ zð Þ :

ð55Þ

The equality holds for r = jzj = z: The principle of
minimum value for harmonic functions along with (7)
shows that

Re
zℓμ′ zð Þ
ℓμ zð Þ ≥ 1 −〠

j≥1

zj j
b2μ,j − zj j

ð56Þ

is valid if and only if jzj < bμ,1, and bμ,1 is the minimum
positive root of the equation

rbμ′ rð Þ + 2 − μð Þbμ rð Þ = 0: ð57Þ

Thus, we have

ℓμ′ −1ð Þ
ℓμ −1ð Þ = −1 +〠

j≥1

1
1 − −1ð Þ/b2μ,j
� � 1

b2μ,j

= −1 −〠
j≥1

1
b2μ,j + 1

≤ 0,
ð58Þ

ℓμ′ −zð Þ
ℓμ −zð Þ = −

1
z
−〠

j≥1

1
b2μ,j + z

or ∂
∂μ

ℓμ′ −zð Þ
ℓμ −zð Þ

 !

= −〠
j≥1

2bμ,j ∂/∂μð Þbμ,j
z + b2μ,j
� �2 ,

ð59Þ

or

∂
∂μ

ℓμ′ −1ð Þ
ℓμ −1ð Þ

 !
= −〠

j≥1

2bμ,j ∂/∂μð Þbμ,j
1 + b2μ,j
� �2 ≤ 0, ð60Þ

since bμ,j′ > 0 on ð−1,∞Þ for a fixed j ∈ℕ: Thus, by using
(58) and (60), we see that ℓμ satisfies (7) and by applying
Lemma 1 and Lemma 2, we obtain that ℓμð−zÞ ∈ S∗ and
decreasing on ð−1,∞Þ and by considering (8), we can write

zℓμ′ zð Þ = 2μΓ μ + 1ð Þ zbμ′
ffiffiffi
z

p� �
2 ffiffiffi

z
p

z−1+ μ/2ð Þ + 1 − μ

2
� � bμ ffiffiffi

z
p� �

z−1+ μ/2ð Þ

" #

=〠
j≥0

−1ð Þj j + 1ð ÞΓ 1 + μð Þ
4j j!Γ μ + j + 1ð Þz−j−1 :

ð61Þ

We also write

ℓμ zð Þ − ℓμ −zð Þ =〠
j≥0

1 − −1ð Þ1+j� � −1ð ÞjΓ 1 + μð Þ
4j j!Γ j + μ + 1ð Þ z

1+j: ð62Þ

We can write

2zℓμ′ zð Þ
ℓμ zð Þ − ℓμ −zð Þ =

∑j≥0 j + 1ð Þ −1ð ÞjΓ 1 + μð Þzj+1� �
/ 4j j!Γ μ + j + 1ð Þ� �

∑j≥0 1 − −1ð Þ1+j� �
−1ð ÞjΓ 1 + μð Þzj+1� �

/ 4j j!Γ 1 + j + μð Þ� �
= 2
1 + −ið Þμbμ i

ffiffiffi
z

p� �
/bμ

ffiffiffi
z

p� � zℓμ′ zð Þ
ℓμ zð Þ :

ð63Þ

5Journal of Function Spaces



Since

bμ
ffiffiffiffiffi
−z

p� �
= 〠

∞

j=0

−1ð Þj ffiffiffiffiffi
−z

p /2
� �μ+2j

Γ 1 + jð ÞΓ 1 + μ + jð Þ

= 〠
∞

j=0

ið Þμ −1ð Þ2j
Γ j + 1ð ÞΓ 1 + μ + jð Þ

ffiffiffi
z

p
2

� μ+2j
,

ð64Þ

so we have

1 +
bμ i

ffiffiffi
z

p� �
bμ

ffiffiffi
z

p� � −ið Þμ

=
∑∞

j=0 −1ð Þ j 1 + −1ð Þj� �
/Γ j + 1ð ÞΓ 1 + μ + jð Þ� � ffiffiffi

z
p /2
� �μ+2 j

∑∞
j=0 −1ð Þ j/Γ 1 + jð ÞΓ μ + j + 1ð Þ� � ffiffiffi

z
p /2
� �μ+2 j :

ð65Þ

From (63) along with (65), we see that

Re
2zℓμ′ zð Þ

ℓμ zð Þ − ℓμ −zð Þ

= Re
zℓμ′ zð Þ
ℓμ zð Þ 1 +

bμ i
ffiffiffi
z

p� �
bμ

ffiffiffi
z

p� � −ið Þμ
" #−1

= Re
zℓμ′ zð Þ
ℓμ zð Þ 1 −

bμ i
ffiffiffi
z

p� �
−ið Þμ

bμ
ffiffiffi
z

p� � +⋯
" #

= Re
zℓμ′ zð Þ
ℓμ zð Þ

∑∞
j=0 −1ð Þj/Γ j + 1ð ÞΓ 1 + μ + jð Þ� � ffiffiffi

z
p /2
� �μ+2j 1 + −1ð Þj� �

∑∞
j=0 −1ð Þ j/Γ j + 1ð ÞΓ 1 + μ + jð Þ� � ffiffiffi

z
p /2
� �μ+2j

≥ 1 −〠
j≥1

2 zj j
b2μ,j − zj j

=
zj jℓμ′ zj jð Þ
ℓμ zj jð Þ :

ð66Þ

As in [11], we observe that

Re
2zℓμ′ zð Þ

ℓμ zð Þ − ℓμ −zð Þ ≥ Re
zℓμ′ zð Þ
ℓμ zð Þ ≥ 1 −〠

j≥1

2 zj j
b2μ,j − zj j

=
zj jℓμ′ zj jð Þ
ℓμ zj jð Þ :

ð67Þ

For 1 > η ≥ 0 and μ > −1, r∗η ðℓμÞ is the least positive
zero of

zbμ′ zð Þ + 2 − 2η − μð Þbμ zð Þ = 0, ð68Þ

where ℓμðzÞ = 2μΓðμ + 1Þbμð
ffiffiffi
z

p ÞðzÞ1−μ/2.

4. Conclusion

The class of Bessel functions is originated as a solution of the
well-known Bessel differential equation. We studied the
radius problems of starlike functions with symmetric points
involving Bessel functions under some kind of normalized
conditions. We used the Mittag-Leffler representation of
Bessel functions and derived our main results.
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In this work, by considering the Chebyshev polynomial of the first and second kind, a new subclass of univalent functions is
defined. We obtain the coefficient estimate, extreme points, and convolution preserving property. Also, we discuss the radii
of starlikeness, convexity, and close-to-convexity.

1. Introduction

Let Δ be the open unit disk fz ∈ℂ : jzj < 1g and A be the
class of analytic functions in Δ, satisfying the normalized
conditions:

f 0ð Þ = 0,
f ′ 0ð Þ = 1:

ð1Þ

Thus, each f ∈A has the following Taylor expansion:

f zð Þ = z + 〠
∞

k=2
akz

k: ð2Þ

Furthermore, by S , we shall denote the family of all
functions inA that are univalent in Δ. Denote byN the sub-
class of A consisting of functions with negative coefficients
of the type:

f zð Þ = z − 〠
∞

k=2
akz

k, ak ≥ 0, z ∈ Δð Þ, ð3Þ

see [1].

Many researchers deal with orthogonal polynomials of
Chebyshev, see [2, 3] and [4]. The Chebyshev polynomials
of first kind and the second kind are defined by

Tk tð Þ = cos kθ,

Uk tð Þ = sin k + 1ð Þθ
sin θ

,
ð4Þ

respectively, where −1 < t < 1, t = cos θ, and k is the
degree of polynomial.

The polynomial in (1) is connected by the following
relations:

dTk tð Þ
dt

= kUk−1 tð Þ, Tk tð Þ =Uk tð Þ − kUk−1 tð Þ, ð5Þ

2Tk tð Þ =Uk tð Þ −Uk−2 tð Þ: ð6Þ

We note that if t = cos θ, ð−π/3 < θ < π/3Þ, then

H z, tð Þ = 1
1 − 2z cos θ + z2 = 1 + 〠

∞

k=1

sin k + 1ð Þθ
sin θ

zk, z ∈ Δð Þ:

ð7Þ
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Also, we have

H z, tð Þ = 1 +U1 tð Þz +U2 tð Þz2+⋯, z ∈ Δ,−1 < t < 1ð Þ, ð8Þ

where

Uk − 1 tð Þ = sin k arccos tð Þffiffiffiffiffiffiffiffiffiffiffi
1 − t2

p , k ∈ℕð Þ, ð9Þ

are the Chebyshev polynomials of the second kind, see [5,
6] and [7].

The generating function of the first kind of Chebyshev
polynomial TkðtÞ, t ∈ ½−1, 1� is given by

〠
∞

k=0
Tk tð Þzk = 1 − tz

1 − 2tz + z2
: ð10Þ

For more details, see [8, 9] and [10].
For two functions f and g, analytic in Δ, we say that f is

subordinate to g in Δ, written

f zð Þ ≺ g zð Þ, z ∈ Δð Þ, ð11Þ

if there exists a Schwarz function w which is analytic in
Δ with

w 0ð Þ = 0,
w zð Þj j < 1, z ∈ Δð Þ,

ð12Þ

such that f ðzÞ = gðwðzÞÞ, (z ∈ Δ), see [11].
Also, if g is univalent in Δ, then

f zð Þ ≺ g zð Þ, z ∈ Δð Þ⟺ f 0ð Þ = g 0ð Þ, f Δð Þ ⊂ g Δð Þ: ð13Þ

Furthermore, if f ðzÞ = z −∑∞
k=2akz

k and gðzÞ = z −∑∞
k=2

bkz
k, then the Hadamard product (or covolution) of f and

g is defined by

f ∗ gð Þ zð Þ = z − 〠
∞

k=2
akbkz

k = g ∗ fð Þ zð Þ: ð14Þ

Now, we consider the following functions which are
connected with the Chebyshev polynomial of the first and
second kind:

C1 zð Þ = 1 + 1 + cos θð Þz − 1 − tz
1 − 2tz + z2 ,

ð15Þ

C2 zð Þ = 1 + 2 cos θ + 1ð Þz −H z, tð Þ, ð16Þ
Q zð Þ = C1 ∗C1ð Þ ∗ C2 ∗C2ð Þ ∗ f½ � zð Þ, ð17Þ

where f ðzÞ = z −∑∞
k=2akz

k ∈N and “∗” denotes the Hada-
mard product.

With a simple calculation we conclude that QðzÞ belongs
to N and it is of the form:

Q zð Þ = z − 〠
∞

k=2

sin k + 1ð Þθ
sin θ

Tk tð Þ
� �2

akz
k, ð18Þ

where −π/3 < θ < π/3 and t = cos θ.

Definition. For M = α + ðβ − αÞð1 − γÞ, −1 ≤ β < α ≤ 1, 0 <
γ < 1, and 0 ≤ λ ≤ 1, we say that QðzÞ of the form (18)
is a member of Eλ

γðα, βÞ if the following subordination
relation holds

zQ′ zð Þ
f λ zð Þ ≺

1 +Mz
1 + αz

, ð19Þ

where f λðzÞ = ð1 − λÞz + λf ðzÞ, f ðzÞ ∈N .

Equation (19) is equivalent to the following inequality:

zQ′ zð Þ/f λ zð Þ
� �

− 1

M − αz Q′ zð Þ/f λ zð Þ
� �

������
������ < 1: ð20Þ

2. Main Results

In this section, we introduce a sharp coefficient bound for
the class Eλ

γðα, βÞ. Also, the convolution preserving property
is investigated.

Theorem 1. The function QðzÞ of form (18) belongs to Eλ
γ

ðα, βÞ if and only if

〠
∞

k=2

ffiffiffi
k

p sin k + 1ð Þθ
sin θ

Tk tð Þ
� 	2

− λ

 !
1 − αð Þ + λ β − αð Þ 1 − γð Þ

" #
ak

≤ β − αð Þ 1 − γð Þ:
ð21Þ

Proof. Let the inequality (21) holds and z ∈ ∂Δ = fz ∈ℂ : jzj
= 1g. We have to prove that (19) or equivalently (20) holds
true. But we have
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Y = zQ′ zð Þ − f λ zð Þ�� �� − Mf λ zð Þ − αzQ′ zð Þ�� ��
= z − 〠

∞

k=2

sin k + 1ð Þθ
sin θ

Tk tð Þ
� �2

kakz
k − 1 − λð Þz − λ

�����
� z − 〠

∞

k=2
akz

k

 !
j − M 1 − λð Þz + λ z − 〠

∞

k=2
akz

k

 ! !�����
− αz + 〠

∞

k=2

sin k + 1ð Þθ
sin θ

Tk tð Þ
� �2

αkakz
k

�����
= −〠

∞

k=2

sin k + 1ð Þθ
sin θ

Tk tð Þ
� 	

2k − λ

� �
akz

k

�����
�����

− M − αð Þz − 〠
∞

k=2
λM − αk

sin k + 1ð Þθ
sin θ

Tk tð Þ
� 	2

" #
akz

k

�����
�����:

ð22Þ

By putting z ∈ ∂Δ and

λM − αk
sin k + 1ð Þθ

sin θ
Tk tð Þ

� 	2
= λ M − αð Þ − k

sin k + 1ð Þθ
sin θ

Tk θð Þ
� 	2

− λ

" #
α,

ð23Þ

the above expression reduces to

Y ≤ 〠
∞

k=2
k

sin k + 1ð Þθ
sin θ

Tk tð Þ
� 	2

− λ

 !
1 − αð Þ + λ M − αð Þ

" #
ak − M − αð Þ

�����
�����:

ð24Þ

Since H − α = ðβ − αÞð1 − γÞ, by using inequality (21), we
get Y ≤ 0, so Q ∈Eλ

γðα, βÞ.
To prove the converse, let Q ∈Eλ

γðα, βÞ, thus

for all z ∈ Δ. By Re ðzÞ ≤ jzj for all z ∈ Δ, we have

Re
∑∞

k=2
ffiffiffi
k

p
sin k + 1ð Þθ/sin θð ÞTk tð Þ

� �2
− λ

� �
akz

k

M − αð Þz − ∑∞
k=2 λM − α

ffiffiffi
k

p
sin k + 1ð Þθ/sin θð ÞTk tð Þ

� �2� �
akzk

8>><
>>:

9>>=
>>; < 1:

ð26Þ

By letting z⟶ 1, through positive values and choose
the values of z such that zQ′ðzÞ/f λðzÞ is real, we have

〠
∞

k=2

ffiffiffi
k

p sin k + 1ð Þθ
sin θ

Tk tð Þ
� 	2

− λ

 !
1 − αð Þ + t M − αð Þ

" #
ak ≤M − α,

ð27Þ

and this completes the proof.

Remark. We note that the function:

V zð Þ = z −
β − αð Þ 1 − γð Þffiffiffi

2
p

sin 3θ/sin θð Þ cos 2θ
� �2

− λ

� �
1 − αð Þ + λ β − αð Þ 1 − γð Þ

z2,

ð28Þ

shows that the inequality (21) is sharp.

Theorem 2. Let

Q1 zð Þ = z − 〠
∞

k=2

sin k + 1ð Þθ
sin θ

Tk tð Þ
� �2

akz
k, ð29Þ

Q2 zð Þ = z − 〠
∞

k=2

sin k + 1ð Þθ
sin θ

Tk tð Þ
� �2

bkz
k, ð30Þ

be in the class Eλ
γðα, βÞ, then ðQ1 ∗Q2ÞðzÞ belongs to

Eλ
γðα, ~βÞ, where

~β ≤ α + β − αð Þ2 1 − γð ÞX 1 − αð Þ
X 1 − αð Þ + λ β − αð Þ 1 − γð Þð Þ2 − λ 1 − γð Þ2 β − αð Þ2 ,

ð31Þ

X =
ffiffiffi
k

p sin k + 1ð Þθ
sin θ

Tk tð Þ
� 	2

− λ: ð32Þ

Proof. It is sufficient to show that

〠
∞

k=2

ffiffiffi
k

p sin k + 1ð Þθ
sin θ

Tk tð Þ
� 	2

− λ

 !
1 − α

β − αð Þ 1 − γð Þ
� 	

+ λ

" #
akbk ≤ 1:

ð33Þ

By using the Cauchy-Schwarz inequality, from (21),
we obtain

zQ′ zð Þ/f λ zð Þ
� �

− 1

M − αz Q′ zð Þ/f λ zð Þ
� �

������
������ =

z −∑∞
k=2

ffiffiffi
k

p
sin k + 1ð Þθ/sin θð ÞTk tð Þ

� �2
akz

k − 1 − λð Þz + λf zð Þ
����

����
M 1 − λð Þz + λf zð Þð Þ − αz 1 −∑∞

k=2
ffiffiffi
k

p
sin k + 1ð Þθ/sin θð ÞTk tð Þ

� �2
akzk − 1

� 	����
����
< 1, ð25Þ
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〠
∞

k=2

ffiffiffi
k

p sin k + 1ð Þθ
sin θ

Tk tð Þ
� 	2

− λ

 !
1 − α

β − αð Þ 1 − γð Þ
� 	

+ λ

" # ffiffiffiffiffiffiffiffiffi
akbk

p
≤ 1:

ð34Þ

Here, we find the largest k such that

〠
∞

k=2

ffiffiffi
k

p sin k + 1ð Þθ
sin θ

Tk tð Þ
� 	2

− λ

 !
1 − α

β − αð Þ 1 − γð Þ
� 	

− λ

" # ffiffiffiffiffiffiffiffiffi
akbk

p
≤ 1,

ð35Þ

or equivalently for k ≥ 2,

ffiffiffiffiffiffiffiffiffi
akbk

p
≤

X 1 − αð Þ + λ β − αð Þ 1 − γð Þ½ � ~β − α
� �

X 1 − αð Þ + λ β − αð Þ 1 − γð Þ½ � β − αð Þ , ð36Þ

where X is given by (32).
This inequality holds if

β − αð Þ 1 − γð Þ
X 1 − αð Þ + λ β − αð Þ 1 − γð Þ ≤

X 1 − αð Þ + λ β − αð Þ 1 − γð Þ½ � ~β − α
� �

X 1 − αð Þ + λ ~β − α
� �

1 − γð Þ
h i

β − αð Þ
,

ð37Þ

or equivalently

~β ≤ α + β − αð Þ2 1 − γð ÞX 1 − αð Þ
X 1 − αð Þ + λ β − αð Þ 1 − γð Þð Þ2 − λ 1 − γð Þ2 β − αð Þ2 ,

ð38Þ

where X is given by (32), so the proof is complete.

3. Geometric Properties of Eλ
γðα, βÞ

In this section, we show that the class Eλ
γðα, βÞ is a convex

set. Also, the radii of starlikeness, convexity, and close-to-
convexity are obtained.

Theorem 3. The class Eλ
γðα, βÞ is a convex set.

Proof. It is enough to prove that if for j = 1, 2,⋯,m,

Qj zð Þ = z − 〠
∞

k=2

sin k + 1ð Þθ
sin θ

� �k
ak,jz

k, ð39Þ

be in Eλ
γðα, βÞ, then the function

F zð Þ = 〠
m

j=1
djQj zð Þ, ð40Þ

is also in Eλ
γðα, βÞ, where ∑m

j=1dj = 1. But, we have

F zð Þ = z − 〠
∞

k=2
〠
m

j=1

sin k + 1ð Þθ
sin θ

Tk tð Þ
� 	2

djak,j

 !
zk,

= z − 〠
∞

k=2

sin k + 1ð Þθ
sin θ

Tk tð Þ
� 	2

〠
m

j=1
djak,j

 !
zk:

ð41Þ

Since by Theorem 1,

〠
∞

k=2

ffiffiffi
k

p sin k + 1ð Þθ
sin θ

Tk tð Þ
� 	2

− λ

 !
1 − αð Þ + λ β − αð Þ 1 − γð Þ

" #
〠
m

j=1
djak,j

 !

= 〠
m

j=1
〠
∞

k=2

ffiffiffi
k

p sin k + 1ð Þθ
sin θ

Tk tð Þ
� 	2

− λ

 !" 

· 1 − αð Þ + λ β − αð Þ 1 − γð Þ�ak,j
!
dj

< 〠
m

j=1
β − αð Þ 1 − γð Þdj = β − αð Þ 1 − γð Þ 〠

m

j=1
dj

 !

= β − αð Þ 1 − γð Þ,
ð42Þ

so, FðzÞ ∈Eλ
γðα, βÞ. Hence, the proof is complete.

Theorem 4. Let f ∈Eλ
γðα, βÞ, then

(i) f is a starlike of order θ1 (cos θ1 < 1) in jzj < R1 where

R1 = inf
k

ffiffiffi
k

p sin k + 1ð Þθ
sin θ

Tk tð Þ
� 	2

− λ

 !"(

� 1 − α

β − αð Þ 1 − γð Þ
� 	

+ λ

#
1 − θ1
k − θ1

� )1/k−1 ð43Þ

(ii) f is convex of order θ2 (0 ≤ θ2 < 1) in jzj < R2 where

R2 = inf
k

ffiffiffi
k

p sin k + 1ð Þθ
sin θ

Tk tð Þ
� 	2

− λ

 !"(

� 1 − α

β − αð Þ 1 − γð Þ
� 	

+ λ

#
1 − θ2

k k − θ2ð Þ
� 	)1/k−1 ð44Þ

(iii) f is close-to-convex of order θ3 (0θ3 < 1) in ∣z ∣ <R3,
where
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R3 = inf
k

ffiffiffi
k

p sin k + 1ð Þθ
sin θ

Tk tð Þ
� 	2

− λ

 !"(

� 1 − α

β − αð Þ 1 − γð Þ
� 	

+ λ

#
1 − θ3
k

� 	)1/k−1 ð45Þ

Proof.

(i) For 0 ≤ θ1 < 1, we need to show that

zf ′
f

− 1
�����

����� < 1 − θ1 ð46Þ

In other words, it is sufficient to show that

zf ′ zð Þ
f zð Þ − 1

�����
����� = ∑∞

k=2 k − 1ð Þakzk−1
1 − ∑∞

k=2akz
k−1

����
���� ≤ ∑∞

k=2 k − 1ð Þak zj jk−1
1 −∑∞

k=2ak zj jk−1
< 1 − θ1,

ð47Þ

〠
∞

k=2

k − θ1
1 − θ1

� 	
ak zj jk−1 < 1: ð48Þ

By (21), it is easy to see that above inequality holds if

zj jk−1 ≤
ffiffiffi
k

p sin k + 1ð Þθ
sin θ

Tk tð Þ
� 	2

− λ

 !
1 − α

β − αð Þ 1 − γð Þ
� 	

+ λ

" #
1 − θ1
k − θ1

� 	
:

ð49Þ

This completes the proof of (i).

(ii) Since f is convex if and only if zf ′ is starlike, we get
the required result (ii)

(iii) We must show that j f ′ðzÞ − 1j ≤ 1 − θ3. But

f ′ zð Þ − 1
�� �� = 〠

∞

k=2
kakz

k−1
�����

����� ≤ 〠
∞

k=2
kak zj jk−1 ð50Þ

Thus, j f ′ðzÞ − 1j < 1 − θ3 if ∑∞
k=2ðk/1 − θ3Þakjzjk−1 ≤ 1.

But by Theorem 1, the above inequality holds true, if

zj jk−1 ≤
ffiffiffi
k

p sin k + 1ð Þθ
sin θ

Tk tð Þ
� 	2

− λ

 !
1 − α

β − αð Þ 1 − γð Þ
� 	

+ λ

" #
1 − θ3
k

� 	
:

ð51Þ

Hence, the proof is complete.

4. Conclusions

Univalent functions have always been the main interests of
many researchers in geometric function theory. Many stud-
ies recently related to Chebyshev polynomials revolved
around classes of analytic normalized univalent functions.

In this particular work, the geometric properties are obtained
for functions in more general class using the Chebyshev poly-
nomials associated with a convolution structure. In this
paper, when the parameters being complex numbers could
be subject to further investigation. Also, by changing the
operator and extending, it may be for future studies.
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Newly, numerous investigations are considered utilizing the idea of parametric operators (integral and differential). The objective
of this effort is to formulate a new 2D-parameter differential operator (PDO) of a class of multivalent functions in the open unit
disk. Consequently, we formulate the suggested operator in some interesting classes of analytic functions to study its geometric
properties. The recognized class contains some recent works.

1. Introduction

In analysis, a parametric differential operator (PDO) is a dif-
ferential operator of a dependent variable with respect to
another dependent variable that is engaged when both vari-
ables formulate on an independent third variable, typically
supposed as “time.” We shall use this idea to consider the
PDO of a complex variable to discuss its properties in the
opinion of the geometric function theory (GFT). The field
of differential operators is investigated in GFT early by the
well-known Salagean differential operator and the Rusche-
weyh derivative. Later, these operators are generalized by
different types of parameters using a 1D-parameter frac-
tional differential operator [1] and 2D-parameter fractional
differential operator [2]. Recently, using the class of normal-
ized functions ψ ∈ Σ

ψ ζð Þ = ζ + 〠
∞

n=2
ψnζ

n, ζ ∈ Δ≔ ζ ∈ℂ : ζj j < 1f g: ð1Þ

Ibrahim and Jay [3] presented PDO of the following
form: for α ∈ ½0, 1�

P 0ψ ζð Þ = ψ ζð Þ,

P αψ ζð Þ = ρ1 α, ζð Þ
ρ1 α, ζð Þ + ρ0 α, ζð Þ ψ ζð Þ + ρ0 α, ζð Þ

ρ1 α, ζð Þ + ρ0 α, ζð Þ ζ ψ′ ζð Þ
� �

:

ð2Þ

The functions ρ1, ρ0 : ½0, 1� × Δ⟶ Δ are analytic in Δ
satisfying ρ1ðα, ζÞ ≠ −ρ0ðα, ζÞ.

lim
α⟶0

ρ1 α, ζð Þ = 1, lim
α⟶1

ρ1 α, ζð Þ = 0, ρ1 α, ζð Þ ≠ 0,∀ζ ∈ Δ, α ∈ 0, 1ð Þ,
ð3Þ

lim
α⟶0

ρ0 α, ζð Þ = 0, lim
α⟶1

ρ0 α, ζð Þ = 1, ρ0 α, ζð Þ ≠ 0,∀ζ ∈ Δ, α ∈ 0, 1ð Þ:
ð4Þ
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More studies are given by Ibrahim and Baleanu [4, 5]
using (2) to present a hybrid diff-integral operator and a
quantum hybrid operator, respectively.

In this effort, we generalize (2) by considering another
class of analytic functions denoting by Σ℘ and constructing by

ψ ζð Þ = ζ℘ + 〠
∞

n=℘+1
ψnζ

n,℘ ∈ℕ, ð5Þ

which are analytic in Δ: Recently, different investigations
are presented studying the geometric behavior of this class
(see [6–9]).

The Hadamard product [10, 11] for two functions in Σ℘
is given by the series

ψ ∗ φð Þ ζð Þ = ζ℘ + 〠
∞

n=℘+1
ψnζ

n

 !
∗ ζ℘ + 〠

∞

n=℘+1
φn ζ

n

 !

= ζ℘ + 〠
∞

n=℘+1
ψnφnð Þζn ∈ Σ℘:

ð6Þ

Definition 1. For a function ψ ∈ Σ℘, PDO is defined as follows:

Q0ψ ζð Þ = ψ ζð Þ

Qαψ ζð Þ = ρ1 α, ζð Þ
ρ1 α, ζð Þ + ρ0 α, ζð Þ
� �

ψ ζð Þ + ρ0 α, ζð Þ
ρ1 α, ζð Þ + ρ0 α, ζð Þ
� �

ζ

℘

� �
ψ′ ζð Þ

= ζ℘ + 〠
∞

n=℘+1
ψn

ρ1 α, ζð Þ + n/℘ð Þρ0 α, ζð Þ
ρ1 α, ζð Þ + ρ0 α, ζð Þ

� �
ζn,

Q2αψ ζð Þ =Q Qαψ ζð Þð Þ = ζ℘ + 〠
∞

n=℘+1
ψn

ρ1 α, ζð Þ + n/℘ð Þρ0 α, ζð Þ
ρ1 α, ζð Þ + ρ0 α, ζð Þ

� �2
ζn,⋮

Qm αψ ζð Þ =Qα Q m−1ð Þαψ ζð Þ
h i

= ζ℘ + 〠
∞

n=℘+1
ψn

ρ1 α, ζð Þ + n/℘ð Þρ0 α, ζð Þ
ρ1 α, ζð Þ + ρ0 α, ζð Þ

� �m

ζn,

Qm αψ ζð Þ = ζ℘ + 〠
∞

n=℘+1
ψnΛ

m
n ζ

n,

ζ ∈ Δ,℘∈ℕ, α ∈ 0, 1½ �,m ∈ℕð Þ, ð7Þ

where

Λn =
ρ1 α, ζð Þ + n/℘ð Þρ0 α, ζð Þ

ρ1 α, ζð Þ + ρ0 α, ζð Þ : ð8Þ

ρ1 and ρ0 are defined in (3) and (4), respectively.

Remark 2.

(i) It is clear that Qm αψðζÞ ∈ Σ℘, and it is a generaliza-
tion of (2) (℘ = 1)

(ii) The integral operator that corresponds to Qm αψðζÞ is

Lm αψ ζð Þ = ζ℘ + 〠
∞

n=℘+1

ψn

Λm
n
ζn: ζ ∈ Δ,℘∈ℕ, α ∈ 0, 1½ �ð Þ, ð9Þ

where

Qm α ∗Lm αð Þψ ζð Þ = Lm α ∗Qm αð Þψ ζð Þ = ψ ζð Þ: ð10Þ

Moreover, we have the following property:

Proposition 3 (semigroup property). Consider the PDO;
then for ψ and φ ∈ Σ℘

Qmα aψ ζð Þ + bφ ζð Þ½ � = aQm αψ ζð Þ + bQmαφ ζð Þ, a, b ∈ℝ:

ð11Þ

Proof. Let m = 1; the definition of Qmν implies

Qα aψ ζð Þ + b φ ζð Þ½ � = ρ1 α, ζð Þ
ρ1 α, ζð Þ + ρ0 α, ζð Þ
� �

aψ ζð Þ + b φ ζð Þ½ �

+ ρ0 α, ζð Þ
ρ1 α, ζð Þ + ρ0 α, ζð Þ
� �

ζ

℘

� �
aψ ζð Þ + b φ ζð Þ½ �′

= a
ρ1 α, ζð Þ

ρ1 α, ζð Þ + ρ0 α, ζð Þ
� �

ψ ζð Þ
�

+ ρ0 α, ζð Þ
ρ1 α, ζð Þ + ρ0 α, ζð Þ
� �

ζ

℘

� �
ψ′ ζð Þ

�

+ b
ρ1 α, ζð Þ

ρ1 α, ζð Þ + ρ0 α, ζð Þ
� �

φ ζð Þ
�

+ ρ0 α, ζð Þ
ρ1 α, ζð Þ + ρ0 α, ζð Þ
� �

ζ

℘

� �
φ′ ζð Þ

�
= aQαψ ζð Þ + bQαφ ζð Þ:

ð12Þ

Hence, for all m, we have the desired assertion.

Our study is about the following class:

Definition 4. A function ψ ∈ Σ℘ is called in the class Σα
℘ðσ, pÞ

if it satisfies the inequality

1 − σð Þ
ζ℘

Qm αψ ζð Þ½ �+ σ

℘ζ℘−1

 !
Qm αψ ζð Þ½ �′ ≺ p ζð Þ = μζ + 1

νζ + 1 ,

ð13Þ

ζ ∈ Δ, α, σ ∈ 0, 1½ �,−1 ≤ ν < μ ≤ 1,℘∈ℕð Þ, ð14Þ
where the symbol ≺ presents the subordination symbol [12]
and p is convex univalent in Δ.

For example

p ζð Þ = μζ + 1
νζ + 1 = Yμ,ν ζð Þ, ð15Þ

which is univalent convex in Δ, and it is the extreme func-
tion in the set

P ≔ p ∈ Δ : p ζð Þ = 1 + 〠
∞

n=1
piζ

n

( )
: ð16Þ
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Define a functional Ψ : Δ⟶ Δ, as follows:

Ψ ζð Þ≔ 1 − σð Þ
ζ℘

Qm αψ ζð Þ½ �+ σ

℘ζ℘−1

 !
Qm αψ ζð Þ½ �′, ð17Þ

= 1 + 〠
∞

n=℘+1
Ψn+℘ψnζ

n−℘, ζ ∈ Δ, ð18Þ

where

Ψn+℘ = 1 + n − 1
℘ σ

� �
Λm

n : ð19Þ

Shortly, by Definition 4 we say

Ψ ζð Þ ≺ Yμ,ν ζð Þ≔ μζ + 1
νζ + 1 , ζ ∈ Δ: ð20Þ

Our aim is to study the operator formula Ψ. We recall
the following results:

Lemma 5 (see [12]). Let two analytic functions f ðζÞ and gðζÞ
be convex univalent defined in Δ such that f ð0Þ = gð0Þ:
Moreover, for a constant c ≠ 0,RðcÞ ≥ 0, the subordination

f ζð Þ + 1/cð Þf ′ ζð Þ ≺ g ζð Þ ð21Þ

implies

f ζð Þ ≺ g ζð Þ: ð22Þ

Lemma 6 (see [12]). Define the general class of holomorphic
functions

ℍ a, n½ � = h : h ζð Þ = a + anζ
n + an+1ζ

n+1+⋯
n o

, ð23Þ

where a ∈ℂ and n is a positive integer. If c ∈ℝ, then

R h ζð Þ + cζh′ ζð Þ
n o

> 0⇒R h ζð Þð Þ > 0: ð24Þ

Moreover, if c > 0 and h ∈ℍ½1, n�, then there are fixed
numbers ℓ1 > 0 and ℓ2 > 0 with the inequality

h ζð Þ + cζh′ ζð Þ ≺ 1 + ζ

1 − ζ

� �ℓ1
,

h ζð Þ ≺ 1 + ζ

1 − ζ

� �ℓ2
:

ð25Þ

Lemma 7 (see [13]). Let ℏ, p ∈ℍ½a, n� , where p is convex
univalent in Δ and for k1, k2 ∈ℂ, k2 ≠ 0 ; then

k1ℏ ζð Þ + k2ζℏ′ ζð Þ ≺ k1p ζð Þ + k2ζ p′ ζð Þ⟶ ℏ ζð Þ ≺ p ζð Þ:
ð26Þ

Lemma 8 (see [14]). Let h, p ∈ℍ½a, n� , where p is convex

univalent in Δ such that hðζÞ + kζh′ðζÞ is univalent; then

p ζð Þ + kζ p′ ζð Þ ≺ h ζð Þ + kζh′ ζð Þ⟶ p ζð Þ ≺ h ζð Þ: ð27Þ

Lemma 9 (see [15]). Let ℏ, y, g ∈ℍ½a, n� , and g is convex
univalent in Δ such that ℏ ≺ g and y ≺ g ; then

kℏ + 1 − kð Þy ≺ g, k ∈ 0, 1½ �: ð28Þ

2. The Results

In this section, we illustrate our main results concerning the
class Σα

℘ðσ, pÞ for some special pðζÞ, ζ ∈ Δ.
2.1. General Properties

Theorem 10. Suppose that ψ ∈ Σα
℘ðσ, pÞ . If RfΨðζÞg > 0,

then the coefficient bounds of Ψ satisfy the inequality

∣Ψn ∣
2

≤
ð2π
0
∣e−inθ∣ dM θð Þ, ð29Þ

where dM is a probability measure. Also, if

R eiχΨ ζð Þ� �
> 0, ζ ∈ Δ, χ ∈ℝ, ð30Þ

then ψ ∈ Σα
℘ðσ, ðνζ + 1Þ/ðνζ + 1ÞÞ, that is

Ψ ζð Þ ≈ μζ + 1
νζ + 1

, ζ ∈ Δ: ð31Þ

Proof. By the assumption, we have

R Ψ ζð Þð Þ =R 1 + 〠
∞

n=℘+1
Ψnζ

n

 !
> 0: ð32Þ

Thus, the Carathéodory positivist technique yields

∣ψn∣ ≤ 2
ð2π
0
∣e−inθ∣dM θð Þ, ð33Þ

where dM is a probability measure. In addition, if

R eiχΨ ζð Þ� �
> 0, ζ ∈ Δ, χ ∈ℝ, ð34Þ

then according to Theorem 1.6 in [10] and for fixed χ ∈ℝ,
we have

Ψ ζð Þ ≈ p ζð Þ = μζ + 1
νζ + 1 , ζ ∈ Δ: ð35Þ

Hence, ψ ∈ Σα
℘ðσ, ðνζ + 1Þ/ðνζ + 1ÞÞ:

The next results show the sufficient and necessary
conditions for the sandwich behavior of the functional
ΨðζÞ = ð1 − σ/ζ℘Þ ½Qm αψðζÞ� + ðσ/℘ζ℘−1Þ ½Qm αψðζÞ�′:
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Theorem 11. Let the following assumptions hold

where p2ð0Þ = 1 and convex in Δ: Moreover, let ΨðζÞ be uni-
valent in Δ such that Ψ ∈ℍ½p1ð0Þ, 1� ∩ℚ, where ℚ repre-

sents the set of all injection analytic functions f with
limζ∈∂Δ f ≠∞ and

Then

p1 ζð Þ ≺Ψ ζð Þ ≺ p2 ζð Þ, ð38Þ

and p1ðζÞ is the best subdominant, and p2ðζÞ is the best
dominant.

Proof. Since

then we obtain the next double inequality

p1 ζð Þ + ζp1′ ζð Þ ≺Ψ ζð Þ + ζΨ′ ζð Þ ≺ p2 ζð Þ + ζp2′ ζð Þ: ð40Þ

Thus, Lemmas 7 and 8 imply the desired assertion.

Theorem 12. Let p be a univalent convex function in Δ such
that pð0Þ = 0 and

Qm αψ ζð Þ½ � ≺ p ζð Þ, Lm αψ ζð Þ½ � ≺ p ζð Þ: ð41Þ

Then

Am αψ ζð Þ½ �≔ k Qm αψ ζð Þ½ � + 1 − kð Þ Lm αψ ζð Þ½ � ≺ p ζð Þ, k ∈ 0, 1½ �:
ð42Þ

Proof. By the definition of ½Qm αψðζÞ� and ½Lm αψðζÞ�, clearly
we have ½Am αψðζÞ� ∈ Σ℘: Hence, a direct application of
Lemma 9, we obtain the result.

2.2. Inclusion Properties. In this part, we deal with the inclu-
sion properties.

Theorem 13. For σ2 ≤ σ1 < 0 and ψ ∈ Σ℘, then

Σα
℘ σ2, pð Þ ⊂ Σα

℘ σ1, pð Þ: ð43Þ

Proof. Let ψ ∈ Σα
℘ðσ2, pÞ: Define the analytic function in Δ, as

follows:

ϕ ζð Þ = ζ−℘ Qm αψ ζð Þ½ �, ð44Þ

satisfying ϕð0Þ = 1: A computation gives

1 − σ2ð Þ
ζ℘

Qm αψ ζð Þ½ �+ σ2
℘ζ℘−1

 !
Qm αψ ζð Þ½ �′ = ϕ ζð Þ + σ2

℘ ζϕ′ ζð Þ
� �

:

ð45Þ

Consequently, we get the inequality

ϕ ζð Þ + σ2
℘ ζϕ′ ζð Þ
� �

≺
μζ + 1
νζ + 1 : ð46Þ

Applying Lemma 5 with σ2/℘ > 0 gives

ϕ ζð Þ ≺ μζ + 1
νζ + 1 : ð47Þ

σζ Qm αψ ζð Þ½ �′′ + −2σ℘+2σ+℘ð Þ Qm αψ ζð Þ½ �′ + σ−1ð Þ ℘−1ð Þ℘ Qm αψ ζð Þ½ �
℘ζ℘−1

≺ p2 ζð Þ + ζp2′ ζð Þ, ð36Þ

p1 ζð Þ + ζ p1′ ζð Þ ≺
σζ Qm αψ ζð Þ½ �′′ + −2σ℘+2σ+℘ð Þ Qm αψ ζð Þ½ �′

�
+ σ−1ð Þ ℘−1ð Þ℘ Qm αψ ζð Þ½ �

℘ζ℘−1
: ð37Þ

Ψ ζð Þ + ζΨ′ ζð Þ =
σζ Qm αψ ζð Þ½ �′′ + −2σ℘+2σ+℘ð Þ Qm αψ ζð Þ½ �′

�
+ σ−1ð Þ ℘−1ð Þ℘ Qm αψ ζð Þ½ �

℘ζ℘−1
, ð39Þ
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Since 0 < σ1/σ2 < 1 and Yμ,νðζÞ is convex univalent in Δ,
we arrive at the inequality

1 − σ1ð Þ
ζ℘

Qm αψ ζð Þ½ �+ σ1
℘ζ℘−1

 !
Qm αψ ζð Þ½ �′

= 1 − σ1ð Þϕ ζð Þ+ σ1
℘ζ℘−1

 !
Qm αψ ζð Þ½ �′

= 1 − σ1ð Þϕ ζð Þ + σ1
℘ ζϕ′ ζð Þ+℘ϕ ζð Þ
� �

,

= 1 − σ1ð Þϕ ζð Þ + σ1
℘ ζϕ′ ζð Þ+℘ϕ ζð Þ
� �

+ σ1
σ2

ϕ ζð Þ − σ1
σ2

ϕ ζð Þ
� �

= σ1
σ2

1 − σ2ð Þϕ ζð Þ + σ2
℘ ζϕ′ ζð Þ+℘ϕ ζð Þ
� �

+ 1 − σ1
σ2

� �
ϕ ζð Þ

= σ1
σ2

1 − σ2ð Þ
ζ℘

Qm αψ ζð Þ½ �+ σ2
℘ζ℘−1

Qm αψ ζð Þ½ �′
" #

+ 1 − σ1
σ2

� �
ϕ ζð Þ ≺ μζ + 1

νζ + 1 = Yμ,ν ζð Þ:

ð48Þ

Hence, by Definition 4, we conclude that ψ ∈ Σα
℘ðσ1, pÞ:

Theorem 14. Let

Ψ ζð Þ = 1 − σð Þ
ζ℘

Qm αψ ζð Þ½ �+ σ

℘ζ℘−1

 !
Qm αψ ζð Þ½ �′: ð49Þ

Then

Qm αψ ζð Þ½ �′
ζ℘

ℏ1+
Qm αψ ζð Þ½ �
ζ℘−1

ℏ1 + 1+℘ð Þℏ2 + ℏ2½ �

+ ℏ2ζ
2−℘

Qm αψ ζð Þ½ �′′ ≺ 1 + ζ

1 − ζ

� �ℓ1
⇒Ψ ζð Þ ≺ 1 + ζ

1 − ζ

� �ℓ2
,

ð50Þ

where

ℓ1 > 0, ℓ2 > 0,
ℏ1 = 1 − σ,

ℏ2 =
σ

℘ ,

℘>0:

ð51Þ

Proof. A calculation implies that

Ψ ζð Þ + ζΨ′ ζð Þ = 1 − σð Þ
ζ℘

Qm αψ ζð Þ½ �+ σ

℘ζ℘−1

 !
Qm αψ ζð Þ½ �′

+ ζ
1 − σð Þ
ζ℘

Qm αψ ζð Þ½ �+ σ

℘ζ℘−1

 !
Qm αψ ζð Þ½ �′

 !

= Qm αψ ζð Þ½ �′
ζ℘

ℏ1+
Qm αψ ζð Þ½ �
ζ℘−1

ℏ1 + 1+℘ð Þℏ2 + ℏ2½ �

+ ℏ2ζ
2−℘

Qm αψ ζð Þ½ �′′ ≺ 1 + ζ

1 − ζ

� �ℓ1
:

ð52Þ

According to Lemma 6 joining the value c = 1, we get

Ψ ζð Þ ≺ 1 + ζ

1 − ζ

� �ℓ2
: ð53Þ

Corollary 15. Let ΨðζÞ be assumed as in Theorem14. If the
subordination

Qm αψ ζð Þ½ �′
ζ℘

ℏ1+
Qm αψ ζð Þ½ �
ζ℘−1

ℏ1 + 1+℘ð Þℏ2 + ℏ2½ �

+ ℏ2ζ
2−℘

Qm αψ ζð Þ½ �′′ ≺ 1 + ζ

1 − ζ

� �
,

ð54Þ

where ℓ1 > 0, ℓ2 > 0, ℏ1 = 1 − σ, ℏ2 = σ/℘, ℘>0 holds, then
ψ ∈ Σα

℘ðσ, ð1 + ζÞ/ð1 − ζÞÞ:

Proof. Taking, ℓ1 = ℓ2 = 1 in Theorem 14 implies that
ΨðζÞ ≺ ð1 + ζÞ/ð1 − ζÞ: Consequently, we have ψ ∈ Σα

℘ðσ,
ð1 + ζÞ/ð1 − ζÞÞ:

Theorem 16. Let ψ ∈ Σα
℘ðσ, pÞ and f ∈ Σ℘: If

R
Qm αψ ζð Þ

ζ℘

� �
> 1
2
, ð55Þ

then ψ × f ∈ Σα
℘ðσ, pÞ:
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Proof. A convolution product indicates that

1 − σð Þ
ζ℘

Qm α ψ ζð Þ × f ζð Þð Þ½ �+ σ

℘ζ℘−1

 !
Qm α ψ ζð Þ × f ζð Þð Þ½ �′

= 1 − σð Þ Qm α ψ ζð Þð
ζ℘

× Qm α f ζð Þ
ζ℘

�� 	

+ σ

℘
Qm α f ζð ÞÞ½ �′

ζ℘−1
× Qm α f ζð Þ

ζ℘

 !

= 1 − σð Þ Qm α ψ ζð Þð
ζ℘

� 	
+ σ

℘ζ℘−1
Qm α f ζð ÞÞ½ �′

" #
× Qm α f ζð Þ

ζ℘

=Ψ ζð Þ × Qm α f ζð Þ
ζ℘

,

ð56Þ

where ΨðζÞ ≺ Yμ,νðζÞ: In view of real inequality (55), we get
that ðQm α f ðζÞ/ζ℘Þ has the Herglotz integral formula [11].

Qm α f ζð Þ
ζ℘

=
ð
∣τ∣=1

dς τð Þ
1 − τζ

, ð57Þ

where dς conforms the probability measure on the unit
circle ∣τ ∣ = 1 and

ð
∣τ∣=1

dς τð Þ = 1: ð58Þ

But, Yμ,νðζÞ is convex in Δ ; then we have

1 − σð Þ
ζ℘

Qm α ψ ζð Þ ∗ f ζð Þð Þ½ �+ σ

℘ζ℘−1

 !
Qm α ψ ζð Þ ∗ f ζð Þð Þ½ �′

=Θ ζð Þ ∗ Qm α f ζð Þ
ζ℘

=
ð

τj j=1
Θ τζð Þdς τð Þ ≺ Yμ,ν ζð Þ:

ð59Þ

Thus, ψ × f ∈ Σα
℘ðσ, pÞ:

2.3. Fekete-Szegö Inequality. In this section, we obtain the
Fekete-Szegö relation coefficient estimates for the class
Σα
℘ðσ, pÞ: Let Ω be the class of functions of the form

ϖ ζð Þ = 1 + ϖ1ζ + ϖ2ζ
2+⋯, ð60Þ

in the open unit disk Δ satisfying ∣ϖðzÞ ∣ <1: To prove our
results, we need the following lemma.

Lemma 17 (see [16]). If ϖ ∈Ω , then for any complex
number ρ

∣ϖ2 − ρϖ2
1∣ ≤max 1,∣ρ ∣f g: ð61Þ

The result is sharp for the functions given by ϖðζÞ = ζ or
ϖðζÞ = ζ2:

Theorem 18. Let the function ψ be formulated by ((5)). Then,
ψ ∈ Σα

℘ðσ, pÞ and

ψ℘+2−ρψ
2
℘+1




 


 ≤ μ − νð Þ℘
℘+ ℘+1ð Þσ½ �Λm

℘+2

 !
max 1,∣ℵ ∣f g, ð62Þ

where

ℵ = ν +
ρ μ−νð Þ ℘+ ℘+1ð Þσ½ �Λm

℘+2

℘ 1+σð Þ2Λ2m℘+1

 !
: ð63Þ

Proof. Since ψ ∈ Σα
℘ðσ, pÞ, we have

1 − σð Þ
ζ℘

Qm αψ ζð Þ½ �+ σ

℘ζ℘−1

 !
Qm αψ ζð Þ½ �′ ≺ p ζð Þ = μζ + 1

νζ + 1 :

ð64Þ

In addition, there is a Schwarz function ϖðζÞ = 1 + ϖ1ζ +
ϖ2ζ

2 +⋯ in Ω such that

1 − σð Þ
ζ℘

Qm αψ ζð Þ½ �+ σ

℘ζ℘−1

 !
Qm αψ ζð Þ½ �′ ≺ p w ζð Þð Þp w ζð Þð Þ

= 1 + μw ζð Þ
1 + νw ζð Þ

= 1 + μ − νð Þϖ1ζ + μ − νð Þϖ2 − ν μ − νð Þϖ2
1

� �
ζ2+⋯:

ð65Þ

Now by (18), we have

1 − σð Þ
ζ℘

Qm αψ ζð Þ½ �+ σ

℘ζ℘−1

 !
Qm αψ ζð Þ½ �′

= 1 + 〠
∞

n=℘+1
1 + n − 1

℘ σ

� �
Λm

n ψnζ
n−℘, ζ ∈ Δ,

ð66Þ

whereΛm
n is given by (19). Equating the coefficients of ζ and ζ2,

we get

1+σð ÞΛm
℘+1ψ℘+1 = μ − νð Þϖ1, ð67Þ

1+℘+1
℘ σ

� �
Λm

℘+2ψ℘+2 = μ − νð Þϖ2 − ν μ − νð Þϖ2
1, ð68Þ

℘+ ℘+1ð Þσ
℘

� �
Λm

℘+2ψ℘+2 = μ − νð Þϖ2 − ν μ − νð Þϖ2
1: ð69Þ
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From (67) and (69), we get

ψ℘+1 =
μ − νð Þϖ1
1+σð ÞΛm

℘+1
,

ψ℘+2 =
μ − νð Þ℘

℘+ ℘+1ð Þσ½ �Λm
℘+2

ϖ2 −
ν μ − νð Þ℘

℘+ ℘+1ð Þσ½ �Λm
℘+2

ϖ2
1:

ð70Þ

For any ρ ∈ℂ, we get

ψ℘+2−ρψ
2
℘+1 =

μ − νð Þ℘
℘+ ℘+1ð Þσ½ �Λm

℘+2
ϖ2 −

ν μ − νð Þ℘
℘+ ℘+1ð Þσ½ �Λm

℘+2
ϖ2
1

−
μ − νð Þϖ1
1+σð ÞΛm

℘+1

 !2

= μ − νð Þ℘
℘+ ℘+1ð Þσ½ �Λm

℘+2

� ϖ2 − ν +
ρ μ−νð Þ ℘+ ℘+1ð Þσ½ �Λm

℘+2

℘ 1+σð Þ2Λ2m
℘+1

 !
ϖ2
1

" #

= μ − νð Þ℘
℘+ ℘+1ð Þσ½ �Λm

℘+2
ϖ2 −ℵϖ2

1
� �

,

ð71Þ

where

ℵ = ν +
ρ μ−νð Þ ℘+ ℘+1ð Þσ½ �Λm

℘+2

℘ 1+σð Þ2Λ2m℘+1

 !
: ð72Þ

By applying Lemma 17, we get

ψ℘+2−ρψ
2
℘+1




 


 ≤ μ − νð Þ℘
℘+ ℘+1ð Þσ½ �Λm

℘+2

 !
max 1, ℵj jf g: ð73Þ

The result is sharp for the function

1 − σð Þ
ζ℘

Qm αψ ζð Þ½ �+ σ

℘ζ℘−1

 !
Qm αψ ζð Þ½ �′ = p ζ2

� �
= μζ2 + 1
νζ2 + 1

,

ð74Þ

or

1 − σð Þ
ζ℘

Qm αψ ζð Þ½ �+ σ

℘ζ℘−1

 !
Qm αψ ζð Þ½ �′ = p ζð Þ = μζ + 1

νζ + 1 :

ð75Þ

Remark 19. By fixing ρ = 1 in Theorem18, we get

ψ℘+2−ψ
2
℘+1




 


 ≤ μ − νð Þ℘
℘+ ℘+1ð Þσ½ �Λm

℘+2

 !
max 1,∣ℵ ∣f g, ð76Þ

where

ℵ = ν +
μ−νð Þ ℘+ ℘+1ð Þσ½ �Λm

℘+2

℘ 1+σð Þ2Λ2m℘+1

 !
: ð77Þ

From Definition 4, a function ψ ∈ Σ℘ is said to be in the
class Σα

℘ðσ, pÞ if it satisfies the inequality (13); then we have

Ψ ζð Þ − 1
μ − νΨ ζð Þ










 < 1, ð78Þ

where

Ψ ζð Þ = 1 − σð Þ
ζ℘

Qm αψ ζð Þ½ �+ σ

℘ζ℘−1

 !
Qm αψ ζð Þ½ �′ ð79Þ

is as given in (17).

Now, we obtain coefficient estimates for f ∈ Σα
℘ðσ, pÞ:

Theorem 20. Let the function ψ be defined by ((5)). Then,
ψ ∈ Σα

℘ðσ, pÞ if

〠
∞

n=p+1
Ψn,℘ 1 + ν½ �ψn ≤ μ − νj j, ð80Þ

Ψn,℘ = 1 + n − 1
℘ σ

� �
Λm

n , ð81Þ

where Λm
n is given by (8).

Proof. Suppose ψ satisfies (80). Then, for ∣ζ ∣ = r < 1

Ψ ζð Þ − 1j j − μ − νΨ ζð Þj j = 〠
∞

n=p+1
Ψn,℘ψnζ

n−p












 − β μ − νð Þj

+ ν 〠
∞

n=p+1
Ψn,℘ ∣ ψnζ

n−pj

≤ 〠
∞

n=p+1
Ψn,℘ ψnj j − μ − νj j

+ 〠
∞

n=p+1
Ψn,℘ν ψnj j

= 〠
∞

n=p+1
Ψn,℘ 1 + ν½ � ψnj j − μ − νj j ≤ 0:

ð82Þ

3. An Application

In this section, we consider the suggested class Σα
℘ðσ, ð1 + ζÞ/

ð1 − ζÞÞ for all α ∈ ½0, 1�:
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Theorem 21. Consider the class of analytic functions Σα
℘ðσ,

ð1 + ζÞ/ð1 − ζÞÞ: Then, the solution of the differential equa-
tion corresponds to this class is

Qm αψ ζð Þ½ � = c1ζ
σ−1ð Þ℘
σ + ζ℘

2℘ζ2F1 1, σ+℘ð Þ/σ,℘/σ + 2, ζÞð Þ + 1
σ+℘ð Þ

� �
,

ð83Þ

where 2F1ða, b, c ; ζÞ represents the hypergeometric function.

Proof. Suppose that ψ ∈ Σα
℘ðσ, ð1 + ζÞ/ð1 − ζÞÞ: Then, it

satisfies the differential equation

1 − σð Þ
ζ℘

Qm αψ ζð Þ½ �+ σ

℘ζ℘−1

 !
Qm αψ ζð Þ½ �′ = ω ζð Þ + 1

1 − ω ζð Þ , ð84Þ

where ωð0Þ = 0 and ∣ω ∣ <1: This leads to the solution

Qm αψ ζð Þ½ � = ζ σ−1ð Þ℘ð Þ/σ
ðζ
0
−℘z℘/σ−1 ω zð Þ + 1

σ ω zð Þ − 1ð Þ
� �

dz: ð85Þ

To find the upper solution, we let ωðζÞ = ζ: Thus, we
have the differential equation

1 − σð Þ
ζ℘

Qm αψ ζð Þ½ �+ σ

℘ζ℘−1

 !
Qm αψ ζð Þ½ �′ = ζ + 1

1 − ζ
: ð86Þ

Rewrite the above equation as follows:

Qm αψ ζð Þ½ �′ + ℘ 1 − σð Þ
σζ

Qm αψ ζð Þ½ � = ℘ζ℘−1
σ

 !
1 + ζ

1 − ζ

� �
:

ð87Þ

Multiplying the above equation by the functional

T ζð Þ = exp
ð ℘ σ + ζ − σζ − 1ð Þ

σζ ζ − 1ð Þ dζ
� �

, ð88Þ

we obtain

ζ℘ 1/σ−1ð Þ Qm αψ ζð Þ½ �′ −
Qm αψ ζð Þ½ � ℘ζ℘ 1/σ−1ð Þ−1 σ+ζ−σζ−1ð Þ

� �
σ 1 − ζð Þ

= ℘ζ℘/σ−1
σ

 !
1 + ζ

1 − ζ

� �
:

ð89Þ

Hence, it follows the solution (26).

Example 1. For

(i) ℘ = 1, σ = 0:5, c1 = 0, the solution is

Qm αψ ζð Þ½ � = −ζ −
4 ζ + log 1 − ζð Þð Þ

ζ
ð90Þ

(ii) ℘ = 1, σ = 0:25, c1 = 0; the solution becomes

Qm αψ ζð Þ½ � = −ζ −
4 2ζ3 + 3ζ2 + 6ζ + 6 log 1 − ζð Þ
� �

3ζ3
ð91Þ

(iii) ℘ = 2, σ = 0:5, c1 = 0; then the solution is given by
the formula

Qm αψ ζð Þ½ � = −ζ2 −
4 2ζ3 + 3ζ2 + 6ζ + 6 log 1 − ζð Þ
� �

3ζ2
: ð92Þ

4. Conclusion

Commencing overhead, we formulated a new parametric
differential operator for a certain class of multivalently ana-
lytic functions. We investigated some geometric conducts of
the operator connecting with the Janowski function, which is
convex univalent in the open unit disk. As an application, we
presented the formula of the suggested class involving the
operator. For future works, one can generalize the suggested
fractional operator using various classes of analytic functions
such as meromorphic and harmonic functions.
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By using k-Fibonacci numbers, we present a comprehensive family of regular and biunivalent functions of the type gðzÞ =
z +∑∞

j=2 djz
j in the open unit disc D. We estimate the upper bounds on initial coefficients and also the functional of

Fekete-Szegö for functions in this family. We also discuss few interesting observations and provide relevant connections of
the result investigated.

1. Introduction and Notations

Let ℂ be the set of all complex numbers and the disc
fz ∈ℂ : jzj < 1g be symbolized by D. Let ℕ =ℕ0 \ f0g≔
f1, 2, 3,⋯g and ℝ be the collection of all real numbers.
We denote the set of all normalized regular functions in D

that have the series of the form

g zð Þ = z + 〠
∞

j=2
djz

j, ð1Þ

by A and the symbol S stands for set of all functions of A
that are univalent (or Schlicht) in D. As per the popular
Koebe theorem (see [1]), every function g ∈ S has an inverse
function given by

g−1 ωð Þ = f ωð Þ = ω − d2ω
2 + 2d22 − d3
� �

ω3

− 5d32 − 5d2d3 + d4
� �

ω4+⋯,
ð2Þ

such that z = g−1ðgðzÞÞ and ω = gðg−1ðωÞÞ, jωj < r0ðgÞ,
r0ðgÞ ≥ 1/4, z, ω ∈D.

A function g of A is called biunivalent (or bi-Schlicht) in
D if both g and g−1 are univalent (or Schlicht) in D. Let Σ
stands for the set of biunivalent (or bi-Schlicht) functions
having the form (1). Historically, investigations of the family
Σ begun five decades ago by Lewin [2] and Brannan and
Clunie [3]. Later, Tan [4] found some coefficient estimates
for biunivalent functions. In 1986 [5], Brannan and Taha
introduced certain well-known subfamilies of Σ in D. Many
interesting results related to initial bounds for some special
families of Σ have appeared in [6–8].

In 2007, the concept of k-Fibonacci number sequence
fFk,jg∞j=0, k ∈ℝ+ was examined by Falcón and Plaza [9]

and is given by

Fk,0 = 0,
Fk,1 = 1,

Fk,j+1 = kFk,j + Fk,j−1,
ð3Þ
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where j ∈ℕ and

Fk,j =
k − tkð Þj − t jkffiffiffiffiffiffiffiffiffiffiffiffi

k2 + 4
p with tk =

k −
ffiffiffiffiffiffiffiffiffiffiffiffi
k2 + 4

p

2 : ð4Þ

F1,j = Fj is the well-known Fibonacci number sequence.
Özgür and Sokól in 2015 [10] proved that if

~pk zð Þ = 1 + t2kz
2

1 − ktkz − t2kz
2 , ð5Þ

then,

~pk zð Þ = 1 + Fk,0 + Fk,2ð Þtkz + Fk,1 + Fk,3ð Þt2kz2+⋯
= 1 + k tkz + k2 + 2

� �
t2kz

2+⋯,
ð6Þ

where tk is as in (4) and z ∈D. Further, if ~pkðzÞ = 1 + Σ~pk,jz
j,

then, we have

~pk,j = t jk Fk,j−1 + Fk,j+1
� �

, j ∈ℕ: ð7Þ

Fibonacci polynomials, Pell-Lucaspolynomials,Gegenbauer
polynomials, Chebyshev polynomials, Horadam polynomials,
Fermat-Lucas polynomials, and generalizations of them are
potentially important in many branches such as architecture,
physics, combinatorics, number theory, statistics, and engi-
neering. Additional information is associated with these poly-
nomials one can go through [11–13]. More details about the
very popular functional of Fekete-Szegö for biunivalent func-
tions based on k-Fibonacci numbers can be found in [14–20].

The recent research trends are the outcomes of the study
of functions in Σ based on any one of the above-mentioned
polynomials, which can be seen in the recent papers [21–28].
Generally, interest was shown to estimate the first two coef-
ficient bounds and the functional of Fekete-Szegö for some
subfamilies of Σ.

For functions g and f regular in D, g is said to subor-
dinate f , if there is a Schwarz function ψ in D, such that
ψð0Þ = 0, jψðzÞj < 1, and gðzÞ = f ðψðzÞÞ, z ∈D. This subor-
dination is indicated as g ≺ f . In particular, if f ∈ S , then
gðzÞ ≺ f ðzÞ⇐ gð0Þ = f ð0Þ and gðDÞ ⊂ f ðDÞ.

Inspired by the recent articles and the new trends on
functions in Σ, we present a comprehensive family of Σ
defined by using k-Fibonacci numbers as given by (3) with
Fk,j as in (4).

Throughout this paper, g−1ðωÞ = f ðωÞ is as in (2), Tk =
k − ðk2 + 2Þtk, tk is as in (4), and ~pk is as in (5).

Definition 1. A function g ∈ Σ having the power series (1) is
said to be in the family SRSτ

Σðγ, μ, ~pkÞ, if

z g′ zð Þ
� �τ

+ μz2g′′ zð Þ
γg zð Þ + 1 − γð Þz ≺ ~pk zð Þ, z ∈D

ω g′ ωð Þ
� �τ

+ μz2g′′ ωð Þ
γg ωð Þ + 1 − γð Þω ≺ ~pk ωð Þ, ω ∈D,

ð8Þ

where τ ≥ 1, 0 ≤ γ ≤ 1, and μ ≥ 0.

Remark 2. The function families SRSτ
Σðγ, 0, ~pkÞ and SRS1

Σðγ,
μ, ~pkÞwere investigated by Frasin et al. [29].

It is interesting to note that (i) γ = 1, (ii) γ = 0, and (iii)
μ = 1 lead the family SRSτ

Σðγ, μ, ~pkÞ to various subfamilies,
as illustrated in the following:

(1) SRSτ
Σð1, μ, ~pkÞ ≡ LτΣðμ, ~pkÞ is the family of functions

g∈Σ satisfying

z g′ zð Þ
� �τ
g zð Þ + μ

z2g′′ zð Þ
g zð Þ

 !
≺ ~pk zð Þ and

ω f ′ ωð Þ
� �τ
f ωð Þ

+ μ
ω2 f ′′ ωð Þ
f ωð Þ

 !
≺ ~pk ωð Þ, z, ω ∈D

ð9Þ

(2) SRSτ
Σð0, μ, ~pkÞ ≡ Kτ

Σðμ, ~pkÞ is the set of functions
g ∈ Σ satisfying

g′ zð Þτ + μzg′′ zð Þ ≺ ~pk zð Þ
�

and f ′ ωð Þ
� �τ

+ μωf ′′ ωð Þ ≺ ~pk ωð Þ, z, ω ∈D
ð10Þ

(3) SRSτ
Σðγ, 1, ~pkÞ ≡Mτ

Σðγ, ~pkÞ is the collection of func-
tions g ∈ Σ satisfying

z g′ zð Þ
� �τ

+ z2g′′ zð Þ
γg zð Þ + 1 − γð Þz ≺ ~pk zð Þ, z ∈D,

ω f ′ ωð Þ
� �τ

+ ω2 f ′′ ωð Þ
γf ωð Þ + 1 − γð Þω ≺ ~pk ωð Þ, ω ∈D

ð11Þ

Remark 3. We note that (i) LτΣð1, ~pkÞ ≡Mτ
Σð1, ~pkÞ and (ii)

Kτ
Σð1, ~pkÞ ≡Mτ

Σð0, ~pkÞ.
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Remark 4.

(i) When τ = 1, the family K1
Σðμ, ~pkÞ was introduced by

Frasin et al. [30]

(ii) The family L1Σð0, ~pkÞ ≡ S∗
Σð~pkÞÞ was mentioned by

Güney et al. [18], when μ = 0 and τ = 1
(iii) For μ = 0 and k = 1, the class LτΣð0, ~p1Þ ≡ SΣð~p1Þ was

investigated by Magesh et al. [31]

We now state the following lemma, which we will be
using in the proof of our theorem.

Lemma 5 (see [32]). If p ∈ P, where P is the collection of
regular functions p in D, satisfying RðpðzÞÞ > 0, z ∈D, with
pðzÞ = 1 + p1z + p2z

2 +⋯, z ∈D, then jpij ≤ 2, for each i.

In the next section, we derive the estimates for jd2j,jd3j
and obtain the Fekete-Szegö [33] inequalities for functions
in the class SRSτ

Σðγ, μ, ~pkÞ.

2. Coefficient Bounds and Fekete-
Szegö Functional

In this section, we offer to get the upper bounds on initial
coefficients and find the functional of Fekete-Szegö for func-
tions ∈SRSτ

Σðγ, μ, ~pkÞ.

Theorem 6. Let τ ≥ 1, 0 ≤ γ ≤ 1, and μ ≥ 0. If gðzÞ of the form
(1) in the family SRSτ

Σðγ, μ, ~pkÞ, then

d2j j ≤ k
ffiffiffi
k

p
tkj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∣ γ2 + τ − γð Þ 2τ + 1ð Þ + 2μ 3 − γð Þð Þk2tk + 2 μ + τð Þ − γð Þ2Tk

q
∣
,

ð12Þ

d3j j ≤ k tkj j
3 2μ + τð Þ − γ

+ k3t2k
γ2 + τ − γð Þ 2τ + 1ð Þ + 2μ 3 − γð Þð Þk2tk + 2 μ + τð Þ − γð Þ2Tk

�� �� ,
ð13Þ

and for δ ∈ℝ,

where

J = 1
3 2μ + τð Þ − γ

� γ2 + τ − γð Þ 2τ + 1ð Þ + 2μ 3 − γð Þ + 2 μ + τð Þ − γð Þ2 Tk

k2tk

����
����

� 	
:

ð15Þ

Proof. Let the function g ∈ SRSτ
Σðγ, μ, ~pkÞ. Then, from Defi-

nition 1, we have

z g′ zð Þ
� �τ

+ μz2g′′ zð Þ
γg zð Þ + 1 − γð Þz ≺ ~pk u zð Þð Þ, z ∈D, ð16Þ

ω f ′ ωð Þ
� �τ

+ μω2 f ′′ ωð Þ
γf ωð Þ + 1 − γð Þω ≺ ~pk v ωð Þð Þ, ω ∈D: ð17Þ

Let pðzÞ = 1 + p1z + p2z
2 +⋯, and p ≺ ~pk. Then, there

exists a regular function u with juðzÞj < 1 in D and pðzÞ =
~pkðuðzÞÞ. Therefore, the function mðzÞ is in the class P,

where

m zð Þ = 1 + u zð Þ
1 − u zð Þ = 1 + u1z + u2z

2+⋯: ð18Þ

So it follows that

u zð Þ = m zð Þ − 1
m zð Þ + 1 = u1

2 z + u2 −
u21
2


 �
z2

2 + u3 − u1u2 +
u31
4


 �
z3

2 +⋯,

ð19Þ

~pk u zð Þð Þ = 1 + ~pk,1
u1z
2 + u2 −

u21
2


 �
z2

2 +⋯

 �

+ ~pk,2
u1z
2 + u2 −

u21
2


 �
z2

2 +⋯

 �2

+⋯

= 1 +
~pk,1u1z

2 + 1
2 u2 −

u21
2


 �
~pk,1 +

u21
4

~pk,2


 �
z2+⋯:

ð20Þ

d3 − δd22
�� �� ≤

k ∣ tk ∣
3 2μ + τð Þ − γ

; 1 − δj j ≤ J ,

k3t2k 1 − δj j
γ2 + τ − γð Þ 2τ + 1ð Þ + 2μ 3 − γð Þð Þk2tk + 2 μ + τð Þ − γð Þ2Tk

�� �� ; 1 − δj j ≥ J ,

8>>>><
>>>>:

ð14Þ
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Similarly, it follows that

~pk v ωð Þð Þ = 1 +
~pk,1v1ω

2 + 1
2 v2 −

v21
2


 �
~pk,1 +

v21
4
~pk,2


 �
ω2+⋯,

ð21Þ

where v is a regular function such that ∣vðωÞ ∣ <1 in D such
that pðωÞ = ~pkðvðωÞÞ and the function lðωÞ is in the class P,
where

l ωð Þ = 1 + v ωð Þ
1 − v ωð Þ = 1 + v1ω + v2ω

2+⋯: ð22Þ

By virtue of (14), (15), (18), and (19), we obtain

2 μ + τð Þ − γð Þ d2 =
u1k tk
2 , ð23Þ

3 2μ + τð Þ − γð Þd3 + γ2 − 2γ μ + τð Þ + 2τ τ − 1ð Þ� �
d22

= 1
2 u2 −

u21
2


 �
ktk +

u21
4 k2 + 2
� �

t2k,
ð24Þ

− 2 μ + τð Þ − γð Þd2 =
v1k tk
2 , ð25Þ

3 2μ + τð Þ − γð Þ 2d22 − d3
� �

+ γ2 − 2γ μ + τð Þ + 2τ τ − 1ð Þ� �
d22

= 1
2 v2 −

v21
2


 �
k tk +

v21
4 k2 + 2
� �

t2k:

ð26Þ

From (21) and (23), we get

u1 = −v1, ð27Þ

and also,

2 2 μ + τð Þ − γð Þ2d22 =
u21 + v21
� �

k2 t2k
4 : ð28Þ

If we add (26) and (24), then we obtain

2 γ2 + τ − γð Þ 2τ + 1ð Þ + 2μ 3 − γð Þ� �
d22 =

1
2 u2 + v2ð Þk tk

−
1
4 k tk − k2 + 2

� �
t2k

� �
u21 + v21
� �

:

ð29Þ

Substituting the value of ðu21 + v21Þ from (26) in (27),
we get

d22 =
k3 t2k u2 + v2ð Þ

4 γ2 + τ − γð Þ 2τ + 1ð Þ + 2μ 3 − γð ÞÞk2 tk + 2 μ + τð Þ − γð Þ2Tk

�  ,
ð30Þ

which gets (10), on using Lemma 5.
On using (25) in the subtraction of (24) from (26), we

arrive at

d3 = d22 +
k tk u2 − v2ð Þ

4 3 2μ + τð Þ − γð Þ : ð31Þ

Then, in view of Lemma 5 and equation (28), (29)
reduces to (11).

From (28) and (29), for δ ∈ℝ, we can easily compute
that

d3 − δd22
�� �� = k tkj j T δð Þ + 1

4 3 2μ + τð Þ − γð Þ

 �

u2

����
+ T δð Þ − 1

4 3 2μ + τð Þ − γð Þ

 �

v2

����,
ð32Þ

where

T δð Þ = 1 − δð Þk2tk
4 γ2 + τ − γð Þ 2τ + 1ð Þ + 2μ 3 − γð Þð Þk2 tk + 2 μ + τð Þ − γð Þ2Tk

�  :
ð33Þ

In view of (4), we find that

d3 − δd22
�� �� ≤

k ∣ tk ∣
3 2μ + τð Þ − γð Þ ;0 ≤ T δð Þj j ≤ 1

4 3 2μ + τð Þ − γð Þ ,

4k tkj j T δð Þj j ; T δð Þj j ≥ 1
4 3 2μ + τð Þ − γð Þ ,

8>>><
>>>:

ð34Þ

which enable us to conclude (12) with J as in (13). Theorem
6 is proved.

Remark 7. By taking τ = 1 in the above theorem, we obtain a
result of Frasin et al. ([29], Corollary 3.4) and if we let μ = 0
in the above theorem, we get another result of Frasin et al.
([29], Corollary 3.7).

Remark 8. Allowing k = γ = 1 and μ = 0 in the above
theorem, we have Theorem 2.3 of Magesh et al. [31].

Remark 9. Letting τ = γ = 1 and μ = 0 in the Theorem 6, we
obtain two results of Güney et al. ([18], Corollary 10 and
Corollary 23). Further, if we take k = 1, we get results of
Güney et al. ([17], Corollary 1 and Corollary 4).

In Section 3, few interesting consequences and relevant
observations of the main result are mentioned.
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3. Outcome of the Main Result

By setting (i) γ = 1, (ii) γ = 0, and (iii) μ = 1 in our main
theorem, we obtain the following results, respectively.

Corollary 10. If the function g∈LτΣðμ, ~pkÞ, then

d2j j ≤ k
ffiffiffi
k

p
tkj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∣ τ 2τ − 1ð Þ + 4μð Þk2tk + 2 μ + τð Þ − 1ð Þ2Tk

q
∣
,

d3j j ≤ k tkj j
3 2μ + τð Þ − 1

+ k3t2k
τ 2τ − 1ð Þ + 4μð Þk2tk + 2 μ + τð Þ − 1ð Þ2Tk:

�� �� ,
ð35Þ

and for δ ∈ℝ,

d3 − δd22
�� �� ≤

k tkj j
3 2μ + τð Þ − 1

; 1 − δj j ≤ J1,

k3 t2k ∣ 1 − δ ∣
∣ τ 2τ − 1ð Þ + 4μð Þk2tk + 2 μ + τð Þ − 1ð Þ2Tk ∣

; 1 − δj j ≥ J1,

8>>><
>>>:

ð36Þ

where

J1 =
1

3 2μ + τð Þ − 1
τ 2τ − 1ð Þ + 4μ + 2 μ + τð Þ − 1ð Þ2 Tk

k2tk

����
����


 �
:

ð37Þ

Remark 11.

(i) By taking μ = 0 and k = 1 in the above corollary, we
obtain Theorem 2.3 of Magesh et al. [31]

(ii) By allowing μ = 0 and τ = 1 in the above corollary,
we get two results Güney et al. ([18], Corollary 10
and Corollary 23)

Corollary 12. If the function g∈Kτ
Σðμ, ~pkÞ, then

d2j j ≤ k
ffiffiffi
k

p
tkj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τ 2τ + 1ð Þ + 6μð Þk2tk + 4 μ + τð Þ2Tk

�� ��q ,

d3j j ≤ k3t2k
τ 2τ + 1ð Þ + 6μð Þk2tk + 4 μ + τð Þ2Tk

�� �� + k tkj j
3 2μ + τð Þ ,

ð38Þ

and for some δ ∈ℝ,

d3 − δd22
�� �� ≤

k tkj j
3 2μ + τð Þ ; 1 − δj j ≤ J2,

k3t2k 1 − δj j
τ 2τ + 1ð Þ + 6μð Þk2tk + 4 μ + τð Þ2Tk

�� �� ; 1 − δj j ≥ J2,

8>>>><
>>>>:

ð39Þ

where

J2 =
1

3 2μ + τð Þ τ 2τ + 1ð Þ + 6μ + 4 μ + τ2
� � Tk

k2t2k

�����
�����

" #
: ð40Þ

Remark 13. For τ = 1, Corollary 12 reduces to a result of
Frasin et al. ([30], Corollary 3.6). Further, allowing k = 1,
we get Corollary 10 of Altnkaya [22].

Corollary 14. If the function g∈Mτ
Σðγ, ~pkÞ, then

∣d2∣ ≤
k
ffiffiffi
k

p
∣ tk ∣ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∣ 1 − γð Þ2 + τ − γð Þ 2τ + 1ð Þ + 5 − γ
� �

k2tk + 2 1 + τð Þ − γð Þ2Tk

q
∣
,

d3j j ≤ k tkj j
3 2 + τð Þ − γ

+ k3t2k
4μ + 1ð Þk2tk + 2μ + 1ð Þ2Tk

�� �� ,
ð41Þ

and for δ ∈ℝ,

where

d3 − δd22
�� �� ≤

k ∣ tk ∣
3 2 + τð Þ − γ

; 1 − δj j ≤ J3,

k3t2k ∣ 1 − δ ∣
1 − γð Þ2 + τ − γð Þ 2τ + 1ð Þ + 5 − γ

� �
k2tk + 2 1 + τð Þ − γð Þ2Tk

�� �� ;∣1 − δ∣ ≥ J3,

8>>>><
>>>>:

ð42Þ

J3 =
1

3 2 + τð Þ − γ
1 − γð Þ2 + τ − γð Þ 2τ + 1ð Þ + 5 − γ

� �
+ 2 1 + τð Þ − γð Þ2 Tk

k2 tk

����
����


 �
: ð43Þ
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4. Conclusion

A comprehensive family of biunivalent (or bi-Schlicht) func-
tions is introduced by using k-Fibonacci numbers. Bounds of
the first two coefficients ∣d2 ∣ and ∣d3 ∣ and the celebrated
Fekete-Szegö functional have been fixed for this family.
Through corollaries of our main result, we have highlighted
many interesting new consequences.

A comprehensive family examined in this research paper
could inspire further research related to other aspects such
as a comprehensive family using q-derivative operator, a
meromorphic biunivalent function family associated with
Al-Oboudi differential operator, and a comprehensive family
using integrodifferential operator.
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The topological and geometric behaviors of the variable exponent formal power series space, as well as the prequasi-ideal
construction by s-numbers and this function space of complex variables, are investigated in this article. Upper bounds for s
-numbers of infinite series of the weighted nth power forward and backward shift operator on this function space are being
investigated, with applications to some entire functions.

1. Introduction

Operator ideal theory has various applications in the geom-
etry of Banach spaces, xed point theory, spectral theory, and
other areas of mathematics, among other areas of knowl-
edge. Throughout the article, we will adhere to the etymo-
logical conventions listed below. If any other sources are
used, we will make a note of them.

1.1. Conventions 1.1. ℕ = f0, 1, 2,⋯g:ℂ: complex number
space

ℝℕ: the space of all real sequences
ℓ∞: the space of bounded real sequences
ℓr : the space of r-absolutely summable real sequences
c0: the space of null real sequences
el = ð0, 0,⋯, 1, 0, 0,⋯Þ, as 1 lies at the lth coordinate, for

all l ∈ℕ
F : the space of each sequence with finite nonzero

coordinates
card ðGÞ: the number of elements of the set G
mi↗: the space of all monotonic increasing sequences of

positive reals
L: the ideal of all bounded linear operators between any

arbitrary Banach spaces

F: the ideal of finite rank operators between any arbi-
trary Banach spaces

Λ: the ideal of approximable operators between any arbi-
trary Banach spaces

Lc: the ideal of compact operators between any arbitrary
Banach spaces

LðX,YÞ: the space of all bounded linear operators from a
Banach space X into a Banach space Y

LðXÞ : the space of all bounded linear operators from a
Banach space X into itself

FðX,YÞ: the space of finite rank operators from a
Banach space X into a Banach space Y

FðXÞ: the space of finite rank operators from a Banach
space X into itself

ΛðX,YÞ : the space of approximable operators from a
Banach space X into a Banach space Y

ΛðXÞ: the space of approximable operators from a
Banach space X into itself

LcðX,YÞ: the space of compact operators from a Banach
space X into a Banach space Y

LcðXÞ: the space of compact operators from a Banach
space X into itself

ðsaðGÞÞa∈ℕ: the sequence of s-numbers of the bounded
linear operator G
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ðαaðGÞÞa∈ℕ: the sequence of approximation numbers of
the bounded linear operator G

ðsaðGÞÞa∈ℕ: the sequence of Kolmogorov numbers of the
bounded linear operator G

Sv : the operator ideals formed by the sequence of s
-numbers in any sequence space V

SappV : the operator ideals formed by the sequence of
approximation numbers in any sequence space V

SKolV : the operator ideals formed by the sequence of Kol-
mogorov numbers in any sequence space V

1.2. Notations 1.2 (see [1]). SH ≔ fSH ðX,YÞ ;X andY are
Banach Spacesg, where

SappH ≔ fSappH ðX,YÞ ;X andY are Banach Spacesg, where

SKolH ; fSKolH ðX,YÞ ;X andY are Banach Spacesg, where

ðSHρ
Þλ ≔ fðSHρ

ÞλðX,YÞ ;X andY are Banach Spacesg,
where

Several operator ideals in the class of Banach or Hilbert
spaces are defined by sequences of real numbers. Lc, for
example, is produced by ðdaðGÞÞa∈ℕ and c0. Pietsch [2]
looked into the quasi-ideals Sappℓt , for 0 < t <∞. He demon-
strated how ℓ2 and ℓ1 yield the ideals of Hilbert Schmidt
operators and nuclear operators between Hilbert spaces,
respectively. In addition, he proved that �F = Sℓt , for 1 ≤ t <
∞, and Sℓt is a simple Banach space. Pietsch [3] explained
that Sℓt , where 0 < t <∞, is small. Makarov and Faried [4]
showed that for any Banach spaces X and Y with dim ðXÞ
= dim ðYÞ =∞, then for every r > t > 0, one has Sappℓt ðX,Y

Þ⊂
≠
Sappℓr ðX,YÞ⊂

≠
LðX,YÞ. The concept of prequasi-ideal was

developed by Faried and Bakery [5], who elaborated on the

concept of quasi-ideal. They investigated some geometric
and topological properties of the spaces ScesðtÞ and SℓM .
According to the spectral decomposition theorem [2], for
A ∈ LcðHÞ, where H is a Hilbert space, one has AðyÞ =∑∞

a=0
αa ≺ y, ra ≻wa, where frag and fwag are orthonormal fami-
lies in H. Suppose ðtaÞa∈ℕ ∈ℝℕ be decreasing and D : ðηaÞ
⟶ ðtaηaÞ be the diagonal operator on ℓp with p ≥ 1. There-
fore, saðDÞ = ta. Shields [6] investigated an indication to the
weighted shift operators as formal power series in unilateral
shifts and formal Laurent series in bilateral shifts. Hedaya-
tian [7] offered the space of formal power series with power
r, H rððbaÞÞ, where ððbaÞÞ is a sequence of positive numbers
with b0 = 1 and r > 0. By the space H pððbaÞÞ, he meant that

the set of all formal power series ∑∞
a=0
cf a za with ∑∞

a=0

SH X,Yð Þ≔ P ∈ L X,Yð Þ: f s ∈H , where f s zð Þ = 〠
∞

n=0
sn Pð Þzn converges for any z ∈ℂ

( )
ð1Þ

SappH X,Yð Þ≔ P ∈ L X,Yð Þ: f app ∈H , where f app zð Þ = 〠
∞

n=0
αn Pð Þzn converges for any z ∈ℂ

( )
ð2Þ

SKolH X,Yð Þ≔ P ∈ L X,Yð Þ: f Kol ∈H , where f Kol zð Þ = 〠
∞

n=0
dn Pð Þzn converges for any z ∈ℂ

( )
ð3Þ

SHρ

� �λ
X,Yð Þ≔ T ∈ L X,Yð Þ: f λ ∈Hρ, where f λ zð Þ = 〠

∞

n=0
λn Tð Þzn converges for any z ∈ℂ and T − λl Tð ÞIk k = 0, for every l ∈ℕ

( )
ð4Þ
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jbaf a∧jp <∞. He studied cyclic vectors for the H forward
shift operator and supercyclic vectors for the backward shift
operator on the space H pððbaÞÞ.

However, Emamirad and Heshmati [8] explored the idea
of functions evident on the Bargmann space by f ðzÞ =∑∞

a=0
caðza/

ffiffiffiffi
a!

p Þ with k f k =∑∞
a=0jcaj2 <∞, where fza/ ffiffiffiffi

a!
p

: a ∈
ℕg is an orthonormal basis. Faried et al. [9] introduced
the upper bounds for s-numbers of infinite series of the
weighted nth power forward shift operator on H rððbaÞÞ,
for 1 ≤ r <∞, with some applications to some entire
functions.

The paper is arranged as follows. In Section 3, we offer
the definition of the space H pð:Þ with definite function ρ.
We introduce the sufficient conditions on H pð:Þ to generate
premodular special space of formal power series. This gives
that H pð:Þ is a prequasinormed space. In Section 4, firstly,
we give the sufficient conditions on H pð:Þ such that the class
SHpð:Þ generates an operator ideal. Secondly, we explain

enough settings (not necessary) on ðH pð:ÞÞρ, so that �F =
SðH pð:ÞÞρ . This shows the nonlinearity of s-type ðH pð:ÞÞρ
spaces which gives an answer of Rhoades [10] open problem.
Thirdly, we investigate the conditions on ðH pð:ÞÞρ such that

the prequasi-ideal SðHpð:ÞÞρ are Banach and closed. Fourthly,

we examine the sufficient conditions on ðH pð:ÞÞρ such that

SðH pð:ÞÞρ is strictly contained for different powers. We show

the smallness of SðH pð:ÞÞρ . Fifthly, we investigate the simple-

ness of SðHpð:ÞÞρ . Sixthly, we present the enough setup on

ðH pð:ÞÞρ such that the class L with its sequence of eigen-

values in ðH pð:ÞÞρ equals SðHpð:ÞÞρ . In Section 5, we estimate

the upper bounds for s-numbers of infinite series of the
weighted nth power forward and backward shift operator
on H pð:Þ with approaches to some entire functions.

2. Definitions and Preliminaries

Definition 1 (see [11]). A function s : LðX,YÞ⟶ ½0,∞Þℕ is
called an s-number, if the sequence ðsbðBÞÞ∞a=0, for all B ∈ L
ðX,YÞ, shows the following settings:

(a) If B ∈ LðX,YÞ, then kBk = s0ðBÞ ≥ s1ðBÞ ≥ s2ðBÞ ≥⋯
≥0

(b) sb+a−1ðB1 + B2Þ ≤ sbðB1Þ + saðB2Þ, for every B1, B2 ∈ L
ðX,YÞ, b, a ∈ℕ

(c) The inequality saðABDÞ ≤ kAksaðBÞkDk holds, if D
∈ LðX0,XÞ, B ∈ LðX,YÞ and A ∈ LðY,Y0Þ, where
X0 and Y0 are arbitrary Banach spaces

(d) Suppose A ∈ LðX0,XÞ and λ ∈ℝ, then saðλAÞ = jλj
saðAÞ

(e) Let rank ðAÞ ≤ b then sbðAÞ = 0, whenever A ∈ Lð
X0,XÞ

(f) Assume Iλ indicates the identity operator on the λ
-dimensional Hilbert space ℓλ2 , then sr≥λðIλÞ = 0 or
sr<λðIλÞ = 1

Consider the following examples of s-numbers:

(i) The bth approximation number, αbðAÞ, where

αb Að Þ = inf A − Bk k: B ∈ L X, Yð Þ and rank Bð Þ ≤ bf g
ð5Þ

(ii) The bth Kolmogorov number, dbðAÞ, where

db Að Þ = inf
dim Y≤b

sup
uk k≤1

inf
v∈Y

Au − vk k: ð6Þ

Remark 2 (see [11]). If B ∈ LcðHÞ, where H be a Hilbert
space, then all the s-numbers equal the eigenvalues of ∣B ∣ ,
where jBj = ffiffiffiffiffiffiffiffiffiffiffi

B ∗ B
p

.

Lemma 3 (see [2]). If B ∈ LðX0,XÞ and B ∉ΛðX0,XÞ, then
D ∈ LðXÞ and M ∈ LðYÞ with MBDeb = eb, for each b ∈ℕ.

Definition 4 (see [2]). A Banach space Y is said to be simple
if LðYÞ has one and only one nontrivial closed ideal.

Theorem 5 (see [2]). If D is a Banach space with dim ðDÞ
=∞, then

F Dð Þ⊂
≠
Λ Dð Þ⊂

≠
Lc Dð Þ⊂

≠
L Dð Þ: ð7Þ

Definition 6. (see [2]). A class U ⊆ L is said to be an operator
ideal if every vector UðX, YÞ =U ∩ LðX, YÞ shows the fol-
lowing settings:

(i) F ⊆U

(ii) UðX,YÞ is linear space on ℝ

(iii) If D ∈ LðX0,XÞ, B ∈UðX,YÞ and A ∈ LðY,Y0Þ
then, ABD ∈UðX0,Y0Þ

Definition 7 (see [5]). A function g : U ⟶ ½0,∞Þ is called a
prequasinorm on the ideal U if it shows the next settings:

(1) For each A ∈ LðX,YÞ, gðAÞ ≥ 0 and gðAÞ = 0⇔ A
= 0

(2) One has M ≥ 1 with gðβAÞ ≤M ∣ β ∣ gðAÞ, for all β
∈ℝ and A ∈UðX,YÞ

(3) One has K ≥ 1 with gðA1 + A2Þ ≤ K½gðA1Þ + gðA2Þ�,
for every A1, A2 ∈UðX,YÞ

(4) There exists C ≥ 1 so that if A ∈ LðX0,XÞ, B ∈UðX,
YÞ and D ∈ LðY,Y0Þ then gðDBAÞ ≤ C∥D∥gðBÞ∥A∥,
where X0 and Y0 are normed spaces
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Theorem 8 (see [5]). Suppose g is a quasinorm on the ideal
U , then g is a prequasinorm on the ideal U .

Theorem 9 (see [12]). Assume s‐typeV υ≔ f f = ðsrðTÞÞ ∈
ℝℕ : T ∈ LðX,YÞand υð f Þ<∞g. If Svυ is an operator ideal,
then we have

(1) F ⊂ s-type V υ

(2) Assume ðsrðT1ÞÞ∞r=0 ∈ s‐typeV v andðsrðT2ÞÞ∞r=0 ∈ s‐
typeV v , thenðsrðT1 + T2ÞÞ∞r=0 ∈ s‐typeV v

(3) Suppose λ ∈ℝ and ðsrðTÞÞ∞r=0 ∈ s‐typeV v , thenjλj
ðsrðTÞÞ∞r=0 ∈ s‐typeV v

(4) The sequence space V v is solid. i.e., when ðsrðGÞÞ∞r=0
∈ s‐typeV v and srðTÞ ≤ srðGÞ, for every r ∈ℕand T ,
G ∈ LðX, YÞ, thenðsrðTÞÞ∞r=0 ∈ s‐typeV v

Lemma 10 (see [13]). If fξigi∈Ψ is a bounded family of ℝ. We
have

sup
card Gð Þ=a+1

inf ξi
i∈G

= inf
card Gð Þ=a

sup ξi
i∉G

: ð8Þ

Lemma 11 (see [14]). If ðraÞ, ðtaÞ ∈ℝℕ and ðqaÞ ∈ ð0,∞Þℕ,
with K =max f1, 2ϖq−1g and ϖq =max f1, supaqag, then

ra + taj jqa ≤ K raj jqa + taj jqað Þ: ð9Þ

Definition 12 (see [1]). The linear space of formal power
series

H = f : f zð Þ = 〠
∞

n=0
f
_

nz
n converges for any z ∈ℂ,

( )
, ð10Þ

is called a special space of formal power series (or in short
(ssfps)), if it shows the following settings:

(1) eðmÞ ∈H , for all m ∈ℕ, where eðmÞðzÞ =∑∞
n=0e

ðm_Þ
n zn

= zm

(2) If g ∈H and j f_nj ≤ jg_nj, for all n ∈ℕ, then f ∈H

(3) Suppose f ∈H , then f ½:� ∈H , where f ½:�ðzÞ =∑∞
b=0

f
_

½b/2�z
b and ½b/2� marks the integral part of b/2

Theorem 13 (see [1]). If H is a (ssfps), then SH is an opera-
tor ideal.

By F, we explain the space of finite formal power series,

i.e, for f ∈F, one has l ∈ℕ with f ðzÞ =∑l
n=0 f

_

nz
n.

Definition 14 (see [1]). A subspaceHρ of the (ssfps) is called
a premodular (ssfps), if there is a function ρ : H ⟶ ½0,∞Þ
verifies the next conditions:

(i) For f ∈H , we have ρð f Þ ≥ 0 and f = θ⇔ ρð f Þ = 0,
where θ is the zero function of H

(ii) Suppose f ∈H and λ ∈ℝ, then there is l ≥ 1 with
ρðλf Þ ≤ jλjlρð f Þ

(iii) Let f , g ∈H , then there is K ≥ 1 such that ρð f + g
Þ ≤ Kðρð f Þ + ρðgÞÞ

(iv) Suppose j f_bj ≤ jg_bj, for every b ∈ℕ, then ρð f Þ ≤ ρ
ðgÞ

(v) There is K0 ≥ 1 so that ρð f Þ ≤ ρð f ½:�Þ ≤ K0ρð f Þ
(vi) �F=Hρ

(vii) one has ξ > 0 with ρðλeð0ÞÞ ≥ ξjλjρðeð0ÞÞ, where λ
∈ℝ

Note that the continuity of ρð f Þ at θ comes from condi-
tion (ii). Condition (1) in Definition 12 and condition (vi) in
Definition 14 investigate that ðeðmÞÞm∈ℕ is a Schauder basis
of Hρ.

The (ssfps) Hρ is called a prequasinormed (ssfps) if ρ
shows the conditions (i)–(iii) of Definition 14, and if the
space H is complete under ρ, then Hρ is called a prequasi-
Banach (ssfps).

Theorem 15 (see [1]). Every premodular (ssfps)Hρ is a pre-
quasinormed (ssfps).

Definition 16 (see [1]). Assume Hρ is a prequasinormed
(ssfps). An operator Vz : Hρ⟶Hρ is called forward

shift, if Vz f = zf , for all f ∈Hρ, where Vz f ðzÞ =∑∞
n=0 f

_

n
zn+1 converges for every z ∈ℂ and ρðVz f Þ <∞.

Definition 17 (see [1]). Suppose Hρ is a prequasinormed
(ssfps). An operator Bz Hρ⟶Hρ is called backward

shift, if Bz f ðzÞ = ð f ðzÞ − f ð0ÞÞ/z, for all f ∈Hρ, where Bz f

ðzÞ =∑∞
n=0 f

_

n+1z
n converges for every z ∈ℂ and ρðBz f Þ <

∞.

