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Macrophages are important immune cells that participate in the regulation of inflammation in implant dentistry, and their
activation/polarization state is considered to be the basis for their functions. The classic dichotomy activation model is
commonly accepted, however, due to the discovery of macrophage heterogeneity and more functional and iconic exploration at
different technologies; some studies have discovered the shortcomings of the dichotomy model and have put forward the
concept of alternative activation models through the application of advanced technologies such as cytometry by time-of-flight
(CyTOF), single-cell RNA-seq (scRNA-seq), and hyperspectral image (HSI). These alternative models have great potential to
help macrophages divide phenotypes and functional genes.

1. Introduction

Macrophages are an important part of the immune system
and can secrete cytokines and growth factors to regulate the
occurrence and development of inflammation and can trans-
form their phenotype under a variety of different stimuli
which is called activation or polarization [1–3]. The regula-
tion of macrophage activation has become important in
immunology [4]. The classic macrophage dichotomy activa-
tion model divides macrophages into M1 and M2 in vitro
based on the type of stimulation, surface molecules, secreted
cytokines patterns, and functional characteristics [5, 6].
However, the stimulation of macrophages in the in vivo envi-
ronment is more complicated than in vitro experiments and,
due to the emergence of macrophage heterogeneity, shows
the limitations of the classic activation dichotomy. In recent
years, more information about the behavior of macrophages
in diseases and tissue-specific phenotypes has been obtained
through different technologies, and some scholars have pro-
posed alternative macrophage activation models, such as
comprehensive multidimensional models and spectral
models. Alternative classification methods derived using

advanced technical methods provide the potential to identify
phenotypes and molecular markers associated with specific
disease characteristics associated with macrophages.

The purpose of this study is to clarify the argument of
the classic dichotomy and introduce different macrophage
activation models that have been proposed due to advanced
technologies, so that researchers can better classify macro-
phages and provide a theoretical basis for interventional
therapy targeting specific biomarkers of macrophages.

2. Classical Dichotomy Model of Macrophages

2.1. Development of Dichotomy Model. The proposal and
development of the dichotomy model have been supple-
mented by numerous studies. The earliest macrophage acti-
vation model described the behavior and gene expression
changes of macrophages stimulated by interleukin 4 (IL-4)
as “selective activation,” while macrophages stimulated by
interferon-g (IFN-g) were described as “classic activation”
[7]. Later, Mills et al. [8] put forward the concept of
M1/M2 dichotomy based on the difference of arginine
metabolism between macrophages from C57BL/6 and
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macrophages from Balb/c mice. They believed that M1/M2
was the inherent attribute of macrophages in the transition
from inflammation to healing, which occurred in the
absence of adaptive immune response, and appeared in the
early stages of evolution [9]. According to different activa-
tion scenarios and combined with the results of spectral
analysis, the dichotomy has been further developed, and
M2a, M2b, and M2c have been proposed [10]. Then, Fleet-
wood et al. [11] observed significant differences in the tran-
scriptional expression of colony-stimulating factor 1 (CSF-1)
and granulocyte-macrophage colony-stimulating factor
(GM-CSF) after growth, and they described the macro-
phages growing in GM-CSF as M1 and the macrophages in
CSF-1 as M2 [12].

2.2. The Main Characteristics of M1/M2 Macrophages
Proposed by the Dichotomy Model. In the classical dichot-
omy model, the phenotype of macrophages is determined
by the environmental signal network. According to different
types of stimulation, surface molecules, secreted cytokines,
and functional characteristics, activated macrophages are
divided into two phenotypes: classically activated macro-
phages (M1) and alternately activated macrophages (M2)
[13–16]. M1 macrophages, also known as classically acti-
vated macrophages, can be activated by bacterial lipopoly-
saccharide (LPS), interferon-gamma (IFN-γ), GM-CSF, or
tumor necrosis factor (TNF) [17–19]. M1 macrophages are
characterized by high expression of proinflammatory cyto-
kines, such as interleukin 12 (IL-12), interleukin 23 (IL-
23), TNF-α, IL-1α, IL-1β, IL-6, cyclooxygenase-2 (COX-2),
and low expression of interleukin 10 (IL-10), and they have
robust antimicrobial and antitumoral activity, mediate ROS-
induced tissue damage, impair tissue regeneration, and pro-
mote TH1 response and wound healing [20–22]. M2 macro-
phages, also called alternately activated macrophages, can be
further divided into four phenotypes: M2a, M2b, M2c, and
M2d [23–26]. M2a, named wound-healing macrophages,
can be activated by IL-4 or interleukin 13 (IL-13); M2b can
be activated upon combined exposure to immune complexes
(IC) and Toll-like receptor (TLR) agonists or by IL-1R ago-
nists; M2c, called inactivated macrophages, can be activated
by transforming growth factor-β (TGF-β) and cortex hor-
mones; and M2d, known as tumor-associated macrophages
(TAMs), can be activated by costimulation with TLR ligands
and A2 adenosine receptor (A2R) agonists or by IL-6 [27,
28]. M2 macrophages have the functions of immune regula-
tion, anti-inflammation, promoting wound repair, angiogen-
esis, and resisting the growth of parasites and tumors [29,
30] . And they have the characteristics of high IL-10, low
IL-12, and high IL-1 decoy receptor phenotype [25, 31–33].

