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Bone drilling is known as one of the most sensitive milling processes in biomedical engineering field. Fracture behavior of this
cortical bone during drilling has attracted the attention of many researchers; however, there are still impending concerns such as
necrosis, tool breakage, and microcracks due to high cutting forces, torques, and high vibration while drilling. +is paper presents
a comparative analysis of the cutting forces, torques, and vibration resulted on different bone samples (bovine, porcine, and
artificial femur) using a 6dof Robot arm effector with considerations of its stiffness effects. Experiments were conducted on two
spindle speeds of 1000 and 1500 rpm with a drill bit diameter of 2.5mm and 6mm depth of cut. +e results obtained from the
specimens were processed and analyzed usingMATLAB R2015b and Visio 2000 software; these results were then compared with a
prior test usingmanual and conventional drilling methods.+e results obtained show that there is a significant drop in the average
values of maximum drilling force for all the bone specimens when the spindle speed changes from 1000 rev/min to 1500 rev/min,
with a drop from (20.07 to 12.34N), approximately 23.85% for bovine, (11.25 to 8.14N) with 16.03% for porcine, and (5.62 to
3.86N) with 33.99% for artificial femur. +e maximum average values of torque also decrease from 41.2 to 24.2N·mm (bovine),
37.0 to 21.6N·mm (porcine), and 13.6 to 6.7N·mm (artificial femur), respectively. At an increase in the spindle speed, the
vibration amplitude on all the bone samples also increases considerably. +e variation in drilling force, torque, and vibration in
our result also confirm that the stiffness of the robot effector joint has negative effect on the bone precision during drilling process.

1. Introduction

Bone drilling is a repair technique which involves creating a
pilot hole for proper insertion or screwing on the already
inserted plate, or for attaching prosthetic devices to provide
rigidity and prevent misalignment of the fractured bone
[1–3]. +e bone is a hard, anisotropic, heterogeneous, and
viscoelastic connective tissue that constitute the skeletal
system, exhibiting piezoelectric properties due to the
complexity of the binding structure in the dry state.
However, bone is a poor conductor of heat, with the thermal

conductivity of fresh cortical bone at approximately
0.38–2.3 J/m·sK1. It means that bone could not dissipate the
heat generated immediately when cutting forces are applied
on it, and consequently, temperature in the drilled site is
increased [4]. According to Currey [5], bone has high
stiffness features, therefore tends to break or fracture when
subjected to high external forces. Yearly, around seven
million car accidents happen in the United State of America,
resulting in femur shaft fractures [6], which could be at-
tributed to reckless driving and over speeding on highways.
According to Gupta and Tse [7], femur is the longest and
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strongest bone in the human body, with its fractures oc-
curring in middle-age patients which are due to high energy
impact force, while mostly due to low energy or impact fall in
aged women.

Bone drilling is a repair process peculiar to a femur
fracture, which involves creating a pilot hole for proper
insertion or screwing on the already inserted plate to avoid
misalignment. However, drilling an accurate hole with
minimal cutting force and vibration to prevent cracks, and
tool breakage, or with no complication, are essential. Often,
surgical drill is operated manually by a surgeon, and in some
cases, the operation requires considerable skill and a high
degree of mental and utmost concentration. Although the
use of robots in the theatre room is so enormous now due to
its flexibility, the adequacy and usefulness in various areas of
surgical fields are paramount [8]. In this work, Hans Robot
model HREF 01-LD010-1000-SI was employed for the
drilling. +e drilling and navigation were done by the robot
effector which complemented the aspects of computer-
assisted orthopedic surgery [9] due to high precision level.
Improper bone drilling procedure can negate the clinical
result due to the following: (1) high cutting force and (2)
torques and (3) excessive vibration and (4) type of the
cutting tools [10]. High forces, torques, and extreme vi-
bration are caused by improper tooling and use of manual
drilling method, resulting to serious complications [11].+is
research is based on the critical criteria that affect surgical
bone drilling [9, 12–14], as well as checking the relationship
between the amount of forces, torques, and vibration while
drilling different bone samples with utmost consideration of
the robot effector stiffness and possible error limits com-
pensation [15]. In this experiment, bovine bone was used to
replace human femur because of the similarity in their
properties as described by Poumarat et al. [15, 16]. +e
determination of the successful surgical drilling method
depends mostly on parameters such as force, torque, and
vibration [17, 18]. Many researchers have compared surgical
drilling of bovine and artificial femur [19], but no one has
considered bovine, porcine, and artificial femur with utmost
consideration for the stiffness on the effector of the robot
arm during their investigations. However, due to low drilling
accuracy resulting from weak stiffness and low kinematic
accuracy, industrial robot is rarely applied in precision
machining process [20]. +erefore, in order to reduce de-
formation or backlash due to vibration during bone drilling,
robot stiffness influence should be considered; hence, this
study is focused on measuring and comparing the cutting
forces, torque and vibration on the bone while drilling, with
consideration of the robot stiffness.

2. Methods

2.1. (e Bone Drilling Set-Up System. +e set-up of the ex-
periment involved 6dof Hans Robot which is a PC-based and
single phase 220V (50–60Hz, power 1.5 kW) electric motor
with a speed control range of 1500 rpm. Also, a four-
component dynamometer (Kistler Type 9272 A) was cali-
brated and mounted on the work platform. +e ICAM
amplifier was set with the PC software to measure this range

of coulomb: ±100 pC and ±10 pC; data acquisition system
measured the electrical current signals from the force sensor
in accordance to the exerted force and torque across all the
axes, a vibrator sensor (accelerometer) of frequency range of
20–30Hz was also attached to each of the bone specimen to
measure the resulted vibration, and a charge controller
regulates voltage and a computer system interprets the
visible signals. +e hardware block diagram is shown in
Figure 1.

2.2. Bone Samples forDrilling. +e bone samples used for the
experiments were excised from the middle portion of the
bovine and porcine femur (see Figures 2(a) and 2(b)) and
obtained from butchers shop (Table 1). +e residue tissues
on the femur were stripped off to ensure that no defect of any
sort is seen on the bones, followed by refrigeration to a
temperature of about −20°C before drilling and allowed to
thaw at 24 °C ambient room temperature for at least 90
minutes before the drilling. +e composite femur (large left
femur, Model 3310, Sawbones, Pacific Research Labs,
Vashon Island, WA, USA) samples were purchased for the
experiments and used as received, as shown in Figure 2(c).

2.3. Mechanical Properties of Human Bone, Bovine Bone, and
Pig Bone. Mechanical properties of human bone, bovine
bone, and pig bone are given in Table 1.

2.4. Drilling Method and Mechanical Modeling. +e pa-
rameters used for drilling in this experiment are provided in
Tables 2 and 3. +e drill bit diameter, range of drill speed,
and feed rates used in this study are widely reported in the
literature related to robotic and navigation procedures and
applications of bone drilling as suggested by previous works
[17, 23–25]. During the drilling, the force, torque, and vi-
bration measurements were recorded in z-axis only.

+e robot-effector’s arm was set to drill through the
depth of 6mm for all the specimens, while the drilling force,
torque, and bone vibration were measured in z-axis only at
varying cutting speed of 1000 rpm and 1500 rpm. +is
procedure was repeated twice to ensure repeatability and
error-free. Figure 3 shows the drilling procedure using the
6dof Hans Robot for bone drilling.

2.5. Modeling of Robot Effector Stiffness. +e stiffness of a
robot is of great importance to accurately manipulate
drilling operation. It shows the accuracy and the rigidity
needed by the force effector to drill with less vibration and
deflections [26, 27]. Figure 4(a) shows he complete set-up of
the Hans Robot manipulation process; however, it is es-
sential to model the stiffness of the Hans Robot when drilling
to compensate for errors that could occur due to external
forces on the effector. Modeling the stiffness end of the
effector is done by applying Jacobian matrix principle to
identify the relationship between joint rotation and end
effector motion, as shown in Figure 4(b).
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Figure 1: +e block diagram of the bone drilling process.

(a) (b) (c)

Figure 2: Cross-sectional views of (a) bovine, (b) porcine, and (c) artificial femoral samples.

Table 1: Prior bone fracture mechanics properties test and values according to [21, 22].

Bone type Shear strength (Mpa) KC (Mpa m1/2) Specific heat (J/kg K) Energy required Speed Test-type
Bovine bone 65–71 3.21 2.58 GJC � 1.4–2.6 Slow SENT
Human bone 82 2.4–5.3 1150 – Slow CT
Pig bone 75 – 1330 – Slow CT

Table 2: Drilling parameters.

Machine speed (rpm) Drill diameter (mm) Feed (mm/min) Depth of cut (mm) Point angle (°)
1000, 1500 2.5 Set at 110mm/min Set at 6mm for all 118

Table 3: Specimen parameters.

Specimens Bovine Porcine Artificial femur
Density 1.193 g/cm3 1.013 g/cm3 1.86 g/cm3

Marrow diameter 32.45mm 12.05mm 18mm
Bone thickness 5.5mm 5.68mm 5.91mm
Specimen length 34mm 22mm 35mm

Journal of Healthcare Engineering 3



2.5.1. Jacobian Matrix. +is matrix J(q) of robot is used to
determine the relationship between the joint rotation Δq and
end effector motion ΔX [28]. +e relationship of the robot
actuator motion and force exerted on the specimen to be
drilled can be obtained as follows:

ΔX � J(q)Δq, (1)

where J(q) can also be expressed as representing 6×1
(external forces vector) on the manipulator end-point.

Ji,j(q)
zXi (q)

zqj

, (i, j � 1, 2, . . . , 6), (2)

and the relationship between joint torques and counter
actuator forces/torques to stabilize the external force is il-
lustrated as

T � J
T
(q)F, (3)

where τ � (τ1, τ2, τ3, τ4, τ5, τ6) represent the 6×1 vector of
the torques needed to balance the external force during bone
drilling. F � (Fx , Fy , Fz, τyz, τxz, τxy).

2.5.2. Stiffness Model. +e end deflection ΔX on the effector
caused by external force can be calculated by [29]:

Robot 
effector

Drill bit

Bone 
sample

Vibrator 
sensor

Force 
sensor

Electric drill

Figure 3: +e bone drilling procedure using the 6dof Hans Robot.

(a)

J1+

J4+
J5+

J6+

J2+

J3+

Z

X
Y

0

(b)

Figure 4: Hans Robot model HREF 01-LD010-1000-SI.
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F � KmΔX, (4)

where the angular rotation of the joint is given as

τ � KmΔX, (5)

where Km is the Cartesians stiffness of the effector ma-
nipulator and Kθ represents the joint stiffness. However, the
partial differentiation of equation (3) with respect to q results
is

δτ
δq

�
δJ

T

δq
F + J

T δF

δX (q)

δX (q)

δq
. (6)

By replacing equation (5), the equation of the joint
stiffness can then be summarily written as

Kθ � Kc + J
T
KmJ. (7)

It must be noted that Kc � δJT/δqF is the compli-
mentary stiffness of the robot effector due to loading or
cutting force as a result of drilling, as stated by Claire Dumas
[29], which can then be rewritten as

Km � J
− T

KmJ
− 1

. (8)

+is summarily equals to

Km11 · · · Km16

⋮ ⋱ ⋮

Km61 · · · Km61

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (9)

where Km is the joint stiffness matrix.
Δθ is the model for dynamic manipulator effector

stiffness of the robot effector. By further analysis, the stiffness
of the effector manipulator can also be remodeled as [30]

Kc �
δJ

δθ1

T

F
δJ

δθ2

T

F
δJ

δθ3

T

F
δJ

δθ4

T

F
δJ

δθ5

T

F
δJ

δθ6

T

F􏼢 􏼣. (10)

Assuming (δJT/δθ1nF) is a 6×1 column vector, then
drilling force on the robot effector is F � [Fx, Fy, Fz]T and
that resulted in deflection during drilling is
ΔX � [δx, δy, δz]T, by substituting equation (6) into
equation (3), we obtained

ΔX � K
−1
X F � g θ, Kθi, F( 􏼁. (11)

+e relationship above represents a little deflection of the
effector during bone specimen drilling as shown in the
experimental set-up in Figure 5. +erefore, joint stiffness Kθ
can be written as combinations of stiffness of servo motor
Kd, gear shaft Kj , and harmonic reducer Kc of the effector.
Figure 6 shows the schematic diagram of the kinematic
chains representation of the Hans Robot used for this
experiment.

1
Kθ

�
1

Kd

+
1

Kj

+
1
K

. (12)

With reference to Kθ , the stiffness matrix varies as
drilling changes, this can be mathematically summarized as

􏽘

​
� 􏽘

6

i�1
kii + 􏽘

6

i�1,j�1,

i≠ j/kij/. (13)

+e inertia cutting force in the direction of acceleration
causes unbalance force in the robot system which affects the
stiffness and possibly given errors or affects its precision.
Table 4 illustrates the robot joint type and components for its
manipulations.