Definition 18 (see [9]). By using the power series of an entire
function gðzÞ =∑∞

m=0amz
m, the shift operator VgðzÞ is

defined as

Vg zð Þ f zð Þð Þ = 〠
∞

m=0
amV

m
z

 !
f zð Þð Þ: ð11Þ

Definition 19 (see [9]). By using the power series of an entire
function gðzÞ =∑∞

m=0amz
m, the shift operator BgðzÞ is defined

as

Bg zð Þ f zð Þð Þ = 〠
∞

m=0
amB

m
z

 !
f zð Þð Þ: ð12Þ
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3. Main Results

3.1. The Space of Functions ðH pð:ÞÞρ. We define in this sec-
tion the space ðH pð:ÞÞρ under the function ρ and give

enough conditions on it to create pre-modular (ssfps) which
implies that is a prequasi-Banach (ssfps).

If p = ðpvÞv∈ℕð0,∞Þℕ, we define the new space of
functions:

where

ρ fð Þ = 〠
∞

v=0

1
pv

f
_

v

��� ���pv : ð14Þ

If ðpvÞ ∈ ℓ∞, one has
Theorem 20. Consider ðpvÞ ∈mi↗ ∩ ℓ∞with p0 > 0, one has
ðH pð:Þ

Þ
ρ
is a premodular Banach (ssfps).

Proof (1-i). Let f , g ∈H pð:Þ. Therefore, f ðzÞ =∑∞
v=0 f

_

vz
v and

gðzÞ =∑∞
v=0g

_
vz

v converge for any z ∈ℂ. Then, ð f + gÞðzÞ
=∑∞

v=0ð f
_

v + g_vÞzv converges for any z ∈ ℂ. From ðpvÞ ∈ ℓ∞,
we
have-

∑∞
v=0ð1/pvÞj f

_

v + g_vj
pv
≤ Kð∑∞

v=0ð1/pvÞj f
_

vj
pv
+∑∞

v=0ð1/pvÞ
jg_vj

pvÞ <∞,so f + g ∈H pð:Þ.

(1-ii) Let λ ∈ℝ and f ∈Hpð:Þ. Therefore, f ðzÞ =∑∞
v=0 f

_

v

zv converges for any z ∈ℂ. Then, ðλf ÞðzÞ =∑∞
v=0λ f

_

vz
v con-

verges for any z ∈ℂ. From ðpvÞ ∈ ℓ∞, we

have∑∞
v=0ð1/pvÞjλ f

_

vj
pv
≤ sup

v
jλjpv∑∞

v=0ð1/pvÞj f
_

vj
pv
<∞:

So λf ∈H pð:Þ. Therefore, from conditions (1-i) and (1-

ii), the space H pð:Þ is linear. To prove eðmÞ ∈Hpð:Þ,

for all m ∈ℕ, where eðmÞðzÞ =∑∞
v=0e

ðm_Þ
v zv = zm and∑∞

v=0ð
1/pvÞjeðm

_Þ
v j

pv
= 1/pm

(2) Assume jcf v j ≤ jcgv j, for all v ∈ℕ and g ∈H pð:Þ.
Then,converges for any z ∈ℂ

One has

〠
∞

v=0

1
pv

f∧vj jpv ≤ 〠
∞

v=0

1
pv

g∧vj jpv <∞: ð16Þ

H p :ð Þ
� �

ρ
= f : f zð Þ = 〠

∞

v=0
f
_

vz
v converges for any z ∈ℂ and ρ ζfð Þ<∞,for some ζ > 0

( )
, ð13Þ

H p :ð Þ
� �

ρ
= f : f zð Þ = 〠

∞

v=0
f
_

vz
v converges for any z ∈ℂ and ρ ζfð Þ<∞,for some ζ > 0

( )

= f : f zð Þ = 〠
∞

v=0
f
_

vz
v converges for any z ∈ℂ and 〠

∞

v=0

1
pv

ζ f
_

v

��� ���pv<∞,for some ζ > 0
( )

= f : f zð Þ = 〠
∞

v=0
f
_

vz
v converges for any z ∈ℂ and inf

v
ζj jpv 〠

∞

v=0

1
pv

ζ f
_

v

��� ���pv<∞,for some ζ > 0
( )

= f : f zð Þ = 〠
∞

v=0
f
_

vz
v converges for any z ∈ℂ and 〠

∞

v=0

1
pv

f
_

v

��� ���pv<∞( )

= f : f zð Þ = 〠
∞

v=0
f
_

vz
v converges for any z ∈ℂ and ρ ζfð Þ<∞,for any ζ > 0

( )
:

ð15Þ
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So, f ðzÞ =∑∞
v=0 f̂ vz

v and z ∈ℂ and ρð f Þ <∞. Hence, f
∈H pð⋅Þ

(3) Let f ∈H pð⋅Þ and ðpvÞ ∈mi↗∩ ℓ∞ with p0 > 0. Then,
f ðzÞ =∑∞

v=0 f̂ vz
v converges for any z ∈ℂ

and ρð f Þ <∞. One has

ρ f ⋅½ �
� �

= 〠
∞

v=0

1
pv

f v/2½ �∧
��� ���pv = 〠

∞

v=0

1
p2v

f v∧j jp2v

+ 〠
∞

v=0

1
p2v+1

f v∧j jp2v+1 ≤ 2〠
∞

v=0

1
pv

f v∧j jpv = 2ρ fð Þ

ð17Þ

Hence, f ½⋅�ðzÞ =∑∞
v=0
df ½v/2�zv converges for any z ∈ℂ and

ρð f ½⋅�Þ <∞. Then f ½⋅� ∈H pð⋅Þ.

(i) Obviously, if f ∈H pð:Þ, one gets ρð f Þ ≥ 0 and ρð f Þ
= 0⇔ f = θ

(ii) There is l =max f1, sup
v
jηjpv−1g ≥ 1, for all η ∈ℝ \ f

0g and l ≥ 1, for η = 0 so that

ρ ηfð Þ = 〠
∞

v=0

1
pv

ηf v∧j jpv ≤ sup
v

ηj jpv 〠
∞

v=0

1
pv

f v∧j jpv ≤ l ηj jρ fð Þ,

ð18Þ

for all f ∈H pð:Þ

(iii) There is K =max f1, 2
sup
v

pv−1g ≥ 1 so that

ρ ηfð Þ = 〠
∞

v=0

1
pv

ηcf v��� ��� ≤ sup
v

ηj jpv 〠
∞

v=0

1
pv

f v∧j jpv ≤ l ηj jρ fð Þ,

ð19Þ

for every f , g ∈H pð:Þ

(iv) Obviously from the proof part (2).

(v) From the proof part (3), one has K0 = 2 ≥ 1

(vi) Clearly, �F=H pð:Þ

(vii) One has ζ with 0 < ζ ≤ ηp0−1 with ρðηeð0ÞÞ ≥ ζjηjρð
eð0ÞÞ, for each η ≠ 0 and ζ > 0, when η = 0. There-
fore, the space ðH pð:ÞÞρ is a premodular (ssfps).

To show that ðH pð:ÞÞρ is a premodular Banach

(ssfps), we suppose f ðiÞ to be a Cauchy sequence
in ðH pð:ÞÞρ, then for every ε ∈ ð0, 1Þ, there is i0 ∈N

such that for all i, j ≥ i0, one gets

ρ f ið Þ − f jð Þ
� �

= 〠
∞

v=0

1
pv

f ið Þ
v ∧ − f jð Þ

v ∧
��� ���pv < εϖp ð20Þ

For i, j ≥ i0 and v ∈ℕ, we have

cf ið Þ
v −df jð Þ

v

���� ���� < ε: ð21Þ

So, ðdf ðjÞv Þ is a Cauchy sequence in ℝ, for fixed v ∈ℕ,

hence lim j⟶∞
df ðjÞv =df ð0Þv , for fixed v ∈ℕ.

Therefore, ρð f ðiÞ − f ð0ÞÞ < εϖp, for every i ≥ i0. Finally, to
show that f ð0Þ ∈H pð:Þ, we have

ρ f 0ð Þ
� �

= ρ f 0ð Þ − f ið Þ + f ið Þ
� �

≤ K ρ f ið Þ − f 0ð Þ
� �

+ ρ f ið Þ
� �� �

<∞:

ð22Þ

Hence, f ð0Þ ∈H pð:Þ. Then, the space ðH pð:ÞÞρ is a pre-

modular Banach (ssfps).
In view of Theorems 15 and 20, we conclude the follow-

ing theorem.

Theorem 21. If ðpvÞ ∈mi↗∩ ℓ∞ with p0 > 0, then the space
ðHpð:ÞÞρ is a prequasi-Banach (ssfps), where

ρð f Þ =∑∞
v=0ð1/pvÞj f v∧jpv , for all f ∈H pð⋅Þ:

Theorem 22. Suppose ðpvÞ ∈mi↗∩ ℓ∞ with p0 > 0, one has
ðHpð:ÞÞρ is a prequasiclosed (ssfps), where

ρ fð Þ = 〠
∞

v=0

1
pv

f v∧j jpv , for all f ∈H p ⋅ð Þ: ð23Þ

Proof. According to Theorem 21, the space ðHpð:ÞÞρ is a pre-
quasinormed (ssfps). To explain that ðHpð:ÞÞρ is a prequasi-

closed (ssfps), let f f ðiÞg∞i=0 ∈ ðH pð⋅ÞÞρ and

limi⟶∞ρð f ðiÞ − f ð0ÞÞ = 0, we have for all ε ∈ ð0, 1Þ, there is
i0 ∈ℕ such that for all i ≥ i0, one gets

ε > ρ f ið Þ − f 0ð Þ
� �

= 〠
∞

a=0

1
pa

f ið Þ
a ∧ − f 0ð Þ

a ∧
��� ���pa" #1/ϖp

: ð24Þ

So, for i ≥ i0 and a ∈ℕ, we have jcf ðiÞa −df ð0Þa j < ε.There-

fore, ðcf ðiÞa Þ is a convergent sequence in ℝ, for fixed a ∈ℕ.

Then, limi⟶∞
cf ðiÞa =df ð0Þa for fixed a ∈ℕ. Finally to prove
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that f ð0Þ ∈ ðH pð:ÞÞρ, we have

ρ f 0ð Þ
� �

= ρ f 0ð Þ − f ið Þ + f ið Þ
� �

≤ ρ f ið Þ − f 0ð Þ
� �

+ ρ f ið Þ
� �

<∞,

ð25Þ

this gives f ð0Þ ∈ ðH pð:ÞÞρ which shows that ðH pð:ÞÞρ is a pre-
quasiclosed (ssfps).

4. Properties of Operator Ideal

Throughout this section, some geometric and topological
properties of the prequasi-ideals formed by s-numbers and
ðH pð:ÞÞρ are presented.

4.1. Ideal of Finite Rank Operators. In this part, enough set-
tings (not necessary) on ðH pð:ÞÞρ so that �F = SðHpð:ÞÞρ are

given. This explains the nonlinearity of the s-type ðH pð:ÞÞρ
spaces (Rhoades open problem [10]).

In view of Theorems 13 and 20, we conclude the next
theorem.

Theorem 23. Consider ðpvÞ ∈mi↗∩ ℓ∞ with p0 > 0, then
SHpð:Þ is an operator ideal.

Theorem 24. If ðpvÞ ∈mi↗∩ ℓ∞ with p0 > 0, then �F = SðH pð:ÞÞρ
, where

ρ fð Þ = 〠
∞

v=0

1
pv
cf v��� ���, for every f ∈H p ⋅ð Þ: ð26Þ

Proof. Clearly, FðX,YÞ ⊂ SðHpð:ÞÞρðX,YÞ, since the space

SðH pð:ÞÞρ is an operator ideal. Therefore, we have to show that

SðH pð:ÞÞρðX,YÞ ⊆ FðX,YÞ. By letting T ∈ SðHpð:ÞÞρðX,YÞ, then,
f s ∈ ðHpð:ÞÞρ, with f sðzÞ =∑∞

v=0svðTÞzv converges for any z

∈ℂ. So, ρð f sÞ <∞, fix ε ∈ ð0, 1Þ, we have m ∈ℕ − f0g with
ρð f s −∑m−1

v=0 e
ðvÞÞ < ε/4. As ðsvðTÞÞv∈ℕ is decreasing, we have

〠
2m

v=m+1

1
pv

s2m Tð Þð Þpv ≤ 〠
2m

v=m+1

1
pv

sv Tð Þð Þpv ≤ 〠
∞

v=m

1
pv

sv Tð Þð Þpv < ε

4
:

ð27Þ

Therefore, we have A ∈ F2mðX,YÞ, rank A ≤ 2m and

〠
3m

v=2m+1

1
pv

T − Ak kpv ≤ 〠
2m

v=m+1

1
pv

T − Ak kpv < ε

4
: ð28Þ

As ðpvÞ ∈ ℓ∞, then

〠
m

v=0

1
pv

T − Ak kpv < ε

4
: ð29Þ

Since T − A ∈ SðHpð:ÞÞpðX,YÞ, then hs ∈ ðH pð:ÞÞp, where
hsðzÞ≔∑∞

v=0svðT − AÞzv converges for any z ∈ℂ. Because
ðpvÞ is increasing and from the inequalities (27)–(29), we
get

d T , Að Þ = ρ hsð Þ = 〠
3m−1

v=0

1
pv

sv T − Að Þð Þpv + 〠
∞

v=3m

1
pv

sv T − Að Þð Þpv

≤ 〠
3m

v=0

1
pv

T − Ak kpv + 〠
∞

v=m

1
pv+2m

sv+2m T − Að Þð Þpv+2m

≤ 3〠
m

v=0

1
pv

T − Ak kpv + 〠
∞

v=m

1
pv

sv Tð Þð Þpv < ε:

ð30Þ

Since I2 ∈ SðH ð1/ðn+1ÞÞÞpðX,YÞ but the condition ðpvÞ ∈mi

↗∩ ℓ∞ is not verified which explain a negative example
of the converse statement. This finishes the proof.

We can reformulate Theorem 24 as follows: if ðpvÞ ∈mi
↗∩ ℓ∞ with p0 > 0, then every compact operators can be
approximated by finite rank operators and the converse is
not always true.

4.2. Banach and Closed Prequasi-Ideal. In this part, enough
settings on ðH pð:ÞÞρ so that the prequasioperator ideal SHρ

is Banach and closed are investigated.

Theorem 25. Assume ðpvÞ ∈mi↗∩ ℓ∞ with p0 > 0, then the
function gðPÞ = ρð f sÞ is a prequasinorm on SðHpð:ÞÞρ , where

f sðzÞ =∑∞
v=0svðPÞzv converges for any z ∈ℂ and

ρ f sð Þ = 〠
∞

v=0

1
pv

sv Pð Þpv , for every f s ∈H p ⋅ð Þ: ð31Þ

Proof. One has g verifies the next setups:

(1) Let P ∈ SðHpð⋅ÞÞρðX,YÞ, gðPÞ = ρð f sÞ ≥ 0 and gðPÞ = ρ

ð f sÞ = 0⇔ svðPÞ = 0, for all v ∈N ⇔ P = 0

(2) There is l ≥ 1 with gðλPÞ = ρðλf sÞ ≤ ljλjρð f sÞ = ljλj
gðPÞ, for every P ∈ SðHpð⋅ÞÞρðX,YÞ and λ ∈ℝ

(3) One has KK0 ≥ 1, for P1, P2 ∈ SðHpð⋅ÞÞρðX,YÞ. Then,
f 1sðzÞ =∑∞

v=0svðP1Þzv and f 2sðzÞ =∑∞
v=0svðP2Þzv

converge for any z ∈ℂ. Therefore, for hsðzÞ≕∑∞
v=0

svðP1 + P2Þzv, one has

g P1 + P2ð Þ = ρ hsð Þ ≤ ρ f 1sð Þ :½ � + f 2sð Þ :½ �
� �

≤ K ρ f 1sð Þ :½ �
� ��

+ ρ f 2sð Þ :½ �
� ��

≤ KK0 g P1ð Þ + g P2ð Þð Þ
ð32Þ
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(4) We have C ≥ 1, let A ∈ LðX0,XÞ, B ∈ SðHpð:ÞÞρðX,YÞ
and D ∈ LðY,Y0Þ. Then, f sðzÞ =∑∞

v=0svðBÞzv con-
verges for all z ∈ℂ. Then, for hsðzÞ≕∑∞

v=0svðDBAÞ
zv, one has

g DBAð Þ = ρ hsð Þ ≤ ρ Ak k Dk kf sð Þ ≤ C Ak kg Bð Þ Dk k ð33Þ

Theorem 26. Assume X and Y are Banach spaces, and ðpv
Þ ∈mi↗∩ ℓ∞ with p0 > 0, then ðSðH pð:ÞÞρ , gÞ is a prequasi-

Banach operator ideal, where gðPÞ = ρð f sÞ, f sðzÞ =∑∞
v=0svðP

Þzv converges for any z ∈ℂ and

ρ f sð Þ = 〠
∞

v=0

1
pv

sv Pð Þpv , for every f s ∈H p ⋅ð Þ: ð34Þ

Proof. As ðpvÞ ∈mi↗∩ ℓ∞ with p0 > 0, one has the function
gðPÞ = ρð f sÞ is a prequasinorm on SðHpð⋅ÞÞρ . Let ðPmÞ be a

Cauchy sequence in SðH pð⋅ÞÞρðX,YÞ. Therefore, f ðmÞ
s ∈

ðH pð⋅ÞÞρ and f ðmÞ
s ðzÞ =∑∞

v=0svðPmÞzv converges for any z ∈
ℂ. Suppose hsðzÞ≕∑∞

v=0svðPi − PjÞzv, then from parts (iv)
and (vii) of Definition 14 and since LðX,YÞ ⊇ SðHpð:ÞÞρðX,Y
Þ, we have

g Pi − Pj

� �
= ρ hsð Þ ≥ ρ s0 Pi − Pj

� �
e 0ð Þ

� �
= ρ Pi − Pj

�� ��e 0ð Þ
� �

≥ ξ Pi − Pj

�� ��ρ e 0ð Þ
� �

,

ð35Þ

then ðPmÞm∈ℕ is a Cauchy sequence in LðX,YÞ. Since the
space LðX,YÞ is a Banach space, there is P ∈ LðX,YÞ with
lim

m⟶∞
kPm − Pk = 0 and as f ðmÞ

s ∈ ðH pð:ÞÞρ, for every m ∈ℕ.

Hence, by using Theorem 25 and the continuity of ρ at θ,
we have

g Pð Þ = g P − Pm + Pmð Þ ≤ KK0 g Pm − Pð Þ + g Pmð Þð Þ

= KK0ρ Pm − Pk k 〠
∞

m=−
e mð Þ

 !
+ KK0ρ f mð Þ

s

� �
< ε,

ð36Þ

so f s ∈ ðH pð:ÞÞρ, which implies P ∈ SðHpð:ÞÞρðX,YÞ.

Theorem 27. Suppose X and Y are Banach spaces, and ðpv
Þ ∈mi↗∩ ℓ∞ with p0 > 0, then ðSðHpð:ÞÞρ , gÞ is a prequasiclosed
operator ideal, where gðPÞ = ρð f sÞ, f sðzÞ =∑∞

v=0svðPÞzv con-

verges for any z ∈ℂ and

ρ f sð Þ = 〠
∞

v=0

1
pv

sv Pð Þpv , for every f s ∈H p ⋅ð Þ: ð37Þ

Proof. As ðpvÞ ∈mi↗∩ ℓ∞ with p0 > 0, so the function gðPÞ
= ρð f sÞ is a prequasinorm on SðHpð:ÞÞρ . Let Pm ∈ SðHpð:ÞÞρðX,

YÞ, with m ∈ℕ and lim
m⟶∞

gðPm − PÞ = 0. Then, f ðmÞ
s ∈

ðH pð:ÞÞρ and f ðmÞ
s ðzÞ =∑∞

v=0svðPmÞzv converges for any z ∈
ℂ. Suppose hsðzÞ≕∑∞

v=0svðPi − PjÞzv, then from parts (iv)
and (vii) of Definition 14 and since LðX,YÞ ⊇ SðH pð:ÞÞρðX,Y
Þ, one obtains

g P − Pj

� �
= ρ hsð Þ ≥ ρ s0 P − Pj

� �
e 0ð Þ

� �
= ρ P − Pj

�� ��e 0ð Þ
� �

≥ ξ P − Pj

�� ��ρ e 0ð Þ
� �

,

ð38Þ

then ðPmÞm∈ℕ is a convergent sequence in LðX,YÞ. Since the
space LðX,YÞ is a Banach space, then there is P ∈ LðX,YÞ
with limm⟶∞kPm − Pk = 0 and as f ðmÞ

s ∈ ðH pð:ÞÞρ, for every
m ∈ℕ, by using Theorem 25 and the continuity of ρ at θ,
one has

g Pð Þ = g P − Pm + Pmð Þ ≤ KK0 g Pm − Pð Þ + g Pmð Þð Þ

= KK0ρ Pm − Pk k 〠
∞

m=0
e mð Þ

 !
+ KK0ρ f mð Þ

s

� �
< ε,

ð39Þ

hence, f s ∈ ðH pð:ÞÞρ, which gives P ∈ SðHpð:ÞÞρðX,YÞ.

According to Theorem 9, we introduce the following
properties of the s-type ðH pð:ÞÞρ.

Theorem 28. For s-type ðHpð:ÞÞρ ≔ fðsvðTÞÞ ∈ℝℕ : T ∈
SðHpð:ÞÞρðX,YÞg. The next settings are verified.

(1) We have s-type ðH pð:ÞÞρ ⊃F

(2) Suppose ðsrðT1ÞÞ∞r=0 ∈ s‐type ðH pð⋅ÞÞρ and ðsrðT2ÞÞ∞r=0
∈ s‐type ðH pð⋅ÞÞρ, then ðsrðT1 + T2ÞÞ∞r=0 ∈ s‐type
ðH pð:ÞÞρ

(3) One has λ ∈ℝ and ðsrðTÞÞ∞r=0 ∈ s‐type ðH pð⋅ÞÞρ, then
jλjðsrðTÞÞ∞r=0 ∈ s − type ðH pð:ÞÞρ

(4) The s-type ðH pð:ÞÞρ is solid
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4.3. Small Prequasi-Banach Ideal. We introduce here some
inclusion relations concerning the space SðHpð∙ÞÞρ for different

ðpvÞ.

Theorem 29. Let X and Y be Banach spaces with dim ðXÞ
= dim ðYÞ =∞, and ðpvÞ, ðqvÞ ∈mi↗∩ ℓ∞ with p0 > 0 and
pv < qv, for all v ∈ℕ, we have

S Hp ⋅ð Þð Þ
ρ

X,Yð Þ⊂
≠
S H p ⋅ð Þð Þ

ρ

X,Yð Þ⊂
≠
L X,Yð Þ: ð40Þ

Proof. Assume T ∈ SðH pð:ÞÞρðX,YÞ. Therefore, f s ∈ ðH pð⋅ÞÞρ
and f sðzÞ =∑∞

v=0svðTÞzv converges for any z ∈ℂ. Then,

〠
∞

v=0

1
qv

sv Tð Þð Þqv < 〠
∞

v=0

1
pv

sv Tð Þð Þqv <∞, ð41Þ

hence, T ∈ SðH qð:ÞÞρðX,YÞ. Next, by taking T with svðTÞ =
ðpv/ðv + 1ÞÞ1/pv , one has T ∉ SðH pð:ÞÞρðX,YÞ and T ∈ S
ðH qð:ÞÞρðX,YÞ. Clearly, SðHqð:ÞÞρðX,YÞ ⊂ LðX,YÞ. Again, by
choosing svðTÞ = ðqv/ðv + 1ÞÞ1/qv , one has T ∉ SðH qð:ÞÞρðX,
YÞ and T ∈ LðX,YÞ. This finishes the proof.

In this part, we examine the sufficient setting for which
SappðH pð⋅ÞÞρ

is small.

Theorem 30. Let X and Y be Banach spaces with dim ðXÞ
= dim ðYÞ =∞. Assume ðpvÞ ∈mi↗∩ ℓ∞ with p0 > 0, then
SappðH pð⋅ÞÞρ

is small.

Proof. Obviously, the space ðSappðH pð⋅ÞÞρ
, gÞ generates a prequasi-

Banach operator ideal, with gðTÞ =∑∞
v=0ð1/pvÞðαvðTÞÞpv . Let

SappðH pð⋅ÞÞρ
ðX,YÞ = LðX,YÞ. Hence, there is C > 0 with gðTÞ

≤ CkTk, for all T ∈ LðX,YÞ. According to Dvoretzky’s the-
orem [15] with r ∈ℕ, there are quotient spaces X/λr and
subspaces ηr of Y that operated onto ℓr2 by isomorphisms
Dr and Br with kDrkkD−1

r k ≤ 2 and kBrkkB−1
r k ≤ 2. Suppose

Ir be the identity operator on ℓr2, ζr be the quotient operator
from X onto X/λr and Jr be the natural embedding operator
from ηr into Y. Let ha be the Bernstein numbers [16], we
have

1 = ha Irð Þ = ha BrB
−1
r IrDrD

−1
r

� �
≤ Brk kha B−1

r IrDr

� �
D−1

r

�� ��
= Brk kha JrB

−1
r IrDr

� �
D−1

r

�� �� ≤ Brk kda JrB
−1
r IrDr

� �
D−1
r

�� ��
= Brk kda JrB

−1
r IrDrζr

� �
D−1

r

�� �� ≤ Brk kαa JrB
−1
r IrDrζr

� �
D−1
r

�� ��,
ð42Þ

for 0 ≤ j ≤ r. Then for l ≥ 1, one has

1
pj
≤ Brk k D−1

r

�� ��� �pj 1
pj

αj JrB
−1
r IrDrζr

� �� �pj ⇒ 1
pj

≤ l Brk k 1
pj

αj JrB
−1
r IrDrζr

� �� �pj D−1
r

�� ��⇒ 〠
r

j=0

1
pj

≤ l Brk k D−1
r

�� ��〠r
j=0

1
pj

αj JrB
−1
r IrDrζr

� �� �pj ⇒ 〠
r

j=0

1
pj

≤ lC Brk k D−1
r

�� ��g JrB
−1
r IrDrζr

� �
⇒ 〠

r

j=0

1
pj

≤ lC Brk k D−1
r

�� �� JrB
−1
r IrDrζr

�� ��⇒ 〠
r

j=0

1
pj

≤ lC Brk k D−1
r

�� �� JrB
−1
r

�� �� Irk k Drζrk k

= lC Brk k D−1
r

�� �� B−1
r

�� �� Irk k Drk k⇒ 〠
r

j=0

1
pj

≤ 4lC:

ð43Þ

As r⟶∞, we get ∑∞
j=01/pj <∞. Since ∑∞

j=0a/pj ≥ 1/
sup pj∑

∞
j=01 =∞. Hence, the space SappðHpð⋅ÞÞρ

is small.

By the same manner, we can easily conclude the next
theorem.

Theorem 31. Assume X and Y be Banach spaces with dim
ðXÞ = dim ðYÞ =∞. Suppose ðpvÞ ∈mi↗∩ ℓ∞ with p0 > 0,
then SKolðHpð⋅ÞÞρ

is small.

4.4. Simple Prequasi-Ideal. In this part, we offer enough set-
tings on ðH pð⋅ÞÞρ so that the space SðH pð⋅ÞÞρ is simple.

Theorem 32. Let ðpvÞ, ðqvÞ ∈mi↗∩ ℓ∞ with 1 ≤ pv < qv, for
every v ∈ℕ, then

L S Hq ⋅ð Þð Þ
ρ

, S Hp ⋅ð Þð Þ
ρ

	 

=Λ S Hq ⋅ð Þð Þ

ρ

, S H p ⋅ð Þð Þ
ρ

	 

: ð44Þ

Proof. Consider T ∈ LðSðHqð⋅ÞÞρ , SðHpð⋅ÞÞρÞ and T ∉ΛðSðHqð⋅ÞÞρ ,
SðHpð⋅ÞÞρÞ. According to Lemma 3, one has G ∈ LðSðH qð⋅ÞÞρÞ
and B ∈ LðSðHpð⋅ÞÞρÞ with BTGIm = Im. For every m ∈ℕ, one

obtains

Imk kS
Hp ⋅ð Þð Þ

ρ

= 〠
∞

v=0

1
pv

sv Imð Þð Þpv
 !1/sup pv

= 〠
m−1

v=0

1
pv

 !1/sup pv

≤ BTGk k Imk kS
Hq ⋅ð Þð Þ

ρ

≤ 〠
∞

v=0

1
qv

sv Imð Þð Þqv
 !1/sup qv

= 〠
m−1

v=0

1
qv

 !1/sup qv

:

ð45Þ

This defies Theorem 29.
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Corollary 33. Let ðpvÞ, ðqvÞ ∈mi↗∩ ℓ∞ with 1 ≤ pv < qv, for
each v ∈ℕ, then

L S Hq ⋅ð Þð Þ
ρ

, S H p ⋅ð Þð Þ
ρ

	 

= LC S Hq ⋅ð Þð Þ

ρ

, S Hp ⋅ð Þð Þ
ρ

	 

: ð46Þ

Proof. Clearly, as Λ ⊆ Lc.

Theorem 34. Assume ðpvÞ ∈mi↗∩ ℓ∞ with p0 ≥ 1, then
SðH pð:ÞÞρ is simple.

Proof. Suppose T ∈ LCðSðH pð⋅ÞÞρÞ and T ∉ΛðSðHpð⋅ÞÞρÞ. In view

of Lemma 3, we have G, B ∈ LðSðH pð⋅ÞÞρÞ so as to BTGIk = Ik.

One gets ISðHpð⋅ÞÞρ
∈ LCðSðHpð⋅ÞÞρÞ. Therefore, LðSðHpð⋅ÞÞρÞ = LCð

SðH pð⋅ÞÞρÞ. This implies one and only one nontrivial closed

ideal ΛðSðHpð⋅ÞÞρÞ in LðSðHpð⋅ÞÞρÞ.

4.5. Spectrum of Prequasi-Ideal. In this part, we introduce
enough settings on ðH pð⋅ÞÞρ so that the class L with sequence

of eigenvalues in ðH pð⋅ÞÞρ equals SðHpð⋅ÞÞρ .

Theorem 35. If X and Y are Banach spaces with dim ðXÞ
= dim ðYÞ =∞. Suppose ðpvÞ ∈mi↗∩ ℓ∞ with p0 > 0, we
have

S Hp ⋅ð Þð Þ
ρ

	 
λ

X,Yð Þ = S Hp ⋅ð Þð Þ
ρ

X,Yð Þ: ð47Þ

Proof. Let T ∈ ðSðH pð⋅ÞÞρÞ
λðX,YÞ, then f λ ∈ ððH pð⋅ÞÞρÞ, where

f λðzÞ =∑∞
v=0λvðTÞzv converges for all z ∈ℂ with ρð f λÞ =

∑∞
v=0ð1/pvÞjλvðTÞjpv <∞, and kT − λvðTÞIk = 0 for all v ∈

ℕ. We have T = λvðTÞI, with v ∈ℕ, hence svðTÞ = svðλvðT
ÞIÞ = jλvðTÞj, with v ∈ℕ. As a result, f s ∈ ðHpð:ÞÞρ, then T

∈ SðHpð:ÞÞρðX,YÞ. Secondly, assume T ∈ SðHpð:ÞÞρðX,YÞ.
Hence, f s ∈ ðHpð:ÞÞρ, where f sðzÞ =∑∞

v=0svðTÞzv converges

for all z ∈ℂ with ρð f sÞ =∑∞
v=0ð1/pvÞjsvðTÞjpv <∞. One has

〠
∞

v=0

1
pv

sv Tð Þj jpv ≥ 1
supvpv

〠
∞

v=0
sv Tð Þ½ �pv : ð48Þ

Therefore, lim
v⟶∞

svðTÞ = 0. Let kT − svðTÞIk−1 exists, for

all v ∈ℕ. Hence, kT − svðTÞIk−1 exists and bounded, for all
v ∈ℕ. Therefore, lim

v⟶∞
kT − svðTÞIk−1 = kTk−1 exists and

bounded. By using the prequasioperator ideal of ðSðHpð⋅ÞÞρ , g
Þ, one has

I = TT−1 ∈ S Hp ⋅ð Þð Þ
ρ

X,Yð Þ⇒ sv Ið Þð Þ∞v=0 ∈ H p ⋅ð Þ
� �

ρ
⇒ lim

v⟶∞
sv Ið Þ = 0:

ð49Þ

Since lim
v⟶∞

svðIÞ = 1. Hence, kT − svðTÞIk = 0, for all v

∈ℕ. This gives T ∈ ðSðHpð⋅ÞÞρÞ
λðX,YÞ.

This shows the proof.

5. Weighted Shift Operators on ðH pð⋅ÞÞρ
In this section, we present the upper bounds of s-numbers
for infinite series of the weighted nth power forward and
backward shift operator on H pð:Þ with applications to some
entire functions.

Theorem 36. Assume ðpvÞ ∈mi↗∩ ℓ∞ with p0 > 0, then Vz

∈ LððH pð:ÞÞρÞ with

Vzk k = sup
r

pr
pr+1

	 
1/ϖp

, ð50Þ

where ρð f Þ = ½∑∞
r=0ð1/prÞj f r∧jpr �1/ϖp , for all f ∈ ðH pð:ÞÞρ.

Proof. Suppose the setups are verified. For f ∈ ðHpð:ÞÞρ. Since
ðpvÞ ∈mi↗∩ ℓ∞ with p0 > 0, then ρðVz f Þ = ρðzf Þ =
½∑∞

r=0ð1/pr+1Þj f r∧jpr+1 �1/ϖp ≤ ½∑∞
r=0ð1/pr+1Þj f r∧jpr+1 �1/ϖp ≤ sup

r

ðpr/pr+1Þ1/ϖp ½∑∞
r=0ð1/prÞj f r∧jpr+1 �1/ϖp = sup

r
ðpr/pr+1Þ1/ϖpρð f Þ:

Therefore, Vz ∈ LððH pð⋅ÞÞpÞ with kVzk ≤ supr
ðpr/pr+1Þ1/ϖp . Since Vz ∈ LððH pð:ÞÞρÞ. Then, there is A > 0
with ρðVz f Þ ≤ Aρð f Þ, for all f ∈ ðH pð:ÞÞρ. Hence, ρðVze

ðrÞÞ
≤ AρðeðrÞÞ, one gets suprðpr/pr+1Þ1/ϖp ≤ kVzk.

This completes the proof.

Theorem 37. Consider ðpvÞ ∈mi↗∩ ℓ∞ with p0 > 0, then Bz

∈ LððH pð:ÞÞρÞ with

Bzk k = sup
r

pr+1
pr

	 
1/ϖp

, ð51Þ

where ρð f Þ = ½∑∞
r=0ð1/prÞj f r∧jpr �1/ϖp , for every f ∈ ðH pð:ÞÞρ.

Proof. Let the given settings hold for every f ∈ ðH pð:ÞÞρ.
Since ðpvÞ ∈mi↗∩ ℓ∞ with p0 > 0, then

ρ Bz fð Þ = 〠
∞

r=0

1
pr

f r+1∧j jpr
" #1/ϖp

≤ sup
r

pr+1
pr

	 
1/ϖp

〠
∞

r=0

1
pr+1

f r+1∧j jpr
" #1/ϖp

≤ sup
r

pr+1
pr

	 
1/ϖp

〠
∞

r=0

1
pr

f r∧j jpr
" #1/ϖp

= sup
r

pr+1
pr

	 
1/ϖp

ρ fð Þ:

ð52Þ
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Therefore, Bz ∈ LððH pð⋅ÞÞρÞ with kBzk ≤ suprðpr+1/prÞ1/ϖp

. Since Bz ∈ LððH pð:ÞÞρÞ. Then, there is A > 0 with ρðBz f Þ ≤
Aρð f Þ, for all f ∈ ðH pð:ÞÞρ. Hence, ρðBze

ðr+1ÞÞ ≤ Aρðeðr+1ÞÞ,
then suprðpr+1/prÞ1/ϖp ≤ kBzk. This completes the proof.

Theorem 38. Let ðpvÞ ∈mi↗∩ ℓ∞ with p0 ≥ 1. Suppose
lim sup
v⟶∞

ð1/ ffiffiffiffiffi
pvv

p Þ = 1, then every function in ðH pð:ÞÞρ is ana-

lytic on the open unit disc D. Moreover, the convergence in
ðH pð⋅ÞÞρ implies the uniform convergence on compact subsets

of D, where ρð f Þ = ½∑∞
r=0ð1/prÞj f r∧jpr �1/ϖp , for any f ∈

ðH pð⋅ÞÞρ.

Proof. Suppose lim sup
v⟶∞

ð1/ ffiffiffiffiffi
pvv

p Þ = 1, and f ∈ ðH pð⋅ÞÞρ.There-
fore, f ðzÞ =∑∞

v=0
cf v zv converges for every z ∈ℂ and ρð f Þ =

½∑∞
v=0ð1/pvÞj f v∧jpv �1/ϖp <∞. Hence, lim sup

v⟶∞ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1/pvÞj f v∧jpv < 1v

q
. We have

lim sup
v⟶∞

ffiffiffiffiffiffiffiffiffiffiffiffiffi
f v∧j jpvv

q
<

1
lim sup 1/ ffiffiffiffiffi

pv
v
pð Þ

v⟶∞

= 1: ð53Þ

Since ðpvÞ ∈mi↗∩ ℓ∞ with p0 ≥ 1, we obtain lim sup
v⟶∞ffiffiffiffiffiffiffiffi

jcf v jv

q
jzj < jzj < j1j, for all z ∈D. Hence, f ðzÞ =∑∞

v=0
cf v zv

converges for every complex value of z ∈D. Assume A is a
compact subset of D and f kðzÞ ∈ A, for all k ∈ℕ. Let f k con-
verges to f ∈ ðH pð∙ÞÞρ, we have

f k zð Þ − f zð Þ
��� ��� = 〠

∞

v=0

cf kv −cf v	 

zv

�����
����� ≤ 〠

∞

v=0

cf kv −cf v���� ���� zvj j

≤ 〠
∞

v=0

1
pv

f kv∧ − f v∧
��� ���pv" #1/ϖp

〠
∞

v=0
pqvv zj jvqv

" #1/ϖp

= 〠
∞

v=0
pqvv zj jvqv

" #1/ϖp

ρ f k − f
� �

,

ð54Þ

where ðqvÞ ∈mi↗Tℓ∞ with q0 ≥ 1 and ð1/pvÞ + ð1/qvÞ = 1,
for all v ∈ℕ. Clearly, lim sup

v⟶∞
pqv/vv jzjqv < 1, then

½∑∞
v=0p

qv
v jzjvqv �1/ϖp <∞. So limk⟶∞ f kðzÞ = f ðzÞ ∈ A.

Theorem 39. Assume Vz is the forward shift operator on

ðH pð⋅ÞÞρ, with ρð f Þ = ½∑∞
r=0ð1/prÞj f r∧jpr �1/ϖp , for all f ∈

ðH pð:ÞÞρ. Then,

sup
cardξ=r+1

inf
k∈ξ

pk
pk+n

	 
1/ϖp 1
An

≤ sr V
n
zð Þ ≤ sup

card ξ=r+1
inf
k∈ξ

pk
pk+n

	 
1/ϖp

,

ð55Þ

where An = ½∑∞
k=0ð1/pkÞj f k∧jpk �1/ϖp /½∑∞

k=ξð1/pkÞj f k∧jpk+n �1/ϖp :.

Proof. Let card ξ = r + 1 and as Vn
z f ∈ ðH pð:ÞÞρ, for all f ∈

ðH pð:ÞÞρ, where f ðzÞ =∑∞
k=0
cf k zk converges for every z ∈ℂ

and ρð f Þ = ½∑∞
k=0ð1/pkÞj f kj

pk �1/ϖp <∞. Hence, Vn
z f ðzÞ =

∑∞
k=0
cf k zk+n and ρðVn

z f Þ = ½∑∞
k=0ða/pk+nÞj f k∧jpk+n �1/ϖp <∞

.Assume Pξ is and operator on ðH pð⋅ÞÞρ with rank Pξ = r +
1 defined by

pξg
� �

zð Þ = Pξ 〠
∞

k=0

cf k zk+n
 !

= 〠
i

k∈ξ

cf k zk+n: ð56Þ

Since ρðPξgÞ = ½∑k∈ξð1/pk+nÞj f k∧jpk+n �1/ϖp ≤
½∑∞

k=0ð1/pk+nÞj f k∧jpk+n �1/ϖp = ρðgÞ. This implies kPξk ≤ 1.
Define an operator Snz by ðSnzhÞðzÞ = Snz ð∑k∈ξ

cf k zk+nÞ =
∑∞

k=0
cf k zk, then

ρ Snz hð Þ = 〠
∞

k=0

1
pk

f k∧j jpk
" #1/ϖp

≤Un 〠
k∈ξ

1
pk+n

f k∧j jpk+n
" #1/ϖp

=Unρ hð Þ:

ð57Þ

Hence, kSnzk ≤Un, where

1 ≤Un =
∑∞

k=0 1/pkð Þ f k∧j jpk� �1/ϖp

∑k∈ξ 1/pk+n f k∧j jpk+n��� �1/ϖp
<∞: ð58Þ

Therefore, the identity map will be Ir+1 = PξV
n
zS

n
z ,

according to the definition of s-numbers, we have

sr Ir+1ð Þ = 1 ≤ Pξ

�� ��sr Vn
zð Þ snzk k ≤ sr Vn

zð Þ snzk k⇒

sr Vn
zð Þ ≥ 1

Snzk k ≤
1
Un

=
∑k∈ξ 1/pk+n f k∧j jpk+n��� �1/ϖp

∑∞
k=0 1/pkð Þ f k∧j jpk� �1/ϖp

≥ inf
k∈ξ

pk
pk+n

	 
1/ϖp 1
An

:

ð59Þ

This inequality is satisfied for all card, ξ = r + 1 and one
has

sr Vn
zð Þ ≥ sup

card ξ=r+1
inf
k∈ξ

pk
pk+n

	 
1/ϖp 1
An

: ð60Þ

On the other hand, let ξ be a subset of ℕ with card ξ = r.

Define the finite rank map Rn
z by ðRz

nvÞðzÞ = Rn
z ð∑∞

k=0 f
_

kz
kÞ

=∑k∈ξ f
_

kz
k+n. In view of the definition of approximation
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numbers, we have

sr V
n
zð Þ ≤ αr V

n
zð Þ ≤ Vn

z − Rn
zk k ≤ sup

f zð Þj j≠0

Vn
z − Rn

zð Þf zð Þj j
f zð Þj j

= sup
f zð Þj j≠0

∑k∉ξ f
_

kz
k+n

��� ���
f zð Þj j ≤ sup

f zð Þj j≠0

∑k∉ξ 1/pk+nð Þ f
_

k

��� ���pk+n �1/ϖp

f zð Þj j

≤ sup
k∉ξ

pk
pk+n

	 
1/ϖp

:

ð61Þ

This inequality is verified for every card ξ = r and by
using Lemma 10, one has

sup
card ξ=r+1

inf
k∈ξ

pk
pk+n

	 
1/ϖp 1
An

≤ sr V
n
zð Þ ≤ inf

card ξ=r
sup
k∉ξ

pk
pk+n

	 
1/ϖp

= sup
card ξ=r+1

inf
k∈ξ

pk
pk+n

	 
1/ϖp

:

ð62Þ

This completes the proof.

Theorem 40. If Bz is the backward shift operator on ðH pð:ÞÞρ,

with ρð f Þ = ½∑∞
r=0ð1/prÞj f

_

rj
pr �

1/ϖp

, for all f ∈ ðH pð:ÞÞρ Then,

sup
card ξ=r+1

inf
k∈ξ

pk+n
pk

	 
1/ϖp 1
Gn

≤ sr Bn
zð Þ ≤ sup

card ξ=r+1
inf
k∈ξ

pk+n
pk

	 
1/ϖp

,

ð63Þ

where Gn = ½∑∞
k=0ð1/pkÞj f k∧jpk �1/ϖp /½∑k∈ξj1/pk+nj f k∧jpk+n �1/ϖp .

Proof. Assume card ξ = r + 1 and since Bn
z f ∈ ðH pð:ÞÞρ, for

every f ∈ ðHpð:ÞÞρ, where f ðzÞ =∑∞
k=0 f

_

kz
k converges for

any z ∈ℂ and ρð f Þ = ½∑∞
k=0ð1/pkÞj f k∧jpk �1/ϖp <∞. Therefore,

Bn
z f ðzÞ∑∞

k=0 f
_

k+nz
k and ρðBn

z f Þ = ½∑∞
k=0ð1/pkÞj f k∧jpk �1/ϖp <∞

.Suppose Pξ is an operator on ðH pð:ÞÞρ with rank Pξ = r + 1
evident by

pξg
� �

zð Þ = Pξ 〠
∞

k=0
f
_

k+nz
k

 !
= 〠

∞

k∈ξ
f
_

k+nz
k: ð64Þ

As ρðPξgÞ = ½∑k∈ξð1/pkÞj f
_

k+nj
pk �

1/ϖp

≤
½∑∞

k=0ð1/pkÞj f k+n∧jpk �1/ϖp = pðgÞ. This implies kpξk ≤ 1.

Define an operator Snz by ðSnzhÞðzÞ = Snz ð∑k∈ξ f
_

k+nz
kÞ =∑∞

k=0

f
_

kz
k, one gets

ρ Snz hð Þ = 〠
∞

k=0

1
pk

f
_

k

��� ���pk" #1/ϖp

≤Un 〠
k∈ξ

f
_

k+n

��� ���pk" #1/ϖp

=Unρ hð Þ:

ð65Þ

Therefore, ∥Snz ∥≤Un, where 1 ≤Un =

½∑∞
k=0ð1/pkÞj f

_

kj
pk �

1/ϖp

/½∑k∈ξjð1/pkÞj f
_

k+nj
pk �

1/ϖp

<∞. Hence,
the identity operator will be Ir+1 = PξB

n
z S

n
z , in view of the def-

inition of s-numbers, one has

sr Ir+1ð Þ = 1 ≤ Pξ

�� ��sr Bn
zð Þ Snzk k ≤ sr B

n
zð Þ Snzk k⇒

sr Bn
zð Þ ≥ 1

Snzk k ≥
1
Un

=
∑k∈ξ 1/pkð Þj f

_

k+n

��� ���pk �1/ϖp

∑∞
k=0 1/pkð Þ f

_

k

��� ���pk �1/ϖp
≥ inf

k∈ξ

pk+n
pk

	 
1/ϖp 1
Gn

:

ð66Þ

This inequality is confirmed for all card ξ = r + 1, and we
have

sr B
n
zð Þ ≥ sup

card ξ=r+1
inf
k∈ξ

pk+n
pk

	 
1/ϖp 1
Gn

: ð67Þ

On the other hand, suppose ξ is a subset of ℕ with card

ξ = r. Define the finite rank operator Rn
z by ðRn

z vÞðzÞ = Rn
z ð

∑∞
k=0 f

_

kz
kÞ =∑k∈ξ f

_

k+nz
k. From the definition of approxima-

tion numbers, one gets

sr B
n
zð Þ ≤ αr Bn

zð Þ ≤ Bn
z − Rn

zk k ≤ sup
f zð Þj j≠0

Bn
z − Rn

zð Þf zð Þj j
f zð Þj j

= sup
f zð Þj j≠0

∑k∉ξ f
_

k+nz
k

��� ���
f zð Þj j ≤ sup

f zð Þj j≠0

∑k∉ξ1/pk f
_

k+n

��� ���pk �
f zð Þj j

1/ϖp

≤ sup
k∉ξ

pk+n
pk

	 
1/ϖp

:

ð68Þ

This inequality is satisfied for any card ξ = r and from
Lemma 10, we have

sup
card ξ=r+1

inf
k∈ξ

pk+n
pk

	 
1/ϖp 1
Gn

≤ sr Bn
zð Þ ≤ inf

card ξ=r
sup
k∈ξ

pk+n
pk

	 
1/ϖp

= sup
card ξ=r+1

inf
k∈ξ

pk+n
pk

	 
1/ϖp

:

ð69Þ

This finishes the proof.
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Next, the upper and lower bounds of norm ∑∞
m=0cmV

m
z

on the space ðHpð:ÞÞρ have been explained.

Theorem 41. The effect of ∑∞
m=0cmV

m
z on the space ðH pð:ÞÞp,

where ρð f Þ = ½∑∞
r=01/prj f

_

rj
pr �

1/ϖp

, for all f ∈ ðH pð:ÞÞρ,
ðcmÞ∞m=0 ∈ ℓ

ðpmÞ/ϖp , and ðpvÞ ∈mi↗∩ ℓ∞ with p0 ≥ 1,we have

sup
k

〠
∞

m=0
cmj jpm+k

pk
pk+m

" #1/ϖp

≤ 〠
∞

m0

cmV
m
z

�����
�����

≤ sup
m,k

pk
pk+m

	 
1/ϖp

〠
∞

m=0
cmj jpm/ϖp :

ð70Þ

Proof. Assume f ∈ ðH pð:ÞÞρ, we have∑
∞
m=0cmV

m
z f ðzÞ =∑∞

k=0

∑∞
m=0cm f

_

kz
k+m. Then,

〠
∞

m=0
cmV

m
z

�����
����� ≥ ρ ∑∞

m=0cmV
m
z e

kð Þ� �
ρ e kð Þ� � =

∑∞
m=0 1/pm+kð Þ cmj jpm+k

1/pk

 �1/ϖp

≥ sup
k

〠
∞

m=0
cmj jpm+k

pk
pk+m

" #1/ϖp

:

ð71Þ

Since ρ satisfies the triangle inequality, we get

〠
∞

m=0
cmV

m
z

�����
����� = sup

p fð Þ≠0

ρ ∑∞
m=0cmV

m
z fð Þ

ρ fð Þ

≤ sup
p fð Þ≠0

∑∞
m=0 ∑∞

k=0 1/pm+kð Þ cmj j f
_

k

��� ���� �pm+k
 �1/ϖp

∑∞
k=0 1/pkð Þ f

_

k

��� ���pk �1/ϖp

≤ sup
m,k

pk
pk+m

	 
1/ϖp
∑∞

m=0 ∑∞
k=0 1/pkð Þ cmj j f

_

k

��� ���� �pm+k
 �1/ϖp

∑∞
k=0 1/pkð Þ 1/pkð Þ f

_

k

��� ���pk �1/ϖp

≤ sup
m,k

pk
pk+m

	 
1/ϖp

〠
∞

m=0
cmj jpm/ϖp :

ð72Þ

Next the upper and lower bounds of norm ∑∞
m=0cmB

m
z

on the space ðH pð:ÞÞρ have been investigated.

Theorem 42. The effect of ∑∞
m=0cmB

m
z on the space ðH pð:ÞÞρ,

where ρð f Þ = ½∑∞
r=01/prj f

_

rj
pr �

1/ϖp

, for all f ∈ ðH pð:ÞÞρ, ðcmÞ
∞
m=0

∈ ℓðpmÞ/ϖp , and ðpvÞ ∈mi↗∩ ℓ∞ with p0 ≥ 1, we have

sup
k

〠
∞

m=0
cmj jpk pk+m

pk

" #1/ϖp

≤ 〠
∞

m=0
cmB

m
z

�����
����� ≤ sup

m,k

pk+m
pk

	 
1/ϖp

〠
∞

m=0
cmj jpm/ϖp :

ð73Þ

Proof. Suppose f ∈ ðH pð:ÞÞρ, one has∑
∞
m=0cmB

m
z f ðzÞ =∑∞

k=0

∑∞
m=0cm f

_

k+mz
k. We have

〠
∞

m=0
cmB

m
z

�����
����� ≥ ρ ∑∞

m=0cmB
m
z e

kð Þ� �
ρ e kð Þ� � =

∑∞
m=0 1/pk−mð Þ cmj jpk−m

1/pk

 �1/ϖp

≥ sup
k

〠
∞

m=0
cmj jpk pk+m

pk

" #1/ϖp

:

ð74Þ

As ρ verifies the triangle inequality, one can see

〠
∞

m=0
cmB

m
z

�����
����� = sup

p fð Þ≠0

ρ ∑∞
m=0cmB

m
z fð Þ

ρ fð Þ

≤ sup
p fð Þ≠0

∑∞
m=0 ∑∞

k=0 1/pkð Þ cmj j f
_

k+m

��� ���� �pk �1/ϖp

∑∞
k=0 1/pkð Þ f

_

k

��� ���pk �1/ϖp

≤ sup
m,k

pk+m
pk

	 
1/ϖp
∑∞

m=0 ∑∞
k=0 1/pk+mð Þ cmj j f

_

k+m

��� ���� �pk �1/ϖp

∑∞
k=0 1/pkð Þ f

_

k

��� ���pk �1/ϖp

≤ sup
m,k

pk+m
pk

	 
1/ϖp

〠
∞

m=0
cmj jpm/ϖp :

ð75Þ

The following theorem indicates an upper estimation to
the s-numbers of ∑∞

m=0cmV
m
z on the space ðHpð:ÞÞρ.

Theorem 43. The effect of ∑∞
m=0cmV

m
z on the space ðHpð:ÞÞρ,

where pð f Þ = ½∑∞
r=01/prj f

_

rj
pr �

1/ϖp

, for all f ∈ ðHpð:ÞÞρ, the s

-numbers of this operator are presented by

sr 〠
∞

m=0
cmV

m
z

 !
≤ sup

card ξ=r+1
inf
k∈ξ

sup
m

pk
pk+m

	 
1/ϖp

〠
∞

m=0
cmj jpm/ϖp ,

ð76Þ

for all ðcmÞ∞m=0 ∈ ℓ
ðpmÞ/ϖpandðpvÞ ∈mi↗ ∩ ℓ∞with p0 ≥ 1.

Proof. Let ξ be a subset ofℕ and card ξ = r. By using the def-

inition of s-numbers. Define the finite rank operator R by R

f ðzÞ = Rð∑∞
k=0 f

_

kz
kÞ =∑k∈ξ∑

k
m=0cm f

_

k−mz
k. In view of the

definition of approximation numbers and since ρ satisfies
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the triangle inequality, we have

sr 〠
∞

m=0
cmV

m
z

 !
≤ αr 〠

∞

m=0
cmV

m
z

 !
≤ 〠

∞

m=0
cmV

m
z − R

�����
�����

≤ sup
ρ fð Þ≠0

ρ ∑∞
m=0cmV

m
z f − Rfð Þ

ρ fð Þ

≤ sup
ρ fð Þ≠0

∑∞
m=0 ∑k∉ξ 1/pm+kð Þ cmj j f

_

k

��� ���� �pk+m �1/ϖp

ρ fð Þ

≤ sup
k∉ξ,m

pk
pk+m

	 
1/ϖp

〠
∞

m=0
cmj jpm/ϖp :

ð77Þ

This inequality is verified for every card ξ = r, and one
has

sr 〠
∞

m=0
cmV

m
z

 !
≤ inf

card ξ=r
sup
k∉ξ,m

pk
pk+m

	 
1/ϖp

〠
∞

m=0
cmj jpm/ϖp

= sup
card ξ=r+1

inf
k∉ξ

sup
m

pk
pk+m

	 
1/ϖp

〠
∞

m=0
cmj jpm/ϖp :

ð78Þ

This implies the proof.

The next theorem investigates an upper estimation to the
s-numbers of ∑∞

m=0cmB
m
z on the space ðH pð:ÞÞρ.

Theorem 44. Acting ∑∞
m=0cmB

m
z on the space ðH pð:Þ

Þ
ρ
, where

ρð f Þ = ½∑∞
r=0ð1/prÞj f

_

rj
pr �

1/ϖp

, for every f ∈ ðH pð:ÞÞρ, the s

-numbers of this operator satisfy

sr 〠
∞

m=0
cmB

m
z

 !
≤ sup

card ξ=r+1
inf
k∈ξ

sup
m

pk+m
pk

	 
1/ϖp

〠
∞

m=0
cmj jpm/ϖp ,

ð79Þ

for all ðcmÞ∞m=0 ∈ ℓ
ðpmÞ/ϖp and ðpvÞ ∈mi↗∩ ℓ∞ with p0 ≥ 1.

Proof. Assume ξ is a subset of ℕ and card ξ = r: From the

definition of s-numbers. Define the finite rank operator R b

y Rf ðzÞ = Rð∑∞
k=0 f

_

kz
kÞ =∑k∈ξ∑

k
m=0cm f

_

k−mz
k. From the defi-

nition of approximation numbers and as ρ verifies the trian-

gle inequality, one has

sr 〠
∞

m=0
cmB

m
z

 !
≤ αr 〠

∞

m=0
cmB

m
z

 !
≤ 〠

∞

m=0
cmB

m
z − R

�����
�����

≤ sup
ρ fð Þ≠0

ρ ∑∞
m=0cmB

m
z f − Rfð Þ

ρ fð Þ

≤ sup
ρ fð Þ≠0

∑∞
m=0 ∑k∉ξ 1/pkð Þ cmj j f

_

k+m

��� ���� �pk �1/ϖp

ρ fð Þ

≤ sup
k∉ξ,m

pk+m
pk

	 
1/ϖp

〠
∞

m=0
cmj jpm/ϖp :

ð80Þ

This inequality is satisfied for all card ξ = r, and we have

sr 〠
∞

m=0
cmB

m
z

 !
≤ inf

card ξ=r
sup
k∉ξ,m

pk+m
pk

	 
1/ϖp

〠
∞

m=0
cmj jpm/ϖp

= sup
card ξ=r+1

inf
k∉ξ

sup
m

pk+m
pk

	 
1/ϖp

〠
∞

m=0
cmj jpm/ϖp :

ð81Þ

This completes the proof.

The following theorems are direct consequences of The-
orem 43 and Definition 18, for some entire functions, for
example, the exponential and the sine functions.

Theorem 45. Let ðpvÞ ∈mi↗ ∩ ℓ∞with p0 ≥ 1. Assume Bez is a

shift operator on ðH pð:Þ
Þ
ρ
, where for ρð f Þ =

½∑∞
r=0ð1/prÞj f

_

rj
pr �

1/ϖp

, for all f ∈ ðH pð:ÞÞρand ez =∑∞
m=0z

m/m!

. The upper estimation of the s-number of Vez is given by

sr Vezð Þ ≤ sup
card ξ=r+1

inf
k∈ξ

sup
m

pk+m
pk

	 
1/ϖp

〠
∞

m=0

1
m!

	 
pm/ϖp

: ð82Þ

Theorem 46. Let ðpvÞ ∈mi↗ ∩ ℓ∞with p0 ≥ 1. Suppose Bsin ðzÞ

is a shift operator on ðH pð:Þ
Þ
ρ
, where ρð f Þ =

½∑∞
r=0ð1/prÞj f

_

rj
pr �

1/ϖp

, for all f ∈ ðH pð:ÞÞρand sin ðzÞ =∑∞
m=0

ð−1Þmðz2m+1/ð2m + 1Þ!Þ. The upper estimation of the s-
numbers of V sin ðzÞ is presented by

sr V sin zð Þ
� �

≤ sup
cardξ=r+1

inf
k∈ξ

sup
m

pk+m
pk

	 
1/ϖp

〠
∞

m=0

1
2m + 1ð Þ!

	 
pm/ϖp

:

ð83Þ

The following theorems are direct consequences of The-
orem 44 and Definition 19, for some entire functions, for
example, the exponential and the sine functions.
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Theorem 47. Assume ðpvÞ ∈mi↗ ∩ ℓ∞with p0 ≥ 1. Suppose

Bez is a shift operator on ðH pð:Þ
Þ
ρ
, where ρð f Þ =

½∑∞
r=0ð1/prÞj f

_

rj
pr �

1/ϖp

, for every f ∈ ðH pð:ÞÞρand ez =∑∞
m=0z

m/
m!. The upper estimation of the s-numbers of Bez is pretended
by

sr Bezð Þ ≤ sup
card ξ=r+1

inf
k∈ξ

sup
m

pk+m
pk

	 
1/ϖp

〠
∞

m=0

1
m!

	 
pm/ϖp

: ð84Þ

Theorem 48. Suppose ðpvÞ ∈mi↗ ∩ ℓ∞with p0 ≥ 1. Assume

Bsin ðzÞ is a shift operator on ðH pð:Þ
Þ
ρ
, where ρð f Þ =

½∑∞
r=0ð1/prÞj f

_

rj
pr �

1/ϖp

, for every f ∈ ðH pð:ÞÞρand sin ðzÞ =
∑∞

m=0ð−1Þmðz2m+1/ð2m + 1Þ!Þ. The upper estimation of the
Bsin ðzÞ is presented by

sr Bsin zð Þ
� �

≤ sup
card ξ=r+1

inf
k∈ξ

sup
m

pk+m
pk

	 
1/ϖp

〠
∞

m=0

1
2m + 1ð Þ!

	 
pm/ϖp

:

ð85Þ
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This paper is introducing a new concept of triangular linear Diophantine fuzzy numbers (TLDFNs) in a generic way. We first
introduce the concept of TLDFNs and then study the arithmetic operations on these numbers. We find a method for the
ranking of these TLDFNs. At the end, we formulate the linear and quadratic equations of the types A + X = B,A · X + B = C,
and A · X2 + B · X + C =D where the elements A, B, C, and D are TLDFNs. We provide a procedure for the solution of these
equations using ðhs, ti, hu, viÞ-cut and also provide the examples.

1. Introduction

In 1965, Zadeh [1] introduced a new notion of fuzzy set the-
ory. Fuzzy set (FS) theory has been widely acclaimed as
offering greater richness in applications than ordinary set
theory. Zadeh popularized the concept of fuzzy sets for the
first time. There is an area of FS theory, in which the arith-
metic operations on FNs play an essential part known as
fuzzy equations (FEQs). Fuzzy equations were studied by
Sanchez [2], by using extended operations. Accordingly, a
profuse number of researchers like Biacino and Lettieri [3],
Buckley [4], and Wasowski [5] have studied several
approaches to solve FEQs. In [6–9], Buckley and Qu intro-
duced several techniques to evaluate the fuzzy equations of
the type A · X + B = C and A · X2 + B · X + C =D, where A,
B, C,D, and X are fuzzy numbers (FNs). Jiang [10] studied
an approach to solve simultaneous linear equations that
coefficients are fuzzy numbers.

Intuitionistic fuzzy sets [11, 12], neutrosophic sets [13,
14], and bipolar fuzzy sets [15] are the generalizations of

the fuzzy sets. There are several mathematicians who solved
linear and quadratic equations based on intuitionistic fuzzy
sets, neutrosophic sets, and bipolar fuzzy sets. Banerjee and
Roy [16] studied the intuitionistic fuzzy linear and quadratic
equations, Chakraborty et al. [17] studied arithmetic opera-
tions on generalized intuitionistic fuzzy number and its
applications to transportation problem, Rahaman et al.
[18] introduced the solution techniques for linear and qua-
dratic equations with coefficients as Cauchy neutrosophic
numbers, and Akram et al. [19–23] introduced some
methods for solving the bipolar fuzzy system of linear equa-
tions, also see [24–26].

Linear Diophantine fuzzy set [27] is a new generalization
of fuzzy set, intuitionistic fuzzy set, neutrosophic set, and
bipolar fuzzy set which was introduced by Riaz and Hashmi
in 2019. After the introduction of this concept, several math-
ematicians were attracted towards this concept and worked
in this area. Riaz and others studied the decision-making
problems related to linear Diophantine fuzzy Einstein aggre-
gation operators [28], spherical linear Diophantine fuzzy
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sets [29], and linear Diophantine fuzzy relations [30]. Alma-
grabi et al. [31] introduced a new approach to q-linear Dio-
phantine fuzzy emergency decision support system for
COVID-19. Kamac [32] studied linear Diophantine fuzzy
algebraic structures.

Motivated by the work of Buckley and Qu [7], we solve
the linear and quadratic equations with more generalized
fuzzy numbers. As the linear Diophantine fuzzy set, [27] is
the more generalized form of fuzzy sets so we studied the
linear and quadratic equations based on linear Diophantine
fuzzy numbers. In linear Diophantine fuzzy sets, we use the
reference parameters, which allow us to choose the grades
without any limitation; this helps us in obtaining better
results.

In Section 2, we provided the fundamental definitions
related to fuzzy sets and linear Diophantine fuzzy sets. In
Section 3, we define linear Diophantine fuzzy numbers, in
particular, triangular linear Diophantine fuzzy number. Also
defined some basic operations on LDF numbers. In Section
4, we provide the ranking of LDF numbers, and in Section
5, we solved linear and quadratic equations based on LDF
numbers.

2. Preliminaries and Basic Definitions

This section is devoted to review some indispensable con-
cepts, which are very beneficial to develop the understanding
of the prevalent model.

Definition 1 (see [1]). Let X be a classical set, μM be a func-
tion from X to ½0, 1�: The MF (membership function) μMðϑÞ
of a FS (fuzzy set) M is defined by

M = ϑ, μM ϑð Þð Þ ∣ ϑ ∈ X and μM ϑð Þ ∈ 0, 1�f g: ð1Þ

Definition 2 (see [33]). Let M be a fuzzy subset of universal
set X . Then, M is called convex FS if ∀r, s ∈ X and λ ∈ ½0, 1�
we have

μM λr + 1 − λð Þsð Þ ≥min μM rð Þ, μM sð Þf g: ð2Þ

Definition 3 (see [1]). A fuzzy setM is said to be normalized if
hðMÞ = 1:

Definition 4. An α -level set of a FS M is defined as

Mα = ϑ ∈ X : μM ϑð Þ ≥ αf g for each α ∈ 0, 1ð �: ð3Þ

Definition 5 (see [33]). A fuzzy subset M defined on a set ℝ
(of real numbers) is said to be a FN (fuzzy number) if M sat-
isfies the following axioms:

(a) M is continuous: μMðtÞ is a continuous function
from ℝ⟶ ½0, 1�

(b) M is normalized: there exists t ∈ℝ such that μMðtÞ
= 1

(c) Convexity of M: i.e., ∀t, u,w ∈ℝ, if t ≤ u ≤w, then
μMðuÞ ≥min fμMðtÞ, μMðwÞg

(d) Boundness of support: i.e., ∃S ∈ℝ and ∀t ∈ℝ, if ∣t ∣
≥S, then μMðtÞ = 0

We denote the set of all FNs by FnsðℝÞ.
Now, we study the idea of LDFSs (linear Diophantine

fuzzy sets) and their fundamental operations.

Definition 6 (see [27]). Let X be the universe. A LDFS £R on
X is defined as follows:

£R = ϑ, Mτ
R ϑð Þ,Nν

R ϑð Þh i, α ϑð Þ, β ϑð Þh ið Þ: ϑ ∈ Xf g ð4Þ

where Mτ
RðϑÞ,Nν

RðϑÞ, αðϑÞ, βðϑÞ ∈ ½0, 1� such that

0 ≤ α ϑð ÞMτ
R ϑð Þ + β ϑð ÞNν

R ϑð Þ ≤ 1, ∀ϑ ∈ X,

0 ≤ α ϑð Þ + β ϑð Þ ≤ 1:
ð5Þ

The hesitation part can be written as

ξπR = 1 − α ϑð ÞMτ
R ϑð Þ + β ϑð ÞNν

R ϑð Þð Þ, ð6Þ

where ξ is the reference parameter.
We write in short £R = ðhMτ

R,N
ν
Ri, hα, βiÞ or £R = hh

Mτ
R,N

ν
Ri, hα, βii for

£R = ϑ, Mτ
R ϑð Þ,Nν

R ϑð Þh i, α ϑð Þ, β ϑð Þh ið Þ: ϑ ∈ Xf g: ð7Þ

Definition 7 (see [27]). An absolute LDFS on X can be written
as

1£R = ϑ, 1, 0h i, 1, 0h ið Þ: ϑ ∈ Xf g, ð8Þ

and empty or null LDFS can be expressed as

0£R = ϑ, 0, 1h i, 0, 1h ið Þ: ϑ ∈ Xf g: ð9Þ

Definition 8 (see [27]). Let £R = ðhMτ
R,N

ν
Ri, hα, βiÞ and

£P = ðhMτ
P,N

ν
Pi, hγ, δiÞ be two LDFSs on the reference set

X and ϑ ∈ X . Then,

(i) £cR = ðhNν
R,M

τ
Ri, hβ, αiÞ

(ii) £R = £P ⇔Mτ
R =Mτ

P,N
ν
R =Nν

P,α = γ,β = δ

(iii) £R ⊆ £P ⇔Mτ
RðϑÞ ≤Mτ

PðϑÞ,Nν
RðϑÞ ≥Nν

PðϑÞ,
αðϑÞ ≤ γðϑÞ,βðϑÞ ≥ δðϑÞ

(iv) £R ∪ £P = ðhMτ
R∪P,N

ν
R∩Pi, hα∨γ, β ∧ δiÞ

(v) £R ∩ £P = ðhMτ
R∩P,N

ν
R∪Pi, hα ∧ γ, β∨δiÞ

where

Mτ
R∪P ϑð Þ =Mτ

R ϑð Þ∨Mτ
P ϑð Þ,Mτ

R∩P ϑð Þ =Mτ
R ϑð Þ ∧Mτ

P ϑð Þ,
Nν

R∩P ϑð Þ =Nν
R ϑð Þ ∧Nν

P ϑð Þ,Nν
R∪P ϑð Þ =NR ϑð Þ∨Nν

P ϑð Þ:
ð10Þ
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Definition 9 (see [27]). Let £R = fðϑ, hMτ
RðϑÞ,Nν

RðϑÞi, hαðϑ
Þ, βðϑÞiÞ: ϑ ∈ Xg be an LDFS. For any constants s,t,u
,v ∈ ½0, 1� such that 0 ≤ su + tv ≤ 1 with 0 ≤ u + v ≤ 1, define
the ðhs, ti, hu, viÞ -cut of £R as follows:

£Rð Þ s,th i
u,vh i = ϑ ∈ X : Mτ

R ϑð Þ ≥ s,Nν
R ϑð Þ ≤ t, α ϑð Þ ≥ u, β ϑð Þi ≤ vf g:

ð11Þ

3. Triangular LDF Numbers

Here, in this section, we provide definitions and arithmetic
operations on LDF numbers (LDFNs).

Definition 10. A LDF number £R is

(i) a LDF fuzzy subset of the real line ℝ

(ii) normal, i.e., there is any ϑ0 ∈ℝ such that Mτ
Rðϑ0Þ

= 1,Nν
Rðϑ0Þ = 0,αðϑ0Þ = 1,βðϑ0Þ = 0

(iii) convex for the membership functions Mτ
R and α,

i.e.,

Mτ
R λϑ1 + 1 − λð Þϑ2ð Þ ≥min Mτ

R ϑ1ð Þ,Mτ
R ϑ2ð Þf g ∀ϑ1, ϑ2 ∈ℝ, λ ∈ 0, 1½ �,

α λϑ1 + 1 − λð Þϑ2ð Þ ≥min α ϑ1ð Þ, α ϑ2ð Þf g ∀ϑ1, ϑ2 ∈ℝ, λ ∈ 0, 1½ �
ð12Þ

(iv) concave for the nonmembership functions Nν
R and

β, i.e.,

Nν
R λϑ1 + 1 − λð Þϑ2ð Þ ≤max Nν

R ϑ1ð Þ,Nν
R ϑ2ð Þf g ∀ϑ1, ϑ2 ∈ℝ, λ ∈ 0, 1½ �,

β λϑ1 + 1 − λð Þϑ2ð Þ ≤max β ϑ1ð Þ, β ϑ2ð Þf g ∀ϑ1, ϑ2 ∈ℝ, λ ∈ 0, 1�:
ð13Þ

We now provide the 4 types of triangular LDF numbers.

Definition 11. Let £R be a LDFS on ℝ with the following
membership functions (Mτ

R and α) and nonmembership
functions (Nν

R and β )

Mτ
R xð Þ =

x − ϑ1
ϑ3 − ϑ1

, ϑ1 ≤ x ≤ ϑ3,

ϑ5 − x
ϑ5 − ϑ3

, ϑ3 ≤ x ≤ ϑ5,

0, otherwise,

8>>>>>><
>>>>>>:

Nν
R xð Þ =

ϑ3 − x
ϑ3 − ϑ2

, ϑ2 ≤ x ≤ ϑ3,

x − ϑ3
ϑ4 − ϑ3

, ϑ3 ≤ x ≤ ϑ4,

0, otherwise,

8>>>>>><
>>>>>>:

α xð Þ =

x − ϑ2′
ϑ3′ − ϑ2′

, ϑ2′ ≤ x ≤ ϑ3′ ,

ϑ4′ − x

ϑ4′ − ϑ3′
, ϑ3′ ≤ x ≤ ϑ4′ ,

0, otherwise,

8>>>>>>><
>>>>>>>:

β xð Þ =

ϑ3′ − x

ϑ3′ − ϑ1′
, ϑ1′ ≤ x ≤ ϑ3′ ,

x − ϑ3′
ϑ5′ − ϑ3′

, ϑ3′ ≤ x ≤ ϑ5′ ,

0, otherwise,

8>>>>>>><
>>>>>>>:

ð14Þ

where ϑ1′ ≤ ϑ2′ ≤ ϑ3′ ≤ ϑ4′ ≤ ϑ5′ for all x ∈ℝ: Then, £R is called

(i) a triangular LDFN of type-1 if ϑ3 = ϑ3′ and ϑ1 ≤ ϑ2
≤ ϑ3 ≤ ϑ4 ≤ ϑ5

(ii) a triangular LDFN of type-2 if ϑ3 ≠ ϑ3′′ and ϑ1 ≤ ϑ2
≤ ϑ3 ≤ ϑ4 ≤ ϑ5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ2 θ3 θ4 θ5θ1

Figure 1: The figure of ðϑ1, ϑ2, ϑ3, ϑ4, ϑ5Þ.
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(iii) a triangular LDFN of type-3 if ϑ3 = ϑ3′ and ϑ2 ≤ ϑ1
≤ ϑ3 ≤ ϑ5 ≤ ϑ4

(iv) a triangular LDFN of type-4 if ϑ3 ≠ ϑ3′ and ϑ2 ≤ ϑ1
≤ ϑ3 ≤ ϑ5 ≤ ϑ4

Throughout the paper, we consider only triangular
LDFN of type-1 and we write this type as triangular LDFN
(TLDFN). This TLDFN is denoted by

£RTLDFN
= ϑ1,ϑ2,ϑ3,ϑ4,ϑ5ð Þ,

ϑ1′ ,ϑ2′ ,ϑ3,ϑ4′ ,ϑ5′ð Þ:
�

ð15Þ

The figure of ðϑ1, ϑ2, ϑ3, ϑ4, ϑ5Þ is shown in Figure 1.
The figure of ðϑ1′ , ϑ2′ , ϑ3, ϑ4′ , ϑ5′Þ is shown in Figure 2.
The figure of £RTLDFN

is shown in Figure 3.

Remark 12. If we take ϑ1′ = ϑ2′ = ϑ1 = ϑ2 and ϑ4′ = ϑ5′ = ϑ1 = ϑ2,
then both type-1 and type-3 become the same.

Definition 13. Consider a TLDFN £RTLDFN
= f ðϑ1,ϑ2,ϑ3,ϑ4,ϑ5Þ

ðϑ1′ ,ϑ2′ ,ϑ3,ϑ4′ ,ϑ5′Þ
:

Then,

(i) s-cut set of £RTLDFN
is a crisp subset of ℝ, which is

defined as follows:

£sRTLDFN
= x ∈ X : Mτ

R xð Þ ≥ sf g = Mτ
R sð Þ , �Mτ

R sð Þ
h i

= ϑ1 + s ϑ3 − ϑ1ð Þ, ϑ5 − s ϑ5 − ϑ3ð Þ½ �,
ð16Þ

(ii) t-cut set of £RTLDFN
is a crisp subset of ℝ, which is

defined as follows:

£tRTLDFN
= x ∈ X : Nν

R xð Þ ≤ tf g = Nν
R tð Þ , �Nν

R tð Þ
h i

= ϑ3 − t ϑ3 − ϑ2ð Þ, ϑ3 + t ϑ4 − ϑ3ð Þ½ �,
ð17Þ

(iii) u-cut set of £RTLDFN
is a crisp subset of ℝ, which is

defined as follows:

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

θ1
′ θ3 θ′5θ′4θ2

′

Figure 2: The figure of ðϑ1′ , ϑ2′ , ϑ3, ϑ4′ , ϑ5′Þ.
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Figure 3: The figure of £RTLDFN:
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£uRTLDFN
= x ∈ X : α xð Þ ≥ uf g = α uð Þ , �α uð Þ

h i
= ϑ2′ + u ϑ3 − ϑ2′

� �
, ϑ4′ − u ϑ4′ − ϑ3

� �h i
,

ð18Þ

(iv) v-cut set of £RTLDFN
is a crisp subset of ℝ, which is

defined as follows:

£vRTLDFN
= x ∈ X : β xð Þ ≤ vf g = β vð Þ , �β vð Þ

h i
= ϑ3 − v ϑ3 − ϑ1′

� �
, ϑ3 + v ϑ5′ − ϑ3

� �h i
:

ð19Þ

We can denote the ðhs, ti, hu, viÞ-cut of £RTLDFN
=

ðϑ1, ϑ2, ϑ3, ϑ4, ϑ5Þ
ðϑ1′ , ϑ2′ , ϑ3, ϑ4′ , ϑ5′Þ

(
by

£RTLDFN

� � s,th i
u,vh i =

Mτ
R sð Þ , �Mτ

R sð Þ
h i

, Nν
R tð Þ , �Nν

R tð Þ
h i� �

,

α uð Þ , �α uð Þ
h i

, β vð Þ , �β vð Þ
h i� �

:

8><
>:

ð20Þ

We denote the set of all TLDFN on ℝ by £RTLDFN
ðℝÞ. The

arithmetic operations based on extension principle are
defined as follows.

Definition 14. Let £R = ðhMτ
R,N

ν
Ri, hα, βiÞ and £P = ðhMτ

P

,Nν
Pi, hγ, δiÞ be two TLDFN on ℝ . Then,

(i) £R + £P = supf t=x+yfmin fMτ
RðxÞ,Mτ

PðyÞgg inf
t=x+y

fmax fNν
RðxÞ,Nν

PðyÞgg sup
t=x+y

fmin fαðxÞ, γðyÞgg
inf
t=x+y

fmax fβðxÞ, δðyÞgg

(ii) £R − £P = supf t=x−yfmin fMτ
RðxÞ,Mτ

PðyÞgg inf
t=x−y

fmax fNν
RðxÞ,Nν

PðyÞgg sup
t=x−y

fmin fαðxÞ, γðyÞgg
inf
t=x−y

fmax fβðxÞ, δðyÞgg

(iii) £R × £P = supf t=x×yfmin fMτ
RðxÞ,Mτ

PðyÞgg inf
t=x×y

fmax fNν
RðxÞ,Nν

PðyÞgg sup
t=x×y

fmin fαðxÞ, γðyÞgg
inf
t=x×y

fmax fβðxÞ, δðyÞgg

(iv) £R ÷ £P = supf t=x÷yfmin fMτ
RðxÞ,Mτ

PðyÞgg inf
t=x÷y

fmax fNν
RðxÞ,Nν

PðyÞgg sup
t=x÷y

fmin fαðxÞ, γðyÞgg
inf
t=x÷y

fmax fβðxÞ, δðyÞgg

Definition 15. A TLDFN £RTLDFN
=

ðϑ1, ϑ2, ϑ3, ϑ4, ϑ5Þ
ðϑ1′ , ϑ2′ , ϑ3, ϑ4′ , ϑ5′Þ

(
is said

to be positive if and only if ϑ1 ≥ 0 and ϑ1′ ≥ 0:

Definition 16. Two TLDFNs £RTLDFN
=

ðϑ1, ϑ2, ϑ3, ϑ4, ϑ5Þ
ðϑ1′ , ϑ2′ , ϑ3, ϑ4′ , ϑ5′Þ

(

and ξRTLDFN
=

ðδ1, δ2, δ3, δ4, δ5Þ
ðδ1′ , δ2′ , δ3, δ4′ , δ5′Þ

(
are said to be equal if

and only if ϑ1 = δ1,ϑ2 = δ2,ϑ3 = δ3,ϑ4 = δ4,ϑ5 = δ5,ϑ1′ = δ1′ ,
ϑ2′ = δ2′ ,ϑ4′ = δ4′ , and ϑ5′ = δ5′:

We now define the arithmetic operations on TLDFNs
using the concept of interval arithmetic.

Definition 17. Consider two positive TLDFNs £RTLDFN
= f

ðϑ1,ϑ2,ϑ3,ϑ4,ϑ5Þ
ðϑ1′ ,ϑ2′ ,ϑ3,ϑ4′ ,ϑ5′Þ

and ξRTLDFN
= f ðδ1,δ2,δ3,δ4,δ5Þ

ðδ1′ ,δ2′ ,δ3,δ4′ ,δ5′Þ
, then,

(i) £RTLDFN
+ ξRTLDFN

= f ðϑ1+δ1,ϑ2+δ2,ϑ3+δ3,ϑ4+δ4,ϑ5+δ5Þ
ðϑ1′+δ1′ ,ϑ2′+δ2′ ,ϑ3+δ3,ϑ4′+δ4′ ,ϑ5′+δ5′Þ

(ii) £RTLDFN
− ξRTLDFN

= f ðϑ1−δ5,ϑ2−δ4,ϑ3−δ3,ϑ4−δ2,ϑ5−δ1Þ
ðϑ1′−δ5′ ,ϑ2′−δ4′ ,ϑ3−δ3,ϑ4′−δ2′ ,ϑ5′−δ1′Þ

(iii) £RTLDFN
× ξRTLDFN

= f ðϑ1δ1,ϑ2δ2,ϑ3δ3,ϑ4δ4,ϑ5δ5Þ
ðϑ1′δ1′ ,ϑ2′δ2′ ,ϑ3δ3,ϑ4′δ4′ ,ϑ5′δ5′Þ

(iv) £RTLDFN
÷ ξRTLDFN

= f ððϑ1/δ5Þ,ðϑ2/δ4Þ,ðϑ3/δ3Þ,ðϑ4/δ2Þ,ðϑ5/δ1ÞÞ
ððϑ1′/δ5′Þ,ðϑ2′/δ4′Þ,ðϑ3/δ3Þ,ðϑ4′/δ2′Þ,ðϑ5′/δ1′ÞÞ

(v) k × £RTLDFN
=

f ðkϑ1,kϑ2,kϑ3,kϑ4,kϑ5Þ
ðkϑ1′ ,kϑ2′ ,kϑ3,kϑ4′ ,kϑ5′Þ

if k > 0

f ðkϑ5,kϑ4,kϑ3,kϑ2,kϑ1Þ
ðkϑ5′ ,kϑ4′ ,kϑ3,kϑ2′ ,kϑ1′Þ

if k < 0

8><
>:

4. Ranking Function of TLDFNs

There are many methods for defuzzification such as the cen-
troid method, mean of interval method, and removal area
method. In this paper, we have used the concept of the mean
of interval method to find the value of the membership and
nonmembership function of TLDFN.

Consider a TLDFN

£RTLDFN
= ϑ1,ϑ2,ϑ3,ϑ4,ϑ5ð Þ,

ϑ1′ ,ϑ2′ ,ϑ3,ϑ4′ ,ϑ5′ð Þ:
�

ð21Þ

The ðhs, ti, hu, viÞ-cut of £RTLDFN
is

£Rð Þ s,th i
u,vh i = ϑ ∈ X : Mτ

R ϑð Þ ≥ s,Nν
R ϑð Þ ≤ t, α ϑð Þ ≥ u, β ϑð Þi ≤ vf g,

ð22Þ

where
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Mτ
R sð Þ = ϑ1 + s ϑ3 − ϑ1ð Þ,
�Mτ
R sð Þ = ϑ5 − s ϑ5 − ϑ3ð Þ,

Nν
R tð Þ = ϑ3 − t ϑ3 − ϑ2ð Þ,
�Nν
R tð Þ = ϑ3 + t ϑ4 − ϑ3ð Þ,
α uð Þ = ϑ2′ + u ϑ3 − ϑ2′

� �
,

�α uð Þ = ϑ4′ − u ϑ4′ − ϑ3
� �

,

β vð Þ = ϑ3 − v ϑ3 − ϑ1′
� �

,

�β vð Þ = ϑ3 + v ϑ5′ − ϑ3
� �

:

ð23Þ

Now, by the mean of ðhs, ti, hu, viÞ -cut method, the rep-
resentation of membership functions is

RMτ
R
£RTLDFN

� �
= 1
2

ð1
0
Mτ

R sð Þ + �Mτ
R sð Þ

� �
ds

=
1
2

ð1
0
ϑ1 + s ϑ3 − ϑ1ð Þ + ϑ5 − s ϑ5 − ϑ3ð Þð Þds

=
1
2

ϑ1 +
1
2

ϑ3 − ϑ1ð Þ + ϑ5 −
1
2

ϑ5 − ϑ3ð Þ
� �

=
ϑ1 + 2ϑ3 + ϑ5

4
,

Rα £RTLDFN

� �
=
1
2

ð1
0
α uð Þ + �α uð Þ

� �
ds

= 1
2

ð1
0
ϑ2′ + u ϑ3 − ϑ2′

� �
+ ϑ4′ − u ϑ4′ − ϑ3

� �� �
du

=
1
2

ϑ2′ +
1
2

ϑ3 − ϑ2′
� �

+ ϑ4′ −
1
2

ϑ4′ − ϑ3
� �� �

=
ϑ2′ + 2ϑ3 + ϑ4′

4
:

ð24Þ

Now, by the mean of ðhs, ti, hu, viÞ -cut method, the rep-
resentation of nonmembership functions is

RNν
R
£RTLDFN

� �
=
1
2

ð1
0
Nν

R tð Þ + �Nν
R tð Þ

� �
dt

=
1
2

ð1
0
ϑ3 − t ϑ3 − ϑ2ð Þ + ϑ3 + t ϑ4 − ϑ3ð Þð Þdt

=
1
2

2ϑ3 −
1
2

ϑ3 − ϑ2ð Þ + 1
2

ϑ4 − ϑ3ð Þ
� �

=
ϑ2 + 2ϑ3 + ϑ4

4
,

Rβ £RTLDFN

� �
=
1
2

ð1
0
β vð Þ + �β vð Þ

� �
dv

= 1
2

ð1
0
ϑ3 − v ϑ3 − ϑ1′

� �
+ ϑ3 + v ϑ5′ − ϑ3

� �� �
′dv

=
1
2

2ϑ3 −
1
2

ϑ3 − ϑ1′
� �

+
1
2

ϑ5′ − ϑ3
� �� �

=
ϑ1′ + 2ϑ3 + ϑ5′

4
:

ð25Þ

Now,

R £RTLDFN

� �
=
RMτ

R
£RTLDFN

� �
+ Rα £RTLDFN

� �
+ RNν

R
£RTLDFN

� �
+ Rβ £RTLDFN

� �
4

=
ϑ1 + 2ϑ3 + ϑ5ð Þ/4ð Þ + ϑ2′ + 2ϑ3 + ϑ4′

� �
/4

� �
+ ϑ2 + 2ϑ3 + ϑ4ð Þ/4ð Þ + ϑ1′ + 2ϑ3 + ϑ5′

� �
/4

� �
4

=
ϑ3
2

+
ϑ1 + ϑ2 + ϑ4 + ϑ5 + ϑ1′ + ϑ2′ + ϑ4′ + ϑ5′

16
:

ð26Þ

Consider two positive TLDFNs £RTLDFN
=

ðϑ1, ϑ2, ϑ3, ϑ4, ϑ5Þ
ðϑ1′ , ϑ2′ , ϑ3, ϑ4′ , ϑ5′Þ

(
and ξRTLDFN

=
ðδ1, δ2, δ3, δ4, δ5Þ
ðδ1′ , δ2′ , δ3, δ4′ , δ5′Þ

(
, then

(i) £RTLDFN
≺ ξRTLDFN

iff Rð£RTLDFN
Þ < RðξRTLDFN

Þ
(ii) £RTLDFN

≻ ξRTLDFN
iff Rð£RTLDFN

Þ > RðξRTLDFN
Þ

(iii) £RTLDFN
= ξRTLDFN

iff Rð£RTLDFN
Þ = RðξRTLDFN

Þ

5. Solution of LDF Equations

5.1. Solution of A + X = B by Using the Method of ðhs, ti, hu
, viÞ-Cut. Let A, B, and X be the LDFNs and let A =

ðϑ1, ϑ2, ϑ3, ϑ4, ϑ5Þ
ðϑ1′ , ϑ2′ , ϑ3, ϑ4′ , ϑ5′Þ

(
and B =

ðδ1, δ2, δ3, δ4, δ5Þ
ðδ1′ , δ2′ , δ3, δ4′ , δ5′Þ

(
: Then,

A + X = B ð27Þ

is a LDF equation (LDFE). Let X ≈
ðx1, x2, x3, x4, x5Þ
ðx1′ , x2′ , x3, x4′ , x5′Þ

(
:

Then, X = B − A in general is not the solution of Equation
(27).

Let

A s,th i
u,vh i =

Mτ
A sð Þ , �Mτ

A sð Þ
h i

, Nν
A tð Þ , �Nν

A tð Þ
h i� �

,

αA uð Þ , �αA uð Þ
h i

, βA vð Þ , �βA vð Þ
h i� �

,

8><
>:

B s,th i
u,vh i =

Mτ
B sð Þ , �Mτ

B sð Þ
h i

, Nν
B tð Þ , �Nν

B tð Þ
h i� �

,

αB uð Þ , �αB uð Þ
h i

, βB vð Þ , �βB vð Þ
h i� �

,

8><
>:

X s,th i
u,vh i =

Mτ
X sð Þ , �Mτ

X sð Þ
h i

, Nν
X tð Þ , �Nν

X tð Þ
h i� �

,

αX uð Þ , �αX uð Þ
h i

, βX vð Þ , �βX vð Þ
h i� �

8><
>:

ð28Þ

represent the ðhs, ti, hu, viÞ-cuts of A, B, and X, respectively,
in the given (27). Substituting these into Equation (27), we
get

A s,th i
u,vh i + X s,th i

u,vh i = B s,th i
u,vh i: ð29Þ
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By comparing the ðhs, ti, hu, viÞ -cuts of A, B, and X, we
get

Mτ
A sð Þ , �Mτ

A sð Þ
h i

+ Mτ
X sð Þ , �Mτ

X sð Þ
h i

= Mτ
B sð Þ , �Mτ

B sð Þ
h i

,

Nν
A tð Þ , �Nν

A tð Þ
h i

+ Nν
X tð Þ , �Nν

X tð Þ
h i

= Nν
B tð Þ , �Nν

B tð Þ
h i

,

αA uð Þ , �αA uð Þ
h i

+ αX uð Þ , �αX uð Þ
h i

= αB uð Þ , �αB uð Þ
h i

,

βA vð Þ , �βA vð Þ
h i

+ βX vð Þ , �βX vð Þ
h i

= βB vð Þ , �βB vð Þ
h i

:

ð30Þ

Now,

Mτ
X sð Þ =Mτ

B sð Þ −Mτ
A sð Þ , �Mτ

X sð Þ = �Mτ
B sð Þ − �Mτ

A sð Þ,
Nν

X tð Þ =Nν
B tð Þ −Nν

A tð Þ , �Nν
X tð Þ = �Nν

B tð Þ − �Nν
A tð Þ,

αX uð Þ = αB uð Þ − αA uð Þ , �αX uð Þ = �αB uð Þ − �αA uð Þ,
βX vð Þ = βB vð Þ − βA vð Þ , �βX vð Þ = �βB vð Þ − �βA vð Þ:

ð31Þ

Then, the solution of the equation A + X = B exists iff

(1) Mτ
XðsÞ is monotonically increasing in 0 ≤ s ≤ 1

(2) �Mτ
XðsÞ is monotonically decreasing in 0 ≤ s ≤ 1

(3) Nν
XðtÞ is monotonically decreasing in 0 ≤ t ≤ 1

(4) �Nν
XðtÞ is monotonically increasing in 0 ≤ t ≤ 1

(5) αXðuÞ is monotonically increasing in 0 ≤ u ≤ 1

(6) �αXðuÞ is monotonically decreasing in 0 ≤ u ≤ 1

(7) βXðvÞ is monotonically decreasing in 0 ≤ v ≤ 1

(8) �βXðvÞ is monotonically increasing in 0 ≤ v ≤ 1

(9) Mτ
Xð1Þ = �Mτ

Xð1Þ =Nν
Xð0Þ = �Nν

Xð0Þ = αXð1Þ =
�αXð1Þ = βXð0Þ = �βXð0Þ:

Example 1. Consider the equation A + X = B, where

A =
3, 5, 7,10,15ð Þ,
2, 6, 7, 8, 11ð Þ,

(

B =
1, 6, 11,15,24ð Þ,
3, 9, 11,13,22ð Þ:

( ð32Þ

The ðhs, ti, hu, viÞ-cuts of A, B, and X are

A s,th i
u,vh i =

3 + 4s, 15 − 8s½ �, 7 − 2t, 7 + 3t½ �ð Þ,
6 + u, 8 − u½ �, 7 − 5v, 7 + 4v½ �ð Þ,

(

B s,th i
u,vh i =

1 + 10s, 24 − 13s½ �, 11 − 5t, 11 + 4t½ �ð Þ,
9 + 2u, 13 − 2u½ �, 11 − 8v, 11 + 11v½ �ð Þ,

(

X s,th i
u,vh i =

Mτ
X sð Þ , �Mτ

X sð Þ
h i

, Nν
X tð Þ , �Nν

X tð Þ
h i� �

,

αX uð Þ , �αX uð Þ
h i

, βX vð Þ , �βX vð Þ
h i� �

,

8><
>:

ð33Þ

respectively. The ðhs, ti, hu, viÞ-cut equation is

A s,th i
u,vh i + X s,th i

u,vh i = B s,th i
u,vh i: ð34Þ

By comparing the ðhs, ti, hu, viÞ-cuts of A, B, and X, we
get

Mτ
X sð Þ =Mτ

B sð Þ −Mτ
A sð Þ = −2 + 6s,

�Mτ
X sð Þ = �Mτ

B sð Þ − �Mτ
A sð Þ = 9 − 5s,

Nν
X tð Þ =Nν

B tð Þ −Nν
A tð Þ = 4 − 3t,

�Nν
X tð Þ = �Nν

B tð Þ − �Nν
A tð Þ = 4 + t,

αX uð Þ = αB uð Þ − αA uð Þ = 3 + u,

�αX uð Þ = �αB uð Þ − �αA uð Þ = 5 − u,

βX vð Þ = βB vð Þ − βA vð Þ = 4 − 3v,

�βX vð Þ = �βB vð Þ − �βA vð Þ = 4 + 7v:

ð35Þ

It is easy to see that Mτ
XðsÞ , �Nν

XðtÞ,αXðuÞ , and �βXðvÞ are
increasing and �Mτ

XðsÞ,Nν
XðtÞ , �αXðuÞ, and βXðvÞ are decreas-

ing in 0 ≤ s, t, u, v ≤ 1: Also,

Mτ
X 1ð Þ = �Mτ

X 1ð Þ =Nν
X 0ð Þ = �Nν

X 0ð Þ = αX 1ð Þ
= �αX 1ð Þ = βX 0ð Þ = �βX 0ð Þ = 4:

ð36Þ

This shows that the solution of A + X = B exists with
ðhs, ti, hu, viÞ -cut. The solution is

X = −2,1,4,5,9ð Þ,
1,3,4,5,11ð Þ:

n
ð37Þ

The solution in continuous form is

Mτ
R xð Þ =

2 + x
6

, −2 ≤ x ≤ 4,

9 − x
5

, 4 ≤ x ≤ 9,

0, otherwise,

8>>>>><
>>>>>:
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Nν
R xð Þ =

4 − x
3

, 1 ≤ x ≤ 4,

−4 + x, 4 ≤ x ≤ 5,

0, otherwise,

8>>><
>>>:

α xð Þ =
−3 + x, 3 ≤ x ≤ 4,

5 − x, 4 ≤ x ≤ 5,

0, otherwise,

8>><
>>:

β xð Þ =

4 − x
3

, 1 ≤ x ≤ 4,

−4 + x
7

, 4 ≤ x ≤ 11,

0, otherwise:

8>>>>><
>>>>>:

ð38Þ

The graph of the solution is given in Figure 4.