2.3. Macrophages in Implant Dentistry. Macrophages are the
principal cells in the innate immune reactions to implants.
When the biomaterial is implanted into the host, the host
will active a foreign body reaction (FBR), and the FBR can
regulate the tissue repair of the implanted site by releasing
of damage-associated molecular patterns from the injury to
the implant site and to the material itself [34, 35]. By chang-
ing the characteristics of the implant, the effect of host

immune response can be regulated, and then tissue repair
can be promoted [2]. Hotchkiss et al. [36, 37] have shown
that macrophages are particularly important to this
response, ultimately driving the conclusion of the inflamma-
tory phase and recruiting mesenchymal stem cells (MSCs) to
begin the reparative phase or recruiting other inflammatory
cells to delay the healing response [38, 39]. In fact, the polar-
ized subtypes of macrophages have no certain advantages
and disadvantages to tissue repair; for example, the forma-
tion of the vascular network can promote bone tissue regen-
eration, while the initiation of angiogenesis depends on M1
macrophages, while M2 macrophages play a role in promot-
ing angiogenesis [40–42]. In addition, a too long polariza-
tion period of M1 macrophages will lead to an increase in
the number of M2 macrophages, resulting in increased
secretion of fibronectin, resulting in fiber wrapping on the
surface of the implant and affecting the attachment of oste-
ocytes to the surface of the implant [43–45]. Also, they have
an important role in the osseointegration of implants to the
host recipient and determine the success of the implant [46,
47].

3. Shortcomings of the Classic
Dichotomy of Macrophages

The classical M1/M2 dichotomy model based on in vitro
provides a conceptual framework for describing the activa-
tion of macrophages in vivo and identifying the correspond-
ing stimuli [13]. However, a large amount of research data
shows that the classical dichotomy model is too extreme to
reflect the whole process of macrophage activation. Due to
a large number of stimuli in the environment and the inter-
action between stimuli, the spectrum of tissue macrophages
will show complexity and overlap [7, 28]. Recent researches
show that the performance of macrophages under certain
special conditions is not representative, the cell surface
markers may be contradictory, and their phenotype may
change over time during the course of the disease. These
researches further illustrate the limitations of the dichotomy.

In some special stages, such as embryonic macrophages,
digestive macrophages, and macrophages from certain can-
cers, macrophages did not show a representative M1 or M2
phenotype [48]. Stables et al. [49] used zymosan to induce
digestive macrophages from peritonitis and compared them
with M1/M2 macrophages derived in the vitreous. The
results showed that the digested macrophages were neither
classically activated nor alternately activated but had certain
characteristics of the two phenotypes [49].

In previous studies, M1/M2 macrophages could be dis-
tinguished by unique markers expressed on the cell surface,
but many studies have shown that this classification method
is contradictory. Chang et al. [31] used scRNA-seq to ana-
lyze macrophages from the aorta. They divided macrophages
into three clusters: inflammatory, resident-like, and a differ-
ent type of macrophages that highly expressed the triggering
receptor expressed on myeloid cells 2 (TREM2). Among
them, inflammatory macrophages highly expressed M1-
related genes, such as IL-1, TNF, and CXC chemokine ligand
10 (CXCL10), and resident-like macrophages expressed M2

