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Fractional variants of distance-based parameters have application in the felds of sensor networking, robot navigation, and integer
programming problems. Complex networks are exceptional networks which exhibit signifcant topological features and have
become quintessential research area in the feld of computer science, biology, andmathematics. Owing to the possibility that many
real-world systems can be intelligently modeled and represented as complex networks to examine, administer and comprehend
the useful information from these real-world networks. In this paper, local fractional strong metric dimension of certain complex
networks is computed. Building blocks of complex networks are considered as the symmetric networks such as cyclic networks Cn,
circulant networks Cn(1, 2), mobious ladder networks M2n, and generalized prism networks Gn

m. In this regard, it is shown that
LSFMD of Cn(n≥ 3) and Gn

m(n≥ 6) is 1 when n is even and n/n − 1 when n is odd, whereas LSFMD of M2n is 1 when n is odd and
n/n − 1 when n is even. Also, LSFMD of Cn(1, 2) is n/2(⌈m + 1/2⌉) where n≥ 6 and m � ⌈n − 5/4⌉.

1. Introduction

Distance-based parameters for networks play a vital role in
pharmaceutical chemistry [1], network discovery [2], robot
navigation, and optimizations [3]. Many real-life large-scale
systems having substantial topological features can be
modeled as complex networks such as social networks,
information networks, technological networks, and bi-
ological networks. Tis representation has innovative im-
pacts to information processing and co-ordination of these
large-scale networks. Management of large-scale networks
such as Internet with their tremendous growth and het-
erogeneity is a challenging mathematical problem which
have profound implications for the efcient design of future
communication networks. Complex networks are composed
of building blocks, and if the building blocks are considered
as symmetric networks, then complexity of these networks
can be reduced for better analysis and interpretation. A few
important building blocks are cycles, circulant networks,
mobious ladder networks, and generalized prism networks,
which are discussed in this article.

Over the past few decades, circulant and mobious ladder
networks have been comprehensively explored by many re-
searchers due to their vast application and importance in
telecommunication networks [4], computer science (see
[5, 6]), chemistry [7], discrete mathematics, and very large-
scale integration (VLSI) design. Complex large-scale in-
terconnection networks used in the design of local area
networks, distributed computer systems, and telecommuni-
cation networks have been constructed based on VLSI circuit
technology. In telecommunication networks, many stations
are placed at short distances (less than 5 km) to share data at
a very high speed, and the main objective is to optimize the
exchange of data with an efcient network topology.

In a fnite network N of order n, V(N) and E(N)

represent the collection of vertices and edges of the network
N, respectively. Te collection of all the vertices of the
network N that are adjacent to the vertex v is known as the
open neighbourhood of any vertex v in N. Te distance
between the vertices v1 and v2 of N denoted by d(v1, v2) is
the length of shortest path (geodesic) between these vertices.
A pair of vertices v1 and v2 of N is said to be mutually
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maximally distant if v1 is maximally distant from v2 and v2 is
maximally distant from v1 where the vertex v1 is maximally
distant from v2 if d(v1, v2)≥ d(v, v2) for all v in the open
neighbourhood of v1. A vertex w of N is said to resolve two
vertices v1 and v2 of N if v1 and v2 are at unequal distance
from the vertex w. A set S of vertices of the network N is
a resolving set for N if every two distinct vertices of N are
resolved by some vertex of S. Metric basis is the resolving set
having minimum cardinality, and this cardinality is said to
be the metric dimension (MD) of N, denoted by dim(N). In
1975, the notion of MDwas initiated by Slater [8], motivated
by the problem of uniquely determining the location of an
intruder in a network and later studied independently by
Harary and Melter in [9]. MD has been heavily studied, and
the advancements in this feld can be seen in [10]. Some
bounds for MD in terms of diameter of network are given in
[1]. Chartrand et al. [1] formulated MD as integer pro-
gramming problem. Te problem of fnding MD of a graph
is NP-hard (see [11]). Te MD of trees and Cayley diagraphs
are studied in [1, 12], respectively. A pair of vertices v1 and v2
in N is said to be strongly resolved by a vertex v, if there exist
either a shortest path from v1 to v containing v2 or a shortest
path from v2 to v containing v1. Strong resolving set S of N is
a collection of vertices such that each distinct pair of vertices
in N is strongly resolved by some vertex in S. Strong metric
basis of N is the strong resolving set having smallest car-
dinality, and this cardinality is labelled as strong metric
dimension (SMD) of N, denoted by sdim(N). In 2004, SMD
of a network was discovered by Sebő and Tannier [13] and
later in 2007, and computation of SMD was declared as NP-
hard problem by Oellermann and Peters-Fransen [14]. Te
resolving neighbourhood (RN) denoted by R v1, v2􏼈 􏼉 for
a pair of vertices v1 and v2 in N is composed of all vertices at
varying distances from v1 and v2. If η: V(N)⟶ [0, 1] is
a real valued function that assigns a number between 0 and 1
to each vertex of N and U⊆V(N), then the function η
applied on the set U is given by η(U) � 􏽐v∈Uη(v). If the
weight of R v1, v2􏼈 􏼉 is greater than or equal to 1 for any two
vertices v1 ≠ v2 in N, then the function η is called resolving
function of N. Te fractional metric dimension (FMD) of N

expressed as dimf(N) is given by the least possible weight of
a resolving function of N. In 2001, Currie and Oellermann
[10] initiated the concept of FMD by formulating the linear
programming problem using the integer programming
problem that was presented for MD given in [1]. Tis re-
laxation technique transforms an NP-hard integer pro-
gramming into a related problem that is solvable in
polynomial time. In 2012, Arumugam and Mathew [15]
defned FMD using the concept of resolving neighbour-
hoods. In [16], FMD of Generalized Jahangir graph was
calculated. In [17], FMD of tree and unicyclic graphs was
computed. FMD of hierarchical product, corona product,
and lexicographic product graphs were calculated in [18, 19].
Te problem of computing the FMD for all the connected
networks is an NP-hard problem. Strong resolving neigh-
bourhood (SRN) denoted by S v1, v2􏼈 􏼉 for the pair of vertices
v1 and v2 in N is the set of all vertices w ∈ V(N) such that
either v1 lies on w − v2 geodesic or v2 lies on w − v1 geodesic.
If the weight η(S v1, v2􏼈 􏼉) is greater than or equal to 1, then

the real-valued function that assigns a number between
0 and 1 to each vertex of N given by η: V(N)⟶ [0, 1] is
known as a strong resolving function of N for each distinct
pair of vertices in V(N). Te fractional strong metric di-
mension (FSMD) of N expressed as sdimf(N) is given by the
least possible weight of a strong resolving function of N. In
2013, Kang and Yi [20] gave the notion of FSMD, studied it
for various signifcant fnite connected graph classes and
mentioned that FSMD problem can be interpreted as linear
programming problem with the same strategy as in [12]. In
2010, Okamoto et al. [21] gave the concept of local metric
dimension (LMD) by considering the adjacent vertices of
graph only. A set of vertices W in a connected network N is
a local metric set of N if every two adjacent vertices of N are
distinguished by some vertex of W. Local metric basis is the
local metric set having smallest cardinality, and this car-
dinality is said to be the LMD of N, denoted by ldim(N). In
[22, 23], LMD of corona product graphs and circulant
graphs has been discussed, respectively. LMD of some
families of graphs was given in [24, 25]. Te local resolving
neighbourhood (LRN) denoted by L v1, v2􏼈 􏼉 for a pair of
adjacent vertices v1 and v2 in N is composed of all vertices
which are resolved by L v1, v2􏼈 􏼉. Te concept of local re-
solving neighbourhood and local resolving function arises
similar to resolving neighbourhood and resolving function
in case of dealing with only the pair of adjacent vertices. In
[26], authors set forth a localized variant of FMD known as
local fractional metric dimension (LFMD) and studied it for
strong and cartesian products of graphs. LFMD of the
network N denoted by ldimf(N) is the least possible weight
of local resolving function of N. LFMD of rotationally
symmetric planar graphs arisen from planar chorded cycles
was computed in [27]. In [28, 29], LFMD of rotationally
symmetric and planer networks and corona products graphs
were computed, respectively. Local strong resolving
neighbourhood (LSRN) LS v1, v2􏼈 􏼉 for the pair of adjacent
vertices v1 and v2 in N is the set of all vertices w ∈ V(N)

such that either v1 lies on w − v2 geodesic or v2 lies on w − v1
geodesic. If for each adjacent pair of vertices in V(N), the
weight α(LS u1, u2􏼈 􏼉) is greater or equal to 1, then the
mapping α: V(N)⟶ [0, 1] is called a local strong re-
solving function of N, where α(LS(x, y)) � 􏽐x∈LS(x,y)α(x).
Te local fractional strongmetric dimension (LFSMD) of the
network N denoted by lsdimf(N) is defned as the least
possible weight of a local strong resolving function of N. In
[30], the notion of LFSMD was introduced, and the authors
devised a combinatorial technique to compute LFSMD of
a general network and was further applied to compute
LFSMD for rotationally symmetric and planer networks. In
[30], the notion of LFSMD was initiated. Te combinatorial
criteria to calculate LFSMD of a general network was devised
and further applied to compute LFSMD for rotationally
symmetric and planer networks. Tis criteria is given in
Lemma 1. Tis motivated us to compute LFSMD of certain
complex networks with symmetric networks as their
building blocks. Te symmetric networks considered in this
article are cyclic networks Cn, circulant networks Cn(1, 2),
mobious ladder networks M2n, and generalized prism
networks Gn

m. Te collection of LSRNs of a network N with
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least cardinality and its compliment is represented by the
notations L(N) and L(N), respectively. Here, L(N) �

LS(N) | LS(N) is th{

e LSRNwith the condition |LS(N)| � c(N)}, where c(N) is
the cardinality of smallest SRNs of N. Moreover,
L(N) � 􏽥L | 􏽥L is the LSRNof N not inL(N)􏼈 􏼉.

Lemma 1 (see [30]). Let μ(N) � L(N)∪L(N) be a set
consisting of all LSRNs of network N in such a manner that
for every adjacent pair of vertices x and y in the vertex set of
N, if the condition |S x, y􏼈 􏼉∩ [∪LS(N)]| ≥ c(N) holds. Ten,
lsdimf(N) � 􏽐

β(N)
s�1 (1/c(N)),where β(N) � |[∪LS(N)]|.

1.1. Main Results. Te research conducted in this article
leads to the following results:

Theorem 1

(1) For n≥ 3, lsdimf(Cn) �

1 if  n ≡ 0(mod 2);
n/n − 1 if  n ≡ 1(mod 2)

􏼨

(2) For n≥ 6,

(a) lsdimf(Cn(1, 2)) � n/2(⌈m + 1/2⌉)

(b) lsdimf(M2n) �
1 if  n ≡ 1(mod 2);
n/n − 1 if  n ≡ 0(mod 2)

􏼨

(c) lsdimf(Gn
m) �

1 if  n ≡ 0(mod 2);
n/n − 1 if  n ≡ 1(mod 2).

􏼨

Te remaining part of the article is structured in the
following manner. Sections 2 and 3 are devoted for LSRNs
and LFSMD of certain complex networks with symmetric
building blocks.

2. Local Strong Resolving Neighbourhoods of
Certain Complex Networks

In this section, we compute LSRNs of certain complex
networks. Tese complex networks are composed of
building blocks to unravel the dynamics of these networks,
and symmetric building blocks play a vital role. Te sym-
metric networks considered in this section are cyclic net-
works Cn, circulant networks Cn(1, 2), mobious ladder
networks M2n, and generalized prism networks Gn

m.

2.1. Cyclic Networks. One of the most important building
blocks of complex networks is cyclic network.Te vertex and
edge set of a cyclic network Cn are given by
V(Cn) � ai | 1≤ i≤ n􏼈 􏼉 and E(Cn) � aiai+1 | 1≤ i≤ n􏼈 􏼉, re-
spectively, with indices taken mod n. Te network Cn is
shown in Figure 1. In this section, LSRNs of cyclic network
Cn are considered.

Lemma 2. Let ai ∈ V(Cn), where n≥ 3 and 1≤ r≤ n. Ten,

(1) |S ar, ar+1􏼈 􏼉| �
n if  n ≡ 0(mod 2);
n − 1 if  n ≡ 1(mod 2)

􏼨

(2) S x, y􏼈 􏼉 ∈L(Cn) if and only if x � ar, y � ar+1

(3) |∪ [L(Cn)]| � n where ∪ [L(Cn)] � ∪ LS(Cn)∈L(Cn)

LS(Cn)

(4) |S x, y􏼈 􏼉∩ [∪L(Cn)]|≥ c(Cn) for each distinct
x, y ∈ V(Cn).

Proof. In order to prove this lemma, we proceed as follows:

(1) For n ≡ 0(mod 2), S ar, ar+1􏼈 􏼉 � V(Cn) where as for
n ≡ 1(mod 2), S ar, ar+1􏼈 􏼉 � V(Cn) − ar+⌈n/2⌉􏽮 􏽯.
Hence, |S ar, ar+1􏼈 􏼉| � n or n − 1, respectively.

(2) It is clear that S ar, ar+1􏼈 􏼉 are the only LSRNs of Cn

and hence, we conclude S x, y􏼈 􏼉 ∈L(Cn) if and only
if x � ar, y � ar+1.

(3) From the proof of (1) and (2), we have |∪ [L(Cn)]| �

n where ∪ [L(Cn)] � ∪ LS(Cn)∈L(Cn) LS(Cn).

(4) Indeed, the only pair of adjacent vertices in Cn are
ar, ar+1 so we have |S x, y􏼈 􏼉∩ [∪L(Cn)]|≥ c(Cn) for
each distinct x, y ∈ V(Cn). □

2.2. Circulant Networks. Te circulant network
Cn(s1, s2, s3, . . . , sk) is formed by arranging the n vertices
labelled ai with the indices taken mod n cyclically and
connecting each vertex ai with k immediately following and
k preceeding vertices, where k≤ ⌊n/2⌋. If � ⌊n/2⌋, then the
circulant network represented by a complete graph. Cn(1, 2)

is a circulant network with vertex set
V(Cn(1, 2)) � ai; 1≤ i≤ n􏼈 􏼉 and edge set
E(Cn(1, 2)) � aiai+1, aiai+2, aiai−1, aiai−2; 1≤ i≤ n􏼈 􏼉. Te
network Cn(1, 2) is shown in Figure 2.

Lemma  . Let ai ∈ V(Cn(1, 2)), where n≥ 6 and 1≤ r≤ n.
Ten,

(1) |S ar, ar+1􏼈 􏼉| � |S ar, ar−1􏼈 􏼉| � 2(⌈m + 1/2⌉), where
m � ⌈n − 5/4⌉

(2) S x, y􏼈 􏼉 ∈L(Cn(1, 2)) if and only if either x � ar, y �

ar−1 or x � ar, y � ar+1

(3) |∪L(Cn(1, 2))| � n where ∪L(Cn(1, 2)) �

∪ LS(Cn(1,2))∈L(Cn(1,2))LS(Cn(1, 2))

(4) |S x, y􏼈 􏼉∩ [∪L(Cn(1, 2))]|≥ c(Cn(1, 2)) for each
distinct x, y ∈ V(Cn(1, 2))

an

a1

a2a3

a4

a5

Figure 1: Cyclic network Cn.
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Proof. Te proof of this lemma is as follows:

(1) We consider the LSRNs of the vertex pair arar+1
which are S ar, ar+1􏼈 􏼉 � ar, ar+1, . . . , ar+k, ar,􏼈

ar−2, . . . , ar−m} where m � 2⌈n − 5/4⌉ and
k � 2⌈n − 5/4⌉ + 1. Hence, due to symmetry of
Cn(1, 2), |S ar, ar−1􏼈 􏼉| � |S ar, ar+1􏼈 􏼉| � 2(⌈m + 1/2⌉).

(2) To prove this claim, we consider the LSRNs for
arar+2 and arar−2. Here, following cases arise:

Case 1 (n ≡ 0(mod 2))

It is easy to see that the LSRNs in this case are given
by S ar, ar+2􏼈 􏼉 � ar+1, ar+n/2+1􏼈 􏼉

c. Hence, due to
symmetry, |S ar, ar+2􏼈 􏼉| � |S ar, ar−2􏼈 􏼉| � n − 2.
Case 2 (n ≡ 1(mod 2))

Tis case is further subdivided into following cases:

Case 2.1 (when n � 7 + 4k where k ∈ Z)
Here, we have S ar, ar+2􏼈 􏼉 � ar+1􏼈 􏼉

c. Hence, due to
symmetry, |S ar, ar+2􏼈 􏼉| � |S ar, ar−2􏼈 􏼉| � n − 1
Case 2.2 (when n � 9 + 4k where k ∈ Z)
Te LSRNs in this case are given by S ar,􏼈

ar+2} � ar+⌈n/2⌉, ar+⌈n/2⌉+1, ar+1􏽮 􏽯
c
. Hence, due to

symmetry, |S ar, ar+2􏼈 􏼉| � |S ar, ar−2􏼈 􏼉| � n − 3.
Hence from above, we conclude S x, y􏼈 􏼉 ∈L(Cn

(1, 2)) if and only if either x � ar, y � ar−1 or
x � ar, y � ar+1. Also, |LS(Cn(1, 2))|≤ |S ar,􏼈

ar+2}| and |LS(Cn(1, 2))|≤ |S ar, ar−2􏼈 􏼉|.

(3) From the proof of (1) and (2), we have |(∪ n
r�1

S ar, ar−1􏼈 􏼉)∪ (∪ n
r�1Sar, ar+1)| � | ai | 1≤ i≤ n |􏼈 􏼉 � n.

Hence, |∪L(Cn(1, 2))| � n where ∪L(Cn(1, 2)) �

∪ LS(Cn(1,2))∈L(Cn(1,2))LS(Cn(1, 2)).
(4) It can be concluded from the proof of (1) and (2) that

|S x, y􏼈 􏼉∩ [∪L(Cn(1, 2))]|≥ c(Cn(1, 2)) for each
distinct x, y ∈ V(Cn(1, 2)). □

2.3. Mobious Ladder Network. Te network obtained by
introducing a twist in a prism network of order n is known as
the mobious ladder network denoted by M2n. It is formed by
arranging its 2n vertices labelled ai and bi with the
indices taken mod n cyclically and connecting each vertex ai

with bi similar to a prism with two edges crossed. Te-
collection of vertices and edges of mobious ladder M2n is
represented by V(M2n) � ai, bi; 1≤ i≤ n􏼈 􏼉 and E(M2n) � ai􏼈

ai+1, bibi+1, ajbj, a1bn, anb1; 1≤ i≤ n −1, 1≤ j≤ n}, re-
spectively. Te network M2n is shown in Figure 3.

Lemma 4. Let ai, bi ∈ V(M2n), where n≥ 6, 1≤ r≤ n − 1 and
1≤ q≤ n. Ten,

(1) |S ar, br+1􏼈 􏼉| � |S aq, bq􏽮 􏽯| � |S an, b1􏼈 􏼉| � |S a1, bn􏼈 􏼉| �

|S br, br+1􏼈 􏼉| �
2(n − 1) if  n ≡ 0(mod 2);
2n if  n ≡ 1(mod 2)

􏼨

(2) S x, y􏼈 􏼉 ∈L(M2n) if and only if S x, y􏼈 􏼉 ∈
S ar, br+1􏼈 􏼉, S aq, bq􏽮 􏽯, S􏽮 br, br+1􏼈 􏼉, S an, b1􏼈 􏼉, S a1, bn􏼈 􏼉}

(3) |∪ [L(M2n)]| � 2n where ∪ [L(M2n)] �

∪ LS(M2n)∈L(M2n)LS(M2n)

(4) |S x, y􏼈 􏼉∩ [∪L(M2n)]|≥ c(M2n) for each distinct
x, y ∈ V(M2n).

Proof. To prove this lemma, we proceed as follows:

(1) In order to prove this claim, we consider the fol-
lowing cases:

Case 1 In this specifc case, when n ≡ 0(mod 2), the
LSRNs of the vertex pairs arar+1 and brbr+1 are
given by S ar, ar+1􏼈 􏼉 � ar+n/2+1, br+n/2􏼈 􏼉

c and S br,􏼈

br+1} � ar+n/2, br+n/2+1􏼈 􏼉
c. For the vertex pair aqbq,

the LSRN is given by S aq, bq􏽮 􏽯 � aq+n/2, bq+n/2􏽮 􏽯
c

where 1≤ r≤ n − 1 and 1≤ q≤ n. Also, S a1, bn􏼈 􏼉 �

an/2+1, bn/2􏼈 􏼉
c and S an, b1􏼈 􏼉 � an/2, bn/2+1􏼈 􏼉

c. Hence,
we have |S ar, br+1􏼈 􏼉| � |S aq, bq􏽮 􏽯| � |S an, b1􏼈 􏼉|

� |S a1, bn􏼈 􏼉| � |S br, br+1􏼈 􏼉| � 2(n − 1).
Case 2 It can be seen when n ≡ 1(mod 2), all the
LSRNs of M2n are given by S x, y􏼈 􏼉 � V(M2n)

where xy ∈ E(M2n). Hence, we have |S aq, bq􏽮 􏽯| �

|S ar, ar+1􏼈 􏼉|� |S br, br+1􏼈 􏼉|� |S a1, bn􏼈 􏼉|� |S an, b1􏼈 􏼉| �

|V(M2n)|.

(2) Te only LSRNs of M2n are S ar, br+1􏼈 􏼉, S aq,􏽮 bq}, S

br, br+1􏼈 􏼉, S an, b1􏼈 􏼉, S a1, bn􏼈 􏼉, and hence, we conclude
S x, y􏼈 􏼉 ∈L(Cn) if and only if S x, y􏼈 􏼉 ∈ S ar,􏼈􏼈

br+1}, S aq, bq􏽮 􏽯, S br, br+1􏼈 􏼉, S an, b1􏼈 􏼉, S a1, bn􏼈 􏼉}.
(3) From the proof of (1) and (2), we have |∪ [L

(M2n)]| � 2n where ∪ [L(M2n)] � ∪ LS(M2n)∈L(M2n)

LS(M2n).
(4) As the only LSRNs of the pairs of adjacent vertices in

M2n are S ar, br+1􏼈 􏼉, S aq, bq􏽮 􏽯, S br, br+1􏼈 􏼉, S􏽮 an, b1􏼈 􏼉, S

a1, bn􏼈 􏼉}. Hence, we have |S x, y􏼈 􏼉∩ [∪L (M2n)]|

≥ c(M2n) for each distinct x, y ∈ V(M2n). □

a1
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a4

a5a6
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a11
a12

Figure 2: Te circulant network C12(1, 2).
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2.4. Generalized Prism Network Pm × Cn. Generalized prism
network Gn

m is formed by the box product of networks Pm

and Cn. Te vertex set of Gn
m is given by V(Gn

m) � aij: 1􏽮

≤ i≤m, 1≤ j≤ n}, and edge set is represented as E(Gn
m) �

aikai(k+1); 1≤ i≤m, 1≤ k≤ n􏽮 􏽯∪􏽮 asta(s+1)t; 1≤ s≤m − 1, 1􏽮

≤ t≤ n}}, respectively, where for the vertices, the frst indices
are taken modm, and the second indices are taken mod n.
Gn

m is shown in the Figure 4. LSRNs of generalized prism
network Gn

m will be calculated in this section.

Lemma 5. Let aij ∈ V(Gn
m), where n≥ 6, 1≤ i≤m and

1≤ j≤ n. Ten,

(1) |S aij, a(i+1)j􏽮 􏽯| � mn and |S aij, ai(j+1)􏽮 􏽯| �

mn if  n ≡ 0(mod 2);
m(n − 1) if  n ≡ 1(mod 2)

􏼨

(2) S x, y􏼈 􏼉 ∈L(Gn
m) if and only if x � aij, y � ai(j+1)

when n ≡ 1(mod 2) and S x, y􏼈 􏼉 ∈L(Gn
m) if and only

if x � aij, y � ai(j+1) or x � aij, y � a(i+1)j when
n ≡ 0(mod 2)

(3) |∪ [L(Gn
m)]| � mn where ∪ [L(Gn

m)] �

∪ LS(Gn
m)∈L(Gn

m)LS(Gn
m)

(4) |S x, y􏼈 􏼉∩ [∪L(Gn
m)]|≥ c(Gn

m) for each distinct
x, y ∈ V(Gn

m).

Proof. To prove this lemma, we proceed in the following
way:

(1) It can be seen in this case when n ≡ 0(mod 2) that all
the LSRNs of Gn

m are given by S x, y􏼈 􏼉 � V(Gn
m)

where xy ∈ E(Gn
m). On the account of n being an

odd number for generalized prism network Gn
m, the

cardinality of LSRNs of the vertex pairs aijai(j+1)

is given by |S aij, ai(j+1)􏽮 􏽯| � | ai(j+⌈n/2⌉+1)􏽮

|1≤ i≤m, 1≤ j≤ n}c| � m(n − 1). Te cardinality
of the LSRNs of aija(i+1)j is given by
|S aij, a(i+1)j􏽮 􏽯| � |V(Gn

m)| � mn.
(2) From the proof of (1), we have S x, y􏼈 􏼉 ∈L(Gn

m) if
and only if x � aij, y � ai(j+1) when n ≡ 1(mod 2)

and S x, y􏼈 􏼉 ∈L(Gn
m) if and only if x � aij,

y � ai(j+1) or x � aij, y � a(i+1)j when n ≡ 0(mod 2).
(3) From (1) and (2), we note that |∪ [L(Gn

m)]| � mn

where ∪ [L(Gn
m)] � ∪ LS(Gn

m)∈L(Gn
m)LS(Gn

m).

(4) From above, we conclude that

S x, y􏼈 􏼉∩ ∪L G
n
m( 􏼁􏼂 􏼃

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ c G

n
m( 􏼁, (1)

for each distinct x, y ∈ V(Gn
m). □

 . Local Fractional Strong Metric Dimension of
Certain Complex Networks

In this section, LFSMD of certain complex networks is
computed.

Theorem 2. For n≥ 3,

lsdimf Cn( 􏼁 �

1, if  n ≡ 0(mod 2);

n

n − 1
, if  n ≡ 1(mod 2).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(2)

Proof. To prove the above claim, we consider the following
cases:

Case 1 (n ≡ 0(mod 2))

We take note of Lemma 2, c(Cn) � |V(Cn)| � n and
β(Cn) � |∪L(Cn)| � |V(Cn)| � n. Hence, from
Lemma 1, we conclude

lsdimf Cn( 􏼁 � 􏽘

β Cn( )

s�1

1
c Cn( 􏼁

� 1. (3)

Case 2 (n ≡ 1(mod 2))

Here, from Lemma 2, c(Cn) � (n − 1) and β(Cn) �

|∪L(Cn)| � n. By using the Lemma 1, we have

am3

am4

a33

a34

a23

a24
a14

a13
a12 a11

a1n a2n a3n

a22 a21

a32 a31

am2

a(m−1)2

a(m−1)3

a(m−1)4

a(m−1)1

a(m−1)n

am1

amn

Figure 4: Generalized prism network Gm,n.
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a5

a6

a7
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Figure 3: Mobious ladder network M16.

Complexity 5



lsdimf Cn( 􏼁 � 􏽘

β Cn( )

s�1

1
c Cn( 􏼁

�
n

n − 1
. (4)

□

Theorem  . For n≥ 6, lsdimf(Cn(1, 2)) � n/2(⌈m + 1/2⌉).

Proof. On account of Lemma 3, c(Cn(1, 2)) � |S ar, ar+1􏼈 􏼉| �

|S ar, ar−1􏼈 􏼉| � 2(⌈m + 1/2⌉) where 1≤ r≤ n and m �

⌈n − 5/4⌉. Moreover, β(Cn(1, 2)) � |∪L(Cn(1, 2))| � n.
Terefore, from Lemma 1, we have

lsdimf Cn(1, 2)( 􏼁 � 􏽘

β Cn(1,2)( )

s�1

1
c Cn(1, 2)( 􏼁

�
n

2(⌈m + 1/2⌉)
.

(5)
□

Theorem 4. For n≥ 6,

lsdimf M2n( 􏼁 �

1, if  n ≡ 1(mod 2);

n

n − 1
, if  n ≡ 0(mod 2).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(6)

Proof. Te proof of this theorem is subdivided into the
following two cases:

Case 1 (n ≡ 1(mod 2))

Taking Lemma 4 into consideration, we have c(M2n) �

|V(M2n)| � 2n and β(M2n) � |∪L(M2n)| � |V(M2n)|

� 2n. Hence, from Lemma 1, the following can be
concluded:

lsdimf M2n( 􏼁 � 􏽘

β M2n( )

s�1

1
c M2n( 􏼁

� 1. (7)

Case 2 (n ≡ 0(mod 2))

In this case by considering Lemma 4,
c(M2n) � 2(n − 1) and β(M2n) � |∪L(M2n)| � 2n.
Hence, from Lemma 1 we have

lsdimf M2n( 􏼁 � 􏽘

β M2n( )

s�1

1
c M2n( 􏼁

�
n

n − 1
. (8)

□

Theorem 5. For n≥ 6,

lsdimf G
n
m( 􏼁 �

1, if  n ≡ 0(mod 2);

n

n − 1
, if  n ≡ 1(mod 2).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(9)

Proof. Te proof can be segregated into the following two
cases:

Case 1 (n ≡ 1(mod 2))

In view of Lemma 5, c(Gn
m) � m(n − 1) and

β(Gn
m) � |∪L(Gn

m)| � |V(Gn
m)| � mn. By using

Lemma 1, we have

lsdimf G
n
m( 􏼁 � 􏽘

β Gn
m( )

t�1

1
c G

n
m( 􏼁

�
n

n − 1
. (10)

Case 2 (n ≡ 0(mod 2))

In this case using Lemma 5, c(Gn
m) � mn and

β(Gn
m) � |∪L(Gn

m)| � mn. Hence, from Lemma 1, we
conclude that

lsdimf G
n
m( 􏼁 � 􏽘

β Gn
m( )

s�1

1
c G

n
m( 􏼁

� 1. (11)

□

4. Application

In this section, an application of LFSMD is considered in the
information processing and co-ordination of large-scale in-
terconnection networks. Complex large-scale interconnection
networks used in the design of local area networks, distributed
computer systems, and telecommunication networks have
been constructed based on VLSI circuit technology. In tele-
communication networks, many stations are placed at short
distances to share data at a very high speed, and the main
objective is to optimize the exchange of data with an efcient
network topology. For an illustrative case, consider a tele-
communication network consisting of diferent stations
placed at nodes of a network C6(1, 2) as shown in Figure 5. In
order to maintain connectivity, certain stations are required
to maintain their working capacity at an optimal level. Tese
stations are required to be at a uniform distance from all
stations in order to achieve optimal connectivity.Te nodes of
the network C6(1, 2) are x1, x2, x3, x4, x5, x6. Te LSRNs of
C6(1, 2) are given as follows: S x1, x2􏼈 􏼉 � S x2, x4􏼈 􏼉 � S

x4, x5􏼈 􏼉 � S x1,􏼈 x5} � x1, x2, x4, x5􏼈 􏼉, S x1, x3􏼈 􏼉 � S x3, x4􏼈 􏼉 �

S x4, x6􏼈 􏼉 � S x1, x6􏼈 􏼉 � x1, x3, x4, x6􏼈 􏼉, S x2, x3􏼈 􏼉 � S x3, x5􏼈 􏼉

� S x5, x6􏼈 􏼉 � S x2, x6􏼈 􏼉 � x2, x3, x5, x6􏼈 􏼉. For any given net-
work, LSRN is the collection of nodes that are at unequal
distances from a pair of adjacent nodes, and therefore, by
assigning minimum weights to the nodes from LSRNs of the
network, there will be minimum reliance on these nodes, and
an optimal exchange of data is achieved in certain complex
large-scale networks. In a network, stations are placed in such
a way that the distance of every node of the network to the
station is minimumwhich aids in the sharing of data at a very
high speed. Taking Lemma 1 into consideration, if weight of
1/4 is assigned to all the nodes in the union of all LSRNs with
minimum cardinality and zero to the remaining vertices of
C6(1, 2), then optimal exchange of data is achieved.
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5. Conclusion

In this paper, LFSMD of complex networks is computed
with the building blocks of complex networks considered as
the symmetric networks such as cyclic networks Cn, cir-
culant networks Cn(1, 2), mobious ladder networks M2n,
and generalized prism networks Gn

m.

Problem 1. Compute the LFSMD of some general classes of
convex polytopes.

Data Availability

All the data used to support the fndings of this study are
included within this article and are available from corre-
sponding author upon request.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

References

[1] G. Chartrand, L. Eroh, M. A. Johnson, and O. R. Oellermann,
“Resolvability in graphs and the metric dimension of a graph,”
Discrete Applied Mathematics, vol. 105, no. 1-3, pp. 99–113,
2000.

[2] Z. Beerliova, F. Eberhard, T. Erlebach et al., “Network dis-
covery and verifcation,” IEEE Journal on Selected Areas in
Communications, vol. 24, no. 12, pp. 2168–2181, 2006.

[3] S. Khuller, B. Raghavachari, and A. Rosenfeld, “Landmarks in
graphs,” Discrete Applied Mathematics, vol. 70, no. 3,
pp. 217–229, 1996.

[4] J. C. Bermond, F. Comellas, and D. F. Hsu, “Distributed loop
computer-networks: a survey,” Journal of Parallel and Dis-
tributed Computing, vol. 24, no. 1, pp. 2–10, 1995.

[5] F. T. Boesch and J. F. Wang, “Reliable circulant networks with
minimum transmission delay,” IEEE Transactions on Circuits
and Systems, vol. 32, no. 12, pp. 1286–1291, 1985.

[6] G. Bolotashvili, M. Kovalev, and E. Girlich, “New facets of the
linear ordering polytope,” SIAM Journal on Discrete Mathe-
matics, vol. 12, no. 3, pp. 326–336, 1999.

[7] D. M. Walba, R. M. Richards, and R. C. Haltiwanger, “Total
synthesis of the frst molecular Moebius strip,” Journal of the
American Chemical Society, vol. 104, no. 11, pp. 3219–3221,
1982.

[8] P. J. Slater, “Leaves of trees,” Congressus Numerantium,
vol. 14, pp. 549–559, 1975.

[9] F. Harary and R. A. Melter, “On the metric dimension of
a graph,” Ars Combinatoria, vol. 2, pp. 191–195, 1976.

[10] J. Currie and O. R. Oellermann, “Te metric dimension and
metric independence of a graph,” Journal of Combinatorial
Mathematics and Combinatorial Computing, vol. 39,
pp. 157–167, 2001.

[11] M. R. Garey and D. S. Johnson, Computers And Ineractability:
A Guide To Te Teory Of Np-Completenesss, Freeman, New
York, NY, USA, 1969.

[12] M. Fehr, S. Gosselin, and O. R. Oellermann, “Te metric
dimension of Cayley digraphs,” Discrete Mathematics,
vol. 306, no. 1, pp. 31–41, 2006.

[13] A. Sebő and E. Tannier, “On metric generators of graphs,”
Mathematics of Operations Research, vol. 29, no. 2, pp. 383–
393, 2004.

[14] O. R. Oellermann and J. Peters-Fransen, “Te strong metric
dimension of graphs and digraphs,” Discrete Applied Math-
ematics, vol. 155, no. 3, pp. 356–364, 2007.

[15] S. Arumugam and V. Mathew, “Te fractional metric di-
mension of graphs,” Discrete Mathematics, vol. 312, no. 9,
pp. 1584–1590, 2012.

[16] J. B. Liu, A. Kashif, T. Rashid, and M. Javaid, “Fractional
metric dimension of generalized Jahangir graph,” Mathe-
matics, vol. 7, pp. 100–110, 2019.

[17] D. A. Krismanto and S. W. Saputro, “Fractional metric di-
mension of tree and unicyclic graph,” Procedia Computer
Science, vol. 74, pp. 47–52, 2015.

[18] M. Feng and K. Wang, “On the metric dimension and
fractional metric dimension for hierarchical product of
graphs,” Applicable Analysis and Discrete Mathematics, vol. 7,
no. 2, pp. 302–313, 2013.

[19] M. Feng and K.Wang, “On the fractional metric dimension of
corona product graphs and lexicographic product graphs,”
1906, https://arxiv.org/abs/1206.1906.

[20] C. X. Kang and E. Yi, “Te fractional strong metric dimension
of graphs,” in Proceedings of the COCOA 2013, Lecture Notes
in Computer Science, vol. 8287, Chengdu, China, October
2013.

[21] F. Okamoto, B. Phinezy, P. Zhang, and P. Zhang, “Te local
metric dimension of a graph,” Mathematica Bohemica,
vol. 135, no. 3, pp. 239–255, 2010.
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Multilabel classifcation is a key research topic in the machine learning feld. In this study, the author put forward a two/two-layer
chain classifcation algorithm with optimal sequence based on the attention mechanism. Tis algorithm is a classifcation model
with a two-layer structure. By introducing an attention mechanism, this study analyzes the key attributes to achieve the goal of
classifcation. To solve the problem of algorithm accuracy degradation caused by the order of classifers, we adopt the OSS (optimal
sequence selection) algorithm to fnd the optimal sequence of tags. Te test results based on the actual dataset show that the
ATDCC-OS algorithm has good performance on all performance evaluation metrics. Te average accuracy of this algorithm is
over 80%.Temicroaverage AUC performance reaches 0.96. In terms of coverage performance, its coverage performance is below
10%. Te comprehensive result of single error performance is the best. Te loss performance is about 0.03. Te purpose of the
ATDCC-OS algorithm proposed in the study is to help improve the accuracy of multilabel classifcation so as to obtain more
efective data information.

1. Introduction

Multilabel classifcation, a commonly used method in big
data analysis, aims to associate multiple labels to a sample at
the same time. Te ubiquity of multilabel data in real-life
scenarios makes multilabel classifcation methods a popular
research topic. However, in real-life applications, the in-
tegrity of the labels is usually not guaranteed. Due to poor
data collection and the high cost of labeling and other
reasons, only part of the labels in those samples is marked.
Tere are many ambiguous examples in the real world.
Sample instances are of a certain probability to be calibrated
to diferent attributes. Many multilabel classifcation algo-
rithms come into being. Usually, it is very challenging to
extend the theory of single-label classifcation to multilabel
classifcation. With the development of machine learning,
multilabel classifcation algorithms can be applied to im-
aging, recommendation systems, medical diagnosis,

information retrieval, and many other felds [1–8]. In recent
years, an ocean of research works accepted by top confer-
ences (e.g., ACL, AAAI, COLING, KDD, NIPS, ICDM,
CIKM, INTERSPEECH, ICML, and IJCAI) proposed
technologies and solutions for multilabel classifcation. Te
multilabel classifcation theory is a heated topic in data
mining, which has attracted wide attention in the machine
learning community.

Tere are two commonly used methods to construct a
multilabel classifcation model: algorithm adaptation and
problem transformation. Te algorithm adaptation method
is to adjust the existing algorithms (e.g., AdaBoost and
decision trees) to solve multilabel classifcation issues. Te
performance of the algorithm adaptation method often
remains poor. Te problem transformation method splits a
multilabel classifcation task into several single-label clas-
sifcation tasks. Ten, the classical single-label classifcation
theory is utilized to solve the problem, which brings the
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trained single-label classifers together as a super-classifer
through linear combination. In this study, we investigate the
multilabel classifcation theory algorithm based on problem
transformation.

Tere are many existing problem transformation
methods, such as the BR method [9], the CC theory [10], the
MBR model [11], and the DLMC-OS algorithm [12].
However, these methods usually ignore the correlation
among labels, the randomness of label sequences, and the
redundant interactive label information, which reduces the
accuracy of classifcation. Te problem transformation
method uses extended attributes to dig out the correlation
between labels, but for diferent classifcation tasks, the
importance of feature attributes is usually ignored during the
process, which decreases the sensitivity of the classifers.
Terefore, we try to introduce an attention mechanism into
the methods. Such attention mechanism method [13] is a
bionic process based on how the human brain works. It is
widely used in machine learning in areas such as speech
recognition, image recognition, natural language processing,
and so on. Te attention mechanism usually calculates the
probability mapping from an input to diferent outputs. Te
result with the largest probability will be chosen as the
output, which has a great impact on considering the cor-
relation between multiple attributes and labels. Ten, we
propose an attention mechanism-based multilabel classif-
cation algorithm, based on the double-layer chain structure.

In the proposed algorithm (algorithm of two/double-
layer chain classifcation with optimal sequence based on
attention mechanism, ATDCC-OS), we integrate three
multilabel classifcation frameworks (including BR, MBR,
and CC) and an attention mechanism into a chain structure
with two layers. Tis structure exploits a binary association
classifcation framework. In layer one, it carries out the
initial classifcation. In layer two, the chain-based classifer
utilizes an updating process to complete the fnal classif-
cation, which interacts with the label information coming
from the output of layer one. In particular, we put an at-
tention mechanism in layer two and use the output of layer
one to calculate the probability of fnal classifcation results.
Tus, this can fnd important information between diferent
attributes and can improve the fnal classifer accuracy for
diferent tasks. However, there is a random chain order
problem in ATDCC-OS. We leverage the optimal sequence
selection (OSS) algorithm to solve this issue. OSS integrates
several variables and methods (including the hierarchical
traversal algorithm, PageRank, Kruskal’s algorithm, and
mutual information) to decide labels’ priority. Ten, the
priority rank is used to help ATDCC-OS to assign classifers
and construct the chain classifcation model.

In this study, the main contributions are as follows: (1) A
double-layer structure multilabel classifcation model is
constructed to fully integrate the advantages of three clas-
sical classifcation models. At the same time, an attention
mechanism is introduced to further analyze the infuence of
key attributes on classifcation results to optimize traditional
classifcation. (2)Te OSS algorithm is proposed to solve the
problem of low classifcation accuracy due to the existence of
random chain order in the chain classifcation model. It is

applied to improve the second layer of the chained classi-
fcation model. Tis classifcation model does not depend on
any classifcation algorithm separately. Experiments on
benchmark datasets validate the efectiveness of the pro-
posed approach by comparing it with the state-of-the-art
methods in terms of predictive performance.

Te rest of this study includes the following: Section 2
deals with related work. Section 3 displays the proposed
ATDCC-OS method. Ten, we introduce the datasets used
in the experiments and perform some simulations to verify
the proposed method and discuss the experimental results in
Section 4. We conclude our work in Section 5.

2. Related Work

2.1. Multilabel Classifcation Method. Te multilabel classi-
fcation approach has received much attention and is widely
used in various felds, including text classifcation, scene and
video classifcation, and bioinformatics. Te multilabel
classifcation includes two common methods: problem
transformation process and algorithm adaptation process.
Te former changes a multilabel problem into one or several
single-label issues [11] and uses basic classifcation algo-
rithms, such as Naive Bayesian, supporting vector machine
[14], k-nearest neighbor algorithm, and so on to solve them.
Te latter transforms the existing algorithms so that they can
solve the multiclassifcation problem, e.g., ML-RBF method
[15, 16], ML-kNN approach [17, 18], rank-SVM classifca-
tion [9], and associated classifcation algorithm [19, 20].

BR (binary relevance) [9] is a common method of
problem transformation, which transforms the multilabel
classifcation issue into several binary relevance problems
where it trains a binary classifcationmodel one by one for all
labels. However, BR is often overlooked because it cannot
efectively use the correlation between labels. Te MBR
based on BR was proposed [11], which was constructed as a
two-layer model. Layer one in MBR is taken as the input of
layer two as a sample attribute to consider label correlation.
However, the problem of the label value redundancy is
ignored in the training process of layer two.

Te CC method was proposed by the authors in [10],
where the chain is exploited to build the correlation among
all labels. It converts all classifers into the linear stochastic
data chain and adds previous classifers’ output to the data
sample attribute set and takes it as the input to the next
classifer. However, there are many disadvantages to the
random chain. First, in the CC training process, the classifer
output is input as a new attribute together with the original
attribute into the next classifer. So, the former classifers in
the chain have a greater impact on classifcation than the
latter classifers. Te order of classifers in the chain afects
the classifcation result. Second, CC considers the correla-
tion of attributes, but two linked classifers can use the
correlation between adjacent attributes, and the other cor-
relation between attributes cannot be used. Finally, the order
of classifers in the chain is randomly assigned, so the CC
model is not unique, which makes the model have strong
randomness and ruins the stability of the algorithm [21, 22].
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Te two-layer classifcation model, DLMC-OS, is pro-
posed to solve the classifcation problem [12]. In this model,
the output of the frst-level classifer is forwarded to the
second-level classifer as an extended feature. Each classifer
in the second layer of the model passes the latest classif-
cation results backward through a chain to consider the
correlation between labels. Tis approach suppresses the
classifer chain randomness, but it cannot obtain the unique
classifer sequence in the chain.

2.2. Attention Mechanism. Te attention mechanism
method [23–25] is derived from the study of human vision,
which simulates the perspective interest of human vision
when observing. When the human eye scans the global
image, the part of the information that assists the judgment
is tracked dynamically in the image, and irrelevant infor-
mation is ignored. Tis process can efectively decrease or
reduce the amount of information processing when the eyes
recognize images by paying more attention to part infor-
mation. Te modern attention mechanism is adopted for
machine translation, and it greatly improves the perfor-
mance of the model [26]. In 2014, Google Brain published an
article on the attention mechanism [27]. Te article pointed
out that when viewing an image, people do not frst look at
the image pixels but pay more attention to the image’s
specifc parts based on their requirements. In addition, as
humans, we will focus on the required attention locations in
the future based on previous observations of images. Te
authors designed a new architecture named transformer. In
a transformer, the self-attention mechanisms are extensively
utilized to perform text representations [28], which break
away from the traditional RNN/CNN. In recent years,
transformer-style models achieved many good results in
various tasks. Subsequently, attention mechanisms have
become more common and are widely used in classifcation
tasks, such as sentiment classifcation [29], musical instru-
ment recognition [30], visual recommender systems [31],
multilabel text classifcation [32], and multiple protein
subcellular location prediction [33].

3. ATDCC-OS

3.1. Preliminaries. We set χ ∈ Rd and Y ∈ RL as the input
domain and output domain, respectively. Tere are d-di-
mensional attributes in the input domain and L-dimensional
labels in the output domain. Instance x belongs to a subset of
attributes. We use the set Lvector xi ∈ χ to represent that x is
the input and y is the output. If the label j is related to x,
then yj � 1, or yj � 0. Te set
D � (xi, Yi)|1≤ i≤m􏼈 􏼉represents the trained multilabel
classifcation model, where xi ∈ χ is an attribute vector
(xi1, xi2, · · · , xid)T with d dimensions and Yi ⊂ c indicates a
label set corresponding to xi. To construct a multilabel
classifer, we let H: χ⟶ 2c. Hf � (H

f
1 , H

f
2 , · · · , H

f
L ) and

Hs � (Hs
1, Hs

2, · · · , Hs
L) as the frst and second layers of the

multilabel classifer, respectively. cf � (y
f
1 , y

f
2 , · · · , y

f
L ) and

cS � (yS
1, yS

2, · · · , yS
L) are the outputs of the frst and second

layers.

3.2. Te ATDCC Framework. By referring to algorithm
DLMC-OS, we construct the double-layer chain classifca-
tion based on the attention mechanism (ATDCC). ATDCC
converts the multilabel classifcation issue into a series of
binary classifcation issues, each one of which is independent
of others. In layer one, ATDCC performs binary transfor-
mation on labels and constructs some classifers between
attributes and labels. After training, the classifers of each
binary classifcation model can be obtained [12]. ATDCC
completes the binary classifcation of instances in layer one
and then makes the classifcation results as the extended
attributes transfer to layer two. In layer two, ATDCC
constructs a classifcation method with a chain structure by
realizing the updating process of dynamic feedback. It ex-
ploits the classifer chain to transfer and change the labels. It
realizes the interaction among labels and optimizes the
classifcation result. ATDCC utilizes correlation among all
labels for multilabel classifcation through label information
interaction within layers and labels information transfer
between layers.

3.2.1. ATDCCFirst-Layer. ATDCCFirst-layer follows the idea of a
binary correlation classifcation model. It constructs a
classifer with a binary structure for all labels. Tese binary
classifers are combined as classifcation one, as shown in
Figure 1.

In step one, assume there is an annotated dataset with a
size being L. ATDCCFirst-layer constructs an attribute set for
all labels by using the following equation:

D
f
yk

� xi, yk( 􏼁|1≤ i≤m􏼈 􏼉,

whereyk �
1, ifyk ∈ Yk,

0, otherwise.
􏼨

(1)

In step two, some binary algorithms B (such as SMO) are
utilized to create the binary classifer of the training instance:
H

f
yk
←B(D

f
yk

).
In step three, we use the obtained binary classifer to

classify and predict the unseen instance X.

H
f
yk

: X × 0, 1{ }
L− 1⟶ 0, 1{ },

y
f

k � H
f
yk

(X)|X ∈ X ×(0, 1)
k− 1

, 1≤ k≤ L􏽮 􏽯.
(2)

Finally, the prediction result of each classifer (i.e.,
cf � (y

f
1 , y

f
2 , . . . , y

f
L ), as shown in Figure 1(b)) is the output

of the unseen instance in the frst layer of ATDCC, inte-
grating these output cf with the attribute set of samples to
build a new attribute set x′ � (xi, cf)|1≤ i≤m􏼈 􏼉. Let x′ be
the input of layer two in ATDCC.

3.2.2. ATDCCAT-Layer. Te attention mechanism is usually
exploited in sequence-to-sequence learning paradigms. For
diferent multilabel classifcation tasks, the attribute map-
ping weights between the two layers of ATDCC are diferent.
Te attention mechanism method can capture the weight
value of all attributes in samples according to requirements.
It can improve the fnal accuracy of classifcation results.
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ATDCCAT-layer uses the attention mechanism men-
tioned above to dynamically compute the extended attri-
butes’ weights. Te layer two model can adapt to the
requirement of the current classifcation task by adjusting
the weight value of the transfer attributes between the two
layers in ATDCC.

In step one, according to the original sample attributes’
dimension of the frst layer to defne weight matrix W, the
tanh function is exploited to train ATDCCAT-layer to capture
correlations between input attributes and label i. Te trained
model can be expressed as

eij � tanh Wijxij
′ + b􏼐 􏼑, (1≤ i≤m), (3)

where W and b, respectively, denote the weight matrix and
the model’s bias.

In step two, ATDCCAT-layer uses a softmax function to
transform the output of equation (3) to a probability value
and then obtains the weight value of the attention scores.

Wij
′ � softmax eij􏼐 􏼑 �

exp eij􏼐 􏼑

􏽐
j�1
m exp eij􏼐 􏼑

. (4)

Finally, the extended attribute set is weighted based on
the attention weights obtained from equation (4):

x″ � 􏽘
i�1

m

xij
′ωij
′. (5)

Te parameters in our model are optimized by carrying
out the minimization of the feedback result of the loss
function.Te cross-entropy loss in equation (6) is used as the
loss function. Te following equation calculates the accu-
mulated loss derived from actual and predicted labels for
each instance:

J(θ) � −
1
l

􏽘

k�1

l

logp yk|yk
′( 􏼁. (6)

3.2.3. ATDCCSecond-Layer. ATDCCSecond-layer is the second
layer of the ATDCC model (Figure 2), which uses the
classifcation structure with a chain and exploits an updating
process to classify instances in the second time.Te attribute
set of each binary model expands the correlation of the
classifcation labels before the instance to create the chain
structure of classifers. Te attribute set of all binary models
is augmented via the 0/1 label estimation value obtained in
layer one as well as the whole prior binary correlation es-
timations from layer two. In the second layer, the correla-
tions between each label are fully applied. Given the attribute
set, each classifer in the chain will learn and predict the
binary association of labels.

In step one, ATDCCSecond-layer creates the extended
attribute vector Ds

yk(1≤ k≤ L) for each class label as shown
in the following equation.

D
s
yk

� wixi, wi+1y
f
1 , · · · , wi+k−1y

f

k−1, wi+k+1y
f

k+1, · · · , wi+Ly
f
L􏽨 􏽩, y

f

k􏼐 􏼑|1≤ i≤m􏽮 􏽯, (7)

where W represents the set of attributes’ weight value.
In step two, we use binary approach B (such as SM) to

learn the constructed extended attribute vector (O) to create
the binary classifer, Hs

yk←B(Ds
yk).

In the third step, use the constructed binary classifer to
classify and predict the unseen instance X.

D
s
yk

� wixi, wi+1y
f
1 , · · · , wi+k−1y

f

k−1, wi+k+1y
f

k+1 · · · , wi+Ly
f
L􏽨 􏽩, y

f

k􏼐 􏼑|1≤ i≤m􏽮 􏽯. (8)
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Figure 1: Te frst layer of ATDCC: (a) the training procedure of ATDCC First-layer and (b) the test procedure of ATDCC First-layer.

4 Complexity



In the model training process, we use the latest predicted
label value to change each sample attribute set’s label value.
For example, for the third classifer HS

y3
in a chain, the next

sample’s attribute variable is [x, ys
1y

s
2, y

f
3 , y

f
4 , . . . , y

f
L ] in-

stead of [x, y
f
1 , y

f
2 , y

f
3 , y

f
4 , . . . , y

f
L ].

Finally, ATDCC evaluates the classifcation prediction
result cs � (ys

1, ys
2′ , . . . , ys

L) of each classifer as the fnal
classifcation for the unseen instance.

3.3. OSS Method. In the MBR model, the sequence of the
classifers in the chain is randomly arranged. If the classi-
fcation accuracy of the classifer at the core of this chain is
very low, an error will be propagated via a backward way
along this classifer chain, decreasing the classifer’s accu-
racy. Tis further leads to lower classifcation correctness
and accuracy for the whole chain. As the number of labels
increases, the randomness of the OSS classifer chain also
increases rapidly. Te algorithm DLMC-OS can reduce the
classifer chain’s randomness, but the optimal label recog-
nition sequence cannot be determined due to the non-
uniqueness of the root node. Te most efective method is to
sort the sequence of the chain. Te sequence of the classifer
needs to be ranked according to attributes and the char-
acteristics of the chain classifcation model. For this reason,
the following constraints are proposed to search for the
optimal chain sequence:

(A) Te label list is ordered according to a sequence
which contains all label information

(B) Te label sequence satisfes the greatest correlation
of labels

(C) Te label list sequence is optimal under current
conditions

Under these design rules, we propose OSS in the model,
which integrates mutual information and PageRank with the
Kruskal algorithm and the hierarchical traversal method to
fnd an optimal label sequence. Te chain classifcation
model uses sequences as the rules to assign the order of each
classifer, and the second layer will optimize the ATDCC
with the OSS algorithm.

3.3.1. Subalgorithm Related with OSS

(1) Mutual Information (MI) Teory. In the information
theory and probability theory, mutual information
(MI) is used to evaluate the interdependence be-
tween two random variables, so we can obtain the
“information amount” of a stochastic variable by
observing the other random variables. Equation (9)
shows the MI of the two variables. In current in-
formation technologies, the probability theory and
information theory have been widely used. Te MI
theory is widely exploited in research works. In the
machine learning feld, MI can be utilized to select
the features [34, 35]. Te search engine often uses MI
among phrases and contexts to fnd discover se-
mantic clusters [36]. In statistical mechanics, MI is
usually used to solve mechanical problems together
with Loschmidt’s paradox [37, 38].
Based on the MI application, we evaluate the cor-
relation between labels by capturing MI among la-
bels. Ten, we exploit it as edges’ weight in the fully
connected graph.

(2) PageRank. PageRank (PR) is used to overcome the
page ranking issue in the detailed link analysis
process, which was proposed in reference [39]. Te
key idea of this algorithm includes that the page’s
importance is related to the number as well as the
detailed quality of another page that points to this
page. Tis algorithm is applied in Google’s search
engine [40]. Te importance of a Webpage can be
quantifed by the number of links in the link
structure, rather than relying on specifc search re-
quests. Twitter uses a personalized PageRank to show
users’ another account [41]. In this study, we use
PageRank and priority search to build the custom-
ized PageRank algorithm to decide a very important
label to act as the chain’s frst node. Tis can
overcome the issue of nonuniqueness of the chain
head.

(3) Edge Weight-Based Graph Algorithm. Usually, the
connection between diferent entities can be
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Figure 2: Te second layer of ATDCC: (a) the training procedure of ATDCCSecond-layer and (b) the testing procedure of ATDCCSecond-layer.
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formulated as a graph with edge weights [42]. Te
weight of an edge may represent cost, length, or
capacity, depending on the current problem to be
solved [43–46]. In the model, we exploit this
weighted graph method to create the graph with a
fully connected relationship related to the labels in
Algorithm 1.

(4) Detailed Kruskal’s Algorithm Idea. In this study, the
referred Kruskal’s algorithm is utilized to seek a tree
with minimum spanning [47]. We use Kruskal’s
method to seek a tree with the largest label spanning.
Tis can provide a basis to create a sequence in which
the association with labels is the largest.Te designed
algorithm is shown in Algorithm 2.

(5) Breadth-First Based Search Method. In this study, the
breadth-frst based search (BFS) is an algorithm used
for seeking the available paths of the graph, which
traverses or searches the tree or graph data struc-
tures. Ten, we use PageRank to fnd the starting
point and use BFS to traverse the spanning tree with
the maximum label to construct the resulting label
order, as shown in Algorithm 3.

3.3.2. Te OSS’s Detailed Design Framework. Te detailed
design steps for the OSS algorithm in this study are shown in
Figure 3.

Step 1. Calculate the MI of the correlation between labels.
Assuming that there are N labels y1, y2, . . . , yn, we use
formula (9) to calculate the MI on any two labels yi and yj,
and the MI must be nonnegative.

Defnition 1. Te formula of MI calculation is

I yi, yj􏼐 􏼑 � 􏽘
yiyj

p yi, yj􏼐 􏼑log
p yi, yj􏼐 􏼑

p yi( 􏼁p yj􏼐 􏼑
⎛⎝ ⎞⎠. (9)

Step 2. Construct a fully connected graphG via labels, where
the labels are the graph’s vertices, and MI volume among
labels acts as edges’ weights. Utilize the Kruskal algorithm to
build the label tree with the maximum weight. Ten, invert
the mutual information value to obtain the maximum
weight spanning tree.

Step 3. Use the PageRank algorithm to sort each label in the
dataset by “voting” and decide on the label node whose PR
value is the highest. Tis node acts as the root node that
belongs to a tree with the maximumweight. It is also selected
to act as the frst node of the traversal algorithm that is
hierarchical. Tis can overcome the issue of not unique head
label in the chain.

Step 4. Use Kruskal’s algorithm to generate a minimum
weight label tree (MWT) used for the fully connected graph
G. Te label tree includes the whole labels and the entire

edges. Tese edges connect the label nodes. Te weighted
sum is the largest.

Step 5. Traverse the MWTwith the label nodes obtained by
BFS and PageRank to obtain the label sequence. Use this
sequence as a guide for constructing the sequence of each
classifer in a chain to overcome the uncertainty issue for the
classifcation, as shown in Algorithm 4.

3.4. Te ATDCC-OS Framework. Te ATDCC-OS design
framework is plotted in Figure 4. Figure 4 shows that the
ATDCCFirst-layer and ATDCCSecond-layer are the frst and
second layers. We utilize the OSS approach to optimize the
chain structure in the ATDCC-OS framework. Ten, we can
seek an optimal sequence of labels. According to the best and
optimal serials, we train each classifer in our model. We
utilize this attention mechanism layer between layer one and
layer two to fnd important attributes and features from the
current task. In such a case, we can build a better classifer in
layer two, as shown in Algorithms 5 and 6.

4. Experiments

To validate the method, we perform some simulations and
use the experimental results to analyze the performance of
the proposed algorithm. In the simulation, we analyze the
algorithm (ATDCC-OS) presented in this study with other
algorithms of multilabel classifcation (including DLMC-OS
and BR and CC and MBR) via fve metrics. We then take
seven datasets as the multilabel benchmark.

4.1. Test Datasets. We utilize the standard datasets provided
on the Mulan [48] platform as the multilabel benchmark.
Table 1 describes each dataset and related statistical data in
the simulation. N, F, and L represent instances’ numbers,
attributes’ numbers contained in each instance, and labels’
numbers in the dataset, respectively. Te notation label
cardinality (LCard) represents the normal measure as shown
in [49]. LCard denotes the average label number associated
with an instance.

