Traffic Data Modeling with Graph

Neural Networks

Lead Guest Editor: Yong Zhang
Guest Editors: Junbin Gao and Yan-Ming Shen




Traffic Data Modeling with Graph Neural
Networks



Journal of Advanced Transportation

Traffic Data Modeling with Graph
Neural Networks

Lead Guest Editor: Yong Zhang
Guest Editors: Junbin Gao and Yan-Ming Shen



Copyright © 2023 Hindawi Limited. All rights reserved.

This is a special issue published in “Journal of Advanced Transportation.” All articles are open access articles distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.



Associate Editors

Juan C. Cano(2), Spain
Steven I. Chien (), USA
Antonio Comi (), Italy
Zhi-Chun Li, China
Jinjun Tang (), China

Academic Editors

Kun An, China

Shriniwas Arkatkar, India

José M. Armingol (), Spain
Socrates Basbas (), Greece
Francesco Bella (), Italy
Abdelaziz Bensrhair, France
Hui Bi, China

Maria Calderon, Spain

Tiziana Campisi (), Italy
Giulio E. Cantarella (i), Italy
Maria Castro(2), Spain

Mei Chen(»), USA

Maria Vittoria Corazza (), Italy
Andrea D'Ariano, Italy

Stefano De Luca (), Italy

Rocio De Ofa(l), Spain

Luigi Dell'Olio (), Spain
Cédric Demonceaux(»), France
Sunder Lall Dhingra, India
Roberta Di Pace (1), Italy

Dilum Dissanayake (2), United Kingdom

Jing Dong (=), USA

Yuchuan Du(2), China
Juan-Antonio Escareno, France
Domokos Esztergar-Kiss (2), Hungary
Saber Fallah (), United Kingdom
Gianfranco Fancello (%), Italy
Zhixiang Fang(®), China
Francesco Galante (1), Italy

Yuan Gao(»), China

Laura Garach, Spain

Indrajit Ghosh (1), India

Rosa G. Gonzalez-Ramirez, Chile
Ren-Yong Guo (), China

Yanyong Guo (2, China

Jérome Ha#rri, France

Hocine Imine, France

Umar Igbal (%), Canada

Rui Jiang (), China

Peter J. Jin, USA

Sheng Jin (), China

Victor L. Knoop (i#), The Netherlands
Eduardo Lalla (), The Netherlands
Michela Le Pira (), Italy
Jaeyoung Lee (), USA

Seungjae Lee, Republic of Korea
Ruimin Li(®), China

Zhenning Li("), China

Christian Liebchen (©), Germany
Tao Liu, China

Chung-Cheng Lu (%), Taiwan
Filomena Mauriello (), Italy
Luis Miranda-Moreno, Canada
Rakesh Mishra, United Kingdom
Tomio Miwa (), Japan

Andrea Monteriu (), Italy

Sara Moridpour (i), Australia
Giuseppe Musolino (), Italy
Jose E. Naranjo (1), Spain

Mehdi Nourinejad (%), Canada
Eneko Osaba (), Spain

Dongjoo Park (), Republic of Korea
Luca Pugi (), Italy

Alessandro Severino (1), Italy
Nirajan Shiwakoti (), Australia
Michele D. Simoni, Sweden

Ziqi Song (2, USA

Amanda Stathopoulos (), USA
Daxin Tian (), China

Alejandro Tirachini, Chile

Long Truong (), Australia
Avinash Unnikrishnan (), USA
Pascal Vasseur (), France
Antonino Vitetta (), Italy

S. Travis Waller, Australia

Bohui Wang, China

Jianbin Xin (), China



https://orcid.org/0000-0002-0038-0539
https://orcid.org/0000-0001-8771-8194
https://orcid.org/0000-0001-6784-1638
https://orcid.org/0000-0002-5172-387X
https://orcid.org/0000-0002-3353-9956
https://orcid.org/0000-0002-3706-8530
https://orcid.org/0000-0002-3724-7010
https://orcid.org/0000-0003-4251-4838
https://orcid.org/0000-0002-1534-1794
https://orcid.org/0000-0001-8941-5795
https://orcid.org/0000-0002-7737-2895
https://orcid.org/0000-0002-9681-2948
https://orcid.org/0000-0002-4597-5018
https://orcid.org/0000-0002-5116-5652
https://orcid.org/0000-0003-0919-7578
https://orcid.org/0000-0001-6916-1273
https://orcid.org/0000-0001-7589-8570
https://orcid.org/0000-0001-6166-5709
https://orcid.org/0000-0002-7304-8430
https://orcid.org/0000-0002-8497-3402
https://orcid.org/0000-0002-7424-4214
https://orcid.org/0000-0002-1298-1040
https://orcid.org/0000-0001-5233-5126
https://orcid.org/0000-0003-1651-878X
https://orcid.org/0000-0002-7759-6530
https://orcid.org/0000-0001-5629-6574
https://orcid.org/0000-0002-1341-0258
https://orcid.org/0000-0002-2711-7132
https://orcid.org/0000-0003-0367-2673
https://orcid.org/0000-0001-7683-5045
https://orcid.org/0000-0002-3866-5388
https://orcid.org/0000-0001-6110-0783
https://orcid.org/0000-0001-7423-3841
https://orcid.org/0000-0002-7286-9501
https://orcid.org/0000-0002-5963-0854
https://orcid.org/0000-0003-1211-688X
https://orcid.org/0000-0002-3405-1143
https://orcid.org/0000-0002-0877-6829
https://orcid.org/0000-0002-4311-2024
https://orcid.org/0000-0001-8317-4193
https://orcid.org/0000-0001-5682-471X
https://orcid.org/0000-0001-9385-7844
https://orcid.org/0000-0001-5388-8697
https://orcid.org/0000-0001-9113-7739
https://orcid.org/0000-0001-5258-7331
https://orcid.org/0000-0002-4211-9419
https://orcid.org/0000-0002-6409-2085
https://orcid.org/0000-0001-7863-9910
https://orcid.org/0000-0002-6330-4437
https://orcid.org/0000-0001-7385-9471
https://orcid.org/0000-0003-0688-5113
https://orcid.org/0000-0003-1082-1200
https://orcid.org/0000-0002-9693-3256
https://orcid.org/0000-0001-6307-4953
https://orcid.org/0000-0001-9809-3775
https://orcid.org/0000-0003-0643-8970
https://orcid.org/0000-0001-6737-0485
https://orcid.org/0000-0001-5145-9653
https://orcid.org/0000-0002-6942-8449
https://orcid.org/0000-0002-1024-4135

Hongtai Yang(*), China
Vincent E. Yu (), Taiwan
Mustafa Zeybek, Turkey
Jing Zhao, China

Ming Zhong(®), China
Yajie Zou (), China


https://orcid.org/0000-0002-3608-1936
https://orcid.org/0000-0001-8975-0606
https://orcid.org/0000-0002-4022-6800
https://orcid.org/0000-0002-3505-168X

Contents

PGDRT: Prediction Demand Based on Graph Convolutional Network for Regional Demand-
Responsive Transport

Eunkyeong Lee (), Hosik Choi (%), and Do-Gyeong Kim

Research Article (13 pages), Article ID 7152010, Volume 2023 (2023)

ST-AGRNN: A Spatio-Temporal Attention-Gated Recurrent Neural Network for Traffic State
Forecasting

Jian Yang (), Jinhong Li (), Lu Wei (), Lei Gao(?), and Fuqi Mao

Research Article (17 pages), Article ID 2806183, Volume 2022 (2022)

Traffic Flow Prediction Based on Multi-Spatiotemporal Attention Gated Graph Convolution Network
Yun Ge ("), Jian E. Zhai, and Pei C. Su
Research Article (9 pages), Article ID 2723101, Volume 2022 (2022)

Data Modeling of Impact of Green-Oriented Transportation Planning and Management Measures on
the Economic Development of Small- and Medium-Sized Cities

Yuan Lu, Jinyan Shao, and Yifeng Yao

Research Article (9 pages), Article ID 8676805, Volume 2022 (2022)

Rail Transit Prediction Based on Multi-View Graph Attention Networks
Li Wang (), Xin Wang ("), and Jiao Wang
Research Article (8 pages), Article ID 4672617, Volume 2022 (2022)

A Three-Stage Anomaly Detection Framework for Traffic Videos
Junzhou Chen (), Jiancheng Wang, Jiajun Pu, and Ronghui Zhang
Research Article (11 pages), Article ID 9463559, Volume 2022 (2022)

MSASGCN : Multi-Head Self-Attention Spatiotemporal Graph Convolutional Network for Traffic
Flow Forecasting

Yang Cao (), Detian Liu, Qizheng Yin, Fei Xue, and Hengliang Tang

Research Article (15 pages), Article ID 2811961, Volume 2022 (2022)

The Improvement of Automated Crack Segmentation on Concrete Pavement with Graph Network
Jiang Chen (), Ye Yuan, Hong Lang (), Shuo Ding, and Jian John Lu
Research Article (10 pages), Article ID 2238095, Volume 2022 (2022)

Research on Direct Braking Force Estimation and Control Strategy Using Tire Inverse Model
Zhiguo Zhou (}®) and Xiaoning Zhu
Research Article (8 pages), Article ID 5033601, Volume 2022 (2022)

JSTC: Travel Time Prediction with a Joint Spatial-Temporal Correlation Mechanism
Alfateh M. Tag Elsir (), Alkilane Khaled (©©), Pengfei Wang(®), and Yanming Shen
Research Article (16 pages), Article ID 1213221, Volume 2022 (2022)



https://orcid.org/0000-0002-2106-2169
https://orcid.org/0000-0003-0589-8043
https://orcid.org/0000-0002-3532-5564
https://orcid.org/0000-0002-6715-0017
https://orcid.org/0000-0001-5154-3900
https://orcid.org/0000-0002-0973-4735
https://orcid.org/0000-0002-1748-8327
https://orcid.org/0000-0002-6866-3527
https://orcid.org/0000-0002-2692-5883
https://orcid.org/0000-0003-1846-1182
https://orcid.org/0000-0002-2464-5765
https://orcid.org/0000-0003-0512-2819
https://orcid.org/0000-0002-1482-3900
https://orcid.org/0000-0002-3388-3503
https://orcid.org/0000-0001-6107-4044
https://orcid.org/0000-0003-4549-5038
https://orcid.org/0000-0001-6747-2369
https://orcid.org/0000-0002-9740-9499
https://orcid.org/0000-0003-1015-5797
https://orcid.org/0000-0001-8337-1592
https://orcid.org/0000-0002-0196-1781
https://orcid.org/0000-0003-2315-3571
https://orcid.org/0000-0002-0906-4217
https://orcid.org/0000-0003-4108-0230

Knowledge Graph-Based Enhanced Transformer for Metro Individual Travel Destination Prediction
Hainan Chi(), Boyue Wang(»), Qibin Ge (2}, and Guangyu Huo
Research Article (9 pages), Article ID 8030690, Volume 2022 (2022)

Prediction of Train Station Delay Based on Multiattention Graph Convolution Network

Dalin Zhang (%), Yi Xu({), Yunjuan Peng (), Yumei Zhang, Daochua Wu, Hongwei Wang ("), Jintao Liu, Sabah
Mohammed, and Alessandro Calvi

Research Article (12 pages), Article ID 7580267, Volume 2022 (2022)


https://orcid.org/0000-0001-8152-8795
https://orcid.org/0000-0002-2677-8342
https://orcid.org/0000-0003-4166-4893
https://orcid.org/0000-0002-5759-1185
https://orcid.org/0000-0003-0346-7020
https://orcid.org/0000-0001-9268-972X
https://orcid.org/0000-0002-1266-9452
https://orcid.org/0000-0001-5713-3988
https://orcid.org/0000-0002-4355-9029

Hindawi

Journal of Advanced Transportation
Volume 2023, Article ID 7152010, 13 pages
https://doi.org/10.1155/2023/7152010

Research Article

WILEY | Q@) Hindawi

PGDRT: Prediction Demand Based on Graph Convolutional
Network for Regional Demand-Responsive Transport

Funkyeong Lee (»,' Hosik Choi(,' and Do-Gyeong Kim (5>

"Department of Urban Big Data Convergence, University of Seoul, Seoul 02504, Republic of Korea
Department of Transportation Engineering & Graduate School, Department of Urban Big Data Convergence, University of Seoul,
Seoul 02504, Republic of Korea

Correspondence should be addressed to Do-Gyeong Kim; dokkang@uos.ac.kr
Received 3 June 2022; Accepted 13 September 2022; Published 5 January 2023
Academic Editor: Yanming Shen

Copyright © 2023 Eunkyeong Lee et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

To provide an efficient demand-responsive transport (DRT) service, we established a model for predicting regional movement
demand that reflects spatiotemporal characteristics. DRT facilitates the movement of restricted passengers. However,
passengers with restrictions are highly dependent on transportation services, and there are large fluctuations in travel demand
based on the region, time, and intermittent demand constraints. Without regional demand predictions, the gaps between the
desired boarding times of passengers and the actual boarding times are significantly increased, resulting in inefficient
transportation services with minimal movement and maximum costs. Therefore, it is necessary to establish a regional demand
generation prediction model that reflects temporal features for efficient demand response service operations. In this study, a
graph convolutional network model that performs demand prediction using spatial and temporal information was developed.
The proposed model considers a region’s unique characteristics and the influence between regions through spatial information,
such as the proximity between regions, convenience of transportation, and functional similarity. In addition, three types of
temporal characteristics—adjacent visual characteristics, periodic characteristics, and representative characteristics—were
defined to reflect past demand patterns. With the proposed demand forecasting model, measures can be taken, such as having
empty vehicles move to areas where demand is expected or encouraging adjustment of the vehicle’s rest time to avoid
congestion. Thus, fast and efficient transportation satisfying the movement demand of passengers with restrictions can be

achieved, resulting in sustainable transportation.

1. Introduction

The right to travel refers to citizens’ right to move freely and
safely. Because it is a fundamental right that is indispensable
to human life, efforts to ensure the right to move continu-
ously are needed [1]. Although transportation patterns have
changed over the past few decades, mainstream passenger
transport (e.g., buses and taxis) has not changed sufficiently
to meet these changes. In particular, timed route methods,
such as buses, incur fixed operating costs. If a passenger is
not picked up, a loss occurs; if the passenger’s demand
changes, the utilization rate decreases, and eventually, the
fixed cost increases. This leads to a vicious cycle that results

in a decrease in use, because the service does not adequately
satisty the requirements of passenger travel. If this phenom-
enon persists, supply is concentrated on major routes, which
can create barriers to passengers’ travel rights. Moreover,
socially disadvantaged people (elderly people, disabled peo-
ple, residents of vulnerable areas, etc.) can experience severe
isolation. Demand-responsive transport (DRT) services have
emerged to solve this problem.

A DRT service refers to a transportation service that
responds to the movement demand of passengers without
a predetermined route or operation plan. It combines low
fares, which are the advantages of buses running fixed
routes, and convenient boarding and disembarking and
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speed, which are the advantages of taxis. Therefore, relative
to buses and taxis, DRT services achieve a tradeoff in terms
of efficiency and cost. DRT services have the following
advantages over fixed-route operations. First, the demand
resolution is optimized. For DRT services, the driving dis-
tance of a fixed-route vehicle divided by the number of pas-
sengers onboard is approximately half that for a fixed-route
operation. Additionally, DRT services have the advantage of
efficient operational cost management. DRT services are
economical because the fixed cost incurred when there is
no demand is low. Another advantage of DRT services is
their environmental superiority. They have a shorter toler-
ance distance than fixed-route vehicles. They are ecofriendly
with regard to greenhouse-gas emissions and fuel consump-
tion because they use small vehicles. Finally, passengers are
highly satisfied with DRT services. DRT services operating
in a door-to-door manner achieve higher levels of passenger
satisfaction than fixed-route operations, where passengers
must travel directly to the station [2].

DRT is applied to the movement of passengers with
restrictions, e.g., in areas where demand is intermittent or
transportation services are insufficient and vulnerable [3].
Real-time response to the travel demand is crucial for efficient
DRT service operations, requiring a system and demand fore-
casting model to allocate requests to vehicles quickly and effi-
ciently when passengers receive travel requests [4]. The
demand forecasting field for mainstream passenger transport
continues to improve with the development of deep-learning
technologies such as long short-term memory (LSTM). For
example, in [5], LSTM was utilized to predict future demand
according to past demand through traffic card data analysis.
However, DRT services are designed for the movement of pas-
sengers with restrictions; therefore, they exhibit a different
demand pattern from general mainstream passenger transpor-
tation. Because the existing liquor passenger transportation
model cannot be applied, a model that reflects the movement
characteristics of passengers with restrictions is required.

It is crucial to consider the demand at previous times in
the region, but it is also essential to reflect spatial character-
istics. Each region has spatial characteristics, such as com-
mercial districts and suburban areas [6, 7]. Because spatial
characteristics affect temporal trends, spatiotemporal factors
must be considered. In this study, three types of components
that reflect spatial, temporal, and spatiotemporal character-
istics were constructed and reflected in the model. Because
DRT services are subject to spatiotemporal influences, the
data are sparse. LSTM affiliation is not well suited for sparse
data. To solve this problem, we used channel-wise attention
and temporal means to alleviate the sparsity of the data to
the greatest extent possible and then used ConvLSTM.

The main contributions of this study are as follows.

(i) First, we improved the interpretability of the model
by identifying the cause of spatiotemporal demand
and reflecting it in the model

(ii) Second, we used channel-wise attention and tempo-
ral means to maximize the demand for sparse
demand response

Journal of Advanced Transportation

(iii) Finally, a graph convolutional network (GCN) was
used for the first time to reflect spatial factors in
demand prediction according to the region of the
DRT service

The remainder of this paper is organized as follows.
Section 2 presents related research and basic deep-
learning models related to DRT service demand predic-
tion. Section 3 presents the proposed method. Section 4
presents the results of applying the proposed method to
actual data. Section 5 presents conclusions and suggestions
for further research.

2. Related Works and Preliminaries

This section introduces DRT service demand prediction
research and deep-learning methods.

2.1. DRT Service Demand Prediction. Because demand pre-
diction must precede the efficient operation of DRT services,
many studies have recently been conducted using various
methodologies. For example, in [8], after the entire region
was divided into grids, the demand for a DRT service was
predicted using a convolutional neural network (CNN),
LSTM, and ConvLSTM, along with exogenous variables
such as weather. In [9], an appropriate DRT type was iden-
tified by estimating the average number of people getting on
and off at bus stops in a regular pattern identified through
cluster classification of time-by-time boarding points for
the efficient placement of DRT.

Recent studies focus on spatial dependence, traveler per-
sonal heterogeneous, sparse uncertainty, and demand pre-
diction quality requirements. Reference [10] mentioned
that variables representing factors related to the characteris-
tics of service supply, demographic characteristics, land use,
and accessibility should be discovered and fused to reflect
the direct impact and ripple effect on demand. Their
research uses a model structure (Attention, ConvLSTM) that
can demonstrate demand patterns of call taxis for the dis-
abled as a service supply characteristic. In addition, to reflect
demographic characteristics, the administrative region,
which is a division of a population-based area, was used as
variables representing factors related to land use and accessi-
bility were discovered and utilized as a functional similarity
adjacency matrix of the GCN method. However, this paper
is aimed at developing an optimal bus route rather than a
DRT service. Call taxi for the disabled is a short-distance
transportation service for people who cannot go to the
appropriate stop due to severe disabilities. There is a sepa-
rate long-distance customized bus service for the disabled
in Seoul. Therefore, the use of the call taxi for the disabled
is different. Reference [11] is a thesis that studies the error
distribution rather than specific parameters, learning
methods, and hyperparameter adjustments for a transporta-
tion demand prediction model for adequate public transpor-
tation (PT) operation. To build an accurate model, it is
necessary to study the error distribution considered in the
study. References [12, 13] utilized H-ConvLSTM that applies
convolution based on a hexagonal shape rather than a
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conventional pixel standard. We improved the performance
by using the ensemble for postaggregation, like bagging. To
reflect the interregional relationship between hexagons, they
used the GCN additionally.

In particular, the traffic demand was predicted using call
taxi data for people with disabilities in Seoul. In [14], the
waiting times for disabled people in Seoul were predicted
using SARIMA and LSTM and compared. In [15], the call
taxi latency for the disabled was predicted using several
hyperparameters of LSTM. However, in these studies, only
past temporal characteristics were considered; spatial char-
acteristics were omitted or reflected only in the Euclidean
space. Furthermore, because the spatial relationship is not
based only on the location in Euclidean distance, it is neces-
sary to reflect various spatial structures based on non-
Euclidean distance in the model.

2.2. Spatiotemporal Prediction. Demand prediction and
urban traffic prediction fields, such as traffic volume predic-
tion and congestion distribution estimation, exist in tasks
that reflect spatiotemporal factors. Previous studies on urban
traffic prediction can be classified into two categories
according to the input data format. Grid-based inflow and
outflow prediction is based on images, whereas graph-
based traffic speed prediction is based on graphs.

2.2.1. Grid-Based Inflow and Outflow Prediction. The
demand forecasts for DRT services and taxis are highly
similar [8]. Therefore, to predict the general taxi demand,
the entire area is converted into an image set to a grid of a
specific size and utilized. In [16], exogenous variables such
as weather and weekend availability were added in a fully
connected layer. The values before a certain point, such as
the distant, near, recent of the grid, are learned through
convolution. In [6], predetermined point-of-time values
and point-of-interest (POI) characteristics were learned
by a grid through convolution, such as the time, day,
and week of the set grid, and combined through ResPlus
to predict the regional taxi demand at the next time. Col-
lecting exogenous variables that may be related to future
demand can improve the predictive performance.
Although weather, POI, or traffic flow was used in the
foregoing studies, the performance improvement was
insignificant relative to the increase in the number of
parameters, because the improvement through exogenous
variables was orthogonal to capturing complex spatiotem-
poral dependence in the data [7].

2.2.2. Graph-Based Traffic Speed Prediction. Graph struc-
tures—not images—are used to solve various urban prob-
lems. In contrast to the grid-based method, research is
focused on solving various urban problems, such as predict-
ing traffic speed, rather than predicting movement demand.
For example, in [17], a GCN with three adjacency matrices
was used. Spatial characteristics were adopted, along with a
contextual gated recurrent neural network [14, 18, 19] and
temporal characteristics with values prior to a certain point
in time of closeness, period, and trend. In [20], a three-
part model that predicts the travel demand at the next point

in time was proposed. The first part is a long-term encoder
for encoding the past moving demand. The second part is
a short-term encoder for deriving next-step predictions from
generated multistep predictions. The third part is an
attention-based output module for modeling dynamic tem-
poral and channel-wise information. In [21], ST-Conv
block—a combination of temporal-gated convolution and
spatial graph convolution—was used to predict the traffic
speed at the next point in time. In this study, we predicted
the demand for a DRT service using the graph-based
method.

2.3. GCN. The GCN applies to graph G=(V, A), where V
refers to vertices and A € RV is a matrix with edges
expressing the relationships between the vertices. The GCN
can extract a local feature from a non-Euclidean structure
in another receptive field. For example, to utilize convolu-
tion in the graph structure, the Fourier transform [22] can
be used. To share the basis of the Fourier transform, we
compute the Laplacian matrix

L=I1-D"2AD7"? (1)

where D denotes the degree matrix. We denote X' as the fea-
tures of the I'™ layer, a* as trainable coefficients, L* as the k
-order multiplier of the graph Laplacian matrix, and o as
an activation function. The graph convolution operation
[23] using a Laplacian matrix is defined as follows:

X, =0 (KZI ockLkX,> . (2)

k=0

We learn the relationships between adjacent vertices by
updating feature X through multiple layers. Moreover,
because the GCN has the characteristics of learning weight
sharing and local features, which are characteristics of the
CNN, it is possible to obtain a node feature reflecting the
connection information of the adjacent (hop) nodes of each
node.

2.4. Channel-Wise Attention. Given an input X € R"*#xC|
channel-wise attention [17, 18] learns the weights for each
channel to find and highlight the most important frame with
larger weights. Here, H, W, and C refer to the height, width,
and channel number of the image, respectively. The
channel-wise attention is defined as follows. A summary of
each channel

M=

1 w
z,=F 4X...)=—
c pool( .,.,c) WH;] -

X;jcfore=1,---,C  (3)

is obtained. Then, we obtain the attention s = 0(W,0(W,z)).
The algorithm learns to assign a large weight to the impor-
tant channels. The attention value to the original input
values is channel-wise as follows:

X" . .=X_ . 0s,forc=1,-,C. (4)
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FiGurke 1: Distributions of demands at 5 p.m. on November 1, 2019. (a) Distribution of demands (continuous) at 5 p.m. (b) Distribution of
demands (0/1) at 5 p.m.
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FIGURE 2: Model overview.

Require:
; V]-1
1: Past demands X = (xl(trend)’xgpenod)’ Ecloseness))‘i:l‘
_ (VI
2: Future true demand y; = (x; '),

. ~ _(t+1), V=1
Ensure: future prediction demand ¥, = (%; ') ,_,

1
4: While training do

17: End while

3: Adjacency matrix A = (Ay, A, Ap), degree matrix D = (Dy, Dy, D), hop: K

5: For all A do

6: (1) Spatial dependency: apply Chebyshev to each adjacency matrix A

7: L «— rescale (normalize (L))

8: For all K do

9: T,, < Chebyshev (L, T;)

10: End for

11: (2) Temporal dependency: apply with contextual gating (CG) and ConvLSTM
12: H; «— ConvLSTM(CG(X, Ty,,))

13: End for

14: (3) Spatial-temporal dependency: apply with FC (fully connected) and GCN (graph convolution network)
15: y; «— FC(GCN(Hj))

16: Compute loss: L = BCELoss(7;,y;)

ArcoriTHM 1: Training procedure of the proposed method.

Here, F,,,, is a global average pooling operation, and W,
and W, are the corresponding weights. § and o are nonlin-
ear functions for each ReLU, i.e., rectified linear unit and sig-
moid function.

3. Method

3.1. Description of Dataset. In this study, DRT service data of
call taxis for the disabled in Seoul for two years (from 00:00
on January 1, 2018, to 24:00 on December 31, 2019) were

used. The call taxis were primarily operated in Seoul but
sometimes moved to areas adjacent to Seoul, depending on
the passenger demand. However, we limited the spatial
range to Seoul. Therefore, we included data from both
departure and destination sets within Seoul. The call taxi
data for the disabled included the following information.
For each call, the variables were the type of call (regular
reception, full-day reservation, and direct call), reception,
hope, dispatch, boarding, departure, destination, departure
coordinates, customer number, purpose of use, and number
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of boarding vehicles. Of the 424 administrative districts,
Wirye-dong, which had no passenger demand in 2018 or
2019, was excluded. In addition, we excluded data correspond-
ing to hours other than the primary operating hours. There
were 1,699,614 data points within 11h, including 7-17h.
The data contained one row of demand consisting of a
three-dimensional matrix with 8030 rows and 423 (adminis-
trative districts) columns in 365 days x 2 (years) X 11 (time
zones) by aggregating the number of demands by administra-
tive district in the date-time period. The number of demand
cases was continuous data; however, as mentioned previously,
the number of demand cases had an extensive and intermit-
tent distribution. Zero accounted for 62% of the cases
(1,064,141 of 1,699,614), one accounted for 21%, and the
others accounted for only 17%. The class imbalance problem
was alleviated by treating multiple demands as one demand
(0/1). For example, for 5 p.m. on November 1, 2019, the data
exhibited a wide variety of demands, as shown in Figure 1(a).
However, the number of demands was changed according to
whether there was demand, as shown in Figure 1(b).

3.2. Proposed Method. The proposed method consists of three
steps. The first step is to encode the spatial dependency, the
second step is to use ConvLSTM [24] to reflect the temporal
dependency, and the third step is to use a GCN [23] to reflect
the temporal dependency. Figure 2 illustrates the overall pro-
cess. Furthermore, pseudocode is presented in Algorithm 1.

3.3. Encoding Spatial Dependency. The proposed method uti-
lizes several types of adjacency matrices to reflect the spatial
dependency. The adjacency matrix Ay reflects the neighbor-
hood between administrative districts.

AN,i,j = (

Figure 3(a) shows a heat map of the adjacency matrix for
adjacent connections between administrative districts. The
second adjacency matrix A, was designed to reflect the real

1, v;and v; are adjacent,

(5)

0, otherwise
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travel distance between the administrative districts.

Ay ;=max (0,conn (v, v;) = Ay;) € {0, 1}.

(6)

Figure 3(b) shows a heat map of the adjacency
matrix for the transportation convenience connection
between administrative districts. According to the third
adjacency matrix Ap, for administrative districts that
are more functionally similar, the demand patterns are
more similar.

A= I(sim (va_, ij> > 0.9) Ay~ Ay € {01} (7)

Here, sim(-) denotes cosine similarity. P is a vector
of the medical location quotient (LQ), disability LQ,
number of resident registration disabilities, and demand
movements for each administrative district. Location

quotient (LQ) measures the dispersion of a specific
industry. We calculate the satisfaction of medical care
and disability facilities in administrative districts by com-
paring them with Seoul city. It can be interpreted that
the higher the coefficient, the higher the satisfaction of
the owned facilities compared to other administrative
districts, and vice versa—the lower the coeflicient, the
insufficient. LQ, a quantitative indicator, was used to
compare the functional similarity between the two
administrative districts. The adjacency matrix and nor-
malized Laplacian matrix for the functional similarity
between the two administrative districts were expressed
in a heat map, as shown in Figure 3(c).

Chebyshev polynomials [25] were used to embed the
configured adjacency matrix. We transformed the adjacency
matrix into a Laplacian matrix as follows:

L=I-D"'"AD"2 (8)

where D is degree matrix, L is normalized graph Lapl-
cajan matrix, and I is identity matrix.
Using k-order Chebyshev polynomials [25],

f(A36,) =T (L) =2x Ty, (L) - Ty, (L) with Ty = I, T, =

(9)
encoding.

3.4. Learning Temporal Dependency. Contextual gates and
ConvLSTM deploy temporal dependencies. We use input
values based on closeness, period, and trend. For closeness,
we consider the demands from 1, 2, and 3h in the past.
The period is the same as that of 1, 2, and 3d in the past.
The trend is the demand a week in the past. As shown in
Figure 4, contextual gating is performed.

We first compute GCN (X) applying GCN to the original
value. In the model, GCN is applied as follows. Multigraph
convolution is used, such as equation (10), to reflect spatial
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dependency by utilizing several graphs configured. Multi-
graph convolution is used to reflect spatial dependency. X,
e RVPL X, e RIVXPer s feature vectors of region V layer
in I and I+ 1.0 is activation function and Ll is aggregation
function, where is sum. A is a set of graphs, and f(A;0,)

e RIVXVI s the aggregation matrix of other samples. If W,
€ RP*Pui is the feature transformation matrix, X,,, is
updated to

Xpp1 =0 (Ugenf (A5 0,)X,W)). (10)
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TaBLE 1: Mean feature vectors by clusters.

Cluster Medical LQ Disabled LQ Garage Return home Treatment Rehabilitation Religion Commute Shopping Business
0 1.57 1.07 0.08 1259.99 616.59 416.56 78.55 148.14 12.31 0.33
1 1.46 0.96 0.11 1075.18 814.89 474.19 119.67 138.13 11.78 0.33
2 1.22 0.94 0.07 1218.28 553.75 454.73 90.22 89.83 10.15 0.23
3 1.53 1.00 0.09 1200.80 1200.80 717.32 59.14 141.73 21.75 0.55
4 1.61 1.08 0.10 1319.93 1319.93 405.94 68.83 97.03 12.47 0.49

Then, we apply global average pooling to all regions.

(Fpool (X,(j)) + FP001 (GCN(XSj)))), forj=1,--+,].

(11)

i=1

Let o be a sigmoid function and & be the GeLU, i.e., Ga
linear unit function. Equation (11) produces the following
summary:

o= (S(w, S(z>...,5(1>) = 0(W,8(W,2)), (12)

for each of the temporary observation periods. We multi-
plied the calculated summary by the original value.

X9 =x0 050, forj=1,--, . (13)

Through the contextual gating mechanism, we obtain
reweighted observations with weights over time.

However, the LSTM architecture may not be well
learned from sparse data. To resolve this, we applied
ConvLSTM after the temporal mean, as shown in
Figure 5. For each of the three inputs, the temporal mean

is as follows:

XV = (mean (X (Closmess>) , mean (5( e emd)) , mean (X mend)) ) .

(14)

We learn the temporal characteristics of each region
using ConvLSTM in the temporal mean reweighted obser-
vations. Owing to intermittent demand, we convert sparse
data into dense data. Therefore, we average features for
closeness, period, and trend and then apply ConvLSTM.
Across all regions, ConvLSTM is applied to the values of
the reweighted observations. This results in a single vector
that aggregates the learned spatiotemporal information.

H;= convlstm(f((l),---,f((j)), fori=1,---,|V|. (15)

Finally, a multigraph GCN is applied to the result of the
ConvLSTM to learn spatiotemporal characteristics simulta-
neously. We then apply a fully connected layer for aggregation.

¥; =FC((GEN(H,)). (16)

4. Spatiotemporal Characteristics of DRT Service

In the proposed method, the regional demand for DRT ser-
vices is predicted via graph-based deep learning using the
spatiotemporal characteristics of the demand in the past
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two years. Therefore, it is necessary to investigate the cause
of the presence or absence of demand. Accessibility to the
DRT service is influenced mainly by time and space, as
shown in Figures 6 and 7. In this section, the factors that
affect the demand for transportation services are identified
through temporal and spatial characteristic analyses.

4.1. Analysis of Spatial Characteristics. To visually validate
the spatial dependency embedded vectors of the functional
similarity adjacency matrix, we used ¢-distributed stochastic
neighbor embedding (t-SNE) [26] over a low-dimensional
space. Then, we applied k-means clustering [27] to the lower
dimensions. We performed dimension reduction with t-SNE
for visualization and observed five clusters, as shown in
Figure 6. Table 1 presents the mean feature vectors for each
group.

Group 0 shows the residential area with the most passen-
gers boarding to commute. Meanwhile, there is a moderate
demand for the rest of the purposes. In the case of group
1, the number of garages is relatively large, and it is a resi-
dential area where people board the most for returning
home and religious purposes. In the case of group 2, the
medical LQ and disability LQ are low, and they do not board
well for business work and treatment purposes. In the case of
group 3, many people used DRT service for returning home,
rehabilitation, and shopping, and the pursuit of work was
relatively high. Finally, in the case of group 4, the medical
LQ and disability LQ are high, and the residential area tends
to have the highest purpose of returning home.

4.2. Analysis of Temporal Characteristics. As shown in
Figure 7, aggregating the demand status for the two years
by the hour revealed that 7 a.m. was the most in demand
and shows a decreasing trend at 8 a.m. and 9 a.m. However,
it increases again from 10 a.m. and then to decrease to 20%
from 1 p.m. to 5 p.m. Because of this characteristic, it is cru-

TaBLE 2: Comparison of various methods.

Model Accuracy  Precision  Recall ~ F1 score
HA 65.18 36.74 55.29 44.15
Logistic regression 68.04 30.92 66.07 42.13
XGboost [28] 69.82 42.47 65.19 51.43
Our method 78.13 75.41 62.26 68.21

cial to predict the demand in the period when the demand is
plummeting, as most administrative districts exhibited a
demand of >50% at 7 a.m. These results are attributed to
the purpose of passenger use.

Figure 8 shows the usage purpose pattern: the number of
people returning home increased by 12 p.m., and the demand
for treatment, rehabilitation, and commuting/work increased
in the morning. In the case of movement for this purpose,
because the movement is often constant, it is possible to pre-
dict the demand position using this pattern. A functionally
similar adjacency matrix can explain this pattern.

According to the ratio of call types by time, direct calls
and full-day reservations were inversely proportional in the
case of full-day reservations. Therefore, we infer that dis-
abled call taxis operate regularly. We make three policy sug-
gestions. First, the demand should be checked on the
previous date by expanding the operating time zone of the
full-day reservation. Currently, the service is only operated
at 7 am., 8 am., and 10 a.m. However, the demand should
be predicted by expanding the operating hours or establish-
ing a system that can be flexibly received the reservation
before anytime. Second, movement should be encouraged
by utilizing measures such as deploying additional temporal
vehicles at 7 a.m., when the demand is the highest. Third,
maximum movement should be achieved at the minimum
cost by avoiding and adjusting the driver’s rest time between
10 am. and 12 p.m., when the demand increases again.
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TasLE 3: Effect of adding components to the spatial correlation modeling on the performance.

Component Accuracy Precision Recall F1 score

Neighborhood 77.89 76.50 59.65 67.03

Neighborhood+transportation 77.75 75.54 60.56 67.22

Neighborhood+transportation+functional 78.13 75.41 62.26 68.21

TaBLE 4: Effects of temporal correlation modeling.

Temporal Accuracy  Precision  Recall ~ F1 score
Average pooling 76.60 71.46 63.11 67.02
Max pooling 77.56 72.71 64.72 68.49
LSTM 77.45 73.40 62.99 67.80
ConvLSTM 78.13 75.41 62.26 68.21
TaBLE 5: Effects of time combinations.
J * closir;resls;ota}f)e riod, # Accuracy Precision Recall scIj)lre
7 (3,3, 1) 78.13 7541 6226 68.21
5 2,2,1) 77.83 74.07 6331 68.27
3 (1,1, 1) 77.12 73.14  62.08 67.16
2 0,1,1) 70.02 62.17  52.76 57.08
2 (1,0, 1) 70.24 62.69 5248 57.13
2 (1, 1,0) 71.25 65.15 5140 57.46
TABLE 6: Measures according to K.
K Accuracy Precision Recall F1 score
2 77.95 73.96 64.02 68.63
3 78.13 75.41 62.26 68.21
4 77.87 73.38 64.77 68.81

4.3. Model Performance Comparison. In this section, we
compare the two aforementioned models. Let y, = Pr(X,)
be the conditional probability given an input x;. For a loss
of observation, we used the binary-cross entropy loss.

Foce =2 Yl log () + (1) -log (1-3,)]. (17

i=1

The training dataset included data from January 1, 2018,
to October 31, 2019. Twenty percent of the data were used
for the validation. Data from November 1, 2019, to Decem-
ber 31, 2019, were used as test data. To maintain chronolog-
ical order, the data were not shuffled. ConvLSTM had four
hidden sizes and three layers, and the GCN had 64 hidden
sizes.

The performance of the proposed method was compared
with that of other methods, and the results are presented in
Table 2. Compared with the existing time series and classifi-
cation model, the proposed method achieved significantly
better performance. In contrast to the other methodologies,
previous time zones, e.g., the closeness, period, and trend,

TABLE 7: Mean waiting time depending on whether there is a
vacant vehicle that exists or not (min).

Time Exist Nonexist Difference (nonexist-exist)
7 49.23 57.96 8.73
8 46.58 54.34 7.76
9 42.14 40.32 -1.82
10 26.95 48.24 21.29
11 28.81 44.96 16.15
12 30.16 42.07 11.91
13 3291 35.63 2.72
14 33.77 34.78 1.01
15 31.74 29.38 -2.36
16 34.50 30.36 -4.14
17 28.17 34.55 6.38
Total 3391 49.71 15.8

were input as data configurations, and the characteristics of
each administrative district (medical LQ, disability LQ,
etc.) were added. Three adjacency matrices were used, and
the results of the experiment are presented in Table 3. The
first row presents the results obtained using only the neigh-
borhood adjacency matrix. The second row presents the
results obtained using two transportation adjacency matri-
ces: the neighborhood and transportation adjacency matri-
ces. The third row presents the results obtained using all
three functional adjacency matrices, ie., neighborhood,
transportation, and functional similarity.

As shown, the method exhibited the best performance
when all three adjacency matrices were used. However, in
the case of the second row, the performance was inferior to
that achieved using only the neighborhood adjacency matrix.

Table 4 presents the performance with respect to the
type of temporal correlation. ConvLSTM outperformed
vanilla LSTM, which did not reflect the spatial information.
Also, max pooling shows lower performance.

The performance differences for different combinations
of closeness, period, and trend are presented in Table 5. As
time was used more, performance increased. In the case of
call taxi data for the disabled, the demand is very intermit-
tent, so the less time is used, the greater the sparse value will
be affected. In addition, in the case of the demand a week
ago, the actual past information is excessively required;
therefore, the demand was fixed to 1. The performance dif-
ference when using the performance difference according
to the use of K is presented in Table 6.

In the GCN, problems such as oversmoothing occur as
the number of layers K increases excessively [29]. Similarly,
in this study, when K increased by four or more, the
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performance was degraded. Finally, in the case of Seoul, if it
is influenced by too many hops, the performance is
degraded, reflecting irrelevant administrative district
relationships.

At the time of demand generation, we investigate the
average difference time in waiting time between the case
where the empty car is waiting and the case where there is
no waiting. Table 7 shows the mean waiting time depending
on whether there is a vacant vehicle that exists or not. When
an empty car is on standby, we expect that we could reduce
waiting time by about 16 minutes on average.

5. Conclusions

The proposed method can resolve unequal waiting times
between regions by predicting the demand location for effi-
cient operation of DRT services, which can support mini-
mum cost-maximum movement. The objective of this
study was to reduce the waiting time by efficiently rearran-
ging nearby empty cars by predicting the regional demand
for Seoul’s call taxi service for the disabled, which has inter-
mittent call characteristics. After configuring various sub-
graphs, the GCN was used to reflect the spatial
characteristics between regions, and the model was con-
structed using the temporal mean and ConvLSTM to reflect
temporal characteristics. Using various subgraphs from real
data analysis showed alleviated results in terms of accuracy
and interpretation. We expect improved convenience of
movement and satisfaction with public transportation by
reducing the waiting time. In addition, DRT services can
replace public buses, increase the efficiency of subsidies for
various types of public transportation, and generate profits
and labor inducement effects for transportation companies,
revitalizing the local economy and increasing the sharing
rate of public transportation.
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Accurate traffic state prediction plays an important role in traffic guidance, travel planning, etc. Due to the existence of complex
spatio-temporal relationships, there are some challenges in forecasting. Firstly, in terms of spatial correlation, some models only
consider the road network structure information, and ignore the relative location relationships between nodes. Secondly, some
models ignore the different impacts of nodes in the global road network on traffic. To solve these problems, we propose a new
traffic state-forecasting model, namely, spatio-temporal attention-gated recurrent neural network (ST-AGRNN). In the
proposed model, structure-based and location-based localized spatial features are obtained simultaneously by Graph
Convolutional Networks (GCNs) and DeepWalk. The localized temporal features are obtained by gated recurrent unit (GRU).
The attention-based approach is used to obtain global spatio-temporal features. Experimental validation is performed with two
real-world public datasets, and the results show that the ST-AGRNN model outperforms the state-of-the-art methods.

1. Introduction

Traffic congestion is a common problem faced by almost all
major cities. Because of traffic congestion, a lot of manpower
and material resources are wasted every year. Accurate and
real-time traffic state prediction is the basis to solve the
problem of traffic congestion. On the one hand, people can
plan their trips in advance through traffic-state information.
On the other hand, traffic managers also conduct effective
traffic guidance and management through traffic state pre-
diction information. At the same time, traffic prediction is
a typical spatio-temporal problem, and the inherent nonlin-
earity and complexity of traffic affect the accuracy of predic-
tion. Therefore, integrated consideration of temporal and
spatial characteristics is necessary for traffic state prediction.

Taking the spatio-temporal correlation in Figure 1 as an
example, there are localized spatio-temporal correlations
and global spatio-temporal correlations. Each node will have
influence on the traffic of its neighbors because it is physi-
cally connected with its neighbors and belongs to the rela-

tionship between upstream and downstream, which is
spatial dependence. At the same time, each node will also
affect itself at the next time step, which is temporal depen-
dence. These are localized spatio-temporal correlations. In
addition, a busy intersection has influence on the traffic of
the entire region, which is the global spatio-temporal corre-
lation in the road network. Obtaining this correlation is cru-
cial to spatio-temporal data prediction.

In previous studies, various deep learning approaches
were used to model spatio-temporal correlations, including
stacked autoencoders (SAEs) [1], recurrent neural networks
(RNNs) [2], generative adversarial networks (GANSs) [3],
transformer [4, 5], convolutional neural networks (CNNs)
[6], and Spatio-Temporal Graph Convolutional Networks
(STGCN) [7]. The SAEs acquire spatial and temporal corre-
lations through unsupervised learning. The RNNs extract
temporal features through the gate mechanism. The GANs
extract spatio-temporal features through generators and dis-
criminators and the transformer model spatial and temporal
dependencies through encoder-decoder architecture. The
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FiGure 1: The influence of nodes in spatio-temporal correlations
networks. The solid blue lines represent node spatio correlations.
The red arrow represents the node temporal correlations. The
green dash lines represent the global spatio-temporal correlations.

CNNs and GCNs obtain spatial features through convolu-
tion operation. However, these methods only capture local-
ized spatio-temporal correlations.

Recently, attention mechanisms have received increasing
attention. Because they are effective in identifying the rele-
vance of inputs in prediction, components with high rele-
vance are given greater attention. They are successfully
applied in many fields, such as natural language processing
(NLP) [8], computer vision (CV) [9, 10], and speech recog-
nition [11]. Attention-based traffic forecasting has also
developed rapidly in recent years. For example, attention
temporal graph convolutional network (A3T-GCN) [12]
uses attention mechanism to obtain global temporal and
spatial correlations. However, it ignores location-based
localized spatial information.

To obtain complex localized and global spatio-
temporal correlations, we propose a novel deep learning
architecture—spatio-temporal  attention-gated recurrent
neural network (ST-AGRNN)—for traffic state prediction.
To fully exploit the localized spatio-temporal correlations,
ST-AGRNN learns structure-aware graph embedding infor-
mation through a GCN, and obtains position-aware informa-
tion through DeepWalk. To tackle temporal dependencies, a
gated recurrent unit (GRU) is used. Finally, in order to fully
exploit the global spatio-temporal correlations, the attention
mechanism is used to obtain spatio-temporal correlations
about the networks.

The main contributions of this work are as follows:

(i) we propose a new localized spatial feature extraction
method by combining DeepWalk with a GCN,
where DeepWalk obtains position-aware informa-
tion and the GCN obtains structure-aware graph
embedding information

(ii) Traffic state is a time series data. The current traffic
state will affect the traffic state at the next time step.
GRU is used to obtain localized temporal correla-
tion between traffic data

(iii) Attention mechanisms are introduced to obtain
global spatio-temporal correlations about networks.
Different nodes have different impacts on the traffic
state, and the attention mechanism can obtain the
weight of nodes from the historical traffic state, rep-
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resenting the global spatio-temporal correlations of
network

(iv) Our experiments applying ST-AGRNN to traffic
state prediction show that ST-AGRNN outperforms
12 state-of-the-art methods in terms of both accu-
racy and robustness on two benchmark datasets

2. Literature Review

2.1. Traffic State Forecasting. Time series data modeling and
prediction are widely used in many fields [13, 14]. Trafhic
state data is a typical time series data. There are two main
categories in traffic forecasting: statistical methods and
machine learning methods. Statistical methods include auto-
regressive integrated moving average (ARIMA), the Kalman
filter (KF), Markov chains, exponential smoothing (ES), and
Bayesian networks. In the 1970s, Ahmed and Cook [15] used
ARIMA to predict short-term traffic flow. Hamed et al. [16]
later applied a simple ARIMA model to predict traffic vol-
umes in urban arterials. Subsequently, various variants of
ARIMA have emerged [17-19]. Kalman filtering excels in
regression problems. Guo et al. [20] applied an adaptive
Kalman filtering model to predict short-term traffic flow.
Hinsbergen et al. [21] used a localized extended Kalman
filter (L-EKF) to estimate traffic states. In addition, traffic
prediction methods based on Markov chains, exponential
smoothing (ES), and Bayesian networks also perform well.
For example, Qi et al. [22] proposed a hidden Markov model
(HMM) to achieve short-term freeway traffic prediction dur-
ing peak periods. Chan et al. [23] employed the hybrid expo-
nential smoothing method and the Levenberg-Marquardt
(LM) algorithm for short-term traffic flow forecasting. Wang
et al. [24] used an improved Bayesian combination method
(BCM) for short-term traffic flow prediction.