5.2. Solution of A · X + B = C by Using the Method of ðhs, ti
, hu, viÞ-Cut. Let A, B, C, and X be the LDFNs and let A =

ðϑ1, ϑ2, ϑ3, ϑ4, ϑ5Þ
ðϑ1′ , ϑ2′ , ϑ3, ϑ4′ , ϑ5′Þ

(
, B =

ðδ1, δ2, δ3, δ4, δ5Þ
ðδ1′ , δ2′ , δ3, δ4′ , δ5′Þ

(
, and C =

ðη1, η2, η3, η4, η5Þ
ðη1′ , η2′ , η3, η4′ , η5′Þ

(
: Then,

A · X + B = C ð39Þ

is a LDF equation (LDFE). Let X ≈
ðx1, x2, x3, x4, x5Þ
ðx1′ , x2′ , x3, x3′ , x5′Þ

(
:

Then, X = ðC − BÞ/A in general is not the solution of Equa-
tion (39).

Let

A s,th i
u,vh i =

Mτ
A sð Þ , �Mτ

A sð Þ
h i

, Nν
A tð Þ , �Nν

A tð Þ
h i� �

,

αA uð Þ , �αA uð Þ
h i

, βA vð Þ , �βA vð Þ
h i� �

,

8><
>:

B s,th i
u,vh i =

Mτ
B sð Þ , �Mτ

B sð Þ
h i

, Nν
B tð Þ , �Nν

B tð Þ
h i� �

,

αB uð Þ , �αB uð Þ
h i

, βB vð Þ , �βB vð Þ
h i� �

,

8><
>:

C s,th i
u,vh i =

Mτ
C sð Þ , �Mτ

C sð Þ
h i

, Nν
C tð Þ , �Nν

C tð Þ
h i� �

,

αC uð Þ , �αC uð Þ
h i

, βC vð Þ , �βC vð Þ
h i� �

,

8><
>:

X s,th i
u,vh i =

Mτ
X sð Þ , �Mτ

X sð Þ
h i

, Nν
X tð Þ , �Nν

X tð Þ
h i� �

,

Mτ
X sð Þ , �Mτ

X sð Þ
h i

, Nν
X tð Þ , �Nν

X tð Þ
h i� �

8><
>:

ð40Þ

represent the ðhs, ti, hu, viÞ-cuts of A, B, C, and X, respec-
tively, in the given (39). Substituting these into Equation
(39), we get

A s,th i
u,vh i · X

s,th i
u,vh i + B s,th i

u,vh i = C s,th i
u,vh i: ð41Þ

By comparing the ðhs, ti, hu, viÞ-cuts of A, B, C, and X,
we get

Mτ
A sð Þ , �Mτ

A sð Þ
h i

· Mτ
X sð Þ , �Mτ

X sð Þ
h i

+ Mτ
B sð Þ , �Mτ

B sð Þ
h i

= Mτ
C sð Þ , �Mτ

C sð Þ
h i

,

Nν
A tð Þ , �Nν

A tð Þ
h i

· Nν
X tð Þ , �Nν

X tð Þ
h i

+ Nν
B tð Þ , �Nν

B tð Þ
h i

= Nν
C tð Þ , �Nν

C tð Þ
h i

,

αA uð Þ , �αA uð Þ
h i

· αX uð Þ , �αX uð Þ
h i

+ αB uð Þ , �αB uð Þ
h i

= αC uð Þ , �αC uð Þ
h i

,

βA vð Þ , �βA vð Þ
h i

· βX vð Þ , �βX vð Þ
h i

+ βB vð Þ , �βB vð Þ
h i

= βC vð Þ , �βC vð Þ
h i

:

ð42Þ
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Figure 4: The graph of the solution obtained in Example 1.
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Now,

Mτ
X sð Þ =

Mτ
C sð Þ −Mτ

B sð Þ
Mτ

A sð Þ ,

�Mτ
X sð Þ =

�Mτ
C sð Þ − �Mτ

B sð Þ
�Mτ
A sð Þ

,

Nν
X tð Þ =

Nν
C tð Þ −Nν

B tð Þ
Nν

A tð Þ ,

�Nν
X tð Þ =

�Nν
C tð Þ − �Nν

B tð Þ
�Nν
A tð Þ

,

αX uð Þ =
αC uð Þ − αB uð Þ

αA uð Þ ,

�αX uð Þ =
�αC uð Þ − �αB uð Þ

�αA uð Þ ,

βX vð Þ =
βC vð Þ − βB vð Þ

βA vð Þ ,

�βX vð Þ =
�βC vð Þ − �βB vð Þ

�βA vð Þ :

ð43Þ

Then, the solution of the equation A · X + B = C exists iff

(1) Mτ
XðsÞ is monotonically increasing in 0 ≤ s ≤ 1

(2) �Mτ
XðsÞ is monotonically decreasing in 0 ≤ s ≤ 1

(3) Nν
XðtÞ is monotonically decreasing in 0 ≤ t ≤ 1

(4) �Nν
XðtÞ is monotonically increasing in 0 ≤ t ≤ 1

(5) αXðuÞ is monotonically increasing in 0 ≤ u ≤ 1

(6) �αXðuÞ is monotonically decreasing in 0 ≤ u ≤ 1

(7) βXðvÞ is monotonically decreasing in 0 ≤ v ≤ 1

(8) �βXðvÞ is monotonically increasing in 0 ≤ v ≤ 1

Mτ
X 1ð Þ = �Mτ

X 1ð Þ =Nν
X 0ð Þ = �Nν

X 0ð Þ = αX 1ð Þ = �αX 1ð Þ = βX 0ð Þ = �βX 0ð Þ:
ð44Þ

Example 2. Consider the equation A · X + B = C, where

A = 1,2,5,7,10ð Þ,
1,3,5,6,11ð Þ,

n
B = 4,6,8,10,15ð Þ,

4,5,8,11,19ð Þ,
n

C = 1,4,18,38,65ð Þ,
1,5,18,29,85ð Þ:

n ð45Þ

The ðhs, ti, hu, viÞ-cuts of A, B, C, and X are

A s,th i
u,vh i =

1+4s,10−5s½ �, 5−3t,5+2t½ �ð Þ,
3+2u,6−u½ �, 5−4v,5+6v½ �ð Þ,

n
B s,th i

u,vh i =
4+4s,15−7s½ �, 8−2t,8+2t½ �ð Þ,
5+3u,11−3u½ �, 8−4v,8+11v½ �ð Þ,

n
C s,th i

u,vh i =
1+17s,65−47s½ �, 18−14t,18+20t½ �ð Þ,
5+13u,29−11u½ �, 18−17v,18+67v½ �ð Þ,

n

X s,th i
u,vh i =

Mτ
X sð Þ , �Mτ

X sð Þ
h i

, Nν
X tð Þ , �Nν

X tð Þ
h i� �

,

αX uð Þ , �αX uð Þ
h i

, βX vð Þ , �βX vð Þ
h i� �

,

8<
:

ð46Þ

respectively. The ðhs, ti, hu, viÞ-cut equation is

A s,th i
u,vh i · X

s,th i
u,vh i + B s,th i

u,vh i = C s,th i
u,vh i: ð47Þ

By comparing the ðhs, ti, hu, viÞ-cuts of A, B, C, and X,
we get

Mτ
X sð Þ =

1 + 17sð Þ − 4 + 4sð Þ
1 + 4s

=
−3 + 13s
1 + 4s

,

�Mτ
X sð Þ = 65 − 47sð Þ − 15 − 7sð Þ

10 − 5s
=
10 − 8s
2 − s

,

Nν
X tð Þ =

18 − 14tð Þ − 8 − 2tð Þ
5 − 3t

=
10 − 12t
5 − 3t

,

�Nν
X tð Þ = 18 + 20tð Þ − 8 + 2tð Þ

5 + 2t
=
10 + 18t
5 + 2t

,

αX uð Þ =
5 + 13uð Þ − 5 + 3uð Þ

3 + 2u
=

10u
3 + 2u

,

�αX uð Þ = 29 − 11uð Þ − 11 − 3uð Þ
6 − u

=
18 − 8u
6 − u

,

βX vð Þ =
18 − 17vð Þ − 8 − 4vð Þ

5 − 4v
=
10 − 13v
5 − 4v

,

�βX vð Þ = 18 + 67vð Þ − 8 + 11vð Þ
5 + 6v

=
10 + 56v
5 + 6v

:

ð48Þ

It is easy to see that Mτ
XðsÞ , �Nν

XðtÞ,αXðuÞ , and �βXðvÞ are
increasing and �Mτ

XðsÞ,Nν
XðtÞ , �αXðuÞ, and βXðvÞ are decreas-

ing in 0 ≤ s, t, u, v ≤ 1: Also,

Mτ
X 1ð Þ = �Mτ

X 1ð Þ =Nν
X 0ð Þ = �Nν

X 0ð Þ = αX 1ð Þ = �αX 1ð Þ
= βX 0ð Þ = �βX 0ð Þ = 2:

ð49Þ

This shows that the solution of A · X + B = C exists with
ðhs, ti, hu, viÞ -cut. The solution is

X = −3,−1,2,4,5ð Þ,
−3,0,2,3,6ð Þ:

n
ð50Þ
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The solution in continuous form is

Mτ
R xð Þ =

3 + x
13 − 4x

, −3 ≤ x ≤ 2,

−10 + 2x
−8 + x

, 2 ≤ x ≤ 5,

0, otherwise,

8>>>>><
>>>>>:

Nν
R xð Þ =

−10 + 5x
−12 + 3x

, −1 ≤ x ≤ 2,

−10 + 5x
18 − 2x

, 2 ≤ x ≤ 4,

0, otherwise,

8>>>>><
>>>>>:

α xð Þ =

3x
10 − 2x

, 0 ≤ x ≤ 2,

−18 + 6x
−8 + x

, 2 ≤ x ≤ 3,

0, otherwise,

8>>>>><
>>>>>:

β xð Þ =

−10 + 5x
−13 + 4x

, −3 ≤ x ≤ 2,

−10 + 5x
56 − 6x

, 2 ≤ x ≤ 6,

0, otherwise:

8>>>>><
>>>>>:

ð51Þ

The graph of the solution is given in Figure 5.

5.3. Solution of A · X2 + B · X + C =D by Using the Method of
α-Cut. Let A, B, C,D, and X be the LDFNs and let

A =
ϑ1, ϑ2, ϑ3, ϑ4, ϑ5ð Þ,
ϑ1′ , ϑ2′ , ϑ3, ϑ4′ , ϑ5′

� �
,

8<
:

B =
δ1, δ2, δ3, δ4, δ5ð Þ,
δ1′ , δ12, δ3, δ4′ , δ5′

� �
,

8<
:

C =
η1, η2, η3, η4, η5ð Þ,
η1′ , η2′ , η3, η4′ , η5′

� �
,

8<
:

D =
ζ1, ζ2, ζ3, ζ4, ζ5ð Þ,
ζ1′ , ζ2′ , ζ3, ζ4′ , ζ5′

� �
:

8<
:

ð52Þ

Then,

A · X2 + B · X + C =D ð53Þ

is a LDF equation (LDFE). Let X ≈
ðx1, x2, x3, x4, x5Þ
ðx1′ , x2′ , x3, x4′ , x5′Þ

(
: Let

A s,th i
u,vh i =

Mτ
A sð Þ , �Mτ

A sð Þ
h i

, Nν
A tð Þ , �Nν

A tð Þ
h i� �

,

αA uð Þ , �αA uð Þ
h i

, βA vð Þ , �βA vð Þ
h i� �

,

8><
>:

B s,th i
u,vh i =

Mτ
B sð Þ , �Mτ

B sð Þ
h i

, Nν
B tð Þ , �Nν

B tð Þ
h i� �

,

αB uð Þ , �αB uð Þ
h i

, βB vð Þ , �βB vð Þ
h i� �

,

8><
>:

C s,th i
u,vh i =

Mτ
C sð Þ , �Mτ

C sð Þ
h i

, Nν
C tð Þ , �Nν

C tð Þ
h i� �

,

αC uð Þ , �αC uð Þ
h i

, βC vð Þ , �βC vð Þ
h i� �

,

8><
>:

D s,th i
u,vh i =

Mτ
D sð Þ , �Mτ

D sð Þ
h i

, Nν
D tð Þ , �Nν

D tð Þ
h i� �

,

αD uð Þ , �αD uð Þ
h i

, βD vð Þ , �βD vð Þ
h i� �

,

8><
>:

X s,th i
u,vh i =

Mτ
X sð Þ , �Mτ

X sð Þ
h i

, Nν
X tð Þ , �Nν

X tð Þ
h i� �

,

αX uð Þ , �αX uð Þ
h i

, βX vð Þ , �βX vð Þ
h i� �

8><
>:

ð54Þ

represent the ðhs, ti, hu, viÞ-cuts of A, B, C,D, and X, respec-
tively, in the given (53). Substituting these into Equation
(53), we get

A s,th i
u,vh i · X s,th i

u,vh i
� �2

+ B s,th i
u,vh i · X

s,th i
u,vh i + C s,th i

u,vh i =D s,th i
u,vh i: ð55Þ

By comparing the ðhs, ti, hu, viÞ -cuts of A, B, C,D, and
X, we get

Mτ
A sð Þ , �Mτ

A sð Þ
h i

· Mτ
X sð Þ , �Mτ

X sð Þ
h i2

+ Mτ
B sð Þ , �Mτ

B sð Þ
h i�

· Mτ
X sð Þ , �Mτ

X sð Þ
h i

= Mτ
D sð Þ , �Mτ

D sð Þ
h i

+ Mτ
C sð Þ , �Mτ

C sð Þ
h i

,

Nν
A tð Þ , �Nν

A tð Þ
h i

· Nν
X tð Þ , �Nν

X tð Þ
h i2

+ Nν
B tð Þ , �Nν

B tð Þ
h i�

· Nν
X tð Þ , �Nν

X tð Þ
h i

= Nν
D tð Þ , �Nν

D tð Þ
h i

+ Nν
C tð Þ , �Nν

C tð Þ
h i

,

αA uð Þ , �αA uð Þ
h i

· αX uð Þ , �αX uð Þ
h i2

+ αB uð Þ , �αB uð Þ
h i�

· αX uð Þ , �αX uð Þ
h i

= αD uð Þ , �αD uð Þ
h i

+ αC uð Þ , �αC uð Þ
h i

,

βA vð Þ , �βA vð Þ
h i

· βX vð Þ , �βX vð Þ
h i2

+ βB vð Þ , �βB vð Þ
h i�

· βX vð Þ , �βX vð Þ
h i

= βD vð Þ , �βD vð Þ
h i

+ βC vð Þ , �βC vð Þ
h i

:

ð56Þ
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Now,

Mτ
X sð Þ =

−Mτ
B sð Þ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mτ

B sð Þ 2 − 4 Mτ
A sð Þ

� �
Mτ

C sð Þ −Mτ
D sð Þ

� �r
2Mτ

A sð Þ ,

�Mτ
X sð Þ =

− �Mτ
B sð Þ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Mτ
B sð Þ2 − 4 �Mτ

A sð Þ
� �

�Mτ
C sð Þ − �Mτ

D sð Þ
� �r

2 �Mτ
A sð Þ

,

Nν
X tð Þ =

−Nν
B tð Þ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nν

B tð Þ 2 − 4 Nν
A tð Þ

� �
Nν

C tð Þ −Nν
D tð Þ

� �r
2Nν

A tð Þ ,

�Nν
X tð Þ =

− �Nν
B tð Þ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Nν
B tð Þ2 − 4 �Nν

A tð Þ
� �

�Nν
C tð Þ − �Nν

D tð Þ
� �r

2 �Nν
A tð Þ

,

αX uð Þ =
−αB uð Þ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αB uð Þ 2 − 4 αA uð Þ

� �
αC uð Þ − αD uð Þ

� �r
2αA uð Þ ,

�αX uð Þ =
− �αB uð Þ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�αB uð Þ2 − 4 �αA uð Þ� � �αC uð Þ − �αD uð Þ� �q

2 �αA uð Þ ,

βX vð Þ =
−βB vð Þ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βB vð Þ 2 − 4 βA vð Þ

� �
βC vð Þ − βD vð Þ

� �r
2βA vð Þ ,

�βX vð Þ =
− �βB vð Þ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�βB vð Þ2 − 4 �βA vð Þ� � �βC vð Þ − �βD vð Þ� �q

2 �βA vð Þ :

ð57Þ

Then, the solution of the equation A · X2 + B · X + C =D
exists iff

(1) Mτ
XðsÞ is monotonically increasing in 0 ≤ s ≤ 1

(2) �Mτ
XðsÞ is monotonically decreasing in 0 ≤ s ≤ 1

(3) Nν
XðtÞ is monotonically decreasing in 0 ≤ t ≤ 1

(4) �Nν
XðtÞ is monotonically increasing in 0 ≤ t ≤ 1

(5) αXðuÞ is monotonically increasing in 0 ≤ u ≤ 1

(6) �αXðuÞ is monotonically decreasing in 0 ≤ u ≤ 1

(7) βXðvÞ is monotonically decreasing in 0 ≤ v ≤ 1

(8) �βXðvÞ is monotonically increasing in 0 ≤ v ≤ 1

(9) Mτ
Xð1Þ = �Mτ

Xð1Þ =Nν
Xð0Þ = �Nν

Xð0Þ = αXð1Þ =
�αXð1Þ = βXð0Þ = �βXð0Þ

Example 3. Consider the equation A · X2 + B · X + C =D,
where

A =
4, 5, 7, 9, 10ð Þ,
2, 6, 7, 8, 13ð Þ,

(

B =
2, 4, 5, 6, 8ð Þ,
4, 4, 5, 6, 7ð Þ,

(

C =
1, 2, 4, 5, 7ð Þ,
1, 3, 4, 5, 7ð Þ,

(

D =
1, 3, 6, 8, 12ð Þ,
1, 4, 6, 8, 11ð Þ:

(

ð58Þ

The hs, ti-cuts of A, B, C,D, and X are given in Table 1.
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0.3
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0.8

0.9

1

–1–2–3

Figure 5: The graph of the solution obtained in Example 2.

Table 1: hs, ti-cuts of A, B, C,D, and X.

s, th i-cuts X A B C D C −D

ϑ1 + s ϑ3 − ϑ1ð Þ Mτ
X sð Þ 4 + 3s 2 + 3s 1 + 3s 1 + 5s −2s

ϑ5 − s ϑ5 − ϑ3ð Þ �Mτ
X sð Þ 10 − 3s 8 − 3s 7 − 3s 12 − 6s −5 + 3s

ϑ3 − t ϑ3 − ϑ2ð Þ Nν
X tð Þ 7 − 2t 5 − t 4 − 2t 6 − 3t −2 + t

ϑ3 + t ϑ4 − ϑ3ð Þ �Nν
X tð Þ 7 + 2t 5 + t 4 + t 6 + 2t −2 − t
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By comparing the hs, ti-cuts of A, B, C,D, and X, we get

Mτ
X sð Þ =

− 2 + 3sð Þ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 + 3sð Þ2 − 4 4 + 3sð Þ −2sð Þ

q
2 4 + 3sð Þ ,

�Mτ
X sð Þ =

− 8 − 3sð Þ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 − 3sð Þ2 − 4 10 − 3sð Þ −5 + 3sð Þ

q
2 10 − 3sð Þ ,

Nν
X tð Þ =

− 5 − tð Þ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 − tð Þ2 − 4 7 − 2tð Þ −2 + tð Þ

q
2 7 − 2tð Þ ,

�Nν
X tð Þ =

− 5 + tð Þ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 + tð Þ2 − 4 7 + 2tð Þ −2 − tð Þ

q
2 7 + 2tð Þ :

ð59Þ

The graph obtained by hs, ti-cut is shown in Figure 6.
The hu, vi-cuts of A, B, C,D, and X are given in Table 2.
By comparing the hu, vi-cuts of A, B, C,D, and X, we get

α uð Þ =
− 4 + uð Þ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 + uð Þ2 − 4 6 + uð Þ −1 − uð Þ

q
2 6 + uð Þ ,

�α uð Þ =
− 6 − uð Þ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 − uð Þ2 − 4 8 − uð Þ −3 + uð Þ

q
2 8 − uð Þ ,

β vð Þ =
− 5 − vð Þ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 − vð Þ2 − 4 7 − 5vð Þ −2 + 2vð Þ

q
2 7 − 5vð Þ ,

�β vð Þ =
− 5 + 2vð Þ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 + 2vð Þ2 − 4 7 + 6vð Þ −2 − 2vð Þ

q
2 7 + 6vð Þ :

ð60Þ

The graph obtained by hu, vi-cut is shown in Figure 7.
It is easy to see that Mτ

XðsÞ , �Nν
XðtÞ,αXðuÞ , and �βXðvÞ are

increasing and �Mτ
XðsÞ,Nν

XðtÞ , �αXðuÞ, and βXðvÞ are decreas-

ing in 0 ≤ s, t, u, v ≤ 1: Also,

Mτ
X 1ð Þ = �Mτ

X 1ð Þ =Nν
X 0ð Þ = �Nν

X 0ð Þ = αX 1ð Þ = �αX 1ð Þ
= βX 0ð Þ = �βX 0ð Þ = 0:2857:

ð61Þ

This shows that the solution of A · X2 + B · X + C =D
exists with ðhs, ti, hu, viÞ -cut. The solution is

X =
0,15,

2
7,
1
3,
−4+

ffiffiffi
66

p
10

� �
0,−2+

ffiffiffi
10

p
6 ,27,

−3+
ffiffiffi
33

p
8 ,−7+

ffiffiffiffi
257

p
26

� ��
= 0,0:2,0:2857,0:3333,0:4124ð Þ,

0,0:1937,0:2857,0:3431,0:3474ð Þ:
n

ð62Þ

The solution in continuous form is

Mτ
R xð Þ =

−
2x 2x + 1ð Þ
3x2 + 3x − 2

, 0 ≤ x ≤ 0:2857,

10x2 + 8x − 5
3 x2 + x − 1ð Þ , 0:2857 ≤ x ≤ 0:4124,

0, otherwise,

8>>>>><
>>>>>:

Nν
R xð Þ =

7x − 2
2x − 1

, 0:2 ≤ x ≤ 0:2857,

−
7x − 2
2x − 1

, 0:2857 ≤ x ≤ 0:3333,

0, otherwise,

8>>>>><
>>>>>:
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Figure 6: Solution by hs, ti-cut.

Table 2: hu, vi-cuts of A, B, C,D, and X.

u, vh i-cuts X A B C D C −D

ϑ2′ + u ϑ3 − ϑ2′
� �

α uð Þ 6 + u 4 + u 3 + u 4 + 2u −1 − u

ϑ4′ − u ϑ4′ − ϑ3
� �

�α uð Þ 8 − u 6 − u 5 − u 8 − 2u −3 + u

ϑ3 − v ϑ3 − ϑ1′
� �

β vð Þ 7 − 5v 5 − v 4 − 3v 6 − 5v −2 + 2v

ϑ3 + v ϑ5′ − ϑ3
� �

�β vð Þ 7 + 6v 5 + 2v 4 + 3v 6 + 5v −2 − 2v
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α xð Þ =

−6x2 − 4x + 1
x2 + x − 1

, 0:1937 ≤ x ≤ 0:2857,

8x2 + 6x − 3
x2 + x − 1

, 0:2857 ≤ x ≤ 0:3431,

0, otherwise,

8>>>>><
>>>>>:

β xð Þ =

7x2 + 5x − 2
5x2 + x − 2

, 0 ≤ x ≤ 0:2857,

−7x2 − 5x + 2
2 3x2 + x − 1ð Þ , 0:2857 ≤ x ≤ 0:3474,

0, otherwise:

8>>>>>><
>>>>>>:

ð63Þ

The graph of the solution is given in Figure 8.

6. Conclusion

In this paper, we have defined the linear Diophantine fuzzy
numbers, in particular triangular linear Diophantine fuzzy
number, and present some properties related to them. After
finding the ranking function of triangular linear Diophan-
tine fuzzy number, our study has focussed on the linear
Diophantine fuzzy equations. We used the more general
approach to solve LDF equations that is the method of

ðhs, ti, hu, viÞ-cut. In LDF sets, there is no limitation to take
the grades like in intuitionistic fuzzy sets, Pythagorean fuzzy
sets, and q-rung orthopair fuzzy sets. The linear Diophantine
fuzzy numbers may have several applications, like in linear
programming, transportation problems, assignment prob-
lems, and shortest route problems. Our future work may
be on the following topics:

(i) LDF linear programming problems

(ii) LDF assignment problems and transportation
problems

(iii) LDF shortest path problems

(iv) Numerical solutions of linear and nonlinear LDF
equations
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Figure 7: Solution by hu, vi-cut.
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Figure 8: The graph of the solution obtained in Example 3.
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In our present investigation, by applying q-calculus operator theory, we define some new subclasses of m-fold symmetric analytic
and bi-univalent functions in the open unit diskU = fz ∈ℂ : jzj < 1g and use the Faber polynomial expansion to find upper bounds
of jamk+1j and initial coefficient bounds for jam+1j and ja2m+1j as well as Fekete-Szego inequalities for the functions belonging to
newly defined subclasses. Also, we highlight some new and known corollaries of our main results.

1. Introduction, Definitions, and Motivation

Let A denote the class of all analytic functions f ðzÞ in the
open unit disk U = fz : jzj < 1g and have the series expan-
sion of the form

f zð Þ = z + 〠
∞

n=2
anz

n: ð1Þ

By S , we mean the subclass of A consisting of univalent
functions. The inverse f −1 of univalent function f can be
defined as

f −1 f zð Þð Þ = z, z ∈U,

f f −1 wð Þ� �
=w,  wj j < r0 fð Þ, r0 fð Þ ≥ 1

4 ,
ð2Þ

where

g1 wð Þ = f −1 wð Þ =w − a2w
2 + 2a22 − a3

� �
w3

− 5a32 − 5a2a3 + a4
� �

w4+:⋯
ð3Þ

According to the Koebe one-quarter theorem [1], an
analytic function f is called bi-univalent in U if both f and
f −1 are univalent in U. Let Σ denote the class all bi-
univalent functions in U. For f ∈ Σ, Lewin [2] showed that
ja2j < 1:51 and Brannan and Cluni [3] proved that ja2j ≤ffiffiffi
2

p
. Netanyahu [4] showed that max ja2j = 4/3: Brannan

and Taha [5] introduced a certain subclass of bi-univalent
functions for class Σ. In recent years, Srivastava et al. [6],
Frasin and Aouf [7], Altinkaya and Yalcin [8, 9], and
Hayami and Owa [10] studied the various subclasses of ana-
lytic and bi-univalent function. For a brief history, see [11].

In [12], Faber introduced Faber polynomials, and after
that, Gong [13] studied Faber polynomials in geometric
function theory. In their published works, some contribu-
tions have been made to finding the general coefficient
bounds ∣an ∣ by applying Faber polynomial expansions. By
using Faber polynomial expansions, very little work has been
done for the coefficient bounds janj for n ≥ 4 of Maclaurin’s
series. For more studies, see [14–17].

A domain U is said to be m-fold symmetric if

f ei 2π/mð Þz
� �

= ei 2π/mð Þ f zð Þ, z ∈U, f ∈A ,m ∈ℕ: ð4Þ
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The univalent function hðzÞ maps the unit disk U into a
region with m-fold symmetry and can be defined as

h zð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffi
f zmð Þm

p
,  f ∈ S: ð5Þ

A function f is said to be m-fold symmetric [18] if it has
the series expansion of the form

f zð Þ = z + 〠
∞

k=1
amk+1z

mk+1: ð6Þ

The class of all m-fold symmetric univalent functions is
denoted by Sm, and for m = 1, then Sm = S .

In [19], Srivastava et al. proved the inverse f −1m series
expansion for f ∈ Σm, which is given as follows:

g wð Þ = f −1m wð Þ =w − am+1w
m+1 + m + 1ð Þa2m+1 − a2m+1

� �
w2m+1

−
1
2 m + 1ð Þ 3m + 2ð Þa3m+1 − 3m + 2ð Þam+1a2m+1 + a3m+1

�� 	
w3m+1

+:⋯

ð7Þ

Here, we will denote m-fold symmetric bi-univalent
functions by Σm. For m = 1, equation (7) coincides with
equation (3) of the class Σ: The coefficient problem for f ∈
Σm is one of the favorite subjects of geometric function the-
ory in these days (see [20–23]).

The quantum (or q-) calculus has great importance
because of its applications in several fields of mathematics,
physics, and some related areas. The importance of q
-derivative operator ðDqÞ is pretty recognizable by its
applications in the study of numerous subclasses of analytic
functions. Initially, in 1908, Jackson [24] introduced a q
-derivative operator and studied its applications. Further,
in [25], Ismail et al. defined a class of q-starlike functions;
after that, Srivastava [26] studied q-calculus in the context
of univalent function theory; also, numerous mathemati-
cians studied q-calculus in the context of univalent function
theory: Further, the q-analogue of the Ruscheweyh differen-
tial operator was defined by Kanas and Raducanu [27] and
Arif et al. [28] discussed some of its applications for multiva-
lent functions while Zhang et al. in [29] studied q-starlike
functions related with the generalized conic domain. Sri-
vastava et al. published the articles (see [30, 31]) in which
they studied the class of q-starlike functions. For some
more recent investigations about q-calculus, we may refer
to [32–34].

For a better understanding of the article, we recall some
concept details and definitions of the q-difference calculus.
Throughout the article, we presume that

0 < q < 1: ð8Þ

Definition 1. The q-factorial ½n�q! is defined as

n½ �q! =
Yn
k=1

k½ �q  n ∈ℕð Þ, ð9Þ

and the q-generalized Pochhammer symbol ½t�n,q, t ∈ℂ, is
defined as

t½ �n,q = t½ �q t + 1½ �q t + 2½ �q ⋯ t + n − 1½ �q  n ∈ℕð Þ: ð10Þ

Remark 2. For n = 0, then ½n�q! = 1, and ½t�n,q = 1.

Definition 3. The q-number ½t�q for q ∈ ð0, 1Þ is defined as

t½ �q =

1 − qt

1 − q
t ∈ℂð Þ,

〠
n−1

k=0
qk t = n ∈ℕð Þ:

8>>>><
>>>>:

ð11Þ

Definition 4 (see [24]). The q-derivative (or q-difference)
operator Dq of a function f is defined, in a given subset of
ℂ, by

Dqf
� �

zð Þ =
f zð Þ − f qzð Þ

1 − qð Þz , z ≠ 0,

f ′ 0ð Þ, z = 0,

8><
>: ð12Þ

provided that f ′ð0Þ exists.

From Definition 4, we can observe that

lim
q⟶1−

Dqf
� �

zð Þ = lim
q⟶1−

f zð Þ − f qzð Þ
1 − qð Þz = f ′ zð Þ, ð13Þ

for a differentiable function f in a given subset of ℂ. It is also
known from (1) and (12) that

Dqf
� �

zð Þ = 1 + 〠
∞

n=2
n½ �qanzn−1: ð14Þ

Here, in this paper, we use the q-difference operator to
define new subclasses of m-fold symmetric analytic and bi-
univalent functions and then apply the Faber polynomial
expansion technique to determine the general coefficient
bounds jamk+1j and initial coefficient bounds jam+1j and
ja2m+1j as well as Fekete-Szego inequalities.

Definition 5. A function f ∈ Σm is said to be in the class
Rbðφ,m, qÞ if and only if

1 + 1
b

Dqf zð Þ − 1
� �

≺ φ zð Þ,

1 + 1
b

Dqg wð Þ − 1
� �

≺ φ wð Þ,
ð15Þ

where φ ∈P , b ∈ℂ \ f0g, andz,w ∈U, andgðwÞ = f −1m ðwÞ is
defined by (7).
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Remark 6. For q⟶ 1− andm = 1, then the classRbðφ,m, qÞ
reduces into the class RbðφÞ introduced by Hamidi and
Jahangiri in [35].

Definition 7. A function f ∈ Σm is said to be in the class
S∗

Σm
ðφ, qÞ if and only if

zDqf zð Þ
f zð Þ ≺ φ zð Þ,

wDqg wð Þ
g wð Þ ≺ φ wð Þ,

ð16Þ

where φ ∈P , b ∈ℂ \ f0g, andz,w ∈U, andgðwÞ = f −1m ðwÞ is
defined by (7).

Remark 8. For q⟶ 1−, m = 1, and φðzÞ = ð1 + AzÞ/ð1 + BzÞ,
then the class S∗Σm

ðφ, qÞ reduces into the class SðA, BÞ, intro-
duced by Hamidi and Jahangiri in [36].

2. Main Results

Using the Faber polynomial expansion of functions f ∈A of
the form (1), the coefficients of its inverse map g = f −1 may
be expressed as [15] given by

g wð Þ = f −1 wð Þ =w + 〠
∞

n=2

1
n
K−n

n−1 a2, a3,⋯ð Þwn, ð17Þ

for an expansion of K−n
n−1 (see [37]). In particular, the first

three terms of K−n
n−1 are

1
2K

−2
1 = −a2,

1
3K

−3
2 = 2a22 − a3,

1
4K

−4
3 = − 5a32 − 5a2a3 + a4

� �
:

ð18Þ

In general, for any p ∈ℕ and n ≥ 2, an expansion of Kp
n−1

is as (see [15])

Kp
n−1 = pan +

p p − 1ð Þ
2 E2

n−1 +
p!

p − 3ð Þ!3! E
3
n−1+⋯

+ p!
p − n + 1ð Þ! n − 1ð Þ! E

n−1
n−1,

ð19Þ

where Ep
n−1 = Ep

n−1ða2, a3,⋯Þ, and by [37],

Em
n−1 a2,⋯, anð Þ = 〠

∞

n=2

m! a2ð Þμ1 ⋯ anð Þμn−1
μ1!, ⋯ , μn−1!

, form ≤ n,

ð20Þ

while a1 = 1, and the sum is taken over all nonnegative
integers μ1,⋯, μn satisfying

μ1 + μ2+⋯+μn =m,
μ1 + 2μ2+⋯+ n − 1ð Þμn−1 = n − 1:

ð21Þ

Evidently, En−1
n−1ða2,⋯, anÞ = an−12 (see [14]), or equiva-

lently,

Em
n a1,a2,⋯, anð Þ = 〠

∞

n=1

m! a1ð Þμ1 ⋯ anð Þμn
μ1!, ⋯ , μn!

, form ≤ n,

ð22Þ

while a1 = 1, and the sum is taken over all nonnegative inte-
gers μ1,⋯, μn satisfying

μ1 + μ2+⋯+μn =m,
μ1 + 2μ2+⋯+ nð Þμn = n:

ð23Þ

It is clear that En
nða1,⋯, anÞ = En

1 , and the first and last
polynomials are En

n = an1 and E1
n = an:

Similarly, using the Faber polynomial expansion of func-
tions f ∈A of the form (6), that is,

f zð Þ = z + 〠
∞

k=1
K1/m

k a2, a3,⋯, ak+1ð Þzmk+1: ð24Þ

The coefficients of its inverse map g = f −1m may be
expressed as

g zð Þ = f −1m zð Þ =w + 〠
∞

k=1

1
mk + 1ð ÞK

− mk+1ð Þ
k

� am+1, a2m+1,⋯, amk+1ð Þwmk+1:

ð25Þ

Theorem 9. For b ∈ℂ \ f0g, let f ∈Rbðφ,m, qÞbe given by
(6), and ifamj+1 = 0, 1 ≤ j ≤ k − 1, then

amk+1j j ≤ 2 bj j
1 +mk

, for k ≥ 2: ð26Þ

Proof. By definition, for the function f ∈Rbðφ,m, qÞ of the
form (6), we have

1 + 1
b

Dqf zð Þ − 1
� �

= 1 + 〠
∞

k=1

1 +mk½ �q
b

amk+1z
mk, ð27Þ

and for its inverse map g = f −1m , we have

1 + 1
b

Dqg wð Þ − 1
� �

= 1 + 〠
∞

k=1

1 +mk½ �q
b

Amk+1w
mk, ð28Þ

where

Amk+1 =
1

mk + 1K
− mk+1ð Þ
k am+1, a2m+1,⋯, amk+1ð Þ, k ≥ 1:

ð29Þ
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On the other hand, since f ∈Rbðφ,m, qÞ and g = f −1m ∈
Rbðφ,m, qÞ by definition, we have

p zð Þ = c1z
m + c2z

2m+⋯ = 〠
∞

k=1
ckz

mk,

q wð Þ = d1w
m + d2w

2m+⋯ = 〠
∞

k=1
dkw

mk,
ð30Þ

where

φ p zð Þð Þ = 1 + 〠
∞

k=1
〠
k

l=1
φlK

l
k c1, c2,⋯, ckð Þzmk, ð31Þ

φ q wð Þð Þ = 1 + 〠
∞

k=1
〠
k

l=1
φlK

l
k d1, d2,⋯, dkð Þwmk: ð32Þ

Comparing the coefficients of (27) and (31), we have

1
b
1 +mk½ �qamk+1 = 〠

k−1

l=1
φlK

l
k c1, c2,⋯, ckð Þ: ð33Þ

Similarly, comparing coefficients of (28) and (32), we
have

1
b
1 +mk½ �qAmk+1 = 〠

k−1

l=1
φlK

l
k d1, d2,⋯, dkð Þ: ð34Þ

Note that for amj+1 = 0, 1 ≤ j ≤ k − 1, we have

Amk+1 = −amk+1, ð35Þ

and so

1
b
1 +mk½ �qamk+1 = φ1ck, ð36Þ

−
1
b
1 +mk½ �qamk+1 = φ1dk: ð37Þ

Now taking the absolute of (36) and (37) and using the
fact that jφ1j ≤ 2, jckj ≤ 1, and jdkj ≤ 1, we have

amk+1j j ≤ bj j
1 +mk½ �q

φ1ckj j = bj j
1 +mk½ �q

φ1dkj j,

amk+1j j ≤ 2 bj j
1 +mk½ �q

,
ð38Þ

which completes the proof of Theorem 9.

For m = 1 and k = n − 1, in Theorem 9, we obtain the fol-
lowing corollary.

Corollary 10. For b ∈ℂ \ f0g, let f ∈Rbðφ, qÞ, and ifaj+1 = 0,
1 ≤ j ≤ n, then

anj j ≤ 2 bj j
n½ �q

, for n ≥ 3: ð39Þ

For q⟶ 1−, m = 1, and k = n − 1, in Theorem 9, we
obtain the following known corollary.

Corollary 11 (see [35]). For b ∈ℂ \ f0g, let f ∈RbðφÞ, and
ifaj+1 = 0, 1 ≤ j ≤ n, then

anj j ≤ 2 bj j
n

, for n ≥ 3: ð40Þ

Theorem 12. For b ∈ℂ \ f0g, let f ∈Bbðφ,m, qÞ be given by
(6), and then

am+1j j ≤

2 bj j
m + 1½ �q

, if bj j < 8
m + 1ð Þ 2m + 1½ �q

,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 bj j

m + 1ð Þ 2m + 1½ �q

s
, if bj j ≥ 8

m + 1ð Þ 2m + 1½ �q
,

8>>>><
>>>>:

a2m+1j j ≤

2 bj j
2m + 1½ �q

+ 2 m + 1ð Þ bj j2

m + 1½ �q
� �2 , if bj j < 2

2m + 1½ �q
,

4 bj j
2m + 1½ �q

, if bj j ≥ 2
2m + 1½ �q

,

8>>>>><
>>>>>:

a2m+1 − m + 1ð Þa2m+1


 

 ≤ 4 bj j

2m + 1½ �q
,

a2m+1 −
m + 1ð Þ
2

a2m+1










 ≤ 2 bj j

2m + 1½ �q
:

ð41Þ

Proof. Replacing k by 1 and 2 in (33) and (34), respectively,
we have

1
b
m + 1½ �qam+1 = φ1c1, ð42Þ

1
b
2m + 1½ �qa2m+1 = φ1c2 + φ2c

2
1, ð43Þ

−
1
b
m + 1½ �qam+1 = φ1d1, ð44Þ

1
b
2m + 1½ �q m + 1ð Þa2m+1 − a2m+1

� �
= φ1d2 + φ2d

2
1: ð45Þ

From (42) and (44), we have

am+1j j ≤ bj j
m + 1½ �q

φ1c1j j = bj j
m + 1½ �q

φ1d1j j ≤ 2 bj j
m + 1½ �q

: ð46Þ
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Adding (43) and (45), we have

a2m+1 =
b φ1 c2 + d2ð Þ + φ2 c21 + d21

� �� �
m + 1ð Þ 2m + 1½ �q

: ð47Þ

Taking the absolute value (47), we have

am+1j j ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8 bj j
m + 1ð Þ 2m + 1½ �q

:

s
ð48Þ

Now, the bounds given for jam+1j can be justified since

bj j <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8 bj j
m + 1ð Þ 2m + 1½ �q

s
, for bj j < 8

m + 1ð Þ 2m + 1½ �q
:

ð49Þ

From (43), we have

a2m+1j j = bj j φ1c2 + φ2c
2
1



 


2m + 1½ �q

≤
4 bj j

2m + 1½ �q
: ð50Þ

Next, we subtract (45) from (43), and we have

2 2m + 1½ �q
b

a2m+1 −
m + 1ð Þ
2 a2m+1

� 	
= φ1 c2 − d2ð Þ + φ2 c21 − d21

� �
= φ1 c2 − d2ð Þ,

ð51Þ

or

a2m+1 =
m + 1ð Þ
2 a2m+1 +

φ1b c2 − d2ð Þ
2 2m + 1½ �q

: ð52Þ

After some simple calculation and by taking the abso-
lute, we have

a2m+1j j ≤ φ1j j bj j c2 − d2j j
2 2m + 1ð Þ + m + 1ð Þ

2 a2m+1


 

: ð53Þ

Using the assertion (46), we have

a2m+1j j ≤ 2 bj j
2m + 1½ �q

+ 2 m + 1ð Þ bj j2

m + 1½ �q
� �2 : ð54Þ

From (50) and (54), we note that

2 bj j
2m + 1½ �q

+ 2 m + 1ð Þ bj j2

m + 1½ �q
� �2 ≤

4 bj j
2m + 1½ �q

, if bj j < 2
2m + 1½ �q

:

ð55Þ

Now, we rewrite (45) as

1
b
2m + 1½ �q m + 1ð Þa2m+1 − a2m+1

� �
= φ1d2 + φ2d

2
1: ð56Þ

Taking the absolute value, we have

a2m+1 − m + 1ð Þa2m+1


 

 ≤ 4 bj j

2m + 1½ �q
: ð57Þ

Finally, from (51), we have

2 2m + 1½ �q
b

a2m+1 −
m + 1ð Þ
2 a2m+1

� 	
= φ1 c2 − d2ð Þ: ð58Þ

Taking the absolute value, we have

a2m+1 −
m + 1ð Þ
2 a2m+1










 ≤ 2 bj j

2m + 1½ �q
: ð59Þ

For m = 1 and k = n − 1, in Theorem 12, we obtain the
following corollary.

Corollary 13. For b ∈ℂ \ f0g, let f ∈Bbðφ, qÞ be given by
(1), and then

a2j j ≤

2 bj j
2½ �q

, if bj j < 4
3½ �q

,

ffiffiffiffiffiffiffiffi
4 bj j
3½ �q

s
, if bj j ≥ 4

3½ �q
,

8>>>><
>>>>:

a3j j ≤

2 bj j
3½ �q

+ 4 bj j2

2½ �q
� �2 , if bj j < 2

3½ �q
,

4 bj j
3½ �q

, if bj j ≥ 2
3½ �q

,

8>>>>><
>>>>>:

a3 − 2a2m+1


 

 ≤ 4 bj j

3½ �q
,

a2m+1 − a2m+1


 

 ≤ 2 bj j

3½ �q
:

ð60Þ

For q⟶ 1−, m = 1, and k = n − 1, in Theorem 12, we
obtain the following corollary.

5Journal of Function Spaces



Corollary 14 (see [35]). For b ∈ℂ \ f0g, let f ∈BbðφÞ be
given by (1), and then

a2j j ≤
bj j, if bj j < 4

3
,ffiffiffiffiffiffiffiffi

4 bj j
3

r
, if bj j ≥ 4

3
,

8>><
>>:

a3j j ≤
2 bj j
3

+ bj j2, if bj j < 2
3
,

4 bj j
3

, if bj j ≥ 2
3
,

8>><
>>:
a3 − 2a22


 

 ≤ 4 bj j

3
,

a3 − a22


 

 ≤ 2 bj j

3
:

ð61Þ

Theorem 15. Let f ∈ S∗
Σm
ðφ, qÞbe given by (6), and

ifamj+1 = 0, 1 ≤ j ≤ k − 1, then

amk+1j j ≤ 2
mk½ �q

, for k ≥ 2: ð62Þ

Proof. By definition, for the function f ∈ S∗
Σm
ðφ, qÞ of the

form (6), we have

zDqf zð Þ
f zð Þ = 1 − 〠

∞

k=1
Fk am+1, a2m+1,⋯, amk+1ð Þzmk, ð63Þ

where the first few coefficients of Fkðam+1, a2m+1,⋯, amk+1Þ
are

F1 = −am+1,
F2 = a2m+1 − m + 1ð Þa2m+1,

F3 = −a3m+1 + 2m + 1ð Þam+1a2m+1 − 2m + 1ð Þa3m+1
� �

:

ð64Þ

In general,

Fk am+1, a2m+1,⋯, amk+1ð Þ
= 〠

i1+2i2+⋯kink=k
A i1, i2, i2,⋯, ikð Þ am+1ð Þi1 a2m+1ð Þi2 ⋯ amk+1ð Þik� �

,

ð65Þ

where

A i1, i2, i2,⋯, ikð Þ = −1ð Þ kð Þ+2i1+⋯ k+1ð Þik i1 + i2 + i2 ⋯ +ik − 1ð Þ!k
i1!ð Þ i2!ð Þ⋯ ik!ð Þ :

ð66Þ

For the inverse map g = f −1m ∈ S∗
Σm
ðφ, qÞ, we obtain

zDqg wð Þ
g wð Þ = 1 − 〠

∞

k=1
Fk bm+1, b2m+1,⋯, bmk+1ð Þwmk, ð67Þ

where

Amk+1 =
1

mk + 1K
− mk+1ð Þ
k am+1, a2m+1,⋯, amk+1ð Þ, k ≥ 1:

ð68Þ

On the other hand, since f ∈ S∗
Σm
ðφ, qÞ and g = f −1m ∈

S∗
Σm
ðφ, qÞ by definition, we have

p zð Þ = c1z
m + c2z

2m+⋯ = 〠
∞

k=1
ckz

mk,

q wð Þ = d1w
m + d2w

2m+⋯ = 〠
∞

k=1
dkw

mk,
ð69Þ

where

φ p zð Þð Þ = 1 + 〠
∞

k=1
〠
k

l=1
φlK

l
k c1, c2,⋯, ckð Þzmk, ð70Þ

φ q wð Þð Þ = 1 + 〠
∞

k=1
〠
k

l=1
φlK

l
k d1, d2,⋯, dkð Þwmk: ð71Þ

Comparing the coefficients of (63) and (70), we have

− mk½ �qamk+1 = 〠
k−1

l=1
φlK

l
k c1, c2,⋯, ckð Þ: ð72Þ

Similarly, comparing the coefficients of (67) and (71), we
have

− mk½ �qbmk+1 = 〠
k−1

l=1
φlK

l
k d1, d2,⋯, dkð Þ: ð73Þ

Note that for amj+1 = 0, 1 ≤ j ≤ k − 1, we have

Amk+1 = −amk+1, ð74Þ

and so

− mk½ �qamk+1 = φ1ck, ð75Þ

mk½ �qamk+1 = φ1dk: ð76Þ

Taking the absolute values of (75) and (76) and using the
fact that jφ1j ≤ 2, jckj ≤ 1, and jdkj ≤ 1, we have
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amk+1j j ≤ 1
mk½ �q

φ1ckj j = 1
mk½ �q

φ1dkj j,

amk+1j j ≤ 2
mk½ �q

:

ð77Þ

Hence, Theorem 15 is complete.

For q⟶ 1−, m = 1, and k = n − 1, in Theorem 15, we
obtain the following corollary.

Corollary 16. f ∈ S∗ðφÞ, and ifaj+1 = 0, 1 ≤ j ≤ n, then

anj j ≤ 2
n − 1

, for n ≥ 3: ð78Þ

Theorem 17. Let f ∈ S∗
Σm
ðφ, qÞbe given by (6), and then

am+1j j ≤ 2
m½ �q

,

a2m+1j j ≤ 4 m + 1ð Þ
m 2m½ �q

+ 2
2m½ �q

,

a2m+1 −
m½ �q 2m + 1ð Þ

2m½ �q
a2m+1












 ≤ 4

2m½ �q
,

a2m+1 −
m½ �q m + 1ð Þ

2m½ �q
a2m+1












 ≤ 2

2m½ �q
:

ð79Þ

Proof. Replacing k by 1 and 2 in (72) and (73), respectively,
we have

m½ �qam+1 = φ1c1, ð80Þ

2m½ �qa2m+1 − m½ �qa2m+1 = φ1c2 + φ2c
2
1, ð81Þ

− m½ �qam+1 = φ1d1, ð82Þ

m½ �q 2m + 1ð Þa2m+1 − 2m½ �qa2m+1 = φ1d2 + φ2d
2
1: ð83Þ

From (80) and (82), we have

am+1j j ≤ 1
m½ �q

φ1c1j j = 1
m½ �q

φ1d1j j ≤ 2
m½ �q

: ð84Þ

Adding (81) and (83), we have

a2m+1 =
φ1 c2 + d2ð Þ + φ2 c21 + d21

� �
2m m½ �q

: ð85Þ

Taking the absolute value (85), we have

am+1j j ≤ 2ffiffiffiffiffiffiffiffiffiffiffiffi
m m½ �q

q : ð86Þ

Next, we subtract (83) from (81), and we have

2 2m½ �qa2m+1 − 2 m½ �q m + 1ð Þa2m+1

n o
= φ1 c2 − d2ð Þ + φ2 c21 − d21

� �
,

ð87Þ

or

a2m+1 =
m½ �q m + 1ð Þ

2m½ �q
a2m+1 +

φ1 c2 − d2ð Þ
2 2m½ �q

: ð88Þ

After some simple calculation of (88) and by taking the
absolute, we have

a2m+1j j ≤ φ1j j c2 − d2j j
2 2m½ �q

+
m½ �q m + 1ð Þ

2m½ �q
a2m+1


 

: ð89Þ

Using the assertion (86), we have

a2m+1j j ≤ 4 m + 1ð Þ
m 2m½ �q

+ 2
2m½ �q

: ð90Þ

For the third part, we rewrite (83) as

m½ �q 2m + 1ð Þa2m+1 − 2m½ �qa2m+1




 


 = φ1d2 + φ2d
2
1



 

: ð91Þ

Taking the absolute value, we have

a2m+1 −
m½ �q 2m + 1ð Þ

2m½ �q
a2m+1












 ≤ 4

2m½ �q
: ð92Þ

Finally, from (87), we have

2 2m½ �q a2m+1 −
m½ �q m + 1ð Þ

2m½ �q
a2m+1












 = φ1 c2 − d2ð Þj j: ð93Þ

Taking the absolute value, we have

a2m+1 −
m½ �q m + 1ð Þ

2m½ �q
a2m+1












 ≤ 2

2m½ �q
: ð94Þ

For q⟶ 1−,m = 1, and k = n − 1, in Theorem 17, we get
the following corollary.
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Corollary 18. Let f ∈ S∗ðφÞ be given by (1), and then

a2j j ≤ 2,
a3j j ≤ 5,

a3 −
3
2
a22










 ≤ 2,

a3 − a22


 

 ≤ 1:

ð95Þ

3. Conclusion

In this paper, we have applied q-calculus operator theory to
define some new subclasses of m-fold symmetric analytic
and bi-univalent functions in open unit disk U and used
the Faber polynomial expansion to find upper bounds j
amk+1j and initial coefficient bounds jam+1j and ja2m+1j as
well as Fekete-Szego inequalities for the functions belonging
to newly defined subclasses of m-fold symmetric analytic
and bi-univalent function. Also, we highlighted some new
and known consequences of our main results.
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Fuzzy set is a modern tool for depicting uncertainty. This paper introduces the concept of fuzzy sub e-group as an extension of
fuzzy subgroup. The concepts of identity and inverse are generalized in fuzzy sub e-groups. Every fuzzy subgroup is proven to
be a fuzzy sub e-group, but the converse is not true. Various properties of fuzzy sub e-groups are established. Moreover, the
concepts of proper fuzzy sub e-group and super fuzzy sub e-group are discussed. Further, the concepts of fuzzy e-coset and
normal fuzzy sub e-group are presented. Finally, we describe the effect of e-group homomorphism on normal fuzzy sub e-groups.

1. Introduction

Many decades ago, researchers developed an algebraic struc-
ture and named it as a group. Various properties of groups
are proposed later on. In group theory, every group contains
a unique identity element and every element has a unique
inverse. In 2018, Saeid et al. [1] generalized the notion of
groups to a new algebraic structure as e-groups. They gener-
alized the notion of the identity of a group. Instead of choos-
ing a single element as an identity element, Saeid et al. [1]
considered a subset of the main set as an identity set. So,
in an e-group, the identity element needs not to be unique.
They proved that every group is an e-group, but the converse
is not true. They defined homomorphism on e-groups in a
different manner. E-group is an important tool for classify-
ing isotopes. It is also a physical background in the unified
Gauge theory.

Uncertainty is a massive component in the life of a per-
son. In 1965, in his pioneer paper, Zadeh [2] first defined
fuzzy set to handle uncertainty in real-life problems. In
1971, utilizing the concept of fuzzy set, Rosenfeld [3] first
defined fuzzy subgroup. In 1979, using the t-norm concept

of the fuzzy subgroup was restructured by Anthony and
Sherwood [4, 5]. In 1981, the idea of fuzzy level subgroup
was introduced by Das [6]. In 1988, Choudhury et al. [7]
proved various properties of fuzzy homomorphism. In
1990, Dixit et al. [8] discussed the union of fuzzy subgroups
and fuzzy level subgroups. The concept of antifuzzy sub-
groups was proposed by Biswas [9]. In 1992, Ajmal and
Prajapati [10] developed fuzzy cosets and fuzzy normal sub-
groups. Chakraborty and Khare [11] studied various proper-
ties of fuzzy homomorphism. Ajmal [12] also studied the
homomorphism of fuzzy subgroups. Later, many researchers
studied various properties of fuzzy subgroups [13–16]. In
2015, Tarnauceanu [17] classified fuzzy normal subgroups
of finite groups. In 2016, Onasanya [18] reviewed some anti-
fuzzy properties of fuzzy subgroups. In 2018, Shuaib and
Shaheryar [19] introduced omicron fuzzy subgroups. In
2018, Addis [20] developed fuzzy homomorphism theorems
on groups. In 2019, Bhunia and Ghorai [21] studied ðα, βÞ-
Pythagorean fuzzy subgroups. In 2021, Bhunia et al. [22,
23] developed Pythagorean fuzzy subgroups. Abuhijleh
et al. [24] worked on complex fuzzy subgroups in 2021.
Alolaiyan et al. [25] studied algebraic structure of ðα, βÞ
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-complex fuzzy subgroups. Alolaiyan et al. [26] developed
bipolar fuzzy subrings in 2021. In 2021, Talafha et al. [27]
studied fuzzy fundamental groups and fuzzy folding of fuzzy
Minkowski space.

In a fuzzy subgroup, the identity element of the group
has the highest membership value. Also, in a fuzzy subgroup,
the membership value of an element and its inverse are
equal. But in an e-group, there is no unique identity element
and no direct concept of the inverse of elements. Till now,
no fuzzification has been done for e-groups. So, it is a chal-
lenge for us to fuzzify e-groups. In this study, we construct
the concept of fuzzy sub e-groups. Here, we show that every
fuzzy subgroup is a fuzzy sub e-group, but the converse is
not true. So, the idea of fuzzy sub e-group is a much more
generalized concept. In the study of isotopes, we notice that
isotopes decay through neutron emission. So, the member-
ship degree of these unstable neutrons must lie in ½0, 1�.
Therefore, fuzzy sub e-group will be more efficient in study-
ing these unstable isotopes rather than a crisp e-group.

This paper is arranged in the following order. In Section
2, we recall some important concepts. In Section 3, utilizing
the concept of e-groups, we generalize fuzzy subgroups. We
develop the concept of fuzzy sub e-group and show that any
fuzzy subgroup is also a fuzzy sub e-group. We also prove
many algebraic properties of fuzzy sub e-groups. Further,
we define fuzzy e-coset and normal fuzzy sub e-group in
Section 4. Moreover, in Section 5, we show that after e-
group homomorphism, a fuzzy sub e-group remains a fuzzy
sub e-group. Finally, the conclusion is given in Section 6.

2. Preliminaries

Here, we will go over some basic definitions and concepts,
which will be useful in the following sections.

Definition 1 (see [2]). A fuzzy set (FS) ðD, κÞ on a crisp set D
is an object having the form ðD, κÞ = fðd, κðdÞÞjd ∈Dg,
where κ⟶ ½0, 1� is the membership function.

Definition 2 (see [3]). Let ðD, κÞ be a FS on a group D. Then,
ðD, κÞ is referred to be a fuzzy subgroup (FSG) of D if the
following conditions hold:

(i) κðd1d2Þ ≥ κðd1Þ ∧ κðd2Þ∀d1, d2 ∈D
(ii) κðd−1Þ ≥ κðdÞ∀d ∈D

Definition 3 (see [2]). Let ðD, κÞ be a FS on D. Then, for any
a ∈ ½0, 1�, the set κa = fd ∣ d ∈D, κðdÞ ≥ ag is called a-cut of
ðD, κÞ.

Clearly, κa is a subset of D.

Proposition 4 (see [28]). Let h be a mapping fromD1 intoD2.
Let ðD1, κ1Þ and ðD2, κ2Þ be the two FSs on D1 and D2, respec-
tively. Then, ðD2, hðκ1ÞÞ and ðD1, h−1ðκ2ÞÞ are FSs on D2 and
D1, respectively, where for all d2 ∈D2

h κ1ð Þ d2ð Þ =
∨ κ1 d1ð Þ d1j ∈D1, h d1ð Þ = d2f g,
when h−1 d2ð Þ ≠∅,
0, elsewhere,

8>><
>>: ð1Þ

and for all d1 ∈D1, ðh−1ðκ2ÞÞðd1Þ = κ2ðhðd1ÞÞ.

Definition 5 (see [1]). Let D be a nonempty crisp set and
L ⊆D. Then, ðD,∘,LÞ is an e-group, where ∘ is the binary
operation on D, which meets the following criteria:

(i) d1 ∘ ðd2 ∘ d3Þ = ðd1 ∘ d2Þ ∘ d3∀d1, d2, d3 ∈D
(ii) For every d ∈D, ∃ an element l ∈ L such that d ∘ l

= l ∘ d = d

(iii) For every d1 ∈D, ∃ an element d2 ∈D such that d1
∘ d2 and d2 ∘ d1 ∈ L

Definition 6 (see [1]). Let ðD1, ∘1, L1Þ and ðD2, ∘2, L2Þ be the
two e-groups. If a mapping h : D1 ⟶D2 meets the follow-
ing criteria, it is referred to as a homomorphism:

(i) hðL1Þ ⊆ L2

(ii) hðd1∘1d2Þ = hðd1Þ∘2hðd2Þ∀d1, d2 ∈D1

3. Fuzzy Sub e-Group and Its Properties

In this section, fuzzy sub e-group is briefly described as a
generalization of fuzzy subgroup. The notions of identity
and inverse are generalized in fuzzy sub e-group. We inves-
tigate its properties. We define super fuzzy sub e-group. We
check whether union and intersections of fuzzy sub e-group
are fuzzy sub e-groups.

Definition 7. A FS ðD, κÞ is referred to be a fuzzy sub e-group
of an e-group ðD,∘,LÞ if the following conditions hold:

(i) κðd1 ∘ d2Þ ≥ κðd1Þ ∧ κðd2Þ∀d1, d2 ∈D
(ii) κðlÞ ≥ κðdÞ∀l ∈ L and d ∈D/L

where κ : D⟶ ½0, 1� is the membership function.

Example 8. Let D = fd1, d2, d3g and L = fd1, d2g. Define a
binary operation ∘ on D as below.

o d1

d2

d3 d3

d3

d3

d3

d2

d2

d2

d2

d1

d1

d1

d1

ð2Þ

Then, ðD,∘,LÞ is an e-group.
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Here, we assign membership degrees to the elements of
D by κðd1Þ = κðd3Þ = 0:8 and κðd2Þ = 0:9.

Now, κðd1 ∘ d3Þ = κðd2Þ = 0:9 > 0:8 = κðd1Þ ∧ κðd3Þ.
Similarly, we can check for other elements of D.
Therefore, κðdi ∘ djÞ ≥ κðdiÞ ∧ κðdjÞ for all di, dj ∈D.
Also, κðd1Þ = 0:8 = κðd3Þ and κðd2Þ = 0:9 > 0:8 = κðd3Þ.
Thus, ðD, κÞ forms a fuzzy sub e-group of the e-group

ðD,∘,LÞ.

Theorem 9. Let ðD,∘,LÞ stand for an e-group and ðD, κÞ be a
FS on D. Then, ðD, κÞ is referred to be a fuzzy sub e-group of
ðD,∘,LÞ if for all d1 and d2 ∈D, κðd1 ∘ d2′Þ ≥ κðd1Þ ∧ κðd2Þ for
some d2′ ∈D such that d2 ∘ d2′, d2′ ∘ d2 ∈ L.

Proof. Let ðD, κÞ stand for a fuzzy sub e-group of ðD,∘,LÞ.
Then, for all d1 and d2 in D, κðd1 ∘ d2Þ ≥ κðd1Þ ∧ κðd2Þ.
Let d1, d2 ∈D. Then, ∃ some d2′ ∈D such that d2 ∘ d2′ and

d2′ ∘ d2 ∈ L.
Therefore, κðd1 ∘ d2′Þ ≥ κðd1Þ ∧ κðd2′Þ ≥ κðd1Þ ∧ κðd2Þ.
Conversely, assume that ∀d1, d2 ∈D, κðd1 ∘ d2′Þ ≥ κðd1Þ

∧ κðd2Þ for some d2′ ∈D such that d2 ∘ d2′ and d2′ ∘ d2 ∈ L.
Let d1 ∈D, d2 ∈D/L.

Here, d2 ∘ d2′ ∈ E, then κðd2 ∘ d2′Þ ≥ κðd2Þ ∧ κðd2Þ = κðd2Þ.
Therefore, κðlÞ ≥ κðdÞ, where l ∈ L and d ∈D/L.
Let d2 = ðd2′Þ′ for all d2, d2′ ∈D such that d2 ∘ d2′ and d2′ ∘

d2 ∈ L.
Therefore, ðd1 ∘ d2Þ = κðd1 ∘ ðd2′Þ′Þ ≥ κðd1Þ ∧ κðd2′Þ ≥ κð

d1Þ ∧ κðd2Þ∀d1, d2 ∈D.
Hence, the e-group ðD,∘,LÞ has a fuzzy sub e-group ðD, κÞ.

Remark 10. The above theorem gives the necessary and suf-
ficient condition for a FS of an e-group to be a fuzzy sub e-
group.

Now, we will demonstrate that any FSG within a group
D is also a fuzzy sub e-group of the e-group ðD,∘,flgÞ, where
l is the group’s identity element. But the converse needs not
to be true.

Theorem 11. Any fuzzy subgroup of a group is a fuzzy sub e-
group.

Proof. Let ðD, κÞ stand for a FSG of a group D.
Then, κðd1 ∘ d2Þ ≥ κðd1Þ ∧ κðd2Þ and κðd−11 Þ = κðd1Þ for

all d1 and d2 ∈D.
So, the first condition of fuzzy sub e-group is satisfied.
As D is a group, then there is a unique identity element l

in D.
Since ðD, κÞ is a FSG of D, κðlÞ ≥ κðdÞ∀d ∈D.
Now, we take L = flg; then, L ⊆D.
Therefore, κðlÞ ≥ κðdÞ, where l ∈ L and d ∈D/L:
Hence, the FSG ðD, κÞ of D is a fuzzy sub e-group of the

e-group ðD, ·, LÞ.

Example 12. Let D = fd1, d2, d3, d4g and L = fd1, d2g.

Define ∘ on D as binary operation by the following:

o d1

d2

d3 d3

d3

d1

d3

d2

d1

d2

d1

d1

d1

d1

d1

d4

d3

d1

d1

d4 d4d1 d3 d4

ð3Þ

Then, ðD,∘,LÞ is an e-group.
Now, we assign a membership value to each of the ele-

ments of D by the following:

κ d1ð Þ = 0:8,
κ d2ð Þ = 0:9,
κ d3ð Þ = 0:6,
κ d4ð Þ = 0:7:

ð4Þ

Now, we can verify that ðD, κÞ is a fuzzy sub e-group of
the e-group ðD,∘,LÞ.

But jLj > 1. So, ðD, ∘Þ is not a group. Hence, the FS ðD, κÞ
is not a FSG.

Remark 13. A fuzzy sub e-group of an e-group is not neces-
sarily a FSG.

Definition 14. A fuzzy sub e-group of an e-group which is
not a FSG is said to be a proper fuzzy sub e-group.

The fuzzy sub e-group ðD, κÞ in Example 12. is a proper
fuzzy sub e-group.

Now, we will check about union and intersection of
fuzzy sub e-groups.

Theorem 15. Intersection of fuzzy sub e-groups of an e-group
is also a fuzzy sub e-group of that e-group.

Proof. Let ðD, κ1Þ and ðD, κ2Þ be the two fuzzy sub e-groups
of an e-group ðD,∘,LÞ.

Then, ∀d1, d2 ∈D, κ1ðd1 ∘ d2Þ ≥ κ1ðd1Þ ∧ κ1ðd2Þ and κ1
ðlÞ ≥ κ1ðdÞ, where l ∈ L and d ∈D/L.

Also, ∀d1, d2 ∈D, κ2ðd1 ∘ d2Þ ≥ κ2ðd1Þ ∧ κ2ðd2Þ and κ2ðlÞ
≥ κ2ðdÞ, where l ∈ L and d ∈D/L.

Let ðD, κÞ be the intersection of ðD, κ1Þ and ðD, κ2Þ,
where κ = κ1 ∩ κ2 is given by κðdÞ = κ1ðdÞ ∧ κ2ðdÞ∀d ∈D.
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Now for all d1, d2 ∈D,

κ d1 ∘ d2ð Þ = κ1 d1 ∘ d2ð Þ ∧ κ2 d1 ∘ d2ð Þ
≥ κ1 d1ð Þ ∧ κ1 d2ð Þð Þ ∧ κ2 d1ð Þ ∧ κ2 d2ð Þð Þ
= κ1 d1ð Þ ∧ κ2 d1ð Þð Þ ∧ κ1 d2ð Þ ∧ κ2 d2ð Þð Þ
= κ d1ð Þ ∧ κ d2ð Þ:

ð5Þ

Therefore, κðd1 ∘ d2Þ ≥ κðd1Þ ∧ κðd2Þ for all d1, d2 ∈D.
Again for l ∈ L and d ∈D/L, we have the following:

κ lð Þ = κ1 lð Þ ∧ κ2 lð Þ ≥ κ1 dð Þ ∧ κ2 dð Þ = κ dð Þ: ð6Þ

Therefore, ðD, κÞ is a fuzzy sub e-group of the e-group
ðD,∘,LÞ.

Hence, the intersection of two fuzzy sub e-groups of an
e-group is also a fuzzy sub e-group of that e-group.

Corollary 16. Intersection of any fuzzy sub e-groups of an e-
group ðD,∘,LÞ is also a fuzzy sub e-group of that e-group
ðD,∘,LÞ.

Remark 17. Union of two fuzzy sub e-groups of an e-group
may not be a fuzzy sub e-group of that e-group.

Example 18. Let us take the e-group ðD,∘,LÞ, where D =ℤ,
L = 2ℤ, and ∘ is the addition of integers.

Let ðD, κ1Þ and ðD, κ2Þ be the two fuzzy sub e-groups of
the e-group ðD,∘,LÞ, where κ1 and κ2 are presented by the
following:

κ1 dð Þ =
0:6, when d ∈ 2ℤ,
0:3, when d ∈ 5ℤ/2ℤ,
0, elsewhere,

8>><
>>:

κ2 dð Þ =
0:8, when d ∈ 2ℤ,
0:2, when d ∈ 3ℤ/2ℤ,
0, elsewhere:

8>><
>>:

ð7Þ

Let ðD, κÞ be the union of ðD, κ1Þ and ðD, κ2Þ, where κ
= κ1 ∪ κ2 is given by κðdÞ = κ1ðdÞ∨κ2ðdÞ∀d ∈D.

Therefore,

κ dð Þ =

0:8, when d ∈ 2ℤ,
0:3, when d ∈ 5ℤ/2ℤ,
0:2, when d ∈ 3ℤ/ 2ℤ ∩ 5ℤð Þ,
0, elsewhere:

8>>>>><
>>>>>:

ð8Þ

Now, κð5 + ð−4ÞÞ = κð1Þ = 0, but κð5Þ ∧ κð−4Þ =min f
0:3,0:8g = 0:3.

So, κð5 + ð−4ÞÞ ≱ κð5Þ ∧ κð−4Þ.
Hence, ðD, κÞ is not a fuzzy sub e-group of the e-group

ðD,∘,LÞ.

Definition 19. Let ðD, κ1Þ and ðD, κ2Þ be the two fuzzy sub e-
groups of an e-group ðD,∘,LÞ such that κ2ðlÞ ≥ κ1ðlÞ for all l
∈ L and κ2ðdÞ ≤ κ1ðdÞ for all d ∈D/L, then ðD, κ2Þ is referred
to be a super fuzzy sub e-group of ðD, κ1Þ.

Example 20. In Example 12., we take another FS ðD, κ1Þ on
ðD,∘,LÞ, where

κ1 d1ð Þ = 0:85,
κ1 d2ð Þ = 0:93,
κ1 d3ð Þ = 0:57,
κ1 d4ð Þ = 0:68:

ð9Þ

Then, we can simply verify that ðD,∘,LÞ has a fuzzy sub e-
group ðD, κ1Þ.

Now, we can see that for all l ∈ L, κ1ðlÞ ≥ κðlÞ and for all
d ∈D/L, κ1ðdÞ ≤ κðdÞ.

Hence, ðD, κ1Þ is a super fuzzy sub e-group of ðD, κÞ.

Theorem 21. Let ðD, κÞ stand for a fuzzy sub e-group of an e-
group ðD,∘,LÞ. Then, the set K = fd ∣ d ∈D, κðdÞ = pg forms a
sub e-group ðK ,∘,LÞ of the e-group ðD,∘,LÞ, where p = ∧fκðlÞ
jl ∈ Lg.

Proof. Given K = fd ∣ d ∈D, κðdÞ = pg, where p = ∧fκðlÞjl ∈
Lg.

To show that the e-group ðD,∘,LÞ has a sub e-group
ðK ,∘,LÞ, we have to show that ðK ,∘,LÞ itself forms an e-group.

Since ðD,∘,LÞ is an e-group, the associative law holds.
Clearly, K is a subset of D. Then, associative law also

holds in K . Instead of showing the other two conditions of
e-group, we will show that for all k1 and k2 ∈ K , ∃ a k2′ ∈ K
such that k1 ∘ k2′ and k2′ ∘ k1 ∈ L.

Let k1, k2, and k2′ ∈ K . Then, κðk1Þ = κðk2Þ = κðk2′Þ = p.
Since ðD, κÞ is a fuzzy sub e-group of ðD,∘,LÞ, by Theo-

rem 9, we have the following:

κ k1 ∘ k2′
� �

≥ κ k1ð Þ ∧ κ k2ð Þ = p: ð10Þ

Similarly, we can show that κðk2′ ∘ k1Þ ≥ p.
Since p = ∧fκðlÞjl ∈ Lg, k1 ∘ k2′ and k2′ ∘ k1 ∈ L.
Hence, ðK ,∘,LÞ forms a sub e-group of ðD,∘,LÞ.

4. Normal Fuzzy Sub e-Group and Level Fuzzy
Sub e-Group

This section will describe fuzzy e-cosets and normal fuzzy
sub e-groups. We will also introduce the concept of level
fuzzy sub e-groups.

Definition 22. Let ðD, κÞ stand for a fuzzy sub e-group of an
e-group ðD,∘,LÞ. Then, ∀s, d ∈D, the left fuzzy e-coset sκ =
κðlÞfsg ∘ κ is defined by sκðdÞ = κðs′ ∘ dÞ and the right fuzzy
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e-coset κs = κ ∘ κðlÞfsg is defined by κsðdÞ = κðd ∘ s′Þ, where l
is any element of L and s′ ∈D such that s ∘ s′ and s′ ∘ s ∈ L.

If a left fuzzy e-coset is also a right fuzzy e-coset, then we
will simply call it is a fuzzy e-coset.

Definition 23. Let ðd, κÞ stand for a fuzzy sub e-group of an
e-group ðD,∘,LÞ. Then, ðD, κÞ forms a normal fuzzy sub e-
group of the e-group ðD,∘,LÞ if every left fuzzy e-coset of
ðD, κÞ is a right fuzzy e-coset of ðD, κÞ in ðD,∘,LÞ.

Equivalently, sκ = κs for all s ∈D.

Example 24. Let us take the e-group ðℤ,+,2ℤÞ. Now, ðℤ, κÞ
forms a fuzzy sub e-group on ℤ, where κ is presented by
the following:

κ zð Þ =
0:9, when z ∈ 2ℤ,
0:6, elsewhere:

(
ð11Þ

Let us take s = 3 ∈ℤ.
Then, ∀d ∈ℤ, the left fuzzy e-coset ð3κÞ is presented by

ð3κÞðdÞ = κð3′ + dÞ = κð−3 + dÞ and the right fuzzy e-coset
ðκ3Þ is presented by ðκ3ÞðdÞ = κðd + 3′Þ = κðd − 3Þ.

Since addition is commutative on ℤ, then ð3κÞ = ðκ3Þ.
Similarly, we can check for other elements of ℤ. Hence,
ðℤ, κÞ forms a normal fuzzy sub e-group of ðℤ,+,2ℤÞ.

In the next theorem, we represent the necessary and suf-
ficient condition for a fuzzy sub e-group to be a normal
fuzzy sub e-group.

Theorem 25. Let ðD, κÞ stand for a fuzzy sub e-group of an e-
group ðD,∘,LÞ. Then, ðD, κÞ forms a normal fuzzy sub e-group
of the e-group ðD,∘,LÞ iff κðd1 ∘ d2Þ = κðd2 ∘ d1Þ∀d1, d2 ∈D.

Proof. Let ðD, κÞ stand for a normal fuzzy sub e-group of the
e-group ðD,∘,LÞ.

Then, every left fuzzy e-coset of ðD, κÞ is also a right
fuzzy e-coset of ðD, κÞ in ðD,∘,LÞ.

Therefore, ðtκÞ = ðκtÞ for all t ∈D. That is ðtκÞðd2Þ = ðκ
tÞðd2Þ∀d2, t ∈D.

This suggests that κðt ′ ∘ d2Þ = κðd2 ∘ t ′Þ∀t, t ′, d2 ∈D
such that t ∘ t ′, t ′ ∘ t ∈ L.

Now, we put t ′ = d1 ∈D. Therefore, κðd1 ∘ d2Þ = κðd2 ∘
d1Þ∀d1, d2 ∈D.

Conversely, let κðd1 ∘ d2Þ = κðd2 ∘ d1Þ∀d1, d2 ∈D.
Let s ∈D. Since ðD,∘,LÞ is an e-group, then ∃ a s′ ∈D

such that s ∘ s′, s′ ∘ s ∈ L.
Suppose s′ = d1. Then, κðs′ ∘ d2Þ = κðd2 ∘ s′Þ∀d2, s′ ∈D.
Therefore, ðsκÞðd2Þ = ðκsÞðd2Þ∀s, d2 ∈D. Thus, ðsκÞ = ðκ

sÞ∀s ∈D.
Hence, ðD, κÞ forms a normal fuzzy sub e-group of

ðD,∘,LÞ.

Theorem 26. Let ðD, κÞ stand for a fuzzy sub e-group of an e-
group ðD,∘,LÞ. Then, the a-cut κa of ðD, κÞ forms a sub e-group
ðκa,∘,LÞ of the e-group ðD,∘,LÞ, where a ≤ ∧fκðlÞ ∣ l ∈ Lg.

Proof. We have κa = fd ∣ d ∈D, κðdÞ ≥ ag, where a ∈ ½0, 1�
and a ≤ ∧fκðlÞ ∣ l ∈ Lg.

Clearly, κa is nonempty as L ⊆ κa.
To show that ðκa,∘,LÞ is an e-subgroup of ðD,∘,LÞ, we

need to prove that for d1, d2, d2′ ∈ κa, d1 ∘ d2′ ∈ κa, where d2
∘ d2′ , d2′ ∘ d2 ∈ L.

Let d1, d2, d2′ ∈ κa and d2 ∘ d2′ , d2′ ∘ d2 ∈ L. Then, κðd1Þ ≥ a
and κðd2Þ ≥ a.

Since ðD, κÞ forms a fuzzy sub e-group of the e-group
ðD,∘,LÞ,

κ d1 ∘ d2′
� �

≥ κ d1ð Þ ∧ κ d2′
� �

≥ κ d1ð Þ ∧ κ d2ð Þ ≥ a ∧ a = a: ð12Þ

Therefore, d1 ∘ d2′ ∈ κa, where d2 ∘ d2′ , d2′ ∘ d2 ∈ L. Hence,
ðκa,∘,LÞ forms a sub e-group of the e-group ðD,∘,LÞ.

Definition 27. The sub e-group ðκa,∘,LÞ of the e-group ðD,∘,
LÞ is referred to as a level fuzzy sub e-group of ðD, κÞ.

Example 28.We consider the fuzzy sub e-group ðD, κÞ of the
e-group ðD,∘,LÞ in Example 12..

Choose a = 0:65. Then, κa = fd1, d2, d4g and L = fd1, d2g.
Clearly, κa ⊆D.
We can easily check that ðκa,∘,LÞ is a sub e-group of the

e-group ðD,∘,LÞ.
Therefore, ðκa,∘,LÞ is a level fuzzy sub e-group of ðD, κÞ.

5. Homomorphism of Fuzzy Sub e-Groups

We shall demonstrate some important theorems on fuzzy
sub e-group homomorphism in this section.

Theorem 29. Let ðD1, ∘1, L1Þ and ðD2, ∘2, L2Þ be the two e-
groups. Let h be a bijective homomorphism from ðD1, ∘1, L1Þ
to ðD2, ∘2, L2Þ and ðD2, κÞ be a fuzzy sub e-group of ðD2, ∘2,
L2Þ. Then, ðD1, h−1ðκÞÞ forms a fuzzy sub e-group of ðD1, ∘1
, L1Þ.

Proof. Let d1 and l1 be the two elements of D1. Now,

h−1 κð Þ� �
d1∘1l1ð Þ = κ h d1∘1l1ð Þð Þ = κ h d1ð Þ∘2h l1ð Þð Þ

≥ κ h d1ð Þð Þ ∧ κ h l1ð Þð Þ
= h−1 κð Þ� �

d1ð Þ ∧ h−1 κð Þ� �
l1ð Þ:

ð13Þ

Therefore, ðh−1ðκÞÞðd1∘1l1Þ ≥ ðh−1ðκÞÞðd1Þ ∧ ðh−1ðκÞÞðl1Þ
for all d1 and l1 ∈D1.

Let l ∈ L1 and d ∈D1/L1.
Since h is a homomorphism, hðlÞ ∈ L2 as hðL1Þ ⊆ L2. Now,

h−1 κð Þ� �
lð Þ = κ h lð Þð Þ ≥ κ h dð Þð Þ = h−1 κð Þ� �

dð Þ:: ð14Þ
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Therefore, ðh−1ðκÞÞðlÞ ≥ ðh−1ðκÞÞðdÞ for all l ∈ L1 and d
∈D1/L1.

Hence, ðD1, h−1ðκÞÞ forms a fuzzy sub e-group of ðD1,
∘1, L1Þ.

Theorem 30. Let ðD1, ∘1, L1Þ and ðD2, ∘2, L2Þ be the two e-
groups. Let h be a homomorphism from ðD1, ∘1, L1Þ to ðD2,
∘2, L2Þ and ðD1, κÞ be a fuzzy sub e-group of ðD1, ∘1, L1Þ.
Then, ðD2, hðκÞÞ forms a fuzzy sub e-group of ðD2, ∘2, L2Þ.

Proof. Let d2 and l2 be the two elements of D2.
If either d2 ∉ hðD1Þ or l2 ∉ hðD1Þ then,

h κð Þð Þ d2ð Þ ∧ h κð Þð Þ l2ð Þ = 0 ≤ h κð Þð Þ d2∘2l2ð Þ: ð15Þ

Suppose d2 = hðd1Þ and l2 = hðl1Þ for some d1, l1 ∈D1.
Now,

h κð Þð Þ d2∘2l2ð Þ = ∨ κ pð Þ h pð Þj = d2∘2l2f g
≥ ∨ κ d1∘1l1ð Þ d1j , l1 ∈D1, h d1ð Þ = d2, h l1ð Þ = l2f g
≥ ∨ κ d1ð Þ ∧ κ l1ð Þ d1j , l1 ∈D1, h d1ð Þ = d2, h l1ð Þ = l2f g
= ∨ κ d1ð Þ d1j ∈D1, h d1ð Þ = d2f gð Þ ∧
� ∨ κ l1ð Þ l1j ∈D1, h l1ð Þ = l2f gð Þ

= h κð Þð Þ d2ð Þ ∧ h κð Þð Þ l2ð Þ:
ð16Þ

Therefore ðhðκÞÞðd2∘2l2Þ ≥ ðhðκÞÞðd2Þ ∧ ðhðκÞÞðl2Þ for all
d2 and l2 ∈D2.

Let l2 ∈ L2 and d2 ∈D2/L2.
Since h is a homomorphism, hðL1Þ ⊆ L2. Now,

h κð Þð Þ l2ð Þ = ∨ κ l1ð Þ l1j ∈D1, h l1ð Þ = l2f g
≥ ∨ κ d1ð Þ d1j ∈D1, h d1ð Þ = d2f g = h κð Þð Þ d2ð Þ:

ð17Þ

Therefore, ðhðκÞÞðl2Þ ≥ ðhðκÞÞðd2Þ for all l2 ∈ L2 and d2
∈D2/L2.

Hence, ðD2, hðκÞÞ forms a fuzzy sub e-group of ðD2, ∘2,
L2Þ.

Theorem 31. Let ðD1, ∘1, L1Þ and ðD2, ∘2, L2Þ be the two e-
groups. Let h be a bijective homomorphism from ðD1, ∘1, L1Þ
to ðD2, ∘2, L2Þ and ðD2, κÞ be a normal fuzzy sub e-group of
ðD2, ∘2, L2Þ. Then, ðD1, h−1ðκÞÞ forms a normal fuzzy sub e-
group of ðD1, ∘1, L1Þ.

Proof. From Theorem 29, we can say that ðD1, h−1ðκÞÞ forms
a fuzzy sub e-group of ðD1, ∘1, L1Þ.

Since ðD2, κÞ forms a normal fuzzy sub e-group of ðD2,
∘2, L2Þ, κðd2∘2l2Þ = κðl2∘2d2Þ for all d2, l2 ∈D2.

Let d1 and l1 be the two elements of D1. Then,

h−1 κð Þ� �
d1∘1l1ð Þ = κ h d1∘1l1ð Þð Þ = κ h d1ð Þ∘2h l1ð Þð Þ

= κ h l1ð Þ∘2h d1ð Þð Þ = κ h l1∘1d1ð Þð Þ
= h−1 κð Þ� �

l1∘1d1ð Þ:
ð18Þ

Therefore, ðh−1ðκÞÞðd1∘1l1Þ = ðh−1ðκÞÞðl1∘1d1Þ for all d1
and l1 ∈D1.

Hence, ðD1, h−1ðκÞÞ forms a normal fuzzy sub e-group of
ðD1, ∘1, L1Þ.

Theorem 32. Let ðD1, ∘1, L1Þ and ðD2, ∘2, L2Þ be the two e-
groups. Let h be a bijective homomorphism from ðD1, ∘1, L1Þ
to ðD2, ∘2, L2Þ and ðD1, κÞ be a normal fuzzy sub e-group of
ðD1, ∘1, L1Þ. Then, ðD2, hðκÞÞ forms a normal fuzzy sub e-
group of ðD2, ∘2, L2Þ.

Proof. From Theorem 30, we can say that ðD2, hðκÞÞ is a
fuzzy sub e-group of ðD2, ∘2, L2Þ.

Since ðD1, κÞ forms a normal fuzzy sub e-group of ðD1, ∘1
, L1Þ, κðd1∘1l1Þ = κðl1∘1d1Þ for all d1, l1 ∈D1.

Let d2 and l2 be the two elements of D2.
Suppose that there are unique d1 and l1 ∈D1, such that

d2 = hðd1Þ and l2 = hðl1Þ. Now,

h κð Þð Þ d2∘2l2ð Þ = ∨ κ pð Þ h pð Þj = d2∘2l2f g
= ∨ κ d1∘1l1ð Þ d1j , l1 ∈D1, h d1ð Þ = d2, h l1ð Þ = l2f g∨
� κ l1∘1d1ð Þ d1j , l1 ∈D1, h d1ð Þ = d2, h l1ð Þ = l2f g

= ∨ κ pð Þ h pð Þj = l2∘2d2f g = h κð Þð Þ l2∘2d2ð Þ:
ð19Þ

Therefore, ðhðκÞÞðd2∘2l2Þ = ðhðκÞÞðl2∘2d2Þ∀d2, l2 ∈D2.
Hence, ðD2, hðκÞÞ forms a normal fuzzy sub e-group of

ðD2, ∘2, L2Þ.

6. Conclusion

In this paper, we presented a brief demonstration of fuzzy
sub e-groups and its properties. A condition is given for a
FS of an e-group to be a fuzzy sub e-group. We have demon-
strated that any fuzzy sub e-group forms a fuzzy subgroup.
However, the reverse is not always true. Therefore, fuzzy
sub e-group is the generalization of fuzzy subgroup. We have
presented the difference between FSG and fuzzy sub e-
group. We have discussed about the idea of normal fuzzy
sub e-groups and level fuzzy e-subgroups. Finally, we have
explained the effect of e-group homomorphism on fuzzy
sub e-groups. In future, we will work on important theorems
like Lagrange’s theorem and Sylow theorem in fuzzy sub e-
groups.
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In the present paper, our aim is to establish the boundedness of commutators of the fractional Hardy operator and its adjoint
operator on weighted Herz-Morrey spaces with variable exponents M _Kαð⋅Þ,λ

p,qð⋅Þ ðwÞ.

1. Introduction

Hardy operators and related commutators play an indis-
pensable role in the theory of partial differential equations
[1, 2] and the characterization of function spaces [3–5].
Without going into much details, let us first define the frac-
tional Hardy operators [3]

Hg zð Þ = 1
zj jn−β

ð
tj j≤ zj j

g tð Þdt, H∗g zð Þ =
ð

tj j> zj j

g tð Þ
tj jn−β

dt, z ∈ℝn/ 0f g

ð1Þ

and related commutators:

b,Hβ

� �
g = bHg −H bgð Þ,  b,H∗

β

h i
g = bH∗g −H∗ bgð Þ:

ð2Þ

It is important to note that taking β = 0 in (1), we get
multidimensional Hardy operator defined and studied in
[6, 7]. Also, (1) reduces to the one dimensional Hardy
operator [8] if we choose β = 0 and n = 1. Here, we cite
some important literature with regards to the study of
Hardy-type operators on different function spaces which
include [9–15].

The new development of variable exponent commenced
with the work of Kov’aˇcik and R’akosn’ık in [16], where a
class of function spaces having variable exponent was
defined, and basic properties of variable exponent Lebesgue
space were explored. Recently, the theory of variable expo-
nent analysis is modeled in terms of the boundedness of
the Hardy Littlewood maximal operator M [17–21]:

Mg zð Þ = sup
B:ball,z∈B

1
Bj j
ð

Bj j

ð
B
g tð Þj jdt: ð3Þ

Besides, Muckenhoupt Ap theory [22] is generalized in
the recent span of time with regard to variable exponent
spaces ([23–28]). By taking into account the generalization
of function spaces with variable exponents and the same
with weights, many results like duality, boundedness of
sublinear operators, the wavelet characterization, and com-
mutators of fractional and singular integrals have been
studied [29–38].

Recently, authors have studied generalized Herz space in
terms of both Muckenhoupt weights and variable exponent
[39–41]. Moreover, an idea of combining two function
spaces to develop a new one is also an interesting problem
in Harmonic analysis. One such problem is considered in
[42] in which Herz-Morrey space was defined. Although,

Hindawi
Journal of Function Spaces
Volume 2021, Article ID 9705250, 10 pages
https://doi.org/10.1155/2021/9705250

https://orcid.org/0000-0002-3303-0623
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/9705250


the weighted versions of Herz-Morrey spaces were intro-
duced recently in [43, 44].

In this piece of work, our main focus is on establishing
the boundedness of commutators of fractional Hardy opera-
tors on a class of function spaces called the weighted Herz-
Morrey space with variable exponents. We seek to find the
boundedness of these commutators with symbol functions
in BMO (bounded mean oscillation) spaces. In establishing
such a boundedness, we make use of the boundedness of
the fractional integral operator Iβ

Iβ gð Þ zð Þ =
ð
ℝn

g tð Þ
z − tj jn−β

dt ð4Þ

on weighted Lebesgue space which was done in [39].
In the rest of this paper, the symbol C expresses a con-

stant whose value may differ at all of its occurrences. The
Greek letter χS denotes the characteristics function of a sphere
S where S is a measurable subset of Rn and ∣S ∣ represents its
Lebesguemeasure. Before turning to our key results, let us first
define the relevant variable exponent function spaces.

2. Preliminaries

Let us consider a measurable function pð·Þ on ℝn having
range ½1,∞Þ. The Lebesgue space with variable exponent
Lpð⋅ÞðℝnÞ is the set of all measurable function f such that

Lp ⋅ð Þ ℝnð Þ = f :
ð
ℝn

f xð Þj j
σ

� �p xð Þ
dx<∞,for someσ > 0

( )
:

ð5Þ

The space Lpð⋅ÞðℝnÞ turns out to be Banach function
space under the norm:

fk kLp ⋅ð Þ ℝnð Þ = inf σ > 0 :

ð
ℝn

f xð Þj j
σ

� �p xð Þ
dx ≤ 1

( )
: ð6Þ

We denote by P ðℝnÞ the set of all measurable functions
pð⋅Þ: ℝn ⟶ ð1,∞Þ such that

1 < p− ≤ p xð Þ ≤ p+ <∞, ð7Þ

where

p− ≔ essinf x∈ℝn p xð Þ, p+ ≔ esssupx∈ℝn p xð Þ: ð8Þ

Definition 1. Suppose pð·Þ is a real valued function on ℝn.
We say that

(i) Clog
loc ðℝnÞ is the set of all local log-Holder continuous

functions pð·Þ satisfying

p xð Þ − p yð Þj j ≲ −C
log x − yj jð Þ ,  x − yj j < 1

2 , x, y ∈ℝn: ð9Þ

(ii) C log
0 ðℝnÞ is the set of all local log-Holder continuous

function pð·Þ satisfying at the origin

p xð Þ − p 0ð Þj j ≲ C
log e + 1/ xj jð Þj jð Þ ,  x − yj j < 1

2 , x ∈ℝn:

ð10Þ

(iii) C log
∞ ðℝnÞ is the set of all log-Holder continuous

functions satisfying at infinity

p xð Þ − p∞j j ≤ C∞
log e + xj jð Þ , x ∈ℝn: ð11Þ

(iv) C logðℝnÞ =C log
∞ ∩C

log
loc denotes the set of all global

log-Holder continuous functions pð·Þ.

It was proved in [21] that if pð⋅Þ ∈P ðℝnÞ ∩ ClogðℝnÞ,
then Hardy-Littlewood maximal operator M is bounded on
Lpð⋅ÞðℝnÞ.

Suppose wðxÞ is a weight function on ℝn, which is non-
negative and locally integrable on ℝn. Let Lpð⋅ÞðwÞ be the
space of all complex-valued functions f on ℝn such
thatf w1/pð⋅Þ ∈ Lpð⋅ÞðℝnÞ. The space Lpð⋅ÞðwÞ is a Banach func-
tion space equipped with the norm:

fk kLp ⋅ð Þ wð Þ = f w
1
p ⋅ð Þ

��� ���
Lp ⋅ð Þ

: ð12Þ

Benjamin Muckenhoupt introduced the theory of Apð1
< p<∞Þ weights on ℝn in [22]. Recently, in [39, 40], Izuki
and Noi generalized the Muckenhoupt Ap class by taking p
as a variable.

Definition 2. Let pð⋅Þ ∈P ðℝnÞ. A weightw is anApð⋅Þ weight if

sup
B

1
Bj j w1/p ⋅ð ÞχB

��� ���
Lp ⋅ð Þ

w−1/p ⋅ð ÞχB

��� ���
Lp ′ ⋅ð Þ

<∞: ð13Þ

In [25], the authors proved thatw ∈ Apð⋅Þ if and only ifM is

bounded on the space Lpð⋅Þ.

Remark 3 (see [39]). Suppose pð⋅Þ, qð⋅Þ ∈P ðℝnÞ ∩C logðℝnÞ
and pð·Þ ≤ qð·Þ, then we have

A1 ⊂ Ap ⋅ð Þ ⊂ Aq ⋅ð Þ: ð14Þ

Definition 4. Suppose p1ð⋅Þ, p2ð⋅Þ ∈P ðℝnÞ and β ∈ ð0, nÞ
such that 1/p2ðxÞ = 1/p1ðxÞ − β/n. A weight w is said to be
Aðp1ð⋅Þ, p2ð⋅ÞÞ weight if

χBk kLp2 ⋅ð Þ wp2 ⋅ð Þð Þ χBk kLp1 ⋅ð Þ wp1 ⋅ð Þð Þ′ ≤ C Bj j1−β
n: ð15Þ
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Definition 5 (see [39]). Suppose p1ð⋅Þ, p2ð⋅Þ ∈P ðℝnÞ and β
∈ ð0, nÞ such that 1/p2ðxÞ = 1/p1ðxÞ − β/n. Then, w ∈
Aðp1ð⋅Þ,p2ð⋅ÞÞ if and only if wp2ð⋅Þ ∈ A1+p2ð⋅Þ/p1′ð⋅Þ.

