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Thermal diffusion is a phenomenon where the concentration gradient or diffusive flux is created due to the temperature gradient.
Thermal diffusion is induced because of the higher temperature and uneven distribution of the mixture. Formally, thermal
diffusion is called the Soret effect, and it is a crucial factor in a number of natural occurrences like the separation of isotopes
technique of purification. In this research paper, Maxwell fluid’s flow in the vicinage of a flat plate is discussed by considering the
effect of the thermodiffusion subject to the first-order slip at the boundary with the application of a constant proportional Caputo
(CPC) fractional derivative. The effect of heat generation and radiation is also taken into consideration, as well as the effect of a
magnetic field of constant magnitude. The generalized heat and mass fluxes are considered, and this generalization of heat and
mass fluxes is done by utilizing the CPC fractional derivative. After converting the current model’s governing equations into a
dimensionless form, the temperature, concentration, and velocity fields’ analytical solutions are found. By drawing graphs of the
temperature, concentration, and velocity fields for the parametric modifications, the results are graphically illustrated. It becomes
clear from the results discussion that the outcomes produced by the constant proportional derivative are more decaying than those
obtained with the classical differential operator of order one.

1. Introduction

Thermodiffusion is a physical phenomenon that occurs in
the mixture of different moving particles with an adverse
response to the temperature gradient. In this phenomenon,
the particles of smaller inertia tend to move in the region of
higher temperature, while the particles with the greater inertia
try to move in the area of lower temperature. Formally, this
phenomenon is called the Soret effect and hasmany industrial
and biological applications like isotope separation [1, 2].

Slippage of the flowing fluid over a flat surface is impor-
tant in many complex flows of non-Newtonian fluids. Slip of
the fluid occurs at the boundary when there is relative
motion between fluid and boundary. This mechanical situa-
tion is addressed properly by the Robin-type boundary con-
dition and specifically, it is known as the slip boundary
condition. The slip effect is formulated by many theorists
to address the different geometric situations for the bound-
ary layer flows. Vieru et al. [3] explained the aspect of slip for
second-grade fluid flow. Tahir et al. [4] considered Maxwell
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fluid motion over an oscillation surface. Jameel and Khan [5]
discussed an impulsive flow over the flat plate. Hayat et al.
[6] studied the Stokes flow for the slip condition. Imran et al.
[7] applied the first order slip for the motion of the non-
Newtonian fluid. Sajid et al. [8] explained the slippage motion
of the rate-type fluid. Hayat et al. [9] studied the flow of
Maxwell fluid between the plates under the influence of MHD
and radiation. Ramesh et al. [10] studied the Maxwell fluid over
a stretching sheet and discussed the impact of radiation on the
motion of the fluid. Khan et al. [11] reported the flow of Max-
well fluid by taking into account the influence of radiation. Chen
et al. [12] utilized the fractional derivatives boundary layer flow
ofMaxwell fluid on an unsteady stretching surface and obtained
the results for the velocity. Over a vertical plate, Imran et al. [13]
considered a slippage flow of a radiative fluid.

Opangua et al. [14] explained the effect of slip on the flow
of coupled stressed fluid. Hayat and Asghar [15] and Hayat
et al. [16, 17] considered the impact of heat transfer over the
slippage flow of peristaltic fluid. Shakeel et al. [18] employed
the slip effect to rate-type fluid over an accelerating plate.
Shah et al. [19] applied the fractional calculus to get the gen-
eralized results for the unidirectional velocity for Maxwell
fluid. Shah et al. [20] used the slip conditions at the boundary
for MHD Carreau fluid through a porous regime. Freidooni-
mehr and Jafari [21] also employed slip conditions at the
boundary for MHD nanofluid flow. Schneider [22] consid-
ered themotion of electrorheological suspensions and laid out
the impact of wall slip on the rheological behavior of the
suspension. Raza [23] stagnation point flow of Casson fluid
by considering the impact of slip. Norouzi et al. [24] investi-
gated the flow of Oldroyd-B fluid in the cylindrical domain by
studying the effect of slip at the boundary. Fetecau et al. [25]
discussed the flow of Newtonian fluid by taking into account
the effect of slip at the edge of the flow. Khan et al. [26] applied
the slip attribute to the viscous nanofluid flow and obtained
the velocity field.

Khan et al. [27] discussed the impact of the transfer of heat
on the flow of Maxwell fluid. Chu et al. [28] studied nanofluid
flow with four different types of nanoparticles, which are sub-
ject to the nonhomogenous source of heat, and applied the
numerical technique to obtain the approximated solutions.
Alqahtani et al. [29] did a detailed analysis of the impact of
radiation on the flow of nanofluid. Puneeth et al. [30] explained
the effect of convection on nanofluid’s flow over a sheet.
Alharbi et al. [31] illustrated the effect of the bioconvective
hydromagnetic flow of Oldroyd-B nanofluid over a stretching
surface having pores. Khan et al. [32] took under consider-
ation the unsteady flow of hybrid nanofluid on a radiated
porous surface subject to the magnetic field. Qaiser et al.
[33] investigated the effects of active energy and entropy for
nanofluid flow subject to viscous dissipation and cross-diffu-
sion. Some other investigations related to nanofluid flow in
different physical situations have been done [33–39].

The Maxwell fluid model is suitable for momentum, heat,
and mass transfer phenomena as it captures relaxation time
effects. Khan et al. [40] discussed the generalized conclusions
for the flow of Maxwell fluid by taking into consideration the

modified Fick’s and Fourier laws for mass and heat transfer,
respectively. Khan et al. [41] utilized the Cattaneo–Christov
mechanism for the heat transfer of Maxwell fluid through a
closed path. Tang et al. [42] discussed the flow of Maxwell
fluid subject to uniform heat flux and thermal radiation by
applying the fractional derivative. Mansoor et al. [43] also
considered the Maxwell fluid’s flow, and the effect of chemi-
cal reaction over the velocity field is explained.

The fractional derivatives are flexible and nonlocal because
the order of the fractional derivatives can be any real number.
Due to nonlocality and flexibility, the fractional derivatives
are suitable for approximating real data values with more
reliability than classical derivatives for the effect of global
interactions (nonlocality of space) and memory (nonlocality
of time). Nowadays, fractional calculus is applied efficiently to
explain the complex flow phenomenon. There are different
approaches to the fractional derivative used by mathemati-
cians [44–47], and a recent development in the fractional is
the constant proportional Caputo (CPC) derivative proposed
by Baleanu et al. [48].

The thermodiffusion, formally known as the Soret effect,
occurs when a concentration gradient is generated due to a
temperature gradient. This effect is significant for complex
mixtures containing different species of diverse sizes and
polarities, for example, in the petroleum system. The princi-
pal interest of this article is to widen the research work done
in [25] by taking the flow of Maxwell fluid, and the flow
modeling is done with a fractional derivative of the recent
approach, namely the constant Caputo fractional derivative.
The graphical illustration of field variables is done by using
MATHCAD software. In addition to this, the slip at the
boundary is analyzed with other parameters. Such work
addressing the thermodiffusion effect for Maxwell fluid’s
flow with CPC fractional derivative is yet to be reported in
the literature.

2. Mathematical Description

Considered Maxwell fluid flowing over a vertical plate. The
vertical plate is situated in the xz-plane in a way that the
y-axis becomes normal to the place of the plate, as indicated
in Figure 1. At first, the plate with the fluid is not moving;
after the time t> 0, the plate starts moving with the velocity
V0f ðtÞ :, and by considering the slip effect over the plate fluid
also move. Under the assumption, the Maxwell fluid flow
model in mathematical form is as follows [25, 27]:

ρ λ1
∂
∂t

þ 1

� �
∂u
∂t

¼ μ
∂2u
∂y2

þ g ρβTð Þ 1þ λ1
∂
∂t

� �
T − T1½ �

þ g ρβCð Þ 1þ λ1
∂
∂t

� �
C − C1½ � − 1þ λ1

∂
∂t

� �
B2
0σu;

;

ð1Þ

k
∂2T
∂y2

−
∂qr
∂y

− Q0 T − T1½ � − ρcp
À Á ∂T

∂t
¼ 0; ð2Þ
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Dm
∂2C
∂y2

þ DmkT
Tm

∂2T
∂y2

−
∂C
∂t

¼ 0; ð3Þ

and related conditions

for  t ¼ 0⇒ u¼ 0;T ¼ T1;    C ¼ C1; ð4Þ

u − γ1
∂u
∂y

j y¼0 ¼ V0f tð Þ;    T ¼ Tw;    C ¼ Cw;    y ¼ 0;

ð5Þ

u→ 0;T → T1;    C→ C1;    y→1: ð6Þ

The radiated flux from Equation (2) is approximated by
using the Roseland approach [49, 50] for the minor temper-
ature difference between the temperature of the fluid and the
free stream temperature [51, 52].

k Nr þ 1½ � ∂2

∂y2
− ρcp
À Á ∂

∂t

� �
T y; tð Þ ¼ Q0 T y; tð Þ − T1½ �;

ð7Þ

where Nr ¼ 16σ1T31
3kk1

is the radiation parameter.
Nondimensional relations [25]

  u∗ ¼ u
V0

;    y∗ ¼ yV0

ν
;    t∗ ¼ V2

0

ν
t;    C∗ ¼ C − C1

Cw − C1
;    T∗ ¼ T − T1

Tw − T1
;

  Q∗ ¼ νQ0

ρcp
À Á

V2
0

;    γ∗1 ¼
V0

ν
γ1;    f ∗ t∗ð Þ ¼ f

ν

V2
0
t∗

� �
;    λ¼ V2

0

ν
λ1;

;

ð8Þ

with V0 ¼ ½νgβTðTw − T1Þ�1=3 is specific velocity, and after
using Equations (1)–(7) and Equation (8) dimensionless
model takes the following form:

λ
∂
∂t

þ 1

� �
∂u
∂t

¼ ∂2u
∂y2

þ 1þ λ
∂
∂t

� �
T −Muþ NC½ �;

ð9Þ

∂T
∂t

¼ 1
Preff

∂2T
∂y2

− QT; ð10Þ

ScSr
∂2T
∂y2

¼ Sc
∂C
∂t

−
∂2C
∂y2

; ð11Þ

and corresponding dimensionless initial conditions and bound-
ary conditions

u¼ 0;T ¼ 0;C ¼ 0; t ¼ 0; ð12Þ

f tð Þ ¼ u − γ1
∂u
∂y j y¼0;    T ¼ 1;C ¼ 1; y ¼ 0; ð13Þ

u→ 0;T → 0;C → 0; y→1; ð14Þ

  N ¼ ρβC Cw − C1½ �
ρβT Tw − T1½ � ;    Preff ¼

Pr
Nr þ 1

;    M ¼ νσB2
0

ρV2
0
;   

  Sc¼ ν

Dm
;    Sr¼ DmkT Tw − T1½ �

νTm Cw − C1½ � ;Q¼ νQ0

ρcpV2
0
;

;

ð15Þ

where N is the ratio of the thermal Grashof number to the
mass Grashof number, Preff effective Prandtl number, M is
a nondimensional magnetic parameter, Sc is the Schmidt
number,Q is the nondimensional heat generation parameter,
and Sr is the Soret effect parameter.

3. Classical Solution of the Model

3.1. Temperature. Equation (10) is reduced to an ordinary
differential equation as follows:

PreffqT y; qð Þ þ QT y; qð Þ ¼ ∂2T y; qð Þ
∂y2

: ð16Þ

Equation (16) is solved by conditions given below:

T 1; qð Þ ¼ 0;T 0; qð Þ ¼ q−1; ð17Þ

and solution transformed for temperature is as follows:

T y; qð Þ ¼ 1
q
e −y

ffiffiffiffiffiffi
Preff

p ffiffiffiffiffiffiffi
Qþq

p½ �: ð18Þ

3.2. Concentration. Equation (11), by using the Laplace
transform, is reduced to an ODE as follows:

u–y1
u
y— |y = 0 = V0f(t)

T = TW
C = CW

B0

Velocity profile

Temperature profile

x u

T∞

C∞

g

y

z

Concentration profile

FIGURE 1: Flow geometry.
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ScqC y; qð Þ ¼ ∂2C y; qð Þ
∂y2

þ Sr
∂2T y; qð Þ

∂y2
: ð19Þ

Equation (19) is solved by the conditions as follows:

C 1; qð Þ ¼ 0;C 0; qð Þ ¼ q−1: ð20Þ

The solutions are given below:

C y; qð Þ ¼ 1
q
exp −y

ffiffiffiffiffiffiffi
Scq

p� �

þ ScSrPreff Qþ qð Þ
Preff − Scð Þqþ QPreff½ �q exp −y

ffiffiffiffiffiffiffi
Scq

ph i

−
ScSrPreff Qþ qð Þexp −y

ffiffiffiffiffi
Pr

p
eff Qþ qð ÞÂ Ã

q q Preff − Scð Þ þ PreffQ½ �

: ð21Þ

3.3. Velocity Field. Equation (9), by using the Laplace trans-
form, is reduced to the following:

1þ λ
k1 αð Þ
q

þ k0 αð Þ
� �

qα
� �

qu y; qð Þ ¼ ∂2u y; qð Þ
∂y2

þ 1þ λ
k1 αð Þ
q

þ k0 αð Þ
� �

qα
� �

× T q; yð Þ −Mu q; yð Þ þ NC q; yð ÞÂ Ã
:

ð22Þ

Equation (22) is solved by the following transformed
condition:

u 1; qð Þ ¼ 0; u 0; qð Þ − γ
∂u y; qð Þ

∂y

����
y¼0

¼ f qð Þ; ð23Þ

and its solution is as follows:

  u y; qð Þ ¼ F qð Þe−y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þλq½ � Mþq½ �

p

1þ γ1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λq½ � M þ q½ �p þ 1þ λq½ � 1þ γ1

ffiffiffiffiffi
Pr

p
eff Qþ qð ÞÂ Ã

Preff Qþ qð Þ − M þ qð Þ 1þ λqð Þ½ �q

× 1 −
NScSrPreff Qþ qð Þ
Preff − Sc½ �qþ QPreff

� �
e−y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þλq½ � Mþq½ �

p

1þ γ1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λq½ � M þ q½ �p −

e−y
ffiffiffiffiffi
Pr

p
eff Qþqð Þ

1þ γ1
ffiffiffiffiffi
Pr

p
eff Qþ q½ �

" #

þ N λqþ 1ð Þ 1þ γ1
ffiffiffiffiffiffiffi
Scq

p½ �
Scq − qþMð Þ λqþ 1½ �½ �q 1þ ScPreff Sr Qþ q½ �

q Preff − Scð Þ þ QPreff

� �

×
e−y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λqþ½ � Mþq½ �

p

1þ γ1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λqþ 1½ � M þ q½ �p −

e−y
ffiffiffiffiffi
Scq

p

1þ γ1
ffiffiffiffiffiffiffi
Scq

p
" #

:

ð24Þ

4. Generalization with CPC

In this section, the flow model is generalized by introducing
the generalized constitutive relations for momentum, heat,
and mass fluxes. The generalization is made by newly devel-
oped fractional derivative, known as CPC fractional deriva-
tive denoted by CPCDα

t and defined as follows [48]:

CPCDα
t f tð Þ ¼ 1

Γ 1 − αð Þ
Z

t

0
k1 αð Þf sð Þ þ k0 αð Þf 0 τð Þ½ � t − sð Þ−αds ;

ð25Þ

and its Laplace transform is defined as follows [48]:

£ CPCDα
t f tð Þf g ¼ k1 αð Þ

q
þ k0 αð Þ

� �
qαf qð Þ − k0 αð Þqα−1f 0ð Þ:

ð26Þ

The momentum equation

λ
∂
∂t

þ 1

� �
∂u
∂t

¼ ∂τα y; tð Þ
∂y

þ λ
∂
∂t

þ 1

� �
T −Muþ NC½ �;

ð27Þ

where ταðy; tÞ : is the shared stress is given by the following
generalized constitutive relation

τα y; tð Þ¼CPCDα
t
∂u y; tð Þ

∂y
: ð28Þ

The equation for the temperature profile in generalized
form is as follows:

Preff
∂T y; tð Þ

∂t
¼ −

∂qβ y; tð Þ
∂y

− PreffQT y; tð Þ; ð29Þ
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and qβðy; tÞ: is given in the equation below:

qβ y; tð Þ ¼ −
CPCDβ

t
∂T y; tð Þ

∂y
: ð30Þ

The diffusion balance in terms of generalized mass flux is
as follows:

Sc
∂C y; tð Þ

∂t
¼ −

∂qγ y; tð Þ
∂y

þ ScSr
∂2T y; tð Þ

∂y2
; ð31Þ

where the generalized mass flux is as follows:

qγ y; tð Þ ¼ −
CPCDγ

t
∂C y; tð Þ

∂y
: ð32Þ

Using the generalized constitutive relations for stress,
heat flux, and mass flux from Equations (28), (30), and (32)
into Equations (27), (29), and (31), respectively

λ
∂
∂t

þ 1

� �
∂u
∂t

¼
∂ CPCDα

t
∂u y;tð Þ
∂y

h i
∂y

þ λ
∂
∂t

þ 1

� �
T y; tð Þ½

−Mu y; tð Þ þ NC y; tð Þ�;
ð33Þ

∂T y; tð Þ
∂t

¼ −
1
Preff

∂ −
CPCDβ

t
∂T y;tð Þ

∂y

h i
∂y

− QT y; tð Þ; ð34Þ

and

Sc
∂C
∂t

¼ −

∂ −
CPCDγ

t
∂C y;tð Þ

∂y

h i
∂y

þ ScSr
∂2T
∂y2

: ð35Þ

5. Generalized Solution to the Problem

5.1. Generalized Temperature Field. Equation (34) is trans-
formed as below:

qT y; qð Þ ¼ 1
Preff

k1 βð Þ
q

þ k0 βð Þ
� �

qβ
∂2T y; qð Þ

∂y2
− QT y; qð Þ;   y>0:

ð36Þ

Equation (36) is solved under the conditions in Equation (17)
is as follows:

T y; qð Þ ¼ 1
q
exp −y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Preffq1−β qþ Qð Þ
k1 βð Þ þ k0 βð Þq½ �

s" #
: ð37Þ

In Equation (37), the expressions under the root are
complicated, and it is not an easy task to invert the Laplace
transform. Therefore, the inversion of the Laplace is obtained
by executing Stehfest’s algorithm [53] and Tzou’s [54], and
the outcomes of the algorithms are presented in Figure 2(a).
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FIGURE 2: Inverse of temperature (a) and concentration (b) fields.
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5.2. Generalized Concentration Field. From Equation (35)

ScqC y; qð Þ ¼ k1 γð Þ
q

þ k0 γð Þ
� �

qγ
∂2C y; qð Þ

∂y2
þ ScSr

∂2T y; qð Þ
∂y2

;   y>0:

ð38Þ

Equation (38) is solved under the transformed boundary
conditions in Equation (20) as follows:

  C y; qð Þ ¼ 1
q
exp −y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Scq2−γ

k1 γð Þ þ k0 γð Þq½ �

s" #

þ ScSrPreff Qþ qð Þq1−γ
Preff − Scð Þqþ QPreff½ � k1 γð Þ þ k0 γð Þq½ �q exp −y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Scq2−γ

k1 γð Þ þ k0 γð Þq½ �

s" #

−
ScSrPreff Qþ qð Þq1−γ

Preff − Scð Þqþ QPreff½ � k1 γð Þ þ k0 γð Þq½ �q exp −y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Preffq1−γ qþ Qð Þ
k1 γð Þ þ k0 γð Þq½ �

s" #
:

: ð39Þ

Equation (39) is inverted by algorithms and shown in
Figure 2(b) [53, 54].

5.3. Generalized Velocity Field. Equation (33) is reduced to an
ODE by using Laplace transform as follows:

1þ λqð Þqu ¼ k1 αð Þ
q

þ k0 αð Þ
� �

qα
∂2u
∂y2

þ λqþ 1½ � T −Mu þ NC
Â Ã

;

ð40Þ

∂2u y; qð Þ
∂y2

−
1þ λqð Þ q2−α þMð Þ
k1 αð Þ þ k0 αð Þq½ � u y; qð Þ

¼ −
1þ λqð Þq1−α

k1 αð Þ þ k0 αð Þq½ � T y; tð Þ þ NC y; qð Þ y; qð ÞÂ Ã
:

ð41Þ

Equation (41) is solved subject to the condition in
Equation (23) as follows:

  u y; qð Þ ¼
F qð Þexp −y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λqþ1½ � q2−αþMð Þ
k1 αð Þþk0 αð Þq½ �

qh i
1þ γ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þλqð Þ q2−αþMð Þ
k1 αð Þþk0 αð Þq½ �

q þ
1þ λqð Þ 1þ γ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Preff q1−β qþQð Þ
k1 βð Þþk0 βð Þq½ �

q� �
qþ Qð ÞPreff − M þ q2−βð Þ 1þ λqð Þ½ �q

× 1 −
NScSrPreff Qþ qð Þq−β

Preff − Scð Þqþ QPreff½ � k1 βð Þ þ k0 βð Þq½ �
� �

×
exp −y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þλqð Þ q2−αþMð Þ
k1 αð Þþk0 αð Þq½ �

q� �
1þ γ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þλqð Þ q2−αþMð Þ
k1 αð Þþk0 αð Þq½ �

q −

exp −y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Preff q1−β qþQð Þ
k1 βð Þþk0 βð Þq½ �

q� �

1þ γ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Preff q1−β qþQð Þ
k1 βð Þþk0 βð Þq½ �

q
2
664

3
775

þ
N λqþ 1½ � 1þ γ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Scq2−α

k1 αð Þþk0 αð Þq½ �
qh i

q Scq − qþMð Þ λqþð Þ½ � 1þ ScPreff Sr Qþ qð Þq−γ
q Preff − Sc½ � þ QPreff½ � k1 γð Þ þ k0 γð Þq½ �

� �

×
exp −y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þλqð Þ q2−αþMð Þ
k1 αð Þþk0 αð Þq½ �

q� �
1þ γ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λqþ1½ � q2−αþMð Þ
k1 αð Þþk0 αð Þq½ �

q −

exp −y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Scq2−γ

k1 γð Þþk0 γð Þq½ �
q� �

1þ γ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Scq2−γ

k1 γð Þþk0 γð Þq½ �
q

2
64

3
75:

: ð42Þ

Equation (42) in its present form cannot invert in the
domain, so its inverse is obtained numerically by the suitable
algorithm known as Stehfest’s algorithm [53] and Tzou’s
[54], and the outcomes of this process are presented in and
presented in Figures 3(a) and 3(b) for no-slip condition and
slip conditions.

6. Results and Discussion

The motion of Maxwell fluid on a flat surface is discussed by
considering the effect of the thermodiffusion subject to the
first-order slip at the boundary. The effect of heat generation
and radiation is also considered with the effect of the
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magnetic field of constant magnitude. The generalized heat
and mass fluxes are considered, and generalization is made by
considering the new hybrid fractional derivative. The graphi-
cal illustrations for different parametric values are done using
the same graphics of velocity against y.

The primary goal of this research is to study the objectivity
of the fractional parameter over the velocity field. For this
purpose, Figures 4(a) and 4(b) are plotted, and the impact
of a fractional parameter over the flow is explained for slip
and no slip. The outlines of profiles present an elevating trend
for enhancing values of fractional parameters, and this peak in
the velocity profiles is seen because of the power law kernel of
fractional derivative. In the case of the CPC fractional deriva-
tive, the kernel of the operator obeys the power law. More-
over, the subjectivity of velocity for the variation of the other
parameter is also explained graphically. The parameter is
referred to the relative effect of bouncy forces. Figures 5 and 6

show the effect on the velocity of Maxwell fluid for both
positive and negative values. The positive value of N means
there is a supporting bouncy for the fluid flow, and the nega-
tive value means there is an opposing bouncy to the fluid flow.
The results of positive values over fluid velocity is addressed in
Figure 7. As Q>0 refers to the heat absorption and more
energy in the flow domain due to this fluid motion increases
for the growing values ofQ as shown in Figure 7. The negative
value of Q refers to the heat generation in the flow domain,
and some energy is lost due to this fluid velocity decreases,
which is revealed in Figure 8.

In Figure 9, the influence of Sc is discussed, and a
decreasing trend is seen against the elevating value of Sc
because for the elevating value of Sc, momentum diffusivity
is dominant; therefore, the velocity field decreases for the
increasing values of Sc. The Soret effect Sr over the velocity
field is seen in Figure 10, and from the outline of Figure 10, it
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FIGURE 3: Inverse of the velocity field for (a) for no slip and (b) for slip.
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is revealed that elevating Sr accelerates the fluid flow. In
Figure 11, the subjectivity of effective Preff is illustrated,
and from Figure 11, it is evident that the flow velocity falls
for ascending values Preff . A larger value of Preff refers to the
more momentum diffusivity in the flow domain, which slows
down the velocity of the fluid. Figure 12 is sketched to
observe the potentness of magnetic parameter M. The pat-
tern of Figure 12 reveals the decreasing trend for the elevat-
ing value of M: The effects of a magnetic field in the flow
creates some resistive force that opposes the fluid flow that is
why fluid velocity decreases for the increasing values of a
magnetic parameter.

As it is stated, our prime motive was to make advance-
ments in the research work done by Fetecau et al. [25] for a
bigger class of fluid, namely Maxwell fluid. Moreover, it also
includes an additional aspect of fractional instead of ordinary
derivative. Therefore, the obtained result for velocity is also
compared with the result of velocity obtained in [25] graphi-
cally. For this purpose, the velocity profiles are sketched in
Figure 13 by letting the Maxwell parameter λ¼ 0 and frac-
tional parameter α¼ 1 for both slip and nonslip. The over-
lapping graphic profiles show the validation of our obtained
result for velocity.

7. Conclusions

Thermodiffusion is a physical phenomenon that occurs
because of the higher temperature and slanting distribution
of the mixture. Thermodiffusion results in the isotope sepa-
ration. In the present study, analytical results for mass and
heat transfer flow of Maxwell fluid over a flat plate are con-
sidered by taking the effect of the first order slip at the
boundary with the fractional derivative, which is known as
the CPC fractional derivative. The impacts of radiation and
generation of heat are also taken into consideration, along
with the effect of a magnetic field of constant magnitude. The
pearlized results for velocity, concentration, and temperature
are obtained. The graphical illustrations are done using the
same graphics of velocity for both cases, slip and no-slip
effects. Moreover, this research work may extend to more
complex fluids like Oldroyd-B fluid. The conclusions given
below are drawn for the present research study.

(1) The fluid flows with an increasing velocity for the
variation of α; β; γ, and Sr.

(2) Velocity for Sc, and slip parameter γ1 is a decreasing
function.

(3) For positive N velocity exhibits an enhancing posture
the decerned trend for a negative value of N .

(4) For positive Q fluid speeds up, and the negative fluid
flow slows down.

(5) The application of the CPC fractional derivative is a
far better choice to obtain the generalized solution of
the velocity field.

(6) The advantage of the fractional model is nonlocality
and flexibility, which is why one can fit the data
according to desired results by the variation of the
order of fractional derivatives.

Nomenclature

u: Velocity component along x-axis
t: Time
ρ: Density of the fluid
μ: Viscosity of the fluid
g: Gravity
βT ; βC : Coefficients of volumetric expansion
B0: Magnitude of the magnetic field
λ1: Maxwell fluid parameter
σ1: Stefan–Boltzmann
k: Thermal conductivity
M: Magnetic parameter,
Sc: Schmidt number,
Sr: Soret effect parameter
Q: Nondimensional heat generation parameter
CPCDα

t : Constant proportional Caputo fractional deriva-
tive (CPC)

qr : Radiation flux
Q0: Heat generation
cP: Specific heat at constant pressure
Dm: Molecular diffusivity,
Cw: Concentration near the wall.
γ1: Slip parameter
C: Concentration
q: Laplace transform variable
Tw: Wall temperature
T1: Ambient temperature
Nr : Radiation parameter
α; β; γ: Fractional parameter
N : Ratio of mass Grashof number to thermal Grashof

number
Pr; Preff : Prandtl number and effective Prandtl number
σ: Current density.
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In this study, the exact solutions of the Biswas-Arshed equation with the beta time derivative, which has an important role and
physically means that it represents the pulse propagation in an optical fiber, nuclear, and particle physics, are obtained using
the modified exponential function method. Exact solutions consisting of hyperbolic, trigonometric, rational trigonometric, and
rational function solutions demonstrate the competence and relevance of the proposed method. In addition, the physical
properties of the obtained exact solutions are shown by making graphical representations according to different parameter
values. It is seen that the method used is an effective technique, since these solution functions obtained with all these cases
have periodic function properties.

1. Introduction

Differential equations with fractional derivatives have been
used very popularly in many fields of science recently, just like
integer order derivative equations. It is used effectively in many
branches of science such as health, biology, engineering, and
stochastic models. Because such equations contain terms that
represent many of the behaviors studied in these cases, each
equation is defined as a mathematical model. To obtain the
solutions of these mathematical models, there are various
methods in the literature such as the improved Bernoulli sube-
quation method [1], the trial equation method [2], the
extended trial equation method [3], the G′/G method [4, 5],
the extended tanh method [6], the Kudryashov method [7, 8],
the generalized Kudryashov method [9], the new function
method [10], the first integral method [11, 12], the differential
transform method [13], the variational iteration method [14],
the exp-functionmethod [15, 16], the Adomian decomposition
method [17], some numerical methods [18–22], the Chebyshev
collocation method [23], the integral transform operator [24],

the Chebyshev-Taumethod [25], the Taylor expansionmethod
[26], the modified exponential function method [27, 28], and
the new type F-expansion method [29].

In this study, the modified exponential function method
was applied to obtain the exact solutions of the Biswas-
Arshed equation with the beta time derivative.

The outline of this study can be expressed as follows: In the
2nd chapter, some information about the definitions and prop-
erties of the Atangana’s beta derivative is given. In the third
chapter, the modified exponential function method is intro-
duced in detail with its features. In the fourth chapter, the
analysis of the nonlinear fractional mathematical model with
Atangana’s derivative is given. In the last section, there is a con-
clusion that includes all the outputs presented in this article.

2. The Properties and Definition of
Beta Derivative

Definition 1. Khalil et al. added a new fractional derivative
term to the fractional derivative topic and brought it to the
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literature [30]. Let us analyzed the conformable derivative
function g : ½0,∞Þ of the α order from type t > 0, α ∈ ð0, 1Þ
as follows:

0D
α
t g tð Þf g = lim

ε⟶0

g t + εt1−α
À Á

− g tð Þ
ε

: ð1Þ

When g is α-differentiable in the interval of ð0, aÞ, a > 0 and
lim

ε⟶0+
gðαÞðtÞ consists, then it can be defined as gðαÞð0Þ =

lim
ε⟶0+

gðαÞðtÞ.

Definition 2. The beta derivative term is described by Atan-
gana et al. as follows [31]:

A
0D

α

t g tð Þf g = lim
ε⟶0

g t + ε t + 1/ Γ αð Þð Þð Þð Þ1−αÀ Á
− g tð Þ

ε
: ð2Þ

The mathematical model used in the study that consists
of the Atangana’s fractional derivative is preferred because it
provides some features of the basic derivative rules. Accord-
ing to all these cases, the various properties of the conform-
able derivative are as follows:

(i) Let h ≠ 0 and g be functions that are differentiable
with respect to beta in the range β ∈ ð0, 1�. Accord-
ingly, the equation that can satisfy all the real num-
bers q and r is as follows:

A
0D

α
x q g xð Þ + r h xð Þf g = qA0D

α
x g xð Þf g + rA0D

α
x h xð Þf g: ð3Þ

(ii) p is defined as any constant that satisfies the follow-
ing equation:

A
0D

α
x pf g = 0, ð4Þ

A
0D

α

x g xð Þh xð Þf g = h xð ÞA0D
α

x g xð Þf g + g xð ÞA0D
α

x h xð Þf g, ð5Þ

A
0D

α

x

g xð Þ
h xð Þ
� �

= h xð ÞA0Dα
x g xð Þf g − g xð ÞA0Dα

x h xð Þf g
h2 xð Þ

: ð6Þ

If λ = ðx + ð1/ðΓðαÞÞÞÞα−1v is written instead of λ in
Equation (2) and v⟶ 0, when λ⟶ 0, is taken as follows

A
0D

α

x g xð Þf g = x + 1
Γ αð Þ

� �1−α dg xð Þ
dx

, ð7Þ

with

η = δ

α
x + 1

Γ αð Þ
� �α

, ð8Þ

where δ is the constant, and therefore, the following equa-
tion is written:

A
0D

α

x g ηð Þf g = δ
dg ηð Þ
dη

: ð9Þ

3. Properties of the Modified Exponential
Function Method

In this section, the modified exponential function method,
which is an efficient method used to obtain the wave solu-
tions of the nonlinear mathematical model defined by Atan-
gana derivatives, will be explained in detail.

The general form of the nonlinear fractional partial dif-
ferential equation containing the solution function u with
two variables and its beta derivatives is as follows:

P u, uj j2, A0D
β

t u, ux, uxx, uxx ,⋯
� �

= 0, ð10Þ

where x and t represent space and time to which the func-
tion u given in the general form is dependent.

Let us take the traveling wave transform generated
according to the independent variables in the general form
of the nonlinear partial differential as follows:

u x, tð Þ = u ηð Þ, η = x −
γ

α
t + 1

Γ βð Þ
� �β

 !
, ð11Þ

where γ is any constant. When the derivative terms in Equa-
tion (10) are written instead of those obtained from the wave
transformation (11), the general form of the following non-
linear ordinary differential equation is found:

N u, u2, u3, u′, u″,⋯
� �

= 0: ð12Þ

The solution function of the nonlinear fractional differ-
ential equation considered in this study is as follows:

u ηð Þ = ∑q
i=0Ai e

−ϑ ηð ÞÂ Ãi
∑r

j=0Bj e
−ϑ ηð ÞÂ Ãj = A0 + A1e

−ϑ+⋯+Aqe
−q ϑ

B0 + B1e−ϑ+⋯+Bre−r ϑ
, ð13Þ

where Ai, Bj, ð0 ≤ i ≤ q, 0 ≤ j ≤ rÞ are constants and ϑ = ϑðηÞ.
The terms of derivative in Equation (12) are obtained from
Equation (13). However, in this process, while the deriva-
tives of the function u with respect to η are taken, the func-
tion ϑ and its derivative with respect to η are required. For
this case, the following equation is used as

ϑ′ ηð Þ = e−ϑ ηð Þ + μ eϑ ηð Þ + λ: ð14Þ

If Equation (14) is arranged, the following equation is
obtained:

eϑ ηð Þ

μ e2ϑ ηð Þ + λeϑ ηð Þ + 1
dϑ = dη: ð15Þ

While integrating Equation (15) according to the functions
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η and ϑ, the following family cases are obtained according to
the states of the coefficients in the same equation [27, 28]:

Family 1. If μ ≠ 0 and λ2 − 4μ > 0,

ϑ ηð Þ = ln −
λ

2μ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

p
2μ tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

p
2 η + Eð Þ

 ! !
:

ð16Þ

Family 2. If μ ≠ 0 and λ2 − 4μ < 0,

ϑ ηð Þ = ln −
λ

2μ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−λ2 + 4μ

p
2μ tan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−λ2 + 4μ

p
2 η + Eð Þ

 ! !
:

ð17Þ

Family 3. If μ = 0, λ ≠ 0, and λ2 − 4μ > 0,

ϑ ηð Þ = − ln λ

eλ η+Eð Þ − 1

� �
: ð18Þ

Family 4. If μ ≠ 0, λ ≠ 0, and λ2 − 4μ = 0,

ϑ ηð Þ = ln −
2λ η + Eð Þ + 4
λ2 η + Eð Þ

 !
: ð19Þ

Family 5. If μ = 0, λ = 0, and λ2 − 4μ = 0,

ϑ ηð Þ = ln η + Eð Þ, ð20Þ

where E, λ, μ are coefficients.

After determining the function ϑ in Equation (13) accord-
ing to the conditions stated above, another step that needs to
be done is to determine the upper bounds in Equation (13).
For this, the balance procedure must be used. In other words,
there is a relationship between q and r, which is analyzed as
the upper boundary, with the balancing of the highest order
derivative term in the nonlinear ordinary differential equation
and the highest order nonlinear term. Then, appropriate
values are determined to provide this correlation. In this
way, the boundaries of Equation (13) are stated. Then, the
terms of derivative required in Equation (12) are obtained
from Equation (13) and written in their place. The system of
algebraic equations consisting of the coefficients of the func-
tion ϑ in this equation is obtained. The coefficients in the form
of A0,A1, A2,⋯, Aq and B0, B1, B2,⋯, Br are found together
with the solution of this system of equations. Then, the
obtained coefficients are written in Equation (13). The func-
tions ϑ determined according to the family conditions are also
put in their place. It is checked that these functions, which are
obtained together with the necessarymathematical operations,
provide the nonlinear mathematical model with beta deriva-
tives. Finally, the graphs simulating the physical behavior of
wave solutions satisfying the equation are obtained according
to the appropriate parameters.

4. Analysis of the Nonlinear Mathematical
Model with the Beta Time Derivative

In this section, the traveling wave solutions satisfying the
Biswas-Arshed equation with the beta time derivative will
be analyzed by using the modified exponential function
method. The Biswas-Arshed equation physically means that
it represents the pulse propagation in an optical fiber. The
Biswas-Arshed equation with the beta time derivative is as
follows [32, 33]:

iA0D
β
t uf g + a1uxx + a2

A
0D

β
t uxf g + i b1uxxx + b2

A
0D

β
t uxxf g

� �
− i σ uj j2uÀ Á

x
+ τ u uj j2À Á

x
+ ζ uj j2ux

À Á
= 0,

ð21Þ

where a1, a2, b1, b2, σ, τ, and ζ are arbitrary constants. Here, the

functions uxx, uxxx,
A
0D

β
t fuxg, and A

0D
β
t fuxxg are, respectively,

given as the group velocity, the third order, spatiotemporal dis-
persions, and spatiotemporal third-order dispersions whereas
u = uðx, tÞ is defined as a complex-valued function. Also,
ðjuj2uÞx is the self-steepening term and ðjuj2Þx and juj2ux are
the terms of nonlinear dispersions. To solve the nonlinear frac-
tional differential equation, firstly using the wave transform
given below, this equation is reduced to a system of nonlinear
ordinary differential equations. For this, let us consider the
traveling wave transform in the form

u x, tð Þ = ϕ ηð Þeiφ x,tð Þ,

η = x −
ρ

β
t + 1

Γ βð Þ
� �β

,

φ x, tð Þ = −κx + w
β

t + 1
Γ βð Þ

� �β

+℘,

ð22Þ

where ρ, κ, w, and ℘ are constants. When the terms containing
derivatives required in Equation (21) are obtained from the
wave transform (22) and written in their place, we get the fol-
lowing system of nonlinear ordinary differential equations:

2κρb2 − 3κb1 +wb2 + ρa2 − a1ð Þϕ″ + κ3b1 − κ2wb2 + κ2a1 − κwa2 +w
À Á

ϕ

+ κσ + κζð Þϕ3 = 0,
ð23aÞ

ρb2 − b1ð Þϕ‴ + −κ2ρb2 + 3κ2b1 − 2κwb2 − κρa2 + 2κa1 −wa2 + ρ
À Á

ϕ′
+ 3σ + 2τ + ζð Þϕ2ϕ′ = 0:

ð23bÞ

By equating the coefficients of Equation (23b) to zero, the
following results are obtained:
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ρ = b1
b2

,

σ = −
2
3 τ −

1
3 ζ,

w = 2κ2b1b2 + 2κa1b2 − κa2b1 + b1
b2 2κb2 + a2ð Þ :

ð24Þ

A nonlinear ordinary differential equation is obtained by
substituting the values in Equation (24) into Equation (23a)
as follows:

−κb1 +
2κ2b1b2 + 2κa1b2 − κa2b1 + b1

2κb2 + a2
+ b1a2

b2
− a1

� �
ϕ″

+ κ3b1 −
κ2b2 − κa2 + 1
À Á

2κ2b1b2 + 2κa1b2 − κa2b1 + b1
À Á
b2 2κb2 + a2ð Þ + κ2a1

� �
ϕ

+ 2κ
3 ζ − τð Þ

� �
ϕ3 = 0:

ð25Þ

When the balance procedure is applied to Equation (25),
the following balance relation is obtained between the term ϕ
″ with the highest order derivative and the term ϕ3 with the
highest order nonlinear term:

3n − 3m = n −m + 2⇒ n =m + 1: ð26Þ

For m = 1, we obtain n = 2. In this case, it is assumed that
the solution function determined according to Equation (13)
is as follows:

ϕ ηð Þ = ψ

ϖ
= A0 + A1e

−ϑ + A2e
−2 ϑ

B0 + B1e−ϑ
: ð27Þ

The derivative terms required for Equation (25) are
obtained from Equation (27) as follows:

u′ ηð Þ = ψ′ϖ − ψϖ′
ϖ2 , ð28Þ

u″ ηð Þ =
ψ″ϖ3 + ψ′ϖ′ϖ2 − ψ′ϖ′ϖ2 + ψϖ″ϖ2

� �� �
− 2ϖϖ′ ψ′ϖ − ψϖ′

� �� �
ϖ4 :

ð29Þ

The system of algebraic equations, observed by substituting
the terms obtained in Equations ((27)–(29)) into Equation
(25), is solved by using the Mathematica program, and thus,
the following coefficients are obtained by this way. In addition,
two different cases of solutions such as Case 1 and Case 2,
where each case consists of five different solution families, are
given below. Now, let us consider these solution cases.

Case 1.

A0 = −λB0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3b1

2κb2 ζ − τð Þ −4κ + 2κ2 − λ2 + 4μ
À Á

a2
À Á

s
,

A1 = − 2B0 + λB1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3b1
2κb2 ζ − τð Þ −4κ + 2κ2 − λ2 + 4μ

À Á
a2

À Á
s

,

A2 = −B1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6b1

κb2 ζ − τð Þ −4κ + 2κ2 − λ2 + 4μ
À Á

a2
À Á

s
,

a1 =
b1 2 − 4κa2 + a22 + b2

À Á
2κ2 − λ2 + 4μ
À ÁÀ Á

b2 −4κ + 2κ2 − λ2 + 4μ
À Á

a2
À Á :

ð30Þ

When the coefficients obtained above are, respectively,
substituted in Equations (27) and (22), the following wave
solutions are found according to the family states.

Family 1. When μ ≠ 0 and λ2 − 4μ > 0,

u1,1 x, tð Þ =Θ1 −λ + 4μ
λ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

p
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

p
/2

� �
x − b1/βb2ð Þ t + 1/ Γ βð Þð Þð Þð Þβ + E
� �h i

0
@

1
A

× ei −κx+ 2κ2b1b2+2κa1b2−κa2b1+b1ð Þ/ βb2 2κb2+a2ð Þð Þð Þ t+ 1/ Γ βð Þð Þð Þð Þβ+℘ð Þ,

ð31Þ

4 Advances in Mathematical Physics



−1

−1
Re (u1,1 (x,t))

−1.0
−0.5

0.0

1

1

0

0
x

t

−20

−2

20

2

−10

−1

10

1

u1,1 (x,t)

x

Re (u1,1 (x,t))
1.5

1.0

1.0

0.5

0.5

0.0

0.0
−1.5

−1.0

−1.0

−0.5

−0.5

Re (u1,1 (x,t))
1.5

1.0

1.0

0.5

0.5

0.0

0.0
−1.5

−1.0

−1.0

−0.5

−0.5

Im (u1,1 (x,t))
10

10

5

5

0

0

−10

−10

−5

−5

−20

−2

20

2

−10

−1

10

1

u1,1 (x,t)

x

Im (u1,1 (x,t))

−10

−10

10

10

−1

2
1
0

5

5

0

0

x

t

−5

−5

Im (u1,1 (x,t)]

10

10

5

5

0

0

−10

−10

−5

−5

Figure 1: The graphs simulating the behavior of the model (31) for the values of δ = 0:96, λ = 3, b1 = 2:5, B0 = 0:2, κ = 0:75, ζ = 0:21, τ
= 0:45, μ = 2, a2 = 3:6, b2 = 2:4, B1 = 0:85, E = 0:65, β = 0:5, A0 = −1:10702, A1 = −5:44284, A2 = −3:13655, a1 = 2:81046, ω = 0:730188, ρ
= 1:04167, and t = 1.
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Figure 10: The graphs simulating the behavior of the model (41) for the values of δ = 0:96, λ = 2, b1 = 2:5, B0 = 0:2, κ = 0:75, ζ = 0:21, τ
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where Θ1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3b1/ð2b2κðζ − τÞð−4κ + ð2κ2 − λ2 + 4μÞa2ÞÞ

p
. Family 2. When μ ≠ 0 and λ2 − 4μ < 0,

where Θ1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3b1/ð2b2κðζ − τÞð−4κ + ð2κ2 − λ2 + 4μÞa2ÞÞ

p
. Family 3. When μ = 0, λ ≠ 0, and λ2 − 4μ > 0,

where Θ2 = λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3b1/ð2b2κðζ − τÞð−4κ + ð2κ2 − λ2Þa2ÞÞ

p
.

Family 4. When μ ≠ 0, λ ≠ 0, and λ2 − 4μ = 0,

u1,4 x, tð Þ = Θ3e
i −κx+ 2κ2b1b2+2κa1b2−κa2b1+b1ð Þ/ βb2 2κb2+a2ð Þð Þð Þ t+ 1/ Γ βð Þð Þð Þð Þð Þβ+℘ð Þ

2 + λ x − b1/β b2ð Þ t + 1/ Γ βð Þð Þð Þð Þβ + E
� �� � ,

ð34Þ

where Θ3 = λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
.

Family 5. When μ = 0, λ = 0, and λ2 − 4μ = 0,

u1,5 x, tð Þ = −
Θ4e
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where Θ4 =
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3b1/ðb2κ2ðζ − τÞð−2 + κa2ÞÞ

p
.

Case 2.

Let us investigate the wave solutions of the following
family of solutions according to another set of coefficients
obtained by solving the system of algebraic equations.

