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Shuangjie Peng, China
Sergei V. Pereverzyev, Austria
Maria Eugenia Perez, Spain
Josefina Perles, Spain
Allan Peterson, USA
Andrew Pickering, Spain
Cristina Pignotti, Italy

Somyot Plubtieng, Thailand
Milan Pokorny, Czech Republic
Sergio Polidoro, Italy
Ziemowit Popowicz, Poland
Maria M. Porzio, Italy
Enrico Priola, Italy
Vladimir S. Rabinovich, Mexico
Irena Rachu̇nková, Czech Republic
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Complex networks are composed of a large number of highly
interconnected dynamical units and therefore exhibit very
complicated dynamics. Examples of such complex networks
include the Internet, that is, a network of routers or domains,
theWorldWideWeb (WWW), that is, a network of websites,
the brain, that is, a network of neurons, and an organization,
that is, a network of people. Since the introduction of the
small-world network principle, a great deal of research has
been focused on the dependence of the asymptotic behav-
ior of interconnected oscillatory agents on the structural
properties of complex networks. It has been found out that
the general structure of the interaction network may play a
crucial role in the emergence of synchronization phenomena
in various fields such as physics, technology, and the life
sciences.

Complex networks have already become an ideal research
area for control engineers, mathematicians, computer scien-
tists, and biologists to manage, analyze, and interpret func-
tional information from real-world networks. Sophisticated
computer system theories and computing algorithms have
been exploited or emerged in the general area of computer
mathematics, such as analysis of algorithms, artificial intelli-
gence, automata, computational complexity, computer secu-
rity, concurrency and parallelism, data structures, knowledge
discovery, DNA and quantum computing, randomization,
semantics, symbol manipulation, numerical analysis and
mathematical software. This special issue aims to bring
together the latest approaches to understanding complex net-
works fromadynamic systemperspective. Topics include, but

are not limited to the following aspects of dynamics analysis
for complex networks: (a) synchronization and control, (b)
topology structure and dynamics, (c) stability analysis, (d)
robustness and fragility, and (e) Applications in real-world
complex networks.

We have solicited submissions to this special issue from
electrical engineers, control engineers, mathematicians, and
computer scientists. After a rigorous peer review process, 17
papers have been selected that provide overviews, solutions,
or early promises to manage, analyze, and interpret dynami-
cal behaviors of complex systems. These papers have covered
both the theoretical and practical aspects of complex systems
in the broad areas of dynamical systems, mathematics,
statistics, operational research, and engineering.

This special issue starts with a survey paper on the recent
advances of multiobjective control and filtering problems
for nonlinear stochastic systems with variance constraints.
Specifically, in the paper entitled “Variance-constrained mul-
tiobjective control and filtering for nonlinear stochastic systems:
a survey” by L.Ma et al., the focus is to provide a timely review
on the recent advances of the multiobjective control and
filtering issues for nonlinear stochastic systems with variance
constraints. Firstly, the concepts of nonlinear stochastic sys-
tems are recalled along with the introduction of some recent
advances. Then, the covariance control theory, which serves
as a practicalmethod formultiobjective control design as well
as a foundation for linear system theory, is reviewed com-
prehensively. The multiple design requirements frequently
applied in engineering practice for the use of evaluating
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system performances are introduced, including robustness,
reliability and dissipativity. Several design techniques suit-
able for the multiobjective variance-constrained control and
filtering problems for nonlinear stochastic systems are dis-
cussed. The design objects (nonlinear stochastic system),
design requirements (multiple performance specifications
including variance constraints), several design techniques
and a special case of the addressed problem, mixed 𝐻
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design problem, have been discussed in great detail with
some recent advances. Subsequently, some latest results on
the variance-constrained multiobjective control and filtering
problems for nonlinear stochastic systems are summarized.
Finally, concluding remarks are drawn and several possible
future research directions are pointed out.

Complex networks have been extensively used in the-
oretical analysis of dynamical complex systems, such as
the Internet, World Wide Web, communication networks,
and social networks. Accordingly, the synchronization of
dynamics complex networks has attracted a great deal of
attention. In the paper entitled “Achieving synchronization
in arrays of coupled differential systems with time-varying
couplings” by X. Yi et al., the synchronization problem
is studied for complex dynamical networks described by
linearly coupled ordinary differential equation systems. The
time-varying coupling is used to represent the interaction
between individuals. A general sufficient condition is derived
such that the directed time-varying graph reaches consensus.
Finally, a numerical simulation is provided to show the
effectiveness of the theoretical results. The synchronization
and reconstruction problem is investigated in “Chaos syn-
chronization based on unknown input proportional multiple-
integral fuzzy observer” by T. Youssef et al. for chaotic systems.
An unknown input proportional multiple-integral observer
is designed for synchronization of chaotic systems with
immeasurable decision variables and unknown input. By
using the Lyapunov stability theory and the linear matrix
inequality (LMI) technique, sufficient conditions are given
to ensure the synchronization. In the work entitled “Syn-
chronization of switched complex bipartite neural networks
with infinite distributed delays and derivative coupling” by
Q. Bian et al., the synchronization problem is investigated
for two coupled switched complex bipartite neural networks
(SCBNNs) with distributed delays and derivative coupling.
By constructing effective controllers, some synchronization
criteria are proposed to ensure the synchronization of these
two SCBNNs. The distributed consensus problem is studied
in “Distributed impulsive consensus of the multiagent system
without velocity measurement” by Z. Liu et al. for continuous-
time multiagent system under intermittent communication.
An impulsive consensus algorithm is developed, where the
local algorithm of each agent is only based on the position
information. Also, some necessary and sufficient conditions
for consensus are given. Finally, a numerical example is
given to illustrate the effectiveness of the theoretical analysis.
Subsequently, in the paper entitled “Distributed consensus for
discrete-time directed networks of multiagents with time-delays
and random communication links” by Y. Liu et al., the leader-
following consensus problem is addressed for discrete-time
directed multiagent systems with time-delay and random

communication links. By constructing new Lyapunov func-
tionals and employing some analytical techniques, sufficient
conditions for the leader-following consensus in mean-
square sense are established for multiagent system.

Over the past decades, the design of the controllers has
long been the mainstream of research topics and much effort
has been made for dynamical complex networks. In the
paper entitled “Sliding intermittent control for BAM neural
networks with delays” by J. Hu et al., the exponential stability
problem is firstly studied for a class of delayed bidirectional
associative memory (BAM) neural networks with delays.
By taking the advantages of the periodically intermittent
control idea and the impulsive control scheme, a sliding
intermittent controller is designed for the addressed BAM
system with time-delays. It is shown that such a sliding
intermittent control method can comprise several kinds
of control schemes as special cases. Also, some sufficient
conditions are proposed such that the closed-loop delayed
BAM neural networks are globally exponentially stable. The
design of nonfragile gain-scheduled controller is discussed in
“Nonfragile gain-scheduled control for discrete-time stochastic
systems with randomly occurring sensor saturations” by W. Li
et al. for a class of discrete stochastic systems with randomly
occurring sensor saturations (ROSSs).The sensor saturations
occur in a random way. By constructing the probability-
dependent Lyapunov functional, a nonfragile gain-scheduled
controller with the gain including both constant and time-
varying parameters is designed such that the closed-loop
system is exponentially stable in the mean-square sense.
In the work entitled “Optimal guaranteed cost control of
a class of discrete-time nonlinear systems with Markovian
switching and mode-dependent mixed time-delays” by Y. Liu,
the guaranteed cost control problem is addressed for a class
of nonlinear discrete-time systems with Markovian jumping
parameters and mixed time-delays. The mixed time-delays
include both themode-dependent discrete delay and the infi-
nite distributed delay with mode-dependent lower bound. By
constructing novel Lyapunov-Krasovskii functionals, some
sufficient conditions for the existence of guaranteed cost
controllers are derived. Also, a convex optimization approach
is developed to minimize cost function so as to obtain the
optimal guaranteed cost controller. By using the dwell time
approach, in the paper entitled “Stabilization and controller
design of 2D discrete switched systems with state delays under
asynchronous switching” by S. Huang et al., the stability
analysis and controller design are conducted for 2D discrete
switched delayed systems represented by Roesser’s model.
Accordingly, sufficient conditions are given such that the
resulting closed-loop systems are exponentially stable.

In the past years, the stability analysis of the dynamical
complex networks has attracted much attention. In the work
entitled “Ananalysis of stability of a class of neutral-type neural
networks with discrete time delays” by Z. Orman and S. Arik,
the problems of existence, uniqueness, and global asymptotic
stability are discussed for a class of neutral-type neural
network with discrete time-delays. By employing a Lyapunov
functional and using the homeomorphism mapping theo-
rem, some new delay-independent sufficient conditions are
derived to guarantee the existence, uniqueness, and global
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asymptotic stability of the equilibrium point. It is shown that
the advantage of the proposed results is that the developed
results can be expressed in terms of network parameters
only. Finally, some examples are provided to compare the
proposed results with the existing results and to illustrate
the effectiveness of the main results. In the work entitled
“Robust almost periodic dynamics for interval neural networks
with mixed time-varying delays and discontinuous activation
functions” by H. Wu et al., the delay-dependent robust
exponential stability problem is studied for almost periodic
solution of interval neural networks withmixed time-varying
delays and discontinuous activation functions. According to
the nonsmooth Lyapunov stability theory and employing the
LMI technique, a new delay-dependent criterion is given
to guarantee the existence and globally exponential stability
of almost periodic solution. Also, the proposed results are
extended to prove the existence and robust stability of peri-
odic solution for neural networks with mixed time-varying
delays and discontinuous activations. Finally, a numerical
example is provided to show the feasibility of the devel-
oped results.The problemof bounded-input bounded-output
(BIBO) stability is investigated in “BIBO stability analysis
for delay switched systems with nonlinear perturbation” by
J. Wei et al. for a class of switched systems with mixed
neutral delays and nonlinear perturbation. By constructing
the Lyapunov-Krasovskii functional, new BIBO stabilization
criteria are derived. Finally, a numerical simulation is given
to demonstrate the usefulness of the proposed results.

As is well known, the estimation theory has important
applications in a variety of areas. In the work entitled
“Deconvolution filtering for nonlinear stochastic systems with
randomly occurring sensor delays via probability-dependent
method” by Y. Luo et al., the deconvolution filtering problem
is studied for a class of discrete-time stochastic systems with
randomly occurring sensor delays and external stochastic
noises. By constructing the probability-dependent Lyapunov
functional and employing convex optimization approach,
sufficient condition is given to ensure the stability of the
addressed stochastic systems. The proposed gain-scheduled
filters include both constant parameters and time-varying
gains which can be updated online according to the measur-
able missing probabilities in real time. It is shown that the
desired filters can be easily obtained by solving a set of linear
matrix inequalities (LMIs). Finally, a simulation example
is provided to illustrate the feasibility and effectiveness of
the proposed filtering scheme. Subsequently, in the paper
entitled “Estimate of number of periodic solutions of second-
order asymptotically linear difference system” by H. Bin and
Z. Huang, the number of periodic solutions is discussed for
second-order linear difference system. By using the Morse
theory and twist number, three cases are discussed. As the
system is resonant at infinity, the perturbation method is
used to study the compactness condition of functional. Some
new results are derived concerning the lower bounds of
the nonconstant periodic solutions for discrete system. In
the paper entitled “Convergence rate of numerical solutions
for nonlinear stochastic pantograph equations with Marko-
vian switching and jumps” by Z. W. Lu et al., the study
of convergence rate is addressed for nonlinear stochastic

pantograph equations withMarkovian switching and Poisson
jump. Sufficient conditions of existence and uniqueness of
the solutions are given for nonlinear stochastic pantograph
equations with Markovian switching and jumps. It is shown
that Euler-Maruyama scheme for nonlinear stochastic pan-
tograph equations with Markovian switching and Brownian
motion is of convergence with strong order 1/2. The mean-
square convergence is preferable to be used for nonlinear
stochastic pantograph equations with Markovian switching
and pure jumps. Accordingly, the order of mean-square
convergence is close to 1/2. Moreover, the impact of human
dynamics on the information propagation in online social
networks is discussed in “Information propagation in online
social network based on human dynamics” by Q. Yan et
al. Also, an extended susceptible-infected (SI) propagation
model is proposed to incorporate bursty human activity
patterns and limited attention. The proposed result can be
used to optimize/control the information propagation in
online social networks.
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Themultiobjective control and filtering problems for nonlinear stochastic systems with variance constraints are surveyed. First, the
concepts of nonlinear stochastic systems are recalled along with the introduction of some recent advances. Then, the covariance
control theory, which serves as a practicalmethod formulti-objective control design as well as a foundation for linear system theory,
is reviewed comprehensively.Themultiple design requirements frequently applied in engineering practice for the use of evaluating
system performances are introduced, including robustness, reliability, and dissipativity. Several design techniques suitable for the
multi-objective variance-constrained control and filtering problems for nonlinear stochastic systems are discussed. In particular,
as a special case for the multi-objective design problems, the mixed 𝐻
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control and filtering problems are reviewed in great
detail. Subsequently, some latest results on the variance-constrainedmulti-objective control and filtering problems for the nonlinear
stochastic systems are summarized. Finally, conclusions are drawn, and several possible future research directions are pointed out.

1. Introduction

It is widely recognized that, in almost all engineering
applications, nonlinearities are inevitable and could not be
eliminated thoroughly. Hence, the nonlinear systems have
gained more and more research attention, and lots of results
have been published. On the other hand, due to the wide
appearance of the stochastic phenomena in almost every
aspect of our daily life, stochastic systems which have found
successful applications in many branches of science and
engineering practice have stirred quite a lot of research inter-
ests during the past few decades. Therefore, the control and
filtering problems for nonlinear stochastic systems have been
studied extensively so as to meet ever-increasing demand
toward systems with both nonlinearities and stochasticity.

In many engineering control/filtering problems, the per-
formance requirements are naturally expressed by the upper
bounds on the steady state covariance which is usually
applied to scale the control/estimation precision, one of the
most important performance indices of stochastic design
problems. As a result, a large number of control and filtering
methodologies have been developed to seek a convenient
way to solve the variance-constrained design problems,
among which the LQG control and Kalman filtering are two
representative minimum variance design algorithms.

On the other hand, in addition to the variance constraints,
real-world engineering practice also desires the simultaneous
satisfaction of many other frequently seen performance
requirements including stability, robustness, reliability, and
energy constraints, to name but a few key ones. It gives the
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Figure 1: Architecture of surveyed contents.

rise to the so-calledmultiobjective design problems, in which
multiple cost functions or performance requirements are
simultaneously considered with constraints being imposed
on the system. An example of multiobjective control design
would be to minimize the system steady-state variance
indicating the performance of control precision, subject to a
prespecified external disturbance attenuation level evaluating
system robustness. Obviously,multiobjective designmethods
have the ability to provide more flexibility in dealing with the
tradeoffs and constraints in a much more explicit manner
on the prespecified performance requirements than those
conventional optimization methodologies like LQG control
scheme or𝐻

∞
design technique, which does not seem to have

the ability of handling multiple performance specifications.
When coping with the multiobjective design problem

with variance constraints for stochastic systems, the well-
known covariance control theory provides us with a use-
ful tool for the system analysis and synthesis. For linear
stochastic systems, it has been shown thatmultiobjective con-
trol/filtering problems can be formulated using linear matrix
inequalities (LMIs), due to their ability to include desir-
able performance objectives such as variance constraints,
𝐻
2
performance, 𝐻

∞
performance, and pole placement as

convex constraints. However, as the nonlinear stochastic
systems are concerned, the relevant progress so far has been

very slow due primarily to the difficulties in dealing with
the variance related problems resulting from the complexity
of the nonlinear dynamics. A key issue for the nonlinear
covariance control study is the existence of the covariance
of nonlinear stochastic systems and its mathematical expres-
sion, which is extremely difficult to investigate because of
the complex coupling of nonlinearities and stochasticity.
Therefore, it is not surprising that the multiobjective control
and filtering problems for nonlinear stochastic systems with
variance constraints have not been adequately investigated
despite their clear engineering insights and good application
prospect.

In this paper, we focus mainly on the multiobjective
control and filtering problems for nonlinear systems with
variance constraints and aim to give a comprehensive survey
on some recent advances in this area. The design objects
(nonlinear stochastic system), design requirements (multiple
performance specifications including variance constraints),
several design techniques, and a special case of the addressed
problem,mixed𝐻

2
/𝐻
∞
design problem, have been discussed

in great detail with some recent advances. The contents that
are reviewed in this paper and the architecture are shown in
Figure 1.

The rest of the paper is organized as follows. In Section 2,
the nonlinear stochastic systems are reviewed with some
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recent advances. Section 3 reviews the covariance control
theory. Several widely applied performance requirements in
engineering practice and commonly seen design techniques
in the addressed multiobjective problems are then discussed.
Moreover, a special case of multiobjective control and fil-
tering problems, namely, mixed 𝐻

2
/𝐻
∞

design problem,
is surveyed in great detail. Section 4 gives latest results on
multiobjective control and filtering problems of nonlinear
stochastic systems with variance constraints.The conclusions
and future work are given in Section 5.

2. Analysis and Synthesis of Nonlinear
Stochastic Systems

For several decades, nonlinear stochastic systems have been
attracting increasing attention in the system and control
community due to their extensive applications in a variety
of areas ranging from communication and transportation to
manufacturing, building automation, computing, automo-
tive, and chemical industry, tomention just a few key areas. In
this section, the analysis and synthesis problems for nonlinear
systems and stochastic systems are recalled, respectively, and
some recent advances in these areas are also given.

2.1. Nonlinear Systems. It is well recognized that in almost
all engineering applications, nonlinearities are inevitable and
could not be eliminated thoroughly.Hence, the nonlinear sys-
tems have gained more and more research attention, and lots
of results have been reported; see, for example, [1–4]. When
analyzing and designing nonlinear dynamical systems, there
are a wide range of nonlinear analysis tools, among which
the most common and wildly used is linearization because
of the powerful tools we know for linear systems. It should
be pointed out that, however, there are two basic limitations
of linearization [5]. (i) As is well known, linearization is
an approximation in the neighborhood of certain operating
points. Thus, the resulting linearized system can only show
the local behavior of the nonlinear system in the vicinity
of those points. Neither nonlocal behavior of the original
nonlinear system far away from those operating points nor
global behavior throughout the entire state space can be
correctly revealed after linearization. (ii) The dynamics of
a nonlinear system are much richer than those of a linear
system. There are essentially nonlinear phenomena, like
finite escape time, multiple isolated equilibria, subharmonic,
harmonic, or almost periodic oscillations, to name just a few
key ones which can take place only in the presence of nonlin-
earity; hence, they cannot be described by linear models [6–
9]. Therefore, as a compromise, during the past few decades,
there has been tremendous interest in studying nonlinear
systems with nonlinearities being taken as the exogenous
disturbance input to a linear system, since it could better
illustrate the dynamics of the original nonlinear system than
the linearized onewith less sacrifice of the convenience on the
application of existingmathematical tools.The nonlinearities
emerging in such systems may arise from the linearization
process of an originally highly nonlinear plant or may be an
external nonlinear input, which would drastically degrade

the system performance or even cause instability; see, for
example, [10–13].

On the other hand, in real-world applications, one of
the most inevitable and physically important features of
some sensors and actuators is that they are always corrupted
by different kinds of nonlinearities, either from within the
devices themselves or from the external disturbances. Such
nonlinearities are generally resulting from equipment limita-
tions aswell as the harsh environments such as uncontrollable
elements (e.g., variations in flow rates, temperature) and
aggressive conditions (e.g., corrosion, erosion, and fouling)
[14]. Since the sensor/actuator nonlinearity cannot be simply
ignored and often leads to poor performance of the controlled
system, a great deal of effort in investigating the analysis and
synthesis problems has been devoted by many researchers to
the study of various systems with sensor/actuator nonlinear-
ities; see [15–20].

Recently, the system with randomly occurring nonlinear-
ities (RONs) has started to stir quite a lot of research interests
as it reveals an appealing fact that, instead of occurring in a
deterministic way, a large quantity of nonlinearities in real-
world systems would probably take place in a random way.
Some of the representative publications can be discussed as
follows. The problem of randomly occurring nonlinearities
was raised in [21], where an iterative filtering algorithm
has been proposed for the stochastic nonlinear system in
presence of both RONs and output quantization effects. The
filter parameters can be obtained by resorting to solving cer-
tain recursive linear matrix inequalities. The obtained results
have been soon extended to the case of multiple randomly
occurring nonlinearities in [22]. Such a breakthrough on
how to deal with nonlinear systems with RONs has been
well recognized and quickly followed by other researchers
in the area. Using similar techniques, the filtering as well as
control problems have been solved for awide range of systems
containing nonlinearities that are occurring randomly, like
Markovian jump systems in [23, 24], sliding mode control
systems in [25], discrete-time complex networks in [26],
sensor networks in [27], time-delay systems in [28], and
other types of nonlinear systems [29–31], which therefore has
proven that the method developed in [21] is quite general and
is applicable to the analysis and synthesis of many different
kinds of nonlinear systems.

It should be emphasized that, for nonlinearities, there
are many different constraints conditions for certain aim,
such as Lipschitz conditions, among which the kind of
stochastic nonlinearities described by statistical means has
drawn particular research focus since it covers several well-
studied nonlinearities in stochastic systems; see [29, 32–35]
and the references therein. Several techniques for analysis
and synthesis of this type of nonlinear systems have been
exploited, including linear matrix inequality approach [32],
Riccati equation method [33], recursive matrix inequality
approach [34], gradient method [35], sliding mode control
scheme [36], and the game theory approach [29].

2.2. Stochastic Systems. As is well known, in the past few
decades, there have been extensive study and application



4 Abstract and Applied Analysis

of stochastic systems because the stochastic phenomenon is
inevitable and cannot be avoided in the real-world systems.
Whenmodeling such kinds of systems, theway neglecting the
stochastic disturbances, which is a conventional technique in
traditional control theory for deterministic systems, is not
suitable anymore. Having realized the necessity of introduc-
ing more realistic models, nowadays, a great number of real-
world systems such as physical systems, financial systems,
and ecological systems, as well as social systems, are more
suitable to be modeled by stochastic systems, and therefore
the stochastic control problem which deals with dynamical
systems, described by difference or differential equations,
and subject to disturbances characterized as stochastic pro-
cesses has drawn much research attention; see [37] and
the references therein. It is worth mentioning that a kind
of stochastic systems represented as deterministic system
adding a stochastic disturbance characterized as white noise
has gained special research interests and found extensively
applications in engineering based on the fact that it is possible
to generate stochastic processes with covariance functions
belonging to a large class simply by sending white noise
through a linear system; hence, a large class of problems can
be reduced to the analysis of linear systems with white noise
inputs; see [38–42] for examples.

Parallel to the control problems, the filtering and pre-
diction theory for stochastic systems which aims to extract
a signal from observations of signals and disturbances
has been well studied and found widely applied in many
engineering fields. It also plays a very important role in
the solution of the stochastic optimal control problem.
The research on filtering problem was originated in [43],
where the well-known Wiener-Kolmogorov filter has been
proposed. However, theWiener-Kolmogorov filtering theory
has not been widely applied mainly because it requires the
solution of an integral equation (the Wiener-Hopf equation)
which is not easy to solve either analytically or numer-
ically. In [44, 45], Kalman and Bucy gave a significant
contribution to the filtering problem, by giving the cele-
brated Kalman-Bucy filter which could solve the filtering
problem recursively. Kalman-Bucy filter (also known as 𝐻

2

filter) has been extensively adopted and widely used in
many branches of stochastic control theory, since the fast
development of digital computers recently; see [46–49] and
the references therein.

3. Multiobjective Control and Filtering with
Variance Constraints

In this section, we first review the covariance control the-
ory which provides us with a powerful tool in variance-
constrained design problems with multiple requirements
specified by the engineering practice.Then,we discuss several
important performance specifications including robustness,
reliability, and dissipativity. Two common techniques for
solving the addressed problems for nonlinear stochastic
systems are introduced. The mixed 𝐻

2
/𝐻
∞

design problem
is reviewed in great detail as a special case of multiobjective
control/filtering problem with variance constraints.

3.1. Covariance Control Theory. As we have stated in the pre-
vious section, engineering control problems always require
upper bounds on the steady state covariances [41, 50, 51].
However, many control design techniques used in both
theoretical analysis and engineering practice, such as LQG
and 𝐻

∞
design, do not seem to give a direct solution to

this kind of design problem since they lack a convenient
avenue for imposing design objectives stated in terms of
upper bounds on the variance values. For example, the LQG
controllers minimize a linear quadratic performance index
without guaranteeing the variance constraints with respect to
individual system states. The covariance control theory [52]
developed in the late 80s has provided a more direct method-
ology for achieving the individual variance constraints than
the LQG control theory. The covariance control theory aims
to solve the variance-constrained control problems while
satisfying other performance indices [40, 47, 52, 53]. It has
been shown that the covariance control approach is capable
of solving multiobjective design problems, which has found
applications in dealing with transient responses, round off
errors in digital control, residence time/probability in aiming
control problems, and stability, robustness in the presence
of parameter perturbations [53]. Such an advantage is based
on the fact that several control design objectives, such as
stability, time-domain and frequency-domain performance
specifications, robustness, and pole location, can be directly
related to steady-state covariances of the closed-loop systems.
Therefore, covariance control theory serves as a practical
method for multiobjective control design as well as a foun-
dation for linear system theory.

On the other hand, it is always the case in real-world
applications such as the tracking of amaneuvering target, that
the filtering precision is characterized by the error variance
of estimation [53, 54]. Considering its clear engineering
insights, in the past few years, the filtering problem with
error variance constraints has received much interests and
a large amount of research fruit has been reported in the
literature [44, 45, 55, 56]. The celebrated Kalman filtering
approach is a typical method which aims to obtain the state
information based on the minimization of the variance of the
estimation error [44, 45]. Nevertheless, the strict request of
a highly accurate model seriously impedes the application
of Kalman filtering as in many cases only an approximate
model of the system is available. It therefore has brought
about remarkable research interests to the robust filtering
method which aims to minimize the error variance of esti-
mation against the system uncertainties or external unknown
disturbances [57, 58]. Despite certain merits and successful
applications, as in the case of LQG control problem, the
traditional minimum variance filtering techniques cannot
directly impose the designing objectives stated in terms of
upper bounds on the error variance values, by which we
mean that those techniques try tominimize the filtering error
variance in mean square sense rather than to constrain it
within a prespecified bound, which is obviously better to
meet the requirements of practical engineering. Motivated
by the covariance control theory, in [59], the authors have
proposed amore direct designing procedure for achieving the
individual variance constraint in filtering problems. Due to
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its design flexibility, the covariance control theory is capable
of solving the error variance-constrained filtering problem
while guaranteeing other multiple designing objectives [60].
Therefore, it always serves as one of the most powerful tools
in dealing with the multiobjective filtering as well as control
problems [61].

It should be pointed out that most of the available litera-
ture regarding covariance control theory has been concerned
with linear time invariant stochastic systems with the linear
matrix inequality (LMI) approach. Moreover, when it comes
to the variance-constrained controller/filter design problems
for much more complicated systems such as time-varying
systems, nonlinear systems, and Markovian Jump systems
unfortunately, the relevant results have been very few due
primarily to the difficulties in dealing with the existence
problem of the steady-state covariances and their mathemat-
ical expressions for the abovementioned complex systems.
With the hope to resolve such difficulties, in recent years,
special efforts have been devoted in study of the variance-
constrained multiobjective design problems for systems of
complex dynamics, and several methodologies for analysis
and synthesis have been developed. For example, in [47],
a Riccati equation method has been proposed to solve the
filtering problem for linear time-varying stochastic systems
with prespecified error variance bounds. In [62–64], by
means of the technique of slidingmode control (SMC), robust
controller design problem has been solved for linear param-
eter perturbed systems, since SMC has certain robustness to
matched disturbances or parameter perturbations. We shall
return to this SMC problem later, and more details will be
discussed in the following section.

When it comes to nonlinear stochastic systems, limited
work has been done in the covariance-constrained analysis
and design problems, just as what we have anticipated. A
multiobjective filter has been designed in [65] for systems
with Lipschitz-type nonlinearity, but the variance bounds
cannot be prespecified. Strictly speaking, such an algorithm
cannot be referred to as variance-constrained filtering in
view of lack of capability for directly imposing specified
constraints on variance. An LMI approach has been proposed
in [32] to cope with robust filtering problems for a class
of stochastic systems with nonlinearities characterized by
statistical means, attaining an assignable 𝐻

2
performance

index. In [61], for a special class of nonlinear stochastic sys-
tems, namely, systems with multiplicative noises (also called
bilinear systems or systems with state/control dependent
noises), a state feedback controller has been put forward in
a unified LMI framework in order to ensure that the multiple
objectives including stability,𝐻

∞
specification, and variance

constraints are simultaneously satisfied. This paper is always
regarded as the origination of covariance control theory
for nonlinear systems, as within the established theoretical
framework, quite a lot of performance requirements can be
taken into consideration simultaneously. Furthermore, with
the developed techniques, the obtained elegant results could
be easily extended to a wide range of nonlinear stochastic
systems; see, for example, [29, 35, 66–68]. We shall return to
such a type of nonlinear stochastic systems later to present
more details of recent progresses in Section 4.

3.2. Multiple Performance Requirements. In the following,
several performance indices originated from the engineering
practice and frequently applied in multiobjective design
problems are introduced.

3.2.1. Robustness. In real-world engineering practice, var-
ious reasons such as variations of the operating point,
aging of devices, and identification errors, would lead to
the parameter uncertainties which result in the perturba-
tions of the elements of a system matrix when modeling
the system in a state-space form. Such a perturbation in
system parameters cannot be avoided and would cause
degradation (sometimes even instability) to the system
performance. Therefore, in the past decade, considerable
attention has been devoted to different issues for linear
or nonlinear uncertain systems, and a great number of
papers have been published; see [2, 48, 69–74] for some
recent results.

On another research frontier of robust control, the 𝐻
∞

design method which is used to design controller/filter
with guaranteed performances with respect to the external
disturbances as well as internal perturbations has received
an appealing research interest during the past decades;
see [75–78], for instance. Since Zames’ original work [75],
significant advances have been made in the research area
of 𝐻
∞

control and filtering. The standard 𝐻
∞

control
problem has been completely solved by Doyle et al. for
linear systems by deriving simple state-space formulas for all
controllers [76]. For nonlinear systems, the𝐻

∞
performance

evaluation can be conducted through analyzing the 𝐿
2
gain

of the relationship between the external disturbance and the
system output, which is a necessary step to decide whether
further controller design is needed. In the past years, the
nonlinear𝐻

∞
control problemhas also received considerable

research attention, and many results have been available in
the literature [77–81]. On the other hand, the 𝐻

∞
filtering

problem has also gained considerable research interests along
with the development of 𝐻

∞
control theory; see [26, 79,

82–85]. It is well known that the existence of a solution
to the 𝐻

∞
filtering problem is in fact associated with the

solvability of an appropriate algebraic Riccati equality (for
the linear cases) or a so-called Hamilton-Jacobi equation
(for the nonlinear ones). So far, there have been several
approaches for providing solutions to nonlinear𝐻

∞
filtering

problems, few of which, however, are capable of handling
multiple performance requirements in an 𝐻

∞
optimization

framework.
It is worth mentioning that, in contrast to the𝐻

∞
design

framework within which multiple requirements can hardly
be under simultaneous consideration, the covariance control
theory has provided a convenient avenue for the robustness
specifications to be perfectly integrated into the multiobjec-
tive design procedure; see [61, 80], for example. For nonlinear
stochastic systems, control and filtering problems have been
solved with the occurrence of parameter uncertainties and
stochastic nonlinearities while guaranteeing the 𝐻

∞
and

variance specifications; see [35, 66, 67, 80] for some recent
publications.
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3.2.2. Reliability. In practical control systems especially net-
worked control systems (NCSs), due to a variety of reasons
including the erosion caused by severe circumstance, abrupt
changes of working conditions, the intense external distur-
bance, and the internal physical equipment constraints and
aging, the process of signal sampling and transmission has
always confronted with different kinds of failures such as
measurements missing, signal quantization, and sensor and
actuator saturations. Such a phenomenon is always referred to
as incomplete information, which would drastically degrade
the system performance. In recent years, as requirements
increase toward the reliability of engineering systems, the
reliable control problem which aims to stabilize the systems
accurately and precisely in spite of incomplete information
caused by possible failures has therefore attracted consid-
erable attention. In [86, 87], binary switching sequences
and Markovian jumping parameters have been introduced
to model the measurements missing phenomena. A more
general model called the multiple measurements missing
model has been proposed in [88] by employing a diagonal
matrix to characterize the different missing probabilities for
individual sensors. The incomplete information caused by
sensor and actuator saturations is also receiving considerable
research attention, and some results have been reported in the
literature [20, 89, 90], where the saturation has beenmodeled
as so-called sector bound nonlinearities. As far as signal
quantization ismentioned, in [19], a sector bound scheme has
been proposed to handle the logarithmic quantization effects
in feedback control systems, and such an elegant scheme has
then been extensively employed later on; see, for example,
[91, 92] and the references therein.

It should be pointed out that, for nonlinear stochastic
systems, the relevant results of reliable control/filtering with
variance constraints are relatively fewer, and some represen-
tative results can be summarized as follows. By means of
linear matrix inequality approach, a reliable controller has
been designed for nonlinear stochastic system in [66] against
actuator faults with variance constraints. In the case of sensor
failures, the gradient method and LMI method have been
applied, respectively, in [35] and [67] to designmultiobjective
filters, respectively, satisfying multiple requirements includ-
ing variance specifications simultaneously. However, despite
its clear physical insight and importance in engineering
application, the control problem for nonlinear stochastic
systemswith incomplete informationhas not yet been studied
sufficiently.

3.2.3. Dissipativity. In recent years, the theory of dissipa-
tive systems, which plays an important role in system and
control areas, has been attracting a great deal of research
interests, and many results have been reported so far; see
[93–99]. Originated in [97], the dissipative theory serves as
a powerful tool in characterizing important system behaviors
such as stability and passivity and has close connections with
bounded real lemma, passivity lemma, and circle criterion. It
is worth mentioning that, due to its simplicity in analysis and
convenience in simulation, the LMI method has gained par-
ticular attention in dissipative control problems. For example,

in [96, 98], an LMI method was used to design the state
feedback controller ensuring both the asymptotic stability
and strictly quadratic dissipativity. For singular systems,
[93] has established a unified LMI framework to satisfy
admissibility and dissipativity of the system simultaneously.
In [95], the dissipative control problem has been solved for
time-delay systems.

Although the dissipativity theory provides us a use-
ful tool for the analysis of systems with multiple perfor-
mance criteria, unfortunately, when it comes to nonlinear
stochastic systems, few of the literature has been con-
cerned with the multiobjective design problem for non-
linear stochastic systems, except [100], where a multiob-
jective control law has been proposed to simultaneously
meet the stability, variance constraints, and dissipativity of
closed-loop system. So far, the variance-constrained design
problem with dissipativity being taken into consideration
has not yet been studied adequately and is still remaining
challenging.

3.3. Design Techniques for Nonlinear Stochastic Systems with
Variance Constraints. The complexity of nonlinear system
dynamics challenges us to come up with systematic design
procedures to meet control objectives and design specifi-
cations. It is clear that we cannot expect one particular
procedure to apply to all nonlinear systems; therefore, quite
a lot of tools have been developed to deal with control and
filtering problems for nonlinear stochastic systems, including
T-S fuzzy model approximation approach, linearization, gain
scheduling, sliding mode control, and backstepping, to name
but a few key ones. In the sequel, we will investigate two
nonlinear design tools that can be well combined with the
covariance control theory for the purpose of providing a the-
oretical framework within which the variance-constrained
control andfiltering problems can be solved systematically for
nonlinear stochastic systems.

3.3.1. T-S Fuzzy Model. The T-S fuzzy model approach
occupies an important place in the study of nonlinear systems
for its excellent capability in nonlinear system descriptions.
Such amodel allows one to perfectly approximate a nonlinear
system by a set of local linear subsystems with certain fuzzy
rules, thereby carrying out the analysis and synthesis work
within the linear system framework. Therefore, T-S fuzzy
model is extensively applied in both theoretical research and
engineering practice of nonlinear systems; see [101–104] for
some latest publications. However, despite its engineering
significance, few of the literature has taken the system state
variance into consideration mainly due to the technical
difficulties in dealing with the variance related problems.
Some tentative work can be summarized as follows. In [105],
a minimum variance control algorithm as well as direct
adaptive control scheme has been applied in a stochastic T-
S fuzzy ARMAX model to track the desired reference signal.
However, as we mentioned above, such a minimum variance
control algorithm lacks the ability of directly imposing design
requirements on the variances of individual state component.
Therefore, in order to cope with this problem, in [106],
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a fuzzy controller has been designed to stabilize a non-
linear continuous-time system, while simultaneously min-
imizing the control input energy and satisfying variance
constraints placed on the system state. The result has then
been extended in [107] to the output variance constraints
case. Recently, such a T-S fuzzy model based variance-
constrained algorithm has found successful application in
nonlinear synchronous generator systems; see [108] for more
details.

3.3.2. Sliding Mode Control. In the past few decades, the
sliding mode control (also known as variable structure
control) problem originated in [109] has been extensively
studied and widely applied, because of its advantage of
strong robustness against model uncertainties, parameter
variations, and external disturbances. In the sliding mode
control, trajectories are forced to reach a sliding manifold
in finite time and to stay on the manifold for all future
time. It is worth mentioning that in the existing literature
about sliding mode control problem for nonlinear systems,
the nonlinearities and uncertainties taken into consideration
are mainly under the matching conditions, that is, when
nonlinear and uncertain terms enter the state equation at the
same point as the control input and motion on the sliding
manifold is independent of thosematched terms; see [110, 111]
for examples. Under such an assumption, the covariance-
constrained control problems have been solved in [62–64]
for a type of continuous stochastic systems with matching
condition nonlinearities.

Along with the development of continuous-time sliding
mode control theory, in recent years, as most control strate-
gies are implemented in a discrete-time setting (e.g., net-
worked control systems), the sliding mode control problem
for discrete-time systems has gained considerable research
interests, and a large amount of literature has appeared
on this topic. For example, in [112, 113], the integral type
SMC schemes have been proposed for sample-data systems
and a class of nonlinear discrete-time systems, respectively.
Adaptive laws were applied in [114, 115] to synthesize sliding
mode controllers for discrete-time systems with stochastic as
well as deterministic disturbances. In [116], a simple method-
ology for designing sliding mode controllers was proposed
for a class of linear multi-input discrete-time systems with
matching perturbations. Using dead-beat control technique,
[117] presented a discrete variable structure control method
with a finite-time step to reach the switching surface. In
cases when the system states were not available, the discrete-
time SMC problems were solved in [118, 119] via output
feedback. It is worth mentioning that in [120], the discrete-
time sliding mode reaching condition was first revised, and
then a reaching law approach was developed which has
proven to be a convenient way to handle robust control
problems; see [121, 122] for some latest publications. Recently,
for discrete-time systems that are not only confronted with
nonlinearities but also corrupted by more complicated sit-
uations like propagation time delays, randomly occurring
parameter uncertainties, and multiple data packet dropouts,
the SMC strategies have been designed in [25, 81, 83] to

solve the robust control problems and have shown good
performances against all the mentioned negative factors.
Currently, the sliding mode control problems for discrete-
time systems still remain a hotspot in systems and control
science; however, when it comes to the variance-constrained
problems, the related work is much fewer. As preliminary
work, [36] has proposed an SMC algorithm guaranteeing the
required𝐻

2
specification for discrete-time stochastic systems

in presence of both matched and unmatched nonlinearities.
In this paper, although only the 𝐻

2
performance is handled,

it is worth mentioning that, with the proposed method,
other performance indices can be considered simultaneously
within the established unified framework by employing
similar design techniques.

3.4. A Special Case of Multiobjective Design: Mixed 𝐻
2
/𝐻
∞

Control/Filtering. As a special case of multiobjective control
problem, the mixed 𝐻

2
/𝐻
∞

control/filtering has gained a
great deal of research interests for several decades. So far,
there have been several approaches to tackling the mixed
𝐻
2
/𝐻
∞

control/filtering problem. For linear deterministic
systems, the mixed 𝐻

2
/𝐻
∞

control problems have been
extensively studied. For example, an algebraic approach has
been presented in [123] and a time domain Nash game
approach has been proposed in [39, 124] to solve the
addressed mixed 𝐻

2
/𝐻
∞

control/filtering problems, respec-
tively.Moreover, some efficient numerical methods formixed
𝐻
2
/𝐻
∞

control problems have been developed based on a
convex optimization approach in [42, 125–127], among which
the linear matrix inequality approach has been employed
widely to design both linear state feedback and output
feedback controllers subject to 𝐻

2
/𝐻
∞

criterion due to its
effectiveness in numerical optimization. It is noted that the
mixed 𝐻

2
/𝐻
∞

control theories have already been applied to
various engineering fields [49, 128, 129].

Parallel to the mixed𝐻
2
/𝐻
∞
control problem, the mixed

𝐻
2
/𝐻
∞

filtering problem has also been well studied, and
several approaches have been proposed to tackling the prob-
lem. For example, Bernstein and Haddad [123] transformed
the mixed 𝐻

2
/𝐻
∞

filtering problem into an auxiliary min-
imization problem. Then, by using the Lagrange multiplier
technique, they gave the solutions in terms of an upper
bound on the 𝐻

2
filtering error. In [130, 131], a time domain

game approach was proposed to solve the mixed 𝐻
2
/𝐻
∞

filtering problem through a set of coupled Riccati equations.
Recently, LMI method has been widely employed to solve
the multiobjective mixed 𝐻

2
and 𝐻

∞
filtering problems; see

[60, 132] for examples.
As far as nonlinear systems are concerned, the mixed
𝐻
2
/𝐻
∞

control problem as well as filtering problem has
gained some research interests; see, for examples, [133–
135]. For nonlinear deterministic systems, the mixed𝐻

2
/𝐻
∞

control problem has been solved with the solutions char-
acterized in terms of the cross-coupled Hamilton-Jacobi-
Isaacs (HJI) partial differential equations. Since it is difficult
to solve the cross-coupled HJI partial differential equations
either analytically or numerically, in [134], the authors have
used the Takagi and Sugeno (T-S) fuzzy linear model to
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approximate the nonlinear system, and solutions to themixed
𝐻
2
/𝐻
∞

fuzzy output feedback control problem have been
obtained via an LMI approach. For nonlinear stochastic sys-
tems, unfortunately, the mixed 𝐻

2
/𝐻
∞

control and filtering
problem has not received full investigation, and few results
have been reported. In [38], for a special type of nonlinear
stochastic system, which is known as bilinear systems (also
called systems with state-dependent noise or systems with
multiplicative noise), a stochastic mixed 𝐻

2
/𝐻
∞

control
problem has been solved and sufficient conditions have been
provided in terms of the existence of the solutions of cross-
coupled Riccati equations. Very recently, an LMI approach
has been proposed in [135] to solve themixed𝐻

2
/𝐻
∞
control

problem for a class of nonlinear stochastic systems which
includes several well-studied types of nonlinear systems.
For the stochastic systems with much more complicated
nonlinearities, by means of game theory approach, the mixed
𝐻
2
/𝐻
∞

control problem has been solved for systems with
RONs in [29] and Markovian jump parameters in [68],
respectively. Nevertheless, to the best of authors’ knowledge,
the mixed𝐻

2
/𝐻
∞

control and filtering problems for general
nonlinear systems have not yet received enough investigation
and still remain as challenging topics.

4. Latest Progress

Very recently, the variance-constrained multiobjective con-
trol as well as filtering problem for nonlinear stochastic
systems has been intensively studied, and some elegant results
have been reported. In this section, we highlight some of the
newest work with respect to this topic.

(i) In [67], a robust variance-constrained filter has been
designed for a class of nonlinear stochastic systems
with both parameter uncertainties and probabilistic
missing measurements. In this paper, we have simul-
taneously considered the exponentially mean-square
stability, variance constraints, robustness against the
parameter uncertainties, and reliability in case of
possiblemeasurementsmissing.A general framework
for solving this problem has been established using an
LMI approach.

(ii) For the stochastic system with nonlinearities of both
the matched and unmatched forms, in [81], a sliding
mode control algorithm has been proposed to solve
the robust 𝐻

2
control problem. A new discrete-time

switching function has been proposed, and then a
sufficient condition has been derived to ensure both
the exponentially mean-square stability and the 𝐻

2

performance in the sliding surface. It is worth men-
tioning that, using the proposedmethod in this paper,
several typical classes of stochastic nonlinearities can
be dealt with via SMC method.

(iii) In [100], a dissipative control problemhas been solved
for a class of nonlinear stochastic systems while guar-
anteeing tumultuously exponentially mean-square
stability, variance constraints, system dissipativity,
and reliability. An algorithm has been proposed to

convert the original nonconvex feasibility problem
into an optimalminimization problemwhich ismuch
more easy to solve by standard numerical software.

(iv) For the same type of nonlinear stochastic systems
as mentioned above, in [66], a robust variance-
constrained controller has been designed with the
guaranteed reliability against the possible actuator
failures.

(v) When the nonlinear stochastic system is time-
varying, [80] has designed a multiobjective controller
that meets the 𝐻

∞
performance and variance con-

straint over a finite horizon. By using the recursive
linear matrix inequalities method, a sufficient con-
dition for the solvability of the addressed controller
design problem has been given. Such an algorithm is
so elegant that it is soon followed bymany researchers
in related fields.

(vi) When it comes to the finite-horizon multiobjective
filtering for time-varying nonlinear stochastic sys-
tems, [35] has proposed a technique that could handle
𝐻
∞
performance and variance constraint at the same

time. It is worthmentioning that the design algorithm
developed in this paper is forward in time, which is
different from those in most of the existing literature
where the𝐻

∞
problem can be solved only backward

in time and thus can be combined with the variance
design and is suitable for online design.

(vii) In [29], the mixed𝐻
2
/𝐻
∞
controller design problem

has been dealt with for a class of nonlinear stochastic
systems with randomly occurring nonlinearities that
are characterized by two Bernoulli distributed white
sequences with known probabilities. For the mul-
tiobjective controller design problem, the sufficient
condition of the solvability of the mixed 𝐻

2
/𝐻
∞

control problem has been established by means of the
solvability of four coupled matrix-valued equations.
A recursive algorithm has been developed to obtain
the value of feedback controller step by step at
every sampling instant. Such a design algorithm has
been extended to the Markovian Jump systems with
probabilistic sensor failures in [68].

5. Conclusions and Future Work

In this paper, the variance-constrainedmultiobjective control
and filtering problems have been reviewed with some recent
advances for nonlinear stochastic systems. Latest results on
analysis and synthesis problems for nonlinear stochastic
systems with multiple performance constraints have been
surveyed. Based on the literature review, some related topics
for the future research work are listed as follows.

In practical engineering, there are still somemore compli-
cated yet important kinds of nonlinearities that have not been
studied. Therefore, the variance-constrained multiobjective
control and filtering problems for more general nonlinear
systems still remain open and challenging.



Abstract and Applied Analysis 9

Another future research direction is to further investigate
new performance indices (e.g., system energy constraints)
that can be simultaneously considered with other existing
ones. Also, variance-constrained multiobjective modeling,
estimation, filtering, and control problems could be consid-
ered for more complex systems [4, 13, 73, 74, 99].

It would be interesting to study the problems of variance-
constrained multiobjective analysis and design for large scale
nonlinear interconnected systems that are frequently seen in
modern industries.

A practical engineering application of the existing theo-
ries andmethodologies would be the target tracking problem.
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This paper deals with the distributed consensus of the multiagent system. In particular, we consider the case where the velocity
(second state) is unmeasurable and the communication among agents occurs at sampling instants. Based on the impulsive control
theory, we propose an impulsive consensus algorithm that extends some of our previous work to account for the lack of velocity
measurement. By using the stability theory of the impulsive system, some necessary and sufficient conditions are obtained to ensure
the consensus of the controlled multiagent system. It is shown that the control gains, the sampled period and the eigenvalues of
Laplacian matrix of communication graph play key roles in achieving consensus. Finally, a numerical simulation is provided to
illustrate the effectiveness of the proposed algorithm.

1. Introduction
Recently, distributed consensus has received great interest in
the control community, due to broad applications in forma-
tion [1], flocking [2, 3], synchronization in complex network
[4, 5], distributed filtering [6], distributed optimization [7],
and so forth. The main idea of distributed consensus is that
each agent only communicates with its neighbors while the
whole system of agents can converge to a common value,
which by nature is a local distributed algorithm. Vicsek et
al. [8] studied a simple discrete-time model of agents moving
in the plane with the same speed but with different headings
via simulations. The corresponding theoretical analysis was
provided in [9]. Olfati-Saber and Murray presented the
framework of the distributed consensus in [10], where the
distributed consensus was studied in the multiagent system
with fixed/switching topology andwith/without delays. From
then on, much progress has been made in the studies of the
distributed consensus of themultiagent system in recent years
[11–14].There is a growing interest focusing on the consensus
algorithms of the second-order multiagent system. Lin and
Jia [15] studied the consensus problem of the multiagent sys-
tem with nonuniform timedelays and dynamically changing
topologies. In [16, 17], Su et al. investigated second-order

consensus of the multiagent system with nonlinear dynamics
and a virtual leader in a dynamic proximity network.

Due to the application of communication, the distributed
consensus with sampled communication has received much
attention in recent years. Many valuable algorithms have
been proposed to deal with sampled communication [18–
25], where distributed algorithms regulate the velocity of
each agent continuously in the sampling period. On the
other hand, most consensus algorithms for the multiagent
system rely on the availability of the full state, only limited
works [26–29] have been done when velocity information is
unmeasurable.

The main contribution of this paper is to propose an
impulsive consensus algorithm for the multiagent system
without velocity measurements in the presence of sampled
communication. The impulsive control strategy is effective
when the state can be regulated instantaneously. This kind
of algorithms are reasonable for many network systems. For
example, in multi vrobot systems, the velocity of each robot
can be changed very quickly, and the operating time of the
actuator is much smaller than the sampling time. Impulsive
control strategies for the multiagent system with nonlinear
(linear) dynamics were considered in [30–32], where the
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impulsive controllers regulate all states of each agent in
the system. We introduced impulsive algorithms for the
multiagent system in [33–35], where only the velocity of each
agent is regulated by the algorithms. In [33], some necessary
and sufficient conditions are obtained for consensus/static
consensus of the multiagent system. The consensus means
that all the agents asymptotically tend to the zero-relative
position (the agents may still change their positions) with
a common velocity. The static consensus can ensure that all
the agents tend to a common position. The leader-following
case was studied in [35]. In [34], we proposed an impulsive
consensus algorithm without velocity measurement for static
consensus of multiagent system. How to achieve consensus
without velocitymeasurement is still an open problem, which
is the motivation of the study presented in this paper.

This paper is organized as follows. In Section 2, some
necessary mathematical preliminaries are given, and the
impulsive algorithm without using velocity information is
also introduced. The main results of this paper, that is, the
convergence of the proposed algorithm, are presented in
Section 3. In Section 4, an illustrative numerical example is
given. The concluding remarks are finally stated in Section 5.

Notation. Let N and R denote the natural numbers and the
set of real numbers, respectively. 𝐼

𝑛
and 0
𝑛×𝑚

are the identity
matrixes of order 𝑛 (or simply 𝐼 if no confusion arises) and
the 𝑛 × 𝑚matrix with all elements equal to zero (or simply 0
if no confusion arises), respectively. 𝜌(𝐴) denotes the spectral
radius of squares matrix 𝐴. For 𝛾 ∈ C, Re(𝛾) and Im(𝛾) are
the real part and the imaginary part of 𝛾.

2. Preliminary and Problem Formulation

The communication structure of the multiagent system is
described by an undirected graph G = (V,E) with a set of
agents V = {1, 2, . . . , 𝑁} and a set of edges E ⊆ V × V (G
has no self-loops or repeated edges). An edge {𝑖, 𝑗} inGmeans
that node 𝑖 can receive information from node 𝑗.N

𝑖
denotes

the set of neighbors of agents 𝑖, that is,N
𝑖
= {𝑗 ∈ V | (𝑖, 𝑗) ∈

E}. The Laplacian matrixL of the graphG is defined as

L =

{{

{{

{

𝑙
𝑖𝑗
< 0, if (𝑖, 𝑗) ∈ E,

−

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑙
𝑖𝑗
, 𝑖 = 𝑗.

(1)

A directed path in a digraph G is an ordered sequence
V
1
, V
2
, . . . , V

𝑘
of agents such that any ordered pair of vertices

appearing consecutively in the sequence is an edge of the
digraph, that is, (V

𝑖
, V
𝑖+1

) ∈ E, for any 𝑖 = 1, 2, . . . , 𝑘 − 1.
A directed tree is a digraph, where there exists an agent,
called the root, such that any other agent of the digraph can
be reached by one and only one path starting at the root.
TG = {VT,ET} is a directed spanning tree of G, if TG is
a directed tree andVT = V.

We consider a multiagent system with𝑁 identical agents:
̇𝑝
𝑖
(𝑡) = V

𝑖
(𝑡) , ̇V

𝑖
(𝑡) = 𝑢

𝑖
(𝑡) , (2)

where 𝑖 ∈ N, 𝑝
𝑖
∈ R and V

𝑖
∈ R are the position and velocity

of agent 𝑖, respectively, 𝑢
𝑖
∈ R is a control input. All results in

this paper still hold for 𝑝
𝑖
, V
𝑖
, 𝑢
𝑖
∈ R𝑛 by using the Kronecker

product operations.

Definition 1. Consensus in themultiagent system (2) is said to
be achieved, if, for any initial state, lim

𝑡→∞
‖𝑝
𝑖
(𝑡)−𝑝

𝑗
(𝑡)‖ = 0

and lim
𝑡→∞

‖V
𝑖
(𝑡) − V

𝑗
(𝑡)‖ = 0, where 𝑖, 𝑗 ∈ V.

In this paper, we assume that both the absolute and
relative velocities are unmeasurable, and the communication
among agents occurs at sampling instants. The sampled
sequence is given by {𝑡

𝑘
|
∞

𝑘=1
}, which satisfies 0 < 𝑡

1
< 𝑡
2
<

⋅ ⋅ ⋅ < 𝑡
𝑘

< ⋅ ⋅ ⋅ , lim
𝑘→∞

𝑡
𝑘

= ∞, and 𝑡
𝑘+1

− 𝑡
𝑘

= ℎ, where
sampling period ℎ is positive constant. The following impu-
lsive algorithmwithout using any velocity information is pro-
posed and described by the following impulsive differential
equations:

̇𝑝
𝑖
(𝑡) = V

𝑖
(𝑡) ,

̇V
𝑖
(𝑡) = 0,

ΔV
𝑖
(𝑡
𝑘
) = −𝛽

1
∑

𝑗∈N𝑖

𝑙
𝑖𝑗
(𝑝
𝑗
(𝑡
𝑘
) − 𝑝
𝑖
(𝑡
𝑘
))

− 𝛽
2
∑

𝑗∈N𝑖

𝑙
𝑖𝑗
(𝑦
𝑗
(𝑘) − 𝑦

𝑖
(𝑘)) ,

𝑦
𝑖
(𝑘 + 1) = −𝛼 ∑

𝑗∈N𝑖

𝑙
𝑖𝑗
(𝑝
𝑗
(𝑡
𝑘
) − 𝑝
𝑖
(𝑡
𝑘
)) ,

(3)

where ΔV
𝑖
(𝑡
𝑘
) = V
𝑖
(𝑡
+

𝑘
) − V
𝑖
(𝑡
𝑘
), V
𝑖
(𝑡
+

𝑘
) = lim

𝑡→ 𝑡
+

𝑘

V
𝑖
(𝑡), 𝑖 ∈ V.

We assumed that V
𝑖
(𝑡) is left-hand continuous at 𝑡 = 𝑡

𝑘
, 𝑘 ∈ N,

and V(𝑡) is continuous at 𝑡
0
= 0.

Remark 2. The proposed algorithm only uses sampled infor-
mation of relative position (i.e. 𝑥

𝑖
(𝑡)−𝑥

𝑗
(𝑡)) which is different

from [26–29], where the continuous position information
is required. It is also different from our previous work [34]
which requires the sampled information of relative position
to itself in previous sampling instant (i.e., 𝑥

𝑖
(𝑡
𝑘
) − 𝑥
𝑖
(𝑡
𝑘−1

)).
The following lemmas are needed in the proof of the

theorem.

Lemma 3 (see [36]). Zero is a simple eigenvalue ofL, and all
the other eigenvalues have positive real parts if and only if G
contains a spanning tree.

Define

𝑀 = (

1 −1 0 ⋅ ⋅ ⋅ 0

1 0 −1 0 ⋅ ⋅ ⋅ 0

... d
...

1 0 ⋅ ⋅ ⋅ 0 −1 0

1 0 ⋅ ⋅ ⋅ 0 −1

)

(𝑁−1)×𝑁

, (4)

𝐺 =
(
(

(

0 0 0 ⋅ ⋅ ⋅ 0

−1 0 0 0

0 −1 d 0

d d d 0

... d −1 0

0 0 ⋅ ⋅ ⋅ 0 −1

)
)

)𝑁×(𝑁−1)

. (5)

From [4, 37], we can get the following lemma.
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Lemma4. LetL be the Laplacianmatrix of the graphG.Then
the (𝑁−1)×(𝑁−1)matrix L̂ defined by L̂ = 𝑀L𝐺 satisfies
𝑀L = L̂𝑀. Furthermore,

�̂� = (

𝑙
22

− 𝑙
12

𝑙
23

− 𝑙
13

⋅ ⋅ ⋅ 𝑙
2𝑁

− 𝑙
1𝑁

𝑙
32

− 𝑙
12

𝑙
33

− 𝑙
13

⋅ ⋅ ⋅ 𝑙
3𝑁

− 𝑙
1𝑁

...
... d

...
𝑙
𝑁2

− 𝑙
12

𝑙
𝑁2

− 𝑙
13

⋅ ⋅ ⋅ 𝑙
𝑁2

− 𝑙
𝑁𝑁

)

(𝑁−1)×(𝑁−1)

. (6)

Lemma 5 (see [29]). The complex polynomial R(z) = z2+az+
b, where 𝛼 ∈ C and 𝛽 ∈ C, is Hurwitz stable if and only if
Re(𝑎) > 0 andRe(𝑎) Im(𝑎) Im(𝑏)+Re2(𝑎)Re(𝑏)−Im2(𝑏) > 0.

3. Consensus in Multi-Agent System

Denote the eigenvalues of 𝐿, respectively, by 𝜆
1
, 𝜆
2
, ...,𝜆
𝑟
,

where 𝜆
1

= 0. According to Lemma 3, 𝜆
1

= 0 is a simple
eigenvalue if G contains a spanning tree. Note that when G
is a directed graph, 𝜆

𝑖
, for 𝑖 = 1, 2, . . . , 𝑟, may be complex

numbers.

Theorem 6. The controlled multiagent system (3) can achieve
consensus if and only if the graph G contains a spanning tree
and 𝜌(𝑀

𝑙
) < 1, where 𝜆

𝑙
are the nonzero eigenvalues of L,

𝑙 = 2, . . . , 𝑟,

𝑀
𝑙
= (

1 − 𝜆
𝑙
ℎ𝛽
1

ℎ −𝜆
𝑙
ℎ𝛽
2

−𝜆
𝑙
𝛽
1

1 −𝜆
𝑙
𝛽
2

−𝜆
𝑙
𝛼 0 0

) . (7)

Proof. Note that 𝑝
𝑖
(𝑡) is continuous at 𝑡 = 𝑡

𝑘
. From (3), one

has

𝑝
𝑖
(𝑡
𝑘+1

) = 𝑝
𝑖
(𝑡
𝑘
) + ℎV

𝑖
(𝑡
+

𝑘
) ,

V
𝑖
(𝑡
−

𝑘+1
) = V
𝑖
(𝑡
+

𝑘
) ,

V
𝑖
(𝑡
+

𝑘
) = V
𝑖
(𝑡
−

𝑘
) − 𝛽
1
∑

𝑗∈N𝑖

𝑙
𝑖𝑗
(𝑝
𝑗
(𝑡
𝑘
) − 𝑝
𝑖
(𝑡
𝑘
))

− 𝛽
2
∑

𝑗∈N𝑖

𝑙
𝑖𝑗
(𝑦
𝑗
(𝑘) − 𝑦

𝑖
(𝑘)) ,

𝑦
𝑖
(𝑘 + 1) = −𝛼 ∑

𝑗∈N𝑖

𝑙
𝑖𝑗
(𝑝
𝑗
(𝑡
𝑘
) − 𝑝
𝑖
(𝑡
𝑘
)) .

(8)

Then, one has

𝑝
𝑖
(𝑡
𝑘+1

) = 𝑝
𝑖
(𝑡
𝑘
)

+ ℎ(V
𝑖
(𝑡
−

𝑘
) − 𝛽
1
∑

𝑗∈N𝑖

𝑙
𝑖𝑗
(𝑝
𝑗
(𝑡
𝑘
) − 𝑝
𝑖
(𝑡
𝑘
))

−𝛽
2
∑

𝑗∈N𝑖

𝑙
𝑖𝑗
(𝑦
𝑗
(𝑘) − 𝑦

𝑖
(𝑘))) ,

V
𝑖
(𝑡
−

𝑘+1
) = V
𝑖
(𝑡
−

𝑘
)

− 𝛽
1
∑

𝑗∈N𝑖

𝑙
𝑖𝑗
(𝑝
𝑗
(𝑡
𝑘
) − 𝑝
𝑖
(𝑡
𝑘
))

− 𝛽
2
∑

𝑗∈N𝑖

𝑙
𝑖𝑗
(𝑦
𝑗
(𝑘) − 𝑦

𝑖
(𝑘)) ,

𝑦
𝑖
(𝑘 + 1) = −𝛼 ∑

𝑗∈N𝑖

𝑙
𝑖𝑗
(𝑝
𝑗
(𝑡
𝑘
) − 𝑝
𝑖
(𝑡
𝑘
)) .

(9)

Let 𝑌
𝑖
(𝑘) = (𝑝

𝑖
(𝑡
𝑘
), V
𝑖
(𝑡
𝑘
), 𝑦(𝑘))

𝑇 and 𝑌(𝑘) = (𝑌
1
(𝑘), 𝑌
2
(𝑘),

. . . , 𝑌
𝑁
(𝑘))
𝑇; then,

𝑌 (𝑘 + 1) = 𝐴𝑌 (𝑘) , (10)

where 𝐴 = 𝐼
𝑁
⊗ 𝐵 −L ⊗ 𝐶. Let𝑋(𝑘 + 1) = (𝑀 ⊗ 𝐼

3
)𝑌(𝑘 + 1),

where𝑀 is defined in (4). From (10), one has

𝑋 (𝑘 + 1) = (𝑀 ⊗ 𝐼
3
) 𝐴𝑌 (𝑘) ,

(𝑀 ⊗ 𝐼
3
) 𝐴 = 𝑀 ⊗ 𝐵 − 𝑀L ⊗ 𝐶

= 𝐼
𝑁−1

𝑀 ⊗ 𝐵 − L̂𝑀 ⊗ 𝐶

= (𝐼
𝑁−1

⊗ 𝐵 − L̂ ⊗ 𝐶) (𝑀 ⊗ 𝐼
3
) ,

(11)

where �̂� is defined in (6). Then,

𝑋 (𝑘 + 1) = (𝐼
𝑁−1

⊗ 𝐵 − �̂� ⊗ 𝐶)𝑋 (𝑘) . (12)

Note that

𝐸
−1
𝐿𝐸 = (

0 𝑏

0
(𝑁−1)

L̂
) , (13)

where 𝑏 = (𝑙
12
, 𝑙
13
, ..., 𝑙
1𝑁

) and

𝐸 = (
1 0𝑇

𝑁−1

1
𝑁−1

𝐼
𝑁−1

) , (14)

is an invertible matrix. According to Lemma 3, 𝜆
1

= 0 is
a simple eigenvalue of L if the G contains a spanning tree
(it is well known that G contains a spanning tree which is
a necessary condition for consensus). Then, L̂ do not have
zero eigenvalue. This implies that the eigenvalues of L̂ are
𝜆
2
, 𝜆
3
,. . .,𝜆
𝑟
. Then, there exists a nonsingular matrix 𝑃 ∈

R(𝑛−1)×(𝑛−1), such that

𝑃L̂𝑃
−1

= 𝐽, (15)

where 𝐽 = diag(𝐽
2
, 𝐽
3
, . . . , 𝐽

𝑟
),

𝐽
𝑙
= (

𝜆
𝑙

0 0 0

1 d 0 0

0 d d 0

0 0 1 𝜆
𝑙

)

𝑁𝑙×𝑁𝑙

, (16)

𝑁
𝑙
is multiplicity of eigenvalue 𝜆

𝑙
and𝑁

2
+ ⋅ ⋅ ⋅ + 𝑁

𝑟
= 𝑁 − 1.
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Let 𝑋(𝑘) = (𝑃 ⊗ 𝐼
3
)𝑋(𝑘) = (𝑥

2
, 𝑥
3
, . . . , 𝑥

𝑟
)
𝑇, where 𝑥

𝑙
∈

R3𝑁𝑙 . Then, from (12),

𝑋 (𝑘 + 1) = (𝐼
𝑁−1

⊗ 𝐵 − 𝑃L̂𝑃
−1

⊗ 𝐶)𝑋 (𝑘)

= (𝐼
𝑁−1

⊗ 𝐵 − 𝐽 ⊗ 𝐶)𝑋 (𝑘) ,

(17)

where 𝐽 = diag{𝐽
2
, 𝐽
3
, . . . , 𝐽

𝑟
}.𝑋(𝑘+1) is asymptotically stable

if and only if ̇𝑥 = (𝐼
𝑁−1

⊗ 𝐵 − 𝐽
𝑙
⊗ 𝑋)𝑥. Similar to analysis in

[24, 29], 𝑋(𝑘 + 1) is asymptotically stable if and only if 𝑧(𝑘 +

1) = (𝐵 − 𝜆
𝑙
)𝑧(𝑘) is stable. Note that 𝑀

𝑙
= (𝐵 − 𝜆

𝑙
) which

immediately leads to the conclusion.

Theorem 7. The controlled multiagent system (3) achieves
consensus asymptotically if and only if the communication
graphG contains a spanning tree and

Re (𝜆
𝑙
) (𝛽
1
− 𝛼𝛽
2
Re (𝜆
𝑙
)) − Im2 (𝜆

𝑙
) 𝛼𝛽
2
> 0, (18)

𝑎𝑏𝑑 + 𝑎
2
𝑐 − 𝑑
2
> 0, (19)

where 𝑙 = 2, 3, . . . , 𝑟,

𝑎 = Re(
2𝜆
2

𝑙
𝛼ℎ𝛽
2

𝜆
𝑙
ℎ (𝛽
1
− 𝜆
𝑙
𝛼𝛽
2
)
) ,

𝑏 = Im(
2𝜆
2

𝑙
𝛼ℎ𝛽
2

𝜆
𝑙
ℎ (𝛽
1
− 𝜆
𝑙
𝛼𝛽
2
)
) ,

𝑐 = Re (
4 − 𝜆
2

𝑙
𝛼ℎ𝛽
2
− 𝜆
𝑙
ℎ𝛽
1

𝜆
𝑙
ℎ (𝛽
1
− 𝜆
𝑙
𝛼𝛽
2
)

) ,

𝑑 = Im(
4 − 𝜆
2

𝑙
𝛼ℎ𝛽
2
− 𝜆
𝑙
ℎ𝛽
1

𝜆
𝑙
ℎ (𝛽
1
− 𝜆
𝑙
𝛼𝛽
2
)

) .

(20)

Proof. Let 𝜇 be an eigenvalue of matrix𝑀
𝑙
. Then,

det (𝜇𝐼
3
− 𝑀
𝑖
) = 𝜇
3
− (2 − 𝜆

𝑙
ℎ𝛽
1
) 𝜇
2
− (𝜆
2

𝑙
𝛼ℎ𝛽
2
− 1) 𝜇.

(21)

Let

𝑃
𝑙
(𝜇) = 𝜇

2
− (2 − 𝜆

𝑙
ℎ𝛽
1
) 𝜇 − (𝜆

2

𝑙
𝛼ℎ𝛽
2
− 1) . (22)

It is easy to know that polynomials 𝑃
𝑙
(𝜇), for 𝑙 = 2, 3, . . . , 𝑟,

are Schur stable if and only if 𝜌(𝑀
𝑙
) < 1.

(𝑠 − 1) 𝑃
𝑖
(
𝑠 + 1

𝑠 − 1
)

= (𝜆
𝑙
ℎ𝛽
1
− 𝜆
2

𝑙
𝛼ℎ𝛽
2
) 𝑠
2
+ 2𝜆
2

𝑙
𝛼ℎ𝛽
2
𝑠

+ 4 − 𝜆
2

𝑙
𝛼ℎ𝛽
2
− 𝜆
𝑙
ℎ𝛽
1
.

(23)

If 𝛽
1
− 𝜆
𝑖
𝛼𝛽
2

= 0, 1 is a root of 𝑃
𝑙
(𝜇) = 1. Therefore,

𝜆
𝑖
ℎ(𝛽
1
− 𝜆
𝑖
𝛼𝛽
2
) ̸= 0, if the consensus can be achieved. Then,

the consensus can be achieved if and only if the polynomials
𝑃
𝑙
(𝑠), for 𝑙 = 2, . . . , 𝑟, are Hurwitz stable, where

𝑃
𝑙
(𝑠) = 𝑠

2
+

2𝜆
2

𝑙
𝛼ℎ𝛽
2

𝜆
𝑙
ℎ (𝛽
1
− 𝜆
𝑙
𝛼𝛽
2
)
𝑠

+
4 − 𝜆
2

𝑙
𝛼ℎ𝛽
2
− 𝜆
𝑙
ℎ𝛽
1

𝜆
𝑙
ℎ (𝛽
1
− 𝜆
𝑙
𝛼𝛽
2
)

.

(24)

It is easy to check

Re(
2𝜆
2

𝑙
𝛼ℎ𝛽
2

𝜆
𝑙
ℎ (𝛽
1
− 𝜆
𝑙
𝛼𝛽
2
)
) > 0, (25)

if and only if (18) holds. By Lemma 5, the polynomials 𝑃
𝑖
(𝑠),

for 𝑖 = 1, 2, . . . , 𝑁, are Hurwitz stable if and only if (18) and
(19) hold. The proof is thus completed.

Remark 8. According to the previous discussion, both the
real and imaginary parts of the eigenvalues of the Laplacian
matrix play key roles in achieving consensus. The necessary
and sufficient conditions in Theorems 6 and 7 are too com-
plicated to directly display the relationship among consensus,
control gains, and sampled period.

When it comes to undirected graph, the results will be
more simple.

Corollary 9. The controlled multiagent system (3) achieves
consensus asymptotically if and only if the undirected commu-
nication graphG is connected and

𝜆
𝑖
𝛼𝛽
2
< 𝛽
1
<

4 − 𝜆
2

𝑖
𝛼ℎ𝛽
2

𝜆
𝑖
ℎ

, (26)

where 𝑖 = 2, 3, . . . , 𝑁.

Proof. It is well known that L contains 𝑁 − 1 positive real
eigenvalues if G is a connected undirected graph. Then, one
has 𝑏 = 0 and 𝑑 = 0. From Theorem 7, (18) and (19) hold if
and only if (26) is satisfied. The proof is thus completed.

Remark 10. Equation (26) is nonempty, when

4 − 𝜆
2

𝑖
𝛼ℎ𝛽
2

𝜆
𝑖
ℎ

− 𝜆
𝑖
𝛼𝛽
2
> 0, (27)

which implies that

𝛼𝛽
2
<

2

𝜆
2

𝑖
ℎ
. (28)

So, we can choose the control gains 𝛼 and 𝛽
2
from (28) and

choose 𝛽
1
from (26).Therefore, it is quite easy to find suitable

control gains for any connected graphG and sampled period
ℎ.
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Figure 1: Communication graph.
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Figure 2: Trajectory of controlled multiagent system (3) with communication graph shown in Figure 1, where 𝛽
1
= 0.2, 𝛽

2
= 0.05, 𝛼 = 1.
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𝑖
and (b) V
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The following corollary will show, when the control gains
are given, how to determine suitable control gains ℎ.

Corollary 11. Thecontrolledmultiagent system (3) can achieve
consensus if and only if the undirected communication graph G
is connected,

ℎ <
4

𝜆max (𝜆max𝛼ℎ𝛽2 + 𝛽
1
)
, 𝛽
1
> 𝜆
𝑖
𝛼𝛽
2
, (29)

where 𝜆max = max{𝜆
2
, 𝜆
3
, . . . , 𝜆

𝑁
}.

Remark 12. When 𝛽
1
> 𝜆
𝑖
𝛼𝛽
2
is not satisfied, the consensus

will fail. The upper bound of sampled period increases as
𝜆max, 𝛼, 𝛽1, and 𝛽

2
decrease. The sampled period ℎ does not

have the lower bound, which is different from [34].

4. Illustrative Examples

In this section, an illustrative example is given to demonstrate
the correctness of the theoretical analysis. We consider
the controlled multiagent system (3) with 8 agents. The
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communication graph is shown in Figure 1. The Laplacian
matrix is

L =

(
(
(
(

(

3 −1 −1 −1 0 0 0 0

−1 3 0 0 −1 −1 0 0

−1 0 2 0 0 0 −1 0

−1 0 0 3 −1 0 0 −1

0 −1 0 −1 3 0 −1 0

0 −1 0 0 0 2 0 −1

0 0 −1 0 0 0 1 0

0 0 0 −1 0 −1 0 2

)
)
)
)

)

. (30)

By calculation, one has 𝜆
1
= 0, 𝜆

2
= 0.4965, 𝜆

3
= 1.7356,

𝜆
4
= 𝜆
5
= 2, 𝜆

6
= 3.5767, 𝜆

7
= 4, and 𝜆

8
= 5.1912.

When the sampled period ℎ = 1 is given, from (28),
choose 𝛼 = 1 and 𝛽

2
= 0.05 which satisfy

𝛼𝛽
2
<

2

𝜆2maxℎ
. (31)

From Corollary 9, the consensus can be achieved if and only
if 0.2596 < 𝛽

1
< 0.5110. Figures 2 and 3 show that consensus

cannot be reached when 𝛽
1
= 0.2 and 𝛽

1
= 0.55 but can be

achieved when 𝛽
1
= 0.3 (shown in Figure 4).

5. Conclusions

In this paper, the distributed consensus problem has been
considered for the continuous-time multiagent system under
intermittent communication. Motivated by impulsive con-
trol strategy, an impulsive consensus algorithm has been
proposed, where the local algorithm of each agent is only
based on the position information. Based on the stability
theory of impulsive systems and the property of graph
Laplacian matrix, some necessary and sufficient conditions
for consensus have been obtained. From the results, we can
easily find out suitable control gains for consensus. Finally, a
numerical example is given to verify the theoretical analysis.
It would be interesting to further investigate the multiagent
system with switching topology via impulsive control to
realize consensus.
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This paper is devoted to tackling the control problem for a class of discrete-time stochastic systems with randomly occurring
sensor saturations.The considered sensor saturation phenomenon is assumed to occur in a randomway based on the time-varying
Bernoulli distribution with measurable probability in real time. The aim of the paper is to design a nonfragile gain-scheduled
controller with probability-dependent gains which can be achieved by solving a convex optimization problem via semidefinite
programming method. Subsequently, a new kind of probability-dependent Lyapunov functional is proposed in order to derive the
controller with less conservatism. Finally, an illustrative example will demonstrate the effectiveness of our designed procedures.

1. Introduction

In reality, virtually almost all dynamic systems are subject to
stochastic perturbation, and stochastic model has been suc-
cessfully established to describe many practical systems, such
as economic systems, process control systems, networked
control systems (NCSs), and sensor network. For several
decades, the study of stabilization, control, and filtering
problem has drawnmany researchers’ attention; some results
can be found in [1–16]. On the other hand, time delays also
serve as one of the main sources for poor performance
and instability. Consequently, the stochastic control issue for
time-delay systems has also been intensively investigated; see,
for example, [2, 4, 7, 8, 10, 11, 13, 15].

The randomly occurring phenomenon is a newly emerg-
ed research topic which has drawn many researchers’ atten-
tion; see, for example, [1–3, 5, 6, 8, 9, 12–16]. It refers to these
phenomena appearing in a random way based on a certain
kind of probabilistic law including randomly occurring non-
linearities (RONs), missing measurements, randomly occur-
ring actuator faults, randomly varying sensor delays (RVSDs),
and randomly occurring sensor saturations (ROSSs), and so
on. For more details about randomly occurring phenomena,

the reader is referred to [9]. If not handled appropriately,
these phenomena could cause a reduction of performance
and/or launch a threat to the safety and reliability of the
plant. Therefore, it is not surprising that various filtering and
control techniques have been developed to deal with such
randomly occurring phenomena, in addition to 𝐻

∞
control

[16]/filtering [12] and𝐻
∞
state estimation [1]methods. In [2],

a robust sliding mode control has been designed for system
with mixed time-delays, randomly occurring uncertainties,
and RONs; while gain-constrained recursive filter approach
has been used in [5] for system with probabilistic sensor
delays, the extendedKalman filtering and quantized recursive
filtering problem for systemwithmissingmeasurements have
been studied in [3, 6], respectively. Therefore, in this paper,
the ROSS (one of the important randomly occurring phe-
nomena) is studied by exploiting gain-scheduling method,
which is another motivation of this paper.

Sensor saturation phenomenon is very common in prac-
tical engineering. It means that sensors cannot provide
signals of unlimited amplitude due mainly to the physical or
technological constraints. In another aspect, because of
random occurrences of networked induced phenomena in
networked control systems (NCSs), such as random sensor
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failures leading to intermittent saturation and sensor aging
resulting in changeable saturation level, sensor saturation
may occur in a random way. We consider this phenomenon
as randomly occurring sensor saturation, which has received
increasing attention, for instance, [1, 12]. Reference [1] dis-
cussed the 𝐻

∞
state estimation problem for discrete-time

complex networks with ROSSs and RVSDs, while [12] turned
to design an 𝐻

∞
filter for system with ROSSs and missing

measurements. However, to the best of authors’ knowledge,
rare published literature has dealt with ROSSs; therefore, this
paper tries to flourish the research on this phenomenon by
designing a nonfragile gain-scheduled controller.

Over the past decades, gain-scheduling method is one
of the most popular methods of controller designing and
has been extensively studied from theoretical and practical
viewpoints; see, for example, [8, 14, 15, 17–19]. The gain-
scheduling method is to design controller gains as functions
of the scheduling parameters, which can update the controller
with a set of tuning parameters in order to optimize the
closed-loop performance when outside environment changes
(e.g., the occurrences of a variety of randomly occurring
phenomena). It should be noted that the designed gain-
scheduling controller has not only the constant part but also
time-varying part which can be scheduled online according
to the corresponding time-varying parameters; see [8, 14, 15].
Therefore, it will naturally lead to less conservatism than the
conventional ones with fixed gains only.

On the other hand, it is well known that in order to get
better performance of the system, an accuracy controller is
needed to resist the impact by the uncertainties occurring
in the course of the implementation of a designed controller.
Such uncertainties can be due to the existence of parameter
drift, round-off errors in numerical computation during
controller implementation, and the safe-tuning margins
provided for engineering application. In these cases, the
nonfragile controller is a good choice, as it can tolerate
some level of controller parameter variations; see [7, 20–22].
However, the controller with uncertainties and outside envi-
ronment changes often occur simultaneously; unfortunately,
few papers have tackled this phenomenon, and therefore, we
proposed a nonfragile gain-scheduled controller in this paper
to fill the gap by making a few first attempts to deal with this
problem.

The main contributions of this paper are summarized as
follows: (1) a new nonfragile gain-scheduled control problem
is addressed for a class of discrete-time nonlinear stochas-
tic systems with randomly occurring phenomenon; (2) a
sequence of stochastic variables satisfying Bernoulli distribu-
tion is introduced to describe the time-varying features of the
ROSSs; (3) a time-varying Lyapunov functional dependent
on the saturation probability is proposed and applied to
improve the performance of system; (4) the parameters of the
nonfragile gain-scheduled controller can be adjusted online
according to the saturating probability estimated through
statistical tests.

Notation. In this paper,R𝑛,R𝑛×𝑚, and I+ denote, respectively,
the 𝑛-dimensional Euclidean space, the set of all 𝑛 × 𝑚 real
matrices, and the set of all positive integers. | ⋅ | refers to

the Euclidean norm in R𝑛. 𝐼 denotes the identity matrix of
compatible dimension. The notation 𝑋 ≥ 𝑌 (resp., 𝑋 >

𝑌), where 𝑋 and 𝑌 are symmetric matrices, means that
𝑋 − 𝑌 is positive semidefinite (resp., positive definite). For
a matrix𝑀,𝑀𝑇 and𝑀−1 represent its transpose and inverse,
respectively. The shorthand diag{𝑀

1
,𝑀
2
, . . . ,𝑀

𝑛
} denotes

a block diagonal matrix with diagonal blocks being the
matrices 𝑀

1
,𝑀
2
, . . . ,𝑀

𝑛
. In symmetric block matrices, the

symbol∗ is used as an ellipsis for terms induced by symmetry.
Matrices, if they are not explicitly stated, are assumed to have
compatible dimensions. In addition, E{𝑥} and Prob{𝑦} will,
respectively, mean expectation of 𝑥 and probability of 𝑦.

2. Problem Formulation

Consider the following discrete-time nonlinear stochastic
systems:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐷𝑥 (𝑘 − 𝑑) + 𝐵𝑢 (𝑘)

+ 𝑁𝑓 (𝑧 (𝑘)) + 𝐸𝑥 (𝑘) 𝜔 (𝑘) ,

(1)

𝑥 (𝑘) = 𝜌 (𝑘) , 𝑘 = −𝑑, −𝑑 + 1, . . . , 0, (2)

where 𝑥(𝑘) ∈ R𝑛 is the state, 𝑑 is a constant delay and 𝑧(𝑘) :=
𝐺𝑥(𝑘)+𝐺

𝑑
𝑥(𝑘−𝑑),𝜔(𝑘) is a one-dimensional Gaussian white

noise sequence satisfyingE{𝜔(𝑘)} = 0 andE{𝜔2(𝑘)} = 𝜎2, and
𝜌(𝑘) is the initial state of the system.𝐴, 𝐵,𝐷, 𝐸,𝑁,𝐺, and𝐺

𝑑

are constant real matrices of appropriate dimensions and 𝐵 is
of full column.The nonlinear function𝑓(⋅)with (𝑓(0) = 0) is
assumed as nonlinear disturbance and satisfies the following
sector-bounded condition:

[𝑓(𝑧(𝑘)) − 𝐹
1
𝑧 (𝑘)]
𝑇

[𝑓 (𝑧 (𝑘)) − 𝐹
2
𝑧 (𝑘)] ≤ 0, (3)

where 𝑓(⋅) belongs to the sector [𝐹
1
, 𝐹
2
], 𝐹
1
and 𝐹

2
are given

constant real matrices.
For the technique convenience, the nonlinear function

𝑓(𝑧(𝑘)) can be decomposed into a linear part and a nonlinear
part as

𝑓 (𝑧 (𝑘)) = 𝑓
𝑠
(𝑧 (𝑘)) + 𝐹

1
𝑧 (𝑘) ; (4)

then, from (3), we have

𝑓
𝑇

𝑠
(𝑧 (𝑘)) (𝑓

𝑠
(𝑧 (𝑘)) − 𝐹𝑧 (𝑘)) ≤ 0, (5)

where 𝐹 = 𝐹
2
− 𝐹
1
> 0.

The measurement output with sensor saturation is des-
cribed as

𝑦 (𝑘) = 𝜉 (𝑘)  (𝐶𝑥 (𝑘)) + (1 − 𝜉 (𝑘)) 𝐶𝑥 (𝑘) , (6)

where 𝐶 is a constant real matrix of appropriate dimensions
and (𝑥) = sign(𝑥)min{1, |𝑥|}. Here, the notation of “sign”
means the signum function, and we use the notation 

to denote saturation functions. Note that, without loss of
generality, the saturation level is taken as unity.

According to the definition of the saturation function,
we can get that the nonlinear function  satisfies [(𝑥) −
𝑎𝑥][(𝑥) − 𝑥] ≤ 0 and |𝑥| ≤ 𝑎

−1, where 𝑎 is a positive scalar



Abstract and Applied Analysis 3

satisfying 0 < 𝑎 < 1, so the nonlinear function (𝐶𝑥(𝑘))

satisfies [(𝐶𝑥(𝑘)) − 𝑎𝐶𝑥(𝑘)]𝑇[(𝐶𝑥(𝑘)) − 𝐶𝑥(𝑘)] ≤ 0, while
|𝑎𝐶𝑥(𝑘)| ≤ 1 and 𝑎 satisfies 0 < 𝑎 < 1.

The variable 𝜉(𝑘) ∈ R is a randomwhite sequence charac-
terizing the probabilistic sensor saturation, which obeys the
following time-varying Bernoulli distribution:

Prob {𝜉 (𝑘) = 1} = E {𝜉 (𝑘)} = 𝑝 (𝑘) ,

Prob {𝜉 (𝑘) = 0} = 1 − E {𝜉 (𝑘)} = 1 − 𝑝 (𝑘) ,
(7)

where 𝑝(𝑘) is a time-varying positive scalar sequence and
belongs to [𝑝1 𝑝2] ⊆ [0 1] with 𝑝

1
and 𝑝

2
being the

lower and upper bounds of𝑝(𝑘), respectively.Throughout the
paper, for simplicity, we assume that 𝜉(𝑘), 𝜔(𝑘) and 𝜌(𝑘) are
uncorrelated.

Remark 1. In many practical systems, especially in NCSs,
the measurement output is often subject to ROSSs, and
the Bernoulli distribution model has been proven to be a
very flexible and effective way to model randomly occurring
phenomenon; see, for example, [1–3, 5, 6, 8, 13–15]. Further-
more, in practical engineering, the occurring probability of
sensor saturation phenomenon usually changes with time.
Therefore, in this paper, the occurrence of sensor saturation
is described by a random variable sequence 𝜉(𝑘) satisfying a
time-varying instead of time-invariant Bernoulli distribution
model, which will reduce the conservatismwhen used to deal
with the systems with time-varying ROSSs.

In this paper, we are interested in designing the following
nonfragile gain-scheduled static output feedback controller:

𝑢 (𝑘) = [𝐾 (𝑝 (𝑘)) + Δ𝐾] 𝑦 (𝑘) , (8)

where𝐾(𝑝(𝑘)) is the controller gain sequence to be designed
and assumed as the following structure:

𝐾(𝑝 (𝑘)) = 𝐾
0
+ 𝑝 (𝑘)𝐾

𝑢
; (9)

for every time step 𝑘, 𝑝(𝑘) is the time-varying parameter
of the controller gain, and 𝐾

0
and 𝐾

𝑢
are the constant

parameters of the controller gain to be designed, while
Δ𝐾 is an unknown matrix of appropriate dimensions and
represents the uncertainty in the controller, which is assumed
to be of the form

Δ𝐾 = 𝐿𝐻 (𝑘)𝑀, (10)

where 𝐿 and 𝑀 are known constant matrices with the
structured information of the uncertainty, and 𝐻(𝑘) is an
unknown, real, and time-varying matrix with Lebesgue-
measurable elements satisfying

𝐻
𝑇
(𝑘)𝐻 (𝑘) ≤ 𝐼, ∀𝑘. (11)

Remark 2. Instead of using the information of system states,
static output feedback control directly makes use of system
outputs to design controllers, which has proven to be much
simpler and easier to implement and has been extensively
used in various kinds of engineering fields; for more details,
we recommend some papers such as [23–27].

Remark 3. Owing to the pervasive existence of the uncertain-
ties during controller implementation, an accuracy controller
is needed to resist such an impact by the uncertainties, and
the nonfragile controller has been proven to be an effective
one; see, for example, [7, 20–22]. In another aspect, ROSSs
are ubiquitous during the process of measurement, especially
in NCSs, and gain-scheduling method has been successfully
utilized to tackle with randomly occurring phenomenon in
[8, 14, 15]. Therefore, in this paper, we design a nonfragile
gain-scheduled static output feedback controller for nonlin-
ear stochastic systems to deal with uncertainties and ROSSs
simultaneously.

From the aforementioned, the closed-loop system with
the nonfragile gain-scheduled controller is

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐷𝑥 (𝑘 − 𝑑) + 𝐵𝐾 (𝑝 (𝑘))

× [𝜉 (𝑘)  (𝐶𝑥 (𝑘)) + (1 − 𝜉 (𝑘)) 𝐶𝑥 (𝑘)]

+ 𝑁𝑓 (𝑧 (𝑘)) + 𝐸𝑥 (𝑘) 𝜔 (𝑘) .

(12)

Before formulating the problem to be investigated, we
first introduce the following stability concepts.

Definition 4. The closed-loop system (12) is said to be expo-
nentially mean-square stable if, with 𝜔(𝑘) = 0, there exist
constant 𝛼 > 0 and 𝜏 ∈ (0, 1) such that

E {
𝑥𝑘



2

} ≤ 𝛼𝜏
𝑘 sup
−𝑑≤𝑖≤0

E {
𝑥𝑖



2

} , 𝑘 ∈ I
+
. (13)

In this paper, our purpose is to design a probability-
dependent nonfragile gain-scheduled controller of the form
(8) for the system (1) by exploiting a probability-dependent
Lyapunov functional and LMI method such that, for all
admissible sensor saturations and exogenous stochastic noise,
the closed-loop system (12) is exponentially mean-square
stable.

3. Main Results

The following lemmas will be used in the proofs of our main
results in this paper.

Lemma 5 ((Schur complement) [28]). Given constant matri-
ces Σ
1
, Σ
2
, Σ
3
, where Σ

1
= Σ
𝑇

1
and 0 < Σ

2
= Σ
𝑇

2
, then

Σ
1
+ Σ
𝑇

3
Σ
−1

2
Σ
3
≥ 0 if and only if

[
Σ
1

Σ
𝑇

3

Σ
3
−Σ
2

] ≥ 0 or [
−Σ
2
Σ
3

Σ
𝑇

3
Σ
1

] ≥ 0. (14)

Lemma 6 (see [13]). Let the matrix 𝐵 ∈ 𝑅
𝑛×𝑚 be of full-

column rank. There always exist two orthogonal matrices 𝑈 ∈

𝑅
𝑛×𝑛 and 𝑉 ∈ 𝑅

𝑛×𝑛 such that 𝐵 = 𝑈 [
Σ

0
] 𝑉
𝑇 and Σ =

diag{𝜎
1
, 𝜎
2
, . . . , 𝜎

𝑚
}. If matrix 𝑆 has the following structure:

𝑆 = 𝑈 [
𝑆11 𝑆12

0 𝑆22
]𝑈
𝑇, where 𝑆

11
, 𝑆
12

∈ 𝑅
𝑛×(𝑛−𝑚) and 𝑆

22
∈

𝑅
(𝑛−𝑚)×(𝑛−𝑚), then there exists a nonsingular matrix 𝑅 ∈ 𝑅

𝑚×𝑚

such that 𝑆𝐵 = 𝐵𝑅.
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Lemma 7 ((𝑆-procedure) [28]). For given matrices 𝑄 = 𝑄
𝑇,

𝐻, and 𝐸 with appropriate dimensions,

𝑄 +𝐻𝐹 (𝑘) 𝐸 + 𝐸
𝑇
𝐹
𝑇
(𝑘)𝐻
𝑇
< 0 (15)

holds for all 𝐹(𝑘) satisfying 𝐹𝑇(𝑘)𝐹(𝑘) ≤ 𝐼 if and only if there
exists 𝜀 > 0 such that

𝑄 + 𝜀
−1
𝐻𝐻
𝑇
+ 𝜀𝐸
𝑇
𝐸 < 0. (16)

For convenience of presentation, we first consider the
desired controller without uncertainty (i.e., Δ𝐾 = 0), and
the result will be shown in Theorem 8. Then, we design the
nonfragile gain-scheduled controller inTheorem 10 based on
the conclusion inTheorem 8.

Theorem 8. Consider the discrete-time nonlinear stochastic
systems with ROSSs (12). If there exist positive-definitematrices
𝑄(𝑝(𝑘)) and 𝑄

𝜏
, slack matrix 𝑆, and nonsingular matrices

𝑌(𝑝(𝑘)) and 𝑅, such that the following LMIs hold:

Υ :=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑄
𝜏
− 𝑄 (𝑝 (𝑘)) − 2𝑎𝐶

𝑇
𝐶 ∗ ∗ ∗ ∗ ∗ ∗

0 −𝑄
𝜏

∗ ∗ ∗ ∗ ∗

(𝑎 + 1) 𝐶 0 −2𝐼 ∗ ∗ ∗ ∗

𝐹𝐺 𝐹𝐺
𝑑

0 −2𝐼 ∗ ∗ ∗

𝑆
𝑇
𝐴 + (1 − 𝑝 (𝑘)) 𝐵𝑌 (𝑝 (𝑘)) 𝐶 𝑆

𝑇
𝐷 𝑝 (𝑘) 𝐵𝑌 (𝑝 (𝑘)) 𝑆

𝑇
𝑁 −Λ ∗ ∗

𝜎
2
𝑆
𝑇
𝐸 0 0 0 0 −𝜎

2
Λ ∗

Δ
𝑝
(𝑘) 𝐵𝑌 (𝑝 (𝑘)) 𝐶 0 Δ

𝑝
(𝑘) 𝐵𝑌 (𝑝 (𝑘)) 0 0 0 −Δ

𝑝
(𝑘) Λ

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (17)

where

Λ = −𝑄 (𝑝 (𝑘 + 1)) + 𝑆 + 𝑆
𝑇
, Δ

𝑝
(𝑘) = 𝑝 (𝑘) (1 − 𝑝 (𝑘)) ,

𝐴 = 𝐴 + 𝑁𝐹
1
𝐺, 𝐷 = 𝐷 + 𝑁𝐹

1
𝐺
𝑑
, 𝑆

𝑇
𝐵 = 𝐵𝑅,

𝑅𝐾 (𝑝 (𝑘)) = 𝑌 (𝑝 (𝑘)) , 𝐾 (𝑝 (𝑘)) = 𝑅
−1
𝑌 (𝑝 (𝑘)) ,

𝑌 (𝑝 (𝑘)) = 𝑌
0
+ 𝑝 (𝑘) 𝑌

𝑢
,

(18)

in this case, the constant gains of the desired controller can be
obtained as follows:

𝐾
0
= 𝑅
−1
𝑌
0
, 𝐾

𝑢
= 𝑅
−1
𝑌
𝑢
, (19)

and the closed-system (12) is then exponentially mean-square
stable for all 𝑝(𝑘) ∈ [𝑝1 𝑝2].

Proof. Define the Lyapunov functional

𝑉 (𝑘) := 𝑥
𝑇
(𝑘) 𝑄 (𝑝 (𝑘)) 𝑥 (𝑘) +

𝑘−1

∑

𝑠=𝑘−𝑑

𝑥
𝑇
(𝑠) 𝑄
𝜏
𝑥 (𝑠) ; (20)

noting that E{𝜉(𝑘) − 𝑝(𝑘)} = 0, E{𝜔(𝑘)} = 0, and
E{[𝜉(𝑘) − 𝑝(𝑘)]

2
} = 𝑝(𝑘)(1 − 𝑝(𝑘)) ≜ Δ

𝑝
(𝑘), we can get

E {Δ𝑉 (𝑘)} = E {𝑥
𝑇
(𝑘 + 1)𝑄 (𝑝 (𝑘 + 1)) 𝑥 (𝑘 + 1)

− 𝑥
𝑇
(𝑘) (𝑄 (𝑝 (𝑘)) − 𝑄

𝜏
) 𝑥 (𝑘)

−𝑥
𝑇
(𝑘 − 𝑑)𝑄

𝜏
𝑥 (𝑘 − 𝑑)}

= E {[𝐴𝑥 (𝑘) + 𝑝 (𝑘) 𝐵𝐾 (𝑝 (𝑘))

× [ (𝐶𝑥 (𝑘)) − 𝐶𝑥 (𝑘)]

+ (𝜉 (𝑘) − 𝑝 (𝑘)) 𝐵𝐾 (𝑝 (𝑘))

× [ (𝐶𝑥 (𝑘)) − 𝐶𝑥 (𝑘)]

+ 𝐵𝐾 (𝑝 (𝑘)) 𝐶𝑥 (𝑘) + 𝑁𝑓 (𝑧 (𝑘))

+ 𝐷𝑥(𝑘 − 𝑑) + 𝐸𝑥 (𝑘) 𝜔 (𝑘)]
𝑇

𝑄 (𝑝 (𝑘 + 1))

× [𝐴𝑥 (𝑘) + 𝑝 (𝑘) 𝐵𝐾 (𝑝 (𝑘))

× [ (𝐶𝑥 (𝑘)) − 𝐶𝑥 (𝑘)]

+ (𝜉 (𝑘) − 𝑝 (𝑘)) 𝐵𝐾 (𝑝 (𝑘))

× [ (𝐶𝑥 (𝑘)) − 𝐶𝑥 (𝑘)]

+ 𝐵𝐾 (𝑝 (𝑘)) 𝐶𝑥 (𝑘) + 𝐷𝑥 (𝑘 − 𝑑)

+𝑁𝑓 (𝑧 (𝑘)) + 𝐸𝑥 (𝑘) 𝜔 (𝑘)]

− 𝑥
𝑇
(𝑘) 𝑄 (𝑝 (𝑘)) 𝑥 (𝑘) + 𝑥

𝑇
(𝑘) 𝑄
𝜏
𝑥 (𝑘)

−𝑥
𝑇
(𝑘 − 𝑑)𝑄

𝜏
𝑥 (𝑘 − 𝑑)}

≤ E {[(𝐴 + (1 − 𝑝 (𝑘)) 𝐵𝐾 (𝑝 (𝑘)) 𝐶) 𝑥 (𝑘)

+ 𝑝 (𝑘) 𝐵𝐾 (𝑝 (𝑘))  (𝐶𝑥 (𝑘)) + 𝐷𝑥 (𝑘 − 𝑑)

+𝑁𝑓
𝑠
(𝑧 (𝑘))]

𝑇

𝑄 (𝑝 (𝑘 + 1))
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× [(𝐴 + (1 − 𝑝 (𝑘)) 𝐵𝐾 (𝑝 (𝑘)) 𝐶) 𝑥 (𝑘)

+ 𝑝 (𝑘) 𝐵𝐾 (𝑝 (𝑘))  (𝐶𝑥 (𝑘)) + 𝐷𝑥 (𝑘 − 𝑑)

+𝑁𝑓
𝑠
(𝑧 (𝑘))] + 𝑝 (𝑘) (1 − 𝑝 (𝑘))

× [𝐵𝐾 (𝑝 (𝑘)) ( (𝐶𝑥 (𝑘)) − 𝐶𝑥 (𝑘))]
𝑇

× 𝑄 (𝑝 (𝑘 + 1)) 𝐵𝐾 (𝑝 (𝑘))

× [ (𝐶𝑥 (𝑘)) − 𝐶𝑥 (𝑘)]

+ 𝜎
2
𝑥
𝑇
(𝑘) 𝐸
𝑇
𝑄 (𝑝 (𝑘 + 1)) 𝐸𝑥 (𝑘)

− 𝑥
𝑇
(𝑘) 𝑄 (𝑝 (𝑘)) 𝑥 (𝑘)

− 𝑥
𝑇
(𝑘 − 𝑑)𝑄

𝜏
𝑥 (𝑘 − 𝑑)

+ 𝑥
𝑇
(𝑘) 𝑄
𝜏
𝑥 (𝑘) + 2𝑓

𝑇

𝑠
(𝑧 (𝑘)) 𝐹𝐺𝑥 (𝑘)

+ 2𝑓
𝑇

𝑠
(𝑧 (𝑘)) 𝐹𝐺

𝑑
𝑥 (𝑘 − 𝑑)

− 2𝑓
𝑇

𝑠
(𝑧 (𝑘)) 𝑓

𝑠
(𝑧 (𝑘))

− 2
𝑇
(𝐶𝑥 (𝑘))  (𝐶𝑥 (𝑘))

+ (2 + 2𝑎) 
𝑇
(𝐶𝑥 (𝑘)) 𝐶𝑥 (𝑘)

−2𝑎(𝐶𝑥 (𝑘))
𝑇
𝐶𝑥 (𝑘)} .

(21)

Denote the following matrix variables:

𝜂 (𝑘) = [𝑥
𝑇
(𝑘) 𝑥

𝑇
(𝑘 − 𝑑) 

𝑇
(𝐶𝑥 (𝑘)) 𝑓

𝑇

𝑠
(𝑧 (𝑘))]

𝑇

;

(22)

then, it is obvious that

E {Δ𝑉 (𝑘)} ≤ E {𝜂
𝑇
(𝑘)Ω𝜂 (𝑘)} , (23)

where

Ω =

[
[
[

[

Ω
1

∗ ∗ ∗

Ω
2
Ω
3

∗ ∗

Ω
4
Ω
5
Ω
6

∗

Ω
7
Ω
8
Ω
9
Ω
10

]
]
]

]

,

Ω
1
= [𝐴 + (1 − 𝑝 (𝑘)) 𝐵𝐾 (𝑝 (𝑘)) 𝐶]

𝑇

× 𝑄 (𝑝 (𝑘 + 1)) [𝐴 + (1 − 𝑝 (𝑘)) 𝐵𝐾 (𝑝 (𝑘)) 𝐶]

+ 𝜎
2
𝐸
𝑇
𝑄 (𝑝 (𝑘 + 1)) 𝐸

+ Δ
𝑝
(𝑘) (𝐵𝐾 (𝑝 (𝑘)) 𝐶)

𝑇

𝑄 (𝑝 (𝑘 + 1))

× 𝐵𝐾 (𝑝 (𝑘)) 𝐶 + 𝑄
𝜏
− 𝑄 (𝑝 (𝑘)) − 2𝑎𝐶

𝑇
𝐶,

Ω
2
= 𝐷
𝑇

𝑄 (𝑝 (𝑘 + 1)) [𝐴 + (1 − 𝑝 (𝑘)) 𝐵𝐾 (𝑝 (𝑘)) 𝐶] ,

Ω
3
= 𝐷
𝑇

𝑄 (𝑝 (𝑘 + 1))𝐷 − 𝑄
𝜏
,

Ω
4
= 𝑝 (𝑘) (𝐵𝐾 (𝑝 (𝑘)))

𝑇

𝑄 (𝑝 (𝑘 + 1))

× [𝐴 + (1 − 𝑝 (𝑘)) 𝐵𝐾 (𝑝 (𝑘)) 𝐶]

+ Δ
𝑝
(𝑘) (𝐵𝐾 (𝑝 (𝑘)))

𝑇

𝑄 (𝑝 (𝑘 + 1))

× 𝐵𝐾 (𝑝 (𝑘)) 𝐶 + (𝑎 + 1) 𝐶,

Ω
5
= 𝑝 (𝑘) (𝐵𝐾 (𝑝 (𝑘)))

𝑇

𝑄 (𝑝 (𝑘 + 1))𝐷,

Ω
6
= 𝑝
2
(𝑘) [𝐵𝐾 (𝑝 (𝑘))]

𝑇

𝑄 (𝑝 (𝑘 + 1))

× 𝐵𝐾 (𝑝 (𝑘)) + Δ
𝑝
(𝑘) [𝐵𝐾 (𝑝 (𝑘))]

𝑇

× 𝑄 (𝑝 (𝑘 + 1)) 𝐵𝐾 (𝑝 (𝑘)) − 2𝐼,

Ω
7
= 𝑁
𝑇
𝑄 (𝑝 (𝑘 + 1))

× [𝐴 + (1 − 𝑝 (𝑘)) 𝐵𝐾 (𝑝 (𝑘)) 𝐶] + 𝐹𝐺,

Ω
8
= 𝑁
𝑇
𝑄 (𝑝 (𝑘 + 1))𝐷 + 𝐹𝐺

𝑑
,

Ω
9
= 𝑝 (𝑘)𝑁

𝑇
𝑄 (𝑝 (𝑘 + 1)) 𝐵𝐾 (𝑝 (𝑘)) ,

Ω
10
= 𝑁
𝑇
𝑄 (𝑝 (𝑘 + 1))𝑁 − 2𝐼.

(24)

If Ω ≤ 0, we can conclude the following matrix by Schur
complement:

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑄
𝜏
− 𝑄 (𝑝 (𝑘)) − 2𝑎𝐶

𝑇
𝐶 ∗ ∗ ∗ ∗ ∗ ∗

0 −𝑄
𝜏

∗ ∗ ∗ ∗ ∗

(𝑎 + 1) 𝐶 0 −2𝐼 ∗ ∗ ∗ ∗

𝐹𝐺 𝐹𝐺
𝑑

0 −2𝐼 ∗ ∗ ∗

𝐴 + (1 − 𝑝 (𝑘)) 𝐵𝐾 (𝑝 (𝑘)) 𝐶 𝐷 𝑝 (𝑘) 𝐵𝐾 (𝑝 (𝑘)) 𝑁 −Λ ∗ ∗

𝐸 0 0 0 0 −𝜎
−2
Λ ∗

𝐵𝐾 (𝑝 (𝑘)) 𝐶 0 𝐵𝐾 (𝑝 (𝑘)) 0 0 0 −Δ
−1

𝑝
(𝑘) Λ

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (25)
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where

Λ = 𝑄
−1
(𝑝 (𝑘 + 1)) ; (26)

by preforming the congruence transformation diag{𝐼, 𝐼, 𝐼, 𝐼,
𝑆, 𝜎
2
𝑆, Δ
𝑝
(𝑘)𝑆} to (25), we have

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑄
𝜏
− 𝑄 (𝑝 (𝑘)) − 2𝑎𝐶

𝑇
𝐶 ∗ ∗ ∗ ∗ ∗ ∗

0 −𝑄
𝜏

∗ ∗ ∗ ∗ ∗

(𝑎 + 1) 𝐶 0 −2𝐼 ∗ ∗ ∗ ∗

𝐹𝐺 𝐹𝐺
𝑑

0 −2𝐼 ∗ ∗ ∗

𝑆
𝑇
𝐴 + (1 − 𝑝 (𝑘)) 𝑆

𝑇
𝐵𝐾 (𝑝 (𝑘)) 𝐶 𝑆

𝑇
𝐷 𝑝 (𝑘) 𝑆

𝑇
𝐵𝐾 (𝑝 (𝑘)) 𝑆

𝑇
𝑁 −Λ̂ ∗ ∗

𝜎
2
𝑆
𝑇
𝐸 0 0 0 0 −𝜎

2
Λ̂ ∗

Δ
𝑝
(𝑘) 𝑆
𝑇
𝐵𝐾 (𝑝 (𝑘)) 𝐶 0 Δ

𝑝
(𝑘) 𝑆
𝑇
𝐵𝐾 (𝑝 (𝑘)) 0 0 0 −Δ

𝑝
(𝑘) Λ̂

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (27)

where

Λ̂ = 𝑆
𝑇
𝑄
−1
(𝑝 (𝑘 + 1)) 𝑆. (28)

From inequality

𝑆
𝑇
𝑄
−1
(𝑝 (𝑘 + 1)) 𝑆 ≥ 𝑆

𝑇
+ 𝑆 − 𝑄 (𝑝 (𝑘 + 1)) ≜ Λ, (29)

we can get

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑄
𝜏
− 𝑄 (𝑝 (𝑘)) − 2𝑎𝐶

𝑇
𝐶 ∗ ∗ ∗ ∗ ∗ ∗

0 −𝑄
𝜏

∗ ∗ ∗ ∗ ∗

(𝑎 + 1) 𝐶 0 −2𝐼 ∗ ∗ ∗ ∗

𝐹𝐺 𝐹𝐺
𝑑

0 −2𝐼 ∗ ∗ ∗

𝑆
𝑇
𝐴 + (1 − 𝑝 (𝑘)) 𝑆

𝑇
𝐵𝐾 (𝑝 (𝑘)) 𝐶 𝑆

𝑇
𝐷 𝑝 (𝑘) 𝑆

𝑇
𝐵𝐾 (𝑝 (𝑘)) 𝑆

𝑇
𝑁 −Λ ∗ ∗

𝜎
2
𝑆
𝑇
𝐸 0 0 0 0 −𝜎

2
Λ ∗

Δ
𝑝
(𝑘) 𝑆
𝑇
𝐵𝐾 (𝑝 (𝑘)) 𝐶 0 Δ

𝑝
(𝑘) 𝑆
𝑇
𝐵𝐾 (𝑝 (𝑘)) 0 0 0 −Δ

𝑝
(𝑘) Λ

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0. (30)

By using Lemma 6, we have 𝑆
𝑇
𝐵 = 𝐵𝑅, and denoting

that 𝑅𝐾(𝑝(𝑘)) = 𝑌(𝑝(𝑘)), then (30) can be written as (17);
furthermore, we can know from Lemma 5 that Ω < 0 and,
subsequently,

E {Δ𝑉 (𝑘)} < −𝜆min (−Ω)E
𝜂 (𝑘)



2

, (31)

where 𝜆min(−Ω) is the minimum eigenvalue of (−Ω). Finally,
we can confirm from Lemma 1 in [13] that the closed-loop
system is exponentially mean-square stable; then the proof of
this theorem is complete.

Remark 9. The ROSSs have been studied in [1, 12] by con-
structing a concise and effective time-invariant Bernoulli dis-
tribution model; however, in many practical systems, ROSSs
sometimes appear with time-varying probability. Therefore,
in this case, we considered ROSSs satisfying time-varying
Bernoulli distribution which is more reasonable in reality.

On the other hand, unlike other time-varying parameters
discussed in gain-scheduling technique or parameter-depen-
dent Lyapunov functional; see, for example, [17–19], the
parameter 𝑝(𝑘) considered in this paper is the time-varying
occurrence probability of ROSSs, based on which a new kind
of controller is designed and a novel probability-dependent
Lyapunov functional is proposed to reduce the potential
conservatism.

Next, we are in a position to consider the nonfragile gain-
scheduled controller design for system (12) based on what we
got inTheorem 8.

Theorem 10. Consider the discrete-time nonlinear stochastic
systems with ROSSs (12) and the nonfragile gain-scheduled
controller (8). If there exist positive-definite matrices 𝑄(𝑝(𝑘))
and 𝑄

𝜏
, slack matrix 𝑆, and nonsingular matrices 𝑌(𝑝(𝑘))
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and 𝑅, scalars 𝜀
1
> 0, 𝜀

2
> 0, LMIs (17), equations (18), and

the following LMIs hold:

[
[
[
[
[

[

Υ ∗ ∗ ∗ ∗

𝜀
1
Π
𝑇

2
−𝜀
1
𝐼 ∗ ∗ ∗

Π
3

0 −𝜀
1
𝐼 ∗ ∗

𝜀
2
Π
𝑇

4
0 0 −𝜀

2
𝐼 ∗

Π
5

0 0 0 −𝜀
2
𝐼

]
]
]
]
]

]

< 0, (32)

where

Π
2
= [0 0 0 0 [(1 − 𝑝 (𝑘)) 𝑆

𝑇
𝐵𝐿]
𝑇

0 [Δ
𝑝
(𝑘) 𝑆
𝑇
𝐵𝐿]
𝑇

]
𝑇

,

Π
3
= [𝑀𝐶 0 𝑀 0 0 0 0] ,

Π
4
= [0 0 0 0 [(2𝑝 (𝑘) − 1) 𝑆

𝑇
𝐵𝐿]
𝑇

0 0]

𝑇

,

Π
5
= [0 0 𝑀 0 0 0 0] ;

(33)

in this case, the constant gains of the desired controller can be
obtained as follows:

𝐾
0
= 𝑅
−1
𝑌
0
, 𝐾

𝑢
= 𝑅
−1
𝑌
𝑢
, (34)

and the closed-system (12) is then exponentially mean-square
stable for all 𝑝(𝑘) ∈ [𝑝1 𝑝2].

Proof. In order to get the nonfragile gain-scheduled con-
troller, we replace the 𝐾(𝑝(𝑘)) with 𝐾(𝑝(𝑘)) + Δ𝐾; then,
𝑅𝐾(𝑝(𝑘)) = 𝑌(𝑝(𝑘)) can be written as 𝑅[𝐾(𝑝(𝑘)) + Δ𝐾] =

𝑌(𝑝(𝑘)) + Δ𝑌, Δ𝑌 = 𝑅Δ𝐾 = 𝑅𝐿𝐻(𝑘)𝑀. Noting that 𝑆𝑇𝐵 =

𝐵𝑅, we can rewrite (17) as

Υ + Π
2
𝐻(𝑘)Π

3
+ Π
𝑇

3
𝐻
𝑇
(𝑘)Π
𝑇

2

+ Π
4
𝐻(𝑘)Π

5
+ Π
𝑇

5
𝐻
𝑇
(𝑘)Π
𝑇

4
< 0.

(35)

From Lemma 7, we know that a necessary and sufficient
condition guaranteeing (35) is that there exist scalars 𝜀

1
> 0,

𝜀
2
> 0 such that

Υ + 𝜀
1
Π
2
Π
𝑇

2
+ 𝜀
−1

1
Π
𝑇

3
Π
3

+ 𝜀
2
Π
4
Π
𝑇

4
+ 𝜀
−1

2
Π
𝑇

5
Π
5
< 0;

(36)

by using the knowledge of Schur complement, we can find
that (36) is equivalent to (32). Now, the proof is complete.

Remark 11. In Theorem 10, a nonfragile gain-scheduled con-
troller has been designed based on a set of LMIs. However,
the LMIs are actually infinite owing to the time-varying
parameter 𝑝(𝑘) ∈ [𝑝1 𝑝2]. In this case, the desired controller
cannot be obtained directly due to the infinite number of
LMIs. To handle such a problem, in the next theorem, we
have to convert this problem to a computationally accessible
one by assigning a specific form to 𝑝(𝑘). First of all, let us set
𝑄(𝑝(𝑘)) = 𝑄

0
+ 𝑝(𝑘)𝑄

𝑢
.

Theorem 12. Consider the discrete-time nonlinear stochastic
system with ROSSs (12). If there exist positive-definite matrices
𝑄
0
, 𝑄
𝑢
and 𝑄

𝜏
, slack matrix 𝑆 and nonsingular matrices

𝑌(𝑝(𝑘)) and 𝑅, such that the following LMIs hold:

M
𝑖𝑗𝑙𝑚

:=

[
[
[
[
[
[
[
[

[

Υ
𝑖𝑗𝑙𝑚

∗ ∗ ∗ ∗

𝜀
1
Π
𝑖𝑗

2

𝑇

−𝜀
1
𝐼 ∗ ∗ ∗

Π
3

0 −𝜀
1
𝐼 ∗ ∗

𝜀
2
Π
𝑖

4

𝑇

0 0 −𝜀
2
𝐼 ∗

Π
5

0 0 0 −𝜀
2
𝐼

]
]
]
]
]
]
]
]

]

< 0,

Υ
𝑖𝑗𝑙𝑚

:=

[
[
[
[
[
[
[
[
[
[
[

[

𝑄
𝜏
− 𝑄
𝑖
(𝑝 (𝑘)) − 2𝑎𝐶

𝑇
𝐶 ∗ ∗ ∗ ∗ ∗ ∗

0 −𝑄
𝜏

∗ ∗ ∗ ∗ ∗

(𝑎 + 1) 𝐶 0 −2𝐼 ∗ ∗ ∗ ∗

𝐹𝐺 𝐹𝐺
𝑑

0 −2𝐼 ∗ ∗ ∗

𝑆
𝑇
𝐴 + (1 − 𝑝

𝑖
) 𝐵𝑌
𝑚
(𝑝 (𝑘)) 𝐶 𝑆

𝑇
𝐷 𝑝
𝑖
𝐵𝑌
𝑚
(𝑝 (𝑘)) 𝑆

𝑇
𝑁 −Λ

𝑙

∗ ∗

𝜎
2
𝑆
𝑇
𝐸 0 0 0 0 −𝜎

2
Λ
𝑙

∗

Δ
𝑖𝑗
𝐵𝑌
𝑚
(𝑝 (𝑘)) 𝐶 0 Δ

𝑖𝑗
𝐵𝑌
𝑚
(𝑝 (𝑘)) 0 0 0 −Δ

𝑖𝑗
Λ
𝑙

]
]
]
]
]
]
]
]
]
]
]

]

,

(37)

where

Λ = −𝑄
0
− 𝑝
𝑙
𝑄
𝑢
+ 𝑆 + 𝑆

𝑇
, Δ

𝑖𝑗
= 𝑝
𝑖
(1 − 𝑝

𝑗
) ,

𝐴 = 𝐴 + 𝑁𝐹
1
𝐺, 𝐷 = 𝐷 + 𝑁𝐹

1
𝐺
𝑑
,

𝑆
𝑇
𝐵 = 𝐵𝑅, 𝑅𝐾 (𝑝 (𝑘)) = 𝑌 (𝑝 (𝑘)) ,

𝐾 (𝑝 (𝑘)) = 𝑅
−1
𝑌 (𝑝 (𝑘)) ,

𝑌
𝑚
(𝑝 (𝑘)) = 𝑌

0
+ 𝑝
𝑚
𝑌
𝑢
,

𝑄
𝑖
(𝑝 (𝑘)) = 𝑄

0
+ 𝑝
𝑖
𝑄
𝑢
,

Π
𝑖𝑗

2
= [0 0 0 0 [(1 − 𝑝

𝑖
) 𝑆
𝑇
𝐵𝐿]
𝑇

0 [Δ
𝑖𝑗
𝑆
𝑇
𝐵𝐿]
𝑇

]

𝑇

,
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Π
3
= [𝑀𝐶 0 𝑀 0 0 0 0] ,

Π
𝑖

4
= [0 0 0 0 [(2𝑝

𝑖
− 1) 𝑆

𝑇
𝐵𝐿]
𝑇

0 0]

𝑇

,

Π
5
= [0 0 𝑀 0 0 0 0] ,

(38)

in this case, the constant gains of the desired controller can be
obtained as follows:

𝐾
0
= 𝑅
−1
𝑌
0
, 𝐾
𝑢
= 𝑅
−1
𝑌
𝑢
, (39)

and the closed-system (12) is then exponentially mean-square
stable for all 𝑝(𝑘) ∈ [𝑝1 𝑝2].

Proof. Firstly, set

𝛼
1
(𝑘) =

𝑝
2
− 𝑝 (𝑘)

𝑝
2
− 𝑝
1

, 𝛼
2
(𝑘) =

𝑝 (𝑘) − 𝑝
1

𝑝
2
− 𝑝
1

; (40)

therefore, we have

𝑝 (𝑘) = 𝛼
1
(𝑘) 𝑝
1
+ 𝛼
2
(𝑘) 𝑝
2
, (41)

with 𝛼
𝑖
(𝑘) ≥ 0 (𝑖 = 1, 2) and 𝛼

1
(𝑘) + 𝛼

2
(𝑘) = 1. Similarly, let

𝛽
1
(𝑘) =

𝑝
2
− 𝑝 (𝑘 + 1)

𝑝
2
− 𝑝
1

, 𝛽
2
(𝑘) =

𝑝 (𝑘 + 1) − 𝑝
1

𝑝
2
− 𝑝
1

, (42)

and we have

𝑝 (𝑘 + 1) = 𝛽
1
(𝑘) 𝑝
1
+ 𝛽
2
(𝑘) 𝑝
2
, (43)

with𝛽
𝑖
(𝑘) ≥ 0 (𝑖 = 1, 2),𝛽

1
(𝑘)+𝛽

2
(𝑘) = 1. From the pervious

transformation, we can easily get

𝑄 (𝑝 (𝑘)) =

2

∑

𝑖=1

𝛼
𝑖
(𝑘) 𝑄
𝑖
(𝑝 (𝑘)) , Λ =

2

∑

𝑙=1

𝛽
𝑙
(𝑘) Λ
𝑙

,

𝑌 (𝑝 (𝑘)) =

2

∑

𝑚=1

𝛼
𝑚
(𝑘) 𝑌
𝑚
(𝑝 (𝑘)) .

(44)

On the other hand, it is easy to find that

2

∑

𝑖,𝑗,𝑙,𝑚=1

𝛼
𝑖
(𝑘) 𝛼
𝑗
(𝑘) 𝛼
𝑚
(𝑘) 𝛽
𝑙
(𝑘)M
𝑖𝑗𝑙𝑚

< 0. (45)

From (40)–(45), we can have that (32) in Theorem 10 is true;
then the proof is now complete.

Remark 13. By using the methods proposed in the proof of
Theorem 10, we choose 4 variables; then, it is easy to calculate
the number of LMIs as 24 depending on the upper and lower
bound of 𝑝(𝑘).

Table 1: Computing results.

𝑘 𝑝(𝑘) 𝑄(𝑝(𝑘)) 𝐾(𝑝(𝑘))

0 0.5068 [
1.7244 0.7450

0.7450 3.9564
] [

10.3093 −12.4590

−33.9040 40.8241
]

1 0.5082 [
1.7261 0.7443

0.7443 3.9568
] [

10.3094 −12.4590

−33.9045 40.8242
]

2 0.4928 [
1.7070 0.7513

0.7513 3.9522
] [

10.3078 −12.4588

−33.8992 40.8237
]

...
...

...
...

4. An Illustrative Example

In this section, the nonfragile gain-scheduled controller is
designed for the discrete-time nonlinear stochastic systems
with ROSSs.

The system parameters are given as follows:

𝐴 = [
0.44 0

0 0.81
] , 𝑁 = [

0.13 0.2

0.28 0.33
] ,

𝐵 = [
0.01 0

9.2 2.8
] , 𝐶 = [

0 0.19

0.6 2.20
] ,

𝐷 = [
0.02 0.14

0.15 0.18
] , 𝐹

1
= [

0.06 0

0 0.01
] ,

𝐹
2
= [

0.1 0

0 0.01
] , 𝐺 = [

0.08 0.12

0.08 0.02
] ,

𝐺
𝑑
= [

0.01 0.09

0.18 0.09
] , 𝐸 = [

0.3 0.19

0.1 0.02
] ,

𝐿 = [
0.01 0

0 0.02
] , 𝑀 = [

0.1 0

0 0.02
] ,

𝐻 (𝑘) = 𝐼, 𝑝
1
= 0.49, 𝑝

2
= 0.51,

𝜎
2
= 1, 𝑎 = 0.411, 𝜀

1
= 0.21, 𝜀

2
= 0.2.

(46)

Set the time-varying Bernoulli distribution sequences as
𝑝(𝑘) = 𝑝

1
+ (𝑝
2
− 𝑝
1
)| sin(𝑘)|, and the sector nonlinear

function 𝑓(𝑢) is taken by

𝑓 (𝑢) =
𝐹
1
+ 𝐹
2

2
𝑢 +

𝐹
2
− 𝐹
1

2
sin (𝑢) , (47)

which satisfies (3). Also, select the initial state 𝜌 = [2 −2]
𝑇.

According toTheorem 12, the constant controller param-
eters 𝐾

0
, 𝐾
𝑢
can be obtained as follows:

𝐾
0
= [

10.2565 −12.4544

−33.7306 40.8091
] , 𝐾

𝑢
= [

0.1041 −0.0090

−0.3421 0.0296
] .

(48)

Then, according to the measured time-varying proba-
bility parameters 𝑝(𝑘), the gain-scheduled controller gain
𝐾(𝑝(𝑘)) and parameter-dependent Lyapunovmatrix𝑄(𝑝(𝑘))
can be calculated at every time step 𝑘 as in Table 1.
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Figure 1: State evolution 𝑥(𝑘) of uncontrolled systems.
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Figure 2: State evolution 𝑥(𝑘) of controlled systems.

Figure 1 gives the response curves of state 𝑥(𝑘) of
uncontrolled systems. Figure 2 depicts the simulation results
of state 𝑥(𝑘) of the controlled systems.The simulation results
have illustrated our theoretical analysis.

5. Conclusions

In this paper, the nonfragile gain-scheduled control problem
for a class of discrete stochastic systems with ROSSs is
tackled, and the sensor saturation phenomenon is assumed to
occur in a random way based on the time-varying Bernoulli
distribution with measurable probability in real time. By
employing probability-dependent Lyapunov functional, we
design a nonfragile gain-scheduled controller with the gain

including both constant and time-varying parameters such
that, for all admissible sensor saturations, time-delays and
noise disturbances, the closed-loop system is still exponen-
tially mean-square stable. Furthermore, we can extend the
main results to more complex and realistic systems, for
instance, complex networks and systems with several kinds
of randomly occurring phenomena simultaneously. Mean-
while, we can also consider corresponding control/filtering
problems for time-varying systemswith time-varying ROSSs,
such as robust sliding mode control, quantized recursive
filtering, or extended Kalman filtering.The related references
can be found; see, for example, [2, 3, 6].
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This paper presents an unknown input Proportional Multiple-Integral Observer (PIO) for synchronization of chaotic systems
based on Takagi-Sugeno (TS) fuzzy chaotic models subject to unmeasurable decision variables and unknown input. In a secure
communication configuration, this unknown input is regarded as a message encoded in the chaotic system and recovered by the
proposed PIO. Both states and outputs of the fuzzy chaotic models are subject to polynomial unknown input with kth derivative
zero. Using Lyapunov stability theory, sufficient design conditions for synchronization are proposed. The PIO gains matrices are
obtained by resolving linear matrix inequalities (LMIs) constraints. Simulation results show through two TS fuzzy chaotic models
the validity of the proposed method.

1. Introduction

It is well known that the chaotic systems have a complex
dynamical behavior and their fundamental characteristic
is the chaos. The chaotic systems are highly sensitive to
parameters variation and to initial conditions because the
chaos is a source of oscillation and instability. Moreover, in
the long term the behavior of the chaotic systems becomes
difficult to predict which can lead systems to instability
and undesirable performance [1]. On the other hand, the
chaotic systems constitute a good platform to investigate
the nonstandard control problems including synchronization
and stabilization.

Since Pecora and Carroll [2, 3] have introduced in 1990
the concept of chaotic synchronization between two chaotic
dynamical systems based on the Lorenz’s chaotic system
[4], the synchronization and control of chaotic systems
attract more and more attention from various disciplines.
A great deal of chaos applications have been developed in
engineering fields such as secure communication, physical

systems, system identification, and biological systems; see, for
example, [5–10].