Statistical methods have some disadvantages, such as the
inability to deal with nonlinear relationships between data.
Machine learning methods, on the other hand, are more
flexible. Machine learning methods are mainly divided into
classical machine learning and deep learning.

Commonly used classical machine learning approaches
include k-nearest neighbors (KNN), support-vector machine
(SVM), random forest (RF), and decision tree (DT)
methods. Cai et al. [25] proposed an improved KNN model
to achieve short-term traffic multistep forecasting. Xu et al.
[26] used kernel k-nearest neighbors (kernel-KNN) to
predict road traffic states in time series. Cong et al. [27] pre-
sented a traffic flow prediction model based on the least
squares support-vector machine, and automatically deter-
mined the least squares support-vector machine model with
two parameters at the appropriate value by FOA. Xu et al.
[28] used genetic programming (GP) and random forest
(RF) techniques to achieve real-time crash prediction on
freeways. Crosby et al. [29] proposed a spatially intensive
decision tree for the prediction of traffic flow across the
entire UK road network. Although classical machine learn-
ing methods are effective in identifying nonlinear relation-
ships in traffic states, they still have many drawbacks, e.g.,
KNN models have low prediction accuracy for rare
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categories and require high computational complexity when
there are many features. It is difficult to choose a suitable
kernel function by applying the SVM model. The random
forests do not perform very well on high-dimensional sparse
data. In addition, decision trees are prone to overfitting.

In order to solve the above problems, deep learning has
been developed rapidly in recent years. The key to traffic
prediction is to learn the temporal dependence and spatial
dependence, where the methods to learn the temporal
dependence are mainly recurrent neural networks (RNNs)
and their variants long short-term memory (LSTM) and
gated recurrent units (GRUs). Nejadettehad et al. [30] used
three kinds of recurrent neural networks to predict short-
term traffic flow. Van et al. [31] used recurrent neural net-
works to predict freeway travel time. Tian et al. [32] took
advantage of LSTM to dynamically determine the optimal
time lags to predict short-term traffic flow. Fu et al. [33] used
LSTM and GRU methods to predict short-term traffic flow.
These models consider the temporal dependence but ignore
the spatial dependence in the road network. Therefore, they
cannot accurately predict changes in the traffic state. Obtain-
ing the temporal and spatial dependence is a prerequisite for
accurate traffic prediction. There are also many models for
the learning of spatial features. For example, Lv et al. [34]
proposed a stacked autoencoder model to inherently learn
the spatial and temporal correlations for traffic flow predic-
tion. Yuan et al. [35] proposed a novel variable-wise
weighted stacked autoencoder (VW-SAE) for hierarchical,
layer-by-layer output-related feature representation. Ma
et al. [36] proposed a convolutional neural network
(CNN)-based model to learn traffic as images and predict
large-scale, network-wide traffic speed. Wu et al. [37] pro-
posed a model called CLTFP, which combines CNN and
LSTM, to forecast future traffic flow. Jo et al. [38] adopted
a convolutional neural network (CNN) to deal with map
images representing traffic states and the model adopts
images for both the input and the output of a CNN model
to predict traffic speeds.

Although the above methods can handle spatial depen-
dencies in traffic, CNNs are more suitable for Euclidean spa-
tial structures such as pictures, and grids. Meanwhile, traffic
road networks are complex networks, and the neighboring
nodes are not fixed. Thus, the spatial features of the road
network cannot be fully obtained by CNNs. In recent years,
graph-based convolution operations have developed rapidly
[39], and have become suitable for learning the structural
features of graph types. He et al. [40] used LDA and GCN
to tackle road link speed prediction. Li et al. [41] proposed
a DCRNN model for obtaining spatio-temporal dependence
in traffic flow forecasting; the model uses diffusion convolu-
tion to learn spatial dependence and a GRU to learn
temporal dependence. Wu et al. [42] learned an adaptive
dependency matrix via node embedding to obtain spatial
dependency and temporal dependency through stacked
dilated 1D convolution. Huang et al. [43] proposed a new
graph attention network, cosAtt, to obtain spatial features
through cosAtt and GCN and temporal features through a
GLU. Roy et al. [44] consider important daily patterns and
present-day patterns from traffic data in addition to spatio-

temporal characteristics to improve the accuracy of
predictions. However, these methods only consider the spa-
tial features based on structure-aware graph embedding
information, without considering the location information,
so they cannot effectively obtain the spatial features.

2.2. Attention Mechanism. The attention mechanism has
been a hot topic of neural network research in recent years,
and it has been remarkable in neural machine translation,
image captioning, time series prediction etc. The attention
mechanism originates from the study of human vision,
which determines which part of the input needs to be
attended to and allocates processing resources to the impor-
tant parts. Bahdanau et al. [45] proposed the use of an atten-
tion mechanism in the decoder to decide which part of the
input sentence should be attended to. Xu et al. [46] intro-
duced the application of soft and hard attention mechanisms
to image captioning. Li et al. [47] proposed convolutional
self-attention further improves Transformer’ performance
to achieve time series forecasting. Daiya et al. [48] proposed
a multimodal deep learning architecture for stock movement
prediction. Zhou et al. [49] used ProbSparse self-attention
mechanism and distilling operation to handle quadratic time
complexity and memory usage. In the area of traffic state
prediction, prediction methods based on attention mecha-
nisms are also developing rapidly. Park et al. [50] proposed
the use of temporal attention, spatial attention and spatial
sentinel vectors to obtain temporal and spatial dependencies.
Wang et al. [51] proposed a novel spatial temporal graph
neural network model for traffic flow prediction, and a
learnable positional attention mechanism is applied in the
model to aggregate information from adjacent roads. Guo
et al. [52] proposed a novel attention-based spatio-
temporal graph convolutional network (ASTGCN) to model
recent, daily, and weekly dependencies.

Inspired by the above study, considering traffic location
information and spatio-temporal characteristics, we learned
both location- and structure-based information to obtain
localized spatial features, learned localized temporal features
through a GRU and, finally, considered the global spatio-
temporal features of traffic networks through the attention
mechanism.

3. Methodology

3.1. Data Processing. Given a speed sequence of data T, T,
T,, -+, T, with a length of n, the time interval is 5 minutes.
To predict the future 15 minutes of data, for example, the
input sample construction process of the model is shown
in Figure 2. The input data of sample 1 is {T, T}, T,, -+,
T,,}> and the label data is {T,, T3, T4} The input data
of sample 2 is {T,,T,, T;,-+, T},}, and the label data is
{T3, T14> T15}. And so on, to obtain the entire input
sample matrix. If predicting the next 30 minutes of data,
the method is similar, i.e., the input data of sample 1 is
unchanged, the label data is {T,,, T3, T14 Tys> T16> 17}
and the sample matrix is obtained recursively. The longer
the prediction time, the more the label is increase.
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FiGure 3: The architecture of the ST-AGRNN.

3.2. Traffic State Prediction Based on ST-AGRNN. The struc-
ture of the ST-AGRNN model is shown in Figure 3. In order
to fully capture the localized spatial dependencies, we pro-
pose a new spatial feature extraction method by combining
DeepWalk with a GCN, where DeepWalk obtains position-
aware information and the GCN obtains structure-aware
graph embedding information. The localized temporal
dependencies are captured using the gated recurrent unit
network, and the road network global spatio-temporal
dependencies are captured using the attention mechanism.
The specific details of each part of the model are presented
in the next subsections.

3.2.1. Localized Spatial Dependency. Consider the urban
road network as an undirected graph G=(V,E), where V
is the set of vertices in the graph and E is the set of edges.
Denote the adjacency matrix of the graph by W. D=
diag (d,,---,d,) denotes the degree matrix of the graph,
where d; = zj’ilwij denotes the number of adjacencies of

each vertex. Moreover, the Laplace matrix of the graph is
expressed as L=1Iy — D""?AD"? = UAUT (where U is an
orthogonal matrix composed of eigenvectors), and the Fourier
transform and inverse transform of the graph can be expressed
asX = UTx and x = UZ, respectively. A two-layer graph convo-
lutional neural network can be represented as follows:

Z=f(X,A) = soft max (74 Re LU(AXW<°>) W<1>), (1)

where X denotes the feature of the node, while A denotes the

adjacency matrix of the graph. Calculated in the preprocessing
S 125 =172

stepA=D AD " where A=A +1  denotes the adjacency
matrix with self-connections, D;; = ¥, Aip W is the weight
of the input layer to the hidden layer, while W) is the weight
of the hidden layer to the output layer.

The GCN aggregates information about neighboring
nodes via convolution, which is a structure-based graph
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predicted length of traffic state g;
Output: Learned ST-AGRNN model
1: Initialization parameter 6;
2: Data processing;

3:For Vie N do

4: Select real historical data x,

-p> " Xt

5: Select real future data x,, -+, Xirgs

7:Input h; into attention to get c;;

8: Use DeepWalk on G and get the embedding result s;
9: Concatenate ¢; and 50! = ¢; ®5;

10: Optimize 6 by minimizing the loss function;

11: End for

6: Input real historical data x,_,, -+, x, and the traffic graph G = (V, E) into GCN and GRU to get h;;

Input: The training epoch N; the historical traffic state x,; the traffic graph G = (V, E); the window size of historical traffic state p; the

ArGoriTHM 1: Training of ST-AGRNN.

TasLE 1: Traffic speed prediction performance under different benchmark methods in the PeMSD4 and PeMSD8 datasets (bold is the best;

underline is the second best.).

PeMSD4 (MAE/RMSE/MAPE(%))

Model ]
15 min 30 min 60 min
HA 2.54/4.96/5.56 2.54/4.96/5.56 2.54/4.96/5.56
ARIMA(2003) 2.51/5.72/5.32 2.75/6.34/5.69 3.21/7.36/6.56
DCRNN(2018) 1.35/2.94/2.68 1.77/4.06/3.71 2.26/5.28/5.10
STGCN(2018) 1.47/3.01/2.92 1.93/4.21/3.98 2.55/5.65/5.39
ASTGCN(2019) 2.12/3.96/4.16 2.42/4.59/4.80 2.73/5.21/5.46
GWN(2019) 1.30/2.68/2.67 1.70/3.82/3.73 2.03/4.65/4.60
LSGCN(2020) 1.45/2.93/2.90 1.82/3.92/3.84 2.22/4.83/4.85
USTGCN(2021) 1.40/2.69/2.81/ 1.64/3.19/3.23 2.03/4.25/4.32
ST-AGRNN 1.19/2.36/2.17 1.45/2.98/2.69 1.76/3.63/3.24
PeMSD8 (MAE/RMSE/MAPE(%))
Model . . .
15min 30 min 60 min

HA 1.98/4.11/3.94 1.98/4.11/3.94 1.98/4.11/3.94
ARIMA(2003) 1.90/4.87/5.11 2.12/5.24/5.21 2.79/6.22/5.62
DCRNN(2018) 1.17/2.59/2.32 1.49/3.56/3.21 1.87/4.50/4.28
STGCN(2018) 1.19/2.62/2.34 1.59/3.61/3.24 2.25/4.68/4.54
ASTGCN(2019) 1.49/3.18/3.16 1.67/3.69/3.59 1.89/4.13/4.22
LSGCN(2020) 1.16/2.45/2.24 1.46/3.28/3.02 1.81/4.11/3.89
USTGCN(2021) 1.14/2.15/2.07 1.25/2.58/2.35 1.70/3.27/3.22
ST-AGRNN 1.015/2.07/1.82 1.24/2.63/2.21 1.53/3.33/2.71

embedding algorithm. The obtained embedding representa-
tion cannot retain the position relationship between nodes,
which is a very important relationship between nodes in
the traffic network. Deepwalk’s objective function forces
nodes that are close in the shortest path to be close in the
embedding space representation [53]. In order to fully
exploit the spatial features of the road network, we introduce
the DeepWalk algorithm to learn the position embedding
representation between nodes.

The graph embedding algorithm based on the random
walk is also close in the embedding space for nodes that

are close in the shortest path. This allows the resulting
embedding space to also preserve the relative positional rela-
tionships. These relations are an important complement to
the structure-based embedding space, and are necessary for
spatial features in traffic.

The random walk with v, as the vertex is represented as
{Wbl, Wﬁl, <, WK1, where WX denotes the k th node in the

path with v, as the root. For all of the nodes in the graph, each
node has another similar path. We then obtain a sequence
matrix W. The corresponding graph embedding representation
containing the location information is then obtained by the
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TaBLE 2: Traffic flow prediction performance under different benchmark methods in the PeMSD4 and PeMSDS8 datasets (bold is the best;

underline is the second best.).

Model PeMSD4
MAE RMSE MAPE (%)
HA 38.03 59.24 27.88
ARIMA(2003) 3373 48.80 24.18
STGCN(2018) 21.16 34.89 13.83
DCRNN(2018) 21.22 33.44 14.17
ASTGCN(r)(2019) 22.93 35.22 16.56
GWN(2019) 24.89 39.66 17.29
LSGCN(2020) 21.53 33.86 13.18
STSGCN(2020) 21.19 33.65 13.90
STFGNN(2021) 20.48 32.51 16.77
Z-GCNETs(2021) 19.50 31.61 12.78
STG-NCDE(2022) 19.21 31.09 12.76
ST-AGRNN(ours) 18.97 30.003 12.81
Model PeMSDS8
MAE RMSE MAPE (%)

HA 34.86 59.24 27.88
ARIMA(2003) 31.09 4432 2273
STGCN(2018) 17.50 27.09 11.29
DCRNN(2018) 16.82 26.36 10.92
ASTGCN(r) (2019) 18.25 28.06 11.64
GWN(2019) 18.28 30.05 12.15
LSGCN(2020) 17.73 26.76 11.20
STSGCN(2020) 17.13 26.80 10.96
STFGNN(2021) 16.94 26.25 10.60
Z-GCNETs(2021) 15.75 25.11 10.01
STG-NCDE(2022) 1545 24.81 9.92
ST-AGRNN(ours) 14.95 23.15 9.21

update procedure—the skip-gram algorithm. The embedding
representation is denoted as s, and then the final result is
obtained by the fully connected layer.

S=f(W-s+b), (2)

where 5 denotes the graph embedding representation, while W
and b are the learnable weights and biases, respectively.

3.2.2. Localized Temporal Feature. Temporal dependence is
another major problem in traffic prediction. Recurrent neu-
ral network (RNN) models are very effective for time-series
data processing, but they suffer from gradient disappearance
and gradient explosion. GRUs and LSTM are variants of
RNN that can effectively overcome these problems.

GRU is used to handle temporal dependence. s, is the
output of GCN at time t, x, is the traffic state at the present
moment, and r, is the reset gate that determines whether the
previous moment information is retained or not—if it is 1,
then the message is carried to the next moment; if it is 0,
then the message is ignored. h,_; is the hidden state at the
previous moment. z, is the update gate, which is a value
between 0 and 1 that determines how much information is

remembered from the previous moment—if it is 1, then
more information is remembered; if it is 0, then more is

forgotten. hNt is the current memory content, and h, is the
output of the current moment.

s, = GCN(x,),
r,=0(W,-[h_,s,-x]+b,),

r

z=0(W, [l s %] +1,), (3)
h~t =tanh (W, -[r,0h,_},s,-x] +by),

he=(1-2)0h,_, +20h,.

3.2.3. Global Spatio-Temporal Correlations. Critical intersec-
tions in cities often have a large impact on regional traffic,
and congestion at critical intersections is likely to evolve into
congestion in the associated areas. In order to strengthen the
modeling ability of traffic networks, this paper obtains global
spatio-temporal correlations through the attention mecha-
nism. All of the hidden states of the GRU network are used
as the input of the attention network, and then the weights
of each hidden state of the GRU are calculated to obtain
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FiGure 4: Continued.
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F1GURE 4: Traffic flow forecast visualization in PeMSD4.

the traffic information changes in the road network at each
moment. The attention network is calculated as follows:

1

e.= W (tanh (W“’)hi 4 b<°>)) + b,

_ epe)
Yiexp(er) (4)

n
¢ = Zai *
i=1

i

where ¢; is the attention coefficient, h; is the GRU hidden
state, W(® and W) are the trainable weight parameters,

b and bV are the trainable bias values, g, is the normalized
attention coefficient, and ¢; is the attention weight.

3.3. Prediction Component. We predict future changes in
traffic state based on historical traffic states. In the prediction
component, we concatenate the attention mechanism and
the location-based graph embedding output as follows:

0;=c; ®5. (5)

The concatenation result is used as the input of the fully
connected layer, and the final traffic state is obtained by the
sigmoid activation function. It is expressed as y, 1, where T
is the predicted time step, in the following form:

Vi1 = sigmoid (W0, +b,), (6)

where W and b, are the learnable weights and biases,
respectively.

The training overview of the model is shown in Algo-
rithm 1. We used Adam to optimize the model. We used
TensorFlow to implement the proposed model.

4. Experiments

4.1. Experimental Settings. The software and hardware envi-
ronments for the experiments were configured as follows:

PYTHON 3.6.2, NUMPY 1.16.0, TENSORFLOW 1.14.0,
and Memory: 64 GB.

For this paper, we used speed and traffic flow to
represent traffic states, where 80% of the data were used as
the training set and 20% as the test set. In the experiments,
the speed was predicted for 15, 30, and 60 minutes, and
the flow prediction was predicted from 5 to 60 minutes with
12 time windows.

We use the root mean square error (RMSE), mean
absolute error (MAE), and mean absolute percentage errors
(MAPE) to evaluate the models.

4.2. Dataset Description. In the experiment, we used two
real-world traffic datasets: PeMSD4, and PeMSDS8 [43].

PeMSD4 was collected from the Caltrans Performance
Measurement System (PeMS) and the traffic data in the
San Francisco Bay Area, with 307 sensors on 29 roads. The
dataset spanned from January to February 2018.

PeMSDS refers to the traffic data in San Bernardino from
July to August 2016, with 170 detectors on 8 roads.

4.3. Baselines. In this paper, the traffic state includes traffic
speed and flow. For the traffic speed, we used the proposed
model to predict 15, 30, and 60 minutes. The compared baseline
models contain both traditional HA and ARIMA, along with
neural network models such as STGCN [7], DCRNN [41],
ASTGCN [52], GWN [42], LSGCN [43], and USTGCN [44].

In traffic flow forecasting, all models have a prediction
window from 1 to 12, i.e., a prediction time from 5 minutes
to 60 minutes, in 5-minute intervals. The baseline models
compared included both traditional and neural network
models, for a total of 11.

The details of the baseline model are as follows:

(1) HA: the average traffic information of the previous
period is used as the forecast value

(2) ARIMA: autoregressive integrated moving average

(3) STGCN: spatio-temporal graph convolutional net-
work, which consists of several spatio-temporal
convolutional blocks
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FiGure 5: Traffic flow forecast visualization in PeMSDS.

(4) DCRNN: diffusion convolutional recurrent neural
network, which obtains spatial dependencies
through bidirectional random walks and temporal
dependencies through an encoder-decoder struc-
ture with scheduled sampling

(5) ASTGCN(r): three independent components with
the same structure are used to obtain the recent,
daily, and weekly dependencies in the traffic data.
The spatio-temporal attention mechanism and
spatio-temporal convolution are used to obtain
the spatio-temporal dependencies within the com-
ponents. For the sake of experimental fairness, only
the recent components are used

(6) GWN: a new adaptive dependency matrix is
learned by node embedding to capture the hidden
spatial dependencies in the data and obtain tempo-
ral dependence via a stacked dilated 1D convolu-
tional component

(7) LSGCN: the model uses spatial gated block and
gated linear units (GLU) convolution to capture
spatio-temporal features

(8) USTGCN: the model obtains complex spatio-
temporal correlations through the proposed unified
spatio-temporal convolution strategy

(9) STSGCN [54]: spatio-temporal synchronous graph
convolutional network, which uses a spatio-
temporal synchronous graph convolutional module
to capture the complex localized spatio-temporal
correlations and deploys multiple modules to
capture the heterogeneities in localized spatio-
temporal network series

(10) STFGNN [55]: spatio-temporal fusion graph neural
network, which uses spatio-temporal fusion graph
neural modules and a gated CNN module to
capture the spatio-temporal correlations

(11) Z-GCNETs [56]: Z-GCNETSs introduce new GCN’s
with a time-aware zigzag topological layer

(12) STG-NCDE [57]: spatio-temporal graph neural
controlled differential equation, which extends the
concept and designs two NCDEs to capture the
spatio-temporal correlations

4.4. Experimental Results. The traffic state prediction results
for all baseline models and our model are shown in Tables 1
and 2. In Table 1, we can see that our proposed model per-
forms better overall on the datasets PeMSD4 and PeMSD8
compared to the other baseline models for 15-, 30-, and
60-minute traffic speed predictions. Taking the 15-minute
speed forecast as an example, on the PeMSD4 dataset, our
model is better than HA, ARIMA, DCRNN, STGCN,
ASTGCN, GWN, LSGCN, and USTGCN with 53.14, 52.58,
11.85, 19.04, 43.86, 8.46, 17.93, and 15% lower MAE, with
52.41, 58.74,19.72, 21.59, 40.40, 11.94, 19.45, and 12.26%
lower RMSE, and with 60.97, 59.21, 19.02, 25.68, 47.83,
18.72, 25.17, and 22.77% lower MAPE, respectively. On the
PeMSD8 dataset, our model is better than HA, ARIMA,
DCRNN, STGCN, ASTGCN, LSGCN, and USTGCN with
48.73, 46.57, 13.24, 14.7, 31.87, 12.5, and 10.96% lower
MAE, with 49.63, 57.49, 20.07, 20.99, 34.9, 15.51, and
3.72% lower RMSE, and with 53.8, 64.38, 21.55, 22.22,
42.4, 18.75, and 12.07% lower MAPE, respectively. From
the results, it is clear that ST-AGRNN performs well in both
short- and long-term predictions. In particular, on the
PeMSD4 dataset, the ST-AGRNN model is optimal on all
three-evaluation metrics. Except for the RMSE metric, which
is the second best on the PeMSD8 dataset, the other metrics
are also optimal for long- and short-term prediction.

HA and ARIMA are the worst performers because they
do not capture spatio-temporal correlations effectively. Since
STGCN has cumulative errors, it does not perform as well as
DCRNN. DCRNN can effectively obtain complex spatial
correlations through diffusion convolution. ASTGCN con-
siders the periodicity of prediction, so it is better than
STGCN for long-term prediction.
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FIGURE 6: Speed forecast visualization in PeMSD4 and PeMSDS8.

The spatial gate block of LSGCN integrates the proposed
cosAtt and GCN, and in combination with a GLU can effec-
tively extract complex spatio-temporal correlations. Mean-
while, the USTGCN model considers the important
historical and present-day patterns in traffic data, in addition
to the unified spatio-temporal convolution strategy. There-
fore, its prediction performance is the second best.

Table 2 shows the results of traffic flow forecasting per-
formed from 5 minutes all the way to 60 minutes, with a
prediction window from 1 to 12, and all of the results are
averaged. Compared with all of the baseline models, our
proposed model performs the best in traffic flow prediction.
From table 2, on the PeMSD4 dataset, our model is better
than HA, ARIMA, STGCN, DCRNN, ASTGCN(r), GWN,
LSGCN, STSGCN, STFGNN, Z-GCNETs, and STG-NCDE
with 50.11, 43.75, 10.34, 10.60, 17.26, 23.78, 11.89, 10.47,
7.37, 2.71, and 1.24% lower MAE, with 49.35, 38.51, 14,
10.27, 14.81, 24.34, 11.39, 10.83, 7.71, 5.08, and 3.49% lower
RMSE, and with 54.05, 47.02, 7.37, 9.59, 22.64, 25.91, 2.8,
7.84, 23.61, -0.23, and -0.39% lower MAPE, respectively.
On the PeMSD8 dataset, our model is better with 57.11,
5191, 14.57, 11.11, 18.08, 18.21, 15.67, 12.72, 11.74, 5.07,
and 3.23% lower MAE, with 60.92, 47.76, 14.54, 12.17,
17.49, 22.96, 13.49, 13.61, 11.8, 7.8, and 6.69% lower RMSE,
and with 66.96, 59.48, 18.42, 15.65, 20.87, 24.19, 17.76,
15.96, 13.11, 7.99, and 7.15% lower MAPE, respectively.

The STSGCN model considers both localized spatio-
temporal correlations and the heterogeneities in spatial-
temporal data. Therefore, its performance is better than
STGCN, DCRNN, ASTGCN(R), GWN, and LSGCN. The
SFTGNN obtains hidden spatio-temporal correlations by
fusing spatial and temporal graph operations and integrating
the gate convolution module at the same time. Z-GCNETSs
proposed new GCNs with a time-aware Zigzag topological
layer to obtain spatio-temporal correlation. The STG-
NCDE model uses two neural controlled differential equa-
tions (NCDEs) to obtain the temporal and spatial correla-
tions. Since The STSGCN model only extracted localized
spatio-temporal correlations, its performance was inferior
to that of SFTGNN, Z-GCNets, and STG-NCDE. The ST-
AGRNN model obtains both localized and global spatio-
temporal correlation and combines location-based graph

embedding representation to obtain localized spatial correla-
tion. So, the overall performance on both datasets is better
than all baseline models.

4.5. Case Study. We selected two nodes with heavy traffic
from the two datasets to show the ground-truth and pre-
dicted curves: nodes 111 and 261 in PeMDS4 and nodes 9
and 112 in PeMSDS8, as shown in Figures 4 and 5, respec-
tively. From the figures, it can be seen that the model fits this
trend well in places with huge traffic flows between 7: 00 and
9:00a.m. and between 3:00 and 6:40 p.m. Figure 6 shows
the change in the nodes’ 15-minute speed. From the figure,
the traffic speed also drops sharply at the peak time of corre-
sponding traffic flow.

4.6. Error for each Length of Forecasting. Figure 7 shows the
trend of the prediction error of the model in terms of predic-
tion speed on two datasets. From the figure, it can be seen
that although the error increases for all of the models as
the prediction length increases, the error of our model is
smaller than baselines and the increasing trend of our model
is the flattest. This proves that our model is more stable than
the baseline models.

4.7. Ablation Experiments. In the traffic network, the road
sections at different locations play different roles in traffic.
Road sections in central areas have a greater impact on the
surrounding traffic, while remote road sections play a small
role in influencing traffic. These are the global spatio-
temporal correlations. To verify the importance of global
spatio-temporal correlations, we conduct ablation experi-
ments on speed prediction.

From the comparison of the traffic speed prediction
results in Table 3, it can be seen that the prediction error
of the ST-AGRNN model with the attention mechanism is
smaller overall than the error of ST-DWGRU [58] without
the attention mechanism. As an example of the 60-minute
prediction results, the MAE of ST-AGRNN on the PeMSD4
dataset is 7.3% smaller than that of ST-DWGRU, the RMSE
is 9.4% smaller, and the MAPE is 8.2% smaller. The MAE of
ST-AGRNN on the PeMSDS8 dataset is 2.5% smaller than
that of ST-DWGRU, the RMSE is 4.5% smaller, and the
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TaBLE 3: Comparison of traffic speed prediction results of the ST-AGRRG and ST-DWGRU models (bold is the best).
T Metric PeMSD4 PeMSD8
ST-AGRNN ST-DWGRU ST-AGRNN ST-DWGRU
MAE 1.19 1.20 1.015 1.005
15 min RMSE 2.36 2.40 2.07 2.08
MAPE 2.17 2.21 1.82 1.81
MAE 1.45 1.48 1.24 1.25
30 min RMSE 2.98 3.12 2.63 2.70
MAPE 2.69 2.75 2.21 2.24
MAE 1.76 1.90 1.53 1.57
60 min RMSE 3.63 4.01 3.33 3.49
MAPE 3.24 3.53 2.71 2.78

MAPE is 2.5% smaller. From the results, it is clear that the
ST-AGRNN model is more effective in obtaining complex
spatio-temporal information.

5. Conclusions

A new traffic state prediction model is proposed, in which
localized spatial correlation is obtained by a GCN and Deep-
Walk, localized temporal correlation is obtained by a GRU,
and the global spatio-temporal correlations is obtained by
the attention mechanism. Finally, the proposed model ST-
AGRNN was tested with two publicly available datasets,
namely, PeMSD4 and PeMSD8. In terms of traffic speed pre-
diction, MAE improved by 15-53.14% and 10.96-48.73%,
RMSE improved by 12.26-52.41% and 3.72-49.63%, and
MAPE improved by 22.77-60.97% and 12.07-53.8% on the
PEMSD4 and PEMSDS8 datasets, respectively, compared to

the baseline models. Meanwhile, the ST-AGRNN model also
showed different degrees of improvement in traffic flow
prediction compared with the baseline models. From the
results, it is clear that ST-AGRNN outperforms all of the
baseline models, and is more stable.

Data Availability

Previously reported traffic data that were used to support the
study are available. These prior studies (and datasets) are
cited at relevant places within the text as references [43].
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Accurate prediction of traffic flow plays an important role in ensuring public traffic safety and solving traffic congestion. Because
graph convolutional neural network (GCN) can perform effective feature calculation for unstructured data, doing research based
on GCN model has become the main way for traffic flow prediction research. However, most of the existing research methods
solving this problem are based on combining the graph convolutional neural network and recurrent neural network for traffic
prediction. Such research routines have high computational cost and few attentions on impaction of different time and nodes. In
order to improve the accuracy of traffic flow prediction, a gated attention graph convolution model based on multiple spa-
tiotemporal channels was proposed in this paper. This model takes multiple time period data as input and extracts the features of
each channel by superimposing multiple gated temporal and spatial attention modules. The final feature vector is obtained by
means of weighted linear superposition. Experimental results on two sets of data show that the proposed method has good

performance in precision and interpretability.

1. Introduction

With the development of urbanization process, people’s
demand for transportation are increasing day by day.
Whether to build an effective transportation system has
become an important factor in restricting development of
city. Accurate prediction about traffic condition plays a very
important role in people’s daily travel planning, urban traffic
planning, and traffic management and strategy. In order to
improve the efficiency of transportation and reduce the time
cost for transportation activities in daily work and life, this
paper proposed a traffic speed prediction model based on
multi-spatiotemporal gated graph convolutional network
with attention mechanism.

Based on analyzing the urban road’s traffic flow situa-
tion, the velocity of vehicles on the road can be predicted.
Trafhic speed prediction can not only provide managers with
scientific decision-making information but also provide
appropriate route guidance for urban travelers, which is an
important guarantee for the unimpeded flow of urban traffic.
Currently, the main traffic speed prediction model can be

divided into three categories: the statistical-based methods,
the machine learning-based methods, and deep learning-
based methods. The statistical-based methods are con-
structed based on the theory of statistical forecasting and
mainly contain the historical average analysis prediction
method, regression difference moving average method [1]
(ARIMA), Kalman filtering method [2, 3], the grey pre-
diction model method, etc. These models usually have strict
requirements on input data and these corresponding algo-
rithm structures are relatively fixed. However, the prediction
result of traffic flow can be easily affected by some random
interference factors, such as traffic accidents, weather, and
special events, which can make the prediction accuracy
relatively low. The second type is the method based on
machine learning way, which can not only model the
nonlinear feature of traffic flow but also continuously adjust
the model parameters by means of adaptive learning
methods to obtain more accurate prediction results.
Therefore, the methods based on machine learning gradually
replace the statistical theory-based methods and become the
next research focus in traffic flow prediction field.
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Algorithms used for prediction mainly include support
vector machine [4], K-nearest neighbor [5], Bayesian net-
work [6], and other methods. The third category is the way
based on deep learning model, which is also the most
common used method at present. Deep learning methods
can be used to learn the features about input data without
mankind intervention. Such models have strong require-
ments on nonlinear mapping characteristic feature and less
strict requirements on data than those model-driven
methods, so they will be more suitable to model the un-
certainty status of traffic flow and improve the prediction
precision. Because of these advantages, some researchers
have applied deep learning methods into the field of traffic
prediction and achieved remarkable progress.

Shao et al. [7] applied the Long Short-Term Memory
Network (LSTM) model into traffic flow prediction and
improved the accuracy of flow prediction by calculation of
the spatial characteristics. Liu et al. [8] used the Gated
Recurrent Unit (GRU) model to predict urban traffic flow.
Since the internal neural cell number of the GRU model is
less than that of LSTM, the prediction performance is still
good. Traffic flow data not only has dynamic correlation in
time but also has strong dynamic correlation in space. In
order to extract the temporal and spatial features effectively,
Shi et al. [9] proposed Conv-LSTM model, which com-
prehensively uses CNN and LSTM to capture the spatio-
temporal feature. Liu et al. [10] applied it to short-term
traffic prediction. Yao et al. [11] put forward the spatio-
temporal dynamic network (STDN) model and used CNN
and LSTM to capture the spatiotemporal feature. Zhang
et al. [12] proposed the spatiotemporal residual network
(ST-ResNet) model which uses different residual units to
model the information of time proximity, periodicity, and
tendency.

Zhao et al. [13] proposed a temporal graph convolutional
network (T-GCN) model based on combining GCN model
with GRU model. The GCN model was used to learn
complex topological structure for capturing spatial feature,
and GRU model was used to learn temporal feature of traffic
flow changing data. Yu et al. [14] proposed a spatiotemporal
graph convolutional network (STGCN) model, which uses
one-dimensional CNN model to capture the time dynamic
feature and the GCN model was used to obtain the spatial
feature of local traffic data. In order to capture the depen-
dence between temporal and spatial feature, Li et al. [15]
improved the gated GRU unit and proposed diffused con-
volution gated loop unit (DCGRU). Combined with encoder
and decoder, the DCRNN model for Seq2Seq was proposed.
In view of the traffic flow data being time-dependent, Guo
et al. [16] used three different components to extract feature
from historical data. Song et al. [17] used three different
continuous time slices to construct local spatiotemporal
models and used sliding windows to segment time periods
into three parts. By stacking multiple graph convolution
layers, a spatiotemporal synchronous graph convolution
network (STSGCN) was established to extract long-term
spatiotemporal feature. Although the T-GCN model uses
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two-layer graph convolution network to aggregate the
spatial information about two level neighbors, it still ignores
deeply excavating the spatial correlation between higher-
order neighbor nodes. Therefore, K-order Chebyshev graph
convolution which can cover k-order neighbor nodes was
used to complete the spatial convolution operation and
extract the spatial feature of higher-order neighbor nodes. In
addition, T-GCN model uses a single time series to perform
prediction work without mining time dependence between
different slices. The spatiotemporal information can also be
used in other fields. Wang et al. [18] use spatiotemporal
correlation information to reconstruct traffic data. Wang
et al. [19] perform passenger flow prediction via dynamic
hypergraph convolution networks. Yu et al. [20] proposed a
low-rank dynamic mode decomposition model for short
traffic flow prediction.

Although these methods have been able to predict traffic
flow very precisely, there are still some areas that can be
improved. The existing methods can be improved from the
following two aspects: improving the scope of neighborhood
scale and considering the influence of data with different
time periods on future traffic. The traffic flow status in any
node on the traffic network can be affected not only by the
first-level neighborhood nodes, but also by the second-level
neighborhood nodes. The change rule of traffic flow is pe-
riodic. The traffic flow on the road is generally large during
working hours, and small during other times. Traffic in-
formation with different time periods has different influence
on the status change of traffic flow in the future. It is of great
help to improve the prediction of traffic flow to compre-
hensively consider the changing rules of traffic flow in
different time periods.

Therefore, this paper extracts three different time series
datasets which are monthly data, daily data, and weekly data
to fully capture temporal characteristics. In general, this
paper proposes a multichannel gated spatiotemporal graph
convolution with attentional mechanism, which puts three
different time series datasets into the model and gets the
feature by stacking multiple gated spatiotemporal blocks.
The forecasting work was finished by combining all the three
different feature vectors with the help of weighted linear
combination operation. The main contributions of this
paper can be summarized as follows:

(i) We developed a multichannel gated spatiotemporal
graph convolution network to learn the dynamic
feature of traffic flow data. Specifically, a multi-
channel feature extraction and fusion framework
was proposed. The temporal feature of the traffic
data was fully exploited.

(ii) A novel spatiotemporal calculation module was
designed by adding attention mechanism. It helps
the model to pay more attention to import the
feature in each channel.

(iii) Extensive experiments are carried out on read traffic
data, which can verify the effectiveness of the model
proposed in this paper. The performance of this
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prediction model has a certain progress compared
to existing methods.

The rest of this paper is organized as follows. Section 2
describes the related work on traffic flow forecasting and the
development of graph neural networks. Section 3 introduces
the detailed architecture of proposed forecasting network
with gated graph neural network and attention. Section 4
presents the experiment setting and the experiment results.
Finally, Section 5 concludes the work and presents the
findings of this research.

2. Related Work

In this section, we will briefly introduce corresponding
theories and definitions referring to the proposed model.

2.1. Graph Neural Network. Convolutional neural network is
a feed-forward neural network based on convolutional
operation, which can efficiently compute feature informa-
tion from structured data such as image, speech, and text.
However, there are a lot of unstructured data in daily life,
such as social network data, human skeleton data, traffic flow
data, and other data without regular structure. The tradi-
tional CNN models cannot effectively model such un-
structured data. In order to effectively capture the local
spatial feature of these data, a graph convolution network
model for unstructured data was proposed. Graph con-
volutional network is a kind of neural network structure
which is popular in recent years. It is a kind of neural
network which extends the convolution operation to graph
structure data. Compared with traditional convolutional
network models which can only be used in structured data
computation, graph convolutional networks are special in
capturing unstructured data. The road network structure in
reality is typical unstructured data. Thus, the local feature of
traffic data can be extracted effectively based on using graph
neural network.

The existing graph convolution operation-based
methods mainly can be divided into two types: the way based
on spatial domain and the way based on frequency domain.
The spatial domain-based operation can be defined by ag-
gregating the feature information about adjacent nodes in
the graph. The frequency domain-based operation uses
Fourier transform to realize the convolution calculation in
frequency domain.

According to graph theory, the properties of graph
structure can be obtained by calculating Laplacian eigen-
value and eigenvector about adjacency matrix, and the
spectrum convolution result on graph can be obtained by
calculating the convolution of signal x € RN and graph
convolution kernel g4. The purpose of graph convolution is
to predict the state of the node at the next moment according
to current status of the node in a graph, which can be defined
as

H" = f(H", ), (1)

where H denotes all the note status at time I, A denotes the
adjacent matrix, and f(-) denotes mapping function. Dif-
ferent mapping function represents different GCN models.
Usually, the node status in the next moment can be obtained
by calculating the linear combination of its adjacent notes
through multiplying the adjacent matrix with the current
status matrix, and the final expression can be defined as
follows:

H" = o(aH"W). (2)

The weight matrix was used to perform linear mapping
operation and the function o(-) was used to calculate the
nonlinear mapping operation. The function of the adjacency
matrix and state matrix multiplication was used to calculate
the addition of adjacency nodes in a matrix manner.
However, the information of node itself has not been taken
into account. The direct way to solve this problem is adding
an identity matrix to the adjacency matrix so as to add the
self-loop information of each node into the adjacency
matrix. In addition, with the accumulation of the GCN
operations, the dimension difference of status information
between nodes in the graph will become large. In order to
maintain the stability of the operation, the matrix infor-
mation needs to be normalized before each calculation.
Graph convolution operators usually adopt graph Laplacian
matrix as the substitution of adjacency matrix, and graph
convolution calculation function can be defined as follows:

H(l+1) — O’(D_(l/Z)AD_(l/Z)H(DW(l)), (3)

where A = A + Iy represents a new adjacency matrix with
self-loop information, D = Z,»:Aij, H' € RN*F denotes the
nodes information in I-th layer, H® = X, X denotes the
initial status of graph nodes, and W' € R™F denotes the
weight value in the /-th layer. Each calculation of graph
convolution is the extraction of first-order neighborhood
information. Multiorder neighborhood information can be

realized by superimposing several convolutional layers.

2.2. Spatiotemporal Attention Mechanism. Graph convolu-
tional neural network can capture the local spatial corre-
lation between adjacent nodes in graph, but different
adjacent points have different impact on the current node.
The key idea of spatial attention mechanism is to pay
adaptive attention to the characteristics of the most relevant
nodes according to the input data. In time slice, the in-
formation of road network is changing dynamically all the
time. Therefore, using spatial attention mechanism and
temporal attention mechanism to adaptively capture the
node information with higher correlation in each dimension
will be of great help to improve the prediction accuracy.
In this paper, soft attention [21] mechanism is used to
calculate attention weight. It can extract features from the
input sequence and adaptively calculate the importance of
each node from the road network information at different
time. Firstly, the information of all nodes at time t was
aggregated into a vector. The aggregated information



includes the spatial characteristics and node information of
the road network at time ¢ can be expressed as follows:

N
q: = relu<z Wh, > (4)

i=1

where W denotes the trainable parameters and h,; denotes
hidden state value of the i-th node in time t. The attention
values about all nodes can be formulated as follows:

o, = Sigmoid(UStanh(Whht +W,q, + bs) + bu), (5)

where o, = (&)1, oy, . . ., ) and «; denotes the attention
value of the i-th nodes at  time. U, W), and W, denote
trainable parameters; b, and b, denote bias vector. This
attention mechanism firstly spliced the aggregated infor-
mation of all nodes at time f with the information of all
nodes at the same time and then obtained the attention
weight of each node relative to all nodes through the full
connection layer. In order to calculate the nonlinear map-
ping information of nodes at different time, this paper uses
the structure of two fully connected layers to calculate at-
tention value. The second hidden state 4,; of the i-th node at ¢
time can be calculated by (1 +«y;) - h,; and the weighted
graph state will be input into next layer.

2.3. Gated Convolution Network. Gated linear unit was
proposed by Dauphin et al., which is a convolutional neural
network model with gated mechanism. This model was
mainly used to replace the recurrent neural network in
natural language processing model. Compared with the
gated unit in RNN model, this unit has the advantages of
lower complexity, faster gradient propagation efficiency, and
being less prone to gradient disappearance or gradient ex-
plosion. In addition, the gated linear unit can also process
the input data in parallel, which can improve the accuracy of
the model as well as the computational efficiency. Let X
denote layer input, /; denote output of this layer which also
represents the hidden states of this layer, W and V denote
two different convolution cores, and b and ¢ denote two bias
parameters; the gated convolution model can be expressed as
follows:

h(X)=(X*W+b)@a(X *V +c). (6)

The output of the model was realized through dot
product calculation between linear mapping result vector
and nonlinear mapping vector. The linear mapping vector
can be obtained by multiplying the input vector X with
parameter vector W. The nonlinear mapping vector can be
calculated by multiplying the input vector X with parameter
vector V at first. Then, the nonlinear mapping function can
be obtained by using nonlinear function o (-). Because the
output of function o (-) can only be 1 or 0, the function of
multiplying these two vectors is to perform gated selection
operation for each node.
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3. Methodology

In this section, we will describe the framework of the
proposed method. The traffic flow information was extracted
in three channels separately. In each channel, there are two
spatiotemporal blocks to fetch space-temporal feature. Each
ST block is composed of a spatial block and a temporal block
which are used to fetch the spatial feature and temporal
feature separately. The input of the three channels corre-
sponds to the traffic flow data containing three impassable
periods, respectively. The model structure is shown in
Figure 1.

3.1. Problem Definition. The goal of traffic prediction is to
predict the traffic information in a certain time based on the
historical traffic information on the road. This paper takes
traffic speed forecasting as the main objective of the study.
This prediction work is performed based on traffic flow data
on the road which was collected by traffic sensors distributed
throughout the network. Typically, traffic flow data refers to
the number of vehicles that pass through a sensor during a
specified period of time. The topology structure composed of
all sensors in the road network was defined as G=(V, E, A).
The vector V = {v|,v,,..., vy} denotes vertex set. Assume
that only one sensor was placed on each road and the road in
the road network can be represented by the sensor. Let N
denote the number of the codes and E denote the set of edges
in the network. The adjacent matrix A = RNV was used to
denote the connection between nodes. The feature matrix
X, € RN*P denotes the flow status in time ¢, and P denotes
the length of feature vector. The traffic flow prediction
problem can be defined as follows: given the traffic flow’s
status at the time ¢ and other historical data, the t+1 time
traffic flow data can be calculated in the form of the following
equation:

[Xt+1’Xt+2’ “- ’Xt+p] = £ (G KXo Xicpis- - X1))s - (D)
where ¢ is the length of historical time series and # is the
length of time series that need to be predicted.

3.2. Graph Convolution on the Traffic Data. Since the
structure of the road network is an irregular structure, the
traffic flow data generated by vehicles on the road network is
also irregular, and it is very suitable to use GCN model to
calculate the feature of traffic flow. Because the standard
graph convolution computation is too huge, the Chebyshev
inequality was often used to get the approximate solutions,
and the approximate equation can be formulated as follows:
K-1
O+ px=0(L)x = Z 0,T, (L)x, (8)
k=0

where 0 is the graph convolution kernel, T} (L) € RNV is k-
order Chebyshev inequality, L =2(L/Ay,,)— Iy € RNV,
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FiGURE 1: The framework of the proposed model.

Amax 18 the largest eigenvalue of the Laplace matrix, k is the
size of convolution kernel, and the k-th Chebyshev
inequality’s recursive definition is
T, (L) = 2xTy_, (x) = Ty_, (x), while k = 0 and T, (x) = 1.
In order to effectively learn local spatial dynamic feature,
the spatial attention matrix W € RN*N was multiplied with
the k-order Chebyshev inequality T\ (L) based on dot
product. The concrete equation can be formulated as follows:
K-1
0+ ox=0(L)x=~ Y O (T (D) oW)x. )
k=0

In this paper, k-order Chebyshev inequality was applied
to extract feature of road network information. The k-order
convolution operator of Chebyshev graph convolution can
cover the features of k-order neighborhood nodes.

3.3. Multiperiod Flow Data Series. In order to capture the
temporal dynamic characteristics of traffic flow, this paper
uses three different spatiotemporal components to extract
the characteristics of historical traffic data. This paper
constructs three different traffic flow data sequences with
three different periods: week, day, and hour.

3.3.1. The Weekly Periodic Series. The weekly periodic series
data X, was composed of traffic data sampled in weeks. They
have the same weekly properties and time intervals as the
forecast period. In terms of the variation trend and peak

value of traffic conditions, the traffic flow on weekdays is
similar to that on weekdays, but not on nonweekdays.
Therefore, training with weekly periodic data can help us
capture differences between weekdays and nonweekdays
data.

3.3.2. The Daily Periodic Series. The daily periodic series X,
was composed of the traffic data sampled in days. Due to the
regularity of people’s activity track, the traffic flow shows
periodic fluctuation. For example, the morning and evening
rush hours on weekdays may have similar traffic volumes.
Therefore, daily correlation data were added to extract
temporal and spatial dynamic correlation.

3.3.3. The Minutely Periodic Series. The minutely periodic
series X,, was composed of the traffic data sampled in
minutes.

The sequence that has the greatest impact for the future
traffic is the traffic situation in the adjacent period. If the
current traffic flow on the adjacent road is large, the pos-
sibility of congestion at the next moment of this section will
be large.