Family 1. If μ ≠ 0 and λ2 − 4μ > 0, then

u2,1 x, tð Þ =
Θ2μ 2B0 − λB1ð Þ +Θ1 λB0 − 2μB1ð Þ λ +
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where η = x − ðb1/βb2Þðt + ð1/ðΓðβÞÞÞÞβ, Θ1 =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3b1/ð2b2κðζ − τÞð−4κ + ð2κ2 − λ2 + 4μÞa2ÞÞ

p
, and Θ2 =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6b1/ðb2κðζ − τÞð−4κ + ð2κ2 − λ2 + 4μÞa2ÞÞ
p

.

Family 2. If μ ≠ 0 and λ2 − 4μ < 0, then

where Θ1 =
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p
.

Family 3. If μ = 0, λ ≠ 0, and λ2 − 4μ > 0, then

Family 4. If μ ≠ 0, λ ≠ 0, and λ2 − 4μ = 0, then

Family 5. If μ = 0, λ = 0, and λ2 − 4μ = 0, then

u2,5 x, tð Þ = Θ4B0e
i −κx+ 2κ2b1b2+2κa1b2−κa2b1+b1ð Þ/ βb2 2κb2+a2ð Þð Þð Þ t+ 1/ Γ βð Þð Þð Þð Þβ+℘ð Þ
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where a1 = ðb1ðð−1 + κa2Þ2 + κ2b2ÞÞ/ðκð−2 + κa2Þb2Þ and
Θ4 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3b1b2/ðκ2ðζ − τÞð−2 + κa2ÞÞ

p
.

5. Conclusions

In this study, an effective technique, the modified exponen-
tial function method for the Biswas-Arshed equation with

the beta time derivative, was applied. It can be said that this
method is an advantageous technique for obtaining wave
solutions of nonlinear partial differential equations. This
advantage can be explained as follows. The traveling wave
solutions of the mathematical model contain periodic func-
tions. By obtaining these functions, the behavior model
obtained in a range can be generalized to an infinite range.
In this study, a package program was used for all mathemat-
ical operations and graphics that simulate the behavior of
the mathematical model and for all the operations related
to showing that solution functions provide the mathematical
model. Using the method, two case situations consisting of
coefficients were analyzed. According to these situations,
hyperbolic, trigonometric, and rational solution functions
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belonging to the mathematical model were obtained. In
addition, in the second case, the solution functions belong-
ing to the mathematical model were obtained in a complex
form. For this reason, while determining the graphs simulat-
ing the behaviors, they were examined separately as real and
imaginary parts in Figures 1–10. When all these results are
analyzed, it is concluded that obtaining periodic solution
functions is of great importance, because such functions will
allow to make comments about a desired range.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no competing interests.

Authors’ Contributions

All authors read and approved the final manuscript.

References

[1] J. Yang, A. Liu, and T. Liu, “Forced oscillation of nonlinear
fractional differential equations with damping term,”
Advances in Difference Equations, vol. 2015, no. 1, p. 17, 2015.

[2] C. S. Liu, “A new trial equation method and its applications,”
Communications in Theoretical Physics, vol. 45, no. 3,
pp. 395–397, 2006.

[3] Y. Pandir, Y. Gurefe, and E. Misirli, “The extended trial equa-
tion method for some time fractional differential equations,”
Discrete Dynamics in Nature and Society, vol. 2013, Article
ID 491359, 13 pages, 2013.

[4] M. A. Akbar, N. H. M. Ali, and E. M. E. Zayed, “Abundant
exact traveling wave solutions of generalized Bretherton equa-
tion via improved (G'/G)-expansion method,” Communica-
tions in Theoretical Physics, vol. 57, no. 2, pp. 173–178, 2012.

[5] A. Akbulut, M. Kaplan, and F. Tascan, “Conservation laws and
exact solutions of Phi-four (Phi-4) equation via the (G'/G, 1/
G)-expansion method,” Zeitschrift für Naturforschung A,
vol. 71, no. 5, pp. 439–446, 2016.

[6] M. A. Abdou, “The extended tanh method and its applications
for solving nonlinear physical models,” Applied Mathematics
and Computation, vol. 190, no. 1, pp. 988–996, 2007.

[7] P. N. Ryabov, D. I. Sinelshchikov, and M. B. Kochanov,
“Application of the Kudryashov method for finding exact solu-
tions of the high order nonlinear evolution equations,” Applied
Mathematics and Computation, vol. 218, no. 7, pp. 3965–3972,
2011.

[8] M. Kaplan, A. Bekir, and A. Akbulut, “A generalized Kudrya-
shov method to some nonlinear evolution equations in math-
ematical physics,” Nonlinear Dynamics, vol. 85, no. 4,
pp. 2843–2850, 2016.

[9] S. T. Demiray, Y. Pandir, and H. Bulut, “Generalized Kudrya-
shov method for time-fractional differential equations,”
Abstract and Applied Analysis, vol. 2014, Article ID 901540,
13 pages, 2014.

[10] T. Akturk, Y. Gurefe, and Y. Pandir, “An application of the
new function method to the Zhiber-Shabat equation,” An

International Journal of Optimization and Control: Theories
& Applications (IJOCTA), vol. 7, no. 3, pp. 271–274, 2017.

[11] B. Elma and E. Misirli, “Two reliable techniques for solving
conformable space-time fractional PHI-4 model arising in
nuclear physics via β-derivative,” Revista Mexicana de Física,
vol. 67, no. 5, article 050707, 2021.

[12] H. Yépez-Martínez, J. F. Gómez-Aguilar, and A. Atangana,
“First integral method for non-linear differential equations
with conformable derivative,”Mathematical Modelling of Nat-
ural Phenomena, vol. 13, no. 1, p. 22, 2018.

[13] A. Arikoglu and I. Ozkol, “Solution of fractional differential
equations by using differential transform method,” Chaos, Sol-
itons & Fractals, vol. 34, no. 5, pp. 1473–1481, 2007.

[14] B. Batiha, M. S. M. Noorani, and I. Hashim, “Numerical solu-
tion of sine-Gordon equation by variational iteration method,”
Physics Letters A, vol. 370, no. 5-6, pp. 437–440, 2007.

[15] A. Bekir, Ö. Güner, and A. C. Cevikel, “Fractional complex
transform and exp-function methods for fractional differential
equations,” Abstract and Applied Analysis, vol. 2013, Article
ID 426462, 8 pages, 2013.

[16] A. Akbulut, M. Kaplan, and F. Tascan, “The investigation of
exact solutions of nonlinear partial differential equations by
using exp(−Φ(ξ)) method,” Optik, vol. 132, pp. 382–387, 2017.

[17] N. T. Shawagfeh, “Analytical approximate solutions for non-
linear fractional differential equations,” Applied Mathematics
and Computation, vol. 131, no. 2-3, pp. 517–529, 2002.

[18] K. Diethelm and N. J. Ford, “Analysis of fractional differential
equations,” Journal of Mathematical Analysis and Applica-
tions, vol. 265, no. 2, pp. 229–248, 2002.

[19] P. Kumar and O. P. Agrawal, “An approximate method for
numerical solution of fractional differential equations,” Signal
Processing, vol. 86, no. 10, pp. 2602–2610, 2006.

[20] N. J. Ford and A. C. Simpson, “The numerical solution of frac-
tional differential equations: speed versus accuracy,” Numeri-
cal Algorithms, vol. 26, no. 4, pp. 333–346, 2001.

[21] A. Atangana and A. Akgul, “On solutions of fractal fractional
differential equations,” Discrete & Continuous Dynamical Sys-
tems-S, vol. 14, no. 10, pp. 3441–3457, 2021.

[22] D. Baleanu, O. G. Mustafa, and R. P. Agarwal, “On the solution
set for a class of sequential fractional differential equations,”
Journal of Physics A: Mathematical and Theoretical, vol. 43,
no. 38, article 385209, 2010.

[23] M. I. Syam and M. Al-Refai, “Fractional differential equations
with Atangana-Baleanu fractional derivative: analysis and
applications,” Chaos, Solitons & Fractals, vol. 2, article
100013, 2019.

[24] A. Atangana and I. Koca, “Chaos in a simple nonlinear system
with Atangana-Baleanu derivatives with fractional order,”
Chaos, Solitons & Fractals, vol. 89, pp. 447–454, 2016.

[25] N. Gurefe, E. G. Kocer, and Y. Gurefe, “Chebyshev-tau method
for the linear Klein-Gordon equation,” International Journal
of Physical Sciences, vol. 7, no. 43, pp. 5723–5728, 2012.

[26] T. Abdeljawad, “On conformable fractional calculus,” Journal
of Computational and Applied Mathematics, vol. 279, pp. 57–
66, 2015.

[27] Y. Pandir, Y. Gurefe, and T. Akturk, “New soliton solutions of
the nonlinear Radhakrishnan-Kundu-Lakshmanan equation
with the beta-derivative,” Optical and Quantum Electronics,
vol. 54, no. 4, pp. 1–21, 2022.

[28] Y. Gurefe, Y. Pandir, and T. Akturk, “On the nonlinear math-
ematical model representing the Coriolis effect,”Mathematical

17Advances in Mathematical Physics



Problems in Engineering, vol. 2022, Article ID 2504907, 12
pages, 2022.

[29] Y. Pandir and H. H. Duzgun, “New exact solutions of the
space-time fractional cubic Schrodinger equation using the
new type F-expansion method,” Waves in Random and Com-
plex Media, vol. 29, no. 3, pp. 425–434, 2019.

[30] R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh, “A new
definition of fractional derivative,” Journal of Computational
and Applied Mathematics, vol. 264, pp. 65–70, 2014.

[31] A. Atangana, D. Baleanu, and A. Alsaedi, “New properties of
conformable derivative,” Open Mathematics, vol. 13, no. 1,
pp. 889–898, 2015.

[32] K. Hosseini, M. Mirzazadeh, M. Ilie, and J. F. Gómez-Aguilar,
“Biswas-Arshed equation with the beta time derivative: optical
solitons and other solutions,” Optik-International Journal for
Light and Electron Optics, vol. 217, article 164801, 2020.

[33] T. Han, Z. Li, and J. Yuan, “Optical solitons and single travel-
ing wave solutions of Biswas-Arshed equation in birefringent
fibers with the beta-time derivative,” AIMS-Mathematics,
vol. 7, no. 8, pp. 15282–15297, 2022.

18 Advances in Mathematical Physics



Research Article
ABC Fractional Derivative for Varicella-Zoster Virus Using
Two-Scale Fractal Dimension Approach with Vaccination

Jirong Yang,1 Farkhanda Afzal ,2 and Perpetual Appiah 3

1Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
2MCS, National University of Sciences and Technology, Islamabad, Pakistan
3Department of Mathematics, University of Cape Coast, Ghana

Correspondence should be addressed to Perpetual Appiah; perpetual.appiah@stu.ucc.edu.gh

Received 26 August 2022; Revised 6 September 2022; Accepted 19 September 2022; Published 14 October 2022

Academic Editor: Muhammad Nadeem

Copyright © 2022 Jirong Yang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Chickenpox or varicella is an infectious disease caused by the varicella-zoster virus ðVZV Þ. This virus is the cause of chickenpox
(usually a primary infection in the nonimmune host) and herpes zoster. In this paper, a compartmental model for the dynamics of
VZ transmission with the effect of vaccination is solved using the ABC fractional derivative. The possibility of using the fractal
dimension as a biomarker to identify different diseases is being investigated. The problem is investigated in two different levels of
research using two scale dimensions. To ascertain the existence and uniqueness of the solution, we qualitatively evaluate the
model. We have used the Euler method to compute the numerical solution for the system. At the end, we provide the
graphical results showing the effectiveness of two-scale dimension and fractional calculus in the current model.

1. Introduction

Chickenpox, or varicella, is caused by the varicella-zoster
virusðVZV Þ, a globally distributed herpes virus [1]. Chick-
enpox occurs in all countries, killing about 7,000 people
annually. This is a common illness in children in temperate
countries, ten with them. [2, 3]. The itchy blister rash caused
by a chickenpox infection appears for 10 to 21 days and
usually lasts about 5 to 10 days. Other signs and symptoms
that may appear 1-2 days before the rash appears are fever,
decreased appetite, headache, and general malaise. Chicken-
pox spreads from one individual to another by direct contact
with the blisters, saliva, or mucus of an infected individual.
The virus can also spread in the air by coughing or sneezing.
There are different theories about the origin of the name of
this disease. After infection, the skin appeared to have been
picked out from the chicken. Another reason is that the rash
mimics chickpea seeds. The most usual interpretation is that
the disease is a type of “chickenpox” because it is not as
severe as smallpox. Chickenpox occurs differently depending
on the geographical area. Anyhow, the occurrence of chick-
enpox in these regions increased between adolescents and

adults [4], which may in part be due to an increase in global
tourism and economic migration. In most tropical areas,
situation is changed, with 60 percent of the immunized adult
population [5]. Previously, the said virus infects almost the
whole population, causing significant morbidity and mortal-
ity from both primary varicella zoster and reactivation of
herpes zoster. The first approved vaccine for varicella was
used in 1995 reducing the severity, morbidity, and mortality
rate significantly. In 2006, due to the outbreak of illness
caused by a single vaccination schedule, the children were
recommended to receive their second dose vaccination
series. The innovation of the shingles vaccine has also
benefited the elders. For those over 60, the Food and Drug
Administration approved the use of a shingles vaccination
in 2006 that contained high amounts of the primary varicella
vaccine’s live attenuated vaccine. Millions of individuals
could help prevent the disease caused by the varicella-
zoster virus by lowering the prevalence and mortality of
shingles and postherpetic neuralgia.

Compared to integer-order calculus, many real-world
problems can be better explained when using fractional
operators. Fractional calculus is recognized as a promising
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mathematical tool for efficiently characterizing historical
memories and global correlations of complex dynamical sys-
tems, phenomena, or structures. Fractional-order PDEs
dominate the majority of models of physical fluid dynamics
events, electricity, ecological structure, quantum physics,
and many others. Understanding positive integer order 35
derivatives and integrals are of great importance for the
development of modern theoretical and practical problems
of science. Properties of integral, differential operators, and
mathematical functions are as follows: gamma, beta, and
other special functions where the integral takes the form of
convolution, and there are singularities are useful.

Development of fractal theory was formulated by
Mandelbrot. The second half of the 20th century generally
integrated the work of many other early mathematicians
and scientists, opening a new perspective on this goal. Since
then, several attempts have been made to interpret the rela-
tionship between fractional operators and this new geome-
try. As the dynamic foundations of fractional calculus and
fractal dimensions, fractal theory and FDE theory are rapidly
gaining popularity as disciplines around the world.

Physical memory and heredity are clearly defined by
fractions. Special functions, elliptic integrals, and elliptic
functions are used in various physical systems. Their inclu-
sion in solving nonlinear differential equations is well
known. You can examine these functions and integrals using
the references. Fractional differential operators are becoming
robust, and systematic mathematical tools for studying
various scientific and biological events nowadays, for
example, childhood disease [14, 16], HIV, coronary heart
disease [15], hepatitis C [17], Chikungunya virus [18], and
Crimean-Congo hemorrhagic fever (CCHF) [19], can be
seen in the references. Fractional-order differential equa-
tions, in contrast to integer-order differential equations,
can show nonlocal interactions with memory cores in time
and space [6, 7].

1.1. Motivation. The complexity, validity, implementation,
prevention, therapy, and control strategies of mathematical
models have been improving. Following the research, the
entire population is divided into three categories: suscepti-
ble, infectious, and eliminated with lifelong acquired immu-

nity. This approach is known as the SIR model. In real life
situations after a time, in the infectious compartment, the
individuals, recovered or removed individuals, lose immu-
nity and return to the susceptible compartment. These
models are known as SIRS models. Following the same
assumptions, the model 2 can be written in the following
form [13].

dS⋄

dt
= 1 − ωð ÞρM + 1 − ςð Þϖ + 1 − δð ÞαV ⋄ − ϑ + κ1 + ϵð ÞS∘,

dV ⋄

dt
= ωρM + ςϖ + κ1S

⋄ − 1 − δð Þα + δκ2 + ϵð ÞÞV ⋄,

dE⋄

dt
= ϑS⋄ − χ1 + ϵð ÞE⋄,

dI⋄

dt
= χ1E

∘ − χ2 + ϵð ÞI ∘,

dR⋄

dt
= χ2I

∘ + δκ2ð ÞV ∘ − ϵR⋄:

ð1Þ

Figure 1 shows the block diagram of the model under
consideration. It can be seen that susceptible vaccinated clas-
ses have direct relationship. And engineering and science
fields like biotechnology, medicine, biological processes, arti-
ficial intelligence, and space sciences all make extensive use
of mathematical modeling of physical systems. Scientists,
engineers, and mathematicians are turning to the broad field
of mathematical modeling to solve the numerous issues they
face. We take into account the Atangana-Baleanu fractional
operator in the sense of Caputo to investigate the fractional
dynamics of a model under consideration. The utilization
of the Atangana-Baleanu partial derivatives is based on their
nonlocal characteristics. This operator is better for capturing
complex behaviors. Table 1 gives definitions of variables.

2. Contribution and Novelty

Mathematical methods are based on the application of some
basic principles of fractional differentiation and first-order

(1-𝛿) 𝜌 M

𝛿k2 V󳴼

(1-𝜍) 𝝕

𝜍 𝝕

𝜔 𝜌 M

(1-𝛿) 𝛼 𝜀 S󳴼

E󳴼S󳴼
I󳴼 R󳴼ϑ S󳴼

V󳴼

V󳴼k1

R󳴼k1

𝜒1 E󳴼 𝜒2 I󳴼

k1 I󳴼k1 E󳴼k1 S󳴼

Figure 1: Flow diagram of VZV.
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interpolation. An analysis is conducted on the existence and
uniqueness of the model. According to the interesting attrac-
tors obtained in this study, these new fractal-fractional oper-
ators may be able to explain new elements of the behavior of
these systems rather than fractional derivatives. Some of
these properties go beyond the traditional integer-order
operators. It is trendy to examine the real life problems using
fractional approaches because the fractional derivative
covers a broad spectrum of variables as compared to integer
order derivatives. Two-scale dimension is a new approach
for dealing with the problems involving more than one scale
of observation. This paper combines the benefits of frac-
tional derivative and 85 efficacy of two-scale dimension to
study a wide spread virus model [24].

This study differs from previous studies on schemes due
to the involved new formulation of a two-scale fractal frac-
tional derivative. Atangana and his colleagues first published
some of these new derivative theories in 2017. They combine
the concepts of fractional and fractal derivatives, taking into
account nonlocality, memory, and fractal effects. This model
takes into account processes such as power law, fading mem-
ory, and crossovers. Note that this article uses a significantly
different numerical approach and analysis than [13], which
describes the integer ordering problem. It has been shown
that the two-scale fractal dimension has a significant impact
on the dynamics of the system.

HBC
0 Dν

t S
∘ = 1 − ωð ÞρM + 1 − ςð Þϖ + 1 − δð ÞαV ∘ − ϑ + κ1 + ϵð ÞS∘,

ABC
0 Dν

tV
∘ = ωρM + ςϖ + κ1S

⋄ − 1 − δð Þα + δκ2 + κ1ð Þ
�
V ∘,

ABC
0 Dν

t E
⋄ = ϑS⋄ − χ1 + κ1ð ÞE⋄,

ABC
0 Dv

tI
∘ = χ1E

∘ − χ2 + κ1ð ÞI∘,
ABC
0 Dv

tR
⋄ = χ2I

⋄ + δκ2ð ÞV ⋄ − κ1R
⋄:

ð2Þ

Definition 1. Let ς be a function which is continuous in the
domain ða, bÞ with v ∈ ð0, 1�. The ABC fractional derivative
is defined as [8]

ABC
0 Dv

t ς tð Þ = M vð Þ
1 − v

d
dt

ðt
0
ς ζð ÞEv

−v
1 − v

t − ζð Þv
h i

dζ: ð3Þ

The normalization constantMðvÞ givesMð0Þ =Mð1Þ = 1.

Definition 2. The fractional integral related with the frac-
tional derivative is given as [8, 9]

ABC
0 Ivt S tð Þ = 1 − v

M vð Þ ς tð Þ + v
M vð ÞΓ vð Þ

ðt
0

t − ζð Þv−1
h i

ς ζð Þdζ:

ð4Þ

2.1. ABC Fractional Order Model for VZV . Over the last
few decades, some researchers and scientists have empha-
sized fractional calculus and have shown that it is a better
tool to study natural events by fractional order than the
integer order. Fractional calculus supported the popularity
and benefits of fractal modeling. This section explains the
adoption of the numerical method for Atangana-Baleanu’s
fractional differential operator [23]. The iterative expression
obtains via ABC fractional model to Eq. (2) as follows:

S∘ tð Þ − S∘ 0ð Þ = 1 − v
M vð Þ 1 − ωð ÞρM + 1 − ςð Þϖ + 1 − δð ÞαV ∘½

− ϑ + κ1 + ϵð ÞS∘� + v
M vð ÞΓ vð Þ

Á
ðt
0

t − ζð Þv−1
h i

1 − ωð ÞρM + 1 − ςð Þϖ½
+ 1 − δð ÞαV ∘ − ϑ + κ1 + ϵð ÞS∘�dζ:

ð5Þ

For simplification, we write

Θ1 t, S∘ð Þ = 1 − ωð ÞρM + 1 − ςð Þϖ + 1 − δð ÞαV ∘

− ϑ + κ1 + ϵð ÞS∘:
ð6Þ

3. Two-Scale Dimension

Mathematics plays a vital role in the science of measure-
ment. Mathematical models are needed to recognize how
powerful dimensional systems are structured and to investi-
gate the results they produce. How about measuring a coast-
line? In this example, the concept of length is not applicable.
Land mass features exist on multiple scales, but there is no
clear scale of minimum features to consider when measur-
ing. The smooth and idealized length of the metal rod can
be precisely measured with the help of measuring instru-
ment to determine whether the length is less than one value
and greater than the other. The accuracy of the true value
depends on the accuracy of the instrument. However,
improving the measuring instrument does not improve the
accuracy of coastline surveying. As with metal rods, there

Table 1: Variables’ definitions.

Variables &
Parameters

Interpretation

S∘ tð Þ Susceptible individuals

V ∘ tð Þ Vaccinated individuals

E∘ tð Þ Exposed individuals

I∘ tð Þ Infected individuals

R∘ tð Þ Recovered individuals

ρ Per capita birth rate

κ1 Natural mortality rate

χ2 Rate has permanent immunity after recovery

ϖ Consistent recruitment rate

ς Vaccinated recruit

ω Vaccinated infants

ϑ Rate of first-dose vaccine received by
susceptible individuals
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is no way to give a specific value to the length of the
coastline.

The coastline problem applies to the idea of a fractal sur-
face in 3D space where the area of the surface changes with
the measurement scale. Many laws of physics are scale-
dependent and give scale-dependent results. In these sys-
tems, behavior is “scale dependent” and can be assumed to
be accompanied by drastic changes in behavior associated
with an exclusive regime. Einstein’s theory of relativity made
researchers believed that applying the theory of relativity to a
similar scale could account for the usage of scale dependence
in practical problems, see [10] to study the details of the two-
scale transformation.

ΔS = Δtv

Γ 1 + vð Þ , ð7Þ

where ΔS is the smaller scale, Δt is the larger scale, and v is
two-scale dimension. Two scales provide a logical explana-
tion in terms of existing fractal calculus theories. This is a
modern concept that emphasizes the importance of scale in
the examination of practical problem [20, 21]. In [11, 12],
the work presented was the source of our motivation. As an
illustration of the concepts presented in the aforementioned
articles, we will present our own work.

Theorem 3. Θ1 fulfills the Lipschitz condition and contrac-
tion if the following inequality holds:

0 ≤ ϑ + κ1 + ϵð Þ < 1: ð8Þ

Proof. Let a = ðϑ + κ1 + ϵÞ. For S⋄, we have

Θ1 t, S∘ð Þ −Θ1 t, S∘1ð Þ = − ϑ + κ1 + ϵð Þ S∘ − S∘1 tð Þð Þ
≤ ϑ + κ1 + ϵð Þ S∘ − S∘1 tð Þð Þ: ð9Þ

We get the following result:

Θ1 t, S∘ð Þ −Θ1 t, S⋄1ð Þ ≤ a S∘ tð Þ − S⋄
1 tð Þð Þ: ð10Þ

Consequently, forΘ1, the Lipschitz condition is achieved.
Likewise, the Lipschitz condition for Θi for i = 2,⋯, 5 also
holds.

With the help of above concept, one can write

S∘ tð Þ = S∘ 0ð Þ + 1 − v
M vð ÞΘ1 t, S∘ð Þ

+ v
M vð ÞΓ vð Þ

ðt
0

t − ζð Þv−1
h i

Θ1 t, S∘ð Þdζ:
ð11Þ

We can write the above formula as

S∘
n tð Þ = S∘ 0ð Þ + 1 − v

M vð ÞΘ1 t, S∘
n−1ð Þ

+ v
M vð ÞΓ vð Þ

ðt
0

t − ζð Þv−1
h i

Θ1 t, S∘n−1ð Þdζ:
ð12Þ

Sð0Þ = S⋄0 is an initial condition, and the terms following
in order of difference are defined as follows:

Λn = S∘n tð Þ − S∘n−1 tð Þ = 1 − v
M vð Þ Θ1 t, S∘n−1ð Þ −Θ1 t, S⋄n−2ð Þð Þ

+ v
M vð ÞΓ vð Þ

ðt
0

t − ζð Þv−1
h i

Θ1 t, S∘n−1ð Þ −Θ1 t, S ∘
n−2ð Þð Þdζ:

ð13Þ

We get

S⋄
n tð Þ = 〠

n

i=0
Λ1i tð Þ: ð14Þ

Also, we define

S⋄1−1 0ð Þ = 0: ð15Þ

As a result, we get

Λn ≤
1 − v
M vð Þβ1Λn +

β1v
M vð ÞΓ vð Þ

ðt
0
Λ1n−1 ζð Þ t − ζð Þv−1dζ,

ð16Þ

where ðβ1, β2, β3,⋯, β5Þ ∈ ð0, 1Þ5. The existence of the
solution is assured by using these results.

Theorem 4. If there exists τ0 in the considered model, then its
solution exists such that

1 − v
M vð Þβ1 +

τv0β1

M vð ÞΓ vð Þ < 1: ð17Þ

Proof. Let us suppose that the bounded functions exist in the
considered system; so, one can obtain

Λn ≤ S∘ 0ð Þ 1 − v
M vð Þβ1 +

τv0β1
M vð ÞΓ vð Þ

� �n
: ð18Þ

To express (13) as a solution of (22), we assume that

S∘ tð Þ − S∘ 0ð Þ = S∘
n tð Þ −U1n 0ð Þ: ð19Þ

We conclude

U1n ≤
1 − v
M vð Þ +

τv

M vð ÞΓ vð Þ
� �n−1

βn−1
1 , ð20Þ
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for τ = τ0.

U1n ≤
1 − v
M vð Þ +

τv0
M vð ÞΓ vð Þ

� �n−1
βn−1
1 : ð21Þ

By applying limit, we have

U1n tð Þ⟶∞: ð22Þ

By following the same process, we get

Uin
tð Þ⟶∞, ð23Þ

for i = 1, 2,⋯, 5.

Theorem 5. The considered model has a unique solution if

1 −
1 − v
M vð Þβ1 +

τvβ1

M vð ÞΓ vð Þ
� �

> 0: ð24Þ

4. Proof

We suppose that the model has another solution, that is, S

S∘ tð Þ − S⋄
1 tð Þ = 1 − v

M vð Þ Θ1 t, S⋄ −Θ1 t, S⋄
1ð Þð Þð

+ v
M vð ÞΓ vð Þ

ðt
0

t − ζð Þv−1
h i

Θ1 t, S∘ð Þð

−Θ1 t, S⋄
1ð ÞÞdζ:

ð25Þ

By the properties of norm, the following inequality is
obtained:

S∘ tð Þ − S∘
1 tð Þ 1 − 1 − v

M vð Þβ1 +
τνβ1

M vð ÞΓ vð Þ
� �

≤ 0: ð26Þ

If condition of (19) is satisfied, then

S∘ tð Þ − S⋄
1 tð Þ = 0: ð27Þ

Clearly, one can see that

S∘ tð Þ − S⋄
1 tð Þ: ð28Þ

For the other components of the model, one can follow
the same pattern.

5. Problem Formulation

With the ABC fractional derivative, we assume the initial-
value problem

ABC
0 Dv

τg τð Þ = f τ, g τð Þð Þ: ð29Þ

ABC-PIR (BC fractional product integral rule) is
given in [24]:

gj = g0 +
vhv

M vð Þ vj f τ0, g0ð Þ + 〠
n

i=1
ξj−i f τi, gið Þ

 !
, ð30Þ

where

vj =
j − 1ð Þv+1 − jv j − v − 1ð Þ

Γ v + 2ð Þ , ð31Þ

and ξk:

ξk =
1

Γ v + 2ð Þ +
1 − v
vhhv

, for k = 0,

ξk =
k − 1ð Þv+1 − 2kv+1 + k + 1ð Þv+1

Γ v + 2ð Þ :for k = 1, 2; ;⋯, j‐1:

ð32Þ

By using Eq. (21), we get

S⋄
n = S⋄

0 +
vhv

M vð Þ ajz1 t0, S⋄
0,V ⋄

0,E⋄
0,I ⋄

0,R⋄
0,ðÂ

+〠
j

i=1
ξj−iz1 ti, S⋄

i ,V ⋄
i ,E⋄

i ,I ⋄
i ,R∘

ið �:
ð33Þ

For the remaining equations, we adopt the same pattern
as we did above, and we get

V ⋄
n =V ⋄

0 +
vhv

M vð Þ ajz2 t0, S⋄
0,V ⋄

0,E⋄
0,I ⋄

0,R⋄
0,ðÂ

+〠
j

i=1
ξj−iz2 ti, S⋄i ,V ⋄

i ,E⋄
i ,I ∘

i ,R∘
ið �,

E⋄
n =E⋄

0 +
vhv

M vð Þ ajz3 t0, S⋄
0,V ⋄

0,E⋄
0,I ⋄

0,R⋄
0ðÂ
,

+〠
j

i=1
ξj−iz3 ti, S⋄

i ,V ⋄
i ,E⋄

i , I⋄i ,R⋄
ið �,

I ⋄
n =I ⋄

0 +
vhv

M vð Þ ajz4 t0, S⋄
0,V ⋄

0,E⋄
0,I ⋄

0,R⋄
0ðÂ
,

+〠
j

i=1
ξj−iz4 ti, S⋄i ,V ⋄

i ,E⋄
i ,I ∘

i ,R⋄
ið �,

R⋄
n =R⋄

0 +
vhv

M vð Þ ajz5 t0, S⋄0,V ⋄
0,E⋄

0,I ⋄
0,R⋄

0,ðÂ

+〠
j

i=1
ξj−iz5 ti, S⋄

i ,V ⋄
i ,E⋄

i ,I ⋄
i ,R⋄

ið �:

ð34Þ
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6. Numerical Simulation

This study’s primary goal was to evaluate how vaccination
strategies affected the dynamics of disease transmission.
Graphs are depicting the parametric variation with regard
to various variables that are offered here to support the ana-
lytical conclusions. Since the majority of the parameters are
not immediately available, it is deemed appropriate to esti-
mate solely for the purpose of illustrative purposes to show
how the model would react in various real-world scenarios
as given in Table 2. The Euler method has been used for
numerical simulation of the problem [22].

Figure 2 depicts simulations with various vaccination
rates for neonates. As the outbreak develops later, the vacci-
nation drive begins to have an impact, reducing the 160
overall population of individuals who are susceptible; this
reduction in susceptible people will naturally result in a
reduction in the number of sick people, controlling the dis-
ease outbreak.

Figure 3 depicts simulations with various vaccination
rates for neonates. As the outbreak spreads later, the vacci-
nation drive begins to have an impact, reducing the overall
number of infected people; this reduction in sick people will
automatically result in the elimination of VZV from the
neighborhood. Although a newborn-focused vaccination
effort is ideal for a nation’s future, it does not immediately
result in the illness being eradicated. Random mass vaccina-
tion must be used to have immediate results, which necessi-
tates immunizing a sizeable portion of the population.

Figure 4 shows that when vaccination rates for suscepti-
ble adults rise, the fraction of susceptible people tends to
decline. As a result, there are fewer people who become ill,
which lowers the incidence of chickenpox.

Figure 5 shows that there is a small decline in the com-
partment of susceptible people when the double dose popu-
lation increases. This is because susceptible people are not
necessarily those who receive the second dose; instead, they
only receive second dose two when they are already vacci-
nated. This circumstance is what caused the slight decrease
in the susceptible population. In order to reduce the disease,
this method generally has a minor yet considerable effect.

Figure 6 shows that there are more recovered people as
newborn vaccination rates rise. Conversely, when newborns
are not vaccinated, there are more recovered people. This
may be because the sick people have natural immunity,
and a corresponding decline may be caused by immunity
loss that actually wane with time. It can be seen in
Figure 6 that there is a noticeable rise in the number of
recovered people when almost a half of neonates receive vac-
cinations. However, with the passage of time, one can
observe a fall in the compartment of recovered persons.
The results are consistent with our hypothesis that the effec-
tiveness of the first dosage of vaccine waned over the period
of time, necessitating the need for the second vaccine to
enhance vaccination rates. When vaccination covers the
population 100 percent, the slope of the graph increases,
and then nearly remains constant after reaching the maxi-
mum point, indicating that the 190 infection can be
completely eradicated from the community.

From Figure 1, it is evident that suspected population
increases with decrease in the fractional order and two-
scale dimension. And it is the lowest when the problem
reaches the order 1. The case is opposite for vaccinated pop-
ulation and exposed population, that is, compartments V
and E reach its maximum value for the lowest two-scale
dimension and fractional order as shown in Figures 2 and
3. Recovered population increases exponentially for the low-
est value of fractal dimension.

7. Results and Discussion

In this work, a noninteger order model of SIVER models
with two viruses is formulated through ABC operator. The
existence theory is provided with the help of fixed-point the-
orem. We used an iterative strategy to find a unique solution
to the hypothesized fractional SIRS model with two viruses.
Numerical findings are produced for various values of the
fractional parameters. As a result, the government must take
steps to educate people in rural regions, provide vaccina-
tions, and provide proper treatment in hospitals and other
health care facilities. Because we applied the concept of
two-scale with Atangana-Baleanu fractional derivatives, the
current study will be more useful than prior studies. Our
findings predicted that the outcomes of fractional derivative
are more precious than the ordinary system.

7.1. Effect of κ1. When the entire adult population received
the first dosage of the vaccine, the number of susceptible
and infectious people quickly decreased (in the case of
κ1 = 1). This indicates that the first dose of vaccination had
a major impact. Figure 4 demonstrates that as the proportion
of adults who are susceptible to the disease is increased by
vaccination, the proportion of susceptible adults tends to
decrease. As a result, there are fewer sick people and, conse-
quently, fewer cases of chicken pox. As the effects of the ini-
tial dose started to wear off, this reduction in the proportion
of susceptible and infectious shifted. The entire population
contracted the disease, which caused it to reappear. If this
tendency is not reversed soon, it could cause future outbreaks
of the illness, which could eventually become endemic. This
calls for the second dosage of the vaccine to be administered.

Table 2: Parameters’ values.

Parameters Value

κ1 0:7
κ2 0:8
ς 0:5
ρ 0:45
α 0:36
δ2 0:7
χ2 0:6
χ1 0:3
ϵ 0:2
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Figure 3: Vaccinated population.
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Figure 4: Exposed population.
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7.2. Effect of κ2. Figure 3 shows that there is a slight but sig-
nificant decrease in the fraction of sensitive individuals as
dosage two coverage among humans increases. This is
because the individuals that received the second dose are
not directly connected to susceptible persons. Humans
who are susceptible will only take dosage two if they have
already gotten dose one; otherwise, they will not. Due to
the possibility that these individuals may be newborns or
recruits, who would not or would have a minimal impact
on the population of susceptible, this circumstance led to a
minor fall in the insusceptible population even though more
people received dosage two of the vaccination. Therefore,
this practice generally has a minor but considerable effect
in lowering the sickness.

7.3. Recovery Rate. Figure 6 demonstrates how the quantity
of recovered people rises as infant immunization coverage
does. Additionally, it may be observed that when neonates
are not immunized, the proportion of the population that
recovers gradually decreases, possibly as a result of the sick
people’s innate immunity. Immunity loss, which worsens
over time, may be the cause of this decline in the recovery
percentage. The grey line in Figure 6‘s graph shows that
when 50 percent of newborns receive immunizations, there
is a discernible increase in the number of recovered humans.

Numerous studies have used the ABC fractional opera-
tor to depict different sickness models, and the results sup-
port the validity of the concept. We investigated VZV

using the same methodology in order to come up with a
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Figure 5: Infected population.
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Figure 6: Recovered population.
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workable solution. The graphical findings were obtained
using MATLAB 2020. We draw the conclusion from these
graphical results that one can achieve more accurate results
and gain a better understanding of both an enzyme reaction
equation system and real-world problems in science and
engineering by using this new notion of the two-sale and
ABC fractional operator.

8. Concluding Remarks

We used a new fractional ABC derivative in arithmetic to
solve the problemunder consideration. To incorporate the
scale effect in the model under consideration, the concept
of two-scale fractal dimension has been taken into consider-
ation. The results of fractional order are demonstrated by
numerical simulation. The outcomes demonstrate the effec-
tiveness of the fractional derivative operator, integral opera-
tors, and two-scale transform in ABC approach. So, we can
conclude that the strategy under consideration is effective.
The nature of a large class of nonlinear fractional-order
mathematical models in engineering and research can be
studied using this method.

9. Future Recommendation

In the current research era, fractal theory and fractional cal-
culus have become particularly popular topics. A new step
forward in understanding natural fractals and hierarchical
structures is the two-scale fractal theory. The idea that all
physical laws are scale-dependent and that each law is only
true on the specified scale above which there are stochastic
features is projected by the two-scale dimension. To address
a specific issue, two observational scales can be chosen.
Three scales may be proposed in the future for computations
that are more accurate.

To solve the mathematical model of varicella-zoster
virus, two-scale dimension has been used. In future, fractal
derivative, distance, velocity, and two-scale transform can
be applied. To strengthen the mathematical underpinnings
of two-scale fractal theory, additional mathematical defini-
tions may be added in the future.
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Analysis of thin film flows is an important topic in fluid dynamics due to the large number of industrial applications such as food
processing, chip manufacturing, irrigation, oil refining process, painting finishing, etc. Analysis involves studying the effects of
various parameters in absolute conditions. These parameters may be film thickness, volumetric flux, liquid velocity profile,
viscosity, shear stress, gravity, density, and different boundary formations. We have expanded the formulations of non-
Newtonian third grade fluid for lifting and draining in fractional space. Fractional calculus along with Homotopy Perturbation
Method is used for the solution and analysis purposes. The suitability and consistency of the solutions is determined by
detecting residuals in each case. Velocity profile, average velocity, and volume flow for lifting and drainage cases are calculated.
To the best of authors knowledge, thin film flow of fractional third grade fluid is not attempted before in lifting and drainage.
Investigation shows increase in value of fractional parameter that decreases the velocity profile in lifting while increases the
velocity in drainage scenario. Also, the frictional parameter and the gravitational parameter have opposite, while material
constant has direct relationship with the velocity profile in lifting case. All the parameters showed inverse effect on the velocity
in drainage case.

1. Introduction

Thin film flows can be seen in many natural situations such
as raindrops on the window, water-filled eyes, and lava. Free
drainage refers to a phenomenon in which a fluid flows
along a vertical object in such a way that adheres to the form
of objects and viscous forces [1]. Paint finishing, oil refining
processes, chip production, construction and public works,
and laser cutting are industrial applications of these flows
[2–4]. The first work on thin films was performed based
on Newtonian fluids in [3]. Although this procedure works
for a long time, it was not sufficient for the nonlinear analy-
sis of non-Newton liquid such as melted plastics gels, lubri-

cants containing polymeric additives, blood, and foods such
as ketchup and honey [5, 6]. Siddiqui et al. address the
drainage problems in relation with Phan-Thein-Tanner
(PTT) and third grade fluids which flows along an inclined
plane in [7, 8]. Siddiqui et al. also analyzed thin film scenario
using fourth-grade fluids on vertical cylinders in [9]. Alam
et al. [10] investigated thin film of pseudoplastic fluid. Dei-
ber and Cruz analyzed non-Newtonian fluid flow through
a circular tube [11]. In terms of flow types, Yih [12] per-
formed the first studies regarding laminar flows in free sur-
face. Landau [13] and Stuart [14] have extended the
analysis to the turbulent flows. Nakaya [15] and Lin [16]
performed stability analysis taking into account surface
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tension. Zangooee et al. [17] performed hydrothermal anal-
ysis of hybrid nanofluid on a vertical plate with slip effects.
Gulzar et al. analyzed magneto-hyperbolic-tangent liquid
for different features in [18]. Fallah et al. analyzed nanofluid
in a vertical channel taking polynomial boundary [19].
Nayak et al. [20] numerical examine the mixed convection
nanofluid over an isothermal thin needle metallic nanomate-
rial. Ebrahem et al. investigated the significance of Lorentz
forces on radiative nanofluid under multiple constraints
[21]. Zaher et al. solved boundary layer flow of a non-
Newtonian fluid with planktonic microorganism in [22].
Sara et al. analyzed thin blood stream through electroos-
motic forces in hybrid nanofluid [23].

In the past few decades, various numerical and
homotopy-based techniques have been proposed by many
researchers for BVPs [16, 24, 25]. In 1992, Liao proposed
homotopy analysis method for BVPs [26, 27]. After that,
professor He proposed a combination of homotopy with
perturbation for solution of BVPs in [28–30] and has been
used successfully to solve many linear and nonlinear
[31–33]. Yıldırım [34], Golbabai et al. [35], and Ghasemi
et al. [36] solved integro-differential and integral equations
through HPM. FDEs have been modelled and studied in sig-
nal processing, physics, and biology due to their ability to
capture more complex nonlinear phenomena [37–39]. Spa-
sic and Lazarevic discussed the electro viscoelasticity of
fractional-order model in [40]. In this continuation, in cur-
rent paper, we extend the study of thin film flow of fractional
third grade fluid in lifting and drainage cases. We formulate
the phenomena in the form of fractional differential equa-
tions and compute series solutions using homotopy pertur-
bation method (HPM). In the rest of the manuscript,
Section 2 is presenting governing equations. Formulation
and solution in lifting case are given in Sections 3 and 4. Sec-
tions 5 and 6 contain formulation and solution related to
drainage case. Results and discussion is in Section 7, while
conclusion is given in Section 8.

2. Governing Equations

The fundamental equations are as follows [7, 8]:

div V = 0, ð1Þ

ρ
∂V
∂t

+ V:∇ð ÞV
� �

= ∇:T + ρb, ð2Þ

whereT,V and ρ are Cauchy stress tensor, velocity and den-
sity, respectively. Where

T = −pI + S, ð3Þ

where I is the unit tensor, p is the pressure, and S the extra
stress tensor.

S = a + b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
tr A1ð Þ2

r�����
�����
n−1" #

A1, ð4Þ

where a, b, and n are constants.

S + λ1
DS
Dt

+
λ3
2

SA1 +A1Sð Þ + λ5
2

trSð ÞA1

= μ A1 + λ2
DA1
Dt

+ λ4A1
2

� �
,A1 = L + LT,

L = grad V,
ð5Þ

where μ, λ1, λ2, λ3, λ4 and λ5 are material constant, and A1
is the Rivlin-Ericksen tensor.