4.2. Evaluation Methods. Te evaluation indicator is a
measure that directs the indication of the algorithm’s per-
formance. To better evaluate the method, we used mean
accuracy, coverage rate, single error, ranking loss rate, and
microaverage AUC to analyze the performance of ATDCC-
OS.

(1) Average precision: average precision [12] is an ac-
curate metric, which associates recall with precision
to sort search results. It reviews a mean score of
labels with a higher rank than a specifc tag. Te
larger the value of the average precision is, the better
the classifer will be. Te average precision can be
expressed as
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avgprecD(H) �
1
P

􏽘

P

i�1

1
Yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽘
y∈Yi

y′|rankC x, y′( 􏼁≤ rankC xi, y( 􏼁, y′ ∈ Yi􏼈 􏼉
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

rankC xi, y( 􏼁
, (10)

Where rank(.) is a sort function.

Input label values to construct a label map with weights:
Input Y � y1, y2, . . . , yL􏼈 􏼉

Output: G
(1) G← {}
(2) G.V←Y
(3) For each (u, v) in G.V
(4) Calculate the mutual information of MI (u, v) according to Defnition 1.
(5) G.E←MI (u, v)
(6) G←G(V, E)
(7) Return G

ALGORITHM 1

Constructing the minimum spanning tree of labels based on Algorithm 1:
Input: G (V, E)
Output: MWT

(1) MWT← {}
(2) For v ∈G, then V is:
(3) Make the set (v)
(4) For (u, v) in G. E is ordered according to weight (u, v) via an increasing way:
(5) If set(u) ≠ set(v):
(6) MST�MST ∪ {(u, v)}
(7) Let it Union (u, v)
(8) Return MWT←MST

ALGORITHM 2

Hierarchical traversal to get the label sequence:
Input: MWT (V, E)
Output: OS

(1) Queue Q← {}
(2) For each v ∈MWT.V:
(3) Q←Q∪ (v)

(4) while(Q! � ∅)

(5) v←Q.head, w←Q.next
(6) while(w! � ∅)

(7) Q←Q∪ (w)

(8) end while
(9) end while
(10) end for
(11) OS←Q

(12) Return OS

ALGORITHM 3
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Figure 3: Te OS computation process.

Find labels’ optimized chain order:
Input: Variable D � (x1, x2, · · · , xn|y1, y2, · · · , yL)

Output: OS(y1, y2, . . . , yL)

(1) ⊳Calculate mutual information according to Defnition 1
(2) fori � 1, 2 . . . , L

(3) forj � i + 1, 2, . . . , L

(4) Iij←MI(yi, yj)

(5) ArrayA←Iij

(6) End for
(7) End for
(8) ⊳Make a fully connected graph
(9) G←Edge − weightedgraph(L, A)

(10) ⊳Determine the root node by PageRank
(11) V←PageRank(D)

(12) ⊳Get the maximum weight label Tree
(13) T←Kruskal(G, V)

(14) ⊳Get the optimal sequence
(15) OS(y1, y2, . . . , yL)←Breadth − firstsearch(T)

(16) Return OS

ALGORITHM 4

X

H
1

f

H
1

f

y
1

f y
2

f y
3

f y
L

f

y
1

s y
2

s y
3

s y
L

s

H
2

f

H
2

f

H
3

f

H
3

f

H
L

f

H
L

f

[x,y
2

f ,y
3

f,..., y
L

f] [x,y
1

s ,y
3

f,..., y
L

f] [x,y
1

s ,y
2

s,..., y
L

f] [x,y
1

s ,y
2

s,..., y
L-1

f]

Attention1 Attention2 Attention3 AttentionL

ω11, ω12, ω13, ..., ω1n, ω1n+1,..., ω1n+d

ω′11, ω′12, ω′13, ..., ω′1n, ω′1n+1,..., ω′1n+d

x11, x12, x13, ..., y1

f ,y
2

f,..., y
L

f

Dense

tanh

sof max

ATDCC – OSAT–Layer 

AT
D

CC
 –

 O
SSe

co
nd

–L
ay

er
 

AT
D

CC
 –

 O
SFi

rs
t–

La
ye

r 

OSS

...

...

...

...

Figure 4: Te DCC-OS model’s design framework.
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(2) Coverage [12]: coverage indicates that the algorithm
can cover all possible labels. Tis metric describes
how far or how deep we are to go in the tag list on
average to include possible labels related to the
document. At the perfect recall level, coverage is
loosely related to accuracy. Te smaller the value of
coverage is, the better the algorithm will be. Te
coverage can be calculated as

coverageD(H) �
1
P

􏽘

P

i�1
max rankf xi, y( 􏼁 − 1, (11)

Where notation rank(.) denotes a sort and ranking
function related to the classifer H(.).

(3) One-error metric [50]: one-error metric is used to
indicate the proportion of examples where the top
label does not fall into the selected label set. Te
bigger this metric is, the worse the algorithm will be.
Te one-error metric can be expressed as

one − errorD(H) �
1
P

􏽘

P

i�1
argmaxy∈cf xi, y( 􏼁 ∉ Yi􏽨 􏽩

�����

�����,

(12)

D is the training set, L is the labels’ number
TRAINING D � (xi, Yi)|i � 1, 2, . . . , m􏼈 􏼉

(1) ⊳Train the frst-layer classifer
(2) forj � 1, 2, . . . , L

(3) D
f
yj
←

(4) dox←[xi1, xi2, . . . , xim]

(5) D
f
yj
←x∪yj

(6) H
f
j←Β(D

f
yj

)

(7) end for
(8) ⊳Use the OSS algorithm to obtain the label priority order to guide the training of the second-layer classifer
(9) forj � sort1, 2, . . . , LbyOSS(D)

(10) Ds
yj
←

(11) dox←[xi1, xi2, . . . , xim, y1, . . . , yj−1, yj+1, . . . , yL]

(12) ⊳Compute attribute value weights using the attention mechanism
(13) W← Wi1, Wi2, . . . , Wim+L􏼈 􏼉

(14) W←attention(x)

(15) x′←x × W

(16) Ds
yj
←x′ ∪yj

(17) Hs
j←Β(Ds

yj
)

(18) yj � Hs
j(x′)

(19) End for

ALGORITHM 5

Classify(x): classify new instance X
(1) Global cf � (y

f
1 , y

f
2 , · · · , y

f

L )cs � (ys
1, ys

2, · · · , ys
L)

(2) ⊳Classify x for the frst time using the frst-layer classifer
(3) forj � 1, 2, . . . , L

(4) dox←[xi1, xi2, . . . , xim]

(5) y
f
j←H

f
yj

(x)

(6) End for
(7) ⊳Classify x for the frst time using the second-layer classifer
(8) x′←[x, y

f
1 , y

f
2 , . . . , y

f
L ]

(9) forj � sort1, 2, . . . , LbyOSS(D)

(10) dox″←x′ × Wj
′

(11) ys
j←Hs

j(x″)
(12) End for
(13) ⊳Get the fnal classifcation result
(14) cs←(ys

1, ys
2, . . . , ys

L)

(15) Returncs

ALGORITHM 6
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Where f(.) stands for a function associated with a
classifer H(.) with multiple labels.

(4) Ranking loss metric [12]: the ranking loss metric is
related to those situations in which the classed labels
of samples are not sorted in order, that is, in the label

serials, the classifed labels (that are not related to the
researched instance) fall into the previous related
labels. Te bigger this indicator is, the better the
algorithm performance will be. Te ranking loss
metric can be expressed as

rlossD(H) �
1
P

􏽘

P

i�1

1
Yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 Yi| × y′, y″( 􏼁|f xi, y′( 􏼁≤f xi, y″( 􏼁, y′, y″( 􏼁 ∈ Yi × Yi}|.􏼈

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

(13)

(5) Microaveraged AUC [50]: this metric shows the area
covered by a ROC curve graph. Its value is from 0.1
to 1. Tis metric is directly exploited to review the
classifer’s performance. Te smaller this metric is,
the worse this algorithm will be. Te microaveraged
AUC metric is

AUCmicro � | (x′, x″, y′, y″)|f(x′, y′)≥f(x″, y″),􏼈

(x′, y′) ∈ S+, (x″, y″) ∈ S− }|/|S+||S−|, where f(.) is a real-
valued function [51] and the following equations can be
obtained:

S
+

� xi, y( 􏼁|y ∈ Yi, 1≤ i≤p􏼈 􏼉. (14)

S
−

� xi, y( 􏼁|y ∉ Yi, 1≤ i≤p􏼈 􏼉, (15)

where they denote label pairs’ sets which are related or
unrelated.

4.3. Experimental Setting. We use the dataset provided by
the Mulan platform to evaluate all algorithms. Te Mulan
[48] is an open-source dataset used for classifcation with
multiple labels, which is based onWeka. In this study, we use
SMO as a basis for classifcation algorithms. Four diferent
classifers are utilized to carry out comparisons, including
the DLMC-OS algorithm, the MBR algorithm, the CC al-
gorithm, and the BR algorithm. We select 80% of instances
from every dataset to act as training datasets, while we
choose the rest to act as testing datasets. We adopt Adam
[52] as the optimizer during the training process. We list the
default parameters of Adam’s hyperparameters as follows:
let alpha be 0.001, set beta1 to be 0.9, let beta2 be 0.999, and
set epsilon to be 10−8. Our simulation platform includes the
Intel(R) Xeon(R) E5-2630 CPU, 128GB RAM, as well as the

operating system Centos 7.6. We design and implement the
algorithms in the Java (JDK 1.8) running environment.

4.4. Results and Discussion. Figures 5–10 show the perfor-
mance comparison among ATDCC-OS, DLMC, MBR, CC,
and BR algorithms, using mean accuracy, coverage metric,
single error metric, ranking loss metric, and microaverage
AUC metric. We use the metric of the mean ranking (Ave.
rank) parameter to review diferent classifcation results of
the algorithms [53]. In these fgures, each color represents an
algorithm and the name of the algorithm has been listed in
the upper left corner of the graph. Te number on the top of
each bar is the performance rank of the algorithms in the
dataset. In Figures 5–9, the ordinate y-axis denotes the
results of the evaluation, while the abscissa x-axis stands for
the names of the dataset. In Figure 10, x-axis denotes the
name of the algorithm, while y-axis shows the average rank
of algorithms in all datasets.

Figure 5 shows the accuracy of each algorithm in each
dataset. Te ATDCC-OS method proposed in the study has
the best performance in the dataset. Compared with other
methods, except for the lowest accuracy in the yeast dataset,
the accuracy in other datasets is the highest. Among them,
the accuracy in the datasets of fags, emotions, and the
medical dataset is over 80%.

In Figure 6, we can see the comparison of the micro-
average AUC performance of the algorithms. Te ATDCC-
OS algorithm is also the most excellent and stable in terms of
microaverage AUC performance. Te performance of this
algorithm is the best except for that in the birds dataset, and
the performance in the medical dataset is 0.96.

Figure 7 shows the comparison of the coverage per-
formance of each algorithm. Te lower the coverage, the

Table 1: Datasets with multiple labels.

Dataset N F L LCard Type
Flags 194 19 7 3.392 Images
Emotion 593 72 6 1.87 Music
Birds 654 300 21 1.104 Audio
Medical 978 1449 45 1.245 Text
Enron 1702 1001 53 3.38 Text
Yeast 2417 103 14 4.24 Biology
BibTeX 7395 1836 159 2.40 Text
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better the performance of the algorithm. Te coverage
performance of the ATDCC-OS algorithm proposed in the
study is optimal in all datasets, and its coverage performance
is less than 10% in fags, emotions, birds, medical datasets,
and yeast datasets.

Te single error performance of each algorithm is shown
in Figure 8. Te performance of the proposed ATDCC-OS
algorithm in this graph is relatively unstable compared with
other algorithms. However, from a comprehensive per-
spective, the performance of this algorithm is still good, and
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the performance in the fags, birds, Enron, and BibTeX
datasets is the best. In the emotion dataset, the performance
of this algorithm is second only to that of the MBR
algorithm.

From Figures 5–9, we can see that ATDCC-OS shows the
optimal classifcation performance, while algorithm DLMC-
OS presents better performance. However, other methods
indicate worse performance. For all reviewing metrics, the
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mean precision metric and microaveraged AUC metric
directly indicate the performance of the classifers.Te larger
the values, the better the performance of the algorithms.
According to Figures 5 and 6, we can see that the algorithm
ATDCC-OS proposed in this study and the method DLMC-
OS demonstrate much better performance compared with
other algorithms. Tis is because they utilize a two-layer
classifcation structure and the label information interaction

to create detailed classifers. Tis design structure takes into
consideration the interrelationship between labels. At the
same time, the algorithm ATDCC-OS also exploits the
classical attention mechanism theory to improve the sen-
sibility of classifers and adapt them to a variety of tasks.
Tree indicators, namely, coverage, ranking loss, and the
one-error metric are often exploited to decide and fnd ir-
relevant labels in classifcation results. As shown in

2 4 3

1

4 5

5

2

3

1
2 5 3

1

3 5 4

4

2

1

4 5
2 3

1

3 5 2 4

1

2 3 45
1

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

Ra
nk

in
g 

Lo
ss

Flags Emotion Birds Medical
Dataset

Enron Yeast Bibtex

BR
CC
MBR

DLMC-OS
ATDCC-OS

Figure 9: Te ranking loss performance of algorithms.

Average Precision Micro-averaged AUC Coverage

One-Error Ranking Loss

5

4

3

2

1

0

Av
e.R

an
k

5

4

3

2

1

0

Av
e.R

an
k

5

4

3

2

1

0

Av
e.R

an
k

5

4

3

2

1

0

Av
e.R

an
k

5

4

3

2

1

0

Av
e.R

an
k

4
5

3 2

1

3

5

4
2

1

3 4
5

2

1

3

5

4
2

1

3

5
4

2
1

BR
CC
MBR
DLMC-OS
ATDCC-OS

Figure 10: Te average rank of fve classifers for diferent metrics.

Complexity 13



Figures 7–9, we fnd that the algorithm ATDCC-OS and the
previous algorithm DLMC-OS also demonstrate better
performance compared with the rest of the algorithms, while
the BR approach presents a medium performance. TeMBR
method and the CC approach are the worst in this metric.
Tis is because the algorithm ATDCC-OS and the previous
approach DLMC-OS utilize optimization algorithms to train
all classifers in order. Te randomness of serials in the CC
method and the MBR approach directly leads to poorer
performance. On the contrary, the BR method does not take
into account the sequence of the labels, while it shows better
performance.

Te loss performance of each algorithm is shown in
Figure 9. Among them, the ATDCC-OS algorithm is the
most excellent in terms of loss performance. In all datasets,
the performance of this algorithm is one level better than
other algorithms. In the medical dataset, the loss perfor-
mance is about 0.03.

From Figure 10, we can see the comprehensive per-
formance ranking of the comparison algorithms in various
indicators. Among all the indexes, the ATDCC-OS algo-
rithm has the best performance. Te comprehensive per-
formance of the DLMC-OS algorithm is second only to that
of the ATDCC-OS algorithm, and the subsequent perfor-
mance is diferent in diferent algorithms.

Figure 10 shows the mean ranking performance metrics
of the fve classifers for mean accuracy, coverage metric,
single error metric, ranking loss metric, and microaverage
AUC metric.

From our simulations, we can fnd that our algorithm
ATDCC-OS outperforms the rest of the algorithms for most
of the datasets, while it performs poorly in yeast and birds.
As we all know, this algorithm cannot obtain the best
performance for all types of diferent test datasets [10]. Te
algorithm performance is related not only to the detailed
structure of the algorithm but also to the dataset’s detailed
type and size, as well as labels’ balance in our test dataset.

Figures 11 and 12 show the plots of the percentage of
training data versus average precision and ranking loss.
Tese two fgures illustrate how the percentage change of
training data afects the enhancement of performance. In
this experiment, we take the emotions dataset as an example
for both comparisons.

Figure 11 shows the change curve for average precision
under the two pairs of classifers scale with respect to the
percentage of training data. From Figure 11, we observe that
the average precision is elevated for the four classifers when
the percentage of training data increases. When the per-
centage of training data is between 10% and 30%, the ac-
curacy of all algorithms foats up and down. When the
percentage of training data is over 30%, the average precision
of the ATDCC-OS and DLMC-OS rises steadily, while MBR
needs to reach 40%, and CC and BR need to reach 60%.
Overall, as the training data increase, ATDCC-OS shows
better performance than DLMC-OS, followed by MBR and
BR, while CC is the worst.

From Figure 12, we can see the results of the comparison
in terms of ranking loss. In this fgure, as the percentage of
training data increases, the ranking loss of ATDCC-OS and

DLMC-OS tend to decrease steadily, compared to MBR, CC,
and BR.When the training data is between 10% and 40%, the
ranking loss of each algorithm is unstable, among which the
MBR fuctuates the most, followed by CC and BR, while
ATDCC-OS and DLMC-OS perform better. When the
dataset is larger than 40%, the ranking loss curves of all
algorithms show a downward trend. ATDCC-OS still
presents the lowest loss in such a scenario.

5. Conclusion

In this study, we propose a simple and efective multilabel
classifcation model (ATDCC-OS) that integrates the mul-
tilabel classifcation framework of three classic problem-
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conversion types. It fully explores all kinds of advantages of
every method to resolve these issues without considering the
correlation among labels when performing classifcations. In
order to further improve the performance of classifcation,
the algorithm solves the problem of nonreal-time label in-
formation interaction in the second-layer chained classif-
cation model by introducing the idea of “update
replacement.” At the same time, the algorithm dynamically
calculates the weight values of all feature attributes through
an attention mechanism in order to add more important
attribute features to the current classifcation target for each
classifer. It is helpful to add the classifcation sensibility of
classifers, which greatly improves the preciseness of clas-
sifcation. Five diferent metrics are utilized to describe
diferent algorithms on seven diferent datasets. Te results
of the experiments show that the proposed method obtains
high predictive performance compared with the state-of-
the-art multilabel classifcation methods in most cases. In
terms of average accuracy, the average accuracy of the
ATDCC-OS algorithm is basically the highest in all datasets,
and the accuracy in fags, emotions, and the medical dataset
is more than 80%. In the microaverage AUC performance,
the performance of the ATDCC-OS algorithm in all datasets
is the best except for that in the bird’s dataset, and the
performance in the medical dataset is 0.96. In terms of
coverage performance, the ATDCC-OS algorithm has the
best coverage performance in all datasets, and its coverage
performance is less than 10% in some datasets. In single
error performance, this algorithm has the best compre-
hensive performance. In the loss performance, the algorithm
has a loss performance of about 0.03 in the medical dataset.
Based on the above results, it is concluded that the per-
formance of the proposed ATDCC-OS algorithm is the best.
Tis is only the preliminary result of this study. In the future,
we will further optimize the algorithm to solve the problem
of time complexity caused by the model structure, and we
will also try to apply the algorithm to solve classifcation
problems in everyday work and life. Finally, we hope that the
research work in this study can provide some reference and
assistance to researchers or scholars in the feld of multilabel
classifcation of problem transformation types.
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We study the dynamical behavior of multiple quasi-synchronization of a type of fractional-order coupled neural networks
(FCNNs) with delay and uncertain parameters. By utilizing the pinned pulse control strategy technique, we establish a new pulse
controller, which realizes the multiple quasisynchronization of the system. Furthermore, we derive some new criteria of multiple
quasisynchronization by using the comparison principle and mathematical analysis. Eventually, simulations are carried out with
two examples to explicate the effectiveness of the conclusions.

1. Introduction

Fractional-order calculus is related to model memory,
complexity, and heritability, so it has advantages over integer
calculus (see [1, 2]). In many actual questions, we generally
first consider the fractional dynamic system because it can
better descript the actual problem than the integral order
dynamic system.*ere have been many reports on fractional-
order system dynamics. It plays an extremely significant effect
in the modeling of engineering system, power system, and
physical system (see [3, 4]). In Reference [3], Bao and Cao
combined Caputo derivatives and fractional calculus in-
equalities and sufficiency condition for projection synchro-
nization of fractional memristor-based neural networks
(FMNNs) was theoretically derived. Xu et al. in Reference [5]
studied a new fractional Hopfield neural network chaotic
system and its application in image encryption. Li et al. in
Reference [4] studied the application of neural network
fractional-order PID in the control of piezoelectric stacks.

Parameter uncertainty is caused by incomplete under-
standing of some knowledge of mathematical model, such as
constitutive law and empirical quantity (see [6]). In various
engineering discipline systems, the model parameters
studied are often uncertain, so the parameter uncertainty
needs to be considered when facing the actual system.

Fortunately, in recent years, many scholars have considered
the parameter uncertainty in the model. In Reference [7], the
author designs an appropriate event triggering mechanism
and controller to ensure the stability of randomly nonlin-
earity system of time lag with uncertain parameters.
However, with the continuous maturity of technology, the
task of designing a good controller for an uncertain frac-
tional-order neural network so that the network can achieve
the desired effect is still very arduous, and many problems
need to be further studied.

Synchronization is an extremely important dynamic
behavior in complex dynamic networks, which has a wide
range of applications in many fields. *erefore, many re-
searchers have studied it (see [8]). Moreover, the syn-
chronization behavior of fractional-order coupled neural
networks (FCNNs) is also discussed. For example, Xu et al.
designed a suitable controller in Reference [9], so that
FCNNs with time-variable delays could realize the syn-
chronization behavior in a finite time. Chen et al. [10] in-
vestigated the synchronization of FMNNs with time lag. It is
a well-known fact that time delay often exists in plenty of
complex networks; hence, it is very significant to premed-
itate time delay when studying FCNNs.

In general, the coupled neural network is not syn-
chronized without external force interference, so it is
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necessary to develop a controller to make it synchronize.
Some scholars also use various control technologies, for
example, impulse control, adaptive control, pinning control,
and feedback control to achieve synchronization. However,
if there are too many nodes in the network, the cost of
applying controller to each node is too high and difficult to
implement. *erefore, it is possible to try to control the
network by only controlling the fixed part of the time and
some nodes, so as to arrive the purpose of reducing the
control cost. But, few authors have applied the pinning
impulse control project to NNs (see Reference [11]). In
Reference [11], Wang et al. theoretically derived a few
sufficient conditions for pinning synchronization and robust
synchronization of FCNNs through the pinning control
strategy. Also, some networks can only achieve quasi-
synchronization due to external and internal interference,
and there are few studies on quasisynchronization of NNs
with couple (see [12, 13]). In Reference [12], Feng et al.,
based on the matrix-related knowledge theory and Lyapu-
nov functional method, derived several simple sufficient
optimality conditions for quasisynchronization of coupled
memristor NNs theoretically, and a suitable controller is
constructed to ensure the quasisynchronization of such
networks. In Reference [13], Lv et al. introduced a type of
activation function and a few sufficient conditions to
guarantee that each subnetwork in the time-delay coupled
neural network has multiple equilibrium states andmade the
network achieve dynamic and static multisynchronization
by constructing an appropriate impulse controller and
Lyapunov function. Based on the abovementioned phe-
nomenon, this paper will research the multiple quasi-
synchronization issue of FCNNs with uncertain parameters
and delay by pinning pulse control method.

For as much as the above discussion, the major dedi-
cations of this article involve the following: (1) *e multiple
quasisynchronization problem of FCNNs with uncertain
parameters and time delays is studied. (2) *e concept of
multiple quasisynchronization is proposed. (3) Aiming at
the problem of multiple quasisynchronization, a new
method combining pinning and pulse control is proposed.

*e rest of the main content of this article is as follows:
Section 2 mainly describes the prerequisites and models
required in this article. *e primary contribution is in
Section 3. Section 4 gives two examples that demonstrate the
validity of the conclusion. Finally, Section 5 gives the main
conclusions of this article.

2. Preliminary Knowledge and
Model Description

2.1. Fraction-Order Calculus. Firstly, existing definitions of
fraction-order calculus are given, which can be seen in
Reference [14], that are needed later.

Define the Gamma function Γ(·) as below:

Γ(p) � 􏽚
+∞

t0

t
p− 1 exp − t{ }dt, (1)

where p> 0.

Define the Caputo fractional derivative cD
p
t0 ,tg(·) of the

function g(t) as below:

c
D

p
t0 ,tg(t) �

1
Γ(n − p)

􏽚
t

t0

g
(n)

(s)

(t − s)
p− n+1ds, (2)

where t0 is the initial time, t≥ t0, p is the order,
n − 1<p< n, n ∈ Z+.

Define the fractional integral I
p
t0 ,tg(·) of the function

g(t) as below:

I
p
t0 ,tg(t) �

1
Γ(p)

􏽚
t

t0

(t − s)
p− 1

g(s)ds, (3)

where t0 is the initial time, t≥ t0.
Define the Mittag-Leffler function with single parameter

Ep(·) as below:

Ep(s) � 􏽘
+∞

k�0

s
k

Γ(kp + 1)
, (4)

where p> 0, s is a complex number.
Define the Mittag-Leffler function with double param-

eters Ep,p(·) as below:

Ep,p(s) � 􏽘
+∞

k�0

s
k

Γ(kp + q)
, (5)

where p> 0, p> 0, s is a complex number.

2.2.ModelDescription. A collection that makes Z+ a positive
integer. *e superscript T represents the transpose, and #I
is an element in the finite collectionI. Denote Rn is the set of
n-dimensional real-valued vectors. R+ is the group of fixed
non-negative numbers. For an arbitrary vector a ∈ Rn and
the existence of a constant σ0 > 0, we record M(a, σ0) �

x‖x − a‖< σ0􏼈 􏼉 as a set of vectors, where the distance be-
tween x and a is less than σ0. *e set of n × n real matrices is
written as Rn×n. If a real matrix X> 0, then X is a positive
definite matrix. A⊗B represents the Kronecker product of
matrices A and B. For any matrix A, λmin(A), λmax(A)

denotes its minimum eigenvalue and maximum eigenvalue,
respectively, and the norm of A is defined as�����A

����� � (λmax(ATA))(1/2). In this article, we regard the fol-
lowing FCNNs with N same nodes, uncertainties, and time
delays.
c
D

α
t0 ,txi(t) � − (􏽢P + ΔP(t))xi(t) +( 􏽢Q + ΔQ(t))fi xi(t)( 􏼁

+(􏽢R + ΔR(t))fi xi(t − τ)( 􏼁

+ 􏽘
N

j�1

􏽢GijΓxj(t) + J,

(6)

where i � 1, 2, . . . , N, and N≥ 2 represents the quantity of
subnetworks; τ represents the time delay in transmission;
xi(t) � (xi1(t), xi2(t), . . . , xin(t))T is the state vector of i-th
neuron; ΔP(t),ΔQ(t),ΔR(t) are the norm-bounded
parametric uncertainties; 􏽢P is a diagonal matrix that
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expresses the self-feedback item of the j-th network, in
which the diagonal elements are p1, p2, . . . , pn, pi > 0. 􏽢Q �

(Qij)n×n is the connection weight matrices and 􏽢R � (rij)n×n is
the time lag join matrices, where i, j � 1, 2, . . . , n. fi(xi(t))

is the activation function; 􏽢G � (􏽢Gij)N×N is the coupled
matrix, when there exists a connection among the i-th node
with the j-th node, i≠ j, 􏽢Gij ≠ 0, if not, 􏽢Gij � 0, in which the
diagonal elements are defined by 􏽢Gii � − 􏽐

N
j�1,j≠i

􏽢Gij;
Γ � diag c1, c2, . . . , cn􏼈 􏼉 is the internal coupling matrix; J �

(J1, J2, . . . , JN) is the input vector.
Next, we give several basic assumptions.

(A1) *e activation function fi(·) is continuous, for
any vector x, y, existsLi > 0, and the following formula
holds:

fi(x) − fi(y)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤Li|x − y|. (7)

(A2)

% ΔP � 􏽢A1
􏽢C1(t) 􏽢B1,ΔQ � 􏽢A2

􏽢C2(t) 􏽢B2,ΔR � 􏽢A3
􏽢C3(t) 􏽢B3,

(8)

where 􏽢Ai,
􏽢Bi(i � 1, 2, 3) are constant matrices with the

correspondingmatching dimensions and 􏽢Ci(t)(i � 1, 2, 3) is
an indeterminate matrix, where 􏽢C

T

i (t) 􏽢Ci(t)≤ I (I is the
unity matrix with the corresponding matching dimensions).

Remark 1. #Dk � κk means that the group Dk has κk nodes
and κk ≠ 0.

For any initial state x(t) � (xT
1 (t), xT

2 (t), . . . , xT
N(t))T

where xi(t) ∈ C([− τ, 0], R), i � 1, 2, . . . , N, for any given
initial value condition, there is a solution s(t), if all the node
trajectories in the network satisfy the formula

limt⟶∞
����xi(t)− s(t)

���� � 0, i � 1, 2, . . . , N, then this network
is called complete synchronization. Furthermore, if the
margin of error σ > 0, exists T> 0, for all x(t) and ∀t>T,
‖xi(t) − s(t)‖< σ holds, then this network is called uni-
formly quasisynchronized.

Definition 1 (see [15]). For an arbitrary complex network
with N nodes, D1, D2, . . . , Dm􏼈 􏼉 is a set of disjoint nodes,
that is, 􏽐

m
k�1 Dk � 1, 2, . . . , N{ }, Dk � lk1, lk2, . . .􏼈 􏼉,

Dk ∩Du � ∅ for k≠ u. *e network is called multiple
quasisynchronization with the error vector
δ � δ1, δ2, . . . , δm􏼈 􏼉

T > 0 under any initial value conditions, if
there exist a series of reference solutions
s1(t), s2(t), . . . , sm(t)􏼈 􏼉 and for any constant κ> 0 small
enough, T exists, for ∀t>T, the nodes
xi(t) ∈M(sk(t), σk), i ∈ Dk holds, in which
M(sk(t), σk)≠M(su(t), σu), u≠ k.

Remark 2. It can be seen from Definition 1 that sk(t) is the
reference trajectory for all nodes in set #Dk.

*e target trajectory si(t) satisfies the following formula:
c
D

α
t0 ,tsi(t) � − (􏽢P + ΔP(t))si(t) +( 􏽢Q + ΔQ(t))fi si(t)􏼐 􏼑

+(􏽢R + ΔR(t))fi si(t − τ)􏼐 􏼑 + J,

(9)

where if xi(t) ∈M(sk(t), σk), then si(t) � sk(t),
i � 1, 2, . . . , N, k � 1, 2, . . . , m.

Now let’s note εi(t) � xi(t) − si(t) is the error signal,
where i � 1, 2, . . . , N, and devise a new pinned pulse con-
troller as shown below:

ui(t) �
􏽘

+∞

h�1
θkεi(t)δ t − th( 􏼁, i ∈ Ik th( 􏼁, #Ik th( 􏼁 � ωk,

0, i ∉ Ik th( 􏼁,

⎧⎪⎪⎨

⎪⎪⎩
(10)

where δ(·) and θk represents the Dirac impulsive function
and impulsive gain, respectively, and th(h � 0, 1, 2, . . .) in-
dicates the instant of the pulse that satisfies
0 � t1 < t2 < · · · < th < · · · , limth⟶ +∞th � +∞. *e node set
on t � th is represented by 􏽐

m
k�1 Ik(th) � I1(th),I􏼈

2(th), . . . ,Im(th)} ⊂ D1, D2, . . . , Dm􏼈 􏼉 ⊂ 1, 2, . . . , N{ }, and
make 0<ωk ≤ κk, k � 1, 2, . . . , m, namely, Ik(th) is a subset
of Dk, and Ik(th) represents the set of pinned nodes at
t � th. Assume the error vector εi1 ≥ εi2 ≥ · · · ≥ εin. Under the
pulse controller (10), the system of errors can be described:

c
D

α
t0 ,tεi(t) � − (􏽢P + ΔP(t))εi(t) +( 􏽢Q + ΔQ(t))􏽥fi εi(t)( 􏼁

+(􏽢R + ΔR(t))􏽥fi εi(t − τ)( 􏼁 + 􏽘
N

j�1

􏽢GijΓεi(t), t≠ th

εi t
+
h( 􏼁 � 1 + θk( 􏼁εi t

−
h( 􏼁, i ∈ 􏽘

m

k�1
Ik th( 􏼁,

εi t
+
h( 􏼁 � εi t

−
h( 􏼁, i ∉ 􏽘

m

k�1
Ik th( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)
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where h � 0,1,2, . . . ,εi(t+
h ) � limt⟶t+

h
εi(t),εi(t−

h) � limt⟶t−
h

εi(th), 􏽥fi(εi (t)) � fi(xi(t)) − fi(si(t)), 􏽥fi(εi(t − τ)) � fi (xi

(t − τ)) − fi(si(t − τ)), and 􏽥fi(0) � 0.
*e initial value condition of the above error system (11)

is as follows:

εi(s) � ϕi(s), s ∈ [− τ, 0], (12)

where ϕi(s) ∈ C([− τ, 0], Rn) and i � 1, 2, . . . , N.

Lemma 1 (see [16]). If x(t) ∈ Rn is a vector-valued function
that is differentiable and continuous for t, next for any
α ∈ (0, 1) and t≥ t0, we have the following relationship:

c
D

α
t0 ,t x

T
(t)Px(t)􏼐 􏼑≤ 2x

T
(t)P

c
D

α
t0 ,tx(t), (13)

where P ∈ Rn×n is a constant matrix that is symmetric and
positive definite.

Lemma 2 (see [17]). Let 􏽢R, 􏽣W, and 􏽢S(t) be the real matrices
corresponding matching dimensions, then if there is
􏽢S

T
(t) 􏽢S(t)≤ I, then there is the following equation:

􏽢R
T 􏽢S

T
(t)􏽣W

T
+ 􏽣W􏽢S(t) 􏽢R≤

1
ξ

􏽢R
T 􏽢R + ξ􏽣W􏽣W

T
, (14)

where ξ > 0 is the constant.

Lemma 3 (see [17]). Let 􏽢R and 􏽣W be the real matrices
corresponding matching dimensions, then

􏽢R
T􏽣W + 􏽣W

T 􏽢R≤ ξ 􏽢R
T 􏽢R +

1
ξ
􏽣W

T􏽣W, (15)

where ξ > 0 is the constant.

Lemma 4 (see [18]). For arbitrary vector x1, x2 ∈ Rn and
Q ∈ Rn×n which is a positive definite matrix, we have the
below inequalities hold:

2x
T
1 x2 ≤x

T
1 Q

− 1
x1 + x

T
2 Qx2. (16)

Lemma 5 (see [19]). For positive definite matrix R, vector xi

with proper dimensionality and symmetric matrix W, then we
have the following:

λmin R
− 1

W􏼐 􏼑x
T
i Rxi ≤x

T
i Wxi ≤ λmax R

− 1
W􏼐 􏼑x

T
i Rxi, (17)

where λmax(·), λmin(·) denote the maximum and minimum
eigenvalues, respectively, and R− 1 stands for the inverse of a
matrix R.

Definition 2. *e definition of the pinning rate ηk at t � th is
as follows:

􏽐i∈Ik th( )ε
T
i t

−
h( 􏼁εi t

−
h( 􏼁

􏽐i∈Dk
εT

i t
−
h( 􏼁εi t

−
h( 􏼁

� ηk, (18)

here the pinning rate ηk is related to time and impulse
instants, and we can also determine the lower bound of the
pinning rate ηk.

Lemma 6 (see [20]). Consider the following system, where
the system has a time delay:

c
D

α
t0 ,tVk(t)≤ − K1Vk(t) + K2Vk(t − τ), t> 0, i ∈ Dk,

Vk(s) � Φk(s), s ∈ [− τ, 0],
􏼨

(19)

and the linear fractional-order delay differential system is as
follows:

c
D

α
t0 ,tWk(t) � − K1Wk(t) + K2Wk(t − τ), t> 0, i ∈ Dk,

Wk(t) � Φk(s), s ∈ [− τ, 0],
􏼨

(20)

where except for the point tk, k � 1, 2, . . ., Vk(t), Wk(t) ∈ Rn

is continuous everywhere, and Φk(s)≥ 0 is continuous in
[− τ, 0]. If K1 > 0, K2 > 0, then Vk(t)≤Wk(t), t ∈ [0, +∞].

3. Main Result

We will derive several synchronization standards in this
section. Under the action of the pinning impulsive con-
troller, Dk, i ∈ Dk, Dk ∈ D1, D2, . . . , Dm􏼈 􏼉, system (7) and
reference trajectory sk(t) ∈ s1(t), s2(t), . . . , sm(t)􏼈 􏼉 to
achieve multiple quasisynchronization.

Theorem 1. Let ξi > 0(i � 1, 2, 3). For any
i ∈ Dk, k � 1, 2, . . . , m, under the pinning impulsive control
(10), system (7) can achieve multiple quasisynchronization if
Assumptions (A1) and (A2) hold, there exist symmetric
matrices Mi ∈ Rn×n > 0(i � 1, 2) and positive definite matrix
P ∈ Rn×n and such that

􏽢G 0

0 PΓ
⎛⎜⎝ ⎞⎟⎠< 0, (21)

ω1 �

PP̂ + P̂
T
P + ξ1P 􏽢A1

􏽢A
T

1 P +
1
ξ1

􏽢B
T

1
􏽢B1 − PQ̂M

− 1
1 Q̂

T
P − L

T
i M1Li

− ξ2P􏽣A2
􏽣A2

T
P −

1
ξ2
L

T
i

􏽢B
T

2
􏽢B2Li − PR̂M

− 1
2 R̂

T
P − ξ3P 􏽢A3

􏽢A
T

3 P

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≥K1P> 0, (22)
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ω2 � L
T
i M2Li +

1
ξ3
L

T
i

􏽢B
T

3
􏽢B3Li ≤K2P, (23)

ω3 � 1 + θk( 􏼁
2ηk

λmax(P)

λmin(P)
+ 1 − ηk( 􏼁

λmax(P)

λmin(P)
≤ ρk ∈ (0, 1), (24)

where K1>0,K2>0,K1>
�
2

√
K2 and

�����������������
(λmax(P)κ/λmin(P))

􏽰

<σk. Define the Lyapunov function as follows:

Vk(t) � 􏽘
i∈Dk

εT
i (t)Pεi(t). (25)

For t ∈ [th− 1, th), h � 0, 1, 2, . . ., from Lemma 1 we ob-
tained the following:

c
D

α
t0 ,tVk(t)≤ 􏽘

i∈Dk

2εT
i (t)P

c
D

α
t0 ,tεi(t)

� 􏽘
i∈Dk

2εT
i (t)P(− (􏽢P + ΔP(t))εi(t) +( 􏽢Q + ΔQ(t))􏽥fi εi(t)( 􏼁

+(􏽢R + ΔR(t))􏽥fi εi(t − τ)( 􏼁 + 􏽘
j∈Dk

􏽢GijΓεj(t))

� 2 􏽘
i∈Dk

εT
i (t)P − (􏽢P + ΔP(t)))εi(t)􏼐 + 2 􏽘

i∈Dk

εT
i (t)P( 􏽢Q + ΔQ(t))􏽥fi εi(t)( 􏼁

+ 2 􏽘
i∈Dk

εT
i (t)P(􏽢R + ΔR(t))􏽥fi εi(t − τ)( 􏼁 + 2 􏽘

i∈Dk

εT
i (t)P 􏽘

j∈Dk

􏽢GijΓεj(t).

(26)

By Assumptions (A1) and (A2) and Lemmas 1-4, we
obtain the following:

􏽘
i∈Dk

2εT
i (t)P − (P̂ + ΔP(t)))εi(t)􏼐

≤ 􏽘
i∈Dk

εT
i (t) − PP̂ + P̂

T
P + P 􏽢A1

􏽢C1(t) 􏽢B1 + 􏽢B
T

1
􏽢C

T

1 (t) 􏽢A
T

1 P􏼒 􏼓􏼒 􏼓εi(t)

≤ 􏽘
i∈Dk

εT
i (t) − PP̂ + P̂

T
P + ξ1P 􏽢A1

􏽢A
T

1 P +
1
ξ1

􏽢B
T

1
􏽢B1􏼠 􏼡􏼠 􏼡εi(t),

(27)

􏽘
i∈Dk

2εT
i (t)P(Q̂ + ΔQ(t))􏽥fi εi(t)( 􏼁

≤ 􏽘
i∈Dk

2εT
i (t)PQ̂􏽥fi εi(t)( 􏼁 + 􏽘

i∈Dk

2εT
i (t)P 􏽢A2

􏽢C2(t) 􏽢B2
􏽥fi εi(t)( 􏼁

≤ 􏽘
i∈Dk

εT
i (t)PQ̂M

− 1
1 Q̂

T
Pεi(t) + 􏽘

i∈Dk

􏽥f
T

i εi(t)( 􏼁M1
􏽥fi εi(t)( 􏼁

+ 􏽘
i∈Dk

εT
i (t)P 􏽢A2

􏽢C2(t) 􏽢B2
􏽥fi εi(t)( 􏼁 + 􏽘

i∈Dk

􏽥f
T

i εi(t)( 􏼁 􏽢B
T

2
􏽢C

T

2 (t) 􏽢A
T

2 Pεi(t)

≤ 􏽘
i∈Dk

εT
i (t)PQ̂M

− 1
1 Q̂

T
Pεi(t) + 􏽘

i∈Dk

εT
i (t)L

T
i M1Liεi(t)

+ 􏽘
i∈Dk

1
ξ2
εT

i (t)L
T
i

􏽢B
T

2
􏽢B2Liεi(t) + 􏽘

i∈Dk

ξ2ε
T
i (t)P 􏽢A2

􏽢A
T

2 Pεi(t)

� 􏽘
i∈Dk

e
T
i (t) PQ̂M

− 1
1 Q̂

T
P + L

T
i M1Li +

1
ξ2

L
T
i B̂

T

2 B̂2Li + ξ2PÂ2Â
T

2 P􏼠 􏼡ei(t),

(28)
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􏽘
i∈Dk

2εT
i (t)P(R̂ + ΔR(t))􏽥fi εi(t − τ)( 􏼁

≤ 􏽘
i∈Dk

2εT
i (t)PR̂􏽥fi εi(t)( 􏼁 + 􏽘

i∈Dk

2εT
i (t)P 􏽢A3

􏽢C3(t) 􏽢B3
􏽥fi εi(t − τ)( 􏼁

≤ 􏽘
i∈Dk

εT
i (t)PR̂M

− 1
2 R̂

T
Pεi(t) + 􏽘

i∈Dk

􏽥f
T

i εi(t − τ)( 􏼁M2
􏽥fi εi(t − τ)( 􏼁

+ 􏽘
i∈Dk

εT
i (t)P 􏽢A3

􏽢C3(t) 􏽢B3
􏽥fi εi(t − τ)( 􏼁 + 􏽘

i∈Dk

􏽥f
T

i εi(t − τ)( 􏼁 􏽢B
T

3
􏽢C

T

3 (t) 􏽢A
T

3 Pεi(t)

≤ 􏽘
i∈Dk

εT
i (t)PR̂M

− 1
2 R̂

T
Pεi(t) + 􏽘

i∈Dk

εT
i (t − τ)L

T
i M2Liεi(t − τ)

+ 􏽘
i∈Dk

1
ξ3
εT

i (t − τ)L
T
i

􏽢B
T

3
􏽢B3Liεi(t − τ) + 􏽘

i∈Dk

ξ3ε
T
i (t)P 􏽢A3

􏽢A
T

3 Pεi(t)

� 􏽘
i∈Dk

εT
i (t) PR̂M

− 1
2 R̂

T
P + ξ3P 􏽢A3

􏽢A
T

3 P􏼒 􏼓εi(t) + 􏽘
i∈Dk

εT
i (t − τ) L

T
i M2Li +

1
ξ3
L

T
i

􏽢B
T

3
􏽢B3Li􏼠 􏼡εi(t − τ).

(29)

Form (21), we have the following:

􏽘
i∈Dk

2εT
i (t)P 􏽘

j∈Dk

􏽢GijΓεj(t) � 2εT
(t)(􏽢G⊗PΓ)ε(t)≤ 0. (30)

Substituting (27)-(30) into (27282930) yields the fol-
lowing equation:
c
D

α
t0 ,tVk(t)≤ 􏽘

i∈Dk

− εT
i (t)ω1εi(t) + 􏽘

i∈Dk

εT
i (t − τ)ω2εi(t − τ)

+ 2εT
(t)(􏽢G⊗PΓ)ε(t).

(31)

From (21)-(24), we have the following equation:
c
D

α
t0,tVk(t)≤ 􏽘

i∈Dk

− εT
i (t)K1Pεi(t) + εT

i (t − τ)K2Pεi(t − τ)

≤ − K1Vk(t) + K2Vk(t − τ).

(32)

When t � th, from (11) and (24), Lemma 5, and Defi-
nition 2, we obtain the following:

Vk t
+
h( 􏼁 � 􏽘

i∈Dk

εT
i t

+
h( 􏼁Pεi t

+
h( 􏼁

� 􏽘

i∈Ik th( )

εT
i t

+
h( 􏼁Pεi t

+
h( 􏼁 + 􏽘

i∉Ik th( )

εT
i t

+
h( 􏼁Pεi t

+
h( 􏼁

� 􏽘

i∈Ik th( )

1 + θk( 􏼁
2εT

i t
−
h( 􏼁Pεi t

−
h( 􏼁 + 􏽘

i∉Ik th( )

εT
i t

−
h( 􏼁Pεi t

−
h( 􏼁

≤ 1 + θk( 􏼁
2λmax(P) 􏽘

i∈Ik th( )

εT
i t

−
h( 􏼁εi t

−
h( 􏼁 + λmax(P) 􏽘

i∉Ik th( )

εT
i t

−
h( 􏼁εi t

−
h( 􏼁

≤ 1 + θk( 􏼁
2λmax(P) 􏽘

i∈Dk

εT
i th( 􏼁εi th( 􏼁 + 1 − ηk( 􏼁λmax(P) 􏽘 2

i∈Dk

εT
i th( 􏼁εi th( 􏼁

≤ω3Vk th( 􏼁

≤ ρkVk th( 􏼁.

(33)

Now, consider the following system with time lag:
c
D

α
t0 ,tWk(t) � − K1Wk(t) + K2Wk(t − τ), t> 0,

Wk(t) � Φk(s), s ∈ [− τ, 0].
􏼨 (34)

If limt⟶∞Wk(t) � 0,Φk(s)≥ 0, afterward through
Lemma 6, we can have limt⟶∞Vk(t) � 0,Φk(s)≥ 0.

Next, we will prove that when K1 >
�
2

√
K2(K1 > 0,

K2 > 0), there is limt⟶∞Wk(t) � 0,Φk(s)≥ 0.
In order to distinguish the subsystem subscript in this

article from the original imaginary unit, here, we change the
original inherent imaginary unit 􏽥i. *e characteristic (34)
can be changed to the following form according to Corollary
3 in Reference [21].
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υαk + K1 − K2e
− υkτ � 0, (35)

If K1 >
�
2

√
K2 and (35) has no pure imaginary roots, so the

zero solution of equation (34) is globally Lyapunov as-
ymptotically stable, namely, limt⟶∞Wk(t) � 0,Φk(s)≥ 0.

Next, we will use contradiction analysis to show that (35)
does not have pure imaginary roots. *en, suppose (35) has
pure imaginary roots υk, and υk � vk

􏽥i � |vk|(cos(π/
2) +􏽥i sin(π/2)), where vk is a real number. If vk ≤ 0, then
υk � vk

􏽥i � |vk|(cos(π/2) − 􏽥i sin(π/2)), and if vk > 0, then
υk � vk

􏽥i � |vk|(cos(π/2) +􏽥i sin(π/2)).
By substituting υk � vk

􏽥i into (35), we can obtain the
following:

vk
􏽥i( 􏼁

α
+ K1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

� K2e
− τvk

􏽥i
􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2
, (36)

that is,

vk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2α

+ 2K1 cos
απ
2

􏼒 􏼓 vk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
α

+ K
2
1 � K2 cos τvk( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ K2 sin τvk( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2 ≤ 2 K2( 􏼁

2
.

(37)

Let

hk xk( 􏼁 � x
2
k + 2K1 cos

απ
2

􏼒 􏼓xk + K
2
1

− K2 cos τvk( 􏼁( 􏼁
2

+ K2 sin τvk( 􏼁( 􏼁
2

􏼐 􏼑.

(38)

So,

hk(0) � K
2
1 − K2 cos τvk( 􏼁( 􏼁

2
+ K2 sin τvk( 􏼁( 􏼁

2
􏼐 􏼑≥K

2
1 − 2 K2( 􏼁

2
.

(39)

Because K1 >
�
2

√
K2(K1 > 0, K2 > 0), so hk(0)> 0. We

know that hk is a second-order polynomial, so we have

hk(|vk|α)> 0, which contradicts (37). *at is, (37) has no
solution, whichmeans that (35) has no pure imaginary roots,
namely, limt⟶∞Vk(t) � 0.

*erefore, there exists Tk, and for arbitrary κ> 0 and for
all t>Tk, we have the following equation:

Vk(t)< λmax(P)κ, t>Tk, (40)

where Vk(t) � 􏽐i∈Dk
εT

i (t)Pεi(t), so we have the following
equation:

λmin(P) εi(t)
����

����
2 < λmax(P)κ, t>Tk, (41)

that is,

εi(t)
����

����≤

��������
λmax(P)κ
λmin(P)

􏽳

< σk, (42)

where i ∈ Dk and 􏽐
m
k�1 Tk � T1, T2, . . . , TN􏼈 􏼉. So there exits

T � max T1, T2, . . . , TN􏼈 􏼉, for ∀t>T and any small positive
number σk > 0, such that
0< ‖xi(t) − sk(t)‖< σk, k � 1, 2, . . . , m.

If ΔP(t) � 0,ΔQ(t) � 0,ΔR(t) � 0, (2.1) will degrade
into
c
D

α
t0 ,txi(t) � − 􏽢Pxi(t) + 􏽢Qfi xi(t)( 􏼁 + 􏽢Rfi xi(t − τ)( 􏼁

+ 􏽘
N

j�1

􏽢GijΓxj(t) + J.
(43)

Corollary 1. For any i ∈ Dk, k � 1, 2, . . . , m, under the
pinning impulsive control (10), system (43) can achieve
multiple quasisynchronization if Assumptions (A1) and (A2)
hold, there exist symmetric matrices Mi ∈ Rn×n > 0(i � 1, 2),
and positive definite matrix P ∈ Rn×n such that

􏽢G 0

0 PΓ
⎛⎜⎝ ⎞⎟⎠< 0,

ω1 � P􏽢P + 􏽢P
T
P − P 􏽢QM

− 1
1

􏽢Q
T
P − L

T
i M1Li − P􏽢RM

− 1
2

􏽢R
T
P􏼒 􏼓≥K1P> 0,

ω2 � L
T
i M2Li ≤K2P,

ω3 � 1 + θk( 􏼁
2ηk

λmax(P)

λmin(P)
+ 1 − ηk( 􏼁

λmax(P)

λmin(P)
≤ ρk ∈ (0, 1),

(44)

where K1 > 0, K2 > 0, K1 >
�
2

√
K2, and�����������������

(λmax(P)κ/λmin(P))
􏽰

< σk.

Remark 3. We give general theoretical results for multiple
quasisynchronization of FCNNs with uncertain terms and
delays in *eorem 1 Among existing references, the qua-
sisynchronization problem of FCNNs with uncertainty is
rarely discussed. Moreover, unlike the analytical method of

Reference [22], the model (7) in this article is a fractional-
order system instead of the integer-order model in Reference
[22]. *e analysis and processing method of fractional-order
system is unlike that of integer-order system, so it cannot be
applied directly.

Remark 4. Multiple quasisynchronization is the extension of
quasisynchronization. When m � 1 in reference trajectory
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indicates that there is only one reference track, next, the
multiple quasisynchronization is reduced to
quasisynchronization.

Remark 5. Corollary 1 gives the sufficient conditions for
multiple quasisynchronization of DFCNN when the un-
certainty term is zero.

Remark 6. In Reference [23], the author solved the syn-
chronization problem through adaptive control method. In
this article to reduce the control cost and realize the pinned
pulse control, only some nodes need to be controlled to be in
the bounded field where they share the reference trajectory.

Remark 7. Compared with Reference [20], the difference of
this article is that we consider parameter uncertainty

satisfying bounded conditions in the model, and the ad-
vantage is that the model considered in this article is more
practical in practical systems and applications. In particular,
our model is fractional-order, and parameter uncertainties
and coupling terms are taken into account in the model.

4. Examples

In this section, we give two numerical simulation examples
to illustrate the abovementioned theoretical values.

Example 1. We design the FCNNs with uncertain terms and
delays (7), where fi(xi(t)) � tanh(xi(t)), i � 1, 2, m � 1, 2,
time-delay τ � 1, and α � 0.96, and the parameter matrix of
the network is as follows:

􏽢P �
5.2 0

0 5.2
􏼠 􏼡, 􏽢Q �

4.8 − 2

− 3 2.5
􏼠 􏼡, 􏽢R �

0.25 0

0 1.5
􏼠 􏼡,

ΔP � cos(t)
1 1

1 1
􏼠 􏼡,ΔQ � sin(t)

1 1

1 1
􏼠 􏼡,ΔR � cos(t)

1 1

1 1
􏼠 􏼡,

􏽢G �
− 5 0.2

0.4 − 1
􏼠 􏼡, J �

0

0
􏼠 􏼡.

(45)

Two corresponding reference trajectories (9), where
k � 1, 2, α � 0.96, τ � 1, fi(si(t)) � tanh(si(t)).

We select Γ � diag(1, 1), pulse gain θ1 � − 0.2, θ2 � − 0.6,
η1 � 0.7, η2 � 0.4, ρ1 � 0.84, and ρ2 � 0.74. It can be proved
that the conditions (21)-(24) in *eorem 1 are established
and can be obtained by the following calculation:

P �
1.0017 0.0022

0.0022 1.0945
􏼠 􏼡, (46)

at the same time, (λmax(P)/λmin(P)) � 10/9, σ1 � 0.08, and
σ2 � 0.12, after that we can get

ω1 �
173.0088 − 0.0003
− 0.0003 21.0120􏼠 􏼡,ω2 �

2.4908 0
0 4.4362􏼠 􏼡,ω3 �

0.8311
0.3271􏼠 􏼡 through the abovementioned formulas (22)-(24).

*en, the uncertain fractional-order neural network can
realize multiple quasisynchronization, and the convergence
of its error signals e1m(t), e2m(t), and m � 1, 2, under the
fixed pulse controller is shown in Figure 1.

Example 2. We design the FCNNs with uncertain terms and
delays (6), where fi(xi(t)) � tanh(xi(t)), i � 1, 2, m � 1, 2,
time delay τ � 1, and α � 0.98, and the parameter matrix of
the network is as follows:

􏽢P �
6 0

0 6
􏼠 􏼡, 􏽢Q �

5 − 5

− 5 3.8
􏼠 􏼡, 􏽢R �

0.25 0

0 1.5
􏼠 􏼡,

ΔP � sin(t)
1 1

1 1
􏼠 􏼡,ΔQ � cos(t)

1 1

1 1
􏼠 􏼡,ΔR � sin(t)

1 1

1 1
􏼠 􏼡,

􏽢G �
− 5 0.2

0.4 − 1
􏼠 􏼡, J �

0

0
􏼠 􏼡.

(47)

Two corresponding reference trajectories (9), where
k � 1, 2, α � 0.98, τ � 1, fi(si(t)) � tanh(si(t)).

We select Γ � diag(1, 1), pulse gain θ1 � − 0.3, θ2 � − 0.7,
η1 � 0.5, η2 � 0.6, ρ1 � 0.83, and ρ2 � 0.51. It can be proved

that conditions (21)-(24) in *eorem 1 are established and
can be obtained by the following calculation:

P �
1.0017 0.0022

0.0022 1.0945
􏼠 􏼡, (48)
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at the same time, (λmax(P)/λmin(P)) � (10/9), σ1 � 0.06,
and σ2 � 0.18. After that we can get

ω1 �
135.2047 − 0.0012
− 0.0012 74.7350􏼠 􏼡,ω2 �

3.0918 0
0 1.1362􏼠 􏼡,ω3 �

0.8278
0.5044􏼠 􏼡 through the abovementioned formulas (22)-(24).

*en, the uncertain fractional-order neural network can
realize multiple quasisynchronization, and the convergence
of its error signals e1m(t), e2m(t), m � 1, 2, and under the
fixed pulse controller is shown in Figure 2.

5. Conclusion

In this article, the multiple quasisynchronization problem of
FCNNs with uncertainty and time-delay is studied. Firstly,
our main theoretical method is to construct an impulse
controller to control some nodes and then divide the nodes
into several disjoint subsets, so as to make the system achieve
multiple quasisynchronization. Secondly, using the relevant
knowledge of the comparison principle and the method of
constructing the Lyapunov function, we obtain the sufficient
conditions for the system to realize multiple quasisynch-
ronization. Finally, two examples are given to carry out

simulation operations to demonstrate the validity of the
theoretical results in this article.
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Topological indices are numeric parameters which portray the topology of a subatomic structure. In QSAR/QSPR analysis,
topological descriptors play a vital role to examine the topology of a network. An interconnection network is a structure whose
components are connected physically according to some pattern. In this paper, an interconnection network, ternary hypertree,
which is a structural combination of complete ternary tree and hypertree, is introduced. We have evaluated the topological
descriptors grounded on the distances for the ternary hypertree. 'e analytical expressions for Wiener, different types of Szeged,
and Mostar indices are determined.

1. Introduction

A connected graph having order n and size n − 1 is termed as
a tree that contains no cycle. In computer science, trees are
designed as data structures. Trees are helpful to store data
information in a hierarchical manner and provide insertion
and deletion of data. 'ey are also useful in manipulating
hierarchical data, making it easy to search information and
aid in multistage decision making. One of the basic tree
structures which have many applications in the field of
computer science is the rooted tree [1, 2]. Rooted tree is a
tree that has a root node from where the children arise. 'e
root node is called the parent node [3, 4]. A binary tree is a
rooted tree in which every vertex has at the most two
children and each child of a vertex is assigned as its left child
or right child [5]. A complete binary tree is a rooted tree in
which every node has two children-a right child and a left
child. Ternary tree which has at the most three children
3x − 1, 3x, 3x + 1, where x ∈ Z is a root node, is a rooted
tree. Ternary tree is introduced by Barning, a Dutch

mathematician in Reference [6]. It is a tool for the ternary
search tree which can be used in spell check and as a database
when indexing several nonkey fields. In a complete ternary
tree, every node has exactly three children.

Hypertree of dimension n is a basic skeleton of complete
binary tree, i.e., the vertex x has exactly two children 2x and
2x + 1, where x ∈ 2n− 1 − 1, and the vertices on the same level
are connected by a horizontal edge with a label difference of
2i− 2; 2≤ i≤ n. 'e hypertree is an interconnection network
which has minimum average distance which results in an
efficient multicomputer system [7]. It has an excellent
combination of characteristics of the hypercube and the
binary tree. Recursive hypertrees are modelled as biological
networks such as dendrimers [8–10]. 'e branching of bi-
ological networks is not restricted to two branches. With this
motivation, we introduce the concept of ternary hypertree.
Ternary hypertrees can be modelled as biological networks
for protein interactions and to analyze the spread of diseases.

'e structure of the ternary hypertree is a combination
of a complete ternary tree and hypertree. It is a spanning
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subgraph of the complete ternary tree. We denote ternary
hypertree with dimension n as THT(n).

'e level of root node is 1. 'e root node gives rise to
three children, which is at level 2. We label the root node as 1
and their children as 2, 3, 4. Likewise, if the node is labelled
as x; then, the children are labelled as 3x − 1, 3x, 3x + 1
where x ∈ [3n− 1 − 1/2]. At each level i; 1≤ i≤ n of the ternary
hypertree of dimension n has 3i− 1 nodes. For a ternary
hypertree of dimension n, the network has n levels. 'ere are
horizontal edges in the level i, 2≤ i≤ n connecting the nodes
with a label difference of 3i− 2 along the complete ternary tree
structure. See Figure 1.

Ternary hypertree consists of (3n − 1/2) nodes and (3n −

3) edges.'e vertex connectivity is 4 and edge connectivity is
3. Ternary hypertree of dimension n has a diameter of 2n − 3.
Also, it is not a regular network. THT(n); n≥ 3 is nonplanar,
i.e., it cannot be embedded in a plane and non-Hamiltonian
where every vertex can be visited more than once.