Recently, a particular attention has been paid to the syn-
chronization and control problems for dynamical networks
due to their extensive application in fields of science and
engineering (see, e.g., [11–13]). In [11] the authors propose
a novel concept of bounded H

∞
synchronization and state

estimation to handle the time-varying nature of an array
stochastic complex network in discrete-time domain over a
finite horizon. The synchronization problem in [12] is con-
sidered for a new class of continuous-time neural networks
of neutral type with parameters, discrete-time delays, and
unbounded distributed time delays being all dependent on
the Markovian jumping mode. The sampled-data synchro-
nization control scheme in [13] is studied for a class of dynam-
ical networks with stochastic sampling. In the formwork of
state estimation, fault detection, and filtering for a class of
nonlinear systems with sensor networks, we can mention
the works of [14–17]. Indeed, in [14] the finite-horizon
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distributed H
∞

state estimator design scheme is proposed
for a class of discrete time-varying nonlinear systems with
both stochastic parameters and stochastic nonlinearities.The
problem of designing the distributed H

∞
filters in [15] is

considered for a class of polynomial nonlinear stochastic
systems which are represented in a state-dependent linear-
like form. The distributed finite-horizon filter is proposed in
[16] for a class of time-varying systems subject to randomly
varying nonlinearities over lossy sensor networks that involve
both the quantization errors and successive packet dropouts.
The robust fuzzy fault detection filter in [17] is designed
for a class of uncertain discrete-time Takagi-Sugeno fuzzy
systems with successive packet dropouts which involve both
the stochastic multiple time-varying discrete delays and the
infinite distributed delays.

Differentmethods and techniques for chaos synchroniza-
tion and control have been investigated including impul-
sive control [18], feedback control [19], adaptive control
[20], lag synchronization [21], sliding mode control [22],
and fuzzy control [23]. Particularly, in the chaotic secure
communication problems, some messages can be masked
efficiently and securely [24] by chaotic signals since the
chaos has the characteristic of broadband like a noise and is
consequently difficult to predict. The message in the secure
communications which is recovered by the response system
should synchronize with the drive system [25]. In framework
of a secure communication, many approaches have been
addressed such as chaos modulation [26], chaos shift key
[27], and chaos masking [28]. Among different methods
of synchronization and control for chaotic systems, the TS
fuzzy systems have received much attention from various
researches fields since the pioneering work of Takagi and
Sugeno (TS) [29]. Indeed, TS fuzzy model can approximate
a highly nonlinear analytical relation of chaotic system by
fuzzy IF-THEN rules where the implications describe local
dynamics as linear models. Then, the nonlinear behavior of
the chaotic system can exactly be obtained as an aggregation
of local linear models with nonlinear activation functions.
TS fuzzy models are widely used as a tool of analysis and
design of synchronization and control schemes because of
the mathematical analysis simplicity of their simple structure
with local dynamics, for example, [30–32].

Since because of, many practical control problems the
states are partially or fully unavailable, the state observer
methods can be used to estimate the measurements of
unavailable or failed sensors. For this reason, it is important
to design the observers for state estimation. In relation to that
state estimation observers there are many works to that deal
with stability analysis and stabilization of TS fuzzy models by
applying Lyapunov theory and derive stability conditions in
terms linear matrix inequalities constraints [33]; of among
this works we can mention the results developed in [34];
When the decision variable is chosen as unmeasurable or
unavailable state in activation functions, for example, in [35],
the robust observer is designed for unknown inputs TS fuzzy
models. Recently, in secure communication field the design
problem of unknown input observer has been investigated
in [36–39]. The authors propose in [36] a new secured
transmission scheme based on smooth adaptive unknown

input observers for chaotic synchronization and robust to
channel noise. The unknown input observer in [37] is
presented with unknown constant disturbance of parameters
and unknown input to be recovered as messages in the
master-slave configuration. The robust adaptive high-gain
fuzzy observer is designed in [32] for chaotic systems where
their parameters are assumed unknown and their states
unavailable. The author deals with, in [38], the unknown
input observer design for fuzzy systems with application to
chaotic system reconstruction within both domains, contin-
uous and discrete time, where the sufficient conditions have
been derived in terms of linear matrix inequality constraints
by using Lyapunov stability theory. Then, in [38, 39] the pole
assignment in a LMI region is considered in order to improve
the observer performance.

In the context of the unmeasurable decision variable,
the synchronization problem for chaotic systems character-
ized by TS fuzzy models was not addressed by the above
works. Our main contribution in this paper is to develop
a synchronization procedure which takes into account the
unmeasurable decision variables. The effects due to unmea-
surable decision variable and the unknown input on the
overall synchronization system (chaotic system andobserver)
are compensated with additional parameter. In addition, in
the present study the estimation of the unknown input as a
message to be reconstructed within a secure communication
concept is considered.

In the framework of a secure communication, the design
of unknown input PIO is addressed in this work for two
chaotic systems, Lorenz’ system and Rossler’s system, charac-
terized by chaotic TS fuzzy models. These models are subject
to unmeasurable decision variable and polynomial unknown
input where its 𝑘th derivative is zero. The proposed PIO
estimates both the states of the considered chaotic systems
and the polynomial unknown input. This latter is considered
as a message to encode by the chaotic system and then to
reconstruct it by the PIO. Furthermore, the integral action
included in the observer structure contributes to reduce the
results conservatism due to quadratic function. Indeed, this
parameter allows introducing an additional degree of free-
dom to be determined. By utilizing Lyapunov stability theory,
sufficient conditions are derived to design the polynomial
unknown input PIO. Then, the PIO gains parameters are
resolved in terms of linear matrix inequalities constraints.
Moreover, when the decision variables are measurable we
also discuss this particular case in our work. Finally, we
present simulation results to illustrate the effectiveness of the
proposed approach of synchronization and reconstruction.

The rest of this paper is organized as follows. In Section 2,
the considered unknown input TS fuzzy model structure is
described. This unknown input affects both the dynamics
of the TS fuzzy model and the output signal. The unknown
input PIO is designed in Section 3. In Section 4, simulation
results for two chaotic systems, Lorenz’ system and Rossler’s
system, are given. An unknown input, assumed as a message
to be received in a secure communication configuration,
is perfectly reconstructed. Finally, a conclusion and further
works end this paper.
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2. Unknown Input TS Fuzzy Model Structure

The TS fuzzy model subject to unknown input is considered
as follow:

̇𝑥 (𝑡) =

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑥) (𝐴

𝑖
𝑥 (𝑡) + 𝐵

𝑖
𝑢 (𝑡) + 𝑑

𝑖
+ 𝐹
𝑖
V (𝑡)) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) + 𝐹V (𝑡) ,

(1)

where 𝑥(𝑡) ∈ 𝑅
𝑛 represents the state vector, 𝑢(𝑡) ∈ 𝑅

𝑛𝑢

corresponds to known input vector, V(𝑡) ∈ 𝑅
𝑛V shows the

unknown input, and 𝑦(𝑡) ∈ 𝑅
𝑛𝑦 is the output vector. 𝐴

𝑖
∈

𝑅
𝑛×𝑛 are the state matrices, 𝐵

𝑖
∈ 𝑅
𝑛×𝑛𝑢 are the input matrices,

𝑑
𝑖
∈ 𝑅
𝑛 is a vector system dependent, 𝐹

𝑖
∈ 𝑅
𝑛×𝑛V and 𝐹 ∈

𝑅
𝑛𝑦×𝑛V are the unknown input matrices, and 𝐶 ∈ 𝑅𝑛𝑦×𝑛 is the

output matrix. The activation functions 𝜇
𝑖
(𝑥) depend on the

state 𝑥(𝑡) of the system and satisfy the following conditions:
𝑟

∑

𝑖=1

𝜇
𝑖
(𝑥) = 1, ∀𝑡 ≥ 0,

0 ≤ 𝜇
𝑖
(𝑥) ≤ 1, ∀𝑖 ∈ {1, . . . , 𝑟} ,

(2)

where 𝑟 is the number of local models.

Hypothesis 1. Unknown input V(𝑡) has a polynomial form of
𝑘 − 1 degree in time whose 𝑘th derivative is equal to zero.

Let the following notations be introduced:
̇V (𝑡) = V

1
(𝑡) ,

̇V
1
(𝑡) = V

2
(𝑡) ,

...

̇V
𝑘−1
(𝑡) = V

𝑘
(𝑡) ,

V
𝑘
(𝑡) = 0.

(3)

Note that the polynomial form allows considering a wide
variety of unknown inputs.

3. Unknown Input Proportional
Multiple-Integral Observer Design

The unknown input PIO is considered as follow:

̇�̂� (𝑡) =

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑥) (𝐴

𝑖
𝑥 (𝑡) + 𝐵

𝑖
𝑢 (𝑡) + 𝑑

𝑖
+ 𝐹
𝑖
V̂ (𝑡)

+ 𝐾
𝑃𝑖
(𝑦 (𝑡) − 𝑦 (𝑡))) + 𝑧

𝑥
(𝑡) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) + 𝐹V̂ (𝑡) ,

̇V̂ (𝑡) =
𝑟

∑

𝑖=1

𝜇
𝑖
(𝑥)𝐾
𝐼𝑖
(𝑦 (𝑡) − 𝑦 (𝑡)) + V̂

1
(𝑡) + 𝑧V (𝑡) ,

̇V̂
𝑗
(𝑡) =

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑥)𝐾
𝑗

𝐼𝑖
(𝑦 (𝑡) − 𝑦 (𝑡)) + V̂

𝑗+1
(𝑡)

+ 𝑧V𝑗 (𝑡) , for 𝑗: 1, . . . , 𝑘 − 1

if 𝑗 = 𝑘 − 1, V̂
𝑗+1
(𝑡) = 0,

(4)

where𝐾
𝑃𝑖
∈ 𝑅
𝑛×𝑛𝑦 ,𝐾

𝐼𝑖
∈ 𝑅
𝑛V×𝑛𝑦 , and𝐾𝑗

𝐼𝑖
∈ 𝑅
𝑛V×𝑛𝑦 correspond

to proportional and integral gains, respectively. Due the effect
of the unmeasurable decision variables, the variables 𝑧

𝑥
(𝑡),

𝑧V(𝑡), and 𝑧V𝑗(𝑡) are introduced in the PIO.
According to Hypothesis 1, TS fuzzy model (1) and

unknown input PIO (4) can be rewritten, respectively, as
follow:

̇𝑥
𝑎
(𝑡) =

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑥) (𝐴

𝑖
𝑥
𝑎
(𝑡) + 𝐵

𝑖
𝑢 (𝑡) + 𝑑

𝑖
) ,

𝑦 (𝑡) = 𝐶𝑥
𝑎
(𝑡) ,

(5)

̇�̂�
𝑎
(𝑡) =

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑥) (𝐴

𝑖
𝑥
𝑎
(𝑡) + 𝐵

𝑖
𝑢 (𝑡) + 𝑑

𝑖
+ 𝐾
𝑖
(𝑦 (𝑡) − 𝑦 (𝑡)))

+ 𝑧 (𝑡) ,

𝑦 (𝑡) = 𝐶𝑥
𝑎
(𝑡) ,

(6)

where

𝑥
𝑎
(𝑡) =

[
[
[
[
[

[

𝑥 (𝑡)

V (𝑡)
V
1
(𝑡)

⋅ ⋅ ⋅

V
𝑘−1
(𝑡)

]
]
]
]
]

]

, 𝑥
𝑎
(𝑡) =

[
[
[
[
[

[

𝑥 (𝑡)

V̂ (𝑡)
V̂
1
(𝑡)

⋅ ⋅ ⋅

V̂
𝑘−1
(𝑡)

]
]
]
]
]

]

,

𝑧 (𝑡) =

[
[
[
[
[

[

𝑧
𝑥
(𝑡)

𝑧V (𝑡)

𝑧V1 (𝑡)

⋅ ⋅ ⋅

𝑧V𝑘−1 (𝑡)

]
]
]
]
]

]

(7a)

with

𝑒
𝑎
(𝑡) = 𝑥

𝑎
(𝑡) − 𝑥

𝑎
(𝑡) , 𝑒

𝑎𝑦
= 𝑦 (𝑡) − 𝑦 (𝑡) , (7b)

𝐴
𝑖
=

[
[
[
[
[

[

𝐴
𝑖
𝐹
𝑖
0 0 ⋅ ⋅ ⋅ 0

0 0 𝐼
𝑛V

0 ⋅ ⋅ ⋅ 0

0 0 0 𝐼
𝑛V
⋅ ⋅ ⋅ 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝐼
𝑛V

0 0 0 0 0 0

]
]
]
]
]

]

,

𝐵
𝑖
=

[
[
[
[
[

[

𝐵
𝑖

0

0

⋅ ⋅ ⋅

0

]
]
]
]
]

]

, 𝑑
𝑖
=

[
[
[
[
[

[

𝑑
𝑖

0

0

⋅ ⋅ ⋅

0

]
]
]
]
]

]

,

𝐾
𝑖
=

[
[
[
[
[

[

𝐾
𝑃𝑖

𝐾
𝐼𝑖

𝐾
1

𝐼𝑖

⋅ ⋅ ⋅

𝐾
𝑘−1

𝐼𝑖

]
]
]
]
]

]

, 𝐶 = [𝐶 𝐹 0 ⋅ ⋅ ⋅ 0 ] ,

(7c)

where 𝐼
𝑛V
is an identity matrix.
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3.1. Unmeasurable Decision Varaiables. The dynamic error
𝑒
𝑎
(𝑡) of state estimation is given by

̇𝑒
𝑎
(𝑡) =

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑥)A

𝑖
𝑒
𝑎
(𝑡) + Δ𝐴𝑥

𝑎
(𝑡) + Δ𝐵𝑢 (𝑡) + Δ𝑑 − 𝑧 (𝑡) ,

(8)

where

A
𝑖
= 𝐴
𝑖
− 𝐾
𝑖
𝐶, Δ𝐴 =

𝑟

∑

𝑖=1

𝜇
𝑖
𝐴
𝑖
, Δ𝐵 =

𝑟

∑

𝑖=1

𝜇
𝑖
𝐵
𝑖
,

Δ𝑑 =

𝑟

∑

𝑖=1

𝜇
𝑖
𝑑
𝑖
, 𝜇

𝑖
= 𝜇
𝑖
(𝑥) − 𝜇

𝑖
(𝑥) .

(9)

Remark 1. Since the activation functions satisfy the convex
sum property, we can write −1 < 𝜇

𝑖
< 1, and the

variables matricesΔ𝐴,Δ𝐵,Δ𝑑 are bounded and the following
conditions hold:


Δ𝐴

≤ 𝛿
1
, 𝛿

1
=

𝑟

∑

𝑖=1

𝛿
1𝑖
,


Δ𝐵

≤ 𝛿
2
,

𝛿
2
=

𝑟

∑

𝑖=1

𝛿
2𝑖
,


Δ𝑑

≤ 𝛿
3
, 𝛿

3
=

𝑟

∑

𝑖=1

𝛿
3𝑖

(10)

with 𝛿
1𝑖
> 0, 𝛿

2𝑖
> 0 and 𝛿

3𝑖
> 0, are the Euclidian norms of

𝐴
𝑖
, 𝐵
𝑖
, and 𝑑

𝑖
, respectively.

Theorem 2. The dynamic error (8) is asymptotically stable if
there exist a common positive definite matrix 𝑃 = 𝑃𝑇, matrices
𝑀
𝑖
and the positive scalars 𝛼 and 𝛼

0
, for all 𝑖 ∈ {1, . . . , 𝑟}, such

that:

[
𝑃𝐴
𝑖
+ 𝐴
𝑇

𝑖
𝑃 −𝑀

𝑖
𝐶 − 𝐶

𝑇

𝑀
𝑖

𝑇

+ 𝛼
0
𝛿
2

1
𝐼 𝑃

𝑃 −𝛼𝐼
] < 0, (11a)

where thematrices and parameters𝐴
𝑖
,𝐶, 𝛿
1
are defined in (7c),

and (10), respectively.
The parameters of unknown input PIO (4) are obtained by

𝐾
𝑖
= 𝑃
−1
𝑀
𝑖
, (11b)

𝑧 = 0, if 𝑒𝑎𝑦

< 𝜀,

𝑧 = 𝜎
1
𝛿
2

1

𝑥
𝑇

𝑎
𝑥
𝑎

2𝑒𝑇
𝑎𝑦
𝑒
𝑎𝑦

𝑃
−1
𝐶
𝑇

𝑒
𝑎𝑦
+ 𝜎
2
𝛿
2

2

𝑢
𝑇
𝑢

2𝑒𝑇
𝑎𝑦
𝑒
𝑎𝑦

𝑃
−1
𝐶
𝑇

𝑒
𝑎𝑦

+ 𝜎
3
𝛿
2

3

1

2𝑒𝑇
𝑎𝑦
𝑒
𝑎𝑦

𝑃
−1
𝐶
𝑇

𝑒
𝑎𝑦
, if 𝑒𝑎𝑦


≥ 𝜀

(11c)

with variables 𝑥
𝑎
, 𝑧, 𝑒

𝑎𝑦
and the parameters 𝛿

2
, 𝛿
3
are

described in (7a), (7b), (10), respectively, and 𝜎
1
= (𝛼
0
/𝜆),

𝜎
2
= ((𝛼𝛼

0
𝜆
3
)/(𝛼(𝛼

0
+ 𝜆
3
(1 + 𝜆)) − 𝛼

0
𝜆
3
)), 𝜎
3
= 𝜆
3
where

𝜆, 𝜆
3
are positive scalars arbitrarily fixed and 𝜀 is a very small

positive threshold.

Proof. The proposed quadratic function of Lyapunov is
𝑉(𝑡) = 𝑒

𝑇

𝑎
(𝑡)𝑃𝑒
𝑎
(𝑡) with 𝑃 = 𝑃𝑇 > 0. The conditions ((11a),

(11b), and (11c)) guarantee the asymptotic stability of the
dynamic error of state estimation (8). The proof is partially
given in the appendix and for more details see [40].

3.2. Measurable Decision Variables Case. The design of
unknown input PIO with measurable decision variables
represents the particular case of our study developed in this
section. In this condition the unknown input PIO is as follow:

̇�̂� (𝑡) =

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑥) (𝐴

𝑖
𝑥 (𝑡) + 𝐵

𝑖
𝑢 (𝑡) + 𝑑

𝑖
+ 𝐹
𝑖
V̂ (𝑡)

+𝐾
𝑃𝑖
(𝑦 (𝑡) − 𝑦 (𝑡))) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) + 𝐹V̂ (𝑡) ,

̇V̂ (𝑡) =
𝑟

∑

𝑖=1

𝜇
𝑖
(𝑥)𝐾
𝐼𝑖
(𝑦 (𝑡) − 𝑦 (𝑡)) + V̂

1
(𝑡) ,

̇V̂
𝑗
(𝑡) =

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑥)𝐾
𝑗

𝐼𝑖
(𝑦 (𝑡) − 𝑦 (𝑡)) + V̂

𝑗+1
(𝑡) ,

for 𝑗 : 1, . . . , 𝑘 − 1

if 𝑗 = 𝑘 − 1, V̂
𝑗+1
(𝑡) = 0,

(12)

where all variables andmatrices are defined in relations ((7a),
(7b), and (7c)), and the activation functions 𝜇

𝑖
(𝑥) depend on

the measurable states.
The dynamics of the augmented state estimation error

𝑒
𝑎
(𝑡) between the TS fuzzy model (1) and PIO (12) becomes

̇𝑒
𝑎
(𝑡) =

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑥) (𝐴

𝑖
− 𝐾
𝑖
𝐶) 𝑒
𝑎
(𝑡) . (13)

Theorem 3. The dynamic error (13) is asymptotically stable if
there exist a symmetric matrix 𝑄 > 0 and matrices 𝑁

𝑖
such

that the following conditions hold, for all 𝑖 ∈ {1, . . . , 𝑟}:

𝑄𝐴
𝑖
+ 𝐴
𝑇

𝑖
𝑄 −𝑁

𝑖
𝐶 − 𝐶

𝑇

𝑁
𝑖

𝑇

< 0. (14a)

The parameters of the unknown input PIO (12) are given by:

𝐾
𝑖
= 𝑄
−1
𝑁
𝑖
. (14b)

Proof. Consider the Lyapunov quadratic function 𝑉(𝑡) =

𝑒
𝑇

𝑎
(𝑡)𝑄𝑒
𝑎
(𝑡), where 𝑄 = 𝑄

𝑇
> 0. The time derivative of 𝑉(𝑡)

allows writing

𝑉 =

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑥) 𝑒
𝑇

𝑎
((𝐴
𝑖
− 𝐾
𝑖
𝐶)
𝑇

𝑄 + 𝑄(𝐴
𝑖
− 𝐾
𝑖
𝐶)
𝑖
) 𝑒
𝑎
. (15)

The stability condition 𝑉(𝑡) < 0 is satisfied if

(𝐴
𝑖
− 𝐾
𝑖
𝐶)
𝑇

𝑄 + 𝑄(𝐴
𝑖
− 𝐾
𝑖
𝐶)
𝑖
< 0; (16)

with variables change𝑁
𝑖
= 𝑄𝐾

𝑖
; we obtain the linear matrix

inequalities ((14a) and (14b)). The proof is completed.
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Figure 1: Chaotic behavior of Lorenz fuzzy system.

The unknown input PIO gains 𝐾
𝑖
= 𝑄
−1
𝑁
𝑖
are deter-

mined by resolving these constraints. In the following section,
a simulation example is given through two chaotic systems in
order to validate this proposed approach.

4. Simulation Examples

Two chaotic systems are characterized by TS fuzzy mod-
els with unmeasurable decision variables and subjected to
unknown input. In a secure communication concept, the
unknown input is assumed as a message to be recovered
in the PIO after being encoded in the chaotic system by
means of public transmission canal.These chaotic systems are
used to show the good simultaneous reconstruction of states
and message by the proposed unknown input PIO. The first
nonlinear model is the Lorenz’s system [41], and the second
is the fourth Rossler’s system [21].

4.1. Lorenz Chaotic System. TheLorenz chaotic system [38] is
represented by following the dynamic equations:

̇𝑥
1
= −10𝑥

1
+ 10𝑥

2
,

̇𝑥
2
= 28𝑥

1
− 𝑥
2
− 𝑥
1
𝑥
3
,

̇𝑥
3
= 𝑥
1
𝑥
2
−
8

3
𝑥
3
.

(17)

4.1.1. TS Fuzzy Model. The Lorenz’s system can be exactly
represented by TS fuzzy model with the decision variable
𝑥
1
(𝑡) ∈ [−30, 30] as follow [42]:

Rule 1: 𝑥
1
(𝑡) is 𝜇

1
(𝑥
1
(𝑡)), THEN ̇𝑥(𝑡) = 𝐴

1
𝑥(𝑡),

Rule 2: 𝑥
2
(𝑡) is 𝜇

2
(𝑥
1
(𝑡)), THEN ̇𝑥(𝑡) = 𝐴

2
𝑥(𝑡),

where 𝑥(𝑡) = [𝑥
1
(𝑡), 𝑥
2
(𝑡), 𝑥
3
(𝑡)], 𝜇

1
(𝑥
1
(𝑡)) = (30 + 𝑥

1
(𝑡))/60,

𝜇
2
(𝑥
1
(𝑡)) = (30 − 𝑥

1
(𝑡))/60, and

𝐴
1
=
[
[

[

−10 10 0

28 −1 −30

0 30
−8

3

]
]

]

, 𝐴
2
=
[
[

[

−10 10 0

28 −1 30

0 −30
−8

3

]
]

]

. (18)
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1
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Figure 2: The unknown input and its estimated.

Table 1

𝜆 = 2 × 10
3

𝛼 = 5.505 × 10
4

𝛼
0
= 0.001

𝑖 1 2

𝐾
𝑝𝑖

[
[
[

[

−11.471 12.445

−22.084 10.838

−94.350 96.029

]
]
]

]

[
[
[

[

−11.057 11.926

02.100 11.650

97.909 −96.239

]
]
]

]

𝐾
𝐼𝑖

[15.123 03.344] [21.570 −03.137]

𝐾
1

𝐼𝑖
[83.889 −02.802] [79.394 01.612]

The Lorenz chaotic attractor is given in Figure 1.
The TS fuzzy model of the Lorenz chaotic system (17) is

̇𝑥 (𝑡) =

2

∑

𝑖=1

𝜇
𝑖
(𝑥) (𝐴

𝑖
𝑥 (𝑡) + 𝐸

𝑖
V (𝑡)) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) + 𝐸V (𝑡) ,

(19)

with 𝐵
1
= 𝐵
2
= [
0

0

0

], 𝐸
1
= [
1

1

1

], 𝐸
2
= [
1

0.5

1

], 𝐸 = [ 1
1
], 𝐶 =

[
0 0 1

0 1 1
].

The unknown input V(𝑡) is assumed as a message to be
recovered by the unknown input PIO (4).This observer plays
the role of decoder and the chaotic system the encoder within
a secure communication configuration.

4.1.2. Unknown Input PIO. Theunknown input PIO gains are
determined by resolving the LMIs constraints ((11a), (11b),
and (11c)) of Theorem 2:

𝐾
𝑖
= [𝐾
𝑇

𝑃𝑖
𝐾
𝑇

𝐼𝑖
𝐾
1𝑇

𝐼𝑖
]
𝑇

, 𝑍 = [𝑍
𝑇

𝑥
𝑍
𝑇

V 𝑍
𝑇

V1]
𝑇

. (20)

The unknown input PIO gains are given by Table 1.
The unknown input is assumed as a message to be

encoded by chaotic system with the second derivative being
zero, shown in Figure 2. The simulation results are obtained
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Figure 3: (a) The state 𝑥
1
(𝑡) and its estimated 𝑥

1
(𝑡). (b) The state 𝑥

2
(𝑡) and its estimated 𝑥

2
(𝑡). (c) The state 𝑥

3
(𝑡) and its estimated 𝑥

3
(𝑡).

with the initial conditions 𝑥
0
= [1 1 1] 𝑥

0
= [0 0 0] and

with 𝜀 = 10−3.
The unknown input and the estimated one are given in

Figure 2. Excepted around the time origin, we obtained a
good reconstruction of the unknown input. Figures 3(a), 3(b),
and 3(c) show the states 𝑥

1
(𝑡), 𝑥
2
(𝑡), and 𝑥

3
(𝑡) and their

estimated 𝑥
1
(𝑡), 𝑥
2
(𝑡), and 𝑥

3
(𝑡), respectively.

The dynamic errors of the states estimation are given
in Figure 4. The obtained simulation results show the good
reconstruction of the states and the unknown input.

Remark 4. Note that applying Theorem 3 instead of
Theorem 2 for this example leads to bad estimation. The
simulation results for this example, carried out with the
same initial conditions: 𝑥

0
= [1 1 1] and 𝑥

0
= [0 0 0],

are shown in Figure 5. Indeed, we see clearly that the best
estimation (Figure 6) is given by Theorem 2 (dashed line)
which takes into account the estimation of decision variables.

4.2. Fourth Rossler Chaotic System. The fourth Rossler
chaotic system [21] is represented by the following dynamic
equations:

̇𝑥
1
= −𝑥
2
− 𝑥
3
,

̇𝑥
2
= 𝑥
1
+ 0,254𝑥

2
+ 𝑥
4
,

̇𝑥
3
= 𝑥
1
𝑥
3
+ 3,

̇𝑥
4
= −0,5𝑥

3
+ 0,05𝑥

4
.

(21)

4.2.1. TS Fuzzy Model. The fourth Rossler’s system can be
exactly described by TS fuzzy model with the decision
variable 𝑥

1
(𝑡) ∈ [−80, 20] as follow [42]:

Rule 1: 𝑥
1
(𝑡) is 𝜇

1
(𝑥
1
(𝑡)), THEN ̇𝑥(𝑡) = 𝐴

1
𝑥(𝑡) + 𝑑

1
,

Rule 2: 𝑥
2
(𝑡) is 𝜇

2
(𝑥
1
(𝑡)), THEN ̇𝑥(𝑡) = 𝐴

2
𝑥(𝑡) + 𝑑

2
,
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Figure 4: The errors between states and their estimated.
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Figure 5: The errors between unknown input and its estimated.
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Figure 6: The zoom on the errors between unknown input and its
estimated.

Table 2

𝜆 = 3 × 10
3

𝛼 = 6.243 × 10
5

𝛼
0
= 6.467 × 10

−5

𝑖 1 2

𝐾
𝑝𝑖

[
[
[
[
[
[

[

011.018 001.805

−000.343 001.344

−078.779

011.208

109.443

005.138

]
]
]
]
]
]

]

[
[
[
[
[
[

[

020.387 −026.055

004.339 −013.805

166.122

028.076

−242.987

−045.031

]
]
]
]
]
]

]

𝐾
𝐼𝑖

[052.544 −006.911] [030.739 058.089]

𝐾
1

𝐼𝑖
[097.452 −008.136] [066.736 083.503]

𝐾
2

𝐼𝑖
[091.450 −008.807] [058.600 089.165]

𝐾
3

𝐼𝑖
[034.284 −001.174] [027.830 018.118]

where 𝑥(𝑡) = [𝑥
1
(𝑡), 𝑥
2
(𝑡), 𝑥
3
(𝑡), 𝑥
4
(𝑡)], 𝜇

1
(𝑥
1
(𝑡)) = (80 +

𝑥
1
(𝑡))/100, 𝜇

2
(𝑥
1
(𝑡)) = (20 − 𝑥

1
(𝑡))/100, and

𝐴
1
=

[
[
[

[

0 −1 −1 0

1 0.25 0 1

0 0 20 0

0 0 −0.5 0.05

]
]
]

]

,

𝐴
2
=

[
[
[

[

0 −1 −1 0

1 0.25 0 1

0 0 −80 0

0 0 −0.5 0.05

]
]
]

]

,

𝑑
1
= 𝑑
2
=

[
[
[

[

0

0

3

0

]
]
]

]

.

(22)

The fourth Rossler chaotic attractor is given in Figure 7.
The TS fuzzy model of the fourth Rossler system (21) is

̇𝑥 (𝑡) =

2

∑

𝑖=1

𝜇
𝑖
(𝑥) (𝐴

𝑖
𝑥 (𝑡) + 𝐸

𝑖
V (𝑡) + 𝑑

𝑖
) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) + 𝐸V (𝑡)

(23)

with 𝐵
1
= 𝐵
2
= [

0

0

0

0

], 𝐸
1
= [

1

1

1

1

], 𝐸
2
= [

1

0.5

1

1

], 𝐸 = [
1

1
],

𝐶 = [
0 1 0 1

0 0 1 0
].

The unknown input V(𝑡) is assumed as a message to be
encoded by the TS fuzzy model (23).

4.2.2. Unknown Input PIO. The unknown PIO gains are
obtained by resolving the LMIs constraints ((11a), (11b), and
(11c)) of Theorem 3:

𝐾
𝑖
= [𝐾
𝑇

𝑃𝑖
𝐾
𝑇

𝐼𝑖
𝐾
1𝑇

𝐼𝑖
𝐾
2𝑇

𝐼𝑖
𝐾
3𝑇

𝐼𝑖
]
𝑇

,

𝑍 = [𝑍
𝑇

𝑥
𝑍
𝑇

V 𝑍
𝑇

V1 𝑍
𝑇

V2 𝑍
𝑇

V3]
𝑇

.

(24)

The unknown PIO gains are given by Table 2.
The unknown input is assumed as a message to be

encoded by chaotic system. The best results are obtained
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Figure 7: (a) Chaotic behavior 𝑥
4
(𝑥
1
(𝑡), 𝑥
2
(𝑡)) of fourth Rossler fuzzy system. (b) Chaotic behavior 𝑥

4
(𝑥
1
(𝑡), 𝑥
3
(𝑡)) of fourth Rossler fuzzy

system. (c) Chaotic behavior 𝑥
4
(𝑥
2
(𝑡), 𝑥
3
(𝑡)) of fourth Rossler fuzzy system. (d) Chaotic behavior 𝑥

3
(𝑥
1
(𝑡), 𝑥
2
(𝑡)) of fourth Rossler fuzzy

system.
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Figure 8: The unknown input and its estimated.

with the fourth derivative being zero, shown in Figure 8. The
simulation results are obtained with the initial conditions
𝑥
0
= [0 0 0 30] and 𝑥

0
= [1 1 1 29] and with 𝜀 = 10−3.

The unknown input and the estimated one are given in
Figure 8. Excepted around the time origin, we got a good
reconstruction of the unknown input. Figures 9(a), 9(b), 9(c)
and 9(d) represent the states 𝑥

1
(𝑡), 𝑥
2
(𝑡), 𝑥
3
(𝑡), and 𝑥

4
(𝑡) and

their estimated 𝑥
1
(𝑡), 𝑥
2
(𝑡), 𝑥
3
(𝑡), and 𝑥

4
(𝑡), respectively.

The dynamic errors of the states estimation are repre-
sented in Figure 10.The obtained simulation results show the
good estimation of the states and the unknown input.

5. Conclusion

In this paper, we have addressed the synchronization and
reconstruction problem for chaotic systems. The TS fuzzy
models subjected to unmeasurable decision variables and
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Figure 9: (a) The state 𝑥

1
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1
(𝑡). (b) The state 𝑥
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(𝑡) and its estimated 𝑥

2
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3
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The state 𝑥
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4
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Figure 10: The errors between states and their estimated.

unknown inputs are employed to exactly describe the behav-
ior of two chaotic systems, Lorenz’s system and Rossler’s
system. Based on Lyapunov theory and LMI formulation, an
unknown input proportional integral observer to achieve the
synchronization and the unknown input reconstruction is
designed. To take into account a wide variety of unknown
inputs, a polynomial form with 𝑘th derivative zero is con-
sidered. Moreover, both the measurable and unmeasurable
decision variables cases are studied. Simulation results are
given to verify the effectiveness of the proposed method by
reconstructing both states and unknown inputs. In the secure
communication field, the proposed polynomial unknown
input PIO with unmeasurable decision variables presents a
good synchronization technique and messages recovering.

Motivated by the given results, the problem of diagnosis
and fault tolerant control for more complex systems will be
considered. Moreover, to reduce the conservatism due to the
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quadratic approach, nonquadratic Lyapunov functions will
be introduced in our further research.

Appendix

By using the quadratic Lyapunov function𝑉(𝑡) = 𝑒𝑇
𝑎
(𝑡)𝑃𝑒
𝑎
(𝑡)

where 𝑃 = 𝑃𝑇 > 0 and the following lemma.

Lemma A.1. For any matrices X and Y of appropriate dimen-
sions, the following property is satisfied:

𝑋
𝑇
𝑌 + 𝑌

𝑇
𝑋 ≤ 𝜆𝑋

𝑇
𝑋 + 𝜆

−1
𝑌
𝑇
𝑌 with 𝜆 > 0, (A.1)

the time-derivative of 𝑉(𝑡) leads

𝑉 ≤

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑥) (𝑒

𝑇

𝑎
(A
𝑇

𝑖
𝑃 + 𝑃A

𝑖
+ 𝛼
0
𝛿
2

1
𝐼 + ∝

−1
𝑃
2

) 𝑒
𝑎
)

+ 𝜎
1
𝛿
2

1
𝑥
𝑇

𝑎
𝑥
𝑎
+ 𝜎
2
𝛿
2

2
𝑢
𝑇
𝑢 + 𝜎
3
𝛿
2

3
𝐼 − 2𝑒

𝑇

𝑎
𝑃𝑧

(A.2)

with

𝛼
0
= 𝜆
1
(1 + 𝜆) , ∝

−1
= (𝜆
−1

1
+ 𝜆
−1

2
+ 𝜆
−1

3
) ,

𝜎
1
= 𝜆
1
(1 + 𝜆

−1
) = (

𝛼
0

𝜆
) ,

𝜎
2
= 𝜆
2
= (

𝛼𝛼
0
𝜆
3

𝛼 (𝛼
0
+ 𝜆
3
(1 + 𝜆)) − 𝛼

0
𝜆
3

) ,

𝜎
3
= 𝜆
3
.

(A.3)

And taking into account (11c) we obtain

2𝑒
𝑇

𝑎
𝑃𝑧 = 2𝑒

𝑇

𝑎
𝑃𝜎
1
𝛿
2

1

𝑥
𝑇

𝑎
𝑥
𝑎

2𝑒𝑇
𝑎𝑦
𝑒
𝑎𝑦

𝑃
−1
𝐶
𝑇

𝑒
𝑎𝑦

+ 2𝑒
𝑇

𝑎
𝑃𝜎
2
𝛿
2

2

𝑢
𝑇
𝑢

2𝑒𝑇
𝑎𝑦
𝑒
𝑎𝑦

𝑃
−1
𝐶
𝑇

𝑒
𝑎𝑦

+ 2𝑒
𝑇

𝑎
𝑃𝜎
3
𝛿
2

3

1

2𝑒𝑇
𝑎𝑦
𝑒
𝑎𝑦

𝑃
−1
𝐶
𝑇

𝑒
𝑎𝑦

= 𝜎
1
𝛿
2

1
𝑥
𝑇

𝑎
𝑥
𝑎
+ 𝜎
2
𝛿
2

2
𝑢
𝑇
𝑢 + 𝜎

3
𝛿
2

3
𝐼.

(A.4)

Then, the relation (A.2) becomes

𝑉 ≤

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑥) 𝑒
𝑇

𝑎
(A
𝑇

𝑖
𝑃 + 𝑃A

𝑖
+ 𝛼
0
𝛿
2

1
𝐼 + ∝

−1
𝑃
2

) 𝑒
𝑎
. (A.5)

The condition of stability 𝑉(𝑡) < 0 (for all 𝑖 = 1, . . . , 𝑟) is
satisfied if

A
𝑇

𝑖
𝑃 + 𝑃A

𝑖
+ 𝛼
0
𝛿
2

1
𝐼 + ∝

−1
𝑃
2

+ 𝛼
−1
𝑃
2

< 0. (A.6)

The Schur complement of condition (A.6) with variables
given in (9) allows writing the LMI (11a).
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We study complete synchronization of the complex dynamical networks described by linearly coupled ordinary differential equation
systems (LCODEs). Here, the coupling is timevarying in both network structure and reaction dynamics. Inspired by our previous
paper (Lu et al. (2007-2008)), the extended Hajnal diameter is introduced and used to measure the synchronization in a general
differential system. Then we find that the Hajnal diameter of the linear system induced by the time-varying coupling matrix and
the largest Lyapunov exponent of the synchronized system play the key roles in synchronization analysis of LCODEs with identity
inner couplingmatrix. As an application, we obtain a general sufficient condition guaranteeing directed time-varying graph to reach
consensus. Example with numerical simulation is provided to show the effectiveness of the theoretical results.

1. Introduction

Complex networks have widely been used in theoretical anal-
ysis of complex systems, such as Internet, World Wide Web,
communication networks, and social networks. A complex
dynamical network is a large set of interconnected nodes,
where each node possesses a (nonlinear) dynamical system
and the interaction between nodes is described as diffusion.
Among them, linearly coupled ordinary differential equation
systems (LCODEs) are a large class of dynamical systemswith
continuous time and state.

The LCODEs are usually formulated as follows:

̇𝑥
𝑖
(𝑡) = 𝑓 (𝑥

𝑖
(𝑡)) + 𝜎

𝑚

∑

𝑗=1

𝑙
𝑖𝑗
𝐵𝑥

𝑗
(𝑡) , 𝑖 = 1, 2, . . . , 𝑚,

(1)

where 𝑡 ∈ R+ = [0, +∞) stands for the continuous time and
𝑥
𝑖
(𝑡) ∈ R𝑛 denotes the variable state vector of the 𝑖th node,

𝑓 : R𝑛 → R𝑛 represents the node dynamic of the uncoupled
system, 𝜎 ∈ R+ = (0, +∞) denotes coupling strength, 𝑙

𝑖𝑗
≥ 0

with 𝑖 ̸= 𝑗 denotes the interaction between the two nodes, and

𝑙
𝑖𝑖
= −∑

𝑚

𝑗 ̸= 𝑖
𝑙
𝑖𝑗
, 𝐵 ∈ R𝑛,𝑛 denotes the inner coupling matrix.

The LCODEs model is widely used to describe the model in
nature and engineering. For example, the authors study spike-
burst neural activity and the transitions to a synchronized
state using a model of linearly coupled bursting neurons in
[1]; the dynamics of linearly coupled Chua circuits are studied
with application to image processing andmany other cases in
[2].

For decades, a large number of papers have focused on
the dynamical behaviors of coupled systems [3–5], especially
the synchronizing characteristics. The word “synchroniza-
tion” comes from Greek; in this paper the concept of local
complete synchronization (synchronization for simplicity) is
considered (see Definition 3). For more details, we refer the
readers to [6] and the references therein.

Synchronization of coupled systems have attracted a great
deal of attention [7–9]. For instances, in [7], the authors
considered the synchronization of a network of linearly
coupled and not necessarily identical oscillators; in [8], the
authors studied globally exponential synchronization for
linearly coupled neural networkswith time-varying delay and
impulsive disturbances. Synchronization of networks with
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time-varying topologies was studied in [10–16]. For example,
in [10], the authors proposed the global stability of total syn-
chronization in networks with different topologies; in [16],
the authors gave a result that the networkwill synchronizewith
the time-varying topology if the time-average is achieved
sufficiently fast.

Synchronization of LCODEs has also been addressed
in [17–19]. In [17], mathematical analysis was presented on
the synchronization phenomena of LCODEs with a single
coupling delay; in [18], based on geometrical analysis of
the synchronization manifold, the authors proposed a novel
approach to investigate the stability of the synchronization
manifold of coupled oscillators; in [19], the authors pro-
posed new conditions on synchronization of networks of
linearly coupled dynamical systemswith non-Lipschitz right-
handsides. The great majority of research activities men-
tioned above all focused on static networks whose connectiv-
ity and coupling strengths are static. Inmany applications, the
interaction between individualsmay change dynamically. For
example, communication links between agents may be unre-
liable due to disturbances and/or subject to communication
range limitations.

In this paper, we consider synchronization of LCODEs
with time-varying coupling. Similar to [17–19], time-varying
coupling will be used to represent the interaction between
individuals. In [6, 13], they showed that the Lyapunov expo-
nents of the synchronized system and the Hajnal diameter
of the variational equation play key roles in the analysis of
the synchronization in the discrete-time dynamical networks.
In this paper, we extend these results to the continuous-time
dynamical network systems. Different from [11, 16], where
synchronization of fast-switching systems was discussed, we
focus on the framework of synchronization analysis with
general temporal variation of network topologies. Additional
contributions of this paper are that we explicitly show that
(a) the largest projection Lyapunov exponent of a system is
equal to the logarithm of the Hajnal diameter, and (b) the
largest Lyapunov exponent of the transverse space is equal to
the largest projection Lyapunov exponent under some proper
conditions.

The paper is organized as follows: in Section 2, some
necessary definitions, lemmas, and hypotheses are given; in
Section 3, synchronization of generalized coupled differential
systems is discussed; in Section 4, criteria for the synchro-
nization of LCODEs are obtained; in Section 5, we obtain
a sufficient condition ensuring directed time-varying graph
reaching consensus; in Section 6, example with numerical
simulation is provided to show the effectiveness of the
theoretical results; the paper is concluded in Section 7.

Notions. 𝑒𝑛
𝑘
= [0, 0, . . . , 0, 1, 0, . . . , 0]

T
∈ R𝑛 denotes the 𝑛-

dimensional vector with all components zero except the 𝑘th
component 1, 1

𝑛
denotes the 𝑛-dimensional column vector

with each component 1; for a set in someEuclidean space𝑈,𝑈
denotes the closure of𝑈,𝑈𝑐 denotes the complementary set of
𝑈, and𝐴\𝐵 = 𝐴∩𝐵

𝑐; for 𝑢 = [𝑢
1
, . . . , 𝑢

𝑛
]
T
∈ R𝑛, ‖𝑢‖ denotes

some vector norm, and for any matrix 𝐴 = (𝑎
𝑖𝑗
) ∈ R𝑛,𝑚,

‖𝐴‖ denotes some matrix norm induced by vector norm,

for example, ‖𝑢‖
1
= ∑

𝑛

𝑖=1
|𝑢
𝑖
| and ‖𝐴‖

1
= max

𝑗
∑
𝑛

𝑖=1
|𝑎
𝑖𝑗
|;

for a matrix 𝐴 = (𝑎
𝑖𝑗
) ∈ R𝑛,𝑚, |𝐴| denotes a matrix with

|𝐴| = (|𝑎
𝑖𝑗
|); for a real matrix𝐴,𝐴T denotes its transpose and

for a complex matrix 𝐵, 𝐵∗ denotes its conjugate transpose;
for a set in some Euclidean space 𝑊, O(𝑊, 𝛿) = {𝑥 : dist(𝑥,
𝑊) < 𝛿}, where dist(𝑥,𝑊) = inf

𝑦∈𝑊
‖𝑥 − 𝑦‖; #𝐽 denotes the

cardinality of set 𝐽; ⌊𝑧⌋ denotes the floor function, that is, the
largest integer not more than the real number 𝑧; ⊗ denotes
the Kronecker product; for a set in some Euclidean space𝑊,
𝑊
𝑚 denote the Cartesian product𝑊× ⋅ ⋅ ⋅ × 𝑊 (𝑚 times).

2. Preliminaries

In this section we will give some necessary definitions, lem-
mas, and hypotheses. Consider the following general coupled
differential system:

̇𝑥
𝑖
(𝑡) = 𝑓

𝑖
(𝑥
1
(𝑡) , 𝑥

2
(𝑡) , . . . , 𝑥

𝑚
(𝑡) , 𝑡) , 𝑖 = 1, 2, . . . , 𝑚,

(2)

with initial state 𝑥(𝑡
0
) = [𝑥

1
(𝑡
0
)
T
, . . . , 𝑥

𝑚
(𝑡
0
)
T
]
T

∈ R𝑛𝑚,
where 𝑡

0
∈ R+ denotes the initial time, 𝑡 ∈ R+ denotes the

continuous time, and 𝑥𝑖(𝑡) = [𝑥
𝑖

1
(𝑡), . . . , 𝑥

𝑖

𝑛
(𝑡)] ∈ R𝑛 denotes

the variable state of the 𝑖th node, 𝑖 = 1, 2, . . . , 𝑚.
For the functions 𝑓𝑖 : R𝑛𝑚 × R+ → R𝑛, 𝑖 = 1, 2, . . . , 𝑚,

we make the following assumption.

Assumption 1. (a) There exists a function 𝑓 : R𝑛 → R𝑛 such
that 𝑓𝑖(𝑠, 𝑠, . . . , 𝑠, 𝑡) = 𝑓(𝑠) for all 𝑖 = 1, 2, . . . , 𝑚, 𝑠 ∈ R𝑛,
and 𝑡 ≥ 0; (b) for any 𝑡 ≥ 0, 𝑓𝑖(⋅, 𝑡) is 𝐶1-smooth for all
𝑥 = [𝑥

1T
, . . . , 𝑥

𝑚T
]
T
∈ R𝑛𝑚, and by 𝐷𝐹𝑡(𝑥) = ((𝜕𝑓

𝑖
/𝜕𝑥

𝑗
)(𝑥,

𝑡))
𝑚

𝑖,𝑗=1
∈ R𝑛𝑚,𝑛𝑚 denotes the Jacobian matrix of 𝐹(𝑥, 𝑡) =

[𝑓
𝑖
(𝑥, 𝑡)

T
, . . . , 𝑓

𝑚
(𝑥, 𝑡)

T
]
T with respect to 𝑥 ∈ R𝑛𝑚; (c) there

exists a locally bounded function 𝜙(𝑥) such that ‖𝐷𝐹𝑡(𝑥)‖ ≤
𝜙(𝑥) for all (𝑥, 𝑡) ∈ R𝑛𝑚 ×R+; (d)𝐷𝐹𝑡(𝑥) is uniformly locally
Lipschitz continuous: there exists a locally bounded function
𝐾(𝑥, 𝑦) such that


𝐷𝐹

𝑡
(𝑥) − 𝐷𝐹

𝑡
(𝑦)


≤ 𝐾 (𝑥, 𝑦)

𝑥 − 𝑦
 (3)

for all 𝑡 ≥ 0 and 𝑥, 𝑦 ∈ R𝑛𝑚; (e) 𝑓𝑖(𝑥, 𝑡) and 𝐷𝐹𝑡(𝑥) are both
measurable for 𝑡 ≥ 0.

We say a function 𝑔(𝑦) : R𝑞 → R𝑝 is locally bounded
if for any compact set 𝐾 ⊂ R𝑞, there exists𝑀 > 0 such that
‖𝑔(𝑦)‖ ≤ 𝑀 holds for all 𝑦 ∈ 𝐾.

The first item of Assumption 1 ensures that the diagonal
synchronization manifold

S = {[𝑥
1T
, 𝑥
2T
, . . . , 𝑥

𝑚T
]
T
∈ R

𝑛𝑚
: 𝑥
𝑖T
= 𝑥

𝑗T
,

𝑖, 𝑗 = 1, 2, . . . , 𝑚}

(4)

is an invariant manifold for (2).
If 𝑥1(𝑡) = 𝑥

2
(𝑡) = ⋅ ⋅ ⋅ = 𝑥

𝑚
(𝑡) = 𝑠(𝑡) ∈ R𝑛 is the

synchronized state, then the synchronized state 𝑠(𝑡) satisfies

̇𝑠 (𝑡) = 𝑓 (𝑠 (𝑡)) . (5)
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Since 𝑓(⋅) is 𝐶1-smooth, then 𝑠(𝑡) can be denoted by the
corresponding continuous semiflow 𝑠(𝑡) = 𝜗

(𝑡)
𝑠
0
of the in-

trinsic system (5). For 𝜗(𝑡), we make following assumption.

Assumption 2. The system (5) has an asymptotically stable
attractor: there exists a compact set 𝐴 ⊂ 𝑅

𝑛 such that (a) 𝐴
is invariant through the system (5), that is, 𝜗(𝑡)𝐴 ⊂ 𝐴 for all
𝑡 ≥ 0; (b) there exists an open bounded neighborhood 𝑈 of
𝐴 such that ⋂

𝑡≥0
𝜗
(𝑡)
𝑈 = 𝐴; (c) 𝐴 is topologically transitive;

that is, there exists 𝑠
0
∈ 𝐴 such that 𝜔(𝑠

0
), the 𝜔 limit set of

the trajectory 𝜗(𝑡)𝑠
0
, is equal to 𝐴 [3].

Definition 3. Local complete synchronization (synchroniza-
tion for simplicity) is defined in the sense that the set

S⋂𝐴
𝑚
= {[𝑥

T
, 𝑥

T
, . . . , 𝑥

T
]
T
∈ R

𝑛𝑚
: 𝑥

T
∈ 𝐴} (6)

is an asymptotically stable attractor in R𝑛𝑚. That is, for the
coupled dynamical system (2), differences between com-
ponents converge to zero if the initial states are picked
sufficiently near S⋂𝐴

𝑚, that is, if the components are all
close to the attractor𝐴 and if their differences are sufficiently
small.

Next we give some lemmas which will be used later, and
the proofs can be seen in the appendix.

Lemma 4. Under Assumption 1, one has

𝑚

∑

𝑗=1

𝜕𝑓
𝑖

𝜕𝑥𝑗
(𝑠, 𝑡) =

𝜕𝑓

𝜕𝑠
(𝑠) , (7)

for all 𝑠 ∈ 𝑅𝑛 and 𝑡 ≥ 0, where 𝑠 = [𝑠T, 𝑠T, . . . , 𝑠T]T.

Lemma 5. Under Assumptions 1 and 2, there exists a compact
neighborhood𝑊 of 𝐴 such that 𝜗(𝑡)𝑊 ⊂ 𝜗

(𝑡

)
𝑊 for all 𝑡 ≥ 𝑡 ≥

0 and⋂
𝑡≥0

𝜗
(𝑡)
𝑊 = 𝐴.

Let 𝛿𝑥(𝑡) = [𝛿𝑥1(𝑡)T, . . . , 𝛿𝑥𝑚(𝑡)T]T ∈R𝑛𝑚, where 𝛿𝑥𝑖(𝑡) =
𝑥
𝑖
(𝑡) − 𝑠(𝑡) ∈ R𝑛. We have the following variational equation

near the synchronized state 𝑠(𝑡):

𝛿 ̇𝑥
𝑖
(𝑡) =

𝑚

∑

𝑗=1

𝜕𝑓
𝑖

𝜕𝑥𝑗
(𝑠 (𝑡) , 𝑡) 𝛿𝑥

𝑗
(𝑡) , 𝑖 = 1, 2, . . . , 𝑚, (8)

or in matrix form:

𝛿 ̇𝑥 (𝑡) = 𝐷𝐹
𝑡
(𝑠 (𝑡)) 𝛿𝑥 (𝑡) , (9)

where 𝐷𝐹
𝑡
(𝑠(𝑡)) denotes the Jacobin matrix 𝐷𝐹

𝑡
(𝑠(𝑡)) for

simplicity.
From [20], we can give the results on the existence,

uniqueness, and continuous dependence of (2) and (9).

Lemma 6. Under Assumption 2, each of the differential equa-
tions (2) and (9) has a unique solution which is continuously
dependent on the initial condition.

Thus, the solution of the linear system (9) can be written
in matrix form.

Definition 7. Solution matrix 𝑈(𝑡, 𝑡
0
, 𝑠
0
) of the system (9) is

defined as follows. Let 𝑈(𝑡, 𝑡
0
, 𝑠
0
) = [𝑢

1
(𝑡, 𝑡

0
, 𝑠
0
), . . . , 𝑢

𝑛𝑚
(𝑡,

𝑡
0
, 𝑠
0
)], where 𝑢𝑘(𝑡, 𝑡

0
, 𝑠
0
) denotes the 𝑘th column and is the

solution of the following Cauchy problem:

𝛿 ̇𝑥 (𝑡) = 𝐷𝐹
𝑡
(𝑠 (𝑡)) 𝛿𝑥 (𝑡) ,

𝑠 (𝑡
0
) = 𝑠

0
,

𝛿𝑥 (𝑡
0
) = 𝑒

𝑛𝑚

𝑘
.

(10)

Immediately, according to Lemma 6, we can conclude
that the solution of the following Cauchy problem

𝛿 ̇𝑥 (𝑡) = 𝐷𝐹
𝑡
(𝑠 (𝑡)) 𝛿𝑥 (𝑡) ,

𝑠 (𝑡
0
) = 𝑠

0
,

𝛿𝑥 (𝑡
0
) = 𝛿𝑥

0

(11)

can be written as 𝛿𝑥(𝑡) = 𝑈(𝑡, 𝑡
0
, 𝑠
0
)𝛿𝑥

0
.

We define the time-varying Jacobin matrix 𝐷𝐹𝑡 by the
following way:

𝐷F : R
+
× 𝑅

𝑛
→ 2

R𝑛𝑚,𝑛𝑚
,

(𝑡
0
, 𝑠
0
) → {𝐷𝐹

𝑡
(𝑠 (𝑡))}

𝑡≥𝑡0

(12)

with 𝑠(𝑡
0
) = 𝑠

0
, where 2R

𝑛𝑚,𝑛𝑚

is the collection of all the subsets
of R𝑛𝑚,𝑛𝑚.

Definition 8. For a time varying system denoted by 𝐷F, we
can define its Hajnal diameter of the variational system (9) as
follows:

diam (𝐷F, 𝑠
0
) = lim

𝑡→∞

sup
𝑡0≥0

{diam (𝑈 (𝑡, 𝑡
0
, 𝑠
0
))}

1/𝑡

, (13)

where for aR𝑛𝑚,𝑛𝑚matrix in blockmatrix form:𝑈 = (𝑈
𝑖𝑗
)
𝑚

𝑖,𝑗=1

with 𝑈
𝑖𝑗
∈ 𝑅

𝑛,𝑛, its Hajnal diameter is defined as follows:

diam (𝑈) = max
𝑖,𝑗


𝑈
𝑖
− 𝑈

𝑗


, (14)

where 𝑈
𝑖
= [𝑈

𝑖1
, 𝑈
𝑖2
, . . . , 𝑈

𝑖𝑚
].

Lemma 9 (Grounwell-Beesack’s inequality). If function V(𝑡)
satisfies the following condition:

V (𝑡) ≤ 𝑎 (𝑡) + 𝑏 (𝑡) ∫
𝑡

0

V (𝜏) 𝑑𝜏, (15)

where 𝑏(𝑡) ≥ 0 and 𝑎(𝑡) are some measurable functions, then
one has

V (𝑡) ≤ 𝑎 (𝑡) + 𝑏 (𝑡) ∫
𝑡

0

𝑎 (𝜏) 𝑒
∫
𝑡

𝜏
𝑏(𝜃)𝑑𝜃

𝑑𝜏, 𝑡 ≥ 0. (16)

Based on Assumption 1, for the solution matrix 𝑈, we
have the following lemma.
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Lemma 10. Under Assumption 1, one has the following:

(1) ∑𝑚
𝑗=1

𝑈
𝑖𝑗
(𝑡, 𝑡

0
, 𝑠
0
) = 𝑈(𝑡, 𝑡

0
, 𝑠
0
), where 𝑈(𝑡, 𝑡

0
, 𝑠
0
) de-

notes the solution matrix of the following Cauchy
problem:

̇𝑢 =
𝜕𝑓

𝜕𝑠
(𝑠 (𝑡)) 𝑢,

𝑠 (𝑡
0
) = 𝑠

0
;

(17)

(2) for any given 𝑡 ≥ 0 and the compact set 𝑊 given in
Lemma 5, 𝑈(𝑡 + 𝑡

0
, 𝑡
0
, 𝑠
0
) is bounded for all 𝑡

0
≥ 0 and

𝑠
0
∈ 𝑊 and equicontinuous with respect to 𝑠

0
∈ 𝑊.

Let 𝑃 = (𝑃
𝑖𝑗
)
𝑚

𝑖,𝑗=1
be a R𝑛𝑚,𝑛𝑚 matrix with 𝑃

𝑖𝑗
∈ R𝑛,𝑛 sat-

isfying (a) 𝑃
𝑖1
= (1/√𝑚)𝑃

0
for some orthogonal matrix 𝑃

0
∈

R𝑛,𝑛 and all 𝑖 = 1, 2, . . . , 𝑚; (b) 𝑃 is also an orthogonal matrix
in R𝑛𝑚,𝑛𝑚. We also write 𝑃 and its inverse 𝑃−1 = 𝑃

T in the
form

𝑃 = [𝑃
1
, 𝑃
2
] , 𝑃

T
= [

[

𝑃
T
1

𝑃
T
2

]

]

, (18)

where 𝑃
1
= (1/√𝑚)1

𝑚
⊗ 𝑃

0
and 𝑃

2
∈ R𝑛𝑚,𝑛(𝑚−1). According

to Lemma 10, we have

𝑈(𝑡, 𝑡
0
, 𝑠
0
) 𝑃
1
=

1

√𝑚
1
𝑚
⊗ [𝑈 (𝑡, 𝑡

0
, 𝑠
0
) 𝑃
0
] . (19)

Since 𝑃T
2
𝑃
1
= 0 which implies that each row of 𝑃T

2
is located

in the subspace orthogonal to the subspace {1
𝑚
⊗ 𝜉, 𝜉 ∈ R𝑛},

we can conclude that 𝑃T
2
𝑈(𝑡, 𝑡

0
, 𝑠
0
)𝑃
1
= 0. Then, we have

𝑃
−1
𝑈(𝑡, 𝑡

0
, 𝑠
0
) 𝑃 = [

𝑃
T
0
𝑈(𝑡, 𝑡

0
, 𝑠
0
) 𝑃
0
𝛼 (𝑡, 𝑡

0
, 𝑠
0
)

0 �̃� (𝑡, 𝑡
0
, 𝑠
0
)

] ,

(20)

where 𝑈(𝑡, 𝑡
0
, 𝑠
0
) denotes the common row sum of 𝑈(𝑡, 𝑡

0
,

𝑠
0
) = (𝑈

𝑖𝑗
)
𝑚

𝑖,𝑗=1
as defined in Lemma 10, �̃�(𝑡, 𝑡

0
, 𝑠
0
) = 𝑃

T
2
𝑈(𝑡,

𝑡
0
, 𝑠
0
)𝑃
2
∈ R𝑛(𝑚−1),𝑛(𝑚−1), 𝛼(𝑡, 𝑡

0
, 𝑠
0
) ∈ R𝑛,𝑛(𝑚−1) denotes a

matrix, and we omit its accurate expression. One can see
that �̃�(𝑡, 𝑡

0
, 𝑠
0
) is the solution matrix of the following linear

differential system.

Definition 11. We define the following linear differential
system by the projection variational system of (9) along the
directions 𝑃

2
:

̇𝜙 = 𝐷
𝑃
𝐹
𝑡
(𝑠 (𝑡)) 𝜙,

𝑠 (𝑡
0
) = 𝑠

0
,

(21)

where𝐷
𝑃
𝐹
𝑡
(𝑠(𝑡)) = 𝑃

T
2
𝐷𝐹

𝑡
(𝑠(𝑡))𝑃

2
.

Definition 12. For any time varying variational system 𝐷F :

R+ ×R𝑛 → 2
R𝑛𝑚,𝑛𝑚 , we define the Lyapunov exponent of the

variational system (9) as follows:

𝜆 (𝐷F, 𝑢, 𝑠
0
) = lim

𝑡→∞

sup
𝑡0≥0

1

𝑡
log 𝑈 (𝑡, 𝑡

0
, 𝑠
0
) 𝑢
 , (22)

where 𝑢 ∈ R𝑛𝑚 and 𝑠(𝑡
0
) = 𝑠

0
.

Similarly, we can define the projection Lyapunov exponents
by the following projection time-varying variation:

𝐷
𝑃
F : R

+
×R

𝑛
→ 2

R𝑛(𝑚−1),𝑛(𝑚−1)
,

(𝑡
0
, 𝑠
0
) → {𝐷

𝑃
𝐹
𝑡
(𝑠 (𝑡))}

𝑡≥𝑡0

,

(23)

that is,

𝜆 (𝐷
𝑃
F, �̃�, 𝑠

0
) = lim

𝑡→∞

sup
𝑡0≥0

1

𝑡
log �̃� (𝑡, 𝑡

0
, 𝑠
0
) �̃�

, (24)

where �̃� ∈ R𝑛(𝑚−1) and 𝑠(𝑡
0
) = 𝑠

0
. Let

𝜆
𝑃
(𝐷F, 𝑠

0
) = max

�̃�∈R𝑛(𝑚−1)
𝜆 (𝐷

𝑃
F, �̃�, 𝑠

0
) . (25)

Then, we have the following lemma.

Lemma 13. 𝜆
𝑃
(𝐷F, 𝑠

0
) = log diam(𝐷F, 𝑠

0
).

Remark 14. From Lemma 13, we can see that the largest
projection Lyapunov exponent is independent of the choice
of matrix 𝑃.

Consider the time-varying driven by some metric
dynamical system MDS(Ω,B,P, (𝑡)), where Ω is the com-
pact state space,B is the 𝜎-algebra, P is the probability mea-
sure, and (𝑡) is a continuous semiflow. Then, the variational
equation (9) is independent of the initial time 𝑡

0
and can be

rewritten as follows:
̇𝜙 = 𝐷𝐹 (𝑠 (𝑡) , 

(𝑡)
𝜔
0
) 𝜙,

𝑠 (0) = 𝑠
0
.

(26)

In this case, we denote the solution matrix, the projection
solution matrix, and the solution matrix on the synchro-
nization space by 𝑈(𝑡, 𝑠

0
, 𝜔
0
), �̃�(𝑡, 𝑠

0
, 𝜔
0
), and 𝑈(𝑡, 𝑠

0
, 𝜔
0
),

respectively. For simplicity, we write them as 𝑈(𝑡), �̃�(𝑡), and
𝑈(𝑡), respectively. Also, we write the Lyapunov exponents and
the projection Lyapunov exponent as follows:

𝜆 (𝐷F, 𝑢, 𝑠
0
, 𝜔
0
) = lim

𝑡→∞

1

𝑡
log 𝑈 (𝑡, 𝑠

0
, 𝜔
0
) 𝑢
 ,

𝜆 (𝐷F, 𝑠
0
, 𝜔
0
) = max

𝑢∈R𝑛𝑚
𝜆 (𝐷F, 𝑢, 𝑠

0
, 𝜔
0
) ,

𝜆
𝑃
(𝐷F, 𝑢, 𝑠

0
, 𝜔
0
) = lim

𝑡→∞

1

𝑡
log �̃� (𝑡, 𝑠

0
, 𝜔
0
) 𝑢

,

𝜆
𝑃
(𝐷F, 𝑠

0
, 𝜔
0
) = max

𝑢∈R𝑛(𝑚−1)
𝜆 (𝐷

𝑃
F, �̃�, 𝑠

0
, 𝜔
0
) .

(27)

We add the following assumption.

Assumption 15. (a) (𝑡) is a continuous semiflow; (b)𝐷𝐹(𝑠, 𝜔)
is a continuous map for all (𝑠, 𝜔) ∈ R𝑛 × Ω.

The following are involving linear differential systems.
Formore details, we refer the readers to [21]. For a continuous
scalar function 𝑢(𝑡), we denote its Lyapunov exponent by

𝜒 [𝑢 (𝑡)] = lim
𝑡→∞

1

𝑡
log |𝑢 (𝑡)| . (28)
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The following properties will be used later:

(1) 𝜒[∏𝑛

𝑘=1
𝑐
𝑘
𝑢
𝑘
(𝑡)] ≤ ∑

𝑛

𝑘=1
𝜒[𝑢

𝑘
(𝑡)], where 𝑐

𝑘
, 𝑘 = 1, 2,

. . . , 𝑛, are constants;
(2) if lim

𝑡→∞
(1/𝑡) log |𝑢(𝑡)| = 𝛼, which is finite, then

𝜒[1/(𝑢(𝑡))] = −𝛼;
(3) 𝜒[𝑢(𝑡) + V(𝑡)] ≤ max{𝜒[𝑢(𝑡)], 𝜒[V(𝑡)]};
(4) for a vector-value or matrix-value function 𝑈(𝑡), we

define 𝜒[𝑈(𝑡)] = 𝜒[‖𝑈(𝑡)‖].

For the following linear differential system:

̇𝑥 (𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) , (29)

where 𝑥(𝑡) ∈ R𝑛, a transformation 𝑥(𝑡) = 𝐿(𝑡)𝑦(𝑡) is said to
be a Lyapunov transformation if 𝐿(𝑡) satisfies

(1) 𝐿(𝑡) ∈ 𝐶1[0, +∞);
(2) 𝐿(𝑡), ̇𝐿(𝑡), 𝐿−1(𝑡) are bounded for all 𝑡 ≥ 0.

It can be seen that the class of Lyapunov transformations
forms a group and the linear system for 𝑦(𝑡) should be

̇𝑦 (𝑡) = 𝐵 (𝑡) 𝑦 (𝑡) , (30)

where𝐵(𝑡) = 𝐿−1(𝑡)𝐴(𝑡)𝐿(𝑡)−𝐿−1(𝑡) ̇𝐿(𝑡).Then, we say system
(30) is a reducible system of system (29).We define the adjoint
system of (29) by

̇𝑥 (𝑡) = −𝐴
∗
(𝑡) 𝑥 (𝑡) . (31)

If letting 𝑉(𝑡) be the fundamental matrix of (29), then
[𝑉
−1
(𝑡)]

∗ is the fundamental matrix of (31). Thus, we say the
system (29) is a regular system if the adjoint systems (29) and
(31) have convergent Lyapunov exponent series: {𝛼

1
, . . . , 𝛼

𝑛
}

and {𝛽
1
, . . . , 𝛽

𝑛
}, respectively, which satisfy 𝛼

𝑖
+ 𝛽

𝑖
= 0 for

𝑖 = 1, 2, . . . , 𝑛, or its reducible system (30) is also regular.

Lemma 16. Suppose that Assumptions 1, 2, and 15 are satisfied.
Let {𝜎

1
, 𝜎
2
, . . . , 𝜎

𝑛
, 𝜎
𝑛+1

, . . . , 𝜎
𝑛𝑚
} be the Lyapunov exponents

of the variational system (26), where {𝜎
1
, . . . , 𝜎

𝑛
} correspond

to the synchronization space and the remaining correspond to
the transverse space. Let 𝜆

𝑇
(𝐷F, 𝑠

0
, 𝜔
0
) = max

𝑖≥𝑛+1
𝜎
𝑖
and

𝜆
𝑆
(𝐷F, 𝑠

0
, 𝜔
0
) = max

1≤𝑖≤𝑛
𝜎
𝑖
. If (a) the linear system (17) is

a regular system, (b) ‖𝐷𝐹(𝑠(𝑡), (𝑡)𝜔
0
)‖ ≤ 𝑀 for all 𝑡 ≥ 0,

(c) 𝜆
𝑃
(𝐷F, 𝑠

0
, 𝜔
0
) ̸= 𝜆

𝑆
(𝐷F, 𝑠

0
, 𝜔
0
), then 𝜆

𝑇
(𝐷F, 𝑠

0
, 𝜔
0
) =

𝜆
𝑃
(𝐷F, 𝑠

0
, 𝜔
0
).

3. General Synchronization Analysis

In this section we provide a methodology based on the previ-
ous theoretical analysis to judgewhether a general differential
system can be synchronized or not.

Theorem 17. Suppose that𝑊 ∈ R𝑛 is the compact subset given
in Lemma 5, and Assumptions 1 and 2 are satisfied. If

sup
𝑠0∈𝑊

diam (𝐷F, 𝑠
0
) < 1, (32)

then the coupled system (2) is synchronized.

Proof. The main techniques of the proof come from [3, 6]
with some modifications. Let 𝜗(𝑡) be the semiflow of the
uncoupled system (5). By the condition (32), there exist 𝑑
satisfying sup

𝑠0∈𝑊
diam(𝐷F, 𝑠

0
) < 𝑑 < 1 and 𝑇

1
≥ 0 such

that 𝑑𝑇1 < 1/3, and 𝑟
0
= inf{𝑟 > 0,O(𝜗(𝑇1)𝑊, 𝑟) ⊂ 𝑊} > 0.

For each 𝑠
0
∈ 𝑊, there must exist 𝑡(𝑠

0
) ≥ 𝑇

1
such that

diam(𝑈(𝑡
0
+ 𝑡(𝑠

0
), 𝑡
0
, 𝑠
0
)) < 𝑑

𝑡(𝑠0) for all 𝑡
0
≥ 0. According

to the equicontinuity of 𝑈(𝑡
0
+ 𝑡(𝑠

0
), 𝑡
0
, 𝑠
0
), there exists 𝛿 > 0

such that for any 𝑠
0
∈ O(𝑠

0
, 𝛿), diam(𝑈(𝑡

0
+ 𝑡(𝑠

0
), 𝑡
0
, 𝑠


0
)) <

𝑑
𝑡(𝑠0) for all 𝑡

0
≥ 0. According to the compactness of𝑊, there

exists a finite positive number set T = {𝑡
1
, 𝑡
2
, . . . , 𝑡V} with

𝑡
𝑗
≥ 𝑇

1
for all 𝑗 = 1, 2, . . . , V such that for any 𝑠

0
∈ 𝑊, there

exists 𝑡
𝑗
∈ T such that diam(𝑈(𝑡

0
+ 𝑡

𝑗
, 𝑡
0
, 𝑠
0
)) < 1/3 for

all 𝑡
0
≥ 0. Let 𝑥(𝑡) be the collective states {𝑥1(𝑡), . . . , 𝑥𝑚(𝑡)}

which is the solution of the coupled system (2) with initial
condition 𝑥

𝑖
(𝑡
0
) = 𝑥

𝑖

0
, 𝑖 = 1, 2, . . . , 𝑚. And let 𝑠(𝑡) be the

solution of the synchronization state equation (5) with initial
condition 𝑠(𝑡

0
) = 𝑥

0
= (1/𝑚)∑

𝑚

𝑗=1
𝑥
𝑗

0
∈ 𝑊. Then, letting

Δ𝑥
𝑖
(𝑡) = 𝑥

𝑖
(𝑡) − 𝑠(𝑡), we have

Δ ̇𝑥
𝑖

𝑘
(𝑡) = 𝑓

𝑖

𝑘
(𝑥
1
(𝑡) , . . . , 𝑥

𝑚
(𝑡) , 𝑡) − 𝑓

𝑘
(𝑠 (𝑡))

=

𝑚

∑

𝑗=1

𝑛

∑

𝑙=1

𝜕𝑓
𝑖

𝑘

𝜕𝑥
𝑗

𝑙

(𝜉
𝑖𝑗

𝑘𝑙
(𝑡) , 𝑡) Δ𝑥

𝑗

𝑙
(𝑡) ,

(33)

where 𝜉𝑖𝑗
𝑘𝑙
(𝑡) ∈ R𝑚𝑛, 𝑖, 𝑗 = 1, 2, . . . , 𝑚, 𝑘, 𝑙 = 1, 2 . . . , 𝑛, are

obtained by the mean value principle of the differential func-
tions. Letting 𝐷𝐹𝑡(𝜉(𝑡)) = ((𝜕𝑓

𝑖

𝑘
/𝜕𝑥

𝑖

𝑙
)(𝜉

𝑖𝑗

𝑘𝑙
(𝑡), 𝑡)), we can write

the equations above in matrix form:

Δ ̇𝑥 (𝑡) = 𝐷𝐹
𝑡
(𝜉 (𝑡)) Δ𝑥 (𝑡) , (34)

and denote its solution matrix by �̂�(𝑡 + 𝑡
0
, 𝑡
0
, 𝑥
0
) = (�̂�

𝑖𝑗
(𝑡 +

𝑡
0
, 𝑡
0
, 𝑥
0
))
𝑚

𝑖,𝑗=1
. Then, for any 𝑡 > 0 there exists 𝐾

2
> 0 such

that ‖𝐷𝐹𝑡+𝑡0(𝜉(𝑡 + 𝑡
0
))‖ ≤ 𝐾

2
for all 𝑡 ∈ T and 𝑡

0
≥ 0 accord-

ing to the 3th item of Assumption 1. Then, we have

Δ𝑥
𝑖

𝑘
(𝑡 + 𝑡

0
)

= 𝑥
𝑖

0
− 𝑥

0𝑘
+ ∫

𝑡+𝑡0

𝑡0

𝑚

∑

𝑗=1

𝑛

∑

𝑙=1

𝜕𝑓
𝑖

𝑘

𝜕𝑥
𝑗

𝑙

(𝜉
𝑖𝑗

𝑘𝑙
(𝜏) , 𝜏) Δ𝑥

𝑗

𝑙
(𝜏) 𝑑𝜏,

𝑚

∑

𝑗=1

𝑛

∑

𝑘=1


Δ𝑥

𝑖

𝑘
(𝑡 + 𝑡

0
)


≤

𝑚

∑

𝑗=1

𝑛

∑

𝑘=1


𝑥
𝑖

0𝑘
− 𝑥

0𝑘


+ 𝐾

2
∫

𝑡+𝑡0

𝑡0

𝑚

∑

𝑗=1

𝑛

∑

𝑙=1


Δ𝑥

𝑗

𝑙
(𝜏)


𝑑𝜏.

(35)

By Lemma 9, we have
𝑚

∑

𝑗=1

𝑛

∑

𝑙=1


Δ𝑥

𝑗

𝑙
(𝑡 + 𝑡

0
)


≤ 𝑒
𝐾2𝑡

𝑚

∑

𝑗=1

𝑛

∑

𝑙=1


𝑥
𝑗

0𝑙
− 𝑥

0𝑙


.

(36)
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Let

𝑊
𝛼
=

{

{

{

𝑥 = [𝑥
1T
, . . . , 𝑥

𝑚T
]

T

: 𝑥 ∈ 𝑊,

𝑚

∑

𝑗=1


𝑥
𝑗
− 𝑥


≤ 𝛼

}

}

}

.

(37)

Picking 𝛼 sufficiently small such that for each 𝑥
0
∈ 𝑊

𝛼
, there

exists 𝑡∈T such that∑𝑚
𝑗=1
‖Δ𝑥

𝑗
(𝑡+𝑡

0
)‖ < 𝑟

0
/2 and diam(�̂�(𝑡+

𝑡
0
, 𝑡
0
, 𝑥
0
)) < 1/2 for all 𝑡

0
≥ 0.

Thus, we are to prove synchronization step by step.
For any 𝑥

0
∈ 𝑊

𝛼
, there exists 𝑡 = 𝑡(𝑥

0
) ∈ T such that


𝑥
𝑖
(𝑡

+ 𝑡

0
) − 𝑥

𝑗
(𝑡

+ 𝑡

0
)


=

Δ𝑥

𝑖
(𝑡

+ 𝑡

0
) − Δ𝑥

𝑗
(𝑡

+ 𝑡

0
)


≤

𝑚

∑

𝑘=1


�̂�
𝑖𝑘
(𝑡

+ 𝑡

0
, 𝑡
0
, 𝑥
0
) − �̂�

𝑗𝑘
(𝑡

+ 𝑡

0
, 𝑡
0
, 𝑥
0
)



Δ𝑥

𝑘

0



≤ diam (�̂� (𝑡

+ 𝑡

0
, 𝑡
0
, 𝑥
0
))max

𝑖,𝑗


𝑥
𝑖

0
− 𝑥

𝑗

0



≤
1

2
max
𝑖,𝑗


𝑥
𝑖

0
− 𝑥

𝑗

0


.

(38)

Therefore, we have max
𝑖,𝑗
‖𝑥
𝑖
(𝑡

+ 𝑡

0
) − 𝑥

𝑗
(𝑡

+ 𝑡

0
) ‖ ≤ (1/

2)max
𝑖,𝑗
‖𝑥
𝑖

0
− 𝑥

𝑗

0
‖, which implies that 𝑥(𝑡+𝑡

0
)∈𝑊 and 𝑥(𝑡+

𝑡
0
) ∈ 𝑊

𝛼/2
.

Then, reinitiated with time 𝑡 + 𝑡
0
and condition 𝑥(𝑡


+

𝑡
0
), continuing with the phase above, we can obtain that

lim
𝑡→∞

max
𝑖,𝑗
‖𝑥
𝑖
(𝑡)−𝑥

𝑗
(𝑡)‖ = 0. Namely, the coupled system

(2) is synchronized. Furthermore, from the proof, we can
conclude that the convergence is exponential with rate 𝑂(𝛿𝑡)
where 𝛿 = sup

𝑠0∈𝑊
diam(𝐷F𝑡

, 𝑠
0
), and uniform with respect

to 𝑡
0
≥ 0 and 𝑥

0
∈ 𝑊

𝛼
. This completes the proof.

Remark 18. According to Assumption 2 that attractor 𝐴 is
asymptotically stable and the properties of the compact
neighbor𝑊 given in Lemma 5, we can conclude that the quan-
tity

sup
𝑠0∈𝑊

diam (𝐷F, 𝑠
0
) (39)

is independent on the choice of𝑊.

If the timevariation is driven by some MDS(Ω,B,P𝑃,


(𝑡)
) and there exists a metric dynamical system {𝑊 ×

Ω, F,P, 𝜋(𝑡)}, where F is the product 𝜎-algebra on𝑊×Ω, P is
the probability measure, and 𝜋(𝑡)(𝑠

0
, 𝜔) = (𝜃

(𝑡)
𝑠
0
, 
(𝑡)
𝜔). From

Theorem 17, we have the following.

Corollary 19. Suppose that the conditions in Lemma 16 are
satisfied, 𝑊 × Ω is compact in the topology defined in this
MDS, the semiflow 𝜋

(𝑡) is continuous, and on 𝑊 × Ω the
Jacobian matrix 𝐷𝐹(𝜃(𝑡)𝑠

0
, 
(𝑡)
𝜔) is continuous. Let {𝜎

𝑖
}
𝑛𝑚

𝑖=1
be

the Lyapunov exponents of this MDS with multiplicity and
{𝜎
𝑖
}
𝑛

𝑖=1
correspond to the synchronization space. If

sup
P∈Erg

𝜋
(𝑊×Ω)

sup
𝑖≥𝑛+1

𝜎
𝑖
< 0, (40)

where Erg
𝜋
(𝑊 × Ω) denotes the ergodic probability measure

set supported in the MDS {𝑊 × Ω, F,P, 𝜋(𝑡)}, then the coupled
system (2) is synchronized.

4. Synchronization of LCODEs with
Identity Inner Coupling Matrix and
Time-Varying Couplings

In this section we study synchronization in linearly coupled
ordinary differential equation systems (LCODEs) with time-
varying couplings. Considering the following LCODEs with
identity inner coupling matrix:

̇𝑥
𝑖
(𝑡) = 𝑓 (𝑥

𝑖
(𝑡)) + 𝜎

𝑚

∑

𝑗=1

𝑙
𝑖𝑗
(𝑡) 𝑥

𝑗
(𝑡) , 𝑖 = 1, 2, . . . , 𝑚,

(41)

where 𝑥𝑖(𝑡) ∈ R𝑛 denotes the state variable of the 𝑖th node,
𝑓(⋅) : R𝑛 → R𝑛 is a differential map, 𝜎 ∈ R+ denotes
coupling strength, and 𝑙

𝑖𝑗
(𝑡) denotes the coupling coefficient

from node 𝑗 to 𝑖 at time 𝑡, for all 𝑖 ̸= 𝑗, which are supposed to
satisfy the following assumption. Here, we highlight that the
inner coupling matrix is the identity matrix.

Assumption 20. (a) 𝑙
𝑖𝑗
(𝑡) ≥ 0, 𝑖 ̸= 𝑗 are measurable and 𝑙

𝑖𝑖
(𝑡) =

−∑
𝑚

𝑗=1,𝑗 ̸= 𝑖
𝑙
𝑖𝑗
(𝑡); (b) there exists𝑀

1
> 0 such that |𝑙

𝑖𝑗
(𝑡)| ≤ 𝑀

1

for all 𝑖, 𝑗 = 1, 2, . . . , 𝑚.
Similarly, we can define the Hajnal diameter of the

following linear system:

̇𝑢 (𝑡) = 𝜎𝐿 (𝑡) 𝑢 (𝑡) . (42)

Let 𝑉(𝑡) = (V
𝑖𝑗
(𝑡))

𝑚

𝑖,𝑗=1
be the fundamental solution matrix

of the system (42). Then, its solution matrix can be written
as 𝑉(𝑡, 𝑡

0
) = 𝑉(𝑡)𝑉(𝑡

0
)
−1. Thus, the Hajnal diameter of the

system (42) can be defined as follows:

diam (L) = lim
𝑡→∞

sup
𝑡0≥0

{diam (𝑉 (𝑡, 𝑡
0
))}

1/𝑡

. (43)

ByTheorem 17, we have the following theorem.

Theorem 21. Suppose Assumptions 1, 2, and 20 are satisfied.
Let 𝜇 be the largest Lyapunov exponent of the synchronized
system ̇𝑠(𝑡) = 𝑓(𝑠(𝑡)), that is,

𝜇 = sup
𝑠0∈𝑊

max
𝑢∈R𝑛

𝜆 (𝐷𝑓, 𝑢, 𝑠
0
) . (44)

If log(diam(L)) + 𝜇 < 0, then the LCODEs (41) is synchro-
nized.

Proof. Considering the variational equation of (41):

𝛿 ̇𝑥 (𝑡) = {𝐼
𝑚
⊗ 𝐷𝑓 (𝑠 (𝑡)) + 𝜎𝐿 (𝑡) ⊗ 𝐼

𝑛
} 𝛿𝑥 (𝑡) . (45)
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Let 𝑈(𝑡, 𝑡
0
, 𝑠
0
) be the solution matrix of the synchronized

state system (17) and 𝑉(𝑡, 𝑡
0
) = (V

𝑖𝑗
(𝑡, 𝑡

0
))
𝑚

𝑖,𝑗=1
be the solution

matrix of the linear system (42). We can see that 𝑉(𝑡, 𝑡
0
) ⊗

𝑈(𝑡, 𝑡
0
, 𝑠
0
) is the solution matrix of the variational system

(45). Then,

diam (𝑉 (𝑡 + 𝑡
0
, 𝑡
0
) ⊗ 𝑈 (𝑡 + 𝑡

0
, 𝑡
0
, 𝑠
0
))

= max
𝑖,𝑗=1,...,𝑚

𝑚

∑

𝑘=1


V
𝑖𝑘
(𝑡 + 𝑡

0
, 𝑡
0
) − V

𝑗𝑘
(𝑡 + 𝑡

0
, 𝑡
0
)


×

𝑈 (𝑡 + 𝑡

0
, 𝑡
0
, 𝑠
0
)


= diam (𝑉 (𝑡 + 𝑡
0
, 𝑡
0
))

𝑈 (𝑡 + 𝑡

0
, 𝑡
0
, 𝑠
0
)

.

(46)

This implies that theHajnal diameter of the variational system
(45) is less than 𝑒𝜇 diam(L).This completes the proof accord-
ing toTheorem 17.

For the linear system (42), we firstly have the following
lemma.

Lemma 22 (see [22]). 𝑉(𝑡, 𝑡
0
) is a stochastic matrix.

From Lemmas 13 and 16, we have the following corollary.

Corollary 23. log diam(L) = 𝜆
𝑃
(L), where 𝜆

𝑃
(L) denotes

the largest one of all the projection Lyapunov exponents of
system (41). Moreover, if the conditions in Lemma 16 are
satisfied, then log diam(L) = 𝜆

𝑇
(L), where 𝜆

𝑇
(L) denotes

the largest one of all the Lyapunov exponents corresponding
to the transverse space, that is, the space orthogonal to the
synchronization space.

If 𝐿(𝑡) is periodic, we have the following.

Corollary 24. Suppose that 𝐿(𝑡) is periodic. Let 𝜍
𝑖
, 𝑖 =

1, 2, . . . , 𝑚, are the Floquet multipliers of the linear system
(42). Then, there exists one multiplier denoted by 𝜍

1
= 1 and

diam(L) = maxi≥2𝜍𝑖.

If 𝐿(𝑡) = 𝐿(
(𝑡)
𝜔) is driven by some MDS(Ω,B, 𝑃, 

(𝑡)
),

from Corollaries 19 and 23, we have the following corollary.

Corollary 25. Suppose 𝐿(𝜔) is continuous on Ω and condi-
tions in Lemma 16 are satisfied. Let 𝜇 = sup

𝑠0∈𝑊
max

𝑢∈R𝑛𝜆(𝐷𝑓,

𝑢, 𝑠
0
), 𝜍

𝑖
, 𝑖 = 1, 2, . . . , 𝑚, be the Lyapunov exponents of the

linear system (42) with 𝜍
1
= 0, and 𝜍 = sup

𝑃∈𝐸𝑟𝑓𝜃(Ω)
max

𝑖≥2
𝜍
𝑖
.

If 𝜇 + 𝜍 < 0, then the coupled system (41) is synchronized.

Let I be the set consisting of all compact time intervals
in [0, +∞) and G be the the set consisting of all graph with
vertex setN = {1, 2, . . . , 𝑚}.

Define

𝐺 : I × 𝑅
+
→ G,

(𝐼 = [𝑡
1
, 𝑡
2
] , 𝛿) → 𝐺 (𝐼, 𝛿) ,

(47)

where 𝐺(𝐼, 𝛿) = {N,E} is a graph with vertex set N and its
edge set E is defined as follows: there exists an edge from
vertex 𝑗 to vertex 𝑖 if and only if ∫𝑡2

𝑡1

𝑙
𝑖𝑗
(𝜏)𝑑𝜏 > 𝛿. Namely, we

say that there is a 𝛿-edge from vertex 𝑗 to 𝑖 across 𝐼 = [𝑡
1
, 𝑡
2
].

Definition 26. We say that the LCODEs (41) has a 𝛿-spanning
tree across the time interval 𝐼 if the corresponding graph
𝐺(𝐼, 𝛿) has a spanning tree.

For a stochastic matrix 𝑉 = (V
𝑖𝑗
)
𝑚

𝑖,𝑗=1
, let

𝜂 (𝑉) = min
𝑖,𝑗


V
𝑖
∧ V

𝑗

1
, (48)

where V
𝑖
= [V

𝑖1
, . . . , V

𝑖𝑚
], 𝑖 = 1, 2, . . . , 𝑚, and V

𝑖
∧ V

𝑗
=

[min{V
𝑖1
, V
𝑗1
}, . . . ,min{V

𝑖𝑚
, V
𝑗𝑚
}]
T. Then, we can also define

that 𝑉 is 𝛿-scrambling if 𝜂(𝑉) > 𝛿.

Theorem 27. Suppose Assumption 20 is satisfied. diam(L) <

1 if and only if there exist 𝛿 > 0 and 𝑇 > 0 such that the
LCODEs (41) has a 𝛿-spanning tree across any 𝑇-length time
interval.

Remark 28. Different from [16], we do not need to assume
that 𝐿(𝑡) has zero column sums and the timeaverage is
achieved sufficiently fast.

Before proving this theorem, we need the following
lemma.

Lemma 29. If the LCODEs (41) has a 𝛿-spanning tree across
any 𝑇-length time interval, then there exist 𝛿

1
> 0 and 𝑇

1
>

0 such that 𝑉(𝑡, 𝑡
0
) is 𝛿

1
-scrambling for any 𝑇

1
-length time

interval.

Proof of Theorem 27. Sufficiency. From Lemma 29, we can
conclude that there exist 𝛿

1
> 0, 𝛿 > 0, and 𝑇

1
> 0

such that 𝑉(𝑡, 𝑡
0
) is 𝛿

1
-scrambling across any 𝑇

1
-length time

interval and inf
𝑡0≥0

𝜂(𝑉(𝑇
1
+ 𝑡

0
, 𝑡
0
)) > 𝛿

. For any 𝑡 ≥ 𝑡
0
, let

𝑡 − 𝑡
0
= 𝑝𝑇

1
+ 𝑇

, where 𝑝 is an integer and 0 ≤ 𝑇

< 𝑇

1
and

𝑡
𝑙
= 𝑡

0
+ 𝑙𝑇

1
, 0 ≤ 𝑙 ≤ 𝑝. Then, we have

diam (𝑉 (𝑡, 𝑡
0
)) = diam(𝑉(𝑡, 𝑡

𝑝
)

𝑝

∏

𝑙=1

𝑉 (𝑡
𝑙
, 𝑡
𝑙−1
))

≤ diam(

𝑝

∏

𝑙=1

𝑉 (𝑡
𝑙
, 𝑡
𝑙−1
))

≤ 2

𝑝

∏

𝑙=1

(1 − 𝜂 (𝑉 (𝑡
𝑙
, 𝑡
𝑙−1
)))

≤ 2(1 − 𝛿

)
⌊(𝑡−𝑡0)/𝑇1⌋

.

(49)

For the first inequality, we use the results in [23, 24]. This
implies diam(L) ≤ (1 − 𝛿


)
1/𝑇1 < 1.

Necessity. Suppose that for any 𝑇 ≥ 0 and 𝛿 > 0, there exists
𝑡
0
= 𝑡

0
(𝑇, 𝛿), ∫𝑇+𝑡0

𝑡0

𝐿(𝜏)𝑑𝜏 does not have a 𝛿-spanning tree.
According to the condition, there exist 1 > 𝑑 > diam(L),
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𝜖 > 0, and 𝑇

> 0 such that diam(𝑉(𝑡 + 𝑡

0
)) < 𝑑

𝑡 for all
𝑡
0
≥ 0 and 𝑡 ≥ 𝑇

 and 𝑑𝑇


< 1 − 𝜖. Thus, picking 𝑇 > 𝑇
,

𝛿 = 𝑚
−3
𝑒
−𝑀1𝑚𝑇𝜖/2, 𝑡

1
= 𝑡

0
(𝑇, 𝛿), and 𝐿


= (𝑙



𝑖𝑗
)
𝑚

𝑖,𝑗=1
=

(∫
𝑇+𝑡1

𝑇
𝑙
𝑖𝑗
(𝜏)𝑑𝜏)

𝑚

𝑖,𝑗=1
, there exist two vertex set 𝐽

1
and 𝐽

2
such

that 𝑙
𝑖𝑗
≤ 𝛿 if 𝑖 ∈ 𝐽

1
and 𝑗 ∉ 𝐽

1
, or 𝑖 ∈ 𝐽

2
and 𝑗 ∉ 𝐽

2
. For each

𝑖 ∈ 𝐽
1
and 𝑗 ∉ 𝐽

1
, we have

̇V
𝑖𝑗
(𝑡) = 𝑙

𝑖𝑖
(𝑡) V

𝑖𝑗
(𝑡) +

𝑘 ̸= 𝑖

∑

𝑘∈𝐽1

𝑙
𝑖𝑘
(𝑡) V

𝑘𝑗
(𝑡)

+ ∑

𝑘∉𝐽1

𝑙
𝑖𝑘
(𝑡) V

𝑘𝑗
(𝑡)

≤ 𝑀
1

𝑘 ̸= 𝑖

∑

𝑘∈𝐽1

V
𝑘𝑗
(𝑡) + ∑

𝑘∉𝐽1

𝑙
𝑖𝑘
(𝑡) .

(50)

Then,

∑

𝑖∈𝐽1,𝑗∉𝐽1

̇V
𝑖𝑗
(𝑡) ≤ 𝑀

1

𝑘 ̸= 𝑖,𝑗∉𝐽1

∑

𝑖∈𝐽1,𝑘∈𝐽1

V
𝑘𝑗
(𝑡) +

𝑗∉𝐽1

∑

𝑖∈𝐽1,𝑘∉𝐽1

𝑙
𝑖𝑘
(𝑡)

= 𝑀
1
(#𝐽

1
− 1)

𝑗∉𝐽1

∑

𝑘∈𝐽1

V
𝑘𝑗
(𝑡) + (𝑚 − #𝐽

1
)

𝑘∉𝐽1

∑

𝑖∈𝐽1

𝑙
𝑖𝑘
(𝑡) .

(51)

Let V(𝑡) = ∑
𝑖∈𝐽1,𝑗∉𝐽1

V
𝑖𝑗
(𝑡). According to Lemma 9, we have

V (𝑇 + 𝑡
1
) ≤ 𝑒

𝑀1(#𝐽1−1)𝑇 (𝑚 − #𝐽
1
) ∫

𝑇+𝑡1

𝑡1

𝑗∉𝐽1

∑

𝑖∈𝐽1

𝑙
𝑖𝑗
(𝜏) 𝑑𝜏

≤ (𝑚 − #𝐽
1
) 𝑒
𝑀1(#𝐽1−1)𝑇#𝐽

1
(𝑚 − #𝐽

1
) 𝛿

≤ 𝑚
3
𝑒
𝑚𝑀1𝑇𝛿 ≤

𝜖

2
.

(52)

Similarly, we can conclude that ∑
𝑖∈𝐽𝑙,𝑗∉𝐽𝑙

V
𝑖𝑗
(𝑇 + 𝑡

1
) ≤ 𝜖/2

for all 𝑙 = 1, 2. Without loss of generality, we suppose 𝐽
1
=

{1, 2, . . . , 𝑝} and 𝐽
2
= {𝑝 + 1, 𝑝 + 2, . . . , 𝑝 + 𝑞}, where 𝑝 and 𝑞

are integers with 𝑝 + 𝑞 ≤ 𝑚. Then, we can write 𝑉(𝑇 + 𝑡
1
, 𝑡
1
)

in the following matrix form:

𝑉 (𝑇 + 𝑡
1
, 𝑡
1
) = [

[

𝑋
11

𝑋
12

𝑋
13

𝑋
21

𝑋
22

𝑋
23

𝑋
31

𝑋
32

𝑋
33

]

]

, (53)

where 𝑋
11
∈ R𝑝,𝑝 and 𝑋

22
∈ 𝑅

𝑞,𝑞 correspond to the vertex
subset 𝐽

1
and 𝐽

2
, respectively. Immediately, we have ‖𝑋

12
‖
∞
+

‖𝑋
13
‖
∞
+ ‖𝑋

21
‖
∞
+ ‖𝑋

23
‖
∞
≤ 𝜖. Let V = [

1𝑝
0

0

]. We let

𝑉 (𝑡
1
+ 𝑇, 𝑡

1
) V = [

[

𝑋
11
1
𝑝

𝑋
21
1
𝑝

𝑋
31
1
𝑝

]

]

. (54)

Let 𝑢 = [
𝑢
1

𝑢
2

𝑢
3

] = [𝑢
1
, . . . , 𝑢

𝑚
]
T with 𝑢

𝑖
= [𝑢

𝑖

1
, . . . , 𝑢

𝑖

𝑝𝑖
]
T
=

𝑋
𝑖1
1
𝑝
and 𝑝

1
= 𝑝, 𝑝

2
= 𝑞, 𝑝

3
= 𝑚 − 𝑝 − 𝑞. Then,

max
𝑖,𝑗


𝑢
𝑖
− 𝑢

𝑗


≥ max

𝑘,𝑙


𝑢
1

𝑘
− 𝑢

2

𝑗



≥ 1 −
𝑋12

∞
−
𝑋13

∞
−
𝑋21

∞
−
𝑋23

∞

≥ 1 − 𝜖.

(55)

Also,

max
𝑖,𝑗


𝑢
𝑖
− 𝑢

𝑗


≤ diam (𝑉 (𝑡

1
+ 𝑇, 𝑡

1
)) ≤ 𝑑

𝑇
. (56)

This implies 𝑑𝑇 ≥ 1 − 𝜖 which leads contradiction with 𝑑𝑇 <
1 − 𝜖. Therefore, we can conclude the necessity.

5. Consensus Analysis of Multiagent System
with Directed Time-Varying Graphs

If we let 𝑛 = 1, 𝑓 ≡ 0, and 𝜎 = 1 in system (41), then we have

̇𝑥
𝑖
(𝑡) =

𝑚

∑

𝑗=1

𝑙
𝑖𝑗
(𝑡) 𝑥

𝑗
(𝑡) , 𝑖 = 1, 2, . . . , 𝑚. (57)

In this case, if Assumption 20 is satisfied, then the synchro-
nization analysis of system (57) becomes another important
research field named consensus problems.

Definition 30. We say the differential system (57) reaches
consensus if for any𝑥(𝑡

0
) ∈ R𝑚, ‖𝑥𝑖(𝑡)−𝑥𝑗(𝑡)‖→ 0 as 𝑡 → ∞

for all 𝑖, 𝑗 ∈ N.

In graph view, the coefficients matrix of (57) 𝐿(𝑡) =

(𝑙
𝑖𝑗
(𝑡)) ∈ R𝑚,𝑚 is equal to the negative graph Laplacian

associated with the digraph 𝐺(𝑡) at time 𝑡, where 𝐺(𝑡) =

(V,E(𝑡),A(𝑡)) is a weighted digraph (or directed graph)with
𝑚 vertices, the set of nodes V = {V

1
, . . . , V

𝑚
}, set of edges

E(𝑡) ⊆ V × V, and the weighted adjacency matrix A(𝑡) =

(𝑎
𝑖𝑗
(𝑡)) with nonnegative adjacency elements 𝑎

𝑖𝑗
(𝑡). An edge

of 𝐺(𝑡) is denoted by 𝑒
𝑖𝑗
(𝑡) = (V

𝑖
, V
𝑗
) ∈ E(𝑡) if there is a

directed edge from vertex 𝑖 to vertex 𝑗 at time 𝑡.The adjacency
elements associated with the edges of the graph are positive,
that is, 𝑒

𝑖𝑗
(𝑡) ∈ E(𝑡) ⇔ 𝑎

𝑖𝑗
(𝑡) > 0, for all 𝑖, 𝑗 ∈ N. It is assumed

that 𝑎
𝑖𝑖
(𝑡) = 0 for all 𝑖 ∈ N. The indegree and outdegree of

node V
𝑖
at time 𝑡 are, respectively, defined as follows:

degin (V𝑖 (𝑡)) =
𝑁

∑

𝑗=1

𝑎
𝑗𝑖(𝑡)

, degout (V𝑖 (𝑡)) =
𝑁

∑

𝑗=1

𝑎
𝑖𝑗(𝑡)

.

(58)

The degree matrix of digraph 𝐺(𝑡) is defined as 𝐷(𝑡) =

diag(degout(V1(𝑡)), . . . , degout(V𝑚(𝑡))) at time 𝑡. The graph
Laplacian associated with the digraph𝐺(𝑡) at time 𝑡 is defined
as

−𝐿 (𝑡) = L (𝐺 (𝑡)) = 𝐷 (𝑡) −A (𝑡) . (59)
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Let𝐺(𝐼, 𝛿) defined as before.We say that the digraph𝐺(𝑡)
has a 𝛿-spanning tree across the time interval 𝐼 if 𝐺(𝐼, 𝛿) has
a spanning.

Theorem 31. Suppose Assumption 20 is satisfied. The system
(57) reaches consensus if and only if there exist 𝛿 > 0 and𝑇 > 0

such that the corresponding digraph𝐺(𝑡) has a 𝛿-spanning tree
across any 𝑇-length time interval.

Proof. Since 𝑓 ≡ 0, we have 𝜇 = 0 in Theorem 21. This
completes the proof according toTheorems 27 and 21.

Remark 32. This theorem is a part of Theorem 17 in [25].

6. Numerical Examples

In this section, a numerical example is given to demonstrate
the effectiveness of the presented results on synchronization
of LCODEs with time-varying couplings. The Lyapunov
exponents are computed numerically. By this way, we can
verify the the synchronization criterion and analyze synchro-
nization numerically. We use the Rössler system [16, 26] as
the node dynamics

̇𝑥
1
(𝑡) = −𝑥

2
(𝑡) − 𝑥

3
(𝑡) ,

̇𝑥
2
(𝑡) = 𝑥

1
(𝑡) + 𝑎𝑥

2
(𝑡) ,

̇𝑥
3
(𝑡) = 𝑏 + 𝑥

3
(𝑡) (𝑥

1
(𝑡) − 𝑐) ,

(60)

where 𝑎 = 0.165, 𝑏 = 0.2, and 𝑐 = 10. Figure 1 shows the
dynamical behaviors of the Rössler system (60) with random
initial value in [0, 1] that includes a chaotic attractor [16, 26].

The network with time-varying topology we used here
is NW small-world network with a time-varying coupling,
which was introduced as the blinking model in [11, 27].
The time-varying network model algorithm is presented as
follows: we divide the time axis into intervals of length 𝜏, in
each interval: (a) begin with the nearest neighbor coupled
network consisting of𝑚 nodes arranged in a ring, where each
node 𝑖 is adjacent to its 2𝑘-nearest neighbor nodes; (b) add a
connection between each pair of nodes with probability 𝑝,
which usually is a random number between [0, 0.1]; for more
details, we refer the readers to [11]. Figure 2 shows the time-
varying structure of shortcut connections in the blinking
model with𝑚 = 50 and 𝑘 = 3.

In this example, the parameters are taken values as 𝑚 =

50, 𝑘 = 3, 𝜏 = 1, and 𝑝 = 0.04. Then blinking small-world
network can be generated with the coupling graph Laplacian
L(𝐺(𝑡)) = −𝐿(𝑡). The dynamical network system can be
described as follows:

̇𝑥
𝑖

1
(𝑡) = −𝑥

𝑖

2
(𝑡) − 𝑥

𝑖

3
(𝑡) + 𝜎

𝑚

∑

𝑗=1

𝑙
𝑖𝑗
(𝑡) 𝑥

𝑗

1
(𝑡) ,

̇𝑥
𝑖

2
(𝑡) = 𝑥

𝑖

1
(𝑡) + 𝑎𝑥

𝑖

2
(𝑡) + 𝜎

𝑚

∑

𝑗=1

𝑙
𝑖𝑗
(𝑡) 𝑥

𝑗

2
(𝑡) ,

̇𝑥
𝑖

3
(𝑡) = 𝑏 + 𝑥

𝑖

3
(𝑡) (𝑥

𝑖

1
(𝑡) − 𝑐) + 𝜎

𝑚

∑

𝑗=1

𝑙
𝑖𝑗
(𝑡) 𝑥

𝑗

3
(𝑡) ,

𝑖 = 1, 2, . . . , 𝑚.

(61)

0
10

20
0

10
20
0

10

20

30

40

50

−20 −20
−10 −10 x1

x2

x
3

Figure 1: The dynamical behavior of the Rössler system (60) with
𝑎 = 0.165, 𝑏 = 0.2, and 𝑐 = 10.

Let 𝑒(𝑡) = max
1≤𝑖<𝑗≤50

‖𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡)‖ denotes the maxi-

mum distance between nodes at time 𝑡. Let 𝐸 = ∫
𝑇+𝑅

𝑇
𝑒(𝑡)𝑑𝑡,

for some sufficiently large 𝑇 > 0 and 𝑅 > 0. Let 𝐻 = 𝜇 + 𝜍

defined in Corollary 25. As described in Corollary 25, two
steps are needed for verification: (a) calculating the largest
Lyapunov exponent of the uncoupled synchronized system
(60), 𝜇 and (b) calculating the second largest Lyapunov
exponent of the linear system (42). In detail, we use Wolf ’s
method [28] to compute 𝜇 and the Jacobian method [29] to
compute Lyapunov spectra of (42).More details can be found
in [28–30]. Figure 3 shows convergence of the maximum
distance between nodes during the topology evolution with
a different coupling strength 𝜎. It can be seen from Figure 3
that the dynamical network system (61) can be synchronized
with 𝜎 = 0.4 and 𝜎 = 0.5.

We pick the time length 200. Let 𝑇 = 190 and 𝑅 = 10.
And choose initial state randomly from the interval [0, 1].
Figure 4 shows the variation of 𝐸 and 𝐻 with respect to
the coupling strength 𝜎. It can be seen that the parameter
(coupling strength 𝜎) region where 𝐻 is negative coincides
with that of synchronization, that is, where 𝐸 is near zero.
This verified the theoretical result (Corollary 25). In addition,
we find that 𝜎 ≈ 0.38 is the threshold for synchronizing the
coupled systems in this case.

7. Conclusions

In this paper, we present a theoretical framework for synchro-
nization analysis of general coupled differential dynamical
systems. The extended Hajnal diameter is introduced to
measure the synchronization.The coupling between nodes is
timevarying in both network structure and reaction dynam-
ics. Inspired by the approaches in [6, 13], we show that the
Hajnal diameter of the linear system induced by the time-
varying coupling matrix and the largest Lyapunov exponent
of the synchronized system play the key roles in synchroniza-
tion analysis of LCODEs. These results extend synchroniza-
tion analysis of discrete-time network in [6] to continuous-
time case. As an application, we obtain a very general
sufficient condition ensuring directed time-varying graph
reaching consensus, and the way we get this result is different
from [25]. An example of numerical simulation is provided
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Figure 2: The blinking model of shortcuts connections. Probability of switchings 𝑝 = 0.04, the switching time step 𝜏 = 1.

0 20 40 60 80 100

The maximum distance between nodes

𝜎 = 0.5, H = −0.022

𝜎 = 0.4, H = −0.0032
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e
(t
)

t

0

0.05
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0.3

0.35

0.4

Figure 3: Convergence of the maximum distance between nodes
with a different coupling strength 𝜎.

to show the effectiveness the theoretical results. Additional
contributions of this paper are that we explicitly show that the
largest projection Lyapunov exponent, the Hajnal diameter,
and the largest Lyapunov exponent of the transverse space
are equal to each other in coupled differential systems (see
Lemmas 13 and 16), which was proved in [6] for couple
discrete-time systems.

Appendix

Proof of Lemma 5. Let 𝑈 be a bounded open neighborhood
of 𝐴 satisfying ⋂

𝑡≥0
𝜗
(𝑡)
𝑈 = 𝐴 and 𝑈

𝑡
= {𝑥 ∈ 𝑅

𝑛
: 𝜗

(𝜏)
𝑥 ∈

0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5
−0.04

−0.02

0

0.02

0.04

0.06

0.08

𝜎

Variation of E and Hwith respect to 𝜎

E

H

Figure 4: Variation of 𝑒 and 𝐻 with respect to 𝜎 for the blinking
topology.

𝑈, 0 ≤ 𝜏 ≤ 𝑡}. This implies 𝑈
𝑡
⊃ 𝑈

𝑡
 if 𝑡 ≥ 𝑡 ≥ 0, 𝑈

𝑡
is

an open set due to the continuity of the semiflow 𝜗
(𝑡), and

𝜗
(𝛿)
𝑈
𝑡
⊂ 𝑈

𝑡−𝛿
for all 𝑡 ≥ 𝛿 ≥ 0. Let 𝑉 = ⋂

𝑡≥0
𝑈
𝑡
. We claim

that there exists 𝑡
0
≥ 0 such that 𝑉 = 𝑈

𝑡
for all 𝑡 ≥ 𝑡

0
.

For any 𝛿 > 0, let 𝑡
𝑛
= 𝑛𝛿 and 𝑈

𝑛
= 𝑈

𝑡𝑛
. We can conclude

that 𝑉 = ⋂
∞

𝑛=1
𝑈
𝑛
. We will prove in the following that there

exists 𝑛
0
such that 𝑉 = 𝑈

𝑛0
. Otherwise, there always exists

𝑥
𝑛
∈ 𝑈

𝑛
\ 𝑈

𝑛+1
for 𝑛 ≥ 0. Let 𝑦

𝑛
= 𝜗

(𝑡𝑛+1)𝑥
𝑛
. We have (i)

𝑦
𝑛
∈ ⋂

𝑛

𝑘=0
𝜗
(𝑡𝑘)𝑈 and (ii) 𝑦

𝑛
∉ 𝑈. For any limit point 𝑦 of

𝑦
𝑛
, 𝑦 can be either finite or infinite. For both cases, 𝑦 ∉ 𝑈

which implies 𝑦 ∉ 𝐴. However, the claim (i) implies that
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𝑦 ∈ 𝐴, which contradicts with the claim (ii). This completes
the proof by letting𝑊 = 𝑉.

Proof of Lemma 10. (a) For any initial condition with the
form 𝛿𝑥

0
= 1

𝑚
⊗ 𝑢

0
, the solution of (11) can be 𝑈(𝑡, 𝑡

0
,

𝑠
0
)(1

𝑚
⊗𝑢

0
) = 1

𝑚
⊗𝑈(𝑡, 𝑡

0
, 𝑠
0
)𝑢
0
according to Lemma 4.This

implies the first claim in this lemma.
(b) According to Lemma 5, there exists 𝐾

1
> 0 such that

𝑠(𝑡), the solution of (5), satisfies ‖𝑠(𝑡)‖ ≤ 𝐾
1
for all 𝑠

0
∈ 𝑊

and 𝑡 ≥ 0. So, there exists 𝐾 > 0 such that ‖𝐷𝐹𝑡(𝑠(𝑡)) ‖ ≤ 𝐾

according to the 3th item of Assumption 1.Write the solution
of (11) 𝛿𝑥(𝑡) = 𝑈(𝑡, 𝑡

0
, 𝑠
0
)𝛿𝑥

0
as

𝛿𝑥 (𝑡 + 𝑡
0
) = 𝛿𝑥

0
+ ∫

𝑡+𝑡0

𝑡0

𝐷𝐹
𝜏
(𝑠 (𝜏)) 𝛿𝑥 (𝜏) 𝑑𝜏. (A.1)

Then,
𝛿𝑥 (𝑡 + 𝑡0)



≤
𝛿𝑥0

 + ∫

𝑡+𝑡0

𝑡0

𝐷𝐹
𝜏
(𝑠 (𝜏))

 ‖𝛿𝑥 (𝜏)‖ 𝑑𝜏

≤
𝛿𝑥0

 + 𝐾∫

𝑡

0

𝛿𝑥 (𝜏 + 𝑡0)
 𝑑𝜏.

(A.2)

According to Lemma 9, we have ‖𝛿𝑥(𝑡 + 𝑡
0
)‖ ≤ ‖𝛿𝑥

0
‖ +

𝐾∫
𝑡

0
‖𝛿𝑥

0
‖𝑒
(𝑡−𝜏)𝐾

𝑑𝜏 = 𝑒
𝐾𝑡
‖𝛿𝑥

0
‖.This implies that ‖𝑈(𝑡+𝑡

0
, 𝑡
0
,

𝑠
0
)‖ ≤ 𝑒

𝐾𝑡 for all 𝑠
0
∈ 𝑊 and 𝑡

0
≥ 0.

For any 𝑠
0
, 𝑠


0
∈ 𝑊, let 𝑠(𝑡) and 𝑠(𝑡) be the solution of the

synchronized state equation (5) with initial condition 𝑠(𝑡
0
) =

𝑠
0
and 𝑠(𝑡

0
) = 𝑠



0
, respectively. We have

𝑠 (𝑡 + 𝑡
0
) − 𝑠


(𝑡 + 𝑡

0
)

= ∫

𝑡+𝑡0

𝑡0

[𝑓 (𝑠 (𝜏)) − 𝑓 (𝑠

(𝜏))] 𝑑𝜏 + 𝑠 (𝑡

0
) − 𝑠


(𝑡
0
) ,


𝑠 (𝑡 + 𝑡

0
) − 𝑠


(𝑡 + 𝑡

0
)


≤

𝑠 (𝑡

0
) − 𝑠


(𝑡
0
)

+ 𝐾∫

𝑡+𝑡0

𝑡0


𝑠 (𝜏) − 𝑠


(𝜏)


𝑑𝜏.

(A.3)

By Lemma 9, we have ‖𝑠(𝑡 + 𝑡
0
) − 𝑠


(𝑡 + 𝑡

0
)‖ ≤ 𝑒

𝐾𝑡
‖𝑠
0
− 𝑠



0
‖

for all 𝑡
0
, 𝑡 ≥ 0 and 𝑠

0
, 𝑠


0
∈ 𝑊. Also, according to the 4th

item of Assumption 1, there must exist 𝐾
2
> 0 such that

‖ 𝐷𝐹
𝑡
(𝑠(𝑡)) − 𝐷𝐹

𝑡
(𝑠

(𝑡)) ‖ ≤ 𝐾

2
‖ 𝑠(𝑡) − 𝑠


(𝑡) ‖ for all 𝑡 ≥ 0

and 𝑠
0
, 𝑠


0
∈ 𝑊. Then, let 𝛿𝑥(𝑡) = 𝑈(𝑡, 𝑡

0
, 𝑠
0
)𝛿𝑥

0
, 𝛿𝑦(𝑡) =

𝑈(𝑡, 𝑡
0
, 𝑠


0
)𝛿𝑥

0
, and V(𝑡) = 𝛿𝑥(𝑡) − 𝛿𝑦(𝑡). We have

V (𝑡 + 𝑡
0
)

= ∫

𝑡+𝑡0

𝑡0

[𝐷𝐹
𝜏
(𝑠 (𝜏)) 𝛿𝑥 (𝜏) − 𝐷𝐹

𝜏
(𝑠

(𝜏)) 𝛿𝑦 (𝜏)] 𝑑𝜏

= ∫

𝑡+𝑡0

𝑡0

[𝐷𝐹
𝜏
(𝑠 (𝜏)) − 𝐷𝐹

𝜏
(𝑠

(𝜏))] 𝛿𝑥 (𝜏) 𝑑𝜏

+ ∫

𝑡+𝑡0

𝑡0

𝐷𝐹
𝜏
(𝑠

(𝜏)) V (𝜏) 𝑑𝜏,

V (𝑡 + 𝑡0)


≤ ∫

𝑡+𝑡0

𝑡0

[

𝐷𝐹

𝜏
(𝑠 (𝜏)) − 𝐷𝐹

𝜏
(𝑠

(𝜏))


‖𝛿𝑥 (𝜏)‖

+

𝐷𝐹

𝜏
(𝑠

(𝜏))


‖V (𝜏)‖] 𝑑𝜏

≤ 𝐾
2
∫

𝑡

0

𝑒
2𝐾𝜏

𝑑𝜏
𝛿𝑥0




𝑠
0
− 𝑠



0



+ 𝐾∫

𝑡0+𝑡

𝑡0

‖V (𝜏)‖ 𝑑𝜏.

(A.4)

According to Lemma 9,

V (𝑡 + 𝑡0)
 ≤ [

𝐾
2
(𝑒
2𝐾𝑡

− 𝑒
𝐾𝑡
)

𝐾
]
𝛿𝑥0




𝑠
0
− 𝑠



0


.

(A.5)

This implies


𝑈 (𝑡 + 𝑡

0
, 𝑡
0
, 𝑠
0
) − 𝑈 (𝑡 + 𝑡

0
, 𝑡
0
, 𝑠


0
)


≤ [

𝐾
2
(𝑒
2𝐾𝑡

− 𝑒
𝐾𝑡
)

𝐾
]

𝑠
0
− 𝑠



0



(A.6)

for all 𝑠
0
, 𝑠


0
∈ 𝑊. This completes the proof.

Proof of Lemma 13. We define the projection joint spectral
radius as follows:

𝜌
𝑃
(𝐷F, 𝑠

0
) = lim

𝑡→∞

sup
𝑡0≥0


�̃� (𝑡, 𝑡

0
, 𝑠
0
)


1/𝑡

. (A.7)

First, we will prove that diam(𝐷F, 𝑠
0
) = 𝜌

𝑃
(𝐷F, 𝑠

0
). For any

𝑑>𝜌
𝑃
(𝐷F, 𝑠

0
), there exists𝑇≥ 0 such that ‖�̃�(𝑡+𝑡

0
, 𝑡
0
, 𝑠
0
)‖ ≤

𝑑
𝑡 for all 𝑡

0
≥ 0 and 𝑡 ≥ 𝑇. This implies that



𝑃
−1
𝑈 (𝑡 + 𝑡

0
, 𝑡
0
, 𝑠
0
) 𝑃 −

[
[
[
[
[
[

[

𝐼
𝑛

0

...
0

]
]
]
]
]
]

]

× [𝑃
T
0
𝑈 (𝑡 + 𝑡

0
, 𝑡
0
, 𝑠
0
) 𝑃
0
, 𝛼 (𝑡 + 𝑡

0
, 𝑡
0
, 𝑠
0
)]



=



[
0 0

0 �̃� (𝑡 + 𝑡
0
, 𝑡
0
, 𝑠
0
)
]



≤ 𝐶
1
𝑑
𝑡

(A.8)
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for some 𝐶
1
> 0, all 𝑡

0
≥ 0 and all 𝑡 ≥ 𝑇. Thus, there exist

some 𝐶
2
> 0 and some matrix function 𝑞(𝑡) ∈ R𝑛,𝑛𝑚 such

that
𝑈 (𝑡 + 𝑡

0
, 𝑡
0
, 𝑠
0
) − 1

𝑚
⊗ 𝑞 (𝑡)



=



𝑈 (𝑡 + 𝑡
0
, 𝑡
0
, 𝑠
0
) − 𝑃

[
[
[
[
[
[

[

𝐼
𝑛

0

...
0

]
]
]
]
]
]

]

× [𝑃
T
0
𝑈 (𝑡 + 𝑡

0
, 𝑡
0
, 𝑠
0
) 𝑃
0
, 𝛼 (𝑡 + 𝑡

0
, 𝑡
0
, 𝑠
0
)] 𝑃

−1V



≤ 𝐶
2
𝑑
𝑡

(A.9)

for all 𝑡
0
≥ 0 and 𝑡 ≥ 𝑇, where 𝑞(𝑡) ∈ R𝑛,𝑛𝑚 denotes a matrix,

and we omit its accurate expression. So, we can conclude
that diam(𝑈(𝑡 + 𝑡

0
, 𝑡
0
, 𝑠
0
)) ≤ 𝐶

3
𝑑
𝑡 for some 𝐶

3
> 0, all

𝑡
0
≥ 0, and 𝑡 ≥ 𝑇. This implies that diam(𝐷F, 𝑠

0
) ≤ 𝑑, that

is, diam(𝐷F, 𝑠
0
) ≤ 𝜌

𝑃
(𝐷F, 𝑠

0
) due to the arbitrariness of

𝑑 ≥ 𝜌
𝑃
(𝐷F, 𝑠

0
). Conversely, for any 𝑑 > diam(𝐷F, 𝑠

0
), there

exists 𝑇 > 0 such that

𝑈 (𝑡 + 𝑡
0
, 𝑡
0
, 𝑠
0
) − 1

𝑚
⊗ 𝑈

1

 ≤ 𝐶4𝑑
𝑡 (A.10)

for some 𝐶
4
> 0, all 𝑡

0
≥ 0, and 𝑡 ≥ 𝑇, where 𝑈

1
= [𝑈

11
,

𝑈
12
, . . . , 𝑈

1𝑚
] the first 𝑛 rows of 𝑈(𝑡 + 𝑡

0
, 𝑡
0
, 𝑠
0
). Then,


𝑃
−1
𝑈 (𝑡 + 𝑡

0
, 𝑡
0
, 𝑠
0
) 𝑃 − 𝑃

−11
𝑚
⊗ 𝑈

1
𝑃


=



𝑃
−1
𝑈 (𝑡 + 𝑡

0
, 𝑡
0
, 𝑠
0
) 𝑃 − [

𝛾 (𝑡) 𝛽 (𝑡)

0 0
]



=



[

0 𝛽 (𝑡)

0 �̃� (𝑡 + 𝑡
0
, 𝑡
0
, 𝑠
0
)

]



≤ 𝐶
5
𝑑
𝑡

(A.11)

for some 𝐶
5
> 0, all 𝑡

0
≥ 0, and 𝑡 ≥ 𝑇, where 𝛾(𝑡) =

𝑃
T
0
𝑈(𝑡, 𝑡

0
, 𝑠
0
)𝑃
0
∈ R𝑛,𝑛 and 𝛽(𝑡) ∈ R𝑛,𝑛(𝑚−1) denotes a matrix,

and we omit its accurate expression. This implies that ‖�̃�(𝑡 +
𝑡
0
, 𝑡
0
, 𝑠
0
) ‖ ≤ 𝐶

6
𝑑
𝑡 holds for some 𝐶

6
> 0, all 𝑡

0
≥ 0, and

𝑡 ≥ 𝑇. Therefore, we can conclude that 𝜌
𝑃
(𝐷F, 𝑠

0
) ≤ 𝑑. So,

𝜌
𝑃
(𝐷F, 𝑠

0
) = diam(𝐷F, 𝑠

0
).

Second, it is clear that log 𝜌
𝑃
(𝐷F, 𝑠

0
) ≥ 𝜆

𝑃
(𝐷F, 𝑠

0
).

We will prove that log 𝜌
𝑃
(𝐷F, 𝑠

0
) = 𝜆

𝑃
(𝐷F, 𝑠

0
). Otherwise,

there exists some 𝑟, 𝑟
0
> 0 satisfying 𝜌

𝑃
(𝐷F, 𝑠

0
) > 𝑟 > 𝑟

0
>

𝑒
𝜆𝑃(𝐷F,𝑠0). If so, there exists a sequence 𝑡

𝑘
↑ ∞ as 𝑘 →

∞, 𝑡𝑘
0
≥ 0, and V

𝑘
∈ R𝑛(𝑚−1) with ‖V

𝑘
‖ = 1 such that

‖�̃�(𝑡
𝑘
+ 𝑡

𝑘

0
, 𝑡
𝑘

0
, 𝑠
0
)V
𝑘
‖ > 𝑟

𝑡𝑘 for all 𝑘 ∈ N. Then, there exists a
subsequence V

𝑘𝑙
with lim

𝑙→∞
V
𝑘𝑙
= V∗. Let {𝑒

1
, 𝑒
2
, . . . , 𝑒

𝑛(𝑚−1)
}

be a normalized orthogonal basis ofR𝑛(𝑚−1). And, let V
𝑘𝑙
−V∗ =

∑
𝑛(𝑚−1)

𝑗=1
𝜉
𝑘𝑙

𝑗
𝑒
𝑗
. We have lim

𝑙→∞
𝜉
𝑘𝑙

𝑗
= 0 for all 𝑗 = 1, . . . , 𝑛(𝑚 −

1). Thus, there exists 𝐿 > 0 such that


�̃� (𝑡

𝑘𝑙
+ 𝑡

𝑘𝑙

0
, 𝑡
𝑘𝑙

0
, 𝑠
0
) V∗



≥

�̃� (𝑡

𝑘𝑙
+ 𝑡

𝑘𝑙

0
, 𝑡
𝑘𝑙

0
, 𝑠
0
) V
𝑘𝑙



−

�̃� (𝑡

𝑘𝑙
+ 𝑡

𝑘𝑙

0
, 𝑡
𝑘𝑙

0
, 𝑠
0
) (V

𝑘𝑙
− V∗)



≥ 𝑟
𝑡𝑘
𝑙 −

𝑛(𝑚−1)

∑

𝑗=1


𝜉
𝑘𝑙

𝑗




�̃� (𝑡

𝑘𝑙
+ 𝑡

𝑘𝑙

0
, 𝑡
𝑘𝑙

0
, 𝑠
0
) 𝑒
𝑗



≥ 𝑟
𝑡𝑘
𝑙 − 𝑟

𝑡𝑘
𝑙

0
> 𝑟

𝑡𝑘
𝑙

0

(A.12)

for all 𝑙 ≥ 𝐿. This implies 𝑒𝜆(𝐷𝑃F,V
∗
,𝑠0) ≥ 𝑟

0
which contradicts

with 𝑒
𝜆𝑃(𝐷F,𝑠0) < 𝑟

0
. This implies 𝜌

𝑃
(𝐷F, 𝑠

0
) = 𝑒

𝜆𝑃(𝐷F,𝑠0).
Therefore, we can conclude log diam(𝐷F, 𝑠

0
) = 𝜆

𝑃
(F, 𝑠

0
).

The proof is completed.

Proof of Lemma 16. Let 𝜙 = 𝑃−1𝜙. We have

̇
�̃� = 𝑃

−1
𝐷𝐹(𝑠 (𝑡) , 

(𝑡)
𝜔
0
) 𝑃𝜙

= [

[

𝑃
T
0

𝜕𝑓

𝜕𝑠
(𝑠 (𝑡)) 𝑃

0
𝛼 (𝑡)

0 𝐷𝐹 (𝑠 (𝑡) , 
(𝑡)
𝜔
0
)

]

]

𝜙.

(A.13)

Write 𝜙 = [ 𝑦(𝑡)
𝑧(𝑡)

], where 𝑦(𝑡) ∈ R𝑛. Then, we have

̇𝑧 (𝑡) = 𝐷𝐹 (𝑠 (𝑡) , 
(𝑡)
𝜔
0
) 𝑧 (𝑡) ,

̇𝑦 (𝑡) = 𝑃
T
0

𝜕𝑓

𝜕𝑠
(𝑠 (𝑡)) 𝑃

0
𝑦 (𝑡) + 𝛼 (𝑡) 𝑧 (𝑡) .

(A.14)

Thus, we can write its solution by

𝑧 (𝑡) = �̃� (𝑡) 𝑧
0
,

𝑦 (𝑡) = 𝑃
T
0
𝑈 (𝑡) 𝑃

0
𝑦
0
+ ∫

𝑡

0

𝑃
T
0
𝑈 (𝑡)𝑈

−1
(𝜏) 𝑃

0
𝛼 (𝜏) �̃� (𝜏) 𝑧

0
𝑑𝜏.