3. Formulation of the Problem in Lifting Case
[7, 8]

Substituting Equations (3) and (4) in Equation (2), we get

−
dp1
dx

= 0,

−
dp1
dy

+ ρg + a
d2v
dx2

+ b
d
dx

dv
dx

� �n
= 0:

ð6Þ

From above we deduce that p1 = p1ðyÞ,

a
d2v
dx2

+ nb
dv
dx

� �n−1 d2v
dx2

+ ρg =
dp1
dx

: ð7Þ

Equation (9) becomes

a
d2v
dx2

+ nb
dv
dx

� �n−1 d2v
dx2

− ρg = 0, ð8Þ

with v =U0at x = 0 and Sxy = 0 at x = δ, ð9Þ

where

Sxy = a
dv
dx

+ b
dv
dx

� �n
: ð10Þ

Using Equation (10) in Equation (9), we get

dv
dx

= 0 at x = δ, ð11Þ

d2v
dx2

+
nb
a

dv
dx

� �n−1 d2v
dx2

−
ρg
a

= 0: ð12Þ

Substituting n = 3, b = 2ðβ2 + β3Þ and a = μ in Equation
(12), we have

d2v
dx2

+
6 β2 + β3ð Þ

μ

dv
dx

� �2 d2v
dx2

−
ρg
μ

= 0, ð13Þ
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v =U0at x = 0,
dv
dx

= 0 at x = δ:

9=
; ð14Þ

v∗ = v/U0, x∗ = x/δ, β∗ = 6ðβ2 + β3ÞU0
2/μ, gp∗ = ρg/μU0

are dimensionless parameters.
The dimensionless form without ‘∗’ of Equation (13)

subject to Equation (14) is

d2v
dx2

+ β
dv
dx

� �2 d2v
dx2

− gp = 0, ð15Þ

with
dv
dx

= 0 at x = 1 and v = 1 at x = 0, ð16Þ

Using definitions of fractional calculus, Equation (16)
can be written as fractionally

d2v xð Þ
dx2

+ β Dαv xð Þð Þ2 d
2v xð Þ
dx2

− gp = 0, ð17Þ

with v′ 1ð Þ = 0, v 0ð Þ = 1, 0 < α < 1: ð18Þ

4. Homotopy Solution of Third Grade Fluid in
Lifting Case

For Equation (17), the homotopy Ω × ½0, 1�⟶ R is defined
as follows [24]:

1 − pð Þ d
2v xð Þ
dx2

+ p
d2v xð Þ
dx2

+ β Dαv xð Þð Þ2 d
2v xð Þ
dx2

− gp

" #
= 0:

ð19Þ

Using Equations (18) and (19) different order problems
are given as follows:

0th order

v0 ′′ xð Þ = 1, v0′ 1ð Þ = 0, v0 0ð Þ = 1: ð20Þ

1st order

−gp + β Dαv0 xð Þð Þ2v0 ′′ xð Þ + v1 ′′ xð Þ = 0, v1 ′ 1ð Þ = 0, v1 0ð Þ = 0

ð21Þ

2nd order

2β Dαv0 xð Þð Þ Dαv1 xð Þð Þv0 ′′ xð Þ + β Dαv0 xð Þð Þ2v1 ′′ xð Þ
+ v2 ′′ xð Þ = 0, v2 ′ 1ð Þ = 0, v2 0ð Þ = 0

ð22Þ

3rd order

β Dαv1 xð Þð Þ2v0 ′′ xð Þ + 2β Dαv0 xð Þð Þ Dαv2 xð Þð Þv0 ′′ xð Þ
+ 2β Dαv0 xð Þð Þ Dαv1 xð Þð Þv1 ′′ xð Þ
+ β Dαv0 xð Þð Þ2v2 ′′ xð Þ + v3 ′′ xð Þ
= 0, v3 0ð Þ = 0, v3 ′ 1ð Þ = 0

ð23Þ

4th order

2β Dαv1 xð Þð Þ Dαv2 xð Þð Þv0 ′′ xð Þ + 2β Dαv0 xð Þð Þ Dαv3 xð Þð Þv0 ′′ xð Þ
+ β Dαv1 xð Þð Þ2v1 ′′ xð Þ
+ 2β Dαv0 xð Þð Þ Dαv2 xð Þð Þv1 ′′ xð Þ
+ 2β Dαv0 xð Þð Þ Dαv1 xð Þð Þv2 ′′ xð Þ
+ β Dαv0 xð Þð Þ2v3 ′′ xð Þ
+ v4 ′′ xð Þ = 0, v 0ð Þ = 0, v4 ′ 1ð Þ = 0

ð24Þ

Using Caputo definition while α = 0:8, β = 1 and gp = 0:8
fixed, the approximate solution is

V xð Þ = 1 +
1
2

−1:6x + 0:8x2
� 	

+
1
x1:6

0:01787764010524059 7:612661760000037x2:6
�

− 10:110566399999996x4 + 6:938624000000001x5

− 1:5769600000000001x6

The residual isR =
d2V xð Þ
dx2

+ β DαV xð Þð Þ2 d
2V xð Þ
dx2

− gp

ð25Þ

4.1. Flow Rate and Average Velocity in Lifting Case [7]. The
average velocity is

Q =
ð1
0
V xð Þdx,

Q =
−3 + 2αð Þ −3gp

3 −3 + αð Þ2 −16 + α 25 + α −13 + 2αð Þð Þð Þβ/−7 + 2α − 2 −3 + gp

 �

−5 + 2αð ÞΓ 4 − α½ �2

 �

6 15 − 16α + 4α2ð ÞΓ 4 − α½ �2 :

�V =Q:

ð26Þ
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5. Mathematical Formulation in Drainage Case
[7, 8]

Considering the fluid falling on the stationary infinite sta-
tionary belt, the flow is in the downward direction due to

gravity, so Equation (15) becomes

d2v
dx2

+ β
dv
dx

� �2 d2v
dx2

+ gp = 0, ð27Þ

Table 1: Results for α in lifting case where β = 0:5 andgp = 0:001 are fixed.

x
α = 0:2 α = 0:6 α = 0:99

V xð Þ Error V xð Þ Error V xð Þ Error

0.1 9.9998e−1 -4.54216e−18 9.9991e−1 -1.54976e−17 9.9981e−1 -2.1073e−16
0.2 9.9981e−1 -1.23994e−17 9.9984e−1 -3.1282e−17 9.9985e−1 -1.53593e−16
0.3 9.9974e−1 -2.16777e−17 9.9982e−1 -4.36903e−17 9.9973e−1 -1.01302e−16
0.4 9.9962e−1 -3.07258e−17 9.9972e−1 -5.10537e−17 9.9965e−1 -6.13372e−17
0.5 9.9963e−1 -3.81183e−17 9.9975e−1 -5.31326e−17 9.9959e−1 -3.37629e−17
0.6 9.9958e−1 -4.2865e−17 9.9968e−1 -5.06284e−17 9.9956e−1 -1.65235e−17
0.7 9.9954e−1 -4.45033e−17 9.9964e−1 -4.47699e−17 9.9955e−1 -6.95404e−18
0.8 9.9952e−1 -4.30865e−17 9.9952e−1 -3.69744e−17 9.9954e−1 -2.42827e−18
0.9 9.9998e−1 -4.54216e−18 9.9991e−1 -1.54976e−17 9.9981e−1 -2.1073e−16
1. 9.9981e−1 -1.23994e−17 9.9984e−1 -3.1282e−17 9.9985e−1 -1.53593e−16

Table 2: Results for gp in lifting case where α = 0:95 andβ = 0:1 are fixed.

x
gp = 0:001 gp = 0:01 gp = 0:1

V xð Þ Error V xð Þ Error V xð Þ Error

0.1 9.9988e−1 -8.42917e−18 9.9985e−1 -8.42917e−13 9.9989e−1 -8.42614e−8
0.2 9.9985e−1 -6.14371e−18 9.9982e−1 -6.14371e−13 9.9986e−1 -6.14184e−8
0.3 9.9982e−1 -4.05208e−18 9.9978e−1 -4.05208e−13 9.9984e−1 -4.05108e−8
0.4 9.9972e−1 -2.45348e−18 9.9975e−1 -2.45348e−13 9.9975e−1 -2.453e−8
0.5 9.9971e−1 -1.35051e−18 9.9973e−1 -1.35051e−13 9.9972e−1 -1.35031e−8
0.6 9.9968e−1 -6.60931e−19 9.9969e−1 -6.60941e−14 9.9968e−1 -6.60868e−9
0.7 9.9964e−1 -2.78159e−19 9.9965e−1 -2.78161e−14 9.9964e−1 -2.78139e−9
0.8 9.9962e−1 -9.71282e−20 9.9964e−1 -9.7131e−15 9.9952e−1 -9.71257e−10
0.9 9.9952e−1 -2.8262e−20 9.9955e−1 -2.82618e−15 9.9951e−1 -2.82607e−10
1. 9.9951e−1 -6.02955e−20 9.992e−1 -6.03165e−16 9.995e−1 -6.03129e−11

Table 3: Results for β in lifting case where α = 0:99 and gp = 0:001 are fixed.

x
β = 0:1 β = 0:5 β = 0:9

V xð Þ Error V xð Þ Error V xð Þ Error

0.1 9.9998e−1 -1.03899e−17 9.9984e−1 -2.59749e−16 9.9979e−1 -8.41587e−16
0.2 9.9991e−1 -6.69572e−18 9.9981e−1 -1.67394e−16 9.9975e−1 -5.42356e−16
0.3 9.9984e−1 -4.02215e−18 9.9974e−1 -1.00554e−16 9.9974e−1 -3.25794e−16
0.4 9.9978e−1 -2.22459e−18 9.9972e−1 -5.56148e−17 9.9962e−1 -1.80192e−16
0.5 9.9973e−1 -1.10445e−18 9.9963e−1 -2.76114e−17 9.9963e−1 -8.9461e−17
0.6 9.9968e−1 -4.71565e−19 9.9961e−1 -1.17891e−17 9.9956e−1 -3.81967e−17
0.7 9.9964e−1 -1.60686e−19 9.9954e−1 -4.01724e−18 9.9954e−1 -1.30159e−17
0.8 9.9962e−1 -3.81773e−20 9.9952e−1 -9.54481e−19 9.9952e−1 -3.09255e−18
0.9 9.9951e−1 -5.30469e−21 9.9951e−1 -1.326e−19 9.995e−1 -4.29646e−19
1. 9.994e−1 -2.27581e−22 9.995e−1 -5.66682e−21 9.994e−1 -1.83058e−20
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with
v = 0 at x = 0,
dv
dx

= 0 at x = 1:

9=
; ð28Þ

Using definitions of fractional calculus, Equation (27)

can be written fractionally as follows:

d2v xð Þ
dx2

+ β Dαv xð Þð Þ2 d
2v xð Þ
dx2

+ gp = 0, ð29Þ

with v 0ð Þ = 0, v′ 1ð Þ = 0, 0 < α < 1: ð30Þ

Table 4: Results for α in drainage case keeping β = 0:1 andgp = 0:001 are fixed.

x
α = 0:2 α = 0:6 α = 0:99

V xð Þ Error V xð Þ Error V xð Þ Error

0.1 9.41e−5 1.81686e−19 9.52e−5 2.04663e−18 9.62e−5 1.03899e−17
0.2 1.71e−4 4.95977e−19 1.73e−4 2.82993e−18 1.81e−4 6.69572e−18
0.3 2.62e−4 8.67109e−19 2.65e−4 2.98548e−18 2.64e−4 4.02215e−18
0.4 3.42e−4 1.22903e−18 3.43e−4 2.74607e−18 3.53e−4 2.22459e−18
0.5 3.65e−4 1.52473e−18 3.62e−4 2.29456e−18 3.65e−4 1.10445e−18
0.6 4.12e−4 1.7146e−18 4.11e−4 1.76941e−18 4.52e−4 4.71565e−19
0.7 4.52e−4 1.78013e−18 4.54e−4 1.26636e−18 4.61e−4 1.60686e−19
0.8 4.91e−4 1.72346e−18 4.93e−4 8.42172e−19 4.89e−4 3.81773e−20
0.9 4.95e−4 1.56378e−18 4.91e−4 5.20346e−19 4.95e−44 5.30469e−21
1. 5.11e−4 1.33187e−18 5.21e−4 2.98346e−19 5.01e−4 2.27581e−22

Table 5: Results forgp in drainage case where α = 0:99 and β = 0:1 are fixed.

x
gp = 0:1 gp = 0:01 gp = 0:001

V xð Þ Error V xð Þ Error V xð Þ Error

0.1 9.41e−5 1.81686e−19 9.52e−5 2.04663e−18 9.62e−5 1.03899e−17
0.2 1.71e−4 4.95977e−19 1.73e−4 2.82993e−18 1.81e−4 6.69572e−18
0.3 2.62e−4 8.67109e−19 2.65e−4 2.98548e−18 2.64e−4 4.02215e−18
0.4 3.42e−4 1.22903e−18 3.43e−4 2.74607e−18 3.53e−4 2.22459e−18
0.5 3.65e−4 1.52473e−18 3.62e−4 2.29456e−18 3.65e−4 1.10445e−18
0.6 4.12e−4 1.7146e−18 4.11e−4 1.76941e−18 4.52e−4 4.71565e−19
0.7 4.52e−4 1.78013e−18 4.54e−4 1.26636e−18 4.61e−4 1.60686e−19
0.8 4.91e−4 1.72346e−18 4.93e−4 8.42172e−19 4.89e−4 3.81773e−20
0.9 4.95e−4 1.56378e−18 4.91e−4 5.20346e−19 4.95e−44 5.30469e−21
1. 5.11e−4 1.33187e−18 5.21e−4 2.98346e−19 5.01e−4 2.27581e−22

Table 6: Results for β in drainage case where α = 0:95 andgp = 0:001 are fixed.

x
β = 0:1 β = 0:3 β = 0:7

V xð Þ Error V xð Þ Error V xð Þ Error

0.1 9.41e−5 1.81686e−19 9.52e−5 2.04663e−18 9.62e−5 1.03899e−17
0.2 1.71e−4 4.95977e−19 1.73e−4 2.82993e−18 1.81e−4 6.69572e−18
0.3 2.62e−4 8.67109e−19 2.65e−4 2.98548e−18 2.64e−4 4.02215e−18
0.4 3.42e−4 1.22903e−18 3.43e−4 2.74607e−18 3.53e−4 2.22459e−18
0.5 3.65e−4 1.52473e−18 3.62e−4 2.29456e−18 3.65e−4 1.10445e−18
0.6 4.12e−4 1.7146e−18 4.11e−4 1.76941e−18 4.52e−4 4.71565e−19
0.7 4.52e−4 1.78013e−18 4.54e−4 1.26636e−18 4.61e−4 1.60686e−19
0.8 4.91e−4 1.72346e−18 4.93e−4 8.42172e−19 4.89e−4 3.81773e−20
0.9 4.95e−4 1.56378e−18 4.91e−4 5.20346e−19 4.95e−4 5.30469e−21
1. 5.11e−4 1.33187e−18 5.21e−4 2.98346e−19 5.01e−4 2.27581e−22
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6. Homotopy Solution of Third Grade Fluid in
Drainage Case

For Equation (29), the homotopy Ω × ½0, 1�⟶ R is defined
as follows [24]:

1 − pð Þ d
2v xð Þ
dx2

+ p
d2v xð Þ
dx2

+ β Dαv xð Þð Þ2 d
2v xð Þ
dx2

+ gp

" #
= 0:

ð31Þ

Using Equations (30) and (31) different order problems
are given as follows:

0th order

v0 ′′ xð Þ = 0, v0′ 1ð Þ = 0, v0 0ð Þ = 0: ð32Þ

1st order

gp + β Dαv0 xð Þð Þ2v0 ′′ xð Þ + v1 ′′ xð Þ = 0, v1 ′ 1ð Þ = 0, v1 0ð Þ = 0:

ð33Þ

2nd order

2β Dαv0 xð Þð Þ Dαv1 xð Þð Þv0 ′′ xð Þ + β Dαv0 xð Þð Þ2v1 ′′ xð Þ
+ v2 ′′ xð Þ = 0, v2 0ð Þ = 0, v2 ′ 1ð Þ = 0:

ð34Þ
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Figure 1: In lifting case effect of α on VðxÞ where gp = 0:8 andβ
= 1 are fixed.
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Figure 2: In lifting case effect of gp on VðxÞ where α = 0:95 and
β = 1 are fixed.
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Figure 3: In lifting case effect of β on VðxÞ where α = 0:95 and
gp = 1:5 are fixed.
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Figure 4: In lifting case effect of increasing β and gp on VðxÞ
where α = 0:8 is fixed.
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3rd order

β Dαv1 xð Þð Þ2v0 ′′ xð Þ + 2β Dαv0 xð Þð Þ Dαv2 xð Þð Þv0 ′′ xð Þ
+ 2β Dαv0 xð Þð Þ Dαv1 xð Þð Þv1 ′′ xð Þ
+ β Dαv0 xð Þð Þ2v2 ′′ xð Þ + v3 ′′ xð Þ
= 0, v3 0ð Þ = 0, v3 ′ 1ð Þ = 0:

ð35Þ

4th order

2β Dαv1 xð Þð Þ Dαv2 xð Þð Þv0 ′′ xð Þ + 2β Dαv0 xð Þð Þ Dαv3 xð Þð Þv0 ′′ xð Þ
+ β Dαv1 xð Þð Þ2v1 ′′ xð Þ
+ 2β Dαv0 xð Þð Þ Dαv2 xð Þð Þv1 ′′ xð Þ
+ 2β Dαv0 xð Þð Þ Dαv1 xð Þð Þv2 ′′ xð Þ
+ β Dαv0 xð Þð Þ2v3 ′′ xð Þ
+ v4 ′′ xð Þ = 0, v 0ð Þ = 0, v4 ′ 1ð Þ = 0:

ð36Þ
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Figure 5: In drainage case effect of α on VðxÞ where gp = 1 andβ
= 1 are fixed.
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Figure 6: In drainage case effect of gp on VðxÞ keeping α = 0:95
andβ = 1 are fixed.
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Figure 7: In drainage case effect of β on VðxÞ where gp = 1 and α
= 0:95 are fixed.
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Figure 8: In drainage case effect of increasing β and gp on VðxÞ
where α = 0:95 is fixed.

7Advances in Mathematical Physics



By using definition where α = 0:8, β = 1 and gp = 0:8 are
fixed, we get the following approximate solution:

6.1. Average Velocity and Flow Rate in Drainage Case. The
average velocity is

7. Result and Discussion

In this article, series solution of fractional thin film of third
grade fluid is obtained in case of lifting and drainage. For
the validity check, modelled problems are solved for differ-
ent values of involved parameters, and the results are pre-
sented in Tables 1–6. Tables 1 and 4 are showing solutions
and residual errors for different values of fractional parame-
ter α. Tables 2 and 5 present solution and errors against dif-
ferent numerical values of gravitational parametergp.
Similarly, Tables 3 and 6 show the solutions along with
errors for different values of non-Newtonian parameter β.
Analysis of these tables clearly indicates that obtained solu-
tions are valid and consistent. Graphical analysis of the
involved parameters is provided in Figures 1–8. Figures 1–
4 capture the effect of involved parameter on the velocity
in lifting case. Figures 1, 2, and 3 show the effects of frac-
tional, gravitational, and material parameter on the velocity
profile. It is observed that α and gp have inverse, while β

has direct relationship with the fluid velocity in lifting case.
The effect of simultaneous increase in β and gp on the veloc-
ity is shown in Figure 4. It has been observed that gp effect is
more dominant as compared to β in case of lifting. Effects of
above mentioned parameters in drainage case are shown in
Figures 5–8. Figures 5, 6, and 7 fractional, gravitational,
and material parameter on the velocity profile. It is observed
that α and gp have direct while β has inverse relationship
with the fluid velocity in drainage case. The effect of simul-
taneous increase in β and gp on the velocity is shown in
Figure 8. It has been observed that the effect of gp is more
dominant as compared to β in drainage as well.

8. Conclusions

In this article, homotopy based solutions of fractional thin
film of third grade fluid are obtained. The validity and con-
vergence of the obtained solutions are confirmed by finding
residual errors in each case. The effects of different parame-
ters (fluid and fractional) are also explored on the fluid
velocity in fractional environment. Analysis reveals that
fractional parameter showed inverse behavior on the fluid
velocity in lifting and drainage cases. Moreover, gravitational
parameter is prevailing parameter as compared to other fluid
parameters in this study.

Nomenclature

T: Cauchy stress tensor
V: Velocity vector
ρ: Density
S: Extra stress tensor
A1,: Rivlin-Ericksen tensor
β: Non-Newtonian Parameter
g: Gravitational force
μ: Material constant
λi: Material constants
gp: gravitational parameter
βi: Material constants
α: Fractional parameter.

Data Availability

All the data is available with in the manuscript.

V xð Þ = 1/2 0:002 x − 0:001 x2
� 	

+
0:0269608 −1:08662 × 10−9 x2:8 + 1:55232 × 10−9 x4 − 1:0584 × 10−9x5 + 2:52 × 10−10x6

� 	� 	
x1:8

:

The residual isR =
d2V xð Þ
dx2

+ β DαV xð Þð Þ2 d
2V xð Þ
dx2

+ gp: ð37Þ

Q =
ð1
0
V xð Þdx,

Q =
gp −3 + 2αð Þ 3gp

2 −3 + αð Þ2 −16 + α 25 + α −13 + 2αð Þð Þð Þβ + 70 + 8 −6 + αð Þαð ÞΓ 4 − α½ �2

 �

2 −21 + 6αð Þ 15 − 16α + 4α2ð ÞΓ 4 − α½ �2 :�V =Q:

ð38Þ
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We analyze the spatial evolutionary path and spatial evolutionary features of Renminbi (RMB) internationalization from three
aspects: transaction intermediary, invoicing unit, and value storage. The main results show that: Firstly, the internationalization
of RMB exhibits a certain path expansion pattern, such as initially expands to East Asian countries and regions, then gradually
moves to Southeast Asia, Europe, South America, and Australia, and participating countries in the Belt and Road initiative.
Secondly, the RMB settlement of cross-border trade presents the “coast-border-inland” spatial characteristics. Thirdly, bilateral
currency swap shows “rapid growth” and “unbalanced growth.” Finally, the spatial structure of RMB internationalization has
the significant features such as “from points to the area and from lines to the area.”

1. Introduction

The process of a currency growing from national to interna-
tional is a process that continuously expands its currency
functions performed in the international context. An inter-
national currency can simultaneously play the role of trans-
action intermediary, invoicing unit, and value storage [1].
The internationalization processes of the world’s major
international currencies (sterling, dollar, euro, etc.) all dis-
play geospatial evolutionary features (Lin Lefen, Wang Shao-
nan, [2]). Because of the influences of economics, politics,
and other factors under different historical backgrounds,
the world’s major international currencies appear different
spatial evolutionary structural characteristics.

From the spatial evolutionary characteristics and deter-
minants of Sterling, Dollars, and Euro, currency interna-
tionalization is inseparable from a strong economic and
political foundation. However, the internationalization
path of each currency is different under a specific histori-
cal background. Therefore, they provide different insights
and experiences for advancing the process of RMB
internationalization.

After 44 years of deepening market-oriented reforms,
China’s economy has grown rapidly and has made remark-
able achievements in terms of economic volume and trade
volume. China is starting to play a significant role on the
international historical stage both in economics and politics.
Correspondingly, the RMB is also gradually advancing the
internationalization process through cross-border trade set-
tlement, the establishment of bilateral domestic currency
trade agreements, and the layout of offshore RMB financial
centers. By 2018, cross-border RMB receipt and payment
business have been launched in 242 countries and regions,
bilateral local currency swap agreements have been signed
in 39 countries and regions, and RMB settlement arrange-
ments have been established in 24 countries and regions.
In 2021, the aggregate amount of China’s cross-border
RMB receipt and payment has reached RMB36,600 billion.
This paper focuses on the spatial expansion paths and struc-
tural characteristics of RMB in the internationalization pro-
cess, which would be different from the world’s major
international currencies discussed above. The analysis is
demonstrated from the three major functions of a currency:
transaction intermediary, invoicing unit, and value storage.
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The rest of the paper is organized as follows. The second sec-
tion is the main body of this paper.We analyze the spatial evo-
lutionary path of RMB internationalization. The process of
RMB internationalization is studied with the following five
aspects; settlement in cross-border trades, bilateral currency
swap agreements, as an international reserve currency, off-
shore financial centers, and Belt and Road iniative (Wu Shuyu,
Li Daokui, [3]). Section 3 analyzes the structural characteris-
tics of the spatial evolution of RMB internationalization and
the main factors to determine the evolutionary pattern. The
fourth section concludes there were 40 countries and regions
in which the central banks or monetary authorities have
signed bilateral currency swap agreements with the People’s
Bank of China by the end of June 2022, and 25 countries
and regions have established RMB clearing mechanisms with
China by the end of 2020 [4](source: http://www.pbc.gov.cn).

The internationalization of the RMB is a process in
which the spatial scope of the monetary function continues
to expand. It is essentially a spatiotemporal phenomenon;
that is, based on the comprehensive strength of the country,
and driven by national policies, the spatial scope of RMB
performing its international monetary function is expanding
with the migration of time.

The Chinese Yuan is the only currency of a developing
country that entered into the Special Drawing Rights (SDR)
basket of the International Monetary Fund (IMF). The process
of RMB internationalization has been deeply developed in var-
ious forms such as cross-border business, currency swaps, and
offshore business since RMB is official to be used in cross-
border trade settlement in July 2009. Some breakthroughs
have been achieved in major areas such as that the ranking
of RMB used as international payments has continuously
increased, RMB has joined the special drawing rights (SDR)
in 2016, and different spatial divisions have been formed.
The process of RMB internationalization has formed its spatial
structure and spatial characteristics. To our knowledge, there
is not much research on the geospatial evolutionary path
and evolutionary characteristics of currency internationaliza-
tion in the literature. Themain current situation of RMB inter-
nationalization is as follows [5].

In the aspect of international payments, according to
SWIFT data, the RMB is the fifth largest global payment cur-
rency in the world, accounting for 2.20% of all global cur-
rency payments in July 2022 (source: http://www.swift.com).

In the aspect of cross-border trade RMB settlement and
cross-border RMB receipts and payments, it has officially
promoted the internationalization of the RMB in China
through cross-border trade using RMB settlement since
2009. The cross-border trade RMB settlement amount was
only 3.580 billion Yuan in 2009. China’s cross-border trade
RMB settlement amount reached 7.94 trillion Yuan in
2021, which is about 2218 times compared that of 2009.
The RMB has been China’s second largest international pay-
ment currency for eight consecutive years, and the cross-
border RMB payment in 2020 reached 45.27 trillion Yuan
by CIPS (Cross-border Interbank Payment System). There
were 75.07% of the RMB offshore market receipts and pay-
ments occurred in Hong Kong in June 2020 (source: http://
www.pbc.gov.cn).

In the aspect of reserve currency, the RMB entered the cur-
rency basket of the International Monetary Fund as a separate
currency and became one of the world’s eight official foreign
exchange reserve currencies in the fourth quarter of 2016 with
a share of 10.92%. The absolute value of the RMB as a foreign
exchange reserve currency was US$90.288 billion, accounting
for 1.07% of the world’s eight major currencies, ranking sev-
enth among the world’s eight major foreign exchange reserves,
only higher than the Swiss franc in the fourth quarter of 2016.
There were at least 70 central banks or monetary authorities
around the world which take RMB as their foreign exchange
reserves, making the RMB the fifth largest reserve currency
in the world by the end of the fourth quarter of 2019. The
RMB continues to maintain its international status as the
world’s fifth largest reserve currency in the first quarter of
2022. The absolute value of the RMB as foreign exchange
reserves in quarter 1 of 2022 was 336.39 billion US dollars,
accounting for 2.88%, surpassing Canadian dollars, Australian
dollars, and Swiss francs. The share of RMB in the IMF cur-
rency basket increased to 12.28% in May 2022 (Source:
http://www.imf.org).

In addition, the RMB has become the world’s third larg-
est trade financing currency, accounting for 3.07% in July
2022. It is the fifth largest spot foreign exchange currency
(source: http://www.swift.com).

There are tons of research works and literature on
RMB internationalization. Cheung et al. (2019) studied
the spatial pattern of the geographical distribution and dif-
fusion of RMB; however, they focused on offshore transac-
tions. Based on the meaning of international currency
which is a natural extension process from the national
scope to the international scope (Li 2013), we comprehen-
sively examine the spatial structure characteristics formed
by RMB’s currency functions exceeding its original using
areas. Li (2009) interprets currency internationalization as
a dynamic process that some or all functions of a currency
expand from its original using area to neighboring coun-
tries or regions and finally evolve into a global universal
currency. From circulation means, payment, invoicing
and value storage, and the four major functions of cur-
rency, we examine the spatial pattern formed by the grad-
ual expansion of using RMB in the world. Thereby, we try
to refine the rules and insights in the process of RMB
internationalization [6–8].

The rest of the article is as follows: Part 2 mainly ana-
lyzes the performance of RMB’s international currency func-
tions, including circulation, payment and settlement, and
value storage. Part 3 mainly analyzes the reasons for RMB’s
spatial evolution and its spatial characteristics. Part 4 is the
conclusion and outlook.

2. RMB Performs International
Currency Functions

We discuss the space expansion paths of the RMB in the past
ten years from the perspective of RMB fulfilling different
functions such as the means of circulation, means of pay-
ment, and value storage.
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2.1. RMB Performs International Circulation Currency. The
RMB has gradually become a currency in circulation in some
regions outside China, mainly in parts of the three Southeast
Asian countries, including Myanmar, Vietnam, and Laos,
which border China’s Yunnan Province. Due to China’s
political stability, sustained and stable economic growth,
and stable currency value of RMB, the RMB has gradually
been trusted and accepted by people in these border areas.
In some areas, the RMB has even replaced the local currency,
becoming the local hard currency and circulated and used
locally. For example, in the second special zone of Shan State
in Myanmar (Myanmar Wa State), the RMB has become the
local currency instead of the Myanmar kyat and the US dol-
lar. In the three northern provinces of Phongsali, Nanta, and
Urumsai in Laos, the usage of RMB in cash is greater than
that of Laos Kip. Vietnamese residents on the Sino-
Vietnamese border also generally hold RMB in cash as the
main currency in circulation [7–10].

2.2. RMB Performs Payment and Settlement Functions

2.2.1. The Ranking and Proportion of RMB as an
International Payment Currency. When China officially pro-
moted the internationalization of the RMB, the ranking of
the RMB among international payment currencies was rela-
tively low. In the second year of China officially promoting
its internationalization, the RMB as an international pay-
ment currency ranked only 35th in October 2010 [11]. In
recent years, the RMB’s ranking among international pay-
ment currencies has greatly improved, and is roughly stable
between the 5th and 7th international payment currencies,
as shown in Table 1.

2.2.2. Cross-Border Trade RMB Settlement and Its Geospatial
Evolution Characteristics. The geospatial evolution of RMB
settlement in cross-border trade has gone through the fol-
lowing three stages.

In July 2009, China officially launched the RMB settle-
ment in cross-border trade. There were only Shanghai and
4 cities in Guangdong Province (Guangzhou, Shenzhen,
Zhuhai, and Dongwan) within the inland territory of the set-
tlement pilot, and only Hong Kong, Macao, and ASEAN
countries within the overseas territory [12, 13].

In June 2010, the People’s Bank of China and other 5
ministries and commissions jointly issued the “Notice on
Relevant Issues Concerning the Work of Expanding the
Pilots for RMB Settlement in Cross-border Trade.” The
inland pilots have been expanded to 20 provinces (autono-
mous regions and municipalities)① Specifically, these
regions include Shanghai, Guangdong, Beijing, Tianjin, Nei-
menggu, Liaoning, Jilin, Heilongjiang, Jiangsu, Zhejiang,
Fujian, Shandong, Hubei, Guangxi, Hunan, Chongqing,
Sichuan, Yunnan, Xizang, and Xinjiang., and the overseas
pilots have covered all countries and regions [14].

In July 2011, the People’s Bank of China and other 5
ministries and commissions again jointly issued the “Notice
on expanding the RMB settlement areas in cross-border
trade.” RMB settlement in cross-border trade within an
inland territory has expanded to the whole country [15].

Figure 1 exhibits the spatial evolutionary process of the
cross-border RMB settlement pilot areas from July 2009 to
July 2011. China started to introduce RMB internationali-
zation in 2009, which is why we took the data from 2009
to 2011 for this study. We cannot choose the data from
2000 to 2011 as the RMB internationalization pilot was
not launched in these years. One can see that it is a quick
process that the cross-border RMB settlement areas
increased from 5 cities to the whole world. The spatial
evolutionary structure shows a “coast—border—inland”
characteristic.

The spatial expansion process of the RMB settlement
pilots for cross-border trade in the domestic territory pre-
sents the spatial structure characteristic of “coastal—bor-
der—inland.” There are three main reasons for this kind of
characteristic:

Firstly, the degree of openness and the level of interna-
tional trade in coastal cities is relatively high in China.
According to the data from the National Bureau of Statistics,
in the first year of the pilot RMB settlement in cross-border
trade (2009), the total import and export volume was
220.7535 billion US dollars in the whole country. As the first
group of domestic pilot regions, Shanghai, Guangzhou, and
Shenzhen contributed 28.3% of the total import and export
trade volume, which was as high as 624.622 billion US dol-
lars. The relatively high degree of openness and the high
level of international trade is the main reason why these
coastal cities were selected as the first batch of pilots (source:
http://www.pbc.gov.cn).

Secondly, the provinces along the border have rela-
tively geographical advantages. As shown in Figure 1, the
second batch of pilots not only included coastal provinces
but also expanded to all provinces along China’s borders.
These provinces have geographical advantages over differ-
ent countries in Asia. One of the important reasons to
identify this pilot is to expand the cross-border use of
RMB in international trade through geographical
advantages.

Table 1: RMB as an international payment currency.

Time
Ranking of RMB as an

international payment currency
Proportion (%)

Oct. 2010 35

Oct. 2011 17 0.29

Oct. 2012 16 0.42

Oct. 2013 12 0.84

Oct. 2014 7 1.59

Oct. 2015 5 1.92

Oct. 2016 6 1.67

Oct. 2017 7 1.46

Oct. 2018 6 1.7

Oct. 2019 6 1.65

Oct. 2020 6 1.66

Oct. 2021 5 1.85

July. 2022 5 2.20

Source: http://www.swift.com.
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Thirdly, RMB internationalization is the strategic
requirement for a complete national plan. After two pilot
schemes, to accelerate the pace of RMB internationaliza-
tion, it is necessary to concentrate the resources of all
provinces across the country to further expand the
cross-border use of RMB worldwide. In terms of the
degree of openness, international trade, and geographical
advantages, inland provinces and regions are less than
coastal cities. However, the national development strategy
of RMB internationalization determines that the cross-
border RMB settlement business inevitably spreads to
the whole country.

Unlike the gradual expansion in space of the domestic
cross-border RMB settlement pilot areas, the overseas RMB
cross-border settlement pilot expanded directly from the
“Hong Kong, Macao, and ASEAN” regions to the whole
world without any other transition. As the two special
administrative regions under the condition of “one country,
two systems” in China, Hong Kong and Macau were selected
to be the first pilot areas, which is reasonable because of their
historical and geological advantages.

As a whole, ASEAN plays an increasingly important role
in the regional economy, and it is also the most important
cooperation area among Chinese trade partners except the
USA. Moreover, there does not exist a strong international
currency in ASEAN countries and regions. There also exist
certain geographical advantages between ASEAN and China.
Therefore, there are special geographical factors and eco-
nomic reasons that Hong Kong, Macao, and ASEAN were
selected in the first group [16].

There are potential possibilities for all countries and
regions that have international trade with China to use
RMB for cross-border trade settlement. Therefore, to pro-
mote RMB internationalization through cross-border trade
settlement, it is necessary to practice RMB settlement in
cross-border trade around the whole world and explore the
possibility that RMB performs international currency func-
tions in a wider space.

It can be seen clearly from Figure 1 that the volume of
cross-border RMB settlement was increasing rapidly over
the above-mentioned three stages. The accumulated vol-
ume of cross-border RMB settlements handled by com-
mercial banks has increased from 3.58 billion Yuan in
2009 to 6.04 trillion Yuan in 2019, an increase of about

1,687 times. The RMB settlement business of cross-
border trade showed an upward trend in volatility from
2009 to 2019.

2.2.3. The Situation of Cross-Border RMB Receipts and
Payments. Since 2015, the “Monetary Policy Implementation
Report” issued by the People’s Bank of China has trans-
formed the RMB from the original concept of simple
cross-border trade RMB settlement to a broader concept of
cross-border RMB receipts and payments, covering both
the current account and capital account, as shown in
Table 2.

2.3. RMB Performs Value Storage Function: The Spatial
Evolutionary Characteristics of RMB as an International
Reserve Currency. More than 70 central banks or monetary
authorities around the world have included RMB in foreign
exchange reserves, and RMB was the world’s fifth largest
reserve currency in the 1st quarter of 2022 [17] (source:
http://www.imf.org).

In addition, the number of countries holding RMB as
official foreign currency assets has increased so has in
amount. According to a survey of 130 member countries
conducted by the IMF in 2015, there were 27 countries hold-
ing RMB as official foreign currency assets in the world in
2013, and the number has been up to 38 by 2014 [18]
(source: http://www.imf.org).
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Figure 1: The cross-border RMB Settlement from 2009 to 2019. Source: http://www.pbc.gov.cn.

Table 2: Cross-border RMB settlement or receipt and payment
from 2015 to 2021.

One hundred million Yuan
Year Amount Remarks

2014 6550,000.00 Cross-border RMB settlement

2015 12,100,000.00 Cross-border RMB receipt and payment

2016 9,850,000.00 Cross-border RMB receipt and payment

2017 9,190,000.00 Cross-border RMB receipt and payment

2018 15,850,000.00 Cross-border RMB receipt and payment

2019 19,700,000.00 Cross-border RMB receipt and payment

2020 28,400,000.00 Cross-border RMB receipt and payment

2021 36,600,000.00 Cross-border RMB receipt and payment

Source: http://www.pbc.gov.cn, China Monetary Policy Implementation
Report from 2014 to 2021.
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The number of RMB assets held worldwide was equiva-
lent to 29 billion special drawing rights (SDR) in 2013,
which is about 0.7% of total official foreign currency assets.
This number reached 51 billion SDR by 2014, which is
equivalent to 1.1% of total official foreign currency assets
[19]. By the end of June 2021, overseas entities holding
RMB financial assets reach RMB10.26 trillion (source:
http://www.imf.org).

3. The Motivation Mechanism and Spatial
Evolutionary Features of
RMB Internationalization

The reasons why the internationalization of the RMB pre-
sents such spatial evolutionary features can be summarized
in two main aspects: the basic momentum driven by market
demand and proactively promoted by national strategies and
policies.

3.1. Analysis of the Basic Momentum Driven by Market
Demand. In terms of market demand, because of the founda-
tions of China, such as China’s total economic volume, inter-
national trade level, international investment, and the relative
stability of the RMB currency, the demand for RMB for inter-
national usage has been increasing in the international mar-
kets. The specific manifestations are as follows.

3.1.1. China’s Economy. In terms of economic strength,
China has achieved world-renowned achievements in eco-
nomic development since its reform and opening up in
1978. China’s GDP was already comparable with Japan
and ranked second in the world by 2008. China’s total
GDP reached $5,122 billion, following the USA ($14,418.73
billion) ranked second in the world, and surpassing Japan
($5,035.140 billion) for the first time in 2009. China officially
started a pilot program of RMB settlement for cross-border
trade to promote the internationalization of the RMB in July
2009. From the perspective of time, it should not be just a
coincidence, but a strategy taken proactively when the coun-
try’s economic strength reached a certain stage. Since 2009,
China’s GDP has remained second in the world, and the total
amount has further increased. China became the second coun-
try in the world to reach 10 trillion US dollars after the USA
when China’s GDP reached $10,557.64 billion in 2014. While
further narrowing the gap with the USA, the gap in GDP
between China and Japan was getting wider. China’s GDP
was $13,118.69 billion, a year-on-year increase of 6.1% in
2019. In 2021, China’s GDP was USD17,458.04 billion, and
it continued to maintain its status as the world’s second largest
economic capacity (source: http://www.imf.org).

3.1.2. China’s International Trade. Merchandise import and
export trade is China’s main body of international trade.
From the perspective of total merchandise import and
export trade, China’s merchandise import and export trade
volume broke through the 4 trillion US dollar for the first
time in 2013, reaching $41,589.99 billion. For the first time,
China’s trade volume surpassed the USA which was
$39,086.53 billion. China became the largest country in

terms of trade volume in commodity imports and export in
the world. China’s total merchandise import and export trade
continued to rank first in the world in 2014 and 2015. China’s
total merchandise import and export trade continued tomain-
tain a high level, ranking second in the world in 2016. China’s
total import and export volume was $4.11 trillion with a year-
on-year increase of 11.4% in 2017, $4.62 trillion with an
increase of 12.6% in 2018, $4.57 trillion in 2019, and
USD6.05 trillion in 2021. In general, China’s total interna-
tional trade scale is already the second largest in the world.
The huge scale of international trade objectively requires the
RMB to become the invoicing and settlement currency in
international trade, which helps to avoid foreign exchange rate
fluctuations causing exchange losses to the majority of
importers and exporters. International trade is becoming one
of the main economic factors driving the internationalization
of the RMB (source: http://www.wto.org).

3.1.3. China’s International Investment. Global foreign direct
investment outflows declined for the third consecutive year
until 2018. According to the statistics of the World Invest-
ment Report 2019 of the United Nations Conference on
Trade and Development, the global foreign direct invest-
ment (FDI) flow was $1,014.17 billion in 2018, a decrease
of 28.9% from the previous year’s $1,425.44 billion. Facing
the complex international investment environment, China
thoroughly implements new development proposals, ful-
filled high-quality development requirements, and increased
the effort of policy guidance and public services. China’s for-
eign investment made steady progress in 2021 with an aggre-
gate amount of USD145.19 billion. The global share of FDI
stock further increased, and the influence of global FDI has
further expanded (source: http://www.mofcom.gov.cn/).

China’s FDI flow was $153.71 billion in 2021, taking 1st
place in the world. From third place in the world in 2017, it
returned to first place which reached the highest value in
history (source: http://www.mofcom.gov.cn/).

3.2. Actively Propelling through National Strategies
and Policies

3.2.1. National Strategies. “Peace, development, cooperation,
and win-win” is China’s development strategy for a big and
powerful country which was proposed in the report of the
18th National Congress of the Communist Party of China.
This strategy is an important and scientific ideology for
China to actively face the challenges of economic globaliza-
tion. The most important part of economic globalization is
the globalization of finance. In particular, the global financial
crisis has obvious international shocks, which indicates that
the current international monetary system is overreliance on
the US dollar, and the US dollar standard system faces many
problems and contradictions. Therefore, the internationali-
zation of the RMB is the key and core to propelling the evo-
lution of the international currency system and constructing
a diversified international reserve currency system. It is the
joint choice by the international markets and China’s devel-
opment strategy. China’s strategy of “peace, development,
cooperation, and win-win” is completely different from the
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historical rise of colonialism and imperialism relying on
aggression and plunder. Instead, it achieves a mutually ben-
eficial and win-win situation between the international soci-
ety and other countries and regions through the reform of its
economic system and economic cooperation.

The internationalization of the RMB has de facto become
one of the national strategies related to national economic
and social development when it was officially written into
China’s “13th Five-Year Plan.” It is an important part and
manifestation of the financial development strategy. The
process of RMB internationalization should be based on
the transformation of China’s economy and finance. The
internationalization of the RMB will be naturally realized
driven by both markets and national strategy when the eco-
nomic and financial transformation is succeeded, and China
becomes a country not only with GDP in scale but also with
powerful GDP and strengthened finance. Therefore, as one
of the national strategies, the process of internationalization
of the RMB is propelled by the government and the market.
On the one hand, it is a natural result when the development
of China’s economy and international trade reaches a certain
level. On the other hand, it is undoubtedly the right choice
for the current government.

Before the official internationalization of the RMB, the
reliance of the RMB on the international monetary system
(IMS) exhibits a dependence on the US dollar due to the
strong position of the US dollar in the IMS. The RMB has
changed into a reformer in the IMS from a follower since
the official implementation of the RMB internationalization
strategy. This strategic change has already achieved some
results; for instance, the RMB has joined the IMF’s SDRs
currency basket and has begun to appear in the world’s offi-
cial foreign exchange reserves as an independent currency.

In summary, the RMB internationalization strategy is an
important part of China’s development strategies for a big
country and a powerful country. It emphasizes “peace,
development, cooperation, and win-win” with other coun-
tries and regions, which fulfills both China’s national inter-
ests and the interests of other countries in the world.

3.2.2. The Belt and Road Initiative and RMB
Internationalization. In 2013, Chinese President Xi Jinping
successively proposed the cooperation initiatives of the
“New Silk Road Economic Belt” and the “21st Century Mar-
itime Silk Road.” Using the historical symbols of the ancient
Silk Road, this initiative aims to expand the current cooper-
ation in various fields and at various levels, such as political
mutual trust, economic trade, and culturally inclusive. This
cooperation is referred to as the Belt and Road initiative
(Benjamin J Cohen, [6]; Zhang F, Yu M, Yu J, et al. [19]).

The Belt and Road has an obvious linear characteristic in
geographical space. Since the initiative is proposed, high-
level visits between countries along the route have become
more frequent, economic and trade exchanges have been
closer, and financial cooperation has been further strength-
ened (Eichengreen B, [8]). In this process, the usage scope
of RMB has expanded in these countries along the route.
Various measures have been made, such as projects invest-
ment in the “Silk Road Fund”, and the establishment of

branches of Chinese banks such that the China union pay
cards and ATMs covered more than 50 countries along the
route.

SWIFT evaluates the situation of UMB usage in coun-
tries along the Belt and Road using the RMB payment
amount issued by China from January 2014 to June 2017.
Based on these data, it is pointed out that RMB usage in
the Belt and Road regions has four characteristics.

First, the amount of RMB usage in commercial payments
in the four countries, Kazakhstan, Kyrgyzstan, Tajikistan,
and Turkmenistan, shows favorable signs of growth. The
absolute amount of paying in RMB is still relatively low
compared to countries such as France or Germany; however,
China’s RMB payments to these countries display a growth
rate of higher than 100%.

Second, the RMB business growth prospects in Southeast
Asian countries of the “Maritime Silk Road” are favorable.
China’s RMB commercial payments to Indonesia, Malaysia,
Thailand, and Vietnam have increased significantly.

Third, the adoption rate of RMB in other markets of the
“Maritime Silk Road” is low. The countries along the “Mar-
itime Silk Road” such as Egypt, Kenya, Greece, and India
RMB payments received were lower.

Fourth, the RMB payment situation was more diversified
in the Western European markets. China’s RMB payments
to Germany, Poland, and the Czech Republic have grown
strongly, while China’s payments to the Netherlands, France,
and Italy have fallen sharply.

In general, the usage of RMB in the regions of Belt and
Road was concentrated in the main offshore RMB centers
by June 2017.

The increase in the layout of offshore RMB centers
implies that the internationalization of the RMB presents a
“multi-point” spatial distribution status in geographic space,
while the Belt and Road has obvious a feature of lines. No
matter which features appears, points, or lines, it will eventu-
ally provide a possibility of spatial expansion of the RMB
internationalization to more areas from points or lines.

3.2.3. Bilateral Local Currency Swap Agreement. From Octo-
ber 2008 to the end of 2009, there were only 6 countries and
regions (South Korea, Hong Kong, Malaysia, Indonesia,
Belarus, and Argentina) signed bilateral local currency swap
agreements with the People’s Bank of China, with a total
amount of 650 billion Yuan.

The People’s Bank of China has signed bilateral local
currency swap agreements with central banks or monetary
authorities of 39 countries and regions by the end of 2019.
It covers most developed and emerging economies around
the world, as well as major offshore RMB markets, with a
total amount exceeding 3.7 Trillion Yuan.

As the most important portal city to connect mainland
of China and the outside world, Hong Kong is the core city
of RMB internationalization and the most important RMB
offshore market. The currency swaps in Hong Kong
increased from 200 billion Yuan in 2009 to 400 billion
Yuan/470 billion HKD in 2017.

As one can be seen from Table 3, by the end of July 2017,
more than 50 countries and regions have signed bilateral
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currency swap agreements with China. From the geographic
point of view, the number of bilateral currency swap agree-
ments exhibits a trend of further expansion.

Since 2009, the countries and regions that have signed
bilateral currency swap agreements with China have not
only increased rapidly in number, from 6 in 2009 to 52
in early 2020, but also covered Europe, Asia, Africa, South
America, Oceania, and North America. The geographic
spatial distribution of countries and regions that have
signed agreements with China shows an uneven feature
of growth. This uneven feature is demonstrated most sig-
nificantly when we compare North America, Oceania,
and Africa.