All these three data series have the same structure and
can be calculated in the same way. There are two spatio-
temporal blocks in the model and a fully connected layer in
the end. The spatiotemporal block was composed of spatial
block and temporal block. Each block has an attention
module. In order to avoid the decrease of training accuracy,



we introduce residual learning module between spatio-
temporal blocks. In the end of forecasting model, the outputs
of the three channels will be merged by a parameter matrix
to form the final feature vector.

3.4. Gated Convolution for Feature Extracting. Graph con-
volution model can be used to extract spatial information of
traffic data effectively. However, traffic flow data is a typical
time flow data. Effectively extracting the characteristics of
traffic flow information on the time axis is of great help to
improve the accuracy of prediction. In this paper, gated
convolution model is used to extract temporal and spatial
features of traffic information. Compared with RNN model,
the gated convolution model has a simpler structure and
smaller computational time. In order to capture the char-
acteristics of traffic data on the time axis, we apply gated
convolution operation on each time axis to capture the
dynamic characteristics of traffic flow data.

3.5. Multichannel Data Merge. Each spatiotemporal con-
volution module consists of a graph convolution module for
spatial information and a gated convolution model for time
domain. The gated convolution module captures the features
of the time axis along the time axis. The outputs of different
channels have different weight in prediction. In this paper,
we combine them based on linear combination operation.
The fusion equation is shown as follows:

Y=W, oY, +W,0Y,+W,0Y,, (10)

where © denotes the element-wise Hadamard product, Y,
denotes the output of the channel weekly data, Y,; denotes
the output of the channel daily data, and Y, denotes the
output of the channel minutely data. W, W;, and W, are
weighted parameters corresponding to different channel
data. In this paper, we take 0.4, 0.2, and 0.4 as the default
weight parameter values, because traffic flow status in former
time has more impact on the traffic data in the next time.

3.6. Loss Function. The goal of model training is to minimize
the error between the actual traffic speed and the predicted
value on the road. In this paper, Y, and Y, were used to
represent the actual traffic speed and predicted speed, re-
spectively. The loss function of MSTAGCN was shown in the
following equation:

loss = ||Yt - ?t” + AL eg. (11)

In this formulation, the first term was used to measure
the error between the actual speed and the predicted value.
The second term represents L,.,, and the regularization term,
which helps to avoid the overfitting problem, is a
hyperparameter.
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4. Results and Discussion

4.1. Datasets. The experiment datasets used in this paper
are PeMS04 and PeMS08 which belong to Caltrans per-
formance evaluation system (PeMS, https://www.pems.
dot.ca.gov). The geographic information and time infor-
mation are contained in the data. The PEMSO04 is the traffic
flow data collected from San Francisco Bay, which in-
cludes 3,848 sensors on 29 roads. We pick out the ex-
periment data from 307 sensors. The time range of the
dataset is from January 1 to February 28 in 2018 which
covers 59 days. The PEMS08 was the traffic flow data
collected from SAN Bernardino, which includes 1,979
sensors on 8 roads. We pick out the data from 170 sensors
as experiment data.

4.2. Data Preprocessing. The data in these two datasets are
sampled in every five minutes. Each sensor contains 288 data
records per day, and each record contains three features.
They are the traffic flow, average vehicle speed, and occu-
pancy rate responding to sensors during that time period.
The spatiotemporal data were divided into training set,
validation set, and test set in the ratio of 6:2: 2. At the same
time, range normalization was carried out for each feature to
keep the data value between [0,1]. The specific calculation
formula is as follows:
=L (12)
max — min
By using the distance between different sensors, the
adjacency matrix of the graph was established using the
threshold Gauss kernel. The calculation process of the
threshold Gaussian kernel can be formulated as follows:

2
dist (v;,v;) / 2) .
e( ist (vov;) 1o , dlSt(Vi,Vj) <s,

0, dist(vi, vj) >s,

;= (13)

where W;; represents the weight of the edge between sensor
v; and sensor v;, dist(v;, v;) represents the distance between
sensor v; and sensor v, 0? is the variance of the distance, and
s is the threshold. As there are almost no sensors over 1000
meters in the dataset, the threshold s is 1000.

4.3. Evaluation Metrics Subheadings. To evaluate the per-
formance of the proposed model, we choose three metrics to
evaluate the difference between real traffic value Y, and
estimated value Y,, which was shown in the following
equations.

(1) Root Mean Square Error (RMSE) is calculated as
follows:


https://www.pems.dot.ca.gov
https://www.pems.dot.ca.gov
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1 d i ~i
RMSE = mZZ(yj—yj)z, (14)

i=1 j=1

1 M N )

(3) Mean Absolute Percentage Error (MAPE) is calcu-
lated as follows:

i ~i
Vi~ Vi
1‘ b

1 M N
MAPE = —— Z Z
. Y

MN 5 j=1

(16)

where y’ denotes the real traffic flow data value in the i-th
time, )7'] denotes the predict value, M denotes the number of
samples, and N denotes the number of roads. Specifically,
the rule of metrics measuring prediction error is as follows:
the smaller the error, the higher the accuracy of the
prediction.

4.4. Experiment Settings. To verify the validity of the model,
the MSTAGCN model proposed in this paper was compared
with the classical GRU model and the recently proposed
DCRNN, T-GCN, ASTGCN, and STSGCN models. Table 1
shows the hyperparameter settings of each model and the
word layers means the number of hidden layers. The word
units represents the number of computing units in each
hidden layer and all models in the experiment are composed
of the same number of units. k denotes the order of graph
convolution, and T,, Ty, and T,, represent the length of
weekly, daily, and minutely sequence.

4.5. Experiment Result. The experimental results are shown
in Table 2. In The PEMS08 dataset, MSTAGCN model is
always superior to other benchmark models in terms of
accuracy. In EMS04 dataset, MST-GCN has the smallest
prediction error compared with other forecasting methods
and has slightly larger errors in MAE and MAPE result. In
the RMSE evaluation results, the proposed method has
larger error than STSGCN methods. Due to the simplest
model structure, the GRU model has the worst performance
in both datasets. The lower prediction results of the former
spatial analysis-based model demonstrate that those
methods have not effectively model the nonlinear infor-
mation of the traffic data. In general, the deep learning-based
methods have better performance than those non-deep
learning models and the convolution operation plays an
importance role in improving the accuracy of prediction.
The convolution operation can effectively capture the local
feature in both the spatial information and the temporal
information. Simultaneously using spatial and temporal
information is the other effective prediction improving
routine. As we can see, the last four methods have better

7
TaBLE 1: Hyperparameter settings for different models.

Models Layers Units k T, T, T
GRU 3 500 — — — 5
DCRNN 2 64 3 — — 5
T-GCN 3 64 2 — — 5
ASTGCN 2 64 3 24 12 5
STSGCN 4 64 3 — — 12
MSTAGCN 3 64 3 2 6 5

TABLE 2: Performance comparison of different models of traffic
flow prediction.

PEMS04 PEMS08

Model MAPE MAPE

MAE RMSE %) MAE RMSE %)
GRU 2434 4347 1659 19.01 3512  13.23
DCRNN  24.06 347 1600 1936 31.94 1118
T-GCN 2371 3474 1637 2298 3257  11.88
ASTGCN 2236 326 1518 1821 27.99  13.22
STSGCN 2252 34.62 1492 1779 2633  11.80
MSTAGCN 22.11 3296 1415 15.85 23.62 11.44

performance than other methods. Besides, the MSTAGCN
performs better than other methods, indicating that the
multichannel mechanisms applied in the proposed model
are effective in capturing the changing routine characteristic.
Our MSTAGCN achieves better performance than the
previous models proving the feature about traffic changing is
nonlinear and single input information cannot provide
sufficient information for feature learning.

Figures 2 and 3 exhibit the prediction performance on
these two datasets. The GRU model only considers the
temporal characteristics and does not take advantage of the
spatial information of road network. The accuracy of GRU
is not as good as that of temporal correlation method. GRU
only considers the temporal correlation and does not use
the spatial correlation of road network, so the accuracy of
GRU is not as good as that of the method using temporal
and spatial correlation. The DCRNN and T-GCN model
spatial and temporal feature information separately, but
they only use a single time window to extract long-term
dependence without considering impaction caused by the
periodicity of different time windows. ASTGCN and
STSGCN both use different spatiotemporal components to
extract corresponding correlation from time windows, but
they ignored the correlation between different time period
channels. So, the prediction precision will be relatively
reduced. In this paper, the MSTAGCN method considers
impaction from different periodic data on traffic fore-
casting work and uses multichannel structure to fuse the
spatiotemporal components, so as to capture the long-term
spatiotemporal dependence between different periodic
traffic data. Therefore, the prediction accuracy of the
proposed model is better than that of the existing models,
and the prediction effect is better.
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FIGURE 3: Prediction result on PESO08.

5. Conclusions

In this paper, we proposed a multi-spatiotemporal attention
gated graph convolution network (MSTAGCN) to capture
the spatiotemporal feature about traffic flow data. Firstly, in
order to deeply explore the temporal and spatial correlation
of nodes, the Chebyshev convolution and gated loop unit
were combined to obtain a larger receptive field. Secondly,
three periodicity datasets with different time window were
picked up to provide comprehensive traffic information.
Finally, the MSTAGCN model was constructed by fusing
multiple spatiotemporal components with encoder-decoder
network structure. The experimental results about highway
datasets PEMS04 and PEMSO08 in Caltrans performance
evaluation system show that the performance of the new
model is significantly better than other models, and it can be
applied to the actual road network to improve traffic pre-
diction precision efficiency. In the next step, datasets about
urban road networks will be collected to explore the
adaptability of the model under complex urban road
networks.
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With the rapid growth of urbanization and motorization in China in recent years, the demand for transportation in people’s work
and daily lives has increased. In this context, a number of issues such as urban traffic congestion, energy consumption, and
environmental pollution have become increasingly severe. As a result, the tremendous socioeconomic, resource, and envi-
ronmental pressures have been placed on the development of urban transportation. Sustainable economic and social development
requires green development as a precondition. The economical and efficient use of resources and the protection and improvement
of the ecological environment are conducive to the formation of a new pattern of modernization for the harmonious development
of man and nature. Transportation planning is an essential technical field for promoting the development of green and ecological
cities, and it is one of the primary responsibilities of urban planning. The application of green ecological planning technology and
the scientific and reasonable development of traffic planning and management measures can aid in reducing energy consumption
and, thus, achieving the goal of environmental protection. In this field, green transportation is a mature green ecological planning
technology. Green transportation development is not only a key solution to urban transportation problems, but also an essential
means of achieving sustainable urban development, so it has become a hot topic in the field of transportation. As the ideal city of
the postindustrial era, ecocity can serve as a model for the sustainable development of China’s small and medium-sized cities.
After all, industrial development is an unsustainable path, so human society must embrace green development. The core of green
development lies in shifting from an exclusive reliance on industrialization to the urban transformation into an ecological
civilization. Given the current contradictions between economic growth and resource and environmental degradation, promoting
green and environmentally conscious transportation planning with resource conservation in mind is a crucial means of resolving
these contradictions. Government incentives and restrictions are essential for the development of green transportation. Therefore,
it is crucial to study the impact of environmentally conscious transportation planning and management measures on the
economic growth of small and medium-sized cities. This will provide relevant departments and stakeholders with guidance and a
reference for formulating policies that will contribute to the harmonious development of China’s green transportation
and economy.

1. Introduction

Transportation, as a vital lifeline for social development, is a
crucial material production sector that ensures the smooth
division of labor in the region and promotes national eco-
nomic development [1]. To be specific, transportation can
organically connect the production, distribution, exchange,

and consumption of goods. Transportation plays a crucial role
in promoting the rational flow of production factors, such as
talents, [2] capital, information [3], and resources [4], and in
fostering social and economic growth. Small cars have be-
come more and more popular and have taken over as the
general public’s mode of transportation, particularly in the
twenty-first century. However, from the perspective of
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protecting the ecological environment, the transportation
industry is destructive in terms of both energy consumption
and environmental pollution [5]. As a result, as economic
development accelerates urbanization and the urban pop-
ulation continues to grow, so does the demand for urban
residents to travel. In this context, the increasing number of
private cars has led to an increase in transportation energy
consumption and greenhouse gas emissions, resulting in
urban traffic congestion, air pollution, and urban heat island
effect. Therefore, these phenomena pose a number of threats
to sustainable urban development [6]. The transportation
industry, as an important part of economic development,
must take the initiative to assume the social responsibility of
achieving a coordinated development between economic
growth, environmental protection, and social harmony.
Under this development concept, green transportation has
emerged [7]. Therefore, green transportation has become a
new driving force for economic development, in line with the
current social trend.

In response to climate change, many countries around
the world have begun to promote green and low-carbon
transportation systems [8]. The goal of carbon neutrality also
places significant demands on the sustainable development
of the transportation sector [9]. As a result of rapid ur-
banization, China’s motor vehicle ownership is increasing,
and traffic congestion and air pollution are becoming in-
creasingly prominent. In recent years, the average annual
growth rate of carbon emissions in China’s transportation
sector is more than 5%, making it the fastest-growing sector
in terms of greenhouse gas emissions, with total emissions
accounting for about 15% of the country’s total carbon
emissions [10]. As a result, improving the transportation
environment and developing green transportation are
closely related to the goal of achieving carbon neutrality in
China. In recent years, with the rapid development of
China’s economy and the acceleration of urbanization, the
motorization of urban transportation has also expanded
rapidly, and the number of urban motor vehicles has in-
creased rapidly [11]. As shown in Figure 1, in 2013, there
were only 32.56 million private cars in China, but this
number reached 273.46 million in 2021 [12]. Therefore,
private car ownership in China continues to grow, which
indicates that more and more residents are inclined to use
cars [13]. Nevertheless, this trend can not only cause neg-
ative impacts on the rapid development of public trans-
portation, but also worsen the urban traffic structure [14].
The increase of urban motor vehicles has brought about a
series of severe issues, such as traffic congestion, environ-
mental pollution, accelerated energy consumption of re-
sources, and noise disturbance, which seriously affect the
process of sustainable urban development [15].

The rapid expansion of motor vehicles has brought
tremendous pressure on urban traffic in China [16]. As a
result, many small and medium-sized cities are experiencing
serious problems such as traffic congestion. During the daily
morning and evening rush hours, there are especially long
queues of vehicles [17]. This significantly reduces the effi-
ciency of urban roads and, as a result, increases the likeli-
hood of traffic accidents, which negatively impacts the ability
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of urban residents to enjoy quality travel services [18]. To
meet the growing demand for transportation, cities are
expanding their transportation infrastructure. This process
takes up nonrenewable resources such as land and con-
struction materials, which is not conducive to sustainable
transportation development [19, 20]. At the same time,
motor vehicles consume a lot of fossil energy, which is also a
major source of air pollution [21]. As a result of the un-
precedented socioeconomic and environmental pressure on
resources, the mode of urban transportation development
now faces greater challenges [22]. The development of urban
green transportation is not only an important solution to
urban transportation problems, but also an inevitable choice
for sustainable urban development and has evolved into a
topic of national significance.

With the rapid advancement of economic development
and urbanization, the urban traffic travel rate and travel
distance increase, resulting in a conflict between economy
and traffic demand and between traffic and environment. On
the one hand, through systematic analysis of the mechanism
of urban green transportation development, it is helpful to
grasp the law of urban green transportation development
[23]. This will aid in identifying the most influential factors
and in proposing effective measures to promote the de-
velopment of green transportation in cities. On the other
hand, by establishing a set of applicable urban green
transportation development evaluation index system and
studying the level of urban green transportation develop-
ment based on empirical data, we can quantitatively grasp
the development trend of green transportation through
evaluation [24]. Thus, the shortcomings and deficiencies can
be identified, and relevant departments can be provided with
reference bases for taking targeted measures. The evaluation
scope of green transportation includes two aspects. The first
one is to evaluate the development status of transportation in
cities that have been engaged in green transportation con-
struction for a long time [25]. According to the evaluation
results, the development level can be determined and cor-
responding improvement measures and policies can be
proposed. What is more, for cities that have only carried out
transportation planning without green transportation con-
struction or have been under construction for a short period
of time, the planning options are evaluated. Then, according
to the evaluation results, we can select and adjust the plan.

In addition, research on the relationship between
transportation and economic development has been a topic
of intense interest in a variety of disciplines, such as
transportation economics, regional economics, and devel-
opment economics. In the existing literature, most of the
studies have been conducted on external urban public
transportation such as railroads, roads, and terminals [26].
However, the role of urban public transportation, as the
main internal public transportation task of cities, in the
process of economic development has received scant at-
tention, especially in terms of empirical analysis [27]. As a
driving force of economic transformation and social prog-
ress, transportation should adapt to the shifting production,
lifestyle, and travel consumption patterns of people. At the
same time, giving priority to the development of urban
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FIGURE 1: Private car ownership from 2013 to 2021 in China.

public transportation is the way to promote the thorough
integration of transportation and economic and social de-
velopment [28]. As a result, it is of great practical signifi-
cance to conduct an empirical study on the impact of urban
public transportation development on the green economy in
conjunction with the current new economic development
model of green economy [29].

Currently, major cities devote a significant amount of
manpower and resources to the construction of fundamental
transportation infrastructure. To be specific, the total area of
urban roads and their network capacity are expanding, but
the supply-and-demand disparity for roads remains severe
[30]. As a result, many small and medium-sized cities in
China are experiencing heavy traffic congestion, which
drastically reduces the quality of the transportation system’s
service. In recent winters, major northern cities across the
country have been plagued by haze, and air quality has
significantly deteriorated everywhere. As a result, many
cities have had to implement restrictions on construction
site closures and car traffic [31]. However, most of these
emergency measures are not effective at treating the
symptoms. One of the major sources of urban pollution is
traffic pollution. The rapidly increasing number of motor
vehicles is exacerbating this situation and is becoming a
major source of urban environmental pollution. The fast-
paced socioeconomic development requires a green urban
transportation system that is in harmony with it [32]. The
root cause of urban environmental degradation is closely
related to urban transportation planning.

Green transportation is a new type of urban trans-
portation system proposed to improve urban transportation
efficiency, promote social equity and stability, save con-
struction and maintenance costs, reduce traffic congestion,
and reduce environmental pollution. Due to the different
levels of green transportation development in different cities
and the uncoordinated development of green transportation
subsystems, it is difficult to make the most effective use of

green transportation system because of the poor connection
between green transportation modes. Also, urban traffic
problems have seriously restricted the healthy development
of cities. Therefore, how to maintain rapid economic growth
while considering ecological stability, to achieve sustainable
urban development and sustainable use of transportation
resources, is a problem that must be faced and solved in the
process of socialist modernization in China. The trend of
sustainable development in many fields, such as economy,
environment, culture, and society, has led to the birth of
green transportation. Green transportation is a new type of
urban transportation system that improves the efficiency of
urban transportation, reduces traffic congestion, reduces
environmental pollution, and promotes social equity and
rational use of resources. Many cities, at home and abroad,
have conducted extensive research into the planning and
construction of green transportation. Therefore, this study
takes green transportation as the guide and conducts data
modeling on the impact of urban transportation planning
and management measures on the economic development of
small and medium-sized cities.

2. Green Transportation

2.1. Concept of Green Transportation. Green transportation
is an integrated urban transportation system with the goal of
safety, convenience, high efficiency, low pollution, and low
energy consumption, which is built with advanced tech-
nology and is compatible with human living environment
and economic growth. In addition, green transportation is
an urban transportation mode based on advanced scientific
methods and technologies, considering efficiency and fair-
ness and aiming to establish an urban transportation system
that gives priority to public transportation. Therefore, it can
effectively promote the harmonious development of urban
transportation and ecological environment. At the same
time, green transportation is a harmonious transportation



system that aims at reducing traffic congestion, reducing
environmental pollution, and promoting the rational use of
resources to meet the requirements of sustainable devel-
opment of urban environment, economy, and society.
According to the concept of green transportation system and
the different degrees of environmental impact brought by
various modes of transportation, the green transportation
system can be ranked according to the priority of green
transportation, as shown in Figure 2.

There is no uniformity in the research on the concept of
green transportation so far. Although different scholars have
different understandings of the concept of green trans-
portation, they all share the same concept of sustainable
development of urban transportation. From the macro-
perspective, green transportation should meet the sustain-
able development needs of urban transportation to the
greatest extent possible under various unfavorable external
conditions. From the microperspective, green transportation
should not only meet individual travel needs, but also
minimize transportation energy consumption, maximize
resource efficiency, and reduce environmental pollution.

In fact, green transportation is composed of two basic
elements, “green” and “transportation.” Among them,
“transportation” can be understood as the mode of trans-
portation, while “green” indicates the way of development and
the requirement of quality. The concept of green trans-
portation corresponds to the theoretical basis of economics
such as ecological economics, energy economics, and envi-
ronmental economics. As a result, in the context of deepening
conflicts between economic and social development and re-
sources and environment, green transportation can, to a
certain extent, promote a shift in the economic development
approach to a sustainable development approach. At the same
time, more specific research fields of economics have been
created, including green economy, circular economy, low-
carbon economy, and ecological economy. What is more, the
concepts of green transportation, green cycle, low-carbon
transportation, and ecotransportation have also been derived.
In summary, the relationship between these green concepts is
illustrated in Figure 3.

In the field of economics, green economy is an envi-
ronmentally friendly and healthy economic approach.
Therefore, the essence of green economy is a method of
economic development characterized by the preservation of
the of human living environment, the reasonable protection
of resources, and the promotion of human health. In other
words, the core of green economy is the harmonious de-
velopment of ecology and economy. Low carbon economy is
an economic development model that reduces high energy
consumption and emphasizes low energy consumption, low
pollution, and low emissions. Therefore, the essence of a
low-carbon economy is the efficient use of energy and the
use of clean energy in the continuous pursuit of economic
development. At its core is the innovation of energy-saving
and emission reduction technologies. Ecological economy
follows the principle of “circular economy” and emphasizes
the full potential of natural resources reuse within the
carrying capacity of the ecosystem, so as to achieve economic
development and environmental protection.
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2.2. Characteristics of Green Transportation. As a new de-
velopment concept and the current mainstream development
direction of the transportation industry, green transportation
is quite different from traditional transportation. First of all,
the scope of traditional transportation is much larger than the
travel mode of green transportation. In addition, green
transportation has a development focus, while traditional
transportation does not. For example, green transportation
emphasizes and promotes low energy and low pollution travel
modes such as walking, bicycling, urban public trans-
portation, and new energy vehicles. However, the develop-
ment model of traditional transportation is highly arbitrary,
as the choice of transportation mode is largely determined by
the preferences of individual citizen. In summary, the dif-
ferences between green transportation and traditional
transportation are shown in Table 1.

Green transportation aims to reduce pollution and
protect the environment, but it does not restrict the freedom
of individuals to travel. On the contrary, the p is not only to
achieve the harmonious development of transportation,
environment, and economy, but also to make people travel
better. First, in the process of developing green trans-
portation, the management and improvement of public
transportation can better meet people’s demand for quality
travel. What is more, in the process of developing green
transportation, the government’s promotion of green
transportation can make citizens aware of the environmental
benefits of green transportation. As a result, citizens can
willingly choose green transportation. This approach, which
ultimately makes citizens willing to choose green trans-
portation, reflects a people-centered approach. Finally, the
widespread promotion of green transportation has greatly
increased not only the awareness of our citizens to travel
green, but also the quality of our citizens. Therefore, the
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TasLE 1: Differences between green transportation and traditional transportation.
Development Consumed Amount of Amount of
Travel mode .
mode energy consumed energy pollution
Traditional e s 1 . . .
. Citizens’ choice of travel mode is arbitrary Oil-based Much Much
transportation
Green One of the starting points for citizens’ choice of travel mode Clean energy- Less Less
transportation is energy saving and environmental protection based

emergence of green transportation is not only a people-
oriented approach, but also a win-win situation for the
economy, the environment, and the quality of citizens.

3. Economic Effect of the Green
Transportation Model

Neoclassical economic theory focuses on physical capital
and considers that factors of production move instanta-
neously between different geographical locations and do not
have spillover effects on neighbouring regions. Neo-
economic geography, on the other hand, considers the
spatial dependence of regional activities and the spatial
spillover of capital stocks. For example, product investment
or market expansion can lead to costly changes in the in-
come or expenditure of new capital. Changes in a factor of
production or an observed attribute in a spatial region can
have positive or negative effects on multiple factors in
neighboring regions, thus driving the accumulation of
capital markets.

3.1. Assumption of the Model. In the economic effect of green
transportation model proposed in this research, the fol-
lowing assumptions should be followed:

(1) It is assumed that the impact of domestic force
majeure factors on the economic effect of trans-
portation is negligible at the time of the data.

(2) It is assumed that only total sulfur dioxide emissions
and total dust emissions are considered as the source
of green environmental indicators in the economic
effect of green transportation.

(3) It is assumed that roads and railroads occupy an
absolute position in the transport infrastructure in
the social economy and that other transport infra-
structure inputs are not measured.

(4) It is assumed that the spatial section unit is con-
sidered as a central point when calculating the spatial
section unit distance.

3.2. Autocorrelation Test of Economic Effect of Transportation.
The estimation of coefficients becomes complicated when
applying the traffic economic effects model regression to
analyze the error or lagged terms. This highlights the need
for spatial autocorrelation of the model. The description of
spatial autocorrelation is reflected in the spatial structure.
Therefore, it is not limited to the geographic sense only,
where the global correlation statistic only provides a basic



premise and overall description for the spatial autocorre-
lation of the study, and its correctness is based on the
premise of spatial homogeneity.

In determining the spatial correlation of variables among
regions, the spatial residual correlation test selected for this
study is shown below:

pe n Zi:le:lW(Vi - V)(Vj — V)
Zi:le:lwij Yict (Vi - V)Z

where p refers to the spatial residual correlation, n indicates
the number of selected samples, w;; represents the weight
matrix, and V; and V; refer to the spatial correlation

variables.

(1

3.3. Statistical Test of Economic Effect of Transportation.
The existing exponential test is a correlation test based on
spatial residuals and therefore has poor significance.
Therefore, the introduction of Lagrange multiplier statistic
with spatial autoregressive effect without spatial residual
correlation can be better tested spatially, and its model can
be defined as

Hy:Y=axV+eg

(2)
Hi:Y=axWxY+axV +e
By constructing the following two LM statistics, this
model can be tested and selected. That is, when there is no
residual correlation, the model can be tested for the existence
of spatial substantive correlation:

! 2\2
E:M ~X2(1)>
(3)

L

_ [e’Wy/éee'/n)]2 ~ ),

where E refers to the LM error, L refers to the LM lag, and
m’ = ee'In,
K=(W+Ww'w), (4)
Z=(W+W'W) +ee'/n.

The LM statistic can only be used to initially judge the
model selection by significance. The specific process of
spatial autocorrelation test is shown in Figure 4 as a way to
determine the final model type.

3.4. Selection of the Model. The spatial social activity network
of decision variables is interconnected, and there are mainly
the following static spatial models to study the economic
effects of transportation (Figure 5). The first one is the spatial
autoregressive process of the error term into the traditional
effects model of the spatial error model (SEM). The second
one is the spatial lag model (SLM), in which the spatial lag
term of the explanatory variable is added to the traditional
effect model. The third one is the spatial Durbin model
(SDM), which means that the spatial lag term of the
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explanatory variable is added to the SLM to circumvent the
endogeneity problem.

3.4.1. Spatial Error Model. The spatial error model implies
that the spatial effect between regions is realized through the
error term; that is, the economic effect of transportation
between regions is stochastic, and the model can be
expressed as

Vij =ﬁ><x,-j+yxcn+s,
e=axW,+u, (5)
u~N(0,0°T),
;; refers to the ex-
planatory variable, y indicates the coefficient of the constant

term c,,, € is the error term, and W, represents the spatial lag
term.

where y;; is the explained variable, x;;

3.4.2. Spatial Lag Model. In the spatial lag model, the ex-
planatory variables in the neighboring regions affect the
regions in the system through spatial radiation spillover.
Since the SLM model includes the lagged term of the ex-
planatory variables when analyzing the economic effects of
transportation, it can be named as a spatial autoregressive
model, and its model can be expressed as

yijZPXWXyij+ﬁ><xij+yxcn+£’
(6)
e~ N(0,0%I),

where p refers to the autoregressive coefficient and W x y;;
denotes the spatial interaction of the proximity region on the
explanatory variables of the observed region.

3.4.3. Spatial Durbin Model. When the endogenous inter-
action effect and the autocorrelated perturbation term
cannot reasonably explain the spatial action, a more gen-
eralized spatial Durbin model is introduced, incorporating
both a spatial error term and a spatial lag model, whose
model can be expressed as

yij=p><W><yij+ﬂ><x,-]-+;7><W><x,~j+y><cn+e, -
e~ N(0,0°I).

In the spatial lagged and spatial Durbin models, the
explanatory and explained variables appear spatially cor-
related. In view of the above theories, this paper applies MLE
for effect analysis to the measurement of spatial panel data.

3.5. Case Study. Given the impact of feedback effects on the
transport infrastructure stock indicators, especially their
first-order lagged term regression coefficients, Table 2 looks
at the short-term effects and long-term effects, respectively.
Specifically, this study deeply explores the decomposition of
green transportation economic effects of provincial trans-
portation infrastructure stock indicators in China through
the effect decomposition of dynamic spatial Durbin model.
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FIGURE 4: Process of selecting model.
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FIGURE 5: Various static spatial models.

TABLE 2: Result of spatial Durbin model.

Road Highway  Railway = GDP  Population
W, 0.05 46.72 98.71 0.02 0.07
W, —-0.48 123.21 431.82 0.38 0.14
W3 0.12 47.78 1.23 0.16 0.06
Wy 0.03 66.89 12.56 0.67 0.01

The effect decomposition values of the stock indicators
verify the robustness of the coefficient estimation results.
The significance level of each weight matrix under fixed
effects is higher than that of random effects, and the
transport infrastructure stock indicators are significant
under both the adjacency matrix (W;) and the economic
matrix (W,), which verifies the validity of the coefficient
estimation and effect decomposition measures. By

comparing the short-term and long-term effects of the stock
indicators under each weight matrix, it is clear that the short-
term effects of most of the explanatory variables are more
significant at the 1% significance level, and the economic
matrix is more significant. Therefore, this indicates that,
under the global development situation of green trans-
portation and the policy guidance of China’s strong trans-
portation country, the long-term effect of transportation
infrastructure investment in the green economic growth of
each province is poor. In the process of physical capital
accumulation, the indirect effect is obvious under each
weight matrix, and the contribution of transportation in-
frastructure stock indicators gradually increases in promi-
nence under the economic weight. This verifies that the
green transportation economic effect of transportation in-
frastructure inputs is inherent as a direct carrier of pro-
duction factors circulation in the capital market and regional
network structure.

4. Conclusion

The results of this study show that the green transportation
economic effects of various types of transportation infra-
structure inputs are uneven. Specifically, the trend of
transportation infrastructure inputs contributing to green
total factor productivity growth in the region is slowing
down. In the process of investment, the negative effect of
pollution emission of various transportation infrastructure
modes on green transportation economy is gradually in-
creasing. Therefore, the green transportation economy effect
of transportation infrastructure investment should be
considered as a priority in the early stage of transportation
planning, increasing, at the same time, the density of
highway and railroad. The positive externality of the green
transportation economic effect should be fully incorporated
into transportation infrastructure investment. In addition,
this paper defines green transportation as an urban



transportation system that uses new energy and energy-
efficient means of transportation for the purpose of
achieving sustainable social development. As a result, the
basic requirement of green transportation is to achieve the
long-term development of urban transportation. The essence
of green transportation is to establish a sustainable trans-
portation system that can meet the transportation needs of
residents while saving energy and protecting the ecological
environment. In other words, green transportation can meet
the largest social transportation needs with the least energy
consumption and environmental impact and achieve the
coordinated development of transportation, environment,
and economy.

The study of urban green transportation development is
a systematic project. Due to time constraints and personal
knowledge accumulation, this paper only focuses on the
economic impact of urban green transportation. Therefore,
the research is not deep enough, and there are still some
problems that need further research. The matching degree of
the weight matrix selection in this paper needs to be verified
in depth. If possible, all types of spatial weight matrices
should be experimented in the future to select the optimal
spatial weight matrix.
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Traffic prediction is the cornerstone of intelligent transportation system. In recent years, graph neural network has become the
mainstream traffic prediction method due to its excellent processing ability of unstructured data. However, the network re-
lationship in the real world is more complex. Multiple nodes and various associations such as different types of stations and lines
in rail transit always exist at the same time. In an end-to-end model, the training accuracy will suffer if the same weights are
assigned to multiple views. Thus, this paper proposes a framework with multi-view and multi-layer attention, which aims to solve
the problem of node prediction involving multiple relationships. Specifically, the proposed model maps multiple relationships
into multiple views. A graph convolutional neural network of multiple views with multi-layer attention learns the optimal
regression of nodes. Furthermore, the model uses an autoencoder module to alleviate the over-smoothing problem during the
training phase. With the historical dataset of Beijing rail transit, the experiment proves that the prediction accuracy of the model is

generally better than the baseline traffic prediction algorithms.

1. Introduction

As the core function of the intelligent transportation system,
traffic forecasting has practical significance for the actual
needs of intelligent command and dispatch, traffic planning
and layout, and public travel convenience. The prediction of
passenger flow in and out of rail transit stations is one of the
research hotspots in the field of smart transportation. An
accurate passenger flow prediction method will be beneficial
to the transportation system for reasonable route scheduling,
road network design, crowd evacuation adjustment, and
other specific applications. Most of the previous studies have
focused on methods based on mathematical modeling as
well as machine learning. However, in terms of rail transit,
due to the unique topological structure of rail transit and the
travel patterns of passengers, it is difficult to obtain efficient
and accurate prediction results with the simple application
of traditional methods, and related research is relatively
limited.

In recent years, graph convolutional neural networks
have achieved excellent performance in the field of traffic

prediction by virtue of their excellent processing capabilities
for non-Euclidean data. In fact, networks are ubiquitous in
the real world, such as transportation networks, social
networks, and recommendation networks. By modeling the
network as a graph, subsequent prediction tasks can be
performed. The graph-based non-Euclidean topology not
only describes the connection relationship between stations,
but also constrains the flow path of data. Therefore, the
nongraph method can only make predictions for each sta-
tion and average the prediction results, and cannot make full
use of the topology of rail transit.

However, node relationships in the real world are more
complex and contain many types of interrelated relation-
ships. A view could represent a certain relationship. How-
ever, the node relationship information will be lost to an
extent if only a single view is used for representation [1].
Multiple views can more accurately model different types of
relationships, thereby ensuring that the model retains more
comprehensive node information, which in turn enables
more accurate node-level predictions. In rail transit,
structurally, different types of lines and stations can be
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assigned to different view features. On the other hand, from
the perspective of traffic flow characteristics, the pattern of
passenger travel in different time spans can be viewed as
different spatial-temporal features [2]. However, when the
model contains multiple node relationships at the same time,
how to ensure that the model integrates different node
relationships with optimal weights to achieve more accurate
prediction becomes a key issue.

Since the same node has a different importance in dif-
ferent views, the relationships between nodes in different
views should be given different weights. Conversely, the
same weights will negatively affect the final prediction and
weaken the meaning of the information provided by mul-
tiple views. Therefore, we design a multi-layer attention
mechanism to achieve weight optimization for different
views. In addition, during the training of the graph neural
network, the problem of over-smoothing significantly affects
the training effect as the number of network layers deepens.
That is, the hidden layer representation of each node con-
verges to the same value during the training process of the
graph neural network, which eventually leads to poor
training results.

In response to the above problems, we propose a traffic
prediction model based on multi-view graph attention
network (MV-GAT), and its main contributions can be
summarized as follows:

(1) An end-to-end rail passenger flow prediction model
is proposed. The proposed model achieves fine-
grained multi-view modeling for rail transit char-
acteristics at the input and node-level prediction at
the output.

(2) Through the multi-layer attention module, the
proposed model can assign different weights to
different nodes and relationships within multiple
views, thereby learning the optimal regression of
nodes.

(3) In addition, the self-encoder module transfers the
latent information captured by each layer of the self-
encoder to the corresponding graph convolution
layer, ensuring the validity of the structural infor-
mation of each layer in the network, and further
improving the effect of node prediction.

The model is evaluated through experiments on the
Beijing rail transit historical dataset, and the superiority of
the model is verified by comparison with existing models.
Furthermore, multi-view and multi-layer attention have
good interpretability, as shown in ablation experiments.

2. Related Work

The research content of this paper mainly involves graph
convolutional neural network and graph attention
mechanism.

2.1. Graph Convolutional Networks. Graph convolutional
networks (GCNs) are currently used in many domains such
as traffic prediction [3], recommender systems [4, 5], and
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traffic situation analysis [6]. On graphs, its tasks include
graph classification [7], node classification [8], link pre-
diction [9, 10], and graph pooling [11]. GCNs have different
kernels that learn node embeddings to be applied to
downstream tasks. For example, DeepWalk [12] and
node2vec [13] are both random walk-based methods. The
model SDNE [14] uses autoencoders to maintain the
proximity of first- and second-order networks, using highly
nonlinear functions to obtain embeddings. Existing traffic
flow forecasting techniques include traditional mathematical
modeling methods, such as ARIMA [15], as well as deep
learning methods. Among them, deep learning methods are
subdivided into nongraph-based methods, such as LSTM
[16], and nongraph-based methods, such as GCN models.
Traditional mathematical modeling methods as well as
nongraph-based methods do not consider the topology of
the graph and can only make individual predictions for
individual sites. Deep learning methods based on graphs can
achieve node-level prediction, but currently the mainstream
methods are mainly single view [17].

Single-view graph neural networks contain only one
relationship between nodes [18]. Although single view has
many advantages, such as easy to understand and easy to
design neural network models, it is difficult to accurately
capture the complex relationships between nodes, which
play a crucial role in the effectiveness of information transfer
and problem solving [19]. It has been pointed out that graph
data possess similarity information between different nodes,
which in turn has been proposed to preserve similarity
information in the hidden layer of graph convolutional
neural networks [20]. However, these methods rarely exploit
the multi-view prediction in end-to-end network models.

2.2. Graph Attention Mechanism. The attention mechanism
was first proposed for natural language processing and has
now been widely used for many sequence-related tasks. The
advantage of the attention mechanism is that it can amplify
the impact of important parts of a sequence, and the in-
troduction of the attention mechanism also facilitates the use
of graph neural networks. Because graph convolutional
networks rely on the eigenvalues of the Laplacian matrix, it is
difficult to extract convolutional operations from the overall
static graph structure. In an attention network, the output at
a given moment depends on the attention it allocates across
multiple inputs, i.e., the learning weight assigned to each
part of the input, with larger weights implying the output of
the pair at that particular moment.

As the attention mechanism in the seq2seq model [21],
each output is affected by the different weights assigned to
the different inputs. The concept of hard attention [22] is
designed as a stochastic process that uses Monte Carlo
sampling methods to estimate the gradient of the module,
thus enabling back-propagation of the gradient. In addition,
attention mechanisms include global attention and local
attention [23], as well as multi-headed attention [24]. Multi-
headed attention is used to extract features more compre-
hensively by mapping node representations into multiple
node representations through linear mapping and
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combining the computational results. Inspired by the above
work, the possibility of using a multi-layer attention
mechanism to fuse multi-view information to reveal the
deep relationships between nodes becomes one of our
considerations.

3. Methodology

The necessary preliminaries are firstly illustrated, followed
by introducing of the overall architecture of the proposed
model, and then the details of each component are
elaborated.

3.1. Preliminaries. This section will introduce some concepts
and symbols used in this paper. For a regular graph G with
vertex set V, the edge set E and weight W can be denoted as
G = (V;E = (e;);e;; W). For an undirected graph, the inci-

dence matrix H € R™M can be defined as
1, ifvee,
h(v,e) = { (1)
0, ifvée.

For the vertices in graph, the degree is defined as the sum
of all weights connected to the vertices; for the edges in
graph, the degree is defined as the total number of vertices
connected by the edge:

dv) = Zw(ei)h(v,ei), iel,

ecE

d(e) = Z h(v.e;),

veV

(2)

i€l

In the process of modeling information in real life,
usually only a single view is used to represent the rela-
tionships between nodes. A single view contains only one
relationship, but due to the complex relationship in real life,
it is difficult to capture the comprehensive node relationship
with only one view, which will inevitably lead to the
omission of information, which will lead to deviations in the
subsequent processing of the model. A multi-view contains
various relationships between nodes. It can capture struc-
tural information more accurately than a single view and
better discover implicit relationships between nodes.

Thus, a multi-view graph can be denoted as
G=(V,EW E@ EM X),whichV = {v;}\_, represents
the set of nodes in the graph. ei();”) € E indicates the m-th
view, node i is connected to node j, and x; € X denotes node
feature v;. The node structure in Graph G can be represented
by multiple adjacency matrices {A™} ;s if ei()T) e EM,
then af)}" = 1; otherwise ai(,’-" =0. In our work, the con-
nection between the node and itself is not considered, i.e.,
a =o0.

The purpose of the work is to predict traffic flow with the
proposed model. The input of the model is the historical
transit flow data X' = (x!,x5,...,x4) € RV, where N
indicates the total number of vertices, C is the number of
channels of the feature, and T'is the time dimension. At the
output end of the proposed model, node-level prediction

results are supposed to be obtained, which can be denoted as
ytm — (y§+m)yt2+m) . )yxm) € RN.

3.2. MV-GAT: The Proposed Model. For complex relation-
ships between entities in the real world, it is difficult to fully
grasp the node structure information if only a single view is
used to represent the node relationships. In rail transit,
considering only the line connections between stations ig-
nores the relationships between stations at the feature level,
such as the OD characteristics of passenger trips between
stations with different time spans. During the morning and
evening peak hours, large passenger trips show relatively
fixed patterns, which can also be used as a view for traffic
flow prediction. At the same time, it is important to avoid the
problem of premature model fitting as the number of layers
of the network model increases. When the model uses
multiple views as input, how to fuse these views becomes a
new problem. The fusion process must ensure that the model
can ignore noisy information and that the most relevant
information of the nodes is extracted among the multiple
views.

To address the above issues, we propose the overall
framework of the model, as shown in Figure 1. The basic idea
is to use the multi-layer attention module to capture the
node information contained in the multi-view to ensure that
the best node representation can be learned, and to use the
autoencoder module to ensure that the model learns the
structural information between the data, which is repre-
sented as a multi-view graph.

In the multi-view module, multiple views are used to
ensure complete information extraction. Specifically, in this
forecasting task, the multiple views include a static view
based on the connectivity of tracks and routes, and an OD
view of passenger flows for three different time spans:
hourly, daily, and weekly.

The autoencoder module learns the accurate data rep-
resentation and mitigates the over-smoothing problem. The
two parts of the input are connected to the autoencoder
module and the GCN module, and each layer in the
autoencoder module is guaranteed to be connected to the
corresponding GCN layer, so that the structural information
between nodes learned in the autoencoder can be integrated
into the GCN module.

In the multi-layer attention module, multi-layer atten-
tion is used to fuse the multi-view information to obtain an
optimal representation of the data. The multi-layer attention
module ensures that the model learns different weights at
different nodes and in different views.

3.3. Multi-View Graph Convolution. For the single-view
graph, the input is G, = (A, X). The multi-view graphs
generated by the relationship between the nodes are
G, = (A,,X'™), where m is the number of views. Each
input is fed into an exclusive convolution module. The
output of the convolution is Z, and Z,,. Take Z; for ex-
ample, the output of the I-th layer of the graph convolution
can be expressed as
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FIGURE 1: The end-to-end framework ofproposed model. The MV-
GAT model includes multi-view input, multi-layer attention
module, and the autoencoder module. The node-level prediction
results are obtained as output.

20 =reto (DA W), )

where W ? is the weight matrix of GCN at the I-th layer, the
preliminary Z(9 = ;tt), and Xm is the node embedding
learned by smgle view attention network in view m.
ZW = A,. A, =A, +1I and D is the diagonal matrix of A.

It is difficult for multi-view convolution to learn the
commonality between different views only by learning each
view individually, so multi-view convolution is supposed to
be added to extract common information between different
views. The proposed model uses previously constructed
input graphs G, and G,,, as inputs to multi-view convolution,
the output of multi-view convolution module is Z_, and the
output of the I-th layer of the convolution can be expressed
as

z® = ReLU<1'§‘ VAD ”ZZ“*“W(’)) , (4)

where W ¥ is the weight matrix of the I-th layer of GCN, the
preliminary Z is Z ©'=X,A=A+1I,and D is the diagonal
matrix of A.

3.4. Autoencoder Module. The proposed method introduces
an autoencoder to learn the structural information of the
data and pass the learned information to the corresponding
GCN layers, and the added autoencoder module also helps
to alleviate the over-smoothing problem of the GCN.
Assuming that the autoencoder has L layers, the ex-
pression learned in the I-th layer in the autoencoder is H"):

HY = ReLU (WH" Y +b{"). (5)

In the formula, ReLU is the activation function of the
fully connected layer, and W " and b{") are the weight matrix
and bias of the [-th layer in the autoencoder. In addition,
H®© s the feature matrix X. Then, the input data of
decoding part are reconstructed through the fully connected
layer.

HY =Retu (WP'H" +b{"). (6)
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Here, W;l) and b’;l) are the weight matrix and bias of the
I-th layer of decoder. In order to pass the node represen-
tation into the GCN module, the node representations are
learned from the autoencoder, such as HV,H®, .. . H®),
After being passed into the GCN module, the GCN can hold
two different kinds of information, the data itself and the
data structure. For example, the output of /-th layer learned
in the single view can be expressed as Z; 0

The representation H®) learned by the autoencoder can
reconstruct the data itself and contains a different valuable
information. Combining the two representations leads to a
more complete representation.

Z,El_l) =(1- e)Z,EH) +eH"V. (7)

Here, € is the balance coefficient with an initial setting of
0.5. In this way, the autoencoder and GCN can be connected
layer by layer. We use ReLU as the activation function to
solve the gradient vanishing problem.

3.5. Multi-Layer Attention. Since the model takes multiple
views as input, the proposed method designs a multi-layer
attention module to effectively integrate the node repre-
sentations learned in different views to form an optimal
combination. First, the proposed method uses a single-view
attention layer to learn the influence of different neighbor
nodes on the predicted node in the same view. Then, a multi-
view attention layer is used to learn the influence of different
views on the predicted node. Finally, the two parts are
combined to obtain the optimal weighted combination of
the nodes to be predicted.

In the single-view attention layer, the influence of dif-
ferent neighbor nodes on the predicted node in each view
can be learned. Since each node plays a different role in the
process of node embedding, the impact on the final node
prediction result is also different. Self-attention is thereby
used to learn the weights between each node. For instance, in
the view m, calculating the attention index of a pair of nodes
(i, j) can be formulated as

ei(;”) = att(xi,xj). (8)

Here, att represents the attention mechanism, and since
the multiple views are undirected graphs, the importance of
node i to node j is the same as node j to node i. Therefore,
ei(-m) is a symmetric matnx

After calculating the e
is normalized as

ai(jm) = softmax; (e(]m))

™ of node j, the weight coefficient

(9)
exp (LeakyReLU (a:1 : [xi||xj]))

- Y eNEXP (LeakyReLU (a:1 . [xillxk])).

In the equation, || represents the connection operation,
and al is the attention vector in the single view. The node
embedding of node i in the view can be obtained by the
feature aggregation of neighbor nodes with feature
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coefficients. Multi-head attention is utilized in order to make
the training process more stable. Softmax and ReLU are both
activate functions. Specifically, the single-view attention
layer repeats K times and connects the learned embedding to
a specific view. The learned node embedding and feature
matrix are spliced to get X In the following equation,
2™ is the embedding of node i learned in the view .