2 BioMed Research International



genes, such as mouse macrophage mannose receptor 1
(MRC1), folate receptor 2 (FOLR2), and homo sapiens coag-
ulation factor XIII A1 polypeptide (F13A1). However,
MRC1, which encodes the mannose receptor CD206, is usu-
ally used to define M2 macrophages and was also expressed
in a subset of inflammatory macrophages [50]. Helm et al.
[51] performed a phenotypic analysis of tumor-associated
macrophages derived from pancreatic ductal adenocarci-
noma and found that tumor-associated macrophages also
showed M1 (human leukocyte histocompatibility antigen-
DR, IL-1, or TNF-α) and M2 (mannose receptor CD163
and IL-10) characteristics. These experiments show that
macrophages can exhibit anti-inflammatory and proinflam-
matory properties at the same time. Therefore, the tradi-
tional classification of macrophages into M1 and M2
phenotypes cannot fully reflect the diversity of the in vivo
population [52].

Macrophages are markedly plastic cells that can trans-
form from one phenotype to another [53]. For example, in
the case of myocardial infarction, allergic skin, and skeletal
muscle damage, the phenotype of macrophages changed as
the disease progresses [48]. Arnold et al. [54] studied the
phenotype and function of skeletal muscle monocytes/ma-
crophages during the repair process. In in vitro experiments,
injured skeletal muscle recruited proinflammatory macro-
phages for phagocytosis, and then, the proinflammatory
macrophages were rapidly transformed into anti-
inflammatory macrophages, thereby stimulating muscle
generation and fiber growth [54]. The above experiments
prove that the activation state of macrophages is not always
the same, and it can be reciprocally transformed under some
peculiar stimuli.

4. Different Activation Models

Because the classical dichotomy M1/M2 model cannot
describe the activation of macrophages sufficiently, some
scholars have proposed different models of macrophage acti-
vation in recent years.

4.1. Active Comprehensive Multidimensional Model. The
comprehensive multidimensional model of activation inte-
grates signals that act on the specific microenvironment of
macrophages and presents a multidimensional view of mac-
rophage activation. The core view of this model is the inter-
action of stress signals caused by ontogeny, local tissue
microenvironment, and tissue damage to stimulate the acti-
vation of macrophages [48]. Studies have shown that the
same stress signal and the same dynamics will cause different
sources of macrophages to produce different results, and the
first stress signal will also affect the response of macrophages
to the stress signal at a later point in time [48]. Schultze [55]
generated a mass transcriptome data set from human mac-
rophages activated by several different stimuli and used
mathematical and bioinformatics methods to compare the
dichotomous model with the multidimensional model.
Through discrete stimulation of 29 human macrophages,
the results showed that macrophages respond by a signal
input to a specific functional program and combined with

the experiments of Gosselin et al. [56], they demonstrated
that environmental signals shaped the functional program
of macrophages. Therefore, the multidimensional model
can be used to evaluate macrophages from different tissues
in other disease environments, and the multidimensional
model can better reflect the activation state of macrophages
than the dichotomy model. Besides, they also found that a
large number of transcriptional regulators exhibited tran-
scriptional changes when providing different stimuli to
human macrophages, which reflects a subtle transcriptional
regulatory network in response to exogenous stimuli [56].

As an extension of the multidimensional model, some
scholars based on in vitro controlled experiments to find
the precorrelation between stimuli and gene expression
readings and proposed a stimulus-specific naming system
for macrophage activation. The naming of macrophages
stimulated outside the receptor will be designated by the
inducing stimulus they receive, such as M (LPS). In vivo-
derived macrophages will be described by multiple markers,
rather than directly categorizing them as M1 or M2. It can
be seen that the history of macrophage activation research
has evolved from a dichotomy model to a more precise sys-
tem linking stimuli and phenotypes. The current challenge is
to expand the phenotypic classification of macrophages to
reflect their functions at specific time points and environ-
ments [12, 48].

