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The challenge in advanced engineering applications based on
efficient mathematical models for propagation and transition
phenomena can be noticed nowadays in many research
fields. Fractal theory and special mathematical functions
are used not only for the design of nanostructures but
also for studying propagation in complex artificial networks.
Differential geometry is adapted for solving nonlinear partial
differential equations with very great number of variables
for modelling propagation and transitions for different type
of electromagnetic, acoustic, and optic waves. Commutative
and/or additive consequences of quantum physics are used
extensively in the design of long range transmission systems.
Advanced mathematical tools connected to wavelets are
recommended for biological phenomena. All these advanced
engineering subjects require efficient mathematical models
adapted for nonlinear propagation phenomena and for com-
plex systems, when specific limitations are involved (very
long distance propagation, fractal aspects and transitions
in nanostructures, complex systems with great number of
variables, and infinite spatiotemporal extension of material
media). Using advanced mathematical tools for modeling
propagation and transition phenomena, this special issue
presents high qualitative and innovative developments for
efficient mathematical approaches of Propagation Phenom-
ena and Transitions in Complex Systems. Significant results
were obtained for propagation of waves in advanced materi-
als, dynamics of complex systems, efficient signal and image

analysis based on fundamental mathematical and physical
laws, and transitions in complex networks.

This special issue involves 13 original papers selected by
the editors so as to present the most significant results in the
previously mentioned topics. These papers are organised as
follows.

(a) Five papers are on advanced mathematical approach
for propagation and transmission in complex artificial net-
works: “Delay bound: fractal traffic passes through network
servers” by M. Li et al., “Smoothing the sample autocorrelation
of long-range-dependent traffic” by M. Li and W. Zhao, “An
efficient patch dissemination strategy for mobile networks” by
D. Zhao et al., “Attractor transformation by impulsive control
in Boolean control network” by B. Gao et al., and “Identifying
vulnerable nodes of complex networks in cascading failures
induced by node-based attacks” by S. Li et al.

(b) Three papers are on specific methods for the anal-
ysis of propagation phenomena in physics: “Nonholonomic
geometry of viscoanelastic media and experimental confirma-
tion” by A. Ciancio and C. Cattani, “Acoustic response of a
sinusoidally perturbed hard-walled duct” by S. D. Giudice and
G. Bernasconi, and “Transient aspects of wave propagation
connected with spatial coherence” by E. G. Bakhoum and C.
Toma.

(c) Two papers are on accurate and efficient mathemat-
ical models for transition in biological systems: “Legendre
wavelets method for solving fractional population growth
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model in a closed system” by M. H. Heydari et al. and “A class
of solutions for the hybrid kinetic model in the tumor-immune
system competition” by C. Cattani and A. Ciancio.

(d) Three papers are on mathematical tools for analyzing
mathematical complexity: “Golden ratio phenomenon of ran-
dom data obeying von Karman spectrum” by M. Li and W.
Zhao, “Content-based image retrial based on Hadoop” by D.
Yin and D. Liu, and “Essay on fractional Riemann-Liouville
integral operator versus Mikusinski’s” by M. Li and W. Zhao.

Ezzat G. Bakhoum
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Carlo Cattani
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Acoustic wave propagation in hard-walled ducts is of interest inmany fields including vehicle design,musical instruments acoustics,
and architectural and environmental noise-control. For the case of small sinusoidal perturbation of the cross-section, it is possible
to derive simple though approximate analytical formulas of its plane wave acoustic reflection and transmission spectral response
that resembles the optical situation of uniform Bragg gratings. The proof is given here, starting from the “horn equation” and
then exploiting the coupled-modes theory. Examples of the results obtained with these analytical formulas are shown for some
sinusoidally perturbed ducts and compared to results obtained through a numerical method, revealing a very good agreement.

1. Introduction

The propagation of waves in periodic media has received
much attention in the past in different fields of physics:
a comprehensive review can be found in Elachi [1], with
references on the propagation of acoustic waves in ducts with
sinusoidally perturbed walls [2–4]. An interesting feature of
wave propagation in periodic media discussed in the review
is the existence of stopbands and passbands related to the
medium periodicities.

In the last decades much research effort was dedicated
to the theoretical and experimental study of elastic wave
propagation in periodic waveguides. For instance, Fokkema
[5] dealt with periodic boundaries of elastic media; other
authors studied waves propagating along periodically corru-
gated plates [6–10] and along ducts [11–15].

The purpose of this paper is not to advance the research
work accomplished so far, but rather to provide an approx-
imate simplification of the established theory, when proper
hypotheses are satisfied. Attention is indeed limited to acous-
tic propagation in hard-walled ducts whose cross-section
undergoes a small sinusoidal perturbation with respect to a
referencemean value.Thework holds for any filling fluid, typ-
ically air, provided that the hard-wall hypothesis is verified.

Like inMunday et al. [15], the analysis is restricted to one-
dimensional (plane wave) propagation, where the waveguide
geometry is defined simply by the cross-section along the
axial coordinate.The starting point of the theoretical analysis
is the Webster horn equation, as performed by Nagarkar and
Finch [16], who studied sinusoidal horns, and byGriffiths and
Steinke [17], who reviewed the theory of one-dimensional
wave propagation in locally periodic media consisting of
an arbitrary number of identical cells and showed the
acoustic solution for some particular geometries. Lau and
Campos [18] also solved the acoustic wave equation for one-
dimensional propagation along a duct with a small wall
sinusoidal perturbation: the exact solutions were obtained as
power series expansions around the middle of the duct.

Recently, Hawwa [19] analyzed sound waves in a circular
cylindrical duct having a geometric periodicity at its wall, by
solving numerically the wave equations.

In optics, or more general in electromagnetics, a period-
ically perturbed medium is called a Bragg grating, or simply
a multilayer medium: the transmission and reflection of a
uniform grating can be expressed with simple closed-form
formulas (Kogelnik [20]).The acoustic analog of the uniform
Bragg grating is a duct whose cross-section sinusoidally
varies but, to the authors’ knowledge, a simple formula for
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Figure 1: Duct with a periodic perturbation of the cross-section.

the acoustic response of such a waveguide is not available in
literature.

This paper exploits thus the Bragg gratings theory to
solve the acoustic “horn equation,” obtaining simple formulas
for the reflection and transmission spectral response of the
waveguide as a function of acoustic and geometric parame-
ters, under the hypothesis of a small sinusoidal cross-section
variation compared to the mean reference value.

Simple and closed-form solutions are advantageous in
modeling/inversion procedures, as, for example, in bore
reconstruction, design of noise-control devices (employed,
e.g., for jet engines or HVAC systems), and even monitoring
of transportation pipelines.

The following sections describe the scenario, the mathe-
matical derivation, and the result for some example cases.

The solution provided can take into account also wave
attenuation, typically hard-wall losses (boundary layer fric-
tion), whose terms are added a posteriori.

2. Theory

The scenario considered here is a circular hard-walled duct
with a small periodic perturbation of the cross-section
along the axial coordinate (Figure 1). Two similar though
analytically different geometric cases are considered: one is
when a sinusoidal function describes the variation of the
cross-section; the other when a sinusoidal function describes
the variation of the radius of the circular cross-section.

As in Lau and Campos [18], the acoustic wavelength is
supposed to be larger than the transverse dimensions of the
duct, so that only the fundamental longitudinal mode exists.
Moreover, the changes in cross-section are supposed not to
be too rapid with respect to the transverse dimension, so that
the wavefronts remain approximately plane.

Under these hypotheses the governing geometrical
parameters reduce to the cross-section area (the shape can
be neglected), and the starting physical law is the one-
dimensional “horn equation” [17]:

𝜕
2
Ψ

𝜕𝑡2
= V2 (

𝜕
2
Ψ

𝜕𝑥2
+
1

𝑆

𝑑𝑆

𝑑𝑥

𝑑Ψ

𝑑𝑥
) . (1)

The field variable Ψ is the pressure over ambient, 𝑆 is the
cross-section area, V is the phase velocity, 𝑥 is the waveguide
axial coordinate, and 𝑡 is the time.

Let us consider harmonic waves:

Ψ = 𝜓 (𝑥) 𝑒
−𝑖𝜔𝑡

. (2)

The substitution of (2) in the wave equation (1) yields

𝜕
2
𝜓

𝜕𝑥2
+
1

𝑆

𝑑𝑆

𝑑𝑥

𝑑𝜓

𝑑𝑥
+ 𝛽
2
𝜓 = 0, (3)

where 𝛽 = 𝜔/V is the acoustic wavenumber.
From this point, the mathematical steps and the approx-

imations introduced follow the computation of the transfer
function for a uniform optical fiber Bragg grating (Erdogan
[21] and Kogelnik [20]), with adaptation to the acoustic
waveguide case.

The pressure field is expressed as a linear combination
of the fundamental modes propagating in the opposite
directions

𝜓 (𝑥) = 𝐴 (𝑥) 𝑒
−𝑖𝛽𝑥

+ 𝐵 (𝑥) 𝑒
𝑖𝛽𝑥
, (4)

where, according to the adopted time convention, 𝐴 and 𝐵
are the amplitudes of the waves propagating in the −𝑥 and +𝑥
directions, respectively.

The first derivative of (4) is

𝜓

= 𝐴

𝑒
−𝑖𝛽𝑥

− 𝑖𝛽𝐴𝑒
−𝑖𝛽𝑥

+ 𝐵

𝑒
𝑖𝛽𝑥

+ 𝑖𝛽𝐵𝑒
𝑖𝛽𝑥
, (5)

with prime denoting derivative with respect to 𝑥.
In the hypothesis of weak coupling between the two

modes, the second derivatives of 𝐴 and 𝐵 are neglected,
because 𝐴 ≪ 𝛽

2
𝐴 and 𝐵 ≪ 𝛽

2
𝐵; therefore, the second

derivative of (4) becomes

𝜓

≅ −2𝑖𝛽𝐴
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𝐵𝑒
𝑖𝛽𝑥
. (6)

Substituting the expressions for derivatives, andmultiply-
ing by 𝑒𝑖𝛽𝑥, the wave equation (3) yields

𝑆


𝑆
(𝐴

− 𝑖𝛽𝐴 + 𝐵


𝑒
2𝑖𝛽𝑥
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) − 2𝑖𝛽𝐴

+ 2𝑖𝛽𝐵


𝑒
2𝑖𝛽𝑥

= 0.

(7)

The solution of (7) requires a system of two differential
equations for 𝐴 and 𝐵. Therefore 𝐴 and 𝐵 are alternately
isolated from (7), neglecting in each resulting equation the
dependency on the derivative of the other coefficient. This is
justified by the fact that 𝑆 and so 𝐴 and 𝐵 are slowly variable
functions of 𝑥 [21].

The resulting system is

𝐴

=

𝑖𝛽𝑆

/𝑆

𝑆/𝑆 − 2𝑖𝛽
𝐴 +

−𝑖𝛽𝑆

/𝑆

𝑆/𝑆 − 2𝑖𝛽
𝐵𝑒
2𝑖𝛽𝑥

,

𝐵

=

−𝑖𝛽𝑆

/𝑆

𝑆/𝑆 + 2𝑖𝛽
𝐵 +

𝑖𝛽𝑆

/𝑆

𝑆/𝑆 + 2𝑖𝛽
𝐴𝑒
−2𝑖𝛽𝑥

,

(8)
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that can be expressed in this way:

𝐴
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11
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.

(9)

Under the hypothesis of slow section perturbations, and
far from the null frequency, it is |𝑆/𝑆| ≪ |2𝑖𝛽|, and the
coefficients 𝑐

𝑖𝑗
in (9) become

𝑐
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(10)

Now, the two aforementioned geometric cases are considered;
first, when the cross-section is a cosine function of 𝑥; that is,

𝑆 (𝑥) = 𝑠 cos (𝛾𝑥) + 𝑠
0
, (11)

and second, when the radius of the circular cross-section is a
cosine function of 𝑥; that is,

𝑆 (𝑥) = 𝜋(𝑠 cos (𝛾𝑥) + 𝑠
0
)
2

. (12)

𝛾 is the perturbation wavenumber, 𝑠 is the perturbation
amplitude, and 𝑠

0
is the mean value.

The ratio between the derivative of the cross-section and
the cross-section itself 𝑆/𝑆, for 𝑠 ≪ 𝑠

0
, is approximately

𝑆

(𝑥)

𝑆 (𝑥)
≅ −4𝜅 sin (𝛾𝑥) = 2𝑖𝜅 (𝑒+𝑖𝛾𝑥 − 𝑒−𝑖𝛾𝑥) , (13)

where 𝜅 = 𝑠𝛾/4𝑠
0
for the cross-section sinusoidal perturba-

tion and 𝜅 = 𝑠𝛾/2𝑠
0
for the radius sinusoidal perturbation.

The system (9) becomes
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The terms that contain a rapidly oscillating dependence with
𝑥 can be neglected: they correspond to the complex exponen-
tials with high phase constant (in magnitude) compared to
the others, that is, 𝑒±𝑖𝛾𝑥, 𝑒2𝑖𝛽𝑥+𝑖𝛾𝑥, and 𝑒−2𝑖𝛽𝑥−𝑖𝛾𝑥 [21].

The result is

𝐴

= −𝑖𝜅𝐵𝑒

𝑖(2𝛽−𝛾)𝑥
,

𝐵

= 𝑖𝜅𝐴𝑒

−𝑖(2𝛽−𝛾)𝑥
.

(15)

By performing in the system (15) the following substitutions:

𝑎 = 𝐴𝑒
−𝑖(𝛽−𝛾/2)𝑥

,

𝑏 = 𝐵𝑒
𝑖(𝛽−𝛾/2)𝑥

,

(16)

and calling 𝜎 = 𝛽 − 𝛾/2, one obtains

𝑎

= −𝑖𝜎𝑎 − 𝑖𝜅𝑏

𝑏

= 𝑖𝜎𝑏 + 𝑖𝜅𝑎.

(17)

The system (17) is a standard systemof two coupled first-order
ordinary differential equations with constant coefficients, for
which closed-form solutions can be found, when appropriate
boundary conditions are specified.

Since 𝐴 corresponds to the backward propagating wave
and 𝐵 to the forward propagating one, the boundary condi-
tions, for a forward propagating wave impinging the waveg-
uide at 𝑥 = 0, are

𝐴 (𝐿) = 0

𝐵 (0) = 1
⇒

𝑎 (𝐿) = 0

𝑏 (0) = 1,
(18)

where 𝐿 is the length of the sinusoidally perturbed duct.
The solution of system (17) with boundary conditions (18)

is obtained by means of linear algebra:

𝑎 (𝑥) =
𝑖𝜅 (𝑒
−𝛿𝐿
𝑒
𝛿𝑥
− 𝑒
𝛿𝐿
𝑒
−𝛿𝑥
)

𝑒𝛿𝐿 (𝑖𝜎 − 𝛿) − 𝑒−𝛿𝐿 (𝑖𝜎 + 𝛿)
,

𝑏 (𝑥) =
𝑒
𝛿𝐿
𝑒
−𝛿𝑥

(𝑖𝜎 − 𝛿) − 𝑒
−𝛿𝐿
𝑒
𝛿𝑥
(𝑖𝜎 + 𝛿)

𝑒𝛿𝐿 (𝑖𝜎 − 𝛿) − 𝑒−𝛿𝐿 (𝑖𝜎 + 𝛿)
.

(19)

The reflection and transmission spectral responses 𝑅(𝜔)
and 𝑇(𝜔) correspond, respectively, to 𝑎(0) and 𝑏(𝐿). Hence,
finally

𝑅 (𝜔) =
𝑖𝑆 sinh 𝛿𝐿

cosh 𝛿𝐿 − 𝑖𝑃 sinh 𝛿𝐿
,

𝑇 (𝜔) =
1

cosh 𝛿𝐿 − 𝑖𝑃 sinh 𝛿𝐿
,

(20)

where

𝛿 = √𝜅2 − 𝜎2,

𝑆 =
𝜅

𝛿
,

𝑃 =
𝜎

𝛿
.

(21)

According to their definition, the spectral responses 𝑅
and 𝑇 refer to the acoustic pressure amplitude: the corre-
sponding power spectral responses can be found by taking
the square of their magnitude. In absence of attenuation, the
sum of the power spectral responses is unitary, as expected.

Equations (20) are the acoustic analog of the optical
formulas for the uniform Bragg grating in Kogelnik [20], and
the parameters 𝜅 and 𝜎 are expressed here as a function of
acoustic wave parameters and waveguide geometric parame-
ters.

The reflection spectral response has a maximum for 𝜎 =
0, corresponding to the frequency 𝑓max = 𝛾V/4𝜋. For the
same frequency the transmission response has a minimum.

Finally, even if the considered one-dimensional wave
equation does not contain a loss term, one may add the
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Figure 2: Reflection ((a), (c), (e)) and transmission ((b), (d), (f)) spectral responses, inmagnitude, of a sinusoidally perturbed duct computed
with (20) (solid line) and numerical results (crosses). ((a)-(b)) Case (i); ((c)-(d)) Case (ii); ((e)-(f)) Case (iii).

absorption phenomenon a posteriori, typically due to the
duct walls, by redefining the acoustic wavenumber

𝛽 =
𝜔

V
+ 𝑖𝛼, (22)

where 𝛼(𝜔) is the absorption coefficient computed withmean
cross-section parameters and V(𝜔) is the corresponding phase
velocity.

3. Examples

Some examples of the acoustic behavior for a sinusoidally
perturbed duct, filled with air at standard conditions (20∘C,
1 atm), are presented here. They reveal the link between the
passbands/stopbands response and the waveguide geometri-
cal parameters, and they permit inferring the validity limit of
the approximate formula.
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Wave attenuation and dispersion are included too, using
(22), and 𝛼(𝜔) and V(𝜔) are computed according to the
wide-tube approximation (well described by Tijdeman [22]).
Closed-form solutions are compared with full waveform
numerical methods.

We consider a sinusoidal duct with length 𝐿, parameter-
ized by the radius of the circular cross-section 𝑟:

𝑟 (𝑥) = 𝑠 cos (𝛾𝑥) + 𝑠
0
, 0 < 𝑥 < 𝐿. (23)

The average radius 𝑠
0
is set to 2 cm, and the radius perturba-

tion frequency 𝛾/2𝜋 is set to 50m−1.
The other parameters are set to the following values:

Case (i): 𝐿 = 2m, 𝑠 = 0.02mm;
Case (ii): 𝐿 = 20m, 𝑠 = 0.2mm;
Case (iii): 𝐿 = 2m, 𝑠 = 2mm.

Figure 2 shows the reflection and transmission responses,
in magnitude, computed with (20), for the different cases,
in a frequency interval centered at the frequency 𝑓max. The
wavelength corresponding to 𝑓max is not much higher than
the duct transverse dimension, as required.

The crosses in Figure 2 are computed with an “exact” one-
dimensional simulator, based on the computation method
described byMunday et al. [15], but with transmission coeffi-
cients included: the agreement between the approximate and
the exact solution is very good.

The parameters values have been chosen to progressively
increase the 𝑠/𝑠

0
ratio, since a hypothesis for the approxima-

tion is 𝑠 ≪ 𝑠
0
: the effect of increasing this ratio is to widen

the stopband. Moreover, Case (ii) investigates the effect of
extending the duct length 𝐿, which is the other geometric
parameter of the periodic structure: a higher length results
in a sharper transition of the stopband.

The difference between approximate and theoretical val-
ues is barely noticeable even when 𝑠/𝑠

0
ratio is as large

as 1/10, which may be considered the limit of validity of
this approximation. Furthermore, the analytic formula is
able to correctly simulate the attenuation phenomenon (this
is apparent in the transmission response) which was not
theoretically justified, but simply added a posteriori.

The phases are not shown here, but they have been
verified as well.

4. Conclusion

The acoustic spectral response of a sinusoidally perturbed
hard-wall duct has been derived and given in a simple
formula, by following the optical analog of Bragg gratings.
The formula is the same as in optics, with the electromagnetic
parameters replaced by their equivalent acoustic parameters
and periodic duct geometry.

Results are valid for small cross-section perturbations and
in this case successful comparisons with a numerical method
are shown, even in case of wave attenuation.

The availability of simple analytical formulas permits a
direct analysis of the link between the acoustic response and
the duct geometrical parameters and the design of efficient

modeling/inversion procedures in the fields of bore/pipe
reconstruction, noise control, and so forth.

Finally it can be noticed that, even if the derivation
strictly requires a sinusoidal perturbation, any cross-section
deformation can be decomposed in sinusoidal functions
and therefore the results can be applied, provided that the
underlying hypotheses are satisfied, to a much broader range
of scenarios.
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A thermodynamical model for viscoanelastic media is analyzed using the nonholonomic geometry. A 27-dimensional manifold is
introduced, and the differential equations for the geodetics are determined and analytically solved. It is shown that, in thismanifold,
the best specific entropy is a harmonic function. In the linear case the propagation of transverse acoustic waves is studied, and the
theoretical results are compared with some experimental data from a polymeric material (polyisobutylene).

1. Introduction

From macroscopic point of view the most popular mathe-
matical approaches to nonequilibrium thermodynamics are
based both on the Caratheodory theory [1–3] which involves
Pfaff equations and on the contact structure of thermody-
namic state space [4–6]. If these equations are completely
integrable, then the thermodynamics is called holonomic
otherwise nonholonomic.

The theory of nonequilibrium holonomic thermodynam-
ics for mechanical phenomena in continuous media was
developed in the 90s (see e.g., [7] and references therein).
The phenomenological equations were derived [8, 9] by
introducing the tensorial internal variables 𝜀

(1)

𝛼𝛽
(𝛼, 𝛽 =

1, 2, 3) which occur in the entropy production.
In particular, if one linearizes this theory by neglecting

the cross effects among the irreversible phenomena (heat
flow, mechanical viscosity, and anelastic deformations), the
following rheological equations for distortional phenomena
are obtained [10]:

𝑑𝜏
𝛼𝛽

𝑑𝑡
+ 𝑅
(𝜏)

(𝑑)0
𝜏
𝛼𝛽

= 𝑅
(𝜀)

(𝑑)2

𝑑
2
𝜀
𝛼𝛽

𝑑𝑡2
+ 𝑅
(𝜀)

(𝑑)1

𝑑𝜀
𝛼𝛽

𝑑𝑡

+ 𝑅
(𝜀)

(𝑑)0
𝜀
𝛼𝛽
,

(1)

where 𝜏
𝛼𝛽

and 𝜀
𝛼𝛽

are the deviators of the stress (𝜏
𝛼𝛽
) and the

strain (𝜀
𝛼𝛽
) tensors, respectively.

The quantities 𝑅 are given by

𝑅
(𝜏)

(𝑑)0
= 𝑎
(1,1)

𝜂
(1,1)

𝑠
=
1

𝜎
≥ 0,

𝑅
(𝜀)

(𝑑)0
= 𝑎
(0,0)

(𝑎
(1,1)

− 𝑎
(0,0)

) 𝜂
(1,1)

𝑠
≥ 0,

𝑅
(𝜀)

(𝑑)1
= 𝑎
(0,0)

+ 𝑎
(1,1)

𝜂
(1,1)

𝑠
𝜂
(0,0)

𝑠
≥ 0,

𝑅
(𝜀)

(𝑑)2
= 𝜂
(0,0)

𝑠
≥ 0,

(2)

in which 𝜎 is the relaxation time and 𝑎(1,1) ≥ 𝑎
(0,0)

≥ 0 are the
state coefficients, while 𝜂(0,0)

𝑠
and 𝜂(1,1)
𝑠

are the phenomenolog-
ical coefficients related to the following physical phenomena:

𝑎
(0,0)

⇒ elasticity,

𝑎
(1,1)

⇒ anelasticity,

𝜂
(0,0)

𝑠
⇒ viscosity,

𝜂
(1,1)

𝑠
⇒ fluidity.

(3)

In this paper we reconsider the theory from the point of view
of the nonholonomic geometry.
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In Sections 2 and 3 the analytic properties of the entropy
are discussed, and in Section 4 the differential equations of
geodetics in the space of state are obtanied.

Finally, in Section 5 we study the transverse waves and
we will show the connection between complex numbers and
the shear complex modulus. By applying these results to a
polymeric material, as polyisobutylene we will also show that
the expected results of the theoretical model are in agreement
with the experimental data.

2. Gibbs-Pfaff Equation of Viscoanelastic
Media

Let us define the space of states

𝑅
27
= 𝑅
2⋅13+1

= {𝑠, 𝑇, 𝑢, 𝜏
(eq)
𝛼𝛽

, 𝜀
𝛼𝛽
, 𝜏
(1)

𝛼𝛽
, 𝜀
(1)

𝛼𝛽
} , (4)

where 𝑠 is the specific entropy, 𝑇 is the absolute temperature,
𝑢 is the specific internal energy, 𝜏(eq)

𝛼𝛽
is the symmetric equi-

librium stress tensor, 𝜀
𝛼𝛽

is the total symmetric strain tensor,
and 𝜏(1)
𝛼𝛽

is the symmetric affinity stress tensor conjugate to the
anelastic tensor 𝜀(1)

𝛼𝛽
(the symmetric tensorial thermodynamic

internal variable).
Let ] be the specific volume related to the mass density

 = constant (homogeneous media) by ] = 1. The Gibbs-
Pfaff equation of viscoanelastic media is

𝑇𝑑𝑠 = 𝑑𝑢 − ]𝜏(eq)
𝛼𝛽

𝑑𝜀
𝛼𝛽
+ ]𝜏(1)
𝛼𝛽
𝑑𝜀
(1)

𝛼𝛽
. (5)

This equation defines in 𝑅
27 the nonholonomic contact

distribution of dimension 26 so that the highest dimension
of integral manifold is 13.

The 𝐶∞ representation of this integral manifold (of max-
imum dimension) is usually given as follows:

𝑠 = Φ (𝑢, 𝜀
𝛼𝛽
, 𝜀
(1)

𝛼𝛽
) ,

𝑇
−1
=
𝜕Φ

𝜕𝑢
(𝑢, 𝜀
𝛼𝛽
, 𝜀
(1)

𝛼𝛽
) ,

𝜏
(eq)
𝛼𝛽

= −𝑇
𝜕Φ

𝜕𝜀
𝛼𝛽

(𝑢, 𝜀
𝛼𝛽
, 𝜀
(1)

𝛼𝛽
) ,

𝜏
(1)

𝛼𝛽
= 𝑇

𝜕Φ

𝜕𝜀
(1)

𝛼𝛽

(𝑢, 𝜀
𝛼𝛽
, 𝜀
(1)

𝛼𝛽
) .

(6)

This parametrization is based on the arbitrary 𝐶∞-function
Φ. So that we have a family of integralmanifolds of dimension
13 indexed on the arbitrary functionΦ.

The state parameters

𝑇
−1
, 𝑇
−1

−1
𝜏
(eq)
𝛼𝛽

, 𝑇
−1

−1
𝜏
(1)

𝛼𝛽
(7)

are related by the equations of motion and the equations of
state [8, 9].

The 𝐶∞-representation is a generic element in the 1-jet
space converted into

(𝑢, 𝜀
𝛼𝛽
, 𝜀
(1)

𝛼𝛽
, 𝑠 (𝑢, 𝜀

𝛼𝛽
, 𝜀
(1)

𝛼𝛽
) ,

𝜕𝑠

𝜕𝑢
, −

𝜕𝑠

𝜕𝜀
𝛼𝛽

,
𝜕𝑠

𝜕𝜀
(1)

𝛼𝛽

) . (8)

In order to fix a representative for the specific entropy 𝑠 =

Φ(𝑢, 𝜀
𝛼𝛽
, 𝜀
(1)

𝛼𝛽
), we need a supplementary condition as follows.

Theorem 1. If 𝑠 = Φ(𝑢, 𝜀
𝛼𝛽
, 𝜀
(1)

𝛼𝛽
) is an homogeneous function

of order one, then

Φ =
𝑢

𝑇
−

1

𝑇
𝜏
(eq)
𝛼𝛽

𝜀
𝛼𝛽
+

1

𝑇
𝜏
(1)

𝛼𝛽
𝜀
(1)

𝛼𝛽
. (9)

Proof. The condition of homogeneity of order one

Φ(𝑘𝑢, 𝑘𝜀
𝛼𝛽
, 𝑘𝜀
(1)

𝛼𝛽
) = 𝑘Φ (𝑢, 𝜀

𝛼𝛽
, 𝜀
(1)

𝛼𝛽
) (10)

gives the PDE

𝑢
𝜕Φ

𝜕𝑢
+ 𝜀
𝛼𝛽

𝜕Φ

𝜕𝜀
𝛼𝛽

+ 𝜀
(1)

𝛼𝛽

𝜕Φ

𝜕𝜀
(1)

𝛼𝛽

= Φ (𝑢, 𝜀
𝛼𝛽
, 𝜀
(1)

𝛼𝛽
) . (11)

Then the entropy (solution of this PDE) appears as the
potential (9).

Corollary 2. If the specific entropy 𝑠 = Φ(𝑢, 𝜀
𝛼𝛽
, 𝜀
(1)

𝛼𝛽
) is an

homogeneous function of order one, then

(1) the variables 𝑠, 𝑢, 𝜀
𝛼𝛽
, 𝜀
(1)

𝛼𝛽
are conjugated to the inten-

sive variables 𝑇, 𝜏(eq)
𝛼𝛽

, 𝜏
(1)

𝛼𝛽
;

(2) the variables 𝑠, 𝑢, 𝜀
𝛼𝛽
, 𝜀
(1)

𝛼𝛽
are not essential parameters

(because they are not independent).

Proof. From the expression (9) we find

𝑇𝑑𝑠 + 𝑠𝑑𝑇 = 𝑑𝑢 −
1


(𝜀
𝛼𝛽
𝑑𝜏
(eq)
𝛼𝛽

+ 𝜏
(eq)
𝛼𝛽

𝑑𝜀
𝛼𝛽
)

+
1


(𝜀
(1)

𝛼𝛽
𝑑𝜏
(1)

𝛼𝛽
+ 𝜏
(1)

𝛼𝛽
𝑑𝜀
(1)

𝛼𝛽
) .

(12)

(1) Replacing the relation (5), we get

𝑠𝑑𝑇 = −
1


𝜀
𝛼𝛽
𝑑𝜏
(eq)
𝛼𝛽

+
1


𝜀
(1)

𝛼𝛽
𝑑𝜏
(1)

𝛼𝛽
, (13)

and the first statement is true.

(2) The foregoing relation shows that, for example,

𝜀
𝛼𝛽

𝑠
,

𝜀
(1)

𝛼𝛽

𝑠

(14)

are essential parameters.

3. Specific Entropy via Least
Squares Lagrangian

The most convenient way to fix a representative Φ of the
specific entropy 𝑠 is to look at (5) as a partial derivative
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evolution equation and to build the least squares method
Lagrangian 𝐿

2𝐿 =


𝑇
−1
−
𝜕Φ

𝜕𝑢



2

+



𝜏
(eq)
𝛼𝛽

+ 𝜌𝑇
𝜕Φ

𝜕𝜀
𝛼𝛽



2

+



𝜏
(1)

𝛼𝛽
− 𝜌𝑇

𝜕Φ

𝜕𝜀
(1)

𝛼𝛽



2
(15)

and the functional

∫
Ω

𝐿 (𝑢, 𝜀
𝛼𝛽
, 𝜀
(1)

𝛼𝛽
, Φ,Φ

𝑢
, Φ
𝜀
𝛼𝛽

, Φ
𝜀
(1)

𝛼𝛽

)𝑑Ω, (16)

where Φ
𝑢
= 𝜕Φ/𝜕𝑢, Φ

𝜀
𝛼𝛽

= 𝜕Φ/𝜕𝜀
𝛼𝛽
, and Φ

𝜀
(1)

𝛼𝛽

= 𝜕Φ/𝜕𝜀
(1)

𝛼𝛽
.

The extremals are solutions of the Euler-Lagrange PDE

𝜕𝐿

𝜕Φ
− (𝐷

𝑢

𝜕𝐿

𝜕Φ
𝑢

+ 𝐷
𝜀
𝛼𝛽

𝜕𝐿

𝜕Φ
𝜀
𝛼𝛽

+ 𝐷
𝜀
(1)

𝛼𝛽

𝜕𝐿

𝜕Φ
𝜀
(1)

𝛼𝛽

) = 0, (17)

where𝐷
∗
is the total derivative with respect to the variable ∗.

In our case, we get

𝜕𝐿

𝜕Φ
= 0,

𝜕𝐿

𝜕Φ
𝑢

= −(𝑇
−1
−
𝜕Φ

𝜕𝑢
) ,

𝜕𝐿

𝜕Φ
𝜀
𝛼𝛽

= 𝜌𝑇(𝜏
(eq)
𝛼𝛽

+ 𝜌𝑇
𝜕Φ

𝜕Φ
𝜀
𝛼𝛽

) ,

𝜕𝐿

𝜕Φ
𝜀
(1)

𝛼𝛽

= −𝜌𝑇(𝜏
(1)

𝛼𝛽
− 𝜌𝑇

𝜕Φ

𝜕Φ
𝜀
(1)

𝛼𝛽

) .

(18)

So that, by replacing the partial derivatives of 𝐿 in (17), there
follows the Laplace equation for the entropy

𝜕
2
Φ

𝜕𝑢2
+ 𝜌
2
𝑇
2 𝜕
2
Φ

𝜕𝜀
𝛼𝛽

2
+ 𝜌
2
𝑇
2 𝜕
2
Φ

𝜕𝜀
(1)

𝛼𝛽

2
= 0. (19)

Consequently, we have the following.

Theorem 3. The best entropy for the nonholonomic nonequi-
librium thermodynamics is an harmonic function.

4. Geodesics

Any curve in the distribution (5) is described by

𝑇 (𝑡) ̇𝑠 (𝑡) = ̇𝑢 (𝑡) − ]𝜏(eq)
𝛼𝛽

(𝑡) ̇𝜀
𝛼𝛽
(𝑡) + ]𝜏(1)

𝛼𝛽
(𝑡) ̇𝜀
(1)

𝛼𝛽
(𝑡) .

(20)

In order to be a geodesic, this curvemustminimize the energy
functional

𝐽 =
1

2
∫

𝑡
1

𝑡
0

( ̇𝑇
2
(𝑡) + ̇𝑠

2
(𝑡) + ̇𝑢

2
(𝑡) + 𝛿

𝛼𝛾
𝛿
𝛽𝛿

̇𝜏
(eq)
𝛼𝛽

̇𝜏
(eq)
𝛾𝛿

+ 𝛿
𝛼𝛾
𝛿
𝛽𝛿

̇𝜏
(1)

𝛼𝛽
̇𝜏
(1)

𝛾𝛿
+ 𝛿
𝛼𝛾
𝛿
𝛽𝛿

̇𝜀
𝛼𝛽

̇𝜀
𝛾𝛿

+ 𝛿
𝛼𝛾
𝛿
𝛽𝛿

̇𝜀
(1)

𝛼𝛽
̇𝜀
(1)

𝛾𝛿
) 𝑑𝑡.

(21)

In short, we must solve the problem

min 𝐽 subject to (20) . (22)

To solve this problem, we use the method of Lagrange mul-
tipliers. For this we defined the constrained Lagrangian

𝐿
1
=
1

2
( ̇𝑇
2
(𝑡) + ̇𝑠

2
(𝑡) + ̇𝑢

2
(𝑡) + 𝛿

𝛼𝛾
𝛿
𝛽𝛿

̇𝜏
(eq)
𝛼𝛽

(𝑡) ̇𝜏
(eq)
𝛾𝛿

(𝑡)

+ 𝛿
𝛼𝛾
𝛿
𝛽𝛿

̇𝜏
(1)

𝛼𝛽
(𝑡) ̇𝜏
(1)

𝛾𝛿
(𝑡)

+ 𝛿
𝛼𝛾
𝛿
𝛽𝛿

̇𝜀
𝛼𝛽
(𝑡) ̇𝜀
𝛾𝛿
(𝑡)

+ 𝛿
𝛼𝛾
𝛿
𝛽𝛿

̇𝜀
(1)

𝛼𝛽
(𝑡) ̇𝜀
(1)

𝛾𝛿
(𝑡) )

+ 𝑝 (𝑇 (𝑡) ̇𝑠 (𝑡) − ̇𝑢 (𝑡) + ]𝜏(eq)
𝛼𝛽

(𝑡) ̇𝜀
𝛼𝛽
(𝑡)

− ]𝜏(1)
𝛼𝛽

(𝑡) ̇𝜀
(1)

𝛼𝛽
(𝑡) ) ,

(23)

where 𝑝 is the Lagrangian multiplier.

Theorem 4. The geodesics of the nonholonomic viscoanelastic
distribution are solutions of the Euler-Lagrange ODEs for the
Lagrangian (23)

𝜕𝐿
1

𝜕𝑥𝑖
− 𝐷
𝑡

𝜕𝐿
1

𝜕 ̇𝑥𝑖
= 0, (24)

where 𝑥𝑖 are the generalized coordinates:

𝑥
1
= 𝑇, 𝑥

2
= 𝑠, 𝑥

3
= 𝑢,

𝑥
4

𝛼𝛽
= 𝜏
(eq)
𝛼𝛽

, 𝑥
5

𝛼𝛽
= 𝜀
𝛼𝛽
, 𝑥

6

𝛼𝛽
= 𝜏
(1)

𝛼𝛽
,

𝑥
7

𝛼𝛽
= 𝜀
(1)

𝛼𝛽
.

(25)

So that explicitly from (23) and (24) we have

𝑝 ̇𝑠 − ̈𝑇 = 0,
𝑑

𝑑𝑡
( ̇𝑠 + 𝑝𝑇) = 0,

𝑑

𝑑𝑡
( ̇𝑢 − 𝑝) = 0,

𝑝] ̇𝜀
𝛼𝛽
−
𝑑

𝑑𝑡
̇𝜏
(eq)
𝛼𝛽

= 0, 𝑝] ̇𝜀
(1)

𝛼𝛽
+
𝑑

𝑑𝑡
̇𝜏
(1)

𝛼𝛽
= 0,

𝑑

𝑑𝑡
( ̇𝜀
(1)

𝛼𝛽
− 𝑝]𝜏(1)

𝛼𝛽
) = 0,

𝑑

𝑑𝑡
( ̇𝜀
𝛼𝛽
+ 𝑝]𝜏(eq)

𝛼𝛽
) = 0.

(26)

The equations (26) with the condition (20) are the differ-
ential equations of geodesics.

Let

𝑇
0
= 𝑇 (0) , ̇𝑇

0
= ̇𝑇 (0) , 𝑠

0
= 𝑠 (0) ,

̇𝑠
0
= ̇𝑠 (0) , 𝑢

0
= 𝑢 (0) , ̇𝑢

0
= ̇𝑢 (0) ,

𝜏
0

(eq)
𝛼𝛽

= 𝜏
(eq)
𝛼𝛽

(0) , ̇𝜏
0

(eq)
𝛼𝛽

= ̇𝜏
(eq)
𝛼𝛽

(0) ,

𝜏
0

(1)

𝛼𝛽
= 𝜏
(1)

𝛼𝛽
(0) , ̇𝜏

0

(1)

𝛼𝛽
= ̇𝜏
(1)

𝛼𝛽
(0) ,

𝜀
0
𝛼𝛽

= 𝜀
𝛼𝛽
(0) , ̇𝜀

0
𝛼𝛽

= ̇𝜀
𝛼𝛽
(0) ,

𝜀
0

(1)

𝛼𝛽
= 𝜀
(1)

𝛼𝛽
(0) , ̇𝜀

0

(1)

𝛼𝛽
= ̇𝜀
(1)

𝛼𝛽
(0)

(27)

be the given (constant) initial values.
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By some explicit computation we can easily show that the
following.

Theorem 5. The geodesics of the nonholonomic viscoanelastic
distribution, as solution of the Cauchy problem (26) and (27),
are the family of curves:

𝑢 (𝑡) = ̇𝑢
0
𝑡 + 𝑢
0

𝑠 (t) =
̇𝑇
0

𝑝
cos𝑝𝑡 +

̇𝑠
0

𝑝
sin𝑝𝑡 + (𝑠

0
−

̇𝑇
0

𝑝
)

𝑇 (𝑡) =

̇𝑇
0

𝑝
sin𝑝𝑡 −

̇𝑠
0

𝑝
cos𝑝𝑡 + (𝑇

0
+

̇𝑠
0

𝑝
)

𝜏
(eq)
𝛼𝛽

= [𝜏
0

(eq)
𝛼𝛽

−
1

]𝑝
( ̇𝜀
0
𝛼𝛽
+ 𝑝]𝜏
0

(eq)
𝛼𝛽

)] cos ]𝑝𝑡

+
1

]𝑝
̇𝜏
0

(eq)
𝛼𝛽

sin ]𝑝𝑡 + 1

]𝑝
( ̇𝜀
0
𝛼𝛽
+ 𝑝]𝜏
0

(eq)
𝛼𝛽

)

𝜀
𝛼𝛽

= − [𝜏
0

(eq)
𝛼𝛽

−
1

]𝑝
( ̇𝜀
0
𝛼𝛽
+ 𝑝]𝜏
0

(eq)
𝛼𝛽

)] sin ]𝑝𝑡

−
1

]𝑝
̇𝜏
0

(eq)
𝛼𝛽

cos ]𝑝𝑡 + (𝜀
0
𝛼𝛽
+

1

]𝑝
̇𝜏
0

(eq)
𝛼𝛽

)

𝜏
(1)

𝛼𝛽
= [𝜏
0

(1)

𝛼𝛽
+

1

]𝑝
( ̇𝜀
0

(1)

𝛼𝛽
+ 𝑝]𝜏
0

(1)

𝛼𝛽
)] cos ]𝑝𝑡

+
1

]𝑝
̇𝜏
0

(1)

𝛼𝛽
sin ]𝑝𝑡 − 1

]𝑝
( ̇𝜀
0

(1)

𝛼𝛽
+ 𝑝]𝜏
0

(1)

𝛼𝛽
)

𝜀
(1)

𝛼𝛽
= − [𝜏
0

(1)

𝛼𝛽
+

1

]𝑝
( ̇𝜀
0

(1)

𝛼𝛽
+ 𝑝]𝜏
0

(1)

𝛼𝛽
)] sin ]𝑝𝑡

−
1

]𝑝
̇𝜏
0

(1)

𝛼𝛽
cos ]𝑝𝑡 − (𝜀

0

(1)

𝛼𝛽
+

1

]𝑝
̇𝜏
0

(1)

𝛼𝛽
) .

