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A modified, robust adaptive fault compensation design is proposed for rigid spacecraft systems with uncertain actuator failures
and unknown disturbances. The feedback linearization method is first introduced to linearize the nonlinear dynamics, and a
model-reference adaptive controller is designed to suppress the unknown external disturbances and stabilize the linearized
system. Then, a composite adaptive controller is developed by integrating multiple controllers designed for the corresponding
actuator failure conditions, which can handle the essentially multiple uncertainties (failure time, values, type, and failure
pattern) of actuator failures simultaneously. To further improve the transient performance problem in the failure
compensation control, an H∞ compensator is introduced as an additional item in the basic controller to attenuate the adverse
effects on tracking performance caused by parameter estimation errors. From the theoretical analysis and simulation results, it
is obvious that the designed scheme can not only guarantee the stability of the closed-loop system is stable and asymptotical
tracking properties for a given reference signal but also greatly improve the transient performance of the spacecraft system
during the process of failure compensation.

1. Introduction

Component (actuator or sensor) failures and external distur-
bances are common in performance-critical systems, which
can lead to loss of performance and even cause catastrophic
accidents. Hence, to maintain an acceptable level of perfor-
mance and guarantee system stability in the event of uncer-
tain component failures, remarkable progresses have been
made in the area of fault-tolerant control (FTC) and distur-
bance suppression [1–7].

Reaction wheels are commonly used in spacecraft as the
actuators, whichmay fail in the course of system operation. Pre-
cise attitude control in the case of disturbances and uncertain
actuator failures have widely studied in the existing literature.
Excellent overviews were provided by the survey papers [8, 9]
to make FTC designs for spacecraft control system. In [10], a
fault tolerant control scheme was proposed for spacecraft atti-
tude stabilization by integrating learning observer and back-
stepping control design. A novel adaptive event-triggered
controller was designed to handle disturbances, model uncer-
tainties, actuator failures, and limited communication, simulta-

neously [11]. In this paper, only loss of actuator effectiveness
fault was considered in the control system design. Adaptive
observer-based fault-tolerant tracking control schemes were
widely used to deal with the attitude tracking problem for space-
craft experience disturbances and actuator failures [12, 13].
Fault detection and identification based FTC scheme was
designed for spacecraft control system subject to multiple actu-
ator faults, parameter uncertainties, and external disturbances
[14]. Nonlinear model predictive control approach was used
to control the coupled translational-rotational motion of a
spacecraft in the presence of one actuator failure [15]. In
[16], a new adaptive attitude tracking control scheme was
developed for a flexible spacecraft system subject to external
disturbances and uncertain failures. The sliding mode control
(SMC) technology is insensitive to some disturbances and
uncertainties very much [17]. Numerous works related to
SMC-based spacecraft FTC design were reported in [18]
and the references therein.

For the recently advanced space missions, the system
performance either in the stable state and the instantaneous
one are equally important. Bad transient performance may
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exist although the steady performance can be obtained success-
fully finally, which are potentially dangerous to performance-
critical systems. The problem of transient performance
improvement has been widely researched based on several
inspired control approaches, such as model reference adaptive
control (MRAC) [19], H∞ control [20], adaptive control [21,
22] and sliding mode control [23]. To improve the transient
dynamics through modifying MRAC design, [24, 25] have
used fuzzy logic and genetic algorithm, illustrated some simu-
lations without analytical support to manifest the effectiveness
of the designed scheme. Dynamic regressor extension and the
technique of mixing parameter estimation were introduced by
[26], which removed the assumption of some prior knowledge
with high-frequency gain, whereas such a scheme may cause a
complicated task for issues of practical interests. Considering
that actuator saturation, together with the excessive tracking
error of the closed-loop system’s trajectory may also be led
by large adaptive rates, with the exception of the plant’s refer-
ence model, [27] introduced an auxiliary reference model with
the characterization of the classical MRAC framework. How-
ever, the simulation results show that the larger values of the
user-defined rate parameter will cause larger overshoots. Most
of the aforementioned schemes deal only with system param-
eter uncertainties without considering the uncertainties of
actuator failure.

Recently, more attention has been paid to the study of
FTC designs with guaranteed transient performance [28].
Investigating the prescribe performance fault tolerance con-
trol for chaser spacecraft. The uncertainties of model, actua-
tor failure, and external disturbances were summarized as
lumped disturbances, which were estimated by a finite-
time extended state observer. Based on the estimated infor-
mation from the observer, an adaptive backstepping control-
ler was designed to achieve the desired trajectory [29].
Addressed the problem of finite-time attitude-tracking con-
trol for a rigid spacecraft with inertial uncertainties, external
disturbances, actuator saturations, and faults. A fast nonsin-
gular terminal sliding mode manifold integrating with fuzzy
approximation technique was constructed to develop an
enhanced FTC scheme. It can guarantee the real finite-time
stability instead of asymptotical stability. Similar to the study
in [29, 30], we proposed a fault-tolerant nonsingular fixed-
time control scheme based on neural networks for spacecraft
maneuver mission, which can accelerate the convergence
rate and improve control accuracy. A robust FTC algorithm
was synthesized by employing a low-pass filter and an auxil-
iary dynamic system along with adaptive backstepping
design, which achieved attitude tracking despite the presence
of disturbances, actuator faults, and input saturation [31]. In
[32], a fault-tolerant controller, based on dynamic surface
design and nonlinear extended state observer, was developed
for attitude tracking dynamics of the combined spacecraft in
the presence of inertia uncertainty, actuator failure, and
external disturbance. Such a scheme can drive the attitude
tracking error to converge to one small neighborhood of
zero. However, the uncertainties of both actuator failure
and external disturbance were considered to be lumped dis-
turbances by the previous literatures, and fuzzy logic system,
neural networks, or observers were investigated to estimate
the lumped disturbance. As [33] pointed out in most condi-

tions, actuator failure and disturbance cannot be handled in
the same way due to their different mechanisms.

As has been pointed out by [34], the parameter estima-
tion error of the adaptive controller is one of the most signif-
icant factors that lead to the undesired transient. It is widely
known that unanticipated actuator failures will bring about
parametric uncertainties in the system. And the parameter
estimation error is inevitable no matter which adaptive con-
trol scheme is adopted. Despite recent advances in transient
performance improvement design for spacecraft fault-
tolerant control system, it is still a challenging problem on
how to guarantee transient performance for spacecraft sys-
tem with uncertain actuator faults and external disturbances.
Hence, it is an interesting and meaningful topic to investi-
gate the problem of attitude tracking control with guaran-
teed transient and steady state performance for spacecraft
subject to both actuator failures and external disturbances,
which motivates the main results in this paper. The space-
craft attitude control problem under uncertain actuator fail-
ures and unknown disturbances is solved by proposed
backstepping-based adaptive control scheme in literature
[35]. On this basis, the problem of actuator failure compen-
sation design for spacecraft attitude control system with
guaranteed transient performance is further studied in this
paper. The major contributions and excellence of our pro-
posed methodology are as follows:

(i) Unlike the works which focus on the design of
adaptive FTC for spacecraft systems with the weak-
ness of a bad transient performance under the con-
dition of unanticipated actuator failures, this paper
further concerns the transient performance problem
for the actuator failure compensation design. A per-
formance index is adopted to assess the degree of
the transient performance enhancement and char-
acterize the weight of the designed H∞ compensa-
tor in the modified MRAC system

(ii) Compared with the current MRAC based transient
performance improvement schemes, this paper first
couple the modified MRAC and direct adaptive
FTC control techniques to increase the fault toler-
ance capability of the MRAC scheme

(iii) In contrast to the existing literatures regarding the
uncertainties of both actuator failure and external
disturbance as lumped disturbances, this paper
solve the uncertain actuator failures and distur-
bances separately according to their different
mechanisms

(iv) Detailed analysis of the performance of both tran-
sient and system steady state, and the valid proof
according to the asymptotic output tracking as well

The remaining section is composed as follows. Section 2
formulates the control problems, describes some preliminar-
ies on the feedback linearization theory, and presents two
lemmas, which are important for the compensator design
and performance analysis. Section 3 describes the modified
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MRAC and the adaptive failure compensation design, as well
as the closed-loop system performance analysis. Section 4
gives the simulation background and numerical simulation
results.

2. Spacecraft Model and Problem Description

This chapter first introduces the rigid spacecraft system
model and some basic concepts, then describes the actuator
fault compensation of the spacecraft system.

2.1. Rigid Spacecraft Model. Themathematical model of a rigid
spacecraft system is formulated by the following equations:

_q0

_q

" #
= 1
2

−qT

q0I + q×

" #
ω,

J _ω = −ω× Jω +Du tð Þ + d tð Þ,
ð1Þ

where q0 and q = ½q1, q2, q3�T ∈ R3 denote the scalar and vector
parts of the unit-quaternion, respectively. The quaternion also
satisfies the constraint equation qTq + q20 = 1, ω ∈ R3 denotes
the inertial angular velocity of the spacecraft expressed in the
body frame, and the inertia matrix J ∈ Rð3×3Þ is assumed to be
known in this study. The notations ζ×, ∀ζ = ½ζ1, ζ2, ζ3�, can be
expressed as

ζ× =
0 −ζ3 ζ2

ζ3 0 −ζ1
−ζ2 ζ1 0

2664
3775: ð2Þ

uðtÞ ∈ R4 is the control input produced by reaction wheels.
As the orientation matrix of the reaction wheel, D ∈ Rð3×4Þ is
available for a given spacecraft. In this research, we consider

D =

−1 0 0 1ffiffiffi
3

p

0 −1 0 1ffiffiffi
3

p

0 0 −1 1ffiffiffi
3

p

2666666664

3777777775
: ð3Þ

dðtÞ = ½d1, d2, d3�T ∈ R3 represents disturbance vector,
which comes in many forms: gravity gradients, solar pressure,
atmospheric drag, pressure forces, and so on. In practice, these
forces are bounded. For the major topic of our interest, each
component of dðtÞ is modeled as

di tð Þ = ci + 〠
ni

j=1
aij sin ωijt + 〠

ni

j=1
bij cos ωijt = θ∗Tdi ϖdi tð Þ, ð4Þ

where ci, aij, and bij are unknown amplitudes, and ωij are

known frequencies.

θ∗di = ci0, ai1,⋯, ai ni , bi1,⋯, bi ni
Â ÃT ∈ R2ni+1, ϖdi tð Þ

= 1, sin ωi1
t,⋯, sin ωini

t, cos ωi1
t,⋯, cos ωini

t
h iT

∈ R2ni+1:

ð5Þ

Define x = ½qT , ωT �T and y = q as the state and output vec-
tor, the spacecraft attitude control system (1) is rewritten as

_x = f xð Þ + g xð Þud tð Þ + g xð Þd tð Þ,
y = h xð Þ,

ð6Þ

where

f xð Þ = 1/2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − qk kð Þ2

q
ω − 1/2ω×q

−J−1ω× Jω

24 35,
g xð Þ = g1, g2, g3½ � =

0
J−1

" #
,

ð7Þ

and

ud =Du: ð8Þ

2.2. Control Problem Statement. This research mainly focuses
on the issue of the spacecraft attitude control involves uncertain
actuator failures. The classical actuator failures is expressed as

�uj tð Þ = �uj0 + 〠
qj

i=1
�uji f ji tð Þ, t ≥ t j, ð9Þ

where j ∈ f1, 2, 3, 4g, t j > 0, �uj0, and �uji represent unknown
failure parameters. f jiðtÞ, i = 1, 2,⋯, qj are known. The Equa-
tion (9) can also be rewritten into the below-parameterized
expression

�uj tð Þ = θTj ϖj tð Þ, ð10Þ

where θj = ½�uj0, �uj1,⋯, �uj qj
�T ∈ Rqj+1, ϖjðtÞ =

½1, f j1ðtÞ,⋯, f jqjðtÞ�
T ∈ Rqj+1. As specifically pointed out, the

failure model (9) can describe stuck-in-place, complete failure,
and oscillatory failure which usually occur in the spacecraft
system.

In the system, if there is any uncertain actuator fault,
then the input uðtÞ applying to the system is

u tð Þ = I − σ tð Þð Þv tð Þ + σ tð Þ�u tð Þ, ð11Þ

where vðtÞ denotes the control input signal. �uðtÞ =
½�u1, �u2, �u3, �u4�T andσðtÞ = diag fσ1, σ2, σ3, σ4g are defined
fault pattern matrix, i.e, when the j-th actuator fails σjðtÞ
= 1, if there is no failure σjðtÞ = 0. Substituting Equation
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(11) into the second equation of (1), the system model is
expressed as

J _ω = −ω× Jω +D I − σ tð Þð Þv tð Þ + σ tð Þ�u tð Þ½ � + d tð Þ: ð12Þ

For the output yðtÞ = q to track a given command ymðtÞ,
at least three functional inputs at any time are needed, so
that the independent control inputs are enough to make sure
that the output can track the arbitrary given output signals.
Therefore, no more than one actuator failure can be allowed
in the system; the compensable failure cases and the corre-
sponding failure patterns are listed as

(i) no failure case, σð1Þ = diag f0, 0, 0, 0g
(ii) u1 failure case, σð2Þ = diag f1, 0, 0, 0g
(iii) u4 failure case, σð3Þ = diag f0, 0, 0, 1g
(iv) u3 failure case, σð4Þ = diag f0, 0, 1, 0g
(v) u2 failure case, σð5Þ = diag f0, 1, 0, 0g

2.2.1. Control Objective. For system (1), which has one
uncertain failure (9) at most, an adaptive controller vðtÞ is
designed to guarantee system stability and output tracking
with guaranteed transient performance. To show the design
process of failure compensation control accompanied by sat-
isfactory transient performance, we design the adaptive
scheme for the three failure patterns as following:

σ 1ð Þ = diag 0, 0, 0, 0f g,
σ 2ð Þ = diag 1, 0, 0, 0f g,
σ 3ð Þ = diag 0, 0, 0, 1f g:

ð13Þ

Remark 1. The studied spacecraft of this paper are actuated
by four reaction wheels. We can learn from the orientation
matrix of reaction wheel given in (3) that three of them are
mounted where their spin axes are parallel to the body
frame, respectively, and the other one is mounted where its
spin axis points to some fixed direction. According to the
configuration of reaction wheels, the control design for the
u1 failure case can be expended to address the u2 and u3 fail-
ure cases, so in this paper, only the three failure cases (13)
are taken into account to demonstrate the detail design
process.

2.3. Feedback Linearization. For a kind of nonlinear systems
with the input and output of mdimension

_x = f xð Þ + g xð Þu, y = h xð Þ: ð14Þ

Definition 2. The system (14) has a vector relative degree f
ρ1, ρ2,⋯, ρmg, 1 ≤ ρi ≤ n, at a point x0 for ∀x in a neighbor-
hood of if the below two conditions hold

(i) Lgj
Lkf hiðxÞ = 0, for all 1 ≤ j ≤m, 1 ≤ i ≤m, 0 < k < ρi

− 1 and Lgj
Lρi−1f hiðxÞ ≠ 0, for some j ∈ f1, 2,⋯,mg,

and

(ii) the m ×m matrix GðxÞ is defined as

G xð Þ =

Lg1L
ρ1−1
f h1 xð Þ ⋯ LgmL

ρ1−1
f h1 xð Þ

Lg1L
ρ2−1
f h2 xð Þ ⋯ LgmL

ρ2−1
f h2 xð Þ

⋯ ⋯

Lg1L
ρm−1
f hm xð Þ ⋯ LgmL

ρm−1
f hm xð Þ

26666664

37777775: ð15Þ

Then the system (14) has the relative degree ρ =∑m
i=1ρi,

with ρi being the subrelative degree of the i-th output yi =
hiðxÞ. If the equilibrium point of system (1) is x0 =
½0, 0, 0, 0, 0, 0�T , we can obtain that ρ1 = ρ2 = ρ3 = 2 and the
relative degree ρ = n = 6. By the twice differentiation to the
system output yi, the control input ud in the differential
equation is expressed in the form of a nonzero factor.

To be specific, the Equation (6) is denoted as

€y1

€y2

€y3

2664
3775 =

F1 xð Þ
F2 xð Þ
F3 xð Þ

2664
3775 +

G1 xð Þ
G2 xð Þ
G3 xð Þ

2664
3775 ud + d tð Þ½ �, ð16Þ

where

F1 xð Þ = −
1
4 q1 ω2

1 + ω2
2 + ω2

3
À Á

+ J1 − J2
2J3

q2ω1ω2

+ J1 − J3
2J2

q3ω1ω3 +
J2 − J3
2J1

q0ω2ω3,

F2 xð Þ = −
1
4 q2 ω2

1 + ω2
2 + ω2

3
À Á

+ J2 − J1
2J3

q1ω1ω2

+ J3 − J1
2J2

q0ω1ω3 +
J2 − J3
2J1

q3ω2ω3,

F3 xð Þ = −
1
4 q3 ω2

1 + ω2
2 + ω2

3
À Á

+ J1 − J2
2J3

q0ω1ω2

+ J3 − J1
2J2

q1ω1ω3 +
J3 − J2
2J1

q2ω2ω3,

G1 xð Þ = q0
2J1

,− q3
2J2

, q2
2J3

� �
,G2 xð Þ = q3

2J1
, q0
2J2

,− q1
2J3

� �
,G3 xð Þ

= −
q2
2J1

, q1
2J2

, q0
2J3

� �
:

ð17Þ

The system (14) can be feedback linearized through dif-
ferential homeomorphic mapping. Supposing there exists a
differential homeomorphic mapping with the form TðxÞ =
ξ = ½h1ðxÞ, Lf h1ðxÞ, h2ðxÞ, Lf h2ðxÞ, h3ðxÞ, Lf h3ðxÞ�T .
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Under the afore-mentioned coordinate transform, the
system (6) can be transformed into three linear subsystems
with the following normal form:

_ξ11 = ξ12,
_ξ12 = F1 xð Þ +G1 xð Þ ud + d tð Þ½ �,

_ξ21 = ξ22,
_ξ22 = F2 xð Þ +G2 xð Þ ud + d tð Þ½ �,

_ξ31 = ξ32,
_ξ32 = F3 xð Þ +G3 xð Þ ud + d tð Þ½ �,

y = ξ11, ξ21, ξ31½ �T ,

ð18Þ

with (11), the system (18) can be described as

_ξ11 = ξ12,
_ξ12 = F1 xð Þ +G1σ xð Þv + �G1σ xð Þ�u tð Þ + G1 xð Þd tð Þ,

_ξ21 = ξ22,
_ξ22 = F2 xð Þ +G2σ xð Þv + �G2σ xð Þ�u tð Þ + G2 xð Þd tð Þ,

_ξ31 = ξ32,
_ξ32 = F3 xð Þ +G3σ xð Þv + �G3σ xð Þ�u tð Þ + G3 xð Þd tð Þ,

y = ξ11, ξ21, ξ31½ �T ,

ð19Þ

where GiσðxÞ = GiðxÞDðI − σðtÞÞ�GiσðxÞ =GiðxÞDσðtÞ, and i
= 1, 2, 3.

2.3.1. Nonlinear Feedback Control Law. The feedback linear-
ization design can be applied to generate an ideal controller,
on the condition that the system parameters and fault
parameters of a nonlinear system (6) are accessible. From
Equation (16), we can get the following equation:

€yi = Fi xð Þ +Gi xð Þ ud + d tð Þ½ �, i = 1, 2, 3: ð20Þ

Considering the uncertainty of external disturbance dðtÞ,
we set the control signal as

Gi xð Þud =Wdi ≜ −Fi xð Þ + uLi − Gi xð Þd̂ tð Þ, ð21Þ

whereWdi denotes the desired control signal generated from
a chosen control that is designed for the closed-loop system,
uLi is the control law to be proposed, and d̂ðtÞ is the estima-
tor of dðtÞ. Then, the linearized system can be obtained

€yi = uLi +Gi xð Þ d tð Þ − d̂ tð Þ
h i

, i = 1, 2, 3: ð22Þ

Lemma 3. (State-feedback H∞ optimal control). Consider a

linear time-invariant system

_x = Ax + B1uw + B2u,
z = C1x,
y = C2x,

ð23Þ

where x ∈ Rnx is the state, u ∈ Rnu is the control input, uw ∈
Rnw is the disturbance, z ∈ Rnz is the regulated output to be
controlled, and y ∈ Rny is the measured output. A, B1, B2, C1
, and C2 are matrices of appropriate dimensions and satisfy-
ing the assumptions.

Assumption 4. ðA, B1Þ is stabilizable; (A, C2) is detectable; B1
is column full rank, and C2 is row full rank; nw ≤ ny ≤ nx.

If there exists an ε < 0 such that the Riccati equation

ATP + PA − ε−1PB2R
−1BT

2 P + γ−1CT
1C1 + εS = 0, ð24Þ

has a solution P ≥ 0, where R ∈ Rnu×nu and S ∈ Rnx×nx are
given positive-definite matrices.

A state feedback controller us = −ðð1/2εÞR−1BT
2 PÞx can

be designed to stabilize the system (23), and the transfer
function GwzðsÞ between disturbance w and output z satisfy
the following condition

Gwz sð Þk k∞ < γ, ð25Þ

for a prespecified constant γ > 0. It should be noted that γ
can be arbitrarily close to the H∞ optimum by choosing a
sufficiently small ε.

Lemma 5. Let z =HðsÞw, where HðsÞ have all their roots in
Re ½s� ≥ −δ/2, for any δ ≥ 0 and w ∈ L2, we have

ztk kδ2 ≤ H sð Þk kδ∞ wtk kδ2 , ð26Þ

where kztkδ2 is defined as kztkδ2 = Δ ðÐ t0e−δðt−τÞ½zTðτÞzðτÞ�dτÞ1/2
for ∀z ∈ ½0,∞Þ⟶ Rn’ and δ ≥ 0 and t ≥ 0. IfHðsÞ is strict, then

z tð Þj j ≤ H sð Þk kδ2 wtk kδ2 , ð27Þ

and if HðsÞ is a stable n-order transfer function, then

ztk k∞ ≤ 2n H sð Þk k∞ wk k∞: ð28Þ

3. Actuator Failure Compensation Design

In this section, a direct adaptive control scheme is proposed
to be combined with a basic control law derived from the
modified MRAC design, which is not only adaptive to
unknown disturbances but also able to handle uncertain pat-
terns, values, and times of actuator failures. The simplified
block diagram is shown in Figure 1.

To achieve the control objective, we will complete four
design steps:
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(1) Derive a desired control signal from modified
MRAC technique for the closed-loop system to
achieve the desired system performance

(2) Design a composite nominal controller to handle all
possible failure patterns simultaneously, with the
known parameters of actuator failures

(3) Develop an adaptive control scheme with the estima-
tion of failure parameters updated based on system
performance errors, and

(4) Analyze transient and steady-state performance for
failure accommodation

In order to obtain an appropriate adaptive law vðtÞ, the
error of the control signal equation which is led by the actu-
ator uncertainties is examined. A desired control equation
GiðxÞudðtÞ =Wdi (with udðtÞ =DuðtÞ) is defined to be satis-
fied by the nominal control signal v∗ðtÞ to be designed in the
next section. In the light of (11), we define u∗ðtÞ as u∗ðtÞ
≜ ðI − σÞv∗ðtÞ + σ�uðtÞ and obtain

Gi xð Þud tð Þ =Wdi +Gi xð ÞD I − σð Þ v tð Þ − v∗ tð Þ½ �: ð29Þ

Substituting (21) into (29), we have

Gi xð Þud tð Þ = −Fi xð Þ + uLi −Gi xð Þd̂ tð Þ +Gi xð ÞD I − σð Þ v tð Þ − v∗ tð Þ½ �,
ð30Þ

and the linearized system €yi = uLi can be rewritten into

€yi = uLi +Gi xð ÞD I − σð Þ v tð Þ − v∗ tð Þ½ � +Gi xð Þ d tð Þ − d̂ tð Þ
h i

:

ð31Þ

In this paper, we rewrite the linearized subsystem (31)
into the transfer function form as

yi = Gpi sð Þuri = kpi
Zpi sð Þ
Rpi sð Þ

uLi +Gi xð Þ I − σð Þ v − v∗ð Þ +Gi xð Þ d − d̂
� �h i

,

ð32Þ

with uri = uLi +GiðxÞDðI − σÞðv − v∗Þ +Giðd − d̂Þ, and its

reference model is

ymi =Wmi sð Þri = kmi
Zmi sð Þ
Rmi sð Þ

ri, ð33Þ

where ZpiðsÞ, RpiðsÞ, ZmiðsÞ, and RmiðsÞ are monic Hurwitz
polynomials of degree mpi, npi, , and pmi, respectively, ρi =
npi −mpi = pmi − qmi = 2. The relative degree of WmiðsÞ is
the same as that of GpiðsÞ.
3.1. Modified MRAC Design. A model reference adaptive
controller is constructed as follows

uLi = θTi ωi + c0iri + uci, c0i =
kmi

kpi
, ð34Þ

where ωi = ½ωT
i1, yi�T , θi = ½θTi1, θi2�

T
, ωi1 = ðαiðsÞ/ΛiðsÞÞy, αiðs

Þ = ½snpi−2, snpi−3,⋯, s, 1�, ΛiðsÞ = ZmiλiðsÞ, and λiðsÞ are
monic Hurwitz polynomials of degree npi − qmi − 1; θi ∈
R2ni−1 is the vector of controller parameters; uci is a proper
H∞ compensator to be designed later.

Remark 6. To derive the relation between the parameter
estimation error of actuator failure and transient perfor-
mance, we just talk about the uncertainties of actuator fail-
ure and disturbance assuming the system parameters are
known. If all the system parameters are known, the nom-
inal controller of MRAC can be uLi = θ∗Ti ωi + c0iri + uci,

with known θ∗i = ½θ∗Ti1 , θ∗i2�
T
.

For a given transform function GpiðsÞ, there is a desired
reference value vector θ∗i = ½θ∗Ti1 , θ∗i2�

T
to make the following

matching conditions valid

c0ikpiZpi

Rpi − kpiZpi αTi sð Þθ∗i1/Λi sð Þ
À Á

+ θ∗i2
À Á =Wmi sð Þ: ð35Þ

Multiplying both sides with yi and using the equation

I-σ (t)Modified
MRAC

Adaptive
 Failure

Compensation
Controller

Reaction
Wheel

Spacecraft
Body

σ (t)

Desire attitude

Trajectory
ym

Error

Signals

Wd V (t)

u (t)–

+

u (t)
Reaction

Torque

Disturbances
d (t)

y

Sensor

–

Figure 1: Block diagram of control system.
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RpiðsÞyi = kpiZpiðsÞurikpiZpi, we have

coikpiZpiyi =Wmi sð Þ kpiZpiuri − kpi
θ∗Ti1 αi sð Þ
Λi sð Þ

yi + θ∗i2

 !
Zpiyi

" #
:

ð36Þ

Dividing both sides by kpiZpi we have

yi =
Wmi sð Þ
c0i

uri −
θ∗Ti1 αi sð Þ
Λi sð Þ

yi − θ∗i2yi

" #
: ð37Þ

The spacecraft system parameters are known; that is, in
the MRAC law, θi is substituted by the desired value θ∗i .
To be more specific, the control uLi is designed as

uLi =
θ∗Ti1 αi sð Þ
Λi sð Þ

yi + θ∗i2yi + c0iri + uci = −Kiξi + c0iri + uci,

ð38Þ

where Ki = ½Ki1, Ki2� are the design controller parameters
corresponding with θ∗i , ξi = ½ξi1, ξi2�T . Substituting (38) into
(30), we have

Gi xð Þud tð Þ = −Fi xð Þ − Gi xð Þd̂ tð Þ + Gi xð ÞD I − σð Þ v tð Þ − v∗ tð Þ½ �
− Kiξi + c0iri + uci:

ð39Þ

Furthermore, the linearized subsystem (18) is described
as

_ξi1 = ξi2,
_ξi2 = −Kiξi + c0iri + uci + Gi xð ÞD I − σð Þ v tð Þ − v∗ tð Þ½ �

+Gi xð Þ d tð Þ − d̂ tð Þ
h i

:

ð40Þ

We then revise the above equation in the form of state
space as follows:

_ξi = Aci − BciKið Þξi + Bci Gi xð ÞD I − σð Þ v − v∗ð Þ½
+Gi xð Þ d − d̂

� �
+ uci + c0iri

i
,

yi = Cciξi, ð41Þ

where Aci ∈ R2×2, Bci ∈ R2×1, and Cci ∈ R1×2 are the stan-
dard form of integrator chains. We also revise the reference
model (33) in the state space as follows:

_ξmi = Amiξmi + Bmiri,
ymi = Cmiξmi,

ð42Þ

where Ami, Bmi, and Cmi are the minimal realization of

WmiðsÞ, i.e.,

Ami =
0 1

−ai1 −ai2

" #
∈ R2×2,

Bmi = 0, 1½ �T ∈ R2×1,

ð43Þ

and Cmi = ½1, 0� ∈ R1×2. Denoting ei = ξi − ξmi, we can obtain

_ei = Aci − BciKið Þξi + Bci Gi xð ÞD I − σð Þ v − v∗ð Þ½
+Gi xð Þ d − d̂

� �
+ uci + c0iri

i
− Amiξmi − Bmiri:

ð44Þ

If the controller parameters Ki is set to satisfy Aci − Bci
Ki = Ami and Bcic0i = Bmi, then

_ei = Amiei +
Bmi

c0i
Gi xð ÞD I − σð Þ v − v∗ð Þ + Gi xð Þ d − d̂

� �
+ uci

h i
,

ei1 = Cmiei:

ð45Þ

With the system model (32), (33) and the controller (34),
we obtain

yi =
Wmi sð Þ
c0i

Gi xð ÞD I − σð Þ v − v∗ð Þ +Gi xð Þ d − d̂
� �

+ c0iri + uci
h i

:

ð46Þ

Remark 7. For the tracking error dynamics (45) and output
dynamic (46), one may discover that the parameter estima-
tion error items d − d̂ and the controller parameter errors v
− v∗ can be regarded as the disturbance input and plays an
important role in system tracking performance. Hence, the
attenuation of the disturbance made by GiðxÞDðI − σÞðv −
v∗Þ + GiðxÞðd − d̂Þ on the closed-loop system is designed by
proposing the compensator uci as an H∞ optimal controller.