4.2. Spectral Model. The researchers used different activation
signals to stimulate human macrophages and obtained a
data set of 299 macrophage transcripts. They compared
and analyzed different stimuli set on a single microarray
platform under highly standardized conditions, thereby
revealing the spectrum of macrophage activation states,
and through network analysis, they identified all-important
transcriptional regulators associated with macrophage acti-
vating factors, as well as those associated with stimulating
specific programs. Finally, they performed network model-
ing on this data set and expanded the current M1/M2 model
to a “spectral model” with at least nine different macrophage
activation programs [57]. The researchers mainly analyzed
the transcription process of macrophages activated by 28
different stimuli (such as pattern recognition receptor
ligands, cytokines, and metabolic chains). Through coregu-
lation analysis (CRA), the overall relationship between these
activation state data was confirmed: the activation data state
forms a virtual axis where the macrophages at the baseline
were placed between the M1 and M2 macrophages stimu-
lated by INF-γ and IL-4, respectively. When other condi-
tions related to M1 or M2 activation were added, the
overall M1 and M2 axes did not change, and when stimuli
that were not related to M1 or M2 activation were added,
the macrophage activation signal spectrum outside the ini-
tial bipolar axis became obvious. Besides, samples generated
by adding early stimulation points showed that the spectrum
of macrophage activation was composed of a dense network
of individual characteristics. Finally, by using the coordi-
nates of the CRA-defined sample in the 10 clusters defined
by the correlation coefficient matrix to construct the vector
sum in the three-dimensional space, the macrophage
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activation model was described by the transcription program
profile (the spectrum of the macrophage activation model)
[57]. Figure 1 is shown as follows.

4.3. Other Views about Macrophage Activation Model. Vil-
lani et al. [58] researched the use of CSF to differentiate
peripheral monocytes into macrophages (baseline macro-
phages), then they used conventional differentiation proto-
cols and various standard stimuli for stimulation. Each
stimulus condition resulted in a specific activated macro-
phage phenotype, and CyTOF was used to compare different
macrophage phenotypes with baseline macrophages, finally
determining the phenotypic pattern reflecting each different
activation state. For example, LPS-induced macrophages
were characterized by high levels of CD13 and CD86 and
low levels of CD163 and CD206. IL-4 induced differentiation
of macrophages with high CD274 and low CD64. IFN-g
induced macrophages with high CD64 and CD86, while
IL-10 induced macrophages with high expression of CD14,
CCR2, and CD163. IL-6 induced differentiation of macro-
phages with high CD11c and high CD33 [11, 58]. Murray
et al. [12] believed that macrophages did not form a stable
subpopulation but responded to a variety of factors existing
in the tissue. And they thought the M1/M2 dichotomy
model was usually related to the characteristics of mature
macrophages, and activation should occur in an expanded
macrophage family which included monocytes, myeloid-
derived dendritic cells, and multinucleated giant cells. In
the organization, all the links were combined to produce a
resulting phenotype, and no single hierarchical structure or
sequence could represent the biological characteristics of
the cell. Therefore, while studying the activation model, it
is necessary to dynamically observe this process to consider
the various elements in its whole body and local environ-
ment and to define the dynamics, plasticity, reversibility,

and memory of its response to cover the full range of func-
tions of activated macrophages [55, 59].

5. Advanced Technology for Studying
Macrophage Activation

In recent years, with the rapid development of technology,
we have been able to analyze the phenotype and function
of macrophages though obtained high-resolution data [12].
It helps us reveal the changes in macrophages in health
and disease and also provides us with the possibility of dif-
ferent classifications.

5.1. The Macrophage Was Analyzed More Deeply and
Accurately by Cytometry by Time-of-Flight. Cytometry by
time-of-flight is an advanced flow cytometry platform, and
it has several technological advancements. When the high-
parameter analysis is required, it has advantages over
fluorescence-based flow cytometry [60]. The accuracy of
CyTOF combined with the mass spectrometric labeling of
specific ligands can detect and quantify more than 40 labels
at single-cell resolution, and the 135 available detection
channels allow the simultaneous study of additional charac-
teristics of complex biological systems across millions of
cells [61]. It enables us to have a deeper understanding of
the heterogeneity and hierarchical structure of cell popula-
tion, cell state, multiple signaling pathways, protein hydroly-
sates, and mRNA transcription [62]. Roussel et al. [63]
considered that the monocyte phagocytic system (MPS),
including macrophages, was heterogeneous in phenotype
and function and used mass cytometry to characterize the
deep phenotype of the monocyte phagocytic system. They
combined a single mass cytometer panel composed of 38
antibodies with high-dimensional analysis methods to deci-
pher the human MPS compartment in the original sample,