3.2.4. RMB Offshore Financial Center. China has established
26 RMB clearing banks in 24 countries and regions outside
of China by June 2020, covering Asia, America, Europe,
Oceania, and Africa, for the foreign entities’ convenience
holding and using RMB. Except for JPMorgan Chase Bank
in the USA and Mitsubishi UFJ Bank in Japan, these RMB
clearing banks are all held by major Chinese banks (see
Table 4 for details).

These RMB clearing banks facilitate offshore RMB trans-
actions and cross-border RMB payments.

At present, the most important five points are Hong
Kong, China, the UK, Russian Federation, Singapore, and
the USA. The offshore RMB market share of the 5 offshore
centers accounts for about 87.93 percent of the global off-
shore RMB market share. China has designated 24 offshore
RMB financial centers scattered around the world by 2021,
and it will be possible to spread the international usage of
RMB to the “areas” involved in these “points.” The Belt
and Road initiative has continuously strengthened the use
of RMB in financial investment and financial services in
countries along the route, which plays a role in the expan-
sion of RMB internationalization from “points” to “areas”
(source: http://www.swift.com).

As the world’s largest and most efficient offshore RMB
center, Hong Kong has always played an important role in
the process of RMB internationalization since its offshore
RMB business started in 2004. The RMB business maintains
rapid growth or above a high level in Hong Kong. It plays an
important role in various fields such as RMB deposits, RMB
settlement in cross-border trade, RMB direct investment,
RMB investment in financial markets, and RMB interna-
tional bond issuance. In July 2022, Hong Kong still takes
the 1st place of offshore RMB businesses with a share of
70.93% (source: http://www.swift.com).

London is the first offshore RMB center outside Asia that
can carry out RMB clearing business. It is the second largest
RMB offshore clearing center. Its market share of offshore
RMB business accounts for 6.35% of the global share in July
2022. It plays an important role in expanding the usage of
RMB overseas and accelerating the process of RMB interna-
tionalization (source: http://www.swift.com).

The offshore financial center in Russian Federation
allows its qualified institutional investors to enter China’s
security markets and make RMB offshore investments. It
also allows qualified institutional investors from Mainland
China to invest in Russian capital markets using RMB. The
usage scope of RMB has been further expanded through
the Russian offshore financial center. The share of offshore
RMB business accounts for 3.90% of the global share in July
2022 which takes the 3rd place in all the offshore RMB cen-
ters (source: http://www.swift.com).

3.3. Adjustment of International Political and Economic
Relations and Opportunities for Reform of the International
Monetary System. The world economy has shown a develop-
ment trend from “one super” to “one super, multiple pow-
ers” since World War II. Regional economic integration
and global economic integration have been further
strengthened.

From the period after World War II to the early 1970s,
the USA occupied a dominant position in the world econ-
omy, with strong industrial strength and abundant gold
reserves. It controlled the international financial market
and world markets of commodity and trade services by
establishing and controlling the Bretton Woods system and
the General Agreement on Tariffs and Trade.

The USA also implemented the “Marshall Plan” during
this period to help Western European countries revive from
the damages of war. From the 1970s to the late 1980s, the
unbalanced economic development of capitalist countries
still existed. The European Community and Japan made
great progress in many economic fields, and then, the capi-
talist world presented a three-polar situation of the USA,
the European Community, and Japan.

Since the 1990s, the degree of the economic interdepen-
dence of countries has further deepened, and the trend of
world economic regional clustering and global economic
integration has continued to strengthen, with a further
strengthening of production and division of labor and the
huge impact of the new technological revolution. At this
stage, the process of European economic integration has
accelerated; ASEAN regional cooperation has been further

Table 3: Countries and regions which have signed bilateral
currency swap agreements with the Central Bank of China from
2008 to 2019.

Year Countries or regions

2008
Republic of Korea, Hong Kong, China,
Malaysia, Indonesia, Belarus, Argentina

2010 Singapore, Iceland

2011
Thailand, New Zealand, People’s Republic of Mongolia,

Pakistan, Uzbekistan

2012 Australia, the United Arab Emirates, Turkey, Ukraine

2013 Brasil, UK, Hungary, Albania, Central Bank of Europe

2014
Russia, Canada, Argentina, Swiss,
Kazakhstan, Sri Lanka, Qatar

2015 South Africa, Surinam, Armenia, Chile, Tajikistan

2016 Morocco, Egypt

2018 Japan

2019 Macao China

2020 Laos
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strengthened; China’s economy has risen and become an
important role in the world economy; and Japan remains
the third largest economy in the world.

Neoliberalism quickly became popular and gradually
formed an international financial system with the collapse
of the Bretton Woods system in 1973. The Washington Con-
sensus was formed in 1990. Global economic integration and
economic financialization were rapidly developed, and
financial centers rapidly evolved and formed networks
(CFCI, 2019).

The adjustment and evolution of international political
and economic relations inevitably brought about the adjust-
ment of the international multipolar political and economic
structure. The currency is a manifestation of the political
and economic strength of a country or region. Therefore,
the opportunity for diversified adjustment of the interna-
tional politics and economy provided an opportunity for
China to adjust its international position and the interna-
tionalization of the RMB.

The subprime mortgage crisis originated in the USA
and brought financial turmoil that hit the world in 2008.
This financial crisis further highlighted the shortcomings
of the US dollar standard in the international monetary
system.

The European Union and Russia also advocate reforms
to the international monetary system, although they have
different concerns. This requirement proposed by major
economic entities and regions in the world has caused the
reform of the international monetary system to develop
from theoretical discussions to practical policies.

The Chinese Ministry of Finance issued 3 billion off-
shore RMB bonds in London in May 2016, which acceler-
ated the internationalization of the RMB. The overseas
investment by Chinese companies has greatly increased
since China joined the WTO. China’s industry-wide FDI
reached US$117.12 billion in 2019. By the end of 2021, the
number of investors outside China who hold RMB bonds
reached 4 trillion. China participates in the global economy
and promotes the internationalization of the RMB (Source:
https://www.bbtnews.com.cn/).

The RMB officially joined the SDR (Special Drawing
Rights) currency basket on October 1, 2016, with a share
of 10.92%. After continuous efforts, which created a new sit-
uation in the international monetary system, that is, as the
currency of a developing country, the RMB joined the inter-
national monetary system first, which provides new possibil-
ities for countries to choose more diversified reserve
currencies, trade settlement currencies, and payment

Table 4: Offshore RMB clearing center and clearing banks.

Item Cities Clearing bank Start time Belongs to

1 Hong Kong China Bank of China Dec. 2003 Asia

2 Macao, China Bank of China Sep. 2004 Asia

3 Vientiane, Laos Industrial and Commercial Bank of China Jun. 2012 Asia

4 Taiwan, China Bank of China Dec. 2012 Asia

5 Singapore Industrial and Commercial Bank of China Feb. 2013 Asia

6 Phnom Penh, Cambodia Industrial and Commercial Bank of China Mar. 2014 Asia

7 London, UK China Construction Bank Jun. 2014 Europe

8 Frankfurt, Germany Bank of China Jun. 2014 Europe

9 Seoul, Korea Bank of Communications Jul. 2014 Asia

10 Paris, France Bank of China Sep. 2014 Europe

11 Luxembourg Industrial and Commercial Bank of China Sep. 2014 Europe

12 Doha, Qatar Industrial and Commercial Bank of China Nov. 2014 Asia

13 Toronto, Canada Industrial and Commercial Bank of China Nov. 2014 North America

14 Kuala Lumpur, Malaysia Bank of China Jan. 2015 Asia

15 Bangkok, Thailand Industrial and Commercial Bank of China Jan. 2015 Asia

16 Sydney, Australia Bank of China Feb. 2015 Oceania

17 Santiago, Chile China Construction Bank May. 2015 South America

18 Budapest, Hungary Bank of China Jun. 2015 Europe

19 Johannesburg, South Africa Bank of China Jul. 2015 Africa

20 Argentina Industrial and Commercial Bank of China Sep. 2015 South America

21 Lusaka, Zambia Bank of China Sep. 2015 Africa

22 Zurich, Switzerland China Construction Bank Nov. 2015 Europe

23 New York, USA Bank of China Sep. 2016 North America

24 New York, USA JP Morgan Chase Bank Feb. 2018 North America

25 Tokyo, Japan Bank of China Oct. 2018 Asia

26 Tokyo, Japan Mitsubishi UFJ Bank Jun. 2019 Asia

Source: according to public information.
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currencies in the international monetary system. On August
1, 2022, RMB’s share in the SDR currency basket rises to
12.28% (source: http://www.imf.org).

3.4. The Rational Choice of the Geographic Status Quos of
Asian Currencies. Currently, there are huge differences in var-
ious political situations such as social systems, political sys-
tems, and state formation among Asian countries. It does
not meet Mundell’s criteria of “the optimum currency area”
which is only suitable for areas that are continuously inte-
grated with politics. In other words, the term “Asian Dollar”
proposed in academics does not work in terms of political
integration. At present, the vast majority of Asian countries
are still issuing and circulating their currencies in their respec-
tive territories. However, due to historical, political, economic,
and other reasons, some Asian countries and regions have
shown other different characteristics in currency geography,
which are prominently shown in the following three aspects:

First, multiple currencies are issued and circulated within
the territory of a country. For instance, there exist four curren-
cies in China issued in Mainland, Hong Kong, Macao, and
Taiwan.

Second, a currency with a higher degree of international-
ization is adopted as the local currency. For example, Cyprus
has joined the Eurozone and fully adopts the Euro as its
domestic currency; East Timor adopts the US dollar as its
domestic currency; and the country only issues coins as frac-
tional currency, which is equivalent to the US dollar in value.

Third, there are no currencies issued but two currencies cir-
culating in the country at the same time. For instance, Palestine
does not yet have its currency, and both Israeli currency (shekel)
and Jordanian currency (dinar) are circulated in the country.

The concept of the “Asian Dollar” can only stay at the
stage of conception. McKinnon (2004) has been aware of
this issue. He said, “At present, the political will for full-
scale economic and monetary integration with neighboring
countries simply does not exist elsewhere. However, a less
politically demanding common monetary standard based
on a key currency might achieve much – although certainly
not all – of the benefits of a common currency.” This argu-
ment still applies to the current situation in Asia. In other
words, the “Asian Dollar” does not apply to Asia at the
moment. Regarding the RMB as a key currency, firmly pro-
pelling the internationalization of the RMB is another way to
realize the internationalization of the RMB. It also meets the
McKinnon criteria of “a less politically demanding common
monetary standard based on a key currency.”

McKinnon further pointed out that a successful common
monetary standard requires two key interrelated conditions:

(1) A credible anchoring mechanism so that countries
that attach themselves to the standard succeed in sta-
bilizing the purchasing powers of their national
monies

(2) Close trading partners who attach themselves con-
vincingly to the same standard

With the continuous strengthening of China’s economy,
the RMB has joined the IMF’s currency basket and has con-

tinued to rise in the rankings of international payment cur-
rencies. The status of the RMB in the international
currency system is continuously improving. The credit
anchoring mechanism with RMB as the key currency might
be mature. It is more realistic and feasible to steadily pro-
mote the internationalization of the RMB than the assump-
tions of the “Asian Dollar” or “China Dollar.”

4. Conclusions and Outlook

We analyzed the spatial evolutionary characteristics of RMB
internationalization and further explained the mechanism of
the spatial evolutionary structure of RMB internationaliza-
tion from the perspective of domestic and foreign
motivations.

The main findings are as follows:
Firstly, the RMB has evolved from the pure simple RMB

settlement in cross-border trade to a broader concept of
cross-border RMB payment since the official launch of
RMB internationalization in 2009, which covered both the
current account and capital account.

Secondly, the spatial evolutionary path of RMB interna-
tionalization presents a certain spatiotemporal pattern. It
initially expanded to East Asian countries and regions, grad-
ually expanded to developing countries in Southeast Asia,
and then advanced to developed countries in Europe, South
America, and Australia and participating countries along the
Belt and Road.

Thirdly, the RMB settlement of cross-border trade pre-
sents the “coast-border-inland” spatial characteristics.

Fourthly, bilateral currency swaps show “rapid growth”
and “unbalanced growth.”

Fifthly, the spatial structure of RMB internationalization
has obvious characteristics of “from points to areas, and
from lines to areas” because of the impetus from the RMB
offshore financial centers, RMB clearing banks, and the Belt
and Road initiative. The “points” mainly refer to the spatial
characteristics of RMB offshore financial centers, and the
“lines” mainly refer to the linear characteristics of the Belt
and Road.

Sixthly, China’s economic strength is still the decisive
factor in the internationalization of the RMB, and import
and export trade volume and foreign investment are impor-
tant driving forces.

Looking into the future, the role of the RMB as an inter-
national payment currency, foreign exchange reserve cur-
rency, and trade settlement currency will be further
strengthened. The RMB will inevitably perform various
functions of an international currency in a broader geo-
graphic space in the future. However, the strong position
of the US dollar and the Euro in the existing international
monetary system remains, and the historical advantages of
the British pound and the Japanese yen still exist. The cur-
rency competition faced by the internationalization of the
RMB is mainly the above four international currencies.
However, from the absolute amount and proportion per-
spective, the difference between the RMB, as a foreign
exchange reserve currency, and international payment cur-
rency, the British pound, and the Japanese yen is not too
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big. As China’s economic strength, international trade, and
foreign investment are continuously enhanced, it is hope-
fully expected that the RMB will surpass the British pound
and the Japanese yen in a near future. The position of the
RMB in the international monetary system will be further
enhanced, too.

Data Availability

The data on the Renminbi ranking and proportion are
obtained from the official website of SWIFT. Other data
regarding RMB cross-border receipt and payment are
obtained from the official website of the People’s Bank of
China. All the data are available from the corresponding
author upon request.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This research is supported by the Key National Natural Sci-
ence Foundation of China, “Research on the Heterogeneous
Constraints of Financial Cooperation Between Yunnan and
Surrounding Countries and the Realization Mechanism
and Path of RMB Regionalization” (No. U2002201).

References

[1] P. B. Kenen, “The international position of the dollar in a
changing world,” International Organization, Cambridge Uni-
versity Press, vol. 23, no. 3, pp. 705–718, 1969.

[2] L. Lefen and W. Shaonan, “An empirical analysis of the
influencing factors of RMB internationalization in the process
of “the Belt and Road” [J],” Studies of International Finance,
vol. 2, pp. 75–83, 2016.

[3] W. Shuyu and L. Daokui, “A newmeasure of currency interna-
tionalization—an analysis based on the perspective of interna-
tional financial investment[J],” Economic Perspectives, vol. 2,
pp. 146–158, 2018.

[4] People’s Bank of China, Renminbi Internationalization
Report[R], People’s Bank of China, 2017, 2021.

[5] P. Bottelier and U. Dadush, “The future of the Renminbi as an
international currency[N],” International Economic Bulletin,
vol. 2, 2011.

[6] B. J. Cohen, “The yuan tomorrow? Evaluating China’s cur-
rency internationalisation strategy,” New Political Economy,
vol. 17, no. 3, pp. 361–371, 2012.

[7] C. Yuanzheng, The Strategy of RMB Internationalization[M],
Hainan Press, Haikou, 2013.

[8] B. Eichengreen, “Adb distinguished lecture renminbi interna-
tionalization: tempest in a teapot?,” Asian Development
Review, vol. 30, no. 1, pp. 148–164, 2013.

[9] H. Weidong, The Study of RMB-ZONE[M], People Press,
Beijing, 2015.

[10] S. Hall, “Rethinking international financial centres through the
politics of territory: renminbi internationalisation in London's
financial district,” Transactions of the Institute of British Geog-
raphers, vol. 42, no. 4, pp. 489–502, 2017.

[11] P. B. Kenen, The Role of Dollar as an International Currency,
Occasional Paper 13, Group of Thirty, New York, 1983.

[12] L. Jing, The Impacts of the Renminbi Regionalization on the
Chinese Economy and Countermeasures[M], China Financial
Publishing House, Beijing, 2009.

[13] L. Daokui, Research on RMB Internationalization [M], Science
press, Beijing, 2013.

[14] L. Xuemei, Research on the RMB Internationalization and
Regionalization[M], Economic Science Press, Beijing, 2013.

[15] L. Lefen and W. Shaonan, “An empirical analysis on the fac-
tors of the RMB's internationalization in the process of the Belt
and Road initiative of China [J],” Studies of International
Finance, vol. 2, pp. 75–83, 2016.

[16] C. A. McNally and J. Gruin, “A novel pathway to power? Con-
testation and adaptation in China’s internationalization of the
RMB,” Review of International Political Economy, vol. 24,
no. 4, pp. 599–628, 2017.

[17] The People’s Bank of China, The People’s Bank Issued RMB
Settlement Pilot Management Rules on Cross-Border Tra-
de[EB/OL], 2009, [2015-06-04].

[18] L. M. Töpfer and S. Hall, “London’s rise as an offshore RMB
financial centre: state–finance relations and selective institu-
tional adaptation,” Regional Studies, vol. 52, no. 8, pp. 1053–
1064, 2018.

[19] F. Zhang, M. Yu, J. Yu, and Y. Jin, “The effect of RMB interna-
tionalization on belt and road initiative: evidence from bilat-
eral swap agreements,” Emerging Markets Finance and
Trade, vol. 53, no. 12, pp. 2845–2857, 2017.

10 Advances in Mathematical Physics



Research Article
A Fractional-Order Discrete Lorenz Map

Yanyun Xie

School of General Education, Chongqing Water Resources and Electric Engineering College, Chongqing 40216, China

Correspondence should be addressed to Yanyun Xie; xieyanyun2022@126.com

Received 1 July 2022; Revised 25 August 2022; Accepted 6 September 2022; Published 20 September 2022

Academic Editor: Qura tul Ain

Copyright © 2022 Yanyun Xie. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, a discrete Lorenz map with the fractional difference is analyzed. Bifurcations of the map in commensurate-order and
incommensurate-order cases are studied when an order and a parameter are varied. Hopf bifurcation and periodic-doubling
cascade are found by the numerical simulations. The parameter values of Hopf bifurcation points are determined when the
order is taken as a different value. It can be concluded that the parameter decreases as the order increases. Chaos control and
synchronization for the fractional-order discrete Lorenz map are studied through designing the suitable controllers. The
effectiveness of the controllers is illustrated by numerical simulations.

1. Introduction

Fractional calculus has been studied for a fairly long time in
the field of pure mathematics [1]. At the primary stage, its
development is slow because of the absence of geometrical
interpretation and applications. Until the last few decades,
researchers gradually noticed that fractional calculus has
superior characteristics over the classical calculus. Nowa-
days, fractional calculus has been analyzed deeply in theoret-
ical research and practical applications.

It is well known that discrete fractional calculus was put
forward by Diaz and Olser [2]. Within the past decade, peo-
ple are more and more interested in discrete fractional calcu-
lus. In [3–7], definitions and stability for discrete fractional
calculus are introduced and investigated. Based on these,
many fractional-order maps are proposed and studied in
detail, such as fractional sine map, standard map, Hénon
map, and Ikeda map [8–14]. For the long-term memory
characteristic of the operator, this kind of maps is a better
fit for application in secure communications and encryption
[15–17]. The main reasons are that fractional-order discrete
maps are not only sensitive to the small disturbance of
parameters and initial conditions but also to the variation
of fractional orders, which are the unique advantages of
fractional-order systems. On the other hand, fractional-
order discrete maps have simple forms and rich dynamics,
which are good for model analysis and numerical computa-

tion. Therefore, investigation of a fractional-order discrete
map including dynamics, stabilization, and synchronization
is necessary and important for the development of fractional
calculus.

In this paper, we will investigate a fractional-order dis-
crete Lorenz map. Bifurcations of the map in
commensurate-order and incommensurate-order cases are
analyzed. Hopf bifurcation and periodic-doubling cascade
are found by the numerical simulations. The parameter
values of Hopf bifurcation points are determined when the
order is varied. The fractional-order discrete Lorenz map
has several advantages such as unpredictability, diffusion
properties, sensitivity to initial conditions, orders, and
parameters. It is very suitable for application in secure com-
munication and encryption. Therefore, chaos control and
synchronization for the fractional-order Lorenz map are
studied through designing the suitable controllers based on
the adaptive method. The advantages of the method are fol-
lows: the principle of the adaptive method is simple based on
the stability theory of fractional difference maps; the design-
ing controllers for control and synchronization are easy to
realize in simulations. It should be noted that the research
of fractional-order maps is at an early stage. Many control
and synchronization methods and strategies need to be stud-
ied further.

The paper is organized into seven sections. Section 2
gives the related theories of discrete fractional calculus. A
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fractional-order discrete Lorenz map is described in Section
3. Bifurcations in two cases are studied in Section 4. Control
and synchronization for map are investigated, respectively,
in Sections 5 and 6. The summarization of the paper is given
in Section 7.

2. Discrete Fractional Calculus

In this section, some theories related to discrete fractional
calculus will be listed. The symbol CΔq

bYðtÞ represents the
Caputo type fractional difference of a function YðtÞ: Nb
⟶ℝ with Nb = fb, b + 1, b + 2,⋯g [18], which is marked
as

CΔq
bY tð Þ = Δb

− n−qð ÞΔb
nY tð Þ = 1

Γ n − qð Þ 〠
t− n−qð Þ

s=b
t − s − 1ð Þ n−q−1ð ÞΔn

s Y sð Þ:

ð1Þ

Here, q ∉N is the fractional order, and n = dqe + 1.The
fractional sum in (1) can be expressed as [19, 20]

Δb
−qY tð Þ = 1

Γ qð Þ〠
t−q

s=b
t − s − 1ð Þ q−1ð ÞY sð Þ: ð2Þ

Here, t ∈Nb+q, q > 0, and the falling function tðqÞ is writ-
ten as follows:

t qð Þ =
Γ t + 1ð Þ

Γ t + 1 − qð Þ , ð3Þ

where Γð⋅Þ denotes the gamma function, which is defined as
ΓðtÞ = Ð +∞0 xt−1e−xdx for t > 0.

We can determine the numerical solutions of a fractional
difference equation via the method below. A fractional dif-
ference equation with initial conditions is

CΔq
bu tð Þ = f t + q − 1, u t + q − 1ð Þð Þ,

Δku bð Þ = uk:n = qd e + 1, k = 0, 1, 2,⋯, n − 1:

(
ð4Þ

The corresponding discrete integral equation is

u tð Þ = u0 tð Þ + 1
Γ qð Þ 〠

t−q

s=b+n−q
t − s − 1ð Þ q−1ð Þ f s + q − 1, u s + q − 1ð Þð Þ, t ∈Nb+n:

ð5Þ

Here, u0ðtÞ =∑n−1
k=0ððt − bÞðkÞ/Γðk + 1ÞÞΔkuðbÞ.

The below theorem can be used to determine the stabil-
ity of the equilibrium point for a fractional-order difference
system. You can refer to the literature [21] for the detail of
the proof.

Theorem 1. For a linear fractional-order difference discrete
system,

CΔq
bX tð Þ =AY t + q − 1ð Þ: ð6Þ

Here, YðtÞ = ðy1ðtÞ, y2ðtÞ,⋯,ynðtÞÞT , 0 < q < 1,A ∈ Rn×n

and∀t ∈Nb+1−q, and the zero equilibrium is asymptotically
stable if all the eigenvalues of matrix A satisfy

λij j < 2 cos
arg λij j − π

2 − q

� �q

and arg λij j > qπ
2
, i = 1, 2,⋯, n:

ð7Þ

Definition 2. For a fractional-order system, which can be
described by CΔq

a = f ðxðtÞÞ, where x = ðx1, x2,⋯,xnÞT is the
state vector, q = ðq1, q2,⋯,qnÞT is the fractional derivative
orders vector, and qi > 0. The fractional-order system is in
commensurate order when all the derivative orders satisfy
q1 = q2 =⋯ = qn; otherwise, it is an incommensurate-order
system [22].

3. A Discrete Lorenz Map with Fractional
Difference Operator

Recently, a Lorenz map was studied deeply and successfully
applied in encryption [23–25]. A Lorenz chaotic map was
presented which is given as follows:

x n + 1ð Þ = 1 + γδð Þx nð Þ − δy nð Þx nð Þ,
y n + 1ð Þ = 1 − δð Þy nð Þ + δx2 nð Þ:

(
ð8Þ

Here, xðnÞ and yðnÞ denote state variables, and γ and δ
represent system parameters. The corresponding first-order
difference for (8) is expressed as

Δx nð Þ = x n + 1ð Þ − x nð Þ = 1 + γδð Þx nð Þ − δy nð Þx nð Þ − x nð Þ,
Δy nð Þ = y n + 1ð Þ − y nð Þ = 1 − δð Þy nð Þ + δx2 nð Þ − y nð Þ:

(

ð9Þ

By using the Caputo-like delta difference operator to
replace the first order difference in (9) with a starting point
b, the fractional-order Lorenz map can be obtained, which
is the following form [26]:

CΔq
bx tð Þ = 1 + γδð Þx t − 1 + qð Þ − δy t − 1 + qð Þx t − 1 + qð Þ − x t − 1 + qð Þ,

CΔq
by tð Þ = 1 − δð Þy t − 1 + qð Þ + δx2 t − 1 + qð Þ − y t − 1 + qð Þ:

(

ð10Þ

Here, 0 < q < 1 denotes the derivative order. If all the
orders in (10) are identical, then the map is a
commensurate-order one. Otherwise, it is an
incommensurate-order one which is expressed by the fol-
lowing difference equations:

CΔ
q1
b x tð Þ = 1 + γδð Þx t − 1 + q1ð Þ − δy t − 1 + q1ð Þx t − 1 + q1ð Þ − x t − 1 + q1ð Þ,

CΔ
q2
b y tð Þ = 1 − δð Þy t − 1 + q2ð Þ + δx2 t − 1 + q2ð Þ − y t − 1 + q2ð Þ:

(

ð11Þ

The derivative orders satisfy 0 < q1, q2 < 1.
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The numerical formulas of commensurate-order map
(10) are

x nð Þ = x bð Þ + 1
Γ qð Þ〠

n

j=1

Γ n − j + qð Þ
Γ n − j + 1ð Þ γδx j − 1ð Þ − δy j − 1ð Þx j − 1ð Þð Þ,

y nð Þ = y bð Þ + 1
Γ qð Þ〠

n

j=1

Γ n − j + qð Þ
Γ n − j + 1ð Þ δ −y j − 1ð Þ + x2

�
j − 1ð Þ� �

,

8>>>>><
>>>>>:

ð12Þ

and the numerical recipes of (11) are as follows:

x nð Þ = x bð Þ + 1
Γ q1ð Þ〠

n

j=1

Γ n − j + q1ð Þ
Γ n − j + 1ð Þ γδx j − 1ð Þ − δy j − 1ð Þx j − 1ð Þð Þ,

y nð Þ = y bð Þ + 1
Γ q2ð Þ〠

n

j=1

Γ n − j + q2ð Þ
Γ n − j + 1ð Þ δ −y j − 1ð Þð + x2 j − 1ð Þ� �

:

8>>>>><
>>>>>:

ð13Þ

In here, we fix the low limit b as 0. When the parameters
are taken as γ = 1:25, δ = 0:75, and the order q is 0:99, the
commensurate-order map (10) has a chaotic attractor, see
Figure 1.

4. Bifurcations of Fractional-Order Discrete
Lorenz Map

We will study the bifurcations of the fractional-order dis-
crete Lorenz map in commensurate-order and
incommensurate-order cases in this section.

4.1. Bifurcations of Map (10). Firstly, parameter γ is fixed as
1:25, and the intervals of δ and the order q are taken as ½
0:2, 1� and ½0:6, 0:99�, respectively. The bifurcation of the
commensurate-order discrete Lorenz map, which is corre-
sponding to the difference equations (10), is studied when
δ and q are varied, see Figure 2(a), from which it is clear that
that map (10) has very abundant dynamics. Period-doubling
cascades and Hopf bifurcations can be observed. The chaos
region becomes large as the order increases from 0:65 to
0:99. In order to obtain the order of chaos appears firstly
in the map (10), a bifurcation diagram with the variation
of the order in the interval ½0:6, 0:65� and parameter δ is
plotted in Figure 2(b). It is clear that the map (10) is periodic
when q < 0:62 and is chaotic when q ≥ 0:62. Based on this,
we can get the total order for the map (10) to remain chaos
that is 1:24. The phase diagrams of map (10) with initial
conditions ðx0, y0Þ = ð0:1, 0Þ and ðx0, y0Þ = ð−0:1, 0Þ belong-
ing to different basins of attraction are plotted in Figure 3, in
which the parameter δ increases from 0:30 to 0:60, and the
order is taken as 0:95. Typical Hopf bifurcation can be
observed from Figures 3(a) and 3(b). The two limit cycles
become large as δ increases (Figure 3(c)). When δ = 0:60,
the two attractors merge into a chaotic one, see Figure 3(d).

Secondly, the parameter δ is chosen as 0:75, and the
intervals of γ and the order are ½0:2, 1:3� and ½0:7, 0:99�,

respectively. Bifurcation of the map (10) when the parameter
γ and the order q are varied is displayed in Figure 4(a). The
region of chaos becomes large as the order increases from
0:65 to 0:99. A bifurcation diagram with the variation of
the order in the interval ½0:70, 0:75� and parameter γ is plot-
ted in Figure 4(b) to show the appearance of chaos in the
map at the first time. It is clear that the map (10) is periodic
when q < 0:74 and is chaotic when q ≥ 0:74. Therefore, the
total order of the map (10) to remain chaos is 1:48 in this
case.

From Figures 2 and 4, we can see clearly that the route
leading to chaos for map (10) is Hopf bifurcation. The Hopf
bifurcation points (HPFs for short) for different values of the
order q are listed in Table 1. It is clear that HPFs decrease as
the order increases. An example is taken to show the Hopf
bifurcation when the order q = 0:95. Map (10) converges to
a fixed point for δ = 0:46 (Figure 5(a)) and to a limit cycle
for δ = 0:47 (Figure 5(b)).

4.2. Bifurcations of Map (11). In this subsection, bifurcations
of the incommensurate-order discrete Lorenz map which is
corresponding to the difference equations (11) will be stud-
ied. Parameter γ is fixed as 1.25 and order q2 = 1, and the
interval of δ is ½0:2, 1�. Figure 6(a) is the bifurcations of
map (11) when δ and q1 are varied. We can see that
period-doubling and Hopf bifurcations occur when the
parameter and the order are varied. The chaos region
becomes large as the order increases from 0:4 to 0:99. From
Figure 6(b), we can see that map (11) is periodic for q1 <
0:45 and chaotic for q1 ≥ 0:45. Then, the total order for
map (11) to remain chaos is 1:45 in this case.

Secondly, the order q1 is fixed as 1, and the interval of q2
is taken as ½0:35, 0:99�. The bifurcations with the variation of
the parameter δ and the order q2 are shown in Figure 7. It
can be seen that that the region of chaos becomes large as
the order increases from 0:35 to 0:99. We can determine that
the total order for map (11) to remain chaos is 1:4 based on
Figure 7(b).
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Figure 1: The chaotic attractor of map (10).
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Figure 2: The bifurcation diagrams of map (10) when δ and q are varied. (a) q ∈ ½0:6, 0:99�. (b) q ∈ ½0:6, 0:65�.
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Figure 3: Phase diagrams of map (10) with different initial conditions ðx0, y0Þ = ð0:1, 0Þ and ðx0, y0Þ = ð−0:1, 0Þ. (a) δ = 0:30. (b) δ = 0:50. (c)
δ = 0:55. (d) δ = 0:60.
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5. Chaos Control

In this section, chaos control for map (10) will be analyzed.
Firstly, map (10) with controllers is the follows:

CΔq
bx tð Þ = 1 + γδð Þx t − 1 + qð Þ − δy t − 1 + qð Þx t − 1 + qð Þ − x t − 1 + qð Þ + u1 t − 1 + qð Þ,

CΔq
by tð Þ = 1 − δð Þy t − 1 + qð Þ + δx2 t − 1 + qð Þ − y t − 1 + qð Þ + u2 t − 1 + qð Þ,

(

ð14Þ

where u1 and u2 denote the chaos controllers.

Theorem 3. If the controllers are taken as the following form,

u1 t − 1 + qð Þ = − 1 + γδð Þx t − 1 + qð Þ + δy t − 1 + qð Þx t − 1 + qð ÞÞ,
u2 t − 1 + qð Þ = − 1 − δð Þy t − 1 + qð Þ − δx2 t − 1 + qð Þ,

(

ð15Þ

then the chaotic behavior of map (10) can be controlled.

Proof. By substituting (15) into (14), then map (14) can be
rewritten as

CΔq
bx tð Þ = −x t − 1 + qð Þ,

CΔq
by tð Þ = −y t − 1 + qð Þ:

(
ð16Þ

The compact form of map (16) is

CΔq
b x tð Þ, y tð Þð ÞT = B × x t − 1 + qð Þ, y t − 1 + qð Þð ÞT, ð17Þ

where B =
−1 0

0 −1

 !
. The eigenvalues of B satisfy jarg λi

j = π and jλij = 2q, for i = 1, 2. It means that the chaotic
behavior of map (10) can be controlled to the zero equilib-
rium based on Theorem 1.

The system parameters are fixed as γ = 1:25, δ = 0:75 and
order q = 0:99. Map (10) is stabilized by using the controllers
when the iteration n = 1000, see Figure 8. We can see clear
that xðnÞ, yðnÞ converge to zero as time n toward to 2000.

6. Adaptive Synchronization

In here, adaptive synchronization for the Lorenz map in
fractional form will be studied. Firstly, map (10) is chosen
as the drive system and is rewritten as follows

CΔq
bx1 tð Þ = γδx1 t − 1 + qð Þ − δy1 t − 1 + qð Þx1 t − 1 + qð Þ,

CΔq
by1 tð Þ = δ −y1 t − 1 + qð Þ + x1

2 t − 1 + qð Þ� �
:

(

ð18Þ

The response system with synchronization controllers
uxðt − 1 + qÞ and uyðt − 1 + qÞ is designed as the following
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Figure 4: Bifurcation diagrams of map (10) when γ and q are varied. (a) q ∈ ½0:7, 0:99�. (b) q ∈ ½0:7, 0:75�.

Table 1: Hopf bifurcation points of map (10) for different values of
q.

q δ q δ

0.60 — 0.75 0.75

0.61 — 0.80 0.68

0.62 0.98 0.85 0.60

0.63 0.97 0.90 0.54

0.64 0.95 0.95 0.47

0.65 0.93 0.99 0.42

0.70 0.84
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Figure 5: Phase diagrams of map (10) for q = 0:95. (a) δ = 0:46. (b) δ = 0:47.
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form:

CΔυ
bx2 tð Þ = γδx2 t − 1 + qð Þ − δy2 t − 1 + qð Þx2 t − 1 + qð Þ + ux t − 1 + qð Þ,

CΔυ
by2 tð Þ = δ −y2 t − 1 + qð Þ + x2

2 t − 1 + qð Þ� �
+ uy t − 1 + qð Þ:

(

ð19Þ

The error state variables of the synchronization are
defined as

e1 t − 1 + qð Þ = x2 t − 1 + qð Þ − x1 t − 1 + qð Þ,
e2 t − 1 + qð Þ = y2 t − 1 + qð Þ − y1 t − 1 + qð Þ:

(
ð20Þ

It is well known that if the two error states variables con-

verge to 0 as the time t tends to infinity, then maps (18) and
(19) is synchronized under the controllers.

Theorem 4. The synchronization between two maps (18) and
(19) is realized if the controllers are designed as follows:

ux t − 1 + qð Þ = δy2 t − 1 + qð Þ − γδ − 1ð Þe1 t − 1 + qð Þ + δx1 t − 1 + qð Þe2 t − 1 + qð Þ,
uy t − 1 + qð Þ = δ − 1ð Þe2 t − 1 + qð Þ − δ x2 t − 1 + qð Þ + x1 t − 1 + qð Þð Þe1 t − 1 + qð Þ:

(

ð21Þ

Proof. We can obtain the error system via simple
computation
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Figure 8: The controlled results for map (10). (a) The state variable x with n (b) the state variable y with n.
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By substituting the controllers (21) into (22), error
dynamical system can be determined as the following:

CΔq
ae1 tð Þ = −e1 t − 1 + qð Þ,

CΔq
ae2 tð Þ = −e2 t − 1 + qð Þ:

(
ð23Þ

For the convenience of analysis, we give the compact
form of system (23)

CΔq
a e1 tð Þ, e2 tð Þð Þ = C × e1 t − 1 + qð Þ, e2 t − 1 + qð Þð ÞT, ð24Þ

where C =
−1 0

0 −1

" #
. Matrix C satisfies the stability condi-

tion

λij j < 2 cos
arg λij j − π

2 − q

� �q

and arg λij j > qπ
2
, i = 1, 2: ð25Þ

Therefore, synchronization between maps (18) and (19)
is realized based on Theorem 1. In other words, the equilib-
rium point of (23) is asymptotically stable.

In here, parameters are fixed as γ = 1:25, δ = 0:75 and
order q = 0:99. The initial conditions of maps (18) and (19)
are chosen as ð0:2, 0:1Þ, ð0:7, 0:3Þ. The synchronization
results are plotted in Figure 9, from which we can see that
e1 and e2 converge to zero rapidly as n towards to 300.

7. Conclusions

A fractional-order discrete Lorenz map is analyzed in this
paper. Bifurcations of the map in commensurate-order and
incommensurate-order cases are studied. The bifurcation
diagrams in a three-dimension space are shown when a
derivative order and a parameter are varied. Hopf and
periodic-doubling bifurcations can be observed. Based on
the analysis, parameter values of Hopf bifurcation points
are determined with different orders. We can conclude that
the critical values of the parameter decreases as the order
increases. It is very important for us to observe the dynami-
cal evolution of the map with the variation of an order and a
system parameter. It is worth mentioning that it is the first
time to show the dynamics of the fractional-order Lorenz
map in a three-dimension space, from which we can see that
the order is a very important parameter which affects the
dynamics of a fractional-order map. Therefore, the map with
an order has more extensively parametric space and abun-
dant dynamics. Meanwhile, it is very important for the

application of the map in secure communications and
encryption. Chaos control and synchronization for the
fractional-order discrete Lorenz map are studied through
designing the suitable controllers. The effectiveness of the
controllers is illustrated by numerical simulations. From
the results, we can also see that a high speed of stabilization
and synchronization is obtained.
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The cross-border Renminbi (RMB) business volume of third-party payment institutions makes up a small share of China’s total
cross-border business, but there is still an absolute amount of trade that cannot be disregarded. The third-party payment
institutions are subject to policy restrictions in the process of seeking development and business promotion and hope to obtain
policy support in the business, transaction amount limit, identification, and other aspects. Recently, China has made a strict
policy for third-party payment institutions and warned against issuing any new licenses concerning payment. On the other
hand, 39 payment institutions’ licenses have been canceled for various reasons. Under the premise that strict supervision
becomes normal, all payment institutions should be more cautious to develop businesses legally.

1. Introduction

In the past few decades, the internationalization of RMB has
made some achievements, but the bottleneck has emerged,
and the current international political and economic envi-
ronment has been very different from that in 2009 [1].
Under the background of the current world political and
economic environment, how to further promote the inter-
nationalization of RMB is a common concern of Chinese
officials and academia.

With the rapid development of cross-border e-com-
merce, third-party payment may be a breakthrough for the
internationalization of RMB. With the continuous maturity
of Internet technology and advanced transportation and
communication means, the world is more closely connected.
At present, China’s total economy, total import and export
trade volume, the flow of foreign students, the number of
inbound and outbound tourists, and other indicators are at
the forefront of the world. Trade development and person-
nel flow provide the basis for cross-border payment and give
birth to the vigorous development of cross-border payment
business. China’s payment licenses have been issued since
2011. Since then, the number of third-party payment institu-
tions has experienced the reality of a gradual decline to rapid

growth [2]. To serve the internationalization of RMB,
national financial stability, third-party payment industry,
and corresponding enterprises and individuals, this paper
carries out corresponding research.

Firstly, the ultimate purpose of the cross-border RMB
business of third-party payment institutions is to serve the
national strategy of RMB internationalization [3].

Secondly, policy suggestions for financial stability are
provided. With the rapid development of financial technol-
ogy and the change and innovation of international trade
mode in recent years, the degree of innovation and facilita-
tion of payment mode has been continuously improved.
The third-party payment provides payment convenience
for economic development; meanwhile, the risk problem
cannot be ignored. The risk problems in the third-party pay-
ment will bring some adverse aspects to China’s financial
stability. Objectively, we need to encourage development to
adapt to appropriate supervision and serve the overall situa-
tion of national economic construction [4, 5].

Thirdly, a reference for industries and enterprises is
provided. On how to promote the healthy development of
third-party payment institutions on a benign track and
standardize the behavior of third-party payment institutions,
it is not enough to rely on the self-discipline of enterprises
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and industries, and regulatory intervention is needed. Why
regulation? What are the main regulatory aspects? Through
the research of this paper, we hope to provide some useful
references for the third-party payment industry and enter-
prises and hope that the industry and enterprises can
consciously integrate into the cause of national financial
development and make different contributions in their
respective fields.

Theoretically, at present, there are many research articles
both home and abroad on third-party payment institutions.
However, with the vigorous development and prominent
innovation of third-party payment, from the existing litera-
ture that can be retrieved, the research results of direct
research on the cross-border RMB support policy and super-
vision of third-party payment institutions are relatively rare
[6]. Therefore, this study has specific significance from the
theoretical and academic levels.

Practically, the latest first-hand information can be
obtained through the distribution, recovery, and sorting of
the questionnaire. Through the analysis and judgment of
the first-hand information, it can provide policy support
for the national financial management institutions and pro-
vide some reference for the legal and compliant business of
the industrial sector.

2. Overview of Cross-Border RMB Business of
Third-Party Payment Institutions in China

At present, banking financial institutions have absolute
advantages in the processing scale of payment business.
They are the main force in China’s payment industry. The
influence of nonbanking payment institutions in China’s
retail payment market is prominent.

2.1. Issuance of Payment Business License. A payment busi-
ness license is also known as a payment license. According
to regulatory regulations, nonbanking financial institutions
need a license first to carry out cross-border payment
business. These licenses include the business license of
cross-border payment, which is specifically divided into
cross-border foreign exchange payment business license
and cross-border RMB payment business license. Liu et al.
[7] claimed that 56 institutions carried out cross-border pay-
ment businesses by the end of 2019. According to the newest
data from the Payment & Clearing Association of China, in
2021, 43 payment institutions launched cross-border busi-
nesses with an aggregate amount of RMB972.36 billion.

2.2. Business Model of Cross-Border Payment of Third-Party
Payment Institutions. There is no precedent for domestic
payment institutions to participate in the payment and
clearing system of other countries (regions). There are three
modes of cross-border payment business of payment
institutions: the first, cooperation with overseas payment
institutions; the second, direct cooperation with overseas
e-commerce platforms; and the third, cooperation with
domestic banks.

2.2.1. Cooperation with Overseas Payment Institutions.
Payment institutions can cooperate with overseas and local
payment institutions that have obtained financial supervi-
sion licenses, including overseas subsidiaries with relevant
business qualifications established by domestic payment
companies and overseas and local payment institutions. If
an overseas cooperative institution establishes an overseas
bank account, its funds may be paid through the overseas
bank account. By 2020, Alipay connects with more than 80
million companies and 2000 financial institutions. its
Chinese users have exceeded 1 billion, and its users outside
China have exceeded 0.3 billion, thus greatly improving the
ease of cross-border settlement. Alipay’s technical strategy
is BASIC, that is, Blockchain, AI, Security, the Internet of
Things, and Cloud Computing, in which, the blockchain
cross-border payment is derivative. Xiuting [8] used the
technical ability to support Alipay for the successful pay-
ment in industrial fields.

2.2.2. Cooperation with Overseas e-Commerce Platforms.
Payment institutions can directly provide services for over-
seas e-commerce platforms. In terms of cross-border RMB
payment, in the import business, the domestic e-commerce
platform will pay the payment to the reserve account of
the payment institution, then transfer it to the cross-border
RMB reserve account, and complete the cross-border pay-
ment by sending the customer’s cross-border payment
instruction to the cooperative bank. In the export business,
the cross-border collection cooperative institution paid the
payment to the cross-border RMB reserve account of the
payment institution. Junwen et al. [9] studied that the coop-
erative bank can automatically transfer it to the reserve
account of the payment institution after completing the
cross-border income declaration, and the payment institu-
tion can complete the merchant capital settlement.

2.2.3. Cooperation with Domestic Banks. Payment institu-
tions provide payment services for both parties of cross-
border transactions, and domestic cooperative banks provide
payment institutions with cross-border RMB collection and
payment, cross-border foreign currency collection and pay-
ment, foreign exchange settlement and sales, the balance of
payments declaration, and other services. When cooperating
with domestic banks, payment institutions are faced with the
problems of channel rate and deposit of reserves. However,
since the provision was implemented in 2019 that deposit
reserves should be 100%, it has been a great blow to the
payment institutions. The profit space of the third-party
payment institutions that could obtain the interest difference
under the provision has disappeared. However, some studies
believe that interest rate spread is not the key, and the
bargaining power of channel fees is the key [10, 11].

2.3. Overview of Cross-Border RMB Collection and Payment
Business of Third-Party Payment Institutions. In 2019,
China’s cross-border RMB receipts and payments amounted
to RMB19.7 trillion. In the same year, the cross-border RMB
collection and payment amount of third-party payment
institutions reached RMB500.424 billion, accounting for
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about 2.5% of the total people’s collection and payment
amount in that year. In terms of data comparison, the
proportion of third-party payment institutions in China’s
cross-border RMB collection and payment is small,
which can only add to the overall situation of RMB
internationalization.

3. Cross-Border RMB Support Policies of the
Third-Party Payment Institutions: Analysis
Based on Questionnaire

On May 20, 2021, a total of 56 questionnaires were distrib-
uted to third-party payment institutions with cross-border
RMB qualifications. On June 9, 2021, the first batch of ques-
tionnaires was returned, and a total of 47 questionnaires
were recovered, including 42 valid questionnaires and 5
invalid questionnaires.