Equation (45) is considered as a special form of (23).
With (45) and Lemma 3, a transient performance compen-
sator uci is designed for the system (45) by the following
steps as shown next.

Step 1: initialize εi > 0 and 0 < γi < kWmiðsÞ/c0ik∞,
choose two positive-definite matrices Sci ∈R

2×2 and Rci ∈
R1×1, and solve the following Riccati equation

yi =
Wmi sð Þ
c0i

Gi xð ÞD I − σð Þ v − v∗ð Þ +Gi xð Þ d − d̂
� �

+ c0iri + uci
h i

:

ð47Þ

and obtain the state feedback gain

yi =
Wmi sð Þ
c0i

Gi xð ÞD I − σð Þ v − v∗ð Þ +Gi xð Þ d − d̂
� �

+ c0iri + uci
h i

:

ð48Þ

If there is no solution, decrease εi and repeat this step
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again until getting an appropriate positive-definite solution
Pci = PT

ci > 0 to ensure that the state feedback gain is
obtained. The H∞ compensator which is based on measure-
ment feedback

uci = Kciei, ð49Þ

is constructed by state feedback gain Kci, which guarantees
that the system (45) with GiðxÞDðI − σÞðv − v∗Þ +GiðxÞðd
− d̂Þ disturbance attenuation γi is stable.

Step 2: Return to step 1 and reduce the transient perfor-
mance index until getting a gratifying transient or the opti-
mum γi

Remark 8. The standard algorithm can be used to confirm
whether the positive-definite solution of a Riccati equation
exists. According to the above processes, the optimal com-
pensator of H∞ can be obtained by selecting sufficiently
small εi. However, it may cause the gain Kci too large. For
the whole control system, the large gain will reduce the sta-
bility margin and increase the influence of measurement
noise. In practical application, a compromise is usually
adopted in the H∞ compensator design. It turns out that
the suboptimum H∞ compensator for a given 0 < γi <
kWmiðsÞ/c0ik∞ can also achieve a satisfactory transient per-
formance through the following theoretical analysis and
simulation.

3.2. Nominal Compensation Design. As mentioned previ-
ously, the spacecraft system is turned into three-linear sub-
system (18) derived from the feedback linearization
technique. To derive the failure compensation control law
uðtÞ, we write the three subsystems together as

€y1, €y2, €y3½ �T = F xð Þ +GD xð Þ I − σð Þv + σ�u½ � + G xð Þd tð Þ, ð50Þ

where GDðxÞ =GðxÞD ∈ R3×4 is regarded as control distribu-
tion matrix.

3.2.1. Design for no Failure Case. On this condition, σðtÞ =
σð1Þ = diag f0, 0, 0, 0g, uðtÞ = vðtÞ, and GDðxÞvðtÞ =WdðtÞ.
The signal vðtÞ is designed as

v tð Þ = v∗1ð Þ tð Þ = h21 xð Þv∗0 1ð Þ tð Þ ð51Þ

for a chosen h21ðxÞ ∈ R4×4, and signal v∗0ð1ÞðtÞ to be calculated
from

GD xð Þh21 xð Þv∗0 1ð Þ tð Þ =Wd tð Þ: ð52Þ

The solution v∗0ð1ÞðtÞ may be derived as

v∗0 1ð Þ tð Þ = K21 xð ÞWd tð Þ, ð53Þ

with matrix function K21ðxÞ ∈ R4×3.

3.2.2. Design for the u1 Failure Case. In this situation, σðtÞ
= σð2Þ = diag f1, 0, 0, 0g, u1 = �u1, and ui = vi for i = 2, 3, 4,

with GDðxÞ = ½GD1,GD2,GD3,GD4� = ½GD1,GDð2Þ� ∈ R3×4 for

GDð2Þ = ½GD2,GD3,GD4� ∈ R3×3, v = ½v1, v2, v3, v4�T =
½v1, vTað2Þ�

T ∈ R4 for vað2Þ = ½v2, v3, v4�T ∈ R3, equation GDðxÞ
uðtÞ =WdðtÞ becomes

GD1�u1 tð Þ + GD 2ð Þva 2ð Þ tð Þ =Wd tð Þ: ð54Þ

In this situation, the signal v1 is set to be v1 = 0. A
nonsingular matrix function h22ðxÞ ∈ R3×3 is chosen to set

v tð Þ = v1 tð Þ, vTa 2ð Þ tð Þ
h iT

= v∗2ð Þ tð Þ = 0, v∗Ta 2ð Þ tð Þ
h iT

,

v∗a 2ð Þ tð Þ = h22 xð Þv∗0 2ð Þ tð Þ,
ð55Þ

with v∗0ð2ÞðtÞ ∈ R3 to be deduced from

GD1�u1 tð Þ +GD 2ð Þh22 xð Þv∗0 2ð Þ tð Þ =Wd tð Þ: ð56Þ

We can obtain

v∗0 2ð Þ tð Þ = K22 xð ÞWd tð Þ + K221 xð Þ�u1 tð Þ, ð57Þ

with matrix function K22ðxÞ ∈ R3×3 and vector K221ðxÞ ∈
R3×1.

3.2.3. Design for the u4 Failure Case. Similarly, σðtÞ = σð3Þ
= diag f0, 0, 0, 1g, u4 = �u4, and v4ðtÞ are chosen as v4ðtÞ =
0 and viðtÞ = uiðtÞ for i = 1, 2, 3. With GDðxÞ = ½GD1,GD2,
GD3,GD4� = ½GDð1Þ,GD4� ∈ R3×4 for GDð1Þ = ½GD1,GD2,GD3� ∈
R3×3 and vðtÞ = ½vTað3ÞðtÞ, v4ðtÞ�

T
for vað3ÞðtÞ =

½v1ðtÞ, v2ðtÞ, v3ðtÞ�T ∈ R3, and GDðxÞuðtÞ =WdðtÞ becomes

GD 1ð Þva 3ð Þ tð Þ + GD4�u4 tð Þ =Wd tð Þ: ð58Þ

The signal vðtÞ is proposed as

v tð Þ = vTa 3ð Þ tð Þ, v4 tð Þ
h iT

= v∗3ð Þ tð Þ = v∗Ta 3ð Þ tð Þ, 0
h iT

,

v∗a 3ð Þ tð Þ = h23v
∗
0 3ð Þ tð Þ,

ð59Þ

with a chosen matrix h23 ∈ R3×3 and a deduced signal v∗0ð3Þð
tÞ ∈ R3 from

GD 1ð Þh23v
∗
0 3ð Þ tð Þ + GD4�u4 tð Þ =Wd tð Þ: ð60Þ

Similarly, we have

v∗0 3ð Þ tð Þ = K23Wd tð Þ + K234�u4 tð Þ, ð61Þ

with matrix function K23 ∈ R3×3 and vector K234 ∈ R3×1.

3.2.4. Composite Control Law. Define three indicator func-
tions χ∗

j , j = 1, 2, 3, which are corresponding to the consid-
ered three failure models σðjÞ and j = 1, 2, 3, respectively.
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That is, if σ = σðjÞ and χ∗
j = 1; otherwise, χ∗

j = 0 and j = 1, 2, 3
. Then, a synthetic control law is obtained by integrating the
three individual controllers

v∗ tð Þ = 〠
3

j=1
χ∗
j tð Þv∗jð Þ tð Þ, ð62Þ

to handle the three failure cases.
For v∗að2ÞðtÞ = h22v

∗
0ð2ÞðtÞ, with v∗0ð2ÞðtÞ in (57), signal

v∗að2ÞðtÞ can be further expressed as

v∗a 2ð Þ tð Þ = h22K22Wd tð Þ + h22K221�u1 tð Þ ∈ R3: ð63Þ

For �u1ðtÞ in (10), we express

�u1 tð Þ = θ∗T1 ϖ1 tð Þ = ϖT
1 tð Þθ∗1 , ð64Þ

where θ∗1 = ½�u10, �u11,⋯, �u1q1 �
T ∈ Rq1+1, and ϖ1ðtÞ =

½1, f11ðtÞ,⋯, f1q1ðtÞ�
T ∈ Rq1+1.

Therefore, we have

χ∗
2 tð Þv∗a 2ð Þ tð Þ = χ∗

21 tð Þ, χ∗
22 tð Þ, χ∗

23 tð Þf gh22K22Wd tð Þ
+ θ∗T1 1ð Þ tð Þϖ1 tð Þϕ2,1, θ∗T1 2ð Þ tð Þϖ1 tð Þϕ22, θ∗T1 3ð Þ tð Þϖ1 tð Þϕ23
h iT

,

ð65Þ

where χ∗
2iðtÞ = χ∗

2 ðtÞ, θ∗1ðiÞðtÞ = χ∗
2 ðtÞθ∗1 , i = 1, 2, 3, and ϕ2 =

h22K221 = ½ϕ21, ϕ22, ϕ23�T .
In the same way, to designate v∗χ1ð1ÞðtÞ and v∗χ3ð3ÞðtÞ, we

express

χ∗
1 tð Þv∗1ð Þ tð Þ = diag χ∗

11 tð Þ, χ∗
12 tð Þ, χ∗

13 tð Þ, χ∗
14 tð Þf gh21K21Wd tð Þ

ð66Þ

χ∗
3 tð Þv∗a 3ð Þ tð Þ = diag χ∗

31 tð Þ, χ∗
32 tð Þ, χ∗

33 tð Þf gh23K23Wd tð Þ
+ θ∗T4 1ð Þ tð Þϖ4 tð Þϕ31, θ∗T4 2ð Þ tð Þϖ4 tð Þϕ32, θ∗T4 3ð Þ tð Þϖ4 tð Þϕ33
h iT

,

ð67Þ

where χ∗
1iðtÞ = χ∗

1 ðtÞ, i = 1, 2, 3, 4, χ∗
3iðtÞ = χ∗

3 ðtÞ, and θ∗4ðiÞðtÞ
= χ∗

3 ðtÞθ∗4 , i = 1, 2, 3.

3.3. Adaptive Fault Tolerant Control Design. The adaptive
version of the nominal control law is as follows (62):

v tð Þ = 〠
3

j=1
χj tð Þv jð Þ tð Þ = 〠

3

j=1
vχ j jð Þ tð Þ = vχ1 1ð Þ tð Þ

+ 0, vTχ2a 2ð Þ tð Þ
h iT

+ vTχ3a 3ð Þ tð Þ, 0
h iT

:

ð68Þ

In view of (65)–(67), we derive

vχ1 1ð Þ tð Þ=Δ diag χ11 tð Þ, χ12 tð Þ, χ13 tð Þ, χ14 tð Þf gh21K21Wd tð Þ,
ð69Þ

vχ2a 2ð Þ tð Þ=Δ diag χ21 tð Þ, χ22 tð Þ, χ23 tð Þf gh22K22Wd tð Þ
+ θT1 1ð Þ tð Þϖ1 tð Þϕ21, θT1 2ð Þ tð Þϖ1 tð Þϕ22, θT1 3ð Þ tð Þϖ1 tð Þϕ23
h iT

,

ð70Þ

vχ3a 3ð Þ tð Þ=Δ diag χ31 tð Þ, χ32 tð Þ, χ33 tð Þf gh23K23Wd tð Þ
+ θT4 1ð Þ tð Þϖ4 tð Þϕ31, θT4 2ð Þ tð Þϖ4 tð Þϕ32, θT4 3ð Þ tð Þϖ4 tð Þϕ33
h iT

,

ð71Þ

where χjiðtÞ, θ1ðiÞðtÞ, and θ4ðiÞðtÞ are the estimates of χ∗
jiðtÞ,

θ∗1ðiÞðtÞ, and θ∗4ðiÞðtÞ, respectively.
From (65)–(71), we obtain

v tð Þ − v∗ tð Þ = ~vχ1 1ð Þ tð Þ + 0, ~vTχ2a 2ð Þ tð Þ
h iT

+ ~vTχ3a 3ð Þ tð Þ, 0
h iT

,

ð72Þ

where

~vχ1 1ð Þ tð Þ = ~χ11 tð Þ, ~χ12 tð Þ, ~χ13 tð Þ, ~χ14 tð Þf gh21K21Wd tð Þ,

~vχ2a 2ð Þ tð Þ = diag ~χ21 tð Þ, ~χ22 tð Þ, ~χ23 tð Þf gh22K22Wd tð Þ

+ eθT1 1ð Þ tð Þϖ1 tð Þϕ21, eθT1 2ð Þ tð Þϖ1 tð Þϕ22, eθT1 3ð Þ tð Þϖ1 tð Þϕ23
h iT

, ~vχ3a 3ð Þ tð Þ=Δ diag ~χ31 tð Þ, ~χ32 tð Þ, ~χ33 tð Þf gh23K23Wd tð Þ

+ eθT4 1ð Þ tð Þϖ4 tð Þϕ31, eθT4 2ð Þ tð Þϖ4 tð Þϕ32, eθT4 3ð Þ tð Þϖ4 tð Þϕ33
h iT

:

ð73Þ
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3.3.1. State Error Equations. Introducing e ∈ R6 =
½eT1 , eT2 , eT3 �T = ½e11, e12, e21, e22, e31, e32�T , ei1 = yi − ymi = ξi1 −
ξmi1, ei2 = _ξi1 − _ξmi1 = _ei1, and i = 1, 2, 3. With the three sub-
systems

_ei = Amiei +
Bmi

c0i
Gi xð ÞD I − σð Þ v − v∗ð Þ½

− 1/2εið ÞR−1
ci B

T
ciPciei +Gi xð Þ d − d̂

� �i
, i = 1, 2, 3,

ð74Þ

we have

€e11 + α12 _e11 + α11e11

€e21 + α22 _e21 + α21e21

€e31 + α32 _e31 + α31e31

26664
37775 = 1

c0
G xð ÞD I − σð Þ v − v∗ð Þ +G xð Þ d − d̂

� �h i

−

1/2ε1c0ð ÞR−1
c1 B

T
c1Pc1e1

1/2ε2c0ð ÞR−1
c2 B

T
c2Pc2e2

1/2ε3c0ð ÞR−1
c3 B

T
c3Pc3e3

26664
37775:

ð75Þ

If σ = σð1Þ = diag f0, 0, 0, 0g, with (72) and (73), we
rewrite (75) as

€e11 + α12 _e11 + α11e11

€e21 + α22 _e21 + α21e21

€e31 + α32 _e31 + α31e31

26664
37775 = 1

c0
〠
4

i=1
GDi~χ1iν1i + 〠

3

i=1
GD i+1ð Þ~χ2iν2i

"

+ 〠
3

i=1
GDi~χ3iν3i + 〠

3

i=1
GD i+1ð ÞeθT1 ið Þϖ1ϕ2i + 〠

3

i=1
GDi
eθT4 ið Þϖ4ϕ3i

#

+ 1
c0

〠
3

j=1
G1j
eθTdj tð Þϖdj

〠
3

j=1
G2j
eθTdj tð Þϖdj

〠
3

j=1
G3j
eθTdj tð Þϖdj

26666666666664

37777777777775
−

1
2ε1c0

� �
R−1
c1 B

T
c1Pc1e1

1
2ε2c0

� �
R−1
c2 B

T
c2Pc2e2

1
2ε3c0

� �
R−1
c3 B

T
c3Pc3e3

26666666664

37777777775
≜ ~E1:

ð76Þ

If σ = σð2Þ = diag f1, 0, 0, 0g, with (72) and (73), we

rewrite (75) as

€e11 + α12 _e11 + α11e11

€e21 + α22 _e21 + α21e21

€e31 + α32 _e31 + α31e31

26664
37775 = 1

c0
〠
4

i=2
GDi~χ1iν1i + 〠

3

i=1
GD i+1ð Þ~χ2iν2i

"

+ 〠
3

i=2
GDi~χ3iν3i + 〠

3

i=1
GD i+1ð ÞeθT1 ið Þϖ1ϕ2i + 〠

3

i=2
GDi
eθT4 ið Þϖ4ϕ3i

#

+ 1
c0

〠
3

j=1
G1j
eθTdj tð Þϖdj

〠
3

j=1
G2j
eθTdj tð Þϖdj

〠
3

j=1
G3j
eθTdj tð Þϖdj

26666666666664

37777777777775
−

1
2ε1c0

� �
R−1
c1 B

T
c1Pc1e1

1
2ε2c0

� �
R−1
c2 B

T
c2Pc2e2

1
2ε3c0

� �
R−1
c3 B

T
c3Pc3e3

26666666664

37777777775
≜ ~E2

ð77Þ

If σ = σð3Þ = diag f0, 0, 0, 1g, with (72) and (73), we
rewrite (75) as

€e11 + α12 _e11 + α11e11

€e21 + α22 _e21 + α21e21

€e31 + α32 _e31 + α31e31

26664
37775 = 1

c0
〠
3

i=1
GDi~χ1iν1i + 〠

2

i=1
GD i+1ð Þ~χ2iν2i

"

+ 〠
3

i=1
GDi~χ3iν3i + 〠

2

i=1
GD i+1ð ÞeθT1 ið Þϖ1ϕ2i + 〠

3

i=1
GDi
eθT4 ið Þϖ4ϕ3i

#

+ 1
c0

〠
3

j=1
G1j
eθTdj tð Þϖdj

〠
3

j=1
G2j
eθTdj tð Þϖdj

〠
3

j=1
G3j
eθTdj tð Þϖdj

26666666666664

37777777777775
−

1
2ε1c0

� �
R−1
c1 B

T
c1Pc1e1

1
2ε2c0

� �
R−1
c2 B

T
c2Pc2e2

1
2ε3c0

� �
R−1
c3 B

T
c3Pc3e3

26666666664

37777777775
≜ ~E3

ð78Þ

where GD = ½GD1,GD2,GD3,GD4�, ν1 = h21K21Wd =
½ν11, ν12, ν13, ν14�T , ν2 = h22K22Wd = ½ν21, ν22, ν23�T , and ν3
= h23K23Wd = ½ν31, ν32, ν33�T , eθdj = θdj − bθdj.

From Equations (76)–(78), we can obtain the state error
equation

_e = Ame + Bm
~Ek = Ame + Bm~Ek

, ð79Þ

where Am = diag fAm1,Am2, Am3g ∈ R6×6 and Ekj is the j th

component of ~Ek, k = 1, 2, 3, Bm~Ek
=
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½BT
m1~Ek1, BT

m2~Ek2, BT
m3~Ek3�T ∈ R6, and Bm = diag fBm1, Bm2,

Bm3g ∈ R6×3.

3.3.2. Adaptive Laws. According to the state error Equation

(79), adaptive laws are chosen for the parameter bθdi and
the parameters χ1iðtÞ, χ2iðtÞ, χ3iðtÞ, θ1ðiÞðtÞ, and θ2ðiÞðtÞ of
the failure compensator as

_bθdi =
1
c0
〠
3

j=1
ΓdiϖdiePjGji, ð80Þ

_χ1i tð Þ =
−
γ1i
c0

〠
3

j=1
ePjGDiν1i i = 2, 3,

−
γ1i
c0

〠
3

j=1
ePjGDiν1i + f χ1i

i = 1, 4,

8>>>>><>>>>>:
ð81Þ

_χ2i tð Þ =
−
γ2i
c0

〠
3

j=1
ePjGD i+1ð Þν2ii = 1, 2 ,

γ2i
c0

〠
3

j=1
ePjGD i+1ð Þν2i + f χ2i

i = 3 ,

8>>>>><>>>>>:
ð82Þ

_χ3i tð Þ =
−
γ3i
c0

〠
3

j=1
ePjGDiν3ii = 2, 3,

−
γ3i
c0

〠
3

j=1
ePjGDiν3i + f χ3i i = 1,

8>>>>><>>>>>:
ð83Þ

_θ1 tð Þ tð Þ =
−
1
c0
〠
3

j=1
Γ1iePjGD i+1ð Þϖ1ϕ2ii = 1, 2,

−
1
c0
〠
3

j=1
Γ1iePjGD i+1ð Þϖ1ϕ2i + f θ1 ið Þ

i = 3,

8>>>>><>>>>>:
ð84Þ

_θ4 tð Þ tð Þ =
−
1
c0
〠
3

j=1
Γ4iePjGDiϖ1ϕ2ii = 2, 3,

−
1
c0
〠
3

j=1
Γ4iePjGDiϖ1ϕ2i + f θ4 ið Þ

i = 1,

8>>>>><>>>>>:
ð85Þ

where Γdi = ΓT
di > 0, Γ1i = ΓT

1i > 0, Γ4i = ΓT
4i > 0, γ1i > 0, γ2i > 0

, and γ3i > 0 are the adaptive gains, and f χ1i
is the projection

algorithm. Consequently, based on adaptive laws _χ11 = −ð
γ11/c0Þ∑3

j=1ePjGD1ν11 + f χ11
, we can derive that 0 ≤ χ11 ≤ 1

and ðχ11 − χ∗
11Þf χ11 ≤ 0. f χ2i , f χ3i

, f θ1ðiÞ , and f θ4ðiÞ have the

same characteristics with f χ1i .

3.3.3. Stability Performance Analysis

(i) For period t ∈ ½T0,∞Þ, σ = σð1Þ. Lyapunov function is
defined as

V0 =
1
2 e

TPe + 1
2〠

3

i=1
eθTdiΓ−1

di
eθdi + 1

2 〠
4

i=1
~χ2
1iγ

−1
1i + 〠

3

i=1
~χ2
2iγ

−1
2i

"

+ 〠
3

i=1
~χ2
3iγ

−1
3i + 〠

3

i=1
eθT1 ið ÞΓ

−1
1i
eθ1 ið Þ + 〠

3

i=1
eθT4 ið ÞΓ

−1
4i
eθ4 ið Þ

#
:

ð86Þ

By differentiating V0 in the interval ½T0,∞Þ, we can
obtain

_V0 =
1
2 e

TAT
mPe +

1
2 e

TPAme +
1
c0

〠
3

j=1
〠
4

i=1
ePjGDi~χ1iν1i

"

+ 〠
3

j=1
〠
2

i=1
ePjGD i+1ð Þ~χ2iν2i + 〠

4

i=1
γ−11i ~χ1i

_~χ1i + 〠
3

i=1
γ−12i ~χ2i

_~χ2i

+ 〠
3

i=1
γ−13i ~χ3i

_~χ3i + 〠
3

i=1
eθT1 ið ÞΓ

−1
1i
_eθ1 ið Þ + 〠

3

i=1
eθT4 ið ÞΓ

−1
4i
_eθ4 ið Þ,

ð87Þ

where eP = ½eP1, eP2, eP3� ∈ R1×3 and ePi are the ði + 1Þ-th col-
umn components of eTP ∈ R1×6, i = 1, 2, 3, and P = diag f
Pc1, Pc2, Pc3g.

Substituting Equations (80)–(85) into (87), one would
have

_V0 =
1
2〠

3

i=1
eTi AT

miPci + PciAmi −
1
εi
PciBmiR

−1
ci B

T
miPci

� �
ei, t ∈ T0, T1½ Þ:

ð88Þ

Based on of Lemma 3, we can obtain

_V0 = −
1
2〠

3

i=1
eTi γ−1i CT

miCmi + εiSi
À Á

ei ≤ 0: ð89Þ

(ii) If actuator u1 fails over the period ðT1,∞Þ, i.e., σ
= σð2Þ, we define

V1 =
1
2 e

TPe + 1
2〠

3

i=1
eθTdiΓ−1

di
eθdi + 1

2 〠
4

i=2
~χ2
1iγ

−1
1i + 〠

3

i=1
~χ2
2iγ

−1
2i

"

+ 〠
3

i=2
~χ2
3iγ

−1
3i + 〠

3

i=1
eθT1 ið ÞΓ

−1
1i
eθ1 ið Þ + 〠

3

i=2
eθT4 ið ÞΓ

−1
4i
eθ4 ið Þ

#
:

ð90Þ

By differentiating V1 in the interval ðT1,∞Þ and
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combining Equations (80)–(84), we can obtain

_V1 = −
1
2〠

3

i=1
eTi γ−1i CT

miCmi + εiSi
À Á

ei ≤ 0: ð91Þ

(iii) Assume that u1 is normal, and only u4 fails at T1
and remains failed on the interval ðT1,∞Þ; that is,
σ = σð3Þ. We define

V2 =
1
2 e

TPe + 1
2〠

3

i=1
eθTdiΓ−1

di
eθdi + 1

2 〠
3

i=1
~χ2
1iγ

−1
1i + 〠

2

i=1
~χ2
2iγ

−1
2i

"

+ 〠
3

i=1
~χ2
3iγ

−1
3i + 〠

2

i=1
eθT1 ið ÞΓ

−1
1i
eθ1 ið Þ + 〠

3

i=1
eθT4 ið ÞΓ

−1
4i
eθ4 ið Þ

#
:

ð92Þ

The time derivative of V2 is

_V2 = −
1
2〠

3

i=1
eTi γ−1i CT

miCmi + εmiSi
À Á

ei ≤ 0, t ∈ T1, T2½ Þ:

ð93Þ

With _Vk, ðk = 0, 1, 2Þ ≤ 0 for three different failure sce-
narios and the adopted projection scheme of adaptive laws,
we can conclude that all the signals in the close-loop system
are bounded, and the output error gradually decreases to
zero over time.

To sum up, the below theorem is obtained.

Theorem 9. For the spacecraft system (1) with potential
uncertain actuator faults (9) and unknown disturbances (4),
controller (68) designed based on an H∞ transient perfor-
mance compensator (49), and its parameter adaptive laws
(80)–(85) can ensure that the system is stable and perform
the given maneuvers asymptotically, if for any failure pattern
σðtÞ belongs to failure pattern set Σ = fσðjÞ, j = 1, 2, 3g. The
following condition holds the following equivalent actuation
matrix. GσðxÞ = GðxÞDðI − σðtÞÞ is a full rank in the domain
U (definition is U ⊂ R6 ⟶V ⊂ R3).

3.3.4. Transient Performance Analysis. Then, the transient
performance is analyzed by the criteria of the bound of both
L∞ and mean square tracking error at any time.

With (45) and (49), we can get the following output
tracking error dynamic equation

ei1 =
Wmi sð Þ
c0i

Gi xð ÞD I − σð Þ v − v∗ð Þ +Gi xð Þ d − d̂
� �h i

:

ð94Þ

Since the order of the stable reference model WmiðsÞ is

pmi, it can be derived from Lemma 5 that

ei1 tð Þk k∞ ≤ 2pmi Wmi sð Þk k∞ Gi xð ÞD I − σð Þ v − v∗ð Þ + Gi xð Þ d − d̂
� �


 


:

ð95Þ

From Theorem 9, we have eθdi ∈ L∞ and ðv − v∗Þ ∈ L∞.
With Lemma 3, one can prove that WmiðsÞ is stable and

Wmi sð Þk k∞ < γi, ð96Þ

and thereby, we have

ei1 tð Þk k∞ =Δ sup
t≥0

ei1 tð Þj j ≤ γici, ð97Þ

where ci > 0. Then, according toðt2
t1

H sð Þxj j2dt ≤ H sð Þk k2∞
ðt2
t1

xj j2dt, ð98Þ

we have

1
t

ðt0+t
t0

ei1j j2dτ ≤ Wmi sð Þk k2∞
1
t

ðt0+t
t0

Gi xð ÞD I − σð Þ v − v∗ð Þj
 

+ Gi xð Þ d − d̂
� ����2dτ� ≤ γ2i ci:

ð99Þ

Theorem 10. For the improved controller (34), the perfor-
mance index of H∞ compensator is γi, and the output track-
ing error ei1 = yi − ymi and i = 1, 2, 3 of the system (32)
satisfies the following inequality condition:

1
t

ðt0+t
t0

ei1j j2dτ ≤ Wmi sð Þk k2∞
1
t

ðt0+t
t0

Gi xð ÞD I − σð Þ v − v∗ð Þj
 

+Gi xð Þ d − d̂
� ����2dτ� ≤ γ2i ci:

ð100Þ

where constant ci > 0.

According to Theorem 10, the transient characteristics
rely on the performance level of the H∞ compensator. Both
Theorem 9 and Theorem 10 show that the control objective
is reached by our proposed control scheme.