Monocyte

M-CSF
GM-CSF

Metabolic cues
CK
PRR

28 Stimuli
10 Major clusters

Spectrum model

Macrophage

299 Macrophage transcriptomes

Specific Cluster Struction

SOM, CCM

Figure 1: Spectral model. Monocytes are transformed into macrophages by stimulation of M-CSF or GM-CSF. Through 28 stimuli from
PRR, cytokines, metabolic cues, etc., 299 macrophage transcription programs can be obtained. The results of the study confirm that each
stimulus can correspond to a particular structural cluster. Through the analysis of SOM and CCM, 10 main clusters can be summarized,
which is the spectral model.
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associated the results of the primary cells with the in vitro
marrow exposed to the established polarized inflammatory
factors, compared the observation results of human blood
and bone marrow cells in lineage differentiation models
and established a comprehensive reference frame for the
MPS room, and described them using analysis tools such
as viSNE, SPADE, and MEM. The results showed that each
stimulation condition produced a specific activated macro-
phage phenotype, with no or almost no overlap between
M_IFN-g and M_LPS and M_IL-4 and M_IL-10. It is worth
noting that they found different phenotypic patterns in MPS
(Table 1).

5.2. The Heterogeneity of Macrophages Was Revealed by
Single-Cell RNA-seq. Single-cell RNA-seq can be used to
analyze the whole genome and single-cell transcription
map of immune cells and it can reveal immune heterogene-
ity in different diseases. It has become an established method
to dissect cell heterogeneity, reveal cell state, and identify the
structure of different cell subsets [64, 65]. scRNA-seq can

evaluate a large number of genes per cell so that the real pop-
ulation structure can be determined unbiased, and it is pos-
sible to identify previously unknown myeloid cell subsets
and to understand the dynamic interaction between myeloid
cell subsets and other cells of the immune system more
quickly [66]. Aran et al. [67] used a scRNA-seq clustering
calculation and unbiased annotation tool (Single) to identify
macrophages from baseline and mixed lung cell samples
after bleomycin-induced mouse lung injury (alveolar macro-
phages and interstitial macrophages) and applied the hierar-
chical clustering method to the subgroup of macrophages in
fibrosis. The results showed that monocyte-derived disease-
related macrophages transformed into alveoli, located in
the fibrotic niche, and played a role in promoting fibrosis,
and the migration and proliferation of fibroblasts depended
on SiglecF+CD11c+MHCIIhi and CX3CR1+ cells secreting
Pdgf-aa, indicating that the paracrine interaction between
these macrophages and fibroblasts maintains fibroblast pro-
liferation and tissue fibrosis. Some studies have identified a
fourth group of cardiac macrophages in the uninjured

Table 1: Different phenotypic patterns in MPS by CyTOF [63]. This table summarizes the different phenotypic patterns of macrophages
discovered by Roussel et al. using CyTOF in MPS.

Phenotype Express

M_IL-10 CD32, CD14, CCR2, CD163, CD64, and CD33 highly expressed

M_IL-4 CD274 and CD86 highly expressed; CD14, CD32, and CD33 lowly expressed

Scaffold

Foreign body response 
(FBR)

Macrophage
Fibrotic

macrophage

IL-17

IL-17

IL-4 TH2 response

CD9+

CD64+

IL-36+
TH, response

Regenerative
macrophage

CD301b
CD9

CD74

Sub-population

Regeneration

Figure 2: Differentiation of fibrotic macrophages and regenerating macrophages by scRNA-seq. When biological scaffolds are used to repair
tissue damage, they can recruit regenerated macrophages through IL-4 and TH2 responses to achieve the purpose of tissue repair, or they
can recruit fibrotic cells through IL-17 and TH1 responses to produce foreign body responses. By using scRNA-seq, the study found that
CD301b can distinguish regenerated macrophages and can distinguish their subtypes by CD9 and CD74. At the same time, fibrotic
macrophages can be distinguished by CD64+, CD9+, IL-17+, and IL-36+.
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myocardium through scRNA-seq, and the number of these
cells will increase after injury [68]. This population is char-
acterized by a strong interferon-stimulated gene signature
called ISG MF. However, it is currently unclear whether
ISG macrophages represent a unique subset of tissue macro-
phages or a part of the activation spectrum, and their role in
homeostasis is also unknown. This emphasizes the need for
researchers to develop new tools to isolate and explore this
population [69]. Sommerfeld et al. [70] used scRNA-seq to
describe the relationship between macrophages isolated
from mouse tissue repair models and tissue environmental
fibrosis after the use of model biomaterials. They used an
unbiased clustering algorithm to reveal the diversity of mac-
rophages, calculated and analyzed the phenotypic character-
istics of macrophage clusters, defined phenotypic and
functional macrophage populations, identified macrophage
surface markers by flow cytometry and immunofluorescence
techniques, and identified new CD9hi+IL-36 γ +macrophage
populations. It was found that it had the characteristics of
type 17 immune response and autoimmunity and verified
the ability to use surface markers to distinguish macrophage
subsets. Figure 2 is shown as follows.