K
zi(m) = | Sigmoid< Z (xi(;") -x]->. (10)
=1

k jEN

A single view contains only one type of relationship
between nodes, while a multi-view contains relationships
between different nodes. To learn more comprehensive node
embeddings, it is necessary to integrate multiple node
embeddings learned from different views. For different
nodes or associations, the weights assigned to different views
are different, so it is necessary to design a multi-view at-
tention layer that automatically assigns different weights to
different views to solve this problem.

The input of multi-view attention layer is the single-view
graph convolution Z; and Z,, and the multi-view con-
volution Z, and the attention mechanism att (Z;, Z ), Z,)
learns the weights corresponding to different views
((Xk, (X(m), (XC):

((xk,oc(m),occ) = att(Zk,Z(m), ZC). (11)

Here, oy, (., «. are the attention weights of different
views, respectively. For node i, a nonlinear transformation is
applied on the node embedding, and then the shared at-
tention vector ¢ is taken to calculate the attention value w},,.

; i \T
w,, =q" - tanh (W(z’m) +b>. (12)

The W is weight matrix and b is bias. The attention index

of node i in other embedding matrices can be obtained in the

same way. Then, the final weight can be calculated by
normalizing multiple attention values.

o = softmax (w’m)
~ exp (w;n) (13)
exp (w’m) +exp (w;n) +exp (w’m)

The multiple embeddings are then linearly combined.
The larger the o], the more important the view is.

Z=0(k-Zk+(x(m)-Z(m)+(Xc-ZC. (14)

The above multi-view attention module solves the
problem of assigning different weights to the views, thereby
enabling adaptive inter-view importance learning.

3.6. Objective Function. In order to allow the convolution to
capture richer information, we increase the difference be-
tween Z,Z,,Z. Here, we take advantage of the

Hilbert-Schmidt independence criterion (HSIC) to measure
the independence between the outputs:

HSIC(Z;, Z;) = (n—1)"*tr (RK,RK ). (15)

Here, K,K . is the Gram matrix, k,»,ij =k; (zf,zf ),
ki =k; (z?,z?). And R =1~ 1/nee’. I is the identity ma-
trix, and e is the corresponding identity column vector. In
the same way, all other views are also calculated by HSIC,
denoted as L..

The multi-view loss function is supposed to learn as
much consistency between different views as possible. After
normalizing the matrices {Z,}1, to {Znor}i, with L2
normalization, the similarity between nodes {S;},_; is cal-
culated, and the sum is denoted as L,,,.

{Si}i=1 = Zcinor : ZT

cinor *

(16)

Since in the autoencoder module, the output of the
decoder is the reconstructed original data. The node-level
traffic flow prediction results will be output through a
complete fully connected layer, and the multi-channel is
mapped to a single channel, which can be expressed as

L, :Z||(Xf vo)-x a7

The final loss function is L, where a, b are the parameters.

L=1L,+aL, +bL,. (18)

4. Experiments and Results

The proposed MV-GAT model is evaluated by comparing it
with state-of-the-art baselines. The experimental dataset and
baselines are first introduced, followed by the parameter
setup. Finally, the experimental results and experimental
analysis are presented.

4.1. Experiment Setting. We adopt the historical data of
Beijing metro as the experimental dataset. MetroB] [25] is a
five-month passenger flow dataset, formally collected in
2015, with a granularity of 5 minutes. The dataset covers the
entire subway network with 325 stations and 22 lines,
covering the daily traffic data in July, August, September,
November, and December. The time horizon is five months,
covering weekdays and weekends. This time series contained
in this dataset is long enough for us to divide multiple time
spans to build multiple feature-level views.

The dataset contains the desensitized swipe ID, the line
station and time of entering the subway, and the traffic flow
data of the line station and time of leaving the subway. In the
actual use of this method, firstly, a node set containing 325
nodes is constructed based on the subway stations in Beijing
in this dataset, and a basic view containing 22 edges is
constructed with reference to the subway network lines. On
this basis, the DBSCAN algorithm is used to cluster the
historical passenger flow data under three different time
spans of hours, days, and weeks, and construct corre-
sponding multi-views. Compared with the traditional



k-means algorithm, the DBSCAN algorithm does not need
to input the number of clusters k and can find clusters of any
shape, and at the same time, it can find outliers during
clustering. Finally, the traffic flow values of each node in the
next 5 minutes, 10 minutes, and 15 minutes are output to
calculate the accuracy of the proposed model.

The comparison methods include two categories of
nongraph methods and graph-based methods. The com-
pared methods contain autoregressive integrated moving
average (ARIMA) model [26], support vector regression
(SVR) [27], and long short-term memory (LSTM) [28].
Graph-based deep learning methods contain temporal graph
convolutional network (T-GCN) [29], spatio-temporal
graph convolutional network (STGCN) [30], and diffusion
convolutional recurrent neural network (DCRNN) [31]. The
detailed parameter settings are listed as follows.

(1) ARIMA: ARIMA is a common time series fore-
casting methods. The degree of differencing d, lag
order p, and the order of moving average g are
determined with the “auto arima” in the “pyramid”
library.

(2) SVR: One improvement of SVR is the tolerated
deviation ¢ when calculating the loss. During
training, the model with linear kernel has a penalty
term C of 0.1 and a deviation ¢ of 0.1.

(3) LSTM: The compared LSTM model has hidden
layers of [31] recurrent units. During the training
phase, the batch size is 32, the activation function is
sigmoid, and the learning rate is set to 1072,

(4) T-GCN: The temporal graph convolutional network
has hidden units of GRU. The batch size is set to 64
while training, and the learning rate is set to 107°.

(5) STGCN: The spatial-temporal graph convolutional
network has two convolution blocks with channel of
[64,16,64]. The convolution kernel size is 3, and the
batch size is 64.

(6) DCRNN: The diffusion convolutional recurrent
neural network is a data-driven traffic prediction
model with autoencoder framework. It has two RNN
layers of 64 units. The batch size is set to 64, and the
learning rate is set to 1077,

To quantitatively evaluate the prediction accuracy of the
proposed method, the results of the experiments take mean
absolute error (MAE) and root mean square error (RMSE) as
performance metrics:

TN| i
MAE = ijl T*N

i=1

(19)
& (X X,)

RMSE = >
i=1 j=1 (T N)1/2

where X;; is the ground truth, the X is prediction value, T is
the time length and N is the node number When MAE and
RMSE are used as evaluation indicators, the lower the value,
the higher the accuracy. All experiments are tested with the
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platform of CPU of “Intel(R) Xeon(R) Platinum 8268 CPU
@ 2.90GHz” and GPU of “NVIDIA GTX 2080Ti.” The
number of epochs of training phase is 50, and the batch size
is 64. The learning rate is set to 10~? and decreases to 10™*
gradually.

4.2. Experiment Results. To fully utilize the different views
over multiple time spans, we use the data of a whole month
as the experimental data. The experiments use ten-fold
cross-validation to get stabler results. Considering the size of
dataset per month, the training set, testing set, and valid set
are split with 8:1:1 on the time dimension. The experi-
mental results are shown in Table 1.

Table 1 shows the prediction accuracy when the his-
torical data of July and September are used as the experi-
mental dataset. As can be seen from the results, the accuracy
of the ARIMA method is significantly lower than that of the
machine learning and deep learning methods. SVR signif-
icantly outperforms ARIMA, and at the same time, LSTM is
better than SVR by virtue of modeling long- and short-term
sequences. T-GCN, an earlier method that combines graph
networks with time series dependency, achieves similar
accuracy to the relatively mature LSTM.

As a classical framework, STGCN has achieved more
accurate prediction results, especially in the medium-term
prediction of the next 45 minutes, where obvious advantages
can be seen. With a unique architecture, DCRNN also
achieves accurate results. Among all methods, our proposed
method achieves better accuracy, especially on short-term
predictions of 15 minutes and 30 minutes. Compared with
machine learning methods and graph-based deep learning
methods, there are significant improvements. More exper-
imental results of flow prediction are shown in Table 2.

It can be seen from Table 2 that the prediction accuracy
of each method is similar to that presented in Table 1. It
shows that the rail transit shows a basically stable operation
law in each month. It is worth mentioning that, similar to the
previous set of experiments, STGCN achieves a clear ad-
vantage in 45-minute prediction results. It reflects the
complexity of traffic forecasting from the side. In many
cases, it is difficult to solve short-term forecasting, medium-
term forecasting, and even long-term forecasting problems
simultaneously with one model.

To prominently compare the role of each module of the
proposed model, we design a set of ablation contrast ex-
periments, as shown in Table 3. In this set of ablation ex-
periments, we mainly compared the difference between
single view and multi-view, and the role of the autoencoder.

The experimental data adopt the passenger flow data of
Beijing rail transit in July. We first tested the single-view
network model without the autoencoder module. The single
view is the graph of the rail transit network. While removing
the autoencoder, other parts of the proposed model remain
unchanged. It can be seen that the prediction accuracy of this
method is unsatisfactory, and it cannot even beat the STGCN
model on this dataset. In the case of single view, whether the
multi-layer attention mechanism has the effect of negative
optimization is a new problem worth investigating.
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TABLE 1: Accuracy results of rail passenger flow prediction experiment.
I\ September

Methods July P

MAE RMSE MAE RMSE
ARIMA 18.34/20.12/23.32 29.14/33.37/36.81 19.64/21.31/24.06 30.74/34.30/36.66
SVR 14.73/16.55/18.26 25.24/31.33/32.71 15.89/16.71/17.36 28.30/33.01/34.09
LSTM 10.76/12.27/12.86 21.22/22.33/23.74 11.95/12.56/13.77 23.95/26.43/28.34
T-GCN 10.88/12.46/12.73 20.93/22.72/24.61 11.00/12.77/13.75 23.98/25.98/28.35
STGCN 9.04/10.29/10.88 19.38/20.49/22.51 10.99/11.95/13.42 21.03/23.03/24.06
DCRNN 8.41/9.73/11.56 19.43/23.76/25.77 8.72/9.24/12.73 20.94/22.01/25.82
MV-GAT 8.35/9.57/11.60 19.41/21.84/22.38 8.67/9.13/12.45 20.85/22.13/25.67

TABLE 2: Accuracy results of rail passenger flow prediction experiment.
November December

Methods

MAE RMSE MAE RMSE
ARIMA 14.22/18.81/24.39 30.06/33.52/35.24 18.39/20.52/24.22 30.24/33.81/35.06
SVR 13.92/16.52/16.12 26.89/28.75/28.56 14.12/15.75/16.92 26.56/28.52/28.89
LSTM 11.49/13.79/14.05 21.36/22.33/25.50 11.05/12.33/14.49 21.50/22.79/25.36
T-GCN 10.99/12.76/13.44 21.48/23.68/25.62 10.90/13.78/13.34 21.42/23.74/25.85
STGCN 9.06/10.65/11.32 21.74/22.22/23.55 8.20/10.26/11.25 20.72/22.28/23.25
DCRNN 8.83/9.71/11.79 21.52/23.15/26.04 8.24/9.65/11.87 21.28/23.24/26.95
MV-GAT 8.80/9.62/11.20 20.83/22.18/23.39 8.15/9.57/11.43 20.64/22.13/24.72

TaBLE 3: Ablation contrast experiment.
\
Methods July
MAE RMSE

Single view w/o autoencoder 9.21/10.31/12.38 19.68/22.49/23.51
Single view w/autoencoder 8.98/10.20/12.21 19.61/22.27/23.19

Multi-view w/o autoencoder
Multi-view w/autoencoder

8.44/9.61/11.69
8.35/9.57/11.60

19.50/21.91/22.49
19.41/21.84/22.38

By adding the autoencoder module to the single-view
model, the prediction accuracy is improved, but the im-
provement is relatively limited. The autoencoder module can
alleviate the gradient vanishing problem during training to a
certain extent, especially for graph convolutional deep
network models with many layers. Limited by the graph
scale of the dataset used in this experiment, the number of
layers in the network model is not many. Therefore, in the
deeper graph convolution prediction model, it is worth
looking forward to whether the autoencoder module can
play a larger role.

After the introduction of multi-view, the prediction
accuracy of the model is significantly improved compared to
single view, with or without an autoencoder module. Among
them, the model achieves the best prediction results when
the multi-view module and the autoencoder module coexist.

5. Conclusions

This paper proposes a multi-view and multi-layer attention-
based GCN model for the problem of rail traffic flow pre-
diction. Considering that it is difficult to fully express the
relationship between nodes in the node classification
problem using only a single view, this model introduces
multi-view and utilizes a multi-layer attention mechanism

and an autoencoder module to achieve more accurate
temporal prediction. Experimental results on the Beijing
dataset show that our model outperforms other nongraph
and graph-based benchmark methods. In the future, we will
optimize the framework of the proposed method and try to
design models for directed graphs. We also want to explore
more comprehensively the application of graph-based deep
learning in intelligent transportation systems.
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As reported by the United Nations in 2021, road accidents cause 1.3 million deaths and 50 million injuries worldwide each year.
Detecting traffic anomalies timely and taking immediate emergency response and rescue measures are essential to reduce
casualties, economic losses, and traffic congestion. This paper proposed a three-stage method for video-based traffic anomaly
detection. In the first stage, the ViVit network is employed as a feature extractor to capture the spatiotemporal features from the
input video. In the second stage, the class and patch tokens are fed separately to the segment-level and video-level traffic anomaly
detectors. In the third stage, we finished the construction of the entire composite traffic anomaly detection framework by fusing
outputs of two traffic anomaly detectors above with different granularity. Experimental evaluation demonstrates that the proposed
method outperforms the SOTA method with 2.07% AUC on the TAD testing overall set and 1.43% AUC on the TAD testing

anomaly subset. This work provides a new reference for traffic anomaly detection research.

1. Introduction

With rapid economic development, a leapfrog has been
achieved in transportation. Contrary to the wishes of [1], the
number of civilian vehicles and the road network density are
increasing, and the road network structure is becoming
more complex. As a result, traffic management schemes are
proposed correspondingly; numerous measures such as
CCTYV cameras and radars are put on the roadside to reg-
ulate the driving behavior of drivers [2-4]. Studies on the
vehicle are carried out [5-9]. However, numerous traffic
accidents with terrible consequences still happen every year
[10]. According to the National Bureau of Statistics, in 2020,
there were 244,674 traffic accidents in China, resulting in
61,703 deaths, 250,723 injuries, and a direct property loss of
about 206 million dollars [11].

The extent of the damage often depends on when traffic
controllers discover the incident and the duration of the
traffic incident [12]. The lack of timely accident reporting
will result in many deaths due to delays in medical assis-
tance, prolonged traffic jams, and even secondary accidents.

Therefore, real-time detection of traffic incidents is an
effective way to reduce their impact significantly. With the
development of technology and the advancement of re-
search, various detection technologies and data sources are
used in automatic traffic accident detection studies. Tradi-
tional traffic data provides rich and relatively available data
sources [13, 14], such as traffic data, vehicle speed data, and
occupancy data. Numerous machine learning models are
also applied to detect traffic incidents with traffic data and
have achieved good results [15-18]. Some studies employed
online data from mobile phones to detect traffic incidents,
such as Twitter and Weibo. Specifically, they used web
crawler technology to detect incidents through data pro-
cessing, filtering, reasoning, and other processes [19, 20].
Moreover, Zhang and He [21] integrated the social media
data with traffic data and achieved a better effect.

Another effective solution is to use surveillance video
data. On the one hand, surveillance cameras are extensively
used on modern roads and help traffic managers obtain rich
surveillance video data of road areas. On the other hand,
with the rapid development of computer vision and artificial
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intelligence, many advancements have been achieved in
video analysis and understanding research. Video-based
surveillance for traffic incident detection became possible
whether in the middle of the night or when the traffic flow is
low.

For the research on traffic video anomaly detection, the
video anomaly detection method can be divided into two
categories according to the model type: the traditional
machine learning method and the deep learning method.
Traditional machine learning methods are mainly based on
the Gaussian mixture model [22], histogram feature [23-25],
hidden Markov model [26, 27], appearance feature [28, 29],
and Bayesian network model [30]. Deep learning methods
are mostly based on appearance features and motion features
in specific scenes, and the final anomaly detection is per-
formed by reconstruction error [31-36], prediction error
[37-40], or hybrid transfer learning classification [41, 42].

However, the two methods mentioned above are often
mixed and cannot be accurately distinguished in recent
years. Therefore, we follow [43] and broadly classify video
anomaly detection methods into three categories according
to the detection granularity: video level, slice level, and frame
level. This paper proposes a three-stage anomaly detection
framework for traffic video. The main contributions can be
summarized as follows:

(a) We proposed a novel weakly supervised learning
method for traffic video anomaly detection. Specif-
ically, in the first stage, the ViVit network is
employed as a feature extractor to capture the
spatiotemporal features from the input video. In the
second stage, the class and patch tokens are fed
separately to the segment-level and video-level traffic
anomaly detectors. In the third stage, we finished the
construction of the entire composite traffic anomaly
detection framework by fusing outputs of two traffic
anomaly detectors above with different granularity.

(b) We propose a segment-level traffic anomaly detector
based on the global spatiotemporal features (class
token), a video-level traffic anomaly detector based
on the similarity of patch tokens from different
segments, and a composite traffic anomaly detection
framework. By entirely using video-level similarity
features and all segment-level global spatiotemporal
features, the long-tail distribution problem in traffic
video anomaly detection tasks can be effectively
solved.

(c) The experimental results demonstrate the effective-
ness of the proposed method. Specifically, our
proposed architecture achieves 91.71% and 63.09%
on the overall set and anomaly subset of the TAD
testing set, which are 2.07% and 1.43% higher than
the SOTA method, respectively.

The rest of the paper is organized as follows. Section 2
discusses studies related to video anomaly detection in terms
of three different detection granularities: video level, seg-
ment level, and frame level. The details of our three-stage
anomaly detection framework are described in Section 3.
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Section 4 shows the implementation details and quantitative
results of the experiments. Section 5 gives the conclusions
and the focus of future work.

2. Literature Review

Rapid technological progress in computer vision and ma-
chine learning has enabled better video understanding.
Many studies on traffic anomaly detection via surveillance
video have been carried out in recent decades. Following
[43], the techniques that could be applied in traffic video
anomaly detection can be divided into three categories:
video level [44], segment level [45], and frame level [46]. The
details of the various method categories are described as
follows.

2.1. Video-Level Methods. Popular single-class classification
methods directly detect novelty by measuring the gap be-
tween the original and reconstructed inputs, such as Support
Vector Machine (SVM) [44, 47] and SVDD [48, 49]. In
general, video-level methods treat anomaly detection as a
novel detection problem. Liu et al. [50] proposed a single-
objective generative adversarial active learning method that
directly generates information-rich potential outliers based
on a mini-max game between the generator and the dis-
criminator. Ngo et al. [51] used a similar approach based on
generative adversarial networks (GANS).

2.2. Segment-Level Methods. Segment-level detection is a
method between video level and frame level, which divides
the input video into multiple segments instead of frames. In
recent years, this research has become increasingly popular,
and there is a growing body of related work. Some work built
memory modules that learn only normal patterns from
normal data and determine the presence of anomalies by
computing reconstruction errors [33, 35]. In another in-
teresting work, Georgescu et al. [52] proposed joint learning
of multiple tasks by self-supervision to produce differential
anomaly information: three self-supervised tasks and an
ablation study. Moreover, a two-stage framework is also a
popular research approach. Wagqas et al. [41] applied pre-
trained 3D networks to extract spatiotemporal features and
trained the classifier with multi-instance learning tech-
niques. Following this work, Zhu and Newsam [45] intro-
duced optical flow; Lin et al. [53] proposed a dual-branch
network; Lv et al. [54] replaced the feature extractor with a
TSN and proposed an HCE module to capture dynamic
changes; Feng et al. [55] applied pseudolabel and self-at-
tentive feature encoders for training; Wu et al. [56] also
proposed a dual-branch network but with tubular and
temporal branches and so on. This strategy can improve
detection accuracy and localize anomalies using a small
amount of annotated information.

2.3. Frame-Level Methods. Based on the classical directional
optical flow histograms, references [23-25, 29] have de-
veloped their own way of extracting frame-level features for
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FIGURE 1: Three-stage video-based traffic anomaly detection algorithm framework.

anomaly detection, but they are scene-dependent. More
generative models were used to predict future frames and
calculate the reconstruction error between predicted and
real frames. On this basis, reference [35] used U-Net and
memory module; reference [36] used AE and DPU module.
Both of them generate “normal” future frames and deter-
mine whether they are anomalous. Moreover, after gener-
ative adversarial networks (GANs) proved their ability to
generate “normal” future frames, many researchers have
focused their interest on detecting traffic anomalies at the
frame level. In a similar way to determining anomalies by
prediction errors [37-40, 46], the frame-level detection
method based on GAN networks compares the current
frames constructed by GANs with the ground truth current
frames [31, 37, 57-59]. Besides GAN, there are other
methods to detect traffic incidents at the frame level. Ryan
Medel and Svakis [60] built an end-to-end frame-level
anomaly detector using a long and short-term memory
(Conv-LSTM) network. Zhou et al. [43] first detected
boundary frames as potential incident frames and confirmed
by encoding spatiotemporal features whether these frames
are incident frames.

The following summary can be made from the above
review, video-level methods usually aggregate features for
single-class prediction, which can take full advantage of fully
supervised tasks but cannot identify anomaly locations.
Segment-level methods can be trained by weakly supervised
learning mechanisms such as multi-instance learning to
perform effective anomaly detection and localization while
maintaining a few annotations (video-level annotations).
Frame-level methods generally perform single-frame detec-
tion by calculating the reconstruction error between predicted
and real frames, and although the localization is accurate, their
application scenarios are limited and have significant errors.
Therefore, in this paper, we combine the advantages of video-
level methods and fragment-level methods to complement
each other and propose a three-stage composite traffic
anomaly detection framework to achieve the anomaly de-
tection and localization of anomaly videos.

3. Method

As a carrier of spatiotemporal information, frames in video
contain temporal information that is not available in mu-
tually irrelative images. Therefore, understanding and an-
alyzing videos is more complicated and time-consuming
than understanding and analyzing images directly. Many
current video anomaly detection methods are generally

divided into two steps: the first step is to extract spatio-
temporal features from the input video using a pretrained
3D model; the second step is to model the extracted spa-
tiotemporal features and evaluate the anomaly score.

As shown in Figure 1, we propose a three-stage anomaly
detection method for traffic videos. Unlike other methods,
we use the pretrained ViVit to extract features from video
segments and propose a composite framework of video-level
and segment-level traffic anomaly detectors. Specifically, we
first split the input video into multiple segments and then
use the pretrained ViVit to extract spatiotemporal features
from those segments. After that, their global spatiotemporal
features (class tokens) and local spatiotemporal features
(patch tokens) are delivered to the segment-level and video-
level traffic anomaly detectors, respectively. Finally, the
output results of the above two detectors are compound
corrected to complete the final anomaly value evaluation.

In this paper, to avoid ambiguity, class tokens refer to the
segment-level global spatiotemporal features extracted by
the pretrained ViVit model, and patch tokens refer to the
segment-level local spatiotemporal features extracted by the
pretrained ViVit model.

3.1. Extract Spatiotemporal Features Based on ViVit.
Unlike the 3D convolution-based feature extractor [61-63],
the Transformer-based ViVit model can effectively model
the long contextual information of the input video by using
its attentional architecture. Therefore, here we use ViVit
model 2 (Factorized Encoder) [64], which was pretrained
[65] on the Kinetics-400 dataset, as the feature extractor.

The above ViVit model 2 adopts the embedding method
of ViVit-B, that is, a tubelet embedding for the input video,
whose tubelet size is set to hxw xt =16 x16x2. The
Factorized Encoder consists of two independent transformer
encoders. The first is a spatial encoder that models the short
spatiotemporal relationships of nonoverlapping adjacent t =
2 frames and feeds its output (spatial class token) to the next
encoder. The second is the temporal encoder, which uses the
spatial class token within the above nonoverlapping adjacent
t = 2 frames to model the video long spatiotemporal rela-
tionship. Finally, the global spatiotemporal features (class
token) and the local spatiotemporal feature (patch tokens)
are obtained.

Before extracting the temporal features, we perform a
preprocessing operation on the input video. Specifically, we
resize each frame in the video to 224 x 224 and normalize it.
Like Waqas et al. [41], we slice the processed video into
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multiple video subunits, which are then distributed into 32
segments, where each video subunit is 16 frames. However,
unlike the reference, we perform the averaging operation for
each video subunit in the segment directly rather than after
feature extraction. Then, each segment is subjected to
spatiotemporal feature extraction using the pretrained ViVit
model to obtain 1 class token and 8 patch tokens. The class
token aggregates all the spatiotemporal features of the whole
segment and represents the whole spatiotemporal segment.
The patch token aggregates the certain local spatiotemporal
features in the segment and represents the local spatio-
temporal segment and its local contextual spatiotemporal
segment. Finally, the class tokens of all segments are de-
livered to the segment-level anomaly detector for segment-
level detection; the patch tokens of all segments are delivered
to the video-level anomaly detector for video-level detection.

3.2. Segment-Level Traffic Anomaly Detector. As shown in
Figure 2, we propose a segment-level classifier based on class
token (768 dimensions). Our segment-level classifier is made
up of five layers, detailed in Figure 2. Its last layer outputs an
anomaly score, and the closer the score to 0, the greater the
probability that the input segment is normal. Conversely, the
closer the score to 1, the greater the probability that the input
segment is abnormal.

Here, we use the multi-instance learning mechanism to
train our segment-level traffic anomaly detector, a weakly
supervised learning method, following [41]. As shown in
Figure 3, it is the training framework of our segment-level
traffic anomaly detector based on multi-instance learning:

(a) Input both positive bag (anomaly video) and neg-
ative bag (normal video) into 32 segments, and then
compile those segments as a positive bag %, and a
negative bag %,,. Each segment in its bag is called the
instance, so the positive bag and the negative bag can
be described as follow:

B, ={a,i=1,...
(%n:{ni,i: 1,...

b (1)

,m},

where g, is the instance in the positive pack and #; is
the instance in the negative pack. Our use case has
m = 32.

(b) Under the basic assumption of multi-instance
learning, there are only bag-level labels. Besides, each
positive bag contains at least one positive example,
while each negative bag contains no positive examples:

Jda; € A,
n;, € %,

yi=1

" (2)
yi =0,
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where y,; is the label of instance g; and y,;; is the label
of instance n;. The instance is a positive instance
when its label is 1, but a negative instance when its
label is 0.

(c) Using pretrained ViVit mentioned in Section 3.1, we
can extract the feature from all instances in both
positive bag and negative bag to obtain their cor-
responding class token vector as follow:

€, ={ci=1,...,m},

3
€, ={c,i=1,.. 3

-\ L, m}v,

where &, is the class tokens feature set, extracted
from the positive bag 98, with pretrained ViVit
model, the same as G,,.

(d) Put extracted feature (class token) of each instance
into the segment-level classifier and acquire an
anomaly score:

S, ={si =F,()i=1,...,m},

n ny (4)
S, ={si =F(c!),i=1,...,m}.

Each training sample 2" should include one positive bag
and one negative bag together, namely, 2 = {%,, %, }. We
use a combination of the following three loss functions to
train the segment-level classifier & _. The first loss function is
margin ranking loss. Choose the biggest instance anomaly
score in positive and negative packets as their bag-level
anomaly score for metric ranking loss calculation, where the
metric parameter margin is set to 1.

=m0, x5, () e 7, () margin ). 9

n;€

The second loss function is the temporal smoothness
term. Since video is a sequence of continuous frames
combined, we split it into segments. In theory, the output
anomaly score should be relatively smooth between seg-
ments. The temporal smoothness term is designed as

(m=1)

Limooth = Z (975 (C?) - F (Cia+1))2' (6)

i

The third one is the sparsity term. For anomalies only
take a small part of the entire video, the anomaly instance
should be sparse in the positive bag:

m

lsparsity = Z ‘G/Ts (C?)' (7)

i
Therefore, our final loss function becomes
gs = lmargin + ﬂllsmooth + I/Izlsparsity' (8)

Here, the 77, and 7, coefficients weight time smooth loss
and sparse term loss separately.

3.3. Video-Level Traffic Anomaly Detector. As shown in
Figure 4, we presented a novel video-level classifier. The
input layer of the classifier is the similarity of patch tokens
from adjacent segments of the same video. Our video-level
classifier is made up of six layers, detailed in Figure 4. Its last
layer outputs an anomaly score, and the closer the score to 0,
the greater the probability that the input video is normal.
Conversely, the closer the score to 1, the greater the
probability that the input video is abnormal.

Here, we choose the cosine similarity to measure the
degree of difference between two feature vectors. For ex-
ample, given &; and &, let the cosine similarity calculation
function be F ., and then, the similarity Sim;; between two
vectors is calculated as follows:

Simy; =F oo 20 P)),

P i i
gcos(t@iu@j)— 91 (@] — Zzzp@kxg’k

P2 5 (P xS (7])
(9)

A normal video should remain continuous in its time-
line, even after it is segmented. The continuity between
adjacent segments can be reflected in their similarity.
Therefore, a normal video should maintain a relatively high
similarity between adjacent segments. In contrast, an ab-
normal video would be discontinuous in its timeline due to
the presence of abnormal clips. So, the similarity between
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adjacent segments in anomaly video should dramatically
decrease and unstable similarity between adjacent segments
in which anomaly occurs.

Based on the above observation and analysis, we pro-
posed a video-level traffic anomaly detector to focus on the
feature similarity between segments and output the video-
level anomaly score. Specifically, after the feature extraction
in Section 3.1, an input video could get 32 groups of patch
tokens (8 in each group). Then, we calculate the cosine
similarity between each corresponding pair of patch token
features in adjacent groups and finally get 8 x 31 = 248 patch
token cosine similarity. Therefore, an entire video can be
represented by a 248-dimensional similarity space feature
vector, which is fed into a video-level traffic anomaly dis-
criminator for forwarding derivation to obtain its video-level
anomaly score.

In essence, our feature-similarity-based video-level
traffic anomaly detector is a binary classification task whose
parameters can be optimized with Binary Cross-Entropy
Loss. After training on a large set of video-level labeled data,
it is capable of performing high-performance anomaly traffic
video discrimination.

L, =Y log(¥)+(1- %)+ log(1- ).

Here, % is the label of input video, and % is the output of
the video-level traffic anomaly detector.

(10)

3.4. Composite Traffic Anomaly Detection. As mentioned
earlier, video-level traffic anomaly detectors focus on feature
similarity between adjacent video segments, while segment-
level traffic anomaly detectors pay attention to modeling
global spatiotemporal features within video segments.
Theoretically, feature similarity between segments has
stronger integrity and stability compared to global spatio-
temporal features within segments. Therefore, the video-
level anomaly traffic detector can provide a more reliable
output and assist the segment-level detector in anomaly
identification. Inspired by [33, 35], we design the following
composite operation (equation (11)). When the anomaly
score of the video-level traffic anomaly detector exceeds the
threshold value, we normalize the output of the segment-
level traffic anomaly detector by a min-max normalization
[37]:

TaBLE 1: Statistic of TAD dataset.

Dataset Videos Frames Label level
Training set 400 452,220 Video level
Testing overall set 100 88,052 Frame level
Testing anomaly subset 60 18,900 Frame level
S - fnin | S
i€[l,...m =
= ity >A,

max &— min & 4

éjC = i€{l,...m} i€{l,...,m} (]])
S, otherwise,

where & is the composite traffic anomaly score, & is the
output of segment-level traffic anomaly detector, ¥ is the
output of video-level traffic anomaly detector, and A is the
preset threshold.

4. Experiment

4.1. Dataset and Training Details. We conducted the ex-
periments on the TAD dataset built by Lv et al. [54], a total of
500 traffic surveillance videos with 250 normal and anomaly
videos, respectively. The average frames in each clip of the
TAD dataset are 1075. The anomalies randomly occur in the
anomaly clips and take about 80 frames on average. The
anomalies, including vehicle accidents, illegal turns, illegal
occupations, retrograde motion, pedestrians on the road,
and road spills, take place in various scenarios, weather
conditions, and daytime periods.

Some examples of anomaly videos in the TAD dataset are
shown in Figure 5. While training and testing, we followed
[54] to split the TAD dataset into two parts, with a training
set of 400 videos and a test set of 100 videos. Other statistics
are shown in Table 1.

All experiments were carried out on PyTorch and
hardware configuration of NVIDIA GeForce RTX 2070
GPU, 16 G RAM, CPU i7-10700k @3.80 GHz machine. We
jointly use margin ranking loss, time smooth loss, and sparse
term loss to train our segment-level anomaly traffic detector
as mentioned in Section 3.2, where we set margin = 1,
7, =8x107>, and 7, =8 x107°. It was trained of 1000
epochs with batch size 4. Binary Cross-Entropy Loss was
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TaBLE 2: Result of TAD dataset

Class Method Overall set AUC (%) Anomaly subset AUC (%)
Unsupervised Luo et al. [32] 57.89 55.84
Liu et al. [37] 69.13 55.38
Sultani et al. [41] 81.42 55.97
n— i o 5
Ours 91.71 63.09

applied to train the video-level traffic anomaly detector,
which was 1000 epochs with batch size 8.

Both detectors were SGD Optimizer paired with Cosine
Annealing LR; we both set their Optimizer parameters Ir =
0.001, momentum = 0.9, and weight_decay = 1 x 10™* and
kept the best performed model parameters as the optimal
model. In our experiment, by comparing different preset
thresholds, it is proved that A = 0.6 works best.

4.2. Evaluation Metrics. For the evaluation metrics of
anomaly detection, we first defined “true positive (TP),”
“false positive (FP),” “true negative (TN),” and “false neg-
ative (FN),” which represent the difference between the
predicted and actual classes.

TP: the predicted class is “anomaly,” and so is the actual
class.

TN: the predicted class is “normal,” and so is the actual
class.

FN: the predicted class is “normal,” but the actual class is
“anomaly.”

FP: the predicted class is “anomaly,” but the actual class
is “normal.”

The true positive rate (TPR) is the probability that an
actual positive will test positive, and the false positive rate
(FPR) is defined as the probability of falsely rejecting the null
hypothesis. TPR and FPR are calculated as follows:

TPR= 0 __
TP + FN

(12)
FPR = L
FP + TN

We choose the area under the frame-level ROC curve
(AUCQC) as the primary evaluation metric for traffic video
anomaly detection. The frame-level AUC is insensitive to the
imbalance of sample classification and, therefore, suitable as
our primary evaluation metric. Meanwhile, as an evaluation
metric, the frame-level AUC reflects the detection perfor-
mance of a method in locating traffic video anomalies. The
closer the AUC value is to 1, the better the detection per-
formance is.

The receiver operating characteristic curve (ROC)
mentioned above is a graph showing the performance of the
classification model at all classification thresholds, and the
plotted curve represents the relationship between TPR and
FPR.

We also used some other evaluation metrics to evaluate
the ablation study of our proposed method. Precision and

recall are two important evaluation metrics for detection
evaluation. The precision (equation (13)) of a class reflects
the proportion of the number of TP among the total number
of elements that are predicted and labeled as the positive
class. Recall (equation (14)) is defined as the proportion of
the number of TP among the total number of the positive
classes. Recall and precision are contradictory measures, and
the F1-score (equation (15)) is defined as a combination of
recall and precision.

TP
Precision = —— 13
recision TP+ D (13)
TP
= 14
Recall = 5 EN (14)

Recall x Precision
Fl-score=2% —— (15)
Recall + Precision

4.3. Comparison with SOTA Method. In this paper, we
compare the performance of the proposed method with
several other SOTA methods, and their quantitative results
on TAD are shown in Table 2. Among all the methods, the
work by Luo et al. [32] and Liu et al. [37] uses an unsu-
pervised approach and trains with only the normal video
training set. Otherwise, Sultani et al. [41], Zhu et al. [45], Lv
et al. [54], and our work use weakly supervised learning
methods with the video-level labeled training set for
training. The above SOTA results on TAD refer to [54].

The comparative results of the performance on TAD are
given in Table 2. They represent that the weakly supervised
learning methods outperform the unsupervised learning
methods. For example, the relatively inefficient weakly su-
pervised learning method [41] reaches 81.42% AUC on the
overall set and 55.97% AUC on the anomaly subset, yet still
about 12.29% and 0.13% higher than the best unsupervised
learning method [37]. Besides, among the current SOTA
methods, Lv et al. perform best on both the overall set and
anomaly subset, with 89.64% AUC on the overall set and
61.66% AUC on the anomaly subset. However, the proposed
method outperforms the optimal SOTA with 2.07% and
1.43% higher AUC on the overall set and anomaly subset,
separately. The results show that our work has been the
SOTA on the TAD dataset.

The above quantitative analysis proves the following
points: (1) Unsupervised learning methods have limited
performance in complex scenarios and when data anomalies
are not significant. (2) Weakly supervised learning methods
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TaBLE 3: Ablation studies on TAD dataset.
Dataset Methods Recall (%) Precision (%) Fl-score AUC (%)
Overall set T-SAD 92.16 90.17 0.9088 91.05
T-CAD 92.00 90.48 0.9109 91.71
Anomalv subset T-SAD 66.68 62.68 0.6154 62.04
Y T-CAD 66.62 63.15 0.6279 63.09
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can significantly improve the learning and representational
ability of neuronal networks on training data while main-
taining a small number of annotations. (3) The proposed
method is more advanced in anomaly detection and

FiGUure 7: Video detection result.

localization, where the ViVit-based feature extractor can
effectively characterize the pattern features of video data,
and the ViVit-based composite traffic anomaly detection
method can more accurately capture the anomalous features
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in video data, making the method in this paper significantly
better than the existing SOTA method [54].

4.4. Ablation Studies. We conducted ablation experiments to
analyze the performance advantages of the Transformer-
based Segment-level traffic Anomaly Detector (T-SAD) itself
and the performance advantages of the Transformer-based
Composite traffic Anomaly Detection method (T-CAD). As
shown in Table 3, the AUC of T-SAC reached 91.05% and
62.04% on the overall set and anomaly subset, respectively,
exceeding the current SOTA method [54] by 1.14% and
0.38%, respectively. In addition, the AUC values of T-CAD
were 0.66% and 1.05% higher than those of T-SAD on the
overall set and anomaly subset, respectively, demonstrating
the better performance of T-CAD compared with T-SAD in
anomaly localization.

Figure 6 visualizes the ROC curves of T-SAD and
T-CAD on the overall set and anomaly subset and vividly
demonstrates the superiority of the proposed method. As
seen from Figure 6, the ROC curve of T-CAD clearly wraps
around the ROC curve of T-SAD, proving that the T-CAD
outperforms the T-SAD in all aspects of the overall set and
anomaly subset.

We further visualized the detection results of T-SAD and
T-CAD on the overall set separately. In the visualized results
in Figure 7, row T-CAD (a) shows some reliable outputs
from T-CAD on the test set, where T-SAD (a) is the cor-
responding outputs of T-SAD. It shows an improvement
that T-CAD did compare to T-SAD. Still, in Figure 7,
T-CAD (b) is some failure outputs from T-CAD on the
overall testing set and its corresponding T-SAD. Enhancing
detection ability could cause a higher probability of mis-
detection to catch abnormal features distributed sparely in
anomalous videos. The exaggeration of the failure outputs is
in keeping with the trait of T-CAD, widening the gap in
T-SAD results. Nonetheless, no matter the overall set or
anomaly subset, performance enhancement proved the ef-
fectiveness of our T-CAD structure.

5. Conclusion

In this work, we propose a three-stage anomaly detection for
traffic videos. First, we utilize a pretrained ViVit model as
the feature extractor to capture the spatiotemporal features
of the input video. Then, we put the class tokens into the
segment-level traffic anomaly detector for segment-level
detection, pretrained with a multi-instance learning strategy.
We similarly put the patch tokens into the video-level traffic
anomaly detector for video-level detection. Finally, we fuse
the video-level and segment-level detection outputs as our
final output. From the experimental results, our proposed
architecture achieves 91.71% AUC and 63.09% AUC on
testing overall set and testing anomaly subset, which out-
performs the SOTA method with 2.07% and 1.43%, re-
spectively. Overall, the quantitative results demonstrate the
effectiveness of using a spatiotemporal feature extractor and
our composite traffic anomaly detection framework on the
traffic video anomaly detection problem.

The feature extraction, fusion of foreground and back-
ground information, and modeling of relationships between
foreground objects may be helpful for anomaly feature
extraction, which is worth doing in the future. In addition,
the spatial location detection of anomalies and the specific
classification of anomalies are also worthy topics for
research.
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Traffic flow forecasting is an essential task of an intelligent transportation system (ITS), closely related to intelligent transportation
management and resource scheduling. Dynamic spatial-temporal dependencies in traffic data make traffic flow forecasting to be a
challenging task. Most existing research cannot model dynamic spatial and temporal correlations to achieve well-forecasting
performance. The multi-head self-attention mechanism is a valuable method to capture dynamic spatial-temporal correlations,
and combining it with graph convolutional networks is a promising solution. Therefore, we propose a multi-head self-attention
spatiotemporal graph convolutional network (MSASGCN) model. It can effectively capture local correlations and potential global
correlations of spatial structures, can handle dynamic evolution of the road network, and, in the time dimension, can effectively
capture dynamic temporal correlations. Experiments on two real datasets verify the stability of our proposed model, obtaining a
better prediction performance than the baseline algorithms. The correlation metrics get significantly reduced compared with
traditional time series prediction methods and deep learning methods without using graph neural networks, according to MAE
and RMSE results. Compared with advanced traffic flow forecasting methods, our model also has a performance improvement and

a more stable prediction performance. We also discuss some problems and challenges in traffic forecasting.

1. Introduction

With the development of society and accelerated urbani-
zation, the demand for urban transportation is growing. The
problems arising from traffic congestion and road planning
make it essential to have effective traffic management and
planning. The rapid development of information technology
makes intelligent transportation systems (ITS) gradually
become an indispensable and critical part of urban trans-
portation. It can bring efficient traffic management, accurate
resource allocation, and traffic service support [1]. Advanced
ITS needs efficient traffic data processing, and modeling of
traffic data is the first task of ITS. Currently, there are
multiple data collection methods in intelligent trans-
portation, and the number of sensors deployed on the
roadways has increased significantly. These sensors recorded
information about vehicles passing through different road
nodes’ speed, flow, and size [2]. How to effectively process

and analysis these multidimensional data to use them further
for traffic prediction is an important research problem.
Traffic forecasting is an integral part of ITS, and timely
and accurate traffic forecasting information helps managers
make decisions and helps vehicle drivers choose smoother
road trips, which can alleviate or avoid problems such as
traffic congestion and traffic accidents [3]. Traffic flow
forecasting is a crucial task, aiming to use historical traffic
data from road networks to predict traffic flow in future time
steps [4]. Traffic flow forecasting can be divided into short-
term (within 30 min) and long-term (over 30 min) scales
based on the future length of the forecast in the time di-
mension. Traditional forecasting approaches are ineffective
in predicting medium- and long-term situations and only
have some advantages in short-term forecasting [5]. In
addition, traffic flow forecasting relies on sequential patterns
in the time dimension and road networks in the spatial
dimension. The connectivity relationships between different
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road nodes can affect each other to influence the overall
prediction accuracy [6]. Traffic flow is highly dynamic and
spatial-temporal correlated as it changes with time and space
and is a nonlinear problem that combines complexity and
uncertainty.

For traffic flow forecasting problems, the existing re-
search approaches can be divided into three categories which
are classical statistics-based models, traditional machine
learning-based models, and deep learning-based models.
Due to the massive data generation and growth in the
computing power of devices, the primary approaches for
traffic flow forecasting are gradually evolving into data-
driven deep learning methods [7]. Classical statistical-based
forecasting models use limited data for analysis, regression,
and optimization but fail to enable forecasting at large data
scales and long-term forecasting. Traditional machine
learning-based forecasting models mainly use machine
learning methods to mine historical traffic flow data trends
to predict future traffic status. But the complexity of his-
torical traffic flow data is not effectively handled, making it
impossible to achieve good prediction performance. Deep
learning-based forecasting models often utilize neural net-
work models, such as CNN and RNN, to model temporal
and spatial dependencies. The overall performance of traffic
forecasting is improved compared with the previous two
approaches. Using deep learning has improved the overall
performance of traffic forecasting models, but it is not the
best solution yet. The main reason is the lack of adequate
consideration of the spatiotemporal correlation of rapidly
growing traffic data and the complexity of traffic networks.

Traffic flow forecasting is vital for intelligent trans-
portation applications. Traffic flow data are mainly collected
by sensors on the road, with the dynamic influence of the
data collected by sensors between different location nodes in
a specific time interval. Therefore, modeling the traffic flow
forecasting problem is difficult due to the dynamic spatial-
temporal correlation of traffic flows. It makes timely and
accurate traffic flow forecasting very challenging. Exploring
the nonlinear and complex traffic data to capture the
temporal dependence and spatial dependence to get the
potential spatiotemporal patterns is an essential issue in
traffic flow forecasting [8].

Recently, graph neural networks (GNNs) [9] as a novel
deep learning method have received a lot of research and
attention due to their ability to directly model complex
relationships. Representing non-Euclidean data as graphs
with complex relationships and interdependencies between
objects, GNNs can be effective methods for solving complex
problems [10]. Graph neural networks are well suited for the
field of traffic forecasting. The spatiotemporal correlation of
traffic data can be effectively handled using graph neural
networks, which can simultaneously deal with the temporal
dynamics and the complexity of road networks, significantly
improving the forecasting performance [11].

Although GNNs-based methods have achieved some
advantages in traffic flow forecasting, the ability to model
dynamic spatiotemporal correlation of traffic data is not
perfect. Most current studies have not addressed the highly
dynamic nonlinear spatiotemporal correlation challenges in
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traffic flow forecasting. The information on traffic data
observed at different nodes is not entirely independent and is
influenced by adjacent nodes and time steps, which are
dynamically correlated. Figure 1 illustrates the complex
spatial-temporal correlation, showing the spatial and tem-
poral dynamics in traffic forecasting. In subfigure 1(a), three
sensors in the road network are distributed in different ways,
and even though they are geographically close in the road
network, correlations do not always exist. The data infor-
mation recorded by the sensors all differ. In subfigure 1(b),
the correlation between traffic conditions at different time
steps is different. For instance, sensor B is more correlated at
time step t + i + 1 and ¢ — 1 than with the nearest time step.
As mentioned above, traffic flow data exhibit strong
dynamics and complexity in spatial and temporal dimen-
sions. An accurate traffic flow forecast will depend on the
effective treatment of spatiotemporal correlations in com-
plex nonlinear traffic data. We propose a multi-head self-
attention spatiotemporal graph convolutional network
(MSASGCN) model to address these issues. Our model can
effectively capture the potential spatial correlation and dy-
namic temporal features in the traffic road network. It can be
adapted to the dynamic changes of the road network and
used for traffic flow forecasting of different time lengths.
The main contributions of this article are as follows.

(1) To address the challenge of spatial-temporal corre-
lation in traffic flow forecasting, we propose a novel
deep learning model, the multi-head self-attention
spatiotemporal graph convolutional network
(MSASGCN). It can learn the temporal and spatial
dependencies of dynamic traffic data and effectively
forecast traffic flow in different periods.

(2) We use GCN to construct a spatial correlation model
for road networks based on connection relations and
a multi-head self-attention mechanism to capture
the hidden spatial correlation between road net-
works and aggregate information among different
nodes. A temporal convolution module is added to
capture the dynamically changing temporal corre-
lations. And based on the periodic characteristics of
time series, an extended MSASGCN model is pro-
posed to handle better the traffic flow forecasting
problem with different temporal attributes.

(3) We conducted extensive experiments on real-world
datasets to verify the proposed model validity and
prediction performance. The experimental results
show that our proposed model can achieve better
prediction performance than the baseline model. In
addition, this article concludes with a short de-
scription of some critical issues in traffic flow
forecasting research.