2.6. Analysis of the Drilling Force. Force analysis of the 6dof
Robot arm is presented as a relationship between the ef-
fector, torque (τz) of the electric motor, and the force (Fz)

generated. Different forces on a twist drill are shown in
Figure 7, where Fz is not fully caused by the Fq components
of the cutting force (Fz1) but partially caused by the impacts
force on the cutting chisel edge (Fz2). +e developed de-
rivatives are dependent on the fact that direct current motor
torque is proportional to the motor power, the torque
controller of the motor driver has the transfer function G(s)

as

G(s) �
k1

k1(s) + 1
. (14)

From Figure 5,Fz1 is deduced as

Fz1 � 2Fq cos αp. (15)

Here, αp is the inclination angle of force Fq experienced
on the cutting edge of the drill, as shown in Figure 6, which is

αp � 900 −
2ρ
2

, (16)

where 2ρ is the point angle of the drill bit.
Torque effect is a factor of the drill diameter and the

amount of drilling force Fp that is on the bone specimen
type:

τz �
d

2
Fp. (17)

When a more substantial size drill is used, then the
motor torque will be higher, which will affect the stiffness of
the robot effector and the quality of the hole made.

2.7. Vibration Analysis. +e displacement, y(t), caused by
the vibrating bone causes displacement, ye(t), of the vibra-
tion meter output attached to the bone as stated by [31] so
that the relative displacement yrel(t) is given as follow.:

From the equation of motion,

m €ye (t) + c _ye(t) − _y(t)( 􏼁 − k _ye(t) − y(t)( 􏼁, (18)

where y(t) and ye(t) are the displacements of the vibrating
bone and the mass of the vibrating sensor,

m €yrel (t) + c _yrel(t) + kyrel(t) � −m €y (t), (19)

yrel(t) � ye(t) − y(t), (20)

Journal of Healthcare Engineering 5
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Figure 5: Flow chart of drilling trajectory and stiffness evaluation simulation system.
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Figure 6: Kinematic chains representation of Hans robot HREF 01-LD010-1000-SI.

Table 4: Component parts of each joint of 6dof Hans Robot.

Joint Components
1 Servo motor⟶ gear shaft⟶ harmonic reducer
2 Servo motor⟶ gear shaft⟶ harmonic reducer
3 Servo motor⟶ gear shaft⟶ harmonic reducer
4 Servo motor⟶ gear shaft⟶ harmonic reducer
5 Servo motor⟶ gear shaft⟶ conveyor gear shaft⟶ harmonic reducer
6 Servo motor⟶ gear shaft⟶ conveyor gear shaft⟶ harmonic reducer
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Figure 8: Typical data for drilling at a spindle speed of 1000 rev/min to 1500 rev/min for force and torque for bovine, porcine, and artificial
femur, respectively. (a) Force at 1500 rev/min vs. depth. (b) Force at 1500 rev/min vs. depth. (c) Torque at 1000 rpm vs. depth. (d) Torque at
1500 rev/min vs. depth.
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where equation (20) is the relative displacement of the vi-
bration sensor mass with respect to the displacement caused
by the vibrating bone during drilling. +e solution of
equation (20) can then be rewritten as

yrel(t) �
−m €y(t)/k

�����������������

1 − r
2

􏼐 􏼑
2

+(2ζr)
2

􏼒 􏼓

􏽲

�
r
2
y(t)

�����������������

1 − r
2

􏼐 􏼑
2

+(2ζr)
2

􏼒 􏼓

􏽲 .

(21)

Assuming the ratio of the frequency,

r
ω
ωn

�
f

fn

≪ < 1 ≈ 0, (22)

where f is the frequency of the vibrating bone and fn is the
natural frequency of the sensor attached to the bone. +en,
the vibration rate of the bone during drilling is given as

yrel(t) � r
2
y(t) �

ω2
y(t)

ω2
n

. (23)

2.8. Data Analysis. A different set of experiments was
conducted to evaluate the drilling force, torque, and vi-
bration resulting on the bone specimens, as shown in Fig-
ures 8 and 9, by varying the cutting speed from 1000 rev/min
to 1500 rev/min for all the samples with constant feed over

specific interval. All the raw data were processed using
Microsoft Office Excel 2010 and normalized with MATLAB
2015b to determine the maximum and minimum forces,
torque, and vibration during drilling at the two-set spindle
speeds [32]. Table 5 also shows the joint and angular range
under consideration.

3. Results

3.1. Maximum Force. At two selected spindle speeds, the
result obtained shows that an increase in spindle speed
causes a decrease in the average force values on the bovine,
artificial femur, and porcine. +e following maximum
cutting forces of 20.07N, 5.62N, and 11.25N were recorded
at 1000 rev/min on each of the specimens as stated: bovine
bone, artificial femur, and porcine, respectively. At 1500 rev/
min, the maximum cutting force reduced drastically to
12.34N, 3.86N, and 8.14N for bovine bone, artificial femur,
and porcine, respectively, as shown in Table 6. +is result is
amounted to 23.85% (bovine), 22.85% (porcine), and 16%
drops (artificial femur), as shown in Figure 8. It was further
noted that the bovine bone possessed the highest cutting
force which is attributed to its mechanical and material
properties.
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Figure 9: Typical vibration data for drilling at a spindle speed of 1000 rev/min to 1500 rev/min for bovine, porcine, and artificial femur,
respectively. (a) Torque at 1000 rpm vs. time. (b) Torque at 1500 rev/min vs. time.

Table 5: Variation range of each joint under consideration.

Joint θ1 θ2 θ3
Range 0 ∼ (π/2) 0 ∼ 2π 0 ∼ 2π
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3.2. Maximum Torque. From the torque data obtained, at
increase in the spindle speed from 1000 rpm to 1500 rpm, it
gives a continuous drop in the maximum torque obtained
from 41.2N·mm to 24.2N·mm (bovine), from 37.0N·mm to
21.6N·mm (porcine), and from 13.6N·mm to 6.7N·mm
(artificial), as also indicated in Table 6; all these summarily
amounted to 25.99% drop (bovine) and 26.27% drop
(porcine), except for the artificial femur which has about
33.99% increase, as illustrated in (Figure 8); this increase
may be due to the plasticity of the material composition of
the artificial femur.

3.3.MaximumVibration. At an increase in the spindle speed
from 1000 rev/min to 1500 rev/min, the vibration amplitude
increases with time by 33.99% for (bovine), 22.48% for
(Porcine), and 30.93% for artificial femur, respectively. +is
indicated that an increase in the spindle speed affects the
stiffness of the robot effector thereby increases the vibration
rate due to backlash and less stiffness value, as shown in
Figure 9; this extensive increase in the vibration of the ar-
tificial femur may also be attributed to the effect of tem-
perature gradient on the material composition due to rise in
the drilling speed.

3.4. Specimens Quality/Defect Test. A thorough microscopic
defect test was conducted on all the bone samples, with no
cracks and no necrosis before the test and after, and the drill
bit was also checked for excessive or uneven wear.

3.5. Robot Stiffness Effector Simulation. Due to the rotational
motion of the end effector, there is a change in stiffness
which resulted in deformation difference. Hence, it is im-
portant to determine the spatial stiffness of the end effector

while drilling bone specimen and considering optimization
of path drilling plan. From equation (9), it is seen that the
stiffness values in X and Y directions are affected by rotation
of joints 1 to 3, while the stiffness value in Z direction is also
related to joints 2 and 3. Primarily, our attention is based on
simulation in the Z direction at the effector manipulator
joint to stabilize one joint and rotate the other two joints
while drilling to observe the effector stiffness. However,
Table 5 shows us the range of variations in each joint during
the simulation. +e spatial behavior of stiffness in the Z
direction can be evaluated by changing the value of θ2 and θ3
at the effector end while drilling. +e stiffness simulation at
the robot effector is seen in Figure 10, stiffness in Z direction
also causes an increase of θ3 which leads to a sinusoidal
change, as illustrated in Figure 11, and the amplitude of
fluctuation is from 2 “N/mm” to 15 “N/mm. +is implies
that the phase position and peak value of this sinusoidal
change is sensitive to change of θ2 , as illustrated in Figure 12.

4. Discussion

4.1. Broad Findings. +e experimental investigation and
analysis showed that maximum forces were obtained at a
spindle speed of 1000 rev/min and substantially dropped
when the speed increased to 1500 rev/min. +ese indicated
that the lower the speed, the higher the cutting force and the
higher the chance of complications such as tool breakage or
microcracks on the bone. On the contrary, an increase in
speed reduced the torque as seen on all the samples. From
earlier data obtained, the graph in Figure 8 shows that both
animal and artificial femurs give a substantial rise in the
force on the drill bit entering the bone. +is is similar to the
force and torque fluctuation response pattern as reported by
Lee et al. [13, 35, 37]. For the changes at the spindle speed

Table 6: Comparison of the present experimental results with prior experimental data for surgical drilling into human and animal bone.

Research type Type specimen Type result force (N)
Present Bovine femur 12.34 to 20.07
Present Porcine femur 8.14 to 11.25
Present Artificial femur 3.86 to 5.62
Tsai et al. [33]. Human femoral trochanter (cancellous) 1 to 1.5
Tsai et al. [33]. Human femoral trochanter (cortical) 0 to 50
Powers [12] Porcine vertebra 0.6 to 29.6
Alams et al. [13] Bovine femoral shaft 25 to 85
Hillery et al. [34] Bovine tibial shaft 24 to 48
Lee et al. [35] Bovine tibial shaft 0 to 20
Troy.MacAvelia et al. [17] Human femoral shaft 140.2 to 186.3
Troy.MacAvelia et al. [17] Artificial femoral shaft 67.2 to 53.3

Torque (N·mm)
Present Bovine femur 24.2 to 41.2
Present Porcine femur 21.6 to 37.0
Present Artificial femur 6.7 to 13.6
Tsai et al. [33] Human femoral trochanter (cancellous) 2 to 120
Tsai et al. [33] Human femoral trochanter (cortical) 0 to 10
Troy.MacAvelia et al. [17] Human femoral shaft 16.9 to 16.
Troy.MacAvelia et al. [17] Artificial femoral shaft 42.9 to 8.4
Alams et al. [13] Bovine femoral shaft 10–23
Allotta et al. [36] Porcine femoral shaft 55
Hillery et al. [34] Bovine tibial shaft 10 to 14.5
Lee et al. [35] Bovine tibial shaft 0 to 38
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from 1000 rev/min to 1500 rev/min, there is a significant
drop in the average values of maximum drilling force for all
the bone specimens with a drop from 20.07 to 12.34N,
approximately 23.85% for bovine, (11.25 to 8.14N) with
16.03% for Porcine, and (3.86 to 5.62N) with 33.99% for
artificial femur. +e maximum average values of torque also
decrease from 41.2 to 24.2N·mm (bovine), 37.0 to
21.6N·mm (porcine), and 13.6 to 6.7N·mm (artificial fe-
mur), respectively which is close to the result obtained by
[13, 36, 38]. At an increase in the spindle speed from
1000 rev/min to 1500 rev/min, it increases the vibration
amplitude with time by 33.99% for bovine, 22.48% for
porcine, and 30.93% for artificial femur, respectively. +is
indicated that an increase in the spindle speed affects the

stiffness of the robot effector thereby increases the vibration
rate, as shown in Figure 9. An increase in the spindle speed
from 1000 rev/min to 1500 rev/min increases the rate of
depth of cut and reduces the time of cut in all the samples,
although the rate of cut also depends on the materials
properties of each specimen.+e depth of cut in the artificial
femur is greatly influenced by increase in speed due to
temperature rise on the drill bit which influenced the
plasticity behavior of its chemical and materials composi-
tion. Generally, the unstable cutting force and torque ob-
tained while drilling can be attributed to the low stiffness of
the robot effector; this gives space for a little backlash and
vibration during drilling. +ese results, however, showed a
significant variance in the force-torque relationship with the
bovine, artificial femur, and porcine and are also used to
compare similarities in their parameters and properties
which could make them as an experimental substitute to
human bone. Force result obtained from the bovine femur is
close to the range of findings of Lee et al. [35] which confirms
a similarity in the properties of the human bone. From the
simulation, the stiffness in Z direction can be evaluated by
changing the value of θ2 and θ3 at the effector end while
drilling; also, a little increase of θ3 could lead to vibration or
an unstable effector manipulator during drilling. All the
results obtained when compared with prior studies revealed
that the robot stiffness has impending effects on the force,
torque, and vibration of the bone during drilling.

5. Conclusion

A comparative study carried out revealed that both porcine
and artificial femur samples have different forces and tor-
ques response at a different cutting speed, which are not
within the specified range of cutting force and torque ap-
plicable for drilling human bone with an exception of bovine
bone which has the force range close to the reported finding
by [17]. +ese variances revealed that there is possibly
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remarkable change in thematerial properties of both porcine
and artificial femur and cannot be a good substitute for
human bone unlike bovine for experimental purposes.
However, this simulation addressed the effect and behavior
of joint rotation on end effector stiffness during bone
drilling. +e simulation results also show serious mutations
during the joint rotation and a sharp peak end curve was
generated. Our findings are limited to effector stiffness only,
considering all joints will be too complex and out of focus in
this study; however, the result evaluated can be regarded as a
reference to later research on robot stiffness. To the best of
our knowledge, no experiment was done using the 6dof
Robot effector to evaluate and compare forces, torques, and
vibration in bovine, porcine, and artificial femur drilling,
taking into considerations of the stiffness of the effector
joint, making this study to be used as a benchmark for
further experimental and analytical research on drilling
bones for proper orthopedic procedures.
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Patients in the intensive care unit require fast and efficient handling, including in-diagnosis service.'e objectives of this study are
to produce a computer-aided system so that it can help radiologists to classify the types of brain tumors suffered by patients
quickly and accurately; to build applications that can determine the location of brain tumors from CTscan images; and to get the
results of the analysis of the system design. 'e combination of the zoning algorithm with Learning Vector Quantization can
increase the speed of computing and can classify normal and abnormal brains with an average accuracy of 85%.