(A.15)

We write 𝜆
𝑃
(𝐷F, 𝑠

0
, 𝜔
0
), 𝜆

𝑆
(𝐷F, 𝑠

0
, 𝜔
0
), and 𝜆

𝑇
(𝐷F,

𝑠
0
, 𝜔
0
) by 𝜆

𝑃
, 𝜆
𝑆
, and 𝜆

𝑇
, respectively for simplicity.

Case 1 (𝜆
𝑃
> 𝜆

𝑆
). We can conclude that 𝜒[𝑧(𝑡)] ≤ 𝜆

𝑃
and

𝜒 [𝑦 (𝑡)] ≤ max{𝜒 [𝑃T
0
𝑈 (𝑡) 𝑃

0
𝑦
0
] ,

𝜒 [∫

𝑡

0

𝑃
T
0
𝑈 (𝑡) 𝑈

−1
(𝜏) 𝑃

0
𝛼 (𝜏)

×�̃� (𝜏) 𝑧 (0) 𝑑𝜏] } .

(A.16)
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From Cauchy-Buniakowski-Schwarz inequality, we have

𝜒[



∫

𝑡

0

𝑃
T
0
𝑈 (𝑡) 𝑈

−1
(𝜏) 𝑃

0
𝛼 (𝜏) �̃� (𝜏) 𝑑𝜏



]

≤ 𝜒[{∫

𝑡

0


𝑈 (𝑡) 𝑈

−1
(𝜏)



2

𝑑𝜏}

1/2

]

+ 𝜒[{∫

𝑡

0


𝛼 (𝜏) �̃� (𝜏)


𝑑𝜏}

1/2

] .

(A.17)

Claim 1 (𝜒(∫𝑡
0
‖𝑈(𝑡)𝑈

−1
(𝜏)‖

2
𝑑𝜏) ≤ 0). Considering the linear

system

̇𝑢 (𝑡) =
𝜕𝑓

𝜕𝑠
(𝑠 (𝑡)) 𝑢 (𝑡) , (A.18)

due to its regularity and the boundedness of its coefficients,
there exists a Lyapunov transform 𝐿(𝑡) such that letting
𝑢(𝑡) = 𝐿(𝑡)V(𝑡), consider the transformed linear system

̇V (𝑡) = [𝐿−1 (𝑡)
𝜕𝑓

𝜕𝑠
(𝑠 (𝑡)) 𝐿 (𝑡) − 𝐿

−1
(𝑡) ̇𝐿 (𝑡)] V (𝑡)

= ̆𝐴 (𝑡) V (𝑡) .

(A.19)

Let solution matrix 𝑉(𝑡) = ( ̆V
𝑖𝑗
(𝑡))

𝑛

𝑖,𝑗=1
, ̆𝐴(𝑡) = ( ̆𝑎

𝑖𝑗
(𝑡))

𝑛

𝑖,𝑗=1

which satisfies that ̆𝐴(𝑡) and 𝑉(𝑡) are lowertriangular. And
its Lyapunov exponents can be written as follows:

𝜎
𝑖
= lim
𝑡→∞

1

𝑡
∫

𝑡

0

̆𝑎
𝑖𝑖
(𝜏) 𝑑𝜏, (A.20)

which are just the Lyapunov exponents of the regular linear
system (A.18), 𝑖 = 1, 2, . . . , 𝑛. We have 𝜒[ ̆V

𝑖𝑖
(𝑡)] = 𝜎

𝑖
and

̆V
𝑘+1,𝑘

(𝑡)

= 𝑒
∫
𝑡

0
̆𝑎𝑘+1,𝑘+1(𝜏)𝑑𝜏 ∫

𝑡

0

𝑒
−∫
𝜏

0
̆𝑎𝑘+1,𝑘+1(𝜗)𝑑𝜗 ̆𝑎

𝑘+1,𝑘
(𝜏) ̆V

𝑘,𝑘
(𝜏) 𝑑𝜏.

(A.21)

This implies

𝜒 [ ̆V
𝑘+1,𝑘

(𝑡)] ≤ 𝜎
𝑘+1

− 𝜎
𝑘+1

+ 0 + 𝜎
𝑘
= 𝜎

𝑘
. (A.22)

By induction, we can conclude that 𝜒[ ̆V
𝑗𝑘
(𝑡)] ≤ 𝜎

𝑘
for all 𝑗 >

𝑘. For 𝑗 < 𝑘, 𝜒[ ̆V
𝑗𝑘
(𝑡)] = −∞ due to the lower-triangularity

of the matrix 𝑉(𝑡).
Considering the lower-triangular matrix 𝑉

−1
(𝑡) =

( ̆𝑤
𝑖𝑗
)
𝑛

𝑖,𝑗=1
, its transpose (𝑉−1(𝑡))T can be regarded as the solu-

tion matrix of the adjoint system of (A.18):

̇𝑤 (𝑡) = − ̆𝐴
T
(𝑡) 𝑤 (𝑡) , (A.23)

which is also regular. By the same arguments, we can conclude
that 𝜒[ ̆𝑤

𝑘𝑘
] = −𝜎

𝑘
for all 𝑘 = 1, 2, . . . , 𝑛, 𝜒[ ̆𝑤

𝑗𝑘
] ≤ −𝜎

𝑘
for all

𝑘 > 𝑗, and 𝜒[ ̆𝑤
𝑗𝑘
] = −∞ for all 𝑘 < 𝑗. Therefore, for each

𝑖 > 𝑗,

max
𝑖,𝑗

𝜒[∫

𝑡

0


𝑈 (𝑡) 𝑈

−1
(𝜏)

𝑖𝑗
𝑑𝜏]

≤ max
𝑖,𝑗

𝜒[∫

𝑡

0


𝑉 (𝑡) 𝑉

−1
(𝜏)

𝑖𝑗
𝑑𝜏]

≤ max
𝑖,𝑗

𝜒[

[

∫

𝑡

0

∑

𝑗≤𝑘≤𝑖


̆V
𝑖𝑘
(𝑡) ̆𝑤

𝑘𝑗
(𝜏)


𝑑𝜏]

]

≤ max
𝑖,𝑗

max
𝑗≤𝑘≤𝑖

𝜒[∫

𝑡

0


̆V
𝑖𝑘
(𝑡) ̆𝑤

𝑘𝑗
(𝜏)


𝑑𝜏]

≤ max
𝑖,𝑗

max
𝑗≤𝑘≤𝑖

(𝜎
𝑘
− 𝜎

𝑘
) = 0.

(A.24)

This implies that 𝜒[∫𝑡
0
‖ 𝑈(𝑡)𝑈

−1
(𝜏)𝑑𝜏‖

2
𝑑𝜏] ≤ 0.

Noting that

𝜒[∫

𝑡

0


𝛼 (𝜏) �̃� (𝜏)



2

2
𝑑𝜏] ≤ 𝜒 [


𝛼 (𝑡) �̃� (𝑡)



2

] ≤ 2𝜆
𝑃
.

(A.25)

So, 𝜒[𝑦(𝑡)] ≤ max{𝜆
𝑆
, 𝜆
𝑃
} = 𝜆

𝑃
. This leads to 𝜒[𝜙(𝑡)] ≤ 𝜆

𝑃
.

This implies that 𝜆
𝑃
= max{𝜆

𝑆
, 𝜆
𝑇
}. Thus, 𝜆

𝑃
= 𝜆

𝑇
can be

concluded due to 𝜆
𝑃
> 𝜆

𝑆
.

Case 2 (𝜆
𝑃
< 𝜆

𝑆
). For any 𝜖 with 0 < 𝜖 < (𝜆

𝑆
− 𝜆

𝑃
)/3, there

exists 𝑇 > 0 such that

𝑈
−1
(𝜏)


≤ 𝑒

(−𝜆𝑆+𝜖)𝜏, ‖𝛼 (𝜏)‖ ≤ 𝑒
𝜖𝜏
,


�̃� (𝜏)


≤ 𝑒

(𝜆𝑃+𝜀)𝜏

(A.26)

for all 𝑡 ≥ 𝑇. Define the subspace of R𝑛𝑚:

𝑉 = {[
𝑦

𝑧
] : 𝑦 = −∫

∞

0

𝑃
T
0
𝑈
−1
(𝜏) 𝑃

0
𝛼 (𝜏) �̃� (𝜏) 𝑑𝜏𝑧} ,

(A.27)

which is well defined due to ‖𝑃
T
0
𝑈
−1
(𝜏)𝑃

0
𝛼(𝜏)�̃�(𝜏)‖ ≤

𝑒
(3𝜖−𝜆𝑆+𝜆𝑃)𝜏 ∈ 𝐿([𝑇, +∞)). For each 𝜙(𝑡)with initial condition
[
𝑦

𝑧
] ∈ 𝑉, we have 𝜒[𝑧(𝑡)] ≤ 𝜆

𝑃
and

𝜒 [𝑦 (𝑡)]

= 𝜒 [{−𝑃
−1

0
𝑈 (𝑡) 𝑃

0
∫

∞

0

𝑃
T
0
𝑈
−1
(𝜏) 𝑃

0
𝛼 (𝜏) �̃� (𝜏) 𝑑𝜏

+𝑃
T
0
𝑈 (𝑡) 𝑃

0
∫

𝑡

0

𝑃
T
0
𝑈
−1
(𝜏) 𝑃

0
𝛼 (𝜏) �̃� (𝜏) 𝑑𝜏} 𝑧]

= 𝜒 [−𝑃
T
0
𝑈 (𝑡) ∫

∞

𝑡

𝑈
−1
(𝜏) 𝑃

0
𝛼 (𝜏) �̃� (𝜏) 𝑑𝜏𝑧] ≤ 𝜆

𝑃

(A.28)

according to the arguments above. Thus, we have
max

𝑢∈𝑉
𝜆(𝐷F, 𝑢, 𝑠

0
, 𝜔
0
) = 𝜆

𝑃
. Since dim(𝑉) = 𝑛(𝑚 − 1), 𝑉

define the transverse space and 𝜆
𝑇
= 𝜆

𝑃
. This completes the

proof.
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Proof of Lemma 22. Since 𝐿(𝑡) satisfies Assumption 20, if the
initial condition is 𝑢(𝑡

0
) = 1

𝑚
, then the solution must be

𝑢(𝑡) = 1
𝑚
, which implies that each row sum of𝑉(𝑡, 𝑡

0
) is one.

Then, we will prove all elements in 𝑉(𝑡, 𝑡
0
) are nonnegative.

Consider the 𝑖th column of𝑉(𝑡, 𝑡
0
) denoted by𝑉𝑖(𝑡, 𝑡

0
)which

can be regarded as the solution of the following equation:

̇𝑢 = 𝜎𝐿 (𝑡) 𝑢,

𝑢 (𝑡
0
) = 𝑒

𝑚

𝑖
.

(A.29)

For any 𝑡 ≥ 𝑡
0
, if 𝑖

0
= 𝑖

0
(𝑡) is the index with 𝑢

𝑖0
(𝑡) =

min
𝑖=1,2,...,𝑚

𝑢
𝑖
(𝑡), we have ̇𝑢

𝑖0
(𝑡) = ∑

𝑚

𝑗=1
𝜎𝑙
𝑖0𝑗
(𝑢
𝑗
(𝑡)−𝑢

𝑖0
(𝑡)) ≥ 0.

This implies that min
𝑖=1,2,...,𝑚

𝑢
𝑖
(𝑡) is always nondecreasing for

all 𝑡 ≥ 𝑡
0
. Therefore, 𝑢

𝑖
(𝑡) ≥ 0 holds for all 𝑖 = 1, 2, . . . , 𝑚 and

𝑡 ≥ 𝑡
0
. We can conclude that 𝑉(𝑡, 𝑡

0
) is a stochastic matrix.

The proof is completed.

Proof of Lemma 29. Consider the following Cauchy problem:

̇𝑢
𝑖
(𝑡) =

𝑚

∑

𝑗=1

𝜎𝑙
𝑖𝑗
(𝑡) 𝑢

𝑗
(𝑡) ,

𝑢
𝑖
(𝑡
0
) = {

1, 𝑖 = 𝑘,

0, otherwise,

𝑖 = 1, 2, . . . , 𝑚.

(A.30)

Noting that ̇𝑢
𝑘
(𝑡) ≥ 𝜎𝑙

𝑘𝑘
𝑢
𝑘
, we have 𝑢

𝑘
(𝑡) ≥ 𝑒

−𝑀1(𝑡−𝑡0). For
each 𝑖 ̸= 𝑘, since 𝑢

𝑖
(𝑡) ≥ 0 for all 𝑖 = 1, 2, . . . , 𝑚 and 𝑡 ≥ 𝑡

0
, we

have

𝑢
𝑖
(𝑡) = ∑

𝑗 ̸= 𝑖

∫

𝑡

𝑡0

𝑒
∫
𝑡

𝜏
𝜎𝑙𝑖𝑖(𝜗)𝑑𝜗𝜎𝑙

𝑖𝑗
(𝜏) 𝑢

𝑗
(𝜏) 𝑑𝜏

≥ ∫

𝑡

𝑡0

𝑒
∫
𝑡

𝜏
𝜎𝑙𝑖𝑖(𝜗)𝑑𝜗𝜎𝑙

𝑖𝑘
(𝜏) 𝑢

𝑘
(𝜏) 𝑑𝜏

≥ ∫

𝑡

𝑖0

𝑒
−𝑀1(𝑡−𝜏)𝑒

−𝑀1(𝜏−𝑡0)𝜎𝑙
𝑖𝑘
(𝜏) 𝑑𝜏

= 𝑒
−𝑀1(𝑡−𝑡0) ∫

𝑡

𝑡0

𝜎𝑙
𝑖𝑘
(𝜏) 𝑑𝜏.

(A.31)

So, if there exists a 𝛿-edge from vertex 𝑗 to 𝑖 across [𝑡
0
,

𝑡
0
+ 𝑇], then we have V

𝑖𝑗
(𝑡
0
+ 𝑇, 𝑡

0
) ≥ 𝑒

−𝑀1𝑇𝛿. Let
𝛿
2
= min{𝑒−𝑀1𝑇, 𝑒−𝑀1𝑇𝛿}. We can see that 𝑉(𝑡, 𝑡

0
) has a 𝛿

2

spanning tree across any 𝑇-length time interval. Therefore,
according to [31, 32], there exist 𝛿

1
> 0 and 𝑇

1
= (𝑚 − 1)𝑇

such that 𝑉(𝑡, 𝑡
0
) is 𝛿

1
scrambling across any 𝑇

1
-length time

interval. The Lemma is proved.
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The guaranteed cost control problem is investigated for a class of nonlinear discrete-time systems with Markovian jumping
parameters and mixed time delays. The mixed time delays involved consist of both the mode-dependent discrete delay and
the distributed delay with mode-dependent lower bound. The associated cost function is of a quadratic summation form over
the infinite horizon. The nonlinear functions are assumed to satisfy sector-bounded conditions. By introducing new Lyapunov-
Krasovskii functionals and developing some new analysis techniques, sufficient conditions for the existence of guaranteed cost
controllers are derived with respect to the given cost function. Moreover, a convex optimization approach is applied to search
for the optimal guaranteed cost controller by minimizing the guaranteed cost of the closed-loop system. Numerical simulation is
further carried out to demonstrate the effectiveness of the proposed methods.

1. Introduction

In the past decades, the control problems for the linear or
nonlinear systems have attracted considerable research inter-
est and significant advances on this topic have been made;
see, for example, [1–15] and the references therein. It is well
known that the time delay in feedback control can be caused
by physical properties of control equipments, measurements
of system responses, and data processing, calculating and
executing control forces, and so forth. The time delay in
feedback controlmay not only deteriorate the performance of
controlled systems but also destabilize the controlled systems.
There have been a lot of reports on the dynamics analysis
of time delay feedback controlled systems. Various sufficient
conditions, either delay dependent or delay independent,
have been proposed to guarantee the stability for the delayed
systems; see, for example, [2, 9, 12, 13] for some recent
publications.

On the other hand, a great deal of attention has recently
been devoted to the study of Markovian jump systems. This
class of systems can be modeled with variable structure
subject to random abrupt changes resulting from the occur-
rence of some inner discrete events in the system such as
failures and repairs of machine in manufacturing systems,
random failures and repairs of the components, changes
in the interconnections of subsystems, sudden environment
changes, and so on. Recently, stability and control prob-
lems for Markovian jump systems have been extensively
investigated; see, for example, [16, 17] and the references
therein.

It is also noted that in practical applications, the choice
of control policy depends upon the optimization of some
preassigned performance criterion. When designing a con-
troller for a real system, it is often desirable to make the
controlled system not only stable but also guarantee an
adequate level of performance. To deal with such control
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problems, the so-called guaranteed cost control approach
was first introduced by Chang and Peng [2]. The objective
of this approach is to establish an upper bound on a
given performance index so that the system performance
degradation incurred by the uncertainties is guaranteed to
be less than this bound. For guaranteed cost control, a great
number of results on this topic have been reported in the
literature and various approaches have been proposed. For
example, in [18], notion of the quadratic guaranteed cost
control was introduced to allow for a quadratic performance
index and a Riccati equation approach was presented for
designing quadratic guaranteed cost controllers, where the
system was delay-free. The authors in [19] extended the
Riccati equation approach given in [18] to uncertain delayed
systems and proposed a guaranteed cost controller design
method by solving a certain parameter-dependent Riccati
equation. In [15], an LMI approach [20] was proposed
to deal with the guaranteed cost control problem for a
class of linear time delay systems with time-varying norm-
bounded parameter uncertainty, and a sufficient condition
for the existence of memoryless state-feedback guaranteed
cost controllers was derived. In [21], the solutions to the
guaranteed cost control problem via state-feedback are pre-
sented for a class of uncertain Markovian jump systems
with mode-dependent delays in LMI framework, and the
delay-dependent/independent sufficient conditions for the
existence of guaranteed cost state-feedback controllers have
been derived.

Based on LMI approach, [22] considered the robust guar-
anteed cost control problem for uncertain linear discrete-
time systems subject to actuator saturation, where the satu-
ration nonlinearity was transformed into a convex polytope
of linear systems, and then this problem was formulated into
a convex optimization problem with constraints given by a
set of LMIs. Very recently, the filtering problems have been
investigated for discrete-time nonlinear stochastic systems
with network-induced phenomena in [7, 8, 23, 24]. As
far as we know, however, little research has been focused
on the guaranteed cost control problem for discrete-time
systems with distributed time delay and Markovian jumping
parameters.

In this paper, we consider the guaranteed cost control
problem for a class of nonlinear discrete-time systems with
Markovian jumping parameters and mixed time delays. The
mixed time delays involved consist of both the mode-
dependent discrete delay and the infinite distributed delay
with mode-dependent lower bound. The relevant cost func-
tion is chosen as a quadratic summation form over the
infinite horizon. The nonlinear functions are assumed to
satisfy sector-bounded conditions. By constructing novel
Lyapunov-Krasovskii functionals and employing some new
analysis techniques, sufficient conditions for the existence
of guaranteed cost controllers are derived with respect to
the given cost function. In addition, a convex optimiza-
tion approach is applied to search for the optimal guar-
anteed cost controller by minimizing the guaranteed cost
of the closed-loop system. Finally, a numerical example is
presented to demonstrate the effectiveness of the proposed
methods.

Notations. Throughout this paper, R𝑛 and R𝑛×𝑚 denote,
respectively, the 𝑛-dimensional Euclidean space and the set
of all 𝑛 × 𝑚 real matrices; N− stands for the set of all
the negative integers and zero. The superscript “𝑇” denotes
matrix transposition. The notation 𝑋 ≥ 𝑌 (resp., 𝑋 >

𝑌), where 𝑋 and 𝑌 are symmetric matrices, means that
𝑋 − 𝑌 is positive semidefinite (resp., positive definite).
diag{⋅ ⋅ ⋅ } stands for a block-diagonal matrix, 𝐼 is the identity
matrix with compatible dimension, and | ⋅ | denotes the
Euclidean norm inR𝑛. If𝐴 is a square matrix, 𝜆max(𝐴) (resp.,
𝜆min(𝐴)) denotes the largest (resp., smallest) eigenvalue of
𝐴, and Tr(𝐴) denotes the trace of 𝐴. In symmetric block
matrices, an asterisk “∗” is used to represent a term that
is induced by symmetry. E[𝑥] and E[𝑥 | 𝑦] will, respec-
tively, mean the expectation of 𝑥 and the expectation of
𝑥 conditional on 𝑦. Matrices, if their dimensions are not
explicitly stated, are assumed to be compatible for algebraic
operations.

2. Problem Formulation

Let 𝑟(𝑘) (𝑘 ≥ 0) be a Markov chain taking values in a finite
state space N = {1, 2, . . . , 𝑛

0
} with probability transition

matrix Π = (𝜋
𝑖𝑗
)
𝑛0×𝑛0

given by

Pr {𝑟 (𝑘 + 1) = 𝑗 | 𝑟 (𝑘) = 𝑖} = 𝜋
𝑖𝑗
, ∀𝑖, 𝑗 ∈ N, (1)

where 𝜋
𝑖𝑗
≥ 0 (𝑖, 𝑗 ∈ N) is the transition probability from 𝑖 to

𝑗 and ∑
𝑛0

𝑗=1
𝜋
𝑖𝑗
= 1, for all 𝑖 ∈ 𝑁.

Consider a discrete-time nonlinear systemwith 𝑛
0
modes

described by the following dynamical equation:

𝑥 (𝑘 + 1) = 𝐴 (𝑟 (𝑘)) 𝑥 (𝑘) + 𝐵 (𝑟 (𝑘)) 𝑓 (𝑥 (𝑘))

+ 𝐶 (𝑟 (𝑘)) 𝑔 (𝑥 (𝑘 − 𝜏
1,𝑟(𝑘)

)) + 𝐷 (𝑟 (𝑘))

×

+∞

∑

𝑚=𝜏2,𝑟(𝑘)

𝜇
𝑚
ℎ (𝑥 (𝑘 − 𝑚)) + 𝐸 (𝑟 (𝑘)) 𝑢 (𝑘) ,

(2a)

𝑥 (𝑚) = 𝜙 (𝑚) for 𝑚 ∈ N
−
, 𝑟 (0) = 𝑟

0
, (2b)

where 𝑥(𝑘) ∈ R𝑛 is the state vector; for 𝑟(𝑘) = 𝑖 ∈ N,
𝐴(𝑟(𝑘)) ∈ R𝑛×𝑛, 𝐵(𝑟(𝑘)) ∈ R𝑛×𝑛, 𝐶(𝑟(𝑘)) ∈ R𝑛×𝑛, 𝐷(𝑟(𝑘)) ∈

R𝑛×𝑛 ∈ R𝑛×𝑛, and 𝐸(𝑟(𝑘)) ∈ R𝑛×𝑞 are known constant
matrices; 𝑓(⋅), 𝑔(⋅) and ℎ(⋅) : R𝑛 → R𝑛 are nonlinear
vector functions; 𝜇

𝑚
(𝑚 = 1, 2, . . .) are scalar constants;

𝑢(𝑘) ∈ R𝑞 is the control input; 𝜏
1,𝑟(𝑘)

stands for the mode-
dependent discrete time-delay while 𝜏

2,𝑟(𝑘)
≥ 0 describes a

mode-dependent lower bound for the distributed time-delay;
𝜙 : N− → R𝑛 is the initial value; and 𝑟(0) = 𝑟

0
is the initial

mode of the Markov chain.
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For nonlinear vector functions 𝑓, 𝑔, ℎ, we assume that

(𝑓 (𝑥) − 𝐹
1
𝑥)
𝑇

(𝑓 (𝑥) − 𝐹
2
𝑥) ≤ 0, ∀𝑥 ∈ R

𝑛
,

(𝑔 (𝑥) − 𝐺
1
𝑥)
𝑇

(𝑔 (𝑥) − 𝐺
2
𝑥) ≤ 0, ∀𝑥 ∈ R

𝑛
,

(ℎ (𝑥) − 𝐻
1
𝑥)
𝑇

(ℎ (𝑥) − 𝐻
2
𝑥) ≤ 0, ∀𝑥 ∈ R

𝑛
,

(3)

where 𝐹
1
, 𝐹
2
, 𝐺
1
, 𝐺
2
, 𝐻
1
, and 𝐻

2
∈ R(𝑛×𝑛) are known

constant matrices.

Remark 1. The conditions (2) are quite general, and such a
description, compared with the usual Lipschitz condition,
is very helpful for using LMI-based approach to reduce the
possible conservatism.The similar form of the conditions has
been used, for example, by the authors in [10].

Remark 2. It is not difficult to verify that the conditions (2)
imply that 𝑓(0) = 𝑔(0) = ℎ(0) = 0, and 𝑥 = 0 is therefore an
equilibrium point.

The cost function associated with system (2a) and (2b) is

𝐽 = E[

∞

∑

𝑘=0

(𝑥
𝑇
(𝑘) 𝑅
1
(𝑟 (𝑘)) 𝑥 (𝑘)

+𝑢
𝑇
(𝑡) 𝑅
2
(𝑟 (𝑘)) 𝑢 (𝑘)) | 𝜙 (𝑘) , 𝑟

0
] ,

(4)

where 𝑅
1
(𝑖) > 0 and 𝑅

2
(𝑖) > 0, for all 𝑖 ∈ N.

Now, consider the following state-feedback control law
𝑢(𝑘) = 𝐾(𝑟(𝑘))𝑥(𝑘), where 𝐾(𝑖) ∈ R𝑞×𝑛 (𝑖 ∈ N) are
controller gains to be designed.Then, the closed-loop system
can be given as follows:

𝑥 (𝑘 + 1) = 𝐴
𝐾
(𝑟 (𝑘)) 𝑥 (𝑘) + 𝐵 (𝑟 (𝑘)) 𝑓 (𝑥 (𝑘))

+ 𝐶 (𝑟 (𝑘)) 𝑔 (𝑥 (𝑘 − 𝜏
1,𝑟(𝑘)

))

+ 𝐷 (𝑟 (𝑘))

+∞

∑

𝑚=𝜏2,𝑟(𝑘)

𝜇
𝑚
ℎ (𝑥 (𝑘 − 𝑚)) ,

(5a)

𝑥 (𝑚) = 𝜙 (𝑚) for 𝑚 ∈ N
−
, 𝑟 (0) = 𝑟

0
, (5b)

where 𝐴
𝐾
(𝑟(𝑘)) = 𝐴(𝑟(𝑡)) + 𝐸(𝑟(𝑘)) 𝐾(𝑟(𝑘)).

Definition 3. System (2a) and (2b) with 𝑢(𝑘) ≡ 0 is said to be
asymptotically stable in mean square if, for any solution 𝑥(𝑘)

of system (2a) and (2b), the following holds:

lim
𝑘→∞

E [|𝑥 (𝑘)|
2
] = 0. (6)

Definition 4. Consider the system (2a) and (2b). If there exists
a state-feedback control law 𝑢(𝑘) and a positive number 𝛾

such that the closed-loop system (5a) and (5b) is asymptot-
ically stable in mean square and the resulting cost function
satisfies

𝐽 ≤ 𝛾, (7)

then 𝛾 is said to be a guaranteed cost and 𝑢(𝑘) is said
to be a guaranteed cost controller for the system (2a) and
(2b).

The objective of this paper is to develop a procedure
to design a memoryless state-feedback guaranteed cost con-
troller 𝑢(𝑘) = 𝐾(𝑟(𝑘))𝑥(𝑘), which achieves as small value of
𝛾 as possible.

Assumption 5. Constant 𝜇
𝑚

≥ 0 satisfies the following
convergent conditions:

+∞

∑

𝑚=1

𝜇
𝑚
< +∞,

+∞

∑

𝑚=1

𝑚𝜇
𝑚
< +∞. (8)

Remark 6. Assumption 5 makes sense as they guarantee that
the term𝐷(𝑟(𝑘))∑

+∞

𝑚=𝜏2,𝑟(𝑘)
𝜇
𝑚
ℎ(𝑥(𝑘−𝑚)) in (2a) is convergent,

which is necessary for the subsequent analysis.

3. Main Results and Proofs

We first introduce some lemmas to be used in deriving our
results.

Lemma 7 (see [25]). Let𝑀 ∈ R𝑛×𝑛 be a positive semi definite
matrix, x

𝑖
∈ R𝑛 and 𝑎

𝑖
≥ 0 (𝑖 = 1, 2, . . .). If the series concerned

are convergent, the following inequality holds:

(

+∞

∑

𝑖=1

𝑎
𝑖
x
𝑖
)

𝑇

𝑀(

+∞

∑

𝑖=1

𝑎
𝑖
x
𝑖
) ≤ (

+∞

∑

𝑖=1

𝑎
𝑖
)

+∞

∑

𝑖=1

𝑎
𝑖
x𝑇
𝑖
𝑀x
𝑖
. (9)

Lemma 8 (see [10]). Assume that nonlinear function ℎ(⋅) :

R𝑛 → R𝑛 satisfies

(ℎ (𝑥) − 𝑈
1
𝑥)
𝑇

(ℎ (𝑥) − 𝑈
2
𝑥) ≤ 0, ∀𝑥 ∈ R

𝑛 (10)

with 𝑈
1
and 𝑈

2
being constant matrices. Then, the following

matrix inequality holds:

[
𝑥

ℎ (𝑥)
]

𝑇

[

[

𝑈
1

−𝑈
2

−𝑈
𝑇

2
𝐼

]

]

[
𝑥

ℎ (𝑥)
] ≤ 0, (11)
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or

𝑥
𝑇
𝑈
1
𝑥 − 2𝑥

𝑇
𝑈
2
ℎ (𝑥) + ℎ

𝑇
(𝑥) ℎ (𝑥) ≤ 0, (12)

where 𝑈
1
= (𝑈
𝑇

1
𝑈
2
+ 𝑈
𝑇

2
𝑈
1
)/2 and 𝑈

2
= (𝑈
𝑇

1
+ 𝑈
𝑇

2
)/2.

Proof. It can be verified by simple matrix operations.

Lemma 9 (Schur complement [20]). Given constant matrices
Ω
1
, Ω
2
, Ω
3
whereΩ

1
= Ω
𝑇

1
and Ω

2
> 0, then

Ω
1
+ Ω
𝑇

3
Ω
−1

2
Ω
3
< 0 (13)

if and only if

[
Ω
1

Ω
𝑇

3

Ω
3

−Ω
2

] < 0 𝑜𝑟 [

[

−Ω
2

Ω
3

Ω
𝑇

3
Ω
1

]

]

< 0. (14)

Hereafter, one denote 𝜏
1

= max
1≤𝑗≤𝑛0

{𝜏
1,𝑗
}, 𝜏
2

=

max
1≤𝑗≤𝑛0

{𝜏
2,𝑗
}, 𝜏
1
= min

1≤𝑗≤𝑛0
{𝜏
1,𝑗
}, 𝜏
2
= min

1≤𝑗≤𝑛0
{𝜏
2,𝑗
},

and 𝜋 = min
1≤𝑖≤𝑛0

{|𝜋
𝑖𝑖
|}.

One also denotes

̆𝐹
1
=

(𝐹
𝑇

1
𝐹
2
+ 𝐹
𝑇

2
𝐹
1
)

2
, ̆𝐹

2
=

(𝐹
𝑇

1
+ 𝐹
𝑇

2
)

2
,

̆𝐺
1
=

(𝐺
𝑇

1
𝐺
2
+ 𝐺
𝑇

2
𝐺
1
)

2
, ̆𝐺

2
=

(𝐺
𝑇

1
+ 𝐺
𝑇

2
)

2
,

𝐻
1
=

(𝐻
𝑇

1
𝐻
2
+ 𝐻
𝑇

2
𝐻
1
)

2
, 𝐻

2
=

(𝐻
𝑇

1
+ 𝐻
𝑇

2
)

2
,

𝜎
𝑚
=

+∞

∑

𝜄=𝑚

𝜇
𝜄
, 𝜇 = max {𝜇

𝑚
| 𝜏
2
≤ 𝑚 ≤ 𝜏

2
− 1} .

(15)

The following is a sufficient condition for the existence of
state-feedback guaranteed cost control laws for the system
(2a) and (2b).

Theorem 10. Given a state-feedback controller 𝑢(𝑘) =

𝐾(𝑟(𝑘))𝑥(𝑘). If there exist a set of positive definite matrices
𝑃
𝑖
(𝑖 ∈ N), and two positive definite matrices 𝑄

1
and 𝑄

2

such that the LMIs (17) hold, then 𝑢(𝑘) = 𝐾(𝑟(𝑘))𝑥(𝑘) is a

guaranteed cost controller for the system (2a) and (2b), and the
cost function satisfies the following bound:

𝐽 ≤ 𝑥
𝑇
(0) 𝑃
𝑟0
𝑥 (0) +

−1

∑

V=−𝜏1,𝑟0

𝑔
𝑇
(𝑥 (V)) 𝑄

1
𝑔 (𝑥 (V))

+ (1 − 𝜋)

𝜏1−1

∑

𝜄=𝜏
1

−1

∑

V=−𝜄

𝑔
𝑇
(𝑥 (V)) 𝑄

1
𝑔 (𝑥 (V))

+

+∞

∑

𝜄=𝜏2,𝑟0

𝜇
𝜄

−1

∑

V=−𝜄

ℎ
𝑇
(𝑥 (V)) 𝑄

2
ℎ (𝑥 (V))

+ (1 − 𝜋) 𝜇

𝜏2−1

∑

𝑠=𝜏
2

𝑠−1

∑

𝜄=1

−1

∑

V=−𝜄

ℎ
𝑇
(𝑥 (V)) 𝑄

2
ℎ (𝑥 (V)) ,

(16)

Φ (𝑖)

=

[
[
[

[

−𝑃
𝑖
− Ξ + 𝑅

1
(𝑖) + 𝐾

𝑇
(𝑖) 𝑅
2
𝐾 (𝑖) Θ 𝐴

𝑇

𝐾
(𝑖) 𝑃
𝑖

Θ
𝑇

Υ (𝑖) Σ
𝑇
(𝑖) 𝑃
𝑖

𝑃
𝑖
𝐴
𝐾
(𝑖) 𝑃

𝑖
Σ (𝑖) −𝑃

𝑖

]
]
]

]

< 0, 𝑖 ∈ N,

(17)

where

Ξ = ̆𝐹
1
+ ̆𝐺
1
+ 𝐻
1
, 𝑃

𝑖
=

𝑛0

∑

𝑗=1

𝜋
𝑖𝑗
𝑃
𝑗
,

Θ = [ ̆𝐹
2

̆𝐺
2

0 𝐻
2

0] ,

Σ (𝑖) = [𝐵 (𝑖) 0 𝐶 (𝑖) 0 𝐷 (𝑖)] ,

Υ (𝑖) = diag{−𝐼, 𝛼
1
𝑄
1
− 𝐼,

− 𝑄
1
, 𝛼
2
𝑄
2
− 𝐼, −

1

𝜎
𝜏2,𝑖

𝑄
2
}

(18)

with

𝛼
1
= (1 − 𝜋) (𝜏

1
− 𝜏
1
) + 1,

𝛼
2
= 𝜎
𝜏
2

+
1

2
𝜇 (1 − 𝜋) (𝜏

2
− 𝜏
2
) (𝜏
2
+ 𝜏
2
− 3) .

(19)

Proof. For convenience, we denote

A
𝐾
(𝑖) = [𝐴𝐾 (𝑖) 𝐵 (𝑖) 0 𝐶 (𝑖) 0 𝐷 (𝑖)] ,

𝜉 (x
𝑘
, 𝑖) = [𝑥

𝑇
(𝑘) 𝑓

𝑇
(𝑥 (𝑘)) 𝑔

𝑇
(𝑥 (𝑘)) 𝑔

𝑇
(𝑥 (𝑘 − 𝜏

1,𝑟(𝑘)
)) ℎ
𝑇
(𝑥 (𝑘))

+∞

∑

𝑚=𝜏2,𝑖

𝜇
𝑚
ℎ
𝑇
(𝑥 (𝑘 − 𝑚))]

𝑇

.

(20)
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By Lemma 9, the inequality (17) is equivalent to

Φ (𝑖) +A
𝑇

𝐾
(𝑖) 𝑃
𝑖
A
𝐾
(𝑖) < 0, (21)

where

Φ (𝑖) = [
−𝑃
𝑖
− Ξ + 𝑅

1
(𝑖) + 𝐾

𝑇
(𝑖) 𝑅
2
(𝑖) 𝐾 (𝑖) Θ

Θ
𝑇

Υ (𝑖)
] . (22)

Define x
𝑘
: N− → R𝑛 by x

𝑘
(𝑚) = 𝑥(𝑘 + 𝑚) for 𝑚 ∈ N−.

To proceed the stability analysis, we construct the following
Lyapunov-Krasovskii functional for the system (5a) and (5b):

𝑉 (x
𝑘
, 𝑘, 𝑟 (𝑘)) =

5

∑

𝑖=1

𝑉
𝑖
(x
𝑘
, 𝑘, 𝑟 (𝑘)) , (23)

where

𝑉
1
(x
𝑘
, 𝑘, 𝑟 (𝑘)) = 𝑥

𝑇
(𝑘) 𝑃
𝑟(𝑘)

𝑥 (𝑘) ,

𝑉
2
(x
𝑘
, 𝑘, 𝑟 (𝑘)) =

𝑘−1

∑

V=𝑘−𝜏1,𝑟(𝑘)

𝑔
𝑇
(𝑥 (V)) 𝑄

1
𝑔 (𝑥 (V)) ,

𝑉
3
(x
𝑘
, 𝑘, 𝑟 (𝑘)) = (1 − 𝜋)

𝜏1−1

∑

𝜄=𝜏
1

𝑘−1

∑

V=𝑘−𝜄

𝑔
𝑇
(𝑥 (V)) 𝑄

1
𝑔 (𝑥 (V)) ,

𝑉
4
(x
𝑘
, 𝑘, 𝑟 (𝑘)) =

+∞

∑

𝜄=𝜏2,𝑟(𝑘)

𝜇
𝜄

𝑘−1

∑

V=𝑘−𝜄

ℎ
𝑇
(𝑥 (V)) 𝑄

2
ℎ (𝑥 (V)) ,

𝑉
5
(x
𝑘
, 𝑘, 𝑟 (𝑘)) = (1 − 𝜋) 𝜇

𝜏2−1

∑

𝑠=𝜏
2

𝑠−1

∑

𝜄=1

𝑘−1

∑

V=𝑘−𝜄

ℎ
𝑇
(𝑥 (V)) 𝑄

2
ℎ (𝑥 (V)) .

(24)

For 𝑖 ∈ N, associated with the closed-loop system (5a)
and (5b) we can carry out the following computation:

E [𝑉
1
(x
𝑘+1

, 𝑘 + 1, 𝑟 (𝑘 + 1)) | x
𝑘
, 𝑟 (𝑘) = 𝑖] − 𝑉

1
(x
𝑘
, 𝑘, 𝑖)

=

𝑛0

∑

𝑗=1

𝜋
𝑖𝑗
𝑥
𝑇
(𝑘 + 1) 𝑃

𝑗
𝑥 (𝑘 + 1) − 𝑥

𝑇
(𝑘) 𝑃
𝑖
𝑥 (𝑘)

= 𝜉
𝑇
(xk, 𝑖)A

𝑇

𝐾
(𝑖) 𝑃
𝑖
A
𝐾
(𝑖) 𝜉 (xk, 𝑖) − 𝑥

𝑇
(𝑘) 𝑃
𝑖
𝑥 (𝑘) ;

E [𝑉
2
(x
𝑘+1

, 𝑘 + 1, 𝑟 (𝑘 + 1)) | x
𝑘
, 𝑟 (𝑘) = 𝑖] − 𝑉

2
(x
𝑘
, 𝑘, 𝑖)

=

𝑛0

∑

𝑗=1

𝜋
𝑖𝑗

𝑘

∑

V=𝑘−𝜏1,𝑗+1

𝑔
𝑇
(𝑥 (V)) 𝑄

1
𝑔 (𝑥 (V))

−

𝑘−1

∑

V=𝑘−𝜏1,𝑖

𝑔
𝑇
(𝑥 (V)) 𝑄

1
𝑔 (𝑥 (V))

=

𝑛0

∑

𝑗=1

𝜋
𝑖𝑗
𝑔
𝑇
(𝑥 (𝑘)) 𝑄

1
𝑔 (𝑥 (𝑘))

− 𝑔
𝑇
(𝑥 (𝑘 − 𝜏

1,𝑖
)) 𝑄
1
𝑔 (𝑥 (𝑘 − 𝜏

1,𝑖
))

+

𝑛0

∑

𝑗=1

𝜋
𝑖𝑗

𝑘−1

∑

V=𝑘−𝜏1,𝑗+1

𝑔
𝑇
(𝑥 (V)) 𝑄

1
𝑔 (𝑥 (V))

−

𝑘−1

∑

V=𝑘−𝜏1,𝑖+1

𝑔
𝑇
(𝑥 (V)) 𝑄

1
𝑔 (𝑥 (V))

= 𝑔
𝑇
(𝑥 (𝑘)) 𝑄

1
𝑔 (𝑥 (𝑘)) − 𝑔

𝑇
(𝑥 (𝑘 − 𝜏

1,𝑖
))

× 𝑄
1
𝑔 (𝑥 (𝑘 − 𝜏

1,𝑖
))

+ ∑

𝑗 ̸= 𝑖

𝜋
𝑖𝑗
(

𝑘−1

∑

V=𝑘−𝜏1,𝑗+1

𝑔
𝑇
(𝑥 (V)) 𝑄

1
𝑔 (𝑥 (V))

−

𝑘−1

∑

V=𝑘−𝜏1,𝑖+1

𝑔
𝑇
(𝑥 (V)) 𝑄

1
𝑔 (𝑥 (V)))

≤ 𝑔
𝑇
(𝑥 (𝑘)) 𝑄

1
𝑔 (𝑥 (𝑘)) − 𝑔

𝑇
(𝑥 (𝑘 − 𝜏

1,𝑖
)) 𝑄
1
𝑔 (𝑥 (𝑘 − 𝜏

1,𝑖
))

+ ∑

𝑗 ̸= 𝑖

𝜋
𝑖𝑗

𝑘−𝜏
1

∑

V=𝑘−𝜏1+1

𝑔
𝑇
(𝑥 (V)) 𝑄

1
𝑔 (𝑥 (V))

≤ 𝑔
𝑇
(𝑥 (𝑘)) 𝑄

1
𝑔 (𝑥 (𝑘)) − 𝑔

𝑇
(𝑥 (𝑘 − 𝜏

1,𝑖
)) 𝑄
1
𝑔 (𝑥 (𝑘 − 𝜏

1,𝑖
))

+ (1 − 𝜋)

𝑘−𝜏
1

∑

V=𝑘−𝜏1+1

𝑔
𝑇
(𝑥 (V)) 𝑄

1
𝑔 (𝑥 (V)) ;

E [𝑉
3
(x
𝑘+1

, 𝑘 + 1, 𝑟 (𝑘 + 1)) | x
𝑘
, 𝑟 (𝑘) = 𝑖] − 𝑉

3
(x
𝑘
, 𝑘, 𝑖)

= (1 − 𝜋)(

𝜏1−1

∑

𝜄=𝜏
1

𝑘

∑

V=𝑘−𝜄+1

𝑔
𝑇
(𝑥 (V)) 𝑄

1
𝑔 (𝑥 (V))

−

𝜏1−1

∑

𝜄=𝜏
1

𝑘−1

∑

V=𝑘−𝜄

𝑔
𝑇
(𝑥 (V)) 𝑄

1
𝑔 (𝑥 (V)))

= (1 − 𝜋)

𝜏1−1

∑

𝜄=𝜏
1

(𝑔
𝑇
(𝑥 (𝑘)) 𝑄

1
𝑔 (𝑥 (𝑘))

− 𝑔
𝑇
(𝑥 (𝑘 − 𝜄)) 𝑄

1
𝑔 (𝑥 (𝑘 − 𝜄)))

= (1 − 𝜋) (𝜏
1
− 𝜏
1
) 𝑔
𝑇
(𝑥 (𝑘)) 𝑄

1
𝑔 (𝑥 (𝑘))

− (1 − 𝜋)

𝑘−𝜏
1

∑

V=𝑘−𝜏1+1

𝑔
𝑇
(𝑥 (V)) 𝑄

1
𝑔 (𝑥 (V)) ,

E [𝑉
4
(x
𝑘+1

, 𝑘 + 1, 𝑟 (𝑘 + 1)) | x
𝑘
, 𝑟 (𝑘) = 𝑖] − 𝑉

4
(x
𝑘
, 𝑘, 𝑖)

=

𝑛0

∑

𝑗=1

𝜋
𝑖,𝑗

+∞

∑

𝜄=𝜏2,𝑗

𝜇
𝜄

𝑘

∑

V=𝑘−𝜄+1

ℎ
𝑇
(𝑥 (V)) 𝑄

2
ℎ (𝑥 (V))
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−

+∞

∑

𝜄=𝜏2,𝑖

𝜇
𝜄

𝑘−1

∑

V=𝑘−𝜄

ℎ
𝑇
(𝑥 (V)) 𝑄

2
ℎ (𝑥 (V))

≤ ∑

𝑗 ̸= 𝑖

𝜋
𝑖,𝑗
(

+∞

∑

𝜄=𝜏2,𝑗

𝜇
𝜄

𝑘−1

∑

V=𝑘−𝜄+1

ℎ
𝑇
(𝑥 (V)) 𝑄

2
ℎ (𝑥 (V))

−

+∞

∑

𝜄=𝜏2,𝑖

𝜇
𝜄

𝑘−1

∑

V=𝑘−𝜄+1

ℎ
𝑇
(𝑥 (V)) 𝑄

2
ℎ (𝑥 (V)))

+ 𝜎
𝜏
2

ℎ
𝑇
(𝑥 (𝑘)) 𝑄

2
ℎ (𝑥 (𝑘))

−

+∞

∑

𝜄=𝜏2,𝑖

𝜇
𝜄
ℎ
𝑇
(𝑥 (𝑘 − 𝜄)) 𝑄

2
ℎ (𝑥 (𝑘 − 𝜄))

≤ ∑

𝑗 ̸= 𝑖

𝜋
𝑖,𝑗
(

+∞

∑

𝜄=𝜏
2

𝜇
𝜄

𝑘−1

∑

V=𝑘−𝜄+1

ℎ
𝑇
(𝑥 (V)) 𝑄

2
ℎ (𝑥 (V))

−

+∞

∑

𝜄=𝜏2

𝜇
𝜄

𝑘−1

∑

V=𝑘−𝜄+1

ℎ
𝑇
(𝑥 (V)) 𝑄

2
ℎ (𝑥 (V)))

+ 𝜎
𝜏
2

ℎ
𝑇
(𝑥 (𝑘)) 𝑄

2
ℎ (𝑥 (𝑘))

−

+∞

∑

𝜄=𝜏2,𝑖

𝜇
𝜄
ℎ
𝑇
(𝑥 (𝑘 − 𝜄)) 𝑄

2
ℎ (𝑥 (𝑘 − 𝜄))

≤ (1 − 𝜋)

𝜏2−1

∑

𝜄=𝜏
2

𝜇
𝜄

𝑘−1

∑

V=𝑘−𝜄+1

ℎ
𝑇
(𝑥 (V)) 𝑄

2
ℎ (𝑥 (V))

+ 𝜎
𝜏
2

ℎ
𝑇
(𝑥 (𝑘)) 𝑄

2
ℎ (𝑥 (𝑘))

−

+∞

∑

𝜄=𝜏2,𝑖

𝜇
𝜄
ℎ
𝑇
(𝑥 (𝑘 − 𝜄)) 𝑄

2
ℎ (𝑥 (𝑘 − 𝜄))

≤ (1 − 𝜋) 𝜇

𝜏2−1

∑

𝜄=𝜏
2

𝑘−1

∑

V=𝑘−𝜄+1

ℎ
𝑇
(𝑥 (V)) 𝑄

2
ℎ (𝑥 (V))

+ 𝜎
𝜏
2

ℎ
𝑇
(𝑥 (𝑘)) 𝑄

2
ℎ (𝑥 (𝑘))

−

+∞

∑

𝑚=𝜏2,𝑖

𝜇
𝑚
ℎ
𝑇
(𝑥 (𝑘 − 𝑚))𝑄

2
ℎ (𝑥 (𝑘 − 𝑚)) ;

E [𝑉
5
(x
𝑘+1

, 𝑘 + 1, 𝑟 (𝑘 + 1)) | x
𝑘
, 𝑟 (𝑘) = 𝑖] − 𝑉

5
(x
𝑘
, 𝑘, 𝑖)

= (1 − 𝜋) 𝜇[

𝜏2−1

∑

𝑠=𝜏
2

𝑠−1

∑

𝜄=1

𝑘

∑

V=𝑘−𝜄+1

ℎ
𝑇
(𝑥 (V)) 𝑄

2
ℎ (𝑥 (V))

−

𝜏2−1

∑

𝑠=𝜏
2

𝑠−1

∑

𝜄=1

𝑘−1

∑

V=𝑘−𝜄

ℎ
𝑇
(𝑥 (V)) 𝑄

2
ℎ (𝑥 (V))]

= (1 − 𝜋) 𝜇[

𝜏2−1

∑

𝑠=𝜏
2

𝑠−1

∑

𝜄=1

(ℎ
𝑇
(𝑥 (𝑘)) 𝑄

2
ℎ (𝑥 (𝑘))

− ℎ
𝑇
(𝑥 (𝑘 − 𝜄)) 𝑄

2
ℎ (𝑥 (𝑘 − 𝜄))) ]

= (1 − 𝜋) 𝜇[
1

2
(𝜏
2
− 𝜏
2
) (𝜏
2
+ 𝜏
2
− 3) ℎ

𝑇
(𝑥 (𝑘)) 𝑄

2
ℎ

× (𝑥 (𝑘)) −

𝜏2−1

∑

𝜄=𝜏
2

𝑘−1

∑

V=𝑘−𝜄+1

ℎ
𝑇
(𝑥 (V)) 𝑄

2
ℎ (𝑥 (V))] .

(25)

Therefore, we have

E [𝑉 (x
𝑘+1

, 𝑘 + 1, 𝑟 (𝑘 + 1)) | x
𝑘
, 𝑟 (𝑘) = 𝑖] − 𝑉 (x

𝑘
, 𝑘, 𝑖)

=

5

∑

𝑗=1

[E [𝑉
𝑗
(x
𝑘+1

, 𝑘 + 1, 𝑟 (𝑘 + 1)) | x
𝑘
, 𝑟 (𝑘) = 𝑖]

−𝑉
𝑗
(x
𝑘
, 𝑘, 𝑖)]

≤ 𝜉
𝑇
(xk, 𝑖)A

𝑇

𝐾
(𝑖) 𝑃
𝑖
A
𝐾
(𝑖) 𝜉 (xk, 𝑖) − 𝑥

𝑇
(𝑘) 𝑃
𝑖
𝑥 (𝑘)

+ 𝛼
1
𝑔
𝑇
(𝑥 (𝑘)) 𝑄

1
𝑔 (𝑥 (𝑘))

− 𝑔
𝑇
(𝑥 (𝑘 − 𝜏

1,𝑖
)) 𝑄
1
𝑔 (𝑥 (𝑘 − 𝜏

1,𝑖
))

+ 𝛼
2
ℎ
𝑇
(𝑥 (𝑘)) 𝑄

2
ℎ (𝑥 (𝑘))

−

+∞

∑

𝑚=𝜏2,𝑖

𝜇
𝑚
ℎ
𝑇
(𝑥 (𝑘 − 𝑚))𝑄

2
ℎ (𝑥 (𝑘 − 𝑚)) ,

(26)

where 𝛼
1
= (1 − 𝜋)(𝜏

1
− 𝜏
1
) + 1, 𝛼

2
= 𝜎
𝜏
2

+ (1/2)𝜇(1 − 𝜋)(𝜏
2
−

𝜏
2
)(𝜏
2
+ 𝜏
2
− 3).

By Lemma 7, it is clear that

−

+∞

∑

𝑚=𝜏2,𝑖

𝜇
𝑚
ℎ
𝑇
(𝑥 (𝑘 − 𝑚))𝑄

2
ℎ (𝑥 (𝑘 − 𝑚))

≤ −
1

𝜎
𝜏2,𝑖

+∞

∑

𝑚=𝜏2,𝑖

𝜇
𝑚
ℎ
𝑇
(𝑥 (𝑘 − 𝑚))𝑄

2

+∞

∑

𝑚=𝜏2,𝑖

𝜇
𝑚
ℎ (𝑥 (𝑘 − 𝑚)) .

(27)

Also, from the conditions (2) and Lemma 8, it follows that

𝑥
𝑇
(𝑘) ̆𝐹
1
𝑥 (𝑘) − 2𝑥

𝑇
(𝑘) ̆𝐹
2
𝑓 (𝑥 (𝑘))

+ 𝑓
𝑇
(𝑥 (𝑘)) 𝑓 (𝑥 (𝑘)) ≤ 0,

𝑥
𝑇
(𝑘) ̆𝐺
1
𝑥 (𝑘) − 2𝑥

𝑇
(𝑘) ̆𝐺
2
𝑔 (𝑥 (𝑘))

+ 𝑔
𝑇
(𝑥 (𝑘)) 𝑔 (𝑥 (𝑘)) ≤ 0,

𝑥
𝑇
(𝑘)𝐻
1
𝑥 (𝑘) − 2𝑥

𝑇
(𝑘)𝐻
2
ℎ (𝑥 (𝑘))

+ ℎ
𝑇
(𝑥 (𝑘)) ℎ (𝑥 (𝑘)) ≤ 0.

(28)
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From (26)–(28), it follows readily that

E [𝑉 (x
𝑘+1

, 𝑘 + 1, 𝑟 (𝑘 + 1)) | x
𝑘
, 𝑟 (𝑘) = 𝑖] − 𝑉 (x

𝑘
, 𝑘, 𝑖)

≤ 𝜉
𝑇
(xk, 𝑖)A

𝑇

𝐾
(𝑖) 𝑃
𝑖
A
𝐾
(𝑖) 𝜉 (xk, 𝑖) − 𝑥

𝑇
(𝑘) 𝑃
𝑖
𝑥 (𝑘)

+ 𝛼
1
𝑔
𝑇
(𝑥 (𝑘)) 𝑄

1
𝑔 (𝑥 (𝑘))

− 𝑔
𝑇
(𝑥 (𝑘 − 𝜏

1,𝑖
)) 𝑄
1
𝑔 (𝑥 (𝑘 − 𝜏

1,𝑖
))

+ 𝛼
2
ℎ
𝑇
(𝑥 (𝑘)) 𝑄

2
ℎ (𝑥 (𝑘))

−
1

𝜎
𝜏2,𝑖

+∞

∑

𝑚=𝜏2,𝑖

𝜇
𝑚
ℎ
𝑇
(𝑥 (𝑘 − 𝑚))𝑄

2

+∞

∑

𝑚=𝜏2,𝑖

𝜇
𝑚
ℎ
𝑇
(𝑥 (𝑘 − 𝑚))

− (𝑥
𝑇
(𝑘) ̆𝐹
1
𝑥 (𝑘) − 2𝑥

𝑇
(𝑘) ̆𝐹
2
𝑓 (𝑥 (𝑘))

+𝑓
𝑇
(𝑥 (𝑘)) 𝑓 (𝑥 (𝑘)))

− (𝑥
𝑇
(𝑘) ̆𝐺
1
𝑥 (𝑘) − 2𝑥

𝑇
(𝑘) ̆𝐺
2
𝑔 (𝑥 (𝑘))

+𝑔
𝑇
(𝑥 (𝑘)) 𝑔 (𝑥 (𝑘)))

− (𝑥
𝑇
(𝑘)𝐻
1
𝑥 (𝑘) − 2𝑥

𝑇
(𝑘)𝐻
2
ℎ (𝑥 (𝑘))

+ ℎ
𝑇
(𝑥 (𝑘)) ℎ (𝑥 (𝑘)))

= 𝜉
𝑇
(xk, 𝑖) [Φ (𝑖) +A

𝑇

𝐾
(𝑖) 𝑃
𝑖
A
𝐾
(𝑖)] 𝜉 (xk, 𝑖)

− 𝑥
𝑇
(𝑘) [𝑅

1
(𝑖) + 𝐾

𝑇
(𝑖) 𝑅
2
𝐾 (𝑖)] 𝑥 (𝑘) ,

(29)

which, together with (21), implies

E [𝑉 (x
𝑘+1

, 𝑘 + 1, 𝑟 (𝑘 + 1))] − E [𝑉 (x
𝑘
, 𝑘, 𝑟 (𝑘))]

≤ −E [𝑥
𝑇
(𝑘) (𝑅

1
(𝑟 (𝑘)) + 𝐾

𝑇
(𝑟 (𝑘)) 𝑅

2
𝐾 (𝑟 (𝑘))) 𝑥 (𝑘)] .

(30)

Therefore,

E [𝑉 (x
𝑘+1

, 𝑘 + 1, 𝑟 (𝑘 + 1))] − E [𝑉 (x
𝑘
, 𝑘, 𝑟 (𝑘))]

≤ −𝜆
0
E|𝑥 (𝑘)|

2
,

(31)

where 𝜆
0
= min

𝑖∈N{𝜆min(𝑅1(𝑖))}.
Let 𝑠 be an arbitrary positive integer; then it can be

inferred from (31) that

E [𝑉 (x
𝑠+1

, 𝑠 + 1, 𝑟 (𝑠 + 1))] − E [𝑉 (x
0
, 0, 𝑟 (0))]

≤ −𝜆
0

𝑠

∑

𝑘=0

E [|𝑥 (𝑘)|
2
] ,

(32)

or

E [𝑉 (x
𝑠+1

, 𝑠 + 1, 𝑟 (𝑠 + 1))] − 𝑉 (x
0
, 0, 𝑟 (0))

≤ −𝜆
0

𝑠

∑

𝑘=0

E [|𝑥 (𝑘)|
2
] ,

(33)

which results in
𝑠

∑

𝑘=0

E [|𝑥 (𝑘)|
2
] ≤

1

𝜆
0

𝑉 (x
0
, 0, 𝑟 (0)) . (34)

It can now be concluded that the series ∑
+∞

𝑘=0
E[|𝑥(𝑘)|2] is

convergent, and therefore

lim
𝑘→+∞

E [|𝑥 (𝑘)|
2
] = 0. (35)

Therefore, the closed-loop system (5a) and (5b) is asymp-
totically stable in mean square.

On the other hand, for any positive integer 𝑠, from (30)
we have

E[

𝑠

∑

𝑘=0

(𝑥
𝑇
(𝑘) 𝑅
1
(𝑟 (𝑘)) 𝑥 (𝑘) + 𝑢

𝑇
(𝑘) 𝑅
2
(𝑟 (𝑘)) 𝑢 (𝑘))]

= E[

𝑠

∑

𝑘=0

𝑥
𝑇
(𝑘) (𝑅

1
(𝑟 (𝑘)) + 𝐾

𝑇
(𝑟 (𝑘)) 𝑅

2
(𝑟 (𝑘))𝐾 (𝑟 (𝑘)))

× 𝑥 (𝑘) + 𝑉 (x
𝑘+1

, 𝑘 + 1, 𝑟 (𝑘 + 1)) − 𝑉 (x
𝑘
, 𝑘, 𝑟 (𝑘)) ]

− E [𝑉 (x
𝑠+1

, 𝑠 + 1, 𝑟 (𝑠 + 1))] + 𝑉 (x
0
, 0, 𝑟 (0))

≤ 𝑉 (𝑥
0
, 0, 𝑟 (0)) .

(36)

Letting 𝑠 → +∞, we have

𝐽 ≤ 𝑉 (𝑥
0
, 0, 𝑟
0
) ; (37)

namely, (16) holds. This completes the proof of the theorem.

Theorem 10 provides a sufficient condition to determine
if a given controller is a guaranteed cost controller. Next,
we turn to the design problem of guaranteed cost controller
for the system (2a) and (2b). For this, we have the following
results.

Theorem 11. Consider the system (2a) and (2b). If there exist
a set of positive definite matrices 𝑋

𝑖
(𝑖 ∈ N), a set of matrices

𝑌
𝑖
(𝑖 ∈ N), and two positive definite matrices 𝑄

1
and 𝑄

2

such that the LMIs (39) hold, then 𝑢(𝑘) = 𝐾(𝑟(𝑘))𝑥(𝑘) with
𝐾(𝑖) = 𝑌

𝑖
𝑋
−1

𝑖
is a guaranteed cost controller for the system

(2a) and (2b), and the cost function satisfies the following
bound:
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𝐽 ≤ 𝛾 = 𝑥
𝑇
(0)𝑋
−1

𝑟0
𝑥 (0) +

−1

∑

V=−𝜏1,𝑟0

𝑔
𝑇
(𝑥 (V)) 𝑄

1
𝑔 (𝑥 (V)) + (1 − 𝜋)

𝜏1−1

∑

𝜄=𝜏
1

−1

∑

V=−𝜄

𝑔
𝑇
(𝑥 (V)) 𝑄

1
𝑔 (𝑥 (V))

+

+∞

∑

𝜄=𝜏2,𝑟0

𝜇
𝜄

−1

∑

V=−𝜄

ℎ
𝑇
(𝑥 (V)) 𝑄

2
ℎ (𝑥 (V)) + (1 − 𝜋) 𝜇

𝜏2−1

∑

𝑠=𝜏
2

𝑠−1

∑

𝜄=1

−1

∑

V=−𝜄

ℎ
𝑇
(𝑥 (V)) 𝑄

2
ℎ (𝑥 (V)) ;

(38)

Φ (𝑖)
Δ

=

[
[
[
[
[
[
[
[

[

−𝑋
𝑖

𝑋
𝑖
Θ 𝑋

𝑖
𝑋
𝑖

𝑌
𝑇

𝑖
(𝐴 (𝑖)𝑋

𝑖
+ 𝐸 (𝑖) 𝑌

𝑖
)
𝑇

𝑊
𝑖

Θ
𝑇
𝑋
𝑖

Υ (𝑖) 0 0 0 Σ
𝑇
(𝑖)𝑊
𝑖

𝑋
𝑖

0 Ξ
−1

0 0 0

𝑋
𝑖

0 0 −𝑅
−1

1
(𝑖) 0 0

𝑌
𝑖

0 0 0 −𝑅
−1

2
(𝑖) 0

𝑊
𝑇

𝑖
(𝐴 (𝑖)𝑋

𝑖
+ 𝐸 (𝑖) 𝑌

𝑖
) 𝑊
𝑇

𝑖
Σ (𝑖) 0 0 0 −X

]
]
]
]
]
]
]
]

]

< 0, (39)

where 𝑊
𝑖

= [√𝜋
𝑖1
𝐼, √𝜋

𝑖2
𝐼, . . . , √𝜋

𝑖𝑛0
𝐼], X =

diag{𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛0
}, and Θ, Υ(𝑖), Ξ and Σ(𝑖) are defined as

in Theorem 10.

Proof. Let 𝑃
𝑖
= 𝑋
−1

𝑖
, 𝑌
𝑖
=𝐾(𝑖)𝑃

−1

𝑖
, and 𝜗(𝑖)=diag{𝑃

𝑖
,

6

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝐼, . . . , 𝐼}.

Then, inequality (39) is equivalent to

𝜗 (𝑖) Φ (𝑖) 𝜗 (𝑖) < 0; (40)

namely,

[
[
[
[
[
[
[
[
[

[

−𝑃
𝑖

Θ 𝐼 𝐼 𝐾
𝑇
(𝑖) 𝐴

𝑇

𝐾
(𝑖)𝑊
𝑖

Θ
𝑇

Υ (𝑖) 0 0 0 Σ
𝑇
(𝑖)𝑊
𝑖

𝐼 0 Ξ
−1

0 0 0

𝐼 0 0 −𝑅
−1

1
(𝑖) 0 0

𝐾 (𝑖) 0 0 0 −𝑅
−1

2
(𝑖) 0

𝑊
𝑇

𝑖
𝐴
𝐾
(𝑖) 𝑊

𝑇

𝑖
Σ (𝑖) 0 0 0 −P−1

]
]
]
]
]
]
]
]
]

]

< 0,

(41)

whereP = diag{𝑃
1
, 𝑃
2
, ..., 𝑃
𝑛0
}.

From Lemma 9, it follows readily that (41) is equivalent to
(21) and is therefore equivalent to (17).

By Theorem 10, 𝑢(𝑘) = 𝐾(𝑟(𝑘))𝑥(𝑘) with 𝐾(𝑖) = 𝑌
𝑖
𝑋
−1

𝑖
is

a guaranteed cost controller for the system (2a) and (2b), and
the cost function satisfies the bound as shown in (38).

Remark 12. In Theorem 11, the bound 𝛾 of the cost function
depends on the parameters𝑋

𝑖
, 𝑄
1
, and𝑄

2
in addition to the

initial value of the state andmode of the system. Next, we will
design an optimal state-feedback guaranteed cost controller
𝑢(𝑘) = 𝐾(𝑟(𝑘))𝑥(𝑘), which minimizes the bound of the
guaranteed cost function.

Theorem 13. Consider the system (2a) and (2b) with cost
function (4). If the following optimal problem of a linear
objective

min
𝛽0 ,𝑋𝑖 ,𝑌𝑖

𝑄1 ,𝑄2 ,𝑀𝑖

(𝛽
0
+ Tr (𝑀

1
+𝑀
2
+𝑀
3
+𝑀
4
))

(42)

subject to LMI constraints

(i) 𝐿𝑀𝐼 (39)

(ii) [
−𝛽
0

𝑥
𝑇
(0)

𝑥 (0) −𝑋
𝑟0

] < 0,

(iii) Ω
𝑘
< 0, (𝑘 = 1, 2, 3, 4)

(43)

has a set of solutions 𝛽
0
, 𝑋
𝑖
(𝑖 ∈ N), 𝑌

𝑖
(𝑖 ∈ N), 𝑄

1
, 𝑄
2
,

𝑀
𝑘
(𝑘 = 1, 2, 3, 4), then 𝑢(𝑘) = 𝐾(𝑟(𝑘))𝑥(𝑘) with 𝐾(𝑖) =

𝑌
𝑖
𝑋
−1

𝑖
is an optimal guaranteed cost controller for the system

(2a) and (2b), which minimizes the guaranteed cost (38).

Here,

Ω
1
= [

−𝑀
1

𝑁
𝑇

1
𝑄
1

𝑄
1
𝑁
1

−𝑄
1

] , Ω
2
= [

−𝑀
2

𝑁
𝑇

2
𝑄
1

𝑄
1
𝑁
2

−𝑄
1

] ,

Ω
3
= [

−𝑀
3

𝑁
𝑇

3
𝑄
2

𝑄
2
𝑁
3

−𝑄
2

] , Ω
4
= [

−𝑀
4

𝑁
𝑇

4
𝑄
2

𝑄
2
𝑁
4

−𝑄
2

] ,

(44)

where𝑁
𝑘
(𝑘 = 1, 2, 3, 4) satisfy

𝑁
1
𝑁
𝑇

1
=

−1

∑

V=−𝜏1,𝑟0

𝑔 (𝑥 (V)) 𝑔𝑇 (𝑥 (V)) ,

𝑁
2
𝑁
𝑇

2
= (1 − 𝜋)

𝜏1−1

∑

𝜄=𝜏
1

−1

∑

V=−𝜄

𝑔 (𝑥 (V)) 𝑔𝑇 (𝑥 (V)) ,

𝑁
3
𝑁
𝑇

3
=

+∞

∑

𝜄=𝜏2,𝑟0

𝜇
𝜄

−1

∑

V=−𝜄

ℎ (𝑥 (V)) ℎ𝑇 (𝑥 (V)) ,

𝑁
4
𝑁
𝑇

4
= (1 − 𝜋) 𝜇

𝜏2−1

∑

𝑠=𝜏
2

𝑠−1

∑

𝜄=1

−1

∑

V=−𝜄

ℎ (𝑥 (V)) ℎ𝑇 (𝑥 (V)) .

(45)

Proof. According to Theorem 11, 𝑢(𝑘) = 𝐾(𝑟(𝑘))𝑥(𝑘) with
𝐾(𝑖) = 𝑌

𝑖
𝑋
−1

𝑖
is a guaranteed cost controller for the system

(2a) and (2b) if LMI (39) has a set of solutions𝑋
𝑖
, 𝑌
𝑖
,𝑄
1
, and

𝑄
2
.



Abstract and Applied Analysis 9

0 10 20 30 40 50 60 70 80 90 100

0

1

2

3

4

5

6

7

8

−1

x
(k
)

×1023

k

x1(k)

x2(k)

(a) The state evolution of the unforced system
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(b) The state evolution of the closed-loop system

Figure 1: The comparison of state trajectories of the unforced and the controlled systems.

On the other hand, by Lemma 9, the inequality in (ii) is
equivalent to 𝑥

𝑇
(0)𝑋
−1

𝑟0
𝑥(0) < 𝛽

0
. Notice that Ω

1
< 0 is

equivalent to

𝑁
𝑇

1
𝑄
1
𝑁
1
< 𝑀
1
, (46)

−1

∑

V=−𝜏1,𝑟0

𝑔
𝑇
(𝑥 (V)) 𝑄

1
𝑔 (𝑥 (V))

=

−1

∑

V=−𝜏1,𝑟0

Tr (𝑔𝑇 (𝑥 (V)) 𝑄
1
𝑔 (𝑥 (V)))

=

−1

∑

V=−𝜏1,𝑟0

Tr (𝑔 (𝑥 (V)) 𝑔𝑇 (𝑥 (V)) 𝑄
1
)

= Tr(
−1

∑

V=−𝜏1,𝑟0

𝑔 (𝑥 (V)) 𝑔𝑇 (𝑥 (V)) 𝑄
1
)

= Tr (𝑁
1
𝑁
𝑇

1
𝑄
1
)

= Tr (𝑁𝑇
1
𝑄
1
𝑁
1
) (Thanks to (46))

< Tr (𝑀
1
) .

(47)

Similarly, fromΩ
𝑘
< 0 (𝑘 = 2, 3, 4) it follows that

(1 − 𝜋)

𝜏1−1

∑

𝜄=𝜏
1

−1

∑

V=−𝜄

𝑔 (𝑥 (V)) 𝑔𝑇 (𝑥 (V)) < Tr (𝑀
2
) ,

+∞

∑

𝜄=𝜏2,𝑟0

𝜇
𝜄

−1

∑

V=−𝜄

ℎ (𝑥 (V)) ℎ𝑇 (𝑥 (V)) ≤ Tr (𝑀
3
) ,

(1 − 𝜋) 𝜇

𝜏2−1

∑

𝑠=𝜏
2

𝑠−1

∑

𝜄=1

−1

∑

V=−𝜄

ℎ (𝑥 (V)) ℎ𝑇 (𝑥 (V)) ≤ Tr (𝑀
4
) .

(48)

Accordingly, it follows that 𝛾 < 𝜆
0
+Tr(𝑀

1
+𝑀
2
+𝑀
3
+𝑀
4
),

where 𝛾 is defined in (38). Since the optimal problem (42) has
a set of solutions, the minimization of the guaranteed cost for
the system (2a) and (2b) follows from the minimization of
𝜆
0
+ Tr(𝑀

1
+ 𝑀
2
+ 𝑀
3
+ 𝑀
4
). The proof of this theorem is

completed.

4. A Numerical Example

In this section, an example is presented to demonstrate the
effectiveness of our main results.

Example 1. For simplicity, consider a two-dimensional sys-
tem (2a) and (2b) with probability transition matrix Π =

[
0.6 0.3 0.3

0.1 0.6 0.3

0.1 0.1 0.8

], and the following matrix parameters:

𝐴 (1) = [
1.2 0.2

0.2 0.2
] , 𝐵 (1) = [

0.3 0.3

0.2 −0.2
] ,

𝐶 (1) = [
−0.2 0.3

0.2 0.3
] , 𝐷 (1) = [

0.2 −0.2

0.2 0.2
] ,

𝐸 (1) = [
1

0
] ,

𝐴 (2) = [
1.5 0.3

0.1 0.2
] , 𝐵 (2) = [

0.3 0.2

0.3 0.2
] ,

𝐶 (2) = [
0.4 0.3

0.2 0.2
] , 𝐷 (2) = [

0.3 0.2

0.2 0.3
] ,
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𝐸 (2) = [
1.5

0
] ,

𝐴 (3) = [
2 0.1

0.2 0.3
] , 𝐵 (3) = [

0.2 0.2

0.3 0.2
] ,

𝐶 (3) = [
0.2 0.3

0 0.2
] , 𝐷 (3) = [

0.2 0

0.2 0.3
] ,

𝐸 (3) = [
1.2

0
] .

(49)

In addition, the parameters for time delays are listed as 𝜏
1,1

=

6, 𝜏
1,2

= 8, 𝜏
1,3

= 9, 𝜏
2,1

= 9, 𝜏
2,2

= 8, 𝜏
2,3

= 10, and the initial
mode of Markov chain is 𝑟

0
= 1, and the initial value of the

system is 𝑥(𝑚) = (1.6969, −0.4770)
𝑇 for𝑚 ∈ (−∞, 0], which

is stochastically produced by Matlab.
Also, the nonlinear functions are taken as

𝑓 (𝑥) = 𝑔 (𝑥) = ℎ (𝑥)

= (0.1𝑥
1
+ 0.2𝑥

2
+ 0.4𝑥

1
sin𝑥
2
, 0.3𝑥
1

+ 0.1𝑥
2
+ 0.4𝑥

2
cos𝑥
1
)
𝑇

.

(50)

It can also be seen from (50) that

̆𝐹
1
= [

−0.0600 0.0500

0.0500 −0.1100
] , ̆𝐹

2
= [

0.1000 0.3000

0.2000 0.1000
] .

(51)

With the previous parameters, based on Theorem 13 and by
using Matlab LMI Toolbox, we solve the linear objective
minimization problem (42) and obtain the feasible solutions
for 𝑋

𝑖
, 𝑌
1
, 𝑄
1
, 𝑄
2
, 𝛽
0
, and 𝑀

𝑖
(the values are omitted

for space saving). Here, we just give the corresponding
optimal control gain matrices 𝐾(1) = −[1.2941, 0.3499],
𝐾(2) = −[1.1552, 0.3687], 𝐾(3) = −[1.7817, 0.2616], and the
minimal upper bound 𝛾 = 5.3853 of the guaranteed cost.
Moreover, the dynamical comparison between the unforced
system and closed-loop system is shown in Figure 1.

5. Conclusions

In this paper, we have dealt with the guaranteed cost control
problem for a class of nonlinear discrete-time systems with
Markovian jumping parameters and mode-dependent mixed
time delays. The sufficient conditions for the existence of
guaranteed cost controllers are established for the system
under consideration and related cost function. Furthermore,
an LMI-based approach to design the optimal guaranteed
cost controller has been formulated to minimize the guar-
anteed cost of the closed-loop system. A numerical example
is also given to illustrate the effectiveness of the proposed
methods. It will be interesting to extend the present results
to more general cases, for example, the case where the
quantized state-feedback is used for stabilization of the
system concerned, and the casewhen the nonlinear stochastic
systems are considered with missing measurements. And it
would be one of the future research topics.
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The sufficient conditions of existence anduniqueness of the solutions for nonlinear stochastic pantograph equationswithMarkovian
switching and jumps are given. It is proved that Euler-Maruyama scheme for nonlinear stochastic pantograph equations with
Markovian switching and Brownianmotion is of convergence with strong order 1/2. For nonlinear stochastic pantograph equations
withMarkovian switching and pure jumps, it is best to use themean-square convergence, and the order ofmean-square convergence
is close to 1/2.

1. Introduction

Stochastic modelling has been used with great success in a
variety of application areas, including control theory, biology,
epidemiology, mechanic, and neural networks, economics,
andfinance [1–5]. In general, stochastic different equations do
not have explicit solutions. Therefore, approximate schemes
for stochastic differential equations with Markovian switch-
ing and Poisson jumps have been investigated by many
authors [3, 6, 7]. The convergence results of numerical
solutions of stochastic differential equations with Markovian
switching and Poisson jumps under the Lipschitz condition
and the linear growth condition are obtained by using Euler-
Maruyama scheme or semi-implicit Euler scheme. However,
recently, more and more convergence results have been
given under weaker conditions than the Lipschitz condition
and the linear growth condition. Gyöngy and Rásonyi [8]
revealed the convergence rate of Euler approximations for
stochastic differential equations whose diffusion coefficient
is not Lipschitz but only (1/2 + 𝛼)-Hölder continuous for
some 𝛼 > 0. Mao et al. [9] discussed 𝐿1 and 𝐿2-convergence
of the Euler-Maruyama scheme for stochastic differential

equations with Markovian switching under non-Lipschitz
coefficients.Wu et al. [10] proved existence of the nonnegative
and the strong convergence of the Euler-Maruyama Scheme
for the Cox-Ingersoll-Ross model with delay whose diffusion
coefficient is nonlinear and non-Lipschitz continuous. Bao
and Yuan [11] studied the convergence rate for stochastic
differential delay equations whose coefficients may be highly
nonlinear with respect to the delay variable.

So far, the research of the numerical solutions for stochas-
tic pantograph equations has just begun [12–15]. Fan et al.
[12] gave the strong convergence for stochastic pantograph
equations under the Lipschitz condition and the linear
growth condition. Ronghua et al. [14] proved that the Euler
approximation solution converges to the analytic solution in
probability under weaker conditions, but the convergence
rate has not been given.

In this paper, we will study the convergence rate for
nonlinear stochastic pantograph equations with Markovian
switching and Poisson jump under weaker conditions than
the Lipschitz condition and the linear growth condition. The
rest of the paper is organized as follows. In Section 2, we will
give the existence and uniqueness of the analytic solutions



2 Abstract and Applied Analysis

for Markovian switching and Brownian motion case and also
reveal that the convergence order of Euler-Maruyama scheme
is 1/2. In Section 3, we show that it is best to use the mean-
square convergence for Markovian switching and the pure
jump case and that the rate of mean-square convergence is
close to 1/2.

2. Convergence Rate for Markovian Switching
and Brownian Motion Case

Let (Ω,F,P) be a complete probability space with a fil-
tration {F

𝑡
}
𝑡≥0

satisfying the usual conditions. Let 𝑊(𝑡)

be an 𝑚-dimensional Brownian motion defined on the
probability space adapted to the filtration. For integer 𝑛 >

0, let (R𝑛
, ⟨⋅, ⋅⟩, | ⋅ |) be the Euclidean space and ‖𝐴‖ :=

√ trace (𝐴∗𝐴) the Hilbert-Schmidt norm for a matrix 𝐴,
where 𝐴∗ is its transpose. Throughout this paper, 𝐶 > 0

denotes a generic constant whose values may change from
lines to lines.

Let 𝑟(𝑡), 𝑡 ≥ 0 be a right-continuous Markov chain on
the probability space taking values in a finite state space 𝑆 =
{1, 2, . . . , 𝑁} with the generator Γ = (𝛾

𝑖𝑗
)
𝑁×𝑁

given by

P {𝑟 (𝑡 + 𝛿) = 𝑗 | 𝑟 (𝑡) = 𝑖} = {
𝛾
𝑖𝑗
𝛿 + 𝑜 (𝛿) if 𝑖 ̸= 𝑗,

1 + 𝑟
𝑖𝑗
𝛿 + 𝑜 (𝛿) if 𝑖 = 𝑗,

(1)

where 𝛿 > 0. Here 𝛾
𝑖𝑗
> 0 is the transition rate from 𝑖 to 𝑗 if

𝑖 ̸= 𝑗 while

𝛾
𝑖𝑖
= −∑

𝑗 ̸= 𝑖

𝛾
𝑖𝑗
. (2)

We assume that the Markov chain 𝑟(⋅) is independent of the
Brownian motion 𝑊(⋅). It is well known that almost every
sample path of 𝑟(⋅) is a right continuous step function with
finite number of sample jumps in any finite subinterval of
R
+
:= [0, +∞).
For fixed 𝑇 > 0, we consider the stochastic pantograph

equation with Markovian switching of the form

d𝑋 (𝑡) = 𝑏 (𝑋 (𝑡) , 𝑋 (𝑞𝑡) , 𝑟 (𝑡)) d𝑡

+ 𝜎 (𝑋 (𝑡) , 𝑋 (𝑞𝑡) , 𝑟 (𝑡)) d𝑊(𝑡) , 𝑡 ∈ [𝑡
0
, 𝑇] ,

(3)

with initial data 𝑋(𝜃) = 𝜉(𝜃), 𝑟(𝜃) = 𝑟
0
, 𝜃 ∈ [𝑞𝑡

0
, 𝑡
0
], 0 <

𝑡
0
, 0 < 𝑞 < 1. 𝑟(𝑡) is a Markov chain. On the time interval

[𝑡
0
, 𝑇], let 𝑞 < 𝜖 < min{1, ((𝑇 + 1)/𝑇)𝑞}, and we define the

partition

0 < 𝑡
0
<
𝑡
0

𝑞
𝜖 <

𝑡
0

𝑞2
𝜖
2
<
𝑡
0

𝑞3
𝜖
3

< ⋅ ⋅ ⋅ <
𝑡
0

𝑞𝑛−1
𝜖
𝑛−1

<
𝑡
0

𝑞𝑛
𝜖
𝑛
, 𝑛 = [log

𝜖/𝑞

𝑇

𝑡
0

] + 1,

0 < Δ
𝑖
=
𝑡
0

𝑞𝑖
𝜖
𝑖
−

𝑡
0

𝑞𝑖−1
𝜖
𝑖−1

=
𝑡
0

𝑞𝑖
𝜖
𝑖
(1 −

𝑞

𝜖
)

<
𝜖

𝑞
𝑇(1 −

𝑞

𝜖
) = (

𝜖

𝑞
− 1)𝑇 < 1.

(4)

The integral version of (3) is given by the following:

𝑋 (𝑡) = 𝜉 (𝜃) + ∫

𝑡

𝑡0

𝑏 (𝑋 (𝑠) , 𝑋 (𝑞𝑠) , 𝑟 (𝑠)) d𝑠

+ ∫

𝑡

𝑡0

𝜎 (𝑋 (𝑠) , 𝑋 (𝑞𝑠) , 𝑟 (𝑠)) d𝑊(𝑠) .

(5)

To guarantee the existence and uniqueness of the solu-
tions of (3) we introduce the following conditions:

(A1) 𝑏 : R𝑛
× R𝑛

× 𝑆 → R𝑛 and there exists 𝐿
1
> 0 such

that
𝑏 (𝑥1, 𝑦1, 𝑗) − 𝑏 (𝑥2, 𝑦2, 𝑗)



≤ 𝐿
1

𝑥1 − 𝑥2
 + 𝑉1 (𝑦1, 𝑦2)

𝑦1 − 𝑦2


(6)

for 𝑥
𝑖
, 𝑦

𝑖
∈ R𝑛, 𝑖 = 1, 2, 𝑗 ∈ 𝑆;

(A2) 𝜎 : R𝑛
×R𝑛

×𝑆 → R𝑛×𝑚 and there exists 𝐿
2
> 0 such

that
𝜎 (𝑥1, 𝑦1, 𝑗) − 𝜎 (𝑥2, 𝑦2, 𝑗)



≤ 𝐿
2

𝑥1 − 𝑥2
 + 𝑉2 (𝑦1, 𝑦2)

𝑦1 − 𝑦2


(7)

for 𝑥
𝑖
, 𝑦

𝑖
∈ R𝑛, 𝑖 = 1, 2, 𝑗 ∈ 𝑆,

where 𝑉
𝑖
: R𝑛

×R𝑛
→ R

+
such that

𝑉
𝑖
(𝑥, 𝑦) ≤ 𝐾

𝑖
(1 + |𝑥|

𝑞𝑖 +
𝑦


𝑞𝑖
) , 𝑖 = 1, 2 (8)

for some 𝐾
𝑖
> 0, 𝑞

𝑖
≥ 1 and arbitrary 𝑥, 𝑦 ∈ R𝑛.

Remark 1. From (A1)-(A2), we know that the coefficients of
(3) are much weaker than those of the Lipschitz condition
and the linear growth condition. In many examples, 𝑏 and
𝜎 do not satisfy the Lipschitz condition or the linear growth
condition but can be covered by (A1)-(A2).

Lemma 2. Assume that (A1) and (A2) hold. Then, for any
initial data 𝜉 ∈ 𝐶𝑏F0([𝑞𝑡0, 𝑡0];R

𝑛
) and 𝑟(0) = 𝑟

0
∈ 𝑆, 𝑋(𝑡) is a

unique global strong solution of (3). Moreover, for any 𝑝 ≥ 2

there exists 𝐶 > 0 such that

E( sup
𝑡0≤𝑡≤𝑇

|𝑋 (𝑡)|
𝑝
) ≤ 𝐶. (9)

Proof. From (A1) and (A2), 𝑏 and 𝜎 are locally Lipschitzian.
So, (3) has a unique local solution [3]. In order to verify that
(3) has a unique global solution on time interval [𝑡

0
, 𝑇], it is

sufficient to show that

E( sup
𝑡0≤𝑡≤𝑇

|𝑋 (𝑡)|
𝑝
) ≤ 𝐶, 𝑝 ≥ 2. (10)

From (A1), (A2), and (8), we can obtain
𝑏 (𝑥, 𝑦, 𝑖)

 ≤ 𝐶 (1 + |𝑥| +
𝑦
 +

𝑦


𝑞1+1

) , 𝑥, 𝑦 ∈ R
𝑛
, (11)

𝜎 (𝑥, 𝑦, 𝑖)
 ≤ 𝐶 (1 + |𝑥| +

𝑦
 +

𝑦


𝑞2+1

) , 𝑥, 𝑦 ∈ R
𝑛
.

(12)
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Substituting (11) and (12) into (5) and by the Hölder in-
equality and the Burkhold-Davis-Gundy inequality, we have
that for any 𝑝 ≥ 2 and 𝑡 ∈ [𝑡

0
, 𝑇]

E( sup
𝑡0≤𝑠≤𝑡

|𝑋 (𝑠)|
𝑝
)

≤3
𝑝−1
{



𝜉 (𝜃)



𝑝

+ E( sup
𝑡0≤𝑠≤𝑡



∫

𝑠

𝑡0

𝑏 (𝑋 (𝛼) , 𝑋 (𝑞𝛼) , 𝑟 (𝛼)) d𝛼


𝑝

)

+E(sup
𝑡0≤𝑠≤𝑡



∫

𝑠

𝑡0

𝜎 (𝑋 (𝛼) , 𝑋 (𝑞𝛼) , 𝑟 (𝛼)) d𝑊(𝛼)



𝑝

)}

≤ 𝐶{1 + E∫
𝑡

𝑡0

(
𝑏 (𝑋 (𝑠) , 𝑋 (𝑞𝑠) , 𝑟 (𝑠))



𝑝

+
𝜎 (𝑋 (𝑠) , 𝑋 (𝑞𝑠) , 𝑟 (𝑠))



𝑝

) d𝑠}

≤ 𝐶{1 + E∫
𝑡

𝑡0

|𝑋 (𝑠)|
𝑝d𝑠

+E∫
𝑡

𝑡0

(
𝑋 (𝑞𝑠)



𝑝(𝑞1+1)

+
𝑋 (𝑞𝑠)



𝑝(𝑞2+1)

) d𝑠} .

(13)

Let 𝛽 := (𝑞
1
+ 1) ∨ (𝑞

2
+ 1); then

E( sup
𝑡0≤𝑠≤𝑡

|𝑋 (𝑠)|
𝑝
)

≤ 𝐶{1 + E∫
𝑡

𝑡0

|𝑋 (𝑠)|
𝑝d𝑠 + E∫

𝑡

𝑡0

𝑋 (𝑞𝑠)


𝑝𝛽d𝑠} .

(14)

By virtue of the Gronwall inequality, we get

E( sup
𝑡0≤𝑠≤𝑡

|𝑋 (𝑠)|
𝑝
) ≤ 𝐶{1 + E∫

𝑡

𝑡0

𝑋 (𝑞𝑠)


𝑝𝛽d𝑠} . (15)

Let

𝑝
𝑖
:= ([log

𝜖/𝑞

𝑇

𝑡
0

] + 2 − 𝑖) 𝑝𝛽
[log
𝜖/𝑞
(𝑇/𝑡0)]+1−𝑖,

𝑖 = 1, 2, . . . , [log
𝜖/𝑞

𝑇

𝑡
0

] + 1,

(16)

where [𝑎] denotes the integer part of real number 𝑎; thus, for
𝛽 ≥ 1 and 𝑝 ≥ 2, we have

𝑝
𝑖+1
𝛽 < 𝑝

𝑖
, 𝑝

[log
𝜖/𝑞
(𝑇/𝑡0)]+1

= 𝑝,

𝑖 = 1, 2, . . . , [log
𝜖/𝑞

𝑇

𝑡
0

] .

(17)

Together with 𝜉 ∈ 𝐶𝑏F0([𝑞𝑡0, 𝑡0];R
𝑛
) and 𝜖 < 1, we obtain

that

E( sup
𝑡0≤𝑠≤(𝑡0/𝑞)𝜖

|𝑋 (𝑠)|
𝑝1)

≤ 𝐶{1 + E∫
(𝑡0/𝑞)𝜖

𝑡0

𝑋 (𝑞𝑠)


𝑝1𝛽d𝑠}

≤ 𝐶{1 + E∫
𝑡0

𝑞𝑡0

|𝑋 (𝑠)|
𝑝1𝛽d𝑠}

≤ 𝐶.

(18)

In the similar way, combining (15) with the Hölder
inequality further leads to

E( sup
𝑡0≤𝑠≤(𝑡0/𝑞

2
)𝜖
2

|𝑋 (𝑠)|
𝑝2)

≤ 𝐶{1 + E∫
(𝑡0/𝑞
2
)𝜖
2

𝑡0

𝑋 (𝑞𝑠)


𝑝2𝛽d𝑠}

≤ 𝐶{1 + ∫

(𝑡0/𝑞)𝜖

𝑡0

(E|𝑋 (𝑠)|
𝑝1)

𝑝2𝛽/𝑝1 d𝑠}

≤ 𝐶.

(19)

Repeating the previous procedures we then get (9). So the
existence and uniqueness have been proved.

In the following, we define the Euler-Maruyama based
computational method.Themethodmakes use of the follow-
ing lemma.

Lemma 3. Given Δ > 0, then {𝑟(𝑘Δ), 𝑘 = 0, 1, 2, . . .} is a
discrete Markov chain with the one-step transition probability
matrix

𝑃 (Δ) = (𝑃
𝑖,𝑗
(Δ))

𝑁×𝑁
= 𝑒

ΔΓ
. (20)

Given a fixed step size Δ > 0 and the one-step transition
probability matrix 𝑃(Δ) in (20), the discrete Markov chain
{𝑟(𝑘Δ), 𝑘 = 0, 1, 2, . . .} can be simulated as follows: let 𝑟(0) = 𝑖

0
,

and compute a pseudorandom number 𝜉
1
from the uniform

(0, 1) distribution.

Define

𝑟 (Δ) =

{{{{{{{{{{

{{{{{{{{{{

{

𝑖, 𝑖 ∈ 𝑆 − {𝑁} such that
𝑖−1

∑

𝑗=1

𝑃
𝑟(0),𝑗

(Δ) ≤ 𝜉
1

<

𝑖

∑

𝑗=1

𝑃
𝑟(0),𝑗

(Δ) ,

𝑁,

𝑁−1

∑

𝑗=1

𝑃
𝑟(0),𝑗

(Δ) ≤ 𝜉
1
,

(21)
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where we set ∑0

𝑗=1
𝑃
𝑟(0),𝑗

(Δ) = 0 as usual. Having computed
𝑟(0), 𝑟(Δ), . . . , 𝑟(𝑘Δ), we can compute 𝑟((𝑘 + 1)Δ) by drawing
a uniform (0, 1) pseudo-random number 𝜉

𝑘+1
and setting

𝑟 ((𝑘 + 1) Δ) =

{{{{{{{{{{

{{{{{{{{{{

{

𝑖, 𝑖 ∈ 𝑆 − {𝑁} such that
𝑖−1

∑

𝑗=1

𝑃
𝑟(𝑘Δ),𝑗

(Δ)

≤ 𝜉
𝑘+1

<

𝑖

∑

𝑗=1

𝑃
𝑟(𝑘Δ),𝑗

(Δ) ,

𝑁,

𝑁−1

∑

𝑗=1

𝑃
𝑟(𝑘Δ),𝑗

(Δ) ≤ 𝜉
𝑘+1
.

(22)

The procedure can be carried out independently to obtain
more trajectories.

Define the Euler-Maruyama approximation for (3) by

d𝑌 (𝑡) = 𝑏 (𝑌 (𝑡) , 𝑌 (𝑞𝑡) , 𝑟 (𝑡)) d𝑡

+ 𝜎 (𝑌 (𝑡) , 𝑌 (𝑞𝑡) , 𝑟 (𝑡)) d𝑊(𝑡) , 𝑡 ∈ [𝑡
0
, 𝑇] ,

(23)

where 𝑌(𝑡) := 𝑌(𝑡
𝑖
), 𝑟(𝑡) := 𝑟(𝑡

𝑖
) for 𝑡 ∈ [𝑡

𝑖
, 𝑡
𝑖+1
), 𝑖 = 0,

1, . . . , [log
𝜖/𝑞
(𝑇/𝑡

0
)], which

𝑡
0
<
𝑡
0

𝑞
𝜖 = 𝑡

1
<
𝑡
0

𝑞2
𝜖
2
= 𝑡

2
< ⋅ ⋅ ⋅ <

𝑡
0

𝑞𝑛−1
𝜖
𝑛−1

= 𝑡
𝑛−1

<
𝑡
0

𝑞𝑛
𝜖
𝑛
= 𝑡

𝑛

(24)

and 𝑌(𝜃) = 𝜉(𝜃), 𝑟(𝜃) = 𝑟
0
, 𝜃 ∈ [𝑞𝑡

0
, 𝑡
0
].

By using the method of Lemma 2, we obtain

E( sup
𝑡0≤𝑡≤𝑇

|𝑌 (𝑡)|
𝑝
) ≤ 𝐶, (25)

E

𝑌 (𝑡) − 𝑌 (𝑡)



𝑝

≤ 𝐶Δ
𝑝/2
, 𝑡 ∈ [𝑡

0
, 𝑇] , (26)

where Δ = max{Δ
1
, Δ

2
, . . . , Δ

𝑛
} := (𝜖/𝑞−1)𝑇, Δ → 0, when

𝜖 → 𝑞.

Lemma 4. If (A1) and (A2) hold, then

E∫
𝑇

𝑡0


𝑏 (𝑌 (𝑠) , 𝑌 (𝑞𝑠) , 𝑟 (𝑠))

−𝑏 (𝑌 (𝑠) , 𝑌 (𝑞𝑠) , 𝑟 (𝑠))


𝑝

d𝑠 ≤ 𝐶Δ,

E∫
𝑇

𝑡0


𝜎 (𝑌 (𝑠) , 𝑌 (𝑞𝑠) , 𝑟 (𝑠))

−𝜎 (𝑌 (𝑠) , 𝑌 (𝑞𝑠) , 𝑟 (𝑠))


𝑝

d𝑠 ≤ 𝐶Δ.

(27)

Proof. Let 𝑛 = [log
𝜖/𝑞
(𝑇/𝑡

0
)] + 1, then

E∫
𝑇

𝑡0


𝑏 (𝑌 (𝑠) , 𝑌 (𝑞𝑠) , 𝑟 (𝑠))

−𝑏 (𝑌 (𝑠) , 𝑌 (𝑞𝑠) , 𝑟 (𝑠))


𝑝

d𝑠

=

𝑛−1

∑

𝑖=0

E∫
𝑡𝑖+1

𝑡𝑖


𝑏 (𝑌 (𝑠) , 𝑌 (𝑞𝑠) , 𝑟 (𝑠))

−𝑏 (𝑌 (𝑠) , 𝑌 (𝑞𝑠) , 𝑟 (𝑡
𝑖
))


𝑝

d𝑠.

(28)

By (11), we compute

E∫
𝑡𝑖+1

𝑡𝑖


𝑏 (𝑌 (𝑠) , 𝑌 (𝑞𝑠) , 𝑟 (𝑠))

−𝑏 (𝑌 (𝑠) , 𝑌 (𝑞𝑠) , 𝑟 (𝑡
𝑖
))


𝑝

d𝑠

≤ 2
𝑝−1

E∫
𝑡𝑖+1

𝑡𝑖

(

𝑏 (𝑌 (𝑠) , 𝑌 (𝑞𝑠) , 𝑟 (𝑠))



𝑝

+

𝑏 (𝑌 (𝑠) , 𝑌 (𝑞𝑠) , 𝑟 (𝑡

𝑖
))


𝑝

)

× 𝐼
{𝑟(𝑠) ̸= 𝑟(𝑡𝑖)}

d𝑠

≤ 𝐶E∫
𝑡𝑖+1

𝑡𝑖

(1 +

𝑌 (𝑠)



𝑝

+

𝑌 (𝑞𝑠)



𝑝(𝑞1+1)

) 𝐼
{𝑟(𝑠) ̸= 𝑟(𝑡𝑖)}

d𝑠

≤ 𝐶∫

𝑡𝑖+1

𝑡𝑖

E [E [ (1 +

𝑌 (𝑠)



𝑝

+

𝑌 (𝑞𝑠)



𝑝(𝑞1+1)

) 𝐼
{𝑟(𝑠) ̸= 𝑟(𝑡𝑖)}

𝑟 (𝑡𝑖)]] d𝑠

= 𝐶∫

𝑡𝑖+1

𝑡𝑖

E [E [ (1 +

𝑌 (𝑠)



𝑝

+

𝑌 (𝑞𝑠)



𝑝(𝑞1+1)

)
𝑟 (𝑡𝑖) ]

× E [𝐼
{𝑟(𝑠) ̸= 𝑟(𝑡𝑖)}

𝑟 (𝑡𝑖) ] ] d𝑠.

(29)

By the Markov property, we have

E [𝐼
{𝑟(𝑠) ̸= 𝑟(𝑡𝑘)}

| 𝑟 (𝑡
𝑘
)]

= ∑

𝑖∈𝑆

𝐼
{𝑟(𝑡𝑘)=𝑖}

𝑃 (𝑟 (𝑠) ̸= 𝑖 | 𝑟 (𝑡
𝑘
) = 𝑖)

= ∑

𝑖∈𝑆

𝐼
{𝑟(𝑡𝑘)=𝑖}

∑

𝑗 ̸= 𝑖

(𝛾
𝑖𝑗
(𝑠 − 𝑡

𝑘
) + 𝑜 (𝑠 − 𝑡

𝑘
))

≤ (max
1≤𝑖≤𝑛

(−𝛾
𝑖𝑖
) Δ + 𝑜 (Δ))∑

𝑖∈𝑆

𝐼
{𝑟(𝑡𝑘)=𝑖}

≤ 𝐶Δ.

(30)
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Substituting the above inequality into (29) yields

E∫
𝑡𝑖+1

𝑡𝑖


𝑏 (𝑌 (𝑠) , 𝑌 (𝑞𝑠) , 𝑟 (𝑠)) − 𝑏 (𝑌 (𝑠) , 𝑌 (𝑞𝑠) , 𝑟 (𝑡

𝑖
))


𝑝

d𝑠

≤ 𝐶Δ∫

𝑡𝑖+1

𝑡𝑖

[1 +

𝑌 (𝑡

𝑖
)


𝑝

+

𝑌 (𝑞𝑡

𝑖
)


𝑝(𝑞1+1)

] d𝑠

≤ 𝐶Δ.

(31)

So, (28) becomes

E∫
𝑇

𝑡0


𝑏 (𝑌 (𝑠) , 𝑌 (𝑞𝑠) , 𝑟 (𝑠)) − 𝑏 (𝑌 (𝑠) , 𝑌 (𝑞𝑠) , 𝑟 (𝑠))



𝑝

d𝑠

≤ 𝐶Δ.

(32)

Similarly, we also obtain that

E∫
𝑇

𝑡0


𝜎 (𝑌 (𝑠) , 𝑌 (𝑞𝑠) , 𝑟 (𝑠)) − 𝜎 (𝑌 (𝑠) , 𝑌 (𝑞𝑠) , 𝑟 (𝑠))



𝑝

d𝑠

≤ 𝐶Δ.

(33)

The proof is complete.

Theorem 5. Under (A1) and (A2), for any 𝑝 ≥ 2 there exits
𝐶 > 0 such that

E( sup
𝑡0≤𝑡≤𝑇

|𝑋 (𝑡) − 𝑌 (𝑡)|
𝑝
) ≤ 𝐶Δ

𝑝/2
; (34)

that is, the convergence order of Euler-Maruyama scheme (23)
is 1/2.

Proof. Let 𝛿 > 1 and 𝜀 > 0; then∫𝜀
𝜀/𝛿
(1/𝑥)d𝑥 = ln𝑥|𝜀

𝜀/𝛿
= ln 𝛿,

and there is a continuous nonnegative function 𝜓
𝛿𝜀
(𝑥)(𝑥 ≥

0), which is zero outside [𝜀/𝛿, 𝜀], such that

∫

𝜀

𝜀/𝛿

𝜓
𝛿𝜀
(𝑥) d𝑥 = 1, 𝜓

𝛿𝜀
(𝑥) ≤

2

𝑥 ln 𝛿
, 𝑥 > 0. (35)

Define

𝜙
𝛿𝜀
(𝑥) := ∫

𝑥

0

∫

𝑦

0

𝜓
𝛿𝜀
(𝑧) d𝑧d𝑦, 𝑥 > 0,

𝑉
𝛿𝜀
(𝑥) := 𝜙

𝛿𝜀
(|𝑥|) , 𝑥 ∈ R

𝑛
.

(36)

For any 𝑡 ∈ [𝑡
0
, 𝑇], let

𝑍 (𝑡) := 𝑋 (𝑡) − 𝑌 (𝑡) ,

𝑍 (𝑡) := 𝑌 (𝑡) − 𝑌 (𝑡) ,

𝑍 (𝑡) := (𝑋 (𝑡) , 𝑌 (𝑡)) ∈ R
2𝑛
.

(37)

Using the Itô formula, we have

𝑉
𝛿𝜀
(𝑍 (𝑡))

= ∫

𝑡

𝑡0

⟨(𝑉
𝛿𝜀
)
𝑥
(𝑍 (𝑠)) , 𝑏 (𝑋 (𝑠) , 𝑋 (𝑞𝑠) , 𝑟 (𝑠))

−𝑏 (𝑌 (𝑠) , 𝑌 (𝑞𝑠) , 𝑟 (𝑠))⟩ d𝑠

+
1

2
∫

𝑡

𝑡0

trace {(𝜎 (𝑋 (𝑠) , 𝑋 (𝑞𝑠) , 𝑟 (𝑠))

−𝜎 (𝑌 (𝑠) , 𝑌 (𝑞𝑠) , 𝑟 (𝑠)))
∗

× (𝑉
𝛿𝜖
)
𝑥𝑥
(𝑍 (𝑠))

× (𝜎 (𝑋 (𝑠) , 𝑋 (𝑞𝑠) , 𝑟 (𝑠))

−𝜎 (𝑌 (𝑠) , 𝑌 (𝑞𝑠) , 𝑟 (𝑠)))} d𝑠

+ ∫

𝑡

𝑡0

⟨(𝑉
𝛿𝜀
)
𝑥
(𝑍 (𝑠)) , 𝜎 (𝑋 (𝑠) , 𝑋 (𝑞𝑠) , 𝑟 (𝑠))

−𝜎 (𝑌 (𝑠) , 𝑌 (𝑞𝑠) , 𝑟 (𝑠))⟩ d𝑊(𝑠)

:= 𝐼
1
(𝑡) + 𝐼

2
(𝑡) + 𝐼

3
(𝑡) .

(38)

By virtue of condition (A1), the Hölder inequality, and
Lemma 4, we deduce that

E( sup
𝑡0≤𝑠≤𝑡

𝐼1 (𝑠)


𝑝

)

≤ (𝑡 − 𝑡
0
)
𝑝−1

E∫
𝑡

𝑡0


⟨(𝑉

𝛿𝜀
)
𝑥
(𝑍 (𝑠)) , 𝑏 (𝑋 (𝑠) , 𝑋 (𝑞𝑠) , 𝑟 (𝑠))

−𝑏 (𝑌 (𝑠) , 𝑌 (𝑞𝑠) , 𝑟 (𝑠))⟩


𝑝

d𝑠

≤ (𝑡 − 𝑡
0
)
𝑝−1

E∫
𝑡

𝑡0


𝑏 (𝑋 (𝑠) , 𝑋 (𝑞𝑠) , 𝑟 (s))

−𝑏 (𝑌 (𝑠) , 𝑌 (𝑞𝑠) , 𝑟 (𝑠))


𝑝

d𝑠

≤ 𝐶Δ
𝑝−1

∫

𝑡

𝑡0

E (

𝑏 (𝑋 (𝑠) , 𝑋 (𝑞𝑠) , 𝑟 (𝑠))

−𝑏 (𝑌 (𝑠) , 𝑌 (𝑞𝑠) , (𝑠))


𝑝

+

𝑏 (𝑌 (𝑠) , 𝑌 (𝑞𝑠) , 𝑟 (𝑠))

−𝑏 (𝑌 (𝑠) , 𝑌 (𝑞𝑠) , 𝑟 (𝑠))


𝑝

) d𝑠

≤ 𝐶Δ
𝑝−1

∫

𝑡

𝑡0

{

{

{

E|𝑍 (𝑠)|
𝑝
+ (E𝑉

2𝑝

1
(𝑍 (𝑞𝑠)))

1/2

× (E
𝑍 (𝑞𝑠)



2𝑝

)
1/2

+ E

𝑍 (𝑠)



𝑝
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+ (E𝑉
2𝑝

1
(𝑍 (𝑞𝑠)))

1/2

×(E

𝑍 (𝑞𝑠)



2𝑝

)

1/2}

}

}

d𝑠 + 𝐶Δ𝑝.

(39)

By the Hölder inequality and (A2), we have

E( sup
𝑡0≤𝑠≤𝑡

𝐼2 (𝑠)


𝑝

)

≤
1

2
(𝑡 − 𝑡

0
)
𝑝−1

E

×∫

𝑡

𝑡0


trace { (𝜎 (𝑋 (𝑠) , 𝑋 (𝑞𝑠) , 𝑟 (𝑠))

−𝜎 (𝑌 (𝑠) , 𝑌 (𝑞𝑠) , 𝑟 (𝑠)))
∗

× (𝑉
𝛿𝜀
)
𝑥𝑥
(𝑍 (𝑠))

× (𝜎 (𝑋 (𝑠) , 𝑋 (𝑞𝑠) , 𝑟 (𝑠))

−𝜎 (𝑌 (𝑠) , 𝑌 (𝑞𝑠) , 𝑟 (𝑠))) }


𝑝

d𝑠

≤ 𝐶Δ
𝑝−1

∫

𝑡

𝑡0

E {
(𝑉𝛿𝜖)𝑥𝑥 (

𝑍 (𝑠))


×

𝜎 (𝑋 (𝑠) , 𝑋 (𝑞𝑠) , 𝑟 (𝑠))

−𝜎 (𝑌 (𝑠) , 𝑌 (𝑞𝑠) , 𝑟 (𝑠))


2

}

𝑝

d𝑠

≤ 𝐶Δ
𝑝−1

E∫
𝑡

𝑡0

1

|𝑍 (𝑠)|
𝑝

× {

𝜎 (𝑋 (𝑠) , 𝑋 (𝑞𝑠) , 𝑟 (𝑠))

−𝜎 (𝑌 (𝑠) , 𝑌 (𝑞𝑠) , 𝑟 (𝑠))


2𝑝

+

𝜎(𝑌 (𝑠) , 𝑌 (𝑞𝑠) , 𝑟 (𝑠))

−𝜎 (𝑌 (𝑠) , 𝑌 (𝑞𝑠) , 𝑟 (𝑠))


2𝑝

}

≤ 𝐶Δ
𝑝−1

∫

𝑡

𝑡0

{E|𝑍 (𝑠)|
𝑝

+
1

𝜀𝑝
(E𝑉

4𝑝

2
(𝑍 (𝑞𝑠)))

1/2

(E
𝑍 (𝑞𝑠)



4𝑝

)
1/2

+
1

𝜀𝑝
E

𝑍 (𝑠)



2𝑝

+
1

𝜀𝑝
(E𝑉

4𝑝

2
(𝑍 (𝑞𝑠)))

1/2

× (E

𝑍 (𝑞𝑠)



4𝑝

)

1/2

} d𝑠 + 𝐶Δ
𝑝

𝜀𝑝
.

(40)

Making use of the Burkhold-Davis-Gundy inequality
yields

E( sup
𝑡0≤𝑠≤𝑡

𝐼3 (𝑠)


𝑝

)

≤ 𝐶Δ
𝑝/2−1

E∫
𝑡

𝑡0


𝜎 (𝑋 (𝑠) , 𝑋 (𝑞𝑠) , 𝑟 (𝑠))

−𝜎 (𝑌 (𝑠) , 𝑌 (𝑞𝑠) , 𝑟 (𝑠))


𝑝

d𝑠

≤ 𝐶Δ
𝑝/2−1

E∫
𝑡

𝑡0

(

𝜎 (𝑋 (𝑠) , 𝑋 (𝑞𝑠) , 𝑟 (𝑠))

−𝜎 (𝑌 (𝑠) , 𝑌 (𝑞𝑠) , 𝑟 (𝑠))


𝑝

+

𝜎 (𝑋 (𝑠) , 𝑋 (𝑞𝑠) , 𝑟 (𝑠) )

−𝜎 (𝑌 (𝑠) , 𝑌 (𝑞𝑠) , 𝑟 (𝑠))


𝑝

) d𝑠

≤ 𝐶Δ
𝑝/2−1

∫

𝑡

𝑡0

{E|𝑍 (𝑠)|
𝑝
+ (E𝑉

2𝑝

2
(𝑍 (𝑞𝑠)))

1/2

× (E
𝑍 (𝑞𝑠)



2𝑝

)
1/2

+ E

𝑍 (𝑠)



𝑝

+ (E𝑉
2𝑝

2
(𝑍 (𝑞𝑠)))

1/2

×(E

𝑍 (𝑞𝑠)



2𝑝

)

1/2

} d𝑠 + 𝐶Δ𝑝/2.

(41)

Moreover, by (8), (9), and (25), we have

E𝑉
2𝑝

1
(𝑍 (𝑞𝑠)) ∨ E𝑉

4𝑝

2
(𝑍 (𝑞𝑠)) ≤ 𝐶,

E

𝑍 (𝑡)



𝑝

≤ 𝐶Δ
𝑝/2
.

(42)

Thus, combing (39), and (40) with (41), for any 𝑡 ∈ [𝑡
0
, 𝑇]

and 𝑝 ≥ 2, we get

E( sup
𝑡0≤𝑠≤𝑡

|𝑍 (𝑠)|
𝑝
)

≤ 2
𝑝−1

{𝜀
𝑝
+ E( sup

𝑡0≤𝑠≤𝑡

𝑉
𝑝

𝛿𝜀
(𝑍 (𝑠)))}

≤ 𝐶{𝜀
𝑝
+ Δ

3𝑝/2−1
+ Δ

𝑝
+
Δ
2𝑝−1

𝜀𝑝
+
Δ
𝑝

𝜀𝑝
+ Δ

𝑝−1
+ Δ

𝑝/2

+ Δ
𝑝/2−1

{∫

𝑡

𝑡0

E|𝑍 (𝑠)|
𝑝d𝑠 + ∫

𝑡

𝑡0

(E
𝑍 (𝑞𝑠)



2𝑝

)
1/2

d𝑠

+
1

𝜀𝑝
∫

𝑡

𝑡0

(E
𝑍 (𝑞𝑠)



4𝑝

)
1/2

d𝑠}} .

(43)
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Let 𝜀 = Δ1/2, and using the Gronwall inequality, we have

E( sup
𝑡0≤𝑠≤𝑡

|𝑍 (𝑠)|
𝑝
)

≤ 𝐶{Δ
𝑝/2

+ Δ
(𝑝/2)−1

∫

𝑡

𝑡0

(E
𝑍 (𝑞𝑠)



2𝑝

)
1/2

d𝑠

+Δ
−1
∫

𝑡

𝑡0

(E
𝑍 (𝑞𝑠)



4𝑝

)
1/2

d𝑠} .

(44)

Let

𝑝
𝑖
:= ([log

𝜖/𝑞

𝑇

𝑡
0

] + 2 − 𝑖) 𝑝4
[log
𝜖/𝑞
(𝑇/𝑡0) ]+1−𝑖,

𝑖 = 1, 2, . . . , [log
𝜖/𝑞

𝑇

𝑡
0

] + 1;

(45)

by 𝑝 ≥ 2, it is easy to see that 𝑝
𝑖
≥ 2 such that

4𝑝
𝑖+1

< 𝑝
𝑖
, 𝑝

[log
𝜖/𝑞
(𝑇/𝑡0)]+1

= 𝑝,

𝑖 = 1, 2, . . . , [log
𝜖/𝑞

𝑇

𝑡
0

] .

(46)

Noting that 𝑍(𝑠) = 0 for 𝑠 ∈ [𝑞𝑡
0
, 𝑡
0
] and substituting

𝜖 < 1 into (44) yields that

E( sup
𝑡0≤𝑠≤(𝑡0/𝑞)𝜖

|𝑍 (𝑠)|
𝑝1)

≤ 𝐶{Δ
𝑝1/2 + Δ

𝑝1/2−1 ∫

(𝑡0/𝑞)𝜖

𝑡0

(E
𝑍 (𝑞𝑠)



2𝑝1
)
1/2

d𝑠

+Δ
−1
∫

(𝑡0/𝑞)𝜖

𝑡0

(E
𝑍 (𝑞𝑠)



4𝑝1
)
1/2

d𝑠}

≤ 𝐶{Δ
𝑝1/2 + Δ

𝑝1/2−1 ∫

𝑡0

𝑞𝑡0

(E|𝑍 (𝑠)|
2𝑝1)

1/2

d𝑠

+Δ
−1
∫

𝑡0

𝑞𝑡0

(E|𝑍 (𝑠)|
4𝑝1)

1/2

d𝑠}

≤ 𝐶Δ
𝑝1/2.

(47)

Using (46) and the Hölder inequality, further gives that

E( sup
𝑡0≤𝑠≤(𝑡0/𝑞

2
)𝜖
2

|𝑍 (𝑠)|
𝑝2)

≤ 𝐶{Δ
𝑝2/2 + Δ

𝑝2/2−1 ∫

(𝑡0/𝑞
2
)𝜖
2

𝑡0

(E
𝑍 (𝑞𝑠)



2𝑝2
)
1/2

d𝑠

+Δ
−1
∫

(𝑡0/𝑞
2
)𝜖
2

𝑡0

(E
𝑍 (𝑞𝑠)



4𝑝2
)
1/2

d𝑠}

≤ 𝐶{Δ
𝑝2/2 + Δ

𝑝2/2−1 ∫

(𝑡0/𝑞)𝜖

𝑡0

(E|𝑍 (𝑠)|
𝑝1)

𝑝2/𝑝1d𝑠

+Δ
−1
∫

(𝑡0/𝑞)𝜖

𝑡0

(E|𝑍 (𝑠)|
𝑝1)

2𝑝2/𝑝1 d𝑠}

≤ 𝐶Δ
𝑝2/2.

(48)

Repeating the previous procedures, the desired result
follows.

In this section, under general conditions, we reveal
that the convergence order of Euler-Maruyama scheme for
stochastic pantograph equations with Markovian switching
and Brownian motion is 1/2. In Section 3, we will discuss
the convergence rate for stochastic pantograph equation with
Markovian switching and pure jumps.

3. Convergence Rate for Markovian Switching
and Pure Jumps Case

Let B(R) be the Borel 𝜎-algebra on R, and 𝜆(d𝑥) a 𝜎-
finite measure defined on B(R). Let 𝑝 = (𝑝(𝑡)), 𝑡 ∈

𝐷
𝑝
, be a stationary F

𝑡
-Poisson point process on R with

characteristic measure 𝜆(⋅). Denote by𝑁(d𝑡, d𝑢) the Poisson
counting measure associated with 𝑝, that is, 𝑁(𝑡, 𝑈) =

∑
𝑠∈𝐷𝑝,𝑠≤𝑡

𝐼
𝑈
(𝑝(𝑠)) for𝑈 ∈B(R). Let �̃�(d𝑡, d𝑢) := 𝑁(d𝑡, d𝑢)−

d𝑡𝜆(d𝑢) be the compensated Poisson measure associated
with 𝑁(d𝑡, d𝑢). In what follows, we further assume that
∫
𝑈
|𝑢|

𝑝
𝜆(𝑢) < ∞ for any 𝑝 ≥ 2.

In this section, we consider the following stochastic
pantograph equation with Markovian switching and pure
jumps on R𝑛:

d𝑋 (𝑡) = 𝑏 (𝑋 (𝑡) , 𝑋 (𝑞𝑡) , 𝑟 (𝑡)) d𝑡

+ ∫
𝑈

ℎ (𝑋 (𝑡) , 𝑋 (𝑞𝑡) , 𝑢) �̃� (d𝑡, d𝑢) , 𝑡 ∈ [𝑡
0
, 𝑇]

(49)

with initial data𝑋(𝜃) = 𝜉(𝜃) and 𝑟(𝜃) = 𝑟
0
, 𝜃 ∈ [𝑞𝑡

0
, 𝑡
0
].

We assume that

(A1) 𝑏 : R𝑛
× R𝑛

× 𝑆 → R𝑛 and there exists 𝐿
1
> 0 such

that
𝑏 (𝑥1, 𝑦1, 𝑗) − 𝑏 (𝑥2, 𝑦2, 𝑗)



≤ 𝐿
1

𝑥1 − 𝑥2
 + 𝑉1 (𝑦1, 𝑦2)

𝑦1 − 𝑦2


(50)

for 𝑥
𝑖
, 𝑦

𝑖
∈ R𝑛, 𝑖 = 1, 2, 𝑗 ∈ 𝑆;

(A3) ℎ : R𝑛
× R𝑛

× 𝑈 → R𝑛 and there exists 𝐿
3
> 0 such

that
ℎ (𝑥1, 𝑦1, 𝑢) − ℎ (𝑥2, 𝑦2, 𝑢)



≤ (𝐿
3

𝑥1 − 𝑥2
 + 𝑉3 (𝑦1, 𝑦2)

𝑦1 − 𝑦2
) |𝑢|

(51)
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for 𝑥
𝑖
, 𝑦

𝑖
∈ R𝑛

, 𝑖 = 1, 2, and 𝑢 ∈ 𝑈, where 𝑉
3
: R𝑛

×

R𝑛
→ R

+
such that

𝑉
3
(𝑥, 𝑦) ≤ 𝐾

3
(1 + |𝑥|

𝑞3 +
𝑦


𝑞3
) (52)

for some𝐾
3
> 0, 𝑞

3
≥ 1 and arbitrary 𝑥, 𝑦 ∈ R𝑛.

From (A3), the jump coefficient may be also highly
nonlinear.We define the Euler-Maruyama scheme associated
with (49) by

d𝑌 (𝑡) = 𝑏 (𝑌 (𝑡) , 𝑌 (𝑞𝑡) , 𝑟 (𝑡)) d𝑡

+ ∫
𝑈

ℎ (𝑌 (𝑡) , 𝑌 (𝑞𝑡) , 𝑢) �̃� (d𝑡, d𝑢) ,
(53)

where 𝑌(𝑡) := 𝑌(𝑡
𝑖
), 𝑟(𝑡) := 𝑟(𝑡

𝑖
) for 𝑡 ∈ [𝑡

𝑖
, 𝑡
𝑖+1
), 𝑖 =

0, 1, . . . , 𝑛 − 1, and 𝑌(𝜃) = 𝜉(𝜃), 𝑟(𝜃) = 𝑟
0
, for 𝜃 ∈ [𝑞𝑡

0
, 𝑡
0
].

In order to state the main theorem, the following two
lemmas are useful.

Lemma 6 (see [16]). Let Φ : R
+
× 𝑈 → R𝑛 and assume that

∫

𝑡

𝑡0

∫
𝑈

E|Φ (𝑠, 𝑢)|
𝑝
𝜆 (d𝑢) d𝑠 < ∞, 𝑡

0
> 0, 𝑝 ≥ 2. (54)

Then there exists𝐷(𝑝) > 0 such that

E( sup
𝑡0≤𝑠≤𝑡



∫

𝑠

𝑡0

∫
𝑈

Φ (𝑟, 𝑢) �̃� (d𝑢, d𝑠)


𝑝

)

≤ 𝐷 (𝑝){E(∫
𝑡

𝑡0

∫
𝑈

|Φ (𝑠, 𝑢)|
2
𝜆 (d𝑢) d𝑠)

𝑝/2

+E∫
𝑡

𝑡0

∫
𝑈

|Φ (𝑠, u)|𝑝𝜆 (d𝑢) d𝑠} .

(55)

Lemma 7. Let (𝐴1) and (𝐴3) hold. Then (49) has a unique
global solution (𝑋(𝑡))

𝑡∈[𝑡0,𝑇]
. Moreover, for any 𝑝 ≥ 2 there

exists 𝐶 > 0 such that

E( sup
𝑡0≤𝑡≤𝑇

|𝑋 (𝑡)|
𝑝
) ∨ E( sup

𝑡0≤𝑡≤𝑇

|𝑌 (𝑡)|
𝑝
) ≤ 𝐶, (56)

E

𝑌 (𝑡) − 𝑌 (𝑡)



𝑝

≤ CΔ. (57)

Proof. The proof is very similar to that of Lemma 2 and (25).

Now we present the main theorem in this section.

Theorem 8. Let (𝐴1) and (𝐴3) hold. For any 𝑝 ≥ 2 and
arbitrary 𝜃, 𝛼 ∈ (0, 1), there exists 𝐶 > 0, independent of Δ,
such that

E( sup
𝑡0≤𝑡≤𝑇

|𝑋 (𝑡) − 𝑌 (𝑡)|
𝑝
) ≤ 𝐶Δ

(1+𝜃)
1/[log

𝜖/𝑞
(𝑇/𝑡0)](1+𝛼)

. (58)

Proof. The proof is similar to that of Theorem 5. Set

𝑍 (𝑡) := 𝑋 (𝑡) − 𝑌 (𝑡) ,

𝑍 (𝑡) := 𝑌 (𝑡) − 𝑌 (𝑡) ,

𝑍 (𝑡) := (𝑋 (𝑡) , 𝑌 (𝑡)) ∈ R
2𝑛
, 𝑡 ∈ [𝑡

0
, 𝑇] .

(59)

Define

Γ
1
(𝑡) := 𝑏 (𝑋 (𝑡) , 𝑋 (𝑞𝑡) , 𝑟 (𝑡)) − 𝑏 (𝑌 (𝑡) , 𝑌 (𝑞𝑡) , 𝑟 (𝑡)) ,

Γ
2
(𝑡, 𝑢) := ℎ (𝑋 (𝑡) , 𝑋 (𝑞𝑡) , 𝑢) − ℎ (𝑌 (𝑡) , 𝑌 (𝑞𝑡) , 𝑢) .

(60)

Using the Itô formula and the Taylor expansion we have that
for 𝑡 ∈ [𝑡

0
, 𝑇]

𝑉
𝛿𝜀
(𝑍 (𝑡)) = ∫

𝑡

𝑡0

⟨(𝑉
𝛿𝜀
)
𝑥
(𝑍 (𝑠)) , Γ

1
(𝑠)⟩ d𝑠

+ ∫

𝑡

𝑡0

∫
𝑈

{𝑉
𝛿𝜀
(𝑍 (𝑠) + Γ

2
(𝑠, 𝑢))

− 𝑉
𝛿𝜀
(𝑍 (𝑠))

− ⟨(𝑉
𝛿𝜀
)
𝑥
(𝑍 (𝑠)) , Γ

2
(𝑠, 𝑢)⟩}

× 𝜆 (d𝑢) d𝑠

+ ∫

𝑡

𝑡0

∫
𝑈

{𝑉
𝛿𝜀
(𝑍 (𝑠) + Γ

2
(𝑠, 𝑢))

−𝑉
𝛿𝜀
(𝑍 (𝑠))} �̃� (d𝑢, d𝑠)

= ∫

𝑡

𝑡0

⟨(𝑉
𝛿𝜀
)
𝑥
(𝑍 (𝑠)) , Γ

1
(𝑠)⟩ d𝑠

+ ∫

𝑡

𝑡0

∫
𝑈

{∫

1

0

⟨(𝑉
𝛿𝜀
)
𝑥
(𝑍 (𝑠) + 𝜃Γ

2
(𝑠, 𝑢))

−(𝑉
𝛿𝜀
)
𝑥
(𝑍 (𝑠)) , Γ

2
(𝑠, 𝑢)⟩ 𝑑𝜃}

× 𝜆 (d𝑢) d𝑠

+ ∫

𝑡

𝑡0

∫
𝑈

{∫

1

0

⟨(𝑉
𝛿𝜀
)
𝑥
(𝑍 (𝑠) + 𝜃Γ

2
(𝑠, 𝑢)) ,

Γ
2
(𝑠, 𝑢)⟩ d𝜃} �̃� (d𝑢, d𝑠) .

(61)

By the property of 𝑉
𝛿𝜀
(𝑥), we deduce that

|𝑍 (𝑡)| ≤ 𝜀 + 𝑉
𝛿𝜀
(𝑍 (𝑡))

≤ 𝜀 + ∫

𝑡

𝑡0

Γ1 (𝑠)
 d𝑠 + 2∫

𝑡

𝑡0

∫
𝑈

Γ2 (𝑠, 𝑢)
 𝜆 (d𝑢) d𝑠



Abstract and Applied Analysis 9

+ ∫

𝑡

𝑡0

∫
𝑈

{∫

1

0

⟨(𝑉
𝛿𝜀
)
𝑥
(𝑍 (𝑠) +𝜃Γ

2
(𝑠, 𝑢)) ,

Γ
2
(𝑠, 𝑢)⟩ d𝜃} �̃� (d𝑢, d𝑠) ,

𝑡 ∈ [𝑡
0
, 𝑇] .