The remainder of this article is as organized follows.
Section 2 introduces related work on traffic flow forecasting
and graph neural network models. Section 3 describes the
traffic flow forecasting problem, and Section 4 illustrates our
model (MSASGCN) in detail. Section 5 gives the experiment
description and analysis of the results. Section 6 provides
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some discussion to explain some potential problems in
traffic flow forecasting. Finally, we conclude in Section 7.

2. Related Work

In this section, we first provide a summary of research on
graph neural networks and then give an overview of recent
traffic flow forecasting research.

2.1. Graph Neural Networks. Graph neural network is a
novel model that captures graph dependencies through
message passing between graph nodes to solve complex
problems [12]. A new classification of graph neural networks
was made in [10], respectively, recurrent GNNs (RecGNNs),
convolutional GNNs (ConvGNNs), graph autoencoders
(GAEs), and spatial-temporal GNNs (STGNNs). Reference
[13] provided a comprehensive overview of the general
design process, application classification, and some open
problems for graph neural network models. Graph con-
volutional networks (GCNs) extend convolutional opera-
tions from traditional to graph data and are the foundation
of many complex graph neural network models [14]. There
are two categories of GCNs, spectral-based and spatial-
based. The spectral-based approach introduced filters to
define the graph convolution from the perspective of graph
signal processing [15], while the spatial-based approach
represents the graph convolution as aggregating feature
information from the neighborhood [16]. To improve the
effectiveness of long-range information dissemination,
combining the gating mechanism of RNNs [17], such as
GRU [18] or LSTM [19], with graph neural networks is an
effective way. Gated graph neural networks (GGNNs) [20]
use GRUs in forwarding propagation to expand RNNs in
fixed time steps and compute gradients using a temporal
backpropagation algorithm. As research on graph neural
networks grows, combining them with other deep learning
techniques is becoming a trend. Attention mechanisms [21]
have been widely applied to sequence-based tasks, and

combining attention mechanisms with graph neural net-
works yields better aggregation capabilities, integrating in-
formation from various components. Graph attention
networks (GAT) [22] can efficiently handle the hidden states
of nodes and perform well in tasks such as semi-supervised
node classification. Apart from GAT, gated attention net-
work (GAAN) [23] can assign different weights to different
attention heads using additional soft gating computations.
Graph neural network models can be widely used, but some
methodological limitations, depth of model, dynamics, and
heterogeneity need to be further explored.

2.2. Traffic Flow Forecasting. Research on traffic flow fore-
casting is an evolutionary process, [24] provided a detailed
survey of urban traffic flow forecasting and analyzed some
representative methods. The early traffic flow forecasting
methods were mainly based on statistics, such as historical
averages (HA) [25], time series methods [26], and Kalman
filters [27]. Autoregressive integrated moving average
(ARIMA) [28] and vector autoregressive (VAR) [29] are two
classical methods that both have good performance for time
series processing. Although these methods are helpful for
traffic flow forecasting, all of them have some limitations.
The road network’s dynamic time dependence and spatial
dependence in traffic data cannot be effectively exploited.
Therefore, data-driven deep learning-based forecasting
methods gradually become popular and bring good per-
formance improvements. When a large amount of traffic
data is accumulated, [4] used deep neural networks to ex-
plore the intrinsic relationships hidden in them and improve
forecasting accuracy. Reference [30] proposed deep spatial-
temporal convolutional network (DSTCN) to learn the
spatial features of convolutional neural network and the
temporal features of LSTM, but it needs to convert the traffic
data into grid data. Reference [31] analyzed the data loss
problem in traffic data collection and proposed a recon-
struction method with low-rank matrix decomposition to
reconstruct road traffic data accurately. Reference [32]



designed an enhanced graph convolutional network based
on cross-attention fusion with better performance superi-
ority and robustness.

Due to the characteristics of road networks, graph neural
networks can directly model the road network and better
capture spatial-temporal correlations. Seo et al. [33] pro-
posed graph convolutional recurrent network (GCRN) to
extract the topology of traffic networks and find dynamic
patterns to optimize traffic forecasting. In [34], a combi-
nation of LSTM with graph convolutional networks is
proposed, the streaming graph convolutional long short-
term memory neural network (TGC-LSTM), which can
address the dynamic time variation and complex spatial
constraints of road networks. Reference [35] converted the
dynamic traffic flow modeling into a diffusion process that
can capture spatial dependencies using diftusion convolu-
tion operations. Reference [36] proposed the STGCN
method, which can model multi-scale traffic networks, ef-
fectively capture comprehensive spatial-temporal correla-
tions, and obtain better traffic forecasting results. Reference
[37] designed a learnable position attention mechanism that
can effectively aggregate information from adjacent roads
and better exploit local and global spatial-temporal corre-
lations. Guo et al. [38] used the attention mechanism for
traffic flow prediction and proposed an attention mechanism
spatial-temporal graph convolutional network (ASTGCN),
which can extract temporal features more effectively to
improve forecasting performance. Inspired by the low-rank
representation and dynamic decomposition model, a low-
rank dynamic decomposition model for traffic flow fore-
casting [39] is proposed for effective short-term traffic flow
forecasting. An optimized graph convolutional recurrent
network for traffic forecasting was proposed in [40] to
improve the forecasting performance by learning the opti-
mized graph data-driven during the training phase to reveal
the potential relationships between road segments. Refer-
ence [41] considered road scalable and changing road
networks, combining continuous learning with GNNs, and
proposed the TrafficStream method. Reference [42] pro-
posed a hierarchical graph convolutional network (HGCN)
for traffic forecasting, which uses the road network’s natural
hierarchy to operate on micro and macro traffic maps to
achieve traffic forecasting. Reference [43] proposed the
spatial-temporal fusion graph neural network (STFGNN),
which integrates the fusion graph module with the gated
convolution module into one layer and can learn more
spatiotemporal dependencies to handle long sequence sit-
uations. Reference [44] proposed the transformer network
for traffic flow forecasting, which can jointly exploit dynamic
directional spatial dependence and long-term temporal
dependence to improve the forecasting accuracy. Consid-
ering the limitations of acquiring temporal and spatial de-
pendencies separately, [45] designed a spatiotemporal
synchronous modeling mechanism to construct the spatial-
temporal synchronous graph convolutional network
(STSGCN) to acquire complex local spatiotemporal corre-
lations. Reference [46] proposed the STGSA, a spatial-
temporal graph self-attention model, to learn graph-level
spatial embeddings using graph self-attention layers and
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gated cyclic units integrated with RNN units to learn
temporal embeddings. Reference [47] proposed the graph
multi-attention network (GMAN) method, which applies an
encoder-decoder structure and can solve the error propa-
gation problem in forecasting. A multi-sensor data-corre-
lated graph convolutional network model is proposed in
[48], named MDCGCN, mainly designed with an adaptive
benchmark mechanism and multi-sensor data-correlated
convolutional blocks that can eliminate the differences be-
tween periodic data and capture dynamic spatial-temporal
correlations. Reference [49] proposed a multi-range atten-
tion bicomponent graph convolutional network that uses
bicomponent graph convolution to implement node and
edge interaction aggregate information about different
neighbors with a multi-range attention mechanism, and
automatically learns the importance of different ranges.
Therefore, the research of traffic forecasting approach based
on graph neural networks can be effective for the time and
spatial dependence and has some advantages for dynamic
changes. Our work is based on the attention mechanism and
combined with graph convolutional neural networks for
traffic flow forecasting.

3. Preliminaries

In our work, traffic flow forecasting issues using the graph
neural network approach require building the traffic net-
work and defining the forecasting problem representation
first. In addition, graph convolutional networks and at-
tention mechanisms are the essential parts of our approach,
and we give a brief description of them here.

3.1. Problem Statement. We first need to construct the traffic
road network as a graph and illustrate the traffic flow
forecasting problem. Define the traffic network as an un-
directed graph G = (V, E, A), where V denotes a finite set of
nodes corresponding to the observations of N sensors in the
traffic network, [V| = N nodes, and E is the set of edges to
represent the connectivity of nodes. The graph structure of
traffic data is shown in Figure 2, and each data node can be
considered a graph signal defined on Graph G. If v; and v;
are two nodes in V with a connection, then (v;, v j) is an edge
in set E. These connections between nodes can be described
by the adjacency matrix A = (Aij)NXN e RV*N_ A is the
adjacency matrix constructed based on the distance rela-
tionship between different sensor distributions, which can
define and describe the relationships between different
nodes in the graph G. The threshold Gaussian kernel ap-
proach is used to process the adjacency matrix A, where 4;;

is the i, j — th element.
£\ (@

exp 2 ) if exp 2 >e

Aij = > (1)

0, otherwise

where d;; denotes the distance between the sensors v; and v,
o is the standard deviation of the distance between each
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FIGURE 2: Graph-structured traffic data.

sensor node, and ¢ is a preset threshold value, which is taken
as 0.1.

In the traffic network, each node on G samples F ob-
servations at the same frequency, which means that each
node generates a feature vector of length F at each time step.
Weuse x| € RF as the value of all F features of node i at time
t,and X, = (x},x2,...,xN)" € RM¥ denotes the values of
all F features of all nodes at time ¢. Therefore, we can denote
the target feature value of all nodes predicted at time step ¢ as
Y, = (yhyh .. yM)T € RN The traffic flow forecasting
problem is to predict future traffic conditions based on
historical traffic data and the topology of the road network,
which can be summarized as follows. The graph structure of
traffic data is shown in Figure 2, and sensors are represented
by nodes in the graph, allowing the acquisition of infor-
mation on traffic conditions at different times and spaces.

f(Xt—F+1’ Xipra - Xps A) = (Yt+1’ Yoo Y:+M)’ (2)

where X, p,1, X, g2 --.» X, denotes historical traffic data,
and with the processing of function f, future traffic data
series Y,,1,Y,1p,-..> Y, can be obtained, and A is the
adjacency matrix of graph G.The crucial to the traffic
forecasting problem is the need to find the function f, the
traffic forecasting model, which maps the data series to the
future traffic data series.

3.2. Graph Convolutional Networks. Graph convolutional
network is a feature extractor for processing unstructured
data with strong advantages for non-Euclidean graph-
structured data processes. Suppose that a graph containing
each node of K is given and the adjacency matrix A € R¥* of
this graph is obtained. The output of node i at layer [ of the
GCN is represented here as k!, and h? represents the initial
state of node i at the time of input to layer 1 of the GCN. For
onel-layer GCN, [ € [1,2,..., L], the final state of node i can
be expressed as hl. The following (3) is the computational
procedure for the graph convolution of node i.

k
H = a<ZAilehﬁ_l +bl>, (3)

i1

where W' is the linear transformation weight, b’ is the
deviation term, o represents the activation function, com-
monly used activation functions such as ReLU.

3.3. Attention Mechanism. There are three matrix inputs,
key K € R™%, query Q € R™%, and value V € R™%,
where n and m represent the lengths of these two inputs, and
dy and d, represent the dimensional dimensions of the key
and value. The attention mechanism is also set up with
multiple heads, each of which can pay attention to different
location information and learn different features. It com-
putes the weighted sum by calculating the key and value dot
product, and then normalizes it by SoftMax. And finally
using the value projection (V) output. The concrete ex-
pression of the formula is as follows.

QK”
AttentionQ, K,V = SoftMax( \/d_ )V. (4)

K
The shape of Q is N x d,, which represents the matrix
consisting of query vectors of N nodes. The shape of K is
N x d, representing the matrix consisting of key vectors of
N nodes. The shape of V is N x d,, representing the matrix
consisting of value vectors of N nodes. In traffic flow
forecasting with a spatial attention mechanism, it is nec-
essary to aggregate node information in the spatial di-
mension, for which parameters are shared between different

time steps.

3.4. Multi-Head Self-Attention Mechanism. The multi-head
self-attention mechanism is mainly a process of multiple
groups of self-attention on the original input sequence. It is
worth noting that the process can be computed in parallel,
improving the efficiency of feature extraction. Then, each
group of self-attention results is concatenated, and then a
linear transformation is performed to obtain the final output
results.

Multi Head Q, K, V = Concat (head,, . . ., head,)W°.  (5)

head, = Attention(QW7, KW, VW/). (6)

The specific calculation is expressed as shown in (5) and
(6), where W2 € RPi*4, WK ¢ RPd and WY e RP>,
The output of multi-head attention requires a linear
transformation, which corresponds to the result after con-
catenate h heads, and therefore, its learnable parameter is
WO e RP*hpr,

head,
Wol| € R¥o, (7)
head,,
Based on this design, each of the heads may focus on a

different part of the input and can represent more complex
functions than a simple weighted average.



4. Multi-Head Self-Attention Spatiotemporal
Graph Convolutional Neural Network

This section describes our forecasting method by detailing
the modules that make up the multi-head self-attention
spatiotemporal graph convolutional network (MSASGCN)
model. We provide a detailed description of the multi-head
self-attention and graph convolution module, temporal
convolution module, and the extended MSASGCN. It can
effectively handle different temporal periods in historical
data.

4.1. Architecture of Model. The architecture of our proposed
model is illustrated in Figure 3. In addition, based on the
research idea of ASTGCN [38], we added parallel sub-
models of the same structure to improve the accuracy of
prediction. Figure 4 illustrates the overall architecture with
the addition of sub-models capturing the daily and weekly
characteristics of traffic flow data. We also call the overall
architecture an extension of the MSASGCN model, extended
MSASGCN.

The multi-head self-attention mechanism and graph
convolutional network are combined to capture local and
global spatial dependencies, and the information obtained is
fused using a gating mechanism. Meanwhile, the temporal
convolution is used to capture the temporal dependence to
get different influence levels at different times to improve
forecasting accuracy. This structure is stacked to obtain more
substantial processing power for long sequences or large-
scale data. Extend MSASGCN model by adding weekly and
daily periods to traffic flow forecasting. Each of these
components has the same structure and has the same ca-
pability to handle spatial-temporal correlation.

MSA refers to the multi-head self-attention mechanism,
GCN denotes graph convolutional network, Temp-Conv
denotes temporal convolution, Gated Fusion denotes the
gating mechanism to fuse spatial information, and Conv is
the convolution operation. GCN is used to acquire local
spatial information, and MSA is used to acquire global
spatial correlations. The gating mechanism can fuse the
extracted spatial correlations. A simple fully connected layer
is used at the input layer to map the information to a high-
dimensional space to improve the expressiveness of the
model. Two convolution layers are used in the output layer
for the decay of feature dimensions and the transformation
of time series length. More details about the significant
component modules of the model are described as follows.

4.2. Graph Convolution and Multi-Head Self-Attention
Module. Traffic conditions on a road segment are influenced
not only by the road segments that are spatially connected to
it but also by other factors, and two road nodes that are far
apart may still exhibit similar traffic patterns. The spatial
correlation of traffic conditions can be influenced by the
connectivity between road segments and geographic posi-
tion attributes. Therefore, local spatial correlation and global
correlation need to be considered. We use GCN to aggregate
node information from local based on the connectivity
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FiGure 3: Architecture of MSASGCN. MSA : Multi-head self-at-
tention; GCN:graph convolutional network; Temp-Conv:
temporal convolution; Conv: convolution.

between roads and use the multi-head self-attention
mechanism to aggregate the hidden global correlations.

Initially, the features of each node are considered as
signals on the graph, and then spectral graph-based graph
convolution is used to capture the spatial patterns in the
traffic network. According to the spectral theory, the traffic
graph is represented by the normalized Laplace matrix L in
the graph. It can be defined as follows.

L= IN _ D*l/ZADfl/Z’ (8)

where Iy is an N x N unit matrix, N denotes the number of
nodes, and A is the adjacency matrix. D is the degree matrix,
which is a diagonal matrix with diagonal elements of
D, = Zﬁil Ajj» and A;; is the element of the i — th row and
j —th column of the adjacency matrix A. The graph con-
volution can be defined as follows:

K-1

O.gx~ Y 0Ti(D)x, (9)

K=0

where 0, denotes the graph convolution operation on the
signal x in the graph G, L = 2/, L — Iy is the normalized
Laplace matrix after scaling, A, is the maximum feature
value of L, 0, is the coefficient of the k —th term of the
Chebyshev polynomial, and T is k — th order Chebyshev
polynomial. Graph convolution with Chebyshev polyno-
mials is used to aggregate information from neighbor nodes
to capture local spatial correlations.

To capture the global spatial correlation, it is necessary to
consider the changes in the road network structure and the
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hidden spatial correlation in the road network, and we
employ a multi-head self-attention mechanism to aggregate
the information. Firstly, the feature vectors of each node are
mapped with three different matrices W<, WX, and WV,
Three vectors can be obtained, as described in preliminaries,
as Query, Key, and Value. W, WX, and WV are learnable
parameters that are continuously optimized and updated
during the training of the model. With the inner product of
the Query vector of each node and the Key vector of all
nodes, the SoftMax function can compress the vector to
between 0 and 1. After normalization by the SoftMax
function, the attention score of this node with all nodes can
be obtained. The SoftMax function is defined as follows,
where z; denotes the i — th dimension of the vector and K
denotes the dimension of the vector.

Zi

e
SoftMax (Zi) = W
K=1

(10)

We represent the attention mechanism in matrix form,
which can be calculated using (4). A multi-head self-at-
tention mechanism can aggregate information in several
different feature subspaces simultaneously, with different
subspaces expressing different implicit spatial correlations.
The multi-head self-attention mechanism is performed by
linearly mapping Query, Key, and Value # times (# is the
number of heads) to get multiple sets of different subspace
representations, then performing the attention mechanism
on each set, and then stitching them together to get a final
result by doing another linear mapping. The following
equation can express the multi-head self-attention
mechanism.

h; = Attention( XW2, XW[, XW} ), o
Multihead = Concat (hy, by, b, . . ., b, )WC.

The h; denotes the output of the i — th group of the self-
attention mechanism, »n denotes the number of heads,
Multihead denotes the output of the multi-head self-at-
tention mechanism, Concat denotes the stitching operation
on the tensor along the feature dimension that is the i — th
group of linear mapping matrices, and W© is the matrix that
maps the result of the stitching. The spatial multi-head self-
attention mechanism can learn the implied spatial corre-
lation between nodes based on the features of each node in
the input data. It is practical to capture their correlations in
the spatial dimension using the multi-head self-attention
mechanism. Meanwhile, it can capture when the topology of
the road network changes because the attention scores
among nodes are dynamically calculated based on the input.
In addition, it is also able to capture the spatial correlation of
the road network globally since the spatial self-attention
aggregates the information of all nodes.

After obtaining local spatial correlation and global
correlation, the information gained should be fused using a
gating mechanism. The gating mechanism can be used to
learn the importance of two kinds of spatial information and
fuse the two kinds of information based on the learned
weights, represented by the following equations.

0] 0]
g =o(HSNW, + HOW, +b), )
HY = goHgy + (1~ g)oHy,



where Hg)CN denotes the output of the first graph convo-
lution module, H/(\lt)t denotes the output of the first multi-
head self-attention module, W, and W, are the mapping
matrices, and b is the bias value. ® denotes the Hadamard
product, where the corresponding position elements of the
matrix are multiplied together. Moreover, g denotes the
output of the gate, using the sigmoid activation function.
H® is the result of the fusion of two spatial information.

4.3. Temporal Convolution Module. The improved convo-
lution operation captures the temporal correlation in the
time dimension. We combine dilated convolution with
causal convolution methods for time series correlation
prediction. Causal convolution can abstract the sequential
problem and make the predicted value closer to the actual
value, but it requires many layers or a large filter to increase
the perceptual field of the convolution. Dilated convolution
can make the filter apply to regions larger than filter length
by skipping some inputs and expanding the receptive field
without increasing the model complexity. The combination
of these two convolution methods forms the temporal
convolution (Temp-Conv) module, which facilitates the
acquisition of long-term temporal correlation, improves
processing efficiency, and can avoid information forgetting
when the sequence is too long. Node i has an output value for
the g channel at time ¢ that can be expressed by the following
equation.

T P
Yig= Z Y Wipa * Xit-dten,po (13)
k=1 p=1

where W, is the element in the convolution kernel,
Xit-d(k-1,p is the element of the input feature, p is the
number of input channels, 7 is the convolution kernel size,
and d is the dilation rate. If the number of output channels is
denoted by S, then S sets of convolution kernels are needed.
The parameters of these S sets of convolution kernels can be
expressed as a tensor W™P*S of shape 7 x P x S, which are
learnable parameters that are continuously updated itera-
tively by minimizing the loss function during the model
training.

In Temp-Conv, to maintain the length of the input time
series unchanged, a complementary 0 operation is required,
but complementary 0 at both sides of the sequence will
increase the length of the sequence, so the sequence ends will
be cropped before proceeding to the next layer. Moreover,
Temp-Conv contains multiple layers of dilated causal
convolution, where the parameters of the convolution kernel
are shared among different nodes. The tensor H, of shape
N x F x P is used to denote the features of N nodes F time
steps, and d denotes the dilated causal convolution operation
with expansion rate d,. Thus, the Temp-Conv operation for
H, can be shown as follows.

T =W, H, (14)
The T is result after convolution, and to expand the

receptive field more, it is necessary to stack multiple layers of
dilated causal convolution. Each layer’s expansion rate
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increases exponentially, and the expansion rate of the [ — th
layer is d’. = 2'-!. Hence, the output of the I — th layer can be
expressed as follows.

T = ReLu(wfi;Yl”). (15)

Different layers get different outputs with different re-
ceptive fields, with shallow layers to obtain short-term
temporal correlation and deep layers to obtain long-term
temporal correlation. Then, the output features of each layer
are concatenated according to their dimensions, and the
output channels are transformed using a 1 x 1 convolutional
layer to form the final output of Temp-Conv.

T= Conv(Concat(Tl, T ..., TC)), (16)

where Concat denotes concatenation along the feature di-
mension, Conv denotes a 1 x 1 convolutional layer, and ¢
denotes the number of layers of the dilated causal
convolution.

4.4. Framework of Extended MSASGCN. The extended
MSASGCN model is designed to model and process the
dependencies of recent, daily, and weekly periods in his-
torical data rather than a single time series input. As shown
in Figure 5, we intercept three time series segments of
lengths T, T4, and T, along the time axis as inputs for the
recent, daily, and weekly period components, respectively,
where T),, Ty, and T',, are all multiples of the integer T',, and
T, is the target time to be predicted.

We assume that the data sampling frequency is 1 times per
day and the current time is t,. The time series input for dif-
ferent time periods is denoted by X, X;, X,,. The recent time

segment is X, X, = {thhﬂ, Kty ,Xto} € RNV 5

segment of the historical time series that is directly adjacent to

the forecast period T ,. The daily periodic time segment is X,

Xdz{Xt o X, X,
0-(Tg/Tp-1)  q+1 0-(T4/Tp=1) g+T)p 0-(Tg/Tp-1) * q+1

t oo X, oo X, 1 e RNFTaand con-
—(T4/Tp-1) *g+Tp 0-g+1 0-g+T)

sists of the same segments of the past few days as the prediction
period. The weekly periodic time segment is X,
Xw = { bozu(ryimp)wqr’® 7777 Xtoq*(rw/rp)*qﬂ‘},’ bo7u (T Tp-1) » g+1”

X X, } e RNVEXTw,
0-7%g+1 0-7%q+Tp

T Xt077*(Tw/Tpfl)*q+TP’
and consists of time segments from the most recent weeks,
with the same weekly attributes and time intervals as the
forecast period.

Therefore, in the extended MSASGCN model architec-
ture, the model components dealing with different periods
have the same network structure, all with the same setup as
in MSASGCN. Finally, the outputs of the three components
are combined based on the parameter matrix to obtain the
final prediction results, which can better predict the dynamic
traffic flow. Extended MSASGCN is a multi-component
fusion model, and the correlation of different periods needs
to be handled. The sensitivity of the input traffic flow data to
the components is inconsistent, so the sub-models within
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FIGURE 5: Example of time series segment input.
TaBLE 1: Dataset profiles.
Attributes PeMSD4 PeMSD8
Time periods January-February 2018 July-August 2016
Detectors (nodes) 3848 1979
Distance information of sensors (edges) 340 295
Selected detectors 307 170
Sequence length 16,992 17,856
Selected features 3 3

the model have varying degrees of influence on the results.
Different time components have different impact levels on
each node and should be learned from the historical data and
fused according to the different weights to obtain the
forecasting results. The updated formula of the forecasting
results is as follows.

Y=W_,0Y, +W,0Y,+W,0Y,, (17)

where ® is Hadamard product, and W, W, and W, are
learnable parameters that reflect the degree of influence of
the three different time-dimensional components on the
predicted target.

In some regions, traffic flows may have significant peaks
in the morning or evening, making the output of the daily
and weekly period components more critical. However, for
some other regions, there is no prominent traffic period.
Therefore, by fusing the outputs of different components
from the above equation, we can obtain traffic flow fore-
casting results suitable for different regions or periods with
different weights.

5. Experiments and Analysis

In this section, to verify the efficacy of our proposed model,
we conduct experiments on two real datasets. Firstly, we
describe and introduce the experimental datasets and the
baseline method of comparison and then define the metrics
for the experiments. Finally, the experimental settings and
results analysis are given.

5.1. Datasets. PeMSD4 and PeMSDS8 are two freeway traffic
datasets from California on which we validate our model.
The datasets are collected in real time every 30 seconds by the
Caltrans Performance Measurement System (PeMS)
[49, 50]. Traffic flow data are aggregated from the raw data
into intervals of every 5 minutes. The system has over 39,000
detectors deployed on freeways in major metropolitan areas
in California. The geographic information of the sensor
stations is recorded in the dataset. Three traffic measures are
considered in our experiments, including total flow, average
speed, and average occupancy. Future traffic flow is our

forecasting target. PeMSD4 and PeMSD8 are from different
regions, for which details of the dataset are given in Table 1.

PeMSD4 is the San Francisco Bay Area traffic data and
contains 3,848 detectors on 29 roads. The periods of this
dataset span from January to February 2018. The first 50 days
of data were chosen as the training set and the rest as the test
set. PeMSD8 is the traffic data of San Bernardino from July to
August 2016, which contains 1979 detectors on 8 roads. The
first 50 days of data are used as a training set, and the last
12 days of data as the test set.

_ X —mean(X)
R —

X' (18)

X

The selection of detectors required the distance between
adjacent detectors to be greater than 3.5 miles. In addition,
the missing data are filled linearly. Data processing was
performed using zero-mean normalization to make the
training process more stable. As shown in (18), mean (X)
denotes the mean of the original data, o, is the standard
deviation of the original data X, and X' is the normalized
data.

5.2. Baselines and Experiment Metrics. We compare our
model with the following baselines:

(i) HA [25]: Historical average, using the average of
historical data to predict the next value.

(ii) VAR [29]: Vector autoregressive, capture pairwise
relationships in traffic flow sequences for
prediction.

(iii) ARIMA [28]: Autoregressive integrated moving
average method is a classical time series forecasting
algorithm that combines autoregressive models,
moving average models, and differencing methods.

(iv) LSTM [19]: Long short-term memory network, a
variant of RNN.

(v) GRU [18]: Gated recurrent unit network, a variant
of RNN.
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(vi) DCRNN [35]: Diffusion convolutional recurrent
neural network, modeling traffic flow as a diffusion
question process on a directed graph.

(vil) STGCN [36]: Spatial-temporal graph convolu-
tional networks that model temporal and spatial
dependencies.

(viii) ASTGCN [38]: Attention-based spatial-temporal
graph convolutional networks, exploiting spatial-
temporal attention mechanisms to model spatio-
temporal correlations.

(ix) GeoMAN [51]: An attention-based multilevel re-
current neural network model for geo-aware time
series prediction problems.

The baseline and MSASGCN method are compared with
the same metrics in our experiments. We use the mean
absolute error (MAE) and root mean square absolute error
(RMSAE) as performance metrics for experimental evalu-
ation, expressed in the following equations.

13 ,
MAE = — Y Ix; - xil,
i=1

(19)

RMSE =

In addition, we also compared with the mean absolute
percentage error (MAPE) in some of the baselines, with the
following definition.

100%
n

MAPE =

(20)

X; - X;‘
i=1 Xi

where X; and X denote the i — th element in the true and
predicted values, respectively, and »n denotes the total
number of elements.

5.3. Experiment Settings. We have implemented our model
using the PyTorch deep learning framework. Future traffic
flow is our forecasting target. On the one hand, we use the 1-
hour historical traffic flow to forecast the future 1-hour
traffic flow situation. Both the input time series and output
time series lengths are set to 12, and the time series input
length can be adjusted depending on the prediction time. We
set the batch size to 64, the learning rate to 0.001, and the
Chebyshev polynomial K to 3. The dimensions of the input
layer, the implicit layer, and the output layer of the graph
convolution module are taken to be 16, 64, and 128, and the
input dimension, the dimension of key and value, and the
number of heads of the multi-head self-attention module are
taken as 16, 128, 128, and 4, respectively. The L, loss function
is used to minimize the difference between the predicted
results and the true value, and the L, loss for multi-step
prediction is defined as follows.

t=P
Ll (WG) = Z |X:,i - X,;' (21)

i=t+1
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TABLE 2: Average performance comparison of future 1-hour traffic
flow prediction experiments.

PeMSD4 PeMSD8

Model

MAE RMSE MAE RMSE
HA 36.76 54.14 29.52 44,03
VAR 33.76 51.73 21.41 31.21
ARIMA 3211 68.13 24.04 43.30
LSTM 29.45 45.82 23.08 37.06
GRU 28.65 45.11 22.22 36.95
DCRNN 22.93 33.44 16.82 28.06
STGCN 25.15 38.29 17.51 27.09
ASTGCN 21.80 32.84 16.63 26.51
GeoMAN 23.64 37.84 17.84 28.91
MSASGCN (ours) 21.22 32.09 16.23 26.24

Bold is to highlight our experimental results.

The purpose of training the model is to continuously and
iteratively update W, to minimize L;, and X,; and X_;
denote the labels and predicted values of all nodes at time
step i, respectively. On the other hand, we verified the ef-
ficiency of our method for traffic flow forecasting in different
time prediction intervals. We conducted experiments to
predict the future 10, 20, 30, and 40 minutes and analyzed
the performance evaluation metrics.

5.4. Comparison and Result Analysis. We compared our
model with the baseline approaches on PeMSD4 and
PeMSD8. The average results of the future one-hour traffic
flow prediction performance are shown in Table 2. It could be
seen that our method achieves excellent performance in both
datasets for MAE and RMSE evaluation metrics. In the case of
traditional time series forecasting methods, they have limited
analytical power to deal with spatial-temporal dependence,
and the forecasting results are not very satisfactory.

Through comparison and analysis, it is clear that the
performance of the deep learning-based approach is sig-
nificantly better than that of the traditional approach.
However, methods such as LSTM and GRU, which fail to
handle temporal and spatial correlations effectively, also
perform much weaker than methods that capture spatial-
temporal correlations. Therefore, it can be concluded that
the use of graph neural networks and their variants is ef-
fective in handling traffic flow forecasting. The algorithms
GeoMAN and ASTGCN, which apply the attention mech-
anism, also outperform the other algorithms, demonstrating
the effectiveness of using the attention mechanism to obtain
spatial-temporal correlations.

Based on the experimental results obtained on the
PeSMD4 dataset, a detailed description is given in Table 3.
The analysis of the traffic flow prediction results for the next
10, 20, 30, and 40 minutes shows the effectiveness of our
proposed method for different prediction intervals. Our
method’s MAE and RMSE evaluation metrics constantly
change with increasing time intervals, which is a normal
trend. Despite slight fluctuations, the performance is still
within an average and the excellent band as the prediction
interval increases.
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TABLE 3: Average performance of experiments with different prediction intervals on PeMSD4.
Dataset Model Prediction interval (min) MAE RMSE
10 19.73 29.16
20 20.42 30.24
PeMSD4 MSASGCN 30 20.78 3133
40 21.01 31.82
TABLE 4: Average performance of experiments with different prediction intervals on PeMSDS8.
Dataset Model Prediction interval (min) MAE RMSE
10 15.31 24.01
20 15.72 25.24
PeMSD8 MSASGCN 30 15.93 25.93
40 16.01 26.13
MAPE
15.00%
14.52%
14.50%
14.00% 13.91%
13.50% : :
13.22%
13.00%
12.50%
PeMSDA4 STGCN(36] DCRNN(35] MSASGCN (ours)
STGCN[36]
B DCRNN([35]

B MSASGCN(ours)

FIGURE 6: Comparison of different algorithms MAPE on PeMSDA4.

Similarly, experimental results were obtained on the
PeMSD8 dataset, detailed in Table 4. The experimental re-
sults on PeMSD8 are better than the PeMSD4 dataset, and
although different datasets present different results, the
overall trend is considered similar. MAE and RMSE per-
formance evaluation metrics show that our proposed
method can cope with traffic flow situations with different
prediction intervals. According to the experimental results
of different prediction intervals performed on two datasets,
our proposed method can solve the traffic flow forecasting
issue in the short or long term. Our proposed method has
some advantages and reasonableness to capture the temporal
and spatial characteristics nicely.

Moreover, we also compared the mean absolute per-
centage error (MAPE) of the MSASGCN model with
STGCN and DCRNN, which also obtained better results

than these two methods. This indicated that MSASGCN
could better handle spatial-temporal correlations to capture
the dynamically changing temporal and spatial dependence.
The results obtained from the experiments on the PeMSD4
and PeMSDS8 datasets are shown in Figures 6 and 7, re-
spectively. Our method uses a multi-head self-attention
mechanism to effectively fuse local and global spatial cor-
relations, aggregate information from multiple nodes, and
extract implicit information to improve prediction accuracy.

5.5. Validation of Module Effectiveness. To better represent
the effectiveness of our proposed model, we modify the
MSASGCN model by removing the MSA module and using
only GCN to process the spatial dependencies, and all other
experimental settings are consistent with the original
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MAPE
13.00% : :
12.64%
12.50%
12.00% 11.79%
11.50% 11:29%
11.00%
10.50%
PeMSDS STGCN([36] DCRNN[35] MSASGCN(ours)
STGCNI[36]
B DCRNN([35]
B MSASGCN(ours)
FiGUure 7: Comparison of different algorithms MAPE on PeMSD8.
TaBLE 5: Introduction of the model name.
Name Description
MSASGCN Our original method
MSASGCN-s Method for removing the multi-head self-attention mechanism

10 20 30 40 50 60

Time (min)
—o— MSASGCN
—o— MSASGCN-s

()

36 -
35 -
34 -
33 -
32 -
31 -
30 -
29 -
28

RMSE

10 20 30 40 50 60

Time (min)
—o— MSASGCN
—o— MSASGCN-s

(b)

FiGure 8: Module validation on the dataset PeMSD4. (a) The evolution of MAE. (b) The evolution of RMSE.

method. Table 5 shows our description of removing the MSA
module. We have conducted experiments on PeMSD4 and
PeMSD8 to remove the multi-head self-attention mecha-
nism, respectively, and the MAE and RMSE metrics have a
significant change in magnitude, which is not as good as the
performance of the original MSASGCN method. The ex-
perimental results are shown in Figure 8 and Figure 9.
Therefore, the multi-head self-attention mechanism plays an
essential role in our method.

6. Discussion on Traffic Flow Forecasting

Although the performance of traffic flow forecasting has
been significantly improved by applying graph neural

networks, there are still some challenges for traffic flow
forecasting. Reference [52] provided a summary of the
challenges and future directions of traffic forecasting.

(1) From the data perspective, traffic data are hetero-
geneous and involve spatial-temporal factors and
external factors. How well the heterogeneous data
are handled can directly affect the forecasting ac-
curacy. Data quality issues can also bring additional
challenges.

(2) The timely accuracy of traffic forecasting is critical,
but most graph neural network models require much
computation and cannot make some real-time
forecasting. Building a lightweight and general
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FIGURE 9: Module validation on the dataset PeMSDS. (a) The evolution of MAE. (b) The evolution of RMSE.

framework is a challenge for traffic forecasting and
an essential requirement for intelligent trans-
portation systems.

(3) Intelligent transportation systems need to integrate a
different traffic information for analysis and pro-
cessing simultaneously. Traffic forecasting models
not only need to be able to process a specific task
demand, but more importantly, they may process
multiple tasks at the same time, which is a crucial
challenge for multi-task forecasting.

(4) Privacy and security issues in traffic forecasting. The
large-scale traffic data collection by IoT devices such
as sensors has potential data security and privacy
threats. The use of federated learning for graph
neural network models in traffic forecasting in [53] is
an approach of future interest, applying the dis-
tributed structure of federated learning, which allows
some data protection.

7. Conclusions

In this article, we propose the multi-head self-attention
spatiotemporal graph convolutional network (MSASGCN)
model. Combining the multi-head self-attention mecha-
nism with graph convolutional network can effectively
handle the spatial-temporal correlation of traffic data. Our
model can accommodate both the road network’s dynamic
time dependence and spatial dependence and performs
better in capturing the spatial-temporal characteristics.
Experiments on two real-world datasets showed that the
prediction accuracy of our proposed model outperformed
the baseline model. Our model verified the ability of
processing spatial-temporal features simultaneously to
construct the graph convolutional module and the spa-
tiotemporal attention module to improve the prediction
performance. In this article, we also summarize some of the
challenges of traffic forecasting, and in the future, we will
investigate the critical challenges of traffic flow forecasting
intensively.
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Crack is a common concrete pavement distress that will deteriorate into severe problems without timely repair, which means the
automated detection of pavement crack is essential for pavement maintenance. However, automatic crack detection and seg-
mentation remain challenging due to the complex pavement condition. Recent research on pavement crack detection based on
deep learning has laid a good foundation for automated crack segmentation, but there can still be improvements. This paper
proposes an automatic concrete pavement crack segmentation framework with enhanced graph network branch. First, the nodes
of the graph and nodes’ attributions are generated based on the image dividing. The edges of the graph are determined based on
Gaussian distribution. Then, the graph from the image is input into the graph branch. The graph feature map of the graph branch
output is fused with the image feature map of the encoder and then enters the decoder to recover the image resolution to obtain the
crack segmentation result. Finally, the method is tested on a self-built 3D concrete pavement crack dataset. The proposed method
achieves the highest F1 and IoU (Intersection over Union) in the comparison experiments. And the graph branch addition

improves 0.08 on F1 and 0.06 on IoU compared with U-Net.

1. Introduction

Road infrastructure is an essential asset for a country, and it
can contribute to the economic development and bring
significant social benefits. Road density is adopted as a rating
criterion by the World Bank to evaluate low-income,
middle-income, and high-income economies [1]. Concrete
pavement is one of the main pavement types. The concrete
pavement in the United States highway network accounts for
about 49 percent, and in Belgium they occupy 50 percent.
However, due to the severe traffic loading and the variable
environment, concrete pavement distress always appears
over the road operation time. Maintaining an acceptable
level of service for the whole road network is a challenge to
the transportation agency officials.

Pavement distress evaluation is the essential work for
pavement maintenance. The transportation agency officials
regard pavement data collection as a regular work to grasp
the evolution of road conditions and make opportune work
to stop the deterioration of the distress. Efficient pavement
condition inspections and reasonable repair strategies can

lead to a significant reduction in life-cycle pavement
maintenance cost [2].

Pavement distress evaluation has undergone a long
period of development with the continuous advancement of
computer technology. Traditional distress inspections are
based on the manual visual survey, which is time-con-
suming. After that, a collection vehicle equipped with a high-
speed digital camera is invented to acquire the pavement
surface images at a high speed [3, 4]. This method causes
little influence on traffic operation and is widely accepted by
the transportation agency officials. Recently, 3D technology
has attracted much attention. Compared with the 2D
technology, the pixels in the image captured by 3D tech-
nology describe the depth change relative to the reference
surface. Therefore, the 3D images of concrete pavement can
reduce the influence of surface oil and lighting conditions
and present more information on pavement distress [5-7].

Once the concrete pavement surface images are ob-
tained, the processing can be conducted to detect pavement
distress using various algorithms. Over the past decade,
there have been sufficient methods based on computer vision
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proposed to detect pavement distress automatically and
achieve excellent results, such as methods based on
threshold [8, 9], methods based on edge detection [10, 11].
However, the effects of most methods are easily influenced
by different pavement detection environments due to the
feature extraction based on manual design. Therefore,
semiautomatic pattern to pavement crack detection is in
current practice. In the semiautomatic approach, crack
detection algorithms are applied first, and then a series of
human interventions are conducted to manually adjust the
crack information and incorrect results. It is also time-
consuming.

Recently, with the success of deep learning methods,
especially Convolutional Neural Network (CNN) in com-
puter vision tasks [12], applying deep learning to automatic
pavement distress detection has become a spotlight. CNN
can automatically extract the features of objects in the
images with a structure similar to the human brain com-
pared to manually designed feature extraction in traditional
methods. In the current application, the deep learning based
pavement crack detection method can be divided into three
categories, e.g., patch classification [13], object detection
[14], and semantic segmentation [15]. The patch classifi-
cation methods divide the pavement image into several
blocks of the same size and then classify each block into the
corresponding category. The object detection methods frame
the crack in the pavement image using a bounding box.
Furthermore, the semantic segmentation methods classify
each pixel in the pavement image. Hence, the semantic
segmentation methods can achieve the pixel-level inspection
result and obtain more detailed characteristics of distress,
such as precise length and area of the crack. However, the
low accuracy and high false positives of the semantic seg-
mentation when the pavement conditions change limit the
promotion in practice.

Concrete pavement is a rigid pavement, while asphalt
pavement is a flexible pavement. Cracks have different
characteristics in different pavements. The crack on the
concrete pavement has a more obvious and complex
boundary compared to the crack on the asphalt pavement
and often has a jump down in pavement depth changes. And
joints between the concrete blocks and the indentations in
concrete pavement cause the more complex surface texture
than asphalt pavement. The complex texture will bring in-
terference to the identification of crack. Most of the research
on pavement distress and the pavement datasets constructed
nowadays focus on asphalt pavement distress [16, 17]. The
effectiveness of transferring the method applied for asphalt
pavement distress detection to the concrete pavement is
substantially reduced. It is necessary to establish a concrete
pavement distress dataset and a method to detect cracks in
the concrete pavement.

In this work, a feature extraction branch based on graph
neural network is added to a typically semantic segmenta-
tion network to form a new end-to-end network structure.
And experiments are conducted on concrete pavement crack
segmentation to evaluate the performance improvement. In
this regard, the main contributions of this work can be
summarized as follows:
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(i) A semantic segmentation network framework with
graph neural network branch is proposed to seg-
ment the concrete pavement crack. The perfor-
mance of crack segmentation is significantly
improved based on the original segmentation net-
work. In addition, the inclusion of the graph branch
improves the continuity of crack segmentation.

(ii) A generation method to convert images into graphs
is designed, which enriches the feature map di-
mension of images.

(iii) A new dataset of 3D concrete pavement crack
images is established and applied to evaluate the
proposed network.

The rest of this paper is organized as follows. Section 2
describes the related research on pavement crack detection
and the development of graph neural networks. Section 3
introduces the detailed architecture of the segmentation
network with graph neural network branch. Section 4
represents the experiment setting. Section 5 discusses the
experiment results. Finally, Section 6 concludes the work
and presents the findings of this research.

2. Related Work

2.1. Semantic Segmentation. The semantic segmentation
method is the classification of the category for each pixel in
the image. The fully convolution network (FCN) proposed
by Long et al. is the milestone for semantic segmentation
based on deep learning [18]. They apply a 1 x 1 convolution
layer instead of a fully connected layer as a classifier. Hence,
the output of the network is transformed from a vector to a
matrix, where the value of each pixel represents the prob-
ability that the corresponding pixel of the input image
belongs to a specific class. Moreover, an encoder-decoder
structure is added to the network design for semantic
segmentation [19]. This structure can improve computa-
tional efficiency and reduce the overfitting problem. In
simple terms, the encoder process extracts the feature of the
input image by convolutional computation and pooling, and
the decoder process restores the feature map to a matrix with
the same size as the input by upsampling.

The semantic segmentation method used in pavement
crack detection is to classify each pixel of the image into two
categories, crack pixel and none crack pixel. Due to the easy
obtaining of pavement crack’s geometric characteristics such
as length, area, and bounding box, semantic segmentation is
widely popular. Yang et al. offer an FCN-based method to
segment crack pixel in the pavement image and acquire the
length, width, and mean width of crack [20]. Liu et al
develop a U-Net based model to segment concrete cracks
[15]. Qu et al. improve crack segmentation performance
with attention mechanism and apply their model in asphalt
pavement and concrete pavement crack segmentation [21].

2.2. Graph Neural Network. Graphs are all around us. The
graph has two elements consisting of nodes and edges, which
represent a set of objects and the connection between them,
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respectively [22]. Anything with a connection relationship
can be described as a graph, e.g., image, text, and social
network. Motivated by the neural network and deep
learning, new significant operations have rapidly developed
over the past few years to handle the complexity of graph
data. Compared to the other networks, the graph neural
networks (GNNs) need two vectors or matrices as input,
representing the node and the edge attributes of the graph.
Sanchez-Lengeling et al. propose the Spectral network and
use a learnable diagonal matrix as the filter to process graph
[23]. However, the operation is computationally inefficient
and the filter is nonspatially localized. Inspired by the 2D
convolution in image computing, Kipf and Welling develop
the graph convolution operation to alleviate the overfitting
problem and promote the computationally efficiency [24].
To address the large-scale graph computation problem,
spatial approaches based on the graph convolution are
developed to adjust to different sized neighborhoods and
maintain the local invariance [25-27]. Zhang et al. improve
the graph network’s ability to extract node relationships by
adding a cross attention module and apply the graph net-
work to metro passenger flow prediction, achieving state-of-
the-arts performance [28, 29].

2.3. 3D Technology in Pavement Detection. The 2D images
describe the grey-scale feature of the pavement surface,
which is the most used method in traditional pavement
distress detection. However, detection on 2D images is
susceptible to surface oil, pavement texture, lighting con-
dition, etc. 3D images describe the depth changes of pave-
ment surface, which can overcome the shortage above and
usually present more detail of distress like depth. With the
development of 3D sensors and image processing technol-
ogy, the potential of 3D measurement in pavement detection
has earned widespread attention. 3D technologies applied in
pavement inspection include 3D structure light [30, 31], laser
scanning [32], and binocular stereo vision [33]. There have
been attempts to combine 3D techniques and deep learning
methods for pavement inspection. Zhang et al. propose a
model called CrackNet based on a convolution neural
network to detect crack on 3D asphalt pavement image and
significantly outperforms the traditional approaches in terms
of F-measure [34]. Lang et al. develop a multiscale clustering
model for detecting different types of cracks, including linear
and netted types on the 3D pavement surface [35]. However,
most of the existing studies have focused on detecting asphalt
pavements and less on the detection of concrete pavement
distress. In this work, a concrete pavement dataset with 3D
images is built for pavement crack detection and validates
the accuracy of our proposed method.

3. Methodology

In this section, the graph neural network feature extraction
branch and the main body of semantic segmentation are first
introduced, respectively. Then, the proposed network
structure for crack detection on the concrete pavement is
described.

3.1. Graph Neural Network Branch. Adding new feature
extraction branches to enrich feature map information is a
common approach to improving the accuracy of semantic
segmentation networks. Image is similar to graph data, and
each pixel in the image can be regarded as a node in the
graph. The relationship between every pixel can be con-
sidered as an edge in the graph, as shown in Figure 1. Note
that the generation of nodes and edges in a graph is designed
according to the realistic task. In this work, the node and its
attribute generate from a group of pixels in a region. The
image with the size of 512 x 512 is divided into 1,024 (32 x
32) patches with 16 x 16 size. Each patch forms a node, and
the mean value of the pixels in the patch is calculated as the
attribution of the node. In general, the neighbors of a node
can be the nearest neighbor node or the node in the interval,
even all other nodes. In this work, we assume that each node
connects to the node with the interval of D. The connection
means that the nodes attribution can be transferred by the
edge in the graph neural network. There is an instance to
describe the neighbors of a node when the D is 2, as il-
lustrated in Figure 2. The edge information will be respected
by the adjacent matrix as the input to the graph neural
network.