4. Simulations

MATLAB/SIMULINK software has been used to carry out
numerical simulations to verify the effectiveness and perfor-
mance of the proposed control scheme. The nominal
moments of inertia parameters J = diag f40:45, 42:09, 42:36
gðkg ⋅m2Þ, orientation matrix of the reaction wheel, and
the external disturbances dðtÞ = ½sin ð0:01tÞ + 1, 1:5 cos ð
0:01tÞ − 1, 2 sin ð0:01tÞ + 1� × 10−3N ⋅m are taken from [36].
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4.1. Simulation Conditions. The attitude values at t = 0 are
given by q0ð0Þ = 0:8834, qð0Þ = ½0:03,−0:02,−0:03�T , and ωð0
Þ = ½0, 0, 0�T . For simulation, the initial values of indicator func-
tion and failure parameter estimates are chosen as: χ1ið0Þ = 1,
i = 1, 2, 3, 4, χ2ið0Þ = 0, χ3ið0Þ = 0, i = 1, 2, 3; θ1ðiÞð0Þ = ½0, 0�T ,
andθ4ðiÞð0Þ = ½0, 0�T . Basis functions of failure model (10) and

disturbance model (4) are ϖ1ðtÞ = ϖ4ðtÞ = ½1, sin ð0:25tÞ�T ∈
R2 and ϖd1 = ϖd2 = ϖd3 = ½1, sin ð0:01tÞ, cos ð0:01tÞ�T ∈ R3.

The design parameters are chosen as γ1i = 1, γ2i = 1, γ3i
= 1, c0i = c0 = 1, γi = 1, Ri = 2, εi = 4, i = 1, 2, 3,

K =
12:2 3:9
8:5 2:7
9:1 2:3

2664
3775,

Γdi =
3:3 0 3:3
0 3:3 3:3
3:3 3:3 3:3

2664
3775,

Γ1i =
16:3 0 0
0 16:3 0
0 0 16:3

2664
3775,

Γ4i =
31:4 0 0
0 31:4 0
0 0 31:4

2664
3775,

Pc1 =
3:53 6:32
1:05 4:39

" #
,

Pc2 =
3:53 10:51
1:05 6:58

" #
,

Pc3 =
3:53 4:23
1:05 3:79

" #
:

ð101Þ

A second-order reference model WmiðsÞ = 1/ðs2 + 2s + 1Þ
and the reference input signal riðtÞ = 0, i = 1, 2, 3, are chosen
to generate the given command ymðtÞ to be tracked by sys-
tem output yðtÞ.

In the numerical simulation, for comparison, three cases
are conducted: (1) attitude tracking control using our pro-
posed modified MRAC based adaptive failure compensation
controller (68) (denoted as “MMRAC based FTC”); (2) atti-
tude tracking control using the standard MRAC-based adap-
tive failure compensation controller (denoted as “SMRAC
based FTC”) without transient performance compensator;
and (3) attitude tracking control using the direct adaptive
failure compensation controller (denoted as “DAC-based
FTC”) in [35]. The attitude tracking responses are analyzed
to study the performances of the controllers.

4.2. Simulation Results. To demonstrate the superior perfor-
mance of the proposed control scheme, two actuator failure
conditions are simulated: Case 1—intermittent fault occur-
ring in actuator u1—and Case 2—Alternate faults occurring
in actuators u1 and u4.

Case 1. Intermittent fault occurring in actuator u1. In this
case, the following failure conditions are considered as
follows:

(i) When 0 ≤ t < 100s, all the reaction wheels function
healthily, uiðtÞ = viðtÞ, i = 1, 2, 3, 4

(ii) When 100s ≤ t < 200s, actuator u1 failed, u1ðtÞ = 2
Nm and uiðtÞ = viðtÞ, i = 2, 3, 4

(iii) When t ≥ 200s, actuator u1 returns to normal, uiðt
Þ = viðtÞ, i = 1, 2, 3, 4

(iv) When t ≥ 300s, actuator u1 is out of control, u1ðtÞ
= 0:75 sin ð0:25tÞNm, uiðtÞ = viðtÞ, i = 2, 3, 4

Figure 2(a) shows the simulated results obtained by
including the faulty actuators for three controllers,
namely the designed MMRAC based fault tolerant con-
troller marked with solid line, the SMRAC-based fault-
tolerant controller marked with dashed line, and the
DAC-based fault-tolerant controller marked with dotted
line. All the three fault-tolerant controllers can compen-
sate for both the constraint and time varying faults,
although the system performance degrades to some
degree, the overshoot a setting time increase significantly
once the failure is introduced. However, the system ulti-
mately regulates the attitude to zero asymptotically; that
is, the attitude stabilization maneuver is still performed
successfully due to the fault-tolerant performance of the
three controllers to uncertain actuator failures. It can be
found from Figure 2(c) at the moments when actuator
u1 failed at t = 100s and t = 300s (shown in Figure 2(b),
which is corresponding with the simulation conditions),
the overshoot of the system implemented by our designed
MMRAC-based fault-tolerant controller are smaller than
the SMRAC- and DAC-based fault-tolerant controller
even before the actuators have failed, and this is because
the effect caused by parameter estimation errors of both
failure and disturbances on the transient performance
has been reduced by the H∞ compensator. These simula-
tions demonstrate the theoretical result that the desired
performance of the system can be achieved by the pro-
posed fault tolerant control even if the faults are
unknown in advance.

Case 2. Alternate Faults Occurring in Actuator u1 and u4. In
this case, the following failure conditions are considered as
follows:

(i) When 0 ≤ t < 100s, all the reaction wheels function
healthily, uiðtÞ = viðtÞ, i = 1, 2, 3, 4
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Figure 2: Continued.
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(ii) When 100s ≤ t < 200s, actuator u1 failed, u1ðtÞ =
3:5Nm and uiðtÞ = viðtÞ, i = 2, 3, 4

(iii) When t ≥ 200s, actuator u1 returns to normal, uiðt
Þ = viðtÞ, i = 2, 3, 4

(iv) When t ≥ 300s, actuator u4 is out of control, u4ðtÞ
= 1:75 sin ð0:25tÞNm,uiðtÞ = viðtÞ, i = 1, 2, 3

This example represents the severe case in which both
two actuators experience failure at the moments of t = 100s
and t = 300s, respectively. Actually, the failure conditions in
Case 2 can be regarded as a mixed pattern of intermittent
failure and permanent failure. As shown in Figure 3(b),

when u1 is stuck at the instant t = 100s and becomes normal
at t = 200s, that is an intermittent failure occurred in actua-
tor u1, which is activated and inactivated by itself. The sys-
tem produces an erroneous result when such fault is active
during the period of 100s ≤ t < 200s and produces a correct
result when it is inactive for t ≥ 200s. At t = 300s, actuator
u4 undergoes time-varying failure and never come back as
normal. Figure 3(a) shows the results using the three differ-
ent control laws based on the same simulation conditions.
Clearly, compared with attitude tracking response for Case
1, the attitude control performance deteriorates severely
due to the multiple uncertainties of actuator failure, with
severe overshoots in the attitude orientation, although the
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Figure 2: Attitude tracking control using MMRAC-, SMRAC-, and DAC-based fault-tolerant control schemes for Case 1.
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Figure 3: Continued.
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objective of asymptotic attitude tracking can be achieved
finally, as clearly indicated from the output tracking errors
present in Figure 3(c).

In summary, for both the normal, intermittent failure and
permanent failure cases, the proposed controller significantly
improves the normal control performance of the closed-loop
attitude system compared to the SMRAC- and DAC-based
fault-tolerant control approaches. For the cases with actuator
faults, the proposed method gives better transient perfor-
mance than those controllers without including the transient

performance compensator. As the faults become more severe,
the proposed controller still guarantees system stability and
asymptotic output tracking of a given command.

Furthermore, comparing the modified control scheme
with different γi (i = 1, 2), it can be found from Figures 2(d)
and 3(d) that with smaller γ1 = 0:1, the compensator takes
more effects on transient oscillations inhibition with a smaller
following error of trajectory than that with γ2 = 3, which keeps
an agreement with the performance analysis by the criterion of
L1 bound or mean squared value.
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Figure 3: Attitude tracking control using MMRAC-, SMRAC-, and DAC-based fault-tolerant control schemes for Case 2.
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5. Conclusions

With multiple uncertain actuator faults, the control system
of rigid spacecraft attitude is optimized by designing an
improved adaptive FTC method in this study. And the major
conclusions are as follows. (1) A model reference adaptive
control algorithm combing with feedback linearization tech-
nology is adopted to propose a basic control law for achiev-
ing the desired closed-loop system performance. Then, as an
additional item of robust adaptive control, an H∞ compen-
sator is introduced to optimize the transient performance.
(2) Based on the modified basic control design, multiple tar-
geted adaptive failure compensators are designed to handle
the corresponding failure patterns. Multiple controllers are
fused into a comprehensive controller by using a weighted
algorithm, thus multiple uncertain actuator faults are solved.
(3) Under different fault conditions with and without addi-
tional transient performance improvers, contrastive simula-
tion analysis of output tracking control is adopted to proof
the significance of the designed theoretical method. (4) The
fault compensation control for spacecraft whose parameters
are known, is researched in this paper. The way to overcom-
ing the fault compensation difficulty on the spacecraft with
unknown system parameters can be found by the further
extended method which is described in this research.
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This paper presents a dynamic surface fixed-time fault-tolerant control strategy for the longitudinal dynamic model of fixed-wing
unmanned aerial vehicles (UAVs). Firstly, a novel disturbance observer is constructed to precisely estimate the lumped
disturbance. Secondly, without fractional power terms in the designed fixed-time fault-tolerant controller, the potential singular
value problem is tactfully avoided, which often exists in the stability analysis of the traditional fixed-time controller design.
Thirdly, a novel fixed-time filter is proposed to overcome the phenomenon of “differential explosion” in the backstepping
control scheme. Lyapunov stability analysis guarantees that the tracking errors can converge to the neighborhood of the origin
in the fixed time. The simulation results verify the effectiveness of the proposed control scheme.

1. Introduction

Fixed-wing UAVs have played an essential role in high-risk
and complex missions due to their flexibility and maneuver-
ability [1]. The complex flight conditions make the UAVs
subject to actuator fault during operation, which may
degrade the stability and robustness of flight control systems,
and even lead to a catastrophic accident, thus requiring to
explore the fault-tolerant control (FTC) of UAVs. Many
researchers have concentrated on addressing the control
problem of fixed-wing UAVs subject to actuator fault,
thereby publishing numerous results regarding passive or
active FTC. Active FTC identifies faults through fault detec-
tion and diagnosis block in real time, while passive FTC uses
a single fixed controller through the robust control strategy
[2–5].

An adaptive control approach consisting of a radial base
function neural network (RBFNN) was proposed for coaxial
octorotor UAV subject to actuator faults [6]. By introducing
a prescribed performance function on the synchronized
tracking errors, the decentralized finite-time adaptive fault-
tolerant synchronization tracking control scheme is pro-
posed for multi-UAVs in the presence of actuator faults

[7]. A distributed adaptive FTC scheme is proposed in vir-
tual of a distributed sliding mode estimator and disturbance
observers [8]. In the presence of actuator fault, the distrib-
uted fault-tolerant output regulation for heterogeneous lin-
ear multiagent systems is proposed using the distributed
fixed-time observer and adaptive fault-tolerant controller
[9]. A constrained control scheme based on model reference
adaptive control is investigated for the longitudinal motion
of a commercial aircraft with actuator faults and saturation
nonlinearities [10]. By using the extended Kalman filter
(EKF) to update the weighting parameters of the neural net-
work (NN), a new online detection strategy is developed to
detect faults in sensors and actuators of UAVs [11].

The external disturbance may degrade the flight perfor-
mance of fixed-wing UAVs directly. Therefore, it is essential
to construct a disturbance observer against its adverse effect.
A disturbance observer combined with a time delay estima-
tion is designed to weaken the influence caused by the
unknown dynamic parameters in the actuator of the rehabil-
itation robot [12]. A novel fixed-time extended state
observer is presented to estimate the state errors and the
total disturbances in the presence of nonlinear couplings,
uncertain parameters, and external disturbances [13]. A
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disturbance observer is incorporated into the control struc-
ture to efficiently estimate the lumped disturbances, includ-
ing modeling inaccuracies and external perturbations [14].
A fixed-time adaptive fast super-twisting disturbance
observer is built to estimate the external disturbance, in
which two tunable gains are adjusted in real time by an
adaptive law [15]. The disturbance observers, as mentioned
above, need to know the upper bound of the external distur-
bance, which may hinder its practical engineering
applications.

Backstepping control schemes have been widely used
in the control system design of fixed-wing UAVs. How-
ever, the repeated derivation of the virtual control law
in the backstepping designs will largely increase the com-
putational complexity, called the “differential explosion”
phenomenon. By introducing a first-order filter to esti-
mate the derivative of the virtual control laws, the
dynamic surface control (DSC) scheme is first proposed
in [16]. An observer-based fuzzy neural dynamic surface
control is presented for a flexible-joint manipulator sys-
tem with input saturation and unknown disturbance
[17]. Moreover, a composite learning fixed-time DSC
scheme is proposed for nonlinear strict feedback systems
with parameter uncertainties [18]. A constrained adaptive
DSC approach is presented for uncertain nonlinear sys-
tems subject to full-state constraints [19].

Unlike the traditional finite-time control schemes, the
upper bound of convergence time is irrelevant to the initial
conditions in the fixed-time control scheme, leading to its
extensive applications in UAVs. By introducing a continu-
ously differentiable switching function, an adaptive fixed-
time control strategy is proposed for autonomous ship land-
ing operations of UAVs [20]. Moreover, a fixed-time con-
troller combined with the obstacle Lyapunov function is
designed for a class of surface ship systems with output con-
straints [21]. Motivated by the practical requirements of
high precision and faster convergence rate for an automatic
carrier landing, a fixed-time nonlinear flight controller is
presented [22]. Anti-saturation coordinated controller is
designed [23], which can guarantee the safe distance con-
straint of each spacecraft in the process of completing the
configuration reconstruction task in a specified time. Using
a distributed fixed-time observer to estimate the states of
the virtual leader, a fixed-time attitude coordinated control
is investigated for multispacecraft systems with unknown
external disturbance [24]. However, those mentioned above
backstepping fixed-time controllers contain fractional power
terms, which may encounter the singular problem caused by
the repeated derivation of the virtual control law.

Inspired by recent results [25–27], a fixed-time fault-
tolerant controller without fractional power terms is pro-
posed for fixed-wing UAVs subject to actuator fault and
external disturbances. The main contributions of this work
are threefold:

(1) Different from the conventional fixed-time algo-
rithm, a simple fixed-time fault-tolerant controller
scheme without fractional power terms is proposed,
which overcomes the potential singularity problem

often encountered in fixed-time backstepping
designs

(2) Unlike the traditional DSC schemes, this paper pro-
poses a simple and smooth fixed-time filter in the
control design, reducing the complexity of the con-
trol system and ensuring dynamic surface filter error
to satisfy fixed-time convergence

(3) A new type of disturbance observer, with an adaptive
term to estimate the upper bound of the lumped dis-
turbance, is proposed, thus leading to an accurate
estimation of the lumped disturbance

The layout of this paper is organized as follows. The
problem formulation and preliminaries are introduced in
Section 2. The construction of the new type of disturbance
observer is described in Section 3. The fixed-time fault-
tolerant controller and a new fixed-time dynamic surface fil-
ter are presented in Section 4. In Section 5, the numerical
simulation indicates the effectiveness of the proposed con-
trol scheme, followed by the conclusions in Section 6.

2. Problem Formulation and Preliminaries

2.1. Model Description. The nonlinear longitudinal dynamic
model of fixed-wing UAV is given as follows:

_γ = L + T sin α

mV −
g
V

cos γ + Δγ,

_α = q − _γ + Δα,

_q = M
Iyy

+ Δq,

ð1Þ

where γ, α and q are the flight-path angle, angle of attack,
and pitch rate, respectively. m represents the mass of the
UAV. g is the gravity acceleration, Iyy denotes the moment
of inertia, Δα, Δγ, Δq represent unknown external distur-
bances, and T = TmaxδT is the engine thrust.

The aerodynamic force and moment of the UAV are
expressed as

L = 0:5ρV2SCL,
M = 0:5ρV2ScCm,

ð2Þ

where ρ denotes the air density and S represents the wing
platform area. CL and Cm are the aerodynamic coefficients
for drag force and pitch moment, respectively. The aerody-
namic force and moment coefficients can be expressed as

CL = CLαα + CL0,

Cm = Cmαα + Cm0 +
cq
2V Cmq + Cmδe

δe,
ð3Þ

where CLα, CL0, Cmα, Cm0, Cmq, Cmδe
represent the aerody-

namic coefficients. δe is the actual elevator deflection.
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2.2. Actuator Faults Model. To account for the actuator
faults, the actual elevator deflection δe can be modeled as

δe = p1δe0 + bf 1, ð4Þ

where δe0 denotes the designed elevator deflection and p1 is
the remaining control effectiveness factor with 0 < p1 ≤ 1. bf 1
is the fault-bias factor.

2.3. System Transformation and Preparation. By substituting
(2)–(4) into (1) and defining the state vector ½x1 x2 x3�T
= ½γ α q�T , u0 = δe0, the longitudinal dynamics can be
rewritten as

_x1 = f1 + g1x2 + d1,
_x2 = f2 + g2x3 + d2

_x3 = f3 + g3u0 + d3,
, ð5Þ

where

f1 =
0:5ρV2SCL0

mV −
g
V

cos γ, f2 = − _γ, g2 = 1,

g1 =
0:5ρV2SCLα + T

mV , g3 =
0:5ρV2ScCmδe

Iyy
,

f3 =
0:5ρV2Sc Cmαα + Cm0 + cq/2Vð ÞCmq

À Á
Iyy

,

d1 = Δγ, d2 = Δα, d3 = Δq + g3 p1 − 1ð Þδe0 + g3bf 1:

ð6Þ

2.3.1. Control Objective. The control objective is to design a
fixed-time fault-tolerant control scheme for the longitudinal
dynamic model of fixed-wing UAVs subject to actuator fault
and external disturbances, such that all the signals in the
closed-loop system are bounded, and the reference signal
tracking error converges to a small neighborhood of the ori-
gin in a fixed time.

Assumption 1. All states of the system (1) are measurable.
Meanwhile, the reference trajectory γd is smoothly bounded
and known.

Assumption 2. There exist unknown positive constants pi
such that jdij ≤ pi with i = 1, 2, 3.

Lemma 3. [28] For a common dynamical system, _xðtÞ = f ðt
, xÞ with xð0Þ = 0 and the origin be an equilibrium point,
where x ∈ Rn and f : R+ × Rn ⟶ Rn. Defining a Lyapunov
candidate, VðxÞ ≥ 0. If we can get that

_V xð Þ ≤ −μ1V xð Þα − μ2V xð Þβ + C, ð7Þ

where μ1, μ2, α, and β are positive real numbers with α ∈ ð0
, 1Þ, β ∈ ð1,∞Þ, then the origin x = 0 of the system is practical
fixed-time stable, and the settling time function Ts can be esti-

mated by

Ts ≤
1

μ1 1 − αð Þ +
1

μ2 β − 1ð Þ : ð8Þ

Lemma 4. [29] For any constant ε > 0 and any variable x ∈ R,
the following inequality holds

xj j − x2ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + ε2

p ≤ ε: ð9Þ

Lemma 5. [26] For any positive real numbers x1, x2,⋯, xn
and α ∈ ð0, 1Þ, one has

〠
n

i=1
xi

 !α

≤ 〠
n

i=1
xαi : ð10Þ

Lemma 6. [30] If xi ≥ 0, i = 1,⋯, n, then, the following
inequality holds

〠
n

i=1
xi

 !2

≤ n〠
n

i=1
x2i : ð11Þ

Lemma 7. [21] For x, y ∈ R, Young’s inequality holds

xy ≤
κp

p
xj jp + 1

qκq
yj jq, ð12Þ

where κ > 0, p > 1, q > 1, and ðp − 1Þðq − 1Þ = 1.

Lemma 8. [19] For any constant δ > 0 and any variable x ∈ R
, the following inequality holds

xj j − x tanh x
δ

� �
≤ kδ, ð13Þ

where k is a positive constant satisfying k = e−ðk+1Þ.

3. Disturbance Observer Design

In this section, a new type disturbance observer is proposed
to eliminate the influence of the lumped disturbances.

3.1. Disturbance Observer Design. The disturbance observer
is given as follows

d̂i = λi1πi + λi2
πiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π2 + εi/λi2ð Þ2
q + λi3π

3
i + p̂i tanh

p̂iπi

δi

� �
,

ð14Þ

where d̂i is the estimation of di and λi1, λi2, λi3, δi, εi are pos-
itive constants, i = 1, 2, 3. p̂i denotes the estimated value of
the upper bound of the external unmatched disturbance sig-
nal. πi is the auxiliary state of the disturbance observer,
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which is governed by

πi = xi − si,

_si = λi1πi + λi2
πiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π2 + εi/λi2ð Þ2
q + λi3π

3
i

+ p̂i tanh
p̂iπi

δi

� �
+ gixi+1 + f i:

ð15Þ

p̂i can be calculated as

_̂pi = πij j − σ1i
ni

p̂i −
σ2i
n2i

p̂3i , ð16Þ

where σ1i, σ2i, ni are positive constants, ~pi = pi − p̂i.
Defining the disturbance observer estimation error, ~di

= di − d̂i. Then, the derivative of πi with respect to time
can be written as

_πi = di − d̂i = ~di: ð17Þ

Remark 9. The disturbance observer design presented in [31]
requires the upper bound of the external unmatched distur-
bance in advance, while the proposed disturbance observer
releases this restrictive condition. Instead of using the sign
function in the disturbance observer design [31], an adaptive
term p̂i tanh ðp̂iπi/δiÞ is introducing in the proposed novel
disturbance observer, which successfully eliminates the chat-
tering phenomenon.

3.2. Stability Analysis

Theorem 10. Consider system (5), and assume that Assump-
tions 1 and 2 hold. If the disturbance observer is designed as
(14) and there exist positive constants λi1, λi2, λi3, δi, εi, σ1i,
σ2i, ni for i = 1, 2, 3, then the estimated error ~pi and auxiliary

state πi converge to sets Ω~pi
= f~pi ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffiffiffiffiffiffiffiffiffi
M/μ2

pq
g,Ωπi

= fπi

≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffiffiffiffiffiffiffiffiffi
M/μ2

pq
g in a fixed time Td ≤ 2/μ1 + 1/μ2, respectively.

Proof. Consider the Lyapunov function candidate as

Vd = 〠
3

i=1

1
2π

2
i +

1
2
~p2i

� �
: ð18Þ

Then, it can be found that

_Vd = 〠
3

i=1
πi _πi + ~pi

_~pi,

= 〠
3

i=1
πidi − λi1π

2
i − λi2

π2
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π2 + εi/λi2ð Þ2
q − λi3π

4
i

2
64

− p̂iπi tanh
p̂iπi

δi

� �
+ p̂i πij j − pi πij j

+ σ1i
ni

~pip̂i +
σ2i
n2i

~pip̂
3
i

3
75:

ð19Þ

According to Lemma 4, we have

−λi2
π2
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π2 + εi/λi2ð Þ2
q ≤ −λi2 πij j + εi: ð20Þ

Relying on Lemma 7, one gets

πidi ≤ λi1π
2
i +

1
4λi1

d2i : ð21Þ

From Lemma 8, we get

p̂i πij j − p̂iπi tanh
p̂iπi

δi

� �
≤ p̂iπij j − p̂iπi tanh

p̂iπi

δi

� �
≤ kδi:

ð22Þ

With regard to the terms ðσ1i/niÞ~pip̂i and ðσ2i/n2i Þ~pip̂3i in
(19), one can find that

σ1i
ni

~pip̂i =
σ1i
ni

~pipi − ~p2i
� �

+ σ1iγiffiffiffiffiffiffi2ni
p ~pi −

σ1iγiffiffiffiffiffiffi2ni
p ~pi

≤
σ1i
ni

1
2
~p2i +

1
2 p

2
i − ~p2i

� �
+ σ1i
2ni

~p2i +
σ1iγ

2
i

4 −
σ1iγiffiffiffiffiffiffi2ni
p ~pi,

ð23Þ

σ2i
n2i

~pip̂
3
i =

σ2i
n2i

−~p4i − 3~p2i p2i + ~pip
3
i + 3pi~p

3
i

� �

≤
σ2i
n2i

−~p4i − 3~p2i p2i +
3θ4/3i

4 p3i
�� ��4/3 

+ 1
4θ4i

~p4i + 3p2i ~p
2
i +

3
4
~p4i

!
,

ð24Þ

where γiθi are two positive constants.
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Substituting (20), (21), (22), (23), and (24) into the
derivative of Vd results in

_Vd ≤ 〠
3

i=1

"
−
ffiffiffi
2

p
λi2

1
2π

2
i

� �1/2
− 4λi3

1
2π

2
i

� �2

−
σ2i θ

4
i − 1

À Á
θ4i n

2
i

1
2
~p2i

� �2
−
σ1iγiffiffiffiffi
ni

p 1
2
~p2i

� �1/2
#
+M,

ð25Þ

where M =∑3
i=1½εi + kδi + ð3σ2iθ4/3i /4n2i Þjp3i j4/3 + ðσ1iγ2i /4Þ +

ððσ1i/2niÞ + ð1/4λi1ÞÞp2i �.
Then, one has

_Vd ≤ −μ1V
1/2
d − μ2V

2
d +M ≤ 0: ð26Þ

According to the above analysis, if Vd ≥
ffiffiffiffiffiffiffiffiffiffiffi
M/μ2

p
, then

_Vd ≤ −μ1Vd
1/2 ≤ 0, we can have that Vd will converge to

the set fVd : Vd ≤
ffiffiffiffiffiffiffiffiffiffiffi
M/μ2

p g in a fixed-time Td ≤ 2/μ1 + 1/
μ2, and thus, estimated error ~pi and auxiliary states πi are
uniformly ultimately bounded in a fixed time Td ≤ 2/μ1 + 1
/μ2.

4. Controller Design

In this section, a fixed-time fault-tolerant controller without
fractional power terms scheme is proposed to eliminate the
singular value problem for a fixed-wing UAV against actua-
tor fault. To prevent the phenomenon of “differential explo-
sion,” a new fixed-time dynamic surface filter is added in the
backstepping design.

4.1. Fixed-Time Controller and Filter Design. The tracking
errors are defined as

z1 = x1 − x1c,
z2 = x2 − x2c,
z3 = x3 − x3c,

ð27Þ

where zi is the tracking error, and xic is the fixed-time filter
output signal, i = 1, 2, 3, γd = x1c.

The filter errors are defined as

y2 = x2c − x2d ,
y3 = x3c − x3d ,

ð28Þ

where xid is the virtual control signal and yi is the error of xic
, xid with yið0Þ = 0, i = 2, 3.

Step 1. According to (27) and (28), we have

_z1 = g1 z2 + y2 + x2dð Þ + f1 + d1 − _x1c: ð29Þ

The virtual control signal is designed as

x2d =
1
g1

−f1 − d̂1 − k11
z1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z21 + εz1/k11ð Þ2
q − k12z

3
1

2
64

−
k13
2 + g2

1
2kf 23

 !
z1 + _x1c

3
75,

ð30Þ

where k11, k12, k13, kf 23, εz1 are positive constants.

Remark 11. Different from the conventional fixed-time algo-
rithm with fractional power terms presented in [22], the
proposed fixed-time controllers do not contain fractional
power terms, which overcome the potential singularity prob-
lem often caused by the repeated derivation of the virtual
control law in fixed-time backstepping designs.

The Lyapunov function candidate is considered to be

V1 =
1
2 z

2
1: ð31Þ

The time derivative of V1 can be represented as

_V1 = z1~d1 − k11
z21ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z21 + εz1/k11ð Þ2
q − k12z

4
1

−
k13
2 + g2

1
2kf 23

 !
z21 + z1z2g1 + z1g1y2:

ð32Þ

By applying Young’s inequality and Lemma 4, one has

z1~d1 ≤
k13z

2
1

2 + 1
2k13

~d
2
1,

−k11
z21ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z21 + εz1/k11ð Þ2
q ≤−k11 z1j j + εz1,

z1g1y2 ≤
g21

2kf 23
z21 +

kf 23
2 y22:

ð33Þ

Then, one has

_V1 ≤
1

2k13
~d
2
1 − k11 z1j j + εz1 − k12z

4
1 + z1z2g1 +

kf 23
2 y22: ð34Þ

Step 2. Using (27) and (28), we have

_z2 = g2 z3 + y3 + x3dð Þ + f2 + d2 − _x2c: ð35Þ
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Figure 1: The curves of wind disturbance.
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Figure 2: Estimation of d1 and d2.
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The virtual control signal is designed as

x3d =
1
g2

−f2 − d̂2 − k21
z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z22 + εz2/k21ð Þ2
q − k22z

3
2

2
64

−
k23
2 + g22

2kf 33

 !
z2 + _x2c − g1z1

3
75,

ð36Þ

where k21, k22, k23, kf 33, εz2 are positive constants.
The fixed-time filter is designed as

_x2c = −kf 21
y2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y22 + εy2/kf 21
À Á2q − kf 22y

3
2 − kf 23y2, ð37Þ

where kf 21, kf 22, kf 23, εy2 are positive constants.