Real-life problems can be converted to graphical rep-
resentations using mathematical modelling, especially in the
field of biology [11–14]. Networks helps in analysing various
health problems by modelling the spread of diseases [15–17].
Topological indices are numeric invariants showing a cor-
relation between the subatomic structure and its physical (as
well as chemical) properties [18, 19]. 'us, it characterises
the topology of a graph [20, 21]. Topological indices analyse
the physical, chemical, and biological characteristics of a
synthetic framework [22, 23]. Topological indices are es-
sential in the field of chemistry and pharmacology, notably
in nanomedicine. It helps in the study of the properties of
networks. 'ese descriptors are used in measuring irregu-
larity, connectivity, centrality, and peripherality in networks
[24]. Topological indices for various networks have been
studied in recent years [25–28].

Computing the topological indices helps in anato-
mising the properties of the biological network. In the
next section, we have discussed some terminologies and
two types of topological descriptors (distance-based and
degree-based descriptors) of the ternary hypertree are
derived and are graphically represented. Section 3 con-
cludes the paper with discussion on the possible appli-
cations of ternary hypertree.

2. Topological Indices

'e graph Ω considered in the paper is a simple connected
graph. d(x, y) is used to represent the distance between x and
y and is the length of the shortest path connecting the
vertices, x and y. For 1≤ i≤ n, we represent i � [n]. 'e
cardinality of collection of adjacent vertices of x is termed as
the degree of a vertex x, it is denoted by dx [29, 30].
Neighbourhood of a vertex, x is represented by N(x) and is
defined as follows:

Nx(xy|Ω) � τ ∈ VΩ: d(x, τ)<d(y, τ)􏼈 􏼉, (1)

and

Mx(xy|Ω) � e ∈ E(Ω): d(x, e)<d(y, e)􏼈 􏼉, (2)

We denote the cardinality of Nx(xy|Ω) and Mx(xy|Ω) as
nx(xy|Ω) and mx(xy|Ω), respectively.

Let (wv, sv) be the vertex weight and vertex strength and
let (ew, se) be the edge weight and edge strength. 'e notion
of strength-weighted graph Ωsw � (Ω, Vsw, Esw), where
Vsw � (wv, sv), Esw � (ew, se), was introduced in Reference
[31]. For strength-weighted graph Ωsw � (Ω, (wv, sv), se),
the degree of any vertex v ∈ VΩsw is
dΩsw(x) � 2sv(x) + 􏽐p∈NΩsw(x)se(xp). For xy ∈ EΩsw, we
define

nx e|Ωsw( 􏼁 � 􏽘

p∈nx e|Ωsw( )

wv(p),

mx e|Ωsw( 􏼁 � 􏽘

p∈nx e|Ωsw( )

sv(p) + 􏽘

f∈mx e|Ωsw( )

se(f).
(3)

We refer to References [32–34] for the distance-based
topological indices. 'e formulas of these indices for
strength-weighted graph Ωsw are given in Table 1 and the
degree-based formulas of topological indices of graph Ω are
illustrated in Table 2.

In this paper, we consider wv � ew � se � 1; sv � 0.
If the distance of any two vertices in H, a subgraph of a

graph of Ω, lies in the same subgraph, then the subgraphH

is called convex. For Ω, Djoković-Winkler’s relation Θ on
E(Ω), References [41, 42] can be expressed as follows: if
d(x,w) + d(y, z)≠d(x, z) + d(y,w), then xy ∈ E(Ω) is Θ
related with wz ∈ E(Ω). Θ is an equivalence relation in case
of partial cubes. Θ partitioned E(Ω) into convex cuts. Θ∗ (a
transitive closure) is an equivalence relation. 'e edges
partition into Θ∗ classes and let Fi; 1≤ i≤ k􏼈 􏼉 is the Θ∗
partition set of E(Ω). Using Θ∗ relation, we can find the
topological indices of any graph [31, 40, 43–45]. For any
i ∈ [k], the quotient Ω/Fi graph in which vertex set belongs
to the components of Ω − Fi and x, y ∈ Ω/Fi are adjacent in
Ω/Fi if xy ∈ E(Ω), where x ∈ C1, y ∈ C2 and where C1, C2
are components. A partition X � X1, X2, . . . , Xr􏼈 􏼉 of E(Ω)

is coarser than Y � Y1, Y2, . . . , Ys􏼈 􏼉 if Xi is the union of one
or more sets in Y. To study about the Wiener index, see
References [46–48]. We have used 'eorem 2.1 and the
technique in Reference [48], reduction of original graph Ω
into quotient graphs and further into reduced graphs, to
compute theWiener index of ternary hypertree. To compute
other distance-based topological indices of ternary hyper-
tree, we use 'eorem 1.

Theorem 1 References [49, 50]. “For a connected strength-
weighted graphGsw � (G, (wv, sv), se), letE � E1, E2, . . . ,

Ekbe a partition ofE(G)coarser thanF. LetX � W,

Szv, Sze, Szev, Mo, Moe, Mot, PI. =en,

X Gsw( 􏼁 � 􏽘
k

i�1
X

G

Ei

, w
i
v, s

i
v􏼐 􏼑, s

i
e􏼠 􏼡, (4)

where

wi
v: V(G/Ei)⟶ R+is defined bywi

v(C)

� 􏽐x∈Cwv(x), ∀C ∈ G/Ei,
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si
v: E(G/Ei)⟶ R+is defined bysi

v(C) � 􏽐xy∈Cse(xy)

+􏽐x∈Csv(x), ∀C ∈ G/Ei,
si

e: E(G/Ei)⟶ R+is defined as the number of edges
inEisuch that one end inCand the other end inD, for any
two connected componentsCandDof(G/Ei).

Theorem 2. If n≥ 2 , then

(1) W(THT(n)) � 32n/4 + 5 × 3n(n − 2)/4 − (32n −

3n+2)/8 + (9 − 3n)/4 + (32+n − 32n)/8 + (3n − 3)/2 +

3(− 1 + 3n− 1)2/4
(2) Sz(THT(n)) � (33n− 2 − 19 × 32n + 30 × 3nn − 5 ×

3n + 6 × 32nn + 39/8)

(3) Sze(THT(n)) � 33n/18 − 11 × 32n + 18 × 3nn + 9 ×

3n + 32n+1n − 33/2

(4) Szev(THT(n)) � 33n/36 − 41 × 32n/8 + 33 × 3nn/4 +

7 × 3n/8 + 32n+1n/2 + 15/2
(5) PI(THT(n)) � 5 × 32n/12 − 3 × 3n + 21/4
(6) Mo(THT(n)) � 32n/4 − 3n+1n + 11 × 3n/2 − 63/4
(7) Moe(THT(n)) � 32n/2 − 6 × 3nn + 12 × 3n − 81/2
(8) Mot(THT(n)) � 3 × 32n/4 − 9 × 3nn + 35 × 3n/2 −

225/4

Proof. For a ternary hypertree of dimension n, there are
(3n− 1 − 1/2 + 1)Θ∗ classes. 'e Θ classes are as follows:

(1) For 2≤ i≤ n − 1, j � [3− 1+i], k � [3], let S
j

i be the
Θ∗− classes containing the edges (3i− 1 − 1/2
+􏼆j/3􏼇 + (k − 1)3i− 2, 3i − 1/2 + j + (k − 1)3i− 1).

(2) Let S � S1⋃ S2 be the Θ∗− classes, which consist of
the horizontal edges and the edges connecting the
first and second level. It comprises of S1 � (1, 2),{

(1, 4), ((3i− 1 − 1/2) + j, (j + 3i− 1 − 1/2) + 3− 2+i),

((3i− 1/2) + j, (j + 3i− 1 − 1/2) + 2 × 3− 2+i), ((j + 3i− 1

− 1/2) + 3− 2+i, j + 3i− 1 − 1/2 + 2 × 3− 2+i): i � [n − 1],

j � 1, 3{ }} and S2 � ((3{ i − 1 − 1/2) + j, (3i− 1−

1/2) + j + 3i− 2), ((3i− 1/2) +j, (j + 3i− 1 − 1/2) +3i− 2 ×

2), ((3 i − 1 − 1/2) + j + 3 i − 2, (j + 3i− 1 − 1/2) +

3− 2+i × 2): i � [n − 1], j � 2}.

Let Fi, i � [n − 1] be the partition which is coarser than
theΘ∗ classes. Define F1 � S and Fi, 2≤ i≤ n − 1 be the edges
joining the levels i and i + 1, i.e., Fi � ∪ jS

j

i .

1

2 3 4

5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23 2524 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Figure 1: Ternary hypertree of dimension 4.

Table 1: Distance-based topological indices.

Topological indices Mathematical expressions
Wiener [31] W(Ω) � 􏽐 x,y{ }⊆VΩwv(x)wv(y)d(x, y)

Szeged [31] Sz(Ω) � 􏽐xy∈E(Ω)se(e)nx(e|Ωsw)ny(e|Ωsw)

Edge Szeged [31] Sz(Ω) � 􏽐xy∈E(Ω)se(e)mx(e|Ωsw)my(e|Ωsw)

Edge vertex Szeged [31] Szev(Ω) � 1
2 􏽐xy∈E(Ω)se(e)[nx(e|Ωsw)my(e|Ωsw) + nx(e|Ωsw)my(e|Ωsw)]

Mostar [40] Mo(Ω) � 􏽐xy∈E(Ω)se(e)|nx(e|Ωsw) − ny(e|Ωsw)|

Edge Mostar [40] Mo(Ω) � 􏽐xy∈E(Ω)se(e)|mx(e|Ωsw) − my(e|Ωsw)|

Total Mostar [40] Mo(Ω) � 􏽐xy∈E(Ω)se(e)|tx(e|Ωsw) − ty(e|Ωsw)|

Padmakar Ivan [31] PI(Ω) � 􏽐xy∈E(Ω)se(e)[nx(e|Ωsw) + ny(e|Ωsw)]

Table 2: Degree-based topological indices.

Topological indices Mathematical expressions
First Zagreb [35] 􏽐xy∈E(Ω)(dx + dy)

Second Zagreb [35] 􏽐xy∈E(Ω)dxdy

Randic [36] 􏽐xy∈E(Ω)1/
����
dxdy

􏽱

Atom bond connectivity [37] 􏽐xy∈E(Ω)

��������������
dx + dy − 2/dxdy

􏽱

Sum connectivity [38] 􏽐xy∈E(Ω)1/
������
dx + dy

􏽱

Geometric arithmetic [39] 􏽐xy∈E(Ω)2
����
dxdy

􏽱
/dx + dy
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[(3n-i-1)/2, 3n-i-3]

[(3n-i(3i-1)/2,3n-i-1(3i+1-6)][3(3i-1)/2,3i+1-6][3(3i-1)/2,3i+1-6]

[(3n-i-1)/2, 3n-i-3]

3n-i-1

3 3 33

(a)

[1,0]

(3n-1-1)/2 (3n-1-1)/2

(3n-1-1)/2

1
1

1

[(3n-1-1)/2,(3n-1-3)/2] [(3n-1-1)/2,(3n-1-3)/2] [(3n-1-1)/2,(3n-1-3)/2]

(b)

Figure 2: General case of quotient graph and reduced graph. (a) THT(n)/Fi, 1≤ i≤ n − 2,. (b) THT(n)/Fn− 1.

(a)

[13,15]

[3,3] [3,3] [3,3]

3
3

3

(b)

[13,15]

[9,9]

9

(c)

Figure 3: (a) THT(4)/F1. (b) Quotient graph THT(4)/F1. (c) Reduced graph.

(a)

[4,6]

[12,15] [12,15] [12,15]

3 3 3

(b)

[36,45]

[4,6]

9

(c)

Figure 4: (a) THT(4)/F2. (b) Quotient graph THT(4)/F2. (c) Reduced graph.

(a)

[1,0]

[13,12] [13,12]
[13,12]

(b)

Figure 5: (a) THT(4)/F3. (b) Quotient graph THT(4)/F3.
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In general, THT(n)/Fi is isomorphic to
K1,3− (i+1)+n , i ∈ 1, 2, . . . , n − 2{ }. In K1,3− (i+1)+n , i ∈ 1, 2, . . .{

, n − 2}, one vertex is of weight (3n− i − 1/2) and edge weight
3n− i − 3 and other 3n− i− 1 vertices with vertex and edge
weight (3(3i − 1)/2) and 3i+1 − 6, respectively. We can see
that GHT(n)/Fn− 1 and K4 are isomorphic, with vertex and

edge weights 1 and 0 for one vertex and (3n− 1 − 1/2) and
(3n− 1 − 1/2) for the remaining adjacent vertices as shown in
Figure 2. Figures 3, 4, and 5 give an example for the quotient
graph.

Now, W(THT(n)) is calculated as follows:

􏽘
− 2+n

i�1
W

THT(n)

Fi

􏼠 􏼡 �
32n

4
+
3n

× 5(− 2 + n)

4
+

32n
− 3n+2

􏼐 􏼑

8
+

9 − 3n
( 􏼁

4
+
32n 32− n

− 1􏼐 􏼑

8
,

W
THT(n)

Fn− 1
􏼠 􏼡 �

3n
− 3( 􏼁

2
+
3 − 1 + 3n− 1
􏼐 􏼑

2

4
,

W(THT(n)) �
32n

4
+
3n

× 5(− 2 + n)

4
−

32n
− 3n+2

􏼐 􏼑

8
+
3n 32− n

− 1􏼐 􏼑

4
+
32n 32− n

− 1􏼐 􏼑

8
+
3 3n− 1

− 1􏼐 􏼑

2
+
3 3n− 1

− 1􏼐 􏼑
2

4
,

(5)

Sz(THT(n)) is calculated as follows:

Sz
THT(n)

Fi

􏼠 􏼡 �
3n+1

− 3(n− i+1) 2 + 3n
− 3i

× 3􏼐 􏼑􏼐

4
,

􏽘

n− 2

i�1
Sz

THT(n)

Fi

􏼠 􏼡 �
15 × 3n

n

4
−
32n+2

4
−
3n+1

2
+
32n+1

n

4
+
27
4

,

Sz
THT(n)

Fn− 1
􏼠 􏼡 �

3n− 1
− 1􏼐 􏼑

2

4
+ 1⎛⎝ ⎞⎠

3n
− 3
2

􏼠 􏼡,

Sz(THT(n)) �
33n− 2

− 19 × 32n
+ 30 × 3n

n − 5 × 3n
+ 6 × 32n

n + 39
8

.

(6)

'e edge-Szeged index of ternary hypertree of dimen-
sion n is as follows:

Sze

THT(n)

Fi

􏼠 􏼡 � 3n− i 3i+1
− 6􏼐 􏼑 3n

− 3i+1
􏼐 􏼑,

􏽘

n− 2

i�1
Sze

THT(n)

Fi

􏼠 􏼡 � 3n 18n + 3n+1
n −

21 × 3n

2
+
9
2

􏼠 􏼡,

Sze

THT(n)

Fn− 1
􏼠 􏼡 � − 15 + 3n+1

+
3n

− 3( 􏼁

2
× 3n− 1

− 1􏼐 􏼑
2
,

Sze(THT(n)) �
33n

18
− 11 × 32n

+ 18 × 3n
n + 9 × 3n

+ 32n+1
n −

33
2

.

(7)

'e edge-vertex Szeged index is as follows:
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Szev

THT(n)

Fi

􏼠 􏼡 � 3n− i 33 × 3i
− 18 × 32i

4
−
9 × 3n

4
+
3 × 3i

× 3n

2
− 3􏼠 􏼡,

􏽘

n− 2

i�1
Szev

THT(n)

Fi

􏼠 􏼡 �
66 × 3n

n − 39 × 32n
− 9 × 3n

+ 12 × 32n
n + 108

8
,

Szev

THT(n)

Fn− 1
􏼠 􏼡 �

15 × 3n− 1
− 21 + 3 × 3n/3( 􏼁( 􏼁 − 3( 􏼁 3n− 1

− 1􏼐 􏼑
2

4
,

Szev(THT(n)) �
33n

36
−
41 × 32n

8
+
33 × 3n

n

4
+
7 × 3n

8
+
32n+1

n

2
+
15
2

.

(8)

'e Padmakar Ivan index is as follows:

PI
THT(n)

Fi

􏼠 􏼡 �
3n− i 3n

− 1( 􏼁

2
,

􏽘

n− 2

i�1
PI

THT(n)

Fi

􏼠 􏼡 �
3n

− 1( 􏼁 3n
− 9( 􏼁

4
,

PI
THT(n)

Fn− 1
􏼠 􏼡 �

32n
− 3n+1

+ 18
6

,

PI(THT(n)) �
5 × 32n

12
− 3 × 3n

+
21
4

.

(9)

'e Mostar index of ternary hypertree is as follows:

Mo
THT(n)

Fi

􏼠 􏼡 �
3n− i

− 1
2

+
3i

− 1􏼐 􏼑

2

× 3n− i
− 3􏼐 􏼑−

3i
− 1􏼐 􏼑

2
× 3⎞⎠ × 3n− i

,

􏽘
n− 2

i�1
Mo

THT(n)

Fi

􏼠 􏼡 �
32n

4
− 3n+1

n + 5 × 3n
−
45
4

,

Mo
THT(n)

Fn− 1
􏼠 􏼡 �

3n
− 9
2

,

Mo(THT(n)) �
32n

4
− 3n+1

n +
11 × 3n

2
−
63
4

,

Moe

THT(n)

Fi

􏼠 􏼡 � 3n− i 3n
− 6 × 3i

+ 6􏼐 􏼑,

􏽘
n− 2

i�1
Moe

THT(n)

Fi

􏼠 􏼡 �
32n

2
− 6 × 3n

n +
21 × 3n

2
− 27,

Moe

THT(n)

Fn− 1
􏼠 􏼡 �

3n+1
− 27
2

,

Moe(THT(n)) �
32n

2
− 6 × 3n

n + 12 × 3n
−
81
2

.

(10)

Mot

THT(n)

Fi

􏼠 􏼡 � 3n− i 3n+1

2
− 9 × 3i

+
17
2

􏼠 􏼡,

􏽘

n− 2

i�1
Mot

THT(n)

Fi

􏼠 􏼡 �
3 × 32n

4
− 9 × 3n

n +
31 × 3n

2
−
153
4

,

Mot

THT(n)

Fn− 1
􏼠 􏼡 � 6 × 3n− 1

− 18,

Mot(THT(n)) �
3 × 32n

4
− 9 × 3n

n +
35 × 3n

2
−
225
4

.

(11)

W (THT(n))
Sz (THT(n))

Sze (THT(n)) 
Szev (THT(n))

indicesMo (THT(n))
Moe (THT(n))

Mot (THT(n))
PI (THT(n))

2
3n 4

5
6

7
8

×1010

0.5

1

1.5

2

0

Figure 6: Graphical comparison of numerical values of distance-
based indices of THT(n).

Table 3: Partition of edges of ternary hypertree of dimension n

grounded on the degree vertices.

(dx, dy); xy ∈ E(Ω) No: Of edges

(3, 3) 3n− 1

(6, 3) 3n− 1 + 3
(6, 6) 3n− 1 − 6

M1 (THT(n))
M2 (THT(n))

R (THT(n))
IndicesABC (THT(n))

SC (THT(n))
GA (THT(n))

2
3

n 4
5

6
7

8

×104

14

12

10

8

6

4

2

0

Figure 7: Graphical representation of numerical values of degree-
based indices.
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'e graphical comparison of numerical values of dis-
tance-based indices of THT(n) is given in Figure 6. □

Theorem 3. For n≥ 2,

(1) M1(THT(n)) � 3n+2 − 45
(2) M2(THT(n)) � 7 × 3n+1 − 162
(3) R(THT(n)) � 0.2357(3n− 1 + 3) + 2 × 3n− 2 − 2
(4) ABC(THT(n)) � 0.6236(3n− 1 + 3) + 0.6667 ×

3n− 1 + 0.5270 × (3n− 1 − 6)

(5) SC(THT(n)) � 1 + 3n− 2 + 0.4082 × 3n− 1 +

0.2887(3n− 1 − 6)

(6) GA(THT(n)) � 2.828 + 2 × 3n− 1 − 6

Proof. Ternary hypertree has (3n − 3) edges. We divide the
edges according to its degrees on either vertex, which is
given in Table 1. We denote Fmn as the set of edges xy such
that dx � m and dy � n.

M1(THT(n)) is calculated as follows:

M1(THT(n)) � 􏽘
xy∈F33

(3 + 3) + 􏽘
xy∈F63

(6 + 3)

+ 􏽘
xy∈F66

(6 + 6) � 3n− 1
× 6 + 3n− 1

+ 3􏼐 􏼑

× 9 + 3n− 1
− 6􏼐 􏼑 × 12 � 9 × 3n

− 45,

(12)

M2(THT(n)) is calculated as follows:
M2(THT(n)) � 􏽘

xy∈F33

3 × 3 + 􏽘
xy∈F63

6 × 3

+ 􏽘
xy∈F66

6 × 6 � 3n+1
+ 3n− 1

+ 3􏼐 􏼑

× 18 + 2 × 3n+1
− 6􏼐 􏼑 × 36 � 21 × 3n

− 162.

(13)

Randic index of THT(n) is calculated as follows:

R(THT(n)) � 􏽘
xy∈F33

1
3

+ 􏽘
xy∈F63

1
��
18

√ + 􏽘
xy∈F66

1
6

�
3n

9
×
1
3

+ 3n− 1
+ 3􏼐 􏼑 ×

1
��
18

√ + 3n− 1
− 6􏼐 􏼑 ×

1
6

� 0.2357 × 3n− 1
+ 3􏼐 􏼑 + 2 × 3n− 2

− 2,

(14)

ABC(THT(n)) is calculated as follows:

ABC(THT(n)) � 􏽘
xy∈F33

1
6

+ 􏽘
xy∈F63

1
9

+ 􏽘
xy∈F66

1
12

�
3n− 1

+ 3
9

+
3n− 1

6
+
3n− 1

− 6
12

� 0.1111 3n− 1
+ 3􏼐 􏼑 + 0.1667 × 3n− 1

+ 0.0833 3n− 1
− 6􏼐 􏼑,

(15)

SC(THT(n)) is calculated as follows:

SC(THT(n)) � 􏽘
xy∈F33

1
�
6

√ + 􏽘
xy∈F63

1
�
9

√ + 􏽘
xy∈F66

1
��
12

√

�
3n− 1

�
6

√ +
3n− 1

+ 3
�
9

√ + − 6 + 3n− 1
􏼐 􏼑 ×

1
��
12

√

� 1 + 3n− 2
+ 0.4082 × 3n− 1

+ 0.2887 3n− 1
− 6􏼐 􏼑.

(16)

'e geometric arithmetic index of THT(n) is as follows:

GA(THT(n)) � 􏽘
xy∈F33

�
9

√

6
+ 􏽘

xy∈F63

��
18

√

9
+ 􏽘

xy∈F66

��
36

√

12

� 3n− 1
×

�
9

√

6
+ 3n− 1

+ 3􏼐 􏼑 ×

��
18

√

9
+ 3n− 1

− 6􏼐 􏼑

×

��
36

√

12

� 2.828 1 + 3n− 2
􏼐 􏼑 + 2 × 3n− 1

− 6.

(17)

'e graphical comparison of numerical comparison of
degree-based indices is given in Figure 7. □

3. Conclusion

Hypertree has many chemical applications such as in re-
cursive molecular networks, for example, dendrimers [51].
Also, the topological indices for hypertree are used in the
prognosis of physical (as well as chemical) properties of the
complex network of molecular and material systems when
there are substantial atoms [10, 52–54]. In this article, we
have introduced a ternary hypertree, an interconnection
network, and evaluated some distance-based and degree-
based topological indices of the ternary hypertree. 'e to-
pological indices of the ternary hypertree may help in de-
termining the chemical properties of complex molecular
networks. It can be used to obtain irregularity measures,
connectivity measures, centrality measures, and peripher-
ality measures of the ternary hypertree. 'e degree-based
topological indices can help in the study of bioactivity of the
ternary hypertree. In future, we can model networks by
considering the spread of different viruses and can study
their properties. We can also determine the entropy of
ternary hypertree in order to analyse data complexity and
transmission of information. Also, eccentricity-based to-
pological indices, which help in analysing the toxicological
properties, and various topological indices based on dif-
ferent constraints can also be computed. [55].
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In this paper, we study the synchronization of a class of multiple neural networks (MNNs) with delay and directed disconnected
switching topology based on state observer via impulsive coupling control. *e coupling topology is connected sequentially, and
the controller adjusts the state value through event-triggering strategies. Different from the related works on MNNs, its state in
this paper is assumed to be unmeasurable, and the time delay is also unmeasurable. *erefore, the observer does not contain the
time-delay term. *e impulsive switching controller and observer controller adjust the system through the observed value. By
constructing the corresponding augmented matrix, the system can finally achieve quasi-synchronization (synchronization).
*rough derivation, we give the sufficient conditions ensuring quasi-synchronization (synchronization) via the event-triggered
impulse control mechanism. In addition, numerical simulation examples are given to test our results of the theorem.

1. Introduction

*ere has been rapid development of multi-agent systems
(MASs). In practical application, the application of MAS
mainly includes power engineering [1], bioengineering [2],
robot formation control [3], vehicle formation control [4],
and some other fields. *eoretically, the dynamic behavior
of MAS, such as stability [5], robustness [6], synchroni-
zation [7], and so on, has become the basis of various
theories and greatly promoted the development of MAS. So
far, a number of achievements have been made in the study
of MAS.

In addition, as a complex network, the topology of MAS
plays an important role in the dynamic behavior. For ex-
ample, in [8], second-order leaderless and leader-following
consensus algorithms with communication and input delays
in directed network topology are studied. In addition, this
paper involves three different situations: leaderless con-
sumption, consumption regulation, and consumption
tracking. On the other hand, the network topology plays an
important role in the asymptotical stability scheme. In the
leader-following problem of multi-agent network, it is as-
sumed that the network topology switches arbitrarily

between limited topology sets and there is a time-varying
delay in the coupling of agents [9]. Different from the
general topology, the switching topology in this paper is of
great significance to the sudden change or failure of the
environment, so switching topology widely exists in MAS.

In recent years, MNNs have been widely used, especially
in automatic control [10], signal processing [11], optimi-
zation [12], and so on. Such complex systems are extremely
dependent on the synchronization and stability of MNNs.
*erefore, synchronization problem is receiving more and
more attention and has always been a very important re-
search direction [13–16]. Especially, Chen et al. [16] con-
sidered synchronization for nonlinear neural complex
networks by a switching topology. On the other hand,
different from synchronous, quasi-synchronous is a special
form of dynamical behavior, where all of the control systems
in networks are almost synchronized with a given syn-
chronization error, which could not tend to zero with time.
Chen et al. [17] discussed the quasi-synchronization prob-
lem through a coupled memristor neural network with
time-varying delay. *e quasi-synchronization problem in
fractional-order multi-layer networks with fractional mis-
match is studied in [18].
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With the development of industrial demand and in-
formation technology, some traditional control strategies
have been replaced by other control schemes. *e feasibility
and advantages of event-triggered control (ETC) have been
proposed for the first time since 1999. Different from tra-
ditional control scheme, ETC can ensure system perfor-
mance while effectively reducing the execution of control
tasks. In recent years, ETC has become a popular research
subject [19–22]. Because we only need to adjust the state of
the controller at the event-trigger instants via setting an
appropriate event-trigger mechanism. Different from con-
tinuous control and ETC, controller status is updated only at
the moment of event trigger, it is adjusted to meet the needs
of the system. At present, existing work of ETC in the
multiagent field (see [23, 24]). Especially, [25] the recurrent
neural network triggered by finite-time event-triggered
strategy is studied, and the stability of finite-time systems is
proved by novel inequality methods such as, Lyapu-
novCKrasovskii functional and Wirtinger single and double
integral inequality. Compared with static trigger conditions,
dynamic trigger conditions have more advantages. For ex-
ample, a new fuzzy filter error system model under dynamic
event-triggered control strategy is considered. In addition,
there are different triggered thresholds for different fuzzy
rules, which can save communication resources more ef-
fectively in [26].

In order to realize the synchronization of MNNs, we
often add appropriate controllers to the system. According
to Tang et al. [27], the leader following consistency problem
for a class of nonlinear multiagent systems with mixed
impulses and time-varying bounded delays is studied. *e
time-varying impulses in this paper is not only composed of
synchronization impulses and desynchronization impulses
but also placed in some nodes of the system. Based on
Riemann Liouville derivative, Lyapunov functional method
and comparison theorem, we can get the global synchro-
nization problem of time-varying delay neural networks
with impulsive fractional complex memristor [10]. *e
impulse controller is one of the most widely used controllers
in recent years. Different from the traditional continuous
control strategy, impulse control mechanism has the ad-
vantage of short action time, which makes it possible to use
the impulse controller to occupy less communication re-
sources for a system with a very large amount of information
transmission (see [28, 29]). In order to reduce communi-
cation bandwidth and save communication costs, a new
control strategy based on event-trigger impulse is given. For
example, Yi et al. [30] proposed an impulsive control
mechanism based on ETC. Except for above control strategy,
the impulse coupling protocol is also studied. *e coupling
between neural networks only occurs at some discrete-time
instants, that is, impulse instants. Consequently, the impulse
coupling scheme is naturally proposed.

Observer-based output feedback control is one of the
traditional hot topics. It can be divided into two categories
according to whether the variables are measurable or not.
For the former, a relaxed stability condition based on state
observer is proposed [31], and for the latter, a scheme based
on fuzzy controller for a class of nonlinear systems is

presented [32]. More recently, it is usually presumed that
MAS state is measurable. Due to the limitations of mea-
surement methods, many states cannot be measured. On the
other hand, system states are unavailable for the state
feedback control or too expensive to measure. *us, it is
imperative to research the observer for the system state is not
measurable.

In general, we design an observer to estimate the value of
different MNNs and then use the information to establish an
observer based on feedback controller. However, the mea-
sured value is usually collected in discrete time.*erefore, an
impulse observer is promoted. It was first proposed by Raf
and Allgower in [33]. *e observer is updated in the form of
impulsive; hence, the measured output is discrete. So, use the
impulse observer to estimate the error. Apart from this,
designing a suitable control scheme based on impulsive
observer is still a challenging problem.

Motivated by the previous research, this paper studies
synchronization problem of MNNs with observer via an
ETCmechanism.*emain contributions of this paper are as
follows:

(1) An impulsive switching controller is designed via the
event-triggered strategy of MNNs with disconnec-
tion switching topology. Considering the practical
needs, the actual state may be unpredictable in re-
ality. *us, the system state in this paper is assumed
to be unmeasurable.

(2) A particular observer is constructed. Considering the
unknown time delay in practical application, the
observer does not exhibit time delay. *rough the
observation value of synchronization error and the
tracking error of synchronization error, an aug-
mented system is formed. *e synchronization
(quasi-synchronization) of the augmented system is
also of the MNN system.

(3) *e MNNs with a switching topology is studied and
the topology is disconnect. At the same time, impulse
control, event-triggered strategies, and observers are
used to study synchronization (quasisynchroniza-
tion) issues. In the real system, the sufficient con-
ditions of the synchronization (quasi-
synchronization) are proved. We discuss this kind of
question and give the relevant theorems. *e Zeno
behavior can be ruled out.

*e remainder of this article is organized as follows.
Section 2 describes problem formulation and some neces-
sary preliminaries. In Section 3, a number of results are
presented. In Section 4, a numerical simulation is presented
to test the obtained theoretical analysis. Some conclusions
are drawn in Section 5.

2. Preparation and Modeling

Notations. *roughout this study, sign( ) is the standard sign
function. Z and Z+ represent a set of integer and positive
integer. Rn represents n-dimensional Euclid space. ‖ · ‖
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represents 1-norm. sign(x) � (sign(x1), sign(x2), . . . ,

sign(xn))T, and thus ‖x‖ � sign(x)Tx where x ∈ Rn, and I is
an identity matrix. Let G � (F ,S) denote a graph. F is
the set of nodes. S⊆F × F is the set of edges. An arbitrary
matrix A � (aij)N×N ∈ RN×N is given, corresponding to A,
and thus from G(A) � (F ,S), the graph is indicated,
where (i, j) ∈ S if and only if aij > 0.

Also, a subsetK⊆F and a graphG � (F ,S) are given.
Define the neighborhood of z(K,G) k ∈ F /{ K|∃i ∈K,
such that (i, k) ∈ S}. If K is a singleton set, z(K,G)

represents the neighborhood of one single point.
When (j, i) � (i, j), the graph G is undirected.

G � (F ,S) has a directed path from node i to j if there is a
sequence of edges in the form (i, i1), (i, i2), · · ·, (i, ik) and the
ip ∈ N, wherep � 1, 2, . . . , k, G is called connected if there
exists a directed path between each pair of nodes.*e node 􏽢r

is called a root of G if has a directed path from 􏽢r to every
other nodeG contains a directed spanning tree if there exists
at least one root.

For the graphs G1 � (F,S1) and G2 � (F,S2),
G1 ∪G2 � (F,S1 ∪S2) is the union of G1, G2. A sequence
of graphs with common nodes(Gi)

m
i�1 is jointly connected if

∪ m
i�1Gi contains a spanning tree. A sequence of graphs with

common nodes(Gi)
m
i�1 is sequentially connected if there

exist m + 1node sets F 0, F1, . . . , Fmsuch that
F k+1⊆ z(Gk+1,Ωk) and Ωk � ∪ k

l�0 F l , Ω0 � F 0is a set of
Singleton, Ωm � F .

*en, by the following dynamics:

dxi

dt
� Axi(t) + Bxi(t − τ(t)) + ui(t) + I(t), (1)

where t⩾ t0, i ∈ F � 1, 2, . . . , N{ }, xi(t) � (xi1(t),

xi2(t), . . . , xin(t))T, A � (aij)n×n and B � (bij)n×n are weight
matrices; τ(t) is transmission delay and satisfies τ ⩾ τ(t)⩾ 0;
ui(t) is a controller; and I(t) ∈ Rn indicates external input.

In the actual situation, considering that the system state
value cannot be measured, we give the observer of the
corresponding ith node as follows:

d􏽢xi(t)

dt
� A􏽢xi(t) + vi(t) + I(t). (2)

􏽢xi(t) � (􏽢xi1(t), 􏽢xi2(t), . . . , 􏽢xin(t))T is the estimated
value of the corresponding ith node. vi(t) ∈ Rn is the
controller of the observer. Under (2), we can see that the
observer does not contain time-delay term. Considering the
fact that the time delay is unknown in practical application,
observer (2) does not contain time delay.

Let S ⊂ Z+ be a limited set of index and Gs: s ∈ S􏼈 􏼉 be a
directed graph set. σ(t): [t0, +∞)⟶ S represent function
of switching in Gs: s ∈ S􏼈 􏼉, and tp � qh, q ∈ Z+􏽮 􏽯 (where
h> 0 ) represent instants of switching impulsive time. Let
Gσ(t) indicate the graph of directed at t, where t⩾ t0. *us,

obviously t � tq is the switch time unchanged for
t ∈ (tq, tq+1). We use (ϖσ(t)

ij )N×N to express Gσ(t) of adjacent
matrix, where ϖσ(t)

ij � 1 when the system sends information
from node j to node i and ϖσ(t)

ij � 0 otherwise. In addition,
we giveϖσ(t)

ii � 0, namely, there is no self-loop inGσ(t) where
t⩾ t0. In order to convenient calculation, we assume that
ϖσ(t)

i � 􏽐
N
j�1 ϖ

σ(t)
ij and ϖ � supt⩾ t0

maxi∈Fϖ
σ(t)
i

Consider the following assumptions:

(A1) *e set of discrete graphs Gσ(t): tmT ⩽ t< t(m+1)T􏽮 􏽯

is sequentially connected, if there exists a positive
integer T ∈ Z+, where m ∈ Z+.

(A2) *e set of discrete graphs Gσ(t): tmT0
⩽􏽮

t< t(m+1)T0
} is jointly connected, if there exists a

positive integer T0 ∈ Z+, where m ∈ Z+.

ti
q􏽮 􏽯

+∞
q�1 denotes a sequence of triggering time. Hence, we

will give the event-trigger protocol (ETP). In order to make
the system achieve synchronization (quasi-synchroniza-
tion), we design the impulsive switching controller with ETP
and the controller of the corresponding observer. In order to
make the system achieve synchronization (quasi-synchro-
nization), we design the impulsive switching controller and
the corresponding observer controller of the ith node as
follows:

ui(t) � c 􏽘
+∞

q�1
δ t − tk( 􏼁 􏽘

N

j�1
ϖσ(t)

ij 􏽢xj t
i
q􏼐 􏼑 − 􏽢xi t

i
q􏼐 􏼑􏼐 􏼑, (3)

vi(t) � η 􏽘
+∞

q�1
δ t − tk( 􏼁 􏽘

N

j�1
ϖσ(t)

ij 􏽢xj t
i
q􏼐 􏼑 − 􏽢xi t

i
q􏼐 􏼑􏼐 􏼑, (4)

where c> 0, η> 0.
*e state is not measurable.
*erefore, (3) and (4) are only related to the observed

values. Fori ∈V, the measurement error is defined as
follows:

Λi(t) � 􏽘
N

j�1
ϖσ(t)

ij 􏽢xj t
i
q􏼐 􏼑 − 􏽢xi t

i
q􏼐 􏼑􏼐 􏼑 − 􏽘

N

j�1
ϖσ(t)

ij 􏽢xj(t) − 􏽢xi(t)􏼐 􏼑.

(5)

Meanwhile, by Figure 1, we can get the block diagram for
ETC and the ETP:

t
i
q+1 � inf t> t

i
q, Λi(t)

����
����> βe

− ς t− t0( ) + α􏼚 􏼛, (6)

where ς> 0 , α2 + β2 ≠ 0; moreover, α⩾ 0 and β⩾ 0. *ey are
both threshold parameters.

From (1)–(4), we have
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dxi
dt

� Axi(t) + Beij(t − τ(t)) + I, t≠ tk,

x̂i t
+
k( ) � xi tk( ) + c∑

N

j�1
ϖσ(t)ij x̂j t

i
q( ) − x̂i t

i
q( )( ), t � tk,




(7)

dx̂i(t)
dt

� Ax̂i(t) + I, t≠ tk,

xi t
+
k( ) � xi tk( ) + η∑

N

j�1
ϖσ(t)ij x̂j t

i
q( ) − x̂i t

i
q( )( ), t � tk,




(8)

where k⩾ 1, i ∈ F , tiq ⩽ tk < tiq+1, xi(t+k ) � limt⟶tk+0xi(t),
and xi(t−k ) � xi(tk).

Let Cτ be a Banach space and Cτ � C([− τ, 0],Rn). Let
φ: [− τ, 0]⟶ Rn represent all continuity functions, and
thus the initial value of (7) and (8) can be given:

xi t0 + θ( ) � φi(θ), θ ∈ [− τ, 0],
x̂i t0( ) � φ̂i t0( ), i � 1, . . . , N,

(9)

for φi ∈ Cτ and φ̂i(t0) ∈ Rn. Let eij(t) � xi(t) − xj(t) denote
the synchronization error for i, j ∈ F , where t⩾ t0 and
êij(t) � x̂i(t) − x̂j(t) denotes the observed value of eij(t).

�en,

deij(t)
dt

� Aeij(t) + Beij(t − τ(t)), t≠ tk,

eij t
+
k( ) � eij tk( ) + c ∑

N

v�1
ϖσ(t)iv x̂v t

i
q( ) − x̂i t

i
q( )( ) − ∑

N

v�1
ϖσ(t)jv x̂v t

j
q( ) − x̂j t

j
q( )( ) 

� eij tk( ) + c ∑
N

v�1
ϖσ(t)iv êvj tk( ) − êij tk( )( ) +∑

N

v�1
ϖσ(t)jv êiv tk( ) − êij tk( )( )  + c Λi tk( ) − Λj tk( )( ), t � tk,




(10)

dêij(t)
dt

� Aêij(t), t≠ tk,

êij t
+
k( ) � êij tk( ) + η ∑

N

v�1
ϖσ(t)iv x̂v t

i
q( ) − x̂i t

i
q( )( ) − ∑

N

v�1
ϖσ(t)jv x̂v t

j
q( ) − x̂j t

j
q( )( ) 

� êij tk( ) + η ∑
N

v�1
ϖσ(t)iv êvj tk( ) − êij tk( )( ) +∑

N

v�1
ϖσ(t)jv êiv tk( ) − êij tk( )( )  + η Λi tk( ) − Λj tk( )( ), t � tk.




(11)

k=k+1

x

System

ETC

Impluse
Control

Yes No

ETC Framework

Figure 1: �e block diagram for ETC.
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Let ξij(t) � eij(t) − 􏽢eij(t) denote tracking error of syn-
chronization error of ith node and jth node.

*en,

%

dξij(t)

dt
� Aξij(t) + Beij(t − τ(t)), t≠ tk,

ξij t
+
k( 􏼁 � ξij tk( 􏼁 +(c − η) 􏽘

N

v�1
ϖσ(t)

iv 􏽢evj tk( 􏼁 − 􏽢eij tk( 􏼁􏼐 􏼑 + 􏽘
N

v�1
ϖσ(t)

jv 􏽢eiv tk( 􏼁 − 􏽢eij tk( 􏼁􏼐 􏼑⎛⎝ ⎞⎠ +(c − η) Λi tk( 􏼁 − Λj tk( 􏼁􏼐 􏼑, t � tk.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(12)

Let Wij(t) �
􏽢eij(t)

ξij(t)
􏼠 􏼡; from (10) and (11), there are the

following augmentation systems:

dWij(t)

dt
�

A 0

0 A

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

􏽢eij(t)

ξij(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ +

0 0

B B

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

􏽢eij(t − τ(t))

ξij(t − τ(t))

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠, t≠ tk,

Wij t
+
k( 􏼁 �

I 0

0 I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

􏽢eij tk( 􏼁

ξij tk( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ +

Iη 0

I(c − η) 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 􏽘

N

v�1
ϖσ(t)

iv

􏽢evj tk( 􏼁

ξvj tk( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ −

􏽢eij tk( 􏼁

ξij tk( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

Iη 0

I(c − η) 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 􏽘

N

v�1
ϖσ(t)

jv

􏽢eiv tk( 􏼁

ξiv tk( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠ −

􏽢eij tk( 􏼁

ξij tk( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ +

Iη 0

I(c − η) 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Λi tk( 􏼁 − Λj tk( 􏼁

Λi tk( 􏼁 − Λj tk( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠, t � tk.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

In addition, assume that C1 �
A 0
0 A

􏼢 􏼣,

C2 �
0 0
B B

􏼢 􏼣,C3 �
Iη 0

I(c − η) 0􏼢 􏼣 and ∇i(t) �
Λi(t)

Λi(t)
􏼠 􏼡

where i ∈ F and
t⩾ t0.

*us, from (13), it follows that

dWij(t)

dt
� C1Wij(t) + C2Wij(t − τ(t)), t≠ tk,

Wij t
+
k( 􏼁 � Wij tk( 􏼁 + C3 􏽘

N

v�1
ϖσ(t)

iv Wvj tk( 􏼁 − Wij tk( 􏼁􏼐 􏼑 + 􏽘
N

v�1
ϖσ(t)

jv Wiv tk( 􏼁 − Wij tk( 􏼁􏼐 􏼑⎛⎝ ⎞⎠ + C3 ∇i tk( 􏼁 − ∇j tk( 􏼁􏼐 􏼑, t � tk.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(14)

Definition 1. (14) is called to achieve final synchronization,
if limt⟶∞‖Wij(t)‖ � 0.

Definition 2. (14) is called to achieve final quasi-synchro-
nization, if limt⟶∞‖Wij(t)‖⩽ a, where a> 0.

Remark 1. From augmented matrix (14), we can find that
there are limt⟶∞‖eij(t)‖ � 0(limt⟶∞

�����eij(t)
�����⩽ a) if

limt⟶∞‖Wij(t)‖ � 0(limt⟶∞

�����Wij(t)
�����⩽ a) for any

i, j ∈ F . *e synchronization (quasi-synchronization) of
augmented system (13) is also of (1). Moreover,
limt⟶∞‖eij(t)‖ � 0 by observer of error systems 􏽢eij(t) and
ξij(t) of tracking error of error system. We do not directly
quote the state of the error system, and thus it has certain
significance for the system. Its state is not measurable in

Complexity 5



practical application. For notational convenience, we denote
ϖσ(tk)

ij � dij(tk) at any time instant tk for i, j ∈ F , and Gk

denotes Gσ(tk).

3. Main Results

where 􏽥W(t) � sup− τ ⩽ θ⩽ 0W(t + θ).where
0< ζ ⩽ min 2‖C3‖,􏼈 1 − 4‖C3‖ϖ}.

Lemma 1. A sequence of graphs Gj􏽮 􏽯
T0

j�1 is jointly connected
if a sequence of graphs Gj􏽮 􏽯

T

j�1 is sequentially connected.

Lemma 2. 5ere exists l> 0 such that

l + C2
����

����e
lτ

+ d1 ⩽ 0, (15)

for any i, j ∈ F and t ∈ (tk, tk+1] where d1 denotes the
largest eigenvalue of C1 , and we obtain that

Wij(t)
�����

����� ⩽ 􏽥Wij(t)
�����

�����⩽ 􏽥Wij t
+
k( 􏼁

�����

�����e
− l t− tk( ). (16)

Proof. Let V(t) � ‖Wij(t)‖el(t− tk) for t ∈ (tk, tk+1). From
(14), we can deduce

dV(t)

dt
� sign Wij(t)􏼐 􏼑

TdWij(t)

dt
e

l t− tk( ) + lV(t)

� sign Wij(t)􏼐 􏼑
T
C1Wij(t)e

l t− tk( ) + sign Wij(t)􏼐 􏼑
T

C2Wij(t − τ(t))e
l t− tk( ) + lV(t)

⩽ d1V(t) + C2
����

����V(t − τ(t))e
lτ

+ lV(t).

(17)

Here let 􏽥V(t) � sup− τ ⩽ θ⩽ 0V(t + θ).
We have

dV(t)

dt
⩽ d1 + C2

����
����e

lτ
+ l􏼐 􏼑􏽥V(t) ⩽ 0. (18)

*en, one has d􏽥V(t)/dt⩽ 0, and so ‖Wij

(t)‖el(t− tk) � V(t)⩽V(t+
k )⩽ 􏽥V(t+

k ) � ‖ 􏽥Wij(t+
k )‖, i.e.,

‖Wij(t)‖ ⩽ ‖ 􏽥Wij(t+
k )‖e− l(t− tk). *e proof is completed.

FromAssumption (A2), there exists a sequence of graphs
Gj􏽮 􏽯

(m+1)T

j�mT+1 which is sequentially connected where m ∈ Z+.
Hereafter, Gm

r represents GmT+r. A sequence of graphs
Gm

r􏼈 􏼉
T
r�1 is sequentially connected for any m ∈ Z+; mean-

while, Ωm
T � F and Ωm

0 is a set of singleton.
Let

H(t) � max
i,j∈F

Wij(t)
�����

�����,

􏽥H(t) � sup
θ∈[− τ,0]

H(t + θ),

H
m
r � H tmT+r( 􏼁,

H
m+
r � H t

+
mT+r( 􏼁,

H
m
r (t) � max

i,j∈Ωm
r

Wij(t)
�����

�����,

􏽥H
m

r (t) � sup
θ∈[− τ,0]

H
m
r (t + θ),

H
m
r � H tmT+r( 􏼁,

H
m+
r � Hr+1 t

+
mT+r( 􏼁,

(19)

where 0⩽ r⩽T − 1 and m ∈ Z+. □

Lemma 3. By Assumption (A2), if0< ‖C3‖< 1/2ϖ, then

Wij t
+
k( 􏼁

�����

�����⩽ ζH
m
r tk( 􏼁 +(1 − ζ)H tk( 􏼁 + 4 C3

����
���� βe

− ς(mT+r)h
+ α􏼐 􏼑,

(20)

wherem ∈ Z+,0⩽ r⩽T − 1,ti
q ⩽ tmT+r < ti

q+1,q ∈ Z+,
and0< ζ ⩽ min ‖C3‖, 1 − 2ϖ‖C3‖􏼈 􏼉.

Proof. First, we review the state equation of (14) at the
impulse instant.

Wij t
+
k( 􏼁 � Wij tk( 􏼁 + C3 􏽘

N

v�1
ϖσ(t)

iv Wvj tk( 􏼁 − Wij tk( 􏼁􏼐 􏼑 + 􏽘
N

v�1
ϖσ(t)

jv Wiv tk( 􏼁 − Wij tk( 􏼁􏼐 􏼑⎛⎝ ⎞⎠ + C3 ∇i tk( 􏼁 − ∇j tk( 􏼁􏼐 􏼑, (21)
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for ti
q ⩽ tk < ti

q+1 and q ∈ Z+.
Considering i, j ∈ Ωm

r+1 and tk � mT + r, where
Ωm

r+1 � Ωm
r ∪F

m
r+1, we give the following three cases. □

Case 1. For i, j ∈ Ωm
r , under (21), we get

Wij t
+
k( 􏼁

�����

�����⩽ sign Wij t
+
k( 􏼁􏼐 􏼑

T
Wij tk( 􏼁 + 2 C3

����
����ϖ H tk( 􏼁 − signWij t

+
k( 􏼁

T
Wij tk( 􏼁􏼐 􏼑 + C3

����
���� ∇i tk( 􏼁

����
���� + ∇j tk( 􏼁

�����

�����􏼔 􏼕. (22)

From (6), ETP, and ∇i, we deduce

∇i

����
����⩽ 2 βe

− ς t− t0( ) + α􏼒 􏼓 , (23)

for t ∈ [ti
q, ti

q+1). Hence, due to (22), we have

Wij t
+
k( 􏼁

�����

�����⩽ 1 − 2 C3
����

����ϖ􏼐 􏼑 Wij tk( 􏼁
�����

����� + 2 C3
����

����ϖH tk( 􏼁

+ 4 C3
����

���� βe
− ς tk− t0( ) + α􏼒 􏼓.

(24)

From 0< ζ ⩽ min ‖C3‖, 1 − 2ϖ‖C3‖􏼈 􏼉 and
Hm

r (tk)⩽H(tk), we can deduce

Wij t
+
k( 􏼁

�����

�����⩽ ζH
m
r tk( 􏼁 +(1 − ζ)H tk( 􏼁

+ 4 C3
����

���� βe
− ς tk− t0( ) + α􏼒 􏼓.

(25)

*erefore, (20) is established.

Case 2. Let i ∈ Fm
r+1, j ∈ Ωm

r , and dis(tk) � 1 if a, s ∈ Ωm
r .

Under (21), one has

Wij t
+
k( 􏼁 � Wij tk( 􏼁 + C3 Wsj tk( 􏼁 − Wij tk( 􏼁􏼐 􏼑 + C3 􏽘

N

v�1,v≠s
ϖσ(t)

iv Wvj tk( 􏼁 − Wij tk( 􏼁􏼐 􏼑 + 􏽘
N

v�1
ϖσ(t)

jv Wiv tk( 􏼁 − Wij tk( 􏼁􏼐 􏼑⎛⎝ ⎞⎠

+ C3 ∇i tk( 􏼁 − ∇j tk( 􏼁􏼐 􏼑.

(26)

From (26), we can deduce

Wij t
+
k( 􏼁

�����

����� � 1 − C3
����

����􏼐 􏼑sign Wij t
+
k( 􏼁􏼐 􏼑

T
Wij tk( 􏼁 + C3

����
����H

m
r tk( 􏼁

+ C3
����

����(2ϖ − 1) H tk( 􏼁 − sign Wij t
+
k( 􏼁􏼐 􏼑

T
Wij tk( 􏼁􏼒 􏼓 + C3

����
���� ∇i tk( 􏼁

����
���� + ∇j tk( 􏼁

�����

�����􏼒 􏼓

⩽ ζHm
r tk( 􏼁 +(1 − ζ)H tk( 􏼁 + 4 C3

����
���� βe

− ς tk− t0( ) + α􏼒 􏼓.

(27)

Hence, (20) is established.

Case 3. i, j ∈ Fm
r+1, dis(tk) � 1, and djq(tk) � 1 if s, q ∈ Ωm

r .
Because

Wsj tk( 􏼁 + Wiq tk( 􏼁 � Wsq tk( 􏼁 + Wij tk( 􏼁, (28)

from (21), we have

Wij t
+
k( 􏼁 � Wij tk( 􏼁 + C3 Wsj tk( 􏼁 − Wij tk( 􏼁􏼐 􏼑 + C3 Wiq tk( 􏼁 − Wij tk( 􏼁􏼐 􏼑

+ C3 􏽘

N

v�1,v≠s
ϖσ(t)

iv Wvj tk( 􏼁 − Wij tk( 􏼁􏼐 􏼑 + 􏽘
N

v�1,v≠q
ϖσ(t)

jv Wiv tk( 􏼁 − Wij tk( 􏼁􏼐 􏼑⎛⎝ ⎞⎠ + C3 ∇i tk( 􏼁 − ∇j tk( 􏼁􏼐 􏼑

� Wij tk( 􏼁 + C3 Wsq tk( 􏼁 − Wij tk( 􏼁􏼐 􏼑 + C3 􏽘

N

v�1,v≠s
ϖσ(t)

iv Wvj tk( 􏼁 − Wij tk( 􏼁􏼐 􏼑 + 􏽘
N

v�1,v≠q
ϖσ(t)

jv Wiv tk( 􏼁 − Wij tk( 􏼁􏼐 􏼑⎛⎝ ⎞⎠

+ C3 ∇i tk( 􏼁 − ∇j tk( 􏼁􏼐 􏼑.

(29)
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By (29),

Wij t
+
k( 􏼁

�����

�����≤ 1 − C3
����

����􏼐 􏼑sign Wij t
+
k( 􏼁􏼐 􏼑

T
Wij tk( 􏼁 + C3

����
����H

m
r tk( 􏼁

+ C3
����

����(2ϖ − 2) H tk( 􏼁 − sign Wij t
+
k( 􏼁􏼐 􏼑

T
Wij tk( 􏼁􏼒 􏼓 + C3

����
���� ∇i tk( 􏼁

����
���� + ∇j tk( 􏼁

�����

�����􏼒 􏼓

≤ C3
����

����H
m
r tk( 􏼁 + 1 − 2 C3

����
����ϖ + C3

����
����􏼐 􏼑 Wij tk( 􏼁

�����

����� + C3
����

����(2ϖ − 2)H tk( 􏼁 + 4 C3
����

���� βe
− ς tk− t0( ) + α􏼒 􏼓

≤ ζHm
r tk( 􏼁 +(1 − ζ)H tk( 􏼁 + 4 C3

����
���� βe

− ς tk− t0( ) + α􏼒 􏼓.

(30)

Obviously, (20) holds. Now the proof is completed.
It is always important to assure that Zeno behavior can

not be occurred under ETC (3) and (4) in order to prove the
synchronization or quasi-synchronization that can be
reached by (14).

For error observation (11), it follows that

G(t) � max
i,j∈F

􏽢eij(t)
�����

�����,

􏽥G(t) � sup
θ∈[− τ,0]

G(t + θ),

G
m
r � G tmT+r( 􏼁,

G
m+
r � G t

+
mT+r( 􏼁,

Q
m
r (t) � max

i,j∈Ωm
r

􏽢eij(t)
�����

�����,

􏽥Q
m

r (t) � sup
θ∈[− τ,0]

Q
m
r (t + θ),

Q
m
r � Q tmT+r( 􏼁,

Q
m+
r � Q t

+
mT+r( 􏼁.

(31)

Theorem 1. Assume that all the conditions of Lemma 2,
hold, and satisfy following conditions:

C1: l2 > 0 and l2 + c1 ⩽ 0
C2: 0< η< (1/2ϖ)
wherec1is the maximum eigenvalue of matrixA, and
thus (14) does not exhibit Zeno behavior. Event-triggered
time sequence ti

q􏽮 􏽯is generated under event-triggered
strategy (6), which
satisfiesq⟶ +∞whenti

q⟶ +∞.

Proof. Let ti
q􏽮 􏽯 be a bounded set and G(ti

q)􏽮 􏽯 also be a
bounded set. It is assumed that G(ti

q)<D2.
For any i ∈ F , t ∈ [ti

q, ti
q+1), there are

Λi(t)
����

���� � 􏽘
N

v�1
ϖσ(t)

iv 􏽢evi t
i
q􏼐 􏼑 − 􏽘

N

v�1
ϖσ(t)

iv 􏽢evi(t)

���������

���������

� 􏽘

N

v�1
ϖσ(t)

iv 􏽢evi t
i
q􏼐 􏼑 − ϖσ(t)

iv 􏽢evi(t)􏼐 􏼑

���������

���������

⩽ 􏽘

N

v�1
ϖσ(t)

iv 􏽚
t

ti
q

_􏽢evi(t)‖dt.
����

(32)

Let m ∈ Z+ such that [ti
q, ti

q+1) ⊂ [tmT, t(m+1)T). By (11),
‖_􏽢evi(s)‖⩽D1

􏽥G(s) where D1 � ‖A‖.
Similar to Lemma 2, there is l2 + c1 ⩽ 0, where l2 > 0 and

c1 is maximum eigenvalue of A. *us, we can deduce
􏽥G(s)⩽ 􏽥G(ti+

q )e|l2|(s− ti
q), where s ∈ [ti

q, t] and 􏽥G(ti+
q ) �

lims⟶ti
q+0

􏽥G(s).

*en, we have

_􏽢evi(s)
����

����⩽D1
􏽥G t

i+
q􏼐 􏼑e

l2 s− ti
q􏼐 􏼑

, (33)

where s ∈ [ti
q, t]. Obviously, there are 􏽥G(ti+

q ) � 􏽥G(ti
q)⩽D2

for ti
q ∈ (tmT, t(m+1)T).
Similar to Lemma 3, at impulse instants, (11) has

Q
m
r t

+
k( 􏼁 � ψQm

r tk( 􏼁 + (1 − ψ)G
m
r tk( 􏼁 + 2η βe

− ς(mT+r)h
+ α􏼐 􏼑 ,

(34)

if exists 0< η< 21ϖ, where0<ψ ⩽ min η, 1 − 2ϖη􏼈 􏼉,
ifti

q � tmT, 􏽥Q
m

0 (tmT) � 􏽥G
m

0 (tmT)thus

􏽥G t
i+
q􏼐 􏼑 � 􏽥G

m+

0

⩽ 􏽥G
m

0 + 2η βe
− ςmTh

+ α􏽨 􏽩

⩽D2 + 2η βe
− ςmTh

+ α􏽨 􏽩.

(35)

Let D2 + 2η[βe− ςmTh + α] � Π. Combine (32)–(35), and
we have
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Λi(t)
����

����⩽D1Πϖ􏽚
t

ti
q

e
l2 s− ti

q􏼐 􏼑ds

�
D1Πϖ

l2
e

l2 t− ti
q􏼐 􏼑

− 1􏼢 􏼣.

(36)

From (6), event-triggered strategy is triggered to update
the controller when ‖Λi(t)‖ � βe− ς(t− t0) + α; in other words,
ti
q⟶ ti

q+1. Hence, from (36), we obtain that

Λi t
i
q+1􏼐 􏼑

�����

����� � βe
− ς ti

q+1− t0􏼐 􏼑
+ α

⩽
D1Πϖ

l2
e

l2 ti
q+1 − ti

q􏼐 􏼑
− 1􏼢 􏼣,

(37)

which means

βe
− ς ti

q+1 − t0􏼐 􏼑
+ α􏼠 􏼡l2

D1Πϖ
+ 1⩽ e

l2 ti
q+1 − ti

q􏼐 􏼑
,

(38)

and then

t
i
q+1 − t

i
q ⩾

ln βe
− ς ti

q+1 − t0􏼐 􏼑
+ α􏼠 􏼡l2/D1Πϖ􏼠 􏼡 + 1􏼠 􏼡

l2
,

(39)

such that the event-triggered sequence ti
q􏽮 􏽯 has time interval.

*is is contrary to the assumption that the sequence ti
q􏽮 􏽯 is

bounded. *is ends the proof. □

Theorem 2. By Assumption (A1), if5eorem 1,Lemma 2,
andLemma 3hold, then the quasi-synchronization of (7) can
be obtained based on observer ifl≠ 0satisfies (15) besides

e
− lTh 1 − ζT

􏼐 􏼑< 1 , (40)

where0< ζ ⩽ min 2‖C3‖, 1 − 4‖C3‖ϖ􏼈 􏼉.