The transform methods from image to graph including
the node generation and the edge generation are determined.
Then, the feature extraction branch is described. This part of
the work is related to the GraphSAGE (Graph SAmple and
aggreGatE) method proposed by Hamilton et al. [25].
GraphSAGE is an inductive learning framework that can use
the vertice attribution to generate unknown node embedding.
The feature extraction based on GraphSAGE can be divided
into three steps as illustrated in Figure 3. In the first step,
sample the local neighborhood and generate the embeddings
for nodes. Considering the computing efficiency, sampling
range K is proposed to control the number of neighboring
nodes sampled. According to the edge generation, a node has
at least 5 neighbors, and at most 12 nodes in this work. When
K is larger than the number of node neighbors, the sampling
with put-back is completed until K nodes are sampled, when
not, the sampling without put-back is used. In the second step,
choose an aggregator and aggregate feature information from
neighbors. Since the neighbors of the node in the graph are
disordered, the aggregator function needs to be symmetric,
which means that the output of the function remains the same
when the order of the inputs changes. A mean aggregator is
applied in this step to connect the node and its neighbors and
calculate the mean value of each dimension of the node at-
tribution vectors. Through an activate function layer, the
target representing vector of node is obtained. This step is
equivalent to the convolutional computing for feature ex-
traction in a convolutional neural network. In the third step,
the aggregate information output from step 2 can be applied
to the downstream tasks such as classification and prediction.

3.2. Semantic Segmentation Main Body. The semantic seg-
mentation task acquires a combination of local information
based on high-resolution images and global information
based on low resolution to classify each pixel. Common
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FIGURE 1: Schematic of transforming an image into a graph.

segmentation networks utilize an encoder-decoder frame-
work to obtain the features of different levels of different
scales. The main body of the network structure proposed in
this work is related to U-Net with an encoder and decoder
framework [19]. The U-Net structure is simple and easy to
modify, as shown in Figure 4. Symmetry is one of the
characteristics of U-Net. The left of Figure 4 is the encoder,
while the right is the decoder. The encoder is responsible for
the extraction of the image feature and the decoder is re-
sponsible for recovering the image resolution. In the en-
coder, there are five encoding blocks. Each encoding block
consists of one convolutional layer with kernel size of 3 x 3
(deep blue arrow) and one maximum pooling layer (red
arrow). The rotated numbers represent the width and the
height of the images or the feature maps, while the normal
number represents the number of channels. The convolu-
tional layers do not change the sizes and channel numbers,
but the maximum pooling layers do. After the maximum
pooling layer, the output is halved in width and height but
doubled in the number of channels compared to the input. The
flow of the size and channel number is listed in order, 512 x
512 x 16,256 x 256 x 32,128 x 128 x 64, 64 x 64 x 128,32 x
32 x 256,16 x 16 x 512 (weight x height x channel number).
In the decoder, there are five decoding blocks correspondingly.
Each decoding block consists of one convolutional layer and
one deconvolution layer (light blue arrow). The effect of the
convolutional layer in the decoder is the same as in the encoder.
The deconvolution layer is to recover the image resolution in
the contrast to the pooling layers. After the deconvolution
layer, the output is doubled in width and height but halved in
channel number compared to the input. The flow of the size
and channel number in 'decoder is list in order, 16 x 16 x
512,32 x 32 x 256,64 x 64 x 128,128 x 128 x 64, 256 x 256 X
32,512 x 512 x 16 (weight x height x channel number).
Different from the encoding block, the input in the decoding
block is not only the output of the upper decoding block but
also includes the output from the encoding block at the same
level. This design facilitates the integration of high-resolu-
tion detailed features and the low-resolution semantic fea-
ture to promote performance. And the ReLu activate

. Center node

. Neighbor node with
connection to the center node

O Node without connection
to the center node

F1GURE 2: Nodes and neighbor nodes. Blue represents the node has
edge to the red node. White represents the node has no edge to the
red node.

function is added after each convolutional layer to boost the
nonlinearity of the network. In the end, a convolutional layer
with a kernel size of 1 x 1 is applied to classify the pixel into
the corresponding class. The size of the output is 512 x 512
the same as the input. The number of channels is 2. The value
of each pixel in output represents the probability of the
corresponding pixel in the input belonging to a certain

category.

3.3. Network Structure. By integrating the graph network
branch in the U-Net, the network is developed, namely, GA-
Unet (Graph branch Added Unet). The network structure is
illustrated in Figure 5. Firstly, the input image is processed
through the encoder in semantic segmentation main body
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FiGure 3: The process of feature extraction based on GraphSAGE(25). (a) Sample neighborhood, (b) Aggregate feature information from
neighbors, (c) Predict graph context and label using aggregated information.
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F1GURE 5: The structure of the whole network. The top-line describes the processing of the image in the U-Net. The number above the feature
map presents the number of channels. The number beside the feature presents the size of the feature map. The following line describes the
processing in the graph neural network branch. And the feature map in the U-Net and the graph network branch are fused after the first

decoding.

and the graph network branch, respectively. In graph net-
work branch, the image input with 512 x 512 size is
transferred into a graph with 1024 (32 x 32) nodes and 5,174
edges. Through sampling, aggregating, and predicting in the
graph network branch, the feature map with the size of 32 x
32 is obtained at the graph level. Then, the feature maps
obtained by the graph branch and by the encoder are fused
after the first decoding block and input to the subsequent
decoding blocks.

4. Experiments and Results

The proposed method was evaluated on the self-captured
concrete pavement crack dataset, namely, the CPC dataset.
The performance of the proposed graph network branch was
evaluated by comparing it with U-Net methods.

Furthermore, the proposed network was implemented using
Pytorch on a personal computer with an Intel i7-11700K
CPU @3.60 GHz, 64 GB memory, and an NVIDIA RTX3090
GPU with 24 GB memory.

4.1. CPC Dataset. The CPC dataset consisting of 3D con-
crete pavement crack images is built to train and test the
proposed network in this work. The detection vehicle can
scan the pavement at different collection speeds ranging
from 35 to 100 km/h (20 to 60 mi/h). The pixel resolutions of
the 3D pavement data are both 2048 x 2048, covering
pavement surfaces of more than 2m in width and 2m in
length. Moreover, the CPC dataset contains images with
various changes in pavement conditions aiming at the ac-
curacy of crack recognition. There is no overlap between any
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FiGURE 6: The result of GA-Unet and U-Net at different epoch. (a) original pavement image. (b) ground truth. (c) the results at epoch 50.
(d) the results at epoch 100. (e) the results at epoch 200. (f) the results at epoch 300. In (c), (d), (e), (f) images, the upper line is the result of U-

Net, and the down line is the results of GA-Unet.

TaBLE 1: The comparison of the test results on the concrete
pavement image dataset.

Precision Recall F1 IoU
AutoEncoder 0.38 0.53 0.42 0.28
PSPNet [37] 0.65 0.44 0.52 0.35
U-Net [19] 0.67 0.37 0.45 0.31
KiU-Net [38] 0.38 0.69 0.46 0.31
GA-Unet(ours) 0.63 0.49 0.53 0.37

2 images, and no more than 50 images are from the same
pavement section. The 3D pavement image input into the
network will be resized into 512x 512 to reduce the
computational effort. The final dataset consists of 1,452
images. After collection, the labeling work is conducted.
The ground truth of cracks on all pavement images is
manually labeled on pixel level by our research team. To
ensure the accuracy of the ground truth, three rounds of
labeling work were applied. In the first round, several
well-trained operators label cracks manually on the
pavement image. In the second round, the operators in the
first round exchange their labeling results and check them.
In the third round, the experts further confirm the
availability of ground truth in each pavement image of the
entire dataset. And finally we get accurate ground truth
images. The ground truth image is a binary image, in
which 0 represents the pavement background pixel and 1
represents the crack pixel. Then, the CPC dataset with
ground truth is divided into two parts, 1,352 images for
training and 100 images for testing.

4.2. Training Settings. 'The input image size of the network is
resized into 512 x 512. The epoch number is 300. And Adam
[36] is chosen as the optimizer with a batch-size of 1 and
weight decay of 0.00001. Training is started with a learning
rate of 0.00005. The cross-entropy loss function is chosen as

the loss function in training, and the definition is shown in
the following equation

. 1<
loss function = N ZYilog (y:)s (1)

where N means the category number which is 7, Y; is the
ground truth representing whether the pixel belongs to
category 7, 1 for yes and 0 for no. And y; is the prediction
probability that the pixel belongs to category i.

4.3. Evaluation Criteria. Four metrics are introduced to
evaluate the performance of crack semantic segmentation,
Precision (Pr), Recall (Re), F1, and Intersection over Union
(IoU). Precision describes the ratio of all pixels predicted to
be the crack type that is actually positive. Recall shows the
completion of crack prediction, which is a ratio of all crack
pixels in the image which is predicted to be crack. F1 is the
metric combining precision and recall. IoU calculates a ratio
between the number of true positives and the sum of the true
positives, false negatives, and false positives. The definition
of Pr, Re, F1, and IoU are as follows:

.. TP
Precision = ————,
TP + FP
TP
Recall = ———,
TP+ FN
(2)
Precision x Recall
F]. = 2 X — . >
Precision + Recall
1 GroundTruth N Prediction
ol

- GroundTruth U Prediction’

where TP (True Positive) means the number of crack pixel
predicted to be cracks, FP (False Positive) means the number
of pavement pixel wrongly predicted to be cracks, FN (False
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FIGURE 7: The segmentation results. (a) the original image, (b) the results of AutoEncoder, (c) the results of PSPNet, (d) the results of U-Net,
(e) the results of KiU-net, (f) the results of GA-Unet, (g) ground truth of crack in pavement image.

Negative) means the number of crack pixel wrongly pre-  evaluate the network. The following are the results and
dicted to be pavement pixel. discussion of the experiment.

5. Results and Discusses . ‘ )

5.1. Learning Process Experiment. Figure 6 shows the result
To evaluate the performance of the proposed GA-Unet, the ~ of U-Net and GA-Unet at different epochs. The effort of
test dataset selected from the CPC dataset is applied to  concrete pavement crack segmentation is improving and the
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FiGuRre 8: Typical errors resulting from PDSNet. (a) pavement images, (b) GA-Unet, and (c) ground truth.

results become closer to the ground truth with the epoch
increasing regardless of the U-Net or GA-Unet. However,
the GA-Unet is more accurate than U-Net for the same
training epoch. The addition of the graph branch can im-
prove the learning ability, enhance feature extraction ca-
pability, and boost the convergence speed.

5.2. Comparison Experiment. The comparison experiment
between the AutoEncoder, PSPNet [37], U-Net [19], KiUnet
[38], and GA-Unet is conducted, and the results are illus-
trated in Table 1 and Figure 7. AutoEncoder is the simplest
segmentation network with only an encoder and decoder
structure. U-Net is the segmentation backbone in KiU-Net
and GA-Unet. KiU-Net adds an over-complete represen-
tation branch based on U-Net to promote the performance.
GA-Unet adds the graph network branch to enrich the
feature represents. The U-Net can be regarded as the original
semantic segmentation network compared to the GA-Unet.
The comparison result between U-Nnet and GA-Unet can
verify the validity of graph network branch. The perfor-
mance is represented by four metrics, and the optimal results
have been highlighted in bold in Table 1. GA-Unet achieves
the optimal results in the metrics of F1, and IoU, which are
0.53 and 0.37, respectively. In addition, GA-Unet has a
significant improvement in Recall, F1, and IoU metrics
compare to the U-Net, which is increased by 0.12, 0.08 0.06.
Although GA-Unet is weaker than U-Net in terms of
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(b)

Precision and KiU-Net in terms of Recall, GA-Unet achieves
better performance in segmenting cracks in concrete
pavement in general. Figure 7 shows the comparison be-
tween the segmentation image of PSPNet, U-Net, and GA-
Unet. The quality of the crack segmentation conducted by
GA-Unet achieved better results than U-Net under different
conditions.

5.3. Discussion. Convolutional computation is a common
image processing method widely used in computer vision as
a feature extractor for images. However, the convolutional
network often uses the convolutional kernel with a small size
(usually 3 x 3), which may lead to the problem of large and
long object detection such as crack. The graph represents the
relationship between nodes. Transforming the image into a
graph can generate the connection between every region of
the image. Then, the feature maps processed by the graph
branch represent the relationships between regions and
describe the characteristic of cracks at large scales, such as
whether the cracks span multiple regions. This design is
validated in Figure 7. Note the first four images are typical
cases of single long crack segmentation, including transverse
cracks and longitudinal cracks. The segmentation results by
GA-Unet are more continuous than the U-Net model, which
means the relationship between the regions extracted by the
graph branch can enhance the detailed segmentation of
continue cracks.
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Moreover, it is impressive that adding a graph branch
can improve the robustness of the network. The fifth and last
two images show the results in light crack segmentation and
the multiple cracks segmentation. The result of GA-Unet is
significantly outstanding than the other methods. Although
there is a disparity between the results of GA-Unet and the
ground truth, the potential of adding graph branches has
been validated experimentally.

However, compared to the ground truth, the GA-Unet
can still be improved. In the first row of Figure 8, the
concrete joints are identified as cracks, due to the similar
feature between joint and crack. The joints can be con-
sidered as a separate category for detection to reduce the
mistake of cracks. In the second row in Figure 8, the pixels
of the shallow crack are ignored by GA-Unet method, and
the same situation appears in the left crack in the last row.
This indicates that the feature extraction branch in the GA-
Unet is not effective enough in extracting shallow cracks,
and the next step can be considered to enhance the feature
of shallow cracks and improve the feature extraction
branch. In the last row of Figure 8, the performance of GA-
Unet is worse at the junction of shallow and heavy cracks
and inside the severely broken area, which may be influ-
enced by the deeper crack, and the accuracy of the sur-
rounding shallow crack is inhibited, so we can consider the
post-processing methods to make corrections, for example,
using the CRF (Conditional Random Field) method to
cluster the surrounding pixel with similar feature to im-
prove the effect.

6. Conclusion

In this work, an end-to-end concrete pavement crack
segmentation network called GA-Unet is proposed, for
which a graph feature extraction branch is developed. The
image can be processed as a graph through the graph
generation method. The graph branch extracts the detailed
graph features of the concrete pavement crack. The graph
feature is fused with the image feature extracted by encoder
structure, which is helpful to improve the continuity of
crack segmentation. After the feature fusion, the new fea-
ture map is applied to the decoder to complete the
segmentation.

The crack segmentation methods based on deep learning
need sufficient data to support training. Hence, a concrete
pavement 3D image dataset has been built. Furthermore, we
evaluate our method on the dataset. The results of experi-
ments prove that the graph branch can significantly improve
the performance of crack segmentation based on the existing
network.
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With the rapid development of computer control and vehicle intelligence technology, speed and safety of vehicles have been
greatly improved, and the requirements for vehicle control performance are getting higher and higher. For the direct braking force
control, in the process of deceleration, a fast braking response can be obtained, which improves the braking performance and
vehicle safety. This paper concentrates on direct braking force estimation and control strategy using a tire inverse model based on
the antilock braking system, and to solve the problem of the existing ABS system is mainly antilock braking function, no direct
braking force control function. Taking magic formula model for reference inverse model, the critical parameters under different
road surfaces are obtained according to experience data. Then, the desired slip ratio corresponding to braking force can be
obtained via fast tire inverse model look-up table method. The tyre friction self-adjustment decision making is obtained using the
tire inverse model method. A direct braking force antilock braking system (DBF-ABS) controller is built using the nonsingular fast
terminal sliding mode method. The simulation results indicated that the control strategy has adaptability and stability to the

change of road conditions.

1. Introduction

On behalf of adapting to the complex working conditions
and enhancing the vehicle’s safety and comfort, various
types of automotive active electronic control systems are
presented. The research on integrated vehicle dynamics
control already became an urgent problem to be solved and
has attracted extensive attention [1-3].

These research studies have improved vehicle perfor-
mance to a certain extent but still have some problem to be
solved. Some studies focus only on the design of the main
circuit [4-6]. The calculated stable side forces and total yaw
moments are applied without considering targeted pro-
duction and allocation manners. The influence of tire
dynamics is essentially treated as nominal parameters,
such as the basic angular stiffness when the problem
formulates. But there is an interaction between the non-
linearity of tire characteristics and vehicle dynamics

[7-10]. However, these studies based on the main loop
design can provide the maximum performance margins
and theoretic insight, and the vehicle motion force gen-
eration process does not fully take the special interactions
between tires and the road into account. It can lead to
insufficient control accuracy or overly optimistic perfor-
mance results. When need more tire force, for example, if
the tires have been in big slip rate, applying large braking
force will only make things worse. More importantly, the
realization of tire forces is still a critical problem in relation
to handling property [11-14].

This paper concentrates on direct braking force esti-
mation and control strategy using tire inverse model based
on the ABS. The main content of the rest section of the
paper is as follows. Section 2 discusses the development
and new features of vehicle integrated control and direct
torque ABS control technology in recent years. Section 3
describes tyre friction self-adjustment decision-making
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method and direct braking force DBF-ABS controller
design. The results of simulation analysis are presented in
Section 4. The conclusions and future related work is
provided in Section 5.

2. Literature Review

ABS system has been developed since the early 20th
century [15, 16]. At the end of 1970s, the great progress of
digital electronic technology and large-scale integrated
circuit laid the technical foundation of ABS. After the mid-
1980s, the development of ABS paid more attention to its
own cost performance ratio [17, 18]. The work during this
period has increased the popularity of ABS. The ABS
system is considered as the most important safety technical
achievement since the adoption of safety belt in auto-
mobiles [19, 20].

With the improvement of vehicle speed and intelligent
technology level, the related vehicle control technology
based on ABS has also achieved new and rapid devel-
opment. The EBD and ABS are integrated to form the
automobile auxiliary integrated system using CAN bus
[21]. Brake-by-wire control systems for intelligent vehi-
cles are studied [22]. In the past decades, quite a few
advanced intelligence, automatic control, and computer
technologies have been widely used in ABS for smart
vehicles, for example, distributed and self-adaptive ve-
hicle speed estimation and control [23]; optimal slip rate
is obtained and tracked based on the multiphase method
[24, 25]. Besides, a nonlinear predictive control strategy
was proposed [26, 27].

Especially with the improvement of vehicle integra-
tion, collaborative or optimal control has become a new
research hotspot, such as, combined emergency braking,
integrated vehicle chassis control [28-30], and self-
learning adaptive control [31, 32]. In addition, with the
development of modern computer and communication
technology, some new technologies are applied to reduce
trafic congestion and vehicle driving safety, such as
advanced driving assistance system and autonomous
driving [33-35]. In particular, the development of in-
telligent networked vehicle technology has further im-
proved vehicle safety [36, 37]. Based on these previous
studies, this paper concentrates on direct braking force
estimation and control strategy using the tire inverse
model based on the ABS to solve the direct braking force
control problem.

3. Method

In this section, the control structure of the direct braking
force self-adjustment decision making and control is
designed. The desired direct braking force friction is esti-
mated and tracked. Based on the estimated values of tyre
friction, the desired slip ratio can be obtained, which is
corresponded with the specific desired tyre friction, using
the reverse look-up table method. Then, based on the tire
braking force model, the terminal sliding mode method
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ensures that the antilock braking system can achieve the
desired slip rate to obtain direct braking.

3.1. Control Structure. The direct braking force estimation,
self-adjusting decision, and control structure are shown in
Figure 1. The details are as follows:

Step 1: the driver commands are received from the
brake pedal system. The control inputs, namely, wheel
control moments, are obtained by a servo loop to
distribute force and torque to the four tire-road contact
blocks.

Step 2: the direct braking force is estimated using direct
braking force quick look-up table based on tire inverse
model. The ideal tyre-road friction is obtained by direct
braking force decision-making system.

Step 3: the control target error is calculated and direct
braking target control force is obtained and assigned by
direct braking force control system.

At last, simulations and results are analyzed based on the
vehicle dynamic model, including tyre-road dynamic model,
vehicle dynamic model, and braking force sensor model.

3.2. Vehicle Model. Tire-road friction has obvious nonlinear
characteristics, which should be estimated. An attempt has
been made to measure braking torque using force sensors
mounted on caliper mounts. Assuming that braking torque
can be obtained from sensors, then, tyre-road friction can be
calculated [24].

In Figure 2, vehicle dynamics and brake model are built
as follows:

0= Zi:FL,FR)RL,RRth,i
- >

M
R,.F,.—T,.
(‘:)i _ b,it xb,i h,l’
b (1)
FXbl_A‘li.FZl’
1
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where M is the mass of vehicle, F,; is the friction force, w; is
the angular speed, J,; is the wheel inertia, R, ; is the radius of
the vehicle wheel, F ;,,; is the brake force measured by force
transducer, T, is the brake torque, g is the acceleration of
gravity, F,; is the vertical load of the wheel, and i is the front,
rear, left, and right positions wheel.

3.3. Tyre Model. The tire model is derived from Magic
formula. Magic formula is the universal semiempirical tire
model [38]. The general form is as follows:

¢ = Asin[Bjarctan{C,A — D; (C,A — arctan(CA))}],  (2)

where y; is the longitudinal friction coefficient, C; is the
stiffness factor of the tire, A is the longitudinal slip of the
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FIGURE 1: Schematic diagram of direct braking force estimation and control configuration.
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vehicle, 4; is the peak value, B; is the shape factor, D; is the
curvature factor.

3.4. Direct Braking Force System Controller Design. In this
section, a direct braking force controller based on ABS with
terminal sliding mode control method is proposed, as shown
in Figure 3.

After introducing the controller, the parameter uncer-
tainty and the influence of external interference can be
eliminated.

The following equation is the sliding surface designed in
this paper:

d(FDir_Bra.k - FRef_Brak)

SDBE—ABS =

de + E(FDir_Brak - FRef_Brak) + ((FDir_Brak - FRef_Brak

where e € R; &, { are constants, and £>0, {>0; a, b are
positive odd integers. At the same time, a <b <2a.

The dynamic adjustment process of sliding mode
control consists of arrival stage and sliding control two
stages. To make the switch manifold reachable, smooth,
and fast convergence in a finite time, a “terminal attractor”
is proposed to improve chatter less control while taking

) (alb)’ (3)

full advantage of nonsingular fast terminal sliding mode
control. This controller sliding surface design as follows:

3 (g/f) (p-a/q)
SDBE-ABS = (_CS - 959 )(F Dir_Brak — £ Ref,Brak) , (4

where ¢ € R*; 9 € R*; m>0 are odd integers. #>0 is odd
integers. At the same time, 0<g/f <1. And the direct
braking force antilock braking control law is shown below:
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FIGURE 3: Schematic of direct braking force antilock braking system controller.
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In the above equation, Fp,; grac = Fir Brak — FRref Brak> SICE
0<q — p/q, the system eliminates the singularity problem and
can converge to system equilibrium by tracking the sliding
surface.

4. Simulations and Analysis

On behalf of proving the effectiveness of the direct
braking friction self-adjusting decision and controller,
simulation is carried out in this section. Firstly, the
characteristics of tyre friction are presented by using
three sets of different test points, analyzing the impact of
these test points on vehicle speed control and vehicle
braking distance. Then, the superiority of the nonsingular
fast terminal sliding mode method-based DBF-ABS
controller is compared with fast sliding mode control and
Bang-Bang-based ones. Finally, the overall performance
of friction self-tuning control in pu-split condition is
achieved.

4.1. Parameter Set. Parameters required to build the sim-
ulation and analysis system are listed in Table 1.

The different road surface Magic formula empirical
parameters can be obtained in Table 2. Based on the above
information, A;, B;, C;, and D, can be constrained in the
range of corresponding different roads [24].

4.2. Simulations of Quasilinear Braking Area Characteristics.
The braking force between the tire and the ground has a
characteristic that are transitioned from linear to nonlinear,
including two areas quasilinear braking area and emergency
braking nonlinear area, as shown in equation (2). In order to
better estimate and control the direct braking force, it is
necessary to analyze the interaction characteristics of these
two regions. In the tyre friction self-adjustment decision

Inv_Ref_Brak ) .

making, control sets in quasilinear braking area points
A € [0.01 ~ 0.10] have been are selected 3 points, thatis A, B,
and C. And based on these points, the simulations are
conducted. The results can be obtained in Figures 4 and 5.
The control points of (1, F.;) are within the area that
A € [0.01 ~ 0.10]. And as is shown in Figure 5, little change
is present in control slip rate, so there is a little effect on
braking distance.

4.3. Simulations of Emergency Braking Area Characteristics.
The control set points in emergency braking area, in
A € [0.10 ~ 0.20], have already selected 3 points, that is A, B,
and C. Based on these points, the simulations are conducted.
The results can be obtained in Figures 6 7.

The control points of (A,,, F,;) are within the area that
A € [0.10 ~ 0.20]. From Figures 6 and 7, although the step of
the slip rate is the same as that of case 4.2, it has a greater
impact on the braking distance. The result is significantly
improved compared with Case 4.3, because the identification
point information is more applicable to the nonlinear
variation of tire-road friction. In conclusion, the sampling
point A contributes to more impact on the braking distance.

4.4. Simulations under u-Split Condition of Different Road
Surface. The braking force varies with different road envi-
ronment. The scenarios of the vehicle running under y-split
condition of different road surfaces are chosen to verify the
self-tuning and adaptive performances of proposed esti-
mator and controller, as shown in Figure 8.

Set the constant reference friction force sss in this p-split
simulation. The road conditions change between the asphalt,
dry road and the asphalt, wet road at 1.5s, as shown in
Figures 9 and 10. In figures, the friction and vehicle ac-
celeration have not changed drastically. As shown in Fig-
ure 9, although the friction force is same, the figure displays
that the reference value at 1.0 seconds decreases from about
0.054 to 0.036 as the road conditions change. As shown in
Figure 10, although the friction force is same, the vehicle
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TABLE 1: Parameters used in simulations.
Notation g acceleration of gravity J, wheel inertia R, wheel radius M vehicle mass
Unit m/s? kg - m? m kg
Value 9.8 12 0.25 1530
TABLE 2: Magic formula parameters of different roads.
Road Snow Cobblestone (wet) Asphalt-wet Cobblestone (dry) Concrete (dry) Asphalt (dry)
A 0.20 0.40 0.80 0.85 0.37 1.10
B; 1.45 1.45 1.60 1.40 1.64 1.55
C; 17.43 14.02 15.63 10.09 13.42 13.42
D; 0.65 0.60 0.45 0.64 0.53 0.53
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Tire-road friction (N)

Vehicle acceleration (m/s?)

maintains the same acceleration on different road surfaces.
However, the figure displays that the acceleration value at 1.5
seconds decreases as the road conditions change. The results
shows that the proposed self-tuning controller can estimate
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FIGURE 9: Reference and real value of friction.
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and keep the tracking value consistent with the reference
value under different road surfaces.

Furthermore, the proposed direct braking force con-
troller (controller A) is compared with fast terminal sliding
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mode controller (controller B) and Bang-Bang controller
(controller C). From Figure 9, the controller A converges
between reference and real value of friction faster than
controllers B and C. In Figure 10, the results are similar for
vehicle acceleration control. From the results, although the
performance of the Bang-Bang controller is not as good as
the other two, it is often used in engineering due to its simple
structure and low requirements for the control processing
unit. The figure shows that the proposed DBF-ABS con-
troller can keep the tracking value consistent with better
performance.

5. Conclusions and Future Work

Based on the existing ABS, a kind of direct braking force
estimation and control strategy based on DBF-ABS control
system was proposed to solve the problem of the existing
ABS system which is mainly antilock braking function, no
direct braking force control function. For the direct braking
force control, in the process of deceleration, a fast braking
response can be obtained, which improves the braking
performance and vehicle safety. Firstly, taking magic for-
mula model for reference inverse model, the critical pa-
rameters under different road surface are obtained
according to experience data. Then, the desired slip ratio
corresponding to braking force can be obtained via tire
inverse model look-up table method. The tyre friction self-
adjustment decision making is obtained using the tire
inverse model method. A direct braking force antilock
braking system (DBF-ABS) controller is built using the
nonsingular fast terminal sliding mode algorithm. Finally,
the simulations and analysis results show that the control
method has adaptability and stability under different
driving conditions.

Due to limited sensing equipment for direct braking
force control data acquisition, future work will be focused on
advanced sensing and data estimation. In addition, a wider
range of dynamic adaptive direct braking torque control and
matching with AEBS is also an interesting topic.
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Accurate travel time prediction is one of the most promising intelligent transportation system (ITS) services, which can greatly
support route planning, ride-sharing, navigation applications, and effective traffic management. Several factors, like spatial,
temporal, and external, have big effects on traffic patterns, and therefore, it is important to develop a mechanism that can jointly
capture correlations of these components. However, spatial sparsity issues make travel time prediction very challenging, especially
when dealing with the origin-destination (OD) method, since the trajectory data may not be available. In this paper, we introduce
a unified deep learning-based framework named joint spatial-temporal correlation (JSTC) mechanism to improve the accuracy of
OD travel time prediction. First, we design a spatiotemporal correlation block that combines two modules: self-convolutional
attention integrated with a temporal convolutional network (TCN) to capture the spatial correlations along with the temporal
dependencies. Then, we enhance our model performance through adopting a multi-head attention module to learn the attentional
weights of the spatial, temporal, and external features based on their contributions to the output and speed up the training process.
Extensive experiments on three large-scale real-world traffic datasets (NYC, Chengdu, and Xi’an) show the efficiency of our model

and its superiority compared to other methods.

1. Introduction

Travel time forecasting (TTF) has been considered as one of
the most essential services in intelligent transportation
systems (ITSs), which greatly supports route planning, ride-
sharing, navigation applications, and effective traffic man-
agement. TTF is widely used throughout location-based
applications and has become one of the most important
services in these applications. However, producing an ac-
curate TTF is still challenging since understanding the ef-
fects of different dynamic factors (such as urban flows, jams,
peak hours, and special situations like public holidays,
events, and vacations) on the travel time is a complex task
[1]. The dynamic factors can be categorized into four groups
as follows:

(1) Spatial dependencies: travel time is greatly affected
by the traffic conditions of each region and its

neighbors as well, so trips from areas with heavy
traffic will take a longer time than others.

(2) Temporal dependencies: traffic conditions during
different periods of the day affect the time of travel.
For example, road traffic congestion in downtown
cities is more severe during the morning and evening

peak hours.

(3) Periodical dependencies: periodic patterns such as
working hours, weekends, and public events can also
affect travel time, where traffic is more congested
during workdays and peak times, for example.

(4) External factors: several external factors have also a
big impact on the travel time fluctuations, such as
weather, holidays, and public events.

Due to the complexity of the spatiotemporal correla-
tions, TTF is a very challenging problem, so accurately
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predicting travel time has become a vital task recently [2, 3].
In general, the TTF has been treated as one of two methods
(route-based and OD-based) using statistical methods,
classical machine learning, and deep learning approaches.
First, for route-based approaches, GPS and time series
datasets of trajectories are useful in estimating travel times
for both road segments and the entire path. However, some
complex issues in this technique lead to inaccurate results
and costly computations, such as sparsity in trajectory data
and GPS devices’ errors. Second, the OD-based approach is
completely based on the shortest path between the origin
and destination points, which reduces the heavy compu-
tations and minimizes accumulated error rates of GPS de-
vices. Therefore, the aim of this work is to provide a solution
that improves the forecasting accuracy of the OD-based
travel time. Many methods have been proposed for TTF,
including linear regression (LR) [4], time-varying [5],
Kalman filtering (KF) [6, 7], autoregressive integrated
moving average (ARIMA) [8], seasonal ARIMA (SARIMA-
KF) [9, 10], and random forest (RF) with gradient boosting
(GB) (RF-GB) [11]. However, the major disadvantage of
these approaches is that they are inappropriate for capturing
the relationships between the complicated traffic factors.
Most recent researchers have proposed deep learning
models that strive to enhance TTF results, such as
backpropagation neural networks (BP-NNs) [12-14], long
short-term memory (LSTM) [15, 16], convolutional neural
networks (CNNs) combined with LSTM (CNN-LSTM) [17],
and attention mechanism [18].

Unfortunately, these approaches still suffer from some
difficulties, e.g., time-consuming and low speed during the
training process, so these methods cannot perform con-
current processing. The sparsity of traffic data represents
another concern of TTF approaches, where the historical
traffic data do not cover the entire region. On the other hand,
the correlations between the spatial features have been
considered in many existing works, but most of these
methods only focused on the local spatial correlations with
the observance of the GPS coordinate points’ nearby rela-
tionships [19-21]. Sometimes there may not exist similar
records with the same location in the historical traffic data.
Therefore, we attempt to solve this issue by considering the
records of distant neighbors. Besides, nearby regions can be
relevant and very similar in terms of traffic patterns during
various periods. Herein, finding a mechanism capable of
integrating relevant spatial and temporal features and si-
multaneously capturing the complicated dependencies be-
tween them can be very helpful. The supplementary critical
factors play a significant role in traffic pattern fluctuations,
especially within the extreme circumstances of these factors
as examples (weather conditions, public holidays, events,
and vacations). Thus, we model these features according to
the features’ correlations and dependencies between each
other and also consider the features’ contributions to the
output. The main contributions of our work can be sum-
marized as follows:

(i) Since data sparsity is a key challenge in real traffic
scenarios, we propose a method to solve this issue
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and achieve better results by splitting the city into N
x N grids using geo-hashing techniques and di-
viding the city into different clusters using the
K-means algorithm. This allows us to use neigh-
boring trips if there are no historical records or if the
historical records are insufficient.

(ii) We propose a new mechanism to capture both
spatial and temporal dependencies. This mechanism
comprises two modules: the spatial self-attention
module (SSAM) that is used to infer the spatial
relationships and the residual dilated convolutional
module (RDCM) to capture dynamic time
dependencies.

(iii) Moreover, we adopt a multi-head attention ap-
proach to learn the attentional weights of a multi-
modality factor (spatial, temporal, and external)
based on their contributions to the target. While
many previous works use RNNs in their models,
which are time-consuming in the training stage due
to their recurrent nature, we use a multi-head at-
tention mechanism that supports parallel comput-
ing in this work to dramatically reduce training
time.

(iv) We conduct extensive experiments using three
large-scale traffic datasets in three different cities
(NYC, Chengdu, and Xi’an). The results demon-
strate the efficiency of our model compared to other
methods under various traffic conditions.

The rest of this paper is organized as follows. Section 2
reviews the related works about the TTF approaches. Section 3
contains the problem definition and formalization, followed
by data processing and analysis. Thereafter, we describe our
proposed framework (JSTC) in detail. Section 4 discusses the
experimental results of our model compared to other
models. Finally, a summarized conclusion of this paper is
presented in Section 5.

2. Related Work

Generally, TTF methods can be classified into two cate-
gories: route-based and OD-based methods.

2.1. Route-Based Methods. Route-based methods can be
divided into two approaches.

2.1.1. Segment-Based Method. This method divides the road
into segments and then estimates the travel time for each
segment individually. Finally, the total travel time for the
entire path is the summation travel time of all segments
[22, 23]. Many researchers consider the TTF as time series
forecasting for a single road, such as the ARIMA model and
KF [24, 25], which have been applied in short-term fore-
casting for road section travel time. In addition, support
vector regression (SVR) was used due to its competence and
generalization compared to the historical average (HA)
method [26]. The gradient boosting decision tree method
(GBDT) has been also used to improve prediction accuracy
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on TTF problems [27]. Wang et al. [15] investigated the
sequence relationship between the road segments. They
treated the travel time of the segment as a sequence of time
series data and then used the LSTM model to solve this
sequence prediction problem. The spatiotemporal hidden
Markov method (STHM) was also applied to capture the
correlations among different traffic time series and then
predict the travel time [28].

2.1.2. Path-Based Method. Another group of researchers
combined multiple route segments as an entire path instead
of using one road segment to solve the TTF problem. This
considers the impact of intersections and traffic lights, which
leads to more accurate predictions in the path-based method
[21, 29]. A non-parametric technique for route TTF based on
floating car data (FCD) is the first to use the path-based
approach [30]. It accumulated the travel time of each road
segment from a low frequency instead of calculating the
travel time of the subpath. Rahmani in [31] also proposed a
route-based method for route TTF by combining multi-
traffic data sources collected by FCD and automated number
plate recognition (ANPR). In [32], the K-shortest path al-
gorithm was developed to infer the possible paths from each
OD trip and then predict the link travel time. However, these
techniques frequently suffer from dispersed data or the high
cost [21]. Nowadays, vast amount of taxi trajectory data is
collected by GPS equipment, so the TTF model for a direct
path was proposed based on a three-dimensional tensor by
applying two essential components; first, compute the travel
time for each segment by the tensor decomposition. Then,
find the most optimal elements that help to estimate the
route’s travel time [33, 34]. In [35], a deepIST model was
proposed that takes spatial and temporal dependencies of
traffic patterns into account by using map image informa-
tion of the trajectory to predict travel time. In this frame-
work, two CNN-based modules were combined to make
images of the route segments and then look for spatial and
temporal traffic correlations. To address the data sparsity
issue that may occur in some trajectory segments, a CNN
with LSTM model named DeepTTE was proposed for raw
trajectory data processing [17].

2.2. OD-Based Method. Many scholars have chosen the OD-
based methods to address the TTF issues, to minimize the
time needed and avoid the complex computations and
complicated implementation. In [20], the authors proposed
a multi-task representation learning model (MURAT) based
on OD data, which achieved promising results. However,
this method requires a long processing time and needs a lot
of data, which seems to be the main disadvantage of this
model.

The estimation of the average time of the urban routes
based on the candidates’ paths expected between OD trip
coordinates was proposed in [19, 32]. They combined the
trucks’ and taxis’ travel datasets to predict travel time be-
tween each grid zone, followed by the same methodology in
[32], while Faruk in [36] were the first scholars to develop a
model for the TTF based on travel distance predicted directly

through the OD coordinates’ GPS data. However, they ig-
nored delays in intersection queuing, which can reduce the
TTF prediction precision. Recently, an ensemble technique
with a multi-modality data source model named TTE-En-
semble was proposed in [21]. In this model, the ensemble
method was adopted with GBDT and DNN models. GBDT
and DNN predicted the travel time separately. Then, each
models’ results are fed to a decision tree algorithm as a meta-
learner model to achieve the final TTF for each OD trip.
However, this model basically relied on converting the
trajectory data into 2D square cells instead of real OD lo-
cations which means that all trips with the same grid ID will
have similar characteristics regardless of their distance.
Nevertheless, the GBDT and decision tree approaches are
unsuitable for big data due to the high computational cost.

Recently, the attention mechanism has been widely used
for traffic forecasting. In [37], the authors proposed a pair-
wise self-attention mechanism for capturing the spatial and
temporal dependency of traffic flow prediction. In [18], a
deep learning model named FMA-ETA was proposed, which
predicted travel time by combining a feed-forward network
and self-attention. This model focus on spatial dependencies
while temporal correlations were ignored. Besides, con-
volutional and graph neural networks have been used for
spatial and temporal correlations in traffic speed forecasting
[38]. A model called GSTGCN, which applies dilated con-
volutional network architectures to take the advantage of
dilation rate by increasing covered spaces between the in-
puts, was designed.

The literature survey concluded that most of the pre-
viously discussed methods did not completely handle the
TTF issues and achieve high accuracy due to the complexity
of spatial-temporal correlations learning, considering the
differentiation of the road network topology and extreme
temporal conditions. Also, there are some techniques that
could be beneficial for improving the accuracy of travel time
prediction. Inspired by the aforementioned ideas, we pro-
pose a JSTC framework relying on OD-based strategy, which
can achieve high accuracy with promising performance in
predicting the travel time for any given OD GPS points.
Herein, our work mainly addresses the sparse spatial data
problem and also focuses on the multi-component corre-
lations between spatial, temporal, and external factors,
which significantly affect the travel time.

3. Methodology

The aim of the traffic forecasting task in this paper is to
predict travel time between any pair of locations by means of
the observed historical traffic datasets. The general overview
of our methodology mainly consists of three main parts: data
preparation and preprocessing, analysis of traffic pattern
similarity, and introducing our proposed model in detail. To
begin, data preparation and preprocessing are critical, which
include data cleaning and removal of noise and outliers,
feature extraction, and geo-localization (clustering and grid-
partitioning). Then, we get through the spatial and temporal
dependencies’ similarity investigation to observe the influ-
ence of these components in traffic patterns’ fluctuation.



Finally, we introduce our prediction model, which aims to
predict the total travel time of the OD trips accurately. The
detailed descriptions of each of these parts are given in the
following sections. In advance, we formalize the traffic
forecasting problem in this work as in the following key
concepts and definitions.

3.1. Preliminaries. We define and formalize the TTF
problem as a travel time prediction task between two given
points (A) and (B).

Definition 1. OD-trip P ;: We define a trip from the historical
records as (P), which consists of 5-tuples (o, d, t, D, T), where
(0) is the pickup location (A), while (d) is the drop-off location
(B). Also, () denotes the trip time-stamp, which includes the
pickup and drop-oft times as (f,) and (t,), respectively. Both the
origin (A) and destination (B) are 2-tuple GPS coordinates, as
o; = (olat;,olong;) and d; = (dl at;,dl ong;), where trip
distance (D ;) can be obtained from these coordinates. To find
the matched historical trips for trip P;, we define a query (Q) as
follows:

Qz{Pi}iNzl' (1)

Definition 2. Spatial and temporal tensors: after splitting a
city into N x N grids (G) and K-clusters (C) as a geo-region
based on the OD-GPS coordinates, the GPS points have been
mapped into G and K as well. We define two 3D tensors
8" € PHoFsxt and 7' € PHF1 to represent spatial features
(8") including pick-up locations, drop-off locations, speed,
distance, cluster-ids, grid-ids, and other auxiliary features.
Besides, temporal (1) features include the day of the week
in-between (0-6), the hour of the day in-range (0-23), and
the day of the month as (0-30), where H represents the
historical record ID and F denotes spatial or temporal
features. Note that we consider the trip features as sequence.

Definition 3. TTF for trip P ;: we define the travel time T; as
the total time for the trip P ; from (A) to (B) as follows:

T, =t~ t,]. (2)

Hence, the main goal of our work is to estimate the total
time (T;) for an OD-trip (P ;) with an assist from the his-
torical trips by a query (Q).

3.2. Data Analysis and Preprocessing. In this paper, we used
three large-scale real-world traffic datasets (NYC, Chengdu,
and Xi'an) to verify the efficiency of our model across
various road network topologies and traffic patterns. The
first dataset is the NYC taxi dataset, which is provided by the
New York City Taxi and Limousine Commission (TLC) [39]
with billions of trip records from 2009 until now and
comprises 21 different variables, including GPS coordinates
for pick-up and drop-off, pick-up and drop-oft time-stamp,
total trip distance in miles, and other features. Following
[40], we extracted six months of the traffic data between 01/
01/2016 and 30/06/2016 for analysis and experiments in our
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work. The data we have selected contain approximately 75
million records, with over 12 million trips per month and
416,666 trips per day. The other two datasets are Chengdu
and Xi’an, which were provided by the “Didi Chuxing
platform” containing 9,707,970 and 5,272,758 taxi trajec-
tories in September and October 2018 for Chengdu and
Xi’an, respectively. The average trip per day is (123,463 and
133,843) trips, respectively (Table 1).

The analysis of traffic data can greatly assist in recog-
nizing the fluctuations in traffic patterns. Spatiotemporal
data cleaning and anonymous value filtration were con-
ducted by removing the invalid or uncharted trips’ records
that contain missing information in one or more parts of OD
GPS location, passenger count, and pick-up/drop-oft in-
terval-time records. We consider the trips out of the city
boundary as spatial outliers and clean them accordingly.
Also, all trips with a distance less than 500 meters and more
than 100kilometers have been cleaned. The temporal
components have been filtered by taking only the records
with the travel time less than 24 hours (86,400 seconds) and
over 3 minutes (180 seconds). In order to observe the traffic
patterns over the whole city, 15 regions were classified
according to the city’s boundaries. Then, each region was
grouped by temporal dependencies (day of month and day of
week) to obtain the similarity of week and day rhythms.
Considering the time-interval of the day as (0-23), we
measured the average rate of travel time for all trips within
the same spatial and temporal information, as well as traffic
intensity for all trips that flow in and flow out across these
regions. Figure 1(a) represents the average rate of trip
density, and we can see a low-density rate in the period from
midnight up to 6 AM. In contrast, we can notice that the
maximum density rate happens during two peak periods,
from 7 AM to 9 AM as morning rush hours and from 6 PM
to 8 PM as the evening rush period. For example, during the
early morning and evening rush hours, there is heavy traffic
congestion that means the movement will be slow. There-
fore, through the non-peak hours, traffic patterns seem to be
normal. Note that the average rate of travel time in
Figure 1(b) is quite similar to the density rhythm in terms of
increase and decrease rate, except for trips with a long
duration. So, each trip was considered as one counted trip in
the density rate computation, whereas the trip’s duration
was taken into account while calculating the average rate of
travel time, which affects the total average time in this case.
Moreover, to determine peak and non-peak periods for
Chengdu and Xi’an cities, we did some statistical analysis
over various given regions within the same conditions. We
randomly chose regions to illustrate the influence of traffic
patterns. Table 1 shows that the average traffic volume
measured (historical records which enter or leave the cluster
or grid) is probably relatively low or high, especially in areas
with heavy activity. The results show that the average travel
time varies from one region to another according to the
traffic rhythms during the hours of the day. On the other
hand, traffic density during morning and evening hours is
much higher than night and afternoon hours, which explains
that traffic overcrowding influences traffic speed and travel
time.
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TaBLE 1: Statistical analysis of the traffic patterns and fluctuations in particular locations in Xi’an and Chengdu cities.

Day 10 Oct 13 Oct 15 Oct
#Xi’an~#Chengdu #Xi’'an~#Chengdu #Xi’'an~#Chengdu
Pick_Hour 9, 11, 20 8, 10, 16 7, 14, 19
Pick_location_Grid 136520 136520 136520
Drop_location_Grid 39~38 39~38 39~38
Avg_traffic_volume/grid 2593, 2301, 2311\1610, 1381, 1370 1470, 1633, 2177~1551, 1338, 996 2368, 1405, 25631457, 1238, 706
Trip_distance (km) ~ 85N ~ 53 ~ 85N ~ 53 ~ 85~ ~ 53
Trip_speed (kms) 30.7, 33.3, 57.06~19.1, 12.1, 17.5 39.1, 33.8, 23.9~10.3, 19, 26.5 24.5, 41.5, 52.6~11.3, 19.1, 23.9
Trip_duration (sec) 1372, 1368, 744~1178, 1986, 1324 1076, 1242, 1761~2187, 1178, 951 1719, 1014, 798~2394, 1263, 923
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FiGure 1: Traffic pattern visualization for city boroughs. (a) Average rate of trip density. (b) Average rate of trip duration.
Eventually, to ensure that our proposed model is capable ~ for NYC, Chengdu, and Xi’an as the morning and evening

of producing effective results, after investigating the traffic =~ peak periods, which include (7 ~ 10 AM and 5 ~ 8 PM),
patterns’ similarities, two peak periods have been adopted  respectively.