(28)

Proof. Let us first solve the simplest equation: from (26)
3
we

have

̇𝑢 − 𝑝 = ̇𝑢
0
⇒ 𝑢 = ( ̇𝑢

0
+ 𝑝) 𝑡 + 𝑢

0
. (29)

From (26)
1
it is

𝑑

𝑑𝑡
(𝑝𝑠 − ̇𝑇) = 0 ⇒ ̇𝑇 = 𝑝 (𝑠 − 𝑠

0
) + ̇𝑇
0

(30)

and deriving (26)
2

̈𝑠 + 𝑝 ̇𝑇 = 0. (31)

By replacing ̇𝑇 with the previous expression we get

̈𝑠 + 𝑝 [𝑝 (𝑠 − 𝑠
0
) + ̇𝑇
0
] = 0, (32)

that is

̈𝑠 + 𝑝
2
𝑠 = (𝑝

2
𝑠
0
− 𝑝 ̇𝑇
0
) . (33)

This is a linear nonhomogeneous second-order (harmonic)
equation whose solution is

𝑠 (𝑡) = (𝑠
0
−

̇𝑇
0

𝑝
) +

̇𝑇
0

𝑝
cos𝑝𝑡 +

̇𝑠
0

𝑝
sin𝑝𝑡. (34)

With this function, from the expression

̇𝑇 = 𝑝 (𝑠 − 𝑠
0
) + ̇𝑇
0
, (35)

we can compute also 𝑇(𝑡):

̇𝑇 = 𝑝[((𝑠
0
−

̇𝑇
0

𝑝
) +

̇𝑇
0

𝑝
cos𝑝𝑡 +

̇𝑠
0

𝑝
sin𝑝𝑡) − 𝑠

0
] + ̇𝑇
0
;

(36)

that is,

̇𝑇 = ̇𝑇
0
cos𝑝𝑡 + ̇𝑠

0
sin𝑝𝑡. (37)

The solution is

𝑇 (𝑡) =

̇𝑇
0

𝑝
sin𝑝𝑡 −

̇𝑠
0

𝑝
cos𝑝𝑡 + (𝑇

0
+

̇𝑠
0

𝑝
) . (38)

Concerning (26)
4,5,6,7

we can notice that it is enough to solve
(26)
4,7

since their solutions are formally equal to the solutions
of (26)

5,6
since these equations coincide with (26)

4,7
apart

from the substitutions:

𝜀
𝛼𝛽

⇒ 𝜀
(1)

𝛼𝛽
, 𝜏

(eq)
𝛼𝛽

⇒ −𝜏
(1)

𝛼𝛽
. (39)

Thus from (26)
7
it is

̇𝜀
𝛼𝛽
+ 𝑝]𝜏(eq)

𝛼𝛽
= ̇𝜀
0
𝛼𝛽
+ 𝑝]𝜏
0

(eq)
𝛼𝛽

; (40)

that is,

̇𝜀
𝛼𝛽

= −𝑝]𝜏(eq)
𝛼𝛽

+ ( ̇𝜀
0
𝛼𝛽
+ 𝑝]𝜏
0

(eq)
𝛼𝛽

) . (41)

If we put this expression in (26)
4
we get

𝑝] [−𝑝]𝜏(eq)
𝛼𝛽

+ ( ̇𝜀
0
𝛼𝛽
+ 𝑝]𝜏
0

(eq)
𝛼𝛽

)] −
𝑑

𝑑𝑡
̇𝜏
(eq)
𝛼𝛽

= 0, (42)

and by some manipulation we get the (vectorial) linear
second order harmonic equation for 𝜏(eq)

𝛼𝛽
:

𝑑

𝑑𝑡
̇𝜏
(eq)
𝛼𝛽

+ 𝑝
2]2𝜏(eq)
𝛼𝛽

= 𝑝] ( ̇𝜀
0
𝛼𝛽
+ 𝑝]𝜏
0

(eq)
𝛼𝛽

) . (43)

The solution is

𝜏
(eq)
𝛼𝛽

=[𝜏
0

(eq)
𝛼𝛽

−
1

]𝑝
( ̇𝜀
0
𝛼𝛽
+ 𝑝]𝜏
0

(eq)
𝛼𝛽

)] cos ]𝑝𝑡

+
1

]𝑝
̇𝜏
0

(eq)
𝛼𝛽

sin ]𝑝𝑡 + 1

]𝑝
( ̇𝜀
0
𝛼𝛽
+ 𝑝]𝜏
0

(eq)
𝛼𝛽

) ,

(44)
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so that by integrating (41) and using the previous equation,
we can easily get the expression for 𝜀

𝛼𝛽

𝜀
𝛼𝛽

= − [𝜏
0

(eq)
𝛼𝛽

−
1

]𝑝
( ̇𝜀
0
𝛼𝛽
+ 𝑝]𝜏
0

(eq)
𝛼𝛽

)] sin ]𝑝𝑡

−
1

]𝑝
̇𝜏
0

(eq)
𝛼𝛽

cos ]𝑝𝑡 + (𝜀
0
𝛼𝛽
+

1

]𝑝
̇𝜏
0

(eq)
𝛼𝛽

) .

(45)

With similar computations we get also the last two equations
of (28).

The Lagrangian multiplier 𝑝 is obtained by inserting the
functions (28) and derivatives into (20).

It should be noticed that the the projection of the
geodesics (28) into different planes gives rise to well known
curves. For instance, in the plane ⟨𝑇, 𝑠⟩ (28) are the paramet-
ric equations of a cycloid. Moreover, by assuming that all the
initial values are positive, the asymptotic limits give

lim
𝑡→∞

𝑢 (𝑡) = +∞,

lim
𝑡→∞

|𝑇 (𝑡)| ≤


𝑇
0
−

̇𝑠
0

𝑝


+



̇𝑇
0

𝑝



+



̇𝑠
0

𝑝


,

lim
𝑡→∞

|𝑠 (𝑡)| ≤



𝑠
0
−

̇𝑇
0

𝑝



+



̇𝑇
0

𝑝



+



̇𝑠
0

𝑝


,

(46)

which are in agreementwith physical consideration especially
for the entropy 𝑠 which is upper bounded. Analogously we
have similar bounded asymptotic limits for the vectorial
functions.

5. Experimental Approach to the Linear
Response Theory

In a previous paper [11] by the application of the linear
response theory [12–15] numerical values of (1) were consid-
ered, and the results were compared with experimental data.

In this section we study another aspect of the transversal
waves propagation in viscoanelastic media, and we apply the
theoretical results to a polymeric material as the polyisobuty-
lene.

We consider, with respect to the Cartesian orthogonal
axes (𝑥

1
, 𝑥
2
, 𝑥
3
), the following displacement u

𝑢
3
= 𝐴𝑒
𝑖(𝑘𝑥
1
−𝜔𝑡)

, 𝑢
1
= 𝑢
3
= 0 (47)

being 𝑖2 = −1 and 𝑘 = 𝑘
1
+ 𝑖𝑘
2
the complex wave number, so

that

V
𝑠
=

𝜔

𝑘
1

(48)

is the phase velocity and 𝑘
2
is connected with the attenuation

of the waves.
As 𝜀
𝛼𝛽

= 1/2(𝜕𝑢
𝛼
/𝜕𝑥
𝛽
+ 𝜕𝑢
𝛽
/𝜕𝑥
𝛼
), from (1) one obtains

𝑘
1
= 𝜔√{𝐵 (𝜔) (√1 + 𝐷 (𝜔) + 1)}

1/2

,

𝑘
1
= 𝜔√{𝐵 (𝜔) (√1 + 𝐷 (𝜔) − 1)}

1/2

,

(49)
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Figure 1: Generic storage and loss moduli.

where

𝐵 (𝜔) =
𝑅
(𝜏)

(𝑑)0
𝑅
(𝜀)

(𝑑)0
+ 𝜔
2
(𝑅
(𝜀)

(𝑑)1
− 𝑅
(𝜏)

(𝑑)0
𝑅
(𝜀)

(𝑑)2
)

(𝑅
(𝜀)

(𝑑)0
− 𝜔2𝑅

(𝜀)

(𝑑)2
)
2

+ (𝜔𝑅
(𝜀)

(𝑑)1
)
2

,

𝐵 (𝜔) =
𝜔
2
(𝑅
(𝜀)

(𝑑)0
− 𝑅
(𝜀)

(𝑑)1
𝑅
(𝜏)

(𝑑)0
− 𝜔
2
𝑅
(𝜀)

(𝑑)2
)
2

{𝑅
(𝜏)

(𝑑)0
𝑅
(𝜀)

(𝑑)0
− 𝜔2 (𝑅

(𝜀)

(𝑑)1
− 𝑅
(𝜏)

(𝑑)0
𝑅
(𝜀)

(𝑑)2
)}
2
.

(50)

The complex shear velocity is [14]

V
𝑐
=

1

V
𝑠

+
𝑘
2

𝑖𝜔
=
𝐺
1
(𝜔) + 𝑖𝐺

2
(𝜔)


, (51)

where 0 ≤ 𝑠 ≤ 257,𝐺
1
(𝜔) (storage modulus), and 𝐺

2
(𝜔) (loss

modulus) are, respectively, linkedwith the nondissipative and
dissipative phenomena, and their experimental curves are
plotted in Figure 1.

From (47) to (50), the following relations are obtained:

𝑘
1
=

𝜔√(𝐺
1
/2) (√1 + (𝐺

2
/𝐺
1
)
2

+ 1)

𝐺
1
√1 + (𝐺

2
/𝐺
1
)
2

,

𝑘
2
=

𝜔√(𝐺
1
/2) (√1 + (𝐺

2
/𝐺
1
)
2

− 1)

𝐺
1
√1 + (𝐺

2
/𝐺
1
)
2

.

(52)

Let us consider the range of high frequency 𝜔
𝐻
≤ 𝜔 ≤ 𝜔

𝑈

and 𝜔𝜏 ≫ 1 (of order 102) so that no relaxation phenomena
occur (see Figure 1).

By putting

𝐺
1
= 𝐺
1𝐻
1, 001

𝑠

𝐺
2
= 𝐺
2𝐻
1, 001

−𝑠
,

(53)
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Figure 2: 𝑘
1
and 𝑘

2
for Polyisobutilene: (M.w. 106 g/mol; 𝑇

0
= 273K) the experimental curves (in black) and the theoretical curves (in red)

obtained by our model.

where 𝐺
1𝐻

= 𝐺
1
(𝜔
𝐻
) and 𝐺

2𝐻
= 𝐺
2
(𝜔
𝐻
), (52) becomes

𝑘
1
= 𝜔√



2

√
√(𝐺
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)
2
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)
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𝑘
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√
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1.0012𝑠 + (𝐺
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)
2

− 𝐺
1𝐻
1.001
𝑠

(𝐺
1𝐻
)
2

1.0012𝑠 + (𝐺
2𝐻
)
2

.

(54)

For the Polyisobutilene we have [15] the characteristic values
which are

𝜎 = 10
−7 sec., 𝜔

𝐻
= 3.2 ⋅ 10

14Hz,

𝜔
𝑈
= 6 ⋅ 10

14Hz,

𝐺
1𝑈

= 2.4 ⋅ 10
9 Pa, 𝐺

2𝑈
= 2.75 ⋅ 10

4 Pa,

(55)

and the graphics confirm (see Figure 2) with experimental
data the validity of the model proposed for viscoanelastic
phenomena in continuous media.

6. Conclusions

From the viewpoint of nonholonomic irreversible thermo-
dynamics, it is shown that the best specific entropy is
an harmonic function in a 27-dimensional manifold. The
differential equations of geodetics are obtained and the cor-
responding curves are explicitly computed. In the linearized
theory it is shown that the theoretical results are in agreement
with the experimental data in the case of polymeric material
(Polyisobutilene) (Figure 2).
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In the research on network security, distinguishing the vulnerable components of networks is very important for protecting
infrastructures systems. Here, we probe how to identify the vulnerable nodes of complex networks in cascading failures, which
was ignored before. Concerned with random attack (RA) and highest load attack (HL) on nodes, we model cascading dynamics of
complex networks. Then, we introduce four kinds of weighting methods to characterize the nodes of networks including Barabási-
Albert scale-free networks (SF), Watts-Strogatz small-world networks (WS), Erdos-Renyi random networks (ER), and two real-
world networks. The simulations show that, for SF networks under HL attack, the nodes with small value of the fourth kind of
weight are themost vulnerable and the oneswith small value of the thirdweight are also vulnerable. Also, the real-world autonomous
systemwith power-law distribution verifies these findings. Moreover, forWS and ER networks under both RA andHL attack, when
the nodes have low tolerant ability, the ones with small value of the fourth kind of weight are more vulnerable and also the ones
with high degree are easier to break down. The results give us important theoretical basis for digging the potential safety loophole
and making protection strategy.

1. Introduction

In modern society, people’s life depends on the infrastructure
networks more and more, such as the power grid, Internet,
transportation networks and the financial networks, and
so forth. The overall efficiency of these network systems
is being increased, while the internal connections and the
dynamical characteristics within the networks are becoming
more close and complex, respectively.These behavioursmake
the networks more vulnerable and increase the possibility of
system crash. Especially, with the improvement of netware-
based degree, a small incident, through a cascade of reaction,
can lead to the collapse of the whole network systems and
a great number of economic loss. The typical example is the
accident that emerged in the power grid of North America in
2003 [1]. The fault of three extra-high voltage transmission

lines leads to a chain reaction in power system, spreads to
the eight states in the northeast U.S., affects about 50 million
people, and finally results in the economic loss of 4 billion
to 10 billion. Another example is the electrical collapse that
occurred in Italy [2], which has seriously influenced the
operation of the Internet.

These large-scale accidents have threatened the network
safety and attracted considerable attentions of scientific
researchers [3]. On the one hand, The robustness and vul-
nerability of topological structure of complex networks are
investigated carefully. Some indexes are proposed to measure
how robust or vulnerable the complex networks are under
different attacks [4–6]. The structural vulnerability of the
important real-world networks is also probed, including
Italian electrical network [7], the US power grid [8], the
European grid [9], and other electrical systems [10] and
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the robustness of computer networks under attacks [11], the
stability analysis for the uncertain systems [12–14], and the
cyber-physical networking systems [15].

On the other hand, there exist the physical flows (also
defined as load) in real-world networks, such as the electric
stream in power grids, the data transmitted in communi-
cation networks, and the cars in transportation networks.
Also, the physical load is dynamical. The fault of some local
components (nodes or edges) always leads to the redistribu-
tion of load over the whole networks. Then, the overloaded
components will fail as the new load on them exceeds their
capacity (the maximum load). Therefore, the new redistribu-
tion of load over thewhole networkswill begin and lead to the
cascade over the networks. This evolving procedure is called
“cascading failure” which emerged locally and always resulted
in the whole collapse of networks. Therefore, the cascading
failures of complex networks have been one of the hottest
topics in network safety. Induced by random breakdown
and intentional attack, Motter explored the condition of
cascading failures occurring in complex networks [16]. The
similar procedure of load redistribution included the works
[17–20]. For the local redistribution of load onnodes or edges,
the cascading dynamics due to node overloaded breakdown
in US power grid [21] and the edge overloaded breakdown in
scale-free networks [22] are investigated, respectively. Also,
the condition of cascading failures in weighted networks
under edge-based attack is analyzed carefully [23], where
the redistribution of load on edges is similar to the process
[22]. Then, the influence of different definitions of load on
cascading failures in weighted complex networks is probed
to reduce the possibility of cascading failures [24]. The
features and time characteristics shown in cascading failures
are revealed [25]. In addition, recently, considering that the
networks in real world are interdependent and internally
connected, the cascading propagation in the interdependent
networks is investigated [26–29] and the robustness and
critical effect of networks are also explored carefully [30, 31].

All the previous researchesmainly focus on the structural
vulnerability or the cascading dynamics of the integral
complex networks. However, in the cascading failures caused
by overloaded breakdown, the following important problems
have not been considered. What features do the nodes easy
to break down or crash have? How should we describe the
characteristics of the congested node in complex networks?
These problems are the correlations between the vulnerability
of nodes and the cascading failures in complex networks. We
argue that, by exploring this problem, we are able to identify
the vulnerable nodes, analyze the potential safety hazard in
networks, and find the bottlenecks in the dynamical change
of network “flows”. Finally, it can provide the important theo-
retical basis for protecting complex networks and improving
the robustness of real-world networks.

Here, this paper explores the correlations between the
vulnerability of nodes and the cascading failures in complex
networks. Firstly, by assigning the load on nodes, we model
the cascading dynamics of complex networks induced by
random attack and intentional attack on nodes. Secondly, we
introduce four kinds of weighting methods to describe the
characteristics of the nodes in complex networks including

BA scale-free networks (SF),WS small-world networks (WS),
ER random networks (ER), and two real-world networks
(autonomous system network and US airport network).
Finally, in order to identify the features of the vulnerable
nodes in complex networks, we numerically computed the
ratio of the failed nodes with four kinds of weights less
than their respective average weights to the total failed
ones in networks. As a result, we find that, for SF network
under intentional attack, the ratio of the failed nodes with
small value of the fourth kind of weight defined here is the
highest. The autonomous system network with power-law
distribution also shows similarity to SF network. It reveals
that the nodes with small value of the fourth kind of weight
defined in this work are more vulnerable. Moreover, for the
WS small-world network and ER random network, under
both random and intentional attack, when the tolerance
ability of nodes is low, the ratio of the failed nodes with small
value of the fourth kind of weight is higher, and, at the same
time, the ratio of the failed ones with high degree is also
higher. It means that the nodes with smaller value of the
fourth kind of weight and large degree are vulnerable and the
nodes with large degree are also vulnerable.

The rest of this paper is organized as follows. Section 2
develops the model of cascading dynamics of complex
networks induced by random attack (RA) and highest load
attack (HL) on node. In Section 3, we introduce four kinds
of weighting methods to characterize the nodes in complex
networks in order to distinguish them. In Section 4, we
describe the studied complex networks including BA scale-
free network, WS small-world networks, ER random net-
work, and two real-world networks. In Section 5, we simulate
and analyze the characteristics of the failed nodes of complex
networks in cascading failures. Section 6 summarizes the
most important contribution of this paper and points out the
meaning of this work.

2. Modelling the Cascading Failures in
Complex Networks

In this section, we will model the cascading dynamics of
complex networks under node-based attacks. For a general
undirected network comprising of 𝑁 nodes, its adjacent
matrix is defined as 𝐴 = (𝑎

𝑖𝑗
)
𝑁×𝑁

, where 𝑎
𝑖𝑗

= 1 if the
node 𝑖 links to node 𝑗; otherwise, 𝑎

𝑖𝑗
= 0. Usually, modelling

cascading dynamics of complex networks is based on the
following three key points [19–23]: the definition of load on
node, the relationship between the load and the capacity, and
the evolving procedure of cascading failures.

(1) The definition of load on node: usually, the physical
flows (data packets, energy, etc.) are transmitted in
many networks according to the shortest path routing
strategy [1, 3, 16, 17]. For a given pair of nodes (𝑎, 𝑏),
the physical flows are exchanged and transmitted
along the shortest paths connecting them; maybe
there exist some shortest paths through node 𝑖. In this
case, it is natural to regard the total number of shortest
paths passing through the node 𝑖 between any pair of
nodes in a network as the load on node 𝑖. Therefore,



Mathematical Problems in Engineering 3

we define 𝐿
𝑖
(𝑡) as the load on node 𝑖, where 𝐿

𝑖
(𝑡) is the

number of the shortest paths passing through node 𝑖
at some time 𝑡 after attacks (𝑡 = 0 means the initial
load 𝐿

𝑖
(0) before attack).

(2) The relationship between the load and the capacity:
usually, there is some maximum load (the maximum
capacity) that node 𝑖 can handle. So, we assume that
the maximum load 𝐶

𝑖
on node 𝑖 is proportional to its

initial load 𝐿
𝑖
(0); namely,

𝐶
𝑖
= (1 + 𝛼) 𝐿

𝑖
(0) , ∀𝑖, (1)

where the constant 0 ≤ 𝛼 ≤ 1 is the tolerance
parameter. The bigger 𝛼 means the higher capacity
of node 𝑖 and then the higher ability against failures.
It is a rational definition in the design of real-world
networks including power grids and Internet because
the capacity of the components (nodes or links) in
these networks is always limited by the cost.

(3) The evolving procedure of cascading failures: begin-
ning with the removal of some nodes in networks, the
load on other nodes will change and be redistributed
over the whole networks. At some time 𝑡, the node 𝑗
will fail if the new load 𝐿

𝑗
(𝑡) on 𝑗 exceeds its capacity

𝐶
𝑗
. This will cause the new redistribution of load over

the networks. This process is iterated until there is
no node exceeding their capacity. At this time, the
iterative process can be regarded as being completed.
This iterative process is called “cascading failures” in
complex networks, which is described in Figure 1.

Here, we consider two kinds of attack strategies.

(1) Random attack (RA): we choose some proportion
of nodes randomly and then remove them from the
networks; here we assume the proportion 𝜌 = 0.01.
This attack mainly simulates the case of complex
networks subject to some random breakdown, such
as the natural disasters, misoperations and random
disturbances, and so forth.

(2) Highest load attack (HL): first, we descend the order
of nodes according to the initial load 𝐿

𝑖
(0) and then

remove some proportion of nodes with the highest
initial load; here, the proportion 𝜌 = 0.01. This attack
simulates the case of the intentional attack.

3. The Weighting Methods of Nodes in
Complex Networks

In order to identify the vulnerable nodes of complex networks
in cascading failures, in this paper, we introduce four kinds
of weighting methods 𝑤(1)

𝑖
, 𝑤(2)
𝑖
, 𝑤(3)
𝑖
, and 𝑤

(4)

𝑖
to describe

the characteristics of nodes in complex networks. These
quantities can distinguish the failed nodes in cascading
failures.

(1) The Weighing Method 𝑤(1)
𝑖
. Considering that we assume

the load (physical flows) is transmitted according to the
shortest path strategy, while the initial load 𝐿

𝑖
(0) of node 𝑖

C
i
= (1 + 𝛼)L

i
(0), ∀i

Delete some nodes at t = 1
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Yes
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L
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i
(t) > C

i

Figure 1: The iterative process of cascading failures in complex
networks.

is the number of the shortest paths, thus the initial load can
describe the characteristic of node. Here, we define the first
weighting method 𝑤(1)

𝑖
as

𝑤
(1)

𝑖
= 𝐿
𝑖
(0) . (2)

(2) The Weighing Method 𝑤
(2)

𝑖
. In the research of complex

networks, the degree 𝑘
𝑖
of node 𝑖 is always used to describe

its feature, which can measure the importance of node in
complex networks. Usually, the node with higher degree
means higher importance, and it will become the hubs in
networks. Thus, we use it to describe the characteristic of
node 𝑖; namely,

𝑤
(2)

𝑖
= 𝑘
𝑖
= ∑

𝑗∈Γ
𝑖

𝑎
𝑖𝑗
, (3)

where Γ
𝑖
is the set of the neighbors of node 𝑖.

(3) TheWeighing Method 𝑤(3)
𝑖
. In the investigation of cascad-

ing dynamics, the product (𝑘
𝑖
𝑘
𝑗
)
𝜃 of the degrees 𝑘

𝑖
and 𝑘

𝑗
of

the two end nodes of an edge 𝑒
𝑖𝑗
canmeasure the weight of an

edge 𝑒
𝑖𝑗
. Wang shows that the networks with 𝜃 = 1 have the

strongest robustness against cascading failures [23]. Thus, in
this paper, we define the third weighting method as:

𝑤
(3)

𝑖
= ∑

𝑗∈Γ
𝑖

(𝑘
𝑖
𝑘
𝑗
)
𝜃

= 𝑘
𝜃

𝑖
∑

𝑗∈Γ
𝑖

𝑘
𝜃

𝑗
, (4)

where Γ
𝑖
is the set of the neighbors of node 𝑖, and here we

assume the parameter 𝜃 = 1.
Furthermore, according to the theory of the degree of

networks and probability [32], as 𝜃 = 1, the second term on
the right hand side of (4) will become

∑

𝑗∈Γ
𝑖

𝑘
𝑗
= 𝑘
𝑖

𝑘max

∑

𝑘

=𝑘min

𝑃 (𝑘

| 𝑘
𝑖
) 𝑘

, (5)
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where 𝑘min and 𝑘max are the minimum degree and the
maximum degree in a network, respectively. 𝑃(𝑘 | 𝑘

𝑖
) is the

conditional probability that the node with degree 𝑘
𝑖
links to a

neighbouring node with degree 𝑘, and this conditional prob-
ability satisfies the normalized and equilibrium conditions:

∑

𝑘


𝑃 (𝑘

| 𝑘
𝑖
) = 1,

𝑘
𝑖
𝑃 (𝑘

| 𝑘
𝑖
) 𝑃 (𝑘

𝑖
) = 𝑘

𝑃 (𝑘
𝑖
| 𝑘

) 𝑃 (𝑘


) .

(6)

Since the BA scale-free networks, WS small-world net-
works, and ER random networks have no degree-degree
correlation [33], according to the conditions in (6), one can
get

𝑃 (𝑘

| 𝑘
𝑖
) =

𝑘

𝑃 (𝑘

)

⟨𝑘⟩
, (7)

where ⟨𝑘⟩ is the average degree of networks. Therefore,
inserting (7) back into (5), we get

∑

𝑗∈Γ
𝑖

𝑘
𝑗
= 𝑘
𝑖

𝑘max

∑

𝑘

=𝑘min

𝑘

𝑃 (𝑘

) 𝑘


⟨𝑘⟩
=
𝑘
𝑖
⟨𝑘
2
⟩

⟨𝑘⟩
. (8)

Now, finally (4) is simplified as

𝑤
(3)

𝑖
=
𝑘
2

𝑖
⟨𝑘
2
⟩

⟨𝑘⟩
. (9)

One can see that the weighting method 𝑤(3)
𝑖

is different
with 𝑤(2)

𝑖
obviously.

(4) The Weighing Method 𝑤
(4)

𝑖
. Here, we introduce the

fourth kind of weighting method based on node centrality
betweenness. The link is always important as the two nodes
of its end are important in many real-world networks. For
example, the packet has always been transmitted along the
links with the important chosen nodes, while the node
betweenness centrality is used to describe the importance of
nodes in networks [34]. Considering this intuition, usually,
the product (𝐵

𝑖
𝐵
𝑗
)
𝜃 is used to measure the weight of the edge

𝑒
𝑖𝑗
[24], where 𝐵

𝑖
and 𝐵

𝑗
are the node betweenness of node 𝑖

and 𝑗, respectively.The node betweenness of node 𝑖 is defined
as

𝐵
𝑖
= ∑

𝑎 ̸= 𝑏

𝜎
𝑎𝑏
(𝑖)

𝜎
𝑎𝑏

, (10)

where 𝜎
𝑎𝑏

is the number of the shortest paths between node
𝑎 and 𝑏. 𝜎

𝑎𝑏
(𝑖) is the number of the shortest paths passing

through the node 𝑖 in the shortest paths 𝜎
𝑎𝑏
.

Therefore, we define the fourth kind of weightingmethod
𝑤
(4)

𝑖
as the follows:

𝑤
(4)

𝑖
= ∑

𝑗∈Γ
𝑖

(𝐵
𝑖
𝐵
𝑗
)
𝜃

= 𝐵
𝜃

𝑖
∑

𝑗∈Γ
𝑖

𝐵
𝜃

𝑗
, (11)

where Γ
𝑖
is the set of the neighbors of node 𝑖, and here we

assume the parameter 𝜃 = 1.
Using Bayes’ rules [32], (11) can become

𝑤
(4)

𝑖
= 𝐵
𝑖

𝐵max

∑

𝐵

=𝐵min

𝑘
𝑖
𝑃 (𝐵

| 𝐵
𝑖
) 𝐵

, (12)

where 𝐵min and 𝐵max are the minimum and the maximum
node betweenness in networks, respectively. 𝑃(𝐵 | 𝐵

𝑖
) is the

conditional probability that a node with node betweenness
centrality 𝐵

𝑖
links to the node with node betweenness

centrality 𝐵.
Considering that it has been shown that small-world

networks do not showbetweenness-betweenness correlations
[24], therefore, we can assume 𝑃(B | 𝐵

𝑖
) = 𝑃(𝐵


). Then, (12)

can be simplified as

𝑤
(4)

𝑖
= 𝐵
𝑖
𝑘
𝑖

𝐵max

∑

𝐵

=𝐵min

𝑃 (𝐵

) 𝐵

= 𝐵
𝑖
𝑘
𝑖 ⟨𝐵⟩ , (13)

where ⟨𝐵⟩ is the average node betweenness in networks.
Now, it is obvious that the four kinds of weighting meth-

ods of node introduced here can describe the characteristics
of nodes and distinguish the nodes in network.

4. The Studied Complex Networks

In this paper, to investigate the vulnerable nodes in net-
works subject to cascading failures, we mainly take the
following typical complex networks into account: Barabasi-
Albert scale-free networks (SF), Watts-Strogatz small-world
networks (WS), and ER random networks (ER).

(1) Scale-free networks (SF): SF network model in this
paper is generated according to the two rules: growth
and preferential attachment [35].The degree distribu-
tion of the generated SF network obeys the power law
distribution 𝑃(𝑘) ∼ 𝑘

−𝛾 (𝛾 = 3) and the mean degree
⟨𝑘⟩ ≈ 4.

(2) WS small-world networks (WS): here, according to
Watts-Strogatz model [36], we generate the small-
world network by changing the rewiring probability
𝑝.Wemainly consider the two cases with the rewiring
probability 𝑃 = 0.1 and 𝑃 = 0.5. It should be noticed
that the rewiring probability𝑃 = 1means that theWS
network will become a completely random network.

(3) ER random networks (ER): the random network
model studied is generated according to the rules in
[37], where we control the average degree ⟨𝑘⟩ ≈ 4.

Also, in order to compare with the network models, we
consider two real-world networks: the autonomous system
network (AS) and US airport network (US airport).

(4) The autonomous system network (AS): from the
AS level topology of Internet, the Internet can be
seen as a network comprising of routers. Usually,
the data is transmitted between routers according
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Figure 2: Under RA and HL attacks, the relative size of nodes in the largest component 𝐺 as a function of 𝛼 for (a) SF network, (b) WS
small-world network with the rewiring probability 𝑃 = 0.1, (c) WS network with 𝑃 = 0.5, and (d) ER random network. The simulations
under RA attack are averaged over 20 times.

to BGP protocols. Thus, the routers (as nodes) and
links construct the autonomous system network (AS)
[38]. Here, we take the AS network with 1470 nodes,
for example, and the mean degree ⟨𝑘⟩ ≈ 4.3. By
computation, we find that the degree of distribution
of AS network clearly obeys power-law distribution:
𝑃(𝑘) ∼ 𝑘

−𝛾, where the index 𝛾 ≈ 0.005.
(5) US airport network: as an example of transportation

networks, we study the famous USA airport network
with 500 airports and 2980 links [39]. The mean
degree ⟨𝑘⟩ ≈ 11.9.

5. The Simulation and Analysis

Now, in this section, concernedwith two kinds of node-based
attacks, we will investigate how to identify the vulnerable

nodes of complex networks subject to cascading failures. The
studied networks include SF, WS, and ER complex networks
models and two real-world networks.

Firstly, we use the relative size of nodes in the largest
component of network (𝐺) to quantify the integral robustness
of complex networks under cascading failures. The metric 𝐺
is defined as

𝐺 =
𝑁


𝑁
, (14)

where 𝑁 and 𝑁 are the number of nodes in the largest
component after attacks and the total number of nodes in
network, respectively.

Obviously, the metric 𝐺 can be seen as a function of the
tolerance parameter 𝛼 and 0 ≤ 𝐺 ≤ 1. Also, it should be
noticed that, with the higher𝐺, the networkmaintains higher
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Figure 3: Under HL attack, the ratio for different weighting methods as a function of 𝛼 for (a) SF network, (b) WS small-world network with
the rewiring probability 𝑃 = 0.1, (c) WS network with 𝑃 = 0.5, and (d) ER random network.

connectivity and shows higher robustness against cascading
failures.

Secondly, to identify the features of the vulnerable nodes
in complex networks, we numerically computed the ratio of
the failed nodes with four kinds of weights less than their
respective average weights to the total of the failed ones in
networks when the iterative process of complex networks in
Figure 1 is stopped (at this time, the cascading failures are
completed); namely,

ratio =
∑
𝑡 : 𝑤
(𝑛)

𝑖
<𝑤
(𝑛)
𝑎𝑠 (𝑡)

∑
𝑡
𝑎𝑠 (𝑡)

, 𝑛 = 1, 2, 3, 4, (15)

where 𝑤(𝑛) is the average value of the 𝑛th kind of weight
defined in Section 3 in network (𝑛 = 1, 2, 3, 4). 𝑎𝑠(𝑡) is the
number of failed nodes at time step 𝑡 after attacks in network.

One can see that the ratio in (15) can mainly distinguish
the characteristics of the failed nodes in complex networks.

5.1. The Analysis of Complex Networks Models. In this part,
induced by random attack (RA) and the highest-load attack
(HL), we mainly focus on analyzing the integral robustness
and identifying the vulnerable nodes of three kinds of typical
complex networks models: scale-free networks (SF), WS
small-world networks (WS), and ER random networks (ER).

(1) From the relative size of nodes in the largest compo-
nent 𝐺, as shown in Figure 2, being subject to inten-
tional attack (HL), SF network and WS small-world
network with 𝑃 = 0.1 are more vulnerable, while WS
network with 𝑃 = 0.5 and ER random network are
more robust. being subject to random attack (RA),
SF network model is more robust. It means that SF
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Figure 4: Under RA attack, the ratio for different weighting methods as a function of 𝛼 for (a) SF network, (b)WS small-world network with
the rewiring probability 𝑃 = 0.1, (c) WS network with 𝑃 = 0.5, and (d) ER random network. The simulations under RA attack are averaged
over 20 times.

network models show the dual characteristics of both
robustness and vulnerability.

(2) From the ratio in (15), under HL attack, as shown in
Figure 3, for SF networkmodels, the ratio of the failed
nodes with small weighting value to the total failed
ones is always more than 50%. Especially, we should
notice that the highest ratio is the one of the failed
nodes with small 𝑤(4)

𝑖
(𝑤
(4)

𝑖
< 𝑤(4)) and it is always

more than 90%. In addition, the second highest is the
ratio of the failed ones with small 𝑤(3)

𝑖
. These results

reveal that, under intentional attack, the nodes with
small 𝑤(4)

𝑖
are more vulnerable.

For WS small-world network, from Figure 3(b),
under HL attack, as the rewiring probability 𝑃 = 0.1,
the ratio of the failed nodes with small 𝑤(4)

𝑖
is almost

more than 80% and also the ratio of the failed nodes
with small 𝑤(2)

𝑖
is less than 20% (it implies that the

ratio of the failed nodes with big 𝑤(2)
𝑖

is more than
80%). At the same time, for 𝑃 = 0.5, since 𝛼 = 0.2 is
the transition point of the connectivity ofWSnetwork
from low to high (see the arrow in Figure 2(c)) and
there are few failed nodes when 𝛼 > 0.2, here, we
mainly focus on the case of 𝛼 < 0.2. As shown in
Figure 3(c), for 𝛼 < 0.2, the ratio of the failed nodes
with small 𝑤(4)

𝑖
is more than 70%. Also, the ratio of

the failed nodes with small𝑤(2)
𝑖

is less than 40%. Now,
obviously, we can see that, under intentional attack,
for WS small-world network, the nodes with small
𝑤
(4)

𝑖
are more vulnerable and also the ones with big

𝑤
(2)

𝑖
(namely, the nodes with high degree) are easy to

break down.
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Figure 5: Under RA and HL attacks, the relative size of nodes in the largest component 𝐺 as a function of 𝛼 for (a) the autonomous system
network (AS) and (b) US airport network. The simulations under RA attack are averaged over 20 times.
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Figure 6: Under HL attack, the ratio for different weighting methods as a function of 𝛼 for (a) the autonomous system network (AS) and (b)
US airport network.

For ER random network under HL attack, as 𝛼 < 0.2

(𝛼 = 0.2 is the turning point of the connectivity from
low to high; see the arrow in Figure 2(d)), ER random
network shows similarity toWS small-world network;
namely, the nodes with small𝑤(4)

𝑖
aremore vulnerable

and also the ones with big𝑤(2)
𝑖

are easy to break down.

(3) Under RA attack, there are the failed nodes only for
small 𝛼 (see the curves in Figure 2); thus, we only
consider the case of small 𝛼. Figure 4 shows that most
of the failed nodes in SF network are still the oneswith
small 𝑤(4)

𝑖
. While WS small-world network and ER

random network show similarity to their case under



Mathematical Problems in Engineering 9

HL attack; namely, the nodes with small𝑤(4)
𝑖

aremore
vulnerable and also the ones with big 𝑤(2)

𝑖
(the nodes

with high degree) are easy to break down.

5.2. The Analysis of Real-World Networks. In order to com-
pare with the simulations of the network models, we also
analyze two real-world networks: the autonomous system
network (AS) and US airport network.

As shown in Figure 5, both AS network and US airport
network are very robust under RA attack and vulnerable
under HL attack. Especially, AS network is more vulnerable
under HL attack. Then, in the following discussion of this
part, we only consider the case under HL attack because of
their strong robustness against random disturbance.

From Figure 6(a), it is obvious that AS network with
scale-free characteristics shows similarity to SF network
model, and also the ratio of the failed nodes with small
weighting values to the total failed ones is always more than
50%. Especially, the ratio of the failed nodes with small 𝑤(4)

𝑖

(𝑤(4)
𝑖

< 𝑤(4)) is highest and always more than 80%. The
second highest is the ratio of the failed ones with small 𝑤(3)

𝑖
.

It reveals that, for SF networks under intentional attack, the
nodes with small 𝑤(4)

𝑖
are more vulnerable than other nodes

and these nodes are easy to break down.
For US airport network, as shown in Figure 6(b), simi-

larly, this ratio of the failed nodes with small 𝑤(4)
𝑖

is highest
and it is more than 90%. Also, the nodes with small 𝑤(4)

𝑖
are

more vulnerable under intentional attack.

6. Conclusions

In the research on cascading dynamics, finding and distin-
guishing the vulnerable nodes of networks are very important
for the protection of infrastructures systems, but the tradi-
tional research on the vulnerability of complex networks has
not considered this.This paper mainly probes the question of
how to identify the vulnerable nodes of complex networks in
cascading failures caused by the overload onnodes.Wemodel
the cascading dynamics of complex networks induced by
deleting some proportion of nodes that are chosen randomly
or intentionally. Then, four kinds of weighting methods
of node are introduced to distinguish the failed nodes of
complex networks, including BA scale-free networks, WS
small-world networks, ER random networks, and two real-
world networks. The main contributions of this paper are as
follows.

(1) For SF networks, under HL attack, the nodes with
small𝑤(4)

𝑖
aremost vulnerable and the oneswith small

𝑤
(3)

𝑖
are also easy to break down. The simulation of

the autonomous system network (AS) with power-
law distribution also verifies our findings. However,
the weight 𝑤(4)

𝑖
involved in computing the node

betweenness needs to know the whole structure of
networks. In fact, The complexity of computing node
betweenness is high, especially for large-scale net-
works. While, computing the weight 𝑤(3)

𝑖
only needs

to know the local structure of networks. Therefore,
we should pay attention to the nodes with small
𝑤
(3)

𝑖
in distinguishing the vulnerable components of

large networks. It should be pointed out that the
recent research of Ercsey demonstrates that the local
information can be used to approximately calculate
the node betweenness of large-scale networks in order
to reduce the complexity [40].

(2) For WS small-world networks and ER random net-
work, when the tolerance ability of node is low, no
matter under RA attack or HL attack, the nodes with
small𝑤(4)

𝑖
are more vulnerable and also the ones with

big 𝑤(2)
𝑖

are easier to break down.

The findings of this paper provide important theory basis
for analyzing network security, mining the hidden potential
risk of networks, and protecting various real-world networks
with load assigned to nodes.
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Delay analysis plays a role in real-time systems in computer communication networks. This paper gives our results in the aspect of
delay analysis of fractal traffic passing through servers. There are three contributions presented in this paper. First, we will explain
the reasons why conventional theory of queuing systems ceases in the general sense when arrival traffic is fractal. Then, we will
propose a concise method of delay computation for hard real-time systems as shown in this paper. Finally, the delay computation
of fractal traffic passing through severs is presented.

1. Introduction

There are two categories of communications to perform the
delivery of a message M from the source A to the destination
B. One is in the sense of best effort. By best effort, one
means that the computer communication system, which is
denoted by S, does not guarantee the connection of sending
M fromA to B, and accordingly, the quantity of the time delay
𝐷 that M suffers from S may not be guaranteed, generally.
User Datagram Protocol (UDP) is used for communications
by best effort (Tanenbaum [1], Postel [2]). The other is in
the sense of Transmission Control Protocol (TCP), which
is connection oriented, implying that the connection for
sending M from A to B is guaranteed ([1], Postel [3]).
Guaranteed connection is the premise for guaranteeing the
quantity of the time delay𝐷 thatM suffers fromS fromA toB.
This is particularly the case whenmission critical applications
are required (Zhao and Ramamritham [4], Zhao et al. [5],
Zhao and Stankovic [6], Mahapatra and Zhao [7], Rader [8],
and Mahmoodi et al. [9]).

In the case of guaranteed connections, there are two
types of communication systems. One is in the type of real-
time systems. The other is in the type of nonreal-time ones.
By real-time system, one implies that the predetermined
time delay should be guaranteed (Natarajan and Zhao [10],
Chakraborty and Eberspcher [11]). If the delay, which M

suffers from S, exceeds the predetermined deadline of delay,
one will consider that the message M is meaningless, and
communication ofM fromA to B is taken to be a failure from
a view of real-time systems.

In the field of computer communications, there are two
categories of real-time systems. One is for hard real-time
systems, and the other is for soft ones. By hard real-time
systems, wemean that the time constraint, more precisely, the
predetermined time delay, has to be assured. Otherwise, the
communication is regarded as a failure ([4, 5, 10, 11], Buttazzo
[12], Raha et al. [13], Malcolm and Zhao [14], Malcolm et al.
[15], Budka et al. [16], and Liem and Mendiratta [17]). By
soft real-time systems, on the other side, we imply that the
predetermined time constraint may be statistically violated
with a predetermined probability ([10], Zhao and Chong [18],
and Wang et al. [19]).