Proof. According to Lemma 2, we can see that

H
m
r+1 ⩽ 􏽥H

m

r+1 ⩽ 􏽥H
m+

r e
− lh

,
(41)

H
m
r+1 ⩽ 􏽥H

m

r+1 ⩽ 􏽥H
m+

r e
− lh

, (42)

where m ∈ Z+, 0≤ r≤T − 1. By *eorem 1, we can know
that Zeno behavior cannot occur.

Meanwhile, according to Lemma 3, it follows that

􏽥H
m+

r ⩽ ζ 􏽥H
m

r +(r − ζ) 􏽥H
m

r + 4 C3
����

���� βe
− ς(mT+r)h

+ α􏼐 􏼑,

􏽥H
m+

r ⩽ 􏽥H
m

r + 4 C3
����

���� βe
− ς(mT+r)h

+ α􏼐 􏼑.
(43)

Combining (41) and (43), we can obtain that

􏽥H
m

r+1 ⩽ e
− lh 􏽥H

m

r + 4 C3
����

���� βe
− ς(mT+r)h

+ α􏼐 􏼑􏽨 􏽩. (44)

*en, from (41)–(44), through the iterative method, we
can obtain that

􏽥H
m+

r ⩽ e
− lh ζ 􏽥H

m+

r− 1 +(1 − ζ) 􏽥H
m

r− 1􏽨 􏽩 + β1e
− ς(mT+r− 1)h

+ α1

⩽ e
− 2lh ζ2 􏽥H

m+

r− 2 + 1 − ζ2􏼐 􏼑 􏽥H
m

r− 2􏽨 􏽩 + β2e
− ς(mT+r− 2)h

+ α2
· · ·

⩽ e
− lvh ζv 􏽥H

m+

r− v + 1 − ζv
( 􏼁 􏽥H

m

r− v􏽨 􏽩 + βve
− ς(mT+r− v)h

+ αv,

(45)

and

α1 � 4 C3
����

����α (1 − ζ)e
− lh

+ 1􏽨 􏽩,

α2 � e
− 2lhζ2 + 1􏽨 􏽩α1 + 4 C3

����
����(1 − ζ)e

− 2lhα,

· · ·

αv � e
− vlhζv

+ 1􏽨 􏽩αv + 4 C3
����

���� 1 − ζv− 1
􏼐 􏼑e

− vlhα,

β1 � 4 C3
����

���� (1 − ζ)e
− lh

+ e
− ςh

􏽨 􏽩β,

β2 � e
− 2lhζ2 + e

− 2ςh
􏽨 􏽩β1 + 4 C3

����
����(1 − ζ)e

− 2lhβ,

· · ·

βv � e
− vlhζv

+ e
− vςh

􏽨 􏽩βv− 1 + 4 C3
����

���� 1 − ζv− 1
􏼐 􏼑e

− vlhβ,

(46)

and thus

􏽥H
m

T ⩽ e
− lh 􏽥H

m+

T− 1

⩽ e
− lTh ζT− 1 􏽥H

m+

0 + 1 − ζT− 1
􏼐 􏼑 􏽥H

m

0􏽨 􏽩 + e
− lhβT− 1e

− ςmTh

+ e
− lhαT− 1.

(47)

From the introduction of the previous preparation part,
we have ΩT− 1 � F and 􏽥H

m

T � 􏽥H
m

T � 􏽥H
m+1
0 . Meanwhile,

from Ω0 which is a single point, we can obtain 􏽥H
m

0 � 0. By
using (47), one has

􏽥H
m+

0 ⩽ ζ 􏽥H
m

0 +(1 − ζ) 􏽥H
m

0 + 4 C3
����

���� βe
− ςmTh

+ α􏽨 􏽩

⩽ (1 − ζ) 􏽥H
m

0 + 4 C3
����

���� βe
− ςmTh

+ α􏽨 􏽩.
(48)

By applying (47) and (48), we can prove the following
result:

􏽥H
m+1
0 ⩽ ε 􏽥H

m

0 + α + βe
− mςTh , (49)

where 0< ε � e− lTh(1 − ζT
)< 1, α � 4‖C3‖αe− lTh+ e− lhαT− 1+,

and β � e− lhβT− 1 + 4‖C3‖βe− lTh. From (43), it follows that
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􏽥H
m+1
0 ⩽ ε 􏽥H

m

0 + βe
− mςTh

+ α

⩽ ε2 􏽥H
m− 1
0 + βεe− (m− 1)ςTh

+ βe
− mςTh

+ εα + α

· · ·

⩽ εm− 1 􏽥H
2
0 + βεm− 2

e
− 2ςTh

+ · · · + βεe− (m− 1)ςTh
+ βe

− mςTh
+ εm− 1

+ · · · + ε + 1􏼐 􏼑α

⩽ εm 􏽥H
1
0 +

e
− mςTh

− εm

1 − εeςTh
β +

1 − εm+1

1 − ε
α.

(50)

*erefore, we can obtain

lim
m⟶∞

sup 􏽥H
m

0 ⩽ α. (51)

(14) can achieve quasi-synchronization. In other words,
(7) can also quasi-synchronization-based observer.

In addition, limm⟶∞sup 􏽥H
m

0 � 0 if α � 0. From *e-
orem 2, (7) can reach synchronization-based observer if the
sufficient conditions are satisfied. □

Remark 2. Under all the conditions of *eorem 2, (14) can
be quasi-synchronized. According to the definition of (14),
we can find that the system is composed of an observation
error system 􏽢eij(t) and a tracking error system ξij(t).
*erefore, when (14) can be quasi-synchronized by means of
􏽢eij(t)andξij(t), we can have the quasi-synchronization of
(1). In this process, we do not directly use the state value of
the original system (1). It is consistent with the situation that
the state value of the system is unknown in practical
application.

Theorem 3. Under Assumption (A3), usingLemma 2,Lemma
3, and5eorem 1, system (7) can obtain quasi-synchroniza-
tion-based observer if

e
− l(N− 1)2T0h 1 − ζ(N− 1)2T0􏼒 􏼓< 1. (52)

Proof. From Lemma 1, when the sequence of graphs Gj􏽮 􏽯
T0

j�1
satisfies e− l(N− 1)2T0h(1 − ζ(N− 1)2T0)< 1, the sequence of
graphs Gj􏽮 􏽯

T

j�1 satisfies e− lTh(1 − ζT
)< 1. *erefore, under

Lemma 2, system (7) can have quasi-synchronization-based
observer and can have synchronization if α � 0. □

4. Numerical Simulations

In this section, a numerical example is given to verify the
validity of theory analyses.

Review original system (7) with controller and observer
system (8):

dxi(t)

dt
� Axi(t) + Bxi(t − τ(t)) + I, t≠ tk,

xi t
+
k( 􏼁 � xi tk( 􏼁 + c 􏽘

N

j�1
ϖσ(t)

ij 􏽢xj t
i
q􏼐 􏼑 − 􏽢xi t

i
q􏼐 􏼑􏼐 􏼑, t � tk,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

d􏽢xi(t)

dt
� A􏽢xi(t) + I, t≠ tk,

􏽢xi t
+
k( 􏼁 � 􏽢xi tk( 􏼁 + η􏽘

N

j�1
ϖσ(t)

ij 􏽢xj t
i
q􏼐 􏼑 − 􏽢xi t

i
q􏼐 􏼑􏼐 􏼑, t � tk.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(53)

Let i ∈ F � 1, 2, 3, 4, 5, 6, 7, 8{ }, and the parameters in
the system are designed as follows: c � 0.12 and η � 0.05,
and the weight matrix is designed as

A �
− 4 1

2 − 3
⎛⎝ ⎞⎠,

B �
1 − 0.5

− 0.5 0.8
⎛⎝ ⎞⎠.

(54)

Meanwhile, the initial function is given as follows:
φ1 � [0.8, − 0.3]T, φ2 � [− 0.7, 0.4]T, φ3 � [1.2, − 0.5]T,
φ4 � [1.3, − 0.2]T, φ5 � [0.3, − 0.3]T, φ6 � [0.78, − 0.5]T,
φ7 � [0.42, − 0.32]T, φ8 � [− 0.4, − 0.6]T, 􏽢φ1 � [1.1, − 0.8]T,
􏽢φ2 � [0.7, − 0.78]T, 􏽢φ3 � [0.45, − 1]T, 􏽢φ4 � [− 0.63, 0.9]T,
􏽢φ5 � [− 0.43, − 0.56]T, 􏽢φ6 � [0.7, − 1.3]T, 􏽢φ7 � [0.3, − 0.4]T,
􏽢φ8 � [0.86, − 0.3]T, and τ(t) � |sin(t)|, and we set tk � 0.5k,
k∈+. Figures 2 and 3 show the switching topology.

From Figure 2 (G2m) and Figure 3 (G2m+1), we can find
that G2m,G2m+1􏼈 􏼉 is sequential connection. In the
switching period T � 2, it is also a joint connection and
T0 � 2. *e change of node set is as follows: Ω0 � 1{ },
Ω1 � 1, 4, 5, 8{ }, and Ω2 � 1, 2, 3, 4, 5, 6, 7, 8{ } � V. Satisfy
Assumptions (A1) and (A2), and the coupling matrix is as
follows:
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Figure 2: G2m.
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Figure 3: G2m+1.
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Figure 4: �e quasi-synchronization. State diagram of 8 nodes of observation system (1) and system (2), when α � 0.2.
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Figure 5: �e quasi-synchronization. State diagram of 8 nodes of observation system (1) and system (2), when α � 0.
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Figure 6: �e state diagram of 8 nodes of system (14) when α � 0.2.
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Figure 7: �e state diagram of 8 nodes of system (14) when α � 0.
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G2m �

0 0 0 1 1 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0





,

G2m+1 �

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0
1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0





. (55)

�us, we know ω � 3, T � 2.
From the above data, augmented matrix (14), we have

C1 �
A 0

0 A
[ ] �

− 4 1 0 0

2 − 3 0 0

0 0 − 4 1

0 0 2 − 3




,

C2 �
0 0

B B
[ ] �

0 0 0 0

0 0 0 0

1 − 0.5 1 − 0.5
− 0.5 0.8 − 0.5 0.8




,

C3 �
Iη 0

I(c − η) 0
[ ] �

0.05 0 0 0

0 0.05 0 0

0.07 0 0 0

0 0.07 0 0




.

(56)

For Lemma 2, l + ‖C2‖elτ + d1 � l + 1.5er − 2≤ 0 by so-
lution of the integral equation reach l< � 0.188. Let l � 0.15,
and the condition of Lemma 2 can be satis�ed.

For Lemma 3, we can obtain ‖C3‖ � 0.12≤
(1/2ω) � (1/6), and Lemma 3 is also satis�ed. According to
the conditions in �eorem 1, we have l2 + c1 ≤ 0 and l2 ≤ 2.
Let l2 � 0.15 and satisfy the condition of �eorem 1. For C2,
we have η � 0.05< (1/2ϖ) � (1/6). �us, according to
�eorem 1, there is no Zeno behavior.

For �eorem 2, 0< ζ ≤min 2‖C3‖, 1 − 4‖C3‖ϖ{ } obtain
ζ � 0.3. According to e− lTh(1 − ζT) � e− 0.15×2×0.0025
(1 − 0.32)< 1, the condition of �eorem 2 is also established
where h � 0.0025. �en, (14) can reach the quasi-synchro-
nization, namely, (1) achieves quasi-synchronization based
on observers.

Take α> 0, β � 2, and ς � 0.8.
Under quasi-synchronization, the state diagram of 8

nodes of (1) and (2) when α � 0.2 is shown in Figure 4.
Under synchronization, the state diagram of 8 nodes of (1)
and (2) when α � 0 is shown in Figure 5.
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Figure 8: �e state of sampling value is given when α � 0.2.
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Figure 9: �e state of sampling value is given when α � 0.
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Figure 6 shows the state diagram of 8 nodes of system
(14) when α � 0.2.

Figure 7 shows the state diagram of 8 nodes of system
(14) when α � 0.

In Figure 8, the state of sampling value is given when
α � 0.2. In Figure 9, the state of sampling value is given when
α � 0. When the system meets the conditions given in this
paper, all nodes reach synchronization. *us, we can find
that the theorem given in this article is valid.

5. Conclusion

*e question of quasi-synchronization (synchronization) in
MNNs with observers in impulsive coupling controller via
event-trigger strategy is discussed. An event-triggering
mechanism is designed by using the combination mea-
surement method. *e real system state in this paper is
assumed to be unmeasurable, and the system time delay is
also unmeasurable. *e state of (1) is measured by observer.
*e time delay is unknown, so the observer does not have
time delay too. *e augmented system is composed of the
observer and the tracking error system of the error system.
In the real system, the sufficient conditions of the quasi-
synchronization and synchronization are proved. Compared
with existing works, this paper considers the real state and
unmeasurable time delay, and the controller used in this
paper is a impulsive controller with event-triggered mech-
anism, so it plays a significant role in saving communication
resources. In addition, we consider trying to spread it to the
more general system and more complex systems.
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+e connected and acyclic components contained in a network are identified by the computation of its complexity, where
complexity of a network refers to the total number of spanning trees present within.+e article in hand deals with the enumeration
of the complexity of various networks’ operations such as sum (K2,n + W3, K2,n + nK1, Kn + Sn), product (K2,n⊠K2, K2,n ⋉K2,
Kn × K2, Kn⊠K2), difference (K2,n⊖K2), and the conjunction of Sn with K2. All our computations have been concluded by
implementation of the methods of linear algebra and matrix theory. Our derivations will also be highlighted with the assistance of
3D plots at the end of this article.

1. Introduction

Only simple network G � (V(G), E(G)) shall be dealt with
throughout the paper. One of the most useful algebraic
invariants is the complexity, i.e., number of spanning trees in
a network admitting roots in combinatorics, algebraic graph
theory, and networking. It is prominently linked with
network engineering and particular branches of computer
sciences that deal in the security designs specifically. Real-
istically, concreteness and precision in a network are based
on the number of spanning trees it possesses. +is indicates
that complexity is an identifier for the quality of a network.
Certain applications of complexity in different fields of
mathematics and physics can be observed in [1–4]. For in-
stance, we are living in an era of networking. +e tools similar
to complexity ensure the robustness and accuracy in a network
so that one can obtain interruption free signals, since the
complexity is an identifier of the number of connected and
acyclic pathways present in a network, where every such
pathway contains all junctions or vertices present in a network.
So, this invariant helps in the enhancement of robustness of
wireless sensor networks (WSNs) and other similar mobile

networks by relating the total number of spanning trees present
within. Another application of complexity can be observed in
the security design of a sensitive area of a building. Say there are
several secured chambers, and there are legitimate passages
only to reach to those chambers. One legitimate passage can be
identified by a unique pathway. +at is, no cyclic pathway is
allowed from one chamber to another. A programming-based
software application will ensure if a visitor follows a legitimate
passage or not through acyclic pathway mechanism, whereas
such unique acyclic pathway is termed as complexity of the
network.

1.1. Definitions and Preliminaries. +e following lemma is a
direct derivation of Temperley’s equation mentioned
previously.

Lemma 1 (see [5]). Let G be ϱ order network; then,

τ(G) �
1
ϱ2

det(ϱI − D(G) + A(G)), (1)

where G � G.
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+e above expression is more useful as it represents the
complexity of G as the determinant of a particular matrix,
rather than involving its eigenvalues. +e eigenvalues based
process is relatively difficult and complex.

+e solution of the following iterative expression defines
the first kind of Chebyshev polynomials.

Tϱ+1(x) − 2xTϱ(x) + Tϱ− 1(x) � 0; T0(x) � 1, T1(x) � x.

(2)

+e standard solution of (2) gives

Tϱ(x) �
1
2

x +
�����
x2 − 1

√
􏼐 􏼑

ϱ
+ x −

�����
x2 − 1

√
􏼐 􏼑

ϱ
􏽨 􏽩; ϱ ≥ 1. (3)

+e solution of the following iterative expression defines
the second kind of Chebyshev polynomials.

Uϱ+1(x) − 2xUϱ(x) + Uϱ− 1(x) � 0;U0(x) � 1,U1(x) � x.

(4)

+e standard solution of (4) gives

Um(z) �
1

2
�����
z
2

− 1
􏽰 z +

�����
z2 − 1

√
􏼐 􏼑

ϱ+1
− z −

�����
z2 − 1

√
􏼐 􏼑

ϱ+1
􏼔 􏼕; ϱ ≥ 1. (5)

Identity (4) is valid ∀z ∈ C excluding z � ± 1 [6]. +e
determinants are closely related to both 1st and 2n d kind
Chebyshev Polynomials.where H1 and H2 are non-singular
matrices.

Lemma 2 (see [7, 8]).
(i) ∀ϕ≥ 3, det[Am(ϕ)] � 2[Tm(ϕ/2) − 1], where

Am(ϕ) �

ϕ − 1 0 0 . . . 0 0 0 − 1

− 1 ϕ − 1 0 . . . 0 0 0 0

0 − 1 ϕ − 1 . . . 0 0 0 0

0 0 − 1 ϕ . . . 0 0 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

0 0 0 0 . . . ϕ − 1 0 0

0 0 0 0 . . . − 1 ϕ − 1 0

0 0 0 0 . . . 0 − 1 ϕ − 1

− 1 0 0 0 . . . 0 0 − 1 ϕ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6)

(i) ∀ϕ≥ 4, m≥ 3, det[Bm(ϕ)] � 2(ϕ + m − 3)/ϕ −

3[Tm(ϕ − 1/2) − 1], where

Bm(ϕ) �

ϕ 0 1 1 . . . 1 1 1 0

0 ϕ 0 1 . . . 1 1 1 1

1 0 ϕ 0 . . . 1 1 1 1

1 1 0 ϕ . . . 1 1 1 1

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

1 1 1 1 . . . ϕ 0 1 1

1 1 1 1 . . . 0 ϕ 0 1

1 1 1 1 . . . 1 0 ϕ 0

0 1 1 1 . . . 1 1 0 ϕ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7)

(i) ∀m, ϕ, det[Cm(ϕ)] � (ϕ − 1)Um− 1(ϕ + 1/2), where

Cm(ϕ) �

ϕ − 1 0 0 . . . 0 0 0 0

− 1 ϕ + 1 − 1 0 . . . 0 0 0 0

0 − 1 ϕ + 1 − 1 . . . 0 0 0 0

0 0 − 1 ϕ + 1 . . . 0 0 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

0 0 0 0 . . . ϕ + 1 − 1 0 0

0 0 0 0 . . . − 1 ϕ + 1 − 1 0

0 0 0 0 . . . 0 − 1 ϕ + 1 − 1

0 0 0 0 . . . 0 0 − 1 ϕ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(8)

(i) ∀ϕ≥ 2, m≥ 3, det[Dm(ϕ)] � (m + ϕ − 2)Um− 1(ϕ/2),
where

Dm(ϕ) �

ϕ 0 1 1 . . . 1 1 1 1

0 ϕ + 1 0 1 . . . 1 1 1 1

1 0 ϕ + 1 0 . . . 1 1 1 1

1 1 0 ϕ + 1 . . . 1 1 1 1

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

1 1 1 1 . . . ϕ + 1 0 1 1

1 1 1 1 . . . 0 ϕ + 1 0 1

1 1 1 1 . . . 1 0 ϕ + 1 0

1 1 1 1 . . . 1 1 0 ϕ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (9)

Lemma 3 (see [9]). ∀ϕ and m, det[Wm(ϕ)] � (ϕ + m − 1)

(ϕ − 1)m− 1, whereWm(ϕ)is anm × mcirculant matrix given
as

2 Complexity



Wm(ϕ) �

ϕ 1 1 1 . . . 1 1 1 1
1 ϕ 1 1 . . . 1 1 1 1
1 1 ϕ 1 . . . 1 1 1 1
1 1 1 ϕ . . . 1 1 1 1
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
1 1 1 1 . . . ϕ 1 1 1
1 1 1 1 . . . 1 ϕ 1 1
1 1 1 1 . . . 1 1 ϕ 1
1 1 1 1 . . . 1 1 1 ϕ
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. (10)

Lemma 4 (see [10]). Let H1, H2, H3, andH4be the block
matrices of ordersθ × θ, θ × ϑ, ϑ × θ, andϑ × ϑ, respectively.
6en,

det
H1 H2

H3 H4
􏼠 􏼡 � det H4 − H3H

− 1
1 H2􏼐 􏼑 × det H1( 􏼁

� det H1 − H2H
− 1
4 H3􏼐 􏼑 × det H4( 􏼁,

(11)

Lemma 5 (see [11]). For ϕ≥ 5 , let us consider a circulant
matrix given as

Eϕ �

ζ η 1 0 . . . 0 0 1 η

η ζ η 1 . . . 0 0 0 1

1 η ζ η . . . 0 0 0 0

0 1 η ζ . . . 0 0 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

0 0 0 0 . . . ζ η 1 0

0 0 0 0 . . . η ζ η 1

1 0 0 0 . . . 1 η ζ η

η 1 0 0 . . . 0 1 η ζ
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ϕ×ϕ

, (12)

τ Eϕ􏼐 􏼑 �

ζ2 + 4 ζ − η2 + 1􏼐 􏼑􏽨 􏽩 􏽙

ϕ
2

− 1

i�1
ζ + 2η cos

2πi

ϕ
􏼠 􏼡 + 2 cos

4πi

ϕ
􏼠 􏼡􏼢 􏼣

2

: for evenϕ;

[ζ + 2(η + 1)] 􏽙

⌊
ϕ
2
⌋

i�1
ζ + 2η cos

2πi

ϕ
􏼠 􏼡 + 2 cos

4πi

ϕ
􏼠 􏼡􏼢 􏼣

2

: for oddϕ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

We shall also provide a few definitions [12, 13] in Section
3 before a certain result, where necessary. +roughout the
article, G represents the complement of the network G.

1.2. Main Contributions. In the present article, we will
mainly compute the closed formulae for the complexity of
various generalized operations on graphs such as sum
(K2,n + W3, K2,n + nK1, Kn + Sn), product (K2,n⊠K2,
K2,n⋉K2, Kn × K2, Kn⊠K2), difference (K2,n⊖K2), and the
conjunction of Sn with K2. Furthermore, all our computa-
tions have been concluded by implementation of the
methods of linear algebra and matrix theory.

1.3. Main Structure. +e main structure of this article is as
follows:

1. Section 1 comprises the introduction and prelimi-
naries of our main work.

2. Section 2 contains the salient work related to our
derivations.

3. Section 3 consists of the main derivations we have
obtained in the form of the complexities of various
networks’ operations.

4. Section 4 contains a brief summary and graphical
illustrations of our work.

5. Section 5 gives the conclusion and also tells about the
future work related to this paper.

2. Related Work

If we talk about the closed formulae for the complexity of an
infinite family of networks, we shall not be able to locate any
such generalized result. Although it is still possible to derive
the new closed formulae of the complexity of classes of
networks having order m, where m is sufficiently large, it is
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useful to obtain this invariant for the networks of finite order
for the values as we increase the order of a network. If we
look into the historical development of this concept, the
calculation of the complexity of the complete network as
τ(Kβ) � ββ− 2 is the foremost concept that appeared in [14].
+e second prominent result in this regard is the complexity
of the complete bipartite network which is again derived by
Cayley [14] as τ(Kμ,]) � μ]− 1]μ− 1. In [15], the closed formula
for the complexity of Mobius ladder has been obtained as
τ(Mχ) � χ/2[(2 +

�
3

√
)χ + (2 −

�χ√
)χ + 2] for χ ≥ 2 in [15].

+e determination of the total spanning trees of a
network has recently reappeared as an active topic.
Kirchhoff’s matrix tree theorem [16] is a prominent result in
this regard. It represents the complexity of a network as the
determinant of a random cofactor of its Kirchhoff’s matrix,
where, say for a network G, K(G) � degreematrix of G −

adjacencymatrix of G indicates its Kirchhoff’s matrix.
A combinatorial method for computing the complexity

of a network is with the use of contraction-deletion theorem.
As an iterative process for an edge uv ∈ E(G), the com-
plexity ofG is the sum of τ(G|uv) and τ(G − uv). Here,G|uv

is the network derived as the result of contraction of uv in G

repeatedly until the end points u and v coincide [17].
In [18], the self-adapted task scheduling strategies in the

wireless sensor networks have been designed and analyzed.
Wang et al. [19] discussed the ant colony optimization-based
location-aware routing for wireless sensor networks. In [20],
a pedestrian detection method has been designed and

examined based on the genetic algorithm for optimizing
XGBoost training parameters. For wireless sensor networks,
Wan and Xiong designed and assessed an energy-efficient
sleep scheduling mechanism with similarity measure [21].
Lu et al. in [22] explored a finger vein-based personal au-
thentication mechanism for Internet-related security. Fur-
thermore, in [23, 24], some latest work on the enumeration
of the complexity of networks can be observed.

3. Main Results

In networking, the characteristic of developing new struc-
tures from the existing ones through network operations and
studying their various properties always remains active. +e
present section addresses our main derivations consisting of
the closed formulae of the complexity of various networks
obtained as the result of network operations.

Theorem 1. For all n , the complexity of the network K2,n +

W3 is given by

τ K2,n + W3􏼐 􏼑 � 6n− 1
(n + 4)(n + 6)

4
. (14)

Proof. Consider the network K2,n + W3 with
|V(K2,n + W3)| � n + 6 and |E(K2,n + W3)| � 6n + 14 (see
the general formation in Figure 1).

Applying Lemma 1, we have

τ K2,n + W3􏼐 􏼑 �
1

(n + 6)
2 det[(n + 6)I − D + A]

�
1

(n + 6)
2 det

n + 6 0 0 0 0 0 0 0 0 0 . . . 0 0 0 0

0 n + 6 0 0 0 0 0 0 0 0 . . . 0 0 0 0

0 0 n + 6 0 0 0 0 0 0 0 . . . 0 0 0 0

0 0 0 n + 6 0 0 0 0 0 0 . . . 0 0 0 0

0 0 0 0 n + 5 1 0 0 0 0 . . . 0 0 0 0

0 0 0 0 1 n + 5 0 0 0 0 . . . 0 0 0 0

0 0 0 0 0 0 7 1 1 1 . . . 1 1 1 1

0 0 0 0 0 0 1 7 1 1 . . . 1 1 1 1

0 0 0 0 0 0 1 1 7 1 . . . 1 1 1 1

0 0 0 0 0 0 1 1 1 7 . . . 1 1 1 1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

0 0 0 0 0 0 1 1 1 1 . . . 7 1 1 1

0 0 0 0 0 0 1 1 1 1 . . . 1 7 1 1

0 0 0 0 0 0 1 1 1 1 . . . 1 1 7 1

0 0 0 0 0 0 1 1 1 1 . . . 1 1 1 7
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(n+6)×(n+6)

.

(15)
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Now on the above determinant, we perform the fol-
lowing operations simultaneously:

(i) Adding all columns to C1.
(ii) From C1, we take the number n+5 as common.

(iii) Subtracting C1 from all columns.
(iv) Expanding along R1.

+is yields

� det

n + 5 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 . . . − 1 − 1 − 1 − 1

− 1 n + 5 − 1 − 1 − 1 − 1 − 1 − 1 − 1 . . . − 1 − 1 − 1 − 1

− 1 − 1 n + 5 − 1 − 1 − 1 − 1 − 1 − 1 . . . − 1 − 1 − 1 − 1

− 1 − 1 − 1 n + 4 0 − 1 − 1 − 1 − 1 . . . − 1 − 1 − 1 − 1

− 1 − 1 − 1 0 n + 4 − 1 − 1 − 1 − 1 . . . − 1 − 1 − 1 − 1

− 1 − 1 − 1 − 1 − 1 6 0 0 0 . . . 0 0 0 0

− 1 − 1 − 1 − 1 − 1 0 6 0 0 . . . 0 0 0 0

− 1 − 1 − 1 − 1 − 1 0 0 6 0 . . . 0 0 0 0

− 1 − 1 − 1 − 1 − 1 0 0 0 6 . . . 0 0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

− 1 − 1 − 1 − 1 − 1 0 0 0 0 . . . 6 0 0 0

− 1 − 1 − 1 − 1 − 1 0 0 0 0 . . . 0 6 0 0

− 1 − 1 − 1 − 1 − 1 0 0 0 0 . . . 0 0 6 0

− 1 − 1 − 1 − 1 − 1 0 0 0 0 . . . 0 0 0 6
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(n+5)×(n+5)

,

⇒τ K2,n + W3􏼐 􏼑 � det
P5×5 Q5×n

Rn×5 Sn×n

⎛⎝ ⎞⎠

(n+5)×(n+5)

.

(16)

By using Lemma 4, we get

v

u

y z

x

c

x2 x3
xn

xn-1xn-2
x1

Figure 1: +e network K2,n + W3.
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τ K2,n + W3􏼐 􏼑 � det(S).det P − QS
− 1

R􏼐 􏼑

� 6n 1
6

􏼒 􏼓
5
(− 1)

5det

− 5n − 30 n + 6 n + 6 n + 6 n + 6

n + 6 − 5n − 30 n + 6 n + 6 n + 6

n + 6 n + 6 − 5n − 30 n + 6 n + 6

n + 6 n + 6 n + 6 − 5n − 24 n

n + 6 n + 6 n + 6 n − 5n − 24
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.

(17)

Evaluating and simplifying, we obtain τ(K2,n + W3) �

6n− 1(n + 4)(n + 6)4. □

Theorem 2. For all n , the complexity of the strong product
K2,n⊠K2 is given by

τ K2,n⊠K2􏼐 􏼑 � (24)
n 2 n

3
+ 2n

2
+ n􏼐 􏼑􏼐 􏼑. (18)

Proof. Consider the network K2,n ) K2 with |V(K2,n ) K2)| �

2n + 4 and |E(K2,n ) K2)| � 9n + 2 (see the general formation
in Figure 2).

Applying Lemma 1, we have

τ K2,n⊠K2􏼐 􏼑 �
1

(2n + 4)
2 det[(2n + 4)I − D + A]

�
1

(n + 6)
2 det

n + 6 0 0 0 0 0 0 0 0 0 . . . 0 0 0 0

0 n + 6 0 0 0 0 0 0 0 0 . . . 0 0 0 0

0 0 n + 6 0 0 0 0 0 0 0 . . . 0 0 0 0

0 0 0 n + 6 0 0 0 0 0 0 . . . 0 0 0 0

0 0 0 0 n + 5 1 0 0 0 0 . . . 0 0 0 0

0 0 0 0 1 n + 5 0 0 0 0 . . . 0 0 0 0

0 0 0 0 0 0 7 1 1 1 . . . 1 1 1 1

0 0 0 0 0 0 1 7 1 1 . . . 1 1 1 1

0 0 0 0 0 0 1 1 7 1 . . . 1 1 1 1

0 0 0 0 0 0 1 1 1 7 . . . 1 1 1 1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

0 0 0 0 0 0 1 1 1 1 . . . 7 1 1 1

0 0 0 0 0 0 1 1 1 1 . . . 1 7 1 1

0 0 0 0 0 0 1 1 1 1 . . . 1 1 7 1

0 0 0 0 0 0 1 1 1 1 . . . 1 1 1 7
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(n+6)×(n+6)

6 Complexity



� det

n + 5 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 . . . − 1 − 1 − 1 − 1

− 1 n + 5 − 1 − 1 − 1 − 1 − 1 − 1 − 1 . . . − 1 − 1 − 1 − 1

− 1 − 1 n + 5 − 1 − 1 − 1 − 1 − 1 − 1 . . . − 1 − 1 − 1 − 1

− 1 − 1 − 1 n + 4 0 − 1 − 1 − 1 − 1 . . . − 1 − 1 − 1 − 1

− 1 − 1 − 1 0 n + 4 − 1 − 1 − 1 − 1 . . . − 1 − 1 − 1 − 1

− 1 − 1 − 1 − 1 − 1 6 0 0 0 . . . 0 0 0 0

− 1 − 1 − 1 − 1 − 1 0 6 0 0 . . . 0 0 0 0

− 1 − 1 − 1 − 1 − 1 0 0 6 0 . . . 0 0 0 0

− 1 − 1 − 1 − 1 − 1 0 0 0 6 . . . 0 0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

− 1 − 1 − 1 − 1 − 1 0 0 0 0 . . . 6 0 0 0

− 1 − 1 − 1 − 1 − 1 0 0 0 0 . . . 0 6 0 0

− 1 − 1 − 1 − 1 − 1 0 0 0 0 . . . 0 0 6 0

− 1 − 1 − 1 − 1 − 1 0 0 0 0 . . . 0 0 0 6
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(n+5)×(n+5)

,

⇒τ K2,n⊠K2􏼐 􏼑 � det
P3×3 Q3×2n

R2n×3 S2n×2n

⎛⎝ ⎞⎠

(2n+3)×(2n+3)

. (19)

By using Lemma 4, we get

τ K2,n⊠K2􏼐 􏼑 � det(S).det P − QS
− 1

R􏼐 􏼑

� 5n 24
5

􏼒 􏼓
n

det

3n + 2
2

− n

2
− n − 2

2

− n

2
3n + 2

2
− n

2

− n − 2
2

− n

2
3n + 2

2
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(20)

Evaluating the above determinant, we obtain finally
⇒τ(K2,n⊠K2) � (24)n(2(n3 + 2n2 + n)). □

Theorem 3. For all n , the complexity of the homomorphic
product K2,n⋉K2 � K2,n × K2 is given by

τ K2,n⋉K2􏼐 􏼑 � 8n− 1
n
3

+ 6n
2

+ 8n􏼐 􏼑. (21)

Proof. Consider the network K2,n⋉K2 with |V(K2,n⋉K2)| �

2n + 4 and |E(K2,n⋉K2)| � 5n + 2 (see the general formation
in Figure 3).

Applying Lemma 1, we have

x2

c2

x3 xn
xn-1xn-2x1

y2 y3
yn

yn-1yn-2y1

c1

c4

c3

Figure 2: +e strong product K2,n⊠K2.
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τ K2,n⋉K2􏼐 􏼑 �
1

(2n + 4)
2 det[(2n + 4)I − D + A]

� det

n + 5 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 . . . − 1 − 1 − 1 − 1

− 1 n + 5 − 1 − 1 − 1 − 1 − 1 − 1 − 1 . . . − 1 − 1 − 1 − 1

− 1 − 1 n + 5 − 1 − 1 − 1 − 1 − 1 − 1 . . . − 1 − 1 − 1 − 1

− 1 − 1 − 1 n + 4 0 − 1 − 1 − 1 − 1 . . . − 1 − 1 − 1 − 1

− 1 − 1 − 1 0 n + 4 − 1 − 1 − 1 − 1 . . . − 1 − 1 − 1 − 1

− 1 − 1 − 1 − 1 − 1 6 0 0 0 . . . 0 0 0 0

− 1 − 1 − 1 − 1 − 1 0 6 0 0 . . . 0 0 0 0

− 1 − 1 − 1 − 1 − 1 0 0 6 0 . . . 0 0 0 0

− 1 − 1 − 1 − 1 − 1 0 0 0 6 . . . 0 0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

− 1 − 1 − 1 − 1 − 1 0 0 0 0 . . . 6 0 0 0

− 1 − 1 − 1 − 1 − 1 0 0 0 0 . . . 0 6 0 0

− 1 − 1 − 1 − 1 − 1 0 0 0 0 . . . 0 0 6 0

− 1 − 1 − 1 − 1 − 1 0 0 0 0 . . . 0 0 0 6
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(n+5)×(n+5)

� 6n 1
6

􏼒 􏼓
5
(− 1)

5det

− 5n − 30 n + 6 n + 6 n + 6 n + 6

n + 6 − 5n − 30 n + 6 n + 6 n + 6

n + 6 n + 6 − 5n − 30 n + 6 n + 6

n + 6 n + 6 n + 6 − 5n − 24 n

n + 6 n + 6 n + 6 n − 5n − 24

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⇒τ K2,n < imesK2􏼐 􏼑 � det
P3×3 Q3×2n

R2n×3 S2n×2n

⎛⎝ ⎞⎠

(2n+3)×(2n+3)

.

(22)

By using Lemma 4, we get

τ K2,n⋉K2􏼐 􏼑 � det(S).det P − QS
− 1

R􏼐 􏼑

� 8n 1
8

􏼒 􏼓
3
det

5n + 8 − n − n − 8

− n 5n + 8 − 3n

− n − 8 − 3n 5n + 8

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(23)

Evaluating the above determinant and simplifying, we
obtain finally ⇒τ(K2,n⋉K2) � 8n− 1(n3 + 6n2 + 8n). □

Theorem 4. For all n , the complexity of the mirror network
K2,n + nK1 is given as

τ K2,n + nK1􏼐 􏼑 � 4n(n + 1)(n + 2)
2n− 2

. (24)

Proof. Consider the network K2,n + nK1 with
|V(K2,n + nK1)| � 2n + 2 and |E(K2,n + nK1)| � n2 + 4n (see
Figure 4).

Applying Lemma 1, we have

8 Complexity



τ K2,n + nK1􏼐 􏼑 �
1

(2n + 2)
2 det[(2n + 2)I − D + A]

�
1

(2n + 2)
2

det

2n + 1 1 0 0 0 . . . 0 0 0 0 0 0 . . . 0 0 0

1 2n + 1 0 0 0 . . . 0 0 0 0 0 0 . . . 0 0 0

0 0 n + 3 1 1 . . . 1 1 1 0 0 0 . . . 0 0 0

0 0 1 n + 3 1 . . . 1 1 1 0 0 0 . . . 0 0 0

0 0 1 1 n + 3 . . . 1 1 1 0 0 0 . . . 0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 1 1 1 . . . n + 3 1 1 0 0 0 . . . 0 0 0

0 0 1 1 1 . . . 1 n + 3 1 0 0 0 . . . 0 0 0

0 0 1 1 1 . . . 1 1 n + 3 0 0 0 . . . 0 0 0

0 0 0 0 0 . . . 0 0 0 n + 3 1 1 . . . 1 1 1

0 0 0 0 0 . . . 0 0 0 1 n + 3 1 . . . 1 1 1

0 0 0 0 0 . . . 0 0 0 1 1 n + 3 . . . 1 1 1

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 0 0 0 . . . 0 0 0 1 1 1 . . . n + 3 1 1

0 0 0 0 0 . . . 0 0 0 1 1 1 . . . 1 n + 3 1

0 0 0 0 0 . . . 0 0 0 1 1 1 . . . 1 1 n + 3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

x2

c2

x3 xn
xn-1xn-2x1

y2 y3 yn
yn-1yn-2y1

c1

c4

c3

Figure 3: +e homomorphic product K2,n⋉K2.
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� det

2n − 1 − 1 − 1 . . . − 1 − 1 − 1 − 1 − 1 − 1 . . . − 1 − 1 − 1

− 1 n + 2 0 0 . . . 0 0 0 − 1 − 1 − 1 . . . − 1 − 1 − 1

− 1 0 n + 2 0 . . . 0 0 0 − 1 − 1 − 1 . . . − 1 − 1 − 1

− 1 0 0 n + 2 . . . 0 0 0 − 1 − 1 − 1 . . . − 1 − 1 − 1

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

− 1 0 0 0 . . . n + 2 0 0 − 1 − 1 − 1 . . . − 1 − 1 − 1

− 1 0 0 0 . . . 0 n + 2 0 − 1 − 1 − 1 . . . − 1 − 1 − 1

− 1 0 0 0 . . . 0 0 n + 2 − 1 − 1 − 1 . . . − 1 − 1 − 1

− 1 − 1 − 1 − 1 . . . − 1 − 1 − 1 n + 2 0 0 . . . 0 0 0

− 1 − 1 − 1 − 1 . . . − 1 − 1 − 1 0 n + 2 0 . . . 0 0 0

− 1 − 1 − 1 − 1 . . . − 1 − 1 − 1 0 0 n + 2 . . . 0 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

− 1 − 1 − 1 − 1 . . . − 1 − 1 − 1 0 0 0 . . . n + 2 0 0

− 1 − 1 − 1 − 1 . . . − 1 − 1 − 1 0 0 0 . . . 0 n + 2 0

− 1 − 1 − 1 − 1 . . . − 1 − 1 − 1 0 0 0 . . . 0 0 n + 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2n+1)×(2n+1)

,

⇒τ K2,n + nK1􏼐 􏼑 � det
P1×1 Q1×2n

R2n×1 S2n×2n

⎛⎝ ⎞⎠

(2n+1)×(2n+1)

. (25)

By using Lemma 4, we have

x2

c2

x3 xnxn-1xn-2x1

y2 y3 ynyn-1yn-2y1

c1

Figure 4: +e network K2,n + nK1.
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τ K2,n + nK1􏼐 􏼑 � det(S).det P − QS
− 1

R􏼐 􏼑

� 3n
× det

2n + 3
3

− n

3

− n

3
2n + 3

3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(26)

Simplification finally gives τ(K2,n + nK1) �

4n(n + 1)(n + 2)2n− 2. □

Theorem 5. For all n , the complexity of the cartesian product
Kn × K2 is given as

τ Kn × K2( 􏼁 � n
n− 2

(n + 2)
n− 1

. (27)

Proof. Consider thenetwork Kn × K2 with |V(Kn × K2)| �

2n and |E(Kn × K2)| � n2 (see Figure 5).
Applying Lemma 1, we have

τ Kn × K2( 􏼁 �
1

(2n)
2 det[(2n)I − D + A]

�
1

(2n)
2 det

n + 1 0 0 . . . 0 0 0 0 1 1 . . . 1 1 1

0 n + 1 0 . . . 0 0 0 1 0 1 . . . 1 1 1

0 0 n + 1 . . . 0 0 0 1 1 0 . . . 1 1 1

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 0 . . . n + 1 0 0 1 1 1 . . . 0 1 1

0 0 0 . . . 0 n + 1 0 1 1 1 . . . 1 0 1

0 0 0 . . . 0 0 n + 1 1 1 1 . . . 1 1 0

0 1 1 . . . 1 1 1 n + 1 0 0 . . . 0 0 0

1 0 1 . . . 1 1 1 0 n + 1 0 . . . 0 0 0

1 1 0 . . . 1 1 1 0 0 n + 1 . . . 0 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

1 1 1 . . . 0 1 1 0 0 0 . . . n + 1 0 0

1 1 1 . . . 1 0 1 0 0 0 . . . 0 n + 1 0

1 1 1 . . . 1 1 0 0 0 0 . . . 0 0 n + 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2n×2n

,

⇒τ Kn × K2( 􏼁 �
1

(2n)
2 det

Pn×n Qn×n

Rn×n Sn×n

⎛⎝ ⎞⎠

2n×2n

.

(28)

By using Lemma 4, we have
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τ Kn × K2( 􏼁 �
1

(2n)
2 det(S).det P − QS

− 1
R􏼐 􏼑

�
1

(2n)
2 × det

n
2

+ n + 2
2 − n

1 1

1
n
2

+ n + 2
2 − n

1

1 1
n
2

+ n + 2
2 − n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(29)

Simplifying, we get τ(Kn × K2) � nn− 2(n + 2)n− 1. □

Corollary 1. For all n , the complexity of the symmetric
difference Kn⊖K2 is given as

τ Kn⊖K2( 􏼁 � n
n− 2

(n + 2)
n− 1

. (30)

Proof. Since Kn × K2 � Kn⊖K2 (see Figure 6),
τ(Kn⊖K2) � nn− 2(n + 2)n− 1 � τ(Kn × K2). □

Theorem 6. For all n , the complexity of the strong product
Kn⊠K2 � Kn + Kn is given as

τ Kn⊠K2( 􏼁 � (2n)
2n− 2

. (31)

Proof. Consider the network Kn⊠K2 with |V(Kn⊠K2)| � 2n

and |E(Kn⊠K2)| � n(2n − 1) (see Figure 7).
Applying Lemma 1, we have

τ Kn⊠K2( 􏼁 �
1

(2n)
2 det((2n)I − D + A)

�
1

(2n)
2 det

2n 0 0 . . . 0 0 0 0 0 0 . . . 0 0 0

0 2n 0 . . . 0 0 0 0 0 0 . . . 0 0 0

0 0 2n . . . 0 0 0 0 0 0 . . . 0 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 0 . . . 2n 0 0 0 0 0 . . . 0 0 0

0 0 0 . . . 0 2n 0 0 0 0 . . . 0 0 0

0 0 0 . . . 0 0 2n 0 0 0 . . . 0 0 0

0 0 0 . . . 0 0 0 2n 0 0 . . . 0 0 0

0 0 0 . . . 0 0 0 0 2n 0 . . . 0 0 0

0 0 0 . . . 0 0 0 0 0 2n . . . 0 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 0 . . . 0 0 0 0 0 0 . . . 2n 0 0

0 0 0 . . . 0 0 0 0 0 0 . . . 0 2n 0

0 0 0 . . . 0 0 0 0 0 0 . . . 0 0 2n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2n×2n

,

⇒τ Kn⊠K2( 􏼁 �
1

(2n)
2 det

Pn×n On×n

On×n Sn×n

⎛⎝ ⎞⎠

2n×2n

,

⇒τ Kn⊠K2( 􏼁 �
1

(2n)
2(2n)

2n
.

(32)

Simplifying, we get τ(Kn⊠K2) � (2n)2n− 2. □
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Theorem 7. For all n , the complexity of the symmetric
difference K2,n⊖K2 is given by

τ K2,n⊖K2􏼐 􏼑 � (n + 2)
2n+2

. (33)

Proof. Consider the network K2,n⊖K2 with |V(K2,n⊖K2)| �

2n + 4 and |E(K2,n⊖K2)| � n2 + 4n + 4 (see the general
formation in Figure 8).

Applying Lemma 1, we have

τ K2,n⊖K2􏼐 􏼑 �
1

(2n + 4)
2 det((2n + 4)I − D + A)

�
1

(2n)
2 det

2n 0 0 . . . 0 0 0 0 0 0 . . . 0 0 0

0 2n 0 . . . 0 0 0 0 0 0 . . . 0 0 0

0 0 2n . . . 0 0 0 0 0 0 . . . 0 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 0 . . . 2n 0 0 0 0 0 . . . 0 0 0

0 0 0 . . . 0 2n 0 0 0 0 . . . 0 0 0

0 0 0 . . . 0 0 2n 0 0 0 . . . 0 0 0

0 0 0 . . . 0 0 0 2n 0 0 . . . 0 0 0

0 0 0 . . . 0 0 0 0 2n 0 . . . 0 0 0

0 0 0 . . . 0 0 0 0 0 2n . . . 0 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 0 . . . 0 0 0 0 0 0 . . . 2n 0 0

0 0 0 . . . 0 0 0 0 0 0 . . . 0 2n 0

0 0 0 . . . 0 0 0 0 0 0 . . . 0 0 2n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2n×2n

,

⇒τ Kn⊠K2( 􏼁 �
1

(2n)
2 det

Pn×n On×n

On×n Sn×n

⎛⎝ ⎞⎠

2n×2n

,

⇒τ K2,n⊖K2􏼐 􏼑 � det
P3×3 Q3×2n

R2n×3 S2n×2n

⎛⎝ ⎞⎠

(2n+3)×(2n+3)

.

(34)

By using Lemma 4, we get

τ K2,n⊖K2􏼐 􏼑 � det(P).det S − RP
− 1

Q􏼐 􏼑

�
(n + 2)

2n+1

4 n
2

+ 3n + 2􏼐 􏼑
×

n + 2
4n + 4

det

3n + 4 − n − 2 − n − 2

− n − 2 3n + 4 − n

− n − 2 − n 3n + 4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(35)

Evaluating the determinant and simplifying, we obtain
finally ⇒τ(K2,n⊖K2) � (n + 2)2n+2. □

Theorem 8. For all n , the complexity of the network Kn + Sn

is given by

τ Kn + Sn( 􏼁 � (2n + 1)
n
(n + 1)

n− 1
. (36)

x2

x3

xn

xn-1

x4

x1
y2

y3

yn

yn-1

y4

y1

Figure 5: +e Cartesian product Kn × K2.
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Proof. Consider the network Kn + Sn with |V(Kn + Sn)| �

2n + 1 and |E(Kn + Sn)| � 3n/2(n + 1). Applying Lemma 1,
we have

τ Kn + Sn( 􏼁 �
1

(2n + 1)
2 det[(2n + 1)I − D + A]

�
1

(2n + 1)
2

det

2n + 1 0 0 0 . . . 0 0 0 0 0 0 . . . 0 0 0

0 n + 2 1 1 . . . 1 1 1 0 0 0 . . . 0 0 0

0 1 n + 2 1 . . . 1 1 1 0 0 0 . . . 0 0 0

0 1 1 n + 2 . . . 1 1 1 0 0 0 . . . 0 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 1 1 1 . . . n + 2 1 1 0 0 0 . . . 0 0 0

0 1 1 1 . . . 1 n + 2 1 0 0 0 . . . 0 0 0

0 1 1 1 . . . 1 1 n + 2 0 0 0 . . . 0 0 0

0 0 0 0 . . . 0 0 0 2n + 1 0 0 . . . 0 0 0

0 0 0 0 . . . 0 0 0 0 2n + 1 0 . . . 0 0 0

0 0 0 0 . . . 0 0 0 0 0 2n + 1 . . . 0 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 0 0 . . . 0 0 0 0 0 0 . . . 2n + 1 0 0

0 0 0 0 . . . 0 0 0 0 0 0 . . . 0 2n + 1 0

0 0 0 0 . . . 0 0 0 0 0 0 . . . 0 0 2n + 1
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� det

n + 1 0 0 . . . 0 0 0 − 1 − 1 − 1 . . . − 1 − 1 − 1

0 n + 1 0 . . . 0 0 0 − 1 − 1 − 1 . . . − 1 − 1 − 1

0 0 n + 1 . . . 0 0 0 − 1 − 1 − 1 . . . − 1 − 1 − 1

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 0 . . . n + 1 0 0 − 1 − 1 − 1 . . . − 1 − 1 − 1

0 0 0 . . . 0 n + 1 0 − 1 − 1 − 1 . . . − 1 − 1 − 1

0 0 0 . . . 0 0 n + 1 − 1 − 1 − 1 . . . − 1 − 1 − 1

− 1 − 1 − 1 . . . − 1 − 1 − 1 2n 0 0 . . . 0 0 0

− 1 − 1 − 1 . . . − 1 − 1 − 1 0 2n 0 . . . 0 0 0

− 1 − 1 − 1 . . . − 1 − 1 − 1 0 0 2n . . . 0 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

− 1 − 1 − 1 . . . − 1 − 1 − 1 0 0 0 . . . 2n 0 0

− 1 − 1 − 1 . . . − 1 − 1 − 1 0 0 0 . . . 0 2n 0

− 1 − 1 − 1 . . . − 1 − 1 − 1 0 0 0 . . . 0 0 2n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2n×2n

,

⇒τ Kn + Sn( 􏼁 � det
Pn×n Qn×n

Rn×n Sn×n

⎛⎝ ⎞⎠

2n×2n

.

(37)

By using Lemma 4, we obtain
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τ Kn + Sn( 􏼁 � det(S).det P − QS
− 1

R􏼐 􏼑

� (n + 1)
n

× −
2n + 1
n + 1

􏼒 􏼓
n

det

− n 1 1 1 . . . 1 1 1

1 − n 1 1 . . . 1 1 1 1

1 1 − n 1 . . . 1 1 1 1

1 1 1 − n . . . 1 1 1 1

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

1 1 1 1 . . . − n 1 1 1

1 1 1 1 . . . 1 − n 1 1

1 1 1 1 . . . 1 1 − n 1

1 1 1 1 . . . 1 1 1 − n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n×n

.

(38)

Using Lemma 3 and simplifying, we get
⇒τ(Kn + Sn) � (2n + 1)n(n + 1)n− 1. □

Theorem 9. For all n , the complexity of the conjunction
Sn∧K2 is given as

τ Sn∧K2( 􏼁 � 4(n + 1)
2
(n + 2)

2n− 2
. (39)

Proof. Consider the network Sn∧K2 with |V(Sn∧K2)| � 2n +

2 and |E(Sn∧K2)| � n2 + 4n + 1 (see Figure 9).
Applying Lemma 1, we have

x2 x3 xnxn-1x4x1

y2 y3 ynyn-1y4y1

Figure 6: +e symmetric difference Kn⊖K2.

x2

x3

xn

xn-1

x4

x1
y2

y3

yn

yn-1

y4

y1

Figure 7: +e strong product Kn⊠K2.

x2 x3 xnxn-1x1

y2 y3 ynyn-1y1

u

vy

x

Figure 8: +e symmetric difference K2,n⊖K2.

x2 x3 xnxn-1x1

y2 y3 ynyn-1y1

u

v

Figure 9: +e disjunction network Sn∧K2.
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τ Sn∧K2( 􏼁 �
1

(2n + 2)
2 det[(2n + 2)I − D + A]

�
1

(2n + 2)
2

det

2n + 2 0 0 0 0 . . . 0 0 0 0 0 0 . . . 0 0 0

0 2n + 2 0 0 0 . . . 0 0 0 0 0 0 . . . 0 0 0

0 0 n + 3 1 1 . . . 1 1 1 0 0 0 . . . 0 0 0

0 0 1 n + 3 1 . . . 1 1 1 0 0 0 . . . 0 0 0

0 0 1 1 n + 3 . . . 1 1 1 0 0 0 . . . 0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 1 1 1 . . . n + 3 1 1 0 0 0 . . . 0 0 0

0 0 1 1 1 . . . 1 n + 3 1 0 0 0 . . . 0 0 0

0 0 1 1 1 . . . 1 1 n + 3 0 0 0 . . . 0 0 0

0 0 0 0 0 . . . 0 0 0 n + 3 1 1 . . . 1 1 1

0 0 0 0 0 . . . 0 0 0 1 n + 3 1 . . . 1 1 1

0 0 0 0 0 . . . 0 0 0 1 1 n + 3 . . . 1 1 1

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 0 0 0 . . . 0 0 0 1 1 1 . . . n + 3 1 1

0 0 0 0 0 . . . 0 0 0 1 1 1 . . . 1 n + 3 1

0 0 0 0 0 . . . 0 0 0 1 1 1 . . . 1 1 n + 3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� det

2n + 1 − 1 − 1 − 1 . . . − 1 − 1 − 1 − 1 − 1 − 1 . . . − 1 − 1 − 1

− 1 n + 2 0 0 . . . 0 0 0 − 1 − 1 − 1 . . . − 1 − 1 − 1

− 1 0 n + 2 0 . . . 0 0 0 − 1 − 1 − 1 . . . − 1 − 1 − 1

− 1 0 0 n + 2 . . . 0 0 0 − 1 − 1 − 1 . . . − 1 − 1 − 1

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

− 1 0 0 0 . . . n + 2 0 0 − 1 − 1 − 1 . . . − 1 − 1 − 1

− 1 0 0 0 . . . 0 n + 2 0 − 1 − 1 − 1 . . . − 1 − 1 − 1

− 1 0 0 0 . . . 0 0 n + 2 − 1 − 1 − 1 . . . − 1 − 1 − 1

− 1 − 1 − 1 − 1 . . . − 1 − 1 − 1 n + 2 0 0 . . . 0 0 0

− 1 − 1 − 1 − 1 . . . − 1 − 1 − 1 0 n + 2 0 . . . 0 0 0

− 1 − 1 − 1 − 1 . . . − 1 − 1 − 1 0 0 n + 2 . . . 0 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

− 1 − 1 − 1 − 1 . . . − 1 − 1 − 1 0 0 0 . . . n + 2 0 0

− 1 − 1 − 1 − 1 . . . − 1 − 1 − 1 0 0 0 . . . 0 n + 2 0

− 1 − 1 − 1 − 1 . . . − 1 − 1 − 1 0 0 0 . . . 0 0 n + 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2n+1)×(2n+1)

,

⇒τ Sn∧K2( 􏼁 � det
P1×1 Q1×2n

R2n×1 S2n×2n

⎛⎝ ⎞⎠

(2n+1)×(2n+1)

.

(40)

By using Lemma 4, we have
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τ Sn∧K2( 􏼁 � det(S).det P − QS
− 1

R􏼐 􏼑

�
(− n)

n

n + 2

× det

n2 + 3n + 4
− n

1 1 1 . . . 1 1 1

1
n2 + 3n + 4

− n
1 1 . . . 1 1 1 1

1 1
n2 + 3n + 4

− n
1 . . . 1 1 1 1

1 1 1
n2 + 3n + 4

− n
. . . 1 1 1 1

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

1 1 1 1 . . .
n2 + 3n + 4

− n
1 1 1

1 1 1 1 . . . 1
n2 + 3n + 4

− n
1 1

1 1 1 1 . . . 1 1
n2 + 3n + 4

− n
1

1 1 1 1 . . . 1 1 1
n2 + 3n + 4

− n
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n×n

× det([2n + 1] − [n]).

(41)

Lemma 3 and simplification finally give

τ Sn∧K2( 􏼁 � 4(n + 1)
2
(n + 2)

2n− 2
. (42)

□

Table 1: Synopsis of the results.

Network Parameters Complexity Planar ∨ non-planar
K2,n + W3 ∀ n ∈ N 6n− 1(n + 4)(n + 6)4 Non-planar
K2,n⊠K2 ∀ n ∈ N (24)n(2(n3 + 2n2 + n)) Non-planar
K2,n⋉K2 ∀ n ∈ N 8n− 1(n3 + 6n2 + 8n) Non-planar
K2,n + nK1 ∀ n ∈ N 4n(n + 1)(n + 2)2n− 2 Non-planar
Kn × K2 ∀ n ∈ N nn− 2(n + 2)n− 1 Non-planar
Kn⊠K2 ∀ n ∈ N (2n)2n− 2 Non-planar
K2,n⊖K2 ∀ n ∈ N (n + 2)2n+2 Non-planar
Kn + Sn ∀ n ∈ N (2n + 1)n(n + 1)n− 1 Non-planar
Sn∧K2 ∀ n ∈ N 4(n + 1)2(n + 2)2n− 2 Non-planar

Complexity 17



4. Synopsis and the Diagrammatic
Comparison of the Complexities of the
Networks Obtained

+is section consists of a briefing and graphical plots and
juxtaposition of the values of complexities of the networks
enumerated in this note.

Table 1 indicates a synopsis of our results in the shape of
complexities of various networks and also categorically
recognizes it being planar or not.

Figure 10 shows the discrete graphical shapes of the values
of the complexity of networks obtained here, whereas Figure 11
addresses the relative comparison of the complexities of these
networks, revealing the red one to be the dominating layer.
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Figure 10: Trends of the enumerated complexities of K2,n + W3⟶ (T1), K2,n⊠K2⟶ (T2), K2,n⋉K2⟶ (T3), K2,n + nK1⟶ (T4),
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5. Conclusion

One of the meaningful algebraic invariants in networking
nowadays is complexity. +is invariant provides us the
information of the total number of acyclic networks present
within the base network, which ultimately ensures the re-
liability and accuracy in the network. We have enumerated
here the complexity of various operations on networks such
as K2,n + W3, K2,n⊠K2, K2,n⋉K2, K2,n + nK1, Kn × K2,
Kn⊠K2, K2,n⊖K2, Kn + Sn, and Sn∧K2. +e adopted methods
are mainly algebraic and feature Chebyshev polynomials and
the matrix theory in the calculations. As future work, we
encourage the researchers to obtain the complexities of
further generalized operations on networks such as corona
product, zig zag product, homomorphic product, join,
shadow, conjunction, and disjunction of various classes of
networks.
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'is work focuses on a multiagent system (MAS) with time-varying interval uncertainty in the system matrix, where multiple
agents interact through an undirected topology graph and only the bounding matrices on the uncertainty in the systemmatrix are
known. A reduced-order interval observer (IO), which is named the reduced-order neighborhood interval observer (NIO), is
designed to estimate the relative state of each agent and those of its neighbors. It is shown that the reduced-order IO can guarantee
the consensus of the uncertain multiagent system. Finally, simulation examples are proposed to verify the theoretical findings.

1. Introduction

With the discovery of the swarm intelligence and rapid
development of the computer science [1–5], consensus of
MASs has gained considerable attention [6–10], which
means all the agents attain an agreement upon a common
quantity of interest via distributed communications. Readers
interested in consensus of MASs are referred to the great
literature reviews on this topic, such as [11, 12].