3.3. Feature Extraction and Data Preparation. Similar to
[21], we apply data preprocessing based on the perspective of
multi-modality. Thus, accurate prediction of TTF is greatly
influenced by numerous dynamic components, including
complicated spatial and temporal dependencies, and the
influence of external factors such as weather status, social
events, or public holidays [41, 42]. Hence, to improve the
prediction accuracy, we adopted three components in our
proposed method: spatial, temporal, and external. We adopt
two 3D tensors &' and 7' for spatial and temporal compo-
nents’ representation, while the external components were
divided into two subvectors: weather data and public holiday
data.

3.4. Spatial Components. The original dataset provides the
trips’ pick-up and drop-oft GPS locations only, so we further
extracted additional spatial features from these two points
such as distance and speed, which are essential spatial
features. We applied two different methods to calculate the
distance between two GPS locations. The two methods are
the Manhattan and haversine distance approaches [40].
Manhattan distance is formulated as follows:

|Alatpi| +'Alonpi|, (3)

where Alat, and Alon,, denote the total distance difference
between the ordered pairs of OD coordinates computed by
the following equations:

Alatp = |o,»1at - d,»lat|, @
' 4

Alonp = |o;lon — d,lon|.

The haversine distance is also formulated as follows:

2rarcsin \/sin2 (A¢/2) + cos(o;lat)cos (d;lat)sin® (AL/2),
(5)

where (A¢) is (Alatpt) and (AA) is (Alonpf).

Furthermore, the average speed was calculated regarding
the trip distance and trip duration. In addition, we extracted
other supplementary spatial features from the GPS coor-
dinates, for example, cluster and grid density, which are
explained in Definitions 4 and 5, respectively. In the real-
world road network, traffic patterns’ variation is highly
related to time (e.g., traffic tidal phenomena during the
weekdays) and space, including neighboring regions. Thus,
the traffic patterns in neighboring regions are more relevant.
Generally, traffic in neighboring regions exhibits similar
flows over the day-time intervals.

To improve the proposed model’s performance, we
applied the K-means clustering method in the spatial
component preprocessing phases. Since K-means attempts
to group places based solely on their Euclidean distance, it
returns clusters of places that are close to each other and geo-
positioning trips within nearby regions into the same cluster.
In order to determine whether we are using the right number
of clusters, we applied the elbow curve method [43] based on
calculating the sum of squared errors (SSE) for a range of
values of k (60, 80, 100, 120, and 150) and then picking the
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elbow of the curve as the optimal number of clusters to use
by choosing a small value of k that still has a low SSE. From
Figure 2, we can observe that the optimal value of K is 100.

Similarly, we mapped each OD-trip into 2DD grid cells
with an area of approximately 0.5 km x 0.5 km. Thus, we can
represent each trip with two grid-ID features, one for pick-
up and the other for drop-off. Finally, after the clustering
and geo-location mapping processing, the degree of
crowding for each part (cluster and grid) throughout the city
is computed depending on the following definitions.

Definition 4. Density score for cluster:

N M
Cluster gengity (dc) = Z oc + Z dc. (6)
i=1 i=1

Definition 5. Density score for grid cell:
N M

Gridgeqsity (dg) = Z og, + Z dg, (7)
i=1 i=1

where N and M represent the total number of origin (o) and
destination (d) trips’ locations recorded within the same
cluster (C) and grid (G) at time interval of the day. These
two spatial features are essential to reflect the traffic flow of
the region through different periods.

3.4.1. Temporal Components. The temporal features are
significant factors to understand travel time changes through
time variation. Therefore, trip duration is affected by several
temporal factors, which may occur daily, weekly, or sea-
sonally [44]. The rhythm of commuters’ flow over work-
places, schools, and even public places is an example of
activities that cause traffic jams at various times. To this end,
the following temporal features were extracted from the
traffic datasets, using the one-hot encoding (OHE) and label-
encoding techniques as follows:

(i) We represent the day of the month as a label value
from 0 to 30.

(if) We represent weekdays as a categorical value from 0
to 6.

(iii) We represent hours of the day as a label value from 0
to 23.

(iv) Working days and weekends take 0 or 1.

3.4.2. External Components. The external factors were di-
vided into two parts: weather conditions and public holiday.
Generally, the trip is affected by one or more of the following
weather conditions (heavy rain, snow, storms, and so on).
Different weather conditions can also result in varying travel
times with similar spatial patterns and different interval
times. Hence, the weather is considered as an important
external factor in this work. Table 2 shows the weather data
categories, which are classified into 10 types (sunny, cloudy,
rainy, windy, and so on). Also, three more features are used
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FIGURE 2: Investigation of selecting K-means clustering value using elbow curve method.

TaBLE 2: Weather data formalization and labeling.

Label
1

Weather condition

Clear

Overcast, partly cloudy, mostly cloudy, scattered clouds
Haze, fog

Light freezing fog, light freezing rain,

Light snow

Rain

Snow

Heavy rain

Heavy snow

Light rain, sleet

2
3
4
5
6
7
8
9

—

0

to describe the weather situation of trips circumstances in
terms of extreme weather conditions (snowing, raining, or
foggy). There are 16 different types of weather conditions,
according to the historical weather data provided in [45].
Thus, this classification process makes similar weather
conditions much closer and helps to reduce the data di-
mensions. Because of variable weather conditions, the same
spatial locations in terms of OD-grids may not have the same
trip times, as shown in Figure 3. This figure shows that when
the weather is regular, travel time between the same origin
and destination grids takes less time than hours charac-
terized by extreme weather conditions when comparing two
different days.

Besides the factors mentioned above, the traffic patterns
during public holidays and events can differ from those of
the daily routine, due to increased outdoor activities or
variation in daily traffic patterns, leading to extreme traffic
jams. As a result, two subcategorical features are concluded
from the NYC and China public holiday datasets to rep-
resent whether the day is a holiday or not. Eventually, ex-
ternals are classified into two types: categorical features by
using the OHE technique and discrete features. Further-
more, data standardization and scaling techniques for fea-
tures have been utilized.

3.5. JSTC Model Architecture. Our proposed framework
mainly comprises three modules, as shown in Figure 4.
The first block is designed to learn the dependencies

between spatial and temporal components and capture
their complicated relations. This block also helps to
capture the correlation between grids and clusters for OD-
trips during different time patterns, especially when ob-
serving adjacent locations’ properties and dealing with the
sparse data. After processing the external features, we
combine all feature representations and pass them to the
last block, which is the multi-head attention module to
learn the attentional weights of all features based on their
contribution to the output. Next, we describe each part in
detail.

3.5.1. Spatial Self-Attention Module. In this section, we
develop a self-convolutional attention mechanism that
captures the correlations across different spatial features
and learn their attentional weights. To this end, we adopt a
1D convolutional layer followed by self-attention heads.
Figure 5 shows our proposed spatial self-attention
module, and the spatial feature’s tensor includes a pair of
GPS coordinates, a pickup cluster, a drop-oft cluster, a
pickup grid, a drop-off grid, distance, and speed {D and S}.
First, we reshape the input into three dimension as an
input for the 1D convolutional layer. To do so, we used a
reshape function to reshape the 2D features vector into 3D
tensor &'. Then, we used the convolution filter and kernel
size as shown in Figure 5 to handle the spatial input
tensor. Thus, we can get Query { Q %1, Key {K °}, and Value
{V®} as an output from each 1D-Conv layer followed by
the ReLU activation function as follows:

B s s P s
Q :wg-x, K =w£-)(,v :wé‘)(,
]
) () ]
Convld y oy = Xij = Z wf] OX (i) + B> (8)
=

ReLU (y) = Max(0, y),

where y denotes the tensor input, i is the convolution
processed index, j refers to the filter (f) position, and « is
') represents the filter (f7) weight

the kernel size. (w
matrix, and (f’) is tﬁe learnable parameter (bias). We set
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FIGURE 4: Joint spatial and temporal correlation (JSTC) mechanism architecture combines spatiotemporal correlation block, which includes
the spatial self-attention module (SSAM) and residual dilated convolutional module (RDCM). Then, we used a multi-head attention module
(MHAM).

the filter and kernel size to 1 and 3, respectively. We set U=KoQ
the padding to “same” to avoid dropping some infor- W -Gy 9)
mation and verify that all inputs are completely repre- eV
sented. Therefore, the weight matrix (U) between K% and Afterward, the final attention output is obtained over the
Q° is computed by using the scaled dot attention func-  multiple self (attention) layers, and then we flatten the

tion, and then the final attention score (W5) is computed  output of the spatial self-attention block and concatenate it
as in the following equation: with the temporal correlation output.
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FiGURE 5: The structure of spatial self-attention module (SSAM).

3.5.2. Residual Dilated Convolutional Module. The temporal
convolutional module aims to capture the temporal pat-
terns. Several previous studies have considered the tem-
poral dependencies of traffic forecasting tasks. In [46, 47],
the RNN architecture was applied to capture temporal
relations, while references [48, 49] utilized the gated re-
current units (GRUs) and long-short memory (LSTM)
networks to model the temporal components on traffic
pattern fluctuations. Although these approaches have
shown good performance, they still suffer from many
problems (e.g., exploding/vanishing gradients, time-con-
suming in the training phase, and some other limitations in
modelling long sequences).

Inspired by the recent success of the temporal con-
volutional network (TCN), we propose a residual tem-
poral correlation module (RDCM), which comprises
multiple dilated 1D-Conv layers stacked together as
shown in Figure 6. We employed the TCNs advantages in
the convolutional operations expanding domain by
adjusting the dilation rate parameter on each layer.
Empirically, same as the preprocessing we have used for
the spatial components, we construct 3D tensor (7) for
the temporal features. Since the traffic patterns during the
different periods of the day are highly affected by the
traffic flow in each region. Accordingly, while investi-
gating the dependencies of temporal factors, some spatial
features should be considered due to their significant
impact on the output. In our case, the density score grid
and cluster for both pick-up and drop-off, which are
measured hourly, have been adopted as supplementary
features for the temporal correlation modelling. By now,
the temporal component of each trip record is represented
by the (x}) tensor, which includes the temporal features
and the supplementary features.

In order to capture the interactions and patterns of
temporal features in terms of long-short dependencies
between the input features, we built three dilated con-
volutional layers with different “dilation —rates” as = {1, 2,
41} to address the following two key points: avoiding the
backpropagation issue (gradient vanishing or exploding)
and receptive field expansion to cover the entire input’s
representation through the shallow hierarchical layers.
Thus, to achieve the normal convolution operation, we set
the dilation “d” =1” and the kernel-size “K =3 in the first
layer followed by ReLU and drop layers, and then the
output is used as an input for the next dilated convolution
layer with “d” =2” and “K=3.” Then, “d" =4” and “K=5"
for the last layer. Figure 6(b) illustrates the dilated con-
volution steps. As a result, we make sure that the different
space (long-short) of the relationship between the temporal
factors has been considered. Also, an efficient represen-
tation of the features without missing any important in-
formation is also considered. The dilated convolutional
layers were combined into a residual block, and an ele-
ment-wise concatenation layer was used to add the last
output to the input (y), which can improve training and
maintain an optimal feature correlation distribution. In
this paper, we formulated the DRCM block operations as
follows:

F() = £ () + 4

S (10)
fi) =Dy +deswls],
s=1

where d” denotes the “dilation —rate” and s denotes the
“filter— size.” Eventually, the temporal correlation output is
concatenated with the previous spatial correlation outputs
and passed to a multi-head attention mechanism.
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FIGURE 6: An illustration of our proposed residual dilated convolutional module (RDCM). On the left side of the figure, we show the RDCM
module’s architecture. The right side represents the dilation convolutional operations by expansion of the receptive field (dilation parameter) and

different sizes of kernels (K) to obtain optimal feature representations.

3.5.3. Multi-Head Attention Module. The multi-head atten-
tion mechanism is illustrated on the right side of Figure 4 as
reported in [42], which has been adopted in our model in
charge of getting accurate prediction results. First, due to the
impact of the external features on the travel time as mentioned
before, we apply a fully connected layer followed by ReLU and
dropout layers as subblock to represent the external factors
(weather details and public holidays), and then we combine the
external features’ representation vector with the vector that
represents the spatial and temporal correlations outputs (for
more details, see Sections 3.4.1 and 3.4.2). By implementing this
mechanism, we can enhance our model’s ability to learn the
attentional weights of various features using multiple attention
layers. Besides, it makes the training process robust and fast
where it guarantees processing strategies across multiple
(H 44,) heads. Thus, from the concept of learning the atten-
tional weights of all features based on their contribution to the
output. In this study, the attention scores represent the inter-
correlations of the input features to the target (travel time).
Therefore, we applied a “scaled-dot” function to compute the
attention score based on the contribution of each feature to the
output target. To do so, we constructed (query (Q), key (K), and
value (V)) vectors, which include the feature representations.
Firstly, we can get the features’ scores (weights) between
each feature in (Q) and the set of keys, and then the second
round of dot-product function takes these scores’
(weights) vector and set of keys (K) to get the values’ (V)
vector, for calculating the final attention score. We for-
mally defined this process as follows:

MH (QK.V) = Concat(HAttl, e HAtth)WO’ (11)

H,, = Attention(QW, KW S, VW),

where QWP, KWE‘, and VW}/ represent the (K, Q, and V)
weights for each head and W is a combination of scores’/
weights’ matrix. h is the number of head parameter; after
several trials with the h values {4, 6, 8, 10 }, we adopted 6 as
the number of attention heads, which leads to fast perfor-
mance and achieves optimal results.

Eventually, we use a dense layer followed by a linear
operation to get the final prediction results (;T’iop,) ideally as
follows:

= (W x' +by), (12)

where (¢) is the linear activation function and (W f) and
(b f) are learnable parameters.

~i
Yob,

4. Experimental Results and Analysis

We used three large-scale traffic datasets (NYC, Chengdu,
and Xi’an) in our experiment. Section 3.2 describes in detail
the data analysis and preprocessing. We randomly split the
datasets into 80% for training and 20% for testing. The
training set was then divided into two subsets: 70% for
model training and 30% for validation. The learning rate
values range (0.01, 0.001, and 0.0001), batch size as (128,
256, and 512), dropout values range (0.1, 0.2, and 0.3), and
multi-head (h) as (4, 6, 8, and 10). The optimal values for
parameters are as follows: the learning rate is 0.001, the
number of training epochs and attention heads is (60 and 6),
respectively, and batch size is 512. Besides, to reduce
overfitting, we applied both the kernel regularizer (L2
norm) and dropout (0.2). Also, we adopted the Adam
optimizer as an optimizing function with a linear acti-
vation function.
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4.1. Evaluation Metrics. To evaluate our model, we use two
common prediction metrics.
Mean absolute percentage error (MAPE) is calculated as

100%

MAPE = — i;|yl—j//yl|. (13)

Mean absolute error (MAE) is calculated as
1 N
MAE:NZW—)A/’, (14)
i=1

where y' and 7' are the actual and predicted OD-trip du-
rations in seconds, respectively. N indicates the total
number of records in the test dataset.

4.2. Results

4.2.1. Comparison of Various Models’ Results with JSTC
Model. To show the performance efficiency of our model,
we compared it with the following models:

(i) LRM: we applied the LR model in [20] with almost
all features except the grid and cluster, which have a
high dimension and cause overflow.

(ii) XGBoost: a machine learning model widely used
for both classification and regression problems.
However, XGBoost with a deep tree may lead to
better predictions. Following [50], we set the max-
depth parameter between 4 and 6 to avoid
overfitting.

(iii) LightGBM: the LightGBM model is based on de-
cision tree algorithm with leaf-wise and level-wise.
This model is more appropriate for large datasets
with large dimension of features [51]. Accordingly,
we set the LightGBM parameters same as in [21].

(iv) ST-NN: spatiotemporal-based model was proposed
in [19], which combined two DNN modules to
predict the trip distance and then used this distance
to predict the travel time.

(v) TTE-Ensemble: the collaborative model proposed
in [21] combines machine learning and neural
network (GBDT and DNN) modules for modelling
multi-modality data to predict the OD-trip travel
time.

(vi) FMA-ETA [18]: a deep learning model based on a
multi-self-attention technique integrated with a
feed-forward structure (FFN) for capturing spatial
and temporal dependencies and obtaining TTF.

(vii) STTNs [37]: two spatial-temporal blocks are inte-
grated into an approach based on graph neural
network and transformer (STTNs), which jointly
investigates the dynamic spatial and temporal de-
pendencies to enhance the traffic flow prediction
result’s accuracy.

Table 3 illustrates our model results compared with other
models in terms of MAPE and MAE for the NYC, Chengdu,

11

and Xi’an datasets. The results show that our model out-
performs other approaches. As previously mentioned, we
divided the comparative models into two parts (ML and DL
models). The results of ML (LR, XGBoost, and LightGBM)
models show worse accuracy compared with the DL models
because these simple statistical ML algorithms have difficulty
in modelling the non-linearity relations of complex traffic
patterns. We notice that the LR model gives the worst results
compared to others (26.12, 24.37, and 25.85) in MAPE and
(168.34, 176.33, and 197.14 sec) in MAE for NYC, Chengdu,
and Xi’an, respectively. The error rate (MAE) was reduced by
(14.4, 14.14, and 9.11 sec) and (18.62, 20.94, and 20.88) with
the XGBoost and LightGBM models, respectively. In con-
trast, our model shows better performance where it reduces
the errors by approximately (71.22, 104.4, and 108.26 sec)
compared with LR and (56.82, 90.26, and 94.15) on
XGBoost, while (52.6, 83.46, and 82.38) for LightGBM on
NYC, Chengdu, and Xi’an, respectively.

On the other hand, the ST-NN achieved the lowest
results of all the DL models because it only utilizes two MLP
blocks. In comparison, our model reduced the errors
(MAPE) by at least (~7%) on NYC and Chengdu, while
6.31% on Xi'an. Furthermore, our model has also shown
remarkable superiority over the TTE-Ensemble model by
reducing the errors by (5.19%, 5.5%, and 4.73%) on NYC,
Chengdu, and Xi’an, respectively. Thus, we can observe that
ST-NN and TTE-Ensemble models achieved better results
than ML algorithms (LRM, XGBoost, and LightGBM). This
is because deep learning approaches consider the non-linear
relations between the variables. Although, the ST-NN ap-
plied two DNN modules for estimating the trip distance first,
then using this distance to predict the time, which means
they also adopted the spatial component (distance) only,
while the temporal patterns was ignored. The TTE-Ensemble
model was built based on combining the DNN module with
the ML (GBDT) model. These models are not sufficient to
capture the complicated correlations.

Eventually, as it can be seen from the table, FMA-ETA
and STTN models give results which are more closer to our
proposed model because these models have also adopted
attention mechanisms to capture the non-linear correlations
between the spatial and temporal features. The auxiliary
spatial features that influence traffic patterns play a signif-
icant role when considering the dynamic scales of inner
spatial and temporal correlations.

Therefore, compared to FMA-ETA, our proposed model
components (SSAM, RDCM, and MHAM) play a significant
role in reducing the MAPE and MAE error rates by (2.67%,
3.74%, and 1.91%) and (15.09, 35.42, and 27.25sec). Also,
our model achieves better performance than the STTN
model through reducing the errors by at least (1.24%, 2.17%,
and 1.61%) and (8.11, 22.68, and 16.78 sec) on MAPE and
MAE for NYC, Chengdu, and Xi’an, respectively.

Moreover, to validate our model, two different datasets
at morning peak (7 to 10 AM) and evening peak (5 to 8 PM)
have been used to test all models during these two periods in
terms of MAPE and MAE, as shown in Tables 4 and 5 for
NYC, Chengdu, and Xi’an, respectively. Prediction errors
are typically higher during these two peak periods than
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TaBLE 3: Comparison of all models” results on the NYC, Chengdu, and Xi’an datasets.
NYC Chengdu

Model

MAPE MAE (sec) MAPE MAE (sec) MAPE MAE (sec)
LRM 26.12 168.34 24.37 176.33 25.85 197.14
XGBoost 25.39 153.94 22.59 162.19 23.37 188.03
LightGBM 22.19 149.72 21.98 155.39 21.51 176.26
ST-NN 20.04 136.34 19.02 131.26 20.44 154.07
TTE-Ensemble 18.33 122.71 17.58 114.08 18.86 136.35
FMA-ETA 15.81 112.21 15.74 107.17 16.04 121.13
STTNs 14.38 105.23 14.25 94.61 15.74 110.66
JSTC 13.14 97.12 12.08 71.93 14.13 93.88

We denote our model’s results in bold font as the best scores for each metric.

TaBLE 4: An illustration of all models’ performances with morning and evening peak periods (MAPE) for NYC, Chengdu, and Xi’an.

Model NYC MAPE Chengdu MAPE Xi’an MAPE
ode
Morning Evening Morning Evening Morning Evening

ST-NN 25.42 26.33 24.12 25.74 26.04 27.16
TTE-Ensemble 22.36 23.65 21.01 23.66 23.75 24.52
FMA-ETA 20.52 21.33 18.77 21.82 20.16 22.93
STTNs 17.78 19.42 16.34 18.25 17.66 19.38
JSTC 15.82 17.13 14.52 16.04 16.27 18.45

We denote our model’s results in bold font as the best scores for each metric.

TaBLE 5: An illustration of all models’ performances with morning and evening peak periods (MAE) for NYC, Chengdu, and Xi’an.

Model NYC MAE Chengdu MAE Xi'an MAE
ode

Morning Evening Morning Evening Morning Evening
ST-NN 159.02 164.34 166.62 168.87 163.46 170.19
TTE-Ensemble 145.28 154.11 150.84 155.43 150.22 161.82
FMA-ETA 128.61 133.72 126.96 140.48 137.63 144.57
STTNs 119.83 125.61 117.13 128.72 121.75 134.44
JSTC 108.74 115.93 98.31 118.49 106.59 125.16

We denote our model’s results in bold font as the best scores for each metric.

during non-peak periods. From the results shown above, we
can demonstrate that our model provides more accurate
results compared to other models, even during the morning
and evening peak hours. Also, based on the random se-
lection of trips used for testing our proposed model, Figure 7
shows a comparison between actual values and predictions
of 50 random trips for all models on NYC, Chengdu, and
Xi’an, respectively. Each point on the X-axis represents a trip
from the test set, while the y-axis indicates the trip duration
in seconds.

4.2.2. Ablation Analysis. We built our model based on three
main components (SSAM, RDCM, and MHAM). Besides,
we consider external factors that influence travel time by
improving the accuracy of our results. Therefore, additional
experiments were conducted to verify the contribution of
each component in our prediction task. The ablation models
we use in this analysis are as follows:

(1) Without SSAM: in this model, we removed the
spatial self-attention module (SSAM) and applied
RDCN and MHAM modules only with a fully
connected and output layer.

(2) Without RDCM: in this model, we removed the
DRCM module and applied SSAM and MHAM
modules only with a fully connected and output
layer.

(3) Without externals: to verify the effect of external
factors (weather and public holidays), we remove the
block responsible for representing these factors’
dependencies.

(4) Without MHAM: we removed a multi-head module
(MHAM). So, after getting the spatial and temporal
components’ correlations, we concatenate these
blocks’ outputs with external features’ representa-
tions and then apply fully connected and output
layers directly.

We should mention that MLP layers were adopted as an
alternative to each module that was removed during the
ablation investigation phases 1, 2, and 4, as shown in Table 6.
However, the impact of externals was just measured by
removing the external factors’ representation block in ab-
lation 3. The results in Table 6 demonstrate that the per-
formance of all modules combined together in one model
leads to better results. In contrast, removing some parts
affects the process of capturing traffic pattern fluctuations.
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Figure 7: Comparison of prediction vs. actual values for all models on (a) NYC, (b) Chengdu, and (c) Xi’an.

We can notice that the MAPE increases by (8.22, 8.41, and
8.63) and the MAE increases by (55.15, 67.23, and 70.29 sec)
in NYC, Chengdu, and Xi’an, respectively, when removing
the SSAM block, while removing the RDCM block increases
the MAPE by approximately (6.95, 6.25, and 6.28) and MAE
by (47.66, 53.98, and 55.5 sec). By removing external factors,
the MAPE increases by at least (4.29, 4.85, and 4.92) and the
MAE increases by (93.68, 46.44, and 41.66 sec). That means

applying external factors improves our model’s results by a
significant margin. Whereas, applying the SSAM and RDCM
modules combined with external factors representation
without the MHAM block, we achieve results with small
errors rates (MAPE%) about (3.67, 2.87, and 3.45) and MAE
at least by (21.42, 38.39, and 27.38 sec) for NYC, Chengdu,
and Xi’'an, respectively, compared to combining all the JSTC
model’s components. We can observe that disabling joint
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TaBLE 6: Impact of the JSTC model’s components: SSAM, RDCM, MHAM, and external factors.
NYC Chengdu Xi’an
Feature
MAPE MAE (sec) MAPE MAE (sec) MAPE MAE (sec)
Without SSAM 21.36 152.27 20.49 139.16 22.76 164.17
Without RDCM 20.09 144.78 18.33 125.91 20.41 149.38
Without externals 17.43 136.82 16.93 118.37 19.05 138.54
Without MHAM 16.81 118.54 14.95 110.32 17.58 121.26
JSTC 13.14 97.12 12.08 71.93 14.13 93.88
We denote our model’s results in bold font as the best scores for each metric.
TaBLE 7: Comparison of time consumption of different models on all datasets.
NYC Chengdu Xi’an

Model Train Test Train Test Train Test

(1 epoch) sec (IM trip) sec (1 epoch) sec (IM trip) sec (1 epoch) sec (IM trip) sec
ST-NN 157 122 110 102 114 107
TTE-Ensemble 214 155 119 117 122 115
FMA-ETA 221 218 124 120 137 126
STTNs 244 223 143 127 151 133
JSTC 253 229 168 129 170 136

correlation mechanisms (SSAM and RDCM) increases the
error rates more than removing a multi-head block, which
means these two modules have a higher impact on our
model since they are responsible for capturing correlations
of traffic spatial and temporal factors. On the other hand,
external factors play an important role in improving our
prediction results. Conclusively, these results emphasize the
importance of each proposed block through their contri-
butions to improving travel time prediction results.

4.2.3. Computational Cost Measurement. Measuring the
computational complexity has been considered in this paper.
We compute the time consumption of our model compared
with deep learning-based models (ST-NN, TTE-Ensemble,
FMA-ETA, and STTNs). Table 7 reports the average time of
training and predicting functions for one million trips (1M)
with only one epoch on NYC, Chengdu, and Xi’an datasets.
Note that we performed our experiments on the same
NVIDIA GPU (GeForce GTX 1050 Ti) with 4 GB. Also, we
set the batch size to 512 for all models’ training phase. Thus,
we could observe that the complicated model’s structure
took more training time than the simple ones. Actually, one
logical reason is that this model’s complexity represents an
improvement to give more accurate prediction results. In
comparison, we can notice that the computation time of our
model is much closer to that of the STTN model due to the
fact that both models have a relevant structure.

5. Conclusion

In this paper, we first discussed the various characteristics of
traffic patterns that affect travel time. Then, we presented a
mechanism for capturing interactions between spatial and
temporal factors based on self-convolutional attention and
dilated convolutional techniques. In addition, we adopted
spatial auxiliary features and integrated them with the

temporal features, which play a significant role in capturing
the dynamic traffic patterns and their correlations. Fur-
thermore, we applied a multi-head attention mechanism to
learn the attentional weights of the spatial, temporal, and
external features based on their contribution to the output
and speed up the training process. Extensive experiments
using three large-scale real-world traffic datasets (NYC,
Chengdu, and Xi’an) have shown that our JSTC model
outperforms prior methods.
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Accurate and timely destination prediction of subway passengers is of great significance in improving urban residents’ travel
efficiency, alleviating urban traffic pressure, and recommending the proper location-based service. Although some individual
travel destination prediction methods have been proposed, the prediction performance is poor due to the large difference in travel
locations of different individuals, the difficulty of evaluating the individual travel intention, the sparsity of individual travel
trajectory data, and other problems. To solve these problems, this paper proposes a knowledge graph-based enhanced Transformer
method (KG-Trans) for the metro individual travel destination prediction task (MITD-Pre), which contains three main modules:
(1) the knowledge graph (KG) module constructs a multilayer individual travel KG from top to bottom, which accurately describes
the travel individuals and their travel intentions. By analyzing the association relationship between nodes in the KG, the re-
lationship between travel individuals can be naturally established. The learned similar travel regularity can solve the problem of
sparse travel trajectories of some individuals. (2) The enhanced Transformer module extracts the dynamic and hierarchical
features from the long-term sequential travel trajectory data. (3) The classifier module introduces the cross-entropy loss to
constrain the uniqueness of the predicted subway travel station. The experimental results show that the proposed method obtains a

higher destination prediction accuracy than the previous individual travel destination prediction methods.

1. Introduction

As an important part of public transport, the urban rail
transit produces a large amount of spatiotemporal trajectory
data in real time, which contains rich spatiotemporal lo-
cation information and reflects the travel mode of passen-
gers. This gives us an opportunity to deeply explore the
individual travel patterns and regularity. Traffic prediction is
a very basic and important problem in the field of trans-
portation. Most existing traffic prediction methods focus on
traffic flow, speed, and so on [1-3]. However, with the
development of information technology and various intel-
ligent devices, strong data support and technical support are
created for individual travel destination prediction. The real-
time prediction of the travel destination of each individual

who stays in the subway station is of great significance for the
tracking of individuals, service recommendations, and the
construction of the smart city. And, it is bound to become an
important social demand in the era of big data.

At present, a few methods have been proposed in the
field of travel destination prediction, such as the Markov
model [4], Bayesian model [5], and Gaussian mixture model
[6]. These methods predict the travel destination according
to the general mobility characteristics of individuals.
However, they ignore the differences in individual behaviors
between users [7, 8] and the problems of individual travel
data, such as the high spatial complexity and sparse his-
torical travel trajectory. Therefore, their prediction results
are unsatisfactory. In addition, considering that there is still
a huge challenge in the task of individual travel destination
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prediction, that is, how to accurately grasp the individual
travel intention, travel intention may be affected by time,
location, and other factors. For example, when individuals
travel to the same place, their travel intentions may be
different on weekdays and weekends. These challenges are
beyond the previous methods.

As we all know, KG is a very advanced carrier containing a
lot of common-sense knowledge and plays an important role
in many practical applications. The emergence of KG provides
a new perspective to comprehensively describe individual
travel patterns. It carries out much application research; e.g.,
the entity portrait and the law prediction tasks are achieved by
utilizing relationship reasoning and knowledge aggregation.
So, KG provides a new method of support for accurately
quantifying individual travel patterns in the public transport.
It effectively breaks through the traditional expression limi-
tations based on the traffic big data.

Inspired by the KG, this paper integrates deep learning
prediction and the KG to achieve accurate travel destination
prediction tasks. Specifically, we construct an individual travel
KG based on the historical travel data of individuals and then
conduct the portrait analysis based on the KG to accurately
grasp the individual travel intention. At the same time, for the
historical travel trajectory data with the long-term time series
and the long-term time dependence, Transformer is used to
learn the dynamic and hierarchical characteristics in the
sequence data to achieve the final prediction tasks.

This study mainly aims to integrate the KG into the
individual travel destination prediction model. The main
contributions of this study are summarized as follows:

(i) An individual travel KG is constructed, and we
propose a novel individual travel destination pre-
diction method based on such KG, which aims to
accurately analyze the individual travel patterns and
intentions

(ii) We analyze the travel groups having similar travel
trajectories to handle the sparse historical trajec-
tories of some individuals, which is obviously dif-
ferent from the traditional individual travel
destination prediction methods

(iii) An enhanced Transformer module is proposed to
extract the dynamic and hierarchical features in the
history of travel trajectory data

(iv) Experimental results show that the proposed
method effectively exploits KG to analyze the
subway card data and obtains satisfactory
performance

2. Related Work

In this section, we review several related types of research
about the KGs and the individual travel destination
predictions.

2.1. Knowledge Graph. KG is a very advanced carrier having
a lot of common-sense knowledge. And, it acquires success
in many practical applications, such as knowledge questions
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and answers and medical fields. Several general KGs
established by Baidu, Google, or other organizations also
play an important role in our daily lives. At present, there are
many semantic knowledge bases based on Wikipedia in the
construction of general domain KG abroad, such as Freebase
[9], DBpedia [10], and Yago. The general KGs in China are
the bilingual encyclopedic KG XLore [11] developed by
Tsinghua University, the Chinese general encyclopedia KG
CN-DBpedia developed by Fudan University, and Zhishi.me
[12] developed by Shanghai Jiaotong University. The main
domain KGs abroad include the film and television domain
graph IMDB [13], the music domain graph MusicBrainz
[14], and the geographic domain graph GeoNames [15].

With the development of smart transportation, KG re-
search in the transportation field has gradually become more
and more popular. Zhou and Chen [16] combine the urban
KG with the deep spatiotemporal convolution neural net-
work to solve the problem of traffic congestion. Zeng et al.
[17] use the KG to extract the mine relationships between
objects, which models the causal relationships of the
equipment failures of the railway trains to ensure the op-
erational safety of the high-speed railway. Muppalla et al.
[18] use the KG as an abstraction layer to annotate the traffic
incidents collected through various methods. Liu et al. [19]
learn the urban traffic characteristics extracted from the
urban multisource heterogeneous data and construct a KG
to mine the urban mobility patterns. Sun et al. [20] semi-
manually construct a microblog traffic event KG by inte-
grating multiple types of open-source data and use such
traffic KG and target detection methods to realize the
identification of traffic events in microblogs and solve the
traffic problems. Liang et al. [21] use the multilevel planning
theory to construct an individual travel KG to accurately
identify different types of public transport passengers so as
to obtain refined public transport travel characteristics and
meet the travel needs of different passengers. Zhang et al.
[22] integrate the knowledge of interregional flow, events,
and weather to enhance the prediction effects of population
inflow and outflow in each region of the city.

As an advanced knowledge carrier, the KG has an ex-
tremely important position in the portrayal of individual
travel. Therefore, we construct an individual travel KG and
use it to solve individual travel destination prediction
problems.

2.2. Individual Travel Destination Prediction. With the de-
velopment of urbanization, people’s travel patterns are
gradually diversified. Understanding human behaviors and
modeling individual travel behaviors are helpful to explain
some complex socioeconomic phenomena, which is of great
value in location-based services, traffic planning, public
safety, and so on. Traditional trajectory prediction methods
mostly use machine learning methods, such as the hidden
Markov model [4], mixed hidden Markov model [23],
Bayesian inference [5], and Gaussian mixture model [6].
Based on the research of public transport smart card data,
Zhao et al. [24] predict the individual daily travel capacity,
and its travel chain is defined as a set of travel start time,
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starting point, and destination. Wang et al. [7] extract a
variety of features from the subway card swiping data set to
predict the travel destination of passengers entering the
subway station but not leaving the station. Li et al. [25]
improve the prediction effect of the individual travel through
clustering the group travel pattern. Wang et al. [26] design a
new movement feature, i.e., a time shift tensor, to consider
the user’s transformation pattern in the time dimension and
propose the attention Markov model. Mo et al. [27] analyze
the passenger activity pattern based on the public transport
card swiping data in Hong Kong and propose an input-
output hidden Markov model to predict the time and lo-
cation of an individual’s next trip at the same time.

In recent years, recurrent neural network (RNN) has
obtained the excellent performance in modeling sequence
data. Wu et al. [28] propose a new robust location prediction
model to consider individual preference and social inter-
action, which alleviates the impact of randomness of location
movement and improves the prediction performance. De
Brebisson et al. [8] predict the taxi destination by using a
multilayer perceptron and a two-way cyclic neural network.
Lv et al. [29] regard the trajectory as a two-dimensional
image to model the trajectory from different perspectives
and apply Convolutional Neural Networks (CNNs) to ex-
tract multiscale two-dimensional trajectory features for the
accurate destination prediction. Zhang et al. [30] apply
Surprisal-Driven Zoneout (SDZ) to RNN, which improves
the robustness of the destination prediction model and
reduces the training time. Based on the Long Short-Term
Memory (LSTM) model, Li et al. [31] combine the extracted
depth spatiotemporal features with the original features to
predict the taxi destination. Xu et al. [32] use an adaptive
attention network to model different extraction features of
locations and implement the time gate and the distance gate
into LSTM to capture the spatiotemporal relationship be-
tween continuous locations.

Although some individual travel destination prediction
methods have been proposed, some common problems still
seriously affect the prediction effect; for example, it is dif-
ficult to grasp the travel intentions of different individuals
and handle the sparseness of historical trajectory data of
some individuals.

3. Construction of Individual Travel KG

In this section, firstly, we preprocess the subway card
swiping data set to clean out the dirty data, the duplicate
redundant data, and so on. Then, the individual travel KG is
constructed and displayed visually.

3.1. Data Preprocessing. The original data set adopts the
passenger card swiping records collected by the Beijing
Metro automatic toll collection system in July, August,
September, November, and December 2015. Each record
contains 11 items, including card ID, subway route, subway
station, date, card type, and transaction type. The card ID is
the unique identifier of the intelligent transportation card,
which is used to identify a unique passenger.

Due to the large volume, the dirty data interference, the
missing key items, the coupling of travel records, and other
problems in the data set, the card swiping records of each
travel individual are scattered in the large data set, which
makes it difficult to form a complete travel chain and brings
great obstacles in mining the passenger travel patterns.
Therefore, the original data must be preprocessed to extract
the complete travel chain, so as to build a good data
foundation for the construction of individual travel KGs,
travel law mining, and travel destination prediction.

First, we remove the repeated card swiping records in the
original subway data set and the records with the same card
swiping time and the same card swiping station. Moreover,
because the traffic card type and other information con-
tribute less to the subsequent destination prediction task, we
also filter this information to avoid the interference of re-
dundant information. So, we retain 7 necessary items, in-
cluding card ID, boarding line, boarding station, alighting
line, alighting station, boarding time, and alighting time. In
addition, since the research objects are passengers taking the
subway as their normal transportation tool, we also remove
the passengers whose records are less than the average of 30
card swiping records per month and whose data volume is
abnormal. After these operations, 150-400 travel records in
five months for each passenger are retained.

3.2. KG Construction. Accurately grasping the individual’s
travel intention is the major challenge in the task of the
individual travel destination prediction, and such travel
intention is affected by many factors, for example, time and
station. To achieve this purpose, we intend to construct the
individual travel KG to accurately analyze the travel indi-
viduals and grasp the corresponding travel intention.
Therefore, we construct the individual travel KG using the
passengers’ travel location, time, date, and so on.

In this knowledge, there are five types of entities: card ID,
date, travel date attribute (whether working day or not),
route, and subway station and times. The corresponding
relationships are divided into five categories as shown in
Table 1.

We analyzed the travel data of 8000 individuals in five
months. Specifically, after data preprocessing, we chose all
the historical travel records of 8000 individuals from tens of
millions of people. Then, we extracted the travel record
knowledge, and the steps are shown in Algorithm 1.

3.3. Visualization of KG. Through the above knowledge
extraction steps, we get the structured data and then visually
display the graph by neo4j'. Taking the travel record of Card
No. 787931 in July as an example, our constructed graph is
shown in Figure 1.

4. Methodology

In this section, we propose a knowledge graph-based en-
hanced Transformer for the MITD-Pre, namely, KG-Trans.
The model framework is shown in Figure 2. Firstly, we
identify and extract the travel individuals with similar routes
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TaBLE 1: Entities and relationships.

Entities

Relationships

Card ID-date

Card ID-frequency
Date-attributes of travel date
Attributes of travel date-route
Route-subway station

Travel date
Frequency of travel
Belong to
Travel route
Boarding/alighting station

specified time frame in the data set.

boarding station - alighting line * alighting station.”

Step 1: get the frequency of travel. The frequency of travel of an individual (ID) is the total number of travel records of the ID within a

Step 2: get the travel date. In the individual travel card swiping record, the travel time is expressed as “year/month/day: hour: minute.”
We only take the date information and ignore the hour information.

Step 3: get the date attribute. For the travel date obtained in Step 2, we check the calendar to determine whether it is a working day. The
working day is marked as 1, and the nonworking day is marked as 0.

Step 4: get the origin-destination (OD) records. The storage format of one complete travel record is “ID, boarding time, boarding
route, boarding station, boarding time, alighting route, and alighting station.” Then, we extract the travel OD as “boarding line *

Step 5: get to the subway station. As shown in Step 4, the subway station is expressed in the form of “line * station.”

ALGORITHM 1: Knowledge extraction.
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FiGure 1: Graph display of July travel records of passenger 788252. The front gray node represents the total number of trips per month; the
pink nodes represent the individual card ID; the green nodes represent the travel dates; the ginger yellow nodes represent the travel routes;

and the behind gray nodes represent the boarding stations and the

based on the constructed individual travel KG. Then, the
same class of data is sent to the Transformer to train the
model. Finally, the prediction results are compared to the
real values stored in the KG to construct the loss function.

4.1. Relationship Analysis between Travel Individuals Based on
KG. Due to the large behavioral differences between indi-
viduals and the sparseness of the travel records of some
individuals, the accuracy of individual travel destination
prediction is seriously affected. In view of this phenomenon,
we improve the effectiveness of the individual travel desti-
nation prediction through the “group effect.” As for the
group here, we define it as “people with similar routes.” For
example, for one group of commuters that live in Xierqi,
Beijing, and work in Zhongguancun, Beijing, the subway

get-off stations, respectively.

routes on weekdays are very similar. This paper discovers the
individuals having similar routes through analyzing the KG.

KG has many nodes and edges which contain complex
information and rich semantics. We aim to find the cor-
relation between nodes in the graph so that we can infer the
correlation between the individuals. For example, there are
many shared nodes between some passenger routes. As
shown in Figure 3(a), we can judge that the two passenger
routes are very similar. Some passenger travel routes have
few or no shared nodes. As shown in Figure 3(b), it is
considered that the similarity between the two passenger
routes is relatively weak. In this paper, after analyzing the
five-month travel data of 8000 individuals in detail and
considering the impacts of classification accuracy on the
prediction effect, we constrain the members in the same
category satisfy the following rules:
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(i) For members in the same category, the difference in
travel frequency recorded by card swiping should be
less than 50

(ii) For members in the same category, they should have
more than 70% similar routes between the subway
stations

Then, on the constructed graph, we first divide the travel
records of 8000 people into five length intervals, 150-200,
200-250, 250-300, 300-350, and 350-400 (named group 1 to
group 5), according to the travel chain length interval. The
node similarity between the members of each length interval
is calculated according to the definition of route similarity,
and finally, we obtain p classes of travel groups (p>5). In
these p travel groups, the members of each group are “route
similar members” to each other. In this way, by putting each
class of members, we classified them into the model for
training and we can solve the problem of sparse historical
travel routes of some travel individuals according to their
similarity.

4.2.  Transformer-Based Individual Travel Destination
Prediction. The Transformer is an effective method to
process the sequence data. Its multihead attention mecha-
nism and stacking layer learn the dynamic and hierarchical
characteristics of the sequence data. Therefore, Transformer
can predict the traffic flow with the long-term time series and
long-term time dependence very well. Considering that the
card swiping data of subway passengers have the properties
of long-term time series and long-term time dependence,
Transformer is naturally selected as an important module in
the individual travel prediction model in this paper.

The basic structure of the Transformer used in our model
is shown in Figure 2. Its core module is the multihead at-
tention layer. Firstly, the input of the model is the card
swiping records of passengers with similar routes, i.e.,

R={X, X, ... L}, where m denotes the number of
passengers and ; = {x¢, Xy, -, X, } represents the historical
trajectory sequence of the i-th passenger.

The multihead attention (MH) layer adopts different
linear mappings to project the input sequence elements to
the query, key, and value, ie., a tuple (Q, K, and V). The
output is the corresponding weighted sum of values. The
weight assigned to each value is calculated through the
compatible functions of the query and the corresponding
key. The application of attention can be expressed as

T
Attention (Q,K,V) = softmax(Qi)V, (1)

NZN

where Attention () calculates the attention of the input data
and softmax () is an activation function. To establish a
single-head attention module, each node can have three
subspaces, namely, the queries subspace Q € RN*%, key
subspace K € RN*d and value subspace V € RN*d where
d, is the dimension of queries, keys, and values.

In the global encoder, the input features are projected
into the high-dimensional subspace and the learnable
mapping is realized through the feedforward neural net-
work, which can be expressed as

Q=XW,
K =XW,, (2)
V=XW,

where X is the input feature. W, Wy, and W, are the
learnable parameters.

The multihead attention network uses h feedforward
neural networks to linearly project Q, K, and V, which
achieves a multihead mechanism. In this case, the model can
pay much attention to the information of different repre-
sentation subspaces from different stations, which can be
expressed as
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FIGURE 3: Route similarity among different travel individuals: (a) the route similarity is strong; (b) the route similarity is weak. The ginger
yellow nodes represent the travel routes, and the pink nodes represent the individual card IDs.

MH (Q,K, V) = Concat (head,, ..., head, )W°, (3)

where MH () calculates the multihead attention of the input
data, Concat () concatenates the input data, and the i-th head
head; can be expressed as

head,; = Attention(QWiQ,KWf(, VWiv), (4)

where the map%ing matrices are WIQ € Rmosa e
WK ¢ Rmodaxdi Wie Rmode*de  and WO € Rhdv*dmoda | pe-
1 b b i b
spectively. And, d,, 4 is the dimension of keys, values, and
queries of single-head attention, dy = d, = d, ,4a/h-
The final prediction result of our model is

Xy = MH(Q,K, V), (5)

where x,,, is the travel destination of an individual.
Finally, we use the softmax layer to give each station a
probabilityP:

X;

€
Y.’

where x; is the feature representation of i-th station and z is
the total number of stations. The station with the largest
probability is the final prediction result of the proposed
model.

P(Xi) = (6)

4.3. Loss Function. The individual travel destination pre-
diction problem is different from the previous OD predic-
tion and taxi destination prediction problems. The
performance of OD or taxi destination prediction tasks is
evaluated by measuring the error of the predicted longitude
and latitude. The individual destination prediction results
are estimated by only correct (1) or incorrect (0). Therefore,
the cross-entropy loss function was selected as the loss
function in this paper.

Through the current card swiping records of a travel
individual, we want to predict the travel destination of the
individual. This problem can be regarded as a probability
problem in which we give a probability to each station and
the station with the largest probability is the destination
prediction result. Cross-entropy mainly reflects the distance

between the actual output (probability) and the expected
output (probability). Furthermore, the smaller the value of
cross-entropy, the closer the two probability distributions
are. Assuming that the probability distribution p is the
expected output, the probability distribution ¢ is the actual
output, and the cross-entropy H (p, q) measures the distance
between p and q, we have

n

H(p,q) = = Y (p(x)logq (x;) + (1 - p(x))log (1 - q(x))))-

(7)

i=1
During training the deep learning network, given the
input data and labels, the real probability distribution p (x) is
determined. Therefore, the formula of the cross-entropy
commonly used in deep learning is formulated as follows:

H(p,q) = - ) p(x)log(q(x))- (8)
i=1
5. Experimental Results

5.1. Experiment Settings. In this paper, the proposed desti-
nation prediction model is compared with the five tradi-
tional prediction methods including Markov, LSTM, GRU,
CNN, and FNN.

Markov [4]: the Markov model is a statistical analysis
model, which is widely used in speech recognition, auto-
matic part of speech tagging, sequence classification, se-
quence prediction, and other applications.

LSTM [33]: Long Short-Term Memory (LSTM) can
perform better in longer sequences, which is a special
version of RNN. The problems of gradient disappearance
and gradient explosion in the process of long sequence
training are solved.

GRU [34]: the Gated Recurrent Unit (GRU) is an ef-
fective variant of the above LSTM network. It has a simpler
structure and better effects than the above LSTM network
and still solves the long-term dependency problem in RNN.
Therefore, it is an important manifold network at present.