1. Introduction

Patients in the intensive care unit require fast and efficient
handling, including in-diagnosis service. 'e development
of technological systems in the medical world is now pro-
liferating. Many applications have been built that can
process medical image results from modalities such as
Computed Tomography (CT), Magnetic Resonance Imaging
(MRI), Positron Emission Tomography (PET), and X-ray
systems [1]. In the medical world, CT scans are widely used
to support the diagnosis of a disease that can display body
tissue without the need to go through surgery.

Detection of brain tumors has an essential role in the
field of biomedical application in terms of diagnosis of
medical image records. 'e importance of identifying brain
tumors has increased in the recent years. 'e brain tumor
classification was developed to help medical staff diagnose
the disease. In the classification, there are several processes
that need to be performed, e.g., preprocessing, feature ex-
traction, and classification. Preprocessing is part of pro-
cessing an image before feature extraction is performed to
determine an area or object.'is process consists of filtering,
normalizing, and identifying objects before the extraction
stage. Feature extraction is a step to take the core value

(feature) on a CT-scan image to get an object that will be
recognized or distinguished from other objects [2]. 'e
extraction features include using the Gray Level Co-Oc-
currence Matrix (GLCM) with a matrix size of 64× 64 pixels
[3], with discrete wavelet transform applying Principal
Component Analysis (PCA) [4] or zoning method [5].

Classification is the process of determining functions
that can distinguish concepts with the aim of estimating the
unknown class of an object [6]. Onemethod that can be used
in the classification is Learning Vector Quantization (LVQ).
LVQ is a classification method that can conduct training at
supervised layers of a version of the Kohonen model that has
a simple learning algorithm consisting of one input and
output layer [7].

'e following are several studies that have been previ-
ously conducted in the area of brain tumors, including the
classification of soft tissues within brain CT scan based on
wavelet-dominant gray level run length texture features [8].
'is study obtained standard brain accuracy and brain tu-
mor identification of 98.00%. Classification of brain tumors
based on the statistical feature set uses the support vector
machine with an accuracy of 68.1% [9].

In this study, we used feature extraction with zoning and
classification methods with Learning Vector Quantization
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(LVQ) techniques. For each sample data that has gone
through the image preprocessing process and feature ex-
traction, and tumor location will be determined.

'e objectives are to produce a computer-aided system
so that it can help radiologists to classify the types of brain
tumors suffered by patients quickly and accurately; to build
applications that can determine the location of brain tumors
from CTscan images, and to get the results of the analysis of
the system design. 'e benefits obtained from this study are
to help radiologists to diagnose the types of brain tumors
suffered by patients quickly and accurately, especially pa-
tients in the intensive care unit, and also, it becomes one of
the references for researchers who focus on computer vision
technology in the medical field.

2. Materials and Methods

2.1. Brain Tumors. 'e brain tumor is tissuemass that grows
uncontrollably and is suppressing other healthy tissue. Brain
tumors can be classified as benign (soft) brain tumors and
malignant (severe) brain tumors. It is clinically challenging
to distinguish between benign or malignant brain tumors
because the symptoms that arise are also determined by the
location of the tumor, the rate of growth, and the effect of the
tumor mass on brain tissue [10].

Initial diagnosis is made by obtaining data on the pa-
tient’s family health history and physical examination. After
that, a neurological examination is performed to determine
the mental status, memory, cranial nerve function, muscle
strength, and response to pain.'e next step is a radiological
examination through CT-scan or MRI (Magnetic Resonance
Imaging).

2.2. Computed Tomography. Computed Tomography (CT)
scan is a method used to examine patients without direct
surgery but uses X-ray and a computer to produce brain
images in axial fragments [11]. 'e number of pieces pro-
duced by the CT-scan is determined by the specifications of
the CT-scan used. In order to improve the quality of the
image in the radiological examination, the patient is
sometimes injected with a contrast agent in order to improve
the image quality of the desired organ.'e size of the images
contained on the CT-scan ranges from −1024 to +3071 on
the Hounsfield unit scale. Hounsfield itself is a measurement
of the density of the tissue, as shown in Figures 1 and 2.

Image processing is a method for processing and ana-
lyzing images so as to produce images in accordance with
image perceptions and needs to be used using computer aids.
'e image can be interpreted as a function that has two
dimensions f (x, y), where x and y are coordinates and f at
each point (x, y) expresses the intensity, brightness, and
grayscale in the image. 'e digital image is the study of a
matrix in which there are elements of an image that can
provide information in a discrete form. Digital images are
continuous as in X-ray and television monitors. 'us, the
conversion process needs to be performed to get information
from the required digital image. To get feature information
on images, various applications can be used, one of which is

computer vision, which has been developed in the process of
taking image information in the form of features that have
been extracted automatically from the image itself. 'is
process is often used to combine several technologies such as
image and signal processing, pattern recognition and
multimedia, and interaction between humans and com-
puters. 'is process is often referred to as CBIR (Content-
Based Image) in the field of image processing [12].

Some stages contained in the CBIR process include the
following:

(1) Preprocessing aims to determine an object that will
be used at the extraction stage
(2) Feature Extraction is a process for obtaining new
features in the form of patterns, shapes, and textures

2.3. Forming a Binary Matrix (Binarization). At this stage,
the image will be formed as black and white by converting a
gray-level image to a binary image. 'is process will take the
average value of each RGB value, where the pixel value
produced is higher than the threshold value, it will be
represented aswhite and if the resulting pixel value is less
than the threshold value, it will be represented as black [13].
'e thresholding process is used to determine the degree of
the gray level in the image and determine the threshold
value. 'e process for determining this threshold value uses
the following equation:

T �
fmaks + fmin

2
, (1)

where T= threshold value, fmaks =maximum pixel value,
and fmin =minimum pixel value.

2.4. Feature Selection. Feature selection is the process of
determining patterns by obtaining values on image char-
acters to form feature values. Classification uses feature
values to recognize input units from output units so that they
can easily distinguish objects.

2.5. Zoning Method. 'e zoning method is a method of
feature extraction that can divide the characters into N×M
zones from each zone. 'e feature value calculation is
performed to form the feature values in the M×N zone. In
the classification process, the introduction of the zoning
method produces proper and efficient feature extraction.
Zoning can be used to calculate the number of white pixel
values in a particular zone; the value obtained from the
zoning process will be used as a value for the vector input.
'e results of the zoning process are vector features that can
be entered into the classification stage, as in Figure 3 [14].

2.6. Definition of LVQ (Learning Vector Quantization).
LVQ is a classification method that can conduct training at
supervised layers at the competitive layer.'is layer is able to
classify the given vector input automatically. Some input
vectors have close weights; therefore, the weights will
connect the input layer with the competitive layer. 'e
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competitive layer produces a class that is connected to the
output layer with an activation function. 'e architecture of
an LVQ network with several input layer units and units at
the output layer can be seen in Figure 4 [16].

Figure 4 explains that the values X1 to X2 are input
values where this value will be used for the training process
and testing process. W1 and W2 as weight vectors that can
connect each input layer with the output layer. W1 and Wn
are used to get the smallest weight distance from the weight
vector obtained from the calculation of input values. E1 and
E2 are used as the output layer to represent several classes,
while D1 and D2 are used as the output values at the output
layer for the testing process.

Some of the advantages of LVQ are as follows [16, 17]:

(1) Able to produce a minimum error value

(2) At the classification, the stage can summarize large
data sets into small vectors

(3) Can do a gradual renewal of the resulting model

'e disadvantages of LVQ are as follows:

(1) To determine the distance to all attributes, an ac-
curate calculation must be used.

(2) Calculation of initialization and parameters are needed
in determining the accuracy of the LVQ model.

(3) 'ere is difficulty in determining the number of vectors
in new problems before entering into the classification
process using the LVQ method, the training process is
first carried to simplify the process of class searching so
that it can perform an introduction of input patterns
based on the output obtained. LVQ can perform input
pattern recognition if the distance between the weight
vector and the input vector is close together.

2.7. Training and Testing. At LVQ, there are two stages of
training and testing as follows: the training algorithm and
testing of the LQV artificial neural network used for the
training and testing process . 'e initial weight of the input
values X1 to Xn towards the output layer that represents the
whole class, maximum epoch (MaxEpoch), learning rate
parameters (α), reduction of learning rate (Decα), and
minimum error (Eps) is determined.

At the training stage, LVQ calculation results are used to
get the weight value that will be stored and used in the testing
phase. In the testing phase, new input data is classified by
calculating the value of each weight in the input and
selecting the smallest distance in the two weights that have
been stored. 'e value at the smallest weight distance will
represent the class in the input image.

'e data used are 40 data stored in the medical record of
H. Adam Malik General Hospital in patients aged 40 to 60
years with male sex 60% and female 40%, all anonymized.

2.8. Input of the Brain Image. 'e image input process is
carried out before the image classification process. 'e
image data used in this study is axial piece brain image data
obtained from CT Scan. 'e image used is a grayscale image
measuring 512× 512.

2.9. Preprocessing. At the preprocessing stage shown in
Figure 5, several stages are carried out to facilitate the next
process; the preprocessing stage consists of grayscale and
binarization processes. At the stage of binarization, the
image is converted into a grayscale form, and then,
thresholding will be performed where the grayscale image
will be converted into a binary form, which has values 1 and
0 (white and black). In this stage, the threshold value is used
to determine the binary value in each image. If the resulting
value is above the threshold value, the pixel value is changed
to white; if the resulting value is less than the threshold, the
pixel value will be changed to black. 'is is shown in
Figure 6.

Figure 3: Zoning method.

Figure 1: Brain tumor on CT-scan [12].

Figure 2: Normal brain on CT-scan.
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2.10. Feature Extraction. In the next process, after going
through the preprocessing, the feature extraction step is
carried out by the zoning method to get a good feature value
on the image of a brain tumor. Furthermore, the feature
values obtained from the method will be classified using the
LVQ (learning vector quantization) method.

Zoning is one method that can divide several regions,
where each region will produce a feature value by counting
the highest number of white pixels. At this stage, the image
size of 512× 512 will be divided into 8 columns and 8 rows so
that it gets 64 zones, and there are 64 feature values in it. 'e
following process of extraction features can be seen in
Figure 7, while the division of zones can be seen in Figure 8.

'e process of the zoning method on CT brain image
tumors is as follows:

(1) 'e number of white pixels are counted per zone
from Z1 to Z512

(2) It is determined which zone has the highest number
of white pixels

(3) 'e feature values (Zn) of each zone are calculated
from Z1 to Z512

'e following formula is used:

Zn �
Zn

Z highest
, (2)

where 1≤ n≤ 512.
Feature values (Zn) are obtained by comparing the

number of white pixels from one zone with the zones ob-
tained from process no 2. Examples of zoning method
calculations are as follows:

(1) 'e number of white pixels in each zone is

Z4� 40, Z12� 30, Z40� 70, and Z53� 50

CT brain image

Start

Manual reading

Result of
classification

Normal Suspected

Finish
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Classification
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Figure 5: Research flowchart.
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Figure 4: LVQ network architecture [15].
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(2) 'e zone that has the highest number of white pixels
is Z40� 70

(3) Feature values for each zone include

Z1� 40/70� 0.57
Z12� 30/70� 0.42

Z40� 70/70�1
Z53� 50/70� 0.71
Z60� 20/70� 0.28

'e feature extraction process by the zoning method will
produce 64 features where the feature will be used as an
input value at the next stage, which is the classification
process using LVQ and can be seen in Figure 9.

2.11. Classification. Classification is a process to train and
test the value of features produced through the feature
extraction process using the zoning method and classified
with Learning Vector Quantization (LVQ). At the classifi-
cation stage, there are two processes, namely, the training
process and the testing process, where the training process is
used to train memorization on Learning Vector Quantiza-
tion (LVQ) while the testing process is testing the value of
features that have never been trained [15].

2.12. Training Process. At the training stage, the LVQ al-
gorithm will process the input values by receiving 64 input
vectors in the feature class, and then, the vector will calculate
the distance of all vectors representing the class.

'e process of applying the Vector Quantization
Learning Algorithm (LVQ) to the training is as follows [18]:

(1) 'e initial process in the LVQ algorithm is the
initialization stage to determine the initial weight,
maximum iteration, minimum error, and learning
rate.

(2) 'e input and target values of the input are
initialized.

(3) 'e next step determines the initial conditions
epoch� 0 and error� 1.

(4) When the epoch is smaller than the maximum ep-
och, each weight value is calculated, and then, the
shortest distance to the weight is set with the value
that has been set.

(5) 'e next step is to update the weight value if the
target class and weight are the same as when using
the following equation:

(a) (b)

Figure 6: Binarization, normal (a) and after binarization (b).

Divide image into 8 × 8 blocks

Count white pixels in each zone

Feature value = Zone value, average
feature extraction zone

Define pixels with highest white pixel

Feature value for each zone = Amount of pixel/white pixel

Figure 7: Feature extraction process.