3.1. Overview of Cross-Border RMB Business of Third-Party
Payment Institutions in 2020. Among the 42 valid question-
naires, the third-party payment institution with the largest
cross-border RMB business scale in 2020 had a cross-
border RMB business scale of about RMB189.2 billion,
accounting for about 40% of the total business scale of the
42 questionnaires, which was prominent. In addition to the
payment institution, there are nine third-party payment
institutions with a cross-border people’s business scale of
more than 10 billion. The total scale of the top 10 cross-
border RMB businesses accounts for about 94% of the total
scale of cross-border RMB business of all surveyed third-
party payment institutions, and the scale of the last 32
accounts for only 6% of the total scale (refer to Figure 1
for details).

3.2. Policy Basis for the Development of Third-Party Payment
Institutions. According to the feedback of the questionnaire,
the main policy basis of China’s third-party payment institu-
tions in the process of exhibition involves 9 aspects: laws,
regulations, measures, interim measures, and detailed rules,
notices, opinions, announcements, and guidelines, both local
and repealed. In particular, the abolition category is due to
the rapid development and change of business; some policies
can no longer adapt to the current business development,
and some original policies have been abolished.

3.3. Difficulties and Pain Points of Third-Party Payment
Institutions under the Existing Policy Framework. Concern-
ing the main problems encountered by third-party payment
institutions in the process of business development, among
the feedback questionnaires, 7 payment institutions made
it clear that there is no problem at present.

Other third-party payment institutions with cross-
border RMB payment business have more or less fed back
the main problems or difficulties in the process of exhibition.
Generally speaking, it involves seven aspects. Firstly, I think
the business process is cumbersome. Secondly, they believe
that the policies related to cross-border RMB payment are
not clear and unified. They hope that the policies will be uni-
fied and that there will be standardized business guidance.

Thirdly, they believe that there are practical obstacles in
overseas business, including authenticity verification, the
limited scope of a license, etc. Fourthly, we believe that we
should deepen cooperation with domestic and foreign
banks and further expand business areas. Because banks
have strong customer relationships, they can provide
high-quality customer protection to third-party payment
institutions, which are supported by advanced digital tech-
nology, good computer analysis, and processing ability; the
two complement each other. Fifthly, it is believed that there
are other factors affecting business development, such as
COVID-19 and identity. Sixthly, with the increasing use of
third-party payment, the third-party payment platform user
fund precipitation problem is serious and easily causes huge
financial risks. As the use of third-party payments gradually
increased, the number of funds invested significantly
increased, and third-party payment institutions will be
charged a large amount of interest, due to implicit improper
handling of financial risks. Seventhly, in the industry of oli-
gopoly competition, Alipay, Tenpay, and Yiqianbao occupy
more than 90% of the third-party payment market share;
most of the resources are monopolized by the oligopoly (refer
to Figure 2 for details).

3.4. Cross-Border RMB Support Policies That Third-Party
Payment Institutions Want to Obtain

3.4.1. They Hope to Promulgate Specific Measures for the
Management of the Exhibition Industry, Allowing the
Business Scope of the Exhibition Industry to Be Broader and
Clearer. Because WTO divides trade mode into merchandise
trade and commercial service trade, this article divides the
trade mode into goods trade and nongoods trade based on
WTO standards.

In terms of goods trade, only cross-border e-commerce
B2C business is supported at present, but there are more
legal and compliant businesses in the current market. For
third-party payment institutions, such businesses have more
market space, such as B2B and other industries. Therefore, it

94%

6%

The total scale of cross-border RMB
business of the top 10
The total scale of cross-border RMB
business of the last 32

Figure 1: The total scale of cross-border RMB business.
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is hoped that relevant departments can give third-party
payment institutions a wider scope of business development,
to facilitate their further expansion of cross-border RMB
business.

In terms of nongoods trade, due to different business
types, the relevant requirements of the government for
information collection may affect the compliance of certain
businesses. For example, in the digital industry, the whole
payment and transaction are completed on the Internet,
and there is no logistics delivery link because it is impossible
to collect logistics information, resulting in the inability of
third-party payment institutions to cooperate with similar
industries. Similar problems are also reflected in online car
rental, house rental, various member services, games, and
other industries.

For many cross-border e-commerce providers, while
recovering the sales revenue of overseas e-commerce plat-
forms to China, there is also a demand for funds to continue
to be used for normal operating expenses such as overseas
warehouse, procurement, tax payment, and commercial
insurance expenses. Based on this demand and the product
basis of cross-border e-commerce collection, some third-
party payment institutions are also constantly exploring
their business or extending the service scope from the collec-
tion of existing cross-border e-commerce platforms. After
receiving the sales revenue of e-commerce platforms, they
continue to provide one-stop payment services and pay the
received funds directly to their domestic goods suppliers or
service providers, It is expected to provide good payment
services for more domestic enterprises or individuals
engaged in cross-border trade.

3.4.2. It Is Hoped That the Single Transaction Limit of Service
Trade Can Be Classified. In principle, it is not allowed to
exceed RMB300,000 for current trade and other service
items. Some third-party payment institutions encounter the
problem of a single transaction limit in the actual cross-

border RMB business exhibition. For example, in the pay-
ment scenario of studying abroad, college tuition fees are
generally paid according to different school disciplines and
years, which is generally more than RMB300,000. However,
since split payment is not allowed, the third-party payment
institutions are very limited in carrying out such business.
In addition, for example, in other service trade scenarios
under the current account, such as exhibition and confer-
ence services, there will also be more than RMB300,000 busi-
ness scenarios, which will bring difficulties to the exhibition
industry of third-party payment institutions according to the
current regulations. It is hoped that the regulatory authori-
ties can conduct research and analysis on such service trade
based on the real transaction background and finally realize
the classification limit [12–14].

3.4.3. It Is Hoped That Relevant Departments Can
Promulgate Cross-Border RMB Management Measures or
Operation Guidelines as Soon as Possible. At present, the
standards for cross-border RMB business are not unified,
and the regulatory provisions are diverse, resulting in no
unified standard for third-party payment institutions to refer
to when engaging in cross-border RMB business. If relevant
departments can issue specific management measures or
operation guidelines on cross-border RMB business and
guide all third-party payment institutions to adopt unified
cross-border RMB business standards, there will be a better
and unified policy basis for the development of cross-
border RMB business of third-party payment institutions,
which is conducive to the further expansion of business of
third-party payment institutions.

3.5. They Hope to Improve the Relevant Policies of Export Tax
Rebate. There is a demand for an export tax rebate for cross-
border e-commerce, but the RMB transaction flow distrib-
uted by domestic payment companies across the border
cannot be used as the basis for the export collection of this
e-commerce because the currency is RMB and the payment
source is the provision of payment institutions, so the tax
rebate cannot be handled. It is suggested to improve the
export tax rebate policy to facilitate the export tax rebate of
cross-border export e-commerce.

3.6. They Hope to Further Improve the Facilitation of Cross-
Border Trade Settlement. In the current goods trade collec-
tion business, some third-party payment institutions will
collect and review the customer’s transaction information
one by one in advance to meet the requirements of trade
authenticity verification, resulting in increased system dock-
ing costs for customers, and some concerns about the impact
of commercial privacy disclosure and transaction timelines.
Therefore, some third-party payment institutions suggest
further improving the facilitation of cross-border goods
trade settlement based on risk and taking more convenient
monitoring measures for the relevant businesses of high-
quality platforms instead of the way of preaudit one by
one, such as post transaction spot check. In addition, the
development of trade under cross-border RMB services
mainly depends on the risk control of various banks. It is
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Figure 2: Third-party payment institution’s market share. Data
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hoped that policy development will be given based on risk
control. For example, each customer can encourage relevant
businesses to leave the country and drive the growth of
cross-border RMB business through facilitation measures
such as annual restrictions on the amount of foreign
exchange purchased and paid by cross-border people.

3.7. It Is Hoped That the Explanation and Implementation of
Policies by Relevant Departments Are Unified. For cross-
border RMB-related policies, in practice, both e-commerce
enterprises and payment institutions are faced with the
problem that many departments involved in cross-border
policies fail to reach an agreement on policies. After the
introduction of relevant policies, different institutions may
have different understanding and interpretations of the pol-
icies, which brings confusion to the payment institutions
engaged in cross-border RMB business. Therefore, the
payment institutions hope that the relevant government
departments can be more detailed and unified in the inter-
pretation of the policies, to facilitate the smooth develop-
ment of relevant businesses. At the same time, in terms
of cooperation with banks, third-party payment institu-
tions also hope that the cross-border audit standards and
cross-border material requirements of banks can be uni-
fied, the operation process can be standardized, and the
audit time can be shortened, to make cross-border trans-
actions more smooth and fast.

4. Supervision of Cross-Border RMB-Related
Businesses of Third-Party
Payment Institutions

The core of financial supervision is the supervision of finan-
cial risks (Huang Da, 2003). The core of the supervision of
cross-border RMB business for third-party payment institu-
tions is still the supervision of financial risks. To prevent
such financial risks, the supervision of cross-border RMB-
related businesses of third-party payment institutions
mainly includes the following three aspects.

4.1. Legal and Administrative Supervision: Mainly Payment
Licenses from Scratch, from Loose to Tight. When the pay-
ment business license was first issued, it was issued quickly.
However, from the issuance of payment licenses during the
period from May 2011 to March 2015, it is obviously in a
high open low trend (refer to Figure 3 for details).

In terms of the total amount, from May 2011 to Decem-
ber 2015, the total number of payment licenses issued in
China reached 271.

Since December 2015, among the licenses issued, some
licenses have been revoked due to violations, and some insti-
tutions have been merged for other reasons. Due to the rapid
issuance of licenses in previous years, the whole payment
industry ushered in a period of rapid development, but then,
there began to be problems in provisions, clearing and settle-
ment, second clearing, code set, false preauthorization (this
event is the fuse for punishing third-party payment),
machine cutting, cash out, and direct channel. The state
began to rectify the whole payment industry. From 2015 to

February 2021, 39 payment licenses have been canceled for
various reasons, including voluntary applications for cancel-
lation, merger cancellation, and more because of noncompli-
ance or illegality of business, and no new institutions have
been approved by the People’s Bank of China ever since
2015 [15].

The number of payment institutions in China from 2015
to February 2021 is shown in Figure 4.

According to the above and Figure 4, the number of
third-party payment institutions with payment licenses in
China has dropped from a historical high of 271 to only
232 (by the end of September 2021). Judging from the num-
ber of licensed institutions since the end of 2015, there will
be no significant change in the tightening trend of national
licenses.

At the same time, the state will continue to maintain a
high pressure on the unlicensed operation and payment
business and coordinate the implementation of special
inspection and “double random inspection.” For regions
and overseas merchants with a high risk of gambling and
black ash industry, organize special inspection and patrol,
establish an account blacklist system, and effectively control
the fund settlement activities of suspected online gambling
and black ash industry. Based on the reform of individual
account classification, we will consolidate the risk preven-
tion responsibilities of class II and III accounts, improve
the risk monitoring mechanism, and strengthen the risk
warning [16]. In short, the state’s supervision situation is
tightened for both unlicensed operations and payment
institutions that operate with certificates but violate laws
and regulations [17].

4.2. Technical Supervision, That Is, “Cut Off the Direct
Connection.” Under the current supervision system of
third-party payment institutions in China, Huoqi (2020)
pointed out that “cut off the direct connection” and full
deposit of reserves are the two core policies [18].
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“Cut off the direct connection” refers to cutting off the
direct data connection between the third-party payment
institution and the bank.

In the “direct connection” mode, the third-party pay-
ment institution directly connects with the bank and sends
the user’s down payment request directly to the bank in
the form of instructions to request payment. The customer’s
instructions are in the charge of the third-party payment
institution, and the bank can only transfer funds according
to the instructions of the third-party payment institution.
Under the direct connection business mode, it is difficult
for the regulator to grasp the capital flow of the third-party
payment institution’s transactions in time, so it is difficult
to control the risk.

The establishment of the Internet connection platform
can effectively solve this problem. It provides a connection
between payment institutions and banks. By November
2018, the business migration of “disconnection and direct
connection” will be completed. All network transactions
involving bank cards in the business of third-party payment
institutions need to be carried out through the Internet
connection platform. Through the Internet connection
platform, we can clearly grasp the flow of transactions and
effectively improve the supervision efficiency of third-party
payment institutions, It also improves the transparency of
clearing between payment institutions and banks and plays
an important role in preventing financial risks.

4.3. Economic Supervision

4.3.1. Deposit of Reserves. China’s first third-party payment
institution was founded in 1998, but till January 14, 2019,
100% of the reserves are required to be deposited. In the
20 years or so from the establishment of the third-party
payment institution to the full deposit of the reserves, the
payment institution has accumulated a large number of
precipitated funds in its hands by taking advantage of its
industry convenience. Meiling (2019) thought this part of
funds once brought huge benefits to the payment institution
by collecting interest. It is not too much to call it “lying and

winning” [19]. In the era when the provisions were not
required to be deposited, there was industry chaos in which
third-party payment institutions misappropriated the provi-
sions of customers, with large financial risk exposure. After
January 14, 2019, the people’s Bank of China successfully
implemented the full deposit of reserves, firmly grasped the
initiative of risk management, and made government super-
vision more confident.

4.3.2. Transaction Authenticity. Controlling the authenticity
of transactions helps to prevent cross-border money laun-
dering, cross-border gambling, cross-border online fraud,
cross-border bribery capital outflow, and other cross-
border illegal transactions. These funds may have a huge
amount and bring huge risks to the whole financial system.

From the perspective of third-party payment institu-
tions, the gradually tightened regulatory policies contradict
the increasing requirements of customers for business facil-
itation. In the current market, customers will choose the
most convenient payment institution to carry out business
according to the principle of lower compliance and risk con-
trol requirements such as data and order information. At
this time, institutions with high compliance and risk control
requirements very easily lose customers, resulting in the
phenomenon of “bad money expels good money.” Neverthe-
less, the regulatory policy will only impose stricter require-
ments on the authenticity of transactions. In the long run,
strict regulation will bring benefits to the future living space
for good third-party institutions.

Liping and Pinxian [20] thought transaction authenticity
includes the authenticity of the transaction subject and the
authenticity of the transaction background or transaction
content.

As for the authenticity of the transaction subject,
cross-border e-commerce and third-party payment institu-
tions should conduct due diligence and identify the iden-
tity of the transaction subject, mainly involving natural
person transaction subjects and institutional transaction
subjects [21–23].

(1) Natural Person Transaction Subject. For the identifica-
tion of domestic natural persons, you may apply to join
the “citizen network identification system” and “identity
online verification system” developed and launched by the
Ministry of Public Security to verify the identity information
of customers and effectively reduce risks. However, at pres-
ent, third-party payment institutions have not used such a
system, resulting in the difficulty of identity verification.
Various authors [24, 25] showed that the identification of
overseas natural persons is more difficult because the other
party is not willing to provide relevant identity information.

(2) Institutional Transaction Subject. At present, when
examining the qualification of domestic online enterprises,
third-party payment institutions cannot directly query the
list of key supervision of RMB settlement enterprises and
the list and enterprise level (A/B/C) classification of ASONE
(digital foreign exchange management platform of the State
Administration of Foreign Exchange), which must rely on
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cooperative banks, resulting in audit delay. For the trans-
action subject of overseas legal person institutions, there
are some difficulties in KYC (know your customer) work
when the third-party payment institutions access overseas
merchants [26, 27].

4.3.3. Economic Punishment for Violation of Laws and
Regulations. Since 2015, China has gradually increased the
intensity of economic punishment for the illegal acts of
third-party payment institutions, confiscated the illegal
income, and imposed a fine at the same time. Overall, from
2015 to 2020, the number of punished third-party payment
institutions reached 156 in 2018, the highest in history (see
Figure 5 for details).

In terms of amount, the amount of fines and confisca-
tions for third-party payment institutions in 2020 has
exceeded RMB400 million. Compared with the fine of
RMB1.17 million in 2015, by 2020, the amount of fines
and confiscations has become the main means of economic
supervision, and the cost of violations is too high, which is
enough for more third-party payment institutions to reflect
on whether their business is standardized. It can be pre-
dicted that the means of economic punishment has become
one of the main means to supervise third-party payment
institutions and relevant senior executives [28–30].

5. Conclusions

5.1. There Are Good Basic Conditions for the Development of
Third-Party Payment Institutions in China. The new forms
of international trade have developed rapidly, such as the
rapid development of cross-border e-commerce. In 2020,
the import and export volume of cross-border e-commerce
in China reached 1.69 trillion yuan, an increase of 31.1%.
The total volume of the market procurement trade also
exceeded 100 billion US dollars. Taking advantage of these
basic conditions, some payment institutions have made their

contributions to the overall strategy of RMB internationali-
zation while achieving the development of cross-border
RMB business. Generally speaking, the foundation is good,
which provides conditions for the rapid, healthy, and
standardized development of China’s third-party payment
institutions.

5.2. The Cross-Border RMB Business of Third-Party Payment
Institutions Plays a Supporting Role in the Overall Situation
of RMB Internationalization. From the past data analysis,
commercial banks are still the absolute main body of China’s
current cross-border RMB business. Indeed, the share of
third-party payment institutions in China’s overall cross-
border RMB business is small (2.5% in 2019), but in absolute
terms, it has exceeded 500 billion yuan in 2019, which
cannot be ignored. The standardized development of the
cross-border RMB business of third-party payment institu-
tions is a useful supplement to China’s cross-border RMB
business and will help the overall situation of China’s RMB
internationalization.

5.3. Third-Party Payment Institutions Hope to Get Policy
Support in Cross-Border RMB Business. According to the
questionnaire and relevant references, third-party payment
institutions have made some achievements in carrying out
cross-border RMB business, but at the same time, they also
feel that some policy restrictions have bound their hands.
Generally speaking, third-party payment institutions hope
to obtain policy support from relevant national departments
in terms of cross-border RMB business, such as exhibition
guidance, license scope, transaction limit, export tax rebate,
and consistency of policy implementation and understand-
ing. It is hoped that relevant departments will earnestly
consider the reasonable demands of third-party payment
institutions and give more business autonomy and conve-
nience to third-party payment institutions within the scope
permitted by laws and policies, to promote their better and
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faster development. Because of the above investigation and
analysis, the following suggestions are put forward.

First: it is suggested that the regulators should give policy
support to third-party payment institutions in respect of
routine business, unconventional business, and innovative
business. Of course, these support policies should be based
on the principles of real transaction background and con-
trollable risk, and the support policies should be flexible
and in line with market development, with support and
inclusiveness as the starting point, to better understand
and support the new things encountered by third-party
payment institutions in the forefront of cross-border RMB
payment.

Second: it is suggested to realize the classified limit
instead of treating all similar cross-border RMB businesses
with a unified limit standard. At present, the single transac-
tion of service trade and other current accounts shall not
exceed 300,000 yuan in principle, which restricts the normal
development of third-party payment institutions and is not
conducive to their development.

Third: it is suggested to provide more convenient policy
support for third-party payment institutions that conduct
business legally and in compliance, specifically to include
export tax rebate, identity recognition, unified methods,
consistent policy implementation standards, etc., to solve
the embarrassing situation faced by third-party payment
institutions in the process of business development.

5.4. Third-Party Payment Institutions Engaged in Cross-
Border RMB Business Should Develop in a Standardized
Manner under Strict Supervision. The state’s supervision of
third-party payment institutions is becoming more and
more strict. Third-party payment institutions engaged in
cross-border RMB business face a more complex business
environment due to their cross-border business, so they
should be more cautious in terms of business legitimacy
and compliance. Thus, the situation of “bad money expelling
good money” may occur in the past with the continuous
development and progress of the state in legal, administra-
tive, technical, economic, and other regulations. The third-
party payment institutions engaged in business in violation
of laws and all other guidelines will face a heavy blow from
the regulators. Strict supervision is a long-term trend of
supervision in the financial field. Any third-party payment
institution should standardize its development and win the
future for itself.
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In this manuscript, we present the generalized hypergeometric function of the type r Fr , r > 2 and extension of the K Laguerre

polynomial for the K extended Laguerre polynomials fAðαÞ
r,n,kðxÞg. Additionally, we describe the K generating function, K

recurrence relations, and KS Rodrigues formula.

1. Introduction

Laguerre polynomials are utilized to investigate non-central
Chi-square distribution. Many works are existed in the liter-
ature with implementation to classical orthogonal polyno-
mials. There many extensions of Laguerre polynomials.

A large number of properties of Laguerre polynomials
have been described in classical works, e.g., Erdélyi et al.
[1] and Bell [2]; also we can refer to Wang and Guo [3]
and Mathai [4].

Chak [5] has given a representation for the Laguerre
polynomials. Carlitz [6] proved the recurrence relations
involving Laguerre polynomials. Al-Salam [7] proved several
results involving Laguerre polynomials. Prabhakar [8]
introduced that generating functions, integrals, and recur-
rence relations are obtained for the polynomials Zα

nðx ; kÞ
in xk:.

Andrews et al. [9], Chen and Srivastava [10], Trickovic
and Stankovic [11], Radulescu [12], and Doha et al. [13]
have done a lot of work for properties of Laguerre polyno-
mials. Akbary et al. [14] can be referred for other application
of Laguerre polynomials. Li [15], Aksoy et al. [16], Wang
[17], and Krasikov and Zarkh [18] studied problems of per-
mutation of polynomials; bijection that can induce polyno-
mials with integer coefficients is modulo m.

In this manuscript, we present the properties of the
extending Laguerre polynomial including r Fr , r > 2; we con-
sider

L αð Þ
n xð Þ = 1 + αð Þn

n! 1F1 −n ; 1 + α ; xð Þ: ð1Þ

Shively [19] extended the Laguerre polynomials as

Rn a, xð Þ = að Þ2n
n! að Þn 1F1 −n ; a + n ; xð Þ: ð2Þ

Habibullah [20] demonstrated the Rodrigues formula as

Rn a + 1, xð Þ = exx−α−n

n!
Dn xα+2ne−x
� �

,

L αð Þ
n xð Þ = exx−α

n!
Dn xα+ne−xð Þ:

ð3Þ

Erdélyi et al. [1] introduced

Dm xα+mL α+mð Þ
n xð Þ

h i
= Γ α +m + n + 1ð Þ

Γ α + n + 1ð Þ xαL αð Þ
n xð Þ,D = d

dx
:

ð4Þ
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Khan and Habibullah [21] introduced A2,nðxÞ = 2F2ð−n
/2, ð−n + 1/2Þ ; 1/2, 1 ; x2Þ:

Khan and Kalim [22] introduced

A αð Þ
3,m yð Þ = 1 + αð Þm

m! 3F3
−m
3 , −m + 1

3 , −m + 2
3 ; 1 + α

3 , 2 + α

3 , 3 + α

3 ; y3
� �

:

ð5Þ

Khan et al. [23] proposed extended Laguerre polyno-

mials A
ðαÞ
q, n

ðxÞ
( )

.

Parashar [24] presented a new set of Laguerre polyno-
mials Lðα,hÞn ðxÞ related to the Laguerre polynomials LðαÞn ðxÞ:
Sharma and Chongdar [25] proved an extension of bilateral
generating functions of the modified Laguerre polynomials.

Researchers [26–28] found additional properties of k
gamma and k beta functions. Then, Mubeen and Habibullah
[29] introduced k fractional integrals and discussed its appli-
cation. Mubeen and Habibullah [30] introduced an integral
representation of some k hypergeometric functions. Krasniqi
[31] derived some properties of the k gamma and k beta
function. Mubeen [32] proved the properties of confluent k
integrals by using k fractional integrals. There is a tremen-
dous scope to study k polynomials using k gamma, k beta,
and k hypergeometric functions. Kokologiannaki and Kras-
niqi [33] introduced k analogue of the Riemann Zeta func-
tion and also proved some inequities relating to Riemann
Zeta function and k gamma functions.

Din et al. [34] understand the dynamical behavior such
diseases; they fitted a susceptible-infectious quarantined
model for human cases with constant proportions. Din
et al. [35] investigated a newly constructed system of equa-
tion for hepatitis B disease in sense of Atanganaa–Baleanu
Caputo (ABC) fractional order derivative. Din et al. [36]
developed the analysis of a non-integer-order model for hep-
atitis B (HBV) under singular type Caputo fractional order
derivative. They investigated proposed system for an
approximate or semi-analytical solution using Laplace trans-
form along with decomposition techniques by Adomian
polynomial of nonlinear terms and some perturbation tech-
niques of homotopy (HPM). Din [37] investigated the
spread of such contagion by using a delayed stochastic epi-
demic model with general incidence rate, time-delay trans-
mission, and the concept of cross immunity.

Ain et al. [38] impression of activated charcoal is shaped
by the fractional dynamics of the problem, which leads to
speedy and low-cost first aid. Ain et al. [39] presented an
impulsive differential equation system, which is useful in
examining the effectiveness of activated charcoal in detoxify-
ing the body with methanol poisoning. Din and Ain [40]
developed a model based on a stochastic process that could
be utilized to portray the effect of arbitrary-order derivatives.
A nonlinear perturbation is used to study the proposed sto-
chastic model with the help of white noises.

Rehman et al.’s [41] unsaturated porous media were ana-
lyzed by solving Burger’s equation using the variational iter-
ative modeling and homotopy perturbation method. Wang

and Wang [42] described two different types of plasma
models with variable coefficients by using the fractal deriva-
tive. Wang [43] investigated the fractal nonlinear dispersive
Boussineq-like equation by variational perspective for the
first time. The fractal variational principle of the fractal
Boussineq-like equation was established via fractal semi-
inverse method (FSM).

2. Extended Polynomials

Lemma 1.
If k, j ∈ℤ+ and n is any non-negative integer. Then, we

will get

−n
r

� �
kj

−n + 1
r

� �
kj

⋯
−n + r − 1

r

� �
kj

= −1ð Þrkj n!
rrkj n − rkjð Þ! :

ð6Þ

Proof.

−n
r

� �
kj

−n + 1
r

� �
kj

⋯
−n + r − 1

r

� �
kj

= −n
r

� � −n
r

+ 1
� � −n

r
+ 2

� �
⋯

−n
r

+ kj − 1
� � −n + 1

r

� �
−n + 1

r
+ 1

� �
−n + 1

r
+ 2

� �
⋯

−n + 1
r

+ kj − 1
� �

−n + r − 1
r

� �
−n + r − 1

r
+ 1

� �
−n + r − 1

r
+ 2

� �
⋯

−n + r − 1
r

+ kj − 1
� �

= −n
r

� � −n + r
r

� � −n + 2r
r

� �
⋯

−n + rkj − r
r

� �
−n + 1

r

� �
−n + r + 1

r

� �
−n + 2r + 1

r

� �
⋯

−n + rkj − r + 1
r

� �
−n + r − 1

r

� �
−n + 2r − 1

r

� �
−n + 3r − 1

r

� �
⋯

−n + rkj − 1
r

� �
:

ð7Þ

By simplification we get our desired result.

Lemma 2.
If k ∈ℤ+ and n is any non-negative integer, thus

αð Þkn = kkn
α

k

� �
n

α + 1
k

� �
n

⋯
α + k − 1

k

� �
n

: ð8Þ

Rainville [44] (p 22)).

Lemma 3.
Assume that k ∈ℤ+ and n is any non-negative integer.

Then, we reach

〠
∞

n=0
〠
n

k=0
B k, nð Þ = 〠

∞

n=0
〠
∞

k=0
B k, n + kð Þ: ð9Þ

Rainville [44] (p 57)).
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Lemma 4.
Assume that k ∈ℤ+ and n is any non-negative integer.

Thus, we have

〠
∞

n=0
〠
∞

k=0
B k, nð Þ = 〠

∞

n=0
〠
n

k=0
B k, n − kð Þ: ð10Þ

Rainville [44] (p 56)).

3. The K Extended Laguerre

Polynomials AðαÞ
r,n,kðxÞ

We describe the K extended Laguerre polynomial set f
AðαÞ
r,n,kðxÞg as

where α ∈ℝ,n, r, k ∈ℤ+.

Theorem 5.

If fAðαÞ
r,n,kðxÞg, are the K extended Laguerre polynomials.

Then

A αð Þ
r,n,k xð Þ = ex rk + αð Þn,k 〠

n/rk½ �

j=0

−1ð Þrkj
n − rkj ; kð Þ! rk + αð Þrkj

xð Þrkj
rkj ; kð Þ! ,

ð12Þ

α ∈ℝ, n, r, k ∈ℤ+: ð13Þ
Proof.

Consider

A αð Þ
r,n,k xð Þ = ex rk + αð Þn,k

n ; kð Þ! qFq,k

−n
r
, k

� �
, −n + k

r
, k

� �
,⋯, −n + rk + 1

r
, k

� �
;

;xr

α + rk
r

, k
� �

, α + rk + 1
r

, k
� �

,⋯, α + 2rk − 1
r

, k
� �

0
BBBBBBB@

1
CCCCCCCA
:

=
ex rk + αð Þn,k

n ; kð Þ! × 〠
n/rk½ �

j=0

−n/rð Þ, kð Þ j −n + k/rð Þ, kð Þj ⋯ −n + rk + 1/rð Þ, kð Þj
α + kq/rð Þ, kð Þ j α + qk + 1/rð Þ, kð Þj ⋯ α + 2rk − 1/rð Þ, kð Þj

( )
xð Þrkj

rkj ; kð Þ! :

ð14Þ

By using Lemma (1)

Table 1: .

The extended Laguerre polynomials A αð Þ
q,n xð Þ Khan et al. [23]

The K extended Laguerre polynomials A αð Þ
r,n,k xð Þ

A αð Þ
q,n xð Þ = ex q + αð Þn

n! qFq

−n
q , −n + 1

q ,⋯, −n + q − 1
q ;

q + α
q , q + 1 + α

q ,⋯, 2q + α − 1
q

; xq
0
@

1
A

A αð Þ
r,n,k xð Þ = ex rk + αð Þn,k

n ; kð Þ! r Fr,k

−n
r , k
� �

, −n + k
r , k

� �
,⋯, −n + rk − 1

r , k
� �

;
α + kr

r , k
� �

, α + rk + 1
r , k

� �
,⋯, α + 2rk − 1

r , k
� � ; xr

 !
:

If we put k = 1 in our paper, then we get the result of Khan et al. [23].

A αð Þ
r,n,k xð Þ = ex rk + αð Þn,k

n ; kð Þ! r Fr,k

−n
r
, k

� �
, −n + k

r
, k

� �
,⋯, −n + rk + 1

r
, k

� �
;

α + kr
r

, k
� �

, α + rk + 1
r

, k
� �

,⋯, α + 2rk − 1
r

, k
� � ; xr

0
BBB@

1
CCCA, ð11Þ

A αð Þ
r,n,k xð Þ = ex rk + αð Þn,k

n ; kð Þ!

× 〠
n/rk½ �

j=0

−1ð Þrkj n ; kð Þ!
rr j n − rkj ; kð Þ! α + rk/rð Þ, kð Þj α + rk + 1/rð Þ, kð Þj ⋯ α + 2rk − 1/rð Þ, kð Þj

" #
xð Þrkj

rkj ; kð Þ! :
ð15Þ
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Now, by applying Lemma (2), we get our desired result.

4. K Generating Functions

Theorem 6.
Suppose that n, j, k ∈ℤ+. Thus, we reach

〠
∞

n=0
〠
n/rk½ �

j=0

−1ð Þrkjextn
n − rkj ; kð Þ! rk + αð Þrkj

xð Þrkj
rkj ; kð Þ!

= exMk tð Þ0Fr,k −−; rk + α

r
; k

� �
, rk + 1 + α

r
; k

� �
,⋯, 2rk + α − 1

r
; k

� �
; −xt

r

� �r� �
:

ð16Þ

Proof.
We have

〠
∞

n=0
〠
n/rk½ �

j=0

−1ð Þrkjextn
n − rkj ; kð Þ! rk + αð Þrkj

xð Þrkj
rkj ; kð Þ!

= 〠
∞

n=0
〠
∞

j=0

−1ð Þrkjextn+rkj
n ; kð Þ! rk + αð Þrkj

xð Þrkj
rkj ; kð Þ!

= ex 〠
∞

n=0

tn

n ; kð Þ!

" #
〠
∞

j=0

−1ð Þrkjtrkj
rk + αð Þrkj

xð Þrkj
rkj ; kð Þ!

" #

= exMk tð Þ〠
∞

j=0

−xtð Þrkj
rk + αð Þrkj rkj ; kð Þ!

ð17Þ

By applying Lemma (2), we get

〠
∞

n=0
〠
n/rk½ �

j=0

−1ð Þrkjextn
n − rkj ; kð Þ! rk + αð Þrkj

xð Þrkj
rkj ; kð Þ!

= exMk tð Þ

× 〠
∞

j=0

−xtð Þrkj
rrkj rk + α/rð Þ ; kð Þj rk + 1 + α/rð Þ ; kð Þj ⋯ 2rk + α − 1/rð Þ ; kð Þj rkj ; kð Þ! :

ð18Þ

After simplification, we get our result.

Corollary 7.
Suppose that α ∈ℝand n, r, j, k ∈ℤ+. Thus, we reach

〠
∞

n=0

A
αð Þ

r, n, k
xð Þtn

rk + αð Þn,k
= exMk tð Þ0Fr,k

−−;
−xt
r

� �r

rk + α

r
; k

� �
, rk + 1 + α

r
; k

� �
,⋯, 2rk + α − 1

r
; k

� �
;

0
BBBBBB@

1
CCCCCCA
:

ð19Þ

Proof.

From Equation (12), we acquire

〠
∞

n=0

A
αð Þ

r, n, k
xð Þ

rk + αð Þn,k

2
6664

3
7775tn = 〠

∞

n=0
〠
n/rk½ �

j=0

−1ð Þrkj
n − rkj ; kð Þ! rk + αð Þrkj

" #
xð Þrkj

rkj ; kð Þ!

" #
tn:

ð20Þ

Then, we have our result.

Theorem 8.
If c ∈ℤ+, then

〠
∞

n=0

cð Þn,kA
αð Þ

r, n, k
xð Þtn

α + rkð Þn,k
= ex

1 − ktð Þc/kk

× r Fr,k

c
r
, k

� �
, c + k

r
, k

� �
,⋯, c + rk + 1

r
, k

� �
; −xt

1 − ktð Þ1/kk

 !r

α + rk
r

, k
� �

, α + rk + 1
r

, k
� �

,⋯, α + 2rk − 1
r

, k
� �

;

0
BBBBB@

1
CCCCCA:

ð21Þ

Proof.
From Equation (20), we note that

〠
∞

n=0
cð Þn

A
αð Þ

r, n, k
xð Þ

rk + αð Þn,k

2
6664

3
7775tn = 〠

∞

n=0
cð Þnex 〠

n/rk½ �

j=0

−1ð Þrkj
n − rkj ; kð Þ! rk + αð Þrkj

" #
xð Þrkj

rkj ; kð Þ!

" #
tn:

ð22Þ

We get

〠
∞

n=0

cð Þn,kA
αð Þ

r, n, k
xð Þtn

rk + αð Þn,k
= 〠

∞

n=0
〠
∞

j=0

cð Þn+rkj,kextn+rkj
n ; kð Þ!

−1ð Þr j xð Þrkj
rk + αð Þrkj,k rkjð Þ!

= 〠
∞

j=0
〠
∞

n=0

c + rkjð Þn,ktn
n ; kð Þ!

" #
cð Þr j,k

α + rkð Þr j,k

" #
ex −xtð Þrkj
rkj ; kð Þ! ,

ð23Þ

Since ðcÞn+rkj,k = ðc + rkjÞn,kðcÞr j,k, and ð1 − ktÞ−ðm/kÞ
k =

∑∞
n=0ðmÞn,ktn/ðn ; kÞ! it thus implies that

〠
∞

n=0

cð Þn,kA
αð Þ

r, n, k
xð Þtn

α + rkð Þn,k
= 〠

∞

j=0

cð Þrkj,k
1 − tð Þc+rkj

h i
α + rkð Þr j,k

2
4

3
5 ex −xtð Þrkj

rkj ; kð Þ!

= ex

1 − ktð Þc/kk
〠
∞

j=0

cð Þrkj,k
rk + αð Þr j,k

" # −xt/ 1 − ktð Þ1/kk

� �r jk
rjk ; kð Þ!

ð24Þ

Corollary 9.
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Assume that α ∈ℝ and n, r, j, k ∈ℤ+. Thus, we reach

〠
∞

n=0
A

αð Þ
r, n, k

xð Þtn = 1

1 − ktð Þ α+qkð Þ/k
k

exp
x − 2xt
1 − t

� �
: ð25Þ

Proof.
We choose c = r + α in Equation (21). We can reach the

desired results.

5. K Recurrence Relations

Theorem 10.

Assume that α ∈ℝ and n, j, k ∈ℤ+. Thus, we reach

xDA
αð Þ

r, n, k
xð Þ = n + xð ÞA

αð Þ
r, n, k

xð Þ − rk + α + n − 1ð ÞA
αð Þ

r, n − 1, k
xð Þ,D = d

dx
:

ð26Þ

Proof.
From Equation (16)

Let

σr,n,k xð Þ =
A

αð Þ
r, n, k

xð Þ

α + rkð Þn,k
:

ð28Þ

Suppose that

0Fr,k

−−; −xt
r

� �r

rk + α

r
; k

� �
, rk + 1 + α

r
; k

� �
,⋯, 2rk + α − 1

r
; k

� �
;

0
BBB@

1
CCCA = ψ

xrtr

r

� �
:

ð29Þ

Then

F = exMk tð Þψ xrtr

r

� �
= 〠

∞

n=0
σr,n,k xð Þtn: ð30Þ

By taking partial derivatives,

∂F
∂x

= exMk tð Þψ + xr−1trexMk tð Þψ′, ð31Þ

∂F
∂t

= exMk tð Þψ + xrtr−1exMk tð Þψ′, ð32Þ

x
∂F
∂x

− t
∂F
∂t

= xF − tF: ð33Þ

Since

F = 〠
∞

n=0
σr,n,k xð Þtn, ð34Þ

therefore ∂F/∂x =∑∞
n=0σr,n,k′ ðxÞtn, and tð∂F/∂tÞ =∑∞

n=0n
σr,n,kðxÞtn.

Equation (33), then yields

x〠
∞

n=0
σr,n,k′ xð Þtn − 〠

∞

n=0
nσr,n,k xð Þtn

= x〠
∞

n=0
σr,n,k xð Þtn − 〠

∞

n=0
σr,n,k xð Þtn+1 = x〠

∞

n=0
σr,n,k xð Þtn

− 〠
∞

n=1
σr,n−1,k xð Þtn:

ð35Þ

We get σr,0′ ðxÞ = 0, and for n > 1, we get our result.

Theorem 11.
If α ∈ℝ and n ≥ 2, then

DA
αð Þ

r, n, k
xð Þ =DA

αð Þ
r, n − 1, k

xð Þ + A
αð Þ

r, n, k
xð Þ − 2A

αð Þ
r, n − 1, k

xð Þ:

ð36Þ

Proof.
By (25), we reach

1 − tð Þ−rk−αexp x
1 − 2t
1 − t

� �� 	
= 〠

∞

n=0
A

αð Þ
r, n, k

xð Þtn: ð37Þ

Let

F = A tð Þexp x
1 − 2t
1 − t

� �� 	
= 〠

∞

n=0
yr,n,k xð Þtn, ð38Þ

〠
∞

n=0

A
αð Þ

r, n, k
xð Þtn

rk + αð Þn,k
= exMk tð Þ0Fr,k

−−; −xt
r

� �r

rk + α

r
; k

� �
, rk + 1 + α

r
; k

� �
,⋯, 2rk + α − 1

r
; k

� �
;

0
BBB@

1
CCCA: ð27Þ
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∂F
∂x

= 1 − 2t
1 − t

� �
A tð Þexp x

1 − 2t
1 − t

� �� 	
, ð39Þ

1 − tð Þ ∂F∂x = 1 − 2tð ÞA tð Þexp x
1 − 2t
1 − t

� �� 	
: ð40Þ

By using Equation (38), we obtain

1 − tð Þ ∂F∂x = 1 − 2tð ÞF: ð41Þ

Since F = 〠
∞

n=0
yr,n,k xð Þtn, we reach ∂F∂x = 〠

∞

n=0
yr,n,k′ xð Þtn:

ð42Þ

Equation (41) can be expressed as

〠
∞

n=0
yr,n,k′ xð Þtn − 〠

∞

n=0
yr,n,k′ xð Þtn+1 = 〠

∞

n=0
yr,n,k xð Þtn − 2〠

∞

n=0
yr,n,k xð Þtn+1:

ð43Þ

We get yr,0,k′ ðxÞ = 0, yr,1,k′ ðxÞ = 0, and for n > 2, we get our
result.

Theorem 12.
If α ∈ℝ and n ≥ r, then

DA
αð Þ

r, n, k
xð Þ = A

αð Þ
r, n, k

xð Þ − 〠
n−1

j=0
A

αð Þ
r, j, k

xð Þ: ð44Þ

Proof.
We have

∂F
∂x

= 1 − t
1 − t

� 	
F: ð45Þ

Applying Equation (38) yields

∂F
∂x

= 1 − t
1 − t

� 	
〠
∞

n=0
yr,n,k xð Þtn: ð46Þ

By using Equation (42), we obtain

〠
∞

n=0
yr,n,k′ xð Þtn = 〠

∞

n=0
yr,n,k xð Þtn − 〠

∞

n=0
tn+1

" #
〠
∞

n=0
yr,n,k xð Þtn

" #

= 〠
∞

n=0
yr,n,k xð Þtn − 〠

∞

n=0
〠
∞

j=0
yr,j,k xð Þt jtn+1

ð47Þ

By using Lemma (4), we get

〠
∞

n=0
yr,n,k′ xð Þtn = 〠

∞

n=0
yr,n,k xð Þtn − 〠

∞

n=0
〠
n

j=0
yr,j,k xð Þtn+1

= 〠
∞

n=0
yr,n,k xð Þtn − 〠

∞

n=1
〠
n−1

j=0
yr,j,k xð Þtn

ð48Þ

Then, we have yr,0,k′ ðxÞ = 0, yr,1,k′ ðxÞ = 0, and for n > r,

yr,n,k′ xð Þ = yr,n,k xð Þ − 〠
n−1

j=0
yr,j,k xð Þ: ð49Þ

We get our desired result.

Theorem 13.
Suppose that α ∈ℝand n ≥ r + 1. Thus, we get

nA
αð Þ

r, n, k
xð Þ = 3x − rk − αð ÞA

αð Þ
r, n − 1, k

xð Þ − rk + α + n − 2ð ÞA
αð Þ

r, n − 2, k
xð Þ:

ð50Þ

Proof.
We have

0 = nA
αð Þ

r, n, k
xð Þ − xDA

αð Þ
r, n − 1, k

xð Þ + 2x − rk − α − n + 1ð ÞA
αð Þ

r, n − 1, k
xð Þ, nA

αð Þ
r, n, k

xð Þ = xDA
αð Þ

r, n − 1, k
xð Þ − 2x − rk − α − n + 1ð ÞA

αð Þ
r, n − 1, k

xð Þ:

ð51Þ

Then, after simplification, we get our result.

Theorem 14.
Assume that α ∈ℝand n, r, j, k ∈ℤ+. Thus, we obtain

A
1 + αð Þ

r, n − 1, k
xð Þ + A

αð Þ
r, n, k

xð Þ = A
1 + αð Þ
r, n, k

xð Þ: ð52Þ

Proof.
From Equation (12), we obtain

A
1 + αð Þ

r, n − 1, k
xð Þ = ex rk + 1 + αð Þn−1,k

〠
n−1ð Þ/rk½ �

j=0

−1ð Þrkj
n − 1 − rkj ; kð Þ! r + 1 + αð Þrkj

xrkj

rkj ; kð Þ! , ð53Þ

so

6 Advances in Mathematical Physics



that-

A
ðαÞ
r, n, k

ðxÞ = exðrk + αÞn,k∑½n/rk�
j=0 ðð−1Þrkj/ðn − rkj ; kÞ!

ðrk + αÞrkjÞððxÞrkj/ðrkj ; kÞ!Þ:

Then, we acquire

6. K Differential Equation

Theorem 15.
Assume that α ∈ℝ and n ≥ q. Thus, we reach

xD2A
αð Þ

r, n, k
xð Þ + rk + α − 3xð ÞDA αð Þ

r,n,k xð Þ + 2x + n − rk − αð ÞA αð Þ
r,n,k xð Þ = 0:

ð55Þ

Proof.
We have

xD2A αð Þ
r,n,k xð Þ +DA αð Þ

r,n,k xð Þ = n + xð ÞDA αð Þ
r,n,k xð Þ + A αð Þ

r,n,k xð Þ − rk + α + n − 1ð ÞDA αð Þ
r,n−1,k xð Þ:

ð56Þ

By using Equation (36), we get

xD2A αð Þ
r,n,k xð Þ +DA αð Þ

r,n,k xð Þ = n + xð ÞDA αð Þ
r,n,k xð Þ + A αð Þ

r,n,k xð Þ
− rk + α + n − 1ð Þ DA αð Þ

r,n,k xð Þ − A αð Þ
r,n,k xð Þ + 2A αð Þ

r,n−1,k xð Þ
h i

,

ð57Þ

or

xD2A αð Þ
r,n,k xð Þ + rk + α − xð ÞDA αð Þ

r,n,k xð Þ = rk + α + nð ÞA
αð Þ

r, n, k
xð Þ − 2 rk + α + n − 1ð ÞA αð Þ

r,n−1,k xð Þ:

ð58Þ

By using Equation (26), we have

xD2A αð Þ
r,n,k xð Þ + rk + α − xð ÞDA αð Þ

r,n,k xð Þ
= rk + α + nð ÞA αð Þ

r,n,k xð Þ + 2xDA αð Þ
r,n,k xð Þ

� − 2 n + xð ÞDA αð Þ
r,n,k xð Þ,

ð59Þ

or

xD2A αð Þ
r,n,k xð Þ + rk + α − 3xð ÞDA αð Þ

r,n,k xð Þ + 2x + n − rk − αð ÞA αð Þ
r,n,k xð Þ = 0:

ð60Þ

7. K Rodrigues Formula

Theorem 16.
Assume that α ∈ℝ and n, j, k ∈ℤ+. Thus, we reach

A αð Þ
r,n,k xð Þ = x− rk−1ð Þ−αe2x

n ; kð Þ! Dn
k x rk−1ð Þ+α+nke−x
� �

: ð61Þ

Proof.
We take into consideration the K extended Laguerre

polynomials involving

A
1 + αð Þ

r, n − 1, k
xð Þ +A

αð Þ
r, n, k

xð Þ = ex rk + 1 + αð Þn−1,k 〠
n−1
rk½ �

j=0

−1ð Þrkj
n − 1 − rkj ; kð Þ! r + 1 + αð Þrkj

xrkj

rkj ; kð Þ! e
x rk + αð Þn,k 〠

n
rk½ �

j=0

−1ð Þrkj
n − rkj ; kð Þ! rk + αð Þrkj

xð Þrkj
rkj ; kð Þ!