CNN [35]: The Convolutional Neural Network (CNN) is
a feedforward neural network. For some sequence
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processing problems, the effect of the one-dimensional
Convolutional Neural Network is comparable to that of the
RNN, while the computational cost is usually much lower.

FNN [36]: the feedforward neural network (FNN), also
known as a multilayer perceptron (MLP), contains multiple
fully connected hidden layers. The complex mapping from
input space to output space is realized by aggregating
multiple simple nonlinear functions.

We conducted the whole experiments on a GPU
workstation, containing a 2080TI GPU with 11G memory.
During the training process, the number of epochs is set to
200; the batch size is set to 32; the learning rate is set to 0.001;
the number of self-attention heads in the Transformer is set
to 8; the dimension of the input vector is set to 6; and the
dropout rate is set to 0.3. All experiments use 3 historical
observations to predict the next point in this paper.

5.2. Evaluating Indicator. To fairly estimate the experiment
performance, we refer to the evaluation indicator Hit@n that
is exploited in the KG representation learning TransE [37].
During the testing procedure, the prediction results are
arranged from large to small. It determines whether the first
n results contain the correct options. If it contains the correct
options, we increase the hit value by 1; otherwise, it processes
to the next cycle. In other words, we do not require the first
one value to be right (Hit@1 except), as long as there is the
correct result in the first # results. The final accuracy ACC is
calculated as follows:
hit

ACC= v P ©)
where hit is the number of travel stations that are predicted
correctly and FP is the number of incorrectly predicted
results.

5.3. Prediction Performance of KG-Trans. Table 2 shows the
destination prediction results of above five compared
methods on the card swiping data set of Beijing Metro. The
data set is described in Section 3.1 in detail. It can be seen
that our KG-Trans is obviously superior to other methods in
all indicators. Group 1-Group 5 in the experimental data set
are distributed from less to more according to the number of
travel records of one individual (the detailed description is in
Section 4.1). The experimental results show that the pre-
diction effect of KG-Trans is more accurate as the number of
travel records increases.

For the destination prediction problem solved in this
paper, our data set has a long travel sequence of passengers.
Although LSTM can mine the long-term sequence char-
acteristics hidden in the data, the LSTM gradient will dis-
appear and affect the prediction results when the sequence
length exceeds a certain limit. Moreover, the passenger card
swiping data are the sequence data, but the time intervals
between records in the sequence do not have the obvious
regularity. For the feature learning of such data, LSTM still
has difficulty to capture the time correlation.

In Table 2, we can see that the prediction effect of GRU is
the worst. We believe the reason is that GRU ignores the

TaBLE 2: Experimental results.

Group Group Group Group Group
1 2 3 4 5
LSTM  0.383 0.386 0.403 0.490  0.404
GRU 0.159 0.210 0.128 0.169 0.128
CNN 0.328 0.578 0.317 0.481 0.469
Hit@3 FNN 0.547 0.328 0.640  0.688 0.779
Markov  0.386 0.466 0.489 0.550  0.598
KG- 0.572 0.583 0.689 0.731  0.790
trans
LSTM  0.585 0.538 0.416 0.750  0.689
GRU 0.309 0.286 0.203 0.258 0.148
CNN 0.372 0.588 0.426  0.492 0.476
Hit@5 FNN 0.602 0.464  0.758 0.762 0.794
Markov ~ 0.427 0.522 0.527  0.597  0.640
KG- 0.611 0.760 0.767  0.809  0.810
trans
LSTM  0.633 0.605 0.470  0.755 0.796
GRU 0.618 0.433 0.316 0.456 0.160
Hit@ CNN 0.450 0.608 0.433 0.875 0.487
10 FNN 0.672 0.516 0.773 0.883 0.805
Markov  0.486 0.589 0.600  0.659 0.690
KG- 0.733  0.775 0.792  0.947  0.929
trans

middle layer compared to LSTM. Although this operation
reduces parameters and prevents over-fitting risk, the
middle layer plays a key role in the long-term sequence
feature extraction. Therefore, the GRU effect receives the
worst performance in our passenger travel prediction
scenario.

The prediction effect of CNN is similar to that of LSTM.
The receptive field of CNN has a fixed size, and the pro-
cessing effect of the local information is very prominent. It
can capture some local specific features, while the capture
ability of global features is worse than LSTM.

In addition to our model, FNN has the best experimental
effects. FNN is a fully connected network, and the com-
putational complexity is very large, which results in low
training efficiency. In addition, FNN can only learn the high-
order combined features while the low-order features are not
modeled in the model.

Since the prediction effect of Markov heavily depends on
the data of the previous time, the performance of the
characteristic learning of long-term time series is poor, so
the prediction effect of individual travel destinations is not
good.

Compared with the above methods, with the help of the
accurate portrait analysis of passengers in our individual
travel KG, we can identify and extract the route similar
passengers and put them into different in-depth learning
models for training. Such KG solves the problem of the
sparse individual travel trajectory by exploiting the char-
acteristics of similar passenger routes. In addition, the
Transformer has the multihead self-attention mechanism
and the stacking layer, which has stronger structural flexi-
bility and captures a wider range of time correlation. The
Transformer achieves a very good prediction effect for the
individual travel data series with the long-term time series
and the long-term time dependence.



6. Conclusion

In this paper, a knowledge graph-based enhanced Trans-
former for the metro individual travel destination prediction
method is proposed. The method of constructing individual
travel KG is used to accurately analyze the travel individuals.
And then, the Transformer’s outstanding sequential learning
ability is used to capture the sequence information in the
individual travel chain. The test results on the AFC card
swiping data set of Beijing Metro show that our method can
well learn the regularity and characteristics of passenger
travel records, which is greatly improved compared with
previous studies. In future work, our model should also
consider the influence of more external factors (the weather,
the road network, and traffic events) and build more levels of
trafic KG to improve the prediction accuracy. Moreover, in
terms of individual travel destination prediction, in addition
to the next travel location, the next travel time will also be the
focus of our next research.
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Train station delay prediction is always one of the core research issues in high-speed railway dispatching. Reliable prediction of
station delay can help dispatchers to accurately estimate the train operation status and make reasonable dispatching decisions to
improve the operation and service quality of rail transit. The delay of one station is affected by many factors, such as spatio-
temporal factor, speed limitation or suspension caused by strong wind or bad weather, and high passenger flow caused by major
holiday. But previous studies have not fully combined the spatiotemporal characteristics of station delay and the impact of external
factors. This paper makes good use of the train operation data, proposes the multiattention mechanism to capture the spa-
tiotemporal characteristics of train operation data and process the external factors, and establishes a Multiattention Train Station
Delay Graph Convolution Network (MATGCN) model to predict the train delay at high-speed railway stations, so as to provide
references for train dispatching and emergency plan. This paper uses real train operation data coming from China high-speed
railway network to prove that our model is superior to ANN, SVR, LSTM, RF, and TSTGCN models in the prediction effect of

MAE, RMSE, and MAPE.

1. Introduction

High-speed rail transit will be affected by many factors such
as stations, lines, and equipment [1]. Train delay will cause
long time of passenger detention and bring inconvenience.
In addition, with the increase of lines and the decrease of
train tracking interval, the delay of one train may affect the
other trains and form a knock-on effect. Train delay has
always been one of the core research problems in high-speed
railway dispatching [2]. Reliable prediction of station delay
can help dispatchers to accurately estimate the train oper-
ation status and make reasonable dispatching decisions to
improve the operation and service quality of rail transit.
Out of the above consideration, this paper aims to dig
out the hidden train operation law in the actual operation
data based on the previous research, that is, on the basis of

the actual operation data, comprehensively consider the dual
propagation characteristics of time and space of train op-
eration delays and external factors such as weather, wind
level, and major holiday to predict train station delays. This
paper uses statistical analysis to observe whether the
weather, wind speed, and major holiday have an impact on
train delay and comprehensively considers the impact of
spatiotemporal characteristics and external factors on train
delay to predict the delay of some stations in a certain period
of time.

The train delay prediction of high-speed railway stations
is a typical spatiotemporal network prediction problem
[3, 4]. In the analysis of train delay, it is necessary to
comprehensively consider the spatiotemporal dependence
between multiple trains and multiple lines [5]. The adjacent
stations are spatially related and the timestamps are related
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in time [6]. So, the train delay data has the characteristics of
spatial dependence, temporal relevance, and spatiotemporal
correlation.

In addition to spatiotemporal factors, the operation of
one train is also affected by many external factors [7]. For
example, in rainy, snowy, and foggy weather, the operation
speed of one train is limited, which may lead to delay, and, in
extremely bad weather, trains may even be suspended. In
addition, passenger flow is also a major influencing factor.
During major holiday, a substantial increase in passenger
flow will affect the trains’ stop time. Through the above
analysis, we find that the train operation analysis needs to
consider not only spatiotemporal factors but also relevant
external factors. In this paper, the factors we choose are wind
level, temperature, weather conditions, and whether it is a
major holiday.

The single-train delay refers to the delay of a specific
train at each station; this paper does not predict the delays of
one specific train, because if one train is delayed, the specific
dispatching decision is issued by the railway dispatching
department, which depends on the experience and knowl-
edge of the dispatchers. On the contrary, we vaguely predict
the number of train delays in each time period for each
station. The main difference between the single-train delay
and station delay is whether to pay attention to the delay of a
train or the total number of delayed trains in a station over a
period of time.

At present, there are many SOAT models in the field of
traffic prediction, but most of the predictions of flow and
speed are concentrated on the highway network, such as
DCRNN (8] and its derived models.

It is difficult for us to directly apply these models to the
prediction of train station delay; the reasons are as follows:

(1) At present, we cannot obtain such close train op-
eration data in time and space similar to the highway
network.

(2) Allkinds of vehicles running on the highway have no
fixed speed and direction, and the train needs to
travel in strict accordance with the minimum and
maximum speed limit and line on the train diagram.
Many traffic prediction SOAT models are based on
random walk, so they cannot be directly applied to
train delay prediction.

(3) Traffic predictions are often concentrated on sev-
eral roads or within a city. But this paper uses a
large dataset, including most high-speed rail sta-
tions and lines in China. Its research scope runs
through China, and almost no highway prediction
work is established in such a large range. This
problem brings us more difficulties, such as the
extraction range of node features, the capture of
spatiotemporal characteristics, the different train
operation laws between different regions and dif-
ferent lines, and the test of the robustness of the
model.

There are many works on the analysis and prediction of
train delay in high-speed railway. For example, Liu et al. [9]
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used statistical methods to study the actual operation data of
the two stations of Beijing-Shanghai railway lines and cal-
culated the delay rate of the station; Milinkovi¢ and
Markovi¢ [10] proposed a fuzzy Petri net (FPN) model to
simulate the traffic process and train operation in the railway
system to estimate train delays; Markovi¢ and Milinkovi¢
[11] analyzed the relationship between passengers and
various characteristics of the railway system in train arrival
delays and applied the support vector machine model to
make train delay analysis; Lessan et al. [12] built a train delay
prediction model based on Bayesian network. Our work is
an improvement of the paper of Zhang et al. [13]; compared
with that paper, we proposed the multiattention mechanism
to achieve more accurate prediction, and we will introduce
the differences in Section 3.3. Most of these works have some
similar characteristics: (1) The research on train operation
data mostly stays in the stage of statistical analysis but fails to
tap the hidden train operation law in it. (2) It is rare to
consider the spatiotemporal attributes of trains. The tem-
poral impact caused by delay is obvious, but the spatial
impact of different lines in some hub stations is often ig-
nored. (3) Almost no research considers the comprehensive
impact of spatiotemporal characteristics and external
factors.

Compared with existing works, the contributions of this
paper can be summarized as follows:

(1) We define the train operation network as a graph
and the stations on the network as nodes and add
node features. We define the lines connecting sta-
tions as edges and the reciprocal of the distance
between adjacent stations as the weight of edges,
indicating the mutual influence between adjacent
stations.

(2) We propose a MATGCN model based on multi-
attention mechanism to predict the total number of
train delays at one certain station in a certain period
of time; this mechanism makes MATGCN able to
adjust the parameters during training according to
the importance of different attributes, so as to have
better robustness.

(3) We spent a lot of time building a high-speed rail
delay dataset and published it on Figshare [14]; this
dataset contains the train operation data from Oc-
tober 8, 2019, to January 27, 2020, and the train delay
data of the railway stations passing by these trains.
Weather, temperature, wind power, and major
holidays are considered as factors affecting train
operation. As we know, this is the first public large-
scale high-speed rail delay dataset.

(4) In the contrast experiment, we use real-world data
and make predictions for 1 to 6 hours. The result
shows that our MATGCN model can well capture
the periodic law of train operation and maintain
good accuracy in long-term prediction.

The following parts of this paper are organized as fol-
lows: Section 2 systematically investigates the existing train
delay prediction and spatiotemporal data mining methods.
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Section 3 shows the materials and methods. Section 4 shows
the results of the experiment and Section 5 summarizes the
work of this paper.

2. Literature Review

Some achievements have been made in the prediction of
train delay previously. Generally, it can be divided into the
following categories: (1) works based on scenario calculation
and simulation data; (2) works based on actual data without
considering the spatiotemporal characteristics of train op-
eration; (3) works based on actual data and considering
external factors but ignoring the spatiotemporal charac-
teristics of train operation; (4) works based on the actual
performance data, considering the spatiotemporal charac-
teristics of train operation but ignoring the external factors.

Some studies are not based on actual train operation
data. For example, Wang et al. [15] analyzed the four aspects
of people, equipment, environment, and management and
further selected 14 main influencing factors of train delay;
the interpretive structure model is used to analyze the train
delay. Based on scenario calculation, Ma [16] analyzed the
influencing factors of train delay degree and calculated the
corresponding weight through expert scoring method and
analytic hierarchy process, solved the models of different
scenarios by introducing genetic factor and information
entropy, and solved the train operation adjustment model by
example simulation, so as to adjust and optimize the train
delay model.

Some studies are based on actual performance data but
do not consider the spatiotemporal characteristics of the
train. For example, Huang et al. [17] put the delay time of the
train at the initial late station, the total delay time of train
passing through each station, and the total interval buffer
time for each stop, as well as the 0-1 variable that identifies
whether the train is delayed through the Zhuzhou West-
Changsha South interval as independent variables, and used
random forest regression to predict train delays. Oneto et al.
[18] proposed a fast learning algorithm for shallow and deep
extreme learning machines based on the useful and ac-
tionable information in a large amount of historical train
operation data of the Italian railway network and made full
use of the recent memory scale data processing technology to
predict train delays.

Some studies consider external factors but do not
consider the spatiotemporal characteristics. For example,
the research of Oneto et al. [19] does not use the historical
data of train operation but uses the static rules established
by railway infrastructure experts based on classical
univariate statistics and uses the weather information
provided by the national meteorological service to fur-
ther improve the model. The train operation data changes
with time and space. The model that only depends on the
rules defined by experts has poor flexibility and porta-
bility, and it is hard to grasp the train operation law in the
data.

More studies consider the spatiotemporal characteristics
on the basis of actual operation data but ignore the impact of
external factors. For example, Huang et al. [5] used the

dynamic system of moving objects to generate multiattribute
data, including static, time series, and spatiotemporal for-
mat, and used a three-dimensional convolutional neural
network. The long-term and short-term memory cycle
neural network and fully connected neural network were
used to predict train delay. Zhang et al. [20] comprehen-
sively considered the relationship between the delay prop-
agation of current train and its adjacent trains, constructed a
hierarchical prediction model of train associated delay based
on wavelet neural network for delay prediction, and divided
it into four categories: serious delay, dissipated delay, po-
tential delay, and general delay. Lessan et al. [12] proposed a
train delay prediction model based on Bayesian network,
which used the real train operation data from high-speed
railway line and adopted three different Bayesian network
schemes to capture the superposition and interaction of train
delays. Zeng et al. [21] designed the classification method of
initial delay and associated delay on the basis of delay
propagation analysis and performance data statistics. Based
on the data provided by the classification method, they
proposed a delay prediction model and used back-propa-
gation neural network to predict the delay time. Hu et al.
[22] established the prediction model of train delay recovery
time by using multilayer perceptron and cyclic neural
network with initial delay time, station stop redundancy
time, and interval redundancy time. Corman and Kecman
[23] used Bayesian network to predict train delay propa-
gation based on a set of historical traffic actual data of busy
sections in Sweden and fully considered the dynamic
changes of train delay with time and space. Hou et al. [24]
used the train operation records from the scheduled and
actual train schedules to sort the modeling data, used the
stepwise regression method to determine the importance of
the influencing factors corresponding to the train delay time,
and applied the gradient boosting regression tree to con-
struct the delay recovery model.

It can be observed that the above research methods
mainly have one or more of the following problems:

(1) The spatiotemporal correlation of train delay is not
comprehensively considered.

(2) The impact of external factors such as weather and
major holiday on train operation is not considered.

(3) There is too much focus on the delay prediction of
one specific train but the importance of dispatchers
is ignored.

(4) Some works do not use actual train operation data,
and there will be problems in the actual application.

The change of weather plays an important role in train
operation. Ludvigsen and Klaboe [7] evaluated how the
2010 winter weather affected rail freight operations in
Norway, Sweden, Switzerland, and Poland, as well as the
response behavior mobilized by railway managers to re-
duce adverse consequences. The results show that railway
operators are not prepared to deal with the three kinds of
bad conditions: low temperature, heavy snow, and strong
wind. Moreover, studies have shown that 60% of the
delays of freight trains are related to winter weather. For



example, with a snowfall of 5 millimeters and a tem-
perature below —20°C, there will be a 79% change in arrival
delay.

In fact, some works consider the external factors, but a
common way like Huang et al. [25] did is to treat these as the
nonoperational data and use the simple fully connected
layers to process, but our paper thinks that these data can be
better processed by treating as the feature of the nodes in
graph and should be added in the model to do convolution
duo to the spatiotemporal characteristics as mentioned
above.

In the graph convolution, we propose a multiattention
mechanism; it consists of three parts: a spatial attention
mechanism for different nodes in network, a temporal
attention mechanism for the correlation of traffic condi-
tions in different time slices, and a multifeature attention
mechanism for different external factors fed into
MATGCN.

During the experiment, we conducted experiments
without considering the spatiotemporal attention mecha-
nism, only considering the spatiotemporal attention
mechanism, and considering the above three attention
mechanisms. The results show that the three attention
mechanisms proposed in this paper play a positive role in
improving the performance of the model.

3. The Method

Before this section, as shown in Table 1, we first give a table
of notation definitions to help find the meanings of notations
used in the model and method descriptions.

3.1. Train Delay Prediction. Train delay can be roughly di-
vided into station delay, interval delay, line delay, single-
train delay, boundary delay, and so on. The work of this
paper focuses on the prediction of station delay which refers
to the delay of trains passing through one station in a certain
period of time.

The train operation network can be regarded as an
undirected graph [16]. The nodes in the graph represent a
series of interconnected stations, and the connection be-
tween stations is determined by the running lines of one or
more trains. Any train running on the train network has an
itinerary consisting of station S =§,,S,,...,Sy. This itin-
erary is composed of a departure station, a target station, and
one or more intermediate stations. These stations are dis-
tributed in different locations. For one station, the scheduled
arrival time in station S is 7%, and the scheduled departure
time in station S is TSp,. According to the railway operating
plan, these data should be accurate and strictly implemented.
It should be noted that the initial station S; has no scheduled
arrival time, and the target station Sy has no scheduled
departure time.

In this way, through the analysis of the trains at all
stations, we convert the existing train operation data into
spatiotemporal data and then add historical weather data
from China Weather Network (https://www.tiangi.com), as
well as the information of major holiday.

Journal of Advanced Transportation

3.2. Data Preparation

3.2.1. Data Collection. The train operation data used in this
paper comes from the train delay data of the China Railway
Ticket System (https://www.12306.cn) and the historical
weather data from the China Weather website (https://www.
tianqi.com) [14]. It is spliced according to date and station
ID, including the train operation records of 727 stations
from October 8, 2019, to January 27, 2020. The attributes
include arrival delay, departure delay, wind level, weather
condition, temperature, and major holiday. The train op-
eration data is recorded in whole minute. The running data
of some passed trains can be seen in Table 2.

Table 2 shows the actual operation data from the China
Railway Passenger Ticket System. As shown in the table,
there are three delayed trains entering Beijing South Railway
Station on October 19, 2019; Table 3 shows the historical
weather data published by China Weather Network with
major holiday including Spring Festival and Public Sacrifice
Day.

3.2.2. Data Analysis. Train operation data is typical spa-
tiotemporal network data [5]. In the real high-speed railway
network, the operation of trains has a strong spatial de-
pendence, temporal relevance, and spatiotemporal corre-
lation. Spatial dependence is the direct influence between
adjacent stations. The number of train delays at the next
station will be affected by the delays at the previous station.
Temporal relevance refers to the fact that the delay of a
certain time period at a certain station has the same trend as
that in the past few days and weeks. Spatiotemporal cor-
relation refers to the fact that, in the spatial dimension, the
mutual influence between different stations is different. Even
the same station has different effects on its adjacent stations
over time, and, in the time dimension, the historical ob-
servation data of different stations have different effects on
the delay status of the station and its adjacent stations at
different times in the future; therefore, the train operation
data of high-speed railway shows strong dynamic correlation
in spatiotemporal dimension.

This paper uses three ways to sample data: the latest time
series (by hour) and the time series of one day and one week.
Weather conditions and major holidays also have dual at-
tributes in time and space. From the perspective of temporal
dimension, for a special station, the change of weather in a
week will be greater than that in a day, and the change in a
day will be greater than that in each hour. From the per-
spective of spatial dimension, in the same time period,
different stations have different weather. For example, the
weather conditions between closer stations will be more
same, while the weather conditions of stations farther away
will be more different. Therefore, we believe that weather
factors have spatiotemporal characteristics. For major hol-
idays, we believe that the major holiday factors have the
temporal characteristics.

This paper makes statistics on the external data. Among
the 1,954,176 pieces of data, about 89.59% of the day it is
weak wind, about 10.02% it is middle wind, and 0.37% is
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TaBLE 1: Some notation definitions.

X' = (XL, X5,...,XE)" € RVF
X= (Xl XZ . X‘)JF\IE RNXFXt

The scheduled arrival time in station S
The scheduled departure time in station S
The actual arrival time of the train in station S
The actual departure time in station S
The arrival delay
The departure delay
All the features of station i in 7
All features of all stations in 7
All the features of all stations in ¢ time periods

yi €R The number of arrival delays of station i in the future time period 7
Y = (31, ¥gs- > yn)" € RN¥Te The arrival delay sequence of all stations
yi= (yrL oy, yi”T” ) The arrival delay sequence of station i in the future T time period
TaBLE 2: China railway ticketing system train operation data.
Train date Train Station Expected Expected icrtlsz} d??rtiillre Stopover time Arrival ~ Departure
number name arrival time departure time . b: (minutes) delay delay
time time
October
19. 2019 G17 Beijingnan 19:00 19:00 19:00 19:00 — False False
%Ctggf; G39  Beijingnan 19:04 19:04 19:03 19:03 — False False
?9“(2’2;’; G21  Beijingnan 19:06 19:08 19:08 19:10 2 True True
?;tggfg G269  Beijingnan 19:14 19:18 19:15 19:17 4 True False
?;tggf; G207  Beijingnan  19:28 19:30 19:36 19:37 2 True True
(1)9“‘2’8;; G4961  Beijingnan  19:36 19:37 19:36 19:38 1 False True
?;t‘z’gf; G333 Beijingnan 19:55 19:57 19:54 19:56 2 False False
TaBLE 3: Historical weather data and holiday data (before classification).
Station name Train date Wind Weather Temperature Holiday
YiMianPoBei October 8, 2019 Westerly 4-5 Shower 11 No
YiMianPoBei October 9, 2019 Southwest wind 4-5 Fine 17 No
YiMianPoBei Qctober 10, 2019 Northwest wind 4-5 lightRain 16 No
YiMianPoBei October 11, 2019 Westerly 3-4 Fine 12 No
YiMianPoBei Qctober 12, 2019 North wind 3-4 Fine 10 No
YiMianPoBei October 13, 2019 Northwest wind 3-4 Cloudy 9 No
YiMianPoBei October 14, 2019 Westerly 3-4 Fine 8 No
YiMianPoBei October 15, 2019 Southwest wind 4-5 Fine 12 No

strong wind; 96.63% of the trains are in good weather, 2.11%
in normal weather, and 1.24% in bad weather. At the same
time, about 7.14% of the days are major holiday and 92.85%
are not major holiday. Table 4 shows the departure delay and
arrival delay rate of train operation under various external
factors. For example, in good weather, the departure delay
rate of train operation is 16.38%; in normal weather, the rate
is 17.78%; and, in bad weather, the rate is 19.56%.

In order to more directly observe the influence of different
external factors on the change of departure and arrival rate, this
paper uses a heat map to describe it. As shown in Table 5, the
departure and arrival rates under different weather conditions
and wind levels and in whether it is a major holiday are
changing. External factors are the statistics of the proportion of

the total data of each factor. For example, 7.14% of the days are
major holiday. As the color gradually deepens from left to right,
with the increase of wind level, the worse of weather conditions,
and the influence of major holiday, the departure and arrival
rates increase, that is, the external factors used in this paper have
impacts on the departure and arrival rate.

3.2.3. Data Processing. However, there are nearly 80 types in
different weather, wind direction, wind level, and holiday.
Although many of them are different, the impact on train
operation is roughly the same; for example, southwest wind
levels 1-2 and northeasterly wind levels 1-2 are relatively low
wind levels and have roughly the same impact on train
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TaBLE 4: Changes of departure rate and arrival rate under the influence of external factors.

External factors Total num Rate Arrival delay num Arrive delay rate Depart delay num Departure delay rate
Weak wind 1750872 0.8959 287903 0.1644 187942 0.1073
Middle wind 195984 0.1002 32246 0.1645 22199 0.1133
Strong wind 7320 0.0037 1272 0.1738 961 0.1313
Good weather 1888512 0.9663 309313 0.1638 203038 0.1075
Normal weather 41304 0.0211 7343 0.1778 4881 0.1182
Bad weather 24360 0.0124 4765 0.1956 3183 0.1307
Holiday 139584 0.0714 21704 0.1652 12915 0.1092
Nonholiday 1814592 0.9285 299717 0.1554 198187 0.0925

TasLE 5: Different external factors on the change of departure delay rate and arrival delay rate.

nice  normal bad
weather weather

external
factors

arrival
delays

departure
delays

operation. Therefore, these two types of wind direction and
wind level can be classified as weak wind levels. Similarly, the
wind levels are classified in this paper. The wind below level 4
is weak, the wind from level 4 to level 6 is middle, and the
wind above level 6 is strong. The weather conditions are
classified. Nine kinds of weather such as sunny and cloudy
are classified as good weather, six kinds of weather such as
moderate snow and moderate rain are classified as normal
weather, and nine kinds of weather such as sleet and blizzard
are classified as bad weather, as shown in Table 6.

But we find that the weather conditions, wind level, and
holiday data are not numerical and cannot be fed into the
MATGCN model for calculation and training. Therefore, we
use one-hot encoding to transcode these data. This process is
implemented by using Python machine learning third-party
library scikit-learn.

As shown in Algorithm 1, the input data are spatio-
temporal and external factors data and columns that need to
be encoded. The program reads the original data, uses the
OneHotEncoder class provided by scikit-learn to convert
nonnumerical columns into one-hot encoding and com-
bines and splices the converted data with the original data to
obtain numerical data that can be applied to model calcu-
lations. The conversion result is shown in Table 7. Take
the data in the first row as an example, during the period
from 2:00 to 3:00 on October 8, 2019 (not a major holiday),
at WanZhou Station, the temperature is 22°C, the wind level
is weak, the weather is good, and there are no delayed trains.

We need to reprocess and modify the original data of the
train as in Table 8, assuming that the actual arrival time of
the train in station S is T, , the actual departure time in
station S is TS, 5, TS, — T, is defined as the arrival delay,
and, similarly, TS, ,, - T%}, is defined as the departure delay.
If TS, - T§, >0, it will be counted as an arrival delay; if
Tf; D~ TéD >0, it will be counted as a departure delay.

weak middle
weather wind wind wind

strong holiday h:l?crllay

3.3. MATGCN. The train network is defined as an undi-
rected graph G= (S, E, A, M), where S is the set of all stations;
[S| =N, and N represents the number of stations, E is the set
of all edges, which represents the train line between the
stations, A € R, representing the connectivity between the
stations, is the adjacency matrix of G, and M representing the
distance between the stations is the distance weight matrix of
G. Because the greater the distance between the two stations,
the less the influence, the weight is also smaller. In G, each
station has a number of statistical values in the time period 7,
including the total number of departure delays and arrival
delays. We use F to represent the number of station
features, and X] € R represents all features of station 7 in 7.
X' = (X0, X5,...,X%) € RN*F represents all features of all
stations in 7. y = (X!, X2,..., X")" € RV*F*! represents all
the features of all stations in ¢ time periods; that is,
y € RVFT In addition, we set y7 € R to represent the
number of arrival delays of station i in the future time period
7. Given a fixed time period 7, the various eigenmatrices of
all stations on the train network generated by the train
dataset in the past 7 time period are used to predict the
arrival delay sequence of all stations on the entire train
network Y = (y,, ¥, ..., yx)" € R¥VTr in the future Tp
time period. Among them, y,= (yr*\, yr*2,.. ., y*TF)
represents the arrival delay sequence of station i in the future
Tp time period.

The MATGCN model (as shown in Figure 1) is a
significant improvement of TSTGCN [13]. TSTGCN is a
train station delay prediction deep learning model we
proposed before, which uses train operation data on the
original high-speed railway network and effectively
captures dynamic spatiotemporal characteristics to pre-
dict the delay of high-speed train stations. Our MATGCN
model does some significant change based on TSTGCN.
Like TSTGCN, we divide the input data into three
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TaBLE 6: Historical weather data and holiday data (after classification).

Station name Train date Temperature Holiday Wind class Weather class
YiMianPoBei October 8, 2019 11 No Middle Normal
YiMianPoBei October 9, 2019 17 No Middle Good
YiMianPoBei October 10, 2019 16 No Strong Good
YiMianPoBei October 11, 2019 12 No Weak Good
YiMianPoBei QOctober 12, 2019 10 No Weak Good
YiMianPoBei October 13, 2019 9 No Weak Good
YiMianPoBei QOctober 14, 2019 8 No Weak Good
TaBLE 7: Coding results of model input data.
Station Start time End time  Holiday Nonholiday Weak M1.dd1e Strpng Good Normal Bad
name wind wind wind weather weather weather
October 8, Qctober 8,
Wanzhou 1497500 2019, 3:00 ! ! 0 0 ! 0 0
. October 8, Qctober 8,
Sanming 2019, 6:00 2019, 7:00 ! ! 0 0 ! 0 0
. . October 8, Qctober 8,
Linhai 2019, 6:00 2019, 7:00 ! 0 ! 0 0 ! 0
. October 8, October 8,
Fenglin 2019, 15:00 2019, 16:00 1 ! 0 0 ! 0 0
. October 8, October 8,
Nanjing 2019, 17:00 2019, 18:00 ! ! 0 0 ! 0 0
. October 13, October 13,
Nanping 5019, 1500 2019, 16:00 ! : 0 0 ! 0 0
Input:
data, encoded row list;
Output:
encodeddata;

(1) Data=read(data);

(2) ec=OneHotEncoder();
(3) one hot data = ec.fit transform(encoded row list).to array();
(4) new dataFrame = DataFrame(one hot data);

(5) concat result = concat([data, new dataFrame], axis=1);

(6) return concat result;

ArLGoriTHM 1: Encoding nonnumerical data.

TaBLE 8: The total number of delayed trains at a station in a certain period of time.

Station name Start time End time Departure delay Arrival delay
WanZhouBei October 8, 2019, 2:00 October 8, 2019, 3:00 0 0
SanMing Qctober 8, 2019, 6:00 Qctober 8, 2019, 7:00 0 0
LinHai October 8, 2019, 6:00 October 8, 2019, 7:00 1 0
FengLin October 8, 2019, 15:00 October 8, 2019, 16:00 0 0
NanJing October 8, 2019, 18:00 October 8, 2019, 19:00 0 3
NanPing October 13, 2019, 16:00 October 13, 2019, 17:00 0 0

categories, the recent, daily period, and weekly period,
but we add more external features into the graph nodes
and redivide the input data as follows: recent-external,
daily-period-external, and weekly-period-external, and

further the multiattention attention mechanism we
proposed is a combination of spatial attention module,
temporal attention module, and multifeature attention
module; it can solve the spatiotemporal data and process
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Input Row Data
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FIGURE I: Structural diagram of MATGCN train delay model. TAtt: temporal attention mechanism, MAtt: multifeature attention
mechanism, SAtt: spatial attention mechanism, GCN: graph convolution neural network, Conv: convolution layer, FC: fully connected
layer.

(1) Recent time series data with external factors. The
arrival delay of the previous one or more stations in
the past will affect the arrival delay of multiple
stations in the future; among them, external factors
will have an effect on it. The mathematical repre-

the input data in every layer according to its importance
to the model. So it is much better than the TSTGCN. We
use the similar ways to combine the results from three
components to get the final result. Then we will introduce
the MATGCN in detail.

As shown in Figure 1, the input data is the integration of sentation is as follows:
three time series (X, Xy, X,,) with external factors data X. _
When these data pass TAtt (temporal attention block) and SAtt X+ Xp = [(Xto—ThH’ O
(spatial attention block), the MATGCN model can capture the ¢ RVEXT,.
spatiotemporal correlation; when they pass the MAtt (multi-
feature attention block), MATGCN can add attention matrix to
external factors and then model the spatial characteristics of the
nodes on the train operation network through the GCN and
make full use of the correlation of the graph node signals in the
train operation network. Finally, the result is obtained by fusing
the output of the three components through the full connection
layer according to the influence weight.

VX)) + X 0

(2) Daily-period series data with external factors. Peo-
ple’s daily travel is regular; station delays may occur
in a relatively fixed time period, such as five to six
o’clock in the afternoon every day, and external
factors will have an effect on it; the purpose of the
daily-period component is to simulate the daily-
periodity of the train arrival delay data. The math-
ematical representation is as follows:

3.3.1. Input Row Data. The input data are divided into three

categories:

Xg+Xg= [(Xto—(Td/Tp)qu’ SRR Xto—(Td/Tp)xq-f—Tp’ s Xto—(Td/Tp—l)qu’ s Xto—q+TP> + XE] 2)

€ RNXFXT”I.

(3) Weekly-period series data with external factors. The may be very different from that on Thursday and

weekly attributes and time intervals of these frag-
ments are the same as the predicted period. Nor-
mally, the traffic pattern on Wednesday is similar to
the traffic pattern on Wednesday in history, but it

Friday, and external factors will have an effect on it.
For example, even if there are similar train delay
rules every week, this rule will change under con-
tinuous blizzards. Therefore, external factors also
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play a key role in exploring the rules of train delays.
The mathematical representation is as follows:

Xy + Xg = [(Xt0—7><(TW/TP)+1’ s ’Xt0—7><(TW/TP)><q+1’ s ’Xt0—7><q+TP> + XE]

c RNXFXTW )

3.3.2. GCN. In this paper, GCN is used to model the spatial
characteristics of nodes on the train operation network. In the
spatial dimension, train operation data is a kind of graph
structure data. Different from grid data, it exists in non-Eu-
clidean space, which makes it difficult for the traditional neural
network to process. However, graph convolution neural net-
work can directly model the original graph structure data and
obtain the representation of nodes in graph structure data. In
this paper, the spectral method is used to define the graph
convolution. The spectral method uses the convolution theo-
rem and Fourier transform to transfer the graph from the node
domain to the spectral domain and then defines the convo-
lution kernel in the spectral domain.

3.3.3. 2D-CNN. CNN is a type of feedforward neural network
that contains convolution calculations and has a deep structure.
It is specially used to process data with a similar grid structure.
This paper uses 2D-CNN to model the time correlation
characteristics of nodes on the train operation network. After
collecting the adjacency information of each node on the train
operation network in the spatial dimension, the graph con-
volution operation updates the node signal by merging the
information of adjacent time slices along the temporal di-
mension to capture the dependence between adjacent time
slices. Taking the 7-th layer in the daily-period component as an
example, its convolution operation is shown as follows:

X/, = ReLU(gb <ReLU<g9 s X" ”))), (4)

where ReLU is the activation function and ¢ is the temporal
dimensional convolution kernel parameter.

3.3.4. Attention Mechanism. MATGCN model uses a
multiattention mechanism including a spatial attention
mechanism, a temporal attention mechanism, and a mul-
tifeature attention mechanism. This multiattention model
can well capture the spatiotemporal correlation and process
the input data in every layer according to its importance to
the model.

In the temporal dimension, there is a correlation be-
tween the arrival delays of stations in different periods. The
correlation of each station is also changing in different time.
The arrival delays in the previous periods will affect the
future arrival delays of the stations on the line.

We calculate the time weight matrix Z of the input data.
The element Z;; in Z represents the degree of dependence
between times i and j. The calculation formula is as follows:

Z =V ,.sigmoi d((XU,)U,)® (U;X) +b,), (5)

(3)

where, - means inner product, - means Hadamard product,

= (X}, Xy, ..., Xp ) € RF-Tet represents the input
data of the r-th layer of multiattention module, F,_; rep-
resents the number of features of the r-th layer, T',_, rep-
resents the length of the time series of the r-th layer, the
activation function is sigmoid, and V,, b, € RT->Tr1,
U, € RN, U, € RN U, € RF1 are characteristic trans-
formation matrices, which are learnable parameters. After
that, we use the softmax function to normalize Z to ensure
that the sum of attention weights is 1 and get the final time
attention matrix:

exp(Zij)
¥ exp(Zyy)

The obtained time attention matrix will be directly ap-
plied to the input of the r-th layer of spatiotemporal module
to obtain the input data X integrating temporal attention
X, = X©Z'; then X, will be used as input to the spatial
attention module.

Different features have different effects on train delay, so,
in this paper, we propose a multifeature attention mecha-
nism to capture this difference:

Z' = softmaxj(Zij) = (6)

T
P=V,* sigmoid((x}(f )U) + bp>. (7)
In the above equation, XV = (X, X,...,
X,_;) € RNVFxTi represents the input data of the r-th
layer  of  multifeature  module, U € Rfr-1*Fra,

b, € RN*ErxTis fand V, € RT->N*N are learnable param-
eters, * represents the matrix batch dot, the activation
function is sigmoid, attention matrix P is dynamically
calculated according to the current input of this layer, and
S;; in S semantically represents the importance of different
features of different nodes to the model; after that, we use the
softmax function to normalize P to ensure that the sum of
attention weights is 1 and get the final time attention matrix:

, exp(Pi,j)
e (8)
! Zﬁ\; eXP(Pi,]‘)

In the spatial dimension, there is a certain correlation
between the arrival delays of trains at different stations; in
particular, the influence between adjacent stations is highly
correlated, and the interaction between adjacent stations with
different distances is also different. The greater the distance
between the two stations, the greater the possibility of adjusting
from the delayed state to normal; then the delay impact of the
current station on the next is smaller. Assuming that the
distance between station i and station j is d, 5 the weight of the
corresponding position of the distance matrix is
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1
M;; =— 9
j ds,-sj 9

Consider the static characteristics of high-speed
railways network. We calculate the correlation weight
matrix C of the input data. Element C;; in C represents the
correlation between stations i and j. The calculation
formula is as follows:

C = Vgsigmoid (X . W, )W,) 0 (W3X ) +bg).  (10)
In the above equation, X, € RNF~>Tr1 represents the
input data processed by the multifeature attention module of
the r-th layer; W, € RT1, W, € RE->Tr1, W, € RFr1, and
Vg, bg € RNN are the feature conversion matrices, which are
learnable parameters.

By fusing the correlation weight matrix C and the dis-
tance weight matrix M’, we obtain the spatial attention
matrix Q. Similarly, we use the softmax function to nor-
malize Q to obtain the final spatial attention matrix Q'. The
calculation formula is as follows:

Q=CoM,

i exp(Qij) (1)
Q =so maxj( J) Z?Ll eXp(Qij)

The spatial attention matrix can capture the corre-
lation and distance influence between nodes on the train
operation network. When performing graph convolu-
tion, we will dynamically adjust the influence weight
between nodes with adjacency matrix and spatial at-
tention matrix.

3.3.5. Multicomponent Fusion. In central cities such as
Beijing, the passenger flow has obvious peak periods in the
morning or evening, and trains may also be delayed.
Therefore, the output of daily-period and weekly-
period components is more critical. In some remote
areas, due to the lack of strong periodic passenger
flow, the possible prediction results of daily-period
and weekly-period components are less accurate.
Therefore, when the outputs of these three compo-
nents are fused, the weight of the influence of the three
components on each node is different, which needs to
be determined according to the historical data of train
operation. So the final fusion result of the three
components is

Y:WhQYhE+Wd®YdE+Ww®YwE. (12)

In the above equation, W,, W ;, W, € RV*F can be obtained
through e-learning; it reflects the impact of the three time
dimensions on the prediction objectives, © stands for
Hadamard product, P stands for predicted time step, and
Y,E, Y E Y E, respectively, represent the final output re-
sults obtained after the output of the recent, daily-period,
and weekly-period components passing through the fully
connected layer.
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3.3.6. DLP. DLP (Data Link Processing) is built on the basis
of NumPy, Pandas, and other third-party Python libraries
and combines the external factors data (Xj) with three time
series data (X, X;, X,,) according to station ID and train
date to obtain the time series-external factors data.

4. Results and Discussion

In this paper, we use the three following common evaluation
indexes to evaluate the prediction performances of ANN,
SVR, LSTM, RF, TSTGCN, and MATGCN models. They are
mean absolute error (MAE), root mean square error
(RMSE), and mean absolute percentage error (MAPE). The
calculation formulas are as follows:

1 n
MAE = - Y |x; - %],
=

RMSE = (13)

In the above equation, x; is the actual value, X; is the pre-
dicted value, and 7 is the number of test samples.

We implement the MATGCN model on the MXNet
framework. In our model, the term of the Chebyshev poly-
nomial is set to 3, and all graph convolution layers use 64
convolution kernels. All time convolutional layers also use 64
convolution kernels and adjust the time span of data by
controlling the step size of time convolution. We set T}, = 3,
T4 =1, and T, = 1. The size of the prediction window is
T, = L; thatis, our goal is to predict the number of delays in the
arrival of the station in the next hours. In the training phase, the
batch size is 4 and the learning rate is 0.000 01.

We implement ANN, SVR, RF, LSTM, TSTGCN, and
MATGCN models on Windows 10 system. Among them,
ANN uses a single hidden layer network structure with a
learning rate of 0.01; the kernel function of SVR selects poly,
and the learning rate is 0.001; the learning rate of RF is 0.001,
and the batch size is 128; LSTM contains two hidden layers,
and the activation function of the hidden layer is ReLU, the
gate activation function is sigmoid, the number of outputs
per layer is 100, the activation function of the output layer is
softmax, the loss function is L2Loss, and the learning rate is
0.001. TSTGCN is based on MXNet, the batch size is 4, and
the learning rate is 0.000 01. Except for RF and TSTGCN, the
training batch sizes of other models are all 64, and the other
parameters remain the default.

We compare MATGCN with the other five learning
models on the processed station delay dataset. Table 9 shows
the results of train arrival delay prediction performance in
the next hour. Among them, the best two scores are dis-
played in bold.

It can be observed that, among the five benchmark models,
the best MAE value is 0.444 7 (SVR), the best RMSE value is
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TaBLE 9: Comparison of one-hour prediction performance of six models.

Model MAE RMSE MAPE

ANN 0.6309 0.8499 53.6608
SVR 0.4447 0.8299 63.7141

RF 0.6146 0.9039 54.9183
LSTM 0.4960 0.8507 61.4930
TSTGCN 0.1600 0.4500 34.3600
MATGCN without MAtt 0.1500 0.4200 24.8300
MATGCN 0.1000 0.3100 15.9300

The best two scores are displayed in bold to show the results clearly.

MAE of 7 models for six hour prediction

MAPE of 7 models of six hour prediction

RMSE of 7 models of six hour prediction

' 0.4 - ; - - D -
20 —_—
0.2 B 1 02 . . . R . .
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1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
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—— TSTGCN —— TSTGCN —— TSTGCN

(a)
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FIGURe 2: Execution effect of 7 methods for six-hour prediction. (a) MAE. (b) MAPE. (c) RMSE.

0.8299 (SVR), the best MAPE value is 53.660 8 (ANN), and the
TSTGCN score is 0.1600, 0.450 0, and 34.360 0; the effects of
ANN, SVR, RF, and LSTM that only use train delay data as
time series data for prediction are far inferior to TSTGCN.
Although TSTGCN considers that train station delay data is
spatiotemporal data, it does not consider the external factors of
train operation. It can be seen that, compared with TSTGCN,
MATGCN without MAtt has a 6.66% decrease in MAE, a
6.66% decrease in RMSE, and a 27.73% decrease in MAPE, and
MATGCN with MAtt has a 33.33% decrease in MAE, a 26.19%
decrease in RMSE, and a 35.84% decrease in MAPE and
obtains the best prediction performance.

Figures 2(a)-2(c) show the performance of various
methods to predict the number of train delays at stations in
the next 1 to 6 hours. We can observe the changes in the
prediction performance of each method as the prediction
duration increases. In general, as the prediction duration
increases, the corresponding prediction difficulty becomes
greater, so the prediction error is also increasing. The errors
of ANN, SVR, RF, and LSTM are always maintained at a
high level. The prediction ability of RF decreases sharply.
In contrast, the performance of LSTM decreases slowly.
It can be seen from the figure that the MATGCN pro-
posed in this paper has also obtained better prediction
results than TSTGCN and can achieve the best pre-
diction performance almost at any time. Even in the
long-term prediction, the error remains at a low level.
This is because the spatiotemporal correlation and ex-
ternal factors are particularly important in the long-
term prediction.

Through the above analysis, we find that, compared with
other existing methods, MATGCN can more comprehensively

consider the spatiotemporal and external factors that affect
train operation and shows excellent performance in station
delay prediction.

5. Conclusions

Focusing on the spatiotemporal and dynamic correlation of
high-speed railway train operation data, this paper constructs
MATGCN model based on multiattention mechanism to
predict the train delay at high-speed railway stations. This
model combines multiattention mechanism and spatiotem-
poral convolution, including spatial dimension graph convo-
lution and temporal dimension standard convolution, to
capture the spatiotemporal characteristics of train operation
data at the same time, and adds multifeature attention
mechanism to process the external factors such as weather
conditions, wind level, and major holiday to achieve more
accurate prediction. In the experimental stage, we compare and
evaluate the MATGCN model proposed in this paper with
the ANN, SVR, LSTM, RF, and TSTGCN models and use
MAE, RMSE, and MAPE to evaluate the prediction effect
of the model. The result shows that the three attention
mechanisms play a positive role in improving the per-
formance of the model.

Data Availability

The train operation and external feature data used to support
the findings of this study have been deposited in the Figshare
repository: https://figshare.com/articles/dataset/A_high-spe
ed_railway_network_dataset_from_train_operation_record
s_and_weather_data/15087 882.


https://figshare.com/articles/dataset/A_high-speed_railway_network_dataset_from_train_operation_records_and_weather_data/15 087 882
https://figshare.com/articles/dataset/A_high-speed_railway_network_dataset_from_train_operation_records_and_weather_data/15 087 882
https://figshare.com/articles/dataset/A_high-speed_railway_network_dataset_from_train_operation_records_and_weather_data/15 087 882
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Additional Points

The focus is to propose a multifeature attention mechanism
to capture the different effects of different external factors
such as weather and holidays on train operation. The results
show that the MATGCN is better than TSTGCN.
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