8 columns

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8

Z9 Z10 Z11 Z12 Z13 Z14 Z15 Z16

Z17 Z18 Z19 Z20 Z21 Z22 Z23 Z24

Z25 Z26 Z27 Z28 Z29 Z30 Z31 Z32

Z33 Z34 Z35 Z36 Z37 Z38 Z39 Z40

Z41 Z42 Z43 Z44 Z45 Z46 Z47 Z48

Z49 Z50 Z51 Z52 Z53 Z54 Z55 Z56

Z57 Z58 Z59 Z60 Z61 Z62 Z63 Z64

Figure 8: Result of image zoning.
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wj(new) � wj(old) + α[x − wj(old)]. (3)

(6) 'e same calculation is repeated for each input using
the updated weight.

(7) After the calculation of the input is complete, the
value of α is reduced and α is iterated until it ap-
proaches the maximum. 'e value is determined so
that Error ‖X − Wj‖ becomes a minimum.

2.13. System Testing and ROC Analysis. 'e testing process
uses LVQ that has been trained to recognize test data that
has never been trained.'e testing process is the same as the
training process, where the classification calculates the value
of each weight input and selects the closest distance between
the two weights. When LVQ is tested using training data,
testing is performed to see how the memorization of LVQ is
developed after going through the training process because
the cases included have been studied before.

'e results of the testing process on the sample will be
adjusted in the contingency table to get the sensitivity,
specificity, and accuracy of the contingency table, as can be
seen in Table 1. 'e probability of success from a calculation
has four possibilities. 'e four possibilities are as follows:

(1) If the doctor diagnoses the brain image as a tumor
and the brain image is classified positively identified
by the tumor, then true positive (TP) is calculated

(2) If the doctor diagnoses the brain image as a tumor
and the brain image is classified as negatively
identified by the tumor, then false negative (FN) is
calculated

(3) If the doctor diagnoses a healthy brain and the brain
image is classified as negative, true negative (TN) is
calculated

(4) If the doctor diagnoses a healthy brain image and the
brain image is classified as positive, the tumor is
calculated as false positive (FP)

TPR �
TP
P

� Recall, (4)

FPR �
FP
N

, (5)

Precision �
TP

TP + FP
× 100%, (6)

Accuracy �
TP + TN
P + N

× 100%, (7)

Sensitivity �
TP

TP + TN
× 100%. (8)

2.14. Image Preparation. 'is part discusses the process of
classifying brain images, amounting to 40 images. In the
training process, 10 brain images were identified as tumors,
and 10 healthy brains for the training process consisted of 10
brain images that were identified as tumors, and 10 were
normal. CT-scan brain image data were obtained from
medical records of H. Adam Malik General Hospital in
patients aged 40 years to 60 years. At this stage, it aims to
display the results of the testing process on learning vector
quantization. 'e author builds this application using
programming in java.

'e CT image data used to support the findings of this
study may be released upon application to the Department
of Neurology, Adam Malik Hospital, Medan, Sumatera,
Utara, Indonesia, who can be contacted at irina.kemala (at)
usu.ac.id.

2.15. Specifications of the CT-Scan Plane Used. 'e CT-scan
aircraft specifications used are as follows:

(1) Brand: GE LightSpeed 16 Slice CT
(2) Rotation: 0.5 s
(3) 'ickness slice: 5mm
(4) Kv: 120 kV

3. Results and Discussion

3.1. Preprocessing. 'e initial process carried out in the
classification of brain tumors through the stages of pre-
processing in which the image will be converted into black
and white before the globalization process is carried out. In
this study, using a threshold value of 128, determining the
threshold value is used to obtain gray values in the image of a
brain tumor. 'e results of this process can be seen in
Figure 10.

After the binary image is obtained, the next step is
feature extraction using the zoning method. In addition to
determining the value of the zoning method, features are
also used to determine the location of the tumor. A division
of several zones of the same size is performed in order to get
the results of the CT scan brain tumor image values. 'e
purpose of this feature extraction stage is to find a collection
of features found in the character of the brain image.

1 0 1 1 0

Z1 Z12 Z40 Z53 Z60 64

Figure 9: Value of feature extraction with zoning.

Table 1: Contingency table.

P N
Y TP (True Positive) FP (False Positive)
N FN (False Negative) TN (True Negative)
Total P N
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3.2.TrainingProcess. 'e image training process uses data in
the form of 20 CTscan brain images consisting of 10 normal
images and 10 suspected images. CT scan brain images used
are 512× 512 in size stored on local hard disks, and the
classification process uses an artificial neural network LVQ
(Learning Vector Quantization). Training can be seen in
Figure 11, while the training data from CT brain image can
be seen in Table 2.

From Table 2, the weight value in each training data has
been seen.'e weight value is the final value used in the testing
process, where the weight value is obtained from the LVQ
calculation process. To make an introduction to the image by
calculating the value of each weight in the input and choose the
smallest distance on both weights. 'e value at the smallest
weight distance will represent the class in the input image.

3.3. Image Testing Process. During the testing phase, 20
imagery input data were used, consisting of 10 normal
brain images and 10 suspected brain images. Display

application of the classification of brain tumors by
zoning using learning vector quantization can be seen in
Figure 12, and the results of the test can be seen in
Table 3.

From Table 3, the input value in data-12 shows the
condition of the image for the normal category, but the
system shows a suspect; this is because the learning vector
quantization method has a weakness of being sensitive to
changes in weight values. If the position of the input value in
the form of a feature value is changed, the weight value will
also change.

3.4. Classification Results Using the LVQMethod. 'e results
of the test data on the application of brain tumor classi-
fication are obtained with the learning vector quantization
method with an average classification result of 85% so that
the results of the accuracy using learning vector quanti-
zation can be calculated simply by using the following
equation:

(a) (b)

Figure 10: Binary image reconstruction.

Figure 11: Training process.
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Table 2: Data set training.

No. Brain image Weight Result

1 0.076161 Normal

2 2.304818 Normal

3 2.2668598 Normal

4 1.456988 Normal

5 2.9700592 Normal

6 1.6688762 Normal

7 1.6688761 Normal
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Table 2: Continued.

No. Brain image Weight Result

8 2.9700592 Normal

9 2.769984 Normal

10 1.6688762 Normal

11 2.9779766 Suspected

12 2.9736168 Suspected

13 2.9230187 Suspected
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Table 2: Continued.

No. Brain image Weight Result

14 2.800454 Suspected

15 3.2186778 Suspected

16 1.8768171 Suspected

17 2.3506687 Suspected

18 1.9752706 Suspected

19 3.0961044 Suspected

20 2.006145 Suspected
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accuracy �
amount of succesful classification

amount of total samples

× 100%,

�
17
20

× 100% � 85%.

(9)

To get accurate results, it is necessary to perform an ROC
analysis of the classification results based on the LVQ
method; the results for the LVQ method are shown in
Table 4.

'is study has several limitations. 'e use of CT imaging
in the intensive care unit is very limited nowadays due to the
need for a radiographer’s presence to analyze and diagnose
the patients, sometimes in a not very regular period of time.

Figure 12: Image testing process.

Table 3: Result of testings.

No. Image Weight 1 Weight 2 Input∗ Result Notes Pos.
1 Data-5.png 3.489579 2.9736168 Suspected Suspected TP Right
2 Data-9.png 3.7573445 3.2186778 Suspected Suspected TP Right
3 Data-2.png 3.4895792 2.9779766 Suspected Suspected TP Right
4 Data-12.png 3.0037804 2.6869104 Normal Suspected FN Normal
5 Data-13.png 2.304818 2.9392818 Normal Normal TN Normal
7 Data-7.png 3.07729601 1.8768171 Suspected Suspected TP Right
9 Data-19.png 2.2668598 2.9678066 Normal Normal TN Normal
10 Data-11.png 2.305248 2.9393818 Normal Normal TN Normal
11 Data-13.png 2.304818 2.93938118 Normal Normal TN Normal
12 Data-8.png 3.4555268 2.9230187 Suspected Suspected TP Left
13 Data-18.png 2.9360542 2.8076556 Normal Suspected FN Normal
14 Data-4.png 3.5838966 2.800454 Suspected Suspected TP Right
15 Data-1.png 3.043977 2.006145 Suspected Suspected TP Right
16 Data-6.png 3.0350804 2.3506687 Suspected Suspected TP Left
17 Data-10.png 2.3829138 3.0961044 Suspected Normal FP Normal
18 Data-3.png 2.8869388 1.9752706 Suspected Suspected TP Right
19 Data-14.png 2.769984 2.9166098 Normal Normal TN Normal
20 Data-15.png 2.2493293 2.9494078 Normal Normal TN Normal
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'e availability of CT data, therefore, was very limited,
especially with manual reading as the golden standard, as
explained in the research flowchart (Figure 5). In this study,
only 20 images from 40 data images are used for training,
and the rest 20 images are used for testing purposes. 'is
split portion of training and testing was applied in order to
get the proof on a concept and can be extended in the future.

4. Conclusions

'e combination of the zoning algorithm with learning
vector quantization can increase the speed of computing and
can classify normal and abnormal brains with an average
accuracy of 85%. Optimal recognition of image data can be
achieved with the learning vector as it is suitable for use in
the intensive care unit in hospitals.

'e quantization method has a fast calculation in the
introduction of an appropriate character so that there are no
errors when testing data. 'e suggestions for developing this
study are to compare the learning vector quantization
method with the support vector machine method so that it
can produce the best way for classifying brain images. 'e
use of the zoning method and learning vector quantization
can be applied to further research by adding methods to
determine the extent of abnormal brain images.
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Functional near-infrared spectroscopy (fNIRS) is one of the latest noninvasive brain function measuring technique that has been
used for the purpose of brain-computer interfacing (BCI). In this paper, we compare and analyze the effect of six most commonly
used filtering techniques (i.e., Gaussian, Butterworth, Kalman, hemodynamic response filter (hrf ), Wiener, and finite impulse
response) on classification accuracies of fNIRS-BCI. To conclude with the best optimal filter for a specific cortical task owing to a
specific cortical region, we divided our experimental tasks according to the three main cortical regions: prefrontal, motor, and
visual cortex. *ree different experiments were performed for prefrontal and motor execution tasks while one for visual stimuli.
*e tasks performed for prefrontal include rest (R) vs mental arithmetic (MA), R vs object rotation (OB), andOB vsMA. Similarly,
for motor execution, R vs left finger tapping (LFT), R vs right finger tapping (RFT), and LFTvs RFT. Likewise, for the visual cortex,
R vs visual stimuli (VS) task. *ese experiments were performed for ten trials with five subjects. For consistency among extracted
data, six statistical features were evaluated using oxygenated hemoglobin, namely, slope, mean, peak, kurtosis, skewness, and
variance. Combination of these six features was used to classify data by the nonlinear support vector machine (SVM). *e
classification accuracies obtained from SVM by using hrf and Gaussian were significantly higher for R vs MA, R vs OB, R vs RFT,
and R vs VS and Wiener filter for OB vs MA. Similarly, for R vs LFT and LFT vs RFT, hrf was found to be significant (p< 0.05).
*ese results show the feasibility of using hrf for effective removal of noises from fNIRS data.

1. Introduction

Brain-computer interface (BCI) also known as human-machine
interface (HMI) or brain-machine interface (BMI) provides a
communication mean between the user and external devices
through a combination of hardware and software systems [1–3].
*ese systems are trained to generate control commands based
on a specific set of patterns of brain signals [4].

Brain signal acquisition is categorized between invasive
and noninvasive techniques. However, due to surgical risks
and limited access to the cortical region, noninvasive

techniques are common in practice [5]. Noninvasive mo-
dalities include functional magnetic resonance interference
(fMRI), functional near-infrared spectroscopy (fNIRS) [6],
and electroencephalography (EEG) [4]. fNIRS is a com-
paratively new modality that has better spatial resolution
and low artifacts, cost, and portability [4, 7]. So far,
promising results have been shown by fNIRS-BCI [8–10].
Acquired brain signals for a specific task may contain noises
that can contaminate signals and can effect informative data.
*ese noises are categorized between physiological noise,
experimental noise, and instrumental noise [8, 11]. In fNIRS,
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the experimental noises are removed prior to the change of
the raw signal to its magnitude through the modified
Beer–Lambert law [8, 12, 13]. Noises produced due to
hardware or by surrounding are known to be instrumental
noises. *ese noises usually have high frequency that can be
removed using low-pass filter; furthermore, keeping isola-
tion from external sources such as light can reduce such type
of noises. Experimental noises include motion artifacts such
as head motion during signal acquisition that can cause the
dislocation of optodes from the assigned position, thus
generates a spike-like noise due to change in light intensity.
Various studies [13–15] have utilized commonly developed
filtering techniques randomly for noise removal. However,
obtained signals can be corrupted by different kinds of
noises that could affect further analysis. Noises can be
physiologically produced due to Mayer waves (∼0.1Hz),
respiration (0.2∼0.5Hz), and heartbeat (1∼1.5Hz), mainly
due to fluctuations of blood pressure [8, 16–19].*ese noises
can be removed using adaptive or bandpass filtering [20, 21].
After preprocessing, useful information is extracted from the
filtered data afterward classified using different classifiers
mainly named as linear discriminant analysis (LDA), sup-
port vector machine (SVM), quadratic discriminant analysis
(QDA), and naı̈ve bayes (NB) [22] to generate control
commands, hence completing the loop for BCI. Previous
studies [13, 14, 23] show that an appropriate filter for
correctness of data is the key to achieve more accurate
results.