5.3. Hyperspectral Images Were Used to Detect and Classify
Macrophages in an Unmarked and Noninvasive Manner.
The hyperspectral image is an unlabeled and noninvasive
way to detect and classify living cells and has significant
thermal potential. When it is applied to tissue diagnosis,
the resulting three-dimensional data hypercube can encode
the properties of light-tissue interaction, such as absorption,
scattering, and fluorescence [71]. Based on the spectral char-
acteristics of different tissues, HSI can provide quantitative
diagnostic information about histopathology, morphology,
and chemical composition of noncontact, noninvasive, and
nonionized tissues [72]. Bertani et al. [73] studied human
monocyte-derived macrophages by hyperspectral reflectance
confocal microscopy and analyzed M1 and M2 activation of
hyperspectral data sets by principal component analysis.
Then, linear discriminant analysis was used to process HSI
data and semiautomatically classify macrophage activation,
which confirmed the possibility of single-cell level classifica-
tion of M1 and M2 macrophages in a noninvasive and unla-
beled manner.

6. Conclusion

Macrophages are myeloid immune cells, which can be found
in almost every tissue of the human body [74, 75]. Their
main functions are to participate in host defense, maintain
the stability of the tissue environment, remove cell debris,
recover apoptotic cells, help tissue regeneration and repara-
tion by secreting cytokines and growth factors, and secrete
some proteins, such as extracellular matrix proteins, to take
part in cell adhesion [76–81]. According to the activation of
macrophages by in vitro signals, the classical polarization
model divides macrophages into two states. When they are
activated as proinflammatory phenotypes and release some
cytokines, they can mediate the balance between bone salt
deposition, osteogenesis, and osteoclast; for example, acti-

vated macrophages can mediate periprosthetic inflammation
and make an important impact on recruitment and bone
resorption [82–86]. Macrophages play an important role in
the early tissue healing process of bone implantation of bio-
materials [87]. The success of biomaterial-mediated bone
formation depends on the effective and timely conversion
of the M1 phenotype to the M2 phenotype during the bone
healing process, and the prolonged M1 phase may cause
fibrous encapsulation and bone regeneration failure [88].
Osseointegration was defined as a direct structural and func-
tional connection between ordered living bone and the sur-
face of a load-carrying implant [89]. Current research
believes that osseointegration is a foreign body reaction,
which can protect the implant from the tissue by forming
a defense response at the interface bone [90]. The presence
of oral implants stimulates higher immune participation
through complement and macrophage activation, while
macrophage activation can affect the tissue surrounding
the implant by regulating inflammation and tissue healing
[91]. Studies have shown that the surface topographical
and chemical signals on the surface of titanium implants
can regulate the polarization of macrophages, and macro-
phages can also promote the homing and osteogenic differ-
entiation of mesenchymal stem cells on the surface of
implants by producing a variety of cytokines and growth fac-
tors, thereby regulating the healing process [91, 92]. Lee et al.
[93] found that the combination of bioactive ion chemistry
and the surface morphology of nanoscale titanium can sig-
nificantly induce the polarization of M2 macrophages of
J774.A1 cells and improve the early bone formation ability
of oral implants in animal bones in clinical practice. The
activated state is the core of the executive function of macro-
phages, and it is also the key to immunology, disease patho-
genesis, and anti-inflammatory [12, 94, 95]. In some
inflammatory diseases, transforming the activation state of
macrophages has become a treatment [96, 97]. However, in
recent years, some studies have proposed different macro-
phage activation classification criteria and models based on
the behavior of macrophages in the disease process, tissue-
specific phenotypes, and high-resolution data obtained
through advanced technologies [98, 99]. The heterogeneity
of cells and different activation models show that the activa-
tion of macrophages is not two extreme changes as described
in the classic dichotomy but takes on different forms as envi-
ronmental stimuli change. The improvement of the macro-
phage activation model also enables the optimization of
immune-based therapeutic measures. These alternative acti-
vation models will provide the possibility of treating oral dis-
eases in the future.
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