The Lyapunov function candidate is considered as

V2 =
1
2 z

2
2 +

1
2 y

2
2: ð38Þ

The time derivative of V2 can be represented as

_V2 = z2~d2 − k21
z22ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z22 + εz2/k21ð Þ2
q − k22z

4
2

−
k23
2 + g22

2kf 33

 !
z22 − z1z2g1 + z2z3g2

+ z2g2y3 − kf 21
y22ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y22 + εy2/kf 21
À Á2q

− kf 22y
4
2 − kf 23y

2
2 − _x2dy2:

ð39Þ
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Figure 3: Estimation of d3 and control input.
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By applying Young’s inequality and Lemma 4, we have

z2~d2 ≤
k23
2 z22 +

1
2k23

~d
2
2,−k21

z22ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z22 + εz2/k21ð Þ2

q
≤ −k21 z2j j + εz2,−kf 21

y22ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y22 + εy2/kf 21

À Á2q
≤ −kf 21 y2j j + εy2,

z2g2y3 ≤
g22

2kf 33
z22 +

kf 33
2 y23:

ð40Þ

Then, one has

_V2 ≤
1

2k23
~d
2
2 − k21 z2j j + εz2 − k22z

4
2 − z1z2g1

+ z2z3g2 − kf 21 y2j j + εy2 − kf 22y
4
2 − kf 23y

2
2

+
kf 33
2 y23 − _x2dy2:

ð41Þ

Step 3. According to (27) and (28), we have

_z3 = g3u0 + f3 + d3 − _x3c: ð42Þ

The virtual control signal is designed as

u0 =
1
g3

−f3 − d̂3 − k31
z3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z23 + εz3/k31ð Þ2
q

2
64

− k32z
3
3 − k33z3 + _x3c − g2z2

3
75,

ð43Þ

where k31, k32, k33, εz3 are positive constants.
The fixed-time filter is designed as

_x3c = −kf 31
y3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y23 + εy3/kf 31
À Á2q − kf 32y

3
3 − kf 33y3, ð44Þ

where kf 31, kf 32, kf 33, εy3 are positive constants.
Consider the following Lyapunov function candidate

V3 =
1
2 z

2
3 +

1
2 y

2
3: ð45Þ
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Figure 4: Tracking error e1 and the trajectory of γ.
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The time derivative of V3 can be represented as

_V3 = z3~d3 − k31
z23ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z23 + εz3/k31ð Þ2
q − k32z

4
3 − k33z

2
3

− z2z3g2 − kf 31
y23ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y23 + εy3/kf 31
À Á2q − kf 32y

4
3

− kf 33y
2
3 − _x3dy3:

ð46Þ

Similar to the analysis of (33), (40), one has

_V3 ≤
1

4k33
~d
2
3 − k31 z3j j + εz3 − k32z

4
3 − z2z3g2

− kf 31 y3j j + εy3 − kf 32y
4
3 − kf 33y

2
3 − _x3dy3:

ð47Þ

4.2. Stability Analysis

Theorem 12. Consider system (5), and assume that Assump-
tions 1 and 2 hold. The disturbance observer is designed as
(14). The fixed-time controller is built as (30), (36), and
(43), and dynamic filter is constructed as (37) and (44). For
a given constant P1 > 0, if Vð0Þ ≤ P1 and there exist the fol-
lowing positive constants ki1, ki2, ki3, εzi, σ1i, σ2i, ni, λi1, λi2,
λi3, δi, εi, θi, γi for i = 1, 2, 3 and kf i1, kf i2, kf i3, εyi for i = 2, 3,

then, reference signal tracking errors zi and fixed-time filter

errors yi converge to the neighborhood near the origin Ωzi
=

fzi ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffiffiffiffiffiffiffiffi
C/μ4

pq
g,Ωyi

= fyi ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffiffiffiffiffiffiffiffi
C/μ4

pq
g in a fixed time

Ts ≤ 2/μ3 + 1/μ4.

Remark 13. By differentiating x2d , x3d , one can obtain

_x2d = −
∂x2d
∂f1

_f 1 −
∂x2d
∂d̂1

_̂d1 −
∂x2d
∂z1

_z1 −
∂x2d
∂y2

_y2

+ ∂x2d
∂g1

_g1 +
∂x2d
∂ _x1c

€x1c,

_x3d = −
∂x3d
∂f2

_f 2 −
∂x3d
∂d̂2

_̂d2 −
∂x3d
∂z2

_z2 −
∂x2d
∂z1

_z1

−
∂x3d
∂y3

_y3 +
∂x2d
∂g1

_g1 +
∂x2d
∂g2

_g2 +
∂x3d
∂ _x2c

€x2c:

ð48Þ

Because each partial of _x2d and _x3d is a continuous on a com-
pact set ΩV ×ΩVd

, it has

− _xidyi ≤ _xidyij j ≤ kfi3y
2
i

2 +
�M2

id
2kfi3

, ð49Þ

2, 3.

Proof. The Lyapunov function candidate is considered to be

V = 〠
3

i=1
Vi: ð50Þ

The time derivative of V can be represented as

_V = 〠
3

i=1
zi _zi + 〠

3

i=2
yi _yi

≤ 〠
3

i=1
−
ffiffiffi
2

p
ki1

1
2 z

2
i

� �1/2
− 4ki2

1
2 z

2
i

� �2
 !

+ 〠
3

i=2
−
ffiffiffi
2

p
kf i1

1
2 y

2
i

� �1/2
− 4kf i2

1
2 y

2
i

� �2
 !

+ C

ð51Þ

where C =∑3
i=1ðð1/2ki3Þ~d

2
i − ð1/4k33Þ~d

2
3 + εziÞ +∑3

i=2ðεyi + ð
�M2

id/2kfi3ÞÞ.
Equation (51) can be further transformed as

_V ≤ −μ3V
1/2 − μ4V

2 + C, ð52Þ

where μ3 and μ4 can be expressed as μ3 = min f ffiffiffi
2

p
k11,

ffiffiffi
2

p

ki1,
ffiffiffi
2

p
kf i1g, μ4 = min f4k12, 4ki2, 4kf i2g, i = 2, 3.

Note that, from (52), ifV ≥
ffiffiffiffiffiffiffiffiffiffi
C/μ4

p
, then _V ≤ −μ3V

1/2 ≤ 0,
which validates the boundedness of V . The boundedness of V
means the boundedness of zi for i = 1, 2, 3 and yi for i = 2, 3.
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Figure 5: Tracking errors e2 and e3.
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Naturally, it can be shown that the derivative of fixed-time fil-
ter output signal _xic is bounded because of the boundedness of
yi. Then, we can get that the virtual control signal xid is
bounded because yi, z1, and _xic are both bounded.

According to above analysis, one can get that V will con-
verge to the set fV : V ≤

ffiffiffiffiffiffiffiffiffiffi
C/μ4

p g in fixed-time Ts ≤ 2/μ3
+ 1/μ4. Moreover, we have that the tracking errors zi and
the filter errors yii = 1, 2, 3 will converge to the sets

Ωzi
= zi ≤

ffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffiffiffi
C
μ4

svuut
8<
:

9=
;,

Ωyi
= yi ≤

ffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffiffiffi
C
μ4

svuut
8<
:

9=
;:

ð53Þ

5. Numerical Simulations

In this section, comparative method [21] is used to verify the
effectiveness of the proposed composite control scheme. The
detailed parameters of the longitudinal model can refer to [27].

The controller parameters are designed as

k11 = k21 = k31 = 0:1, k12 = k22 = k32 = 0:1, εz1
= εz2 = εz3 = 0:01, k13 = 0:2, k23 = 0:7, k33 = 0:4,

kf 21 = 10, kf 22 = 1, kf 23 = 10, kf 31 = 1, kf 32
= 0:001, kf 33 = 10, εy2 = 0:1, εy3 = 0:0001, θ1
= θ2 = θ3 = 1:1,

λ11 = 10, λ12 = 0:5, λ13 = 0:5, λ21 = 10, λ22
= 0:5, λ23 = 0:5, λ31 = 10, λ32 = 0:5, γ1
= γ2 = γ3 = 0:1,

λ33 = 0:5, ε1 = ε2 = ε3 = 0:5, δ1 = δ2 = δ3

= 0:5, σ11
n1

= σ12
n2

= σ13
n3

= 10, σ21
n21

= σ22
n22

= σ23
n23

= 0:01:

ð54Þ
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Figure 8: Estimation of d3 and control input.
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The reference signal xd is generated through the follow-
ing filter:

γd sð Þ = 5
s + 5 yd sð Þ: ð55Þ

The initial state of the system is that x1ð0Þ = 0, x2ð0Þ =
0, x3ð0Þ = 0 and the disturbance signal including wind dis-
turbance [32] is defined as

Δγ = _ωh, Δα =
_ωh

30

� �
−

_ωx

30

� �
, Δq = _ωx, ð56Þ

where ωx, ωh are wind components.
The reference signal and actuator fault model are

designed as

yd =
3, t < 20
5, t ≥ 20

(
,

p1 = 1, bf 1 = 0, t < 20
p1 = 0:7, bf 1 = 0:07, t ≥ 20

(
: ð57Þ

Case 14. Against actuator fault and slight external
disturbances.

In this simulation, external wind disturbances are con-
sidered to verify the robustness of the proposed composite

control scheme. Figure 1 gives the wind disturbances.
Figure 2 shows the estimated lumped disturbances. One
can find that the compared DO and the proposed DO are
both able to estimate lumped disturbances including actua-
tor fault and external unmatched disturbances. However,
the compared DO exhibits a larger disturbance estimation
error. Curves of elevator deflection are shown as Figure 3.
Figures 4 and 5 illustrate the tracking errors of flight-path
angle, angle of attack, and pitch rate. It can be found that
flight-path angle, angle of attack, and pitch rate react reason-
ably. The proposed controller exhibits smaller tracking
errors than the compared method, when the actuator is fault
at t = 20s.

Case 15. Against actuator fault and severe external
disturbances.

In this simulation, severe wind disturbances are imposed
on the UAV. The other conditions are kept as Case 14.
Figure 6 gives the curves of the wind disturbances.
Figures 7 and 8 illustrate the lumped disturbances estima-
tion. Figures 9 and 10 describe the tracking errors. It can
be seen that the disturbance estimation errors of the pro-
posed DO are much smaller than the compared method. It
is validated that the proposed controller operates well even
though there exist the reinforced wind disturbance and actu-
ator fault.
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Figure 9: Tracking error e1 and trajectories of γ.
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6. Conclusions

In this paper, the fixed-time fault-tolerant tracking control
problem for the fixed-wing UAVs subject to external dis-
turbances and actuator fault has been addressed. To esti-
mate the lumped disturbance with unknown upper
bound precisely, a new disturbance observer has been pro-
posed. A new fixed-time fault-tolerant controller without
fractional power terms has been proposed in this paper,
which overcomes the potential singularity problem often
encountered in fixed-time backstepping design procedures.
Moreover, a new fixed-time dynamic surface filter has
been added in the controller design to prevent the phe-
nomenon of “differential explosion.” Lyapunov stability
analysis has proven the stability of the proposed control
scheme. The simulation results verify the effectiveness of
the proposed method.
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This paper proposes a fault-tolerant cooperative control (FTCC) scheme for multiple UAVs in a distributed communication
network against input saturation, full-state constraints, actuator faults, and unknown dynamics. Firstly, by considering physical
limitations, an auxiliary control signal is designed to simplify the analysis process. Secondly, to avoid the difficulty in the back-
stepping design caused by full-state constraints, virtual control signals are constructed to transform constrained variables, while
the dynamic surface control is adopted to avoid the phenomenon of “differential explosion.” Thirdly, a disturbance observer
(DO) is designed to estimate the unknown uncertainty caused by parameter uncertainty and actuator fault. Moreover, a
recurrent wavelet fuzzy neural network (RWFNN) is used to compensate for the estimation errors of DO. Finally, it is proved
that all states are uniformly ultimately bounded (UUB) by Lyapunov and invariant set theory. The effectiveness of the
proposed scheme is further demonstrated by the simulation results.

1. Introduction

In recent years, the development of unmanned aerial vehicle
(UAV) technology has led to wide applications. However,
single UAV provides limited capabilities, which may not be
applicable to some highly complex tasks. Inspired by multia-
gent technology, researchers begin to investigate the applica-
tion technology of multiple UAVs (multi-UAVs). Compared
with a single UAV, multi-UAVs have more benefits in terms
of forest fire monitoring, area detection, and disaster assis-
tance. Unlike a single UAV, the cooperative control of
multi-UAVs need the information from neighboring UAVs,
which significantly increasing the control design challenge.

As the basis of multi-UAVs control, the cooperative con-
trol design is an important task. In the past few years,
numerous research results of cooperative control have been
reported. In [1], a cooperative control strategy for motion
control of multiple unmanned vehicles was proposed, which
can keep the formation during the motion. In [2], a novel
distributed intermittent control framework for containment
control of multiagent system was proposed, which can

reduce the communication burden via a directed graph. In
[3], the obstacle avoidance problem of multi-UAVs in mul-
tiple obstacle environment was studied. In [4], a robust
adaptive control strategy for cooperative control of UAVs
under the decentralized communication network was pro-
posed against uncertainty. In [5], the authors investigated
the cooperative transport control problem using multirotor
UAVs. In [6], a system analysis method was proposed for
the tracking control problem of multi-UAVs. The distrib-
uted framework was used to describe the dynamic model
of UAV, and the information of nodes and networks were
considered in the distributed control design. [7] studied
the output feedback formation control of multi-UAVs with-
out velocity and angular velocity sensors, which were
obtained via the state observer. However, the above
researches only focused on the distributed control of the
first-order or second-order systems, and there exist few
research on the cooperative control of fixed-wing UAVs
with high-order nonlinear characteristics.

In addition, the number of components in the multi-
UAV system is more than that of a single UAV. Therefore,
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the probability of multi-UAVs suffering from the actuator,
sensor, or component faults is higher than that of a single
UAV. At present, many research results show that the inci-
dence of actuator fault in flight is the highest. Therefore,
many scholars mainly focus on actuator faults [8, 9]. The
probability of actuator fault occurred in the multi-UAVs will
also increase due to the fact that the number of actuators is
significantly increased. When an actuator fault of a UAV
in the communication network occurs and is not handled
in time, it will reduce the stability and threaten the safety
of all UAVs [10], making the investigation on fault-
tolerant cooperative control (FTCC) a necessary task. In
[11], based on the design of inner-outer-loop control and
back-stepping control, an FTCC strategy was designed for
multi-UAVs against permanent faults. In [12], Yu et al. fur-
ther studied the FTCC design method of multi-UAVs by
using a similar control framework of reference generator
technology. It should be emphasized that the results [11,
12] are about the FTCC scheme of multi-UAVs under the
master-slave framework, which cannot be directly applied
to the distributed cooperative control design. Considering
the diversity of research on cooperative control of multi-
UAVs in the communication network, the FTCC scheme
for multi-UAVs under distributed communication network
needs to be further investigated.

Moreover, the actual multi-UAV system often encounters
some problems such as input saturation, inaccurate aerody-
namic parameters, and external interference, which lead to
system instability or performance degradation [13–16].
Recently, many results have been reported to solve the prob-
lem of input saturation. In [17], a piecewise auxiliary system
was introduced to deal with the asymmetric input constraints
for a class of uncertain multi-input and multi-output nonlin-
ear systems. Then, the auxiliary system was further used to
deal with the force and moment constraints on ship [18]. In
[19], another auxiliary signal was constructed using the error
between the desired control input and the saturation control
input. In [20], to solve the disadvantages of conventional
methods based on the hyperbolic tangent function, an nth-
order auxiliary dynamic system was skillfully constructed to
avoid the effect of input saturation.

It should be emphasized that although numerous studies
have been reported on the above literature, few results have
studied the input saturation, inaccurate aerodynamic parame-
ters, and external interference encountered by multi-UAVs in
distributed communication networks at the same time. How-
ever, such factors are inevitable in the formation flight of
multi-UAVs. If these factors are not solved in time, it may lead
to the instability of the networked UAV system.

Furthermore, due to physical limitations, UAV states
should be constrained. However, control strategies devel-
oped recently for multi-UAVs in the distributed communi-
cation network rarely consider these constraints on the
states. Based on the above discussion, this paper proposes a
distributed FTCC scheme for multi-UAVs under the distrib-
uted communication network with input saturation, state
constraints, actuator faults, and unknown dynamics. In this
work, to avoid the difficulty in designing the control policy
due to the input saturation, an auxiliary control signal is

designed to transform the restricted input. To handle the
full-state constraint problem, virtual control signals are
defined to replace the constraints, which can simplify the
back-stepping design. For the unknown nonlinear dynamics
caused by actuator faults and other unknown uncertainties,
disturbance observer (DO) is designed for providing the esti-
mation, while a recurrent wavelet fuzzy neural network
(RWFNN) is adopted to further compensate the estimation
error. In the RWFNN, the online adaptive learning strategy
of parameters is designed based on the Lyapunov theory.
Compared with other existing works, the main contributions
of this paper are as follows:

(1) In [21–23], actuator faults, input saturation, output
constraints, and external disturbances were consid-
ered, while the state constraints were not taken into
account. To obtain satisfactory control performance
against such factors, the FTCC scheme is designed
in this paper by simultaneously considering the state
constraints, actuator faults, and external
disturbances.

(2) Compared with [24–27], which assessed uncertainty
dynamics by designing a DO without compensation
of the DO estimation error, this work further adopts
an RWFNN to offset the estimation error, in which
the parameters are updated by the proposed online
learning strategy.

The organization of this paper is arranged as follows. Sec-
tion 2 describes the preliminaries and problem statement. The
design process of the FTCC scheme and the stability analysis
are given in Section 3. Section 4 shows the simulation results
and analysis. Finally, the conclusion is drawn in Section 5.

2. Preliminaries and Problem Statement

2.1. System Dynamics. In this paper, the cooperative control
of N UAVs is investigated. The set of UAVs is denoted as
Ω = f1, 2,⋯,Ng, and the position dynamics of the ith
UAV is described as

_xi =Vi cos γi cos χi,

_yi =Vi cos γi sin χi,

_zi =Vi sin γi,

8>><>>: ð1Þ

where i ∈Ω, xi, yi, and zi are the positions. Vi, γi, and χi are
velocity, flight path angle, and heading angle, respectively.

The aerodynamic force equations are given by

_Vi =
1
mi

−Di + Ti cos αi cos βið Þ − g sin γi,

_χi =
1

miVi cos γi
Li sin μi + Yi cos μið Þ + Ti sin αi sin μi − cos αi sin βi cos μið Þð Þ,

_γi =
1

miVi
Li cos μi − Yi sin μið Þ − g cos γi

Vi
+

Ti

miVi
cos αi sin βi sin μi + sin αi cos μið Þ,

8>>>>>>>><>>>>>>>>:
ð2Þ

where i ∈Ω, mi and g are the mass of the ith UAV and
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gravitational coefficient, respectively; Ti, Di, Li, Yi are the
thrust, drag, lift, and lateral forces, respectively, and μi, αi,
and βi are the bank angle, angle of attack, and sideslip angle,
respectively.

The attitude kinematic model is expressed as

_αi = qi − tan βi pi cos αi + ri sin αið Þ,
_βi = pi sin αi − ri cos αi + _χi cos γi · cos μi − _γi sin μi,

_μi = pi cos αi +
ri sin αi
cos βi

+ _γi · cos μi tanh βi + _χi sin γi + cos γi sin μi tan βið Þ,

8>>>><>>>>:
ð3Þ

where i ∈Ω. pi, qi, and ri are the angular rates.
The angular rate model is given as

_pi = ci1ri + ci2pið Þqi + ci3L i + ci4N i,

_qi = ci5piri − ci6 p2i − r2i
À Á

+ ci7Mi,

_ri = ci8pi − ci2rið Þqi + ci4L i + ci9N i,

8>><>>: ð4Þ

where i ∈Ω. L i, Mi, and N i are roll, pitch, and yaw
moments, respectively.

The forces Ti, Di, Li, and Yi and the aerodynamic
moments L i, Mi, and N i are expressed as

Ti = Ti maxδTi
,Di =QisiCiD,

Li =QisiCiL, Yi =QisiCiY ,

L i =QisibiCiL ,Mi =QisiciCiM,

N i =QisibiCiN ,

8>>>>><>>>>>:
ð5Þ

where Qi = ρV2
i /2 is the dynamic pressure and si, bi, and ci

represent the wing area, wing span, and mean aerodynamic
chord, respectively. Ti max and δTi

are the maximum thrust
and instantaneous thrust throttle setting, respectively. CiL,
CiD, CiY , CiL , CiM, and CiN are given by

CiL = CiL0 + CiLααi,

CiD = CiD0 + CiDααi + CiDα2α
2
i ,

CiY = CiY0 + CiYββi,

8>><>>: ð6Þ

CiL = CiL0 + CiLββi + CiLδa
δia + CiLδr

δir +
CiLpbipi + CiLrbiri

2Vi
,

CiM = CiM0 + CiMααi + CiMδe
δie +

CiMqciqi
2Vi

,

CiN = CiN 0 + CiN ββi + CiN δia
δia + CiN δr

δir +
CiN pbipi
2Vi

+
CiN rbiri
2Vi

,

8>>>>>>>><>>>>>>>>:
ð7Þ

where δia, δie, and δir are aileron, elevator, and rudder
deflections, respectively. CiL0, CiLα, CiD0, CiDα, CiDα2 , CiY0,
CiYβ, CiL0, CiLβ, CiLδa

, CiLδr
, CiLp, CiLr , CiM0, CiMα,

CiMδe
, CiMq, CiN 0, CiN β, CiN δa

, CiN δr
, CiN p, and CiN r are

aerodynamic derivatives. The definition of the inertial terms
cijðj = 1, 2,⋯, 9Þ in (4) can be found in [28].

2.2. Control-Oriented Model. By defining Xi1 = ½μi, αi, βi�T ,
Xi2 = ½pi, qi, ri�T , and Ui = ½δ1a, δ1e, δ1r�T and substituting
(5), (6), and (7) into (1), (2), (3), and (4), then it follows that

_Xi1 = Fi1 +Gi1Xi2 ð8Þ

_Xi2 = Fi2 +Gi2Ui ð9Þ

where Fi1, Gi1, Fi2, and Gi2 are given by

Fi1 =

0 sin γi + cos γi sin μi tan βi cos μi tan βi

0 −
cos γi sin μi

cos βi
−
cos μi
cos βi

0 cos γi cos μi −sin μi

266664
377775

−Di + Ti cos αi cos βi

mi
− g sin γi

1
miVi cos γi

Li sin μi + Yi cos μi +½

Ti sin αi sin μi − cos αi sin βi cos μið Þ�

−
g cos γi

Vi
+

1
miVi

Li cos μi − Yi sin μi½

+Ti cos αi sin βi sin μi + sin αi cos μið Þ�

266666666666666664

377777777777777775
,

Gi1 =

cos αi
cos βi

0
sin αi
cos βi

−cos αi tan βi 1 −sin αi tan βi

sin αi 0 −cos αi

266664
377775,

Fi2 = Fi21, Fi22, Fi23½ �T

Fi21 = ci1qiri + ci2piqi + ci3�qisibi CiL0 + CiLβi

�
+
CiLpbipi
2Vi

+
CiLrbiri
2Vi

�
Fi22 = ci5piri − ci6 p2i − r2i

À Á
+ ci7�qisici CiM0ð

+CiMααi +
CiMqciqi
2Vi

�
Fi23 = ci8piqi − ci2qiri + ci4�qisibi CiL0 + CiLβ ·

À
βi +

CiLpbipi
2Vi

+
CiLrbiri
2Vi

�
+ ci9�qisibi ·

CiN 0 + CiN βi
+
CiN pbipi
2Vi

+
CiN rbiri
2Vi

� �

8>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>:
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Gi2 =

a11 0 a13

0 a22 0

a31 0 a33

2664
3775,

a11 = ci3�qisibiCiLδa
+ ci4�qisibiCiN δa

,

a13 = ci3�qisibiCiLδr
+ ci4�qisibiCiN δr

,

a22 = ci7�qisiciCiMδe
,

a31 = ci4�qisibiCiLδa
+ ci9�qisibiCiN δa

,

a33 = ci4�qisibiCiLδr
+ ci9�qisibiCiN δr :

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:
ð10Þ

It can be seen that Fi2 and Gi2 have many aerodynamic
parameters. However, it is difficult to obtain accurate aero-
dynamic parameters of UAVs in practical engineering appli-
cations. To facilitate the design of the controller, Fi2 and Gi2
can be decomposed into known items Fi20, Gi20 and
unknown items ΔFi2, ΔGi2, respectively.

Then, the attitude model can be described as

_Xi1 = Fi1 +Gi1Xi2, ð11Þ

_Xi2 = Fi20 + ΔFi2 + Gi20 + ΔGi2ð ÞUi, ð12Þ
where ΔFi2, and ΔGi2 are unknown nonlinear functions
caused by the uncertain parameters, while Fi1, Gi1, Fi20, and
Gi20 are known functions.

Remark 1. Due to the physical constraints, the sideslip angle
βi ≠ ±π/2, and det ðGi1Þ = −sec βi, so Gi1 is invertible. In
addition, Gi2 is related to aerodynamic parameters so that
it is invertible in the flight envelope.

2.3. Actuator Fault and Input Saturation. In this paper, the
actuator fault is considered, which includes gain and bias
failures. Therefore, the fault model can be expressed as [29]

Ui = ρiUi0 +Uif , ð13Þ

where i ∈Ω, Ui0 = ½ui01, ui02, ui03�T represents the designed
control signal, and Ui = ½δia, δie, δir�T is the actual control
signal. ρi = diag fρi1, ρi2, ρi3g with 0 < ρi1, ρi2, ρi3 ≤ 1 repre-
sents the gain fault matrix, and Uif ∈ℝ3 represents bias fault
vector.

In the practical application, the output of the actuator is
limited. In order to avoid the incredible phenomenon caused
by actuator saturation, the designed control signal Ui0 needs
to satisfy the following constraint:

ui0τ min ≤ ui0τ ≤ ui0τ max, τ = 1, 2, 3f g, ð14Þ

where τ = f1, 2, 3g, ui0τ max is a positive constant and ui0τ min
is a negative constant, which is the maximum and minimum
allowable values for the actuator, respectively.

To solve input saturation problem, an auxiliary signal
vi = ½vi1, vi2, vi3�T is used to get control signal Ui0ðviÞ, and
Ui0ðviÞ = ½ui01ðvi1Þ, ui02ðvi2Þ, ui03ðvi3Þ�T, which is expressed
as

ui0τ viτð Þ =
ui0τ max tanh

viτ
ui0τ max

� �
, viτ ≥ 0,

ui0τ min tanh
viτ

ui0τ min

� �
, viτ < 0:

8>>><>>>: ð15Þ

By substituting (13) and (15) into (12), then the attitude
model can be expressed as

_Xi1 = Fi1 +Gi1Xi2, ð16Þ

_Xi2 = Fi20 +Gi20Ui0 við Þ +Di, ð17Þ

where Di = ΔFi2 +Gi20ððρi − I3ÞUi0 +Uif Þ + ΔGi2Ui is an
unknown nonlinear function. Due to Di being related to
auxiliary control signal vi, designing the observer of
unknown function Di for generating the control signal vi
will cause the problem of “algebraic ring,” which is solved
by introducing the following first-order filter:

_vi = −Λvi + ξ, ð18Þ

where Λ is a diagnonal matrix with positive eigenvalue and ξ
is an auxiliary control signal.

Remark 2. As shown in (13), the fault that occurs in the actu-
ator will diminish its ability to provide control input. For
example, the range of motion of the rudder surface can reach
−25 ~ 25 deg in the normal state, while it may deteriorate
into −20 ~ 20 deg after the fault occurs. It seems in the fault
conditions the actuator is more likely to occur saturation,
i.e., cannot reach to the expected control value. In this paper,
the upper and lower boundaries of the control input are
fixed to the values in the normal state of the actuator, and
a hyperbolic function is used to prevent actuator saturation
as shown in (15). Meanwhile, using virtual control signal vi
and ξ to generate the expected control signal Ui0 and using
RWFNN to evaluate uncertainty item Di which contains
the actuator bias section, even though the fault could occur,
the system can still keep stable.

2.4. State Constraints. The states Xi1 = ½μi, αi, βi�T and Xi2
= ½p, q, r�T generally have constraints in the practical appli-
cation. In this paper, such a problem has been concerned.
Due to the fact that states Xi1 and Xi2 have limits, inspired
by works [30, 31], a transformation is used to convert the
restricted states Xi1 and Xi2 to unrestricted states Zi1 and
Zi2:

Zi1τ = ln
Xi1τ − Xi1τ
�Xi1τ − Xi1τ

, ð19Þ
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Zi2τ = ln
Xi2τ − Xi2τ
�Xi2τ − Xi2τ

, ð20Þ

where τ = 1, 2, 3. Xi1τ, Xi2τ, Zi1τ and Zi2τ represent the τth
element of Xi1, Xi2, Zi1, and Zi2, respectively. �Xi1τ and �Xi2τ
represent maximum allowable range of the τth element of
Xi1 and Xi2, respectively, while the Xi1τ and Xi2τ represent
minimum allowable range of the τth element of Xi1 and
Xi2, respectively.

Remark 3. Since (19) and (20) are bijective, Xi1 and Xi2 will
always stay in their own limits if Zi1 and Zi2 are bounded on
∀t ≥ 0.

2.5. Basic Graph Theory. In this paper, an undirected graph
G = fV ,C ,Ag is used to describe the formation flight of
N UAVs. The set of UAVs is described by V = fv1, v2,⋯,
vNg, C ⊆V ×V represents the communication links
between UAVs, and A ∈ RN×N is the adjacency matrix. If
the link between the ith UAV and jth UAV exists, aij = aji
= 1, which are the elements of A . A path from the ith
UAV to the kth UAV can be a sequence vi ⟶ vj ⟶ vk,
where ðvi, vjÞ, ðvj, vkÞ ∈C . If there exists a path between
any two UAVs, then G is a connected graph. A set is defined
as Ni = fj : ðvi, vjÞ ∈C , i ≠ jg, and the degree matrix is

defined as D = diag fdig ∈ℝN×N , where di =∑j∈Ni
aij. The

Laplacian matrix L ∈ℝN×N is denoted as

L =D −A : ð21Þ

Assumption 4. The undirected graph G containing N UAVs
is connected.