(62)

From (8), (52), and (56), we compute that for any 𝑝 ≥ 2

E( sup
𝑡0≤𝑡≤𝑇

𝑉
𝑝

1
(𝑍 (𝑞𝑠))) ∨ E( sup

𝑡0≤𝑡≤𝑇

𝑉
𝑝

3
(𝑍 (𝑞𝑠))) ≤ 𝐶. (63)

Applying Lemma 6, Lemma 4, (57), and the Hölder
inequality, we obtain that

E( sup
𝑡0≤𝑠≤𝑡

|𝑍 (𝑠)|
𝑝
)

≤ 2
𝑝−1

{𝜀
𝑝
+ E( sup

𝑡0≤𝑠≤𝑡

𝑉
𝑝

𝛿𝜀
(𝑍 (𝑠)))}

≤ 𝐶{𝜀
𝑝
+ ∫

𝑡

𝑡0

E
Γ1 (𝑠)



𝑝d𝑠

+ ∫

𝑡

𝑡0

∫
𝑈

E
Γ2 (𝑠, 𝑢)



𝑝

𝜆 (d𝑢) d𝑠

+E(∫
𝑡

𝑡0

∫
𝑈

Γ2 (𝑠, 𝑢)


2

𝜆 (d𝑢) d𝑠)
𝑝/2

}

≤ 𝐶{𝜀
𝑝
+ ∫

𝑡

𝑡0

E
Γ1 (𝑠)



𝑝d𝑠

+∫

𝑡

𝑡0

∫
𝑈

E
Γ2 (𝑠, 𝑢)



𝑝

𝜆 (d𝑢) d𝑠}

≤ 𝐶{𝜀
𝑝
+ ∫

𝑡

𝑡0

E (

𝑋 (𝑠) − 𝑌 (𝑠)



+𝑉
1
(𝑍 (𝑞𝑠))


𝑋 (𝑞𝑠) − 𝑌 (𝑞𝑠)


)
𝑝

d𝑠

+ ∫

𝑡

𝑡0

E

𝑏 (𝑌 (𝑠) , 𝑌 (𝑞𝑠) , 𝑟 (𝑠))

−𝑏 (𝑌 (𝑠) , 𝑌 (𝑞𝑠) , 𝑟 (𝑠))


𝑝

d𝑠

+ ∫

𝑡

𝑡0

E (

𝑋 (𝑠) − 𝑌 (𝑠)



+𝑉
3
(𝑍 (𝑞𝑠))


𝑋 (𝑞𝑠) − �̃� (𝑞𝑠)


)
𝑝

d𝑠}

≤ 𝐶{𝜀
𝑝
+ Δ + ∫

𝑡

𝑡0

{E|𝑍 (𝑠)|
𝑝

+ E (𝑉
𝑝

1
(𝑍 (𝑞𝑠))

𝑍 (𝑞𝑠)


𝑝

)

+ E (𝑉
𝑝

1
(𝑍 (𝑞𝑠))


𝑍 (𝑞𝑠)



𝑝

)

+ E (𝑉
𝑝

3
(𝑍 (𝑞𝑠))

𝑍 (𝑞𝑠)


𝑝

)

+E (𝑉
𝑝

3
(𝑍 (𝑞𝑠))


𝑍 (𝑞𝑠)



𝑝

) } d𝑠}

≤ 𝐶{𝜀
𝑝
+ Δ + ∫

𝑡

𝑡0

E|𝑍 (𝑠)|
𝑝d𝑠 + ∫

𝑡

𝑡0

E
𝑍 (𝑞𝑠)



𝑝d𝑠} .

(64)

Together with the Gronwall inequality and taking 𝜀 =

Δ
1/𝑝, we get

E( sup
𝑡0≤𝑠≤𝑡

|𝑍 (𝑠)|
𝑝
) ≤ 𝐶{Δ + ∫

𝑡

𝑡0

E
𝑍 (𝑞𝑠)



𝑝d𝑠} . (65)

For 𝜃 ∈ (0, 1) and any 𝛼 ∈ (0, 1), let

𝑝
𝑖
:= 𝑝 (1 + 𝜃)

([log
𝜖/𝑞
(𝑇/𝑡0)]+1−𝑖)(1+𝛼),

𝑖 = 1, 2, . . . , [log
𝜖/𝑞

𝑇

𝑡
0

] + 1.

(66)

It is easy to see that

(1 + 𝜃) 𝑝
𝑖+1

< 𝑝
𝑖
, 𝑝

[log
𝜖/𝑞
(𝑇/𝑡0)]+1

= 𝑝,

𝑖 = 1, 2, . . . , [log
𝜖/𝑞

𝑇

𝑡
0

] .

(67)

Noting that𝑍(𝑡) = 𝑍(𝑡) = 0 for 𝑡 ∈ [𝑞𝑡
0
, 𝑡
0
], from (65) we

obtain

E( sup
𝑡0≤𝑠≤(𝑡0/𝑞)𝜖

|𝑍 (𝑠)|
𝑝1) ≤ 𝐶{Δ + ∫

𝑡0

𝑞𝑡0

E|𝑍 (𝑠)|
𝑝1d𝑠} ≤ 𝐶Δ.

(68)

Then, together with (67) and the Hölder inequality, it
further gives that

E( sup
𝑡0≤𝑠≤(𝑡0/𝑞

2
) 𝜖
2

|𝑍 (𝑠)|
𝑝2)

≤ 𝐶{Δ + ∫

(𝑡0/𝑞)𝜖

𝑡0

(E|𝑍 (𝑠)|
𝑝2(1+𝜃))

1/(1+𝜃)

d𝑠}

≤ 𝐶{Δ + ∫

(𝑡0/𝑞)𝜀

𝑡0

(E|𝑍 (𝑠)|
𝑝1)

𝑝2/𝑝1 d𝑠}

≤ 𝐶Δ
𝑝2/𝑝1 .

(69)
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Similarly,

E( sup
𝑡0≤𝑠≤(𝑡0/𝑞

3
)𝜖
3

|𝑍 (𝑠)|
𝑝3)

≤ 𝐶{Δ + ∫

(𝑡0/𝑞
2
)𝜖
2

𝑡0

(E|𝑍 (𝑠)|
𝑝3(1+𝜃))

1/(1+𝜃)

d𝑠}

≤ 𝐶{Δ + ∫

(𝑡0/𝑞
2
)𝜖
2

𝑡0

(E|𝑍 (𝑠)|
𝑝2)

𝑝3/𝑝2 d𝑠}

≤ 𝐶Δ
𝑝3/𝑝1 .

(70)

Repeating the previous procedures, we have

E( sup
𝑡0≤𝑠≤𝑇

|𝑍 (𝑠)|
𝑝
) ≤ 𝐶Δ

(1+𝜃)
1/[log
𝜖/𝑞
(𝑇/𝑡0)](1+𝛼)

. (71)

The proof is complete.
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This paper is concernedwith the leader-following consensus problem inmean-square for a class of discrete-timemultiagent systems.
The multiagent systems under consideration are the directed and contain arbitrary discrete time-delays. The communication links
are assumed to be time-varying and stochastic. It is also assumed that some agents in the network are well informed and act as
leaders, and the others are followers. By introducing novel Lyapunov functionals and employing some new analytical techniques,
sufficient conditions are derived to guarantee the leader-following consensus inmean-square for the concernedmultiagent systems,
so that all the agents are steered to an anticipated state target. A numerical example is presented to illustrate the main results.

1. Introduction

In recent years, themultiagent distributed coordination prob-
lem has attracted many researchers since it has broad appli-
cations in satellite formation flying, cooperative search of
unmanned air vehicles, scheduling of automated highway
systems, air traffic control, and distributed optimization of
multiplemobile robotic systems. Inmany applications involv-
ing multiagent systems, one of the most fundamental prob-
lems is that groups of agents need to agree upon certain quan-
tities of interest, which is called the consensus or agreement
problem in the literature. Consensus problems have a long
history in the field of computer science [1], many distributed
control and estimation strategies are designed based on
consensus algorithms [2–8], and consensus problems are
used to model many different phenomena involving infor-
mation flow among agents, including flocking, swarming,
synchronization, distributed decisionmaking, and schooling;
see, for example, the survey paper [9]. Consensus problems
for networkeddynamic systemshave been extensively studied
in the last few years [10–12].

Usually, algebraic graph theory [13] acts as a good frame-
work for analyzing consensus problems; see, for example,
[10, 11, 14, 15]. In this framework, each agent is modeled as
a vertex of a graph, and an edge of the graph joins node 𝑖

to node 𝑗 if agent 𝑗 is receiving information from agent 𝑖.
The models and algorithms for consensus have been recently
reported by a number of investigators. In [16], Vicsek et
al. proposed a simple discrete-time model to simulate a
group of autonomous agents moving in the plane with the
same speed but different headings. Vicsek’s model in essence
is a simplified version of the model introduced earlier by
Reynolds [17]. Based on the algebraic graph theory [18], it
has been shown that the network connectivity is a key factor
in reaching consensus [11, 14, 15]. It has also been proved
that consensus in a network with a dynamically changing
topology can be reached if and only if the time-varying
network topology contains a spanning tree frequently enough
as the network evolves with time [11, 14]. Recently, stochastic-
approximation-type algorithms with a decreasing step size
are developed, and almost sure convergence is established for
consensus seeking; see, for example, [19] and the references
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therein. It has been recognized that time-delay is unavoidable
in signal transmission and is also one of the main sources
for causing instability and poor performances of systems [20–
22]. Recently, the multiagent networks with time-delay have
started to receive some initial attention [15, 23, 24].

On the other hand, in many multiagent systems, some
agents are well informed and served as leaders, and the
others track the leaders and act as followers. It was reported
that the leader-following configuration is an energy saving
mechanism [25]whichwas found inmany biological systems,
and it can also enhance the communication and orientation
of the flock [26]. The leader-following consensus has been an
active area of research [14, 27, 28]. Such a leader-following
consensus problem is considered and proved in [14] that
if all the agents were jointly connected with their leader,
their states would converge to that of the leader as time
goes on. Reference [28] studied a leader-following consensus
problem for a multiagent system with a varying-velocity
leader and time-varying delays, where the interaction graph
among the followers was switching and balanced. Reference
[27] investigated the leader-following consensus problem
of higher-order multiagent systems. Unfortunately, so far,
the delayed networks considered for the leader-following
consensus problem are almost continuous-time multiagent
systems, and the leader-following consensus problems for
discrete-timemultiagent systems with time-delay and random
communication links have received little research attention.
Hence, it is our intention in this paper to tackle such an
important yet challenging problem.

In this paper, we will investigate the leader-following
consensus problem for the discrete-time directed multiagent
systems with time-delay and random communication links.
By constructing new Lyapunov functionals and employing
some analytical techniques, sufficient conditions for the
leader-following consensus in mean-square are established
for multiagent system, so that all the agents are steered to
an anticipated state target. A numerical example is used to
illustrate the proposed theory.

2. Problem Formulation

Throughout this paper, N and Z
+
stand for the natural

numbers and the positive integer set, respectively; R, R𝑛,
and R𝑛×𝑚 denote, respectively, the set of real numbers, the
𝑛 dimensional Euclidean space, and the set of all 𝑛 × 𝑚 real
matrices. The superscript 𝑇 represents the transpose for a
matrix, and | ⋅ | may stand for any absolute value of real
numbers or the standard Euclidean norm from the context.
In an underlying probability space (Ω,F,P), E[⋅] and Var[⋅]
denote, respectively, themean and the variance for a random
variable, and E[𝑥 | 𝑦] will mean the expectation of 𝑥

conditional on 𝑦.
Consider 𝑛 agents distributed according to a directed

graph G = (V,E) with a set of nodesV = {1, 2, . . . , 𝑛}, a set
of edges E ∈ V × V, and a weighted adjacency matrix 𝐴 =

[𝑎
𝑖𝑗
] with nonnegative adjacency elements 𝑎

𝑖𝑗
. In G, the 𝑖th

node represents 𝑖th agent, and a directed edge (simply called
an edge) from node 𝑖 to node 𝑗 denoted as an ordered pair
(𝑖, 𝑗) ∈ E represents a unidirectional information exchange

link fromnode 𝑖 to node 𝑗; that is, agent 𝑗 can receive or obtain
information from agent 𝑖, but not necessarily vice versa. The
set of neighbors of node 𝑖 is denoted by N

𝑖
= {𝑗 : (𝑗, 𝑖) ∈

E}. A weighted adjacency 𝐴 = [𝑎
𝑖𝑗
] ∈ R𝑛×𝑛 of a weighted

directed graph is defined such that 𝑎
𝑖𝑗
is a positive weight if

only (𝑗, 𝑖) ∈ E (so there is no edge between a node and itself;
that is, 𝑎

𝑖𝑖
= 0, for all 𝑖 ∈ V). In other words, 𝑎

𝑖𝑗
> 0, if

𝑗 ∈ N
𝑖
, otherwise 𝑎

𝑖𝑗
= 0. A directed path (simply called

a path) of length 𝑘 from V
𝑡
to V
𝑙
(𝑡, 𝑙 ∈ V) is a sequence of

edges (𝑖
0
, 𝑖
1
), (𝑖
1
, 𝑖
2
), . . . , (𝑖

𝑘
, 𝑖
𝑘+1

) with 𝑖
0

= 𝑡, 𝑖
𝑘+1

= 𝑙 and
(𝑖
𝑠
, 𝑖
𝑠+1

) ∈ E for 𝑠 = 0, 1, . . . , 𝑘. A graph G is said to be
strongly connected if there exists a path between any two
distinct nodes in it. For convenience of presentation, the two
names, agent and node, will be used interchangeably.

Now consider the dynamics of 𝑛 agents distributed over
a directed graph G. Let 𝑥

𝑖
(𝑘) ∈ R denote the state of node

𝑖 at time 𝑘, x(𝑘) = [𝑥
1
(𝑘), 𝑥
2
(𝑘), . . . , 𝑥

𝑛
(𝑘)]
𝑇 the state of

the system accordingly, and let 𝐴 = [𝑎
𝑖𝑗
] be the weighted

adjacency matrix associated with the graph. In general, the
dynamics of discrete-time multiagent network with fixed
topology are described by

𝑥
𝑖
(𝑘 + 1) = 𝑥

𝑖
(𝑘) + ∑

𝑗∈N𝑖

𝑎
𝑖𝑗
(𝑥
𝑗
(𝑘 − 𝜏

𝑖𝑗
) − 𝑥
𝑖
(𝑘)) , 𝑖 ∈ V,

(1)

where 𝜏
𝑖𝑗

∈ Z+ is the time-delay of the information transmis-
sion from node V

𝑗
to node V

𝑖
.

Remark 1. The consensus problem for the multiagent system
(1) is considered in [29], and the consensus problem for its
continuous-time counterpart (analogue)

̇𝑥
𝑖
(𝑡) = ∑

𝑗∈N𝑖

𝑎
𝑖𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
) − 𝑥
𝑖
(𝑡)) , 𝑖 ∈ V (2)

is investigated in [24], and system (1) without time-delays is
also investigated extensively; see, for example, [10, 19] and the
references therein.

In multiagent network (1), it is assumed that there is no
communication failure between agents. However, during sig-
nal exchange of the sensor nodes, an important uncertainty
feature is signal losses, whichmay be caused by the temporary
extreme deterioration of the link quality, for instance, due to
blocking objects traveling between the transmitter or receiver
[30].Therefore, we consider the general casewhere each com-
munication link is subject to some probability distribution.
Assume that weighted adjacency matrix𝐴

(𝑘)
= [𝑎
(𝑘)

𝑖𝑗
] is time-

varying with 𝑎
(𝑘)

𝑖𝑗
being random variable. Denote 𝑎

𝑖𝑗
= E[𝑎

(𝑘)

𝑖𝑗
]

and 𝜎
𝑖𝑗

= Var[𝑎(𝑘)
𝑖𝑗

]. As usual, we assume that (𝑗, 𝑖) ∈ E if and
only if 𝑎

𝑖𝑗
> 0, and the set of neighbors of node 𝑖 is denoted

byN
𝑖
= {𝑗 : (𝑗, 𝑖) ∈ E}.

Now, the dynamics of discrete-time multiagent network
with random communication links are given by

𝑥
𝑖
(𝑘 + 1) = 𝑥

𝑖
(𝑘) + ∑

𝑗∈N𝑖

𝑎
(𝑘)

𝑖𝑗
(𝑥
𝑗
(𝑘 − 𝜏

𝑖𝑗
) − 𝑥
𝑖
(𝑘)) , 𝑖 ∈ V,

(3)
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where, as in the previous discussion, 𝜏
𝑖𝑗

∈ Z+ is the time-
delay of the information transmission from node V

𝑗
to node

V
𝑖
. For convenience, we let 𝜏

𝑖𝑖
= 0, (𝑖 ∈ V), hereafter.

In practical applications, it is often important to steer
the state of each agent in a network to a fixed objective. In
this paper, we will consider the regulation of the multiagent
network (3) so that all agents can reach a common objective.
Suppose that there are some agents acting as leaders and well
informed. Specifically, let 𝑥

∗ be the anticipated state target.
If necessary, we can relabel the agents, and without loss of
generality, we assume that the first 𝑖

0
agents serve as leaders,

and the other ones act as followers. Consider the following
controlled multiagent network:

𝑥
𝑖
(𝑘 + 1) =

{{{{{{{{{

{{{{{{{{{

{

𝑥
𝑖
(𝑘) + ∑

𝑗∈N𝑖

𝑎
(𝑘)

𝑖𝑗
(𝑥
𝑗
(𝑘 − 𝜏

𝑖𝑗
) − 𝑥
𝑖
(𝑘))

−𝛼
𝑖
(𝑥
𝑖
(𝑘) − 𝑥

∗
) , 1 ≤ 𝑖 ≤ 𝑖

0
,

𝑥
𝑖
(𝑘) + ∑

𝑗∈N𝑖

𝑎
(𝑘)

𝑖𝑗
(𝑥
𝑗
(𝑘 − 𝜏

𝑖𝑗
) − 𝑥
𝑖
(𝑘)) ,

𝑖
0
+ 1 ≤ 𝑖 ≤ 𝑛,

(4)

where 𝛼
𝑖
> 0 are given constants.

Definition 2. The multiagent network (3) is said to reach
leader-following consensus on a state target 𝑥

∗ in mean-
square if for any solution x(𝑘) = (𝑥

1
(𝑘), 𝑥
2
(𝑘), . . . , 𝑥

𝑛
(𝑘))
𝑇 of

system (4), it always holds that

lim
𝑘→∞

E[𝑥
𝑖
(𝑘) − 𝑥

∗
]
2

= 0. (5)

In this paper, we will investigate the leader-following
consensus problem in mean-square for discrete-time multia-
gent system (3). By constructing novel Lyapunov functionals
and employing some new analytical techniques, sufficient
conditions are established to ensure the leader-following
consensus in mean-square for multiagent system (3).

3. Main Results and Proofs

This section is devoted to the leader-following consensus
analysis for system (3), and let usmake somenecessary prepa-
rations before introducing our main results.

Assume that {𝑎(𝑘)
𝑖𝑗

: (𝑗, 𝑖) ∈ E, 𝑘 ∈ Z+} are independent
with respect to (𝑖, 𝑗) and 𝑘 and also independent of the initial
states.

Let 𝐵
(𝑘)

= [𝑏
(𝑘)

𝑖𝑗
] with 𝑏

(𝑘)

𝑖𝑗
= 𝑎
(𝑘)

𝑖𝑗
for 𝑗 ∈ N

𝑖
, 𝑏(𝑘)
𝑖𝑖

= 1 −

∑
𝑗∈N𝑖

𝑎
(𝑘)

𝑖𝑗
, otherwise 𝑏

(𝑘)

𝑖𝑗
= 𝑎
(𝑘)

𝑖𝑗
= 0. Then, (4) is rewritten as

𝑥
𝑖
(𝑘 + 1) =

{{{{{{{

{{{{{{{

{

𝑛

∑

𝑗=1

𝑏
(𝑘)

𝑖𝑗
𝑥
𝑗
(𝑘 − 𝜏

𝑖𝑗
) − 𝛼
𝑖
(𝑥
𝑖
(𝑘) − 𝑥

∗
) ,

1 ≤ 𝑖 ≤ 𝑖
0
,

𝑛

∑

𝑗=1

𝑏
(𝑘)

𝑖𝑗
𝑥
𝑗
(𝑘 − 𝜏

𝑖𝑗
) , 𝑖

0
+ 1 ≤ 𝑖 ≤ 𝑛.

(6)

Denote 𝐵 = (𝑏
𝑖𝑗
)
def
= E[𝐵

(𝑘)
], and Δ𝐵

(𝑘)
= [�̃�
(𝑘)

𝑖𝑗
]
def
= 𝐵
(𝑘)

−

𝐵. Then, all row sums of both 𝐵
(𝑘) and 𝐵 are one, and all row

sums of Δ𝐵
(𝑘) are zero; namely,

𝑛

∑

𝑗=1

𝑏
(𝑘)

𝑖𝑗
= 1,

𝑛

∑

𝑗=1

𝑏
𝑖𝑗

= 1,

𝑛

∑

𝑗=1

�̃�
(𝑘)

𝑖𝑗
= 0, 𝑖 ∈ V. (7)

Also denote the variance of random variable 𝑏
(𝑘)

𝑖𝑗
by 𝜎
2

𝑖𝑗
,

where 𝜎
𝑖𝑗
is its standard deviation. Notice that E[�̃�

(𝑘)

𝑖𝑗
]
2

is
the variance of random variable 𝑏

(𝑘)

𝑖𝑗
, and �̃�

(𝑘)

𝑖𝑗
for 𝑗 ̸= 𝑖 is

dependent with respect to (𝑖, 𝑗) and 𝑘. Therefore, we have

E[�̃�
(𝑘)

𝑖𝑗
]
2

= Var [𝑏(𝑘)
𝑖𝑗

] = 𝜎
2

𝑖𝑗
, 𝑗 ̸= 𝑖, (8)

E [�̃�
(𝑘)

𝑖𝑗
�̃�
(𝑘)

𝑖𝑙
] = 0, 𝑙 ̸= 𝑗, 𝑗 ̸= 𝑖, 𝑙 ̸= 𝑖, (9)

E [�̃�
(𝑘)

𝑖𝑖
�̃�
(𝑘)

𝑖𝑗
] = E[−∑

𝑙 ̸= 𝑖

�̃�
(𝑘)

𝑖𝑙
�̃�
(𝑘)

𝑖𝑗
]

= −E[�̃�
(𝑘)

𝑖𝑗
]
2

= −𝜎
2

𝑖𝑗
, 𝑗 ̸= 𝑖,

(10)

E[�̃�
(𝑘)

𝑖𝑖
]
2

= E[

[

−∑

𝑗 ̸= 𝑖

�̃�
(𝑘)

𝑖𝑗
]

]

2

= ∑

𝑙 ̸= 𝑖

E[�̃�
(𝑘)

𝑖𝑗
]
2

= ∑

𝑗 ̸= 𝑖

𝜎
2

𝑖𝑗
.

(11)

For the interaction topology of multiagent system (3), we
make the following assumption.

Assumption 3. The graph G = (V,E) is strongly connected;
namely, the matrix 𝐵 is irreducible.

Lemma 4 (see [31]). Let 𝐴 = [𝑎
𝑖𝑗
] ∈ R𝑛×𝑛 be a nonnegative

matrix; that is, 𝑎
𝑖𝑗

≥ 0, and let 𝜌(𝐴) be the spectral radius
(called the Perron root of 𝐴). In addition, suppose that 𝐴 is
strongly connected, then there is a positive vector 𝑥 such that
𝐴𝑥 = 𝜌(𝐴)𝑥.

From Lemma 4, it follows readily that there exists a
positive left eigenvector 𝜉 = [𝜉

1
, 𝜉
2
, . . . , 𝜉

𝑛
]
𝑇 of 𝐵 such that

𝜉
𝑇
𝐵 = 𝜉
𝑇
,

𝑛

∑

𝑗=1

𝜉
𝑖
= 1. (12)

In the sequel, we denote

𝜉 = max {𝜉
𝑖
: 1 ≤ 𝑖 ≤ 𝑛} , (13)

𝜉 = min {𝜉
𝑖
: 1 ≤ 𝑖 ≤ 𝑛} , (14)

𝜎 = max {𝜎
𝑖𝑗

: (𝑗, 𝑖) ∈ E} , (15)
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𝛼 = min {𝛼
𝑖
: 1 ≤ 𝑖 ≤ 𝑖

0
} , (16)

𝛾 = min {𝑎
𝑖𝑗

: 1 ≤ 𝑖 ≤ 𝑖
0
, 𝑗 ∈ N} , (17)

N̂
𝑖
= N
𝑖
∪ {𝑖} . (18)

Also, we make the following assumption.

Assumption 5. Assume that
𝑛0

⋃

𝑖=1

N̂
𝑖
= V, 𝛼

𝑖
≤ 𝑏
𝑖𝑖

for 1 ≤ 𝑖 ≤ 𝑖
0
. (19)

Remark 6. Notice that in Assumption 5 the condition
⋃
𝑛0

𝑖=1
N̂
𝑖
= Vmeans that the set of the first 𝑖

0
nodes and their

neighbors contains all the nodes of the network.

We are now in a position to introduce the main results of
this paper.

Theorem7. Consider the multiagent systems (3) and (4). Sup-
pose that Assumptions 3 and 5 are satisfied, and assume that
𝜎 < √𝛼𝜉𝛾/(4(𝑛 − 1)𝜉) holds. Then, the multiagent network
(3) reaches leader-following consensus on the state target 𝑥∗ in
mean-square.

Proof. Let 𝐶 = [𝑐
𝑖𝑗
] with

𝑐
𝑖𝑗

= {
𝑏
𝑖𝑗
− 𝛼
𝑖
, for 1 ≤ 𝑖 ≤ 𝑖

0
, 𝑗 = 𝑖,

𝑏
𝑖𝑗
, otherwise,

(20)

and denote 𝑒
𝑖
(𝑘) = 𝑥

𝑖
(𝑘) − 𝑥

∗. Then, the controlled network
(6) can be rewritten as

𝑒
𝑖
(𝑘 + 1) =

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑒
𝑗
(𝑘 − 𝜏

𝑖𝑗
)

+

𝑛

∑

𝑗=1

�̃�
(𝑘)

𝑖𝑗
𝑒
𝑗
(𝑘 − 𝜏

𝑖𝑗
) , 𝑖 ∈ V.

(21)

Let 𝜙 is the initial value of network (21), and denote byF
𝑘

the 𝜎-algebras consisting of all events induced by the random
variables 𝜙, 𝑎

(𝑠)

𝑖𝑗
with 0 ≤ 𝑠 ≤ 𝑘 − 1, (𝑗, 𝑖) ∈ E; that is, F

𝑘
=

𝜎(𝜙, 𝑎
(𝑠)

𝑖𝑗
, 0 ≤ 𝑠 ≤ 𝑘 − 1, (𝑗, 𝑖) ∈ E). Also denote 𝜏 = max{𝜏

𝑖𝑗
:

(𝑖, 𝑗) ∈ E}, and e
𝑘
(𝑠) = [𝑒

1
(𝑘 + 𝑠), 𝑒

2
(𝑘 + 𝑠), . . . , 𝑒

𝑛
(𝑘 + 𝑠)]

𝑇,
−𝜏 ≤ 𝑠 ≤ 0.

To prove that the multiagent network (3) reaches leader-
following consensus on the state target 𝑥∗ in mean-square, it
suffices to prove themean-square stability of (21). To this end,
we construct the following Lyapunov functional:

𝑉 (e
𝑘
) = 𝑉
1
(e
𝑘
) + 𝑉
2
(e
𝑘
) + 𝑉
3
(e
𝑘
) , (22)

where

𝑉
1
(e
𝑘
) =

𝑛

∑

𝑖=1

𝜉
𝑖
𝑒
2

𝑖
(𝑘) , (23)

𝑉
2
(e
𝑘
) =

𝑛

∑

𝑖=1

𝜉
𝑖

𝑛

∑

𝑗=1

∑

𝑙≥𝑗

𝑐
𝑖𝑗
𝑐
𝑖𝑙
𝑉
𝑖𝑗𝑙

(e
𝑘
) , (24)

𝑉
3
(e
𝑘
) =

𝑛

∑

𝑖=1

𝜉
𝑖
∑

𝑗 ̸= 𝑖

2𝜎
2

𝑖𝑗

𝑘−1

∑

𝑠=𝑘−𝜏𝑖𝑗

𝑒
2

𝑗
(𝑠) (25)

with

𝑉
𝑖𝑗𝑙

(e
𝑘
) =

𝑘−1

∑

𝑠=𝑘−𝜏𝑖𝑗

𝑒
2

𝑗
(𝑠) +

𝑘−1

∑

𝑠=𝑘−𝜏𝑖𝑙

𝑒
2

𝑙
(𝑠) . (26)

Then, for system (21), using (8)–(11), we conduct the following
computation:

E [𝑉
1
(e
𝑘+1

) | F
𝑘
] − 𝑉
1
(e
𝑘
)

= E[

[

𝑛

∑

𝑖=1

𝜉
𝑖
(

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑒
𝑗
(𝑘 − 𝜏

𝑖𝑗
) +

𝑛

∑

𝑗=1

�̃�
(𝑘)

𝑖𝑗
𝑒
𝑗
(𝑘 − 𝜏

𝑖𝑗
))

2

]

]

−

𝑛

∑

𝑖=1

𝜉
𝑖
𝑒
2

𝑖
(𝑘)

=

𝑛

∑

𝑖=1

𝜉
𝑖
E[

[

(

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑒
𝑗
(𝑘 − 𝜏

𝑖𝑗
))

2

]

]

+

𝑛

∑

𝑖=1

𝜉
𝑖
E[

[

(

𝑛

∑

𝑗=1

�̃�
(𝑘)

𝑖𝑗
𝑒
𝑗
(𝑘 − 𝜏

𝑖𝑗
))

2

]

]

−

𝑛

∑

𝑖=1

𝜉
𝑖
𝑒
2

𝑖
(𝑘)

=

𝑛

∑

𝑖=1

𝜉
𝑖
[

[

𝑛

∑

𝑗=1

𝑐
2

𝑖𝑗
𝑒
2

𝑗
(𝑘 − 𝜏

𝑖𝑗
)

+

𝑛

∑

𝑗=1

∑

𝑙>𝑗

2𝑐
𝑖𝑗
𝑐
𝑖𝑙
𝑒
𝑗
(𝑘 − 𝜏

𝑖𝑗
) 𝑒
𝑙
(𝑘 − 𝜏

𝑖𝑙
) ]

]

−

𝑛

∑

𝑖=1

𝜉
𝑖
𝑒
2

𝑖
(𝑘)

+

𝑛

∑

𝑖=1

𝜉
𝑖
[

[

𝑛

∑

𝑗=1

E[�̃�
(𝑘)

𝑖𝑗
]
2

𝑒
2

𝑗
(𝑘 − 𝜏

𝑖𝑗
)

+

𝑛

∑

𝑗=1

∑

𝑙>𝑗

2E [�̃�
(𝑘)

𝑖𝑗
�̃�
(𝑘)

𝑖𝑙
] 𝑒
𝑗
(𝑘 − 𝜏

𝑖𝑗
) 𝑒
𝑙
(𝑘 − 𝜏

𝑖𝑙
) ]

]

=

𝑛

∑

𝑖=1

𝜉
𝑖
[

[

𝑛

∑

𝑗=1

𝑐
2

𝑖𝑗
𝑒
2

𝑗
(𝑘 − 𝜏

𝑖𝑗
)

+

𝑛

∑

𝑗=1

∑

𝑙>𝑗

2𝑐
𝑖𝑗
𝑐
𝑖𝑙
𝑒
𝑗
(𝑘 − 𝜏

𝑖𝑗
) 𝑒
𝑙
(𝑘 − 𝜏

𝑖𝑙
) ]

]

−

𝑛

∑

𝑖=1

𝜉
𝑖
𝑒
2

𝑖
(𝑘)
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+

𝑛

∑

𝑖=1

𝜉
𝑖
[

[

∑

𝑗 ̸= 𝑖

𝜎
2

𝑖𝑗
𝑒
2

𝑖
(𝑘) + ∑

𝑗 ̸= 𝑖

𝜎
2

𝑖𝑗
𝑒
2

𝑗
(𝑘 − 𝜏

𝑖𝑗
)

+ ∑

𝑗 ̸= 𝑖

2E [�̃�
(𝑘)

𝑖𝑖
�̃�
(𝑘)

𝑖𝑗
] 𝑒
𝑖
(𝑘 − 𝜏

𝑖𝑖
) 𝑒
𝑗
(𝑘 − 𝜏

𝑖𝑗
)]

]

=

𝑛

∑

𝑖=1

𝜉
𝑖
[

[

𝑛

∑

𝑗=1

𝑐
2

𝑖𝑗
𝑒
2

𝑗
(𝑘 − 𝜏

𝑖𝑗
)

+

𝑛

∑

𝑗=1

∑

𝑙>𝑗

2𝑐
𝑖𝑗
𝑐
𝑖𝑙
𝑒
𝑗
(𝑘 − 𝜏

𝑖𝑗
) 𝑒
𝑙
(𝑘 − 𝜏

𝑖𝑙
)]

]

−

𝑛

∑

𝑖=1

𝜉
𝑖
𝑒
2

𝑖
(𝑘)

+

𝑛

∑

𝑖=1

𝜉
𝑖
[

[

∑

𝑗 ̸= 𝑖

𝜎
2

𝑖𝑗
𝑒
2

𝑖
(𝑘) + ∑

𝑗 ̸= 𝑖

𝜎
2

𝑖𝑗
𝑒
2

𝑗
(𝑘 − 𝜏

𝑖𝑗
)

−∑

𝑗 ̸= 𝑖

2𝜎
2

𝑖𝑗
𝑒
𝑖
(𝑘) 𝑒
𝑗
(𝑘 − 𝜏

𝑖𝑗
)]

]

.

(27)

It is not difficult to see that
E [𝑉
2
(e
𝑘+1

) | F
𝑘
] − 𝑉
2
(e
𝑘
)

=

𝑛

∑

𝑖=1

𝜉
𝑖

𝑛

∑

𝑗=1

∑

𝑙>𝑗

𝑐
𝑖𝑗
𝑐
𝑖𝑙
(𝑒
2

𝑗
(𝑘) − 𝑒

2

𝑗
(𝑘 − 𝜏

𝑖𝑗
)

+𝑒
2

𝑙
(𝑘) − 𝑒

2

𝑙
(𝑘 − 𝜏

𝑖𝑙
))

+

𝑛

∑

𝑖=1

𝜉
𝑖

𝑛

∑

𝑗=1

𝑐
2

𝑖𝑗
(𝑒
2

𝑗
(𝑘) − 𝑒

2

𝑗
(𝑘 − 𝜏

𝑖𝑗
)) ,

(28)

E [𝑉
3
(e
𝑘+1

) | F
𝑘
] − 𝑉
3
(e
𝑘
)

=

𝑛

∑

𝑖=1

𝜉
𝑖
∑

𝑗 ̸= 𝑖

2𝜎
2

𝑖𝑗
(𝑒
2

𝑗
(𝑘) − 𝑒

2

𝑗
(𝑘 − 𝜏

𝑖𝑗
)) .

(29)

From (27)–(29), it follows that

E [𝑉 (e
𝑘+1

) | F
𝑘
] − 𝑉 (e

𝑘
)

=

𝑛

∑

𝑖=1

𝜉
𝑖
[

[

𝑛

∑

𝑗=1

𝑐
2

𝑖𝑗
𝑒
2

𝑗
(𝑘)

+

𝑛

∑

𝑗=1

∑

𝑙>𝑗

𝑐
𝑖𝑗
𝑐
𝑖𝑙
(𝑒
2

𝑗
(𝑘) − 𝑒

2

𝑗
(𝑘 − 𝜏

𝑖𝑗
)

+ 𝑒
2

𝑙
(𝑘) − 𝑒

2

𝑙
(𝑘 − 𝜏

𝑖𝑙
)

+ 2𝑒
𝑗
(𝑘 − 𝜏

𝑖𝑗
) 𝑒
𝑙
(𝑘 − 𝜏

𝑖𝑙
)) ]

]

−

𝑛

∑

𝑖=1

𝜉
𝑖
𝑒
2

𝑖
(𝑘)

+

𝑛

∑

𝑖=1

𝜉
𝑖
[

[

∑

𝑗 ̸= 𝑖

𝜎
2

𝑖𝑗
𝑒
2

𝑖
(𝑘) + ∑

𝑗 ̸= 𝑖

𝜎
2

𝑖𝑗
𝑒
2

𝑗
(𝑘)

+ ∑

𝑗 ̸= 𝑖

𝜎
2

𝑖𝑗
(𝑒
2

𝑗
(𝑘) − 𝑒

2

𝑗
(𝑘 − 𝜏

𝑖𝑗
)

− 2𝑒
𝑖
(𝑘) 𝑒
𝑗
(𝑘 − 𝜏

𝑖𝑗
))]

]

=

𝑛

∑

𝑖=1

𝜉
𝑖
[

[

𝑛

∑

𝑗=1

𝑐
2

𝑖𝑗
𝑒
2

𝑗
(𝑘)

+

𝑛

∑

𝑗=1

∑

𝑙>𝑗

𝑐
𝑖𝑗
𝑐
𝑖𝑙
(𝑒
2

𝑗
(𝑘) + 𝑒

2

𝑙
(𝑘)

− (𝑒
𝑗
(𝑘 − 𝜏

𝑖𝑗
)

− 𝑒
𝑙
(𝑘 − 𝜏

𝑖𝑙
))
2

)]

]

−

𝑛

∑

𝑖=1

𝜉
𝑖
𝑒
2

𝑖
(𝑘)

+

𝑛

∑

𝑖=1

𝜉
𝑖
[

[

∑

𝑗 ̸= 𝑖

𝜎
2

𝑖𝑗
𝑒
2

𝑖
(𝑘) + ∑

𝑗 ̸= 𝑖

𝜎
2

𝑖𝑗
𝑒
2

𝑗
(𝑘)

+ ∑

𝑗 ̸= 𝑖

𝜎
2

𝑖𝑗
(𝑒
2

𝑖
(𝑘) + 𝑒

2

𝑗
(𝑘)

−(𝑒
𝑖
(𝑘) + 𝑒

𝑗
(𝑘 − 𝜏

𝑖𝑗
))
2

)]

]

≤

𝑛

∑

𝑖=1

𝜉
𝑖
[

[

𝑛

∑

𝑗=1

𝑐
2

𝑖𝑗
𝑒
2

𝑗
(𝑘)

+

𝑛

∑

𝑗=1

∑

𝑙>𝑗

𝑐
𝑖𝑗
𝑐
𝑖𝑙
(𝑒
2

𝑗
(𝑘) + 𝑒

2

𝑙
(𝑘))]

]

−

𝑛

∑

𝑖=1

𝜉
𝑖
𝑒
2

𝑖
(𝑘)

+ 2

𝑛

∑

𝑖=1

𝜉
𝑖
[

[

∑

𝑗 ̸= 𝑖

𝜎
2

𝑖𝑗
𝑒
2

𝑖
(𝑘) + ∑

𝑗 ̸= 𝑖

𝜎
2

𝑖𝑗
𝑒
2

𝑗
(𝑘)]

]

.

(30)

A straightforward computation yields that
𝑛

∑

𝑖=1

𝜉
𝑖
[

[

𝑛

∑

𝑗=1

𝑐
2

𝑖𝑗
𝑒
2

𝑗
(𝑘) +

𝑛

∑

𝑗=1

∑

𝑙>𝑗

𝑐
𝑖𝑗
𝑐
𝑖𝑙
(𝑒
2

𝑗
(𝑘) + 𝑒

2

𝑙
(𝑘))]

]

=

𝑛

∑

𝑖=1

𝜉
𝑖

𝑛

∑

𝑗=1

𝑛

∑

𝑙=1

𝑐
𝑖𝑗
𝑐
𝑖𝑙
𝑒
2

𝑗
(𝑘) .

(31)
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Noticing the equality ∑
𝑛

𝑗=1
𝑏
𝑖𝑗

= 1 (see (7)), it follows
readily that
𝑛

∑

𝑖=1

𝜉
𝑖

𝑛

∑

𝑗=1

𝑛

∑

𝑙=1

𝑐
𝑖𝑗
𝑐
𝑖𝑙
𝑒
2

𝑗
(𝑘)

=

𝑖0

∑

𝑖=1

𝜉
𝑖

𝑛

∑

𝑗=1

𝑛

∑

𝑙=1

𝑐
𝑖𝑗
𝑐
𝑖𝑙
𝑒
2

𝑗
(𝑘)

+

𝑛

∑

𝑖=𝑖0+1

𝜉
𝑖

𝑛

∑

𝑗=1

𝑛

∑

𝑙=1

𝑐
𝑖𝑗
𝑐
𝑖𝑙
𝑒
2

𝑗
(𝑘)

=

𝑖0

∑

𝑖=1

𝜉
𝑖

𝑛

∑

𝑗=1

𝑛

∑

𝑙=1

𝑏
𝑖𝑗
𝑏
𝑖𝑙
𝑒
2

𝑗
(𝑘)

+

𝑛

∑

𝑖=𝑖0+1

𝜉
𝑖

𝑛

∑

𝑗=1

𝑛

∑

𝑙=1

𝑏
𝑖𝑗
𝑐
𝑖𝑙
𝑒
2

𝑗
(𝑘)

−

𝑖0

∑

𝑖=1

𝛼
𝑖
𝜉
𝑖
[

[

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑒
2

𝑗
(𝑘) + (1 − 𝛼

𝑖
) 𝑒
2

𝑖
(𝑘)]

]

=

𝑛

∑

𝑖=1

𝜉
𝑖

𝑛

∑

𝑗=1

𝑛

∑

𝑙=1

𝑏
𝑖𝑗
𝑏
𝑖𝑙
𝑒
2

𝑗
(𝑘)

−

𝑖0

∑

𝑖=1

𝛼
𝑖
𝜉
𝑖
[

[

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑒
2

𝑗
(𝑘) + (1 − 𝛼

𝑖
) 𝑒
2

𝑖
(𝑘)]

]

=

𝑛

∑

𝑖=1

𝜉
𝑖

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑒
2

𝑗
(𝑘)

−

𝑖0

∑

𝑖=1

𝛼
𝑖
𝜉
𝑖
[

[

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑒
2

𝑗
(𝑘) + (1 − 𝛼

𝑖
) 𝑒
2

𝑖
(𝑘)]

]

=

𝑛

∑

𝑖=1

𝜉
𝑖
𝑒
2

𝑖
(𝑘)

−

𝑖0

∑

𝑖=1

𝛼
𝑖
𝜉
𝑖
[

[

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑒
2

𝑗
(𝑘) + (1 − 𝛼

𝑖
) 𝑒
2

𝑖
(𝑘)]

]

.

(32)

Substituting (31) and (32) into (30) yields that
E [𝑉 (e

𝑘+1
) | F
𝑘
] − 𝑉 (e

𝑘
)

≤ 2

𝑛

∑

𝑖=1

𝜉
𝑖
[

[

∑

𝑗 ̸= 𝑖

𝜎
2

𝑖𝑗
𝑒
2

𝑖
(𝑘) + ∑

𝑗 ̸= 𝑖

𝜎
2

𝑖𝑗
𝑒
2

𝑗
(𝑘)]

]

−

𝑖0

∑

𝑖=1

𝛼
𝑖
𝜉
𝑖
[

[

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑒
2

𝑗
(𝑘) + (1 − 𝛼

𝑖
) 𝑒
2

𝑖
(𝑘)]

]

.

(33)

It is easy to see that
𝑛

∑

𝑖=1

𝜉
𝑖
[

[

∑

𝑗 ̸= 𝑖

𝜎
2

𝑖𝑗
𝑒
2

𝑖
(𝑘) + ∑

𝑗 ̸= 𝑖

𝜎
2

𝑖𝑗
𝑒
2

𝑗
(𝑘)]

]

≤ 𝜉

𝑛

∑

𝑖=1

∑

𝑗 ̸= 𝑖

𝜎
2

𝑖𝑗
𝑒
2

𝑖
(𝑘) + 𝜉

𝑛

∑

𝑖=1

∑

𝑗 ̸= 𝑖

𝜎
2

𝑖𝑗
𝑒
2

𝑗
(𝑘)

≤ 𝜉

𝑛

∑

𝑖=1

∑

𝑗 ̸= 𝑖

𝜎
2

𝑖𝑗
𝑒
2

𝑖
(𝑘) + 𝜉

𝑛

∑

𝑗=1

∑

𝑖 ̸= 𝑗

𝜎
2

𝑖𝑗
𝑒
2

𝑗
(𝑘)

≤ 2 (𝑛 − 1) 𝜉𝜎
2

𝑛

∑

𝑖=1

𝑒
2

𝑖
(𝑘) ,

(34)

and
𝑖0

∑

𝑖=1

𝛼
𝑖
𝜉
𝑖
[

[

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑒
2

𝑗
(𝑘) + (1 − 𝛼

𝑖
) 𝑒
2

𝑖
(𝑘)]

]

=

𝑖0

∑

𝑖=1

𝛼
𝑖
𝜉
𝑖
[

[

∑

𝑗∈N𝑖

𝑏
𝑖𝑗
𝑒
2

𝑗
(𝑘)

+ (1 + 𝑏
𝑖𝑖
− 𝛼
𝑖
) 𝑒
2

𝑖
(𝑘) ]

]

≥ 𝛼𝜉𝛾

𝑖0

∑

𝑖=1

∑

𝑗∈N̂𝑖

𝑒
2

𝑗
(𝑘)

≥ 𝛼𝜉𝛾

𝑛

∑

𝑖=1

𝑒
2

𝑖
(𝑘) .

(35)

Substituting (34) into (33) results in
E [𝑉 (e

𝑘+1
) | F
𝑘
] − 𝑉 (e

𝑘
)

≤ (4 (𝑛 − 1) 𝜉𝜎
2
− 𝛼𝜉𝛾) |e (𝑘)|

2
,

(36)

which implies that
E [𝑉 (e

𝑘+1
)] − E [𝑉 (e

𝑘
)]

≤ (4 (𝑛 − 1) 𝜉𝜎
2
− 𝛼𝜉𝛾)E [|e (𝑘)|

2
] .

(37)

Employing the Lyapunov stability theory, we can deduce
that lim

𝑘→∞
E[𝑉(e

𝑘
)] = 0. This completes the proof of the

theorem.

Remark 8. In Theorem 7, the condition 𝜎 < √𝛼𝜉𝛾/4(𝑛 − 1)𝜉

always holds when 𝜎 is sufficiently small. In particular, when
the interaction topology of multiagent system is determinis-
tic, the system (3) and the controlled network (4) are reduced,
respectively, to
𝑥
𝑖
(𝑘 + 1) = 𝑥

𝑖
(𝑘) + ∑

𝑗∈N𝑖

𝑎
𝑖𝑗
(𝑥
𝑗
(𝑘 − 𝜏

𝑖𝑗
) − 𝑥
𝑖
(𝑘)) , 𝑖 ∈ V,

(38)

𝑥
𝑖
(𝑘 + 1) =

{{{{{{{{{

{{{{{{{{{

{

𝑥
𝑖
(𝑘) + ∑

𝑗∈N𝑖

𝑎
𝑖𝑗
(𝑥
𝑗
(𝑘 − 𝜏

𝑖𝑗
) − 𝑥
𝑖
(𝑘))

−𝛼
𝑖
(𝑥
𝑖
(𝑘) − 𝑥

∗
) , 1 ≤ 𝑖 ≤ 𝑖

0
,

𝑥
𝑖
(𝑘) + ∑

𝑗∈N𝑖

𝑎
𝑖𝑗
(𝑥
𝑗
(𝑘 − 𝜏

𝑖𝑗
) − 𝑥
𝑖
(𝑘)) ,

𝑖
0
+ 1 ≤ 𝑖 ≤ 𝑛.

(39)

In this case, 𝜎 = 0; accordingly, the condition 𝜎 <

√𝛼𝜉𝛾/4(𝑛 − 1)𝜉 is always satisfied, and from Theorem 7, we
have the following corollary.
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Corollary 9. Consider the multiagent systems (38) and (39).
Under Assumptions 3 and 5, the multiagent network (38)
reaches leader-following consensus on the state target 𝑥∗.

In the previous discussion, we only consider scalar indi-
vidual states, and it is easy to extend them to the case where
the individual states are vectors. Consider the following
multiagent system of 𝑛 nodes with vector-valued states:

𝑥
𝑖
(𝑘 + 1) = 𝑥

𝑖
(𝑘) + ∑

𝑗∈N𝑖

𝑎
(𝑘)

𝑖𝑗
(𝑥
𝑗
(𝑘 − 𝜏

𝑖𝑗
) − 𝑥
𝑖
(𝑘)) , 𝑖 ∈ V,

(40)

and the controlled network is given by

𝑥
𝑖
(𝑘 + 1) =

{{{{{{{{{

{{{{{{{{{

{

𝑥
𝑖
(𝑘) + ∑

𝑗∈N𝑖

𝑎
(𝑘)

𝑖𝑗
(𝑥
𝑗
(𝑘 − 𝜏

𝑖𝑗
) − 𝑥
𝑖
(𝑘))

−𝛼
𝑖
(𝑥
𝑖
(𝑘) − 𝑥

∗
) , 1 ≤ 𝑖 ≤ 𝑖

0
,

𝑥
𝑖
(𝑘) + ∑

𝑗∈N𝑖

𝑎
(𝑘)

𝑖𝑗
(𝑥
𝑗
(𝑘 − 𝜏

𝑖𝑗
) − 𝑥
𝑖
(𝑘)) ,

𝑖
0
+ 1 ≤ 𝑖 ≤ 𝑛,

(41)

where 𝑥(𝑘) ∈ R𝑛. We have the following results.

Theorem 10. Consider the multiagent systems (40) and (41).
Suppose that Assumptions 3 and 5 are satisfied, and assume
that 𝜎 < √𝛼𝜉𝛾/4(𝑛 − 1)𝜉 holds. Then, the multiagent network
(40) reaches the leader-following consensus on the state target
𝑥
∗ in mean-square.

Proof. The proof of this theorem is similar to that of
Theorem 7. The minor modification is to replace some scalar
multiplication operations by the Kronecker product of matri-
ces, and we omit the details here.

4. A Numerical Example

In this section, we present a numerical example to illustrate
the proposed methods.

Example 1.Consider themultiagent networks (3) and (4), and
for simplicity, we take 𝑛 = 5. The interaction topology
between the agents is shown in Figure 1(a), and other param-
eters are taken as follows:

𝐵 = [𝑏
𝑖𝑗
]
5×5

=

[
[
[
[
[

[

0.4 0 0.2 0.2 0.2

0.5 0.5 0 0 0

0 0.5 0.5 0 0

0 0 0.5 0.5 0

0 0 0 0.5 0.5

]
]
]
]
]

]

,

[𝜏
𝑖𝑗
]
5×5

=

[
[
[
[
[

[

0 0 5 1 2

5 0 0 0 0

0 3 0 0 0

0 0 3 0 0

0 0 0 4 0

]
]
]
]
]

]

.

(42)

Clearly, the network topology is strongly connected, and it is
also obvious that �̂�

1
⋃ N̂
2

= V. Therefore, we can choose

�1

�5

�4

�3

�2

(a) The interaction topology of multiagent system

0 1000 2000 3000 4000 5000 6000
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6

7

−1

k

x
i

(b) Consensus on an anticipated state target

Figure 1: Numerical simulation.

𝑖
0

= 2. Assume that 𝜎
13

= 𝜎
14

= 𝜎
15

= 𝜎
21

= 𝜎
32

= 𝜎
43

=

𝜎
54

= 0.03, 𝛼
1
= 𝛼
2
= 0.38, and 𝑥

∗
= 5. By a straightforward

computation, we can get that 𝜉 = [0.1923, 0.2885, 0.2885,

0.1538, 0.0769]
𝑇, and it is also easy to see that 𝜎 = 0.03,

𝛼 = 0.38, 𝛾 = 0.2, 𝜉 = 0.2885, and 𝜉 = 0.0769. In this

case, √𝛼𝜉𝛾/4(𝑛 − 1)𝜉 = 0.0398, and 𝜎 < √𝛼𝜉𝛾/4(𝑛 − 1)𝜉 the
multiagent.Therefore, byTheorem 7, network (3) reaches the
leader-following consensus on an anticipated state target in
mean-square. With the above parameters and a set of initial
values produced in a stochastic way, the numerical simulation
shown in Figure 1(b)matcheswell with the theoretical results.

5. Conclusions

Wehave investigated the leader-following consensus problem
in mean-square for a class of discrete-time multiagent sys-
tems. The network under study is bidirectional and contains
arbitrary time-delays and the random communication links.
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Some agents in the network are well informed and serve as
leaders. By employing novel Lyapunov functionals and ana-
lytical skills, sufficient conditions are established to ensure the
leader-following consensus in mean-square for multiagent
system. A numerical example is given to demonstrate the
proposed approach.
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We investigate the number of periodic solutions of second-order asymptotically linear difference system.Themain tools are Morse
theory and twist number, and the discussion in this paper is divided into three cases. As the system is resonant at infinity, we use
perturbation method to study the compactness condition of functional. We obtain some new results concerning the lower bounds
of the nonconstant periodic solutions for discrete system.

1. Introduction

In this paper we are interested in the lower bound of the
number of periodic solutions for second-order autonomous
difference system

Δ
2
𝑥

𝑛−1
+ 𝑓 (𝑥

𝑛
) = 0, 𝑛 ∈ Z, (1)

where 𝑥
𝑛
∈ R𝑁, 𝑓 = (𝑓

1
, 𝑓

2
, . . . , 𝑓

𝑁
)
𝑇
∈ 𝐶

1
(R𝑁

,R𝑁
), Δ𝑥

𝑛
=

𝑥
𝑛+1

− 𝑥
𝑛
, Δ

2
𝑥

𝑛
= Δ(Δ𝑥

𝑛
), and𝑁 is a fixed positive integer.

Discrete systems have been investigated by many authors
using various methods, and many interesting results have
obtained; see [1–7] and references therein. The critical point
theory [8, 9] is a useful tool to investigate differential
equations, which is developed to study difference equations.
Using minimax methods in critical point theory, Guo and
Yu [10, 11] investigated the existence of periodic and subhar-
monic solutions of system (1), where nonlinearity 𝑓 is either
sublinear or superlinear. In this paper, we assume that

(P1) there exist a function 𝑔 ∈ 𝐶
1
(R𝑁

,R𝑁
) and a 𝑁 × 𝑁

symmetric matrix 𝐴
∞

such that 𝑓(𝑥
𝑛
) = 𝐴

∞
𝑥

𝑛
+

𝑔(𝑥
𝑛
), 𝑥

𝑛
∈ R𝑁, and

𝑔 (𝑥𝑛
)
 = 𝑜 (

𝑥𝑛

) as 𝑥𝑛

 → ∞, (2)

where | ⋅ | denotes the usual norm inR𝑁. Moreover there exist
functions𝐹,𝐺 such that𝐹

(𝑥
𝑛
) = (𝜕𝐹/𝜕𝑥

𝑛1
, . . . , 𝜕𝐹/𝜕𝑥

𝑛𝑁
)
𝑇
=

𝑓(𝑥
𝑛
) = (𝑓

1
, 𝑓

2
, . . . , 𝑓

𝑁
)
𝑇, 𝐺

(𝑥
𝑛
) = 𝑔(𝑥

𝑛
), where  denotes

the gradient of function.

System (1) can be regarded as discrete analogous of the
following differential system:

−Δ𝑢 = 𝑓 (𝑢) . (3)

A great deal of research has been devoted to (3). For example,
by using minimax theory, Rabinowitz [12] has given some
interesting results, and Mawhin and Willem [9] obtained
some results using the critical point theory. Moreover, there
is a vast literature on the problems concerning periodic
solutions, BVP, asymptotically behavior of solutions, and so
forth.

Morse theory [8, 9, 13–16] has been used to solve
the asymptotically linear problem. Chang [17], Amann and
Zehnder [18] obtained the existence of three distinct solutions
via Morse theory, where (3) was nonresonant at infinity.
Moreover, the resonant case has been considered in [19–
23]. The estimate of number of periodic solutions of (3) was
established in [24]. Motivated by [24], we will use Morse
theory to consider the lower bound of number of periodic
solutions for system (1).

Throughout this paper we employ some standard nota-
tions. Denote by R,Z the real number and the integer sets,
respectively.R𝑁 is the real space with dimension𝑁.𝑍[𝑎, 𝑏] =
{𝑎, 𝑎 + 1, . . . , 𝑏} if 𝑎 ≤ 𝑏 and 𝑎, 𝑏 ∈ Z. 𝐴𝑇 or 𝑥𝑇 denotes the
transpose of matrix 𝐴 or vector 𝑥.

If 𝑔(𝑡) and 𝐺(𝑡) are bounded on R𝑁, and system (1)
is 𝑝-resonant at ∞, then functional 𝐽 does not satisfy the



2 Abstract and Applied Analysis

compactness condition of the Palais-Smale type. Therefore
our discussion will be divided into three cases. Moreover, we
assume that

(P2) 𝐽 has a finite number of nondegenerated critical
points;

(P3) all 𝑝-periodic solutions of system (1) are not 𝑝-
resonant;

(P4) for 𝑚 ∈ 𝑍[0, 𝑟], 𝜎(𝐴
∞
) ⊂ (𝜆

𝑚
, 𝜆

𝑚+1
], where 𝜆

𝑚
=

4sin2
(𝑚𝜋/𝑝) and 𝑟 = [𝑝/2].

Now we state the main results as follows.

Theorem 1. Assume that (P1)–(P4) hold, and system (1) is not
𝑝-resonant at∞. Then

𝑛 (𝑝) ≥
1

2
Θ𝑝 − ℎ(𝑝𝑁 +

1

2
) +

1

2
, (4)

where 𝑛(𝑝) is the number of the nonconstant 𝑝-periodic
solutions of system (1), Θ is the global twist number (see (32)),
and ℎ will be defined in Section 3.

Theorem 2. Assume that (P1)–(P4) hold, system (1) is 𝑝-
resonant at ∞, and 𝑔(𝑡) is bounded in R𝑁, lim

|𝑡| → +∞
𝐺(𝑡) =

−∞. Then (4) is valid.

Theorem 3. Assume that (P1)–(P4) hold, system (1) is 𝑝-
resonant at∞, and 𝑔(𝑡), 𝐺(𝑡) are bounded in R𝑁. Then

𝑛 (𝑝) ≥
1

2
Θ𝑝 − ℎ (𝑝𝑁 + 1) . (5)

Remark 4. Benci and Fortunato [24] studied asymptotically
linear equation (3). Theorem 1 extends and generalizes the
analogous results in [24], andTheorems 2-3 are new results.

The organization of this paper is organized as follows. In
Section 2 we study the compactness condition for functional
𝐽. Some facts aboutMorse theory andnecessary preliminaries
are given in Section 3. In Section 4 the main results are
proved.

2. (PS) Condition

We say that a 𝐶1-functional 𝜙 on Hilbert space 𝑋 satisfies
the Palais-Smale (PS) condition, if every sequence {𝑥(𝑗)

} in𝑋
such that {𝜙(𝑥(𝑗)

)} is bounded and 𝜙
(𝑥

(𝑗)
) → 0 as 𝑗 → ∞,

contains a convergent subsequence.
Here we first introduce space 𝐸

𝑝
.

Let 𝐸
𝑝
= {𝑥 = {𝑥

𝑛
} ∈ 𝑆 | 𝑥

𝑛+𝑝
= 𝑥

𝑛
, 𝑛 ∈ Z}, where

𝑆 = {𝑥 = {𝑥
𝑛
} | 𝑥

𝑛
∈ R𝑁

, 𝑛 ∈ Z}. For any 𝑥, 𝑦 ∈ 𝑆, 𝑎, 𝑏 ∈

R, 𝑎𝑥 + 𝑏𝑦 = {𝑎𝑥
𝑛
+ 𝑏𝑦

𝑛
}
𝑛∈Z. Then 𝑆 is a linear space. Let 𝐸

𝑝

equip with inner product and norm as follows:

⟨𝑥, 𝑦⟩ =

𝑝

∑

𝑛=1

(𝑥
𝑛
, 𝑦

𝑛
) , ‖𝑥‖ = (

𝑝

∑

𝑛=1

𝑥𝑛



2

)

1/2

,

∀𝑥, 𝑦 ∈ 𝐸
𝑝
,

(6)

where (⋅, ⋅) and | ⋅ | are the usual inner product and norm
in R𝑁, respectively. Obviously, 𝐸

𝑝
is a Hilbert space with

dimension 𝑝𝑁 and homeomorphism to R𝑝𝑁.
By the variational method, the 𝑝-periodic solutions of (1)

are same as the critical points of the 𝐶2-functional

𝐽 (𝑥) =

𝑝

∑

𝑛=1

[
1

2

Δ𝑥𝑛



2

− 𝐹 (𝑥
𝑛
)] , 𝑥 ∈ 𝐸

𝑝
. (7)

By assumption (P1), the functional 𝐽 can be rewritten as

𝐽 (𝑥) =
1

2

𝑝

∑

𝑛=1

[
Δ𝑥𝑛



2

− (𝐴
∞
𝑥

𝑛
, 𝑥

𝑛
)] −

𝑝
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𝐺 (𝑥
𝑛
) , (8)

and we write 𝐼(𝑥) = ∑
𝑝

𝑛=1
[|Δ𝑥

𝑛
|
2
− (𝐴

∞
𝑥

𝑛
, 𝑥

𝑛
)].

Consider eigenvalue problem

−Δ
2
𝑥

𝑛−1
= 𝜆𝑥

𝑛
, 𝑥

𝑛+𝑝
= 𝑥

𝑛
, 𝑥

𝑛
∈ R

𝑁
, (9)

that is,𝑥
𝑛+1

+(𝜆−2)𝑥
𝑛
+𝑥

𝑛−1
= 0,𝑥

𝑛+𝑝
= 𝑥

𝑛
. By the periodicity,

the difference system has complexity solution 𝑥
𝑛
= 𝑒

𝑖𝑛𝜃
𝑐 for

𝑐 ∈ C𝑁, where 𝜃 = 2𝑘𝜋/𝑝, 𝑘 ∈ Z.Moreover,𝜆 = 2−𝑒
−𝑖𝜃
−𝑒

𝑖𝜃
=

2(1 − cos 𝜃) = 4sin2
(𝑘𝜋/𝑝).

Let 𝜂
𝑘
denote the real eigenvector corresponding to the

eigenvalues 𝜆
𝑘
= 4sin2

(𝑘𝜋/𝑝), 𝑘 ∈ 𝑍[0, 𝑟], and 𝑟 = [𝑝/2],
where [⋅] stands for the greatest-integer function. In terms of
eigenvalue 𝜆

𝑚
= 4sin2

(𝑚𝜋/𝑝) for some 𝑚 ∈ 𝑍[0, 𝑟], we can
split space 𝐸

𝑝
as follows:

𝐸
𝑝
= 𝑊

−
⊕𝑊

0
⊕𝑊

+
, (10)

where

𝑊
−
= span {𝜂

𝑘
| 𝑘 ∈ 𝑍 [0,𝑚 − 1]} , 𝑊

0
= span {𝜂

𝑚
} ,

𝑊
+
= span {𝜂

𝑘
| 𝑘 ∈ 𝑍 [𝑚 + 1, 𝑟]} .

(11)

Moreover, there exists 𝛿 > 0 such that

𝐼 (𝑢) ≥ 𝛿‖𝑢‖
2 for 𝑢 ∈ 𝑊+

,

𝐼 (V) ≤ −𝛿‖V‖2 for V ∈ 𝑊−
, 𝐼 (𝑤) = 0 for 𝑤 ∈ 𝑊

0
.

(12)

Let us recall the definition of resonance (see [24]).
A 𝑝-periodic solution {𝑥

𝑛
} of (1) is called 𝑝-resonance,

if there exists 𝜆
𝑘
= 4sin2

(𝑘𝜋/𝑝) ∈ 𝜎(𝐹

(𝑥

𝑛
)), where 𝐹

denotes the Hessian matrix of 𝐹 and 𝜎(⋅) is the spectrum
of matrix. We say that (1) is 𝑝-resonant at ∞, if there exists
𝜆

𝑘
= 4sin2

(𝑘𝜋/𝑝) ∈ 𝜎(𝐴
∞
).

Lemma 5. Assume that (P1) and (P4) hold, and system (1) is
not 𝑝-resonant at ∞. Then functional 𝐽 (see (8)) satisfies the
(PS) condition.

Proof. Let {𝑥(𝑗)
} ⊂ 𝐸

𝑝
be the (PS) sequence for functional 𝐽;

that is, {𝐽(𝑥(𝑗)
)} is bounded, and 𝐽

(𝑥
(𝑗)
) → 0 as 𝑗 → ∞.

Therefore, for any 𝜑 ∈ 𝐸
𝑝
, we have

⟨𝐽

(𝑥

(𝑗)
) , 𝜑⟩ = 𝑜 (

𝜑
) as 𝑗 → ∞. (13)
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By 𝑊0
= {0}, we write 𝑥(𝑗)

= 𝑢
(𝑗)

+ V(𝑗) with 𝑢
(𝑗)

∈

𝑊
+
, V(𝑗)

∈ 𝑊
−. To show that 𝐽 satisfies (PS) condition,

it is enough to prove that {𝑥(𝑗)
} is bounded in 𝐸

𝑝
. That is,

we need only to prove that {𝑢(𝑗)
} and {V(𝑗)

} are bounded in
𝐸

𝑝
. By contradiction, without loss of generality, there exists

𝑘 ∈ 𝑍[1, 𝑝] such that

𝑥

(𝑗)

𝑛


→ ∞ as 𝑗 → ∞ for 𝑛 ∈ 𝑍 [1, 𝑘] ,

𝑥
(𝑗)

𝑛
are bounded for 𝑛 ∈ 𝑍 [𝑘 + 1, 𝑝] .

(14)

Therefore, for all 𝑛 ∈ 𝑍[1, 𝑝], by assumption (P1), there exist
𝜀 > 0 and 𝑐

1
> 0 such that


𝐺 (𝑥

(𝑗)

𝑛
)

≤ 𝜀


𝑥

(𝑗)

𝑛



2

+ 𝑐
1
,


𝑔 (𝑥

(𝑗)

𝑛
)

≤ 𝜀


𝑥

(𝑗)

𝑛


+ 𝑐

1
(15)

for large 𝑗. Thus there is 𝑐 > 0, | ∑𝑝

𝑛=1
(𝑔(𝑥

(𝑗)

𝑛
), 𝑥
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𝑛
)| ≤

∑
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𝑛
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𝑛
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‖

2

+ 𝑐‖𝑥
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‖. Taking 𝜑 = 𝑢

(𝑗)
− V(𝑗)

in (13), by previous argument,
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+
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)
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) , 𝑢

(𝑗)
− V(𝑗)

⟩

= 𝐼 (𝑢
(𝑗)
) − 𝐼 (V(𝑗)

) −

𝑝

∑

𝑛=1

(𝑔 (𝑥
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𝑛
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𝑛
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𝑛
)

≥ 𝛿 (

𝑢
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2

+
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2

) − 𝜀 (

𝑢
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2

+

V(𝑗)

2

)

− 𝑐 (

𝑢

(𝑗)
+

V(𝑗)

) ,

(16)

it follows a contradiction. Therefore {𝑢
(𝑗)
} and {V(𝑗)

} are
bounded in 𝐸

𝑝
. This completes the proof.

Here and in the sequel, the letter𝛿will be indiscriminately
used to denote various positive constants whose exact values
are irrelevant, and 𝜀 ∈ (0, 1) is arbitrarily small. Moreover we
also denote by 𝑐 the various positive constants in this paper.

Lemma 6. Assume that (P1) and (P4) hold. System (1) is 𝑝-
resonant at ∞, 𝑔(𝑡) is bounded in R𝑁, and lim

|𝑡| → +∞
𝐺(𝑡) =

−∞. Then 𝐽 satisfies the (PS) condition.

Proof. Let {𝑥(𝑗)
} ⊂ 𝐸

𝑝
be the (PS) sequence for functional 𝐽;

that is, {𝐽(𝑥(𝑗)
)} is bounded, and 𝐽

(𝑥
(𝑗)
) → 0 as 𝑗 → ∞.

Since system (1) is 𝑝-resonant at ∞, 𝑊0
̸= {0}. Similarly,

let 𝑥(𝑗)
= 𝑢

(𝑗)
+ V(𝑗)

+ 𝑤
(𝑗) with 𝑢(𝑗)

∈ 𝑊
+, V(𝑗)

∈ 𝑊
−, and

𝑤
(𝑗)

∈ 𝑊
0. By the same method as proof of Lemma 5, it also

follows that {𝑢(𝑗)
} and {V(𝑗)

} are bounded in𝐸
𝑝
. Next we prove

that {𝑤(𝑗)
} is bounded in 𝐸

𝑝
.

𝐽(𝑥
(𝑗)
) = (1/2)𝐼(𝑢

(𝑗)
) + (1/2)𝐼(V(𝑗)

) − ∑
𝑝

𝑛=1
𝐺(𝑥

(𝑗)

𝑛
), by

{𝑢
(𝑗)
}, {V(𝑗)

}, and 𝐽(𝑥(𝑗)
) are bounded in 𝐸

𝑝
, and it follows that

∑
𝑝

𝑛=1
𝐺(𝑥

(𝑗)

𝑛
) is bounded. On the other hand, | ∑𝑝

𝑛=1
𝐺(𝑥

(𝑗)

𝑛
) −

∑
𝑝

𝑛=1
𝐺(𝑤

(𝑗)

𝑛
)| ≤ sup

𝑡∈𝐸𝑝
‖𝑔(𝑡)‖(‖𝑢

(𝑗)
‖+‖V(𝑗)

‖), so∑𝑝

𝑛=1
𝐺(𝑤

(𝑗)

𝑛
)

is bounded. It is easy to see fromassumption lim
|𝑡| → +∞

𝐺(𝑡) =

−∞ that {𝑤(𝑗)
} is bounded. The proof is completed.

If we assume that𝐺(𝑡), 𝑔(𝑡) are bounded and system (1) is
𝑝-resonant at∞, then functional 𝐽 does not satisfy the (PS)
condition. In order to overcome the difficult arising from the
lack of compactness condition, we use a suitable penalization
technique (one can refer to [20, 24]) and add a perturbation
term to the functional 𝐽. Define

𝜑
𝑅
(𝑡) = {

(𝑡 − 𝑅)
4
, if 𝑡 > 𝑅,

0, if 𝑡 ≤ 𝑅,
(17)

where 𝑅 is a positive real number and the penalized func-
tional is given by

𝐽
𝑅
(𝑥) = 𝐽 (𝑥) + 𝜑

𝑅
(‖𝑤‖

2
) , (18)

where 𝑥 = 𝑢 + V + 𝑤 ∈ 𝑊
+
⊕𝑊

−
⊕𝑊

0. Obviously, if 𝑥 ∈ 𝐸
𝑝
is

a critical point of 𝐽
𝑅
with ‖𝑤‖2

≤ 𝑅, then 𝑥 is also the critical
point of 𝐽.

Lemma 7. Assume that (P1) and (P4) hold, 𝐺(𝑡), 𝑔(𝑡) are
bounded in R𝑁, and system (1) is 𝑝-resonant at ∞. Then 𝐽

𝑅

satisfies the (PS) condition. Moreover, for any critical point 𝑥
of 𝐽

𝑅
, there exists 𝑀 > 0 such that ‖𝑢 + V‖ ≤ 𝑀, where

𝑥 = 𝑢 + V + 𝑤 ∈ 𝐸
𝑝
, 𝑢 ∈ 𝑊

+
, V ∈ 𝑊−, and 𝑤 ∈ 𝑊

0.

Proof. Let {𝑥(𝑗)
} ⊂ 𝐸

𝑝
be the (PS) sequence for functional 𝐽

𝑅
;

that is, {𝐽
𝑅
(𝑥

(𝑗)
)} is bounded in 𝐸

𝑝
, and for any 𝜑 ∈ 𝐸

𝑝
,

⟨𝐽


𝑅
(𝑥

(𝑗)
) , 𝜑⟩ = 𝑜 (

𝜑
) as 𝑗 → ∞. (19)

Similarly to the proof of Lemma 5, we need only to prove that
{𝑤

(𝑗)
} is bounded in 𝐸

𝑝
.

Taking 𝜑 = 𝑤
(𝑗) in (19), it follows that 𝑜(‖𝑤(𝑗)

‖) =

⟨𝐽


𝑅
(𝑥

(𝑗)
), 𝑤

(𝑗)
⟩ ≥ −𝑐‖𝑤‖+2‖𝑤‖

2
𝜑



𝑅
(‖𝑤‖

2
). By the definition of

𝜑
𝑅
, it follows that {𝑤(𝑗)

} is bounded. Therefore the penalized
functional 𝐽

𝑅
satisfies the (PS) condition.

Let 𝑥 be the critical point of 𝐽
𝑅
, then

0 = ⟨𝐽


𝑅
(𝑥) , 𝑢 − V⟩ = 𝐼 (𝑢) − 𝐼 (V)

−

𝑝

∑

𝑛=1

(𝑔 (𝑥
𝑛
) , 𝑢

𝑛
− V

𝑛
) ≥ 𝛿‖𝑢 + V‖2

− 𝜀‖𝑢 + V‖2
− 𝑐 ‖𝑢 + V‖ .

(20)

So there is a𝑀 > 0 such that ‖ 𝑢 + V ‖≤ 𝑀, and the proof is
completed.

3. Preliminaries

Let 𝐸 be a real Hilbert space, and let 𝜙 be a 𝐶2-functional on
𝐸. We denote by crit(𝜙) = {𝑥 ∈ 𝐸 | 𝜙


(𝑥) = 0} the set of

critical points of 𝜙, 𝜙𝑐
= {𝑥 ∈ 𝐸 | 𝜙(𝑥) ≤ 𝑐} the level set

of 𝜙, and 𝜙𝑏

𝑎
= {𝑥 ∈ 𝐸 | 𝑎 ≤ 𝜙(𝑥) ≤ 𝑏}. In the following we

suppose that 𝜙 is a𝐶2-functional on𝐸which satisfies the (PS)
condition.
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Definition 8 (see [9, 14]). Let 𝑥 be a critical point of 𝜙. The
Morse index of 𝑥 by 𝑚(𝑥, 𝜙) is defined as the supremum of
the dimensions of the vector subspace of 𝐸 on which 𝜙



(𝑥) is
negative definite. The nullity of 𝑥 by ](𝑥, 𝜙) is defined as the
dimension of Ker𝜙



(𝑥). A critical point 𝑥 will be said to be
nondegenerate if 𝜙



(𝑥) is invertible.
Denote by𝑚

∞
, ]

∞
the Morse index and nullity of∞ for

functional 𝐽. By (10),𝑚
∞
= dim𝑊

−
, ]

∞
= dim𝑊

0.
A set𝐾 ⊂ 𝐸 is called critical set if𝐾 ⊂ 𝜙

−1
(𝑐) ∩ crit(𝜙) for

some 𝑐 ∈ R. A critical set 𝐾 is called discrete nondegenerate
critical manifold, if 𝐾 is connected and 𝑚(𝑥, 𝜙) does not
depend on 𝑥 ∈ 𝐾.

Definition 9. The Poincare polynomial of the pair (𝜙𝑏
, 𝜙

𝑎
)

is defined by 𝑃
𝜆
(𝜙

𝑏
, 𝜙

𝑎
) = ∑

∞

𝑛=0
dim𝐻

𝑛
(𝜙

𝑏
, 𝜙

𝑎
; Γ)𝜆

𝑛
, where

𝐻
𝑛
(𝜙

𝑏
, 𝜙

𝑎
; Γ) denotes the 𝑛th singular relative homology

of the pair (𝜙
𝑏
, 𝜙

𝑎
) with coefficients in field Γ. Define

the topological Morse index of critical set 𝐾 as 𝑖
𝜆
(𝐾) =

∑
∞

𝑛=0
dim𝐻

𝑛
(𝜙

𝑐
, 𝜙

𝑐
\ 𝐾; Γ)𝜆

𝑛.
For simplicity, we write𝑚(𝑥) and𝑚(𝐾) instead of𝑚(𝑥, 𝜙)

and 𝑚(𝐾, 𝜙), respectively. It is well known that if 𝑥 is a
nondegenerate critical point and 𝑚(𝑥) is finite, then 𝑖

𝜆
(𝑥) =

𝜆
𝑚(𝑥). If 𝐾 is a nondegenerate critical manifold and 𝑚(𝐾) is

finite, then 𝑖
𝜆
(𝐾) = 𝜆

𝑚(𝐾)
𝑄(𝜆), where 𝑄(𝜆) is a polynomial

with nonnegative integer coefficients (see [13, 15]).

Next we investigate 𝑃
𝜆
(𝐸, 𝜙

𝑎
) and use functional 𝐽 (see

(8)) or 𝐽
𝑅
(see (18)) instead of 𝜙, 𝐸

𝑝
instead of 𝐸.

Lemma 10 (see [19, 24]). Assume that (P1) and (P4) hold, and
system (1) is not 𝑝-resonant at ∞. Then there exists 𝑎 ∈ R,
𝑎 < 𝐽(crit (𝐽)) such that

𝑃
𝜆
(𝐸

𝑝
, 𝐽

𝑎
) = 𝜆

𝑚(∞)
. (21)

Lemma 11. Assume that (P1) and (P4) hold, system (1) is 𝑝-
resonant at∞, lim

|𝑡| → +∞
𝐺(𝑡) = −∞, and 𝑔(𝑡) is bounded in

R𝑁. Then there exists 𝑎 ∈ R, and (21) is valid.

Proof. Write 𝑥 = 𝑢 + V + 𝑤 ∈ 𝐸
𝑝
with 𝑢 ∈ 𝑊+

, V ∈ 𝑊−
, 𝑤 ∈

𝑊
0. Then there exist𝑀

1
> 0, 𝑀

2
> 0 such that ⟨𝐽

(𝑥), 𝑢⟩ ≥

𝛿‖𝑢‖
2
− 𝑐‖𝑢‖ > 0 as ‖𝑢‖ > 𝑀

1
, ⟨𝐽

(𝑥), V⟩ ≤ −𝛿‖V‖2
+ 𝑐‖V‖ < 0

as ‖V‖ > 𝑀
2
. Let 𝐵

𝑀1
= {𝑥 ∈ 𝐸

𝑝
| ‖𝑢‖ ≤ 𝑀

1
}, 𝐵

𝑀2
= {𝑥 ∈

𝐸
𝑝
| ‖V‖ ≤ 𝑀

2
}. By previous argument, it follows that 𝐽 has

no critical points in 𝐸
𝑝
\ (𝐵

𝑀1
∪ 𝐵

𝑀2
).

On the other hand, for all 𝑥 ∈ 𝐵
𝑀1

∪ 𝐵
𝑀2

,

𝐽 (𝑥) ≥ 𝑐 −

𝑝

∑

𝑛=1

𝐺(𝑢
𝑛
+ V

𝑛
+
𝑤𝑛

 ⋅
𝑤

𝑛

𝑤𝑛



) → +∞,

as ‖𝑤‖ → ∞.

(22)

Therefore there exists 𝑎
1
∈ R, such that 𝑎

1
< 𝐽(crit(𝐽)). For

𝑥 ∈ 𝐵
𝑀2

, we have

𝐽 (𝑥) ≥
1

2
𝛿‖𝑢‖

2
− 𝑐

−

𝑝

∑

𝑛=1

𝐺(
𝑢𝑛

 ⋅
𝑢

𝑛

𝑢𝑛



+ V
𝑛
+
𝑤𝑛

 ⋅
𝑤

𝑛

𝑤𝑛



) ,

(23)

hence 𝐽(𝑥) → +∞ as ‖ 𝑢 + 𝑤 ‖→ ∞, which implies
that 𝐽 is bounded from the following in 𝐵

𝑀2
. Let 𝑎 <

min{𝑎
1
, inf

𝑥∈𝐵𝑀2
𝐽(𝑥)}, then 𝐽𝑎

⊂ 𝐸
𝑝
\ 𝐵

𝑀2
, and 𝐽𝑎 is a strong

deformation retraction of 𝐸
𝑝
\ 𝐵

𝑀2
. By Lemma 6, 𝐽 satisfies

(PS) condition, and we have

𝐻
𝑛
(𝐸

𝑝
, 𝐽

𝑎
) ≅ 𝐻

𝑛
(𝐸

𝑝
, 𝐸

𝑝
\ 𝐵

𝑀2
)

≅ 𝐻
𝑛
(𝑊

−
,𝑊

−
\ 𝐵

𝑀2
) ≅ 𝛿

𝑛,𝑚(∞)
Γ.

(24)

So we obtain (21).

Lemma 12. Under the assumption of Theorem 3, there exists
𝑎 ∈ R such that 𝑃

𝜆
(𝐸

𝑝
, 𝐽

𝑎

𝑅
) = 𝜆

𝑚(∞).

Proof. Let 𝑥 = 𝑢 + V +𝑤 ∈ 𝐸
𝑝
with 𝑢 ∈ 𝑊+, V ∈ 𝑊−, and𝑤 ∈

𝑊
0. Then there exist 𝑅

1
> 𝑅+1 such that all critical points of

𝐽
𝑅
are in 𝐵

𝑀1
∩ 𝐵

𝑀2
∩ 𝐵

𝑀3
, where 𝐵

𝑀1
and 𝐵

𝑀2
are the same

as in proof of Lemma 11, and 𝐵
𝑀3

= {𝑥 ∈ 𝐸
𝑝
| ‖𝑤‖

2
≤ 𝑅

1
}. In

fact,

⟨𝐽


𝑅
(𝑥) , 𝑢⟩ = ⟨𝐽


(𝑥) , 𝑢⟩ > 0, 𝑥 ∉ 𝐵

𝑀1
,

⟨𝐽


𝑅
(𝑥) , V⟩ = ⟨𝐽


(𝑥) , V⟩ < 0, 𝑥 ∉ 𝐵

𝑀2
,

⟨𝐽


𝑅
(𝑥) , 𝑤⟩ ≥ −𝑐 ‖𝑤‖ + 8‖𝑤‖

2
(‖𝑤‖

2
− 𝑅)

3

≥ 8‖𝑤‖
2
− 𝑐 ‖𝑤‖ > 0, 𝑥 ∉ 𝐵

𝑀3
.

(25)

Similarly, for 𝑥 ∈ 𝐵
𝑀2

, 𝐽
𝑅
(𝑥) ≥ (1/2)𝛿‖𝑢‖

2
+ 𝜑

𝑅
(‖𝑤‖

2
) −

𝑐 − ∑
𝑝

𝑛=1
𝐺(𝑥

𝑛
), and 𝐽

𝑅
(𝑥) → +∞ as ‖𝑢 + 𝑤‖ → ∞, which

implies that 𝐽
𝑅
(𝑥) is bounded from the following in 𝐵

𝑀2
. Let

𝑎
0
= inf

𝑥∈𝐵𝑀2
𝐽

𝑅
(𝑥). If 𝑎 < min{𝑎

0
, 𝐽

𝑅
(crit(𝐽

𝑅
))}, by 𝐽

𝑅
satisfies

(PS) condition, and methods of strong deformation retract,
we have 𝑃

𝜆
(𝐸

𝑝
, 𝐽

𝑎

𝑅
) = 𝜆

𝑚(∞). The proof is completed.

Assume that on Hilbert space 𝐸 there is an action of
discrete group𝐺, and denote by fix(𝐺) the fixed points set for
the 𝐺 action; that is, fix(𝐺) = {𝑥 ∈ 𝐸 | 𝑔𝑥 = 𝑥, ∀𝑔 ∈ 𝐺}. The
functional 𝜙 is called 𝐺 invariant, if 𝜙(𝑔𝑥) = 𝜙(𝑥), ∀𝑥 ∈ 𝐸,
and ∀𝑔 ∈ 𝐺. In the following, 𝑍

𝑝
denotes a cyclic group of 𝑝

order. In terms of Proposition 8.2 and Proposition 8.5 in [13],
we have following lemma.

Lemma 13. Assume that 𝜙 is a 𝐶2-functional on an Hilbert
space 𝐸 and satisfies (PS) condition. Let 𝑎, 𝑏 (𝑏 possible ∞)
be two regular values of 𝜙. Assume that 𝑐𝑟𝑖𝑡(𝜙𝑏

𝑎
) = 𝑐𝑟𝑖𝑡(𝜙) ∩

𝜙
−1
(𝑎, 𝑏) consists only of critical sets, and then the following

Morse relation holds:

∑

𝐾⊂crit(𝜙𝑏
𝑎
)

𝑖
𝜆
(𝐾) = 𝑃

𝜆
(𝜙

𝑏
, 𝜙

𝑎
) + (1 + 𝜆)𝑄 (𝜆) , (26)

where 𝑄(𝜆) is a polynomial with nonnegative integer coeffi-
cients. If all the critical points of 𝜙 in 𝜙𝑏

𝑎
are nondegenerate and

have finite Morse index, then (26) can be written as

∑

𝑥∈𝑐𝑟𝑖𝑡(𝜙
𝑏

𝑎
)

𝜆
𝑚(𝑥)

= 𝑃
𝜆
(𝜙

𝑏
, 𝜙

𝑎
) + (1 + 𝜆)𝑄 (𝜆) . (27)
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Now if 𝜙 is 𝑍
𝑝
invariant, and 𝑐𝑟𝑖𝑡(𝜙𝑏

𝑎
) ∩ 𝑓𝑖𝑥(𝑍

𝑝
) consists only

of nondegenerate critical points having finiteMorse index, then
(26) becomes

∑

𝑥∈𝑐𝑟𝑖𝑡(𝜙
𝑏

𝑎
)∩𝑓𝑖𝑥(𝑍𝑝)

𝜆
𝑚(𝑥)

+ (1 + 𝜆)𝑍 (𝜆)

= 𝑃
𝜆
(𝜙

𝑏
, 𝜙

𝑎
) + (1 + 𝜆)𝑄 (𝜆) ,

(28)

where 𝑍(𝜆) is a formal series with nonnegative integer
coefficients. Moreover if 𝑐𝑟𝑖𝑡(𝜙𝑏

𝑎
) − 𝑓𝑖𝑥(𝑍

𝑝
) consists only of

nondegenerate critical manifolds having finite Morse index,
then

𝑍 (𝜆) = ∑

𝐾⊂𝑐𝑟𝑖𝑡(𝜙
𝑏

𝑎
)−𝑓𝑖𝑥(𝑍𝑝)

𝜆
𝑚(𝐾)

. (29)

Remark 14. By (29), our main goal in this paper is to estimate
𝑍(1) which gives a lower bound of the number of the
nonconstant critical points of 𝐽 in 𝐸

𝑝
.

Lemma 15. Let 𝑧 = {𝑧
𝑛
} be a critical point of functional

𝐽. Denote by 𝜏2

1
, 𝜏

2

2
, . . . , 𝜏

2

𝑙
the positive eigenvalues (repeated

according to their multiplicity) of 𝐹


(𝑧
𝑛
), where 𝜏

𝑗
> 0, 𝑗 ∈

𝑍[1, 𝑙]. Under the assumption (P2), we have ♯(𝑧, 𝐽) = 𝑙 +

2∑
𝑙

𝑗=1
[(𝑝/𝜋) arcsin(𝜏

𝑗
/2)], where [⋅] denotes the greatest-

integer function and ♯(𝑧, 𝐽) is the number of eigenvalues 𝜆 < 0

such that ⟨𝐽


(𝑧)𝑢, 𝑢⟩ = 𝜆‖𝑢‖
2.

Proof. By ⟨𝐽


(𝑧)𝑢, 𝑢⟩ = ∑
𝑝

𝑛=1
[|Δ𝑢

𝑛
|
2
− (𝐹



(𝑧
𝑛
)𝑢

𝑛
, 𝑢

𝑛
)] =

−∑
𝑝

𝑛=1
[(Δ

2
𝑢

𝑛−1
+ 𝐹


(𝑧
𝑛
)𝑢

𝑛
, 𝑢

𝑛
)], we consider the equation

Δ
2
𝑦

𝑛−1
+ 𝐹



(𝑧
𝑛
)𝑦

𝑛
= −𝜆𝑦

𝑛
, 𝑦

𝑛+𝑝
= 𝑦

𝑛
, where 𝑧 =

{𝑧
𝑛
} is the critical point of 𝐽. It is easy to see that 𝜆

𝑘,𝑗
=

4sin2
(𝑘𝜋/𝑝)−𝜏

2

𝑗
are eigenvalues ofΔ2

𝑦
𝑛−1

+𝐹


(𝑧
𝑛
)𝑦

𝑛
onR𝑁,

where 𝑛, 𝑘 ∈ 𝑍[1, 𝑝], 𝑗 ∈ 𝑍[1, 𝑙]. Therefore the number of
negative eigenvalues 𝜆

𝑘,𝑗
is just what we are looking for; the

proof is completed.

Definition 16. For any critical point 𝑧 of 𝐽, there are 𝑙

positive eigenvalues (repeated according to theirmultiplicity)
of 𝐹



(𝑧
𝑛
), which will be denoted by 𝜏2

1
, . . . , 𝜏

2

𝑙
. The number

𝜌(𝑧) = (2𝑝/𝜋)∑
𝑙

𝑗=1
arcsin(𝜏

𝑗
/2) is called twist number of

𝑧. Moreover the twist number of ∞ is defined by 𝜌(∞) =

(2𝑝/𝜋)∑
𝑙(∞)

𝑗=1
arcsin(𝜏

𝑗
/2), where 𝑙(∞) is the number of the

positive eigenvalues (repeated according to theirmultiplicity)
of 𝐴

∞
.

Let 𝑧 = {𝑧
𝑛
} be a constant critical point of functional 𝐽;

that is, 𝑧
1
= 𝑧

2
= ⋅ ⋅ ⋅ = 𝑧

𝑝
. By Lemma 15 and Definition 16,

it is easy to deduce the following relation between the Morse
index and the twist number as follows:

𝜌 (𝑧) 𝑝 − 𝑝𝑁 ≤ 𝑚 (𝑧, 𝐽) ≤ 𝜌 (𝑧) 𝑝 + 𝑝𝑁. (30)

In view of the number 𝑙 or 𝑙(∞) of the positive eigenvalues
(repeated according to their multiplicity) of 𝐹



(𝑧) or𝐴
∞
, the

constant critical point 𝑧 is called 𝜏-positive (resp., 𝜏-negative)
if 𝑙 is even (resp., odd). On the contrary, the virtual critical

point∞ is called 𝜏-positive (resp., 𝜏-negative) if 𝑙(∞) is odd
(resp., even), see [24].

We denote by ℎ
1
and ℎ

2
the number of 𝜏-positive and 𝜏-

negative critical points of 𝐽. If𝐴
∞
is invertible, then ℎ

1
−ℎ

2
=

(−1)
𝑙(∞). Thus, if we consider ∞ as a virtual critical point,

we have that the number of 𝜏-positive critical points equals
the number of 𝜏-negative critical points. However, if 𝐴

∞
is

singular, the result is not hold in general. If we introduce
|ℎ

1
− ℎ

2
| virtual critical points having twist number zero,

where they are considered as 𝜏-positive if ℎ
1
< ℎ

2
and as

𝜏-negative if ℎ
1
> ℎ

2
, then the number of 𝜏-positive critical

points is also equal to the number of 𝜏-negative critical points.
Let ℎ = max{ℎ

1
, ℎ

2
}, which has been used in (4) and (5).

We denote by 𝑥
1
, . . . , 𝑥

ℎ
the 𝜏-positive critical points and by

𝑦
1
, . . . , 𝑦

ℎ
the 𝜏-negative critical points such that

𝜌 (𝑥
1
) ≤ ⋅ ⋅ ⋅ ≤ 𝜌 (𝑥

ℎ
) , 𝜌 (𝑦

1
) ≤ ⋅ ⋅ ⋅ ≤ 𝜌 (𝑦

ℎ
) . (31)

Then the global twist number Θ of the system (1) is defined
by

Θ =

ℎ

∑

𝑖=1

𝜌 (𝑥𝑖
) − 𝜌 (𝑦

𝑖
)
 .

(32)

4. Proof of Main Results

Proof of Theorem 1. Theargument is analogous to one used by
Benci and Fortunato in [24]. Set 𝑚(𝑧) = 𝑚(𝑧, 𝐽). Under the
assumption (P2), let 𝑧

1
, . . . , 𝑧

𝑛
be the nondegenerate constant

critical points of 𝐽.
By Lemmas 5 and 10, functional 𝐽 satisfies (PS) condition,

and there exists sufficiently small 𝑎 ∈ R such that 𝑃
𝜆
(𝐽

𝑏
, 𝐽

𝑎
) =

𝑃
𝜆
(𝐸

𝑝
, 𝐽

𝑎
) = 𝜆

𝑚(∞), where 𝑏 = ∞. Since 𝐽 is 𝐶2 and 𝑍
𝑝

invariant functional on 𝐸
𝑝
, then by assumption (P3), we have

∑
𝑛

𝑖=1
𝜆

𝑚(𝑧𝑖) + (1 + 𝜆)𝑍(𝜆) = 𝜆
𝑚(∞)

+ (1 + 𝜆)𝑄(𝜆); that is,
𝑛

∑

𝑖=1

𝜆
𝑚(𝑧𝑖) − 𝜆

𝑚(∞)
= (1 + 𝜆) (𝑄 (𝜆) − 𝑍 (𝜆)) . (33)

Let 𝑚
𝑖
, 𝑓

𝑖
(𝑖 ∈ 𝑍[1, ℎ]) denote the Morse indices of the

𝜏-positive and 𝜏-negative critical points (including ∞) of 𝐽,
and without loss of generalities, assume that∞ is 𝜏-negative.
So 𝑚(∞) = 𝑓

𝑗
for some 𝑗 ∈ 𝑍[1, ℎ], where ℎ is referred to

(31). Then (33) becomes
ℎ

∑

𝑖=1, 𝑖 ̸= 𝑗

𝜆
𝑚𝑖 + 𝜆

𝑓𝑖

1 + 𝜆
+
𝜆

𝑚𝑗 − 𝜆
𝑚(∞)

1 + 𝜆
= 𝑄 (𝜆) − 𝑍 (𝜆) . (34)

Set 𝑄(𝜆) = ∑
𝑠
𝑞

𝑠
𝜆

𝑠, 𝑍(𝜆) = ∑
𝑠
𝑧

𝑠
𝜆

𝑠, and 𝐵(𝜆) = 𝑄(𝜆) −

𝑍(𝜆) = ∑
𝑠
𝑏

𝑠
𝜆

𝑠, where 𝑞
𝑠
, 𝑧

𝑠
are nonnegative integer and

𝑏
𝑠
= 𝑞

𝑠
− 𝑧

𝑠
.

By Remark 14, the lower bound of the number of noncon-
stant 𝑝-periodic solutions for system (1) is to estimate 𝑍(1).
Since 𝑞

𝑠
≥ 0, 𝑧

𝑠
≥ 0, then

𝑛 (𝑝) = ∑

𝑠

𝑧
𝑠
≥ ∑

𝑏𝑠<0

𝑧
𝑠
= ∑

𝑏𝑠<0

(𝑞
𝑠
− 𝑏

𝑠
) ≥ −∑

𝑏𝑠<0

𝑏
𝑠
. (35)

Let 𝐵−
= −∑

𝑏𝑠<0
𝑏

𝑠
. By (35), we turn our attention to estimate

𝐵
−.
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If 𝑙 is even (resp., odd), by Lemma 15,𝑚(𝑧, 𝐽) is also even
(resp., odd). Therefore by the definition of 𝜏-positive and 𝜏-
negative critical points of 𝐽,𝑚

𝑖
(𝑖 ∈ 𝑍[1, ℎ]) are evennumbers,

𝑓
𝑖
are odd numbers for 𝑖 ̸= 𝑗, 𝑖 ∈ 𝑍[1, ℎ], and 𝑓

𝑗
= 𝑚(∞) is a

even number.
Set𝑀

1
= {𝑟 | 𝑚

𝑟
> 𝑓

𝑟
, 𝑟 ∈ 𝑍[1, ℎ], 𝑟 ̸= 𝑗},𝑀

2
= {𝑟 | 𝑚

𝑟
<

𝑓
𝑟
, 𝑟 ∈ 𝑍[1, ℎ], 𝑟 ̸= 𝑗}, and

𝐶 (𝜆) = ∑

𝑟∈𝑀1

𝜆
𝑚𝑟 + 𝜆

𝑓𝑟

1 + 𝜆
, 𝐷 (𝜆) = ∑

𝑟∈𝑀2

𝜆
𝑚𝑟 + 𝜆

𝑓𝑟

1 + 𝜆
,

𝐸 (𝜆) =
𝜆

𝑚𝑗 − 𝜆
𝑓𝑗

1 + 𝜆
.

(36)

By (34), we have 𝐵(𝜆) = 𝑄(𝜆) − 𝑍(𝜆) = ∑
𝑠
𝑏

𝑠
𝜆

𝑠
= 𝐶(𝜆) +

𝐷(𝜆) + 𝐸(𝜆), and

𝐶 (𝜆) = ∑

𝑟∈𝑀1

𝑚𝑟−1

∑

𝑖=𝑓𝑟

𝑐
𝑟,𝑖
𝜆

𝑖
, 𝐷 (𝜆) = ∑

𝑟∈𝑀2

𝑓𝑟−1

∑

𝑖=𝑚𝑟

𝑑
𝑟,𝑖
𝜆

𝑖
, (37)

where 𝑐
𝑟,𝑖

= (−1)
𝑖+1, 𝑑

𝑟,𝑖
= (−1)

𝑖. Meanwhile, if 𝑚
𝑗
> 𝑓

𝑗
,

𝐸(𝜆) = ∑
𝑚𝑗−1

𝑖=𝑓𝑗
𝑒

𝑖,1
𝜆

𝑖, 𝑒
𝑖,1

= (−1)
𝑖+1. If 𝑚

𝑗
< 𝑓

𝑗
, 𝐸(𝜆) =

∑
𝑓𝑗−1

𝑖=𝑚𝑗
𝑒

𝑖,2
𝜆

𝑖, 𝑒
𝑖,2
= (−1)

𝑖. Clearly 𝐸(𝜆) = 0 if𝑚
𝑗
= 𝑓

𝑗
.

A straight analysis shows that 𝐵−
= (1/2)∑

ℎ

𝑟=1
|𝑚

𝑟
−𝑓

𝑟
| −

((ℎ − 1)/2). By (30) and the definition of global twist number
that refer to (32), we have 𝑛(𝑝) ≥ (1/2)Θ𝑝 − ℎ(𝑝𝑁 + (1/2)) +

(1/2). It completes the proof of Theorem 1.

Proof of Theorem 2. Under the assumptions ofTheorem 2, by
Lemmas 6 and 11, functional 𝐽 satisfies (PS) condition, and
there exists 𝑎 ∈ R such that 𝑃

𝜆
(𝐽

𝑏
, 𝐽

𝑎
) = 𝑃

𝜆
(𝐸

𝑝
, 𝐽

𝑎
) = 𝜆

𝑚(∞),
for 𝑏 = ∞.

Similarly, we have ∑𝑛

𝑖=1
𝜆

𝑚(𝑧𝑖) + (1 + 𝜆)𝑍(𝜆) = 𝜆
𝑚(∞)

+

(1 + 𝜆)𝑄(𝜆), where 𝑧
𝑖
(𝑖 ∈ 𝑍[1, 𝑛]) are nondegenerate critical

points of 𝐽. The remainder is the same as that of Theorem 1.

The following lemma is needed to proveTheorem 3.

Lemma 17. If all assumptions in Theorem 3 hold, then there
exists 𝑄 > 0 (independent of 𝑅) such that

𝑚(𝑥, 𝐽
𝑅
) + ] (𝑥, 𝐽

𝑅
) ≤ 𝑚 (∞) + ] (∞) , (38)

where 𝑥 = 𝑢+V+𝑤with 𝑢 ∈ 𝑊+
, V ∈ 𝑊−

, 𝑤 ∈ 𝑊
0
, ‖𝑤‖ ≥ 𝑄,

and 𝑚(𝑥, 𝐽
𝑅
), ](𝑥, 𝐽

𝑅
) denote the Morse index and nullity of

critical point 𝑥 for functional 𝐽
𝑅
, respectively.

Proof. Let 𝑥 = 𝑢 + V + 𝑤 ∈ 𝐸
𝑝
be a critical point of 𝐽

𝑅
. By

Lemma 7, we have ‖𝑢 + V‖ ≤ 𝑀. Therefore ‖𝑥‖ → ∞ if and
only if ‖𝑤‖ → ∞. Since

⟨𝐽


𝑅
(𝑥) 𝑢, 𝑢⟩ =

𝑝

∑

𝑛=1

[
Δ𝑢𝑛



2

− (𝐴
∞
𝑢

𝑛
, 𝑢

𝑛
)

− (𝑔

(𝑥

𝑛
) 𝑢

𝑛
, 𝑢

𝑛
)] ≥ 𝛿‖𝑢‖

2

−

𝑝

∑

𝑛=1

(𝑔

(𝑥

𝑛
) 𝑢

𝑛
, 𝑢

𝑛
) ,

(39)

by assumption (P1), there exists 𝜀 ∈ (0, 𝛿) such that
𝑝

∑

𝑛=1

(𝑔

(𝑥

𝑛
) 𝑢

𝑛
, 𝑢

𝑛
)

=

𝑝

∑

𝑛=1

(𝑔

(‖𝑤‖ ⋅

𝑤
𝑛

‖𝑤‖
+ 𝑢

𝑛
+ V

𝑛
)𝑢

𝑛
, 𝑢

𝑛
)

≤ 𝜀‖𝑢‖
2
,

(40)

as ‖𝑤‖ → ∞. Therefore there exists 𝑄 > 0 such that
⟨𝐽


𝑅
(𝑥)𝑢, 𝑢⟩ > 0 as ‖𝑤‖ ≥ 𝑄. It follows that relation (38) is

valid, and the proof is completed.

Proof of Theorem 3. Let 𝐿 = 𝑚(∞) + ](∞), and denote by
𝑧

1
, . . . , 𝑧

𝑛
the constant critical points of 𝐽.We assume,without

loss of generalities,𝑚(𝑧
𝑖
, 𝐽) ≥ 𝐿+1 as 𝑖 ∈ 𝑍[1, 𝑟],𝑚(𝑧

𝑖
, 𝐽) < 𝐿

as 𝑖 ∈ 𝑍[𝑟 + 1, 𝑛]. Clearly 𝐿 ≤ 𝑝𝑁.
Set 𝐻

1
= {𝑥 ∈ crit(𝐽

𝑅
) | ‖𝑤‖ > 𝑄}, 𝐻

2
= {𝑥 ∈ crit(𝐽

𝑅
) ∩

fix(𝑍
𝑝
) | ‖𝑤‖ ≤ 𝑄}, and 𝐻

3
= crit(𝐽

𝑅
) − (𝐻

1
∪ 𝐻

2
), where

𝑥 = 𝑢 + V + 𝑤 is the decomposition of 𝑥 ∈ 𝐸
𝑝
with 𝑤 ∈ 𝑊

0

and 𝑄 is large enough.
By Lemma 17,𝐻

1
contains only critical points of 𝐽

𝑅
which

have 𝑚(𝑥, 𝐽
𝑅
) + ](𝑥, 𝐽

𝑅
) ≤ 𝐿. 𝐻

2
= {𝑧

𝑖
| 𝑖 ∈ 𝑍[1, 𝑛]}, since

𝐽
𝑅
(𝑥) = 𝐽(𝑥) as ‖𝑤‖ ≤ 𝑄.𝐻

3
⊂ crit(𝐽)−fix(𝑍

𝑝
), since𝜑

𝑅
(𝑥) =

0 when ‖𝑤‖ ≤ 𝑄. Moreover by assumption (P3),𝐻
3
contains

only nondegenerate critical manifolds.
Since 𝐽

𝑅
satisfies (PS) condition, by Lemma 13, relation

(28) reads

∑

𝑥∈𝐻1

𝑖
𝜆
(𝑥) + ∑

𝑥∈𝐻2

𝑖
𝜆
(𝑥) + ∑

𝐾⊂𝐻3

𝑖
𝜆
(𝐾)

= 𝑃
𝜆
(𝐸

𝑝
, 𝐽

𝑎

𝑅
) + (1 + 𝜆)𝑄 (𝜆) ,

(41)

that is,

∑

𝑥∈𝐻1

𝑖
𝜆
(𝑥) +

𝑟

∑

𝑖=1

𝑖
𝜆
(𝑧

𝑖
) +

𝑛

∑

𝑖=𝑟+1

𝑖
𝜆
(𝑧

𝑖
)

+ (1 + 𝜆)𝑍 (𝜆) = 𝜆
𝑚(∞)

+ (1 + 𝜆)𝑄 (𝜆) ,

(42)

where 𝑍(𝜆) = ∑
𝐾⊂𝐻3

𝜆
𝑚(𝐾). For 𝑍(𝜆) = ∑

∞

𝑖=0
𝑧

𝑖
𝜆

𝑖, we set
𝑍

𝑙
= ∑

∞

𝑖=𝑙
𝑧

𝑖
𝜆

𝑖, where 𝑙 ∈ N. And analogous notation can be
introduced for 𝑄(𝜆). Then, considering the terms of degree
≥ 𝐿 + 1 in (42), we have

𝑟

∑

𝑖=1

𝜆
𝑚(𝑧𝑖 ,𝐽)

+ 𝑏
𝐿
𝜆

𝐿+1
= (1 + 𝜆) 𝐵 (𝜆) , (43)

where 𝑏
𝐿
= 𝑧

𝐿
− 𝑞

𝐿
, 𝐵(𝜆) = 𝑄

𝐿+1
(𝜆) − 𝑍

𝐿+1
(𝜆). Clearly

𝑛 (𝑝) = ∑

𝑠

𝑧
𝑠
≥ ∑

𝑏𝑠≤0,𝑠≥𝐿+1

𝑧
𝑠

= ∑

𝑏𝑠≤0,𝑠≥𝐿+1

(𝑞
𝑠
− 𝑏

𝑠
) ≥ − ∑

𝑏𝑠≤0,𝑠≥𝐿+1

𝑏
𝑠
= 𝐵

−
,

(44)

that is, 𝐵− is the absolute value of the sum of the negative
coefficients of 𝐵(𝜆). Next we estimate the number 𝐵−.
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Let 𝑥
1
, . . . , 𝑥

ℎ1
and 𝑦

1
, . . . , 𝑦

ℎ2
(ℎ

1
+ ℎ

2
= 𝑟) be the 𝜏-

positive and 𝜏-negative critical points of 𝐽with nonzero twist
numbers, whose order satisfies (31), and 𝑥

𝑖
, 𝑦

𝑗
∈ {𝑧

1
, . . . , 𝑧

𝑟
},

𝑖 ∈ 𝑍[1, ℎ
1
], 𝑗 ∈ 𝑍[1, ℎ

2
]. Without loss of generalities, assume

ℎ
1
≥ ℎ

2
, and introduce ℎ

3
(= ℎ

1
−ℎ

2
) virtual 𝜏-negative critical

points 𝑦
𝑖
(𝑖 ∈ 𝑍[1, ℎ

3
]) having twist number 0 and Morse

index 0; that is,
𝜌 (𝑦

𝑖
) = 0, 𝑓

𝑖
= 𝑚 (𝑦

𝑖
, 𝐽) = 0, 𝑖 ∈ 𝑍 [1, ℎ

3
] . (45)

For 𝑖 ∈ 𝑍[1, ℎ
1
], set 𝑚

𝑖
= 𝑚(𝑥

𝑖
, 𝐽), 𝑓

𝑖
= 𝑚(𝑦

𝑖
, 𝐽), where

𝑦
𝑗+ℎ3

= 𝑦
𝑗
, 𝑗 ∈ 𝑍[1, ℎ

2
]. Then (43) can be written as

∑
ℎ1

𝑖=1
𝜆

𝑚𝑖 +∑
ℎ1

𝑖=ℎ3+1
𝜆

𝑓𝑖 + 𝑏
𝐿
𝜆

𝐿+1
= (1 + 𝜆)𝐵(𝜆). Setting 𝜆 = −1,

then 𝑏
𝐿
= −ℎ

3
if 𝐿 is odd, and 𝑏

𝐿
= ℎ

3
if 𝐿 is even. So

𝐵 (𝜆) =

ℎ3

∑

𝑖=1

𝜆
𝑚𝑖 + 𝜆

𝐿+1

1 + 𝜆
+

ℎ1

∑

𝑖=ℎ3+1

𝜆
𝑚𝑖 + 𝜆

𝑓𝑖

1 + 𝜆
, if 𝐿 is even,

𝐵 (𝜆) =

ℎ3

∑

𝑖=1

𝜆
𝑚𝑖 − 𝜆

𝐿+1

1 + 𝜆
+

ℎ1

∑

𝑖=ℎ3+1

𝜆
𝑚𝑖 + 𝜆

𝑓𝑖

1 + 𝜆
, if 𝐿 is odd.

(46)

A straight analysis shows that 𝐵−
= ∑

ℎ3

𝑖=1
[(1/2)(𝑚

𝑖
− 𝐿) − 1] +

∑
ℎ

𝑖=ℎ3+1
(1/2)|𝑚

𝑖
− 𝑓

𝑖
| if 𝐿 is even, and 𝐵−

= ∑
ℎ3

𝑖=1
(1/2)(𝑚

𝑖
−

𝐿) + ∑
ℎ

𝑖=ℎ3+1
(1/2)(|𝑚

𝑖
− 𝑓

𝑖
| − 1) if 𝐿 is odd. Therefore

𝐵
−
≥

ℎ3

∑

𝑖=1

1

2
(𝑚

𝑖
− 𝐿 − 2) +

ℎ

∑

𝑖=ℎ3+1

1

2
(
𝑚𝑖

− 𝑓
𝑖

 − 1) . (47)

By (30) and (45), we have

𝑚
𝑖
= 𝑚

𝑖
− 𝑓

𝑖
≥ (𝜌 (𝑥

𝑖
) − 𝜌 (𝑦

𝑖
)) 𝑝 − 𝑝𝑁, 𝑖 ∈ 𝑍 [1, ℎ

3
] ,

𝑚𝑖
− 𝑓

𝑖

 ≥
𝜌 (𝑥𝑖

) − 𝜌 (𝑦
𝑖
)
 𝑝 − 2𝑝𝑁, 𝑖 ∈ 𝑍 [ℎ

3
+ 1, ℎ] .

(48)

In view of (45), (47), and (48), we have

𝐵
−
≥
1

2

ℎ

∑

𝑖=1

𝑝
𝜌 (𝑥𝑖

) − 𝜌 (𝑦
𝑖
)


−
1

2
𝑝𝑁ℎ

3
−
1

2
𝐿ℎ

3
− 𝑝𝑁ℎ

2
− ℎ

3

−
1

2
ℎ

2
≥
1

2
Θ𝑝 − ℎ (𝑝𝑁 + 1) .

(49)

The proof is completed.

Remark 18. Although𝐴
∞
is invertible under the assumptions

of Theorem 3, we do not make use of (42) directly, because
we consider only the terms of degree ≥ 𝐿 + 1 in proof of
Theorem 3.
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This paper addresses the exponential stability problem for a class of delayed bidirectional associative memory (BAM) neural
networks with delays. A sliding intermittent controller which takes the advantages of the periodically intermittent control idea and
the impulsive control scheme is proposed and employed to the delayed BAM system.With the adjustable parameter taking different
particular values, such a sliding intermittent control method can comprise several kinds of control schemes as special cases, such
as the continuous feedback control, the impulsive control, the periodically intermittent control, and the semi-impulsive control.
By using analysis techniques and the Lyapunov function methods, some sufficient criteria are derived for the closed-loop delayed
BAM neural networks to be globally exponentially stable. Finally, two illustrative examples are given to show the effectiveness of
the proposed control scheme and the obtained theoretical results.

1. Introduction

Since the bidirectional associative memory (BAM) neural
networks were first proposed by Kosko [1] which are well
known as the extension of the unidirectional autoassociators
such as the Hopfield neural networks, they have been widely
studied due to their extensive applications such as pattern
recognition, signal or image processing, solving optimization
problems, and automatic control [2–7]. Later, constant delays
are introduced in [8] to the BAM neural networks, and it is
proved that the delayed versions of the neural networks are
significant for handling certain motion-related optimization
problems [9]. For more results concerning the dynamical
behaviors of the BAM neural networks with delays, we refer
to [10, 11].

In practice, most of the neural networks are unstable or
convergent with a rate far less than the requirement. Under
such cases we need to try to stabilize them or speed up
the convergence rate of the neural system in order to make
the system work more efficiently. Therefore, the designing of
appropriate control input becomes extremely urgent. When

it comes to the problem of stabilizing a nonlinear system, it
is natural to consider the feedback strategies. There are two
basic kinds of feedback control: the state feedback control and
the output feedback control. When referring to the control
methods, different kinds of schemes have been utilized to
stabilize the nonlinear system such as static feedback control
[12], delayed feedback control [13], adaptive control [14],
fuzzy control [15], sampled control [16], sliding mode control
[17], and random control [18, 19]. In terms of the control
time, the controllers are classified with continuous control
and discontinuous control. Compared with the continuous
control, the discontinuous control including the impulsive
control [20, 21] and the intermittent control [22, 23] has
attracted much more attention, and it is very effective,
practical, and applicable in many areas, especially in secure
communication [24].

In the literature, the impulsive neural networks have been
extensively studied from the following two aspects: either the
system is subject to the impulsive state displacements at fixed
time instants or the system is imposed by external impulsive
control [25]. The main idea of periodically intermittent

http://dx.doi.org/10.1155/2013/615947
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control [26] is that when the system signal becomes weak
to a low level, the external control will be imposed to
supplement the loss of signal; after some period of time
the external control is stopped; in the next control period
the external control is needed again. Compared with the
method of periodically intermittent control, the system with
the impulsive control is activated only at some isolated time
moments. Both the impulsive control and the intermittent
control have their own benefits and disadvantages. The main
difference between these two control techniques lies in the
length of control period; the former has zero duration, while
the later has a nonzero control width. Meanwhile, the cost of
the intermittent control is much higher.

The aim of this paper is to design a sliding intermit-
tent controller by combining the advantages of both the
impulsive control and the periodically intermittent control.
More specifically, in one control period, we will impose the
continuous state feedback control at the preceding control
width and the impulsive control in the latter control width.
The sliding intermittent control method is very flexible and
could achieve the expected control performance. The sketch
of such a controller is shown in Figure 1. Motivated by the
name of the slide rheostat in the physical electronic circuitry,
we named such a joint controller as the sliding intermittent
controller.

In this paper, we will investigate the exponential stability
problem of the delayed BAM neural networks under the
proposed sliding intermittent control.The closed-loop neural
system becomes a switched network where the switching
rules are dependent on the time index. To the best of the
authors’ knowledge, this is the first time in the literature
to consider such a joint controller. The rest of the paper is
organized as follows. In Section 2, the model discussed in
this paper and the novel sliding intermittent control idea
are introduced, and some preliminaries are also given. In
Section 3, several sufficient criteria are established to ensure
the delayed BAM neural networks to be exponentially stable
under the sliding intermittent control scheme. Meanwhile,
several particular cases are discussed. In Section 4, two illus-
trative examples are given to demonstrate the effectiveness of
the proposed results. And finally, the paper is concluded in
Section 5.

2. Problem Formulation and
Some Preliminaries

The delayed bidirectional associative memory (BAM) neural
networks have been investigated in [8, 9] as follows:

̇𝑤
𝑖
(𝑡) = −𝑎

𝑖
𝑤

𝑖
(𝑡) +

𝑚

∑

𝑗=1

𝑝
𝑖𝑗
𝑓
𝑗
(𝑧

𝑗
(𝑡 − 𝜏

𝑖𝑗
)) + 𝑐

𝑖
, 𝑖 ∈ I

𝑛
,

̇𝑧
𝑗
(𝑡) = −𝑏

𝑗
𝑧
𝑗
(𝑡) +

𝑛

∑

𝑖=1

𝑞
𝑗𝑖
𝑔
𝑖
(𝑤

𝑖
(𝑡 − 𝜎

𝑗𝑖
)) + 𝑑

𝑗
, 𝑗 ∈ I

𝑚
,

(1)

where the index set I
𝑛

= {1, 2, . . . , 𝑛}, I
𝑚

= {1, 2, . . . ,

𝑚}; 𝑤
𝑖
(𝑡), 𝑧

𝑗
(𝑡) ∈ R are the activations of the 𝑖th neuron

Impulsive
control

Continuous
feedback control

Impulsive
control

Continuous
feedback control

One period

TT

T: period
𝜃: width (0 ≤ 𝜃 ≤ 1)

t

𝜃T 𝜃T

· · ·

Figure 1: Sketch map of the sliding intermittent control.

and the 𝑗th neuron, respectively; 𝑎
𝑖
, 𝑏

𝑗
are positive constants

denoting the rates with which the cells 𝑖 and 𝑗 reset
their potential to the resting states when isolated from
the other cells and inputs; time delays 𝜏

𝑖𝑗
and 𝜎

𝑗𝑖
are

nonnegative constants corresponding to the finite speeds of
axonal signal transmission with 𝜏

∗
= max

𝑖,𝑗
{𝜏

𝑖𝑗
, 𝜎

𝑗𝑖
}; 𝑝

𝑖𝑗

and 𝑞
𝑗𝑖
are the delayed connection weights denoting

the strengths of connectivity between the cells 𝑗 and 𝑖; 𝑐
𝑖

and 𝑑
𝑗
denote, respectively, the 𝑖th and the 𝑗th components

of an external input source introduced from the network
outside to the cells 𝑖 and 𝑗; 𝑓

𝑗
and 𝑔

𝑖
are bounded non-

linear activation functions, and throughout this paper they
are assumed to satisfy the following conditions:


𝑓
𝑗
(]

1
) − 𝑓

𝑗
(]

2
)

≤ 𝐿

𝑓

𝑗

]1 − ]
2

 ,

𝑔𝑖 (]1) − 𝑔
𝑖
(]

2
)
 ≤ 𝐿

𝑔

𝑖

]1 − ]
2

 ,

(2)

where ]
1
, ]

2
∈ R and 𝑖 ∈ I

𝑛
, 𝑗 ∈ I

𝑚
; positive scalars 𝐿𝑓

𝑗
,

𝐿
𝑔

𝑖
are known.

Remark 1. The above conditions are general in the literature
to study the existence and uniqueness of the equilibrium for
the delayed BAM neural networks (1) without assuming the
activation functions to be monotonic or differentiable [27–
29].

Letting (𝑤
∗
, 𝑧

∗
) with 𝑤

∗
= (𝑤

∗

1
, 𝑤

∗

2
, . . . , 𝑤

∗

𝑛
)
𝑇

∈

R𝑛 and 𝑧
∗
= (𝑧

∗

1
, 𝑧

∗

2
, . . . , 𝑧

∗

𝑚
)
𝑇
∈ R𝑚 be an equilibrium of

the system (1) and denoting 𝑥
𝑖
(𝑡) = 𝑤

𝑖
(𝑡)−𝑤

∗

𝑖
, 𝑦

𝑗
(𝑡) = 𝑧

𝑗
(𝑡)−

𝑧
∗

𝑗
, the equilibrium of the network (1) can be transformed to

the origin of the following system:

̇𝑥
𝑖
(𝑡) = −𝑎

𝑖
𝑥
𝑖
(𝑡) +

𝑚

∑

𝑗=1

𝑝
𝑖𝑗
𝑓
𝑗
(𝑦

𝑗
(𝑡 − 𝜏

𝑖𝑗
)) , 𝑖 ∈ I

𝑛
,

̇𝑦
𝑗
(𝑡) = −𝑏

𝑗
𝑦
𝑗
(𝑡) +

𝑛

∑

𝑖=1

𝑞
𝑗𝑖
𝑔
𝑖
(𝑥

𝑖
(𝑡 − 𝜎

𝑗𝑖
)) , 𝑗 ∈ I

𝑚
,

(3)

where 𝑓
𝑗
(𝑦

𝑗
) = 𝑓

𝑗
(𝑦

𝑗
+𝑧

∗

𝑗
) −𝑓

𝑗
(𝑧

∗

𝑗
) and 𝑔

𝑖
(𝑥

𝑖
) = 𝑔

𝑖
(𝑥

𝑖
+𝑤

∗

𝑖
)−

𝑔
𝑖
(𝑤

∗

𝑖
).

It is generally known that, under some specific cases such
as the abrupt changes of system parameters or the occurrence
of time delays, the network may present unstable dynamics
such as bifurcation, oscillation, divergence, or instability. In
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this paper, we will focus on the unstable delayed BAM neural
system (3). To stabilize the network (3), the novel sliding
intermittent control scheme is imposed as follows:

̇𝑥
𝑖
(𝑡) = −𝑎

𝑖
𝑥
𝑖
(𝑡) +

𝑚

∑
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where 𝑖 ∈ I
𝑛
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; 𝑙 ∈ N+

0
≜ {0, 1, 2, . . . , } and 𝑘 ∈ N+

≜

{1, 2, . . .}; constant 𝜃 ∈ [0, 1] and 𝑇 are scalars denoting the
control width and the control period, respectively; Δ𝑥
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𝑘
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𝑘
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𝑗
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+
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𝑗
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𝑗
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−
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𝑘
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𝑘→∞

𝑡
𝑘
= ∞,

𝑡
𝑘
∈ ⋃

𝑙∈N+
0
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𝑢
(1)

𝑖
(𝑡), 𝑢(2)

𝑗
(𝑡) are controllers imposed on the system (3)

when 𝑡 ∈ [𝑙𝑇, (𝑙 + 𝜃)𝑇), and 𝐼
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𝑘
(⋅), 𝐼(2)

𝑘
(⋅) are the impulsive

operators imposed at the impulsive moments {𝑡
𝑘
}
∞
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. Here

we use the linear state feedback and linear impulsive control
strategies; that is,
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𝑖
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𝑗
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, and ℎ(2)

𝑗𝑘
are gain constants.

Remark 2. The sliding intermittent control idea is illustrated
in Figure 1 with the adjustable parameter 𝜃 (i.e., the control

width 𝜃 shown in Figure 1). The closed-loop system (4) can
be the continuous controlled neural networks (𝜃 = 1), the
impulsive controlled neural networks (𝜃 = 0), or the hybrid
controlled neural networks (0 < 𝜃 < 1).

The system (4) is supplementedwith initial function given
by 𝑥

𝑖
(𝑠) = 𝜑

𝑖
(𝑠), 𝑦

𝑗
(𝑠) = 𝜓

𝑗
(𝑠), −𝜏∗ ≤ 𝑠 ≤ 0, where

𝜑(𝑠) = (𝜑
1
(𝑠), 𝜑

2
(𝑠), . . . , 𝜑

𝑛
(𝑠))

𝑇
∈ 𝐶([−𝜏

∗
, 0],R𝑛

), 𝜓(𝑠) =

(𝜓
1
(𝑠), 𝜓

2
(𝑠), . . . , 𝜓

𝑚
(𝑠))

𝑇
∈ 𝐶([−𝜏

∗
, 0],R𝑚

), and 𝐶([−𝜏
∗
, 0],

R𝑛
) represents the set of all 𝑛-dimensional continuous func-

tions defined on the interval [−𝜏∗, 0]. Obviously, the solution
of (4) is piecewise left-hand continuous with possible discon-
tinuity at 𝑡 = 𝑡

𝑘
for 𝑘 ∈ N+.

The following definition and lemmas are introduced
before we give the main results of the paper.

Definition 3. The system (4) is said to be globally exponen-
tially stable if there exist constants 𝛼 > 0, 𝛽 > 0 such that
for all 𝑡 > 0,

𝑛

∑

𝑖=1

𝑥𝑖 (𝑡)
 +

𝑚

∑

𝑗=1


𝑦
𝑗
(𝑡)


≤ 𝛽𝑒
−𝛼𝑡 sup

−𝜏
∗
≤𝑠≤0

(

𝑛

∑

𝑖=1

𝜑𝑖 (𝑠)
 +

𝑚

∑

𝑗=1


𝜓
𝑗
(𝑠)

)

(7)

holds for all 𝜑(⋅) ∈ 𝐶([−𝜏
∗
, 0],R𝑛

) and 𝜓(⋅) ∈ 𝐶([−𝜏
∗
, 0],

R𝑚
).

Lemma 4 (see [30]). Let 𝑉(⋅) : [𝑡
0
− 𝜏,∞) → [0,∞) be a

continuous function such that

𝑉 (𝑡) ≤ −𝑎𝑉 (𝑡) + 𝑏𝑉 (𝑡) (8)

is satisfied for 𝑡 ≥ 𝑡
0
. If 𝑎 > 𝑏 > 0, then

𝑉 (𝑡) ≤ 𝑉 (𝑡
0
) 𝑒

−𝜆(𝑡−𝑡0), 𝑡 ≥ 𝑡
0
, (9)

where 𝑉(𝑡) = sup
𝑡−𝜏≤𝑠≤𝑡

𝑉(𝑠), 𝜆 > 0 is the unique positive real
root of the equation −𝑎 + 𝜆 + 𝑏𝑒

𝜆𝜏
= 0.

Lemma 5 (see [31]). Let 𝑞 ≥ 0, 𝜏 > 0, 𝜇
𝑘
> 0 (𝑘 = 1, 2, . . .),

and 𝑝 be constants, and assume that 𝑉(𝑡) is a piecewise con-
tinuous nonnegative function satisfying

𝐷
+
𝑉 (𝑡) ≤ 𝑝𝑉 (𝑡) + 𝑞𝑉 (𝑡) , 𝑡 ≥ 𝑡

0
, 𝑡 ̸= 𝑡

𝑘

𝑉 (𝑡
+

𝑘
) ≤ 𝜇

𝑘
𝑉 (𝑡

𝑘
) , 𝑘 = 1, 2, . . . .

(10)

If there exists constant 𝛽 such that

ln 𝜇
𝑘

𝑡
𝑘
− 𝑡

𝑘−1

≤ 𝛽, 𝑝 + 𝑑𝑞 + 𝛽 < 0, (11)

hold for 𝑘 = 1, 2, . . ., then

𝑉 (𝑡) ≤ 𝑑𝑉 (𝑡
0
) 𝑒

−𝜆(𝑡−𝑡0), (12)

where 𝑉(𝑡) = sup
𝑡−𝜏≤𝑠≤𝑡

𝑉(𝑠), 𝑑 = sup
𝑘
{𝑒

𝛽(𝑡𝑘−𝑡𝑘−1),

𝑒
−𝛽(𝑡𝑘−𝑡𝑘−1)} < ∞, and 𝜆 is the unique positive root of the
equation 𝜆 + 𝑝 + 𝑑𝑞𝑒

𝜆𝜏
+ 𝛽 = 0.
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3. Main Results

In this section, some sufficient criteria will be given based
on the sliding intermittent control scheme. First, the global
exponential stability of the closed-loop hybrid neural net-
works (4) is analyzed, and then several criteria are obtained
by setting different parameters in the sliding intermittent
controller.