Uncertainty exists widely in existing practical engi-
neering, which can affect the stability of the control systems
[13–15]. Most of the exisiting related works on MASs with
uncertanities are carried out to eliminate the impact of
uncertainties and achieve the consensus of the MASs [16,
17]. However, it is difficult or even impossible to get the
specific information of the uncertainties. 'us, the ac-
quirement of the bounding information on the uncertainties
(BIU) is easier than that of the uncertainties. On the other
hand, the states of the MASs cannot be achieved in some
situations. Taking these two facts into consideration, IO is
firstly proposed to single-agent systems [18, 19] to imple-
ment the state interval estimation and stabilization, where
only the outputs and the BIU are related. An IO consists of
two dynamical systems which are both in the form of
Luenberger observer, where one is used to estimate the

upper bound of the system state, while the other one aims at
estimating the lower bound of the system state. 'en, Wang
et al. extended the IO to uncertainMASs and proposed some
interesting results [20, 21]. According to the estimation
objective, two kinds of IOs are defined for uncertain mul-
tiagent systems, the local IO [20–23] and the NIO [23, 24].
To be specific, the local IO is designed to do the estimation
which relates only to the output information of the asso-
ciated agent. Yet, the NIO is designed to estimate the relative
states between agents and its neighbors, which relates to the
sum of the relative outputs between each agent and its
neighbors. In [20, 24], coordination control of MASs with
uncertain disturbances is solved by introducing IO in MASs,
including the local IO [20, 22] and the NIO [24]. In [21, 23],
the IO-based consensus of MASs with time-varying interval
uncertainties (TIUs) in the system dynamics is considered,
by using only the outputs and the BIU, where the local full-
order IO and neighborhood full-order IO are designed in
[23], while local reduced-order IO is given in [21].

As stated above, the reduced-order NIO design problem
of MASs with TIUs is not solved.'is work pays attention to
the reduced-order NIO design of MASs with TIUs and aims
at estimating the sum of relative states between each agent
and its neighbors and simultaneously achieving consensus.
In this paper, the definition of reduced-order NIO is
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proposed in detail. It shows that the consensus is a by-part of
the reduced-order NIO.

'e rest of this paper is organized as follows: Problem
formulation and some useful preliminaries used in this
paper are introduced in Section 2.'emain results are given
in Section 3, and numerical simulations are presented in
Section 4. Finally, conclusion is presented in Section 5.

2. Preliminaries and Problem Statement

2.1. Notation. R,N,Rm×n, and Rm×n
+ are denoted as the sets

of real numbers, natural numbers, m × n real matrices, and
m × n real matrices in which each element is a matrix with
nonnegative entries, respectively. A squarematrix is called to
be Metzler when all its off-diagonal elements are nonneg-
ative. All vector inequalities are understood element-wise,
for instance, va < (≤)vb (va � va1 · · · van􏼂 􏼃 and vb �

vb1 · · · vbn􏼂 􏼃) if for all i � 1, . . . , n, one has vai < (≤)vbi. For
any symmetricA ∈ Rn×n, λi(A) denotes its eigenvalues,
which is arranged as λ1(A)≤ λ2(A)≤ . . . ≤ λn(A). For any
matrix A � (aij), ‖A‖ denotes the 2-norm of A, A+ � (a+

ij)

(with a+
ij � max aij, 0􏽮 􏽯), A− � A+ − A (similarly for vec-

tors), and |A| � (|aij|) � A+ + A− . AT denotes its transpose
matrix. IN and 1N denote an N-dimensional identity matrix
and an N × 1 vector with all the entries being 1, respectively.
0 denotes the number zero (or the zero matrix with com-
patible dimensions). diag A1, . . . , AN􏼈 􏼉 denotes a block di-
agonal matrix, in which all the off-diagonal matrices are
zeros and Ai(i � 1, . . . , N) is the i-th diagonal block.

2.2. Graph &eory. Let a triple G � (V,E, G) be an undi-
rected network, whereV � v1, . . . , vN􏼈 􏼉 and E⊆V × V are
the node set and edge set, respectively, and G � (gij) ∈
RN×N is the adjacency matrix. If the information can be
communicated between node vi and node vj, then
(vi, vj) ∈ E, that is, the edge (vi, vj) exists in G � (V,E, G).
'e neighbor set of node i isNi � vj|(vi, vj) ∈ E􏽮 􏽯. A path is
a sequence of edges in G � (V,E, G) of the form (i1, i2) . . .

(i2, i3). If there exists a path from every node to every other
node [9, 25, 26], it is said that G � (V,E, G) is connected.

'e adjacency matrix G � (gij) ∈ RN×N is defined as
gij � 1 when (vi, vj) ∈ E and gij � 0 otherwise. 'e Lap-
lacian matrix is defined as L � (lij) ∈ RN×N, where lij � − gij

for j≠ i and lij � 􏽐j≠igij for j � i. For this symmetric matrix
L, in [9, 25, 26], it has exactly one zero eigenvalue with an
associated eigenvector 1N, and all the other ones are positive,
if and only if G � (V,E, G) is connected.

2.3. Problem Statement. Consider a continuous-time MAS
with N agents and time-varying uncertainty in system

matrix, where each agent moves in an n-dimensional Eu-
clidean space and regulates itself based on the following
dynamics:

_xi(t) � (A + ΔA(t))xi(t) + Bui(t),

yi(t) � Cxi(t), i � 1, 2, . . . , N,
􏼨 (1)

where xi(t) ∈ Rn×1, ui(t) ∈ Rm×1, and yi(t) ∈ Rp×1 are the
state, control input, and output of agent i, respectively. 'e
matrices A, B, C are with compatible dimensions, while
ΔA(t) (the uncertainty in system matrix) is a matrix-valued
function of the time variable t. Moreover, ΔA(t) is time-
varying interval uncertainty, which satisfies Assumption 1.

Assumption 1. 'ere exist ΔA∈ Rn×n and ΔA ∈ Rn×n with
ΔA ≤ΔA, such that ΔA(t) ∈ [ΔA ,ΔA] for all t≥ 0.

Moreover, two technical assumptions are given.

Assumption 2. (A, B) is stabilizable.

Assumption 3. (C, A) is detectable.
Denote

wi(t) � 􏽘

N

j�1
lijxj(t), (2)

as the sum of relative state between the i-th agent and its
neighbors. 'e main objective of this work is to realize the
interval estimation on wi(t) on the basis of only the interval
bound information of ΔA(t) given in Assumption 1, by
using as few integrators as possible. Motivated by [27], a
reduced-order NIO will be designed for system (1) to realize
the interval estimation on wi(t). Again by [27], for C, there
exists a matrix D ∈ R(n− p)×n to get a nonsingular matrix
P � [C/D] ∈ Rn×n. Denote P− 1 � Q � Q1 Q2􏼂 􏼃 with
Q1 ∈ Rn×p and Q2 ∈ Rn×(n− p). With these matrices, one has
CQ1 � Ip and CQ2 � 0. For i � 1, . . . , N, let
􏽥wi ≜Pwi � [􏽥wiy/􏽥wiu] � [􏽐

N
j�1 lij􏽥xjy/􏽐

N
j�1 lij􏽥xju] with 􏽥wiy ∈

Rp and 􏽥wiu ∈ Rn− p. Intuitively, 􏽥wiy � 􏽐
N
j�1 lij􏽥xjy � 􏽐

N
j�1

lijyj, so that there is no need to estimate 􏽥wiy but we have to

estimate 􏽥wiu. For simplicity, denote PAP− 1 �
􏽥A11

􏽥A12
􏽥A21

􏽥A22
􏼢 􏼣

and PB � [􏽥B1/􏽥B2] with 􏽥A11 ∈ Rp×p, 􏽥A12 ∈ Rp×(n− p), 􏽥A21 ∈
R(n− p)×p, 􏽥A22 ∈ R(n− p)×(n− p), 􏽥B1 ∈ Rp×m, and 􏽥B2 ∈ R(n− p)×m.
If ΔA in (1) is known, under Assumption 3, motivated by
[27] and the full-order NIO constructed in [23], a neigh-
borhood reduced-order observer can be designed as

_ziu � 􏽥A22 − K􏽥A12􏼐 􏼑ziu + 􏽥A22 − K􏽥A12􏼐 􏼑K + 􏽥A21 − K􏽥A11􏼐 􏼑􏽨 􏽩 􏽘

N

j�1
lijyj

+ 􏽥B2 − K􏽥B1( 􏼁 􏽘

N

j�1
lijuj + DΔAwi − KCΔAwi,

(3)
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where K ∈ R(n− p)×p is chosen to make 􏽥A22 − K􏽥A12 Hurwitz.
On the other hand, for 􏽥wiu and 􏽥wiy defined above, by (1), one
can get that

ziu � 􏽥wiu − K􏽥wiy � 􏽥wiu − K 􏽘
N

j�1
lijyj. (4)

However, in case that ΔA is unknown, the neighborhood
reduced-order observer in (3) cannot be designed. Moti-
vated by the local reduced-order IO given in [21], in this
paper, we will solve the reduced-order NIO design for MASs
steered by (1), where only the bounding information on ΔA
is known. For better understanding, Definition 1 is given.

Definition 1. Consider two dynamical systems in the form of

_ziu � f1 A, B, C,ΔA,ΔA , 􏽘
N

j�1
lijyj, 􏽘

N

j�1
lijuj, ziu

⎛⎝ ⎞⎠,

_zi � f1 A, B, C,ΔA,ΔA , 􏽘
N

j�1
lijyj, 􏽘

N

j�1
lijuj, ziu

⎛⎝ ⎞⎠,

ziu(0) � f2 wi(0), wi(0)( 􏼁,

ziu(0) � f2 wi(0), wi(0)( 􏼁,

(5)

with

ui � f ziu, ziu, yj􏼐 􏼑, j ∈Ni, (6)

where f1, f1, f2, f2, and f are some differentiable con-
tinuous functions. Define

wi � f3 ziu, ziu, yj􏼐 􏼑,

wi � f3 ziu, ziu, yj􏼐 􏼑,
(7)

with j ∈Ni; if wi ≤wi ≤wi holds for t≥ 0, it is said that ziu

and ziu in (4) constitute a neighborhood reduced framer

for (1). Beyond the holding wi ≤wi ≤wi for t≥ 0, we also
have

lim
t⟶∞

wi − 􏽘
N

j�1
lijxj(t)⎡⎢⎢⎣ ⎤⎥⎥⎦ � 0,

lim
t⟶∞

wi − 􏽘
N

j�1
lijxj(t)⎡⎢⎢⎣ ⎤⎥⎥⎦ � 0, i � 1, . . . , N.

(8)

It is said that ziu and ziu in (4) constitute a reduced NIO
for (1).

2.4. &e &eory of Positive Systems. In order to realize the
main objective of this paper, two lemmas about the positive
systems theory are introduced.

Lemma 1 (see [28]). Given a nonautonomous system de-
scribed by _x � Ax + B, where A is a Metzler matrix and B≥ 0
for t≥ 0. &en, x≥ 0 for t> 0, provided that x(0)≥ 0.

Lemma 2 (see [29]). Let x ∈ Rn×1 be a vector variable,
x ≤x≤x for some x, x ∈ Rn×1. &en,

(1) For A ∈ Rm×n, A+ x − A− x≤Ax≤A+x − A− x

(2) For A ∈ Rm×n satisfying A ≤A≤A for some
A, A ∈ Rm×nA+x+ − A

+
x− − A− x+ + A

−
x− ≤ Ax≤

A
+
x+ − A+x− − A

−
x+ + A− x−

In the following, t will be omitted in all variables without
confusion for notational simplicity. Similarly, we denote x �

xT
1 . . . xT

N􏽨 􏽩
T
and give similar manners for y, u as well as

other variables.

3. Main Results

Define

_ziu � 􏽥A22 − K􏽥A12􏼐 􏼑ziu + 􏽥A22 − K􏽥A12􏼐 􏼑K + 􏽥A21 − K􏽥A11􏼐 􏼑􏽨 􏽩 􏽘

N

j�1
lijyj

+ 􏽥B2 − K􏽥B1( 􏼁 􏽘

N

j�1
lijuj + D

+
hi − D

−
hi +(− KC)

+
hi − (− KC)

−
hi,

_ziu � 􏽥A22 − K􏽥A12􏼐 􏼑ziu + 􏽥A22 − K􏽥A12􏼐 􏼑K + 􏽥A21 − K􏽥A11􏼐 􏼑􏽨 􏽩 􏽘

N

j�1
lijyj

+ 􏽥B2 − K􏽥B1( 􏼁 􏽘

N

j�1
lijuj + D

+
hi − D

−
hi +(− KC)

+
hi − (− KC)

−
hi,

ziu(0) � D
+
wi(0) − D

−
wi(0) +(− KC)

+
wi(0) − (− KC)

−
wi(0),

ziu(0) � D
+
wi(0) − D

−
wi(0) +(− KC)

+
wi(0) − (− KC)

−
wi(0),

(9)
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where

hi ≜ ΔA
+
w

+
i − ΔA

+

w
−
i − ΔA−

w
+
i + ΔA

−

w
−
i ,

hi ≜ ΔA
+

w
+
i − ΔA+

w
−
i − ΔA

−

w
+
i + ΔA−

w
−
i . (10)

'en, one has 'eorem 1.

Theorem 1. Under Assumptions 1 and 3, if wi(0) and wi(0)

in (8) are chosen to satisfy wi(0)≤wi(0)≤wi(0) and there
exists an observer gain K ∈ R(n− p)×p to make 􏽥A22 − K􏽥A12

Metzler, then ziu and ziu given in (8) with this K are con-
sidered a neighborhood reduced-order framer for the un-
certain MAS described by (1), where wi ≤wi ≤wi holds for
i � 1, . . . , N with

wi ≜Q
+

􏽘

N

j�1
lijyj

ziu + K 􏽘
N

j�1
lijyj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− Q
−

􏽘

N

j�1
lijyj

ziu + K 􏽘
N

j�1
lijyj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

wi ≜Q
+

􏽘

N

j�1
lijyj

ziu + K 􏽘

N

j�1
lijyj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− Q
−

􏽘

N

j�1
lijyj

ziu + K 􏽘

N

j�1
lijyj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(11)

Proof. 1 By Lemma 2 (1), if the following holds:

􏽘
N

j�1
lijyj

ziu + K 􏽘
N

j�1
lijyj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤
􏽘
N

j�1
lijyj

􏽥wiu

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤

􏽘
N

j�1
lijyj

ziu + K 􏽘
N

j�1
lijyj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (12)

for t≥ 0, then one can get wi ≤wi ≤wi for t≥ 0. 'erefore,
the proof of 'eorem 1 will be completed if the inequality in
(11) holds for t≥ 0, that is to prove the establishment of.

ziu ≤ 􏽥wiu − K 􏽘
N

j�1
lijyj ≤ ziu. (13)

By (3), (12), and (13) is equivalent to,

ziu ≤ ziu ≤ ziu, (14)

where ziu is given in (2).
In order to prove the relationship in (13), let eiu � ziu −

ziu and eiu � ziu − ziu. By (2) and (8), one has

_eiu � 􏽥A22 − K􏽥A12􏼐 􏼑eiu + D
+
hi − D

−
hi +(− KC)

+
hi − (− KC)

−
hi − DΔAwi + KCΔAwi

� 􏽥A22 − K􏽥A12􏼐 􏼑eiu + D
+

hi − ΔAwi􏼐 􏼑 + D
− ΔAwi − hi( 􏼁

+(− KC)
+

hi − ΔAwi􏼐 􏼑 +(− KC)
− ΔAwi − hi( 􏼁,

_eiu � 􏽥A22 − K􏽥A12􏼐 􏼑eiu + DΔAwi − KCΔAwi − D
+
hi + D

−
hi − (− KC)

+
hi +(− KC)

−
hi

� 􏽥A22 − K􏽥A12􏼐 􏼑eiu + D
+ ΔAwi − hi( 􏼁 + D

−
hi − ΔAwi􏼐 􏼑

+(− KC)
+ ΔAwi − hi( 􏼁 +(− KC)

−
hi − ΔAwi􏼐 􏼑.

(15)
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Under Assumption 1, similar to the proof of Lemma 5 in
[21], there hold hi ≥ΔA+wi − ΔA− wi and hi ≤ΔA+wi − Δ
A− wi, so that

_eiu ≥ 􏽥A22 − K􏽥A12􏼐 􏼑eiu + D
+ ΔA+

wi − ΔA−
wi − ΔAwi􏼂 􏼃

+ D
− ΔAwi − ΔA+

wi − ΔA−
wi( 􏼁􏼂 􏼃

+(− KC)
+ ΔA+

wi − ΔA−
wi − ΔAwi􏼂 􏼃 +(− KC)

− ΔAwi − ΔA+
wi − ΔA−

wi( 􏼁􏼂 􏼃

� 􏽥A22 − K􏽥A12􏼐 􏼑eiu

+ D
+ ΔA+

wi − wi( 􏼁 + ΔA−
wi − wi( 􏼁􏼂 􏼃 + D

− ΔA+
wi − wi( 􏼁 + ΔA−

wi − wi( 􏼁􏼂 􏼃

+(− KC)
+ ΔA+

wi − wi( 􏼁 + ΔA−
wi − wi( 􏼁􏼂 􏼃

+(− KC)
− ΔA+

wi − wi( 􏼁 + ΔA−
wi − wi( 􏼁􏼂 􏼃,

_eiu ≥ 􏽥A22 − K􏽥A12􏼐 􏼑eiu + D
+ ΔAwi − ΔA+

wi − ΔA−
wi( 􏼁􏼂 􏼃

+ D
− ΔA+

wi − ΔA−
wi − ΔAwi( 􏼁

+(− KC)
+ ΔAwi − ΔA+

wi − ΔA−
wi( 􏼁􏼂 􏼃 +(− KC)

− ΔA+
wi − ΔA−

wi − ΔAwi( 􏼁

� 􏽥A22 − K􏽥A12􏼐 􏼑eiu

+ D
+ ΔA+

wi − wi( 􏼁 + ΔA−
wi − wi( 􏼁􏼂 􏼃 + D

− ΔA+
wi − wi( 􏼁 + ΔA−

wi − wi( 􏼁􏼂 􏼃

+(− KC)
+ ΔA+

wi − wi( 􏼁 + ΔA+
wi − wi( 􏼁􏼂 􏼃

+(− KC)
− ΔA+

wi − wi( 􏼁 + ΔA−
wi − wi( 􏼁􏼂 􏼃.

(16)

'at is,

_eiu
_eiu􏽨 􏽩 �

􏽥A22 − K􏽥A12 0

0 􏽥A22 − K􏽥A12

⎡⎣ ⎤⎦
ei

ei

􏼢 􏼣

+
D

+ΔA+
+(− KC)

+ΔA+
D

+ΔA−
+(− KC)

+ΔA−

D
− ΔA−

+(− KC)
− ΔA−

D
− ΔA+

+(− KC)
− ΔA+

⎡⎣ ⎤⎦
wi − wi

wi − wi

􏼢 􏼣.

(17)

By (3) and (10), one has

wi − wi � Q
+
2 ziu − ziu( 􏼁 + Q

−
2 ziu − ziu( 􏼁,

wi − wi � Q
−
2 ziu − ziu( 􏼁 + Q

+
2 ziu − ziu( 􏼁,

(18)

i.e.,

wi − wi

wi − wi

􏼢 􏼣 �
Q

+
2 Q

−
2

Q
−
2 Q

+
2

⎡⎣ ⎤⎦
eiu

eiu

􏼢 􏼣. (19)

'en, one has

_eiu
_eiu􏽨 􏽩≥

􏽥A22 − K􏽥A12 0

0 􏽥A22 − K􏽥A12

⎡⎣ ⎤⎦
ei

ei

􏼢 􏼣

+
D

+ΔA+
+(− KC)

+ΔA+
D

+ΔA−
+(− KC)

+ΔA−

D
− ΔA−

+(− KC)
− ΔA−

D
− ΔA+

+(− KC)
− ΔA+

⎡⎣ ⎤⎦
Q

+
2 Q

−
2

Q
−
2 Q

+
2

⎡⎣ ⎤⎦
eiu

eiu

􏼢 􏼣

≜
􏽥A22 − K􏽥A12 0

0 􏽥A22 − K􏽥A12

⎡⎣ ⎤⎦
ei

ei

􏼢 􏼣 + Π
ei

ei

􏼢 􏼣.

(20)
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It is apparent that Π≥ 0. On the other hand, by (3), one has wi � (D − KC)wi, so
that there hold

eiu(0) � ziu(0) − ziu(0)

� D
+
wi(0) − D

−
wi(0) +(− KC)

+
wi(0) − (− KC)

−
wi(0) − (D − KC)wi(0)

� D
+

wi(0) − wi(0)( 􏼁 +(− KC)
+

wi(0) − wi(0)( 􏼁

+ D
−

wi(0) − wi(0)( 􏼁 +(− KC)
−

wi(0) − wi(0)( 􏼁

� D
+

+(− KC)
+

D
−

+(− KC)
−

􏼂 􏼃
wi(0) − wi(0)

wi(0) − wi(0)
⎡⎣ ⎤⎦,

eiu(0) � ziu(0) − ziu(0)

� (D − KC)wi(0) − D
+
wi(0) + D

−
wi(0) − (− KC)

+
wi(0) +(− KC)

−
wi(0)

� D
+

wi(0) − wi(0)( 􏼁 + D
−

wi(0) − wi(0)( 􏼁

+(− KC)
+

wi(0) − wi(0)( 􏼁 +(− KC)
−

wi(0) − wi(0)( 􏼁

� D
−

+(− KC)
−

D
+

+(− KC)
+

􏼂 􏼃
wi(0) − wi(0)

wi(0) − wi(0)
⎡⎣ ⎤⎦,

(21)

which further result in

eiu(0)eiu(0)􏼂 􏼃 �
D

+
+(− KC)

+
D

−
+(− KC)

−

D
−

+(− KC)
−

D
+

+(− KC)
+

⎡⎣ ⎤⎦
wi(0) − wi(0)

wi(0) − wi(0)
􏼢 􏼣. (22)

Since wi(0)≤wi(0)≤wi(0), by (18), one has eiu(0)eiu􏼂

(0)]≥ 0.
'erefore, by Lemma 1, if 􏽥A22 − K􏽥A12 is a Metzler

matrix, then ziu and ziu given in (8) are considered a
neighborhood reduced-order framer for the uncertain MAS
described by (1).

'is completes the proof.
For wi and wi in (10), construct

ui � − B
T
P1 wi + wi( 􏼁, (23)

where P1≻0 is the solution of the algebraic Riccati equation

A
T
P1 + P1A − λ0P1BB

T
P1 + ϵI � 0, (24)

with λ0 ≥ 2λ2(L) and ϵ> 0.
Define

Ei � wi − wi,

Ei � wi − wi.
(25)

By (16), one has

Ei

Ei

⎡⎣ ⎤⎦ �
Q

+
2 Q

−
2

Q
−
2 Q

+
2

⎡⎣ ⎤⎦
eiu

eiu

􏼢 􏼣. (26)

For ui in (19), by (1), (21), and (22), one has

_xi � (A + ΔA)xi − BB
T
P1 wi + wi( 􏼁

� (A + ΔA)xi − BB
T
P1 2wi + Ei − Ei( 􏼁

� (A + ΔA)xi − 2BB
T

P 􏽘
N

j�1
lijxj

− BB
T
P1Q2eiu + BB

T
P1Q2eiu.

(27)

On the other hand, by (14), there hold

_eiu � 􏽥A22 − K􏽥A12􏼐 􏼑eiu

+ D
+

+(− KC)
+

D
−

+(− KC)
−

􏼂 􏼃
hi − ΔAwi

ΔAwi − wi

⎡⎣ ⎤⎦,

_eiu � 􏽥A22 − K􏽥A12􏼐 􏼑eiu

+ D
−

+(− KC)
−

D
+

+(− KC)
+

􏼂 􏼃
hi − ΔAwi

ΔAwi − wi

⎡⎣ ⎤⎦.

(28)
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Since

hi − ΔAwi � ΔA+ ΔA−
􏽨 􏽩

Ei

Ei

⎡⎣ ⎤⎦
+

− ΔA
+

ΔA
−

􏼔 􏼕
Ei

Ei

⎡⎣ ⎤⎦
−

+(ΔA − ΔA)w
+
i + ΔA − ΔA( )w

−
i ,

ΔAwi − hi � ΔA
−

ΔA
+

􏼔 􏼕
Ei

Ei

⎡⎣ ⎤⎦
+

− ΔA− ΔA+
􏽨 􏽩

Ei

Ei

⎡⎣ ⎤⎦
−

+ ΔA − ΔA( )w
+
i +(ΔA − ΔA)w

−
i ,

(29)

that is,

hi − ΔAwi

ΔAwi − wi

⎡⎣ ⎤⎦ �
ΔA+ ΔA−

ΔA
−

ΔA
+

⎡⎢⎢⎣ ⎤⎥⎥⎦
Ei

Ei

⎡⎣ ⎤⎦
+

−
ΔA

+

ΔA
−

ΔA− ΔA+

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦
Ei

Ei

⎡⎣ ⎤⎦
−

+
ΔA − ΔA

ΔA − ΔA
⎡⎣ ⎤⎦w

+
i +
ΔA − ΔA

ΔA − ΔA
􏼢 􏼣w

−
i ,

(30)

with (22) and (24), one has
_eiu

_eiu

⎡⎢⎢⎣ ⎤⎥⎥⎦ �

􏽥A22 − K􏽥A12 0

0 􏽥A22 − K􏽥A12

⎡⎢⎢⎣ ⎤⎥⎥⎦
eiu

eiu

⎡⎢⎣ ⎤⎥⎦

+
D

+
+(− KC)

+
D

−
+(− KC)

−

D
−

+(− KC)
−

D
+

+(− KC)
+

⎡⎢⎢⎣ ⎤⎥⎥⎦

·
ΔA+ ΔA−

ΔA
−

ΔA
+

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦
Q+

2 Q−
2

Q−
2 Q+

2

⎡⎢⎣ ⎤⎥⎦
eiu

eiu

⎡⎢⎣ ⎤⎥⎦⎛⎝ ⎞⎠

+

−
ΔA

+

ΔA
−

ΔA− ΔA+

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

Q+
2 Q−

2

Q−
2 Q+

2

⎡⎢⎣ ⎤⎥⎦
eiu

eiu

⎡⎢⎣ ⎤⎥⎦⎛⎝ ⎞⎠

−

+
ΔA − ΔA

ΔA − ΔA
⎡⎢⎢⎣ ⎤⎥⎥⎦w

+
i +
ΔA − ΔA

ΔA − ΔA
⎡⎢⎣ ⎤⎥⎦w

−
i .

(31)

Let ηi � xT
i eT

iu eT
iu]T􏽨 . It follows from (15) and (23) that

_ηi �

A − BB
T
P1Q2 BB

T
P1Q2

0 􏽥A22 − K􏽥A12 0

0 0 􏽥A22 − K􏽥A12

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ηi

− 2

BB
T
P1 0 0

0 0 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
􏽘
N

j�1
lijηj

+ Γ2M1 Γ1ηi( 􏼁
+

− Γ2M2 Γ1ηi( 􏼁
−

+ Γ2M3 􏽘

N

j�1
lijηj

⎛⎝ ⎞⎠

+

+ Γ2Γ0M3 􏽘

N

j�1
lijηj

⎛⎝ ⎞⎠

−

,

(32)

where

Γ0 �

In 0 0

0 0 In

0 In 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Γ1 �

In 0 0

0 Q
+
2 Q

−
2

0 Q
−
2 Q

+
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Γ2 �

In 0 0

0 D
+

+(− KC)
+

D
−

+(− KC)
−

0 D
−

+(− KC)
−

D
+

+(− KC)
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

M1 �

ΔA 0 0

0 ΔA+ ΔA−

0 ΔA
−

ΔA
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

M2 �

ΔA 0 0

0 ΔA
+

ΔA
−

0 ΔA− ΔA+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

M3 �

0 0 0

ΔA − ΔA 0 0

ΔA − ΔA 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(33)

which induces

_η � IN ⊗A − L⊗B( 􏼁η

+ IN ⊗ Γ2M1( 􏼁 IN ⊗Γ1( 􏼁η( 􏼁
+

− IN ⊗ Γ2M2( 􏼁 IN ⊗Γ1( 􏼁η( 􏼁
−

+ IN ⊗ Γ2M3( 􏼁 L⊗ I(3n− 2p)􏼐 􏼑η􏼐 􏼑
+

+ IN ⊗ Γ2Γ0M3( 􏼁 L⊗ I(3n− 2p)􏼐 􏼑η􏼐 􏼑
−

,

(34)

where

A �

A − BB
T
P1Q2 BB

T
P1Q2

0 􏽥A22 − K􏽥A12 0

0 0 􏽥A22 − K􏽥A12

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B �

2BB
T
P1 0 0

0 0 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(35)

Since L is with an undirected graph, there is an or-
thogonal matrix U � 1/

��
N

√
1N U2􏼂 􏼃 with U2 ∈ RN×(N− 1)

such that UTLU � diag λ1(L), . . . , λN(L)􏼈 􏼉, where λi(L)> 0
for i � 2, . . . , N, if G � (V,E, W) is connected. For better
understanding, denote

Λ � diag λ2(L), . . . , λN(L)􏼈 􏼉 � U
T
2 LU2. (36)

Let ηu � (UT ⊗ I(3n− 2p))η and ηuu � (UT
2 ⊗ I(3n− 2p))η �

ηT
u2 · · · ηT

uN􏽨 􏽩
T
, and then one has

Complexity 7



_ηuu � U
T
2 ⊗A − U

T
2 L⊗B􏼐 􏼑η

+ U
T
2 ⊗ Γ2M1􏼐 􏼑 IN ⊗Γ1( 􏼁η( 􏼁

+
− U

T
2 ⊗Γ2M2􏼐 􏼑 IN ⊗ Γ1( 􏼁η( 􏼁

−

+ U
T
2 ⊗ Γ2M3􏼐 􏼑 L⊗ I(3n− 2p)􏼐 􏼑η􏼐 􏼑

+
+ U

T
2 ⊗ Γ2Γ0M3􏼐 􏼑 L⊗ I(3n− 2p)􏼐 􏼑η􏼐 􏼑

−
.

(37)

Since UT
2U2 � IN− 1, U2U

T
2 � IN − 1/N1N1T

N and
L1N � 0, one has

_ηuu � IN− 1 ⊗A( 􏼁 U
T
2 ⊗ I(3n− 2p)􏼐 􏼑η − U

T
2 L U2U

T
2 +

1
N
1N1

T
N􏼒 􏼓⊗B􏼒 􏼓η

+ U
T
2 ⊗Γ2M1􏼐 􏼑 IN ⊗ Γ1( 􏼁η( 􏼁

+
− U

T
2 ⊗ Γ2M2􏼐 􏼑 IN ⊗Γ1( 􏼁η( 􏼁

−

+ U
T
2 ⊗Γ2M3􏼐 􏼑 L⊗ I(3n− 2p)􏼐 􏼑η􏼐 􏼑

+
+ U

T
2 ⊗ Γ2Γ0M3􏼐 􏼑 L⊗ I(3n− 2p)􏼐 􏼑η􏼐 􏼑

−

� IN− 1 ⊗A − Λ⊗B( 􏼁ηuu

+ U
T
2 ⊗Γ2M1􏼐 􏼑 IN ⊗ Γ1( 􏼁η( 􏼁

+
− U

T
2 ⊗ Γ2M2􏼐 􏼑 IN ⊗Γ1( 􏼁η( 􏼁

−

+ U
T
2 ⊗Γ2M3􏼐 􏼑 L⊗ I(3n− 2p)􏼐 􏼑η􏼐 􏼑

+
+ U

T
2 ⊗ Γ2Γ0M3􏼐 􏼑 L⊗ I(3n− 2p)􏼐 􏼑η􏼐 􏼑

−
.

(38)

Construct a Lyapunov function:

V � ηT
uu IN− 1 ⊗P( 􏼁ηuu, (39)

where P � diag P1, P2, P2􏼈 􏼉 with P1 in (20), P2≻0 being the
solution of the Lyapunov equation

􏽥A22 − K􏽥A12􏼐 􏼑
T
P2 + P2

􏽥A22 − K􏽥A12􏼐 􏼑

+ ϵIn− p + Q
T
2 P1BB

T
P1Q2 � 0.

(40)

□

Theorem 2. Consider an uncertain MAS (1) communicating
through an undirected network G � (V,E, G) and suppose
that Assumptions 1, 2, and 3 hold. If K ∈ R(n− p)×p is given to
make 􏽥A22 − K􏽥A12 Hurwitz and Metzler, and

θ1θ2 <
ϵ2

16
, (41)

where

θ1 � Γ1
����

����
2

+ λN(L),

θ2 � c
2

+ 2 ΔA − ΔA
����

����
2

􏼒 􏼓 Γ2
����

����
2 max λn P1( 􏼁, λ3n− 2p P2( 􏼁􏽮 􏽯,

(42)

with c � max ‖ΔA‖, ‖ΔA ‖,
ΔA+ ΔA−

ΔA
−

ΔA
+􏼢 􏼣

��������

��������
􏼨 􏼩, then ziu and

ziu given in (8) with the control algorithm (19) constitute a
reduced-order NIO for (1), provided that wi(0)≤wi(0)≤wi

(0).

Proof. 2 For the Lyapunov function given in (29), its de-
rivative according to (28) yields

_V � 􏽘
N

i�2
ηT

uu,iΦiηuu,i

+ IN ⊗ Γ1( 􏼁η( 􏼁
+

􏼂 􏼃
T
U

T
2 ⊗Γ2M1􏼐 􏼑

T
IN− 1 ⊗P( 􏼁ηuu

+ ηT
uu IN− 1 ⊗P( 􏼁 U

T
2 ⊗Γ2M1􏼐 􏼑 IN ⊗ Γ1( 􏼁η( 􏼁

+

− IN− 1 ⊗ Γ1( 􏼁η( 􏼁
−

􏼂 􏼃
T
U

T
2 ⊗ Γ2M2􏼐 􏼑

T
IN− 1 ⊗P( 􏼁ηuu

− ηT
uu IN− 1 ⊗P( 􏼁 U

T
2 ⊗Γ2M2􏼐 􏼑 IN ⊗ Γ1( 􏼁η( 􏼁

−

+ L⊗ I(3n− 2p)􏼐 􏼑η􏼐 􏼑
+

􏽨 􏽩
T
U

T
2 ⊗Γ2M3􏼐 􏼑

T
IN− 1 ⊗P( 􏼁ηuu

+ ηT
uu IN− 1 ⊗P( 􏼁 U

T
2 ⊗Γ2M3􏼐 􏼑 L⊗ I(3n− 2p)􏼐 􏼑η􏼐 􏼑

+

+ L⊗ I(3n− 2p)􏼐 􏼑η􏼐 􏼑
−

􏽨 􏽩
T
U

T
2 ⊗ Γ2Γ0M3􏼐 􏼑

T
IN− 1 ⊗P( 􏼁ηuu

+ ηT
uu IN− 1 ⊗P( 􏼁 U

T
2 ⊗Γ2Γ0M3􏼐 􏼑 L⊗ I(3n− 2p)􏼐 􏼑η􏼐 􏼑

−

≤ 􏽘

N

i�2
ηT

uu,iΦiηuu,i

+ c IN ⊗Γ1( 􏼁η( 􏼁
+

􏼂 􏼃
T
U2U

T
2 ⊗ I(3n− 2p)􏼐 􏼑 IN ⊗ Γ1( 􏼁η( 􏼁

+

+
λ3n− 2p(P)

c
Γ2

����
����
2
M1

����
����
2ηT

uuηuu

+ c IN ⊗Γ1( 􏼁η( 􏼁
−

􏼂 􏼃
T
U2U

T
2 ⊗ I(3n− 2p)􏼐 􏼑 IN ⊗Γ1( 􏼁η( 􏼁

−

+
λ3n− 2p(P)

c
Γ2

����
����
2
M2

����
����
2ηT

uuηuu

8 Complexity



+ c L⊗ I(3n− 2p)􏼐 􏼑η􏼐 􏼑
+

􏽨 􏽩
T
U2U

T
2 ⊗ I(3n− 2p)􏼐 􏼑

· L⊗ I(3n− 2p)􏼐 􏼑η􏼐 􏼑
+

+
λ3n− 2pP

c
Γ2

����
����
2
M3

����
����
2ηT

uuηuu

+ c L⊗ I(3n− 2p)􏼐 􏼑η􏼐 􏼑
−

􏽨 􏽩
T

· U2U
T
2 ⊗ I(3n− 2p)􏼐 􏼑 L⊗ I(3n− 2p)􏼐 􏼑η􏼐 􏼑

−

+
λ3n− 2pP

c
Γ2

����
����
2 Γ0
����

����
2
M3

����
����
2ηT

uuηuu,

(43)

where c> 0 is constant to be determined and

Φi � A − λi(L)B( 􏼁
T
P + P A − λi(L)B( 􏼁

�

A
T
P1 + P1A − 4λi(L)P

T
1 BB

T
P1 − P

T
1 BB

T
P1Q2 P

T
1 BB

T
P1Q2

− Q
T
2 P

T
1 BB

T
P1

􏽥A22 − K􏽥A12􏼐 􏼑
T
Q

+Q 􏽥A22 − K􏽥A12􏼐 􏼑
0

Q2P
T
1 BB

T
P1 0

􏽥A22 − K􏽥A12􏼐 􏼑
T
Q

+Q 􏽥A22 − K􏽥A12􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
(44)

with i � 2, 3, . . . , N. Since the eigenvalues ofU2U
T
2 are no less than 0, one has

_V≤ 􏽘
N

i�2
ηT

uu,iΦiηuu,i

+ c IN ⊗Γ1( 􏼁η( 􏼁
T
U2U

T
2 ⊗ I(3n− 2p)􏼐 􏼑 IN ⊗Γ1( 􏼁η

+ c IN ⊗Γ1( 􏼁η( 􏼁
T
U2U

T
2 ⊗ I(3n− 2p)􏼐 􏼑 IN ⊗Γ1( 􏼁η

+ c L⊗ I(3n− 2p)􏼐 􏼑η􏼐 􏼑
T
U2U

T
2 ⊗ I(3n− 2p)􏼐 􏼑 L⊗ I(3n− 2p)􏼐 􏼑η

+ c L⊗ I(3n− 2p)􏼐 􏼑η􏼐 􏼑
T
U2U

T
2 ⊗ I(3n− 2p)􏼐 􏼑 L⊗ I(3n− 2p)􏼐 􏼑η

+
λ3n− 2p(P)

c
Γ2

����
����
2

M1
����

����
2

+ M2
����

����
2

+ M3
����

����
2

+ Γ0
����

����
2
M3

����
����
2

􏼒 􏼓ηT
uuηuu

� 􏽘
N

i�2
ηT

uu,iΦiηuu,i

+ 2cηT
uu IN− 1 ⊗Γ

T
1 Γ1􏼐 􏼑ηuu + 2cηT

LU2U
T
2 L⊗ I(3n− 2p)􏼐 􏼑η

+
λ3n− 2p(P)

c
Γ2

����
����
2

M1
����

����
2

+ M2
����

����
2

+ M3
����

����
2

+ Γ0
����

����
2
M3

����
����
2

􏼒 􏼓ηT
uuηuu.

(45)
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Since

2cηT
LU2U

T
2 L⊗ I(3n− 2p)􏼐 􏼑η

� 2cηT
U2U

T
2 +

1
N
1N1

T
N􏼒 􏼓 LU2U

T
2 L⊗ I(3n− 2p)􏼐 􏼑 U2U

T
2 +

1
N
1N1

T
N􏼒 􏼓η

� 2cηT
uuΛ

2ηuu

_V≤ 􏽘

N

i�2
ηT

uu,iΦiηuu,i

+ 2c Γ1
����

����
2

+ λ2N(L)􏼒 􏼓 +
λ3n− 2p(P)

c
Γ2

����
����
2

M1
����

����
2

+ M2
����

����
2

+ M3
����

����
2

+ Γ0
����

����
2
M3

����
����
2

􏼒 􏼓􏼢 􏼣ηT
uuηuu.

(46)

there holds

Φi ≤

A
T
P1 + P1A − 2λi(L)P

T
1 BB

T
P1 0 0

− 0

􏽥A22 − K􏽥A12􏼐 􏼑
T
Q

+ Q 􏽥A22 − K􏽥A12􏼐 􏼑

+
1

λi(L)
Q

T
2 P1BB

T
P1Q2

0

0 0

􏽥A22 − K􏽥A12􏼐 􏼑
T
Q

+ Q 􏽥A22 − K􏽥A12􏼐 􏼑

+
1

λi(L)
Q

T
2 P1BB

T
P1Q2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (47)

with i � 2, 3, . . . , N. 'erefore, one can get that

_V≤ − ϵ − 2c Γ1
����

����
2

+ λ2N(L)􏼒 􏼓􏼔 􏼕􏼚 􏼛ηT
uuηuu

−
λ3n− 2p(P)

c
Γ2

����
����
2

M1
����

����
2

+ M2
����

����
2

+ M3
����

����
2

+ Γ0
����

����
2
M3

����
����
2

􏼒 􏼓􏼢 􏼣􏼨 􏼩ηT
uuηuu.

(48)
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Since Γ− 10 � Γ0 and ‖Γ0‖ � 1,M2 � Γ0M1Γ0 and

M1
����

���� � max ‖ΔA‖, ΔA
���

���,
ΔA+ ΔA−

ΔA
−

ΔA
+

⎡⎢⎢⎣ ⎤⎥⎥⎦

����������

����������

⎧⎨

⎩

⎫⎬

⎭ � c, (49)

‖M3‖
2 ≤ 2‖ΔA − ΔA ‖2, so that

_V≤ − ϵ − 2 θ1c +
θ2
c

􏼠 􏼡􏼢 􏼣ηT
uuηuu. (50)

Choose c �
�����
θ2/θ1

􏽰
, and under (31), one has

ϵ − 2(θ1c + θ2/c)> 0, which induces that _V≤ 0, where the

equality sign holds if and only if ηuu � 0. 'us, with ui in
(19), uncertain MAS (1) can achieve consensus. □

Remark 1. By 'eorem 2, one has limt⟶∞w+
i � 0 and

limt⟶∞w−
i � 0 for i � 1, . . . , N. 'us, by (25), as t⟶∞,

one can get that

_eiu
_eiu􏽨 􏽩 � 51

eiu

eiu

􏼢 􏼣 + 52
Q

+
2 Q

−
2

Q
−
2 Q

+
2

⎡⎣ ⎤⎦
eiu

eiu

􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (51)

where

51 �

􏽥A22 − K􏽥A12 0

0 􏽥A22 − K􏽥A12

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ +

1
2

D
+

+(− KC)
+

D
−

+(− KC)
−

D
−

+(− KC)
−

D
+

+(− KC)
+

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦
ΔA+ ΔA−

ΔA
−

ΔA
+

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦ +
ΔA

+

ΔA
−

ΔA− ΔA+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

Q
+
2 Q

−
2

Q
−
2 Q

+
2

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

52 �
1
2

D
+

+(− KC)
+

D
−

+(− KC)
−

D
−

+(− KC)
−

D
+

+(− KC)
+

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦
ΔA+ ΔA−

ΔA
−

ΔA
+

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦ −
ΔA

+

ΔA
−

ΔA− ΔA+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠.

(52)

Consequently, by Lyapunov stability theory, [eiu/eiu]

may approach 0 as t goes to ∞. 'is result will be estab-
lished, if 51, 52, and [Q+

2 /Q−
2Q−

2 /Q+
2 ] in (33) meet some

conditions. In this case, the interval on which the sum of the
relative information of each agent is located can be estimated
by wi and wi in (10).

Remark 2. 'emain results are provided under the premise
that 􏽥A22 − K􏽥A12 is Hurwitz andMetzler. If there exists a K to
make 􏽥A22 − K􏽥A12 Hurwitz and Metzler, it can be acquired
according to Lemma 4 in [21]. However, if such K does not
exist, the time-invariant transformation and time-varying
transformation in [20, 21], respectively, can be introduced to
carry out the problem of reduced-order NIO design.

4. Numerical Simulation

Some numerical simulations are proposed to verify the
theoretical results in this section. Similar to [21], the system
matrices are given as

A �

− 1 4 0

0 3 − 1

0 1 − 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

B �

− 5

1

− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

C � − 1 − 2 1􏼂 􏼃.

(53)

Obviously, (C, A) is observable, and (A, B) is stabiliz-
able. 'e time-varying uncertainty is

ΔA(t) � 10− 2

sin(t)

10
− cos2(t)

1
11

0
sin(t/3)

5
0

1
20

0
cos2(2t)

20

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (54)

which meets Assumption 1 and

ΔA � 10− 2

1
10

0
1
11

0
1
5

0

1
20

0
1
20

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

ΔA � 10− 2

−
1
10

− 1 0

0 −
1
5

0

1
20

0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(55)

For P �

− 1 − 2 1
0 1 0
0 0 1

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦, one has 􏽥A21 � [0/0],

􏽥A22 �
3 − 1
1 − 2􏼢 􏼣, 􏽥A11 � − 1􏼂 􏼃, and 􏽥A12 � − 11 1􏼂 􏼃. Here, we
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Figure 1: Reduced-order NIO-based consensus. (a) Convergence of 􏽐
N
i�10 lijx

t
j. (b) Convergence of ui.
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can choose K � [− 1/1/4], so that 􏽥A22 − K􏽥A12 is Hurwitz and
Metzler. A multiagent system consists of N � 4 agents,
which communicates through a connected graph with
Laplacian matrix as follows:

L �

2 − 1 0 − 1

− 1 2 − 1 0

0 − 1 2 − 1

− 1 0 − 1 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (56)

'e initial state of system is chosen randomly from
[− 2020] × [− 2020] × [− 2020], wi(0) � wi(0) + α, and
wi(0) � wi(0) − α, where α is a vector with each element
choosing from [01]. 'us, the relationship wi(0)≤wi

(0)≤wi(0) holds.
For multiagent system with above details, choose ϵ � 9;

then, (31) is satisfied. 'at is, the premises in 'eorem 2 are
satisfied.

Figure 1 is given to verify 'eorem 2. As shown in
Figure 1(a), 􏽐

N
j�1 lijxj converges to 0 for i � 1, . . . , N, and

simultaneously, Figure 1(b) shows that the control input
ui can also converge to 0 for i � 1, . . . , N. Both figures
imply the consensus. Figures 2(a) and 2(b) display the
trajectories of wi − wi and wi − wi, respectively. As shown
in these two figures, wi − wi and wi − wi are guaranteed to
be nonnegative, provided that wi(0)≤wi(0)≤wi(0) holds.
'erefore, 'eorem 1 is established. Further, as shown in
Figure 2, wi − wi and wi − wi approach 0 as time goes to∞.
'at is, the interval on which the sum of the relative
information of each agent associated with the uncertain
multiagent system in this example is located can be es-
timated by the reduced-order NIO given in this paper.
Consequently, Remark 1 holds.

5. Conclusions

In this paper, the reduced-order NIO is designed for MASs
with TIUs in system matrix to implement the interval es-
timation, by using only the outputs and the bounding in-
formation of the uncertain system matrix. Consensus of this
kind of uncertain multiagent systems can be achieved as a
by-part of the reduced-order NIO design. 'is work is an
important complement to the IO design for MASs with
TIUs.
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*e remarkable optical features of metallic nanoparticles have extensively developed the interest of scientists and researchers. *e
generated heat overwhelms cancer tissue incident to nanoparticles with no damage to sound tissues. Niobium nanoparticles have
the ability of easy ligands connection so they are very suitable in treating cancer optothermally. A modern field of applied
chemistry is chemical graph theory. With the use of combinatorial methods, such as vertex and edge partitions, we explore the
connection between atoms and bonds. Topological indices play a vital part in equipping directions to treat cancers or tumors.
*ese indices might be derived experimentally or computed numerically. Although experimental results are worthful but they are
expensive as well, so computational analysis provides an economical and rapid way. A topological index is a numerical value that is
only determined by the graph. In this paper, we will discuss the chemical graph of niobium (II) oxide. Additionally, each
topological index is related with thermodynamical properties of niobium (II) oxide, including entropy and enthalpy.*is has been
done in MATLAB software, using rational built-in method.

1. Introduction

All types of data quantitative, qualitative, processed, or
unprocessed might be considered to gain information to
address a simple or a complicated event or situation. If we
consider the flow chart of the information, then on the top of
the hierarchy we would find notion being the first qualitative
obscure assessment of information. *e central part of this
flow chart comprises of the parameters and measurements
while decision making extracted from inference is the final
step. Different properties of a chemical compound like its
nature, atoms, or chemical state provide us chemical in-
formation about the structure [1]. Different chemical re-
actions in a substance environment produce different
physicochemical properties/activities that include boiling
point, entropy, heat of formation, or density. In this way, the
whole milieu of a substance becomes a promising root of
information for the analysis of its chemistry [1].

Supplementary knowledge might be gained by in silico trials
for the designing of new compounds for a specified study or
objective. Stimulation in such approaches has been seen due
to expensive experimental studies along with rigorous biotic
and ecological regulations [2]. Such in silico studies are very
progressive in medicine due to their cost effectiveness.

Different approaches including graphical quantitative/
quantitative structure activity/property relationship (QSAR/
QSPR) and modeling have become an essential part of in
silico studies in drug development [3, 4]. *is is due to the
fact that biological variations can be explained in the form of
chemical variations. Such analyses are performed continu-
ally to obtain profound results [5, 6]. Topological indices
play a vital part in equipping directions to treat cancers or
tumors. *ese indices might be derived experimentally or
computed numerically [7, 8]. Although experimental results
are worthful but they are expensive as well, so computational
analysis provides an economical way Recently, several
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studies are performed/reviewed using the concept of graph
theoretical indices in drug research [9, 10]. *ere is a wide
variety of such indices in the literature [11, 12].

A graph usually comprises of two sets, namely, vertex set,
that contains the objects, and the edge set; this is based on
the connections between the objects. Any chemical com-
pound might be represented in the form of a graph where
atoms make the vertex set and the bonding between atoms
creates the edge set. Topological indices are based on the
atomic connectivity table of the chemical compound [1].
Graphical descriptors, which are usually defined in the form
of numerical numbers, can be used to appraise distinct
immersed characteristics of a chemical compound from
different point of view. Zagreb indices measure the com-
pactness of a molecule so it can be correlated with the
physicochemical properties of a compound which depend
on the volume/surface ratio of the molecules.

*e remarkable optical features of metallic nanoparticles
have extensively developed the interest of scientists and
researchers [13–15]. Researchers have analyzed that the
thermoplasmonic features of nanoparticles might be utilized
in treating cancers [16–18]. In optothermal cancer tissue
therapy, the descendent laser light provokes the frequency of
maximum response amplitude of external plasmon of me-
tallic nanoparticles and consequently the immersed energy
of descendent light preserves the heat in nanoparticles
[19–21]. *e generated heat overwhelms cancer tissue in-
cident to nanoparticles with no damage to sound tissues
[22, 23]. Niobium nanoparticles have the ability of easy
ligands connection so they are very suitable in treating the
cancer optothermally [24–26].

Niobium (Nb), a recalcitrant metal, is a suitable con-
struction material for the first shell of nuclear fusion reactors
[27]. It does, however, have a high affinity for oxygen and
carbon, which are found in pyrotechnics and refrigerants
such as liquid. Niobium is renowned to interact very effi-
ciently with oxygen as a component for the first barrier. As a
result, reliable thermodynamical data on niobium oxides,
NbO, NbO2, Nb2O5, and other intermediary phases, such as
Nb12O29, are useful. Apart from that, niobium oxides have a
variety of innovative uses. Niobium monoxide (NbO) is
utilized as a gate electrode in transistors [28], and a
(NbO/NbO2) junctionmay be employed in robust switching
devices [29]. NbO crystallises in the form of a face-centered
cubic structure similar to sodium chloride crystal where
every Nb atom in a square planar lattice is linked to four
oxygen atoms [30]. Furthermore, the NbO crystal structure
is unique in which it has 25 percent arranged voids in both
the Nb and O sublattices as shown in Figure 1 [31].

Researchers have investigated the electrical and ther-
mophysical properties of NbO. NbO has a density of around
7.3g/cm3 and a melting temperature of 1940°C [31]. Nio-
bium monoxide exhibits typical metallic behaviour and is
usually recognised as a metal, with a resistivity of around
21l × cm at 25°C that drops with temperature to 1.8l × cm at
4.2 k. Researchers have measured X-ray fluorescence for
several niobium oxides and correlated the findings of NbO
to the conduction and valence band calculations of
Nb1.0O∞!, discovering substantial variances [32]. *ey

attempted to emulate the NbO structure by doing band
structure calculations for Nb0.75O0.75 in order to account for
the 25% vacancy (see Figure 1). However, the investigation
pertaining to the thermodynamic data is very scarce. *e
laboratory work to study these characteristics is limited due
to the analytical limitations. *erefore, computational
techniques can be applied to estimate their thermodynamic
characteristics. Topological study is useful in this regard [31].

Milan Randić presented the following index, namely,
General Randić index [33–35] for a graph G � (V, E),
where L(a) denotes the degree of a vertex a as the
number of edges with a:

Rα(G) � Rα � 􏽘
lm∈E(G)

(L(l) × L(m))
α
,

where α ∈ 1, − 1,
1
2
, −
1
2

􏼚 􏼛, 2.

(1)

Estrada et al. [36, 37] established atom bond connectivity
index as follows:

ABC(G) � ABC � 􏽘
lm∈E(G)

��������������
L(l) + L(m) − 2
L(l) × L(m)

􏽳

. (2)

Vukičević and Furtula [38] presented the geometric
arithmetic index as follows:

GA(G) � GA � 􏽘
lm∈E(G)

2
�����������
L(l) × L(m)

􏽰

L(l) + L(m)
. (3)

*e Zagreb indices defined in [20, 39, 40] are as follows:
M1(G) � M1 � 􏽘

lm∈E(G)

(L(l) + L(m)),

M2(G) � M2 � 􏽘
lm∈E(G)

(L(l) × L(m)).
(4)

*e first and second Zagreb coindices defined in [41, 42]
are as follows:

M1(G) � M1 � 􏽘
lm ∉ E(G)

(L(l) + L(m)),

M2(G) � M2 � 􏽘
lm ∉ E(G)

(L(l) × L(m)).
(5)

c

a b

Nb

o

Figure 1: Cubic structure of NbO.
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Gutman and Trinajstić [40] and Furtula and Gutman
[43] introduced forgotten index as follows:

F(G) � F � 􏽘
lm∈E(G)

L(l)
2

+ L(m)
2

􏼐 􏼑. (6)

Wang et al. [44] described the augmented Zagreb index
as

AZI(G) � AZI � 􏽘
lm∈E(G)

L(l) × L(m)

L(l) + L(m) − 2
􏼠 􏼡

3

. (7)

*e Balaban index [45, 46] is presented as follows:

J(G) � J �
l

l − m
􏽘

lm∈E(G)

1
L(l) × L(m)

. (8)

Ranjini et al. in [47] reformulated versions of Zagreb
indices as follows:

ReZG1(G) � ReZG1 � 􏽘
lm∈E(G)

L(l) + L(m)

L(l) × L(m)
,

ReZG2(G) � ReZG2 � 􏽘
lm∈E(G)

L(l) × L(m)

L(l) + L(m)
,

ReZG3(G) � ReZG3

� 􏽘
lm∈E(G)

(L(l) × L(m))(L(l) + L(m)).

(9)

2. Results for Niobium (II) Oxide

*e number of vertices and edges of structure of Niobium
(II) oxide denoted by NbO is 9lm + 5l + 5m + 2 and
16lm + 6l + 6m, respectively. In NbOthere are three types of
vertices, namely, the vertices of degree 2,3, and 4, respec-
tively. *e vertex and edge partition of NbO is presented in
Table 1 and Table 2, respectively.

Theorem 1. Let G � NbO[l, m] with l, m≥ 1. )en, Randić
indices for α ∈ 1, − 1, (1/2), − (1/2){ } are as follows:

R1 � 208lm + 16l + 16m − 24,

R− 1 � 1.125lm + 1.1111l + 0.9861m + 0.6666,

R1/2 � 49.5692lm + 20.2871l + 12.2871m − 5.0953,

R− (1/2) � 3.9641lm + 3.0239l + 2.5239m + 0.8413.

(10)

Proof. For α � 1,

R1 � 􏽘
lm∈E(G)

L(l) × L(m)

� (16)(6) +(16l + 16m − 24)(9)

+(12lm − 8l − 8m + 8)(12) +(4lm − 2l − 2m)(16)

� 208lm + 16l + 16m − 24.

(11)

For α � − 1,

R− 1 � 􏽘
lm∈E(G)

1
L(l) × L(m)

� (16)
1
6

􏼒 􏼓 +(16l + 16m − 24)
1
9

􏼒 􏼓

+(12lm − 8l − 8m + 8)
1
12

􏼒 􏼓

+(4lm − 2l − 2m)
1
16

􏼒 􏼓

� 1.125lm + 1.1111l + 0.9861m + 0.6666.

(12)

For α � 1/2,

R1/2 � 􏽘
lm∈E(G)

�����������
L(l) × L(m)

􏽰

� (16)(
�
6

√
) +(16l + 16m − 24)(

�
9

√
)

+(12lm − 8l − 8m + 8)(
��
12

√
)

+(4lm − 2l − 2m)(
��
16

√
)

� 49.5692lm + 20.2871l + 12.2871m − 5.0953.

(13)

For α � (− 1/2),

R− 1/2 � 􏽘
lm∈E(G)

1
�����������
L(l) × L(m)

􏽰

� (16)
1
�
6

√􏼠 􏼡 +(16l + 16m − 24)
1
�
9

√􏼠 􏼡

+(12lm − 8l − 8m + 8)
1
��
12

√􏼠 􏼡

+(4lm − 2l − 2m)
1
��
16

√􏼠 􏼡

� 3.9641lm + 3.0239l + 2.5239m + 0.8413.

(14)

□

Table 1: Vertex partition of NbO.

L(v) Frequency Set of vertices
2 8 V1
3 4lm + 8l + 8m − 8 V3
4 5lm − 3l − 3m + 2 V4

Table 2: Edge partition of NbO.

(L(l),L(m)) Frequency Set of edges
(2, 3) 16 E1
(3, 3) 16l + 16m − 24 E2
(3, 4) 12lm − 8l − 8m + 8 E3
(4, 4) 4lm − 2l − 2m E4
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Theorem 2. LetG � NbO, with l, m≥ 1.)en, the atom bond
connectivity index corresponds to

ABC � 10.1954lm + 4.2779l + 4.2779m + 0.4776. (15)

Proof

ABC � 􏽘
lm∈E(G)

��������������
L(l) + L(m) − 2
L(l) × L(m)

􏽳

� (16)

�
3
6

􏽲

􏼠 􏼡 +(16l + 16m − 24)

�
4
9

􏽲

􏼠 􏼡

+(12lm − 8l − 8m + 8)

��
5
12

􏽲

􏼠 􏼡

+(4lm − 2l − 2m)

��
6
16

􏽲

􏼠 􏼡

� 10.1954lm + 4.2779l + 4.2779m + 0.4776.

(16)

□

Theorem 3. Consider the graph of G � NbO which has
l, m≥ 1 and geometric arithmetic index is corresponding to the
following:

GA � 15.8769lm + 6.0820l + 6.0820m − 0.4053. (17)

Proof

GA � 􏽘
lm∈E(G)

2
�����������
L(l) × L(m)

􏽰

L(l) + L(m)

� (16)
2

�
6

√

5
􏼠 􏼡 +(16l + 16m − 24)

2
�
9

√

6
􏼠 􏼡

+(12lm − 8l − 8m + 8)
2

��
12

√

7
􏼠 􏼡

+(4lm − 2l − 2m)
2

��
16

√

8
􏼠 􏼡

� 15.8769lm + 6.0820l + 6.0820m − 0.4053.

(18)

□

Theorem 4. )e forgotten index for the graph of
G � NbO[l, m] with l, m≥ 1 is corresponding to

F � 428lm + 24l + 24m − 24. (19)

Proof

F � 􏽘
lm∈E(G)

L(l)
2

+L(m)
2

􏼐 􏼑

�(16)(13) +(16l +16m − 24)(18)

+(12lm − 8l − 8m +8)(25) +(4lm − 2l − 2m)(32)

� 428lm +24l +24m − 24.

(20)

□

Theorem 5. )e augmented index for the graph of
G � NbO[l, m] with l, m≥ 1 is corresponding to

AZI � 241.7398lm + 33.7320l + 33.7320m − 34.783. (21)

Proof

AZI � 􏽘
lm∈E(G)

L(l) × L(m)

L(l) + L(m) − 2
􏼠 􏼡

3

� (16)
6
3

􏼒 􏼓
3

+(16l + 16m − 24)
9
4

􏼒 􏼓
3

+(12lm − 8l − 8m + 8)
12
5

􏼒 􏼓
3

+(4lm − 2l − 2m)
16
6

􏼒 􏼓
3

� 241.7398lm + 33.7320l + 33.7320m − 34.783.