Lemma 5. Under Assumption 4, L and L + diag ðΩÞ are
symmetric and positive definite [32].

2.6. Control Objective. In this paper, the control objective is
to design an FTCC scheme for N UAVs, such that the atti-
tude tracking error of each UAVs can be finally uniformly
bounded, while the attitude Xi1 and Xi2 of all UAVs are
always in limits, even when a portion of UAVs is subjected
to actuator saturation and actuator faults.

3. Fault-Tolerant Cooperative Controller
Design and Stability Analysis

In this section, the process of designing the FTCC scheme
for N UAVs will be described. A main method adopted in
the design is transforming the individual tracking error of
each UAV to the synchronization tracking error.

3.1. Fault-Tolerant Cooperative Controller Design. Define the
independent tracking error of ith UAV as ~Zi1 = Zi1 − Zi1d ,
then the cooperative tracking error of ith UAV is defined as

Ei1 = λ1~Zi1 + λ2 〠
j∈Ni

aij ~Zi1 − ~Z j1

� �
, ð22Þ

where Ei1 = ½Ei11, Ei12, Ei13�T , λ1 and λ2 are positive parame-
ters, which are used to regulate the cooperative tracking
performance.

Using the Kronecker product “ ⊗ ”, and define E1 =

½ET
11, ET

21,⋯, ET
N1�T , ~Z1 = ½~ZT

11, ~Z
T
21,⋯, ~ZT

N1�
T
, then the coop-

erative tracking error of all UAVs can be expressed as

E1 = λ1IN + λ2Lð Þ ⊗ I3½ �~Z1: ð23Þ

By recalling Lemma 5, it yields k~Z1k = k½ðλ1 + λ2LÞ−1
⊗ I3�E1k ≤ 1/ðσminðλ1 + λ2LÞÞkE1k, where σminð·Þ repre-
sents the minimum singular value of matrix “·.” Therefore,
~Z1 ⟶ 0 if E1 ⟶ 0.

Using (22), the synchronization error of each UAV Ei1
can be expressed as

Ei1 = λ1 + λ2 〠
j≠i

j∈Ni

aij

 !
~Zi1 − λ2 〠

j≠i

j∈Ni

aij~Zj1: ð24Þ

Differentiating (24) yields

_Ei1 = Ai gi1 Xi1ð Þ _Xi1 − gi1 Xi1dð Þ _Xi1d
À Á

− λ2 〠
j≠i

j∈Ni

aij
_~Zj1

= Ai gi1 Xi1ð Þ _Xi1 − gi1 Xi1dð Þ _Xi1d
À Á

− λ2 〠
j≠i

j∈Ni

aij gi1 X j1
À Á

_X j1 − gi1 X j1d
À Á

_X j1d
À Á

,

ð25Þ

where Ai = λ1 + λ2∑
j≠i
j∈Ni

aij, gi1ðxÞ is ℝ3 ⟶ℝ3×3, x =
½x1, x2, x3�T, which is expressed as

gi1 xð Þ = diag gi1τ xτð Þf g, τ = 1, 2, 3f g,

gi1τ xτð Þ =
�Xi1τ − Xi1τ

xτ − Xi1τð Þ �Xi1τ − xτ
À Á :

8><>: ð26Þ

Substituting (11) into (25) yields

_Ei1 = Aigi1 Xi1ð Þ Fi1 +Gi1Xi2ð Þ − Aigi1 Xi1dð Þ _Xi1d − λ2 〠
j≠i

j∈Ni

aij
_~Zj1:

ð27Þ

Based on the back-stepping control architecture, (27)
can be expressed as

_Ei1 = Aigi1 Xi1ð ÞFi1 − Aigi1 Xi1dð Þ _Xi1d − λ2 〠
j≠i

j∈Ni

aij
_~Zj1

+ Aigi1 Xi1ð ÞGi1 · Xi2 − Zi2 + Ei2 + Zi2dð Þ,
ð28Þ

where Ei2 = Zi2 − Zi2d and Zi2d is a virtual control signal.
By using a low-pass filter, one has

_Zi2d = −k∈1 Zi2d − �Zi2d
À Á

, ð29Þ
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where kϵ1 is a positive constant and �Zi2d is an auxiliary
signal, designed as

�Zi2d = Aigi1 Xi1ð ÞGi1ð Þ−1 λ2 〠
j≠i

j∈Ni

aij
_~Zj1 −Aigi1 Xi1ð Þ Fi1 +Gi1 Xi2 − Zi2ð Þð Þ +Aigi1 Xi1dð Þ _Xi1d −Ki1Ei1

 !
,

ð30Þ

where Ki1 is a positive diagonal matrix.
Defining the filtering error as ϵi1 = Zi2d − �Zi2d , one can

obtain

_ϵi1 = −k∈i1ϵi1 −
_�Zi2d: ð31Þ

By substituting (30) into (28), one can obtain

ET
i1
_Ei1 ≤ −ET

i1Ki1Ei1 + ET
i1Aigi1 Xi1ð ÞGi1 · Ei2

+
1

2hi1
ET
i1Aigi1 Xi1ð ÞGi1



 

2 + hi1
2

ϵi1k k2,
ð32Þ

where hi1 is a positive constant and k·k represents 2-norm of
vector.

To estimate the unknown function Di of each UAV, the
following DO is designed for the ith UAV:

D̂i = k2 Xi2 − X̂i2
À Á

+ k1k2

ð
Xi2 − X̂i2
À Á

dt, ð33Þ

_̂Xi2 = Fi20 +Gi20Ui0 við Þ + D̂i + k1 Xi2 − X̂i2
À Á

, ð34Þ

where k1 and k2 are positive parameters, D̂i is the estimate
of Di.

Define eXi2
=Xi2 − X̂i2 and ~Di =Di − D̂i, one can obtain

_eXi2
+ k1eXi2

= ~Di: ð35Þ

Taking the derivative of (35) and using (33) give

_~Di + k2 ~Di = _D: ð36Þ

From (36), it can be known that the estimation error ~Di

will not converge to zero since _D ≠ 0. In order to estimate
the unknown function Di more accurate, a five-layer
RWFNN is used to estimate the error ~Di of the DO with
defining Δi = ~Di.

The RWFNN structure is illustrated in Figure 1, includ-
ing five layers (input layer, membership layer, rule layer,
composite layer, and output layer) [33]. The components
of the RWFNN are introduced as follows:

Layer 1–Input Layer: Input layer is the first layer, where
ri = ½ri1, ri2,⋯, riv1 �

T is the input features of RWFNN. The
output of layer 1 is expressed as

y 1ð Þ
ij = rij, ð37Þ

where j ∈ f1, 2,⋯, v1g, v1 is the dimension of input features,

and yð1Þij represents the output of jth neuron of Layer 1.
Layer 2–Membership Layer: Layer 2 has v1 rows and v2

columns, and its output can be described as

y 2ð Þ
ijk = e− y 1ð Þ

i j −ci jk
À Á2

/σ2i jk , ð38Þ

where j ∈ f1, 2,⋯, v1g, k ∈ f1, 2,⋯, v2g. v2 is a positive con-
stant, depending on the number of neurons. yð2Þijk denotes the
neuron of layer 2 in row j, column k.

Layer 3–Rule Layer: Layer 3 has v2 neurons, and the out-
put of layer 3 is described as

y 3ð Þ
ik =

Yv1
j=1

y 2ð Þ
ijk , ð39Þ

where k ∈ f1, 2,⋯, v2g, and yð3Þik denotes the kth neuron of
Layer 3.

Layer 4–Composite Layer: Layer 4 also has v2 neurons,
and the input of Layer 4 consists the output of the wavelet
layer, recurrent layer, and Layer 2, where the output of wave-
let layer is described as

ψik = 〠
v1

j=1
wF

ijkϕijk rij
À Á

,

ϕijk rij
À Á

=
1ffiffiffiffiffiffiffi
bijk

q 1 −
rij − aijk
À Á2

b2ijk

" #
e− ri j−aijkð Þ2/2b2i jk ,

ð40Þ

where j ∈ f1, 2,⋯, v1g, k ∈ f1, 2,⋯, v2g, ϕijk is the output of

Layer2

WF

...

...

Layer3

Layer4

Layer5

WF WF

Layer1

...

...

...

...

... ... ......

...

...

...

...

...

...

...

... ... ......

...

...

...

...

...

...

...

... ... ......

...

yi13 yi33yi23
(2) (2)(2)

yi11

rin

ri2

ri1

ri

(2)

yi1
(3)

yi1
(4)

yi1
(5)

yi2
(3)

yi2
(4)

yi2
(5)

yiv2

(3)

yiv3

(4)

yiv3

(5)

yi21
(2) yi31

(2)

yi12 yi32yi22
(2) (2)(2)

𝛴𝛴𝛴

z–1z–1z–1

II II II

Figure 1: The structure of the RWFNN for each UAV.
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the jth neuron of Layer 1 to kth neuron of wavelet layer. ψik
represents the output of kth neuron of wavelet. wF

ijk, aijk, and
bijk represent the connecting weight, translation, and dila-
tion variables, respectively.

The output of Layer 4 is expressed as

y 4ð Þ
ik = y 3ð Þ

ik ψikw
r
iky

4ð Þ
ik t − 1ð Þ, ð41Þ

where yð4Þik is the output of kth neuron of Layer 4. wr
ik and

yð4Þik ðt − 1Þ represent the recurrent weight and the output at
the previous time step of the kth neuron, respectively.

Layer 5–Output Layer: Layer 5 has v3 neurons, which
determines the dimension of the final output. Each neuron’s
output of this layer is given by

y 5ð Þ
il = 〠

v2

k=1
w 5ð Þ

ikl y
4ð Þ
ik , ð42Þ

where l ∈ f1, 2,⋯, v3g, wð5Þ
ikl is the connecting weight, and

yð5Þil denotes the lth neuron of Layer 5.

Using (42), one can express yð5Þi in the following vector
form:

y 5ð Þ
i =ω

5ð Þ
i y 4ð Þ

i ωr
i ,ω

F
i , ci, σi

À Á
, ð43Þ

yð4Þi1 ,⋯, dyð4Þik ,⋯, dð4Þiv2

T� ∈ℝv2×1. ωð5Þ
i ∈ℝv3×v2 , ωr

i ∈ℝ
v2×1, ωF

i

∈ℝv1v2×1, ci ∈ℝv1v2×1, and σi ∈ℝv1v2×1, which are expressed
as

ω
5ð Þ
i = ω5

i1,ω
5ð Þ
i2 ,⋯,ω 5ð Þ

il ,⋯,ω 5ð Þ
iv3

h iT
,

ω
5ð Þ
il = ω

5ð Þ
i1l , ω

5ð Þ
i2l ,⋯,ω 5ð Þ

ikl ,⋯,ω 5ð Þ
iv2l

h iT
,

ωr
i = ωr

i1, ω
r
i2,⋯,ωr

ik,⋯,ωr
iv2

h iT
,

ωF
i = ωF

i1,ω
F
i2,⋯,ωF

ik,⋯,ωF
iv2

h iT
,

ωF
ik = ωF

i1k, ω
F
i2k,⋯,ωF

ijk,⋯,ωF
iv1k

h i
,

ci = ci1, ci2,⋯,cik,⋯,civ2
Â ÃT ,

cik = ci1k, ci2k,⋯,cijk,⋯,civ1k
Â Ã

,

σi = σi1, σi2,⋯,σik,⋯,σiv2

Â ÃT ,
σik = σi1k, σi2k,⋯,σijk,⋯,σiv1k

Â Ã
:

ð44Þ

In this paper, v3 is set as 3 due to the fact that the esti-
mated variable Δi is three-dimensional. Therefore, there

exist optimal values ωð5Þ∗
i , ωr∗

i , ωF∗
i , c∗i , and σ∗

i , such that

Δi = y 5ð Þ∗
i + εi1 =ω

5ð Þ∗
i y 4ð Þ∗

i ωr∗
i ,ωF∗

i , c∗i , σ∗i
À Á

+ εi1, ð45Þ

where εi1 is the approximation error.
To design the adaptive law of weights for estimating the

unknown item, it is needed to obtain the gradient of yð5Þi of
its variables firstly.

Differentiating both sides of yð5Þi , one can obtain

dy 5ð Þ
i = dω 5ð Þ

i · y 4ð Þ
i +ω

5ð Þ
i dy 4ð Þ

i , ð46Þ

To yield dyð4Þi , by the same way, differentiating both

sides of yð4Þik , then

dy 4ð Þ
ik = dy 3ð Þ

ik cik, σikð Þ + dψik ωF
ik

À Á
+ d ωr

iky
4ð Þ
ik t − 1ð Þ

� �
: ð47Þ

For term dyð3Þik , one can obtain it by combining (37), (38),
and (39), that is

dy 3ð Þ
ik = 〠

v1

j=1
dcijk ·

2 y 1ð Þ
ij − cijk

� �
σ2
ijk

Yv1
j=1

y 2ð Þ
ijk

0@ 1A
+ 〠

v1

j=1
dσijk ·

2 y 1ð Þ
ij − cijk

� �2
σ3ijk

Yv1
j=1

y 2ð Þ
ijk

0B@
1CA

= 2 y 1ð ÞT
i − cik

� �
⋄ σikð Þ2 ·

Yv1
j=1

y 2ð Þ
ijk :dcTik

+ 2 y 1ð ÞT
i − cik

� �2
⋄ σikð Þ3:

Yv1
j=1

y 2ð Þ
ijk · dσTik,

ð48Þ

where “⋄” represents dot division between matrices, and
“ð∗Þn” represent the aligned “∗” itself does n times dot prod-
uct. And the cik and σik have been defined in (44).

For the term dψik and dðωr
iky

ð4Þ
ik ðt − 1ÞÞ, there exists

dψ ik = d 〠
v1

j=1
ωF
ijkϕijk rij

À Á !

= 〠
v1

j=1
ϕijk rij
À Á

· dωF
ijk

� �
= ϕik · dω

FT
ik ,

ð49aÞ

d ωr
iky

4ð Þ
ik t − 1ð Þ

� �
= y 4ð Þ

ik

���
t−1

· dωr
ik: ð49bÞ

Then, by combining (50), (48), and (49), dyð4Þik can be
expressed as

dy 4ð Þ
ik = ΓcikdcTik + ΓσikdσT

ik + ΓF
ikdω

FT
ik + Γr

ikdω
r
ik, ð50Þ
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where

Γcik = 2 y 1ð ÞT
i − cik

� �
⋄ σikð Þ2 ·

Yv1
j=1

y 2ð Þ
ijk ,

Γσik = 2 y 1ð ÞT
i − cik

� �2
⋄ σikð Þ3 ·

Yv1
j=1

y 2ð Þ
ijk ,

ΓF
ik = ϕik,

Γr
ik = y 4ð Þ

ik

���
t−1

:

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
ð51Þ

Using (50) and (51), one can further write dyð4Þi as

dy 4ð Þ
i = Γci dci + Γσi dσi + ΓF

i dω
F
i + Γri dωr

i , ð52Þ

where

Γci =

Γci1 0 ⋯ ⋯ ⋯ 0
0 Γci2 ⋯ ⋯ ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 ⋯ ⋯ Γcik ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 ⋯ ⋯ ⋯ ⋯ Γciv2

2666666666664

3777777777775
,

Γσi =

Γσi1 0 ⋯ ⋯ ⋯ 0
0 Γσi2 ⋯ ⋯ ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 ⋯ ⋯ Γσik ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 ⋯ ⋯ ⋯ ⋯ Γσiv2

2666666666664

3777777777775
,

ΓF
i =

ΓF
i1 0 ⋯ ⋯ ⋯ 0
0 ΓF

i2 ⋯ ⋯ ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 ⋯ ⋯ ΓF
ik ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 ⋯ ⋯ ⋯ ⋯ ΓF
iv2

2666666666664

3777777777775
,

Γri =

Γr
i1 0 ⋯ ⋯ ⋯ 0

0 Γr
i2 ⋯ ⋯ ⋯ 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 ⋯ ⋯ Γr
ik ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 ⋯ ⋯ ⋯ ⋯ Γr
iv2

2666666666664

3777777777775
:

ð53Þ

Moreover, using the property of Kronecker product, the

term dωð5Þ
i · yð4Þi in (58) can be transformed to the following

column vector form:

dω 5ð Þ
i · y 4ð Þ

i = In ⊗ y 4ð Þ
i

� �
· d vec ω

5ð ÞT
i

� �� �
, ð54Þ

where “ ⊗ ” represents Kronecker product, and “vecð∗Þ” rep-
resents the operation that converts the aligned “∗” to a col-
umn vector, that means

vec ω
5ð ÞT
i

� �
= ω

5ð ÞT
i1 ,⋯,ω 5ð ÞT

il ,⋯,ω 5ð ÞT
iv3

h iT
: ð55Þ

To simplify the representation, using ω!ð5Þ
i to represent

vecðωð5ÞT
i Þ. Employing (58), (52), and (54) yeilds the follow-

ing total differential equation:

dy 5ð Þ
i = Γ5i dω

! 5ð Þ
i +ω

5ð Þ
i Γci dci +ω

5ð Þ
i Γσi dσi

+ ω
5ð Þ
i ΓF

i dω
F
i +ω

5ð Þ
i Γri dωr

i ,
ð56Þ

where

Γ5i = In ⊗ y 4ð Þ
i : ð57Þ

On the other hand, the total derivative of dyð5Þi can be
expressed as the following total differential form:

dy 5ð Þ
i =

∂y 5ð Þ
i

∂ω!
5ð Þ
i

 !T

dω
! 5ð Þ

i +
∂y 5ð Þ

i

∂ci

 !T

dci +
∂y 5ð Þ

i

∂σi

 !T

dσi

+
∂y 5ð Þ

i

∂ωF
i

 !T

dωF
i +

∂y 5ð Þ
i

∂ωr
i

 !T

dωr
i :

ð58Þ

Hence, one can derive that

∂y 5ð Þ
i

∂ω!
5ð Þ
i

 !T

= Γ5i ,
∂y 5ð Þ

i

∂ci

 !T

=ω
5ð Þ
i Γci

∂y 5ð Þ
i

∂σi

 !T

=ω
5ð Þ
i Γσi ,

∂y 5ð Þ
i

∂ωF
i

 !T

= ω
5ð Þ
i ΓF

i ,

∂y 5ð Þ
i

∂ωr
i

 !T

=ω
5ð Þ
i Γri :

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
ð59Þ

Taking into account (58) and (59) and using the Taylor

expansion, yð5Þi can be expressed as

y 5ð Þ
i = y 5ð Þ∗

i + Γ5i ω
! 5ð Þ

i − ω
! 5ð Þ∗
i

� �
+ω

5ð Þ
i Γci cið −c∗i Þ +ω

5ð Þ
i Γσi σi − σ∗

ið Þ
+ω

5ð Þ
i ΓF

i ωF
i

À
−ωF∗

i

Á
+ ω

5ð Þ
i Γri ωr

i −ωr∗
ið Þ + εi2:

ð60Þ
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Using bΔ i to estimate the unknown item Δi, and it is
expressed as

bΔ i = y 5ð Þ
i + diag sign ET

i2gi2 Xi2ð ÞÀ ÁÀ Á
Ĥi ≜ y 5ð Þ

i + ΓHi Ĥi, ð61Þ

where ΓHi = diag ðsign ðET
i2gi2ðXi2ÞÞÞ and Ĥi is an estimated

value and will be introduced later.

Defining ~Δi = bΔ i − Δi,
eω!ð5Þ
i = ω!ð5Þ

i − ω!ð5Þ∗
i , ~ci = ci − c∗i , ~σi

= σi − σ∗i , ~ωF
i = ωF

i − ωF∗
i , and ~ωr

i = ωr
i − ωr∗

i and combining
(45), (60), and (61), it yeilds

~Δi = Γ5i
eω! 5ð Þ
i + ω 5ð Þ

i Γci~ci + ω 5ð Þ
i Γσi ~σi + ω 5ð Þ

i ΓF
i ~ωF

i

+ ω 5ð Þ
i Γri ~ωr

i + εi2 − εi1 + ΓHi Ĥi:

ð62Þ

Taking the derivative of Ei2 and using (17) and (20), one
can obtain

_Ei2 = _Zi2 − _Zi2d = gi2 Xi2ð Þ Fi20 +Gi20Ui0 við Þ +Dið Þ − _Zi2d ,
ð63Þ

where gi2ðxÞ and x = ½x1, x2, x3�T are

gi2 xð Þ = diag gi2τ xτð Þf g, τ = 1, 2, 3f g,

gi2τ xτð Þ =
�Xi2τ − Xi2τ

xτ − Xi2τð Þ �Xi2τ − xτ
À Á :

8><>: ð64Þ

By using the back-stepping method and defining vid as a
virtual control signal, then _Ei2 can be expressed as

_Ei2 = gi2 Xi2ð Þ Fi20 +Gi20vid +Gi20 Ui0 − við Þð
+Gi20Ei3 +DiÞ − _Zi2d ,

ð65Þ

where Ei3 = vi − vid . In order to reduce computational bur-
den of taking time derivative for virtual control signal vid ,
a filter is used to obtain vid , which is given by

_vid = −kϵ2 vid − �vidð Þ, ð66Þ

where kϵ2 is a positive constant, and �vid is an auxiliary signal,
designed as

�vid = gi2 Xi2ð ÞGi20ð Þ−1 −gi2 Xi2ð Þ Fi20 +Gi20 Ui0 við Þ − við Þ + D̂i + bΔ i + Ĥi

� �h
+ _Zi2d −Ki2Ei2 − Aigi1 Xi1ð Þ ·Gi1Ei1

i
,

ð67Þ

where Ki2 is a positive diagonal matrix.
Define the filter error as ϵi2 = vid − �vid , then one can

obtain from (66) that

_ϵ i2 = −kϵ i2ϵ i2 − _�vid: ð68Þ

Substituting (65) with (67) and (62), with considering j

εi1 − εi2j ≤Hi in which j∗j represents the absolute value of
the matrix “∗”, while defining Ĥi as the estimation of Hi

and ~Hi =H − Ĥi as the estimation error, one can obtain

ET
i2
_Ei2 ≤ −ET

i2K i2Ei2 − ET
i2Aigi1 Xi1ð ÞGi1Ei1 + ET

i2gi2 Xi2ð Þ

Á Gi20Ei3 +Gi20ϵ i2 − Γ 5
i ·
e
ω
! 5ð Þ

i −ω
5ð Þ
i Γci~ci −ω

5ð Þ
i Γσi ~σi −ω

5ð Þ
i ΓF

i ~ω
F
i −ω

5ð Þ
i Γri ~ωr

i

� �
+ ET

i2gi2 Xi2ð Þ�� �� ~H i:

ð69Þ

Taking the time derivative of Ei3 and using (18), one can
obtain

_Ei3 = −Λvi + ξ − _vid: ð70Þ

Design the auxiliary control signal ξ as

ξ =

Λvi + _vid − K i3Ei3 − gi2 Xi2ð ÞGi20Ei2 −
1

Ei3k k2
hi1
2

ϵ i1k k2 + hi2
2

ϵ i2k k2
� �

Ei3,

Ei3k k2 > μib
À Á

,

Λvi + _vid − K i3Ei3 − gi2 Xi2ð ÞGi20Ei2 −
1
μib

hi1
2

ϵ i1k k2 + hi2
2

ϵ i2k k2
� �

Ei3,

Ei3k k2 ≤ μib
À Á

,

8>>>>>>>>>><>>>>>>>>>>:
ð71Þ

where Ki3 is a positive diagonal matrix, and hi1 and hi2 are
positive constants.

By combining (70) and (71), one has

ET
i3
_Ei3≤−ET

i3Ki3Ei3 − ET
i3gi2 Xi2ð ÞGi20Ei2: ð72Þ

Finally, the adaptive laws of RWFNN for the ith UAV
are developed as

_
ω
! 5ð Þ
i = η−1i1 −γi1ω

! 5ð Þ
i + ET

i2gi2 Xi2ð ÞΓ5i
À ÁTh i

,

_ci = η−1i2 −γi2ci + ET
i2gi2 Xi2ð Þω 5ð Þ

i Γci
� �T� �

,

_σi = η−1i3 −γi3σi + ET
i2gi2 Xi2ð Þω 5ð Þ

i Γσi
� �T� �

,

_ωF
i = η−1i4 −γi4ω

F
i + ET

i2gi2 Xi2ð Þω 5ð Þ
i ΓF

i

� �T� �
,

_ωr
i = η−1i5 −γi5ω

r
i + ET

i2gi2 Xi2ð Þω 5ð Þ
i Γri

� �T� �
,

_̂H i = η−1i6 −γi6Ĥ i + ET
i2gi2 Xi2ð Þ�� ��Th i

,

8>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>:

ð73Þ

where γi1 ~ γi5 are discontinuous switching constants to pre-
vent the weights to infinity and γi6 is a positive constant,
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where the switching constants are designed as

γi1 =
0 if ω

! 5ð Þ
i




 


2 ≤ �ω 5ð Þ,

�γi1 if ω
! 5ð Þ
i




 


2 > �ω 5ð Þ,

8>><>>: ð74aÞ

γi2 =
0 if cik k2 ≤�c,
�γi2 if cik k2 >�c,

(
ð74bÞ

γi3 =
0 if σik k2 ≤ �σ,

�γi3 if σik k2 > �σ,

(
ð74cÞ

γi4 =
0 if ωF

i



 

2 ≤ �ωF
i ,

�γi4 if ωF
i



 

2 > �ωF
i ,

8<: ð74dÞ

γi5 =
0 if ωr

ik k2 ≤ �ωr
i ,

�γi5 if ωr
ik k2 > �ωr

i ,

(
ð74eÞ

where �ωð5Þ, �c, �σ, �ωF
i , and �ωr

i are positive constants, which

represent the boundness of weight ω
!ð5Þ

i , ci, σi,ωF
i ,ωr

i ,
respectively.

To this end, the proposed FTCC scheme is shown in
Figure 2 to better illustrate the design principle and func-
tional components in the control system.

Remark 6. Many papers choose multiplication on input and
recurrence data as an operation on the neuron of the com-
posite layer in RWFNN. However, it is sometimes problem-
atic. For example, when inputs from layer 3 are minuscule,
the outputs of the composite neuron will also become
exceedingly small under multiplication. Under the limitation
of computational precision, the outputs are equal to zero.
Since the outputs will loop to the next multiplication, the
outputs will always be zero, which causes neuron inactiva-
tion. Therefore, this paper uses the addition operation as

an alternative, and the back-propagation gradient is deduced
in detail using vectorized expressions, i.e., (46)–(59).

3.2. Stability Analysis

Theorem 7. Consider the N UAVs (1)–(4) under the distrib-
uted communication network against the actuator faults (13),
states constraints, and input saturation (15), if the control
laws are chosen as (30), (67), and (71), the disturbance
observers are developed as (33), and (34), and the adaptive
laws are constructed as (73), (74a); then, all the states in the
system are ultimately uniformly bounded and strictly con-
fined within the limits.

Proof. Choose a Lyapunov function as

V =
1
2
〠
N

i=1
ET
i1E

T
i1 + ET

i2E
T
i2 + ET

i3E
T
i3 + ηi1 ·

e
ω
! 5ð ÞT
i
e
ω
! 5ð Þ
i

�
+ ηi2~cTi ~ci + ηi3~σ

T
i σi + ηi4 · ~ω

FT
i ~ωF

i + ηi5~ω
rT
i ~ωr

i

+ ηi6 ~H
T
i
~H i + ϵTi1 · ϵ i1 + ϵTi2ϵ i2

i
:

ð75Þ

By taking the time derivative of V , combining (32), (69),
(72), (31), and (68) and using Young inequality, one has

_V ≤ 〠
N

i=1
−ET

i1Ki1Ei1 − ET
i2Ki2Ei2 − ET

i3Ki3 · Ei3
À Á

+ 〠
N

i=1

1
2hi1

ET
i1Aigi1 Xi1ð ÞGi1



 

2 + hi1
2

ϵ i1k k2
�

+
1

2hi2
ET
i1gi2 Xi2ð ÞGi20



 

2 + hi2
2

ϵ i2k k2

− γi1
e
ω
! 5ð ÞT

i ω
!
i − γi2~cTi ci − γi3 · ~σ

T
i σi − γi4~ω

FT
i ωF

i

− γi5~ω
rT
i ωr

i − γi6 ~H
T
i Ĥi − kϵi1 −

1
2

� �
ϵ i1k k2

− kϵ i2 −
1
2

� �
ϵ i2k k2 + 1

2
_�Zi2d




 


2 + 1
2

_�vi2


 

2�:

ð76Þ

Constraints
transformation

(18, 19) 

Cooperative tracking
error of ith UAV

(21) 

Communication network

Auxiliary
controller (17) 

Limited
expected

controller (14)

Actual control input
with limits (13)
and faults (12)

The dynamics of ith
UAV(10, 11) 

RWFNNAdaptive laws
(70, 71) 

Obtain auxiliary
control signal

(28, 29, 63, 64, 68 )+
-

Nonlinear disturbance
observer (32, 33)

+
-

Xi1d
Zi1d

Zi1

Ei1

Ui Ui0

Vi

Xi1,Xi2

Xi1,Ei1,Xi2

Zi1
~

Zj1,Zj2
~ ~

Di

𝚫i

𝜉

Figure 2: The proposed control scheme for the ith UAV.
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Under the condition of (74a), the term γi1
e
ω
!ð5ÞT

i ω
!
i has the

following property:

−γi1
e
ω
! 5ð ÞT
i ω

! 5ð Þ
i ≤ �γi1 �ω 5ð Þ + 2 ω

! 5ð Þ∗


 


2 − 1
2
e
ω
! 5ð Þ
i





 



2
 !