Recall that the time constraint mentioned above is the
message delay suffering from S from A to B (Sandmann [20],
Rodŕıguez-Pérez et al. [21], Anjum et al [22], Papastergiou et
al. [23], Panshenskov and Vakhitov [24], Kumar et al. [25],
Ferrandiz et al. [26], Pin et al. [27], Florens et al. [28], Lenzini
et al. [29], and Tu et al. [30]). More precisely, in the case of
the Internet, this term specifically means the delay of data
packets. Unless otherwise stated, this paper uses the term
packet delay or delay for short.
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While we mentioned above that delay serves as a key
parameter in the aspect of traffic passing through servers
in the field of computer networks, one may say that the
delay denoted by 𝑑 is actually queuing time denoted by 𝑡

𝑞
in

terms of queuing system as illustrated in Figure 1. Queuing
theory may appear complex mathematically. From the point
of view of applications, however, it may be quite easy to
do the performance analysis of a queuing system with the
basic knowledge of statistical means and standard deviations
together with a pen and a piece of paper or with a few lines
of code of simple computer program (Cooper [31], Reich [32],
Kendall [33], Luchak [34], Little [35],Whitt [36, 37], and Li et
al. [38]). Indeed, we said so if arrival traffic𝑋(𝑡) is Markovian
as those discussed in [33–38], Jagerman [39], Doshi [40],
McKenna and Mitra [41], Li and Chen [42], Brandão and
Nova [43], Reiman and Simon [44], Ancker Jr. and Gafarian
[45, 46], Daley [47], and Casale et al. [48].

Note that traffic of the Markovian type implies that it is
light tailed. By light tail, we mean that its autocorrelation
function (ACF) is exponentially decayed and so are its power
spectrum density (PSD) function and probability density
function (PDF) (Li and Zhao [49, 50], Li [51]). Nevertheless,
traffic is heavy tailed (Loiseau et al. [52], Hernández-Campos
et al. [53], Resnick [54], Takayasu et al. [55], Willinger
et al. [56], Leland et al. [57], Paxson and Floyd [58],
Willinger and Paxson [59], and Beran et al. [60]), which
implies that the ACF of traffic is hyperbolically decayed,
that is, slowly decayed (Tsybakov and Georganas [61]). To
be precise, the ACF of traffic decays slowly such that it is
nonintegrable, which implies long memory or long-range
dependence (LRD) (Csabai [62], Adas [63], Terdik andGyires
[64], Callado et al. [65], Owczarczuk [66], Scherrer et al.
[67], Devetsikiotis and da Fonseca [68], Smith [69], Tadaki
[70], Erramilli et al. [71], Karasaridis and Hatzinakos [72],
Stathis and Maglaris [73], López-Ardao et al. [74], and Beran
[75]). The LRD of traffic may be so strong that the variance
of traffic may not exist or may be infinite ([54], Willinger
et al. [76], Resnick et al. [77], López-Oliveros and Resnick
[78], D’Auria and Resnick [79], and Fishman and Adan [80]).
Consequently, conventional queuing theory may stop being
used for analyzing queuing time or delay when arrival traffic
is fractal with heavy tails or LRD such that it is of infinite
variance.

Possible applications of conventional queuing theory to
delay analysis are in the case of fractal traffic models with
finite variance, such as fractional Brownian motion (fBm),
fractional Gaussian noise (fGn); see, for example, Norros [81],
Jin and Min [82], Iftikhar et al. [83], Dahl and Willemain
[84], Chevalier and Wein [85], Ou and Wein [86], Wein
[87, 88], Harrison and Wein [89], Murata et al. [90], Boxma
and Cohen [91], Haddad and Mazumdar [92], Ghosh and
Weerasinghe [93], Duncan et al. [94], Li and Zhao [95],
and Yue et al. [96]. However, overlarge buffer size may be
required even when arrival fractal traffic is of finite variance
(Albin and Samorodnitsky [97], Massoulie and Simonian
[98], Heath et al. [99], Simonian and Guibert [100], Tsybakov
and Georganas [101, 102], Willinger et al. [103], Kozachenko
et al. [104], Carpio [105], Juneja [106], Shah and Wischik
[107], and Vieira et al. [108]). The required buffer size may

be so large that the value of the delay time obtained with
conventional queuing theory may be impractically large for
real-time systems.

The previous discussions imply that the key reason that
makes the conventional queuing theory very difficult, if not
impossible, to be used in the delay analysis of communication
systems with fractal arrivals is the fractal properties of traffic,
namely, self-similarity and LRD. Thus, fractal arrival traffic
substantially challenges queuing theory of real-time systems.

As known, performance analysis of conventional queuing
systems has to assume that statistical means and variances of
arrival traffic exist (Cooper et al. [31–47], Pitts and Schormans
[109], Stalling [110, 111], andGibson [112]). However, generally
speaking, it is inappropriate to assume that the variance of
fractal traffic exists ([76–78], Li and Zhao [113], andDoukhan
et al. [114]). Thus, new methodology that does not rely on
statistical means and variances of arrival traffic is desired in
the field of computer communication networks and real-time
systems in particular.

Note that variance analysis of random functions or time
series plays a key role in statistics (Bendat and Piersol [115],
Gelman [116], Freedman [117], Sheskin [118], Meyer [119],
Lindgren and McElrath [120], and Fuller [121]) as well as
conventional queuing theory [31–47], which is actually a
branch of statistics (Papoulis [122], Bhat [123]). Therefore,
one may see how it is significant for us to turn away from
variance analysis of arrival traffic and queuing systems to
treat delay analysis of fractal traffic passing through servers.
Network calculus may be a promising theory to deal with
delay analysis of queuing systems, irrelevant to means and
variances of arrival traffic, exhibiting remarkable advances in
the aspect of queuing theory.

There are two categories with respect to the theory of
network calculus. One is for deterministic delay analysis
of queuing systems (Le Boudec and Thiran [124], Firoiu
et al. [125], Le Boudec [126], and Cruz [127]). The other
is stochastic network calculus (Jiang and Liu [128], Wang
et al. [129], Burchard et al. [130], Ciucu et al. [131], and
Li and Knightly [132]). We should keep in mind that the
theory of stochastic network calculus substantially differs
from conventional queuing theory in methodology because
it follows the criterion of being irrelevant to means and
variances of arrival traffic.

This paper aims at presenting novel computation meth-
ods of delay of fractal traffic passing through servers without
relating to the concepts of means and variances of arrival
traffic.

The rest of the paper is organized as follows. We will give
the brief of fractal traffic in Section 2. In Section 3, we will
exhibit the result for the delay analysis of deterministic queu-
ing theory. Section 4 presents our delay analysis of fractal
traffic passing through servers. Finally, Section 5 concludes
the paper.

2. Brief of Fractal Traffic

Denote by𝑥(𝑡
𝑖
) the arrival traffic time series (traffic for short),

where 𝑡
𝑖
is the timestamp of the 𝑖th packet, where 𝑖 is a natural
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Figure 1: Queuing system for single server.

number (Li et al. [133]). Then, 𝑥(𝑡
𝑖
) implies the data size of

the 𝑖th packet. Since statistics of 𝑥(𝑡
𝑖
) is consistent with that

of 𝑥(𝑖), we use 𝑥(𝑖) to indicate traffic for simplicity.

2.1. Non-Markovian Property and LRD. Denote by 𝑟
𝑥𝑥
(𝑘) =

𝐸[𝑥(𝑖)𝑥(𝑖 + 𝑘)] the ACF of 𝑥(𝑖), where 𝑘 is the time lag. The
ACF 𝑟

𝑥𝑥
(𝑘) indicates how the size of the 𝑖th packet correlates

to that of another packet (𝑖 + 𝑘) apart. If an ACF 𝑅(𝑘) is
exponentially decayed, 𝑅(𝑘)may be neglected even for small
𝑘. For instance, suppose the ACF of a time series 𝐵(𝑖) that
follows the Poisson distribution. It is given by (Bendat and
Piersol [115])

𝑅
𝐵𝐵
(𝑘) = exp (−2𝜆 |𝑘|) (𝜆 > 0) . (1)

Then, in the case of 𝜆 = 1, we have

𝑅
𝐵𝐵
(1) ≈ 0.135; 𝑅

𝐵𝐵
(2) ≈ 0.018. (2)

Equation (2) implies that𝑅
𝐵𝐵
(1) can be neglected in engineer-

ing because 𝑥(𝑖) is almost orthogonal to 𝑥(𝑖+1), letting along
𝑅
𝐵𝐵
(𝑘) for 𝑘 > 1. Therefore, 𝑅

𝐵𝐵
(𝑘) ≈ 0 for 𝑘 > 0. That means

that 𝐵(𝑖) is memoryless. Accordingly, it is Markovian ([121,
122], Bunin [134], and Benes [135]). However, traffic 𝑥(𝑖) is
non-Markovian,which is a property that distinguishes it from
conventional time series, because 𝑟

𝑥𝑥
(𝑘) is hyperbolically

decayed in the form

𝑟
𝑥𝑥
(𝑘) ∼ 𝑘

−𝛽
, 0 < 𝛽 < 1, 𝑘 → ∞. (3)

The above implies that
∞

∑

0

𝑟
𝑥𝑥
(𝑘) = ∞. (4)

Thus, 𝑥(𝑖) is LRD or of longmemory. Consequently, it is non-
Markovian (Yulmetyev et al. [136], Asgari et al. [137], van
Kampen [138], Mura et al. [139], and Luczka [140]).

2.2. Property of 1/𝑓 Noise. Let 𝑆
𝑥𝑥
(𝜔) be the PSD of 𝑥(𝑖),

where 𝜔 is angular frequency. According to the Wiener
theorem, which is also known as theWiener-Khintchine the-
orem and sometimes as the Khinchin-Kolmogorov theorem
(Robinson [141], Wiener [142, 143], Khintchine [144], and
Yaglom [145]), 𝑆

𝑥𝑥
(𝜔) is the Fourier transformof 𝑟

𝑥𝑥
(𝑘). Since

∞

∑

0

𝑟
𝑥𝑥
(𝑘) = 𝑆

𝑥𝑥
(𝜔)

𝜔=0 = ∞, (5)

it is easy to infer that 𝑆
𝑥𝑥
(𝜔) is in the form

𝑆
𝑥𝑥
(𝜔) ∼

1

𝜔
. (6)

Therefore, 𝑥(𝑖) follows 1/𝑓 noise (Mandelbrot [146, 147],
Ruseckas et al. [148], Lenoir [149], Aquino et al. [150], Amir et
al. [151], Carlini et al. [152, 153], Beran [154, 155], Lim and Teo
[156], Eab andLim [157],Muniandy andLim [158],Muniandy
et al. [159], Muniandy and Stanslas [160], Pinchas [161, 162],
Wang and Yan [163], Bakhoum and Toma [164, 165], Yang et
al. [166], Wang [167], Wornell [168], Barnes and Allan [169],
Kasdin [170], and Corsini and Saletti [171]).

2.3. Self-Similarity. Traffic 𝑥(𝑖) approximately satisfies the
definition of self-similarity given by

𝑥 (𝑎𝑖) ≡ 𝑎
𝐻
𝑥 (𝑖) , 𝑎 > 0, (7)

where ≡ denotes equality in the sense of probability distribu-
tion and 0 < 𝐻 < 1 stands for the Hurst parameter [58, 61].
In general,𝐻 varies with time. Hence, traffic has the property
of multifractals ([108], Vieira et al. [172], Vieira and Lee [173],
Masugi and Takuma [174], Masugi [175], Veitch et al. [176],
Salvador et al. [177], Nogueira et al. [178], Krishna et al. [179],
Feldmann et al. [180], Ayache at al. [181], Ayache [182], Liao
et al. [183], Liao [184], Carbone et al. [185, 186], Stanley and
Meakin [187], Yang et al. [188], Song and Shang [189], Shang et
al. [190], Kantelhardt et al. [191], Ostrowsky et al. [192], Sastry
et al. [193], and Min et al. [194]).

2.4. The Hurst Parameter and Fractal Dimension. Expressing
𝛽 in (3) by𝐻 yields

𝛽 = 2 − 2𝐻. (8)

The parameter 𝛽 is the index of LRD, and 𝐻 is the measure
of LRD ([52, 60, 75, 76, 154], Roughan et al. [195], Abry et al.
[196], and Hall and Hart [197]). In the fields, people usually
use 𝐻 instead of 𝛽 to characterize LRD of time series for
dedicating the famous hydrologist Hurst [198].

We consider the local behavior of traffic𝑥(𝑖) using its ACF
𝑟
𝑥𝑥
(𝑘). For 𝑘 → 0, if 𝑟

𝑥𝑥
(𝑘) is sufficiently smooth on (0,∞)

and if

[𝑟
𝑥𝑥
(0) − 𝑟

𝑥𝑥
(𝑘)] ∼ 𝑐

1|𝑘|
𝛼
, 0 < 𝛼 ≤ 2, (9)
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where 𝑐
1
is a constant and 𝛼 is the fractal index of 𝑥(𝑖) (Adler

[199], Chan et al. [200], Davies and Hall [201], Constantine
and Hall [202], Hall and Roy [203], Kent and Wood [204],
Gneiting and Schlather [205], Gneiting [206], and Lim and
Teo [207]), then the fractal dimension, denoted by𝐷

𝑓
, of 𝑥(𝑖)

is given by

𝐷
𝑓
= 2 −

𝛼

2
. (10)

Under the constraint of 0 < 𝛼 ≤ 2, one has

1 ≤ 𝐷
𝑓
< 2. (11)

2.5. Power Laws and Heavy Tails. Taqqu’s law says that the
PDF of a random function 𝑥(𝑡) is in the form of a power
function if it is LRD (Loiseau et al. [52], Doukhan et al.
[114], Abry et al. [196], and Samorodnitsky and Taqqu [208]).
Therefore, the PDF, ACF, and PSD of traffic are all in the form
of power functions as can be seen from (3) and (6). When the
PDF of a random function follows power laws, one says that
it is heavy tailed (Adler et al. [209], Podobnik et al. [210, 211],
Chen et al. [212], Xu et al. [213], Buraczewski et al. [214], Kulik
and Soulier [215], Pisarenko and Rodkin [216], Resnick [217],
Stanley [218], Bowers et al. [219], Eliazar and Klafter [220],
Jakšić [221], Bansal et al. [222], Milojević [223], and Pareto
[224]).

Denote by 𝑝(𝑥) the PDF of 𝑥(𝑡). Then, the tail of 𝑝(𝑥)
may be so heavy that its mean and variance, expressed,
respectively, by (12) and (13), may not exist:

𝐸 [𝑥 (𝑡)] = ∫

∞

−∞

𝑥𝑝 (𝑥) 𝑑𝑥, (12)

Var (𝑥) = ∫
∞

−∞

(𝑥 − 𝜇)
2

𝑝 (𝑥) 𝑑𝑥. (13)

2.6. Remarks. Previous discussions imply the following
remarks.

Remark 1. Traffic follows power laws.

Remark 2. It is LRD.

Remark 3. It is approximately self-similar.

Remark 4. It is a type of 1/𝑓 noise.

Remark 5. It is heavy tailed.

Remark 6. LRD is a global property of traffic, which is
measured by𝐻.

Remark 7. Fractal dimension 𝐷
𝑓
characterizes the local self-

similarity or local roughness or local smoothness of traffic.

In general, we do not talk about means and variances of
traffic. Instead, we are interested in other two, namely, local
self-similarity and LRD in the theory of fractal traffic.

Network serverArrival traffic Departure traffic
S(t)

A(t) Y(t) = A(t + d)

Figure 2: Traffic passing through single server.

3. Delay of Deterministic Queuing Systems

Network calculus may be applied to the delay analysis with
respect to quality of service (QoS) in computer communi-
cation networks ([124–132], Cruz [225]). The issue of traffic
passing through a server with respect to traffic delay can be
described by Figure 2. The essential questions about it are
stated as follows.

Question 1: how to model arrival traffic 𝐴(𝑡) towards
assuring a predetermined delay, which is denoted by𝐷, such
that 𝑑 ≤ 𝐷?

Question 2: how to design a service scheme, which is
denoted by 𝑆(𝑡), towards assuring a predetermined delay 𝐷,
such that 𝑑 ≤ 𝐷?

Question 3: in order to guarantee the predetermineddelay
when 𝐴(𝑡) passes through 𝑆(𝑡), what is the operation among
𝐴(𝑡), 𝑌(𝑡), and 𝑆(𝑡) such that 𝑑 ≤ 𝐷?

The answer to question 1 is about traffic modeling. The
one to question 2 is about system modeling. That to the third
is the relationship among the arrival𝐴(𝑡), the server 𝑆(𝑡), and
the departure traffic𝑌(𝑡) = 𝐴(𝑡+𝑑).Three answers constitute
the basic of network calculus described in [124–127, 225].

3.1. Deterministic Envelope of Traffic. In order to assure a
predetermined delay 𝐷 such that 𝑑 ≤ 𝐷, one may utilize
an envelope, which is denoted by 𝐴(𝑡), of arrival traffic 𝑥(𝑡).
There are two categories of envelopes of random functions.
One is in the sense of statistical envelopes, and the other is in
the sense of deterministic ones.

The literature regarding statistical envelopes of light-
tailed random functions is rich, as they are needed in many
fields of sciences and technologies, ranging from electronics
engineering to ocean one; see, for example, Rice [226, 227],
Veltcheva et al. [228], Fang and Xie [229], Tayfun and Lo
[230], Ochi and Sahinoglou [231, 232], Longuet-Higgins
[233], Nigam [234], and Yang [235], just mentioning a few.
Nonetheless, they cannot be taken as candidates of traffic
envelopes because means and variances are essential to them
[226–235].

In the society of computer science, people are interested
in a type of envelopes of traffic, called bounding models of
traffic (Michiel and Laevens [236]). Considering that arrival
traffic has the property of 𝑥(𝑡) ≥ 0 (Li and Zhao [237]),
following Cruz [127], and supposing that 𝑥(𝑡) is continuous
for 𝑡 ≥ 0, a possible envelope in the time interval [0, 𝑡] may
be given by the inequality in the form

𝐴 (𝑡) = ∫

𝑡

0

𝑥 (𝑡) 𝑑𝑡 ≤ 𝜎 + 𝜌𝑡. (14)

There are two parameters in the above expression. One
is 𝜎 that characterizes the local property of 𝐴(𝑡) called the
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burtiness in the field of computer networks ([124–127], [225],
McDysan [238], Kouvatsos et al. [239], and Anantharam and
Konstantopoulos [240, 241]). The other is 𝜌 that captures
the property of long-term rate of 𝐴(𝑡), citing two nice
survey papers by Mao and Panwar [242] and Fidler [243],
respectively, about (14).

As a matter of fact, on one hand, we have

lim
𝑡→0

𝐴 (𝑡) = lim
𝑡→0

∫

𝑡

0

𝑥 (𝑡) 𝑑𝑡 ≤ 𝜎. (15)

Thus, 𝜎 characterizes the burtiness of 𝐴(𝑡). On the other
hand, one has

lim
𝑡→∞

𝐴 (𝑡)

𝑡
= lim
𝑡→∞

∫
𝑡

0
𝑥 (𝑡) 𝑑𝑡

𝑡
≤ 𝜌. (16)

Therefore, 𝜌 represents the long-term rate of𝐴(𝑡).Thismodel
of traffic is denoted by

𝐴 (𝑡) ∼ (𝜎, 𝜌) , (17)
with the special term “Leaky Bucket” [124–127, 225, 238, 242,
243].

The deterministic envelop of traffic, namely, 𝐴(𝑡), has the
properties remarked as follows.

Remark 8. 𝐴(𝑡) is increasing in the wide sense, implying that
𝐴(𝑡
2
) ≥ 𝐴(𝑡

1
) if 𝑡
2
≥ 𝑡
1
.

Remark 9. 𝐴(𝑡) expressed by (14) is irrelevant of statistics of
𝑥(𝑡). Consequently, we do not need the concepts of statistical
means and variances for modeling traffic 𝑥(𝑡) by using (𝜎, 𝜌).

Remark 10. Remark 9 is consistent in philosophy with fractal
models of traffic.

3.2. Service Curves. Denote a service curve of a server by 𝑆(𝑡);
see Figure 2. It represents a scheme of the server to allocate
enough resources, such as bandwidth, to arrival traffic 𝐴(𝑡)
such that the delay 𝑑 does not exceed the predetermined
𝐷. Mathematically, 𝑆(𝑡) has the same properties of 𝐴(𝑡) as
described in Remarks 8–10. Thus, a function 𝑆(𝑡) ≥ 𝐴(𝑡)may
be a candidate of service curve (Yin and Poo [244], Pyun
et al. [245], Khanjari et al. [246], Chu et al. [247], Fulton
and Li [248], Li and Hwang [249], Lau and Li [250], Li and
Pruneski [251], Jamin et al. [252], Wu et al. [253], Chen et al.
[254], Agrawal et al. [255], Feng et al. [256], Raha et al. [257],
and Zhao and Chen [258]). Skills behind the idea of service
curves appear simple, but it is significant in the development
of linearizing nonlinear systems in general (Houssin et al.
[259], Okumura et al. [260], and Shinzawa [261]) and queuing
theory in particular [124].

3.3. Relationship among Arrival 𝐴(𝑡), Service 𝑆(𝑡), and Depar-
ture 𝐴(𝑡 + 𝑑). As previously mentioned, 𝑆(𝑡) has the same
properties as those of 𝐴(𝑡). Thus, we denote by S the set of
increasing functions in the wide sense.That is,𝐴(𝑡), 𝑆(𝑡) ∈ S.

Let 𝑋
1
(𝑡), 𝑋

2
(𝑡) ∈ S. Then, the operation expressed by

(18) is called min-plus convolution [126, 262]
𝑋
1
(𝑡) ⊗ 𝑋

2
(𝑡) = inf
0≤𝑢≤𝑡

{𝑋
1
(𝑢) + 𝑋

2
(𝑡 − 𝑢)} . (18)

With the tool of min-plus convolution, referring to [124–127],
one has the relationship among𝐴(𝑡), 𝑆(𝑡), and 𝐴(𝑡 + 𝑑) given
by

𝐴 (𝑡) ⊗ 𝑆 (𝑡) ≤ 𝑌 (𝑡) = 𝐴 (𝑡 + 𝑑) . (19)

3.4. Delay Computation of Single Server. The reports regard-
ing delay computation are rich; see, for example, [124–132,
225, 244–258, 262], Raha et al. [263, 264], Ng et al. [265], Jia et
al [266, 267], Amigo et al. [268], Lenzini et al. [269], Boggia
et al. [270], Karam and Tobagi [271], Fukś et al. [272], Wrege
et al. [273], Liebeherr et al. [274], and Golestani [275]. In this
research, we present a novel way of delay computation, which
is stated below.

Theorem 11. Denote by 𝑌
𝐴𝑆
(𝑡) = 𝐴(𝑡) ⊗ 𝑆(𝑡). Then, the delay

𝑑(𝑡) that 𝐴(𝑡) suffers from 𝑆(𝑡) at time 𝑡 is given by

𝑑 (𝑡) ≥
𝑌
𝐴𝑆
(𝑡) − 𝜎 − 𝜌𝑡

𝜌
. (20)

Proof. According to (14) and (19), we have

𝑌
𝐴𝑆
(𝑡) ≤ 𝐴 (𝑡 + 𝑑 (𝑡)) ≤ 𝜎 + 𝜌 (𝑡 + 𝑑 (𝑡)) . (21)

Thus,

𝑌
𝐴𝑆
(𝑡) ≤ 𝜎 + 𝜌 (𝑡 + 𝑑 (𝑡)) . (22)

Solving 𝑑(𝑡) from the above yields (20). Thus, the theorem
results.

3.5. Guaranteed Delay of Single Server. Suppose that 𝐷 is
the predetermined deadline of delay. Then, the constraint of
guaranteed delay is expressed by

𝑑 (𝑡) ≤ 𝐷 (𝑡 > 0) . (23)

In order to achieve (23), we let

𝑌
𝐴𝑆
(𝑡) − 𝜎 − 𝜌𝑡

𝜌
≤ 𝑑 (𝑡) ≤ 𝐷. (24)

Note that 𝑌
𝐴𝑆
(𝑡) = 𝐴(𝑡) ⊗ 𝑆(𝑡). Therefore, we may design

either proper 𝑆(𝑡) or 𝐴(𝑡) or both such that (24) is satisfied.
For given 𝐴(𝑡), the following theorem gives the constraint of
𝑆(𝑡) to assure (24).

Theorem 12. Denote the inverse of ⊗ by ⊕. Let 𝐷 be a given
deadline of delay. Then, (24) is satisfied if

𝑆 (𝑡) ≥ 𝐴 (𝑡) ⊕ [𝜌 (𝐷 − 𝑡) − 𝜎] . (25)

Proof. Let (24) be satisfied. Then, we have

𝑌
𝐴𝑆
(𝑡) − 𝜎 − 𝜌𝑡

𝜌
≤ 𝐷. (26)

Changing the sign on the left side in the above expression
produces

𝜎 + 𝜌𝑡 − 𝑌
𝐴𝑆
(𝑡)

𝜌
≥ 𝐷. (27)
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Figure 3: Arrival traffic 𝐴(𝑡) passing through 𝑛 servers in series.

Therefore, one has

𝑌
𝐴𝑆
(𝑡) = 𝐴 (𝑡) ⊗ 𝑆 (𝑡) ≥ 𝜌 (𝐷 − 𝑡) − 𝜎. (28)

From the above, using the inverse of min-plus convolution,
we have 𝑆(𝑡) ≥ 𝐴(𝑡) ⊕ [𝜌(𝐷 − 𝑡) − 𝜎]. This completes the
proof.

3.6. End-to-End Delay in Tandem Network. Consider arrival
traffic𝐴(𝑡) that passes through 𝑛 servers in series as indicated
in Figure 3. In practice, there are a number of arrival traffic
that concurrently join each server at its input port and there
are some traffic thatmay leave at the output port of that server
(Coulouris et al. [276]). Either the number of traffic joining
a server or leaving it is uncertain. For instance, for the first
server that is denoted by 𝑆

1
(𝑡), there are 𝑚 + 1 arrival traffic

and 𝑗+1 departure ones at time 𝑡.We are only interested in the
arrival denoted by 𝐴(𝑡) and the departure denoted by 𝑌(𝑡).

One way to find the end-to-end delay of 𝐴(𝑡) passing
through 𝑛 servers in series is to find delay 𝑑

𝑖
(𝑡) that 𝐴(𝑡) suf-

fers from the 𝑖th server using Theorem 11 with the constraint
stated in Theorem 12. Then, the end-to-end delay at time 𝑡 is
given by

𝑑 (𝑡) =

𝑛

∑

𝑖=1

𝑑
𝑖
(𝑡) . (29)

Denote 𝑆(𝑡) the service curve of 𝑛 servers in series. Then
[124],

𝑆 (𝑡) = 𝑆
1
(𝑡) ⊗ 𝑆

2
(𝑡) ⊗ ⋅ ⋅ ⋅ ⊗ 𝑆

𝑛
(𝑡) . (30)

Therefore, when 𝑆(𝑡) is designed followingTheorem 12 and it
is decomposed into 𝑛 servers in series, (23) is guaranteed.

The discussions in the previous subsections produce the
following remarks.

Remark 13. The above delay analysis and its computations
do not need any information of the statistics of arrival traffic
𝐴(𝑡).

Remark 14. The delay can be deterministically guaranteed.
Hence, the deterministic queuing systems as Le Boudec and
Thiran stated in [124].

The advantage described by Remarks 13 and 14 is at cost
that more resources are required (Zhao [277], Davaril et al.

[278]). In order to reduce the resource requirements that
deterministic queuing analysis demands, stochastic network
calculus is considered by computer scientists ([19, 95, 128, 130,
131, 243], Jiang et al. [279], Starobinski and Sidi [280], Ng et
al. [281], Borst et al. [282], Liu et al. [283], Li et al. [284], Jiang
[285], and Baccarelli et al. [286]). In what follows, we present
a novel method of stochastic calculus for computing delay of
fractal traffic passing through servers.

4. Novel Delay Analysis of Fractal Traffic
Passing through Servers

We previously reported our bound of arrival traffic by
taking into account its fractal dimension 𝐷

𝑓
and the Hurst

parameter𝐻 [287]. It is in the form

𝐴 (𝑡) = ∫

𝑡

0

𝑥 (𝑢) 𝑑𝑢 ≤ 𝑟
2𝐷
𝑓
−5
𝜎 + 𝑎
−𝐻
𝜌𝑡, (31)

where 𝑟 > 0, 𝑎 > 0. Applying (31) toTheorem 11 immediately
yields a novel delay computation as stated below.

Theorem 15. Denote by 𝑌
𝐴𝑆
(𝑡) = 𝐴(𝑡) ⊗ 𝑆(𝑡). Then, the delay

𝑑(𝑡), which 𝐴(𝑡) suffers from 𝑆(𝑡) at time 𝑡, is given by

𝑑 (𝑡) ≥
𝑌
𝐴𝑆
(𝑡) − 𝑟

2𝐷
𝑓
−5
𝜎 − 𝑎
−𝐻
𝜌𝑡

𝑎−𝐻𝜌
. (32)

Proof. According to (14) and (19), we obtain

𝑌
𝐴𝑆
(𝑡) ≤ 𝐴 (𝑡 + 𝑑 (𝑡)) ≤ 𝑟

2𝐷
𝑓
−5
𝜎 + 𝑎
−𝐻
𝜌 (𝑡 + 𝑑 (𝑡)) . (33)

Solving 𝑑(𝑡) from the above yields (32), which completes the
proof.

Remark 16. The bandwidth regarding 𝑑(𝑡) expressed by (34)
may be generally less than that expressed by (21).

Remark 16 is true because we take into account two
parameters of fractal traffic, namely, fractal dimension and
the Hurst parameter. As a matter of fact,

(𝜎 + 𝜌𝑡) − (𝑟
2𝐷
𝑓
−5
𝜎 + 𝑎
−𝐻
𝜌𝑡)

= (1 − 𝑟
2𝐷
𝑓
−5
) 𝜎 + (1 − 𝑎

−𝐻
) 𝜌 ≥ 0.

(34)

The above expression implies that, for a given 𝑑(𝑡), the
bandwidth required based on Theorem 15 is less than that
based onTheorem 11.
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Remark 17. Theorem 15 does not relate to statistical means
and variances of arrival traffic.

Note that (31) represents a statistical bound of 𝐴(𝑡)
because 𝐷

𝑓
is a fractal parameter [199–207] and so is 𝐻

[198, 205–207]. 𝐷
𝑓
expressed by (10) is with probability one

and so is𝐻 expressed by (8).
We previously mentioned several times that we are

studying queuing systems irrelevant to statistical means and
variances of arrival traffic because variances and or means of
traffic may not exist [54, 76–80]. A common case that means
and variances do not exist is for random functions that follow
the Cauchy distribution (G. A. Korn and T. M. Korn [288],
Rice [289], and Meyer [290]). Two papers by Field et al. [291,
292] utilized the Cauchy distribution for modeling traffic.
A concise explanation of random functions without mean
and variance is given by Bassingthwaighte [293]. The point,
namely, irrelevant to statistical means and variances of arrival
traffic, makes the queuing theory based on network calculus
substantially differ from the conventional one. Considering
large queue size based on conventional queuing theory when
arrival is fractal, network calculus may yet be an attractive
theory for guaranteeing queue size in a queuing system.

5. Conclusions

We have explained the reasons why conventional theory of
queuing systems is inappropriate to be used in the delay
analysis of queuing systems when arrival traffic is fractal.
Then, we have given concise method of delay computation of
deterministic queuing systems. Finally, we have derived the
computation method of delay when arrival traffic is fractal.
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[21] M. Rodŕıguez-Pérez, S. Herreŕıa-Alonso, M. Fernández-Veiga,
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[64] G. Terdik and T. Gyires, “Lévy flights and fractal modeling of
internet traffic,” IEEE/ACM Transactions on Networking, vol. 17,
no. 1, pp. 120–129, 2009.



Mathematical Problems in Engineering 9

[65] A. Callado, C. Kamienski, G. Szabó et al., “A survey on
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von Karman originally deduced his spectrum of wind speed fluctuation based on the Stokes-Navier equation. Taking into account,
the practical issues of measurement and/or computation errors, we suggest that the spectrum can be described from the point
of view of the golden ratio. We call it the golden ratio phenomenon of the von Karman spectrum. To depict that phenomenon,
we derive the von Karman spectrum based on fractional differential equations, which bridges the golden ratio to the von Karman
spectrum and consequently provides a new outlook of random data following the von Karman spectrum in turbulence. In addition,
we express the fractal dimension, which is a measure of local self-similarity, using the golden ratio, of random data governed by the
von Karman spectrum.

1. Instruction

The golden ratio, denoted by 𝜑, is an irrational number
given by 𝜑 = (1 + √5)/2 [1]. The paper by Ackermann [2]
may likely be the earliest literature on the golden ratio in a
mathematics journal in English in 1895, but it attracted and
has attracted the interest of scientists and engineers in various
fields of sciences and engineering, ranging from chemistry
to computer science; see, for example, [1], Benassi [3], Putz
[4], Orita et al. [5], Perez [6], Hassaballah et al. [7], Kellerhals
[8], Henein et al. [9], Hurtley [10], Coldea et al. [11], Affleck
[12], Jones et al. [13], Kaygn et al. [14], Cervantes et al. [15],
Chebotarev [16], Benavoli et al. [17], Manikantan et al. [18],
Assimakis et al. [19], Good [20], Davis and Jahnke [21],
Totland [22], Moufarrège [23], Boeyens [24], Iñiguez et al.
[25], Andrews and Zhang [26], Hofri and Rosberg [27], Itai
and Rosberg [28], Cassandras and Julka [29], and Tanackov
et al. [30], just to mention a few.

In the field of random functions, more precisely, turbu-
lence in fluid mechanics, a kind of power spectra density
(PSD) function introduced by von Karman [31], known as
the von Karman spectra (VKS), has been widely used in
the diverse fields, ranging from turbulence to acoustic wave
propagation in random media; see, for example, Goedecke

et al. [32] and the references therein. Among the von Karman
spectra, the spectrum (VKSW for short) expressed in (1) is
particularly useful in the field of wind engineering for the
modeling of wind speed fluctuation; see, for example, [33–41].
That PSD is in the form

𝑆von (𝑓) =
4𝑢
2

𝑓
𝑏V𝑤

𝑓(1 + 70.8𝑤2)
5/6
, 𝑤 =

𝑓𝐿
𝑥

𝑢

𝑈
, (1)

where 𝑓 is frequency (Hz), 𝐿𝑥
𝑢
is turbulence integral scale, 𝑈

is mean speed, 𝑢
𝑓
is friction velocity (ms−1), and 𝑏V is friction

velocity coefficient such that the variance of wind speed 𝜎2
𝑢
=

𝑏V𝑢
2

𝑓
.
Note that (1) was conventionally deduced based on the

Stokes-Navier equation ([31], Bauer and Zeibig [42], Tropea
[43], Monin and Yaglom [44], Xiushu [45]). It does not
originally relate to the concept of either the golden ratio
or fractal dimension. As a matter of fact, reports regarding
turbulence’s fractal dimension derived directly based on the
Stokes-Navier equation are rarely seen as Gaoan stated in [46,
page 55], letting alone the golden ratio.
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This paper aims at contributing the following three
results. First, we will propose a rigorous but concise deriva-
tion of (1). Then, we will generalize (1) such that the gene-
ralization may be described from the point of view of the
golden ratio. Finally, we will explain the golden ratio pheno-
menon of the VKSW from the point of view of fractal dime-
nsion or local self-similarity. As a result, we achieve the goal
of bridging the golden ratio to the VKSW as well as self-
similarity of random data, establishing a new outlook of data
following the VKSW.

The rest of the paper is organized as follows. The pre-
liminaries are briefed in Section 2. The results are given in
Section 3, which is followed by conclusions.

2. Preliminaries

2.1. Golden Ratio. One of the conventional ways to deduce
the golden ratio 𝜑 is to solve the difference equation that
produces the Fibonacci sequences. The equation is given by
(see, e.g., [1], Jamieson [46], Ranum [47], and Eggar [48])

𝐹 (𝑛) = 𝐹 (𝑛 − 1) + 𝐹 (𝑛 − 2) ,

𝑛 ∈ N (the set of natural numbers) .
(2)

Denote by 𝑍
𝐹
(𝑧) the 𝑧-transform of 𝐹(𝑛). Then, doing the 𝑧-

transform on both sides of (2) yields

𝑍
𝐹
(𝑧) = 𝑍

𝐹
(𝑧) (𝑧

−1
+ 𝑧
−2
) . (3)

The above expression can be rewritten as

𝑧
2
− 𝑧 − 1 = 0. (4)

The solutions to (4) are expressed by

𝑧
1,2
=

{{{{

{{{{

{

1 + √5

2

1 − √5

2
.

(5)

The golden ratio equals 𝑧
1
; that is,

𝜑 = 𝑧
1
=
1 + √5

2
≈ 1.618. (6)

In addition,

𝑧
2
=
1 − √5

2
= −

1

𝜑
≈ −0.618. (7)

2.2. Fractional Oscillators. There are three types of fractional
oscillators. The conventional type, see, for example, Achar
et al. [49, 50], is given by

𝑑
2−𝜀
𝑥 (𝑡)

𝑑𝑡2−𝜀
+ 𝜔
2

0
𝑥 (𝑡) = 𝑒 (𝑡) , 0 < 𝜀 < 1. (8)

The second type was introduced by Lim and Muniandy [51].
It is in the form

(
𝑑
2

𝑑𝑡2
+ 𝜆)

𝛽

𝑥 (𝑡) = 𝑒 (𝑡) , 𝛽 > 0. (9)

The third type introduced by Lim and Teo [52] is expressed
by

(
𝑎𝐷
𝛼

𝑡
+ 𝜆)
𝛽

𝑥
𝛼,𝛽
(𝑡) = 𝑒 (𝑡) , 0 < 𝛼 < 1, 𝛽 > 0. (10)

The symbol
𝑎𝐷
𝛼

𝑡
is a fractional differential operator; see, for

example, Eab and Lim [53, 54], Lim et al. [55], Klafter et al.
[56], Machado et al. [57], and Cattani [58]. In what follows,
we use (10) in the general sense.

We now consider the fractional differential equation with
the coefficient 𝐴 in the form

𝐴(
𝑑

𝑑𝑡
+ 𝜆)

𝛽

𝑦fOU (𝑡) = 𝜂 (𝑡) , 𝛽 > 0, (11)

where 𝜂(𝑡) is a white noise. Then, the solution to (11) is the
fractional Ornstein-Uhlenbeck (OU) process [59], referring
to Coffey et al. [60] for the meaning of OU process.

3. Results

Denote that 𝑔fOU(𝑡) is the impulse response function of (11).
Then, it is the solution to the following equation with zero
initial conditions

𝐴(
𝑑

𝑑𝑡
+ 𝜆)

𝛽

𝑔fOU (𝑡) = 𝛿 (𝑡) , (12)

where 𝛿(𝑡) is the Dirac-𝛿 function. Doing the Fourier trans-
forms on both sides of the above equation yields

𝐺fOU (𝑓) =
𝐴

(𝜆 − 𝑗2𝜋𝑓)
𝛽
, (13)

where 𝐺fOU(𝑓) is the Fourier transform of 𝑔fOU(𝑡).
Let 𝑆
𝑦fOU

(𝑓) be the PSD of 𝑦fOU(𝑡). Then, 𝑆
𝑦fOU

(𝑓) is given
by

𝑆
𝑦fOU

(𝑓) =
𝐺fOU (𝑓)


2

=
𝐴
2

[𝜆2 + (2𝜋𝑓)
2
]
𝛽
. (14)

Thus, we have the theorem below.

Theorem 1. Let 𝑋vk(𝑡) be the random function that obeys (1).
Then,𝑋vk(𝑡) is governed by the fractional differential equation
that is in the form

√𝐴vk(
𝑑

𝑑𝑡
+ 𝐵vk)

5/6

𝑋vk (𝑡) = 𝜂 (𝑡) . (15)

Its solution in frequency domain is given by

𝑆vk (𝑓) =
𝐴vk

[(𝐵vk)
2
+ (2𝜋𝑓)

2
]
5/6
. (16)

Proof. Replacing 𝐴, 𝜆, and 𝛽 in (11) with √𝐴vk, 𝐵vk, and
5/6, respectively, yields (15). Substituting A, 𝜆, and 𝛽 in (14)
with √𝐴vk, 𝐵vk, and 5/6, respectively, produces (16). Thus,
Theorem 1 results.

FromTheorem 1, we obtain the following corollary.
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Corollary 2 (modified VKSW). Let 𝑋vk𝜑(𝑡) be the random
function that is governed by the fractional differential equation
given by

√𝐴vk(
𝑑

𝑑𝑡
+ 𝐵vk)

𝜑/2

𝑋vk𝜑 (𝑡) = 𝜂 (𝑡) . (17)

Then, its solution in frequency domain is in the form

𝑆vk𝜑 (𝑓) =
𝐴vk

[(𝐵vk)
2
+ (2𝜋𝑓)

2
]
𝜑/2
. (18)

The proof is straightforward and omitted consequently.
From Theorem 1 and Corollary 2, we immediately have

the remark below.

Remark 3. The VKSW may be approximately expressed by
the golden ratio.

As a matter of fact,

𝜑

2
≈
5

6
. (19)

Thus, (16) approximately equals (18).Thismay not be a simple
approximation but substantially develops the implication of
the VKSW from the point of view of the golden ratio.

Note that there are errors in measuring real random data
[61–63] and computation errors [64–66]. Thus, from a view
of practice, the power of the VKSW may not exactly be the
value of 5/6 in most cases in engineering. Rather, it may be in
the form

(
5

6
) + 𝑒, (20)

where 𝑒 is error. Thus, by using the golden ratio, (18) is quite
reasonable to characterize random functions that obey the
VKSW.

For the purpose of exhibiting the results in time domain,
we denote by 𝐹 and 𝐹−1 the operator of the Fourier transform
and its inverse, respectively. Then, we get the theorem below.