(22)

□

Theorem 6. Consider the graph of G � NbO[l, m] such that
l, m≥ 1 and the first and second Zagreb index is corresponding
to

M1 � 116lm + 24l + 24m − 8,

M2 � 208lm + 16l + 16m − 24.
(23)

Proof

M1 � 􏽘
lm∈E(G)

L(l) + L(m)

� (16)(5) +(16l + 16m − 24)(6)

+(12lm − 8l − 8m + 8)(7) +(4lm − 2l − 2m)(8)

� 116lm + 24l + 24m − 8,

M2 � 􏽘
lm∈E(G)

L(l) × L(m)

� (16)(6) +(16l + 16m − 24)(9)

+(12lm − 8l − 8m + 8)(12) +(4lm − 2l − 2m)(16)

� 208lm + 16l + 16m − 24.

(24)

□
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Figure 2: Continued.
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Figure 2: An interactive view of scattered plot together with surface plot of indices. (a) (m, n,R1). (b) (m,n,R− 1). (c) (m, n, R1/2). (d)
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Theorem 7. )e first and second Zagreb coindices for the
graph of (G) � NbO[l, m] with l, m≥ 1 are corresponding to

M1 � 288l
2
m

2
+ 268l

2
m + 268lm

2
+ 60l

2

+ 36lm + 60m
2

− 12l − 12m + 8,

M2 � 512l
2
m

2
+ 384l

2
m + 384lm

2
+ 72l

2

− 122lm + 72m
2

− 28l − 28m + 28.

(25)

Proof

M1 � 􏽘
lm ∉ E(G)

L(l) + L(m)

� 2|E(G)|(|V(G)| − 1) − M1

� 2(16lm + 6l + 6m)(9lm + 5l + 5m + 2 − 1)

− (116lm + 24l + 24m − 8)

� 288l
2
m

2
+ 268l

2
m + 268lm

2
+ 60l

2

+ 36lm + 60m
2

− 12l − 12m + 8,

M2 � 􏽘
lm ∉ E(G)

L(l) × L(m)

� 2|E(G)|
2

−
1
2
M1 − M2

� 2(16lm + 6l + 6m)
2

−
1
2

(116lm + 24l + 24m − 8)

− (208lm + 16l + 16m − 24)

� 512l
2
m

2
+ 384l

2
m + 384lm

2

+ 72l
2

− 122lm + 72m
2

− 28l − 28m + 28.

(26)

□

Theorem 8. )e redefined Zagreb indices for the graph of
G � NbI[l, m] with l, m≥ 1 correspond to

ReZG1 � 9lm + 5l + 5m + 2,

ReZG2 � 28.5714lm + 6.2857l + 6.2857m − 3.0857,

ReZG3 � 1520lm − 64l − 64m − 144.

(27)

Proof

ReZG1 � 􏽘
lm∈E(G)

L(l) + L(m)

L(l) × L(m)

� (16)
5
6

􏼒 􏼓 +(16l + 16m − 24)
6
9

􏼒 􏼓

+(12lm − 8l − 8m + 8)
7
12

􏼒 􏼓

+(4lm − 2l − 2m)
8
16

􏼒 􏼓

� 9lm + 5l + 5m + 2,

ReZG2 � 􏽘
lm∈E(G)

L(l) × L(m)

L(l) + L(m)

� (16)
6
5

􏼒 􏼓 +(16l + 16m − 24)
9
6

􏼒 􏼓

+(12lm − 8l − 8m + 8)
12
7

􏼒 􏼓

+(4lm − 2l − 2m)
16
8

􏼒 􏼓

� 28.5714lm + 6.2857l + 6.2857m − 3.0857,

ReZG3 � 􏽘
lm∈E(G)

((L(l) × L(m))(L(l) + L(m)))

� (16)(30) +(16l + 16m − 24)(54)

+(12lm − 8l − 8m + 8)(84)

+(4lm − 2l − 2m)(128)

� 1520lm − 64l − 64m − 144.

(28)

Table 3: Values of HoF and Entropy for units of NbO.

[m, n] Units of frequency HoF × 10− 22 kJ Entropy ×10− 22Jmol− 1K− 1

[1, 1] 4 − 26.9545 3.1949
[2, 2] 16 − 107.8180 12.7798
[3, 3] 36 − 242.5905 28.7545
[4, 4] 64 − 431.2720 51.1192
[5, 5] 100 − 673.8625 79.8737
[6, 6] 144 − 970.3620 115.0182
[7, 7] 196 − 1320.7705 156.5526
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Graphical illustration for each index corresponding to
l � m � i; i � 1, 2, . . . , 100, computed above, is provided in
Figure 2. □

2.1. )ermodynamical Properties (HoF and Entropy) of Ni-
obium (II) Oxide. Many topological indices are derived for
unit cell of NbO, including M1; M1; ABC; GA; and AZI.
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Figure 3: R1 (x-axis) vs. HoF (y-axis).
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Figure 5: R(1/2) vs. HoF.
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*ese indices are linked to thermodynamic properties of
NbO, such as heat of formation (HoF) or enthalpy and
entropy.*e standardmolar enthalpy and entropy of NbO is
− 405.8 kJmol− 1 and 48.1Jmol− 1K− 1, respectively. Table 3
represents the numerical values of HoF and Entropy.

2.2. StatisticalModels forHoF andTopological Indices. In this
section, mathematical frameworks are created for the to-
pological index (computed in Section 2) and HoF (given in
Section 2.1) of NbO. All fitted curves are shown in
Figures 3–17 and also the constant quantity values of the
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Figure 6: R(− 1/2) vs. HoF.
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fitted curves are depicted in Tables 4–18. Also, the goodness
of fit for indices vs. HoF for NbO is depicted in Table 19. Let
ε and c denote the mean and standard deviation that is used
to rescale the data.

(i) Estimation of rational polynomial for HoF vs. R1 is

HoF(x) �
p1x + p2

x
4

+ q1x
3

+ q2x
2

+ q3x + q4
, (29)

where x � R1 is rescaled through ε � 4264 and
c � 3746.

HoF vs. M1
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Figure 9: M1 vs. HoF.
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Figure 10: M2 vs. HoF.
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Figure 11: M1 vs. HoF.
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(ii) Estimation of rational polynomial for HoF vs. R− 1
is

HoF(x) �
p1x

2
+ p2x + p3

x
2

+ q1x + q2
, (30)

where x � R− 1 is rescaled through ε � 31.56 and
c � 24.34.

(iii) Estimation of rational polynomial for HoF vs. R1/2
is

HoF(x) �
p1x

2
+ p2x + p3

x
3

+ q1x
2

+ q2x + q3
, (31)

where x � R(1/2) rescaled through ε � 1117 and
c � 945.4.

(iv) Estimation of rational polynomial for HoF vs.
R(− 1/2) is

HoF(x) �
p1x

2
+ p2x + p3

x
2

+ q1x + q2
, (32)

where x � R(− 1/2) is rescaled through ε � 102.3 and
c � 81.85.

(v) Estimation of rational polynomial for HoF vs. ABC
is

HoF(x) �
p1x + p2

x
2

+ q1x + q2
, (33)

where x � ABC is rescaled through ε � 238.6 and
c � 198.4.

(vi) Estimation of rational polynomial for HoF vs. GA
is

HoF(x) �
p1x

2
+ p2x + p3

x + q1
, (34)

where x � GA is rescaled through ε � 365.8 and
c � 306.5.

(vii) Estimation of rational polynomial for HoF vs. M1
is

HoF(x) �
p1x + p2

x
4

+ q1x
3

+ q2x
2

+ q3x + q4
, (35)

where x � M1 is rescaled through ε � 2504 and
c � 2153.

(viii) Estimation of rational polynomial for HoF vs. M2
is

HoF(x) �
p1x + p2

x
3

+ q1x
2

+ q2x + q3
, (36)

where x � M2 is rescaled through ε � 4264 and
c � 3746.

(ix) Estimation of rational polynomial for HoF vs. M1
is

HoF(x) �
p1x

2
+ p2x + p3

x
2

+ q1x + q2
, (37)

where x � M1 is rescaled through ε � 2.554e + 05
and c � 3.276e + 05.

(x) Estimation of rational polynomial for HoF vs. M2
is

HoF(x) �
p1x

2
+ p2x + p3

x
2

+ q1x + q2
, (38)

where x � M2 is rescaled through ε � 4.283e + 05
and c � 5.545e + 05.

(vi) Estimation of rational polynomial for HoF vs. AZI
is

HoF(x) �
p1x

2
+ p2x + p3

x + q1
, (39)

where x � AZI is rescaled through ε � 1818 and
c � 1625.

(vii) Estimation of rational polynomial for HoF vs. F is
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Figure 12: M2 vs. HoF.
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HoF(x) �
p1x

2
+ p2x + p3

x + q1
, (40)

where x � F is rescaled through ε � 8728 and
c � 7669.

(viii) Estimation of rational polynomial for HoF vs.
ReZG1 is

HoF(x) �
p1x

2
+ p2x + p3

x
3

+ q1x
2

+ q2x + q3
, (41)

where x � ReZG1 is rescaled through ε � 222 and
c � 180.3.

(ix) Estimation of rational polynomial for HoF vs.
ReZG2 is

0 500 1000 1500 2000 2500 3000 3500 4000 4500
AZI

-1200

-1000

-800

-600

-400

-200

0

H
oF

HoF vs. AZI
AZI

Figure 13: AZI vs. HoF.
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Figure 14: F vs. HoF.
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Figure 15: ReZG1 vs. HoF.
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HoF(x) �
p1x

2
+ p2x + p3

x
3

+ q1x
2

+ q2x + q3
, (42)

where x � ReZG2 is rescaled through ε � 618.6
and c � 531.8.

(x) Estimation of rational polynomial for HoF vs.
ReZG3 is

HoF(x) �
p1x

2
+ p2x + p3

x
2

+ q1x + q2
, (43)

HoF vs. ReZ2
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Figure 16: ReZG2 vs. HoF.
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Figure 17: ReZG3 vs. HoF.

Table 4: R1 vs. HoF.

pi Confidence interval(CI) qi CI

i � 1 − 2.089e+ 05 (− 1.39e+ 06, 9.72e+ 05) − 3.028 (− 8.911, 2.856)
i � 2 − 2.381e+ 05 (− 1.583e+ 06, 1.107e+ 06) 3.559 (− 15.22, 22.34)
i � 3 — — − 4.613 (− 33.85, 24.62)
i � 4 — — 443.2 (− 2061, 2947)

Table 5: R− 1 vs. HoF.

pi CI qi CI

i � 1 − 3.496e+ 07 (− 1.177e+ 11, 1.176e+ 11) 6.704e+ 04 (− 2.255e+ 08, 2.257e+ 08)
i � 2 − 9.916e+ 07 (− 3.337e+ 11, 3.335e+ 11) 1.33e+ 05 (− 4.473e+ 08, 4.476e+ 08)
i � 3 − 6.91e+ 07 (− 2.325e+ 11, 2.324e+ 11) — —
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where x � ReZG3 is rescaled through ε � 2.974e + 04 and
c � 2.661e + 04.

2.3. Statistical Models for Entropy and Topological Indices.
In this section, mathematical frameworks for the topological
index (computed in Section 2) and Entropy (given in Section
2.1) of NbO are shown. All fitted curves are shown in
Figures 18–32, and the parametric values of the fitted curves
are given in Tables 20–34. Also, the goodness of fit for in-
dices vs. entropy for NbO is depicted in Table 35.

(i) Estimated rational polynomial of Entropy vs. R1 is

Entropy(x) �
p1x + p2

x
3

+ q1x
2

+ q2x + q3
, (44)

where x � R1 is rescaled through ε � 4264 and
c � 3746.

(ii) Estimated rational polynomial of Entropy vs. R− 1 is

Entropy(x) �
p1x

2
+ p2x + p3

x
3

+ q1x
2

+ q2x + q3
, (45)

where x � R− 1 is rescaled through ε � 31.56 and
c � 24.34.

(iii) Estimated rational polynomial of Entropy vs. R1/2 is

Table 6: R(1/2) vs. HoF.

pi CI qi CI

i � 1 3.108e+ 07 (− 6.357e+ 10, 6.364e+ 10) 229.4 (− 4.749e+ 05, 4.753e+ 05)
i � 2 8.362e+ 07 (− 1.71e+ 11, 1.711e+ 11) − 6.361e+ 04 (− 1.302e+ 08, 1.301e+ 08)
i � 3 5.528e+ 07 (− 1.13e+ 11, 1.131e+ 11) − 1.04e+ 05 (− 2.128e+ 08, 2.126e+ 08)

Table 7: R(− 1/2) vs. HoF.

pi CI qi CI

i � 1 − 3.55e+ 07 (− 9.978e+ 10, 9.971e+ 10) 6.963e+ 04 (− 1.956e+ 08, 1.957e+ 08)
i � 2 − 9.948e+ 07 (− 2.796e+ 11, 2.794e+ 11) 1.305e+ 05 (− 3.666e+ 08, 3.668e+ 08)
i � 3 − 6.838e+ 07 (− 1.921e+ 11, 1.92e+ 11) — —

Table 8: ABC vs. HoF.

pi CI qi CI

i � 1 − 3.504e+ 04 (− 6.796e+ 04, − 2111) − 3.75 (− 5.523, − 1.977)
i � 2 − 4.081e+ 04 (− 7.88e+ 04, − 2822) 77.34 (5.61, 149.1)

Table 9: GA vs. HoF.

pi CI qi CI

i � 1 4.637e+ 05 (− 2.16e+ 10, 2.16e+ 10) − 4.433e+ 04 (− 2.063e+ 09, 2.063e+ 09)
i � 2 2.091e+ 07 (− 9.735e+ 11, 9.736e+ 11) — —
i � 3 2.35e+ 07 (− 1.094e+ 12, 1.094e+ 12) — —

Table 10: M1 vs. HoF.

pi CI qi CI

i � 1 − 8.239e+ 04 (− 5.395e+ 05, 3.747e+ 05) − 3.054 (− 8.908, 2.8)
i � 2 − 9.506e+ 04 (− 6.215e+ 05, 4.314e+ 05) 3.673 (− 15.16, 22.51)
i � 3 — — − 4.831 (− 34.56, 24.9)
i � 4 — — 177.9 (− 807.8, 1164)
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Table 12: M1 vs. HoF.

pi CI qi CI

i � 1 − 3053 (− 4237, − 1869) 6.184 (2.407, 9.962)
i � 2 − 6405 (− 1.054e+04, − 2273) 4.651 (0.886, 8.417)
i � 3 − 3146 (− 5686, − 606.9) — —

Table 13: M2 vs. HoF.

pi CI qi CI

i � 1 1.765e+ 07 (− 2.879e+ 12, 2.879e+ 12) − 7.947e+ 04 (− 1.296e+ 10, 1.296e+ 10)
i � 2 1.026e+ 08 (− 1.673e+ 13, 1.673e+ 13) − 1.008e+ 05 (− 1.644e+ 10, 1.644e+ 10)
i � 3 7.063e+ 07 (− 1.152e+ 13, 1.152e+ 13) — —

Table 14: AZI vs. HoF.

pi CI qi CI

i � 1 − 8568 (− 1.056e+ 08, 1.056e+ 08) − 1.092e+ 04 (− 1.426e+ 08, 1.425e+ 08)
i � 2 5.208e+ 06 (− 6.799e+ 10, 6.8e+ 10) — —
I � 3 5.894e+ 06 (− 7.693e+ 10, 7.694e+ 10) — —

Table 15: F vs. HoF.

pi CI qi CI

i � 1 2.344e+ 04 (− 4.068e+ 08, 4.069e+ 08) − 1.46e+ 04 (− 2.484e+ 08, 2.484e+ 08)
i � 2 6.948e+ 06 (− 1.182e+ 11, 1.182e+ 11) — —
i � 3 7.852e+ 06 (− 1.336e+ 11, 1.336e+ 11) — —

Table 16: ReZG1 vs. HoF.

pi CI qi CI

i � 1 4.092e+ 07 (− 4.611e+ 11, 4.611e+ 11) 1129 (− 1.274e+ 07, 1.275e+ 07)
i � 2 1.012e+ 08 (− 1.14e+ 12, 1.14e+ 12) − 8.418e+ 04 (− 9.487e+ 08, 9.485e+ 08)
i � 3 6.262e+ 07 (− 7.054e+ 11, 7.056e+ 11) − 1.188e+ 05 (− 1.339e+ 09, 1.338e+ 09)

Table 17: ReZG2 vs. HoF.

pi CI qi CI

i � 1 − 4.999e+ 05 (− 1.692e+ 06, 6.922e+ 05) − 5.973 (− 14.18, 2.234)
i � 2 − 1.264e+ 06 (− 4.372e+ 06, 1.845e+ 06) 1037 (− 1429, 3503)
i � 3 − 7.929e+ 05 (− 2.795e+ 06, 1.209e+ 06) 1486 (− 2265, 5236)

Table 11: M2 vs. HoF.

pi CI qi CI

i � 1 − 7.613e+ 07 (− 9.059e+ 10, 9.044e+ 10) 442.4 (− 5.281e+ 05, 5.29e+ 05)
i � 2 − 8.664e+ 07 (− 1.031e+ 11, 1.029e+ 11) − 1634 (− 1.945e+ 06, 1.942e+ 06)
i � 3 — — 1.614e+ 05 (− 1.917e+ 08, 1.921e+ 08)
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Entropy(x) �
p1x

2
+ p2x + p3

x
3

+ q1x
2

+ q2x + q3
, (46)

where x � R1/2 is rescaled through ε � 1117 and
c � 945.4.

(iv) Estimated rational polynomial of Entropy vs. R− 1/2
is

Entropy(x) �
p1x

2
+ p2x + p3

x
3

+ q1x
2

+ q2x + q3
, (47)

where x � R− 1/2 is rescaled through ε � 102.3 and
c � 81.85.

(v) Estimated rational polynomial of Entropy vs. ABC
is

Entropy(x) �
p1x

2
+ p2x + p3

x
3

+ q1x
2

+ q2x + q3
, (48)

where x � ABC is rescaled through ε � 238.6 and
c � 198.4.

(vi) Estimated rational polynomial of Entropy vs. GA is

Table 19: Goodness of fit for nidices vs. HoF for NbO.

Index Fit type SSE R2 Adjusted R2 RMSE
R1 rat14 0.02675 1 1 0.1636
R− 1 rat22 4.062 1 1 1.425
R1/2 rat23 0.0617 1 1 0.2484
R− 1/2 rat22 3.122 1 1 1.249
ABC rat12 15.19 1 1 2.25
GA rat21 61.11 1 0.9999 4.513
M1 rat14 0.1551 1 1 0.3938
M2 rat13 0.7451 1 1 0.6104
M1 rat22 92.31 0.9999 0.9998 6.794
M2 rat22 1769 0.9987 0.9961 29.74
HM rat13 0.123 1 1 0.248
AZI rat21 0.3795 1 1 0.3557
F rat21 1.776 1 1 0.7695
ReZG1 rat23 2.238 1 1 1.496
ReZG2 rat23 0.0005708 1 1 0.02389
ReZG3 rat22 0.8455 1 1 0.6502

Table 18: ReZG3 vs. HoF.

pi CI qi CI

i � 1 − 1.746e+ 05 (− 4.898e+ 05, 1.407e+ 05) 364.5 (− 298.9, 1028)
i � 2 − 1.921e+ 05 (− 9.603e+ 05, 5.761e+ 05) − 10.06 (− 976, 955.8)
i � 3 5470 (− 5.163e+ 05, 5.272e+ 05) — —
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Figure 18: R1 (x-axis) vs. Entropy (y-axis).
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Entropy(x) �
p1x + p2

x
3

+ q1x
2

+ q2x + q3
, (49)

where x � GA is rescaled through ε � 365.8 and
c � 306.5.

(vii) Estimated rational polynomial of Entropy vs. M1 is

Entropy(x) �
p1x + p2

x
4

+ q1x
3

+ q2x
2

+ q3x + q4
, (50)

where x � M1 is rescaled through ε � 2504 and
c � 2153.

(viii) Estimated rational polynomial of Entropy vs. M2 is
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Figure 19: R− 1 vs. Entropy.
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Figure 20: R1/2 vs. Entropy.
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Figure 21: R− 1/2 vs. Entropy.
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Entropy(x) �
p1x + p2

x
2

+ q1x + q2
, (51)

where x � M2 is rescaled through ε � 4264 and
c � 3746.

(ix) Estimated rational polynomial of Entropy vs. M1 is

Entropy(x) �
p1x + p2

x
3

+ q1x
2

+ q2x + q3
, (52)
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Figure 22: ABC vs. Entropy.
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Figure 23: GA vs. Entropy.
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Figure 24: M1 vs. Entropy.
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where x � M1 is rescaled through ε � 2.554e + 05
and c � 3.276e + 05.

(x) Estimated rational polynomial of Entropy vs. M2 is

Entropy(x) �
p1x + p2

x
4

+ q1x
3

+ q2x
2

+ q3x + q4
, (53)
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Figure 25: M2 vs. Entropy.
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Figure 26: M1 vs. Entropy.
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Figure 27: M2 vs. Entropy.
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where x � M2 is rescaled through ε � 4.283e + 05
and c � 5.545e + 05.

(xi) Estimated rational polynomial of Entropy vs. AZI
is

Entropy(x) �
p1x + p2

x
2

+ q1x + q2
, (54)

where x � AZI is rescaled through ε � 1818 and
c � 1625.

(xii) Estimated rational polynomial of Entropy vs. F is

Entropy(x) �
p1x + p2

x
4

+ q1x
3

+ q2x
2

+ q3x + q4
, (55)
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Figure 28: AZI vs. Entropy.
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Figure 29: F vs. Entropy.
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Figure 30: ReZG1 vs. Entropy.
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Figure 31: ReZG2 vs. Entropy.
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Figure 32: ReZG3 vs. Entropy.

Table 20: R1 vs. Entropy.

pi CI qi CI

i � 1 − 2.646e+ 04 (− 6.984e+ 04, 1.691e+ 04) − 3.384 (− 5.642, − 1.127)
i � 2 − 3.014e+ 04 (− 7.949e+ 04, 1.921e+ 04) 5.483 (− 2.395, 13.36)
i � 3 — — − 473.4 (− 1249, 302.2)

Table 21: R− 1 vs. Entropy.

pi CI qi CI

i � 1 − 7.6e+ 05 (− 4.028e+ 08, 4.013e+ 08) 135.2 (− 7.287e+ 04, 7.314e+ 04)
i � 2 − 2.077e+ 06 (− 1.1e+ 09, 1.096e+ 09) − 1.259e+ 04 (− 6.675e+ 06, 6.65e+ 06)
i � 3 − 1.406e+ 06 (− 7.444e+ 08, 7.415e+ 08) − 2.283e+ 04 (− 1.208e+ 07, 1.204e+ 07)
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Table 22: R1/2 vs. Entropy.

pi CI qi CI

i � 1 − 1.575e+ 06 (− 1.165e+ 09, 1.162e+ 09) 102.9 (− 7.795e+ 04, 7.816e+ 04)
i � 2 − 4.215e+ 06 (− 3.115e+ 09, 3.106e+ 09) − 2.721e+ 04 (− 2.013e+ 07, 2.008e+ 07)
i � 3 − 2.775e+ 06 (− 2.049e+ 09, 2.044e+ 09) − 4.406e+ 04 (− 3.254e+ 07, 3.245e+ 07)

Table 23: R− 1/2 vs. Entropy.

pi CI qi CI

i � 1 2.454e+ 04 (− 2.946e+ 04, 7.854e+ 04) − 6.267 (− 14.22, 1.686)
i � 2 6.443e+ 04 (− 8.139e+ 04, 2.102e+ 05) 416.8 (− 493.2, 1327)
i � 3 4.205e+ 04 (− 5.534e+ 04, 1.394e+ 05) 677.3 (− 891.1, 2246)

Table 24: ABC vs. Entropy.

pi CI qi CI

i � 1 8.579e+ 05 (− 2.287e+ 10, 2.287e+ 10) 308 (− 8.305e+ 06, 8.306e+ 06)
i � 2 2.692e+ 06 (− 7.184e+ 10, 7.185e+ 10) 1.379e+ 04 (− 3.674e+ 08, 3.675e+ 08)
i � 3 1.993e+ 06 (− 5.323e+ 10, 5.323e+ 10) 3.185e+ 04 (− 8.508e+ 08, 8.508e+ 08)

Table 25: GA vs. Entropy.

pi CI qi CI

i � 1 − 5810 (− 1.493e+ 04, 3315) − 3.43 (− 5.625, − 1.235)
i � 2 − 6784 (− 1.739e+ 04, 3818) 5.695 (− 2.055, 13.45)
i � 3 — — − 108 (− 277.2, 61.22)

Table 26: M1 vs. Entropy.

pi CI qi CI

i � 1 9765 (− 4.435e+ 04, 6.388e+ 04) − 3.054 (− 8.9, 2.792)
i � 2 1.127e+ 04 (− 5.105e+ 04, 7.358e+ 04) 3.672 (− 15.14, 22.48)
i � 3 — — − 4.83 (− 34.52, 24.86)
i � 4 — — 177.9 (− 806.6, 1162)

Table 27: M2 vs. Entropy.

pi CI qi CI

i � 1 2.117e+ 04 (421.2, 4.192e+ 04) − 3.726 (− 5.577, − 1.875)
i � 2 2.408e+ 04 (522.6, 4.765e+ 04) 378.5 (8.47, 748.6)

Table 28: M1 vs. Entropy.

pi CI qi CI

i � 1 − 6.943e+ 06 (− 2.572e+ 11, 2.572e+ 11) 4530 (− 1.679e+ 08, 1.679e+ 08)
i � 2 − 5.788e+ 06 (− 2.144e+ 11, 2.144e+ 11) − 3.523e+ 04 (− 1.305e+ 09, 1.305e+ 09)
i � 3 — — − 7.099e+ 04 (− 2.63e+ 09, 2.63e+ 09)

22 Complexity



where x � F is rescaled through ε � 8728 and
c � 7669.

(xiii) Estimated rational polynomial of Entropy vs.
ReZG1 is

Entropy(x) �
p1x

2
+ p2x + p3

x
3

+ q1x
2

+ q2x + q3
, (56)

where x � ReZG1 is rescaled through ε � 222 and
c � 180.3.

(xiv) Estimated rational polynomial of Entropy vs.
ReZG2 is

Entropy(x) �
p1x

2
+ p2x + p3

x
3

+ q1x
2

+ q2x + q3
, (57)

where x � ReZG2 is rescaled through ε � 618.6
and c � 531.8.

(xv) Estimated rational polynomial of Entropy vs.
ReZG3 is

Table 34: ReZG3 vs. Entropy.

pi CI qi CI

i � 1 8.157e+ 04 (3.2e+ 04, 1.311e+ 05) 1448 (566.3, 2329)
i � 2 2.083e+ 05 (7.129e+ 04, 3.454e+ 05) 2048 (618.7, 3478)
i � 3 1.311e+ 05 (3.961e+ 04, 2.227e+ 05) — —

Table 33: ReZG2 vs. Entropy.

pi CI qi CI

i � 1 5.915e+ 04 (− 7.923e+ 04, 1.975e+ 05) − 5.968 (− 14.01, 2.073)
i � 2 1.495e+ 05 (− 2.114e+ 05, 5.104e+ 05) 1035 (− 1380, 3450)
i � 3 9.381e+ 04 (− 1.386e+ 05, 3.262e+ 05) 1483 (− 2190, 5155)

Table 32: ReZG1 vs. Entropy.

pi CI qi CI

i � 1 2.858e+ 04 (− 3.576e+ 04, 9.292e+ 04) − 6.187 (− 14.22, 1.843)
i � 2 7.425e+ 04 (− 9.781e+ 04, 2.463e+ 05) 490.1 (− 606, 1586)
i � 3 4.793e+ 04 (− 6.582e+ 04, 1.617e+ 05) 768.1 (− 1054, 2590)

Table 31: F vs. Entropy.

pi CI qi CI

i � 1 3.363e+ 04 (− 1.563e+ 05, 2.236e+ 05) − 3.023 (− 8.886, 2.84)
i � 2 3.825e+ 04 (− 1.777e+ 05, 2.542e+ 05) 3.538 (− 15.15, 22.22)
i � 3 — — − 4.576 (− 33.6, 24.45)
i � 4 — — 600.1 (− 2788, 3988)

Table 30: AZI vs. Entropy.

pi CI qi CI

i � 1 5.214e+ 06 (− 1.034e+ 09, 1.044e+ 09) 166.1 (− 3.334e+ 04, 3.367e+ 04)
i � 2 5.886e+ 06 (− 1.167e+ 09, 1.179e+ 09) 9.2e+ 04 (− 1.825e+ 07, 1.843e+ 07)

Table 29: M2 vs. Entropy.

pi CI qi CI

i � 1 4.171e+ 06 (− 3.796e+ 11, 3.796e+ 11) 3482 (− 3.171e+ 08, 3.171e+ 08)
i � 2 3.268e+ 06 (− 2.975e+ 11, 2.975e+ 11) − 1.149e+ 04 (− 1.045e+ 09, 1.045e+ 09)
i � 3 — — 2.548e+ 04 (− 2.319e+ 09, 2.319e+ 09)
i � 4 — — 4.081e+ 04 (− 3.714e+ 09, 3.715e+ 09)
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Entropy(x) �
p1x

2
+ p2x + p3

x
2

+ q1x + q2
, (58)

where x � ReZG3 is rescaled through ε � 2.974e + 04 and
c � 2.661e + 04.

3. Conclusion

After determining the topological degree-based indices, the
thermodynamical parameters of niobium (II) oxide are
derived. Fitting curves and building mathematical models
are used to create a relationship between each index and each
thermodynamical property. In MATLAB software, the ra-
tional fitting method is utilized as it gives the least mean
squared error of all the built-in methods.
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*is paper investigates the distributed consensus problem of general linear multiagent systems (MASs) with communication
noises under fixed and Markovian switching topologies, respectively. Each agent can obtain full state of itself and receive its
neighbors’ state with noises, where intensities of noises are vector functions of relative states of agents. Bearing in mind the above
constrains, a consensus protocol is proposed, where the gain matrix is obtained by the algebraic Riccati equation and the coupling
strength is restricted in a given interval. By using the stochastic stability theorem, we show that mean square consensus is achieved
in fixed topology case and switching topologies case, respectively. Furthermore, an estimation of the exponential convergence rate
of consensus is given explicitly. Finally, simulation examples are given to show the correctness of the proposed results.

1. Introduction

In system and control community, the coordination prob-
lem of MASs is one of the most concerned hotspots in the
past decade, which has shown its potential in real-world
applications, such as distributed sensor networks, smart
grids, and multirobot formation [1–4]. Consensus is a
fundamental issue in the control problem of MASs, which
refers to designing a protocol such that all agents converge to
a common value. Research results on the consensus problem
can be extended to solve many coordination problems of
MASs, including flocking, swarming, and rendezvous for-
mation [5–7].

In real world, agents and their connections are often
affected by noises, which could sometimes affect the per-
formance or even destroy the stability of systems [8, 9].
Generally, noises can be divided into two categories: additive
noise and multiplicative noise, and both kinds of noises have
been considered in the study of MASs [10]. For additive
noise, which destroys the signal in the form of superposition,
its intensity is determined by external factors, such as

lightning, and pulse. In 2009, Huang and Manton intro-
duced the stochastic approximation technique to design a
decreasing nonnegative gain function c(t), which could
attenuate the impact of additive noise while letting theMASs
achieve consensus [11]. *e idea of nonnegative gain
function was then utilized by some scholars to investigate
MASs with additive noise. For example, Li et al. proposed
sufficient and necessary conditions for the decreasing
nonnegative gain function to achieve asymptotic unbiased
mean square average consensus [12]. Based on these results,
leader-following consensus problem was solved in [13],
containment control problem was studied in [14], and bi-
partite consensus problem was concerned in [15]. For
multiplicative noise, its intensity depends on states of the
system, e.g., measuring relative states through analog fading
channels [16]. In [17], by using the small gain theorem,
Zhang et al. developed necessary and sufficient conditions
for mean square consensus and almost sure consensus for
MASs. By using the stochastic stability theorem, heteroge-
neous MASs were studied in [18], and MASs with non-
identical channel fading were analyzed in [19]. In practical
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applications, the two kinds of noise may coexist in MASs
[20]. Motivated by this phenomenon, MASs with both
additive and multiplicative noises were considered in [10]
for the consensus problem, and in [21], for the containment
control problem. However, in the above studies, the con-
cerned MASs were in first- or second-order dynamics under
fixed topology.

Typically, agents are connected through a network,
which is not only affected by noises, but also has problems
of link failure or abrupt change, etc. [22–25]. Many sig-
nificant results on MASs under switching topologies have
been addressed [26–29]. It can be found that the switching
signals in many existing results were subject to deter-
ministic time sequences [30–32]. However, due to un-
predictable changes in the communication networks, it is
more significant to study the case that topologies switch
randomly [33]. In [34], consensus problem of double-in-
tegrator MASs was studied under Markovian switching
topologies. In [35, 36], consensus problems were investi-
gated for MASs with semi-Markovian switching topologies.
In addition, there are reports involving Markovian
switching topologies and communication noises at the
same time. For example, in [13], Wang et al. considered the
mean square and almost sure consensus problem for MASs
with Markovian switching topologies and additive noises.
*e results in [13] were then extended in [37], where
sufficient and necessary conditions were obtained for
single-integrator MASs with Markovian switching topol-
ogies and additive noises.

Inspired by the above discussions, mean square con-
sensus of general linear MASs with communication noises
under Markovian switching topologies is investigated in this
paper. Consensus protocol will be designed by combining
the stochastic stability theory, the Riccati equation, and some
theories on matrix. *e contributions of this paper are
summarized as follows:

(i) Consensus problem of general linear MASs with
communication noises is studied. *e considered
noises are induced by the communication among
agents, which is a distinct feature of networked
systems. Moreover, the general linear MASs include
some results concerned with first-order MASs as
special cases [37].

(ii) To capture the time-varying communication among
agents in real, we extend the consensus problem by
studying the switching topologies case. We assume
that the switching signals are subject to a Markovian
process, under which we merely require the com-
bined topology rather than each underlying topology
being connected.

We organize the rest of the paper in the following way.
Section 2 contains some useful preliminaries and a for-
mulation of the problem. In Sections 3 and 4, consensus
results for fixed and Markovian switching topologies under
communication noises are provided. Section 5 is devoted to
simulation examples. Finally, a conclusion of the paper is
given in Section 6.

*e following notations will be used.We define a column
vector that is all ones as 1, the N-dimensional column vector
with the i th element being 1 and others being zero as ηN,i,
the matrix (1/N)11T as JN, and the N-dimensional identity
matrix as IN. For any given square matrix A ∈ RN×N, define
λmin(A) � min1≤i≤N |λi(A)|􏼈 􏼉. Denote Ib

a � a, a + 1, . . . , b{ }

for a< b. E[·] denotes the mathematical expectation.

2. Problem Formulation

2.1. Graph /eory. Let G � (V,E,A) be an undirected
graph, where V � 1, 2, . . . , N{ } is the set of nodes; E⊆V ×

V is the set of edges. Node i means agent i. An edge of G is
denoted by (i, j), and it implies that the information can be
exchanged between node j and node i. *e adjacency matrix
A � [aij] ∈ RN×N represents the structure of the graph,
where aij � 1 if (i, j) ∈ E, otherwise, aij � 0. Assume that
there are no self-loops, i.e., aii � 0 for all i ∈ V. *e set of
neighbors of agent i is denoted as Ni � j|(i, j) ∈ E􏼈 􏼉. Let
D � diag d1, d2, . . . , dN􏼈 􏼉, where di � 􏽐j∈Ni

aij is the degree
of agent i. *e Laplacian matrix L � [lij] ∈ RN×N of G is
defined to be L � D − A.

For a positive integer m, the union of m graphs G1 �

(V,E1,A1), . . . ,Gm � (V,Em,Am) is denoted by
∪mr�1G

r � (V, ∪mr�1E
r, ∪mr�1A

r). Let G(σ(t)) � (V, E(σ(t)),

A(σ(t))) be the interaction topology of agents at time t,
where the edge set E(σ(t)) and the adjacency matrix
A(σ(t)) are time varying.

Lemma 1 (see [26]). If G is a connected graph that is un-
directed, L ∈ RN×N is the corresponding Laplacian matrix,
and its eigenvalues can be ordered in ascending order as

0 � λ1(L)< λ2(L)≤ · · · ≤ λN(L), (1)

and

min
1Tx�0,x≠ 0

x
T
Lx

‖x‖
2 � λ2(L), (2)

where λ2(L) is called the algebraic connectivity of G.

2.2.ProblemFormulation. In this section, we considerMASs
with the following dynamics:

_xi(t) � Axi(t) + Bui(t), i ∈ IN1 , (3)

where xi(t) ∈ Rn is the state of the i th agent and ui(t) ∈ Rn

is the control input. A and B are given constant matrices
with appropriate dimensions satisfying that (A, B) is
controllable.

Remark 1. Comparing with first-order systems, states in
general linear system (3) are coupled through matrix A and
the control ui is not placed on the state xi directly. It can be
found that the general linear MASs (3) include the first-
order MASs in [37] as special cases. *erefore, in this paper,
we require (A, B) to be controllable and employ the Riccati
equation to obtain a feasible gain matrix. *en, a kind of
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Lyapunov function, which differs from that in integrator
cases, will be designed to prove the stability of the consensus
error.

In real MASs, each agent receives information from its
neighbors with random perturbations. Hence, when agent i

communicates with its neighbor agent j, agent i receives the
state of agent j in the following form:

yji(t) � xj(t) + gij xi(t) − xj(t)􏼐 􏼑ξij(t), (4)

where yji(t) ∈ Rn denotes the measurement of xj(t) by
agent i and ξij(t) ∈ R denotes the communication noises.
*e noise intensity function gij(·) is a mapping from Rn to
Rn. *ere exists a constant ε> 0, such that ‖gij(x)‖≤ ε‖x‖,
i � 1, . . . , N, andj ∈ Ni, for any x ∈ Rn. *e noise process
ξij(t), i, j � 1, . . . , N satisfies 􏽒

t

0 ξij(s)ds � wij(t), t≥ 0,
where wij(t), i, j � 1, . . . , N is an independent Brownian
motion.

Due to the existence of communication noises, the
consensus protocol is designed as

ui(t) � cK 􏽘
N

j�1
aij yji(t) − xi(t)􏼐 􏼑, (5)

where c is the coupling strength and K is the gain matrix to
be designed later.

In this work, we also consider the consensus of MASs (3)
over randomly switching topologies and the consensus
protocol is modified as follows:

ui(t) � cK 􏽘
N

j�1
aij(σ(t)) yji(t) − xi(t)􏼐 􏼑, (6)

where aij(σ(t)) is the element of A(σ(t)) and G(σ(t)) �

V,E(σ(t)),A(σ(t)) will randomly switch among m dis-
tinct topologiesG(σ(t)) ∈ G1, . . . ,Gm􏼈 􏼉, andG(σ(t)) � Gr,
if and only if the random variable σ(t) � r ∈ M � 1, . . . , m{ }.
*e switching process σ(t), t≥ 0{ } is governed by a time-
homogeneous Markov process, whose state space corre-
sponds to all possible topologies.

For MASs (3) and distributed control protocols (5) or
(6), the following questions need to be addressed. (i) Under
what conditions can the mean square consensus be
achieved? (ii) How to design the control gain matrix K and
coupling strength c?

In this paper, the common probability space for all
random variables is denoted by (Ω, F ,P), where Ω is the
sample space of elementary events. F is the σ-field of subsets
of the sample space andP is the probability measure on F . Let
the infinitesimal generator of the continuous-time Markov
process σ(t), t≥ 0{ } be Ξ � [qrs]m×m, which is given by

P σ(t + h) � s|σ(t) � r{ }

�

qrsh + o(h), if σ(t)jumps from r to s,

1 + qrrh + o(h), otherwise,

⎧⎪⎨

⎪⎩

(7)

where qrs is the transition rate from state r to state s with
qrs ≥ 0, if r≠ s, qrr � − 􏽐s≠rqrs, and o(h) denote an infini-
tesimal of a higher order than h, that is,
limh⟶0(o(h)/h) � 0. Note that Ξ is a transition rate matrix,
whose row summation is zero and all off-diagonal elements
are non-negative.

Definition 1. *eMASs (3) with proper designed consensus
protocol are said to achieve mean square consensus if for any
given xi(0)

lim
t⟶∞

E xi − xj

�����

�����
2

� 0, ∀i, j. (8)

Remark 2. Mean square stable is generally used to reflect the
stability of a stochastic system. Due to the existence of
noises, the overall MASs become stochastic systems.
*erefore, the mean square consensus defined above is
suitable to describe the consensus of the concerned MASs
with noises.

3. Consensus on Fixed Topology

Substituting consensus protocol (5) into (3), we get

dx(t) � IN ⊗A( 􏼁 − (cL⊗BK)( 􏼁x(t)dt

+ c 􏽘
N

i,j�1
aij × ηN,i ⊗ BKgij xi(t) − xj(t)􏼐 􏼑􏼐 􏼑􏼐 􏼑dwij(t).

(9)

As (A, B) is controllable and let matrices Q ∈ Rn×n be
positive definite. *e control gain matrix K is designed as

K �
1
2
B

T
P, (10)

where P is the unique positive definite solution to the fol-
lowing algebraic Riccati equation (ARE)

0 � A
T
P + PA + Q − PBB

T
P. (11)

Theorem 1. For the undirected connected graph, the MASs
(3) with communication noises achieve mean square con-
sensus under consensus protocol (3), if K is designed as (10)
and c satisfies

1
λ22(L)
≤ c

2 <
Nλmin(Q)

2(N − 1)ε2λmax(L)λmax K
T
B

T
PBK􏼐 􏼑

. (12)

Proof. Denote e(t) � ((IN − JN)⊗ In)x(t); we have

de(t) � IN ⊗A( 􏼁 − (cL⊗BK)( 􏼁e(t)dt

+ c 􏽘

N

i,j�1
aij IN − JN( 􏼁ηN,i ⊗ BKgij ei(t) − ej(t)􏼐 􏼑􏼐 􏼑􏼐 􏼑dwij(t).

(13)
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According to the definition of ηN,i and JN, we can get
ηT

N,i(IN − JN)ηN,i � (N − 1)/N. Let V(t) � eT(t)(IN ⊗
P)e(t). Using It 􏽢o’s formula [38], we have

dV(t) � e
T
(t) IN ⊗A( 􏼁 − (cL⊗BK)( 􏼁

T
IN ⊗P( 􏼁􏼐

+ IN ⊗P( 􏼁 IN ⊗A( 􏼁 − (cL⊗BK)( 􏼁􏼁e(t)dt

+ M1(t) +
N − 1

N
c
2

􏽘

N

i,j�1
a
2
ijg

T
ij ei(t) − ej(t)􏼐 􏼑

× K
T
B

T
PBKgij ei(t) − ej(t)􏼐 􏼑dt

≤ e
T
(t) IN ⊗A( 􏼁 − (cL⊗BK)( 􏼁

T
IN ⊗P( 􏼁􏼐

+ IN ⊗P( 􏼁 IN ⊗A( 􏼁 − (cL⊗BK)( 􏼁􏼁e(t)dt

+ M1(t) +
N − 1

N
c
2λmax K

T
B

T
PBK􏼐 􏼑

× 􏽘

N

i,j�1
a
2
ijg

T
ij ei(t) − ej(t)􏼐 􏼑gij ei(t) − ej(t)􏼐 􏼑dt,

(14)

where M1(t) � 2eT(t)c 􏽐
N
i�1 􏽐

N
j�1 aij((IN − JN)ηN,i ⊗

PBKgij(ei(t) − ej(t)))dwij(t).
By using K in (10) and the inequality in (12), we have

e
T
(t) IN ⊗A( 􏼁 − (cL⊗BK)( 􏼁

T
IN ⊗P( 􏼁􏼐

+ IN ⊗P( 􏼁 IN ⊗A( 􏼁 − (cL⊗BK)( 􏼁􏼁e(t)dt

� e
T
(t) IN ⊗ A

T
P + PA􏼐 􏼑 − cL⊗ PBB

T
P􏼐 􏼑􏼐 􏼑e(t)dt

≤ e
T
(t) IN ⊗ A

T
P + PA􏼐 􏼑 − cλ2IN ⊗PBB

T
P􏼐 􏼑e(t)dt

≤ e
T
(t) IN ⊗ A

T
P + PA − PBB

T
P􏼐 􏼑􏼐 􏼑e(t)dt

� − e
T
(t) IN ⊗Q( 􏼁e(t)dt.

(15)

Combining (14) and (15), we have

dV(t) � − e
T
(t) IN ⊗Q( 􏼁e(t)dt + M1(t)

+
N − 1

N
c
2λmax K

T
B

T
PBK􏼐 􏼑

× 􏽘
N

i,j�1
a
2
ijg

T
ij ei(t) − ej(t)􏼐 􏼑gij ei(t) − ej(t)􏼐 􏼑dt

≤ − λmin(Q)‖e(t)‖
2
dt + M1(t)

+ 2
N − 1

N
c
2ε2λmax(L)λmax K

T
B

T
PBK􏼐 􏼑‖e(t)‖

2
dt

� − ρ‖e(t)‖
2
dt + M1(t),

(16)

where

ρ � λmin(Q) − 2
N − 1

N
c
2ε2λmax(L)λmax K

T
B

T
PBK􏼐 􏼑> 0.

(17)

Finally, we have

d‖Ee(t)‖
2

dt
≤

− ρ
λmin(P)

‖Ee(t)‖
2
. (18)

*en by the comparison theorem [39], we get

E‖e(t)‖
2 ≤ ‖e(0)‖

2 exp
− ρ

λmin(P)
t􏼨 􏼩, (19)

leading to limt⟶∞E‖xi(t) − xj(t)‖2 � 0. *is completes the
proof. □

Remark 3. Comparing with existing works concerning with
noises, general linear MASs with communication noises are
considered in this paper. For MASs with additive noises,
stochastic approximation technique was widely adopted,
which resulted in time-varying coupling strengths [12, 21].
In this paper, by employing Riccati equation and It 􏽢o’s
formula, the coupling strength in the consensus protocol is
time-invariant, but restricted in a given interval. For some
works dealt with communication noises, the concerned
MASs were in first-order dynamics, which were special cases
of this paper [37].

4. Consensus on Markovian
Switching Topologies

In this section, we will analyze consensus of MASs (3) on
Markovian switching topologies.

Theorem 2. Assume that the union graph of Gr, 1≤ r≤m{ }

is connected, the MASs (3) achieve mean square consensus
under consensus protocol (6), if K is designed as (9) and c

satisfies

1
λ22 Lun( 􏼁

≤ c
2 <

Nλmin(Q)

2(N − 1)ε2λmax Lun( 􏼁λmax K
T
B

T
PBK􏼐 􏼑

. (20)

Proof. *e dynamics of error system in switching topologies
case is

de(t)

dt
� IN ⊗A( 􏼁 − (cL(σ(t))⊗BK)􏼂 􏼃e(t)

+ c 􏽘
N

i,j�1
aij(σ(t)) IN − JN( 􏼁ηN,i􏽨

⊗ BKgij ei(t) − ej(t)􏼐 􏼑􏼐 􏼑􏽩ξij(t).

(21)

In this case, we choose a Lyapunov function for σ(t) � r

as

Vr(t) � E e
T

(t) IN ⊗P( 􏼁e(t)1 σ(t)�r{ }􏽨 􏽩, ∀r ∈ M, (22)
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where σ(t) admits a unique stationary distribution
π � [π1, . . . , πm]T. *en the Lyapunov function V(t) for the
overall system can be expressed as V(t) � 􏽐

m
r�1 Vr(t).

By using the stationary distribution π, the expectation of
V(e(t), σ(r)) becomes

E[V(e(t), σ(r))] � 􏽘
m

r�1
E Vr(e(t), σ(r))􏼂 􏼃πr. (23)

By employing the It 􏽢o’s formula, we have

dV(t)

dt
� 􏽘

m

r�1
πr

dVr(t)

dt
� 􏽘

m

r�1
E e

T
(t) IN ⊗ A

T
P + PA􏼐 􏼑􏼐 􏼑e(t)􏽨 􏽩πr − 2c 􏽘

m

r�1
E e

T
(t) Lr ⊗PBK( 􏼁e(t)􏽨 􏽩πr

+ c
2N − 1

N
􏽘

m

r�1
E 􏽘

N

i,j�1
a
2
ij(σ(r))g

T
ij ei(t) − ej(t)􏼐 􏼑 × K

T
B

T
PBKgij ei(t) − ej(t)􏼐 􏼑⎡⎢⎢⎣ ⎤⎥⎥⎦πr

+ 􏽘
m

r,s�1
πsqrsVs(t)≤E e

T
(t) IN ⊗ A

T
P + PA􏼐 􏼑􏼐 􏼑e(t)􏽨 􏽩 − 2cE e

T
(t) Lun ⊗PBK( 􏼁e(t)􏽨 􏽩

+ 2c
2N − 1

N
λmax K

T
B

T
PBK􏼐 􏼑ε2

× E e
T
(t) Lun ⊗ In( 􏼁e(t)􏽨 􏽩,

(24)

where Lun � 􏽐
m
r�1 πrLr. Similar to (10), we have

e
T
(t) IN ⊗ A

T
P + PA􏼐 􏼑􏼐 􏼑 − 2c Lun ⊗PBK( 􏼁􏽨 􏽩e(t)

≤ e
T
(t) IN ⊗ A

T
P + PA􏼐 􏼑􏼐 􏼑 − 2cλ2 Lun( 􏼁 IN ⊗PBK( 􏼁􏽨 􏽩e(t)

≤ e
T
(t) IN ⊗ A

T
P + PA􏼐 􏼑􏼐 􏼑 − 2 IN ⊗PBK( 􏼁􏽨 􏽩e(t)

� e
T
(t)IN ⊗ A

T
P + PA − PBB

T
P􏼐 􏼑e(t)

� − e
T
(t) IN ⊗Q( 􏼁e(t).

(25)

By (24) and (25), it yields

dV(t)

dt
� − E e

T
(t) IN ⊗Q( 􏼁e(t)􏽨 􏽩 + 2c

2ε2
N − 1

N

× λmax K
T
B

T
PBK􏼐 􏼑E e

T
(t) Lun ⊗ In( 􏼁e(t)􏽨 􏽩

≤ − λmin(Q) + 2c
2ε2

N − 1
N

λmax Lun( 􏼁􏼔

× λmax K
T
B

T
PBK􏼐 􏼑􏼕E‖e(t)‖

2

� − ϱE‖e(t)‖
2
,

(26)

where ϱ � λmin(Q) − 2c2ε2N − 1/Nλmax(Lun)λmax
(KTBTPBK)> 0.

Similar to (16), we get

E‖e(t)‖
2 ≤ ‖e(0)‖

2 exp
− ϱ

λmin(P)
t􏼨 􏼩. (27)

*is completes the proof. □

Remark 4. In light of the assumption on the vector function
gij, the intensity of noises gets weaker while achieving
consensus. Specifically, when the norm of relative state
between two agents decreases, the intensity of noise in their
communication channel becomes smaller. *erefore,
compared with additive noises, the multiplicative noises
with intensities depending on relative states can better
describe noises in the analog fading communication
channel. If all of the communication noises gij(·) ≡
0(i, j � 1, . . . , N), our result can be degenerated into the
noise-free case [22].

Remark 5. Compared with existing studies, we consider
Markovian switching topologies and communication
noises for general linear MASs. In this case, the impact of
noises on the MASs is changing while the underlying to-
pology is switching, which brings challenges for the
analysis of the consensus problem. Compared with the
fixed topology case, we only require the combined topology
to be connected, which relax the assumption on the to-
pology at each instant.

5. Simulation Example

In this section, we present two numerical examples to verify
our theoretical results. We consider a MAS of 6 agents under
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fixed topology and under switching topology in Examples 1
and 2, respectively.

Example 1. Considering a MAS with the following
dynamics:

_xi(t) � Axi(t) + Bui(t),

A �

− 1 0 − 1

0 0 − 1

0 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, B �

1 1 0

0 1 1

0 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.
(28)

*e underlying communication topology is depicted in
Figure 1. *e corresponding Laplacian matrix is

L �

2 − 1 − 1 0 0 0

− 1 1 0 0 0 0

− 1 0 3 − 1 0 − 1

0 0 − 1 2 − 1 0

0 0 0 − 1 2 − 1

0 0 − 1 0 − 1 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (29)

We choose

Q �

1 0 1

1 1 0

0 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (30)

According to ARE (10), we have

K �

0.2061 − 0.07046 0.1090

0.0342 0.5317 0.3632

0.0992 0.3666 − 0.2323

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (31)

Let gij(xi(t) − xj(t)) � ε(xi(t) − xj(t)), ε � 0.2, and by
simple calculation, we have c � 2.3, which ensures the suffi-
cient condition (9) in*eorem 1.*e noises here are subject to
Brownian process and the simulation is conducted by the
Euler–Maruyama method. Under these settings, the MASs
achieve consensus as shown in Figure 2. According to Figure 2,
we find that the process of achieving consensus is chartering
due to the existence of communication noises.We generate 100
sample paths to simulate themean square average, and Figure 3
shows the system achieves mean square consensus.

Example 2. Consider a MAS of 6 agents with the interaction
topology randomly switches among G1, G2, and G3 in
Figure 4. *e Laplacian of the combined graph is
Lun � ± 􏽐

m
r�1 πrLr. *e transition rate matrix is chosen as

Ξ �

− 6 2 4

3 − 4 1

2 1 − 3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (32)

Let gij(xi(t) − xj(t)) � ε(xi(t) − xj(t)), ε � 0.3, and by
simple calculation, we have c � 2, which ensures the suffi-
cient condition (19) in*eorem 2. Figure 5 shows the sample
paths of 6 agents under a known generator matrix. After a

realization of randomly switching topologies, the consensus
is reached. Figure 6 shows the switching signals, which are
subject to a Markovian process. Compared with Example 1,

1
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6

Figure 1: *e fixed topology of Example 1.
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Figure 2: States of 6 agents of Example 1.
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Figure 3: Mean square errors E|xi(t) − x1(t)|2 of Example 1.
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it takes much longer for the switching topologies case to
achieve consensus. We generate 100 sample paths to sim-
ulate the mean square average, and Figure 7 shows the MAS
achieves mean square consensus.

6. Conclusions

Motivated by the uncertainties in real communication
networks, in this article, we study the consensus problem
of the general linear continuous-time MASs with com-
munication noises. Each agent can obtain full state of itself
and receive its neighbors’ state information with noises,
whose intensity is a vector function of agents’ relative
states. Research is conducted on both fixed topology and
switching topologies, respectively. Mean square consen-
sus is proved by using stochastic analysis and algebraic
graph theory, and an estimation of the exponential
convergence rate of consensus is given. For future re-
search on this topic, the case of finite time consensus will
be taken into account.
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Figure 5: States of the 6 agents in Example 2.
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'eory of networks serves as a mathematical foundation for the construction and modeling of chemical structures and com-
plicated networks. In particular, chemical networking theory has a wide range of utilizations in the study of chemical structures,
where examination and manipulation of chemical structural information are made feasible by utilizing the numerical graph
invariants. A network invariant or a topological index (TI) is a numerical measure of a chemical compound which is capable to
describe the chemical structural properties such as melting point, freezing point, density, pressure, tension, and temperature of
chemical compounds. Wiener initiated the first distance-based TI which is considered to be the most important TI to preserve the
chemical and physical properties of chemical structures. Later on, degree-based TI was introduced to find the π-electron energy of
molecules. Recently, connection number-based TIs are studied which are more efficient than degree and distance-based TIs. In
this paper, we compute the connection number-based TIs of the structure of crystal cubic carbons which are one of the most
significant and interesting composites in modern resources of science due to the involvement of carbon atoms.

1. Introduction

Mathematical chemistry, the field of theoretical chemistry,
utilizes the mathematical tools to explain and predict
chemical structures and complicated networks. Chemical
network theory (NT) is a field of mathematical chemistry in
which we use methods of network theory to mathematically
represent the chemical phenomena of molecular chemical
structures. NT is used to describe, develop, analyze, and
comprehend the molecular structures and their character-
istics. In chemical NT, chemical structures are incorporated
by vertices and edges, where the vertices (nodes) speak to the
atoms while the edges speak to the bonds between the atoms.
'is theory plays an important function in the realm of
chemical sciences.

Chemical NT uses network theoretic invariants to restrict
the molecular structure into a unique number that reveals the
electronic structures, structural sections, and energy of atoms.
Interpreting themolecular structural information with the help
of these TIs is gaining popularity among the researchers over
the years. 'e research work in the area of chemical NT re-
garding the topological utilizations nanostructures, poly-
phenylene dendrimer nanostars, tree like polyphenylene,
carbon nanocones, extremal pentagonal chains, spiro hexag-
onal systems, and polyomino chains can be seen in [1–3].'ese
chemical applications inspired us to investigate TIs of some
novel chemical networks. A huge number of early medication
studies indicate that substantial internal linkages exist between
the pharmacology and biomedical properties of drugs and their
subatomic compositions. 'e topological descriptors such as
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Zagreb indices (ZIs) and modified ZIs were defined to be used
in the investigation of medication subatomic structures, which
are very helpful for medicinal and pharmaceutical research.

'ere are many chemical substances that are beneficial
for the survival of living things. 'e basic components that
help in the formation of cells in living beings are oxygen,
nitrogen, hydrogen, and carbon. 'e essential component
for the human life is carbon. It is important for the pro-
duction of proteins, carbohydrates, and nucleic acids. It is
also essential for plant development in the form of carbon
dioxide. It is found in the form of carbonates and bicar-
bonates in oceans, as a good conductor of electricity, and in
the form of limestone in rocks. 'e particles of carbon may
connect in distinct ways, which are referred to as allotropes
of carbon. Carbon atom is well recognized in the shape of
diamond, graphite, bucky balls, etc. 'e structure of distinct
carbon allotropes is represented in Figure 1. In the structure
of crystal cubic carbon, the carbon atoms are piled tightly
together whichmake it a very strongmaterial.'ere are wide
ranging utilizations of carbon allotropes (for details, we refer
the readers to [4–6]).

'e Wiener index initiated by Wiener in 1947 while
researching the boiling point of paraffin was the funda-
mental TI [7]. Gutman [8] initiated degree-based TIs.
Following that, researchers investigated a variety of distance-
based descriptors in chemical fields which helped them to
interpret the chemical molecular information of chemical
structures such as freezing and melting point, flammability,
stability, and density. For more information, see [9, 10].

Gutman and Trinajstic [11] examined the new notion of
the first ZI in 1975. Gutman et al. [12] then pioneered the
unique concept of second ZI in 1975. Due to the vast span of
their applications, these classical ZIs are very important in
the study of chemical NT. Later on, Furtula and Gutman [13]
proposed the notion of third ZI, which is also known as the
forgotten index since it was discovered after a lengthy period
of time. Nikolic et al. [14] investigated modified ZI in 2003.
In 2018, Yang et al. [15] found some degree-based ZIs of the
crystal cubic carbon structures. Gao et al. [16] and Zahid
et al. [17] computed the ZIs of crystal cubic carbon struc-
tures. Further, Zhang and Naeem [18] found the metric
dimension of these structures of carbon atom. Moreover,
Yang et al. [19] computed the vertex Szeged index of the
structure of cubic crystals. Furthermore, Arockiaraj et al.
[20] and Abraham et al. [21] explored the topological
properties of other types of three-dimensional structures.
Recently, Ali and Trinajstić [22] initiated a novel conception
of connection number (CN) which is the cardinality of those
nodes having length two from a certain vertex. 'ey com-
puted all the ZIs on connection bases instead of degrees of
the vertices and reported that the connection-based Zagreb
indices (CBZIs) have larger ability to forecast the physical
and chemical properties of molecular structures of chemistry
than that of degree-based indices. After the initiation of
CBZIs, all the researchers started working on measuring the
properties of chemical structure with the help of these
CBZIs. Cao et al. [23] computed ZCIs of molecular graphs.
Sattar et al. [24–26] just discovered the CBZIs of dendrimer
nanostars. Further, Ali et al. [27] estimated modified CBZIs for

T-sum graphs in 2020. Haoer et al. [28] introduced the
multiplicative leap ZIs. Javaid et al. [29] computed connection-
based multiplicative ZIs (CBMZI) for various wheel networks.
Du et al. [30] computedmodified CBZIs for alkanes. Yang et al.
[31] investigated the molecular characteristics of cubic carbon
crystal formations. 'e motivation to this article is as follows.