: ð77Þ

The reason is as follows:

When �ωð5Þ ≥ kω!ð5Þ
i k

2
, γi1 = 0, then

−γi1
e
ω
! 5ð ÞT
i ω

! 5ð Þ
i = 0 ≤ �γi1 �ω 5ð Þ − ω

! 5ð Þ
i




 


2� �
= �γi1 �ω 5ð Þ − ω

! 5ð Þ∗
i + eω! 5ð Þ∗

i





 



2
 !

≤ �γi1 �ω 5ð Þ − ω
! 5ð Þ∗
i

��� ��� − e
ω
! 5ð Þ∗

i

���� ����



 



2
 !

≤ �γi1 �ω 5ð Þ + 2 ω
! 5ð Þ∗

i

��� ���T eω! 5ð Þ∗
i

���� ���� − e
ω
! 5ð Þ∗
i





 



2
 !

≤ �γi1 �ω 5ð Þ + 2 ω
! 5ð Þ∗

i




 


2 − 1
2
e
ω
! 5ð Þ∗

i





 



2
 !

:

ð78Þ

On the other hand, when �ωð5Þ < kω!ð5Þ
i k

2
, γi1 = �γi1, then,

−γi1
e
ω
! 5ð ÞT

i ω
! 5ð Þ
i = −�γi1

e
ω
! 5ð ÞT

i ω
! 5ð Þ∗
i + eω! 5ð Þ

i

� �
≤ −

1
2
�γi1

e
ω
! 5ð ÞT
i





 



2 − ω
! 5ð Þ∗

i




 


2 !
:

ð79Þ

Hence, by combining (78) and (79), one can obtain (77).
By the same way, one can conclude that

−γi2~cTi ci ≤ �γi2 �c + 2 c∗k k2 − 1
2

~cik k2
� �

,

−γi3~σ
T
i σi ≤ �γi3 �σ + 2 σ∗k k2 − 1

2
~σik k2

� �
,

−γi4~ω
FT
i ωF

i ≤ �γi4 �ωF + 2 ωF∗

 

2 − 1
2

~ωF
i



 

2� �
,

−γi5~ω
rT
i ωr

i ≤ �γi5 �ωr + 2 ωr∗k k2 − 1
2

~ωr
ik k2

� �
:

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

ð80Þ

Furthermore, the term γi6 ~H
T
i Ĥi in (76) satisfies that

−γi6 ~H
T
i Ĥi ≤ −

1
2
γi6 ~Hi



 

2 − Hik k2
� �

: ð81Þ

Substituting (76) with (77), (80), and (81) then yeilds

_V ≤ 〠
N

i=1
−ET

i1 Ki1 −
1

2hi1
Aigi1 Xi1ð ÞGi1k k2

� �
· Ei1 − ET

i2

�
Á Ki2 −

1
2hi2

gi2 Xi2ð ÞGi20k k2
� �

Ei2 − ET
i3Ki3Ei3

�
+ 〠

N

i=1
−
1
2
�γi1

e
ω
! 5ð Þ
i





 



2 − 1
2
�γi2 · ~cik k2 − 1

2
�γi3 ~σik k2

"

−
1
2
�γi4 ~ωF

i



 

2 − 1
2
�γi5 · ~ωr

ik k2 − 1
2
γi6 ~Hi



 

2
− kϵi1 −

1 + hi1
2

� �
· ϵ i1k k2 − kϵ i2 −

1 + hi2
2

� �
ϵ i2k k2

�
+ δ,

ð82Þ

where δ is

δ = 〠
N

i=1

1
2

_�Zi2d




 


2 + 1
2

_�vi2


 

2 + �γi1 �ω 5ð Þ + 2 ω

! 5ð Þ∗


 


2� ��
+ �γi2 �c + 2 c∗k k2

� �
+ �γi3 �σ + 2 σ∗k k2

� �
+ �γi4 �ωF + 2 ωF∗

 

2� �

+ �γi5 �ωr + 2 ωr∗k k2
� �

+
1
2
γi6 Hik k2

�
:

ð83Þ

By choosing the parameters Ki1 and Ki2 as

Ki1 =Ki10 +
1

2hi1
Aigi1 Xi1ð ÞGi1k k2

Ki2 =Ki20 +
1

2hi2
gi2 Xi2ð ÞGi20k k2

8>>><>>>: , ð84Þ

respectively, where Ki10 and Ki20 are positive diagonal

UAV 1 UAV 2

UAV 3UAV 4

Figure 3: Communication topology.

Table 1: Initial attitudes of all UAVs.

μi 0ð Þ (rad) αi 0ð Þ (rad) βi 0ð Þ (rad)
UAV 1 0.01 0.01 0.01

UAV 2 -0.015 -0.015 -0.015

UAV 3 0.02 0.02 0.02

UAV 4 -0.025 -0.025 -0.025
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Figure 4: Bank angles μi and references μid of all UAVs (i = 1, 2, 3, 4).
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Figure 9: Control input signals δia, δie, and δir of each UAVs (i = 1, 2, 3, 4).
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matrices, (82) can be expressed as

_V ≤ −cV + δ, ð85Þ

where c is

c =min λmin 2Ki10ð Þ, λmin 2Ki20ð Þ, λmin 2Ki30ð Þ,f
η−1i1 �γi1, η

−1
i2 �γi2, η

−1
i3 �γi3, η

−1
i4 �γi4, η

−1
i5 �γi5, η

−1
i6 �γi6, 2kϵi1

− 1 − hi1, 2kϵi2 − 1 − hi2
É
:

ð86Þ

The expressions _�Zi2d and _�vid can be respectively obtained
from (30) and (67), given by

_�Zi2d =
∂�Zi2d
∂Xi1

_Xi1 +
∂�Zi2d
∂Ei1

_Ei1 +
∂�Zi2d
∂Xi1d

_Xi1d +
∂�Zi2d

∂ _Xi1d

€Xi1d

+ 〠
j≠i

j∈Ni

aij
∂�Zi2d
∂Zj1

_Zj1 +
∂�Zi2d
∂Xi2

_Xi2 +
∂�Zi2d
∂Zi2

_Zi2,

_�vid =
∂�vid
∂Xi1

_Xi1 +
∂�vid
∂Xi2

_Xi2 +
∂�vid
∂vi

_vi +
∂�vid
∂D̂i

_̂Di +
∂�vid
∂bΔ i

_bΔ i

+
∂�vid
∂Ĥi

_̂Hi +
∂�vid
∂ _Zi2d

€Zi2d +
∂�vid
∂Ei1

_Ei1 +
∂�vid
∂Ei2

_Ei2:

ð87Þ

Define the following two vectors Xd and Ed

Xd = col X1d ,⋯,Xid ,⋯,XNdf g,
Xid = col Xi1d , _Xi1d , €Xi1d

È É
,

(
Ed = col E1d ,⋯,Eid ,⋯,ENdf g,
Ei = col Ei1, Ei2, Ei3f g:

( ð88Þ

For any constants �BXd
> 0, �BE > 0, the sets X ≔ fXd

: kXdk2 ≤ �BXd
g and E ≔ fEd : kEdk2 ≤ �BEg are compact

ones. Then, P ≔X ×E is also compact. Due to the fact that
_�Zi2d and _�vid both are continuous function, considering the
continuous property, there exists a constant δM > 0 when ∀
ðXd , EdÞ ∈P such that

_�Zi2d




 


2 + _�vid


 

2 ≤ δM: ð89Þ

Therefore, there exists a constant �δ > 0 satisfying

δ ≤ �δ,∀ Xd , Edð Þ ∈P : ð90Þ

For any constant �BE, there exists several parameters and
initial condition satisfying

V 0ð Þ ≤ �δ/c < 2�δ/c ≤ �BE , ð91Þ

such that

V tð Þ ≤
�δ

c
,∀t ≥ 0, ð92Þ

and E is an invariant set.
The above result (92) can be approved by contradiction.

Since the reference input Xd must be bounded, that leads to

Xd ∈X on ∀t ≥ 0. Assuming ∃t1, Vðt1Þ > �δ/c, due to V is a
continuous function, considering the continuous property,

there exists a moment t0 such that Vðt0Þ = �δ/c,Vðt0+Þ > �δ/c
. Noticing kEdk2 ≤ 2V in (75), there exists kEdðt0Þk2 ≤ 2�δ/c.
Considering (91) yields ðXdðt0Þ, Edðt0ÞÞ ∈P , so δðt0Þ ≤ �δ.

Moreover, by taking account of (85), one can derive _Vðt0Þ
≤ −cVðt0Þ + δðt0Þ = −�δ + δðt0Þ ≤ 0. Hence, that causes Vð
t0+Þ ≤ Vðt0Þ, which leads contradiction. This completes the

proof of (91). Furthermore, considering kEdk2 ≤ 2V and
(92), (91), one can derive E is an invariant set.

Therefore, all the signals in the system are uniformly
bounded, and the states Xi1, Xi2 are always within their con-
straints.

4. Simulation Results and Analysis

To illustrate the effectiveness and the superiority of the pro-
posed FTCC scheme in this paper, using MATLAB/Simulink
to simulate four UAVs whose communication topology is
shown in Figure 3.

Figure 3 shows the communication network, and the
parameters of UAVs are referred to [28]. The element aij
of the adjacency matrix A is defined as 1 if the link between
ith UAV and jth UAV existed; otherwise, aij = 0. The initial
attitudes of all UAVs are presented in Table 1, and the initial
angular rates are defined opposite as values of attitudes. The
initial values of Vi, χi, and γi of all UAVs are set as 30m/s,
0.01 rad and 0.01 rad, respectively.

Assuming the safe range of the attitudes μi, αi, andβi of
all UAVs are −8 ~ 8 deg, and the corresponding angular
velocity pi, qi, ri are −0:25 ~ 0:25 rad/s. In addition, the max-
imum operation range of control surfaces δia, δie, and δir are
−25 ~ 25 deg.

Therefore, for any ith UAV, the upper bound �Xi1 and the
lower bound X i1 of states Xi1 are defined as ½8, 8, 8�T deg and
−½8, 8, 8�T deg, respectively. Similarly, the upper bound �Xi2
and the lower bound X i2 of states Xi2 are ½0:25,0:25,0:25�T
rad/s and −½0:25,0:25,0:25�T rad/s, respectively. The upper
bound ui0τ max and the lower bound ui0τ min are −25deg
and 25deg, respectively.

The main control parameters are chosen as Ki10 = diag
f5, 5, 5g, Ki20 = diag f20,20,20g, Ki3 = diag f30,30,30g, ηi1
= ηi2 = ηi3 = ηi4 = ηi5 = 1:5, ηi6 = 1:8, kϵi1 = kϵi2 = 100, hi1 =
hi2 = 20, and μib = 0:001.
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To verify the effectiveness of the proposed FTCC scheme
under actuator fault, the following fault signals are chosen:

ρ1 = ρ2 = ρ3 = ρ4 = 1,

U1f =U2f =U3f =U4f = 0∘
t < 8ð Þ

(
ρ1 = diag 0:7,0:9,0:8f g,
ρ2 = ρ3 = ρ4 = 0,

U1f = 3∘, 2∘, 4∘½ �T ,
U2f =U3f =U4f = 0∘,

8 ≤ t < 10ð Þ,

8>>>>><>>>>>:
ρ1 = ρ2 diag 0:7,0:9,0:8f g,
ρ3 = ρ4 = 0,

U1f =U2f = 3∘, 2∘, 4∘½ �T,
U3f =U4f =U4f = 0∘,

10 ≤ t < 12ð Þ,

8>>>>><>>>>>:
ρ1 = ρ2 = ρ3 = diag 0:7,0:9,0:8f g,
ρ4 = 0,

U1f =U2f =U3f = 3∘, 2∘, 4∘½ �T ,
U4f = 0∘,

12 ≤ t < 14ð Þ,

8>>>>><>>>>>:
ρ1 = ρ2 = ρ3 = ρ4 = diag 0:7,0:9,0:8f g,
U1f =U2f =U3f =U4f = 3∘, 2∘, 4∘½ �T :

t ≥ 14ð Þ
(

:

ð93Þ

Remark 8. The reason of choosing the main control param-
eter briefly describes as follows. The parameter K i10 decides
the closed-loop dynamics of _Ei1, which can be approximated
as _Ei1 ≈ −K i1Ei1 + ET

i1Aigi1ðXi1ÞGi1Ei2 + hi1/2 · kϵi1k2 accord-
ing to (32) and (84), and the term ET

i1Aigi1ðXi1ÞGi1Ei2 + hi1
/2 · kϵi1k2will rapidly reduce due to the response of inner-
loop dynamics Ei2and ϵi1 are converge rapidly, then, it can
be further represented as _Ei1 ≈ −K i10Ei1, so that the settling
time of the dynamic Ei1 approximately equal to 3/λminð
K i10Þ. There exists a tradeoff – a larger value K i10 helps to
reduce the settling time while it needs larger change of the
state Xi2, which may cause saturation, so K i10 is taken as
diag f5, 5, 5g. Similarly, parameters K i20 and K i3 decide the
convergence rate of the inner-loop control errors Ei2 and
Ei3, respectively, and their values normally take several times
as the K i10 to get faster response. Moreover, for parameters
ηi1 ~ ηi6, their inverses serve as learning rates of neural net-
work, which usually take as a value among 1 ~ 1000 for fixed
rate learning algorithms. In addition, parameters kϵi1 and kϵi2
are adjustment factors of dynamic surface filter, which are
usually taken as a large value. Finally, for μib, it can adjust
the astringency of the error Ei3, which is the smaller the bet-
ter, but the too small value will tend to cause virtual control
signal “explosion”.

The response of bank angle μi, angle of attack αi, and
sideslip angle βi of each UAV are shown in Figures 4–6,
respectively. It can be seen that all UAVs can track their ref-

erences μid , αid , and βid . Although the fault occurs to UAV 1,
UAV 2, UAV 3, and UAV 4 at 8 s, 10 s, 12 s, and 14 s, respec-
tively, all UAVs can quickly track individual references
again.

The response of state Xi2 is shown in Figure 7. It can be
seen that the states pi, qi, and ri of all UAVs never exceed its
upper or lower bound. Meanwhile, if the state constraints are
not considered in the FTCC scheme, the states q1 and q3 will
exceed the lower bound, which is shown in Figure 8. In addi-
tion, the control input signals δia, δie, and δir are presented
in Figure 9. Since the actuator constraint scheme (15) is
adopted, the input signals never exceed their upper and
lower bounds.

5. Conclusion and Future Work

This paper has explored an FTCC scheme for multi-UAVs
under the distributed communication network, in which
the issues including input saturation, state constraints, actu-
ator faults, and unknown disturbances have all been taken
into account.

It can be noted that the proposed FTCC scheme only
considers fixed and undirected communication network. In
addition, communication delay and communication inter-
ferences are not considered, and finite-time convergence
technology has not been considered in the FTCC scheme,
so the control performance cannot be achieved in finite time.
Moreover, compared to the Euler attitude angles, the airflow
attitude angles are necessary and easy to combine with the
UAV’s outer loop for position control, hence in this paper,
it is directly used in the attitude control. However, using
the airflow attitude angles for feedback control is less reliable
than the former. Furthermore, sensor fault may occur at the
same time, which perhaps outweigh the risk of actuator
fault, so it deserves more attention and investigation. Finally,
state measurements have been directly used in the control
law without considering noise filtering, so that the perfor-
mance may be degraded when sensor measurements have
severe noises. Taking into account the noise filtering algo-
rithms and sensor faults simultaneously will significantly
increases the difficulty of proving the closed-loop system sta-
bility, which makes the issue challenging.

Therefore, in future work, the essence of communication
delays, finite-time convergence technology, the reliability of
using airflow attitude angle, sensor fault, and noise filtering
will be taken into account on the basis of existing research.
Besides, based on the simulation results from MATLAB/
Simulink, the hardware-in-the-loop verification scheme will
be adopted to further verify the proposed control scheme
towards more practical applications.
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For the vertical landing process of reusable rockets, the landing accuracy is likely to be affected by disturbances and faults during
flight. In this paper, a fault-tolerant guidance method based on the MPC framework is put forward. First, we propose a piecewise
guidance algorithm that combines a trajectory optimization algorithm based on convex optimization with the MPC framework.
With the fast trajectory optimization algorithm and the MPC framework that recursively introduces the real-time state, this
algorithm forms a robust closed loop. Then, we design an integrated guidance, navigation, and control (GNC) system to
enhance the fault tolerance and robustness of the guidance method. Simulation experiments verify that this method is fault-
tolerant to various fault conditions including navigation system failures, control system failures, drag coefficient deviations, and
atmospheric density deviations. This guidance method is robust enough to overcome disturbances and faults, and it has great
potential for online use.

1. Introduction

Launching a rocket is a high-cost and high-risk investment,
and there is growing concern about how to make it econom-
ical. Building reusable rockets is an effective way to reduce
costs and create business value. At present, many countries
have invested plenty of research in rocket recovery technol-
ogy. Two US companies, Blue Origin and SpaceX, have suc-
cessfully conducted rocket recovery experiments, proving
the feasibility of vertical landing technology. The rocket
recovery mission is generally divided into four flight phases:
the attitude adjustment phase, the power deceleration phase,
the aerodynamic deceleration phase, and the vertical landing
phase [1], so as to ensure that the rocket lands vertically and
softly at the predetermined location. The recovery process is
confronted with difficulties including large spans of airspace
and velocity domain, large changes in the flight environ-
ment, complex flight constraints, and strong disturbances

and uncertainties, any of which may lead to errors. The
accumulated errors generated by preceding phases must be
eliminated in the vertical landing phase which is the last
phase of the recovery mission [2]. The time is short but
the precision is high. Therefore, extremely high require-
ments are placed on the guidance speed and accuracy of this
phase. Research on fast and accurate guidance method of
rocket vertical landing phase is the basis for successfully
recovering a rocket.

The study of the landing problem began with the Apollo
project. Due to the limited computing ability, researchers
could only apply analytical guidance law in that era [3].
Unlike the lunar landing mission, more complex path con-
straints and rigorous terminal conditions must be consid-
ered for rocket vertical landing problems. However, the
derivation of the analytical method is cumbersome, making
it unsuitable for most complex nonlinear problems [4].
Thanks to the research on numerical methods by
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mathematicians and the development of computers’ com-
puting ability [2], the trajectory optimization of rocket verti-
cal landing problems mainly relies on numerical algorithms
these days.

The vertical landing problem can be expressed as an
optimal control problem with the objective of minimum fuel
consumption, subject to the constraints of dynamic equa-
tions and the constraints on state and control variables. It
can be transformed into a nonlinear programming problem
(NLP) through time discretization. Early studies found that
the pseudospectral methods had high accuracy in solving
NLP. In recent years, these methods have been widely used
for trajectory optimization problems. Chen and Xia [5] used
a pseudospectral method to analyze the ascent trajectory
characteristics of a solid rocket-powered launch vehicle.
Mu et al. [6] planned the Mars landing trajectory by the
Gauss pseudospectral method. However, the real-time per-
formance and convergence of these methods cannot meet
the requirements of online guidance [2]. Subsequent studies
have shown that convex optimization is more advantageous
for online trajectory optimization. As long as the problem is
transformed into a convex optimization form, it can theoret-
ically be solved in polynomial time by the interior point
method [7]. Convex optimization was first applied to Mars
landing [8, 9]. In order to convert the landing problem into
a convex problem, Açıkmeşe et al. [10] proposed a lossless
convexification method to deal with thrust constraints and
proved that the lossless convexification problem is equiva-
lent to the original problem, which greatly promoted the
development of convex optimization methods in the field
of trajectory optimization. However, not all constraints can
be convexified by lossless convexification. A more general
approach is successive convexification, which linearizes the
original nonconvex problem into a series of convex subprob-
lems and then iteratively finds the optimal solution of the
subproblems. In 2013, Lu and Liu [11] proposed successive
convexification for convexifing dynamic equations and other
nonconvex constraints when they studied the rendezvous
problem. They later used this method to solve the hyper-
sonic vehicle reentry problem [12] and the rocket landing
problem [13]. The advantages of convex optimization
including computational efficiency and insensitivity to initial
guesses make it an efficient method for solving trajectory
optimization problems. It is widely used in the aerospace
field, such as low-thrust transfers [14], rendezvous problem
[15], re-entry problem [12], and the vertical landing prob-
lem studied in this paper.

There are two commonly used coordinate systems for
modeling rocket vertical landing problems, the velocity
coordinate system [16–20] and the landing point coordinate
system [21–25]. In this paper, the three-degree-of-freedom
dynamics of the rocket are derived based on the landing
point coordinate system. Since Szmuk et al. [21] applied suc-
cessive convex optimization to solve the rocket vertical land-
ing problem in 2016, research on trajectory optimization of
landing problems has become more and more abundant
and mature. The current research focus is to improve the
convergence performance and solution efficiency of succes-
sive convex optimization, so that the approach can meet

the needs of online guidance. In Ref. [24], a convex feasible
set (CFS) method is proposed to convexify the angle of
attack constraint which is a nonconvex-nonconcave inequal-
ity. Ref. [25] presents a two-stage successive convexification
method. Simulation experiments show that the performance
of the two-stage method is more stable and efficient than the
single-stage method. Ref. [26] compares the computational
performance and solution accuracy of six discretization
methods. In Ref. [18], an online update strategy for trust
regions is proposed to speed up the convergence of succes-
sive convex optimization.

However, the rocket will be affected by wind interference
and environmental uncertainties after entering the atmo-
sphere, and modules such as the navigation system and the
control system may malfunction during the landing process.
Trajectory optimization alone cannot overcome these distur-
bances and faults. Therefore, it is necessary to design an
online fault-tolerant guidance method to ensure landing
accuracy. A fault-tolerant control method has been proposed
to deal with parametric uncertainties and unknown actuator
failures [27]. But there is a lack of research on guidance
methods for vertical landing problems at present. In Ref.
[22], a receding horizon guidance method based on convex
optimization is proposed. Ref. [28] and Ref. [29] both pro-
pose to construct a guidance, navigation, and control
(GNC) system for closed-loop guidance, but they do not give
a specific algorithm.

In recent years, some researchers put forward a guidance
method based on trajectory optimization and model predic-
tive control (MPC) framework. MPC is a control strategy
that recursively solves an optimal control problem with
updated system states at each sampling time. Ref. [30] pre-
sents the MPC algorithm for the optimal guidance and
reconfiguration of swarms of spacecraft. In Ref. [31], MPC
is used for asteroid landing. Ref. [32] reviews applications
of MPC in the aerospace guidance field. For the online guid-
ance problem of the rocket vertical landing phase, a succes-
sive convexification + MPC guidance algorithm is proposed
by Ref. [33]. Ref. [19] embeds a pseudospectral-improved
successive convexification (PISC) algorithm in the MPC
framework to construct a parallel feasibility-guaranteed
guidance algorithm. Ref. [34] designs an antidelay model
predictive control (AD-MPC) scheme for carrier landing.
Ref. [35] implements a successive convexification MPC-
based guidance algorithm to solve the six-degree-of-freedom
powered descent guidance problem.

In this paper, we propose a piecewise guidance algorithm
that embeds a convex optimization-based trajectory optimi-
zation algorithm in the MPC framework. An integrated
GNC system is then designed to further improve the fault
tolerance and robustness of the entire system. The rest of
this paper is organized as follows. In Section 2, a mathemat-
ical description of the rocket vertical landing problem is
given. Section 3 elaborates the online trajectory optimization
algorithm based on convex optimization, including convex-
ification and discretization methods for transforming the
original problem into a second-order cone programming
(SOCP) problem. In Section 4, the trajectory optimization
algorithm is embedded in the MPC framework, and a
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piecewise guidance method is proposed to cope with the
bang-bang characteristic of the control. Section 5 designs
an integrated GNC system. In Section 6, simulation experi-
ments are carried out to verify the reliability, accuracy,
robustness, and fault tolerance of the guidance method. Sec-
tion 7 concludes the whole work.

2. Problem Formulation

In this section, we use the inertial reference frame to formu-
late the fuel-optimal rocket vertical landing problem as a
standard optimal control problem.

2.1. Dynamics and Constraints. The rocket’s flight time dur-
ing the vertical landing phase is so short that the Earth’s sur-
face can be assumed to be a horizontal plane. Based on this
assumption, we build an inertial reference frame with the
origin O located at the predetermined landing point as
shown in Figure 1. The OX axis is perpendicular to the
plane, and the upward direction is positive. The OY axis is
parallel to the plane, and the direction pointing to the
rocket’s launch point is positive. The OZ axis and the other
two axes form a right-handed Cartesian coordinate system.

In this reference frame, the rocket’s three-degree-of-free-
dom dynamics are

_r tð Þ = v tð Þ,

_v tð Þ = T tð Þ +D tð Þ
m tð Þ + g,

_m tð Þ = −
T tð Þk k
Ispg0

,

8>>>>>><
>>>>>>:

ð1Þ

where rðtÞ, vðtÞ, and mðtÞ represent the position vector,
velocity vector, and mass of the rocket, respectively. TðtÞ is
the thrust vector of the rocket engine. k·k represents the 2-
norm of the vector.

During the landing phase, the constraints on thrust mag-
nitude and direction are expressed as

Tmin ≤ T tð Þk k ≤ Tmax, ð2Þ

T tð Þk k cos ηmax ≤ exT tð Þ, ð3Þ
where Tmin and Tmax represent the minimum and maximum
thrust magnitude that the engine can provide, respectively.
ηmax is the maximum allowable value of the angle between
the thrust direction and the OX direction. DðtÞ is the aero-
dynamic drag calculated by the following formula:

D tð Þ = −
1
2 ρSDCD v tð Þk kv tð Þ, ð4Þ

where ρ is the air density, SD is the drag reference area, and
CD is the drag coefficient.

To prevent the rocket from colliding with the ground or
being interfered with by the ground protrusion during flight,
a glide-slope constraint is imposed to restrict the path of the

rocket to lie within an upward-facing cone:

r tð Þk k cos θmax ≤ exr tð Þ, ð5Þ

where ex represents the unit vector in the OX direction. θmax
is the maximum allowable half-cone angle.

We also need to consider boundary conditions. The
rocket’s initial position vector, velocity vector, and mass
are specified as fixed parameters. Its final position and veloc-
ity vectors are fixed, too. The thrust vector at the terminal
time must be in the OX direction. The fuel remaining of
the rocket must be nonnegative, which means that the land-
ing mass of the rocket must be greater than the dry mass
which is denoted as mdry. The boundary conditions are sum-
marized as

r 0ð Þ = r0, v 0ð Þ = v0,m 0ð Þ =m0, ð6Þ

r t f
� �

= 0, v t f
� �

= 0, T t f
� �

= T t f
� ��� ��ex,m tf

� �
≥mdry:

ð7Þ

2.2. Performance Index. The performance index of the fuel-
optimal rocket vertical landing problem is selected as mini-
mizing the fuel consumption, which is equivalent to maxi-
mizing the terminal mass of the rocket. Therefore, the
objective function is expressed as

J = −m tf
� �

: ð8Þ

To sum up, with thrust vector T as the control variable

and ½rT , vT ,m�T as the state variables, the rocket vertical
landing problem can be formulated as an optimal control
problem with free terminal time:

Problem0 : min
T

J = −m tf
� �

,

subject to 1ð Þ 2ð Þ 3ð Þ 5ð Þ 6ð Þ 7ð Þ:
ð9Þ

Y

Z

O

X
Rocket

𝜃max

𝜂max

x

Figure 1: Inertial reference frame.
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3. Trajectory Optimization Algorithm Based on
Convex Optimization

In this section, we will elaborate on the trajectory optimiza-
tion algorithm based on convex optimization and embedded
in the subsequent guidance system. This includes the use of
convexification and discretization methods to convert Prob-
lem0 into a convex problem, as well as iteratively solving the
converted problem afterward.