Theorem 6. Assume the upper bound delay 𝜏∗ < min{𝜃𝑇,
(1 − 𝜃)𝑇} and the external imposed impulsive strengths
satisfy ℎ(1)

𝑖𝑘
, ℎ

(2)

𝑗𝑘
̸= − 1. Under the sliding intermittent control,

the closed-loop control system (4) is globally exponentially
stable if there exist constants 𝛽 and 𝑘

(1)

𝑖
, 𝑘

(2)

𝑗
such that the

following conditions hold:
(i)

𝑎
𝑖
− 𝑘

(1)

𝑖
> 𝐿

𝑔

𝑖

𝑚

∑

𝑗=1


𝑞
𝑗𝑖


, 𝑖 ∈ I

𝑛
,

𝑏
𝑗
− 𝑘

(2)

𝑗
> 𝐿

𝑓

𝑗

𝑛

∑

𝑖=1


𝑝
𝑖𝑗


, 𝑗 ∈ I

𝑚
,

(13)

(ii)

ln 𝜇
𝑘+1

𝑡
𝑘+1

− 𝑡
𝑘

≤ 𝛽, 𝜌 + 𝑑�̃�
1
+ 𝛽 < 0,

𝑘 ∈ N
+
\ {𝑖

𝑙
| 𝑙 = 0, 1, 2, . . .} ,

(14)

(iii)

𝑎
1
> �̃�

1
,  ≜ 𝜂 + 𝜆

1
(𝜃 − 𝛾) − 𝜆

2
(𝜃 + 𝛾) −

ln 𝑑
𝑇

> 0,

(15)

where 𝑎
1
= min

𝑖,𝑗
{𝑎

𝑖
− 𝑘

(1)

𝑖
− 𝜂, 𝑏

𝑗
− 𝑘

(2)

𝑗
− 𝜂}; �̃�

1
= max

𝑖
{𝐿

𝑔

𝑖

∑
𝑚

𝑗=1
|𝑞

𝑗𝑖
|𝑒
𝜂𝜎𝑗𝑖} + max

𝑗
{𝐿

𝑓

𝑗
∑

𝑛

𝑖=1
|𝑝

𝑖𝑗
|𝑒
𝜂𝜏𝑖𝑗};𝜇

𝑘
= max

𝑖,𝑗
{|1 +

ℎ
(1)

𝑖𝑘
|, |1 + ℎ

(2)

𝑗𝑘
|}; 𝜌 = max

𝑖,𝑗
{𝜂 − 𝑎

𝑖
, 𝜂 − 𝑏

𝑗
}; 𝑑 = sup

𝑘
{𝑒

𝛽(𝑡𝑘+1−𝑡𝑘),

𝑒
−𝛽(𝑡𝑘+1−𝑡𝑘)}; 𝑡

𝑖𝑙
is used to denote the last impulsive moment on

the interval [(𝑙 + 𝜃)𝑇, (𝑙 + 1)𝑇) with 𝑡
𝑖𝑙
< (𝑙 + 1)𝑇 − 𝜏

∗; 𝛾 =

𝜏
∗
/𝑇; 0 < 𝜂 ≤ 𝜂

∗; 𝜂∗ = min
𝑖,𝑗
{𝜃

∗

𝑖
, 𝜗

∗

𝑗
| 𝐹

𝑖
(𝜃

∗

𝑖
) = 0, 𝐺

𝑗
(𝜗

∗

𝑗
) =

0} with functions 𝐹
𝑖
(⋅), 𝐺

𝑗
(⋅) defined as

𝐹
𝑖
(𝜃

𝑖
) = 𝑎

𝑖
− 𝑘

(1)

𝑖
− 𝜃

𝑖
−

𝑚

∑

𝑗=1


𝑞
𝑗𝑖


𝐿
𝑔

𝑖
𝑒
𝜃𝑖𝜎𝑗𝑖 , 𝜃

𝑖
∈ [0,∞) ,

𝐺
𝑗
(𝜗

𝑗
) = 𝑏

𝑗
− 𝑘

(2)

𝑗
− 𝜗

𝑗
−

𝑛

∑

𝑖=1


𝑝
𝑖𝑗


𝐿
𝑓

𝑗
𝑒
𝜗𝑗𝜏𝑖𝑗 , 𝜗

𝑗
∈ [0,∞) ,

(16)

and 𝜆
1
, 𝜆

2
are, respectively, the unique positive real root of the

equations −𝑎
1
+𝜆

1
+�̃�

1
𝑒
𝜆1𝜏
∗

= 0 and 𝜆
2
+𝜌+𝑑�̃�

1
𝑒
𝜆2𝜏
∗

+𝛽 = 0.

More specifically, we have the following inequality:

𝑛

∑

𝑖=1

𝑥𝑖 (𝑡)
 +

𝑚

∑

𝑗=1


𝑦
𝑗
(𝑡)


≤ 𝑀𝑒
−𝑡 sup

−𝜏
∗
≤𝑠≤0

(

𝑛

∑

𝑖=1

𝜑𝑖 (𝑠)
 +

𝑚

∑

𝑗=1


𝜓
𝑗
(𝑠)

) , 𝑡 > 0,

(17)

with 𝑀 = max{𝑒𝜆1(𝜃−𝛾)𝜃𝑇, 𝑒𝜆2(1−𝜃−𝛾)𝜃𝑇+(1−𝜃) ln 𝑑}.

Proof. For the functions 𝐹
𝑖
(⋅) and 𝐺

𝑗
(⋅) defined in (16), from

the condition (13), it is clear that

𝐹
𝑖
(0) = 𝑎

𝑖
− 𝑘

(1)

𝑖
−

𝑚

∑

𝑗=1


𝑞
𝑗𝑖


𝐿
𝑔

𝑖
> 0,

𝐺
𝑗
(0) = 𝑏

𝑗
− 𝑘

(2)

𝑗
−

𝑛

∑

𝑖=1


𝑝
𝑖𝑗


𝐿
𝑓

𝑗
> 0.

(18)

Since 𝐹
𝑖
(⋅) and 𝐺

𝑗
(⋅) are continuous on [0,∞) and

lim
𝜃𝑖→∞

𝐹
𝑖
(𝜃

𝑖
) = −∞, lim

𝜗𝑗→∞
𝐺
𝑗
(𝜗

𝑗
) = −∞, there must

exist constants 𝜃∗
𝑖

> 0 and 𝜗
∗

𝑗
> 0 such that 𝐹

𝑖
(𝜃

∗

𝑖
) =

0 and 𝐺
𝑗
(𝜗

∗

𝑗
) = 0. By setting 𝜂

∗
= min{𝜃∗

1
, 𝜃

∗

2
, . . . ,

𝜃
∗

𝑛
, 𝜗

∗

1
, 𝜗

∗

2
, . . . , 𝜗

∗

𝑚
}, one obtains that, for any 0 < 𝜂 ≤ 𝜂

∗,

𝐹
𝑖
(𝜂) = 𝑎

𝑖
− 𝑘

(1)

𝑖
− 𝜂 −

𝑚

∑

𝑗=1


𝑞
𝑗𝑖


𝐿
𝑔

𝑖
𝑒
𝜂𝜎𝑗𝑖 ≥ 0,

𝐺
𝑗
(𝜂) = 𝑏

𝑗
− 𝑘

(2)

𝑗
− 𝜂 −

𝑛

∑

𝑖=1


𝑝
𝑖𝑗


𝐿
𝑓

𝑗
𝑒
𝜂𝜏𝑖𝑗 ≥ 0.

(19)

Now consider the Lyapunov function defined as follows:

𝑉 (𝑡) =

𝑛

∑

𝑖=1

𝑢
𝑖
(𝑡) +

𝑚

∑

𝑗=1

V
𝑗
(𝑡) , 𝑡 ≥ 0, (20)

where 𝑢
𝑖
(𝑡) = 𝑒

𝜂𝑡
|𝑥

𝑖
(𝑡)| and V

𝑗
(𝑡) = 𝑒

𝜂𝑡
|𝑦

𝑗
(𝑡)|. Obviously,

𝑉(𝑡) is a positive definite function for 𝑡 ≥ 0.
(1)When 𝑡 ∈ [𝑙𝑇, (𝑙 + 𝜃)𝑇), 𝑙 ∈ N+

0
, one is easy to have

𝐷
+
𝑢
𝑖
(𝑡) ≤ − (𝑎

𝑖
− 𝑘

(1)

𝑖
− 𝜂) 𝑢

𝑖
(𝑡)

+

𝑚

∑

𝑗=1


𝑝
𝑖𝑗


𝐿
𝑓

𝑗
𝑒
𝜂𝜏𝑖𝑗V

𝑗
(𝑡 − 𝜏

𝑖𝑗
) ,

𝐷
+V

𝑗
(𝑡) ≤ − (𝑏

𝑗
− 𝑘

(2)

𝑗
− 𝜂) V

𝑗
(𝑡)

+

𝑛

∑

𝑖=1


𝑞
𝑗𝑖


𝐿
𝑔

𝑖
𝑒
𝜂𝜎𝑗𝑖𝑢

𝑖
(𝑡 − 𝜎

𝑗𝑖
) .

(21)
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Calculating the upper right Dini derivative of 𝑉(𝑡) along the
solutions of network (4), from the above inequality, we get

𝐷
+
𝑉 (𝑡) ≤ −

𝑛

∑

𝑖=1

(𝑎
𝑖
− 𝑘

(1)

𝑖
− 𝜂) 𝑢

𝑖
(𝑡)

−

𝑚

∑

𝑗=1

(𝑏
𝑗
− 𝑘

(2)

𝑗
− 𝜂) V

𝑗
(𝑡)

+

𝑛

∑

𝑖=1

𝑚

∑

𝑗=1


𝑝
𝑖𝑗


𝐿
𝑓

𝑗
𝑒
𝜂𝜏𝑖𝑗V

𝑗
(𝑡 − 𝜏

𝑖𝑗
)

+

𝑚

∑

𝑗=1

𝑛

∑

𝑖=1


𝑞
𝑗𝑖


𝐿
𝑔

𝑖
𝑒
𝜂𝜎𝑗𝑖𝑢

𝑖
(𝑡 − 𝜎

𝑗𝑖
)

≤ − 𝑎
1
𝑉 (𝑡) + �̃�

1
( sup
𝑡−𝜏
∗
≤𝑠≤𝑡

𝑉 (𝑠)) ,

(22)

where 𝑎
1
= min

𝑖,𝑗
{𝑎

𝑖
−𝑘

(1)

𝑖
−𝜂, 𝑏

𝑗
−𝑘

(2)

𝑗
−𝜂} and �̃�

1
= max

𝑖
{𝐿

𝑔

𝑖

∑
𝑚

𝑗=1
|𝑞

𝑗𝑖
|𝑒
𝜂𝜎𝑗𝑖}+max

𝑗
{𝐿

𝑓

𝑗
∑

𝑛

𝑖=1
|𝑝

𝑖𝑗
|𝑒
𝜂𝜏𝑖𝑗}. By Lemma 4, one has

𝑉 (𝑡) ≤ 𝑒
−𝜆1(𝑡−𝑙𝑇) ( sup

𝑙𝑇−𝜏
∗
≤𝑠≤𝑙𝑇

𝑉 (𝑠)) = 𝑒
−𝜆1(𝑡−𝑙𝑇)𝑉 (𝑙𝑇) ,

𝑡 ∈ [𝑙𝑇, (𝑙 + 𝜃) 𝑇) ,

(23)

where 𝜆
1
is the unique positive real root of the

equation −𝑎
1
+ 𝜆

1
+ �̃�

1
𝑒
𝜆1𝜏
∗

= 0.
(2)When 𝑡 ∈ [(𝑙+𝜃)𝑇, (𝑙+1)𝑇) and 𝑡 ̸= 𝑡

𝑘
, 𝑙 ∈ N+

0
, 𝑘 ∈ N+,

it is easy to have

𝐷
+
𝑢
𝑖
(𝑡) ≤ − (𝑎

𝑖
− 𝜂) 𝑢

𝑖
(𝑡) +

𝑚

∑

𝑗=1


𝑝
𝑖𝑗


𝐿
𝑓

𝑗
𝑒
𝜂𝜏𝑖𝑗V

𝑗
(𝑡 − 𝜏

𝑖𝑗
) ,

𝐷
+V

𝑗
(𝑡) ≤ − (𝑏

𝑗
− 𝜂) V

𝑗
(𝑡) +

𝑛

∑

𝑖=1


𝑞
𝑗𝑖


𝐿
𝑔

𝑖
𝑒
𝜂𝜎𝑗𝑖𝑢

𝑖
(𝑡 − 𝜎

𝑗𝑖
) .

(24)

Without loss of generality, suppose 𝑡 ∈ (𝑡
𝑘−1

, 𝑡
𝑘
], 𝑘 ≤ 𝑖

𝑙
,

where 𝑡
𝑖𝑙
is assumed to be the last impulsive moment on the

interval [(𝑙 +𝜃)𝑇, (𝑙 +1)𝑇). It follows from the inequality (24)
that

𝐷
+
𝑉 (𝑡) ≤

𝑛

∑

𝑖=1

(𝜂 − 𝑎
𝑖
) 𝑢

𝑖
(𝑡) +

𝑚

∑

𝑗=1

(𝜂 − 𝑏
𝑗
) V

𝑗
(𝑡)

+

𝑛

∑

𝑖=1

(𝐿
𝑔

𝑖

𝑚

∑

𝑗=1

𝑒
𝜂𝜎𝑗𝑖


𝑞
𝑗𝑖


) 𝑢

𝑖
(𝑡 − 𝜎

𝑗𝑖
)

+

𝑚

∑

𝑗=1

(𝐿
𝑓

𝑗

𝑛

∑

𝑖=1

𝑒
𝜂𝜏𝑖𝑗


𝑝
𝑖𝑗


) V

𝑗
(𝑡 − 𝜏

𝑖𝑗
)

≤ 𝜌𝑉 (𝑡) + �̃�
1
( sup
𝑡−𝜏
∗
≤𝑠≤𝑡

𝑉 (𝑠)) ,

(25)

where 𝜌 = max
𝑖,𝑗
{𝜂−𝑎

𝑖
, 𝜂−𝑏

𝑗
}; �̃�

1
= max

𝑖
{𝐿

𝑔

𝑖
∑

𝑚

𝑗=1
𝑒
𝜂𝜎𝑗𝑖 |𝑞

𝑗𝑖
|}+

max
𝑗
{𝐿

𝑓

𝑗
∑

𝑛

𝑖=1
𝑒
𝜂𝜏𝑖𝑗 |𝑝

𝑖𝑗
|}.

When 𝑡 ∈ [(𝑙 + 𝜃)𝑇, (𝑙 + 1)𝑇) and 𝑡 = 𝑡
𝑘
,

𝑥
𝑖
(𝑡

+

𝑘
) = 𝑥

𝑖
(𝑡

𝑘
) + 𝐼

(1)

𝑘
(𝑥

𝑖
(𝑡

𝑘
)) = (1 + ℎ

(1)

𝑖𝑘
) 𝑥

𝑖
(𝑡

𝑘
) ,

𝑦
𝑗
(𝑡

+

𝑘
) = 𝑦

𝑗
(𝑡

𝑘
) + 𝐼

(2)

𝑘
(𝑦

𝑗
(𝑡

𝑘
)) = (1 + ℎ

(2)

𝑗𝑘
) 𝑦

𝑗
(𝑡

𝑘
) .

(26)

Considering the condition that ℎ(1)
𝑖𝑘
, ℎ

(2)

𝑗𝑘
̸= − 1, we have 𝜇

𝑘
>

0 and

𝑢
𝑖
(𝑡

+

𝑘
) = 𝑒

𝜂𝑡
+

𝑘
𝑥𝑖 (𝑡

+

𝑘
)


≤

1 + ℎ

(1)

𝑖𝑘


𝑢
𝑖
(𝑡

𝑘
) ≤ 𝜇

𝑘
𝑢
𝑖
(𝑡

𝑘
) , 𝑖 ∈ I

𝑛
,

V
𝑗
(𝑡

+

𝑘
) = 𝑒

𝜂𝑡
+

𝑘

𝑦
𝑗
(𝑡

+

𝑘
)


≤

1 + ℎ

(2)

𝑗𝑘


V
𝑗
(𝑡

𝑘
) ≤ 𝜇

𝑘
V
𝑗
(𝑡

𝑘
) , 𝑗 ∈ I

𝑚
,

(27)

which infers that

𝑉 (𝑡
+

𝑘
) =

𝑛

∑

𝑖=1

𝑢
𝑖
(𝑡

+

𝑘
) +

𝑚

∑

𝑗=1

V
𝑗
(𝑡

+

𝑘
) ≤ 𝜇

𝑘
𝑉 (𝑡

𝑘
) . (28)

From condition (14) and Lemma 5, one has

𝑉 (𝑡) ≤ 𝑑𝑒
−𝜆2(𝑡−(𝑙+𝜃)𝑇)𝑉 ((𝑙 + 𝜃) 𝑇) ,

𝑡 ∈ [(𝑙 + 𝜃) 𝑇, (𝑙 + 1) 𝑇) ,

(29)

where 𝑑 = sup
𝑘
{𝑒

𝛽(𝑡𝑘−𝑡𝑘−1), 𝑒
−𝛽(𝑡𝑘−𝑡𝑘−1)} and 𝜆

2
is the unique

positive real root of the equation 𝜆
2
+ 𝜌 + 𝑑�̃�

1
𝑒
𝜆2𝜏
∗

+ 𝛽 = 0.
(3) Now, we are ready to estimate 𝑉(𝑡) based on the

inequalities (23) and (29) with the method of induction.

When 𝑡 ∈ [0, 𝜃𝑇), one obtains

𝑉 (𝑡) ≤ 𝑒
−𝜆1𝑡𝑉 (0) . (30)

When 𝑡 ∈ [𝜃𝑇, 𝑇), one can derive

𝑉 (𝑡) ≤ 𝑑𝑒
−𝜆2(𝑡−𝜃𝑇)𝑉 (𝜃𝑇)

≤ 𝑑𝑒
−[𝜆2(𝑡−𝜃𝑇)+𝜆1(𝜃𝑇−𝜏

∗
)]
𝑉 (0) .

(31)

When 𝑡 ∈ [𝑇, (1 + 𝜃)𝑇), we have

𝑉 (𝑡) ≤ 𝑒
−𝜆1(𝑡−𝑇)𝑉 (𝑇)

≤ 𝑑𝑒
−[𝜆2(𝑇−𝜏

∗
−𝜃𝑇)+𝜆1(𝑡−(1−𝜃)𝑇−𝜏

∗
)]
𝑉 (0) .

(32)

When 𝑡 ∈ [(1 + 𝜃)𝑇, 2𝑇), one can derive

𝑉 (𝑡) ≤ 𝑑𝑒
−𝜆2(𝑡−(1+𝜃)𝑇)𝑉 ((1 + 𝜃) 𝑇)

≤ 𝑑
2
𝑒
−[𝜆2(𝑡−2𝜃𝑇−𝜏

∗
)+2𝜆1(𝜃𝑇−𝜏

∗
)]
𝑉 (0) .

(33)
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By induction, one can derive the following estimation
of 𝑉(𝑡) for any integer 𝑙 ∈ N+

0
:

when 𝑡 ∈ [𝑙𝑇, (𝑙 + 𝜃)𝑇),

𝑉 (𝑡) ≤ 𝑑
𝑙
𝑒
−[𝑙𝜆2(𝑇−𝜃𝑇−𝜏

∗
)+𝜆1(𝑡−𝑙(𝑇−𝜃𝑇+𝜏

∗
))]
𝑉 (0) , (34)

and when 𝑡 ∈ [(𝑙 + 𝜃)𝑇, (𝑙 + 1)𝑇),

𝑉 (𝑡) ≤ 𝑑
𝑙+1
𝑒
−[𝜆2(𝑡−(𝑙+1)𝜃𝑇−𝑙𝜏

∗
)+(𝑙+1)𝜆1(𝜃𝑇−𝜏

∗
)]
𝑉 (0) . (35)

By setting 𝛾 = 𝜏
∗
/𝑇 and substituting it to the above two

inequalities, one has, for 𝑡 ∈ [𝑙𝑇, (𝑙 + 𝜃)𝑇),

𝑉 (𝑡) ≤ 𝑑
𝑙
𝑒
−[𝜆2𝑙𝑇(1−𝜃−𝛾)+𝜆1(𝑡−𝑙𝑇)+𝜆1(𝜃−𝛾)𝑙𝑇]𝑉 (0)

≤ 𝑑
𝑙
𝑒
[𝜆2(𝜃+𝛾)𝑙𝑇−𝜆1(𝜃−𝛾)𝑙𝑇]𝑉 (0)

≤ 𝑑
𝑙
𝑒
[𝜆2(𝜃+𝛾)𝑡+𝜆1(𝜃−𝛾)(−𝑡+𝜃𝑇)]𝑉 (0)

= 𝑑
𝑙
𝑒
−[𝜆1(𝜃−𝛾)−𝜆2(𝜃+𝛾)]𝑡𝑒

𝜆1(𝜃−𝛾)𝜃𝑇𝑉 (0)

≤ 𝑒
(ln 𝑑/𝑇)𝑡

𝑒
−[𝜆1(𝜃−𝛾)−𝜆2(𝜃+𝛾)]𝑡𝑒

𝜆1(𝜃−𝛾)𝜃𝑇𝑉 (0)

≤ 𝑒
−[𝜆1(𝜃−𝛾)−𝜆2(𝜃+𝛾)−((ln 𝑑)/𝑇)]𝑡𝑀𝑉(0) ,

(36)

and, for 𝑡 ∈ [(𝑙 + 𝜃)𝑇, (𝑙 + 1)𝑇),

𝑉 (𝑡) ≤ 𝑑
𝑙+1
𝑒
−[𝜆2(𝑡−(𝑙+1)𝜃𝑇−𝑙𝛾𝑇)+𝜆1(𝜃−𝛾)(𝑙+1)𝑇]𝑉 (0)

≤ 𝑑
𝑙+1
𝑒
[𝜆2𝜃𝑇+𝜆2𝑙𝑇(𝜃+𝛾)−𝜆1(𝜃−𝛾)𝑡]𝑉 (0)

≤ 𝑑
𝑙+1
𝑒
[𝜆2𝜃𝑇+𝜆2(𝑡−𝜃𝑇)(𝜃+𝛾)−𝜆1(𝜃−𝛾)𝑡]𝑉 (0)

= 𝑑
𝑙+1
𝑒
[𝜆2(𝜃+𝛾)𝑡−𝜆1(𝜃−𝛾)𝑡]+𝜆2𝜃𝑇(1−𝜃−𝛾)𝑉 (0)

≤ 𝑒
((𝑡/𝑇)−𝜃+1) ln 𝑑

𝑒
−[𝜆1(𝜃−𝛾)−𝜆2(𝜃+𝛾)]𝑡𝑒

𝜆2𝜃𝑇(1−𝜃−𝛾)𝑉 (0)

≤ 𝑒
−[𝜆1(𝜃−𝛾)−𝜆2(𝜃+𝛾)−((ln 𝑑)/𝑇)]𝑡𝑀𝑉(0) .

(37)

Therefore, we have

𝑉 (𝑡) ≤ 𝑒
−[𝜆1(𝜃−𝛾)−𝜆2(𝜃+𝛾)−((ln 𝑑)/𝑇)]𝑡𝑀𝑉(0) , 𝑡 > 0, (38)

which means that, for any 𝑡 > 0,

𝑛

∑

𝑖=1

𝑥𝑖 (𝑡)
 +

𝑚

∑

𝑗=1


𝑦
𝑗
(𝑡)


≤ 𝑒
−[𝜂+𝜆1(𝜃−𝛾)−𝜆2(𝜃+𝛾)−((ln 𝑑)/𝑇)]𝑡𝑀𝑉(0) ,

(39)

where 𝑀 = max{𝑒𝜆1(𝜃−𝛾)𝜃𝑇, 𝑒𝜆2(1−𝜃−𝛾)𝜃𝑇+(1−𝜃) ln 𝑑}. And the
conclusion that the origin of network (4) is exponentially
stable. The proof is complete.

Remark 7. In the above Theorem 6, the control width 𝜃 ∈

(0, 1) which does not include the boundary cases. If the
parameter 𝜃 → 0, the controlled system approximates to

impulsive neural networks. If the parameter 𝜃 → 1, the con-
trolled system approximates to continuous neural networks.
And the controlled system can be handled, respectively, by
the methods of the impulsive system and the continuous
system. In order to avoid such boundary cases, usually we can
take 𝜃 = 0.5; that is, the periodically intermittent controller
and the impulsive controller play a significant role in the
process of control; this results a switched neural networks.

Remark 8. Most of the literatures [28, 32] concerning the
global exponential stability of the delayed BAM neural
networks with impulses have focused on the stable system.
Namely, without the impulsive disturbance, the original neu-
ral networks are stable, and under the impulsive disturbance
the system can still be kept stable with particular conditions.
While, in this article, the impulses can be viewed as either
control input or impulsive disturbance, at the same time, the
original system is not required to be stable initially.

If adjustable parameter 𝜃 = 1, the controlled system turns
out to be the following model; that is, the original unsta-
ble system (3) is controlled with the continuous feedback
controller. Under such case, the conditions in the following
proposition will guarantee the closed-loop system to be
globally exponentially stable:

̇𝑥
𝑖
(𝑡) = −𝑎

𝑖
𝑥
𝑖
(𝑡) +

𝑚

∑

𝑗=1

𝑝
𝑖𝑗
𝑓
𝑗
(𝑦

𝑗
(𝑡 − 𝜏

𝑖𝑗
))

+ 𝑢
(1)

𝑖
(𝑡) , 𝑖 ∈ I

𝑛
,

̇𝑦
𝑗
(𝑡) = −𝑏

𝑗
𝑦
𝑗
(𝑡) +

𝑛

∑

𝑖=1

𝑞
𝑗𝑖
𝑔
𝑖
(𝑥

𝑖
(𝑡 − 𝜎

𝑗𝑖
))

+ 𝑢
(2)

𝑗
(𝑡) , 𝑗 ∈ I

𝑚
.

(40)

Proposition 9. Under the continuous feedback control
scheme, the origin of the closed-loop control system (40) is
globally exponentially stable if there exist constants 𝑘(1)

𝑖

and 𝑘
(2)

𝑗
such that

𝑎
𝑖
− 𝑘

(1)

𝑖
> 𝐿

𝑔

𝑖

𝑚

∑

𝑗=1


𝑞
𝑗𝑖


, 𝑖 ∈ I

𝑛
,

𝑏
𝑗
− 𝑘

(2)

𝑗
> 𝐿

𝑓

𝑗

𝑛

∑

𝑖=1


𝑝
𝑖𝑗


, 𝑗 ∈ I

𝑚
.

(41)

Furthermore, one has the following inequality:

𝑛

∑

𝑖=1

𝑥𝑖 (𝑡)
 +

𝑚

∑

𝑗=1


𝑦
𝑗
(𝑡)


≤ (�̃�
1
𝜏
∗
+ 1) 𝑒

−𝜂𝑡 sup
−𝜏
∗
≤𝑠≤0

(

𝑛

∑

𝑖=1

𝜑𝑖 (𝑠)


+

𝑚

∑

𝑗=1


𝜓
𝑗
(𝑠)

) , 𝑡 > 0,

(42)



Abstract and Applied Analysis 7

where the parameters 𝜂 and �̃�
𝑖
are consistent with the ones in

Theorem 6.

Proof. Consider the Lyapunov function defined as follows:

𝑊(𝑡) = 𝑉 (𝑡)

+

𝑛

∑

𝑖=1

𝑚

∑

𝑗=1

(

𝑝
𝑖𝑗


𝐿
𝑓

𝑗
𝑒
𝜂𝜏𝑖𝑗 ∫

𝑡

𝑡−𝜏𝑖𝑗

V
𝑗
(𝑠) d𝑠

+

𝑞
𝑗𝑖


𝐿
𝑔

𝑖
𝑒
𝜂𝜎𝑗𝑖 ∫

𝑡

𝑡−𝜎𝑗𝑖

𝑢
𝑖
(𝑠) d𝑠) , 𝑡 ≥ 0.

(43)

The upper right Dini derivative of 𝑊(𝑡) with respect to
time 𝑡 along the solutions of the network (40) can be calcu-
lated as follows:

𝐷
+
𝑊(𝑡) =

𝑛

∑

𝑖=1

𝐷
+
𝑢
𝑖
(𝑡) +

𝑚

∑

𝑗=1

𝐷
+V

𝑗
(𝑡)

+

𝑛

∑

𝑖=1

𝑚

∑

𝑗=1


𝑝
𝑖𝑗


𝐿
𝑓

𝑗
𝑒
𝜂𝜏𝑖𝑗 [V

𝑗
(𝑡) − V

𝑗
(𝑡 − 𝜏

𝑖𝑗
)]

+

𝑚

∑

𝑗=1

𝑛

∑

𝑖=1


𝑞
𝑗𝑖


𝐿
𝑔

𝑖
𝑒
𝜂𝜎𝑗𝑖 [𝑢

𝑖
(𝑡) − 𝑢

𝑖
(𝑡 − 𝜎

𝑗𝑖
)]

≤ −

𝑛

∑

𝑖=1

(𝑎
𝑖
− 𝑘

(1)

𝑖
− 𝜂 −

𝑚

∑

𝑗=1


𝑞
𝑗𝑖


𝐿
𝑔

𝑖
𝑒
𝜂𝜎𝑗𝑖)𝑢

𝑖
(𝑡)

−

𝑚

∑

𝑗=1

(𝑏
𝑗
− 𝑘

(2)

𝑗
− 𝜂 −

𝑛

∑

𝑖=1


𝑝
𝑖𝑗


𝐿
𝑓

𝑗
𝑒
𝜂𝜏𝑖𝑗) V

𝑗
(𝑡)

= −

𝑛

∑

𝑖=1

𝐹
𝑖
(𝜂) 𝑢

𝑖
(𝑡) −

𝑚

∑

𝑗=1

𝐺
𝑗
(𝜂) V

𝑗
(𝑡) ≤ 0

(44)

whichmeans that 𝑊(𝑡) ≤ 𝑊(0). Hence we have∑𝑛

𝑖=1
|𝑥

𝑖
(𝑡)|+

∑
𝑚

𝑗=1
|𝑦

𝑗
(𝑡)| ≤ (�̃�

1
𝜏
∗
+ 1)𝑒

−𝜂𝑡
𝑉(0), and this completes the

proof.

If the impulsive strengths ℎ(1)
𝑖𝑘

= ℎ
(2)

𝑗𝑘
≡ 0, namely, there

are no impulsive controls on the latter control interval in
each control period, which means the closed-loop system
is only subject to the continuous feedback control in the
preceding control width of each control period. Such a
case is then reduced to the pure periodically intermittent
control, and the neural network system (4) turns into the
following controlled neural network (45). The conditions
in the following proposition will guarantee the closed-loop

system to be globally exponentially stable. In order to obtain
the main result, the following lemma is given firstly

̇𝑥
𝑖
(𝑡) = −𝑎

𝑖
𝑥
𝑖
(𝑡) +

𝑚

∑

𝑗=1

𝑝
𝑖𝑗
𝑓
𝑗
(𝑦

𝑗
(𝑡 − 𝜏

𝑖𝑗
)) + 𝑢

(1)

𝑖
(𝑡) ,

𝑙𝑇 ≤ 𝑡 < (𝑙 + 𝜃) 𝑇,

̇𝑥
𝑖
(𝑡) = −𝑎

𝑖
𝑥
𝑖
(𝑡) +

𝑚

∑

𝑗=1

𝑝
𝑖𝑗
𝑓
𝑗
(𝑦

𝑗
(𝑡 − 𝜏

𝑖𝑗
)) ,

(𝑙 + 𝜃) 𝑇 ≤ 𝑡 < (𝑙 + 1) 𝑇,

̇𝑦
𝑗
(𝑡) = −𝑏

𝑗
𝑦
𝑗
(𝑡) +

𝑛

∑

𝑖=1

𝑞
𝑗𝑖
𝑔
𝑖
(𝑥

𝑖
(𝑡 − 𝜎

𝑗𝑖
)) + 𝑢

(2)

𝑗
(𝑡) ,

𝑙𝑇 ≤ 𝑡 < (𝑙 + 𝜃) 𝑇,

̇𝑦
𝑗
(𝑡) = −𝑏

𝑗
𝑦
𝑗
(𝑡) +

𝑛

∑

𝑖=1

𝑞
𝑗𝑖
𝑔
𝑖
(𝑥

𝑖
(𝑡 − 𝜎

𝑗𝑖
)) ,

(𝑙 + 𝜃) 𝑇 ≤ 𝑡 < (𝑙 + 1) 𝑇.

(45)

Lemma 10 (see [23]). Let 𝑉(⋅): [𝑡
0
− 𝜏,∞) → [0,∞) be a

continuous function such that

𝑉 (𝑡) ≤ 𝑎𝑉(𝑡) + 𝑏 ( sup
𝑡−𝜏≤𝑠≤𝑡

𝑉(𝑠)) (46)

is satisfied for 𝑡 ≥ 𝑡
0
. If 𝑎 > 0, 𝑏 > 0, then

𝑉 (𝑡) ≤ sup
𝑡−𝜏≤𝑠≤𝑡

𝑉(𝑠)

≤ ( sup
𝑡0−𝜏≤𝑠≤𝑡0

𝑉(𝑠)) 𝑒
(𝑎+𝑏)(𝑡−𝑡0), 𝑡 ≥ 𝑡

0
.

(47)

Proposition 11. Assuming the upper bound delay 𝜏∗ <

min{𝜃𝑇, (1−𝜃)𝑇}, under the periodically intermittent control,
the closed-loop control system (45) is globally exponentially
stable if the control gains 𝑘(1)

𝑖
and 𝑘

(2)

𝑗
satisfy the following

conditions:

(i)

𝑎
𝑖
− 𝑘

(1)

𝑖
> 𝐿

𝑔

𝑖

𝑚

∑

𝑗=1


𝑞
𝑗𝑖


, 𝑖 ∈ I

𝑛
,

𝑏
𝑗
− 𝑘

(2)

𝑗
> 𝐿

𝑓

𝑗

𝑛

∑

𝑖=1


𝑝
𝑖𝑗


, 𝑗 ∈ I

𝑚
,

(48)

(ii)

𝑎
1
> �̃�

1
, 𝜂 + 𝜆

1
(𝜃 − 𝛾) − (𝜌 + �̃�

1
) (1 − 𝜃) > 0. (49)
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Moreover, we have
𝑛

∑

𝑖=1

𝑥𝑖 (𝑡)
 +

𝑚

∑

𝑗=1


𝑦
𝑗
(𝑡)


≤ 𝑀𝑒
−[𝜂+𝜆1(𝜃−𝛾)−(𝜌+�̃�1)(1−𝜃)]𝑡

× sup
−𝜏
∗
≤𝑠≤0

(

𝑛

∑

𝑖=1

𝜑𝑖 (𝑠)
 +

𝑚

∑

𝑗=1


𝜓
𝑗
(𝑠)

) , 𝑡 > 0,

(50)

where 𝜌 = max
𝑖,𝑗
{𝜂 − 𝑎

𝑖
, 𝜂 − 𝑏

𝑗
, 𝜅}, and 𝜅 is any positive

constant; �̃� = 𝑒
𝜆1𝜃𝑇(𝜃−𝛾), and the parameters 𝑎

1
, �̃�

1
, 𝜂,

𝜆
1
, and 𝛾 are consistent with those in Theorem 6.

Proof. Considering the same Lyapunov function as that in
Theorem 6, by similar analytical technique, one can get the
following results on the control period and the control width
as follows.

(1) When 𝑡 ∈ [𝑙𝑇, (𝑙 + 𝜃)𝑇), 𝑙 ∈ N+

0
, we have 𝐷+

𝑉(𝑡) ≤

−𝑎
1
𝑉(𝑡) + �̃�

1
𝑉(𝑡). By Lemma 4, one obtains that, for

any 𝑡 ∈ [𝑙𝑇, (𝑙 + 𝜃)𝑇), 𝑉(𝑡) ≤ 𝑒
−𝜆1(𝑡−𝑙𝑇)𝑉(𝑙𝑇).

(2) When 𝑡 ∈ [(𝑙 + 𝜃)𝑇, (𝑙 + 1)𝑇), 𝑙 ∈ N+

0
, we have

𝐷
+
𝑉(𝑡) ≤ 𝜌𝑉(𝑡) + �̃�

1
𝑉(𝑡). By Lemma 10, it is derived

that, for any 𝑡 ∈ [(𝑙 + 𝜃)𝑇, (𝑙 + 1)𝑇), 𝑉(𝑡) ≤

𝑒
(𝜌+�̃�1)(𝑡−(𝑙+𝜃)𝑇)𝑉((𝑙 + 𝜃)𝑇).

From the above inequality relationships, by similar esti-
mation procedure, we can get the following conclusion:

𝑉 (𝑡) ≤ 𝑒
−𝜆1(𝑡−𝑙𝑇)+𝑙(𝜌+�̃�1)(1−𝜃)𝑇−𝜆1𝑙(𝜃−𝜏

∗
)
𝑉 (0) ,

𝑡 ∈ [𝑙𝑇, (𝑙 + 𝜃) 𝑇) ,

𝑉 (𝑡) ≤ 𝑒
−𝜆1(𝑙+1)(𝜃𝑇−𝜏

∗
)+𝑙(𝜌+�̃�1)(1−𝜃)𝑇+(𝜌+�̃�1)(𝑡−𝑙𝑇−𝜃𝑇)𝑉 (0) ,

𝑡 ∈ [(𝑙 + 𝜃) 𝑇, (𝑙 + 1) 𝑇) .

(51)

By the notational expression 𝜏
∗
= 𝛾𝑇, one can further obtain

𝑉 (𝑡) ≤ 𝑒
[−𝜆1(𝜃−𝛾)+(𝜌+�̃�1)(1−𝜃)]𝑡𝑒

𝜆1𝜃𝑇(𝜃−𝛾)𝑉 (0) ,

𝑡 ∈ [𝑙𝑇, (𝑙 + 𝜃) 𝑇) ,

𝑉 (𝑡) ≤ 𝑒
[−𝜆1(𝜃−𝛾)+(𝜌+�̃�1)(1−𝜃)]𝑡𝑉 (0) ,

𝑡 ∈ [(𝑙 + 𝜃) 𝑇, (𝑙 + 1) 𝑇) .

(52)

Hence it follows that, for any 𝑡 > 0,
𝑛

∑

𝑖=1

𝑥𝑖 (𝑡)
 +

𝑚

∑

𝑗=1


𝑦
𝑗
(𝑡)


≤ 𝑀𝑒
−[𝜂+𝜆1(𝜃−𝛾)−(𝜌+�̃�1)(1−𝜃)]𝑡

× sup
−𝜏
∗
≤𝑠≤0

(

𝑛

∑

𝑖=1

𝜑𝑖 (𝑠)
 +

𝑚

∑

𝑗=1


𝜓
𝑗
(𝑠)

) ,

(53)

and this completes the proof.

If the adjustable parameter 𝜃 = 0, that is, the original
unstable system (3) is subjected to the impulsive controller,
then system (4) becomes the following impulsive neural
networks (54). Under such a case, it would be natural to
assume that the frequency of the impulses should not be too
low; that is, some restrictions on the impulsive periods and
the impulsive strengths are needed. The conditions in the
following proposition will guarantee the closed-loop system
(54) to be globally exponentially stable:

̇𝑥
𝑖
(𝑡) = −𝑎

𝑖
𝑥
𝑖
(𝑡) +

𝑚

∑

j=1
𝑝
𝑖𝑗
𝑓
𝑗
(𝑦

𝑗
(𝑡 − 𝜏

𝑖𝑗
)) ,

𝑡 ≥ 0, 𝑡 ̸= 𝑡
𝑘
, 𝑘 ∈ N

+
,

Δ𝑥
𝑖
(𝑡

𝑘
) = 𝐼

(1)

𝑘
(𝑥

𝑖
(𝑡

𝑘
)) , 𝑘 ∈ N

+
, 𝑖 ∈ I

𝑛
,

̇𝑦
𝑗
(𝑡) = −𝑏

𝑗
𝑦
𝑗
(𝑡) +

𝑛

∑

𝑖=1

𝑞
𝑗𝑖
𝑔
𝑖
(𝑥

𝑖
(𝑡 − 𝜎

𝑗𝑖
)) ,

𝑡 ≥ 0, 𝑡 ̸= 𝑡
𝑘
, 𝑘 ∈ N

+
,

Δ𝑦
𝑗
(𝑡

𝑘
) = 𝐼

(2)

𝑘
(𝑦

𝑗
(𝑡

𝑘
)) , 𝑘 ∈ N

+
, 𝑗 ∈ I

𝑚
.

(54)

Proposition 12. Assume the external imposed impulsive
strengths ℎ(1)

𝑖𝑘
, ℎ

(2)

𝑗𝑘
̸= − 1. The origin of the closed-loop control

system (54) is globally exponentially stable if there exists
constant 𝛽 such that, for 𝑘 = 1, 2, . . ., the following conditions
hold:

ln 𝜇
𝑘

𝑡
𝑘
− 𝑡

𝑘−1

≤ 𝛽, 𝜌 + 𝑑�̃�
1
+ 𝛽 < 0. (55)

More specifically, we have

𝑛

∑

𝑖=1

𝑥𝑖 (𝑡)
 +

𝑚

∑

𝑗=1


𝑦
𝑗
(𝑡)


≤ 𝑑𝑒
−(𝜂+𝜆2)𝑡 sup

−𝜏
∗
≤𝑠≤0

(

𝑛

∑

𝑖=1

𝜑𝑖 (𝑠)


+

𝑚

∑

𝑗=1


𝜓
𝑗
(𝑠)

) , 𝑡 > 0,

(56)

where the parameters 𝜇
𝑘
, 𝜌, 𝑑, �̃�

1
, and 𝜂 are consistent with

those in Theorem 6.

Proof. Considering the same Lyapunov function as that in
Theorem 6, by similar analytical technique, one can get the
following results on the impulsive interval and the impulse
moments as follows.

(1) When 𝑡 ∈ (𝑡
𝑘−1

, 𝑡
𝑘
], the upper right Dini deriva-

tive of 𝑉(𝑡) along the solution of (54) is depicted
as 𝐷+

𝑉(𝑡) ≤ 𝜌𝑉(𝑡) + �̃�
1
(sup

𝑡−𝜏
∗
≤𝑠≤𝑡

𝑉(𝑠)).

(2) When 𝑡 = 𝑡
𝑘
, 𝑘 ∈ N+, 𝑉(𝑡+

𝑘
) ≤ 𝜇

𝑘
𝑉(𝑡

𝑘
).
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From Lemma 5 and the conditions in (55), it follows that

𝑉 (𝑡) ≤ 𝑑( sup
0−𝜏
∗
≤𝑠≤0

𝑉 (𝑠)) 𝑒
−𝜆2(𝑡−0), (57)

which means
𝑛

∑

𝑖=1

𝑥𝑖 (𝑡)
 +

𝑚

∑

𝑗=1


𝑦
𝑗
(𝑡)


≤ 𝑒
−𝜂𝑡

𝑑𝑒
−𝜆2𝑡𝑉 (0) ≤ 𝑑𝑒

−(𝜂+𝜆2)𝑡𝑉 (0) , 𝑡 > 0

(58)

and the proof is completed.

If the continuous feedback control gains 𝑘(1)
𝑖

= 𝑘
(2)

𝑗
≡

0, that is, there is no feedback on the preceding control
interval in a control period, and only impulsive control is
imposed on the latter control interval, this means the system
is only under the piecewise impulsive (not the uniformly
distributed) control. As for such case, the impulsive system
is reduced to the following one:

̇𝑥
𝑖
(𝑡) = −𝑎

𝑖
𝑥
𝑖
(𝑡) +

𝑚

∑

𝑗=1

𝑝
𝑖𝑗
𝑓
𝑗
(𝑦

𝑗
(𝑡 − 𝜏

𝑖𝑗
)) ,

𝑡 ∈ [𝑙𝑇, (𝑙 + 𝜃) 𝑇) ∪ {[(𝑙 + 𝜃) 𝑇, (𝑙 + 1) 𝑇) \ {𝑡 ̸= 𝑡
𝑘
}
∞

𝑘=1
} ,

Δ𝑥
𝑖
(𝑡) = 𝐼

(1)

𝑘
(𝑥

𝑖
(𝑡)) , 𝑡 = 𝑡

𝑘
,

̇𝑦
𝑗
(𝑡) = −𝑏

𝑗
𝑦
𝑗
(𝑡) +

𝑛

∑

𝑖=1

𝑞
𝑗𝑖
𝑔
𝑖
(𝑥

𝑖
(𝑡 − 𝜎

𝑗𝑖
)) ,

𝑡 ∈ [𝑙𝑇, (𝑙 + 𝜃) 𝑇) ∪ {[(𝑙 + 𝜃) 𝑇, (𝑙 + 1) 𝑇) \ {𝑡 ̸= 𝑡
𝑘
}
∞

𝑘=1
} ,

Δ𝑦
𝑗
(𝑡) = 𝐼

(2)

𝑘
(𝑦

𝑗
(𝑡)) , 𝑡 = 𝑡

𝑘
.

(59)

From (59), it is noticed that the occurrence of the impulses is
not uniformly distributed since the impulses never occur on
the interval [𝑙𝑇, (𝑙 + 𝜃)𝑇), 𝑙 ∈ N+

0
, whereas they frequently

occur on the interval ((𝑙 + 𝜃)𝑇, (𝑙 + 1)𝑇), 𝑙 ∈ N+

0
. By

observing the proof of Proposition 12, the result is somewhat
more conservative especially when the control period 𝑇 is
very large and the control width 𝜃 approaches to one. In
order to describe the conservatism for such case, we will
utilize the notation of average impulsive interval proposed
in [21] to characterize the occurrence frequency of the
impulses. The definition of average impulsive interval and
the corresponding impulsive differential inequality are given
firstly.

Definition 13 ([21] average impulsive interval). The aver-
age impulsive interval of the impulsive sequence {𝑡

𝑘
}
∞

𝑘=1
is

equal to 𝑇
𝑎
if there exist positive integer 𝑁

0
and positive

number 𝑇
𝑎
such that

𝑁(𝜅
2
, 𝜅

1
) ≥

𝜅
2
− 𝜅

1

𝑇
𝑎

− 𝑁
0
, ∀𝜅

2
≥ 𝜅

1
≥ 0, (60)

where 𝑁(𝜅
2
, 𝜅

1
) denotes the number of impulsive times of

the impulsive sequence {𝑡
𝑘
}
∞

𝑘=1
on the interval (𝜅

1
, 𝜅

2
).

Lemma 14 (see Lakshmikantham et al., Theorem 1.4.1, [33,
34]). Let 𝑃𝐶(R

+
,R) (𝑃𝐶1

(R
+
,R)) denote the set of piece-

wise continuous (piecewise continuously differentiable) func-
tions with first kind of discontinuities at 𝑡

𝑘
, 𝑘 = 1, 2, . . .,

from R
+
to R. If the following conditions hold,

𝑚(𝑡) ∈ 𝑃𝐶
1
(R

+
,R) 𝑖𝑠 𝑙𝑒𝑓𝑡 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑎𝑡 𝑡

𝑘
,

𝑘 = 1, 2, . . . ,

𝐷
+
𝑚(𝑡) ≤ 𝑝 (𝑡)𝑚 (𝑡) + 𝑞 (𝑡) , 𝑡 ≥ 𝑡

0
, 𝑡 ̸= 𝑡

𝑘
,

𝑚 (𝑡
+

𝑘
) ≤ 𝑑

𝑘
𝑚(𝑡

𝑘
) + 𝑏

𝑘
, 𝑘 = 1, 2, . . . ,

(61)

where 𝑝(𝑡), 𝑞(𝑡) ∈ 𝑃𝐶(R
+
,R), 𝑑

𝑘
≥ 0 and 𝑏

𝑘
are real

constants, then

𝑚(𝑡) ≤ 𝑚 (𝑡
0
) ∏

𝑡0<𝑡𝑘<𝑡

𝑑
𝑘
exp(∫

𝑡

𝑡0

𝑝 (𝑠) d𝑠)

+ ∑

𝑡0<𝑡𝑘<𝑡

( ∏

𝑡0<𝑡𝑗<𝑡

𝑑
𝑗
exp(∫

𝑡

𝑡𝑘

𝑝 (𝑠) d𝑠))𝑏
𝑘

+ ∫

𝑡

𝑡0

∏

𝑠<𝑡𝑘<𝑡

𝑑
𝑘
exp(∫

𝑡

𝑠

𝑝 (𝜉) d𝜉) 𝑞 (𝑠) d𝑠, 𝑡 ≥ 𝑡
0
.

(62)

Lemma 15. Let 𝑞 ≥ 0, 𝜏 > 0, 0 < 𝜇 < 1, and 𝑝 be constants,
and assume that 𝑉(𝑡) is a piecewise continuous nonnegative
function satisfying

𝐷
+
𝑉 (𝑡) ≤ 𝑝𝑉 (𝑡) + 𝑞𝑉 (𝑡) , 𝑡 ≥ 𝑡

0
, 𝑡 ̸= 𝑡

𝑘
,

𝑉 (𝑡
+

𝑘
) ≤ 𝜇𝑉 (𝑡

𝑘
) , 𝑘 = 1, 2, . . . ,

(63)

and the average impulsive interval of the impulsive
sequence {𝑡

𝑘
}
∞

𝑘=1
is equal to 𝑇

𝑎
. If the following inequality

holds,

𝑝 +
ln 𝜇
𝑇
𝑎

+ 𝜇
−𝑁0𝑞 < 0, (64)

then one has

𝑉 (𝑡) ≤ 𝜇
−𝑁0𝑉 (𝑡

0
) 𝑒

−𝜆(𝑡−𝑡0), (65)

where 𝑉(𝑡) = sup
𝑡−𝜏≤𝑠≤𝑡

𝑉(𝑠), 𝜆 is the unique positive root of
the equation 𝜆+𝑝+ (ln 𝜇/𝑇

𝑎
)+𝜇−𝑁0𝑞𝑒𝜆𝜏 = 0.
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Proof. By Lemma 14 and the definition of average impulsive
interval, it follows from (63) that, for 𝑡 ≥ 𝑡

0
,

𝑉 (𝑡) ≤ 𝑉 (𝑡
0
) 𝜇

𝑁(𝑡,𝑡0)𝑒
𝑝(𝑡−𝑡0) + ∫

𝑡

𝑡0

𝑒
𝑝(𝑡−𝑠)

𝜇
𝑁(𝑡,𝑠)

𝑞𝑉 (𝑠)d𝑠

≤ 𝑉 (𝑡
0
) 𝜇

(((𝑡−𝑡0)/𝑇𝑎)−𝑁0)𝑒
𝑝(𝑡−𝑡0)

+ ∫

𝑡

𝑡0

𝑒
𝑝(𝑡−𝑠)

𝜇
(((𝑡−𝑠)/𝑇𝑎)−𝑁0)𝑞𝑉 (𝑠)d𝑠

≤ 𝜇
−𝑁0 (𝑉 (𝑡

0
) 𝑒

[𝑝+(ln 𝜇/𝑇𝑎)](𝑡−𝑡0)

+∫

𝑡

𝑡0

𝑒
[𝑝+(ln 𝜇/𝑇𝑎)](𝑡−𝑠)𝑞𝑉 (𝑠)d𝑠) .

(66)

Denote 𝜙(𝜆) = 𝜆+𝑝+(ln 𝜇/𝑇
𝑎
)+𝜇

−𝑁0𝑞𝑒
𝜆𝜏. Since 𝜙(0) = 𝑝+

(ln 𝜇/𝑇
𝑎
) + 𝜇

−𝑁0𝑞 < 0, and lim
𝜆→∞

𝜙(𝜆) = +∞ and 𝜙

(𝜆) =

1 + 𝜇
−𝑁0𝑞𝜏𝑒

𝜆𝜏
> 0, one knows that 𝜙(𝜆) = 0 has a unique

positive root.
Next, it is claimed that, for all 𝑡 > 𝑡

0
,

𝑉 (𝑡) < 𝜇
−𝑁0 ( sup

𝑡0−𝜏≤𝑠≤𝑡0

𝑉 (𝑠)) 𝑒
−𝜆(𝑡−𝑡0). (67)

When 𝑡 ∈ [𝑡
0
− 𝜏, 𝑡

0
],

𝑉 (𝑡) < 𝑉 (𝑡
0
) < 𝜇

−𝑁0𝑉 (𝑡
0
) 𝑒

−𝜆(𝑡−𝑡0). (68)

Supposing (67) is not always true for 𝑡 > 𝑡
0
, there must

exist one time point 𝑡∗ > 𝑡
0
such that

𝑉 (𝑡
∗
) = 𝜇

−𝑁0𝑉 (𝑡
0
) 𝑒

−𝜆(𝑡
∗
−𝑡0),

𝑉 (𝑡) < 𝜇
−𝑁0𝑉 (𝑡

0
) 𝑒

−𝜆(𝑡−𝑡0), 𝑡
0
− 𝜏 ≤ 𝑡 < 𝑡

∗
.

(69)

From inequalities (66) and (69), one can obtain that

𝑉 (𝑡
∗
)

≤ 𝜇
−𝑁0 (𝑉 (𝑡

0
) 𝑒

[𝑝+(ln 𝜇/𝑇𝑎)](𝑡∗−𝑡0)

+∫

𝑡
∗

𝑡0

𝑒
[𝑝+(ln 𝜇/𝑇𝑎)](𝑡∗−𝑠)𝑞𝑉 (𝑠)d𝑠)

< 𝜇
−𝑁0 (𝑉 (𝑡

0
) 𝑒

[𝑝+(ln 𝜇/𝑇𝑎)](𝑡∗−𝑡0)

+∫

𝑡
∗

𝑡0

𝑒
[𝑝+(ln 𝜇/𝑇𝑎)](𝑡∗−𝑠)𝑞𝜇−𝑁0𝑉 (𝑡

0
) 𝑒

−𝜆(𝑠−𝜏−𝑡0)d𝑠)

= 𝜇
−𝑁0𝑉 (𝑡

0
) 𝑒

[𝑝+(ln 𝜇/𝑇𝑎)](𝑡∗−𝑡0)

+ 𝑞𝜇
−2𝑁0𝑉 (𝑡

0
) 𝑒

𝜆𝜏
∫

𝑡
∗

𝑡0

𝑒
[𝑝+(ln 𝜇/𝑇𝑎)](𝑡∗−𝑠)𝑒−𝜆(𝑠−𝑡0)d𝑠.

(70)

Considering the equality 𝜓(𝜆) = 𝜆 + 𝑝 + (ln 𝜇/𝑇
𝑎
) +

𝜇
−𝑁0𝑞𝑒

𝜆𝜏
= 0, one has

𝑉 (𝑡
∗
) < 𝜇

−𝑁0𝑉 (𝑡
0
) 𝑒

−𝜆(𝑡
∗
−𝑡0)

× (𝑒
[−𝜇
−𝑁0𝑞𝑒

𝜆𝜏
](𝑡
∗
−𝑡0)

+𝑞𝜇
−𝑁0𝑒

𝜆𝜏
∫

𝑡
∗

𝑡0

𝑒
[−𝜇
−𝑁0𝑞𝑒

𝜆𝜏
](𝑡
∗
−𝑠)d𝑠)

= 𝜇
−𝑁0𝑉 (𝑡

0
) 𝑒

−𝜆(𝑡
∗
−𝑡0)𝑒

−[𝜇
−𝑁0𝑞𝑒

𝜆𝜏
]𝑡
∗

× (𝑒
[𝜇
−𝑁0𝑞𝑒

𝜆𝜏
]𝑡0

+𝑒
[𝜇
−𝑁0𝑞𝑒

𝜆𝜏
]𝑡
∗

− 𝑒
[𝜇
−𝑁0𝑞𝑒

𝜆𝜏
]𝑡0)

= 𝜇
−𝑁0𝑉 (𝑡

0
) 𝑒

−𝜆(𝑡
∗
−𝑡0)

(71)

which contradicts with the first inequality of (69). Therefore,
the inequality (67) holds, and this completes the proof.

The following proposition will guarantee the system (59)
to be globally exponentially stable.

Proposition 16. Assume the external imposed impulsive
strengths ℎ(1)

𝑖𝑘
, ℎ

(2)

𝑗𝑘
∈ (−2, −1) ∪ (−1, 0), and the average

impulsive interval of the impulsive sequence {𝑡
𝑘
}
∞

𝑘=1
is equal

to 𝑇
𝑎
.The impulsive system (59) is globally exponentially stable

if the following condition holds:

𝜌 +
ln 𝜇
𝑇
𝑎

+ 𝜇
−𝑁0 �̃�

1
< 0. (72)

Moreover, we have

𝑛

∑

𝑖=1

𝑥𝑖 (𝑡)
 +

m
∑

𝑗=1


𝑦
𝑗
(𝑡)


≤ 𝜇
−𝑁0𝑒

−(𝜂+𝜆)𝑡 sup
−𝜏
∗
≤𝑠≤0

(

𝑛

∑

𝑖=1

𝜑𝑖 (𝑠)
 +

𝑚

∑

𝑗=1


𝜓
𝑗
(𝑠)

) , 𝑡 > 0,

(73)

where 𝜇 = sup
𝑘
{𝜇

𝑘
} ∈ (0, 1), and 𝜇

𝑘
, 𝜌, and �̃�

1
are defined

as in Theorem 6 and 𝜆 is the unique positive root of the
equation 𝜆 + 𝑝 + (ln 𝜇/𝑇

𝑎
) + 𝜇

−𝑁0𝑞e𝜆𝜏 = 0.

Proof. Considering the same Lyapunov function as that in
Theorem 6, the following results on the impulsive interval
and the impulse moments can be obtained.

(1) When 𝑡 ∈ [𝑙𝑇, (𝑙 + 𝜃)𝑇) \ {𝑡
𝑘
}
∞

𝑘=1
, 𝑙 ∈ N+

0
, the upper

right Dini derivative of 𝑉(𝑡) along the solutions of
(59) is depicted as 𝐷+

𝑉(𝑡) ≤ 𝜌𝑉(𝑡) + �̃�
1
𝑉(𝑡).

(2) When 𝑡 = 𝑡
𝑘
, 𝑘 ∈ N+, 𝑉(𝑡+

𝑘
) ≤ 𝜇𝑉(𝑡

𝑘
).
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From the above two inequality relationships, and
Lemma 15, one has

𝑛

∑

𝑖=1

𝑥𝑖 (𝑡)
 +

𝑚

∑

𝑗=1


𝑦
𝑗
(𝑡)


≤ 𝜇
−𝑁0𝑒

−(𝜂+𝜆)𝑡
( sup
𝑡0−𝜏≤𝑠≤𝑡0

𝑉 (𝑠)) , 𝑡 > 0,

(74)

where 𝜆 is the unique positive root of the equation 𝜆 + 𝑝 +

(ln 𝜇/𝑇
𝑎
) + 𝜇

−𝑁0𝑞𝑒
𝜆𝜏

= 0. The proof is completed.

Remark 17. It should be pointed out that, in the preceding
control width of the control period, other kinds of continuous
controllers can also be used to achieve the same performance.
For example, in [35], the adaptive control scheme has been
employed in the control width instead of the continuous
state feedback, where the adjusting gains can be designed
based on different norms. We can borrow such an idea
to the sliding intermittent control design. Moreover, the
sliding width parameter can be {𝜃

𝑖
} rather than the fixed

width 𝜃, and the period can be {𝑇
𝑖
} rather than constant 𝑇.

By doing so, we might obtain more general conditions. On
the other hand, the phenomena of stochastic nonlinearities
are extremely ubiquitous in practical controlled systems [36–
39]; hence it is more reasonable to consider neural networks
with randomnonlinearities, and this will be our future works.

4. Illustrative Example

In this section, we present some examples to illustrate the
applicability and efficiency of the proposed control scheme.

Example 1. Considering the following extensively studied
BAM neural system,

̇𝑥 (𝑡) = −𝑎𝑥 (𝑡) + 𝑝𝑓 (𝑦 (𝑡 − 𝜏)) ,

̇𝑦 (𝑡) = −𝑏𝑦 (𝑡) + 𝑞𝑔 (𝑥 (𝑡 − 𝜎))

(75)

with 𝑎 = 1.922, 𝑝 = 9.8501, 𝑏 = 1.1631, 𝑞 = 8.2311, 𝜏 = 𝜎 =

3, and 𝑓(𝑥) = 𝑔(𝑥) = 1/(1+𝑒
−𝑥
)−1/2. Obviously, 𝐿𝑓 = 𝐿

𝑔
=

0.25. The initial condition is given as 𝑥(𝑡) = −0.43, 𝑦(𝑡) =

0.42, 𝑡 ∈ [−3, 0]. With the above system parameters, the
phase diagram of system (75) is given in Figure 2. Obviously,
the origin of system (75) is not stable. We will design the
sliding intermittent controller to stabilize it.

0 0.5 1 1.5 2

0

1

2

3

−2.5 −2 −1.5 −1 −0.5
−3

−2

−1

y
(t
)

x(t)

Figure 2: The phase diagram of the original system (75).

Applying the sliding intermittent controller to the unsta-
ble system (75), one can derive the following system:

̇𝑥 (𝑡) = −𝑎𝑥 (𝑡) + 𝑝𝑓 (𝑦 (𝑡 − 𝜏)) + 𝑘
1
𝑥 (𝑡) , 𝑡 ∈ [𝑙𝑇, (𝑙 + 𝜃) 𝑇)

̇𝑥 (𝑡) = −𝑎𝑥 (𝑡) + 𝑝𝑓 (𝑦 (𝑡 − 𝜏)) ,

𝑡 ∈ [(𝑙 + 𝜃) 𝑇, (𝑙 + 1) 𝑇) , 𝑡 ̸= 𝑡
𝑘
,

Δ𝑥 (𝑡
𝑘
) = ℎ

1
𝑥 (𝑡

𝑘
) , 𝑡 = 𝑡

𝑘
,

̇𝑦 (𝑡) = −𝑏𝑦 (𝑡) + 𝑞𝑔 (𝑥 (𝑡 − 𝜎)) + 𝑘
2
𝑦 (𝑡) ,

𝑡 ∈ [𝑙𝑇, (𝑙 + 𝜃) 𝑇) ,

̇𝑦 (𝑡) = −𝑏𝑦 (𝑡) + 𝑞𝑔 (𝑥 (𝑡 − 𝜎)) ,

𝑡 ∈ [(𝑙 + 𝜃) 𝑇, (𝑙 + 1) 𝑇) , 𝑡 ̸= 𝑡
𝑘
,

Δ𝑦 (𝑡
𝑘
) = ℎ

2
𝑦 (𝑡

𝑘
) , 𝑡 = 𝑡

𝑘
.

(76)

In the following, we will give the convergence results by
simulating the system (76). Firstly, by setting the continuous
feedback gains 𝑘

1
= −4.8512, 𝑘

2
= −4.6378 and the impul-

sive strengths ℎ
1
= ℎ

2
= −0.15. With the above parameters

setting, calculations show that 𝜂∗ = 0.2679 and 𝜇 = 0.85.
By setting the control period 𝑇 = 10, we have control
width 0.3 < 𝜃 < 0.7 and 𝛾 = 0.3. Here we take
the parameter 𝜃 = 0.5. If we utilize uniform distributed
impulsive sequences (𝑡

𝑘
− 𝑡

𝑘−1
= 0.01) in the latter control

width of the control period, it is easy to check that when 𝜂 =

0.0221, we have 𝜌 = −1.1410, 𝑎
1
= 5.7788, and �̃�

1
= 4.8302.

By choosing 𝛽 = −4.8519, one has 𝑑 = 1.1765, ln 𝜇/(𝑡
𝑘
−

𝑡
𝑘−1

) − 𝛽 = −11.4000, 𝜌 + 𝑑�̃�
1
+ 𝛽 = −0.3104, 𝜆

1
=

0.0565, 𝜆
2
= 0.0168, and 𝜂 + 𝜆

1
(𝜃 − 𝛾) − 𝜆

2
(𝜃 + 𝛾) − ln 𝑑/𝑇 =

0.0037, which means all the conditions in Theorem 6 hold.
The simulation result under the sliding intermittent control
is given in Figure 3.



12 Abstract and Applied Analysis

0 10 20 30 40 50 60 70 80
Time (s)

0

0.2

0.4

0.6

0.8

St
at

e

−0.8

−0.6

−0.4

−0.2

y(t)

x(t)

Figure 3: Simulation of the system (75) under the sliding intermit-
tent control.
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Figure 4: Simulation of the system (75) under the continuous
feedback control.

Next, the corresponding convergence results under the
propositions obtained in this article will be illustrated.

If we utilize the continuous feedback control, by taking
the same continuous feedback gains as the above sliding
intermittent control, the conditions in Proposition 9 hold,
and the simulation result under the continuous feedback
control is given in Figure 4.

If we use pure periodically intermittent control, by setting
the continuous feedback gains 𝑘

1
= −6.8512, 𝑘

2
= −6.6378,

we get 𝜂∗ = 0.3682, 𝜌 = 𝜅 = 0.0001. It is easy to know
when 𝜂 = 0.0002, we have 𝑎

1
= 7.8007, �̃�

1
= 4.5230,

and 𝜆
1

= 0.1742. In Proposition 11, by taking 𝑇 = 100,
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Figure 5: Simulation of the system (75) under the periodically
intermittent control.
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Figure 6: Simulation of the system (75) under the full impulsive
control.

the relationships among the upper bound delay, the control
width, and the control period infer that 0.03 < 𝜃 < 0.97,
while the last inequality in Proposition 11 means 𝜃 > 0.9640.
Here we set the 𝜃 = 0.9650, and the simulation result under
the periodically intermittent control is given in Figure 5.

If we use full impulsive control with uniform distributed
impulsive sequences (𝑡

𝑘
− 𝑡

𝑘−1
= 0.04) and the impulsive

strengths 𝜇
𝑘
= 0.85, 𝑘 = 1, 2, . . ., it is easy to check when 𝛽 =

−3.1262, 𝜂 = 0.0002, the parameters 𝑑 = 1.1332, 𝜌 =

−1.1629, and �̃�
1
= 4.5230, all the conditions in Proposition 12

satisfied. If we use the semi-impulsive control scheme and
set the impulsive sequences satisfying the average impulsive
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Figure 7: Simulation of the system (75) under the semi impulsive
control.
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Figure 8: Simulation of the system (77) under the sliding intermit-
tent controller.

interval with 𝑇
𝑎
= 0.038 and 𝑁

0
= 1; it is easy to check 𝜌 +

(ln 𝜇/𝑇
𝑎
) + 𝜇

−𝑁0 �̃�
1
= −0.1185 < 0, which infers that the

condition in Proposition 16 holds. The simulation results for
system (75) with the full impulsive control and the semi-
impulsive control are given in Figures 6 and 7.

Remark 18. From the above verifying process, it can be found
that the sliding intermittent control is much better than the
pure periodically intermittent control. More specifically, in
the periodically intermittent control, the control period 𝑇 =

100 and the control width 𝜃 = 0.965, while in the sliding

intermittent control, the control period 𝑇 = 10 and the
control width 𝜃 = 0.5. As for the impulsive control, the
full impulsive control is better than the semi-impulsive
control in that the earlier converges faster.When dealing with
the nonuniformly distributed impulsive sequence, the result
derived in Proposition 16 is less conservative.

Example 2. Consider the following unstable delayed BAM
neural network, andwewill show that the sliding intermittent
control benefits the stabilization of the unstable system:

̇𝑥
𝑖
(𝑡) = −𝑎

𝑖
𝑥
𝑖
(𝑡) +

3

∑

𝑗=1

𝑝
𝑖𝑗
𝑓
𝑗
(𝑦

𝑗
(𝑡 − 𝜏

𝑖𝑗
)) , 𝑖 ∈ I

3
,

̇𝑦
𝑗
(𝑡) = −𝑏

𝑗
𝑦
𝑗
(𝑡) +

4

∑

𝑖=1

𝑞
𝑗𝑖
𝑔
𝑖
(𝑥

𝑖
(𝑡 − 𝜎

𝑗𝑖
)) , 𝑗 ∈ I

4
,

(77)

where 𝐴 = diag{3.1220, 2.3156, 2.2683}, 𝐵 = diag{2.9631,
2.3456, 2.6341, 3.0726},

𝑃 = [

[

7.8501 2.3070 3.2280 4.7191

3.2463 6.0589 5.3751 2.2609

2.0159 1.7803 2.6601 5.7647

]

]

,

𝑄 =

[
[
[

[

4.2331 4.3741 2.2459

4.8830 2.3259 1.2857

2.4022 1.3377 3.7930

2.1351 2.6759 3.4719

]
]
]

]

.

(78)

The activations functions 𝑓(𝑥) = 𝑔(𝑥) = 1/(1 +

𝑒
−𝑥
) − 1/2 with 𝐿

𝑓
= 𝐿

𝑔
= 0.25 and the time delays 𝜏 =

𝜎 = 3. The system has an unstable equilibrium 0 under
the above parameters with the initial functions 𝑥(𝑡) =

[−0.73, −0.79, −0.82]
𝑇
, 𝑦(𝑡) = [0.72, 0.87, 0.83, 0.76]

𝑇
, 𝑡 ∈

[−3, 0].
In the following, we will check the convergence

results for system (77) under the sliding intermittent
controller. Setting the continuous feedback gains 𝑘(1) =

diag{−8.0350, −10.4875, −13.1075}, 𝑘(2) = diag{−11.1950,
−8.4125, −5.7425, −4.1475}, the impulsive strengths are
identical with ℎ

(1)

𝑖𝑘
= ℎ

(2)

𝑗𝑘
= −0.25, 𝑖 ∈ I

𝑛
, 𝑗 ∈ I

𝑚
, 𝑘 ∈ N+,

and the control period 𝑇 = 15; some calculations show
that 𝜂∗ = 0.2604, 𝜇 = 0.75. We can get the control
width 0.2 < 𝜃 < 0.8 and 𝛾 = 0.2; here we take the
parameter 𝜃 = 0.4. If we utilize the uniform distributed
impulsive sequences (𝑡

𝑘
− 𝑡

𝑘−1
= 0.02) in the latter control

width of the control period, it is easy to know when 𝜂 =

0.1250, we have 𝜌 = −2.1433, 𝑎
1
= 7.0951, and �̃�

1
= 4.9664.

By choosing 𝛽 = −4.6841, one has ln 𝜇/(𝑡
𝑘
− 𝑡

𝑘−1
) − 𝛽 =

−9.7000, 𝑑 = 1.333, 𝜌+𝑑�̃�
1
+𝛽 = −0.2055, 𝜆

1
= 0.1135, 𝜆

2
=

0.1924, and 𝜂+ 𝜆
1
(𝜃 − 𝛾) − 𝜆

2
(𝜃 + 𝛾) − ln 𝑑/𝑇 = 0.0131,

which mean all the conditions in Theorem 6 hold. The
simulation result under the sliding intermittent control is
given in Figure 8.

5. Conclusions

In this paper, a sliding intermittent controller has been
proposed by unifying the periodically intermittent control
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with the impulsive control together with continuous feedback
control. More specifically, the continuous feedback control is
employed as the preceding control width, and the impulsive
control is resorted in the latter control width. Furthermore,
the adjustable parameter 𝜃 ∈ [0, 1] is very flexible in that the
continuous feedback control (𝜃 = 1), the impulsive control
(𝜃 = 0), the periodically intermittent control, and the semi-
impulsive control (0 < 𝜃 < 1) are all possible cases. Based on
the analysis technique and the Lyapunov function approach,
the conditions have been constructed for the exponential
stability of the delayed BAM neural networks under the
proposed control schemes. Finally, numerical simulations are
used to illustrate the effectiveness of the control technique.
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This paper deals with a robust𝐻
∞
deconvolution filtering problem for discrete-time nonlinear stochastic systems with randomly

occurring sensor delays. The delayed measurements are assumed to occur in a random way characterized by a random variable
sequence following the Bernoulli distribution with time-varying probability. The purpose is to design an𝐻

∞
deconvolution filter

such that, for all the admissible randomly occurring sensor delays, nonlinear disturbances, and external noises, the input signal
distorted by the transmission channel could be recovered to a specified extent. By utilizing the constructed Lyapunov functional
relying on the time-varying probability parameters, the desired sufficient criteria are derived.The proposed𝐻

∞
deconvolution filter

parameters include not only the fixed gains obtained by solving a convex optimization problem but also the onlinemeasurable time-
varying probability. When the time-varying sensor delays occur randomly with a time-varying probability sequence, the proposed
gain-scheduled filtering algorithm is very effective. The obtained design algorithm is finally verified in the light of simulation
examples.

1. Introduction

Filtering technology is extensively used in many domains,
and an important task of filtering is to effectively restore the
original signal by removing the distortion from the received
signal. The deconvolution method is very useful in filtering
field and has been made use of by some kinds of filters,
such as self-tuning deconvolution filter and Wiener inverse
filter. However, the design process of the deconvolution
filter is always difficult because the delivery channels are
frequently corrupted by some disturbances, such as nonlinear
disturbances, external noises, and sensor delays. Therefore
it is very interesting and important to solve the problem
encountered in the design procedure of deconvolution filters.
In the past decades, considerable attention has been paid to
the analysis anddesign ofmany kinds of deconvolution filters,

and some results have been published. For more details, we
refer the readers to [1–3] and the references therein.

As is well known, in some practical fields, such as engi-
neering, biological, medical, and economic systems, and
health community, the sensor data is occasionally delayed
before they arrive at their respective destinations [4–6]. The
occurrence of sensor delay may mainly be caused by the
limitations, such as the limited bandwidth of the communica-
tion channel, intermittent sensor failure in the measurement,
random network congestion, and accidental loss of some
collected data in a very noisy environment [6–9]. However,
the majority of deconvolution filtering algorithms are based
on the measurement outputs without delays. In such case,
the traditional filter may fail to work. Hence, in the past
decades the filtering problem for the systems with sensor
delays has been attracting considerable research interests; see,
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for example, [5, 7, 10–12]. Owing to the uncertainty that is
widespread in the field of practical engineering, stochastic
model has gained more and more attention in many fields,
such as physics, economic systems, geomorphology, and gene
regulatory networks, and a large number of literatures have
been published; see, for example, [4, 13–18].

It should be pointed out that, so far, the Bernoulli
distribution has been employed to model some randomly
occurring phenomena, such as randomly occurring miss-
ing measurements [10] and randomly occurring saturation
[7]. This model with time-invariant probability has become
an effective model of sensor delays. Nevertheless, in the
engineering environment, such as industrial automation,
unmanned vehicles, real-time distributed decision-making
and multiplexed data communication networks [5], and an
asynchronous time-division-multiplexed network [6], the
sensor delays often occur in a random way and satisfy a
time-varying probability distribution. At the same time, the
classical filters with fixed gains cannot adapt to the actual
cases. Therefore, there is an urgent need to develop new
filtering approaches for the systems with randomly occurring
sensor delays (ROSDs), and some efforts have been made in
this regard so far; see, for example, [6, 7]. And yet, up to
now, to the best of authors’ knowledge, the gain-scheduled
𝐻
∞

deconvolution filtering is still open for discrete-time
stochastic systems with randomly occurring sensor delays.
It is, therefore, in this paper, we aim to develop an effective
gain-scheduled deconvolution filtering algorithm for the
discrete-time stochastic systems with ROSDs, which is of
both theoretical importance and practical significance.

The main contribution of this paper is mainly triplex:
(1) for the randomly occurring sensor delay which is one
kind of the information incomplete, we exploit a stochastic
variable sequence satisfying time-varying Bernoulli distri-
butions to represent the situation of the delayed measure-
ment; (2) a time-varying Lyapunov functional dependent
on the distribution probability has been developed and
applied to improve the performance of the 𝐻

∞
decon-

volution filters; (3) a new filtering problem with a gain-
scheduling approach is addressed for a class of discrete-time
nonlinear stochastic systemswith randomly occurring sensor
delays. It is worth mentioning that, since the considered
system involves the probabilistic sensor delays, the sector-
like bounded nonlinearity, and the multiplicative noises, it
is comprehensive and reasonable. Thanks to the proposed
time-varying 𝐻

∞
deconvolution filter which is designed

by employing the gain-scheduling technique, the proposed
filtering algorithm can exactly estimate the original input. On
account of this merit, the proposed design scheme is more
effective and practical.

The rest of this paper is organized as follows. In Section 2,
we construct a gain-scheduled deconvolution filter for a class
of discrete-time stochastic systems with randomly occurring
sensor delays, in which the desired filter gains contain two
parts, the fixed gain and time-varying onewhich is dependent
upon the time-varying probability. In Section 3, a sufficient
condition is derived to guarantee the exponential stability
of the augmented system, and the proposed filter is given.
By means of constructing Lyapunov functional, we make an

u(k) y(k)

Transmission channel

Measurement
device

Deconvolution filter

−

+ e(k)

←
y(k) û(k)

𝜔(k)

Σc Σf

Figure 1: The deconvolution filtering system.

assay of the stability for the augmented systems.With the help
of the proposed probability-dependent Lyapunov functional,
we derived simultaneously another condition indicating the
robust ability of the deconvolution filter. A mathematical
technique is used to transform the infinite number of inequal-
ities into a finite form. The filter gains are derived from
a gain-scheduling approach by resorting to solve a convex
optimization problem. In Section 4, an numerical example is
presented to demonstrate the reasonable structure and high
reliability of the proposed filter. The last section, Section 5,
sums up all the arguments in this paper.

Notation. In this paper, R𝑛, R𝑛×𝑚, and I+ denote, respec-
tively, the 𝑛-dimensional Euclidean space and the set of all
𝑛 × 𝑚 real matrices, the set of all positive integers. | ⋅ |
refers to the Euclidean norm in R𝑛. 𝐼 denotes the identity
matrix of compatible dimension. The notation 𝑋 ≥ 𝑌 (resp.,
𝑋 > 𝑌), where 𝑋 and 𝑌 are symmetric matrices, means
that 𝑋 − 𝑌 is positive semidefinite (resp., positive definite).
For a matrix 𝑀, 𝑀𝑇 and 𝑀−1 represent its transpose and
inverse, respectively. The shorthand diag{𝑀

1
, 𝑀
2
, . . . ,𝑀

𝑛
}

denotes a block diagonal matrix with diagonal blocks being
the matrices𝑀

1
, 𝑀
2
, . . . ,𝑀

𝑛
. In symmetric block matrices,

the symbol ∗ is used as an ellipsis for terms induced by
symmetry. Matrices, if they are not explicitly stated, are
assumed to have compatible dimensions.

2. Problem Formulation

In this paper, the considered stochastic deconvolution filter-
ing system structure is shown in Figure 1. In the system, the
input signal 𝑢(𝑡) is transmitted through the channel Σ

𝑐
:

(Σ
𝑐
) : 𝑥
𝑐
(𝑘 + 1) = 𝐴

𝑐
𝑥
𝑐
(𝑘)

+ 𝐵
𝑐
𝑢 (𝑘) + 𝑁

𝑐
𝑓 (𝑧 (𝑘))

+ 𝑀
𝑐
𝑥
𝑐
(𝑘) 𝜔 (𝑘) ,

(1)

𝑦 (𝑘) = 𝐶
𝑐
𝑥
𝑐
(𝑘) , 𝑥

𝑐
(0) = 𝑥

0
, (2)

where 𝑥
𝑐
(𝑘) ∈ R𝑛 is the state, 𝑢(𝑘) ∈ 𝐿

2
[0,∞) is the

exogenous input signal,𝑦(𝑘) is the actual output, and 𝑥
0
is the

initial state. 𝜔(𝑘) is a one-dimensional Gaussian white noise
sequence satisfying E{𝜔(𝑘)} = 0 and E{𝜔2(𝑘)} = 𝜎

2, and
𝑧(𝑘) = 𝑍𝑥

𝑐
(𝑘). For the convenience, 𝑢(𝑘), 𝑦(𝑘), and 𝜔(𝑘) are

all assumed as scalars. 𝐴
𝑐
, 𝐵
𝑐
, 𝐶
𝑐
,𝑀
𝑐
,𝑁
𝑐
, and 𝑍 are constant

matrices with appropriate dimensions.
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Remark 1. The deconvolution filtering problem involves the
estimation of the signal inputted to a communication channel
where the output measurements are disturbed by the channel
noise.The channel can be represented by a dynamical system,
such as ship roll stabilization systems. In the ideal condition,
the input signal would be sent perfectly through the transmis-
sion channel without any external influences; however, in the
real-world case, from the point of engineering application,
most of the communication channels are of limited capacity
and suffered from some uncertainties in transmission process
such as large environmental noise, channel congestion, and
intermittent changes of the signal intensity, and therefore,
a few issues have inevitably emerged, for example, channel-
induced time delay, the nonlinearity disturbances, channel
fading, and so on. In order to describe the channel model
∑
𝑐
closer in nature, nonlinearity disturbances and stochastic

noises are both taken into consideration in the channelmodel
(1) in this paper.

The vector-valued nonlinear disturbance 𝑓(⋅) satisfies the
following sector-bounded condition with 𝑓(0) = 0:

[𝑓(𝑧 (𝑘)) − 𝐹
1
𝑧 (𝑘)]
𝑇

[𝑓(𝑧 (𝑘)) − 𝐹
2
𝑧(𝑘)] ≤ 0, (3)

where 𝐹
1
and 𝐹

2
are constant real matrices of appropriate

dimensions and 𝐹 = 𝐹
2
− 𝐹
1
is a symmetric positive definite

matrix. It is customary that such nonlinear function 𝑓(⋅)
is called to belong to the sector [𝐹

1
𝐹
2
]. In this case, the

nonlinear function 𝑓(𝑧(𝑘)) can be decomposed into a linear
part and a nonlinear part as

𝑓 (𝑧 (𝑘)) = 𝐹
1
𝑧 (𝑘) + 𝑓

𝑠
(𝑧 (𝑘)) , (4)

and it is easy to follow from (3) that

𝑓
𝑇

𝑠
(𝑧 (𝑘)) (𝑓

𝑠
(𝑧 (𝑘)) − 𝐹𝑧 (𝑘)) ≤ 0. (5)

The measurement outputs
←
𝑦(𝑘) with sensor delays are

described by

←
𝑦(𝑘) = (1 − 𝜛 (𝑘))𝑦 (𝑘) + 𝜛 (𝑘) 𝑦 (𝑘 − 𝑑) , (6)

where 𝑑 ∈ I+ is the sensor delay and 𝜛(𝑘) ∈ R is a random
white sequence characterizing the probabilistic sensor delays
and obeys the following Bernoulli distribution with time-
varying probability:

Prob {𝜛 (𝑘) = 1} = E {𝜛 (𝑘)} = 𝑝 (𝑘) ,

Prob {𝜛 (𝑘) = 0}

= 1 − E {𝜛 (𝑘)} = 1 − 𝑝 (𝑘) ,

(7)

where 𝑝(𝑘) is a time-varying positive scalar sequence that
belongs to [𝑝

1
𝑝
2
] ⊆ [0 1] with the constants 𝑝

1
and 𝑝

2

being the lower and upper bounds of 𝑝(𝑘).

Remark 2. The sensor delays may randomly occur due to
some environment reasons, and a Bernoulli distribution
model has been introduced in [6, 7] to describe such

random phenomenon. However, the Bernoulli distributions
in this literature are assumed to be time invariant, which is
apparently conservative to deal with the time-varying cases
of randomly occurred sensor delays for time-varying systems.
In this paper, we will utilize a stochastic variable sequence in
(7) satisfying time-varying Bernoulli distributions to express
the randomly intermittent phenomenon of the discussed
sensor delays.

In order to recover the source signal 𝑢(𝑘), the following
deconvolution filter structure is considered in this paper:

Σ
𝑓
: 𝑥
𝑓
(𝑘 + 1) = 𝐴

𝑓
𝑥
𝑓
(𝑘) + 𝐵

𝑓

←
𝑦 (𝑘), (8)

�̂� (𝑘) = 𝐶
𝑓
𝑥
𝑓
(𝑘) + 𝐷

𝑓

←
𝑦(𝑘), (9)

where 𝑥
𝑓
(𝑘) ∈ R𝑛 is the filter state and the matrices 𝐴

𝑓
, 𝐵
𝑓
,

𝐶
𝑓
, and 𝐷

𝑓
are filter parameters to be determined and have

the following forms:

𝐴
𝑓
= 𝐴
𝑓0
+ 𝑝 (𝑘)𝐴

𝑓𝑝
, 𝐵

𝑓
= 𝐵
𝑓0
+ 𝑝 (𝑘) 𝐵

𝑓𝑝
,

𝐶
𝑓
= 𝐶
𝑓0
+ 𝑝 (𝑘) 𝐶

𝑓𝑝
, 𝐷

𝑓
= 𝐷
𝑓0
+ 𝑝 (𝑘)𝐷

𝑓𝑝
,

(10)

where 𝐴
𝑓0
, 𝐴
𝑓𝑝
, 𝐵
𝑓0
, 𝐵
𝑓𝑝
, 𝐶
𝑓0
, 𝐶
𝑓𝑝
, 𝐷
𝑓0
, and 𝐷

𝑓𝑝
are

the constant filter gains to be designed and 𝑝(𝑘) is the
time-varying probability that can be estimated/measured via
statistical tests in real time.

Remark 3. Deconvolution filter is a restoration algorithm to
remove awavelet by utilizing a reverse process of convolution.
Comparing with conventional filters, it not only can estimate
a signal embedded in noise but also can remove the effect
of any distortion in the channel systems. Furthermore, it
can deal with unknown boundary problem and spatially
varying blurs. It is worth mentioning that, different from
many conventional deconvolution filters with only constant
parameters, the proposed filter gains in (10) include two kinds
of filter gains: the fixed parameters 𝐴

𝑓0
, 𝐴
𝑓𝑝
, 𝐵
𝑓0
, 𝐵
𝑓𝑝
, 𝐶
𝑓0
,

𝐶
𝑓𝑝
, 𝐷
𝑓0
, and 𝐷

𝑓𝑝
and the time-varying parameter 𝑝(𝑘).

The designed filter can be scheduled with the time-varying
probability, which is able to adapt to changing circumstances
naturally. It can be divided into the following several steps.
Firstly, compute the constant gains 𝐴

𝑓0
, 𝐴
𝑓𝑝
, 𝐵
𝑓0
, 𝐵
𝑓𝑝
, 𝐶
𝑓0
,

𝐶
𝑓𝑝
, 𝐷
𝑓0
, and 𝐷

𝑓𝑝
in terms of the main results that will

be developed in this paper. Secondly, estimate/measure the
time-varying probability 𝑝(𝑘) by statistical tests in real time.
Lastly, the filter gains can be derived from (10). Obviously,
the gain-scheduled filter is reasonable and the conservatism
of which can be reduced since more information about
the sensor delay phenomenon is utilized. Note that gain-
scheduled technique filtering and control problems have
become a hot topic and have been intensively researched in
the past decades; see, for example, [19–23].
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By setting 𝜉(𝑘) = [𝑥𝑇
𝑐
(𝑘) 𝑥

𝑇

𝑓
(𝑘)]
𝑇 and the signal error as

𝑒(𝑘) = 𝑢(𝑘) − �̂�(𝑘), the dynamics of the filtering process can
be derived from (1)–(6) and (8)-(9) as follows:

𝜉 (𝑘 + 1) = 𝐴 (𝑝 (𝑘)) 𝜉 (𝑘)

+ 𝐷 (𝑝 (𝑘)) 𝜉 (𝑘 − 𝑑) + 𝐵𝑢 (𝑘)

+ 𝑁𝑓 (𝑧 (𝑘)) + 𝑀𝐽𝜉 (𝑘) 𝜔 (𝑘)

+ (𝑝 (𝑘) − 𝜛 (𝑘))𝐾 (𝑝 (𝑘)) 𝐽𝜉 (𝑘)

+ (𝜛 (𝑘) − 𝑝 (𝑘))𝐾 (𝑝 (𝑘)) 𝐽𝜉 (𝑘 − 𝑑) ,

(11)

𝑒 (𝑘) = − [𝐸
𝑐𝑑𝑓
(𝑝 (𝑘))+(𝑝 (𝑘)−𝜛 (𝑘)) 𝐸

𝑑𝑓
(𝑝 (𝑘))] 𝜉 (𝑘)

− [𝑝 (𝑘) 𝐸
𝑑𝑓
(𝑝 (𝑘)) + (𝜛 (𝑘) − 𝑝 (𝑘)) 𝐸

𝑑𝑓
(𝑝 (𝑘))]

× 𝜉 (𝑘 − 𝑑) + 𝑢 (𝑘) ,

(12)

where

𝐴 (𝑝 (𝑘)) = [
𝐴
𝑐

0

(1 − 𝑝 (𝑘)) 𝐵
𝑓
𝐶
𝑐
𝐴
𝑓

] ,

𝐵 = [
𝐵
𝑐

0
] , 𝑀 = [

𝑀
𝑐

0
] ,

𝐷 (𝑝 (𝑘)) = [
0 0

𝑝 (𝑘) 𝐵
𝑓
𝐶
𝑐
0
] ,

𝐾 (𝑝 (𝑘)) = [
0

𝐵
𝑓
𝐶
𝑐

] , 𝑁 = [
𝑁
𝑐

0
] ,

𝐸
𝑐𝑑𝑓
(𝑝 (𝑘)) = [(1 − 𝑝 (𝑘))𝐷𝑓𝐶𝑐 𝐶𝑓] ,

𝐸
𝑑𝑓
(𝑝 (𝑘)) = [𝐷𝑓𝐶𝑐 0] , 𝐽 = [𝐼 0] .

(13)

Definition 4. The augmented filtering system (11) is said to be
exponentially mean-square stable if, with 𝑢(𝑘) ≡ 0, there exist
constant 𝛼 > 0 and 𝜏 ∈ (0, 1) such that

E {
𝜉(𝑘)



2

} ≤ 𝛼𝜏
𝑘 sup
−𝑑≤𝑖≤0

E {
𝜉 (𝑖)



2

} , 𝑘 ∈ I
+
. (14)

Definition 5. Given a scalar 𝛾 > 0, the dynamics of the
augmented systems (11)-(12) are said to be stochastically
stable with disturbance attenuation level 𝛾 if it is exponen-
tially mean-square stable, and under zero initial condition,
‖𝑒(𝑘)‖E𝑙2

< 𝛾‖𝑢(𝑘)‖
𝑙2
holds for all nonzero 𝑢(𝑘) ∈ 𝑙

2
[0,∞),

where

‖𝑒(𝑘)‖E𝑙2
:= (E{

∞

∑

𝑘=1

|𝑒 (𝑘)|
2
})

1/2

. (15)

This paper aims to design a 𝐻
∞

deconvolution filter to
recover a input signal 𝑢(𝑘) transmitted through a noised
channel (1)-(2) such that the closed-loop systems (11)-(12) are
stochastically stable with disturbance attenuation level 𝛾.

3. Main Results

In the proof procedure of theorems presented in this paper,
we will use the following lemma.

Lemma 6 ((Schur complement), see [24]). Given constant
matrices Σ

1
, Σ
2
, and Σ

3
where Σ

1
= Σ
𝑇

1
and 0 < Σ

2
= Σ
𝑇

2
,

then Σ
1
− Σ
𝑇

3
Σ
−1

2
Σ
3
≥ 0 if and only if

[

[

Σ
1
Σ
𝑇

3

Σ
3
Σ
2

]

]

≥ 0 or [

[

Σ
2
Σ
3

Σ
𝑇

3
Σ
1

]

]

≥ 0. (16)

In the following theorem, a sufficient condition is derived
for the augmented filtering dynamics (11)-(12) with 𝑢(𝑘) ≡
0 to ensure the exponential mean-square stability of the
considered dynamics.

Theorem 7. Consider the augmented filtering system (11) with
𝑢(𝑘) ≡ 0. If there exist positive-definite matrix 𝑄

𝑑
> 0,

𝑄(𝑝(𝑘)) > 0, and matrix 𝑆 such that the following matrix
inequalities

[
[
[
[
[
[
[

[

𝑄
𝑑
− 𝑄 (𝑝 (𝑘)) ∗ ∗ ∗ ∗ ∗

0 −𝑄
𝑑

∗ ∗ ∗ ∗

𝐹𝑍𝐽 0 −2𝐼 ∗ ∗ ∗

𝜎
2
𝑆
𝑇
𝑀𝐽 0 0 −𝜎

2
Γ̃ (𝑘) ∗ ∗

𝜃 (𝑘) 𝑆
𝑇
𝐾(𝑝 (𝑘)) 𝐽 −𝜃 (𝑘) 𝑆

𝑇
𝐾(𝑝 (𝑘)) 𝐽 0 0 −𝜃 (𝑘) Γ̃ (𝑘) ∗

𝑆
𝑇
(𝐴 (𝑝 (𝑘)) + 𝑁𝐹

1
𝑍𝐽) 𝑆

𝑇
𝐷(𝑝 (𝑘)) 𝑆

𝑇
𝑁 0 0 −Γ̃ (𝑘)

]
]
]
]
]
]
]

]

< 0 (17)

hold, where
Γ̃ (𝑘) = −𝑄 (𝑝 (𝑘 + 1)) + 𝑆 + 𝑆

𝑇
,

𝜃 (𝑘) = 𝑝 (𝑘) (1 − 𝑝 (𝑘)) ,

(18)

then the augmented dynamics (11) is exponentially stable in
mean square sense.

Proof. Now, we will show the exponential mean-square sta-
bility of the augmented system (11). To this end, define the
Lyapunov functional as

𝑉 (𝑘) := 𝜉
𝑇
(𝑘) 𝑄 (𝑝 (𝑘)) 𝜉 (𝑘) +

𝑘−1

∑

𝑠=𝑘−𝑑

𝜉
𝑇
(𝑠) 𝑄
𝑑
𝜉 (𝑠) , (19)
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where 𝑄(𝑝(𝑘)) is a time-varying positive definite matrix
sequence dependent on the time-varying probability 𝑝(𝑘):

E {Δ𝑉 (𝑘)}

= E {𝜉
𝑇
(𝑘 + 1)𝑄 (𝑝 (𝑘 + 1))

× 𝜉 (𝑘 + 1) − 𝜉
𝑇
(𝑘) 𝑄 (𝑝 (𝑘)) 𝜉 (𝑘)

+ 𝜉
𝑇
(𝑘) 𝑄
𝑑
𝜉 (𝑘) − 𝜉

𝑇
(𝑘 − 𝑑)

×𝑄
𝑑
𝜉 (𝑘 − 𝑑)} .

(20)

Noting that E{𝜛(𝑘)−𝑝(𝑘)} = 0, E{(𝜛(𝑘)−𝑝(𝑘))2} = 𝑝(𝑘)(1−
𝑝(𝑘)), E{𝜔(𝑘)} = 0, and E{𝜔2(𝑘)} = 𝜎2, it can be obtained
from (11) that

E {Δ𝑉 (𝑘)}

= E {[𝐴 (𝑝 (𝑘)) 𝜉 (𝑘) + 𝐷 (𝑝 (𝑘))

× 𝜉 (𝑘 − 𝑑) + 𝐵𝑢 (𝑘)

+𝑁𝑓 (𝑧 (𝑘))]
𝑇

𝑄 (𝑝 (𝑘 + 1))

× [𝐴 (𝑝 (𝑘)) 𝜉 (𝑘) + 𝐷 (𝑝 (𝑘))

× 𝜉 (𝑘 − 𝑑) + 𝐵𝑢 (𝑘)

+𝑁𝑓 (𝑧 (𝑘))] + 𝜎
2
𝜉
𝑇
(𝑘) 𝐽
𝑇
𝑀
𝑇

× 𝑄 (𝑝 (𝑘 + 1))𝑀𝐽𝜉 (𝑘)

+ 𝑝 (𝑘) (1 − 𝑝 (𝑘))

× [𝐾 (𝑝 (𝑘)) 𝐽𝜉 (𝑘)

−𝐾 (𝑝 (𝑘)) 𝐽𝜉 (𝑘 − 𝑑)]
𝑇

× 𝑄 (𝑝 (𝑘 + 1))

× [𝐾 (𝑝 (𝑘)) 𝐽𝜉 (𝑘)

−𝐾 (𝑝 (𝑘)) 𝐽𝜉 (𝑘 − 𝑑)]

− 𝜉
𝑇
(𝑘) [𝑄 (𝑝 (𝑘)) − 𝑄

𝑑
]

×𝜉 (𝑘) − 𝜉
𝑇
(𝑘 − 𝑑)𝑄

𝑑
𝜉 (𝑘 − 𝑑)} .

(21)

Besides that, by the condition of (4) and (5), (21) can be
rewritten as follows:

E {Δ𝑉 (𝑘)}

≤ E {[(𝐴 (𝑝 (𝑘)) + 𝑁𝐹
1
𝑍𝐽) 𝜉 (𝑘)

+ 𝐷 (𝑝 (𝑘)) 𝜉 (𝑘 − 𝑑) + 𝐵𝑢 (𝑘)

+𝑁𝑓
𝑠
(𝑧 (𝑘))]

𝑇

𝑄 (𝑝 (𝑘 + 1))

× [(𝐴 (𝑝 (𝑘)) + 𝑁𝐹
1
𝑍𝐽) 𝜉 (𝑘)

+ 𝐷 (𝑝 (𝑘)) 𝜉 (𝑘 − 𝑑)

+𝐵𝑢 (𝑘) + 𝑁𝑓
𝑠
(𝑧 (𝑘))]

+ 𝑝 (𝑘) (1 − 𝑝 (𝑘))

× [𝐾 (𝑝 (𝑘)) 𝐽𝜉 (𝑘)

−𝐾 (𝑝 (𝑘)) 𝐽𝜉 (𝑘 − 𝑑)]
𝑇

× 𝑄 (𝑝 (𝑘 + 1))

× [𝐾 (𝑝 (𝑘)) 𝐽𝜉 (𝑘)

−𝐾 (𝑝 (𝑘)) 𝐽𝜉 (𝑘 − 𝑑)]

− 𝜉
𝑇
(𝑘) [𝑄 (𝑝 (𝑘)) − 𝑄

𝑑
] 𝜉 (𝑘)

− 𝜉
𝑇
(𝑘 − 𝑑)𝑄

𝑑
𝜉 (𝑘 − 𝑑)

+ 𝜎
2
𝜉
𝑇
(𝑘) 𝐽
𝑇
𝑀
𝑇

× 𝑄 (𝑝 (𝑘 + 1))𝑀𝐽𝜉 (𝑘)

−2𝑓
𝑇

𝑠
(𝑧 (𝑘)) (𝑓

𝑠
(𝑧 (𝑘)) − 𝐹𝑍𝐽𝜉 (𝑘))} .

(22)

From the previous analysis and 𝑢(𝑘) ≡ 0, it follows that

E {Δ𝑉 (𝑘)} ≤ E {𝜉
𝑇
(𝑘)Π𝜉 (𝑘)} , (23)

where 𝜉(𝑘) = [𝜉𝑇(𝑘) 𝜉𝑇(𝑘 − 𝑑) 𝑓𝑇
𝑠
(𝑧(𝑘))]

𝑇 and

Π = [

[

Π
1
∗ ∗

Π
2
Π
3
∗

Π
4
Π
5
Π
6

]

]

, (24)

with

Π
1
= [𝐴 (𝑝 (𝑘)) + 𝑁𝐹

1
𝑍𝐽]
𝑇

× 𝑄 (𝑝 (𝑘 + 1))

× [𝐴 (𝑝 (𝑘)) + 𝑁𝐹
1
𝑍𝐽]

+ 𝜎
2
𝐽
𝑇
𝑀
𝑇
𝑄 (𝑝 (𝑘 + 1))𝑀𝐽

+ 𝑝 (𝑘) (1 − 𝑝 (𝑘)) 𝐽
𝑇
𝐾
𝑇

× (𝑝 (𝑘))𝑄 (𝑝 (𝑘 + 1))𝐾 (𝑝 (𝑘)) 𝐽

− (𝑄 (𝑝 (𝑘)) − 𝑄
𝑑
) ,
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Π
2
= 𝐷
𝑇
(𝑝 (𝑘))𝑄 (𝑝 (𝑘 + 1))

× [𝐴 (𝑝 (𝑘)) + 𝑁𝐹
1
𝑍𝐽]

− 𝑝 (𝑘) (1 − 𝑝 (𝑘)) 𝐽
𝑇
𝐾
𝑇

× (𝑝 (𝑘))𝑄 (𝑝 (𝑘 + 1))𝐾 (𝑝 (𝑘)) 𝐽,

Π
3
= 𝐷
𝑇
(𝑝 (𝑘))𝑄 (𝑝 (𝑘 + 1))

× 𝐷 (𝑝 (𝑘)) + 𝑝 (𝑘) (1 − 𝑝 (𝑘))

× 𝐽
𝑇
𝐾
𝑇
(𝑝 (𝑘))𝑄 (𝑝 (𝑘 + 1))

× 𝐾 (𝑝 (𝑘)) 𝐽 − 𝑄
𝑑
,

Π
4
= 𝑁
𝑇
𝑄 (𝑝 (𝑘 + 1))

× [𝐴 (𝑝 (𝑘)) + 𝑁𝐹
1
𝑍𝐽] + 𝐹𝑍𝐽,

Π
5
= 𝑁
𝑇
𝑄 (𝑝 (𝑘 + 1))𝐷 (𝑝 (𝑘)) ,

Π
6
= 𝑁
𝑇
𝑄 (𝑝 (𝑘 + 1))𝑁 − 2𝐼.

(25)

In the following, we will show thatΠ < 0 from (17). From
the relationship −𝑄(𝑝(𝑘 + 1)) + 𝑆 + 𝑆𝑇 > 0 in (17), we can see
that 𝑆 is nonsingular. Performing congruence transformation
diag{𝐼, 𝐼, 𝐼, 𝜎−2𝑆−1, 𝜃−1(𝑘)𝑆−1, 𝑆−1} to (17), we have

[
[
[
[
[
[
[

[

𝑄
𝑑
− 𝑄 (𝑝 (𝑘)) ∗ ∗ ∗ ∗ ∗

0 −𝑄
𝑑

∗ ∗ ∗ ∗

𝐹𝑍𝐽 0 −2𝐼 ∗ ∗ ∗

𝑀𝐽 0 0 −𝜎
−2
Γ (𝑘) ∗ ∗

𝐾 (𝑝 (𝑘)) 𝐽 −𝐾 (𝑝 (𝑘)) 𝐽 0 0 −𝜃
−1
(𝑘) Γ (𝑘) ∗

𝐴 (𝑝 (𝑘)) + 𝑁𝐹
1
𝑍𝐽 𝐷 (𝑝 (𝑘)) 𝑁 0 0 −Γ (𝑘)

]
]
]
]
]
]
]

]

< 0, (26)

where, Γ(𝑘) = −𝑆−𝑇𝑄(𝑝(𝑘 + 1))𝑆−1 + 𝑆−1 + 𝑆−𝑇.
Since 𝑄−1(𝑝(𝑘 + 1)) is positive definite, we have

𝑄
−1
(𝑝 (𝑘 + 1)) + 𝑆

−𝑇
𝑄 (𝑝 (𝑘 + 1)) 𝑆

−1
− 𝑆
−1
− 𝑆
−𝑇

= [𝑆
−𝑇
− 𝑄
−1
(𝑝 (𝑘 + 1))]

× 𝑄 (𝑝 (𝑘 + 1)) 𝑆
−1

− [𝑆
−𝑇
− 𝑄
−1
(𝑝 (𝑘 + 1))]

= [𝑆
−1
− 𝑄
−1
(𝑝 (𝑘 + 1))]

𝑇

× 𝑄 (𝑝 (𝑘 + 1))

× [𝑆
−1
− 𝑄
−1
(𝑝 (𝑘 + 1))] ≥ 0,

(27)

therefore −𝑄−1(𝑝(𝑘 + 1)) ≤ 𝑆−𝑇𝑄(𝑝(𝑘 + 1))𝑆−1 − 𝑆−1 − 𝑆−𝑇.
Then, it follows from inequality (27) that

[
[
[
[
[
[
[

[

𝑄
𝑑
− 𝑄 (𝑝 (𝑘)) ∗ ∗ ∗ ∗ ∗

0 −𝑄
𝑑

∗ ∗ ∗ ∗

𝐹𝑍𝐽 0 −2𝐼 ∗ ∗ ∗

𝑀𝐽 0 0 −𝜎
−2
Γ (𝑘) ∗ ∗

𝐾 (𝑝 (𝑘)) 𝐽 −𝐾 (𝑝 (𝑘)) 𝐽 0 0 −𝜃
−1
(𝑘) Γ (𝑘) ∗

𝐴 (𝑝 (𝑘)) + 𝑁𝐹
1
𝑍𝐽 𝐷 (𝑝 (𝑘)) 𝑁 0 0 −Γ (𝑘)

]
]
]
]
]
]
]

]

< 0, (28)

with Γ(𝑘) = 𝑄−1(𝑝(𝑘+1)). By Schur complement (Lemma 6),
we can see that Π < 0. Subsequently, we have

E {Δ𝑉 (𝑘)} < 𝜆min (Π)E

𝜉 (𝑘)



2

, (29)

where 𝜆min(Π) is the minimum eigenvalue of Π. Finally, we
can confirm that the augmented system (11) is exponentially
stable in mean square sense and the proof of this theorem is
thus complete.

In Theorem 7, the sufficient condition ensuring the
exponential stability of augmented filtering dynamics
(11) has been obtained. Now, we will consider the 𝐻

∞

performance for this dynamics under the zero initial
condition.

Theorem 8. If there exist positive-definite matrix 𝑄
𝑑
> 0,

𝑄(𝑝(𝑘)) > 0, and matrix 𝑆 such that the following matrix
inequalities hold:
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[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑄
𝑑
− 𝑄 (𝑝 (𝑘)) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 −𝑄
𝑑

∗ ∗ ∗ ∗ ∗ ∗ ∗

𝐹𝑍𝐽 0 −2𝐼 ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 −𝛾
2

∗ ∗ ∗ ∗ ∗

𝜎
2
𝑆
𝑇
𝑀𝐽 0 0 0 −𝜎

2
Γ̃ (𝑘) ∗ ∗ ∗ ∗

𝜃 (𝑘)Φ
1

−𝜃 (𝑘)Φ
1

0 0 0 −𝜃 (𝑘) Γ̃ (𝑘) ∗ ∗ ∗

Φ
2

𝑆
𝑇
𝐷(𝑝 (𝑘)) 𝑆

𝑇
𝑁 𝑆
𝑇
𝐵 0 0 −Γ̃ (𝑘) ∗ ∗

−𝐸
𝑐𝑑𝑓
(𝑝 (𝑘)) −𝑝 (𝑘) 𝐸

𝑑𝑓
(𝑝 (𝑘)) 0 1 0 0 0 −𝐼 ∗

−𝜃 (𝑘) 𝐸
𝑑𝑓
(𝑝 (𝑘)) 𝜃 (𝑘) 𝐸

𝑑𝑓
(𝑝 (𝑘)) 0 0 0 0 0 0 −𝜃 (𝑘)

]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (30)

where 𝜃(𝑘) has been defined in (18) and

Γ̃ (𝑘) = −𝑄 (𝑝 (𝑘 + 1)) + 𝑆 + 𝑆
𝑇
,

Φ
1
= 𝑆
𝑇
𝐾(𝑝 (𝑘)) 𝐽,

Φ
2
= 𝑆
𝑇
(𝐴 (𝑝 (𝑘)) + 𝑁𝐹

1
𝑍𝐽)

(31)

the dynamics of the augmented systems (11)-(12) are stochasti-
cally stable with disturbance attenuation level 𝛾 under the zero
initial condition.

Proof. In order to investigate the 𝐻
∞

performance of the
augmented systems (11)-(12), construct a functional as

𝑉 (𝑘) := 𝜉
𝑇

(𝑘) 𝑄 (𝑝 (𝑘)) 𝜉 (𝑘) +

𝑘−1

∑

𝑠=𝑘−𝑑

𝜉
𝑇

(𝑠) 𝑄
𝑑
𝜉 (𝑠) . (32)

Under the zero initial condition and (22), we have

𝐽 (𝑁) = E{
𝑁

∑

𝑘=0

[𝑒
𝑇
(𝑘) 𝑒 (𝑘) − 𝛾

2
𝑢
𝑇
(𝑘) 𝑢 (𝑘)]}

≤ E{
𝑁

∑

𝑘=0

[𝑒
𝑇
(𝑘) 𝑒 (𝑘) − 𝛾

2
𝑢
𝑇
(𝑘) 𝑢 (𝑘) + Δ𝑉

𝑘
]}

≤ E{
𝑁

∑

𝑘=0

𝜉
𝑇

(𝑘)Π𝜉 (𝑘)} ,

(33)

where 𝜉(𝑘) = [𝜉𝑇(𝑘) 𝜉𝑇(𝑘 − 𝑑) 𝑓𝑇
𝑠
(𝑧(𝑘)) 𝑢

𝑇
(𝑘)]
𝑇 and

Π =

[
[
[

[

Π
1
∗ ∗ ∗

Π
2
Π
3
∗ ∗

Π
4
Π
5
Π
6
∗

Π
7
Π
8
Π
9
Π
10

]
]
]

]

, (34)

with

Π
1
= [𝐴 (𝑝 (𝑘)) + 𝑁𝐹

1
𝑍𝐽]
𝑇

× 𝑄 (𝑝 (𝑘 + 1))

× [𝐴 (𝑝 (𝑘)) + 𝑁𝐹
1
𝑍𝐽]

+ 𝜎
2
𝐽
𝑇
𝑀
𝑇
𝑄 (𝑝 (𝑘 + 1))𝑀𝐽

+ 𝑝 (𝑘)(1 − 𝑝 (𝑘)) 𝐽
𝑇
𝐾
𝑇

× (𝑝 (𝑘))𝑄 (𝑝 (𝑘 + 1))

× 𝐾 (𝑝 (𝑘)) 𝐽 − (𝑄 (𝑝 (𝑘)) − 𝑄
𝑑
)

+ 𝐸
𝑇

𝑐𝑑𝑓
(𝑝 (𝑘)) 𝐸

𝑐𝑑𝑓
(𝑝 (𝑘))

+ 𝑝 (𝑘) (1 − 𝑝 (𝑘)) 𝐸
𝑇

𝑑𝑓

× (𝑝 (𝑘)) 𝐸
𝑑𝑓
(𝑝 (𝑘)) ,

Π
2
= 𝐷(𝑝 (𝑘))

𝑇

× 𝑄 (𝑝 (𝑘 + 1)) [𝐴 (𝑝 (𝑘)) + 𝑁𝐹
1
𝑍𝐽]

− 𝑝 (𝑘) (1 − 𝑝 (𝑘)) 𝐽
𝑇
𝐾
𝑇

× (𝑝 (𝑘))𝑄 (𝑝 (𝑘 + 1))

× 𝐾 (𝑝 (𝑘)) 𝐽 + 𝑝 (𝑘) 𝐸
𝑇

𝑑𝑓

× (𝑝 (𝑘)) 𝐸
𝑐𝑑𝑓
(𝑝 (𝑘))

− 𝑝 (𝑘) (1 − 𝑝 (𝑘)) 𝐸
𝑇

𝑑𝑓

× (𝑝 (𝑘)) 𝐸
𝑑𝑓
(𝑝 (𝑘)) ,

Π
3
= 𝐷(𝑝 (𝑘))

𝑇

𝑄 (𝑝 (𝑘 + 1))

× 𝐷 (𝑝 (𝑘)) + 𝑝 (𝑘) (1 − 𝑝 (𝑘))

× [𝐾 (𝑝 (𝑘)) 𝐽]
𝑇

𝑄 (𝑝 (𝑘 + 1))

× 𝐾 (𝑝 (𝑘)) 𝐽 − 𝑄
𝑑

+ [𝑝 (𝑘) 𝐸
𝑑𝑓
(𝑝 (𝑘))]

𝑇
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× 𝑝 (𝑘) 𝐸
𝑑𝑓
(𝑝 (𝑘)) + 𝑝 (𝑘)

× (1 − 𝑝 (𝑘)) 𝐸
𝑇

𝑑𝑓
(𝑝 (𝑘)) 𝐸

𝑑𝑓
(𝑝 (𝑘)) ,

Π
4
= 𝑁
𝑇
𝑄 (𝑝 (𝑘 + 1))

× [𝐴 (𝑝 (𝑘)) + 𝑁𝐹
1
𝑍𝐽] + 𝐹𝑍𝐽,

Π
5
= 𝑁
𝑇
𝑄 (𝑝 (𝑘 + 1))𝐷 (𝑝 (𝑘)) ,

Π
6
= 𝑁
𝑇
𝑄 (𝑝 (𝑘 + 1))𝑁 − 2𝐼,

Π
7
= 𝐵
𝑇
𝑄 (𝑝 (𝑘 + 1))

× [𝐴 (𝑝 (𝑘)) + 𝑁𝐹
1
𝑍𝐽] − 𝐸

𝑇

𝑐𝑑𝑓
(𝑝 (𝑘)) ,

Π
8
= 𝐵
𝑇
𝑄 (𝑝 (𝑘 + 1))𝐷 (𝑝 (𝑘)) − 𝑝 (𝑘) 𝐸

𝑇

𝑑𝑓
(𝑝 (𝑘)) ,

Π
9
= 𝐵
𝑇
𝑄 (𝑝 (𝑘 + 1))𝑁,

Π
10
= 𝐵
𝑇
𝑄 (𝑝 (𝑘 + 1)) 𝐵 + 1 − 𝛾

2
.

(35)
By introducing a new slack matrix 𝑆, some mathematical
techniques, and the similar proof line to the proof of

Theorem 7, we can see that Π < 0. Subsequently, letting
𝑁 → ∞, we have

‖𝑒(𝑘)‖E𝑙2
< 𝛾‖𝑢(𝑘)‖𝑙2. (36)

From Definition 5 and the previous analysis we will safely
come to the conclusion that the augmented systems (11)-(12)
are stochastically stable with disturbance attenuation level 𝛾
under the zero initial condition.

Remark 9. For the sake of the desired stability of the
augmented systems (11), we propose a Lyapunov functional
including the time-varying probability parameters, which
reduces the conservatism of the sufficient condition inTheo-
rems 7 and 8. At the same time, in the sufficient condition,
we introduce a slack variable 𝑆 to decouple the Lyapunov
matrices and the filter parameters, which all contain the time-
varying probability parameters. Such a technique can bypass
the difficulty encountered in the filter design. In the following
theorem, the filter design problem is dealt with.

Theorem 10. Consider the augmented systems (11)-(12).
Assume that there exist positive-definite matrix sequences
Q(𝑝(𝑘)) > 0, Q

𝑑
> 0 matrix sequences A

𝑓
, B
𝑓
, C
𝑓
, and

𝐷
𝑓
, nonsingular matrices 𝑆

11
, 𝑅
2
, and matrix 𝑅

1
such that the

following parameter-dependent LMIs hold:

[
[
[
[
[
[
[
[
[
[
[
[
[

[

Q
𝑑
− Q (𝑝 (𝑘)) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 −Q
𝑑

∗ ∗ ∗ ∗ ∗ ∗ ∗

𝐹𝑍𝐽 0 −2𝐼 ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 −𝛾
2

∗ ∗ ∗ ∗ ∗

Ψ
1

0 0 0 −𝜎
−2
Ψ
6
(𝑘) ∗ ∗ ∗ ∗

𝜃 (𝑘)Ψ
2
(𝑘) −𝜃 (𝑘)Ψ

2
(𝑘) 0 0 0 −𝜃 (𝑘)Ψ

6
(𝑘) ∗ ∗ ∗

Ψ
3
(𝑘) 𝑝 (𝑘)Ψ

2
(𝑘) Ψ

4
Ψ
5

0 0 −Ψ
6
(𝑘) ∗ ∗

−Ψ
7
(𝑘) −𝑝 (𝑘)Ψ

8
(𝑘) 0 1 0 0 0 −𝐼 ∗

−𝜃 (𝑘)Ψ
8
(𝑘) 𝜃 (𝑘)Ψ

8
(𝑘) 0 0 0 0 0 0 −𝜃 (𝑘)

]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (37)

where

Ψ
1
= [

[

𝑆
𝑇

11
𝑀
𝑐
0

𝑅
𝑇

1
𝑀
𝑐
0

]

]

, Ψ
2
(𝑘) = [

[

B
𝑓
𝐶
𝑐
0

B
𝑓
𝐶
𝑐
0
]

]

,

Ψ
4
= [

[

𝑆
𝑇

11
𝑁
𝑐

𝑅
𝑇

1
𝑁
𝑐

]

]

, Ψ
5
= [

[

𝑆
𝑇

11
𝐵
𝑐

𝑅
𝑇

1
𝐵
𝑐

]

]

,

Ψ
3
(𝑘) = [

[

𝑆
𝑇

11
𝐴
𝑐
+ (1 − 𝑝 (𝑘))B

𝑓
𝐶
𝑐
+ 𝑆
𝑇

11
𝑁
𝑐
𝐹
1
𝑍 A
𝑓

𝑅
𝑇

1
𝐴
𝑐
+ (1 − 𝑝 (𝑘))B

𝑓
𝐶
𝑐
+ 𝑅
𝑇

1
𝑁
𝑐
𝐹
1
𝑍 A
𝑓

]

]

,

Ψ
8
(𝑘) = [𝐷𝑓𝐶𝑐 0] ,

Ψ
6
(𝑘) = −Q (𝑝 (𝑘 + 1)) + [

[

𝑆
11
+ 𝑆
𝑇

11
𝑅
1
+ 𝑅
𝑇

2

𝑅
2
+ 𝑅
𝑇

1
𝑅
2
+ 𝑅
𝑇

2

]

]

,

Ψ
7
(𝑘) = [(1 − 𝑝 (𝑘))𝐷𝑓𝐶𝑐 C

𝑓] .

(38)

In this case, there exist nonsingular matrices 𝑆
21

and 𝑆
22

such
that 𝑅

2
= 𝑆
𝑇

21
𝑆
−𝑇

22
𝑆
21
, and then the constant gains of the desired

filter can be obtained as follows:

𝐴
𝑓
= 𝑆
−𝑇

21
A
𝑓
𝑆
−1

21
𝑆
22
, 𝐵

𝑓
= 𝑆
−𝑇

21
B
𝑓
,

𝐶
𝑓
= C
𝑓
𝑆
−1

21
𝑆
22
.

(39)

Then, there exists a desired gain-scheduled filter in the form of
(8)-(9) such that the dynamics of the augmented systems (11)-
(12) are stochastically stable with disturbance attenuation level
𝛾 under the zero initial condition.

Proof. Let nonsingular matrix variable 𝑆 in (30) be parti-
tioned as 𝑆 = [𝑆

𝑖𝑗
]
2×2

, where 𝑆
11
, 𝑆
21
, and 𝑆

22
are nonsingular

matrices. Introduce matrices
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T = [
𝐼 0

0 𝑆
−1

22
𝑆
21

] , Q (𝑝 (𝑘)) = T
𝑇
𝑄 (𝑝 (𝑘))T,

Q
𝑑
= T
𝑇
𝑄
𝑑
T,

𝑅
1
= 𝑆
12
𝑆
−1

22
𝑆
21
, 𝑅

2
= 𝑆
𝑇

21
𝑆
−𝑇

22
𝑆
21
.

(40)

By performing congruence transformation diag{T−1,T−1, 𝐼,
1,T−1,T−1, T−1, 1, 1} to (37), we can see that (37) is
equivalent to (30). It can now be concluded fromTheorem 8
that (11) and (12) are stochastically stable with disturbance
attenuation level 𝛾 under the zero initial condition.

Because of the time-varying parameter 𝑝(𝑘), the number
of LMIs in Theorem 10 is infinite, and all these LMIs bring
enormous difficulties to solve. In the next work, we will focus
on the challenge and present an effectivemethod to overcome
this difficulty.

Theorem 11. Consider the augmented systems (11)-(12).
Assume that there exist positive positive-definite matricesQ

𝑑
>

0, Q
0
> 0, and Q

𝑝
> 0, nonsingular matrices 𝑆

11
and 𝑅

2
, and

matrices 𝑅
1
, A
𝑓0
, A
𝑓𝑝
, B
𝑓0
, B
𝑓𝑝
, C
𝑓0
, C
𝑓𝑝
, 𝐷
𝑓0
, and 𝐷

𝑓𝑝
,

such that the following LMIs hold:

Ω
𝑖𝑗𝑟𝑙
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Q
𝑑
− Q𝑙 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 −Q
𝑑

∗ ∗ ∗ ∗ ∗ ∗ ∗

𝐹𝑍𝐽 0 −2𝐼 ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 −𝛾
2

∗ ∗ ∗ ∗ ∗

Ψ
1

0 0 0 −𝛿
2
Ψ
𝑙

6
∗ ∗ ∗ ∗

Ψ
𝑖𝑗𝑟

2
−Ψ
𝑖𝑗𝑟

2
0 0 0 −𝜃

𝑖𝑗
Ψ
𝑙

6
∗ ∗ ∗

Ψ
𝑗𝑟

3
Ψ
𝑖𝑟

2
Ψ
4
Ψ
5

0 0 −Ψ
𝑙

6
∗ ∗

−Ψ
𝑗𝑟

7
−𝑝
𝑖
Ψ
𝑟

8
0 1 0 0 0 −1 ∗

−𝜃
𝑖𝑗
Ψ
𝑟

8
𝜃
𝑖𝑗
Ψ
𝑟

8
0 0 0 0 0 0 −𝜃

𝑖𝑗

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (41)

for 𝑖, 𝑗, 𝑟, 𝑙 = 1, 2,

Ψ
𝑗𝑟

3
= [
𝑆
𝑇

11
𝐴
𝑐
+ (1 − 𝑝

𝑗
)B𝑟
𝑓
𝐶
𝑐
+ 𝑆
𝑇

11
𝑁
𝑐
𝐹
1
𝑍 A𝑟
𝑓

𝑅
𝑇

1
𝐴
𝑐
+ (1 − 𝑝

𝑗
)B𝑟
𝑓
𝐶
𝑐
+ 𝑅
𝑇

1
𝑁
𝑐
𝐹
1
𝑍 A𝑟
𝑓

] ,

Ψ
𝑖𝑟

2
= 𝑝
𝑖
[
B𝑟
𝑓
𝐶
𝑐
0

B𝑟
𝑓
𝐶
𝑐
0
] ,

Ψ
𝑙

6
= − (Q

0
+ 𝑝
𝑙
Q
𝑝
) + [

[

𝑆
11
+ 𝑆
𝑇

11
𝑅
1
+ 𝑅
𝑇

2

𝑅
2
+ 𝑅
𝑇

1
𝑅
2
+ 𝑅
𝑇

2

]

]

,

Ψ
𝑖𝑗𝑟

2
= 𝑝
𝑖
(1 − 𝑝

𝑗
) [

B𝑟
𝑓
𝐶
𝑐
0

B𝑟
𝑓
𝐶
𝑐
0
] ,

Ψ
𝑗𝑟

7
= [(1 − 𝑝

𝑗
)𝐷
𝑟

𝑓
𝐶
𝑐
C𝑟
𝑓
] , A

𝑟

𝑓
= A
𝑓0
+ 𝑝
𝑟
A
𝑓𝑝
,

B
𝑟

𝑓
= B
𝑓0
+ 𝑝
𝑟
B
𝑓𝑝
, C

𝑟

𝑓
= C
𝑓0
+ 𝑝
𝑟
C
𝑓𝑝
,

Q
𝑙
= Q
0
+ 𝑝
𝑙
Q
𝑝
, 𝜃

𝑖𝑗
= 𝑝
𝑖
(1 − 𝑝

𝑗
) ,

Ψ
𝑟

8
= [𝐷
𝑟

𝑓
𝐶
𝑐
0] ,

(42)

and Ψ
1
, Ψ
4
, and Ψ

5
have been defined in (38).

In this case, there exist nonsingular matrices 𝑆
21

and 𝑆
22

such that 𝑅
2
= 𝑆
𝑇

21
𝑆
−𝑇

22
𝑆
21
, and then the constant gains of the

desired filter can be obtained as follows:

𝐴
𝑓0
= 𝑆
−𝑇

21
A
𝑓0
𝑆
−1

21
𝑆
22
, 𝐴

𝑓𝑝
= 𝑆
−𝑇

21
A
𝑓𝑝
𝑆
−1

21
𝑆
22
,

𝐵
𝑓0
= 𝑆
−𝑇

21
B
𝑓0
, 𝐵

𝑓𝑝
= 𝑆
−𝑇

21
B
𝑓𝑝
,

𝐶
𝑓0
= C
𝑓0
𝑆
−1

21
𝑆
22
, 𝐶

𝑓𝑝
= C
𝑓𝑝
𝑆
−1

21
𝑆
22
.

(43)

Then, a gain-scheduled filter can be obtained in the form of
(8)-(9) such that the dynamics of the augmented systems (11)-
(12) are stochastically stable with disturbance attenuation level
𝛾 under the zero initial condition.

Proof. Firstly, choose the probability-dependent Lyapunov
matrices as

Q (𝑝 (𝑘)) = Q
0
+ 𝑝 (𝑘)Q

𝑝
, (44)

where Q
0
> 0 and Q

𝑝
> 0. Setting

𝜆
1
(𝑘) =

𝑝
2
− 𝑝 (𝑘)

𝑝
2
− 𝑝
1

, 𝜆
2
(𝑘) =

𝑝 (𝑘) − 𝑝
1

𝑝
2
− 𝑝
1

, (45)

we have
𝜆
1
(𝑘) + 𝜆

2
(𝑘) = 1, 𝜆

𝑖
(𝑘) ≥ 0 (𝑖 = 1, 2) ,

𝑝 (𝑘) = 𝜆
1
(𝑘) 𝑝
1
+ 𝜆
2
(𝑘) 𝑝
2
.

(46)

Similarly, letting

𝜇
1
(𝑘) =

𝑝
2
− 𝑝 (𝑘 + 1)

𝑝
2
− 𝑝
1

, 𝜇
2
(𝑘) =

𝑝 (𝑘 + 1) − 𝑝
1

𝑝
2
− 𝑝
1

, (47)

we have
𝜇
1
(𝑘) + 𝜇

2
(𝑘) = 1, 𝜇

𝑙
(𝑘) ≥ 0 (𝑙 = 1, 2) ,

𝑝 (𝑘 + 1) = 𝜇
1
(𝑘) 𝑝
1
+ 𝜇
2
(𝑘) 𝑝
2
.