Theorem4. The inverse Fourier transform of 1/[1+(2𝜋𝑓)2]𝜑/2
is given by

𝐹
−1
{

{

{

1

[1 + (2𝜋𝑓)
2
]
𝜑/2

}

}

}

=
2√𝜋

Γ (𝜑/2)
(
|𝜏|

2
)

(𝜑−1)/2

𝐾
(𝜑−1)/2

(|𝜏|) ,

(21)

where 𝐾V(𝑧) is the modified Bessel function of second kind or
the MacDonald function and 𝜏 is the time lag.

Proof. Because (𝜑−1)/2 > 1/2, according to the computation
formula in Gelfand and Vilenkin [67, page 188, in Section 2,
Chapter 2], (21) holds.

Recall that the Fourier transform of |𝑡|𝛼 is expressed by
[68]

𝐹 (|𝑡|
𝛼
) = −2 sin(𝛼𝜋

2
) Γ (𝛼 + 1) |𝜔|

−𝛼−1
, (22)

where 𝛼 ̸= 1, 3, . . ..
Note that

𝑆vk𝜑 (𝑓) ∼
1

𝑓𝜑/2
for𝑓 → ∞. (23)

Then, denoting 𝑟vk𝜑(𝜏) is the inverse Fourier transform of
𝑆vk𝜑(𝑓), one has

𝑟vk𝜑 (𝜏) ∼ |𝜏|
(𝜑−1)/2 for 𝜏 → 0. (24)

The fractal dimension of a process can be determined by its
autocorrelation function (ACF) for 𝜏 → 0 [69]. Thus,

𝑟vk (0) − 𝑟vk (𝜏) ∼ |𝜏|
(𝜑−1)/2 for 𝜏 → 0. (25)

Therefore, with the probability one [69], the fractal dimen-
sion of themodified vonKarman process based on the golden
ratio is given by

𝐷vk𝜑 = (2 −
𝜑 − 1

4
) =

7 − 𝜑

4
. (26)

Approximately, it is expressed by

𝐷vk𝜑 ≈ 1.346. (27)

Note that fractal dimension is a measure of local self-
similarity, irregularity, or roughness [70]. High value of
fractal dimension of a sample path implies high irregularity
of that path.Thus, (26) means that the modified von Karman
process with the golden ratio has considerable local irregular-
ity.

We would like to call out the work described above as the
golden ratio phenomenon of the von Karman process. From
the point of view of our work in data science or big data, this
research may not be enough.The future work will investigate
possible golden ratio phenomena in other topics of data such
as those discussed in [71–82], exploring laws associating with
the golden ratio in the universe.

4. Conclusions

We have given the derivation of the von Karman spectrum
based on the fractional differential equation (10). The results
suggest that the process obeying VKSW is in the class of
fractional OU processes. Moreover, we have explained the
reasons why the VKSW may be described from the point of
view of the golden ratio. The fractal dimension of random
data obeying the VKSW by using the golden ratio has also
been discussed.
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A new operational matrix of fractional order integration for Legendre wavelets is derived. Block pulse functions and collocation
method are employed to derive a general procedure for forming this matrix. Moreover, a computational method based on wavelet
expansion together with this operational matrix is proposed to obtain approximate solution of the fractional population growth
model of a species within a closed system. The main characteristic of the new approach is to convert the problem under study to a
nonlinear algebraic equation.

1. Introduction

In recent years, fractional calculus and differential equations
have found enormous applications in mathematics, physics,
chemistry, and engineering because of the fact that a realistic
modeling of a physical phenomenon having dependence
not only at the time instant but also on the previous time
history can be successfully achieved by using fractional
calculus.The applications of the fractional calculus have been
demonstrated by many authors. For examples, it has been
applied to model the nonlinear oscillation of earthquakes,
fluid-dynamic traffic, frequency dependent damping behav-
ior of many viscoelastic materials, continuum and statistical
mechanics, colored noise, solidmechanics, economics, signal
processing, and control theory [1–5].However, during the last
decade fractional calculus has attracted much more attention
of physicists and mathematicians. Due to the increasing
applications, some schemes have been proposed to solve
fractional differential equations. The most frequently used
methods are Adomian decomposition method (ADM) [6,
7], homotopy perturbation method [8], homotopy analysis
method [9], variational iteration method (VIM) [10], frac-
tional differential transform method (FDTM) [11, 12], frac-
tional difference method (FDM) [13], power series method
[14], generalized block pulse operational matrix method [15],

and Laplace transform method [16]. Also, recently the Haar
wavelets [17], Legendre wavelets [18, 19], and the Chebyshev
wavelets of first kind [20–23] and second kind [24] have been
developed to solve the fractional differential equations. It is
worth noting that wavelets are localized functions, which
are the basis for energy-bounded functions and in particular
for 𝐿
2
(𝑅), so that localized pulse problems can be easily

approached and analyzed [25–28].
Approximation by orthogonal family of basis functions

has found wide applications in science and engineering. The
most commonly used orthogonal families of functions in
recent years are sine-cosine functions, block pulse functions,
Legendre, Chebyshev, and Laguerre polynomials and also
orthogonal wavelets, for example Haar, Legendre, Cheby-
shev, and CAS wavelets. The main advantages of using an
orthogonal basis is that the problem under consideration
reduces to a system of linear or nonlinear algebraic system
equations [18]; thus this act not only simplifies the problem
enormously but also speeds up the computation work during
the implementation. This work can be done by truncating
the series expansion in orthogonal basis function for the
unknown solution of the problem and using the operational
matrices [29]. There are two main approaches for numerical
solution of fractional differential equations.
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One approach is based on using the operational matrix of
fractional derivative to reduce the problem under considera-
tion into a system of algebraic equations and solving this sys-
tem to obtain the numerical solution of the problem. Another
useful approach is based on converting the underlying frac-
tional differential equations into fractional integral equations,
and using the operational matrix of fractional integration, to
eliminate the integral operations and reducing the problem
into solving a system of algebraic equations. The operational
matrix of fractional Riemann-Liouville integration is given by

𝐼
𝛼
Ψ (𝑥) ≃ 𝑃

𝛼
Ψ (𝑥) , (1)

where Ψ(𝑥) = [𝜓
1
(𝑥), 𝜓

2
(𝑥), . . . , 𝜓

�̂�
]
𝑇, in which 𝜓

𝑖
(𝑥) (𝑖 =

1, 2, . . . , �̂�) are orthogonal basis functions which are orthog-
onal with respect to a specific weight function on a certain
interval [𝑎, 𝑏] and 𝑃

𝛼 is the operational matrix of fractional
integration ofΨ(𝑥). Notice that𝑃𝛼 is a constant �̂� × �̂�matrix
and 𝛼 is an arbitrary positive constant.

In view of successful application of wavelet operational
matrices in numerical solution of integral and differential
equations, together with the characteristics of wavelet func-
tions, we believe that they can be applicable in solving
fractional population growth model. In this paper, the oper-
ational matrix of fractional order integrations for Legendre
wavelets is derived, and a general procedure based on
collocation method and block Pulse functions (BPFs) for
forming this matrix is presented. Then, by using this matrix
a computational method for solving fractional population
growth model in a closed system is proposed. This paper is
organized as follows. In Section 2, some necessary definitions
of the fractional calculus are reviewed. In Section 3, the Leg-
endre wavelets with some of their properties are presented.
In Section 4, the proposed method for solving fractional
population growth model in a closed system is described.
Finally a conclusion is drawn in Section 5.

2. Preliminaries

In this section, we present some notations, definitions, and
preliminary facts that will be used further in this paper.

The Riemann-Liouville fractional integral operator 𝐼𝛼 of
order 𝛼 ≥ 0 on the usual Lebesgue space 𝐿1[0, 𝑏] is given by
[30]

(𝐼
𝛼
𝑢) (𝑥) =

{

{

{

1

Γ (𝛼)
∫
𝑥

0
(𝑥 − 𝑠)

𝛼−1
𝑢 (𝑠) 𝑑𝑠, 𝛼 > 0,

𝑢 (𝑥) , 𝛼 = 0.

(2)

The Riemann-Liouville fractional derivative of order 𝛼 > 0 is
normally defined as

𝐷
𝛼
𝑢 (𝑥) = (

𝑑

𝑑𝑥
)

𝑚

𝐼
𝑚−𝛼

𝑢 (𝑥) , (𝑚 − 1 < 𝛼 ≤ 𝑚) , (3)

where𝑚 is an integer.

The fractional derivative of order 𝛼 > 0 in the Caputo
sense is given by [30]

𝐷
𝛼

∗
𝑢 (𝑥) =

1

Γ (𝑚 − 𝛼)
∫

𝑥

0

(𝑥 − 𝑠)
𝑚−𝛼−1

𝑢
(𝑚)

(𝑠) 𝑑𝑠,

(𝑚 − 1 < 𝛼 ≤ 𝑚) ,

(4)

where𝑚 is an integer, 𝑥 > 0, and 𝑢(𝑚) ∈ 𝐿
1
[0, 𝑏].

The useful relation between the Riemann-Liouville oper-
ator andCaputo operator is given by the following expression:

𝐼
𝛼
𝐷
𝛼

∗
𝑢 (𝑥) = 𝑢 (𝑥) −

𝑚−1

∑

𝑘=0

𝑢
(𝑘)

(0
+
)
𝑥
𝑘

𝑘!
, (𝑚 − 1 < 𝛼 ≤ 𝑚) ,

(5)

where𝑚 is an integer, 𝑥 > 0, and 𝑢(𝑚) ∈ 𝐿
1
[0, 𝑏].

3. The Legendre Wavelets

In this section,we briefly present someproperties of Legendre
wavelets.

3.1. Constructing the Legendre Wavelets. Here we introduce
a process to construct the Legendre wavelets on the unit
interval [0, 1], using recursive wavelet construction which
has been proposed in [31, 32] for piecewise polynomials on
[0, 1]. For this purpose, we first introduce some notations.
Throughout this work, N denotes the set of all natural
numbers,N

0
= N∪{0} andZ

𝜇
= {0, 1, . . . , 𝜇−1}, for a positive

integer 𝜇.
For an integer 𝜇 > 1, we consider the following

contractive mappings on the interval 𝐼 = [0, 1]:

𝜓
𝜖
(𝑡) =

𝑡 + 𝜖

𝜇
, 𝑡 ∈ [0, 1] , 𝜖 ∈ Z

𝜇
. (6)

It is obvious that the mappings {𝜓
𝜖
} satisfy the following

properties:

𝜓
𝜖
(𝐼) ⊂ 𝐼, ∀𝜖 ∈ Z

𝜇
,

⋃

𝜖∈Z
𝜇

𝜓
𝜖
(𝐼) = 𝐼.

(7)

Now, let 𝐹
0
denote the finite dimensional linear space on

[0, 1] that is spanned by the Legendre polynomials 𝑃
0
(2𝑥 −

1), 𝑃
1
(2𝑥 − 1), . . . , and 𝑃

𝑀−1
(2𝑥 − 1), where𝑀 ∈ N and 𝑃

𝑚

are the Legendre polynomials of degree𝑚, namely,

𝐹
0
= span {𝑃

𝑚
(2𝑥 − 1) | 𝑥 ∈ [0, 1] , 𝑚 ∈ Z

𝜇
} . (8)

It is well known that the Legendre polynomials 𝑃
𝑚

are
orthogonal with respect to the weight function 𝑤(𝑥) = 1 on
the interval [−1, 1].

In order to construct an orthonormal basis for 𝐿2[0, 1],
for each 𝜖 ∈ Z

𝜇
we define an isometry 𝑇

𝜖
on 𝐿
2
[0, 1] as

follows:

(𝑇
𝜖
𝑓) (𝑥) = {

√𝜇𝑓 (𝜓
−1

𝜖
(𝑥)) , 𝑥 ∈ 𝜓

𝜖
(𝐼) ,

0, 𝑥 ∉ 𝜓
𝜖
(𝐼) .

(9)
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Starting from the space 𝐹
0
, we define a sequence of spaces

{𝐹
𝑘
| 𝑘 ∈ N

0
} using the recurrence formula

𝐹
𝑘+1

= ⨁

𝜖∈Z
𝜇

𝑇
𝜖
𝐹
𝑘
, 𝑘 ∈ N

0
, (10)

where ⊕ denotes the direct sum; that is, if 𝐴 and 𝐵 are two
subspaces of 𝐿2[0, 1] with 𝐴 ∩ 𝐵 = {0}, then

𝐴 ⊕ 𝐵 = {𝑓 + 𝑔 : 𝑓 ∈ 𝐴, 𝑔 ∈ 𝐵} . (11)

The sequence of spaces {𝐹
𝑘
| 𝑘 ∈ N

0
} is nested, that is, [32]:

𝐹
0
⊂ 𝐹
1
⊂ ⋅ ⋅ ⋅ ⊂ 𝐹

𝑘
⊂ 𝐹
𝑘+1

⊂ ⋅ ⋅ ⋅ ,

dim𝐹
𝑘
= 𝑀𝜇

𝑘
, 𝑘 ∈ N

0
.

(12)

Moreover, similar toTheorem2.4 in [33], it can be proved that

∞

⋃

𝑘=0

𝐹
𝑘
= 𝐿
2
[0, 1] . (13)

Now, we construct an orthonormal basis for each of the
spaces 𝐹

𝑘
. We first notice that

𝐺
0
= {√2𝑚 + 1𝑃

𝑚
(2𝑥 − 1) | 𝑥 ∈ [0, 1] , 𝑚 ∈ Z

𝜇
} (14)

is an orthonormal basis for 𝐹
0
, and moreover for 𝑓(𝑥) ∈

𝐿
2
[0, 1] with compact support and for 𝜖 ̸= 𝜖

 we have

supp {𝑇
𝜖
𝑓} ∩ supp {𝑇

𝜖
𝑓} = 0, 𝜖 ̸= 𝜖


, (15)

where supp(𝑓) denotes the support of the function 𝑓. It can
be simply seen that [31]

𝐺
𝑘
= {𝑇
𝜖0
∘ ⋅ ⋅ ⋅ ∘ 𝑇

𝜖𝑘−1
(√2𝑚 + 1𝑃

𝑚
(2𝑥 − 1)) |

𝑚 ∈ Z
𝑀
, 𝜖
ℓ
∈ Z
𝜇
, ℓ ∈ Z

𝑘
}

(16)

is an orthonormal basis for𝐹
𝑘
, where “∘” denotes composition

of functions. In other words, if for 𝑛 = 1, 2, . . . , 𝜇
𝑘
, 𝑘 ∈ N, we

set

𝜓
𝑛𝑚

(𝑥) = 𝜓 (𝑘,𝑚, 𝑛, 𝑥)

=
{

{

{

√2𝑚+1𝜇
𝑘/2
𝑃
𝑚
(2𝜇
𝑘
𝑥 − 2𝑛+1) , 𝑥∈[

𝑛 − 1

𝜇𝑘
,
𝑛

𝜇𝑘
) ,

0, otherwise,
(17)

then {𝜓
𝑛𝑚
(𝑥) | 𝑛 = 1, 2, . . . , 𝜇

𝑘
, 𝑚 ∈ 𝑍

𝑀
} forms an ortho-

normal basis for 𝐹
𝑘
.

3.2. Function Approximation. A function 𝑓(𝑥) defined over
[0, 1)may be expanded by the Legendre wavelets as

𝑢 (𝑥) =

∞

∑

𝑛=1

∞

∑

𝑚=0

𝑐
𝑛𝑚
𝜓
𝑛𝑚

(𝑥) , (18)

where 𝑐
𝑛𝑚

= (𝑢(𝑥), 𝜓
𝑛𝑚
(𝑥)), and (⋅, ⋅) denotes the inner

product. If the infinite series in (18) is truncated, then it can
be written as

𝑢 (𝑥) ≃

𝜇
𝑘

∑

𝑛=1

𝑀−1

∑

𝑚=0

𝑐
𝑛𝑚
𝜓
𝑛𝑚

(𝑥) = 𝐶
𝑇
Ψ (𝑥) , (19)

where 𝑇 indicates transposition, 𝐶 and Ψ(𝑥) are �̂� =

𝜇
𝑘
𝑀 column vectors which are given by

𝐶 = [𝑐
10
, . . . , 𝑐

1𝑀−1
| 𝑐
20
, . . . , 𝑐

2𝑀−1
| ⋅ ⋅ ⋅ | 𝑐

𝜇
𝑘
0
, . . . , 𝑐

𝜇
𝑘
𝑀−1

]
𝑇

,

Ψ (𝑥) = [𝜓
10
(𝑥) , . . . , 𝜓

1𝑀−1
(𝑥) | 𝜓

20
(𝑥) , . . . ,

𝜓
2𝑀−1

(𝑥) | ⋅ ⋅ ⋅ | 𝜓
𝜇
𝑘
0
(𝑥) , . . . , 𝜓

𝜇
𝑘
𝑀−1

(𝑥)]
𝑇

.

(20)

Taking the collocation points

𝑡
𝑖
=
(2𝑖 − 1)

2�̂�
, 𝑖 = 1, 2, . . . , �̂�, (21)

we define the wavelet matrixΦ
�̂�×�̂�

as

Φ
�̂�×�̂�

= [Ψ(
1

2�̂�
) , Ψ (

3

2�̂�
) , . . . , Ψ (

2�̂� − 1

2�̂�
)] . (22)

Indeed Φ
�̂�×�̂�

has the following form:

Φ
�̂�×�̂�

= (

𝐴 0 0 . . . 0

0 𝐴 0 . . . 0

0 0 𝐴 . . . 0

...
... d d

...
0 0 . . . 0 𝐴

), (23)

where 𝐴 is an𝑀×𝑀matrix given by
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𝐴 =

(
(
(
(
(
(
(
(

(

𝜓
10
(

1

2�̂�
) 𝜓

10
(

3

2�̂�
) . . . 𝜓

10
(
2�̂� − 1

2�̂�
)

𝜓
11
(

1

2�̂�
) 𝜓

11
(

3

2�̂�
) . . . 𝜓

11
(
2�̂� − 1

2�̂�
)

...
...

...
...

𝜓
𝜇
𝑘
𝑀−1

(
1

2�̂�
) 𝜓
𝜇
𝑘
𝑀−1

(
3

2�̂�
) . . . 𝜓

𝜇
𝑘
𝑀−1

(
2�̂� − 1

2�̂�
)

)
)
)
)
)
)
)
)

)

. (24)

For example, for 𝜇 = 3, 𝑘 = 1, 𝑀 = 2, the Legendre matrix
can be expressed as:

Φ
6×6

= (

(

1.7321 1.7321 0.0 0.0 0.0 0.0

−1.5000 1.5000 0.0 0.0 0.0 0.0

0.0 0.0 1.7321 1.7321 0.0 0.0

0.0 0.0 −1.5000 1.5000 0.0 0.0

0.0 0.0 0.0 0.0 1.7321 1.7321

0.0 0.0 0.0 0.0 −1.5000 1.5000

)

)

. (25)

3.3. Operational Matrix of Fractional Order Integration. The
fractional integration of order 𝛼 of the vector function Ψ(𝑥)

can be expressed as

(𝐼
𝛼
Ψ) (𝑥) ≃ 𝑃

𝛼
Ψ (𝑥) , (26)

where 𝑃
𝛼 is the �̂� × �̂� operational matrix of fractional

integration of order 𝛼. In the following we obtain an explicit
form of the matrix 𝑃. For this purpose, we need to introduce
a new family of basis functions, namely, block pulse functions
(BPFs).

We define a �̂�-set of BPFs as [34, 35]

𝑏
𝑖
(𝑥) =

{

{

{

1,
𝑖

�̂�
≤ 𝑥 <

(𝑖 + 1)

�̂�
,

0, otherwise,
(27)

where 𝑖 = 0, 1, 2, . . . , (�̂� − 1).
The functions 𝑏

𝑖
(𝑥) are disjoint and orthogonal.

The Legendre wavelets may be expanded into a �̂�-set of
BPFs as

Ψ (𝑥) ≃ Φ
�̂�×�̂�

𝐵
�̂�
(𝑥) , (28)

where 𝐵
�̂�
(𝑥) = [𝑏

0
(𝑥), 𝑏
1
(𝑥), . . . , 𝑏

𝑖
(𝑥), . . . , 𝑏

�̂�−1
(𝑥)]
𝑇.

In [34], Kilicman et al. have given the block pulse opera-
tional matrix of fractional integration 𝑃𝛼

𝐵
as

(𝐼
𝛼
𝐵
�̂�
) (𝑥) ≃ 𝑃

𝛼

𝐵
𝐵
�̂�
(𝑥) , (29)

where

𝑃
𝛼

𝐵
=

1

�̂�𝛼

1

Γ (𝛼 + 2)

(

(

1 𝜉
1
𝜉
2
. . . 𝜉
�̂�−1

0 1 𝜉
1
. . . 𝜉
�̂�−2

0 0 1 . . . 𝜉
�̂�−3

0 0 0 d
...

0 0 0 0 1

)

)

, (30)

and 𝜉
𝑖
= (𝑖 + 1)

𝛼+1
− 2𝑖
𝛼+1

+ (𝑖 − 1)
𝛼+1.

Next, we derive the Legendre wavelets operational matrix
of fractional integration. By considering (26) and using (28),
and (29) we have

(𝐼
𝛼
Ψ) (𝑥) ≃ (𝐼

𝛼
Φ
�̂�×�̂�

𝐵
�̂�
) (𝑥) = Φ

�̂�×�̂�
(𝐼
𝛼
𝐵
�̂�
) (𝑡)

≃ Φ
�̂�×�̂�

𝑃
𝛼

𝐵
𝐵
�̂�
(𝑥) .

(31)

Thus, by considering (28) and (31), we obtain the Legendre
wavelets operational matrix of fractional integration as

(𝐼
𝛼
Ψ) (𝑥) ≃ Φ

�̂�×�̂�
𝑃
𝛼

𝐵
Φ
−1

�̂�×�̂�
. (32)

To illustrate the calculation procedure we choose 𝜇 = 3, 𝑘 =

1, 𝑀 = 2, and 𝛼 = 1/2; thus we have:
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𝑃
(1/2)

= (

(

0.43433 0.14689 0.35988 −0.069510 0.23430 −0.017626

−0.11016 0.17991 0.052129 −0.028562 0.013219 −0.0032248

0.0 0.0 0.43433 0.14689 0.35988 −0.069510

0.0 0.0 −0.11016 0.17991 0.052129 −0.028562

0.0 0.0 0.0 0.0 0.43433 0.14689

0.0 0.0 0.0 0.0 −0.11016 0.17991

)

)

. (33)

4. Application for Fractional Population
Growth Model

As we have already mentioned, the fractional order models
are more accurate than integer order models; that is, there
are more degrees of freedom in the fractional order models.
In this section, we will apply Legendre wavelets for solving a
fractional population growth model. The model is character-
ized by the nonlinear fractional Volterra integrodifferential
equation [36] as follows:

𝐷
𝛼

∗
𝑝 (𝑡) − 𝑎𝑝 (𝑡) + 𝑏[𝑝 (𝑡)]

2

+ 𝑐𝑝 (𝑡) ∫

𝑡

0

𝑝 (𝜏) 𝑑𝜏 = 0,

𝑝 (0) = 𝑝
0
, 0 < 𝛼 ≤ 1,

(34)

where 𝛼 is a constant parameter describing the order of
the time fractional derivative, 𝑎 > 0 is the birth rate
coefficient, 𝑏 > 0 is the crowding coefficient, 𝑐 > 0 is the
toxicity coefficient, 𝑝

0
is the initial population, and 𝑝(𝑡) is the

population of identical individuals at time 𝑡 which exhibits
crowding and sensitivity to the amount of toxins produced
[37]. The coefficient 𝑐 indicates the essential behavior of the
population evolution before its level falls to zero in the long
run. It is worth mentioning that when the toxicity coefficient
is zero, (34) reduces to the well-known logistic equation
[37, 38]. The last term contains the integral which indicates
the totalmetabolismor total amount of toxins produced since
time zero. The individual death rate is proportional to this
integral, and also the population death rate due to toxicity
must include a factor 𝑝. Due to the fact that the system
is closed, the presence of the toxic term always causes the
population level falling to zero in the long run, as it will
be seen later. The relative size of the sensitivity to toxins,
𝑐, determines the manner in which the population evolves
before its extinction. It is worth noting that in case 𝛼 = 1,
the fractional equation reduces to a classical logistic growth
model, so the proposed method can be also applied in this
situation. Here we apply the scale time and population by
introducing the non-dimensional variables 𝑡 = 𝑐𝑡/𝑏 and 𝑢 =

𝑏𝑝/𝑎, to obtain the following non-dimensional problem:

𝜅𝐷
𝛼

∗
𝑢 (𝑡) − 𝑢 (𝑡) + [𝑢 (𝑡)]

2
+ 𝑢 (𝑡) ∫

𝑡

0

𝑢 (𝜏) 𝑑𝜏 = 0,

𝑢 (0) = 𝑢
0
, 0 < 𝛼 ≤ 1,

(35)

where 𝑢(𝑡) is the scaled population of identical individuals
at time 𝑡 and 𝜅 = 𝑐/𝑎𝑏 is a prescribed non-dimensional

parameter.The only equilibrium solution of (35) is the trivial
solution 𝑢(𝑡) = 0, and the analytical solution for 𝛼 = 1 is [39]

𝑢 (𝑡) = 𝑢
0
exp(1

𝜅
∫

𝑡

0

(1 − 𝑢 (𝜏) − ∫

𝜏

0

𝑢 (𝑠) 𝑑𝑠) 𝑑𝜏) . (36)

In recent years, several numerical methods have been pro-
posed to solve the classical and fractional population growth
model, for instance, the reader is advised to see [36–43]
and references therein. Here we use the operational matrix
of fractional integration for solving nonlinear fractional
integrodifferential population model (35). For this purpose,
we first approximate𝐷𝛼

∗
𝑢(𝑡) as

𝐷
𝛼

∗
𝑢 (𝑡) ≃ 𝑈

𝑇
Ψ (𝑡) , (37)

where 𝑈 is an unknown vector which should be found and
Ψ(𝑡) is the vector which is defined in (20).

By using initial condition and (5), we have

𝑢 (𝑡) ≃ 𝑈
𝑇
𝑃
𝛼
Ψ (𝑡) + 𝑢

0
. (38)

Since Ψ(𝑡) ≃ Φ
�̂�×�̂�

𝐵
�̂�
(𝑡), from (38), we have:

𝑢 (𝑡) ≃ 𝑈
𝑇
𝑃
𝛼
Φ
�̂�×�̂�

𝐵
�̂�
(𝑡) + 𝑢

0 [1, 1, . . . , 1] 𝐵�̂� (𝑡) . (39)

Define

𝐴
𝑇
= [𝑎
1
, 𝑎
2
, . . . , 𝑎

�̂�
] = 𝑈

𝑇
𝑃
𝛼
Φ
�̂�×�̂�

+ 𝑢
0 [1, 1, . . . , 1] . (40)

By using (38) and (39), we have 𝑢(𝑡) ≃ 𝐴
𝑇
𝐵
�̂�
(𝑡). From (27),

we have

[𝑢 (𝑡)]
2
≃ [𝑎
2

1
, 𝑎
2

2
, . . . , 𝑎

2

�̂�
] 𝐵
�̂�
(𝑡) = 𝐴

𝑇
𝐵
�̂�
(𝑡) . (41)

Also, we have

∫

𝑡

0

𝑢 (𝜏) 𝑑𝜏 ≃ 𝐴
𝑇
𝑃
𝐵
𝐵
�̂�
(𝑡) = 𝐶

𝑇
𝐵
�̂�
(𝑡) , (42)

where 𝐶𝑇 = 𝐴
𝑇
𝑃
𝐵
. Now using (27), (39), and (42), we have

𝑢 (𝑡) ∫

𝑡

0

𝑢 (𝜏) 𝑑𝜏 ≃ �̃�
𝑇
𝐵
�̂�
(𝑡) , (43)

where

�̃�
𝑇
= [𝑎
1
𝑐
1
, 𝑎
2
𝑐
2
, . . . , 𝑎

�̂�
𝑐
�̂�
] . (44)

Now by substituting (37), (39), (41) and (43), into (35), we
obtain

(𝑘𝑈
𝑇
Φ
�̂�×�̂�

− 𝐴
𝑇
+ 𝐴
𝑇
+ �̂�
𝑇
) 𝐵
�̂�
(𝑡) ≃ 0, (45)
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Figure 1: Numerical solutions of the classical population growth
model for different values of 𝜅.

and by replacing ≃ by =, we obtain the following system of
nonlinear algebraic equations:

𝜅𝑈
𝑇
Φ
�̂�×�̂�

− 𝐴
𝑇
+ 𝐴
𝑇
+ �̂�
𝑇
= 0. (46)

Finally by solving this system and determining 𝐴, we obtain
the approximate solution of the problem as 𝑢(𝑡) = 𝐴

𝑇
Ψ(𝑡).

As a numerical example, we consider the nonlinear
fractional integrodifferential equation (35) with the initial
condition 𝑢(0) = 0.1, which is investigated in several
papers, for instance see [36–43]. Here our purpose is to study
the mathematical behavior of the solution of this fractional
population growth model as the order of the fractional
derivative changes. In particular, we seek to study the rapid
growth along the logistic curve that will reach a peak then
slow exponential decayed for different values of 𝛼. To see the
behavior solution of this problem for different values of 𝛼, we
will take advantage of the proposed method and consider the
following two special cases.

Case 1. We investigate the classical population growth model
(𝛼 = 1) for some different small values 𝜅. The behavior of the
numerical solutions for �̂� = 162 (𝜇 = 3, 𝑘 = 3, and 𝑀 =

6) is shown in Figure 1. From Figure 1 it can be seen that
as 𝜅 increases, the amplitude of 𝑢(𝑡) decreases, whereas the
exponential decay increases.

Case 2. In this case we investigate the fractional population
growth model (35) for different values of 𝛼 and 𝜅.

From Figures 2, 3, and 4 it can be simply seen that as the
order of the fractional derivative decreases, the amplitude of
𝑢(𝑡) decreases, whereas the exponential decay increases and
also it can be concluded that as 𝜅 increases, the maximum of
𝑢(𝑡
∗
) of 𝑢(𝑡) decreases. This tendency is similar to the case

𝛼 = 1, which we have already mentioned.
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Figure 2: Numerical solutions of the fractional population growth
model for 𝜅 = 0.1.
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Figure 3: Numerical solutions of the fractional population growth
model for 𝜅 = 0.3.

5. Conclusion

In this paper, the operational matrix of fractional order
integration for Legendre wavelets was derived. Block pulse
functions and collocation method were employed to derive
a general procedure for forming this matrix. Moreover, a
wavelet expansion together with this operational matrix
was used to obtain approximate solution of the fractional
population growthmodel of a species within a closed system.
The main characteristic of the new approach is to convert
the problem under study to a system of nonlinear algebraic
equations by introducing the operational matrix of fractional
integration for these basis functions. Analysis of the behavior
of the model showed that it increases rapidly along the
logistic curve followed by a slow exponential decay after
reaching a maximum point, and also when the order of
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Figure 4: Numerical solutions of the fractional population growth
model for 𝜅 = 0.5.

the fractional derivative 𝛼 decreases, the amplitude of the
solution decreases, whereas the exponential decay increases.
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Mobile phones and personal digital assistants are becoming increasingly important in our daily life since they enable us to access
a large variety of ubiquitous services. Mobile networks, formed by the connection of mobile devices following some relationships
among mobile users, provide good platforms for mobile virus spread. Quick and efficient security patch dissemination strategy is
necessary for the update of antivirus software so that it can detect mobile virus, especially the new virus under the wireless mobile
network environment with limited bandwidth which is also large scale, decentralized, dynamically evolving, and of unknown
network topology. In this paper, we propose an efficient semi autonomy-oriented computing (SAOC) based patch dissemination
strategy to restrain the mobile virus. In this strategy, some entities are deployed in a mobile network to search for mobile devices
according to some specific rules and with the assistance of a center. Through experiments involving both real-world networks and
dynamically evolving networks, we demonstrate that the proposed strategy can effectively send security patches to as many mobile
devices as possible at a considerable speed and lower cost in the mobile network. It is a reasonable, effective, and secure method to
reduce the damages mobile viruses may cause.

1. Introduction

The last decade has witnessed a surge of wireless mobile
devices such as mobile phones, PocketPCs, netbooks, and
tablet PCs. With the appearance and development of intel-
ligent operating system, mobile devices are getting smarter
and more functional. For example, they can connect to
the Internet, receive and send emails and short messages
(SMS)/multimedia messages (MMS), and connect to other
devices for exchanging information and activating various
applications. Meanwhile, these mobile devices also become
the ideal targets of mobile virus because they are popular,
designed to be open, programmable, and, general of purpose,
and highly dependent on common software platforms such as
Android, Symbian, Windows Mobile, and Linux.

Mobile networks, formed by the connection of mobile
devices following some relationships among mobile users,
provide good platforms for mobile virus spread. For

example, an MMS-based worm named “Commwarrior”
(http://www.f-secure.com/v-descs/commwarrior.shtml) can
spread in MMS network which is formed based on the
social relationships among mobile users. And a Bluetooth-
based worm named “Cabir” (http://www.f-secure.com/
v-descs/cabir.shtml) can spread in Bluetooth network which
is formed according to the geographically positions of mobile
devices. There have been extensive studies on modeling the
virus/epidemic propagation [1–6] in complex networks
which can be used to estimate the scale of a virus/epidemic
outbreak before it actually occurs and evaluate the effect
of new or improved countermeasures in restraining
virus/epidemic propagation. And based on these studies,
many network immunization strategies [7–10] have been
proposed for restraining virus propagation by selectively
immunizing some nodes based on the measurements of
degree or betweenness. But it would be difficult for these
strategies to deal with large-scale, decentralized, and dynamic
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mobile networks. Intrusion detection technology [11] is
another straight and effective means for the containment of
mobile virus. However, the detection capabilities of most
antivirus software are depend on the existence of an updated
virus signature repository. Antivirus users are not protected
whenever an attacker spreads a previously never encountered
virus. In order to protect the mobile phones from the damage
of new virus, service providers or security companies need
to quickly identify the new virus, generate a signature,
and disseminate patches to smart phones. Currently, most
researches have been done on intrusion detection [11–13]
and patch generation [14–16], while this paper aims to study
the dissemination [17–20] of security patch in the wireless
mobile network environment.

Due to the limited bandwidth of wireless networks, it
is difficult to disseminate the security patches to all phones
simultaneously and timely. And since the mobile network
is always large-scale, decentralized, dynamically, and of
unknown network topology, good patch dissemination strat-
egy is necessary. Some strategies attempt to forward security
notifications or patches based on the short-range communi-
cation capabilities of intermittently connected phones [17, 18].
These strategies select some important phones that can divide
a Bluetooth-based network into different communities based
on the contact time and frequency. Thereafter, they send
security signatures to all communities based on the local
detection. However, this method cannot ensure that users
acquire patches in time. References [20, 21] presented a quick
and efficient autonomy-oriented computing (AOC) [22, 23]
based patch dissemination strategy, based on SMS that can be
used in multiple forms of mobile network. But, this strategy
still has the following deficiencies: (1) the number of patches
disseminated is not determined at a time step. Especially,
there may be many patches disseminated at the initial stage
which can potentially cause network congestion [24, 25]; (2)
a phone may receive the same patch from different neighbors
more than once which may lead to network congestion and
the waste of network resource. Therefore, it is still in high
demand to develop a new strategy that can efficiently and
quickly send security patches to as many phones as possible
in the mobile network.

In this paper, we propose a patch dissemination strategy
based on semi autonomy-oriented computing (SAOC) to
restrain themobile virus. For theAOC-based strategy, certain
entities reside in some phones in the mobile network. They
autonomously workwith each other andmove in the network
based on their own autonomous behaviors. But in our SAOC-
based strategy, a center is added to the AOC-based strategy
to combine and analyze the information received from the
entities. At each time step, each entity moves to the next
location according to its own autonomous behavior and
the information feedbacked from the center. Through many
experiments involving both synthetic and real-world net-
works, we find that the proposed SAOC-based strategy can
quickly send security patches to as many phones as possible
in the mobile network with limited bandwidth which is
also large-scale, decentralized, dynamically, and of unknown
network topology. Besides, it can control the number of
patches disseminated at each time step and make adjustment

according to the network conditions. The selected phones,
which receive the patches, are always the most important
ones of the phones found by the entities at each time step for
the virus propagation, and thus the virus propagation can be
effectively restrained. The network congestion and the waste
of the network resources can also be avoided because each
phone receives the patch only once.

2. SAOC-Based Patch Dissemination Strategy

SMS/MMS messages and Bluetooth are becoming the two
major propagation routes of mobile virus. Since SMS-based
viruses are found more dangerous than Bluetooth-based
viruses in terms of propagation speed and scope [20],
we propose a semi autonomy-oriented computing (SAOC)
based patch dissemination strategy to restrain the SMS-
based virus propagation in this paper. For the autonomy-
oriented computing (AOC) approach [20, 26], a group of
computational entities are dispatched into a mobile network.
They reside in some phones, autonomously work with each
other,move fromone phone to another, andupdate their local
environment based on their own autonomous behaviors.
However, in our SAOC-based approach, the entities no longer
work full autonomously and a center is added to help the
entities finish their tasks. At each time step, the center is
responsible for combining and analyzing the information
received from the entities, and each entity moves from its
present position to a new one according to some rules, the
information feedbacked from the center and the cooperation
with other entities. We use a graph 𝐺 to denote the mobile
phones network formed according to the address books of
mobile phones. Some definitions which are used to formulate
the SAOC-based dissemination strategy are as follows.

Definition 1. A graph 𝐺 = ⟨𝑉, 𝐿⟩ is a mobile network formed
according to the address books of mobile phones, where 𝑉 =

{V
1
, V
2
, . . . , V

𝑁
} is a set of phones and 𝐿 = {⟨V

𝑖
, V
𝑗
⟩|1 ≤ 𝑖, 𝑗 ≤

𝑁, 𝑖 ̸= 𝑗} is a set of undirected links (if V
𝑖
is in the address book

of V
𝑗
, then there is a link between V

𝑖
and V
𝑗
, and V

𝑖
is called a

friend of V
𝑗
).𝑁 = |𝑉| represents the total number of phones

in the network.
Each phone V

𝑖
in 𝐺 has two states ⟨𝑝ℎ𝑜𝑛𝑒𝐼𝑑,

𝑎𝑙𝑙 𝑓𝑟𝑖𝑒𝑛𝑑𝐼𝑑𝑠⟩, where 𝑝ℎ𝑜𝑛𝑒𝐼𝑑 denotes the identifier of
V
𝑖
and 𝑓𝑟𝑖𝑒𝑛𝑑𝐼𝑑 is the identifier of the friend of V

𝑖
.

Definition 2. The center, denoted by 𝐶, contains two states
⟨𝑖𝑑, 𝑡𝑎𝑠𝑘⟩, where 𝑖𝑑 denotes its identifier and 𝑡𝑎𝑠𝑘 stores a
series of its tasks.

Definition 3. Let 𝑒 be an entity in a network 𝐺. Entity 𝑒

is represented by a tuple ⟨𝑖𝑑, 𝑝ℎ𝑜𝑛𝑒𝐼𝑑, 𝑎𝑙𝑙 𝑓𝑟𝑖𝑒𝑛𝑑𝐼𝑑𝑠,

𝑙𝑖𝑓𝑒𝑐𝑦𝑐𝑙𝑒, 𝑟𝑢𝑙𝑒⟩, where 𝑖𝑑 denotes the identifier of the entity;
𝑝ℎ𝑜𝑛𝑒𝐼𝑑 represents the identifier of the phone resided by
𝑒; 𝑓𝑟𝑖𝑒𝑛𝑑𝐼𝑑 is the identifier of the friend of the resided
phone; 𝑙𝑖𝑓𝑒𝑐𝑦𝑐𝑙𝑒 is the maximum time steps for an entity
to reside on a phone; and 𝑟𝑢𝑙𝑒 is a set which stores four
local behaviors of an entity, including rational-move,
rational-jump, random-jump, and wait.
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Figure 1: An example of the SAOC-based patch dissemination strategy.

Definition 4. The local environment and prelocal informa-
tion of an entity are denoted by𝐸

𝑙
and𝑝𝑟𝑒𝐼

𝑙
, respectively. If an

entity 𝑒 resides onphone V
𝑖
, its local environment andprelocal

information are defined as 𝐸
𝑙
(𝑒) = {V

𝑖
; {V
𝑗
}} and 𝑝𝑟𝑒𝐼

𝑙
(𝑒) =

{V
𝑖
𝑠 𝑖𝑑 & V

𝑖
𝑠 𝑎𝑙𝑙 𝑓𝑟𝑖𝑒𝑛𝑑𝐼𝑑𝑠; {V

𝑗
𝑠 𝑖𝑑 & V

𝑗
𝑠 𝑎𝑙𝑙 𝑓𝑟𝑖𝑒𝑛𝑑𝐼𝑑𝑠}}

respectively, where {V
𝑗
} is the set of friends of V

𝑖
.

Definition 5. Remain degree of a phone denotes the number
of friends who have not received the patches of a phone. A
phone is regarded as its own friend.

At each time step, each entity sends its prelocal
information searched in its local environment to the
center. The center combines and analyzes the information
received from all entities according to its 𝑡𝑎𝑠𝑘, and
shares the analysis results which are called the postlocal
information 𝑝𝑜𝑠𝑡𝐼

𝑙
(𝑒) with each entity 𝑒, where 𝑝𝑜𝑠𝑡𝐼

𝑙
(𝑒) =

{V
𝑖
𝑠 𝑖𝑑& V

𝑖
𝑠 𝑟𝑒𝑚𝑎𝑖𝑛 𝑑𝑒𝑔𝑟𝑒𝑒; {V

𝑗
𝑠 𝑖𝑑& V

𝑗
𝑠 𝑟𝑒𝑚𝑎𝑖𝑛 𝑑𝑒𝑔𝑟𝑒𝑒}},

{V
𝑗
} is the set of friends of V

𝑖
resided by 𝑒. If two phones

resided by two entities are friends or they have at least a same
friend, we assume that these two entities can share their
postlocal information. Each entity then moves to the next
location (𝑡𝑎𝑟𝑔𝑒𝑡𝐼𝑑) according to its 𝑟𝑢𝑙𝑒. Algorithm 1 shows
the detailed process of SAOC-based patch dissemination
strategy.

The 𝑡𝑎𝑠𝑘 of the center includes the following.