In this study, we hypothesized to find an optimal filter
for commonly used cortical tasks, owing to a particular
cortical region. Hence, we compared six commonly used
filters to remove previously discussed noises. *ese filters
include discrete Kalman [24], time-varying Wiener [25], 4th
order Butterworth, hemodynamic response filter (hrf),
Gaussian [26], and window-based finite impulse response
(FIR) [27]. For the said purpose, cortical data were acquired
from the three main regions of the brain, namely, prefrontal
(PFC), motor (MC), and visual cortex (VC). Since the data
acquired from PFC relate to thinking tasks [28–31], hence
arithmetic and object rotation tasks were performed for this
cortical region [32–34]. Similarly, tasks related to movement
of limbs or fingers is related to the motor cortex [35];
therefore, the finger tapping tasks were performed for de-
sired data acquisition [36–38]. Likewise, flickering of
checker box was performed for visual cortex data [39].
Keeping in view the target of an optimal filter for a specific
cortical region, a previous study [22] reported the different
combinations of statistical features. *erefore, for consis-
tency of extracted data, statistical features were kept the
same for all experimental tasks, hence making combinations
of six features, namely, signal mean (SM), signal slope (SS),
signal peak (SP), signal skewness (SK), signal kurtosis (KR),
and signal variance (SV). For classification, a number of
studies [22, 40, 41] reported nonlinear SVM classifiers for
comparatively better accuracies, hence all experimental tasks
were classified using a nonlinear SVM classifier. *erefore,
the main contribution of this work is (1) to analyze the effect
of the six most commonly used filtering techniques and (2)
to propose the optimal one among the most frequently

discussed noise removal techniques. For the aforementioned
experiment, we select three main cortical regions: prefrontal,
motor, and visual cortex with seven various paradigms. *e
canonical hemodynamic response filter (hrf) [26] performed
overall best among the opted techniques. On the basis of
these systematic and explicit analyses, it can be seen that
selection of an optimal filter has a significant role in en-
hancing accuracies. Hence, these observations can serve as a
standard guide for others to test the effect of noise correction
algorithms for fNIRS experiments, and therefore can select a
significant methodology.

2. Materials and Methods

2.1. Experimental Setup. To acquire experimental data, seven
paradigms owing to three main cortical regions were designed
and explicitly performed using a dynamic near-infrared optical
tomography (DYNOT-232; NIRx Medical Technologies, NY,
USA) device at Pusan National University. It operates on two
wavelengths that are 760 and 830nm where the signal acqui-
sition sampling frequency was 1.81Hz. Five healthy subjects
with normal or corrected-to-normal vision took part in the
experiment with a verbal consent before experimentation. All
subjects were right-handed with an age range of 26±3. Right-
handed subjects were selected to minimize hemodynamic re-
sponse variation due to hemispheric-dominance difference.*e
experimental participants had no history of alcoholism, psy-
chiatric, neurological, and visual disorder, cardiovascular and
respiratory disease, mental illness, or any motor disability.
Moreover, three hours before the commencement of the study,
participants were asked to refrain from caffeinated drinks. As
discussed in the literature [28, 30, 31, 35, 37, 38], for thinking-
related task, signals were acquired from PFC, similarly for
motor execution tasks from the primary motor cortex (PMC),
and visual stimuli task from VC. Performed experiments were
according to the latest Declaration of Helsinki.

2.2. Experimental Paradigms. In accordance with the liter-
ature [35, 39], subjects were seated on a comfortable chair
and were asked to take rest with restricted movements as
they can, so that the hemodynamic response activation
owing to previous activities can be avoided. Hence, each
paradigm related to PFC, MC, and VC starts with a rest of
20 s period to set up the baseline conditions. As the literature
[42–45] show, (10∼12) s task is adequate to acquire he-
modynamic response of brain activity, hence 20 s initial rest
was followed by 10 s task, and this was followed in turn by
another 20 s rest period permitting signals to return to their
baseline values before the start of the next trial in paradigm
(a). For paradigm (b), 20 s rest after 10 s task 1 was again
followed by 10 s task 2. *e 20 s rest between two 10 s tasks
was added to differentiate two classes through the baseline
value. Figure 1 depicts paradigm (a) and paradigm (b). For
optimal filter selection, tasks were selected concerning
specific cortical regions such that for PFC, three different
experiments were performed, rest (R) vs mental arithmetic
(MA), R vs object rotation (OB), and OB vs MA task.
Similarly, for MC, R vs left finger tapping (LFT), R vs right
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finger tapping (RFT), and LFTvs RFT. Likewise, for VC, R vs
visual stimuli (VS) task.

2.2.1. Prefrontal Tasks

(1) Mental Arithmetic. According to previous studies
[44, 46, 47], for R vsMA task, subjects were asked to perform
a series of arithmetic calculations for 10 s based on the
pseudorandom order, such that to subtract the random two-
digit number (between 10 and 20) successively from the
previous result of the three-digit number subtraction
appearing on the screen (e.g., 400-11, 389-17, and 372-14).
Afterwards, the screen was turned black so that subjects does
not go beyond the 10 s task.

(2) Object Rotation. For the object rotation task, subjects
were asked to imagine a cube rotating for the 10 s task while
the “object rotation” word appeared for 10 s on the screen at
about 2m distance [48–50].

(3) Mental Arithmetic vs Object Rotation. In this protocol,
subjects were asked to perform the aforementioned MA task
versus OB task in between 20 s of rest to distinguish two
tasks. *e experimental paradigm is depicted in Figure 1(b).

2.2.2. Motor Tasks

(1) Finger Tapping. According to the literature
[8, 17, 19, 23, 31, 37, 38, 51], subjects were asked to tap the self-
paced index finger of one hand for 10 s afterwards the 20 s rest
task was performed allowing signals to return to their reference
values. Also, repetition for 10 times was performed as depicted
in Figure 1(a). Similar trials were performed on the other hand,
while for the LFT vs RFT task, 20 s rest was performed in
between two tasks for the restoration of the signal to the baseline
level as shown in Figure 1(b).

2.2.3. Visual Task

(1) Checker Box Flickering. In this experiment [4, 18, 39], a
screen was placed in front of the subjects at a distance of
approximately 2m, and also subjects were requested to avoid

eye blinking during the experiment. *e 10 s task of checker
box flickering at 4Hz was performed followed by 20 s rest of
the black screen. *e sound was also generated during the
transition between rest and task. *e paradigm followed for
visual stimuli is shown in Figure 1(a).

2.3. Experimental Setup. Since the mental imagery task
activates the PFC [34, 43], a total 11 of near-infrared (NI)
light optodes were placed on PFC, 3 of which were detectors
and 8 were the source in accordance with the literature
[46, 47]. Similarly, for the motor execution task, the primary
motor cortex (PMC) is activated [37, 43], hence 15 optodes
were placed on PMC out of which 8 were the source and 7
were detectors. To extract data for LFT, optodes were placed
on the right hemisphere, while for RFT on the left hemi-
sphere [43]. Similarly, for the visual stimuli task data ac-
quisition from the visual cortex [4, 18, 39], eleven optodes
were placed having eight sources and three detectors. *e
distance between the source and the detector was 3 cm.
Optode placement with channel configuration for MC, VC,
and PFC is shown in Figure 2.

2.3.1. Signal Acquisition. In accordance with the literature
[6, 8, 29], the raw optical density signal is converted to
oxyhemoglobin (ΔcHbO(t)) and deoxyhemoglobin
(ΔcHbR(t)) concentration using the modified Beer–Lambert
law (MBLL) as decribed in the following equation:

ΔcHbO (t)

ΔcHbR(t)
􏼢 􏼣 �

βHbO λ1( 􏼁 βHbR λ1( 􏼁

βHbO λ2( 􏼁 βHbR λ2( 􏼁

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

− 1 Δψ t, λ1( 􏼁

Δψ t, λ2( 􏼁

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

d∗ l
,

(1)

where βHbX(λ) is the HbX extinction coefficient in
µM− 1cm− 1􏼈 􏼉, d is the differential path length factor for the
curved path in (mm), l is the detector and emitter distance in
(mm), and ΔψHbX(t) is the absorbance difference of the light
emitter wavelength of λi.

2.4. Signal Processing. *e acquired raw signals of the brain
contain various noises that can be categorized into physi-
ological, experimental, and instrumental noise [8, 52]. In

Rest TaskInitial 
rest

Final 
rest

20s 10s20s
9 trials

20s
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rest
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restTask 2
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9 trials

10s 20s
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Figure 1: Experimental paradigms for cortical tasks. (a) Task vs rest. (b) Task 1 vs task 2.
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fNIRS, the instrumental and experimental noises are re-
moved prior to change of the raw signal to its magnitude
through MBLL [8, 12, 14].

2.4.1. Instrumental Noises. Noises produced due to hard-
ware or by surrounding are categorized under instrumental
noises. *ese noises usually have high frequency that can be
removed using a low-pass filter; furthermore, keeping iso-
lation from external sources such as light can reduce such
type of noises [8].

2.4.2. Experimental Noises. *ese errors contain motion ar-
tifacts due to unintentional body movements like head motion
during signal acquisition. It can cause the dislocation of optodes
from the assigned positions that result in a spike-like noise due
to change in light intensity. Filters like Kalman andWiener can
be used to remove such type of noises [12–15].

2.4.3. Physiological Noises. *ese noises are produced due to
Mayer waves (∼0.1Hz), respiration (∼0.5Hz), and heartbeat
(1∼1.5Hz) that occur due to fluctuations of blood pressure
[16–19]. *ese noises can be removed using adaptive or
bandpass filtering [8, 20, 38].

2.5. Data Analysis. NIRS-SPM is a toolbox designed for
fNIRS data analysis. For signal processing, it provides
common filtering techniques, namely, Butterworth,
Gaussian, and hrf [26]. *e comparative data analysis was
performed by implementing Gaussian and hrf filtering using
the NIRS-SPM toolbox, while other techniques on
MATLAB® 2017b. *e generalized mathematical models
with necessary details are as follows.

2.5.1. Gaussian Filtering. A Gaussian filter is used in various
forms depending upon the nature of the signal. Generally, a
Gaussian filter is based on a Gaussian function which defines

the probability distribution of noise or data. It can also be
used as a smoothing operator. A Gaussian kernel is used for
smoothing the signal in which each value is replaced with the
weighted average of itself and its neighboring values
[14, 21, 26]. A simple representation of the 2DGaussian filter
can be defined in the following equation as

G(x, y) �
1

2πσ2
e

− x2+y2( )/2σ2 , (2)

where x and y are the distance from the origin in horizontal
and vertical axis and σ is the known standard deviation of the
distribution.

2.5.2. Hemodynamic Response Filter (hrf ). *e hrf is based
on the canonical representation of the hemodynamic re-
sponse functions (HRF) and is used for the temporal
smoothing of the fNIRS time series signal. In NIRS-SPM, the
given functional data were smoothen using the least square
estimate with ideal HRF. *e hrf and Gaussian filter model
details are in accordance with the literature [26].

2.5.3. Butterworth Filter. Butterworth filter is a model-based
bandpass filter which performs on frequency attenuation
using high and low-pass filter. *e filtered value not only
depends on the weighted average of the unfiltered time
series, but also recursively on the previous values of the
filtered time series. *is filter aims to have a flat frequency
response in the desired pass band [26]. *e 4th order But-
terworth filter with a band pass of (0.01∼0.1) Hz was applied
by MATLAB® build in a library for the desired experiments.

2.5.4. Finite Impulse Response Filter. FIR filter is designed by
finding the coefficients and filter order so that it performs a
cross-correlation between the input signal and the time
reversed impulse response; therefore, by sampling the pulse
shape, coefficients of the filter are designed [14]. FIR filter of
order N can be defined as the following equation:
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Figure 2: Optode placement configuration in accordance with the 10–20 international system. (a) Motor cortex. (b) Visual cortex.
(c) Prefrontal cortex.
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x[n] � 􏽘
N

i�0
aiy[n − i], (3)

where y[n] is the input signal, x[n] is the output signal, N is
the filter order, and bi is the value of impulse response at ith

instance. Here, the 4th order FIR filter with a low-pass band
of 0.1Hz was utilized. *e coefficients were estimated using
the least square estimate. However, a time-varying Wiener
filter, based on the short-time Fourier series, was imple-
mented as in [25, 53].

2.5.5. Kalman Filter. Kalman filters the input signal con-
taining statistical and other noises by linear quadratic es-
timation. *e estimated unknown variables based on the
Bayesian inference and joint probability distribution tend to
bemore accurate [13, 14]. Its simple model can be seen in the
following equation:

xk � Fkxk−1 + Bkuk + wk, (4)

where Fk is the state transition model applied to previous
state xk−1, Bk is the control input model applied to the
control vector uk, and wk is the process noise. A discrete
model of Kalman was implemented in accordance with
[24].