(1) TIs, the numerical measure of a chemical compound,
can describe the properties of chemical structure
such as melting point, freezing point, density,
pressure, tension, and temperature of chemical
compounds.'ese TIs have much importance due to
their wide range of applicability in reticular chem-
istry. 'ey are efficient enough to characterize the
topology of molecular compounds.

(2) Crystal cubic carbon structures are one of the im-
portant chemical structures due to the involvement
of primary carbon element in it.

(3) Connection-based ZIs are more appropriate to an-
ticipate the chemical and physical properties of
chemical compounds than all the other introduced
ZIs found in literature.

In this paper, we calculate the CBMZIs of crystal cubic
carbon structure which is the most important allotrope of
carbon. We find first CBMZI, second CBMZI, third CBMZI,
and fourth CBMZI. We also compute the modified CBMZI,
namely, modified first CBMZI, modified second CBMZI,
and modified third CBMZI. 'is paper is organized as
follows. Section 2 defines the basic definitions which are
compulsory to understand and are helpful for the compu-
tation of main results. Section 3 consists of general ex-
pressions to compute the CBMZIs of structure of crystal
cubic carbon. Section 4 draws the conclusions of this article.

2. Primary Definitions

'is section involves the basic definitions which are helpful
for the further calculations.

Definition 1 (see [11]). Let G � (H(G),T(G)) be a net-
work, where H(G) denotes the set of vertices and T(G)

denotes the set of edges, respectively. 'en, the degree-based
ZIs are defined as

(1) 􏽢Z1(G) � 􏽐h∈H(G)(dG(h))2 � 􏽐ht∈T(G)(dG(h) + dG

(t)),
(2) 􏽢Z2(G) � 􏽐ht∈T(G)(dG(h) × dG(t)),

where dG(h) and dG(t) show the degree of vertices h

and t, respectively.

Definition 2 (see [22]). For a network G, connection-based
Zagreb indices (CBZIs) are given as

(1) Z1C􏽥I(G) � 􏽐h∈H(G)(τG(h))2,
(2) Z2C􏽥I(G) � 􏽐ht∈T(G)(τG(h) × τG(t)),

where τG(h) and τG(t) indicate the connection
number (CN) of vertices h and t, respectively. 'ese
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CBZIs are known as first CBZI and second CBZI,
respectively.

Definition 3 (see [22, 27]). For a network G, the modified
CBZIs can be given as

(1) Z1C
∗􏽥I(G) � 􏽐ht∈T(G)(τG(h) + τG(t)) � 􏽐h∈H(G)

(dG(h) τG(t)),
(2) Z2C

∗􏽥I(G) � 􏽐ht∈T(G)[dG(h)τG(t) + dG(t)τG(h)],
(3) Z3C

∗􏽥I(G) � 􏽐ht∈T(G)[dG(h)τG(h) + dG(t)τG(t)].

'ese modified CBZIs are known as the modified first
CBZI, modified second CBZI, and modified third CBZI,
respectively.

Definition 4 (see [29]). For a network G, first CBMZI,
second CBMZI, third CBMZI, and fourth CBMZI can be
defined as

MZ1C􏽥I(G) � 􏽙
h∈H(G)

τG(h)( 􏼁
2
, (1)

MZ2C􏽥I(G) � 􏽙
ht∈T(G)

τG(h) × τG(t)( 􏼁, (2)

MZ3C􏽥I(G) � 􏽙
h∈H(G)

dG(h)τG(h)( 􏼁, (3)

MZ4C􏽥I(G) � 􏽙
ht∈T(G)

τG(h) + τG(t)( 􏼁. (4)

(a) (b) (c) (d)

(e) (f ) (g)

(h)

Figure 1: (a) Diamond. (b) Graphite. (c) Lonsdaleite. (d) C60. (e) Fullerite. (f ) C70. (g) Amorphous carbon. (h) Carbon nanotube with
single wall.
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Definition 5 (see [29]). For a network G, modified first
CBMZI, modified second CBMZI, and modified third
CBMZI can be defined as

MZ1C
∗􏽥I(G) � 􏽙

ht∈T(G)

dG(h)τG(t) + dG(t)τG(h)􏼂 􏼃, (5)

MZ2C
∗􏽥I(G) � 􏽙

ht∈T(G)

dG(h)τG(h) + dG(t)τG(t)􏼂 􏼃,

(6)

MZ3C
∗􏽥I(G) � 􏽙

ht∈T(G)

dG(h)τG(h) × dG(t)τG(t)􏼂 􏼃.

(7)

3. Connection-Based Multiplicative Zagreb
Indices of Crystal Cubic Carbon Structure

'e carbon’s valency allows it to form a wide range of al-
lotropes. Carbon is well recognized in the forms of graphite,
bucky balls, diamond, etc. Graphite is the smooth, dark-
colored substance found in lead of pencil. Diamonds, on the
other hand, are extremely hard, typically clear, colorless, and
extremely valuable jewels. Both of these structures are made

up of carbon atom. In both of these structures, the carbon
atom is piled differently and that is why both of these
structures are very different to each other. Diamond is a
tremendously strong substance made up of carbon atoms
stacked densely together in a cubic crystal form. 'e strong
bonds between the carbon atom make this structure very
strong. 'ere are many utilizations of these allotropes of
carbon (for details, see [32]).

In this section, we deal with the computation of CBMZIs
of this significant allotrope of carbon, namely, crystal cubic
carbon structure (CCC(j)), where j≥ 1 is the level of the
structure. Figure 2 depicts the molecular structure of rare
stone cubic carbon structure CCC(j) for the first level. For
the next level, new 3D squares are linked at every terminal
vertex of degree 3 of the previous first layer. Figure 3 depicts
the second level of CCC(j). Furthermore, the same tech-
nique is repeated to obtain the next level, and so on. Let
G � CCC(j) be a molecular network of CCC(j) for j≥ 2.
Molecular networks of CCC(j) for j � 2 and j � 3 are
shown in Figures 3 and 4, where we label the nodes (vertices)
with their CNs. In Figures 5–7, we label the vertices with
their degrees. 'e cardinality of vertices and edges in
CCC(j) is presented separately below.

|H(CCC(j))| � 8 +(8)
2

􏽘

j

k�2
23 − 1􏼐 􏼑

k−2
,

|T(CCC(j))| � 4 3 + 2 􏽘

j−2

k�0
23 − 1􏼐 􏼑

k
+ 24 23 − 1􏼐 􏼑

j− 2
+ 24 􏽘

j

k�3
23 − 1􏼐 􏼑

k−3⎡⎢⎣ ⎤⎥⎦.

(8)

For our convenience, we divide the structure of G into
three categories as given below.

(1) Basic cube: the cube which lies in the center of the
molecular network of CCC(j) is considered to be
basic cube.

(2) Outer layer of cubes: the layer of cubes in which
every cube has seven vertices with CN 6 is considered
to be the outer layer of cubes.

(3) Central layer of cubes: the layer of cubes which is not
the outer layer of cubes is said to be central layer of
cube.

Theorem 1. Consider a network G � CCC(j) for j≥ 2.0en,
the first CBMZI is equal to

MZ1C􏽥I(G) � [36]
8 23− 1( )

j−1

×[81]
8 23− 1( )

j−2

×[144]
8+(8)2􏽐

j

k�2 23− 1( )
k−2

− 82 23− 1( )
j−2( 􏼁

. (9)

Proof. In order to find the first CBMZI, we classify the
collection of vertices based on their CNs into three classes.
We have

H1 � h ∈H: τG(h) � 6􏼈 􏼉,

H2 � h ∈H: τG(h) � 9􏼈 􏼉,

H3 � h ∈H: τG(h) � 12􏼈 􏼉.

(10)

'e cardinalities of H1, H2, and H3 are

|H1(G)| � 8 × 23 − 1􏼐 􏼑
j− 1

,

|H2(G)| � 8 × 23 − 1􏼐 􏼑
j− 2

,

|H3(G)| � 8 +(8)
2

􏽘

j

k�2
23 − 1􏼐 􏼑

k− 2
− 82 23 − 1􏼐 􏼑

j− 2
.

(11)
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Figure 2: CCC(1) along with the labeling of CN 6 on the vertices of all the cubes.
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Figure 3: CCC(2) along with the labeling of CNs 6, 9, and 12 on the vertices of all the cubes.
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Figure 4: CCC(3) along with the labeling of CNs 6, 9, and 12 on the vertices of all the cubes.
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Figure 5: CCC(1) along with the labeling of degree 3 on the vertices of all the cubes.
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Now, by using equation (1), we get

MZ1C􏽥I(G) � 􏽙
h∈H(G)

τG(h)( 􏼁
2
,

� 62􏽨 􏽩
H1(G)| |

× 92􏽨 􏽩
H2(G)| |

× 122􏽨 􏽩
H3(G)| |

,

� 62􏽨 􏽩
8 23− 1( )

j−1( 􏼁
× 92􏽨 􏽩

8 23− 1( )
j−2( 􏼁

× 122􏽨 􏽩
8+(8)2 􏽐

j

k�2 23− 1( )
k−2

− 82 23− 1( )
j−2( 􏼁

,

� [36]
8 23− 1( )

j−1( 􏼁
×[81]

8 23− 1( )
j−2( 􏼁

×[144]
8+(8)2 􏽐

j

k�2 23− 1( )
k−2

− 82 23− 1( )
j−2( 􏼁

,

� [36]
8 23− 1( )

j−1

×[81]
8 23− 1( )

j−2

×[144]
8+(8)2 􏽐

j

k�2 23− 1( )
k−2

− 82 23− 1( )
j−2( 􏼁

.

(12)

□
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Figure 6: CCC(2) along with the labeling of degrees 3 and 4 on the vertices of all the cubes.
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Theorem 2. Consider a networkG � CCC(j) for j≥ 2.�en,
the second CBMZI is equal to

MZ2CĨ(G) � [36]
72 23− 1( )j−2 ×[54]24 23− 1( )j−2 ×[108] 8∑j−2

k�0 23− 1( )k( ) ×[144] 12+96∑j

k�3 23− 1( )k−3( ). (13)

Proof. Firstly, we divide the edges into four classes with
respect to their CNs. We have

C1 � T(6,6)(G) � ht ∈T: τG(h) � 6, τG(t) � 6{ },
C2 � T(6,9)(G) � ht ∈T: τG(h) � 6, τG(t) � 9{ },
C3 � T(9,12)(G) � ht ∈ T: τG(h) � 9, τG(t) � 12{ },
C4 � T(12,12)(G) � ht ∈ T: τG(h) � 12, τG(t) � 12{ }.

(14)
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Figure 7: CCC(3) along with the labeling of degrees 3 and 4 on the vertices of all the cubes.
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To find second CBMZI, we find the cardinalities of above
partitioned edges. For this, we first find the number of edges
in basic cube, outer layer of the vertices, and central layer of
the cubes. After some simple calculation, we have

total edges in basic cube � 12,

total edges in outer layer � 96 23 − 1􏼐 􏼑
j− 2

,

total edges in central layer � 96 􏽘

j

k�3
23 − 1􏼐 􏼑

k− 3
.

(15)

'e edges which are not the part of any cube are con-
sidered to be free edges. 'e total number of free edges is
8􏽐

j−2
k�0(2

3 − 1)k. Now, we compute |T(6,6)(G)|. As from the
network of G, we can observe that (6, 6)−type edges only
exist in the outer layer of the cubes. After some easy cal-
culation, we get

|T(6,6)(G)| � 72 × 23 − 1􏼐 􏼑
j− 2

. (16)

Now, we compute |T(6,9)(G)|. Similar to (6, 6)−type
edges, (6, 9)−type edges also lie only in outer layer of the
cubes. 'us, we have

|T(6,9)(G)| � 96 23 − 1􏼐 􏼑
j− 2

− 72 23 − 1􏼐 􏼑
j− 2

,

� 24 23 − 1􏼐 􏼑
j− 2

.

(17)

Next, we find the number of edges with CNs (9, 12). We
can see that only the free edges have CNs (9,12). 'e total
number of free edges is 8􏽐

j−2
k�0(2

3 − 1)k. 'us, we have

|T(9,12)(G)| � 8 􏽘

j−2

k�0
23 − 1􏼐 􏼑

k
. (18)

Lastly, we compute |T(12,12)(G)|. It can be easily ob-
served from the network of G that basic cube and central
layer of cubes contain all those edges which have CNs
(12,12). 'us, the total number of (12, 12) edges must be the
sum of edges of basic cube and the edges of central layer of
the cubes. Hence, we have

|T(12,12)(G)| � 12 + 96 􏽘

j

k�3
23 − 1􏼐 􏼑

k− 3
. (19)

Adding all types of edges gives the cardinality of edges of
G. Now, by using equation (2), we have

MZ2C􏽥I(G) � 􏽙
ht∈T(G)

τG(h) × τG(t)( 􏼁

� [6 × 6]
T(6,6)(G)| | ×[6 × 9]

T(6,9)(G)| | ×[9 × 12]
T(9,12)(G)| | ×[12 × 12]

T(12,12)(G)| |

� [6 × 6]
72 23− 1( )

j−2( 􏼁
×[6 × 9]

24 23− 1( )( )
j−2

×[9 × 12]
8􏽘

j−2
k�0 23− 1( )

k( 􏼁
×[12 × 12]

12+96􏽐
j

k�3 23− 1( )
k−3( 􏼁

� [36]
72 23− 1( )

j−2

×[54]
24 23− 1( )

j−2

×[108]
8􏽐

j−2
k�0 23− 1( )

k( 􏼁
×[144]

12+96􏽘
j

k�3 23− 1( )
k−3( 􏼁

.

(20)

□
Theorem 3. Consider a network G � CCC(j) for j≥ 2.0en,
the third CBMZI is equal to

MZ3C􏽥I(G) � [18]
8× 23− 1( )

j−1

×[36]
8× 23− 1( )

j−2

×[48]
8+(8)2􏽐

j

k�2 23− 1( )
k−2

− 82 23− 1( )
j−2

. (21)

Proof. Before computing third CBMZI, we make the classes
of vertices on the bases of their degrees. We have only two
classes of vertices on the basis of degrees of vertices.

H
d
1(G) � h ∈H: dG(h) � 3􏼈 􏼉,

H
d
2(G) � h ∈H: dG(h) � 4􏼈 􏼉.

(22)

Now, we make the partitions of vertices with respect to
the degrees and CNs of the vertices. We have

H1′(G) � h ∈H: dG(h) � 3, τG(h) � 3􏼈 􏼉,

H2′(G) � h ∈H: dG(h) � 4, τG(h) � 9􏼈 􏼉,

H3′(G) � h ∈H: dG(h) � 4, τG(h) � 12􏼈 􏼉.

(23)
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'e cardinalities of these vertices are given in the
following:

H1′(G)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 8 × 23 − 1􏼐 􏼑
j− 1

,

|H2′(G)| � 8 × 23 − 1􏼐 􏼑
j− 2

,

|H3′(G)| � 8 +(8)
2

􏽘

j

k�2
23 − 1􏼐 􏼑

k− 2
− 82 23 − 1􏼐 􏼑

j− 2
.

(24)

By using equation (3), we get

MZ3C􏽥I(G) � 􏽙
h∈H(G)

dG(h)τG(h)( 􏼁

� [3 × 6]
H1′(G)| | ×[4 × 9]

H2′(G)| | ×[4 × 12]
H3′(G)| |

� [3 × 6]
8× 23− 1( )

j−1
|
×[4 × 9]

8× 23− 1( )
j−2

|
×[4 × 12]

8+(8)2􏽘
j

k�2 23− 1( )
k−2

− 82 23− 1( )
j−2( 􏼁

� [18]
8× 23− 1( )

j−1

×[36]
8× 23− 1( )

j−2

×[48]
8+(8)2 􏽐

j

k�2 23− 1( )
k−2

− 82 23− 1( )
j−2( 􏼁

.

(25)

□
Theorem 4. Consider a network G � CCC(j) for j≥ 2.0en,
the fourth CBMZI is equal to

MZ4C􏽥I(G) � [12]
72 23− 1( )

j−2

×[15]
24 23− 1( )

j−2

×[21]
8􏽐

j−2
k�0 23− 1( )

k( 􏼁
×[36]

12+96􏽐
j

k�3 23− 1( )
k−3( 􏼁

. (26)

Proof. By placing the values of T(τG(h),τG(t)) in equation (4),
we have

MZ4C􏽥I(G) � 􏽙
ht∈T(G)

τG(h) + τG(t)( 􏼁, � [6 + 6]
T(6,6)(G)| | +[6 + 9]

T(6,9)(G)| | ×[9 + 12]
T(9,12)(G)| | ×[12 + 12]

T(12,12)(G)| |

� [6 + 6]
72 23− 1( )

j−2( 􏼁
×[6 + 9]

24 23− 1( )( )
j−2

×[9 + 12]
8+ 􏽐

j−2
k�0 23− 1( )

k( 􏼁
×[12 + 12]

12+96􏽘
j

k�3 23− 1( )
k−3( 􏼁

� [12]
72 23− 1( )

j−2

×[15]
24 23− 1( )

j−2

×[21]
8􏽐

j−2
k�0 23− 1( )

k( 􏼁
×[36]

12+96􏽘
j

k�3 23− 1( )
k−3( 􏼁

.

(27)

□
Theorem 5. Consider a network G � CCC(j) for j≥ 2.0en,
the modified first CBMZI is equal to

MZ1C
∗􏽥I(G) � [36]

72 23− 1( )
j−2

×[51]
24 23− 1( )

j−2

×[84]
8􏽐

j−2
k�0 23− 1( )

k( 􏼁
×[96]

12+96􏽐
j

k�3 23− 1( )
k−3( 􏼁

. (28)
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Proof. Firstly, we divide the edges into three classes with
respect to their degrees. We have

C1 � T
d
(3,3)(G) � ht ∈M : dG(h) � 3, dG(t) � 3􏼈 􏼉,

C2 � T
d
(3,4)(G) � ht ∈M : dG(h) � 3, dG(t) � 4􏼈 􏼉,

C3 � T
d
(4,4)(G) � ht ∈M : dG(h) � 4, dG(t) � 4􏼈 􏼉.

(29)

In order to calculate the modified first CBMZI, first we
need to calculate the number of edges on the basis of their
degrees of incident vertices. Initially, we calculate
|Td

(3,3)(G)|. It can be observed that (3,3)-type edges only lie

in the cubes of the outer layer. For simple calculations, we
have

T
d
(3,3)(G)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 72 23 − 1􏼐 􏼑
j− 2

. (30)

Now, we compute |Td
(3,4)(G)|. Similar to (3,3)-type

edges of G, (3,4)-type edges also exist only in the cubes of the
outer layer of G. 'e number of (3, 4)−type edges must be
equal to the total number of edges in the cubes of outer layer
minus the (3,3)-type edges present in the cubes of outer layer
of G. 'us, we have

T
d
(3,4)( outer layer of the cubes)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 96 23 − 1􏼐 􏼑
j− 2

,

T
d
(3,3)( outer layer of the cubes)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 72 23 − 1􏼐 􏼑
j− 2

,

T
d
(3,4)(G)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 96 23 − 1􏼐 􏼑
j− 2

− 72 23 − 1􏼐 􏼑
j− 2

,

� 24 23 − 1􏼐 􏼑
j− 2

.

(31)

Lastly, we compute |Td
(4,4)(G)|. One can see from the

network of G that the basic cube and central layer of cubes
have all those edges which have CNs (4,4). Also, all the free
edges are (4,4)-type edges. 'us, the total number of

(4, 4)−type edges must be the sum of edges of basic cube and
the edges of central layer of the cubes plus all the free edges.
Hence, we have

Total edges in basic cube � 12,

Number of edges in central layer � 96 􏽘

j

k�3
23 − 1􏼐 􏼑

k− 3
,

Total free edges � 8 􏽘

j−2

k�0
23 − 1􏼐 􏼑

k
,

T
d
(4,4)(G)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 12 + 96 􏽘

j

k�3
23 − 1􏼐 􏼑

k− 3
+ 8 􏽘

j−2

k�0
23 − 1􏼐 􏼑

k
.

(32)

To compute the modified first CBMZI, we split the
classified number of edges on degree bases with respect to
the number of edges on connection bases. 'e partitioning
of degree-based edges with respect to connection-based
edges is shown in Table 1.

To compute the modified first CBZI, we are not con-
cerning with degrees or CNs of edges separately, instead we
are dealing with both degrees and CNs of the edges . From
Figures 4 and 7, we can see that there are total four such
partitions of edges as given below.

T(3,3)(6,6)(G) � ht ∈ T: dG(h) � 3, τG(h) � 6, dG(t) � 3, τG(t) � 6􏼈 􏼉,

T(3,4)(6,9)(G) � ht ∈ T: dG(h) � 3, τG(h) � 6, dG(h) � 4, τG(t) � 9􏼈 􏼉,

T(4,4)(9,12)(G) � ht ∈ T: dG(h) � 4, τG(h) � 9, dG(h) � 4, τG(t) � 12􏼈 􏼉,

T(4,4)(12,12)(G) � ht ∈ T: dG(h) � 4, τG(h) � 12, dG(h) � 4, τG(t) � 12􏼈 􏼉.

(33)
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By using Table 1, the cardinalities of these partitioned
vertices are displayed in Table 2.

By using equation (5), we get

MZ1C
∗􏽥I(G) � 􏽙

ht∈T(G)

dG(h)τG(t) + dG(t)τG(h)􏼂 􏼃[(4)(12) +(4)(9)]
T(4,4)(9,12)(G)| | ×[(4)(12) +(4)(12)]

T(4,4)(12,12)(G)| |

� [(3)(6) +(3)(6)]
72 23− 1( )

j−2

×[(3)(9) +(4)(6)]
24 23− 1( )

j−2

+[(4)(12) +(4)(9)]
8􏽘

j−2
k�0 23− 1( )

k( 􏼁

×[(4)(12) +(4)(12)]
12+96􏽘

j

k�3 23− 1( )
k−3( 􏼁

� [(3)(6) +(3)(6)]
T(3,3)(6,6)(G)| | ×[(3)(9) +(4)(6)]

T(3,4)(6,9)(G)| |+

� [18 + 18]
72 23− 1( )

j−2

×[27 + 24]
24 23− 1( )

j−2

+[48 + 36]
8􏽘

j−2
k�0 23− 1( )

k( 􏼁
×[48 + 48]

12+96􏽘
j

k�3 23− 1( )
k−3( 􏼁

� [36]
72 23− 1( )

j−2

×[51]
24 23− 1( )

j−2

×[84]
8􏽐

j−2
k�0 23− 1( )

k( 􏼁
×[96]

12+96􏽘
j

k�3 23− 1( )
k−3( 􏼁

.

(34)

□
Theorem 6. Consider a network G � CCC(j) for j≥ 2.0en,
the modified second CBMZI is

MZ2C
∗􏽥I(G) � [36]

72 23− 1( )
j−2( 􏼁

×[54]
24 23− 1( )

j−2( 􏼁
×[84]

8􏽐
j−2
k�0 23− 1( )

k( 􏼁
×[96]

12+96􏽐
j

k�3 23− 1( )
k−3( 􏼁

. (35)

Proof. By using equation (6), we get

MZ2C
∗􏽥I(G) � 􏽙

ht∈T(G)

dG(h)τG(h) + dG(t)τG(t)􏼂 􏼃

� [(3)(6) +(3)(6)]
T(3,3)(6,6)(G)| | ×[(3)(6) +(4)(9)]

T(3,4)(6,9)(G)| | ×[(4)(9) +(4)(12)]
T(4,4)(9,12)(G)| | ×[(4)(12) +(4)(12)]

T(4,4)(12,12)(G)| |

� [(3)(6) +(3)(6)]
72 23− 1( )

j−2( 􏼁
×[(3)(6) +(4)(9)]

24 23− 1( )
j−2( 􏼁

×[(4)(9) +(4)(12)]
8􏽘

j−2
k�0 23− 1( )

k( 􏼁

×[(4)(12) +(4)(12)]
12+96􏽘

j

k�3 23− 1( )
k−3( 􏼁

� [18 + 18]
72 23− 1( )

j−2( 􏼁
×[18 + 36]

24 23− 1( )
j−2( 􏼁

×[36 + 48]
8􏽐

j−2
k�0 23− 1( )

k( 􏼁
×[48 + 48]

12+96􏽘
j

k�3 23− 1( )
k−3( 􏼁

� [36]
72 23− 1( )

j−2( 􏼁
×[54]

24 23− 1( )
j−2( 􏼁

×[84]
8􏽘

j−2
k�0 23− 1( )

k( 􏼁
×[96]

12+96􏽘
j

k�3 23− 1( )
k−3( 􏼁

.

(36)
□

Table 1: Partitioning of degree-based edges with respect to connection-based edges.

|Td
(dG(h),dG(t))(G)| (degree based) |T(τG(h),τG(t))(G)| (connection based)

|Td
(3,3)(G)| � 72(23 − 1)j− 2 |T(6,6)(G)| � 72(23 − 1)j− 2

|Td
(3,4)(G)| � 24(23 − 1)j− 2 |T(6,9)(G)| � 24(23 − 1)j− 2

|Td
(4,4)(G)| � 8􏽐

j−2
k�0(2

3 − 1)k |T(9,12)(G)| � 8􏽐
j−2
k�0(2

3 − 1)k

|Td
(4,4)(G)| � 12 + 96􏽐

j

k�3 (23 − 1)k− 3 |T(12,12)(G)| � 12 + 96􏽐
j

k�3 (23 − 1)k− 3

Table 2: Cardinalities of partitioned edges on degree and connection bases.

T(d(h),d(t))(τ(h),τ(t))(G) |T(d(h),d(t))(τ(h),τ(t))(G)|

|T(3,3)(6,6)(G)| 72(23 − 1)j− 2

|T(3,4)(6,9)(G)| 24(23 − 1)j− 2

|T(4,4)(9,12)(G)| 8􏽐
j−2
k�0(2

3 − 1)k

|T(4,4)(12,12)(G)| 12 + 96􏽐
j

k�3 (23 − 1)k− 3
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Theorem 7. Consider a network G � CCC(j) for j≥ 2.0en,
the modified third CBMZI is equal to

MZ3C
∗􏽥I(G) � [324]

72 23− 1( )
j−2( 􏼁

×[648]
24 23− 1( )

j−2( 􏼁
×[1728]

8􏽐
j−2
k�0 23− 1( )

k( 􏼁
×[2304]

12+96􏽐
j

k�3 23− 1( )
k−3( 􏼁

. (37)

Proof. By using equation (7), we get

MZ3C
∗􏽥I(G) � 􏽙

ht∈T(G)

dG(h)τG(h) × dG(t)τG(t)􏼂 􏼃

� [(3)(6) ×(3)(6)]
T(3,3)(6,6)(G)| | ×[(3)(6) ×(4)(9)]

T(3,4)(6,9)(G)| | ×[(4)(9) ×(4)(12)]
T(4,4)(9,12)(G)| |

×[(4)(12) ×(4)(12)]
T(4,4)(12,12)(G)| |

� [(3)(6) ×(3)(6)]
72 23− 1( )

j−2( 􏼁
×[(3)(6) ×(4)(9)]

24 23− 1( )
j−2( 􏼁

×[(4)(9) ×(4)(12)]
8􏽐

j−2
k�0 23− 1( )

k( 􏼁

×[(4)(12) ×(4)(12)]
12+96􏽘

j

k�3 23− 1( )
k−3( 􏼁

� [18 × 18]
72 23− 1( )

j−2( 􏼁
×[18 × 36]

24 23− 1( )
j−2( 􏼁

×[36 × 48]
8􏽘

j−2
k�0 23− 1( )

k( 􏼁
×[48 × 48]

12+96􏽘
j

k�3 23− 1( )
k−3( 􏼁

� [324]
72 23− 1( )

j−2( 􏼁
×[648]

24 23− 1( )
j−2( 􏼁

×[1728]
8􏽘

j−2
k�0 23− 1( )

k( 􏼁
×[2304]

12+96􏽘
j

k�3 23− 1( )
k−3( 􏼁

.

(38)

□
4. Conclusion

In this study, we have found the general expressions
to compute the TIs of the allotrope of carbon,
namely, crystal structure of carbon. TIs help the re-
searchers for the examination and manipulation of
chemical structural information. Here, we have calcu-
lated various TIs, named as first CBMZI and second
CBMZI. We have also computed modified first CBMZI,
modified second CBMZI, and modified third CBMZI.
'is computational study will make it easier for the re-
searchers to understand the selected structure and will
encourage others to concentrate on the organic networks.
'e mathematical method considered here is efficient to
examine the physical and chemical properties of the
considered network.

Future Directions. In future, we are interested in computing
the connection-based Zagreb indices for other types of
chemical structures.
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Aiming at the interference of the delay term in continuous dynamics to the impulsive systems, we study the potential effects of
time delay on the stability of a class of impulsive neural networks (INNs) in this paper. Two cases of delay are considered. For the
case of small delay, a sufficient condition for the stability of delayed INNs is obtained by virtue of the average impulsive interval
(AII) method.(e derived results illustrate that within limits, the convergence rate of the system becomes larger with the increase
of time delay. For another case, a strict comparison principle is proposed to prove that the impulsive system still maintains the
original stability for any large but bounded delay under certain conditions. In particular, as an extension, the stability of delayed
INNs for hybrid impulses containing both stabilizing and destabilizing impulses is also discussed. Finally, three examples are
simulated to demonstrate the validity of the theoretical results.

1. Introduction

As a mathematical model of information processing, neural
network (NN) is one of the most active branches of com-
putational intelligence and machine learning. (ere are many
kinds of NNs, and as a special kind of NNs, impulsive neural
networks (INNs) have unique research value. INN was first
proposed by Alan Lloyd Hodgkin and Andrew Huxley in
1952.(e simulation of its neurons is closer to reality because
it characterizes the transient state mutation of neurons in
neural networks at a certain moment.(e impulsive system is
a mixture of continuous dynamic system and discrete-time
system, which is different from the pure continuous-time
dynamic system and pure discrete-time system. It is suitable
for studying a class of dynamic systems affected by sudden
change or instantaneous disturbance [1]. Furthermore, im-
pulsive phenomena exist in various fields such as secure
communication, automatic control, and mechanical system.
With the help of impulsive control, we can reduce a lot of
application costs. So far, many interesting results have been
obtained on INNs (see [2, 3] and their references).

Time delay is known to exist in many complex networks
and control systems due to the influence of some practical
situations. Over the past decades, time-delay systems have
been vigorously studied because of their wide applications in
NNs, sampling data control, biological modeling, and other
fields. Meanwhile, various types of delays are discussed in
NNs, such as distributed delay [4], time-varying delay [5],
and state-dependent delay [6]. However, in previous studies,
time delay is generally considered to be an important source
of poor system performance and system instability. Few
researchers have noticed that time delay may be beneficial to
system stability. (is is because our impression of time delay
is so rigid that we ignore the stabilizing effects of time delay.
Actually, we can also extract the stabilizing information of
time delay through some analysis methods. For instance, in
[7], the authors make a point that the increase of time delay
has a dual effect on the stability of the system, that is, it may
stabilize a previously unstable system or destabilize a pre-
viously stable system.

Combining the two points of time delay and impulsive
effects, many scholars have done a lot of work on INNs with
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delay [8–12]. For example, in [8], Chen et al. utilized an
auxiliary state variable to transform the impulsive delayed
system into an equivalent augmented model. On the basis of
this model, the stability criterion of the system was derived.
In [9], Zhang et al. firstly designed an impulsive controller
for the time-delay discrete system to guarantee that the
system can achieve stability. In [11], Jiang et al. investigated
the impacts of time delay in impulses on system stability
through average impulsive delay and average impulsive
interval (AII) methods. In [12], Li and Song focused on the
stabilization of time-delay systems under impulsive control,
and the results show that the delay term in impulses may be
conducive to the stabilization of the system. Obviously,
studying a system with both time delay and impulsive effects
is challenging because we need to consider the interaction of
the two on the system.

Furthermore, it can be observed that both references
[11, 12] have investigated the impacts of the delay term in
impulses on stability of the system, but few papers have
studied the latent effects of the delay term in continuous
dynamics on stability of the impulsive system. Knowing that
an impulsive system is a combination of continuous and
discrete subsystems, it is interesting to think about the
overall effects of the delay term in the continuous subsystem
and the impulsive effect in the discrete subsystem on the
system stability. In addition, looking back at the fact that
time delays may facilitate the stability of systems, a natural
problem emerges: under what conditions does the delay
term in continuous dynamics play a positive role in the
stability of systems?

In view of the above discussion, this paper mainly studies
the potential effects of delay term in continuous dynamics on
the stability of a class of INNs. Compared with some existing
results, this paper fully captures the information that time
delay can enhance stability. With regard to small delay and
large delay, the stability of INNs with delay is investigated by
using AII condition, and the hidden role that delay plays in
the stability of system is revealed. With regard to hybrid
impulses, the AII condition is replaced by the dwell-time
condition so as to deal with the impulsive parameters as a
whole, and the stability criterion of INNs is also derived. On
the whole, the main features of this paper can be generalized
as follows:

(1) (e time delay in two cases is considered. When the
delay is small, we capture the stabilizing information
of time delay by means of the impulsive delay in-
equality and then integrate it into the Lyapunov-
based function. Finally, with the help of the AII
condition, the stability criterion of a kind of general
INNs is derived. (e results show that in a certain
range, the system converges more quickly when the
delay value is larger.

(2) In order to handle the case of large delay, we adopt a
strict comparison principle which is different from
the comparison-like principle, and it is proved that
these kinds of INNs are robust to any large but
bounded delay.

(3) Considering the dual effects of impulses, we extend
the ideas of the first two points to the hybrid INNs
containing stabilizing and destabilizing impulses.

(is paper is organized as follows. In Section 2, a kind of
general INNs with delay is introduced, and some requisite
definitions and assumptions are presented. In Section 3, the
main theorem results of this paper are derived, which fully
illustrate the latent effects of delay term in continuous dy-
namics on stability of a kind of INNs. In Section 4, three
numerical examples are simulated to indicate the validity of
the derived results. Finally, Sections 5 gives a brief con-
clusion and prospects of the feasibility of the future research.

2. Preliminaries

2.1. Notations. Let R, R+, and Rn stand for the set of real
numbers, the set of nonnegative real numbers, and the set of
n− dimensional real-valued vectors, respectively. Denote Z+

and Z0
+ as the set of positive integer numbers and non-

negative integer numbers, respectively. For vector
x � (x1, x2, . . . , xn)T ∈ Rn, let ‖x‖ � 􏽐

n
i�1 |xi|. Denote

PC([− τ, 0],Rn) as the set of piecewise right continuous
function ϕ: [− τ, 0]⟶ Rn, where ‖ϕ‖τ ≜ sup− τ≤θ≤0‖ϕ(θ)‖.
Denote the upper right-hand Dini derivative of function V

as D+V(t) � limh⟶0+supV(t + h) − V(t)/h.

2.2. Model. In this paper, based on relevant work in ref-
erence [13], we consider a class of INNs, the main form of
which is as follows:

_xi(t) � − aixi(t) + 􏽘
n

j�1
bijfj xj(t)􏼐 􏼑 + 􏽘

n

j�1
cijgj xj(t − τ)􏼐 􏼑, t≠ tk, t≥ t0 ≥ 0,

Δxi tk( 􏼁 � U k, xi t
−
k( 􏼁( 􏼁, k ∈ Z+,

xi t0 + θ( 􏼁 � ϕi(θ), θ ∈ [− τ, 0],

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(1)

where ai > 0, i � 1, 2, . . . , n are constants, n is the number of
neurons, xi(t) represents the state variable of the ith neuron
at time t, _xi(t) represents the derivative of xi(t), τ is the
transmission delay, fj(xj(t)) and gj(xj(t − τ)) are the

neuron activation functions at time t and t − τ, respectively,
bij and cij are real constants representing the connection
weight, tk􏼈 􏼉 is the impulse sequence satisfying
0≤ t0 < t1 < · · · < tk < · · · and limk⟶+∞tk � +∞, and
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Δxi(tk)≜ xi(t+
k ) − xi(t−

k ), where xi(t+) � lim
t⟶t+

k

xi(t) and
xi(t− ) � limt⟶t−

k
xi(t). Generally, we suppose that the so-

lution of network (1) is right continuous, that is,
xi(t+

k ) � xi(tk), and the sequence tk, U(k, xi(t−
k ))􏼈 􏼉 is called

the impulsive control rule. As a matter of convenience, we let
hk(xi(t−

k ))≜xi(t−
k ) + U(k, xi(t−

k )), which means
xi(t+

k ) � hk(xi(t−
k )), k ∈ Z+. Define the solution of network

(1) through (t0, ϕ) as x(t) � x(t, t0, ϕ), where
ϕ ∈ PC([− τ, 0],Rn) represents the initial state.

For subsequent needs, we give some requisite definitions
and assumptions as follows.

Definition 1 (see [14]). Suppose that there exist positive
constants N0 and Ta such that

N t2, t1( 􏼁≥
t2 − t1

Ta

− N0,∀t2 ≥ t1 ≥ t0, (2)

where N(t2, t1) represents the number of impulses in the
interval (t1, t2]. (en, N0 is called the elasticity number, and
Ta denotes the AII constants.

Remark 1. (e concept of AII is proposed to handle various
types of impulses. In fact, AII condition (2) allows an upper
bound, that is, N(t2, t1)≤ t2 − t1/Ta + N0. Particularly, at
least one impulse is required for each interval of length Ta in
the case of N0 � 1. For AII constant Ta, it can be observed
that it contains more impulsive instant sequences when the
elasticity number N0 is larger.

Definition 2. For any given initial value ϕ ∈ PC([− τ, 0],Rn),
if there exist positive numbers M and λ such that

x t, t0, ϕ( 􏼁
����

����≤M‖ϕ‖τe
− λ t− t0( ),∀t≥ t0, (3)

holds for every sequence tk􏼈 􏼉 ∈ J∗(Ta, N0), then we can say
that the network (1) is globally uniformly exponentially
stable (GUES) over the class J∗(Ta, N0).

Remark 2. J∗(Ta, N0) mentioned in the above definition
represents a collection of impulsive instant sequences tk􏼈 􏼉

that satisfy AII condition (2).

Assumption 1. (e functions f(·), g(·) ∈ Rn satisfy
f(0) � 0, g(0) � 0, and function hk: R⟶ R satisfies
hk(0) � 0.

Remark 3. Clearly, Assumption 1 guarantees that x � 0 is an
equilibrium point to network (1).

Assumption 2. (e functions f(·), g(·) are all Lipschitz
continuous and meet

fj θ1( 􏼁 − fj θ2( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ cj θ1 − θ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

gj θ1( 􏼁 − gj θ2( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ cj θ1 − θ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,
(4)

for all θ1, θ2 ∈ R, j � 1, 2, . . . , n, where cj, cj > 0 are
constants.

Assumption 3. (e impulsive operator hk meets

hk θ1( 􏼁 − hk θ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ q θ1 − θ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (5)

for all θ1, θ2 ∈ R, k ∈ Z+, where q> 0 is Lipschitz constant.

In order to facilitate the subsequent expression, we make

α1 � max
1≤i≤n

− ai + 􏽘

n

j�1
bji

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ci
⎛⎝ ⎞⎠,

α2 � max
1≤i≤n

􏽘

n

j�1
cji

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ci
⎛⎝ ⎞⎠.

(6)

3. Main Results

Wewill discuss the stability of INNs from the following three
aspects in current section. Firstly, we consider the stability of
a kind of INNs with small delay (the delay does not exceed
any two consecutive impulsive time intervals, i.e.,
τ ≤ tk − tk− 1). Besides, the latent effects of time delay are also
explored. Secondly, the stability of INNs with arbitrarily
finite delay is considered. Compared with small delay, we use
large delay (which implies that the delay may be greater than
a certain impulsive time interval, namely, τ ≤ tk − tk− 1 may
not be true) to represent relatively larger delay (which is
collectively referred to as arbitrarily finite delay here). For
arbitrarily finite delay, we analyze the robustness of the
stability of INNs with delay and verify that the system can
remain stable for any large but bounded delay under certain
conditions. Finally, in view of the fact that the impulsive
effects may promote or suppress system stability, we extend
the ideas of the first two points to delayed INNs with hybrid
impulses.

3.1. INNs with Small Delay. In what follows, we will discuss
the case where the delay is small. We capture the stabilizing
information of time delay with the help of the impulsive
delay inequality and then integrate it into the Lyapunov-
based function. Finally, through the AII method, we can
derive the stability criterion of INNs.

Theorem 1. If there exist constants q ∈ (0, 1),
η∗ � max α1 + α2, η0􏼈 􏼉 and the following conditions hold:

α1 + α2 > 0,

lnq

Ta

+ η∗ < 0,

(7)

where

α1 +
α2
q

e
− η0τ − η0 � 0, (8)

then under Assumptions 1–3, network (1) is GUES over the
class J∗(Ta, N0).

Proof. Construct a function V(t)≜V(t, x(t)) �

‖x(t)‖ � 􏽐
n
i�1 |xi(t)| and make V(t0) � sup

t0− τ ≤ s≤ t0

V(s). For
any ε> 0, let η � η∗ + ε, and design an auxiliary function
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L(t) �
V(t)e

− η t− tk( ), t ∈ tk, tk+1􏼂 􏼁,

V(t), t0 − τ ≤ t≤ t0.

⎧⎨

⎩

⎫⎬

⎭ (9)

To start with, letΩk � qkV(t0), and then we will confirm
that

V(t)≤Ωke
η t− t0( ), t ∈ tk, tk+1􏼂 􏼃, k ∈ Z0

+. (10)

Together with (7) and (8),

L(t)≤Ωke
η tk− t0( ), t ∈ tk, tk+1􏼂 􏼃. (11)

Firstly, we demonstrate that (9) is true for k � 0, namely,
L(t)≤Ω0 � V(t0), t ∈ [t0, t1]. Note that
L(t0) � V(t0)≤V(t0) � Ω0. If the above statement is in-
correct, then there is an instant t∗ ∈ [t0, t1] such that

L t
∗

( 􏼁 � Ω0, L(t)≤Ω0, t ∈ t0, t
∗

􏼂 􏼁andD
+
L t
∗

( 􏼁≥ 0. (12)

When s ∈ [t0 − τ, t0], it is apparent that
L(s) � V(s)≤V(t0) � Ω0, and in combination with (10), we
derive L(s)≤Ω0, t ∈ [t0 − τ, t∗]. For t ∈ [tk, tk+1], k ∈ Z0

+, we
can calculate that

D
+
V(t) � 􏽘

n

i�1
sgn xi(t)( 􏼁 − aixi(t) + 􏽘

n

j�1
bijfj xj(t)􏼐 􏼑 + 􏽘

n

j�1
cijgj xj(t − τ)􏼐 􏼑⎡⎢⎢⎣ ⎤⎥⎥⎦

≤ 􏽘

n

i�1
− ai|xi(t)|( 􏼁 + 􏽘

n

i�1
􏽘

n

j�1
bij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌cj xj(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + 􏽘

n

i�1
􏽘

n

j�1
cij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌cj xj(t − τ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤ max
1≤i≤n

− ai + 􏽘
n

j�1
bji

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ci
⎛⎝ ⎞⎠‖x(t)‖ + max

1≤i≤n
􏽘

n

j�1
cji

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ci
⎛⎝ ⎞⎠‖x(t − τ)‖

� α1V(t) + α2V(t − τ).

(13)

When t∗ − τ ∈ [t0 − τ, t∗], combining the definition of
L(t) and conditions (6), (10), and (11), one has

D
+
L(t)|t�t∗ � e

− η t∗− t0( )D
+
V(t)|t�t∗ − ηe

− η t∗ − t0( )V t
∗

( 􏼁

≤ e
− η t∗ − t0( ) α1V t

∗
( 􏼁 + α2V t

∗
− τ( 􏼁􏼂 􏼃

− ηe
− η t∗− t0( )V t

∗
( 􏼁

� α1L t
∗

( 􏼁 + α2L t
∗

− τ( 􏼁e
− ητ

− ηL t
∗

( 􏼁

≤ α1 + α2e
− ητ

− η( 􏼁Ω0 < 0.

(14)

Obviously, it could be observed that it contradicts
D+L(t∗)≥ 0, namely, (9) holds for k � 0.

Next, through mathematical induction method, we as-
sume that (9) is true for k≤p, p ∈ Z0

+, i.e.,

L(t)≤Ωke
η tK− t0( ), t ∈ tk, tk+1􏼂 􏼁, k≤p, (15)

which means

L(t)≤Ωpe
η tp− t0( 􏼁

, t ∈ tp, tp+1􏽨 􏼑. (16)

Subsequently, we demonstrate that

L(t)≤Ωp+1e
η tp+1 − t0( 􏼁

, t ∈ tp+1, tp+2􏽨 􏼑. (17)

Recall (7) and (14), and we obtain

L tp+1􏼐 􏼑 � V tp+1􏼐 􏼑 � x tp+1􏼐 􏼑
�����

�����

� hp+1 x t
−
p+1􏼐 􏼑􏼐 􏼑 − hp+1(0)

�����

�����

≤ qL t
−
p+1􏼐 􏼑e

η tp+1 − tp( 􏼁

� Ωp+1e
η tp+1 − t0( 􏼁

.

(18)

(us, (15) holds for t � tp+1. On the contrary, it is as-
sumed that there is an instant t∗ ∈ [tp+1, tp+2] which makes

L t
∗

( 􏼁 � Ωp+1e
η tp+1 − t0( 􏼁

, L(t)≤Ωp+1e
η tp+1 − t0( 􏼁

, t ∈

· tp+1, t
∗

􏽨 􏽩andD
+
L t
∗

( 􏼁≥ 0.
(19)

If t∗ − τ ≥ tp+1, referring to (12), we derive that

D
+
L(t)|t�t∗ ≤ α1L t

∗
( 􏼁 + α2L t

∗
− τ( 􏼁e

− ητ
− ηL t

∗
( 􏼁≤

· α1 + α2e
− ητ

− η( 􏼁Ωp+1e
η tp+1 − t0( 􏼁 < 0.

(20)

Similarly, what calls for special attention is that when
s ∈ [tp, tp+1], it follows from (14) that

L(s)≤Ωpe
η tp− t0( 􏼁

�
Ωp+1

q
e
η tp+1 − t0( 􏼁

e
− η tp+1− tp( 􏼁

�
L t
∗

( 􏼁

q
e

− η tp+1− tp( 􏼁 ≤
L t
∗

( 􏼁

q
e

− ητ
.

(21)
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At this time, if t∗ − τ < tp+1, on account of
tp ≤ tp+1 − τ ≤ t∗ − τ < tp+1, and together with (6), (16), and
(17), we could compute that

D
+
L(t)|t�t∗ ≤ α1L t

∗
( 􏼁 + α2L t

∗
− τ( 􏼁e

− ητ
− ηL t

∗
( 􏼁

≤ α1L t
∗

( 􏼁 + α2
L t
∗

( 􏼁

q
e

− ητ
− ηL t

∗
( 􏼁

� α1 +
α2
q

e
− ητ

− η􏼠 􏼡Ωp+1e
η tp+1 − t0( 􏼁 < 0,

(22)

which contradicts D+L(t∗)≥ 0, namely, (15) holds.
Hence, we can get

L(t)≤Ωke
η tk− t0( ),∀t ∈ tk, tk+1􏼂 􏼁, k ∈ Z0

+, (23)

which means (8) is true, namely,
V(t)≤Ωkeη(t− t0) � Ωke(η∗+ε)(t− t0), t ∈ [tk, tk+1).

Let ε⟶ 0+, and then we obtain

V(t)≤Ωke
η∗ t− t0( ),∀t ∈ tk, tk+1􏼂 􏼁, k ∈ Z0

+. (24)

Since tk􏼈 􏼉 ∈ J∗(Ta, N0), the AII method further yields
that

V(t)≤ q
N t,t0( )e

η∗ t− t0( )V t0( 􏼁

≤ q
t− t0/Ta− N0e

η∗ t− t0( )V t0( 􏼁

≤ q
− N0e

lnq/Ta+η∗( ) t− t0( )V t0( 􏼁,∀t≥ t0,

(25)

where N(t, t0) represents the number of impulses in the
interval (t0, t].

According to (18) and the definition of V(t), we have

‖x(t)‖≤Me
− λ t− t0( )‖ϕ‖τ ,∀t≥ t0, (26)

where M � q− N0 , λ � − (lnq/Ta + η∗)> 0. Until now, we
have done the proof. □

Remark 4. From (6) and (8) in(eorem 1, we can notice the
latent impacts of time delay τ on the decay rate of Lyapunov
function V(t). In particular, if η0 > α1 + α2, then we have
η∗ � η0. Meanwhile, the implicit function η∗(τ) is deter-
mined by α1 + α2/qe− η∗τ − η∗ � 0, which decreases as τ
increases. Obviously, the result derived from the above
theorem shows that the convergence rate λ is related to
parameter η∗, and in view of the relationship between η∗ and
delay τ, it can be concluded that the convergence rate of the
system will become larger with the increase of delay, which
means that we have captured the stabilizing effects of time
delay. In addition, what needs special attention is that in the
majority of the available literature about the stability of
delayed INNs, we can see that the stability of the system
tends to be destroyed as delay increases, but different results
are obtained in this paper.

Remark 5. It should be noted that the conclusion of the
relationship between time delay and system stability derived
from Remark 4 is based on η∗ � η0, so the results may be

conservative to some extent. Furthermore, the conclusion of
(eorem 1 is a sufficient condition rather than a necessary
condition; then, it is possible for the system to be stable when
τ is small and does not meet the conditions of (eorem 1.

3.2. INNs with Arbitrarily Finite Delay. For the case of ar-
bitrarily finite delay, based on strict comparison principle
and the concept of AII, a stability criterion of INNs is also
derived.

Lemma 1 (see [13]). Let α1 ∈ R, α2 ≥ 0 and q> 0. Suppose
that a(t), b(t) ∈ C([tk− 1, tk],R+) meet

D
+
a(t)≤ α1a(t) + α2a(t − τ), t≥ t0, t≠ tk,

a(t)≤ qa t
−

( ), t � tk,

⎧⎨

⎩

⎫⎬

⎭, (27)

D
+
b(t) � α1b(t) + α2b(t − τ), t≥ t0, t≠ tk,

v(t) � qb t
−

( ), t � tk,
􏼨 􏼩, (28)

for all k ∈ Z+. @en, a(t)≤ b(t),∀t0 − τ ≤ t≤ t0 implies that
a(t)≤ b(t),∀t≥ t0.

Theorem 2. If there exists constant q ∈ (0, 1) such that

α1 +
α2

q
N0

+
lnq

Ta

< 0, (29)

then under Assumptions 1–3, network (1) is GUES over the
class J∗(Ta, N0) for arbitrarily finite delay τ.

Proof. Construct a function V(t) � ‖x(t)‖ � 􏽐
n
i�1 |xi(t)|,

and let V(t0) � sup
t0− τ ≤ s≤ t0

V(s).

Next, similar to (11), we have

D
+
V(t)≤ α1V(t) + α2V((t − τ)),∀t ∈ tk− 1, tk􏼂 􏼁, k ∈ Z+.

(30)

When t � tk, according to Assumptions 1–3, we could
get

V tk( 􏼁 � x tk( 􏼁
����

���� � hk x t
−
k( 􏼁( 􏼁

����
���� � hk x t

−
k( 􏼁( 􏼁 − hk(0)

����
����

≤ q x t
−
k( 􏼁

����
���� � qV t

−
k( 􏼁.

(31)

Introduce an impulsive delayed system with u(t) as its
unique solution:

D
+
u(t) � α1u(t) + α2u(t − τ), t≥ t0, t≠ tk,

u(t) � qu t
−

( ), t � tk,

u(t) � V t0( 􏼁, t ∈ t0 − τ, t0􏼂 􏼃.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

(32)

Apparently, V(t)≤V(t0) � u(t) when t ∈ [t0 − τ, t0]. In
accordance with Lemma 1, we have

0≤V(t)≤ u(t), ∀t≥ t0. (33)

From the variable parameter formula, we obtain

u(t) � K t, t0( 􏼁u t0( 􏼁 + 􏽚
t

t0

K(t, s)α2u(s − τ)ds, t≥ t0, (34)
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where K(t, s) denotes the Cauchy matrix of the following
system:

D
+
u(t) � α1u(t), t≥ t0, t≠ tk,

u(t) � qu t
−

( ), t � tk, k ∈ Z+.

⎧⎨

⎩

⎫⎬

⎭ (35)

According to the properties of the Cauchy matrix,
combining 0< q< 1 and tk􏼈 􏼉 ∈ J∗(Ta, N0), we can obtain

K(t, s) � e
α1(t− s)Πs<tk ≤ tq≤ e

α1(t− s)
q

t− s/Ta− N0

� q
− N0e

α1+lnq/Ta( )(t− s)
� q

− N0e
− c(t− s)

,
(36)

where c � − (α1 + lnq/Ta), and it is evident that c> 0 by
using condition (21).

Reviewing (26) and (28), we have

u(t)≤ q
− N0e

− c t− t0( )u t0( 􏼁

+ 􏽚
t

t0

q
− N0e

− c(t− s)α2u(s − τ)ds,∀t≥ t0.
(37)

Since c> 0, N0 > 0, and 0< q< 1, this implies

u(t) � V t0( 􏼁 � u t0( 􏼁≤ u t0( 􏼁e
− c t− t0( )

< q
− N0u t0( 􏼁e

− λ t− t0( ), t ∈ t0 − τ, t0􏼂 􏼃,
(38)

where λ � c − q− N0α2eλτ . In fact, by using (21), we can obtain
λ> 0. (en, we shall confirm that

u(t)< q
− N0u t0( 􏼁e

− λ t− t0( ), t≥ t0. (39)

On the contrary, suppose (31) is untenable; then, there
exists an instant t∗ > t0 which makes

u t
∗

( 􏼁≥ q
− N0u t0( 􏼁e

− λ t∗ − t0( ), (40)

u(t)< q
− N0u t0( 􏼁e

− λ t− t0( ), t< t
∗
. (41)

Subsequently, from (29) and (33), one has

u t
∗

( 􏼁≤ q
− N0e

− c t∗ − t0( )u t0( 􏼁 + 􏽚
t∗

t0

q
− N0e

− c t∗− s( )α2u(s − τ)ds

< q
− N0e

− c t∗ − t0( )u t0( 􏼁 + 􏽚
t∗

t0

q
− N0e

− c t∗− s( )α2q
− N0u t0( 􏼁e

− λ s− τ− t0( )ds

� q
− N0u t0( 􏼁 e

− c t∗− t0( ) + q
− N0α2e

λτ
e

− ct∗+λt0 􏽚
t∗

t0

e
(c− λ)sds􏼢 􏼣

� q
− N0u t0( 􏼁e

− λ t∗− t0( ),

(42)

which is in contradiction with (32). (us, we can derive that
(31) holds. Finally, combining (25), we have

V(t)≤ u(t)< q
− N0u t0( 􏼁e

− λ t− t0( ),∀t≥ t0, (43)

i.e.,

‖x(t)‖≤ q
− N0e

− λ t− t0( )‖ϕ‖τ ,∀t≥ t0. (44)

So far, we have done the proof. □

Remark 6. It can be observed from (eorems 1 and 2 that
the AII constant Ta should be small enough to meet con-
ditions (5) and (21) in the case of 0< q< 1. (e AII constant
means the frequency of impulsive control. (e smaller Ta is,
the higher the impulsive frequency will be. In addition, it
should be noted that the result derived from (eorem 2
involves elasticity number N0, and equation (21) may not
hold when N0 is sufficiently large. However, for delay-free
system (see [14]), the derived result does not involve N0, so
we cannot obtain such a conclusion. Moreover, we can
obverse that the elasticity number N0 is not involved in the
result of (eorem 1, which is the difference between (e-
orems 1 and 2. (erefore, under the condition of AII,

(eorem 2 further illustrates the internal relationship be-
tween large delay and system stability.

Remark 7. Although (eorems 1 and 2 are proposed for
small and large delays, respectively, this does not mean that
(eorem 2 and (eorem 1 are mutually exclusive. Actually,
(eorem 2 is a supplement to (eorem 1 because the so-
called large delay in (eorem 2 just means that τ ≤ tk − tk− 1
may not be true, in which case it covers the case of small
delay. (erefore, (eorem 2 is also applicable to the case of
small delay.

3.3. Extension to INNswithHybrid Impulses. In recent years,
hybrid impulse as an important topic has attracted wide
attention, and numerous meaningful results have emerged.
Particularly, in [15], considering the influence of hybrid
impulses on the synchronization process, the authors
designed an effective hybrid impulsive controller so as to
achieve the quasi-synchronization of NNs. In this case, a
sufficient delay-dependent criterion for quasi-synchroniza-
tion is obtained. Meanwhile, in [15, 16], the authors adopted
AII and average impulsive gain methods to deal with the
hybrid impulses. In this paper, an improved dwell-time
condition is introduced to treat the hybrid impulses. In view
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of the above discussion, we extend the results of the first two
theorems in this section.

First of all, in order to extend(eorem 1, we put forward
(eorem 3 by referring to the processing procedure of the
small delay case.

Theorem 3. If Assumption 3 is replaced by the following
condition:

hk θ1( 􏼁 − hk θ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ e
− ρk θ1 − θ2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (45)

where ρk ∈ R, then under Assumptions 1 and 2 and (35), for
given constants ρ> 0, ρ∗ > 0, c> 0, δ > 0, the following condi-
tions are satisfied:

A1( 􏼁α1 + α2 > 0

A2( 􏼁 􏽘

N t,t0( )

k�1
ρk > ρN t, t0( 􏼁 − ρ∗

A3( 􏼁ρN t, t0( 􏼁≥ c t − t0( 􏼁 − δ

A4( 􏼁η∗ − c< 0,

(46)

where η∗ � max α1 + α2, η1􏼈 􏼉, and η1 satisfies
α1 + α2e

ρsupe− η1τ − η1 � 0 with ρsup � sup
k∈Z+

ρk􏼈 􏼉<∞; then,
network (1) is GES.

Proof. (e same analysis method as (eorem 1 is used here,
except that the impulsive parameters are changed, so we
shall take advantage of (A1) and (A4) to acquire the fol-
lowing statement:

V(t)≤ΠN t,t0( )
k�1 e

− ρk( 􏼁e
η∗ t− t0( )V t0( 􏼁,∀t≥ t0. (47)

(en, by using (A2) and (A3), one has

V(t)≤ e
− ΣN t,t0( )

k�1 e− ρk( 􏼁
e
η∗ t− t0( )V t0( 􏼁

≤ e
− ρN t,t0( )+ρ∗

e
η∗ t− t0( )V t0( 􏼁

≤ e
− c t− t0( )+δ+ρ∗

e
η∗ t− t0( )V t0( 􏼁

≤ e
δ+ρ∗

e
− c− η∗( ) t− t0( )V t0( 􏼁,∀t≥ t0.

(48)

(at is,

‖x(t)‖≤ e
δ+ρ∗

e
− c− η∗( ) t− t0( )‖ϕ‖τ ,∀t≥ t0. (49)

(e proof is completed.
Next, referring to the analysis method of arbitrarily finite

delay case, we obtain(eorem 4 as an extension of (eorem
2. □

Theorem 4. Suppose that the parameter q in Assumption 3 is
replaced by e− ρk , then under Assumptions 1 and 2 and
modified Assumption 3, for given constants
ρ> 0, ρ∗ > 0, c> 0, δ > 0, the following conditions are fulfilled:

􏽢A1􏼐 􏼑 􏽘

N t,t0( )

k�1
ρk > ρN t, t0( 􏼁 − ρ∗

􏽢A2􏼐 􏼑ρN t, t0( 􏼁≥ α1 + c( 􏼁 t − t0( 􏼁 − δ

􏽢A3􏼐 􏼑α2e
δ+ρ∗

− c< 0.

(50)

@en, network (1) is GES.