(1) Delete the 𝑓𝑟𝑖𝑒𝑛𝑑𝐼𝑑𝑠 who have received the patches
from each phone’s 𝑎𝑙𝑙 𝑓𝑟𝑖𝑒𝑛𝑑𝐼𝑑𝑠 in all the prelocal
information.

(2) Compute each phone’s remain degree and send the
security patches to the first 𝑚 phones with the
highest-remain degree. (Therefore, the number of
patches disseminated at each time step is controllable
that can be adjusted according to the network con-
ditions.) And record the 𝑖𝑑𝑠 of the phones who just
received the patches.

(3) Delete the new patched 𝑓𝑟𝑖𝑒𝑛𝑑𝐼𝑑𝑠 from each phone’s
𝑎𝑙𝑙 𝑓𝑟𝑖𝑒𝑛𝑑𝐼𝑑𝑠 and compute each phone’s new remain
degree.

(4) Send the postlocal information to the entity.

The main behaviors of each entity are as follows.

(1) Rational move: An entity moves to a phone with the
highest-remain degree in its postlocal information or
the shared postlocal information if it exists. If there
exists more than one highest-remain degree phone,
the entity will randomly choose one for residing in.

(2) Rational jump: the entity requests from the center a
phone for residing in, if such phone exists.

(3) Random jump: an entity moves along the edges with
a randomly-determined number of steps in order to
avoid getting stuck in local optima.

(4) Wait: If an entity does not find any available phone for
residing in, it will stay at its current position.

For example, as shown in Figure 1, two entities 𝑒
1
and 𝑒
2

reside in phones V
5
and V
6
at the initial phase of step 1, respec-

tively. 𝑒
1
and 𝑒
2
begin to search their local environments and

obtain the prelocal information as:

𝑝𝑟𝑒𝐼
𝑙
(𝑒
1
) = {V

5
& V
5
, V
4
; {V
4
& V
4
, V
1
, V
2
, V
5
, V
7
, V
8
}} ,

𝑝𝑟𝑒𝐼
𝑙
(𝑒
2
) = {V

6
& V
6
, V
7
, V
9
, V
10
;

{V
7
& V
7
, V
4
, V
6
, V
8
, V
10
; V
9
& V
9
, V
6
, V
10
, V
12
;

V
10

& V
10
, V
6
, V
7
, V
8
, V
9
, V
11
, V
12
}} .

(1)

When receiving 𝑝𝑟𝑒𝐼
𝑙
(𝑒
1
) and 𝑝𝑟𝑒𝐼

𝑙
(𝑒
2
), the center firstly

deletes the phones’ 𝑖𝑑 that has been immunized from
each phones’ 𝑓𝑟𝑖𝑒𝑛𝑑𝐼𝑑𝑠 and computes the remain degree
of each phone. Since there are no phones have been
immunized, the remain degree of each phone will be
{V
4
& 6; V

5
& 2; V

6
& 4; V

7
& 5; V

9
& 4; V

10
& 7}. In this
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Figure 2: The number of infected phones over time.

moment, the center sends the security patches to the first
5 unimmunized phones (in this example, we assume that
no more than 𝑚 = 5 phones are immunized at each time
step) with highest-remain degree, that is, {V

4
, V
6
, V
7
, V
9
, V
10
},

and deletes these phones’ 𝑖𝑑 from each phones’ 𝑓𝑟𝑖𝑒𝑛𝑑𝐼𝑑𝑠
and computes the new remain degree of each phone. The
new remain degree will be sent to entities as their postlocal
information, that is, 𝑝𝑜𝑠𝑡𝐼

𝑙
(𝑒
1
) = {V

5
& 1; {V

4
& 4}} and

𝑝𝑜𝑠𝑡𝐼
𝑙
(𝑒
2
) = {V

6
& 0; {V

7
& 1; V

9
& 1; V

10
& 3}}. When

receiving the postlocal information, each entity will move
to the phone which has the highest-remain degree in its
postlocal information. Therefore, 𝑒

1
and 𝑒

2
move from V

5

to V
4
and from V

6
to V
10
, respectively. In this step, these

two entities perform the rational move relying on their
own postlocal information. Step 2 will show the case of the
movement of the entities relying on the shared postlocal
information. In step 2, when 𝑒

1
and 𝑒
2
receive 𝑝𝑜𝑠𝑡𝐼

𝑙
(𝑒
1
) and

𝑝𝑜𝑠𝑡𝐼
𝑙
(𝑒
2
) from the center, they can share their postlocal
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Figure 3: The number of immunized phones over time.

information with each other since they have the mutual
friends V

7
and V

8
. 𝑝𝑜𝑠𝑡𝐼

𝑙
(𝑒
1
), 𝑝𝑜𝑠𝑡𝐼

𝑙
(𝑒
2
) and the shared

postlocal information are as follows:

𝑝𝑜𝑠𝑡𝐼
𝑙
(𝑒
1
)={V
4
& 1; {V

1
& 0; V
2
& 1; V
5
& 1; V
7
& 0; V
8
& 0}} ,

𝑝𝑜𝑠𝑡𝐼
𝑙
(𝑒
2
) = {V

10
& 0;

{V
6
& 0; V

7
& 0; V

8
& 0;

V
9
& 0; V

11
& 0; V

12
& 0}} ,

𝑝𝑜𝑠𝑡𝐼
𝑙
(𝑒
1
) ∪ 𝑝𝑜𝑠𝑡𝐼

𝑙
(𝑒
2
)

= {V
1
& 0; V

2
& 1; V

4
& 1; V

5
& 1; V

6
& 0;

V
7
& 0; V

8
& 0; V

9
& 0; V

10
& 0; V

11
& 0; V

12
& 0} .

(2)

𝑒
1
and 𝑒

2
will choose the first two phones with the

highest-remain degree in the shared postlocal information
as their target locations. Note that there are three phones
can be resided and 𝑒

1
is residing in one of the highest-

remain degree phone. In this case, we let 𝑒
1
continue from
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Figure 4: The number of patches over time.

moving. Therefore, 𝑒
1
and 𝑒

2
move from V

4
to V
5
and

V
10

to V
2
, respectively. Table 1 presents the detailed patch

dissemination process of Figure 1 based on our SAOC-based
patch dissemination strategy.

3. Experimentation and Validation

3.1. Static Networks. A mobile network is constructed
based on the address books of smart phones, which
reflects the social relationship among mobile users in real
world situations. Here, we use some benchmark networks

(university email network, autonomous systemsnetwork, and
collaboration network) to reflect the relationship structures
in the real world. Table 2 shows the structure and degree of
four networks. University email network [27], autonomous
systems network [28], and collaboration network of Arxiv
High Energy Physics category [29] are real-world networks.
Community-based network is a synthetic network with four
communities based on the GLP algorithm [30].

We use the four networks shown in Table 2 to evaluate the
efficiency of the proposed SAOC-based patch dissemination
strategy in restraining the SMS-based virus. For the SMS-
based virus propagation model, we assume the following.
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Figure 5: The average of each entity steps with respect to coverage rate.

(1) If a user receives a message from his friend, he
may open or delete this message determined by his
security awareness [20, 31, 32].The security awareness
of different users in this paper is consistent with
that used by [20] and follows a normal distribution,
𝑁(0.5, 0.3

2
).

(2) If a user opens a virus message, he is infected and will
automatically send the virusmessage to all his friends.

(3) An infected phone sends the virus to his friends only
once, after which the infected phone will not send out
virus any more.

(4) If a phone has received the patch, it will not send out
virus even if the user opens an infectedmessage again.

At some point, we deploy a few entities into a mobile
network. These entities reside in the phones with the highest
degree which are found by the AOC-based immuniza-
tion strategy [26]. Each entity then moves according to
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Figure 6: The number of patches with respect to coverage rate.

Algorithm 1. We compare the efficiency of our SAOC-based
dissemination strategy with the AOC-based dissemination
strategy [20] by different indexes in the above static bench-
mark networks.

Figure 2 shows the average numbers of infected phones
over time when 5 and 10 entities are deployed into the
networks from the time step of 50. At each time step, no
more than𝑚 patches can be sent in SAOC-based strategy that
is, up to 𝑚 phones can be immunized at each time step in

SAOC-based strategy. Obviously, the earlier and themore the
patch is disseminated, the shorter the propagation duration
will be. Figure 3 shows the average number of immunized
phones over time when the entities are deployed into the
networks from50. Sincewe set a limit on the size of𝑚 to avoid
the network congestion, the effect of SAOC-based strategy
is inferior to the AOC-based one at the initial phase after
the deploying of the entities when𝑚 is small. But simulation
results show that the SAOC-based strategy can recover all the
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(1) For each entity 𝑒
search the local environment 𝐸

𝑙
(𝑒) and obtain pre-local information 𝑝𝑟𝑒𝐼

𝑙
(𝑒);

send 𝑝𝑟𝑒𝐼
𝑙
(𝑒) to the center;

End
(2) For center 𝐶

perform a series of task according to its task;
End

(3) For each entity 𝑒
compute targetId based on the post-local information or the shared post-local information;
If targetId is not nullThen

Rational move to targetId;
Else if e.lifecycle < 1Then

request the center a targetId;
If receive a targetIdThen

Rational jump to targetId;
Else if not receive a targetIdThen

Random jump to targetId;
Else

Wait;
End

End

Algorithm 1: The process of SAOC-based patch dissemination strategy.

infected phones and immune all the phones faster than the
AOC-based one even if 𝑚 is relatively small. Figure 4 shows
the number of the patches disseminated at each time step.We
find that the number of the patches disseminated at each time
step in AOC-based strategy is much more than that of the
SAOC-based one. Figure 4 also shows the main inadequacies
of AOC-based strategy; that is, too many patches are sent at
certain times which may lead to network congestion and a
phone may receive the patch from different neighbors more
than once which causes the waste of network resources.
However, in our SAOC-based strategy, the number of patches
disseminated at each time step is controllable that can be
adjusted according to the network conditions, and a phone
receives the patch only once.

Figures 5 and 6 show the average number of steps of
each entity and the total number of patches disseminated
corresponding to the coverage rate, respectively.The coverage
rate is defined as 𝑁immunized/𝑁, where 𝑁immunized represents
the total number of immunized phones that are patched by
the center and 𝑁 represents the total number of phones in
the network. In Figure 5, each entity in SAOC-based strategy
needs to move a bit more steps than that in the AOC-based
strategy when the coverage rate is small due to the limitation
on 𝑚. But in the case of achieving a significant amount of
coverage rate, the number of steps of each entity needed to
move is much smaller in SAOC-based strategy than that in
AOC-based strategy. In Figure 6, we can see that the total
number of patches disseminated is much smaller in SAOC-
based strategy than in AOC-based strategy to attain the same
coverage rate.

From the simulations performed above, we can see that
the SAOC-based dissemination strategy can efficiently send
security patches to as many phones as possible with consid-
erable speed and relatively lower cost in the static networks.

3.2. Dynamically Evolving Networks. In this section, we
evaluate the efficiency of SAOC-based dissemination strategy
in dynamically evolving networks since the structure of a
network is changing in the real world. We assume that the
initial network contains 1000 phones with ⟨𝑘⟩ = 8. Three
different patterns of network evolving are considered as
follows: (1) the network scale will grow to 4000; (2) 50 or
100 phones are added into the network at each step from
the time step of 20; (3) the network degree, ⟨𝑘⟩, will remain
unchanged or change from 8 to 18, respectively. We use
the SIR [33–35] model to characterize the SMS-based virus
propagation in dynamically evolving networks. SIR is the
most basic and well-studied epidemic spreading model. In
the SIR model, the elements of a network are divided into
three compartments, including susceptibles (S, those who
can contract the infection), infectious (I, those who have
contracted the infection and are contagious), and recovered
(R, those who have recovered from the disease). At each time
step, we assume that a susceptible phone becomes infected
with a probability 𝜆 if it is directly connected to an infected
phone. Meanwhile, if an infected phone receives the patch, it
will become to be recovered from the infected state.

Simulation results shown in Figure 7 indicate that when
selecting the appropriate number of patches disseminated at
each time step, our SAOC-based strategy can send security
patches to as many phones as possible and reduce the dam-
ages of mobile virus in the dynamically evolving networks
with various complex evolving patterns.

4. Conclusion

In this paper, we propose an efficient SAOC-based patch
dissemination strategy to restrain the SMS-based mobile
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Table 1: The detailed process of Figure 1 based on SAOC-based patch dissemination strategy.
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In the analytical information V𝑖 & V𝑗1, . . . , V𝑗𝑘 & 𝑛1 & 𝑛2 of the center, V𝑖 is the identifier of a phone, V𝑗1, . . . , V𝑗𝑘 the friends of V𝑖, 𝑛1 the first computed
remain degree of V𝑖, and 𝑛2 the second computed remain degree of V𝑖. The identifiers in red indicate the phones that have received the patches in the
previous steps. The identifiers in blue indicate the phones that will receive the patches in the current step. The no more than 5 red numbers in each step
refers to the unimmunized phones with the highest-first computed remain degree.

virus. The advantages of our SAOC-based strategy could be
described as follows:

(1) it sends security patches to asmany phones as possible
at a considerable speed and lower cost in the mobile

network with limited bandwidth which is also large-
scale, decentralized, dynamically evolving, and of
unknown network topology;

(2) it can control the number of patches disseminated at
each time step and make adjustment according to the
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Figure 7: The number of infected phones over time in different dynamicin-evolving networks. (a) 50 phones are added into the network at
each step, and the average degree ⟨𝑘⟩maintains 8; (b) 50 phones are added into the network at each step, and the average degree ⟨𝑘⟩ increases
from 8 to 18; (c) 100 phones are added into the network at each step, and the average degree ⟨𝑘⟩ maintains 8; (d) 100 phones are added into
the network at each step, and the average degree ⟨𝑘⟩ increases from 8 to 18.

network conditions.Thus the network congestion can
be avoided;

(3) the selected phones which receive the patches are
always the most important ones of the phones found
by the entities at each time step for the virus propaga-
tion, and thus the virus propagation can be effectively
restrained;

(4) each phone receives the patch only once, which is
beneficial to avoiding the network congestion and the
waste of network resource.

In summary, the SAOC-based patch dissemination strat-
egy is a reasonable, effective, and secure method to send
security patches in mobile networks and reduce the damages
mobile viruses cause.
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Table 2: The structures of networks.

Nodes Edges ⟨𝑘⟩

University email network 1133 5451 9.62
Community-based network 4000 16855 8.42
Autonomous systems network 11080 31538 5.69
Collaboration network 12008 237010 39.47
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Generally, time complexity of algorithms for content-based image retrial is extremely high. In order to retrieve images on large-scale
databases efficiently, a new way for retrieving based on Hadoop distributed framework is proposed. Firstly, a database of images
features is built by using Speeded Up Robust Features algorithm and Locality-Sensitive Hashing and then perform the search on
Hadoop platform in a parallel way specially designed. Considerable experimental results show that it is able to retrieve images based
on content on large-scale cluster and image sets effectively.

1. Introduction

Content-based image retrieval (CBIR) is a long-term hotspot
in computer vision and information retrieval and there
are many mature theories on this topic. For example, an
algorithm proposed in early time by using multiresolution
wavelet decompositions [1] had achieved favorable results
in searching images that are similar in content or structure.
And scale invariant feature transform (SIFT) [2], published
in 1999, was able to be stable with light, noise, and small
perspective change in a sense. But SIFT was so complex
that it cost too much time and this led to several other
improvements, such as principle component analysis SIFT
(PAC-SIFT) [3] which speed up featurematching by reducing
the dimension of image features and fast approximated
SIFT [4, 5] which speed up by using an integral image
and an integral orientation histogram. Another considerable
algorithm on CBIR is speededup robust features (SURF) [6]
and it is stable and fast enough to gain excellent results on
region of computer vision such as object recognition and 3D
reconstruction. SURF is also involved from SIFT but faster
and announced to be more robust than SIFT when coming to
image transformation.

Normally, CBIR has two steps, the feature extraction
which mainly affects the quality of searching, and the fea-
ture matching, which mainly affects the efficiency. Usually,
features are in high dimension, so matching features means

searching in high-dimension. There are many ways to search
high dimension space such as linear scanning, tree searching,
vector quantization, and hashing. Among these methods,
hashing is the easiest way to keep time complexityO(1) as well
as designing as a fuzzy search method. Details about hashing
will be discussed later.

Even features matching is optimized via hashing; due to
the huge amount of information of CBIR, time complexity
is still too high, preventing it from being widely used.
Particularly in the age of explosive expansion in information,
the stand-alone method for CBIR is becoming harder and
harder to fulfill the load of storage and computing brought
by data explosion. Hadoop [7] is an open-source software
framework for reliable, scalable, distributed computing. It
enables large datasets processing distributedly across clusters
using simple programming models. It is widely used by IT
companies like Yahoo!.

In this paper, image features extraction and matching are
combined with three techniques, SURF, LSH, and Hadoop
distributed platform, intending to migrate computing to
cluster with multiple nodes and improve the efficiency of
CBIR significantly. The rest of the paper is organized as fol-
lows. Section 2 discusses related algorithms and techniques.
Architecture of implementation of such method is discussed
in Section 3. Section 4 presents our experimental results and
analysis. Finally, the conclusions are drawn in Section 5, with
a brief description of future work.
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2. CBIR Algorithms and Hadoop Introduction

2.1. Speeded-Up Robust Features. The SURF algorithm is
divided into two stages: the interest points’ detection and
feature description. In the first stage, integral images and fast
Hessian matrix is used for detection of image features. In the
second stage, a reproducible orientation of each interest point
is fixed first, then constructing a square region aligned with
the selected orientation and extracting the SURF descriptor
with 64 dimensions from this region. Steps are as follow [6].

(1) Scale Spaces Analysis. Image pyramids are built by
repeatedly Gaussian blur and subsampling.

(2) Interest Points Locating. The maximum of the deter-
minant of the Hessian matrix is calculated first.
Then, nonmaximum suppression in a 3 × 3 × 3
neighborhood to the image is applied, scale and image
space interpolation are taken.

(3) Orientation Assignment. Haar-wavelet responses in 𝑥

and 𝑦 direction in a circular neighborhood around
the interest point is calculated. A dominant orienta-
tion is estimated and it is now invariant to rotation.

(4) Descriptor Extraction. A square region centered
around the interest point is constructed and oriented
along the orientation selected. Then, the region is
split into 4 × 4 square subregions and the sum of
wavelet response in horizontal and vertical direction
of each subregion is calculated. After normalization,
a descriptor in 64 dimensions is obtained.

SURF is improved from SIFT both are based on robust
points (or interest points) which are not sensitive to transfor-
mation, brightness, and noise but is less complex and more
efficient than SIFT due to the smaller number and lower
dimension of descriptors. Anopen-source libraryOpenSURF
(http://www.mathworks.com/matlabcentral/fileexchange/2-
8300)written byDirk-JanKroom for SURFdescriptor extrac-
tion is used in this paper.

2.2. Locality Sensitive Hashing. It is mentioned previously
that SURF descriptors are in 64 dimensions and matching
features means searching in high dimension. Among the four
regularly searchingmethods, locality sensitive hashing (LSH)
[8] is the fastest way for indexing and could be faster than
other three methods for several orders of magnitude in huge-
scale searching. In addition, LSH is based on probability
and is more suitable for nonprecise searching. LSH was
first introduced by Indyk and Motwani for nearest neighbor
search [9]. The main idea is to hash vectors using several
hash functions and make sure that for each hashing, the
vectors with smaller distances between each other are more
likely to collide in probability than that with longer distances.
Different hash functions could be designed for different
metrics such as Euler distance.

A family of functions can be defined as follows [10].
A familyH = {ℎ : 𝑠 → 𝑈} is said to be locality sensitive

if, for any 𝑞, function 𝑝(𝑡) = 𝑃𝑟H[ℎ(𝑞) = ℎ(V) : 𝑞 − V = 𝑡]

decreases strictly as 𝑡 increases. That is, the probability of the

collision of 𝑞 and V decreases as the distance between them
increases.

Stable distribution is one of the most important methods
for LSH function implementation. And Gaussian distribu-
tion, one kind of famous stable distribution, is used for LSH
function design frequently.

Given 𝑘, 𝐿,𝑤, suppose that𝐴 is an 𝑘×𝑑Gaussian matrix,
𝐴
𝑖
represents the 𝑖 row of 𝐴, 𝑏 ∈ R𝑘 is a random vector, and

𝑏
𝑖
∈ [𝑤], 𝑥 ∈ R𝑑; then the hash code of 𝑥 can be represented

as

𝑔 (𝑥) = (ℎ
1
(𝑥) , . . . , ℎ

𝑘
(𝑥)) , (1)

ℎ
𝑖
(𝑥) =

𝐴
𝑖
𝑥 + 𝑏
𝑖

𝑤
, 𝑖 ∈ [𝑘] , (2)

𝑔(𝑥) is the concatenation of 𝑘 hash codes, and it is regularly
designed as normal hash function to obtain the final scalar
index, such as the following one recommended by Andoni
and Indyk in one of his LSH library [10]:

𝑔 (𝑥) = 𝑓 (𝑎
1
, . . . , 𝑎

𝑘
)

= ((

𝑘

∑

𝑖=1

𝑟


𝑖
𝑎
𝑖
) mod 𝑝𝑟𝑖𝑚𝑒) mod 𝑡𝑎𝑏𝑙𝑒𝑆𝑖𝑧𝑒,

(3)

in which 𝑟


𝑖
is a random integer, 𝑝𝑟𝑖𝑚𝑒 equals (2

32
− 5),

𝑡𝑎𝑏𝑙𝑒𝑆𝑖𝑧𝑒 represents the size of hash table, usually equals to
|𝑃|, the size of searching space.

𝑏
𝑖
in (2) is a random factor, and because it can be noticed

that𝐴 itself is random already, so just set 𝑏
𝑖
= 0. Denominator

𝑤 in (2) represents a segment mapping such that the similar
values in numerator can be hashed into the same code for the
purpose of neighbor searching and its value represents the
segment size. In this paper, we chose 𝑤 = 0.125.

There are two more parameters that should be deter-
mined; 𝑘 for the number of hash codes should be calculated
by each hash function and𝐿 for the number of hash functions.
From the fact that two similar vectors will collide with the
probability greater than or equal to (1 − 𝛿) when applying
LSH, we get some conditions that 𝑘 and 𝐿 should satisfy.

Suppose that the distance of a query 𝑞 and its neighbor V
is less than a constant 𝑅, and let 𝑝

𝑅
= 𝑝(𝑅); then

𝑃𝑟
𝑔∈G [𝑔 (𝑞) = 𝑔 (V)] ≥ 𝑝

𝑘

𝑅
. (4)

And for all 𝐿 hash tables, the probability that 𝑞 and V does not
collide is no more than (1 − 𝑝

𝑘

𝑅
)
𝐿

; that is

1 − (1 − 𝑝
𝑘

𝑅
)
𝐿

≥ 1 − 𝛿. (5)

We get better performance if there are less hash tables. So let
𝐿 be the minimum possible integer and there is

𝐿 = floor
log 𝛿

log (1 − 𝑝𝑘
𝑅
)
. (6)

Now 𝐿 is a function of 𝑘.
According to Andoni and Indyk [10], the best value of 𝑘

or 𝐿 should be tested by sampling. Experimental results of
Corel1K image set testing show that 𝑘 prefer 5, and let the
value of 𝐿 be 7 from (6).
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2.3. Hadoop. Hadoop is mainly compose of Hadoop dis-
tributed file system (HDFS), MapReduce, and HBase. HDFS
is a distributed file system using by Hadoop while HBase
is a distributed NoSQL database. And MapReduce is a kind
of simple but powerful programming model for parallelly
processing large dataset. The operation of MapReduce con-
tains two steps: the map step that outputting ⟨key, value⟩
pairs after processing the input data and the reduce step
that collecting and processing the ⟨key, value⟩ pairs coming
from the map step with the same key. Figure 1 shows how
MapReduce works.

3. System Design

3.1. Overall Design. The overall design of this system is
as in Figure 2. Among all the modules, Feature Extraction
and Feature Matching are the most time consuming. And
Matlab is used as auxiliary because there are too many
image processing and matrix operations. The workflows are
as follow.

(1) Image preprocessing, including image scaling and
graying (notice that SURF is based on gray images and
is nonsensitive with image scaling).

(2) SURF extraction: multiple vectors in 64 dimensions
are obtained.

(3) Hashing: hashing each feature from last step using (2)
and (3), and 7 hash codes are obtained.

(4) Feature matching: for each hash codes from last step,
search corresponding hash table for match features
using MapReduce then results are collected and
sorted.

(5) Output results.

3.2. Parallelization Design for Feature Matching. In this mod-
ule, candidate matching features for each feature of input
image are searched and candidate similar images are selected
according tomatching counts. For simplicity, two features are
considered to be similar if their hash codes collide. In this
step, the input is the feature set and several hash codes for
each feature, and the output is the list of candidate similar
images. This is the most time-consuming part of the whole
system and is implemented by MapReduce.

Suppose ⟨𝐾,𝑉⟩ represents Key-Value pair inMapReduce;
then workflow of query in parallel is shown as Figure 3.

The feasibility of this parallelization is based on two facts.

(1) All splits are pairwise independent. That is, there are
no relationships between any two splits.The format of
features description is the same as the value ofmapper
input. Each line contains information about a feature’s
hash codes and image id to which it belongs and
features are independent. So splits based on line break
can be processed independently and concurrently.

(2) Results from all mappers will be collected by reducer.
In addition, the number of reducers is set to one;
thus, all parallel processing output will be counted

and sorted in single reducer. Eventually, retrial results
are unrelated to the way the descriptions split.

Suppose that 𝑁 represents set of 𝑛 job servers, 𝑁
𝑖

represents the 𝑖th job server, and 𝑡
𝑖
equals to the time 𝑁

𝑖

finishes its task; then the total time for the whole cluster to
finish its searching assignment is

𝑇 = max {𝑡
1
, . . . , 𝑡

𝑛
} . (7)

As the cluster is designed to be isomorphic, so in the case
of overall task remains constant, the minimum of total time
should be

𝑇min = 𝑡
1
= ⋅ ⋅ ⋅ = 𝑡

𝑛
; (8)

that is, it will take the cluster the least time as long as the sizes
of all splits are the same. What should be pointed out here
is that, due to the independence of each split, actually 𝑡

𝑖
is

related to𝑁
𝑖
and its real task. So, only the elements that could

be controlled are discussed here.
If the size of description file before splitting is Size (MB),

the split size is seg (MB), then

seg =
Size
𝑛

> 64?64 :
Size
𝑛

. (9)

Meaning that the task is averagely split first, and every job
server gets a split with the size of seg = Size/𝑛. At this time,
the task is balanced in all nodes, and 𝑇 will get its minimum
value. If seg is larger than 64 (MB), which is HDFS default
block size, itmay cost extra effort due to cross block accessing.
At this time

Size = 𝑘 ∗ 64 + tail, (10)

where 𝑘 is integer and tail is less than 64MB. That is, a
description file with size Size is split into 𝑘 + 1 parts, with 𝑘

parts size 64MB, one part size tail. These 𝑘 + 1 parts then
will be assigned to job servers by Hadoop job tracker. In
later section, it can be seen that such segmentation strategy
which combines all compute resource and features ofHadoop
framework into thinking is simple and highly efficient.

3.3. Data Structure. There are three kinds of data in the
system: the image set, the features, and the hash tables. The
image set is stored in the OS file system and the other two
are stored in HBase built on HDFS, the Hadoop file system.
HBase does not support SQL query, so primary keys or range
of primary keys are needed. Details are as follow.

(1) Image Set. Images are stored as normal image files
such bmp files in the local file system, named start
from 1 incrementally.

(2) SURF Features Table. Normally, there are hundreds of
features for each image, so invert index is better for
features storage. The pattern is in this form:

(𝐼𝑚𝑎𝑔𝑒𝐼𝑑 𝑖key, 𝐹𝑙𝑜𝑎𝑡, 𝐹𝑙𝑜𝑎𝑡, . . .) (11)

𝐼𝑚𝑎𝑔𝑒𝐼𝑑 represents the identifier of an image in the
local file system while 𝑖 represents the 𝑖th features of
image 𝐼𝑚𝑎𝑔𝑒𝐼𝑑. Followings are 64 floats, representing
a vector in 64 dimensions.
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Figure 1: The MapReduce programming model.
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Figure 2: Overall design. Preprocessing, Feature Extraction and
Hashing are mainly matrix operations and are implemented as
Matlab scripts for the purpose of speeding up and convenience.

(3) Hash Table. The hash table is used for neighbor
searching. That is, select a hash code of a specific
feature as key and query the corresponding value.
There are 7 hash tables according to LSH in this paper,
so the storage form is similar to SURF features table
for the purpose of reducing database connections.
That is,

(Hashcode 𝑖key, 𝐼𝑚𝑎𝑔𝑒𝐼𝑑 𝑗
1
, . . . , 𝐼𝑚𝑎𝑔𝑒𝐼𝑑 𝑗

𝑘
) (12)

𝐻𝑎𝑠ℎ𝑐𝑜𝑑𝑒 represents a hash value while 𝑖 represents
the 𝑖th hash function and 𝑖 = 1, . . . , 7; for example,
55555 3 represents that the hash value of the third
hash function is 55555. And 𝐼𝑚𝑎𝑔𝑒𝐼𝑑 𝑗

𝑘
is a key in

SURF features table.

4. Experiment and Analysis

4.1. Accuracy. Precision and recall are the main criteria for
evaluating content-based image retrieval algorithms. Because

Table 1: Example for feature matching.

Input Outputs Matches Feature number Percentage

118

118 256 267 99.25
159 86 267 32.21
472 79 267 29.59
127 70 267 26.22
199 70 267 26.22

the primary focus of this system is the design and implemen-
tation of distributed computing and for fuzzy searching in
large-scale image database, recall is less meaningful, so only
the precision is selected and tested.

As mentioned previously, SURF is robust to revolution
and small change of perspective, so Corel image database
is used for fully testing the precision of the system. Corel
image database contains 10 kinds of images, each of 100
images, a total of 1000 images, including human, landscape,
and architecture.

Results show that the percentage of the 6 returning results
that are similar to the input image is 60.4%, as shown in
Figure 4.

Here, two images are considered similar to each other if
at least 30 pairs of features are matched, and the more they
match, the more similar those two images are. As in Table 1,
there are 5 outputs for image with ID “118.” Among them, the
most similar one is “159” except “118” itself, with 86 matches
in total 267 features.

In addition, CBIR algorithms are related to specific image
database in a considerable sense, so the result in the paper is
just for reference.

4.2. Experimental Environment. The topology of the sys-
tem deploying environment is as in Figure 5. The physical
machines are listed in Table 2. The configurations of virtual
machines are listed in Table 3 and the software environments
are listed in Table 4. As shown, there are 11 physical machines,
containing 1 master and 30 slaves and HBase Region Servers
which are all virtual machines.
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Figure 3: Parallel processing model.

Figure 4: Typically, 6 images that are most similar to the input one
will be shown.

4.3. Results and Analysis. In the system, 30million features of
159955 images are recorded.The size of data, including scaled
images, features, and hash codes, is up to 9.93GB.

Controller

Job server Switch

Figure 5: Topology of system deploying environment. 11 servers are
connect with a switch.

Efficiency testing is divided into two parts: the feature
extraction and feature matching. Feature extraction is tested
in single node as its algorithm is not distributed and feature
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Table 2: Physical machines configurations.

Type CPU Memory Number

Controller Intel Core i7 2600
4 × 3.4GHZ 16GB 1

Job Server Intel Xeon E3-1235
4 × 3.2GHZ 32GB 10
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Figure 6: Time spent for feature matching. Legends from 1 to 30
indicate the number of nodes in a cluster.

matching is tested in cluster of different scale (single node,
five nodes to thirty nodes increasing by 5 nodes a time),
respectively.

Extracting the features of all the 159955 JPEG images with
the resolution less than or equal to 256∗256 in the Controller
takes about 180 minutes, in speed of about 14.8 images per
second. Extracted features will be written into database, so
this extraction operation only has to be done for one time.

Results of feature matching of 31993 input images whose
features have been extracted are shown in Table 5 and
Figure 6.

Table 5 shows that, when there are 40 thousand images
in the database, it costs 3227 seconds for single node to
accomplish the job while only 125 seconds for thirty nodes
and the ratio is almost 25.8. Other scales of database are
similar. In addition, with 160 thousand images in database,
the system can match features as fast as 0.006 second per
image.

Figure 6 shows that, in a specific database, consuming
time is reducing linearly as the number of nodes increases.
That is, the performance of the system is increasing linearly
as the number of nodes increases.

Another viewof the results shown inTable 5 is in Figure 7.
The abscissa represents the nodes of a cluster, and the ordinate
is the ratio of cost time in single node and in corresponding
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Figure 7: Ratio of performance improvement with 160 thousand
images in database.
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Figure 8: Time spent increases logarithmically as data in database
growths when there are 30 nodes running in a cluster.

scale of cluster. For example, 9.55 means that the time cost
in single node is 9.55 times of that in cluster of 10 nodes.
FromFigure 7, it can be confirmed that, in a specific database,
the performance of the system increases almost linearly as
the number of nodes increases which indicates that the
system is able to accomplish the jobs distributedly by calling
all the nodes in the cluster efficiently and fully prove the
system’s availability and excellent expansibility in distributed
environment. Other cases are similar.

Time consumed for different databases in cluster of 30
nodes is shown in Figure 8. It can be seen that the time cost
is increased logarithmically as database growths, indicating
that the system has strong suitability and advantage in
performance for large-scale database. Other cases are similar.

To conclude, especially from the analysis of Figures 6–8,
it can be seen that the system has two major advantages.

(1) It can be expanded quite easily as the performance of
the system is increasing linearly with the increasing in
the number of nodes. Adding nodes means speeding
up.
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Table 3: Virtual machines configurations.

Role Belongs to Frequency Memory Number Network
Master Controller 5.0GHz 8GB 1 l Gbps Switch
Slave Job Server 3.0GHz 4GB 3 × 10

Table 4: Virtual machines software environment.

OS Hadoop HBase JDK
Centos 6.3 Hadoop-1.0.1 HBase-0.92.1 1.6.0 22

Table 5: Time (second) spent for feature matching.

Nodes 10 thousand
4 8 12 16 Average

1 3227 3933 4347 4630 4034.25
5 713 819 883 931 836.5
10 335 423 461 485 426
15 243 287 317 339 296.5
20 188 220 247 265 230
25 152 183 198 214 186.75
30 125 153 171 182 157.75
1 : 30 25.82 25.71 25.42 25.44 25.60

(2) Time cost is increased logarithmically as database
grows. So, it will perform better against larger
database.

The system designed is able to take full advantage of
distributed architecture, making the searching rate increased
almost linearly as the number of nodes grows to achieve the
goal of fast content-based image retrial.

5. Conclusion

In this paper, a method for content-based image retrial
under distributed framework is proposed and discussed from
theory and implementation. Experimental results show that
it is able to retrieve images based on content on large-
scale image sets effectively. Distributed framework and large
scale of data are the main focus of the system. It is rather
significant to solve the severe problems of huge amount of
computing and storage by combining the traditional CBIR
with distributed computing to gain higher efficiency. In
addition, the system is remaining to be improved such as the
following:

(1) Make Improvement on CBIR Algorithms. CBIR is a
complexity technique. So, in the context of getting
an acceptable result, only one algorithm is used to
simplify. Other image processing techniques could
be applied to improve both the precision and per-
formance. Techniques such as the affine invariant
features extraction method in [11, 12] which can be
used for object classification both in database building
and parallel searching stages may speed up the whole
process by indexing images to different category.

(2) System Optimization and Real-Time Enhancement.
Optimization can be done by optimizingHadoop and
HBase. But as it takes a long time for Hadoop jobs to
start up and be scheduled, it is not suitable for real-
time processing. Other distributed computing model
such as Twitter Storm (http://storm-project.net/)
stream computing can be considered.
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Boolean control networks have recently been attracting considerable interests as computational models for genetic regulatory
networks. In this paper, we present an approach of impulsive control for attractor transitions in Boolean control networks based
on the recent developed matrix semitensor product theory. The reachability of attractors is estimated, and the controller is also
obtained. The general derivation proposed here is exemplified with a kind of gene model, which is the protein-nucleic acid
interactions network, on numerical simulations.

1. Introduction

Gene regulatory networks (GRNs) have been offering plenty
of holistic approaches to biological processes. They can
explicitly represent the causality of developmental processes
and exactly describe the state set of biological systems [1].
Waddington and Kacser proposed a metaphor that the
developmental process of GRNs can be represented by a ball
rolling down along a landscape with peaks and valleys, and
the steady states, which were called attractors, were found at
the bottom of the basins [2]. In cell model, there is a one-
to-one relationship between the attractors and the observed
phenotypes. This means that different cell types can be char-
acterized by different attractors [3]. The states of a GRN will
stay in an attractor, unless it is perturbed by an outside impact
[4].

In several studies on GRNs such as genetic organogenesis
and diseases, researchers have considered to make the states
of GRN transit from one attractor to another one by using
control methods [5–7]. It was found that repression of a sin-
gle RNA binding polypyrimidine tract-binding protein was
sufficient to induce transdifferentiation of fibroblasts into
functional neurons in [8]. An approachwas presented to eval-
uate drug targets of GRN inference to ovarian cancer in [9].

The previous studies mainly focused on intervening the sys-
tem to help it transit to the desirable attractors by controlling
a (or some) valid genetic locus. Since most of the existing
achievements in related fields were obtained based on the
experiments, the actual impact of control on the same GRN
is uncertain [10]. In brief, to estimate the effectiveness of the
controller for the transformation of GRNs from one attractor
to another one, still remains an open crucial theoretical
problem [11–15].

A Boolean network (BN) is often used as a model for
gene regulation which treats genes as binary nodes that are
either expressed or unexpressed [4]. In order to manipulate
networks, the control of BNs is an important topic. A Boolean
control network (BCN) can be considered as a BN with addi-
tional binary inputs. BCNs are attracting considerable inter-
ests as computational models for GRNs which use the exoge-
nous inputs. BCN has been widely used in yeast cell-cycle
[16], Drosophila melanogaster [17], and other kinds of cells.

In this paper, we propose a theoreticalmethod to estimate
the effects of a certain impulsive controller in a BCN and
solve the appropriate controller by using semitensor product.
Compared with the existing methods, based on the results of
the experiments, our mathematics-based approach is more
accurate and simpler.
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The rest of this paper is organized as follows. Section 2
reviews STP and the model of BN. In Section 3, the reach-
ability of an attractor is realized and the controller is also
obtained. Section 4 gives our main results of an example.
Section 5 is the conclusion.

2. Preliminaries

2.1. Semitensor Product. Semitensor product (STP) of matri-
ceswas firstly proposed byCheng andDong. It is the algebraic
form and the coordinate transformation of BN and BCN.
Based on STP, BNs and BCNs can be converted into equiv-
alent algebraic form of some standard discrete-time system
[18]. In this paper, STP is denoted by “⋉”.

Definition 1. Assuming there are two matrices 𝐴 ∈ R𝑚×𝑛 and
𝐵 ∈ R𝑝×𝑞, the STP of 𝐴 and 𝐵 is 𝐴 ⋉ 𝐵 = (𝐴 ⊗ 𝐼

𝛼/𝑛
)(𝐵 ⊗ 𝐼

𝛼/𝑝
),

where 𝛼 is the least common multiple of 𝑛 and 𝑝, “⊗” is the
Kronecker product, and 𝐼

𝑘
is the identity matrix.

The STP ofmatricesmakes all the fundamental properties
of the conventional matrix product remain true [19]. With
STP, Boolean operation can be converted intomatrix product.
These two logical values, “true” and “false,” are expressed in
vector forms as 𝛿1

2
and 𝛿

2

2
, where 𝛿

𝑟

𝑛
denotes the 𝑟th column

of the identity matrix 𝐼
𝑘
. Some fundamental logical functions

are identified as 𝑀 = [𝛿
𝑖
1

𝑛
, 𝛿
𝑖
2

𝑛
, . . . , 𝛿

𝑖
𝑠

𝑛
], which is also briefly

expressed as𝑀 = 𝛿
𝑛
[𝑖
1
, 𝑖
2
, . . . , 𝑖

𝑠
]. And the logic relationships

are

(1) negation:𝑀
𝑛
= 𝛿
2
[2, 1];

(2) disjunction:𝑀
𝑑
= 𝛿
2
[1, 1, 1, 2];

(3) conjunction:𝑀
𝑐
= 𝛿
2
[1, 2, 2, 2];

(4) XOR:𝑀
𝑝
= 𝛿
2
[2, 1, 1, 2].

The above matrices are called the structure matrices.

2.2. Attractor. ABN,which is typically formulated as a direct-
ed graph, composed of 𝑛nodes, whose state indicateswhether
the gene is switched 1 (on) or 0 (off). The state of each node
at time 𝑡 + 1 is determined by the state of its spatial neighbors
at time 𝑡. The system can be described by

𝑥
1
(𝑡 + 1) = 𝑓

1
(𝑥
1
(𝑡) , 𝑥
2
(𝑡) , . . . , 𝑥

𝑛
(𝑡)) ,

𝑥
2
(𝑡 + 1) = 𝑓

2
(𝑥
1
(𝑡) , 𝑥
2
(𝑡) , . . . , 𝑥

𝑛
(𝑡)) ,

...

𝑥
𝑛
(𝑡 + 1) = 𝑓

𝑛
(𝑥
1
(𝑡) , 𝑥
2
(𝑡) , . . . , 𝑥

𝑛
(𝑡)) ,

(1)

where 𝑓
𝑖
(𝑖 = 1, 2, . . . , 𝑛) is an 𝑛-ary logical function.

The BN is a globally convergence system. An attractor,
called the stable state of system, is in the formof either a single
state (fixed point) or a repeating set of states (cycle) [20].
Here, we consider how to find the attractors of (1). According
to STP, we define

𝐴 (𝑡) = ⋉
𝑛

𝑖=1
𝑥
𝑛
(𝑡) . (2)

Then

𝐴 (𝑡 + 1) = ⋉
𝑛

𝑖=1
𝑀
𝑖
𝐴 (𝑡) , (3)

where 𝑀
𝑖
(𝑖 = 1 ⋅ ⋅ ⋅ 𝑛) is the structure matrix. Using the

properties of STP, (3) can be converted into an algebraic form
as

𝐴 (𝑡 + 1) = 𝐿𝐴 (𝑡) , (4)

where 𝐿 ∈ Δ
2
𝑛
×2
𝑛 is called the transition matrix. The state

of (1) is uniquely determined by the transition matrix. Each
column of 𝐿, which is called state number, represents a state
of the BN. The attractor has the following definitions:

(1) a state 𝑥(𝑡) ∈ Δ
2
𝑛 is called a fixed point if 𝐿𝑥(𝑡) = 𝑥(𝑡);

(2) {𝑥(𝑡), 𝐿𝑥(𝑡), . . . , 𝐿𝑘𝑥(𝑡)} is called a cycle with length
𝑘 if 𝐿𝑘𝑥(𝑡) = 𝑥(𝑡) and the elements in the set {𝑥(𝑡),
𝐿𝑥(𝑡), . . . , 𝐾

𝑘−1
𝑥(𝑡)} are distinct.