2.6. Feature Selection. For the consistency between extracted
data across all paradigms, six statistical features (SV, KR, SS,
SM, SK, and SP) were used to extract information across data
[28, 43, 46, 54, 55]. SM is calculated in the following equation
as

SM �
1
n

􏽘

n

X�1
Ax, (5)

where Ax is the input signal such that ΔcHbO(t) and n is the
total number of observations. Signal variance is calculated in
equation (6) as

σ2 �
1

n − 1
􏽘

n−1

x�1
Zx − μ( 􏼁

2
, (6)

where Zx is the input signal, μ is the mean found from
equation (6), n is the number of samples, and σ is the
standard deviation. For KR, calculation was made by the
following equation:

kurt(X) � E
X − μ
σ

􏼒 􏼓
4

􏼢 􏼣, (7)

where X is the input signal and E is the expected value of X.
SK is the asymmetry of values relative to normal dis-

tribution around the mean, hence calculated in the following
equation:

skew(X) � E
X − μ
σ

􏼒 􏼓
3

􏼢 􏼣. (8)

MATLAB® polyfit function fits the line to all input data
points, therefore used to calculate SS. Similarly, max

function was used to calculate SP. Statistical features were
rescaled between 0 and 1 using the following equation:

Z′ �
Z − min(Z)

max(Z) − min(Z)
, (9)

where Z′ is the rescaled feature and Z refers to the original
feature values. *e scatter plot across all six statistical fea-
tures for the OB vsMA task of subject 1 is shown in Figure 3.

2.7. Support Vector Machine. Statistical significance of ac-
curacy is analyzed for selection of an optimal filter for a
specific cortical region; therefore, for higher classification
performance, nonlinear SVM is used [35, 38]. It can rescale
high-dimensional data and can control errors explicitly by
maximizing the margins between two or more classes thus
creating hyperplanes named as support vectors [40, 41, 56].

*e cost function that is to be maximized for the SVM
classifier gives a correlation between training data and hy-
perplane as defined in equations (10) and (11), respectively,

Minimize
1
2

‖z‖
2

+ k 􏽘
N

x�1
εx, (10)

Providedyx Z
Tξx + a􏼐 􏼑

3
≥ 1 − εx, εx ≥ 0, (11)

where z, ξx εR2, b εR1, z2 � zTz, k is the positive regula-
rization parameter, εx is the measure of the training error,
and yx is the class label for the nth sample. Here, the third-
degree polynomial kernel function with k � 0.5 and 10-fold
cross-validation was applied for the estimation of classifi-
cation accuracies [53].

3. Results and Discussion

3.1. Results. In this study, an optimal filter was chosen based
on cortical tasks. Activities were categorized based on three
main regions such as PFC, MC, and VC. ΔcHbO(t) signals
were filtered using six filters. Figures 4–6 show the averaged
ΔcHbO(t) filtered signals across trials of prefrontal, motor
execution and, visual stimuli tasks. *e three different sig-
nals show various paradigms for each brain region, while the
horizontal axis is aligned with one complete event. *e
pictorial analysis of filtered responses shows that using the
4th order Butterworth changes data form altogether while
discrete Kalman and Wiener filtered the signals, but there
remain some noises in the output response, whereas, ca-
nonical hrf and Gaussian give much smoother response as
compared to any other technique. Moreover, previous
studies have commonly utilized Butterworth for signal
processing, while the obtained visual does not show any
significant improvement in comparison. Likewise, the
Gaussian filter is also utilized in various studies that assume
the acquired data with some normal distribution; therefore,
it considers Gaussian function which defines the probability
distribution of noise or data. It can also be used as a
smoothing operator. A Gaussian kernel is used for
smoothing the signal in which each value is replaced with the
weighted average of itself and its neighbouring values.

Journal of Healthcare Engineering 5



However, the hrf filter considers ideal hemodynamic re-
sponse as a reference for smoothing the data that are closely
related to chi-squared distribution. Due to this fact, hrf
outperforms any other considered technique.

For consistency among extracted information, classifi-
cation accuracies were obtained across six statistical features.
*e accuracies obtained across these features are shown in
Table 1. *e two-tailed independent t-test was performed to
check statistical significance with Holm–Bonferroni for
multiple comparison of filters. Results obtained in Table 2
show significance using hrf or the Gaussian filter for R vs
MA and R vs OB while for the OB vs MA task, no significant
filter was found; however, the time-varing Wiener filter
outperformed others. Similarly, in motor execution tasks,
hrf was found to be significant for R vs LFT, likewise for R vs
RFT hrf and Gaussian. Moreover, for LFT vs RFT, the hrf
filter shows better performance. In the VS task, hrf and
Gaussian were significant. Moreover, we plot the mean
accuracies of filters with respect to cortical regions as
depicted in Figure 7. *e Gaussian and canonical hrf per-
formed consistently better across all three cortical regions.
However, comparatively better accuracies were obtained
using hrf only. *e statistical results validate our hypothesis
of optimal filter selection by assuring that hrf generally has
better performance for fNIRS-based studies, which is in
accordance with a previous study [53].

3.2. Discussion. Despite of the fact that fNIRS offers por-
tability, low cost, and ease of equipment setup, there still
remains a challenge of removing noises like systematic
physiological (Mayer waves, muscle activity, blood pressure,

and respiration and heart rate) and artifacts [17, 57], as
fNIRS signals are highly contaminated by measurement
noises and physiology-based systemic interference [58].
Several studies have proposed methodologies that can
remove noises robustly. In [59], temporal filtering using a
low-pass filter with 0.6Hz cutoff frequency and canonical
hemodynamic response function with 4 s full width at half
maximum was applied. In [60], exponential moving average
and Chebyshev filter were used to remove artifacts from the
fNIRS data. Similarly, in [61], only low-pass filter with a
0.14Hz cutoff was applied to remove physiological noises
from fNIRS signals. Aqil et al. [62] used recursive least
square estimation for online imaging. *is adaptive ap-
proach provided a spatial filtering with low and high pass,
detrending, and baseline correction. Similarly, Seo et al. [63]
assessed the utility of NIRS in removal of physiological
noises in fMRI data by reducing variance of the residual
error in the baseline fMRI signal through the NIRS signal in
the model. Similarly, in [64], adaptive filtration with the
affine projection algorithm was used to accelerate conver-
gence with colored noise, but it increases computational
cost. In [65], a bandpass filter based on the 5th order But-
terworth filter was used to filter motor execution signals
based on EEG. In literature [52], fNIRS-based walking
signals and walking signals while talking were acquired.
*ese signals were preprocessed using a low-pass with finite
impulse response filter, while the talking task results in low-
amplitude artifacts with a similar frequency of hemody-
namic response, hence it may affect cortical activity [57]. In
[66], multiple filters were applied for EEG- and ECG-based
signal preprocessing such as for removal of motion artifacts,
a median filter with 5-point, for systemic component
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removal, a second-order Chebychev type-2 filter, high-pass
filter for signal drift removal, 1st order low-pass Butterworth
filter for blood pressure signal, and the 4th order Butterworth
bandpass filter for ECG were applied, while using too many
filters for every aspect may result in cost of computation. In
[8], previously mentioned aspects in Section 2.4 were briefly
discussed. To remove such noise methods like MBLL, eigen-
based vector approach [19], a bandpass filter was introduced
in a MATLAB-based graphical user interface-based pro-
gram, HomER. However, no such statistical significance
comparison was seen for generic tasks. In literature [14, 15],

cancellation of motion artifacts using Wiener and discrete
Kalman filter was discussed; meanwhile, t-tests performed in
comparison showed better performance with Kalman.
Similarly, in [12, 13], four techniques, namely, Kalman,
principal component analysis, wavelet analysis, and spline
interpolation, were compared to remove NIRS data artifacts.
Results showed that spine interpolation and wavelet analysis
were significant for such noise removals. In [67], systemic
noise was removed using wavelet minimum description
length detrending approach and artifact using moving
standard deviation and spline interpolation. Eggenberger
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Figure 4: Filtered averaged HbO of PFC tasks.
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et al. [68] removed movement artifacts by using visual in-
spection, and Mayer waves were avoided using averaged
blocks. In [69], physiological noise was removed with a low-
pass filter, and sliding window was applied for motion ar-
tifact rejection. Holtzer et al. [70] combined independent
component analysis and principal component analysis to
remove noise and signal drifts. In [70–77], the signal was
low-pass filtered with a cutoff frequency at 0.14Hz, and in
[78], with a cutoff frequency of 0.2Hz and in [78], a low-pass
filter set at 0.67Hz, meanwhile a moving average filter with a
width of 4 s was used to smoothen the signal. In [79],
Gaussian smoothing with a full width at half max of 2 s was

applied, while motion artifacts were removed using the
wavelet minimum description length detrending algorithm.
In [80], a bandpass filter (0.01–1.25Hz) was applied to the
signal. Likewise, in [81], a bandpass filter (0.01–0.2Hz) was
applied while motion artifacts were removed through
principal component analysis and spike rejection. Similarly,
in [82], data were bandpass filtered (0.01Hz to 0.14Hz),
while the wavelet filter and correlation-based signal im-
provement were applied to remove motion artifacts. In [83],
data were filtered with a 0.01Hz high-pass filter and a 5.0 s
moving average filter and also principal component analysis
were applied to reduce physiological noise. Metzger et al.
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Figure 6: Filtered averaged HbO of VS task.

Table 1: Accuracies across six features for multiple cortical paradigms.
Prefrontal tasks

R vs MA
Subjects Butter FIR Gaussian hrf Kalman Wiener
S1 57.03 62.22 81.48 82.96 82.96 80
S2 57.77 59.25 71.85 83.7 68.148 69.62
S3 58.51 54.07 88.14 90.37 73.33 82.22
S4 64.44 71.85 82.22 82.96 72.59 74.81
S5 55.55 69.62 85.18 82.22 61.48 74.81

R vs OB
S1 63.7 68.14 80 86.66 71.48 75.18
S2 54.81 68.88 78.51 80 68.88 73.33
S3 60 65.92 82.22 89.62 89.22 74.81
S4 63.7 71.11 97.03 97.03 90.37 94.81
S5 60 60 82.96 77.03 68.14 65.18

OB vs MA
S1 50 64.44 68.88 75.55 85.55 90
S2 53.33 66.66 72.22 72.22 84.44 86.66
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Table 1: Continued.
S3 54.44 68.88 85.55 80 76.66 74.44
S4 56.66 71.11 81.11 83.33 85.55 86.66
S5 57.77 75.55 82.22 82.22 85.55 88.88

Motor execution tasks
R vs LFT

S1 65.18 57.03 77.03 81.48 57.03 66.66
S2 60 57.77 78.51 85.18 45.18 50.37
S3 55.55 49.62 67.4 72.59 59.25 59.25
S4 53.33 56.29 68.14 73.33 60 61.48
S5 45.18 57.77 76.29 76.29 45.18 45.18

R vs RFT
S1 61.48 43.7 78.51 89.62 66.66 65.92
S2 59.25 58.51 68.88 79.25 59.25 59.25
S3 57.77 65.92 68.88 62.96 46.66 60.74
S4 54.81 51.85 66.66 74.07 60 47.4
S5 62.96 58.51 71.85 77.03 55.77 56.29

LFT vs RFT
S1 54.44 46.66 87.77 92.22 64.44 60
S2 55.55 61.11 64.44 76.66 53.33 51.11
S3 58.88 58.88 64.44 68.88 63.33 45.55
S4 54.44 57.77 78.88 80 48.88 52.22
S5 60 62.22 70 80 55.55 56.66

Visual stimuli task
R vs VS

S1 53.33 60.74 71.11 65.18 48.88 51.85
S2 54.81 66.66 74.07 75.55 59.25 62.96
S3 59.25 64.44 76.29 82.22 71.11 69.62
S4 57.77 47.4 68.14 73.33 49.62 57.77
S5 68.88 62.96 73.33 78.51 56.29 61.48

Table 2: Statistical significance of filters across multiple cortical paradigms.

Filters p values
Prefrontal tasks

R vs MA
Butter vs hrf, FIR, Gaussian, Kalman, Wiener 0.089, 0.012, 0.012, 0.012, 0.012
hrf vs Gaussian, Wiener, FIR, Kalman 0.089, 0.012, 0.012, 0.022
Gaussian vs FIR, Kalman, Wiener 0.012, 0.089, 0.012
Kalman vs Wiener, FIR 0.089, 0.089
Wiener vs FIR 0.012

R vs OB
Butter vs FIR, Gaussian, Kalman, Wiener, hrf 0.022, 0.012, 0.012, 0.012, 0.012
hrf vs Kalman, Gaussian, Wiener, FIR 0.012, 0.158, 0.012, 0.012
Gaussian vs FIR, Kalman, Wiener 0.012, 0.089, 0.012
Kalman vs Wiener, FIR 0.327, 0.022
Wiener vs FIR 0.012

OB vs MA
Butter vs FIR, Gaussian, Kalman, Wiener, hrf 0.012, 0.012, 0.012, 0.012, 0.012
hrf vs Kalman, Gaussian, Wiener, FIR 0.089, 0.281, 0.089, 0.012
Gaussian vs FIR, Kalman, Wiener 0.012, 0.089, 0.089
Kalman vs Wiener, FIR 0.089, 0.012
Wiener vs FIR 0.012

Motor execution tasks
R vs LFT

Butter vs FIR, Gaussian, Kalman, Wiener, hrf 0.65, 0.025, 1, 0.158, 0.025
hrf vs Kalman, Gaussian, Wiener, FIR 0.012, 0.022, 0.012, 0.025
Gaussian vs FIR, Kalman, Wiener 0.012, 0.012, 0.012
Kalman vs Wiener, FIR 0.041, 1
Wiener vs FIR 0.32
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[84] removed channels with large movement or technical
artifacts. Smaller artifacts were corrected with the correla-
tion-based signal improvement method while a low-pass
filter with a 5.0 s moving average filter was applied. In
[85–87], signals were analyzed with SPM99 (Statistical
Parametric Mapping software; Wellcome Department of
Cognitive Neurology, London, UK). In [88], moving stan-
dard deviation-based artifact removal (moving artifact re-
duction algorithm: MARA) with a threshold of 0.45 for HbO
and 0.18 for HbR was applied and signals were linearly
detrended and low-pass filtered at 0.1Hz.