3.1. Convexification. The thrust magnitude constraint in
Problem0 is nonconvex. Its nonconvex feasible region can
be relaxed through lossless convexification to form a high-
dimensional convex feasible region, transforming the non-
convex constraint into a relaxed convex constraint. Using
the above method, we introduce a slack variable Γ to trans-
form Eq. (2) into

T tð Þk k ≤ Γ tð Þ, ð10Þ

Tmin ≤ Γ tð Þ ≤ Tmax: ð11Þ
By replacing the nonconvex constraint (Eq. (2)) in Prob-

lem0 with the convex constraints (Eqs. (10) and (11)), the
nonconvex problem is converted into a relaxed problem.
Studies have shown that the optimal solution to the relaxed
problem is also the optimal solution to Problem0 [8–10].
Taking T and Γ as control variables, that is, the control var-

iables are redefined as u = ½Γ, TT �T . The dynamics are trans-
formed into

f x, uð Þ =

_r tð Þ = v tð Þ

_v tð Þ = T tð Þ +D tð Þ
m tð Þ + g

_m tð Þ = −Γ
Ispg0
� �

2
6666664

3
7777775
: ð12Þ

The nonlinearity of Eq. (12) is caused by the free termi-
nal time, aerodynamic drag DðtÞ, and the denominatormðtÞ.
It can be linearized through successive convexification. In
this paper, the terminal time is added to the optimization
variables, which will be optimized together with the state
and control variables in the subsequent optimization pro-
cess. t f in Eq. (12) is a hidden variable. Define τ ≜ t/t f . Apply
the chain rule to make t f explicit:

dx
dt

= dx
dτ

dτ
dt

: ð13Þ

Eq. (12) is transformed into

dx
dτ

= f x, uð Þt f : ð14Þ

We adopt successive convexification to iteratively solve
Eq. (14). The first-order Taylor expansion is performed at

the kth iteration to transform Eq. (14) into

dx
dτ

= f xk, uk
� �

tkf + A xk, uk
� �

x − xk
� �

tkf

+ B xk, uk
� �

u − uk
� �

tkf + f xk, uk
� �

t f − tkf
� �

,
ð15Þ

where Aðxk, ukÞ and Bðxk, ukÞ are the gradients of fðx, uÞ
with respect to the state variables x = ½rT , vT ,m�T and con-

trol variables u = ½Γ, TT �T , respectively.
3.2. Discretization. The problem is still infinite-dimensional
after convexification and needs to be discretized into a
finite-dimensional problem. We adopt the trapezoidal dis-
cretization to discretize the problem. This requires the time
of flight to be evenly divided into N discrete intervals, i.e.,
N + 1 discrete points (the value of N in each guidance cycle
will be discussed later). The subscript iði = 1,⋯,N + 1Þ rep-
resents the ith discrete point of the state or control variable,
then, Eq. (15) is discretized as

xi+1 = xi +
1
2N Ak

i xi − xki
� �

tkf
�

+Bk
i ui − uki
� �

tkf + fki t f
�

+ 1
2N Ak

i+1 xi+1 − xki+1
� �

tkf
�

+ Bk
i+1 ui+1 − uki+1
� �

tkf +fki+1t f
�
,

ð16Þ

where Ak
i =Aðxki , uki Þ, Bk

i = Bðxki , uki Þ, and fki = fðxki , uki Þ.
After discretization, constraints (3), (5), (6), (7), (10),

and (11) are transformed into

T ik k cos ηmax ≤ exT i, ð17Þ

rik k cos θmax ≤ exri, ð18Þ
r1 = r0, v1 = v0,m1 =m0, ð19Þ

rN+1 = 0, vN+1 = 0, TN+1 = TN+1k kex,mN+1 ≥mdry, ð20Þ
T ik k ≤ Γi, ð21Þ

Tmin ≤ Γi ≤ Tmax: ð22Þ
3.3. Trajectory Optimization Algorithm. Define Hi = I + tkf /ð
2NÞAk

i , Hi+1 = −I + tkf /ð2NÞAk
i+1, Gi = tkf /ð2NÞBk

i , Gi+1 = tkf /ð
2NÞBk

i+1, Fi = ðfki + fki+1Þ/ð2NÞ, Ci =Ak
i x

k
i t

k
f + Bk

i u
k
i t

k
f . Equa-

tion (16) can be expressed as

Hixi +Hi+1xi+1 + Giui +Gi+1ui+1 + Fi =
1
2N Ci + Ci+1ð Þ:

ð23Þ

The terminal time t f is added to the control variables for
optimization. Combine the discretized forms of state vari-

ables x = ½rT , vT ,m�T , control variables u = ½Γ, TT �T and t f
into a joint optimization variable Z, that is, define Z =
½xT1 ,⋯, xTN+1, uT1 ,⋯, uTN+1, t f �T , then, Eq. (23) can be
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transformed into the following matrix form:

MZ = C, ð24Þ

where

M =

I 0 ⋯ 0
H1 H2 ⋯ 0
⋮ ⋮ ⋱ ⋮

0 0 ⋯ HN

0
0
⋮

HN+1

0 0 ⋯ 0
G1 G2 ⋯ 0
⋮ ⋮ ⋱ ⋮

0 0 ⋯ GN

0
0
⋮

GN+1

0
F1

⋮

FN

2
666664

3
777775,

C = 1/ð2NÞ

2Nx1

C1 + C2

⋮

CN + CN+1

2
666664

3
777775:

Problem0 is transformed into

Problem1 : min
Γ,T ,t f

J = −mN+1,

subject to 24ð Þ 17ð Þ 18ð Þ 19ð Þ 20ð Þ 21ð Þ 22ð Þ:
ð25Þ

Problem1 is an SOCP problem that can be solved itera-
tively using the interior-point algorithm. The solution steps
are shown in Figure 2.

The convergence condition in Figure 2 is

max
i

xk+1i − xki
��� ��� ≤ εx ,  max

i
uk+1i − uki
��� ��� ≤ εu, ð26Þ

which means that if the difference between the values of
the optimization variables of two consecutive iterations is
within the specified tolerance range, the iteration should be
stopped and the optimal solution is obtained.

4. Piecewise Guidance Algorithm Based on
MPC Framework

In this section, on the basis of the trajectory optimization
algorithm based on convex optimization detailed in the pre-
vious section, a piecewise guidance method combining the
trajectory optimization algorithm with the MPC framework
is proposed. At each sampling time, the real-time state of the
rocket fed back by the navigation system is employed as the
initial state to start the trajectory optimization algorithm.
Then, the optimal values of a series of control variables from
the current time to the landing point are obtained. But only
the values in the current guidance cycle are applied to con-
trol the rocket until the next sampling time. Repeat these
steps until the rocket lands at the predetermined point. Since
the trajectory optimization algorithm needs to be provided
with an initial guess, the optimization result obtained at
the previous sampling time can be used as the initial trajec-
tory at the current sampling time. The computational effi-
ciency of the trajectory optimization algorithm based on
convex optimization makes it possible for the guidance algo-

rithm to form an effective closed loop. In addition, the prac-
tice of recursively introducing the real-time state of the
rocket into the trajectory optimization ensures the stability,
robustness, and fault tolerance of the closed-loop.

The piecewise method is to cope with the thrust magni-
tude’s bang-bang characteristic. Bang-bang control means
the control amount changes dramatically in a short period
near the switching point. If the duration of each guidance
cycle is too long and a fault occurs near the switching point,
the trajectory will deviate from the optimal solution.

The piecewise guidance algorithm based on MPC frame-
work is shown in algorithm 1, where ti represents the sam-
pling time of the ith trajectory optimization, T i represents
the terminal time obtained by the ith trajectory optimiza-
tion, T represents the thrust series from the current time
to the landing point, while T i contains only the portion
within the ith guidance cycle, Δt is the duration of each
guidance cycle which is set initially, and Δti is the actual
duration of the ith guidance cycle, Δti = ti+1 − ti.

Over time, the time horizon of the optimization becomes
shorter, and the number of discrete points for trajectory
optimization within the guidance cycle should also be
reduced accordingly. The number of discrete points taken
by the ith trajectory optimization algorithm is determined by

Ni = Ni−1
T i−1 − ti
T i−1 − ti−1

� 	
, ð27Þ

where the ceiling function is defined as dxe =min fn ∈ℤjn
≥ xg. ðT i−1 − ti−1Þis the time horizon of the ði − 1Þth

Start

Initialize x0, u0

Solve
problem1

Get xk, uk

Is the convergence
condition satisfied?

Optimal solution:
x⁎ = xk, u⁎ = uk

No optimal
solution

Is the max number of
iterations reached?

N

N

YY

Figure 2: Solution steps for the trajectory optimization problem.
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optimization, and ðT i−1 − tiÞ is the estimate of the time hori-
zon of the ith optimization.

5. Integrated GNC System Design

In actual flight, a key technology to realize fault-tolerant
guidance is designing a guidance, navigation, and control
(GNC) system. The whole GNC system is closed-loop,
where the navigation system consists of a variety of sensors
for real-time measurement and evaluation of states includ-
ing the rocket’s position, velocity, and mass, the guidance
system consists of the guidance algorithm proposed in the
previous section to solve the landing trajectory, and the con-
trol system consists of the actuators to control the rocket to
track the trajectory. The guidance system needs to provide
the real-time state of the rocket to the guidance system
before the trajectory optimization. And the control com-
mands derived from the guidance algorithm need to be exe-
cuted by the control system. Thanks to the division of labor
and rapid cooperation of each system, the integrated GNC
system has strong fault tolerance and robustness against var-
ious disturbances and faults including navigation system
failures, control system failures, drag coefficient deviations,
and atmospheric density deviations.

In this section, an integrated GNC system is built, as
shown in Figure 3. In a guidance cycle, based on the current
state rðtiÞ, vðtiÞ,mðtiÞ fed back by the navigation system, the
guidance system adopts the trajectory optimization algo-
rithm based on convex optimization to generate an optimal
thrust series T (where J i−1 represents the initial guess which
is the optimal trajectory of the last guidance). The control
system outputs the thrust command T i of the current guid-
ance cycle and transmits it to the rocket, and the rocket sys-
tem executes the command accordingly. In the simulation
experiments, we use numerical integration to integrate the
state of the rocket after one guidance cycle, which is used
to simulate the real-time state of the rocket. Yet in actual
flight, the state is measured by the navigation system and
transmitted to the guidance system. Here comes the next
guidance cycle, repeat the above until the rocket lands. The

piecewise guidance algorithm proposed in the previous sec-
tion and the integrated GNC system designed in this section
ensure the fault tolerance of the guidance method.

6. Simulation Experiments

In this section, numerical simulations are provided to verify
the reliability, accuracy, fault tolerance, and robustness of
the proposed guidance method. All simulation experiments
are carried out on MATLAB with the use of the modeling
tool CVX [36, 37] to establish the guidance problem and
the solver MOSEK [38] to solve it. We employ the fourth-
order Runge-Kutta integration with a 0.01 s time step to
obtain updated states at each sampling time. The parameters
used in the simulations are shown in Table 1.

The number of discrete points for the first trajectory
optimization is: N = 40. Assuming r0i , v

0
i , and m0

i vary line-
arly from the initial value to the terminal value, then, the ini-
tial guesses for all optimization parameters are

r0i = r f − r0
� � i − 1ð Þ

N
+ r0,

v0i = v f − v0
� � i − 1ð Þ

N
+ v0,

m0
i = mdry −m0

� � i − 1ð Þ
N

+m0,

Γ0
i = Tmin, T0

i =
−Γ0

i v
0
i

v0i
�� �� ,

t0f = 40s:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð28Þ

The convergence condition is

εr = 10−3m, εv = 10−3m/s, εm = 10−3kg, εΓ = 10−3kN: ð29Þ

6.1. Reliability and Accuracy. In this subsection, we conduct
the simulations in the absence of any faults and deviations.
Figures 4 and 5 show the trajectories and control commands

Piecewise guidance algorithm based on MPC framework
Initialization: Save the initial trajectory to the database, set relevant parameters required by the trajectory optimization algorithm,
and set the update index i = 1.
1 whileðT i−1 − ti−1Þ > 0
2 generate guidance commands according to the guidance cycle clock;
3 sample the current state xðtiÞ(i.e. rðtiÞ, vðtiÞ,mðtiÞ) of the rocket;
4 employ the optimal trajectory J i−1 which was obtained in the previous guidance cycle as the initial guess. Start the trajectory
optimization using the current state xðtiÞ. Obtain a new optimal trajectory J i and an optimal thrust series T. Save J i to the database,
implement T i, and set i = i + 1;
5 if a fault occurs and ti approaches the switching point
6 shorten the duration of the guidance cycle: Δti = α ⋅ Δt ð0 < α < 1Þ ;
7 else
8 Δti = Δt ;
9 end if
10 end while

Algorithm 1: Piecewise guidance algorithm based on MPC framework.
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of the rocket vertical landing phase obtained by the trajec-
tory optimization algorithm and the guidance method pre-
sented in this paper, respectively. The red curves represent
the results of the trajectory optimization algorithm, and
the black is the guidance method. The differences between
the results are small, demonstrating the reliability of the
guidance method. We then perform numerical integration
using the control commands to obtain the actual terminal
states. Tables 2 and 3 show the terminal states and landing
errors, respectively. It can be seen that the landing position
and velocity errors of the guidance method are smaller than
those of the trajectory optimization algorithm, which proves
that the guidance method proposed in this paper has higher
accuracy.

6.2. Fault Tolerance and Robustness. In this subsection, we
assume three scenarios: faults occur in the navigation sys-
tem, faults occur in the control system, and estimates of
parameters (the drag coefficient and the atmospheric den-
sity) have deviations. Considering these scenarios, we apply
the trajectory optimization algorithm and the guidance
method proposed in this paper to conduct simulation exper-
iments, respectively, and compare their results.

6.2.1. Faults Occur in the Navigation System. It is assumed
that the navigation system has faults. Rather, the measure-

ment of the real-time state of the rocket has the following
errors:

rmeasurek k = rtruek k ±min 10, rtruek k × ε%ð Þ × random 0, 1ð Þ,
vmeasurek k = vtruek k ±min 1, vtruek k × ε%ð Þ × random 0, 1ð Þ,

(

ð30Þ

where 10 and 1 represent the absolute errors of the rocket’s
position and velocity, ε represents the maximum range of
the relative error, randomð0, 1Þ represents a random num-
ber generated from [0,1], rtrue, vtrue represents the actual
state of the rocket, and rmeasure, vmeasure represents the state
measured by the navigation system and fed back to the guid-
ance system. We take the value of ε as 5, 10, and 15 for
experiments, and the landing errors under these fault condi-
tions are shown in Table 4.

It can be seen from Table 4 that as the relative error of
the measured state increases, the landing errors of the rocket
also increase, but they remain within a small range. This
experiment proves that the guidance method proposed in
this paper is fault-tolerant and robust to navigation system
faults.

6.2.2. Faults Occur in the Control System. It is assumed that
the control system has two fault conditions: thrust cannot
change continuously (that is, thrust is constant during each
guidance cycle), and thrust magnitude has deviations. The
trajectory optimization algorithm and the guidance method
proposed in this paper are, respectively, applied to conduct
simulations under the above two fault conditions, and their
results are compared.

(1) Thrust Cannot Change Continuously. For trajectory opti-
mization, we assume that thrust is constant per second, and
for guidance, thrust is constant during each guidance cycle.
The landing errors and landing masses are shown in Table 5.

(2) Thrust Magnitude Has Deviations. It is assumed that
there are deviations within ±5% of the thrust magnitude.
In the experiment, random deviations within ±5% are
applied to the thrust magnitude obtained by the trajectory
optimization algorithm and the guidance method. Then,
the deviated thrust is used to control the rocket. The landing
errors and landing masses are shown in Table 6.

It can be seen from Tables 5 and 6 that when the thrust
cannot be continuously changed or the thrust magnitude has
deviations, the landing position error and velocity error
obtained by trajectory optimization are significantly larger
than those obtained by guidance. The landing position
errors of the guidance method under the two fault condi-
tions remain at the same order of magnitude as that under
the no-fault condition in Subsection 6.1, which demon-
strates that the two fault conditions have little effect on the
landing position. As for the landing velocity error, the guid-
ance method can make it at the same order of magnitude as
the no-fault condition when the thrust magnitude has devi-
ations within ±5%. The error is one order of magnitude

Control
system

Guidance
system

Rocket
system

Navigation
system

Ti

T

Ji-1

Figure 3: Integrated GNC system.

Table 1: Parameter values.

Parameter Value Units

r0 3500, 700, 0½ �T m

v0 −200,−90, 0½ �T m/s

m0 27000 kg

mdry 20000 kg

Tmin 100 kN

Tmax 300 kN

θmax 80 °

ηmax 15 °

g0 9.8 m/s2

Isp 270 s

ρ 1.225 kg/m3

SD 10 m2

CD 2.2 —

Δt 1 s
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Table 2: Terminal states.

t f sð Þ rx t f
� �

mð Þ ry t f
� �

mð Þ vx t f
� �

m/sð Þ vy t f
� �

m/sð Þ m tf
� �

kgð Þ
Trajectory optimization 43.18 -2.0085 -1.1821 -0.0646 -0.0332 23137.09

Guidance 43.18 -0.0276 -0.0241 -0.0210 -0.0043 23135.79
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greater when the thrust cannot be continuously changed, but
it still does not exceed 1m/s. The simulation experiments
demonstrate that the guidance method proposed in this
paper is fault-tolerant and robust to control system faults.

6.2.3. Estimates of Parameters Have Deviations. It is assumed
that the actual drag coefficient and atmospheric density dif-
fer by ±15% from the estimated values. We apply the trajec-
tory optimization algorithm and the guidance method
proposed in this paper to conduct simulation experiments
using the estimated parameters. Then, we perform numeri-
cal integration using the actual parameters to obtain real ter-
minal states. The landing errors and landing masses of the
two algorithms under the fault condition are shown in
Tables 7 and 8, respectively, (where CD + 15% indicates that
the actual drag coefficient has a value of 1:15 × CD).

It can be seen from Tables 7 and 8 that the guidance
method proposed in this paper can significantly improve
the landing position accuracy in the case of the drag coeffi-
cient or the atmospheric density having deviations. When
the actual values of the two parameters are larger than the
estimated values, the accuracy of the landing velocity is also
significantly improved. This experiment demonstrates the
fault tolerance and robustness of the guidance method to
the landing position in the presence of parameter deviations.
However, when the actual values of the two parameters are
smaller than the estimated values, the landing velocity errors
obtained by the guidance method will become larger. We
refer to the analysis of Ref. [19] and learn that when the
actual values of the two parameters are decreased, part of
the mechanical energy of the rocket cannot be dissipated
as expected; and when the thrust magnitude saturates, there
is no additional energy to compensate for the undissipated
mechanical energy, leading to the error of the optimal trajec-
tory becomes larger. Subsequent research on guidance
methods should attempt to address this issue.

6.2.4. Combination of Various Faults. Finally, we consider
navigation system failures, control system failures (thrust
magnitude has deviations), drag coefficient deviations, and
atmospheric density deviations at the same time and carry
out Monte Carlo simulations (200 cases). For the navigation
system and control system, the failures are added in the
same way as the previous experiments. Drag coefficient devi-
ations and atmospheric density deviations are considered to
be normally distributed, and their means are set to zero. The
3σ values are, respectively, taken as CD ~ 15%, ρ ~ 15%.

Table 3: Landing errors.

Landing position
error/m

Landing velocity error/
(m/s)

Trajectory
optimization

2.3305 0.0726

Guidance 0.0366 0.0214

Table 4: Landing errors and masses under the condition that the
navigation system has faults.

Landing position
error/m

Landing velocity
error/(m/s)

Landing
mass/kg

ε = 5 2.4665 5.7779 23331.19

ε = 10 3.5750 5.8301 23329.48

ε = 15 4.0624 6.5514 23355.94

Table 5: Landing errors and masses under the condition that thrust
cannot change continuously.

Landing
position error/

m

Landing velocity
error/(m/s)

Landing
mass/kg

Trajectory
optimization

407.6401 4.8062 23081.57

Guidance 0.0914 0.3145 23136.54

Table 6: Landing errors and masses under the condition that thrust
magnitude has deviations.

Landing
position error/

m

Landing velocity
error/(m/s)

Landing
mass/kg

Trajectory
optimization

359.1367 6.3939 23137.13

Guidance 0.0185 0.0209 23133.57

Table 7: Landing errors and masses of the trajectory optimization
algorithm.

Deviation
Landing position

error/m
Landing velocity

error/(m/s)
Landing
mass/kg

CD + 15% 289.5933 4.9790 23135.95

CD − 15% 356.5689 6.2598 23135.95

ρ + 15% 289.9584 4.9790 23135.95

ρ − 15% 356.5689 6.2598 23135.95

Table 8: Landing errors and masses of the guidance method.

Deviation
Landing position

error/m
Landing velocity

error/(m/s)
Landing
mass/kg

CD + 15% 0.0035 0.0239 23230.63

CD − 15% 4.1627 29.2456 23957.32

ρ + 15% 0.0035 0.0239 23230.63

ρ − 15% 4.1627 29.2456 23957.32
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Results of terminal position and terminal velocity are shown
in Figure 6. The maximum errors are (7.2551m, 31.6108m/
s). This experiment proves that the guidance method can
still keep the terminal states within acceptable limits under
the combination of various faults.

7. Conclusions

In this paper, a fault-tolerant guidance method is proposed
to realize online guidance of rocket vertical landing. The
main contribution of this paper is that we propose a piece-
wise guidance algorithm. We first embed a trajectory optimi-
zation algorithm based on convex optimization in the MPC
framework and then put forward a piecewise method to cope
with the bang-bang characteristic of the thrust magnitude.
An integrated GNC system is designed to enhance the
fault-tolerance and robustness of the guidance method,
which constitutes another contribution of this paper. Simu-
lation experiments are conducted under conditions of no
faults and deviations, navigation system failures, control sys-
tem failures, drag coefficient deviations, and atmospheric
density deviations, respectively, proving the reliability and
fault-tolerance of the guidance method. The proposed
method shows great potential for online use.
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The paper concentrates on the problem of fault-tolerant control of UAV against actuator faults from the perspective of flight
control system architecture. Using backstepping control method and inverse optimization theory, the design of backstepping
optimal control law was constructed. Based on the fault monitoring mechanism of vehicle management computer in the
distributed flight control and control allocation system, a fault-tolerant control design method was established in the case of
multiple failure modes of the actuators, which compensates the influence caused by the failures. Finally, the effectiveness of the
proposed strategy was verified by numerical simulation.

1. Introduction

In recent years, XQ-58A “Valkyrie” developed by the United
States has started to verify its combat technology with
manned fighters F-15X and F-35. While emphasizing joint
operations, it also puts forward low-cost development
requirements. This medium-size UAV with low-cost attrita-
ble aircraft technology (LCAAT) is more affordable than the
X47B stealth UAV. In 2020, Russia demonstrated a high-
speed, unmanned loyal wingman, named “Thunder”. Similar
to XQ-58A, it is capable of partnering with manned fighters
and serving as a wingman in a front-line attack and detecting
and destroying enemy and air defense targets, as discussed
elsewhere [1–3].

With the worldwide research and development of all
kinds of unmanned systems, the application of manned/
unmanned aerial vehicles and unmanned swarm systems has
been promoted. Unmanned systems are no longer synony-
mous with low cost and high risk but increasingly emphasize
the following two aspects of technical requirements:

(i) Low cost and affordable economic cost

(ii) High fault tolerance and affordable security risks

For the fighter or large reconnaissance and combat
UAVs, its cost can be increased. Therefore, the architecture
of multiredundant hardware design is often used to improve
the fault-tolerant ability of the entire aircraft system, espe-
cially for the flight control system with high safety and reli-
ability. However, for consumable and low-cost unmanned
systems such as loyal wingman, the architecture based on
redundant hardware design brings high cost, large volume,
large weight, and small load, which is often not acceptable.
However, it is still expected to minimize the impact of fail-
ure, that is, to have higher fault tolerance.

There are many fault diagnosis and fault-tolerant control
methods for sensors and actuators of flight control system.
As early as 1990, as discussed by Professor Frank [4], inter-
national authority on fault diagnosis of control system
divided fault diagnosis methods into three categories: analyt-
ical model-based methods, signal process-based methods,
and knowledge-based methods, which have been accepted
by many scholars [5, 6].

For the application of UAV flight control system, model-
based fault detection, isolation, and adjustment methods can
be used to reconstruct low redundancy/no redundancy sig-
nals for sensor faults, and the fault tolerance problem of
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sensor signals can be solved by means of analytical redun-
dancy, as discussed elsewhere [7–11].

But when the faults occur in the aircraft surface because
of actuators, the detection and isolation method based on
model cannot work, and it must be reconstructed through
the control compensation of other surfaces to achieve fault
tolerance. At present, many scholars have proposed adaptive
control algorithms to solve various adaptive control prob-
lems in the case of surface failure, so as to achieve flight con-
trol, but the real-time performance of these algorithms is
generally doubted, and a large number of algorithms need
accurate mathematical models [12–15].

At present, the fault tolerant control towards actuator’s
faults is based on the results of fault detection [16]. Firstly,
the faulty actuator should be isolated to avoid its fault
spreading. Then, by adjusting the parameters of the con-
troller or changing the structure of the controller, the sta-
bility and control performance of the system can be
guaranteed. However, this method must be offline calcula-
tion of control law parameters required under various
faults, and these parameters are stored in the flight control
computer in advance. During the flight, according to the
fault information obtained by fault detection, the matched
control law parameters are selected to obtain the recon-
structed flight control law. Since the parameters of the
readjusted control law are designed off-line, the recon-
structed flight control law can only tolerate the fault modes
considered in advance, which limits the scalability of this
method.

At the same time, we consider the possible failure modes
of UAV actuators. At present, for small and medium-sized
UAVs, electric actuators are basically used as the driving
mechanism; and for large UAVs, with the continuous matu-
rity of high-power electric actuators, the trend of replacing
hydraulic actuators is also accelerating, due to the mainte-
nance, pipeline, weight, leakage, and other problems caused
by hydraulic actuators. Consider that there are two main
failure modes of the electric actuators: nonoutput force and
the output shaft stuck. From the perspective of surface con-
trol, the influence of the former is relatively small. And the
most important thing is to realize fault detection, so that
the fault can be found quickly. The second failure mode is
trickier because it introduces additional unwanted moments
that need to be balanced first in flight control.

In view of the multiple failure modes of UAV actuators,
the strategy proposed in the paper adopts backstepping opti-
mal control law and reconfiguration design based on a con-
trol allocation method to compensate the influence of faulty
actuators, so as to achieve the goal of fault-tolerant control.
The main contributions of the research are summarized as
follows:

(1) Different from the adaptive control method, as
referred to References [12–15], based on the optimal
control law and the fault diagnosis result, control
allocation methods carry out the mode switch. It
does not need to carry out complex online calcula-
tion through the optimization algorithm, so it will
not affect the real-time performance

(2) Compared with constructing off-line databases and
adjusting the parameters or structure of controller,
the reconfiguration control methods based on con-
trol allocation can compensate the influence of fault
surfaces without adjusting the control law, thus
extending its application scope

(3) More importantly, the paper presents a systematic
solution, not just for the control algorithms.
Through the modular control structure, the fault
detection, control law, and control allocation algo-
rithm are organically integrated, and a relatively
comprehensive solution is proposed for the reconfig-
uration control against actuator faults

2. System Description and Preliminaries

A UAV adopts a conventional layout, and the independently
controlled surfaces include the following: left fully moving
elevator, right fully moving elevator, aileron, and V-shaped
rudder. Because the left and right fully moving elevator can
be controlled independently; that is to say, in addition to
the pitching moment produced by the same deflection, the
rolling moment can also be produced by the differential
deflection, which provides additional control moment in
the lateral direction. At the same time, the application of
V-shaped rudder also provides a supplement for the genera-
tion of pitching moment. Therefore, the characteristics of
multicontrol surfaces of the UAV provide conditions for
the compensation control of actuators faults.

Firstly, the aircraft attitude dynamic equation in the
body axial coordinate system is as follows:

_μ
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775 =

cos α
cos β 0 sin α
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−cos α tan β 1 −sin α tan β
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r
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where α, β, and μ are, respectively, the angle of attack, side-
slip angle, and roll angle and p, q, and r are, respectively, the
pitch angle rate, yaw angle, rate and roll angle rate.

Fμ Xð Þ = sin β cos μ
mV cos β −D sin β sin μ + L cos μð
− Y cos β sin μ − Fγt −mg cos γ

�
+ tan γ + tan β sin μ

mV
D sin β cos μ + L sin μð

+ Y cos β cos μ + FχtÞ,

Fα Xð Þ = −
cos μ

mV cos β −D sin β sin μ + L cos μð

− Y cos β sin μ − Fγt −mg cos γ
�
+ sin μ

mV cos β
� D sin β cos μ + L sin μ + Y cos β cos μ + Fχt
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,
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Fβ Xð Þ = −
sin μ

mV
−D sin β sin μ + L cos μ − Y cos β sin μð

− Fγt −mg cos γ
�
+ cos μ

mV
D sin β cos μ + L sin μð

+ Y cos β cos μ + FχtÞ,

Fχt = T ⋅ dT ⋅ −sin μ cos α sin β − cos μ sin αð Þ,

Fγt = T ⋅ dT ⋅ −sin μ cos α sin β − cos μ sin αð Þ, ð2Þ

where m is mass, V is flight speed, γ is flight path angle, T is
engine thrust, dT is thrust coefficient, and D, L, and Y are
resistance force, lift force, and lateral force, respectively, as
described below.

D = �q ⋅ S ⋅ cd ,
L = �q ⋅ S ⋅ cl,
Y = �q ⋅ S ⋅ cy,

ð3Þ

where S is wing area, �q is kinetic pressure, and cd , cl, and cy
are drag coefficient, lift coefficient, and lateral force coeffi-
cient, respectively.

Remark 1. The flight control system architecture of UAV can
support the integrated design of actuator fault detection and
flight control law. The following distributed system architec-
ture in Figure 1 can be adopted [17–19]. The integrated

VMC (vehicle management computer) realizes the fault
detection of actuators, the calculation of flight control law,
and the calculation of control allocation algorithm and
finally forms the control instruction for each surface and
transmits them to the SMART actuator located near the
surface.