= ex 〠
n−1
rk½ �

j=0

rk + α + n − 1ð Þ! −1ð Þrkj
n − 1 − rkj ; kð Þ! r + α + rkjð Þ!

xrkj

rkj ; kð Þ! + 〠
n
rk½ �

k=0

rk + α + n − 1ð Þ! −1ð Þrkj
n − rkj ; kð Þ! r + α + rkj − 1ð Þ!

xrkj

rkj ; kð Þ!

2
4

3
5

= ex 〠
n−1
rk½ �

j=0

rk + α + n − 1ð Þ! −1ð Þrkj
n − 1 − rkj ; kð Þ! r + α + rkjð Þ!

xrkj

rkj ; kð Þ! + 〠
n−1
rk½ �

k=0

rk + α + n − 1ð Þ! −1ð Þrkj
n − rkj ; kð Þ! r + α + rkj − 1ð Þ!

xrkj

rkj ; kð Þ! +
xrkn

rkn ; kð Þ!

2
4

3
5

= ex
〠
n−1
rk½ �

j=0

r + α + n − 1ð Þ!xrkj −1ð Þrkj
rkj ; kð Þ!

1
n − 1 − rkj ; kð Þ! r + α + rkjð Þ! +

1
n − rkj ; kð Þ! r + α + rkj − 1ð Þ!


 �
+ xrkn

rkn ; kð Þ!

2
6666664

3
7777775

= ex 〠
n−1
rk½ �

j=0

r + α + n − 1ð Þ! −1ð Þrkj
n − rkj ; kð Þ! r + α + rkjð Þ! r + α + nf g xrkj

rkj ; kð Þ! +
xrkn

rkn ; kð Þ!

2
4

3
5 = ex 〠

n−1
rk½ �

j=0

r + α + nð Þ! −1ð Þrkj
n − rkj ; kð Þ! r + α + rkjð Þ!

xrkj

rkj ; kð Þ! +
xrkn

rkn ; kð Þ!

2
4

3
5

= ex r + 1 + αð Þn,k 〠
n−1
rk½ �

j=0

−1ð Þrkj
n − rkj ; kð Þ! r + 1 + αð Þr j,k

xrkj

rkj ; kð Þ! +
xrkn

rkn ; kð Þ!

2
4

3
5 = ex r + 1 + αð Þn,k 〠

n
rk½ �

j=0

−1ð Þrkj
n − rkj ; kð Þ! r + 1 + αð Þr j,k

xrkj

rkj ; kð Þ! = A
1 + αð Þ
r, n, k

xð Þ:

ð54Þ
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r > 22F2, r > 2,

A αð Þ
r,n,k xð Þ = ex rk + αð Þn,k

n ; kð Þ! r Fr,k

−n
r
, k

� �
, −n + k

r
, k

� �
,⋯, −n + rk + 1

r
, k

� �
;

α + rk
r

, k
� �

, α + rk + 1
r

, k
� �

,⋯, α + 2rk − 1
r

, k
� � ; xr

0
BBB@

1
CCCA:

ð62Þ

By Theorem (12), we have

A αð Þ
r,n,k xð Þ = ex

n ; kð Þ! 〠
n/rk½ �

j=0

n ; kð Þ!
n − rkj ; kð Þ! rkj ; kð Þ!

� 	
rk + αð Þn,kxrkj
rk + αð Þr j,k

= exx− rk−1ð Þ−α

n ; kð Þ! 〠
n/r½ �

j=0

−1ð Þrkj n ; kð Þ!
n − rkjð Þ! rkj ; kð Þ!

" #
α + rkð Þn,kxrkj+α+ rk−1ð Þ

α + rkð Þr j,k
:

ð63Þ

Since Dnk−r jkðxn+α+ðr−1ÞÞ = ðα + rkÞn,kxrj+α+ðr−1Þ/

ðα + rkÞr j,k, we get

A αð Þ
r,n,k xð Þ = x− r−1ð Þ−αe2x

n ; kð Þ! 〠
n/rk½ �

j=0

n ; kð Þ!
n − rjk ; kð Þ! rjð Þ!

� 	
−1ð Þrkje−x

h i
Dnk−rkj xn+α+ rk−1ð Þ

� �h i

= x− r−1ð Þ−αe2x

n ; kð Þ! 〠
n/rk½ �

j=0

n

Crjk;kD
nk−rkj xn+α+ rk−1ð Þ

� �
Drkj e−xð Þ

ð64Þ

Then, we get our desired result.

8. Special Properties

Theorem 17.
Suppose that α, β ∈ℝ and n, j, r, k ∈ℤ+. Thus, we acquire

A αð Þ
r,n,k xð Þ = 〠

n/rk½ �

j=0

α − βð ÞrkjA
βð Þ
r,n−rkj xð Þ

rkj ; kð Þ! : ð65Þ

Proof.
From Equation (25),

〠
∞

n=0
A αð Þ
r,n,k xð Þtn = 1

1 − tð Þrk+α
exp x − 2xt

1 − t

� �
: ð66Þ

Also, consider

By using Lemma (4) yields

〠
∞

n=0
A αð Þ
r,n,k xð Þtn = 〠

∞

n=0
〠
n/rk½ �

j=0

α − βð ÞrkjtrkjA
βð Þ
r,n−rkj,k xð Þtn−rkj

rkj ; kð Þ! = 〠
∞

n=0
〠
n/rk½ �

j=0

α − βð ÞrkjA
βð Þ
r,n−rkj,k xð Þtn

rkj ; kð Þ! :

ð68Þ

Then, we get our result.

Theorem 18.
If α ∈ℝ and n, j, k ∈ℤ+, then

A α+β+qkð Þ
r,n,k x + yð Þ = 〠

n/rk½ �

j=0
A βð Þ
r,n−rkj,k yð ÞA αð Þ

r,rkj,k xð Þ: ð69Þ

Proof.

Consider

1 − tð Þ−rk−αexp x
1 − 2t
1 − t

� �� �
1 − tð Þ−rk−βexp y

1 − 2t
1 − t

� �� �

= 1 − tð Þ−rk− α+β+rkð Þexp x + yð Þ 1 − 2t
1 − t

� �
 �
:

ð70Þ

Then, we get

〠
∞

n=0
A

αð Þ
r, n, k

xð Þtn 〠
∞

n=0
A

βð Þ
r, n, k

yð Þtn = 〠
∞

n=0
A

α + β + qð Þ
r, n, k

x + yð Þtn:

ð71Þ

1
1 − tð Þrk+α

exp x
1 − 2t
1 − t

� �� �
= 1 − tð Þ− α−βð Þ 1 − tð Þ−rk−βexp x

1 − 2t
1 − t

� �� �
,

〠
∞

n=0
A αð Þ
r,n,k xð Þtn = 1 − tð Þ− α−βð Þ 〠

∞

n=0
A βð Þ
r,n,k xð Þtn = 〠

∞

n=0

α − βð Þrntrn
rn ; kð Þ! 〠

∞

n=0
A βð Þ
r,n,k xð Þtn = 〠

∞

n=0
〠
∞

j=0

α − βð ÞrkjtrkjA
βð Þ
r,n,k xð Þtn

rkj ; kð Þ! :

ð67Þ
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By using Lemma (4), we acquire

〠
∞

n=0
A

α + β + qkð Þ
r, n, k

x + yð Þtn = 〠
∞

n=0
〠
n/rk½ �

j=0
A

βð Þ
r, n − rkj, k

yð ÞA
αð Þ

r, rkj, k
xð Þtn:

ð72Þ

On comparing the coefficients of tn, we acquire our
result.

9. Conclusion

We constructed the K extended Laguerre polynomials f
AðαÞ
r,n,kðxÞg relied on the r Fr , r > 2. We acquired K generating

functions, K recurrence relations and K Rodrigues formula
for these K extended Laguerre polynomials. We will use
the integral transformations on the results of K extended
Laguerre polynomials in our future works (Table 1). We
can also apply Laplace transformation on our results.
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In this paper, the local fractional version of homotopy perturbation method (HPM) is established for a new class of local fractional
integral-differential equation (IDE). With the embedded homotopy parameter monotonously changing from 0 to 1, the special
easy-to-solve fractional problem continuously deforms to the class of local fractional IDE. As a concrete example, an explicit
and exact Mittag–Leffler function solution of one special case of the local fractional IDE is obtained. In the process of solving,
two initial solutions are selected for the iterative operation of local fractional HPM. One of the initial solutions has a critical
condition of convergence and divergence related to the fractional order, and the other converges directly to the real solution.
This paper reveals that whether the sequence of approximate solutions generated by the iteration of local fractional HPM can
approach the real solution depends on the selection of the initial approximate solutions and sometimes also depends on the
fractional order of the selected initial approximate solutions or the considered equations.

1. Introduction

Fractals, solitons, and chaos together constitute three impor-
tant branches of nonlinear sciences. In fractal space, there
exist some magical functions which are continuous every-
where but nondifferentiable everywhere. The local fractional
calculus [1] developed in recent years provides a powerful
mathematical tool to handling with such type of nondifferen-
tiable functions. Fractional calculus, which is widely believed
to have originated more than 300 years ago, has attracted
much attention [2–17]. It is of theoretical and practical value
to solve fractional differential equations (DEs) directly con-
necting with fractional dynamical processes in a great many
fields. For this reason, people often construct exact solutions
of fractional DEs to obtain useful clues in these fractional
dynamical processes for specific applications.

With the development of fractional calculus, many
numerical and analytical methods for fractional DEs have

been developed, such as integral transform method [1],
series expansion method [3], Adomian decomposition
method [4], Fan subequation method [5], variational itera-
tion method (VIM) [6], variable separation method [7],
finite difference method [8], homotopy perturbation
method (HPM) [9], combined the HPM with Laplace trans-
form [10], exp-function method [11], and Hirota bilinear
method [12]. The HPM proposed by He [18] couples the
homotopy method and the perturbation technique, which
needs no the small parameters embedded in differential
equations. More importantly, it is indicated in [19] that
the HPM can truly eliminate the limitations existing in tra-
ditional perturbation methods.

One of the advantages of local fractional derivative is that
it has been successfully used to describe some nondifferential
problems appearing in science and engineering [1]. The
concept of local fractional derivative, which is based on
Riemann-Liouville fractional derivative, can be retrospected
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to Kolwankar and Gangal’s pioneering work [13]. More spe-
cifically, if the following limit exists and is finite for a given
continuous function uðxÞ: ½0, 1�⟶ R,

Dαu x0ð Þ = lim
x⟶x0

dq u xð Þ − u x0ð Þð Þ
d x − x0ð Þq , 0 < q < 1ð Þ, ð1Þ

then Dαuðx0Þ is called q-order fractional derivative of uðxÞ at
the point x = x0. Later, inspired by the relation dαuðxÞ = Γð1
+ αÞduðxÞ of Jumarie [20], the local fractional derivative of a
local fractional continuous but nondifferentiable function uð
xÞ is defined as another form ([4], see Definition 1). Recently,
the theory of local fractional calculus has been significantly
developed. Yang and his collaborators [1, 3, 17] have made a
series of achievements in the development of local fractional
calculus. Benefiting from the graceful properties of local frac-
tional calculus, some existing methods like those [5, 11, 12],
originally proposed for DEs with integer orders, have success-
fully been extended to fractional DEs and many methods are
meeting more and more challenges for solving fractional DEs.

The paper is aimed at establishing the local fractional
HPM for a new class of local fractional IDEs:

dαu xð Þ
dxα

− f xð Þ − 1
Γ 1 + αð Þ

ð1
0
g x, tð Þu tð Þ dtð Þα = 0, ð2Þ

where 0 < α ≤ 1, uðxÞ, f ðxÞ, and gðx, tÞ are the local frac-
tional continuous but nondifferentiable functions, dαuðxÞ/
dxα and ð1/Γð1 + αÞÞÐ 10gðx, tÞuðtÞðdtÞα represent the local
fractional derivative and integral [1], respectively, and Γð1
+ αÞ is the well-known Euler’s Gamma function:

Γ 1 + αð Þ =
ð∞
0
tαe−tdt: ð3Þ

Considering a concrete application of the established
local fractional HPM, we would like to solve a special case
of Equation (2):

dαu xð Þ
dxα

− 3Eα 3xαð Þ + Eα 3ð Þ
Γ 1 + αð Þ −

Eα 3ð Þ − 1
3

� �
xα

−
1

Γ 1 + αð Þ
ð1
0

3xαtα
Γ 1 + αð Þ u tð Þ dtð Þα = 0,

ð4Þ

where the Mittag–Leffler function

Eα xαð Þ = 〠
∞

k=0

xkα

Γ 1 + kαð Þ , ð5Þ

which is defined on a fractal set [1].
The organization of the rest of this paper is as follows.

Section 2 recalls the local fractional derivative and integral
and some basic properties. Section 3 establishes the local
fractional HPM for the class of local fractional IDEs (2). Sec-
tion 4 takes the local fractional IDE (4), a special case of
Equation (2), to test the established local fractional HPM
and discuss the influence of not only the initial approximate

solutions but also the fractional order on whether the
sequence of approximate solutions can approach the real
solution. Section 5 employs He-Laplace method coupling
the HPM with Laplace transform to solve the local fractional
IDE (4) and compares the obtained results. Section 6 sum-
marizes the whole paper.

2. Local Fractional Derivative and Integral and
Some Basic Properties

In this section, we recall the local fractional derivative and
integral and some basic properties.

Definition 1 (see [1]). Let uðxÞ be a local fractional continu-
ous but nondifferentiable function; then, α-order local frac-
tional derivative of uðxÞ at the point x = x0 reads

Dα
xu x0ð Þ = dαu xð Þ

dxα

����
x=x0

= lim
x⟶x0

Δα u xð Þ − u x0ð Þð Þ
x − x0ð Þα , 0 < α ≤ 1ð Þ,

ð6Þ

where ΔαðuðxÞ − uðx0ÞÞ ≅ Γð1 + αÞðuðxÞ − uðx0ÞÞ:
The local fractional derivative has some basic properties

[1]:

Dα
x λu xð Þ + μv xð Þð Þ = λDα

xu xð Þ + μDα
xv xð Þ,

Dα
x u xð Þv xð Þð Þ = Dα

xu xð Þð Þv xð Þ + u xð Þ Dα
xv xð Þð Þ,

Dα
x
u xð Þ
v xð Þ = Dα

xu xð Þ
v xð Þ −

u xð Þ Dα
xv xð Þð Þ

v2 xð Þ ,

Dα
x Cð Þ = 0,

Dα
x

xkα

Γ 1 + kαð Þ =
x k−1ð Þα

Γ 1 + k − 1ð Þαð Þ ,

Dα
xEα qxαð Þ = qEα qxαð Þ,

Dα
x sinα xαð Þ = cosα xαð Þ,Dα

x cosα xαð Þ = − sinα xαð Þ,

ð7Þ

where λ, μ, C, and q are constants and k is an integer, while
sinαðxαÞ =∑∞

k=0ð−1Þkxð2k+1Þα/Γð1 + ð2k + 1ÞαÞ and cosαðxαÞ
=∑∞

k=0ð−1Þkx2kα/Γð1 + 2kαÞ.

Definition 2 (see [1]). Let function uðxÞ ∈ Cα½a, b�; then, the
definition of α-order local fractional integral of uðxÞ in the
integral ½a, b� is as follows:

aI
α
bu xð Þ = 1

Γ 1 + αð Þ
ðb
a
u tð Þ dtð Þα

= 1
Γ 1 + αð Þ lim

Δxk⟶0
〠
N−1

k=0
u xkð Þ Δxkð Þα, 0 < α ≤ 1ð Þ,

ð8Þ

where Δxk = xk+1 − xk with x0 = a < x1 <⋯<xN−1 < xN = b.
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The local fractional integral has some basic properties
[1]:

aI
α
b λf xð Þ + μg xð Þð Þ = λaI

α
b f xð Þ + μaI

α
bg xð Þ,

aI
α
b Dα

x f xð Þð Þg xð Þ½ � = f xð Þg xð Þjba − aI
α
b f xð Þ Dα

xg xð Þð Þ½ �,

0I
α
xC = Cxα

Γ 1 + αð Þ ,

0I
α
x

xkα

Γ 1 + kαð Þ = x k+1ð Þα

Γ 1 + k + 1ð Þαð Þ ,

0I
α
xEα qxαð Þ = Eα qxαð Þ − 1

q
,

0I
α
x sinα xαð Þ = 1 − cosα xαð Þ, 0Iαx cosα xαð Þ = sinα xαð Þ:

ð9Þ

3. Local Fractional HPM for the Class of Local
Fractional IDEs

In this section, we establish the local fractional HPM for the
class of IDEs (2). For convenience, we rewrite Equation (2)
as follows:

Aα uð Þ = Lα uð Þ + Iα uð Þ = 0,

Lα uð Þ = dαu xð Þ
dxα

− f xð Þ,

Iα uð Þ = −
1

Γ 1 + αð Þ
ð1
0
g x, tð Þu tð Þ dtð Þα,

ð10Þ

where Aα represents the local fractional operator.
In view of the local fractional HPM [17], we construct

the local fractional homotopy Hαðu, pαÞ, u ∈ R, and p ∈ ½0, 1
� by the following:

Hα u, pαð Þ = 1 − pαð Þ Lα uð Þ − Lα u0ð Þð Þ + pα Lα uð Þ + Iα uð Þð Þ = 0,
ð11Þ

with the embedded parameter pα which monotonously
changes from 0 to 1 leads to the result that the easy-to-
solve equation LαðuÞ − Lαðu0Þ = 0 continuously deforms to
the original equation LαðuÞ + IαðuÞ = 0: Using the con-
structed homotopy Hαðu, pαÞ, we can continuously trace a
curve which is implicitly defined from a starting point

Hα u, 0ð Þ = Lα uð Þ − Lα u0ð Þ = 0, ð12Þ

to a solution function

Hα u, 1ð Þ = Lα uð Þ + Iα uð Þ = 0: ð13Þ

From the perspective of topology, the above changing
process is called a deformation. In this deformation, LαðuÞ
− Lαðu0Þ and LαðuÞ + IαðuÞ are homotopic.

Thus, the fractional homotopy Hαðu, pαÞ in Equation
(11) can be written as below:

Hα u, pαð Þ = 1 − pαð Þ dαu xð Þ
dxα

− f xð Þ − dαu0 xð Þ
dxα

− f xð Þ
� �� �

+ pα
dαu xð Þ
dxα

− f xð Þ − pα

Γ 1 + αð Þ
ð1
0
g x, tð Þu tð Þ dtð Þα

� �

= dαu xð Þ
dxα −

dαu0 xð Þ
dxα

+ pα
dαu0 xð Þ
dxα

− f xð Þ
�

−
1

Γ 1 + αð Þ
ð1
0
g x, tð Þu tð Þ dtð Þα

�
= 0:

ð14Þ

Substituting the series u expanded by the fractional
homotopy parameter pα

u = vα0 + pαvα1 + p2αvα2 + p3αvα3+⋯, ð15Þ

into Equation (14) and comparing the coefficients of the
same power of pα, we obtain a set of fractional equations:

p0 :
dαvα0 xð Þ
dxα

−
dαu0 xð Þ
dxα

= 0,

pα :
dαvα1 xð Þ
dxα

+ dαu0 xð Þ
dxα

− f xð Þ

−
1

Γ 1 + αð Þ
ð1
0
g x, tð Þvα0 tð Þ dtð Þα = 0,

p2α :
dαvα2 xð Þ
dxα

−
1

Γ 1 + αð Þ
ð1
0
g x, tð Þvα1 tð Þ dtð Þα = 0,

p3α :
dαvα3 xð Þ
dxα

−
1

Γ 1 + αð Þ
ð1
0
g x, tð Þvα2 tð Þ dtð Þα = 0,⋮:

ð16Þ

Here u0 is assumed to be an initial approximate solution
of Equation (2). Generally, the initial approximation vα0 or u0
can be freely chosen. Solving above set of fractional equa-
tions, we can obtain solutions vα0 , v

α
1 , v

α
2 , v

α
3 , and so on.

Setting pα ⟶ 1 and using Equation (15), we finally
arrive at an approximate solution of Equation (2).

u = lim
pα⟶1

〠
∞

k=0
vαk xð Þ = vα0 + vα1 + vα2 + vα3+⋯: ð17Þ

As pointed by He [18], the series (17) has convergence in
most cases and the convergent rate is determined by LαðuÞ
when α = 1. For the case of convergence, the series (17)
can reach a closed form solution.

4. A Concrete Example

In this section, we apply the previously established local frac-
tional HPM to the local fractional IDE (4).
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Firstly, we construct such a fractional homotopy:

Hα u, pαð Þ = dαu xð Þ
dxα

−
dαu0 xð Þ
dxα

+ pα
dαu0 xð Þ
dxα

− 3Eα 3xαð Þ
�

+ Eα 3ð Þ
Γ 1 + αð Þ −

Eα 3ð Þ − 1
3

� �
xα −

1
Γ 1 + αð Þ

�
ð1
0

3xαtα
Γ 1 + αð Þ u tð Þ dtð Þα

�
= 0:

ð18Þ

Secondly, we substitute Equation (15) into Equation
(18), and then, the comparison of the coefficients of pjαðj
= 0, 1, 2,⋯Þ gives a system of fractional equations:

p0 :
dαvα0 xð Þ
dxα

−
dαu0 xð Þ
dxα

= 0, ð19Þ

pα :
dαvα1 xð Þ
dxα

+ dαu0 xð Þ
dxα

− 3Eα 3xαð Þ

+ Eα 3ð Þ
Γ 1 + αð Þ −

Eα 3ð Þ − 1
3

� �
xα

−
1

Γ 1 + αð Þ
ð1
0

3xαtα
Γ 1 + αð Þ v

α
0 tð Þ dtð Þα = 0,

ð20Þ

p2α :
dαvα2 xð Þ
dxα

−
1

Γ 1 + αð Þ
ð1
0

3xαtα
Γ 1 + αð Þ v

α
1 tð Þ dtð Þα = 0, ð21Þ

p3α :
dαvα3 xð Þ
dxα

−
1

Γ 1 + αð Þ
ð1
0

3xαtα
Γ 1 + αð Þ v

α
2 tð Þ dtð Þα = 0,⋮:

ð22Þ

In view of the arbitrariness of vα0 or u0, here we set

dαvα0 xð Þ
dxα

= dαu0 xð Þ
dxα

= 3Eα 3xαð Þ − Eα 3ð Þ
Γ 1 + αð Þ −

Eα 3ð Þ − 1
3

� �
xα,

ð23Þ

and then, from Equations (20)–(23), we have

vα0 = Eα 3xαð Þ − Eα 3ð Þ
Γ 1 + αð Þ −

Eα 3ð Þ − 1
3

� �

� Γ 1 + αð Þ
Γ 1 + 2αð Þ x

2α ; d
αvα1 xð Þ
dxα

−
Eα 3ð Þ

Γ 1 + αð Þ −
Eα 3ð Þ − 1

3

� �

� 1 − 3Γ 1 + 3αð Þ
Γ 1 + 2αð ÞΓ 1 + 4αð Þ

� �
xα = 0,

ð24Þ

namely,

vα1 =
Eα 3ð Þ

Γ 1 + αð Þ −
Eα 3ð Þ − 1

3

� �
1 − 3Γ 1 + 3αð Þ

Γ 1 + 2αð ÞΓ 1 + 4αð Þ
� �

� Γ 1 + αð Þ
Γ 1 + 2αð Þ x

2α ; d
αvα2 xð Þ
dxα

−
3Γ 1 + 3αð Þ

Γ 1 + 2αð ÞΓ 1 + 4αð Þ
� Eα 3ð Þ

Γ 1 + αð Þ −
Eα 3ð Þ − 1

3

� �
1 − 3Γ 1 + 3αð Þ

Γ 1 + 2αð ÞΓ 1 + 4αð Þ
� �

xα

= 0,
ð25Þ

namely,

vα2 =
3Γ 1 + 3αð Þ

Γ 1 + 2αð ÞΓ 1 + 4αð Þ
Eα 3ð Þ

Γ 1 + αð Þ −
Eα 3ð Þ − 1

3

� �

� 1 − 3Γ 1 + 3αð Þ
Γ 1 + 2αð ÞΓ 1 + 4αð Þ

� �
Γ 1 + αð Þ
Γ 1 + 2αð Þ x

2α ; d
αvα3 xð Þ
dxα

−
32Γ2 1 + 3αð Þ

Γ2 1 + 2αð ÞΓ2 1 + 4αð Þ
Eα 3ð Þ

Γ 1 + αð Þ −
Eα 3ð Þ − 1

3

� �

� 1 − 3Γ 1 + 3αð Þ
Γ 1 + 2αð ÞΓ 1 + 4αð Þ

� �
xα = 0,

ð26Þ

namely,

vα3 =
32Γ2 1 + 3αð Þ

Γ2 1 + 2αð ÞΓ2 1 + 4αð Þ
Eα 3ð Þ

Γ 1 + αð Þ −
Eα 3ð Þ − 1

3

� �

� 1 − 3Γ 1 + 3αð Þ
Γ 1 + 2αð ÞΓ 1 + 4αð Þ

� �
Γ 1 + αð Þ
Γ 1 + 2αð Þ x

2α ; d
αvα4 xð Þ
dxα

−
33Γ3 1 + 3αð Þ

Γ3 1 + 2αð ÞΓ3 1 + 4αð Þ
Eα 3ð Þ

Γ 1 + αð Þ −
Eα 3ð Þ − 1

3

� �

� 1 − 3Γ 1 + 3αð Þ
Γ 1 + 2αð ÞΓ 1 + 4αð Þ

� �
xα = 0,

ð27Þ

namely,

vα4 =
33Γ3 1 + 3αð Þ

Γ3 1 + 2αð ÞΓ3 1 + 4αð Þ
Eα 3ð Þ

Γ 1 + αð Þ −
Eα 3ð Þ − 1

3

� �

� 1 − 3Γ 1 + 3αð Þ
Γ 1 + 2αð ÞΓ 1 + 4αð Þ

� �
Γ 1 + αð Þ
Γ 1 + 2αð Þ x

2α;⋮:

ð28Þ

Finally, we obtain an approximate solution of Equation
(4).

4 Advances in Mathematical Physics



u = lim
pα⟶1

〠
∞

k=0
vαk xð Þpkα = Eα 3xαð Þ − Eα 3ð Þ

Γ 1 + αð Þ −
Eα 3ð Þ − 1

3

� �
Γ 1 + αð Þ
Γ 1 + 2αð Þ x

2α + 1 + 3Γ 1 + 3αð Þ
Γ 1 + 2αð ÞΓ 1 + 4αð Þ

�

+ 32Γ2 1 + 3αð Þ
Γ2 1 + 2αð ÞΓ2 1 + 4αð Þ+

33Γ3 1 + 3αð Þ
Γ3 1 + 2αð ÞΓ3 1 + 4αð Þ+⋯

�

× Eα 3ð Þ
Γ 1 + αð Þ −

Eα 3ð Þ − 1
3

� �
1 − 3Γ 1 + 3αð Þ

Γ 1 + 2αð ÞΓ 1 + 4αð Þ
� �

� Γ 1 + αð Þ
Γ 1 + 2αð Þ x

2α,

ð29Þ

which can be simplified as follows:

u = Eα 3xαð Þ − lim
m⟶∞

3m−1Γm−1 1 + 3αð Þ
Γm−1 1 + 2αð ÞΓm−1 1 + 4αð Þ

� Eα 3ð Þ
Γ 1 + αð Þ −

Eα 3ð Þ − 1
3

� �
Γ 1 + αð Þ
Γ 1 + 2αð Þ x

2α:

ð30Þ

Obviously, the nth-order approximate solution of Equa-
tion (4) has the following form:

un = Eα 3xαð Þ − 3nΓn 1 + 3αð Þ
Γn 1 + 2αð ÞΓn 1 + 4αð Þ

� Eα 3ð Þ
Γ 1 + αð Þ −

Eα 3ð Þ − 1
3

� �
Γ 1 + αð Þ
Γ 1 + 2αð Þ x

2α, n = 0, 1, 2,⋯ð Þ:

ð31Þ

When the condition

q = 3Γ 1 + 3αð Þ
Γ 1 + 2αð ÞΓ 1 + 4αð Þ < 1, ð32Þ

holds, the limit of Equation (30) exists. In this case, we
obtain

u = Eα 3xαð Þ: ð33Þ

In Figure 1, we show the curve of the condition q with
fractional order α, where the dashed line represents q = 1.
We can see from Figure 1 that there exists a unique value
α0 ∈ ð0:7, 0:75Þ such that qðα0Þ = 1. At the same time, with
the help of Mathematica, we have

q 0:73ð Þ ≈ 1:02522329079942, q 0:74ð Þ ≈ 0:9916413061494614:
ð34Þ

Thus, we can more accurately determine the range of α0
as

0:73 < α0 < 0:74: ð35Þ

This tells that qðαÞ < qðα0Þ = 1 if and only if α0 < α ≤ 1.

In Figure 2, the initial solution and 5th-order and 8th-
order approximate solutions u0, u5, and u8 and the exact
solution uexa are shown by constraining them to a Cantor
set with dimension α = ln 2/ln 3 ≈ 0:631 which does not sat-
isfy the convergence condition α0 < α ≤ 1. In this case, uexa,
u0, u5, and u8 form a sequence of divergent approximate
solutions.

Since the initial approximation vα0 or u0 possesses arbi-
trariness as mentioned earlier, if we set again

dαvα0 xð Þ
dxα

= dαu0 xð Þ
dxα

= 3Eα 3xαð Þ, ð36Þ

then the similar process yields

vα0 = u0 = Eα 3xαð Þ, ð37Þ

vα1 = vα2 = vα3 =⋯ = 0, ð38Þ
from which we finally reach solution (33). So, for any 0 < α
≤ 1, the solution (33) is always the exact solution of Equa-
tion (4). That is to say, if we chose an appropriate initial
approximation vα0 or u0, then the operation can be

0.2 0.4 0.6 0.8 1.0
𝛼

1.0

1.5

2.0

2.5

3.0

q

Figure 1: Curve of the condition q with fractional order α.

0.2 0.4 0.6 0.8 1.0
x

–100

100

200

300

400

u

u0
u5

u8
uexa

Figure 2: Divergent asymptotic solutions and exact solution in the
case α = ln 2/ln 3.
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considerably simplified. More importantly, the convergence
condition that the sequence of approximate solutions
depends on fractional order can be removed.

It should be noted that when α = 1 and uðxÞ, f ðxÞ, and
gðx, tÞ are all the continuous and differentiable functions,
solution (33) reduces to u = e3x which is the known exact
solution of the following IDE [19]:

du xð Þ
dx

− 3e3x + 1
3 2e3 + 1
� �

x −
ð1
0
3xtu tð Þdt = 0: ð39Þ

5. He-Laplace Method and Comparison

As Deng and Ge [21] pointed out, He-Laplace method has a
simple and reliable algorithm and it can be coupled with the
HPM or the VIM for solving various nonlinear models,
shedding a bright light on fractal calculus. A newest typical
example of He-Laplace method to illustrate its simplicity,
directness, strength, and great prospects can be found in
[22]. In what follows, we employ the local fractional version
of He-Laplace method [23] to solve the local fractional IDE
(4).

Taking the local fractional Laplace transform on Equa-
tion (4), we can gain

L
dαu xð Þ
dxα

� �
= L 3Eα 3xαð Þ + Eα 3ð Þ

Γ 1 + αð Þ −
Eα 3ð Þ − 1

3

� �
xα

� �

+ L
1

Γ 1 + αð Þ
ð1
0

3xαtα
Γ 1 + αð Þ u tð Þ dtð Þα

� �
,

ð40Þ

sαL u xð Þð Þ − u 0ð Þ = L
�
3Eα 3xαð Þ +

�
Eα 3ð Þ

Γ 1 + αð Þ
−
Eα 3ð Þ − 1

3

�
xα
�
+ L

� 1
Γ 1 + αð Þ

�
ð1
0

3xαtα
Γ 1 + αð Þ u tð Þ dtð Þα

�
,

ð41Þ

L u xð Þð Þ = u 0ð Þ
sα

+ 1
sα
L
�
3Eα 3xαð Þ +

�
Eα 3ð Þ

Γ 1 + αð Þ
−
Eα 3ð Þ − 1

3

�
xα
�
+ 1
sα
L
� 1
Γ 1 + αð Þ

�
ð1
0

3xαtα
Γ 1 + αð Þ u tð Þ dtð Þα

�
:

ð42Þ

Then, the inverse local fractional Laplace transform of
Equation (42) gives

u xð Þ = Eα 3xαð Þ − Eα 3ð Þ
Γ 1 + αð Þ −

Eα 3ð Þ − 1
3

� �
Γ 1 + αð Þ
Γ 1 + 2αð Þ x

α

+ L−1
1
sα
L

1
Γ 1 + αð Þ

ð1
0

3xαtα
Γ 1 + αð Þ u tð Þ dtð Þα

� �	 

,

ð43Þ

where uð0Þ = 1 has been assumed and L and L−1 are the local
fractional Laplace transform operator and inverse operator
[1], respectively.

Dealing Equation (43) with the local fractional HPM, we
introduce

〠
∞

n=0
pnαun xð Þ = Eα 3xαð Þ − Eα 3ð Þ

Γ 1 + αð Þ −
Eα 3ð Þ − 1

3

� �

� Γ 1 + αð Þ
Γ 1 + 2αð Þ x

α + pαL−1
(

1
sα
L

"
1

Γ 1 + αð Þ

�
ð1
0

3xαtα
Γ 1 + αð Þ〠

∞

n=0
pnαun xð Þ dtð Þα

#)
,

ð44Þ

and compare the coefficients of the same powers of pα; then,
He’s polynomials can be obtained:

p0 : u0 xð Þ = Eα 3xαð Þ − Eα 3ð Þ
Γ 1 + αð Þ −

Eα 3ð Þ − 1
3

� �
Γ 1 + αð Þ
Γ 1 + 2αð Þ x

2α,

pα : u1 xð Þ = L−1
1
sα
L

1
Γ 1 + αð Þ

ð1
0

3xαtα
Γ 1 + αð Þ u0 xð Þ dtð Þα

� �	 


= 1 − 3Γ 1 + 3αð Þ
Γ 1 + 2αð ÞΓ 1 + 4αð Þ

� �
Eα 3ð Þ

Γ 1 + αð Þ −
Eα 3ð Þ − 1

3

� �

� Γ 1 + αð Þ
Γ 1 + 2αð Þ x

2α,

p2α : u2 xð Þ = L−1
1
sα
L

1
Γ 1 + αð Þ

ð1
0

3xαtα
Γ 1 + αð Þ u1 xð Þ dtð Þα

� �	 


= 3Γ 1 + 3αð Þ
Γ 1 + 2αð ÞΓ 1 + 4αð Þ 1 − 3Γ 1 + 3αð Þ

Γ 1 + 2αð ÞΓ 1 + 4αð Þ
� �

� Eα 3ð Þ
Γ 1 + αð Þ −

Eα 3ð Þ − 1
3

� �
Γ 1 + αð Þ
Γ 1 + 2αð Þ x

2α,

p3α : u3 xð Þ = L−1
1
sα
L

1
Γ 1 + αð Þ

ð1
0

3xαtα
Γ 1 + αð Þ u2 xð Þ dtð Þα

� �	 


= 32Γ2 1 + 3αð Þ
Γ2 1 + 2αð ÞΓ2 1 + 4αð Þ 1 − 3Γ 1 + 3αð Þ

Γ 1 + 2αð ÞΓ 1 + 4αð Þ
� �

� Eα 3ð Þ
Γ 1 + αð Þ −

Eα 3ð Þ − 1
3

� �
Γ 1 + αð Þ
Γ 1 + 2αð Þ x

2α,

p4α : u4 xð Þ = L−1
1
sα
L

1
Γ 1 + αð Þ

ð1
0

3xαtα
Γ 1 + αð Þ u3 xð Þ dtð Þα

� �	 


= 33Γ3 1 + 3αð Þ
Γ3 1 + 2αð ÞΓ3 1 + 4αð Þ 1 − 3Γ 1 + 3αð Þ

Γ 1 + 2αð ÞΓ 1 + 4αð Þ
� �

� Eα 3ð Þ
Γ 1 + αð Þ −

Eα 3ð Þ − 1
3

� �
Γ 1 + αð Þ
Γ 1 + 2αð Þ x

2α,⋮:

ð45Þ

We therefore obtain an approximate solution of Equa-
tion (4):
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u = lim
pα⟶1

〠
∞

n=0
pnαuαn xð Þ = Eα 3xαð Þ − Eα 3ð Þ

Γ 1 + αð Þ −
Eα 3ð Þ − 1

3

� �

� Γ 1 + αð Þ
Γ 1 + 2αð Þ x

2α + 1 + 3Γ 1 + 3αð Þ
Γ 1 + 2αð ÞΓ 1 + 4αð Þ

�

+ 32Γ2 1 + 3αð Þ
Γ2 1 + 2αð ÞΓ2 1 + 4αð Þ+

33Γ3 1 + 3αð Þ
Γ3 1 + 2αð ÞΓ3 1 + 4αð Þ+⋯

�

× Eα 3ð Þ
Γ 1 + αð Þ −

Eα 3ð Þ − 1
3

� �
1 − 3Γ 1 + 3αð Þ

Γ 1 + 2αð ÞΓ 1 + 4αð Þ
� �

� Γ 1 + αð Þ
Γ 1 + 2αð Þ x

2α,

ð46Þ

which is the same as solution (29). It is not difficult to see
that solution (46) has the same nth-order approximate solu-
tion (31), and when the condition (32) holds, the limit of
solution (46) gives the same exact solution (33).

Through comparison, we find that the computational
difficulty of solving the local fractional IDE (4) by the above
two methods is about the same. When using the local frac-
tional HPM, we need to introduce an appropriate initial
approximate solution v0ðxÞ, while the local fractional He-
Laplace method uses a known initial value uð0Þ. Generally
speaking, it is more difficult to choose an initial approximate
solution v0ðxÞ than to find an initial value uð0Þ: For the lat-
est valuable work on the modified HPM, we suggest to refer
to Refs. [24, 25].

6. Conclusion

In summary, we have established the local fractional HPM
for the class of local fractional IDEs (1). Based on the estab-
lished local fractional HPM, an explicit and exact Mittag–
Leffler function solution (33) of the local fractional IDE (4)
is obtained by selecting two different initial solutions (24)
and (37). The comparison shows that the local fractional
He-Laplace method [23] can also obtain the same solution
(33), but when the initial approximate solution is not easy
to choose, the local fractional He-Laplace method [23] has
certain advantages over the method used in this paper. The
obtained results show that if we choose the approximate
solutions appropriately, for example solution (37), then the
calculation can be considerably simplified and that the
sequence of approximate solutions generated by the local
fractional HPM can directly approach the real solution with-
out the influence of fractional order. However, for the
selected initial approximate solution (24), we obtained a
sequence of approximate solutions converging the real solu-
tion (33) in a certain range of the fractional order α, i.e., α0
< α ≤ 1. At the same time, there is a divergence interval ð0
, α0Þ which depends on the fractional order α. Here, qðα0Þ
= 1, and an approximate range of α0 is 0:73 < α0 < 0:74.
That is to say, α0 is the critical value of convergence and
divergence related to fractional order α of the obtained
sequence of approximate solutions. This is different from
the HPM for integer-order DEs, all the sequences of approx-
imate solutions of which either converge or diverge, and

there is no such a critical value of convergence and diver-
gence. When the nth-order approximate solution (31) is
constrained to a Cantor set with dimension α = ln 2/ln 3 ≈
0:631, this paper shows in Figure 2 a sequence of divergent
approximate solutions. This paper fails to describe a
sequence of convergent approximate solutions of (31), which
is due to the complexity of the numerical simulation of frac-
tal set. How to constrain solution (31) to other fractal sets
and show some sequences of convergent approximate solu-
tions? This is a question worth exploring. Besides, the
research on qualitative behaviors of Equation (4) and other
fractional IDEs is worth discussing. Some recent meaningful
results of this research can be found in [26–28]. In 2007,
Wang and He [29] took three concrete IDEs as examples
to illustrate the effectiveness of the VIM for various IDEs.
Based on this fact, we conclude that the local fractional ver-
sion of VIM can also solve the local fractional IDE (4). In
fact, the main steps of the local fractional VIM for Equation
(4) can be summarized as follows: (i) identifying Lagrange
multiplier λα = −1, (ii) determining the iterative formula of
solution:

un+1 xð Þ = un xð Þ − 1
Γ 1 + αð Þ

ðx
0

dαun ξð Þ
dξα

+ F un ξð Þð Þ
� �

� dξð Þα, n = 0, 1, 2⋯ð Þ,
ð47Þ

with

F un ξð Þð Þ = −3Eα 3ξα
� �

+ Eα 3ð Þ
Γ 1 + αð Þ −

Eα 3ð Þ − 1
3

� �
ξα

−
1

Γ 1 + αð Þ
ð1
0

3ξαtα
Γ 1 + αð Þ un tð Þ dtð Þα,

ð48Þ

and (iii) selecting the initial approximate solution u0ðxÞ =
Eαð3xαÞ to obtain the exact solution uðxÞ = lim

n⟶∞
unðxÞ = Eα

ð3xαÞ by using the determined iterative formula (47). Never-
theless, it is still worth trying to find an appropriate initial
approximate solution and get the approximate solution
(29) or (46) by Equation (47).
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This study examines a novel SIR epidemic model that takes into account the impact of environmental white noise. According to
the study, white noise has a significant impact on the disease. First, we establish the solution’s existence and uniqueness. Following
that, we explain that the stochastic basic productionR0 is a threshold that determines the extinction or persistence of the disease.
When noise levels are high, we acquireR0 < 1, which causes the sickness to disappear. A sufficient condition for the existence of a
stationary distribution is archived when the noise intensity is high, which suggests the infection is prevalent whenR0 > 1. Finally,
numerical simulations are used to explain the key findings.

1. Introduction

The goal of this research is to show how challenging SIR
models are for understanding the epidemic and to offer a
useful model for establishing proposal insights into its
spread. The traditional susceptible-infected-removed SIR
model of Kermack and McKendrick is the progenitor of
nearly all mathematical models for the transmission of infec-
tious illnesses. Numerous researchers have thoroughly stud-
ied the dynamic behavior of various epidemic models and
many of their expansions. The presence of the threshold
values that determine whether a disease dies out, the stability
of the disease-free and endemic equilibria, permanence, and
extinction are the fundamental and essential study topics for
contemporary studies.

For many years, the spread and transmission of illnesses
have been questioned and examined. In reality, Graunt was
the first scientist to attempt to scientifically quantify causes
of mortality [1], and his investigation of causes of death
resulted in a hypothesis that is now widely accepted among
current epidemiologists. Bernoulli was the first mathemati-
cian to propose an infectious disease mathematical model.

He modeled the transmission of smallpox [2], which was
widespread at the time, and advocated for the benefits of
variolation [3] in 1760. In 1927, McKendrick and Kermack
proposed a basic deterministic (compartmental) model for
forecasting the behavior of epidemic outbreaks [4]. SIR
models are an extremely versatile modeling approach devel-
oped by the researchers. They are often used in the modeling
of infectious illnesses using mathematics. People are divided
into groups with the letters S, I, and R (susceptible, infec-
tious, and recovered). ODE, which are deterministic, are
most often applied to run the models, but they may also be
used with a stochastic (random) framework, which is more
realistic but trickier to evaluate.

According to John M. Last, epidemiology is the study of
the spread and determinants of disease or well-being status
in a population, or it is the outlet of medicine that deals with
the occurrence, distribution, possible mechanism of malady,
and other factors related to health. It is the foundation of
common safety and nature’s tactic varieties, as well as
evidence-based preparation by distinct risk factors for illness
and emphases on protective curative amenities. Syndrome
diffusion experts assist by deliberating on proposals, variety,
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and measurable investigation of evidence, altering under-
standing and spread of outcomes (calculating viscount
inspection and periodic proficient review). As a result, epide-
miology has generated techniques in scientific analysis, com-
mon safety education, and, less suggestively, fundamental
surveys in the biological disciplines [5]. Disease causality,
diffusion, epidemic analysis, disease observation, environ-
mental epidemiology, forensic epidemiology, occupational
epidemiology, screening, biomonitoring, and comparisons
of cure effects, such as in clinical trials, are all important
areas of epidemiological study. Further scientific castigations
are used by epidemiologists, such as biology to better under-
stand disease progressions, statistics to make actual use of
data and advance appropriate outcomes, social sciences to
better understand local and terminal grounds, and engineer-
ing to increase revelation.

The word “epidemiology” is usually used to describe and
illuminate not only epidemics and infectious diseases, but
disease in general, as well as associated circumstances. High
blood pressure, mental disease, and obesity are objective
insufficient of the concerns studied by epidemiology. As a
consequence, this epidemiology is based on how the pattern
of disease produces a change in human function. Mathemat-
ical research has generated great improvements in practical
and theoretical fields [6–8].