(48)



10 Abstract and Applied Analysis

From the previous transformations, it can be easily
derived that

Q (𝑝 (𝑘)) =
2

∑

𝑙=1

𝜆
𝑙
(𝑘)Q
𝑙
, Q (𝑝 (𝑘 + 1)) =

2

∑

𝑙=1

𝜇
𝑙
(𝑘)Q
𝑙
,

A
𝑓
=

2

∑

𝑟=1

𝜆
𝑟
(𝑘)A
𝑟

𝑓
, B

𝑓
=

2

∑

𝑟=1

𝜆
𝑟
(𝑘)B
𝑟

𝑓
,

C
𝑓
=

2

∑

𝑟=1

𝜆
𝑟
(𝑘)C
𝑟

𝑓
, 𝐷

𝑓
=

2

∑

𝑟=1

𝜆
𝑟
(𝑘)𝐷
𝑟

𝑓
.

(49)

And it follows from (41) that
2

∑

𝑖,𝑗,𝑟,𝑙=1

𝜆
𝑖
(𝑘) 𝜆
𝑗
(𝑘) 𝜆
𝑟
(𝑘) 𝜇
𝑙
(𝑘)Ω
𝑖𝑗𝑟𝑙
< 0. (50)

Also, it follows from (46) and (48)–(50) that (37) holds, and
the proof is now complete.

Remark 12. In Theorem 11, we convert infinite LMIs to finite
ones by turning the time-varying parameter 𝑝(𝑘) into the
polytopic form. By such a transformation, the constant gains
of the desired gain-scheduled filter can be easily derived in
terms of the available LMI toolbox by using the computa-
tionally appealing gain-scheduled deconvolution filter design
algorithm listed as follows.

Algorithm 13. The gain-scheduled filter design algorithm.

Step 1.Given the initial values for the positive integer𝑁
𝑞
, the

initial state 𝜌, the constants 𝑝
1
and 𝑝

2
, and the matrices 𝐴

𝑐
,

𝐵
𝑐
, 𝐶
𝑐
, 𝑀
𝑐
, 𝑁
𝑐
, 𝐹
1
, 𝐹
2
, and 𝑍 select appropriate initial state

estimate 𝜌
𝑓
, and set 𝑘 = 0.

Step 2. Solve the LMI in (41) to obtain the positive-definite
matrices Q

0
, Q
𝑝
, and Q

𝑑
, matrices A

𝑓0
, A
𝑓𝑝
, B
𝑓0
, B
𝑓𝑝
,

C
𝑓0
, C
𝑓𝑝
, 𝑅
1
, 𝑅
2
, and 𝑆

11
. Choose appropriate nonsingular

matrices 𝑆
21
to derive 𝐴

𝑓0
, 𝐴
𝑓𝑝
, 𝐵
𝑓0
, 𝐵
𝑓𝑝
, 𝐶
𝑓0
, and 𝐶

𝑓𝑝
.

Step 3. Based on the measured time-varying parameter 𝑝(𝑘),
derive the filter gains 𝐴

𝑓
, 𝐵
𝑓
, 𝐶
𝑓
, and 𝐷

𝑓
by (10), the state

𝑥
𝑓
(𝑘 + 1) by (9), and the estimation of 𝑢(𝑘). Then, set

𝑘 = 𝑘 + 1.

Step 4. If 𝑘 < 𝑁, then go to Step 3; otherwise go to Step 5.

Step 5. Stop.

Remark 14. In Algorithm 13, detailed steps have been given
for the gain-scheduled deconvolution filter design problem
according to Theorem 11. By employing this algorithm along
with the LMI toolbox, the time-varying filter gains can be
easily derived from the measured/estimated time-varying
missing probability 𝑝(𝑘) in real time.

4. An Illustrative Example

In this section, an example is given to design the deconvo-
lution filters for stochastic systems with randomly occurring
sensor delays.

The system parameters are given as follows:

𝐴
𝑐
= [
0.601 −0.065

0 0.420
] , 𝑀

𝑐
= [
0.013 0

0 0.024
] ,

𝑁
𝑐
= [
0.014 0

0 0.062
] , 𝑍 = [

0.291 0

0 0.599
] ,

𝐹
1
= [
0.159 0

0 0.311
] , 𝐹

2
= [
0.409 0

0 1.501
] ,

𝐶
𝑐
= [0.22 0.075] , 𝐵

𝑐
= [
0.109

0.081
] ,

𝑝
1
= 0.23, 𝑝

2
= 0.45, 𝜎 = 1.

(51)

The measurable time-varying probability sequence is
assumed as 0.23𝑒0.0168𝑘. Then, the constant filter parameters
𝐴
𝑓0
, 𝐴
𝑓𝑝
, 𝐵
𝑓0
, 𝐵
𝑓𝑝
, 𝐶
𝑓0
, 𝐶
𝑓𝑝
, 𝐷
𝑓0
, and 𝐷

𝑓𝑝
can be obtained

as follows:

𝐴
𝑓0
= [

0.3998 0.2138

−0.1733 −0.0501
] , 𝐵

𝑓0
= [
−0.0521

0.0364
] ,

𝐶
𝑓0
= [−0.0266 −0.0249] , 𝐷

𝑓0
= 16,

𝐴
𝑓𝑝
= [
−0.0109 −0.0072

−0.0246 −0.0160
] , 𝐵

𝑓𝑝
= [
−0.0230

0.0020
] ,

𝐶
𝑓𝑝
= [−0.0794 −0.0520] , 𝐷

𝑓𝑝
= 17.

(52)

Figure 2 includes the response curves of input signal
𝑢(𝑘) and the simulation results of estimation �̂�(𝑘). Figure 3
gives the time-varying missing probability 𝑝(𝑘), and the
corresponding filter parameters are given in Table 1. The
simulation results have illustrated the rationality and effec-
tiveness of the previous theoretical analysis.

5. Conclusions

This paper has dealt with the deconvolution filtering problem
for a class of discrete-time stochastic systems with ran-
domly occurring sensor delays, nonlinear disturbances, and
external stochastic noises. We assume the sensor delays to
be randomly occurring, and the occurring way is modeled
by a stochastic variable sequence satisfying time-varying
Bernoulli distributions. A sufficient condition has been
derived to guarantee the stability of the considered stochastic
systems by constructing probability-dependent Lyapunov
functional and employing convex optimization method.
Through some mathematical transformation, we convert the
matrix inequalities into solvable form, and then a finite set
of inequalities for designing the desired filter are obtained.
The proposed gain-scheduled filters include both constant
parameters and time-varying gains which can be updated
online according to the measurable missing probabilities in
real time. The desired filters can be obtained by solving a set
of LMIs relying on the time-varying feature of sensor delays.
By using the obtained filter, we can accurately estimate the
input signal distorted by the noisy transmission channel and
the delayed sensor outputs. A simulation example is exploited
to illustrate the effectiveness of the proposed design scheme.



Abstract and Applied Analysis 11

Table 1: The time-varying filter parameters.

𝑘 𝑝(𝑘) 𝐴
𝑓

𝐵
𝑓

𝐶
𝑓

𝐷
𝑓

1 0.2339 [
0.3972 0.2121

−0.1790 −0.0539
] [

−0.0574

0.0369
] [−0.0452 −0.0370] 19.9762

2 0.2379 [
0.3972 0.2121

−0.1791 −0.0539
] [

−0.0575

0.0369
] [−0.0455 −0.0373] 20.0436

3 0.2419 [
0.3971 0.2121

−0.1792 −0.0540
] [

−0.0576

0.0369
] [−0.0458 −0.0375] 20.1121

4 0.2460 [
0.3971 0.2120

−0.1793 −0.0541
] [

−0.0577

0.0369
] [−0.0461 −0.0377] 20.1818

...
...

...
...

...
...
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Figure 2: The input signal 𝑢(𝑘) and estimation �̂�(𝑘).
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Figure 3: The time-varying probability 𝑝(𝑘).
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The robust almost periodic dynamical behavior is investigated for interval neural networks with mixed time-varying delays
and discontinuous activation functions. Firstly, based on the definition of the solution in the sense of Filippov for differential
equations with discontinuous right-hand sides and the differential inclusions theory, the existence and asymptotically almost
periodicity of the solution of interval network system are proved. Secondly, by constructing appropriate generalized Lyapunov
functional and employing linear matrix inequality (LMI) techniques, a delay-dependent criterion is achieved to guarantee the
existence, uniqueness, and global robust exponential stability of almost periodic solution in terms of LMIs. Moreover, as special
cases, the obtained results can be used to check the global robust exponential stability of a unique periodic solution/equilibrium
for discontinuous interval neural networks with mixed time-varying delays and periodic/constant external inputs. Finally, an
illustrative example is given to demonstrate the validity of the theoretical results.

1. Introduction

In the past few decades, there was an increasing interest in
different classes of neural networks such as Hopfield, cellular,
Cohen-Grossberg, and bidirectional associative neural net-
works due to their potential applications in many areas such
as classification, signal and image processing, parallel com-
puting, associate memories, optimization, and cryptography.
In the design of practical neural networks, the qualitative
analysis of neural network dynamics plays an important
role; for example, to solve problems of optimization, neural
control, and signal processing, neural networks have to be
designed in such a way that, for a given external input, they
exhibit only one globally asymptotically/exponentially stable
equilibrium point. Hence, exploring the global stability of
neural networks is of primary importance.

In recent years, the global stability of neural networks
with discontinuous activations has received extensive atten-
tion from a lot of scholars under the Filippov framework, see,
for example, [1–29] and references therein. In [1], Forti and

Nistri firstly dealt with the global asymptotic stability (GAS)
and global convergence in finite time of a unique equilibrium
point for neural networksmodeled by a differential equations
with discontinuous right-hand sides, and by using Lyapunov
diagonally stable (LDS) matrix and constructing suitable
Lyapunov function, several stability conditions were derived.
In [2, 3], by applying generalized Lyapunov approach and
𝑀-matrix, Forti et al. discussed the global exponential sta-
bility (GES) of neural networks with discontinuous or non-
Lipschitz activation functions. Arguing as in [1], in [4], Lu and
Chen dealt with GES and GAS of Cohen-Grossberg neural
networks with discontinuous activation functions. In [5–
11], by using differential inclusion and Lyapunov functional
approach, a series of results has been obtained for the global
stability of the unique equilibrium point of neural networks
with a single constant time-delay and discontinuous activa-
tions. In [12], under the framework of Filippov solutions,
by using matrix measure approach, Liu et al. investigated
the global dissipativity and quasi synchronization for the
time-varying delayed neural networks with discontinuous
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activations and parameter mismatches. In [13], similar to
the method employed in [12], Liu et al. discussed the quasi-
synchronization control issue of switched complex networks.

It is well known that equilibrium point can be regarded as
a special case of periodic solution for a neuron system with
arbitrary period or zero amplitude. Hence, through the study
on periodic solution, more general results can be obtained
than those of the study on equilibrium point for a neuron
system. Recently, at the same time to study the global stability
of the equilibrium point of neural networks with discontinu-
ous activation functions,much attention has been paid to deal
with the stability of periodic solution for various neural net-
work systems with discontinuous activations (see [15–29]).
Under the influence of Forti and Nistri, in [15], Chen et al.
considered the global convergence in finite time toward
a unique periodic solution for Hopfield neural networks with
discontinuous activations. In [16, 17], the authors explored the
periodic dynamical behavior of neural networks with time-
varying delays and discontinuous activation functions; some
conditions were proposed to ensure the existence and GES of
the unique periodic solution. In [17–23], under the Filippov
inclusion framework, by using Leray-Schauder alternative
theoremandLyapunov approach, the authors presented some
conditions on the existence and GES or GAS of the unique
periodic solution for Hopfield neural networks or BAM
neural networks with discontinuous activation functions. In
[24], take discontinuous activations as an example, Cheng
et al. presented the existence of anti-periodic solutions of
discontinuous neural networks. In [25, 26], Wu et al. dis-
cussed the existence and GES of the unique periodic solution
for neural networks with discontinuous activation functions
under impulsive control. In [28, 29], under the framework
of Filippov solutions, by using Lyapunov approach and 𝐻-
matrix, the authors presented the stability results of periodic
solution for delayed Cohen-Grossberg neural networks with
a single constant time-delay and discontinuous activation
functions.

It should be pointed out that the results reported in [1–
29] are concerned with the stability analysis of equilibrium
point or periodic solution and neglect the effect of almost
periodicity for neural networkswith discontinuous activation
functions. However, the almost periodicity is one of the
basic properties for dynamical neural systems and appears
to retrace their paths through phase space, but not exactly.
Meantime, almost periodic functions, with a superior spatial
structure, can be regarded as a generalization of periodic
functions. In practice, as shown in [30, 31], almost periodic
phenomenon is more common than periodic phenomenon,
and almost periodic oscillatory behavior is more accordant
with reality. Hence, exploring the global stability of almost
periodic solution of dynamical neural systems is of primary
importance. Very recently, under the framework of the theory
of Filippov differential inclusions, Allegretto et al. proved
the common asymptotic behavior of almost periodic solution
for discontinuous, delayed and impulsive neural networks
in [30]. In [31, 32], Lu and Chen, Qin et al. discussed the
existence and uniqueness of almost periodic solution (as
well as its global exponential stability) of delayed neural

networkswith almost periodic coefficients and discontinuous
activations. In [33], Wang and Huang studied the almost
periodicity for a class of delayed Cohen-Grossberg neural
networks with discontinuous activations. It should be noted
that the network model explored in [30–33] is a class of
discontinuous neural networks with a single constant time-
delay, and the stability conditions were achieved by using
Lyapunov diagonally stable matrix or 𝑀-matrix. Compared
with the stability conditions expressed in terms of LMIs,
it is obvious that the results obtained in [30–33] are very
conservative.

In hardware implementation of the neural networks,
due to unavoidable factors, such as modeling error, external
perturbation, and parameter fluctuation, the neural networks
model certainly involves uncertainties such as perturbations
and component variations, which will change the stability
of neural networks. Therefore, it is of great importance to
study the global robust stability of neural networks with time-
varying delay. Generally speaking, two kinds of parameter
uncertainty, the interval uncertainty and the norm-bounded
uncertainty, are considered frequently at present. In [34, 35],
based on Lyapunov stability theory and matrix inequality
analysis techniques, the global robust stability of a unique
equilibrium point for neural networks with norm-bounded
uncertainties and discontinuous neuron activations has been
discussed. In [36], Guo andHuang analyzed the global robust
stability for interval neural networks with discontinuous
activations. In [37], Liu and Cao discussed the robust state
estimation issue for time-varying delayed neural networks
with discontinuous activation functions via differential inclu-
sions, and some criteria have been established to guarantee
the existence of robust state estimator.

It should be noted that, in the above literatures [34–36],
almost all results treated of the robust stability of equilibrium
point for neural networks with parameter uncertainty and
discontinuous neuron activations. Moreover, most of the
above-mentioned results deal with only discrete time delays.
Forti et al. pointed out that it would be interesting to inves-
tigate discontinuous neural networks with more general
delays, such as time-varying or distributed ones. For example,
in electronic implementation of analog neural networks,
the delays between neurons are usually time varying and
sometimes vary violently with time due to the finite switching
speed of amplifiers and faults in the electrical circuit. This
motivates us to consider more general types of delays, such
as discrete time-varying and distributed ones, which are in
general more complex and, therefore, more difficult to be
dealt with. To the best of our knowledge, up to now, only a
few researchers dealt with the global robust stability issue for
almost periodic solution of discontinuous neural networks
with mixed time-varying delays, which motivates the work
of this paper.

In this paper, our aim is to study the delay-dependent
robust exponential stability problem for almost periodic
solution of interval neural networks withmixed time-varying
delays and discontinuous activation functions. Under the
framework of Filippov differential inclusions, by applying
the nonsmooth Lyapunov stability theory and employing
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the highly efficient LMI approach, a new delay-dependent
criterion is presented to ensure the existence and global
robust exponentially stability of almost periodic solution in
terms of LMIs. Moreover, the obtained conclusion is applied
to prove the existence and robust stability of periodic solution
(or equilibrium point) for neural networks with mixed time-
varying delays and discontinuous activations.

For convenience, some notation, are introduced as fol-
lows. R denotes the set of real numbers, R𝑛 denotes the 𝑛-
dimensional Euclidean space, andR𝑚×𝑛 denotes the set of all
𝑚 × 𝑛 real matrices. For any matrix 𝐴, 𝐴 > 0 (𝐴 < 0) means
that 𝐴 is positive definite (negative definite). 𝐴−1 denotes the
inverse of 𝐴. 𝐴𝑇 denotes the transpose of 𝐴. 𝜆max(𝐴) and
𝜆min(𝐴) denote the maximum and minimum eigenvalue of
𝐴, respectively.𝐸 denotes the identitymatrix with compatible
dimensions.The ellipsis “⋆” denotes the transposed elements
in symmetric positions. Given the vectors 𝑥 = (𝑥

1
, . . . , 𝑥

𝑛
)
𝑇,

𝑦 = (𝑦
1
, . . . , 𝑦

𝑛
)
𝑇

∈ R𝑛, ‖𝑥‖ = (∑
𝑛

𝑖=1
𝑥
2

𝑖
)
1/2, 𝑥𝑇𝑦 = ∑

𝑛

𝑖=1
𝑥
𝑖
𝑦
𝑖
.

‖𝐴‖ denotes the 2-norm of 𝐴; that is, ‖𝐴‖ = √𝜆(𝐴𝑇𝐴),
where 𝜆(𝐴

𝑇
𝐴) denotes the spectral radius of 𝐴𝑇

𝐴. For 𝑟 > 0,
𝐶([−𝑟, 0];R𝑛

) denotes the family of continuous function 𝜑

from [−𝑟, 0] to R𝑛 with the norm ‖𝜑‖ = sup
−𝑟≤𝑠≤0

|𝜑(𝑠)|. ̇𝑥(𝑡)

denotes the derivative of 𝑥(𝑡).
Given a set 𝐶 ⊂ R𝑛, 𝐾[𝐶] denotes the closure of the

convex hull of 𝐶; 𝑃
𝑘𝑐
(𝐶) denotes the collection of all non-

empty, closed, and convex subsets of 𝐶.
Let 𝑉 : R𝑛

→ R be a locally Lipschitz continuous fun-
ction. Clarke’s generalized gradient [38] of 𝑉 at 𝑥 is defined
by

𝜕𝑉 (𝑥)

= 𝐾[{ lim
𝑖→∞

∇𝑉 (𝑥
𝑖
) : lim

𝑖→∞

𝑥
𝑖
= 𝑥, 𝑥

𝑖
∈ R

𝑛
\ Ω

𝑉
∪ M}] ,

(1)

whereΩ
𝑉

⊂ R𝑛 is the set of Lebesguemeasure zero where∇𝑉

does not exist and M ⊂ R𝑛 is an arbitrary set with measure
zero.

Let N ⊂ 𝑅
𝑛. A set-valued map 𝐹 : N → 𝑃

𝑘𝑐
(R𝑛

) is
said to be measurable, if, for all 𝑦 ∈ R𝑛, R+-valued function
𝑥 → 𝑑(𝑦, 𝐹(𝑥)) = inf{‖𝑦−𝜐‖, 𝜐 ∈ 𝐹(𝑥)} is measurable.This
definition of measurability is equivalent to saying that

Graph (𝐹)

= {(𝑥, 𝜐) ∈ N × R
𝑛
, 𝜐 ∈ 𝐹 (𝑥)} ∈ L (N) × B (R

𝑛
)

(2)

(graph measurability), where L(N) is the Lebesgue 𝜎-field
ofN andB(R𝑛

) is the Borel 𝜎-field of R𝑛.
Let 𝑌, 𝑍 be Hausdorff topological spaces and 𝐺(⋅) : 𝑌 →

2
𝑍

\ {0}. We say that the set-valued map 𝐺(⋅) is upper
semicontinuous, if, for all nonempty closed subset 𝐶 of 𝑍,
𝐺
−1

(𝐶) = {𝑦 ∈ 𝑌 : 𝐺(𝑦)⋂𝐶 ̸= 0} is closed in 𝑌.
The set-valued map 𝐺(⋅) is said to have a closed (convex,

compact) image if, for each 𝑥 ∈ 𝐸, 𝐺(𝑥) is closed (convex,
compact).

The rest of this paper is organized as follows. In Section 2,
the model formulation and some preliminaries are given. In
Section 3, the existence and asymptotically almost periodic
behavior of Filippov solutions are analyzed. Moreover, the
proof of the existence of almost periodic solution is given.
The global robust exponential stability is discussed, and a
delay-dependent criterion is established in terms of LMIs. In
Section 4, a numerical example is presented to demonstrate
the validity of the proposed results. Some conclusions are
drawn in Section 5.

2. Model Description and Preliminaries

Consider the following interval neural network model with
discrete and distributed time delays:

̇𝑥 (𝑡) = −𝐷𝑥 (𝑡) + 𝐴𝑔 (𝑥 (𝑡)) + 𝐵𝑔 (𝑥 (𝑡 − 𝜏 (𝑡)))

+ 𝐶∫

𝑡

𝑡−𝜎(𝑡)

𝑔 (𝑥 (𝑠)) 𝑑𝑠 + 𝐼 (𝑡) ,

𝐷 ∈ D, 𝐴 ∈ A, 𝐵 ∈ B, 𝐶 ∈ C,

(3)

where 𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥

2
(𝑡), . . . , 𝑥

𝑛
(𝑡))

𝑇 is the vector of neuron
states at time 𝑡, 𝐷 = diag(𝑑

1
, 𝑑

2
, . . . , 𝑑

𝑛
) is an 𝑛 × 𝑛 diagonal

matrix, 𝑑
𝑖
> 0, 𝑖 = 1, . . . , 𝑛, are the neuron self-inhibition,

𝐴 = (𝑎
𝑖𝑗
)
𝑛×𝑛

, 𝐵 = (𝑏
𝑖𝑗
)
𝑛×𝑛

, and 𝐶 = (𝑐
𝑖𝑗
)
𝑛×𝑛

are real connection
weight matrices representing the weighting coefficients of the
neurons, 𝑔(𝑥(𝑡)) = (𝑔

1
(𝑥
1
(𝑡)), 𝑔

2
(𝑥
2
(𝑡)), . . . , 𝑔

𝑛
(𝑥
𝑛
(𝑡)))

𝑇, 𝑔
𝑖
,

𝑖 = 1, . . . , 𝑛, represent the neuron input-output activations,
𝐼(𝑡) = (𝐼

1
(𝑡), 𝐼

2
(𝑡), . . . , 𝐼

𝑛
(𝑡))

𝑇 is a real vector function rep-
resenting the external inputs of the neuron at time 𝑡, and
the functions and 𝜏(𝑡) and 𝜎(𝑡) denote the discrete and
distributed time-varying delays, respectively, satisfying

0 ≤ 𝜏 (𝑡) ≤ 𝜏
𝑀
, ̇𝜏 (𝑡) ≤ 𝜏

𝐷
< 1,

0 ≤ 𝜎 (𝑡) ≤ 𝜎
𝑀
, ̇𝜎 (𝑡) ≤ 𝜎

𝐷
< 1.

(4)

We have D = [𝐷,𝐷] = {𝐷 = diag(𝑑
𝑖
) : 0 < 𝑑

𝑖
≤ 𝑑

𝑖
≤ 𝑑

𝑖
, 𝑖 =

1, . . . , 𝑛}, 𝐷 = diag(𝑑
𝑖
), 𝐷 = diag(𝑑

𝑖
), A = [𝐴, 𝐴] = {𝐴 =

(𝑎
𝑖𝑗
) : 𝑎

𝑖𝑗
≤ 𝑎

𝑖𝑗
≤ 𝑎

𝑖𝑗
, 𝑖, 𝑗 = 1, . . . , 𝑛}, 𝐴 = (𝑎

𝑖𝑗
), 𝐴 = (𝑎

𝑖𝑗
),

B=[𝐵, 𝐵]= {𝐵 = (𝑏
𝑖𝑗
) : 𝑏

𝑖𝑗
≤𝑏

𝑖𝑗
≤ 𝑏

𝑖𝑗
, 𝑖, 𝑗 = 1, . . . , 𝑛}, 𝐵=(𝑏

𝑖𝑗
),

𝐵 = (𝑏
𝑖𝑗
), and C = [𝐶, 𝐶] = {𝐶 = (𝑐

𝑖𝑗
) : 𝑐

𝑖𝑗
≤ 𝑐

𝑖𝑗
≤ 𝑐

𝑖𝑗
, 𝑖, 𝑗 =

1, . . . , 𝑛}, 𝐶 = (𝑐
𝑖𝑗
), 𝐶 = (𝑐

𝑖𝑗
).

The activation function 𝑔 satisfies the following assump-
tion.

(𝐴
1
): (1) 𝑔

𝑖
, 𝑖 = 1, . . . , 𝑛, is piecewise continuous; that

is, 𝑔
𝑖
is continuous in R except a countable set of

jump discontinuous points and in every compact set
of R has only a finite number of jump discontinuous
points.

(2) 𝑔
𝑖
, 𝑖 = 1, 2, . . . , 𝑛, is nondecreasing.
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System (3) can be equivalently written as

̇𝑥 (𝑡) = − (𝐷
0
+ 𝐸

𝐷
𝐹
𝐷
𝑁
𝐷
) 𝑥 (𝑡) + (𝐴

0
+ 𝐸

𝐴
𝐹
𝐴
𝑁
𝐴
) 𝑔 (𝑥 (𝑡))

+ (𝐵
0
+ 𝐸

𝐵
𝐹
𝐵
𝑁
𝐵
) 𝑔 (𝑥 (𝑡 − 𝜏 (𝑡)))

+ (𝐶
0
+ 𝐸

𝐶
𝐹
𝐶
𝑁
𝐶
) ∫

𝑡

𝑡−𝜎(𝑡)

𝑔 (𝑥 (𝑠)) 𝑑𝑠 + 𝐼 (𝑡) ,

(5)

where 𝐹
𝑘
∈ 𝐹, 𝑘 = 𝐷,𝐴, 𝐵, 𝐶,

𝐹 = {diag (𝛿11, . . . , 𝛿1𝑛, . . . , 𝛿𝑛1, . . . , 𝛿𝑛𝑛) ∈ 𝑅
𝑛
2
×𝑛
2

:


𝛿
𝑖𝑗


≤ 1, 𝑖, 𝑗 = 1, 2, . . . , 𝑛} ,

𝐷
0
=

1

2
(𝐷 + 𝐷) , 𝐴

0
=

1

2
(𝐴 + 𝐴) ,

𝐵
0
=

1

2
(𝐵 + 𝐵) , 𝐶

0
=

1

2
(𝐶 + 𝐶) ,

𝐸
𝑘
= (√𝛽

(𝑘)

11
𝑒
1
, . . . , √𝛽

(𝑘)

1𝑛
𝑒
1
, . . . , √𝛽

(𝑘)

𝑛1
𝑒
𝑛
, . . . , √𝛽

(𝑘)

𝑛𝑛 𝑒𝑛
)
𝑛×𝑛
2
,

𝑁
𝑘
= (√𝛽

(𝑘)

11
𝑒
1
, . . . , √𝛽

(𝑘)

1𝑛
𝑒
𝑛
, . . . , √𝛽

(𝑘)

𝑛1
𝑒
1
, . . . , √𝛽

(𝑘)

𝑛𝑛 𝑒𝑛
)

𝑇

𝑛
2
×𝑛

,

(6)

where 𝑒
𝑖
∈ 𝑅

𝑛 denotes the column vector with 𝑖th element to
be 1 and others to be 0.

Under assumption (𝐴
1
), 𝑔(𝑥) is undefined at the points

where 𝑔(𝑥) is discontinuous, and 𝐾[𝑔(𝑥)] = (𝐾[𝑔
1
(𝑥
1
)],

. . . , 𝐾[𝑔
𝑛
(𝑥
𝑛
)])

𝑇, where 𝐾[𝑔
𝑖
(𝑥
𝑖
)] = [𝑔

𝑖
(𝑥
−

𝑖
), 𝑔

𝑖
(𝑥
+

𝑖
)], 𝑖 = 1,

. . . , 𝑛. System (3) is a differential equation with discontinuous
right-hand side. For system (3), we adopt the following
definition of the solution in the sense of Filippov [39].

Definition 1. A function 𝑥 : [−𝜄, 𝑇) → R𝑛, 𝑇 ∈ (0, +∞] is a
solution of system (3) on [−𝜄, 𝑇) if

(1) 𝑥(𝑡) is continuous on [−𝜄, 𝑇) and absolutely continu-
ous on [0, 𝑇);

(2) 𝑥(𝑡) satisfies

̇𝑥 (𝑡) ∈ 𝜙 (𝑥, 𝑡) = − (𝐷
0
+ 𝐸

𝐷
𝐹
𝐷
𝑁
𝐷
) 𝑥 (𝑡)

+ (𝐴
0
+ 𝐸

𝐴
𝐹
𝐴
𝑁
𝐴
)𝐾 [𝑔 (𝑥 (𝑡))]

+ (𝐵
0
+ 𝐸

𝐵
𝐹
𝐵
𝑁
𝐵
)𝐾 [𝑔 (𝑥 (𝑡 − 𝜏 (𝑡)))]

+ (𝐶
0
+ 𝐸

𝐶
𝐹
𝐶
𝑁
𝐶
) ∫

𝑡

𝑡−𝜎(𝑡)

𝐾[𝑔 (𝑥 (𝑠))] 𝑑𝑠

+ 𝐼 (𝑡) , for a.a. 𝑡 ∈ [0, 𝑇) ,

(7)
where 𝜄 = max{𝜏

𝑀
, 𝜎

𝑀
}.

By the assumption (𝐴
1
)(1), it is easy to check that 𝜙(𝑥, 𝑡)

is an upper semicontinuous set-valued map with nonempty,
compact, and convex values. Hence, 𝜙(𝑥, 𝑡) is measurable
[40]. By themeasurable selection theorem, if 𝑥(𝑡) is a solution

of system (3), then there exists a measurable function 𝛾 =

(𝛾
1
, 𝛾
2
, . . . , 𝛾

𝑛
)
𝑇

: [−𝜄, 𝑇) → R𝑛 such that 𝛾(𝑡) ∈ 𝐾[𝑔(𝑥(𝑡))]

and

̇𝑥 (𝑡) = − (𝐷
0
+ 𝐸

𝐷
𝐹
𝐷
𝑁
𝐷
) 𝑥 (𝑡)

+ (𝐴
0
+ 𝐸

𝐴
𝐹
𝐴
𝑁
𝐴
) 𝛾 (𝑡) + (𝐵

0
+ 𝐸

𝐵
𝐹
𝐵
𝑁
𝐵
) 𝛾 (𝑡 − 𝜏 (𝑡))

+ (𝐶
0
+ 𝐸

𝐶
𝐹
𝐶
𝑁
𝐶
) ∫

𝑡

𝑡−𝜎(𝑡)

𝛾 (𝑠) 𝑑𝑠 + 𝐼 (𝑡) ,

(8)

for a.a. 𝑡 ∈ [0, 𝑇).
The function 𝛾(𝑡) in (8) is called an output solution

associated with the state variable 𝑥(𝑡) and represents the
vector of neural network outputs.

Definition 2. For any continuous function 𝜙 : [−𝜄, 0] → R𝑛

and any measurable selection 𝜓 : [−𝜄, 0] → R𝑛, such that
𝜓(𝑠) ∈ 𝐾[𝑔(𝜙(𝑠))] for a.a. 𝑠 ∈ [−𝜄, 0]. An absolute continuous
function 𝑥(𝑡) = 𝑥(𝑡, 𝜙, 𝜓) associated with a measurable
function 𝛾(𝑡) is said to be a solution of the initial value
problem (IVP) for system (3) on [0, 𝑇) (𝑇 might be ∞) with
initial value (𝜙(𝑠), 𝜓(𝑠)), 𝑠 ∈ [−𝜄, 0], if

̇𝑥 (𝑡) = − (𝐷
0
+ 𝐸

𝐷
𝐹
𝐷
𝑁
𝐷
) 𝑥 (𝑡) + (𝐴

0
+ 𝐸

𝐴
𝐹
𝐴
𝑁
𝐴
) 𝛾 (𝑡)

+ (𝐵
0
+ 𝐸

𝐵
𝐹
𝐵
𝑁
𝐵
) 𝛾 (𝑡 − 𝜏 (𝑡))

+ (𝐶
0
+ 𝐸

𝐶
𝐹
𝐶
𝑁
𝐶
) ∫

𝑡

𝑡−𝜎(𝑡)

𝛾 (𝑠) 𝑑𝑠 + 𝐼 (𝑡) ,

𝑥 (𝑠) = 𝜙 (𝑠) , ∀𝑠 ∈ [−𝜄, 0] ,

𝛾 (𝑠) = 𝜓 (𝑠) , for a.a. 𝑠 ∈ [−𝜄, 0] .

(9)

Definition 3 (see [41]). A continuous function 𝑥(𝑡) : R →

R𝑛 is said to be almost periodic on R if, for any scalar 𝜀 > 0,
there exist scalars 𝑙 = 𝑙(𝜀) > 0 and 𝜔 = 𝜔(𝜀) in any interval
with the length of 𝑙, such that ‖𝑥(𝑡 + 𝜔) − 𝑥(𝑡)‖ < 𝜀 for all
𝑡 ∈ R.

Definition 4. The almost periodic solution 𝑥
∗
(𝑡) of interval

neural network (3) is said to be global robust exponentially
stable if, for any 𝐷 ∈ D, 𝐴 ∈ A, 𝐵 ∈ B, 𝐶 ∈ C, there exist
scalars 𝛼 > 0 and 𝛿 > 0, such that

𝑥 (𝑡, 𝜙, 𝜓) − 𝑥
∗
(𝑡)

 ≤ 𝛼𝑒
−𝛿𝑡

, 𝑡 ≥ 0, (10)

where 𝑥(𝑡, 𝜙, 𝜓) is the solution of system (3) with initial value
(𝜙(𝑠), 𝜓(𝑠)), 𝑠 ∈ [−𝜄, 0] and 𝛿 is called as the exponential
convergence rate.

Lemma 5 (chain rule [38]). If 𝑉(𝑥) : R𝑛
→ R is C-reg-

ular and 𝑥(𝑡) : [0, +∞) → R𝑛 is absolutely continuous
on any compact interval of [0, +∞), then 𝑥(𝑡) and 𝑉(𝑥(𝑡)) :

[0, +∞) → R are differential for a.a. 𝑡 ∈ [0, +∞), and

𝑉 (𝑥 (𝑡)) = ⟨𝜍, ̇𝑥 (𝑡)⟩, ∀𝜍 ∈ 𝜕𝑉 (𝑥) . (11)
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Lemma 6 (Jensen’s inequality [17]). For any constant matrix
𝐴 > 0, any scalars 𝑎 and 𝑏 with 𝑏 > 𝑎 and a vector function
𝑥(𝑡) : [𝑎, 𝑏] → R𝑛 such that the integrals are concerned as
well defined, then

(∫

𝑏

𝑎

𝑥 (𝑠) 𝑑𝑠)

𝑇

𝐴(∫

𝑏

𝑎

𝑥 (𝑠) 𝑑𝑠) ≤ (𝑏 − 𝑎) ∫

𝑏

𝑎

𝑥
𝑇
(𝑠) 𝐴𝑥 (𝑠) 𝑑𝑠.

(12)

Lemma 7 (see [42]). Given any real matrices 𝑄
1
, 𝑄

2
, 𝑄

3
of

appropriate dimensions and a scalar 𝜀 > 0, if 𝑄
3

= 𝑄
𝑇

3
> 0,

then the following inequality holds:

𝑄
𝑇

1
𝑄
2
+ 𝑄

𝑇

2
𝑄
1
≤ 𝜀𝑄

𝑇

1
𝑄
3
𝑄
1
+

1

𝜀
𝑄
𝑇

2
𝑄
−1

3
𝑄
2
. (13)

Lemma 8 (see [35]). Let 𝑈, 𝑉, and 𝑊 be real matrices of
appropriate dimension with 𝑀 satisfying 𝑀 = 𝑀

𝑇, then

𝑀 + 𝑈𝑉𝑊 + 𝑊
𝑇
𝑉
𝑇
𝑈
𝑇

< 0, (14)

for all 𝑉𝑇
𝑉 ≤ 𝐸, if and only if there exists a positive constant

𝛽, such that

𝑀 + 𝛽
−1

𝑈𝑈
𝑇
+ 𝛽𝑊

𝑇
𝑊 < 0. (15)

Lemma 9 (see [36]). For any 𝐴 ∈ [𝐴,𝐴], 𝐵 ∈ [𝐵, 𝐵], one has

‖𝐴‖ ≤
𝐴0

 +
𝐻𝐴

 , ‖𝐵‖ ≤
𝐵0

 +
𝐻𝐵

 , (16)

where 𝐴
0

= (𝐴 + 𝐴)/2, 𝐻
𝐴

= (𝐴 − 𝐴)/2, 𝐵
0

= (𝐵 + 𝐵)/2,
𝐻
𝐵
= (𝐵 − 𝐵)/2.

Lemma 10 (see [43]). For sequence {𝑓
𝑛
} ⊂ 𝐿(𝐸), if there exists

𝐹(𝑥) ∈ 𝐿(𝐸), such that |𝑓
𝑛
(𝑥)| < 𝐹(𝑥), and lim

𝑛→∞
𝑓
𝑛

= 𝑓,
a.e. 𝑥 ∈ 𝐸, then 𝑓 ∈ 𝐿(𝐸), and

lim
𝑛→∞

∫
𝐸

𝑓
𝑛
(𝑥) 𝑑𝑥 = ∫

𝐸

lim
𝑛→∞

𝑓
𝑛
(𝑥) 𝑑𝑥 = ∫

𝐸

𝑓 (𝑥) 𝑑𝑥.

(17)

Before proceeding to the main results, the following
assumptions need further to be made.

(𝐴
2
): 𝐼

𝑖
(𝑡), 𝜏(𝑡), and 𝜎(𝑡) are continuous functions and

possess almost periodic property that is, for any 𝜀 > 0,
there exist 𝑙 = 𝑙(𝜀) > 0 and 𝜔 = 𝜔(𝜀) in any interval
with the length of 𝑙, such that

𝐼𝑖 (𝑡 + 𝜔) − 𝐼
𝑖
(𝑡)

 < 𝜀,

|𝜏 (𝑡 + 𝜔) − 𝜏 (𝑡)| < 𝜀,

|𝜎 (𝑡 + 𝜔) − 𝜎 (𝑡)| < 𝜀.

(18)

(𝐴
3
): For any 𝜂

𝑖
∈ 𝐾[𝑔

𝑖
(𝑥
𝑖
)], 𝜁

𝑖
∈ 𝐾[𝑔

𝑖
(𝑦
𝑖
)], 𝜁

𝑖
̸=𝜂
𝑖
, there

exists constant 𝑒
𝑖
> 0, such that

𝜂
𝑖
− 𝜁

𝑖

𝑥
𝑖
− 𝑦

𝑖

≤ 𝑒
𝑖
, 𝑖 = 1, 2, . . . , 𝑛. (19)

(𝐴
4
): For a given constant 𝛿 > 0, there exist positive
matrices 𝑃, 𝑅, and 𝐻 and a positive definite diagonal
matrix 𝑄, such that

Θ =

(
(
(
(
(
(

(

Π
1

𝑃𝐴
0

𝑃𝐵
0

𝑃𝐶
0

𝑃𝐸
𝐷

𝑃𝐸
𝐴

𝑃𝐸
𝐵

𝑃𝐸
𝐶

⋆ Π
2

𝑄𝐵
0

𝑄𝐶
0

𝑄𝐸
𝐷

𝑄𝐸
𝐴

𝑄𝐸
𝐵

𝑄𝐸
𝐶

⋆ ⋆ Π
3

0 0 0 0 0

⋆ ⋆ ⋆ Π
4

0 0 0 0

⋆ ⋆ ⋆ ⋆ −𝛼
1
𝐸 0 0 0

⋆ ⋆ ⋆ ⋆ ⋆ −𝛼
2
𝐸 0 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −𝛼
3
𝐸 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −𝛼
4
𝐸

)
)
)
)
)
)

)

< 0, (20)

whereΠ
1
= Υ

11
+ 𝛼

1
𝑁
𝑇

𝐷
𝑁
𝐷
, Υ

11
= −𝑄𝐷

0
−𝐷

𝑇

0
𝑄+ 2𝛿𝑃,Π

2
=

Υ
22

+ 𝛼
2
𝑁
𝑇

𝐴
𝑁
𝐴
, Υ

22
= 𝑄𝐴

0
+ 𝐴

𝑇

0
𝑄+ 𝛿𝑄+ 𝑒

𝛿𝜏𝑀𝑅+ 𝑒
𝛿𝜎𝑀𝜎

𝑀
𝐻,

Π
3
= −𝑅 + 𝛼

3
𝑁
𝑇

𝐵
𝑁
𝐵
, Π

4
= −((1 − 𝜎

𝐷
)/𝜎

𝑀
)𝐻 + 𝛼

4
𝑁
𝑇

𝐶
𝑁
𝐶
.

3. Main Results

Theorem 11. Suppose that assumptions (𝐴
1
), (𝐴

2
), and (𝐴

4
)

are satisfied. Then interval neural network system (3) has a
solution of IVP on [0, +∞) for any initial value (𝜙(𝑠), 𝜓(𝑠)),
𝑠 ∈ [−𝜄, 0].

Proof. For any initial value (𝜙(𝑠), 𝜓(𝑠)), 𝑠 ∈ [−𝜄, 0], similar
to the proof of Lemma 1 in [2], under the assumptions

(𝐴
1
)(1), system (3) has a local solution 𝑥(𝑡) associated with

a measurable function 𝛾(𝑡) with initial value (𝜙(𝑠), 𝜓(𝑠)), 𝑠 ∈

[−𝜄, 0] on [0, 𝑇), where 𝑇 ∈ (0, +∞) or 𝑇 = +∞, and [0, 𝑇) is
themaximal right-side existence interval of the local solution.

Consider the following Lyapunov functional candidate:

𝑉 (𝑡) = 𝑒
𝛿𝑡
𝑥
𝑇
(𝑡) 𝑃𝑥 (𝑡) + 2

𝑛

∑

𝑖=1

𝑒
𝛿𝑡
𝑞
𝑖
∫

𝑥𝑖(𝑡)

0

𝑔
𝑖
(𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−𝜏(𝑡)

𝑒
𝛿(𝑠+𝜏𝑀)𝛾

𝑇
(𝑠) 𝑅𝛾 (𝑠) 𝑑𝑠

+ ∫

0

−𝜎(𝑡)

∫

𝑡

𝑡+𝜃

𝑒
𝛿(𝑠+𝜎𝑀)𝛾

𝑇
(𝑠)𝐻𝛾 (𝑠) 𝑑𝑠 𝑑𝜃.

(21)
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By Lemma 5, calculating the time derivative of𝑉(𝑡) along the
local solution of system (3) on [0, 𝑇), it yields

𝑉 (𝑡) = 𝛿𝑒
𝛿𝑡
𝑥
𝑇
(𝑡) 𝑃𝑥 (𝑡)

+ 2𝑒
𝛿𝑡
𝑥
𝑇
(𝑡) 𝑃 [− (𝐷

0
+ 𝐸

𝐷
𝐹
𝐷
𝑁
𝐷
) 𝑥 (𝑡)

+ (𝐴
0
+ 𝐸

𝐴
𝐹
𝐴
𝑁
𝐴
) 𝛾 (𝑡)

+ (𝐵
0
+ 𝐸

𝐵
𝐹
𝐵
𝑁
𝐵
) 𝛾 (𝑡 − 𝜏 (𝑡))

+ (𝐶
0
+ 𝐸

𝐶
𝐹
𝐶
𝑁
𝐶
)

× ∫

𝑡

𝑡−𝜎(𝑡)

𝛾 (𝑠) 𝑑𝑠 + 𝐼 (𝑡)]

+ 2𝑒
𝛿𝑡
𝛾
𝑇
(𝑡) 𝑄 [− (𝐷

0
+ 𝐸

𝐷
𝐹
𝐷
𝑁
𝐷
) 𝑥 (𝑡)

+ (𝐴
0
+ 𝐸

𝐴
𝐹
𝐴
𝑁
𝐴
) 𝛾 (𝑡)

+ (𝐵
0
+ 𝐸

𝐵
𝐹
𝐵
𝑁
𝐵
) 𝛾 (𝑡 − 𝜏 (𝑡))

+ (𝐶
0
+ 𝐸

𝐶
𝐹
𝐶
𝑁
𝐶
)

× ∫

𝑡

𝑡−𝜎(𝑡)

𝛾 (𝑠) 𝑑𝑠 + 𝐼 (𝑡)]

+ 2𝛿𝑒
𝛿𝑡

𝑛

∑

𝑖=1

𝑞
𝑖
∫

𝑥𝑖(𝑡)

0

𝑔
𝑖
(𝑠) 𝑑𝑠

+ 𝑒
𝛿(𝑡+𝜏𝑀)𝛾

𝑇
(𝑡) 𝑅𝛾 (𝑡)

− (1 − ̇𝜏 (𝑡)) 𝑒
𝛿(𝑡+𝜏𝑀−𝜏(𝑡))𝛾

𝑇
(𝑡 − 𝜏 (𝑡)) 𝑅𝛾 (𝑡 − 𝜏 (𝑡))

+ 𝜎 (𝑡) 𝑒
𝛿(𝑡+𝜎𝑀)𝛾

𝑇
(𝑡)𝐻𝛾 (𝑡)

− (1 − ̇𝜎 (𝑡)) ∫

𝑡

𝑡−𝜎(𝑡)

𝑒
𝛿(𝑠+𝜎𝑀)𝛾

𝑇
(𝑠)𝐻𝛾 (𝑠) 𝑑𝑠.

(22)

Without loss of generality, we can suppose that 0 ∈ 𝐾[𝑔(0)].
In fact, if this is not the case, set𝐺(𝑥) = 𝑔(𝑥)−𝜂, 𝜂 ∈ 𝐾[𝑔(0)].
Then system (8) could be equivalently changed as

̇𝑥 (𝑡) = − (𝐷
0
+ 𝐸

𝐷
𝐹
𝐷
𝑁
𝐷
) 𝑥 (𝑡) + (𝐴

0
+ 𝐸

𝐴
𝐹
𝐴
𝑁
𝐴
) 𝛾 (𝑡)

+ (𝐵
0
+ 𝐸

𝐵
𝐹
𝐵
𝑁
𝐵
) 𝛾 (𝑡 − 𝜏 (𝑡))

+ (𝐶
0
+ 𝐸

𝐶
𝐹
𝐶
𝑁
𝐶
) ∫

𝑡

𝑡−𝜎(𝑡)

𝛾 (𝑠) 𝑑𝑠 + 𝐼 (𝑡) ,

(23)

where 𝛾(𝑡) = 𝛾(𝑡) − 𝜂 ∈ 𝐾[𝐺(𝑥(𝑡))], for a.a. 𝑡 ∈ [0, 𝑇),
and 𝐼(𝑡) = ((𝐴

0
+ 𝐸

𝐴
𝐹
𝐴
𝑁
𝐴
) + (𝐵

0
+ 𝐸

𝐵
𝐹
𝐵
𝑁
𝐵
) + 𝜎(𝑡)(𝐶

0
+

𝐸
𝐶
𝐹
𝐶
𝑁
𝐶
))𝜂 + 𝐼(𝑡). It is obvious that 0 ∈ 𝐾[𝐺(0)]. In fact,

we can choose a sufficiently small constant 0 < 𝛿 < 𝑑 =

min{𝑑
1
, 𝑑

2
, . . . , 𝑑

𝑛
}, under the assumption (𝐴

1
)(2) and 0 ∈

𝐾[𝑔
𝑖
(0)], such that

𝛿∫

𝑥𝑖(𝑡)

0

𝑔
𝑖
(𝑠) 𝑑𝑠 ≤ 𝛿𝑥

𝑖
(𝑡) 𝛾

𝑖
(𝑡) ≤ 𝑑𝑥

𝑖
(𝑡) 𝛾

𝑖
(𝑡) . (24)

Using Lemmas 6 and 7, we can obtain that

𝑉 (𝑡) ≤ 𝑒
𝛿𝑡

{𝑥
𝑇
(𝑡) (2𝛿𝑃 − 2 (𝐷

0
+ 𝐸

𝐷
𝐹
𝐷
𝑁
𝐷
)) 𝑥 (𝑡)

+ 2𝑥
𝑇
(𝑡) 𝑃 (𝐴

0
+ 𝐸

𝐴
𝐹
𝐴
𝑁
𝐴
) 𝛾 (𝑡)

+ 2𝑥
𝑇
(𝑡) 𝑃 (𝐵

0
+ 𝐸

𝐵
𝐹
𝐵
𝑁
𝐵
) 𝛾 (𝑡 − 𝜏 (𝑡))

+ 2𝑥
𝑇
(𝑡) 𝑃 (𝐶

0
+ 𝐸

𝐶
𝐹
𝐶
𝑁
𝐶
) ∫

𝑡

𝑡−𝜎(𝑡)

𝛾 (𝑠) 𝑑𝑠

+ 2𝛾
𝑇
(𝑡) 𝑄 (𝐴

0
+ 𝐸

𝐴
𝐹
𝐴
𝑁
𝐴
) 𝛾 (𝑡)

+ 2𝛾
𝑇
(𝑡) 𝑄 (𝐵

0
+ 𝐸

𝐵
𝐹
𝐵
𝑁
𝐵
) 𝛾 (𝑡 − 𝜏 (𝑡))

+ 2𝛾
𝑇
(𝑡) 𝑄 (𝐶

0
+ 𝐸

𝐶
𝐹
𝐶
𝑁
𝐶
)

× ∫

𝑡

𝑡−𝜎(𝑡)

𝛾 (𝑠) 𝑑𝑠 + 𝛿𝛾
𝑇
(𝑡) 𝑄𝛾 (𝑡)

+ 𝑒
𝛿𝜏𝑀𝛾

𝑇
(𝑡) 𝑅𝛾 (𝑡)

− (1 − 𝜏
𝐷
) 𝛾

𝑇
(𝑡 − 𝜏 (𝑡)) 𝑅𝛾 (𝑡 − 𝜏 (𝑡))

+ 𝜎
𝑀
𝑒
𝛿𝜎𝑀𝛾

𝑇
(𝑡)𝐻𝛾 (𝑡)

−
1 − 𝜎

𝐷

𝜎
𝑀

∫

𝑡

𝑡−𝜎(𝑡)

𝛾
𝑇
(𝑠) 𝑑𝑠𝐻∫

𝑡

𝑡−𝜎(𝑡)

𝛾 (𝑠) 𝑑𝑠}

+
𝑒
𝛿𝑡

𝛿
(𝐼
𝑇
(𝑡) 𝑃𝐼 (𝑡) + 𝐼

𝑇
(𝑡) 𝑄𝐼 (𝑡))

= 𝑒
𝛿𝑡
𝑧
𝑇
Θ
1
𝑧 +

𝑒
𝛿𝑡

𝛿
(𝐼
𝑇
(𝑡) 𝑃𝐼 (𝑡) + 𝐼

𝑇
(𝑡) 𝑄𝐼 (𝑡))

≤ 𝑒
𝛿𝑡
𝑧
𝑇
Θ
1
𝑧 + 𝜆max (𝑃 + 𝑄)

𝑒
𝛿𝑡

𝛿
‖𝐼 (𝑡)‖

2
,

(25)

where 𝑧 = [𝑥
𝑇
(𝑡) 𝛾

𝑇
(𝑡) 𝛾

𝑇
(𝑡 − 𝜏(𝑡)) ∫

𝑡

𝑡−𝜎(𝑡)
𝛾
𝑇
(𝑠)𝑑𝑠]

𝑇

,

Θ
1
= (

(

Ψ
1
+ Υ



11
𝑃 (𝐴

0
+ 𝐸

𝐴
𝐹
𝐴
𝑁
𝐴
) 𝑃 (𝐵

0
+ 𝐸

𝐵
𝐹
𝐵
𝑁
𝐵
) 𝑃 (𝐶

0
+ 𝐸

𝐶
𝐹
𝐶
𝑁
𝐶
)

⋆ Ψ
2
+ Υ



22
𝑄 (𝐵

0
+ 𝐸

𝐵
𝐹
𝐵
𝑁
𝐵
) 𝑄 (𝐶

0
+ 𝐸

𝐶
𝐹
𝐶
𝑁
𝐶
)

⋆ ⋆ − (1 − 𝜏
𝐷
) 𝑅 0

⋆ ⋆ ⋆ −
1 − 𝜎

𝐷

𝜎
𝑀

𝐻

)

)

, (26)
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Ψ
1
= −𝑄(𝐷

0
+𝐸

𝐷
𝐹
𝐷
𝑁
𝐷
) − (𝐷

0
+𝐸

𝐷
𝐹
𝐷
𝑁
𝐷
)
𝑇
𝑄,Ψ

2
= 𝑄(𝐴

0
+

𝐸
𝐴
𝐹
𝐴
𝑁
𝐴
) + (𝐴

0
+ 𝐸

𝐴
𝐹
𝐴
𝑁
𝐴
)
𝑇
𝑄, Υ

11
= 2𝛿𝑃, Υ

22
= 𝑒

𝛿𝜏𝑀𝑅 +

𝑒
𝛿𝜎𝑀𝜎

𝑀
𝐻 + 𝛿𝑄.

Θ
1
can be rearranged as

Θ
1
= (

(

Υ
11

𝑃𝐴
0

𝑃𝐵
0

𝑃𝐶
0

⋆ Υ
22

𝑄𝐵
0

𝑄𝐶
0

⋆ ⋆ −𝑅 0

⋆ ⋆ ⋆ −
1 − 𝜎

𝐷

𝜎
𝑀

𝐻

)

)

+ 𝑈
𝐷
𝐹
𝐷
𝑊
𝐷

+ 𝑊
𝑇

𝐷
𝐹
𝑇

𝐷
𝑈
𝑇

𝐷
+ 𝑈

𝐴
𝐹
𝐴
𝑊
𝐴

+ 𝑊
𝑇

𝐴
𝐹
𝑇

𝐴
𝑈
𝑇

𝐴

+ 𝑈
𝐵
𝐹
𝐵
𝑊
𝐵
+ 𝑊

𝑇

𝐵
𝐹
𝑇

𝐵
𝑈
𝑇

𝐵
+ 𝑈

𝐶
𝐹
𝐶
𝑊
𝐶
+ 𝑊

𝑇

𝐶
𝐹
𝑇

𝐶
𝑈
𝑇

𝐶
,

(27)

where 𝑈
𝐷

= (𝐸
𝑇

𝐷
𝑄 0 0 0)

𝑇

, 𝑊
𝐷

= (−𝑁
𝐷

0 0 0), 𝑈
𝐴

=

(𝐸
𝑇

𝐴
𝑃 𝐸

𝑇

𝐴
𝑄 0 0)

𝑇, 𝑊
𝐴

= (0 𝑁
𝐴

0 0), 𝑈
𝐵
= (𝐸

𝑇

𝐵
𝑃 𝐸

𝑇

𝐵
𝑄 0 0)

𝑇,
𝑊
𝐵

= (0 0 𝑁
𝐵

0), 𝑈
𝐶

= (𝐸
𝑇

𝐶
𝑃 𝐸

𝑇

𝐶
𝑄 0 0)

𝑇, and 𝑊
𝐶

=

(0 0 0 𝑁
𝐶).

In view of Lemma 8, Θ
1
< 0 is equivalent to

Θ
2
= (

(

Υ
11

𝑃𝐴
0

𝑃𝐵
0

𝑃𝐶
0

⋆ Υ
22

𝑄𝐵
0

𝑄𝐶
0

⋆ ⋆ −𝑅 0

⋆ ⋆ ⋆ −
1 − 𝜎

𝐷

𝜎
𝑀

𝐻

)

)

+ 𝛼
−1

1
𝑈
𝐷
𝑈
𝑇

𝐷
+ 𝛼

1
𝑊

𝑇

𝐷
𝑊
𝐷

+ 𝛼
−1

2
𝑈
𝐴
𝑈
𝑇

𝐴
+ 𝛼

2
𝑊

𝑇

𝐴
𝑊
𝐴

+ 𝛼
−1

3
𝑈
𝐵
𝑈
𝑇

𝐵
+ 𝛼

3
𝑊

𝑇

𝐵
𝑊
𝐵
+ 𝛼

−1

4
𝑈
𝐶
𝑈
𝑇

𝐶
+ 𝛼

4
𝑊

𝑇

𝐶
𝑊
𝐶

=
(
(

(

Υ
11

+ 𝛼
1
𝑁
𝑇

𝐷
𝑁
𝐷

𝑃𝐴
0

𝑃𝐵
0

𝑃𝐶
0

⋆ Υ
22

+ 𝛼
2
𝑁
𝑇

𝐴
𝑁
𝐴

𝑄𝐵
0

𝑄𝐶
0

⋆ ⋆ −𝑅 + 𝛼
3
𝑁
𝑇

𝐵
𝑁
𝐵

0

⋆ ⋆ ⋆ −
1 − 𝜎

𝐷

𝜎
𝑀

𝐻 + 𝛼
4
𝑁
𝑇

𝐶
𝑁
𝐶

)
)

)

+ 𝛼
−1

1
𝑈
𝐷
𝑈
𝑇

𝐷
+ 𝛼

−1

2
𝑈
𝐴
𝑈
𝑇

𝐴
+ 𝛼

−1

3
𝑈
𝐵
𝑈
𝑇

𝐵
+ 𝛼

−1

4
𝑈
𝐶
𝑈
𝑇

𝐶
< 0.

(28)

By the Schur complement, Θ < 0 is equivalent to Θ
2
< 0, so

the LMI Θ < 0 is also equivalent to Θ
1
< 0. This implies that

𝑉 (𝑡) ≤ 𝜆max (𝑃 + 𝑄)
𝑒
𝛿𝑡

𝛿
‖𝐼 (𝑡)‖

2
. (29)

By the assumption (𝐴
2
), 𝐼(𝑡) is bounded for 𝑡 ≥ 0. Hence,

there exists a constant 𝑀 > 0 such that

0 < 𝜆max (𝑃 + 𝑄)
𝑒
𝛿𝑡

𝛿
‖𝐼 (𝑡)‖

2
< 𝑀, 𝑡 ≥ 0. (30)

It follows that

𝑉 (𝑡) ≤ 𝑀𝑒
𝛿𝑡
, 𝑡 ∈ [0, 𝑇) . (31)

Integrating both sides of (31) from 0 to 𝑡, 𝑡 ∈ [0, 𝑇), it follows
that

𝑉 (𝑡) ≤ 𝑉 (0) + ∫

𝑡

0

𝑀𝑒
𝛿𝑠
𝑑𝑠 = 𝑉 (0) +

𝑀

𝛿
(𝑒
𝛿𝑡

− 1) . (32)

In view of the definition of 𝑉(𝑡) in (21) and the fact that all
the terms in 𝑉(𝑡) are not negative, we have

𝑉 (𝑡) ≥ 𝑒
𝛿𝑡
𝑥
𝑇
(𝑡) 𝑃𝑥 (𝑡) , 𝑡 ∈ [0, 𝑇) . (33)

Combining (32) and (33), it is easy to obtain

𝜆min (𝑃) ‖𝑥 (𝑡)‖
2
≤ 𝑒

−𝛿𝑡
𝑉 [𝑥, 𝛾] (0)

+
𝑀

𝛿
(1 − 𝑒

−𝛿𝑡
) , 𝑡 ∈ [0, 𝑇) .

(34)

Therefore, lim
𝑡→𝑇

−‖𝑥(𝑡)‖ < +∞. By the viability theorem in
differential inclusions theory [40], one yields 𝑇 = +∞. That
is, system (3) has a solution of IVP on [0, +∞) for any initial
value. The proof is completed.

Theorem 12. Suppose that the assumptions (𝐴
1
)–(𝐴

4
) are

satisfied. Then the solution of IVP of interval neural network
system (3) is asymptotically almost periodic.

Proof. Let 𝑥(𝑡) be a solution of IVP of system (3) associated
with ameasurable function 𝛾(𝑡)with initial value (𝜙(𝑠), 𝜓(𝑠)),
𝑠 ∈ [−𝜄, 0]. Set 𝑦(𝑡) = 𝑥(𝑡 + 𝜔) − 𝑥(𝑡), we have

̇𝑦 (𝑡) = − (𝐷
0
+ 𝐸

𝐷
𝐹
𝐷
𝑁
𝐷
) 𝑥 (𝑡 + 𝜔)

+ (𝐴
0
+ 𝐸

𝐴
𝐹
𝐴
𝑁
𝐴
) 𝛾 (𝑡 + 𝜔)

+ (𝐵
0
+ 𝐸

𝐵
𝐹
𝐵
𝑁
𝐵
) 𝛾 (𝑡 + 𝜔 − 𝜏 (𝑡 + 𝜔))
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+ (𝐶
0
+ 𝐸

𝐶
𝐹
𝐶
𝑁
𝐶
) ∫

𝑡+𝜔

𝑡+𝜔−𝜎(𝑡+𝜔)

𝛾 (𝑠) 𝑑𝑠

+ 𝐼 (𝑡 + 𝜔) − [− (𝐷
0
+ 𝐸

𝐷
𝐹
𝐷
𝑁
𝐷
) 𝑥 (𝑡)

+ (𝐴
0
+ 𝐸

𝐴
𝐹
𝐴
𝑁
𝐴
) 𝛾 (𝑡)

+ (𝐵
0
+ 𝐸

𝐵
𝐹
𝐵
𝑁
𝐵
) 𝛾 (𝑡 − 𝜏 (𝑡))

+ (𝐶
0
+ 𝐸

𝐶
𝐹
𝐶
𝑁
𝐶
)

×∫

𝑡

𝑡−𝜎(𝑡)

𝛾 (𝑠) 𝑑𝑠 + 𝐼 (𝑡)]

= − (𝐷
0
+ 𝐸

𝐷
𝐹
𝐷
𝑁
𝐷
) 𝑦 (𝑡)

+ (𝐴
0
+ 𝐸

𝐴
𝐹
𝐴
𝑁
𝐴
) [𝛾 (𝑡 + 𝜔) − 𝛾 (𝑡)]

+ (𝐵
0
+ 𝐸

𝐵
𝐹
𝐵
𝑁
𝐵
) [𝛾 (𝑡 + 𝜔 − 𝜏 (𝑡)) − 𝛾 (𝑡 − 𝜏 (𝑡))]

+ (𝐶
0
+ 𝐸

𝐶
𝐹
𝐶
𝑁
𝐶
)

× ∫

𝑡

𝑡−𝜎(𝑡)

𝛾 (𝑠 + 𝜔) − 𝛾 (𝑠) 𝑑𝑠 + 𝜌 (𝜔, 𝑡) ,

(35)

where
𝜌 (𝜔, 𝑡) = (𝐵

0
+ 𝐸

𝐵
𝐹
𝐵
𝑁
𝐵
)

× [𝛾 (𝑡 + 𝜔 − 𝜏 (𝑡 + 𝜔)) − 𝛾 (𝑡 + 𝜔 − 𝜏 (𝑡))]

+ (𝐶
0
+ 𝐸

𝐶
𝐹
𝐶
𝑁
𝐶
) ∫

𝑡−𝜎(𝑡)

𝑡−𝜎(𝑡+𝜔)

𝛾 (𝑠 + 𝜔) 𝑑𝑠

+ 𝐼 (𝑡 + 𝜔) − 𝐼 (𝑡) .

(36)

Consider a Lyapunov functional candidate as

𝑊(𝑡) = 𝑒
𝛿𝑡
𝑦
𝑇
(𝑡) 𝑃𝑦 (𝑡)

+ 2

𝑛

∑

𝑖=1

𝑒
𝛿𝑡
𝑞
𝑖
∫

𝑦𝑖(𝑡)

0

𝑔
𝑖
(𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−𝜏(𝑡)

𝑒
𝛿(𝑠+𝜏𝑀)(𝛾 (𝑠 + 𝜔) − 𝛾 (𝑠))

𝑇

× 𝑅 (𝛾 (𝑠 + 𝜔) − 𝛾 (𝑠)) 𝑑𝑠

+ ∫

0

−𝜎(𝑡)

∫

𝑡

𝑡+𝜃

𝑒
𝛿(𝑠+𝜎𝑀)(𝛾 (𝑠 + 𝜔) − 𝛾 (𝑠))

𝑇

× 𝐻 (𝛾 (𝑠 + 𝜔) − 𝛾 (𝑠)) 𝑑𝑠 𝑑𝜃.

(37)

Calculating the time derivative of 𝑊(𝑡) along trajectories
of system (35), similar to the proof of Theorem 11, we can
get

𝑊(𝑡) ≤ 𝜆max (𝑃 + 𝑄)
𝑒
𝛿𝑡

𝛿

𝜌 (𝜔, 𝑡)


2

. (38)

From the proof of Theorem 11, we can get that 𝑥(𝑡) is
bounded. Consequently, 𝛾(𝑡) is also bounded. Define 𝐻

𝐵
=

(𝛽
(𝐵)

𝑖𝑗
)
𝑛×𝑛

= (1/2)(𝐵 − 𝐵), 𝐻
𝐶

= ((𝛽
(𝐶)

𝑖𝑗
))
𝑛×𝑛

= (1/2)(𝐶 − 𝐶).
By the assumption (𝐴

3
) and Lemma 9, there exist positive

constants 𝛼 and 𝛽, such that
𝜌 (𝜔, 𝑡)

 ≤ 𝛼
(𝐵0 + 𝐸

𝐵
𝐹
𝐵
𝑁
𝐵
)
 |𝜏 (𝑡 + 𝜔) − 𝜏 (𝑡)|

+ 𝛽
(𝐶0 + 𝐸

𝐶
𝐹
𝐶
𝑁
𝐶
)
 |𝜎 (𝑡 + 𝜔) − 𝜎 (𝑡)|

+ ‖𝐼 (𝑡 + 𝜔) − 𝐼 (𝑡)‖

≤ 𝛼 (
𝐵0

 +
𝐻𝐵

) |𝜏 (𝑡 + 𝜔) − 𝜏 (𝑡)|

+ 𝛽 (
𝐶0

 +
𝐻𝐶

) |𝜎 (𝑡 + 𝜔) − 𝜎 (𝑡)|

+ ‖𝐼 (𝑡 + 𝜔) − 𝐼 (𝑡)‖ .

(39)

Therefore, by using the assumption (𝐴
2
), it is easy to obtain

that, for any 𝜀 > 0, there exist 𝑙 = 𝑙(𝜀) and 𝜔 = 𝜔(𝜀) in any
interval with the length of 𝑙, such that

𝜆max (𝑃 + 𝑄)
𝜌 (𝜔, 𝑡)



2

≤
1

2
𝛿
2
𝜀
2
, 𝑡 ≥ 0. (40)

This implies that

𝑊(𝑡) ≤
1

2
𝜀
2
𝛿𝑒

𝛿𝑡
. (41)

By combining (37) and (41), we have
𝑦 (𝑡)



2

≤ 𝑒
−𝛿𝑡

𝑊(𝑡) ≤ 𝑒
−𝛿𝑡

𝑊(0)

+
1

2
𝑒
−𝛿𝑡

∫

𝑡

0

𝜀
2
𝛿𝑒

𝛿𝑠
𝑑𝑠

= 𝑒
−𝛿𝑡

𝑊(0) +
1

2
𝜀
2
(1 − 𝑒

−𝛿𝑡
) .

(42)

Therefore, there exists𝑇 > 0, such that for any 𝑡 > 𝑇, ‖𝑦(𝑡)‖ <

(1/√2)𝜀 < 𝜀, that is, ‖𝑥(𝑡+𝜔)−𝑥(𝑡)‖ < 𝜀. This shows that any
solution of system (3) is asymptotically almost periodic. The
proof is complete.

Remark 13. In the proof of Theorem 12, the assumption (𝐴
3
)

plays an important role. Under this assumption, ‖𝜌(𝜔, 𝑡)‖ < 𝜀

can be ensured.

Theorem 14. If the assumptions (𝐴
1
)–(𝐴

4
) hold, then interval

neural network system (3) has a unique almost periodic
solution which is global robust exponentially stable.

Proof. Firstly, we prove the existence of the almost periodic
solution for interval neural network system (3).

By Theorem 12, for any initial value (𝜙(𝑠), 𝜓(𝑠)), 𝑠 ∈

[−𝜄, 0], interval neural network (3) has a solution which is
asymptotically almost periodic. Let 𝑥(𝑡) be any solution of
system (3) associated with a measurable function 𝛾(𝑡) with
the initial value (𝜙(𝑠), 𝜓(𝑠)), 𝑠 ∈ [−𝜄, 0]. Then

̇𝑥 (𝑡) = − (𝐷
0
+ 𝐸

𝐷
𝐹
𝐷
𝑁
𝐷
) 𝑥 (𝑡)

+ (𝐴
0
+ 𝐸

𝐴
𝐹
𝐴
𝑁
𝐴
) 𝛾 (𝑡)

+ (𝐵
0
+ 𝐸

𝐵
𝐹
𝐵
𝑁
𝐵
) 𝛾 (𝑡 − 𝜏 (𝑡))

+ (𝐶
0
+ 𝐸

𝐶
𝐹
𝐶
𝑁
𝐶
) ∫

𝑡

𝑡−𝜎(𝑡)

𝛾 (𝑠) 𝑑𝑠 + 𝐼 (𝑡) ,

(43)

for a.a. 𝑡 ∈ [−𝜄, +∞).
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By using (40), we can pick a sequence {𝑡
𝑘
} satisfying

lim
𝑘→+∞

𝑡
𝑘

= +∞ and ‖𝜌(𝑡
𝑘
, 𝑡)‖ < 1/𝑘, for all 𝑡 ≥ 0, where

𝜌(𝜔, 𝑡) is defined in (36). In addition, the sequence {𝑥(𝑡 + 𝑡
𝑘
)}

is equicontinuous and uniformly bounded. By Arzela-Ascoli
theorem and diagonal selection principle, we can select a
subsequence of {𝑡

𝑘
} (still denoted by {𝑡

𝑘
}), such that {𝑥(𝑡+𝑡

𝑘
)}

uniformly converges to a absolute continuous function 𝑥
∗
(𝑡)

on any compact set of R.
On the other hand, since 𝛾(𝑡 + 𝑡

𝑘
) ∈ 𝐾[𝑔(𝑥(𝑡 + 𝑡

𝑘
))]

and 𝐾[𝑔(𝑥(𝑡 + 𝑡
𝑘
))] is bounded by the boundedness of 𝑥(𝑡),

the sequence {𝛾(𝑡 + 𝑡
𝑘
)} is bounded. Hence, we can also

select a subsequence of 𝑡
𝑘
(still denoted by {𝑡

𝑘
}), such that

{𝛾(𝑡 + 𝑡
𝑘
)} converges to a measurable function 𝛾

∗
(𝑡) for any

𝑡 ∈ [−𝜄, +∞). According to the fact that

(i) 𝐾[𝑔(⋅)] is an upper semicontinuous set-valued map,

(ii) for 𝑡 ∈ [−𝜄, +∞), 𝑥(𝑡 + 𝑡
𝑘
) → 𝑥

∗
(𝑡) as 𝑘 → +∞,

we can get that for any 𝜖 > 0, there exists 𝑁 > 0, such
that 𝐾[𝑔(𝑥(𝑡 + 𝑡

𝑘
))] ⊆ 𝐾[𝑔(𝑥

∗
(𝑡))] + 𝜖B for 𝑘 > 𝑁 and

𝑡 ∈ [−𝜄, +∞), whereB is an 𝑛-dimensional unit ball. Hence,
the fact 𝛾(𝑡 + 𝑡

𝑘
) ∈ 𝐾[𝑔(𝑥(𝑡 + 𝑡

𝑘
))] implies that 𝛾(𝑡 + 𝑡

𝑘
) ∈

𝐾[𝑔(𝑥
∗
(𝑡))]+𝜖B. On the other hand, since𝐾[𝑔(𝑥

∗
(𝑡))]+𝜖B

is a compact subset ofR𝑛, we have 𝛾∗(𝑡) = lim
𝑘→+∞

𝛾(𝑡+𝑡
𝑘
) ∈

𝐾[𝑔(𝑥
∗
(𝑡))]+𝜖B. Noting the arbitrariness of 𝜖, it follows that

𝛾
∗
(𝑡) ∈ 𝐾[𝑔(𝑥

∗
(𝑡))] for a.a. 𝑡 ∈ [−𝜄, +∞).

By Lebesgue’s dominated convergence theorem (Lemma
10),

𝑥
∗
(𝑡 + ℎ) − 𝑥

∗
(𝑡)

= lim
𝑘→+∞

[𝑥 (𝑡 + 𝑡
𝑘
+ ℎ) − 𝑥 (𝑡 + 𝑡

𝑘
)]

= lim
𝑘→+∞

∫

𝑡+ℎ

𝑡

[− (𝐷
0
+ 𝐸

𝐷
𝐹
𝐷
𝑁
𝐷
) 𝑥 (𝑡

𝑘
+ 𝜃)

+ (𝐴
0
+ 𝐸

𝐴
𝐹
𝐴
𝑁
𝐴
) 𝛾 (𝑡

𝑘
+ 𝜃)

+ (𝐵
0
+ 𝐸

𝐵
𝐹
𝐵
𝑁
𝐵
) 𝛾 (𝑡

𝑘
+ 𝜃 − 𝜏 (𝑡

𝑘
+ 𝜃))

+ (𝐶
0
+ 𝐸

𝐶
𝐹
𝐶
𝑁
𝐶
) ∫

𝑡𝑘+𝜃

𝑡𝑘+𝜃−𝜎(𝑡𝑘+𝜃)

𝛾 (𝑠) 𝑑𝑠

+𝐼 (𝑡
𝑘
+ 𝜃)] 𝑑𝜃

= lim
𝑘→+∞

∫

𝑡+ℎ

𝑡

[− (𝐷
0
+ 𝐸

𝐷
𝐹
𝐷
𝑁
𝐷
) 𝑥 (𝑡

𝑘
+ 𝜃)

+ (𝐴
0
+ 𝐸

𝐴
𝐹
𝐴
𝑁
𝐴
) 𝛾 (𝑡

𝑘
+ 𝜃)

+ (𝐵
0
+ 𝐸

𝐵
𝐹
𝐵
𝑁
𝐵
) 𝛾 (𝑡

𝑘
+ 𝜃 − 𝜏 (𝜃))

+ (𝐶
0
+ 𝐸

𝐶
𝐹
𝐶
𝑁
𝐶
) ∫

𝜃

𝜃−𝜎(𝜃)

𝛾 (𝑡
𝑘
+ 𝑠) 𝑑𝑠

+𝐼 (𝜃) + 𝜌 (𝑡
𝑘
, 𝜃)] 𝑑𝜃

= ∫

𝑡+ℎ

𝑡

[− (𝐷
0
+ 𝐸

𝐷
𝐹
𝐷
𝑁
𝐷
) 𝑥

∗
(𝜃)

+ (𝐴
0
+ 𝐸

𝐴
𝐹
𝐴
𝑁
𝐴
) 𝛾

∗
(𝜃)

+ (𝐵
0
+ 𝐸

𝐵
𝐹
𝐵
𝑁
𝐵
) 𝛾

∗
(𝜃 − 𝜏 (𝜃))

+ (𝐶
0
+ 𝐸

𝐶
𝐹
𝐶
𝑁
𝐶
) ∫

𝜃

𝜃−𝜎(𝜃)

𝛾
∗
(𝑠) 𝑑𝑠 + 𝐼 (𝜃)] 𝑑𝜃,

(44)

for any 𝑡 ∈ [−𝜄, +∞) and ℎ ∈ R. This implies that 𝑥∗(𝑡) is a
solution of system (3).

Notice that 𝑥(𝑡) is asymptotically almost periodic. Then,
for any 𝜀 > 0, there exist 𝑇 > 0, 𝑙 = 𝑙(𝜀), and 𝜔 = 𝜔(𝜀) in any
interval with the length of 𝑙, such that ‖𝑥(𝑡 + 𝜔) − 𝑥(𝑡)‖ < 𝜀,
for all 𝑡 > 𝑇. Therefore, there exists a constant 𝑁 > 0, when
𝑘 > 𝑁, ‖𝑥(𝑡 + 𝑡

𝑘
+ 𝜔) − 𝑥(𝑡 + 𝑡

𝑘
)‖ < 𝜀, for any 𝑡 ∈ [−𝜄, +∞).

Let 𝑘 → +∞, it follows that ‖𝑥
∗
(𝑡 + 𝜔) − 𝑥

∗
(𝑡)‖ < 𝜀, for

any 𝑡 ∈ [−𝜄, +∞). This shows that 𝑥∗(𝑡) is an almost periodic
solution of system (3).

Secondly, we prove that the almost periodic solution of
interval neural network system (3) is global robust exponen-
tially stable.

Let𝑥(𝑡) be an arbitrary, solution and let𝑥∗(𝑡) be an almost
solution of interval neural network system (3) associated
with outputs 𝜉(𝑡) and 𝛾

∗
(𝑡). Consider the change of variables

𝑧(𝑡) = 𝑥(𝑡) − 𝑥
∗
(𝑡), which transforms (3) into the differential

equation

̇𝑧 (𝑡) = − (𝐷
0
+ 𝐸

𝐷
𝐹
𝐷
𝑁
𝐷
) 𝑧 (𝑡)

+ (𝐴
0
+ 𝐸

𝐴
𝐹
𝐴
𝑁
𝐴
) 𝜂 (𝑡)

+ (𝐵
0
+ 𝐸

𝐵
𝐹
𝐵
𝑁
𝐵
) 𝜂 (𝑡 − 𝜏 (𝑡))

+ (𝐶
0
+ 𝐸

𝐶
𝐹
𝐶
𝑁
𝐶
) ∫

𝑡

𝑡−𝜎(𝑡)

𝜂 (𝑠) 𝑑𝑠,

(45)

where 𝜂(𝑡) ∈ 𝐾[𝐺(𝑧(𝑡))] is measurable, 𝐺(𝑧(𝑡)) = (𝐺
1
(𝑧
1
(𝑡)),

𝐺
2
(𝑧
2
(𝑡)), . . . , 𝐺

𝑛
(𝑧
𝑛
(𝑡)))

𝑇, and 𝐺
𝑖
(𝑧
𝑖
(𝑡)) = 𝑔

𝑖
(𝑧
𝑖
(𝑡) + 𝑥

∗

𝑖
(𝑡)) −

𝑔
𝑖
(𝑥
∗

𝑖
(𝑡)) (𝑖 = 1, 2, . . . , 𝑛).

Similar to 𝑉(𝑡) in (21), define a Lyapunov functional
candidate as

𝐿 (𝑡) = 𝑒
𝛿𝑡
𝑧
𝑇
(𝑡) 𝑃𝑧 (𝑡) + 2

𝑛

∑

𝑖=1

𝑒
𝛿𝑡
𝑞
𝑖
∫

𝑧𝑖(𝑡)

0

𝐺 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−𝜏(𝑡)

𝑒
𝛿(𝑠+𝜏𝑀)𝜂

𝑇
(𝑠) 𝑅𝜂 (𝑠) 𝑑𝑠

+ ∫

0

−𝜎(𝑡)

∫

𝑡

𝑡+𝜃

𝑒
𝛿(𝑠+𝜎𝑀)𝜂

𝑇
(𝑠)𝐻𝜂 (𝑠) 𝑑𝑠 𝑑𝜃.

(46)

Calculating the derivative of 𝐿(𝑡) along the solution of system
(45), similar to the proof of Theorem 11, we have

̇𝐿 (𝑡) ≤ 𝑒
𝛿𝑡
𝜐
𝑇
Θ
1
𝜐 − 𝛿𝑒

𝛿𝑡
𝑧
𝑇
(𝑡) 𝑃𝑧 (𝑡)

−𝛿𝑒
𝛿𝑡
𝜂
𝑇
(𝑡) 𝑄𝜂 (𝑡) < 0,

(47)
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where 𝜐=[𝑧
𝑇
(𝑡) 𝜂

𝑇
(𝑡) 𝜂

𝑇
(𝑡 − 𝜏(𝑡)) ∫

𝑡

𝑡−𝜎(𝑡)
𝜂
𝑇
(𝑠)𝑑𝑠]

𝑇

. Com-
bining (46) and (47) gives

‖𝑧 (𝑡)‖ ≤ √𝐿 (𝑡)𝑒
−(𝛿/2)𝑡

≤ √𝐿 (0)𝑒
−(𝛿/2)𝑡

. (48)

This means that the almost periodic solution 𝑥
∗
(𝑡) of interval

neural network system (3) is global robust exponentially
stable. Consequently, the almost periodic solution of system
(3) is unique. The proof is complete.

Remark 15. As far as we know, all the existing results con-
cerning the almost periodic dynamical behaviors of neural
networks with discontinuous activation functions [30–33]
have not considered the global robust exponential stabil-
ity performance. In this paper, by constructing appropri-
ate generalized Lyapunov functional, we have obtained a
delay-dependent criterion, which guarantee the existence,
uniqueness, and global robust exponential stability of almost
periodic solution. Moreover, the given result is formulated by
LMIs, which can be easily verified by the existing powerful
tools, such as the LMI toolbox of MATLAB. Therefore,
results of this paper improve corresponding parts of those in
[30–33].

Remark 16. In [34–36], some criteria on the robust stability of
an equilibrium point for neural networks with discontinuous
activation functions have been given. Compared to the main
results in [34–36], our results make the following improve-
ments.

(1) In [34, 35], the activation function 𝑔
𝑖
is assumed to

bemonotonic nondecreasing and bounded. However,
from the assumption (𝐴

1
), we can see that the

activation function 𝑔
𝑖
can be unbounded.

(2) Although the assumption of boundedness was
dropped in [36], the monotonic nondecreasing and
the growth condition were indispensable. In this
paper, the activation function is only assumed to be
monotonic nondecreasing.

(3) In contrast to themodels in [34–36], distributed time-
varying delays are considered in this paper. If we
choose 𝜎(𝑡) = 0 and 𝐼(𝑡) = 𝐼, then themodels in these
papers are the special cases of our model.

Notice that periodic function can be regarded as a special
almost periodic function. Hence, based on Theorems 11 and
14, we can obtain the following.

Corollary 17. Suppose that 𝐼(𝑡), 𝜏(𝑡), and 𝜎(𝑡) are periodic
functions, if the assumptions (𝐴

1
), (𝐴

3
), and (𝐴

4
) are satisfied.

Then

(1) neural network system (3) has a solution of IVP on
[0, +∞) for any initial value (𝜙(𝑠), 𝜓(𝑠)), 𝑠 ∈ [−𝜄, 0],

(2) neural network system (3) has a unique periodic sol-
ution which is global robust exponentially stable.

When 𝐼
𝑖
(𝑡) is a constant external input 𝐼

𝑖
, system (3)

changes as

̇𝑥 (𝑡) = −𝐷𝑥 (𝑡) + 𝐴𝑔 (𝑥 (𝑡)) + 𝐵𝑔 (𝑥 (𝑡 − 𝜏 (𝑡)))

+ 𝐶∫

𝑡

𝑡−𝜎(𝑡)

𝑔 (𝑥 (𝑠)) 𝑑𝑠 + 𝐼,

𝐷 ∈ D, 𝐴 ∈ A, 𝐵 ∈ B, 𝐶 ∈ C.

(49)

Since a constant function can be also regarded as a special
almost periodic function, by applyingTheorems 11 and 14, we
can obtain

Corollary 18. If the assumptions (𝐴
1
), (𝐴

3
), and (𝐴

4
) are

satisfied, then

(1) Neural network system (49) has a solution of
IVP on [0, +∞) for any initial value (𝜙(𝑠), 𝜓(𝑠)),
𝑠 ∈ [−𝜄, 0].

(2) Neural network system (49) has a unique equilibrium
point which is global robust exponentially stable.

4. Illustrative Example

Example 1. Consider the third-order interval neural network
(3) with the following system parameters:

𝐷 = (

2 0 0

0 2 0

0 0 2

) , 𝐷 = (

1 0 0

0 1 0

0 0 1

) ,

𝐴 = (

−3 0.5 0.4

0.1 −3 −0.6

0.2 0.3 −3

) , 𝐴 = (

−4 0.2 0.2

−0.2 −4 −1

−0.1 0.2 −4

) ,

𝐵 = (

0.3 0.3 0.3

−0.2 0.3 0.3

0.4 0.1 −0.3

) , 𝐵 = (

−0.1 −0.1 0.1

−0.3 −0.3 0

0.2 −0.3 −0.5

) ,

𝐶 = (

0.3 0.3 −0.1

0.2 0.1 −0.2

0.4 −0.1 0.3

) , 𝐶 = (

−0.1 0.1 −0.2

−0.1 −0.2 −0.5

0.1 −0.2 0.2

) .

(50)

Set 𝑔
1
(𝑠) = 𝑔

2
(𝑠) = 𝑔

3
(𝑠) = 5𝑠 + sign(𝑠), 𝜏(𝑡) = 0.5 + 0.5 cos 𝑡,

and 𝜎(𝑡) = 0.8−0.2 sin 𝑡. It is easy to check that assumptions
(𝐴

1
)–(𝐴

3
) hold and 𝜏

𝑀
= 1, 𝜏

𝐷
= 0.2, 𝜎

𝑀
= 1, and

𝜎
𝐷

= 0.5.
Let 𝛿 = 0.5. Solving the LMI in (𝐴

4
) by using appropriate

LMI solver in the MATLAB, the feasible positive definite
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matrices 𝑃, 𝑅, and 𝐻 and positive definite diagonal matrix
𝑄 could be as

𝑃 = (

148.9391 9.2264 −2.4915

9.2264 138.5453 −16.7765

2.4915 −16.7765 178.0600

) ,

𝑄 = (

264.9438 0 0

0 255.8510 0

0 0 268.7436

) ,

𝑅 = (

381.3968 −25.5537 −29.0966

−25.5537 338.0614 54.0433

−29.0966 54.0433 370.5851

) ,

𝐻 = (

302.0513 −19.9994 −4.0452

−19.9994 319.33320 31.7509

−4.0452 31.7509 328.8760

) ,

𝛼
1
= 799.7423, 𝛼

2
= 723.0122,

𝛼
3
= 754.7854, 𝛼

4
= 712.9184,

(51)

and the assumption (𝐴
4
) is also satisfied. Hence, it follows

from Theorems 11–14 that system (3) with parameter ranges
given above has a unique almost periodic solution which is
global robust exponentially stable.

In view of Corollary 17, when the external input 𝐼(𝑡) is a
periodic function, this neural network has a unique periodic
solution which is global robust exponentially stable, as well
as the similar result of an equilibrium for the system with
constant input.

As a special case, we choose the system as follows:

𝐷 = (

1.48 0 0

0 1.88 0

0 0 1.67

) ,

𝐴 = (

−3.69 0.38 0.27

−0.13 −3.42 −0.64

0.16 0.27 −3.53

) ,

𝐵 = (

0.17 −0.05 0.21

−0.23 −0.24 0.13

0.25 −0.26 −0.46

) ,

𝐶 = (

0.22 0.28 −0.17

0.14 −0.12 −0.34

0.35 −0.19 0.27

) .

(52)

Figures 1 and 2 display the state trajectories of this
neural network with initial value 𝜙(𝑡) = (sin 𝑡, −0.3 tanh 𝑡,

−0.5 cos 𝑡)𝑇, 𝑡 ∈ [−1, 0] when 𝐼(𝑡) = (15 sin 𝑡, 10 cos 𝑡,
15 cos 𝑡)𝑇. It can be seen that these trajectories converge to
a unique periodic. This is in accordance with the conclusion
of Corollary 17. Figure 3 displays the state trajectories of this
neural network with initial values 𝜙(𝑡) = (sin 𝑡, −0.3 tanh 𝑡,

−0.5 cos 𝑡)𝑇, 𝑡 ∈ [−1, 0] when 𝐼(𝑡) = (10, 5, −10)
𝑇. It
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Figure 1: Time-domain behavior of the state variables 𝑥
1
, 𝑥

2
, and 𝑥

3

when 𝐼(𝑡) = (15 sin 𝑡, 10 cos 𝑡, 15 cos 𝑡)𝑇.
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Figure 2: Phase plane behavior of the state variables 𝑥
1
, 𝑥

2
, and 𝑥

3

when 𝐼(𝑡) = (15 sin 𝑡, 10 cos 𝑡, 15 cos 𝑡)𝑇.

can be seen that these trajectories converge to a unique
equilibrium point. This is in accordance with the conclusion
of Corollary 18.

5. Conclusion

In this paper, under the framework of Filippov differential
inclusions, by constructing generalized Lyapunov-Krasovskii
functional and applying LMI techniques, a sufficient con-
dition which ensures the existence, uniqueness, and global
robust exponential stability of almost periodic solution has
been obtained in terms of LMIs, which is easy to be checked
and applied in practice. A numerical example has been given
to illustrate the validity of the theoretical results.

In [2], Forti et al. conjectured that all solutions of delayed
neural networks with discontinuous neuron activations and
periodic inputs converge to an asymptotically stable limit
cycle. In this paper, under the assumptions (𝐴

1
)–(𝐴

4
), the

results obtained conform that Forti’s conjecture is true for
interval neural networks withmixed time-varying delays and
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𝑇.

discontinuous activation functions. Note that the synchro-
nization or sliding mode control issues have been studied
in [44–47] by using the delay-fractioning approach, and
the obtained results have less conservative. Whether it is
effective to deal with the time-delays for discontinuous neural
networks via delay-fractioning approach will be the topic of
our further research.
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The problem of existence, uniqueness, and global asymptotic stability is considered for the class of neutral-type neural network
model with discrete time delays. By employing a suitable Lyapunov functional and using the homeomorphism mapping theorem,
we derive some new delay-independent sufficient conditions for the existence, uniqueness, and global asymptotic stability of
the equilibrium point for this class of neutral-type systems. The obtained conditions basically establish some norm and matrix
inequalities involving the network parameters of the neural system.The main advantage of the proposed results is that they can be
expressed in terms of network parameters only. Some comparative examples are also given to compare our results with the previous
corresponding results and demonstrate the effectiveness of the results presented.

1. Introduction

In recent years, dynamical neural networks have been
employed in solving many practical engineering problems
such as signal and image processing, pattern recognition,
associative memories, parallel computation, and optimiza-
tion and control problems [1–10]. In such applications, it is
important to know the dynamics of the designed neural
networks. In addition, when using delayed neural networks,
time delaysmight affect the transmission rate and cause insta-
bility. Therefore, the analysis of stability of neural networks
with time delays is indispensable for solving engineering
system problems. In the recent literature, many papers have
studied the problem of global stability of different classes
of neural networks by exploiting various analysis techniques
and methods and presented some useful stability results for
delayed neural networks. In practice, in order to precisely
determine the equilibrium and stability properties of neural
networks, the information about time derivatives of the past
states must be introduced into the state equations of neural

networks. A neural network of this model is called neutral-
type neural networks. Some global stability results of various
classes of neural networks with time delays have been
reported in [1–33]. The goal of our paper is to present some
new and alternative stability results of neutral-type neural
networks with discrete time delays with respect to Lipschitz
continuous activation functions.

Throughout this paper wewill use these notations: for any
matrix𝑃 = (𝑝

𝑖𝑗
)
𝑛×𝑛

,𝑃 > 0will denote that𝑃 is symmetric and
positive definite; 𝑃𝑇, 𝑃−1, 𝜆

𝑚
(𝑃), and 𝜆

𝑀
(𝑃) will denote the

transpose of 𝑃, the inverse of 𝑃, the minimum eigenvalue of
𝑃, and themaximumeigenvalue of𝑃, respectively.Wewill use
the matrix norm ‖𝑃‖

2
= [𝜆
𝑀
(𝑃
𝑇
𝑃)]
1/2. For any two positive

definite matrices 𝑃 = (𝑝
𝑖𝑗
)
𝑛×𝑛

and𝑄 = (𝑞
𝑖𝑗
)
𝑛×𝑛

. If𝑄 > 0, then
𝑃 > 𝑄 will imply that 𝑃 > 0. For V = (V

1
, V
2
, . . . , V

𝑛
)
𝑇
∈ 𝑅
𝑛,

we will use the vector norms ‖V‖
2
= √∑

𝑛

𝑖=1
V2
𝑖
and ‖V‖

1
=

∑
𝑛

𝑖=1
|V
𝑖
|.
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2. Problem Statement

The class of neutral-type neural network model with discrete
time delays is described by the following set of nonlinear
differential equations:

̇𝑥
𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝑒
𝑖𝑗
̇𝑥
𝑗
(𝑡 − 𝜏

𝑗
)

= −𝑐
𝑖
𝑥
𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑡 − 𝜏

𝑗
)) + 𝑢

𝑖
,

𝑖 = 1, . . . , 𝑛,

(1)

where 𝑛 is the number of the neurons in the network, 𝑥
𝑖

denotes the state of the 𝑖th neuron, and the parameters 𝑐
𝑖
are

some constants: the constants 𝑎
𝑖𝑗
denote the strengths of the

neuron interconnections within the network; the constants
𝑏
𝑖𝑗
denote the strengths of the neuron interconnections with

time delay parameters 𝜏
𝑗
. 𝑒
𝑖𝑗
are coefficients of the time

derivative of the delayed states, the functions 𝑓
𝑗
(⋅) denote the

neuron activations, and the constants 𝑢
𝑖
are some external

inputs. In system (1), 𝜏
𝑗
≥ 0 represents the delay parameter

with 𝜏 = max (𝜏
𝑗
), 1 ≤ 𝑗 ≤ 𝑛. Accompanying the neutral

system (1) is an initial condition of the form: 𝑥
𝑖
(𝑡) = 𝜙

𝑖
(𝑡) ∈

𝐶([−𝜏, 0], 𝑅), where 𝐶([−𝜏, 0], 𝑅) denotes the set of all con-
tinuous functions from [−𝜏, 0] to 𝑅.

We will assume that the activation functions 𝑓
𝑖
(⋅), 𝑖 =

1, 2, . . . , 𝑛, are Lipschitz continuous; for example, there exist
some constants ℓ

𝑖
> 0 such that

𝑓𝑖 (𝑥) − 𝑓𝑖 (𝑦)
 ≤ ℓ𝑖

𝑥 − 𝑦
 , 𝑖 = 1, 2, . . . , 𝑛,

∀𝑥, 𝑦 ∈ 𝑅, 𝑥 ̸=𝑦.

(2)

Neural networkmodel (1) can be written in the vector-matrix
form as follows:

̇𝑥 (𝑡) + 𝐸 ̇𝑥 (𝑡 − 𝜏) = −𝐶𝑥 (𝑡) + 𝐴𝑓 (𝑥 (𝑡)) + 𝐵𝑓 (𝑥 (𝑡 − 𝜏)) + 𝑢,

(3)

where 𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇
∈ 𝑅
𝑛, 𝐴 = (𝑎

𝑖𝑗
)
𝑛×𝑛

, 𝐵 =
(𝑏
𝑖𝑗
)
𝑛×𝑛

, 𝐸 = (𝑒
𝑖𝑗
)
𝑛×𝑛

, 𝐶 = diag (𝑐
𝑖
> 0), 𝑢 = (𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑛
)
𝑇,

𝑓(𝑥(𝑡)) = (𝑓
1
(𝑥
1
(𝑡)), 𝑓

2
(𝑥
2
(𝑡)), . . . , 𝑓

𝑛
(𝑥
𝑛
(𝑡)))
𝑇, and 𝑓(𝑥(𝑡 −

𝜏)) = (𝑓
1
(𝑥
1
(𝑡 − 𝜏
1
)), 𝑓
2
(𝑥
2
(𝑡 − 𝜏
2
)), . . . , 𝑓

𝑛
(𝑥
𝑛
(𝑡 − 𝜏
𝑛
)))
𝑇.

In order to obtain our main results, the following lemma
will be needed.

Lemma 1 (see [23]). If a map𝐻(𝑥) ∈ 𝐶0 satisfies the following
conditions:

(i) 𝐻(𝑥) ̸=𝐻(𝑦) for all 𝑥 ̸=𝑦,
(ii) ‖𝐻(𝑥)‖ → ∞ as ‖𝑥‖ → ∞,

then,𝐻(𝑥) is homeomorphism of 𝑅𝑛.

3. Existence and Uniqueness Analysis

This section deals with obtaining the sufficient conditions
that ensure the existence and uniqueness of the equilibrium
point for neutral-type neural network model (1). The main
result is given in the following result.

Theorem 2. For the neutral-type neural network model (1),
let ‖𝐸‖

2
< 1 and the activation functions satisfy (2). Then,

the system (1) has unique equilibrium point for each 𝑢 if there
exist positive diagonal matrices𝐻 and 𝐷 and positive definite
matrices 𝑃, 𝑄, and 𝑅 such that the following conditions hold:

Υ
1
= 𝐶 − 𝑃 − 𝑄 − 𝐻 − 𝐶𝑅

−1
𝐶 > 0,

Υ
2
= 𝐶L

−2
− 𝐷 − 𝐴

𝑇
𝑃
−1
𝐴 − 𝐴

𝑇
𝑅
−1
𝐴 > 0,

Υ
3
= 𝐷 − 𝐵

𝑇
𝑄
−1
𝐵 − 𝐵
𝑇
𝑅
−1
𝐵 > 0,

Υ
4
= 𝐻 − 3𝐸

𝑇
𝑅𝐸 > 0,

(4)

whereL = diag(ℓ
1
, ℓ
2
, . . . , ℓ

𝑛
).

Proof. Wewillmake use of the result of Lemma 1 for the proof
of the existence and uniqueness of the equilibrium point for
system (1). Let us define the following mapping associated
with system (1):

𝐻(𝑥) + 𝐸𝐻 (𝑥) = −𝐶𝑥 + 𝐴𝑓 (𝑥) + 𝐵𝑓 (𝑥) + 𝑢. (5)

If 𝑥∗ = (𝑥∗
1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑛
)
𝑇 is an equilibrium point of (1), then

𝑥
∗ satisfies the equilibrium equation:

𝐻(𝑥
∗
) + 𝐸𝐻 (𝑥

∗
) = −𝐶𝑥

∗
+ 𝐴𝑓 (𝑥

∗
) + 𝐵𝑓 (𝑥

∗
) + 𝑢 = 0.

(6)

Clearly, the solution of the equation 𝐻(𝑥) = 0 is an equi-
librium point of (1). Therefore, in the light of Lemma 1, we
can conclude that, for the system defined by (1), there exists a
unique equilibrium point for every input vector 𝑢 if 𝐻(𝑥) is
homeomorphismof𝑅𝑛.Wewill now show that the conditions
of Theorem 2 imply that 𝐻(𝑥) is a homeomorphism of 𝑅𝑛.
To this end, we choose any two vectors 𝑥 ∈ 𝑅𝑛 and 𝑦 ∈ 𝑅𝑛
such that 𝑥 ̸=𝑦. When the activation functions satisfy (2), for
𝑥 ̸=𝑦, we have two cases: first case is 𝑥 ̸=𝑦 and 𝑓(𝑥) ̸=𝑓(𝑦),
and the second case is 𝑥 ̸=𝑦 and𝑓(𝑥) = 𝑓(𝑦). Let us carry out
the existence and uniqueness analysis for the first case where
𝑥 ̸=𝑦 and 𝑓(𝑥) ̸=𝑓(𝑦). In this case, for 𝐻(𝑥) defined by (5),
we can write

𝐻(𝑥) − 𝐻 (𝑦) + 𝐸 (𝐻 (𝑥) − 𝐻 (𝑦))

= (𝐼 + 𝐸) (𝐻 (𝑥) − 𝐻 (𝑦))

= −𝐶 (𝑥 − 𝑦) + 𝐴 (𝑓 (𝑥) − 𝑓 (𝑦)) + 𝐵 (𝑓 (𝑥) − 𝑓 (𝑦)) .

(7)
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If we multiply both sides of (7) by the term 2(𝑥−𝑦)
𝑇
(𝐼+𝐸)

𝑇,
and then add the terms (𝑓(𝑥)−𝑓(𝑦))𝑇𝐷(𝑓(𝑥)−𝑓(𝑦))−(𝑓(𝑥)−
𝑓(𝑦))

𝑇
𝐷(𝑓(𝑥)−𝑓(𝑦)) = 0 and (𝑥−𝑦)𝑇𝐻(𝑥−𝑦)−(𝑥−𝑦)𝑇𝐻(𝑥−

𝑦) = 0 to the right hand side of the resulting equation, we get

2(𝑥 − 𝑦)
𝑇

(𝐼 + 𝐸)
𝑇
(𝐼 + 𝐸) (𝐻 (𝑥) − 𝐻 (𝑦))

= 2(𝑥 − 𝑦)
𝑇

(𝐼 + 𝐸)
𝑇

× (−𝐶 (𝑥 − 𝑦) + 𝐴 (𝑓 (𝑥) − 𝑓 (𝑦)) + 𝐵 (𝑓 (𝑥) − 𝑓 (𝑦)))

= 2(𝑥 − 𝑦)
𝑇

(𝐼 + 𝐸)
𝑇

× (−𝐶 (𝑥 − 𝑦) + 𝐴 (𝑓 (𝑥) − 𝑓 (𝑦)) + 𝐵 (𝑓 (𝑥) − 𝑓 (𝑦)))

+ (𝑥 − 𝑦)
𝑇

𝐻(𝑥 − 𝑦) − (𝑥 − 𝑦)
𝑇

𝐻(𝑥 − 𝑦)

+ (𝑓 (𝑥) − 𝑓 (𝑦))
𝑇

𝐷(𝑓 (𝑥) − 𝑓 (𝑦))

− (𝑓 (𝑥) − 𝑓 (𝑦))
𝑇

𝐷(𝑓 (𝑥) − 𝑓 (𝑦))

= −2(𝑥 − 𝑦)
𝑇

𝐶 (𝑥 − 𝑦) + 2(𝑥 − 𝑦)
𝑇

𝐴 (𝑓 (𝑥) − 𝑓 (𝑦))

+ 2(𝑥 − 𝑦)
𝑇

𝐵 (𝑓 (𝑥) − 𝑓 (𝑦)) − 2(𝑥 − 𝑦)
𝑇

𝐸
𝑇
𝐶 (𝑥 − 𝑦)

+ 2(𝑥 − 𝑦)
𝑇

𝐸
𝑇
𝐴 (𝑓 (𝑥) − 𝑓 (𝑦)) + 2(𝑥 − 𝑦)

𝑇

𝐸
𝑇
𝐵

× (𝑓 (𝑥) − 𝑓 (𝑦)) + (𝑥 − 𝑦)
𝑇

𝐻(𝑥 − 𝑦) − (𝑥 − 𝑦)
𝑇

× 𝐻 (𝑥 − 𝑦) + (𝑓 (𝑥) − 𝑓 (𝑦))
𝑇

𝐷(𝑓 (𝑥) − 𝑓 (𝑦))

− (𝑓 (𝑥) − 𝑓 (𝑦))
𝑇

𝐷(𝑓 (𝑥) − 𝑓 (𝑦)) .

(8)

We note the following inequalities:

2(𝑥 − 𝑦)
𝑇

𝐴 (𝑓 (𝑥) − 𝑓 (𝑦))

≤ (𝑥 − 𝑦)
𝑇

𝑃 (𝑥 − 𝑦) + (𝑓 (𝑥) − 𝑓 (𝑦))
𝑇

× 𝐴
𝑇
𝑃
−1
𝐴 (𝑓 (𝑥) − 𝑓 (𝑦)) ,

2(𝑥 − 𝑦)
𝑇

𝐵 (𝑓 (𝑥) − 𝑓 (𝑦))

≤ (𝑥 − 𝑦)
𝑇

𝑄 (𝑥 − 𝑦) + (𝑓 (𝑥) − 𝑓 (𝑦))
𝑇

× 𝐵
𝑇
𝑄
−1
𝐵 (𝑓 (𝑥) − 𝑓 (𝑦)) ,

− 2(𝑥 − 𝑦)
𝑇

𝐸
𝑇
𝐶 (𝑥 − 𝑦) (𝑡)

≤ (𝑥 − 𝑦)
𝑇

𝐸
𝑇
𝑅𝐸 (𝑥 − 𝑦) + (𝑥 − 𝑦)

𝑇

× 𝐶
𝑇
𝑅
−1
𝐶 (𝑥 − 𝑦) ,

2(𝑥 − 𝑦)
𝑇

𝐸
𝑇
𝐴 (𝑓 (𝑥) − 𝑓 (𝑦))

≤ (𝑥 − 𝑦)
𝑇

𝐸
𝑇
𝑅𝐸 (𝑥 − 𝑦) + (𝑓 (𝑥) − 𝑓 (𝑦))

𝑇

× 𝐴
𝑇
𝑅
−1
𝐴 (𝑓 (𝑥) − 𝑓 (𝑦)) ,

2(𝑥 − 𝑦)
𝑇

𝐸
𝑇
𝐵 (𝑓 (𝑥) − 𝑓 (𝑦))

≤ (𝑥 − 𝑦)
𝑇

𝐸
𝑇
𝑅𝐸 (𝑥 − 𝑦)

+ (𝑓 (𝑥) − 𝑓 (𝑦))
𝑇

𝐵
𝑇
𝑅
−1
𝐵 (𝑓 (𝑥) − 𝑓 (𝑦)) .

(9)

Using (9) in (8) results in

2(𝑥 − 𝑦)
𝑇

(𝐼 + 𝐸)
𝑇
(𝐼 + 𝐸) (𝐻 (𝑥) − 𝐻 (𝑦))

≤ − (𝑥 − 𝑦)
𝑇

𝐶 (𝑥 − 𝑦) − (𝑥 − 𝑦)
𝑇

𝐶 (𝑥 − 𝑦)

+ (𝑥 − 𝑦)
𝑇

𝑃 (𝑥 − 𝑦) + (𝑓 (𝑥) − 𝑓 (𝑦))
𝑇

𝐴
𝑇
𝑃
−1

× 𝐴 (𝑓 (𝑥) − 𝑓 (𝑦)) + (𝑥 − 𝑦)
𝑇

𝑄 (𝑥 − 𝑦)

+ (𝑓 (𝑥) − 𝑓 (𝑦))
𝑇

𝐵
𝑇
𝑄
−1
𝐵 (𝑓 (𝑥) − 𝑓 (𝑦))

+ (𝑥 − 𝑦)
𝑇

𝐸
𝑇
𝑅𝐸 (𝑥 − 𝑦) + (𝑥 − 𝑦)

𝑇

𝐶
𝑇
𝑅
−1

× 𝐶 (𝑥 − 𝑦) + (𝑥 − 𝑦)
𝑇

𝐸
𝑇
𝑅𝐸 (𝑥 − 𝑦)

+ (𝑓 (𝑥) − 𝑓 (𝑦))
𝑇

𝐴
𝑇
𝑅
−1
𝐴 (𝑓 (𝑥) − 𝑓 (𝑦)) (𝑥 − 𝑦)

𝑇

× 𝐸
𝑇
𝑅𝐸 (𝑥 − 𝑦) + (𝑓 (𝑥) − 𝑓 (𝑦))

𝑇

× 𝐵
𝑇
𝑅
−1
𝐵 (𝑓 (𝑥) − 𝑓 (𝑦)) + (𝑥 − 𝑦)

𝑇

𝐻(𝑥 − 𝑦)

− (𝑥 − 𝑦)
𝑇

𝐻(𝑥 − 𝑦) + (𝑓 (𝑥) − 𝑓 (𝑦))
𝑇

× 𝐷 (𝑓 (𝑥) − 𝑓 (𝑦)) − (𝑓 (𝑥) − 𝑓 (𝑦))
𝑇

× 𝐷 (𝑓 (𝑥) − 𝑓 (𝑦))

(10)

which is of the form

2(𝑥 − 𝑦)
𝑇

(𝐼 + 𝐸)
𝑇
(𝐼 + 𝐸) (𝐻 (𝑥) − 𝐻 (𝑦))

≤ − (𝑥 − 𝑦)
𝑇

(𝐶 − 𝑃 − 𝑄 − 𝐻 − 𝐶
𝑇
𝑅
−1
𝐶) (𝑥 − 𝑦)

𝑇

− (𝑓(𝑥) − 𝑓(𝑦))
𝑇

(𝐶L
−2
− 𝐷 − 𝐴

𝑇
𝑃
−1
𝐴 − 𝐴

𝑇
𝑅
−1
𝐴)

× (𝑓 (𝑥) − 𝑓 (𝑦)) − (𝑓 (𝑥) − 𝑓 (𝑦))
𝑇

× (𝐷 − 𝐵
𝑇
𝑄
−1
𝐵 − 𝐵
𝑇
𝑅
−1
𝐵) (𝑓 (𝑥) − 𝑓 (𝑦))

− (𝑥 − 𝑦)
𝑇
(𝐻 − 3𝐸

𝑇
𝑅𝐸) (𝑥 − 𝑦)

(11)

or equivalently

2(𝑥 − 𝑦)
𝑇

(𝐼 + 𝐸)
𝑇
(𝐼 + 𝐸) (𝐻 (𝑥) − 𝐻 (𝑦))

≤ − (𝑥 − 𝑦)
𝑇

Υ
1
(𝑥 − 𝑦)

− (𝑓 (𝑥) − 𝑓 (𝑦))
𝑇

Υ
2
(𝑓 (𝑥) − 𝑓 (𝑦))

− (𝑓 (𝑥) − 𝑓 (𝑦))
𝑇

Υ
3
(𝑓 (𝑥) − 𝑓 (𝑦))

− (𝑥 − 𝑦)
𝑇

Υ
4
(𝑥 − 𝑦) .

(12)
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Since 𝑥 ̸=𝑦 and 𝑓(𝑥) ̸=𝑓(𝑦), Υ
1
> 0, Υ

2
> 0, Υ

3
> 0, and

Υ
4
> 0 imply that

2(𝑥 − 𝑦)
𝑇

(𝐼 + 𝐸)
𝑇
(𝐼 + 𝐸) (𝐻 (𝑥) − 𝐻 (𝑦)) < 0 (13)

implying that


(𝑥 − 𝑦)

𝑇

(𝐼 + 𝐸)
𝑇
(𝐼 + 𝐸) (𝐻 (𝑥) − 𝐻 (𝑦))

 2
> 0 (14)

from which it follows that

𝑥 − 𝑦
 2‖

𝐼 + 𝐸‖
2

2

𝐻 (𝑥) − 𝐻 (𝑦)
 2
> 0. (15)

‖𝐸‖
2
< 1 implies that ‖𝐼 + 𝐸‖2

2
> 0, and 𝑥 ̸=𝑦 implies

that ‖𝑥 − 𝑦‖
2

> 0. Therefore, it directly follows that
‖𝐻(𝑥) − 𝐻(𝑦)‖

2
> 0, thus implying that ‖𝐻(𝑥)‖ ̸= ‖𝐻(𝑦)‖.

Hence, we conclude that 𝐻(𝑥) ̸=𝐻(𝑦) for all 𝑥 ̸=𝑦 and
𝑓(𝑥) ̸=𝑓(𝑦).

Now consider the case where 𝑥 ̸=𝑦 and 𝑓(𝑥) = 𝑓(𝑦). In
this case,𝐻(𝑥) defined by (5) satisfies

2(𝑥 − 𝑦)
𝑇

(𝐼 + 𝐸)
𝑇
(𝐼 + 𝐸) (𝐻 (𝑥) − 𝐻 (𝑦))

≤ − (𝑥 − 𝑦)
𝑇

Υ
1
(𝑥 − 𝑦) − (𝑥 − 𝑦)

𝑇

Υ
4
𝑧 (𝑥 − 𝑦) ,

(16)

𝑥 ̸=𝑦; Υ
1
> 0 and Υ

4
> 0 imply that

2(𝑥 − 𝑦)
𝑇

(𝐼 + 𝐸)
𝑇
(𝐼 + 𝐸) (𝐻 (𝑥) − 𝐻 (𝑦)) < 0. (17)

Based on the analysis carried out for the previous case, we
conclude that𝐻(𝑥) ̸=𝐻(𝑦) for all 𝑥 ̸=𝑦 for this case.

Now it is shown that the conditions of Theorem 2 imply
that ‖𝐻(𝑥)‖ → ∞ as ‖𝑥‖ → ∞. For 𝑦 = 0, we can write

2𝑥
𝑇
(𝐼 + 𝐸)

𝑇
(𝐼 + 𝐸) (𝐻 (𝑥) − 𝐻 (0))

≤ − 𝑥
𝑇
Υ
1
𝑥 − (𝑓 (𝑥) − 𝑓 (0))

𝑇

Υ
2
(𝑓 (𝑥) − 𝑓 (0))

− (𝑓 (𝑥) − 𝑓 (0))
𝑇

Υ
3
(𝑓 (𝑥) − 𝑓 (0)) − 𝑥

𝑇
Υ
4
𝑥.

(18)

Taking the absolute value of the both sides of the above ine-
quality, we obtain


2𝑥
𝑇
(𝐼 + 𝐸)

𝑇
(𝐼 + 𝐸) (𝐻 (𝑥) − 𝐻 (0))



≥ 𝑥
𝑇
Υ
1
𝑥 + (𝑓 (𝑥) − 𝑓 (0))

𝑇

Υ
2
(𝑓 (𝑥) − 𝑓 (0))

+ (𝑓 (𝑥) − 𝑓 (0))
𝑇

Υ
3
(𝑓 (𝑥) − 𝑓 (0)) + 𝑥

𝑇
Υ
4
𝑥

(19)

from which it follows that

‖𝑥‖ 2‖𝐼 + 𝐸‖
2

2
‖𝐻 (𝑥) − 𝐻 (0)‖ 2

≥ 𝜆
𝑚
(Υ
1
) ‖𝑥‖
2

2
+ 𝜆
𝑚
(Υ
2
)
𝑓 (𝑥) − 𝑓 (0)



2

2

+ 𝜆
𝑚
(Υ
3
)
𝑓 (𝑥) − 𝑓 (0)



2

2
+ 𝜆
𝑚
(Υ
4
) ‖𝑥‖
2

2

≥ 𝜆
𝑚
(Υ
1
) ‖𝑥‖
2

2

(20)

which yields

‖𝐻 (𝑥) − 𝐻 (0)‖ 2 ≥
𝜆
𝑚
(Υ
1
)

‖𝐼 + 𝐸‖
2

2

‖𝑥‖ 2. (21)

We note that ‖𝐻(𝑥) − 𝐻(0)‖
2
≤ ‖𝐻(𝑥)‖

2
+ ‖𝐻(0)‖

2
. Hence,

from (21), it follows that

‖𝐻 (𝑥)‖ 2 ≥
𝜆
𝑚
(Υ
1
)

‖𝐼 + 𝐸‖
2

2

‖𝑥‖ 2 − ‖𝐻 (0)‖ 2. (22)

Since ‖𝐻(0)‖
2
is bounded, and ‖𝐼 + 𝐸‖2

2
> 0, then ‖𝐻(𝑥)‖

2
→

∞ as ‖𝑥‖
2
→ ∞. Hence, the conditions ofTheorem 2 ensure

that 𝐻(𝑥) is homeomorphism of 𝑅𝑛, proving that neutral
system defined by (1) has unique equilibrium point for each
𝑢.

Choosing 𝐻, 𝐷, 𝑃, 𝑄, and 𝑅 in the conditions of
Theorem 2 as𝐻 = ℎ𝐼,𝐷 = 𝑑𝐼,𝑃 = 𝑝𝐼,𝑄 = 𝑞𝐼, and𝑅 = 𝑟𝐼, we
can express some special cases of Theorem 2 as follows.

Corollary 3. For the neutral-type neural network model (1),
let ‖𝐸‖

2
< 1 and the activation functions satisfy (2). Then, the

system (1) has unique equilibrium point for each 𝑢 if there exist
some positive constants ℎ, 𝑑, 𝑝, 𝑞, and 𝑟 such that the following
conditions hold:

Υ
∗

1
= 𝐶 − (𝑝 + 𝑞 + ℎ) 𝐼 −

1

𝑟
𝐶
2
> 0,

Υ
∗

2
= 𝐶L

−2
− 𝑑𝐼 −

1

𝑝
𝐴
𝑇
𝐴 −

1

𝑟
𝐴
𝑇
𝐴 > 0,

Υ
∗

3
= 𝑑𝐼 −

1

𝑞
𝐵
𝑇
𝐵 −

1

𝑟
𝐵
𝑇
𝐵 > 0,

Υ
∗

4
= ℎ𝐼 − 3𝑟𝐸

𝑇
𝐸 > 0,

(23)

whereL = diag(ℓ
1
, ℓ
2
, . . . , ℓ

𝑛
).

A special case of Corollary 3 is the following result.

Corollary 4. For the neutral-type neural network model (1),
let ‖𝐸‖

2
< 1 and the activation functions satisfy (2). Then, the

system (1) has unique equilibrium point for each 𝑢 if there exist
some positive constants ℎ, 𝑑, 𝑝, 𝑞, and 𝑟 such that the following
conditions hold:

𝜌
1
= 𝑐
𝑚
− (𝑝 + 𝑞 + ℎ) −

1

𝑟
𝑐
2

𝑀
> 0,

𝜌
2
= 𝑐
𝑚
ℓ
−2

𝑀
− 𝑑 − (

1

𝑝
+
1

𝑟
) ‖𝐴‖

2

2
> 0,

𝜌
3
= 𝑑 − (

1

𝑞
+
1

𝑟
) ‖𝐵‖

2

2
> 0,

𝜌
4
= ℎ − 3𝑟‖𝐸‖

2

2
> 0,

(24)

where 𝑐
𝑚
= min

1≤𝑖≤𝑛
(𝑐
𝑖
), 𝑐
𝑀

= max
1≤𝑖≤𝑛

(𝑐
𝑖
), and ℓ

𝑀
=

max
1≤𝑖≤𝑛

(ℓ
𝑖
).
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4. Stability Analysis

In this section, we will prove that the conditions obtained
from Theorem 2 for the existence and uniqueness of the
equilibrium point are also sufficient for the global stability
of the equilibrium point of neutral system defined by (1). In
order to simplify the proofs, we will first shift the equilibrium
point 𝑥∗ = [𝑥

∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑛
]
𝑇 of system (1) to the origin. By

using the transformation 𝑧(𝑡) = 𝑥(𝑡) − 𝑥
∗, the neutral-type

neural network model (1) can be put in the form:

̇𝑧
𝑖
(𝑡) = −𝑐

𝑖
𝑧
𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑔
𝑗
(𝑧
𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑔
𝑗
(𝑧
𝑗
(𝑡 − 𝜏

𝑗
)) +

𝑛

∑

𝑗=1

𝑒
𝑖𝑗
̇𝑧
𝑗
(𝑡 − 𝜏

𝑗
) ,

𝑖 = 1, . . . , 𝑛

(25)

which can be written in vector-matrix form as follows:

̇𝑧 (𝑡) = −𝐶𝑧 (𝑡) + 𝐴𝑔 (𝑧 (𝑡)) + 𝐵𝑔 (𝑧 (𝑡 − 𝜏)) + 𝐸 ̇𝑧 (𝑡 − 𝜏) ,

(26)

where 𝑧(𝑡) = (𝑧
1
(𝑡), 𝑧
2
(𝑡), . . . , 𝑧

𝑛
(𝑡))
𝑇
∈ 𝑅
𝑛 is the state

vector of transformed neural system, 𝑔(𝑧(𝑡)) =

(𝑔
1
(𝑧
1
(𝑡)), 𝑔

2
(𝑧
2
(𝑡)), . . . , 𝑔

𝑛
(𝑧
𝑛
(𝑡)))
𝑇 represents the new

nonlinear activation, functions, and 𝑔(𝑧(𝑡 − 𝜏)) = (𝑔
1
(𝑧
1
(𝑡 −

𝜏
1
)), 𝑔
2
(𝑧
2
(𝑡 − 𝜏

2
)), . . . , 𝑔

𝑛
(𝑧
𝑛
(𝑡 − 𝜏

𝑛
)))
𝑇. The activation

functions 𝑔
𝑖
(𝑧
𝑖
(𝑡)) in (25) satisfy

𝑔𝑖 (𝑧𝑖 (𝑡))
 ≤ ℓ𝑖

𝑧𝑖 (𝑡)
 , 𝑖 = 1, 2, . . . , 𝑛. (27)

We can now state the following stability result.

Theorem 5. For the neutral-type neural network model (25),
let ‖𝐸‖

2
< 1 and the activation functions satisfy (27). Then, the

origin of system (25) is globally asymptotically stable if there
exist positive diagonal matrices𝐻 and 𝐷 and positive definite
matrices 𝑃, 𝑄, and 𝑅 such that the following conditions hold:

Υ
1
= 𝐶 − 𝑃 − 𝑄 − 𝐻 − 𝐶

𝑇
𝑅
−1
𝐶 > 0,

Υ
2
= 𝐶L

−2
− 𝐷 − 𝐴

𝑇
𝑃
−1
𝐴 − 𝐴

𝑇
𝑅
−1
𝐴 > 0,

Υ
3
= 𝐷 − 𝐵

𝑇
𝑄
−1
𝐵 − 𝐵
𝑇
𝑅
−1
𝐵 > 0,

Υ
4
= 𝐻 − 3𝐸

𝑇
𝑅𝐸 > 0,

(28)

whereL = diag(ℓ
1
, ℓ
2
, . . . , ℓ

𝑛
).

Proof. Define the following positive definite Lyapunov func-
tional:

𝑉 (𝑧 (𝑡)) = (𝑧 (𝑡) + 𝐸𝑧 (𝑡 − 𝜏))
𝑇
(𝑧 (𝑡) + 𝐸𝑧 (𝑡 − 𝜏))

+

𝑛

∑

𝑖=1

ℎ
𝑖
∫

𝑡

𝑡−𝜏𝑖

𝑧
2

𝑖
(𝑠) 𝑑𝑠 +

𝑛

∑

𝑖=1

𝑑
𝑖
∫

𝑡

𝑡−𝜏𝑖

𝑔
2

𝑖
(𝑧
𝑖
(𝑠)) 𝑑𝑠,

(29)

where 𝑝
𝑖
and 𝑑

𝑖
𝑖 = 1, 2, . . . , 𝑛 are some positive constants.

The time derivative of 𝑉(𝑧(𝑡)) along the trajectories of the
system (25) is obtained as follows:

𝑉 (𝑧 (𝑡)) = 2(𝑧 (𝑡) + 𝐸𝑧 (𝑡 − 𝜏))
𝑇
( ̇𝑧 (𝑡) + 𝐸 ̇𝑧 (𝑡 − 𝜏))

+

𝑛

∑

𝑖=1

ℎ
𝑖
𝑧
2

𝑖
(𝑡) −

𝑛

∑

𝑖=1

ℎ
𝑖
𝑧
2

𝑖
(𝑡 − 𝜏

𝑖
)

+

𝑛

∑

𝑖=1

𝑑
𝑖
𝑔
2

𝑖
(𝑧
𝑖
(𝑡)) −

𝑛

∑

𝑖=1

𝑑
𝑖
𝑔
2

𝑖
(𝑧
𝑖
(𝑡 − 𝜏

𝑖
))

= 2(𝑧 (𝑡) + 𝐸𝑧 (𝑡 − 𝜏))
𝑇
( ̇𝑧 (𝑡) + 𝐸 ̇𝑧 (𝑡 − 𝜏))

+ 𝑧
𝑇
(𝑡)𝐻𝑧 (𝑡) − 𝑧

𝑇
(𝑡 − 𝜏)𝐻𝑧 (𝑡 − 𝜏)

+ 𝑔
𝑇
(𝑧 (𝑡))𝐷𝑔 (𝑧 (𝑡))

− 𝑔
𝑇
(𝑧 (𝑡 − 𝜏))𝐷𝑔 (𝑧 (𝑡 − 𝜏)) .

(30)

Since ̇𝑧(𝑡) + 𝐸 ̇𝑧(𝑡 − 𝜏) = −𝐶𝑧(𝑡) + 𝐴𝑔(𝑧(𝑡)) + 𝐵𝑔(𝑧(𝑡 − 𝜏)), we
can write

𝑉 (𝑧 (𝑡)) = 2(𝑧 (𝑡) + 𝐸𝑧 (𝑡 − 𝜏))
𝑇

× (−𝐶𝑧 (𝑡) + 𝐴𝑔 (𝑧 (𝑡)) + 𝐵𝑔 (𝑧 (𝑡 − 𝜏)))

+ 𝑧
𝑇
(𝑡)𝐻𝑧 (𝑡) − 𝑧

𝑇
(𝑡 − 𝜏)𝐻𝑧 (𝑡 − 𝜏)

+ 𝑔
𝑇
(𝑧 (𝑡))𝐷𝑔 (𝑧 (𝑡))

− 𝑔
𝑇
(𝑧 (𝑡 − 𝜏))𝐷𝑔 (𝑧 (𝑡 − 𝜏))

= −2𝑧
𝑇
(𝑡) 𝐶𝑧 (𝑡) + 2𝑧

𝑇
(𝑡) 𝐴𝑔 (𝑧 (𝑡))

+ 2𝑧
𝑇
(𝑡) 𝐵𝑔 (𝑧 (𝑡 − 𝜏))

− 2𝑧
𝑇
(𝑡 − 𝜏) 𝐸

𝑇
𝐶𝑧 (𝑡) + 2𝑧

𝑇
(𝑡 − 𝜏)

× 𝐸
𝑇
𝐴𝑔 (𝑧 (𝑡)) + 2𝑧

𝑇
(𝑡 − 𝜏) 𝐸

𝑇
𝐵𝑔 (𝑧 (𝑡 − 𝜏))

+ 𝑧
𝑇
(𝑡)𝐻𝑧 (𝑡) − 𝑧

𝑇
(𝑡 − 𝜏)𝐻𝑧 (𝑡 − 𝜏)

+ 𝑔
𝑇
(𝑧 (𝑡))𝐷𝑔 (𝑧 (𝑡))

− 𝑔
𝑇
(𝑧 (𝑡 − 𝜏))𝐷𝑔 (𝑧 (𝑡 − 𝜏)) .