Now, we define the variable exponent weighted Morrey-

Herz space M _K
αð⋅Þ,λ
q,pð⋅Þ ðwÞ. Let Bk = fx ∈ℝn : jxj ≤ 2kg, Ak =

Bk/Bk−1, and χk = χAk
for k ∈ℤ.

Definition 6. Let w be a weight on ℝn, λ ∈ ½0,∞Þ, q ∈ ð0,∞Þ,
pð⋅Þ ∈P ðℝnÞ and αð⋅Þ: ℝn ⟶ℝ with αð⋅Þ ∈ L∞ðℝnÞ. The
spaceM _K

αð⋅Þ,λ
q,pð⋅Þ ðwÞ is the set of all measurable functions which

is given by

M _K
α ⋅ð Þ,λ
q,p ⋅ð Þ wð Þ = f ∈ Lp ⋅ð Þ

loc ℝn/ 0f g,wð Þ: fk kM _K
α ⋅ð Þ,λ
q,p ⋅ð Þ wð Þ<∞

� �
,

ð16Þ
where

fk kM _K
α ⋅ð Þ,λ
q,p ⋅ð Þ wð Þ = sup

k0∈Z
2−k0λ 〠

k0

k=−∞
2kα ⋅ð Þq f χkk kqLp ⋅ð Þ wð Þ

 !1/q

: ð17Þ

Obviously, M _K
αð⋅Þ,0
q,pð⋅ÞðwÞ = _K

αð⋅Þ
q,pð⋅ÞðwÞ is the weighted Herz

space with variable exponent (see [30]). Here, it is important
to refer to some of the pioneering studies of the Herz space
with constant exponents made in [45, 46].

3. Some Useful Lemmas

We start this section with some useful lemmas that will be
helpful in proving our main results.

Lemma 7 (see [47]). If X is Banach function space, then

(i) The associated space X ′ is also Banach function space

(ii) k⋅kðX ′Þ′ and k⋅kX are equivalent

(iii) If g ∈ X and f ∈ X ′, thenð
ℝn

f xð Þg xð Þj j ≤ gk kX fk kX ′ ð18Þ

is the generalized Hölder inequality.

Lemma 8 (see [39]). Suppose X is a Banach function space.
Then, we have that for all balls B,

1 ≤
1
Bj j χBk kX χBk kX ′ : ð19Þ

Lemma 9 (see [28, 39]). Let X be a Banach function space.
Suppose that the Hardy Littlewood maximal operator M is
weakly bounded on X; that is,

χ Mf >σf g
��� ���X ≲ σ−1 fk kX ð20Þ

is true for σ > 0 and for all f ∈ X. Then, we have

sup
B:ball

1
Bj j χBk kX χBk kX ′ <∞: ð21Þ

Lemma 10 (see [39, 48]).

(1) Xðℝn,WÞ is Banach function space equipped with the
norm

fk kX ℝn ,Wð Þ = f wk kX , ð22Þ
where

X ℝn,Wð Þ = f ∈M : fW ∈ X :f g: ð23Þ

(2) The associate space X ′ðℝn,W−1Þ is also a Banach
function space

Lemma 11 (see [39]). Let X be a Banach function space.
Assume thatM is bounded on X ′, then there exists a constant
δ ∈ ð0, 1Þ for all B ⊂ℝn and E ⊂ B,

χEk kX
χBk kX

≲
Ej j
Bj j

� �δ

: ð24Þ

The paper [16] shows that Lpð⋅ÞðℝnÞ is a Banach function

space and the associated space Lp′ð⋅ÞðRnÞ with equivalent norm.
Remark 12. Let pð⋅Þ ∈P ðℝnÞ, and by comparing the Lebes-

gue space Lpð⋅Þðwpð⋅ÞÞ and Lp′ð⋅Þðw−p′ð⋅ÞÞ with the definition
of Xðℝn,WÞ, we have

(1) If we take W =w and X = Lpð⋅ÞðℝnÞ, then we get
Lpð⋅Þðℝn,wÞ = Lpð⋅Þðwpð⋅ÞÞ

(2) If we consider W =w−1 and X = Lp′ð⋅ÞðℝnÞ, then we

have Lp′ð⋅Þðw−p′ð⋅ÞÞ = Lp′ð⋅Þðℝn,w−1Þ

By virtue of Lemma 10, we get ðLpð⋅Þðℝn,wÞÞ′ =
ðLpð⋅Þðwpð⋅ÞÞÞ′ = Lp′ð⋅Þðw−p′ð⋅ÞÞ = Lp′ð⋅Þðℝn:w−1Þ. Next, in view
of Lemma 11 and Remark 12, we have the following Lemma.

Lemma 13 (see [41]). Let pð·Þ ∈P ðRnÞ ∩C log ðℝnÞ be a
Log Hölder continuous function both at infinity and at origin,

if wp2ð·Þ ∈ Ap2ð·Þ implies w−p2′ ∈ Ap2′ð·Þ. Thus, the Hardy Little-

wood operator is bounded on Lp2′ð∙Þðwp2′ð∙ÞÞ, and there exist
constants δ1, δ2 ∈ ð0, 1Þ such that

χEk kLP2 ∙ð Þ wp2 ·ð Þ	 

χBk kLP2 ∙ð Þ wp2 ·ð Þ	 
 = χEk k

LP2
′ ∙ð Þw−P

2
′ ∙ð Þ	 


′

χBk k
LP2

′ ∙ð Þw−P
2
′ ∙ð Þ	 


′
≲

Ej j
Bj j

� �δ1

,

χEk k LP2 ∙ð Þð wp2 ·ð Þ
′
χBk k LP2 ∙ð Þð wp2 ·ð Þ
′ ≲ Ej j

Bj j
� �δ1

,

ð25Þ

for all balls B and all measurable sets E ⊂ B.
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Lemma 14 (see [39]). Let p1ð·Þ ∈P ðℝnÞ ∩C logðRnÞ and 0
< β < n/p1+ and 1/p2ð·Þ = 1/p1ð∙Þ − β/n. If ∈Aðp1ð·Þ, p2ð·ÞÞ,
then Iβ is bounded from Lp1ð·ÞðwP1ð·ÞÞ to Lp2ð·ÞðwP2ð·ÞÞ.

4. Main Results and their Proofs

Definition 15. Let f ∈ L1locðRnÞ and set

bk kBMO = sup
B

ð
B
b xð Þ − bBj jdx, ð26Þ

where the supremum is taken all over the balls B ∈ℝn and
bB = jBj−1 Ð BbðyÞdy. The function b is a bounded mean
oscillation if kbkBMO <∞ and BMOðℝnÞ consist of all f
∈ L1locðℝnÞ with BMOðℝnÞ <∞. For a comprehensive
review of the BMO space, we suggest the reader to follow
the books [49, 50].

Lemma 16. Let qð·Þ ∈P ðℝnÞ and w be an Aqð·Þ weight. Then,
for all b ∈ BMO and all l, i ∈ℤ with l > i, we have

bk kBMO ∼ sup
B:Ball

1
χBk k

L
q ∙ð Þ wq ·ð Þð Þ

b − bBð ÞχBk k
L
q ∙ð Þ wq ·ð Þð Þ , ð27Þ

b − bBi
	 


χBl

��� ���
L
q ∙ð Þ wq ·ð Þð Þ ≤ C l − ið Þ bk kBMO χBl

��� ���
L
q ∙ð Þ wq ·ð Þð Þ :

ð28Þ
Proof. First part of this lemma is a consequence of [[41], The-
orem 18]. Next, we will prove (28), for all l, i ∈ℤ with l > i

b − bBi
	 


χBl

��� ���
L
q ∙ð Þ wq ·ð Þð Þ

≤ C b − bBl

�� �� + b − bBl
�� ��	 


χBl

��� ���
L
q ∙ð Þ wq ·ð Þð Þ

≤ C b − bBl

	 

χBl

��� ���
L
q ∙ð Þ wq ·ð Þð Þ + bBl − bBi

	 

χBl

��� ���
L
q ∙ð Þ wq ·ð Þð Þ

n o
:

ð29Þ

In the view of (27), we have

b − bBi
	 


χBl

��� ���
L
q ∙ð Þ wq ·ð Þð Þ ≤ C bk kBMO χBl

��� ���
L
q ∙ð Þ wq ·ð Þð Þ : ð30Þ

Also, it is easy to see that

bBl − bBi
�� �� ≤ 〠

l−1

n=1
bn+1 − bnj j

≤ 〠
l−1

n=1

1
Bnj j
ð
Bn

bn+1 − b xð Þj jdx

≤ C 〠
l−1

n=1

1
Bn+1j j

ð
Bn

bn+1 − b xð Þj jdx

= C l − ið Þ bk kBMO ℝnð Þ:

ð31Þ

Combining (29), (30), and (31), we get (28).

Proposition 17. Let qð·Þ ∈P ðℝnÞ, 0 < p <∞, and 0 ≤ λ <∞.
If αð·Þ ∈ L∞ðℝnÞ ∩C logðℝnÞ, then

fk kp
M _K

α ·ð Þ,λ
p,q ·ð Þ wq ·ð Þð Þ = sup

k0∈Z
2−k0λp 〠

k0

j=−∞
2jα ·ð Þp fχj

��� ���p
L
q ∙ð Þ wq ·ð Þð Þ

≤max

(
sup
k0∈Z
k0<0

2−k0λp 〠
k0

j=−∞
2jα ·ð Þp fχ j

��� ���p
L
q ∙ð Þ wq ·ð Þð Þ

 !
, sup
k0∈Z
k0<0

�
 
2−k0λp 〠

−1

j=−∞
2jα ·ð Þp fχj

��� ���p
L
q ∙ð Þ wq ·ð Þð Þ

 !

+ 2−k0λp 〠
k0

j=0
2jα ∞ð Þp fχj

��� ���p
L
q ∙ð Þ wq ·ð Þð Þ

 !!)
:

ð32Þ

Proof. The proof is similar to the proof of Proposition 17 in
[44]. So, we omit the details.

Theorem 18. Let 0 < p1 ≤ p2 <∞, q2ð·Þ ∈P ðℝnÞ ∩C logðℝnÞ,
and q1ð·Þ be such that 1/q1ð·Þ = 1/q2ð∙Þ − β/n:.

Also, let wq2ð·Þ ∈ A1, b ∈ BMOðℝnÞ, λ > 0, and αð·Þ ∈ L∞
ðℝnÞ ∩C logðℝnÞ be log Hölder continuous at the origin, with
αð0Þ ≤ αð∞Þ < λ + nδ2 − β, where 0 < δ2 < 1, then

b,Hβ

� �
f

�� ��
M _K

α ·ð Þ,λ
p2 ,q2 ·ð Þ wq2 ·ð Þð Þ ≤ C bk kBMO fk kM _K

α ·ð Þ,λ
p1 ,q1 ·ð Þ wq2 ·ð Þð Þ:

ð33Þ

Proof. For any f ∈M _K
αð·Þ,λ
p1,q1ð·Þðwq1ð·ÞÞ, if we denote f l = f ·

χl = f · χAl
, and for each l ∈ℤ,

f xð Þ = 〠
∞

1=−∞
f xð Þ · χl xð Þ = 〠

∞

1=−∞
f l xð Þ, ð34Þ

then it is not difficult to see that

b,Hβ

� �
f xð Þχj xð Þ

��� ��� ≤ 1
xj jn−β

ð
Bj

b xð Þ − b yð Þð Þf yð Þj jdy · χj xð Þ

≤ 2−j n−βð Þ 〠
j

l=−∞

ð
Bj

b xð Þ − b yð Þð Þf yð Þj jdy · χ j xð Þ

≤ 2−j n−βð Þ 〠
j

l=−∞

ð
Bj

b xð Þ − bBl
	 


f yð Þ�� ��dy · χj xð Þ

+ 2−j n−βð Þ 〠
j

l=−∞

ð
Bj

b xð Þ − bBl

	 

f yð Þ�� ��dy · χj xð Þ

= E1 + E2:

ð35Þ
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The generalized Hölder inequality (Lemma 7) yields
the following inequality for E1:

E1 = 2−j n−βð Þ 〠
j

l=−∞

ð
Bl

b xð Þ − bBl

	 

f yð Þ�� ��dy · χj xð Þ

≤ 2−j n−βð Þ 〠
j

l=−∞
b xð Þ − bBl

	 
�� �� · χj xð Þ f lk kLq1 ∙ð Þ wq1 ·ð Þð Þ

� χBl

��� ���
Lq1 ∙ð Þ wq1 ·ð Þð Þð Þ′ :

ð36Þ

Applying the norm on both sides and using Lemma
16, we get

E1k k Lq2 ∙ð Þ wq2 ·ð Þð Þð Þ ≤ 2−j n−βð Þ 〠
j

l=−∞
b xð Þ − bBl

· χBj

� ��� ���
Lq2 ∙ð Þ wq2 ·ð Þð Þð Þ

� f lk kLq1 ∙ð Þ wq1 ·ð Þð Þ χBl

��� ���
Lq1 ∙ð Þ wq1 ·ð Þð Þð Þ′

≤ 2−j n−βð Þ 〠
j

l=−∞
j − lð Þ bk kBMO χBl

��� ���
Lq2 ∙ð Þ wq2 ·ð Þð Þð Þ′

� f lk kLq1 ∙ð Þ wq1 ·ð Þð Þ χBl

��� ���
Lq1 ∙ð Þ wq1 ·ð Þð Þð Þ′ :

ð37Þ

Now, we turn to estimate E2. For this, we have

E2 ≤ 2−j n−βð Þ 〠
j

l=−∞
b yð Þ − bBl

· χl

	 
�� ��
Lq1 ∙ð Þ wq1 ·ð Þð Þð Þ′

� f lk kLq1 ∙ð Þ wq1 ·ð Þð Þ · χj xð Þ

≤ 2−j n−βð Þ 〠
j

l=−∞
b yð Þ − bBl · χBl

� ��� ���
Lq1 ∙ð Þ wq1 ·ð Þð Þð Þ′

� f lk kLq1 ∙ð Þ wq1 ·ð Þð Þ · χj xð Þ:

ð38Þ

Similar to the estimation for E1, we take the norm on
both sides of above inequality and use Lemma 16 to
obtain

E2k kLq2 ∙ð Þ wq2 ·ð Þð Þ ≤ 2−j n−βð Þ 〠
j

l=−∞
b yð Þ − bBl

	 

· χl

�� ��
Lq1 ∙ð Þ wq1 ·ð Þð Þð Þ′

� f lk kLq1 ∙ð Þ wq1 ·ð Þð Þ · χj

��� ���
Lq2 ∙ð Þ wq2 ·ð Þð Þ

≤ 2−j n−βð Þ 〠
j

l=−∞
bk kBMO χBl

��� ���
Lq1 ∙ð Þ wq1 ·ð Þð Þð Þ′

� f lk kLq1 ∙ð Þ wq1 ·ð Þð Þ χBj

��� ���
Lq2 ∙ð Þ wq2 ·ð Þð Þð Þ:

ð39Þ

Hence, from inequalities (35), (37), and (39), one
has k½b,Hβ�fχjkLq2ð∙Þðwq2ð·ÞÞ ≤ 2−jðn−βÞkbkBMO∑

j
l=−∞ðj − 1Þ

k f lkLq1ð∙Þðwq1ð·ÞÞkχBj
k
ðLq2ð∙Þðwq2ð·ÞÞÞ

kχBl
kðLq1ð∙Þðwq1ð·ÞÞÞ′ , which by

virtue of Lemma 9 reduces to

b,Hβ

� �
fχj

��� ���
Lq2 ∙ð Þ wq2 ·ð Þð Þ ≤ 2jβ bk kBMO 〠

j

l=−∞
j − lð Þ f lk kLq1 ∙ð Þ wq1 ·ð Þð Þ

� χBl

��� ���
Lq1 ∙ð Þ wq1 ·ð Þð Þð Þ′ χBj

��� ���−1
Lq2 ∙ð Þ wq2 ·ð Þð Þð Þ′ :

ð40Þ

Now using Lemma 13, we learn

b,Hβ

� �
fχj

��� ���
Lq2 ∙ð Þ wq2 ·ð Þð Þ

≤ 2jβ bk kBMO 〠
j

l=−∞
j − lð Þ f lk kLq1 ∙ð Þ wq1 ·ð Þð Þ

�
χBl

��� ���
Lq1 ∙ð Þ wq1 ·ð Þð Þð Þ′

χBl

��� ���
Lq2 ∙ð Þ wq2 ·ð Þð Þð Þ′

χBl

��� ���
Lq2 ∙ð Þ wq2 ·ð Þð Þð Þ′

χBj

��� ���
Lq2 ∙ð Þ wq2 ·ð Þð Þð Þ′

≤ 2jβ bk kBMO 〠
j

l=−∞
j − lð Þ2 l−jð Þnδ2 bk kBMO f lk kLq1 ∙ð Þ wq1 ·ð Þð Þ

�
χBl

��� ���
Lq1 ∙ð Þ wq1 ·ð Þð Þð Þ′

χBl

��� ���
Lq2 ∙ð Þ wq2 ·ð Þð Þð Þ′

:

ð41Þ

In the definition of the fraction integral Iβ, we replace f by
χBl to obtain

Iβ χBl

� 
xð Þ ≥ C2lβχBl

xð Þ, ð42Þ

from which we infer that

χBl
xð Þ ≤ C2−lβIβ χBl

� 
xð Þ: ð43Þ

Taking the norm on both sides and using Lemmas 14 and
9, respectively, we get

χBl

��� ���
Lq2 ∙ð Þ wq2 ·ð Þð Þ ≤ C2lβ Iβ χBl

� ��� ���
Lq2 ∙ð Þ wq2 ·ð Þð Þ

≤ C2lβ χBl

��� ���
Lq1 ∙ð Þ wq1 ·ð Þð Þ

≤ C2l n−βð Þ χBl

��� ���−1
Lq1 ∙ð Þ wq1 ·ð Þð Þð Þ′ :

ð44Þ
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In view of Lemmas 8 and 9, the use of (44) into (41) results
in the following inequality:

b,Hβ

� �
fχj

��� ���
Lq2 ∙ð Þ wq2 ·ð Þð Þ

≤ C bk kBMO 〠
j

l=−∞
2l n−βð Þ2jβ j − lð Þ2 l−jð Þnδ2 f lk kLq1 ∙ð Þ wq1 ·ð Þð Þ

� χlk k Lq2 ∙ð Þ wq2 ·ð Þð Þð Þ χlk k Lq2 ∙ð Þ wq2 ·ð Þð Þð Þ′
� −1

≤ C bk kBMO 〠
j

l=−∞
2 j−lð Þ β−nδ2ð Þ j − lð Þ f lk kLq1 ∙ð Þ wq1 ·ð Þð Þ

� 2−ln χlk k Lq2 ∙ð Þ wq2 ·ð Þð Þð Þ χlk k Lq2 ∙ð Þ wq2 ·ð Þð Þð Þ′
� −1

≤ C bk kBMO 〠
j

l=−∞
2 j−lð Þ β−nδ2ð Þ j − lð Þ f lk kLq1 ∙ð Þ wq1 ·ð Þð Þ:

ð45Þ

Now, by virtue of the condition p1 ≤ p2 and Proposition
17, we have

b,Hβ

� �
fχj

��� ���p1
M _K

α ·ð Þ,λ
p2,q2 ·ð Þ wq2 ·ð Þð Þ

≤max

(
sup
k0∈Z
k0<0

2−k0λp1 〠
k0

j=−∞
2jα 0ð Þp1 b,Hβ

� �
fχj

��� ���p1
Lq2 ∙ð Þ wq2 ·ð Þð Þ

 !
, sup
k0∈Z
k0≥0

�
 
2−k0λp1 〠

k0

j=−∞
2 jα 0ð Þp1 b,Hβ

� �
fχj

��� ���p1
Lq2 ∙ð Þ wq2 ·ð Þð Þ

 !

+ 2−k0λp1 〠
k0

j=0
2jα ∞ð Þp1 b,Hβ

� �
f χj

��� ���p1
Lq2 ∙ð Þ wq2 ·ð Þð Þ

 !!)
=max X1, X2, X3f g,

ð46Þ

where

X1 = sup
k0∈Z
k0<0

2−k0λp1 〠
k0

j=−∞
2jα 0ð Þp1 b,Hβ

� �
fχj

��� ���p1
Lq2 ∙ð Þ wq2 ·ð Þð Þ

 !
,

X2 = sup
k0∈Z
k0≥0

2−k0λp1 〠
−1

j=−∞
2jα 0ð Þp1 b,Hβ

� �
fχj

��� ���p1
Lq2 ∙ð Þ wq2 ·ð Þð Þ

 !
,

X3 = sup
k0∈Z
k0≥0

2−k0λp1 〠
k0

j=0
2jα 0ð Þp1 b,Hβ

� �
fχj

��� ���p1
Lq2 ∙ð Þ wq2 ·ð Þð Þ

 !
:

ð47Þ

To estimate X1, X2, and X3, we make use of the conditions
on αð·Þ, such that for l < 0, we have

f lk kLq1 ∙ð Þ wq1 ·ð Þð Þ = 2−lα 0ð Þ 2jα 0ð Þp1 f lk kp1
Lq1 ∙ð Þ wq1 ·ð Þð Þ

� � 1
p1

≤ 2−lα 0ð Þ 〠
l

1=−∞
2iα 0ð Þp1 f ik kp1

Lq1 ∙ð Þ wq1 ·ð Þð Þ

 ! 1
p1

≤ 2l λ−α 0ð Þð Þ2−lλ 〠
l

1=−∞
2iα ·ð Þp1 f ik kp1

Lq1 ∙ð Þ wq1 ·ð Þð Þ

 ! 1
p1

≤ C2l λ−α 0ð Þð Þ fk kM _K
α ·ð Þ,λ
p1,q1 ·ð Þ wq1 ·ð Þð Þ,

ð48Þ

and for l ≥ 0, we obtain

f lk kLq1 ∙ð Þ wq1 ·ð Þð Þ = 2−lα ∞ð Þ 2lα ∞ð Þp1 f lk kp1
Lq1 ∙ð Þ wq1 ·ð Þð Þ

� � 1
p1

≤ 2−lα ∞ð Þ 〠
l

1=−∞
2iα ∞ð Þp1 f ik kp1

Lq1 ∙ð Þ wq1 ·ð Þð Þ

 ! 1
p1

≤ 2l λ−α ∞ð Þð Þ2−lλ 〠
l

1=−∞
2iα ·ð Þp1 f ik kp1

Lq1 ∙ð Þ wq1 ·ð Þð Þ

 ! 1
p1

≤ C2l λ−α ∞ð Þð Þ fk kM _K
α ·ð Þ,λ
p1,q1 ·ð Þ wq1 ·ð Þð Þ:

ð49Þ

In order to estimate X1, we need to use αð0Þ ≤ αð∞Þ < n
δ2 + λ − β.

X1 ≤ sup
k0∈Z
k0<0

2−k0λp1 〠
k0

j=−∞
2jα 0ð Þp1

� 〠
j

l=−∞
j − lð Þ2 j−lð Þ β−nδ2ð Þ bk kBMO f lk kLq1 ∙ð Þ wq1 ·ð Þð Þ

 !p1

≤ C sup
k0∈Z
k0<0

2−k0λp1 〠
k0

j=−∞
2jα 0ð Þp1

� 〠
j

l=−∞
j − lð Þ2 j−lð Þ β−nδ2ð Þ2l λ−α 0ð Þð Þ bk kBMO fk kM _K

α ·ð Þ,λ
p1 ,q1 ·ð Þ wq1 ·ð Þð Þ

 !p1

≤ C sup
k0∈Z
k0<0

2−k0λp1 〠
k0

j=−∞
2jα 0ð Þp1 〠

j

l=−∞
j − lð Þ2 j−lð Þ β−nδ2ð Þ2l λ−α 0ð Þð Þ

 !p1

� bk kp1BMO fk kp1
M _K

α ·ð Þ,λ
p1 ,q1 ·ð Þ wq1 ·ð Þð Þ
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≤ C sup
k0∈Z
k0<0

2−k0λp1 〠
k0

j=−∞
2jλp1 〠

j

l=−∞
j − lð Þ2 l−jð Þ −β+nδ2−α 0ð Þ+λð Þ

 !p1

� bk kp1BMO fk kp1
M _K

α ·ð Þ,λ
p1 ,q1 ·ð Þ wq1 ·ð Þð Þ

≤ C bk kp1BMO fk kp1
M _K

α ·ð Þ,λ
p1 ,q1 ·ð Þ wq1 ·ð Þð Þ:

ð50Þ

The result of X2 is similar to that of X1. Next, we will esti-
mate X3 below

X3 ≤ sup
k0∈Z
k0<0

2−k0λp1 〠
k0

j=−∞
2jα ∞ð Þp1

� 〠
j

l=−∞
j − lð Þ2 j−lð Þ β−nδ2ð Þ bk kBMO f lk kLq1 ∙ð Þ wq1 ·ð Þð Þ

 !p1

≤ C sup
k0∈Z
k0<0

2−k0λp1 〠
k0

j=−∞
2jα ∞ð Þp1

� 〠
j

l=−∞
j − lð Þ2 j−lð Þ β−nδ2ð Þ2l λ−α ∞ð Þð Þ bk kBMO fk kM _K

α ·ð Þ,λ
p1 ,q1 ·ð Þ wq2 ·ð Þð Þ

 !p1

≤ C sup
k0∈Z
k0<0

2−k0λp1 〠
k0

j=−∞
2jα ∞ð Þp1 〠

j

l=−∞
j − lð Þ2 j−lð Þ β−nδ2ð Þ2l λ−α ∞ð Þð Þ

 !p1

� bk kp1BMO fk kp1
M _K

α ·ð Þ,λ
p1,q1 ·ð Þ wq2 ·ð Þð Þ

≤ C sup
k0∈Z
k0<0

2−k0λp1 〠
k0

j=−∞
2jλp1 〠

j

l=−∞
j − lð Þ2 l−jð Þ −β+nδ2−α ∞ð Þ+λð Þ

 !p1

� bk kp1BMO fk kp1
M _K

α ·ð Þ,λ
p1,q1 ·ð Þ wq2 ·ð Þð Þ

≤ C bk kp1BMO fk kp1
M _K

α ·ð Þ,λ
p1 ,q1 ·ð Þ wq2 ·ð Þð Þ:

ð51Þ

Finally, we combine the estimates for Xiði = 1, 2, 3Þ, to
have the desired result.

Theorem 19. Let p1, p2, q1ð·Þ, q2ð·Þ, β, αð·Þ and w be as in
Theorem 18. In addition, if λ − nδ1 < αð0Þ ≤ αð∞Þ, where 1
< δ1 < 0, then

b,H∗
β

h i
f

��� ���
M _K

α ·ð Þ,λ
p2 ,q2 ·ð Þ wq2 ·ð Þð Þ ≤ C bk kBMO fk kM _K

α ·ð Þ,λ
p1 ,q1 ·ð Þ wq2 ·ð Þð Þ:

ð52Þ

Proof. We write

b,H∗
β

h i
f xð Þχj xð Þ ≤

ð
ℝn\Bj

yj jβ−n b xð Þ − b yð Þð Þf yð Þj jdy · χj xð Þ

≤ 〠
∞

l=j+1

ð
Bl

yj jβ−n b xð Þ − b yð Þð Þf yð Þj jdy · χj xð Þ

≤ 〠
∞

l=j+1

ð
Bl

yj jβ−n b xð Þ − bBl
�� ��f yð Þdy · χj xð Þ +

≤ 〠
∞

l=j+1

ð
Bl

yj jβ−n b yð Þ − bBl
	 


f yð Þ�� ��dy · χj xð Þ

= F1 + F2:

ð53Þ

We estimate F1 and F2 separately. A use of generalized
inequality results in the following:

F1 ≤ C 〠
∞

l=j+1
2−l n−βð Þ

ð
Bl

b xð Þ − bBl

	 

f yð Þ�� ��dy · χj xð Þ

≤ C 〠
∞

l=j+1
2−l n−βð Þ f ik kLq1 ∙ð Þ wq1 ·ð Þð Þ χBl

��� ���
Lq1 ∙ð Þ wq1 ·ð Þð Þ′

� b xð Þ − bBl

�� �� · χj:

ð54Þ

Applying the weighted Lebesgue space norm on both
sides and using Lemma 16, we obtain

F1k kLq2 ∙ð Þ wq2 ·ð Þð Þ ≤ C 〠
∞

l=j+1
2−l n−βð Þ b xð Þ − bBj

� 
χj

��� ���
Lq2 ∙ð Þ wq2 ·ð Þð Þ

� f ik kLq1 ∙ð Þ wq1 ·ð Þð Þ χBl

��� ���
Lq1 ∙ð Þ wq1 ·ð Þð Þ′

≤ C 〠
∞

l=j+1
2−l n−βð Þ bk kBMO b xð Þ − bBj

� 
χj

��� ���
Lq2 ∙ð Þ wq2 ·ð Þð Þ

� f ik kLq1 ∙ð Þ wq1 ·ð Þð Þ χBl

��� ���
Lq1 ∙ð Þ wq1 ·ð Þð Þ′ :

ð55Þ

Similarly,

F2 ≤ C 〠
∞

l=j+1
2−l n−βð Þ

ð
Bl

b yð Þ − bBl

	 

f yð Þ�� ��dy · χj xð Þ

≤ C 〠
∞

l=j+1
2−l n−βð Þ b yð Þ − bBl

· χj

��� ���
Lq1 ∙ð Þ wq1 ·ð Þð Þ

� f lk kLq1 ∙ð Þ wq1 ·ð Þð Þ′ · χj xð Þ xð Þ:

ð56Þ
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In view of the weighted Lebesgue norm and Lemma 16,
we get

F2k kLq2 ∙ð Þ wq2 ·ð Þð Þ ≤ C 〠
∞

l=j+1
2−l n−βð Þ b yð Þ − bBl

	 

· χj

��� ���
Lq1 ∙ð Þ wq1 ·ð Þð Þð Þ′

� f lk kLq1 ∙ð Þ wq1 ·ð Þð Þ · χj

��� ���
Lq2 ∙ð Þ wq2 ·ð Þð Þ

≤ C 〠
∞

l=j+1
2−l n−βð Þ l − jð Þ bk kBMO χlk k Lq1 ∙ð Þ wq1 ·ð Þð Þð Þ′

� f lk kLq1 ∙ð Þ wq1 ·ð Þð Þ · χj

��� ���
Lq2 ∙ð Þ wq2 ·ð Þð Þ:

ð57Þ

Hence, from (53), (55), and (57), we obtain

b,H∗
β

h i
fχj

��� ���
Lq2 ∙ð Þ wq2 ·ð Þð Þ

≤ 〠
∞

l=j+1
2−l n−βð Þ l − jð Þ bk kBMO χj

��� ���
Lq2 ∙ð Þ wq2 ·ð Þð Þ

� f lk kLq1 ∙ð Þ wq1 ·ð Þð Þ · χBl

��� ���
Lq1 ∙ð Þ wq1 ·ð Þð Þð Þ′

≤ 〠
∞

l=j+1
2−l n−βð Þ l − jð Þ bk kBMO f lk kLq1 ∙ð Þ wq1 ·ð Þð Þ

� χBl

��� ���
Lq1 ∙ð Þ wq1 ·ð Þð Þð Þ′ χlk kLq2 ∙ð Þ wq2 ·ð Þð Þ

χj

��� ���
Lq2 ∙ð Þ wq2 ·ð Þð Þ

χlk kLq2 ∙ð Þ wq2 ·ð Þð Þ

≤ 〠
∞

l=j+1
2nδ j−1ð Þ2−l n−βð Þ l − jð Þ bk kBMO f1k kLq1 ∙ð Þ wq1 ·ð Þð Þ

� χBl

��� ���
Lq1 ∙ð Þ wq1 ·ð Þð Þð Þ′ χlk kLq2 ∙ð Þ wq2 ·ð Þð Þ:

ð58Þ

Using the condition of Aðq1ð·Þ, q2ð·ÞÞ weights given in
the Definition 4, the above inequality reduces to

b,H∗
β

h i
fχj

��� ���
Lq2 ∙ð Þ wq2 ·ð Þð Þ

≤ 〠
∞

l=j+1
2nδ1 j−lð Þ l − jð Þ bk kBMO f lk kLq1 ∙ð Þ wq1 ·ð Þð Þ:

ð59Þ

Next, the condition p1 < p2 and Proposition 17 help us to
write

b,H∗
β

h i
fχj

��� ���p1
M _K

α ·ð Þ,λ
p2,q2 ·ð Þ wq2 ·ð Þð Þ =max Y1, Y2, Y3f g, ð60Þ

where

Y1 = sup
k0∈Z
k0<0

2−k0λp1 〠
k0

j=−∞
2jα 0ð Þp1 b,H∗

β

h i
f · χj

��� ���p1
Lq2 ∙ð Þ wq2 ·ð Þð Þ

 !
,

Y2 = sup
k0∈Z
k0≥0

2−k0λp1 〠
−1

j=−∞
2jα 0ð Þp1 b,H∗

β

h i
f · χj

��� ���p1
Lq2 ∙ð Þ wq2 ·ð Þð Þ

 !
,

Y3 = sup
k0∈Z
k0≥0

2−k0λp1 〠
k0

j=0
2jα ∞ð Þp1 b,H∗

β

h i
f · χj

��� ���p1
Lq2 ∙ð Þ wq2 ·ð Þð Þ

 !
:

ð61Þ

Lastly, in view of the condition −nδ1 + λ < αð0Þ ≤ αð∞Þ,
we estimate Yi, i = 1, 2, 3, as we estimated Xi, i = 1, 2, 3, in
Theorem 18. Hence, we finish the proof.
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In this article, we familiarize a subclass of Kamali-type starlike functions connected with limacon domain of bean shape. We
examine certain initial coefficient bounds and Fekete-Szegö inequalities for the functions in this class. Analogous results have
been acquired for the functions f −1 and ξ/f ðξÞ and also found the upper bound for the second Hankel determinant a2a4 − a23.

1. Introduction

Denote by A the class of analytic functions

f ξð Þ = ξ + a2ξ
2 + a3ξ

3 +⋯, ð1Þ

in the open unit disk U = fξ : ∣ξ∣<1g. The Hankel determi-
nants H jðnÞ, ðn = 1, 2, 3,⋯;j = 1, 2, 3,⋯Þ of f are denoted by

H j nð Þ =

an an+1 : : an+j−1

an+1 an+2 : : an+j

: : : : :

an+j−1 an+j : : an+2j−2

2
666664

3
777775, ð2Þ

where a1 = 1. Hankel determinants are beneficial, for exam-
ple, in viewing that whether the certain coefficient func-
tionals related to functions are bounded in U or not and
do they carry the sharp bounds, see [1]. The applications
of Hankel inequalities in the study of meromorphic func-
tions can be seen in [2, 3]. In 1966, Pommerenke [4]
inspected ∣H jðnÞ ∣ of univalent functions and p − valent

functions as well as starlike functions. In [5], it is evidenced
that the Hankel determinants of univalent functions satisfy

∣H j nð Þ∣ < kn− 1/2ð Þ+βð Þj+3/2 ; n = 1, 2, 3,⋯ ; j = 1, 2, 3,⋯ð Þ,
ð3Þ

where β > 0:00025 and k depends only on j. Later, Hayman
[6] demonstrated that ∣H 2ðnÞ ∣ <A1/2

n , (n = 1, 2, 3,⋯; A an
absolute constant) for univalent functions. Further, the
Hankel determinant bounds of univalent functions with a
positive Hayman index α were determined by Elhosh [7], of
p-valent functions were seen in [8–10], and of close-to-convex
and k-fold symmetric functions were discussed in [11]. Lately,
several authors have explored the bounds jH jðnÞj, of func-
tions belonging to various subclasses of univalent andmultiva-
lent functions (for details, see [6, 12–27]). The Hankel
determinant H 2ð1Þ = a3 − a22 is the renowned Fekete-Szegö
Functional (see [28, 29]) and H2ð2Þ; second, Hankel determi-
nant is presumed by H 2ð2Þ = a2a4 − a23.

An analytic function f1 is subordinate to an analytic
function f2, written as f1 ≺ f2, if there is an analytic function
w : U ⟶U with wð0Þ = 0, satisfying f1ðξÞ = f2ðwðξÞÞ.
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Let P be the class of functions with positive real part
consisting of all analytic functions p : U ⟶ℂ satisfying
pð0Þ = 1 and RepðzÞ > 0.

Ma and Minda [30] amalgamated various subclasses of
starlike and convex functions which are subordinate to a
function ψ ∈P with ψð0Þ = 1, ψ′ð0Þ > 0, ψ maps U onto a
region starlike with respect to 1 and symmetric with respect
to real axis and familiarized the classes as below:

S∗ ψð Þ = f ∈A :
ξf ′ ξð Þ
f ξð Þ ≺ ψ

( )
andC ψð Þ

= f ∈A : 1 +
ξf ′′ ξð Þ
f ′ ξð Þ

≺ ψ

( )
:

ð4Þ

By choosing ψ satisfying Ma-Minda conditions and that
maps U on to some precise regions like parabolas, cardioid,
lemniscate of Bernoulli, and booth lemniscate in the right-
half of the complex plane, several fascinating subclasses of
starlike and convex functions are familiarized and studied.

Raina and Sokół [31] considered the class S∗ðψÞ for ψðzÞ
= ξ +

ffiffiffiffiffiffiffiffiffiffiffiffi
1 + ξ2

p
and established some remarkable inequalities

(also see [32] and references cited therein). Gandhi in [33]
considered a class S∗ðψÞ with ψ = βeξ + ð1 − βÞð1 + ξÞ, 0 ≤
β ≤ 1, a convex combination of two starlike functions. Fur-
ther, coefficient inequalities of functions linked with petal
type domains were widely discussed by Malik et al. ([34],
see also references cited therein). The region bounded by
the cardioid specified by the equation

9x2 + 9y2 − 18x + 5
� �2 − 16 9x2 + 9y2 − 6x + 1

� �
= 0, ð5Þ

was studied in [35]. Lately, Masih and Kanas [36] intro-
duced novel subclasses STLðsÞ and CVLðsÞ of starlike and con-
vex functions, respectively. Geometrically, they consist of
functions f ∈ A such that ξf ′ðξÞ/f ðξÞ and ðξf ′ðξÞÞ′/f ′ðξÞ,
respectively, are lying in the region bounded by the limacon

u − 1ð Þ2 + v2 − s4
� �2 = 4s2 u − 1 + s2

� �2 + v2
h i

,

where 0 < s ≤
1ffiffiffi
2

p :
ð6Þ

Lately, Yuzaimi et al. [37] defined a region bounded by
the bean-shaped limacon region as below:

Ω Uð Þ = w = x + iy : 4x2 + 4y2 − 8x − 5
� �2n

+ 8 4x2 + 4y2 − 12x − 3
� �

= 0
o
, s ∈ −1, 1½ � \ 0f g:

ð7Þ

Suppose that

φ ξð Þ: U ⟶ℂ, ð8Þ

is the function defined by

φ ξð Þ = 1 +
ffiffiffi
2

p
ξ +

1
2
ξ2, ð9Þ

is preferred so that the limacon is in the bean shape [37].
Motivated by this present work and other aforesaid articles,
the goal in this paper is to examine some coefficient inequal-
ities and bounds on Hankel determinants of the Kamali-type
class of starlike functions satisfying the conditions as given
in Definition 1.

Definition 1. Let φ : U ⟶ℂ be analytic and for 0 ≤ ϑ ≤ 1,
we let the class Mðϑ, φÞ as

M ϑ, φð Þ = f ∈ A :
ϑξ3 f ′′′ ξð Þ + 1 + 2ϑð Þf ′′ ξð Þξ2 + ξf ′ ξð Þ

ϑξ2 f ′′ ξð Þ + ξf ′ ξð Þ
≺ φ ξð Þ, ξ ∈U

( )
,

ð10Þ

where φðξÞ = 1 +
ffiffiffi
2

p
ξ + ð1/2Þξ2 as in (9).

We include the following results which are needed for
the proofs of our main results.

Lemma 2 see [38]. Suppose that pðξÞ = 1 + c1ξ + c2ξ
2 +⋯,

Rðp1Þ > 0, ξ ∈U , then

cnj j ≤ 2 n = 1, 2, 3,⋯ð Þ,
c2 − vc21
�� �� ≤ 2 max 1, 2v − 1j jf g,

ð11Þ

and the outcome is sharp for the functions formulated by

p ξð Þ = 1 + ξ2

1 − ξ2
,

p ξð Þ = 1 + ξ

1 − ξ
:

ð12Þ

Lemma 3 see [30]. Suppose that p1ðξÞ = 1 + c1ξ + c2ξ
2 +⋯,

Rðp1Þ > 0, ξ ∈U . Then,

(i) For v < 0 or v > 1, we have

∣c2 − vc21∣ ≤

−4v + 2 if v ≤ 0,

2 if 0 ≤ v ≤ 1,

4v − 2 if v ≥ 1:

8>><
>>: ð13Þ

Equality occurs when p1ðξÞ = ð1 + ξÞ/ð1 − ξÞ or one of its
rotations.

(ii) For v ∈ ð0, 1Þ, the equality exists when p1ðξÞ = ð1 +
ξ2Þ/ð1 − ξ2Þ or one of its rotations

(iii) For v = 0, the equality happens when
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p1 ξð Þ = 1
2
+
1
2
ϑ

� 	
1 + ξ

1 − ξ
+

1
2
−
1
2
ϑ

� 	
1 − ξ

1 + ξ
0 ≤ ϑ ≤ 1ð Þ,

ð14Þ

or one of its rotations.

Lemma 4 see [39]. If p ∈P and is given by pðξÞ = 1 + c1ξ +
c2ξ

2 +⋯ then

2c2 = c21 + x 4 − c2
� �

, ð15Þ

4c3 = c31 + 2 4 − c21
� �

c1x − c1 4 − c21
� �

x2 + 2 4 − c21
� �

1 − xj j2ξ� �
,

ð16Þ

for some x, ξ with ∣x ∣ ≤1 and ∣ξ ∣ ≤1.

Theorem 5. Let the function f ∈Mðϑ, φÞ be given by (1) then

a2j j ≤ 1ffiffiffi
2

p
ϑ + 1ð Þ

,

∣a3∣ ≤
ffiffiffi
2

p

6 2ϑ + 1ð Þ max 1,∣
5

2
ffiffiffi
2

p ∣

 �

=
5

12 2ϑ + 1ð Þ :
ð17Þ

Proof. Since f ∈Mðϑ, φÞ, there exists an analytic function w
with wð0Þ = 0 and ∣wðξÞ ∣ <1 in U such that

ϑξ3 f ′′′ ξð Þ + 1 + 2ϑð Þf ′′ ξð Þξ2 + ξf ′ ξð Þ
ϑξ2 f ′′ ξð Þ + ξf ′ ξð Þ

= φ w ξð Þð Þ: ð18Þ

Define the function p1 by

p1 ξð Þ = 1 +w ξð Þ
1 −w ξð Þ = 1 + c1ξ + c2ξ

2 + c3ξ
3 +⋯, ð19Þ

or, equivalently

w ξð Þ = p1 ξð Þ − 1
p1 ξð Þ + 1

=
1
2

c1ξ + c2 −
c21
2

� 	
ξ2 + c3 − c1c2 +

c31
4

� 	
ξ3+⋯

� 
,

ð20Þ

then p1 is analytic in U with p1ð0Þ = 1 and has a positive real
part in U . By using (20) together with (9), it is evident that

φ w ξð Þð Þ = φ
p1 ξð Þ − 1
p1 ξð Þ + 1

� 	
= 1 +

c1ξffiffiffi
2

p +
1ffiffiffi
2

p c2 −
c21
2

� 	
+
c21
8

� 	
ξ2

+
1ffiffiffi
2

p c3 − c1c2 +
c31
4

� 	
+
c1
4

c2 −
c21
2

� 	
 �
ξ3 +⋯:

ð21Þ

Since

ϑξ3 f ′′′ ξð Þ + 1 + 2ϑð Þf ′′ ξð Þξ2 + ξf ′ ξð Þ
ϑξ2 f ′′ ξð Þ + ξf ′ ξð Þ

= 1 + 2 ϑ + 1ð Þa2ξ + −4 ϑ + 1ð Þ2a22 + 6 2ϑ + 1ð Þa3
� �

ξ2

+ 8 ϑ + 1ð Þ3a32 − 18 2ϑ2 + 3ϑ + 1
� �

a2a3 + 12 3ϑ + 1ð Þa4
� �

ξ3+⋯,

ð22Þ

and equating coefficients of ξ, ξ2, ξ3 from (21) to (22), we get

a2 =
c1

2
ffiffiffi
2

p
ϑ + 1ð Þ

, ð23Þ

a3 =
1

24 2ϑ + 1ð Þ c21
5
2
−

ffiffiffi
2

p� 	
+ 2

ffiffiffi
2

p
c2

� 
, ð24Þ

a4 =
1

192 3ϑ + 1ð Þ c31
11ffiffiffi
2

p − 8
� 	

+ 4 2 −
ffiffiffi
2

p� �
c1c2 + 8

ffiffiffi
2

p
c3

� 
:

ð25Þ

Now by applying Lemma 2, we get

a2j j = 1ffiffiffi
2

p
ϑ + 1ð Þ

, ð26Þ

and also,

a3j j = 1
24 2ϑ + 1ð Þ 2

ffiffiffi
2

p
c2 + c21

5
2
−

ffiffiffi
2

p� 	����
����

=
ffiffiffi
2

p

12 2ϑ + 1ð Þ c2 −
c21
2

1 −
5

2
ffiffiffi
2

p
� 	����

����
=

ffiffiffi
2

p

12 2ϑ + 1ð Þ c2 − κc21
�� ��,

ð27Þ

where κ = 1/2ð1 − ð5/2 ffiffiffi
2

p ÞÞ. Now by applying Lemma 2, we
get

∣a3∣ ≤
ffiffiffi
2

p

6 2ϑ + 1ð Þ max 1,∣
5

2
ffiffiffi
2

p ∣

 �

=
5

12 2ϑ + 1ð Þ : ð28Þ

To show these bounds are sharp, we define the function
Kϕn

ðξÞ, ϕn = qðξn−1Þðn = 2, 3, 4,⋯Þ with Kϕn
ð0Þ = 0 = Kϕn

′ð0Þ
− 1 by

ϑξ3Kϕn
′′′ ξð Þ + 1 + 2ϑð ÞKϕn

′′ ξð Þξ2 + ξKϕn
′ ξð Þ

ϑξ2Kϕn
′′ ξð Þ + ξKϕn

′ ξð Þ
= φ ξn−1
� �

: ð29Þ

Clearly, the function Kϕn
∈Mðϑ, φÞ. This completes the

proof.
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Theorem 6. Let the function f ∈Mðϑ, φÞ be given by (1) and
for any ϖ ∈ℂ then

∣a3 − ϖa22∣ ≤
ffiffiffi
2

p

6 2ϑ + 1ð Þ max 1,∣−
5

2
ffiffiffi
2

p + ϖ
3 2ϑ + 1ð Þffiffiffi
2

p
ϑ + 1ð Þ2

∣

( )
:

ð30Þ

Proof. Let the function f ∈Mðϑ, φÞ be given by (1), as in
Theorem 5, from (23) to (24), we have

a3 − ϖa22 =
ffiffiffi
2

p

12 2ϑ + 1ð Þ c2 −
c21
2

1 −
5

2
ffiffiffi
2

p
� 	� 

− ϖ
c21

8 ϑ + 1ð Þ2

=
ffiffiffi
2

p

12 2ϑ + 1ð Þ c2 −
c21
2

1 −
5

2
ffiffiffi
2

p + ϖ
3 2ϑ + 1ð Þffiffiffi
2

p
ϑ + 1ð Þ2

 !" #

=
ffiffiffi
2

p

12 2ϑ + 1ð Þ c2 −ℵc21
� �

,

ð31Þ

where ℵ = 1/2ð1 − ð5/2 ffiffiffi
2

p Þ + ϖð3ð2ϑ + 1Þ/ ffiffiffi
2

p ðϑ + 1Þ2ÞÞ.
Now by Lemma 2, we get

a3 − ϖa22
�� �� ≤ ffiffiffi

2
p

6 2ϑ + 1ð Þ max 1, −
5

2
ffiffiffi
2

p + ϖ
3 2ϑ + 1ð Þffiffiffi
2

p
ϑ + 1ð Þ2

�����
�����

( )
:

ð32Þ

The result is sharp.
In particular, by taking ϖ = 1, we get

∣a3 − a22∣ ≤
ffiffiffi
2

p

6 2ϑ + 1ð Þ max 1,∣−
5

2
ffiffiffi
2

p +
3 2ϑ + 1ð Þffiffiffi
2

p
ϑ + 1ð Þ2

∣

( )
:

ð33Þ

Theorem 7. Let the function f ∈A be given by (1) belongs to
the classMðϑ, φÞð0 ≤ ϑ ≤ 1Þ. Then, for any real number μ, we
have

∣a3 − μa22∣ ≤

5 1 + ϑð Þ2 − 3 1 + 2ϑð Þϖ
12 2ϑ + 1ð Þ 1 + ϑð Þ2 μ ≤ δ1,

ffiffiffi
2

p

6 2ϑ + 1ð Þ δ1 ≤ μ ≤ δ2,

3 1 + 2ϑð Þϖ − 5 1 + ϑð Þ2
12 2ϑ + 1ð Þ 1 + ϑð Þ2 μ ≥ δ2,

8>>>>>>>>>><
>>>>>>>>>>:

ð34Þ

where for convenience

δ1 =
5 − 2

ffiffiffi
2

p� �
1 + ϑð Þ2

3 1 + 2ϑð Þ ,

δ2 =
5 + 2

ffiffiffi
2

p� �
1 + ϑð Þ2

3 1 + 2ϑð Þ ,

∣a3 − μa22∣ +
1 + ϑð Þ2 + 1 + 2ϑð Þμ

1 + 2ϑ
a2j j2 ≤ 1

2 1 + 2ϑð Þ :

ð35Þ

If δ3 ≤ μ ≤ δ2, then

∣a3 − μa22∣ +
3 1 + ϑð Þ2 − 1 + 2ϑð Þμ

1 + 2ϑ
a2j j2 ≤ 1

2 1 + 2ϑð Þ : ð36Þ

These results are sharp.

Proof. Between (23) and (24) and (31), we have

a3 − ϖa22 =
ffiffiffi
2

p

12 2ϑ + 1ð Þ c2 −
c21
2

1 −
5

2
ffiffiffi
2

p
� 	� 

− ϖ
c21

8 ϑ + 1ð Þ2

=
ffiffiffi
2

p

12 2ϑ + 1ð Þ c2 −
c21
2

1 −
5 ϑ + 1ð Þ2 − 3ϖ 2ϑ + 1ð Þ

2
ffiffiffi
2

p
ϑ + 1ð Þ2

 !" #

=
ffiffiffi
2

p

12 2ϑ + 1ð Þ c2 − ℏc21
� �

,

ð37Þ

where ℏ = 1/2ð1 − ðð5ðϑ + 1Þ2 − 3ϖð2ϑ + 1ÞÞ/2 ffiffiffi
2

p ðϑ + 1Þ2ÞÞ.
Our result now follows by virtue of Lemma 3. To show that
these bounds are sharp, we define the function Kϕn

ðn = 2, 3,
⋯Þ by

ϑξ3Kϕn
′′′ ξð Þ + 1 + 2ϑð ÞKϕn

′′ ξð Þξ2 + ξKϕn
′ ξð Þ

ϑξ2Kϕn
′′ ξð Þ + ξKϕn

′ ξð Þ
= ϕn ξn−1

� �
,

Kϕn
0ð Þ = 0 = Kϕn

′ 0ð Þ − 1,

ð38Þ

and the functions Fη and Gηð0 ≤ η ≤ 1Þ by

ϑξ3Fη
′′′ ξð Þ + 1 + 2ϑð ÞFη

′′ ξð Þξ2 + ξFη
′ ξð Þ

ϑξ2Fη
′′ ξð Þ + ξFη

′ ξð Þ
= ϕ

ξ ξ + ηð Þ
1 + ηξ

� 	
Fη 0ð Þ

= 0 = Fη
′ 0ð Þ − 1,

ϑξ3Gη
′′′ ξð Þ + 1 + 2ϑð ÞGη

′′ ξð Þξ2 + ξGη
′ ξð Þ

ϑξ2Gη
′′ ξð Þ + ξGη

′ ξð Þ
= ϕ

−ξ ξ + ηð Þ
1 + ηξ

� 	
Gη 0ð Þ

= 0 =Gη
′ 0ð Þ − 1:

ð39Þ

Clearly, the functions Kϕn
= φðξn−1Þ, Fη,Gη ∈Mðϑ, φÞ.

Also, we write Kϕ = Kϕ2
= 1 +

ffiffiffi
2

p
ξ + ð1/2Þξ2. If μ < δ1 or μ
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> δ2, then the equality holds if and only if f is Kϕ or one of its
rotations. When δ1 < μ < δ2, then the equality holds if and
only if f isKϕ3

= φðξ2Þ = 1 +
ffiffiffi
2

p
ξ2 + ð1/2Þξ4 or one of its rota-

tions. If μ = δ1, then the equality holds if and only if f is Fη or
one of its rotations. If μ = δ2, then the equality holds if and
only if f is Gη or one of its rotation.

2. Coefficient Estimates for the Function f −1

Theorem 8. If f ∈Mðϑ, φÞ and f −1ðwÞ =w +∑∞
n=2dnw

n is
the inverse function of f with ∣w ∣ <r0 where r0 is the greater
than the radius of the Koebe domain of the class Mðϑ, φÞ,
then for any complex number μ, we have

∣d2∣ ≤
1ffiffiffi

2
p

ϑ + 1ð Þ
,

∣d3∣ ≤
ffiffiffi
2

p

6 2ϑ + 1ð Þ max 1,∣−
5 ϑ + 1ð Þ2 + 12 2ϑ + 1ð Þ

2
ffiffiffi
2

p
ϑ + 1ð Þ2

∣

( )
:

ð40Þ

Also, for any complex number μ, we have

∣d3 − μd22∣ ≤
ffiffiffi
2

p

6 2ϑ + 1ð Þ max 1,∣
5 ϑ + 1ð Þ2 + 12 + 6μð Þ 2ϑ + 1ð Þ

2
ffiffiffi
2

p
ϑ + 1ð Þ2

∣

( )
:

ð41Þ

The result is sharp. In particular,

∣d3 − d22∣ ≤
ffiffiffi
2

p

6 2ϑ + 1ð Þ max 1,∣
5 ϑ + 1ð Þ2 + 18 2ϑ + 1ð Þ

2
ffiffiffi
2

p
ϑ + 1ð Þ2

∣

( )
:

ð42Þ

Proof. Since

f −1 wð Þ =w + 〠
∞

n=2
dnw

n, ð43Þ

is the inverse function of f , we have

f −1 f ξð Þð Þ = f f −1 ξð Þ� �
= ξ: ð44Þ

From equations (23) to (24), we get

ξ + a2 + d2ð Þξ2 + a3 + 2a2d2 + d3ð Þξ3 +⋯ = ξ: ð45Þ

Equating the coefficients of ξ and ξ2 on both sides of (45)
and simplifying, we get

d2 = −a2 = −
c1

2
ffiffiffi
2

p
ϑ + 1ð Þ

,

d3 = 2a22 − a3 =
c21

4 ϑ + 1ð Þ2
−

ffiffiffi
2

p

12 2ϑ + 1ð Þ c2 −
c21
2

1 −
5

2
ffiffiffi
2

p
� 	� 

= −
ffiffiffi
2

p

12 2ϑ + 1ð Þ c2 −
c21
2

1 −
5

2
ffiffiffi
2

p −
6 2ϑ + 1ð Þffiffiffi
2

p
ϑ + 1ð Þ2

 !" #

= −
ffiffiffi
2

p

12 2ϑ + 1ð Þ c2 −
c21
2

1 −
5 ϑ + 1ð Þ2 + 12 2ϑ + 1ð Þ

2
ffiffiffi
2

p
ϑ + 1ð Þ2

 !" #
:

ð46Þ

By applying Lemma 2, we get

∣d2∣ ≤
1ffiffiffi

2
p

ϑ + 1ð Þ
,

∣d3∣ ≤
ffiffiffi
2

p

6 2ϑ + 1ð Þ max 1, −
5 ϑ + 1ð Þ2 + 12 2ϑ + 1ð Þ

2
ffiffiffi
2

p
ϑ + 1ð Þ2

�����
�����

( )
:

ð47Þ

For any complex number μ, consider

d3 − μd22 = −
ffiffiffi
2

p

12 2ϑ + 1ð Þ c2 −
c21
2

1 −
5 ϑ + 1ð Þ2 + 12 2ϑ + 1ð Þ

2
ffiffiffi
2

p
ϑ + 1ð Þ2

 !" #

− μ
c21

8 1 + ϑð Þ2
= −

ffiffiffi
2

p

12 2ϑ + 1ð Þ c2 − ρ∗c21
� �

,

ð48Þ

where

ρ∗ =
1
2

1 −
5 ϑ + 1ð Þ2 + 3 4 + μð Þ 2ϑ + 1ð Þ

2
ffiffiffi
2

p
ϑ + 1ð Þ2

 !
: ð49Þ

Taking modulus on both sides of (49) and applying
Lemma 2, we get the estimate as stated in (41). This com-
pletes the proof of Theorem 8.

3. The Logarithmic Coefficients

The logarithmic coefficients en of f defined in U are given by

log
f ξð Þ
ξ

= 2〠
∞

n=1
enξ

n: ð50Þ

Using series expansion of log ð1 + ξÞ on the left hand
side of (50) and equating various coefficients give

e1 =
a2
2
, ð51Þ

e2 =
1
2

a3 −
a22
2

� 	
: ð52Þ

Theorem 9. Let f ∈Mðϑ, φÞ with logarithmic coefficients
given by (51) and (52). Then,
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∣e1∣ ≤
1

2
ffiffiffi
2

p
ϑ + 1ð Þ

,

e2j j ≤
ffiffiffi
2

p

12 2ϑ + 1ð Þ max 1,
5 ϑ + 1ð Þ2 + 3 2ϑ + 1ð Þ

2
ffiffiffi
2

p
ϑ + 1ð Þ2

�����
�����

( )
,

ð53Þ

and for any ν ∈ℂ, then

∣e2 − νe21∣ ≤
ffiffiffi
2

p

12 2ϑ + 1ð Þ max 1, −
5 ϑ + 1ð Þ2 + 3 + νð Þ 2ϑ + 1ð Þ

2
ffiffiffi
2

p
ϑ + 1ð Þ2

�����
�����

( )
:

ð54Þ

These inequalities are sharp. In particular, for ν = 1, we
get

∣e2 − e21∣ ≤
ffiffiffi
2

p

12 2ϑ + 1ð Þ max 1, −
5 ϑ + 1ð Þ2 + 4 2ϑ + 1ð Þ

2
ffiffiffi
2

p
ϑ + 1ð Þ2

�����
�����

( )
:

ð55Þ

Proof. Using (23) and (24) in (51) and (52) and after simpli-
fication, one may have

e1 =
c1

4
ffiffiffi
2

p
ϑ + 1ð Þ

, ð56Þ

e2 =
ffiffiffi
2

p

24 2ϑ + 1ð Þ c2 −
c21
2

1 −
5 ϑ + 1ð Þ2 + 3 2ϑ + 1ð Þ

2
ffiffiffi
2

p
ϑ + 1ð Þ2

 !" #
:

ð57Þ

To determine the bounds for e2, we express (57) in the
form

e2 =
ffiffiffi
2

p

24 2ϑ + 1ð Þ c2 − μ∗c21
� �

, ð58Þ

where

μ∗ = 1 −
5 ϑ + 1ð Þ2 + 3 2ϑ + 1ð Þ

2
ffiffiffi
2

p
ϑ + 1ð Þ2

 !
, ð59Þ

then by applying Lemma 2, we get

∣e2∣ ≤
ffiffiffi
2

p

12 2ϑ + 1ð Þ max 1,
5 ϑ + 1ð Þ2 + 3 2ϑ + 1ð Þ

2
ffiffiffi
2

p
ϑ + 1ð Þ2

�����
�����

( )
: ð60Þ

For any ν∗ ∈ℂ, from (56) to (57), we have

e2 − νe21 =
ffiffiffi
2

p

24 2ϑ + 1ð Þ c2 −
c21
2

1 −
5 ϑ + 1ð Þ2 + 3 2ϑ + 1ð Þ

2
ffiffiffi
2

p
ϑ + 1ð Þ2

 !" #

− ν
c21

32 ϑ + 1ð Þ2
=

ffiffiffi
2

p

24 2ϑ + 1ð Þ

� c2 −
c21
2

1 −
5 ϑ + 1ð Þ2 + 3 + νð Þ 2ϑ + 1ð Þ

2
ffiffiffi
2

p
ϑ + 1ð Þ2

 !" #

=
ffiffiffi
2

p

24 2ϑ + 1ð Þ c2 − μ∗1 c
2
1

� �
,

ð61Þ

where

μ∗1 =
1
2

1 −
5 ϑ + 1ð Þ2 + 3 + νð Þ 2ϑ + 1ð Þ

2
ffiffiffi
2

p
ϑ + 1ð Þ2

 !
: ð62Þ

An application of Lemma 2 gives the desired estimate.

4. Coefficients Associated with ξ/f ðξÞ
In this section, we determine the coefficient bounds and
Fekete-Szegö problem associated with the function HðξÞ
given by

H ξð Þ = ξ

f ξð Þ = 1 + 〠
∞

n=1
unξ

nξ ∈UÞ, ð63Þ

where f ∈Mðϑ, φÞ.

Theorem 10. Let f ∈Mðϑ, φÞ and HðξÞ are given by (63).
Then

u1j j ≤ 1ffiffiffi
2

p
ϑ + 1ð Þ

,

∣u2∣ ≤
ffiffiffi
2

p

6 2ϑ + 1ð Þ max 1, −
5

2
ffiffiffi
2

p +
3 2ϑ + 1ð Þffiffiffi
2

p
ϑ + 1ð Þ2

�����
�����

( )
:

ð64Þ

The results are sharp.

Proof. By routine calculation, one may have

H ξð Þ = ξ

f ξð Þ = 1 − a2ξ + a22 − a3
� �

ξ2 + a32 + 2a2a3 − a4
� �

ξ3 +⋯:

ð65Þ

Comparing the coefficients of ξ and ξ2 on both sides of
(63) and (65), we get

u1 = −a2, ð66Þ
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u2 = a22 − a3: ð67Þ
Using (23) and (24) in (66) and (67), we obtain

u1 = −
c1

2
ffiffiffi
2

p
ϑ + 1ð Þ

, ð68Þ

By Lemma 2, we get

∣u1∣ ≤
1ffiffiffi

2
p

ϑ + 1ð Þ
: ð69Þ

Now,

u2 =
c21

8 ϑ + 1ð Þ2
−

ffiffiffi
2

p

12 2ϑ + 1ð Þ c2 −
c21
2

1 −
5

2
ffiffiffi
2

p
� 	� 

= −
ffiffiffi
2

p

12 2ϑ + 1ð Þ c2 −
c21
2

1 −
5

2
ffiffiffi
2

p +
3 2ϑ + 1ð Þffiffiffi
2

p
ϑ + 1ð Þ2

 !" #

= −
ffiffiffi
2

p

12 2ϑ + 1ð Þ c2 −ℵ∗c21
� �

,

ð70Þ

where ℵ∗ = 1/2ð1 − ð5/2 ffiffiffi
2

p Þ + ð3ð2ϑ + 1Þc21/
ffiffiffi
2

p ðϑ + 1Þ2ÞÞ:
Again by using Lemma 2, we get

∣u2∣ ≤
ffiffiffi
2

p

6 2ϑ + 1ð Þ max 1,∣−
5

2
ffiffiffi
2

p +
3 2ϑ + 1ð Þffiffiffi
2

p
ϑ + 1ð Þ2

∣

( )
: ð71Þ

For any ν ∈ℂ, between (68) and (70), we get

u2 − νu21 = −
ffiffiffi
2

p

12 2ϑ + 1ð Þ c2 −
c21
2

1 −
5

2
ffiffiffi
2

p +
3 2ϑ + 1ð Þffiffiffi
2

p
ϑ + 1ð Þ2

 !" #

− ν
c21

8 ϑ + 1ð Þ2 = −
ffiffiffi
2

p

12 2ϑ + 1ð Þ

� c2 −
c21
2

1 −
5

2
ffiffiffi
2

p +
3 1 − νð Þ 2ϑ + 1ð Þffiffiffi

2
p

ϑ + 1ð Þ2
 !"

+ ν
3 2ϑ + 1ð Þc21
4
ffiffiffi
2

p
ϑ + 1ð Þ2

#
− = −

ffiffiffi
2

p

12 2ϑ + 1ð Þ c2 −ℵ∗
1 c

2
1

� �
:

ð72Þ

That is,

∣u2 − νu21∣ =
1

2 2 + λð Þ c2 −ℵ∗c21
�� ��, ð73Þ

where

ℵ∗
1 =

1
2

1 −
5

2
ffiffiffi
2

p +
3 1 − νð Þ 2ϑ + 1ð Þffiffiffi

2
p

ϑ + 1ð Þ2
 !

: ð74Þ

The result follows by application of Lemma 2 and there-
fore completes the proof.

5. Second Hankel Inequality for f ∈Mðϑ, φÞ
Theorem 11. Let the function f ∈Mðϑ, φÞ be given by (1),
then

∣a2a4 − a23∣ ≤
1

18 2ϑ + 1ð Þ2
: ð75Þ

Proof. Since f ∈Mðϑ, φÞ, there exists an analytic function w
with wð0Þ = 0 and ∣wðξÞ ∣ <1 in U such that,

ϑξ3 f ′′′ ξð Þ + 1 + 2ϑð Þf ′′ ξð Þξ2 + ξf ′ ξð Þ
ϑξ2 f ′′ ξð Þ + ξf ′ ξð Þ

= φ w ξð Þð Þ: ð76Þ

Therefore, between (23), (24), and (25), we get

a2a4 − a23 =
ffiffiffi
2

p

768
c41 6ϑ2 + 4ϑ + 1

� � −2
3

+
2
ffiffiffi
2

p

3

 !("

−
1

3
ffiffiffi
2

p 3ϑ2 + 4ϑ + 1
� �

+ 12ϑ2 + 4ϑ + 1
� �

� −2
3

+
1

3
ffiffiffi
2

p
� 	

−
2
ffiffiffi
2

p
4ϑ + 1ð Þ
3

)

+
2c2c21
3

2 12ϑ2 + 4ϑ + 1
� �

+ 4 6ϑ2 + 4ϑ + 1
� ��

� −
ffiffiffi
2

p
+
1
2

� 	)
+8

ffiffiffi
2

p
c1c3 2ϑ + 1ð Þ2

−
16

ffiffiffi
2

p
c22

3
3ϑ2 + 4ϑ + 1
� �#

:

ð77Þ

By writing

d1 =
8
ffiffiffi
2

p

ϑ + 1ð Þ 3ϑ + 1ð Þ , ð78Þ

d2 =
4 18ϑ2 + 8ϑ + 2
� �

− 2
ffiffiffi
2

p
6ϑ2 + 4ϑ + 1
� �n o

3 ϑ + 1ð Þ 3ϑ + 1ð Þ 2ϑ + 1ð Þ2 , ð79Þ

d3 = −
16

ffiffiffi
2

p

3 2ϑ + 1ð Þ2
, ð80Þ
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d4 =
1

ϑ + 1ð Þ 3ϑ + 1ð Þ 2ϑ + 1ð Þ2
6ϑ2 + 4ϑ + 1
� � −2

3
+
2
ffiffiffi
2

p

3

 !(

− 3ϑ2 + 4ϑ + 1
� � 1

3
ffiffiffi
2

p + 12ϑ2 + 4ϑ + 1
� � −2

3
+

1
3
ffiffiffi
2

p
� 	

−
2
ffiffiffi
2

p
4ϑ + 1ð Þ
3

)
=

1
ϑ + 1ð Þ 3ϑ + 1ð Þ 2ϑ + 1ð Þ2

� 28 − 16
ffiffiffi
2

p

3
ffiffiffi
2

p ϑ2 −
11
3
ϑ −

4
3

 !
,

ð81Þ

and T =
ffiffiffi
2

p
/768, we have

a2a4 − a23
�� �� = T d1c1c3 + d2c

2
1c2 + d3c

2
2 + d4c

4
1

�� ��: ð82Þ

From (15) to (16), it follows that

a2a4 − a23
�� �� = T

4
c4 d1 + 2d2 + d3 + 4d4ð Þ + 2xc2 4 − c2

� ���
� d1 + d2 + d3ð Þ + 4 − c2

� �
x2 −d1c

2 + d3 4 − c2
� �� �

+ 2d1c 4 − c2
� �

1 − xj j2� �j:
ð83Þ

Replacing ∣x ∣ by μ and then substituting the values of
d1, d2, d3, and d4 from (81) yield

a2a4 − a23
�� �� ≤ T

4 ϑ + 1ð Þ 3ϑ + 1ð Þ 2ϑ + 1ð Þ2

� c4 4ϑ + 1ð Þ + 4
3
ffiffiffi
2

p 12ϑ2 + 4ϑ + 1
� �����

�

−
4

3
ffiffiffi
2

p ϑ + 1ð Þ 3ϑ + 1ð Þ
���� + 16

ffiffiffi
2

p
2ϑ + 1ð Þ2

� c 4 − c2
� �

1 − μ2
� �

+ 2μc2 4 − c2
� �

� 4
3

12ϑ2 + 4ϑ + 1
� �

+
4
3

6ϑ2 + 4ϑ + 1
� �� 	

− μ2 4 − c2
� � 8

ffiffiffi
2

p

3
6ϑ2 + 4ϑ + 1
� �

c2
 

+
64

ffiffiffi
2

p

3
3ϑ + 1ð Þ ϑ + 1ð ÞÞ

#

=
T

ϑ + 1ð Þ 3ϑ + 1ð Þ 2ϑ + 1ð Þ2
c4

3
−2

ffiffiffi
2

p
4ϑ + 1ð Þ + 1ffiffiffi

2
p

����
�

� 12ϑ2 + 4ϑ + 1
� �

−
1ffiffiffi
2

p ϑ + 1Þ 3ϑð + 1ð Þ
�����

+ 4
ffiffiffi
2

p
2ϑ + 1ð Þ2c 4 − c2

� �
− 4

ffiffiffi
2

p
2ϑ + 1ð Þ2

� c 4 − c2
� �

μ2 +
2
3
μc2 4 − c2
� �

2 12ϑ2 + 4ϑ + 1
� ��

+ 12ϑ2 + 8ϑ + 2
� �Þ − 2

ffiffiffi
2

p

3
μ2 4 − c2
� �

c2 6ϑ2 + 4ϑ + 1
� ��

+ 8 3ϑ2 + 4ϑ + 2
� �Þ

#
= T

ϑ + 1ð Þ 3ϑ + 1ð Þ 2ϑ + 1ð Þ2

·
c4

3
−2

ffiffiffi
2

p
4ϑ + 1ð Þ + 9ffiffiffi

2
p ϑ2

����
���� + 4

ffiffiffi
2

p
2ϑ + 1ð Þ2c 4 − c2

� ��

+
1
3
μc2 4 − c2
� �

36ϑ2 + 16ϑ + 4
� �

−
2
ffiffiffi
2

p

3
μ2 4 − c2
� �

· c2 6ϑ2 + 4ϑ + 1
� �

+ 6 2ϑ + 1ð Þ2c + 8 3ϑ2 + 4ϑ + 2
� �� �

≡ F c, μ, ϑð Þ:
ð84Þ

Differentiating Fðc, μ, ϑÞ in (84) partially with respect to
μ yields

∂F
∂μ

=
T

ϑ + 1ð Þ 3ϑ + 1ð Þ 2ϑ + 1ð Þ2
1
3
c2 4 − c2
� �

36ϑ2 + 16ϑ + 4
� ��

−
4
ffiffiffi
2

p

3
μ 4 − c2
� �

c2 6ϑ2 + 4ϑ + 1
� �

+ 6 2ϑ + 1ð Þ2c�
+ 8 3ϑ2 + 4ϑ + 2
� �Þ:

ð85Þ

It is clear from (85) that ∂F/∂μ > 0; thus, Fðc, μ, ϑÞ is an
increasing function of μ for 0 < μ < 1 and for any fixed c with
0 < c < 2. So, the maximum of Fðc, μ, ϑÞ occurs at μ = 1 and

max F c, μ, ϑð Þ = F c, 1, ϑð Þ ≡ G c, ϑð Þ: ð86Þ

Note that

G c, ϑð Þ = T

ϑ + 1ð Þ 3ϑ + 1ð Þ 2ϑ + 1ð Þ2
c4

3
−2

ffiffiffi
2

p
4ϑ + 1ð Þ

�����

+ 12ϑ2 + 4ϑ + 1
� � 1ffiffiffi

2
p −

1ffiffiffi
2

p ϑ + 1ð Þ 3ϑ + 1ð Þ
����

− 2 12ϑ2 + 4ϑ + 1
� �

−
1
2

24ϑ2 + 16ϑ + 4
� �

+ 2
ffiffiffi
2

p
1 + 4ϑ + 6ϑ2
� �	

+
8
3
c2 12ϑ2 + 4ϑ + 1
� ��

+ 12ϑ2 + 8ϑ + 2
� �

−
ffiffiffi
2

p
12ϑ2 + 8ϑ + 2
� �	

+
64

ffiffiffi
2

p

3
3ϑ + 1ð Þ ϑ + 1ð Þ


=

T

ϑ + 1ð Þ 3ϑ + 1ð Þ 2ϑ + 1ð Þ2

� c4

3
−2

ffiffiffi
2

p
4ϑ + 1ð Þ + 9ϑ2ffiffiffi

2
p

�����
 �����

"
− 4 9ϑ2 + 4ϑ + 1
� �

+2
ffiffiffi
2

p
1 + 4ϑ + 6ϑ2
� �!

+ 8
3
c2 3 8ϑ2 + 4ϑ + 1

� ��

−
ffiffiffi
2

p
12ϑ2 + 8ϑ + 2
� �Þ + 64

ffiffiffi
2

p

3
3ϑ + 1ð Þ ϑ + 1ð Þ�:

ð87Þ
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Differentiating Gðc, ϑÞ partially with respect to c yields

G′ c, ϑð Þ = T

ϑ + 1ð Þ 3ϑ + 1ð Þ 2ϑ + 1ð Þ2
4c3

3
−2

ffiffiffi
2

p
4ϑ + 1ð Þ + 9ϑ2ffiffiffi

2
p

�����
�����

 "

− 4 9ϑ2 + 4ϑ + 1
� �

+ 2
ffiffiffi
2

p
1 + 4ϑ + 6ϑ2
� �!

+ 16c
3

3 8ϑ2 + 4ϑ + 1
� ��

−
ffiffiffi
2

p
12ϑ2 + 8ϑ + 2
� ��#

:

ð88Þ

If G′ðc, ϑÞ = 0 then its root is c = 0: Also, we have

G′′ c, ϑð Þ = T

ϑ + 1ð Þ 3ϑ + 1ð Þ 2ϑ + 1ð Þ2
4c2 −2

ffiffiffi
2

p
4ϑ + 1ð Þ + 9ϑ2ffiffiffi

2
p

�����
�����

 "

− 4 9ϑ2
�

+ 4ϑ + 1 + 22
ffiffiffi
2

p
1 + 4ϑ + 6ϑ2
� �!

+
16
3

3 8ϑ2 + 4ϑ + 1
� ��

−
ffiffiffi
2

p
12ϑ2 + 8ϑ + 2
� ��#

,

ð89Þ

is negative for c = 0, which means that the function Gðc, ϑÞ
can take the maximum value at c = 0, also which is

∣a2a4 − a23∣ ≤G 0, ϑð Þ = 1
18 2ϑ + 1ð Þ2 : ð90Þ
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In this paper, we find the second variational formula for a generalized Sasakian space form admitting a semisymmetric metric
connection. Inequalities regarding the stability criteria of a compact generalized Sasakian space form admitting a
semisymmetric metric connection are established.

1. Introduction

The harmonic maps have aspects from both Riemannian’s
geometry and analysis. Harmonic mappings are considered
a vast field, and because of the minimization of energy due
to its dual nature, it has many applications in the field of
mathematics, physics, relativity, engineering, geometry, crys-
tal liquid, surface matching, and animation. Some particular
examples of harmonic maps are geodesics, immersion, and
solution of the Laplace equation. In physics, p-harmonic
maps were studied in image processing. Exponential har-
monic maps were discussed in the field of gravity. Due to
generalized properties, F-harmonic maps have many applica-
tions in cosmology. Harmonic maps have played a significant
role in Finsler’s geometry. On complex manifolds, we have
interesting and useful outcomes of harmonic maps (for
details, see [1, 2]).

During the past years, harmonicity on almost contact
metric manifolds has been considered a parallel to complex
manifolds ([3–5]). The identity map on a Riemannian man-
ifold with a compact domain becomes a trivial case of the
harmonicity. However, the stability and second variation
theory are complex and remarkable here. In [6], a Laplacian
upon functions with its first eigenvalue is used to explain sta-
bility on Einstein’s manifolds. From [7, 8], we know about
the stability-based classification of a Riemannian that simply
connected irreducible spaces with a compact domain.

From [6], we know a well-known result about the stabil-
ity of S2n+1. Further in [5], identity map stability upon a
compact domain of the Sasakian space form was explained
by Gherge et al. (see also [9]). Considering the generalization
of Sasakian space forms, Alegre et al. presented the general-
ized Sasakian space forms [10]. Therefore, we naturally
study the identity map stability upon a compact domain of
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generalized Sasakian space forms, as discussed in some
results in [11]. One of the most important terms in differen-
tial geometry is connection. Research on manifolds is
incomplete without the notion of connection. In manifold
theory, from the relation of metric and connection, we have
a very important notion known as curvature tensor. The
concept of a semisymmetric metric connection was initiated
by Friedmann and Schouten in 1932 [12, 13]. Semisym-
metric metric connections have many applications in the
field of Riemannian manifolds and are useful to study many
physical problems. In the current paper, we compute the sta-
bility criteria of a generalized Sasakian space form admitting
a semisymmetric metric connection.

After recollecting the essential facts about harmonic
maps between Riemannian manifolds in Section 2, we
explain generalized Sasakian space forms throughout Sec-
tion 3. In Section 4, we give the main results for a second
variational formula and establish the inequalities for the
identity map stability criteria upon a compact domain gen-
eralized Sasakian space form admitting a semisymmetric
metric connection.

2. Harmonic Maps on Riemannian Manifolds

We can view harmonic maps on Riemannian manifolds as
the generalization of geodesics that is the case of a one-
dimensional domain and range as Euclidean space. In com-
mon, a map is known as harmonic if its Laplacian becomes
zero and is known as totally geodesic if its Hessian becomes
zero. In this present section, the basic facts of the harmonic
maps theory [14, 15] are provided. Consider a smooth map
ψ : ðS, gÞ⟶ ðQ, hÞ. Let the dimension of the Riemannian
manifold ðS, gÞ be s and the dimension of ðQ, hÞ be q. The
function eðψÞ: S⟶ ½0,∞Þ that is smooth can be considered
as the energy density of ψ and is expressed as

e ψð Þp =
1
2Trg ψ∗hð Þ pð Þ = 1

2〠
s

i=1
h ψ∗pui, ψ∗pui
� �

, ð1Þ

at a point p ∈ S and for any orthonormal basis fu1,⋯, usg of
TpS. Considering the compact domain of a Riemannian
manifold S, we take the energy density integral as the energy
EðψÞ of ψ; that is, we have

E ψð Þ =
ð
S
e ψð Þυg, ð2Þ

where the volume measure is represented by υg that is
related to the metric g on manifold S. In the set C∞ðS,QÞ
of all smooth maps from ðS, gÞ to ðQ, hÞ, a critical point of
the energy E is named as a harmonic map. That is, for any
smooth variation ψt ∈ C

∞ðS,QÞ of ψðt ∈ ð−ε, εÞÞ with ψ0 =
ψ, we can take

d
dt

E ψtð Þ
����
t=0

= 0: ð3Þ

Now, we consider ðS, gÞ as a compact Riemannian man-

ifold and take a map ψ : ðS, gÞ⟶ ðQ, hÞ that is harmonic.
We consider smooth variation ψr,t through constraints r, t
∈ ð−ε, εÞ satisfying ψ0,0 = ψ. Respective variational vector
fields are represented through W and Z. Therefore, we can
define Hessian Hψ for a harmonic map ψ through the fol-
lowing relation:

Hψ W, Zð Þ = ∂2

∂r∂t
E ψr,t
� �� ������

r,tð Þ= 0,0ð Þ
: ð4Þ

The expression regarding the second variation of E is as
follows ([6, 16]):

Hψ W, Zð Þ =
ð
P
h Jψ Wð Þ, Z� �

υg, ð5Þ

where Jψ is the second order operator that is self-adjoint
upon the space Γðψ−1ðTQÞÞ of variation vector fields and is
represented as

Jψ Uð Þ = −〠
s

i=1
∇~

ui
∇~

ui
−∇~

∇ui
ui
ÞU − 〠

s

i=1
RQ U , dψ uið Þð Þdψ uið Þ,

 

ð6Þ

for U ∈ Γðψ−1ðTQÞÞ and any local orthonormal frame fu1,
⋯, usg on S. Here, RQ shows the curvature tensor of ðQ, hÞ
, and ~∇ illustrates the pull-back connection of ψ along with
the Levi-Civita connection of Q.

We compute the dimension of the biggest subspace of
Γðψ−1ðTQÞÞ where the Hessian Hψ has values that are neg-
ative definite known as the index of a harmonic map ψ : ðS
, gÞ⟶ ðQ, hÞ. Therefore, if the index of harmonic map ψ
is zero, then it is stable; otherwise, it is unstable.

An operator �Δψ is represented by

�ΔψU = −〠
s

i=1
∇~

ui
∇~

ui
−∇~

∇ui
ui
ÞU , V ∈ Γ ϕ−1 TQð Þ� �

:
�

ð7Þ

It is named the rough Laplacian. We consider the spectra of
Jψ; because of the Hodge de Rham Kodaira theory, this spec-
tra is constructed as a discrete set of infinite number of
eigenvalues with finite multiplicities with no accumulation
points.

3. Generalized Sasakian Space Forms

Generalized Sasakian space forms have the generalized cur-
vature expression that combines the curvature expessions
of Sasakian, Kenmotsu, and Cosymplectic space forms.
Due to a generalized curvature expression, generalized Sasa-
kian space forms have very useful and interesting properties.
The current unit presents basics of almost contact metric
manifolds particularly of generalized Sasakian space
forms [17].
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A Riemannian manifold P2n+1 with odd dimensions is
known as an almost contact manifold if a ð1, 1Þ-tensor field
φ exists on P and ξ and a vector field η and a 1-form exist so
that

φ2 = −I + η ⊗ ξ, η ξð Þ = 1: ð8Þ

Further, φ and η satisfy φðξÞ = 0 and ηoφ = 0. A compat-
ible metric g on any almost contact manifold is defined as

g φW1, φW2ð Þ = g W1,W2ð Þ − η W1ð Þη W2ð Þ, ð9Þ

for any vector fields W1, W2 on manifold P known as an
almost contact metric manifold. An almost contact metric
manifold becomes a contact metric manifold if for a funda-
mental 2-form Ω, we have dη =Ω, and ΩðW1,W2Þ = gð
W1, φW2Þ for W1, W2 ∈ ΓðTPÞ. Like the parallel condition
of integrability for almost complex manifolds, the almost
contact metric structure on P becomes normal when

φ, φ½ � + 2dη ⊗ ξ = 0: ð10Þ

The Nijenhuis torsion of φ is represented by ½φ, φ� and is
defined as

φ, φ½ � Y1, Y2ð Þ = φ2 Y1, Y2½ � + φY1, φY2½ �
− φ φY1, Y2½ � − φ Y1, φY2½ �: ð11Þ

A Sasakian manifold is a normal contact metric mani-
fold, and if dη = 0, a normal almost contact metric manifold
is known as the Kenmotsu manifold with

dΩ Y1, Y2, Y3ð Þ = 2
3σ Y1,Y2,Y3ð Þ η Y1ð Þϕ Y2, Y3ð Þf g, Y1, Y2, Y3 ∈ Γ TPð Þ,

ð12Þ

where the cyclic sum is represented by σ. A real space form
is a Riemannian manifold with a constant sectional curva-
ture c, and its curvature tensor is represented by the follow-
ing relation:

R Y1, Y2ð ÞY3 = c g Y2, Y3ð ÞY1 − g Y1, Y3ð ÞY2f g, ð13Þ

where Y1, Y2, and Y3 are vector fields on P. An almost con-
tact metric manifold Pðφ, ξ, η, gÞ can be identified as a gen-
eralized Sasakian space form provided that there are three
functions f1, f2, f3 upon P so as the curvature tensor on P
is represented with the following relation:

R V1, V2ð ÞV3 = f1 g V2, V3ð ÞV1 − g V1, V3ð ÞV2f g
+ f2 g V1, ϕV3ð ÞϕV2 − g V2, ϕV3ð ÞϕV1f
+ 2g V1, ϕV2ð ÞϕV3g + f3 η V1ð Þη V3ð ÞV2f
− η V2ð Þη V3ð ÞV1 + g V1, V3ð Þη V2ð Þξ
− g V2, V3ð Þη V1ð Þξg,

ð14Þ

provided that vector fields V1, V2, and V3 are on P, see [10].

In particular, if f1 = ðc + 3Þ/4 and f2 = f3 = ðc − 1Þ/4, then
P can be identified as a Sasakian space form. f1 = ðc − 3
Þ/4 and f2 = f3 = ðc + 1Þ/4 can lead to a Kenmotsu-space
form [10, 18].

The semisymmetric metric connection ∇′ and the Levi
Civita connection ∇ defined on contact metric manifold ð
P2m+1, gÞ are related by the following expression that is
obtained by Yano [19] and is represented as

∇W1
′ W2 = ∇W1

W2 + η W2ð ÞW1 − g W1,W2ð Þξ, ð15Þ

where W1 and W2 are vector fields on P. As mentioned in
[20], we have the following relation of the curvature tensor
R with respect to the Levi-Civita connection ∇ and the cur-
vature tensor R′ regarding the semisymmetric metric con-
nection ∇′ of the generalized Sasakian space form.

R′ V1, V2ð ÞV3 = R V1, V2ð ÞV3
+ g ϕV2,V3ð ÞV1 − g ϕV1, V3ð ÞV2f
+ g V2, V3ð ÞϕV1 − g V1, V3ð ÞϕV2g
+ η V2ð ÞV1 − η V1ð ÞV2f gη V3ð Þ
+ g V2, V3ð Þη V1ð Þ − g V1, V3ð Þη V2ð Þf gξ,

ð16Þ

taking vector fields V1, V2, V3, on P.

4. Stability on Generalized Sasakian Space
Forms with Semisymmetric
Metric Connection

Identity maps are always harmonic maps, but here, the sec-
ond variational formula is not a trivial case. In this section,
with the help of the second variational formula, we derive
the inequalities for the stability criteria on the generalized
Sasakian space forms with a semisymmetric metric connec-
tion. Consider the identity map on a compact generalized
Sasakian space form Mðφ, ξ, η, gÞ that is ðϕ = 1MÞ. Then,
the second variation formula is ([2]) as follows:

H1M V , Vð Þ =
ð
M
h �ΔV , V
� �

υg − 〠
2n+1

i=1

ð
M
h R V , uið Þui,Vð Þυg,

ð17Þ

where V ∈ ΓðTMÞ and fu1,⋯, u2n+1g represents the local
orthonormal frame on TM.

The rough Laplacian defined by (7) upon a generalized
Sasakian manifold M2n+1 admitting a semisymmetric metric
connection can be computed by the following lemma.

Lemma 1. For a generalized Sasakian space form admitting
semisymmetric metric connection, the rough Laplacian in
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the adopted frame field fe1,⋯, en, ϕe1,⋯, ϕen, ξg is given by

�́ΔY = �ΔY + 2trBY − g tr∇,Yð Þξ − 2 div Yð Þξ + 2η Yð Þξ − 2Y

+ ϕY+〠g ei, Yð Þϕei+〠g ei, ϕYð Þei,
ð18Þ

where BYðV ,WÞ = ηð∇VYÞW.

Proof. Let ∇ and ∇ represent the semisymmetric connection
and the Levi Civita connection on the generalized Sasakian
space form, respectively. Therefore, it can be computed as

∇́V ∇́VY = ∇V ∇́VY + η ∇́VYÞV − g V , ∇́VYÞξ = ∇V∇VY + ∇V η Yð ÞVð Þ
��

− ∇V g V , Yð Þξð Þ + η ∇VYð ÞV + η Vð Þη Yð ÞV − g V , Yð ÞV
− g Y , ∇VVð Þξ − g V , ∇VYð Þξ − g V , Yð Þ∇Vξ:

ð19Þ

We have ∇VðηðYÞVÞ = ∇Vðgðξ, YÞVÞ. Then, from equa-
tion (19), we have

∇́V ∇́VY = ∇V∇VY + g ∇Vξ, Yð ÞV − ∇V g V , Yð Þξð Þ + η Yð Þ∇VV

+ 2η ∇VYð ÞV + η Vð Þη Yð ÞV − g V , Yð ÞV − g ∇VV , Yð Þξ
− g V , ∇VYð Þξ − g V , Yð Þ∇Vξ = ∇V∇VY + g ∇Vξ, Yð ÞV
+ η Yð Þ∇VV + 2η ∇VYð ÞV + η Vð Þη Yð ÞV − g V , Yð ÞV
− 2g ∇VV , Yð Þξ − 2g V , ∇VYð Þξ − 2g V , Yð Þ∇Vξ

= ∇V∇VY + g V , ϕYð ÞV + η Yð Þ∇VV + 2η ∇VYð ÞV
− 2g ∇VV , Yð Þξ − 2g V , ∇VYð Þξ − 2g V , Yð Þ∇Vξ

= ∇V∇VY + g V , ϕYð ÞV + η Yð Þ∇VV + 2η ∇VYð ÞV
− 2g ∇VV , Yð Þξ − 2g V , ∇VYð Þξ − 2g V , Yð Þ∇Vξ

= ∇V∇VY + g V , ϕYð ÞV + η Yð Þ∇VV + 2η ∇VYð ÞV
− 2g ∇VV , Yð Þξ − 2g V , ∇VYð Þξ + 2g V , Yð ÞϕV
− 2g V , Yð ÞV + 2η Vð Þg V , Yð Þξ:

ð20Þ

Also, we have

∇́V ∇́VY − ∇́∇VV
Y = ∇V∇VY − ∇∇VV

Y + g V , ϕYð ÞV
+ 2η ∇VYð ÞV − g ∇VV , Yð Þξ − 2g V , ∇VYð Þξ
+ 2g V , Yð ÞϕV − 2g V , Yð ÞV + 2η Vð Þg V , Yð Þξ:

ð21Þ

Take into account that BYðV ,WÞ = ηð∇VYÞW. Then, in
an adopted frame field fe1,⋯, en, ϕe1,⋯, ϕen, ξg, we arrived
at

�́ΔY = �ΔY + 2trBY − g tr∇,Yð Þξ − 2divYð Þξ + 2η Yð Þξ − 2Y
+ ϕY+〠g ei, Yð Þϕei+〠g ei, ϕYð Þei:

ð22Þ

Theorem 2. The second variation formula for the identity
map on the generalized Sasakian space form admitting a
semisymmetric connection is expressed as

H1M
Y , Yð Þ =

ð
M
h �ΔY , Y
� �

υg − 3f2 + 2nf1 − f3 − 2n + 3ð Þ
ð
M
h Y , Yð Þυg

+ 3f2 + 2n − 1ð Þf3 − 2n + 3ð Þ
ð
M
η Yð Þη Yð Þυg:

ð23Þ

Proof.

H1M Y , Yð Þ =
ð
M
h �Δ′Y , Y
� �

υg − 〠
2n+1

i=1

ð
M
h R′ Y , uið Þui, Y
� �

υg,

h �Δ́Y , YÞ = h �ΔY , Y
� �

+ 2h trBY , Yð Þ − h tr∇,Yð Þh ξ, Yð Þ
�

− 2divYð Þh ξ, Yð Þ + 2η Yð Þh ξ, Yð Þ − 2h Y , Yð Þ + h ϕY , Yð Þ
+〠h ei, Yð Þh ϕei, Yð Þ+〠h ei, ϕYð Þh ei, Yð Þ, �Δ′Y , Y

� �

= h �ΔY , Y
� �

+ 2h trBY , Yð Þ − h tr∇,Yð Þh ξ, Yð Þ
− 2divYð Þh ξ, Yð Þ + 2η Yð Þh ξ, Yð Þ − 2h Y , Yð Þ + h ϕY , Yð Þ
+〠h ei, Yð Þh ϕei, Yð Þ+〠h ei, ϕYð Þh ei, Yð Þ,

ð24Þ

since
Ð
M div ðYÞ = 0, over a compact domain M, by Green’s

formula and ηð∇ei
YÞ = hð∇ei

Y , ξÞ = eihðY , ξÞ − hðY , ∇ei
ξÞ = 0

, similarly, hðtr∇,YÞhðξ, YÞ = 0. Therefore, we have

ð
M
h �Δ′Y , Y
� �

υg =
ð
M
h �ΔY , Y
� �

υg + 2
ð
M
η2 Yð Þυg − 2

ð
M
h Y , Yð Þυg:

ð25Þ

Now, we consider a φ-adapted orthonormal local frame
fei, φei, ξg. After that, we have

〠
2n+1

i=1
h R ei, Yð Þei, Yð Þ = f1 − 3f2ð Þ〠

n

i=1
h Y , eið Þ2 + h Y , φeið Þ2� �

− 2n + 1ð Þf1 − f3½ �h Y , Yð Þ
+ 2n − 1ð Þf3 + f1½ �h Y , ξð Þ2,

ð26Þ

and thus, we have

〠
2n+1

i=1
h R ei, Yð Þei, Yð Þ = − 3f2 + 2nf1 − f3½ �h Y , Yð Þ

+ 3f2 + 2n − 1ð Þf3½ �h Y , ξð Þ2,
ð27Þ

and with semisymmetric metric connection, it can be written
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as

〠
2n+1

i=1
h R′ Y , eið Þei, Y
� �

= 〠
2n+1

i=1
h R Y , eið Þei, Yð Þ − 2n − 1ð Þh Y , Yð Þ

+ 2n − 1ð Þη2 Yð Þ = 3f2 + 2nf1 − f3½ �h Y , Yð Þ
− 3f2 + 2n − 1ð Þf3½ �h Y , ξð Þ2
− 2n − 1ð Þh Y , Yð Þ + 2n − 1ð Þη2 Yð Þ:

ð28Þ

From (24) and (28), we have acquired the result of
((24)).