Keeping in view the discussions in the literature, various
methodologies were adopted for artifact removal while for
systematic physiological noises, mostly high and low-pass
filter were applied.*erefore, to make use of the best optimal
filter for a specific cortical task, we performed an explicit and
systematic analysis to find the filter based on statistical
significance for mostly used cortical tasks in fNIRS study
applications. *e result shows that hrf outperforms the
discussed techniques due to the fact that it considers ideal
hemodynamic response distribution for smoothing the data.
Keeping this in view, our future work involves designing of

Table 2: Continued.

Filters p values
R vs RFT

Butter vs FIR, Gaussian, Kalman, Wiener, hrf 0.089, 0.012, 0.5, 0.5, 0.012
hrf vs Kalman, Gaussian, Wiener, FIR 0.012, 0.089, 0.012, 0.089
Gaussian vs FIR, Kalman, Wiener 0.012, 0.012, 0.012
Kalman vs Wiener, FIR 0.5, 0.32
Wiener vs FIR 0.32

LFT vs RFT
Butter vs FIR, Gaussian, Kalman, Wiener, hrf 0.158, 0.012, 0.32, 0.089, 0.012
hrf vs Kalman, Gaussian, Wiener, FIR 0.012, 0.012, 0.012, 0.012
Gaussian vs FIR, Kalman, Wiener 0.012, 0.012, 0.012
Kalman vs Wiener, FIR 0.32, 0.32
Wiener vs FIR 0.089

Visual stimuli
R vs VS

Butter vs FIR, Gaussian, Kalman, Wiener, hrf 0.32, 0.012, 0.32, 0.5, 0.012
hrf vs Kalman, Gaussian, Wiener, FIR 0.012, 0.089, 0.012, 0.012
Gaussian vs FIR, Kalman, Wiener 0.012, 0.012, 0.012
Kalman vs Wiener, FIR 0.089, 0.32
Wiener vs FIR 0.32

Butter FIR Gaussian hrf Kalman Wiener

PFC average accuracies
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81.30 83.05 77.62 79.42
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Filters mean accuracies with standard deviation

Butter FIR Gaussian hrf Kalman Wiener

VS average accuracies

58.80 60.44
72.58 74.95

57.03 60.73

0

20

40

60

80

100

A
cc

 (%
)

0

20

40

60

80

100

A
cc

 (%
)

0

20

40

60

80

100

A
cc

 (%
)

Figure 7: Filters’ mean accuracies.
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an adaptive filter technique, considering different distri-
butions of data and noise. *erefore, opting more accurate
separation of data.

4. Conclusion

To the best of our knowledge, this is the first study to propose
filter selection for commonly used cortical tasks of func-
tional near-infrared spectroscopy (fNIRS) contaminated
with artifacts and systematic physiological noises. Six filters,
namely, Gaussian, hemodynamic response filter (hrf),
Butterworth, time-varying Wiener, discrete Kalman, and
window-based finite impulse response, were tested. *e
results obtained have validated the overall statistical sig-
nificance of the hrf for prefrontal, motor, and visual cortex
tasks. Furthermore, signals acquired from different cortical
regions may contain different types of noises. Hence, the
prime goal of this study was to suggest an optimal filter for a
specific task, owing to the specific cortical region so that
further studies can achieve maximum accuracies by reliably
improving the recovered hemodynamic response function.
Outcome of this study shows that there is a significant
impact of filter selection on the accuracy of the classified
data, therefore facilitating users to avoid analysis of complex
signal techniques by themselves.
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Muscle synergy has been applied to comprehend how the central nervous system (CNS) controls movements for decades. However, it
is not clear about the motion control mechanism and the relationship between motions and muscle synergies. In this paper, we
designed two experiments to corroborate the hypothesis: (1) motions can be decomposed to motion primitives, which are driven by
muscle synergy primitives and (2) variations of motion primitives in direction and scale are modulated by activation coefficients
rather thanmuscle synergy primitives. Surface electromyographic (EMG) signals were recorded from ninemuscles of the upper limb.
Nonnegativematrix factorization (NMF)was applied to extractmuscle synergy vectors and corresponding activation coefficients.We
found that synergy structures of differentmovement patterns were similar (α � 0.05).(emotionmodulation indexes (MMI) among
movement patterns in reaching movements showed apparent differences. Merging coefficients and reconstructed similarity of
synergies between simple motions and complex motions were significant. (is study revealed the motion control mechanism of the
CNS and provided a rehabilitation and evaluation method for patients with motor dysfunction in exercise and neuroscience.

1. Introduction

A large amount of research has reported that the CNS uses a
dimensionality reduction pattern to coactivate a set of motion
primitives (MP) to achieve daily activity living (DAL).
However, motor control is redundancy and we could achieve
a specificmotion by combining various activationmuscles [1].
How the CNS selects primitives from a vast pool and achieves
movement behaviors is a complicated issue in the field of
movement neuroscience and neurorehabilitation.

Modularity or muscle synergy as a building block, both
structural and computational, exhibited feasibility for
achieving motion control [2]. It has been proven in animal
experiments, such as in cats, frogs, and monkeys. d’Avella
[3] analyzed the movements of frogs during jumping,
swimming, and walking in naturalistic conditions and found
three shared and two task-specific muscle synergies across
behaviors. Research in rhesus macaques showed that the

grasping and transporting movements were achieved by
modulating the muscle synergies [4, 5]. Ting and Mac-
pherson [6] analyzed the postural and balance control of cats
and found that muscle synergies were correlated to the
movement direction and endpoint force.

(e modularity of motion control was also found in
human motions. (e study in various human locomotions,
consisting of walking and running at different speeds,
walking forward or backward, and walking under different
loading conditions and different styles (rectilinear and
curvilinear trajectories) [7, 8], showed that motions were
driven by combining a few muscle synergy primitives.
Shared and task-specific muscle synergies were also found in
human locomotion [9, 10]. And, Barroso found muscle
synergies merging in human walking and cycling [11], and
cycling synergies are a linear combination of walking syn-
ergies. In the clinical research of stroke, decomposing and
merging were more evident [12]. Comparing to the lower
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limb, the upper limb movement is more complicated and
exquisite. d’Avella et al. [13, 14] analyzed and summarized
the movements of point-to-point at different speeds, loads,
forearm postures, and via-point movements, showing that
the CNS achieved a goal by combining a set of building
blocks (muscle synergy primitives). Israely et al. [15] studied
the muscle synergy modulation function of hand-reaching
tasks from different directions and found a representative set
of synergies, which were from the muscle synergies extracted
from the center of the reaching space, which could be
modulated to achieve motions in different directions.
Similar results were found in poststroke [12, 15]. However,
there was little research on the relationship between
movement patterns and muscle synergies. Besides, the re-
lationship between simple motions and complex motions is
ambiguous. A deeper understanding of motion control in
modularity is necessary.

In this paper, we would mainly analyze the relationship
between muscle synergies and motion primitives. Based on
the prior research, two hypotheses are tested: (1) any motion
can be decomposed to motion primitives, which are driven
by muscle synergy primitives and (2) variations of motion
primitives in direction and scale are modulated by activation
coefficients rather than muscle synergy primitives.

2. Materials and Methods

2.1. Subjects. Twenty-eight subjects with no neurological
injury (male: eleven, female: seventeen, and age: 23.68± 1.74
years) were recruited for the study. All subjects are right-
hand dominant. (ey were informed about the procedure
and possible discomfort before giving their informed con-
sent. (e research was approved by the ethical committee of
the university.

2.2. ExperimentProcedures. Two experiments were designed
for corroborating hypotheses. (e first experiment (E1)
consisted of three simple upper limb motions (SM) and five
complex upper limb motions (CM). (e simple motions
included shoulder flexion/extension, shoulder abduction,
and elbow flexion/extension. (e complex motions covered
touching head in the sagittal plane and the frontal plane,
respectively, putting one hand behind the back, and shoulder
pushing up in the sagittal plane and the frontal plane, re-
spectively. All participants stood in the anatomic pose. More
detailed motion information was illustrated by Pan et al.
[12]. All subjects participated in the E1. (e second ex-
periment (E2) [16] was carried out in eleven male subjects.
(e subjects for E2 were instructed to execute reaching
movements in six directions and three distances in a hor-
izontal plane in a seating pose. Repeating the procedure six
times for every reaching movement, 108 (3× 6× 6) trials
were performed for every subject.

2.3. Data Collecting and Preprocessing. Surface electromyo-
graphic (EMG) signals were recorded (Trigno Wireless EMG
System, Delsys, USA) from nine dominant muscles of the right
upper limb, including triceps brachii long and lateral head

(TriLong and TriLat); pectoralis major (Pecm); deltoid anterior,
medial, and posterior (DeltA, DeltM, and DeltP); trapezius
upper (TrapUpper); biceps brachii (Bic); and brachioradialis
(Brad). Electrodes were placed longitudinally along with the
muscle fiber direction on corresponding muscles based on the
guidelines of the Surface Electromyography for the Non-
invasive Assessment of Muscles (SENIAM) [17].

Before the EMG processing, we eliminated the re-
cordings contaminated due to disturbance and noise. (en,
raw EMG signals were high-pass filtered (5th order But-
terworth filter, the cutoff frequency of 50Hz), zero-meaned,
rectified, low-pass filtered (5th order Butterworth filter, the
cutoff frequency of 5Hz), and integrated over 20ms
[3, 11, 16]. To facilitate comparison across subjects, the EMG
envelope was normalized by the average of the top 10
maximum of each muscle from every individual [11].

2.4. Data Analysis

2.4.1. Extracting Muscle Synergies. Muscle synergy theory
assumes that EMG patterns can be described as a linear
combination of a set of muscle synergies (time invariant)
activated by corresponding activation coefficients (time
variant). It can be described as follows:

Em×t � Wm×nCn×t + em×t, (1)

where Em×t is the preprocessed EMG, m is the number of
muscles, and t is the number of sampling. Wm×n specifies the
spatial profiles of activation, named the muscle synergy
matrix, n is the number of muscle synergies. Cn×t is the
activation coefficient, which is time varying. em×t is the error
of reconstruction. We applied the nonnegative matrix fac-
torization (NMF) [18] to extract muscle synergies. To avoid
W and C converge to a local minimum, we repeated 50 times
for each synergy.

2.4.2. Determining the Minimum Number of Muscle Synergy.
(eNMF algorithm starts with an initialized n. We increased
the number of muscle synergy from one to nine. Re-
construction quality was evaluated by calculating the variance
accounted for (VAF) [14].(e structure ofmuscle synergy was
affected by the minimum number of synergy. To reconstruct
the EMG patterns better and decrease the dimensionality of
the muscle synergies, two criteria were applied. Criteria 1: the
minimum of muscle synergy was defined as the number that
the total VAFwas greater than 95% [12] (in the E2, VAF> 90%
[19]) and criteria 2: an additional synergy did not contribute
more than 5% in the reconstruction of the EMG envelope.(e
VAF is defined as follows [20]:

VAF � 1 −
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2.4.3. Evaluating the Similarity and Merging the Synergies.
Before calculating the synergies similarity, we first matched
the muscle synergy vectors from all synergy sets adopting the
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Hungarian algorithm [21]. (e Pearson correlation co-
efficient (ri,j) and cosine similarity (si,j) were used to assess
the similarity of synergy vectors. To identify how the syn-
ergies extracted from complex motions were reconstructed
by the linear combination of synergies extracted from simple
motions, we applied the algorithm proposed by Cheung et al.
[22], in

w
CM
i � 􏽘

nSM

k�1
m
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kw

SM
k , m

i
k ≥ 0, i � 1, . . . , nCM, (3)

where wCM
i is the ith synergy vector from a complex motion,

wSM
k is the kth synergy vector from simple motion, and mi

k is
a nonnegative coefficient which denotes contributions of the
kth synergy vector from simple motion for the structure of
ith synergy vector from the complex motion.

2.4.4. Motion Modulation Indexes (MMI). In the E2, we
executed reaching movements in different directions and
distances. To assess the modulating extent of activation
coefficients among motion patterns, the motion modulation
indexes were applied. We applied two indexes, root mean
square of modulating signals (RMS-MS) and the VAF of
synergy (VAF-Syn). RMS-MS represented an absolute ac-
tivation degree, and VAF-Synergy (VAFsyni ) showed a rel-
ative activation degree. (e two indexes could give an
objective description of modulation. For one synergy, the
VAFsyni is defined as [16]
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where wi is the ith muscle synergy and cT
i is the corre-

sponding activation coefficient. VAFSi
and VAFsyni are the

VAF and the synergy VAF of the ith muscle synergy,
respectively.