(31)

We can write the following inequalities:

2𝑧
𝑇
(𝑡) 𝐴𝑔 (𝑧 (𝑡))

≤ 𝑧
𝑇
(𝑡) 𝑃𝑧 (𝑡) + 𝑔

𝑇
(𝑧 (𝑡)) 𝐴

𝑇
𝑃
−1
𝐴𝑔 (𝑧 (𝑡)) ,

2𝑧
𝑇
(𝑡) 𝐵𝑔 (𝑧 (𝑡 − 𝜏))

≤ 𝑧
𝑇
(𝑡) 𝑄𝑧 (𝑡) + 𝑔

𝑇
(𝑧 (𝑡 − 𝜏)) 𝐵

𝑇
𝑄
−1
𝐵𝑔 (𝑧 (𝑡 − 𝜏)) ,

− 2𝑧
𝑇
(𝑡 − 𝜏) 𝐸

𝑇
𝐶𝑧 (𝑡)

≤ 𝑧
𝑇
(𝑡 − 𝜏) 𝐸

𝑇
𝑅𝐸𝑧 (𝑡 − 𝜏) + 𝑧

𝑇
(𝑡) 𝐶
𝑇
𝑅
−1
𝐶𝑧 (𝑡) ,
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2𝑧
𝑇
(𝑡 − 𝜏) 𝐸

𝑇
𝐴𝑔 (𝑧 (𝑡))

≤ 𝑧
𝑇
(𝑡 − 𝜏) 𝐸

𝑇
𝑅𝐸𝑧(𝑡 − 𝜏) + 𝑔

𝑇
(𝑧 (𝑡)) 𝐴

𝑇
𝑅
−1
𝐴𝑔 (𝑧 (𝑡)) ,

2𝑧
𝑇
(𝑡 − 𝜏) 𝐸

𝑇
𝐵𝑔 (𝑧 (𝑡 − 𝜏))

≤ 𝑧
𝑇
(𝑡 − 𝜏) 𝐸

𝑇
𝑅𝐸𝑧 (𝑡 − 𝜏)

+ 𝑔
𝑇
(𝑧 (𝑡 − 𝜏)) 𝐵

𝑇
𝑅
−1
𝐵𝑔 (𝑧 (𝑡 − 𝜏)) ,

(32)

where 𝑃, 𝑄, and 𝑅 are some positive definite matrices. Using
(32) in (31) yields

𝑉 (𝑧 (𝑡)) ≤ − 𝑧
𝑇
(𝑡) 𝐶𝑧 (𝑡) − 𝑧

𝑇
(𝑡) 𝐶𝑧 (𝑡) + 𝑧

𝑇
(𝑡) 𝑃𝑧 (𝑡)

+ 𝑔
𝑇
(𝑧 (𝑡)) 𝐴

𝑇
𝑃
−1
𝐴𝑔 (𝑧 (𝑡)) + 𝑧

𝑇
(𝑡) 𝑄𝑧 (𝑡)

+ 𝑔
𝑇
(𝑧 (𝑡 − 𝜏)) 𝐵

𝑇
𝑄
−1
𝐵𝑔 (𝑧 (𝑡 − 𝜏))

+ 𝑧
𝑇
(𝑡 − 𝜏) 𝐸

𝑇
𝑅𝐸𝑧 (𝑡 − 𝜏) + 𝑧

𝑇
(𝑡) 𝐶
𝑇
𝑅
−1
𝐶𝑧 (𝑡)

+ 𝑧
𝑇
(𝑡 − 𝜏) 𝐸

𝑇
𝑅𝐸𝑧 (𝑡 − 𝜏) + 𝑔

𝑇
(𝑧 (𝑡)) 𝐴

𝑇
𝑅
−1

× 𝐴𝑔 (𝑧 (𝑡)) + 𝑧
𝑇
(𝑡 − 𝜏) 𝐸

𝑇
𝑅𝐸𝑧 (𝑡 − 𝜏)

+ 𝑔
𝑇
(𝑧 (𝑡 − 𝜏)) 𝐵

𝑇
𝑅
−1
𝐵𝑔 (𝑧 (𝑡 − 𝜏)) + 𝑧

𝑇
(𝑡)

× 𝐻𝑧 (𝑡) − 𝑧
𝑇
(𝑡 − 𝜏)𝐻𝑧 (𝑡 − 𝜏) + 𝑔

𝑇
(𝑧 (𝑡))

× 𝐷𝑔 (𝑧 (𝑡)) − 𝑔
𝑇
(𝑧 (𝑡 − 𝜏))𝐷𝑔 (𝑧 (𝑡 − 𝜏)) .

(33)

Equation (27) implies that

𝑧
𝑇
(𝑡) 𝐶𝑧 (𝑡) ≥ 𝑔

𝑇
(𝑧 (𝑡)) 𝐶L

−2
𝑔 (𝑧 (𝑡)) . (34)

Hence, we have

𝑉 (𝑧 (𝑡)) ≤ − 𝑧
𝑇
(𝑡) 𝐶𝑧 (𝑡) − 𝑔

𝑇
(𝑧 (𝑡)) 𝐶L

−2
𝑔 (𝑧 (𝑡))

+ 𝑧
𝑇
(𝑡) 𝑃𝑧 (𝑡) + 𝑔

𝑇
(𝑧 (𝑡)) 𝐴

𝑇
𝑃
−1
𝐴𝑔 (𝑧 (𝑡))

+ 𝑧
𝑇
(𝑡) 𝑄𝑧 (𝑡) + 𝑔

𝑇
(𝑧 (𝑡 − 𝜏)) 𝐵

𝑇
𝑄
−1
𝐵𝑔

× (𝑧 (𝑡 − 𝜏)) + 𝑧
𝑇
(𝑡 − 𝜏) 𝐸

𝑇
𝑅𝐸𝑧 (𝑡 − 𝜏)

+ 𝑧
𝑇
(𝑡) 𝐶
𝑇
𝑅
−1
𝐶𝑧 (𝑡) + 𝑧

𝑇
(𝑡 − 𝜏) 𝐸

𝑇

× 𝑅𝐸𝑧 (𝑡 − 𝜏) + 𝑔
𝑇
(𝑧 (𝑡)) 𝐴

𝑇
𝑅
−1
𝐴𝑔 (𝑧 (𝑡))

+ 𝑧
𝑇
(𝑡 − 𝜏) 𝐸

𝑇
𝑅𝐸𝑧 (𝑡 − 𝜏) + 𝑔

𝑇
(𝑧 (𝑡 − 𝜏))

× 𝐵
𝑇
𝑅
−1
𝐵𝑔 (𝑧 (𝑡 − 𝜏))

+ 𝑧
𝑇
(𝑡)𝐻𝑧 (𝑡) − 𝑧

𝑇
(𝑡 − 𝜏)

× 𝐻𝑧 (𝑡 − 𝜏) + 𝑔
𝑇
(𝑧 (𝑡))𝐷𝑔 (𝑧 (𝑡))

− 𝑔
𝑇
(𝑧 (𝑡 − 𝜏))𝐷𝑔 (𝑧 (𝑡 − 𝜏))

(35)

which can be written as

𝑉 (𝑧 (𝑡)) ≤ − 𝑧
𝑇
(𝑡) (𝐶 − 𝑃 − 𝑄 − 𝐻 − 𝐶

𝑇
𝑅
−1
𝐶) 𝑧 (𝑡)

− 𝑔
𝑇
(𝑧 (𝑡))

× (𝐶L
−2
− 𝐷 − 𝐴

𝑇
𝑃
−1
𝐴 − 𝐴

𝑇
𝑅
−1
𝐴)

× 𝑔 (𝑧 (𝑡)) − 𝑔
𝑇
(𝑧 (𝑡 − 𝜏))

× (𝐷 − 𝐵
𝑇
𝑄
−1
𝐵 − 𝐵
𝑇
𝑅
−1
𝐵)

× 𝑔 (𝑧 (𝑡 − 𝜏)) − 𝑧
𝑇
(𝑡 − 𝜏)

× (𝐻 − 3𝐸
𝑇
𝑅𝐸) 𝑧 (𝑡 − 𝜏)

(36)

or equivalently

𝑉 (𝑧 (𝑡)) ≤ − 𝑧
𝑇
(𝑡) Υ
1
𝑧 (𝑡) − 𝑔

𝑇
(𝑧 (𝑡)) Υ

2
𝑔 (𝑧 (𝑡))

− 𝑔
𝑇
(𝑧 (𝑡 − 𝜏)) Υ

3
𝑔 (𝑧 (𝑡 − 𝜏))

− 𝑧
𝑇
(𝑡 − 𝜏) Υ

4
𝑧 (𝑡 − 𝜏) .

(37)

Clearly, Υ
1
> 0, Υ

2
> 0, Υ

3
> 0, and Υ

4
> 0 imply that

𝑉(𝑧(𝑡)) < 0 if any of the vectors 𝑧(𝑡), 𝑔(𝑧(𝑡 − 𝜏)), 𝑔𝑇(𝑧(𝑡)),
and 𝑧(𝑡 − 𝜏) is nonzero, thus implying that 𝑉(𝑧(𝑡)) = 0 if and
only if 𝑧(𝑡) = 𝑧(𝑡−𝜏) = 𝑔(𝑧(𝑡−𝜏)) = 𝑧(𝑡−𝜏) = 0which is the
origin of system (25). On the other hand, 𝑉(𝑧(𝑡)) → ∞ as
‖𝑧(𝑡)‖

2
→ ∞, meaning that the Lyapunov functional used

for the stability analysis is radially unbounded. Thus, it can
be concluded from the standard Lyapunov theorems [34] that
the origin of system (25) or equivalently the equilibriumpoint
of system (1) is globally asymptotically stable.

We can directly state the following corollaries.

Corollary 6. For the neutral-type neural network model (25),
let ‖𝐸‖

2
< 1 and the activation functions satisfy (27). Then, the

origin of system (25) is globally asymptotically stable if there
exist some positive constants ℎ, 𝑑, 𝑝, 𝑞, and 𝑟 such that the
following conditions hold:

Υ
∗

1
= 𝐶 − (𝑝 + 𝑞 + ℎ) 𝐼 −

1

𝑟
𝐶
2
> 0,

Υ
∗

2
= 𝐶L

−2
− 𝑑𝐼 −

1

𝑝
𝐴
𝑇
𝐴 −

1

𝑟
𝐴
𝑇
𝐴 > 0,

Υ
∗

3
= 𝑑𝐼 −

1

𝑞
𝐵
𝑇
𝐵 −

1

𝑟
𝐵
𝑇
𝐵 > 0,

Υ
∗

4
= ℎ𝐼 − 3𝑟𝐸

𝑇
𝐸 > 0,

(38)

whereL = diag(ℓ
1
, ℓ
2
, . . . , ℓ

𝑛
).
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Corollary 7. For the neutral-type neural network model (25),
let ‖𝐸‖

2
< 1 and the activation functions satisfy (27). Then, the

origin of system (25) is globally asymptotically stable if there
exist some positive constants ℎ, 𝑑, 𝑝, 𝑞, and 𝑟 such that the
following conditions hold:

𝜌
1
= 𝑐
𝑚
− (𝑝 + 𝑞 + ℎ) −

1

𝑟
𝑐
2

𝑀
> 0,

𝜌
2
= 𝑐
𝑚
ℓ
−2

𝑀
− 𝑑 − (

1

𝑝
+
1

𝑟
) ‖𝐴‖

2

2
> 0,

𝜌
3
= 𝑑 − (

1

𝑞
+
1

𝑟
) ‖𝐵‖

2

2
> 0,

𝜌
4
= ℎ − 3𝑟‖𝐸‖

2

2
> 0,

(39)

where 𝑐
𝑚
= min

1≤𝑖≤𝑛
(𝑐
𝑖
), 𝑐
𝑀

= max
1≤𝑖≤𝑛

(𝑐
𝑖
), and ℓ

𝑀
=

max
1≤𝑖≤𝑛

(ℓ
𝑖
).

5. A Comparative Example

In this section, we will give a numerical example to make a
comparison between our results and some previous corre-
sponding results derived in the literature. We should point
our here that the stability results regarding the neutral-type
neural networks involve complicated relationships between
the network parameters and some positive definite matrices
to be determined, which is a difficult task to achieve. There-
fore, the example we give will show that, in a particular case,
our results seem to be equivalent to the previous correspond-
ing literature results. We now state some of the previous
results.

Theorem 8 (see [23]). For the neutral-type neural network
model (1), let ‖𝐸‖

2
< 1 and the activation functions satisfy (2).

Then, system (1) is globally asymptotically stable if there exist
some positive constants 𝑘, 𝑝, 𝑞, and 𝑟 such that the following
conditions hold:

𝛿
1
= (1 − 𝑘) 𝛾

2
− (1 +

1

𝑝
+
1

𝑞
) ‖𝐴‖

2

2
> 0,

𝛿
2
= 𝑘𝛾
2
− (1 + 𝑝 +

1

𝑟
) ‖𝐵‖

2

2
> 0,

𝛿
3
= 1 − (1 + 𝑞 + 𝑟) ‖𝐸‖

2

2
> 0,

(40)

where 𝛾 = min
1≤𝑖≤𝑛

(𝑐
𝑖
/ℓ
𝑖
).

Theorem 9 (see [22]). For the neutral-type neural network
model (1), let ‖𝐸‖

2
< 1 and the activation functions satisfy (2).

Then, system (1) is globally asymptotically stable if there exist
positive constants 𝑝, 𝑝, 𝑞, and 𝑞 such that the following
conditions hold:

𝜖 = (2 − 𝑟) 𝑐
𝑚
− (𝑝 + 𝑞) − 2𝑐

𝑚‖𝐸‖ 2 − (𝑝 + 𝑞) ‖𝐸‖
2

2
> 0,

Φ = 𝑟𝑐
𝑚
ℓ
−2

𝑀
− (

1

𝑝
+
1

𝑝
) ‖𝐴‖

2

2
− (

1

𝑞
+
1

𝑞
) ‖𝐵‖

2

2
≥ 0,

(41)

where 𝑐
𝑚
= min

1≤𝑖≤𝑛
(𝑐
𝑖
), 𝑐
𝑀

= max
1≤𝑖≤𝑛

(𝑐
𝑖
), and ℓ

𝑀
=

max
1≤𝑖≤𝑛

(ℓ
𝑖
).

Theorem 10 (see [24]). For the neutral-type neural network
model (1), let ‖𝐸‖

2
< 1 and the activation functions satisfy (2).

Then, system (1) is globally asymptotically stable if the following
condition holds:

𝛿 = 𝑐
𝑚
− ℓ
𝑀‖𝐴‖ 2 (1 + ‖𝐸‖ 2)

− ℓ
𝑀‖𝐵‖ 2 (1 + ‖𝐸‖ 2) − 𝑐𝑚‖𝐸‖ 2 > 0,

(42)

where 𝑐
𝑚
= min

1≤𝑖≤𝑛
(𝑐
𝑖
), ℓ
𝑀
= max

1≤𝑖≤𝑛
(ℓ
𝑖
).

We now consider the following example.

Example 11. Assume that the network parameters of neutral-
type neural system (1) are given as follows:

𝐴 = 𝐵 =

[
[
[

[

𝑎 𝑎 𝑎 𝑎

−𝑎 −𝑎 𝑎 𝑎

𝑎 −𝑎 𝑎 −𝑎

−𝑎 𝑎 𝑎 −𝑎

]
]
]

]

, (43)

where 𝑎 > 0 is real number. Assume that 𝑐
1
= 𝑐
2
= 𝑐
3
= 𝑐
4
= 1

and ℓ
1
= ℓ
2
= ℓ
3
= ℓ
4
= 1. We have ‖𝐴‖

2
= ‖𝐵‖

2
= 2𝑎.

For the sufficiently small values of ‖𝐸‖
2
and ℎ and

sufficiently large value of 𝑟, 𝑑 = 1/2, and𝑝 = 𝑞, the conditions
of Corollary 7 can be approximately stated as follows:

𝜌
1
≅ 1 − 2𝑝 > 0,

𝜌
2
≅
1

2
−
1

𝑝
4𝑎
2
> 0,

𝜌
3
≅
1

2
−
1

𝑝
4𝑎
2
> 0,

𝜌
4
≅ ℎ − 3𝑟‖𝐸‖

2

2
> 0.

(44)

The two required conditions for stability are 𝑝 < 1/2 and 𝑎2 <
𝑝/8, implying that 𝑎 < 1/4.

In the case ofTheorem 8, for the sufficiently small value of
‖𝐸‖
2
and sufficiently large values of 𝑟 and 𝑞, 𝑘 = 1/2, and 𝑝 =

1, the conditions ofTheorem 8 can be approximately stated as
follows:

𝛿
1
≅
1

2
− 8𝑎
2
> 0,

𝛿
2
≅
1

2
− 8𝑎
2
> 0,

𝛿
3
≅ 1 − (1 + 𝑞 + 𝑟) ‖𝐸‖

2

2
> 0.

(45)

The required condition for stability is 𝑎 < 1/4.
In the case ofTheorem 9, for the sufficiently small value of

‖𝐸‖
2
and sufficiently large values of 𝑝 and 𝑞, 𝑟 = 1, and 𝑝 = 𝑞,

the conditions of Theorem 9 can be approximately stated as
follows:

𝜖 ≅ 1 − 2𝑝 > 0,

Φ ≅ 1 −
2

𝑝
4𝑎
2
≥ 0.

(46)
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The two required conditions for stability are 𝑝 < 1/2 and 𝑎2 <
𝑝/8, implying that 𝑎 < 1/4.

In the case of Theorem 10, for a sufficiently small value
of ‖𝐸‖

2
, the condition of Theorem 10 can be approximately

stated as follows:

𝛿 ≅ 1 − 4𝑎 > 0. (47)

The required condition for stability is 𝑎 < 1/4.

6. Conclusions

In this paper, we have obtained some sufficient conditions for
the existence, uniqueness, and global asymptotic stability of
the equilibrium point for the class of neutral-type systems
with discrete time delays. The results we obtained establish
various relationships between the network parameters of the
system.Wehave also given an example to show the applicabil-
ity of our results and make a comparison between our results
and some previous corresponding results derived in the liter-
ature. Most of the literature results express the stability con-
ditions in terms of LMIs (linear matrix inequalities), which
are then solved by some software tools. Such results may
give less conservative results; however, the computational
burden of this method can be high. Our results establish less
complex relationships between the network parameters of the
system. We should also point out that the delay-independent
conditions may be more conservative than delay-dependent
ones. In our paper, our stability conditions are independent of
the time delays; this is due to the Lyapunov functional that we
have employed in the analysis of our networkmodel. In order
to apply our techniques to obtain some delay-dependent
conditions, one needs tomodify the Lyapunov functional that
we have used to include time delays in the conditions, which
probably could be the subject of another study.
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A new model of switched complex bipartite neural network (SCBNN) with infinite distributed delays and derivative coupling
is established. Using linear matrix inequality (LMI) approach, some synchronization criteria are proposed to ensure the
synchronization between two SCBNNs by constructing effective controllers. Some numerical simulations are provided to illustrate
the effectiveness of the theoretical results obtained in this paper.

1. Introduction

In recent years, neural networks have been intensively studied
due to their potential applications in many different areas
such as signal and image processing, content-addressable
memory, optimization, and parallel computation [1–3]. Bidi-
rectional associative memory (BAM) neural networks were
first proposed by Kosko in [4, 5]. This class of networks has
good applications in pattern recognition, solving optimiza-
tion problems, and automatic control engineering. A large
number of results on the dynamical behavior of BAM neural
networks have been reported [6–9].

Switched systems, as an important kind of hybrid systems,
have drawn considerable attention of researchers because of
their theoretical significance and practical applications [10–
12]. Switched systems are composed of a family of continu-
ous-time or discrete-time subsystems and a rule that specifies
the switching among them [13, 14]. Recently, the switched
neural networks, whose individual subsystems are a set of
neural networks, have found applications in the field of high
speed signal processing, artificial intelligence, and biology, so

there are many theoretical results about the switched neural
networks [15–17].

Complex networks, which are a set of interconnected
nodes with specific dynamics, have sparked the interest of
many researchers from various fields of science and engi-
neering such as the World Wide Web, electrical power grids,
global economic markets, sensor networks; for example, see
[18–20] and references therein. Bipartite networks are an
important kind of complex networks, whose nodes can be
divided into two disjoint nonempty sets such that every edge
only connects a pair of nodes, which belong to different sets.
Many real-world networks are naturally bipartite networks,
such as the papers-scientists networks [21] and producer-
consumer networks [22]. Recently, authors [23] have intro-
duced a bipartite-graph complex dynamical network model
that is only linearly coupled and has no delays. It is well
known that time delays exist commonly in real-world sys-
tems.Therefore, manymodels of coupled networks with cou-
pling delays are proposed, for example, constant single time
delay [24], time-varying delays [25], and mix-time delays
[26]. On the other hand, the coupled network often occurs
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in other forms, for example, nonlinearly coupled networks
[27] and linearly derivative coupled networks [28]. In [29],
a general model of bipartite dynamical network (BDN) with
distributed delays and nonlinear derivative coupling was
introduced. Synchronization of complex networks has been
intensively investigated since they can be applied in power
system control, secure communication, automatic control,
chemical reaction, and so on [30–32]. The study of synchro-
nization of coupled neural networks is an important step
for both understanding brain science and designing coupled
neural networks for practical use. Yu et al. [33] consider the
synchronization of switched linearly coupled neural networks
with constant delays, but the controllers are complex and
changed with the switched rule. Synchronization of two
coupled BDNs was investigated by adaptive method [29],
but the controllers are complicated and the model does not
include infinite distributed delays coupling and switching.
Extending BAM neural networks to complex networks, we
get complex bipartite dynamical networks (CBDNs). The
dynamics of individual node in CBDNs is switched system
and the switched coupling is considered; switched complex
bipartite neural network (SCBNN) can be obtained. To the
best of our knowledge, up to now, there is not any work that
discusses the synchronization problem in SCBNN.

Motivated by the previous discussion, we first proposed a
model of SCBNN, and then investigated the synchronization
between two SCBNNs with infinite distributed delays and
derivative coupling. Using adaptive controllers and linear
matrix inequality (LMI) approach, some synchronization
criteria are proposed to ensure the synchronization between
two coupled SCBNNs. In our paper, the proposed controllers
are simpler and do not change with the switched rule, which
can be realize more easily.

The paper is organized as follows. In Section 2, a model
of SCBNN with infinite distributed delays and derivative
coupling is presented, and some hypotheses and lemmas are
given too. In Section 3, several synchronization criteria on
the SCBNNs are deduced. In Section 4, numerical examples
are given to demonstrate the effectiveness of the proposed
controller design methods in Section 3. Finally, conclusions
are given in Section 5.

Notations. Throughout this paper, 𝜌max(⋅) and 𝜌min(⋅) denote
the maximum eigenvalue and minimum eigenvalue of a real
symmetric matrix, respectively. The notation ∗ denotes the
symmetric block.

2. Model Description,
Assumptions, and Lemmas

Consider a complex bipartite dynamical network (CBDN)
consisting of two disjoint nonempty node sets 𝑉

1
and 𝑉

2
.

Suppose that 𝑉
1
= {𝜇

1
, 𝜇
2
, . . . , 𝜇

𝑙
} and 𝑉

2
= {]

1
, ]
2
, . . . , ]

𝑚
},

𝑙,𝑚 are integer. The coupled network is described as follows:

̇𝑥
𝑖
(𝑡) = − 𝐷𝑥

𝑖
+ 𝑅

1
𝑓
1
(𝑥
𝑖
(𝑡)) + 𝑅

2
𝑓
2
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡))) + 𝐼

+

𝑚

∑

𝑗=1

𝑎
𝑖𝑗
𝑦
𝑗
(𝑡 − 𝜏

1
(𝑡)) +

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
𝑔 ( ̇𝑦

𝑗
(𝑡 − 𝜏

2
(𝑡)))

+

𝑚

∑

𝑗=1

𝑐
𝑖𝑗
∫

𝑡

−∞

ℎ (𝑡 − 𝑠) 𝑘 (𝑦
𝑗
(𝑠)) d𝑠,

𝑖 = 1, 2, . . . , 𝑙,

̇𝑦
𝑗
(𝑡) = − 𝐷𝑦

𝑗
+ 𝑅

1
𝑓
1
(𝑦
𝑗
(𝑡)) + 𝑅

2
𝑓
2
(𝑦
𝑗
(𝑡 − 𝜎 (𝑡))) + 𝐽

+

𝑙

∑

𝑖=1

𝑎
𝑗𝑖
𝑥
𝑖
(𝑡 − 𝜎

1
(𝑡)) +

𝑙

∑

𝑖=1

𝑏
𝑗𝑖
𝑔 ( ̇𝑥

𝑖
(𝑡 − 𝜎

2
(𝑡)))

+

𝑙

∑

𝑖=1

𝑐
𝑗𝑖
∫

𝑡

−∞

ℎ (𝑡 − 𝑠) 𝑘 (𝑥
𝑖
(𝑠)) d𝑠, 𝑗 = 1, 2, . . . , 𝑚,

(1)

where 𝑥
𝑖
(𝑡) = (𝑥

𝑖1
(𝑡), 𝑥

𝑖2
(𝑡), . . . , 𝑥

𝑖𝑛
(𝑡))
𝑇, 𝑦

𝑗
(𝑡) = (𝑦

𝑗1
(𝑡),

𝑦
𝑗2
(𝑡), . . . , 𝑦

𝑗𝑛
(𝑡))
𝑇
∈ R𝑛 denotes the state variables of nodes

𝜇
𝑖
and ]

𝑗
, respectively. 𝐷 = diag(𝑑

1
, 𝑑
2
, . . . , 𝑑

𝑛
) and 𝐷 =

diag(𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
) are diagonal matrices with 𝑑

𝑖
, 𝑑
𝑖
> 0.

𝑅
1
, 𝑅
1
∈ R𝑛×𝑛 are weight matrices, 𝑅

2
, 𝑅
2
∈ R𝑛×𝑛 are delayed

weight matrices, 𝑓
𝑘
(𝑥
𝑖
) = (𝑓

𝑘1
(𝑥
𝑖1
), 𝑓
𝑘2
(𝑥
𝑖2
), . . . , 𝑓

𝑘𝑛
(𝑥
𝑖𝑛
))
𝑇,

𝑓
𝑘
(𝑦
𝑗
) = (𝑓

𝑘1
(𝑦
𝑗1
), 𝑓
𝑘2
(𝑦
𝑗2
), . . . , 𝑓

𝑘𝑛
(𝑦
𝑗𝑛
))
𝑇
∈ R𝑛, 𝑘 = 1, 2,

𝑔( ̇𝑦
𝑗
) = (𝑔

1
( ̇𝑦
𝑗1
), 𝑔
2
( ̇𝑦
𝑗2
), . . . , 𝑔

𝑛
( ̇𝑦
𝑗𝑛
))
𝑇, 𝑔( ̇𝑥

𝑖
) = (𝑔

1
( ̇𝑥
𝑖1
),

𝑔
2
( ̇𝑥
𝑖2
), . . . , 𝑔

𝑛
( ̇𝑥
𝑖𝑛
))
𝑇, 𝑘(𝑦

𝑗
) = (𝑘

1
(𝑦
𝑗1
), 𝑘
2
(𝑦
𝑗2
), . . . , 𝑘

𝑛
(𝑦
𝑗𝑛
))
𝑇,

𝑘(𝑥
𝑖
) = (𝑘

1
(𝑥
𝑖1
), 𝑘

2
(𝑥
𝑖2
), . . . , 𝑘

𝑛
(𝑥
𝑖𝑛
))
𝑇

∈ R𝑛 corre-
sponds to the boundedness activation functions of neurons.
ℎ(𝑡) = diag(ℎ

1
(𝑡), ℎ

2
(𝑡), . . . , ℎ

𝑛
(𝑡)), ℎ(𝑡) = diag(ℎ

1
(𝑡), ℎ

2
(𝑡),

. . . , ℎ
𝑛
(𝑡)) ∈ R𝑛×𝑛 are the delay kernel functions. 𝜏(𝑡), 𝜏

1
(𝑡),

𝜏
2
(𝑡), 𝜎(𝑡), 𝜎

1
(𝑡), and 𝜎

2
(𝑡) > 0 are time delays. ∫𝑡

−∞
ℎ(𝑡 −

𝑠)𝑘(𝑦
𝑗
(𝑠))d𝑠 and ∫

𝑡

−∞
ℎ(𝑡 − 𝑠)𝑘(𝑥

𝑖
(𝑠))d𝑠 express infinite dis-

tributed delays. 𝐼 = (𝐼
1
, 𝐼
2
, . . . , 𝐼

𝑛
)
𝑇 and 𝐽 = (𝐽

1
, 𝐽
2
, . . . ,

𝐽
𝑛
)
𝑇
∈ R𝑛 are the constant external input vectors. The matrix

𝐴 = (𝑎
𝑖𝑗
)
𝑙×𝑚

is the delayed weight coupling matrix denoting
coupling strength between nodes. If there is a connection
from node 𝜇

𝑖
to ]

𝑗
, then 𝑎

𝑖𝑗
̸= 0; otherwise, 𝑎

𝑖𝑗
= 0 and

the matrix 𝐴 satisfies the sum of every row being zero. The
definitions of the other coupling matrixes 𝐵 = (𝑏

𝑖𝑗
)
𝑙×𝑚

, 𝐶 =

(𝑐
𝑖𝑗
)
𝑙×𝑚

, 𝐴 = (𝑎
𝑗𝑖
)
𝑚×𝑙

, 𝐵 = (𝑏
𝑗𝑖
)
𝑚×𝑙

, and 𝐶 = (𝑐
𝑗𝑖
)
𝑚×𝑙

are similar to that of matrix 𝐴; hence, they are omitted here.
In this paper, we consider a class of switched complex

bipartite neural network with infinite distributed delays and
derivative coupling, which is described as follows:

̇𝑥
𝑖
(𝑡) = − 𝐷

𝜆
𝑥
𝑖
+ 𝑅

𝜆1
𝑓
1
(𝑥
𝑖
(𝑡)) + 𝑅

𝜆2
𝑓
2
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡)))

+ 𝐼
𝜆
+

𝑚

∑

𝑗=1

𝑎
𝜆𝑖𝑗
𝑦
𝑗
(𝑡 − 𝜏

1
(𝑡))

+

𝑚

∑

𝑗=1

𝑏
𝜆𝑖𝑗
𝑔 ( ̇𝑦

𝑗
(𝑡 − 𝜏

2
(𝑡)))

+

𝑚

∑

𝑗=1

𝑐
𝜆𝑖𝑗
∫

𝑡

−∞

ℎ (𝑡 − 𝑠) 𝑘 (𝑦
𝑗
(𝑠)) d𝑠,

𝑖 = 1, 2, . . . , 𝑙,
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̇𝑦
𝑗
(𝑡) = − 𝐷

𝜆
𝑦
𝑗
+ 𝑅

𝜆1
𝑓
1
(𝑦
𝑗
(𝑡)) + 𝑅

𝜆2
𝑓
2
(𝑦
𝑗
(𝑡 − 𝜎 (𝑡)))

+ 𝐽
𝜆
+

𝑙

∑

𝑖=1

𝑎
𝜆𝑗𝑖
𝑥
𝑖
(𝑡 − 𝜎

1
(𝑡))

+

𝑙

∑

𝑖=1

𝑏
𝜆𝑗𝑖
𝑔 ( ̇𝑥

𝑖
(𝑡 − 𝜎

2
(𝑡)))

+

𝑙

∑

𝑖=1

𝑐
𝜆𝑗𝑖
∫

𝑡

−∞

ℎ (𝑡 − 𝑠) 𝑘 (𝑥
𝑖
(𝑠)) d𝑠, 𝑗 = 1, 2, . . . , 𝑚,

(2)

where switching signal 𝜆 is piecewise constant functions,
which is a value in the finite set ℵ = {1, 2, . . . , 𝑁}. This
means that the matrices {𝐷

𝜆
, 𝑅
𝜆1
, 𝑅
𝜆2
, 𝐴
𝜆
= (𝑎

𝜆𝑖𝑗
), 𝐵

𝜆
=

(𝑏
𝜆𝑖𝑗
), 𝐶

𝜆
= (𝑐

𝜆𝑖𝑗
), 𝐼
𝜆
, 𝐷
𝜆
, 𝑅
𝜆1
, 𝑅
𝜆2
, 𝐴
𝜆
= (𝑎

𝜆𝑗𝑖
), 𝐵

𝜆
= (𝑏

𝜆𝑗𝑖
),

and 𝐶
𝜆

= (𝑐
𝜆𝑗𝑖
), 𝐽
𝜆
} are allowed to take values at par-

ticular time, in a finite set {(𝐷
𝑟
, 𝑅
𝑟1
, 𝑅
𝑟2
, 𝐴
𝑟
, 𝐵
𝑟
, 𝐶
𝑟
, 𝐼
𝑟
,

𝐷
𝑟
, 𝑅
𝑟1
, 𝑅
𝑟2
, 𝐴
𝑟
, 𝐵
𝑟
, 𝐶
𝑟
, 𝐽
𝑟
) | 𝑟 = 1, 2, . . . , 𝑁}. We define the

function as follows:

𝜉
𝑟
(𝑡, 𝜆)

=

{{

{{

{

1, when the switched system is described
by the 𝑟th mode, that is, 𝜆 = 𝑟,

0, others.

(3)

It follows that under any switching rules ∑𝑁
𝑟=1

𝜉
𝑟
(𝑡, 𝜆) = 1.

Model (2) can be written as

̇𝑥
𝑖
(𝑡) =

𝑁

∑

𝑟=1

𝜉
𝑟
(𝑡, 𝜆)

× [

[

− 𝐷
𝑟
𝑥
𝑖
+ 𝑅

𝑟1
𝑓
1
(𝑥
𝑖
(𝑡))

+ 𝑅
𝑟2
𝑓
2
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡)))

+ 𝐼
𝑟
+

𝑚

∑

𝑗=1

𝑎
𝑟𝑖𝑗
𝑦
𝑗
(𝑡 − 𝜏

1
(𝑡))

+

𝑚

∑

𝑗=1

𝑏
𝑟𝑖𝑗
𝑔 ( ̇𝑦

𝑗
(𝑡 − 𝜏

2
(𝑡)))

+

𝑚

∑

𝑗=1

𝑐
𝑟𝑖𝑗
∫

𝑡

−∞

ℎ (𝑡 − 𝑠) 𝑘 (𝑦
𝑗
(𝑠)) d𝑠]

]

,

𝑖 = 1, 2, . . . , 𝑙,

̇𝑦
𝑗
(𝑡) =

𝑁

∑

𝑟=1

𝜉
𝑟
(𝑡, 𝜆)

× [ − 𝐷
𝑟
𝑦
𝑗
+ 𝑅

𝑟1
𝑓
1
(𝑦
𝑗
(𝑡))

+ 𝑅
𝑟2
𝑓
2
(𝑦
𝑗
(𝑡 − 𝜎 (𝑡)))

+ 𝐽
𝑟
+

𝑙

∑

𝑖=1

𝑎
𝑟𝑗𝑖
𝑥
𝑖
(𝑡 − 𝜎

1
(𝑡))

+

𝑙

∑

𝑖=1

𝑏
𝑟𝑗𝑖
𝑔 ( ̇𝑥

𝑖
(𝑡 − 𝜎

2
(𝑡)))

+

𝑙

∑

𝑖=1

𝑐
𝑟𝑗𝑖
∫

𝑡

−∞

ℎ (𝑡 − 𝑠) 𝑘 (𝑥
𝑖
(𝑠)) d𝑠] ,

𝑗 = 1, 2, . . . , 𝑚.

(4)

The response network of the drive network (4) is

̇�̂�
𝑖
(𝑡) =

𝑁

∑

𝑟=1

𝜉
𝑟
(𝑡, 𝜆)

× [

[

− 𝐷
𝑟
𝑥
𝑖
(𝑡) + 𝑅

𝑟1
𝑓
1
(𝑥
𝑖
(𝑡))

+ 𝑅
𝑟2
𝑓
2
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡)))

+ 𝐼
𝑟
+

𝑚

∑

𝑗=1

𝑎
𝑟𝑖𝑗
𝑦
𝑗
(𝑡 − 𝜏

1
(𝑡))

+

𝑚

∑

𝑗=1

𝑏
𝑟𝑖𝑗
𝑔 ( ̇�̂�

𝑗
(𝑡 − 𝜏

2
(𝑡)))

+

𝑚

∑

𝑗=1

𝑐
𝑟𝑖𝑗
∫

𝑡

−∞

ℎ (𝑡 − 𝑠) 𝑘 (𝑦
𝑗
(𝑠)) d𝑠 + 𝑢

𝑖
(𝑡)]

]

,

̇�̂�
𝑗
(𝑡) =

𝑁

∑

𝑟=1

𝜉
𝑟
(𝑡, 𝜆)

× [ − 𝐷
𝑟
𝑦
𝑗
(𝑡) + 𝑅

𝑟1
𝑓
1
(𝑦
𝑗
(𝑡))

+ 𝑅
𝑟2
𝑓
2
(𝑦
𝑗
(𝑡 − 𝜎 (𝑡)))

+ 𝐽
𝑟
+

𝑙

∑

𝑖=1

𝑎
𝑟𝑗𝑖
𝑥
𝑖
(𝑡 − 𝜎

1
(𝑡))

+

𝑙

∑

𝑖=1

𝑏
𝑟𝑗𝑖
𝑔 ( ̇�̂�

𝑖
(𝑡 − 𝜎

2
(𝑡)))

+

𝑙

∑

𝑖=1

𝑐
𝑟𝑗𝑖
∫

𝑡

−∞

ℎ (𝑡 − 𝑠) 𝑘 (𝑥
𝑖
(𝑠)) d𝑠 + V

𝑗
(𝑡)] ,

(5)

where 𝑢
𝑖
(𝑡) and V

𝑗
(𝑡) ∈ 𝑅

𝑛 are the control inputs.
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Let 𝑒
𝑖
(𝑡) = 𝑥

𝑖
(𝑡)−𝑥

𝑖
(𝑡), 𝜀

𝑗
(𝑡) = 𝑦

𝑗
(𝑡)−𝑦

𝑗
(𝑡), 𝑖 = 1, 2, . . . , 𝑙,

and 𝑗 = 1, 2, . . . , 𝑚. The error dynamical system of (4) and
(5) is given by

̇𝑒
𝑖
(𝑡) =

𝑁

∑

𝑟=1

𝜉
𝑟
(𝑡, 𝜆)

× [

[

− 𝐷
𝑟
𝑒
𝑖
(𝑡) + 𝑅

𝑟1
𝐹
1
(𝑒
𝑖
(𝑡))

+ 𝑅
𝑟2
𝐹
2
(𝑒
𝑖
(𝑡 − 𝜏 (𝑡)))

+

𝑚

∑

𝑗=1

𝑎
𝑟𝑖𝑗
𝜀
𝑗
(𝑡 − 𝜏

1
(𝑡))

+

𝑚

∑

𝑗=1

𝑏
𝑟𝑖𝑗
𝐺( ̇𝜀

𝑗
(𝑡 − 𝜏

2
(𝑡)))

+

𝑚

∑

𝑗=1

𝑐
𝑟𝑖𝑗
∫

𝑡

−∞

ℎ (𝑡 − 𝑠)𝐾 (𝜀
𝑗
(𝑠)) d𝑠 + 𝑢

𝑖
(𝑡)]

]

,

𝑖 = 1, 2, . . . , 𝑙,

̇𝜀
𝑗
(𝑡) =

𝑁

∑

𝑟=1

𝜉
𝑟
(𝑡, 𝜆)

× [ − 𝐷
𝑟
𝜀
𝑗
(𝑡) + 𝑅

𝑟1
𝐹
1
(𝜀
𝑗
(𝑡))

+ 𝑅
𝑟2
𝐹
2
(𝜀
𝑗
(𝑡 − 𝜎 (𝑡)))

+

𝑙

∑

𝑖=1

𝑎
𝑟𝑗𝑖
𝑒
𝑖
(𝑡 − 𝜎

1
(𝑡))

+

𝑙

∑

𝑖=1

𝑏
𝑟𝑗𝑖
𝐺 ( ̇𝑒

𝑖
(𝑡 − 𝜎

2
(𝑡)))

+

𝑙

∑

𝑖=1

𝑐
𝑟𝑗𝑖
∫

𝑡

−∞

ℎ (𝑡 − 𝑠)𝐾 (𝑒
𝑖
(𝑠)) d𝑠 + V

𝑗
(𝑡)] ,

𝑗 = 1, 2, . . . , 𝑚,

(6)

where

𝐹
𝑘
(𝑒
𝑖
(𝑡)) = 𝑓

𝑘
(𝑥
𝑖
(𝑡)) − 𝑓

𝑘
(𝑥
𝑖
(𝑡)) ,

𝐹
𝑘
(𝜀
𝑗
(𝑡)) = 𝑓

𝑘
(𝑦
𝑗
(𝑡)) − 𝑓

𝑘
(𝑦
𝑗
(𝑡)) , 𝑘 = 1, 2,

𝐺 ( ̇𝜀
𝑗
(𝑡)) = 𝑔 ( ̇�̂�

𝑗
(𝑡)) − 𝑔 ( ̇𝑦

𝑗
(𝑡)) ,

𝐺 ( ̇𝑒
𝑖
(𝑡)) = 𝑔 ( ̇�̂�

𝑖
(𝑡)) − 𝑔 ( ̇𝑥

𝑖
(𝑡)) ,

𝐾 (𝜀
𝑗
(𝑠)) = 𝑘 (𝑦

𝑗
(𝑠)) − 𝑘 (𝑦

𝑗
(𝑠))

= (𝐾
1
(𝜀
𝑗1
(𝑠)) , . . . , 𝐾

𝑛
(𝜀
𝑗𝑛
(𝑠)))

𝑇

,

𝐾 (𝑒
𝑖
(𝑠)) = 𝑘 (𝑥

𝑖
(𝑠)) − 𝑘 (𝑥

𝑖
(𝑠))

= (𝐾
1
(𝑒
𝑖1
(𝑠)) , . . . , 𝐾

𝑛
(𝑒
𝑖𝑛
(𝑠)))

𝑇

.

(7)

In this paper, the following assumptions and lemmas are
needed.

(𝑆
1
) There exist diagonalmatrices 𝐿−

𝑖
= diag(𝑙−

𝑖1
, 𝑙
−

𝑖2
, . . . , 𝑙

−

𝑖𝑛
)

and 𝐿+
𝑖
= diag(𝑙+

𝑖1
, 𝑙
+

𝑖2
, . . . , 𝑙

+

𝑖𝑛
), such that

𝑙
−

𝑘𝑗
≤

𝑓
𝑘𝑗
(𝑥) − 𝑓

𝑘𝑗
(𝑦)

𝑥 − 𝑦
≤ 𝑙
+

𝑘𝑗
, 𝑙

−

3𝑗
≤

𝑘
𝑗
(𝑥) − 𝑘

𝑗
(𝑦)

𝑥 − 𝑦
≤ 𝑙
+

3𝑗
,

𝑙
−

4𝑗
≤

𝑔
𝑗
(𝑥) − 𝑔

𝑗
(𝑦)

𝑥 − 𝑦
≤ 𝑙
+

4𝑗
,

(8)

∀𝑥, 𝑦 ∈ R and 𝑥 ̸=𝑦, 𝑖 = 1, 2, 3, 4, 𝑗 = 1, 2, . . . , 𝑛, and
𝑘 = 1, 2.

(𝑆
2
) There exist diagonal matrices 𝐿−

𝑖
= diag(𝑙

−

𝑖1
, 𝑙
−

𝑖2
, . . . ,

𝑙
−

𝑖𝑛
) and 𝐿+

𝑖
= diag(𝑙

+

𝑖1
, 𝑙
+

𝑖2
, . . . , 𝑙

+

𝑖𝑛
), such that

𝑙
−

𝑘𝑗
≤

𝑓
𝑘𝑗
(𝑥) − 𝑓

𝑘𝑗
(𝑦)

𝑥 − 𝑦
≤ 𝑙
+

𝑘𝑗
, 𝑙

−

3𝑗
≤

𝑘
𝑗
(𝑥) − 𝑘

𝑗
(𝑦)

𝑥 − 𝑦
≤ 𝑙
+

3𝑗
,

𝑙
−

4𝑗
≤

𝑔
𝑗
(𝑥) − 𝑔

𝑗
(𝑦)

𝑥 − 𝑦
≤ 𝑙
+

4𝑗
,

(9)

∀𝑥, 𝑦 ∈ R and 𝑥 ̸=𝑦, 𝑖 = 1, 2, 3, 4, 𝑗 = 1, 2, . . . , 𝑛, and
𝑘 = 1, 2.

(𝑆
3
) 𝜏(𝑡), 𝜏

1
(𝑡), 𝜏

2
(𝑡), 𝜎(𝑡), 𝜎

1
(𝑡), and 𝜎

2
(𝑡) are differential

functions with ̇𝜏(𝑡) < 𝜏 < 1, ̇𝜎(𝑡) < 𝜎 < 1, ̇𝜏
1
(𝑡) < 𝜏

1
<

1, ̇𝜎
1
(𝑡) < 𝜎

1
< 1, ̇𝜏

2
(𝑡) < 𝜏

2
< 1, and ̇𝜎

2
(𝑡) < 𝜎

2
< 1.

(𝑆
4
) ℎ
𝑖
(𝑡), ℎ

𝑖
(𝑡) are real-value nonnegative continuous

functions defined in [0,∞) satisfying

∫

∞

0

ℎ
𝑖
(𝑠) d𝑠 < ∞, ∫

∞

0

ℎ
𝑖
(𝑠) d𝑠 < ∞, 𝑖 = 1, 2, . . . , 𝑛.

(10)

Lemma 1 (see [34]). Given any real matrices Σ
1
, Σ
2
, and Σ

3

of appropriate dimensions and a scalar 𝜀 > 0 such that 0 <

Σ
3
= Σ

𝑇

3
, then the following inequality holds:

Σ
𝑇

1
Σ
2
+ Σ

𝑇

2
Σ
1
≤ 𝜀Σ

𝑇

1
Σ
3
Σ
1
+ 𝜀
−1
Σ
𝑇

2
Σ
−1

3
Σ
2
. (11)

Lemma 2 (see [35]). Given a positive definite matrix 𝑃 ∈

R𝑛×𝑛and a symmetric matrix 𝑄 ∈ R𝑛×𝑛, then

𝜌min (𝑃
−1
𝑄)𝑥

𝑇
𝑃𝑥 ≤ 𝑥

𝑇
𝑄𝑥 ≤ 𝜌max (𝑃

−1
𝑄)𝑥

𝑇
𝑃𝑥,

∀𝑥 ∈ R𝑛.
(12)
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Lemma 3 (Schur complement). Given constant symmetric
matrices Σ

1
, Σ
2
, and Σ

3
, where Σ

1
= Σ

𝑇

1
and 0 < Σ

2
= Σ

𝑇

2
,

then Σ
1
+ Σ

𝑇

3
Σ
−1

2
Σ
3
< 0 if and only if

(
Σ
1

Σ
𝑇

3

Σ
3
−Σ
2

) < 0 𝑜𝑟 (
−Σ
2
Σ
3

Σ
𝑇

3
Σ
1

) < 0. (13)

For convenience, let

𝐿
𝑖
= diag (max {𝑙

−

𝑖1

 ,
𝑙
+

𝑖1

} ,

max {𝑙
−

𝑖2

 ,
𝑙
+

𝑖2

} , . . . ,max {𝑙
−

𝑖𝑛

 ,
𝑙
+

𝑖𝑛

}) ,

𝑖 = 1, 2, 3, 4,

𝐿
𝑖
= diag (max {


𝑙
−

𝑖1


,

𝑙
+

𝑖1


} ,

max {

𝑙
−

𝑖2


,

𝑙
+

𝑖2


} , . . . ,max {


𝑙
−

𝑖𝑛


,

𝑙
+

𝑖𝑛


}) ,

𝑖 = 1, 2, 3, 4,

𝐻 = diag(∫
∞

0

ℎ
1
(V) dV, ∫

∞

0

ℎ
2
(V) dV, . . . , ∫

∞

0

ℎ
𝑛
(V) dV) ,

𝐻 = diag(∫
∞

0

ℎ
1
(V) dV, ∫

∞

0

ℎ
2
(V) dV, . . . , ∫

∞

0

ℎ
𝑛
(V) dV) .

(14)

3. Main Results

Theorem 4. Under assumptions (𝑆
1
)–(𝑆

4
), the two coupled

SCBNNs (4) and (5) can be synchronized, if there exist positive
constants, 𝛼, 𝛽, 𝑝, 𝑝, 𝛾

𝑖
, 𝜂
𝑗
(𝑖 = 1, 2, . . . , 𝑙, 𝑗 = 1, 2, . . . , 𝑚),

𝑛 × 𝑛 positive matrices 𝑃, 𝑄, 𝑈, 𝑃, 𝑄, 𝑈 and 𝑛 × 𝑛

diagonal positive matrices 𝑊 = diag(𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
), 𝑊 =

diag(𝑤
1
, 𝑤

2
, . . . , 𝑤

𝑛
), 𝑀

𝑖
,𝑀
𝑖
(𝑖 = 1, 2, 3) such that

[
[
[
[
[
[

[

𝑍𝑟𝑖 𝑃𝑅𝑟1 𝑃𝑅𝑟2 (

𝑚

∑

𝑗=1

𝑎
2

𝑟𝑖𝑗
)

1/2

𝑃 (

𝑚

∑

𝑗=1

𝑏
2

𝑟𝑖𝑗
)

1/2

𝑃 (𝑙

𝑚

∑

𝑗=1

𝑐
2

𝑟𝑖𝑗
)

1/2

𝑃

∗ −𝑀1 0 0 0 0

∗ ∗ −𝑀2 0 0 0

∗ ∗ ∗ −𝑀3 0 0

∗ ∗ ∗ ∗ −𝐼𝑛 0

∗ ∗ ∗ ∗ ∗ −𝑊

]
]
]
]
]
]

]

< 0,

(15)

[
[
[
[
[
[
[

[

𝑍𝑟𝑗 𝑃𝑅𝑟1 𝑃𝑅𝑟2 (

𝑙

∑

𝑖=1

𝑎
2

𝑟𝑗𝑖
)

1/2

𝑃 (

𝑙

∑

𝑖=1

𝑏
2

𝑟𝑗𝑖
)

1/2

𝑃 (𝑚

𝑙

∑

𝑖=1

𝑐
2

𝑟𝑗𝑖
)

1/2

𝑃

∗ −𝑀1 0 0 0 0

∗ ∗ −𝑀2 0 0 0

∗ ∗ ∗ −𝑀3 0 0

∗ ∗ ∗ ∗ −𝐼𝑛 0

∗ ∗ ∗ ∗ ∗ −𝑊

]
]
]
]
]
]
]

]

< 0,

(16)

𝑚

1 − 𝜎
2

− 2𝛼𝑝 ≤ 0, 𝑃 ≥ 𝑝𝐼
𝑛
, 𝑃 ≥ 𝑝𝐼

𝑛
,

𝑙

1 − 𝜏
2

− 2𝛽𝑝 ≤ 0,

(17)

𝐿
2
𝑀
2
𝐿
2
− (1 − 𝜏)𝑄 ≤ 0, 𝑀

3
− (1 − 𝜏

1
) 𝑈 ≤ 0, (18)

𝐿
2
𝑀
2
𝐿
2
− (1 − 𝜎)𝑄 ≤ 0, 𝑀

3
− (1 − 𝜎

1
) 𝑈 ≤ 0, (19)

and the adaptive feedback controllers are designed as

𝑢
𝑖
(𝑡) = − [𝛾

𝑖
+ 𝛼
𝑖
(𝑡)] 𝑒

𝑖
(𝑡) ,

V
𝑗
(𝑡) = − [𝜂

𝑗
+ 𝛽
𝑗
(𝑡)] 𝜀

𝑗
(𝑡) ,

𝛼
𝑖
(𝑡) =

{{{{

{{{{

{


𝐺 ( ̇𝑒

𝑖
(𝑡))



2

𝑒𝑖 (𝑡)


2
𝛼,

𝑒𝑖 (𝑡)


2

̸= 0,

0,
𝑒𝑖 (𝑡)



2

= 0,

𝛽
𝑗
(𝑡) =

{{{{{

{{{{{

{


𝐺 ( ̇𝜀

𝑗
(𝑡))



2


𝜀
𝑗
(𝑡)


2
𝛽,


𝜀
𝑗
(𝑡)


2

̸= 0,

0,

𝜀
𝑗
(𝑡)


2

= 0,

(20)

where𝑍
𝑟𝑖
= −2𝑃𝐷

𝑟
+𝐿
3
𝐻𝑊𝐻𝐿

3
+𝐿
1
𝑀
1
𝐿
1
+𝑚𝑈−2𝛾

𝑖
𝑃+𝑄,

𝑍
𝑟𝑗
= −2𝑃𝐷

𝑟
+𝐿
3
𝐻𝑊𝐻𝐿

3
+𝐿
1
𝑀
1
𝐿
1
+ 𝑙𝑈+𝑄−2𝜂

𝑗
𝑃, 𝑟 ∈ ℵ,

𝑖 = 1, 2, . . . , 𝑙, and 𝑗 = 1, 2, . . . , 𝑚.

Proof. For the error dynamical system (6), we design the
following Lyapunov-Krasovskii function:

𝑉 (𝑡) = 𝑉
1
(𝐸 (𝑡)) + 𝑉

2
(𝐸 (𝑡)) , (21)

where 𝐸(𝑡) = (𝑒
𝑇

1
(𝑡), 𝑒

𝑇

2
(𝑡), . . . , 𝑒

𝑇

𝑙
(𝑡), 𝜀

𝑇

1
(𝑡), 𝜀

𝑇

2
(𝑡), . . . , 𝜀

𝑇

𝑚
(𝑡))
𝑇
,

𝑉
1
=

𝑙

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝑃𝑒

𝑖
(𝑡) +

𝑙

∑

𝑖=1

∫

𝑡

𝑡−𝜏(𝑡)

𝑒
𝑇

𝑖
(𝑠) 𝑄𝑒

𝑖
(𝑠) d𝑠

+

𝑚

∑

𝑗=1

𝑛

∑

𝑖=1

𝑤
𝑖
∫

∞

0

ℎ
𝑖
(V) dV∫

∞

0

ℎ
𝑖
(𝜃)

× ∫

𝑡

𝑡−𝜃

𝐾
2

𝑖
(𝜀
𝑗𝑖
(𝑠)) d𝑠 d𝜃

+ 𝑙

𝑚

∑

𝑗=1

∫

𝑡

𝑡−𝜏1(𝑡)

𝜀
𝑇

𝑗
(𝑠) 𝑈𝜀

𝑗
(𝑠) d𝑠

+
𝑙

1 − 𝜏
2

𝑚

∑

𝑗=1

∫

𝑡

𝑡−𝜏2(𝑡)

𝐺
𝑇
( ̇𝜀
𝑗
(𝑠)) 𝐺 ( ̇𝜀

𝑗
(𝑠)) d𝑠,

(22)
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𝑉
2
=

𝑚

∑

𝑗=1

𝜀
𝑇

𝑗
(𝑡) 𝑃𝜀

𝑗
(𝑡) +

𝑚

∑

𝑗=1

∫

𝑡

𝑡−𝜇(𝑡)

𝜀
𝑇

𝑗
(𝑠) 𝑄𝜀

𝑗
(𝑠) d𝑠

+

𝑙

∑

𝑖=1

𝑛

∑

𝑗=1

𝑤
𝑗
∫

∞

0

ℎ
𝑗
(V) dV∫

∞

0

ℎ
𝑗
(𝜃)

× ∫

𝑡

𝑡−𝜃

𝐾
𝑗
(𝑒
𝑖𝑗
(𝑠)) d𝑠 d𝜃

+ 𝑚

𝑙

∑

𝑖=1

∫

𝑡

𝑡−𝜇1(𝑡)

𝑒
𝑇

𝑖
(𝑠) 𝑈𝑒

𝑖
(𝑠) d𝑠

+
𝑚

1 − 𝜎
2

𝑙

∑

𝑖=1

∫

𝑡

𝑡−𝜇2(𝑡)

𝐺
𝑇

( ̇𝑒
𝑖
(𝑠)) 𝐺 ( ̇𝑒

𝑖
(𝑠)) d𝑠.

(23)

Calculating the derivative of (22) along the trajectories of (6),
we have

𝑉
1
=

𝑁

∑

𝑟=1

𝜉
𝑟
(𝑡, 𝜆)

×

{

{

{

𝑙

∑

𝑖=1

2𝑒
𝑇

𝑖
(𝑡) 𝑃

× [ − 𝐷
𝑟
𝑒
𝑖
(𝑡) + 𝑅

𝑟1
𝐹
1
(𝑒
𝑖
(𝑡))

+ 𝑅
𝑟2
𝐹
2
(𝑒
𝑖
(𝑡 − 𝜏 (𝑡)))

+

𝑚

∑

𝑗=1

𝑎
𝑟𝑖𝑗
𝜀
𝑗
(𝑡 − 𝜏

1
(𝑡))

+

𝑚

∑

𝑗=1

𝑏
𝑟𝑖𝑗
𝐺( ̇𝜀

𝑗
(𝑡 − 𝜏

2
(𝑡))) +

𝑚

∑

𝑗=1

𝑐
𝑟𝑖𝑗

×∫

𝑡

−∞

ℎ (𝑡 − 𝑠)𝐾 (𝜀
𝑗
(𝑠)) 𝑑𝑠 + 𝑢

𝑖
(𝑡)]

+

𝑙

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝑄𝑒

𝑖
(𝑡) − (1 − ̇𝜏 (𝑡))

×

𝑙

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡 − 𝜏 (𝑡)) 𝑄𝑒

𝑖
(𝑡 − 𝜏 (𝑡))

+

𝑚

∑

𝑗=1

𝑛

∑

𝑖=1

𝑤
𝑖
(𝐾
𝑖
(𝜀
𝑗𝑖
(𝑡)) ∫

∞

0

ℎ
𝑖
(V) 𝑑V)

2

−

𝑚

∑

𝑗=1

𝑛

∑

𝑖=1

𝑤
𝑖
∫

∞

0

ℎ
𝑖
(V) 𝑑V

× ∫

∞

0

ℎ
𝑖
(𝜃)𝐾

2

𝑖
(𝜀
𝑗𝑖
(𝑡 − 𝜃)) 𝑑𝜃

+ 𝑙

𝑚

∑

𝑗=1

𝜀
𝑇

𝑗
(𝑠) 𝑈𝜀

𝑗
(𝑠) − (1 − ̇𝜏

1
(𝑡)) 𝑙

×

𝑚

∑

𝑗=1

𝜀
𝑇

𝑗
(𝑡 − 𝜏

1
(𝑡)) 𝑈𝜀

𝑗
(𝑡 − 𝜏

1
(𝑡))

+
𝑙

1 − 𝜏
2

𝑚

∑

𝑗=1

𝐺
𝑇
( ̇𝜀
𝑗
(𝑡)) 𝐺 ( ̇𝜀

𝑗
(𝑡))

−
1 − ̇𝜏

2
(𝑡)

1 − 𝜏
2

𝑙

×

𝑚

∑

𝑗=1

𝐺
𝑇
( ̇𝜀
𝑗
(𝑡 − 𝜏

2
(𝑡))) 𝐺 ( ̇𝜀

𝑗
(𝑡 − 𝜏

2
(𝑡)))

}

}

}

.

(24)

By Lemma 1, we can get from (𝑆
1
)

2𝑒
𝑇

𝑖
(𝑡) 𝑃𝑅

𝑟1
𝐹
1
(𝑒
𝑖
(𝑡))

≤ 𝑒
𝑇

𝑖
(𝑡) 𝑃𝑅

𝑟1
𝑀
−1

1
𝑅
𝑇

𝑟1
𝑃𝑒
𝑖
(𝑡)

+ 𝐹
𝑇

1
(𝑒
𝑖
(𝑡))𝑀

1
𝐹
1
(𝑒
𝑖
(𝑡))

≤ 𝑒
𝑇

𝑖
(𝑡) (𝑃𝑅

𝑟1
𝑀
−1

1
𝑅
𝑇

𝑟1
𝑃 + 𝐿

1
𝑀
1
𝐿
1
) 𝑒
𝑖
(𝑡) ,

2𝑒
𝑇

𝑖
(𝑡) 𝑃𝑅

𝑟2
𝐹
2
(𝑒
𝑖
(𝑡 − 𝜏 (𝑡)))

≤ 𝑒
𝑇

𝑖
(𝑡) 𝑃𝑅

𝑟2
𝑀
−1

2
𝑅
𝑇

𝑟2
𝑃𝑒
𝑖
(𝑡)

+ 𝐹
𝑇

2
(𝑒
𝑖
(𝑡 − 𝜏 (𝑡)))𝑀

2
𝐹
2
(𝑒
𝑖
(𝑡 − 𝜏 (𝑡)))

≤ 𝑒
𝑇

𝑖
(𝑡) 𝑃𝑅

𝑟2
𝑀
−1

2
𝑅
𝑇

𝑟2
𝑃𝑒
𝑖
(𝑡)

+ 𝑒
𝑇

𝑖
(𝑡 − 𝜏 (𝑡)) 𝐿

2
𝑀
2
𝐿
2
𝑒
𝑖
(𝑡 − 𝜏 (𝑡)) ,

2𝑎
𝑟𝑖𝑗
𝑒
𝑇

𝑖
(𝑡) 𝑃𝜀

𝑗
(𝑡 − 𝜏

1
(𝑡))

≤ 𝑎
2

𝑟𝑖𝑗
𝑒
𝑇

𝑖
(𝑡) 𝑃𝑀

−1

3
𝑃𝑒
𝑖
(𝑡)

+ 𝜀
𝑇

𝑗
(𝑡 − 𝜏

1
(𝑡))𝑀

3
𝜀
𝑇

𝑗
(𝑡 − 𝜏

1
(𝑡)) .

(25)

By assumptions (𝑆
1
) and (𝑆

4
), it is obvious that

𝑚

∑

𝑗=1

𝑛

∑

𝑖=1

𝑤
𝑖
(𝐾
𝑖
(𝜀
𝑗𝑖
(𝑡)) ∫

∞

0

ℎ
𝑖
(V) dV)

2

=

𝑚

∑

𝑗=1

𝐾
𝑇
(𝜀
𝑗
(𝑡))𝐻𝑊𝐻𝐾(𝜀

𝑗
(𝑡))

≤

𝑚

∑

𝑗=1

𝜀
𝑇

𝑗
(𝑡) 𝐿

3
𝐻𝑊𝐻𝐿

3
𝜀
𝑗
(𝑡) ,

(26)

2

𝑙

∑

𝑖=1

𝑐
𝑟𝑖𝑗
𝑒
𝑇

𝑖
(𝑡) 𝑃∫

𝑡

−∞

ℎ (𝑡 − 𝑠)𝐾 (𝜀
𝑗
(𝑠)) d𝑠

≤ 𝑙

𝑙

∑

𝑖=1

𝑐
2

𝑟𝑖𝑗
𝑒
𝑇

𝑖
(𝑡) 𝑃𝑊

−1
𝑃𝑒
𝑖
(𝑡)

+
1

𝑙

𝑙

∑

𝑖=1

(∫

𝑡

−∞

ℎ (𝑡 − 𝑠)𝐾 (𝜀
𝑗
(𝑠)) d𝑠)

𝑇
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×𝑊∫

𝑡

−∞

ℎ (𝑡 − 𝑠)𝐾 (𝜀
𝑗
(𝑠)) d𝑠

= 𝑙

𝑙

∑

𝑖=1

𝑐
2

𝑟𝑖𝑗
𝑒
𝑇

𝑖
(𝑡) 𝑃𝑊

−1
𝑃𝑒
𝑖
(𝑡)

+ (∫

𝑡

−∞

ℎ (𝑡 − 𝑠)𝐾 (𝜀
𝑗
(𝑠)) d𝑠)

𝑇

×𝑊∫

𝑡

−∞

ℎ (𝑡 − 𝑠)𝐾 (𝜀
𝑗
(𝑠)) d𝑠.

(27)

Observe that

−
𝑙 (1 − ̇𝜏

2
(𝑡))

1 − 𝜏
2

𝑚

∑

𝑗=1

𝐺
𝑇
( ̇𝜀
𝑗
(𝑡 − 𝜏

2
(𝑡))) 𝐺 ( ̇𝜀

𝑗
(𝑡 − 𝜏

2
(𝑡)))

+ 2

𝑙

∑

𝑖=1

𝑚

∑

𝑗=1

𝑒
𝑇

𝑖
(𝑡) 𝑃𝑏

𝑟𝑖𝑗
𝐺( ̇𝜀

𝑗
(𝑡 − 𝜏

2
(𝑡)))

≤ −

𝑙

∑

𝑖=1

𝑚

∑

𝑗=1

𝐺
𝑇
( ̇𝜀
𝑗
(𝑡 − 𝜏

2
(𝑡))) 𝐺 ( ̇𝜀

𝑗
(𝑡 − 𝜏

2
(𝑡)))

+ 2

𝑙

∑

𝑖=1

𝑚

∑

𝑗=1

𝑒
𝑇

𝑖
(𝑡) 𝑃𝑏

𝑟𝑖𝑗
𝐺( ̇𝜀

𝑗
(𝑡 − 𝜏

2
(𝑡)))

= −

𝑙

∑

𝑖=1

𝑚

∑

𝑗=1

(𝑏
𝑟𝑖𝑗
𝑃𝑒
𝑖
(𝑡) − 𝐺 ( ̇𝜀

𝑗
(𝑡 − 𝜏

2
(𝑡))))

𝑇

× (𝑏
𝑟𝑖𝑗
𝑃𝑒
𝑖
(𝑡) − 𝐺 ( ̇𝜀

𝑗
(𝑡 − 𝜏

2
(𝑡))))

+

𝑙

∑

𝑖=1

𝑚

∑

𝑗=1

𝑏
2

𝑟𝑖𝑗
𝑒
𝑇

𝑖
(𝑡) 𝑃

2
𝑒
𝑖
(𝑡) ,

≤

𝑙

∑

𝑖=1

𝑚

∑

𝑗=1

𝑏
2

𝑟𝑖𝑗
𝑒
𝑇

𝑖
(𝑡) 𝑃

2
𝑒
𝑖
(𝑡) .

(28)

Using inequality

∫

∞

0

𝑓
2
(𝑠) d𝑠 ∫

∞

0

𝑔
2
(𝑠) d𝑠 ≥ (∫

∞

0

𝑓 (𝑠) 𝑔 (𝑠) d𝑠)
2

, (29)

we have
𝑛

∑

𝑖=1

𝑤
𝑖
∫

∞

0

ℎ
𝑖
(V) dV∫

∞

0

ℎ
𝑖
(𝜃)𝐾

2

𝑖
(𝜀
𝑗𝑖
(𝑡 − 𝜃)) d𝜃

≥

𝑛

∑

𝑖=1

𝑤
𝑖
(∫

∞

0

ℎ
𝑖
(𝜃)𝐾

𝑖
(𝜀
𝑗𝑖
(𝑡 − 𝜃)) d𝜃)

2

= (∫

𝑡

−∞

ℎ (𝑡 − 𝑠)𝐾 (𝜀
𝑗
(𝑠)) d𝑠)

𝑇

×𝑊∫

𝑡

−∞

ℎ (𝑡 − 𝑠)𝐾 (𝜀
𝑗
(𝑠)) d𝑠.

(30)

Using Lemma 2 and condition (17), we get

−𝑒
𝑇
(𝑡) 𝑃


𝐺 ( ̇𝑒

𝑖
(𝑡))



2

𝑒𝑖 (𝑡)


2
𝑒 (𝑡) ≤ −𝑝𝐺

𝑇

( ̇𝑒
𝑖
(𝑡)) 𝐺 ( ̇𝑒

𝑖
(𝑡)) . (31)

Substituting (20) into (24) and combining (24)–(31), it can be
derived by condition (18) that

𝑉
1
≤

𝑁

∑

𝑟=1

𝜉
𝑟
(𝑡, 𝜆)

× {

𝑙

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) Ω

𝑟𝑖
𝑒
𝑖
(𝑡)

+

𝑙

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡 − 𝜏 (𝑡)) [𝐿

2
𝑀
2
𝐿
2
− (1 − 𝜏)𝑄]

× 𝑒
𝑖
(𝑡 − 𝜏 (𝑡))

+

𝑚

∑

𝑗=1

𝜀
𝑇

𝑗
(𝑠) (𝑙𝑈 + 𝐿

3
𝐻𝑊𝐻𝐿

3
) 𝜀
𝑗
(𝑠)

+

𝑚

∑

𝑗=1

𝜀
𝑇

𝑗
(𝑡 − 𝜏

1
(𝑡)) [𝑙𝑀

3
− 𝑙 (1 − 𝜏

1
) 𝑈]

× 𝜀
𝑗
(𝑡 − 𝜏

1
(𝑡))

+
𝑙

1 − 𝜏
2

𝑚

∑

𝑗=1

𝐺
𝑇
( ̇𝜀
𝑗
(𝑡)) 𝐺 ( ̇𝜀

𝑗
(𝑡))

− 2𝛼𝑝

𝑙

∑

𝑖=1

𝐺
𝑇

( ̇𝑒
𝑖
(𝑡)) 𝐺 ( ̇𝑒

𝑖
(𝑡))}

≤

𝑁

∑

𝑟=1

𝜉
𝑟
(𝑡, 𝜆)

× {

𝑙

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) Ω

𝑟𝑖
𝑒
𝑖
(𝑡)

+

𝑚

∑

𝑗=1

𝜀
𝑇

𝑗
(𝑡) (𝑙𝑈 + 𝐿

3
𝐻𝑊𝐻𝐿

3
) 𝜀
𝑗
(𝑡)

+
𝑙

1 − 𝜏
2

𝑚

∑

𝑗=1

𝐺
𝑇
( ̇𝜀
𝑗
(𝑡)) 𝐺 ( ̇𝜀

𝑗
(𝑡))

− 2𝛼𝑝

𝑙

∑

𝑖=1

𝐺
𝑇

( ̇𝑒
𝑖
(𝑡)) 𝐺 ( ̇𝑒

𝑖
(𝑡))} ,

(32)

where Ω
𝑖

= −2𝑃𝐷
𝑟
+ 𝑃𝑅

𝑟1
𝑀
−1

1
𝑅
𝑇

𝑟1
𝑃 + 𝐿

1
𝑀
1
𝐿
1
+

𝑃𝑅
𝑟2
𝑀
−1

2
𝑅
𝑇

𝑟2
𝑃 + ∑

𝑚

𝑗=1
𝑎
2

𝑟𝑖𝑗
𝑃𝑀

−1

3
𝑃 + ∑

𝑚

𝑗=1
𝑏
2

𝑟𝑖𝑗
𝑃
2

+

𝑙∑
𝑚

𝑗=1
𝑐
2

𝑟𝑖𝑗
𝑃𝑊

−1
𝑃 − 2𝛾

𝑖
𝑃 + 𝑄.
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Meanwhile, by a similar process, the following inequality
can be true:

𝑉
2
≤

𝑁

∑

𝑟=1

𝜉
𝑟
(𝑡, 𝜆)

×

{

{

{

𝑚

∑

𝑗=1

𝜀
𝑇

𝑗
(𝑡) Ω

𝑟𝑗
𝜀
𝑗
(𝑡)

+

𝑙

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) (𝑚𝑈 + 𝐿

3
𝐻𝑊𝐻𝐿

3
) 𝑒
𝑖
(𝑡)

+
𝑚

1 − 𝜎
2

𝑙

∑

𝑖=1

𝐺
𝑇

( ̇𝑒
𝑖
(𝑡)) 𝐺 ( ̇𝑒

𝑖
(𝑡))

− 2𝛽𝑝

𝑚

∑

𝑗=1

𝐺
𝑇
( ̇𝜀
𝑗
(𝑡)) 𝐺 ( ̇𝜀

𝑗
(𝑡))

}

}

}

,

(33)

where Ω
𝑗

= −2𝑃𝐷
𝑟
+ 𝑃𝑅

𝑟1
𝑀
−1

1
𝑅
𝑇

𝑟1
𝑃 + 𝐿

1
𝑀
1
𝐿
1
+

𝑃𝑅
𝑟2
𝑀
−1

2
𝑅
𝑇

𝑟2
𝑃 + ∑

𝑙

𝑖=1
𝑎
2

𝑟𝑖𝑗
𝑃𝑀

−1

3
𝑃 + ∑

𝑙

𝑖=1
𝑏
2

𝑟𝑗𝑖
𝑃
2

+

𝑚∑
𝑙

𝑖=1
𝑐
2

𝑟𝑗𝑖
𝑃𝑊

−1

𝑃 − 2𝜂
𝑗
𝑃 + 𝑄.

By condition (17), we have

𝑉 ≤

𝑁

∑

𝑟=1

𝜉
𝑟
(𝑡, 𝜆)

× [

[

𝑙

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) (Ω

𝑟𝑖
+ 𝑚𝑈 + 𝐿

3
𝐻𝑊𝐻𝐿

3
) 𝑒
𝑖
(𝑡)

+

𝑚

∑

𝑗=1

𝜀
𝑇

𝑗
(𝑡) (Ω

𝑟𝑗
+ 𝑙𝑈 + 𝐿

3
𝐻𝑊𝐻𝐿

3
) 𝜀
𝑗
(𝑡)]

]

.

(34)

By (15)-(16) and Lemma 3 (Schur complement), it can be
obtained that Ω

𝑟𝑖
+ 𝑚𝑈 + 𝐿

3
𝐻𝑊𝐻𝐿

3
< 0, Ω

𝑟𝑗
+ 𝑙𝑈 +

𝐿
3
𝐻𝑊𝐻𝐿

3
< 0. Set 𝜌 = min{𝜌

1
, 𝜌
2
}, where

𝜌
1
= −min {𝜌min (Ω𝑟𝑖 + 𝑚𝑈 + 𝐿

3
𝐻𝑊𝐻𝐿

3
) ,

𝑟 ∈ ℵ, 1 ≤ 𝑖 ≤ 𝑙} ,

𝜌
2
= −min {𝜌min (Ω𝑟𝑗 + 𝑙𝑈 + 𝐿

3
𝐻𝑊𝐻𝐿

3
) ,

𝑟 ∈ ℵ, 1 ≤ 𝑗 ≤ 𝑚} ,

(35)

then 𝜌 > 0, and

𝑉 ≤ −𝜌
1

𝑙

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝑒

𝑖
(𝑡) − 𝜌

2

𝑚

∑

𝑗=1

𝜀
𝑇

𝑗
(𝑡) 𝜀

𝑗
(𝑡)

≤ −𝜌𝐸
𝑇
(𝑡) 𝐸 (𝑡) .

(36)

Therefore, 𝑉 is nonincreasing in 𝑡 ≥ 0. One has 𝑉 bounded
since 0 ≤ 𝑉(𝑡, 𝐸(𝑡)) ≤ 𝑉(0, 𝐸(0)), so lim

𝑡→+∞
𝑉(𝑡, 𝐸(𝑡)) exists

and

lim
𝑡→+∞

∫

𝑡

0

𝐸
𝑇
(𝑠) 𝐸 (𝑠) d𝑠

≤ −
1

𝜌
lim
𝑡→+∞

∫

𝑡

0

d𝑉
d𝑠

d𝑠

=
1

𝜌
𝑉 (0, 𝐸 (0)) −

1

𝜌
lim
𝑡→+∞

𝑉 (𝑡, 𝐸 (𝑡)) .

(37)

From (22)-(23) and conditions 𝑃 ≥ 𝑝𝐼, 𝑃 ≥ 𝑝𝐼 and we have
0 ≤ 𝐸

𝑇
(𝑡)𝐸(𝑡) ≤ max{1/𝑝, 1/ 𝑝}𝑉(𝑡, 𝐸(𝑡)), so 𝐸

𝑇
(𝑡)𝐸(𝑡) is

bounded. According to error system (6), (d/d𝑡)𝐸𝑇(𝑡)𝐸(𝑡) =
2𝐸
𝑇
(𝑡) ̇𝐸(𝑡) is bounded for 𝑡 ≥ 0 due to the boundedness of

activation functions. From the above we can see that 𝐸(𝑡) ∈
𝐿
2
∩𝐿
∞ and (d/d𝑡)𝐸𝑇(𝑡)𝐸(𝑡) ∈ 𝐿∞. By using Barbǎlat lemma

(see [36]), one has lim
𝑡→+∞

𝐸
𝑇
(𝑡)𝐸(𝑡) = 0, so the two SBNNs

(4) and (5) can obtain synchronization under the controllers
(20). This completes the proof.

We take CBDN (1) as drive network. The response net-
work of the drive network (1) is

̇�̂�
𝑖
(𝑡) = − 𝐷𝑥

𝑖
(𝑡) + 𝑅

1
𝑓
1
(𝑥
𝑖
(𝑡)) + 𝑅

2
𝑓
2
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡)))

+ 𝐼 (𝑡) +

𝑚

∑

𝑗=1

𝑎
𝑖𝑗
𝑦
𝑗
(𝑡 − 𝜏

1
(𝑡))

+

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
𝑔 ( ̇�̂�

𝑗
(𝑡 − 𝜏

2
(𝑡)))

+

𝑚

∑

𝑗=1

𝑐
𝑖𝑗
∫

𝑡

−∞

ℎ (𝑡 − 𝑠) 𝑘 (𝑦
𝑗
(𝑠)) d𝑠 + 𝑢

𝑖
(𝑡) ,

̇�̂�
𝑗
(𝑡) = − 𝐷𝑦

𝑗
(𝑡) + 𝑅

1
𝑓
1
(𝑦
𝑗
(𝑡)) + 𝑅

2
𝑓
2
(𝑦
𝑗
(𝑡 − 𝜎 (𝑡)))

+ 𝐽 (𝑡) +

𝑙

∑

𝑖=1

𝑎
𝑗𝑖
𝑥
𝑖
(𝑡 − 𝜎

1
(𝑡))

+

𝑙

∑

𝑖=1

𝑏
𝑗𝑖
𝑔 ( ̇�̂�

𝑖
(𝑡 − 𝜎

2
(𝑡)))

+

𝑙

∑

𝑖=1

𝑐
𝑗𝑖
∫

𝑡

−∞

ℎ (𝑡 − 𝑠) 𝑘 (𝑥
𝑖
(𝑠)) d𝑠 + V

𝑗
(𝑡) ,

(38)

where 𝑢
𝑖
(𝑡), V

𝑗
(𝑡) ∈ 𝑅

𝑛 are the control inputs.
FromTheorem 4, we can get the following corollary.
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Corollary 5. Under assumptions (𝑆
1
)–(𝑆

4
), the two coupled

CBDNs (1) and (38) can be synchronized, if there exist positive
constants 𝛼, 𝛽, 𝑝, 𝑝, 𝛾

𝑖
, 𝜂
𝑗
(𝑖 = 1, 2, . . . , 𝑙, 𝑗 = 1, 2, . . . , 𝑚),

𝑛 × 𝑛 positive matrices 𝑃, 𝑄, 𝑈, 𝑃, 𝑄, 𝑈 and 𝑛 × 𝑛

diagonal positive matrices 𝑊 = diag(𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
), 𝑊 =

diag(𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
),𝑀

𝑖
,𝑀

𝑖
(𝑖 = 1, 2, 3) such that

[
[
[
[
[
[

[

𝑍𝑖 𝑃𝑅1 𝑃𝑅2 (

𝑚

∑

𝑗=1

𝑎
2

𝑖𝑗
)

1/2

𝑃 (

𝑚

∑

𝑗=1

𝑏
2

𝑖𝑗
)

1/2

𝑃 (𝑙

𝑚

∑

𝑗=1

𝑐
2

𝑖𝑗
)

1/2

𝑃

∗ −𝑀1 0 0 0 0

∗ ∗ −𝑀2 0 0 0

∗ ∗ ∗ −𝑀3 0 0

∗ ∗ ∗ ∗ −𝐼𝑛 0

∗ ∗ ∗ ∗ ∗ −𝑊

]
]
]
]
]
]

]

< 0,

[
[
[
[
[
[
[

[

𝑍𝑗 𝑃𝑅1 𝑃𝑅2 (

𝑙

∑

𝑖=1

𝑎
2

𝑗𝑖
)

1/2

𝑃 (

𝑙

∑

𝑖=1

𝑏
2

𝑗𝑖
)

1/2

𝑃 (𝑚

𝑙

∑

𝑖=1

𝑐
2

𝑗𝑖
)

1/2

𝑃

∗ −𝑀1 0 0 0 0

∗ ∗ −𝑀2 0 0 0

∗ ∗ ∗ −𝑀3 0 0

∗ ∗ ∗ ∗ −𝐼𝑛 0

∗ ∗ ∗ ∗ ∗ −𝑊

]
]
]
]
]
]
]

]

< 0

𝑚

1 − 𝜎
2

− 2𝛼𝑝 ≤ 0, 𝑃 ≥ 𝑝𝐼
𝑛
, 𝑃 ≥ 𝑝𝐼

𝑛
,

𝑙

1 − 𝜏
2

− 2𝛽𝑝 ≤ 0,

𝐿
2
𝑀
2
𝐿
2
− (1 − 𝜏)𝑄 ≤ 0, 𝑀

3
− (1 − 𝜏

1
) 𝑈 ≤ 0,

𝐿
2
𝑀
2
𝐿
2
− (1 − 𝜎)𝑄 ≤ 0, 𝑀

3
− (1 − 𝜎

1
) 𝑈 ≤ 0,

(39)

and the adaptive feedback controllers are designed as

𝑢
𝑖
(𝑡) = − [𝛾

𝑖
+ 𝛼
𝑖
(𝑡)] 𝑒

𝑖
(𝑡) ,

V
𝑗
(𝑡) = − [𝜂

𝑗
+ 𝛽
𝑗
(𝑡)] 𝜀

𝑗
(𝑡) ,

𝛼
𝑖
(𝑡) =

{{{

{{{

{


𝐺 ( ̇𝑒

𝑖
(𝑡))



2

𝑒𝑖 (𝑡)


2
𝛼,

𝑒𝑖 (𝑡)


2

̸= 0,

0,
𝑒𝑖 (𝑡)



2

= 0,

𝛽
𝑗
(𝑡) =

{{{{

{{{{

{


𝐺 ( ̇𝜀

𝑗
(𝑡))



2


𝜀
𝑗
(𝑡)


2
𝛽,


𝜀
𝑗
(𝑡)


2

̸= 0,

0,

𝜀
𝑗
(𝑡)


2

= 0,

(40)

where 𝑍
𝑖
= −2𝑃𝐷 + 𝐿

3
𝐻𝑊𝐻𝐿

3
+ 𝐿

1
𝑀
1
𝐿
1
+ 𝑚𝑈 − 2𝛾

𝑖
𝑃 +

𝑄, 𝑍
𝑗
= −2𝑃𝐷+𝐿

3
𝐻𝑊𝐻𝐿

3
+𝐿
1
𝑀
1
𝐿
1
+ 𝑙𝑈− 2𝜂

𝑗
𝑃+𝑄, 𝑖 =

1, 2, . . . , 𝑙, 𝑗 = 1, 2, . . . , 𝑚.

Remark 6. From Corollary 5, we can easily get that the
controllers in this paper are simpler than those of Theorem
1 in [29].

Remark 7. If the coupling matrix of the SCBNN is not a
diffusivematrix satisfying the sumof every rowbeing zero, we
can still obtain the same result from the proof of Theorem 4.

Theorem 8 presents another sufficient condition to ascer-
tain that the two networks (4) and (5) can be synchronized,
using the following simple adaptive feedback controllers:

𝑢
𝑖
(𝑡) = −𝛾

𝑖
𝑒
𝑖
(𝑡) ,

V
𝑗
(𝑡) = −𝛾

𝑗
𝜀
𝑗
(𝑡) ,

(41)

where 𝑖 = 1, 2, . . . , 𝑙, 𝑗 = 1, 2, . . . , 𝑚, 𝛾
𝑖
, and 𝛾

𝑗
are positive

constants.
Let

𝑒 (𝑡) = (𝑒
𝑇

1
(𝑡) , 𝑒

𝑇

2
(𝑡) , . . . , 𝑒

𝑇

𝑙
(𝑡))

𝑇

,

𝜀 (𝑡) = (𝜀
𝑇

1
(𝑡) , 𝜀

𝑇

2
(𝑡) , . . . , 𝜀

𝑇

𝑚
(𝑡))

𝑇

,

𝐹
𝑘
(𝑒 (𝑡)) = (𝐹

𝑇

𝑘
(𝑒
1
(𝑡)) , 𝐹

𝑇

𝑘
(𝑒
2
(𝑡)) , . . . , 𝐹

𝑇

𝑘
(𝑒
𝑙
(𝑡)))

𝑇

,

𝑘 = 1, 2,

𝐹
𝑘
(𝑒 (𝑡)) = (𝐹

𝑇

𝑘
(𝜀
1
(𝑡)) , 𝐹

𝑇

𝑘
(𝜀
2
(𝑡)) , . . . , 𝐹

𝑇

𝑘
(𝜀
𝑚
(𝑡)))

𝑇

,

𝑘 = 1, 2,

𝐺 ( ̇𝜀 (𝑡)) = (𝐺
𝑇
( ̇𝜀
1
(𝑡)) , 𝐺

𝑇
( ̇𝜀
2
(𝑡)) , . . . , 𝐺

𝑇
( ̇𝜀
𝑚
(𝑡)))

𝑇

,

𝐺 ( ̇𝑒 (𝑡)) = (𝐺
𝑇

( ̇𝑒
1
(𝑡)) , 𝐺

𝑇

( ̇𝑒
2
(𝑡)) , . . . , 𝐺

𝑇

( ̇𝑒
𝑙
(𝑡)))

𝑇

,

�̃� (𝜀 (𝑡)) = (𝐾
𝑇
(𝜀
1
(𝑡)) , 𝐾

𝑇
(𝜀
2
(𝑡)) , . . . , 𝐾

𝑇
(𝜀
𝑚
(𝑡)))

𝑇

,

�̂� (𝑒 (𝑡)) = (𝐾
𝑇

(𝑒
1
(𝑡)) , 𝐾

𝑇

(𝑒
2
(𝑡)) , . . . , 𝐾

𝑇

(𝑒
𝑙
(𝑡)))

𝑇

,

Γ̃ = − diag (𝛾
1
, 𝛾
2
, . . . , 𝛾

𝑙
) ,

Γ̂ = − diag (𝛾
1
, 𝛾
2
, . . . , 𝛾

𝑚
) ,

(42)

then the error dynamical system of (6) becomes

̇𝑒 (𝑡) =

𝑁

∑

𝑟=1

𝜉
𝑟
(𝑡, 𝜆)

× [− (𝐼
𝑙
⊗ 𝐷

𝑟
) 𝑒 (𝑡) + (𝐼

𝑙
⊗ 𝑅

𝑟1
) 𝐹
1
(𝑒 (𝑡))

+ (𝐼
𝑙
⊗ 𝑅

𝑟2
) 𝐹
2
(𝑒 (𝑡 − 𝜏 (𝑡)))
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+ (𝐴
𝑟
⊗ 𝐼
𝑛
) 𝜀 (𝑡 − 𝜏

1
(𝑡))

+ (𝐵
𝑟
⊗ 𝐼
𝑛
) 𝐺 ( ̇𝜀 (𝑡 − 𝜏

2
(𝑡)))

+ (𝐶
𝑟
⊗ 𝐼
𝑛
) ∫

𝑡

−∞

(𝐼
𝑚
⊗ ℎ (𝑡 − 𝑠)) �̃� (𝜀 (𝑠)) 𝑑𝑠

+ (Γ̃ ⊗ 𝐼
𝑛
) 𝑒 (𝑡)] ,

̇𝜀 (𝑡) =

𝑁

∑

𝑟=1

𝜉
𝑟
(𝑡, 𝜆)

× [− (𝐼
𝑚
⊗ 𝐷) 𝜀 (𝑡) + (𝐼

𝑚
⊗ 𝑅

𝑟1
) 𝐹
1
(𝜀 (𝑡))

+ (𝐼
𝑚
⊗ 𝑅

𝑟2
) 𝐹
2
(𝜀 (𝑡 − 𝜎 (𝑡)))

+ (𝐴
𝑟
⊗ 𝐼
𝑛
) 𝑒 (𝑡 − 𝜎

1
(𝑡))

+ (𝐵
𝑟
⊗ 𝐼
𝑛
)𝐺 ( ̇𝑒 (𝑡 − 𝜎

2
(𝑡)))

+ (𝐶
𝑟
⊗ 𝐼
𝑛
)∫

𝑡

−∞

(𝐼
𝑙
⊗ ℎ (𝑡 − 𝑠)) �̂� (𝑒 (𝑠)) 𝑑𝑠

+ (Γ̂ ⊗ 𝐼
𝑛
) 𝜀 (𝑡)] ,

(43)

Theorem 8. Under assumptions (𝑆
1
)–(𝑆

4
) and using the

adaptive feedback controllers (41), the two coupled SCBNNs
(4) and (5) can be synchronized, if there exist 𝑛 × 𝑛 positive
matrices 𝑃,𝑈, 𝑃,𝑈 and 𝑛 × 𝑛 diagonal positive matrices𝑊 =

diag(𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
),𝑊 = diag(𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑛
),𝑄,𝑉,𝑀,𝑄,

𝑉, 𝑀 such that for 𝑟 ∈ ℵ, the following matrix inequalities
hold:

Ω
𝑟
=

(
(
(
(
(
(

(

Ψ
𝑟1

Ψ
𝑟2

Ψ
𝑟3

Ψ
𝑟4

Ψ
𝑟5

Ψ
𝑟6

∗ Ψ
𝑟7

𝐼
𝑙
⊗ (𝑅

𝑇

𝑟1
𝑉𝑅
𝑟2
) 𝐴

𝑟
⊗ (𝑅

𝑇

𝑟1
𝑉) 𝐵

𝑟
⊗ (𝑅

𝑇

𝑟1
𝑉) 𝐶

𝑟
⊗ (𝑅

𝑇

𝑟1
𝑉)

∗ ∗ Ψ
𝑟8

𝐴
𝑟
⊗ (𝑅

𝑇

𝑟2
𝑉) 𝐵

𝑟
⊗ (𝑅

𝑇

𝑟2
𝑉) 𝐶

𝑟
⊗ (𝑅

𝑇

𝑟2
𝑉)

∗ ∗ ∗ Ψ
𝑟9

(𝐴
𝑇

𝑟
𝐵
𝑟
) ⊗ 𝑉 (𝐴

𝑇

𝑟
𝐶
𝑟
) ⊗ 𝑉

∗ ∗ ∗ ∗ Ψ
𝑟10

(𝐵
𝑇

𝑟
𝐶
𝑟
) ⊗ 𝑉

∗ ∗ ∗ ∗ ∗ Ψ
𝑟11

)
)
)
)
)
)

)

< 0,

Ω
𝑟
=

(
(
(
(
(
(
(
(

(

Ψ
𝑟1

Ψ
𝑟2

Ψ
𝑟3

Ψ
𝑟4

Ψ
𝑟5

Ψ
𝑟6

∗ Ψ
𝑟7

𝐼
𝑙
⊗ (𝑅

𝑇

𝑟1
𝑉𝑅
𝑟2
) 𝐴

𝑟
⊗ (𝑅

𝑇

𝑟1
𝑉) 𝐵

𝑟
⊗ (𝑅

𝑇

𝑟1
𝑉) 𝐶

𝑟
⊗ (𝑅

𝑇

𝑟1
𝑉)

∗ ∗ Ψ
𝑟8

𝐴
𝑟
⊗ (𝑅

𝑇

𝑟2
𝑉) 𝐵

𝑟
⊗ (𝑅

𝑇

𝑟2
𝑉) 𝐶

𝑟
⊗ (𝑅

𝑇

𝑟2
𝑉)

∗ ∗ ∗ Ψ
𝑟9

(𝐵
𝑟
) ⊗ 𝑉 (𝐴

𝑇

𝑟
𝐶
𝑟
) ⊗ 𝑉

∗ ∗ ∗ ∗ Ψ
𝑟10

𝐵
𝑇

𝑟
𝐶
𝑟
⊗ 𝑉

∗ ∗ ∗ ∗ ∗ Ψ
𝑟11

)
)
)
)
)
)
)
)

)

< 0,

(44)

with

Ψ
𝑟1
= 𝐼
𝑙
⊗ (−𝑃𝐷

𝑟
− 𝐷

𝑇

𝑟
𝑃 + 𝑄 + 𝑈

+𝐿
3
𝐻𝑊𝐻𝐿

3
+ 𝐿

1
𝑀𝐿

1
+ 𝐷

𝑇

𝑟
𝑉𝐷

𝑟
)

+ 2Γ ⊗ 𝑃 + Γ
2
⊗ 𝑉 − Γ ⊗ (𝐷

𝑇

𝑟
𝑉 + 𝑉𝐷

𝑟
) ,

Ψ
𝑟2
= Γ ⊗ (𝑉𝑅

𝑟1
) + 𝐼

𝑙
⊗ (𝑃𝑅

𝑟1
− 𝐷

𝑇

𝑟
𝑉𝑅
𝑟1
) ,

Ψ
𝑟3
= 𝐼
𝑙
⊗ (𝑃𝑅

𝑟2
− 𝐷

𝑇

𝑟
𝑉𝑅
𝑟2
) + Γ ⊗ 𝑉𝑅

𝑟2
,

Ψ
𝑟4
= (Γ𝐴

𝑟
) ⊗ 𝑉 + 𝐴

𝑟
⊗ (𝑃 − 𝐷

𝑇

𝑟
𝑉) ,

Ψ
𝑟5
= (Γ𝐵

𝑟
) ⊗ 𝑉 + 𝐵

𝑟
⊗ (𝑃 − 𝐷

𝑇

𝑟
𝑉) ,

Ψ
𝑟6
= (Γ𝐶

𝑟
) ⊗ 𝑉 + 𝐶

𝑟
⊗ (𝑃 − 𝐷

𝑇

𝑟
𝑉) ,

Ψ
𝑟7
= 𝐼
𝑙
⊗ (𝑅

𝑇

𝑟1
𝑉𝑅
𝑟1
−𝑀) ,

Ψ
𝑟8
= 𝐼
𝑙
⊗ [𝑅

𝑇

𝑟2
𝑉𝑅
𝑟2
− (1 − 𝜏) 𝐿

−1

2
𝑄𝐿
−1

2
] ,

Ψ
𝑟9
= (𝐴

𝑇

𝑟
𝐴
𝑟
) ⊗ 𝑉 − (1 − 𝜏

1
) (𝐼
𝑚
⊗ 𝑈) ,

Ψ
𝑟10

= (𝐵
𝑇

𝑟
𝐵
𝑟
) ⊗ 𝑉 − (1 − 𝜏

2
) (𝐼
𝑚
⊗ (𝐿

−1

4
𝑉𝐿
−1

4
)) ,

Ψ
𝑟11

= (𝐶
𝑇

𝑟
𝐶
𝑟
) ⊗ 𝑉 − 𝐼

𝑚
⊗𝑊,

Ψ
𝑟1
= 𝐼
𝑚
⊗ (−𝑃𝐷

𝑟
− 𝐷

𝑇

𝑟
𝑃 + 𝑄 + 𝑈 + 𝐿

3
𝐻𝑊𝐻𝐿

3

+𝐿
1
𝑀𝐿

1
+ 𝐷

𝑇

𝑟
𝑉𝐷

𝑟
)

+ 2Γ ⊗ 𝑃 + Γ
2

⊗ 𝑉 − Γ ⊗ (𝐷
𝑇

𝑟
𝑉 + 𝑉𝐷

𝑟
) ,

Ψ
𝑟2
= Γ ⊗ (𝑉𝑅

𝑟1
) + 𝐼

𝑚
⊗ (𝑃𝑅

𝑟1
− 𝐷

𝑇

𝑟
𝑉𝑅
𝑟1
) ,

Ψ
3
= 𝐼
𝑚
⊗ (𝑃𝑅

𝑟2
− 𝐷

𝑇

𝑟
𝑉𝑅
𝑟2
) + Γ ⊗ 𝑉𝑅

𝑟2
,

Ψ
𝑟4
= (Γ𝐴

𝑟
) ⊗ 𝑉 + 𝐴

𝑟
⊗ (𝑃 − 𝐷

𝑇

𝑟
𝑉) ,

Ψ
5
= (Γ 𝐵

𝑟
) ⊗ 𝑉 + 𝐵

𝑟
⊗ (𝑃 − 𝐷

𝑇

𝑟
𝑉) ,

Ψ
𝑟6
= (Γ𝐶

𝑟
) ⊗ 𝑉 + 𝐶

𝑟
⊗ (𝑃 − 𝐷

𝑇

𝑟
𝑉) ,
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Ψ
𝑟7
= 𝐼
𝑚
⊗ (𝑅

𝑇

𝑟1
𝑉𝑅
𝑟1
−𝑀) ,

Ψ
8
= 𝐼
𝑚
⊗ [𝑅

𝑇

𝑟2
𝑉𝑅
𝑟2
− (1 − 𝜎) 𝐿

−1

2
𝑄𝐿

−1

2
] ,

Ψ
𝑟9
= (𝐴

𝑇

𝑟
𝐴
𝑟
) ⊗ 𝑉 − (1 − 𝜎

1
) (𝐼
𝑙
⊗ 𝑈) ,

Ψ
𝑟10

= (𝐵
𝑟

𝑇

𝐵
𝑟
) ⊗ 𝑉 − (1 − 𝜎

2
) (𝐼

𝑙
⊗ (𝐿

−1

4
𝑉𝐿

4
)) ,

Ψ
𝑟11

= (𝐶
𝑇

𝑟
𝐶
𝑟
) ⊗ 𝑉 − 𝐼

𝑙
⊗𝑊.

(45)

Proof. For the error dynamical system (43), we define the
following Lyapunov-Krasovskii function:

𝑉 (𝑡, 𝑒 (𝑡) , 𝜀 (𝑡)) = 𝑉
1
(𝑡, 𝑒 (𝑡) , 𝜀 (𝑡)) + 𝑉

2
(𝑡, 𝑒 (𝑡) , 𝜀 (𝑡)) ,

𝑉
1
= 𝑒
𝑇
(𝑡) (𝐼

𝑙
⊗ 𝑃) 𝑒 (𝑡) + ∫

𝑡

𝑡−𝜏(𝑡)

𝑒
𝑇
(𝑠) (𝐼

𝑙
⊗ 𝑄) 𝑒 (𝑠) d𝑠

+ ∫

𝑡

𝑡−𝜏1(𝑡)

𝜀
𝑇
(𝑠) (𝐼

𝑚
⊗ 𝑈) 𝜀 (𝑠) d𝑠

+

𝑚

∑

𝑗=1

𝑛

∑

𝑖=1

𝑤
𝑖
∫

∞

0

ℎ
𝑖
(V) dV∫

∞

0

ℎ
𝑖
(𝜃)

× ∫

𝑡

𝑡−𝜃

𝐾
2

𝑖
(𝜀
𝑗𝑖
(𝑠)) d𝑠 d𝜃

+ ∫

𝑡

𝑡−𝜏2(𝑡)

̇𝜀
𝑇
(𝑠) (𝐼

𝑚
⊗ 𝑉) ̇𝜀 (𝑠) d𝑠,

𝑉
2
= 𝜀
𝑇
(𝑡) (𝐼

𝑚
⊗ 𝑃) 𝜀 (𝑡)

+ ∫

𝑡

𝑡−𝜎(𝑡)

𝜀
𝑇
(𝑠) (𝐼

𝑚
⊗ 𝑄) 𝜀 (𝑠) d𝑠

+ ∫

𝑡

𝑡−𝜎1(𝑡)

𝑒
𝑇
(𝑠) (𝐼

𝑙
⊗ 𝑈) 𝑒 (𝑠) d𝑠

+

𝑙

∑

𝑖=1

𝑛

∑

𝑗=1

𝑤
𝑗
∫

∞

0

ℎ
𝑗
(V) dV∫

∞

0

ℎ
𝑗
(𝜃)

× ∫

𝑡

𝑡−𝜃

𝐾
𝑗
(𝑒
𝑖𝑗
(𝑠)) d𝑠 d𝜃

+ ∫

𝑡

𝑡−𝜎2(𝑡)

̇𝑒
𝑇
(𝑠) (𝐼

𝑙
⊗ 𝑉) ̇𝑒 (𝑠) d𝑠,

𝑉
1
= 𝑒
𝑇
(𝑡) (𝐼

𝑙
⊗ 𝑃) ̇𝑒 (𝑡) + ̇𝑒

𝑇
(𝑡) (𝐼

𝑙
⊗ 𝑃) 𝑒 (𝑡)

+ 𝑒
𝑇
(𝑡) (𝐼

𝑙
⊗ 𝑄) 𝑒 (𝑡) − (1 − ̇𝜏 (𝑡)) 𝑒

𝑇
(𝑡 − 𝜏 (𝑡))

× (𝐼
𝑙
⊗ 𝑄) 𝑒 (𝑡 − 𝜏 (𝑡)) + 𝜀

𝑇
(𝑡) (𝐼

𝑚
⊗ 𝑈) 𝜀 (𝑡)

− (1 − ̇𝜏
1
(𝑡)) 𝜀

𝑇
(𝑡 − 𝜏

1
(𝑡)) (𝐼

𝑚
⊗ 𝑈) 𝜀 (𝑡 − 𝜏

1
(𝑡))

+

𝑚

∑

𝑗=1

𝑛

∑

𝑖=1

𝑤
𝑖
(𝐾
𝑖
(𝜀
𝑗𝑖
(𝑡)) ∫

∞

0

ℎ
𝑖
(V) dV)

2

−

𝑚

∑

𝑗=1

𝑛

∑

𝑖=1

𝑤
𝑖
∫

∞

0

ℎ
𝑖
(V) dV∫

∞

0

ℎ
𝑖
(𝜃)𝐾

2

𝑖
(𝜀
𝑗𝑖
(𝑡 − 𝜃)) d𝜃

+ ̇𝜀
𝑇
(𝑡) (𝐼

𝑚
⊗ 𝑉) ̇𝜀 (𝑡)

− (1 − ̇𝜏
2
(𝑡)) ̇𝜀

𝑇
(𝑡 − 𝜏

2
(𝑡)) (𝐼

𝑚
⊗ 𝑉) ̇𝜀 (𝑡 − 𝜏

2
(𝑡)) ,

𝑉
2
= 𝜀
𝑇
(𝑡) (𝐼

𝑚
⊗ 𝑃) ̇𝜀 (𝑡) + ̇𝜀

𝑇
(𝑡) (𝐼

𝑚
⊗ 𝑃) 𝜀 (𝑡)

+ 𝜀 (𝑡) (𝐼
𝑚
⊗ 𝑄) 𝜀 (𝑡) − (1 − ̇𝜎 (𝑡)) 𝜀 (𝑡 − 𝜎 (𝑡))

× (𝐼
𝑚
⊗ 𝑄) 𝜀 (𝑡 − 𝜎 (𝑡)) + 𝑒

𝑇
(𝑡) (𝐼

𝑙
⊗ 𝑈) 𝑒 (𝑡)

− (1 − ̇𝜎
1
(𝑡)) 𝑒

𝑇
(𝑡 − 𝜎

1
(𝑡)) (𝐼

𝑙
⊗ 𝑈) 𝑒 (𝑡 − 𝜎

1
(𝑡))

+

𝑙

∑

𝑖=1

𝑛

∑

𝑗=1

𝑤
𝑗
(𝐾
𝑗
(𝑒
𝑖𝑗
(𝑡)) ∫

∞

0

ℎ
𝑗
(V)dV)

2

−

𝑙

∑

𝑖=1

𝑛

∑

𝑗=1

𝑤
𝑗
∫

∞

0

ℎ
𝑗
(V) dV∫

∞

0

ℎ
𝑗
(𝜃)𝐾

2

𝑗
(𝑒
𝑖𝑗
(𝑡 − 𝜃)) d𝜃

+ ̇𝑒
𝑇
(𝑡) (𝐼

𝑙
⊗ 𝑉) ̇𝑒 (𝑡) − (1 − ̇𝜎

2
(𝑡)) ̇𝑒

𝑇
(𝑡 − 𝜎

2
(𝑡))

× (𝐼
𝑙
⊗ 𝑉) ̇𝑒 (𝑡 − 𝜎

2
(𝑡)) .

(46)

By (26), we have

𝑚

∑

𝑗=1

𝑛

∑

𝑖=1

𝑤
𝑖
(𝐾
𝑖
(𝜀
𝑗𝑖
(𝑡)) ∫

∞

0

ℎ
𝑖
(V) dV)

2

≤

𝑚

∑

𝑗=1

𝜀
𝑇

𝑗
(𝑡) 𝐿

3
𝐻𝑊𝐻𝐿

3
𝜀
𝑗
(𝑡)

= 𝜀
𝑇
(𝑡) (𝐼

𝑚
⊗ (𝐿

3
𝐻𝑊𝐻𝐿

3
)) 𝜀 (𝑡) .

(47)

Using (30), we get

𝑚

∑

𝑗=1

𝑛

∑

𝑖=1

𝑤
𝑖
∫

∞

0

ℎ
𝑖
(V) dV∫

∞

0

ℎ
𝑖
(𝜃)𝐾

2

𝑖
(𝜀
𝑗𝑖
(𝑠) (𝑡 − 𝜃)) d𝜃

≥

𝑚

∑

𝑗=1

(∫

𝑡

−∞

ℎ (𝑡 − 𝑠)𝐾 (𝜀
𝑗
(𝑠)) d𝑠)

𝑇

×𝑊∫

𝑡

−∞

ℎ (𝑡 − 𝑠)𝐾 (𝜀
𝑗
(𝑠)) d𝑠

= (∫

𝑡

−∞

(𝐼
𝑚
⊗ ℎ (𝑡 − 𝑠)) �̃� (𝜀 (𝑠)) d𝑠)

𝑇

(𝐼
𝑚
⊗𝑊)

× ∫

𝑡

−∞

(𝐼
𝑚
⊗ ℎ (𝑡 − 𝑠)) �̃� (𝜀 (𝑠)) d𝑠.

(48)
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From (𝑆
3
) and (46)–(48), we have

𝑉
1
≤ 𝑒
𝑇
(𝑡) (𝐼

𝑙
⊗ 𝑃) ̇𝑒 (𝑡) + ̇𝑒

𝑇
(𝑡) (𝐼

𝑙
⊗ 𝑃) 𝑒 (𝑡)

+ 𝑒
𝑇
(𝑡) (𝐼

𝑙
⊗ 𝑄) 𝑒 (𝑡) − (1 − 𝜏) 𝑒

𝑇
(𝑡 − 𝜏 (𝑡))

× (𝐼
𝑙
⊗ 𝑄) 𝑒 (𝑡 − 𝜏 (𝑡))

+ 𝜀
𝑇
(𝑡) [𝐼

𝑚
⊗ (𝑈 + 𝐿

3
𝐻𝑊𝐻𝐿

3
)] 𝜀 (𝑡)

− (1 − 𝜏
1
) 𝜀
𝑇
(𝑡 − 𝜏

1
(𝑡)) (𝐼

𝑚
⊗ 𝑈) 𝜀 (𝑡 − 𝜏

1
(𝑡))

− (∫

𝑡

−∞

(𝐼
𝑚
⊗ ℎ (𝑡 − 𝑠)) �̃� (𝜀 (𝑠)) d𝑠)

𝑇

(𝐼
𝑚
⊗𝑊)

× ∫

𝑡

−∞

(𝐼
𝑚
⊗ ℎ (𝑡 − 𝑠)) �̃� (𝜀 (𝑠)) d𝑠

+ ̇𝜀
𝑇
(𝑡) (𝐼

𝑚
⊗ 𝑉) ̇𝜀 (𝑡) − (1 − 𝜏

2
) ̇𝜀
𝑇
(𝑡 − 𝜏

2
(𝑡))

× (𝐼
𝑚
⊗ 𝑉) ̇𝜀 (𝑡 − 𝜏

2
(𝑡)) .

(49)

In the same way, we have

𝑉
2
≤ 𝜀
𝑇
(𝑡) (𝐼

𝑚
⊗ 𝑃) ̇𝜀 (𝑡) + ̇𝜀

𝑇
(𝑡) (𝐼

𝑙
⊗ 𝑃) 𝜀 (𝑡)

+ 𝜀
𝑇
(𝑡) (𝐼

𝑚
⊗ 𝑄) 𝜀 (𝑡) − (1 − 𝜎) 𝜀

𝑇
(𝑡 − 𝜎 (𝑡))

× (𝐼
𝑚
⊗ 𝑄) 𝜀 (𝑡 − 𝜎 (𝑡))

+ 𝑒
𝑇
(𝑡) [𝐼

𝑙
⊗ (𝑈 + 𝐿

3
𝐻𝑊𝐻𝐿

3
)] 𝑒 (𝑡)

− (1 − 𝜎
1
) 𝑒
𝑇
(𝑡 − 𝜎

1
(𝑡)) (𝐼

𝑙
⊗ 𝑈) 𝑒 (𝑡 − 𝜎

1
(𝑡))

− (∫

𝑡

−∞

(𝐼
𝑙
⊗ ℎ (𝑡 − 𝑠)) �̂� (𝑒 (𝑠)) d𝑠)

𝑇

(𝐼
𝑙
⊗𝑊)

× ∫

𝑡

−∞

(𝐼
𝑙
⊗ ℎ (𝑡 − 𝑠)) �̂� (𝑒 (𝑠)) d𝑠

+ ̇𝑒
𝑇
(𝑡) (𝐼

𝑙
⊗ 𝑉) ̇𝑒 (𝑡) − (1 − 𝜎

2
) ̇𝑒
𝑇
(𝑡 − 𝜎

2
(𝑡))

× (𝐼
𝑙
⊗ 𝑉) ̇𝑒 (𝑡 − 𝜎

2
(𝑡)) .

(50)

From (𝑆
1
) and (𝑆

2
),

𝑒
𝑇
(𝑡) [𝐼

𝑙
⊗ (𝐿

1
𝑀𝐿

1
)] 𝑒 (𝑡)

− 𝐹
𝑇

1
(𝑒 (𝑡)) (𝐼

𝑙
⊗𝑀)𝐹

1
(𝑒 (𝑡)) ≥ 0,

𝜀
𝑇
(𝑡) [𝐼

𝑚
⊗ (𝐿

1
𝑀𝐿

1
)] 𝜀 (𝑡)

− 𝐹
𝑇

1
(𝜀 (𝑡)) (𝐼

𝑚
⊗𝑀)𝐹

1
(𝜀 (𝑡)) ≥ 0,

𝑒
𝑇
(𝑡 − 𝜏 (𝑡)) (𝐼

𝑙
⊗ 𝑄) 𝑒 (𝑡 − 𝜏 (𝑡))

≥ 𝐹
𝑇

2
(𝑒 (𝑡 − 𝜏 (𝑡))) [𝐼

𝑙
⊗ (𝐿

−1

2
𝑄𝐿
−1

2
)] 𝐹

2
(𝑒 (𝑡 − 𝜏 (𝑡))) ,

𝜀
𝑇
(𝑡 − 𝜎 (𝑡)) (𝐼

𝑚
⊗ 𝑄) 𝜀 (𝑡 − 𝜎 (𝑡))

≥ 𝐹
𝑇

2
(𝜀 (𝑡 − 𝜎 (𝑡))) [𝐼

𝑚
⊗ (𝐿

−1

2
𝑄𝐿

−1

2
)] 𝐹

2
(𝜀 (𝑡 − 𝜎 (𝑡))) ,

̇𝜀
𝑇
(𝑡 − 𝜏

2
(𝑡)) (𝐼

𝑚
⊗ 𝑉) ̇𝜀 (𝑡 − 𝜏

2
(𝑡))

≥ 𝐺
𝑇
( ̇𝜀 (𝑡 − 𝜏

2
(𝑡))) (𝐼

𝑚
⊗ (𝐿

−1

4
𝑉𝐿
−1

4
))𝐺 ( ̇𝜀 (𝑡 − 𝜏

2
(𝑡))) ,

̇𝑒
𝑇
(𝑡 − 𝜎

2
(𝑡)) (𝐼

𝑙
⊗ 𝑉) ̇𝑒 (𝑡 − 𝜎

2
(𝑡))

≥ 𝐺
𝑇
( ̇𝑒 (𝑡 − 𝜎

2
(𝑡))) (𝐼

𝑙
⊗ (𝐿

−1

4
𝑉𝐿

−1

4
))𝐺 ( ̇𝑒 (𝑡 − 𝜎

2
(𝑡))) .

(51)

With the aid of (43) and (51), we have

𝑉 ≤

𝑁

∑

𝑟=1

𝜉
𝑟
(𝑡, 𝜆) [𝜂

𝑇
(𝑡) Ω

𝑟
𝜂 (𝑡) + 𝜂

𝑇
(𝑡) Ω

𝑟
𝜂 (𝑡)] , (52)

where

𝜂 (𝑡) = (𝑒
𝑇
(𝑡) , 𝐹

𝑇

1
(𝑒 (𝑡)) , 𝐹

𝑇

2
(𝑒 (𝑡 − 𝜏 (𝑡))) , 𝜀

𝑇
(𝑡 − 𝜏

1
(𝑡)) ,

𝐺
𝑇
( ̇𝜀 (𝑡 − 𝜏

2
(𝑡))) ,

(∫

𝑡

−∞

(𝐼
𝑚
⊗ ℎ (𝑡 − 𝑠)) K̃ (𝜀 (𝑠)) d𝑠)

𝑇

)

𝑇

,

𝜂 (𝑡) = (𝜀
𝑇
(𝑡) , 𝐹

𝑇

1
(𝜀 (𝑡)) , 𝐹

𝑇

2
(𝜀 (𝑡 − 𝜎 (𝑡))) , 𝑒

𝑇
(𝑡 − 𝜎

1
(𝑡)) ,

𝐺
𝑇
( ̇𝑒 (𝑡 − 𝜎

2
(𝑡))) ,

(∫

𝑡

−∞

(𝐼
𝑙
⊗ ℎ (𝑡 − 𝑠)) K̂ (𝑒 (𝑠)) d𝑠)

𝑇

)

𝑇

.

(53)

Let 𝜌 = min{𝜌
1
, 𝜌
2
}, where 𝜌

1
= −min{𝜌min(Ω𝑟), 𝑟 ∈

ℵ}, 𝜌
2
= −min{𝜌min(Ω𝑟), 𝑟 ∈ ℵ}, then 𝜌 > 0 and

𝑉 ≤ −𝜌
1

𝑙

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝑒

𝑖
(𝑡) − 𝜌

2

𝑚

∑

𝑗=1

𝜀
𝑇

𝑗
(𝑡) 𝜀

𝑗
(𝑡)

≤ −𝜌[

[

𝑙

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝑒

𝑖
(𝑡) +

𝑚

∑

𝑗=1

𝜀
𝑇

𝑗
(𝑡) 𝜀

𝑗
(𝑡)]

]

.

(54)

The following proof is similar to that of Theorem 4 and is
omitted here.

4. Simulations

In this section, numerical examples are provided to demon-
strate the validity of the synchronization criteria obtained
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in the previous sections. Consider the following network as
drive network:

̇𝑥
𝑖
(𝑡) =

𝑁

∑

𝑟=1

𝜉
𝑟
(𝑡, 𝜆)

× [

[

− 𝐷
𝑟
𝑥
𝑖
+ 𝑅

𝑟1
𝑓
1
(𝑥
𝑖
(𝑡))

+ 𝑅
𝑟2
𝑓
2
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡)))

+ 𝐼
𝑟
+

𝑚

∑

𝑗=1

𝑎
𝑟𝑖𝑗
𝑦
𝑗
(𝑡 − 𝜏

1
(𝑡))

+

𝑚

∑

𝑗=1

𝑏
𝑟𝑖𝑗
𝑔 ( ̇𝑦

𝑗
(𝑡 − 𝜏

2
(𝑡)))

+

𝑚

∑

𝑗=1

𝑐
𝑟𝑖𝑗
∫

𝑡

−∞

ℎ (𝑡 − 𝑠) 𝑘 (𝑦
𝑗
(𝑠)) d𝑠]

]

,

𝑖 = 12, . . . , 𝑙,

̇𝑦
𝑗
(𝑡) =

𝑁

∑

𝑟=1

𝜉
𝑟
(𝑡, 𝜆)

× [ − 𝐷
𝑟
𝑦
𝑗
+ 𝑅

𝑟1
𝑓
1
(𝑦
𝑗
(𝑡))

+ 𝑅
𝑟2
𝑓
2
(𝑦
𝑗
(𝑡 − 𝜎 (𝑡)))

+ 𝐽
𝑟
+

𝑙

∑

𝑖=1

𝑎
𝑟𝑗𝑖
𝑥
𝑖
(𝑡 − 𝜎

1
(𝑡))

+

𝑙

∑

𝑖=1

𝑏
𝑟𝑗𝑖
𝑔 ( ̇𝑥

𝑖
(𝑡 − 𝜎

2
(𝑡)))

+

𝑙

∑

𝑖=1

𝑐
𝑟𝑗𝑖
∫

𝑡

−∞

ℎ (𝑡 − 𝑠) 𝑘 (𝑥
𝑖
(𝑠)) d𝑠] ,

𝑗 = 1, 2, . . . , 𝑚,

(55)

where 𝑥
𝑖
(𝑡), 𝑦

𝑗
(𝑡) ∈ R2, 𝑙 = 3, and 𝑚 = 3. 𝑓

1
(𝑧(𝑡)) =

0.1(tanh(𝑧
1
(𝑡)), tanh(𝑧

2
(𝑡)))

𝑇, 𝑧(𝑡) = (𝑧
1
(𝑡), 𝑧

2
(𝑡))
𝑇, 𝑓

1
=

𝑔 = 𝑔 = 𝑘 = 𝑘 = 𝑓
2
= 𝑓

2
= 𝑓

1
, and ℎ(𝑡) = ℎ(𝑡) = diag(𝑒−𝑡,

𝑒
−𝑡
). Choose time delays 𝜏(𝑡) = 1 + 0.4 sin 𝑡, 𝜏

1
(𝑡) = 2 +

0.2 arctan(𝑡), 𝜏
2
(𝑡) = 0.6 + 0.5 cos 𝑡, and 𝜎(𝑡) = 1 + 0.8 sin 𝑡,

𝜎
1
(𝑡) = 0.7 + 0.1 cos 𝑡, 𝜎

2
(𝑡) = 0.5 + (0.3𝑒

𝑡
/(1 + 𝑒

𝑡
)). We

define a switching rule 𝜆 : 𝑡 ∈ [0, +∞) → {1, 2}, 𝜆(𝑡) =

int(𝑡) mod 2 + 1. The other parameters are as follows:

𝐷
1
= (

1.8 0

0 4
) , 𝑅

11
= (

−1 1

0 0.2
) ,

𝑅
12
= (

1 0.5

0.6 −1
) , 𝐼

1
= 𝐽
1
= (1, 2)

𝑇
,

𝐴
1
= (𝑎

1𝑖𝑗
) = (

−2 −2 0

0 2 −2

1 1 −2

) ,

𝐵
1
= (𝑏

1𝑖𝑗
) = (

−0.2 0 −0.2

0.1 −0.4 0.3

0.2 0.1 −0.3

) ,

𝐶
1
= (𝑐

1𝑖𝑗
) = (

1 −1 0

1 1 −2

−1 0 1

) ,

𝐷
1
= (

2 0

0 1
) , 𝑅

11
= (

−0.3 1

0.2 0.3
) ,

𝑅
12
= (

0.3 0.4

0.6 −0.5
) , 𝐴

1
= (𝑎

1𝑗𝑖
) = (

4 0 −4

1 1 −2

1 0 −1

) ,

𝐵
1
= (𝑏

1𝑗𝑖
) = (

0.1 0 −0.1

0.2 −0.3 0.1

0.1 0.2 −0.2

) ,

𝐶
1
= (𝑐

1𝑗𝑖
) = (

−3 1 2

2 0 −2

−4 0 4

) ,

𝐷
2
= (

1.4 0

0 1.4
) , 𝑅

21
= (

1 −1

−5 3
) ,

𝑅
22
= (

−1.5 −0.1

−3 −1
) , 𝐴

2
= (𝑎

2𝑖𝑗
) = (

−1 1 0

0 2 −2

1.2 1 −2.2

) ,

𝐵
2
= (𝑏

2𝑖𝑗
) = (

0.1 −0.1 0

0.1 −0.5 0.4

0.2 0 −0.2

) ,

𝐶
2
= (𝑐

2𝑖𝑗
) = (

2 −2 0

3 −1 −2

0 −1 1

) ,

𝐷
2
= (

1.2 0

0 1.2
) , 𝑅

21
= (

−0.3 1

−4 1
) ,

𝑅
22
= (

0.3 0.4

−2 −1
) , 𝐼

2
= 𝐽
2
= (3, 4)

𝑇
,

𝐴
2
= (𝑎

2𝑗𝑖
) = (

1 −1 0

1 2 −3

1 1 −2

) ,

𝐵
2
= (𝑏

2𝑗𝑖
) = (

0.2 −0.2 0

0.1 −0.2 0.1

0.3 0.1 −0.4

) ,

𝐶
2
= (𝑐

2𝑗𝑖
) = (

−5 1 4

1 1 −2

−1 0 1

) .

(56)
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The response network of drive network (55) is

̇�̂�
𝑖
(𝑡) =

𝑁

∑

𝑟=1

𝜉
𝑟
(𝑡, 𝜆)

× [

[

− 𝐷
𝑟
𝑥
𝑖
(𝑡) + 𝑅

𝑟1
𝑓
1
(𝑥
𝑖
(𝑡))

+ 𝑅
𝑟2
𝑓
2
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡)))

+ 𝐼
𝑟
+

𝑚

∑

𝑗=1

𝑎
𝑟𝑖𝑗
𝑦
𝑗
(𝑡 − 𝜏

1
(𝑡))

+

𝑚

∑

𝑗=1

𝑏
𝑟𝑖𝑗
𝑔 ( ̇�̂�

𝑗
(𝑡 − 𝜏

2
(𝑡)))

+

𝑚

∑

𝑗=1

𝑐
𝑟𝑖𝑗
∫

𝑡

−∞

ℎ (𝑡 − 𝑠) 𝑘 (𝑦
𝑗
(𝑠)) d𝑠 + 𝑢

𝑖
(𝑡)]

]

,

̇�̂�
𝑗
(𝑡) =

𝑁

∑

𝑟=1

𝜉
𝑟
(𝑡, 𝜆)

× [ − 𝐷
𝑟
𝑦
𝑗
(𝑡) + 𝑅

𝑟1
𝑓
1
(𝑦
𝑗
(𝑡))

+ 𝑅
𝑟2
𝑓
2
(𝑦
𝑗
(𝑡 − 𝜎 (𝑡)))

+ 𝐽
𝑟
+

𝑙

∑

𝑖=1

𝑎
𝑟𝑗𝑖
𝑥
𝑖
(𝑡 − 𝜎

1
(𝑡))

+

𝑙

∑

𝑖=1

𝑏
𝑟𝑗𝑖
𝑔 ( ̇�̂�

𝑖
(𝑡 − 𝜎

2
(𝑡)))

+

𝑙

∑

𝑖=1

𝑐
𝑟𝑗𝑖
∫

𝑡

−∞

ℎ (𝑡 − 𝑠) 𝑘 (𝑥
𝑖
(𝑠)) d𝑠 + V

𝑗
(𝑡)] ,

(57)

where 𝑢
𝑖
(𝑡), V

𝑗
(𝑡) ∈ R2.

Let 𝛾
1
= 𝛾
2
= 𝛾
3
= 15, 𝜂

1
= 𝜂
2
= 𝜂
3
= 16, 𝛼 = 0.5, 𝛽 = 0.5,

and the feasible solution of the matrix inequalities (15)–(19)
by employing MATLAB LMI Toolbox be as follows:

𝑝 = 7.5267, 𝑝 = 7.8951,

𝑃 = (
12.9508 0.2817

0.2817 10.7871
) , 𝑄 = (

83.6405 3.6674

3.6674 68.8593
) ,

𝑈 = (
119.1080 0.2216

0.2216 55.7869
) ,

𝑊 = (
233.7870 0

0 223.7801
) ,

𝑀
1
= (

227.1153 0

0 202.1669
) ,

𝑀
2
= (

206.3034 0

0 217.8341
) ,

𝑀
3
= (

86.9723 0

0 41.4980
) , 𝑃 = (

19.4548 0.0336

0.0336 11.6060
) ,

𝑄 = (
26.1973 0.5411

0.5411 9.6902
) , 𝑈 = (

30.9126 0.9850

0.9850 22.6634
) ,

𝑊 = (
316.6943 0

0 287.9793
) ,

𝑀
1
= (

183.0419 0

0 162.4080
) ,

𝑀
2
= (

250.2787 0

0 409.0398
) ,

𝑀
3
= (

13.8704 0

0 10.1694
) .

(58)

The initial values are chosen as 𝑥
𝑖
(𝑠) = (−5, 9), 𝑦

𝑗
(𝑠) = (−6,

7)
𝑇, 𝑥

𝑖
(𝑠) = 2𝑖(2, 5)

𝑇, 𝑦
𝑗
(𝑠) = 3𝑗(2, −1)

𝑇, and 𝑠 ∈ [−2, 0].
Clearly, the two coupled networks (55) and (57) sat-
isfy the conditions of Theorem 4. Figure 1 presents the
synchronization errors of the state variables between the two
networks. The simulation result shows that the synchroniza-
tion is achieved under the proposed controllers (20). Thus,
the proposed synchronization control scheme in Theorem 4
is valid.

Let 𝛾
1
= 𝛾

2
= 𝛾

3
= 12, 𝛾

1
= 𝛾

2
= 𝛾

3
= 17, then the

feasible solution of the matrix inequalities (44) inTheorem 8
by employing MATLAB LMI Toolbox is as follows:

𝑃 = (
0.0251 0.0005

0.0005 0.0214
) , 𝑈 = (

3.7826 −0.0043

−0.0043 3.5381
) ,

𝑄 = (
4.2792 0

0 3.7789
) ,

𝑉 = (
0.0116 0

0 0.0079
) , 𝑀 = (

3.4521 0

0 3.1482
) ,

𝑊 = (
3.7071 0

0 3.3433
) , 𝑃 = (

0.0298 0

0 0.0268
) ,

𝑈 = (
3.3712 −0.0132

−0.0132 3.1782
) , 𝑄 = (

7.2228 0

0 6.3479
) ,

𝑉 = (
0.0077 0

0 0.0052
) , 𝑀 = (

3.3924 0

0 3.0142
) ,

𝑊 = (
3.4120 0

0 3.2474
) .