Proposition 3. Consider a compact generalized Sasakian
space form M admitting a semisymmetric metric connection.
The identity map 1M is weakly stable, if ð3f2 + 2nf1 − f3 − 2
n + 3Þ ≤ 0 and ð3f2 + ð2n − 1Þf3 − 2n + 3Þ ≥ 0.

Proof. We can easily prove that

ð
M
h �ΔV , V
� �

υg =
ð
M
h ∇~V ,∇~VÞυg, V ∈ Γ TMð Þ:� ð29Þ

☐

Now, the second variation formula with respect to a
semisymmetric connection becomes

H1M Y , Yð Þ =
ð
M
h ∇~Y ,∇~YÞ − 3f2 + 2nf1 − f3 − 2n + 3ð Þ

ð
M
h Y , Yð Þυg

	

+ 3f2 + 2n − 1ð Þf3 − 2n + 3ð Þ
ð
M
η Yð Þη Yð Þυg:

ð30Þ

Therefore, for the inequalities ð3f2 + 2nf1 − f3 − 2n + 3Þ
≤ 0 and ð3f2 + ð2n − 1Þf3 − 2n + 3Þ ≥ 0, the identity map is
weakly stable.

Corollary 4. Let M be the Kenmotsu space form admitting a
semisymmetric metric connection; then, the identity map on
its compact domain is stable if ð3n − 7/n + 1Þ ≤ c ≤ ðð7ðn − 1
ÞÞ/ðn + 1ÞÞ.

On the Kenmotsu space form M, f1 = ððc − 3Þ/4Þ, f2 = f3
= ððc + 1Þ/4Þ [10]. And ð3f2 + 2nf1 − f3 − 2n + 3Þ ≤ 0 implies
c ≤ ðð7ðn − 1ÞÞ/ðn + 1ÞÞ, and ð3f2 + ð2n − 1Þf3 − 2n + 3Þ ≥ 0
implies c ≥ ðð3n − 7Þ/ðn + 1ÞÞ. Then, by the above results,
the identity of the 1M map becomes stable for the values of c
∈ ½ðð3n − 7Þ/ðn + 1ÞÞ, ðð7ðn − 1ÞÞ/ðn + 1ÞÞ�.

5. Conclusion

The 2nd variational formula for a generalized Sasakian space
form admitting a semisymmetric metric connection has
been successfully obtained in this work. All results in this
work are novel where inequalities concerning the stability
criteria of a compact generalized Sasakian space form admit-
ting a semisymmetric metric connection have been estab-

lished. Further research works can be conducted depending
on all our obtained results in this paper.
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Newly, the field of fractional differential operators has engaged with many other fields in science, technology, and engineering
studies. The class of fractional differential and integral operators is considered for a real variable. In this work, we have
investigated the most applicable fractional differential operator called the Prabhakar fractional differential operator into a
complex domain. We express the operator in observation of a class of normalized analytic functions. We deal with its
geometric performance in the open unit disk.

1. Introduction

The class of complex fractional operators (differential and
integral) is investigated geometrically by Srivastava et al.
[1] and generalized into two-dimensional fractional
parameters by Ibrahim for a class of analytic functions
in the open unit disk [2]. These operators are consumed
to express different classes of analytic functions, fractional
analytic functions [3] and differential equations of a com-
plex variable, which are called fractional algebraic differen-
tial equations studding the Ulam stability [4, 5].

We carry on our investigation in the field of complex
fractional differential operators. In this investigation, we for-
mulate an arrangement of the fractional differential operator
in the open unit disk refining the well-known Prabhakar
fractional differential operator. We apply the recommended
operator to describe new generalized classes of fractional
analytic functions including the Briot-Bouquet types. Conse-
quently, we study the classes in terms of the geometric func-
tion theory.

2. Methods

Our methods are divided into two subsections, as follows.

2.1. Geometric Methods. In this place, we clarify selected
notions in the geometric function theory, which are situated
in [6–8].

Definition 1. Let ∪≔fz ∈ℂ : jzj < 1g be the open unit disk.
Two analytic functions g1, g2 in ∪ are called subordinated
denoting by g1 ≺ g2 org1ðzÞ ≺ g2ðzÞ, z ∈U, if there exits an
analytic function ω, jwj ≤ jzj < 1 having the formula

g1 zð Þ = g2 w zð Þð Þ, z ∈ ∪: ð1Þ

g1 is majorized by g2 denoting by g1 ≪ g2 if and only if

g1 zð Þ =w zð Þg2 zð Þ, z ∈ ∪; ð2Þ

equivalently, the coefficient inequality is held janj ≤ jbnj,
respectively.

There is a deep construction between subordination and
majorization [9] in ∪ for selected distinct classes comprising
the convex class ðCÞ:
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1 +R
zg″ zð Þ
g′ zð Þ

 !
> 0, z ∈ ∪, ð3Þ

and starlike functions ðS∗Þ

R
zg′
g zð Þ

 !
> 0, z ∈ ∪: ð4Þ

Definition 2. We present a class of analytic functions by

f zð Þ = z + 〠
∞

n=2
anz

n, z ∈ ∪: ð5Þ

This class is denoted by Λ and known as the class of uni-
valent functions which is normalized by f ð0Þ = f ′ð0Þ − 1 = 0.

Associated with the terms S∗ and C , we present the
term P of all analytic functions p in ∪ with a positive real
part in ∪ and pð0Þ = 1.

Two analytic functions f , g are called convoluted, denot-
ing by f ∗ g if and only if

f ∗ gð Þ zð Þ = 〠
∞

n=0
anz

n

 !
∗ 〠

∞

n=0
gnz

n

 !
= 〠

∞

n−0
angnz

n: ð6Þ

Definition 3. The generalized Mittag-Leffler function is
defined by [10–12]

Ξ℘
v,μ zð Þ = 〠

∞

n=0

℘ð Þn
Γ vn + μð Þ

zn

n!
, ð7Þ

where ðϑÞn represents the Pochhammer symbol and

Ξ1
v,μ zð Þ∶ = Ξv,μ zð Þ = 〠

∞

n=0

zn

Γ vn + μð Þ
� ℘ð Þ0 = 1, ℘ð Þn = ℘ ℘+1ð Þ⋯ ℘+n − 1ð Þ� �

:

ð8Þ

Note that Ξ℘
v,uðzÞ is an ultimate traditional generalization

of the function ez , where Ξ1
1,1ðzÞ = ez .

Moreover, it can be formulated by the Fox-Write hyper-
geometric function, as follows:

Ξ℘
v,μ zð Þ = 1

Γ ℘ð Þ
� �

1Ψ1
℘,1ð Þ
v, μ

; z
" #

: ð9Þ

2.2. Complex Prabhakar Operator (CPO). The Prabhakar
integral operator is defined for analytic function

ψ zð Þ ∈H 0, 1½ � = ψ zð Þ = ψ1z + ψ2z
2+⋯,z∈∪

� � ð10Þ

by the formula [13, 14]

Pγ,ω
α,βψ zð Þ =

ðz
0
z − ζð Þβ−1Ξγ

α,β ω z − ζð Þα� 	
ψ ζð Þdζ

= ψ · ϱγ,ωα,β

 �

zð Þ α, β, γ, ω ∈ℂ, z∈∪ð Þ:
ð11Þ

Moreover [13, 14],

ϱ
γ,ω
α,β zð Þ≔ zβ−1Ξγ

α,β ωzαð Þ,

Ξ
γ
α,β χð Þ = 〠

∞

n=0

Γ γ + nð Þ
Γ γð ÞΓ αn + βð Þ

χn

n!
:

ð12Þ

For example, let ψðzÞ = zς−1, then (see [15], Corollary
2.3)

Pγ,ω
α,βz

ς−1 =
ðz
0
z − ζð Þβ−1Ξγ

α,β ω z − ζð Þα� 	
ζς−1

 �

dζ

= Γ ςð Þzβ+ς−1Ξγ
α,β+ς ωzαð Þ:

ð13Þ

The Prabhakar derivative can be computed by the for-
mula [13]

kD
γ,ω
α,β f χð Þ = dk

dχk
P−γ,ω
α,k−β f χð Þ


 �
: ð14Þ

Definition 4. Let ψ ∈Λ. Then the complex Prabhakar differ-
ential operator (CPFDO) of (13) is formulated in terms of
the Riemann-Liouville derivative, as follows:

R
k D

γ,ω
α,βψ zð Þ = dk

dzk

ðz
0
z − ζð Þk−β−1Ξ−γ

α,k−β ω z − ζð Þα� 	
ψ ζð Þdζ

= dk

dzk
P−γ,ω
α,k−βψ zð Þ


 �
,

ð15Þ

and in terms of the Caputo derivative, as follows:

C
k D

γ,ω
α,βψ zð Þ =

ðz
0
z − ζð Þk−β−1Ξ−γ

α,k−β ω z − ζð Þα� 	 dk

dζk
ψ ζð Þ

 !
dζ

= P−γ,ω
α,k−β

dk

dzk
ψ zð Þ

 !
:

ð16Þ

Note that

C
k D

γ,ω
α,βψ zð Þ = R

k D
γ,ω
α,βψ zð Þ − 〠

k−1

m=0
zm−βΞ

−γ
α,m−β ωzα½ �ψ mð Þ 0ð Þ:

ð17Þ
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For example, let ψðzÞ = zε, ε ≥ 1, then in virtue of [15]
(Corollary 2.3), we conclude that

C

1 D
γ,ω
α,β zεð Þ =

ðz
0
z − ζð Þ1−β−1Ξ−γ

α,1−β ω z − ζð Þα� 	 d
dζ

ψ ζð Þ
� �

dζ∶

=
ðZ
0
z − ζð Þμ−1Ξ−γ

α,μ ω z − ζð Þα� 	 d
dζ

ζε
� �� �

dζ

= ε
ðz
0
ζε−1 z − ζð Þμ−1Ξ−γ

α,μ ω z − ζð Þα� 	
dζ

= Γ ε + 1ð Þzμ+ε−1Ξ−γ
α,μ+ε ω zα½ �, μ∶ = 1 − β:

ð18Þ

In general, we have

C
k D

γ,ω
α,β zεð Þ =

ðz
0
z − ζð Þk−β−1Ξ−γ

α,k−β ω z − ζð Þα� 	 dk

dζk
ζε
� � !

dζ

=
ðz
0
z − ζð Þk−β−1Ξ−γ

α,k−β ω z − ζð Þα� 	 d
dζ

ζε
� �� �

dζ

= 1 − k + εð Þk
ðz
0
ζε−k z − ζð Þk−β−1Ξ−γ

α,k−β ω z − ζð Þα� 	
dζ

= 1 − k + εð Þk
ðz
0
ζ ε−k+1ð Þ−1

� z − ζð Þk−β−1Ξ−γ
α,k−β ω z − ζð Þα� 	

dζ∶

= vð Þk
ðz
0
ζv−1 z − ζð Þμ−1Ξ−γ

α,μ ω z − ζð Þα� 	
dζ

= vð ÞkΓ vð Þzv+μ−1Ξ−γ
α,μ+v ωz

α½ �,
ð19Þ

where μ≔ k − β, ν≔ ε − k + 1, and ðvÞk = Γð1 + εÞ/Γð1 +
ε − kÞ. Hence, we obtain

C
k D

γ,ω
α,β zεð Þ = Γ 1 + εð Þzv+μ−1Ξ−γ

α,μ+v ωz
α½ �

= Γ k + vð Þzv+μ−1Ξ−γ
α,μ+v ωz

α½ �:
ð20Þ

We have the following property.

Proposition 5. Let ψ ∈Λ. Define a functional Ck Δ
γ,ω
α,β : ∪⟶

∪ by

C
k Δ

γ,ω
α,β ≔

zβ

Ξ
−γ
α,2−β wzα½ �

 !
CD

γ,ω
α,β


 �
: ð21Þ

Then C
k Δ

γ,ω
α,βψ = C

k Δ
γ,ω
α,β ∗ ψ ∈Λðα, β, γ, ω ∈ℂ, z∈∪Þ.

Proof. Let ψ ∈Λ. Then a computation implies

C
k Δ

γ,ω
α,βψ zð Þ = zβ

Ξ
−γ
α,2−β ωzα½ �

 !
C
k D

γ,ω
α,βψ zð Þ


 �

= zβ

Ξ
−γ
α,2−β ωzα½ �

 !
C

k
D

γ,ω
α,β z + 〠

∞

n=2
ψnz

n

 ! !

= zβ

Ξ
−γ
α,2−β ωzα½ �

 !
C

k
D

γ,ω
α,βz + 〠

∞

n=2
ψn

C
k D

γ,ω
α,βz

n

 !

= zβ

Ξ
−γ
α,2−β ωzα½ �

 ! 
Ξ
−γ
α,2−β ωzα½ �z1−β

+ 〠
∞

n=2
ψnΓ n + 1ð Þzn−βΞ−γ

α,n+1−β ωzα½ �
!

= z + 〠
∞

n=2
ψnΓ n + 1ð Þ

Ξ
−γ
α,n+1−β ωzα½ �
Ξ
−γ
α,2−β ωzα½ �

 !
zn∶

= z + 〠
∞

n=2
ψnδnz

n = z + 〠
∞

n=2
δnz

n

 !

∗ z + 〠
∞

n=2
ψnz

n

 !
= C

k Δ
γ,ω
α,β ∗ψ


 �
zð Þ,

ð22Þ

where δn∶ = Γðn + 1ÞΞ−γ
α,n+1−β½ωzα�/Ξ−γ

α,2−β½ωzα�. This indi-

cates that C
k Δ

γ,ω
α,βψ ∈Λ. ☐

We call Ck Δ
γ,ω
α,β the normalized complex Prabhakar opera-

tor (NCPO) in the open unit disk. Since C
k Δ

γ,ω
α,β ∈Λ, then we

can study it in view of the geometric function theory.
Our aim is to formulate it in terms of some well-known

classes of analytic functions. It is clear that δn is a complex
connection (coefficient) of the operator and it is a constant
when α = 0.

Remark 6. The integral operator corresponding to the frac-
tional differential operator C

kΔ
γ
α
ω
β is expanded by the series

C
kϒ

γ,ω
α,βψ zð Þ = z + 〠

∞

n=2
ψn

Ξ
−γ
α,2−β ωzα½ �

Γ n + 1ð ÞΞ−γ
α,n+1−β ωzα½ �

 !
zn: ð23Þ

It is clear that

C
kϒ

γ,ω
α,β ∗

C
kΔ

γ,ω
α,β


 �
ψ zð Þ = C

kΔ
γ,ω
α,β ∗

C
kϒ

γ,ω
α,β


 �
ψ zð Þ = ψ zð Þ: ð24Þ

The linear convex combination of the operators C
kϒ

γ,ω
α,β

and C
k Δ

γ,ω
α,β can be recognized by the formula

∁
k
〠
γ,ω

α,β
ψ zð Þ = ∁CkΔ

γ,ω
α,βψ zð Þ + 1−∁ð ÞCkϒ

γ,ω
α,βψ zð Þ, ð25Þ

where ∁∈½0, 1�. Clearly, ∁k∑γ,ω
α,βψðzÞ ∈Λ, where ψ ∈Λ.
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2.3. Subclasses of NCPO. In terms of the NCPO, we formu-
late the next classes.

Definition 7. A function ψ ∈Λ is considered to be in the class
c
kS

∗γ,ω
α,β ðσÞ if and only if

c
kS

∗γ,ω
α,β σð Þ = ψ ∈Λ :

z C
kΔ

γ,ω
α,βψ zð Þ


 �
′

C
kΔ

γ,ω
α,βψ zð Þ ≺ σ zð Þ, σ 0ð Þ = 1

8<
:

9=
;:

ð26Þ

We shall deal with the conditions of a function ψ to be in
c
kS

∗γ,ω
α,β ðσÞ whenever σ ∈ C is convex as well as nonconvex.

Definition 8. A function ψ ∈Λ is considered to be in the class
c
k J

γ,ω
α,βðA,B, ♭Þ if and only if

c
k J

γ,ω
α,β A,B, ♭ð Þ =

(
ψ ∈Λ : 1 + 1

♭
2CkΔ

γ,ω
α,βψ zð Þ

C
kΔ

γ,ω
α,βψ zð Þ−C

kΔ
γ,ω
α,βψ −zð Þ

 !

≺
1 +Az
1 +Bz

)
:

ð27Þ

We request the next result, which can be located in [6].

Lemma 9. Define the class of analytic functions as follows: for
ϱ ∈ℂ and a positive integer n

ℍ ψ, n½ � = ψ : ψ zð Þ = ϱ + ϱnz
n + ϱn+1 z

n+1+⋯
� �

: ð28Þ

(i) Let ℓ ∈ℝ. Then RðψðzÞ + ℓzψ′ðzÞÞ > 0⟶
RðψðzÞÞ > 0. In addition, if ℓ > 0 and ψ ∈ℍ½1, n�,
then there are constants ℘>0 and κ > 0 such that
κ = κðℓ,℘,nÞ and

ψ zð Þ + ℓzψ′ zð Þ ≺ 1 + z
1 − z

� �κ

⟶ ψ zð Þ ≺ 1 + z
1 − z

� �℘
ð29Þ

(ii) Let c ∈ ½0, 1Þ and ψ ∈ℍ½1, n�. Then there exists a
fixed real number ℓ > 0 so that

R ψ2 zð Þ + 2ψ zð Þ ⋅ zψ′ zð Þ

 �

> c⟶R ψ zð Þð Þ > ℓ ð30Þ

(iii) Let ψ ∈ℍ½ψ, n� with RðψÞ > 0. Then

R ψ zð Þ + zψ′ zð Þ + z2ψ″ zð Þ

 �

> 0 ð31Þ

or for ℵ : ∪⟶ R such that

R ψ zð Þ +ℵ zð Þ zψ′ zð Þ
ψ zð Þ

 !
> 0: ð32Þ

Then RðψðzÞÞ > 0.

3. Results

Our results are as follows.

Theorem 10. Let ψ ∈Λ. If one of the next inequalities is
considered,

(i) C
kΔ

γ,ω
α,βψðzÞ is of bounded turning function

(ii) ðCkΔγ,ω
α,βψðzÞÞ′ ≺ ð1 + z/1 − zÞκ, κ > 0, z ∈ ∪

(iii) RððCkΔγ,ω
α,βψðzÞ′ÞðCkΔ

γ,ω
α,βψðzÞ/zÞÞ > c/2, c ∈ ½0, 1Þ,

z ∈ ∪

(iv) RððzCkΔγ,ω
α,βψðzÞÞ″ − ðCkΔγ,ω

α,βψðzÞÞ′ + 2ðCkΔγ,ω
α,βψðzÞ/zÞÞ

> 0

(v) RððzðCkΔγ,ω
α,βψðzÞÞ′/CkΔ

γ,ω
α,βψðzÞÞ + 2ðCkΔγ,ω

α,βψðzÞ/zÞÞ
> 1

then C
kΔ

γ,ω
α,βψðzÞ/z ∈P ðλÞ for some λ ∈ ½0, 1Þ.

Proof. Define a function ρ as follows:

ρ =
C
kΔ

γ,ω
α,βψ zð Þ
z

, z ∈ ∪: ð33Þ

Then a computation implies that

zρ′ zð Þ + ρ zð Þ = C
kΔ

γ,ω
α,βψ zð Þ


 �
′: ð34Þ

In virtue of the first inequality, we have that C
kΔ

γ,ω
α,βψðzÞ

is of bounded turning function, which leads to Rðzρ′ðzÞ +
ρðzÞÞ > 0. Therefore, Lemma 9(i) indicates that RðρðzÞÞ > 0
which gives the first part of the theorem. Consequently, the
second part is confirmed. In virtue of Lemma 9(i), we have
a fixed real number ℓ > 0 such that κ = κðℓÞ and

C
kΔ

γ,ω
α,βψ zð Þ
z

≺
1 + z
1 − z

� �ℓ

: ð35Þ

This implies that

R

C
kΔ

γ,ω
α,βψ zð Þ
z

 !
> λ, λ ∈ 0, 1½ Þ: ð36Þ
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Suppose that

R ρ2 zð Þ + 2ρ zð Þ ⋅ zρ′ zð Þ

 �

= 2R
C
kΔ

γ,ω
α,βψ zð Þ
z

C
kΔ

γ,ω
α,βψ zð Þ


 �
′−

C
kΔ

γ,ω
α,βψ zð Þ
2z

 ! !
> ς:

ð37Þ

According to Lemma 9(ii), there exists a fixed real num-
ber ℓ > 0 satisfying RðρðzÞÞ > ℓ and

ρ zð Þ =
C
kΔ

γ,ω
α,βψ zð Þ
z

∈P λð Þ, λ ∈ 0, 1½ Þ: ð38Þ

It follows from (37) that RðCkΔγ,ω
α,βψðzÞÞ′Þ > 0; conse-

quently, by Noshiro-Warschawski and Kaplan theorems,
C
kΔ

γ,ω
α,βψðzÞ is univalent and of bounded turning function in

∪. Taking the derivative (33), then we get

R ρ zð Þ + zρ′ zð Þ + z2ρ″ zð Þ

 �
=R z C

kΔ
γ,ω
α,βψ zð Þ


 �
″ − C

kΔ
γ,ω
α,βψ zð Þ


 �
′




+ 2
C
kΔ

γ,ω
α,βψ zð Þ
z

 !!
> 0:

ð39Þ

Hence, Lemma 9(ii) implies RðCkΔγ,ω
α,βψðzÞ/zÞ > 0.

The logarithmic differentiation of (33) yields

R ρ zð Þ + zρ′ zð Þ
ρ zð Þ + z2ρ″ zð Þ

 !

=R
z C

kΔ
γ,ω
α,βψ zð Þ


 �
′

C
kΔ

γ,ω
α,βψ zð Þ

+ 2
C
kΔ

γ,ω
α,βψ zð Þ
z

 !
− 1

0
@

1
A > 0:

ð40Þ

Hence, Lemma 9(iii) implies, where ℵðzÞ = 1,

R

C
kΔ

γ,ω
α,βψ zð Þ
z

 !
> 0: ð41Þ

☐

The next results show the upper bound of the operator
C
kΔ

γ,ω
α,βψðzÞ utilizing the exponential integral in the open unit

disk provided that the function ψ ∈ C
k S

∗γ,ω
α,β ðσÞ.

Theorem 11. Suppose that ψ ∈ C
k S

∗γ,ω
α,β ðσÞ, where σðzÞ is con-

vex in ∪. Then

C
kΔ

γ,ω
α,βψ zð Þ ≺ z exp

ðz
0

σ Ψ ωð Þð Þ − 1
ω

dω
� �

, ð42Þ

where ΨðzÞ is analytic in ∪, with Ψð0Þ = 0 and jΨðzÞj < 1.
Also, for jzj = ξ, CkΔ

γ,ω
α,βψðzÞ satisfies the inequality

exp
ð1
0

σ Ψ ξð Þð Þ − 1
ξ

� �
dξ

≤
C
kΔ

γ,ω
α,βψ zð Þ
z

�����
����� ≤ exp

ð1
0

σ Ψ ξð Þð Þ − 1
ξ

� �
dξ:

ð43Þ

Proof. By the hypothesis, we receive the following conclu-
sion:

z C
kΔ

γ,ω
α,βψ zð Þ


 �
′

C
kΔ

γ,ω
α,βψ zð Þ

0
@

1
A ≺ σ zð Þ, z ∈ ∪: ð44Þ

This gives the occurrence of a Schwarz function with
Ψð0Þ = 0 and jΨðzÞj < 1 such that

z C
kΔ

γ,ω
α,βψ zð Þ


 �
′

C
kΔ

γ,ω
α,βψ zð Þ

0
@

1
A = σ Ψ zð Þð Þ, z ∈ ∪: ð45Þ

That is,

C
kΔ

γ,ω
α,βψ zð Þ


 �
′

C
kΔ

γ,ω
α,βψ zð Þ

0
@

1
A −

1
z
= σ Ψ zð Þð Þ − 1

z
: ð46Þ

Integrating the above equality, we get

log C
kΔ

γ,ω
α,βψ zð Þ


 �
− log zð Þ =

ðz
0

σ Ψ ωð Þð Þ − 1
ω

� �
dω: ð47Þ

Consequently, we get

log
C
kΔ

γ,ω
α,βψ zð Þ
z

 !
=
ðz
0

σ Ψ ωð Þð Þ − 1
ω

dω: ð48Þ

By the definition of subordination, we arrive at the
following inequality

C
kΔ

γ,ω
α,βψ zð Þ ≺ z exp

ðz
0

σ Ψ ωð Þð Þ − 1
ω

dω
� �

: ð49Þ

Note that the function σðzÞ plots the disk 0 < jzj <
ξ < 1 onto a reign, which is convex and symmetric with
respect to the real axis. That is,

σ −ξ zj jð Þ ≤R σ Ψ ξzð Þð Þð Þ ≤ σ ξ zj jð Þ,  ξ ∈ 0, 1ð Þ, ð50Þ

then we have the inequalities

σ −ξð Þ ≤ σ −ξ zj jð Þ, σ ξ zj jð Þ ≤ σ ξð Þ ; ð51Þ
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consequently, we get

ð1
0

σ Ψ −ξ zj jð Þð Þ − 1
ξ

dξ

≤R

ð1
0

σ Ψ ξð Þð Þ − 1
ξ

dξ
� �

≤
ð1
0

σ Ψ ξ zj jð Þð Þ − 1
ξ

dξ:

ð52Þ

In view of Equation (48), we obtain the general log-
inequality

ð1
0

σ Ψ −ξ zj jð Þð Þ − 1
ξ

dξ ≤ log
C
kΔ

γ,ω
α,βψ zð Þ
z

�����
�����

≤
ð1
0

σ Ψ ξ zj jð Þð Þ − 1
ξ

dξ ;
ð53Þ

that is,

exp
ð1
0

σ Ψ −ξ zj jð Þð Þ − 1
ξ

dξ
� �

≤
C
kΔ

γ,ω
α,βψ zð Þ
z

�����
����� ≤ exp

ð1
0

σ Ψ ξ zj jð Þð Þ − 1
χ

dξ
� �

:

ð54Þ

Hence, we have

exp
ð1
0

σ Ψ −ξð Þð Þ − 1
ξ

dξ
� �

≤
C
kΔ

γ,ω
α,βψ zð Þ
z

�����
����� ≤ exp

ð1
0

σ Ψ ξð Þð Þ − 1
ξ

dξ
� �

:

ð55Þ

☐

Proceeding, we illustrate the sufficient condition of ψ to
be in the class C

k S
∗γ,ω
α,β ψðσÞ, where σ is convex univalent satis-

fying σð0Þ = 1.

Theorem 12. If ψ ∈Λ satisfies the inequality

z CΔ
γ,ω
α,βψ zð Þ


 �
′

C
kΔ

γ,ω
α,βψ zð Þ

2 +
z CΔ

γ,ω
α,βψ zð Þ


 �
″

CΔ
γ,ω
α,βψ zð Þ


 �
′

0
@

1
A

−
z CΔ

γ,ω
α,βψ zð Þ


 �
′

C
kΔ

γ,ω
α,βψ zð Þ

0
@

1
A ≺ σ zð Þ,

ð56Þ

then ψ ∈ C
k S

∗γ,ω
α,β ðσÞ.

Proof. The proof directly comes from [6] (Theorem 3.1a).
Taking

p zð Þ =
z CΔ

γ,ω
α,βψ zð Þ


 �
′

C
kΔ

γ,ω
α,βψ zð Þ

, ð57Þ

and PðzÞ = 1 in the inequality

p zð Þ + P zð Þ ⋅ zp′ zð Þ

 �

≺ σ zð Þ, ð58Þ

then we obtain

p zð Þ + P zð Þ ⋅ zp′ zð Þ

 �

=
z CΔ

γ,ω
α,βψ zð Þ


 �
′

C
kΔ

γ,ω
α,βψ zð Þ

× 2 +
z CΔ

γ,ω
α,βψ zð Þ


 �
″

CΔ
γ,ω
α,βψ zð Þ


 �
′

0
@

−
z CΔ

γ,ω
α,βψ zð Þ


 �
′

C
kΔ

γ,ω
α,βψ zð Þ

0
@

1
A
1
A ≺ σ zð Þ:

ð59Þ

This implies that

p zð Þ =
z C

k Δ
γ,ω
α,βψ zð Þ


 �
′

C
k Δ

γ,ω
α,βψ zð Þ

≺ σ zð Þ, σ ∈C , ð60Þ

that is ψ ∈ C
k S

∗γ,ω
α,β ðσÞ. ☐

Corollary 13. Let the assumption of Theorem 12 hold. Then

z CΔ
γ,ω
α,βψ zð Þ


 �
′

C
kΔ

γ,ω
α,βψ zð Þ

× 1 +
z CΔ

γ,ω
α,βψ zð Þ


 �
″

CΔ
γ,ω
α,βψ zð Þ


 �
′

0
@

−
z CΔ

γ,ω
α,βψ zð Þ


 �
′

C
kΔ

γ,ω
α,βψ zð Þ

0
@

1
A
1
A≪ σ′ zð Þ:

ð61Þ

Proof. Let

p zð Þ =
z CΔ

γ,ω
α,βψ zð Þ


 �
′

C
kΔ

γ,ω
α,βψ zð Þ

: ð62Þ

In view of Theorem 12, we have

z CΔ
γ,ω
α,βψ zð Þ


 �
′

C
kΔ

γ,ω
α,βψ zð Þ

≺ σ zð Þ, ð63Þ

where σ ∈ C. Then by [9] (Theorem 3), we get p′ðzÞ≪ σ′ðzÞ
for some z ∈ ∪, where

p′z =
z CΔ

γ,ω
α,βψ zð Þ


 �
′

C
kΔ

γ,ω
α,βψ zð Þ

0
@

1
A 1 +

z CΔ
γ,ω
α,βψ zð Þ


 �
″

CΔ
γ,ω
α,βψ zð Þ


 �
′

0
@

−
z CΔ

γ,ω
α,βψ zð Þ


 �
′

C
kΔ

γ,ω
α,βψ zð Þ

0
@

1
A
1
A:

ð64Þ

☐
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It is well known that the function σðzÞ = e∈z , 1 < j∈j ≤ π
/2 is not convex in ∪, where the domain σð∪Þ is lima-bean
(see [6] (P123)). One can obtain the same result of Theorem
12 as follows.

Theorem 14. If ψ ∈Λ satisfies the inequality

1 +
z CΔ

γ,ω
α,βψ zð Þ


 �
″

CΔ
γ,ω
α,βψ zð Þ′

≺ e∈z , 1 < ∈j j ≤ π

2
, ð65Þ

then ψ ∈ C
k S

∗γ,ω
α,β ðe∈zÞ.

Proof. Let

p zð Þ≔
z CΔ

γ,ω
α,βψ zð Þ


 �
′

C
kΔ

γ,ω
α,βψ zð Þ

: ð66Þ

Then a computation implies

This implies that [6] (P123)

p zð Þ =
z C

kΔ
γ,ω
α,βψ zð Þ


 �
′

C
kΔ

γ,ω
α,βψ zð Þ

≺ e∈z ; ð68Þ

that is, ψ ∈ C
k S

∗γ,ω
α,β ðe∈zÞ. ☐

Theorem 15. If ψ∈ck J
γ,ω
α,βðA,B, ♭Þ then the function

B zð Þ = 1
2
ψ zð Þ − ψ −zð Þ½ �, z ∈ ∪, ð69Þ

satisfies

1 + 1
♭

C
kþ1Δ

γ,ω
α,βB zð Þ

C
kΔ

γ,ω
α,βB zð Þ

− 1

 !
≺
1 +Az
1 +Bz

,

R
zB zð Þ′
B zð Þ

 !
≥
1 − ð2

1 + ð2
,  zj j = ð < 1:

ð70Þ

Proof. Let ψ∈ck J
γ,ω
α,βðA,B, ♭Þ. Then there occurs a function

JðzÞ such that

♭ J zð Þ − 1ð Þ =
2Ckþ1Δ

γ,ω
α,βψ zð Þ

C
kΔ

γ,ω
α,βψ zð Þ − C

kΔ
γ,ω
α,βψ −zð Þ

 !
,

♭ J −zð Þ − 1ð Þ =
2Ckþ1Δ

γ,ω
α,βψ −zð Þ

C
kΔ

γ,ω
α,βψ −zð Þ − C

kΔ
γ,ω
α,βψ zð Þ

 !
:

ð71Þ

This confirms that

1 + 1
♭

C
kþ1Δ

γ,ω
α,βB zð Þ

C
kΔ

γ,ω
α,βB zð Þ

− 1
 !

= J zð Þ + J −zð Þ
2 : ð72Þ

However, J satisfies

J zð Þ ≺ 1 +Az
1 +Bz

, ð73Þ

which is univalent, then we get

1 + 1
♭

C
kþ1Δ

γ,ω
α,βB zð Þ

C
kΔ

γ,ω
α,βB zð Þ

− 1
 !

≺
1 +Az
1 +Bz

: ð74Þ

Also, BðzÞ is starlike in ∪ which implies that

ℏ zð Þ≔ zB zð Þ′
B zð Þ ≺

1 − z2

1 + z2
: ð75Þ

p zð Þ + zp′ zð Þ
p zð Þ

=
z CΔ

γ,ω
α,βψ zð Þ


 �
′

C
kΔ

γ,ω
α,βψ zð Þ

0
@

1
A +

z CΔ
γ,ω
α,βψ zð Þ


 �
′/CkΔ

γ,ω
α,βψ zð Þ


 �
1 + z CΔ

γ,ω
α,βψ zð Þ


 �
″/ CΔ

γ,ω
α,βψ zð Þ


 �
′ − z CΔ

γ,ω
α,βψ zð Þ


 �
′/CkΔ

γ,ω
α,βψ zð Þ


 �
 �
z CΔ

γ,ω
α,βψ zð Þ


 �
′/CkΔ

γ,ω
α,βψ zð Þ

= 1 +
z CΔ

γ,ω
α,βψ zð Þ


 �
″

CΔ
γ,ω
α,βψ zð Þ′

0
@

1
A ≺ e∈z:

ð67Þ
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Hence, a Schwarz function k ∈ ∪, ∣ kðzÞ ∣ ≤ ∣ z∣ < 1,
kð0Þ = 0 gets

ℏ zð Þ ≺ 1 − k zð Þ2
1 + k zð Þ2 , ð76Þ

which leads to

k2 ζð Þ = 1 − ℏ ζð Þ
1 + ℏ ζð Þ , ζ ∈ ∪, ζ, ζj j = r < 1: ð77Þ

A calculation yields

1 − ℏ ζð Þ
1 + ℏ ζð Þ
����

���� = k ζð Þj j2 ≤ ζj j2: ð78Þ

Therefore, we get the following inequality: or

ℏ ζð Þ − 1 + ζj j4
1 − ζj j4

�����
�����
2

≤
4 ζj j4

1 − ζj j4

 �2 ð79Þ

ℏ ζð Þ − 1 + ζj j4
1 − ζj j4

�����
����� ≤ 2 ζj j2

1 − ζj j4

 � : ð80Þ

Thus, we have

R ℏ zð Þð Þ ≥ 1 − ð2

1 + ð2
,  ζj j = ð < 1: ð81Þ

This completes the assertion of the theorem. ☐

Example 16.

(i) Let

zf ′ zð Þ
f zð Þ ≔

z CΔ
γ,ω
α,βψ zð Þ


 �
′

C
kΔ

γ,ω
α,βψ zð Þ

,

C
kΔ

γ,ω
α,βψ zð Þ = z

1 − zð Þ2 , ψ ∈Λ:

ð82Þ

Then the solution of zf ′ðzÞ/f ðzÞ = ðð1 + zÞ/ð1 − zÞÞ is
formulated, as follows:

CΔ
γ,ω
α,βψ zð Þ


 �
= z

1 − zð Þ2 , ψ ∈Λ: ð83Þ

Moreover, the solution of the equation

f zð Þ + zf ′ zð Þ
f zð Þ = 1 + z

1 − z

� �
ð84Þ

is approximated to f ðzÞ = z/ð1 − zÞ.

(ii) The solution of zf ′ðzÞ/f ðzÞ = ðð1 + zÞ/ð1 − zÞÞ0:25 is
given in terms of the hypergeometric function, as
follows (see Figure 1):

Im (f)

Im (f)

f (1)= 1

f (1)= 1

Re f

Re f

Re (f)

Re (f)

Im f

Im f

f

f

f

f

f'

f '

z

z

10

10

10

15

5

−10−20 −15 −5
−5

5

(sampling f (1))

(sampling f (1))

1.2

1.2

1.0

1.00.2

0.2
0.4

0.4

0.6

0.6

0.8

0.8

Figure 1: Plot of the solution for zf ðz/f ðzÞÞ and f ðzÞ + zf ðz/f ðzÞÞ, respectively.

f zð Þ = c exp
 
1:8 z + 1ð Þ z + 1

1 − z

� �0:25

� F1 1:25 ; 0:25,1 ; 2:25 ; 0:5z + 0:5, z + 1ð Þ
z 2:25 F1 1:25 ; 0:25,1 ; 2:25 ; 0:5z + 0:5, z + 1ð Þ + z + 1ð ÞF1 2:25 ; 0:25,2 ; 3:25 ; 0:5z + 0:5, z + 1ð Þ + 0:125z + 0:125ð ÞF1 2:25 ; 1:25,1 ; 3:25 ; 0:5z + 0:5z + 1ð Þð Þ

!
:

ð85Þ
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4. Conclusion

The Prabhakar fractional differential operator in the com-
plex plane is formulated for a class of normalized function
in the open unit disk. We formulated the modified operator
in two classes of analytic functions to investigate its geomet-
ric behavior. Differential inequalities are formulated to
include them. Examples showed the behavior of solutions
and the formula. The suggested operators can be utilized to
formulate some classes of analytic functions or to generalize
other types of differential operators such a conformable,
quantum, or fractal operators.
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In this paper, we establish some results concerning the convolutions of harmonic mappings convex in the horizontal direction with
harmonic vertical strip mappings. Furthermore, we provide examples illustrated graphically with the help of Maple to illuminate
the results.

1. Introduction

For real-valued harmonic functions u and v in the open unit
disk E = fz ∈ℂ : jzj < 1g, the complex-valued continuous
function f = u + iv is said to be harmonic and can be
expressed as f = h + �g, where h and g are analytic in E. Let
H be the class of harmonic mappings f = h + �g normalized
by hð0Þ = gð0Þ = h′ð0Þ − 1 = 0 and have the following power
series representations:

h zð Þ = z + 〠
∞

m=2
amz

m,

g zð Þ = 〠
∞

m=1
bmz

m:

ð1Þ

We call h the analytic part and g the coanalytic part of f ,

respectively. The Jacobian of f = h + �g is given by J f = jh′j2

− jg′j2. Lewy’s theorem [1] implies that f ∈H is locally uni-
valent and sense-preserving if and only if J f > 0 in E. The

condition J f > 0 is equivalent to that dilatation ωðzÞ = g′ðzÞ
/h′ðzÞ satisfying jωðzÞj < 1 for all z ∈ E (see [2, 3]).

We denote by SH the class of all harmonic, sense-pre-
serving, and univalent mappings f = h + �g in E, which are
normalized by the condition hð0Þ = gð0Þ = 0 and h′ð0Þ = 1.

Let S0
H be the subset of all f ∈ SH in which g′ð0Þ = 0: Further,

let KH ,ℂH (resp., K0
H ,ℂ0

H) be the subset of SH (resp., S0
H)

whose images are convex and close-to-convex domains. A
domain Ω is said to be convex in the horizontal direction
(CHD) if the intersection of Ω with each horizontal line is
connected (or empty). A function f = h + �g ∈ SH is said to
be a CHD mapping if f maps E onto a CHD domain. Let
SCHD be the subset of ℂH which consist of CHD mappings.
The following basic theorem of Clunie and Sheil-Small [2]
is known as shear construction that constructs harmonic
mappings with prescribed dilatations onto a domain convex
in one direction.

Theorem 1 (see [2]). A locally univalent harmonic mapping
f = h + �g in E is a univalent mapping of E onto a domain con-
vex in a direction ϕ if and only if h − e2iϕg is a conformal
univalent mapping of E onto a domain convex in the direction
of ϕ:

Let f ∗ F = h ∗H + g ∗ G be the convolution of two har-
monic functions f = h + �g and F =H + �G where the operator
∗ is convolution (or Hadamard product) of two power series.

There are several research papers in recent years which
investigate the convolution of harmonic univalent functions.
In particular, Dorff [4] and Dorff et al. [5] studied the convo-
lution of harmonic univalent mappings in the right half-
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plane. For some recent investigations involving convolution
of harmonic mappings, we refer the reader to [6–13].

Let Fa =Ha + Ga sheared byHa −Ga = z/ð1 − zÞ with the
dilatation ωa = ða + zÞ/ð1 + azÞ, where a ∈ ð−1, 1Þ. Using
shear construction of Clunie and Sheil-Small [2], we have

Ha zð Þ = 1/ 1 − að Þz − 1/2z2
1 − zð Þ2 = 1

2
z

1 − z
+ 1 + a

1 − a

z

1 − zð Þ2
" #

,

ð2Þ

Ga zð Þ = a/ 1 − að Þz + 1/2z2
1 − zð Þ2 = 1

2
−z
1 − z

+ 1 + a

1 − a

z

1 − zð Þ2
" #

:

ð3Þ
It is clear that by setting a = 0 in (2) and (3), we obtain

F0 =H0 +G0 which satisfy the conditions H0 − G0 = z/ð1 −
zÞ and ωðzÞ = z, studied by Liu and Li [8]. Wang et al. [14]
also studied convolutions of this mapping. Note that Fa is a
CHD mapping.

Recently, Liu and Li [8] introduced the following general-
ized harmonic univalent mappings:

Pδ zð Þ =Hδ zð Þ + Gδ zð Þ = 1
1 + δ

δz

1 − zð Þ2 + z
1 − z

" #

+ 1
1 + δ

δz

1zð Þ2
z
1z

" #
,

ð4Þ

where δ > 0 and z ∈ E. Obviously, P1ðzÞ = F0ðzÞ. If f = h + �g
∈ SH , then

Pδ ∗ f = δzh′ + h
1 + δ

+ δzg′g
1 + δ

: ð5Þ

Also, PδðzÞ maps E onto the domain fu + iv : v2>−½ð2δ
Þ/ð1 + δÞu + ð1/ð1 + δÞ2Þ�, δ > 0g which is a CHD domain.
Very recently, Yasar and Ozdemir [15] studied convolutions
of these generalized harmonic mappings.

Let f γ = hγ + gγ ∈ S
0
CHD with

hγ − gγ =
1

2i sin γ
log 1 + zeiγ

1 + ze−iγ

� �
, ð6Þ

where π/2 ≤ γ < π.
In this paper, we investigate the conditions under which

the convolutions of harmonic mappings Pδ, f γ, and Fa with
prescribed dilatations are univalent and CHD provided that
the convolutions are locally univalent and sense-preserving.

Furthermore, we provide two examples illustrated graphi-
cally with the help of Maple to illuminate our results.

2. Preliminary Results

Lemma 2 (see [16]). Let f be an analytic fuction in E with f
ð0Þ = 0 and f ′ð0Þ ≠ 0 and let

φ zð Þ = z

1 + zeiθ1
� �

1 + zeiθ2
� � , ð7Þ

where θ1, θ2 ∈ℝ. If

Re zf ′ zð Þ
φ zð Þ

 !
> 0, ð8Þ

then f is convex in the horizontal direction.

Lemma 3 (see [17]). Let φ and G be analytic in E with φ′ð0Þ
=Gð0Þ = 0: If φ is convex and G is starlike, then for each func-
tion F analytic in E and satisying Re ðFðzÞÞ > 0, we have

Re φ ∗ FGð Þ zð Þ
φ ∗Gð Þ zð Þ

� �
> 0 z ∈ Eð Þ: ð9Þ

Lemma 4 ([18], Cohn’s rule). Given a polynomial

p zð Þ = p0 zð Þ = ak,0z
k + ak−1,0z

k−1+⋯+a1,0z + a0,0 ak,0 ≠ 0ð Þ
ð10Þ

of degree k, let

p∗ zð Þ = p∗0 zð Þ = zkp
1
�z

� �
= ak,0 + ak1,0z+⋯+a1,0zk−1

+ a0,0z
k ak,0 ≠ 0ð Þ:

ð11Þ

Denote by r and s the number of zeros of pðzÞ inside the
unit circle and on it, respectively. If ja0,0j < jak,0j, then

p1 zð Þ = ak,0p zð Þ − a0,0p
∗ zð Þ

z
ð12Þ

is of degree k − 1 with r1 = r − 1 and s1 = s the number of zeros
of p1ðzÞ inside the unit circle and on it, respectively.

Lemma 5. Let Pδ =Hδ + Gδ be defined by (4) and f γ = hγ + gγ
be defined by (6) with dilatationω = gγ′/hγ′. Then the dilatation
of Pδ ∗ f γ is given by

~ω zð Þ = ω 1 − ωð Þ δ − 1ð Þ − 2z cos γ − δ + 1ð Þz2� �
+ δzω′ 1 + 2z cos γ + z2

� �
1 − ωð Þ δ + 1ð Þ + 2z cos γ − δ − 1ð Þz2½ � + δzω′ 1 + 2z cos γ + z2ð Þ

: ð13Þ
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Proof. Since hγ − gγ = 1/ð2i sin γÞ log ðð1 + zeiγÞ/ð1 + ze−iγÞÞ
ðπ/2 ≤ γ < πÞ and gγ

′ = ωhγ′ , then gγ′′ = ω′hγ′ + ωhγ′′: We imme-
diately get

hγ′ =
1

1 − ωð Þ 1 + zeiγð Þ 1 + ze−iγð Þ , ð14Þ

hγ′′ = −
2 cos γ + zð Þ 1 − ωð Þ − ω′ 1 + 2z cos γ + z2

� �
1 − ωð Þ2 1 + zeiγð Þ2 1 + ze−iγð Þ2

: ð15Þ

From (4), we have

☐

Lemma 6. Let Pδ =Hδ +Gδ be defined by (4) and f γ = hγ + gγ
be defined by (6). If Pδ ∗ f γ is locally univalent and sense-pre-
serving, then Pδ ∗ f γ is univalent and convex in the horizontal
direction.

Proof. Let

F1 = Hδ −Gδð Þ ∗ hγ + gγ
� 	

=Hδ ∗ hγ +Hδ ∗ gγ − Gδ ∗ hγ −Gδ ∗ gγ,

F2 = Hδ + Gδð Þ ∗ hγ − gγ
� 	

=Hδ ∗ hγ −Hδ ∗ gγ +Gδ ∗ hγ −Gδ ∗ gγ:

ð17Þ

Thus,

Hδ ∗ hγ − Gδ ∗ gγ =
1
2 F1 + F2ð Þ: ð18Þ

By Theorem 1, we need to prove that 1/2ðF1 + F2Þ is
convex in the horizontal direction. Since

hγ − gγ =
1

2i sin γ
log 1 + zeiγ

1 + ze−iγ

� �
π

2 ≤ γ < π
� 	

, ð19Þ

we have

zF1′ = Hδ −Gδð Þ ∗ z hγ′ + gγ
′

� 	h i

= Hδ −Gδð Þ ∗ z hγ′ − gγ′
� 	 hγ′ + gγ

′
hγ′ − gγ

′

 !" #

= 2z
1 + δð Þ 1 − zð Þ ∗

z
1 + zeiγð Þ 1 + ze−iγð Þ

1 + ωγ

1 − ωγ

 !

= 2zp1 zð Þ
1 + δð Þ 1 + zeiγð Þ 1 + ze−iγð Þ ,

ð20Þ

where p1ðzÞ = ð1 + ωγÞ/ð1 − ωγÞ satisfies the condition Re
ðp1ðzÞÞ > 0: Thus, we have

Re zF1′
2z/ 1 + δð Þ 1 + zeiγð Þ 1 + ze−iγð Þ½ �

( )
= Re p1 zð Þf g > 0:

ð21Þ

Now, we consider

zF2′ = z Hδ
′ +Gδ

′
� 	

∗ hγ − gγ
� 	h i

= z Hδ
′ −Gδ

′
� 	Hδ

′ + Gδ
′

Hδ
′ − Gδ

′

" #
∗ hγ − gγ
� 	

= z Hδ
′ −Gδ

′
� 	 1 + ωδ

1 − ωδ

� �
 �
∗ hγ − gγ
� 	

= 2zp2 zð Þ
1 + δð Þ 1 − zð Þ2 ∗ hγ − gγ

� 	
,

ð22Þ

where p2ðzÞ = ð1 + ωδÞ/ð1 − ωδÞ satisfies the condition Re
fp2ðzÞg > 0: Using the fact that

ψ zð Þ ∗ z

1 − zð Þ2 = zψ′ zð Þ ð23Þ

and hγ − gγ is convex, by Lemma 3, we have

Re zF2′
z/ 1 + zeiγð Þ 1 + ze−iγð Þ½ �

( )

= Re
hγ − gγ
� 	

∗ p2 zð Þ 2z/ 1 + δð Þ 1 − zð Þ2� �� �
z hγ′ − gγ′
� 	

8<
:

9=
;

= Re
hγ − gγ
� 	

∗ p2 zð Þ 2z/ 1 + δð Þ 1 − zð Þ2� �� �
hγ − gγ
� 	

∗ z/ 1 − zð Þ2

8<
:

9=
; > 0:

ð24Þ

☐

~ω zð Þ =
Gδ ∗ gγ

� 	
′

Hδ ∗ hγ
� �′ =

δzgγ
′ − gγ

� 	
′

δzhγ′ + hγ
� 	

′
=

δ − 1ð Þgγ
′ + δzgγ

′′
δ + 1ð Þhγ′ + δzhγ′′

=
δ − 1ð Þωhγ′ + δz ω′hγ′ + ωhγ′′

� 	
δ + 1ð Þhγ′ + δzhγ′′

= ω 1 − ωð Þ δ − 1ð Þ − 2z cos γ − δ + 1ð Þz2� �
+ δzω′ 1 + 2z cos γ + z2

� �
1 − ωð Þ δ + 1ð Þ + 2z cos γ − δ − 1ð Þz2½ � + δzω′ 1 + 2z cos γ + z2ð Þ

:

ð16Þ
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Finally, using Lemma 2, we obtain that F1 + F2 is convex in
the horizontal direction.

Lemma 7. Let f γ = hγ + gγ ∈ S
0
CHD be given by (6) with dilata-

tion ω = gγ′/hγ′ and Fa =Ha +Ga be a mapping defined by (2)
and (3). Then the dilatation of Fa ∗ f γ is given by

Proof. From (2) and (3), we have

~W zð Þ =
Ga ∗ gγ
� 	

′

Ha ∗ hγ
� �′ =

1 + að Þzgγ′ − 1 − að Þgγ
� 	

′

1 + að Þzhγ′ + 1 − að Þhγ
� 	

′

=
2agγ′ + 1 + að Þzgγ′′
2hγ′ + 1 + að Þzhγ′′

=
2aωhγ′ + 1 + að Þz ω′hγ′ + ωhγ′′

� 	
2hγ′ + 1 + að Þzhγ′′

:

ð26Þ

Using (14) and (15), then we obtain the dilatation of Fa

∗ f γ as follows:

☐

Lemma 8 ([14], Lemma 2.4). Let Fa =Ha +Ga be a mapping
defined by (2), (3) and f γ = hγ + gγ ∈ S

0
CHD be defined by (6). If

Fa ∗ f γ is locally univalent and sense-preserving, then Fa ∗ f γ
is univalent and convex in the horizontal direction.

Lemma 9 ([19], Gauss-Lucas theorem). Let TðzÞ be a non-
constant polynomial with complex coefficients. Then, the zeros
of the derivative T ′ðzÞ are contained in the convex hull of the
set of the zeros of TðzÞ:

Lemma 10. Let

q zð Þ = zk+1 + 2 k + 1ð Þ cos γ
k + 2

zk + k
k + 2

zk−1

−
2

k + 2
e−iθz −

2 cos γ
k + 2

e−iθ
ð28Þ

be a complex polynomial of degree k + 1, where θ ∈ℝ, k ∈ℕ+,
and π/2 ≤ γ < π: Then, all zeros of qðzÞ lie in the closed unit
disk jzj ≤ 1:

Proof. Note that qðzÞ = 1/ðk + 2ÞT ′ðzÞ, where

T zð Þ = zk − e−iθ
� 	

1 + 2z cos γ + z2
� �

: ð29Þ

It is obvious that the roots of ðzk − e−iθÞ lie on the unit cir-
cle. Also, −cos γ ± i sin γ which are the roots of ð1 + 2z cos
γ + z2Þ lie on the unit circle as well. Hence, the result follows
from Lemma 9. ☐

3. Main Results

Theorem 11. Let Pδ =Hδ + Gδ ∈ SCHD be a mapping given by
(4) and f γ = hγ + gγ ∈ S

0
CHD be given by (6) with the dilatation

ωk = gγ′/hγ′ = eiθzkðθ ∈ℝ, k ∈ℕ+Þ: Then Pδ ∗ f γ is univalent
and convex in the horizontal direction.

Proof. By Lemma 6, we need to prove that the dilatation ~ω of
Pδ ∗ f γ satisfies j~ωj < 1 for all z ∈ E. Substituting ω = eiθzk in
(13), we yield

~W zð Þ = 2ω 1 − ωð Þ a − 1 − að Þz cos γ − z2
� �

+ 1 + að Þzω′ 1 + 2z cos γ + z2
� �

2 1 − ωð Þ 1 + 1 − að Þz cos γ − az2½ � + 1 + að Þzω′ 1 + 2z cos γ + z2ð Þ
: ð25Þ

~W zð Þ = 2ω 1 − ωð Þ a − 1 − að Þz cos γ − z2
� �

+ 1 + að Þzω′ 1 + 2z cos γ + z2
� �

2 1 − ωð Þ 1 + 1 − að Þz cos γ − az2½ � + 1 + að Þzω′ 1 + 2z cos γ + z2ð Þ
: ð27Þ

~ω zð Þ = eiθzk 1 − eiθzk
� �

δ − 1ð Þ − 2z cos γ − δ + 1ð Þz2� �
+ δkeiθzk 1 + 2z cos γ + z2

� �
1 − eiθzk
� �

δ + 1ð Þ + 2z cos γ − δ − 1ð Þz2½ � + δkeiθzk 1 + 2z cos γ + z2ð Þ
= e2iθzk

t zð Þ
t∗ zð Þ , ð30Þ
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where

t zð Þ = zk+2 + 2 cos γ
1 + δ

zk+1 + 1 − δ

1 + δ
zk

+ δ k − 1ð Þ − 1
1 + δ

e−iθz2 + 2 kδ − 1ð Þ cos γ
1 + δ

e−iθz

+ δ 1 + kð Þ − 1
1 + δ

e−iθ,

ð31Þ

t∗ zð Þ = 1 + 2 cos γ
1 + δ

z + 1 − δ

1 + δ
z2 + δ k − 1ð Þ − 1

1 + δ
eiθzk

+ 2 kδ − 1ð Þ cos γ
1 + δ

eiθzk+1 + δ 1 + kð Þ − 1
1 + δ

eiθzk+2:

ð32Þ

If we substitute δ = 2/k into (30), then tðzÞ/t∗ðzÞ = e−iθ,
and it is clear that j~ωj < 1 for all z ∈ E: Now, we need to show
that j~ωj < 1 for 0 < δ < 2/k:Obviously, if z0 is a zero tðzÞ, then
1/z0 is zero of t∗ðzÞ: Then, we may write

~ω zð Þ = e2iθzk
z + A1ð Þ z + A2ð Þ⋯ z + Ak+2ð Þ

1 + A1z
� �

1 + A2z
� �

⋯ 1 + Ak+2z
� � : ð33Þ

Using Lemma 4, we only need to show that all zeros of
(31) lie in the closed unit disk for 0 < δ < 2/k: Since ja0,0j = j
ðδð1 + kÞ − 1Þ/ð1 + δÞe−iθj = jðδð1 + kÞ − 1Þ/ð1 + δÞj < jak+2,0j
= 1 for 0 < δ < 2/k, thus we have

t1 zð Þ = ak+2,0t zð Þ − a0,0t
∗ zð Þ

z
= δ k + 2ð Þ 2 − kδð Þ

1 + δð Þ2

�
�
zk+1 + 2 k + 1ð Þ cos γ

k + 2 zk + k
k + 2 z

k−1

−
2

k + 2 e
−iθz −

2 cos γ
k + 2 e−iθ

�
:

ð34Þ

By Lemma 10, we know that all zeros of

q zð Þ = zk+1 + 2 k + 1ð Þ cos γ
k + 2 zk + k

k + 2 z
k−1

−
2

k + 2 e
−iθz −

2 cos γ
k + 2 e−iθ

ð35Þ

lie inside the closed disk. Then, by Cohn’s rule, tðzÞ given by
(31) has all its zeros in the closed unit disk. The proof is com-
plete. ☐

Theorem 12. Let Fa be a mapping given by (2) and f γ = hγ
+ gγ ∈ S

0
CHD be a mapping given by (6) with the dilatation

ωk = gγ′/hγ′ = eiθzkðθ ∈ℝ, k ∈ℕ+Þ: Then, Fa ∗ f γ is univalent
and convex in the horizontal direction for −1 < a ≤ ð2 − kÞ/
ð2 + kÞ:

Proof. By Lemma 8, we need to prove that Fa ∗ f γ is locally

univalent and sense-preserving, i.e., the dilatation ~W of Fa

∗ f γ satisfies ∣ ~WðzÞ ∣ <1 for all z ∈ E. Substituting ω = eiθzk

in (25),

where

u zð Þ = zk+2 + 1 − að Þ cos γzk+1 − azk + 1 + að Þk − 2ð Þ/2e−iθz2
+ k − 1ð Þ + a k + 1ð Þ½ � cos γe−iθz + k + 2ð Þa + kð Þ/2e−iθ,

u∗ zð Þ = 1 + 1 − að Þ cos γz − az2 + 1 + að Þk − 2ð Þ/2eiθzk
+ k − 1ð Þ + a k + 1ð Þ½ � cos γeiθzk+1
+ k + 2ð Þa + kð Þ/2eiθzk+2:

ð37Þ

If we substitute a = ð2 − kÞ/ð2 + kÞ into (36), we yield

~W zð Þ = e2iθzk × zk+2 + 1 − að Þ cos γzk+1 − azk + 1 + að Þk − 2ð Þ/2e−iθz2 + k − 1ð Þ + a k + 1ð Þ½ � cos γe−iθz + k + 2ð Þa + kð Þ/2e−iθ
1 + 1 − að Þ cos γz − az2 + 1 + að Þk − 2ð Þ/2eiθzk + k − 1ð Þ + a k + 1ð Þ½ � cos γeiθzk+1 + k + 2ð Þa + kð Þ/2eiθzk+2

= e2iθzk
u zð Þ
u∗ zð Þ ,

ð36Þ

~W zð Þ = e2iθzk
zk+2 + 2k/ k + 2ð Þ cos γzk+1 − 2 − kð Þ/ k + 2ð Þzk − 2 − kð Þ/ k + 2ð Þe−iθz2 + 2k/ k + 2ð Þ cos γe−iθz + e−iθ

1 + 2k/ k + 2ð Þ cos γz − 2 − kð Þ/ k + 2ð Þz2 − 2 − kð Þ/ k + 2ð Þeiθzk + 2k/ k + 2ð Þ cos γeiθzk+1 + eiθzk+2
= eiθzk: ð38Þ

5Journal of Function Spaces



Hence, ∣ ~WðzÞ ∣ = jeiθzkj < 1:
Next, we will show that ∣ ~WðzÞ ∣ <1 for all −1 < a < ð2 −

kÞ/ð2 + kÞ: If z0 is a zero of uðzÞ, then 1/z0 is zero of u∗ðzÞ;
hence,

~W zð Þ = e2iθzk
u zð Þ
u∗ zð Þ = e2iθzk

� z + A1ð Þ z + A2ð Þ⋯ z + Ak+2ð Þ
1 + A1z
� �

1 + A2z
� �

⋯ 1 + Ak+2z
� � : ð39Þ

By Lemma 4, we need to show that all zeros of uðzÞ lie
inside or on the unit disk for −1 < a < ð2 − kÞ/ð2 + kÞ: Since

a0,0
�� �� = k + 2ð Þa + k

2 e−iθ
����

���� < 1 = ak+2,0
�� �� for − 1 < a < 2 − k

2 + k
,

ð40Þ

from (12), we have

u1 zð Þ = ak+2,0u zð Þ − a0,0u
∗ zð Þ

z

= −
k + 2ð Þ 1 + að Þ k + 2ð Þa + k − 2½ �

4
�
�
zk+1 + 2 k + 1ð Þ cos γ

k + 2 zk + k
k + 2 z

k−1

−
2

k + 2 e
−iθzk −

2 cos γ
k + 2 e−iθ

�

= −
k + 2ð Þ 1 + að Þ k + 2ð Þa + k − 2½ �

4 q zð Þ,

ð41Þ

where

q zð Þ = zk+1 + 2 k + 1ð Þ cos γ
k + 2 zk + k

k + 2 z
k−1

−
2

k + 2 e
−iθz −

2 cos γ
k + 2 e−iθ:

ð42Þ

Because ðk + 2Þð1 + aÞ½ðk + 2Þa + k − 2�/4 ≠ 0 for −1 < a

< ð2 − kÞ/ð2 + kÞ, it follows that both u1ðzÞ and qðzÞ have
the same zeros. By Lemma 10, we know that all zeros of qðzÞ
lie inside the closed unit disk. Then, by Cohn’s rule, we know
that all zeros uðzÞ lie inside or on the boundary of the unit
disk. The proof is completed. ☐

Theorem 13. Let F0 =H0 +G0 ∈ S
0
CHD be a harmonic map-

ping with H0 −G0 = z/ð1 − zÞ and dilatation G0′ðzÞ/H0′ðzÞ =
z. Let f π/2 = hπ/2 + gπ/2 ∈ SCHD be a mapping defined by (6)
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Figure 1: Image of fΠ/2.
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with γ = π/2 and dilatation ωμðzÞ = ðμ + z2Þ/ð1 + μz2Þ,
−1 < μ < 1: Then the mapping F0 ∗ f π/2 is univalent and con-
vex in the horizontal direction.

Proof. Since f π/2 = hπ/2 + gπ/2 ∈ SCHD is a mapping defined by
(6) with γ = π/2, we have

hπ/2 zð Þ − gπ/2 zð Þ = 1
2i log

1 + iz
1 − iz

� �
: ð43Þ

Therefore, we know that

~W zð Þ = G0 ∗ gπ/2ð Þ′
H0 ∗ hπ/2ð Þ′

=
zgπ/2′ − gπ/2
� 	

′

zhπ/2′ + hπ/2
� 	

′

= zgπ/2′′
2hπ/2′ + zhπ/2′′

= z
ωμhπ/2′′ + ωμ

′hπ/2′
2hπ/2′ + zhπ/2′′

:

ð44Þ

Substituting

hπ/2′ zð Þ = 1
ωμ 1 + z2ð Þ ,

hπ/2′′ zð Þ = ωμ
′ 1 + z2
� �

− 2zωμ

1 − ωμ

� �2 1 + z2ð Þ2
,

ð45Þ

into (44) yields

~W zð Þ = z
ω2
μ − ωμ − 1/2ωμ

′z
� 	

+ 1/2ωμ
′1/z

1/z − ωμ − 1/2ωμ
′z

� 	
1/z + 1/2ωμ

′z2
: ð46Þ

Setting ωμðzÞ = ðμ + z2Þ/ð1 + μz2Þ in the above equation,

we get ~WðzÞ = z2, and hence, ∣ ~WðzÞ ∣ <1 for all z ∈ E. ☐

Example 14. Suppose f γ = hγ + gγ ∈ S
0
CHD be given by ((6)). If

we set γ = π/2 and ω1 = −z3 then by shear construction of Clu-
nie and Sheil-Small [2], we have

hγ zð Þ = 1
6 log 1 + zð Þ − i

4 log 1 + iz
1 − iz

� �

+ 1
4 log 1 + z2

� �
−
1
3 log 1 − z + z2

� �
,

gγ zð Þ = 1
6 log 1 + zð Þ + i

4 log 1 + iz
1 − iz

� �

+ 1
4 log 1 + z2

� �
−
1
3 log 1 − z + z2

� �
:

ð47Þ

Recall that, if f = h + �g ∈ SH , then

Pδ ∗ f = δzh′ + h
1 + δ

+ δzg′g
1 + δ

: ð48Þ
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So, we have

Pδ ∗ f γ =
1

1 + δ
δzhγ′ zð Þ + hγ zð Þ
h i

+ 1
1 + δ

δzgγ
′ zð Þgγ zð Þ

h i
= 1
1 + δ



δz

1 + z3ð Þ 1 + z2ð Þ +
1
6 log 1 + zð Þ − i

4 log

� 1 + iz
1 − iz

� �
+ 1
4 log 1 + z2

� �
−
1
3 log 1 − z + z2

� ��

+ 1
1 + δ

"
δz4

1 + z3ð Þ 1 + z2ð Þ
1
6 log 1 + zð Þ i4 log 1 + iz

1iz

� �

� 14 log 1 + z2ð Þ + 1
3 log 1z + z2ð Þ

#

= Re 1
1 + δ

δz 1 − z3
� �

1 + z3ð Þ 1 + z2ð Þ −
i
2 log 1 + iz

1 − iz

� �
 � �

+ i Im
 1
1 + δ



δz

1 + z2
+ 1
3 log 1 + zð Þ

+ 1
2 log 1 + z2

� �
−
2
3 log 1 − z + z2

� ���
:

ð49Þ

Now, in view of Theorem 11, if we set the parameter δ = 2/3,
then Pδ ∗ f γ is univalent and CHD. Also, if we choose δ = 3
/4, then Pδ ∗ f γ is not guaranteed to be univalent. The images
of ∣z ∣ = r < 1 under fΠ/2, P2/3, P2/3 ∗ fΠ/2 and P3/4 ∗ fΠ/2 are
shown in Figures 1–4.

Example 15. Suppose f γ = hγ + gγ ∈ S
0
CHD be given by (6). If

we set γ = 2π/3 and ω2 = z4, then calculations lead to

hγ zð Þ = 1
12 log 1 + zð Þ + 1

4 log 1 + z2

1 − z

� �

−
1
6 log 1 − z + z2

� �
−
i
ffiffiffi
3

p

6 log 1 + ze 2π/3ð Þi

1 + ze −2π/3ð Þi

� �
,

gγ zð Þ = 1
12 log 1 + zð Þ + 1

4 log 1 + z2

1 − z

� �

−
1
6 log 1 − z + z2

� �
+ i

ffiffiffi
3

p

6 log 1 + ze 2π/3ð Þi

1 + ze −2π/3ð Þi

� �
:

ð50Þ

If f = h + �g ∈ SH , then

Fa ∗ f = 1
2

1 + að Þzh′
1 − a

+ h

" #
+ 1
2

1 + að Þzg′
1a g

" #
: ð51Þ

So, we have

Fa ∗ f γ =
1
2

1 + að Þzhγ′
1 − a

+ hγ

" #
+ 1
2

1 + að Þzgγ′
1a gγ

" #

= 1
2

"
1 + að Þz

1 − að Þ 1 − z + z2ð Þ 1 − z4ð Þ + 1
12 log 1 + zð Þ

+ 1
4 log 1 + z2

1 − z

� �
−
1
6 log 1 − z + z2

� �

−
i
ffiffiffi
3

p

6 log 1 + ze 2π/3ð Þi

1 + ze −2π/3ð Þi

� �#

+ 1
2

"
1 + að Þz5

1að Þ 1z + z2ð Þ 1z4ð Þ
1
12 log 1 + zð Þ 14 log 1 + z2

1z

� �

+ 1
6 log 1z + z2ð Þ i

ffiffiffi
3

p

6 log 1 + ze 2π/3ð Þi

1 + ze 2π/3ð Þi

� �#

= Re
(
1
2

"
1 + að Þz 1 + z4

� �
1 − að Þ 1 − z + z2ð Þ 1 − z4ð Þ

−
i
ffiffiffi
3

p

3 log 1 + ze 2π/3ð Þi

1 + ze −2π/3ð Þi

� �#)

+ i Im
 1
2


 1 + að Þz
1 − að Þ 1 − z + z2ð Þ + 1

6 log 1 + zð Þ

+ 1
2 log 1 + z2

1 − z

� �
−
1
3 log 1 − z + z2

� ���
:

ð52Þ
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Now, if we set the parameter a = −1/3, in view of Theorem
11, Fa ∗ f γ is univalent and CHD. If we choose a = −1/4, then
Fa ∗ f γ is not guaranteed to be univalent (see Figures 5–8).

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that there is no conflict of interest.

References

[1] H. Lewy, “On the non-vanishing of the Jacobian in certain
one-to-one mappings,” Bulletin of the American Mathematical
Society, vol. 42, no. 10, pp. 689–693, 1936.

[2] J. Clunie and T. Sheil-Small, “Harmonic univalent functions,”
Annales Academiæ Scientiarum Fennicæ Mathematica, vol. 9,
pp. 3–25, 1984.

[3] P. Duren,Harmonic Mapping in the Plane, Cambridge Univer-
sity Press, Cambridge, 2004.

[4] M. Dorff, “Convolutions of planar harmonic convex map-
pings,” Complex Variables, Theory and Application: An Inter-
national Journal, vol. 45, no. 3, pp. 263–271, 2001.

[5] M. Dorff, M. Nowak, and M. Woloszkiewicz, “Convolutions of
harmonic convex mappings,” Complex Variables and Elliptic
Equations, vol. 57, no. 5, pp. 489–503, 2012.

[6] M. Dorff, S. G. Hamidi, J. M. Jahangiri, and E. Yasar, “Convo-
lutions of planar harmonic strip mappings,” Complex Vari-
ables and Elliptic Equations, pp. 1–18, 2020.

[7] Y. Li and Z. Liu, “Convolutions of harmonic right half-plane
mappings,” Open Mathematics, vol. 14, no. 1, pp. 789–800,
2016.

[8] Z. Liu and Y. Li, “Corrigendum to “the properties of a new
subclass of harmonic univalent mappings”,” Abstract and
Applied Analysis, vol. 2015, Article ID 794108, 2015.

[9] Z. Liu, Y. Jiang, and Y. Sun, “Convolutions of harmonic half-
plane mappings with harmonic vertical strip mappings,” Filo-
mat, vol. 31, no. 7, pp. 1843–1856, 2017.

[10] Z. Liu, Z. Wang, A. Rasila, and Y. Jiang, “Convolutions of har-
monic right half-plane mappings with harmonic strip map-
pings,” Bulletin of the Malaysian Mathematical Sciences
Society, vol. 42, no. 3, pp. 1199–1212, 2019.

[11] C. Singla, S. Gupta, and S. Singh, “An alternative approach to
convolutions of harmonic mappings,” inMathematical Analy-
sis and Computing. ICMAC 2019, R. N. Mohapatra, S. Yugesh,
G. Kalpana, and C. Kalaivani, Eds., vol. 344 of Springer Pro-
ceedings in Mathematics & Statistics, pp. 623–633, Springer,
Singapore, 2021.

[12] E. Yasar, “On convolutions of slanted half-plane mappings,”
Journal of Taibah University for Science, vol. 15, no. 1,
pp. 71–76, 2021.

[13] R. Kumar, S. Gupta, S. Singh, and M. Dorff, “An application of
Cohn's rule to convolutions of univalent harmonic mapping,”
Rocky Mountain Journal of Mathematics, vol. 46, no. 2,
pp. 559–570, 2016.

[14] Z. Wang, Z. Liu, and Y. Li, “On convolutions of harmonic
univalent mappings convex in the direction of the real axis,”
Journal of Applied Analysis & Computation, vol. 6, no. 1,
pp. 145–155, 2016.

[15] E. Yasar and O. Ozdemir, “Convolutions of a subclass of har-
monic univalent mappings,” TWMS Journal of Applied and
Engineering Mathematics, vol. 10, no. 2, pp. 353–359, 2020.

[16] C. Pommerenke, “On starlike and close-to-convex functions,”
Proceedings of the London Mathematical Society, vol. 13,
pp. 290–304, 1963.

[17] P. Duren, Univalent functions, Springer-Verlag, New York,
1983.

[18] Q. I. Rahman and G. Schmeisser, Analytic Theory of Polyno-
mials, Oxford University Press, Oxford, 2002.

[19] M.Marden,Geometry of Polynomials, AmericanMathematical
Society, 1966.

9Journal of Function Spaces



Research Article
Numerical Scheme for Finding Roots of Interval-Valued Fuzzy
Nonlinear Equation with Application in Optimization

Ahmed Elmoasry ,1 Mudassir Shams ,2 Naveed Yaqoob ,2 Nasreen Kausar ,3

Yaé Ulrich Gaba ,4,5,6 and Naila Rafiq 7

1Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Zulfi, Saudi Arabia
2Department of Mathematics and Statistics, Riphah International University I-14, Islamabad 44000, Pakistan
3Department of Mathematics, Yildiz Technical University, Faculty of Arts and Science, Esenler, 34210 İstanbul, Turkey
4Quantum Leap Africa (QLA), AIMS Rwanda Centre, Remera Sector KN 3, Kigali, Rwanda
5Institut de Mathématiques et de Sciences Physiques (IMSP/UAC), Laboratoire de Topologie Fondamentale, Computationnelle et
Leurs Applications (Lab-ToFoCApp), BP 613, Porto-Novo, Benin
6African Center for Advanced Studies, P.O. Box 4477, Yaounde, Cameroon
7Department of Mathematics, NUML, Islamabad, Pakistan

Correspondence should be addressed to Yaé Ulrich Gaba; yaeulrich.gaba@gmail.com

Received 17 June 2021; Accepted 16 July 2021; Published 6 September 2021

Academic Editor: Mohsan Raza

Copyright © 2021 Ahmed Elmoasry et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

In this research article, we propose efficient numerical iterative methods for estimating roots of interval-valued trapezoidal
fuzzy nonlinear equations. Convergence analysis proves that the order of convergence of numerical schemes is 3. Some
real-life applications are considered from optimization as numerical test problems which contain interval-valued trapezoidal
fuzzy quantities in parametric form. Numerical illustrations are given to show the dominance efficiency of the newly
constructed iterative schemes as compared to existing methods in literature.

1. Introduction

One of the ancient problems of science and engineering in
general and in mathematics is to approximate roots of a non-
linear equation. The nonlinear equations play a major role in
the field of engineering, mathematics, physics, chemistry,
economics, medicines finance, and in optimization. Many
times the particular realization of such type of nonlinear
problems involves imprecise and nonprobabilistic uncer-
tainties in the parameter, where the approximations are
known due to expert knowledge or due to some experimental
data. Due to these reasons, several real-world applications
contain vagueness and uncertainties. Therefore, in most of
real-world problems, the parameter involved in the system
or variables of the nonlinear functions are presented by a
fuzzy number or interval-valued trapezoidal fuzzy number.
The concept of fuzzy numbers and arithmetic operation with

fuzzy numbers were first introduced and investigated in
[1–8]. Hence, it is necessary to approximate the roots of
fuzzy nonlinear equation.

F rð Þ = c: ð1Þ

The standard analytical technique like the Buckley and
Qu method [9–12] is not suitable for solving the equations
like

ar6 + br4 − cr3 + dr − e = f , r + cos rð Þ = g, r ln rð Þ + er

−
1

1 + r2
+ tan rð Þ = h,

ð2Þ

where a, b, c, d, e, f , g,and h are fuzzy numbers and r is a
fuzzy variable.
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We therefore look towards numerical iterative schemes
which approximate the roots of fuzzy nonlinear equations.
To approximate roots of fuzzy nonlinear equations, Abbs-
bandy and Asady [13] used Newton’s method, Allahviranloo
and Asari [14] used the Newton-Raphson method, Mosleh
[15] used the Adomian decomposition method, and Ibrahim
et al. give the Levenberg-Marquest method (see also [16–23]).

This research article is aimed at proposing efficient
higher order iterative method as compared to well-known
classical method, such as the Newton-Raphson method.
Numerical test results, CPU time, and log of residual show
the dominance efficiency of our newly constructed method
over the classical Newton’s method.

This paper is organized in five sections. In Section 2, we
recall some fundamental results of interval-valued trapezoi-
dal fuzzy numbers. In Section 3, we propose numerical itera-
tive scheme for approximating roots of interval-valued
trapezoidal fuzzy nonlinear equations and its convergence
analysis. In Section 4, we illustrate some real-world applica-
tions from optimization as numerical test examples to show
the performance and efficiency of the constructed method
and conclusions in the last section. Section 5 is a conclusion
section.

2. Preliminaries

Definition 1. A fuzzy number is a fuzzy set like r  : R⟶
I = ½0, 1� which satisfies [24–27].

(1) r is upper semicontinuous

(2) rðaÞ = 0 outside some interval ½a1, a2�
(3) There are real numbers b1, b2 such that a1 ≤ b1 ≤ b2

≤ a2 and

(i) rðaÞ is monotonic increasing on ½a1, b1�
(ii) rðaÞ is monotonic decreasing on ½b2, a2�

(iii) rðaÞ = 1, for b1 ≤ a ≤ b2

We denote by E, the set of all fuzzy numbers. An equiva-
lent parametric form is also given in [19] as follows.

Definition 2 [28]. A fuzzy number r in parametric form is a
pair ðrL, rUÞ of function rLðτÞ,rUðτÞ,0 ≤ τ ≤ 1, which satisfies
the following requirements:

(1) rLðτÞ is a bounded monotonic increasing left contin-
uous function

(2) rUðτÞ is a bounded monotonic decreasing left contin-
uous function

(3) rLðτÞ ≤ rUðτÞ,0 ≤ τ ≤ 1

A popular fuzzy number is the generalized interval-
valued trapezoidal fuzzy number A, denoted by A = ða1, a2,
a3, a4 ; ŵÞ, 0 < ŵ < 1, a fuzzy number with membership func-
tion as follows:

A rð Þ =

ŵ
r − a1
a2 − a1

if a1 < r < a2,

ŵ if a2 ≤ r ≤ a3,

ŵ
a4 − r
a4 − a3

a3 < r < a4,

0 otherwise:

8>>>>>>>><
>>>>>>>>:

ð3Þ

Assume FTNðŵÞ be the family of all ŵ-trapezoidal fuzzy
number, i.e.,

FTN ŵð Þ =
A = a1, a2, a3, a4 ; ŵð Þ, a1 ≤ a2 ≤ a3 ≤ a4 ;

0 < ŵ < 1

( )
:

ð4Þ

UAU(x)

UAL(x)

𝛼

𝛼

a1u a1L a2L a3L a3u a4L a4ua2uAlu(𝛼) AlL(𝛼) ArL(𝛼) Aru

wU wu

wL
wL

𝛼

𝛼

Figure 1: Alpha-cut level of interval-valued trapezoidal fuzzy number A.
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Definition 3 [29]. Let AL ∈ FTNðw∧LÞ and AU ∈ FTNðw∧UÞA
level ðw∧L,w∧UÞ − interval-valued trapezoidal fuzzy num-
ber A, denoted by

A = AL, AU� �
= aL1 , a

L
2 , a

L
3 , a

L
4 ;w∧

L� �
, aU1 , a

U
2 , a

U
3 , a

U
4 ;w∧U� �� �

,

ð5Þ

is an interval-valued fuzzy number on set R with

AL rð Þ =

w∧L r − aL1
aL2 − aL1

if aL1 < r < aL2 ,

w∧L if aL2 ≤ r ≤ aL3 ,

w∧L aL4 − r

aL4 − aL3
aL3 < r < aL4 ,

0 otherwise,

8>>>>>>>>><
>>>>>>>>>:

lower trapezoidal fuzzy numberð Þ

AU rð Þ =

w∧U r − aU1
aU2 − aU1

if aU1 < r < aU2 ,

w∧U if aU2 ≤ r ≤ aU3 ,

w∧U aU4 − r

aU4 − aU3
aU3 < r < aU4 ,

0 otherwise:

8>>>>>>>>><
>>>>>>>>>:

upper trapezoidal fuzzy numberð Þ

ð6Þ

where aL1 ≤ aL2 ≤ aL3 ≤ aL4 , a
U
1 ≤ aU2 ≤ aU3 ≤ aU4 , 0 ≤w∧L ≤w∧U

≤ 1, aU1 ≤ aL1 , and aL1 ≤ aU4 . This interval-valued trapezoidal
fuzzy number is shown in Figure 1. Moreover, ALðrÞ ≤ AUð
rÞ, which means the grade of membership r ∈A = ½ALðrÞ,
AUðrÞ�, and the latest and greatest grade of membership at
r are ALðrÞ and AUðrÞ, respectively. We therefore denote
the family of all interval-valued trapezoidal fuzzy number

by Fðw∧L,w∧UÞ =A = ½ALðrÞ, AUðrÞ�, i.e.,

F w∧L,w∧U� �
=A = AL rð Þ, AU rð Þ� �

= aL1 , a
L
2 , a

L
3 , a

L
4 ;w∧

L� �
,

��
aU1 , a

U
2 , a

U
3 , a

U
4 ;w∧U� ��

: aU1 ≤ aL1 ; a
L
4 ≤ aU4

AL rð Þ ∈ FTN w∧L� �
, AU rð Þ ∈ FTN w∧U� �

, 0 ≤w∧L ≤w∧U ≤ 1:
ð7Þ

Definition 4 [29]. A ðw∧L,w∧UÞ is said to be nonnegative F
ðw∧L,w∧UÞ iff aU1 ≥ 0 and denoted by F+ðw∧L,w∧UÞ.

Definition 5 [30]. Two ðw∧L,w∧UÞ − interval-valued trape-
zoidal fuzzy numbers.

A = hðaL1 , aL2 , aL3 , aL4 ;w∧LÞ, ðaU1 , aU2 , aU3 , aU4 ;w∧UÞi and B
= hðbL1 , bL2 , bL3 , bL4 ;w∧LÞ, ðbU1 , bU2 , bU3 , bU4 ;w∧UÞi are said to

Step 1. Transform Fðr, τÞ = c into

FL
l ðrLl , rLt , rUl , rUt , τÞ = cLl ðτÞ,

FL
t ðrLl , rLt , rUl , rUt , τÞ = cLt ðτÞ,

FU
l ðrLl , rLt , rUl , rUt , τÞ = cUl ðτÞ,

FU
t ðrLl , rLt , rUl , rUt , τÞ = cUt ðτÞ:

∀τ ∈ ½0, 1�:

8>>>>><
>>>>>:

Step 2. Solve

FL
l ðrLl , rLt , rUl , rUt , τÞ = cLl ðτÞ,

FL
t ðrLl , rLt , rUl , rUt , τÞ = cLt ðτÞ,

FU
l ðrLl , rLt , rUl , rUt , τÞ = cUl ðτÞ,

FU
t ðrLl , rLt , rUl , rUt , τÞ = cUt ðτÞ:

8>>>>><
>>>>>:

for τ = 0 and τ = 1 to obtain initial guess value.

Step 3. Evaluate Fðr, τÞ = c at initial guess point and compute Jacobian matrix J∗, J∗∗:
Step 4. Use MM to compute next iteration

ynðτÞ = rnðτÞ − ðF′ðrnðτÞÞÞ
−1FðrnðτÞÞ,

rn+1ðτÞ = ynðτÞ − Z ∗ ðF′ðrnðτÞÞÞ
−1FðrnðτÞÞ,

∀τ ∈ ½0, 1�,
8<
:
where
Z = ð4J∗∗ − 2J∗Þ−1 ∗ ðJ∗−J∗∗Þ.
Step 5. For given ∈>0, if (i) en = kFðr, τÞk < ∈ and (ii) en = krn+1ðτÞ − rnðτÞk < ∈, then stop.
Step 6. Set k = k + 1 and go to step 1.

Algorithm 1: (MM method).

Table 1

τ
MM NN

rn+1 − rnk k F rnð Þk k rn+1 − rnk k F rnð Þk k
0.0 3.1e-47 1.2e-36 4.1e-10 1.4e-8

0.1 1.1e-43 3.1e-32 3.1e-10 1.1e-8

0.2 1.4e-45 1.1e-32 0.1e-20 8.2e-7

0.3 5.6e-46 3.4e-34 1.7e-10 7.2e-9

0.4 1.3e-41 1.4e-32 1.5e-16 5.5e-9

0.5 4.4e-41 1.7e-32 7.2e-11 4.1e-9

0.6 6.1e-49 7.1e-37 3.2e-11 3.1e-9

0.7 8.1e-47 9.1e-33 4.1e-10 6.2e-9

0.8 1.3e-45 4.1e-32 6.3e-11 7.5e-9

0.9 1.6e-46 6.4e-33 7.8e-11 8.1e-9

1 7.7e-47 6.8e-33 5.1e-12 3.4e-9
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be equal iff A = B, i.e., aLi = bLi and aUi = bUi for all i = 1, 2, 3, 4.

Definition 6. [30]. Extend addition, scalar multiplication, and
extend multiplication in ðw∧L,w∧UÞ interval-valued trape-
zoidal fuzzy number are defined as if A = hðaL1 , aL2 , aL3 , aL4 ;
w∧LÞ, ðaU1 , aU2 , aU3 , aU4 ;w∧UÞi and B = hðbL1 , bL2 , bL3 , bL4 ;w∧LÞ
, ðbU1 , bU2 , bU3 , bU4 ;w∧UÞi∈Fðw∧L,w∧UÞ and k ∈ R; then,

A ⊕ B =
aL1 + bL1 , a

L
2 + bL2 , a

L
3 + bL3 , a

L
4 + bL4 ;w∧

L
	 

aU1 + bU1 , a

U
2 + bU2 , a

U
3 + bU3 , a

U
4 + bU4 ;w∧U

	 

* +

,

kA =

kaL1 , ka
L
2, ka

L
1 , ka

L
1 ;w∧

L
	 


, kaU1 , ka
U
2 , ka

U
1 , ka

U
1 ;w∧U

	 
D E
, k > 0,

kaL4 , ka
L
3, ka

L
2 , ka

L
1 ;w∧

L
	 


, kaU4 , ka
U
3 , ka

U
2 , ka

U
1 ;w∧U

	 
D E
, k < 0,

0, 0, 0, 0 ;w∧L� �
, 0, 0, 0, 0 ;w∧U� �� �

, k = 0,

8>>>><
>>>>:

A ⊗ B =
aL1 ∗ bL1 , a

L
2 ∗ bL2 , a

L
3 ∗ bL3 , a

L
4 ∗ bL4 ;w∧

L
	 

aU1 ∗ bU1 , a

U
2 ∗ bU2 , a

U
3 ∗ bU3 , a

U
4 ∗ bU4 ;w∧U

	 
 , aU1 , b
U
1 ≥ 0

* +
:

ð8Þ

Definition 7 [28]. Let σ, 0 ∈ R. The signed distance between σ
and 0 is dðσ, 0Þ = σ.

Definition 8 [31]. Let A ∈ Fðw∧L,w∧UÞ; then, alpha-cut set of
A denotes and is defined by

A αð Þ = AL αð Þ, AU αð Þ� �
= AU

l αð Þ, AL
l αð Þ� �

∪ AL
t αð Þ, AU

t αð Þ� ��
;

0 ≤ α ≤w∧L AU
l αð Þ, AU

t αð Þ� �
;w∧L ≤ α ≤w∧U ,

ð9Þ

where

AL
l αð Þ = aL1 + aL2 − aL1

� � α

w∧L
,

AL
t αð Þ = aL4 + aL4 − aL3

� � α

w∧L
,

AU
l αð Þ = aU1 + aU2 − aU1

� � α

w∧U
,

AU
t αð Þ = aU4 + aU4 − aU3

� � α

w∧U
,

ð10Þ

3. Construction of Iterative Scheme (MM)

In order to approximate the roots of interval-valued trapezoi-
dal fuzzy nonlinear equation FðrÞ = c, we propose the follow-
ing two-step iterative scheme as follows:

FL
l rLl , r

L
t , r

U
l , r

U
t , τ

� �
= cLl τð Þ,

FL
t rLl , r

L
t , r

U
l , r

U
t , τ

� �
= cLt τð Þ,

FU
l rLl , r

L
t , r

U
l , r

U
t , τ

� �
= cUl τð Þ,

FU
t rLl , r

L
t , r

U
l , r

U
t , τ

� �
= cUt τð Þ:

∀τ ∈ 0, 1½ �:

8>>>>>><
>>>>>>:

ð11Þ

Suppose that r = ðαLl , αLt , αUl , αUt Þ is the solution of above
system and r0 = ðrLl0, rLt0, rUl0, rUt0Þ is approximate solutions of
the system, t denote the alpha-cut parameter; then,

αLl τð Þ = rLl0 τð Þ + h1 τð Þ,
αLl τð Þ = rLt0 τð Þ + k1 τð Þ,
αUl τð Þ = rUl0 τð Þ + h2 τð Þ,
αUt τð Þ = rUt0 τð Þ + k2 τð Þ:

8>>>>><
>>>>>:

ð12Þ

By using Taylor’s series of FL
l , FL

t , FU
l , FU

t about ðrLl0ðτÞ,
rLt0ðτÞ, rUl0ðτÞ, rUt0ðτÞÞ, then we have the following:

Table 2: Analytical solution for Example 1.