Theorem 2. In system (1), the number of length 𝑠 cycles,𝑁
𝑠
, is

inductively determined by

𝑁
1
= 𝑇𝑟𝑎𝑐𝑒 (𝐿) ,

𝑁
𝑘
=

(𝑇𝑟𝑎𝑐𝑒 (𝐿
𝑘
) − ∑
𝑠∈P(𝑘) 𝑠𝑁𝑠)

𝑘
, 2 ≤ 𝑘 ≤ 2

𝑛
,

(5)

where P(𝑘) is the set of proper factors of 𝑘. According to (5),
one can find all the attractors in the state space of BN (1) [21].

3. Main Results

In GRNs, much attention focuses on making the whole
system transit from one attractor to another by control
methods [22, 23]. Since the impulsive controller could destroy
the cycle structure of the biological system, it is widely used in
GRNs [24]. First, we will judge the reachability of an attractor.

Assume A
1
= {𝑥
ℎ

| ℎ = 1 ⋅ ⋅ ⋅ 𝑙
1
} and A

2
= {𝑦
𝑟
| 𝑟 =

1 ⋅ ⋅ ⋅ 𝑙
2
} are two attractors in system (1). 𝑙

1
and 𝑙
2
are the lengths

of A
1
and A

2
, respectively. We will determine the reacha-

bility fromA
1
toA
2
.

Here, we consider a BCNwith𝑚 impulsive inputs at time
𝑡, and it is defined as

𝑥
1
(𝑡 + 1) = 𝑓

1
(𝑥
1
(𝑡) , . . . , 𝑥

𝑛
(𝑡) , 𝑢
1
(𝑡) , . . . , 𝑢

𝑚
(𝑡)) ,

...

𝑥
𝑛
(𝑡 + 1) = 𝑓

𝑛
(𝑥
1
(𝑡) , . . . , 𝑥

𝑛
(𝑡) , 𝑢
1
(𝑡) , . . . , 𝑢

𝑚
(𝑡)) ,

(6)

where 𝑓
𝑖
(𝑖 = 1, 2, . . . , 𝑛) is an 𝑛-ary logical function and

𝑢
𝑗
(𝑗 = 1 ⋅ ⋅ ⋅ 𝑚) is the impulsive input. 𝑢

𝑗
is described as

𝑢
𝑗
(𝑡) = {

input, 𝑡 = 𝑡
𝑘
,

no input, 𝑡 ̸= 𝑡
𝑘
,

(7)

where input is 0 or 1. When system (6) is at time 𝑡 = 𝑡
𝑘
,

according to STP, we define

𝐴 (𝑡) = (⋉
𝑛

𝑖=1
𝑥
𝑖
(𝑡)) ⋉ (⋉

𝑚

𝑗=1
𝑢
𝑗
(𝑡)) , (8)
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then

𝐴 (𝑡 + 1) = ⋉
𝑛

𝑖=1
𝑀
𝑖
𝐴 (𝑡) , (9)

where 𝑀
𝑖
(𝑖 = 1 ⋅ ⋅ ⋅ 𝑛) is the structure matrix. So (9) can be

converted into an algebraic form as follows:

𝐴 (𝑡 + 1) = �̃�𝐴 (𝑡) , (10)

where �̃� ∈ Δ
2
𝑛
×2
𝑛+𝑚 is called the state transition matrix of

system (6).

Theorem 3. Consider (6). The transformation from attractor
A
1
to attractorA

2
is reachable with controllers 𝑢

1
(𝑡) ⋅ ⋅ ⋅ 𝑢

𝑚
(𝑡)

if and only if

�̃�A
1
∩A
2

̸= 𝜙, (11)

where 𝜙 is the null set.

Proof. Since �̃� is the linear representation ofmatrix𝐿with the
inputs 𝑢

1
(𝑡) ⋅ ⋅ ⋅ 𝑢

𝑚
(𝑡), �̃�A

1
is the reachable state set ofA

1
.The

intersection set of �̃�A
1
andA

2
is the destination states from

A
1
toA
2
with controllers 𝑢

1
(𝑡) ⋅ ⋅ ⋅ 𝑢

𝑚
(𝑡).

Definition 4. Assume 𝑦
𝑟
is the destination state for the tran-

sition fromA
1
toA
2
if and only if

𝑦
𝑟
∈ �̃�A
1
∩A
2
, (12)

then 𝑥
ℎ
is the source state if and only if

𝑦
𝑟
= �̃�𝑥
ℎ
, (13)

where 𝑥
ℎ
∈ A
1
and 𝑦

𝑟
∈ A
2
.

Next, we will find the existence of the controller for
attractor transition.

Theorem 5. Consider system (6). Assume �̃�𝑥
ℎ

= {𝑒
𝑘

| 𝑘 =

1 ⋅ ⋅ ⋅ 2
𝑚
}; if 𝑦
𝑟
= 𝑒
𝑘
, we have 𝛿𝑘

2
𝑚 . The impulsive controllers are

obtained by

𝛿
𝑘

2
𝑚 = 𝑢
1
(𝑡) ⋉ 𝑢

2
(𝑡) ⋉ ⋅ ⋅ ⋅ 𝑢

𝑚
(𝑡) , (14)

where 𝑢
𝑗
(𝑡) (𝑗 = 1 ⋅ ⋅ ⋅ 𝑚) is the impulsive input at time 𝑡.

Proof. Since �̃�𝑥
ℎ
is the destination state from 𝑥

ℎ
with impul-

sive inputs 𝑢
1
(𝑡) ⋅ ⋅ ⋅ 𝑢

𝑚
(𝑡), each 𝑒

𝑘
represents each state which

is from 𝑥
ℎ
by inputs 𝑢

1
(𝑡) ⋅ ⋅ ⋅ 𝑢

𝑚
(𝑡). Equation (14) is based on

the properties of STP.
We can solve the input values for a deterministic target by

using (14).

4. Example

In order to illustrate our approach, an example is given in
this section. It is an idealized protein-nucleic acid interaction

involved in gene regulation model in cells [25]. The type of
unit component which we will study is shown as follows:

𝑥
1
(𝑡 + 1) = 1 + 𝑥

3
(𝑡) + 𝑥

6
(𝑡) + 𝑥

3
(𝑡) 𝑥
6
(𝑡) ,

𝑥
2
(𝑡 + 1) = 𝑥

1
(𝑡) ,

𝑥
3
(𝑡 + 1) = 𝑥

2
(𝑡) ,

𝑥
4
(𝑡 + 1) = 1 + 𝑥

3
(𝑡) + 𝑥

6
(𝑡) + 𝑥

3
(𝑡) 𝑥
6
(𝑡) ,

𝑥
5
(𝑡 + 1) = 𝑥

4
(𝑡) ,

𝑥
6
(𝑡 + 1) = 𝑥

5
(𝑡) ,

(15)

where𝐴 ⋅𝐵 represents𝐴 Conjunction 𝐵 and𝐴+𝐵 represents
the XOR operation between 𝐴 and 𝐵. Based on (2)–
(4), the 𝐿 matrix of system (15) is 𝐿 = 𝛿

64
[37 37

38 38 39 39 40 40 37 1 38 2 39 3 40 4 45 45 46
46 47 47 48 48 45 9 46 10 47 11 48 12 53 53 54
54 55 55 56 56 53 17 54 18 55 19 56 20 61 61 62
62 63 63 64 64 61 25 62 26 63 27 64 28].

Using (5), we obtain that there are the following two
attractors in the state space:

A
1
= (19) → (46) → (19) ,

A
2
= (1) → (37) → (55) → (64) → (28)

→ (10) → (1) .

(16)

The attractors of this system represent different quantities of
the generation of a metabolic species.

Next, assume the system is already in attractor A
1
; we

want to transit the whole system from A
1
to A
2
with some

impulsive controllers.
The BCN is expressed as

𝑥
1
(𝑡 + 1) = 1 + 𝑥

3
(𝑡) + 𝑥

6
(𝑡) + 𝑥

3
(𝑡) 𝑥
6
(𝑡) ,

𝑥
2
(𝑡 + 1) = 𝑥

1
(𝑡) + 𝑢

1
(𝑡) ,

𝑥
3
(𝑡 + 1) = 𝑥

2
(𝑡) ,

𝑥
4
(𝑡 + 1) = 1 + 𝑥

3
(𝑡) + 𝑥

6
(𝑡) + 𝑥

3
(𝑡) 𝑥
6
(𝑡) ,

𝑥
5
(𝑡 + 1) = 𝑥

4
(𝑡) + 𝑢

2
(𝑡) ,

𝑥
6
(𝑡 + 1) = 𝑥

5
(𝑡) ,

(17)

where 𝑢
1
, 𝑢
2
are controllers.

Step 1. Using (8)–(10), we obtain the matrix �̃�. Based on
the computing of �̃�, we obtain �̃�A

1
= 𝛿
64
[64 62 48 46

1 3 17 19]. According to (11), the intersection of two sets
is �̃�A

1
∩ A
2
= 𝛿
64
[64 1] ̸= 𝜙. So, the transformation from

A
1
toA
2
is reachable, and 𝑦

𝑟1
= 𝛿
64
[64] and 𝑦

𝑟2
= 𝛿
64
[1] are

the destination states.

Step 2. Since A
1
is made up of two states, which are A

11
=

𝛿
64
[19] andA

12
= 𝛿
64
[46], we have

�̃�A
11

= 𝛿
64 [64 62 48 46] ,

�̃�A
12

= 𝛿
64 [1 3 17 19] ,

(18)

then �̃�A
11

∩ 𝑦
𝑟1

̸= 𝜙 and �̃�A
12

∩ 𝑦
𝑟2

̸= 𝜙.
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So 𝑥
ℎ1

= A
11

= 𝛿
64
[19] and 𝑥

ℎ2
= A
12

= 𝛿
64
[46] are

source states.

Step 3. Letting �̃�A
11

= {𝑒
𝑘

| 𝑘 = 1, . . . , 4}, 𝑦
𝑟1

= 𝑒
1
, we

have 𝛿
1

4
. Based on Theorem 5, the impulsive controllers are

described as

𝑢
1
(𝑡) = {

1, 𝑡 = 𝑡
𝑘
,

no input, 𝑡 ̸= 𝑡
𝑘
,

𝑢
2
(𝑡) = {

1, 𝑡 = 𝑡
𝑘
,

no input, 𝑡 ̸= 𝑡
𝑘
.

(19)

Similarly, we can obtain other impulsive controllers which are
described as

𝑢
1
(𝑡) = {

1, 𝑡 = 𝑡
𝑘
,

no input, 𝑡 ̸= 𝑡
𝑘
,

𝑢
2
(𝑡) = {

1, 𝑡 = 𝑡
𝑘
,

no input, 𝑡 ̸= 𝑡
𝑘
,

(20)

whose source state isA
12

= 𝛿
64
[46].

The conclusion of this example is that there are two kinds
of controllers which can transform the state of system (17)
from attractor A

1
to attractor A

2
. They can be described as

follows.
The First. The source state number is 19, the destination state
number is 64, and the impulsive controllers are

𝑢
1
(𝑡) = {

1, 𝑡 = 𝑡
𝑘
,

no input, 𝑡 ̸= 𝑡
𝑘
,

𝑢
2
(𝑡) = {

1, 𝑡 = 𝑡
𝑘
,

no input, 𝑡 ̸= 𝑡
𝑘
.

(21)

The Second. The source state number is 46, destination state
number is 1, and the impulsive controllers are

𝑢
1
(𝑡) = {

1, 𝑡 = 𝑡
𝑘
,

no input, 𝑡 ̸= 𝑡
𝑘
,

𝑢
2
(𝑡) = {

1, 𝑡 = 𝑡
𝑘
,

no input, 𝑡 ̸= 𝑡
𝑘
.

(22)

5. Conclusion

This paper explores the problem of attractor transformation
by impulsive control in BCN. We propose an effective algo-
rithm which allows us to realize the transformation among
different attractors of the BCN. Although the protein-nucleic
acid gene network has relatively simple structure compared
with those exhibited by metazoans, the attractors transfor-
mation by impulsive control is impressively significant. Our
findings open a new perspective in the attractor transforma-
tion by impulsive control which is of utmost importance in
areas as diverse as drug target and gene regulation and so
forth. Developing more effective algorithms or approximate
techniques for the present approaches will be the future work.
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This study presents transient aspects of light wave propagation connected with spatial coherence. It is shown that reflection and
refraction phenomena involve spatial patterns which are created within a certain transient time interval. After this transient time
interval, these patterns act like amemory, determining the wave vector for subsequent sets of reflected/refracted waves.The validity
of this model is based on intuitive aspects regarding phase conservation of energy for waves reflected/refracted by multiple centers
in a certain material medium.

1. Introduction

As it is known, the study of light wave propagation phenom-
ena as reflection and refraction at the interface between two
different media is based on wavefronts generated by multiple
centers of reflection/refraction situated on this interface.
These wavefronts correspond to surfaces over which the light
wave has a constant phase. Usually, a wavefront is represented
by the surface over which the wave has amaximum value (the
crest of a wave).

The direction of propagation for the wave (which is also
the direction of the wave vector, usually denoted by k) is
always perpendicular to the surface of the wavefront at each
point. Thus, the wavefronts of a point source (emitting in
all spatial directions) are spheres, and the wave propagates
radially outward the radius of a sphere being perpendicular
to the circumference at each point.

According to Huygens’ principle for propagation of light,
each point on a certain wavefront acts as a point source that
emits spherical wavelets. These wavelets propagate with the
speed of light in themedium and generate the total wavefront
at a later time as the envelope that encloses all of these
wavelets. This corresponds to the tangent line that joins the
front surface for each of them.

However, we must take into account the fact that each
center of reflection/refraction (usually represented by an

infinitely small spatial area of the interface) should be
considered also as emitting spherical energy waves in all
directions. For an oblique incidence of a plane wave, a certain
center of reflection/refraction will be the first one which
emits wavelets with the speed of light specific to that material
medium. Until it interacts with the wavefront generated by
another center of reflection/refraction, we should consider
that the energy received from the incident wave is radiated
along all spatial directions. After these first two wavelets
interact, it can be considered that they create a wavefront
with a greater radius of curvature along the main direction
of reflection/refraction, resulting a lower-divergence beam.
However, a significant amount of energy will still be radiated
in all spatial directions. The same aspect can be noticed by
analyzing the interaction of each newly created wavefront
with previously reflected/refracted wavelets. The radius of
curvature is lowered, but supplementary amounts of energy
are still radiated in all spatial directions (not just along the
main axis of reflection/refraction) by these new wavefronts.
If the lowering of beam divergence is not a prevailing
phenomenon, the reflected/refracted wave would vanish very
quickly.

Moreover, the assumption regarding the constant phase
shift (𝜋 for electric field E, e.g.) for reflected/refracted wave
in surface point is also questionable, since the interface is
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far from being perfectly smooth and perfectly conductive. A
certain transient time interval for creating the electrostatic
equilibrium is always required. As a consequence, local phase
shifts for reflected/refracted wave cannot be avoided within
this local mathematical model. According to the standard
propagation theory of waves, these could generate multiple
local waves propagating in all spatial directions. Thus, the
energy of reflected/refracted wave would be dissipated in a
large solid angle (corresponding to a high divergence of the
light beam) and directionality would be lost within a very
short length interval.

For this reason, a complete analysis of phenomena on
such transient time intervals should be based on a global
analysis of interface and wavefront aspects. Spatial coherence
should be taken into consideration.

As a consequence, a certain amount of energy is lost
during this transient time interval. A deeper analysis of this
model (for the stationary regime) requires a certain memory
of previous interaction and a certain spatial coherence to be
taken into account, as will be shown in the next paragraphs.

2. Periodical Effect of Momentum
Space Patterns

As it is known, quantum theory uses either position or
momentum space for representing states and evolution of
particles and their associated fields. A preliminary analysis
of reflection/refraction phenomena is based on classical
electromagnetic field, which corresponds in fact to the wave
function associated to a photon (the electric field E, magnetic
field B, vector potential A, and scalar potential V being
the main quantities used). This wave function can explain
basic aspects in wave theory of light as reflection/refraction
working within position space.

However (as it has been shown in the introduction), this
theory working within position representation is suitable just
for idealized cases (such as a perfectly smooth interface).
It can be argued that light consists of photons which are
packets of energy that primarily interact with interface
atoms. Through this interaction, the energy of the photon
is absorbed by collectivised electrons of the solid crystalline
lattice, and the photon ceases to exist. Usually, the electron
will quickly return to a lower energy state by emitting a
photon. Since the photons are reemitted, not reflected or
refracted, each photon behaves more like a point source—
as if the light was originating right there. At a later time,
these emitted spherical waves generate the total wavefront
as the envelope that encloses all these point-source waves.
The effect of interface nonuniformities could be considered as
vanishing by drawing a tangent line as a global approximation
through the front surface for each point-source wave. Yet
there is no valid argument regarding aminimumvalue for the
radii of curvature of this tangent line. Theoretically, it could
be very small, and thus the global tangent line could consist
of a lot of local curves with significant curvatures which are
joined together. This way a lot of divergent light beams could
be created along the reflected/refracted trajectory, and the
energy would disappear very quickly.

A better argument regarding the perfectly smooth
approximation for reflection/refraction theory could con-
sist in the fact that photons usually interact with collec-
tivised electrons of the solid crystalline lattice before being
reemitted. These electrons could be considered as moving
tangents to the interface since sudden changes of trajectory
could generate significant electromagnetic field (accelera-
tions being involved). This picture is supported also by
quantum physics, since the associated wave function for the
collectivised electrons is represented in position for large
space intervals, the influence of local nonuniformities being
decreased.Thus, a tangent line local radii of curvature greater
than a certain value can be drawn, and a better directionality
for reflected/refracted wave can be obtained.

However, this explanation does not take into account the
phase shift between the incident and the reemitted wave for
different points of the interface. A complete analysis based
on quantum theory should consider that waves reemitted
from different points of the interface are part of the wave-
train corresponding to a certain photon; the probability of
detecting a reflected/refracted photon is determined by the
coherent plane-wave compounding method (it is well known
that a particle interferes just with itself). There is no valid
argument for the assumption regarding the constant phase
shift between the local incident wave and the corresponding
local reemitted wave in each interface point. The wave
function for collectivised electrons of the crystal lattice is far
from being constant in space-time along this interface. For
this reason, space correlations for the incident wave-train and
the reemitted wave-train should be taken into account.

It is useful to mention that a certain kind of spatial
coherence can be noticed within classical electromagnetic
theory, since the reflection on a perfectly conductive (metal-
lic) interface requires the electric field E to vanish on this
surface. For this, a certain transient time interval necessary
for creating the electrostatic equilibrium is required.

As a consequence, local phase shifts for reflected/
refracted wave cannot be avoidedwithin any localmathemat-
ical model. According to the standard propagation theory of
waves, these could generate multiple local waves propagating
along spatial directions which differ from the main reflec-
tion/refraction axis. Thus, the energy of reflected/refracted
wave would be dissipated in a large solid angle (correspond-
ing to a high divergence of the light beam) and directionality
would be lost within a very short length interval.Thus the use
of spatial coherence (based on nonlocal aspects) is justified. A
harder task is to add some transient time considerations into
a model based mainly on spatial correlations.

Analyzing the hypothesis of constant wave shift for the
reflected/refracted wave in any point of the interface, we can
observe that incident waves (parts of the associated wave
corresponding to a certain photon—according to quantum
mechanics) for first time interact with spatially extended
functions/patterns defined on the interface material medium
(crystal lattice with specific quantum functions for collec-
tivised electrons and for phonons—quanta corresponding to
spatially extended vibrations). This could suggest that lattice
quantum functions interact in a global manner with parts
of the incident wave on a large spatial area of the interface,
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a certain correlation between phase of reflected/refracted
wave being noticed even for surface points separated by
possible crystal defects. This implies that a kind of support
wave is generated on this interface, which acts upon reflect-
ing/refracting points and correlates the phase of reemitted
waves by interface points situated at great distance.

This aspect regarding space correlations achieved
within a very short time interval for nonadjacent spatial
intervals which interact with wavefronts (part of the
reflected/refracted wave) becomes a key issue if we consider
that reflected/refracted wave can undergo diffraction at a
later time. The requirement of constant phase shift for parts
of the associated wave generated by points or edges of a
diffraction grating is still valid—yet the points or edges of
such a diffraction grating are nonadjacent and cannot be
correlated by any surface quantum wave functions. So, the
support waves previously mentioned should propagate with
high speed in space in order to regroup the wavefronts into
a light beams with certain directionality, so as the diffracted
wave doesnot vanish within a short time interval after
interaction with the diffraction grating.

For connecting nonadjacent spatial areas, the position
space representation for associated wave function is no more
recommended. However, the associated wave corresponds to
the same photon (defined on a certain wavelength interval
and on a certain three-dimensional wave vector interval).
This implies that the use of momentum space representation
is suitable for interconnecting these nonadjacent space inter-
vals where a certain material medium interacts with parts
of the same incident or reflected/refracted wave-train (an
example being the case of a later diffraction when a limited
number of high-intensity directions are created). With a
certain periodicity, this momentum representation becomes
active and generates momentum (wave vector) values. For
nonadjacent space intervals, the phase correlation within this
momentum representation should be achieved through high-
speed propagating support waves. The momentum values
generated when this representation is active represents the
base for wave propagation on subsequent time intervals,
when the position representation becomes active.

We must check whether such high speed support waves
can be considered using the standard wave equation. As it
is known, the homogeneous wave equation in free space (in
a space-time point without any sources) in one dimension
(when movement is restricted along the 𝑂𝑥-axis) is repre-
sented by
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where V corresponds to the wave velocity. The standard
mathematical solution is represented by
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responds to the reverse wave (which moves towards 𝑥 = −∞
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The three-dimensional homogeneous wave equation in
free space (in a space-time point without any sources) is
represented by
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For spherical coordinates, considering that the wave function
𝜙 is invariant under rotations (the case when spherical waves
are emitted from a certain point in space or are convergent
towards a central point), the wave equation for 𝜙 (depending
only on distance 𝑟 to this central point and time) can be
written as
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The standard mathematical solutions for this case are
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where 𝜙
𝑑
(𝑟 − V𝑡) corresponds to a divergent wave (which

moves from a certain point outwards along all radial direc-
tions as time 𝑡 increases) and 𝜙

𝑐
(𝑥 + V𝑡) corresponds to

a convergent wave (which moves from all radial directions
towards a certain point as time 𝑡 increases).

However, these standard solutions are not suitable for
our purpose. Their velocity is limited by the V parameter
of the wave equation. Yet we can notice that the three-
dimensional homogeneous wave equation admits solutions
under the following form:

𝜙 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑥 + 𝑑𝑡 + 𝑒, (6)

where quantities 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 are constant values. This corre-
sponds to a time-dependent plane equation—a plane which
moves in the three-dimensional space. Let us suppose that 𝜙
equals 𝑒 in the origin, at the zero moment of time (this means
𝑥 = 𝑦 = 𝑧 = 𝑡 = 0). At this zero moment of time, this value
corresponds also (according to standard analytical geometry)
to a spatial plane defined by the following:

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑥 + 0𝑑 + 𝑒 = 𝑒, (7)

which means that

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑥 = 0 (8)

(the spatial origin being included in this plane). At a later time
𝑡, the same value 𝑒 could be noticed for 𝜙 in a plane defined
by the following:

𝑒 = 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑥 + 𝑑𝑡 + 𝑒, (9)

which means

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑥 + 𝑑𝑡 = 0. (10)

At this timemoment 𝑡, the distance from spatial origin to this
plane (parallel to the plane defined at zero moment, since
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quantities 𝑎, 𝑏, 𝑐 corresponding to a vector normal to the
plane do not vary in time) equals
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which means that the plane on which 𝜙 equals 𝑒 passing
through origin at zero time moment which moves with
velocity
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in space. The propagation velocity depends only on 𝑎, 𝑏, 𝑐, 𝑑
constants. Since there is no restriction regarding the choice
for these constant values, it results that (unlike standard
solutions of wave equation) these polynomials can be rep-
resented as constant values propagating in space-time with
any velocity (this physical quantity being no more correlated
to the wave equation). Since the velocity has no more an
upper limit, these polynomials can be put in correspondence
with the high-speed support wave requested for performing
practically an instant correlation between different non-
adjoining space intervals interactingwith the same associated
wave (the values in momentum space representation being
the same).

3. Conclusions

This study has presented transient aspects of light wave
propagation connected with spatial coherence. It has been
shown that reflection and refraction phenomena involve
spatial patterns which are created within a certain tran-
sient time interval. After this transient time interval, these
patterns (connected to spatial coherence) act like a certain
memory, determining the wave vector for subsequent sets of
reflected/refracted waves. The validity of this model is based
on the study of wavefronts generated by multiple centers
of reflection/refraction situated on the interface—the total
wavefront at a later time being the envelope that encloses
all of these wavelets. Analyzing the hypothesis of constant
wave shift for the reflected/refracted wave in any point of the
interface, it is shown that this should be connected with a
nonlocal mathematical model which takes into account

(i) that incident waves (parts of the associated wave
corresponding to a certain photon—according to
Quantum Mechanics) the first time interaction with
spatially extended functions/patterns defined on the
interface material medium (crystal lattice with spe-
cific quantum functions for collectivised electrons
and for phonons—quanta corresponding to spatially
extended vibrations);

(ii) that these kinds of spatially extended functions
are generated also for nonadjacent spatial inter-
vals which interact with wavefronts (part of the
reflected/refracted wave) at a later time.

The first aspect is not surprising (since a spatially
extended wave function for the interface can be easily be
defined using quantum considerations). However, the second
is a novel aspect which implies the use of momentum space
representation for defining the same values for parts of the
same reflected/refracted associated wave-train in nonadja-
cent space intervals (an example being the case of a later
diffraction).

This extended spatial model can explain why minor
different local shifts do not appear, since (according to
standard wave propagation theory) these could lead to mul-
tiple local waves propagating along spatial directions which
differ to the main reflection/refraction axis. Thus, the entire
reflected/refracted wave would be dissipated in a large solid
angle (corresponding to a high divergence of the light beam)
and directionality would be lost within a very short length
interval.

Themathematical aspects are based on first order polyno-
mials satisfying the wave equation. Unlike standard solutions
of wave equation, these polynomials can be represented as
constant values propagating in space-time with any velocity
(this physical quantity being no more correlated to the
wave equation). Since the velocity has no more upper limit,
these polynomials can be put in correspondence with certain
support waves able to perform practically an instant phase
correlation between different non-adjoining space intervals
interacting with the same associated wave. This correlation
should be achieved within momentum space representation
for the associated wave, since within this representation all
values corresponding to the same wave-train are the same in
nonadjacent space intervals.

These linear functions differ from time dynamics based
on temporal coherence (as presented in [1]). Being constant
values propagating in space time, they can be put in corre-
spondence with traveling wavelets inside a certain material
medium as in [2, 3]. The difference consists in the fact that
these functions correspond to linear space-time functions
which are active with a certain periodicity. Phase aspects of
quantum interactions were also presented in [4], without any
spatial correlations to be mentioned. A nonlinear model for
creating spatial patterns (using nonlinear equations) has been
presented in [5]. Scale spatial aspects were also presented
in [6], in opposition to temporal noise aspects generating
uncorrelation presented in [7, 8] by the same group of
researchers.
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This paper depicts our work in smoothing the sample autocorrelation function (ACF) of traffic. The experimental results exhibit
that the sample ACF of traffic may be smoothed by the way of average. In addition, the results imply that the sum of sample ACFs
of traffic convergences. Considering that the traffic data used in this research is long-range dependent (LRD), the latter may be
meaningful for the theoretical research of LRD traffic.

1. Introduction

Let 𝑥(𝑡(𝑖)) be a sample record of teletraffic time series (traffic
for short), where 𝑡(𝑖) for 𝑖 ∈ N (the set of natural numbers)
is the series of timestamps, indicating the timestamp of the
𝑖th packet arriving at a server. Thus, 𝑥(𝑡(𝑖)) represents the
packet size of the 𝑖th packet recorded at time 𝑡(𝑖) on a
packet-by-packet basis.We use a real-traffic trace named BC-
Aug89 recorded on an Ethernet at the Bellcore Morristown
Research and Engineering facility, which contains 1,000,000
packets [1]. It was used in the pioneering work for revealing
some statistical properties of traffic in fractals, such as self-
similarity and long-range dependence (LRD) [2, 3].

Note 1. The statistical properties described in the early lit-
erature, for example, [2, 3], turn to be ubiquitous in today’s
traffic, according to the research stated in [4, 5]. Thus, the
trace measured in 1989 keeps its value in the research of
general patterns of traffic.

The word traffic is a collective noun. In addition to the
traffic on a packet-by-packet basis as previously described, it
may imply the time series called interarrival times, which is
in the form (see [6, 7])

𝑠 (𝑖) = 𝑡 (𝑖 + 1) − 𝑡 (𝑖) . (1)

The term traffic may also imply the time series named
accumulated traffic, denoted by 𝑦(𝑛), on an interval-by-
interval basis, which is given by

𝑦 (𝑛) =

(𝑛+1)𝑇

∑

𝑖=𝑛𝑇

𝑥 (𝑖) , (2)

where 𝑇 is the interval width. It stands for the accumulated
bytes of arrival traffic in the 𝑛th interval.

Note 2. The statistical properties of 𝑥(𝑡(𝑖)), 𝑠(𝑖), and 𝑦(𝑛)may
be identical [5].

Note 3. The attributes of traffic are application dependent.
More other meanings of traffic are available. It may mean the
packet count [2]. In some applications, one may be interested
in the number of connectionswithin a given time interval [4],
the packet size or the number of packets on a flow-by-flow
basis [8], envelopes of traffic [9], or traffic bounds [10].

This paper relates to the aggregated traffic 𝑥(𝑡(𝑖)). Figure 1
illustrates four types of the series of BC-Aug89. Let the
interval width be 𝑇 = 1024. Then, we obtain 𝑦(𝑛) of BC-
Aug89 according to (2), as shown in Figure 2. Note that the
pattern of 𝑥(𝑡(𝑖)) is consistent with that of 𝑥(𝑖) that represents
the size of the 𝑖th packet. Besides, the statistics of𝑥(𝑖) and𝑦(𝑛)

may generally be identical [5]. Therefore, in what follows,
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Figure 1: Illustrations of real-traffic trace BC-Aug89. (a) Timestamp
series 𝑡(𝑖). (b) Interarrival times 𝑠(𝑖). (c) Traffic in packet size 𝑥(𝑡(𝑖)).
(d) Traffic in packet size𝑥(𝑖).
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Figure 2: Accumulated traffic of BC-Aug89 with the interval width
𝑇 = 1024.

we will use 𝑥(𝑖) for the discussions instead of 𝑥(𝑡(𝑖)) for the
purpose of simplicity.

Remark 1 (burstiness). Without considering the Ethernet
preamble, header, or CRC, the Ethernet protocol forces all
packets to have at least a minimum size of 64 bytes and
at most the maximum size of 1518 bytes. The fixed limit of
1518 bytes is specified by IEEE standard without technical
reason. Thus, it is often the case that the packet size of traffic
may take the same value within a short period of time as
Figure 1(c) shows. In addition, traffic has the behavior of
“burstiness.” By burstiness, one implies that therewould be no
packets transmitted for a while, then flurry of transmission,

no transmission for another long time, and so forth if one
observes traffic over a long period of time [11, 12]. This
phenomenon, indicated in Figures 1(b)–1(d), was described
as intermittency by Tobagi et al. [13].

Note 4. The intermittency of a random function is conven-
tionally discussed in the field of turbulence [14], but we note
that it is also a phenomenon of traffic.

The traffic series 𝑥(𝑖) is LRD. Denote its autocorrelation
function (ACF) by 𝑟(𝑘) in the stationarity case. Then,

𝑟 (𝑘) = 𝐸 [𝑥 (𝑖) 𝑥 (𝑖 + 𝑘)] , (3)

where𝐸 is themean operator and 𝑘 is lag. Its power spectrum
density (PSD) denoted by 𝑆(𝜔) is the Fourier transform of
𝑟(𝑘):

𝑆 (𝜔) = 𝐹 [𝑟 (𝑘)] , (4)

where 𝐹 is the operator of the Fourier transform, 𝜔 = 2𝜋𝑓,
where𝑓 is the frequency. Note that the PSD of 𝑥(𝑖) belongs to
1/𝑓 noise [15].Thus, even from a view of data processing, 𝑟(𝑘)
is preferred [16], because 𝑆(𝜔) is divergent at 𝜔 = 0. In addi-
tion, the correlationmodel of traffic is desired in networking;
see the statement of Paxson and Floyd [17, p. 5] as follows.
The issue of “how to go from the pure correlational structure,
expressed in terms of a time series of packet arrivals per unit
time, to the details of exactly when within each unit of time
each individual packet arrives” has not been solved. For this
reason, we discuss the issue of ACF estimation of LRD traffic.

The remainder of this paper is as follows. In Section 2,
we shall brief the preliminaries. Smoothing the sample ACF
of traffic is discussed in Section 3. A case study is shown
in Section 4. Discussions and future work are in Section 5,
which is followed by conclusions.

2. Brief of Time Series

Denote by {𝑥
𝑙
(𝑡)} a set of sample functions for 𝑙 ∈ N and 0 <

𝑡 < ∞, and 𝑥
𝑙
(𝑡) ∈ R (set of real numbers) is the 𝑙th sample

function. A process consists of a set of sample functions [18,
19].

Note 5. In the case of traffic, requiring a set of sample func-
tions {𝑥

𝑙
(𝑡)} for 𝑙 ∈ N at a specific point in networks may

be unrealistic since one can only measure a single history of
traffic trace at that specific point. One may never achieve a
set of sample records of real traffic in the sense of repeated
experiments under the exactly same conditions for 0 < 𝑡 <

∞. Therefore, in traffic engineering, we are interested in a
sample function 𝑥(𝑡) instead of a process.

Note 6. We consider a time series 𝑥(𝑡) that is a random func-
tion. In this research, the terms of random function, time
series, or process are interchangeable if there are no confu-
sions.

2.1. Moment. Denote by 𝑝(𝑥, 𝑡) the probability density func-
tion (PDF) of a random function 𝑥(𝑡), which is usually
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written as 𝑝(𝑥) in short. Then, the following is called its
moment of order 𝑛:

𝑚
𝑛
(𝑡) = 𝐸 [𝑥

𝑛
(𝑡)] = ∫

∞

−∞

𝑥
𝑛
𝑝 (𝑥, 𝑡) 𝑑𝑥. (5)

The moment of a random function is consistent with the
moment of a force in physics as well as mechanics in
expression [20]. It serves as a useful tool to represent certain
important characteristics of a random function.

2.1.1. Mean and Mean Square. Using the concept of the
moment, one may conveniently represent the mean of 𝑥(𝑡)

as its first-order moment given by

𝑚
1
(𝑡) = 𝜇 (𝑡) = 𝐸 [𝑥 (𝑡)] = ∫

∞

−∞

𝑥𝑝 (𝑥, 𝑡) 𝑑𝑥. (6)

The second moment of 𝑥(𝑡) may be its mean square value
denoted by

𝑚
2
(𝑡) = Ψ (𝑡) = 𝐸 [𝑥

2
(𝑡)] = ∫

∞

−∞

𝑥
2
𝑝 (𝑥, 𝑡) 𝑑𝑥. (7)

Note 7. The mean of 𝑥(𝑡) represents its average value around
which 𝑥(𝑡) fluctuates.

Note 8. The mean square of 𝑥(𝑡) stands for its strength or
average power. To explain this, we assume that𝑥(𝑡) is a voltage
exerting on a resistor of one Ohm. In this case, 𝑥2(𝑡) is the
power the resistor consumes at time 𝑡. Therefore, (7) implies
the average power. Hence, the strength of 𝑥(𝑡).

2.1.2. ACF. Now, we consider the product of 𝑥(𝑡) at two
points, say 𝑥(𝑡

1
)𝑥(𝑡
2
) for 𝑡
1

̸= 𝑡
2
. Since both 𝑥(𝑡

1
) and 𝑥(𝑡

2
) are

random variables, we denote by 𝑝(𝑥
1
, 𝑡
1
; 𝑥
2
, 𝑡
2
) the joint PDF

of 𝑥(𝑡
1
) and 𝑥(𝑡

2
). With the help of the concept of moment,

𝐸[𝑥(𝑡
1
)𝑥(𝑡
2
)] may be expressed in the form

𝑟 (𝑡
1
, 𝑡
2
) = 𝐸 [𝑥 (𝑡

1
) 𝑥 (𝑡
2
)]

= ∬

∞

−∞

𝑥 (𝑡
1
) 𝑥 (𝑡
2
) 𝑝 (𝑥

1
, 𝑡
1
; 𝑥
2
, 𝑡
2
) 𝑑𝑥
1
𝑑𝑥
2
.

(8)

The function 𝑟(𝑡
1
, 𝑡
2
) in (8) is called the ACF of 𝑥(𝑡). It

represents howone randomvariable𝑥(𝑡
1
) at time 𝑡

1
correlates

with the other 𝑥(𝑡
2
) at another time 𝑡

2
. In other words, it

represents the correlation of𝑥(𝑡) at two different points 𝑡
1
and

𝑡
2
.

Note 9. In the case of 𝑡
1
= 𝑡
2
= 𝑡, the ACF of 𝑥(𝑡) reduces to

its mean square:

𝑟 (𝑡
1
, 𝑡
2
)
 𝑡
1
=𝑡
2

= 𝐸 [𝑥 (𝑡) 𝑥 (𝑡)] = ∫

∞

−∞

𝑥
2
(𝑡) 𝑝 (𝑥, 𝑡) 𝑑𝑥. (9)

Note 10. The term of the second-order moment of 𝑥(𝑡) may
imply the moments of order 2, which in the wide sense or in
general include mean square (7) and ACF (8).

Note 11. If we consider the moments of 𝑥(𝑡) up to 2, 𝑥(𝑡) is
called 2-order random function, which plays a role in engi-
neering. The moments of orders higher than 2 correspond to
the case of higher order statistics, which we do not discuss in
this paper.

2.1.3. PSD. The Fourier transform of the ACF 𝑟(𝑡, 𝑠) is given
by

𝑆 (𝜔, 𝑡) = ∫

∞

−∞

𝑟 (𝑡, 𝑠) 𝑒
−𝑗𝜔𝑠

𝑑𝑠, 𝑗 = √−1. (10)

It represents the energy distribution of 𝑥(𝑡).

Note 12. In general, 𝑚
𝑛
(𝑡) is time dependent. Therefore, the

mean, mean square, ACF, and PSD may generally be time
dependent. In the stationary case, they are independent of
time.

2.1.4. Weak Stationarity. If all moments of 𝑥(𝑡) do not vary
with time, 𝑥(𝑡) has the property of strong stationarity. If the
moments up to 2 are independent of time, irrelevant of the
moments of order higher than 2, we say that 𝑥(𝑡) is of weak
stationarity or stationary in the wide sense.

Note 13. In the case of weak stationarity, 𝜇(𝑡) and Ψ(𝑡) are
constants. The ACF only replies on the time lag 𝜏 = |𝑡 − 𝑠|.
Hence, 𝑟(𝑡, 𝑠) = 𝑟(𝜏). Consequently, 𝑆(𝜔, 𝑡) = 𝑆(𝜔).

2.2. Central Moment. Often, one may be interested in a
random functionwithmean zero. For random functions with
mean zero, the previous expression regarding themoment (5)
is extended to the central moment expressed by

𝑚𝑐
𝑛
(𝑡) = 𝐸 {[𝑥 (𝑡) − 𝜇 (𝑡)]

𝑛

}

= ∫

∞

−∞

[𝑥 (𝑡) − 𝜇 (𝑡)]
𝑛

𝑝 (𝑥, 𝑡) 𝑑𝑥.

(11)

2.2.1. Variance and Standard Deviation. The central moment
of order 2 given by

𝑚𝑐
2
(𝑡) = 𝐸 {[𝑥 (𝑡) − 𝜇 (𝑡)]

2

}

= ∫

∞

−∞

[𝑥 (𝑡) − 𝜇 (𝑡)]
2

𝑝 (𝑥, 𝑡) 𝑑𝑥

(12)

is usually denoted by 𝜎
2
(𝑡) called the variance of 𝑥(𝑡). The

standard deviation, denoted by stdev(𝑡), is given by

stdev (𝑡) = √𝜎2 (𝑡) = 𝜎 (𝑡) . (13)

Note 14. Howmuch the variation of 𝑥(𝑡) away from its mean
𝜇(𝑡) is characterized by its variance or standard deviation.

Remark 2. Analysis of variance (ANOVA) is a branch of
statistics, which plays a role in many aspects of techniques,
especially in the fields of statistics tests and experimental
design [21–23].

2.2.2. Autocovariance. In the case of mean zero, one uses the
autocovariance function denoted by 𝐶(𝑡

1
, 𝑡
2
) (ACF for short
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again) to characterize the correlation property of [𝑥(𝑡)−𝜇(𝑡)].
It may be given by

𝐶 (𝑡
1
, 𝑡
2
)

= 𝐸 {[𝑥 (𝑡
1
) − 𝜇 (𝑡

1
)] [𝑥 (𝑡

2
) − 𝜇 (𝑡

2
)]}

= ∬

∞

−∞

[𝑥 (𝑡
1
) − 𝜇 (𝑡

1
)] [𝑥 (𝑡

2
) − 𝜇 (𝑡

2
)]

× 𝑝 (𝑥
1
, 𝑡
1
; 𝑥
2
, 𝑡
2
) 𝑑𝑥
1
𝑑𝑥
2
.