(59)



Abstract and Applied Analysis 15

0 10 20 30 40 50 60
0
5
10

‖𝑒
1
‖

(a)

0 10 20 30 40 50 60
0
10
20

‖𝑒
2
‖

(b)

0 10 20 30 40 50 60
0
20
40

‖𝑒
3
‖

(c)

0 10 20 30 40 50 60
0
10
20

‖𝑒
4
‖

(d)

0 10 20 30 40 50 60
0
20
40

‖𝑒
5
‖

(e)

0 10 20 30 40 50 60
0
20
40

‖𝑒
6
‖

(f)

Figure 1: Synchronization errors of BDN (55) and (57) with adaptive feedback controllers (20).
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Figure 2: Synchronization errors with adaptive feedback controllers (41).

Using the controllers (41), the simulation result is given in
Figure 2, which shows that the proposed synchronization
control scheme inTheorem 8 is effective.

5. Conclusions

In this paper, we have proposed a general SCBNN with
distributed delays and derivative coupling and investigated
the synchronization problem in the two coupled SCBNNs.
Using linear matrix inequality (LMI) approach and Barbǎlat
lemma, we have deviated some useful synchronization cri-
teria to ensure the synchronization of these two SCBNNs
by constructing effective controllers. Compared with relative
previous jobs, the controllers proposed by us are more simple
and feasible. Some simulation results have been presented to
demonstrate our theoretical results. In our future work, we
will consider using pinning control to realize the synchro-
nization of SCBNNs and identify the network topology of the
unknown SCBNNs.
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This paper is concerned with the problem of robust stabilization for a class of uncertain two-dimensional (2D) discrete switched
systems with state delays under asynchronous switching.The asynchronous switching here means that the switching instants of the
controller experience delays with respect to those of the system. The parameter uncertainties are assumed to be norm-bounded.
A state feedback controller is proposed to guarantee the exponential stability. The dwell time approach is utilized for the stability
analysis and controller design. A numerical example is given to illustrate the effectiveness of the proposed method.

1. Introduction

Two-dimensional (2D) systems have attracted considerable
attention for several decades due to their numerous applica-
tions in many areas, such as multidimensional digital filter-
ing, linear image processing, signal processing and process
control [1–3]. It is well known that 2D systems can be repre-
sented by different models such as Roesser model, Fornasini-
Marchesini model, and Attasi model. The issues of stability
analysis and control synthesis of these systems have been
studied in [4–8]. Considering that time delays frequently
occur in practical systems and are often the source of insta-
bility, many authors have devoted their energies to studying
time-delay systems. Recently, many results on delay systems
have been reported in the literature. For example, the delay-
fractional approach has been utilized to deal with discrete
time-delay systems in [9–11]. The stability of 2D discrete
systems with state delays has been investigated in [12–16].

On the other hand, because of their wide applications in
many fields, such as mechanical systems, automotive indus-
try, aircraft and air traffic control, and switched power con-
verters, switched systems have also received considerable
attention during the past few decades. A switched system is
a hybrid system which consists of a finite number of continu-
ous-time or discrete-time subsystems and a switching signal

specifying the switch between these subsystems.The stability
and stabilization problems have been extensively studied in
[17–25].

In many modelling problems of physical processes, a
2D switching representation is needed. One can cite a 2D
physically based model for advanced power bipolar devices
[26] and heat flux switching, and modulating in a thermal
transistor [27]. This class of systems can correspond to 2D
state space or 2D time space switched systems. Recently,
there are a few reports on 2D switched systems. Benzaouia
et al. firstly studied the stabilization problem of 2D discrete
switched systems with arbitrary switching sequences in [28,
29]. By using the common Lyapunov function method and
multiple Lyapunov functions method, two different sufficient
conditions for the existence of state feedback controllers were
proposed. In [30], the authors first extended the concept of
average dwell time to 2D switched systems and designed
a switching signal to guarantee the exponential stability of
delay-free 2D switched systems. It should be pointed out that
a very common assumption in [30] is that the controllers
are switched synchronously with the switching of system
modes, which is quite unpractical. As stated in [31, 32], there
inevitably exists asynchronous switching in actual operation
that is, the switching instants of the controllers exceed or
lag behind those of system modes. Thus, it is necessary to

http://dx.doi.org/10.1155/2013/961870
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consider asynchronous switching for efficient control design.
Some results on the control synthesis for switched systems
under asynchronous switching have been proposed in [33–
36]. However, to the best of our knowledge, the stabiliza-
tion problem for 2D switched systems under asynchronous
switching has not been yet investigated to date, especially for
2D switched systems with state delays, which motivates our
present study.

In this paper, we are interested in designing a stabi-
lizing controller for 2D discrete switched delayed systems
represented by a model of Roesser type under asynchronous
switching such that the corresponding closed-loop systems
are exponentially stable. The dwell time approach is utilized
for the stability analysis and controller design. The main
contributions of this paper can be summarized as follows: (i)
the asynchronous stabilization problem is for the first time
addressed in the paper; (ii) an exponential stability criterion
is established for 2D switched systems with state delays; and
(iii) an asynchronous switching controller design scheme
is proposed to guarantee the exponential stability of the
resulting closed-loop system.

This paper is organized as follows. In Section 2, prob-
lem formulation and some necessary lemmas are given. In
Section 3, based on the dwell time approach, stability and sta-
bilization for 2D discrete switched systems with state delays
are addressed.Then, a sufficient condition for the existence of
a stabilizing controller for such 2D discrete switched systems
under asynchronous switching is derived in terms of a set
of matrix inequalities. A numerical example is provided
to illustrate the effectiveness of the proposed approach in
Section 4. Concluding remarks are given in Section 5.

Notations.Throughout this paper, the superscript “𝑇” denotes
the transpose, and the notation 𝑋 ≥ 𝑌 (𝑋 > 𝑌) means that
the matrix 𝑋 − 𝑌 is positive semidefinite (positive definite,
resp.). ‖ ⋅ ‖ denotes the Euclidean norm. 𝐼 represents the
identity matrix with an appropriate dimension. 𝐼

ℎ
is the

identitymatrixwith 𝑛
1
dimension and 𝐼V is the identitymatrix

with 𝑛
2
dimension. diag{𝑎

𝑖
} denotes the diagonal matrix with

the diagonal elements 𝑎
𝑖
, and 𝑖 = 1, 2, . . . , 𝑛. 𝑋−1 denotes the

inverse of 𝑋. The asterisk ∗ in a matrix is used to denote the
term that is induced by symmetry. The set of all nonnegative
integers is represented by 𝑍

+
.

2. Problem Formulation and Preliminaries

Consider the following uncertain 2D discrete switched sys-
tems with state delays:

[
𝑥
ℎ
(𝑖 + 1, 𝑗)

𝑥
V
(𝑖, 𝑗 + 1)

]

= 𝐴
𝜎(𝑖,𝑗)

[
𝑥
ℎ
(𝑖, 𝑗)

𝑥
V
(𝑖, 𝑗)

] + 𝐴
𝜎(𝑖,𝑗)

𝑑
[
𝑥
ℎ
(𝑖 − 𝑑

ℎ
, 𝑗)

𝑥
V
(𝑖, 𝑗 − 𝑑V)

]

+ 𝐵
𝜎(𝑖,𝑗)
𝑢 (𝑖, 𝑗) ,

(1)

where 𝑥ℎ(𝑖, 𝑗) ∈ 𝑅𝑛1 and 𝑥V(𝑖, 𝑗) ∈ 𝑅𝑛2 are the horizontal state
and the vertical state, respectively, 𝑥(𝑖, 𝑗) is the whole state in

𝑅
𝑛 with 𝑛 = 𝑛

1
+ 𝑛

2
, and 𝑢(𝑖, 𝑗) ∈ 𝑅𝑚 is the control input.

𝑖 and 𝑗 are integers in 𝑍
+
. 𝜎(𝑖, 𝑗) : 𝑍

+
× 𝑍

+
→ 𝑁 =

{1, 2, ..., 𝑁} is the switching signal. 𝑁 is the number of
subsystems, and 𝜎(𝑖, 𝑗) = 𝑘 means that the 𝑘th subsystem
is activated. 𝑑

ℎ
and 𝑑V are constant delays along horizontal

and vertical directions, respectively. 𝐴𝑘 and 𝐴𝑘
𝑑
(𝑘 ∈ 𝑁) are

uncertain real-valued matrices with appropriate dimensions
and are assumed to be of the form

𝐴
𝑘
= 𝐴

𝑘
+ 𝐻

𝑘
𝐹
𝑘
(𝑖, 𝑗) 𝐸

𝑘

1
,

𝐴
𝑘

𝑑
= 𝐴

𝑘

𝑑
+ 𝐻

𝑘
𝐹
𝑘
(𝑖, 𝑗) 𝐸

𝑘

2
,

𝐵
𝑘
= 𝐵

𝑘
+ 𝐻

𝑘
𝐹
𝑘
(𝑖, 𝑗) 𝐸

𝑘

3
,

(2)

with

𝐴
𝑘
= [

[

𝐴
𝑘

11
𝐴
𝑘

12

𝐴
𝑘

21
𝐴
𝑘

22

]

]

, 𝐴
𝑘

𝑑
= [

[

𝐴
𝑘

𝑑11
𝐴
𝑘

𝑑12

𝐴
𝑘

𝑑21
𝐴
𝑘

𝑑22

]

]

,

𝐻
𝑘
= [

[

𝐻
𝑘

1

𝐻
𝑘

2

]

]

, 𝐸
𝑘

1
= [

[

𝐸
𝑘

11

𝐸
𝑘

12

]

]

,

𝐸
𝑘

2
= [

[

𝐸
𝑘

21

𝐸
𝑘

22

]

]

, 𝐸
𝑘

3
= [

[

𝐸
𝑘

31

𝐸
𝑘

32

]

]

,

(3)

where matrices 𝐴𝑘
11
∈ 𝑅

𝑛1×𝑛1 , 𝐴𝑘
12
∈ 𝑅

𝑛1×𝑛2 , 𝐴𝑘
21
∈ 𝑅

𝑛2×𝑛1 ,
𝐴
𝑘

22
∈ 𝑅

𝑛2×𝑛2 , 𝐴𝑘
𝑑11
∈ 𝑅

𝑛1×𝑛1 , 𝐴𝑘
𝑑12
∈ 𝑅

𝑛1×𝑛2 , 𝐴𝑘
𝑑21
∈ 𝑅

𝑛2×𝑛1 ,
𝐴
𝑘

𝑑22
∈ 𝑅

𝑛2×𝑛2 ,𝐻𝑘

1
,𝐻𝑘

2
,𝐸𝑘

11
,𝐸𝑘

12
,𝐸𝑘

21
,𝐸𝑘

22
,𝐸𝑘

31
,𝐸𝑘

32
are constant

matrices. 𝐹𝑘(𝑖, 𝑗) (𝑘 ∈ 𝑁) is an unknownmatrix representing
parameter uncertainty and satisfies

𝐹
𝑘𝑇
(𝑖, 𝑗) 𝐹

𝑘
(𝑖, 𝑗) ≤ 𝐼. (4)

The boundary conditions are given by

𝑥
ℎ
(𝑖, 𝑗) = ℎ

𝑖𝑗
, ∀0 ≤ 𝑗 ≤ 𝑧

1
, −𝑑

ℎ
≤ 𝑖 ≤ 0,

𝑥
ℎ
(𝑖, 𝑗) = 0, ∀𝑗 > 𝑧

1
, −𝑑

ℎ
≤ 𝑖 ≤ 0,

𝑥
V
(𝑖, 𝑗) = V

𝑖𝑗
, ∀0 ≤ 𝑖 ≤ 𝑧

2
, −𝑑V ≤ 𝑗 ≤ 0,

𝑥
V
(𝑖, 𝑗) = 0, ∀𝑖 > 𝑧

2
, −𝑑V ≤ 𝑗 ≤ 0,

(5)

where 𝑧
1
< ∞ and 𝑧

2
< ∞ are positive integers, and ℎ

𝑖𝑗
and

V
𝑖𝑗
are given vectors.
In this paper, it is assumed that (1) at each time only one

subsystem is active; (2) the switching signal is not known a
priori, but its value is available at each sampling period; (3)
the switch occurs only at each sampling point of 𝑖 or 𝑗. The
switching sequence can be described as follows:

((𝑖
0
, 𝑗
0
) , 𝜎 (𝑖

0
, 𝑗
0
)) , ((𝑖

1
, 𝑗
1
) , 𝜎 (𝑖

1
, 𝑗
1
)) , . . . ,

((𝑖
𝜅
, 𝑗
𝜅
) , 𝜎 (𝑖

𝜅
, 𝑗
𝜅
)) , . . . ,

(6)

where (𝑖
𝜅
, 𝑗
𝜅
) denotes the 𝜅th switching instant. It should be

noted that the value of 𝜎(𝑖, 𝑗) only depends on 𝑖 + 𝑗 (see [29,
30]).
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However, in actual operation, there inevitably exists asyn-
chronous switching between the controller and the system.
Without loss of generality, we only consider the case where
the switching instants of the controller experience delays with
respect to those of the system. Let𝜎(𝑖, 𝑗)denote the switching
signal of the controller. Denoting𝑚

𝜅
= 𝑖

𝜅
+ 𝑗

𝜅
, Δ𝑚

𝜅
= Δ𝑖

𝜅
+

Δ𝑗
𝜅
, 𝜅 = 1,2, . . ., then the switching points of the controller

can be described as

(𝑖
0
, 𝑗
0
) , (𝑖

1
+ Δ𝑖

1
, 𝑗
1
+ Δ𝑗

1
) , . . . , (𝑖

𝜅
+ Δ𝑖

𝜅
, 𝑗
𝜅
+ Δ𝑗

𝜅
) , . . . ,

(7)

where Δ𝑖
𝜅
and Δ𝑗

𝜅
represent the delayed period along hori-

zontal and vertical directions, respectively.Δ𝑚
𝜅
< inf(𝑚

𝜅+1
−

𝑚
𝜅
) is said to be the mismatched period.

Remark 1. Similar to the one-dimensional switched system
case [33–36], the mismatched period Δ𝑚

𝜅
< inf(𝑚

𝜅+1
− 𝑚

𝜅
)

guarantees that there always exists a period in which the
controller and the system operate synchronously.This period
is said to be the matched period in the later section.

Remark 2. If there is only one subsystem in system (1), it will
degenerate to the following 2D system in Roesser model with
state delays [12]:

[
𝑥
ℎ
(𝑖 + 1, 𝑗)

𝑥
V
(𝑖, 𝑗 + 1)

] = 𝐴[
𝑥
ℎ
(𝑖, 𝑗)

𝑥
V
(𝑖, 𝑗)

] + 𝐴
𝑑
[
𝑥
ℎ
(𝑖 − 𝑑

ℎ
, 𝑗)

𝑥
V
(𝑖, 𝑗 − 𝑑V)

] ,

(8)

Definition 3. System (1) is said to be exponentially stable
under 𝜎(𝑖, 𝑗) if, for a given 𝑧 ≥ 0, there exist positive constants
𝑐 and 𝜂, such that

∑

𝑖+𝑗=𝐷

𝑥 (𝑖, 𝑗)


2

≤ 𝜂𝑒
−𝑐(𝐷−𝑧)

∑

𝑖+𝑗=𝑧

𝑥 (𝑖, 𝑗)


2

𝐶
, (9)

holds for all𝐷 ≥ 𝑧, where

∑

𝑖+𝑗=𝑧

𝑥 (𝑖, 𝑗)


2

𝐶

≜ sup
−𝑑ℎ≤𝜃ℎ≤0,

−𝑑V≤𝜃V≤0

∑

𝑖+𝑗=𝑧

(

𝑥
ℎ
(𝑖 − 𝜃

ℎ
, 𝑗)


2

+
𝑥

V
(𝑖, 𝑗 − 𝜃V)



2

) .

(10)

Remark 4. From Definition 3, it is easy to see that when 𝑧 is
given, ∑

𝑖+𝑗=𝑧
‖𝑥(𝑖, 𝑗)‖

2

𝐶
will be bounded and ∑

𝑖+𝑗=𝐷
‖𝑥(𝑖, 𝑗)‖

2

will tend to be zero exponentially as𝐷 goes to infinity, which
implies that ‖𝑥(𝑖, 𝑗)‖ tends to be zero.

Definition 5. Let (𝑖
𝜅
, 𝑗
𝜅
) denote the 𝜅th switching point and

(𝑖
𝜅+1
, 𝑗
𝜅+1
) denote the (𝜅+1)th switching point. Denote𝑚

𝜅
=

𝑖
𝜅
+𝑗

𝜅
,𝑚

𝜅+1
= 𝑖

𝜅+1
+𝑗

𝜅+1
, 𝜏 = inf(𝑚

𝜅+1
−𝑚

𝜅
), then 𝜏 is called

the dwell time.

Definition 6 (see [30]). For any 𝑖 + 𝑗 = 𝐷 ≥ 𝑧 = 𝑖
𝑧
+ 𝑗

𝑧
,

let𝑁
𝜎(𝑖,𝑗)
(𝑧, 𝐷) denote the switching number of 𝜎(𝑖, 𝑗) on the

interval [𝑧, 𝐷). If

𝑁
𝜎(𝑖,𝑗)

(𝑧, 𝐷) ≤ 𝑁
0
+
𝐷 − 𝑧

𝜏
𝑎

(11)

holds for given 𝑁
0
≥ 0 and 𝜏

𝑎
≥ 0, then the constant 𝜏

𝑎
is

called the average dwell time and𝑁
0
is the chatter bound.

Lemma 7 (see [37]). For a given matrix 𝑆 = [ 𝑆11 𝑆12
𝑆
𝑇

12
𝑆22
], where

𝑆
11

and 𝑆
22

are square matrices, the following conditions are
equivalent:

(i) 𝑆 < 0,
(ii) 𝑆

11
< 0, 𝑆

22
− 𝑆

𝑇

12
𝑆
−1

11
𝑆
12
< 0,

(iii) 𝑆
22
< 0, 𝑆

11
− 𝑆

12
𝑆
−1

22
𝑆
𝑇

12
< 0.

Lemma 8 (see [38]). Let 𝑈, 𝑉,𝑊, and 𝑋 be real matrices of
appropriate dimensions with𝑋 satisfying𝑋 = 𝑋𝑇, then for all
𝑉
𝑇
𝑉 ≤ 𝐼,

𝑋 + 𝑈𝑉𝑊 +𝑊
𝑇
𝑉
𝑇
𝑈
𝑇
< 0, (12)

if and only if there exists a scalar 𝜀 such that

𝑋 + 𝜀𝑈𝑈
𝑇
+ 𝜀

−1
𝑊

𝑇
𝑊 < 0. (13)

3. Main results

3.1. Stability Analysis. In this section, we first focus on the
stability analysis for system (8).

Lemma 9. Consider system (8) with the boundary conditions
(5), suppose that there exists a 𝐶1 function 𝑉 : 𝑅𝑛 → 𝑅. For
a given positive constant 𝛼, if there exist positive definite sym-
metric matrices 𝑃 = diag{𝑃

ℎ
, 𝑃V} and 𝑄 = diag{𝑄

ℎ
, 𝑄V} with

appropriate dimensions, such that the following inequality
holds:

[
[

[

𝑄 − 𝛼𝑃 0 𝐴
𝑇
𝑃

∗ −Λ
1
𝑄 𝐴

𝑇

𝑑
𝑃

∗ ∗ −𝑃

]
]

]

< 0, (14)

whereΛ
1
= diag{𝛼𝑑ℎ𝐼

ℎ
, 𝛼

𝑑V𝐼V}, then along the trajectory of sys-
tems (8), the following inequality holds for any𝐷 ≥ 𝐷:

∑

𝑖+𝑗=𝐷

𝑉 (𝑥 (𝑖, 𝑗)) < 𝛼
𝐷−𝐷


∑

𝑖+𝑗=𝐷


𝑉 (𝑥 (𝑖, 𝑗)) , (15)

where𝐷
≥ 𝑧 and 𝑧 = max{𝑧

1
, 𝑧

2
}.

Proof. See appendix for the detailed proof, it is omitted here.

Remark 10. Lemma 9 provides amethod for the estimation of
the 𝐶1 function𝑉 which will be used to design the controller
for system (1) under asynchronous switching. It is worth
pointing out that when 0 < 𝛼 < 1, (15) presents the decay
estimation of the 𝐶1 function 𝑉, and when 𝛼 > 1, (15) shows
the growth estimation of the 𝐶1 function 𝑉.

Remark 11. It is noted that the block diagonal matrices 𝑃 and
𝑄 are often chosen as the matrices for Lyapunov functional
analysis of 2D systems by the Roesser model in the existing
literature (see, e.g., [12, 13, 15]). This is because 2D systems
in Roesser model may be unstable when the block diagonal
matrices are not chosen, which has been shown in the litera-
ture [4, 5].
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3.2. Controller Design. Consider system (1), under the follow-
ing asynchronous switching controller:

𝑢 (𝑖, 𝑗) = 𝐾
𝜎

(𝑖,𝑗)
𝑥 (𝑖, 𝑗) , 𝐾

𝜎

(𝑖,𝑗)
= [𝐾

𝜎

(𝑖,𝑗)

1
𝐾
𝜎

(𝑖,𝑗)

2
] ,

(16)

where𝐾𝜎

(𝑖,𝑗)

1
∈ 𝑅

𝑚×𝑛1 and𝐾𝜎

(𝑖,𝑗)

2
∈ 𝑅

𝑚×𝑛2 , the corresponding
closed-loop system is given by

[
𝑥
ℎ
(𝑖 + 1, 𝑗)

𝑥
V
(𝑖, 𝑗 + 1)

]

= (𝐴
𝜎(𝑖,𝑗)

+ 𝐵
𝜎(𝑖,𝑗)
𝐾
𝜎

(𝑖,𝑗)
) [
𝑥
ℎ
(𝑖, 𝑗)

𝑥
V
(𝑖, 𝑗)

]

+ 𝐴
𝜎(𝑖,𝑗)

𝑑
[
𝑥
ℎ
(𝑖 − 𝑑

ℎ
, 𝑗)

𝑥
V
(𝑖, 𝑗 − 𝑑V)

] .

(17)

Without loss of generality, we denote 𝜎(𝑖
𝜅
, 𝑗
𝜅
) = 𝑘 ∈ 𝑁

and 𝜎(𝑖
𝜅+1
, 𝑗
𝜅+1
) = 𝑙 ∈ 𝑁, then due to the existence of asyn-

chronous switching, we can obtain from (7) that

𝜎

(𝑖
𝜅
+ Δ𝑖

𝜅
, 𝑗
𝜅
+ Δ𝑗

𝜅
) = 𝑘,

𝜎

(𝑖
𝜅+1
+ Δ𝑖

𝜅+1
, 𝑗
𝜅+1
+ Δ𝑗

𝜅+1
) = 𝑙.

(18)

In many actual applications, it is always difficult to verify
each asynchronous period in advance, but the maximal
asynchronous period can be easily predicted offline. Let Δ =
max

𝜅=1,2,...
(Δ𝑚

𝜅
) denote the maximal asynchronous period,

then we can get the following result.

Theorem 12. Consider system (1), for given positive constants
𝛼 < 1 and 𝛽 > 1, if there exist positive definite symmetric
matrices 𝑋𝑘

= diag{𝑋𝑘

ℎ
, 𝑋

𝑘

V}, 𝑌
𝑘
= diag{𝑌𝑘

ℎ
, 𝑌

𝑘

V }, 𝑋
𝑘𝑙
=

diag{𝑋𝑘𝑙

ℎ
, 𝑋

𝑘𝑙

V }, 𝑌
𝑘𝑙
= diag{𝑌𝑘𝑙

ℎ
, 𝑌

𝑘𝑙

V } and𝑊
𝑘 with appropriate

dimensions, and positive scalars 𝜀
𝑘
and 𝜀

𝑘𝑙
such that, for 𝑘, 𝑙 ∈

𝑁, 𝑘 ̸= 𝑙, the following inequalities hold,

[
[
[
[
[
[
[
[
[
[
[

[

−𝛼𝑋
𝑘

0 (𝐴
𝑘
𝑋
𝑘
+ 𝐵

𝑘
𝑊

𝑘
)
𝑇

𝑋
𝑘
(𝐸

𝑘

1
𝑋
𝑘
+ 𝐸

𝑘

3
𝑊

𝑘
)
𝑇

∗ −Λ
1
𝑌
𝑘

(𝐴
𝑘

𝑑
𝑌
𝑘
)
𝑇

0 (𝐸
𝑘

2
𝑌
𝑘
)
𝑇

∗ ∗ −𝑋
𝑘
+ 𝜀

𝑘
𝐻

𝑘
𝐻

𝑘𝑇
0 0

∗ ∗ ∗ −𝑌
𝑘

0

∗ ∗ ∗ ∗ −𝜀
𝑘
𝐼

]
]
]
]
]
]
]
]
]
]
]

]

< 0,

(19)

[
[
[
[
[
[
[
[

[

−𝛽𝑋
𝑘𝑙

0 (𝐴
𝑙
𝑋
𝑘𝑙
+ 𝐵

𝑙
𝐾
𝑘
𝑋
𝑘𝑙
)
𝑇

𝑋
𝑘𝑙
(𝐸

𝑙

1
𝑋
𝑘𝑙
+ 𝐸

𝑙

3
𝐾
𝑘
𝑋
𝑘𝑙
)
𝑇

∗ −Λ
2
𝑌
𝑘𝑙

(𝐴
𝑙

𝑑
𝑌
𝑘𝑙
)
𝑇

0 (𝐸
𝑙

2
𝑌
𝑘𝑙
)
𝑇

∗ ∗ −𝑋
𝑘𝑙
+ 𝜀

𝑘𝑙
𝐻

𝑙
𝐻

𝑙𝑇
0 0

∗ ∗ ∗ −𝑌
𝑘𝑙

0

∗ ∗ ∗ ∗ −𝜀
𝑘𝑙
𝐼

]
]
]
]
]
]
]
]

]

< 0, (20)

whereΛ
2
=diag{𝛽𝑑ℎ𝐼

ℎ
, 𝛽

𝑑V𝐼V}, then under the following switch-
ing controller:

𝑢 (𝑖, 𝑗) = 𝐾
𝜎

(𝑖,𝑗)
𝑥 (𝑖, 𝑗) , 𝐾

𝑘
= 𝑊

𝑘
(𝑋

𝑘
)
−1

, (21)

and the following average dwell time scheme:

𝜏
𝑎
> 𝜏

∗

𝑎
=
Δ (ln𝛽 − ln𝛼) + ln (𝜇

1
𝜇
2
)

− ln𝛼
, (22)

the resulting closed-loop system (17) is exponentially stable,
where 𝜇 = (𝛼/𝛽)𝑑, 𝑑 = max{𝑑

ℎ
, 𝑑V}, and 𝜇1𝜇2𝜇 ≥ 1 satisfies

𝑋
−1

𝑙
≤ 𝜇

1
𝑋
−1

𝑘𝑙
, 𝑋

−1

𝑘𝑙
≤ 𝜇

2
𝑋
−1

𝑘
,

𝑌
−1

𝑙
≤ 𝜇

1
𝑌
−1

𝑘𝑙
, 𝑌

−1

𝑘𝑙
≤ 𝜇

2
𝜇𝑌

−1

𝑘
.

(23)

Proof. See the appendix.

Remark 13. InTheorem 12, we propose a sufficient condition
for the existence of a state feedback controller such that
the resulting closed-loop system (17) is exponentially stable.
It is worth noting that this condition is obtained by using
the average dwell time approach. Here, 𝛼 plays a key role in

controlling the rate of decaying of the system in the matched
period, and 𝛽 plays a key role in controlling the rate of
increasing of the system in the mismatched period. From
(22), we know that the value of 𝜏∗

𝑎
is proportional to the value

of Δ, which also means that it needs much larger dwell time
to guarantee the stability of the considered systemwhen there
exists much larger asynchronous period.

Remark 14. It is noticed that (19) and (20) are mutually
dependent. Therefore, we can firstly solve (19) to obtain the
solution of matrices𝑋𝑘, 𝑌𝑘, and𝑊𝑘. Then, (20) can be trans-
formed into the LMI by substituting 𝐾𝑘

= 𝑊
𝑘
(𝑋

𝑘
)
−1

into it.
By adjusting the parameters 𝛼 and 𝛽, we can find a feasible
solution of 𝑋𝑘, 𝑌𝑘,𝑊𝑘, 𝑋𝑘𝑙, and 𝑌𝑘𝑙 such that (19) and (20)
hold.

The procedure of the controller design for system (1) can
be given as follows.

Step 1. Given system matrices and positive scalar 0 < 𝛼 <
1, and by solving LMI (19), we can get the feasible solution
of matrices 𝑋𝑘, 𝑌𝑘, and 𝑊𝑘 and positive scalar 𝜀

𝑘
then, the

controller can be obtained from (21).



Abstract and Applied Analysis 5

Step 2. Substituting 𝐾𝑘 into (20), we can find the feasible
solution of 𝑋𝑘𝑙, 𝑌𝑘𝑙, and 𝜀

𝑘𝑙
such that (20) holds by adjusting

the parameter 𝛽.

Step 3. From (23), we can obtain 𝜇
1
and 𝜇

2
satisfying 𝜇

1
𝜇
2
𝜇 ≥

1.

Step 4. Taking the value of Δ, we can compute the value of 𝜏∗
𝑎

by (22).

Remark 15. From the procedure above, it can be seen that
the proposed method is feasible. We can find the desire
controller and switching signal according to the procedure.
However, we would like to point out that there still exists the
conservatism to some extent for thismethod because (19) and
(20) aremutually dependent, which brings about the increase
of the complex computation. The result can be improved by
adopting the method presented in [31, 32].

When𝐴𝜎(𝑖,𝑗)
𝑑

= 0, system (17) degenerates to the following
delay-free system:

[
𝑥
ℎ
(𝑖 + 1, 𝑗)

𝑥
V
(𝑖, 𝑗 + 1)

] = (𝐴
𝜎(𝑖,𝑗)

+ 𝐵
𝜎(𝑖,𝑗)
𝐾

𝜎

(𝑖,𝑗)
)[
𝑥
ℎ
(𝑖, 𝑗)

𝑥
V
(𝑖, 𝑗)

] .

(24)

Then, we can get the following result.

Corollary 16. Consider system (1) with 𝐴𝜎(𝑖,𝑗)
𝑑

= 0, for given
positive constants 𝛼 < 1 and 𝛽 > 1, if there exist positive
definite symmetric matrices 𝑋𝑘

= diag{𝑋𝑘

ℎ
, 𝑋

𝑘

V} and 𝑋
𝑘𝑙
=

diag{𝑋𝑘𝑙

ℎ
, 𝑋

𝑘𝑙

V } with appropriate dimensions, and posi-
tive scalars 𝜀

𝑘
and 𝜀

𝑘𝑙
such that, for 𝑘, 𝑙 ∈ 𝑁, 𝑘 ̸= 𝑙, the following

inequalities hold:

[
[
[

[

−𝛼𝑋
𝑘
(𝐴

𝑘
𝑋
𝑘
+ 𝐵

𝑘
𝑊

𝑘
)
𝑇

(𝐸
𝑘

1
𝑋
𝑘
+ 𝐸

𝑘

3
𝑊

𝑘
)
𝑇

∗ −𝑋
𝑘
+ 𝜀

𝑘
𝐻

𝑘
𝐻

𝑘𝑇
0

∗ ∗ −𝜀
𝑘
𝐼

]
]
]

]

< 0,

[
[
[

[

−𝛽𝑋
𝑘𝑙
(𝐴

𝑙
𝑋
𝑘𝑙
+ 𝐵

𝑙
𝐾
𝑘
𝑋
𝑘𝑙
)
𝑇

(𝐸
𝑙

1
𝑋
𝑘𝑙
+ 𝐸

𝑙

3
𝐾
𝑘
𝑋
𝑘𝑙
)
𝑇

∗ −𝑋
𝑘𝑙
+ 𝜀

𝑘𝑙
𝐻

𝑙
𝐻

𝑙𝑇
0

∗ ∗ −𝜀
𝑘𝑙
𝐼

]
]
]

]

< 0,

(25)

then under the following switching controller:

𝑢 (𝑖, 𝑗) = 𝐾
𝜎

(𝑖,𝑗)
𝑥 (𝑖, 𝑗) , 𝐾

𝑘
= 𝑊

𝑘
(𝑋

𝑘
)
−1

, (26)

and the following average dwell time scheme:

𝜏
𝑎
> 𝜏

∗

𝑎
=
Δ (ln𝛽 − ln𝛼) + ln (𝜇

1
𝜇
2
)

− ln𝛼
, (27)

the resulting closed-loop system (24) is exponentially stable,
where 𝜇

1
𝜇
2
≥ 1 satisfies

𝑋
−1

𝑙
≤ 𝜇

1
𝑋
−1

𝑘𝑙
, 𝑋

−1

𝑘𝑙
≤ 𝜇

2
𝑋
−1

𝑘
. (28)

Furthermore, it should also be noted that if the criterion
in Theorem 12 is satisfied when Δ = 0, which means that

the controller and the subsystem are synchronous, in other
words, the results presented in Theorem 12 can be reduced
to the synchronous case, then we can obtain the following
corollary.

Corollary 17. Consider system (1) under synchronous switch-
ing, for a given positive scalar 𝛼 < 1, if there exist positive
definite symmetricmatrices𝑋𝑘

= diag{𝑋𝑘

ℎ
, 𝑋

𝑘

V},𝑌
𝑘
= diag{𝑌𝑘

ℎ
,

𝑌
𝑘

V }, and 𝑊
𝑘, with appropriate dimensions, and a positive

scalar 𝜀
𝑘
, such that, for 𝑘 ∈ 𝑁, the following inequality holds:

[
[
[
[
[
[
[
[
[
[

[

−𝛼𝑋
𝑘

0 (𝐴
𝑘
𝑋
𝑘
+ 𝐵
𝑘
𝑊
𝑘
)
𝑇

𝑋
𝑘
(𝐸
𝑘

1
𝑋
𝑘
+ 𝐸
𝑘

3
𝑊
𝑘
)
𝑇

∗ −Λ
1
𝑌
𝑘

(𝐴
𝑘

𝑑
𝑌
𝑘
)
𝑇

0 (𝐸
𝑘

2
𝑌
𝑘
)
𝑇

∗ ∗ −𝑋
𝑘
+ 𝜀
𝑘
𝐻
𝑘
𝐻
𝑘𝑇

0 0

∗ ∗ ∗ −𝑌
𝑘

0

∗ ∗ ∗ ∗ −𝜀
𝑘
𝐼

]
]
]
]
]
]
]
]
]
]

]

< 0,

(29)

then under the following controller:

𝑢 (𝑖, 𝑗) = 𝐾
𝑘
𝑥 (𝑖, 𝑗) , 𝐾

𝑘
= 𝑊

𝑘
(𝑋

𝑘
)
−1

, (30)

and the following average dwell time scheme:

𝜏
𝑎
> 𝜏

∗

𝑎
=

ln 𝜇
1

− ln𝛼
, (31)

the resulting closed-loop system is exponentially stable, where
𝜇
1
≥ 1 satisfies

𝑋
−1

𝑙
≤ 𝜇

1
𝑋
−1

𝑘
, 𝑌

−1

𝑙
≤ 𝜇

1
𝑌
−1

𝑘
. (32)

Remark 18. In [30], by using the average dwell time approach,
a criterion of exponential stability for a class of 2D discrete
delay-free switched systems is developed. However, the focus
of our work is on stability analysis and controller design
under asynchronous switching, which is different from [30],
and this is also the major contribution of our work. In fact, if
we let Δ = 0 and do not consider the uncertainties and state
delays, then the closed-loop system (24) is the same as (36) in
[30]. In this case, Corollary 17 can be reduced to Theorem 2
in [30].

4. Numerical Example

In this section, we present an example to illustrate the effec-
tiveness of the proposed approach.

Consider system (1) with the following parameters:

𝐴
1
= [
1 1.5

1 0.5
] , 𝐴

1

𝑑
= [
−0.15 0

−0.1 −0.12
] , (33)

𝐵
1
= [
−4.5 0

1 −3
] , 𝐻

1
= [
0.2 0.15

0.1 0.2
] , (34)
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𝐸
1

1
= [
−0.2 0

−0.2 −0.2
] , 𝐸

1

2
= [
0.1 0

0.1 0.2
] ,

𝐹
1
= diag {sin (0.5𝜋 (𝑖 + 𝑗)) , sin (0.5𝜋 (𝑖 + 𝑗))} ,

𝐸
1

3
= [
0.15 0

0.13 0.12
] , 𝐴

2
= [
1 2

1 1
] ,

𝐴
2

𝑑
= [
−0.1 0.2

0 −0.2
] , 𝐵

2
= [
−5 1

−1 −3
] ,

𝐻
2
= [
0.2 0.25

0.2 0.3
] , 𝐸

2

1
= [
0.1 0.2

0.2 0.1
]

𝐸
2

2
= [
0.2 0.1

0.2 0.1
] , 𝐸

2

3
= [
0.12 0.15

0.12 0.1
] ,

𝐹
2
= diag {cos (0.5𝜋 (𝑖 + 𝑗)) , cos (0.5𝜋 (𝑖 + 𝑗))} ,

𝑑
ℎ
= 2, 𝑑V = 3.

(35)

The boundary conditions are given as follows:

𝑥
ℎ
(0, 𝑗) = {

5, 0 ≤ 𝑗 ≤ 20,

0, 𝑗 > 20,

𝑥
V
(𝑖, 0) = {

3, 0 ≤ 𝑖 ≤ 20,

0, 𝑖 > 20,

(36)

where the state dimensions are 𝑛
1
= 1 and 𝑛

2
= 1.

Take 𝛼 = 0.6 and 𝛽 = 1.2, then solving (19) inTheorem 12
gives rise to

𝑋
1
= [
36.3903 1.0247

1.0247 38.3909
] , 𝑋

2
= [
40.0833 −6.6640

−6.6640 34.4516
] ,

𝑌
1
= [
96.6213 −4.5896

−4.5896 96.9472
] , 𝑌

2
= [
99.6213 −8.8472

−8.8472 79.5315
] ,

𝑊
1
= [
8.5866 13.0604

15.5568 11.4091
] , 𝑊

2
= [
6.9844 13.2930

8.3790 4.4234
] ,

𝜀
1
= 74.2107, 𝜀

2
= 73.4149.

(37)

By (21),𝐾1 and𝐾2 can be obtained as follows:

𝐾
1
= [
0.2265 0.3341

0.4194 0.2860
] , 𝐾

2
= [
0.2463 0.4335

0.2380 0.1744
] .

(38)

Substituting 𝐾1 and 𝐾2 into (20), and solving it, we get the
following solution:

𝑋
12
=[
0.5400 −0.0934

−0.0934 0.4811
] , 𝑋

21
=[
0.5805 −0.0926

−0.0926 0.5677
] ,

𝑌
12
=[
0.9398 −0.0418

−0.0418 0.8451
] , 𝑌

21
=[
0.9436 −0.0340

−0.0340 0.8867
] ,

𝜀
12
=0.9011, 𝜀

21
=0.7725.

(39)

Then, from (23), we can get that 𝜇
1
= 0.0171 and 𝜇

2
=

917.7224. Taking Δ = 2, it is easy to obtain from (22) that
𝜏
∗

𝑎
= 7.9. Choosing 𝜏

𝑎
= 8, the trajectories of the states𝑥ℎ(𝑖, 𝑗)

and 𝑥V(𝑖, 𝑗) are shown in Figures 1 and 2, respectively. The
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Figure 1: The trajectory of the state 𝑥ℎ(𝑖, 𝑗).

system switching signal 𝜎(𝑖, 𝑗) and the controller switching
signal 𝜎(𝑖, 𝑗) are shown in Figure 3. One can see that the
states of the closed-loop system converge to zero under the
asynchronous switching. This demonstrates the effectiveness
of the proposed approach.

5. Conclusions

This paper has investigated the problem of stabilization for
a class of 2D discrete switched systems with constant state
delays under asynchronous switching. A state feedback con-
troller is proposed to stabilize such system, and the dwell time
approach is utilized for the stability analysis and controller
design. A sufficient condition for the existence of such
controller is formulated in terms of a set of LMIs. An
example is also given to illustrate the applicability of the
proposed approach. Our future work will focus on extending
the proposed design method to other problems such as
robust 𝐻

∞
control for 2D discrete switched systems with

time-varying delays and fractional uncertainties under asyn-
chronous switching.

Appendix

Proof of Lemma 9. Consider the following Lyapunov-Kra-
sovskii functional candidate:

𝑉 (𝑥 (𝑖, 𝑗)) = 𝑉
ℎ
(𝑥

ℎ
(𝑖, 𝑗)) + 𝑉

V
(𝑥

V
(𝑖, 𝑗)) , (A.1)

where
𝑉
ℎ
(𝑥

ℎ
(𝑖, 𝑗))

= 𝑥
ℎ
(𝑖, 𝑗)

𝑇

𝑃
ℎ
𝑥
ℎ
(𝑖, 𝑗)

+

𝑖−1

∑

𝑟=𝑖−𝑑ℎ

𝑥
ℎ
(𝑟, 𝑗)

𝑇

𝑄
ℎ
𝑥
ℎ
(𝑟, 𝑗) 𝛼

𝑖−𝑟−1
,

𝑉
V
(𝑥

V
(𝑖, 𝑗))

= 𝑥
V
(𝑖, 𝑗)

𝑇

𝑃V𝑥
V
(𝑖, 𝑗)

+

𝑗−1

∑

𝑡=𝑗−𝑑V

𝑥
V
(𝑖, 𝑡)

𝑇
𝑄V𝑥

V
(𝑖, 𝑡) 𝛼

𝑗−𝑡−1
.

(A.2)
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Figure 2: The trajectory of the state 𝑥V(𝑖, 𝑗).
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Figure 3: Switching signal.

Along the trajectory of system (8), we have

𝑉
ℎ
(𝑥

ℎ
(𝑖 + 1, 𝑗)) − 𝛼𝑉

ℎ
(𝑥

ℎ
(𝑖, 𝑗))

= 𝑥
ℎ
(𝑖 + 1, 𝑗)

𝑇

𝑃
ℎ
𝑥
ℎ
(𝑖 + 1, 𝑗) − 𝛼𝑥

ℎ
(𝑖, 𝑗)

𝑇

𝑃
ℎ
𝑥
ℎ
(𝑖, 𝑗)

+ 𝑥
ℎ
(𝑖, 𝑗)

𝑇

𝑄
ℎ
𝑥
ℎ
(𝑖, 𝑗)

− 𝛼
𝑑ℎ𝑥

ℎ
(𝑖 − 𝑑

ℎ
, 𝑗)

𝑇

𝑄
ℎ
𝑥
ℎ
(𝑖 − 𝑑

ℎ
, 𝑗) ,

(A.3)

𝑉
V
(𝑥

V
(𝑖, 𝑗 + 1)) − 𝛼𝑉

V
(𝑥

V
(𝑖, 𝑗))

= 𝑥
V
(𝑖, 𝑗 + 1)

𝑇

𝑃V𝑥
V
(𝑖, 𝑗 + 1) − 𝛼𝑥

V
(𝑖, 𝑗)

𝑇

𝑃V𝑥
V
(𝑖, 𝑗)

+ 𝑥
V
(𝑖, 𝑗)

𝑇

𝑄V𝑥
V
(𝑖, 𝑗)

− 𝛼
𝑑V𝑥

V
(𝑖, 𝑗 − 𝑑V)

𝑇

𝑄V𝑥
V
(𝑖, 𝑗 − 𝑑V) .

(A.4)

It follows that
𝑉
ℎ
(𝑥

ℎ
(𝑖 + 1, 𝑗)) − 𝛼𝑉

ℎ
(𝑥

ℎ
(𝑖, 𝑗))

+ 𝑉
V
(𝑥

V
(𝑖, 𝑗 + 1)) − 𝛼𝑉

V
(𝑥

V
(𝑖, 𝑗))

=

[
[
[
[
[
[

[

[
𝑥
ℎ
(𝑖, 𝑗)

𝑥
V
(𝑖, 𝑗)

]

[

𝑥
ℎ
(𝑖 − 𝑑

ℎ
, 𝑗)

𝑥
ℎ
(𝑖, 𝑗 − 𝑑V)

]

]
]
]
]
]
]

]

𝑇

[

Φ
11
Φ
12

Φ
𝑇

12
Φ
22

]

[
[
[
[
[

[

[
𝑥
ℎ
(𝑖, 𝑗)

𝑥
V
(𝑖, 𝑗)

]

[

𝑥
ℎ
(𝑖 − 𝑑

ℎ
, 𝑗)

𝑥
ℎ
(𝑖, 𝑗 − 𝑑V)

]

]
]
]
]
]

]

,

(A.5)

where
Φ
11
= 𝑄 − 𝛼𝑃 + 𝐴

𝑇
𝑃𝐴, Φ

12
= 𝐴

𝑇
𝑃𝐴

𝑑
,

Φ
22
= 𝐴

𝑇

𝑑
𝑃𝐴

𝑑
− Λ

1
𝑄, Λ

1
= diag {𝛼𝑑ℎ𝐼

ℎ
, 𝛼

𝑑V𝐼V} .

(A.6)

Applying Lemma 7, it can be obtained from (14) that

[

Φ
11
Φ
12

Φ
𝑇

12
Φ
22

] < 0. (A.7)

For simplicity, we denote

𝑉
ℎ
(𝑖, 𝑗) = 𝑉

ℎ
(𝑥

ℎ
(𝑖, 𝑗)) , 𝑉

V
(𝑖, 𝑗) = 𝑉

V
(𝑥

V
(𝑖, 𝑗)) ,

𝑉 (𝑖, 𝑗) = 𝑉 (𝑥 (𝑖, 𝑗)) , 𝑉
ℎ
(𝑖 + 1, 𝑗) = 𝑉

ℎ
(𝑥 (𝑖 + 1, 𝑗)) ,

𝑉
V
(𝑖, 𝑗 + 1) = 𝑉

V
(𝑥 (𝑖, 𝑗 + 1)) .

(A.8)

Thus, it is easy to get that

𝑉
ℎ
(𝑖 + 1, 𝑗) + 𝑉

V
(𝑖, 𝑗 + 1) < 𝛼 (𝑉

ℎ
(𝑖, 𝑗) + 𝑉

V
(𝑖, 𝑗)) .

(A.9)

Notice that for any nonnegative integer𝐷 > 𝑧 = max(𝑧
1
, 𝑧

2
),

it holds that𝑉ℎ(0, 𝐷) = 𝑉V
(𝐷, 0) = 0; then summing up both

sides of (A.9) from𝐷−1 to 0 with respect to 𝑗 and 0 to𝐷−1
with respect to 𝑖, for any nonnegative integer 𝐷 > 𝐷

≥ 𝑧 =

max(𝑧
1
, 𝑧

2
), one gets

∑

𝑖+𝑗=𝐷

𝑉 (𝑖, 𝑗)

= 𝑉
ℎ
(0, 𝐷) + 𝑉

ℎ
(1, 𝐷 − 1) + 𝑉

ℎ
(2, 𝐷 − 2)

+ ⋅ ⋅ ⋅ + 𝑉
ℎ
(𝐷 − 1, 1) + 𝑉

ℎ
(𝐷, 0)

+ 𝑉
V
(0, 𝐷) + 𝑉

V
(1, 𝐷 − 1) + 𝑉

V
(2, 𝐷 − 2)

+ ⋅ ⋅ ⋅ + 𝑉
V
(𝐷 − 1, 1) + 𝑉

V
(𝐷, 0)

< 𝛼 (𝑉
ℎ
(0, 𝐷 − 1) + 𝑉

V
(0, 𝐷 − 1)

+ 𝑉
ℎ
(1, 𝐷 − 2) + 𝑉

V
(1, 𝐷 − 2)

+ ⋅ ⋅ ⋅ + 𝑉
ℎ
(𝐷 − 1, 0) + 𝑉

V
(𝐷 − 1, 0))

= 𝛼 ∑

𝑖+𝑗=𝐷−1

𝑉 (𝑖, 𝑗) < ⋅ ⋅ ⋅ < 𝛼
𝐷−𝐷


∑

𝑖+𝑗=𝐷


𝑉 (𝑖, 𝑗) .

(A.10)

The proof is completed.
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Proof of Theorem 12. When 𝐷 ∈ [𝑚
𝜅
+ Δ𝑚

𝜅
, 𝑚

𝜅+1
), the

closed-loop system (17) can be written as

[
𝑥
ℎ
(𝑖 + 1, 𝑗)

𝑥
V
(𝑖, 𝑗 + 1)

]

= (𝐴
𝑘
+ 𝐵

𝑘
𝐾
𝑘
) [
𝑥
ℎ
(𝑖, 𝑗)

𝑥
V
(𝑖, 𝑗)

] + 𝐴
𝑘

𝑑
[
𝑥
ℎ
(𝑖 − 𝑑

ℎ
, 𝑗)

𝑥
V
(𝑖, 𝑗 − 𝑑V)

] .

(A.11)

For the system, we consider the following Lyapunov function
candidate:

𝑉
𝑘
(𝑥 (𝑖, 𝑗)) = 𝑉

ℎ

𝑘
(𝑥

ℎ
(𝑖, 𝑗)) + 𝑉

V
𝑘
(𝑥

V
(𝑖, 𝑗)) , (A.12)

where

𝑉
ℎ

𝑘
(𝑥

ℎ
(𝑖, 𝑗))

= 𝑥
ℎ
(𝑖, 𝑗)

𝑇

𝑃
𝑘

ℎ
𝑥
ℎ
(𝑖, 𝑗) +

𝑖−1

∑

𝑟=𝑖−𝑑ℎ

𝑥
ℎ
(𝑟, 𝑗)

𝑇

𝑄
𝑘

ℎ
𝑥
ℎ
(𝑟, 𝑗) 𝛼

𝑖−𝑟−1
,

𝑉
V
𝑘
(𝑥

V
(𝑖, 𝑗))

= 𝑥
V
(𝑖, 𝑗)

𝑇

𝑃
𝑘

V 𝑥
V
(𝑖, 𝑗) +

𝑗−1

∑

𝑡=𝑗−𝑑V

𝑥
V
(𝑖, 𝑡)

𝑇
𝑄
𝑘

V𝑥
V
(𝑖, 𝑡) 𝛼

𝑗−𝑡−1
.

(A.13)

By Lemma 9, one gets that if there exist positive definite sym-
metric matrices 𝑃𝑘 = diag{𝑃𝑘

ℎ
, 𝑃

𝑘

V } and 𝑄
𝑘
= diag{𝑄𝑘

ℎ
, 𝑄

𝑘

V}

with appropriate dimensions, such that

[
[
[

[

𝑄
𝑘
− 𝛼𝑃

𝑘
0 (𝐴

𝑘
+ 𝐵

𝑘
𝐾
𝑘
)
𝑇

𝑃
𝑘

∗ −Λ
1
𝑄
𝑘

𝐴
𝑘𝑇

𝑑
𝑃
𝑘

∗ ∗ −𝑃
𝑘

]
]
]

]

< 0 (A.14)

holds, then the following inequality holds for any 𝐷 ≥ 𝑚
𝜅
+

Δ𝑚
𝜅
≥ 𝑧:

∑

𝑖+𝑗=𝐷

𝑉
𝑘
(𝑖, 𝑗) < 𝛼

𝐷−𝑚𝑘−Δ𝑚𝑘 ∑

𝑖+𝑗=𝑚𝜅+Δ𝑚𝜅

𝑉
𝑘
(𝑖, 𝑗) . (A.15)

When𝐷 ∈ [𝑚
𝜅+1
, 𝑚

𝜅+1
+Δ𝑚

𝜅+1
), the closed-loop system

(17) can be written as

[
𝑥
ℎ
(𝑖 + 1, 𝑗)

𝑥
V
(𝑖, 𝑗 + 1)

]

= (𝐴
𝑙
+ 𝐵

𝑙
𝐾
𝑘
) [
𝑥
ℎ
(𝑖, 𝑗)

𝑥
V
(𝑖, 𝑗)

] + 𝐴
𝑙

𝑑
[
𝑥
ℎ
(𝑖 − 𝑑

ℎ
, 𝑗)

𝑥
V
(𝑖, 𝑗 − 𝑑V)

] .

(A.16)

Consider the following Lyapunov function candidate:

𝑉
𝑘𝑙
(𝑥 (𝑖, 𝑗)) = 𝑉

ℎ

𝑘𝑙
(𝑥

ℎ
(𝑖, 𝑗)) + 𝑉

V
𝑘𝑙
(𝑥

V
(𝑖, 𝑗)) , (A.17)

where

𝑉
ℎ

𝑘𝑙
(𝑥

ℎ
(𝑖, 𝑗))

= 𝑥
ℎ
(𝑖, 𝑗)

𝑇

𝑃
𝑘𝑙

ℎ
𝑥
ℎ
(𝑖, 𝑗)

+

𝑖−1

∑

𝑟=𝑖−𝑑ℎ

𝑥
ℎ
(𝑟, 𝑗)

𝑇

𝑄
𝑘𝑙

ℎ
𝑥
ℎ
(𝑟, 𝑗) 𝛼

𝑖−𝑟−1
,

𝑉
V
𝑘𝑙
(𝑥

V
(𝑖, 𝑗))

= 𝑥
V
(𝑖, 𝑗)

𝑇

𝑃
𝑘𝑙

V 𝑥
V
(𝑖, 𝑗)

+

𝑗−1

∑

𝑡=𝑗−𝑑V

𝑥
V
(𝑖, 𝑡)

𝑇
𝑄
𝑘𝑙

V 𝑥
V
(𝑖, 𝑡) 𝛼

𝑗−𝑡−1
.

(A.18)

Similarly, by Lemma 9, we get that if there exist positive
definite symmetric matrices 𝑃𝑘𝑙 = diag{𝑃𝑘𝑙

ℎ
, 𝑃

𝑘𝑙

V } and 𝑄
𝑘𝑙
=

diag{𝑄𝑘𝑙
ℎ
, 𝑄

𝑘𝑙

V } with appropriate dimensions, such that

[
[
[

[

𝑄
𝑘𝑙
− 𝛽𝑃

𝑘𝑙
0 (𝐴

𝑙
+ 𝐵

𝑙
𝐾
𝑘
)
𝑇

𝑃
𝑘𝑙

∗ −Λ
2
𝑄
𝑘𝑙

𝐴
𝑙𝑇

𝑑
𝑃
𝑘𝑙

∗ ∗ −𝑃
𝑘𝑙

]
]
]

]

< 0 (A.19)

holds, then the following inequality holds for any𝐷 ≥ 𝑚
𝜅+1
≥

𝑧:

∑

𝑖+𝑗=𝐷

𝑉
𝑘𝑙
(𝑖, 𝑗) < 𝛽

𝐷−𝑚𝑘+1 ∑

𝑖+𝑗=𝑚𝜅+1

𝑉
𝑘𝑙
(𝑖, 𝑗) . (A.20)

Consider the following piecewise Lyapunov functional can-
didate for system (17):

𝑉 (𝑖, 𝑗) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

𝑥
ℎ
(𝑖, 𝑗)

𝑇

𝑃
𝜎(𝑖,𝑗)

ℎ
𝑥
ℎ
(𝑖, 𝑗)

+𝑥
V
(𝑖, 𝑗)

𝑇

𝑃
𝜎(𝑖,𝑗)

V 𝑥
V
(𝑖, 𝑗)

+

𝑖−1

∑

𝑟=𝑖−𝑑ℎ

𝑥
ℎ
(𝑟, 𝑗)

𝑇

𝑄
𝜎(𝑖,𝑗)

ℎ
𝑥
ℎ
(𝑟, 𝑗) 𝛼

𝑖−𝑟−1

+

𝑗−1

∑

𝑡=𝑗−𝑑V

𝑥
V
(𝑖, 𝑡)

𝑇
𝑄
𝜎(𝑖,𝑗)

V 𝑥
V
(𝑖, 𝑡) 𝛼

𝑗−𝑡−1
,

𝐷 ∈ [𝑚
0
, 𝑚

1
) ∪ [𝑚

𝜋
+ Δ𝑚

𝜋
, 𝑚

𝜋+1
) ,

𝜋 = 1, 2, . . . , 𝜅 . . . ,

𝑥
ℎ
(𝑖, 𝑗)

𝑇

𝑃
𝜎

(𝑖,𝑗)𝜎(𝑖,𝑗)

ℎ
𝑥
ℎ
(𝑖, 𝑗)

+𝑥
V
(𝑖, 𝑗)

𝑇

𝑃
𝜎

(𝑖,𝑗)𝜎(𝑖,𝑗)

V 𝑥
V
(𝑖, 𝑗)

+

𝑖−1

∑

𝑟=𝑖−𝑑ℎ

𝑥
ℎ
(𝑟, 𝑗)

𝑇

𝑄
𝜎

(𝑖,𝑗)𝜎(𝑖,𝑗)

ℎ
𝑥
ℎ
(𝑟, 𝑗) 𝛼

𝑖−𝑟−1

+

𝑗−1

∑

𝑡=𝑗−𝑑V

𝑥
V
(𝑖, 𝑡)

𝑇
𝑄
𝜎

(𝑖,𝑗)𝜎(𝑖,𝑗)

V 𝑥
V
(𝑖, 𝑡) 𝛼

𝑗−𝑡−1
,

𝐷 ∈ [𝑚
𝜋
, 𝑚

𝜋
+ Δ𝑚

𝜋
) , 𝜋 = 1, 2, . . . , 𝜅 . . . .

(A.21)
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Now, let 𝜐 = 𝑁
𝜎(𝑖,𝑗)
(𝑧, 𝐷) denote the switch number

of 𝜎(𝑖, 𝑗) on the interval [𝑧, 𝐷), and let (𝑖
𝜅−𝜐+1

, 𝑗
𝜅−𝜐+1

),

(𝑖
𝜅−𝜐+2

, 𝑗
𝜅−𝜐+2

), . . . , (𝑖
𝜅
, 𝑗
𝜅
) denote the switching points of

𝜎(𝑖, 𝑗) over the interval [𝑧, 𝐷); then, the switching points of
𝜎

(𝑖, 𝑗) can be denoted as follows:

(𝑖
𝜅−𝜐+1

+ Δ𝑖
𝜅−𝜐+1

, 𝑗
𝜅−𝜐+1

+ Δ𝑗
𝜅−𝜐+1

) ,

(𝑖
𝜅−𝜐+2

+ Δ𝑖
𝜅−𝜐+2

, 𝑗
𝜅−𝜐+2

+ Δ𝑗
𝜅−𝜐+2

) , . . . , (𝑖
𝜅
+ Δ𝑖

𝜅
, 𝑗
𝜅
+ Δ𝑗

𝜅
) .

(A.22)

Denoting𝑚
𝑔
= 𝑖

𝑔
+ 𝑗

𝑔
, 𝑔 = 𝜅 − 𝜐 + 1, . . . , 𝜅, then we can get

from (23) and (A.21) that

∑

𝑖+𝑗=𝑚𝑔+Δ𝑚𝑔

𝑉 (𝑖, 𝑗) ≤ 𝜇
1

∑

𝑖+𝑗=(𝑚𝑔+Δ𝑚𝑔)
−

𝑉 (𝑖, 𝑗) ,

∑

𝑖+𝑗=𝑚𝑔

𝑉 (𝑖, 𝑗) ≤ 𝜇
2
∑

𝑖+𝑗=(𝑚𝑔)
−

𝑉 (𝑖, 𝑗) ,

(A.23)

where (𝑚
𝑔
)
− and (𝑚

𝑔
+ Δ𝑚

𝑔
)
− satisfy the following condi-

tions:

0 < 𝑚
𝑔
− (𝑚

𝑔
)
−

< 𝜆,

0 < 𝑚
𝑔
+ Δ𝑚

𝑔
− (𝑚

𝑔
+ Δ𝑚

𝑔
)
−

< 𝜆,

(A.24)

where 𝜆 is a sufficient small positive constant.
When 𝑚

𝜅−𝜐+1
> 𝑧 ≥ 𝑚

𝜅−𝜐
+ Δ𝑚

𝜅−𝜐
, we have, for 𝐷 >

𝑚
𝜅
+ Δ𝑚

𝜅
,

∑

𝑖+𝑗=𝐷

𝑉 (𝑖, 𝑗) < 𝛼
𝐷−𝑚𝜅−Δ𝑚𝜅 ∑

𝑖+𝑗=𝑚𝜅+Δ𝑚𝜅

𝑉 (𝑖, 𝑗) ≤ 𝜇
1
𝛼
𝐷−𝑚𝜅−Δ𝑚𝜅 ∑

𝑖+𝑗=(𝑚𝜅+Δ𝑚𝜅)
−

𝑉 (𝑖, 𝑗)

< 𝜇
1
𝛼
𝐷−𝑚𝜅−Δ𝑚𝜅𝛽

Δ𝑚𝜅 ∑

𝑖+𝑗=𝑚𝜅

𝑉 (𝑖, 𝑗) ≤ 𝜇
1
𝜇
2
𝛼
𝐷−𝑚𝜅−Δ𝑚𝜅𝛽

Δ𝑚𝜅 ∑

𝑖+𝑗=(𝑚𝜅)
−

𝑉 (𝑖, 𝑗) < ⋅ ⋅ ⋅

< (𝜇
1
𝜇
2
)
𝜐

𝛼
𝐷−𝑚𝜅−Δ𝑚𝜅+𝑚𝜅−𝑚𝜅−1−Δ𝑚𝜅−1+⋅⋅⋅+𝑚𝜅−𝜐+2−𝑚𝜅−𝜐+1−Δ𝑚𝜅−𝜐+1𝛽

Δ𝑚𝜅+Δ𝑚𝜅−1+⋅⋅⋅+Δ𝑚𝜅−𝜐+1 ∑

𝑖+𝑗=(𝑚𝑘−𝜐+1)
−

𝑉 (𝑖, 𝑗)

< (𝜇
1
𝜇
2
)
𝜐

𝛼
𝐷−𝑚𝜅−Δ𝑚𝜅+𝑚𝜅−𝑚𝜅−1−Δ𝑚𝜅−1+⋅⋅⋅+𝑚𝜅−𝜐+2−𝑚𝜅−𝜐+1−Δ𝑚𝜅−𝜐+1+𝑚𝜅−𝜐+1−𝑧𝛽

Δ𝑚𝜅+Δ𝑚𝜅−1+⋅⋅⋅+Δ𝑚𝜅−𝜐+1 ∑

𝑖+𝑗=𝑧

𝑉 (𝑖, 𝑗)

≤ (𝜇
1
𝜇
2
)
𝜐

𝛼
𝐷−𝑧−𝜐Δ

𝛽
𝜐Δ
∑

𝑖+𝑗=𝑧

𝑉 (𝑖, 𝑗) = 𝛼
𝐷−𝑧
𝑒
𝜐 ln(𝜇1𝜇2)+𝜐Δ(ln𝛽−ln𝛼) ∑

𝑖+𝑗=𝑧

𝑉 (𝑖, 𝑗) .

(A.25)

When𝑚
𝜅−𝜐
< 𝑧 < 𝑚

𝜅−𝜐
+ Δ𝑚

𝜅−𝜐
, we can also get that

∑

𝑖+𝑗=𝐷

𝑉 (𝑖, 𝑗) < 𝛼
𝐷−𝑚𝜅−Δ𝑚𝜅 ∑

𝑖+𝑗=𝑚𝜅+Δ𝑚𝜅

𝑉 (𝑖, 𝑗) < 𝜇
1
𝛼
𝐷−𝑚𝜅−Δ𝑚𝜅 ∑

𝑖+𝑗=(𝑚𝜅+Δ𝑚𝜅)
−

𝑉 (𝑖, 𝑗)

< 𝜇
1
𝛼
𝐷−𝑚𝜅−Δ𝑚𝜅𝛽

Δ𝑚𝜅 ∑

𝑖+𝑗=𝑚𝜅

𝑉 (𝑖, 𝑗) < 𝜇
1
𝜇
2
𝛼
𝐷−𝑚𝜅−Δ𝑚𝜅𝛽

Δ𝑚𝜅 ∑

𝑖+𝑗=(𝑚𝜅)
−

𝑉 (𝑖, 𝑗) < ⋅ ⋅ ⋅

< (𝜇
1
𝜇
2
)
𝜐

𝛼
𝐷−𝑚𝜅−Δ𝑚𝜅+𝑚𝜅−𝑚𝜅−1−Δ𝑚𝜅−1+⋅⋅⋅+𝑚𝜅−𝜐+2−𝑚𝜅−𝜐+1−Δ𝑚𝜅−𝜐+1𝛽

Δ𝑚𝜅+Δ𝑚𝜅−1+...+Δ𝑚𝜅−𝜐+1 ∑

𝑖+𝑗=(𝑚𝑘−𝜐+1)
−

𝑉 (𝑖, 𝑗)

< (𝜇
1
𝜇
2
)
𝜐

𝛼
𝐷−𝑚𝜅−Δ𝑚𝜅+𝑚𝜅−𝑚𝜅−1−Δ𝑚𝜅−1+⋅⋅⋅+𝑚𝜅−𝜐+2−𝑚𝜅−𝜐+1−Δ𝑚𝜅−𝜐+1+𝑚𝜅−𝜐+1−𝑚𝜅−𝜐−Δ𝑚𝜅−𝜐𝛽

Δ𝑚𝜅+Δ𝑚𝜅−1+⋅⋅⋅+Δ𝑚𝜅−𝜐+1+Δ𝑚𝜅−𝜐+𝑚𝜅−𝜐−𝑧 ∑

𝑖+𝑗=𝑧

𝑉 (𝑖, 𝑗)

≤ 𝜇
1
(𝜇

1
𝜇
2
)
𝜐

𝛼
𝐷−𝑧−𝜐Δ

𝛽
𝜐Δ
∑

𝑖+𝑗=𝑧

𝑉 (𝑖, 𝑗) = 𝜇
1
𝛼
𝐷−𝑧
𝑒
𝜐 ln(𝜇1𝜇2)+𝜐Δ(ln𝛽−ln𝛼) ∑

𝑖+𝑗=𝑧

𝑉 (𝑖, 𝑗) .

(A.26)

From (A.25) and (A.26), we can obtain

∑

𝑖+𝑗=𝐷

𝑉 (𝑖, 𝑗)

< max {𝜇
1
, 1} 𝛼

𝐷−𝑧
𝑒
𝜐 ln(𝜇1𝜇2)+Δ𝜐(ln𝛽−ln𝛼) ∑

𝑖+𝑗=𝑧

𝑉 (𝑖, 𝑗) .

(A.27)

According to Definition 6, one has

𝜐 = 𝑁
𝜎(𝑖,𝑗)

(𝑧, 𝐷) ≤ 𝑁
0
+
𝐷 − 𝑧

𝜏
𝑎

. (A.28)

From condition (22), the following inequality can be ob-
tained:

− ln𝛼 >
Δ (ln𝛽 − ln𝛼) + ln (𝜇

1
𝜇
2
)

𝜏
𝑎

. (A.29)
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Thus, it is easy to get the following inequality:

∑

𝑖+𝑗=𝐷

𝑉 (𝑖, 𝑗)

< max {𝜇
1
, 1} (𝜇

1
𝜇
2
)
𝑁0

× (
𝛽

𝛼
)

𝑁0Δ

𝑒

((ln(𝜇1𝜇2)+Δ(ln𝛽−ln𝛼))/𝜏𝑎+ln𝛼)(𝐷−𝑧)

∑

𝑖+𝑗=𝑧

𝑉 (𝑖, 𝑗) .

(A.30)

It follows that

∑

𝑖+𝑗=𝐷

𝑥 (𝑖, 𝑗)


2

<
𝜁
1

𝜁
2

max {𝜇
1
, 1} (𝜇

1
𝜇
2
)
𝑁0

× (
𝛽

𝛼
)

𝑁0Δ

𝑒
((ln(𝜇1𝜇2)+Δ(ln𝛽−ln𝛼))/𝜏𝑎+ln𝛼)(𝐷−𝑧) ∑

𝑖+𝑗=𝑧

𝑥 (𝑖, 𝑗)


2

,

(A.31)

where

𝜁
1
= max

𝑘,𝑙∈𝑁,𝑘 ̸= 𝑙
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(A.32)

Thus, it can be obtained from (22) that the closed-loop system
(17) is exponentially stable.

Denote𝑋𝑘
= (𝑃

𝑘
)
−1

and𝑌𝑘 = (𝑄𝑘)
−1

, then it is easy to get
(𝑋

𝑘
)
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= 𝑋
𝑘 and (𝑌𝑘)

𝑇

= 𝑌
𝑘. Using diag{𝑋𝑘

, 𝑌
𝑘
, 𝑋

𝑘
} to pre-

and postmultiply the left of (A.14), respectively, and applying
Lemma 7, it follows that (A.33) and (A.14) are equivalent:
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where𝑊𝑘
= 𝐾

𝑘
𝑋
𝑘.

By substituting (2) into (A.33), we can get the following
inequality

𝑇 = 𝑇
0
+ 𝑇

1
< 0, (A.34)

where

𝑇
0
=

[
[
[
[
[
[

[

−𝛼𝑋
𝑘

0 (𝐴
𝑘
𝑋
𝑘
+ 𝐵

𝑘
𝑊

𝑘
)
𝑇

𝑋
𝑘

∗ −Λ
1
𝑌
𝑘

(𝐴
𝑘

𝑑
𝑌
𝑘
)
𝑇

0

∗ ∗ −𝑋
𝑘

0

∗ ∗ ∗ −𝑌
𝑘

]
]
]
]
]
]

]

,

𝑇
1
=

[
[
[
[
[

[

(𝐸
𝑘

1
𝑋
𝑘
+ 𝐸

𝑘

3
𝑊

𝑘
)
𝑇

(𝐸
𝑘

2
𝑌
𝑘
)
𝑇

0

0

]
]
]
]
]

]

𝐹
𝑘𝑇
[
[
[

[

0

0

𝐻
𝑘

0

]
]
]

]

𝑇

+

[
[
[

[

0

0

𝐻
𝑘

0

]
]
]

]

𝐹
𝑘

[
[
[
[
[

[

(𝐸
𝑘

1
𝑋
𝑘
+ 𝐸

𝑘

3
𝑊

𝑘
)
𝑇

(𝐸
𝑘

2
𝑌
𝑘
)
𝑇

0

0

]
]
]
]
]

]

𝑇

.

(A.35)

By Lemma 8, we get
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Applying Lemma 7 again, we obtain that (A.33) holds if (19)
is satisfied.

Similarly, substitute (2) into (A.19) and denote 𝑋𝑘𝑙
=

(𝑃
𝑘𝑙
)
−1

and 𝑌𝑘𝑙 = (𝑄𝑘𝑙)
−1

, then using diag{𝑋𝑘𝑙
, 𝑌

𝑘𝑙
, 𝑋

𝑘𝑙
} to

pre- and postmultiply the left of (A.19), respectively, and
applying Lemmas 7 and 8, it is easy to get that (A.19) holds
if (20) is satisfied.

The proof is completed.
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We investigate the impact of human dynamics on the information propagation in online social networks. First, statistical properties
of the human behavior are studied using the data from “SinaMicroblog,” which is one of themost popular online social networks in
China. We find that human activity patterns are heterogeneous and bursty and are often described by a power-law interevent time
distribution 𝑃(𝜏) ∼ 𝜏

−𝛼. Second, we proposed an extended Susceptible-Infected (SI) propagation model to incorporate bursty and
limited attention. We unveil how bursty human behavior and limited attention affect the information propagation in online social
networks. The result in this paper can be useful for optimizing or controlling information propagation in online social networks.

1. Introduction

Rapid development of information and communication tech-
nology has increased the wide adoption of online social
network in our life. Indeed, online social network such
as Sina Microblog, Twitter, and Facebook had become an
indispensable part of our life. Every day we sign into our
homepages more than once to view and share information.
These online social networks have common characteris-
tics: instantaneity, simplicity, and universality. Taking Sina
Microblog, for example, unlike the traditional blog, it allows
the use of mobile devices to disseminate information by
a length of 140 characters text at anytime and anywhere.
Investigating the online social network is crucial in a broad
range of settings from information propagation and viral
marketing to political purposes.

Recent years, online social network as a platform for
the empirical study of information has been widespread
concern [1–4]. Despite the progresses that have been made,
the empirical study of information propagation is still in its
infancy. Studies in this direction have been mostly hindered
by the shortcoming of available large-scale data. However, the
availability of large-scale data from online social network has

recently created unprecedented opportunities to explore the
impact of human behaviors on the information propagation.

Firstly, information propagation in online social network
is determined by rhythms and activity patterns of human
[5, 6]. An increasing number of recentmeasurements indicate
that human activity patterns are heterogeneous and bursty
[7–11]. If only considering the time interval between events,
these human activity patterns are often described by a power-
law interevent time distribution 𝑃(𝜏) ∼ 𝜏

−𝛼, where 𝜏 is
the time interval between two consecutive activities [12].
Recently, the researchers began to realize that the bursty
human behavior has an important impact on the dissemina-
tion of information [13, 14].

Secondly, the wide adoption of online social network
has increased the competition among information for our
limited attention. Every day we receive a lot of information
from various online social networks. However, we do not
have enough time and attention to disseminate each message
which we received. It is an interesting question that whether
such a competition may affect the velocity of information
propagation. The issue of limited attention has been studied
through messages posted and forwarded in online social
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networks [15, 16]. However, how limited attention affects
velocity of information propagation is still unclear.

In this paper, we propose an extended Susceptible-
Infected (SI) propagation model, incorporating bursty
human activity patterns and limited attention for the first
time. Then, we obtain a large number of real data to test the
model. Adopting the methods of theoretical research and
empirical analysis, we study the information spreading pro-
cess in social networking qualitatively and quantitatively.The
key contributions of this study are summarized as follows.

(1) From the empirical statistical results we find that at
the group level, the interactive time (time interval
between two consecutive login microblog homepage)
follows power-law distribution with the slope ≈ 2.5.
And the distribution of newly infected individual
(calculate as the number of new forwarding per day)
follows power-law with the slope ≈ 1.5. Two slope
values satisfy the relationship 2.5 − 1.5 ≈ 1.0.

(2) Through both the theoretical research and simulation,
we prove that (a) if the generation time distribution
follows power-law with exponent 𝛽, then the decay of
propagation velocitywill be characterized by the same
power-law distribution; (b) if bursty human behavior
follows a power-law distribution with exponent 𝛼, the
decay of propagation velocity also follows a power-
law with exponent 𝛽 ≈ 𝛼 − 1.

In summary, although tremendous efforts have been
made regarding the research about information propagation,
further study based on human dynamics is still needed to
unveil the role of humanbehaviors for the information propa-
gation in online social network. In future studies, on the other
hand, we can use other more mature theories to research the
spreading dynamics, such as in the references [17, 18].

The rest of this paper is organized as follows. Section 2
gives the data description. In Section 3, we propose the
extended SI model. In Section 4, we present simulation
results and observations. Section 5 introduces theoretical
analysis. Finally, in Section 6, we conclude the work.

2. Data Description

The dataset of this paper was collected from Sina Microblog
(http://www.weibo.com/), one of themost popularmicroblog
platforms in China at present. The dataset includes 345,095
messages from 41667 individuals during 2009/8/16 to
2011/6/4, collected by snowball sampling. These messages
have been forwarded 203,997,094 times and triggered
58,617,139 comments. For each message, message ID, releas-
ing time, times of forwarding, and number of comments
were recorded. For each individual, the individual ID and
the timing of individual sign in his/her microblog homepage
were recorded.

The basic statistical results show that at the group level,
the interactive time (time interval between two consecutive
login microblog homepage) follows power-law distribution
with the slope ≈ 2.5 (Figure 1(a)). And the distribution of
newly infected individual (calculate as the number of new

forwarding per day) follows power-law with the slope ≈ 1.5

(Figure 1(b)). If set the slope of interactive time distribution
is 𝛼 and the slope of newly infected individual distribution is
𝛽, we find that there is the relationship 𝛽 ≈ 𝛼−1 between two
slopes.

3. Model

3.1. Model Description. In this paper, we use the branching
processes [19, 20] in conjunction with power-law human
behaviors to describe the process of information propagation.
We adopt the Susceptible-Infected (SI) propagationmodel for
the simulation of information propagation in online social
networks. Similar to the classical SI model, the population
is divided into two states, either susceptible (S) or infected
(I). In the information propagation model, however, the
susceptible individual is defined as the one who has not
yet known a piece of message, and the infected individual
is defined as the one who knows the message and shares
the message with his/her friends. After being infected, an
individual will never return to susceptible state. At time
𝑡, there are 𝑆(𝑡) susceptible individuals and 𝐼(𝑡) infected
individuals, and the population𝑁 = 𝑆(𝑡) + 𝐼(𝑡).

Initially all individuals are susceptible except for a single
infected individual. Different with the traditional model, at
a given time step, an infected individual can be inactive;
that is to say, infected individual will not infect connected
susceptible individuals at that time step. The time interval
between two consequent active steps of an infected individual
is defined as the interactive time, which is often characterized
by a power-law distribution 𝑃(𝜏) ∼ 𝜏

−𝛼 at the group
level. Meanwhile, different individuals have different active
time interval and each individual 𝑖 acts with an unchanged
interactive time 𝜏

𝑖
.

On the other hand, the advent of online social network
has greatly lowered the cost of information generation and
propagation, boosting the potential reach of each message.
However, the abundance of information to which we are
exposed through online social networks is exceeding our
capacity to consume it. Due to the limited time and attention,
the individual cannot continuously check the update of infor-
mation on his/her homepage. We assume that individuals
interact on a directed online social network. Each individual
is equipped with two lists. One is the screen where received
messages are recorded and maintained a time-ordered list of
messages. The other is memory where individual interested
messages are recorded. Each individual can share some of the
messages from the list with his/her friends. The friends in
turn pay attention to a newly received message by placing it
at the top of their lists. Because of the limited attention, we
allowmessages to survive in an individual’s screen for a finite
amount of time𝑇.Meanwhile, we assume that each individual
only forwards each message once, and then the individual
loses interest in the message. In addition, if the individual
no forwarding the message within 𝑇, the individual will no
longer be concerned about the message and delete it from the
screen. Each message may attract the individual’s attention
with probability 𝜆; that is to say, the individual will forward
the message with probability 𝜆.
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Figure 1: Empirical data. (a) The distribution of interactive time at the group level. (b) The distribution of newly infected individuals, inset:
the cumulative distribution of newly infected individuals, namely, the distribution of all infected individuals. The results are the average of
all messages.

Previous active step

A forwarding message from his friends
B forwarding message from A’s

Δ
𝜏𝐵

𝜏: Active time
Δ: Forwarding time

Figure 2: Schematic of individual interaction.

3.2. SIModel Based on Bursty and Limited Attention. Accord-
ing to the previous description, the SI model incorporating
bursty and limited attention is illustrated in Figure 2. We
characterize the timing of information propagation by the
generation time Δ, which is defined as the time interval
between the forwarding of an individual and the forwarding
of his/her followers.

To sum up, the extended SI model is defined as follows.

Step 1. At time step 𝑡 = 𝑡
𝑖
, an individual 𝑖 posts a message.

Meanwhile, individual 𝑗 receives the message, where 𝑗 ∈ 𝛿
𝑖

and 𝛿
𝑖
is the set of individual 𝑖’s neighbors.

Step 2. For each individual 𝑗, the first active time step is 𝑡
𝑗0
,

𝑡
𝑗0

∈ (𝑡
𝑖
, 𝑡
𝑖
+ 𝜏
𝑗
), and individual 𝑗 will be active at the time

steps 𝑡 = 𝑡
𝑗0

+ 𝑘𝜏
𝑗
, 𝑘 = 1, 2, 3, . . ., where 𝜏

𝑗
is the active time

interval of individual 𝑗.

Step 3. At each active time step, individual 𝑗 will forward the
message with the probability 𝜆. If individual 𝑗 forwards the
message at the time step 𝑡

𝑗
, we obtain the generation timeΔ =

𝑡
𝑗
− 𝑡
𝑖
and generation time must satisfy the condition Δ < 𝑇.

Step 4. Update the time step 𝑡 = 𝑡
𝑗
and repeat Step 1 to Step 3

until the preset time steps.

In addition, we also introduce two indicators to charac-
terize the velocity of information propagation:

(1) the first time step when the number of infected
individuals exceeds half of the population, defined as
half time 𝑇∗;

(2) the mean infection time of an individual after the
outbreak, defined as mean time 𝑇

𝑚
= ∑
𝑡max
𝑡 = 0

(𝑡𝑛(𝑡)/𝑁),
where 𝑡max is the maximum simulation step, such as
in our simulation 𝑡max = 10

4.

4. Simulation Results and Observations

In our simulations, initially all individuals are susceptible
except for a single infected individual. Each individual 𝑖 has
an unchanged interactive time 𝜏

𝑖
, which follows power-law

distribution𝑃(𝜏) ∼ 𝜏
−𝛼 with 2 < 𝛼 < 3. We set𝑇 = 1440 time

steps. This is because messages will survive in an individual’s
list one day, namely, 1440 minutes [15]. Simulations were
performed on a BA network with size𝑁 = 10

4 and ⟨𝑘⟩ = 10.
We set the degree of attention 𝜆 = 0.5 and randomly select
an initial infected node. For detailed comparison, we also
performed the same SI dynamics with exponential interactive
time distribution𝑃(𝜏) ∼ 𝑒

−𝛼𝜏. From the numerical simulation
results (Figures 3 and 4), we have the following observations
of the propagation process.

Observation 1. In power-law case, the average number of
newly infected individuals 𝑛(𝑡) and the generation time 𝑔(Δ)
follow power-law distributions with the exponent 𝛽 ≈ 𝛼 − 1

(Figure 3).
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Figure 3: (a) The average number of newly infected individuals 𝑛(𝑡). Power-law distributions 𝑝(𝜏) with exponent 𝛼 = 2.8 (Squares), 𝛼 = 2.5

(circles), 𝛼 = 2.2 (up triangles), and the exponential 𝑝(𝜏) (down triangles). All 𝑝(𝜏) have the same mean interactive time ⟨𝜏⟩ = 1.96. (b) The
generation time distribution 𝑔(Δ) for all 𝑝(𝜏). In both panels, the black lines have slopes −1.8, −1.5, and −1.2. The results show that 𝑛(𝑡) and
𝑔(Δ) decay as a power law with the exponent 𝛽 ≈ 𝛼 − 1. In the exponential case, 𝑛(𝑡) decays fast, in stark contrast to the power-law case. The
results are the average over 2 × 10

3 independent runs.
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Figure 4: (a) The fraction of infected nodes 𝐼 with different exponent 𝛼. (b) The half time 𝑇
∗ and the mean time 𝑇

𝑚
as the functions of

exponent 𝛼.

Observation 2. The smaller the exponent𝛼 of interactive time
distributions, namely, the larger heterogeneity of interactive
time, resulting in the slower velocity. The half time 𝑇

∗ and
mean time 𝑇

𝑚
monotonic decrease with the increase of

exponent 𝛼 (Figure 4).

In order to investigate the impact of attention on the prop-
agation process, we fixed interactive time following power-
law distribution with the exponent 𝛼 = 2.5 and randomly
select an initial infected node. From other parameters 𝑇 =

1440, simulations were also performed on a BA network with



Abstract and Applied Analysis 5

10
0

10
1

10
2

10
3

10
4

Time step 𝑡

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
𝐼
(𝑡
)

𝜆 = 0.1

𝜆 = 0.5

𝜆 = 1

(a)

0

20

40

60

80

100

120

140

Ti
m

e s
te

ps

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Attention 𝜆

Half time 𝑇∗

Mean time 𝑇𝑚

(b)

Figure 5: (a) The fraction of infected nodes 𝐼 with different attention 𝜆. (b) The half time 𝑇∗ and mean time 𝑇
𝑚
as the functions of attention

𝜆.

size 𝑁 = 10
4 and ⟨𝑘⟩ = 10. The results are averaged over

2 × 10
3 independent runs. From the numerical simulation

results (Figure 5), we have the following observation of the
propagation process.

Observation 3. The higher the degree of attention, the faster
the velocity. The half time 𝑇∗ and mean time 𝑇

𝑚
monotonic

decrease with the increase of attention 𝜆 (Figure 5).

5. Theoretical Analysis

In this section, the properties of propagation dynamics are
analyzed. We prove that the decay exponent of propagation
velocity equals that in the generation time distribution. Fur-
thermore, we also proved that the exponent 𝛼 characterizing
the bursty is related to that in the decay of propagation
velocity 𝛽 by the relation 𝛽 = 𝛼 − 1.

Proposition 1. If the distribution of generation time follows
power-law 𝑔(Δ) ∼ Δ

−𝛽 with 1 < 𝛽 < 2, the decay of
propagation velocity also follows power-law 𝑛(𝑡) ∼ 𝑡

−𝛽 and
with the same exponent 𝛽.

Proof. We consider a general theory of propagation process
in online social networks. We assume that the propagation
process outbreaks starting from a single infected individual
at time 𝑡 = 0. In this case, the average number of new infected
individuals at time 𝑡 is [19]

𝑛 (𝑡) =

𝐷

∑

𝑑= 1

𝑧
𝑑
(𝑔
(0)

∗ 𝑔
(1)

∗ ⋅ ⋅ ⋅ ∗ 𝑔
(𝑑)

(𝑡)) , (1)

where 𝑧
𝑑
is the average number of individuals at generation 𝑑

away from the first infected individual, where ∗ denotes the
convolution operation; for example,

𝑔
(0)

∗ 𝑔
(1)

(𝑡) = ∫

𝑡

0

𝑑𝜏𝑔
(0)

(𝜏) ∗ 𝑔
(1)

(1 − 𝜏) . (2)

For the limited 1 ≪ 𝑑, we can obtain

𝑔
∗𝑑

(𝑡) = 𝑔
(0)

∗ 𝑔
(1)

∗ ⋅ ⋅ ⋅ ∗ 𝑔
(𝑑)

(𝑡) ∼ 𝐿
𝛽−1

(
𝑡

𝑡
𝑑

) 𝑡
𝑑
, (3)

where 𝑡
𝑑
= Δ
0
𝑑
1/(𝛽−1), Δ

0
is some characteristic time scale,

and 𝐿
𝜇
(𝑥) represents the Levy distribution with exponent 𝜇.

For 1 ≪ 𝑥, the Levy distribution 𝐿
𝜇
(𝑥) can expressed as

[21]

𝐿
𝜇
(𝑥) ∼ 𝑥

−(1+𝜇)
. (4)

To sum up, when 𝑡 → ∞, we obtain 𝑔
∗𝑑
(𝑡) ∼ 𝑡

−𝛽; namely,
𝑛(𝑡) ∼ 𝑡

−𝛽. Thus, the proposition has been proved.

This preposition means that if the generation time dis-
tribution follows a power-law with the exponent 𝛽, then the
decay of propagation velocity will be characterized by the
same power-law distribution.

Proposition 2. If the distribution of interactive time follows a
power-law𝑝(𝜏) ∼ 𝜏

−𝛼 with 2 < 𝛼 < 3, the decay of propagation
velocity also follows a power-law distribution 𝑛(𝑡) ∼ 𝑡

−𝛽 with
1 < 𝛽 < 2 and 𝛽 = 𝛼 − 1.

Proof. When the distribution of interactive time follows a
power-law 𝑝(𝜏) ∼ 𝜏

−𝛼 with 2 < 𝛼 < 3, the active time interval
𝜏
𝑖
has a finite mean ⟨𝜏⟩.
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Since the generation time probability density function is
related to the interactive time probability density function
[21], therefore we have

𝑔 (Δ) =
1

⟨𝜏⟩
∫

∞

Δ

𝑃 (𝜏) 𝑑𝜏 =
1

⟨𝜏⟩
∫

∞

Δ

𝜏
−𝛼
𝑑𝜏

=
1

⟨𝜏⟩

1

− (𝛼 − 1)
Δ
−(𝛼−1)

∼ Δ
−(𝛼−1)

.

(5)

According to Proposition 1, we obtain

𝑛 (𝑡) ∼ 𝑡
−(𝛼−1)

. (6)

Namely,

𝑛 (𝑡) ∼ 𝑡
−𝛽

, 𝛽 = 𝛼 − 1. (7)

Thus, the proposition is proved.

6. Conclusion

An extended SI model is proposed in this paper. Different
from the analysis of the network topology, we study the
information propagation in online social networks from
the perspective of human dynamics. We found that human
behavior affects the range and velocity of information propa-
gation greatly.

In the future, with the development of online social
systems, there may be other factors influencing information
propagation in online social network. Therefore, we must
improve the propagation model in order to better explain the
propagation process.
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The problem of bounded-input bounded-output (BIBO) stability is investigated for a class of delay switched systems with mixed
time-varying discrete and constant neutral delays and nonlinear perturbation. Based on the Lyapunov-Krasovskii functional theory,
new BIBO stabilization criteria are established in terms of delay-dependent linear matrix inequalities. The numerical simulation is
carried out to demonstrate the effectiveness of the results obtained in the paper.

1. Introduction

Time delay is a source of instability and poor performance
and appears in many dynamic systems, for example, bio-
logical systems, chemical systems, metallurgical processing
systems, nuclear reactor systems, and electrical networks
[1]. Since the existence of time delays may lead to oscilla-
tion, divergence, or instability, considerable effort has been
devoted to this area. As an important system performance
index, BIBO stability means that any bounded input yields
a bounded output and can be considered in many aspects,
such as the free system dynamics, the basic single or double
loop modulators, and the issues connected with bilinear
input/output maps. Consequently, bounded-input bounded-
output (BIBO) stability analysis of dynamical systems has
attracted many scholars’ attention. For instance, in [2], BIBO
stability criterion is derived for a three-dimensional fuzzy
two-term control system, in [3], the problem on BIBO stabi-
lization for a system with nonlinear perturbations is studied
by discussing the existence of the positive definite solution
to an auxiliary algebraic Riccati matrix equation, in [4],

based on linearmatrix inequality techniques, the stabilization
criterion for uncertain time-delay system is presented to
guarantee that bounded input can lead to bounded output,
and in [5], BIBO stability for feedback control systems with
time delay is studied through investigating the boundedness
of the solutions for a class of nonlinear Volterra integral
equations.

Recently, switched system becomes a research hotspot.
Its motivation comes from the fact that many practical
systems are inherently multimodal and the fact that some
of intelligent control methods are based on the idea of
switching between different controllers. Up till now, many
investigations about stability of multiform switched systems
have been carried out; see, for instance, [6–19] and refer-
ences therein. Hence, it is our intention in this paper to
tackle such an important yet challenging problem for BIBO
stability analysis of delay switched systems. In addition,
perturbations [20–26] and time delays [27–29] exist in
many kinds of systems, and this makes the practical control
problem complicated and has received much attention from
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scholars. Hence, in this paper, the BIBO stability for delay
switched system with mixed time-varying discrete and con-
stant neutral delays and nonlinear perturbation is concerned,
and some original BIBO stability criteria are established in
terms of linear matrix inequalities (LMIs). Finally, some
simulation results are given to illustrate the effectiveness
of our results. The main contributions of the paper are
of two folds: (1) a delay-dependent technique is applied
successfully into the analysis results process; (2) a Lyapunov-
Krasovskii functional is constructed to derive a new form
of the bounded real lemma (BRL) for the system under
consideration.

The remainder of this paper is organized as follows.
The model under consideration and some preliminaries
are provided in Section 2. Section 3 presents the results on
stability analysis. Section 4 gives an illustrative example. At
last we conclude the paper in Section 5.

Notations used in this paper are fairly standard. Let
𝑅
𝑛 be the 𝑛-dimensional Euclidean space, 𝑅

𝑛×𝑚 represents
the set of 𝑛 × 𝑚 real matrices, the symbol ∗ denotes the
elements below the main diagonal of a symmetric block
matrix, 𝐴 > 0 means that 𝐴 is a real symmetric pos-
itive definitive matrix, and 𝐼 denotes the identity matrix
with appropriate dimensions. diag{⋅ ⋅ ⋅ } denotes the diagonal
matrix. 𝐸{⋅} refers to the expectation operator with respect
to some probability measure 𝑃. ‖ ⋅ ‖ refers to the Euclidean
vector norm or the induced matrix 2-norm. The superscript
𝑇 stands for matrix transposition. 𝐿

𝑛,ℎ
= 𝐿([−ℎ, 0], 𝑅

𝑛
)

denotes the Banach space of continuous functions mapping
the interval [−ℎ, 0] into 𝑅

𝑛 with the topology of uniform
convergence.

2. Model Description and Preliminaries

First, consider the following delay switched system with
nonlinear perturbation:

̇𝑥 (𝑡) − 𝐶
𝜎(𝑡)

̇𝑥 (𝑡 − 𝑑) = 𝐴
𝜎(𝑡)

𝑥 (𝑡) + 𝐵
𝜎(𝑡)

𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝑓
𝜎(𝑡)

(𝑡, 𝑥 (𝑡)) + 𝐻
𝜎(𝑡)

𝑢 (𝑡) ,

𝑢 (𝑡) = 𝐿
𝜎(𝑡)

𝑥 (𝑡) + 𝑟 (𝑡) ,

𝑌 (𝑡) = 𝐽𝑥 (𝑡) ,

𝑥 (𝑡
0
+ 𝜃) = 𝜑 (𝜃) , 𝜃 ∈ [−ℎ 0] ,

(1)

where 𝑥(𝑡) ∈ 𝑅
𝑛 is the state vector, 𝑑 is the neutral delay,

0 ≤ 𝜏(𝑡) ≤ ℎ is the time-varying discrete delay, 𝜑(𝜃) ∈ 𝐿
𝑛,ℎ

is
the initial condition, 𝜎(𝑡) : [0, +∞) → 𝑀 = {1, 2, . . . , 𝑚} is
the switching signal, 𝑢(𝑡) ∈ 𝑅

𝑙 is the control input, 𝑌(𝑡) ∈

𝑅
𝑚 is the system output, 𝑟(𝑡) ∈ 𝑅

𝑙 is the reference input,
and 𝑓(𝑡) ∈ 𝑅

𝑛 is the nonlinear time-varying perturbation,
which satisfies ‖𝑓(𝑡, 𝑥(𝑡))‖ ≤ 𝛽‖𝑥(𝑡)‖, where 𝛽 is a positive
scalar.

Model (1) can be represented as follows:

̇𝑥 (𝑡) = 𝑦 (𝑡) ,

𝑦 (𝑡) − 𝐶
𝜎(𝑡)

𝑦 (𝑡 − 𝑑) = 𝐴
𝜎(𝑡)

𝑥 (𝑡) + 𝐵
𝜎(𝑡)

𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝑓
𝜎(𝑡)

(𝑡) + 𝐻
𝜎(𝑡)

𝑢 (𝑡) .

(2)

In this paper, the following well-known lemmas and defini-
tions are needed.

Lemma 1 (see [30]). For any constant matrices E, G, and F
with appropriate dimensions with 𝐹

𝑇
𝐹 ≤ 𝑘𝐼, then

2𝑥
𝑇
𝐸𝐹𝐺𝑦 ≤ 𝑐𝑥𝐸𝐸

𝑇
𝑥 +

𝑘

𝑐
𝑦
𝑇
𝐺
𝑇
𝐺𝑦, (3)

where 𝑥 ∈ 𝑅
𝑛 and 𝑦 ∈ 𝑅

𝑛and 𝑐 and 𝑘 are positive scalars.

Lemma2 (see [31]). For any positive definitematrixΦ ∈ 𝑅
𝑛×𝑛,

a positive scalar 𝛾, and the vector function 𝑤 : [0, 𝛾] → 𝑅
𝑛

such that the integrations concerned are well defined, then

(∫

𝛾

0

𝑤(𝑠) 𝑑𝑠)

𝑇

Φ(∫

𝛾

0

𝑤(𝑠) 𝑑𝑠) ≤ 𝛾∫

𝛾

0

𝑤
𝑇
(𝑠) Φ𝑤(𝑠) 𝑑𝑠. (4)

Definition 3 (see [32]). A real-valued vector 𝑟(𝑡) ∈ 𝐿
𝑛

∞
, if

‖𝑟‖
∞

= sup
𝑡0≤𝑡<∞

‖𝑟(𝑡)‖ < +∞.

Definition 4 (see [32]). The control system with reference
input 𝑟(𝑡) is BIBO stable, if there exist some positive constants
𝜃
1
, 𝜃
2
, satisfying

‖𝑌(𝑡)‖ ≤ 𝜃
1‖𝑟(𝑡)‖∞ + 𝜃

2 (5)

for any reference input 𝑟(𝑡) ∈ 𝐿
𝑛

∞
.

Assumption 5. We assume that for system (1) there exist
Hurwitz linear convex combinations of 𝐴

𝑖
; that is,

𝛾
𝛼1,𝛼2,...,𝛼𝑚

(𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑚
)

= {𝛼
1
𝐴
1
+ 𝛼
2
𝐴
2
+ ⋅ ⋅ ⋅ + 𝛼

𝑚
𝐴
𝑚

: 𝛼
1
, 𝛼
2
, . . . 𝛼
𝑚

∈ [0, 1] ,

𝛼
1
+ 𝛼
2
+ ⋅ ⋅ ⋅ + 𝛼

𝑚
= 1} .

(6)

3. Main Results

In this section, we will establish some BIBO stability crite-
ria using Lyapunov-Krasovskii functional theory and linear
matrix inequalities.

Theorem 6. For given positive scalars h and k,
switched system (1) is BIBO stable, if there exist 𝐴 ∈

𝛾
𝛼1,𝛼2,...,𝛼𝑚

(𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑚
), 𝐵 ∈ 𝛾

𝛼1,𝛼2,...,𝛼𝑚
(𝐵
1
, 𝐵
2
, . . . , 𝐵

𝑚
),

𝐶 ∈ 𝛾
𝛼1,𝛼2,...,𝛼𝑚

(𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑚
),𝑓 ∈ 𝛾

𝛼1,𝛼2,...,𝛼𝑚
(𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑚
),

𝐻 ∈ 𝛾
𝛼1,𝛼2,...,𝛼𝑚

(𝐻
1
, 𝐻
2
, . . . , 𝐻

𝑚
), 𝐿 ∈ 𝛾

𝛼1,𝛼2,...,𝛼𝑚
(𝐿
1
,

𝐿
2
, . . . , 𝐿

𝑚
), positive scalars 𝜀, 𝜎, matrices 𝑃

2
, 𝑃
3
, 𝑈, 𝑉, 𝑊,
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and symmetric positive definite matrices 𝑃, 𝑅, 𝑀, 𝑆, 𝑄,
satisfying

Σ + Ξ + Ξ
𝑇
+ ℎ𝑒
𝑘ℎ

𝑊 < 0,

[
𝑊 𝑈

∗ 𝑆 − 𝑅
22

] > 0,

[
𝑊 𝑉

∗ 𝑆
] > 0,

(7)

where

Σ =

[
[
[
[
[
[
[
[
[

[

Σ
1,1

Σ
1,2

Σ
1,3

Σ
1,4

Σ
1,5

Σ
1,6

Σ
1,7

∗ Σ
2,2

Σ
2,3

Σ
2,4

Σ
2,5

Σ
2,6

Σ
2,7

∗ ∗ Σ
3,3

0 0 0 0

∗ ∗ ∗ Σ
4,4

0 0 0

∗ ∗ ∗ ∗ Σ
5,5

0 0

∗ ∗ ∗ ∗ ∗ Σ
6,6

0

∗ ∗ ∗ ∗ ∗ ∗ Σ
7,7

]
]
]
]
]
]
]
]
]

]

,

Σ
1,1

= 𝑃
2
𝐴 + 𝐴

𝑇
𝑃
𝑇

2
+ 𝑃
2
𝐻𝐿 + 𝐿

𝑇
𝐻
𝑇
𝑃
𝑇

2

+ 𝑄 + 𝜀𝛽
2
+ 𝑘𝑃 + ℎ

2
𝑒
𝑘ℎ

𝑁,

Σ
1,2

= 𝑃 − 𝑃
2
+ 𝐴
𝑇
𝑃
𝑇

3
+ 𝐿
𝑇
𝐻
𝑇
𝑃
𝑇

3
,

Σ
1,3

= 𝑃
2
𝐵 + 𝑅

𝑇

12
,

Σ
2,2

= ℎ𝑒
𝑘ℎ

𝑆 − 𝑃
3
− 𝑃
𝑇

3
+ 𝑀,

Σ
2,3

= 𝑃
3
𝐵,

Σ
3,3

= ℎ𝑅
11

− 𝑅
12

− 𝑅
𝑇

12
,

Σ
1,4

= 𝑃
2
𝐶,

Σ
2,4

= 𝑃
3
𝐶,

Σ
4,4

= −𝑒
−𝑘𝑑

𝑀,

Σ
1,5

= 𝑃
2
,

Σ
2,5

= 𝑃
3
,

Σ
5,5

= −𝜀𝐼,

Σ
1,6

= 0,

Σ
2,6

= 0,

Σ
6,6

= −𝑒
−𝑘ℎ

𝑄,

Σ
1,7

= 𝑃
2
𝐻,

Σ
2,7

= 𝑃
3
𝐻,

Σ
7,7

= −𝜎𝐼,

Ξ = [𝑈 0 −𝑈 + 𝑉 0 0 −𝑉 0] .

(8)

Proof. Since

𝐴 ∈ 𝛾
𝛼1,𝛼2,...,𝛼𝑚

(𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑚
) ,

𝐵 ∈ 𝛾
𝛼1,𝛼2,...,𝛼𝑚

(𝐵
1
, 𝐵
2
, . . . , 𝐵

𝑚
) ,

𝐶 ∈ 𝛾
𝛼1,𝛼2,...,𝛼𝑚

(𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑚
) ,

𝐿 ∈ 𝛾
𝛼1,𝛼2,...,𝛼𝑚

(𝐿
1
, 𝐿
2
, . . . , 𝐿

𝑚
) ,

𝐻 ∈ 𝛾
𝛼1,𝛼2,...,𝛼𝑚

(𝐻
1
, 𝐻
2
, . . . , 𝐻

𝑚
) ,

𝑓 ∈ 𝛾
𝛼1,𝛼2,...,𝛼𝑚

(𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑚
) ,

(9)

there exist 𝛼
𝑖
∈ [0, 1], 𝑖 = 1, . . . , 𝑚, satisfing

𝑚

∑

𝑖=1

𝛼
𝑖
= 1, 𝐴 =

𝑚

∑

𝑖=1

𝛼
𝑖
𝐴
𝑖
, 𝐵 =

𝑚

∑

𝑖=1

𝛼
𝑖
𝐵
𝑖
,

𝐶 =

𝑚

∑

𝑖=1

𝛼
𝑖
𝐶
𝑖
, 𝐿 =

𝑚

∑

𝑖=1

𝛼
𝑖
𝐿
𝑖
,

𝐻 =

𝑚

∑

𝑖=1

𝛼
𝑖
𝐻
𝑖
, 𝑓 =

𝑚

∑

𝑖=1

𝛼
𝑖
𝑓
𝑖
.

(10)

From (7), we can obtain

𝑚

∑

𝑖=1

𝛼
𝑖
(Σ
𝑖
+ Ξ + Ξ

𝑇
+ ℎ𝑒
𝑘ℎ

𝑊) < 0, (11)

where

Σ
𝑖
=

[
[
[
[
[
[
[
[
[
[

[

Σ
𝑖,1,1

Σ
𝑖,1,2

Σ
𝑖,1,3

Σ
𝑖,1,4

Σ
𝑖,1,5

Σ
𝑖,1,6

Σ
𝑖,1,7

∗ Σ
𝑖,2,2

Σ
𝑖,2,3

Σ
𝑖,2,4

Σ
𝑖,2,5

Σ
𝑖,2,6

Σ
𝑖,2,7

∗ ∗ Σ
𝑖,3,3

0 0 0 0

∗ ∗ ∗ Σ
𝑖,4,4

0 0 0

∗ ∗ ∗ ∗ Σ
𝑖,5,5

0 0

∗ ∗ ∗ ∗ ∗ Σ
𝑖,6,6

0

∗ ∗ ∗ ∗ ∗ ∗ Σ
𝑖,7,7

]
]
]
]
]
]
]
]
]
]

]

,
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Σ
𝑖,1,1

= 𝑃
2
𝐴
𝑖
+ 𝐴
𝑇

𝑖
𝑃
𝑇

2
+ 𝑃
2
𝐻
𝑖
𝐿
𝑖

+ 𝐿
𝑇

𝑖
𝐻
𝑇

𝑖
𝑃
𝑇

2
+ 𝑄 + 𝜀𝛽

2
+ 𝑘𝑃 + ℎ

2
𝑒
𝑘ℎ

𝑁,

Σ
𝑖,1,2

= 𝑃 − 𝑃
2
+ 𝐴
𝑇

𝑖
𝑃
𝑇

3
+ 𝐿
𝑇

𝑖
𝐻
𝑇

𝑖
𝑃
𝑇

3
,

Σ
𝑖,1,3

= 𝑃
2
𝐵
𝑖
+ 𝑅
𝑇

12
,

Σ
𝑖,2,2

= ℎ𝑒
𝑘ℎ

𝑆 − 𝑃
3
− 𝑃
𝑇

3
+ 𝑀,

Σ
𝑖,2,3

= 𝑃
3
𝐵
𝑖
,

Σ
𝑖,3,3

= ℎ𝑅
11

− 𝑅
12

− 𝑅
𝑇

12
,

Σ
𝑖,1,4

= 𝑃
2
𝐶
𝑖
,

Σ
𝑖,2,4

= 𝑃
3
𝐶
𝑖
,

Σ
𝑖,4,4

= −𝑒
𝑘𝑑

𝑀,

Σ
𝑖,1,5

= 𝑃
2
,

Σ
𝑖,2,5

= 𝑃
3
,

Σ
𝑖,5,5

= −𝜀𝐼,

Σ
𝑖,1,6

= 0,

Σ
𝑖,2,6

= 0,

Σ
𝑖,6,6

= −𝑒
−𝑘ℎ

𝑄,

Σ
𝑖,1,7

= 𝑃
2
𝐻
𝑖
,

Σ
𝑖,2,7

= 𝑃
3
𝐻
𝑖
,

Σ
𝑖,7,7

= −𝜎𝐼.

(12)

Let

Ω
𝑖
= {𝑞
𝑇

| 𝑞
𝑇
(Σ
𝑖
+ Ξ + Ξ

𝑇
+ ℎ𝑊) 𝑞 < 0,

𝑞 (𝑡) = [𝑞
𝑇

1
, . . . , 𝑞

𝑇

𝑖
, . . . , 𝑞

𝑇

7
]
𝑇

, 𝑞
𝑖
∈ 𝑅
𝑛
} .

(13)

We obtain
𝑚

⋃

𝑖=1

Ω
𝑖
=

𝑅
7𝑛

{0}
. (14)

Construct a set as

Ω̃
1
= Ω
1
,

Ω̃
2
= Ω
2
− Ω̃
1
, . . . ,

Ω̃
𝑖
= Ω
𝑖
−

𝑖−1

⋃

𝑗=1

Ω̃
𝑗
, . . . ,

Ω̃
𝑚

= Ω
𝑚

−

𝑚−1

⋃

𝑗=1

Ω̃
𝑗
.

(15)

We get

𝑚

⋃

𝑖=1

Ω̃
𝑖
=

𝑅
6𝑛

{0}
, Ω̃
𝑖
∩ Ω̃
𝑗
= 𝜙, 𝑖 ̸=𝑗. (16)

Construct the switching rule (SR): 𝜎 = 𝑖, for all 𝑞 ∈

Ω̃
𝑖
, 𝑖 = 1, . . . , 𝑚. The ith subsystem is activated when 𝑞 ∈

Ω̃
𝑖
, 𝑖 = 1, . . . , 𝑚. Choose the following Lyapunov-Krasovskii

functional candidate:

𝑉 (𝑡) = 𝑉
1
(𝑡) + 𝑉

2
(𝑡) + 𝑉

3
(𝑡)

+ 𝑉
4
(𝑡) + 𝑉

5
(𝑡) + 𝑉

6
(𝑡) ,

(17)

with

𝑉
1
(𝑡) = (𝑥

𝑇
(𝑡) 𝑦
𝑇
(𝑡)) [

𝐼 0

0 0
] [

𝑃 0

𝑃
𝑇

2
𝑃
𝑇

3

] (𝑥
𝑇
(𝑡) 𝑦
𝑇
(𝑡))
𝑇

,

𝑉
2
(𝑡) = ∫

0

−ℎ

∫

𝑡

𝑡+𝛽

𝑦
𝑇
(𝛼) 𝑒
𝑘(𝛼−𝑡+ℎ)

𝑆𝑦 (𝛼) 𝑑𝛼 𝑑𝛽,

𝑉
3
(𝑡) = ∫

𝑡

−ℎ

∫

𝛽

𝛽−𝜏(𝛽)

𝜂
𝑇
𝑒
𝑘(𝛽−𝑡)

𝑅𝜂𝑑𝛼𝑑𝛽,

𝑉
4
(𝑡) = ∫

𝑡

𝑡−𝑑

𝑦
𝑇
(𝑠) 𝑒
𝑘(𝑠−𝑡)

𝑀𝑦(𝑠) 𝑑𝑠,

𝑉
5
(𝑡) = ∫

0

−ℎ

∫

𝑡

𝑡+𝛽

𝜉
𝑇
(𝛼) 𝑒
𝑘(𝛼−𝑡+ℎ)

𝑊𝜉 (𝛼) 𝑑𝛼 𝑑𝛽,

𝑉
6
(𝑡) = ∫

𝑡

𝑡−ℎ

𝑥
𝑇
(𝑠) 𝑒
𝑘(𝑠−𝑡)

𝑄𝑥 (𝑠) 𝑑𝑠,

(18)

where

𝜂 = [𝑥 (𝛽 − 𝜏 (𝛽)) 𝑦 (𝛼)]
𝑇

,

𝜉 = [𝑥
𝑇
(𝑡) 𝑦

𝑇
(𝑡) 𝑥
𝑇
(𝑡 − 𝜏 (𝑡)) 𝑦

𝑇
(𝑡 − 𝑑) 𝑓

𝑇
(𝑡) 𝑥 (𝑡 − ℎ) 𝑟 (𝑡)]

𝑇

.

(19)

The derivative of 𝑉(𝑡) along the trajectory of the ith subsys-
tem is given by

𝑉 (𝑡) = 𝑉
1
(𝑡) + 𝑉

2
(𝑡) + 𝑉

3
(𝑡)

+ 𝑉
4
(𝑡) + 𝑉

5
(𝑡) + 𝑉

6
(𝑡) ,

(20)
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where

𝑉
1
(𝑡) = 2 [𝑥

𝑇
(𝑡) 𝑦
𝑇
(𝑡)] [

𝑃 𝑃
2

0 𝑃
3

] [
𝑦 (𝑡)

0
]

= 2𝑥
𝑇
(𝑡) 𝑃𝑦 (𝑡) + 2 (𝑥

𝑇
(𝑡) 𝑃
2
+ 𝑦
𝑇
(𝑡) 𝑃
3
)

× (− 𝑦 (𝑡) + (𝐴
𝑖
+ 𝐻
𝑖
𝐿
𝑖
) 𝑥 (𝑡)

+ 𝐵
𝑖
𝑥 (𝑡 − 𝜏 (𝑡)) + 𝐶

𝑖
𝑦 (𝑡 − 𝑑)

+ 𝑓
𝑖
(𝑡) + 𝐻

𝑖
𝑟 (𝑡)) ,

(21)

𝑉
2
(𝑡) = ℎ𝑦

𝑇
(𝑡) 𝑒
𝑘ℎ

𝑆𝑦 (𝑡)

− ∫

𝑡

𝑡−𝜏(𝑡)

𝑦
𝑇
(𝑠) 𝑒
𝑘(𝑠−𝑡+ℎ)

𝑆𝑦 (𝑠) 𝑑𝑠

− ∫

𝑡−𝜏(𝑡)

𝑡−ℎ

𝑦
𝑇
(𝑠) 𝑒
𝑘(𝑠−𝑡+ℎ)

𝑆𝑦 (𝑠) 𝑑𝑠 − 𝑘𝑉
2
(𝑡)

≤ ℎ𝑦
𝑇
(𝑡) 𝑒
𝑘ℎ

𝑆𝑦 (𝑡)

− ∫

𝑡

𝑡−𝜏(𝑡)

𝑦
𝑇
(𝑠) 𝑆𝑦 (𝑠) 𝑑𝑠

− ∫

𝑡−𝜏(𝑡)

𝑡−ℎ

𝑦
𝑇
(𝑠) 𝑆𝑦 (𝑠) 𝑑𝑠 − 𝑘𝑉

2
(𝑡) ,

(22)

𝑉
3
(𝑡) = 𝜏 (𝑡) 𝑥

𝑇
(𝑡 − 𝜏 (𝑡)) 𝑅

11
𝑥 (𝑡 − 𝜏 (𝑡))

+ 2𝑥
𝑇
(𝑡 − 𝜏 (𝑡)) 𝑅

12
𝑥 (𝑡)

− 2𝑥
𝑇
(𝑡 − 𝜏 (𝑡)) 𝑅

12
𝑥 (𝑡 − 𝜏 (𝑡))

+ ∫

𝑡

𝑡−𝜏(𝑡)

𝑦 (𝑠) 𝑅
22
𝑦 (𝑠) 𝑑𝑠 − 𝑘𝑉

3
(𝑡)

≤ ℎ𝑥
𝑇
(𝑡 − 𝜏 (𝑡)) 𝑅

11
𝑥 (𝑡 − 𝜏 (𝑡))

+ 2𝑥
𝑇
(𝑡) 𝑅
𝑇

12
𝑥 (𝑡 − 𝜏 (𝑡))

− 2𝑥
𝑇
(𝑡 − 𝜏 (𝑡)) 𝑅

12
𝑥 (𝑡 − 𝜏 (𝑡))

+ ∫

𝑡

𝑡−𝜏(𝑡)

𝑦 (𝑠) 𝑅
22
𝑦 (𝑠) 𝑑𝑠 − 𝑘𝑉

3
(𝑡) ,

(23)

𝑉
4
(𝑡) = 𝑦

𝑇
(𝑡)𝑀𝑦 (𝑡) − 𝑦

𝑇
(𝑡 − 𝑑) 𝑒

−𝑘𝑑
𝑀𝑦(𝑡 − 𝑑) − 𝑘𝑉

4
(𝑡) ,

(24)

𝑉
5
(𝑡) = ℎ𝜉

𝑇
(𝑡) 𝑒
𝑘ℎ

𝑊𝜉 (𝑡) − ∫

𝑡

𝑡−𝜏(𝑡)

𝜉
𝑇
(𝑠) 𝑒
𝑘(𝑠−𝑡+ℎ)

𝑊𝜉 (𝑠) 𝑑𝑠

− ∫

𝑡−𝜏(𝑡)

𝑡−ℎ

𝜉
𝑇
(𝑠) 𝑒
𝑘(𝑠−𝑡+ℎ)

𝑊𝜉 (𝑠) 𝑑𝑠 − 𝑘𝑉
5
(𝑡)

≤ ℎ𝜉
𝑇
(𝑡) 𝑒
𝑘ℎ

𝑊𝜉 (𝑡) − ∫

𝑡

𝑡−𝜏(𝑡)

𝜉
𝑇
(𝑠)𝑊𝜉 (𝑠) 𝑑𝑠

− ∫

𝑡−𝜏(𝑡)

𝑡−ℎ

𝜉
𝑇
(𝑠)𝑊𝜉 (𝑠) 𝑑𝑠 − 𝑘𝑉

5
(𝑡) ,

(25)

𝑉
6
(𝑡) = 𝑥

𝑇
(𝑡) 𝑄𝑥 (𝑡) − 𝑥

𝑇
(𝑡 − ℎ) 𝑒

−𝑘ℎ
𝑄𝑥 (𝑡 − ℎ) − 𝑘𝑉

6
(𝑡) .

(26)
According to Leibniz-Newton formula, we have

2𝜉
𝑇
𝑈[𝑥 (𝑡) − 𝑥 (𝑡 − 𝜏 (𝑡)) − ∫

𝑡

𝑡−𝜏(𝑡)

𝑦
𝑇
(𝑠) 𝑑𝑠] = 0,

2𝜉
𝑇
𝑉[𝑥 (𝑡 − 𝜏 (𝑡)) − 𝑥 (𝑡 − ℎ) − ∫

𝑡−𝜏(𝑡)

𝑡−ℎ

𝑦
𝑇
(𝑠) 𝑑𝑠] = 0.

(27)
From the obtained derivative terms in (21)–(26) and adding
the left-hand side of (27) into (20), we obtain the following
result:

𝑉 (𝑡) ≤ 𝜉
𝑇
(Σ
𝑖
+ Ω + Ω

𝑇
+ ℎ𝑒
𝑘ℎ

𝑊)𝜉

− ∫

𝑡

𝑡−𝜏(𝑡)

𝜁
𝑇
Φ
1
𝜁 𝑑𝑠 − ∫

𝑡−𝜏(𝑡)

𝑡−ℎ

𝜁
𝑇
Φ
2
𝜁 𝑑𝑠

− 𝑘𝑉 (𝑡) + 𝜎‖𝑟 (𝑡)‖
2

∞
,

(28)

where

𝜁 = [𝜉
𝑇

𝑦
𝑇
(𝑠)]
𝑇

,

Φ
1
= [

𝑊 𝑈

∗ 𝑆 − 𝑅
22

] , Φ
2
= [

𝑊 𝑉

∗ 𝑆
] .

(29)

When 𝜉 ∈ ⋃
𝑚

𝑖=1
Ω̃
𝑖
, 𝑖 = 1, . . . , 𝑚, we can obtain

𝑉 (𝑡) ≤

𝑚

∑

𝑖=1

𝑎
𝑖
(𝜉
𝑇
(Σ
𝑖
+ Ω + Ω

𝑇
+ ℎ𝑒
𝑘ℎ

𝑊)𝜉

− ∫

𝑡

𝑡−𝜏(𝑡)

𝑞
𝑇
Φ
1
𝑞 𝑑𝑠 − ∫

𝑡−𝜏(𝑡)

𝑡−ℎ

𝑞
𝑇
Φ
2
𝑞 𝑑𝑠)

= 𝜉
𝑇
(Σ + Ξ + Ξ

𝑇
+ ℎ𝑒
𝑘ℎ

𝑊)𝜉

− ∫

𝑡

𝑡−𝜏(𝑡)

𝑞
𝑇
Φ
1
𝑞 𝑑𝑠 − ∫

𝑡−𝜏(𝑡)

𝑡−ℎ

𝑞
𝑇
Φ
2
𝑞 𝑑𝑠.

(30)

According to (7), we have

𝑉 (𝑡) ≤ −𝑘𝑉 (𝑡) + 𝜎‖𝑟 (𝑡)‖
2

∞
. (31)

Hence,

(𝑉(𝑡)𝑒
𝑘𝑡
)


≤ (𝑉 (𝑡) + 𝑘𝑉 (𝑡)) 𝑒
𝑘𝑡

≤ 𝜎‖𝑟 (𝑡)‖
2

∞
𝑒
𝑘𝑡
. (32)

Integrating the previous inequality from 𝑡
0
to t yields

𝑉 (𝑡) 𝑒
𝑘𝑡

≤ 𝑉 (𝑡
0
) 𝑒
𝑘𝑡0 + 𝜎‖𝑟(𝑡)‖

2

∞
∫

𝑡

𝑡0

𝑒
𝑘𝑠
𝑑𝑠. (33)

Then, we have

𝜆min (𝑃) ‖𝑥 (𝑡)‖
2
≤ 𝑉 (𝑡) ≤ 𝑉 (𝑡

0
) 𝑒
−𝑘(𝑡−𝑡0)

+ 𝜎‖𝑟 (𝑡)‖
2

∞
∫

𝑡

𝑡0

𝑒
−𝑘(𝑡−𝑠)

𝑑𝑠

≤ 𝑉 (𝑡
0
) 𝑒
−𝑘(𝑡−𝑡0) +

𝜎‖𝑟 (𝑡)‖
2

∞

𝑘
.

(34)
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Define

𝜓 = max{ sup
ℎ≤𝜃≤0

𝜑 (𝑡
0
+ 𝜃)

 , sup
ℎ≤𝜃≤0


𝜑

(𝑡
0
+ 𝜃)


} . (35)

According to (17), we have

𝑉 (𝑡
0
) ≤ [𝜆max (𝑃) + ℎ

2
𝑒
𝑘ℎ

𝜆max (𝑆) + ℎ
2
𝜆max (𝑅)

+ℎ
2
𝑒
𝑘ℎ

𝜆max (𝑊) + ℎ𝜆max (𝑄) + ℎ𝜆max (𝑀)] 𝜓
2
.

(36)

Hence, the following inequality can be concluded:

‖𝑥 (𝑡)‖
2
≤

𝑎

𝜆min (𝑃)
𝜓
2
+

𝜎

𝑘𝜆min (𝑃)
‖𝑟 (𝑡)‖

2

∞

≤ (√
𝑎

𝜆min (𝑃)
𝜓 + √

𝜎

𝑘𝜆min (𝑃)
‖𝑟 (𝑡)‖∞)

2

,

(37)

where

𝑎 = 𝜆max (𝑃) + ℎ
2
𝑒
𝑘ℎ

𝜆max (𝑆) + ℎ
2
𝜆max (𝑅)

+ ℎ
2
𝑒
𝑘ℎ

𝜆max (𝑊) + ℎ𝜆max (𝑄) + ℎ𝜆max (𝑀) .

(38)

Then,

‖𝑌‖ ≤ ‖𝐽‖ ‖𝑥‖ ≤ 𝜃
1
+ 𝜃
2‖𝑟 (𝑡)‖∞, (39)

with

𝜃
1
= ‖𝐽‖√

𝑎

𝜆min (𝑃)
𝜓, 𝜃

2
= ‖𝐽‖√

𝜎

𝑘𝜆min (𝑃)
. (40)

Therefore, switched system (1) is BIBO stable.This completes
the proof.

4. Simulation Results

As an example, let us consider system (1) with the following
parameters:

𝐴
1
= [

−1.5 0.5

0 −1.5
] , 𝐵

1
= [

−0.2 0.3

0 −0.4
] ,

𝐶
1
= [

0.3 0.2

0 −0.2
] , 𝐻

1
= [

0.4 0

0 0.4
] ,

𝐿
1
= [

0.2 0

0 0.2
] , 𝐴

2
= [

−1 0.5

0.5 −2
] ,

𝐵
2
= [

−0.4 0

0.3 −0.4
] , 𝐶

2
= [

−0.4 0.3

0 −0.3
] ,

𝐻
2
= [

−0.3 0

0 −0.3
] , 𝐿

2
= [

0.3 0

0 0.3
] ,

𝐽 = [
1 0

0 1
] , 𝑑 = 1.5.

(41)

0

0

5 10 15 20 25 30 35 40 45 50

1

2

−2

−1

𝑟 1

𝑡 (s)

(a)

0
0.5

1
1.5

0 5 10 15 20 25 30 35 40 45 50

−0.5

−1

−1.5

𝑟 2

𝑡 (s)

(b)

Figure 1: Time response of the reference input variable 𝑟(𝑡).

Remark 7. When the BIBO parameter 𝑘 and the constant
parameter 𝛽 are given, the upper bound of time delay ℎ

of system (1) can be determined by solving the following
optimization problem:

max ℎ

when (7) is satisfied, 𝑘 and 𝛽 are fixed.
(42)

Now we consider the influence of parameters k and 𝛽 on
the maximal allowable delay in Tables 1 and 2.

Remark 8. From Tables 1 and 2, it can be seen that the
maximal allowable delay decreases with the rise of the
parameter k and increases as the parameter 𝛽 is reduced.

Then, we carry out some numerical simulation to verify
the proposedmethodology.The numerical simulation is with
initial value 𝜑(𝜃) = [−1.5; 1]

𝑇
, 𝑡 ∈ (−1.5, 0), and following

parameters

𝜏 (𝑡) = 1.1 + 0.4cos2 (5𝑡) ,

𝑓 (𝑡, 𝑥 (𝑡)) =
𝛽 [|𝑥 (𝑡) + 1| + |𝑥 (𝑡) − 1|]

2
,

𝑟 (𝑡) = [1.5 sin (2𝑡) cos (𝑒𝑡) , cos (2𝑡) sin(
𝑒
𝑡

𝑡 + 1
)]

𝑇

,

𝑘 = 0.1, 𝛽 = 0.1.

(43)

The switching signals are produced randomly with switching
interval 0.2 seconds.

Remark 9. Figure 1 depicts the time response of system
reference input variable 𝑟(𝑡), and Figure 2 depicts the time
response of switching signals. 𝑠𝑤

1
denotes the switching
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Figure 2: Time response of the switching variables 𝑠𝑤
1
and 𝑠𝑤

2
.

0 5 10 15 20 25 30 35 40 45 50
−1.5

−1

−0.5

0

0.5

𝑌
1

𝑡 (s)

Figure 3: Time response of the output variable 𝑌
1
(𝑡).

Table 1: The maximal allowable delay for different parameters 𝑘

when 𝛽 is 0.1.

𝑘 = 0 𝑘 = 0.1 𝑘 = 0.2 𝑘 = 0.5

ℎmax = 3.3395 ℎmax = 2.5482 ℎmax = 2.1313 ℎmax = 1.5197

Table 2: The maximal allowable delay for different nonlinear
parameters 𝛽 when 𝑘 is 0.1.

𝛽 = 0 𝛽 = 0.1 𝛽 = 0.2 𝛽 = 0.5

ℎmax = 2.6608 ℎmax = 2.5482 ℎmax = 2.4370 ℎmax = 2.1385

signal added to the system for the first time, and 𝑠𝑤
2
denotes

the switching signal added to the system for the second time;
Figure 3 depicts the time response of system output variable
𝑌
1
(𝑡), and Figure 4 depicts the time response of systemoutput

−0.2

0

0.2

0.4

0.6

0.8

𝑌
2

0 5 10 15 20 25 30 35 40 45 50
𝑡 (s)

Figure 4: Time response of the output variable 𝑌
2
(𝑡).

variable 𝑌
2
(𝑡). The solid line denotes the output variable

of the switched system with the switching signal 𝑠𝑤
1
, and

the dashed line denotes the output variable of the switched
system with the switching signal 𝑠𝑤

2
. From the figures it can

be seen that the system output jitters in a range with a given
bounded input after a period of time, which means that the
system is BIBO stable and demonstrates the effectiveness of
our theoretical results.

5. Conclusions

Wehave studied bounded-input bounded-output stability for
a class of delay switched systemswith nonlinear perturbation.
Based on the Lyapunov-Krasovskii functional theory, new
BIBO stabilization criteria were established in terms of delay-
dependent linear matrix inequalities. Some numerical simu-
lations have been conducted to demonstrate the effectiveness
of the theoretical results obtained in this paper. Future work
will investigate fault detection for delay switched systems.
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