τ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

rUl 0.9172 0.9268 0.9368 0.9473 0.9581 0.9694 0.9812 0.9936 1.0065 1.0200 1.0342

rLl 1.0000 1.0096 1.0197 1.0304 1.0418 1.0538 1.0666 1.0802 1.0947 1.1102 1.1269

rLt 1.2749 1.2394 1.2080 1.1800 1.1547 1.1318 1.1109 1.0918 1.0743 1.0581 1.0430

rUt 1.4371 1.3974 1.3620 1.3301 1.3012 1.2749 1.2507 1.2285 1.2080 1.1890 1.1712

Table 3

τ
MM NN

rn+1 − rnk k F rnð Þk k rn+1 − rnk k F rnð Þk k
0.0 4.0e-49 4.0e-33 1.7e-13 1.7e-11

0.1 5.6e-47 5.6e-32 3.4e-13 1.2e-11

0.2 3.1e-43 8.8e-33 6.1e-14 3.6e-11

0.3 5.4e-48 6.1e-36 5.1e-13 7.1e-11

0.4 6.1e-49 7.9e-35 4.4e-14 5.6e-12

0.5 3.7e-48 4.0e-33 4.3e-13 3.4e-11

0.6 1.6e-48 8.2e-33 1.7e-13 4.6e-11

0.7 3.6e-49 4.3e-33 3.7e-13 6.7e-11

0.8 1.2e-49 3.6e-34 7.1e-14 5.6e-11

0.9 7.5e-46 8.9e-34 8.7e-14 1.2e-11

1 8.1e-49 6.1e-35 9.1e-14 5.1e-11
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If ðrLl0ðτÞ, rLt0ðτÞ, rUl0ðτÞ, rUt0ðτÞÞ are close to ðαLl ðτÞ, αLl ðτÞ
, αUl ðτÞ, αUt ðτÞÞ, then h1ðτÞ, k1ðτÞ, h2ðτÞ, k2ðτÞ are small

enough. Assume all partial derivatives of h1ðτÞ, k1ðτÞ, h2ðτÞ
, k2ðτÞ exist and bounded; then, we have the following:

Since h1ðτÞ, k1ðτÞ, h2ðτÞ, k2ðτÞ are unknown quantities,
they are obtained by solving the following equations:

J∗ rLl0, r
L
t0, r

U
l0, r

U
t0, τ

� �
h1 τð Þ
k1 τð Þ
h2 τð Þ
k2 τð Þ

2
666664

3
777775 =

cLl τð Þ − FL
l rLl0, r

L
t0, r

U
l0 , r

U
t0, τ

� �
cLt τð Þ − FL

t rLl0, r
L
t0, r

U
l0 , r

U
t0, τ

� �
cUl τð Þ − FU

l rLl0, r
L
t0, r

U
l0, r

U
t0, τ

� �
cUt τð Þ − FU

t rLl0, r
L
t0, r

U
l0, r

U
t0, τ

� �

2
6666664

3
7777775
,

ð15Þ

where

FL
l αLl , α

L
t , α

U
l , α

U
t , τ

� �
= FL

l rLl0, r
L
t0, r

U
l0, r

U
l0, τ

� �
+ h1F

L
l rLl0

rLl0, r
L
t0, r

U
l0, r

U
t0, τ

� �
+ k1F

L
l rLt0

rLl0, r
L
t0, r

U
l0, r

U
t0, τ

� �
+ h2F

L
l rUl0

rLl0, r
L
t0, r

U
l0, r

U
t0, τ

� �
+ k2F

L
l rUt0

rLl0, r
L
t0, r

U
l0, r

U
t0, τ

� �
+O h1, k1, h2, k2ð Þ2� �

,

FL
t αLl , α

L
t , α

U
l , α

U
t , τ

� �
= FL

t rLl0, r
L
t0, r

U
l0, r

U
l0, τ

� �
+ h1F

L
t rLl0

rLl0, r
L
t0, r

U
l0, r

U
t0, τ

� �
+ k1F

L
t rLt0

rLl0, r
L
t0, r

U
l0, r

U
t0, τ

� �
+ h2F

L
t rUl0

rLl0, r
L
t0, r

U
l0, r

U
t0, τ

� �
+ k2F

L
t rUt0

rLl0, r
L
t0, r

U
l0, r

U
t0, τ

� �
+O h1, k1, h2, k2ð Þ2� �

,

FU
l αLl , α

L
t , α

U
l , α

U
t , τ

� �
= FU

l rLl0, r
L
t0, r

U
l0, r

U
l0, τ

� �
+ h1F

U
l rLl0

rLl0, r
L
t0, r

U
l0, r

U
t0, τ

� �
+ k1F

U
l rLt0

rLl0, r
L
t0, r

U
l0, r

U
t0, τ

� �
+ h2F

U
l rUl0

rLl0, r
L
t0, r

U
l0, r

U
t0, τ

� �
+ k2F

U
l rUt0

rLl0, r
L
t0, r

U
l0 , r

U
t0, τ

� �
+O h1, k1, h2, k2ð Þ2� �

,

FU
t αLl , α

L
t , α

U
l , α

U
t , τ

� �
= FU

t rLl0, r
L
t0, r

U
l0, r

U
l0, τ

� �
+ h1F

U
t rLl0

rLl0, r
L
t0, r

U
l0, r

U
t0, τ

� �
+ k1F

U
t rLt0

rLl0, r
L
t0, r

U
l0, r

U
t0, τ

� �
+ h2F

U
t rUl0

rLl0, r
L
t0, r

U
l0, r

U
t0, τ

� �
+ k2F

U
t rUt0

rLl0, r
L
t0, r

U
l0 , r

U
t0, τ

� �
+O h1, k1, h2, k2ð Þ2� �

:

8>>>>>>><
>>>>>>>:

ð13Þ

FL
l rLl0, r

L
t0, r

U
l0, r

U
l0 , τ

� �
+ h1F

L
l rLl0

rLl0, r
L
t0, r

U
l0, r

U
t0, τ

� �
+ k1F

L
l rLt0

rLl0, r
L
t0, r

U
l0, r

U
t0, τ

� �
+ h2F

L
l rUl0

rLl0, r
L
t0, r

U
l0, r

U
t0, τ

� �
+ k2F

L
l rUt0

rLl0, r
L
t0, r

U
l0 , r

U
t0, τ

� �
= cLl τð Þ,

FL
t rLl0, r

L
t0, r

U
l0, r

U
l0 , τ

� �
+ h1F

L
t rLl0

rLl0, r
L
t0, r

U
l0, r

U
t0, τ

� �
+ k1F

L
t rLt0

rLl0, r
L
t0, r

U
l0, r

U
t0, τ

� �
+ h2F

L
t rUl0

rLl0, r
L
t0, r

U
l0, r

U
t0, τ

� �
+ k2F

L
t rUt0

rLl0, r
L
t0, r

U
l0 , r

U
t0, τ

� �
= cLt τð Þ,

FU
l rLl0, r

L
t0, r

U
l0, r

U
l0 , τ

� �
+ h1F

U
l rLl0

rLl0, r
L
t0, r

U
l0, r

U
t0, τ

� �
+ k1F

U
l rLt0

rLl0, r
L
t0, r

U
l0, r

U
t0, τ

� �
+ h2F

U
l rUl0

rLl0, r
L
t0, r

U
l0, r

U
t0, τ

� �
+ k2F

U
l rUt0

rLl0, r
L
t0, r

U
l0 , r

U
t0, τ

� �
= cLl τð Þ,

FU
t rLl0, r

L
t0, r

U
l0, r

U
l0 , τ

� �
+ h1F

U
t rLl0

rLl0, r
L
t0, r

U
l0, r

U
t0, τ

� �
+ k1F

U
t rLt0

rLl0, r
L
t0, r

U
l0, r

U
t0, τ

� �
+ h2F

U
t rUl0

rLl0, r
L
t0, r

U
l0, r

U
t0, τ

� �
+ k2F

U
t rUt0

rLl0, r
L
t0, r

U
l0 , r

U
t0, τ

� �
= cLt τð Þ:

8>>>>>>><
>>>>>>>:

ð14Þ

J∗ =

FL
l rLl0

rLl0, r
L
t0, r

U
l0, r

U
t0, τ

� �
FL
l rLt0

rLl0, r
L
t0, r

U
l0, r

U
t0, τ

� �
FL
l rUl0

rLl0, r
L
t0, r

U
l0, r

U
t0, τ

� �
FL
l rUt0

rLl0, r
L
t0, r

U
l0, r

U
t0, τ

� �
FL
t rLl0

rLl0, r
L
t0, r

U
l0, r

U
t0, τ

� �
FL
t rLt0

rLl0, r
L
t0, r

U
l0, r

U
t0, τ

� �
FL
t rUl0

rLl0, r
L
t0, r

U
l0, r

U
t0, τ

� �
FL
t rUt0

rLl0, r
L
t0, r

U
l0, r

U
t0, τ

� �
FU
l rLl0

rLl0, r
L
t0, r

U
l0, r

U
t0, τ

� �
FU
l rLt0

rLl0, r
L
t0, r

U
l0, r

U
t0, τ

� �
FU
l rUl0

rLl0, r
L
t0, r

U
l0, r

U
t0, τ

� �
FU
l rUt0

rLl0, r
L
t0, r

U
l0, r

U
t0, τ

� �
FU
t rLl0

rLl0, r
L
t0, r

U
l0, r

U
t0, τ

� �
FU
t rLt0

rLl0, r
L
t0, r

U
l0, r

U
t0, τ

� �
FU
t rUl0

rLl0, r
L
t0, r

U
l0, r

U
t0, τ

� �
FU
t rUt0

rLl0, r
L
t0, r

U
l0, r

U
t0, τ

� �

2
66666664

3
77777775
:

yLl0 τð Þ
yLt0 τð Þ
yUl0 τð Þ
yUt0 τð Þ

2
666664

3
777775 =

rLl0 τð Þ
rLt0 τð Þ
rUl0 τð Þ
rUt0 τð Þ

2
666664

3
777775 +

h1 τð Þ
k1 τð Þ
h2 τð Þ
k2 τð Þ

2
666664

3
777775,
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J∗ = J∗ðrLln, rLtn, rUln, rUtn, τÞ, J∗∗ = J∗∗ðyLln, yLtn, yUln, yUtn, τÞ,
and the next approximation for rLl ðτÞ, rLt ðτÞ, rUl ðτÞ, rUt ðτÞ is
found by using recursive scheme as follows:

rLl n+1ð Þ τð Þ
rLt n+1ð Þ τð Þ
rUl n+1ð Þ τð Þ
rUt n+1ð Þ τð Þ

2
66666664

3
77777775
=

yLl nð Þ τð Þ
yLt nð Þ τð Þ
yUl nð Þ τð Þ
yUt nð Þ τð Þ

2
66666664

3
77777775
+ Z ∗

h1n τð Þ
k1n τð Þ
h2n τð Þ
k2n τð Þ

2
666664

3
777775,

yLl nð Þ τð Þ
yLt nð Þ τð Þ
yUl nð Þ τð Þ
yUt nð Þ τð Þ

=

rLl nð Þ τð Þ
rLt nð Þ τð Þ
rUl nð Þ τð Þ
rUt nð Þ τð Þ

2
66666664

3
77777775
+

h1n τð Þ
k1n τð Þ
h2n τð Þ
k2n τð Þ

2
666664

3
777775,

Z = 4J∗∗ yLl nð Þ, y
L
t nð Þ, y

U
l nð Þ, y

U
t nð Þ, τ

	 

− 2J∗ rLl nð Þ, r

L
t nð Þ, r

U
l nð Þ, r

U
t nð Þ, τ

	 
	 
−1
∗ Jð ∗ yLl nð Þ, y

L
t nð Þ, y

U
l nð Þ, y

U
t nð Þ, τ

	 

−J∗∗ rLl nð Þ, r

L
t nð Þ, r

U
l nð Þ, r

U
t nð Þ, τ

	 

,

J∗ rLln, r
L
tn, r

U
ln, r

U
tn, τ

� �
h1n τð Þ
k1n τð Þ
h2n τð Þ
k2n τð Þ

2
666664

3
777775 =

cLl τð Þ − FL
l rLln, r

L
tn, r

U
ln, r

U
tn, τ

� �
cLt τð Þ − FL

t rLln, r
L
tn, r

U
ln, r

U
tn, τ

� �
cUl τð Þ − FU

l rLln, r
L
tn, r

U
ln, r

U
tn, τ

� �
cUt τð Þ − FU

t rLln, r
L
tn, r

U
ln, r

U
tn, τ

� �

2
6666664

3
7777775
,

rLl1 τð Þ
rLt1 τð Þ
rUl1 τð Þ
rUt1 τð Þ

2
666664

3
777775 =

yLl0 τð Þ
yLt0 τð Þ
yUl0 τð Þ
yUt0 τð Þ

2
666664

3
777775 + Z ∗

h1 τð Þ
k1 τð Þ
h2 τð Þ
k2 τð Þ

2
666664

3
777775,

Z = 4J∗∗ yLl0, y
L
t0, y

U
l0, y

U
t0, τ

� �
− 2J∗ rLl0, r

L
t0, r

U
l0, r

U
t0, τ

� �� �−1 ∗ Jð ∗ yLl0, y
L
t0, y

U
l0, y

U
t0, τ

� �
−J∗∗ rLl0, r

L
t0, r

U
l0, r

U
t0, τ

� �
,

J∗∗ =

FL
l yLl0

yLl0, y
L
t0, y

U
l0, y

U
t0, τ

� �
FL
l yLt0

yLl0, y
L
t0, y

U
l0, y

U
t0, τ

� �
FL
l yUl0

yLl0, y
L
t0, y

U
l0, y

U
t0, τ

� �
FL
l yUt0

yLl0, y
L
t0, y

U
l0, y

U
t0, τ

� �
FL
t yLl0

yLl0, y
L
t0, y

U
l0, y

U
t0, τ

� �
FL
t yLt0

yLl0, y
L
t0, y

U
l0, y

U
t0, τ

� �
FL
t yUl0

yLl0, y
L
t0, y

U
l0, y

U
t0, τ

� �
FL
t yUt0

yLl0, y
L
t0, y

U
l0, y

U
t0, τ

� �
FU
l yLl0

yLl0, y
L
t0, y

U
l0, y

U
t0, τ

� �
FU
l yLt0

yLl0, y
L
t0, y

U
l0, y

U
t0, τ

� �
FU
l yUl0

yLl0, y
L
t0, y

U
l0, y

U
t0, τ

� �
FU
l yUt0

yLl0, y
L
t0, y

U
l0, y

U
t0, τ

� �
FU
t yLl0

yLl0, y
L
t0, y

U
l0, y

U
t0, τ

� �
FU
t yLt0

yLl0, y
L
t0, y

U
l0, y

U
t0, τ

� �
FU
t yUl0

yLl0, y
L
t0, y

U
l0, y

U
t0, τ

� �
FU
t yUt0

yLl0, y
L
t0, y

U
l0, y

U
t0, τ

� �

2
66666664

3
77777775
: ð16Þ
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For initial guess, one can use the fuzzy number

r0 = rUl0 0ð Þ, rLl0 0ð Þ� �
, rLl0 1ð Þ, rLt0 1ð Þ, rUl0 1ð Þ, rUt0 1ð Þ, rLt0 0ð ÞrUt0 0ð ÞÞ,

ð18Þ

Remark 9. Sequence fðrLln, rLtn, rUln, rUtnÞg∞n=0 converges to ðαLl ,
αLt , αUl , αUt Þ iff ∀τ ∈ ½0, 1�, limn⟶∞rLlnðτÞ = αLl ðτÞ, limn⟶∞
rLtnðτÞ = αLt ðτÞ, limn⟶∞rUlnðτÞ = αUl ðτÞ, and limn⟶∞rUtnðτÞ
= αUt ðτÞ.

Lemma 10. Let FðαLl , αLt , αUl , αUt Þ = ðcLl , cLt , cUl , cUt Þ, and if the
sequence of fðrLln, rLtn, rUln, rUtnÞg∞n=0 converges to ðαLl , αLt , αUl ,
αUt Þ according to Newton’s method, then

lim
n⟶∞

Pn = 0, ð19Þ

where

Pn = sup
0≤τ≤1

max h1n τð Þ, k1n τð Þ, h2n τð Þ, k2n τð Þf g: ð20Þ

Proof. It is obvious, because for all ∀τ ∈ ½0, 1� in convergent
case,

lim
n⟶∞

h1n τð Þ = lim
n⟶∞

k1n τð Þ = lim
n⟶∞

h2n τð Þ = lim
n⟶∞

k2n τð Þ = 0:

ð21Þ

Hence, it is proved. ☐

Finally, it is shown that under certain condition, the MM
method for fuzzy equation FðrÞ = 0 is cubic convergent. In
compact form for FðrÞ = 0, the MM method can be written

as follows:

yn τð Þ = rn τð Þ − F′ rn τð Þð Þ
	 
−1

F rn τð Þð Þ,

rn+1 τð Þ = yn τð Þ − Z ∗ F′ rn τð Þð Þ
	 
−1

F rn τð Þð Þ,
∀τ ∈ 0, 1½ �,

8>><
>>:

ð22Þ

where

Z = 4J∗∗ − 2J∗ð Þ−1 ∗ J∗−J∗∗ð Þ: ð23Þ

Theorem 11. Let F : H ⊆ Rn ⟶ Rn, be u-times Frĕchet dif-
ferential function on a convex set H containing the root α of
FðrÞ = 0; then, the MMmethod has cubic convergence and sat-
isfies the following error equation.

en+1 = 2 ∗ A2ð Þ2 − 1
2
A3 − 4 A2ð Þ2

� �
enð Þ3 + O enð Þ4 , ð24Þ

where An = 1/2!∗Fðrn, τÞ/F′ðrn, τÞ, n = 2, 3,⋯.

Proof. Let en = rn − α and en+1 = rn+1 − α, then by Taylor
series of Fðrn, τÞ in the neighborhood of α if J∗ and J∗∗ exist.
Then,

F r, τð Þ = F rn, τð Þ + F′ rn, τð Þ r − rnð Þ + 1
2!
F′′ rn, τð Þ r − rnð Þ2+:⋯

ð25Þ

and Fðr, αÞ = 0:

F rn, τð Þ = F′ r, ξð Þ en +A2 enð Þ2 +A3 enð Þ3� �
+ O enð Þ4 :

ð26Þ

J∗ =

FL
l rLln

rLln, r
L
tn, r

U
ln, r

U
tn, τ

� �
FL
l rLtn

rLln, r
L
tn, r

U
ln, r

U
tn, τ

� �
FL
l rUln

rLln, r
L
tn, r

U
ln, r

U
tn, τ

� �
FL
l rUtn

rLln, r
L
tn, r

U
ln, r

U
tn, τ

� �
FL
t rLln

rLln, r
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tn, r

U
ln, r

U
tn, τ

� �
FL
t rLtn

rLln, r
L
tn, r

U
ln, r

U
tn, τ

� �
FL
t rUln

rLln, r
L
tn, r

U
ln, r

U
tn, τ

� �
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t rUtn

rLln, r
L
tn, r

U
ln, r

U
tn, τ

� �
FU
l rLln

rLln, r
L
tn, r

U
ln, r

U
tn, τ

� �
FU
l rLtn

rLln, r
L
tn, r

U
ln, r

U
tn, τ

� �
FU
l rUln

rLln, r
L
tn, r

U
ln, r

U
tn, τ

� �
FU
l rUtn

rLln, r
L
tn, r

U
ln, r

U
tn, τ

� �
FU
t rLln

rLln, r
L
tn, r

U
ln, r

U
tn, τ

� �
FU
t rLtn

rLln, r
L
tn, r

U
ln, r
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tn, τ

� �
FU
t rUln

rLln, r
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tn, r

U
ln, r

U
tn, τ

� �
FU
t rUtn

rLln, r
L
tn, r

U
ln, r

U
tn, τ

� �

2
66666664

3
77777775
,

J∗∗ =

FL
l yLln

yLln, y
L
tn, y

U
ln, y

U
tn, τ

� �
FL
l yLtn

yLln, y
L
tn, y

U
ln, y

U
tn, τ

� �
FL
l yUln

yLln, y
L
tn, y

U
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tn, τ

� �
FL
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FL
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FL
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� �
FL
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� �
FU
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� �
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� �
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� �
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U
tn, τ

� �

2
66666664

3
77777775
,∀τ ∈ 0, 1½ �:

ð17Þ
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This gives

F′ rn, τð Þ
	 
−1

F rn, τð Þ = en +A2 enð Þ2 + 2A2 + 2A3ð Þ enð Þ3+⋯,

yn − α =A2 enð Þ2 + −2A2 + 2A3ð Þ enð Þ3+:⋯
ð27Þ

Expanding F′ðyn, τÞ about α, we have the following:

F′ yn, τð Þ = 1 + 2 A2ð Þ2 enð Þ2 + 2 −2 A2ð Þ2 + 2A3
� �

enð Þ3+⋯,

Z ∗ F′ rn, τð Þ
	 
−1

F rn, τð Þ = −A2 enð Þ2 + 4 A2ð Þ2 − 3
2
A3 − 4 A2ð Þ2

� �
enð Þ3+⋯,

rn+1 − α = yn − α −A2 enð Þ2 + 4 A2ð Þ2 − 3
2
A3 − 4 A2ð Þ2

� �
enð Þ3+⋯,

en+1 = 2 ∗ A2ð Þ2 − 1
2
A3 − 4 A2ð Þ2

� �
enð Þ3 + O enð Þ4 :

ð28Þ

Hence, the theorem is proved. ☐

A well-known existing method in literature for solving
triangular fuzzy nonlinear equation is classical Newton
Raphson’s method. Interval-valued trapezoidal fuzzy version
of well-known Newton method [13] (abbreviated as NN) for
finding roots of interval-valued trapezoidal fuzzy nonlinear
equation is as follows:

rLl n+1ð Þ τð Þ
rLt n+1ð Þ τð Þ
rUl n+1ð Þ τð Þ
rUt n+1ð Þ τð Þ

2
66666664

3
77777775
=

rLl nð Þ τð Þ
rLt nð Þ τð Þ
rUl nð Þ τð Þ
rUt nð Þ τð Þ

2
66666664

3
77777775
+

h1n τð Þ
k1n τð Þ
h2n τð Þ
k2n τð Þ

2
666664

3
777775, ð29Þ

where

J∗ rLln, r
L
tn, r

U
ln, r

U
tn, τ

� �
h1n τð Þ
k1n τð Þ
h2n τð Þ
k2n τð Þ

2
666664

3
777775 =

cLl τð Þ − FL
l rLln, r

L
tn, r

U
ln, r

U
tn, τ

� �
cLt τð Þ − FL

t rLln, r
L
tn, r

U
ln, r

U
tn, τ

� �
cUl τð Þ − FU

l rLln, r
L
tn, r

U
ln, r

U
tn, τ

� �
cUt τð Þ − FU

t rLln, r
L
tn, r

U
ln, r

U
tn, τ

� �

2
6666664

3
7777775
:

ð30Þ

4. Numerical Applications

Here, we present examples to illustrate the performance and
efficiency of MM and NN methods for approximating roots
of interval-valued trapezoidal fuzzy nonlinear equations.
Examples 1–3 are considered from Buckley and Qu [9]. All
the computations are performed using CAS Maple 18 with
64 digits floating point arithmetic with stopping criteria as
follows. Analytical, numerical approximate solutions, com-
putational order of convergence [32], computational time
in second, and residual error graph of interval-valued trape-
zoidal fuzzy nonlinear equation used in Examples 1–3 are
shown in Figures 2–8(a) and 8(c), respectively. Algorithm 1
shows the implementation of MM iterative method on CAS
Maple18.

ið Þ en = F r, τð Þk k < ∈  iið Þ en = rn+1 τð Þ − rn τð Þk k < ∈, ð31Þ

where en represents the absolute error. We take ∈ = 10−15.
In Figure 2, left shows analytical solution of interval-

valued trapezoidal fuzzy nonlinear equation used in Example

Table 4: Analytical solution for Example 2.

τ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

rUl 0.6433 0.6437 0.6440 0.6443 0.6446 0.6450 0.6453 0.6457 0.6460 0.6464 0.6468

rLl 0.6450 0.6454 0.6458 0.6463 0.6467 0.6472 0.6477 0.6482 0.6487 0.6493 0.6498

rLt 0.6616 0.6606 0.6596 0.6586 0.6577 0.6568 0.6560 0.6552 0.6544 0.6537 0.6530

rUt 0.6666 0.6655 0.6645 0.6635 0.6625 0.6616 0.6607 0.6599 0.6591 0.6583 0.6576

Table 5

τ
MM NN

rn+1 − rnk k F rnð Þk k rn+1 − rnk k F rnð Þk k
0.0 2.8e-43 5.4e-33 1.1e-9 1.6e-7

0.1 3.8e-44 3.0e-33 7.6e-10 3.4e-7

0.2 4.7e-43 5.8e-33 3.5e-10 4.2e-7

0.3 9.1e-43 2.7e-33 6.1e-11 6.1e-7

0.4 6.2e-50 5.6e-39 5.1e-12 5.8e-7

0.5 3.6e-51 6.1e-38 4.6e-11 6.5e-7

0.6 4.8e-50 7.8e-39 3.1e-11 8.9e-7

0.7 9.1e-51 3.6e-39 4.2e-11 1.3e-7

0.8 8.1e-48 8.4e-40 7.7e-11 4.1e-7

0.9 9.8e-49 3.5e-39 5.1e-11 5.6e-7

1 6.1e-52 4.0e-38 3.3e-11 1.2e-7
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1, center shows for Example 2, and right shows for Example
3, respectively.

Figure 3 shows computational order of convergence of
iterative methods MM and NN for finding roots of interval-
valued trapezoidal fuzzy nonlinear equations used in Exam-
ples 1–3, respectively.

In Figure 3, MM1-MM4 and NN1-NN4 show computa-
tional order of convergence of iterative method MM and
NN for approximating roots of interval-valued trapezoidal
fuzzy nonlinear equations used in Examples 1–3,
respectively.

Figure 4 shows computational time in seconds of iterative
methods MM and NN for finding roots of interval-valued
trapezoidal fuzzy nonlinear equations used in Examples 1–
3, respectively.

In Figure 4, MM1-MM4 and NN1-NN4 show computa-
tional time in seconds of iterative method MM and NN for
finding roots of interval-valued trapezoidal fuzzy nonlinear
equation used in Examples 1–3, respectively.

Example 1 Application in optimization (a profit maximiza-
tion problem). A corporation company wishes to invest one
million dollar A1 = hð10, 20, 30, 40 ; 2/3Þ, ð5, 15, 35, 43 ; 1Þi
at fuzzy interest rate r to earn maximum profit, so that after
a year, they may withdraw 25000$ S1 = hð45, 55, 75, 95 ; 2/3Þ
, ð80, 90, 110, 120 ; 1Þi approximately and after two years
900000$ S2 = hð10, 15, 20, 25 ; 2/3Þ, ð5, 10, 25, 47 ; 1Þi left.
Find r so that A1 will be sufficient to cover S1 and S2: where
r is an interval-valued trapezoidal fuzzy number whose sup-
port lies between ½0, 1� After a year, the amount in the
account will be

A1 − S1ð Þ + A1r τð Þ: ð32Þ

At the end of second year, total amount left is

A1 − S1ð Þ + A1 ∗ r τð Þ + A1 − S1ð Þ − A1 ∗ r τð Þð Þr τð Þ, ð33Þ

or

A1 r τð Þ2� �
+ B ∗ r τð Þ +D, ð34Þ

where B = 2A1 − S1 and D = A1 − S1. Therefore, we have to
solve

A1 ∗ r τð Þð Þ2 + B ∗ r τð Þ +D = S2, ð35Þ

or

A1 ∗ r τð Þ2� �
+ B ∗ r τð Þ = C, ð36Þ

where C = S2 −D. For fuzzy interest rate substituting values
of A1, B, and C in above equation, we have the following:

10, 20, 30, 40 ;
2
3

� �
, 5, 15, 35, 45 ; 1ð Þ

� �
r τð Þ2� �

+ 50, 60, 70, 80 ;
2
3

� �
, 45, 55, 75, 95 ; 1ð Þ

� �
r τð Þ

= 80, 90, 110, 120 ;
2
3

� �
, 75, 85, 115, 125 ; 1ð Þ

� �
:

ð37Þ

Without any loss of generality, assume that r is positive;
then, the parametric form of this equation is as follows:

10 + 15τ, 40 − 15τð Þ, 5 + 10τ, 45 − 10τð Þh i r τð Þð Þ2�
+ 50 + 15τ, 80 − 15τð Þ, 45 + 10τ, 95 − 20τð Þh ir τð Þ

= 80 + 15τ, 120 − 15τð Þ, 75 + 10τ, 125 − 10τð Þh i,

10 + 15τð Þ rLl τð Þ� �2 + 50 + 15τð ÞrLl τð Þ = 80 + 15τð Þ,
40 − 15τð Þ rLt τð Þ� �2 + 80 − 15τð ÞrLt τð Þ = 120 − 15τð Þ,
5 + 10τð Þ rUl τð Þ� �2 + 45 + 10τð ÞrUl τð Þ = 75 + 10τð Þ,
45 − 10τð Þ rUt τð Þ� �2 + 95 − 20τð ÞrUt τð Þ = 125 − 10τð Þ:

8>>>>>>><
>>>>>>>:

ð38Þ

Table 1 clearly shows the dominance behavior of MM
over NN in terms of absolute error on the same number of
iterations n = 4 for Example 1.

Table 2 shows analytical solutions for Example 1.
Figure 5 shows initial guessed values, analytical, and

numerical approximate solution graph of iterative methods
MM and NN for interval-valued trapezoidal fuzzy nonlinear
equation used in Example 1.

Table 6: Analytical solution for Example 3.

τ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

rUl 0.3173 0.3266 0.3355 0.3440 0.3522 0.3600 0.3675 0.3747 0.3817 0.3883 0.3947

rLl 0.3600 0.3690 0.3775 0.3857 0.3935 0.4009 0.4080 0.4148 0.4213 0.4276 0.4336

rLt 0.5005 0.4971 0.4935 0.4898 0.4860 0.4821 0.4780 0.4738 0.4694 0.4648 0.4601

rUt 0.5137 0.5112 0.5087 0.5060 0.5033 0.5005 0.4977 0.4947 0.4917 0.4886 0.4854
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To obtain initial guess, we use above system for τ = 0 and
τ = 1; therefore,

10 rLl
� �2 0ð Þ + 50rLl 0ð Þ = 80,

40 rLt
� �2 0ð Þ + 80rLt 0ð Þ = 120,

5 rUl
� �2 0ð Þ + 45rUl 0ð Þ = 75,

45 rUt
� �2 0ð Þ + 95rUt 0ð Þ = 125,

8>>>>>>><
>>>>>>>:

25 rLl
� �2 1ð Þ + 65rLl 1ð Þ = 95,

25 rLt
� �2 1ð Þ + 65rLt 1ð Þ = 105,

15 rUl
� �2 1ð Þ + 55rUl 1ð Þ = 85,

35 rUt
� �2 1ð Þ + 75rUt 1ð Þ = 115:

8>>>>>>><
>>>>>>>:

ð39Þ

Consequently, rUl ð0Þ = 0:5, rLl ð0Þ = 0:5, rLt ð0Þ = 0:5, rUt ð0
Þ = 0:5, and rUl ð0Þ = rLl ð0Þ = rLt ð0Þ = rUt ð0Þ = 1/2. After 4 itera-
tions, we obtain the solution with the maximum error less
than 10−30. Now suppose r is negative, we have the following:

10 + 15τð Þ rLl τð Þ� �2 + 50 + 15τð ÞrLt τð Þ = 80 + 15τð Þ,
40 − 15τð Þ rLt τð Þ� �2 + 80 − 15τð ÞrLl τð Þ = 120 − 15τð Þ,
5 + 10τð Þ rUl τð Þ� �2 + 45 + 10τð ÞrUt τð Þ = 75 + 10τð Þ,
45 − 10τð Þ rUt τð Þ� �2 + 95 − 20τð ÞrUl τð Þ = 125 − 10τð Þ:

8>>>>>>><
>>>>>>>:

ð40Þ

For τ = 0, we have rLl ð0Þ > rLt ð0Þ; therefore negative root
does not exist.

Example 2. Consider the interval-valued trapezoidal fuzzy
nonlinear equation

0:65, 0:73, 0:87, 0:95 ;
2
3

� �
, 0:6, 0:7, 0:9, 1 ; 1ð Þ

� �
r τð Þð Þ2

+ 0:25, 0:33, 0:47, 0:55 ;
2
3

� �
, 0:2, 0:3, 0:5, 0:6 ; 1ð Þ

� �
r τð Þ

= 0:45, 0:53, 0:67, 0:75 ;
2
3

� �
, 0:4, 0:5, 0:7, 0:8 ; 1ð Þ

� �
:

ð41Þ

Without any loss of generality, assume that r is positive;
then, the parametric form of this equation is as follows:

0:65 + 0:12τ, 0:95 − 0:12τð Þ, 0:6 + 0:1τ, 1 − 0:1τð Þh if
� r τð Þð Þ2 + 0:25 + 0:12τ, 0:55 − 0:12τð Þ,h
0:2 + 0:1τ, 0:6 − 0:1τð Þir τð Þ

= 0:45 + 0:12τ, 0:75 − 0:12τð Þ, 0:4 + 0:1τ, 0:8 − 0:1τð Þh i,
ð42Þ

or

0:65 + 0:12τð Þ rLl τð Þ� �2 + 0:25 + 0:12τð ÞrLl τð Þ = 0:45 + 0:12τð Þ,
0:95 − 0:12τð Þ rLt τð Þ� �2 + 0:55 − 0:12τð ÞrLt τð Þ = 0:75 − 0:12τð Þ:
0:6 + 0:1τð Þ rUl τð Þ� �2 + 0:2 + 0:1τð ÞrUl τð Þ = 0:4 + 0:1τð Þ,
1 − 0:1τð Þ rUt τð Þ� �2 + 0:6 − 0:1τð ÞrUt τð Þ = 0:8 − 0:1τð Þ:

8>>>>>>><
>>>>>>>:

ð43Þ

Table 3 clearly shows the dominance behavior of MM
over NN in terms of absolute error on the same number of
iterations n = 4 for Example 2.

Table 4 shows analytical solutions for Example 2.
Figure 6 shows initial guessed values, analytical, and

numerical approximate solution graph of iterative methods
MM and NN for interval-valued trapezoidal fuzzy nonlinear
equation used in Example 2.

To obtain initial guess, we use above system for τ = 0 and
τ = 1; therefore,

0:65 rLl
� �2 0ð Þ + 0:2rLl 0ð Þ = 0:45,

0:95 rLt
� �2 0ð Þ + 0:55rLt 0ð Þ = 0:75,

0:6 rUl
� �2 0ð Þ + 0:2rUl 0ð Þ = 0:4,

1:0 rUt
� �2 0ð Þ + 0:6rUt 0ð Þ = 0:8,

8>>>>>>><
>>>>>>>:

0:77 rLl
� �2 1ð Þ + 0:37rLl 1ð Þ = 0:57,

0:83 rLt
� �2 1ð Þ + 0:43rLt 1ð Þ = 0:63,

0:7 rUl
� �2 1ð Þ + 0:3rUl 1ð Þ = 0:5,

0:9 rUt
� �2 1ð Þ + 0:5rUt 1ð Þ = 0:7:

8>>>>>>><
>>>>>>>:

ð44Þ

Consequently, rUl ð0Þ = 0:6, rLl ð0Þ = 0:6, rLt ð0Þ = 0:6, rUt ð0
Þ = 0:6, and rUl ð0Þ = rLl ð0Þ = rLt ð0Þ = rUt ð0Þ = 1/2. After 4 itera-
tions, we obtain the solution with the maximum error less
than 10−30. Now suppose r is negative, we have

0:65 + 0:12τð Þ rLl τð Þ� �2 + 0:25 + 0:12τð ÞrLl τð Þ = 0:45 + 0:12τð Þ,
0:95 − 0:12τð Þ rLt τð Þ� �2 + 0:55 − 0:12τð ÞrLt τð Þ = 0:75 − 0:12τð Þ,
0:6 + 0:1τð Þ rUl τð Þ� �2 + 0:2 + 0:1τð ÞrUl τð Þ = 0:4 + 0:1τð Þ,
1 − 0:1τð Þ rUt τð Þ� �2 + 0:6 − 0:1τð ÞrUt τð Þ = 0:8 − 0:1τð Þ:

8>>>>>>><
>>>>>>>:

ð45Þ

For τ = 0, we have rLl ð0Þ > rLt ð0Þ, therefore, negative root
does not exist.
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Example 3. Consider the interval-valued trapezoidal fuzzy
nonlinear equation

0:45, 0:53, 0:67, 0:75 ;
2
3

� �
, 0:4, 0:5, 0:7, 0:8 ; 1ð Þ

� �
r τð Þð Þ3

+ 0:65, 0:73, 0:87, 0:95 ;
2
3

� �
, 0:6, 0:7, 0:9, 1 ; 1ð Þ

� �
sin r τð Þð Þ

= 0:25, 0:33, 0:47, 0:55 ;
2
3

� �
, 0:2, 0:3, 0:5, 0:6 ; 1ð Þ

� �
:

ð46Þ

Without any loss of generality, assume that r is positive;
then, the parametric form of this equation is as follows:

0:45 + 0:12τ, 0:75 − 0:12τð Þ, 0:4 + 0:1τ, 0:8 − 0:1τð Þh if
� r τð Þð Þ3 + 0:65 + 0:12τ, 0:95 − 0:12τð Þ,h
0:6 + 0:1τ, 1:0 − 0:1τð Þir τð Þ

= 0:25 + 0:12τ, 0:55 − 0:12τð Þ, 0:2 + 0:1τ, 0:6 − 0:1τð Þh i,
ð47Þ

or

0:45 + 0:12τð ÞrLl τð Þ3 + 0:65 + 0:12τð Þ sin rLl τð Þ� �
= 0:25 + 0:12τð Þ,

0:75 − 0:12τð Þ rLt τð Þ� �3 + 0:95 − 0:12τð Þ sin rLt τð Þ� �
= 0:55 − 0:12τð Þ,

0:4 + 0:1τð Þ rUl τð Þ� �3 + 0:6 + 0:1τð Þ sin rUl τð Þ� �
= 0:2 + 0:1τð Þ,

0:8 − 0:1τð Þ rUt τð Þ� �3 + 1:0 − 0:1τð Þ sin rUt τð Þ� �
= 0:6 − 0:1τð Þ:

8>>>>>>><
>>>>>>>:

ð48Þ

Table 5 clearly shows the dominance behavior of MM
over NN in terms of absolute error on the same number of
iterations n = 4 for Example 3.

Table 6 shows analytical solutions for Example 3.
Figure 7 shows initial guessed values, analytical, and

numerical approximate solution graph of iterative methods
MM and NN for interval-valued trapezoidal fuzzy nonlinear
equation used in Example 3.

To obtain initial guess, we use above system for τ = 0 and
τ = 1; therefore,

0:45 rLl
� �3 0ð Þ + 0:65 sin rLl 0ð Þ� �

= 0:25,

0:75 rLt
� �3 0ð Þ + 0:95 sin rLt 0ð Þ� �

= 0:55,

0:4 rUl
� �3 0ð Þ + 0:6 sin rUl 0ð Þ� �

= 0:2,

0:8 rUt
� �3 0ð Þ + 1 sin rUt 0ð Þ� �

= 0:6,

8>>>>>>><
>>>>>>>:

0:57 rLl
� �3 1ð Þ + 0:77 sin rLl 1ð Þ� �

= 0:37,

0:63 rLt
� �3 1ð Þ + 0:83 sin rLt 1ð Þ� �

= 0:43,

0:5 rUl
� �3 1ð Þ + 0:7 sin rUl 1ð Þ� �

= 0:3,

0:7 rUt
� �3 1ð Þ + 0:9 sin rUt 1ð Þ� �

= 0:5:

8>>>>>>><
>>>>>>>:

ð49Þ

Consequently, rUl ð0Þ = 0:5, rLl ð0Þ = 0:3, rLt ð0Þ = 0:5, rUt ð0
Þ = 0:3, and rUl ð0Þ = rLl ð0Þ = rLt ð0Þ = rUt ð0Þ = 1/2. After 4 itera-
tions, we obtain the solution with the maximum error less
than 10−30. Now suppose r is negative, we have

0:45 + 0:12τð Þ rLl τð Þ� �3 + 0:65 + 0:12τð Þ sin rLt τð Þ� �
= 0:25 + 0:12τð Þ,

0:75 − 0:12τð Þ rLt τð Þ� �3 + 0:95 − 0:12τð Þ sin rLl τð Þ� �
= 0:55 − 0:12τð Þ,

0:4 + 0:1τð Þ rUl τð Þ� �3 + 0:6 + 0:1τð Þ sin rUt τð Þ� �
= 0:2 + 0:1τð Þ,

0:8 − 0:1τð Þ rUt τð Þ� �3 + 1:0 − 0:1τð Þ sin rUl τð Þ� �
= 0:6 − 0:1τð Þ:

8>>>>>>><
>>>>>>>:

ð50Þ

For τ = 0, we have hence rLl ð0Þ > rLt ð0Þ; therefore, nega-
tive root does not exist.

Figures 8(a)–8(c) show residual falls for iterative methods
MM and NN for interval-valued trapezoidal fuzzy nonlinear
equation used in Examples 1–3, respectively.

5. Conclusion

In this research paper, we constructed highly efficient two-
step numerical iterative method to approximate roots of
interval-valued trapezoidal fuzzy nonlinear equations. A set
of real-life applications from optimization are considered as
a numerical test examples showing the practical performance
and dominance efficiency of MM over NN method on the
same number of iterations. From Tables 1–6 and Figures 1–
8, we observe that numerical results of MMmethods are bet-
ter in terms of absolute error and CPU time as compared to
NN method. Considering the same ways as in this article,
we can establish higher order and efficient numerical iterative
methods for solving system of fuzzy nonlinear equations.
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In this work, by using the Nash-collative approach for a differential game problem between N-governments and terrorist
organizations, we study governments’ cooperation and the role of each government for counterterrorism. Furthermore, we
discuss the intertemporal strategic interaction of governments and terrorist organizations, where all world governments have to
cooperate to fight terrorism. Also, we study the necessary conditions for finding the optimal strategies for each government to
fight terrorism; we discuss the existence of the solution of the formulated problem and the stability set of the first kind of the
optimal strategies.

1. Introduction

It is clear that the world suffers from many serious problems,
and the problem of terrorism is one of the most important
and serious problems suffered by the local and international
communities throughout the ages, especially in recent times.
Because of this, countries are controlled, their wealth is plun-
dered, chaos and ignorance spread among peoples, the coun-
try’s political and religious identities are lost, individuals are
destroyed intellectually, they become truly aimless, corrup-
tion prevails, and states fall. To face this problem and uproot
terrorism from its roots, cooperation must be made between
the governments of different countries and the different gov-
ernments of the same state. This cooperation extends to the
members of all societies, coordination occurs between the
governments of different countries, and the public good must
be upheld over personal interests. Governments have taken
security measures to combat terrorism, such as freezing the
assets of terrorist organizations and invading their territories

to assassinate terrorists. The measures take into account the
reactions of terrorists.

The strength of a terrorist organization changes over
time, as terrorists are recruited by existing terrorists, and
the rate of terrorist recruitment is affected by their actions
and the government’s antiterrorist actions. The strength of
the organization is evaluated by its resources and activities,
such as arming, funding, and the expertise of technology.

The government derives its benefits from reducing ter-
rorist resources and activities, in addition to demonstrating
that these terrorist organizations are indiscriminate, but they
incur costs through fighting terrorism. However, terrorist
organizations try to maximize their power in terms of scale
and terrorist attacks. Consequently, this study investigates
how to help governments fight terrorism.

In this research, we present and study this problem,
explain the cooperation of governments with each other,
and formulate this problem as a differential game between
different governments and terrorist organizations. To clarify
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the cooperation of governments, to find solutions and to
derive optimal strategies for combating terrorism, we will
provide a Nash-collative approach to infer the necessary con-
ditions for finding the optimal strategies to combat terrorism.
Also, we study the existence of the solution, find it, and study
its stability.

The global reputation and optimal control of terrorism
was discussed by Caulkins et al. [1]. They proved that success
in fighting terrorism relies on community opinion, and the
efficiency of water and fire strategies were studied by Caulk-
ins et al. [2]. The first approach implementing a fuzzy differ-
ential game to guard territory was discussed by Hsia et al. [3,
4]. They considered the problem to guard territory as a differ-
ential game with fuzziness in the distance between the evader
and the one guarding, and they discussed that the strategy for
this problem is fuzzy. A parametric study of a Nash-collative
differential game was discussed by Youness et al. [5]. A differ-
ential game as a large-scale problem was discussed by You-
ness et al. [6]. They presented a Nash approach to solve it.
Furthermore, they studied Nash and min–max zero-sum
approaches to get the optimal strategy of the differential
game problem with fuzzy on the minimum of the objective
function [7–9]. Nova et al. [10] studied the Stackelberg and
Nash approaches of a differential game in addition to the sen-
sitivity analysis. Cross-country strategic connectivity has
been introduced to fight terrorism by Roy and Paul [11].
They analyzed the responses of equilibrium (in terms of
defense, R&D, and preemption) to a possible terrorist strafe
in a two-country framework using a multistep game with
incomplete information. A min–max approach of a differen-
tial game was discussed to get the optimal solution of the gov-
ernment and the terror organization by Megahed [12–14].
He studied two problems of governments’ visions and terror-
ist organization and proved that governmental activities are
important for fighting terrorism and discussed the Stackel-
berg differential game with E-differentiable function and E-
convex set. In [15], Wrzaczek et al. discussed models of dif-
ferential terror queue games, as terrorist organizations seek
to increase the rates of attacks over time, but at the same
time, the government is developing its antiterror activities;
in [16], Megahed introduced the Stackelberg approach for
counterterrorism.

2. Nash-Collative Differential Game

Definition 1. A Nash-collative game is a Nash-equilibrium
game in which some players make coalitions.

2.1. N +M Differential Games. Consider that we have N +M
players; the N players cost

Ji u1, u2,⋯uN , v1, v2,⋯, vMð Þ
= ϕi x t f

� �� �
+
ðt f
t0

e−ρtIi t, x tð Þ, u1,ð

u2,⋯uN , v1, v2,⋯, vMÞdt, i = 1, 2,⋯N ,

ð1Þ

and the M players cost

J j′ u1, u2,⋯uN , v1, v2,⋯, vMð Þ

= ϕi′ x t f
� �� �

+
ðt f
t0

e−ηtI j′ t, x tð Þ, u1,ð

u2,⋯uN , v1, v2,⋯, vMÞdt, j = 1, 2,⋯M,

ð2Þ

subject to

_x tð Þ = f x tð Þ, u1, u2,⋯uN , v1, v2,⋯, vMð Þ, x t0ð Þ = x0, ð3Þ

where xðtÞ ∈ Rn is the state trajectory of the game and x
ðt0Þ is the initial state for all players.

u1ðtÞ ∈ Rs1 , u2ðtÞ ∈ Rs2 ,⋯, uNðtÞ ∈ RsN and v1ðtÞ ∈ Rm1 ,
v2ðtÞ ∈ Rm2 ,⋯, vMðtÞ ∈ RmM denote the control or the deci-
sion of N and M players, respectively, which is taken to be
a piecewise continuous function of time.

f : ½t0, t f � × Rn × Rm × Rs ⟶ Rn, Ii : ½t0, t f � × Rn × Rm ×
Rs ⟶ Rn, I j : ½t0, t f � × Rn × Rm × Rs ⟶ Rn are C1; ϕiðxðt f ÞÞ
is the terminal payoff of the player i, i = 1, 2, :⋯ ,N, and
ϕi′ðxðt f ÞÞ is terminal payoff of the player j, j = 1, 2, :⋯M;
and Iiðt, xðtÞ, u1, u2,⋯uN , v1, v2,⋯, vMÞ is the running
payoff of the player i, i = 1, 2, :⋯ ,N, and I j′ðt, xðtÞ, u1, u2,
⋯uN , v1, v2,⋯, vMÞ is the running payoff of the player j, j
= 1, 2, :⋯ ,M.

Definition 2. The admissible control v∗ = ðv∗1 ,⋯, v∗MÞ is said
to be a Nash-collative optimal solution if and only if for all
admissible v = ðv1, v2,⋯, vMÞ, we have

Ji u
∗
1 , u∗2 ,⋯, u∗N , v∗1 , v∗2 ,⋯, v∗Mð Þ
≤ Ji u1, u2,⋯, uN , v∗1 , v∗2 ,⋯, v∗Mð Þ, i = 1, 2,⋯,N ,

J j′ u∗1 , u∗2 ,⋯, u∗N , v∗1 , v∗2 ,⋯, v∗Mð Þ
≤ J j′ u∗1 , u∗2 ,⋯, u∗N , v1, v2,⋯, vMð Þ, j = 1, 2,⋯,M:

ð4Þ

Definition 3. Pareto optimal solution: let the controls v∗ =
ðv∗1 , v∗2 ,⋯, v∗MÞ be admissible. If there exists w′ ∈ RM , with
wj′> 0, j = 1, 2⋯ ,M, and ∑M

j=1wi′= 1 and w ∈ RN ,wi > 0, i =
1, 2,⋯,N ,∑N

i=1wi = 1 such that for all v = ðv1, v2,⋯, vMÞ, we
have

〠
N

i=1
wiJi u

∗
1 , u∗2 ,⋯, u∗N , v∗1 , v∗2 ,⋯, v∗Mð Þ

≤ 〠
N

i=1
wiJi u1, u2,⋯, uN , v∗1 , v∗2 ,⋯, v∗Mð Þ,

〠
M

j=1
wi′J j′ u∗1 , u∗2 ,⋯, u∗N , v∗1 , v∗2 ,⋯, v∗Mð Þ

≤ 〠
M

j=1
wi′J j′ u∗1 , u∗2 ,⋯, u∗N , v1, v2,⋯, vMð Þ:

ð5Þ
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From the concept of coalitions, we suppose thatN of these
players agree to form a coalition and play against the other
players outside the coalition. Let u = ðu1, u2,⋯, uNÞ ∈ Rs, s =
∑N

i=1si be the composite control for the players in the coalition
and v = ðv1, v2,⋯, vMÞ ∈ Rm,m =∑M

j=1mj be the composite
control outside the coalition. The problem can be formulated
as follows: find ðu∗, v∗Þ that solves the problems

min
u

J u, v∗ð Þ =Φ x t f
� �� �

+
ðt f
t0

e−ρtI x tð Þ, u, v∗ð Þdt, ð6Þ

where

I =〠N

i=1 wiIi, Φ x t f
� �� �

=〠N

i=1 wiΦi x t f
� �� �

, 〠N

i=1 wi = 1, wi ≥ 0,
ð7Þ

min
v

J ′ u∗, vð Þ =Φ′ x t f
� �� �

+
ðt f
t0

e−ηtI x tð Þ, u∗, vð Þdt, ð8Þ

subject to

_x = f x tð Þ, u∗, vð Þ, x t0ð Þ = x0, ð9Þ

where

I ′ = 〠
M

j=1
wj′I j′, Φ′ x t f

� �� �
= 〠

M

j=1
wj′Φj x t f

� �� �
, 〠

M

j=1
wj′= 1, wj′≥ 0:

ð10Þ

Theorem 4. If ðx∗, u∗, v∗Þ is an open-loop Nash-equilibrium
solution for the problems (6), (8), and (9), then there exist con-
tinuous costate functions λðtÞ: ½t0, t f �⟶ Rn, qðtÞ: ½t0, t f �
⟶ Rn and the Hamiltonian functions

H x, u, v∗,w1,⋯,wN , λð Þ = I x, u, v∗ð Þ + λf x, u, v∗ð Þ,
H ′ x, u∗, v,w1′ ,⋯,wM′ , q tð Þ

� �
= I ′ x, u∗, vð Þ + q tð Þf x, u∗, vð Þ,

ð11Þ

where u∗ = ðu∗1 , u∗2 ,⋯, u∗NÞ and v∗ = ðv∗1 , v∗2 ,⋯, v∗MÞ such
that the following relations are satisfied:

_λ tð Þ = ρλ −
∂H x, u∗,v,w1,⋯,wNλð Þ

∂x
,

λ t f
� �

= 〠
N

i=1
wi

∂ϕi x t f
� �� �

∂x
,

ð12Þ

_q tð Þ = ηq tð Þ −
∂H ′ x, u, v∗,w1′ ,⋯,wM′ , q tð Þ

� �
∂x

,

q t f
� �

= 〠
M

j=1
wi′

∂ϕi′ x t f
� �� �

∂x
,

ð13Þ

H x, u∗, v∗,w1,⋯,wN , λð Þ ≤H x, u, v∗,w1,⋯,wN , λð Þ,
H ′ x, u∗, v∗,w1′ ,⋯,wM′ , q tð Þ

� �
≤H ′ x, u∗, v,w1′ ,⋯,wM′ , q tð Þ

� �
:

ð14Þ

For the proof, see [7].

3. Stability

The problem is stable if it is persistent with regard to the data;
that is, the problem is stable if when we change the problem
“a little,” the solution changes only a little.

3.1. Stability with respect to the Parameters w and w′. We
study the stability of the problem with respect to the weights
w andw′ for the Nash-collative differential game to show the
role of each player in the coalition.

Definition 5. The stability Nash-collative differential game is
denoted by

B w,w′
� �

= Λ : Λ = w,w′
� �

∈ RN+M
n o

, ð15Þ

such that the solution of the problem exists, where w
= ðw1,w2,⋯,wNÞ,∑N

i=1wi = 1, and w′ = ðw1′ ,⋯,wM′ Þ,∑M
i=1

wj′= 1.

Definition 6. Suppose that ðw,w′Þ ∈ Bðw,w′Þ with the corre-
sponding the Nash-collative differential game; the stability
set of the first kind for the Nash-collative differential game
is defined by

S u∗,v ∗ð Þ = Λ = w,w′
� �

∈ RN+M ∣ u∗,v ∗ð Þ
n

is a solution of the problems 6ð Þ, 7ð Þ, 8ð Þ
o
:

ð16Þ

Lemma 7. If the cost functionals Jiðu, v,wÞ and J j′ðu, v,w′Þ

J u, v,wð Þ = 〠
N

i=1
wi Ji u1,⋯, uN , v1,⋯, vMð Þ,

J ′ u, v,w′
� �

= 〠
M

j=1
wj′J j′ u1,⋯, uN , v1,⋯, vMð Þ,

ð17Þ

are linear with respect to wi and wi′, respectively, then
Sðu∗, v∗Þ is convex.

Proof. Suppose that Λ1 = ðw1,w1 ′Þ,Λ2 = ðw2,w2′Þ ∈ S, then

J u∗, v∗,w1ð Þ ≤ J u, v∗,w1ð Þ,
J ′ u∗, v∗,w1′
� �

≤ J ′ u, v∗,w1′
� �

, ð18Þ
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J u∗, v∗,w2ð Þ ≤ J u, v∗,w2ð Þ,
J ′ u∗, v∗,w2′
� �

≤ J ′ u, v∗,w2′
� �

:
ð19Þ

By multiplying both sides of the above inequalities by α
and ð1 − αÞ, respectively, and adding them, then

J u∗, v∗, αw1 + 1 − αð Þw2ð Þ ≤ J u, v∗, αw1 + 1 − αð Þw2ð Þ,
J ′ u∗, v∗, αw1′ + 1 − αð Þw2′
� �

≤ J ′ u, v∗, αw1′ + 1 − αð Þw2′
� �

,

ð20Þ

then Sðu∗, v∗Þ is convex with respect to the weight
parameters w and w′. ☐ ☐

Remark 8. If the cost functionals Jðu, v,wÞ, J ′ðu, v,w′Þ are
continuous on the weight space RN+M , where 0 ≤w ≤ 1 and
0 ≤w′ ≤ 1, then the stability of the first kind Sðu∗, v∗Þ is
closed.

4. Counterterrorism Problem

In this section, we discuss the governments and terrorist
problems and find the optimal strategies for the government
to fight terrorism.

4.1. Governments’ Problem. Consider the problem of N
-governments and one terrorist organization where the cost
functional of the government i, i = 1, 2,⋯,N , is

max
ui

J i =
ð∞
0
e−ρit γihi ui, vð Þ − cixi tð Þ − kv tð Þ − αiui tð Þ½ �dt, i = 1, 2,⋯,N ,

ð21Þ

and the cost functional of the terrorist organization is

max
v

J0 =
ð∞
0
e−ρt σixi tð Þ + βv½ �dt, ð22Þ

subject to

_xi = rixi tð Þ − hi ui tð Þ, v tð Þð Þ, ð23Þ

where xðtÞ is the state trajectory of the game which is the
stock of the terrorist organization which includes the finan-
cial capital, network supporters, and weapons. u is the strat-
egy of the governments, v is strategy of the terrorist
organization, hðu, vÞ is the interaction between the govern-
ment and the terrorist organization (harvest function), and
ρ is the positive decreasing rate of the running payoff. Since
the governments are cooperative, then there exist wi ∈ Rs,
wi ≥ 0,∑N

i=1wi = 1

J = 〠
N

i=1
wiJi =

ð∞
0
〠
N

i=1
e−ρi twi γihi ui, vð Þ − cixi tð Þ − kv tð Þ − αiui tð Þ½ �,

ð24Þ

_xi = rixi tð Þ − hi ui, vð Þ, ð25Þ
suppose that the decreasing rate (ρi) are the same for all

governments.
Then, the Hamiltonian function of the Nash-collative

problem

H = 〠
N

i=1
wiγihi ui, vð Þ − 〠

N

i=1
wicixi tð Þ − kv tð Þ − 〠

N

i=1
αiwiui

+ λi rixi − hi ui tð Þ, v tð Þð Þð Þ:
ð26Þ

Since in counterterrorism, the governments have to max-
imize the Hamiltonian, we obtain the necessary conditions

∂H
∂ui

= wiγi − λið Þ ∂hi ui, vð Þ
∂ui

− αiwi = 0⇒ u∗i = u∗i wi, λi, αi, vð Þ:

ð27Þ

Consider the harvest function hiðui, vÞ = uδi v
ε, 0 < δ <

ε < 1

∂hi
∂ui

= δuδ−1i vε ⇒ ui =
αiwi

wiγiδ − δλi

� �1/ δ−1ð Þ
v−ε/ δ−1ð Þ: ð28Þ

In (28), when terrorist organizations become active,
governments double their activities in order to root out
terrorism; this is evident in Figure 1.

The costate variable has to follow the differential
equation

_λi = ρλi −
∂H
∂xi

= ρ + rið Þλi −wici: ð29Þ

With the optimal control u∗i ðvÞ, the harvest function is

h ui, vð Þ = αiwi

wiγiδ − δλi

� �δ/ δ−1ð Þ
v−ε/ δ−1ð Þ: ð30Þ

4.2. The Terrorist Organization Problem. Consider the payoff
functional of the terrorist organization

max
v

J0 =
ð∞
0
e−ρt σixit + βv½ �dt, ð31Þ

and the state trajectory

_xi = rixi tð Þ − hi ui tð Þ, v tð Þð Þ: ð32Þ

The Hamiltonian function of the terrorism

H0 = σixi tð Þ + βv + ηi rixi − hi ui, vð Þð Þ: ð33Þ

As the optimal control of the terrorists have to maximize
the Hamiltonian function

4 Journal of Function Spaces



∂H0
∂v

= β − ηi
∂hi ui, vð Þ

∂v
= 0⇒ v∗ = v∗ uið Þ: ð34Þ

The costate variable for the terrorist problem

_ηi = μηi −
∂H0
∂xi

= μ − rið Þηi − σi: ð35Þ

4.3. Existence.Now, we discuss the existence of the solution
for the following system of differential equation; then, we
have to integrate equations (36), (37), and (38) on the
interval ½0, t�,

_xi = rixi tð Þ − hi ui, vð Þ, ð36Þ

_λi = ρ + rið Þλi −wici, ð37Þ

_ηi = μ − rið Þηi − σi, ð38Þ
with the initial conditions xð0Þ = x0, λið0Þ = 0, and ηið

0Þ = 0, then

xi = x0 +
ðt
0
rixi tð Þ − hi ui, vð Þð Þdt, ð39Þ

λi =
ðt
0
ρ + rið Þλidt −wicit, ð40Þ

ηi =
ðt
0
μ − rið Þηidt − σit: ð41Þ

By differentiating the equations (39), (40), and (41), we get

_xi = rixi tð Þ − hi ui, vð Þ,
_λi = ρ + rið Þλi −wici,
_ηi = μ − rið Þηi − σi,

ð42Þ

putting t = 0 in the equations (39), (40), and (41); we get
xð0Þ = x0, λið0Þ = 0, and ηið0Þ = 0, then the solution exists.

Proposition 9. The optimal control of the differential game
problems (6), (9), and (8) with the initial conditions xið0Þ =
x0, λið0Þ = 0, and ηið0Þ = 0 are

ui =
αiwi

wiγiδ − λiδ

� 	 ε−1ð Þ/ 1−δ−εð Þ β

εηi

� 	ε/ ε+δ−1ð Þ
,

v = β

εηi

� 	 δ−1ð Þ/ 1−ε−δð Þ αiwi

wiγiδ − δλi

� 	δ/ 1−ε−δð Þ
,

ð43Þ

and the harvest function

hi u
∗
i , v∗ð Þ = αiwi

wiγiδ − λiδ

� 	δ 2ε−1ð Þ/ 1−δ−εð Þ β

εηi

� 	1/ ε+δ−1ð Þ
:

ð44Þ

Proof. According to equations (27) and (28), we have

ui =
αiwi

wiγiδ − δλi

� �1/ δ−1ð Þ
v−ε/ δ−1ð Þ: ð45Þ

Also, from (34) and ∂hðu, vÞ/∂v = εuδi v
ε−1, we have

v = β

εηi

� 	1/ ε−1ð Þ
ui

−δ/ ε−1ð Þ: ð46Þ

By solving equations (45) and (46), we get

ui =
αiwi

wiγiδ − λiδ

� 	 ε−1ð Þ/ 1−δ−εð Þ β

εηi

� 	ε/ ε+δ−1ð Þ
,

v = β

εηi

� 	 δ−1ð Þ/ 1−ε−δð Þ αiwi

wiγiδ − δλi

� 	δ/ 1−ε−δð Þ
,

ð47Þ

with the harvest function

hi u
∗
i , v∗ð Þ = αiwi

wiγiδ − λiδ

� 	δ 2ε−1ð Þ/ 1−δ−εð Þ β

εηi

� 	1/ ε+δ−1ð Þ
:

ð48Þ

The solution of this problem is stable when the weight
parameter ðwiÞ is greater than λi/γi where λi is the costate
vector of the government i and γi is the cost coefficient of
the harvest function in the payoff of the government i. Also,
the role of each government (wi), to fight terrorism, is greater
than λi/γi. Thus, the stability set of the first kind for this
problem is defined as

S u∗, v∗ð Þ = Λ = wi ∈ R
N ,wi >

λi
γi

� 	
 �
, ð49Þ
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Figure 1: The relation between the strategies of governments ui and
the strategy of terrorism v.
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such that

ui =
αiwi

wiγiδ − λiδ

� 	 ε−1ð Þ/ 1−δ−εð Þ β

εηi

� 	ε/ ε+δ−1ð Þ
,

v = β

εηi

� 	 δ−1ð Þ/ 1−ε−δð Þ αiwi

wiγiδ − δλi

� 	δ/ 1−ε−δð Þ
,

ð50Þ

is the optimal strategy of the counterterrorism problems
(21), (22), and (23).

In (46), when governments play their role to the fullest,
the government’s strategy reaches stability, and this is evident
in the red and black curves, also, when the government gives
up its role, the governments change their strategies and take
strong measures to combat terrorism; this is evident in
Figure 2.

In (47), when the government performs its role, the orga-
nizations increase their activities until they stabilize at a cer-
tain level, this is evident in the red, black, and blue curves, but
when the government gives up its role, the terrorist organiza-
tion is active at a high level, this is evident in the blue curve;
this is evident in Figure 3.

In (48), when governments fulfill its role fully, the harvest
function is greatest; this is evident in Figure 4. ☐

Proposition 10. The state trajectory (the source stock of the
terrorist) and the costate variables λi and ηi of governments
and terrorists are

xi tð Þ = xi 0ð Þ − hi ui, vð Þ
ri

� 	
erit + hi ui, vð Þ

ri
,

λi tð Þ =
wici
ρ + ri

−
wici
ρ + ri

e ρ+rið Þt ,

ηi tð Þ =
σi

μ − ri
−

σi
μ − ri

e μ−rið Þt:

ð51Þ

Proof. Since the dynamic system of source stock is

_xi tð Þ = rixi − h ui, vð Þ: ð52Þ

For the constant strategies and the harvest function, then

xi tð Þe−rit =
hi ui, vð Þ

ri
e−rit + constant cð Þ, ð53Þ

since xiðtÞ⟶ xið0Þ as t⟶ 0, then c = xið0Þ − hiðui, vÞ/
ri and

xi tð Þ = xi 0ð Þ − hi ui, vð Þ
ri

� 	
erit + hi ui, vð Þ

ri
: ð54Þ

Since the costate variable for the government is

_λi = ρ + rið Þλi −wici: ð55Þ

The solution of this differential equation

λie
− ρ+rið Þt = wici

ρ + ri
e− ρ+rið Þt + C constantð Þ, ð56Þ

since λiðtÞ⟶ 0 as t⟶ 0, then C = −ðwici/ðρ + riÞÞ and

λi tð Þ =
wici
ρ + ri

−
wici
ρ + ri

e ρ+rið Þt: ð57Þ

Also, the costate variable of the terrorist is

_ηi = μ − rið Þηi − σi: ð58Þ

Then,

ηie
− μ−rið Þt = + σ

μ − ri
e− μ−rið Þt + c constantð Þ, ð59Þ

Wi

ui

0.25 0.5 0.75 1

1

2

3

4

5

6

Figure 2: The relation between the government’s strategies ui and
the weight parameter wi.
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Figure 3: The relation between the strategy of terrorist v and the
weight parameter of each government wi.
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since ηið0Þ = 0, then c = −σi/ðμ − riÞ and

ηi tð Þ =
σi

μ − ri
−

σi

μ − ri
e μ−rið Þt: ð60Þ

☐ ☐

Remark 11. As shown in (54), the resource stock is increasing
with time when the initial stock xið0Þ is greater than

1
ri

αiwi

wiγiδ − λiδ

� 	δ 2ε−1ð Þ/ 1−δ−εð Þ β

εηi

� 	1/ ε+δ−1ð Þ
: ð61Þ

Remark 12. The resource stock xiðtÞ in the duration time ½0
,∞� is

xi tð Þ =
1
ri

αiwi

wiγiδ − λiδ

� 	δ 2ε−1ð Þ/ 1−δ−εð Þ β

εηi

� 	1/ ε+δ−1ð Þ
: ð62Þ

The resource stock xiðtÞ directly decays when the role of
each government wi is sufficiently larger.

Lemma 13. For the optimal strategies ui for the Nash-collat-
ive, v for the terrorist, and the harvest function hiðui, vÞ, the
objective values of the cooperative governments ðJÞ and the
terrorist J0 are

J = 〠
N

i=1
wi Ji, ð63Þ

Ji =
1
ρ

γihi ui, vð Þ − kv − αiuið Þ − ci
ρ
hi ui, vð Þ

−
1

ρ − ri
xi 0ð Þ + hi ui, vð Þ

ri

� 	
,

J0 =
σi

μ − ri
xi 0ð Þ − hi ui, vð Þ

ri

� 	
+ σi
μri

h ui, vð Þ + β

μ
v:

ð64Þ

Proof. Since the objective function of government i is

Ji =
ð∞
0
e−ρit γihi ui, vð Þ − cixi tð Þ − kv tð Þ − αiui tð Þ½ �dt, i = 1, 2,⋯,N ,

ð65Þ

and the state rejector is

xi tð Þ = xi 0ð Þ − hi ui, vð Þ
ri

� 	
erit + hi ui, vð Þ

ri
: ð66Þ

By substituting from (66) in (65) and integrating it, we
have

Ji =
1
ρ

γihi ui, vð Þ − kv − αiuið Þ − ci
ρ
hi ui, vð Þ

−
1

ρ − ri
xi 0ð Þ + hi ui, vð Þ

ri

� 	
:

ð67Þ

Also, by substituting from (66) in (68), we have

J0 =
σi

μ − ri
xi 0ð Þ − hi ui, vð Þ

ri

� 	
+ σi
μri

h ui, vð Þ + β

μ
v, ð68Þ

where ui, v, and hiðui, vÞ are defined in Proposition 9.☐ ☐

5. Conclusions

In this intervention, the cooperation of governments is stud-
ied for fighting terrorism by using the Nash-collative
approach; the necessity for finding the optimal strategies is
derived and we proved that the solution exists and found it.
Also, we showed that the optimal strategies are stable when
the weight parameter ðwiÞ is greater than ðλi/γiÞ. Finally,
we derived the objective value of each government and its
role ðwiÞ in counterterrorism, the objective of the terrorist
organization, and its stock recourse.
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In this paper, we introduce degenerate poly-Frobenius-Euler polynomials and derive some identities of these polynomials. We give
some relationships between degenerate poly-Frobenius-Euler polynomials and degenerate Whitney numbers and Stirling numbers
of the first kind. Moreover, we define degenerate poly-Frobenius-Euler polynomials of complex variables and then we derive several
properties and relations.

1. Introduction

Recently, many mathematicians, namely, Carlitz [1, 2], Kim
and Kim [3–5], Kim et al. [6–9], Muhiuddin et al. [10–12],
and Sharma et al. [13–15] have introduced and studied various
degenerate versions of special polynomials and numbers like
degenerate Bernoulli polynomials, degenerate Euler polyno-
mials, degenerate Daehee polynomials, degenerate Fubini
polynomials, and degenerate Stirling numbers of the first
and second kinds.

The classical Frobenius-Euler polynomials ℍðαÞ
n ðx ; uÞ

(u ∈ℂ with u ≠ 1) of order α are defined by means of the
following generating function (see [16, 17]):

1 − u
ez − u

� �α

eζz = 〠
∞

j=0
ℍ αð Þ

j ζ ; uð Þ z
j

j!
: ð1Þ

At the point ζ = 0, ℍðαÞ
j ðuÞ =ℍðαÞ

j ð0 ; uÞ are called jth

Frobenius-Euler numbers of order α.

The poly-Frobenius-Euler polynomials due to Kurt [16]
are defined as follows:

1 − uð ÞLik 1 − e−zð Þ
z ez − uð Þ eζz = 〠

∞

j=0
ℍ kð Þ

j ζ ; uð Þ z
j

j!
: ð2Þ

When ζ = 0, ℍðkÞ
j ðuÞ =ℍðkÞ

j ð0 ; uÞ are called the poly-
Frobenius-Euler numbers.

For any λ ∈ℝ (or ℂ), ℝ and ℂ being, respectively, the
sets of real numbers and complex numbers, degenerate
version of the exponential function eζλðzÞ is defined as
follows (see [3, 4, 6, 18]):

eζλ zð Þ≔ 1 + λzð Þζ/λ = 〠
∞

j=0
ζð Þj,λ

zj

j!
, ð3Þ

where ðζÞ0,λ = 1 and ðζÞj,λ = ζðζ − λÞ⋯ ðζ − ðj − 1ÞλÞ for
j ≥ 1 (see [1, 2, 4–10, 18]). It follows from Equation (3)
that limλ⟶0e

ζ
λðzÞ = eζz . Note that e1λðzÞ≔ eλðzÞ:
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Carlitz [1, 2] introduced the degenerate Euler polyno-
mials as follows:

2
eλ zð Þ + 1 e

x
λ zð Þ = 〠

∞

j=0
Ej,λ xð Þ z

j

j!
: ð4Þ

In the case when ζ = 0, Ej,λ = Ej,λð0Þ are called the degen-
erate Euler numbers.

Note that

lim
λ⟶0

Ej ζ ; λð Þ = Ej ζð Þ: ð5Þ

The degenerate Frobenius-Euler polynomials are defined
by the following (see [6]):

1 − u

1 + λzð Þ1/λ − u
1 + λzð Þζ/λ = 〠

∞

j=0
hj,λ ζ ∣ uð Þ z

j

j!
: ð6Þ

At the value ζ = 0, hj,λðuÞ = hj,λð0 ∣ uÞ are called the
degenerate Frobenius-Euler numbers.

It is readily seen that

lim
λ⟶0

hj,λ ζ ∣ uð Þ =ℍj ζ ∣ uð Þ,  j ≥ 0ð Þ: ð7Þ

Recently, Kim et al. [9] introduced the modified
degenerate polyexponential function which is defined by
the following:

Eik,λ ζð Þ = 〠
∞

j=1

1ð Þj,λζj
j − 1ð Þ!jk ,  ζj j < 1, k ∈ℤð Þ: ð8Þ

Here and in the following, let ℤ denote the set of integers.
We note that

Ei1,λ ζð Þ = 〠
∞

j=1

1ð Þj,λζj
j!

= eλ ζð Þ − 1: ð9Þ

The degenerate poly-Genocchi polynomials are defined
as follows (see [9]):

2Eik,λ logλ 1 + zð Þð Þ
eλ zð Þ + 1 eζλ zð Þ = 〠

∞

j=0
G kð Þ

j,λ ζð Þ z
j

j!
,  k ∈ℤð Þ: ð10Þ

Letting ζ = 0,GðkÞ
j,λ =GðkÞ

j,λ ð0Þ are called the poly-Genocchi
numbers.

The degenerate Daehee polynomials Dj,λðζÞ are defined
as follows (see [8]):

logλ 1 + zð Þ
z

1 + zð Þζ = 〠
∞

j=0
Dj,λ ζð Þ z

j

j!
: ð11Þ

Dj,λ =Dj,λð0Þ are called the degenerate Daehee numbers.
For i ≥ 0, the degenerate Stirling numbers of the first kind

are defined by means of the following generating function
(see [4]):

1
i!

logλ 1 + zð Þð Þi = 〠
∞

j=i
S1,λ j, ið Þ z

j

j!
: ð12Þ

Note that limλ⟶0S1,λðj, kÞ = S1ðj, kÞ are the Stirling
numbers of the first kind given by the following (see [3, 18]):

1
i!

log 1 + zð Þð Þi = 〠
∞

j=i
S1 j, ið Þ z

j

j!
,  i ≥ 0ð Þ: ð13Þ

For i ≥ 0, the degenerate Stirling numbers of the second
kind are defined by means of the following generating func-
tion (see [18]):

1
i!

eλ zð Þ − 1ð Þi = 〠
∞

j=i
S2,λ j, ið Þ z

j

j!
: ð14Þ

We note that limλ⟶0S2,λðj, kÞ = S1ðj, kÞ are the Stirling
numbers of the second kind given by the following (see
[3–7, 18]):

1
i!

ez − 1ð Þi = 〠
∞

j=i
S2 j, ið Þ z

j

j!
,  i ≥ 0ð Þ: ð15Þ

The subsequent content of this paper is organized as
follows: In Section 2, we define the degenerate poly-
Frobenius-Euler polynomials and numbers by using the mod-
ified degenerate polyexponential functions and derive some
properties and relations of these polynomials. In Section 3, we
consider the degenerate poly-Frobenius-Euler polynomials of
a complex variable and then we derive several properties and
relations. Also, we examine the results derived in this study.

2. Degenerate Poly-Frobenius-Euler Numbers
and Polynomials

In this section, we define degenerate poly-Frobenius-Euler
numbers and polynomials and investigate some properties
of these polynomials. We begin following the definition
as follows.
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Definition 1. We consider the degenerate poly-Frobenius-
Euler polynomials are defined by means of the following
generating function:

Eik,λ logλ 1 + 1 − uð Þð Þzð Þ
z eλ zð Þ − uð Þ eζλ zð Þ = 〠

∞

j=0
ℍ kð Þ

j,λ ζ ; uð Þ z
j

j!
, ð16Þ

where λ, u ∈ℂ with u ≠ 1 and k ∈ℤ.

Upon setting, ζ = 0, ℍðkÞ
j,λ ðuÞ =ℍðkÞ

j,λ ð0 ; uÞ are called the

degenerate poly-Frobenius-Euler numbers, where logλðzÞ =
1/zðzλ − 1Þ is the compositional inverse of eλðzÞ satisfying

logλ eλ zð Þð Þ = eλ logλ zð Þð Þ = z: ð17Þ

Adjusting k = 1 in Equation (16), we get the following:

1 − u
eλ zð Þ − u

eζλ zð Þ = 〠
∞

j=0
hj,λ ζ ; uð Þ z

j

j!
, ð18Þ

where hj,λðζ ; uÞ are called the degenerate Frobenius-Euler
polynomials (see [6]).

Obviously,

lim
λ⟶0

Eik,λ logλ 1 + 1 − uð Þzð Þð Þ
z eλ zð Þ − uð Þ

� �
eζλ zð Þ = 〠

∞

j=0
lim
λ⟶0

ℍ kð Þ
j,λ ζ ; uð Þ z

j

j!

= Eik log 1 + 1 − uð Þzð Þð Þ
z ez − uð Þ eζz

= 〠
∞

j=0
ℍ kð Þ

j ζ ; uð Þ z
j

j!
,

ð19Þ

where ℍðkÞ
j ðζ ; uÞ are called the type 2 poly-Frobenius-Euler

polynomials.

Theorem 2. Let j ≥ 0. Then, we have the following:

〠
j

p=0

j

p

 !
〠
p

s=0

1ð Þs+1,λ
s + 1ð Þk−1

S1,λ p + 1, s + 1ð Þ ζð Þj−p,λ
1 − uð Þp+1
p + 1

= 〠
j

s=0

j

s

 !
ℍ kð Þ

j−s,λ ζ ; uð Þ 1ð Þs,λ − uℍ kð Þ
j,λ ζ ; uð Þ:

ð20Þ

Proof. Using Equation (16), we see that

Eik,λ logλ 1 + 1 − uð Þzð Þð Þ
z

eζλ zð Þ

= eλ zð Þ〠
∞

j=0
ℍ kð Þ

j,λ ζ ; uð Þ z
j

j!
− u〠

∞

j=0
ℍ kð Þ

j,λ ζ ; uð Þ z
j

j!

= 〠
∞

s=0
1ð Þs,λ

zs

s!
〠
∞

j=0
ℍ kð Þ

j,λ ζ ; uð Þ z
j

j!
− u〠

∞

j=0
ℍ kð Þ

j,λ ζ ; uð Þ z
j

j!

= 〠
∞

j=0
〠
j

s=0

j

s

 !
ℍ kð Þ

j−s,λ ζ ; uð Þ 1ð Þs,λ − uℍ kð Þ
j,λ ζ ; uð Þ

 !
zj

j!
:

ð21Þ

On the other hand,

Eik,λ logλ 1 + 1 − uð Þzð Þð Þ
z

eζλ zð Þ

= 〠
∞

j=0
ζð Þj,λ

zj

j!

 !
1
z

〠
∞

s=1

1ð Þs,λ logλ 1 + 1 − uð Þzð Þð Þs
s − 1ð Þ!sk

 !

= 〠
∞

j=0
ζð Þj,λ

zj

j!

 !
1
z

〠
∞

s=0

1ð Þs+1,λ
s + 1ð Þk−1

〠
∞

l=s+1
S1,λ l, s + 1ð Þ 1 − uð Þlzl

l!

 !

= 〠
∞

j=0
ζð Þj,λ

zj

j!

 !
〠
∞

l=0
〠
l

s=0

1ð Þs+1,λ
s + 1ð Þk−1

S1,λ l + 1, s + 1ð Þ 1 − uð Þl+1
l + 1

zl

l!

 !

= 〠
∞

j=0
〠
j

p=0

j

p

 !
〠
p

s=0

1ð Þs+1,λ
s + 1ð Þk−1

S1,λ p + 1, s + 1ð Þ ζð Þ j−p,λ
1 − uð Þp+1
p + 1

 !
zj

j!
:

ð22Þ

In view of Equation (22), we complete the proof. ☐

Theorem 3. Let j ≥ 0. Then, we have the following:

ℍ kð Þ
j,λ ζ ; uð Þ = 〠

j

r=0

j

r

 !
ℍ kð Þ

j−r,λ uð Þ ζð Þr,λ: ð23Þ

Proof. In Equation (16), we observe that

〠
∞

j=0
ℍ kð Þ

j,λ ζ ; uð Þ z
j

j!
= Eik,λ logλ 1 + 1 − uð Þzð Þð Þ

z eλ zð Þ − uð Þ
� �

eζλ zð Þ

= 〠
∞

j=0
ℍ kð Þ

j,λ uð Þ z
j

j!
〠
∞

r=0
ζð Þr,λ

zr

r!

= 〠
∞

j=0
〠
j

r=0

j

r

 !
ℍ kð Þ

j−r,λ uð Þ ζð Þr,λ
zj

j!
:

ð24Þ

By Equations (16) and (24), we require at the desired
result. ☐
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Theorem 4. Let j ≥ 0. Then,

ℍ kð Þ
j,λ ζ ; uð Þ = 〠

j

q=0

j

q

 !
〠
q

r=0

1ð Þr+1,λ
r + 1ð Þk

S1 q + 1, r + 1ð Þ 1 − uð Þq
q + 1

ℍj−q,λ ζ ; uð Þ:

ð25Þ

Proof. By using Equations (14) and (16), we see that

〠
∞

j=0
ℍ kð Þ

j,λ ζ ; uð Þ z
j

j!
= Eik,λ logλ 1 + 1 − uð Þzð Þð Þ

z eλ zð Þ − uð Þ
� �

eζλ zð Þ

= eζλ zð Þ
z eλ zð Þ − uð Þ〠

∞

r=1

1ð Þr,λ logλ 1 + 1 − uð Þzð Þð Þr
r − 1ð Þ!rk

= eζλ zð Þ
z eλ zð Þ − uð Þ〠

∞

r=0

1ð Þr+1,λ logλ 1 + 1 − uð Þzð Þð Þr+1
r! r + 1ð Þk

= eζλ zð Þ
z eλ zð Þ − uð Þ〠

∞

r=0

1ð Þr+1,λ
r + 1ð Þk

〠
∞

j=r+1
S1,λ j, r + 1ð Þ 1 − uð Þtð Þn

n!

= 1 − u
eλ zð Þ − u

eζλ zð Þ〠
∞

r=0

1ð Þr+1,λ
r + 1ð Þk

〠
∞

r=j

S1,λ j + 1, r + 1ð Þ 1 − uð Þj
j + 1

zj

j!

= 〠
∞

j=0
ℍj,λ ζ ; uð Þ z

j

j!
〠
∞

l=0
〠
l

r=0

1ð Þr+1,λ
r + 1ð Þk

S1,λ l + 1, r + 1ð Þ 1 − uð Þl
l + 1

zl

l!

= 〠
∞

j=0
〠
j

q=0

j

q

 !
〠
q

r=0

1ð Þr+1,λ
r + 1ð Þk

S1,λ q + 1, r + 1ð Þ 1 − uð Þq
q + 1 ℍj−q,λ ζ ; uð Þ

 !
zj

j!
:

ð26Þ

In view of Equation (26), we complete the proof. ☐

Corollary 5. For k ∈ℤ and j ≥ 0. Then,

ℍ kð Þ
j,λ uð Þ = 〠

j

q=0

j

q

 !
〠
q

r=0

1

r + 1ð Þk
S1,λ q + 1, r + 1ð Þ 1 − uð Þq

q + 1
ℍj−q,λ uð Þ:

ð27Þ

Corollary 6. For j ≥ 0. Then,

ℍ kð Þ
j,λ ζ ; uð Þ = 〠

j

q=0

j

q

 !
〠
q

r=0

S1,λ q + 1, r + 1ð Þ 1 − uð Þq
q + 1

ℍ j−q,λ ζ ; uð Þ:

ð28Þ

Corollary 7. On setting u = −1 and k = 1 and using Equation
(4), Theorem 3 to get

Ej,λ xð Þ = 〠
j

q=0

j

l

 !
〠
q

r=0

S1,λ q + 1, r + 1ð Þ2q
q + 1

Ej−q,λ ζð Þ,  j ≥ 0ð Þ:

ð29Þ

It is well known from [7] that

z
log 1 + zð Þ
� �r

1 + zð Þζ−1 = 〠
∞

j=0
B j−r+1ð Þ
j ζð Þ z

j

j!
,  r ∈ℂð Þ,

ð30Þ

where BðrÞ
j ðζÞ are called the higher-order Bernoulli polyno-

mials which are given by the generating function (see [3, 16]):

z
ez − 1
� �r

eζz = 〠
∞

j=0
B rð Þ
j ζð Þ z

j

j!
: ð31Þ

Theorem 8. For j ≥ 0. Then, we have the following:

ℍ 2ð Þ
j,λ uð Þ = 〠

j

l=0

j

l

 !
1 − uð ÞlBl

l

l + 1
ℍj−l,λ uð Þ: ð32Þ

Proof. In Equation (8), we note that

d
dζ

Eik,λ logλ 1 + 1 − uð Þxð Þð Þ

= d
dζ

〠
∞

j=1

logλ 1 + 1 − uð Þζð Þð Þj
j + 1ð Þ!jk

= 1 − u
1 + 1 − uð Þζð Þ logλ 1 + 1 − uð Þζð Þ〠

∞

j=1

logλ 1 + 1 − uð Þζð Þð Þj
j + 1ð Þ!jk−1

= 1 − u
1 + 1 − uð Þζð Þ logλ 1 + 1 − uð Þζð Þ Eik−1,λ logλ 1 + 1 − uð Þζð Þð Þ:

ð33Þ

From Equation (33), for k ≥ 1, we have the following:

〠
∞

j=0
ℍ kð Þ

j,λ uð Þ ζ
j

j!
= 1 − uð Þk−1
ζ eλ ζð Þ − uð Þ

ðζ
0

1
1 + 1 − uð Þtð Þ logλ 1 + 1 − uð Þzð Þ

×
ðz
0

1
1 + 1 − uð Þzð Þ logλ 1 + 1 − uð Þzð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

k−2−times

⋯

�
ðz
0

z
1 + 1 − uð Þzð Þ logλ 1 + 1 − uð Þzð Þ dzdz⋯ dz:

ð34Þ

For k ≥ 2 in the above expression, we have the following:

〠
∞

j=0
ℍ 2ð Þ

j,λ uð Þ ζ
j

j!
= 1 − uð Þ
ζ eλ ζð Þ − uð Þ

ðζ
0

1 − uð Þz
1 + 1 − uð Þzð Þ logλ 1 + 1 − uð Þzð Þ ,

ð35Þ

〠
∞

j=0
Hj,λ uð Þ ξ

j

j!

 !
〠
∞

l=0

1 − uð ÞlBl
l

l + 1
ξl

l!

 !
= 〠

∞

j=0
〠
j

l=0

j

l

 !
1 − uð ÞlBl

l

l + 1 Hj−l,λ uð Þ
 !

ξj

j!

ð36Þ
In view of Equations (35) and (36), we obtain at the

desired result. ☐

Theorem 9. Let j ≥ 0. Then, we have the following:

ℍ kð Þ
j,λ ζ + η ; uð Þ = 〠

j

r=0

j

r

 !
ℍ kð Þ

j−r,λ ζ ; uð Þ ηð Þr,λ: ð37Þ
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Proof. Using Equation (16), we get the following:

〠
∞

j=0
ℍ kð Þ

j,λ ζ + η ; uð Þ z
j

j!
= Eik,λ logλ 1 + 1 − uð Þzð Þð Þ

z eλ zð Þ − uð Þ
� �

eζ+ηλ zð Þ

= 〠
∞

j=0
ℍ kð Þ

j,λ ζ ; uð Þ z
j

j!

 !
〠
∞

r=0
ηð Þr,λ

zr

r!

 !

= 〠
∞

j=0
〠
j

r=0

j

r

 !
ℍ kð Þ

j−r,λ ζ ; uð Þ ηð Þr,λ
 !

zj

j!
:

ð38Þ

Thus, by Equation (38), we complete the proof. ☐

Theorem 10. Let j ≥ 0. Then, we have the following:

ℍ kð Þ
j,λ ζ + 1 ; uð Þ = 〠

j

r=0

j

r

 !
ℍ kð Þ

j−r,λ ζ ; uð Þ 1ð Þr,λ: ð39Þ

Proof. In Equation (16), we see that

〠
∞

j=0
ℍ kð Þ

j,λ ζ + 1 ; uð Þ −ℍ kð Þ
j,λ ζ ; uð Þ

h i zj
j!

= Eik,λ logλ 1 + 1 − uð Þzð Þð Þ
z eλ zð Þ − uð Þ

� �
eζλ zð Þ eλ zð Þ − 1½ �

= 〠
∞

j=0
〠
j

r=0

j

r

 !
ℍ kð Þ

j−r,λ ζ ; uð Þ 1ð Þr,λ
zj

j!
− 〠

∞

j=0
ℍ kð Þ

j,λ ζ ; uð Þ z
j

j!
:

ð40Þ

Comparing the coefficients of zj on both sides, we get the
result. ☐

Theorem 11. Let j ≥ 0. Then,

ℍ kð Þ
j,λ ζ ; uð Þ = 〠

j

r=0
〠
r

q=0

j

r

 !
ζð ÞqS2,λ r, qð Þℍ kð Þ

j−r,λ uð Þ: ð41Þ

Proof. From Equation (16), we see that

〠
∞

j=0
ℍ kð Þ

j,λ ζ ; uð Þ z
j

j!
= Eik,λ logλ 1 + 1 − uð Þzð Þð Þ

z eλ zð Þ − uð Þ
� �

eζλ zð Þ

= Eik,λ logλ 1 + 1 − uð Þzð Þð Þ
z eλ zð Þ − uð Þ

� �
eλ zð Þ − 1 + 1½ �ζ

= Eik,λ logλ 1 + 1 − uð Þzð Þð Þ
z eλ zð Þ − uð Þ

� �
〠
∞

q=0
ζð Þq 〠

∞

l=q
S2,λ l, qð Þ z

l

l!

 !

= 〠
∞

j=0
〠
j

r=0
〠
r

q=0

j

r

 !
ζð ÞqS2,λ r, qð Þℍ kð Þ

j−r,λ uð Þ
 !

zj

j!
:

ð42Þ

By Equation (42). We complete the proof. ☐

Theorem 12. Let j ≥ 0. Then,

ℍ kð Þ
j,λ ζ + α ∣ uð Þ = 〠

j

n=0
〠
n

l=0

j

n

 !
ul ζð ÞlWu,α n, l ; λð Þℍ kð Þ

j−n,λ uð Þ:

ð43Þ

Proof. By changing ζ by ζu + α in Equation (16), we get
the following:

〠
∞

j=0
ℍ kð Þ

j,λ ζ + α ; uð Þ z
j

j!
= Eik,λ logλ 1 + 1 − uð Þzð Þð Þ

z eλ zð Þ − uð Þ
� �

eαλ tð Þeζuλ zð Þ

= Eik,λ logλ 1 + 1 − uð Þzð Þð Þ
z eλ zð Þ − uð Þ

� �
eαλ tð Þ euλ zð Þ − 1 + 1½ Þζ

= Eik,λ logλ 1 + 1 − uð Þzð Þð Þ
z eλ zð Þ − uð Þ

� �
eαλ zð Þ 〠

∞

l=0

ζ

l

 !
euλ zð Þ − 1½ Þl

 !

= Eik,λ logλ 1 + 1 − uð Þzð Þð Þ
z eλ zð Þ − uð Þ

� �
eαλ zð Þ〠

∞

l=0
ul ζð Þlfrac euλ zð Þ − 1ð Þl l!ul

 !

= 〠
∞

j=0
ℍ kð Þ

j,λ uð Þ z
j

j!
〠
∞

n=0
〠
n

l=0
ul ζð ÞlWu,α n, l ; λð Þ z

n

n!

 !

= 〠
∞

j=0
〠
j

n=0
〠
n

l=0

j

n

 !
ul ζð ÞlWu,α n, l ; λð Þℍ kð Þ

j−n,λ uð Þ
 !

zj

j!
:

ð44Þ

Therefore, by Equations (16) and (44), we obtain
the result. ☐

3. Degenerate Unipoly-Frobenius-Euler
Numbers and Polynomials

In this section, we introduce degenerate unipoly-Frobenius-
Euler polynomials by using degenerate unipoly polynomials
and derive some important properties of these polynomials.

In [3], Kim and Kim introduced unipoly function. In the
view of [9], the degenerate unipoly function is defined by
Dolgy and Khan [19] as follows:

uk,λ ζ ∣ pð Þ = 〠
∞

j=1
p jð Þ

1ð Þj,λζj
jk

: ð45Þ

Note that, we have the following:

uk,λ ζ ∣
1
Γ

� �
= Eik,λ ζð Þ ð46Þ

is the modified degenerate polylogarithm function.
It is clear that

lim
λ⟶0

uk,λ ζ ∣ pð Þ = 〠
∞

j=1
lim
λ⟶0

p ið Þ 1ð Þi,λζi
ik

= uk ζ ∣ pð Þ = 〠
∞

j=1
p ið Þ ζ

i

ik
,  k ∈ℤð Þ

ð47Þ

are called the unipoly function attached to polynomials pðζÞ
(see [20]).
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From Equation (47), we have the following:

uk ζ ∣ 1ð Þ = 〠
∞

j=1

ζj

jk
= Lik ζð Þ see 9½ �ð Þ ð48Þ

is the ordinary polylogarithm function.
By using Equations (45) and (16), we define the degener-

ate unipoly-Frobenius-Euler polynomials as follows:

uk,λ logλ 1 + 1 − uð Þzð Þ ∣ pð Þ
z eλ zð Þ − uð Þ eζλ zð Þ = 〠

∞

j=0
ℍ kð Þ

j,λ,p ζ ; uð Þ z
j

j!
: ð49Þ

At the special value ζ = 0, ℍðkÞ
j,λ,pðuÞ =ℍðkÞ

j,λ,pð0 ; uÞ are
called the degenerate unipoly-Frobenius-Euler numbers.

Theorem 13. Let j ≥ 0. Then, we have the following:

ℍ kð Þ
j,λ,1/Γ ζ ; ηð Þ =ℍ kð Þ

j,λ ζ ; uð Þ,  k ∈ℤð Þ: ð50Þ

Proof. Let us take pðjÞ = 1/Γλ. Then, we have the following:

〠
∞

j=0
ℍ kð Þ

j,λ,1/Γ ζ ; uð Þ z
j

j!
= uk,λ logλ 1 + 1 − uð Þzð Þ ∣ 1/Γpð Þ

z eλ zð Þ − uð Þ eζλ zð Þ

= 1
z eλ zð Þ − uð Þ〠

∞

r=1

1ð Þr,λ logλ 1 + 1 − uð Þzð Þð Þr
rk r + 1ð Þ! eζλ zð Þ

= Eik,λ logλ 1 + 1 − uð Þzð Þð Þ
z eλ zð Þ − uð Þ eζλ zð Þ

= 〠
∞

j=0
ℍ kð Þ

j,λ ζ ; uð Þ z
j

j!
:

ð51Þ

In view of Equation (51), we complete the proof. ☐

Theorem 14. Let j ∈ℕ and k ∈ℤ. Then,

ℍ kð Þ
j,λ,p ζ ; uð Þ = 〠

j

s=0
〠
s

r=0

j

s

 !
p r + 1ð Þ 1ð Þr+1,λ r + 1ð Þ!S1,λ r + 1, s + 1ð Þℍ j−s,λ uð Þ 1 − uð Þs

r + 1ð Þk s + 1ð Þ
:

ð52Þ

Proof. Using Equation (49), we have the following:

〠
∞

j=0
ℍ kð Þ

j,λ,p uð Þ z
j

j!
= uk,λ logλ 1 + 1 − uð Þzð Þ ∣ pð Þ

z eλ zð Þ − uð Þ

= 1
z eλ zð Þ − uð Þ〠

∞

r=1

p rð Þ 1ð Þr,λ
rk

logλ 1 + 1 − uð Þzð Þð Þr

= 1
z eλ zð Þ − uð Þ〠

∞

r=0

p r + 1ð Þ 1ð Þr+1,λ r + 1ð Þ!
r + 1ð Þk

〠
∞

l=r+1
S1,λ r + 1, lð Þ 1 − uð Þl z

l

l!

= 〠
∞

j=0
ℍj,λ uð Þ z

j

j!

 !
〠
∞

r=0
〠
r

l=0

p r + 1ð Þ 1ð Þr+1,λ r + 1ð Þ!
r + 1ð Þk

S1,λ r + 1, l + 1ð Þ
l + 1

zl

l!

 !

= 〠
∞

j=0
〠
∞

s=0
〠
s

r=0

j

s

 !
p r + 1ð Þ 1ð Þr+1,λ r + 1ð Þ!S1,λ r + 1, s + 1ð Þℍj−s,λ uð Þ 1 − uð Þs

r + 1ð Þk s + 1ð Þ

 !
zj

j!
:

ð53Þ

Therefore, by Equations (49) and (53), we get the result.
☐

Corollary 15. Let j ≥ 0. Then, we have the following:

ℍ kð Þ
j,λ,1/Γ uð Þ =ℍ kð Þ

j,λ uð Þ = 〠
n

s=0
〠
s

r=0

j

l

 !
S1,λ r + 1, s + 1ð Þℍj−s,λ uð Þ

r + 1ð Þk−1 s + 1ð Þ
:

ð54Þ

Theorem 16. Let j ≥ 0. Then, we have the following:

ℍ kð Þ
j,λ,p ζ ; uð Þ = 〠

j

r=0
〠
r

s=0

j

r

 !
H kð Þ

j−r,λ,p uð Þ ζð Þ rð ÞS2,λ r, sð Þ: ð55Þ

Proof. By Equation (49), we have the following:

〠
∞

j=0
H k,pð Þ

j,λ x ; uð Þ z
j

j!
= uk,λ logλ 1 + 1 − uð Þzð Þ ∣ pð Þ

z eλ zð Þ − uð Þ eλ zð Þ − 1 + 1ð Þζ

= uk,λ logλ 1 + 1 − uð Þzð Þ ∣ pð Þ
z eλ zð Þ − uð Þ 〠

∞

l=0

ζ

l

 !
eλ zð Þ − 1ð Þl

= 〠
∞

j=0
H kð Þ

j,λ,p uð Þ z
j

j!

 !
〠
∞

l=0
ζð Þl 〠

∞

m=l
S2,λ m, lð Þ z

m

m!

 !

= 〠
∞

j=0
〠
j

r=0
〠
r

s=0

n

r

 !
H kð Þ

j−r,λ,p uð Þ ζð Þ rð ÞS2,λ r, sð Þ
 !

zj

j!
:

ð56Þ

By Equation (56), we obtain the result. ☐

Theorem 17. Let j ≥ 0. Then,

ℍ kð Þ
j,λ,p ζ ; uð Þ = jℍ kð Þ

j−1,λ,p ζ ; uð Þ: ð57Þ

Proof. When we consider Equation (49), we see that

Δλ 〠
∞

j=0
ℍ kð Þ

n,λ,p ζ ; uð Þ z
j

j!

 !
= Δλ

uk,λ logλ 1 + 1 − uð Þzð Þ ∣ pð Þ
z eλ zð Þ − uð Þ 1 + λzð Þv/λ

� �
,

ð58Þ

and then we have the following:

〠
∞

j=0
Δλℍ

kð Þ
j,λ,p ζ ; uð Þ z

j

j!
= uk,λ logλ 1 + 1 − uð Þzð Þð Þ

z eλ zð Þ − uð Þ Δλe
ζ
λ zð Þ

= uk,λ logλ 1 + 1 − uð Þzð Þð Þ
z eλ zð Þ − uð Þ eζλ zð Þz

= 〠
∞

j=0
ℍ kð Þ

j,λ,p ζ ; uð Þ z
j+1

j!
:

ð59Þ

Therefore, by Equation (59), we complete the proof. ☐
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Theorem 18. Let j ≥ 0 and k ∈ℤ. Then, we have the following:

∂
∂ζ

ℍ kð Þ
j,λ,p ζ ; uð Þ = 〠

j

r=0

j

r

 !
ℍ kð Þ

j−r,λ,p ζ ; uð Þ 1ð Þr,λ: ð60Þ

Proof. In Equation (49), we consider that

∂
∂ζ

〠
∞

j=0
ℍ kð Þ

j,λ,p ζ ; uð Þ z
j

j!

 !

= ∂
∂ζ

uk,λ logλ 1 + 1 − uð Þzð Þ ∣ pð Þ
z eλ zð Þ − uð Þ 1 + λzð Þζ/λ

� �
〠
∞

j=0

∂
∂ζ

ℍ kð Þ
j,λ,p ζ ; uð Þ z

j

j!