(14)

Note 15. When 𝑡
1
= 𝑡
2
= 𝑡, 𝐶(𝑡

1
, 𝑡
2
) reduces to 𝜎

2
(𝑡):

𝐶 (𝑡, 𝑡) = 𝐸 {[𝑥 (𝑡) − 𝜇 (𝑡)]
2

} = 𝜎
2
(𝑡) . (15)

Remark 3. ACF analysis is an important branch in statistics;
see, for example, [19, 23–28].

Remark 4. A Gaussian random function is uniquely deter-
mined by its ACF [29, 30].

As a matter of fact, the PDF of a Gaussian random
function is given by

𝑝 (𝑥) =
1

√2𝜋𝜎
exp[−

(𝑥 − 𝜇)
2

2𝜎2
] , −∞ < 𝑥 < ∞. (16)

In (16), 𝜎 can be determined by (15) while 𝜇 can be obtained
from the following:

𝐶 (𝑡, 𝑡) = 𝑟 (𝑡, 𝑡) − 𝜇
2
(𝑡) . (17)

Hence, Remark 4 results.

Note 16. If 𝑥(𝑡) is weak stationary, its 𝜇(𝑡) and 𝜎(𝑡) are
constants. Its ACF depends only on lag:

𝐶 (𝑡
1
, 𝑡
2
) = 𝐶 (

𝑡1 − 𝑡
2

 ) = 𝐶 (𝜏) , 𝜏 =
𝑡1 − 𝑡

2

 . (18)

We list two properties of ACF below.

P1: ACF is an even function: 𝑟(𝜏) = 𝑟(−𝜏), 𝐶(𝜏) = 𝐶(−𝜏).
P2: 𝑟(0) ≥ 𝑟(𝜏), 𝐶(0) ≥ 𝐶(𝜏).

Note 17. P1 is obvious because the correlation between 𝑥(𝑡
1
)

and 𝑥(𝑡
2
) is always equal to that between 𝑥(𝑡

2
) and 𝑥(𝑡

1
). P2 is

natural because the correlation between the same point 𝑥(𝑡
1
)

and 𝑥(𝑡
1
) always reaches its maximum.

Without loss of generality for the statistical analysis of
random functions, one may adopt the concept of normalized
random functions. By normalized, we mean 𝑟(0) = 1 or
𝐶(0) = 1. Therefore, a normalized random function may be
obtained by 𝑥(𝑡)/√𝐶(𝑡, 𝑡).

2.3. Computational Methods. Previous expressions in (5)∼
(15) regarding the mean, variance, and ACF of a random
function 𝑥(𝑡) are associated with its PDF. That implies that
they can be determined under the condition that the PDF
is known. However, that may usually be too restrictive in
practical applications in engineering. Fortunately, Wiener et
al. proposed a computation approach using time average
without relating to its PDF if 𝑥(𝑡) is ergodic [18, 31, 32].

Note 18. It may be very difficult if not impossible for one to
test the ergodicity by a sample function of a traffic trace. In
practice, one may simply assume that a traffic trace 𝑥(𝑡) is
ergodic.

In what follows, we suppose that 𝑥(𝑡) is causal. By causal,
wemean that𝑥(𝑡) is defined for 0 ≤ 𝑡 < ∞ and 𝑥(𝑡)= 0 for 𝑡 <

0. In addition, we only consider 𝑥(𝑡) in the weak stationary
sense. By using the time average, therefore, the mean of 𝑥(𝑡)
is given by

𝜇 = 𝐸 [𝑥 (𝑡)] = lim
𝑇→∞

1

𝑇
∫

𝑇

0

𝑥 (𝑡) 𝑑𝑡. (19)

Its mean square is written by

Ψ = 𝐸 [𝑥
2
(𝑡)] = lim

𝑇→∞

1

𝑇
∫

𝑇

0

𝑥
2
(𝑡) 𝑑𝑡. (20)

Its ACF is expressed by

𝑟 (𝜏) = 𝐸 [𝑥 (𝑡) 𝑥 (𝑡 + 𝜏)] = lim
𝑇→∞

1

𝑇
∫

𝑇

0

𝑥 (𝑡) 𝑥 (𝑡 + 𝜏) 𝑑𝑡. (21)

Its variance is given by

𝜎
2
= 𝐸 {[𝑥 (𝑡) − 𝜇]

2

} = lim
𝑇→∞

1

𝑇
∫

𝑇

0

[𝑥 (𝑡) − 𝜇]
2

𝑑𝑡. (22)

Similarly, its autocovariance is given by

𝐶 (𝜏) = 𝐸 {[𝑥 (𝑡) − 𝜇] [𝑥 (𝑡 + 𝜏) − 𝜇]}

= lim
𝑇→∞

1

𝑇
∫

𝑇

0

[𝑥 (𝑡) − 𝜇] [𝑥 (𝑡 + 𝜏) − 𝜇] 𝑑𝑡.

(23)

In what follows, we only consider random functions with
mean zero. Accordingly, 𝑟(𝜏) is equal to 𝐶(𝜏), and Ψ = 𝜎

2

unless otherwise stated.
We write the PSD of 𝑥(𝑡) by

𝑆 (𝜔) = ∫

∞

−∞

𝑟 (𝜏) 𝑒
−𝑗𝜔𝜏

𝑑𝜏. (24)

Alternatively, 𝑟(𝜏) can be expressed by

𝑟 (𝜏) =
1

2𝜋
∫

∞

−∞

𝑆 (𝜔) 𝑒
𝑗𝜔𝜏

𝑑𝜔. (25)

2.4. Defaulted Assumptions in Conventional Time Series. In
the field of conventional time series, the following assump-
tions are usually defaulted [18, 21–37].

(i) The mean of 𝑥(𝑡) exists.
(ii) The variance of 𝑥(𝑡) exists.
(iii) 𝑆(0) = ∫

∞

−∞
𝑟(𝜏)𝑑𝜏 is convergent.

However, the above may be untrue for LRD traffic; see, for
example, [16, 38, 39], which we shall not discuss more in this
paper.
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3. Smoothing Sample ACF of Traffic

Previous discussions require that −∞ < 𝑡 < ∞. Even in the
case of 𝑥(𝑡) being causal, 0 < 𝑡 < ∞ is always required.
However, that requirement may not be satisfied in practice
in general since traffic 𝑥(𝑡) can be measured only in a finite
time interval.

3.1. Sample ACF. Suppose that one records traffic 𝑥(𝑡) in
[0, 𝑇]. Then, he or she attains a sample ACF of 𝑥(𝑡), which
may be estimated by 𝑟

1
(𝜏):

𝑟
1
(𝜏) =

1

𝑇
∫

𝑇

0

𝑥 (𝑡) 𝑥 (𝑡 + 𝜏) 𝑑𝑡. (26)

Note 19. The sample ACF 𝑟
1
(𝜏) may yet be a representative

of the true ACF 𝑟(𝜏) in a way. Mathematically, 𝑟
1
(𝜏) = 𝑟(𝜏)

under the condition of𝑇 → ∞. Unfortunately, the condition
𝑇 → ∞ may be physically unrealizable.

Now, assume that there is another person who measures
the traffic at the same point in networks, but he does the
measurement in the time interval [𝑇, 2𝑇]. Then, the sample
ACF is obtained by

𝑟
2
(𝜏) =

1

𝑇
∫

2𝑇

𝑇

𝑥 (𝑡) 𝑥 (𝑡 + 𝜏) 𝑑𝑡. (27)

Due to the randomness of 𝑥(𝑡), errors in numerical compu-
tations, and errors in the measurement of traffic data, though
the width of [𝑇, 2𝑇] is equal to that of [0, 𝑇], one has, in
general,

𝑟
2
(𝜏) ̸= 𝑟

1
(𝜏) . (28)

Denote by 𝑟
𝑛
(𝜏) the sample ACF of 𝑥(𝑡) in the interval

[(𝑛 − 1)𝑇, 𝑛𝑇] for 𝑛 = 1, 2, . . . , 𝑁. Then,

𝑟
𝑛
(𝜏) =

1

𝑇
∫

𝑛𝑇

(𝑛−1)𝑇

𝑥 (𝑡) 𝑥 (𝑡 + 𝜏) 𝑑𝑡. (29)

For the similar reasons we explained in (28), one generally
has

𝑟
𝑚

(𝜏) ̸= 𝑟
𝑛
(𝜏) for 𝑚 ̸=𝑛. (30)

Note 20. It may be quite reasonable to consider each sample
ACF 𝑟

𝑛
(𝜏) as an estimate of the true ACF of 𝑥(𝑡), but neither

may be so appropriate unless 𝑇 is large enough. In fact, 𝑟
𝑛
(𝜏)

is a random variable [32].

3.2. Smoothed Sample ACF. Denote by 𝑟(𝜏) the ACF estimate
of 𝑥(𝑡). The estimate 𝑟(𝜏) is a random variable again. It has
its distribution in the general form of (31).The issue studying
the concrete form of (31) is interesting, but it is beyond the
scope of this paper:

Prob [𝑟 (𝜏)] . (31)

In this research, we are interested in good estimate of 𝑟(𝜏).
By good estimate, we mean that both its bias and variance are
small. Since

𝐸 [𝑟
𝑛
(𝜏)] =

1

𝑇
∫

𝑛𝑇

(𝑛−1)𝑇

𝐸 [𝑥 (𝑡) 𝑥 (𝑡 + 𝜏)] 𝑑𝑡 = 𝑟 (𝜏) , (32)

the sample ACF 𝑟
𝑛
(𝜏) is unbiased. Therefore, what one is

interested in is to find a way such that Var [𝑟(𝜏)] is small.
The literature about this is relatively rich; see, for example,
[31] and references therein. A simple way to reduce Var [𝑟(𝜏)]
is average. That is, one may compute 𝑟(𝜏) by the average of
the sampleACFs as follows assuming that both lim

𝑇→∞
𝑟
𝑛
(𝜏)

and lim
𝑁→∞

𝑟(𝜏) exist:

𝑟 (𝜏) =
1

𝑁

𝑁

∑

𝑛=1

𝑟
𝑛
(𝜏) . (33)

In that case, Var [𝑟(𝜏)] is inversely proportional to 𝑁 [31]:

Var [𝑟 (𝜏)] is proportional to 1

𝑁
. (34)

The above implies the assumptions that both
lim
𝑇→∞

𝑟
𝑛
(𝜏) and lim

𝑁→∞
𝑟(𝜏) exist. The research of

whether lim
𝑇→∞

𝑟
𝑛
(𝜏) or lim

𝑁→∞
𝑟(𝜏) exists is attractive,

but it is out of the scope of the paper. In the experimental
research discussed in this paper, we assume that both exist.

Note 21. The previous expression needs, for the purpose of
ACF estimation of real-traffic 𝑥(𝑡), purposely sectioning the
sample record of a traffic trace 𝑥(𝑡) into a set of blocks such
that the number of blocks, that is, the average count𝑁, is large
enough for the desired level of Var [𝑟(𝜏)].

Note 22. ACF estimate 𝑟(𝜏) is the average of the sample
ACFs or the sum of the sample ACFs divided by 𝑁. Other
smoothing methods are available; see, for example, [40].

The previous discussions take the usage of integral.
In numerical computations, the integral above should be
replaced by summation. In the discrete case, we replace 𝑇 by
𝐼 for 𝑖 = 1, 2, . . . , 𝐼. In addition, 𝑟

𝑛
(𝜏) is replaced by 𝑟

𝑛
(𝑘) and

𝑥(𝑡) by 𝑥(𝑖). Thus, we have

𝑟
𝑛
(𝑘) =

1

𝐼

𝑛𝐼

∑

(𝑛−1)𝐼

𝑥 (𝑖) 𝑥 (𝑖 + 𝑘) . (35)

The above computation does not follow (35) directly. In
practice, the fast Fourier transform (FFT) and its inverse
(IFFT) are suggested. More precisely, in the interval [(𝑛 −

1)𝐼, 𝑛𝐼], according to the Wiener theorem [18–20, 23, 31, 32,
34, 35], we have

𝑟
𝑛
(𝑘) = IFFT {|FFT [𝑥 (𝑖)]|

2
} for (𝑛 − 1) 𝐼 ≤ 𝑖 ≤ 𝑛𝐼.

(36)

Then,

𝑟 (𝑘) =
1

𝑁

𝑁

∑

𝑛=1

𝑟
𝑛
(𝑘) . (37)
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Figure 3: Illustrations of sample ACFs. (a) 𝑟
1
(𝑘). (b) 𝑟

2
(𝑘). (c) 𝑟

3
(𝑘). (d) 𝑟

4
(𝑘). (e) 𝑟

5
(𝑘). (f) 𝑟

6
(𝑘). (g) 𝑟

7
(𝑘). (h) 𝑟

8
(𝑘). (i) 𝑟

9
(𝑘). (j) 𝑟
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(𝑘). (k)

𝑟
11
(𝑘). (l) 𝑟

12
(𝑘). (m) 𝑟

13
(𝑘). (n) 𝑟

14
(𝑘). (o) 𝑟

15
(𝑘). (p) 𝑟

16
(𝑘).

Note 23. Usually, 𝐼 as well as𝑁 take the form of 2𝑀, where𝑀

is a positive integer.

Note 24. If 𝑥(𝑖) is for 𝑖 = 0, 1, . . . , 𝐼−1, the part of 𝑟
𝑛
(𝑘) for 𝑘 =

0, 1, . . . , (𝐼 − 1)/2 is enough for the analysis purpose because
𝑟
𝑛
(𝑘) = 𝑟

𝑛
(−𝑘). For example, when one sets 𝐼 = 1024, 𝑟

𝑛
(𝑘) is

for 𝑘 = 0, 1, . . . , 511.

4. A Case Study

Using the real-traffic trace BC-Aug89 in this case study, we
set 𝐼 = 2048. Figure 2 illustrates the 16 sample ACFs for 𝑖 ∈

[(𝑛 − 1)2048, 𝑛2048] with 𝑛 = 1, . . . , 16. The ordinate is in
log. From Figure 3, we see that sample ACFs 𝑟

𝑛
(𝑘) differ from

each other. Each sample ACF consists of a certain amount of
fluctuations.

Using the technique of average may reduce the variance
of the sample ACF. Denote by 𝑅16(𝑘) the average of 𝑟

𝑛
(𝑘)

for 𝑛 = 1, . . . , 16. Denote by 𝑅32(𝑘) the average of 𝑟
𝑛
(𝑘)

for 𝑛 = 1, . . . , 32. Denote by 𝑅64(𝑘) the average of 𝑟
𝑛
(𝑘)

for 𝑛 = 1, . . . , 64. Figures 4, 5, and 6, respectively, indicate
the smoothed sample ACFs 𝑅16(𝑘), 𝑅32(𝑘), and 𝑅64(𝑘). It
can be seen that the fluctuations in Figure 3 are considerably
reduced in 𝑅16(𝑘). As a result, the larger the average count,
the smoother the curve of the sample ACF estimate; see
Figures 5 and 6.

Note 25. Though Var [𝑟(𝜏)] is inversely proportional to the
averages count 𝑁, over-large 𝑁 may be unnecessary for
improving an estimate. For instance, by eye, one may see that
the one in Figure 6 does not showmuch improvement as that
in Figure 5.
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Figure 4: Smoothed sample ACF with average count 16.
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Figure 5: Smoothed sample ACF with average count 32.

5. Discussions and Future Work

Theprevious exhibits the obvious effects of smoothing sample
ACFs by average. However, there are critical points that
need discussions regarding the smoothing of sample ACFs of
traffic.

Traffic is LRD [1–5]. According to Taqqu’s law, it is heavy
tailed [41]. Resnick et al. [42] explained an important result
in the aspect of sample ACF of heavy-tailed time series. It was
stated in [42] that the sample ACF of heavy-tailed series may
be random when the sample size approaches infinity if the
series is with infinite variance. The case study in Section 4
demonstrates that the sum of sample ACFs is convergent.
Consequently, the sample ACF is convergent too. Thus, may
we infer that traffic, at least the data used there, is with finite
variance?The answer to that questionmay be desired in traffic
theory. We shall work on it in the future.
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Figure 6: Smoothed sample ACF with average count 64.

Finally, it is noted that the relationship between the
sample size and the variance of the sample ACF refers to [43].
In addition, the relationship between the sample size and the
variance bound of the sample ACF of fractional Gaussian
noise with LRD is described in [44].

6. Conclusions

We have discussed the smooth effect of sample ACFs of
traffic by average. Future researchwhether traffic is with finite
variance or infinite one has been noted.
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Birkhäauser, Boston, Mass, USA, 1998.

[40] M. Li, “Representing smoothed spectrum estimate with the
Cauchy integral,” Mathematical Problems in Engineering, vol.
2012, Article ID 673049, 5 pages, 2012.

[41] P. Doukhan, G. Oppenheim, andM. S. Taqqu, Eds., Long-Range
Dependence: Theory and Applications, Birkhäauser, 2002.
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This paper presents the representation of the fractional Riemann-Liouville integral by using the Mikusinski operators. The
Mikusinski operators discussed in the paper may yet provide a new view to describe and study the fractional Riemann-Liouville
integral operator.Thepresent resultmay be useful for applying theMikusinski operational calculus to the study of fractional calculus
in mathematics and to the theory of filters of fractional order in engineering.

1. Introduction

Fractional calculus gains increase interests in processing
biomedical signals; see, for example, [1–16]. The fractional
integral of the Riemann-Liouville type is widely used in the
field; see, for example, [17–22].

Denote by 𝐶(0,∞) the set of piecewise continuous
functions on (0, ∞). Let V > 0 and 𝑓(𝑡) ∈ 𝐶(0,∞).
Assume that 𝑓(𝑡) is integrable on any finite subinterval of
[0,∞). For 𝑡 > 0, denote by

0
𝐷
−V
𝑡

the fractional Riemann-
Liouville integral operator of order V [19].Then, the fractional
Riemann-Liouville integral of order V of 𝑓(𝑡) is given by

0
𝐷
−V
𝑡
𝑓 (𝑡) =

1

Γ (V)
∫

𝑡

0

(𝑡 − 𝑢)
V−1
𝑓 (𝑢) 𝑑𝑢, (1)

where Γ(⋅) is the gamma function. As early as 1919, O’Shaugh-
nessy and Post studied the problem indexed by 433 [23].
The desired solution to Problem 433 is the solution to the
differential equation of order 1/2 expressed by

𝑑
1/2
𝑓 (𝑡)

𝑑𝑡1/2
−
𝑓 (𝑡)

𝑡
= 0. (2)

The above needs the differential of order 1/2. They gave the
following solution to (2) based on the fractional Riemann-
Liouville integral [24]:

𝑓 (𝑡) = 𝐶𝑡
−1/2 exp (−1

𝑡
) , (3)

where 𝐶 is a constant.
This short paper aims at exhibiting that

0
𝐷
−V
𝑡
is equivalent

to theMikusinski operator 𝑙V. The significance of our analysis
is as follows. Since the algebra properties of the Mikusinski
operators are satisfactorily studied and well known, see,
for example, [25–28], one may immediately infer that the
algebra properties of

0
𝐷
−V
𝑡
are consistent with theMikusinski

operators. Moreover, the present result suggests that the
Mikusinski operators may be used for studying differential
equations or filters of fractional order in signal processing.

The remainder of this paper is organized as follows. We
will derive (1) from the point of view of the Mikusinski
operators in Section 2. Discussions are given in Section 3,
which is followed by conclusions.

2. Derivation

In this section, we will first brief the Mikusinski operators.
Then, the derivation of (1) is given based on the Mikusinski
operators.
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The Mikusinski operators are described by convolution
[28–30]. Let 𝑎(𝑡) and 𝑏(𝑡) belong to 𝐶(0,∞). Following the
usage of Mikusinski’s, we rewrite 𝑎(𝑡) and 𝑏(𝑡) by

𝑎 = {𝑎 (𝑡)} , 𝑏 = {𝑏 (𝑡)} . (4)

The convolution described by Mikusinski is then given by

𝑎𝑏 = {𝑎 (𝑡)} {𝑏 (𝑡)} = {∫

𝑡

0

𝑎 (𝑡 − 𝜏) 𝑏 (𝜏) 𝑑𝜏} . (5)

The deconvolution, therefore, is expressed by

𝑎

𝑏
=
{𝑎 (𝑡)}

{𝑏 (𝑡)}
. (6)

Define 𝑙 = {1} such that

{1} {𝑎 (𝑡)} = {∫

𝑡

0

𝑎 (𝜏) 𝑑𝜏} . (7)

The representations (5) and (6) may be convenient to
study the operations of the convolution and its inverse from a
view of algebra. For instance, that 𝐶(0,∞) is a commutative
ring is obvious.

Let 𝑎 = {1} in (7). Then,

𝑙
2
= {1} {1} = {∫

𝑡

0

𝑑𝜏} = {
𝑡

1
} . (8)

In the general case of 𝑛 = 1, . . ., one has

𝑙
𝑛
= {
𝑡
𝑛−1

(𝑛 − 1)!
} , (9)

where 0! = 1. The above 𝑙𝑛 may be termed as a Mikusinski
operator.

When one exerts 𝑙𝑛 on 𝑓(𝑡) ∈ 𝐶(0,∞), that is, 𝑙𝑛{𝑓(𝑡)},
the following Cauchy formula results:

𝑙
𝑛
{𝑓 (𝑡)} = {∫

𝑡

0

(𝑡 − 𝜏)
𝑛−1

(𝑛 − 1)!
𝑓 (𝜏) 𝑑𝜏} . (10)

Considering the generalization of 𝑙𝑛 in (9) for V > 0 yields
another Mikusinski operator given by

𝑙
V
= {
𝑡
V−1

(V − 1)!
} = {
𝑡
V−1

Γ (V)
} . (11)

Further, by taking into account 𝑙V{𝑓(𝑡)}, we have

𝑙
V
{𝑓 (𝑡)} = {∫

𝑡

0

(𝑡 − 𝜏)
V−1

Γ (V)
𝑓 (𝜏) 𝑑𝜏} . (12)

Releasing the usage of Mikusinski in {⋅} for the purpose of his
operational calculus, we have

𝑙
V
𝑓 (𝑡) = ∫

𝑡

0

(𝑡 − 𝜏)
V−1

Γ (V)
𝑓 (𝜏) 𝑑𝜏. (13)

This completes the derivation because (13) is the definition of
the fractional Riemann-Liouville integral of order V.

3. Discussions

From (1) and (13), one sees that the fractional Riemann-
Liouville integral operator of order V, that is,

0
𝐷
−V
𝑡
, is equiv-

alent to the Mikusinski operator 𝑙V though the originality of
Mikusinski’s by introducing 𝑙V may be for the purpose of his
theory of operational calculus.

On the one hand, we recall that the Mikusinski oper-
ational calculus is a useful tool for studying differential
equations. On the other hand, 𝑙V may yet be an alternative of
0
𝐷
−V
𝑡
, so that the Mikusinski operational calculus may be

expanded into the field of differential equations and signal
processing of fractional order, which attracts interest in
biomedical engineering; see, for example, [31].

We note that 𝑓(𝑡) ∈ 𝐶(0,∞) is not necessary in (1). In
fact, (1) exists if𝑓(𝑡) is a generalized function [32]. In addition,
𝑓(𝑡)may be a random function such as the Brownianmotion
[33]. Due to the consistence of

0
𝐷
−V
𝑡

with 𝑙V, one sees that a
generalized function𝑓(𝑡) in (13) may also be allowed. Finally,
we should remember that the fractional Riemann-Liouville
integral operator may be extended to its corresponding,
more precisely, the fractional Riemann-Liouville differential
operator if V < 0. This may correspond to the deconvolution
in the Mikusinsiki’s operational calculus, which we will
work on in the future. Finally, we mention that possible
applications of theMikusinsiki’s operational calculus to other
issues, for example, in [34–36], may be interesting.

4. Conclusions

We have exhibited that the fractional Riemann-Liouville
integral operator may be expressed by using the Mikusinsiki
operators, giving another outlook of the fractional Riemann-
Liouville integral operator. Thus, we have noticed that the
Mikusinski operational calculusmay yet be a tool for studying
differential equations or systems of fractional order.
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[11] H. M. Srivastava and Ž. Tomovski, “Fractional calculus with
an integral operator containing a generalized Mittag-Leffler
function in the kernel,” Applied Mathematics and Computation,
vol. 211, no. 1, pp. 198–210, 2009.

[12] C. Cattani, G. Pierro, and G. Altieri, “Entropy and multifrac-
tality for the myeloma multiple TET 2 gene,” Mathematical
Problems in Engineering, vol. 2012, Article ID 193761, 14 pages,
2012.

[13] I. S. Jesus and J. A. Tenreiro Machado, “Application of integer
and fractional models in electrochemical systems,” Mathemat-
ical Problems in Engineering, vol. 2012, Article ID 248175, 17
pages, 2012.

[14] J. A. Tenreiro MacHado, M. F. Silva, R. S. Barbosa et al., “Some
applications of fractional calculus in engineering,” Mathemat-
ical Problems in Engineering, vol. 2010, Article ID 639801, 34
pages, 2010.

[15] C. Cattani, M. Scalia, E. Laserra, I. Bochicchio, and K. K. Nandi,
“Correct light deflection in Weyl conformal gravity,” Physical
Review D, vol. 87, no. 4, Article ID 47503, 4 pages, 2013.

[16] C. H. Eab and S. C. Lim, “Fractional Langevin equations of
distributed order,” Physical Review E, vol. 83, no. 3, Article ID
031136, 2011.

[17] C. Cattani, “Fractional calculus and shannon wavelet,” Mathe-
matical Problems in Engineering, vol. 2012, Article ID 502812,
26 pages, 2012.

[18] S. Castellucci and M. Carlini, “Modelling and simulation for
energy production parametric dependence in greenhouses,”
Mathematical Problems in Engineering, vol. 2010, Article ID
590943, 28 pages, 2010.

[19] K. S. Miller and B. Ross, An Introduction to the Fractional Cal-
culus and Fractional Differential Equations, John Wiley & Sons,
1993.

[20] S. V. Muniandy and S. C. Lim, “Modeling of locally self-similar
processes using multifractional Brownian motion of Riemann-
Liouville type,” Physical Review E, vol. 63, no. 4, pp. 461041–
461047, 2001.

[21] S. C. Lim and S. V. Muniandy, “On some possible generaliza-
tions of fractional Brownianmotion,” Physics Letters A, vol. 266,
no. 2-3, pp. 140–145, 2000.

[22] J. Klafter, S. C. Lim, and R.Metzler, Fractional Dynamics: Recent
Advances, World Scientific, 2012.

[23] L. O’Shaughnessy and E. L. Post, “Problem 433,”The American
Mathematical Monthly, vol. 25, no. 4, pp. 172–173, 1918.

[24] L. O’Shaughnessy and E. L. Post, “Discussion of problem 433,”
The American Mathematical Monthly, vol. 26, no. 1, pp. 37–39,
1919.

[25] R. A. Struble, “Analytical and algebraic aspects of the opera-
tional calculus,” SIAM Review, vol. 19, no. 3, pp. 403–436, 1977.

[26] R. G. Buschman, “The algebraic derivative of Mikusinski,” The
American Mathematical Monthly, vol. 74, no. 6, pp. 717–718,
1967.

[27] D. A. Klarner, “Algebraic theory for difference and differential
equations,”The American Mathematical Monthly, vol. 76, no. 4,
pp. 366–373, 1969.

[28] J. Mikusinski, Operational Calculus, Pergamon Press, 1959.
[29] T. K. Boehme, “The Convolution integral,” SIAM Review, vol.

10, no. 4, pp. 407–416, 1968.
[30] G. Bengochea and L. Verde-Star, “Linear algebraic foundations

of the operational calculi,” Advances in Applied Mathematics,
vol. 47, no. 2, pp. 330–351, 2011.

[31] H. Sheng, Y. Q. Chen, and T. S. Qiu, Fractional Processes and
Fractional Order Signal Processing, Springer, 2012.

[32] I. M. Gelfand and K. Vilenkin, Generalized Functions, vol. 1,
Academic Press, New York, NY, USA, 1964.

[33] B. B. Mandelbrot and J. W. van Ness, “Fractional Brownian
motions, fractional noises and applications,” SIAM Review, vol.
10, no. 4, pp. 422–437, 1968.

[34] M. Carlini, T. Honorati, and S. Castellucci, “Photovoltaic green-
houses: comparison of optical and thermal behaviour for
energy savings,” Mathematical Problems in Engineering, vol.
2012, Article ID 743764, 10 pages, 2012.

[35] E. G. Bakhoum and C. Toma, “Mathematical transform of
traveling-wave equations and phase aspects of quantum inter-
action,”Mathematical Problems in Engineering, vol. 2010, Article
ID 695208, 15 pages, 2010.

[36] J. W. Yang, Y. J. Chen, and M. Scalia, “Construction of affine
invariant functions in spatial domain,” Mathematical Problems
in Engineering, vol. 2012, Article ID 690262, 11 pages, 2012.



Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 430486, 11 pages
http://dx.doi.org/10.1155/2013/430486

Research Article
A Class of Solutions for the Hybrid Kinetic Model in the
Tumor-Immune System Competition

Carlo Cattani1 and Armando Ciancio2

1 Department of Mathematics, University of Salerno, Via Ponte Don Melillo, 84084 Fisciano, Italy
2 Depatment of Mathematics and Computer Science, University of Messina, Viale Ferdinando d’Alcontres 31, 98166 Messina, Italy

Correspondence should be addressed to Armando Ciancio; aciancio@unime.it

Received 6 March 2013; Accepted 7 April 2013

Academic Editor: Ezzat G. Bakhoum

Copyright © 2013 C. Cattani and A. Ciancio. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

In this paper, the hybrid kinetic models of tumor-immune system competition are studied under the assumption of pure
competition.The solution of the coupled hybrid system depends on the symmetry of the state transition density which characterizes
the probability of successful occurrences. Thus by defining a proper transition density function, the solutions of the hybrid system
are explicitly computed and applied to a classical (realistic) model of competing populations.

1. Introduction

In this paper, the two-scale tumor immune-system compe-
tition hybrid model [1–6] is studied under the assumption
that the transition density function is a symmetric and
separable function. The competition between tumor and
immune-system can be modeled at different scales. Cells of
different populations are characterized by biological func-
tions heterogeneously distributed, and they are represented
by some probability distributions. The interacting system is
characterized at a macroscopic scale by a density distribu-
tion function which describes the cells activity during the
interaction proliferation. At this level, the distribution of
cells fulfills some partial differential equations taken from
the classical kinetic theory. In this case, the more general
model consists in a nonlinear system of partial differential
equations. From the solution of this system, one can define a
parameter which defines the time evolving distance between
the two distributions, and this parameter is the charactering
coefficient of themicroscopic equations, typically an ordinary
differential system for the competition of two populations.

This parameter has been considered [4, 5] as a random
coefficient whose probability density distribution is modeled
by the hiding-learning dynamics referred to biological events
where tumor cells attempt to escape from immune cells
which, conversely, attempt to learn about their presence.

Therefore, when the coupling parameter is obtained by
solving the kinetic equations for the distribution functions,
then it will be included in the classical Lotka-Volterra com-
petition equations.Wewill analyze on a concrete example the
influence of this stochastic parameter on the evolution. This
method can be easily extended to more realistic competition
models (see, e.g., [7–20]).

2. The Hybrid Model for the Tumor-Immune
System Competition

Let us consider a physical system of two interacting pop-
ulations, each one constituted by a large number of active
particles with sizes:

𝑛
𝑖
= 𝑛
𝑖
(𝑡) , (𝑛

𝑖
(𝑡) : [0, 𝑇] → R

+
) (1)

for 𝑖 = 1, 2 and R
+

def
= [0, +∞).

Particles are homogeneously distributed in space, while
each population is characterized by amicroscopic state, called
activity, denoted by the variable 𝑢. The physical meaning
of the microscopic state may differ for each population. We
assume that the competition model depends on the activity
through a function of the overall distribution:

𝜇 = 𝜇 [𝑓
𝑖
(𝑡, 𝑢)] , (𝜇 [𝑓

𝑖
(𝑡, 𝑢)] : R

+
→ R

+
) . (2)
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Thedescription of the overall distribution over themicro-
scopic state within each population is given by the probability
density function:

𝑓
𝑖
= 𝑓
𝑖
(𝑡, 𝑢) , (𝑓

𝑖
(𝑡, 𝑢) : [0, 𝑇] × 𝐷𝑢 → R

+
, 𝐷
𝑢
⊆ R)

(3)

for 𝑖 = 1, 2, such that 𝑓
𝑖
(𝑡, 𝑢)𝑑𝑢 denotes the probability that

the activity 𝑢 of particles of the 𝑖th population, at the time 𝑡,
is in the interval [𝑢, 𝑢 + 𝑑𝑢]:

𝑑𝜇 = 𝑓
𝑖
(𝑡, 𝑢) 𝑑𝑢. (4)

Moreover, it is

∀𝑖, ∀𝑡 ≥ 0 : 0 ≤ 𝑓
𝑖
(𝑡, 𝑢) ≤ 1, ∫

𝐷
𝑢

𝑓
𝑖
(𝑡, 𝑢) 𝑑𝑢 = 1. (5)

We consider, in this section, the competition between two
cell populations.The first one with uncontrolled proliferating
ability and with hiding ability; the second one with higher
destructive ability, but with the need of learning about the
presence of the first population. The analysis developed in
what follows refers to a specific case where the second
population attempts to learn about the first population which
escapes by modifying its appearance. The hybrid evolution
equations specifically can be formally written as follows [4, 5]:

𝑑𝑛
𝑖

𝑑𝑡
= 𝐺
𝑖
(𝑛
1
, 𝑛
2
; 𝜇 [𝑓]) ,

𝜕𝑓
𝑖

𝜕𝑡
= A
𝑖
[𝑓] ,

(6)

where 𝐺
𝑖
, for 𝑖 = 1, 2, is a function of 𝑛 = {𝑛

1
, 𝑛
2
} and 𝜇

acts over 𝑓 = {𝑓
1
, 𝑓
2
}, while A

𝑖
, for 𝑖 = 1, 2, is a nonlinear

operator acting on 𝑓 and 𝜇[𝑓] is a functional (0 ≤ 𝜇 ≤
1) which describes the ability of the second population to
identify the first one. Then, (6) denotes a hybrid system of
a deterministic system coupled with a microscopic system
statistically described by a kinetic theory approach. In the
following the evolution of density distribution will be taken
within the kinetic theory.

The derivation of (6)
2
can be obtained starting from

a detailed analysis of microscopic interactions. Consider
binary interactions specifically between a test, or candidate,
particle with state 𝑢

∗
belonging to the ith population and field

particle with state 𝑢∗ belonging to the jth population. The
modelling of microscopic interactions is supposed to lead to
the following quantities.

(i) The encounter rate, which depends for each pair of
interacting populations on a suitable average of the
relative velocity 𝜂

𝑖𝑗
, with 𝑖, 𝑗 = 1, 2.

(ii) The transition density function 𝜑
𝑖𝑗
(𝑢
∗
, 𝑢
∗
, 𝑢), which is

such that 𝜑
𝑖𝑗
(⋅; 𝑢) denotes the probability density that

a candidate particle with activity 𝑢
∗
belonging to the

ith population falls into the state 𝑢 ∈ 𝐷
𝑢
, of the

test particle, after an interaction with a field entity,

belonging to the jth population, with state 𝑢∗. The
transition density 𝜑

𝑖𝑗
(𝑢
∗
, 𝑢
∗
, 𝑢) fulfills the condition

∀𝑖, 𝑗, ∀𝑢
∗
, 𝑢
∗
: ∫
𝐷
𝑢

𝜑
𝑖𝑗
(𝑢
∗
, 𝑢
∗
, 𝑢) 𝑑𝑢 = 1,

𝜑
𝑖𝑗
(𝑢
∗
, 𝑢
∗
, 𝑢) > 0,

(7)

when 𝜑
𝑖𝑗
(𝑢
∗
, 𝑢
∗
, 𝑢) ̸=0 and

∀𝑢
∗
, 𝑢
∗
: ∫
𝐷
𝑢

𝜑
𝑖𝑗
(𝑢
∗
, 𝑢
∗
, 𝑢) 𝑑𝑢 = 0 ⇐⇒ 𝜑

𝑖𝑗
(𝑢
∗
, 𝑢
∗
, 𝑢) = 0.

(8)

The state transition

𝑢
∗

𝑢
∗

→ 𝑢 (9)

follows from the mutual action of the field particle (F) of the
𝑖th population on the test particle (T) of the 𝑗th population
and vice versa so that

𝑢
∗
(𝐹)
𝑢
∗

(𝑇)

→ 𝑢 ⇐⇒ 𝑢
∗
(𝑇)
𝑢
∗
(𝐹)

→ 𝑢. (10)

With respect to this mutual action, we can assume that this
function depends on the biological model, as follows.

(1) Competition within the first group and with others:
particles of the 𝑖th population interact with any other
particle both from its own 𝑖th population and from
the 𝑗th population so that

𝜑
𝑖𝑗
(𝑢
∗
, 𝑢
∗
, 𝑢) ̸=0, (𝑖 fixed, ∀𝑗) . (11)

In this case, each particle of the 𝑖th population can
change its state not only due to the competition with
the 𝑗th population but also by interacting with par-
ticles of its own population. Instead, the individuals
of the 𝑗th population change their state only due to
the interaction with the other 𝑖th populations. They
donot interferewith each otherwithin their 𝑖th group.

(2) Competition within the second group and with oth-
ers: particles of the 𝑗th population interact with any
other particles both from its own 𝑗th population and
from the 𝑖th population so that

𝜑
𝑖𝑗
(𝑢
∗
, 𝑢
∗
, 𝑢) ̸=0, (𝑗 fixed, ∀𝑖) . (12)

(3) Full competition within a group and with others:
particles of each population interact with any other
particles both from its own population and from the
other population so that

𝜑
𝑖𝑗
(𝑢
∗
, 𝑢
∗
, 𝑢) ̸=0, (∀𝑖, ∀𝑗) . (13)

(4) Competition of two groups: particles of each pop-
ulation interact only with particles from the other
population so that

𝜑
𝑖𝑗
(𝑢
∗
, 𝑢
∗
, 𝑢) = 0, (𝑖 = 𝑗) . (14)

We can assume that this kind of competition arises
when the dynamics in each population are stable and
each population behaves as a unique individual.
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Then, by using the mathematical approach, developed in
[1, 2], it yields the following class of evolution equations:

𝜕𝑓
𝑖

𝜕𝑡
(𝑡, 𝑢) =

2

∑

𝑗=1

∫
𝐷
𝑢
×𝐷
𝑢

𝜂
𝑖𝑗
𝜑
𝑖𝑗
(𝑢
∗
, 𝑢
∗
, 𝑢) 𝑓
𝑖
(𝑡, 𝑢
∗
)

× 𝑓
𝑗
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
𝑑𝑢
∗

− 𝑓
𝑖
(𝑡, 𝑢)

2

∑

𝑗=1

∫
𝐷
𝑢

𝜂
𝑖𝑗
𝑓
𝑗
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
,

(𝑖 = 1, 2)

(15)

which can be formally written as (6)
2
.

3. Transition Density Function Based on
Separable Functions

In this section, we give the solution of (15) under some simple
assumptions on the form of the transition density (7).

3.1. On the Symmetries of the State Transition Density. We
assume that the integrability condition on 𝜑

𝑖𝑗
,

𝜕
2

𝜕𝑢
∗
𝜕𝑢∗
𝜑
𝑖𝑗
(𝑢
∗
, 𝑢
∗
, 𝑢) = 0, (16)

holds true. As a consequence, if we write the transition
density as a linear combination of separable functions, this
definition implies some symmetries which will be useful for
the following computations, in particular.

Theorem 1. If one defines the transition density as

𝜑
𝑖𝑗
(𝑢
∗
, 𝑢
∗
, 𝑢)

def
=
1

2
[𝑎
𝑖
𝜓
𝑗
(𝑢
∗
, 𝑢) + 𝑎

𝑗
𝜓
𝑖
(𝑢
∗
, 𝑢)] ,

(𝑎
𝑖
, 𝑎
𝑗
≥ 0; 𝑖, 𝑗 = 1, 2)

(17)

with 𝜓
𝑖
(𝑢
∗
, 𝑢), 𝜓

𝑗
(𝑢
∗
, 𝑢) > 0 (𝑖, 𝑗 = 1, 2), the following

symmetry holds true:

∫
𝐷
𝑢

𝜑
𝑖𝑗
(𝑢
∗
, 𝑢
∗
, 𝑢) 𝑑𝑢 = ∫

𝐷
𝑢

𝜑
𝑗𝑖
(𝑢
∗
, 𝑢
∗
, 𝑢) 𝑑𝑢. (18)

Proof. From (7), (17), we have

∫
𝐷
𝑢

[𝑎
𝑖
𝜓
𝑗
(𝑢
∗
, 𝑢) + 𝑎

𝑗
𝜓
𝑖
(𝑢
∗
, 𝑢)] 𝑑𝑢 = 2. (19)

There follows, with 𝑖 = 1, 𝑗 = 2 and 𝑖 = 2, 𝑗 = 1,

∫
𝐷
𝑢

[𝑎
1
𝜓
2
(𝑢
∗
, 𝑢) + 𝑎

2
𝜓
1
(𝑢
∗
, 𝑢)] 𝑑𝑢 = 2,

∫
𝐷
𝑢

[𝑎
2
𝜓
1
(𝑢
∗
, 𝑢) + 𝑎

1
𝜓
2
(𝑢
∗
, 𝑢)] 𝑑𝑢 = 2

(20)

so that by a comparison of

∫
𝐷
𝑢

{𝑎
1
[𝜓
2
(𝑢
∗
, 𝑢) − 𝜓

2
(𝑢
∗
, 𝑢)]

+ 𝑎
2
[𝜓
1
(𝑢
∗
, 𝑢) − 𝜓

1
(𝑢
∗
, 𝑢)]} 𝑑𝑢 = 0

(21)

to be valid for all 𝑎
1
, 𝑎
2
, that is, as a consequence of the

definition (17),

∫
𝐷
𝑢

𝜓
2
(𝑢
∗
, 𝑢) 𝑑𝑢 = ∫

𝐷
𝑢

𝜓
2
(𝑢
∗
, 𝑢) 𝑑𝑢,

∫
𝐷
𝑢

𝜓
1
(𝑢
∗
, 𝑢) 𝑑𝑢 = ∫

𝐷
𝑢

𝜓
1
(𝑢
∗
, 𝑢) 𝑑𝑢.