3. Results

3.1. Analysis of E2

3.1.1. Extracting Muscle Synergies. (e VAF is shown in
Figure 1. According to the criteria described above, we
identified three synergies (2.82± 0.40, corresponding VAF is
0.94± 0.01) in reaching movement (E2) for further analysis.
Figure 2 exhibits three synergy structures extracted from
preprocessed and pooled EMG data. Every synergy activated
certain muscles corresponding to the upper limb motion.
(e first synergy mainly drove the shoulder flexion/ab-
duction and internal rotation (Pecm and DeltA) and elbow
flexion (Bic). (e second synergy typically involved the
movement of elbow extension (TriLat and TriLong),
shoulder abduction (DeltM and DeltP), shoulder external
rotation (DeltP), and shoulder extension (TriLat, TriLong,
and DeltP). (e third synergy covered the elbow flexors
(Brad and Bic) and TrapUpper.

(e cosine similarity (s) and the Pearson correlation
coefficient (r) between synergy vectors from all subjects are
shown in Table 1. Results showed that the parallel synergy
vector in all subjects was relevant. t-test results also illus-
trated that there was no significant difference among synergy
vectors (α � 0.05).

3.1.2. Similarity Analysis in Different Directions and
Distances. To compare the variance of synergy vectors from
different directions and distances, t-test was performed.
Figure 3 shows the mean p values of the t-test among di-
rections (a) and distances (b). Results showed that all p

values were greater than 0.54 in directions (Table 2) and 0.59
in distances (Table 3), indicating that the synergy vectors
from all directions and distances were from a population.
(en, we concatenated the data from all directions and
distances, respectively. (e t-test results showed that there
was also no significant correlation in all directions and
distances. For every synergy in six directions (Table 2), the
average p values are 0.71± 0.21, 0.70± 0.21, and 0.73± 0.19
(α � 0.05, n� C2

66 � 2145). And for every synergy in three
distances (Table 3), the corresponding average p values are
0.69± 0.24, 0.78± 0.16, and 0.72± 0.19 (α � 0.05,
n� C2

33 � 528), respectively.

3.1.3. Motion Modulation Indexes (MMI). (e MMI for
every direction and distance are shown in Figure 4. We
found that every synergy was activated mainly in certain
directions or distances. For example, the first synergy was
activated mainly in 0 and − 45 direction. (e second synergy
was in the direction of 45, 90, 135, and 180.(e third synergy
was activated in all directions. In terms of distances, the first
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Figure 1: (e variance accounted for (VAF) with respect to the
number of muscle synergies. Colored bars indicate different motion
patterns, respectively. Muscle synergies were extracted by the NMF
algorithm. For reaching movement (E2), three synergies were
extracted from the concatenated ENG. We extracted four synergies
from concatenated simple motions (SM). 3, 2, 3, 2, and 2 synergies
were extracted from five complex motions (CM1, CM2, CM3,
CM4, and CM5), respectively.
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Figure 2: (e structure of muscle synergies extracted from reaching movement. Colored bars indicate different subjects (11), and each
muscle is shown in a group. Black wireframes and red bars are the group mean and standard deviation, respectively.

Table 1: Cosine similarity (s) and Pearson correlation coefficient (r) among synergy vectors from all subjects and the t-test results. (e null
hypothesis is that the synergy vectors come from a population (α � 0.05, N� C2

11 � 55).

Synergies s r t-test
Syn1 0.94± 0.04 0.91± 0.07 0.56± 0.24
Syn1 0.93± 0.04 0.81± 0.12 0.80± 0.16
Syn1 0.85± 0.09 0.73± 0.16 0.73± 0.19
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Figure 3: t-test results from six directions (a) and three distances (b) among all subjects.(e samples are 55 (C2
11).(e deeper color indicates

a smaller p value.

Table 2: t-test results from six directions (n� 2145, α � 0.05).

Synergies − 45° 0° 45° 90° 135° 180°

Syn1 0.75± 0.18 0.65± 0.21 0.67± 0.19 0.68± 0.28 0.66± 0.27 0.75± 0.24
Syn2 0.59± 0.23 0.54± 0.28 0.77± 0.17 0.71± 0.22 0.72± 0.20 0.73± 0.18
Syn3 0.77± 0.17 0.81± 0.14 0.72± 0.22 0.72± 0.20 0.70± 0.24 0.75± 0.18
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two synergies showed similar trends, i.e., the farther the
distance, the greater the MMI. However, the third synergy
exhibited the inverse characters, i.e., the farther the distance,
the smaller the MMI. Two criteria, VAF-Syn and RMS-MS,
demonstrated similar characters.

3.2. Analysis of E1

3.2.1. Extracting Muscle Synergies. For E1, we preprocessed
the raw EMG data according to the abovementionedmethods.
However, the threshold was set 0.95 for determining the
number of minimum synergies. Four synergies were selected
for simplemotion and 3, 2, 3, 2, and 2 synergies were identified
for every complex motion, respectively (Figure 1): more
specifically, 4.11± 0.63, 3.11± 0.50, 2.21± 0.57, 2.71± 0.66,

2.43± 0.57, and 1.82± 0.55. (e spatial structure of muscle
synergies from every motion pattern is shown in Figure 5. For
simple motion, the first synergy mainly activated shoulder
abductor (DeltA and DeltM) and TrapUpper, which drove the
motion of shoulder abduction. (e second synergy primarily
stimulated elbow flexor (Bic and Brad), which actuated the
motion of elbow flexion.(e third synergy drove the shoulder
and elbow extension (TriLat, TriLong, DeltM, and DeltP). (e
forth synergy led to the motion of shoulder flexion (Pecm and
DeltA). For every complex motion, every synergy chiefly
activated certain muscles also, which actuated similar upper
motions.

t-test analysis was conducted among the subjects
(α � 0.05). (e synergy similarity among subjects is shown
in Figure 6. (e results rejected the null hypothesis (the
sample data come from a population). We analyzed the

Table 3: t-test results from three distances (n� 528, α � 0.05).

Synergies Near Medial Far
Syn1 0.79± 0.17 0.60± 0.26 0.59± 0.27
Syn2 0.72± 0.19 0.85± 0.12 0.77± 0.16
Syn3 0.68± 0.20 0.73± 0.19 0.74± 0.18
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Figure 4:(e radar map of MMI for three synergies (Syn1, Syn2, and Syn3). (e first row is the VAF of synergy (VAF-Syn), and the second
row is the root mean square of modulation signals (RMS-MS). Each column corresponds to a synergy. (e radar map shows the six
directions (− 45, 0, 45, 90, 135, and 180), and colored lines indicate different distances (near, medial, and far).
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synergy similarity of all complex motions given in Table 4. A
paired synergy is considered significantly correlated if the p

is>0.5. We found that the synergy structure exhibited cor-
relations between CM1 and CM2, and CM4 and CM5.
However, the first synergy from CM4 and CM5 displayed a
negative correlation.

3.2.2. Analysis of Synergy Similarity between Simple Motion
and Complex Motions. (e similarity of every extracted
synergy between complexmotions and the simplemotion was
computed by cosine similarity (Figure 7). Table 5 shows the
average of synergy similarity that every complex motion
relates to simple motion. (e higher similarity was found

between the synergies from the complex motions and syn-
ergies from simple motion which composed the complex
motion. For instance, touching head in the sagittal plane
(CM1) consists of shoulder and elbow flexion. And, we found
a greater similarity in the CM1-Syn1 and SM-Syn1, and CM1-
Syn3 and SM-Syn2, which was similar in the synergy structure
analysis (Figure 5: complex motion 1). We also found the
merging process between simple motion and complex mo-
tions. Table 6 demonstrates the merging coefficients (Mer-
Coe) and reconstructed similarity (ReSim). We considered
that the merging process was significant when the Mer-Coe
was higher than 0.3 [11]. (e results displayed that all
reconstructing similarity was higher than 0.8.
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Figure 5: Synergy structures extracted from concatenated simple motion and complex motions. Four synergies were extracted from simple
motion, and 3, 2, 3, 2, and 2 synergies were extracted from five complex motions, respectively. Colored bars indicate different subjects (28
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4. Discussion

(e purpose of this study was to investigate the relationship
between muscle synergies and motion primitives of the
upper limbmotions. In previous studies, twomuscle synergy

models, time-varying synergy and time-invariant synergy,
were used to analyze muscle patterns [13, 23]. In our study,
we extracted time-invariant muscle synergies adopting the
NMF algorithm. Two experiments were designed, reaching
movements and simple/complex motions. According to the
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Figure 6:(e synergy similarity among subjects from complex motions.(e red bar indicates the standard deviation. CM1-Syn1 means the
first synergy from complex motion 1. Other horizontal axis labels are similar.

Table 4: Similarity of the synergy among complex motions (CM1 and CM2, CM4 and CM5).

CM2
CM1

CM5
CM4

Syn1 Syn2 Syn3 Syn1 Syn2
Syn1 0.56 0.25 − 0.64 Syn1 − 0.53 − 0.02
Syn2 − 0.35 0.51 0.30 Syn2 − 0.34 0.73

Table 5: Average of the synergy similarity between complex motions and simple motion.

CM1 CM2 CM3 CM4 CM5
SM-Syn1 0.74 0.79 0.34 0.69 0.43
SM-Syn2 0.71 0.60 0.74 0.77 0.57
SM-Syn3 0.69 0.85 0.53 0.55 0.81
SM-Syn4 0.71 0.71 0.60 0.87 0.74
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Figure 7: Cosine similarity of synergies between simple motion and complex motions. CM1-Syn1 means the first synergy from complex
motion 1. SM-Syn1 expresses the first synergy from simple motion. Other abbreviations are semblable. A deeper color means a lower
similarity.
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criteria predefined, we found three synergies were sufficient
to explain >90% of the total variability of EMG activity of the
nine studied muscles for reaching movements from eleven
subjects. In the study of reaching movements of different
conditions, three to five time-varying muscle synergies were
extracted [24, 25]. (e results were coincident with the prior
study. For simple motion and complex motions, we just
selected one or two synergies in the threshold of 0.9, which
could not describe the spatiotemporal structure of the
synergy. (us, the threshold was set to 0.95, and we selected
4, 3, 2, 3, 2, and 2 synergies, respectively.

(e study discussed the influence of directions and
distances to muscle synergy in reaching movements (E2). t-
test analysis (Tables 2 and 3) showed that synergies in
different directions and distances were irrelevant. In the
analysis of MMI, we found that RMS-MS and VAF-Syn
exhibited resembled distributions in the radar map (Fig-
ure 4). (e main performance was that the first synergy was
activated mainly in the right and right rear motions. (e
second synergy mainly involved front, front-left, and left
motions. However, the third synergy covered all directions.
In the analysis of distance, the first two synergies displayed
similar characters, farther distance with greater MMI.
However, the third synergy showed an inverse character. We
speculated that the third synergy was a shared synergy
structure for reaching movements. (e conjecture was
verified by analyzing the synergy structure (Figure 2). (e
results revealed that the CNS controlled the motions in
different patterns (directions and distances) by adaptively
modulating the corresponding activation coefficients.

(e E1 mainly analyzed the muscle synergy patterns of
the simple motion and complex motions. t-test analysis
showed synergy coincidence among subjects. However,
there was one case which rejected the null hypothesis in
CM3-Syn1, CM3-Syn2, CM3-Syn3, and CM5-Syn1, re-
spectively (n� C2

28 � 378). Considering the interference and
noise of EMG signals, we thought the results were reliable.

(e CM1 (touching head in the sagittal plane) could be
decomposed into shoulder and elbow flexion. And, the CM2
(touching head in the frontal plane) included the simple
motions of shoulder abduction and elbow flexion. (e
analysis of synergy similarity between CM1 and CM2
showed a positive correlation (>0.5) in the corresponding
synergy.(e synergy structure of the two motions (Figure 5)
also displayed analogy. Semblable results were observed
between CM4 and CM5. (e results coincided with the
conclusion in E2.

(e similarity of synergy vectors was analyzed between
simple motion and complex motions. (e results verified

that the CNS controlled the motions by recruiting a set of
muscle synergy primitives. Combining the study of reaching
movements in E2, we knew that every muscle synergy
pattern corresponded to a motion primitive.

As a quantitative assessment tool, muscle synergy has
been used widely in motor neuroscience and rehabilitation
neuroscience. However, the raw EMG signals are contam-
inated easily, and various preprocessing methods increase
the difficulty to compare among researchers. Researchers
have reported that experiment conditions have an effect on
the envelope of the EMG, including speed, load, and posture
[13]. In further work, we could study how the synergy
modulates the motion in more conditions.

5. Conclusions

(is study presented the possible patterns of the CNS
controlling motions by two experiments, reaching move-
ments in a horizontal plane and simple/complex motions.
We applied the NMF to extract muscle synergies. Similarity
analysis and t-test in muscle synergies indicated that the
CNS modulated activation coefficients to achieve different
motion patterns. Besides, for a complex motion, which
included several motion primitives, the CNS recruited a set
of muscle synergy primitives which drove the corresponding
motion to coactivate the motion. Our results provided an
interpretable strategy for the CNS controlling the motions.
(is would be a potential implication for evaluating and
making rehabilitation plans in rehabilitation neuroscience.
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