= uk,λ logλ 1 + 1 − uð Þzð Þð Þ
z eλ zð Þ − uð Þ

∂
∂ζ

1 + λzð Þζ/λ

= uk,λ logλ 1 + 1 − uð Þzð Þð Þ
z eλ zð Þ − uð Þ 1 + λzð Þζ/λ 1 + λzð Þ1/λ

= 〠
∞

j=0
ℍ kð Þ

j,λ,p ζ ; uð Þ z
j

j!

 !
〠
∞

r=0
1ð Þr,λ

zr

r!

 !

= 〠
∞

j=0
〠
j

r=0

j

r

 !
ℍ kð Þ

j−r,λ,p ζ ; uð Þ 1ð Þr,λ
 !

zj

j!
:

ð61Þ

By Equation (61), we complete the proof. ☐

4. Degenerate Poly-Frobenius-Euler
Polynomials of Complex Variables

In this section, we define the Frobenius-Euler polynomials of
the complex variables. We consider the degenerate cosine
function and degenerate sine function. Using the degenerate
cosine function and the degenerate sine function, we
introduce the degenerate cosine poly-Frobenius-Euler
polynomials and degenerate sine poly-Frobenius-Euler
polynomials.

In [5], Kim et al. defined the degenerate sine sinλz and
cosine cosλz functions by the following:

sin ζð Þ
λ zð Þ = eixλ zð Þ − e−iζλ zð Þ

2i ,

cos ζð Þ
λ zð Þ = eiζλ zð Þ + e−iζλ zð Þ

2 ,
ð62Þ

where i =
ffiffiffiffiffiffi
−1

p
: Note that limλ⟶0sin

ðζÞ
λ ðzÞ = sin ζz and

limλ⟶0cos
ðζÞ
λ ðzÞ = cos ζz. From Equation (62), it is readily

seen that

eiζλ zð Þ = cos ζð Þ
λ zð Þ + i sin ζð Þ

λ zð Þ: ð63Þ

By these functions in Equation (62), the degenerate sine-
polynomials Sj,λðζ, ηÞ and degenerate cosine-polynomials
Cj,λðζ, ηÞ are introduced by Kim et al. [5] as follows:

〠
∞

j=0
Sj,λ ζ, ηð Þ z

j

j!
= eζλ zð Þ sin ηð Þ

λ zð Þ, ð64Þ

〠
∞

j=0
Cj,λ ζ, ηð Þ z

j

j!
= eζλ zð Þ cos ηð Þ

λ zð Þ: ð65Þ

Several properties of these polynomials in Equations
(64) and (65) were studied and investigated by Kim
et al. [5]. Also, by means of these functions, Kim et al.
[5] introduced the degenerate Euler and Bernoulli polyno-
mials of complex variable and investigate some of their
properties. Motivated and inspired by these considerations
above, we define degenerate poly-Frobenius-Euler polyno-
mials of complex variable as follows:

〠
∞

j=0
ℍ kð Þ

j,λ ζ + iη ; uð Þ z
j

j!
= Eik,λ logλ 1 + 1 − uð Þzð Þð Þ

z eλ zð Þ − uð Þ e ζ+iηð Þ
λ zð Þ

= Eik,λ logλ 1 + 1 − uð Þzð Þð Þ
z eλ zð Þ − uð Þ eζλ zð Þ cos ηð Þ

λ zð Þ + i sin ηð Þ
λ zð Þ

h i
,

ð66Þ

〠
∞

j=0
ℍ kð Þ

j,λ ζ − iη ; uð Þ z
j

j!
= Eik,λ logλ 1 + 1 − uð Þzð Þð Þ

z eλ zð Þ − uð Þ e ζ−iηð Þ
λ zð Þ

= Eik,λ logλ 1 + 1 − uð Þzð Þð Þ
z eλ zð Þ − uð Þ eζλ zð Þ cos ηð Þ

λ zð Þ − i sin ηð Þ
λ zð Þ

h i
:

ð67Þ
From Equations (66) and (67), we get the following:

Eik,λ logλ 1 + 1 − uð Þzð Þð Þ
z eλ zð Þ − uð Þ eζλ zð Þ cos ηð Þ

λ zð Þ

= 〠
∞

j=0

ℍ kð Þ
j,λ ζ + iη ; uð Þ +ℍ kð Þ

j,λ ζ − iη ; uð Þ
2

zj

j!
,

Eik,λ logλ 1 + 1 − uð Þzð Þð Þ
z eλ zð Þ − uð Þ eζλ zð Þ sin ηð Þ

λ zð Þ

= 〠
∞

j=0

ℍ kð Þ
j,λ ζ + iη ; uð Þ −ℍ kð Þ

j,λ ζ − iη ; uð Þ
2i

z j

j!
:

ð68Þ

Now, we define the degenerate cosine poly-Frobenius-
Euler polynomials and the degenerate sine poly-Frobenius-
Euler polynomials, respectively, as follows:

〠
∞

j=0
ℍ k,c½ �

j,λ ζ, η ; uð Þ z
j

j!
= Eik,λ logλ 1 + 1 − uð Þzð Þð Þ

z eλ zð Þ − uð Þ eζλ zð Þ cos ηð Þ
λ zð Þ,

ð69Þ

〠
∞

j=0
ℍ k,s½ �

j,λ ζ, η ; uð Þ z
j

j!
= Eik,λ logλ 1 + 1 − uð Þzð Þð Þ

z eλ zð Þ − uð Þ eζλ zð Þ sin ηð Þ
λ zð Þ:

ð70Þ
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Theorem 19. The following results hold true:

ℍ k,c½ �
j,λ ζ, η ; uð Þ = 1

2
〠
j

r=0

j

r

 !
ℍ k,c½ �

j−r,λ ζ, η ; uð Þ〠
r

l=0

r

l

 !
ζð Þr−l,λ iηð Þl,λ + −iηð Þl,λ

� 	
,

ð71Þ

ℍ k,s½ �
j,λ ζ, η ; uð Þ = 1

2i
〠
j

r=0

j

r

 !
ℍ k,s½ �

j−r,λ ζ, η ; uð Þ〠
r

l=0

r

l

 !
ζð Þr−l,λ iηð Þl,λ − −iηð Þl,λ

� 	
:

ð72Þ
Proof. From Equation (69), we have the following:

〠
∞

j=0
ℍ k,c½ �

j,λ ζ, η ; uð Þ z
j

j!
= Eik,λ logλ 1 + 1 − uð Þzð Þð Þ

z eλ zð Þ − uð Þ eζλ zð Þ cos ηð Þ
λ zð Þ

= Eik,λ logλ 1 + 1 − uð Þzð Þð Þ
z eλ zð Þ − uð Þ

1
2〠

∞

r=0
〠
r

l=0

r

l

 !
ζð Þr−l,λ iηð Þl,λ + −iηð Þl,λ

� 	 zr
r!

= 〠
∞

j=0

1
2〠

j

r=0

j

r

 !
ℍ k,c½ �

j−r,λ ζ, η ; uð Þ〠
r

l=0

r

l

 !
ζð Þr−l,λ iηð Þl,λ + −iηð Þl,λ

� 	 !
zj

j!
:

ð73Þ

By Equation (73), we get Equation (71). Similarly, by
using Equations (70) and (3), we can easily find the result
(Equation (72)). ☐

Theorem 20. The following results hold true:

ℍ k,c½ �
j,λ ζ1 + ζ2,;uð Þ = 〠

j

m=0

j

m

 !
〠
m

r=0
S ζ1ð Þ
2,λ m, rð Þ ζ2ð Þrℍ

k,c½ �
j,λ 0, η ; uð Þ,

ð74Þ

ℍ k,s½ �
j,λ ζ1 + ζ2,;uð Þ = 〠

j

m=0

j

m

 !
〠
m

r=0
S ζ1ð Þ
2,λ m, rð Þ ζ2ð Þrℍ

k,s½ �
j,λ 0, η ; uð Þ:

ð75Þ
Proof. From Equations (3) and (69), we have the following:

〠
∞

j=0
ℍ k,c½ �

j,λ ζ1 + ζ2,;uð Þ z
j

j!
= e ζ1+ζ2ð Þ

λ zð ÞEik,λ logλ 1 + 1 − uð Þzð Þð Þ
z eλ zð Þ − uð Þ cos ηð Þ

λ zð Þ

= 〠
∞

m=0
〠
m

r=0
S ζ1ð Þ
2,λ m, rð Þ ζ2ð Þr

zm

m!
〠
∞

j=0
ℍ k,c½ �

j,λ 0, η ; uð Þ z
j

j!

= 〠
∞

j=0
〠
j

m=0

j

m

 !
〠
m

r=0
S ζ1ð Þ
2,λ m, rð Þ ζ2ð Þrℍ

k,c½ �
j,λ 0, η ; uð Þ

 !
zj

j!
:

ð76Þ

In view of Equation (76), we get Equation (74). Similarly,
by using Equations (3) and (70), we require at the desired
result (Equation (75)). ☐

Theorem 21. The following results hold true:

ℍ k,c½ �
j,λ ζ1 + ζ2, η1 + η2 ; uð Þ = 〠

j

r=0

j

r

 !

� ℍ k,c½ �
j−r,λ ζ1, η1 ; uð ÞCr,λ ζ2, η2ð Þ −ℍ k,s½ �

j,λ ζ1, η1 ; uð ÞSr,λ ζ2, η2ð Þ
h i

,

ð77Þ

ℍ k,s½ �
j,λ ζ1 + ζ2, η1 + η2 ; uð Þ = 〠

j

r=0

j

r

 !

� ℍ k,s½ �
j−r,λ ζ1, η1 ; uð ÞCr,λ ζ2, η2ð Þ −ℍ k,c½ �

j,λ ζ1, η1 ; uð ÞSm,λ ζ2, η2ð Þ
h i

:

ð78Þ
Proof. From Equation (69), we have the following:

〠
∞

j=0
ℍ k,c½ �

j,λ ζ1 + ζ2, η1 + η2 ; uð Þ z
j

j!
= e ζ1+ζ2ð Þ

λ zð ÞEik,λ logλ 1 + 1 − uð Þzð Þð Þ
z eλ zð Þ − uð Þ

� cos η1ð Þ
λ zð Þ cos η2ð Þ

λ zð Þ − sin η1ð Þ
λ zð Þ sin η2ð Þ

λ zð Þ
h i

= 〠
∞

j=0
ℍ k,c½ �

j,λ ζ1, η1 ; uð Þ z
j

j!
〠
∞

r=0
Cr,λ ζ2, η2ð Þ z

r

r!

− 〠
∞

j=0
ℍ k,s½ �

j,λ ζ1, η1 ; uð Þ z
j

j!
〠
∞

r=0
Sr,λ ζ2, η2ð Þ z

r

r!

= 〠
∞

j=0
〠
j

r=0

j

r

 !
ℍ k,c½ �

j−r,λ ζ1, η1 ; uð ÞCr,λ ζ2, η2ð Þ
 

−ℍ k,s½ �
j,λ ζ1, η1 ; uð ÞSm,λ ζ2, η2ð Þ

!
zj

j!
:

ð79Þ

Comparing the coefficients of z on both sides, we get
Equation (77). Similarly, by using Equation (70), we can
easily get Equation (78). ☐

Corollary 22. On setting ζ1 = ζ2 = ζ and η1 = η2 = η in
Theorem 16, we have the following:

ℍ k,c½ �
j,λ 2ζ, 2η ; uð Þ = 〠

j

r=0

j

r

 !
ℍ k,c½ �

j−r,λ ζ, η ; uð ÞCr,λ ζ, ηð Þ −ℍ k,s½ �
j,λ ζ, η ; uð ÞSr,λ ζ, ηð Þ

h i
,

ℍ k,s½ �
j,λ 2ζ, 2η ; uð Þ = 〠

j

r=0

j

r

 !
ℍ k,s½ �

j−r,λ ζ, η ; uð ÞCr,λ ζ, ηð Þ −ℍ k,c½ �
j,λ ζ, η ; uð ÞSm,λ ζ, ηð Þ

h i
:

ð80Þ

5. Conclusions

In this paper, we defined the degenerate poly-Frobenius-
Euler polynomials by employing the modified degenerate
polyexponential functions. We have established some identi-
ties and relations between degenerate Whitney numbers and
degenerate Stirling numbers of the first kind. Also, we have
established addition formulas and derivative formulas of
degenerate poly-Frobenius-Euler polynomials. In the last
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section, we have defined degenerate poly-Frobenius-Euler
polynomials of complex variables and then we have derived
several properties and relations.
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In the present article we obtain the boundedness for commutators of rough p-adic Hardy operator on p-adic central Morrey spaces.
Furthermore, we also acquire the boundedness of rough p-adic Hardy operator on Lebesgue spaces.

1. Introduction

The classical Hardy operator for a non-negative function
f : ℝ+ ⟶ℝ+is given as

H f xð Þ = 1
x

ðx
0
f tð Þdt, x > 0: ð1Þ

In [1], Hardy defined the above operator which satisfies

H fk kLr ℝ+ð Þ ≤
r

r − 1 fk kLr ℝ+ð Þ, 1 < r <∞: ð2Þ

The constant r/ðr − 1Þ in (2) is sharp. In [2], Faris
extended the Hardy operator in ℝn by

Hf xð Þ = 1
xj jn
ð

B 0, xj jð Þð Þ
f tð Þdt: ð3Þ

In this day and age, the Hardy operator has received a
relentless consideration, see for example [3–7]. Moreover,
the publications [8–12] and the references therein will do
world of good to comprehend the Hardy type operators.

The past few years has seen an immense attention
towards mathematical physics [13, 14] along with harmonic
analysis in the p-adic field [15–23]. Furthermore, the applica-

tions of p-adic analysis are seen mainly in string theory [24],
quantum gravity [25, 26], quantum mechanics [14] and
spring glass theory [27, 28].

Suppose p is a prime number, r ∈ℚ, we introduce the p
-adic norm jrjp by a rule

0j jp = 0, rj jp = p−α, ð4Þ

where the integer α = αðrÞ is defined by the following
notation

r = pαm/n, ð5Þ

integers m, n and p are coprime to each other. j·jp has many
properties of a real norm together with

r + sj jp ≤max rj jp, sj jp
n o

: ð6Þ

We denote the completion of ℚ in the norm j·jp by ℚp:

Any nonzero p-adic number can be written in series form
as (see [14]):

r = pα 〠
∞

i=0
γip

i, ð7Þ
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where γi, α ∈ℤ, γi ∈ℤ/pℤp, γ0 ≠ 0: The series (7) is conver-
gent as jpαγipijp = p−α−i:

The space ℚn
p contains all n-tuples of ℚp. The norm on

this space is

rj jp = max
1≤k≤n

rkj jp: ð8Þ

Represent by BαðaÞ the ball with radius pα and center at a
and SαðaÞ its sphere:

Bα að Þ = r ∈ℚn
p : r − aj jp ≤ pα

n o
, Sα að Þ = r ∈ℚn

p : r − aj jp = pα
n o

:

ð9Þ

Sinceℚn
p is a locally compact Hausdorff space, then there

exists the Haar measure dx on additive groupℚn
p and is nor-

malized by

ð
B0 0ð Þ

dx = B0 0ð Þj jH = 1, ð10Þ

where jEjH denotes the Haar measure of a measurable subset
E of ℚn

p : Moreover, it is not hard to see that jBγðaÞjH = pnγ

and jSγðaÞjH = pnγð1 − p−nÞ, for any a ∈ℚn
p .

Suppose Lsðℚn
pÞð1 ≤ s<∞Þ is the space of all complex-

valued functions f on ℚn
p such that

∥f ∥Ls ℚn
pð Þ =

ð
ℚn

p

f xð Þj jsdx
 !1/s

<∞: ð11Þ

In what follows author in [29] introduced the Hardy
operator in the p-adic field as for f ∈ Llocðℚn

pÞ, we have

Hpf xð Þ = 1
xj jnp

ð
B 0, xj jpð Þ

f tð Þdt: ð12Þ

For better understanding of Hardy type operators in the p
-adic field we refer the publications [12, 29–32] and the refer-
ences therein. From here on, we discuss the rough kernel ver-
sion of an operator which is also considered an important
topic in analysis, see for instance [20, 33–37]. In [10], Fu
et al. studied the roughness of Hardy operator in the real
field. In the p-adic setting, the rough Hardy operator and
its commutator are defined and studied in [20]. Suppose
f : ℚn

p ⟶ℝ, b : ℚn
p ⟶ℝ and Ω : S0 ⟶ℝ are measur-

able mappings, then

Hp
Ω f xð Þ = 1

xj jnp

ð
B 0, xj jpð Þ

Ω tj jpt
� �

f tð Þdt

Hp,b
Ω f xð Þ = 1

xj jnp

ð
B 0, xj jð Þp

b xð Þ − b tð Þð ÞΩ tj jpt
� �

f tð Þdt,

ð13Þ

respectively, whenever

ð
B 0, xj jpð Þ

Ω tj jpt
� �

f tð Þ
��� ���dt <∞

ð
B 0, xj jpð Þ

b tð ÞΩ tj jpt
� �

f tð Þ
��� ���dt <∞:

ð14Þ

In [20], authors showed the weighted estimates ofHp,b
Ω on

two weighted Herz-Morrey spaces. In the present article, we
acquire the λ − central bounded mean oscillations ðC _MOr,λ

ðℚn
pÞÞ estimate of Hp,b

Ω on p-adic central Morrey spaces. In
addition, we open up our results with a lemma which shows
the boundedness of rough p-adic Hardy operator on Lebes-
gue spaces. Throughout this paper, we have no intention to
obtain the best constants in the inequalities. The occurrence
of a letter C does not mean a same constant, its value may
vary at different positions.

Definition 1 [32]. Suppose λ ∈ℝ and 1 < r <∞: The p-adic

space _B
r,λðℚn

pÞ is defined as follows

fk k _B
r,λ

ℚn
pð Þ = sup

γ∈ℤ

1
Bγ

�� ��1+λr
H

ð
Bγ

f xð Þj jrdx
 !1/r

<∞, ð15Þ

where Bγ = Bγð0Þ: Interestingly _B
r,λðℚn

pÞ reduces to f0g for
−1/r > λ:

Definition 2 [32]. Suppose λ < 1/n and 1 < r <∞. The p-adic
space C _MOr,λðℚn

pÞ is given by

fk kC _MOr,λ ℚn
pð Þ = sup

γ∈ℤ

1
Bγ

�� ��1+λr
H

ð
Bγ

f xð Þ − f Bγ

��� ���rdx
 !1/r

<∞,

ð16Þ

where f Bγ
= 1/jBγjH

Ð
Bγ
f ðxÞdx, jBγjH is the Haar measure of

Bγ.

Remark 3. If λ = 0, then C _MOr,λðℚn
pÞ is reduced to CMOr

ðℚn
pÞ (see [29]).

2. Boundedness for Commutators of Rough p-
Adic Hardy Operator on Central Morrey
Spaces

In the present section ðC _MOr,λðℚn
pÞÞ estimates of Hp,b

Ω on
central Morrey spaces in the p-adic field are obtained.
However, to prove the result we need few lemmas.
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Lemma 4 [32]. Let b ∈ C _MOr,λðℚn
pÞ and i, j ∈ℤ, λ ≥ 0. Then

bBi
− bBj

��� ��� ≤ pn i − jj j bk kC _MOr,λ ℚn
pð Þ max Bij jλH , Bj

�� ��λ
H

n o
:

ð17Þ

Lemma 5. Suppose 1 < s <∞ and 1/s + 1/s′ = 1. Then the
inequality

Hp
Ω f

�� ��
Ls ℚn

pð Þ ≤ C fk kLs ℚn
pð Þ ð18Þ

holds for all f ∈ Lslocðℚn
pÞ and Ω ∈ LsðS0Þ.

Proof. Firstly, we set

~f xð Þ = 1
1 − pn

ð
ξpj j=1

f xj j−1p ξ
� �

dξ, x ∈ℚn
p : ð19Þ

Obviously ~f ðxÞ = ~f ðjxj−1p Þ. In what follows we take this
function a radial function on p-adic Lebesgue space. It is
not hard to see that

Hp
Ω

~f
� �

xð Þ =Hp
Ω fð Þ xð Þ: ð20Þ

In [29], it is shown that k~f kLsðℚn
pÞ ≤ k f kLsðℚn

pÞ. Therefore,

Hp
Ω f

�� ��
Ls ℚn

pð Þ
fk kLs ℚn

pð Þ
≤

Hp
Ω
~f

��� ���
Ls ℚn

pð Þ
~f
��� ���

Ls ℚn
pð Þ

: ð21Þ

This implies that ~f = f providing f is a radial function.
Consequently, the norm of an operator Hp

Ω along with its
restriction to the function f̂ have the same operator norm.
So, we assume f to be a radial function in the rest of the
proof.

By the change of p-adic variables t = jxj−1p y, we have

Hp
Ω f

�� ��
Ls ℚn

pð Þ =
ð
ℚn

p

1
xj jnp

ð
B 0,∣xjpð Þ

Ω tj jpt
� �

f tð Þdt
�����

�����
s

dx
 !1/s

=
ð
ℚn

p

ð
B 0,1ð Þ

Ω ∣y ∣ py
� �

f ∣x ∣ −1p y
� �

dy
�����

�����
s

dx
 !1/s

:

ð22Þ

Now by using Minkowski’s inequality and Hölder’s
inequality ð1/s + 1/s′ = 1Þ, we get

Hp
Ω f

�� ��
Ls ℚn

pð Þ ≤
ð
B 0,1ð Þ

Ω yj jpy
� � ð

ℚn
p

f ∣y ∣ −1p x
� ���� ���sdx

 !1/s

dy

≤
ð
B 0,1ð Þ

Ω yj jpy
� �

yj j−n/sp dy
 !

fk kLs ℚn
pð Þ

= 〠
0

j=−∞

ð
Sj

Ω pjy
� �

p−nj/sdy
 !

fk kLs ℚn
pð Þ

≤ 〠
0

j=−∞
p−jn/s

ð
Sj

Ω pjy
� ��� ��sdy

 !1/s ð
Sj

dy

 !1/s′

� fk kLs ℚn
pð Þ:

ð23Þ

We handle the first part of sum as follows

ð
Sj

Ω pjy
� ��� ��sdy = ð

zj jp=1
Ω zð Þj jspjndz = Cpjn: ð24Þ

Hence inequality (23) takes the following form

Hp
Ω f

�� ��
Ls ℚn

pð Þ ≤ C fk kLs ℚn
pð Þ, ð25Þ

which completes the proof of a lemma.
Now, we turn towards our key result.

Theorem 6. Suppose 1 < r1 <∞, r1 ′ < r2 <∞, nð1/r2 − 1/r1Þ
< n/r1, 1/r1 + 1/r2 = 1/r, −1/r1 < λ1 < 0, λ = λ1 + λ2 and 0 ≤
λ2 < 1/n: If r1 ′ < s <∞, then the below inequality

Hp,b
Ω f

��� ���
_B
r,λ

ℚn
pð Þ ≤ C fk k _B

r,λ1 ℚn
pð Þ, ð26Þ

holds for b ∈ CMOmax fr2 ,sr1′/ðs−r1′Þ,λ2gðℚn
pÞ and Ω ∈ LsðS0Þ:

Proof. We suppose f ∈ _B
r1,λ1ðℚn

pÞ: We also take γ ∈ℤ and
without any brevity we consider kbkCMOmax fr2,sr1 ′/ðs−r1 ′Þ,λ2gðℚn

pÞ =
1: Applying Minkowski’s inequality to have

1
Bγ

�� ��1+λr
H

ð
Bγ

Hp,b
Ω f xð Þ

��� ���rdx
 !1/r

= 1
Bγ

�� ��1+λr
H

ð
Bγ

1
xj jnp

ð
B 0,∣xjpð Þ

Ω ∣t ∣ pt
� �

f tð Þ b xð Þ − b tð Þð Þdt
�����

�����
r

dx
 !1/r

≤
1

Bγ

�� ��1+λr
H

ð
Bγ

1
xj jnp

ð
B 0,∣xjpð Þ

Ω ∣t ∣ pt
� �

f tð Þ b xð Þ − bBγ

� �
dt

�����
�����
r

dx
 !1/r

+ 1
Bγ

�� ��1+λr
H

ð
Bγ

1
xj jnp

ð
B 0,∣xjpð Þ

Ω ∣t ∣ pt
� �

f tð Þ b tð Þ − bBγ

� �
dt

�����
�����
r

dx
 !1/r

= I + II:

ð27Þ
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For the evaluation of I, we make use of Lemma (5) which
shows that Hp

Ω is bounded from Lrðℚn
pÞ to Lrðℚn

pÞ,
ð1 < r<∞Þ: By Hölder’s inequality ð1 = r/r1 + r/r2Þ, we have

I ≤ Bγ

�� ��−1/r−λ
H

ð
Bγ

b xð Þ − bBγ

��� ���r2dx
 !1/r2 ð

Bγ

Hp
Ω f xð Þ�� ��r1dx

 !1/r1

≤ Bγ

�� ��−1/r−λ
H

ð
Bγ

b xð Þ − bBγ

��� ���r2dx
 !1/r2 ð

Bγ

f xð Þj jr1dx
 !1/r1

= C fk k _B
r1,λ1 ℚn

pð Þ:
ð28Þ

In order to estimate II, we proceed as follows

IIr ≤
1

Bγ

�� ��1+λr
H

ð
Bγ

1
xj jnp

ð
B 0,∣xpð Þ

Ω ∣t ∣ pt
� �

f tð Þ b tð Þ − bBγ

� �
dt

�����
�����
r

dx

≤
1

Bγ

�� ��1+λr
H

〠
γ

k=−∞

ð
Sk

p−knr
ð
B 0,pkð Þ

∣Ω tj jpt
� �

f tð Þ b tð Þ − bBγ

� �
dt ∣

 !r

dx

= C

Bγ

�� ��1+λr
H

〠
γ

k=−∞
pkn 1−rð Þ 〠

k

j=−∞

ð
Sj

∣Ω pjt
� �

f tð Þ b tð Þ − bBγ

� �
dt ∣

 !r

≤
C

Bγ

�� ��1+λr
H

〠
γ

k=−∞
pkn 1−rð Þ 〠

k

j=−∞

ð
Sj

∣Ω pjt
� �

f tð Þ b tð Þ − bBj

� �
dt ∣

 !r

+ C

Bγ

�� ��1+λr
H

〠
γ

k=−∞
pkn 1−rð Þ 〠

k

j=−∞

ð
Sj

∣Ω pjt
� �

f tð Þ bBj
− bBγ

� �
dt ∣

 !r

= II1 + II2:

ð29Þ

For j, k ∈ℤ with j ≤ k, we have

ð
Sj

Ω pjt
� ��� ��sdt = ð

zj jp=1
Ω zð Þj jspjndz ≤ Cpkn: ð30Þ

To evaluate II1, we apply Hölder’s inequality together
with (30) to get

II1 ≤
C

Bγ

�� ��1+λr
H

〠
γ

k=−∞
pkn 1−rð Þ 〠

k

j=−∞

ð
Sj

Ω pjt
� ��� ��sdt

 !1/s"

×
ð
Sj

f tð Þj jr1dt
 !1/r1 ð

Sj

b tð Þ − bBj

��� ���r2dt
 !1/r2#r

≤
C

Bγ

�� ��1+λr
H

fk k _B
r,λ1 ℚn

pð Þ 〠
γ

k=−∞
pkn 1−r+r/sð Þ 〠

k

j=−∞
Bj

�� ��1/r1+λ1+1/r2+λ2( )r

≤
C

Bγ

�� ��1+λr
H

fk k _B
r,λ1 ℚn

pð Þ 〠
γ

k=−∞
pkn 1+λrð Þ = C

Bγ

�� ��1+λr
H

fk k _B
r,λ1 ℚn

pð Þp
γn 1+λrð Þ

= C fk k _B
r,λ1 ℚn

pð Þ:

ð31Þ

The convergence of above series is eminent from λ1
+ λ2 + 1/r1 + 1/r2 ≥ λ1 + 1 − 1/s > −1/r + 1 − 1/s = 1/r1 ′ − 1/s
> 0.

For II2, we use Lemma 4, inequality (30) and Hölder’s
inequality to obtain

II2 =
C

Bγ

�� ��1+λr
H

〠
γ

k=−∞
pkn 1−rð Þ 〠

k

j=−∞

ð
Sj

∣Ω pjt
� �

f tð Þ bBj
− bBγ

� �
dt ∣

 !r

≤
C

Bγ

�� ��1+λr
H

〠
γ

k=−∞
pkn 1−rð Þ 〠

k

j=−∞

ð
Sj

Ω pjt
� �

f tð Þ γ − jð Þ Bγ

�� ��λ2
H
dt

" #r

= C

Bγ

�� ��1+λr
H

〠
γ

k=−∞
pkn 1−rð Þ 〠

k

j=−∞
γ − jð Þ

ð
Sj

Ω pjt
� �

f tð Þdt
" #r

≤
C

Bγ

�� ��1+λ1r
H

〠
γ

k=−∞
pkn 1−rð Þ 〠

k

j=−∞
γ − jð Þ

ð
Sj

Ω pjt
� ��� ��sdt

 !1/s"

×
ð
Sj

f tð Þj jr1dt
 !1/r1 ð

Sj

dt
 !1/r1′−1/s#r

≤
C

Bγ

�� ��1+λ1r
H

fk k _B
r,λ1 ℚn

pð Þ 〠
γ

k=−∞
pkn 1−r+r/sð Þ 〠

k

j=−∞
γ − jð Þ Bj

�� ��λ1+1−1/s" #r

≤
C

Bγ

�� ��1+λ1r
H

fk k _B
r,λ1 ℚn

pð Þ 〠
γ

k=−∞
pkn 1−r+r/sð Þ γ − kð Þr Bkj j λ1+1−1/sð Þr

= C

Bγ

�� ��1+λ1r
H

fk k _B
r,λ1 ℚn

pð Þ 〠
γ

k=−∞
γ − kð Þrpknr 1/r+λ1ð Þ

= C

Bγ

�� ��1+λ1r
H

fk k _B
r,λ1 ℚn

pð Þp
γnr 1/r+λ1ð Þ = C fk k _B

r,λ1 ℚn
pð Þ,

ð32Þ

where we notice that 0 < λ1 + 1 − 1/s together with λ1 + 1/r1
+ 1/r2 > 1/r2 > 0 = λ1 + 1/r: From (28), (31) and (32), we get

Hp,b
Ω f

��� ���
_B
r,λ1 ℚn

pð Þ ≤ C fk k _B
r,λ1 ℚn

pð Þ: ð33Þ

3. Conclusion

We mainly focused on the boundedness for commutators of
rough p-adic Hardy operator on p-adic central Morrey
spaces. Besides, we also obtained the boundedness of rough
p-adic Hardy operator on p-adic Lebesgue spaces.
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The integral inequalities have become a very popular area of research in recent years. The present paper deals with some important
generalizations of convex stochastic processes. Several mean square integral inequalities are derived for this generalization. The
involvement of the beta function in the results makes the inequalities more convenient for applied sciences.

1. Introduction

Just as the probability theory is regarded as the study of
mathematical models of random phenomena, the theory of
stochastic processes plays an important role in the investiga-
tion of random phenomena depending on time. A random
phenomenon that arises through a process which is develop-
ing in time and controlled by some probability law is called a
stochastic process. Thus, stochastic processes can be referred
to as the dynamic part of the probability theory. We will now
give a formal definition of a stochastic process.

Various collections of random variables Xðl, ·Þ, l ∈ J , have
the property in some sense that XðlÞ is stochastically convex
(or −Xðl, ·Þ is stochastically concave). The stochastic process
with convexity properties has a large number of applications.
In [1], the authors demonstrated the use of a stochastically
convex function in different areas of probability and
statistics.

In queueing theory, the convexity of steady-state waiting
time is used in [2]. More in [1], the authors used the convex-
ity of payoff in the success rate to obtain an imperfect repair.

In 1980, Nikodem introduced the study of quadratic and
convex stochastic processes (see [3, 4]). In [5, 6], Skowronski
explained the properties of the Wright-convex and Jensen-
convex stochastic process. Also, Kotrys described results on
convex and strongly convex stochastic processes, together

with a Hermite-Hadamard-type inequality for convex sto-
chastic processes (see [7–9]).

The Hermite-Hadamard inequality for the convex sto-
chastic process is defined as follows:

Let X : J ×Ω⟶ℝ be a convex and mean square con-
tinuous in the interval T ×Ω; then, the inequality holds
almost everywhere:

X
r + s
2 , ·

� �
≤

1
r − s

ðs
r
X l, ·ð Þdl ≤ X r, ·ð Þ + X s, ·ð Þ

2 , ð1Þ

for any r, s ∈ J . For more details on Hermite-Hadamard-type
inequalities for the stochastic process, we may refer the
reader to [10–12].

Definition 1 (see [13]). A stochastic process is a collection of
random variables XðlÞ parameterized by l ∈ J , where J ⊂ℝ.
When J = f1, 2,⋯g, then XðlÞ is said to be a stochastic pro-
cess in discrete time (i.e., a sequence of random variables).
When J is an interval in ℝðJ = ½0,∞ÞÞ, then we say that
XðlÞ is a stochastic process in continuous time.

For every ω ∈Ω, the function

J ∋ l↦ X l, ωð Þ ð2Þ

is said to be a path or sample path of XðlÞ.
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Definition 2 (see [13]). A family Fl of α-fields on Ω parame-
trized by l ∈ J , where J ⊂ℝ, is said to be a filtration if

Fs ⊂ Fl ⊂ F, ð3Þ

for any s, l ∈ J such that s ≤ l.

Definition 3 (see [13]). A stochastic process XðlÞ parame-
trized by l ∈ T is said to be a martingale (supermartingale,
submartingale) with respect to a filtration Fl if

(1) XðlÞ is integrable for each l ∈ J

(2) XðlÞ is Fl-measurable for each l ∈ J

(3) XðsÞ = EðXðlÞ ∣ FsÞ (respectively, ≤ or ≥) for every s,
l ∈ J such that s ≤ l.

Definition 4 (see [7]). Let ðΩ, A, PÞ be an arbitrary probability
space and J ⊂ℝ be an interval. A stochastic process X : Ω
⟶ℝ is called as follows:

(1) Stochastically continuous in interval J , if ∀l∘ ∈ J

P − lim
l⟶l∘

X l, ·ð Þ = X l∘, ·ð Þ, ð4Þ

where P − lim denotes the limit in probability.

(2) Mean square continuous in J , if ∀l∘ ∈ J

P − lim
l⟶l∘

E X l, ·ð Þ − X l∘, ·ð Þð Þ = 0, ð5Þ

where EðXðl, ·ÞÞ denotes the expectation value of the
random variable Xðl, ·Þ.

(3) Increasing (decreasing) if ∀μ, ν ∈ J such that

X μ, ·ð Þ ≤ X ν, ·ð Þ, X μ, ·ð Þ ≥ X ν, ·ð Þ: ð6Þ

(4) Monotonic if it is increasing or decreasing

(5) If there exists a random variable X ′ðl, ·Þ: J ×Ω⟶ℝ,
then we say that it is differentiable at a point l ∈ J, such
that

X ′ l, ·ð Þ = P − lim
l⟶l∘

X l, ·ð Þ − X l∘, ·ð Þ
l − l∘

: ð7Þ

A stochastic process X : J ×Ω⟶ℝ is continuous (dif-
ferentiable) if it is continuous (differentiable) at every point
of interval J .

Definition 5 (see [7, 14]). Suppose that ðΩ, A, PÞ be a proba-
bility space and J ⊂ℝ be an interval with EðXðϑÞ2Þ <∞∀
ϑ ∈ J . If ½r, s� ⊂ J , r = ϑ0 < ϑ1 < ϑ2 <⋯<ϑn = s is a partition of
½r, s� and Θ ∈ ½ϑκ−1, ϑκ� for κ = 1, 2,⋯, n. A random variable

Z : Ω⟶ℝ is known as mean square integral of the process
Xðϑ, ·Þ on ½r, s� if

lim
n⟶∞

E 〠
∞

κ=1
X Θκ, ·ð Þ ϑκ, ϑκ−1ð Þ − Z ·ð Þ

" #2

= 0, ð8Þ

then, we have

ðs
r
X ϑ, ·ð Þdϑ = Z ·ð Þ a:e:ð Þ: ð9Þ

Also, the mean square integral operator is increasing;
thus,

ðs
r
X ϑ, ·ð Þdϑ ≤

ðs
r
Y ϑ, ·ð Þ a:e:ð Þ, ð10Þ

where Xðϑ, ·Þ ≤ Yðϑ, ·Þ in ½r, s�.
For more details on stochastic processes, we may refer the

reader to [15, 16].

Next, we write some basic definitions which will be used
in this work:

Definition 6 (see [4]). Let ðΩ, A, PÞ be a probability space and
J ⊆ R be an interval. A stochastic process X : J ×Ω⟶ R is
called a convex stochastic process; then, the inequality holds
almost everywhere:

X ϑr + 1 − ϑð Þs, ·ð Þ ≤ ϑX r, ·ð Þ + 1 − ϑð ÞX s, ·ð Þ, ð11Þ

∀r, s ∈ J and ϑ ∈ ½0, 1�.

Definition 7 (see [17]). A process X : J ×Ω⟶ℝ is said to
be a p-convex stochastic process, if the following inequality
holds:

X ϑrp + 1 − ϑð Þsp½ �1/p, ·
� �

≤ ϑX r, ·ð Þ + 1 − ϑð ÞX s, ·ð Þ a:e:ð Þ,
ð12Þ

for all r, s ∈ J and ϑ ∈ ½0, 1�.

In [18], Barráez et al. defined the definition of the h
-convex stochastic process as follows:

Definition 8 (see [18]). Let h : ð0, 1Þ⟶ℝ be a nonnegative
function, h ≠ 0. A stochastic process X : J ×Ω⟶ℝ is a h
-convex stochastic process, if the inequality holds:

X ϑr + 1 − ϑð Þs, ·ð Þ ≤ h ϑð ÞX r, ·ð Þ + h 1 − ϑð ÞX s, ·ð Þ a:e:ð Þ, ð13Þ

for every r, s ∈ J and ϑ ∈ ½0, 1�.
Obviously, by taking hðϑÞ = ϑ in (13), then the definition

of the h-convex stochastic process reduces to the definition of
the convex stochastic process [4].
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Definition 9 (see [9]). Let c : Ω⟶ℝ be a positive random
variable. A stochastic process X : J ×Ω⟶ℝ is known as
strongly convex with modulus cð·Þ > 0, if the following
inequality holds:

X ϑr + 1 − ϑð Þs, ·ð Þ ≤ ϑX r, ·ð Þ + 1 − ϑð ÞX s, ·ð Þ − c ·ð Þϑ 1 − ϑð Þ r − sð Þ2 a:e:ð Þ,
ð14Þ

for all r, s ∈ J and ϑ ∈ ½0, 1�.
For more details on the strongly convex stochastic pro-

cess, we refer to [9], and for some interesting properties of
some special function, see [19, 20]. Obviously, if we omit
the term cð·Þϑð1 − ϑÞðr − sÞ2 in (14), then we get the defini-
tion of a convex stochastic process (see [4]). On the other
hand, if we set c = 0, then we get it from (14) in limit case.
Also, we use the beta function in this present work which is
expressed as

β r, sð Þ =
ð1
0
ϑr−1 1 − ϑð Þs−1dϑ, Re rð Þ > 0, Re sð Þ > 0: ð15Þ

2. Main Results

Lemma 10 (see [21]). Suppose that X : J ×Ω⟶ℝ be a
mean square continuous and mean square integrable stochas-
tic process. Then, the following equality holds almost every-
where:

ðs
r
ω − rð Þμ s − ωð ÞνX ω, ·ð Þdω = s − rð Þμ+ν+1

ð1
0
1 − ϑð ÞμϑνX ϑr + 1 − ϑð Þs, ·ð Þdϑ,

ð16Þ

for some fixed μ, ν > 0.

Lemma 11. Suppose that X : J ×Ω⟶ℝ be a mean square
continuous and mean square integrable stochastic process.
Then, the following equality holds almost everywhere:

ðsp
rp

ωp − rpð Þμ sp − ωpð Þν X ω, ·ð Þ
ω1−p dω

= sp − rpð Þμ+ν+1
p

ð1
0
1 − ϑð ÞμϑνX ϑrp + 1 − ϑð Þsp½ �1/p, ·

� �
dϑ,

ð17Þ

for some fixed μ, ν > 0.

Proof. Let ω = ½ϑrp + ð1 − ϑÞsp�1/p. Then, ϑ = ðsp − ωpÞ/ðsp −
rpÞ, 1 − ϑ = ðωp − rpÞ/ðsp − rpÞ, and dϑ = −p/ðsp − rpÞω1−pdω,
so

ð1
0
1 − ϑð ÞμϑνX ϑrp + 1 − ϑð Þsp½ �1/p, ·

� �
dϑ

= p

sp − rpð Þμ+ν+1
ðsp
rp

ωp − rpð Þμ sp − ωpð Þν X ω, ·ð Þ
ω1−p dω a:e:ð Þ,

ð18Þ

which completes the proof. ☐

Remark 12. If we take p = 1 in Lemma 11, then we obtain
Lemma 3.1 of [21].

The following results are derived for p-convex stochastic
processes.

Theorem 13. Suppose that X : J ×Ω⟶ℝ be a mean square
continuous and mean square integrable stochastic process. If
jXj is p-convex on ½r, s�, where r, s ∈ J with r < s, and μ, ν > 0
is taken, then the inequality holds almost everywhere:

ðsp
rp

ωp − rpð Þμ sp − ωpð Þν X ω, ·ð Þ
ω1−p dω

≤
sp − rpð Þμ+ν+1

p
β μ + 1, ν + 2ð Þ X r, ·ð Þj j + β μ + 2, ν + 1ð Þ X s, ·ð Þj jð Þ:

ð19Þ

Proof. By using Lemma 11, the definition of the p-convexity
of jXj and the beta function yield that

ðsp
rp

ωp − rpð Þμ sp − ωpð Þν X ω, ·ð Þ
ω1−p dω

≤
sp − rpð Þμ+ν+1

p

ð1
0
1 − ϑð Þμϑν X ϑrp + 1 − ϑð Þsp½ �1/p, ·

� ���� ���dϑ
≤

sp − rpð Þμ+ν+1
p

ð1
0
1 − ϑð Þμϑν ϑ X r, ·ð Þj j + 1 − ϑð Þ X s, ·ð Þj jð Þdϑ

≤
sp − rpð Þμ+ν+1

p
β μ + 1, ν + 2ð Þ X r, ·ð Þj j + β μ + 2, ν + 1ð Þ X s, ·ð Þj jð Þ a:e:ð Þ,

ð20Þ

which completes the proof. ☐

Remark 14. If we take p = 1 in Theorem 13, then we obtain
Theorem 3.1 of [21].

Theorem 15. Suppose that X : J ×Ω⟶ℝ be a mean square
continuous and mean square integrable stochastic process. If
jXjq is p-convex on ½r, s� for q > 1 with 1/κ + 1/q = 1, where r
, s ∈ J , r < s, and μ, ν > 0 is taken, then the inequality holds
almost everywhere:

ðsp
rp

ωp − rpð Þμ sp − ωpð Þν X ω, ·ð Þ
ω1−p dω

≤
sp − rpð Þμ+ν+1

p
β κμ + 1, κν + 1ð Þð Þ1/κ X r, ·ð Þj jq + X s, ·ð Þj jq

2

� �1/q
:

ð21Þ
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Proof. Employing Lemma 11 and Hölder’s integral inequal-
ity, we have ða:e:Þ

ðsp
rp

ωp − rpð Þμ sp − ωpð Þν X ω, ·ð Þ
ω1−p dω

≤
sp − rpð Þμ+ν+1

p

ð1
0
1 − ϑð Þμϑν X ϑrp + 1 − ϑð Þsp½ �1/p, ·

� ���� ���dϑ
≤

sp − rpð Þμ+ν+1
p

ð1
0
1 − ϑð Þκμϑκνdϑ

� �1/κ

�
ð1
0
X ϑrp + 1 − ϑð Þsp½ �1/p, ·
� ���� ���qdϑ� �1/q

:

ð22Þ

Since jXjq is a p-convex stochastic process, one can yield
that

ð1
0
X ϑrp + 1 − ϑð Þsp½ �1/p, ·
� ���� ���qdϑ

≤
ð1
0
ϑ X r, ·ð Þj jq + 1 − ϑð Þ X s, ·ð Þj jqð Þdϑ

= X r, ·ð Þj jq + X s, ·ð Þj jq
2 a:e:ð Þ,

ð23Þ

and by the definition of the beta function, we can write

ð1
0
1 − ϑð Þκμϑκνdϑ = β κμ + 1, κν + 1ð Þ: ð24Þ

Inserting (23) and (24) in (22) yields the required
inequality (21). ☐

Remark 16. If we take p = 1 in Theorem 15, then we get The-
orem 3.2 of [21].

Theorem 17. Let X : J ×Ω⟶ℝ be a mean square continu-
ous and mean square integrable stochastic process. If jXjq is p
-convex on ½r, s� for q > 1, where r, s ∈ J with r < s, and μ, ν > 0
is taken, then the inequality holds almost everywhere:

ðsp
rp

ωp − rpð Þμ sp − ωpð Þν X ω, ·ð Þ
ω1−p dω

≤
sp − rpð Þμ+ν+1

p
β κμ + 1, κν + 1ð Þð Þ1− 1/qð Þ

× β μ + 1, ν + 2ð Þ X r, ·ð Þj jq + β μ + 2, ν + 1ð Þ X s, ·ð Þj jqð Þ1/q:
ð25Þ

Proof.Making use of Lemma 11 and the power-mean integral
inequality for κ ≥ 1 yields that

ðsp
rp

ωp − rpð Þμ sp − ωpð Þν X ω, ·ð Þ
ω1−p dω

≤
sp − rpð Þμ+ν+1

p

ð1
0
1 − ϑð Þμϑν X ϑrp + 1 − ϑð Þsp½ �1/p, ·

� ���� ���dϑ a:e:ð Þ

≤
sp − rpð Þμ+ν+1

p

ð1
0
1 − ϑð Þκμϑκνdϑ

� �1− 1/qð Þ

×
ð1
0
1 − ϑð Þμϑν X ϑrp + 1 − ϑð Þsp½ �1/p, ·

� ���� ���qdϑ� �1/q
a:e:ð Þ:

ð26Þ

By using the p-convexity of the stochastic process jXjq
and by the definition of the beta function, we have ða:e:Þ

≤
sp − rpð Þμ+ν+1

p

ð1
0
1 − ϑð Þκμϑκνdϑ

� �1− 1/qð Þ

×
ð1
0
1 − ϑð Þμϑν ϑ X r, ·ð Þj jq + 1 − ϑð Þ X s, ·ð Þj jqð Þdϑ

� �1/q

≤
sp − rpð Þμ+ν+1

p
β κμ + 1, κν + 1ð Þð Þ1− 1/qð Þ

× β μ + 1, ν + 2ð Þ X r, ·ð Þj jq + β μ + 2, ν + 1ð Þ X s, ·ð Þj jqð Þ1/q:
ð27Þ

which completes the proof. ☐

Remark 18. If we take p = 1 in Theorem 17, then we obtain
Theorem 3.3 of [21].

The following results are derived for h-convex stochastic
processes.

Theorem 19. Suppose that X : J ×Ω⟶ℝ be a mean square
continuous and mean square integrable stochastic process. If
jXj is h-convex on ½r, s�, where r, s ∈ J with r < s, and μ, ν > 0
is taken, then the inequality holds almost everywhere:

ðs
r
ω − rð Þμ s − ωð ÞνX ω, ·ð Þdω

≤ s − rð Þμ+ν+1 X r, ·ð Þj jβh ϑð Þ + X s, ·ð Þj jβh 1 − ϑð Þð Þ,
ð28Þ

where

βh ϑð Þμ,ν =
ð1
0
1 − ϑð Þμϑνh ϑð Þdϑ, ð29Þ

βh 1 − ϑð Þμ,ν =
ð1
0
1 − ϑð ÞμϑνhÞ 1 − ϑð Þdϑ: ð30Þ

Proof. By Lemma 10, the definition of the h-convexity of ∣X ∣
and the beta function yield that
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ðs
r
ω − rð Þμ s − ωð ÞνX ω, ·ð Þdω

≤ s − rð Þμ+ν+1
ð1
0
1 − ϑð Þμϑν X ϑr + 1 − ϑð Þs, ·ð Þj jdϑ

≤ s − rð Þμ+ν+1
ð1
0
1 − ϑð Þμϑν h ϑð Þ X r, ·ð Þj j + h 1 − ϑð Þ X s, ·ð Þj jð Þdϑ

≤ s − rð Þμ+ν+1 X r, ·ð Þj j
ð1
0
1 − ϑð Þμϑνh ϑð Þdϑ + X s, ·ð Þj j

ð1
0
1 − ϑð Þμϑνh 1 − ϑð Þ

� �
= s − rð Þμ+ν+1 X r, ·ð Þj jβh ϑð Þμ,ν + X s, ·ð Þj jβh 1 − ϑð Þμ,νð Þ a:e:ð Þ,

ð31Þ

which completes the proof. ☐

Remark 20. If we take hðϑÞ = ϑ in Theorem 19, then we obtain
Theorem 3.1 of [21].

Theorem 21. Suppose that X : J ×Ω⟶ℝ be a mean square
continuous and mean square integrable stochastic process. If
jXjq is h-convex on ½r, s� for q > 1 with 1/κ + 1/q = 1, where r
, s ∈ J , r < s, and μ, ν > 0 is taken, then the inequality holds
almost everywhere:

ðs
r
ω − rð Þμ s − ωð ÞνX ω, ·ð Þdω

≤ s − rð Þμ+ν+1 β κμ + 1, κν + 1ð Þð Þ1/κ X r, ·ð Þj jqβh ϑð Þ + X s, ·ð Þj jqβh 1 − ϑð Þð Þ1/q,
ð32Þ

where βhðϑÞ =
Ð 1
0hðϑÞdϑ and βhð1 − ϑÞ = Ð 1

0hð1 − ϑÞdϑ:

Proof. Employing Lemma 10 and Hölder’s integral inequal-
ity, we have ða:e:Þ
ðs
r
ω − rð Þμ s − ωð ÞνX ω, ·ð Þdω

≤ s − rð Þμ+ν+1
ð1
0
1 − ϑð Þμϑν X ϑr + 1 − ϑð Þs, ·ð Þj jdϑ

≤ s − rð Þμ+ν+1
ð1
0
1 − ϑð Þκμϑκνdϑ

� �1/κ ð1
0
X ϑr + 1 − ϑð Þs, ·ð Þj jqdϑ

� �1/q
:

ð33Þ

Since jXjq is an h-convex stochastic process, one can yield
that

ð1
0
X ϑr + 1 − ϑð Þs, ·ð Þj jqdϑ

≤
ð1
0
h ϑð Þ X r, ·ð Þj jq + h 1 − ϑð Þ X s, ·ð Þj jqð Þdϑ

≤ X r, ·ð Þj jq
ð1
0
h ϑð Þdϑ + X s, ·ð Þj jq

ð1
0
h 1 − ϑð Þdϑ

≤ X r, ·ð Þj jqβh ϑð Þ + X s, ·ð Þj jqβh 1 − ϑð Þ a:e:ð Þ,

ð34Þ

and by the definition of the beta function, we can write

ð1
0
1 − ϑð Þκμϑκνdϑ = β κμ + 1, κν + 1ð Þ: ð35Þ

Inserting (34) and (35) in (33) yields the desired inequal-
ity (32). ☐

Remark 22. If we take hðϑÞ = ϑ in Theorem 21, then we obtain
Theorem 3.2 of [21].

Theorem 23. Let X : J ×Ω⟶ℝ be a mean square continu-
ous and mean square integrable stochastic process. If jXjq is h
-convex on ½r, s� for q > 1, where r, s ∈ J with r < s, and μ, ν > 0
is taken, then the inequality holds almost everywhere:

ðs
r
ω − rð Þμ s − ωð ÞνX ω, ·ð Þdω

≤ s − rð Þμ+ν+1 β κμ + 1, κν + 1ð Þð Þ1− 1/qð Þ

� βh ϑð Þμ,ν X r, ·ð Þj jq + βh θð Þμ,ν X s, ·ð Þj jqð Þ1/q,

ð36Þ

where

βh ϑð Þμ,ν =
ð1
0
1 − ϑð Þμϑνh ϑð Þdϑ, ð37Þ

βh 1 − ϑð Þμ,ν =
ð1
0
1 − ϑð Þμϑνh 1 − ϑð Þdϑ: ð38Þ

Proof. By Lemma 10 and the power-mean integral inequality
for κ ≥ 1, one can yield that

ðs
r
ω − rð Þμ s − ωð ÞνX ω, ·ð Þdω

≤ s − rð Þμ+ν+1
ð1
0
1 − ϑð Þμϑν X ϑr + 1 − ϑð Þs, ·ð Þj jdϑ a:e:ð Þ

≤ s − rð Þμ+ν+1
ð1
0
1 − ϑð Þκμϑκνdϑ

� �1− 1/qð Þ

×
ð1
0
1 − ϑð Þμϑν X ϑr + 1 − ϑð Þs, ·ð Þj jqdϑ

� �1/q
a:e:ð Þ:

ð39Þ

By using the h-convexity of the stochastic process jXjq
and by the definition of the beta function, we have ða:e:Þ

≤ s − rð Þμ+ν+1
ð1
0
1 − ϑð Þκμϑκνdϑ

� �1−1/q

×
ð1
0
1 − ϑð Þμϑν hðÞϑÞ X r, ·ð Þj jq + h 1 − ϑð Þ X s, ·ð Þj jqð Þdϑ

� �1/q

≤ s − rð Þμ+ν+1
ð1
0
1 − ϑð Þκμϑκνdϑ

� �1−1/q

× X r, ·ð Þj jq
ð1
0
1 − ϑð Þμϑνh ϑð Þ + X s, ·ð Þj jq

ð1
0
h 1 − ϑð Þdϑ

� �1/q

≤ s − rð Þμ+ν+1 β κμ + 1, κν + 1ð Þð Þ1− 1/qð Þ βh ϑð Þμ,ν X r, ·ð Þj jqð
+ βh θð Þμ,ν X s, ·ð Þj jqÞ1/q,

ð40Þ

which completes the proof. ☐
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Remark 24. If we take hðϑÞ = ϑ in Theorem 23, then we obtain
Theorem 3.3 of [21].

The following results are derived for strongly convex sto-
chastic processes.

Theorem 25. Suppose that X : J ×Ω⟶ℝ be a mean square
continuous and mean square integrable stochastic process. If
jXj is strongly convex on ½r, s�, where r, s ∈ J with r < s, and
μ, ν > 0 is taken, then the inequality holds almost everywhere:

ðs
r
ω − rð Þμ s − ωð ÞνX ω, ·ð Þdω

≤ s − rð Þμ+ν+1 β μ + 1, ν + 2ð Þ X r, ·ð Þj j + β μ + 2, ν + 1ð Þð
� X s, ·ð Þj j − c ·ð Þ r − sð Þ2β μ + 2, ν + 2ð Þ�:

ð41Þ

Proof. From Lemma 10, the definition of the strong convexity
of jXj and the beta function yield that

ðs
r
ω − rð Þμ s − ωð ÞνX ω, ·ð Þdω

≤ s − rð Þμ+ν+1
ð1
0
1 − ϑð Þμϑν X ϑr + 1 − ϑð Þs, ·ð Þj jdϑ

≤ s − rð Þμ+ν+1
ð1
0
1 − ϑð Þμϑν ϑ X r, ·ð Þj jð

+ 1 − ϑ X s, ·ð Þj j − c ·ð Þϑ 1 − ϑð Þ r − sð Þ2�dϑ
≤ s − rð Þμ+ν+1 β μ + 1, ν + 2ð Þ X r, ·ð Þj jð

+ β μ + 2, ν + 1ð Þ X s, ·ð Þj j − c ·ð Þ r − sð Þ2
� β μ + 2, ν + 2ð ÞÞ a:e:ð Þ,

ð42Þ

which completes the proof. ☐

Remark 26. If we take c = 0 in Theorem 25, then we obtain
Theorem 3.1 of [21].

Theorem 27. Suppose that X : J ×Ω⟶ℝ be a mean square
continuous and mean square integrable stochastic process. If
jXjq is strongly convex on ½r, s� for q > 1 with 1/κ + 1/q = 1,
where r, s ∈ J with r < s, and μ, ν > 0 is taken, then the
inequality holds almost everywhere:

ðs
r
ω − rð Þμ s − ωð ÞνX ω, ·ð Þdω

≤ s − rð Þμ+ν+1 β κμ + 1, κν + 1ð Þð Þ1/κ

� 1
2

X r, ·ð Þj jq + X s, ·ð Þj jqð Þ − 1
6
c ·ð Þ r − sð Þ2

� �1/q
:

ð43Þ

Proof. By Lemma 10 and Hölder’s integral inequality, we
have ða:e:Þ

ðs
r
ω − rð Þμ s − ωð ÞνX ω, ·ð Þdω

≤ s − rð Þμ+ν+1
ð1
0
1 − ϑð Þμϑν X ϑr + 1 − ϑð Þs, ·ð Þj jdϑ

≤ s − rð Þμ+ν+1
ð1
0
1 − ϑð Þκμϑκνdϑ

� �1/κ

�
ð1
0
X ϑr + 1 − ϑð Þs, ·ð Þj jqdϑ

� �1/q
:

ð44Þ

Since jXjq is a strongly convex stochastic process, one can
yield that

ð1
0
X ϑr + 1 − ϑð Þs, ·ð Þj jqdϑ

≤
ð1
0
ϑ X r, ·ð Þj jq + 1 − ϑ X s, ·ð Þj jq − c ·ð Þϑ 1 − ϑð Þ r − sð Þ2� �

dϑ

≤
1
2 X r, ·ð Þj jq + X s, ·ð Þj jqð Þ − 1

6 c ·ð Þ r − sð Þ2� �
a:e:ð Þ,

ð45Þ

and taking the definition of the beta function, we can write

ð1
0
1 − ϑð Þκμϑκνdϑ = β κμ + 1, κν + 1ð Þ: ð46Þ

Replacing (45) and (46) in (44) yields the desired inequal-
ity (43). ☐

Remark 28. If we take c = 0 in Theorem 27, then we get The-
orem 3.2 of [21].

Theorem 29. Let X : J ×Ω⟶ℝ be a mean square continu-
ous and mean square integrable stochastic process. If jXjq is
strongly convex on ½r, s� for q > 1, where r, s ∈ J with r < s,
and μ, ν > 0 is taken, then the inequality holds almost every-
where:

ðs
r
ω − rð Þμ s − ωð ÞνX ω, ·ð Þdω

≤ s − rð Þμ+ν+1β κμ + 1, κν + 1ð Þ1− 1/qð Þ

× β μ + 1, ν + 2ð Þ X r, ·ð Þj jq + β μ + 2, ν + 1ð Þð
� X s, ·ð Þj jq − c ·ð Þ r − sð Þ2β μ + 2, ν + 2ð Þ�1/q:

ð47Þ

Proof. Bymaking use of Lemma 11 and the power-mean inte-
gral inequality for κ ≥ 1, one can yield that
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ðs
r
ω − rð Þμ s − ωð ÞνX ω, ·ð Þdω

≤ s − rð Þμ+ν+1
ð1
0
1 − ϑð Þμϑν X ϑr + 1 − ϑð Þs, ·ð Þj jdϑ a:e:ð Þ

≤ s − rð Þμ+ν+1
ð1
0
1 − ϑð Þκμϑκνdϑ

� �1− 1/qð Þ

×
ð1
0
1 − ϑð Þμϑν X ϑr + 1 − ϑð Þs, ·ð Þj jqdϑ

� �1/q
a:e:ð Þ:

ð48Þ

By using the strong convexity of the stochastic process
jXjq and taking the definition of the beta function, we have
ða:e:Þ

≤ s − rð Þμ+ν+1
ð1
0
1 − ϑð Þκμϑκνdϑ

� �1− 1/qð Þ

×
�ð1

0
1 − ϑð Þμϑν ϑ X r, ·ð Þj jq + 1 − ϑð Þð

� X s, ·ð Þj jq − c ·ð Þϑ 1 − ϑð Þ r − sð Þ2�dϑ�1/q

≤ s − rð Þμ+ν+1 β κμ + 1, κν + 1ð Þð Þ1− 1/qð Þ

× β μ + 1, ν + 2ð Þ X r, ·ð Þj jq + β μ + 2, ν + 1ð Þð
� X s, ·ð Þj jq − c ·ð Þ r − sð Þ2β μ + 2, ν + 2ð Þ�1/q,

ð49Þ

which completes the proof. ☐

Remark 30. If we take c = 0 in Theorem 29, then we obtain
Theorem 3.1 of [21].

3. Conclusions

Stochastic processes have applications in many disciplines
such as biology, chemistry, ecology, neuroscience, physics,
image processing, signal processing, control theory, informa-
tion theory, computer science, cryptography, and telecom-
munications. In this paper, we studied the generalized
convex stochastic processes via a special function “beta func-
tion.” We established mean square integral inequalities for
these generalized convex stochastic processes.

4. Future Directions

It will be interesting for researchers to work on the general-
ized convex stochastic processes via different fractional inter-
nal operators.
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The main object of the present paper is to introduce certain subclass of m-valent functions associated with a new extended
Ruscheweyh linear operator in the open unit disk. Also, we investigate a number of geometric properties including coefficient
estimates and the Fekete–Szegö type inequalities for this subclass. Several known consequences of the main results are also
pointed out.

1. Introduction

Let AðmÞ denote the class of functions of the next form:

f ξð Þ = ξm + 〠
∞

n=m+1
anξ

n m ∈ℕ = 1, 2, 3,⋯f gð Þ, ð1Þ

which are analytic and m-valent in the open unit disc D = f
ξ ∈ℂ : jξj < 1g, and let Að1Þ =A . Also, let f , g be analytic
in D, and the function f ðξÞ is said to be subordinate to gðξÞ
if there exists a function ωðξÞ analytic in D with ωð0Þ = 0
and ∣ωðξÞ ∣ <1, ξ ∈D, such that f ðξÞ = gðωðξÞÞ. In such a
case, we write f ðξÞ ≺ gðξÞ. If g is univalent function, then f
ðξÞ ≺ gðξÞ if and only if f ð0Þ = gð0Þ and f ðDÞ ⊂ gðDÞ (see
[1, 2] and [3]).

For functions f ðξÞ given by (1) and gðξÞ is defined by

g ξð Þ = ξm + 〠
∞

n=m+1
bnξ

n, ð2Þ

and the Hadamard product or convolution of f ðξÞ and gðξÞ
is defined by

f ∗ gð Þ ξð Þ = ξm + 〠
∞

n=m+1
anbnξ

n: ð3Þ

For v ∈ℂ, k ∈ℝ, and n ∈ℕ, the Pochhammer k-symbol
ðvÞn,k is given by (see [4])

vð Þn,k = v v + kð Þ v + 2kð Þ⋯ v + n − 1ð Þkð Þ =
Yn
i=1

v + i − 1ð Þkð Þ: ð4Þ
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We define the function ϕmðδ, k ; ξÞ by

ϕm δ, k ; ξð Þ = ξm

1 − ξð Þδ+mk/k

= ξm + 〠
∞

n=m+1

δ +mkð Þn−m,k
kð Þn−m,k

ξn δ>−mk ; k > 0 ; ξ ∈Dð Þ:

ð5Þ

Corresponding to the function ϕmðδ, k ; ξÞ, we consider a
linear operator Dδ+mk−k : AðmÞ⟶AðmÞðδ>−mk, k > 0Þ
which is defined by means of the following Hadamard prod-
uct (or convolution):

Dδ+mk−k f ξð Þ = ϕm δ, k ; ξð Þ ∗ f ξð Þ = ξm + 〠
∞

n=m+1

δ +mkð Þn−m,k
kð Þn−m,k

anξ
n ξ ∈Dð Þ:

ð6Þ

It is easily verified from (6) that

kξ Dδ+mk−k f ξð Þ
� �

′ = δ +mkð ÞDδ+mkf ξð Þ − δDδ+mk−k f ξð Þ k > 0ð Þ:
ð7Þ

We note that

(1) For k = 1, the operator Dδ+mk−k f ðξÞ reduced to the
differential operator Dδ+m−1 f ðξÞ introduced by Goel
and Sohi [5] (see also [6, 7] and [8])

(2) For m = 1, we obtain the k-Ruscheweyh derivative
operator Dδ

k ([9]), where

Dδ
k f ξð Þ = ξ

1 − ξð Þδ+k/k
∗ f ξð Þ = ξ + 〠

∞

n=2

δ + kð Þn−1,k
kð Þn−1,k

anξ
n: ð8Þ

(3) For k =m = 1, the operator Dδ+mk−k f ðξÞ reduced
tothe well-familiar Ruscheweyh operator Dδ ([10])

(4) For δ = k −mk,we have D0 f ðξÞ = f ðξÞ, and for δ = 2
k −mk, we get Dk f ðξÞ = ξmðξ1−mf ðξÞÞ′

By using the linear operator Dδ+mk−k f ðξÞ, we define the
subclass β − ST mðδ, k, bÞ of AðmÞ as follows:

Definition 1. Let β ≥ 0, δ > −mk, m ∈ℕ, k > 0, b ∈ℂ∗ =ℂ \
f0g, and ξ ∈D. A function f ∈AðmÞ is in the class β − S

T mðδ, k, bÞ, if it satisfies

R 1 + 1
b

ξ Dδ+mk−k f ξð Þ
� �

′

mDδ+mk−k f ξð Þ
− 1

0
@

1
A

8<
:

9=
; > β

1
b

ξ Dδ+mk−k f ξð Þ
� �

′

mDδ+mk−k f ξð Þ
− 1

0
@

1
A

������
������:

ð9Þ

Geometrically, a function f ∈ β − ST mðδ, k, bÞ if and

only if

1 + 1
b

ξ Dδ+mk−k f ξð Þ
� �

′

mDδ+mk−k f ξð Þ
− 1

0
@

1
A, ð10Þ

takes all the values in the conic domain Ωβ = ψβðDÞ,
where

Ωβ = u + iv : u > β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u − 1ð Þ2 + v2

q� �
, ð11Þ

or equivalently,

1 + 1
b

ξ Dδ+mk−k f ξð Þ
� �

′

mDδ+mk−k f ξð Þ
− 1

0
@

1
A ≺ ψβ ξð Þ,Ωβ = ψβ Dð Þ:

ð12Þ

The boundary ∂Ωβ of the above set becomes the imagi-
nary axis when β = 0, a hyperbola when 0 < β < 1, a parabola
when β = 1, and an ellipse when 1 < β <∞. The functions
ψβðξÞ are defined by

ψβ ξð Þ =

1 + ξ

1 − ξ
β = 0ð Þ,

1 + 1
1 − β2 cos 2

π
cos−1β
� 	

i log 1 +
ffiffiffi
ξ

p
1 −

ffiffiffi
ξ

p
 ! !

0 < β < 1ð Þ,

1 + 2
π2 log 1 +

ffiffiffi
ξ

p
1 −

ffiffiffi
ξ

p
 !2

β = 1ð Þ,

1 + 1
β2 − 1

sin π

2R tð Þ
ðu ξð Þ/ ffiffitp

0

dxffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − t2x2

p
 !

+ β2

β2 − 1
1 < β<∞ð Þ,

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð13Þ

with uðξÞ = ξ −
ffiffi
t

p
/1 −

ffiffiffiffi
tξ

p
ð0 < t < 1, ξ ∈DÞ, where t is

chosen such that k = cosh ðπR′ðtÞ/4RðtÞÞ, and RðtÞ is the
Legendre’s complete elliptic integral of the first kind and
R′ðtÞ the complementary integral of RðtÞ (see [11, 12]
and [13]).

By taking specific values to the parameters β,m, δ, k, and
b in the subclass β − ST mðδ, k, bÞ, we obtain

(1) β − ST mðδ, k, ð1 − α/mÞ cos γe−iγÞ = β − ST γ
mðδ, k,

αÞð0 ≤ α <m ; jγj < π/2Þ = f f ∈AðmÞ: eiγξ
ðDδ+mk−k f ðξÞÞ′/Dδ+mk−k f ðξÞ ≺ ðm − αÞ cos γψβðξÞ +
α cos γ + im sin γg and β − ST mðδ, k, 1 − α/mÞ = β

− ST mðδ, k, αÞð0 ≤ α <mÞ = f f ∈AðmÞ: 1/m − αðξ
ðDδ+mk−k f ðξÞÞ′/Dδ+mk−k f ðξÞ − αÞ ≺ ψβðξÞg

(2) β − ST mðδ, 1, bÞ = β − ST mðδ, bÞ = f f ∈AðmÞ: 1
+ 1/bðξðDδ+m−1 f ðξÞÞ′/mDδ+m−1 f ðξÞ − 1Þ ≺ ψβðξÞg,

β − ST mðδ, 1, ð1 − α/mÞ cos γe−iγÞ = β − ST γ
mðδ, αÞ
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ð0 ≤ α <m ; jγj < π/2Þ = f f ∈AðmÞ: eiγξ
ðDδ+m−1 f ðξÞÞ′/Dδ+m−1 f ðξÞ ≺ ðm − αÞ cos γψβðξÞ + α

cos γ + im sin γg and β − ST mðδ, 1, 1 − α/mÞ = β

− ST mðδ, αÞð0 ≤ α <mÞ = f f ∈AðmÞ: 1/m − αðξ
ðDδ+m−1 f ðξÞÞ′/Dδ+m−1 f ðξÞ − αÞ ≺ ψβðξÞg

(3) β − ST 1ðδ, 1, bÞ = β − ST ðδ, bÞ = f f ∈A : 1 + 1/bð
ξðDδ f ðξÞÞ′/Dδ f ðξÞ − 1Þ ≺ ψβðξÞg,

β − ST 1ðδ, 1, ð1 − αÞ cos γe−iγÞ = β − ST γðδ, αÞð0
≤ α < 1 ; jγj < π/2Þ = f f ∈A : eiγξðDδ f ðξÞÞ′/Dδ f ðξÞ
≺ ð1 − αÞ cos γψβðξÞ + α cos γ + i sin γg and β − S

T 1ðδ, 1, 1 − α/mÞ = β − ST ðδ, αÞð0 ≤ α < 1Þ = f f ∈
A : 1/1 − αðξðDδ f ðξÞÞ′/Dδ f ðξÞ − αÞ ≺ ψβðξÞg

(4) β − ST 1ðδ, k, bÞ = β − ST ðδ, k, bÞ = f f ∈A : 1 + 1/
bðξðDδ

k f ðξÞÞ′/Dδ
k f ðξÞ − 1Þ ≺ ψβðξÞg,

β − ST 1ðδ, k, ð1 − αÞ cos γe−iγÞ = β − ST γðδ, k, αÞð
0 ≤ α < 1 ; jγj < π/2Þ = f f ∈A : eiγξðDδ

k f ðξÞÞ′/Dδ
k f ðξ

Þ ≺ ð1 − αÞ cos γψβðξÞ + α cos γ + i sin γg and β − S

T 1ðδ, k, 1 − α/mÞ = β − ST ðδ, k, αÞð0 ≤ α < 1Þ = f f
∈A : 1/1 − αðξðDδ

k f ðξÞÞ′/Dδ
k f ðξÞ − αÞ ≺ ψβðξÞg

(5) β − ST mðk −mk, k, bÞ = β − ST mðbÞ = f f ∈AðmÞ:
1 + 1/bðξf ′ðξÞ/mf ðξÞ − 1Þ ≺ ψβðξÞg

β − ST mðk −mk, k, ð1 − α/mÞ cos γe−iγÞ = β − ST γ
m

ðαÞð0 ≤ α <m ; jγj < π/2Þ = f f ∈AðmÞ: eiγξf ′ðξÞ/f ðξ
Þ ≺ ðm − αÞ cos γψβðξÞ + α cos γ + im sin γg and (see
[14])

(6) β − ST mðk −mk, k, 1 − α/mÞ = β − ST mðαÞð0 ≤ α

<mÞ = f f ∈AðmÞ: 1/m − αðξf ′ðξÞ/f ðξÞ − αÞ ≺ ψβðξ
Þg ;

β − ST 1ð0, k, bÞ = β − ST ðbÞ = f f ∈A : 1 + 1/bðξf
′ðξÞ/f ðξÞ − 1Þ ≺ ψβðξÞg,

β − ST 1ð0, k, ð1 − αÞ cos γe−iγÞ = β − ST γðαÞð0 ≤ α

< 1 ; jγj < π/2Þ = f f ∈AðmÞ: eiγξf ′ðξÞ/f ðξÞ ≺ ð1 − α

Þ cos γψβðξÞ + α cos γ + i sin γg and (see [15]) β −
ST 1ð0, k, 1 − αÞ = β − ST ðαÞð0 ≤ α < 1Þ = f f ∈A
: 1/1 − αðξf ′ðξÞ/f ðξÞ − αÞ ≺ ψβðξÞg

(7) 0 − ST mðδ, k, bÞ = Smðδ, k, bÞ = f f ∈AðmÞ: R½m +
1/bðξðDδ+mk−k f ðξÞÞ′/Dδ+mk−k f ðξÞ −mÞ� > 0g,

0 − ST mðδ, k, ð1 − α/mÞ cos γe−iγÞ = Sγ
mðδ, k, αÞð0

≤ α <m ; jγj < π/2Þ = f f ∈AðmÞ: Rðeiγξ
ðDδ+mk−k f ðξÞÞ′/Dδ+mk−k f ðξÞÞ > α cos γg, (see [16]
and [17]) 0 − ST mðk −mk, k, bÞ = Sγ

mðαÞð0 ≤ α <m
; jγj < π/2Þ = f f ∈AðmÞ: Rðeiγξf ′ðξÞ/f ðξÞÞ > α cos
γg,(see [18]) 0 − ST mðk −mk, k, bÞ = SmðbÞ = f f ∈
AðmÞ: R½m + 1/bðξf ′ðξÞ/f ðξÞ −mÞ� > 0g and S1ðbÞ
= SðbÞ (see [19, 20])

In order to establish our main results, we need the follow-
ing lemmas.

Lemma 2 [21]. Let ψβðξÞð0 ≤ β<∞Þ be defined by (13). If

ψβ ξð Þ = 1 + L1ξ + L2ξ
2+⋯, ð14Þ

then

L1 =

2A2

1 − β2 0 ≤ β < 1ð Þ,

8
π2

β = 1ð Þ,

π2

4
ffiffi
t

p
β2 − 1
� 	

R2 tð Þ 1 + tð Þ 1 < β<∞ð Þ,

8>>>>>>>>><
>>>>>>>>>:

ð15Þ

L2 =

A2 + 2
3

L1 0 ≤ β < 1ð Þ,
2
3
L1 β = 1ð Þ,

4R2 tð Þ t2 + 6t + 1
� 	

− π2

24
ffiffi
t

p
R2 tð Þ 1 + tð Þ L1 1 ≤ β<∞ð Þ,

8>>>>>>>><
>>>>>>>>:

ð16Þ

where

A = 2 cos−1β
π

, ð17Þ

and t ∈ ð0, 1Þ is chosen such that β = cosh ðπR′ðtÞ/RðtÞÞ,
and RðtÞ is the Legendre’s complete elliptic integral of the
first kind.

Lemma 3 [22]. Let hðξÞ = 1 +∑∞
n=1cnξ

n ∈P , i.e., let h be ana-
lytic in D and satisfyRfhðξÞg > 0 for ξ in D; then, the follow-
ing sharp estimate holds

c2 − vc21
�� �� ≤ 2 max 1, 2v − 1j jf g for all v ∈ℂ: ð18Þ

The result is sharp for the functions given by

g ξð Þ = 1 + ξ2

1 − ξ2
or g ξð Þ = 1 + ξ

1 − ξ
: ð19Þ
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Lemma 4 [22]. If hðξÞ = 1 +∑∞
n=1cnξ

n ∈P , then

c2 − νc21
�� ��

≤

−4ν + 2 if ν ≤ 0,
2 if 0 ≤ ν ≤ 1,
4ν − 2 if ν ≥ 1,

8>><
>>:

ð20Þ

and when υ < 0 or ν > 1, the equality holds if and only if hðξ
Þ = ð1 + ξÞ/ð1 − ξÞ or one of its rotations. If 0 < ν < 1, then
the equality holds if and only if hðξÞ = ð1 + ξ2Þ/ð1 − ξ2Þ or
one of its rotations. If ν = 0, the equality holds if and only if

h ξð Þ = 1 + λ

2


 �
1 + ξ

1 − ξ
+ 1 − λ

2


 �
1 − ξ

1 + ξ
0 ≤ λ ≤ 1ð Þ, ð21Þ

or one of its rotations. If ν = 1, the equality holds if and only if
g is the reciprocal of one of the functions such that equality
holds in the case of ν = 0.

Also, the above upper bound is sharp, and it can be
improved as follows when 0 < ν < 1:

c2 − νc21
�� �� + ν c1j j2 ≤ 2 0 ≤ ν ≤

1
2


 �
,

c2 − νc21
�� �� + 1 − νð Þ c1j j2 ≤ 2 1

2 ≤ ν ≤ 1

 �

:

ð22Þ

In this paper, we investigate a coefficient estimates and
the familiar Fekete–Szegö type inequalities for the subclass
β − ST mðδ, k, bÞ.

2. Main Results

We will assume throughout our discussion, unless otherwise
stated, that 0 ≤ β <∞, m ∈ℕ, δ > −mk, k > 0, b ∈ℂ∗, L1 is
given by (15), L2 is given by (16), and ξ ∈D.

Theorem 5. Let f ∈AðmÞ be given by (1). If the inequality

〠
∞

n=m+1
β + 1ð Þ n −mð Þ +m bj jf g δ +mkð Þn−m,k

kð Þn−m,k
anj j ≤m bj j,

ð23Þ

holds, then the function f ∈ β − ST mðδ, k, bÞ.

Proof. Suppose the inequality (23) holds. Also, let us assume

H ξð Þ = 1 + 1
b

ξ Dδ+mk−k f ξð Þ
� �

′

mDδ+mk−k f ξð Þ
− 1

0
@

1
A: ð24Þ

We have

H ξð Þ − 1j j = 1
b

ξ Dδ+mk−k f ξð Þ
� �

′

mDδ+mk−k f ξð Þ
− 1

0
@

1
A

������
������

= 1
m bj j

∑∞
n=m+1 n −mð Þ δ +mkð Þn−m,k/ kð Þn−m,k

� 	
anξ

n−m

1 +∑∞
n=m+1 δ +mkð Þn−m,k/ kð Þn−m,k

� 	
anξ

n−m

 !�����
�����

≤
∑∞

n=m+1 n −mð Þ δ +mkð Þn−m,k/ kð Þn−m,k
� 	

anj j
m bj j 1 −∑∞

n=m+1 δ +mkð Þn−m,k/ kð Þn−m,k
� 	

anj j�  :
ð25Þ

Now consider

β H ξð Þ − 1j j −R H ξð Þ − 1f g
≤ β + 1ð Þ H ξð Þ − 1j j

<
β + 1ð Þ∑∞

n=m+1 n −mð Þ δ +mkð Þn−m,k/ kð Þn−m,k
� 	

anj j
m bj j 1 − ∑∞

n=m+1 δ +mkð Þn−m,k/ kð Þn−m,k
� 	

anj j�  :

ð26Þ

The last expression is bounded by 1 if (23) holds. This
completes the proof of Theorem 5. ☐

Corollary 6. If f ðξÞ ∈ β − ST mðδ, k, bÞ, then

anj j ≤ m bj j kð Þn−m,k
β + 1ð Þ n −mð Þ +m bj jf g δ +mkð Þn−m,k

n ≥m + 1ð Þ:

ð27Þ

The result is sharp for the function

f ξð Þ = ξm +
m bj j kð Þn−m,k

β + 1ð Þ n −mð Þ +m bj jf g δ +mkð Þn−m,k
ξn n ≥m + 1ð Þ:

ð28Þ

Putting m = 1 in Theorem 5, we obtain the following
corollary.

Corollary 7. Let f ∈A be given by (1) with m = 1. If the
inequality

〠
∞

n=2
β + 1ð Þ n − 1ð Þ + bj jf g δ + kð Þn−1,k

kð Þn−1,k
anj j ≤ bj j, ð29Þ

holds, then the function f ∈ β − ST ðδ, k, bÞ.

Theorem 8. If f ∈ β − ST mðδ, k, bÞ, then

am+1j j ≤ m bj jL1k
δ +mk

, ð30Þ

and for all n = 3, 4, 5,⋯,

an+m−1j j ≤ m bj jL1 kð Þn−1,k
n − 1ð Þ δ +mkð Þn−1,k

Yn−2
j=1

1 + m bj jL1
j


 �
: ð31Þ
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Proof. Let

g ξð Þ = 1 + 1
b

ξ Dδ+mk−k f ξð Þ
� �

′

mDδ+mk−k f ξð Þ
− 1

0
@

1
A, ð32Þ

where

g ξð Þ = 1 + 〠
∞

n=1
cnξ

n, ð33Þ

is analytic function in D, and it can be written as

〠
∞

n=m+1
n −mð Þ δ +mkð Þn−m,k

kð Þn−m,k
anξ

n =mbDδ+mk−k f ξð Þ 〠
∞

n=1
cnξ

n

 !
:

ð34Þ

Comparing the coefficients of ξn+m−1 on both sides

n − 1ð Þ δ +mkð Þn−1,k
kð Þn−1,k

an+m−1

=mb cn−1 +
δ +mkð Þ1,k

kð Þ1,k
cn−2am+1+⋯+

δ +mkð Þn−2,k
kð Þn−2,k

c1an+m−2

� �
:

ð35Þ

Taking absolute on both sides and then applying the coef-
ficient estimates jcnj ≤ L1 (see [13]), we have

an+m−1j j ≤ m bj jL1 kð Þn−1,k
n − 1ð Þ δ +mkð Þn−1,k
� 1 +

δ +mkð Þ1,k
kð Þ1,k

am+1j j+⋯+
δ +mkð Þn−2,k

kð Þn−2,k
an+m−2j j

� �
:

ð36Þ

We apply the mathematical induction on (36) so for n = 2
,

am+1j j ≤ m bj jL1 kð Þ1,k
δ +mkð Þ1,k

= m bj jL1k
δ +mk

, ð37Þ

and this shows that result is true for n = 2. Now for n = 3,

am+2j j ≤ m bj jL1 kð Þ2,k
2 δ +mkð Þ2,k

1 +
δ +mkð Þ1,k

kð Þ1,k
am+1j j

� �
, ð38Þ

and using (37), we obtain

am+2j j ≤ m bj jL1 kð Þ2,k
2 δ +mkð Þ2,k

1 +m bj jL1ð Þ, ð39Þ

which is true for n = 3. Let us assume that (31) is true for n = t
, that is,

at+m−1j j ≤ m bj jL1 kð Þt−1,k
t − 1ð Þ δ +mkð Þt−1,k

Yn−2
j=1

1 + m bj jL1
j


 �
: ð40Þ

Consider

at+mj j ≤ m bj jL1 kð Þt,k
t δ +mkð Þt,k

1 +
δ +mkð Þ1,k

kð Þ1,k
am+1j j+⋯+

δ +mkð Þt−1,k
kð Þt−1,k

at+m−1j j
� �

≤
m bj jL1 kð Þt,k
t δ +mkð Þt,k

1 +m bj jL1+⋯+
δ +mkð Þt−1,k

kð Þt−1,k
at+m−1j j

� �

≤
m bj jL1 kð Þt,k
t δ +mkð Þt,k

1 +m bj jL1 +
m bj jL1

2 1 +m bj jL1ð Þ+⋯+m bj jL1
t − 1

�

� 1 +m bj jL1ð Þ 1 + m bj jL1
2


 �
⋯ 1 + m bj jL1

t − 2


 ��

=
m bj jL1 kð Þt,k
t δ +mkð Þt,k

1 +m bj jL1ð Þ 1 + m bj jL1
2


 �
⋯ 1 + m bj jL1

t − 1


 �

=
m bj jL1 kð Þt,k
t δ +mkð Þt,k

Yt−1
j=1

1 + m bj jL1
j


 �
:

ð41Þ

Therefore, the result is true for n = t + 1. Consequently,
using mathematical induction, we proved that the result
holds true for all nðn ≥ 2Þ. This completes the proof of Theo-
rem 8. ☐

Putting m = 1 in Theorem 8, we obtain the following
corollary.

Corollary 9. If f ∈ β − ST ðδ, k, bÞ, then

a2j j ≤ bj jL1k
δ + k

, ð42Þ

and for all n = 3, 4, 5,⋯,

anj j ≤ bj jL1 kð Þn−1,k
n − 1ð Þ δ + kð Þn−1,k

Yn−2
j=1

1 + bj jL1
j


 �
: ð43Þ

Theorem 10. Let f ∈ β − ST mðδ, k, bÞ. Then., f ðDÞ contains
an open disk of radius

r = δ +mk
m + 1ð Þ δ +mkð Þ +m bj jL1k

: ð44Þ

Proof. Let w0 ≠ 0 be a complex number such that f ðξÞ ≠w0
for ξ ∈D. Then, f1ðξÞ =w0 f ðξÞ/w0 − f ðξÞ = ξm + ðam+1 + 1/
w0Þξm+1 +⋯:

Since f1 is univalent, so

am+1 +
1
w0

����
���� ≤m + 1: ð45Þ

Now using Theorem 8, we have

1
w0

����
���� ≤m + 1 + m bj jL1k

δ +mk
, ð46Þ
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and hence

w0j j ≥ δ +mk
m + 1ð Þ δ +mkð Þ +m bj jL1k

: ð47Þ

This completes the proof of Theorem 10. ☐

Putting m = 1 in Theorem 10, we obtain the following
corollary.

Corollary 11. Let f ∈ β − ST ðδ, k, bÞ. Then, f ðDÞ contains
an open disk of radius

r1 =
δ + k

2 δ + kð Þ + bj jL1k
: ð48Þ

Theorem 12. Let f ∈ β − ST mðδ, k, bÞ with the form (1).
Then, for a complex number μ, we have

am+2 − μa2m+1
�� �� ≤ mbL1k

2

δ +mkð Þ δ +mk + kð Þ max 1, L2
L1

+mbL1 1 −
δ +mk + k
δ +mk

μ


 �����
����

� �
:

ð49Þ

Proof. If f ∈ β − ST mðδ, k, bÞ, then there exists a Schwarz
function w, with wð0Þ = 0 and jwðξÞj < 1 such that

1 + 1
b

ξ Dδ+mk−k f ξð Þ
� �

′

mDδ+mk−k f ξð Þ
− 1

0
@

1
A = ψβ w ξð Þð Þ ξ ∈Dð Þ: ð50Þ

Let h ∈P be a function defined by

h ξð Þ = 1 +w ξð Þ
1 −w ξð Þ = 1 + c1ξ + c2ξ

2+⋯ ξ ∈Dð Þ: ð51Þ

This gives

w ξð Þ = c1
2 ξ + 1

2 c2 −
c21
2


 �
ξ2+⋯, ð52Þ

ψβ w ξð Þð Þ = 1 + 1
2 c1L1ξ +

1
2

c21L2
2 + c2 −

c21
2


 �
L1

� �
ξ2+⋯:

ð53Þ

Using (53) in (50), we obtain

am+1 =
mbc1L1k
2 δ +mkð Þ ,

am+2 =
mbk2

2 δ +mkð Þ δ +mk + kð Þ
c21L2
2 + c2 −

c21
2


 �
L1 +

mbc21L
2
1

2

� �
:

ð54Þ

For any complex number μ, we have

am+2 − μa2m+1 =
mbk2

2 δ +mkð Þ δ +mk + kð Þ
c21L2
2 + c2 −

c21
2


 �
L1 +

mbc21L
2
1

2

� �

− μ
m2b2c21L

2
1k

2

4 δ +mkð Þ2 :

ð55Þ

Then (55) can be written as

am+2 − μa2m+1 =
mbL1k

2

2 δ +mkð Þ δ +mk + kð Þ c2 − vc21
� �

, ð56Þ

where

v = 1
2 1 − L2

L1
−mbL1 1 − δ +mk + k

δ +mk
μ


 �� �
: ð57Þ

Now, taking absolute value on both sides and using
Lemma 3, we obtain the required result. ☐

Putting m = 1 in Theorem 12, we obtain the following
corollary.

Corollary 13. Let f ∈ β − ST ðδ, k, bÞwith the form (1). Then,
for a complex number μ, we have

a3 − μa22
�� �� ≤ bL1k

2

δ + kð Þ δ + 2kð Þ max 1, L2
L1

+ bL1 1 −
δ + 2k
δ + k

μ


 �����
����

� �
:

ð58Þ

Theorem 14. Let

σ1 =
mbL21 + L2 − L1
� �

δ +mkð Þ
mb δ +mk + kð ÞL21

, σ2 =
mbL21 + L2 + L1
� �

δ +mkð Þ
mb δ +mk + kð ÞL21

, σ3

= mbL21 + L2
� �

δ +mkð Þ
mb δ +mk + kð ÞL21

:

ð59Þ

If f given by (1) belongs to β − ST mðδ, k, bÞ with b > 0,
then

am+2 − μa2m+1
�� ��

≤

mbL1k
2

δ +mkð Þ δ +mk + kð Þ
L2
L1

+mbL1 1 −
δ +mk + k
δ +mk

μ


 �� �
μ ≤ σ1ð Þ,

mbL1k
2

δ +mkð Þ δ +mk + kð Þ σ1 ≤ μ ≤ σ2ð Þ,

−
mbL1k

2

δ +mkð Þ δ +mk + kð Þ
L2
L1

+mbL1 1 −
δ +mk + k
δ +mk

μ


 �� �
μ ≥ σ2ð Þ:

8>>>>>>>>>><
>>>>>>>>>>:

ð60Þ
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Further, if σ1 ≤ μ ≤ σ3, then

am+2 − μa2m+1
�� �� + δ +mk

mb δ +mk + kð ÞL1
1 −

L2
L1

−mbL1 1 −
δ +mk + k
δ +mk

μ


 �� �
am+1j j2

≤
mbL1k

2

δ +mkð Þ δ +mk + kð Þ :

ð61Þ

If σ3 ≤ μ ≤ σ2, then

am+2 − μa2m+1
�� �� + δ +mk

mb δ +mk + kð ÞL1
� 1 + L2

L1
+mbL1 1 −

δ +mk + k
δ +mk

μ


 �� �
am+1j j2

≤
mbL1k

2

δ +mkð Þ δ +mk + kð Þ :

ð62Þ

Proof. Applying Lemma 4 to (56) and (57), respectively, we
can obtain our results asserted by Theorem 14. ☐

Putting m = 1 in Theorem 14, we obtain

Corollary 15. Let

σ4 =
bL21 + L2 − L1
� �

δ + kð Þ
b δ + 2kð ÞL21

, σ5 =
bL21 + L2 + L1
� �

δ + kð Þ
b δ + 2kð ÞL21

, σ6

= bL21 + L2
� �

δ + kð Þ
b δ + 2kð ÞL21

:

ð63Þ

If f given by (1) belongs to β − ST ðδ, k, bÞ with b > 0,
then

a3 − μa22
�� �� ≤

bL1k
2

δ + kð Þ δ + 2kð Þ
L2
L1

+ bL1 1 −
δ + 2k
δ + k

μ


 �� �
μ ≤ σ4ð Þ,

bL1k
2

δ + kð Þ δ + 2kð Þ σ4 ≤ μ ≤ σ5ð Þ,

−
bL1k

2

δ + kð Þ δ + 2kð Þ
L2
L1

+ bL1 1 −
δ + 2k
δ + k

μ


 �� �
μ ≥ σ5ð Þ:

8>>>>>>>>><
>>>>>>>>>:

ð64Þ

Further, if σ4 ≤ μ ≤ σ6 , then

a3 − μa22
�� �� + δ + k

b δ + 2kð ÞL1
1 −

L2
L1

− bL1 1 −
δ + 2k
δ + k

μ


 �� �
a2j j2

≤
bL1k

2

δ + kð Þ δ + 2kð Þ :

ð65Þ

If σ6 ≤ μ ≤ σ5, then

a3 − μa22
�� �� + δ + k

b δ + 2kð ÞL1
1 + L2

L1
+ bL1 1 −

δ + 2k
δ + k

μ


 �� �
a2j j2

≤
bL1k

2

δ + kð Þ δ + 2kð Þ :

ð66Þ

Remark 16. For different choices of the parameters β,m, δ, k,
and b in the above theorems, we can obtain the correspond-
ing results for each of the following subclasses β − ST γ

mðδ,
k, αÞ, β − ST mðδ, k, αÞ, β − ST mðδ, bÞ, β − ST γ

mðδ, αÞ, β
− ST mðδ, αÞ, β − ST ðδ, bÞ, β − ST γðδ, αÞ, β − ST ðδ, αÞ,
β − ST γðδ, k, αÞ, β − ST ðδ, k, αÞ, β − ST mðbÞ, β − ST γ

mð
αÞ, β − ST mðαÞ, β − ST ðbÞ, β − ST γðαÞ, β − ST ðαÞ, Smð
δ, k, bÞ, Sγ

mðδ, k, αÞ, Sγ
mðαÞ, SmðbÞ, and SðbÞ which are

defined in Section 1.

Data Availability

No data were used to support this study.

Ethical Approval

This article does not contain any studies with human partic-
ipants or animals performed by any of the authors.

Conflicts of Interest

The authors declare that they have no competing interests.

Authors’ Contributions

All authors contributed equally to the writing of this paper.
All authors read and approved the final manuscript.

References

[1] T. Bulboacă,Differential Subordinations and Superordinations,
Recent Results, House of Scientific Book Publ., Cluj-Napoca,
2005.

[2] S. S. Miller and P. T. Mocanu, Differential Subordinations:
Theory and Applications, Series on Monographs and Textbooks
in Pure and Applied Mathematics, vol. 225, Marcel Dekker,
New York and Basel, 2000.

[3] S. S. Miller and P. T. Mocanu, “Subordinants of differential
superordinations,” Complex Variables, Theory and Applica-
tion: An International Journal, vol. 48, no. 10, pp. 815–826,
2003.

[4] R. Daz and E. Pariguan, “On hypergeometric functions and
Pochhammer k − symbol,” Divulgaciones Matemáticas,
vol. 15, no. 2, pp. 179–192, 2007.

[5] R. M. Goel and N. S. Sohi, “A new criterion for p − valent func-
tions,” Proceedings of American Mathematical Society, vol. 78,
no. 3, pp. 353–357, 1980.

[6] M. K. Aouf, “A generalization of multivalent functions defined
by Ruscheweyh derivatives,” Soochow Journal of Mathematics,
vol. 17, pp. 83–97, 1991.

7Journal of Function Spaces



[7] V. Kumar and S. L. Shukla, “Multivalent functions defined by
Ruscheweyh derivatives,” Indian Journal of Pure and Applied
Mathematics, vol. 15, no. 11, pp. 489–509, 1984.

[8] M. K. Aouf and H. E. Darwish, “A remark on certain p-valent
functions,” International Journal of Mathematics and Mathe-
matical Sciences, vol. 19, no. 2, 406 pages, 1996.

[9] T. M. Seoudy, “Some subclasses of univalent functions associ-
ated with k − Ruscheweyh derivative operator,” Ukrainian
Mathematical Journal, In press.