(22)

In particular, to fulfill (20), we can assume

∫
𝐷
𝑢

𝑎
1
𝜓
2
(𝑢
∗
, 𝑢) 𝑑𝑢 = 1, ∫

𝐷
𝑢

𝑎
2
𝜓
1
(𝑢
∗
, 𝑢) 𝑑𝑢 = 1,

∫
𝐷
𝑢

𝑎
2
𝜓
1
(𝑢
∗
, 𝑢) 𝑑𝑢 = 1, ∫

𝐷
𝑢

𝑎
1
𝜓
2
(𝑢
∗
, 𝑢) 𝑑𝑢 = 1,

(23)

from which, by taking into account (22), we get

∫
𝐷
𝑢

𝑎
2
𝜓
1
(𝑢
∗
, 𝑢) 𝑑𝑢 = ∫

𝐷
𝑢

𝑎
2
𝜓
1
(𝑢
∗
, 𝑢) 𝑑𝑢

= 1 ⇒ ∫
𝐷
𝑢

𝜓
1
(𝑤, 𝑢) 𝑑𝑢 =

1

𝑎
2

,

∫
𝐷
𝑢

𝑎
1
𝜓
2
(𝑢
∗
, 𝑢) 𝑑𝑢 = ∫

𝐷
𝑢

𝑎
1
𝜓
2
(𝑢
∗
, 𝑢) 𝑑𝑢

= 1 ⇒ ∫
𝐷
𝑢

𝜓
2
(𝑤, 𝑢) 𝑑𝑢 =

1

𝑎
1

(24)

so that, by a difference,

∫
𝐷
𝑢

[𝑎
𝑖
𝜓
𝑗
(V, 𝑢) − 𝑎

𝑗
𝜓
𝑖
(𝑤, 𝑢)] 𝑑𝑢 = 0,

(V, 𝑤 = 𝑢
∗
, 𝑢
∗
; 𝑖, 𝑗 = 1, 2) .

(25)

Thus, according to (25), the mutual action of the state
transition given by the definition (7) can be summarized by
(18).

Equations (17), (18) imply that the functions 𝜓
𝑖
have to be

carefully chosen so that (22), (24), and (18) are fulfilled.
In the following, we will consider a special choice for the

transition density (17) as

𝜑
𝑖𝑗
(𝑢
∗
, 𝑢
∗
, 𝑢)

def
=
1

2
𝑎
𝑖𝑗
[𝜓 (𝑢
∗
, 𝑢) + 𝜓 (𝑢

∗
, 𝑢)] ,

(𝑎
𝑖𝑗
≥ 0; 𝑖, 𝑗 = 1, 2)

(26)

so that (18) is fulfilled.

3.2. Preliminary Theorems. The special choice of 𝜑
𝑖𝑗
(𝑢
∗
,

𝑢
∗
, 𝑢), as defined in (26), enables us to explicitly solve (15);

however, prior to computing the analytical solutions of (15),
we need to show these preliminary theorems.

Theorem 2. Let𝑋(𝑡, 𝑢) be a function satisfying

∫
𝐷
𝑢

𝑋 (𝑡, 𝑢) 𝑑𝑢 = 𝐾 (
𝑓 (𝑡, 𝑢)

 < 𝑀 < ∞;𝐾 ≥ 0) (27)
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and 𝜓(𝑤, 𝑢) a given function for which

∫
𝐷
𝑢

𝜓 (𝑤, 𝑢) 𝑑𝑢 =
𝑏

𝑎
(0 ≤ 𝜓 (𝑤, 𝑢) ≤ 1; 𝑎 ̸=0) (28)

holds, then the equation

𝜕𝑋

𝜕𝑡
(𝑡, 𝑢) = 𝑎∫

𝐷
𝑢

𝜓 (𝑤, 𝑢)𝑋 (𝑡, 𝑤) 𝑑𝑤 − 𝑏𝑓 (𝑡, 𝑢)

(𝑎 ≥ 0, 𝑏 ≥ 0)

(29)

is solved by

𝑋 (𝑡, 𝑢) = 𝐹 (𝑢) 𝑒
−(𝑏−𝑎/𝜆)𝑡

+ 𝐾𝐺 (𝑢) (𝐾 ≥ 0) , (30)

where 𝐹(𝑢) is the solution of the second kind homogeneous
Fredholm integral equation

𝐹 (𝑢) = 𝜆∫
𝐷
𝑢

𝜓 (𝑤, 𝑢) 𝐹 (𝑤) 𝑑𝑤, ∫
𝐷
𝑢

𝐹 (𝑢) 𝑑𝑢 = 0, (31)

with 𝜆 being the eigenvalue of the integral equation, and

𝐺 (𝑢) =
𝑎

𝑏
∫
𝐷
𝑢

𝜓 (𝑤, 𝑢) 𝐺 (𝑤) 𝑑𝑤,

∫
𝐷
𝑢

𝐺 (𝑢) 𝑑𝑢 = 1 (𝑏 ̸=0) ,

(32)

when 𝑏 = 0, 𝐺(𝑢) is any arbitrary function fulfilling (32)
2
.

Proof. Let us first notice that in the trivial case of 𝑎 = 0, there
is no dependence on the function 𝜓

𝜕𝑋

𝜕𝑡
(𝑡, 𝑢) = −𝑏𝑋 (𝑡, 𝑢) (𝑏 ≥ 0) , (33)

but this equation is also solved by (30) being

𝑋 (𝑡, 𝑢) = 𝐹 (𝑢) 𝑒
−𝑏𝑡
+ 𝐾𝐺 (𝑢) . (34)

In the more general case, (31)
2
, (32)
2
are direct consequence

of the condition (5).
By a simple computation, (29) can be transformed into

the Fredholm integral equations (31), (32).
In fact, by deriving (30), we have

𝜕𝑋

𝜕𝑡

(30)

= −(𝑏 −
𝑎

𝜆
)𝐹 (𝑢) 𝑒

−(𝑏−𝑎/𝜆)𝑡 (35)

so that (29), taking into account (30), becomes

− (𝑏 −
𝑎

𝜆
)𝐹 (𝑢) 𝑒

−(𝑏−𝑎/𝜆)𝑡

= 𝑎∫
𝐷
𝑢

𝜓 (𝑤, 𝑢) [𝐹 (𝑤) 𝑒
−(𝑏−𝑎/𝜆)𝑡

+ 𝐾𝐺 (𝑤)] 𝑑𝑤

− 𝑏 [𝐹 (𝑢) 𝑒
−(𝑏−𝑎/𝜆)𝑡

+ 𝐾𝐺 (𝑢)] ,

(36)

that is,

[(
𝑎

𝜆
)𝐹 (𝑢) − 𝑎∫

𝐷
𝑢

𝜓 (𝑤, 𝑢) 𝐹 (𝑤) 𝑑𝑤] 𝑒
−(𝑏−𝑎/𝜆)𝑡

= 𝐾[𝑎∫
𝐷
𝑢

𝜓 (𝑤, 𝑢) 𝐺 (𝑤) 𝑑𝑤 − 𝑏𝐺 (𝑢)] ,

(37)

from which (31), (32) and (30) hold true.
When 𝑏 = 0, from the r.h.s, we have

∫
𝐷
𝑢

𝜓 (𝑤, 𝑢) 𝑑𝑤 = 0, ∫
𝐷
𝑢

𝐺 (𝑤) 𝑑𝑤 = 1 (38)

so that 𝐺(𝑢) cannot be univocally determined.

When the initial conditions are given, we have the fol-
lowing corollary.

Corollary 3. Let 𝑋(𝑡, 𝑢) be a function satisfying (27) that is

∫
𝐷
𝑢

𝑋(𝑡, 𝑢) 𝑑𝑢 = 𝐾, (
𝑓 (𝑡, 𝑢)

 < 𝑀 < ∞;𝐾 ≥ 0) (39)

and 𝜓(𝑤, 𝑢) a given function for which

∫
𝐷
𝑢

𝜓 (𝑤, 𝑢) 𝑑𝑢 =
𝑏

𝑎
(0 ≤ 𝜓 (𝑤, 𝑢) ; 𝑎 > 0, 𝑏 ≥ 0) (40)

holds, then the solution of the initial value problem

𝜕𝑋

𝜕𝑡
(𝑡, 𝑢) = 𝑎∫

𝐷
𝑢

𝜓 (𝑤, 𝑢)𝑋 (𝑡, 𝑤) 𝑑𝑤 − 𝑏𝑓 (𝑡, 𝑢) ,

𝑋 (𝑡, 𝑢)|𝑡=0 = 𝑋 (0, 𝑢)

(𝑎 ≥ 0, 𝑏 ≥ 0)

(41)

is as follows:
(1) 𝑎 > 0, 𝑏 > 0, 𝐾 > 0

𝑋 (𝑡, 𝑢)

=
𝜆𝑏/𝑎

𝜆𝑏/𝑎 − 1
[𝑋 (0, 𝑢)

−
𝑎

𝑏
∫
𝐷
𝑢

𝜓 (𝑤, 𝑢) 𝑓 (0, 𝑤) 𝑑𝑤] 𝑒
−(𝑏−𝑎/𝜆)𝑡

+
1

1 − 𝜆𝑏/𝑎
[𝑋 (0, 𝑢) − 𝜆∫

𝐷
𝑢

𝜓 (𝑤, 𝑢)𝑋 (0, 𝑤) 𝑑w] ,

𝜆 ̸=1,

(42)

𝑋 (𝑡, 𝑢) = 0, 𝜆 = 1, (43)

(2) 𝑎 > 0, 𝑏 > 0, 𝐾 = 0.
The solution

𝑋 (𝑡, 𝑢) = 𝑋 (0, 𝑢) 𝑒
−(𝑏−𝑎/𝜆)𝑡 (44)

exists only for𝑋(0, 𝑢) = 𝜆 ∫
𝐷
𝑢

𝜓(𝑤, 𝑢)𝑋(0, 𝑤)𝑑𝑤,
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(3) 𝑎 > 0, 𝑏 ≥ 0. The solution

𝑋 (𝑡, 𝑢) = 𝑋 (0, 𝑢) 𝑒
𝑎/𝜆𝑡 (45)

exists only for𝑋(0, 𝑢) = 𝜆 ∫
𝐷
𝑢

𝜓(𝑤, 𝑢)𝑋(0, 𝑤)𝑑𝑤,
(4) 𝑎 = 0, 𝑏 ≥ 0. For 𝐾 > 0, the solution of (41) does not

exist. When 𝐾 = 0, the solution is

𝑋(𝑡, 𝑢) = 𝑋 (0, 𝑢) 𝑒
−𝑏𝑡
. (46)

Proof. According to Theorem 2, the solution of (41)
1
is (30)

with derivative (35). In the more general case, these two
equations, at the initial time, give

𝑋(0, 𝑢) = 𝐹 (𝑢) + 𝐾𝐺 (𝑢) ,

− (𝑏 −
𝑎

𝜆
)𝐹 (𝑢) = 𝑎∫

𝐷
𝑢

𝜓 (𝑤, 𝑢)𝑋 (0, 𝑤) 𝑑𝑤 − 𝑏𝑋 (0, 𝑢)

(47)

having taken into account (41)
1
.

The proof of all cases above is followed by solving
these two equations in 𝐹(𝑢), 𝐺(𝑢) with respect to the initial
condition𝑋(0, 𝑢).

For instance, for the first case (1), there follows

𝐾𝐺 (𝑢) = 𝑋 (0, 𝑢) − 𝐹 (𝑢) ,

𝐹 (𝑢) = −
1

𝑏/𝑎 − 1/𝜆
∫
𝐷
𝑢

𝜓 (𝑤, 𝑢)𝑋 (0, 𝑤) 𝑑𝑤

+
𝑏/𝑎

𝑏/𝑎 − 1/𝜆
𝑋 (0, 𝑢) ,

(48)

that is

𝐾𝐺 (𝑢) =
1

1 − 𝜆𝑏/𝑎
[𝑋 (0, 𝑢) − 𝜆∫

𝐷
𝑢

𝜓 (𝑤, 𝑢)𝑋 (0, 𝑤) 𝑑𝑤] ,

𝐹 (𝑢) =
𝜆𝑏/𝑎

𝜆𝑏/𝑎 − 1
[𝑋 (0, 𝑢) −

𝑎

𝑏
∫
𝐷
𝑢

𝜓 (𝑤, 𝑢)𝑋 (0, 𝑤) 𝑑𝑤]

(49)

so that (42) holds true.
When

𝑋 (0, 𝑢) =
𝑎

𝑏
∫
𝐷
𝑢

𝜓 (𝑤, 𝑢)𝑋 (0, 𝑤) 𝑑𝑤 (50)

which implies 𝜆 = 1, from (49), we get a trivial solution of
(29), (31), (32) and (47); that is,

𝐹 (𝑢) = 0, 𝐺 (𝑢) = 0. (51)

Analogously, for the case (2) system (47) becomes

𝑋(0, 𝑢) = 𝐹 (𝑢) + 𝐾𝐺 (𝑢) ,

−𝐹 (𝑢) = 𝜆∫
𝐷
𝑢

𝜓 (𝑤, 𝑢)𝑋 (0, 𝑤) 𝑑𝑤.

(52)

However, if 𝐾 ̸=0, the integral of the right side of the second
equation is𝐾, while the integral of the first side must be zero.

With similar reasonings, we get the proof of the remain-
ing cases.

4. Solution of the System (15)
In this section, we will give the explicit solution of the system
(15) under some suitable hypotheses on both the encounter
rate 𝜂
𝑖𝑗
and the transition density 𝜑

𝑖𝑗
(𝑢
∗
, 𝑢
∗
, 𝑢). Let us assume

the symmetry of 𝜂
𝑖𝑗
so that

𝜂
1

def
= 𝜂
11
, 𝜂

2

def
= 𝜂
22
, 𝜂

0

def
= 𝜂
12
= 𝜂
21
. (53)

Thanks to the previous theorems, and the symmetry of
𝜑
𝑖𝑗
(𝑢
∗
, 𝑢
∗
, 𝑢) as given by (18), system (15) simplifies, the

following.

Theorem 4. Let the transition density 𝜑
𝑖𝑗
(𝑢
∗
, 𝑢
∗
, 𝑢) be defined

as

𝜑
𝑖𝑗
(𝑢
∗
, 𝑢
∗
, 𝑢) =

1

2
𝑎
𝑖𝑗
[𝜓 (𝑢
∗
, 𝑢) + 𝜓 (𝑢

∗
, 𝑢)] , (𝑖, 𝑗 = 1, 2)

𝑎
1

def
= 𝑎
11
, 𝑎

2

def
= 𝑎
22
, 𝑎

0

def
= 𝑎
12
= 𝑎
21
,

(54)

which fulfills (7) and the symmetries conditions (18), and the
density function 𝜓(𝑤, 𝑢) such that

1

2
𝑎
𝑖𝑗
∫
𝐷
𝑢

[𝜓 (𝑢
∗
, 𝑢) + 𝜓 (𝑢

∗
, 𝑢)] 𝑑𝑢

(7)

= 1 (55)

holds. Equation (15) can be simplified into

𝜕𝑓
1

𝜕𝑡
(𝑡, 𝑢) = 𝜂

1
𝑎
1
∫
𝐷
𝑢

𝜓 (𝑤, 𝑢) 𝑓
1
(𝑡, 𝑤) 𝑑𝑤

+
1

2
𝜂
0
𝑎
0
∫
𝐷
𝑢

𝜓 (𝑤, 𝑢) [𝑓
1
(𝑡, 𝑤) + 𝑓

2
(𝑡, 𝑤)] 𝑑𝑤

− 𝑓
1
(𝑡, 𝑢) [𝜂

1
+ 𝜂
0
] ,

𝜕𝑓
2

𝜕𝑡
(𝑡, 𝑢) =

1

2
𝜂
0
𝑎
0
∫
𝐷
𝑢

𝜓 (𝑤, 𝑢) [𝑓
2
(𝑡, 𝑤) + 𝑓

1
(𝑡, 𝑤)] 𝑑𝑤

+ 𝜂
2
𝑎
2
∫
𝐷
𝑢

𝜓 (𝑤, 𝑢) 𝑓
2
(𝑡, 𝑤) 𝑑𝑤

− 𝑓
2
(𝑡, 𝑢) [𝜂

0
+ 𝜂
2
] .

(56)
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Proof. By a substitution of (54) into (15), we get

𝜕𝑓
1

𝜕𝑡
(𝑡, 𝑢) =

2

∑

𝑗=1

∫
𝐷
𝑢
×𝐷
𝑢

𝜂
1𝑗
𝑎
1𝑗
[𝜓 (𝑢
∗
, 𝑢) + 𝜓 (𝑢

∗
, 𝑢)]

× 𝑓
1
(𝑡, 𝑢
∗
) 𝑓
𝑗
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
𝑑𝑢
∗

− 𝑓
1
(𝑡, 𝑢)

2

∑

𝑗=1

∫
𝐷
𝑢

𝜂
1𝑗
𝑓
𝑗
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
,

𝜕𝑓
2

𝜕𝑡
(𝑡, 𝑢) =

2

∑

𝑗=1

∫
𝐷
𝑢
×𝐷
𝑢

𝜂
2𝑗
𝑎
2𝑗
[𝜓 (𝑢
∗
, 𝑢) + 𝜓 (𝑢

∗
, 𝑢)]

× 𝑓
2
(𝑡, 𝑢
∗
) 𝑓
𝑗
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
𝑑𝑢
∗

− 𝑓
2
(𝑡, 𝑢)

2

∑

𝑗=1

∫
𝐷
𝑢

𝜂
2𝑗
𝑓
𝑗
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
,

(57)

that is,

𝜕𝑓
1

𝜕𝑡
(𝑡, 𝑢)

=
1

2
[∫
𝐷
𝑢
×𝐷
𝑢

𝜂
11
𝑎
11
[𝜓 (𝑢
∗
, 𝑢) + 𝜓 (𝑢

∗
, 𝑢)]

× 𝑓
1
(𝑡, 𝑢
∗
) 𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
𝑑𝑢
∗

+ ∫
𝐷
𝑢
×𝐷
𝑢

𝜂
12
𝑎
12
[𝜓 (𝑢
∗
, 𝑢) + 𝜓 (𝑢

∗
, 𝑢)]

× 𝑓
1
(𝑡, 𝑢
∗
) 𝑓
2
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
𝑑𝑢
∗
]

− 𝑓
1
(𝑡, 𝑢) [∫

𝐷
𝑢

𝜂
11
𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗

+∫
𝐷
𝑢

𝜂
12
𝑓
2
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
] ,

𝜕𝑓
2

𝜕𝑡
(𝑡, 𝑢)

=
1

2
[∫
𝐷
𝑢
×𝐷
𝑢

𝜂
21
𝑎
21
[𝜓 (𝑢
∗
, 𝑢) + 𝜓 (𝑢

∗
, 𝑢)]

× 𝑓
2
(𝑡, 𝑢
∗
) 𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
𝑑𝑢
∗

+ ∫
𝐷
𝑢
×𝐷
𝑢

𝜂
22
𝑎
22
[𝜓 (𝑢
∗
, 𝑢) + 𝜓 (𝑢

∗
, 𝑢)]

×𝑓
2
(𝑡, 𝑢
∗
) 𝑓
2
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
𝑑𝑢
∗
]

− 𝑓
2
(𝑡, 𝑢) [∫

𝐷
𝑢

𝜂
21
𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗

+∫
𝐷
𝑢

𝜂
22
𝑓
2
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
] ,

(58)

from which,
𝜕𝑓
1

𝜕𝑡
(𝑡, 𝑢)

=
1

2
𝜂
11
𝑎
11
[∫
𝐷
𝑢
×𝐷
𝑢

𝜓 (𝑢
∗
, 𝑢) 𝑓
1
(𝑡, 𝑢
∗
)

× 𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
𝑑𝑢
∗

+ ∫
𝐷
𝑢
×𝐷
𝑢

𝜓 (𝑢
∗
, 𝑢) 𝑓
1
(𝑡, 𝑢
∗
)

×𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
𝑑𝑢
∗
]

+
1

2
𝜂
12
𝑎
12
[∫
𝐷
𝑢
×𝐷
𝑢

𝜓 (𝑢
∗
, 𝑢) 𝑓
1
(𝑡, 𝑢
∗
)

× 𝑓
2
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
𝑑𝑢
∗

+ ∫
𝐷
𝑢
×𝐷
𝑢

𝜓 (𝑢
∗
, 𝑢) 𝑓
1
(𝑡, 𝑢
∗
)

×𝑓
2
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
𝑑𝑢
∗
]

− 𝑓
1
(𝑡, 𝑢) [𝜂

11
∫
𝐷
𝑢

𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗

+ 𝜂
12
∫
𝐷
𝑢

𝑓
2
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
] ,

𝜕𝑓
2

𝜕𝑡
(𝑡, 𝑢)

=
1

2
𝜂
21
𝑎
21
[∫
𝐷
𝑢
×𝐷
𝑢

𝜓 (𝑢
∗
, 𝑢) 𝑓
2
(𝑡, 𝑢
∗
)

× 𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
𝑑𝑢
∗

+ ∫
𝐷
𝑢
×𝐷
𝑢

𝜓 (𝑢
∗
, 𝑢) 𝑓
2
(𝑡, 𝑢
∗
)

×𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
𝑑𝑢
∗
]

+
1

2
𝜂
22
𝑎
22
[∫
𝐷
𝑢
×𝐷
𝑢

𝜓 (𝑢
∗
, 𝑢) 𝑓
2
(𝑡, 𝑢
∗
)

× 𝑓
2
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
𝑑𝑢
∗

+ ∫
𝐷
𝑢
×𝐷
𝑢

𝜓 (𝑢
∗
, 𝑢) 𝑓
2
(𝑡, 𝑢
∗
)

× 𝑓
2
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
𝑑𝑢
∗
]

− 𝑓
2
(𝑡, 𝑢) [∫

𝐷
𝑢

𝜂
21
𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗

+∫
𝐷
𝑢

𝜂
22
𝑓
2
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
] .

(59)
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There follows

𝜕𝑓
1

𝜕𝑡
(𝑡, 𝑢)

=
1

2
𝜂
11
𝑎
11
[∫
𝐷
𝑢

𝜓 (𝑢
∗
, 𝑢) 𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗

× ∫
𝐷
𝑢

𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗

+ ∫
𝐷
𝑢

𝜓 (𝑢
∗
, 𝑢) 𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗

×∫
𝐷
𝑢

𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
]

+
1

2
𝜂
12
𝑎
12
[∫
𝐷
𝑢

𝜓 (𝑢
∗
, 𝑢) 𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗

× ∫
𝐷
𝑢

𝑓
2
(𝑡, 𝑢
∗
) 𝑑𝑢
∗

+ ∫
𝐷
𝑢

𝜓 (𝑢
∗
, 𝑢) 𝑓
2
(𝑡, 𝑢
∗
) 𝑑𝑢
∗

×∫
𝐷
𝑢

𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
]

− 𝑓
1
(𝑡, 𝑢) [𝜂

11
∫
𝐷
𝑢

𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗

+ 𝜂
12
∫
𝐷
𝑢

𝑓
2
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
] ,

𝜕𝑓
2

𝜕𝑡
(𝑡, 𝑢)

=
1

2
𝜂
21
𝑎
21
[∫
𝐷
𝑢

𝜓 (𝑢
∗
, 𝑢) 𝑓
2
(𝑡, 𝑢
∗
) 𝑑𝑢
∗

× ∫
𝐷
𝑢

𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗

+ ∫
𝐷
𝑢

𝜓 (𝑢
∗
, 𝑢) 𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗

×∫
𝐷
𝑢

𝑓
2
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
]

+
1

2
𝜂
22
𝑎
22
[∫
𝐷
𝑢

𝜓 (𝑢
∗
, 𝑢) 𝑓
2
(𝑡, 𝑢
∗
) 𝑑𝑢
∗

× ∫
𝐷
𝑢

𝑓
2
(𝑡, 𝑢
∗
) 𝑑𝑢
∗

+ ∫
𝐷
𝑢

𝜓 (𝑢
∗
, 𝑢) 𝑓
2
(𝑡, 𝑢
∗
) 𝑑𝑢
∗

× ∫
𝐷
𝑢

𝑓
2
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
]

− 𝑓
2
(𝑡, 𝑢) [𝜂

21
∫
𝐷
𝑢

𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗

+ 𝜂
22
∫
𝐷
𝑢

𝑓
2
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
] .

(60)

According to (5), we get

𝜕𝑓
1

𝜕𝑡
(𝑡, 𝑢)

=
1

2
𝜂
11
𝑎
11
[∫
𝐷
𝑢

𝜓 (𝑢
∗
, 𝑢) 𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗

+∫
𝐷
𝑢

𝜓 (𝑢
∗
, 𝑢) 𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
]

+
1

2
𝜂
12
𝑎
12
[∫
𝐷
𝑢

𝜓 (𝑢
∗
, 𝑢) 𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗

+∫
𝐷
𝑢

𝜓 (𝑢
∗
, 𝑢) 𝑓
2
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
]

− 𝑓
1
(𝑡, 𝑢) [𝜂

11
+ 𝜂
12
] ,

𝜕𝑓
2

𝜕𝑡
(𝑡, 𝑢)

=
1

2
𝜂
21
𝑎
21
[∫
𝐷
𝑢

𝜓 (𝑢
∗
, 𝑢) 𝑓
2
(𝑡, 𝑢
∗
) 𝑑𝑢
∗

+∫
𝐷
𝑢

𝜓 (𝑢
∗
, 𝑢) 𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
]

+
1

2
𝜂
22
𝑎
22
[∫
𝐷
𝑢

𝜓 (𝑢
∗
, 𝑢) 𝑓
2
(𝑡, 𝑢
∗
) 𝑑𝑢
∗

+∫
𝐷
𝑢

𝜓 (𝑢
∗
, 𝑢) 𝑓
2
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
]

− 𝑓
2
(𝑡, 𝑢) [𝜂

21
+ 𝜂
22
] .

(61)

Thus, we obtain, by a variable change,

𝜕𝑓
1

𝜕𝑡
(𝑡, 𝑢) = 𝜂

11
𝑎
11
∫
𝐷
𝑢

𝜓 (𝑤, 𝑢) 𝑓
1
(𝑡, 𝑤) 𝑑𝑤

+
1

2
𝜂
12
𝑎
12
∫
𝐷
𝑢

𝜓 (𝑤, 𝑢) [𝑓
1
(𝑡, 𝑤) + 𝑓

2
(𝑡, 𝑤)] 𝑑𝑤

− 𝑓
1
(𝑡, 𝑢) [𝜂

11
+ 𝜂
12
] ,

𝜕𝑓
2

𝜕𝑡
(𝑡, 𝑢) =

1

2
𝜂
21
𝑎
21
[∫
𝐷
𝑢

𝜓 (𝑤, 𝑢) [𝑓
2
(𝑡, 𝑤) + 𝑓

1
(𝑡, 𝑤)] 𝑑𝑤]

+ 𝜂
22
𝑎
22
∫
𝐷
𝑢

𝜓 (𝑤, 𝑢) 𝑓
2
(𝑡, 𝑤) 𝑑𝑤

− 𝑓
2
(𝑡, 𝑢) [𝜂

21
+ 𝜂
22
]

(62)

so that (56) follows.
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4.1. Pure Competition Model. We will consider the solution
of (56) when, together with the hypotheses (53), (54)

2
, some

more conditions are given on the parameters.
According to (26), let us assume

𝜑
𝑖𝑗
(𝑢
∗
, 𝑢
∗
, 𝑢)

def
=
1

2
𝑎
𝑖𝑗
[𝜓 (𝑢
∗
, 𝑢) + 𝜓 (𝑢

∗
, 𝑢)] ,

(𝑎
𝑖𝑗
≥ 0; 𝑖, 𝑗 = 1, 2)

(63)

together with the symmetries conditions (18).
If we define

𝜂
1

def
= 𝜂
11
, 𝜂

2

def
= 𝜂
22
, 𝜂

0

def
= 𝜂
12
= 𝜂
21
,

𝑎
1

def
= 𝑎
11
, 𝑎

2

def
= 𝑎
22
, 𝑎

0

def
= 𝑎
12
= 𝑎
21
,

(64)

we will discuss only the following hypotheses:

𝑎
def
= 𝑎
1
= 𝑎
2
= 0, (65)

𝜂
1
= 𝜂
2
= 𝜂 ̸=0, 𝜂

0
𝑎
0
̸=0, (66)

which seem to have some biological interpretations, being the
pure encounter-competition model. This happens when the
transition of state arises onlywhenparticles of one population
interact only with an individual of the other population. In
this case, individuals of one population do not interact with
individuals of the same population.

Theorem 5. Let the transition density 𝜑
𝑖𝑗
(𝑢
∗
, 𝑢
∗
, 𝑢) be defined

as

𝜑
𝑖𝑗
(𝑢
∗
, 𝑢
∗
, 𝑢) =

1

2
𝑎
𝑖𝑗
[𝜓 (𝑢
∗
, 𝑢) + 𝜓 (𝑢

∗
, 𝑢)] , (𝑖, 𝑗 = 1, 2)

(67)

with 𝑎
𝑖𝑗
as given by (64), (65). This definition of the transition

density fulfills (7) and the symmetries conditions (18). The
density function 𝜓(𝑤, 𝑢) is such that

∫
𝐷
𝑢

𝜓 (𝑤, 𝑢) 𝑑𝑢 =
1

𝑎
. (68)

By assuming

𝑎
1
= 𝑎
2
= 0, 𝜂

1
= 𝜂
2
= 𝜂 ̸=0 (69)

and for 𝑎
0
, 𝜂
0
, the condition

𝜂
0
𝑎
0
̸=0 (70)

system (56) becomes

𝜕𝑓
1

𝜕𝑡
(𝑡, 𝑢) =

1

2
𝜂
0
𝑎
0
∫
𝐷
𝑢

𝜓 (𝑤, 𝑢) [𝑓
1
(𝑡, 𝑤) + 𝑓

2
(𝑡, 𝑤)] 𝑑𝑤

− 𝑓
1
(𝑡, 𝑢) [𝜂 + 𝜂

0
] ,

𝜕𝑓
2

𝜕𝑡
(𝑡, 𝑢) =

1

2
𝜂
0
𝑎
0
∫
𝐷
𝑢

𝜓 (𝑤, 𝑢) [𝑓
2
(𝑡, 𝑤) + 𝑓

1
(𝑡, 𝑤)] 𝑑𝑤

− 𝑓
2
(𝑡, 𝑢) [𝜂 + 𝜂

0
] ,

(71)

and its solution is given by

𝑓
1
(𝑡, 𝑢) = 𝑒

−[𝜂+𝜂
0
]𝑡
[𝐹 (𝑢) 𝑒

[𝜂
0
𝑎
0
/𝜆]𝑡
+ 𝐻 (𝑢)] + 𝐺 (𝑢) ,

𝑓
2
(𝑡, 𝑢) = 𝑒

−[𝜂+𝜂
0
]𝑡
[𝐹 (𝑢) 𝑒

[𝜂
0
𝑎
0
/𝜆]𝑡
− 𝐻 (u)] + 𝐺 (𝑢) ,

𝐹 (𝑢) = 𝜆
𝜂 + 𝜂
0

𝜂
0
𝑎
0

∫
𝐷
𝑢

𝜓 (𝑤, 𝑢) 𝐹 (𝑤) 𝑑𝑤, ∫
𝐷
𝑢

𝐹 (𝑢) 𝑑𝑢 = 0,

𝐺 (𝑢) =
𝜂
0

𝜂 + 𝜂
0

𝑎
0
∫
𝐷
𝑢

𝜓 (𝑤, 𝑢) 𝐺 (𝑤) 𝑑𝑤, ∫
𝐷
𝑢

𝐺 (𝑢) 𝑑𝑢 = 1,

∫
𝐷
𝑢

𝜓 (𝑤, 𝑢) 𝑑𝑤 =
𝜂 + 𝜂
0

𝜂
0
𝑎
0

,

∫
𝐷
𝑢

𝐻(𝑤) 𝑑𝑤 = 0.

(72)

Proof. From (56), we have

𝜕𝑓
1

𝜕𝑡
(𝑡, 𝑢) =

1

2
𝜂
0
𝑎
0
∫
𝐷
𝑢

𝜓 (𝑤, 𝑢) [𝑓
1
(𝑡, 𝑤) + 𝑓

2
(𝑡, 𝑤)] 𝑑𝑤

− 𝑓
1
(𝑡, 𝑢) [𝜂 + 𝜂

0
] ,

𝜕𝑓
2

𝜕𝑡
(𝑡, 𝑢) =

1

2
𝜂
0
𝑎
0
∫
𝐷
𝑢

𝜓 (𝑤, 𝑢) [𝑓
2
(𝑡, 𝑤) + 𝑓

1
(𝑡, 𝑤)] 𝑑𝑤

− 𝑓
2
(𝑡, 𝑢) [𝜂 + 𝜂

0
] ,

(73)

from which by linear combination, we get

𝜕

𝜕𝑡
[𝑓
1
(𝑡, 𝑢) + 𝑓

2
(𝑡, 𝑢)]

= 𝜂
0
𝑎
0
∫
𝐷
𝑢

𝜓 (𝑤, 𝑢) [𝑓
1
(𝑡, 𝑤) + 𝑓

2
(𝑡, 𝑤)] 𝑑𝑤

− [𝑓
1
(𝑡, 𝑢) + 𝑓

2
(𝑡, 𝑢)] [𝜂 + 𝜂

0
] ,

𝜕

𝜕𝑡
[𝑓
1
(𝑡, 𝑢) − 𝑓

2
(𝑡, 𝑢)] = − [𝑓

1
(𝑡, 𝑢) − 𝑓

2
(𝑡, 𝑢)] [𝜂 + 𝜂

0
] .

(74)

With the above positions, we have

𝜕

𝜕𝑡
𝑋 (𝑡, 𝑢) = 𝜂

0
𝑎
0
∫
𝐷
𝑢

𝜓 (𝑤, 𝑢)𝑋 (𝑡, 𝑢) 𝑑𝑤 − 𝑋 (𝑡, 𝑢) [𝜂 + 𝜂
0
] ,

𝜕

𝜕𝑡
𝑌 (𝑡, 𝑢) = −𝑌 (𝑡, 𝑢) [𝜂 + 𝜂

0
]

(75)
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so that, by taking into account Theorem 2, it is

𝑋(𝑡, 𝑢) = 𝐹 (𝑢) 𝑒
−[𝜂+𝜂

0
−𝜂
0
𝑎
0
/𝜆]𝑡
+ 𝐺 (𝑢) ,

𝐹 (𝑢) = 𝜆
𝜂 + 𝜂
0

𝜂
0
𝑎
0

∫
D
𝑢

𝜓 (𝑤, 𝑢) 𝐹 (𝑤) 𝑑𝑤,

∫
𝐷
𝑢

𝐹 (𝑢) 𝑑𝑢 = 0,

𝐺 (𝑢) =
𝜂
0

𝜂 + 𝜂
0

𝑎
0
∫
𝐷
𝑢

𝜓 (𝑤, 𝑢) 𝐺 (𝑤) 𝑑𝑤,

∫
𝐷
𝑢

𝐺 (𝑢) 𝑑𝑢 = 1,

∫
𝐷
𝑢

𝜓 (𝑤, 𝑢) 𝑑𝑤 =
𝜂 + 𝜂
0

𝜂
0
𝑎
0

,

𝑌 (𝑡, 𝑢) = 𝐻 (𝑢) 𝑒
−[𝜂+𝜂

0
]𝑡
,

∫
𝐷
𝑢

𝐻(𝑤) 𝑑𝑤 = 0

(76)

from which (72) follows.

Example 6. A transition density, which is compatible with
this case, is the following:

𝜑
𝑖𝑗
(𝑢
∗
, 𝑢
∗
, 𝑢) =

𝑎
0

2
(1 − 𝛿

𝑖𝑗
) [𝜓 (𝑢

∗
, 𝑢) + 𝜓 (𝑢

∗
, 𝑢)] ,

(𝑖, 𝑗 = 1, 2)

(77)

with 𝛿
𝑖𝑗
, Kronecker symbol.

5. Application to Lotka-Volterra Model

In this section, we will study a coupled system (6) where
the macroscopic equations are the Lotka-Volterra equations
(6)
1
. Concerning the coupling stochastic parameter 𝜇[𝑓], we

have to define the functional 𝜇 in (2), (6) depending on the
“distance” between distributions; that is,

𝜇 [𝑓
𝑖
, 𝑓
𝑗
] (𝑡) = 𝜇 (


𝑓
𝑖
− 𝑓
𝑗


) (𝑡) (78)

with

0 ≤ 𝜇 [𝑓
𝑖
, 𝑓
𝑗
] (𝑡) ≤ 1, ∀𝑢 ∈ 𝐷

𝑢
∧ 𝑡 ∈ 𝑇,

𝜇 [𝑓
𝑖
, 𝑓
𝑗
] (𝑡) = 1 ⇐⇒ 𝑓

𝑖
= 𝑓
𝑗
,

𝜇 [𝑓
𝑖
, 𝑓
𝑗
] (𝑡) = 0 ⇐⇒ 𝑓

𝑖
= 0 ∨ 𝑓

𝑗
= 0,

(79)

where the maximum learning result is obtained when the
second population is able to reproduce the distribution of the
first one: 𝑓

1
= 𝑓
2
, while the minimum learning is achieved

when one distribution is vanishing.
In some recent papers; it has been assumed [4, 5] that

𝜇 [𝑓
𝑖
, 𝑓
𝑗
] (𝑡) = 𝜇 (


𝑓
𝑖
− 𝑓
𝑗


) (𝑡)

= 1 − ∫
𝐷
𝑢

𝑓1 (𝑡, 𝑢) − 𝑓2 (𝑡, 𝑢)
 𝑑𝑢.

(80)

In this case, it is 𝜇 = 1, when 𝑓
1
= 𝑓
2
; otherwise 𝜇 ̸=1

with 𝜇 ↓ 0, depending on the time evolution of the distance
between 𝑓

1
and 𝑓

2
.

Let us notice that 𝜇 is the coupling term which links the
macroscopicmodel (6)

1
to themicroscopicmodel (6)

2
.There

follows that the solution of the hybrid system (6) depends
on the coupling parameter 𝜇 (80) which follows from the
solution of (15). System (15) is a system of two nonlinear
integrodifferential equations constrained by the conditions
(7), (5). Moreover, its solution depends also the constant
encounter rate 𝜂

𝑖𝑗
, on the transition density function 𝜑

𝑖𝑗
, and

the initial conditions 𝑓
𝑖
(0, 𝑢). In the following section, we

will study the solution of (6), under some suitable, but not
restrictive, hypotheses on 𝜑

𝑖𝑗
.

Under the hypotheses ofTheorem 5 and the solution (72),
we have

𝑓
1
(𝑡, 𝑢) − 𝑓

2
(𝑡, 𝑢) = {

2𝑒
−(𝜂+𝜂

0
)𝑡
𝐻(𝑢) , 𝐻 (𝑢) ̸= 0,

0, 𝐻 (𝑢) = 0.
(81)

Let us take

𝐷
𝑢
= [0, 1] , 𝜂 + 𝜂

0
= 𝑝 > 0, 𝐻 (𝑢) = sin 2𝜋𝑢

(82)

so that (72) are fulfilled. We have

𝜇 [𝑓] (𝑡) = 1 − 2𝑒
−𝑝𝑡
[∫

1/2

0

sin 2𝜋𝑢𝑑𝑢 − ∫
1

1/2

sin 2𝜋𝑢𝑑𝑢] ,

(83)

that is

𝜇 [𝑓] (𝑡) =

{{

{{

{

1 −
1

𝜋
𝑒
−𝑝𝑡
, sin 2𝜋𝑢 ̸=0, 𝑢 ∈ [0, 1] ,

1, 𝑢 ∈ {0,
1

2
, 1} .

(84)

In the last case we have the usual Lotka-Volterra system,
therefore, we will investigate the first case.Thus, according to
(6), we have the system

𝑑𝑛
1

𝑑𝑡
= 𝛼𝑛
1
− (1 −

1

𝜋
𝑒
−𝑝𝑡
) 𝑛
1
𝑛
2
,

𝑑𝑛
2

𝑑𝑡
= −𝛽𝑛

2
+ 𝛾𝑛
1
𝑛
2

(85)

with

𝛼 ≥ 0, 𝛽 ≥ 0, 𝛾 ≥ 0. (86)

The numerical solution of this system depends on both the
parameters 𝛼,𝛽, 𝛾,𝑝 and on the initial conditions 𝑛

1
(0),

𝑛
2
(0). We can see from Figures 1 and 2 that albeit the

initial aggressive population 𝑛
2
is greater than 𝑛

1
, the first

population can increase and keep nearly always over 𝑛
2
in the

quasilinear case in Figure 1(a) or always under 𝑛
2
in presence

of a strong nonlinearity in Figure 1(b).
If we invert the initial conditions so that the initial

population of 𝑛
1
is greater than 𝑛

2
, we can see that in case

of quasilinear conditions (see Figure 2(a)) the population
𝑛
1
after some short time becomes lower than 𝑛

2
. For a

strongnonlinearity, instead after an initial growth 𝑛
1
, it
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Figure 1: Numerical solution of 𝑛
1
(𝑡) (plain) and 𝑛

2
(𝑡) (dashed) of the system (85) with initial conditions 𝑛

1
(0) = 1, 𝑛

2
(0) = 3, for 𝑡 ≤ 10,

and parameters 𝛼 = 1.636, 𝛽 = 0.3743 ((a) with parameters 𝛾 = 0.1, 𝑝 = 0.01) and ((b) with parameters 𝛾 = 0.9, 𝑝 = 0.9).

105

1

10

𝑡

(a)

105

1

𝑡

(b)

Figure 2: Numerical solution of 𝑛
1
(𝑡) (plain) and 𝑛

2
(𝑡) (dashed) of the system (85) with initial conditions 𝑛

1
(0) = 3, 𝑛

2
(0) = 1, for 𝑡 ≤ 10

and parameters 𝛼 = 1.636, 𝛽 = 0.3743 ((a) with parameters 𝛾 = 0.1, 𝑝 = 0.01) and ((b) with parameters 𝛾 = 0.9, 𝑝 = 0.9).

tends to zero in a short time, while the second population
grows very fast and becomes the prevalent population in
Figure 2(b).

6. Conclusion

In this paper, the hybrid competition model has been solved
under some assumptions on the transition density. In the
simple case of Lotka-Volterra, the numerical solution gives

some significant and realistic insights on the evolution of
competing populations.
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