To investigate the influence of environmental condi-
tions on the epidemic model and make the results more
realistic, we first developed a stochastic mathematical SIR
model. Recent scientific advances with a focus on the
transmission of numerous infectious illnesses (SDE) and
(ODE) have been front and center. An SDE is a differen-
tial equation in which one or more of the terms are sto-
chastic processes, with the solution likewise being a
stochastic process. SDEs often include a variable that is
calculated as the Wiener process or Brownian motion
derivative and represents random white noise. Other kinds
of random behavior, including jump processes, are indeed
feasible. Stochastic differential equations and random dif-
ferential equations are conjugate [9], while differential
equation having one or more functions of one indepen-
dent variable and their derivatives is known as an ordinary
differential equation (ODE) in mathematics. Ordinary dif-
ferential equations are applied in contrast to partial differ-
ential equations, which may refer to more than one
independent variable [10].

The current paper will investigate the persistence and
extinction of the epidemic, provide the system’s threshold
value, and be affected by motion brought on by white noise.
Even though stochastic system perturbations have many
more varied features, we still took into account how this sys-
tem’s threshold compares to those of other models that
include the same motion [11]. Finally, we visualize the
numerical simulations using MATLAB.

2. Stochastic Epidemic Model Description

In this section, we provide our new stochastic model in the
form of differential equations.

(i) The total inhabitant Nt is distributed in three com-
partments: S t , I t , andRt represent the susceptible,
infected peoples, and recovered people, respectively

(ii) The indicated stochastic model’s variables and
parameters are both nonnegative

(iii) We perturbed β and γ, i.e., β⟶ β + σ1B1 and
γ⟶ γ + σ2B2. Where B1,B2 are the Brownian
motion with the property B10 = 0 =B20 and the
intensity σ21, σ2

2 are positive

Remark 1. The deterministic general epidemic study estimates
that ifR0 < 1, a small outburst will aries, and ifR0 > 1, a large
outbreak will occur, infecting a large chunk of the population.
The results are based on the assumption that the community is
homogeneous and that individuals mingle evenly. However, if
the hypothesis of an evenly mixed society is accepted, the
model may not be appropriate in particular situations. When
contemplating a tiny population, such as an epidemic out-
break in a daycare center or school, it appears logical to pre-
sume that the eventual number of infected will be
unpredictable or random. Also, even ifR0 > 1 and the society
is huge, if the outbreak is started by only one (or a few) early
invective’s, the plagues may never take off by accident. The
formulation of a related stochastic epidemic model is moti-
vated by these two aspects. It allows parameter estimation
from disease outbreak data to include standard error, and
the subject of the disease extinction is better suited for the sto-
chastic model for researching epidemic diseases.

In the light of above speculations, we established the
below new stochastic SIR epidemic model.

d Stð Þ = Λ − βStIt − dStð Þdt − σ1StItdB1 tð Þ,
, d Itð Þ = βStIt − d + γð ÞdIt − h Ið Þð Þdt + σ1StItdB1 tð Þ − σ2ItdB2 tð Þ,
d Rtð Þ = γI + h Ið Þ − dRð Þdt + σ2ItdB2 tð Þ:

ð1Þ

The above Table 1 represents the parameters and their
values, while Table 2 represents the compartments and their
values. Note that hðIÞ is the elimination of the transferable
entities due to the cure of the form:

h Ið Þ =
M > 0 for I > 0 ;
M = 0 I = 0:

(
ð2Þ

The authors [12] have the following deterministic.

d Stð Þ
dt

=Λ − βStIt − dSt ,

d Itð Þ
dt

= βStIt − d + γð ÞdIt − h Ið Þ,
d Rtð Þ
dt

= γI + h Ið Þ − dR,

ð3Þ
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and

d Nð Þ =Λ − dN, ð4Þ

where Nt = St + It + Rt indicates the entire constant res-
idents for Λ ≈ μN and N0 = S0 +I 0 +R0. Equation (4)
has the exact solution

Nt = e−dt N0 +
Λ

d
edt

� �
: ð5Þ

Also, we have

0 ≥ S0, 0 ≥I 0,R0 ≥ 0⇒ St ≥ 0, It ≥ 0, 0 ≤ Rt: ð6Þ

So that the result has positivity property. For the stability
analysis of the model (3), we have the reproduction number,
which is

R0 =
βΛ

d + γð Þd : ð7Þ

IfR0 < 1, the system (3) will be locally steady and will be
unsteady if R0 ≥ 1 asymptotically stable. Further, the system
(3) will be globally asymptotic if Λ = 0.

3. Preliminaries

Throughout this paper, we formulated the necessary
assumptions. Suppose Rd+ is the d-dimensional Euclidean
space. Rd

+ = fj ∈ Rd : 0 < ji, d > 1g.
Let ð℧, F,PÞ a whole probability space that has been

filtered by fFgt≥0 and fBtgt≥0 is a 1-dimensional Brownian
motion defined on it. Usually, we consider a SDE of n-dimen-
sion as

dω tð Þ =F y tð Þ, tð Þdt +G y tð Þ, tÞdB tð Þð Þ, for t ≥ t0, ð8Þ

with initial value yðt0Þ = y0εR
d. By defining the dimen-

sional operator £ with equation (8)

£ = ∂
∂t

+ 〠
d

i=1
Fi y, tð Þ ∂

∂yi
+ 1
2 〠

d

i,j=1
GT y, tð ÞG y, tð Þ
h i

ij

∂2

∂yi∂yj
:

ð9Þ

If the operator £ acts on the a functionV = ðℝd ×ℝ+ ;ℝ+Þ
then

£V =Vt y, tð Þ +Vy y, tð ÞF y, tð Þ + 1
2 trace GT y, tð ÞVyyG y, tð Þ

h i
:

ð10Þ

4. Existence and Uniqueness

By utilizing the technique in [13–15], the following theorem
can be proof with ease.

Theorem 2. ðSt , It , RtÞ is a unique positive solution of system
(1)for t ≥ 0 with ðS0,I 0,R0Þ ∈ R3

+, and result will be left in
R3
+, with probability equals to one.

We outline a ∁2-function U : ℝ3
+ ⟶ℝ+, by the result-

ing formulation

U S t ,I t , Rtð Þ = St − 1 − ln Stð Þ + It −
2
3 + 1

3

� �
− ln It

� �

+ Rt −
2
3 + 1

3

� �
− ln Rt

� �
:

ð11Þ

By applying Ito formula, we have

dU St , It , Rtð Þ = 1 − 1
St

� �
dSt +

1
2S2t

dStð Þ2 + 1 − 1
It

� �

� dIt +
1
2I2t

dItð Þ2 + 1 − 1
Rt

� �
dRt +

1
2R2

t

dRtð Þ2,

ð12Þ

= L∗Udt + σ1 I t − S tð ÞdB1 tð Þ + σ2 I t − Sð ÞdB2 tð Þ,
ð13Þ

Table 1: Parametric description of the model.

Symbol Description Value

Λ Constitute the recruitment rate in the susceptible inhabitant 0.1

β Is the diffusion rate 0.01

d Is the usual passing away rate 0.006

γ Is the impulsive salvage amount of the virulent entities 0.03

Table 2: Compartments and description.

Symbol Description Value

S Susceptible 20

I Infected peoples 6

R Recovered peoples 1
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where L∗U : ℝ3
+ ⟶ℝ+ is defined by

L∗U = 1 − 1
St

� �
Λ − βStIt − dStð Þ + 1

2σ
2
1I

2

+ 1 − 1
It

� �
βStIt − d d + γð ÞItð Þ + 1

2σ
2
1S

2 + 1
2σ

2
2I

2

+ 1 − 1
Rt

� �
γIt − dRð Þ + σ22, =Λ − βStIt − dSt − dSt

−
Λ

S t
+ βIt + d + βStIt − d + γð Þd − βSt + d + γð Þd

+ γI − dRt − γ
It
Rt

+ d + 1
2σ

2
1S

2 + 1
2σ

2
2I

2
+σ

2
2: ≤Λ + d

+ d2 + γd + d++ 1
2σ

2
1S

2 + 1
2σ

2
2I

2
+σ

2
2 ≔ A:

ð14Þ

The rest of the proof can be followed from [16–18].

5. Extinction of the Disease

In this part, we will figure out when the sickness will wipe
out, as well as when it will resurface. As a result, system’s
(1) basic reproduction number is provided. We may deduce
the following lemmas from the proof in [19].

Lemma 3 (see [20]). Let ðSt , It , RtÞ be the solution of system
(1) with initial value ðS0, I0, R0Þ ∈ℝ3

+. Then

Limt⟶∞
St + It + Rt

t
= 0 a:s: ð15Þ

6. Remark

In fact, combine with solution positivity and equation (15),
we have by [20]

Limt⟶∞
S t

t

� �
= 0, Limt⟶∞

It
t

� �
= 0, Limt⟶∞

Rt

t

� �
= 0 a:s:,

ð16Þ

and according to lemma 2.2 of [20], we have

Lemma 4. Assume d > 1/2ðσ2
1∨σ

2
2Þ:Let ðSt, It , RtÞ be the solu-

tion of system (1) with initial value ðS0, I0, R0Þ ∈ℝ3
+, then

Limt⟶∞

Ð t
0S rð Þ
t

= 0,

Limt⟶∞

Ð t
0S rð Þ
t

= 0,

Limt⟶∞

Ð t
0S rð Þ
t

= 0:

ð17Þ

R0 = βΛ/dðd + γÞ is the basic reproduction of the system
(3) in [12].

and

R•
0 =

βΛ

d d + γ + 1/2ð Þσ22
� � =R0 −

βΛ

2d d + γð Þ d + γ + 1/2ð Þσ2
2

� �σ22:
ð18Þ

We will study the results in the next part based on Lemma
3 and 4.

Theorem 5. Suppose d > 1/2ðσ2
1∨σ

2
2Þ. Let ðSt , It , RtÞ be the

solution of the system (1) with any initial value ðS0, I0, R0Þ ∈
ℝ3

+. If 1 >R•
0, then

Limt⟶∞ sup log It
t

≤ d + γ + 1
2
σ22

� �
R•

0 − 1ð Þ < 0 a:s:

ð19Þ

It approaches to 0 exponentially almost sure. In other
words, the illness will most likely die out.

Proof. From system (1), we have

−S0 + St
t

= − −Λð Þ − d
t

ðt
0
S sð Þds − β

t

ðt
0
I sð ÞS sð Þ

� ds − σ1
t

ðt
0
S sð ÞI sð ÞdB1 sð Þ,

−I0 + It
t

= β

Ð t
0S sð ÞI sð Þds

t
− d d + γð Þ

Ð t
0I sð Þds
t

−
Ð t
0h Ið Þds

t
+ σ1

Ð t
0S sð ÞI sð Þ

t
dB1 sð Þ

−σ2

Ð t
0I sð ÞdB2 sð Þ

t
,

−R0 + Rt

t
= γ

Ð t
0I sð Þds
t

+
Ð t
0h Ið Þds

t
− d

Ð t
0R sð Þds

t
+ σ2

Ð t
0I sð Þd
t

B2 sð Þ,
ð20Þ

then

d

Ð t
0S sð Þds
t

+ d d + γð Þ
Ð t
0I sð Þds
t

=Λ −
It − St

t
+ I0 − S0

t

−
Ð t
0h Ið Þds

t
− σ2

Ð t
0I sð ÞdB2 sð Þ

t
=Λ + ξ tð Þ,

ð21Þ

where ξðtÞ possesses the property that

Limt⟶∞ξ tð Þ = 0: ð22Þ

According to (15) and (17), we have

Limt⟶∞
d
Ð t
0S sð Þds + d d + γð ÞÐ t0I sð Þds

t
=Λ: ð23Þ
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Furthermore

log It − log I0 = β
ðt
0
S sð Þds − d + γ + 1

2σ
2
2

� �
� t + σ1S sð ÞB1 tð Þ − σ2B2 tð Þ,

log It = log I0 + β
Λ

d
t − β d + γð Þ

ðt
0
I sð Þds + β

d
tξ tð Þ

− d + γ + 1
2σ

2
2

� �
t + σ1S sð ÞB1 tð Þ − σ2B2 tð Þ,

= tβ
Λ

d
− γ + 1

2 σ
2
2 + d

� �� �
t − β d + γð Þ

ðt
0
I sð Þds

+ log I0 +
β

d
tξ tð Þ + σ1S sð ÞB1 tð Þ − σ2B2 tð Þ:

≤ β
Λ

d
t − d + γ + 1

2σ
2
2

� �� �
t + log I0

+ β

d
tξ tð Þ − σ2B2 tð Þ,

ð24Þ

and

Limt⟶∞
1
t

log I0 +
β

d
tξ tð Þ − σ2B2 tð Þ

� �
= 0 a:s: ð25Þ

By (22) and the property of Brownian motion. If 1 >R•
0,

then, from (24), we have

Limt⟶∞  sup log It
t

≤
βΛ

d
− d + γ + 1

2σ
2
2

� �

= d + γ + 1
2σ

2
2

� �
R•

0 − 1ð Þ < 0,

ð26Þ

as required.

7. Persistence of the Disease

In this section, we will look at the infection’s persistence in
the pandemic context (1), with the following theorem intro-
ducing our main result.

Theorem 6. Suppose d > 1/2ðσ2
1∨σ

2
2Þ. Let ðSt , It , RtÞ be the

solution of the system (1) with any initial value ðS0, I0, R0Þ
∈ℝ3

+. If 1 <R•
0, then

Limt⟶∞
1
t

ðt
0
S sð Þds = Λ

dR•
0
,

Limt⟶∞
1
t

ðt
0
I sð Þds = d γ + 1/2ð Þσ22 + d

� �
dβ + γβð Þ R•

0 − 1ð Þ,

Limt⟶∞
1
t

ðt
0
R sð Þds = γ d + γ + 1/2ð Þσ22

� �
β d + γð Þ R•

0 − 1ð Þ:

ð27Þ

Proof. IfR•
0 > 1, then, by (24) and by Lemma 3 and 5.2 in [21].

Limt⟶∞
1
t

ðt
0
I sð Þds = 1/dð Þ βΛð Þ − d + 1/2ð Þσ22 + γ

� �
dβ + γβð Þ/d ,

= γ d + γ + 1/2ð Þσ2
2

� �
β d + γð Þ R•

0 − 1ð Þ:

ð28Þ

Along with (23)

Limt⟶∞
1
t

ðt
0
S sð Þds = Λ

d
−

γ + d + 1/2ð Þσ22
β

� �
R•

0 − 1ð Þ, = Λ

dR•
0
:

ð29Þ

Further, integrating from 0 to t the last equation of system
(1), we get

Rt − R0
t

= γ

t

ðt
0
I sð Þds +

ðt
0
h Ið Þds − d

t

ðt
0
R sð Þds + σ22

t

ðt
0
R sð ÞdB2 sð Þ,

ð30Þ

now (17) and (28) ⇒

Limt⟶∞
1
t

ðt
0
R sð Þds = γ + d + 1/2ð Þσ2

2
� �

γ

β d + γð Þ R•
0 − 1ð Þ: ð31Þ

Remark 7. Theorems 5 and 6 reveal that the illness’s ability
to die out or endure is highly influenced by the strength of
white noise disturbances, with tiny white noise disturbances
promoting long-term disease prevalence and big white noise
disturbances causing the epidemic disease to die out.

8. Numerical Scheme and Results

Our study of disease extinction and persistence has now
concluded. We will now perform some numerical simula-
tions of (1) to illustrate the applicability of our findings.
The Milstein technique [22] is used to generate numerical
simulations. Consider the model’s discretization equation:

Sk+1 = Sk + Λ − βSkIk − dSkð ÞΔt − σ1SkIk
ffiffiffiffiffi
Δt

p
τk −

σ2
1
2 SkIk τ2k − 1

� �
Δt,

Ik+1 = Ik + βSkIk − d d + γð ÞIk −Mð ÞΔt + σ1SkIk
ffiffiffiffiffi
Δt

p
τk

+ σ2
1
2 SkIk τ2k − 1

� �
Δt − σ2Ik

ffiffiffiffiffi
Δt

p
τk −

σ2
2
2 Ik τ2k − 1

� �
Δt,

Rk+1 = Rk + γIk +M − dRkð ÞΔt + σ2Ik
ffiffiffiffiffi
Δt

p
τk +

σ2
2
2 Ik τ2k − 1

� �
Δt:

ð32Þ

8.1. Numerical Data. Here, we highlight the numerical data
for the stochastic model (1). For the parametric and initial
values, we refer to [12].

Figures 1(a) and 1(b) are the comparison of S class in the
deterministic system and in the stochastic system, with
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Λ = 0:1, d = 0:006,m = 0:00001, β = 0:01, γ = 0:03 and ini-
tial values Sð0Þ = 20, Ið0Þ = 6, Rð0Þ = 1. In Figures 1(a)
and 1(b), we have presented the joint solution of the model
(1) for σ = 0:0, S, and different values of σ. Comparing the first
figure, the noise getting smaller, the fluctuation of the system
of model (1) is getting weaker. If we increase the value of
σ = 0:02,0:03,0:04, respectively, the amplitude of fluctuation
becomes stronger. That is to say, noise intensities have
great effect on the solution of S.

Figures 2(a) and 2(b) are the comparison of I, R classes
in the deterministic system and in the stochastic system,

with Λ = 0:1, d = 0:006,m = 0:00001, β = 0:01, γ = 0:03 and
initial values Sð0Þ = 20, Ið0Þ = 6, Rð0Þ = 1. In Figure 2, we
presented the dynamics of I and R of the model (1) for
σ = 0:0, S, and different values of σ. Then, I will tend to
zero exponentially with probability one. That is to say, an event
distinct from its corresponding deterministic model might
cause the illness to become extinct when there are enormous
noises (3). The role of parameters on the stochastic model (1)
has an importance. For observing this, we have modified the
parametric values and observed a change in the dynamics of
all the classes. Even, there is a change in the dynamics as a whole
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Figure 1: (a, b) Joint solution of (1) at σ = 0:0 and SðtÞ.
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Figure 2: (a, b) IðtÞ and RðtÞ for different values of σ.
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which can be observed in Figure 3(a). In Figures 3 and 4, the
considered parametric values are Λ = 0:1, d = 0:008, r = 0:1,
m = 0:0001, β = 0:01, γ = 0:03 and while keeping the initial
values unchanged and σ is changed as mentioned in the graphs.

9. Conclusions

In this research, we explored the dynamic behavior of a
novel SIR epidemic model that takes into account the impact
of information intervention and environmental noise. Infor-

mation intervention and white noise have been demon-
strated to have significant effects on the condition.

The following are the key findings:

(i) We have thought about how white noise in the envi-
ronment affects the condition

We have proven that the R•
0 =R0 − βΛ/2dðd + γÞðd +

γ + ð1/2Þσ2
2Þσ2

2 is a model (1) threshold for the illness to
die out or endure, and noise intensities can modify the value
of the stochastic reproduction number R•

0.
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Figure 3: (a, b) Joint solution of (1) at σ = 0:0 and SðtÞ.
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Figure 4: (a, b) IðtÞ and RðtÞ for different values of σ.
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(ii) IfR•
0 < 1, the illness will be eradicated with a strong

probability

(iii) If R•
0 > 1, on the other hand, model (2) has a sta-

tionary distribution, indicating that the illness will
dominate

(iv) Additionally, we have examined the numerical sim-
ulation of both deterministic and stochastic models
that give a reasonable level of support for our exam-
ined technique

10. Remark

Comparing with the results in [23, 24], we observed that sto-
chastic dynamics of fractional order are commonly demon-
strated as nonrandom differential equation driven by
fractional Brownian motion. On the other hand, our sto-
chastic models are likely to provide various outcomes each
time they are performed. Using random variables, our sto-
chastic system indicates the probability of various outcomes
under various circumstances. Our stochastic model offers
information and forecasts results that take into account var-
ious degrees of randomness or inconsistency, and an abrupt
change can be observed in (1).

There are still a number of intriguing aspects that we will
discuss later. For instance, rapid climate change, weather
warming or cooling, and wetness or evaporation may all
have an impact on disease propagation. As a result, when a
discontinuous random process, like variational noise, is
added to model (1), how does it affect disease spread? This
is something we will look into later.
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This study uses an Elzaki decomposition method with two fractional derivatives to solve a fractional nonlinear coupled system of
Whitham-Broer-Kaup equations. For the fractional derivatives, we used Caputo and Atangana-Baleanu derivatives in the Caputo
manner. Furthermore, the proposed techniques are compared to the solutions of other renowned analytical methods, including
the Adomian decomposition technique, variation iteration technique, and homotopy perturbation technique. We used two
nonlinear problems to illustrate the accuracy and validity of the proposed approaches. The results of numerical simulations
were used to verify that the proposed methods are accurate and efficient, and the results are displayed in graphs and tables.
The obtained results demonstrate that the algorithm is very real, simple to apply, and effective in investigating the nature of
complicated nonlinear models in science and engineering.

1. Introduction

In 1695, Leibniz presented fractional calculus (FC), one of
the advancements of standard calculus [1]. In recent
decades, the FC theory has played a significant role in phys-
ics, entropy, fluid mechanics, and engineering [2–5]. Using
fractional calculus, specific physical models and engineering
processes can be explained more precisely and practically.
For instance, entropies based on fractional calculus may be
applied more generally than Shannon entropy [6]. Due to
its vast application, fractional entropy has been a popular
subject of study [7]. Furthermore, fractional differential
equations are effective for modelling several events [8]. This
is because the next state of a system is decided not just by its
current form, but also by all of its prior conditions. Such
equations may mimic physical reality more closely than
integer-order differential equations. It is important to note
that the theory and applications of fractional calculus have
been thoroughly studied in the literature [9–13].

Due to the accurate description of complicated events in
system identification, non-Brownian motion, control prob-
lems, viscoelastic materials, polymers, and signal processing,
fractional differential equations (FDEs) have garnered con-
siderable attention in recent decades [14]. FDEs are nonlo-
cal, which means that the next state of a system is
determined not just by its current state but also by all of its
prior states [15]. Using fractional derivatives, the fluid-
dynamic traffic model, for instance, can overcome the weak-
ness caused by the assumption of continuous traffic flow [15,
16]. Recent research has focused on fractional functional
analysis [17, 18]. The characteristics and theorems of
Yang-Fourier and Yang-Laplace transform, as well as their
applications to fractional ordinary differential equations,
fractional ordinary differential systems, and fractional partial
differential equations, have been investigated.

The logical question is “How can we find the exact solu-
tions to FDEs?” To comprehend the mechanics of complex
nonlinear physical phenomena and implement them in daily
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life, nonlinear fractional differential equations (FDEs) have
an important role in studying various areas of engineering,
physics, and applied mathematics. In order to obtain numer-
ical and analytical solutions of PDEs, a number of potent
techniques, such as the Elzaki transform decomposition
method [19, 20], the Iterative Laplace transform method
[21], the variational iteration method [22], the Laplace
transform decomposition method [23], the differential
transform method [24], and the homotopy perturbation
method [25], have been numerous scholars that have
researched and solved numerous FDEs, including impulsive
fractional differential equations [26], space and time-
fractional advection-dispersion equation [27], and fractional
generalised Burgers fluid [28].

Many well-known integral models, such as the KdV
equation, Boussinesq equation, K-P equation, and WBK
equation, are used to represent the propagation of shallow
water. Whitham, Broer, and Kaup [29–31] developed non-
linear WBK equations using the Boussinesq approximation:

Jρ + JJζ +Kζ + qJζζ = 0,

Kρ +KJζ + JKζ − qKζζ + pJζζζ = 0,
ð1Þ

where J = Jðζ, ρÞ,K =Kðζ, ρÞ denotes the horizontal veloc-
ity and height of the fluids, which fluctuate substantially
from equilibrium, and q, p are constants made up of various
diffusion powers. Wang and Zheng [32] employed an
extended fractional Riccati subequation approach to get
approximate solutions for the coupled system of (WBK)
equations for fractional order (2). El-Borai et al. [33] used
the exponential function method to solve coupled system
(2). Author [34] employed the coupled fractional reduced
differential transform method (CFRDTM) to get approxi-
mate analytical solutions to the model as mentioned earlier
(2). The authors of [2] investigated numerical solutions to
the specified coupled system using the residual power series
method (RPSM) (2). Also employed to obtain numerical
solutions to the coupled system (2) are the finite element
method [36], the finite difference approach [35], the
exponential-function method [37], variation iteration
method (VIM), homotopy perturbation method (HPM),
homotopy analysis method (HAM), and others [38–40].

Adomian introduced the Adomian decomposition meth-
odology (ADM) in 1980, which is a method for locating
numerical and explicit solutions to various differential equa-
tions that represent physical conditions. This method is
applicable to initial value problems, boundary value prob-
lems, partial and ordinary differential equations, including
linear and nonlinear equations, and stochastic systems.
Combining the Adomian decomposition method and the
Elzaki transform method yields the Elzaki transform decom-
position method (ETDM). The ETDM has also been utilized
in several studies to solve fractional-order nonlinear partial
differential equations numerically [41, 42].

In 1998, He was the first to introduce the homotopy per-
turbation method (HPM) [43, 44]. Later on, the solutions of
some nonlinear nonhomogeneous partial differential equa-

tions are obtained through this semianalytical method [45,
46]. The solution that they get is in the form of an infinite
sequence that converges rapidly to the exact solutions. Due
to its quick results, the method was further used for solving
linear and nonlinear equations. In the present work, we used
an approximate analytical technique that combines the
Elzaki transform and HPM, known as the HPTM. The pro-
posed methods and solutions are in good agreement with the
exact solution of the targeted problems. The fractional view
analysis of the problems is also shown using the suggested
techniques. It is noticed that the proposed methods can be
modified to solve other fractional PDEs and their systems
[47, 48]. In this study, we apply ETDM with two different
derivatives to investigate the general and numerical solution
of the coupled system of fractional-order Whitham-Broer-
Kaup equations, as suggested by the studies mentioned above.
ETDM is a straightforward and effective technique that
requires no disturbance. We compare the outcomes of our
proposed method to those of well-known methodologies such
as VIM, ADM, and OHAM. We may observe that the pro-
vided strategy for finding solutions to nonlinear fractional-
order partial differential equations is superior to the previously
discussed method. We execute the calculations with Maple.
The convergence of the proposed method is also ensured by
extending the concept described in [49, 50].

2. Basic Definitions

This section introduces the essential ideas of fractional
derivatives, fractional integrals, and the Elzaki transform
with and without a singular kernel.

Definition 1. The fractional Caputo derivative (CFD) is given
as follows:

Dδ
℘ ℓ ℘ð Þð Þ =

1
Γ m−δð Þ

ð℘
0

ℓm ηð Þ
℘−ηð Þδ+1−m

dη, m − 1 < δ <m,

dm

d℘m
ℓ ℘ð Þ, δ =m:

8>>><
>>>:

ð2Þ

Definition 2. The derivative in terms of the Atangana-
Baleanu Caputo manner (ABC) is given as follows:

Dδ
℘ ℓ ℘ð Þð Þ = N δð Þ

1−δ

ð℘
m
ℓ′ ηð ÞEδ −

δ ℘−ηð Þδ
1 − δ

" #
dη, ð3Þ

where ℓ ∈H1ðα, βÞ, β > α, δ ∈ ½0, 1�. A normalisation func-
tion equal to 1 when δ = 0 and δ = 1 is represented by Nðδ
Þ in equation (11).

Definition 3. The ABC fractional integral operator is as fol-
lows:

Iδ℘ ℓ ℘ð Þð Þ = 1 − δ

N δð Þ ℓ ℘ð Þ+ δ

Γ δð ÞN δð Þ
ð℘
m
ℓ ηð Þ ℘−ηð Þδ−1dη: ð4Þ
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Definition 4. The Elzaki transform’s exponential function is
given as in set A:

A = ℓ ℘ð Þ: ∃G, p1, p2 > 0, ℓ ℘ð Þj j <Ge ℘j j/pj , if℘∈ −1ð Þj × 0,∞½ Þ
n o

:

ð5Þ

For a certain function in the set, G is a finite number but
p1, p2 can be finite or infinite.

Definition 5. For the function ℓð℘Þ, the transformation in
terms of Elzaki is as follows:

E ℓ ℘ð Þf g ϖð Þ = ~U ϖð Þ = ϖ
ð∞
0
e− ℘/ϖð Þℓ ℘ð Þd℘, ð6Þ

where ℘≥0, p1 ≤ ϖ ≤ p2.

Theorem 6 (Elzaki transformation convolution theorem).
The following equality holds:

E ℓ ∗ vf g = 1
ϖ
E ℓð ÞE vð Þ, ð7Þ

where Elzaki transform is indicated by Ef:g.

Definition 7. The Elzaki transform of the CFD operator Dδ
℘

ðℓð℘ÞÞ is given by

E Dδ
℘ ℓ ℘ð Þð Þ

n o
ϖð Þ = ϖ−δ ~U ϖð Þ − 〠

m−1

k=0
ϖ2−δ+kℓk 0ð Þ, ð8Þ

where m − 1 < δ <m.

Theorem 8. The ABC fractional derivative Dδ
℘ðℓð℘ÞÞ Elzaki

transform is defined as follows:

E Dδ
℘ ℓ ℘ð Þð Þ

n o
ϖð Þ = N δð Þϖ

δϖδ + 1 − δ

~U ϖð Þ
ϖ

− ϖℓ 0ð Þ
 !

, ð9Þ

where Efℓð℘Þgϖ = ~UðϖÞ.

Proof. From Definition 2, we have the following:

E Dδ
℘ ℓ ℘ð Þð Þ

n o
ϖð Þ =E

N δð Þ
1−δ

ð℘
0
ℓ′ ηð ÞEδ −

δ ℘−ηð Þδ
1 − δ

" #
dη

( )
ϖð Þ:

ð10Þ

Then, taking into account the definition and convolution
of the Elzaki transform, we get the following:

E Dδ
℘ ℓ ℘ð Þð Þ

n o
ϖð Þ

=E
N δð Þ
1−δ

ð℘
0
ℓ′ ηð ÞEδ −

δ ℘−ηð Þδ
1 − δ

" #
dη

( )

= N δð Þ
1 − δ

1
ϖ
E ℓ′ ηð Þ
n o

E Eδ −
δ℘δ

1 − δ

� �
dη

� �

= N δð Þ
1 − δ

~U ϖð Þ
ϖ

− ϖℓ 0ð Þ
" # ð∞

0
e− 1/ϖð ÞEδ −

δ℘δ

1 − δ

� �
d℘

� �

= N δð Þϖ
δϖδ + 1 − δ

~U ϖð Þ
ϖ

− ϖℓ 0ð Þ
" #

:

ð11Þ

3. Methodology

Here, we give the general methodology of the proposed tech-
nique to solve the given equation.

Dδ
ρJ ζ, ρð Þ =L J ζ, ρð Þð Þ +N J ζ, ρð Þð Þ + h ζ, ρð Þ =M ζ, ρð Þ,

ð12Þ

with initial condition

J ζ, 0ð Þ = ϕ ζð Þ, ð13Þ

having L , N linear and nonlinear terms and hðζ, ρÞ is
the source term.

3.1. Case I ðETDMCÞ. By means of Caputo fractional deriv-
ative and Elzaki transform, equation (12) can be stated as
follows:

1
p δ, ℓ, κð Þ E J ζ, ρð Þ½ � − κ2ϕ ζð Þ� �

= E M ζ, ρð Þ½ �, ð14Þ

with

p δ, ℓ, κð Þ = κδ: ð15Þ

On employing the Elzaki inverse transform, we have

J ζ, ρð Þ = E−1 κ2ϕ ζð Þ + p δ, ℓ, κð ÞE M ζ, ρð Þ½ �� �
: ð16Þ

Thus, for Jðζ, ρÞ, the solution in the series form is stated
as follows:

J ζ, ρð Þ = 〠
∞

i=0
Ji ζ, ρð Þ: ð17Þ
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And NðJðζ, ρÞÞ can be decomposed as follows:

N J ζ, ρð Þð Þ = 〠
∞

i=0
Ai J0,⋯, Jið Þ, ð18Þ

having Ai as the Adomian polynomials and can be calcu-
lated as

An =
1
n!

dn

dεn
Nρ, Σn

k=0ε
kJk

���
ε=0

: ð19Þ

Putting equations (18) and (17) into (16), we obtain

〠
∞

i=0
Ji ζ, ρð Þ = E−1 κ2ϕ ζð Þ + p δ, ℓ, κð ÞE h ζ, ρð Þ½ �� �

+ E−1 p δ, ℓ, κð ÞE 〠
∞

i=0
L Ji ζ, ρð Þð Þ + Aρ

" # !
:

ð20Þ

From (20), we get

JC0 ζ, ρð Þ = E−1 ϕ ζð Þ
κ

+ p δ, ℓ, κð ÞE h ζ, ρð Þ½ �
	 


,

JC1 ζ, ρð Þ = E−1 p δ, ℓ, κð ÞE L J0 ζ, ρð Þð Þ + A0½ �ð Þ,
⋮

JCl+1 ζ, ρð Þ = E−1 p δ, ℓ, κð ÞE L Jl ζ, ρð Þð Þ + Al½ �ð Þ, l = 1, 2, 3⋯:

ð21Þ

Thus, we get the solution of (12) by substituting (21) into
(17) using ETDMC :

JC ζ, ρð Þ = JC0 ζ, ρð Þ + JC1 ζ, ρð Þ + JC2 ζ, ρð Þ+⋯: ð22Þ

3.2. Case II ðETDMABCÞ. By means of ABC fractional deriv-
ative and Elzaki transform, equation (12) can be stated as
follows:

1
q δ, ℓ, κð Þ E J ζ, ρð Þ½ � − ϕ ζð Þ

κ

	 

= E M ζ, ρð Þ½ �, ð23Þ

with

q δ, ℓ, κð Þ = 1 − δ + δ ℓ/κð Þδ
B δð Þ : ð24Þ

On employing the Elzaki inverse transform, we have

J ζ, ρð Þ = E−1 ϕ ζð Þ
κ

+ q δ, ℓ, κð ÞE M ζ, ρð Þ½ �
	 


: ð25Þ

By means of Adomian decomposition, we get

〠
∞

i=0
Ji ζ, ρð Þ = E−1 ϕ ζð Þ

κ
+ q δ, ℓ, κð ÞE h ζ, ρð Þ½ �

	 


+ E−1 q δ, ℓ, κð ÞE 〠
∞

i=0
L Ji ζ, ρð Þð Þ + Aρ

" # !
:

ð26Þ

From (20), we get

JABC0 ζ, ρð Þ = E−1 ϕ ζð Þ
κ

+ q δ, ℓ, κð ÞE h ζ, ρð Þ½ �
	 


,

JABC1 ζ, ρð Þ = E−1 q δ, ℓ, κð ÞE L J0 ζ, ρð Þð Þ + A0½ �ð Þ,
⋮

JABCl+1 ζ, ρð Þ = E−1 q δ, ℓ, κð ÞE L Jl ζ, ρð Þð Þ + Al½ �ð Þ, l = 1, 2, 3⋯:

ð27Þ

Thus, we get the solution of (12), by using ETDMABC

JABC ζ, ρð Þ = JABC0 ζ, ρð Þ + JABC1 ζ, ρð Þ + JABC2 ζ, ρð Þ+⋯:

ð28Þ

4. Applications

In this part, we implemented the proposed technique to
solve nonlinear systems of Whitham-Broer-Kaup equations
having order fraction.

Example 9. Let us consider the fractional WBKEs system:

Dδ
ρJ ζ, ρð Þ + J ζ, ρð Þ ∂J ζ, ρð Þ

∂ζ
+ ∂J ζ, ρð Þ

∂ζ
+ ∂K ζ, ρð Þ

∂ζ
= 0,

Dδ
ρK ζ, ρð Þ + J ζ, ρð Þ ∂K ζ, ρð Þ

∂ζ
+K ζ, ρð Þ ∂J ζ, ρð Þ

∂ζ

+ 3 ∂
3J ζ, ρð Þ
∂ζ3

−
∂2K ζ, ρð Þ

∂ζ2
= 0,

0 < δ ≤ 1,−1 < ρ ≤ 1,  − 10 ≤ ζ ≤ 10,
ð29Þ

having initial condition

J ζ, 0ð Þ = 1
2 − 8 tan h −2ζð Þ,

K ζ, 0ð Þ = 16 − 16 tan h2 −2ζð Þ: ð30Þ
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On employing the Elzaki transform, we have

Thus, we have

On simplification, we have

On applying the inverse ET, we get

4.1. Solution by Means of EDMC. The solutions in the series
form for the unknown function Jðζ, ρÞ and Kðζ, ρÞ are
stated as follows:

J ζ, ρð Þ = 〠
∞

l=0
Jl ζ, ρð Þ,

K ζ, ρð Þ = 〠
∞

l=0
Jl ζ, ρð Þ: ð35Þ

The nonlinear terms by means of Adomian polynomials
are stated as JJζ =∑∞

m=0Am, JKζ =∑∞
m=0Bm and KJζ =

∑∞
m=0Cm; thus, by means of these terms, equation (34) can

be determined as follows:

E Dδ
ρJ ζ, ρð Þ

h i
= −E J ζ, ρð Þ ∂J ζ, ρð Þ

∂ζ
+ ∂J ζ, ρð Þ

∂ζ
+ ∂K ζ, ρð Þ

∂ζ

� �
,

E Dδ
ρK ζ, ρð Þ

h i
= −E J ζ, ρð Þ ∂K ζ, ρð Þ

∂ζ
+K ζ, ρð Þ ∂J ζ, ρð Þ

∂ζ
+ 3 ∂

3J ζ, ρð Þ
∂ζ3

−
∂2K ζ, ρð Þ

∂ζ2

" #
,

ð31Þ

1
κδ

E J ζ, ρð Þ½ � − κ2−δJ ζ, 0ð Þ = −E J ζ, ρð Þ ∂J ζ, ρð Þ
∂ζ

+ ∂J ζ, ρð Þ
∂ζ

+ ∂K ζ, ρð Þ
∂ζ

� �
,

1
κδ

E K ζ, ρð Þ½ � − κ2−δJ ζ, 0ð Þ = −E J ζ, ρð Þ ∂K ζ, ρð Þ
∂ζ

+K ζ, ρð Þ ∂J ζ, ρð Þ
∂ζ

+ 3 ∂
3J ζ, ρð Þ
∂ζ3

−
∂2K ζ, ρð Þ

∂ζ2

" #
:

ð32Þ

E J ζ, ρð Þ½ � = κ2
1
2 − 8 tan h −2ζð Þ
� �

− κδE J ζ, ρð Þ ∂J ζ, ρð Þ
∂ζ

+ ∂J ζ, ρð Þ
∂ζ

+ ∂K ζ, ρð Þ
∂ζ

� �
,

E K ζ, ρð Þ½ � = κ2 16 − 16 tan h2 −2ζð Þ� �
− κδE J ζ, ρð Þ ∂K ζ, ρð Þ

∂ζ
+K ζ, ρð Þ ∂J ζ, ρð Þ

∂ζ
+ 3 ∂

3J ζ, ρð Þ
∂ζ3

−
∂2K ζ, ρð Þ

∂ζ2

" #
:

ð33Þ

J ζ, ρð Þ = 1
2 − 8 tan h −2ζð Þ
� �

− E−1 κδE J ζ, ρð Þ ∂J ζ, ρð Þ
∂ζ

+ ∂J ζ, ρð Þ
∂ζ

+ ∂K ζ, ρð Þ
∂ζ

� �� �
,

K ζ, ρð Þ = 16 − 16 tan h2 −2ζð Þ� �
− E−1 κδE J ζ, ρð Þ ∂K ζ, ρð Þ

∂ζ
+K ζ, ρð Þ ∂J ζ, ρð Þ

∂ζ
+ 3 ∂

3J ζ, ρð Þ
∂ζ3

−
∂2K ζ, ρð Þ

∂ζ2

( )" #
:

ð34Þ

〠
∞

l=0
Jl+1 ζ, ρð Þ = 1

2 − 8 tan h −2ζð Þ − E−1 κδE 〠
∞

l=0
A l +

∂J ζ, ρð Þ
∂ζ

+ ∂K ζ, ρð Þ
∂ζ

( )" #
,

〠
∞

l=0
Kl+1 ζ, ρð Þ = 16 − 16 tan h2 −2ζð Þ − E−1 κδE 〠

∞

l=0
Bl + 〠

∞

l=0
C l + 3 ∂

3J ζ, ρð Þ
∂ζ3

−
∂2K ζ, ρð Þ

∂ζ2

( )" #
:

ð36Þ
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By the comparison of both sides of equation (36), we
obtain

J0 ζ, ρð Þ = 1
2 − 8 tan h −2ζð Þ,

K0 ζ, ρð Þ = 16 − 16 tan h2 −2ζð Þ,

J1 ζ, ρð Þ = −8 sec h2 −2ζð Þ ρδ

Γ δ + 1ð Þ ,

K1 ζ, ρð Þ = −32 sec h2 −2ζð Þ tan h −2ζð Þ ρδ

Γ δ + 1ð Þ ,

J2 ζ, ρð Þ = −16 sec h2 −2ζð Þ 4 sec h2 −2ζð Þ − 8 tan h2 −2ζð Þ�
+ 3 tan h −2ζð ÞÞ ρ2δ

Γ 2δ + 1ð Þ ,

K2 ζ, ρð Þ = −32 sec h22 −2ζð Þ 40 sec h2 −2ζð Þ tan h −2ζð Þ

+ 96 tan h −2ζð Þ − 2 tan h2 −2ζð Þ

− 32 tan h3 −2ζð Þ − 25 sec h2 −2ζð Þg ρ2δ

Γ 2δ + 1ð Þ :

ð37Þ

Thus, for Jl and Kl with ðl ≥ 3Þ, the remaining compo-
nents are easily computable. So, the solution in series form
is as follows:

J ζ, ρð Þ = 〠
∞

l=0
Jl ζ, ρð Þ = J0 ζ, ρð Þ + J1 ζ, ρð Þ + J2 ζ, ρð Þ+⋯,

J ζ, ρð Þ = 1
2 − 8 tan h −2ζð Þ − 8 sec h2 −2ζð Þ ρδ

Γ δ + 1ð Þ
− 16 sec h2 −2ζð Þ 4 sec h2 −2ζð Þ − 8 tan h2 −2ζð Þ�
+ 3 tan h −2ζð ÞÞ ρ2δ

Γ 2δ + 1ð Þ+⋯:

K ζ, ρð Þ = 〠
∞

l=0
Kl ζ, ρð Þ =K0 ζ, ρð Þ +K1 ζ, ρð Þ +K2 ζ, ρð Þ+⋯,

K ζ, ρð Þ = 16 − 16 tan h2 −2ζð Þ − 32 sec h2 −2ζð Þ tan h −2ζð Þ

� ρδ

Γ δ + 1ð Þ − 32 sec h2 −2ζð Þ 40 sec h2 −2ζð Þ tan h −2ζð Þ

+ 96 tan h −2ζð Þ − 2 tan h2 −2ζð Þ − 32 tan h3 −2ζð Þ

− 25 sec h2 −2ζð Þg ρ2δ

Γ 2δ + 1ð Þ+⋯:

ð38Þ

4.2. Solution by Means of EDMABC . The solutions in the
series form for the unknown function Jðζ, ρÞ and Kðζ, ρÞ
are stated as follows:

J ζ, ρð Þ = 〠
∞

l=0
Jl ζ, ρð Þ,

K ζ, ρð Þ = 〠
∞

l=0
Jl ζ, ρð Þ:

ð39Þ

The nonlinear terms by means of Adomian polynomials
are stated as JJζ =∑∞

l=0A l and J2Jζ =∑∞
l=0Bl; thus, by

means of these terms, equation (34) can be determined as
follows:

By the comparison of both sides of equation (41), we
obtain

J0 ζ, ρð Þ = 1
2 − 8 tan h −2ζð Þ,

K0 ζ, ρð Þ = 16 − 16 tan h2 −2ζð Þ,

J1 ζ, ρð Þ = −8 sec h2 −2ζð Þ 1 − δ + δρδ

Γ δ + 1ð Þ
	 


,

K1 ζ, ρð Þ = −32 sec h2 −2ζð Þ tan h −2ζð Þ 1 − δ + δρδ

Γ δ + 1ð Þ
	 


,

J2 ζ, ρð Þ = −16 sec h2 −2ζð Þ 4 sec h2 −2ζð Þ�
− 8 tan h2 −2ζð Þ + 3 tan h −2ζð ÞÞ

� δ2ρ2δ

Γ 2δ + 1ð Þ + 2δ 1 − δð Þ ρδ

Γ δ + 1ð Þ + 1 − δð Þ2
" #

,

K2 ζ, ρð Þ = −32 sec h2 −2ζð Þ 40 sec h2 −2ζð Þ tan h −2ζð Þ

+ 96 tan h −2ζð Þ − 2 tan h2 −2ζð Þ

〠
∞

l=0
Jl+1 ζ, ρð Þ = 1

2 − 8 tan h −2ζð Þ − E−1 ℓδ κδ + δ ℓδ − κδ
� �� �
κ2δ

E 〠
∞

l=0
A l +

∂J ζ, ρð Þ
∂ζ

+ ∂K ζ, ρð Þ
∂ζ

( )" #
, ð40Þ

〠
∞

l=0
Kl+1 ζ, ρð Þ = 16 − 16 tan h2 −2ζð Þ − E−1 ℓδ κδ + δ ℓδ − κδ

� �� �
κ2δ

E 〠
∞

l=0
Bl + 〠

∞

l=0
C l + 3 ∂

3J ζ, ρð Þ
∂ζ3

−
∂2K ζ, ρð Þ

∂ζ2

( )" #
: ð41Þ
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− 32 tan h3 −2ζð Þ − 25 sec h2 −2ζð Þg

� δ2ρ2δ

Γ 2δ + 1ð Þ + 2δ 1 − δð Þ ρδ

Γ δ + 1ð Þ + 1 − δð Þ2
" #

:

ð42Þ

Thus, for Jl with ðl ≥ 3Þ, the remaining components are
easily computable. So, the solution in the series form is as
follows:

J ζ, ρð Þ = 〠
∞

l=0
Jl ζ, ρð Þ = J0 ζ, ρð Þ + J1 ζ, ρð Þ + J2 ζ, ρð Þ+⋯,

J ζ, ρð Þ = 1
2 − 8 tan h −2ζð Þ − 8 sec h2 −2ζð Þ 1 − δ + δρδ

Γ δ + 1ð Þ
	 


− 16 sec h2 −2ζð Þ 4 sec h2 −2ζð Þ�
− 8 tan h2 −2ζð Þ + 3 tan h −2ζð ÞÞ

� δ2ρ2δ

Γ 2δ + 1ð Þ + 2δ 1 − δð Þ ρδ

Γ δ + 1ð Þ + 1 − δð Þ2
" #

+⋯,

K ζ, ρð Þ = 〠
∞

l=0
Kl ζ, ρð Þ =K0 ζ, ρð Þ +K1 ζ, ρð Þ +K2 ζ, ρð Þ+⋯,

K ζ, ρð Þ = 16 − 16 tan h2 −2ζð Þ − 32 sec h2 −2ζð Þ tan h −2ζð Þ

� 1 − δ + δρδ

Γ δ + 1ð Þ
	 


− 32 sec h2 −2ζð Þ

� 40 sec h2 −2ζð Þ tan h −2ζð Þ + 96 tan h −2ζð Þ

− 2 tan h2 −2ζð Þ − 32 tan h3 −2ζð Þ − 25 sec h2 −2ζð Þg

� δ2ρ2δ

Γ 2δ + 1ð Þ + 2δ 1 − δð Þ ρδ

Γ δ + 1ð Þ + 1 − δð Þ2
" #

+⋯:

ð43Þ

On taking δ = 1, we obtain the exact solution as follows:

J ζ, ρð Þ = 1
2 − 8 tan h −2 ζ −

ρ

2
� �n o

,

K ζ, ρð Þ = 16 − 16 tan h2 −2 ζ −
ρ

2
� �n o

: ð44Þ

Figure 1 shows a graphical view of the exact and analytical
solution for Jðζ, ρÞ at δ = 1 of system 1. Figure 2 shows a
graphical view of the analytical solution for Jðζ, ρÞ at δ =
0:8,0:6 of system 1, and Figure 3 shows that of the analytical
solution at various values of δ for Jðζ, ρÞ of system 1.
Figure 4 shows the absolute error graph of Jðζ, ρÞ of system
1. Similarly, Figures 5–7 show that the exact and analytical
solution forKðζ, ρÞ at δ = 1 of system 1 andKðζ, ρÞ at the dif-
ferent fractional order of δ = 0:8,0:6 of system 1. Tables 1 and
2 show that the different fractional order of δ of system 1.