[10] S. Ruscheweyh, “New criteria for univalent functions,” Pro-
ceedings of the American Mathematical Society, vol. 49, no. 1,
pp. 109–115, 1975.

[11] S. Kanas and A. Wisniowska, “Conic regions and k-uniform
convexity,” Journal of Computational and Applied Mathemat-
ics, vol. 105, no. 1-2, pp. 327–336, 1999.

[12] S. Kanas and A. Wisniowska, “Conic domains and starlike
functions,” Revue Roumaine de Mathématiques Pures et Appli-
quées, vol. 45, no. 4, pp. 647–658, 2000.

[13] K. I. Noor, M. Arif, andW. Ul-Haq, “On k-uniformly close-to-
convex functions of complex order,” Applied Mathematics and
Computation, vol. 215, no. 2, pp. 629–635, 2009.

[14] T. O. Salim, M. S. Marouf, and J. M. Shenan, “A subclass of
multivalent uniformly convex functions associated with gener-
alized Salagean and Ruscheweyh differential operators,” Acta
Universitatis Apulensis, vol. 26, pp. 289–300, 2011.

[15] R. Bharati, R. Parvatham, and A. Swaminathan, “On subclasses
of uniformly convex functions and corresponding class of star-
like functions,” Tamkang Journal of Mathematics, vol. 28,
no. 1, pp. 17–32, 1997.

[16] M. K. Aouf, “On coefficient bounds of a certain class of p
-valent λ-spiral functions of order α,” International Journal
of Mathematics and Mathematical Sciences, vol. 10, no. 2,
266 pages, 1987.

[17] H. M. Srivastava, M. K. Aouf, and S. Owa, “Certain classes of
multivalent functions of order α and type β,” Bulletin de la
Societe Mathematique de Belgique. Serie B, vol. 42, no. 1,
pp. 31–66, 1990.

[18] B. Wongsaijai and N. Sukantamala, “Mapping properties of
generalized q − integral operator of p − valent functions
involving the Ruscheweyh derivative and the generalized Sala-
gean operator,” Acta Universitatis Apulensis, vol. 41, pp. 31–
50, 2015.

[19] M. A. Nasr and M. K. Aouf, “Bounded starlike functions of
complex order,” Indian Academy of Sciences, vol. 92, no. 2,
pp. 97–102, 1983.

[20] M. A. Nasr and M. K. Aouf, “Starlike function of complex
order,” The Journal of Natural Sciences and Mathematics,
vol. 25, no. 1, pp. 1–12, 1985.

[21] S. Kanas, “Coefficient estimates in subclasses of the Carathéod-
ory class related to conical domains,” Acta Mathematica Uni-
versitatis Comenianae, vol. 75, no. 2, pp. 149–161, 2005.

[22] W. Ma and D. Minda, “A unified treatment of some special
classes of univalent functions,” Proceedings of the Conference
on Complex Analysis (Tianjin, 1992), Z. Li, F. Y. Ren, L. Yang,
and S. Y. Zhang, Eds., , pp. 157–169, Int. Press, Cambridge,
MA, 1994.

8 Journal of Function Spaces



Research Article
On Extended Convex Functions via Incomplete Gamma Functions

Yan Zhao ,1 M. Shoaib Saleem,2 Shahid Mehmood,2 and Zabidin Salleh 3

1School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, China
2Department of Mathematics, University of Okara, Okara, Pakistan
3Department of Mathematics, Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu,
21030 Kuala Nerus, Terengganu, Malaysia

Correspondence should be addressed to Zabidin Salleh; zabidin@umt.edu.my

Received 19 June 2021; Accepted 13 July 2021; Published 31 July 2021

Academic Editor: Sibel Yalçın

Copyright © 2021 Yan Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Convex functions play an important role in many areas of mathematics. They are especially important in the study of optimization
problems where they are distinguished by a number of convenient properties. In this paper, firstly we introduce the notion of
h-exponential convex functions. This notion can be considered as generalizations of many existing definitions of convex
functions. Then, we establish some well-known inequalities for the proposed notion via incomplete gamma functions. Precisely
speaking, we established trapezoidal, midpoint, and He’s inequalities for h-exponential and harmonically exponential convex
functions via incomplete gamma functions. Moreover, we gave several remarks to prove that our results are more generalized
than the existing results in the literature.

1. Introduction

Convex optimization contributed largely in many areas of
pure and applied mathematics during recent years, and
convex analysis provides main foundation for convex opti-
mization [1, 2]. Due to huge applications of convex analysis,
the researchers always show interest to generalization the
notion of convexity. In literature, there exist many versions
of convex functions, for example, h-convex function, see
[3], r-convex functions, see [4], harmonic convex function,
see [5], exponentially convex functions, see [6], etc. [7, 8].

Since convex function is a class of very important func-
tions which is widely used in pure mathematics, functional
analysis, optimization theory, and mathematical economics,
so to study properties of certain classes of convex functions
and establish different inequalities like trapezoidal, midpoint,
He’s Hermite-Hadamard, Fejér, etc., type inequality is an
important area of research. A lot of work is devoted to
establish different kinds of inequalities for different classes
of convex functions, for example, Iscan [9] established
Hermite-Hadamard type inequalities for harmonically con-
vex functions. Bai et al. [10] presented Hermite-Hadamard

type inequalities for the m and ðα,mÞ-logarithmically con-
vex functions. Özdemir et al. [11] developed Hermite–
Hadamard-type inequalities via ðα,mÞ-convex functions.
Chu et al. [12] gave generalizations of Hermite-Hadamard
type inequalities for MT-convex functions.

It is always appreciable to derive more version of inequal-
ities for generalized convexities. For some important general-
ization, we refer [13, 14]. Fractional calculus also provides
some broader variety to deal real-world problems. Just like
other fields, fractional calculus also sets new trends in
inequalities of convex analysis. For more details on fractional
integral inequalities, we refer to the readers [15–18]. Many
interesting controversies are also part of history of fractional
calculus. Some famous definitions of fractional derivative are
Riemann-Liouville [19], Caputo-Fabrizio [20], etc. [21–24].
In the present paper, we will deal with incomplete gamma
functions. Firstly, we introduce the notions of h-exponential
convex functions and harmonically exponential convex func-
tions. Then, we establish some well-known inequalities for
the proposed notions via incomplete gamma functions. Pre-
cisely speaking, we established trapezoidal, midpoint, and
He’s inequalities for h-exponential and harmonically
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exponential convex functions via incomplete gamma func-
tions. Moreover, we gave several remarks to prove that our
results are more generalized than the existing results in the
literature.

The breakup of this paper is as follows: In Section 2, we
present basic definitions and known results. Section 3 con-
tains trapezoidal type inequalities via incomplete gamma
function. Midpoint inequalities via incomplete gamma func-
tion are presented in Section 4, and He’s inequality via the
incomplete gamma functions is presented in Section 5.
Last section contains concluding remarks and some future
directions.

2. Preliminaries

Before starting the main findings, we review some defini-
tions, notations, and theorems which are necessary to pro-
ceed. Throughout this paper, L1 denotes space of all locally
integrable functions.

Definition 1 [19]. For any L1 function zðuÞ on an interval ½x, y�
with u ∈ ½x, y�k-th left-RL fractional integral of zðuÞ is
given by

RL Jka+z uð Þ = 1
Γ kð Þ

ðu
x
u − tð Þk−1z tð Þdt, ð1Þ

for Re ðkÞ > 0. Also, the k-th right- RL fractional integral
of zðuÞ is given by

RLJkxz uð Þ = 1
Γ kð Þ

ðy
u
t − uð Þk−1z tð Þdt: ð2Þ

Definition 2 [6]. We say that the function z : M ⊆ R⟶ R
is exponential type convex on M if

z tx + 1 − tð Þyð Þ ≤ et − 1
� �

z xð Þ + e1−t − 1
� �

z yð Þ, ð3Þ

holds for every x, y ∈M and t ∈ ½0, 1�:

Definition 3 [3]. We say that the function z: M ⊆ R⟶ is h-
convex function on M if

z tx + 1 − tð Þyð Þ ≤ h tð Þz xð Þ + h 1 − tð Þz yð Þ, ð4Þ

where x, y ∈M and t ∈ ½0, 1�:

We are now ready to define some new convexity, called as
h-exponential convex function.

Definition 4. We say that the function z: M ⊆ R⟶ is h-
exponential type convex on M if

z tx + 1 − tð Þyð Þ ≤ h et − 1
� �

z xð Þ + h e1−t − 1
� �

z yð Þ, ð5Þ

where x, y ∈M and t ∈ ½0, 1�:

Remark 5.

(1) By substituting hðet − 1Þ = 1/ðet − 1Þ, hðe1−t − 1Þ =
1/ðe1−t − 1 in Definition 3, we get harmonically expo-
nential convex function

(2) By substituting hðet − 1Þ = et − 1, hðe1−t − 1Þ = e1−t − 1
in Definition 3, we get Definition 2 of exponential
convex function

Now, the integral inequality of Hermite-Hadamard (HH)
type for a convex function is give by

z
x + y
2

� �
≤

1
y − x

ðy
x
z xð Þdx ≤ z xð Þ + z yð Þ

2 : ð6Þ

Sarikaya et al. [25] generalized the HH-inequality (6) to
fractional integrals of RL type which is given by

z
x + y
2

� �
≤

Γ k + 1ð Þ
2 y − xð Þk

RLJ
k
x+z yð Þ+RLJky−z xð Þ

h i
≤
z xð Þ + z yð Þ

2 ,

ð7Þ

where k > 0 and z½x, y�⟶ R is let to be an L1 convex func-
tion. After that, Sarikaya and Yildirim [26] found a new
inequality of the above

z
x + y
2

� �
≤
2k−1Γ k + 1ð Þ

y − xð Þk
RL Jkx+y

2ð Þ+z yð Þ+RLJkx+y
2ð Þ−z xð Þ

� �

≤
z x + yð Þ

2 :

ð8Þ

The following facts will be needed in establishing our
main results:

Remark 6 (21). For Re > 0, the following identities hold:

ð1
0
tk−1etdt = −1ð Þkγ k,−1ð Þ ;

ð1
0
tk−1e1−tdt = γ k, 1ð Þ,

γ k, xð Þ =
ðx
0
tk−1e−tdt, x ∈ C:

ð9Þ

Remark 7 (21). For Re > 0, the following identities hold:

ð1
0
tk−1et/2dt = −2ð Þkγ k, −12

� 	
; ð10Þ

ð1
0
tk−1e1− t/2ð Þdt = e2kγ k, 12

� 	
: ð11Þ
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Lemma 8 [25]. If z : ½x, y�⟶ R is L1½x, y� with 0 < x < y and
k > 0, then we have

z xð Þ + z yð Þ
2

−
Γ k + 1ð Þ
y − xð Þk

RL

Jx+z yð Þ+RLJky−z xð Þ

= y − x
2

ð1
0

1 − tð Þk − tk
h i

z tx + 1 − tð Þyð Þdt:
ð12Þ

Lemma 9 [26]. If z : ½x, y�⟶ R is L1½x, y� with 0 < x < y and
k > 0, then we have

2k−1Γ k + 1ð Þ
y − xð Þk

RLJk x+yð Þ/2ð Þ+z yð Þ+RLJk x+yð Þ/2ð Þ−z xð Þ − z
x + y
2

� �h i

= y − x
4

ð1
0
etz

t
2
x + 2 − t

2
y

� 	
dt −

ð1
0
tkz

2 − t
2

x + t
2
y

� 	
dt

� �
:

ð13Þ

3. Trapezoidal Type Inequalities via Incomplete
Gamma Function

In this section, we present trapezoidal type inequalities via
incomplete gamma function.

Theorem 10. Suppose that z : ½x, y�⟶ R is L1½x, y� and h-
exponential convex function, then we have for k > 0,

z
x + y
2

� �
≤
kh e1/2 − 1
� �

Γ k + 1ð Þ
y − xð Þk

RLJkxz yð Þ+RLJkyz xð Þ
h i

≤ h e1/2 − 1
� �

M z xð Þ + z yð Þ½ �,
ð14Þ

where hðet + e1−t − 2Þ ≤M.

Proof. Let z : I ⟶ R is h-exp convex function and k > 0 then
by definition

z
x + y
2

� �
= z

tx + 1 − tð Þyð Þ + 1 − tð Þx + ty
2

� �
≤ h e1/2 − 1

� �
z tx + 1 − tð Þyð Þ

+ h e1/2 − 1
� �

z 1 − tð Þx + tyÞð Þ:

ð15Þ

Multiplying tk−1 on both sides and then integrating on
½0, 1�, we get

1
k
z

x + y
2

� �
≤ h e1/2 − 1

� �ð1
0
tk−1z tx + 1 − tð ÞyÞð Þdt

+ h e1/2 − 1
� �

×
ð1
0
tk−1z 1 − tð Þx + tyÞð Þdt:

ð16Þ

Again by small substitution, we have

z
x + y
2

� �
≤ kh e 1/2ð Þ−1

� � 1
x − y

ðx
y

y − u
y − x

� 	k−1
z uð Þd uð Þ

"

+
ðy
x

v − x
y − x

k−1� 	
z vð Þd vð Þ

�

≤ kh e1/2 − 1
� � 1

x − y

ðx
y

y − u
y − x

� 	k−1
z uð Þd uð Þ

"

+ 1
x − y

ðy
x

v − x
y − x

� 	k−1
z vð Þd vð Þ

#

≤
Γ k + 1ð Þh e1/2 − 1

� �
x − yð Þk

RL Jkx+z yð Þ+RL Jky−z xð Þ
h i

:

ð17Þ

For other inequalities, take

z tx + 1 − tð Þyð Þ ≤ h et − 1
� �

z xð Þ + h e1−t − 1
� �

z yð Þ ;

z 1 − tð Þx + tyð Þ ≤ h e1−t − 1
� �

z xð Þ + h et − 1
� �

z yð Þ:
ð18Þ

Adding both inequalities, we get

z tx + 1 − tð Þyð Þ + z 1 − tð Þx + tyð Þ ≤ h et + e1−t − 2
� �

z xð Þ + z yð Þ½ �:
ð19Þ

Multiplying both sides by tk−1 and integrating on [0,1],
we have

ð1
0
tk−1z tx + 1 − tð Þyð Þdt +

ð1
0
tk−1z 1 − tð Þx + tyð Þdt

≤
ð1
0
tk−1h et + e1−t − 2

� �
dt z xð Þ + z yð Þ½ �:

ð20Þ

By making the change of variables

1
x − y

ðx
y

y − u
y − x

� 	k−1
z uð Þd uð Þ + 1

x − y

ðx
y

v − x
y − x

� 	k−1
z vð Þd vð Þ

≤ z xð Þ + z yð Þ½ �
ð1
0
tk−1h et + e1−t − 2

� �
dt,

Γ kð Þ
x − yð Þk

RL Jkx+z yð Þ+RL Jky−z xð Þ
h i

≤ z xð Þ + z yð Þ½ �
ð1
0
tk−1h et + e1−t − 2

� �
dt:

ð21Þ
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Multiplying by k > 0 and hðe1/2 − 1Þ on both sides, we
get.

Γ k + 1ð Þh e1/2 − 1
� �

x − yð Þk
RL Jkx+z yð Þ+RL Jky−z xð Þ
h i

≤ kh e1/2 − 1
� �

z xð Þ + z yð Þ½ �
ð1
0
tk−1h et + t1−t − 2

� �
dt,

ð22Þ

Γ k + 1ð Þh e1/2 − 1
� �

x − yð Þk
RL Jkx+z yð Þ+RL Jky−z xð Þ
h i

≤ h e1/2 − 1
� �

M z xð Þ + z yð Þ½ �:
ð23Þ

☐

Corollary 11. If we substitute hðet + e1−t − 2Þ = ðet + e1−t − 2Þ
in (22) and use Remark 6, then both of inequalities (17) and
(22) become (7) of [27].

Remark 12. For hðet + e1−t − 2Þ = 1/ðet + e1−t − 2Þ, (22) yields
trapezoidal type inequalities via the incomplete gamma
function for harmonically exponential convex function.

Theorem 13. Let z : ½x, y�⟶ R be L1½x, y� with 0 < x < y and
k > 0. If ∣z ∣ is an h-exp convex function, then we

z
x + y
2

� �
≤
h e1/2 − 1
� �

Γ k + 1ð Þ
x − yð Þk

RLJkx+z yð Þ+RLJky−z xð Þ
h i

≤
y − x
2

δ0 k, h0, hð Þ½ � + δ1 k, h1, hð Þð � z xð Þj j
+ δ0 k, h1, hð Þ + δ1 k, h0, hð Þ½ � z yð Þj j
+ δ0 k, h0, hð Þ + δ0 k, h1, hð Þ½ � z xð Þj j
+ δ1 k, h0, hð Þ + δ0 k, h0, hð Þ½ � z yð Þj j,

ð24Þ

where

δ0 k:h0, hð Þ =
ð1

2

0
1 − tð Þkh et − 1

� �
dt =

ð1
1
2

tkh e1−t − 1
� �

dt ;

δ0 k, h1, hð Þ =
ð1

2

0
1 − tð Þkh e1−t − 1

� �
dt =

ð1
1
2

tkh et − 1
� �

dt ;

δ1 k, h0, hð Þ = −
ð1

2

0
tkh e1−t − 1

� �
dt = −

ð1
1
2

1 − tð Þkh et − 1
� �

dt ;

δ1 k, h1, hð Þ = −
ð1

2

0
tkh et − 1

� �
dt = −

ð1
1
2

1 − tð Þkh e1−t − 1
� �

dt:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð25Þ

Proof. From Lemma 8, we have

z xð Þ + z yð Þ
2 −

Γ k + 1ð Þ
2 y − xð Þk

RL Jkx+z yð Þ+RL Jky−z xð Þ
h i�����

�����
≤
y − x
2

ð1
0
1 − tð Þk − tk

�
z txð + 1 − tð Þyj jdt

= y − x
2

ð1
2

0
1 − tð Þk − tk

� �
z tx + 1 − tð Þð Þyj jdt

" #

+
ð1

1
2

tk − 1 − tð Þk
� �

z tx + 1 − tð Þð Þyj jdt
" #

:

ð26Þ

By using the h-exp convexity of jzj

z xð Þ + z yð Þ
2 −

Γ k + 1ð Þ
2 y − xð Þk

RL Jkx+z yð Þ+RL Jky−z xð Þ
h i�����

�����
≤
y − x
2

ð1
2

0
1 − tð Þk − tk

� �
h et − 1
� �

∣ z xð Þ∣
"

+h e1−t − 1
� �

z yð Þj j�dt
+
ð1

1
2

tk − 1 − tð Þk
� �

h et − 1
� �

z xð Þj j


+ h e1−t − 1
� �

z yð Þj j�dt
#
:

ð27Þ

By using identities (25), we get required result. ☐

4. Midpoint Inequalities via Incomplete
Gamma Function

This section contains midpoint inequalities via incomplete
gamma function.

Theorem 14. Let z : ½x, y�⟶ R be L1½x, y� with 0 < x < y and
k > 0. If jzj is an h -exp convex function, then we

z
x + y
2

� � h e1/2 − 1
� �

Γ k + 1ð Þ
x − yð Þk

RL Jk x+yð Þ/2ð Þ+z yð Þ+RLJk x+yð Þ/2ð Þ−z xð Þ
h i

≤ h e1/2 − 1
� �

M z xð Þ + z yð Þ½ �,
ð28Þ

where hðet/2 + e1−ðt/2Þ − 2Þ ≤M:

Proof. Let z : I ⟶ R is h-exponential convex function and
k > 0, then by definition

z
x + y
2

� �
= z

t/2ð Þx + 2 − tð Þ/2ð Þy½ � + 2 − tð Þ/2ð Þx + t/2ð Þy½ �
2

� 	

≤ h e1/2 − 1
� �

z
t
2 x +

2 − t
2 y

� 	
+ h e1/2 − 1

� �
z

2 − t
2 x + t

2 y
� 	

:

ð29Þ
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Multiplying by tk−1 on both sides and integrating w.r.t “t”
from [0,1], we get

1
k
z

x + y
2

� �
≤ h e1/2 − 1

� �ð1
0
tk−1z

t
2 x + 1 − t

2

� 	
y

� 	
dt

+ h e1/2 − 1
� �ð1

0
tk−1z

2 − t
2 x + t

2 y
� 	

dt:

ð30Þ

Again by small substitution, we have

1
k
z

x + y
2

� �
≤ h e1/2 − 1

� � 1
x − y

ðx+y
2

y
2k y − u

y − x

� 	k−1
z uð Þd uð Þ

+ h e1/2 − 1
� � 1

x − y

ðx
x+y
2

2k v − x
y − x

� 	k−1
z vð Þd vð Þ

≤ 2kh e1/2 − 1
� � 1

x − y

ðx+y
2

y

y − u
y − x

� 	k−1
z uð Þd uð Þ

+ 2kh e1/2 − 1
� � 1

x − y

ðx
x+y
2

v − x
y − x

� 	k−1
z vð Þd vð Þ:

ð31Þ

Implies

z
x + y
2

� �
= h e1/2 − 1

� �
2kΓ k + 1ð Þ

x − yð Þk

� RL Jk x+yð Þ/2ð Þ+z yð Þ+RL Jk x+yð Þ/2ð Þ−z xð Þ
h i

:

ð32Þ

For other inequalities, take

z
t
2 x +

2 − t
2 y

� 	
≤ h et/2 − 1

� �
z xð Þ + h e1− t/2ð Þ − 1

� �
z yð Þ ;

z
2 − t
2 x + t

2 y
� 	

≤ h e 1−tð Þ/2 − 1
� �

z xð Þ + h et/2 − 1
� �

z yð Þ:

ð33Þ

Adding both inequalities, we have

t
2 x +

2 − t
2 y

� 	
+ z

2 − t
2 x + t

2 y
� 	

z

≤ h et/2 + e1− t/2ð Þ − 2
� �

z xð Þ + z yð Þ½ �:
ð34Þ

Multiplying by tk−1 on both sides and integrating on
[0,1], we get

ð1
0
tk−1z

t
2 x +

2 − t
2 y

� 	
dt +

ð1
0
tk−1z

2 − t
2 x + t

2 y
� 	

dt

≤ z xð Þ + z yð Þ½ �
ð1
0
tk−1h et/2 + e1− t/2ð Þ − 2

� �
dt:

ð35Þ

By making the change of variables, we get

2k 1
x − y

ðx+y
2

y

y − u
y − x

� 	k−1
z uð Þd uð Þ + 1

x − y

ðx
x+y
2

v − x
y − x

� 	k−1
z vð Þd vð Þ

" #

≤ z xð Þ + z yð Þ½ �
ð1
0
tk−1h et/2 + e1− t/2ð Þ − 2

� �
dt,

2kΓ kð Þ
x − yð Þk

RL Jk x+yð Þ/2ð Þ+z yð Þ+RL Jk x+yð Þ/2ð Þ−z xð Þ
h i

≤ z xð Þ + z yð Þ½ �
ð1
0
tk−1h et/2 + e1− t/2ð Þ − 2

� �
dt:

ð36Þ

Multiplying k > 0 and hðe1/2 − 1Þ > 0 on both sides, we
have

h e1/2 − 1
� �

2kΓ k + 1ð Þ
x − yð Þk

RL Jk x+yð Þ/2ð Þ+z yð Þ+RL Jk x+yð Þ/2ð Þ−z xð Þ
h i

≤ kh e1/2 − 1
� �

z xð Þ + z yð Þ½ �
ð1
0
tk−1h et/2 + e1− t/2ð Þ − 2

� �
dt

≤ h e1/2 − 1
� �

M z xð Þ + z yð Þ½ �:
ð37Þ

☐

Corollary 15.When we introduced hðe1/2 + e1−ðt/2Þ − 2Þ = et +
e1−ðt/2Þ − 2 in (37) using Remark 7 and rearrange both
inequalities (32) and (37), we get (10) of [27].

Remark 16. For hðet/2 + e1−ðt/2Þ − 2Þ = 1/ðet/2 + e1−ðt/2Þ − 2Þ,
(37) yields midpoint type inequalities via the incomplete
gamma function for harmonically exponential convex
function.

5. He’s Inequality via the Incomplete
Gamma Functions

He’s inequality via the incomplete gamma functions is pre-
sented in this section.

Definition 17. For any L1 function z on interval ½0, s�, the k-th
He’s fractional derivative of zðxÞ is defined by

Dk
sw sð Þ = 1

Γ n − kð Þ
dn

dsn

ðs
0
t − sð Þn−k−1z tð Þdt,

z
x + y
2

� �
= z

tx + 1 − tð Þy½ � + 1 − tð Þx + ty½ �
2

� 	
:

ð38Þ

By using h-exponential convex function

z
x + y
2

� �
≤ h e1/2 − 1

� �
z tx + 1 − tð Þyð Þð

+ h e1/2 − 1
� �

z 1 − tð Þx + tyð Þ:
ð39Þ
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Taking x = 0 and y > 0 for all s ∈ ð0, 1Þ and multiplying by
ðt − sÞn−k−1/Γðn − kÞ, we get

1
Γ n − kð Þ z

y
2

� �ðs
0
t − sð Þn−k−1dt

≤
h e1/2 − 1
� �
Γ n − kð Þ

ðs
0

t − sð Þn−k−1z 1 − tð Þy
� �

dt
�

+
ðs
0
t − sð Þn−k−1z tyð Þdt

�
−1ð Þn−ksn−k
Γ n − kð Þ z

y
2

� �

≤
h e1/2 − 1
� �
Γ n − kð Þ

ðs
0

t − sð Þn−k−1z 1 − tð Þy
� �

dt
�

+
ðs
0
t − sð Þn−k−1z tyð Þdt

�
:

ð40Þ

Hence

−1ð Þn−ksn−k
Γ n − kð Þ z

y
2

� �
≤
h e1/2 − 1
� �
Γ n − kð Þ

ðs
0

t − sð Þn−k−1z 1 − tð Þy
� �

dt
�

+
ðs
0
t − sð Þn−k−1z tyð Þdt

�
:

ð41Þ
After getting the n-th derivatives on both sides of (41)

w.r.t to s and using Definition 17, we get

−1ð Þn−kz y
2

� �
≤ Dk

sbz sbð Þ + −1ð Þn−kDk
1−sð Þbz 1 − sð Þbð Þ

h i
:

ð42Þ
Remark 18. By putting hðe1/2 − 1Þ = ðe1/2 − 1Þ in (41), we get
He’s inequality (14) of [27].

5.1. He’s Inequality for Harmonically Exponential Convex
Function. From Definition 17 and by using definition of h-
exponential convex function, we have

z
x + y
2

� �
≤ h e1/2 − 1

� �
z tx + 1 − tð Þyð Þð

+ h e1/2 − 1
� �

z 1 − tð Þx + tyð Þ:
ð43Þ

By harmonically exponential convex function, we have

z
x + y
2

� �
≤

1
e1/2 − 1 z tx + 1 − tð Þyð Þð + 1

e1/2 − 1 z 1 − tð Þx + tyð Þ:
ð44Þ

Taking x = 0 and y > 0 for all s ∈ ð0, 1Þ, multiplying by
ðt − sÞn−k−1/Γðn − kÞ

1
Γ n − kð Þ z

y
2

� �ðs
0
t − sð Þn−k−1dt

≤
1

e1/2 − 1ð ÞΓ n − kð Þ
ðs
0

t − sð Þn−k−1z 1 − tð Þy
� �

dt
�

+
ðs
0
t − sð Þn−k−1z tyð Þdt

�
−1ð Þn−ksn−k
Γ n − kð Þ z

y
2

� �

≤
1

e1/2 − 1ð ÞΓ n − kð Þ
ðs
0

t − sð Þn−k−1z 1 − tð Þy
� �

dt
�

+
ðs
0
t − sð Þn−k−1z tyð Þdt

�
:

ð45Þ

Hence

−1ð Þn−ksn−k
Γ n − kð Þ z

y
2

� �
≤

1
e1/2 − 1ð ÞΓ n − kð Þ
�

ðs
0

t − sð Þn−k−1z 1 − tð Þy
� �

dt
�

+
ðs
0
t − sð Þn−k−1z tyð Þdt

�
:

ð46Þ

After getting the n-th derivatives on both sides of (41)
w.r.t to s and using Definition 17, we get

−1ð Þn−kz y
2

� �
≤ Dk

sbz sbð Þ + −1ð Þn−kDk
1−sð Þbz 1 − sð Þbð Þ

h i
:

ð47Þ

Remark 19. For 1/ðe1/2 − 1Þ = hðe1/2 − 1Þ in (47), we get (41).
Again substitute hðe1/2 − 1Þ = et − 1 in (41), we get He’s
inequality (14) of [27].

6. Conclusion

The inequalities in analysis play a vital role to study qualita-
tive properties of functions and solutions of differential
equations; we develop various Hermite-Hadamard type
inequalities, midpoint inequalities, and trapezoidal and He’s
inequalities forh-exponential convex functions with appro-
priate substitutions; we may obtain the inequalities for
harmonicallyh-exponential convex functions. To establish
same inequalities for h-exponential convex stochastic pro-
cesses is an interesting problem.
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Generating functions plays an essential role in the investigation of several useful properties of the sequences which they generate. In
this paper, we establish certain generating relations, involving some quadruple hypergeometric functions introduced by Bin-Saad
and Younis. Some interesting special cases of our main results are also considered.

1. Introduction

The hypergeometric series is the most useful and important
special function, and it has been studied to solve various
problems in many areas of mathematics, physics, statistics,
and engineering [1–5]. Hypergeometric series in several var-
iables appear in numerous fields of applied mathematics,
mathematical physics, and chemistry. Very recently, Bin-
Saad and Younis [6] introduced thirty new hypergeometric

functions of four variables Xð4Þ
i ði = 1, 2,⋯, 30Þ, eight of them

are defined below

X 4ð Þ
11 a1, a1, a1, a2, a1, a2, a3, a3 ; c1, c1, c2, c3 ; x, y, z, uð Þ

= 〠
∞

m,n,p,q=0

a1ð Þ2m+n+p a2ð Þn+q a3ð Þp+q
c1ð Þm+n c2ð Þp c3ð Þq

xm

m!

yn

n!
zp

p!
uq

q!
;

ð1Þ

X 4ð Þ
12 a1, a1, a1, a2, a1, a2, a3, a3 ; c2, c1, c1, c3 ; x, y, z, uð Þ

= 〠
∞

m,n,p,q=0

a1ð Þ2m+n+p a2ð Þn+q a3ð Þp+q
c1ð Þn+p c2ð Þm c3ð Þq

xm

m!

yn

n!
zp

p!
uq

q!
;

ð2Þ

X 4ð Þ
16 a1, a1, a1, a1, a1, a2, a3, a2 ; c1, c1, c2, c3 ; x, y, z, uð Þ

= 〠
∞

m,n,p,q=0

a1ð Þ2m+n+p+q a2ð Þn+q a3ð Þp
c1ð Þm+n c2ð Þp c3ð Þq

xm

m!

yn

n!
zp

p!
uq

q!
;

ð3Þ

X 4ð Þ
17 a1, a1, a1, a1, a1, a2, a3, a2 ; c2, c1, c1, c3 ; x, y, z, uð Þ

= 〠
∞

m,n,p,q=0

a1ð Þ2m+n+p+q a2ð Þn+q a3ð Þp
c1ð Þn+p c2ð Þm c3ð Þq

xm

m!

yn

n!
zp

p!
uq

q!
;

ð4Þ

X 4ð Þ
21 a1, a1, a2, a1, a1, a2, a3, a2 ; c1, c1, c2, c3 ; x, y, z, uð Þ

= 〠
∞

m,n,p,q=0

a1ð Þ2m+n+q a2ð Þn+p+q a3ð Þp
c1ð Þm+n c2ð Þp c3ð Þq

xm

m!

yn

n!
zp

p!
uq

q!
;

ð5Þ

X 4ð Þ
22 a1, a1, a2, a1, a1, a2, a3, a2 ; c2, c1, c1, c3 ; x, y, z, uð Þ

= 〠
∞

m,n,p,q=0

a1ð Þ2m+n+q a2ð Þn+p+q a3ð Þp
c1ð Þn+p c2ð Þm c3ð Þq

xm

m!

yn

n!
zp

p!
uq

q!
;

ð6Þ

X 4ð Þ
27 a1, a1, a3, a1, a1, a2, a4, a4 ; c2, c1, c1, c3 ; x, y, z, uð Þ

= 〠
∞

m,n,p,q=0

a1ð Þ2m+n+q a2ð Þn a3ð Þp a4ð Þp+q
c1ð Þn+p c2ð Þm c3ð Þq

xm

m!

yn

n!
zp

p!
uq

q!
;

ð7Þ

X 4ð Þ
28 a1, a1, a1, a1, a1, a2, a3, a4 ; c1, c1, c2, c3 ; x, y, z, uð Þ

= 〠
∞

m,n,p,q=0

a1ð Þ2m+n+p+q a2ð Þn a3ð Þp a4ð Þq
c1ð Þm+n c2ð Þp c3ð Þq

xm

m!

yn

n!
zp

p!
uq

q!
;

ð8Þ
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for

xj j < 1
4 , yj j < 1, zj j < 1, uj j < 1

� �
: ð9Þ

Here, ðaÞn corresponds to the Pochhammer symbol
given as

að Þn =
Γ a + nð Þ

Γa
= a a + 1ð Þ a + 2ð Þ⋯ a + n − 1ð Þ, n ∈ℕ,

ð10Þ

and ðaÞ0 = 1: Given the following integral representations:

X 4ð Þ
11 a1, a1, a1, a2, a1, a2, a3, a3 ; c1, c1, c2, c3 ; x, y, z, uð Þ
= 1
Γ a1ð Þ

1
Γ a2ð Þ

ð∞
0

ð∞
0
e− s+tð Þsa1−1ta2−1

× 0F1 −;c1 ; s2x + sty
� �

Ψ2 a3 ; c2, c3 ; sz, tuð Þdsdt,
� R a1ð Þ > 0,R a2ð Þ > 0ð Þ ;

ð11Þ

X 4ð Þ
12 a1, a1, a1, a2, a1, a2, a3, a3 ; c2, c1, c1, c3 ; x, y, z, uð Þ
= 1
Γ a2ð Þ

1
Γ a3ð Þ

ð∞
0

ð∞
0
e− s+tð Þsa2−1ta3−1

×H7 a1 ; c2, c1 ; x, sy+tzð Þ0F1 −;c3 ; stuð Þdsdt,
� R a2ð Þ > 0,R a3ð Þ > 0ð Þ ;

ð12Þ

X 4ð Þ
16 a1, a1, a1, a1, a1, a2, a3, a2 ; c1, c1, c2, c3 ; x, y, z, uð Þ
= 1
Γ a1ð Þ

1
Γ a2ð Þ

ð∞
0

ð∞
0
e− s+tð Þsa1−1ta2−1

× 0F1 −;c1 ; s2x + sty
� �

1F1 a3 ; c2;szð Þ0F1 −;c3 ; stuð Þdsdt,
� R a1ð Þ > 0,R a2ð Þ > 0ð Þ ;

ð13Þ

X 4ð Þ
17 a1, a1, a1, a1, a1, a2, a3, a2 ; c2, c1, c1, c3 ; x, y, z, uð Þ
= 1
Γ a1ð Þ

1
Γ a2ð Þ

ð∞
0

ð∞
0
e− s+tð Þsa1−1ta2−1

×Φ3 a3 ; c1 ; sz,styð Þ0F1 −;c2;s2x
� �

0F1 −;c3 ; stuð Þdsdt,
� R a1ð Þ > 0,R a2ð Þ > 0ð Þ ;

ð14Þ

X 4ð Þ
21 a1, a1, a2, a1, a1, a2, a3, a2 ; c1, c1, c2, c3 ; x, y, z, uð Þ
= 1
Γ a1ð Þ

1
Γ a2ð Þ

ð∞
0

ð∞
0
e− s+tð Þsa1−1ta2−1

× 0F1 −;c1 ; s2x + sty
� �

1F1 a3 ; c2;tzð Þ0F1 −;c3 ; stuð Þdsdt,
� R a1ð Þ > 0,R a2ð Þ > 0ð Þ ;

ð15Þ

X 4ð Þ
22 a1, a1, a2, a1, a1, a2, a3, a2 ; c2, c1, c1, c3 ; x, y, z, uð Þ
= 1
Γ a1ð Þ

1
Γ a3ð Þ

ð∞
0

ð∞
0
e− s+tð Þsa1−1ta3−1

×Ψ2 a2 ; c1, c3 ; sy + tz,suð Þ0F1 −;c2 ; s2x
� �

dsdt,
� R a1ð Þ > 0,R a3ð Þ > 0ð Þ ;

ð16Þ

X 4ð Þ
27 a1, a1, a3, a1, a1, a2, a4, a4 ; c2, c1, c1, c3 ; x, y, z, uð Þ
= 1
Γ a1ð Þ

1
Γ a4ð Þ

ð∞
0

ð∞
0
e− s+tð Þsa1−1ta4−1

×Φ2 a2, a3 ; c1 ; sy,tzð Þ0F1 −;c2;s2x
� �

0F1 −;c3 ; stuð Þdsdt,
� R a1ð Þ > 0,R a4ð Þ > 0ð Þ ;

ð17Þ

X 4ð Þ
28 a1, a1, a1, a1, a1, a2, a3, a4 ; c1, c1, c2, c3 ; x, y, z, uð Þ

= 1
Γ a1ð Þ

ð∞
0
e−ssa1−1 ×Φ3 a2 ; c1 ; sy, s2x

� �
1F1

� a3 ; c2 ; szð Þ1F1 a4 ; c3 ; suð Þds, R a1ð Þ > 0ð Þ,
ð18Þ

where 0F1,1F1 are Kummer’s functions and Φ2,Φ3,Ψ2,H7
are Humbert functions defined, respectively, by (see [7])

0F1 −;b ; xð Þ = 〠
∞

n=0

1
bð Þn

xn

n!
; ð19Þ

1F1 a ; b ; xð Þ = 〠
∞

n=0

að Þn
bð Þn

xn

n!
; ð20Þ

Φ2 a, b ; c ; x, yð Þ = 〠
∞

m,n=0

að Þm bð Þn
cð Þm+n

xm

m!

yn

n!
; ð21Þ

Φ3 b ; c ; x, yð Þ = 〠
∞

m,n=0

bð Þm
cð Þm+n

xm

m!

yn

n!
; ð22Þ

Ψ2 a ; b, c ; x, yð Þ = 〠
∞

m,n=0

að Þm+n
bð Þm cð Þn

xm

m!

yn

n!
; ð23Þ

H7 a ; b, c ; x, yð Þ = 〠
∞

m,n=0

að Þ2m+n
bð Þm cð Þn

xm

m!

yn

n!
: ð24Þ

Several families of generating functions have been estab-
lished in diverse ways. These are playing important roles in
the theory of special functions of applied mathematics and
mathematical physics. One can refer to the extensive work of
Srivastava and Manocha [8] for a systematic introduction
and to several interesting and useful applications of the various
methods of obtaining linear, bilinear, bilateral, or mixed mul-
tilateral generating functions for a fairly wide variety of
sequences of hypergeometric functions and polynomials in
one, two, or more variables, among much abundant literature.
Many authors have been presented various generating func-
tions in many different ways (see, for details, [9–11] and the
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references cited therein). In this paper, we aim at establishing
some generating functions for the quadruple functions

Xð4Þ
i ði = 11,12,16,17,21,22,27,28Þ:

2. Generating Relations

Here, by using the integral representations in (11)–(18), we
give certain generating relations involving hypergeometric
functions of three and four variables as follows:

〠
∞

k=0

wk

k!
X 4ð Þ
11 a1 + k, a1 + k, a1 + k, a2 + k, a1 + k, a2ð

+ k, c2, c2 ; c1, c1, c2, c2 ; x, y, z, uÞ = 1 − zð Þ−a1 1 − uð Þ−a2

� 〠
∞

k=0

1
k!

w
1 − zð Þ 1 − uð Þ

� �k

× X3 a1 + k, a2 + k ; c1, c2 ;
x

1 − zð Þ2 ,
 

� y
1 − zð Þ 1 − uð Þ ,

zu
1 − zð Þ 1 − uð Þ

!
;

ð25Þ

〠
∞

k=0

wk

k!
X 4ð Þ
12 a1, a1, a1, a2 + k, a1, a2 + k, a3 + k, a3ð

+ k ; c2, c1, c1, c3 ; x, y, z, uτÞ = 1 + uð Þ−a2 1 + τð Þ−a3

� 〠
∞

k,m=0

a1ð Þ2m
c2ð Þmk!m!

w
1 + uð Þ 1 + τð Þ

� �k

xm × F 4ð Þ
28

� a1 + 2m, a1 + 2m, c3, c3, a2 + k, a3 + k, a2 + k, a3ð
+ k ; c1, c1, c3, c3 ; λ1y, λ2z, λ1u, λ2τÞ,
� λ1 =

1
1 + u

, λ2 =
1

1 + τ

� �
;

ð26Þ

〠
∞

k=0

wk

k!
X 4ð Þ
16 a1 + k, a1 + k, a1 + k, a1 + k, a1 + k, a2 + k, a3, a2ð

+ k ; c1, c1, c2, c3 ; x, y, z, uÞ = 1 − zð Þ−a1 〠
∞

k=0

1
k!

w
1 − z

� �k
× X 4ð Þ

16 a1 + k, a1 + k, a1 + k, a1 + k, a1 + k, a2 + k, c2ð
− a3, a2 + k ; c1, c1, c2, c3 ; λ2x, λy − λz, λuÞ, λ = 1

1 − z

� �
;

ð27Þ

〠
∞

k=0

wk

k!
X 4ð Þ
17 a1 + k, a1 + k, a1 + k, a1 + k, a1 + k, a2 + k, a3, a2ð

+ k ; c2, c1, c1, c3 ; x2, y, z, uÞ = 1 + 2xð Þ−a1 〠
∞

k=0

1
k!

w
1 + 2x
� �k

× K8 a1 + k, a1 + k, a1 + k, a1 + k, a2 + k, a2 + k, a3, c2
�

−
1
2 ; c1, c3, c1, 2c2 − 1 ; λy, λu, λz, 4λx

�
, λ = 1

1 + 2x

� �
;

ð28Þ

〠
∞

k=0

wk

k!
X 4ð Þ
21 a1 + k, a1 + k, a2 + k, a1 + k, a1 + k, a2 + k, a3, a2ð

+ k ; c1, c1, c2, c3 ; x, y, z, uτÞ = 1 + uð Þ−a1 1 + τ − zð Þ−a2

� 〠
∞

k,p=0

a2 + kð Þp c2 − a3ð Þp
c2ð Þpk!p!

w
1 + uð Þ 1 + τ − zð Þ

� �k z
z − τ − 1
� �p

× X 4ð Þ
11 a1+,a1 + k, a1 + k, a2 + k + p, a1 + k, a2 + kð

+ p, c3, c3 ; c1, c1, c3, c3 ; λ21x, λ2y, λ1u, λ3τÞ,
� λ1 =

1
1 + u

, λ2 =
1

1 + uð Þ 1 + τ − zð Þ , λ3 =
1

1 + τ − z

� �
;

ð29Þ

〠
∞

k=0

wk

k!
X 4ð Þ
22 a1 + k, a1 + k, a2, a1 + k, a1 + k, a2, a3ð

+ k, a2 ; c2, c1, c1, c3 ; x2, y, z, uÞ = 1 + 2xð Þ−a1

� 〠
∞

k,q=0

a1 + kð Þq a2ð Þq
c3ð Þqk!q!

w
1 + 2x
� �k u

1 + 2x
� �q

× FM c2 −
1
2 , a2

�

+ q, a2 + q, a1 + k + q, a3 + k, a1 + k + q ; 2c2
− 1, c1, c1 ;

4x
1 + 2x , z,

y
1 + 2xÞ ;

ð30Þ

〠
∞

k=0

wk

k!
X 4ð Þ
27 a1 + k, a1 + k, a3, a1 + k, a1 + k, a2, a4 + k, a4ð

+ k ; c2, c1, c1, c3 ; x2, y, z, uÞ = 1 + 2xð Þ−a1

� 〠
∞

k,q=0

a1 + kð Þq a4 + kð Þq
c3ð Þqk!q!

w
1 + 2x
� �k u

1 + 2x
� �q

× FN c2 −
1
2 , a3, a2, a1 + k + q, a4 + k + q, a1 + k

�

+ q ; 2c2 − 1, c1, c1 ;
4x

1 + 2x , z,
y

1 + 2x

�
;

ð31Þ

〠
∞

k=0

wk

k!
X 4ð Þ
28 a1 + k, a1 + k, a1 + k, a1 + k, a1ð

+ k, a2, a3, a4 ; c1, c1, c2, c3 ; x, y, z, uÞ = 1 − z − uð Þ−a1

� 〠
∞

k,n=0

a1 + kð Þn a2ð Þn
c1ð Þnk!n!

w
1 − z − u

� �k y
1 − z − u

� �n

× X8 a1 + k + n, c2 − a3, c3 − a4 ; c1 + n, c2, c3 ;
�

� x

1 − z − uð Þ2 ,
z

z + u − 1 ,
u

z + u − 1

�
;

ð32Þ
where X3, X8 are the Exton functions of three variables [12],
Lauricella functions FM , FN [13], Exton function of four var-

iables K8 [14], and Sharma and Parihar function Fð4Þ
28 [15] are

defined, respectively, by
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X3 a1, a2 ; c1, c2 ; x, y, zð Þ = 〠
∞

m,n,p=0

a1ð Þ2m+n+p a2ð Þn+p
c1ð Þm+n c2ð Þp

xm

m!

yn

n!
zp

p!
;

ð33Þ

X8 a1, a2, a3 ; c1, c2, c3 ; x, y, zð Þ = 〠
∞

m,n,p=0

a1ð Þ2m+n+p a2ð Þn a3ð Þp
c1ð Þm c2ð Þn c3ð Þp

xm

m!

yn

n!
zp

p!
;

ð34Þ
FM a1, a2, a2, b1, b2, b1 ; c1, c2, c2 ; x, y, zð Þ

= 〠
∞

m,n,p=0

a1ð Þm a2ð Þn+p b1ð Þm+p b2ð Þn
c1ð Þm c2ð Þn+p

xm

m!

yn

n!
zp

p!
; ð35Þ

FN a1, a2, a3, b1, b2, b1 ; c1, c2, c2 ; x, y, zð Þ

= 〠
∞

m,n,p=0

a1ð Þm a2ð Þn a3ð Þp b1ð Þm+p b2ð Þn
c1ð Þm c2ð Þn+p

xm

m!

yn

n!
zp

p!
;

ð36Þ
K8 a1, a1, a1, a1, b1, b1, b2, b3 ; c1, c2, c1, c3 ; x, y, zð Þ

= 〠
∞

m,n,p,q=0

a1ð Þm+n+p+q b1ð Þm+n b2ð Þp b3ð Þq
c1ð Þm+p c2ð Þn c3ð Þq

xm

m!

yn

n!
zp

p!
uq

q!
;

ð37Þ

F 4ð Þ
28 a1, a1, a2, a2, b1, b2, b1, b2 ; c1, c1, c2, c3 ; x, y, zð Þ

= 〠
∞

m,n,p,q=0

a1ð Þm+n a2ð Þp+q b1ð Þm+p b2ð Þn+q
c1ð Þm+n c2ð Þp c3ð Þq

xm

m!

yn

n!
zp

p!
uq

q!
:

ð38Þ
Proof. To prove the above equations, we require the following
results (see, e.g., [7, 16, 17]):

〠
∞

m=0
〠
∞

n=0
f m + nð Þ x

m

m!

yn

n!
= 〠

∞

N=0
f Nð Þ x + yð ÞN

N!
; ð39Þ

Γ zð Þ = sz
ð∞
0
e−st tz−1dt,R zð Þ > 0 ; ð40Þ

að Þn =
Γ a + nð Þ

Γa
, a ≠ 0,−1,−2,⋯ ; ð41Þ

að Þm+n = að Þm a +mð Þn; ð42Þ

0F1 −;a ; x2
� �

= e−2x1F1 a −
1
2 ; 2a − 1 ; 4x

� �
; ð43Þ

1F1 a ; b ; xð Þ = ex1F1 b − a ; b;−xð Þ ; ð44Þ
Ψ2 c, c ; c, x, yð Þ = exp x+yð Þ0F1 −;c ; xyð Þ: ð45Þ

For convenience and simplicity, by denoting the left-
hand side of (25) by δ, and using (11), one gets

δ = 〠
∞

k=0

wk

k!Γ a1 + kð ÞΓ a2 + kð Þ
ð∞
0

ð∞
0
sa1+k−1ta2+k−1

× 0F1 −;c1 ; s2x + sty
� �

Ψ2 c2 ; c2, c2 ; sz, tuð Þdsdt:
ð46Þ

In view of (40) and (46), we have

δ = 〠
∞

k,m,n=0

wkxmyn

c1ð Þm+nk!m!n!Γ a1 + kð ÞΓ a2 + kð Þ
ð∞
0

ð∞
0
e−s 1−zð Þe−t 1−uð Þ

× sa1+k+2m+n−1ta2+k+n−10F1 −;c2 ; stzuð Þdsdt:
ð47Þ

The function 0F1 which appears in the above equation
can be replaced by its series form and then interchanging
the order of the summation and integral sign which is
permissible here, we get

δ = 〠
∞

k,m,n,p=0

wkxmyn zuð Þp
c1ð Þm+n c2ð Þpk!m!n!p!Γ a1 + kð ÞΓ a2 + kð Þ

×
ð∞
0

ð∞
0
e−s 1−zð Þe−t 1−uð Þsa1+k+2m+n+p−1ta2+k+n+p−1dsdt:

ð48Þ

Now, the use of (41) and (42) in above equation and the
simplification with series manipulation completes the proof
of relation (25).

The proof of all remaining relations runs in the same way,
considering the appropriate integral representation and
Laplace transform during the proof. ☐

3. Special Cases

Here, we shall consider several interesting special cases of our
main results stated in the previous section.

Putting k = 0 in equations (25) to (28), we obtain the
following relations:

X 4ð Þ
11 a1, a1, a1, a2, a1, a2, c2, c2 ; c1, c1, c2, c2 ; x, y, z, uð Þ = 1 − zð Þ−a1 1 − uð Þ−a2

× X3 a1, a2 ; c1, c2 ;
x

1 − zð Þ2 ; y
1 − zð Þ 1 − uð Þ ,

zu
1 − zð Þ 1 − uð Þ

!
;

 

ð49Þ

X 4ð Þ
12 a1, a1, a1, a2, a1, a2, a3, a3 ; c2, c1, c1, c3 ; x, y, z, uτð Þ

= 1 + uð Þ−a2 1 + τð Þ−a2 〠
∞

m=0

a1ð Þ2m
c2ð Þmm!

xm × F 4ð Þ
28 a1 + 2m, a1ð

+ 2m, c3, c3, a2, a3, a2, a3 ; c1, c1, c3, c3 ;
y

1 + u
, z
1 + τ

, u
1 + u

, τ

1 + τ
Þ ;

ð50Þ
X 4ð Þ
16 a1, a1, a1, a1, a1, a2, a3, a2 ; c1, c1, c2, c3 ; x, y, z, uð Þ = 1 − zð Þ−a1X 4ð Þ

16

� a1, a1, a1, a1, a1, a2, c2,−a3, a2 ; c1, c1, c2, c3 ;
x

1 − zð Þ2 ,
y

1 − z
, z
z − 1 ,

u
1 − z

 !
;

ð51Þ
X 4ð Þ
17 a1, a1, a1, a1, a1, a2, a3, a2 ; c2, c1, c1, c3 ; x2, y, z, u
� �

= 1 + 2xð Þ−a1

× K8 a1, a1, a1, a1, a2, a2, a3, c2 −
1
2 ; c1, c3, c1, 2c2 − 1 ; λy, λu, λz, 4λx

� �
,

� λ = 1
1 + 2x

� �
:

ð52Þ
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Equations (49), (51), and (52) with u = 0 yield the Exton’s
results (see [12]).

Now, if we take x = 0 in (25) to (27) and (29), and simpli-
fication, we shall obtain the following generating relations:

〠
∞

k=0

wk

k!
HB a1 + k, a2 + k, c2 ; c1, c3, c2 ; y, u, zð Þ

= 1 − zð Þ−a1 1 − uð Þ−a2 〠
∞

k=0

1
k!

w
1 − zð Þ 1 − uð Þ

� �k

× F4 a1 + k, a2 + k ; c1, c2 ;
y

1 − zð Þ 1 − uð Þ ,
zu

1 − zð Þ 1 − uð Þ
� �

;

ð53Þ

〠
∞

k=0

wk

k!
HA a2 + k, a3 + k, a1 ; c3, c1 ; uτ, y, zð Þ

= 1 + uð Þ−a2 1 + τð Þ−a3 〠
∞

k=0

1
k!

w
1 + τð Þ 1 + uð Þ

� �k

× F 4ð Þ
28 a1, a1, c3, c3, a2 + k, a3 + k, a2 + k, a3
�

+ k ; c1, c1, c3, c3 ;
y

1 + u
, z
1 + τ

, u
1 + u

, τ

1 + τ

�
;

ð54Þ

〠
∞

k=0

wk

k!
FE a1 + k, a1 + k, a1 + k, a3, a2 + k, a2 + k ; c2, c1, c3 ; z, y, uð Þ

= 1 − zð Þ−a1 〠
∞

k=0

1
k!

w
1 − z

� �k
× FE a1 + k, a1 + k, a1 + k, c2ð

− a3, a2 + k, a2 + k ; c2, c1, c3 ;
z

z − 1 ,
y

1 − z
, u
1 − z

Þ ;
ð55Þ

〠
∞

k=0

wk

k!
FE a2 + k, a2 + k, a2 + k, a3, a1 + k, a1 + k ; c2, c1, c3 ; z, y, uτð Þ

= 1 + uð Þ−a1 1 + τ − zð Þ−a2 〠
∞

k,p=0

a2 + kð Þp c2 − a3ð Þp
c2ð Þp k!p!

� w
1 + uð Þ 1 + τ − zð Þ

� �k z
z − τ − 1
� �p

×HB a1 + k, a2 + k + p, c3 ; c1, c3, c3 ; λ1y, λ2τ,
u

u + 1
� �

,

� λ1 =
1

1 + uð Þ 1 + τ − zð Þ , λ2 =
1

1 + τ − z

� �
:

ð56Þ
Note that the special cases of each of the above generating

relations can be easily derived by assigning the value zero to k.
For example,

HB a1, a2, c2 ; c1, c2 ; y, u, zð Þ = 1 − zð Þ−a1 1 − uð Þ−a2F4

� a1, a2 ; c1, c2 ;
y

1 − zð Þ 1 − uð Þ ,
zu

1 − zð Þ 1 − uð Þ
� �

,
ð57Þ

which, when a2 = c3, yields [[7], pp. 309 (125)].

Another interesting special case of (56) occurs when we
set u = 0. We thus find that

F2 a1, a2, c2 ; c1, c2 ; y, zð Þ = 1 − zð Þ−a1 2F1 a1, a2 ; c1 ;
y

1 − zð Þ
� �

,

ð58Þ

which is due to Srivastava and Karlsson [7].
Also,

HA a2, a3, a1 ; c3, c1 ; uτ, y, zð Þ = 1 + uð Þ−a2 1 + τð Þ−a3F 4ð Þ
28

� a1, a1, c3, c3, a2, a3, a2, a3 ; c1, c1, c3, c3 ;
y

1 + u
, z
1 + τ

, u
1 + u

, τ

1 + τ

� �
,

ð59Þ

which, for y = z = 0, x = u/1 + u and y = τ/1 + τ, yields the
well-known result [7].

Furthermore, by setting k = 0 and y = 0 in (25) and (32),
we obtain the Exton’s results [12].

Finally, if in (29), we let z = 0, we shall obtain generating
relation between Exton’s series X3 and the quadruple hyper-

geometric series Xð4Þ
11 :

〠
∞

k=0

wk

k!
X3 a1 + k, a2 + k ; c1, c3 ; x, y, uτð Þ = 1 + uð Þ−a1 1 + τð Þ−a2

� 〠
∞

k=0

1
k!

w
1 + uð Þ 1 + τð Þ

� �k

× X 4ð Þ
11 a1 + k, a1 + k, a1 + k, a2ð

+ k, a1 + k, a2 + k, c3, c3 ; c1, c1, c3, c3 ; λ21x, λ1λ2y, λ1u, λ2τÞ,
� λ1 =

1
1 + u

, λ2 =
1

1 + τ

� �
:

ð60Þ

Formula (61), with x = 0, yields the generating relation

〠
∞

k=0

wk

k!
F4 a1 + k, a2 + k ; c1, c3 ; y, uτð Þ = 1 + uð Þ−a1 1 + τð Þ−a2

� 〠
∞

k=0

1
k!

w
1 + uð Þ 1 + τð Þ

� �k

×HB a1 + k, a2 + k, c3 ; c1, c3, c3 ;
�

� y
1 + uð Þ 1 + τð Þ ,

τ

1 + τ
, u
1 + u

�
:

ð61Þ

For k = 0, we have the elegant transformation

F4 a1, a2 ; c1, c3 ; y, uτð Þ = 1 + uð Þ−a1 1 + τð Þ−a2HB

� a1, a2, c3 ; c1, c3, c3 ;
y

1 + uð Þ 1 + τð Þ ,
τ

1 + τ
, u
1 + u

� �
;

ð62Þ

where 2F1, F2, F4,HA,HB, and FE are the Gaussian hypergeo-
metric function, Appell’s functions, Srivastava’s functions, and
Lauricella function defined, respectively, by (see [7])
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2F1 a, b ; c ; zð Þ = 〠
∞

n=0

að Þn bð Þn
cð Þn

zn

n!
; ð63Þ

F2 a, b, c ; d, e ; x, yð Þ = 〠
∞

m,n=0

að Þm+n bð Þm cð Þn
dð Þm eð Þn

xm

m!

yn

n!
; ð64Þ

F4 a, b ; c, d ; x, yð Þ = 〠
∞

m,n=0

að Þm+n bð Þm+n
cð Þm dð Þn

xm

m!

yn

n!
; ð65Þ

HA a1, b1, b2 ; c1, c2 ; x, y, zð Þ = 〠
∞

m,n,p=0

a1ð Þm+p b1ð Þm+n b2ð Þn+p
c1ð Þm c2ð Þn+p

xm

m!

yn

n!
zp

p!
;

ð66Þ

HB a1, b1, b2 ; c1, c2, c3 ; x, y, zð Þ = 〠
∞

m,n,p=0

a1ð Þm+p b1ð Þm+n b2ð Þn+p
c1ð Þm c2ð Þn c3ð Þp

xm

m!

yn

n!
zp

p!
;

ð67Þ

FE a1, a1, a1, b1, b2, b2 ; c1, c2, c3 ; x, y, zð Þ

= 〠
∞

m,n,p=0

a1ð Þm+n+p b1ð Þm b2ð Þn+p
c1ð Þm c2ð Þn c3ð Þp

xm

m!

yn

n!
zp

p!
:

ð68Þ

4. Conclusion

Based on the integral representations for quadruple hyper-
geometric functions (1)–(8), we obtained certain generating
functions for these functions. Some particular cases and the
consequences of our main results are also considered. We
concluded this investigation by remarking that the scheme
suggested in the derivation of the results can be applied to
find other new generating functions for other quadruple
hypergeometric functions and study their special cases.
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The purpose of this article is to give the details of finding the transcendental entire solutions with finite order for the systems of nonlinear

partial differential-difference equations ððð∂f1ðz1, z2ÞÞ/∂z1Þ + ðð∂f1ðz1, z2ÞÞ/∂z2ÞÞn1 + P1ðzÞf2ðz1 + c1, z2 + c2Þm1 =Q1ðzÞ,
ððð∂f1ðz1, z2ÞÞ/∂z1Þ + ðð∂f1ðz1, z2ÞÞ/∂z2ÞÞn2 + P2ðzÞf1ðz1 + c1, z2 + c2Þm2 =Q2ðzÞ,

�
where

P1ðzÞ, P2ðzÞ,Q1ðzÞ, andQ2ðzÞ are polynomials in ℂ2; n1, n2,m1, andm2 are positive integers, and c = ðc1, c2Þ ∈ℂ2. We obtain that
there exist some pairs of the transcendental entire solutions of finite order for the above system, which is a very powerful supplement
to the previous theorems given by Xu and Cao and Xu and Yang.

1. Introduction

In 1970, Yang [1] proved that the functional equations f n +
gm = 1 have no nonconstant entire solutions, if m, n are posi-
tive integers satisfying ð1/mÞ + ð1/nÞ < 1. After this result,
with the aid of the Nevanlinna theory and the difference ana-
logues of the Nevanlinna theory (see [2–6]), there were rapid
developments on complex differential and difference equa-
tions in one and several complex variables. Some classical
results and topics in different fields are considered in differ-
ence versions, for example, difference Riccati equations, differ-
ence Painlevé equations, and difference Fermat equations (see
[7–14]). Recently, Cao and Xu [15–17] investigated the exis-
tence of the entire and meromorphic solutions for some
Fermat-type partial differential-difference equations by utiliz-
ing the Nevanlinna theory and difference Nevanlinna theory
of several complex variables [18, 19] and obtained the follow-
ing theorems which is an extension of the previous results
given by Liu and his collaborators (see [20–24]).

Theorem 1 (see ([16], Theorem 1.1)). Let c = ðc1, c2Þ ∈ℂ2.
Then, the Fermat-type partial differential-difference equation

∂f z1, z2ð Þ
∂z1

� �n

+ f z1 + c1, z2 + c2ð Þm = 1, ð1Þ

does not have any transcendental entire solution with finite
order, where m and n are two distinct positive integers.

Theorem 2 (see ([15], Theorem 3.2)). Let c = ðc1, c2Þ ∈ℂ \
f0g. Suppose that f is a nontrivial meromorphic solution of
the Fermat type partial difference equations

1
f z1 + c1, z2 + c2ð Þm + 1

f z1, z2ð Þm = A z1, z2ð Þf z1, z2ð Þn, ð2Þ

or
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where m ∈ℕ, n ∈ℕ ∪ f0g, and Aðz1, z2Þ is a nonzero mero-
morphic function on ℂ2 with respect to the solution f , that is
Tðr, AÞ = oðTðr, f ÞÞ. If δf ð∞Þ > 0, then

lim sup
r⟶∞

log T r, fð Þ
r

> 0: ð4Þ

Remark 3. Let n = 0 and Aðz1, z2Þ = 1, then the above equa-
tions become

1
f z1 + c1, z2 + c2ð Þm + 1

f z1, z2ð Þm = 1,

1
f z1 + c1, z2 + c2ð Þm + 1

f z1 + c1, z2ð Þm + 1
f z1, z2 + c2ð Þm = 1,

ð5Þ

which can be called as the partial difference equations of Fer-
mat type.

In 2020, the first author and his coauthors discussed the
transcendental entire solutions with finite order for the sys-
tems of partial differential difference equations and gave the
conditions on the existence of the finite-order transcendental
entire solutions for the following systems, which are some
extension and improvements of the previous results given
by Xu and Cao and Gao [16, 25].

Theorem 4 (see ([26], Theorem 1.2)). Let c = ðc1, c2Þ ∈ℂ2,
andmj, njðj = 1, 2Þ be positive integers. If the following system
of Fermat-type partial differential-difference equations

∂f1 z1, z2ð Þ
∂z1

� �n1
+ f2 z1 + c1, z2 + c2ð Þm1 = 1,

∂f2 z1, z2ð Þ
∂z1

� �n2
+ f1 z1 + c1, z2 + c2ð Þm2 = 1,

8>>><
>>>:

ð6Þ

satisfies one of the conditions

(i) m1m2 > n1n2;

(ii) mj > ðnj/ðnj − 1ÞÞ for nj ≥ 2, j = 1, 2.

Then, system (6) does not have any pair of transcendental
entire solution with finite order.

Remark 5. Here, ð f , gÞ is called as a pair of finite-order tran-
scendental entire solutions for system

f n1 + gm1 = 1,
f n2 + gm2 = 1,

(
ð7Þ

if f , g are transcendental entire functions and ρ =max fρð f Þ,
ρðgÞg <∞.

Remark 6. The condition mj > ðnj/ðnj − 1ÞÞ implies mj > 1.
Thus, a question rises naturally: what will happen on the exis-
tence of transcendental entire solutions with finite order
when mj = 1, j = 1, 2 in system (6)?

In fact, we give the following example to explain that sys-
tem (6) has a pair of transcendental entire solutions with
finite order when m1 =m2 = 1 and n1 = n2 = 2, that is,

∂f1 z1, z2ð Þ
∂z1

� �2
+ f2 z1 + c1, z2 + c2ð Þ = 1,

∂f2 z1, z2ð Þ
∂z1

� �2
+ f1 z1 + c1, z2 + c2ð Þ = 1 rgb½ �0:00,0:00,1:00:

8>>>><
>>>>:

ð8Þ

Example 1. Let

f1 zð Þ = 1 − 1
4π

2 −
1
4 z

2
1 +

1
2 z1z2 −

πi
2 z2 + z1 − πið Þez2 − ez2 + 1

2 z2 − πið Þ
� �2

,

f2 zð Þ = 1 − 1
4π

2 −
1
4 z

2
1 +

1
2 z1z2 −

πi
2 z2 − z1 − πið Þez2 − ez2 −

1
2 z2 − πið Þ

� �2
:

ð9Þ

Then, f = ð f1, f2Þ is a pair of transcendental entire solu-
tions of system (8) with ðc1, c2Þ = ðπi, πiÞ and ρð f Þ = 1.

Corresponding to system (6), we further consider the fol-
lowing system of the partial differential difference equation

∂f1 z1, z2ð Þ
∂z1

+ ∂f1 z1, z2ð Þ
∂z2

� �n1
+ P1 zð Þf2 z1 + c1, z2 + c2ð Þm1 =Q1 zð Þ,

∂f2 z1, z2ð Þ
∂z1

+ ∂f2 z1, z2ð Þ
∂z2

� �n2
+ P2 zð Þf1 z1 + c1, z2 + c2ð Þm2 =Q2 zð Þ,

8>>><
>>>:

ð10Þ

where P1ðzÞ, P2ðzÞ are two nonzero polynomials in ℂ2

and obtained.

1
f z1 + c1, z2 + c2ð Þm + 1

f z1 + c1, z2ð Þm + 1
f z1, z2 + c2ð Þm = A z1, z2ð Þf z1, z2ð Þn, ð3Þ
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Theorem 7. Let c = ðc1, c2Þ ∈ℂ2, mj, njðj = 1, 2Þ be positive
integers satisfies one of the conditions

(i) m1m2 > n1n2;

(ii) mj > nj/ðnj − 1Þ for nj ≥ 2, j = 1, 2.

Then, system (10) does not have any pair of transcendental
entire solutions with finite order.

The following example shows that the conditions mj

> ðnj/nj − 1Þ for nj ≥ 2 and j = 1, 2 are precise and the
existence of finite-order transcendental entire solutions

for the system (10) when n1 = n2 = 2, m1 =m2 = 1 and P1
ðzÞ = P2ðzÞ =Q1ðzÞ =Q2ðzÞ = 1, that is,

∂f1 z1, z2ð Þ
∂z1

+ ∂f1 z1, z2ð Þ
∂z2

� �2
+ f2 z1 + c1, z2 + c2ð Þ = 1,

∂f2 z1, z2ð Þ
∂z1

+ ∂f2 z1, z2ð Þ
∂z2

� �2
+ f1 z1 + c1, z2 + c2ð Þ = 1:

8>>>><
>>>>:

ð11Þ

Example 2. Let

Then, f = ð f1, f2Þ is a pair of transcendental entire solu-
tions of system (11) with ðc1, c2Þ = ðπi, 2πiÞ and ρð f Þ = 1.

Remark 8. In Sections 3 and 4, we give the details proceeding
for obtaining a class of finite-order transcendental entire
solutions for systems (8) and (11).

Next, we continue to discuss the existence of the finite-
order transcendental entire solutions for several systems
including both the difference operator and the partial differ-
ential such as

∂f1
∂z1

� �n1
+ f2 z1 + c1, z2 + c2ð Þ − f1 z1, z2ð Þ½ �m1 = 1,

∂f2
∂z1

� �n1
+ f1 z1 + c1, z2 + c2ð Þ − f2 z1, z2ð Þ½ �m1 = 1,

8>>><
>>>:

ð13Þ

∂f1
∂z1

+ ∂f1
∂z2

� �n1
+ f2 z1 + c1, z2 + c2ð Þ − f1 z1, z2ð Þ½ �m1 = 1,

∂f2
∂z1

+ ∂f2
∂z2

� �n1
+ f1 z1 + c1, z2 + c2ð Þ − f2 z1, z2ð Þ½ �m1 = 1,

8>>><
>>>:

ð14Þ

where c1, c2 are constants inℂ. It is easy to find the finite-
order transcendental entire solutions for systems (13) and
(14). For c2 ≠ 0, system (5) has a pair of finite-order transcen-

dental entire solutions ð f1, f2Þ of the forms

f1 = az1 +
b + d − 2ac1

2c2
z2 +

d
2 + e πi/c2ð Þz2 ,

f2 = az1 +
b + d − 2ac1

2c2
z2 +

b
2 − e πi/c2ð Þz2 ,

8>>><
>>>:

ð15Þ

and for c2 ≠ c1, system (14) has a pair of finite-order tran-
scendental entire solutions ð f1, f2Þ of the forms

f1 = az1 +
b + d − 2ac1
2 c2 − c1ð Þ z2 − z1ð Þ + d

2 + e πi/ c2−c1ð Þð Þ z2−z1ð Þ,

f2 = az1 +
b + d − 2ac1
2 c2 − c1ð Þ z2 − z1ð Þ + b

2 − e πi/ c2−c1ð Þð Þ z2−z1ð Þ,

8>>><
>>>:

ð16Þ

where a, b, d ∈ℂ satisfy 1 − an1 = bm1 and 1 − an2 = bm2 . Fur-
thermore, we can give the finite-order transcendental entire
solutions for systems (13) and (14) when n1 = n2 = 2 and
m1 =m2 = 1 easily.

Example 3. The function

f = f1, f2ð Þ = z1 − z2 + eπiz2 , z1 − z2 − eπiz2
� �

, ð17Þ

is a pair of transcendental entire solutions with ρð f Þ = 1
for system (13) when ðc1, c2Þ = ð1, 1Þ, n1 = n2 = 2, and m1
=m2 = 1.

f1 zð Þ = 1 − 1
4π

2 −
1
4 z

2
1 +

1
2 z2 − z1ð Þ z1 − πið Þ + z1 − πið Þez2−z1 − ez2−z1 + 1

2 z2 − z1 − πið Þ
� �2

,

f2 zð Þ = 1 − 1
4π

2 −
1
4 z

2
1 +

1
2 z2 − z1ð Þ z1 − πið Þ − z1 − πið Þez2−z1 − ez2−z1 −

1
2 z2 − z1 − πið Þ

� �2
:

ð12Þ
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Example 4. The function

f = f1, f2ð Þ = 2z1 − z2 + eπi z2−z1ð Þ, 2z1 − z2 − eπi z2−z1ð Þ
	 


,

ð18Þ

is a pair of transcendental entire solutions with ρð f Þ = 1
for system (14) when ðc1, c2Þ = ð1, 2Þ, n1 = n2 = 2 and m1
=m2 = 1.

Corresponding to systems (13) and (14), we can also
obtain the solutions of the following systems

∂f1
∂z1

� �n1
+ f2 z1 + c1, z2 + c2ð Þ − f2 z1, z2ð Þ½ �m1 = 1,

∂f2
∂z1

� �n1
+ f1 z1 + c1, z2 + c2ð Þ − f1 z1, z2ð Þ½ �m1 = 1,

8>>><
>>>:

ð19Þ

∂f1
∂z1

+ ∂f1
∂z2

� �n1
+ f2 z1 + c1, z2 + c2ð Þ − f2 z1, z2ð Þ½ �m1 = 1,

∂f2
∂z1

+ ∂f2
∂z2

� �n1
+ f1 z1 + c1, z2 + c2ð Þ − f1 z1, z2ð Þ½ �m1 = 1,

8>>><
>>>:

ð20Þ
where c1, c2 are constants in ℂ. In fact, for c2 ≠ 0, then

systems (19) has a pair of solutions with the forms

f1, f2ð Þ = a1z1 +
b2 − a1c1

c2
z2 +G1 z2ð Þ, a2z1 +

b1 − a2c1
c2

z2 +G2 z2ð Þ
� �

,

ð21Þ

whereG1ðz2Þ,G2ðz2Þ are two period functions with period c2,
and for s≔ z2 − z1 and s0 ≔ c2 − c1 ≠ 0, then system (20) has a
pair of solutions with the forms

f1, f2ð Þ = a1z1 +
b2 − a1c1
c2 − c1

s + G1 sð Þ, a2z1 +
b1 − a2c1
c2 − c1

s +G2 sð Þ
� �

,

ð22Þ

where G1ðsÞ,G2ðsÞ are two period functions with period s0,
and a1, a2, c1, c2, d1, and d2 are constants satisfying

an11 + bm1
1 = 1, an22 + bm2

2 = 1: ð23Þ

2. Proof of Theorem 7

The following lemmas will be used in this paper.

Lemma 9 ([27, 28]). Let f be a nonconstant meromorphic func-
tion on ℂn and let I = ði1,⋯, inÞ be a multi-index with length
∣I ∣ =∑n

j=1 ij. Assume that Tðr0, f Þ ≥ e for some r0. Then,

m r, ∂
I f
f

 !
= S r, fð Þ, ð24Þ

holds for all r ≥ r0 outside a set E ⊂ ð0,+∞Þ of finite logarithmic
measure

Ð
E ðdt/tÞ <∞, where ∂I f = ð∂∣I∣ f Þ/ð∂zi11 ⋯ ∂zinn Þ:

Lemma 10 ([18, 19]). Let f be a nonconstant meromorphic
function with finite order on ℂn such that f ð0Þ ≠ 0,∞, and
let ε > 0. Then, for c ∈ℂn,

m r, f zð Þ
f z + cð Þ

� �
+m r, f z + cð Þ

f zð Þ
� �

= S r, fð Þ, ð25Þ

holds for all r ≥ r0 outside a set E ⊂ ð0,+∞Þ of finite logarith-
mic measure

Ð
E ðdt/tÞ <∞.

Lemma 11 (see [29]). Let f be a nonconstant meromorphic
function on ℂn. Take a positive integer m and take polyno-
mials of f and its partial derivatives:

P fð Þ =〠
p∈I

ap f
p0 ∂i1 f
	 
p1 ⋯ ∂il f

	 
pl , pð Þ = p0,⋯, plð Þ,

Q fð Þ =〠
q∈I

cq f
q0 ∂j1 f
	 
q1 ⋯ ∂jl f

	 
ql , qð Þ = q0,⋯, qlð Þ,

B fð Þ = 〠
m

k=0
bk f

k,

ð26Þ

where I, J are finite sets of distinct elements and ap, cq, and bk
are meromorphic functions on ℂn with bm≡0. Assume that f
satisfies the equation

B fð ÞQ fð Þ = P fð Þ, ð27Þ

such that Pð f Þ,Qð f Þ, and Bð f Þ are differential polyno-
mials, that is, their coefficients a satisfy mðr, aÞ = Sðr, f Þ.
If deg ðPð f ÞÞ ≤m = deg ðBð f ÞÞ, then

m r,Q fð Þð Þ = S r, fð Þ, ð28Þ

holds for all r possibly outside of a set E with finite loga-
rithmic measure.

Proof. Let ð f1, f2Þ be a pair of transcendental entire functions
with finite-order satisfying system (10). Here, we will discuss
two following cases.

Case 1. n1n2 >m1m2. In view of Lemma 10, the following
conclusions that

m r,
f j z1, z2ð Þ

f j z1 + c1, z2 + c2ð Þ

 !
= S r, f j
	 


, j = 1, 2, ð29Þ

holds for all r > 0 outside of a possible exceptional set
Ej ⊂ ½1,+∞Þ of finite logarithmic measure

Ð
Ej
ðdt/tÞ <∞.

Thus, we can deduce from (29) that
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for all r∈E≕ E1 ∪ E2. By using Lemma 9 and Lemma 11,
it follows from (30) that

for all r∈E. Similarly, we have

n2T r, f1ð Þ ≤m2T r, f2ð Þ +O log rð Þ + S r, f1ð Þ + S r, f2ð Þ, r∈E: ð32Þ

In view of (31) and (32), it yields

n1n2 −m1m2ð ÞT r, f j
	 


≤O log rð Þ + S r, f1ð Þ + S r, f2ð Þ, r∈E: ð33Þ

In view of n1n2 >m1m2, this is impossible since f1, f2 are
transcendental entire functions.

Case 2. mj > ðnj/ðnj − 1ÞÞ, nj ≥ 2, j = 1, 2. In view of the
Nevanlinna second fundamental theorem concerning small
functions, Lemma 10, and system (11), we can deduce
that

that is,

m1 − 1ð ÞT r, ∂f1
∂z1

+ ∂f1
∂z2

� �
≤ T r, f2 z + cð Þð Þ +O log rð Þ

+ S r, f1ð Þ + S r, f2ð Þ:
ð35Þ

Similarly, we have

m2 − 1ð ÞT r, ∂f2
∂z1

+ ∂f2
∂z2

� �
≤ T r, f1 z + cð Þð Þ +O log rð Þ

+ S r, f1ð Þ + S r, f2ð Þ:
ð36Þ

On the other hand, in view of system (10) and Lemma 10,
it follows that

T r, f j z1, z2ð Þ
	 


=m r, f j z1, z2ð Þ
	 


≤m r,
f j z1, z2ð Þ

f z1 + c1, z2 + c2ð Þ
� �

+m r, f j z1 + c1, z2 + c2ð Þ
	 


+ log 2

=m r, f j z1 + c1, z2 + c2ð Þ
	 


+ S r, f j
	 


= T r, f j z1 + c1, z2 + c2ð Þ
	 


+ S r, f j
	 


, j = 1, 2,
ð30Þ

n1T r, f2 z1, z2ð Þð Þ ≤ n1T r, f2 z1 + c1, z2 + c2ð Þð Þ + S r, f2ð Þ ≤ T r, P1 zð Þf2 z1 + c1, z2 + c2ð Þn1ð Þ + S r, f2ð Þ
= T r, ∂f1

∂z1
+ ∂f1
∂z2

� �m1

−Q1 zð Þ
� �

+ S r, f2ð Þ =m1T r, ∂f1
∂z1

+ ∂f1
∂z2

� �
+O log rð Þ + S r, f2ð Þ + S r, f1ð Þ

=m1m r, ∂f1
∂z1

+ ∂f1
∂z2

� �
+O log rð Þ + S r, f2ð Þ + S r, f1ð Þ ≤m1 m r, ∂f1/∂z1ð Þ + ∂f1/∂z2ð Þ

f1

� �
+m r, f1ð Þ

� �
+O log rð Þ + S r, f1ð Þ + S r, f2ð Þ =m1T r, f1ð Þ +O log rð Þ + S r, f1ð Þ + S r, f2ð Þ,

ð31Þ

m1T r, ∂f1
∂z1

+ ∂f1
∂z2

� �
= T r, ∂f1

∂z1
+ ∂f1
∂z2

� �m1
� �

+ S r, f1ð Þ ≤ �N r, 1
∂f1/∂z1ð Þ + ∂f1/∂z2ð Þð Þm1

� �
+ �N r, 1

∂f1/∂z1ð Þ + ∂f1/∂z2ð Þð Þm1 −Q1 zð Þ
� �

+ S r, f1ð Þ ≤ �N r, 1
∂f1/∂z1ð Þ + ∂f1/∂z2ð Þð Þm1

� �
+ �N r, 1

P1 zð Þf2 z1 + c1, z2 + c2ð Þn1
� �

+ S r, f1ð Þ ≤ �N r, 1
∂f1/∂z1ð Þ + ∂f1/∂z2ð Þ

� �

+ �N r, 1
f2 z1 + c1, z2 + c2ð Þ

� �
+O log rð Þ + S r, f1ð Þ ≤ T r, ∂f1

∂z1
+ ∂f1
∂z2

� �
+ T r, f2 z1 + c1, z2 + c2ð Þð Þ +O log rð Þ + S r, f1ð Þ + S r, f2ð Þ,

ð34Þ
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n1T r, f2 z1 + c1, z2 + c2ð Þð Þ +O log rð Þ = T r, P1 zð Þf2 z1 + c1, z2 + c2ð Þn1ð Þ
+ S r, f2ð Þ = T r, ∂f1

∂z1
+ ∂f1
∂z2

� �m1

−Q1 zð Þ
� �

+ S r, f2ð Þ =m1T r, ∂f1
∂z1

+ ∂f1
∂z2

� �
+O log rð Þ

+ S r, f1ð Þ + S r, f2ð Þ:
ð37Þ

Similarly, we have

n2T r, f1 z1 + c1, z2 + c2ð Þð Þ =m2T r, ∂f2
∂z1

+ ∂f2
∂z2

� �
+O log rð Þ

+ S r, f1ð Þ + S r, f2ð Þ:
ð38Þ

In view of (35)–(38), we obtain that

n1 −
m1

m1 − 1

� �
T r, f2 z1 + c1, z2 + c2ð Þð Þ ≤O log rð Þ + S r, f1ð Þ + S r, f2ð Þ,

n2 −
m2

m2 − 1

� �
T r, f1 z1 + c1, z2 + c2ð Þð Þ ≤O log rð Þ + S r, f1ð Þ + S r, f2ð Þ:

ð39Þ

The fact that mj > ðnj/ðnj − 1ÞÞ can lead to a contradic-
tion since f1, f2 are transcendental entire functions.

Therefore, this completes the proof of Theorem 7.

3. Entire Solutions for System (8)

Now, the details that we obtain a pair of finite-order tran-
scendental entire solutions for system (8) will be given below.

Let ð f1, f2Þ be a pair of finite-order transcendental entire
solutions for system (8). Differentiating both equations in
system (8) for z1, we deduce

2 ∂f1 z1, z2ð Þ
∂z1

∂2 f1 z1, z2ð Þ
∂z21

+ ∂f2 z1 + c1, z2 + c2ð Þ
∂z1

= 0,

2 ∂f2 z1, z2ð Þ
∂z1

∂2 f2 z1, z2ð Þ
∂z21

+ ∂f1 z1 + c1, z2 + c2ð Þ
∂z1

= 0:

8>>>><
>>>>:

ð40Þ

Let F1ðz1, z2Þ = ð∂f1ðz1, z2ÞÞ/∂z1 and F2ðz1, z2Þ = ð∂f2
ðz1, z2ÞÞ/∂z1, then it follows from (18) that

2F1 z1, z2ð Þ ∂F1 z1, z2ð Þ
∂z1

= −F2 z1 + c1, z2 + c2ð Þ,

2F2 z1, z2ð Þ ∂F2 z1, z2ð Þ
∂z1

= −F1 z1 + c1, z2 + c2ð Þ rgb½ �0:00,0:00,1:00:

8>>><
>>>:

ð41Þ

By Lemmas 9–11, it yields that ð∂Fjðz1, z2ÞÞ/∂z1 = S

ðr, f jÞ for j = 1, 2. Thus, we can assume that

∂F1 z1, z2ð Þ
∂z1

= a1,
∂F2 z1, z2ð Þ

∂z1
= a2, ð42Þ

where a1, a2 ∈ℂ. Solving Equation (42), we have

F1 z1, z2ð Þ = a1z1 + φ1 z2ð Þ, F2 z1, z2ð Þ = a2z1 + φ2 z2ð Þ, ð43Þ

where φ1ðz2Þ, φ2ðz2Þ are finite-order transcendental entire
functions in z2. Due to Equations (41) and (42), we obtain that

F1 zð Þ = −
1
2a1

F2 z + cð Þ, F2 zð Þ = −
1
2a2

F1 z + cð Þ: ð44Þ

Substituting (43) into (44), we can deduce that

a1z1 + φ1 z2ð Þ = −
1
2a1

a2z1 + a2c1ð Þ − 1
2a1

φ2 z2 + c2ð Þ,

a2z1 + φ2 z2ð Þ = −
1
2a2

a1z1 + a1c1ð Þ − 1
2a2

φ1 z2 + c2ð Þ,

8>>><
>>>:

ð45Þ

which implies that a31 = a32 = −ð1/8Þ. It would be well if a1 =
a2 = −ð1/2Þ. So, it follows that

F1 z1, z2ð Þ = −
1
2 z1 + φ1 z2ð Þ, F2 z1, z2ð Þ = −

1
2 z1 + φ2 z2ð Þ,

φ1 z2 + c2ð Þ = φ2 z2ð Þ + 1
2 c1, φ2 z2 + c2ð Þ = φ1 z2ð Þ + 1

2 c1:

ð46Þ

This means that

φ1 z2 + 2c2ð Þ − φ1 z2ð Þ = c1, φ1 z2 + 2c2ð Þ − φ1 z2ð Þ = c1, ð47Þ

which imply

φ1 z2ð Þ =G1 z2ð Þ + c1
2c2

z2, φ2 z2ð Þ =G2 z2ð Þ + c1
2c2

z2, ð48Þ

where G1ðz2Þ,G2ðz2Þ are finite-order entire period func-
tion with period 2c2 satisfying G2ðz2 + c2Þ = G1ðz2Þ.

Solving the following system

∂f1 z1, z2ð Þ
∂z1

= F1 z1, z2ð Þ = −
1
2 z1 + φ1 z2ð Þ,

∂f2 z1, z2ð Þ
∂z1

= F2 z1, z2ð Þ = −
1
2 z1 + φ2 z2ð Þ,

8>>><
>>>:

ð49Þ

we obtain that

f1 z1, z2ð Þ = −
1
4 z

2
1 + z1φ1 z2ð Þ + ψ1 z2ð Þ,

f2 z1, z2ð Þ = −
1
4 z

2
1 + z1φ2 z2ð Þ + ψ2 z2ð Þ,

8>><
>>: ð50Þ
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where ψ1ðz2Þ, ψ2ðz2Þ are finite-order entire functions in
z2. Substituting (50) into (8), and combining with the period-
icity of φ1ðz2Þ and φ2ðz2Þ, it yields that

Thus, we have

ψ2 z2 + c2ð Þ = 1 − 1
4 c

2
1 −

c21
2c2

z2 − c1G1 z2ð Þ − c1
2c2

z2 + G1 z2ð Þ
� �2

,

ψ1 z2 + c2ð Þ = 1 − 1
4 c

2
1 −

c21
2c2

z2 − c1G2 z2ð Þ − c1
2c2

z2 + G2 z2ð Þ
� �2

,

ð52Þ

which mean that

ψ2 z2ð Þ = 1 + 1
4 c

2
1 −

c21
2c2

z2 − c1G2 z2ð Þ − c1
2c2

z2 − c2ð Þ +G2 z2ð Þ
� �2

,

ð53Þ

ψ1 z2ð Þ = 1 + 1
4 c

2
1 −

c21
2c2

z2 − c1G1 z2ð Þ − c1
2c2

z2 − c2ð Þ +G1 z2ð Þ
� �2

:

ð54Þ
In view of (48)–(54), it follows that

f1 z1, z2ð Þ = 1 + 1
4 c

2
1 −

1
4 z

2
1 +

c1
2c2

z1z2 −
c21
2c2

z2 + z1 − c1ð ÞG1 z2ð Þ,

−
c1
2c2

z2 − c2ð Þ +G1 z2ð Þ
� �2

,

f2 z1, z2ð Þ = 1 + 1
4 c

2
1 −

1
4 z

2
1 +

c1
2c2

z1z2 −
c21
2c2

z2 + z1 − c1ð ÞG2 z2ð Þ,

−
c1
2c2

z2 − c2ð Þ +G2 z2ð Þ
� �2

,

ð55Þ

where G1ðz2Þ,G2ðz2Þ are finite-order transcendental
entire period functions with period 2c2 satisfying G2ðz2 + c2Þ
=G1ðz2Þ. Substituting ð f1, f2Þ into system (2), it is easy to
confirm that ð f1, f2Þ is a solution of system (8).

4. Entire Solutions for System (11)

Let ð f1, f2Þ be a pair of finite-order transcendental entire
solutions of system (13). Next, the detail that we obtain one
form of ð f1, f2Þ is listed as follows. Differentiating system

(13) for z1, z2, respectively, we have

2F1 z1, z2ð Þ ∂F1 z1, z2ð Þ
∂z1

+ ∂F1 z1, z2ð Þ
∂z2

� �
+ F2 z1 + c1, z2 + c2ð Þ = 0,

2F2 z1, z2ð Þ ∂F2 z1, z2ð Þ
∂z1

+ ∂F2 z1, z2ð Þ
∂z2

� �
+ F1 z1 + c1, z2 + c2ð Þ = 0,

8>>><
>>>:

ð56Þ

where

F1 z1, z2ð Þ = ∂f1 z1, z2ð Þ
∂z1

+ ∂f1 z1, z2ð Þ
∂z2

, for j = 1, 2: ð57Þ

In view of Lemmas 9–11, it follows that ð∂Fjðz1, z2ÞÞ/∂
z1 = Sðr, f jÞ for j = 1, 2. For the convenience, assume that

∂Fj z1, z2ð Þ
∂z1

+
∂Fj z1, z2ð Þ

∂z2
= bj, j = 1, 2, ð58Þ

where bj ∈ℂ. The characteristic equations for Equation
(58) are

dz1
dt

= 1, dz2
dt

= 1,
dFj

dt
= bj: ð59Þ

In view of the initial conditions: z1 = 0, z2 = s, and Fj =
Fjð0, sÞ≔ FjðsÞwith a parameter s, we thus obtain the follow-
ing parametric representation for the solutions of the charac-
teristic equations: z1 = t, z2 = t + s,

Fj =
ðt
0
bjdt + μj sð Þ = bjt + μj sð Þ, ð60Þ

where μjðsÞ, j = 1, 2 are entire functions with finite order
in s. Thus, it follows that

Fj z1, z2ð Þ = bjz1 + μj z2 − z1ð Þ, j = 1, 2: ð61Þ

In view of (56) and (58), it follows that

2b1F1 z1, z2ð Þ = −F2 z1 + c1, z2 + c2ð Þ,
2b2F2 z1, z2ð Þ = −F1 z1 + c1, z2 + c2ð Þ:

(
ð62Þ

−
1
2 z1 +

c1
2c2

z2 +G1 z2ð Þ
� �2

−
1
4 z1 + c1ð Þ2 + z1 + c1ð Þφ2 z2 + c2ð Þ + ψ2 z2 + c2ð Þ = 1,

−
1
2 z1 +

c1
2c2

z2 +G2 z2ð Þ
� �2

−
1
4 z1 + c1ð Þ2 + z1 + c1ð Þφ1 z2 + c2ð Þ + ψ1 z2 + c2ð Þ = 1:

ð51Þ
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Substituting (61) into (62), we have that

2b21z1 + 2b1μ1 sð Þ = −b2 z1 + c1ð Þ − μ2 s + s0ð Þ,
2b22z1 + 2b1μ1 sð Þ = −b1 z1 + c1ð Þ − μ1 s + s0ð Þ,

(
ð63Þ

where s = z2 − z1 and s0 ≔ c2 − c1. This implies that b31 =
b32 = −ð1/8Þ. Let us assume that b1 = b2 = −ð1/8Þ. Thus, it
yields that

μ2 s + s0ð Þ = μ1 sð Þ + 1
2 c1,

μ1 s + s0ð Þ = μ2 sð Þ + 1
2 c1:

8>><
>>: ð64Þ

This means

μj sð Þ =Gj sð Þ + τs, j = 1, 2, ð65Þ

G2 s + s0ð Þ =G1 sð Þ, ð66Þ
where G1ðsÞ,G2ðsÞ are finite-order transcendental entire

period functions with period 2s0, and τ = c1/ð2ðc2 − c1ÞÞ.
Then, in view of (61) and (65), we deduce

Fj z1, z2ð Þ = −
1
2 z1 +Gj z2 − z1ð Þ + τ z2 − z1ð Þ, j = 1, 2,

ð67Þ

that is,

∂f j z1, z2ð Þ
∂z1

+
∂f j z1, z2ð Þ

∂z2
= −

1
2 z1 +Gj z2 − z1ð Þ + τ z2 − z1ð Þ:

ð68Þ

By making use of the characteristic equations for Equa-

tion (68) again, let

dz1
dt

= 1, dz2
dt

= 1,
df j
dt

= −
1
2 z1 + Gj z2 − z1ð Þ + τ z2 − z1ð Þ:

ð69Þ

In view of the initial conditions: z1 = 0, z2 = s, and f j =
f jð0, sÞ≔ f jðsÞ with a parameter s, we can deduce that the
parametric representation for the solutions of the character-
istic equations: z1 = t, z2 = t + s, and

f j =
ðt
0

−
1
2 t + Gj sð Þ + τs

� �
dt + νj sð Þ = −

1
4 t

2 + t Gj sð Þ + τs
� �

+ νj sð Þ, j = 1, 2,

ð70Þ

where νjðsÞ is an entire function with finite order in s.
Substituting t = z1 and s = z2 − z1 into the above form, we
have that

f j z1, z2ð Þ = −
1
4 z

2
1 + z1 Gj z2 − z1ð Þ + a3 z2 − z1ð Þ� �

+ νj z2 − z1ð Þ, j = 1, 2:

ð71Þ

Substituting (71) into (13), and combining with the peri-
odicity of GjðsÞ, it follows that

ν1 sð Þ = 1 − 1
4 c

2
1 − c1G2 s − s0ð Þ − τc1 s − s0ð Þ − G2 s − s0ð Þ + τ s − s0ð Þ½ �2,

ð72Þ

ν2 sð Þ = 1 − 1
4 c

2
1 − c1G1 s − s0ð Þ − τc1 s − s0ð Þ − G1 s − s0ð Þ + τ s − s0ð Þ½ �2:

ð73Þ
Thus, in view of (66) and (71)–(73), we obtain that a pair

of entire solutions of system (13) are of the forms

where G1ðsÞ,G2ðsÞ are finite-order transcendental entire
period functions with period 2s0 and satisfy (66). Let

G1 sð Þ = e πi/ c2−c1ð Þð Þs,G2 sð Þ = −e πi/ c2−c1ð Þð Þs: ð75Þ

Thus, ð f1, f2Þ is a pair of finite-order transcendental
entire solutions of system (13).
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f1 z1, z2ð Þ = 1 + 1
4 c

2
1 −

1
4 z

2
1 +

c1
2 c2 − c1ð Þ z2 − z1ð Þ z1 − c1ð Þ + z1 − c1ð ÞG1 z2 − z1ð Þ − G1 z2 − z1ð Þ + c1

2 c2 − c1ð Þ z2 − z1 − c2 − c1ð Þð Þ
� �2

,

f2 z1, z2ð Þ = 1 + 1
4 c

2
1 −

1
4 z

2
1 +

c1
2 c2 − c1ð Þ z2 − z1ð Þ z1 − c1ð Þ + z1 − c1ð ÞG2 z2 − z1ð Þ − G2 z2 − z1ð Þ + c1

2 c2 − c1ð Þ z2 − z1 − c2 − c1ð Þð Þ
� �2

,
ð74Þ
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