Remark 2. As shown in Figure 2, the integrated VMC will
perform the fault detection, flight control law, and control
allocation algorithm continually during the whole flight mis-
sion. The distributed system architecture, depending on the
integrated design of VMC, can realize the reconfiguration
control based on the control allocation method more conve-
niently, without affecting the servo control of the back-end
actuator control loop in SMART. Meanwhile, it can be seen
that after the introduction of control allocation module, the
design of control law module in VMC does not need to be
changed when some of actuators are faulty, which provides
convenience for its application.

Remark 3. The fault detection toward actuators’ fault modes
needs to be added in the fault detection module of VMC.
That is, the fault detection module can obtain all the data
related to actuators fault modes, such as actuator position,
motor HALL speed, and clutch drive current. Based on this,
VMC can detect the failures of actuators. For example, when
the motor HALL speed is high and the position of the actu-
ator does not change, it can be considered that the actuator’s
output shaft is stuck at this time. When the clutch drive cur-
rent is large, then the current control command of the motor

Surface 1

Surface 2

Surface 3

Surface nSmart 1

Smart n

Smart 3

Smart 2 VMC

Figure 1: Distributed flight control system architecture.

Smart actuators
VMC

Actuator

Feedback

Sensors

Airplane

Fault
detection

Control
law

Control
allocationControl

command Surface body

Figure 2: Reconfiguration control block diagram based on control allocation method.
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is cut off, and at this time, the actuator is in a state of non-
output force. The paper does not make a comprehensive
study of the specific fault detection strategy, only as the
input conditions of the research.

3. Backstepping Optimal Controller Design

As we all know, the design of backstepping control law only
considers the stability and convergence of the system and
does not consider the optimal performance of the system
[20, 21]. For the optimal control of the system, it is usually
to find an admissible control with a given performance
index, and the target functional takes the minimum value.
This kind of problem ultimately comes down to the solution
of Hamilton-Jacobi-Bellman partial differential equation.
Compared with linear systems, the difficulty of nonlinear
systems lies in that the HJB equation to be solved is often
nonexistent or nonunique, which becomes the main obstacle
to optimal control of nonlinear systems. This problem can
be solved by introducing the inverse optimization into the
design of uncertain nonlinear control systems through the
robust control Lyapunov function [22]. The inverse optimi-
zation problem does not minimize the control law of a given
target functional, but with the Lyapunov function for the
robust stability of the system to make the controller is
designed to minimize a backlog of objective functional, that
is to say, first of all, get the control law, and then determine
its optimal value function, so as to determine the optimal
controller.

3.1. Derive the Control Law. For second order nonlinear sys-
tems,

_x1 = ϕ x1ð Þ + x2,
_x2 = u,
y = x1:

ð4Þ

(Step 1) For the subsystem x1 in equation (4), virtual
control law is designed with x2 as the control
input.

Choose the following form of control law:

xdes2 = −ψ x1ð Þ: ð5Þ

Construct the following control Lyapunov function:

W x1ð Þ = 1
2 x

2
1: ð6Þ

Substituting into x2 = xdes2 , its differential is _W = ðϕðx1Þ
− ψðx1ÞÞx1.

When ðϕðx1Þ − ψðx1ÞÞx1 < 0 is satisfied, its negative def-
inite can be guaranteed.

(Step 2) Introduce an error variable:

�x2 = x2 − xdes2 = x2 + ψ x1ð Þ: ð7Þ

So the system equation (4) is equal to

_x1 = ϕ x1ð Þ − ψ x1ð Þ + �x2,
_�x2 = u + ψ′ x1ð Þ ϕ x1ð Þ − ψ x1ð Þ + �x2ð Þ:

ð8Þ

Construct the following control Lyapunov function:

V x1, �x2ð Þ = F x1ð Þ + 1
2 �x

2
2, ð9Þ

where Fðx1Þ is any effective control Lyapunov function of
subsystem x1, which means that when x2 = xdes2 is satisfied,

_F x1ð Þ = F ′ x1ð Þ ϕ x1ð Þ − ψ x1ð Þð Þ = −U x1ð Þ, ð10Þ

where Uðx1Þ is positive definite.

_V = F ′ x1ð Þ ϕ x1ð Þ − ψ x1ð Þ + �x2½ � + �x2 u + ψ′ x1ð Þ ϕ x1ð Þ − ψ x1ð Þ + �x2ð Þ
h i

= −U x1ð Þ + �x2 F ′ x1ð Þ + u + ψ′ x1ð Þ ϕ x1ð Þ − ψ x1ð Þð Þ + ψ′ x1ð Þ�x2
�h i

:

ð11Þ

Choose F ′ðx1Þ = −ψ′ðx1Þðϕðx1Þ − ψðx1ÞÞ, Fð0Þ = 0; the
item x1 in the second items can be cancelled out.

Substituting F ′ðx1Þ into formula (10), the following for-
mula can be obtained:

U x1ð Þ = ψ′ x1ð Þ ϕ x1ð Þ − ψ x1ð Þð Þ2: ð12Þ

When ψ′ðx1Þ > 0 is satisfied, the positive definite is
guaranteed.

And then, the Lyapunov function of the system is

_V = −U x1ð Þ + �x2 u + ψ′ x1ð Þ�x2
h i

: ð13Þ

In order to make _V negative definite, the control law can
be selected finally:

u = −k2�x2 = −k2 x2 + ψ x1ð Þð Þ: ð14Þ

When k2 > ψ′ðx1Þ is satisfied, the negative definite of
_V = −Uðx1Þ − ðk2 − ψ′ðx1ÞÞ�x22 is guaranteed.

3.2. Determine Its Optimal Value Function

Lemma 4 (see [23, 24]). Consider the nonlinear system:

_x = f xð Þ + g xð Þu, ð15Þ

where x ∈ Rn is the state variable and u ∈ Rm is the control
input.
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And assume gðxÞ ≠ 0. For a given feedback control uðxÞ,
define the optimal value function:

J xð Þ =
ð∞
0

Q xð Þ + uTR xð Þu� �
dt, ð16Þ

where QðxÞ is positive definite and RðxÞ is symmetric positive
definite.

The optimal value function JðxÞ can be selected as the
Lyapunov function VðxÞ. Then, the optimal control can be
obtained:

u∗ xð Þ = −
1
2
R−1 xð Þ Vx xð Þg xð Þð ÞT : ð17Þ

Using Hamilton-Jacobi-Bellman equation

min
u

Q xð Þ + uTR xð Þu + Vx xð Þ f xð Þ + g xð Þuð Þ� �
= 0, ð18Þ

it can be obtained inversely:

R xð Þ = −
Vx xð Þg xð Þð ÞT

2u∗ xð Þ ,

Q xð Þ = −Vx xð Þf xð Þ − 1
2
Vx xð Þg xð Þu∗ xð Þ:

ð19Þ

Based on Lemma 4, comparing the error system shown in
equation (8) with the second order system shown in equa-
tion (4), the following can be obtained:

f xð Þ = ϕ x1ð Þ − ψ x1ð Þ + �x2
ψ′ ðÞð Þ ϕ x1ð Þ − ψ x1ð Þ + �x2ð Þ

 !
, g xð Þ =

0
1

 !
:

ð20Þ

And

Vx = F ′ x1ð Þ�x2
� �

= −ψ′ x1ð Þ ϕ x1ð Þ − ψ x1ð Þð Þ�x2
� �

: ð21Þ

Therefore, the optimal control performance parameters
that can be achieved by the control law (17) are obtained
by substituting formulas (20) and (21):

R xð Þ = −
Vx xð Þg xð Þð ÞT

2u xð Þ = �x2
2k2�x2

= 1
2k2

,

Q xð Þ = −Vx xð Þf xð Þ − 1
2Vx xð Þg xð Þu xð Þ

= ψ′ x1ð Þ ϕ x1ð Þ − ψ x1ð Þð Þ2 + 1
2 k2 − ψ′ x1ð Þ
� 	

�x22:
ð22Þ

If virtual control law xdes2 = −ψðx1Þ = −k1x1 is selected,
then, the linear control law of the system (4) is

u = −k2 x2 + k1x1ð Þ ð23Þ

In order to QðxÞ be positive definite and the cost func-
tion to be a meaningful optimal performance, it must be
guaranteed that

k2 > 2k1: ð24Þ

Therefore, combining (12), (14), and (23), we can get:
when 0 < 2k1 < k2 is satisfied; the origin of the system can
be given global asymptotic stability.

And minimize the following optimal value function:

J =
ð∞
0

ψ′ x1ð Þ ϕ x1ð Þ − ψ x1ð Þð Þ2 + 1
2 k − ψ′ x1ð Þ
� 	

x2 + ψ x1ð Þð Þ2 + 1
2k u

2
� 	

dt:

ð25Þ

Similarly, if virtual control law xdes2 = −ψðx1 − rÞ = −k1
ðx1 − rÞ is selected, then, the linear control law of the system
(4) is

u = −k2 ϕ rð Þ + x2 + k1 x1 − rð Þð Þ,
0 < 2k1 < k2:

ð26Þ

Defining x − r = e, the tracking problem of the system at
y = r can be transformed into the global asymptotic stability
problem of the system at x − r, and the results of equations
(23) and (24) above can be applied.

Then, the system obtains global asymptotic stability at
y = r.

And minimize the following optimal value function:

J =
ð∞
0

k1 ϕ x1ð Þ − ϕ rð Þ − k1 x1 − rð Þ½ �2 + 1
2 k2 − k1

� 	�

� x2 + ϕ rð Þ + k1 x1 − rð Þ½ �2 + 1
2k2

u2
	
dt:

ð27Þ

3.3. Design the Optimal Control Law. Considering the
dynamics equation above, the following coordinate transfor-
mation is introduced:

pd

qd

rd

2
664

3
775 =

cos α cos β 0 sin α cos β
−cos α sin β cos β −sin α sin β

−sin α 0 cos α

2
664

3
775

p

q

r

2
664
3
775:

ð28Þ

The corresponding dynamics equation becomes

_μ

_α

_β

2
664

3
775 =

1
cos2β 0 0

0 1
cos β 0

0 0 −1

2
666664

3
777775

pd

qd

rd

2
664

3
775 +

Fμ Xð Þ
Fα Xð Þ
Fβ Xð Þ

2
664

3
775:

ð29Þ

Therefore, with the angular acceleration after coordinate
transformation as the control input, a three-axis decoupled

5International Journal of Aerospace Engineering



second-order nonlinear system can be obtained, as shown
below:

_α = 1
cos β ⋅ qd + Fα Xð Þ,

_qd = u2,

8<
: ð30Þ

_β = −rd + Fβ Xð Þ,
_rd = u3,

(
ð31Þ

_μ = 1
cos2β ⋅ pd + Fμ Xð Þ,

_pd = u1:

8><
>: ð32Þ

It can be found that the structures of equations (30),
(31), (32), and (4) are exactly the same.

Comparing equations (4) and (30), the following can be
found:

x1 = α,

x2 =
1

cos β ⋅ qd ,

y = x1,

8>>><
>>>:
ϕ x1ð Þ = Fα Xð Þ,

u = 1
cos β ⋅ _qd =

1
cos β ⋅ u2:

ð33Þ

Therefore, it is easy to obtain the backstepping optimal
controller to track control instructions r = αcmd :

u2 = −kq qd + cos βFα αcmdð Þ + kα cos β α − αcmdð Þð Þ, ð34Þ

0 < 2kα < kq: ð35Þ
At the same time, the following optimal value function

can be minimized:

J =
ð∞
0

kα Fα αð Þ − Fα αcmdð Þ − kα α‐αcmdð Þ½ �2�

+ kq − kα
� � 1

cos β ⋅ qd + Fα αcmdð Þ + kα α‐αcmdð Þ

 �2!

dt:

ð36Þ

Similarly, comparing equations (4) and (31), the follow-
ing can be found:

x1 = β,
x2 = −rd ,
y = x1,

8>><
>>:

ϕ x1ð Þ = Fβ Xð Þ,
u = −_rd = −u3:

ð37Þ

Therefore, it is easy to obtain the backstepping optimal
controller to track control instructions r = βcmd :

u3 = kr −rd + Fβ βcmdð Þ + kβ β − βcmdð Þ� �
, ð38Þ

0 < 2kβ < kr: ð39Þ
At the same time, the following optimal value function

can be minimized:

J =
ð∞
0

kβ Fβ βð Þ − Fβ ðÞð Þ − kβ β − βcmdð Þ� �2�
+ kr − kβ
� �

−rd + Fβ βcmdð Þ + kβ β − βcmdð Þ� �2�dt:
ð40Þ

Similarly, comparing equations (4) and (32), the follow-
ing can be found:

x1 = μ,

x2 =
1

cos2β ⋅ pd ,

y = x1,

8>>><
>>>:
ϕ x1ð Þ = Fμ Xð Þ,

u = 1
cos2β ⋅ _pd =

1
cos2β ⋅ u1:

ð41Þ

Therefore, it is easy to obtain the backstepping optimal
controller to track control instructions r = μcmd :

u1 = −kp pd + cos2βFμ μcmdð Þ + kμ cos2β μ − μcmdð Þ� �
, ð42Þ

0 < 2kμ < kp: ð43Þ
At the same time, the following optimal value function

can be minimized:

J =
ð∞
0

kμ Fμ μð Þ − Fμ μcmdð Þ − kμ μ‐μcmdð Þ� �2�

+ kp − kμ
� � 1

cos2β ⋅ pd + Fμ μcmdð Þ + kμ μ‐μcmdð Þ

 �2!

dt:

ð44Þ

Through formulas (34), (38), and (42), the angular accel-

eration ωd′
des = ½pdcmd′ qdcmd′ rdcmd′ �T required to achieve atti-

tude maneuver can be obtained. After integral operation
and inverse coordinate transformation, the following for-
mula can be obtained:

ωdes = Tbd
1
s
ωd′

des
� 	

: ð45Þ

To this end, according to the expected flight attitude
requirements, the angular velocity required to complete the
maneuver can be obtained by using formula (45), and then,
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through the following formula, it can be converted into the
torque coefficient required by the maneuver, which is also
the input of control allocation problem in the next section.

T = ITbd α, βð Þ _ωdes
d + ω × Iω,

v = clcmcnð ÞT = 1
S�q

diag b,�c, bð Þ−1T ,
ð46Þ

where Tbd is the coordinate transformation matrix con-
verted to the body shafting, I is the rotational inertia matrix
of the aircraft, b is the wingspan length, and �c is the average
aerodynamic chord length.

4. Fault Tolerant Control Design Based on
Control Allocation

As mentioned above, as UAV plays an increasingly impor-
tant role in the air combat system, the tasks it undertakes
become more and more complex, and it needs to bear cer-
tain impact of faults. For the flight control system, the
UAV has the characteristics of multicontrol surfaces, espe-
cially the introduction of multiredundant control surfaces,
which provides a prerequisite for the reconfiguration control
of UAV against actuator failures.

As shown in Figure 2, when the fault detection module
in VMC finds that there is any fault mode toward actuators,
the control allocation module in VMC will switch from the
normal state to the specific fault state. Then, the fault toler-
ant control strategy based on the control allocation works,
and the control instructions solved by the control allocation
module will reflect the influence of the actuator fault mode.

4.1. Nonlinear Control Allocation Design Considerations. For
the nonlinear system, assume its motion equation is

_x = f x, g x, uð Þð Þ, ð47Þ

where f : Rn × Rk ↦ Rn and g : Rn × Rm ↦ Rk are nonlinear
and k <m.

It can be written as

_x = f xð Þ + gu x, uð Þ,
gu x, uð Þ = Bvg x, uð Þ,

ð48Þ

where Bv ∈ Rn×k, f , and g have the same mapping form as
above.

Introduce virtual controls:

v = g x, uð Þ, ð49Þ

where v ∈ Rk; the state equation of the system can be
rewritten as

_x = f xð Þ + Bvv = f xð Þ + Bvg x, uð Þ: ð50Þ

Thus, nonlinear system (48) can be converted into
equations (49) and (50), which can also use the standard
form of the control allocation problem. It can be seen that

with linear control allocation problem the difference is
that mapping is a nonlinear form.

In the flight control system, the control allocation strat-
egy is required to be solved in real time, but the nonlinear
control allocation problem cannot be solved in real time.
Therefore, one of the methods to solve this problem is to
use the method of local approximation mapping, using lin-
ear mapping to approximate nonlinear mapping.

Through local Taylor form expansion, linearization at
point u0 can be obtained:

g x, uð Þ ≈ g x, u0ð Þ + ∂g
∂u

x, u0ð Þ ⋅ u − u0ð Þ: ð51Þ

So introduce a linear mapping BðxÞ = ð∂g/∂uÞðx, u0Þ; the
nonlinear control allocation problem (49) can be converted
to the linear control allocation problem:

�v = B xð Þu, ð52Þ

�v = v − g x, u0ð Þ + B xð Þu0: ð53Þ
When a nonlinear control allocation problem is trans-

formed into a linear problem, it can be solved in many ways.
Optimization algorithms based on linear programming, with
its lower operation cost and simplex method, have been
widely studied in the process of solving control allocation
problems [25, 26]. According to the authors’ previous
research results [27], the allocation algorithm based on lin-
ear programming is directly applied here.

Combined with formulas (52) and (53), the control allo-
cation problem is described as follows.

For the known control efficiency matrix B and the given
virtual control quantity vðtÞ, the feasible instruction uðtÞ of
the control surface is determined by considering the position
limit and rate limit uðtÞ ≤ uðtÞ ≤ �uðtÞ of the control surfaces,
so that BuðtÞ = vðtÞ is satisfied.

Thus, the linear programming problem can be solved
with the following matrix:

A =M ⋅ B, b = −A ⋅ umin,
Aeq = ½ �, beq = ½ �,

f T = −vTd ⋅ B,
lb = 0 ub = umax − umin:

ð54Þ

The corresponding optimization objectives are

max ρ = B ⋅ uk k
vdk k

� 	
=min J = −vTd ⋅ B ⋅ u

� �
: ð55Þ

In the three-dimensional control allocation problem, the
matrix M has only two rows, i.e.,

M =
vd,2 ‐vd,1 0
vd,3 0 ‐vd,1

" #
ð56Þ

and the coefficient matrix A =M ⋅ B of constraint conditions
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also has only two rows, whose rank is 2. Therefore, the solu-
tion process is relatively simple.

The application of the method in the flight control sys-
tem is toward to v = ðcl cm cnÞT = ð1/S�qÞ diag ðb,�c, bÞ−1T ,
and the specific process can be summarized as the following
steps:

(Step 1) According to the theory of nonlinear control
allocation, the control efficiency matrix under
nonlinear condition should be calculated from
the expression of aerodynamic derivative CM

= ðCl Cm CnÞT :

B xð Þ = ∂CM

∂δ
α, β, p, q, r, δ0ð Þ: ð57Þ

δ0 can be selected as the control input uðt − TÞ of previ-
ous sampling time or a fixed point, such as δ0 = 0.

(Step 2) Then the virtual control input after Taylor lin-
ear expansion is calculated:

�v = v − CM α, β, p, q, r, δ0ð Þ + B xð Þδ0: ð58Þ

(Step 3) Using the control allocation method of formula
(54) to solve the above formula, the solution of
formula (58) can be obtained.

4.2. Fault Tolerant Control Design for Actuators. This section
describes the fault-tolerant control scheme according to the
control allocation design method described in Section 4.1
for the two possible fault modes of the electric actuators
described in Figure 1. Fault mode 1 is nonoutput force of
the actuator, and the other fault mode is output shaft stuck
of the actuator.

The nonlinear system equations of an aircraft under nor-
mal conditions are described as follows:

_x = f xð Þ + Bvv = f xð Þ + Bvg x, uð Þ, ð59Þ

where gðx, uÞ represents the control efficiency of surfaces,
which will change when the surfaces fails due to actuators.
The following equation describes the nonlinear system equa-
tion of the aircraft in the case of failure:

_x = f xð Þ + Bvgf x, uf

� �
, ð60Þ

where gf ðx, uf Þ represents the control efficiency matrix in
the case of failure and uf ∈ Rn represents the control input.
For different fault modes, equation (60) corresponds to dif-
ferent function forms.

According to the requirements of reconfiguration con-
trol, control allocation needs to achieve:

g x, uð Þ = gf x, uf

� �
: ð61Þ

For the control allocation problem under normal condi-
tions, the allocation objective is

v tð Þ = g x, uð Þ: ð62Þ

The nonlinear control allocation problem (62) can be
converted to the linear control allocation problem:

�v = v − g x, u0ð Þ + B xð Þu0 = B xð Þu: ð63Þ

Similarly, for the control allocation problem under faulty
conditions, the allocation objective is

vf tð Þ = gf x, uf

� �
: ð64Þ

After linearization,

gf x, uf

� �
≈ gf x, u0ð Þ + ∂gf

∂u
x, u0ð Þ ⋅ uf − u0

� �
: ð65Þ

The control efficiency matrix Bf ðxÞ = ð∂gf /∂uÞðx, u0Þ is
introduced, and the linear control allocation problem simi-
larly is as follows:

�vf = vf − gf x, u0ð Þ + Bf xð Þu0 = Bf xð Þu: ð66Þ

When the fault modes of the actuators occur, the change
of aerodynamic coefficient, weight, and center of gravity of
the aircraft can be ignored. On this premise, the change of
control capability caused by the faulty actuators only comes
from the change of control input.

Meanwhile, when the linearized equilibrium points are
u0 = 0, the following formula can be obtained:

g x, u0ð Þ = gf x, u0ð Þ, ð67Þ

B xð Þu0 = Bf xð Þu0: ð68Þ
Thus, compare formulas (64) and (67), and the require-

ments of reconfiguration control (61) can be converted into

�v tð Þ = �vf tð Þ: ð69Þ

4.2.1. Fault Mode 1: Output Shaft Stuck. The output shaft
stuck of actuator refers to the fault mode in which the actu-
ator is in a fixed position due to motor blocking or other
mechanical reasons, which can be realized by the fault detec-
tion module of VMC. In this fault mode, the control surface
connected to the actuator will also be stuck in a certain posi-
tion. In this case, its deflection will not only fail to produce
the desired control effect but also to produce unwanted addi-
tional forces and unwanted additional torques. Therefore,
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the influence of the stuck actuator must be offset in the con-
trol allocation.

When the shaft of actuator is stuck, the motion equation
of the aircraft does not change, as shown in equation (60).

According to formula (66), the solution of control alloca-
tion for reconstruction control can be obtained:

�v = Bu = Bf uf = B∗
f ⋅ u

∗
f + bjδf , ð70Þ

where assuming that the aircraft has m surfaces, u∗f = ðδ1,
δ2,⋯δj ⋯ δm−1Þ ∈ Rm−1, B∗

f is the remaining control effi-
ciency matrix after removing the stuck surface in Bf , bj is
the control efficiency coefficient of the stuck surface, and
δf is the stuck position of the faulty surface.

After further derivation, the following can be obtained:

u∗f = B∗
f

� �+
Bu − B∗

f

� �+
bjδf ð71Þ

Among them, the first item redistributes the torque
required by the original surface to the remaining effective
surfaces, and the second item is used to offset the additional
influence caused by the stuck surface, so that the actual out-
put of the stuck rudder surface is

uf = δ1, δ2,⋯, δj−1, δf , δj+1,⋯, δm−1
� �

: ð72Þ

4.2.2. Fault Mode 2: Nonoutput Force. Nonoutput force of
actuator refers to the failure mode in which the clutch cuts
off the current control output due to various reasons, and
then, the actuator has no output force. It can be realized
by the fault detection module of VMC. In this fault mode,
the surface connected with the actuator will also be in a
loosely floating state, that is, the control efficiency of the sur-
face is zero. Then, it can be assumed that the loosely floating
surface will not produce any aerodynamic and aerodynamic
torque; that is, the effect of the control surface on the control
input of the aircraft is zero.

Similar to fault mode 1, when the actuator has no output
force, the state equation of the aircraft does not change. That
is, only the control input of the loosely floating surface is
zero, and the loss of control capability caused by the loss
of control capability needs to be compensated by the
remaining effective control surfaces.

Similarly, assuming u∗f is the input of the remaining sur-
face after removing the loosely-floating one, then,

�v = Bu = Bf uf = B∗
f ⋅ u

∗
f + bjδf , ð73Þ

where, assuming that the aircraft has m surfaces, u∗f = ðδ1,
δ2,⋯δj ⋯ δm−1Þ ∈ Rm−1, B∗

f is the remaining control effi-
ciency matrix after removing the loosely floating surface in
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Figure 3: The state response of three-axis maneuver.
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Bf , bj is the control efficiency coefficient of the loosely-
floating surface, and δf = 0.

Further derivation can be obtained:

u∗f = B∗
f

� �+
Bu − B∗

f

� �+
bjδf : ð74Þ

Then, the actual output of the surfaces when the actuator
has no output force can be obtained:

uf = δ1, δ2,⋯δj−1, 0, δj+1,⋯δm−1
� �

: ð75Þ

5. Numerical Simulation

5.1. Control Objective. Based on the design of backstepping
optimal controller in Section 3 and fault-tolerant control
based on control allocation in Section 4, numerical simula-
tions are conducted for the UAV.
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In order to prove the correctness of the control law, the
numerical simulation is carried out under the comparison
of the two cases. The first set is three-axis maneuver without
actuator failures, and the control objectives are αcmd = 25∘,
βcmd = 0∘, μcmd = 25∘.

The fault tolerant control of three-axis maneuver under
the condition of actuator faults is the second set. As above,
the same simulated UAV object is used, and the initial trim
conditions are the same. In the simulation, the parameters of
backstepping optimal control law do not change, but the
allocation algorithm switches from normal modes to the
fault modes in control allocation. Also consider the three-
axis maneuver; the control objectives are αcmd = 25°, βcmd =
0°, μcmd = 25°.

Firstly, the deflection characteristics of the four surfaces
of the UAV, namely, left elevator, right elevator, aileron,
and rudder, are limited as follows:

Umax = 30°, 30°, 30°, 30°½ �,
Umin = −30°,−30°,−30°,−30°½ �:

ð76Þ

It should be added here that the surface is stuck beyond
the deflection limit due to mechanical reasons, and VMC
cannot give the correct diagnosis through the fault detection
module. The control allocation method may invalidate the
input saturation strategy in these fault modes. And this fail-

ure condition is not covered in the paper because it cannot
be correctly diagnosed.

Then, the initial trim conditions of the simulation are
shown below: the trimming velocity is V = 350ft/s, the trim-
ming angle of attack is α0 = 6:76°, the remaining trimming
flight statuses are β0 = μ0 = p0 = q0 = r0 = 0, and the trim-
ming angles of deflection are, respectively ½δel , δel , δa, δr� =
½−0:4449°,−0:4449°,−1:6193°, 0:3226°�.

Finally, the parameters of the optimal controller
described in Section 3 are kα = 2:53, kq = 5:76, kβ = 1:36,
kr = 5:14, kμ = 1:64, and kp = 6:23.

5.2. Simulation Result. It can be seen from the simulation
results that the backstepping optimal controller can achieve
a good control effect. In the control channels of the three
axes, the controlled quantity can meet the requirements of
the control instruction within 5 s, and the response has no
overshoot and no steady-state error, refer to Figure 3. The
black dotted lines in Figure 4 are the upper and lower limits
of surface deflection. This proves that it is feasible and cor-
rect to design flight control system using backstepping opti-
mal controller. At the same time, it also shows that the
control allocation method can realize the correct distribu-
tion of control instructions on each controllable surface.

5.3. Simulation of Fault Mode 1. In the simulation, the elec-
tric actuator attached to the rudder is set to be stuck at 5°.
Then, the rudder will also be stuck at 5°, and its deflection
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Figure 8: The state response of three-axis maneuver against fault mode 2.
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will fail not only to produce the desired control effect but
also to produce unwanted control effect.

5.4. Simulation of Fault Mode 2. In the simulation, the elec-
tric actuator attached to the rudder is set to nonoutput force.
Then, the rudder will also be in a loosely floating state. Then,
it can be assumed that the loosely floating rudder will not
produce any aerodynamic and aerodynamic torque.

In Figures 5 and 6, the red curve is the deflection angle of
surfaces without the actuator failure, and the blue curve is
the deflection angle of surfaces in the corresponding fault
mode, and the black dotted lines are the upper and lower
limits of surface deflection. It can be seen that when actuator
failures occur, the reconfiguration based on the control allo-
cation method ensures remaining surfaces can compensate
the influence caused by the faulty actuator. The angle of
attack and the angle of roll track the control objectives
quickly with stable performance; refer to Figures 7 and 8.
Therefore, the design of control allocation completes the
task of reconfiguration control well, obtains good control
effect, and achieves the goal of fault-tolerant control.

6. Conclusion

The fault-tolerant control of UAV in the case of actuator
failure in the flight control system is studied. Based on the
backstepping control method derived from Lyapunov func-
tion, the nonlinear optimal control law was constructed by
introducing inverse optimization strategy. And reconfigura-
tion design based on control allocation is proposed. Through
linearized nonlinear mapping, a fault-tolerant control
scheme is designed for the actuators in two typical fault
modes: stuck and nonoutput force. Through rigorous math-
ematical analysis and numerical simulation, the effectiveness
of the control strategy is verified.

The integrated VMC in the FCS can realize online mon-
itor of limited fault modes of actuators, which ensures the
scheme proposed achieves better fault-tolerant control after
the occurrence of known fault modes. However, mechanical
transmission from the actuators to the surfaces, or the sur-
faces itself, cannot be directly dealt with by using the strategy
proposed in the paper due to the lack of monitor results,
such as the loss of part of the surface. It is worth further
study.
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