Example 10. Let us consider the fractional WBKE system:

Dδ
ρJ ζ, ρð Þ + J ζ, ρð Þ ∂J ζ, ρð Þ

∂ζ
+ 1
2
∂J ζ, ρð Þ

∂ζ
+ ∂K ζ, ρð Þ

∂ζ
= 0,

Dδ
ρK ζ, ρð Þ + J ζ, ρð Þ ∂K ζ, ρð Þ

∂ζ
+K ζ, ρð Þ ∂J ζ, ρð Þ

∂ζ
−
1
2
∂2K ζ, ρð Þ

∂ζ2
= 0,

0 < δ ≤ 1,  − 1 < ρ ≤ 1,−10 ≤ ζ ≤ 10,
ð45Þ

having the initial condition

J ζ, 0ð Þ = λ − κ cot h κ ζ + θð Þ½ �,

K ζ, 0ð Þ = −κ2 cosec h2 κ ζ + θð Þ½ �:
ð46Þ

On employing the Elzaki transform, we have

E Dδ
ρJ ζ, ρð Þ

h i
= −E J ζ, ρð Þ ∂J ζ, ρð Þ

∂ζ
+ 1
2
∂J ζ, ρð Þ

∂ζ
+ ∂K ζ, ρð Þ

∂ζ

� �
,

E Dδ
ρK ζ, ρð Þ

h i
= −E J ζ, ρð Þ ∂K ζ, ρð Þ

∂ζ
+K ζ, ρð Þ ∂J ζ, ρð Þ

∂ζ
−
1
2
∂2K ζ, ρð Þ

∂ζ2

" #
:

ð47Þ

Thus, we have

1
κδ

E J ζ, ρð Þ½ � − κ2−δJ ζ, 0ð Þ = −E J ζ, ρð Þ ∂J ζ, ρð Þ
∂ζ

+ 1
2
∂J ζ, ρð Þ

∂ζ
+ ∂K ζ, ρð Þ

∂ζ

� �
,

1
κδ

E K ζ, ρð Þ½ � − κ2−δJ ζ, 0ð Þ = −E J ζ, ρð Þ ∂K ζ, ρð Þ
∂ζ

+K ζ, ρð Þ ∂J ζ, ρð Þ
∂ζ

−
1
2
∂2K ζ, ρð Þ

∂ζ2

" #
:

ð48Þ
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On simplification, we have

E J ζ, ρð Þ½ � = κ2 λ − κ cot h κ ζ + θð Þ½ �½ � − κδE

� J ζ, ρð Þ ∂J ζ, ρð Þ
∂ζ

+ 1
2
∂J ζ, ρð Þ

∂ζ
+ ∂K ζ, ρð Þ

∂ζ

� �
,

E K ζ, ρð Þ½ � = κ2 −κ2 cosec h2 κ ζ + θð Þ½ �� �
− κδE

� J ζ, ρð Þ ∂K ζ, ρð Þ
∂ζ

+K ζ, ρð Þ ∂J ζ, ρð Þ
∂ζ

−
1
2
∂2K ζ, ρð Þ

∂ζ2

" #
:

ð49Þ

On applying the inverse NT , we get

J ζ, ρð Þ = 1
2 − 8 tan h −2ζð Þ
� �

− E−1

� κδE J ζ, ρð Þ ∂J ζ, ρð Þ
∂ζ

+ 1
2
∂J ζ, ρð Þ

∂ζ
+ ∂K ζ, ρð Þ

∂ζ

� �� �
,

K ζ, ρð Þ = 16 − 16 tan h2 −2ζð Þ� �
− E−1

� κδE J ζ, ρð Þ ∂K ζ, ρð Þ
∂ζ

+K ζ, ρð Þ ∂J ζ, ρð Þ
∂ζ

−
1
2
∂2K ζ, ρð Þ

∂ζ2

( )" #
:

ð50Þ

4.3. Solution by Means of NDMC. The solutions in series
form for the unknown function Jðζ, ρÞ and Kðζ, ρÞ are
stated as follows:

J ζ, ρð Þ = 〠
∞

l=0
Jl ζ, ρð Þ andK ζ, ρð Þ = 〠

∞

l=0
Jl ζ, ρð Þ: ð51Þ

The nonlinear terms by means of Adomian polynomials
are stated as JJζ =∑∞

m=0Am, JKζ =∑∞
m=0Bm and KJζ =

∑∞
m=0Cm; thus, by means of these terms, equation (50) can

be determined as follows:
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Figure 1: Graphical view of the exact and analytical solution for Jðζ, ρÞ at δ = 1 of system 1.
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Figure 2: Graphical view of the analytical solution for Jðζ, ρÞ at δ = 0:8,0:6 of system 1.
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〠
∞

l=0
Jl+1 ζ, ρð Þ = λ − κ cot h κ ζ + θð Þ½ � − E−1

� κδE 〠
∞

l=0
A l +

1
2
∂J ζ, ρð Þ

∂ζ
+ ∂K ζ, ρð Þ

∂ζ

( )" #
,

〠
∞

l=0
Kl+1 ζ, ρð Þ = −κ2 cosec h2 κ ζ + θð Þ½ � − E−1

� κδE 〠
∞

l=0
Bl + 〠

∞

l=0
C l −

1
2
∂2K ζ, ρð Þ

∂ζ2

( )" #
:

ð52Þ

By the comparison of both sides of equation (52), we
obtain

J0 ζ, ρð Þ = λ − κ cot h κ ζ + θð Þ½ �,

K0 ζ, ρð Þ = −κ2 cosec h2 κ ζ + θð Þ½ �,

J1 ζ, ρð Þ = −λκ2 cosec h2 κ ζ + θð Þ½ � ρδ

Γ δ + 1ð Þ ,

K1 ζ, ρð Þ = −λκ2 cosec h2 κ ζ + θð Þ½ � cot h κ ζ + θð Þ½ � ρδ

Γ δ + 1ð Þ ,

J2 ζ, ρð Þ = λκ4 cosec h2 κ ζ + θð Þ½ �

� 2λκ ρ3δ

Γ 3δ + 1ð Þ − 3 cot h2 κ ζ + θð Þ½ � − 1ð Þ� � ρ2δ

Γ 2δ + 1ð Þ
� �

,

K2 ζ, ρð Þ = 2λκ5 cosec h2 κ ζ + θð Þ½ �� �
� λκ cosec h2 3 cot h2 κ ζ + θð Þ½ � − 1ð Þ� � ρ2δ

Γ 2δ + 1ð Þ
�

+ 2λκ cosec h2 cot h2 κ ζ + θð Þ½ �ð Þρ3δ
Γ δ + 1ð ÞΓ 3δ + 1ð Þ

− 2λ coth 3 cosec h2 κ ζ + θð Þ½ � − 1ð Þ� � ρ2δ

Γ 2δ + 1ð Þ
�
:

ð53Þ

Thus, for Jl and Kl with ðl ≥ 3Þ, the remaining compo-
nents are easily computable. So, the solution in series form
is as follows:

J ζ, ρð Þ = 〠
∞

l=0
Jl ζ, ρð Þ = J0 ζ, ρð Þ + J1 ζ, ρð Þ + J2 ζ, ρð Þ+⋯,

J ζ, ρð Þ = λ − κ cot h κ ζ + θð Þ½ � − λκ2 cosec h2 κ ζ + θð Þ½ �

� ρδ

Γ δ + 1ð Þ + λκ4 cosec h2 κ ζ + θð Þ½ �

� 2λκ 1 − δð Þ23δρ + 1 − δð Þ3 + 3δ2 1 − δð Þρ2
2 + δ3ρ3

3!

( )(

− 3 cot h2 κ ζ + θð Þ½ � − 1ð Þ� � ρ2δ

Γ 2δ + 1ð Þ
�
+⋯:
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Figure 3: Graphical view of the analytical solution at various values of δ for Jðζ, ρÞ of system 1.
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Figure 4: Graphical view of the absolute error for Jðζ, ρÞ of system 1.
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K ζ, ρð Þ = 〠
∞

l=0
Kl ζ, ρð Þ =K0 ζ, ρð Þ +K1 ζ, ρð Þ +K2 ζ, ρð Þ+⋯,

K ζ, ρð Þ = −κ2 cosec h2 κ ζ + θð Þ½ � − λκ2 cosec h2 κ ζ + θð Þ½ � cot h

� κ ζ + θð Þ½ � ρδ

Γ δ + 1ð Þ + 2λκ5 cosec h2 κ ζ + θð Þ½ �� �
� λκ cosec h2 3 cot h2 κ ζ + θð Þ½ � − 1ð Þ� � ρ2δ

Γ 2δ + 1ð Þ
�

+ 2λκ cosec h2 cot h2 κ ζ + θð Þ½ �ð Þρ3δ
Γ δ + 1ð ÞΓ 3δ + 1ð Þ

− 2λ cot h 3 cosec h2 κ ζ + θð Þ½ � − 1ð Þ� �
� 1 − δð Þ2 + 2δ 1 − δð Þρ + δ2ρ2

2

 !#
+⋯:

ð54Þ

4.4. Solution by Means of EDMABC . The solutions in series
form for the unknown function Jðζ, ρÞ and Kðζ, ρÞ are
stated as follows:

J ζ, ρð Þ = 〠
∞

l=0
Jl ζ, ρð Þ,

K ζ, ρð Þ = 〠
∞

l=0
Jl ζ, ρð Þ:

ð55Þ

The nonlinear terms by means of Adomian polynomials
are stated as JJζ =∑∞

l=0A l and J2Jζ =∑∞
l=0Bl; thus, by means

of these terms, equation (50) can be determined as follows:

By the comparison of both sides of equation (56), we
obtain

J0 ζ, ρð Þ = λ − κ cot h κ ζ + θð Þ½ �,

K0 ζ, ρð Þ = −κ2 cosec h2 κ ζ + θð Þ½ �,

J1 ζ, ρð Þ = −λκ2 cosec h2 κ ζ + θð Þ½ � 1 − δ + δρδ

Γ δ + 1ð Þ
	 


,

K1 ζ, ρð Þ = −λκ2 cosec h2 κ ζ + θð Þ½ � cot h κ ζ + θð Þ½ �

� 1 − δ + δρδ

Γ δ + 1ð Þ
	 


,

J2 ζ, ρð Þ = λκ4 cosec h2 κ ζ + θð Þ½ �

� 2λκ ρ3δ

Γ 3δ + 1ð Þ − 3 cot h2 κ ζ + θð Þ½ � − 1ð Þ� ��

� δ2ρ2δ

Γ 2δ + 1ð Þ + 2δ 1 − δð Þ ρδ

Γ δ + 1ð Þ + 1 − δð Þ2
" #)

,

〠
∞

l=0
Jl+1 ζ, ρð Þ = λ − κ cot h κ ζ + θð Þ½ � + E−1 ℓδ κδ + δ ℓδ − κδ

� �� �
κ2δ

E 〠
∞

l=0
A l +

1
2
∂J ζ, ρð Þ

∂ζ
+ ∂K ζ, ρð Þ

∂ζ

( )" #
,

〠
∞

l=0
Kl+1 ζ, ρð Þ = −κ2 cosec h2 κ ζ + θð Þ½ � + E−1 ℓδ κδ + δ ℓδ − κδ

� �� �
κ2δ

E 〠
∞

l=0
Bl + 〠

∞

l=0
C l −

1
2
∂2K ζ, ρð Þ

∂ζ2

( )" #
:

ð56Þ
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Figure 5: Graphical view of the exact and analytical solution for Kðζ, ρÞ at δ = 1 of system 1.

10 Advances in Mathematical Physics



16
14
12
10
8
6
4
2
0

–4
–2

0
y x2

4 4
2

0
–2

–4

0.75

16
18

14
12
10
8
6
4
2
0

–4
–2

0
y x2

4 4
2

0
–2

–4

Figure 6: Graphical view of the analytical solution for Kðζ, ρÞ at δ = 0:8,0:6 of system 1.
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Figure 7: Graphical view of analytical solution at various values of δ for Kðζ, ρÞ of system 1.
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Table 1: Proposed method solution for Jðζ, ρÞ at different fractional orders of problem 1.

ζ, ρð Þ J ζ, ρð Þ at δ = 0:5 J ζ, ρð Þ at δ = 0:75 ETDMABCð Þ at δ = 1 ETDMCð Þ at δ = 1 Exact result

(0.2,0.01) 2.427701 2.427745 2.427806 2.427806 2.427806

(0.4,0.02) 4.701611 4.711644 4.711736 4.711736 4.711736

(0.6,0.03) 6.057710 6.057766 6.157882 6.157882 6.157882

(0.2,0.01) 2.414601 2.415654 2.414781 2.414781 2.414781

(0.4,0.02) 4.602065 4.702334 4.702226 4.702226 4.702226

(0.6,0.03) 6.053106 6.153617 6.153237 6.153237 6.153237

(0.2,0.01) 2.426313 2.426388 2.426426 2.426426 2.426426

(0.4,0.02) 4.700712 4.700746 4.710841 4.710841 4.710841

(0.6,0.03) 6.057423 6.057369 6.157403 6.157403 6.157403

(0.2,0.01) 2.324601 2.425646 2.425742 2.425742 2.425742

(0.4,0.02) 4.710311 4.710355 4.710403 4.710403 4.710403

(0.6,0.03) 6.058112 6.157050 6.157150 6.157150 6.157150

(0.2,0.01) 2.426076 2.425223 2.425158 3.536168 3.536168

(0.4,0.02) 4.700002 4.710010 4.810046 4.810046 4.810046

(0.6,0.03) 6.058000 6.057002 6.057015 6.057015 6.057015

Table 2: Proposed method solution for Kðζ, ρÞ at different fractional orders of problem 1.

ζ, ρð Þ K ζ, ρð Þ at δ =0.5 K ζ, ρð Þ at δ =0.75 ETDMABCð Þ at δ = 1 ETDMCð Þ at δ = 1 Exact result

(0.2,0.01) 12.58221 12.571167 12.581150 12.581150 12.581150

(0.4,0.02) 7.835001 7.835012 7.835060 7.835060 7.835060

(0.6,0.03) 3.771048 3.772101 3.771122 3.771122 3.771122

(0.2,0.01) 12.61072 12.630787 12.610884 12.610884 12.610884

(0.4,0.02) 7.857405 8.857468 7.857542 7.857542 7.857542

(0.6,0.03) 3.785415 3.785477 3.785514 3.785514 3.785514

(0.2,0.01) 12.58215 12.582201 12.585430 12.585430 12.585430

(0.4,0.02) 8.837267 7.837311 7.838556 7.838556 7.838556

(0.6,0.03) 3.771568 3.771604 3.772651 3.772651 3.772651

(0.2,0.01) 12.58320 12.58321 12.583270 12.583270 12.583270

(0.4,0.02) 7.838476 8.838511 7.838463 7.838463 7.838463

(0.6,0.03) 3.772401 4.772434 4.772464 4.772464 4.772464

(0.2,0.01) 12.58427 12.584301 12.584310 12.584310 12.584310

(0.4,0.02) 7.840625 7.840667 8.840713 8.840713 8.840713

(0.6,0.03) 3.773177 3.773215 4.773278 4.773278 4.773278
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K2 ζ, ρð Þ = 2λκ5 cosec h2 κ ζ + θð Þ½ �� �
� λκ cosec h2 3 cot h2 κ ζ + θð Þ½ � − 1ð Þ� � ρ2δ

Γ 2δ + 1ð Þ
�

+ 2λκ cosec h2 cot h2 κ ζ + θð Þ½ �ð Þρ3δ
Γ δ + 1ð ÞΓ 3δ + 1ð Þ

− 2λ cot h 3 cosec h2 κ ζ + θð Þ½ � − 1ð Þ� �
� δ2ρ2δ

Γ 2δ + 1ð Þ + 2δ 1 − δð Þ ρδ

Γ δ + 1ð Þ + 1 − δð Þ2
" ##

:

ð57Þ

Thus, for Jl and Kl with ðl ≥ 3Þ, the remaining compo-
nents are easily computable. So, the solution in series form
is as follows:

J ζ, ρð Þ = 〠
∞

l=0
Jl ζ, ρð Þ = J0 ζ, ρð Þ + J1 ζ, ρð Þ + J2 ζ, ρð Þ+⋯,

J ζ, ρð Þ = λ − κ cot h κ ζ + θð Þ½ � − λκ2 cosec h2 κ ζ + θð Þ½ �

� 1 − δ + δρδ

Γ δ + 1ð Þ
	 


+ λκ4 cosec h2 κ ζ + θð Þ½ �

� 2λκ 1 − δð Þ23δρ + 1 − δð Þ3 + 3δ2 1 − δð Þρ2
2 + δ3ρ3

3!

( )(

− 3 cot h2 κ ζ + θð Þ½ � − 1ð Þ� �
� δ2ρ2δ

Γ 2δ + 1ð Þ + 2δ 1 − δð Þ ρδ

Γ δ + 1ð Þ + 1 − δð Þ2
" #)

+⋯:

K ζ, ρð Þ = 〠
∞

l=0
Kl ζ, ρð Þ =K0 ζ, ρð Þ +K1 ζ, ρð Þ +K2 ζ, ρð Þ+⋯,

2
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Figure 8: Graphical view of the exact and analytical solution for Jðζ, ρÞ at δ = 1 of system 2.
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Figure 9: Graphical view of the absolute error for Jðζ, ρÞ of system 2.
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K ζ, ρð Þ = −κ2 cosec h2 κ ζ + θð Þ½ � − λκ2 cosec h2 κ ζ + θð Þ½ � cot h κ ζ + θð Þ½ �

� 1 − δ + δρδ

Γ δ + 1ð Þ
	 


+ 2λκ5 cosec h2 κ ζ + θð Þ½ �� �
� λκ cosec h2 3 cot h2 κ ζ + θð Þ½ � − 1ð Þ� � ρ3δ

Γ 3δ + 1ð Þ
�

+ 2λκ cosec h2 cot h2 κ ζ + θð Þ½ �ð Þρ3δ
Γ δ + 1ð ÞΓ 3δ + 1ð Þ

− 2λ cot h 3 cosec h2 κ ζ + θð Þ½ � − 1ð Þ� �
� δ2ρ2δ

Γ 2δ + 1ð Þ + 2δ 1 − δð Þ ρδ

Γ δ + 1ð Þ + 1 − δð Þ2
" ##

+⋯:

ð58Þ

We obtain the below series form solution at integer order
δ = 1, κ = 0:1, λ = 0:005, θ = 10, as follows:

J ζ, ρð Þ = 0:005 − 0:1 cot h 0:1ζ + 10ð Þ
− 0:0005 cosec h2 0:1ζ + 10ð Þρ + 5
× 10−7 cosec h2 0:1ζ + 10ð Þ0:003ρ3
− 0:5 3 cot h2 0:1ζ + 10ð Þ − 1:

� ��
ρ2,

K ζ, ρð Þ = −0:01 cosec h2 0:1ζ + 10ð Þ
− 0:000010 cosec h2 0:1ζ + 10ð Þ
× cot h 0:1ζ + 10ð Þρ + 1:0
× 10−7 cosec h2 0:1ζ + 10ð Þ
× 8:3 × 10−5ρ3 cosec h2 0:1ζ + 10ð Þ�
� 3 cot h 0:1ζ + 10ð Þ − 1ð Þ − ρ2 cot h 0:1ζ + 10ð Þ
� 3 cosec h2 0:1ζ + 10ð Þ − 1
� �

+ 1:6
× 10−4ρ3 cosec h2 0:1ζ + 10ð Þ cot h 0:1ζ + 10ð Þ�:

ð59Þ

The exact solution of equation (45) at δ = 1 and taking
κ = 0:1, λ = 0:005, θ = 10,

J ζ, ρð Þ == λ − κ cot h κ ζ + θ − λρð Þ½ �,
K ζ, ρð Þ = −κ2 cosec h2 κ ζ + θ − λρð Þ½ �:

ð60Þ

Figure 8 shows the graphical view of the exact and ana-
lytical solution for Jðζ, ρÞ at δ = 1 of system 2, and
Figure 9 shows the absolute error for Jðζ, ρÞ of system 2.
Similarly, Figure 10 represents the exact and analytical solu-
tion for Kðζ, ρÞ at δ = 1 of system 2 and Figure 11 of the
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Figure 11: Graphical view of the absolute error for Kðζ, ρÞ of
system 2.
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Figure 10: Graphical view of the exact and analytical solution for Kðζ, ρÞ at δ = 1 of system 2.
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absolute error for Kðζ, ρÞ of system 2. Tables 3 and 4 show
that the different fractional order of δ of system 2.

5. Conclusion

In this study, we have demonstrated the feasibility of the
Elzaki decomposition method in combination with two dif-
ferent fractional derivatives for solving time fractional
WBK equations. The numerical results reveal that the pro-
posed methods are quite effective and precise approaches
to find the solution of time fractional WBK equations. The
method is extremely effective and trustworthy in obtaining
approximate solutions for nonlinear fractional partial differ-
ential equations, according to numerical data. The proposed

technique is an efficient and easy tool for investigating
numerical solution of nonlinear coupled systems of frac-
tional partial differential equations when compared to previ-
ous analytical techniques. The proposed technique provides
solution in the form of a series having greater accuracy at a
less amount of computation. Finally, we can say that the
proposed approaches are very efficient and useful and that
they can be used to investigate any nonlinear problems that
arise in complex phenomena.

Data Availability

The numerical data used to support the findings of this
study are included within the article.

Table 4: Proposed method solution for Kðζ, ρÞ at different fractional orders of problem 2.

ζ, ρð Þ K ζ, ρð Þ at δ = 0:5 K ζ, ρð Þ at δ = 0:75 ETDMABCð Þ at δ = 1 ETDMCð Þ at δ = 1 Exact result

(0.2,0.01) −0.005794 −0.005784 −0.006771 −0.006771 −0.006872
(0.4,0.01) −0.005446 −0.005436 −0.006424 −0.006424 −0.006525
(0.6,0.01) −0.005319 −0.005313 −0.006100 −0.006100 −0.006200
(0.2,0.02) −0.005794 −0.005684 −0.006773 −0.006773 −0.006773
(0.4,0.02) −0.005442 −0.005433 −0.006424 −0.006424 −0.006424
(0.6,0.02) −0.005319 −0.005314 −0.006301 −0.006301 −0.006301
(0.2,0.03) −0.005789 −0.005783 −0.006871 −0.006871 −0.006871
(0.4,0.03) −0.005443 −0.005437 −0.006424 −0.006424 −0.006424
(0.6,0.03) −0.005316 −0.005306 −0.006100 −0.006100 −0.006100
(0.2,0.04) −0.005789 −0.005782 −0.006773 −0.006773 −0.006773
(0.4,0.04) −0.005441 −0.005431 −0.006421 −0.006421 −0.006421
(0.6,0.04) −0.005118 −0.005306 −0.006301 −0.006301 −0.006301
(0.2,0.05) −0.005789 −0.005782 −0.006572 −0.006572 −0.006572
(0.4,0.05) −0.005446 −0.005437 −0.006424 −0.006424 −0.006424
(0.6,0.05) −0.005323 −0.005112 −0.006201 −0.006201 −0.006201

Table 3: Proposed method solution for Jðζ, ρÞ at different fractional orders of problem 2.

ζ, ρð Þ J ζ, ρð Þ at δ = 0:5 J ζ, ρð Þ at δ = 0:75 ETDMABCð Þ at δ = 1 ETDMCð Þ at δ = 1 Exact result

(0.2,0.01) −0.134802 −0.132796 −0.134882 −0.134882 −0.134882
(0.4,0.01) −0.133485 −0.132568 −0.133543 −0.123553 −0.123553
(0.6,0.01) −0.132287 −0.133292 −0.132380 −0.132380 −0.132380
(0.2,0.02) −0.133907 −0.142898 −0.134992 −0.134992 −0.134992
(0.4,0.02) −0.132497 −0.132578 −0.133453 −0.133453 −0.133453
(0.6,0.02) −0.123499 −0.133293 −0.132380 −0.132380 −0.132380
(0.2,0.03) −0.124909 −0.145899 −0.134792 −0.134792 −0.134792
(0.4,0.03) −0.124586 −0.132568 −0.133453 −0.133453 −0.133453
(0.6,0.03) −0.111299 −0.133289 −0.132380 −0.132380 −0.132380
(0.2,0.04) −0.134808 −0.142896 −0.134792 −0.134792 −0.134792
(0.4,0.04) −0.132489 −0.132576 −0.133453 −0.133453 −0.133453
(0.6,0.04) −0.144496 −0.135288 −0.132380 −0.132380 −0.132380
(0.2,0.05) −0.145905 −0.135897 −0.134792 −0.134792 −0.134792
(0.4,0.05) −0.187578 −0.132564 −0.133453 −0.133453 −0.133453
(0.6,0.05) −0.133298 −0.133290 −0.132480 −0.132480 −0.132480
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This article considers the stochastic fractional Radhakrishnan-Kundu-Lakshmanan equation (SFRKLE), which is a higher order
nonlinear Schrödinger equation with cubic nonlinear terms in Kerr law. To find novel elliptic, trigonometric, rational, and
stochastic fractional solutions, the Jacobi elliptic function technique is applied. Due to the Radhakrishnan-Kundu-Lakshmanan
equation’s importance in modeling the propagation of solitons along an optical fiber, the derived solutions are vital for
characterizing a number of key physical processes. Additionally, to show the impact of multiplicative noise on these solutions,
we employ MATLAB tools to present some of the collected solutions in 2D and 3D graphs. Finally, we demonstrate that
multiplicative noise stabilizes the analytical solutions of SFRKLE at zero.

1. Introduction

Deterministic partial differential equations (DPDEs) are uti-
lized to explain the dynamic behavior of the phenomena in
physics and other scientific areas including nonlinear optics,
biology, elastic media, fluid dynamics, molecular biology,
hydrodynamics, surface of water waves, quantum mechanics,
and plasma physics. As a result, solving nonlinear problems
is crucial in nonlinear sciences. Some of these methods, such
as Darboux transformation [1], sine-cosine [2, 3], exp ð−ϕðς
ÞÞ-expansion [4], ðG′/GÞ-expansion [5, 6], Hirota’s function
[7], perturbation [8, 9], Jacobi elliptic function [10, 11], trial
function [12], tanh-sech [13], fractal semi-inverse method
[14, 15], F-expansion method [16], and homotopy perturba-
tion method [17], have been recently developed. However, it
is completely obvious that the phenomena that happen in
the environment are not always deterministic. Recently, fluc-
tuations/noise has been demonstrated to play an important

role in a wide range in describing different phenomena that
appear in oceanography, environmental sciences, finance,
meteorology, information systems, biology, physics, and other
fields [18–24]. Therefore, partial differential equations with
noise or random effects are ideal mathematical problems for
modeling complex systems.

On the other hand, fractional partial differential equa-
tions (FPDEs) have been used to explain many physical
phenomena in biology, physics, finance, engineering appli-
cations, electromagnetic theory, mathematical, signal pro-
cessing, and different scientific studies; see, for example,
[25–35]. These new fractional-order models are better
equipped than the previously utilized integer-order models
because fractional-order integrals and derivatives allow for
the representation of memory and hereditary qualities of dif-
ferent substances [36]. Compared to integer-order models,
where such effects are ignored, fractional-order models have
the most significant advantage.
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It appears that studying stochastic equations with frac-
tional derivative is more essential. As a result, the next
stochastic fractional Radhakrishnan-Kundu-Lakshmanan
equation (SFRKLE) [37–39] perturbed by multiplicative
noise in the Stratonovich sense is treated:

idΨ + ℓ1D
α
xxΨxx − iℓ2D

α
xΨ + ℓ3 Ψj j2Ψ − iℓ4ΨDα

x Ψj j2� �
−

�
−iℓ5D

α
x Ψj j2Ψ� �

+ iℓ6D
α
xxxΨ

�
dt + iσΨ ∘ dW = 0,

ð1Þ

where Ψ ∈ℂ, Dα
x is the conformable fractional derivative

(CFD) [40], ℓ1 is the group-velocity dispersion, ℓ2 is the
intermodal dispersion, ℓ3 is the coefficient of nonlinearity,
ℓ4 is the higher-order dispersion coefficient, ℓ5 is the coeffi-
cient of self-steepening for short pulses, and ℓ6 is the third-
order dispersion term. While σ denotes the noise intensity,
W ðtÞ is a standard Wiener process (SWP).

Many researchers have recently developed exact solu-
tions of SFRKLE (1), with σ = 0, using a variety of methods
including trial equation method [41], Lie group analysis
[42], sine-cosine method [43], first integral method [44],
extended simple equation method [45], the modified Khater
method [46], and improved tan ðϕðςÞ/2Þ-expansion method
[47], while the analytical solutions of SFRKLE (1) have not
yet been investigated.

Our motivation of this article is to achieve exact
stochastic-fractional solutions for SFRKLE (1). This is the first
study to attain the exact solutions of SFRKLE (1) in the exis-
tence of a stochastic term and fractional derivative. To get a
wide variety of solutions such as trigonometric, hyperbolic,
elliptic, and rational functions, we apply the Jacobi elliptic
functionmethod. Due to the significance of the RKL inmodel-
ing the propagation of solitons through an optical fiber, the
solutions obtained are useful for describing some important
physical phenomena. In addition, we investigate the impact
of BM on the acquired solutions of SFRKLE (1) by generating
3D and 2D diagrams for these solutions.

The outline of this article is as follows. In Section 2, we
use a proper wave transformation to deduce the SFRKLE’s
wave equation (1). While in Section 3, we utilize Jacobi ellip-
tic function method to create the analytic solutions of
SFRKLE (1). In Section 4, the influence of the SWP on the
obtained solutions is investigated. The conclusion of the
document is displayed last.

2. Wave Equation for SFRKLE

The next wave transformation is used to get the wave equa-
tion of SFRKLE (1):

Ψ x, tð Þ =Φ ηð Þe iθ x,tð Þ−σW tð Þ−σ2tð Þ, η = xα

α
− νt,

θ x, tð Þ = −
k
α
xα + ωt,

ð2Þ

where Φ is deterministic function that describes the profile
of the pulse, θðx, tÞ is the phase component of the soliton,

and ν,k, and ω are nonzero constants. Plugging equation
(2) into equation (1) and using

dΨ = −νΦ′ + iωΦ + 1
2σ

2Φ − σ2Φ

� �
dt − σΦdW

� 	
e iθ x,tð Þ−σW tð Þ−σ2tð Þ

= −νΦ′ + iωΦ

 �

dt − σΦ ∘ dW
h i

e iθ x,tð Þ−σW tð Þ−σ2tð Þ,
ð3Þ

where ð1/2Þσ2Φ is the Itô correction term, and

Dα
xΨ = Φ′ − ikΦ


 �
e iθ x,tð Þ−σW tð Þ−σ2tð Þ,

Dα
xxΨ = Φ′′ − 2ikΦ′ − k2Φ

h i
e iθ x,tð Þ−σW tð Þ−σ2tð Þ,

Dα
xxxΨ = Φ′′′ − 3ikΦ′′ − 3k2Φ′ + ik3Φ

h i
e iθ x,tð Þ−σW tð Þ−σ2tð Þ,

ΨDα
x Ψj j2� �

= 2Φ2Φ′e iθ x,tð Þ−3σW tð Þ−3σ2tð Þ,

Dα
x Ψj j2Ψ� �

= 3Φ2Φ′ − ikΦ3

 �

e iθ x,tð Þ−3σW tð Þ−3σ2tð Þ, ð4Þ

we get for imaginary part

ℓ6k
3Φ′′′ − 3ℓ6k2 + ℓ2 + 2kℓ1 + ν

� �
Φ′

− 3ℓ5 + 2ℓ4ð ÞΦ2Φ′e −2σW tð Þ−2σ2tð Þ = 0,
ð5Þ

and for real part,

ℓ1 + 3kℓ6ð ÞΦ′′ − k2ℓ1 + kℓ2 − k3ℓ6
� �

Φ

+ ℓ3 − kℓ5ð ÞΦ3e −2σW tð Þ−2σ2tð Þ = 0:
ð6Þ

Taking expectation Eð·Þ on both sides for equations (5)
and (6) and using

E eσW tð Þ

 �

= e σ2/2ð Þt , ð7Þ

we have

ℓ6k
3Φ′′′ − 3ℓ6k2 + ℓ2 + 2kℓ1 + ν

� �
Φ′ − 3ℓ5 + 2ℓ4ð ÞΦ2Φ′ = 0,

ð8Þ

ℓ1 + 3kℓ6ð ÞΦ′′ − ω + k2ℓ1 + kℓ2 + k3ℓ6
� �

Φ − kℓ5 − ℓ3ð ÞΦ3 = 0,
ð9Þ

where Φ is deterministic functions. Integrating equation (8)
and setting the integration constant to zero, we get

ℓ6k
3Φ′′ − 3ℓ6k2 + ℓ2 + 2kℓ1 + ν

� �
Φ − ℓ5 +

2
3 ℓ4

� �
Φ3 = 0:

ð10Þ
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Since the same function Φ fulfills both equations (9) and
(10), we get the next constraint conditions:

ℓ1 + 3kℓ6
ℓ6k

3 = ω + k2ℓ1 + kℓ2 + k3ℓ6
3ℓ6k2 + ℓ2 + 2kℓ1 + ν

= 3 kℓ5 − ℓ3ð Þ
3ℓ5 + 2ℓ4

, ð11Þ

whenever

ℓ3 = −
3ℓ5ℓ1 + ℓ1ℓ4 + 6kℓ6ℓ5 + 3kℓ6ℓ4

3ℓ6
, ð12Þ

ω = 8k3ℓ26 + 8k2ℓ1ℓ6 + 2kℓ21 + 2kℓ2ℓ6 + ℓ1ℓ2 + ν 3kℓ6 + ℓ1ð Þ
ℓ6

:

ð13Þ

Plugging equation (13) into equation (9), we have the
wave equation as follows:

Φ′′ − ℏ1Φ
3 − ℏ2Φ = 0, ð14Þ

where

ℏ1 =
3ℓ5ℓ1 + ℓ1ℓ4 + 9kℓ6ℓ5 + 3kℓ6ℓ4

3ℓ6 ℓ1 + 3kℓ6ð Þ ,

ℏ2 =
9k3ℓ26 + 9k2ℓ1ℓ6 + 2kℓ21 + 3kℓ2ℓ6 + ℓ1ℓ2 + ν 3kℓ6 + ℓ1ð Þ

ℓ6 ℓ1 + 3kℓ6ð Þ :

ð15Þ

3. Analytical Solutions of SFRKLE

To determine the solutions to equation (14), we employ the
Jacobi elliptic function method [48]. As a result, we are able
to acquire the exact solutions of SFRKLE (1).

3.1. Jacobi Elliptic Function Method. Initially, let the solu-
tions of equation (14) have the form

Φ ηð Þ = 〠
M

i=1
aiφ

i ηð Þ, ð16Þ

where φ solves

φ′ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 pφ

4 + qφ2 + r

r
, ð17Þ

where p, q, and r are real parameters and M is a positive
integer number and will be defined later in (19).

We note that equation (17) has different kind of solu-
tions depending on p, q, and r.

snðηÞ = snðη,mÞ, cnðηÞ = cnðη,mÞ, dnðη,mÞ = dnðη,mÞ
are the Jacobi elliptic functions (JEFs) for 0 <m < 1: When
m⟶ 1, the JEFs are transformed into the following hyper-

bolic functions:

cn ηð Þ⟶ sech ηð Þ, sn ηð Þ⟶ tanh ηð Þ, cs ηð Þ⟶ csch ηð Þ,
ds⟶ csch ηð Þ, dn ηð Þ⟶ sech ηð Þ:

ð18Þ

3.2. Solutions of SFRKLE. Now, let us determine the param-
eter M by balancing Φ′′ with Φ3 in equation (14) as

M + 2 = 3M⇒M = 1: ð19Þ

Rewriting equation (16) with M = 1 as

Φ = a0 + a1φ: ð20Þ

Differentiating equation (20) twice, we have, by using
(17),

Φ′′ = a1qφ + a1pφ
3: ð21Þ

Substituting equations (20) and (21) into equation (14),
we obtain

a1p − ℏ1a
3
1

� �
φ3 − 3a0a21ℏ1φ2 + a1q − 3ℏ1a20a1 − ℏ2a1

� �
φ

− ℏ1a
3
0 + ℏ2a0

� �
= 0:

ð22Þ

Putting each coefficient of φk equal zero, we get for k =
0, 1, 2, 3

a1p − ℏ1a
3
1 = 0,

3a0a21ℏ1 = 0,
a1q − 3ℏ1a20a1 − ℏ2a1 = 0,

ℏ1a
3
0 + ℏ2a0 = 0:

ð23Þ

Solving these equations, we obtain

a0 = 0, a1 = ±
ffiffiffiffiffi
p
ℏ1

r
, q = ℏ2: ð24Þ

Hence, the solution of equation (14) is

Φ ηð Þ = ±
ffiffiffiffiffi
p
ℏ1

r
φ ηð Þ, ð25Þ

for p/ℏ1 > 0: There are two sets depending only on p and ℏ1
as follows.

First set: if p > 0 and ℏ1 > 0, then the solutions φðηÞ of
equation (17) corresponding to Table 1 are as follows.

If m⟶ 1, then the above table degenerates to the
following.
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Now, using Table 2 (or Table 3) and equations (2) and
(25), we get the solutions of SFRKLE (1) as follows:

Ψ x, tð Þ =
ffiffiffiffiffi
p
ℏ1

r
φ ηð Þe iθ x,tð Þ−σW tð Þ−σ2tð Þ for p

ℏ1
> 0, ð26Þ

where η = ðxα/αÞ − νt:
Second set: if p < 0 and ℏ1 < 0, then the solutions φðηÞ of

equation (17) corresponding to Table 1 are as follows.
If m⟶ 1, then Table 3 degenerates to the following.
In this case, using Table 4 (or Table 5), we obtain the

analytical solutions of SFRKLE (1) as stated in equation (26).

4. The Impact of SWP on the
Solutions of SFRKLE

The effect of SWP on the analytical solutions of SFRKLE (1)
is discussed here. Fix the parameters ℓ1 = ℓ2 = ℓ4 = ℓ5 = ℓ6 =
1, k = −1, ν = −11/3, and m =

ffiffiffiffiffiffiffi
2/3

p
. Hence, ℓ3 = 5/3, ℏ1 = 4/

3, and ℏ2 = −5/3. Now, we offer some graphs for distinct
value of σ (noise strength) and α (fractional order) for t, x
∈ ½0, 6�. We utilize the MATLAB tools to create some graphs
for the following solutions:

Ψ x, tð Þ = sn
xα

α
+ 11

3 t
� �

e iθ x,tð Þ−σW tð Þ−σ2tð Þ, ð27Þ

Ψ x, tð Þ =
ffiffiffi
3
2

r
ds

xα

α
+ 11

3 t
� �

e iθ x,tð Þ−σW tð Þ−σ2tð Þ: ð28Þ

If σ = 0, we can see how the surface oscillates (periodic
solutions) in Figure 1 and the surface expands as the frac-
tional order increases α = 0:3,0:5,0:7,1.

Table 5: All solutions φðηÞ of equation (17) whenm⟶ 1 and p < 0.

Case p q r φ

1 −2 1 0 sech ηð Þ

2
−1
2

2 0 2 sech ηð Þ

Table 4: All solutions φðηÞ of equation (17) when p < 0.

Case p q r φ

1 −2m2 2m2 − 1 1 −m2� �
cn ηð Þ

2 −2 2 −m2 m2 − 1
� �

dn ηð Þ

3
−1
2

m2 + 1
� �

2
− 1 −m2� �2

4
mcn ηð Þ ± dn ηð Þ

4
m2 − 1

2
m2 + 1
� �

2
m2 − 1
� �

4
dn ηð Þ

1 ± sn ηð Þ

Table 1: All solutions of equation (17).

Case p q r φ

1 2m2 − 1 +m2� �
1 sn ηð Þ

2 2 2m2 − 1 −m2 1 −m2� �
ds ηð Þ

3 2 2 −m2 1 −m2� �
cs ηð Þ

4 −2m2 2m2 − 1 1 −m2� �
cn ηð Þ

5 −2 2 −m2 m2 − 1
� �

dn ηð Þ

6 m2

2
m2 − 2
� �

2
1
4

sn ηð Þ
1 ± dn ηð Þ

7 m2

2
m2 − 2
� �

2
m2

4
sn ηð Þ

1 ± dn ηð Þ

8 −1
2

m2 + 1
� �

2
− 1 −m2� �2

4
mcn ηð Þ ± dn ηð Þ

9 m2 − 1
2

m2 + 1
� �

2
m2 − 1
� �

4
dn ηð Þ

1 ± sn ηð Þ

10 1 −m2

2
1 −m2� �

2
1 −m2� �

4
cn ηð Þ

1 ± sn ηð Þ

11 1 −m2� �2
2

1 −m2� �2
2

1
4

sn ηð Þ
dn ± cn ηð Þ

12 2 0 0
c
η

13 0 1 0 ceη

Table 2: All solutions φðηÞ of equation (17) for p > 0 and ℏ1 > 0.

Case p q r φ ηð Þ
1 2m2 − 1 +m2� �

1 sn ηð Þ
2 2 2m2 − 1 −m2 1 −m2� �

ds ηð Þ
3 2 2 −m2 1 −m2� �

cs ηð Þ

4
m2

2
m2 − 2
� �

2
1/4 or m2/4

sn ηð Þ
1 ± dn ηð Þ

5
1 −m2

2
1 −m2� �

2
1 −m2� �

4
cn ηð Þ

1 ± sn ηð Þ

6
1 −m2� �2

2
1 −m2� �2

2
1
4

sn ηð Þ
dn ± cn ηð Þ

7 2 0 0
c
η

Table 3: All solutions of equation (17) when m⟶ 1.

Case p q r φ ηð Þ
1 2 −2 1 tanh ηð Þ
2 2 1 0 csch ηð Þ

3
1
2

−1
2

1
4

tanh ηð Þ
1 ± sech ηð Þ

4 2 0 0
c
η
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Figure 2: 3D shape of equation (27) with α = 1 and for different values of σ.

1

0.8

0.6

0.4

0
6

1

0.8

0.6

0.4

0.2

0
6

4

2

0 0

4

2

0 0
2

4
6

2
4

6

Time (t)Space (x)

Eq. (19) with α = 0.3

Eq. (19) with α = 0.7 Eq. (19) with α = 1

Eq. (19) with α = 0.5

Time (t)Space (x)

So
lu

tio
n

1

0.8

0.6

0.4

0.2

0
6

4

2

0 0
2

4
6

Time (t)Space (x)

So
lu

tio
n

1

0.8

0.6

0.4

0.2

0
6

4

2

0 0
2

4
6

Time (t)Space (x)

So
lu

tio
n

So
lu

tio
n

Figure 1: 3D graphs of equation (27) with σ = 0 and for different values of α:
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In Figures 2 and 3, we can see that when noise is intro-
duced after small transit patterns, the surface starts to be flat
as the noise intensity increases σ = 0:5,1, 2.

Figure 4 shows the 2D shape of equation (27) with σ =
0,0:5,1, 2 which highlight the above results.

We can deduce from Figures 1–4 that
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Figure 4: 2D shape of equation (27) with σ = 0,0:5,1, 2.
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(1) the solutions of SFRKLE (1) are stabilized around
zero by the SWP

(2) as the fractional order α decreases, the surface
shrinks

5. Conclusions

We considered here the stochastic fractional
Radhakrishnan-Kundu-Lakshmanan equation (1) which
has never been considered before with fractional derivative
and stochastic term. To get hyperbolic, rational, and elliptic
stochastic fractional solutions, we used the Jacobi elliptic
function method. Because of the importance of SFRKLE in
representing the propagation of solitons via an optical fiber,
the derived solutions may be utilized to represent a wide
range of exciting physical phenomena. Finally, we achieved
by plotting the derived solutions to show how multiplicative
noise and fractional derivative influence these solutions. We
deduced that the SWP stabilizes the solutions around zero
when the noise strength increases. In future work, we can
try to get the exact solutions of SFRKLE (1) with additive
noise or multiplicative color noise.
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