Proof. It is easy to prove this theorem by combining the
analytical methods of(eorems 2 and 3, so we leave out it for
brevity. □

Remark 8. (e parameter e− ρk in (eorems 3 and 4 is used
to describe the variable of hybrid impulses in impulsive
control systems. As you can see, q in (eorems 1 and 2 is
required to be 0< q< 1, but e− ρk in(eorem 3 and 4 satisfies
ρk ∈ R, that is, e− ρk < 1 if ρk > 0 and e− ρk > 1 if ρk < 0. It
implies that stabilizing impulses and destabilizing impulses
may exist at the same time. Furthermore, in order to handle
these parameters overall, we propose conditions (A2) and
(􏽢A1), and in a sense, the parameter ρ may be approximately
regarded as the “average value” of ρk. In fact, condition (A2)

combined with (A3) or (􏽢A1) combined with (􏽢A2) can be
considered as an improvement of dwell-time condition.

Remark 9. Compared with reference [11], this paper studies
the effects of time delay in continuous dynamics on system
stability. Bear in mind that the relationship between time
delay in continuous dynamics and the stability of impulsive
systems is not easy to find, and the derived results based on
AII method contain both time delay and the AII constant Ta,
which is not obtained in previous results. Furthermore, we
extend the results to systems with hybrid impulses. In ad-
dition, when discussing the delay effects in reference [12],
the authors limit the time delay to be less than any two
consecutive impulsive time intervals. However, we loosen
the condition of time delay in this paper, that is, the time
delay can be smaller than any two consecutive impulsive
intervals, or it can be greater than any two consecutive
impulsive time intervals.

Remark 10. On the basis of this paper, we could also in-
vestigate the case of neural network models with time-
varying delays. Actually, the results of this paper are still
valid after the constant delay is replaced by time-varying
delay in the model. We will continue to explore this question
in depth in future studies.

4. Illustrative Examples

Finally, for the purpose of verifying the above achievements,
we put forward the following three examples in current
section.
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Example 1. Consider a 2-dimensional INN with small delay:

_x1(t)

_x2(t)
􏼢 􏼣 � −

0.2 0

0 0.3
􏼢 􏼣

x1(t)

x2(t)
􏼢 􏼣

+
0.2 0.4

0.03 0.01
􏼢 􏼣

tanh x1(t)( 􏼁

tanh x2(t)( 􏼁
􏼢 􏼣

+
0.25 0.25

0.05 0.02
􏼢 􏼣

tanh x1(t − τ)( 􏼁

tanh x2(t − τ)( 􏼁
􏼢 􏼣,

(51)

under impulsive control

x1 tk( 􏼁

x2 tk( 􏼁
􏼢 􏼣 �

0.01 0

0 0.01
􏼢 􏼣

x1 t
−
k( 􏼁

x2 t
−
k( 􏼁

􏼢 􏼣, (52)

where t≥ 0, k ∈ Z+, tk − tk− 1 ≥ τ > 0.
Obviously, c1 � c2 � 1, c1 � c2 � 1, q � 0.01. By

calculating,

α1 � max
1≤i≤n

− ai + 􏽘
n

j�1
bji

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ci
⎛⎝ ⎞⎠ � 0.11,

α2 � max
1≤i≤n

􏽘

n

j�1
cji

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ci
⎛⎝ ⎞⎠ � 0.3.

(53)

Here, we set the initial value ϕ � [3, − 0.4]T and choose
impulsive instants tk � 5k, k ∈ Z+, which means Ta � 5.
When τ ∈ [4, 5], we can figure out η∗ ≤ 0.91 and
lnq/Ta + η∗ < 0, and it can be tested that all conditions in
(eorem 1 hold. (erefore, we can derive that systems (39)
and (40) are GUES when τ ∈ [4, 5]. In addition, according to
Remark 4, it can be seen that the system may converge faster
with the increase of delay, which corresponds to the sim-
ulation results in Figures 1–3. Moreover, we calculate its
corresponding parameter η∗ and estimate its convergence
rate for different time delays τ � 4, 4.5, 5, which are shown
in Table 1. More importantly, it also reveals the potential
stabilizing effect of time delay.

Example 2. Consider another 2-dimensional INN with large
delay:

_x1(t)

_x2(t)

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ � −

0.1 0

0 0.1
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

x1(t)

x2(t)

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

+

0.08 0.5

0.2 0.35
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

tanh
x1(t)

2
􏼠 􏼡

tanh
x2(t)

2
􏼠 􏼡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
0.03 0.1

0.1 0.07
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

tanh
x1(t − τ)

8
􏼠 􏼡

tanh
x2(t − τ)

2
􏼠 􏼡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(54)

under impulsive control

x1 tk( 􏼁

x2 tk( 􏼁

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ �

sin
x1 t

−
k( 􏼁

5
􏼠 􏼡

sin
x2 t

−
k( 􏼁

5
􏼠 􏼡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (55)

where t≥ 0, k ∈ Z+ and τ � 25, tk � 2k. Here, we set the
initial value ϕ � [0.4, 3]T. As shown in Figure 4, the impulse-
free system is unstable.
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Figure 1: (e state of (39) and (40) with τ � 4.
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Figure 2: (e state of (39) and (40) with τ � 4.5.
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In addition, it is apparent that
c1 � c2 � 1/2, c1 � 1/8, c2 � 1/2, q � 1/5, Ta � 2, N0 � 1. By
calculating,

α1 � max
1≤i≤n

− ai + 􏽘
n

j�1
bji

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ci
⎛⎝ ⎞⎠ � 0.325,

α2 � max
1≤i≤n

􏽘

n

j�1
cji

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ci
⎛⎝ ⎞⎠ � 0.085.

(56)

(erefore, we can conclude that
α1 + α2/qN0 + lnq/Ta ≈ − 0.05< 0. (at is to say, the con-
ditions in (eorem 2 are fulfilled, and it is deduced that
systems (43) and (44) are GUES, which is well reflected in
Figure 5. By the way, the time delay could be much larger
and the system would still be stable. In what follows, we
calculate the corresponding convergence rate for different
time delays τ � 25, 60, 100, which are shown in Table 2.
Actually, the delay is not limited to 100, and it can even be
greater than 100. As long as the delay is bounded under
certain conditions, the initial stability of impulsive system
can be guaranteed. Here we only calculate the convergence
rate of the system when the delay increases to 100.

Example 3. Consider a 3-dimensional INN:

_x(t) � − Ax(t) + Bf(x(t)) + Cg(x(t − τ)), (57)

under hybrid impulsive control

x tk( 􏼁 � e
− ρk x t

−
k( 􏼁, tk � 8k, k ∈ Z+, (58)
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Figure 3: (e state of (39) and (40) with τ � 5.

Table 1: (e convergence rate λ for different time delays.

Time delay τ Parameter η∗ Convergence rate λ
4 0.9070 0.0140
4.5 0.8291 0.0919
5 0.7649 0.1561
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Figure 4: (e state of (41) without impulse.
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Figure 5: (e state of (41) with impulsive effects (42).

Table 2: Stability of systems with different time delays.

Time delay τ Stable or not Convergence rate λ
25 ✓ 0.0045
60 ✓ 0.0019
100 ✓ 0.0012

Complexity 9



where

A �

0.6 0 0

0 0.6 0

0 0 0.6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, B �

0.24 − 0.3 − 0.2

− 0.2 − 0.24 0.3

− 0.4 0.7 0.9

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, C

�

0.01 0 0

0 0.2 0

0 0 0.01

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(59)

ρk �
3.1, k � 2l − 1
− 0.9, k � 2l

􏼨 􏼩, l ∈ Z+. (60)

Suppose that f(x) � (f1(x1), f2(x2), f3(x3))
T, g(x) �

(g1(x1), g2(x2), g3(x3))
T and fi(xi) � tanh(xi(t)/2), gi

(xi) � tanh(xi(t)), i � 1, 2, 3. We give the initial value ϕ �

[0.5, 0.6, − 0.3]T and take time delay τ � 7. As shown in
Figure 6, the impulse-free system is unstable.

Additionally, it is evident that
c1 � c2 � c3 � 1/2, c1 � c2 � c3 � 1, ρsup � 3.1, ρ � 1.1> 0.
By calculating,

α1 � max
1≤i≤n

− ai + 􏽘
n

j�1
bji

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ci
⎛⎝ ⎞⎠ � 0.1,

α2 � max
1≤i≤n

􏽘

n

j�1
cji

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ci
⎛⎝ ⎞⎠ � 0.2.

(61)

Furthermore, we can figure out η1 ≈ 0.3899 by Matlab.
(at is, η∗ � max α1 + α2, η1􏼈 􏼉 ≈ 0.39 and c � 0.4 in condi-
tions (A1) − (A4) of (eorem 3 are fulfilled. At the same
time, a series of conditions in(eorem 3 are completely true.
(erefore, systems (43) and (44) are GES, which is well
illustrated in Figure 7. From the simulation results, the
impulsive effects indeed have both stabilizing and destabi-
lizing effects.

5. Conclusion

In this paper, we have discussed the stability of a kind of
INNs with delay. Particularly, the internal relation between
time delay and system stability has been revealed. Firstly, we
have investigated the case where the delay is small. By
constructing Lyapunov function, combining the impulsive
delay inequality and AII condition, we have obtained a
sufficient condition to assure the exponential stability of
INNs. (e results have shown that within limits, the system
converges more quickly with the increase of time delay.
Secondly, we have explored the case where the delay is
arbitrarily large but bounded and derived a Lyapunov-based
stability criterion by virtue of the strict comparison prin-
ciple. Finally, as an extension, we have considered the case
where INN is a system with hybrid impulses. In future
studies, we may discuss the delay effects of a kind of INN
with state-dependent delay.
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)is paper deals with the multievent-triggering-based state estimation for a class of discrete-time networked singularly perturbed
complex networks (SPCNs). A small singularly perturbed scalar is adopted to establish a discrete-time SPCNs model. To reduce
the communication burdens, the data transmission between the sensor and the estimator is managed by a multievent generator
function. Depending on the singularly-perturbed-based Lyapunov theory, a sufficient condition is constructed to guarantee that
the estimation error is exponentially ultimately bounded in the mean square. Finally, the validity of the developed result is
demonstrated by a simulation example.

1. Introduction

A complex network is a set of interconnected nodes coupled
by certain network topology, each node of which can be
considered as a class of dynamic subsystems. Owing to its
complex inherent structure, most systems in real life can be
regarded simply as complex networks, including, but not
limited to social networks, biological networks, power grid
networks, and Internet [1–3]. Consequently, considerable
research interest has been stirred over the past few decades
and there has been a host of meaningful published
achievements of complex networks [4–9].

As far as we know, however, the complex networks with
two-time scales receive little attention. However, the two-
time scale case of many real-life complex networks [10–12] is
continually encountered. For instance, the circuit state
variables become faster than the mechanical state variables
in electronic power grids, due to the difference in the time
scalars on the circuit and the mechanical systems [10]. )is
can result in the appearance of diverse time-scale subsystems
in hosts of electromechanical systems, named fast and slow
dynamics. In most of the existing literature [13–15], a sin-
gularly perturbed approach is adopted to deal with the two-
time scale phenomenon of these real-life systems. In other
words, the fast-slow subsystem is distinguished by

introducing a small singularly perturbed scalar. Hence, such
complex networks can be regarded as SPCNs [16–23].

What is worth mentioning is that a host of the reporting
efforts [16–20] merely focuses on the synchronization
phenomenon of the SPCNs. However, in some real-world
scenarios, the exact state of the SPCNs on account of various
factors, like the high number of nodes, disturbances in all
directions, and high dimensions, is unavailable [7]. )us,
what we should pay attention to is the state estimation of the
SPCNs. On the other hand, we noticed that besides [22, 23],
the discrete-time SPCNs get little research concerns.)e two
important reasons for considering the discrete-time SPCNs
are that computational simulation and network commu-
nication. )erefore, it is very necessary to investigate the
state estimation of the discrete-time SPCNs.

In addition, increasing attention is devoted to the event-
triggered protocol (ETP), in which the current packet is
released if the ETP-based triggering condition is satisfied
[24–26]. Past years have witnessed an increasing interest in
ETPs, including static ETPs, dynamic ETPs, and memory
ETPs [27–34]. It is noted that in the above-referred ETPs, the
triggering parameter is assumed to be the same for all dy-
namic outputs/states. Nevertheless, such an assumption is
difficult to be satisfied, especially in multisensor networks,
which contributes to the varying triggering parameters. In
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light of above-discussed phenomenon, in this work, in order
to save resource consumption and solve the communication
congestion, a multi-ETP is employed to deal with the large
information communication among nodes of the discrete-
time SPCNs, which, to some extent, promotes the current
research. As such, a natural and interesting question is how
to design a proper multi-ETP for discrete-time SPCNs.

Based on the aforementioned observations, we try our
best to develop the multi-ETP-based estimator design issue
for the discrete-time SPCNs. )en, the mean square ex-
ponential bounded and state estimations are studied by
using the Lyapunov function dependent on a singular
perturbed parameter. In the end, a numerical example is
presented to prove the effectiveness of the state estimator
design method. It is worth emphasizing that even though the
discrete-time SPCNs are unstable, the result of this work is
still efficient. )e highlights of our contributions are out-
lined as follows: (1) A nonlinear discrete-time SPCNs model
is developed, which includes nonlinearities of complex
networks and multitime scales. (2) As the study progress, the
multi-ETP-based state estimation problem for the discrete-
time SPCNs with nonlinearities is considered.

Notation:N refers to a set of all nonnegative integers.Z⊤
represents the transpose of the matrixZ. diag ·{ } symbolizes
the diagonal matrix. He Z{ } � Z⊤ + Z. Im denotes the
m-dimensional unit matrix. λmin(·)/λmax(·) denotes the
minimal/maximal eigenvalue. ‖ · ‖ means Euclidean vector
norm. E ·{ } signifies the mathematical expectation.

2. Problem Formulations

Consider a type of SPCNs composed of N coupled nodes
described by

xi(k + 1) � gϵ xi(k)( 􏼁 + 􏽘
N

j�1
ωijΓϵxj(k) + Ci,ϵ](k),

yi(k) � Dixi(k) + Ei](k), (i � 1, 2, . . . , N),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

where xi(k) � [x⊤is(k)x⊤if(k)]⊤ ∈ Rnx , yi(k) � [y⊤is(k)y⊤if

(k)]⊤ ∈ Rny , gϵ(xi(k)) �
f(xis(k)) + Axif(k)

ϵ(h(xis(k)) + Bxif(k))
􏼢 􏼣,

Γϵ �
Γ11 Γ12
ϵΓ21 ϵΓ22

􏼢 􏼣, Ci,ϵ �
Cis

ϵCif
􏼢 􏼣, Di � diag Dis, Dif􏽮 􏽯,

Ei �
Eis

Eif
􏼢 􏼣, xis(k) ∈ Rnxs , and xif(k) ∈ Rnxf (nx �

nxs
+ nxf

) refer to the slow state and the fast state of node i,
respectively. yis(k) ∈ Rnys and yif(k) ∈ Rnyf (ny � nys

+ nyf
)

mean the measurement outputs of node i, ϵ is a singular
perturbation parameter, and ](k) ∈ Rn] signifies the bound
disturbance input belonging to l2[0,∞), which meets
‖](k)‖2 ≤ ]. Γϵ refers to an inner-coupling matrix with given
dimensions. A, B, Ci,ϵ, Di, and Ei are known matrices with
suitable dimensions.

)e network topology W � N,X,W{ } is devoted to
reflect the outer coupling phenomenon of the SPCNs. N �

1, 2, . . . , N{ } and X⊆N × N symbolize the sets of nodes
and edges. For any (i, j ∈N), the out-coupled configuration
matrix W � ωij􏽮 􏽯 is symmetric if ωij � ωji > 0, which
satisfies

ωii � − 􏽘
N

j�1,j≠ i

ωij, (2)

where ωij > 0(∀i≠ j) implies a connection between nodes j

and i; otherwise, ωij � 0.

Assumption 1 (see [23]). )e nonlinear sector-valued
functions f(·): Rnxs⟶ Rnxs and h(·): Rnxs⟶ R

nxf of
SPCNs (1) satisfy the following assumption:

f xis(k)( 􏼁 − f xjs(k)􏼐 􏼑 − Λ1 xis(k) − xjs(k)􏼐 􏼑􏽨 􏽩
⊤

f xis(k)( 􏼁 − f xjs(k)􏼐 􏼑 − Λ2 xis(k) − xjs(k)􏼐 􏼑􏽨 􏽩≤ 0,

h xis(k)( 􏼁 − h xjs(k)􏼐 􏼑 − Υ1 xis(k) − xjs(k)􏼐 􏼑􏽨 􏽩
⊤

h xis(k)( 􏼁 − h xjs(k)􏼐 􏼑 − Υ2 xis(k) − xjs(k)􏼐 􏼑􏽨 􏽩≤ 0,
(3)

where xis(k), xjs(k) ∈ Rnxs , f(0) � 0, h(0) � 0, Λℓ, and
Υℓ(ℓ � 1, 2) are constant matrices.

In this paper, for the sake of saving the communication
resources between the sensors and estimators, a multievent-
triggered approach is presented to reduce transmission
energy. )e triggering instant series of node i can be as-
sumed as 0≤ ki

0 < ki
1 < . . . < ki

t < . . . , (i � 1, 2, . . . , N) where
the new transmitted instant ki

t+1 can be formulated as

k
i
t+1 � min k ∈ [0,N]|k> k

i
t, θi − ε⊤i (k)Φiεi(k)< 0􏽮 􏽯. (4)

With ki
0 � 0, θi ∈ [0, 1] is the given parameter of the i-th

node, Φi � diag Φis,Φif􏽮 􏽯> 0 is a weighting matrix of the

i-th node to be determined, and εi(k)≜yi

(k) − yi(ki
t)≜ [ε⊤is(k)ε⊤if(k)]⊤ with yi(ki

t) referring to the
latest transmitted measurement of node i. Hence, for
k ∈ [ki

t, ki
t+1),

θi − ε⊤i (k)Φiεi(k)≥ 0. (5)

Remark 1. Note that different from the existing static ETP,
the multievent-triggered protocol is studied in (2). )e
proposed triggering protocol can be seen as a generalized
framework of ETP, which cover the existing static ETP as a
special case (i.e., i � 1).
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Subsequently, based on the multievent-triggered ap-
proach, a state estimator is constructed as

􏽢xi(k + 1) � gϵ 􏽢xi(k)( 􏼁 + 􏽘
N

j�1
ωijΓϵ􏽢xj(k) + Ki yi k

i
t􏼐 􏼑 − Di􏽢xi(k)􏼐 􏼑, (i � 1, 2, . . . , N), (6)

where 􏽢xi(k) � [􏽢x⊤is(k)􏽢x⊤if(k)]⊤ with 􏽢xis(k) and 􏽢xif(k) rep-
resenting the state estimations of xis(k) and xif(k), re-
spectively. Ki � diag Kis, Kif􏽮 􏽯 means the estimator gain of
the i-th node to be judged.

Let

􏽥ei(k) � 􏽥e
⊤
is(k)􏽥e

⊤
if(k)􏽨 􏽩

⊤
,

􏽥eis(k) � xis(k) − 􏽢xis(k),

􏽥eif(k) � xif(k) − 􏽢xif(k),

A(k) � A
⊤
1 (k)A

⊤
2 (k) . . .A

⊤
N(k)􏽨 􏽩

⊤
(􏽥e, ε, ),

􏽥B 􏽥eis(k)( 􏼁 � B xis(k)( 􏼁 − B 􏽢xis(k)( 􏼁(B � f, h),

􏽥g
⊤
ϵ 􏽥eis(k)( 􏼁 � 􏽥f

⊤
􏽥eis(k)( 􏼁ϵ􏽥h

⊤
􏽥eis(k)( 􏼁􏼔 􏼕,

g
→
ϵ 􏽥es(k)( 􏼁 � 􏽥g

⊤
ϵ 􏽥e1s(k)( 􏼁􏽥g

⊤
ϵ 􏽥e2s(k)( 􏼁 . . . 􏽥g

⊤
ϵ 􏽥eNs(k)( 􏼁􏽨 􏽩

⊤
.

(7)

Combining (1) and (4), the dynamics of the estimation
error can be built as

􏽥e(k + 1) � g
→
ϵ 􏽥es(k)( 􏼁 + W⊗ Γϵ + IN ⊗Gϵ − KD( 􏼁􏽥e(k) + Cϵ − KE( 􏼁](k) + Kε(k), (8)

where

Cϵ � C
⊤
1,ϵC
⊤
2,ϵ . . . C

⊤
N,ϵ􏽨 􏽩
⊤

,

K � diag K1,K2, . . . ,KN􏼈 􏼉(K � K, D),

E � E
⊤
1 E
⊤
2 . . . E

⊤
N􏽨 􏽩
⊤

,

Gϵ �
0 A

0 ϵB
􏼢 􏼣.

(9)

In the sequel, one reschedules the order of dynamic
estimation errors (8). Denote T � T1 × T2 × · · · × TN,
with Tℓ ∈ RNnx⊗Nnx (ℓ � 1, 2, . . . , N) being row-switching
elementary matrices and T being invertible. )en, one has

T􏽥e(k + 1) � T g
→
ϵ 􏽥es(k)( 􏼁 + T W⊗ Γϵ + IN ⊗Gϵ − KD( 􏼁T

− 1
T􏽥e(k) + T Cϵ − KE( 􏼁](k) + TKε(k), (10)

which yields

e(k + 1) � Aϵe(k) + I1f es(k)( 􏼁 + ϵI2h es(k)( 􏼁 + Cϵ](k) + Kε(k), (11)

where
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e(k) � 􏽥e
⊤
1s(k)􏽥e

⊤
2s(k) . . . 􏽥e

⊤
Ns(k)􏽥e

⊤
1f(k)􏽥e

⊤
2f(k) . . . 􏽥e

⊤
Nf(k)􏽨 􏽩

⊤
,

D es(k)( 􏼁 � 􏽥D
⊤

􏽥e1s(k)( 􏼁 􏽥D
⊤

􏽥e2s(k)( 􏼁 . . . 􏽥D
⊤

􏽥eNs(k)( 􏼁􏽨 􏽩
⊤

(D � f, h),

ε(k) � ε⊤1s(k)ε⊤2s(k) . . . ε⊤Ns(k)ε⊤1f(k)ε⊤2f(k) . . . ε⊤Nf(k)􏽨 􏽩
⊤

,

Aϵ �

− KsDs + W⊗ Γ11 IN ⊗A + W⊗Γ12

ϵ W⊗ Γ21( 􏼁 ϵ IN ⊗B + W⊗ Γ22( 􏼁 − KfDf

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦,

I1 �

INnxs

0Nnxf
×Nnxs

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

I2 �

0Nnxs
×Nnxf

INnxf

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Cϵ �

Cs − KsEs

ϵCf − KfEf

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦,

K � diag Ks, Kf􏽮 􏽯,

Eℓ � diag E1ℓ,E2ℓ, . . . ,ENℓ􏼈 􏼉(E � K, D, ℓ � s, f),

Fℓ � F
⊤
1ℓF
⊤
2ℓ . . .F

⊤
Nℓ􏽨 􏽩
⊤

(F � C, E, ℓ � s, f).

(12)

To facilitate the derivation of the main results, the fol-
lowing definition and lemma are introduced.

Definition 1 (see [35]). Estimation error dynamics (7) is
exponentially ultimately bounded in mean square (EUBMS),
if for any solution e(k) with initial state e(0),

E ‖e(k)‖
2

􏽮 􏽯≤ α‖e(0)‖
2βk

+ c(k), limk⟶∞c(k) � c, (13)

holds, where α> 0, β ∈ [0, 1), and c> 0 imply the mean
square asymptotic upper bound of (11).

Lemma 1 (see [23]). Combined with Assumption 1, the
nonlinear functions f(es(k)) and h(es(k)) of estimation error
dynamics (7) satisfy the conditions as follows:

e
⊤

(k) f⊤ es(k)( 􏼁􏽨 􏽩
F1 ∗

F2 INnxs

⎡⎢⎣ ⎤⎥⎦
e(k)

f es(k)( 􏼁
􏼢 􏼣≤ 0,

e
⊤

(k) h⊤ es(k)( 􏼁􏽨 􏽩
H1 ∗

H2 INnxf

⎡⎢⎢⎣ ⎤⎥⎥⎦
e(k)

h es(k)( 􏼁
􏼢 􏼣≤ 0,

(14)

where

F1 � diag IN ⊗
Λ⊤1Λ2 + Λ⊤2Λ1

2
􏼠 􏼡, 0Nnxf

􏼨 􏼩,

F2 � − IN ⊗
Λ1 + Λ2

2
􏼒 􏼓 0Nnxs

􏼔 􏼕,

H1 � diag IN ⊗
Υ⊤1Υ2 + Υ⊤2Υ1

2
􏼠 􏼡, 0Nnxf

􏼨 􏼩,

H2 � − IN ⊗
Υ1 + Υ2

2
􏼒 􏼓 0Nnxf

􏼔 􏼕.

(15)

Lemma 2 (see [23]). For any matricesH andG and a scalar
ϵ0 > 0, ∀ϵ ∈ (0, ϵ0], if H≤ 0 and H + ϵ0G< 0 hold, it yields
H + ϵ < 0.

3. Main Results

In this section, a sufficient condition is presented to guar-
antee that the estimation error dynamics (7) is exponentially
ultimately bounded in mean square and the desired state
estimator will be designed.
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Theorem 1. For given ϵ> 0 and c ∈ [0, 1), estimation error
dynamics (7) is EUBMS, if there exist scalars
λς > 0(ς � 1, 2, 3) and κ> 0 and matrices Pϵ > 0, such that

− (1 − c)Pϵ − λ1F1 − λ2H1 ∗ ∗ ∗ ∗

− λ1F2 − λ1INnxs
∗ ∗ ∗

− λ2H2 0 − λ2INnxf

∗ ∗

0 0 0 − λ3Φ ∗
����
1 + κ

√
Aϵ

����
1 + κ

√
I1

����
1 + κ

√
ϵI2

����
1 + κ

√
K − P

− 1
ϵ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (16)

where

Φ � diag Φ1s,Φ2s, . . . ,ΦNs,Φ1f,Φ2f, . . . ,ΦNf􏽮 􏽯. (17)

Proof. Firstly, construct the following Lyapunov functional
candidate:

V(k) � e
⊤

(k)Pϵe(k). (18)

According to (5), another equivalent form of the event-
triggering condition is as follows:

􏽘

N

i�1
θi − ε⊤(k)Φε(k)≥ 0. (19)

Along the trajectory of (11), calculating themathematical
expectation of the difference of V(k), one gains that

E ΔV(k){ } � E V(k + 1) − (1 − c)V(k) − cV(k){ }

� E e
⊤

(k + 1)Pϵe(k + 1) − (1 − c)e
⊤

(k)Pϵe(k) − cV(k)􏼈 􏼉

≤E e
⊤

(k + 1)Pϵe(k + 1) − (1 − c)e
⊤

(k)Pϵe(k) − cV(k)􏼈 􏼉

� E Aϵe(k) + I1f es(k)( 􏼁 + ϵI2h es(k)( 􏼁 + Cϵ](k) + Kε(k)( 􏼁
⊤

Pϵ Aϵe(k) + I1f es(k)( 􏼁(􏽮

+ ϵI2h es(k)( 􏼁 + Cϵ](k) + Kε(k)􏼁 − (1 − c)e
⊤

(k)Pϵe(k) − cV(k)􏼉

≤E Aϵe(k) + I1f es(k)( 􏼁 + ϵI2h es(k)( 􏼁 + Kε(k)( 􏼁
⊤

Pϵ Aϵe(k) + I1f es(k)( 􏼁( 􏼁 + ϵI2h es(k)( 􏼁􏽮

+ Kε(k)) + ]⊤(k)C
⊤
ϵ PϵCϵ](k) + 2 Aϵe(k) + I1f es(k)( 􏼁( 􏼁 + ϵI2h es(k)( 􏼁 +Kε(k))

⊤
PϵCϵ](k)

− (1 − c)e
⊤

(k)Pϵe(k) − cV(k)􏼉.

(20)

Depending on Young’s inequality, the following in-
equality holds:

2 Aϵe(k) + I1f es(k)( 􏼁 + ϵI2h es(k)( 􏼁 + Kε(k)( 􏼁
⊤

PϵCϵ](k)

≤ κ Aϵe(k) + I1f es(k)( 􏼁 + ϵI2h es(k)( 􏼁 +Kε(k))
⊤

Pϵ Aϵe(k) + I1f es(k)( 􏼁 + ϵI2h es(k)( 􏼁 + Kε(k)( 􏼁( 􏼁

+
1
κ

]⊤(k)C
⊤
ϵ PϵCϵ](k)( 􏼁.

(21)

Combining (19) and (21) and Lemma 1, we obtain that
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E ΔV(k){ }≤E

(1 + κ) Aϵe(k) + I1f es(k)( 􏼁 + ϵI2h es(k)( 􏼁 + Kε(k)( 􏼁
⊤

Pϵ Aϵe(k) + I1f es(k)( 􏼁 + ϵI2h es(k)( 􏼁 + Kε(k)( 􏼁

+ 1 +
1
κ

􏼒 􏼓]⊤(k)C
⊤
ϵ PϵCϵ](k) − (1 − c)e

⊤
(k)Pϵe(k) − cV(k) − λ1 e

⊤
(k) f⊤ es(k)( 􏼁􏽨 􏽩

F1 ∗

F2 INnxs

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

e(k)

f es(k)( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− λ2 e
⊤

(k) h⊤ es(k)( 􏼁􏽨 􏽩

H1 ∗

H2 INnxf

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

e(k)

h es(k)( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ λ3 􏽘

N

i�1
θi − ε⊤(k)Φε(k)⎛⎝ ⎞⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

� ℵ⊤(k)Ξϵℵ(k) − cV(k) + ϱ,

(22)

where

ℵ(k) � e
⊤

(k)f⊤ es(k)( 􏼁h⊤ es(k)( 􏼁ε⊤(k)􏽨 􏽩
⊤

,

ϱ � λ3 􏽘

N

i�1
θi + 1 +

1
κ

􏼒 􏼓λmax C
⊤
ϵ PϵCϵ􏼈 􏼉],

Ξϵ �

Ξ11ϵ ∗ ∗ ∗

(1 + κ)I
⊤
1 PϵAϵ − λ1F2 (1 + κ)I

⊤
1 PϵI1 − λ1INnxs

∗ ∗

(1 + κ)ϵI⊤2 PϵAϵ − λ2H2 (1 + κ)ϵI⊤2 PϵI1 (1 + κ)ϵ2I⊤2 PϵI2 − λ2INnxf

∗

(1 + κ)K
⊤

PϵAϵ (1 + κ)K
⊤

PϵI1 (1 + κ)K
⊤

PϵϵI2 (1 + κ)K
⊤

PϵK − λ3Φ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Ξ11ϵ � (1 + κ)A
⊤
ϵ PϵAϵ − (1 − c)Pϵ − λ1F1 − λ2H1.

(23)

Applying the Schur complement lemma to (16), it is clear
that Ξϵ < 0. Consequently, one has

E ΔV(k){ }≤ − cV(k) + ϱ, (24)

which yields

E V(k + 1){ }≤ (1 − c)V(k) + ϱ. (25)

)en, it follows from (25) that

E V(k){ }≤ (1 − c)
k
V(0) +

1 − (1 − c)
k

c
ϱ. (26)

Moreover, it is easy to obtain that V(k)≥ λmin
Pϵ􏼈 􏼉e⊤(k)e(k) and V(0)≤ λmax Pϵ􏼈 􏼉e⊤(0)e(0); combining
(26), it yields that

E ‖e(k)‖
2

􏽮 􏽯≤
(1 − c)

kλmax Pϵ􏼈 􏼉

λmin Pϵ􏼈 􏼉
‖e(0)‖

2
+
1 − (1 − c)

k

cλmin Pϵ􏼈 􏼉
ϱ.

(27)

Consequently, estimation error dynamics (7) is EUBMS,
and c � 1/cλmin Pϵ􏼈 􏼉ϱ is the mean square asymptotic upper
bound of (7), which completes the proof. □

Theorem 2. For ∀ϵ ∈ (0, ϵ0] with the upper bound ϵ0 > 0 and
c ∈ [0, 1), estimation error dynamics (7) is EUBMS, if there
exist scalars λς(ς � 1, 2, 3) and κ> 0 and matrices P

⌣
�

P
⌣

11 ∗
P
⌣

21 P
⌣

22

⎡⎣ ⎤⎦, 􏽢P �
􏽢P11 ∗
􏽢P21

􏽢P22
􏼢 􏼣, Xℓ � diag Xℓ1, Xℓ2, . . . , XℓN􏼈 􏼉

(ℓ � 1, 2), andKi℘(i � 1, 2, . . . , N,℘ � s, f), such that
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P
⌣
≥ 0, P

⌣
+ ϵ0􏽢P> 0, (28)

− (1 − c)P
⌣

− λ1F1 − λ2H1 ∗ ∗ ∗ ∗
− λ1F2 − λ1INnxs

∗ ∗ ∗

− λ2H2 0 − λ2INnxf

∗ ∗

0 0 0 − λ3Φ ∗
����
1 + κ

√
�A

����
1 + κ

√
XI1 0

����
1 + κ

√
􏽥K P

⌣
− X − X

⊤

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ 0, (29)

− (1 − c) P
⌣

+ ϵ0􏽢P􏼒 􏼓 − λ1F1 − λ2H1 ∗ ∗ ∗ ∗

− λ1F2 − λ1INnxs
∗ ∗ ∗

− λ2H2 0 − λ2INnxf

∗ ∗

0 0 0 − λ3Φ ∗
����
1 + κ

√
�A + ϵ0 􏽢A􏼐 􏼑

����
1 + κ

√
XI1

����
1 + κ

√
ϵ0XI2

����
1 + κ

√
􏽥K P

⌣
+ ϵ0􏽢P − X − X

⊤

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (30)

where

X � diag X1, X2􏼈 􏼉,

K℘ � diag K1℘, K2℘, . . . , KN℘􏽮 􏽯, (℘ � s, f),

�A �
− KsDs + X1 W⊗ Γ11( 􏼁 X1 IN ⊗A + W⊗ Γ12( 􏼁

0 − KfDf

⎡⎢⎣ ⎤⎥⎦,

􏽢A �
0 0

X2 W⊗ Γ21( 􏼁 X2 IN ⊗B + W⊗ Γ22( 􏼁
􏼢 􏼣,

􏽥K � diag Ks, Kf􏽮 􏽯.

(31)

Moreover, the estimator gain matrices are calculated as

Kis � X
− 1
1i Kis,

Kif � X
− 1
2i Kif,

(i � 1, 2, . . . , N).

(32)

Proof. From (28)–(30) and Lemma 2, it follows that for
∀ϵ ∈ (0, ϵ0], the following conditions hold:

Pϵ � P
⌣

+ ϵ􏽢P> 0

·

− (1 − c)(P
⌣

+ ϵ􏽢P) − λ1F1 − λ2H1 ∗ ∗ ∗ ∗

− λ1F2 − λ1INnxs
∗ ∗ ∗

− λ2H2 0 − λ2INnxf

∗ ∗

0 0 0 − λ3Φ ∗
����
1 + κ

√
( �A + ϵ 􏽢A)

����
1 + κ

√
XI1

����
1 + κ

√
ϵXI2

����
1 + κ

√
􏽥K P

⌣
+ ϵ􏽢P − X − X

⊤

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0.
(33)

Substituting (32) into (33) and noticing that
− XP− 1
ϵ X⊤ ≤Pϵ − He X{ }, one has

− (1 − c)Pϵ − λ1F1 − λ2H1 ∗ ∗ ∗ ∗

− λ1F2 − λ1INnxs
∗ ∗ ∗

− λ2H2 0 − λ2INnxf

∗ ∗

0 0 0 − λ3Φ ∗
����
1 + κ

√
XAϵ

����
1 + κ

√
XI1

����
1 + κ

√
ϵXI2

����
1 + κ

√
XK − XP

− 1
ϵ X
⊤

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0. (34)
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Recalling (29), it is clear that P
⌣

− X − X⊤ < 0 with P
⌣
≥ 0.

)en, X is invertible.
Premultiplying and postmultiplying (34) by

diag INnx
, INnxs

, I2Nnxf

, INny
, X− 1􏼚 􏼛, its transposes yields (16).

)erefore, inequality (16) can be guaranteed if (28)–(30)
hold. )is completes the proof. □

4. Numerical Example

Similar to [23], consider SPCNs (1) with three nodes and the
following parameters:

A � 1.2 0.45􏼂 􏼃,

B �
1.3 0.6

2.3 0.9
􏼢 􏼣,

C1s � 0.2,

C2s � 0.1,

C3s � 0.4,

C1f �
0.86

1.15
􏼢 􏼣,

C2f �
0.5

1.75
􏼢 􏼣,

C3f �
0.02

0.05
􏼢 􏼣,

D1s �
2

1.2
􏼢 􏼣,

D2s �
0.9

2.1
􏼢 􏼣,

D3s �
1.6

1.62
􏼢 􏼣,

D1f � 2.4 1􏼂 􏼃,

D2f � − 1.4 0.6􏼂 􏼃,

D3f � 2.3 2􏼂 􏼃,

E1s �
0.8

1
􏼢 􏼣,

E2s �
0.5

0.1
􏼢 􏼣,

E3s �
0.4

− 1
􏼢 􏼣,

E1f � 0.2,

E1f � 0.4,

E1f � 0.25.

(35)

)e out-coupled configuration matrix W of SPCNs (1)
and its inner-coupling matrix, respectively, are selected as
follows:

Γ11 � 0.45,

Γ12 � 0.2 0.6􏼂 􏼃,

Γ21 �
0.1

0.5
⎡⎢⎢⎣ ⎤⎥⎥⎦,

Γ22 �
0.6 0.2

0.4 0.25
⎡⎢⎢⎣ ⎤⎥⎥⎦,

W �

− 0.2 0.1 0.1

0.1 − 0.2 0.1

0.1 0.1 − 0.2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(36)

In light of Assumption 1, the nonlinear vector-valued
functions are chosen as

f xis(k)( 􏼁 � 0.8xis(k) − tanh 0.4xis(k)( 􏼁,

h xis(k)( 􏼁 �
0.3xis(k) − tanh 0.1xis(k)( 􏼁

0.4xis(k) − tanh 0.2xis(k)( 􏼁
􏼢 􏼣, (i � 1, 2, . . . , N),

(37)

and Λ1 � 0.5,Λ2 � 0.58,Υ1 � 0.2 0.2􏼂 􏼃
⊤

, andΥ2 �

0.5 0.41􏼂 􏼃
⊤. )e event-triggered thresholds are set as

θ1 � 0.17, θ2 � 0.104, and θ3 � 0.5, and the weighting ma-
trices are calculated as Φi � diag 44.1124, 44.1124,{

44.1124}(i � 1, 2, 3). Other parameters are given as follows:
ϵ0 � 0.0193 and c � 0.1.

According to )eorem 2, the gain matrices of state es-
timator (6) can be obtained as

Ks �

0.1755 0.1053 0 0 0 0

0 0 0.0824 0.1924 0 0

0 0 0 0 0.1473 0.1491

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Kf �

0.0107 0 0

0.0290 0 0

0 − 0.0179 0

0 − 0.1104 0

0 0 0.0102

0 0 0.0222

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(38)

)e bound disturbance input is considered as
](k) � 0.05cos(2k), and the initial conditions of (1) and (6)
are given as x1(0) � 0.04 0.01 0.02􏼂 􏼃

⊤, x2(0) �

0.03 0.015 0.02􏼂 􏼃
⊤, x3(0) � 0.1 0.004 0.004􏼂 􏼃

⊤, and
􏽢x1(0) � 􏽢x2(0) � 􏽢x3(0) � 0 0 0􏼂 􏼃

⊤.
)e simulation results are presented in Figures 1–5.

Figures 1–3 display the state trajectories and their estima-
tions of three nodes, respectively. )e event-based release
instants and release intervals of three nodes are shown in
Figure 4. Figure 5 plots the evolutions of the estimation error
dynamics. It can be discovered from Figure 5 that estimation
error dynamics (7) is EUBMS.
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Figure 1: )e state trajectories and estimations of node 1.
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Figure 2: )e state trajectories and estimations of node 2.
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Figure 3: )e state trajectories and estimations of node 3.
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5. Conclusions

)is paper has investigated the issue of the multievent-
triggered state estimation for a novel class of discrete-time
nonlinear SPCNs. A discrete-time SPCN model with non-
linearities has been modeled. To alleviate energy con-
sumption, a multievent triggered protocol is applied to
regulate the communication among nodes of the SPCNs.
Finally, a simulation has demonstrated the rationality, su-
periority, and effectiveness of the proposed method.
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Hopfield neural network (HNN) is considered as an artificial model derived from the brain structures and it is an important model
that admits an adequate performance in neurocomputing. In this article, we solve a dynamical model of 3D HNNs via
Atangana–Baleanu (AB) fractional derivatives. To find the numerical solution of the considered dynamical model, the well-known
Predictor-Corrector (PC) method is used. A number of cases are taken by using two different sets of values of the activation
gradient of the neurons as well as six different initial conditions. )e given results have been perfectly established using the
different fractional-order values on the given derivative operator. )e objective of this research is to investigate the dynamics of
the proposed HNNmodel at various values of fractional orders. Nonlocal characteristic of the AB derivative contains the memory
in the system which is the main motivation behind the proposal of this research.

1. Introduction

Neural networks (NNs) are a part of machine learning that
are at the centre of deep learning techniques. )eir identity
and dynamics are taken from the human brain, and they
dovetail the path real neurons transfuse to each other. In
some branches of artificial intelligence (AI), deep learning,
and machine learning, NNs are mimetic to the function of
the human brain, helping computer algorithms to locate
patterns and estimate general problems. As a result of their
widespread use in a variety of sectors, NNs have elicited a
great deal of anxiety [1–3]. Practice data is utilized by neural
networks to swot and improve their performance over time.
However, when these learning tactics have been improved
for precision, they get as the knotty features in computer
science and AI, helping us to hastily classify and hoard data.
In comparison to manual recognition by human experts,
actions in speech or picture identification can take minutes

rather than hours. Various types of NNs are present, each of
which is used for a specific target.

For the first time in 1984, Hopfield introduced the
Hopfield neural network (HNN) [4]. Since then, a greater
learning of the Hopfield neural network’s dynamical be-
haviour has been crucial in the study of applications of
engineering and information processing, such as pattern
identification [5], signal processing, and associative memory
[6]. Moreover, there have been several studies published in
the literature on the dynamical characteristics of a range of
complex-valued neural network models. HNN, as previously
said, is an artificial model derived from brain dynamics, and
it is an important model in neurocomputing [7]. A neural
model like this is capable of accumulating information or
material in an identical fashion to a human brain. Njitacke
et al. in [8] discussed the space magnetization, hysteretic
dynamics, and offset boosting in a third-order memristive
system. In [9], the authors analyzed the complex structure of
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a 3D autonomous system without linear terms having line of
equilibria. A study on the control of multistability with
selection of chaotic attractor along with an application to
image encryption is given in [10]. In [11], a dynamical
analysis on a simple autonomous jerk system with multiple
attractors is proposed.

Nowadays, fractional-order operators are highly useful
to solve varieties of real-world problems [12–14]. )e main
feature of fractional derivatives is their nonlocal properties
which help to capture memory effects in the systems. )ese
operators are an advanced version of the integer-order
operators. To date, fractional operators have been used in
various scientific and engineering fields by using different
kinds of mathematical modelings. Recently, fractional de-
rivatives have been used in disease dynamics [15, 16], me-
chanics [17], psychology [18], engineering [19], advanced
modeling via fractal-fractional operators [20], etc. For the
sake of the various advantages of fractional operators for
memory effects, modeling dynamic systems using fractional
calculus has been met with scepticism [21, 22]. In [23], the
explicit stability dependency on a variable time delay was

presented and delay-dependent stability switches of linear
systems of the fractional type were examined.)is theory has
recently been included into NNs, resulting in fractional-
order neural networks (FONNs). So such a medication can
strengthen the ability of neurons to process information.
Fortunately, owing to the unwavering tenacity of re-
searchers, various worldwide applications of FONNs have
been discovered, including network approximation [24],
state estimation [25], system identification [26], robotic
manipulators [27], and formation control [28]. For neurons,
fractional-order elements have two clear benefits. On the one
hand, fractional calculus, as compared to ordinary calculus,
has a far better depiction of memory and hereditary features
[29]. Fractional-order parameters, on the other hand, can
improve system performance by adding one degree of
freedom [30]. By combining memory peculiarity into NNs,
there is clearly an enormous improvement. FONNs have
produced some astonishing effects [31, 32].

In this article, we perform some novel mathematical
simulations on the dynamical model of 3D HNNs which was
investigated in ref. [33] given as follows:

x1
.

� − x1 + 2 tanh β1x1( 􏼁 − 1.2 tanh β2x2( 􏼁 + 0.48 tanh β3x3( 􏼁,

x2
.

� − x2 + 3.6 tanh β1x1( 􏼁 + 1.7 tanh β2x2( 􏼁 + 1.776 tanh β3x3( 􏼁,

x3
.

� − x3 − 9 tanh β1x1( 􏼁,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

where terms x1, x2, x3 are state variables and β1, β2, β3
stand for the variable gradient in relation to the activation
function. Firstly, we give some preliminaries related to the
fractional calculus in Section 2. )en, to solve the above
given dynamical model (1), we generalise the model into
Atangana–Baleanu (AB) fractional derivative under the
Mittag–Leffler kernel in Section 3. For investigating the
numerical solution of the fractional-order model, we
apply Predictor-Corrector (PC) method. In Section 4, a
number of graphs are plotted to check the correctness of
the derived solution. Lastly, we give the supporting
conclusion.

2. Preliminaries

Several important notions are recalled here.

Definition 1 (see [34]). For the function X ∈H1(a, b),
where b> a and 0≤ c≤ 1, the cth-AB derivative is

AB
a D

c
t (X(t)) �

AB[c]

1 − c
􏽚

t

a
X′(η)Ec c

(t − η)
c

c − 1
􏼢 􏼣dη, (2)

where AB[c] with AB[1] � AB[0] � 1 is the normalization
function.

Definition 2 (see [34]). )e AB fractional integral is given by

AB
a I

c
t (X(t)) �

1 − c

AB[c]
X(t) +

c

Γ(c)AB[c]

· 􏽚
t

a
X(η)(t − η)

c− 1
dη.

(3)

Lemma 1 (see [34]). For 0< c< 1, the solution of the system
BDc

0x(t) � z(t), t ∈ [0, T],

x(0) � x0,
(4)

is derived by

x(t) � x0 +
(1 − c)

AB(c)
z(t)

+
c

AB(c)Γ(r)
􏽚

t

0
(t − ω)

c− 1
z(ω)dω .

(5)

Lemma 2 (see [35]). Let a1 is a nonnegative integer and
0< c< 1, then there exist two constants Cc,1 > 0 and Cc,2 > 0
in terms of c, such that

a1 + 1( 􏼁
c

− a
c
1 ≤Cc,1 a1 + 1( 􏼁

c− 1
, (6)

and (a1 + 2)c+1 − 2(a1 + 1)c+1 + a
c+1
1 ≤Cc,2(a1 + 1)c− 1.

Lemma 3 (see [35]). Let us suppose
]s,r � (r − s)c− 1(s � 1, 2, . . . , r − 1) and ]s,r � 0 for
s≥ r, c, M, h, T> 0, a1h≤T and a1 is a positive integer. Let
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􏽐
s�r
s�a1

]s,r|es| � 0 for k> r≥ 1. If
|er|≤Mhc􏽐

r− 1
s�1]s,r|es| + |η0|, r � 1, 2, . . . , a1, then

|ea1
|≤C|η0|, a1 � 1, 2, . . . in which C> 0 is independent of

both a1 and h.

3. The Structure of the Model

Here we generalise the aforementioned integer-order model
(1) into the fractional-order sense by using a nonsingular

type fractional derivative called Atangana–Baleanu frac-
tional derivative. Nonlocal characteristic of the AB deriva-
tive contains the memory in the system which is the main
motivation behind this generalization. So, the fractional
form of the given system (1) in the AB-operator sense is
given by

AB
D

c
t x1 � − x1 + 2tanh β1x1( 􏼁 − 1.2tanh β2x2( 􏼁 + 0.48tanh β3x3( 􏼁,

AB
D

c
t x2 � − x2 + 3.6tanh β1x1( 􏼁 + 1.7tanh β2x2( 􏼁 + 1.776tanh β3x3( 􏼁,

AB
D

c
t x3 � − x3 − 9tanh β1x1( 􏼁,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(7)

where ABD
c
t is the AB fractional derivative of order c.

3.1. Derivation of the Numerical Solution. In the current
literature, there are many computational methods available
to solve different types of fractional-order systems. Some
very recent works on the proposal of numerical methods in
the sense of fractional derivatives can be seen from ref.
[36, 37]. Here we implement the Predictor-Corrector
method for solving the given dynamical model (7). )e
complete methodology of the proposed method has been
defined in ref. [38]. Firstly, we consider the initial value
problem (IVP)

ABDc
tB(t) � Φ(t,B(t)), t ∈ [0, τ], 0< c≤ 1,

B(0) � B0.
(8)

From ref. [38], the equivalent Volterra integral equation
is written by

Br+1 � B0 +(1 − c)Φ tr+1,Br+1( 􏼁

+
c

Γ(c)
􏽚

tr+1

0
tr+1 − s( 􏼁

c− 1Φ(s,B(s))ds.

(9)

According to the derivation of the method proposed in
[38] for the fractional-order c ∈ [0, 1], 0≤ t≤T and con-
sidering h � (T/N) and tn � nh, for n � 0, 1, . . . , N ∈ Z+,
the corrector term for the IVP (8) is derived by

Br+1 � B0 +
ch

ζ

Γ(c + 2)
ar+1,r+1Φ tr+1,B

P
r+1􏼐 􏼑􏼐

· +􏽘
r

w�0
ar+1,wΦ tw,Bw( 􏼁⎞⎠,

(10)

where

ar+1,w �

r
c+1

− (r − c)(r + 1)
c
, ifw � 0,

(r − w + 2)
c+1

+(r − w)
c+1

− 2(r − w + 1)
c+1

, if1≤w≤ r,

1, w � r + 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(11)

and ar+1,r+1 � 1 + ((1 − c)Γ(c + 2)/chc). )e predictor term
is given by

B
P
r+1 � B0 +

h
c

Γ(c)
􏽘

r

w�0
br+1,wΦ tw,Bw( 􏼁, (12)

where

br+1,w �

− (r − w)
c

+(r − w + 1)
c
, w � 0, . . . , r − 1,

1 +
(1 − c)Γ(c)

h
c , w � r.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(13)
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We can see that our proposed model (7) is just a gen-
eralized form of the considered IVP (8). Hence the corrector
formulae in relation to the proposed model (7) are given by

x1r+1
� x10 +

ch
c

Γ(c + 2)

ar+1,r+1􏼐 􏼑 − x
P
1r+1

+ 2tanh β1x
P
1r+1

􏼐 􏼑 − 1.2tanh β2x
P
2r+1

􏼐 􏼑 + 0.48tanh β3x
P
3r+1

􏼐 􏼑􏼐 􏼑

+ 􏽘
r

w�0
ar+1,w􏼐 􏼑 − x1w

+ 2tanh β1x1w
􏼐 􏼑 − 1.2tanh β2x2w

􏼐 􏼑 + 0.48tanh β3x3w
􏼐 􏼑􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

x2r+1
� x20 +

ch
c

Γ(c + 2)

ar+1,r+1􏼐 􏼑 − x
P
2r+1

+ 3.6tanh β1x
P
1r+1

􏼐 􏼑 + 1.7tanh β2x
P
2r+1

􏼐 􏼑 + 1.776tanh β3x
P
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+ 􏽘
r

w�0
ar+1,w􏼐 􏼑 − x2w

+ 3.6tanh β1x1w
􏼐 􏼑 + 1.7tanh β2x2w

􏼐 􏼑 + 1.776tanh β3x3w
􏼐 􏼑􏼐 􏼑
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,

x3r+1
� x30 +

ch
c

Γ(c + 2)

ar+1,r+1􏼐 􏼑 − x
P
3r+1

− 9tanh β1x
P
1r+1

􏼐 􏼑􏼐 􏼑

+ 􏽘
r

w�0
ar+1,w􏼐 􏼑 − x3w

− 9tanh β1x1w
􏼐 􏼑􏼐 􏼑
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,

(14)

where

x
P
1r+1

� x10 +
h

c
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􏽘

r

w�0
br+1,w − x1w

+ 2tanh β1x1w
􏼐 􏼑 − 1.2tanh β2x2w
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+ 3.6tanh β1x1w
􏼐 􏼑 + 1.7tanh β2x2w

􏼐 􏼑 + 1.776tanh β3x3w
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x
P
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h

c

Γ(c)
􏽘

r

w�0
br+1,w − x3w

− 9tanh β1x1w
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(15)

3.1.1. Stability of the Scheme

Theorem 1. 9e derived scheme (14) and (15) is condi-
tionally stable.

Proof. Consider 􏽦B0,
􏽦Bw(w � 0, . . . , r + 1) and

􏽥B
P

r+1(r � 0, . . . , N − 1) be perturbations of
B0,Bw andBP

r+1, respectively. )en the perturbations
given from (14) and (15) are

􏽥B
P

r+1 � 􏽦B0 +
h

c
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􏽘

r

w�0
br+1,w Φ tw,Bw + 􏽦Bw􏼐 􏼑 − Φ tw,Bw( 􏼁􏼐 􏼑,

􏽥Br+1 � 􏽦B0 +
ch

c
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ar+1,r+1 Φ tr+1,B
P
r+1 + 􏽥B

P

r+1􏼒 􏼓 − Φ tr+1,B
P
r+1􏼐 􏼑􏼒 􏼓

+ 􏽘
r

w�0
ar+1,w Φ tw,Bw + 􏽥Bw􏼐 􏼑 − Φ tw,Bw( 􏼁􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(16)
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Figure 1: Dynamics of coexisting multiple attractors’ for gradient β2 � 1.15 and x1(0) � 1, x2(0) � x3(0) � 0 at different fractional orders.
(a) State variables x2 versus x3; (b) state variables x2 versus x3; (c) state variables x1 versus x2; (d) state variables x1 versus x3; (e) state variables
x1 versus x2; (f ) state variables x1 versus x3.
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Figure 2: Dynamics of coexistingmultiple attractors’ for gradient β2 � 1.15 and x1(0) � − 1, x2(0) � x3(0) � 0 at different fractional orders.
(a) State variables x2 versus x3; (b) state variables x2 versus x3; (c) state variables x1 versus x2; (d) state variables x1 versus x3; (e) state variables
x1 versus x2; (f ) state variables x1 versus x3.
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According to the Lipschitz condition, we get

􏽥Br+1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ c0 +
ch

c
M

Γ(c + 2)
ar+1,r+1

􏽥B
P

r+1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + 􏽘
r

w�1
aw,r+1

􏽥Bw

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠, (17)

where c0 � max0≤r≤N | 􏽦B0| + (chcMar,0/Γ(c + 2))| 􏽦B0|􏽮 􏽯.
Also, from Eq.(3.18) in [35] we write

􏽥B
P

r+1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ η0 +
h

c
M

Γ(c)
􏽘

r

w�1
bw,r+1

􏽥Bw

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (18)

where η0 � max0≤r≤N | 􏽥B0| + (hcMbn,0/Γ(c))| 􏽥B0|􏽮 􏽯.
Substituting | 􏽥B

P

r+1| from (18) into (17) reads as follows:

􏽥Br+1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ c0 +
ch

c
M

Γ(c + 2)
􏽘

r

w�1
ar+1,w +

h
c
Mar+1,r+1br+1,w

Γ(c)
􏼠 􏼡 􏽥Bw

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

≤ c0 +
ch

c
MCc,2

Γ(c + 2)
􏽘

r

w�1
(r + 1 − w)

c− 1
| 􏽦Bw|

(19)

where c0 � max c0 + (chcMar+1,r+1/Γ(c + 2))η0􏽮 􏽯. Cc,2 > 0 is
a constant dependent on c (from Lemma 2) and h is sup-
posed to be very small. From Lemma 3, it is obtained that
| 􏽥Br+1|≤Cc0, which is the desired result. □
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Figure 3: Dynamics of coexisting multiple attractors’ for gradient β2 � 1.15 and x1(0) � 2, x2(0) � x3(0) � 0 at different fractional orders.
(a) State variables x2 versus x3; (b) state variables x2 versus x3.
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4. Graphical Observations

Now to check the role of the proposed Atangana–Baleanu
fractional derivative, we plot a number of graphs with the
help of the above mentioned numerical method. )e values

of the parameters β1 and β3 are fixed and equal to
β1 � 0.9, β3 � 1.4. For the activation gradient of the second
neuron β2 � 1.15, we plotted the coexistence of four distinct
stable states in the group of Figures 1–4. In the frame of
Figure 1, the initial values are taken as
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Figure 5: Dynamics of coexisting multiple attractors’ for gradient β2 � 1.18 and x1(0) � 1.44, x2(0) � x3(0) � 0 at different fractional
orders. (a) State variables x2 versus x3; (b) state variables x2 versus x3; (c) state variables x1 versus x2; (d) state variables x1 versus x3; (e) state
variables x1 versus x2; (f ) state variables x1 versus x3.
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x1(0) � 1, x2(0) � x3(0) � 0. Here Figures 1(a) and 1(b)
represent the dynamics of x2 versus x3 at
c � 1, 0.95, 0.90, 0.80.

Figures 1(c) and 1(e) show the dynamics of x1 versus x2,
and Figures 1(d) and 1(f ) justify the variations of x1 versus

x3 at the given values of order c. Similarly, we perform some
other cases of different initial values. In the frame of Figure 2,
the initial values are taken as x1(0) � − 1, x2(0) � x3(0) � 0.
In the case of Figure 3, these values are x1(0) � 2, x2(0) �

x3(0) � 0 and for Figure 4 are fixed as
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Figure 6: Dynamics of coexisting multiple attractors’ for gradient β2 � 1.18 and x1(0) � − 1.44, x2(0) � x3(0) � 0 at different fractional
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Figure 7: Dynamics of coexisting multiple attractors’ for gradient β2 � 1.18 and x1(0) � 0.5, x2(0) � x3(0) � 0 at different fractional
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Figure 8: Dynamics of coexisting multiple attractors’ for gradient β2 � 1.18 and x1(0) � − 0.5, x2(0) � x3(0) � 0 at different fractional
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x1(0) � − 2, x2(0) � x3(0) � 0. Here we can see that the
proposed results are slightly different to the previously given
results of ref. [33]. When we change the values of c, the
nature of the assumed multiple attractors also changes. One
of the main differences in the proposed fractional-order
analysis and the previously performed results of [33] is that
there is no existence of any perfect periodic attractors at any
fractional-order values, but the chaotic attractors are
achieved inmuch better form. All simulations are performed
by using Mathematica software.

In the same line when β2 � 1.18, we consider the co-
existence of six different stable states in the group of
Figures 5–10. In the frame of Figure 5, we assume
x1(0) � 1.44, x2(0) � x3(0) � 0. Here Figures 5(a) and 5(b)
represent the dynamics of x2 versus x3 at
c � 1, 0.95, 0.90, 0.80.

Figures 5(c) and 5(e) show the dynamics of x1 versus x2,
and Figures 5(d) and 5(f ) justify the variations of x1 versus
x3 at the given values of order c. In Figure 6, we take
x1(0) � 1, x2(0) � x3(0) � 0. In the case of Figure 7, these
are x1(0) � 0.5, x2(0) � x3(0) � 0 and for Figure 8 are fixed
as x1(0) � − 0.5, x2(0) � x3(0) � 0.)en for Figure 9, values
are x1(0) � 1, x2(0) � x3(0) � 0 and for Figure 10 are
x1(0) � − 1, x2(0) � x3(0) � 0. Here again we notice that the
proposed results are different to the previously given results
of ref. [33]. Again, the main difference in the proposed
fractional-order analysis and the previously performed re-
sults of [33] is that there is no existence of any periodic
attractors at any fractional-order values, but the chaotic
attractors are achieved in much better form.

5. Conclusions

In this paper, we simulated a dynamical model of 3D HNNs
in terms of Atangana–Baleanu fractional derivative. )e
numerical solution of the suggested dynamical model has
derived via the Predictor-Corrector method. A number of
cases for initial values are considered for the better

understanding of the role of initial changes. By using the two
different values of the second activation gradient of the
neuron, the behaviour of the proposed model is investigated
at four different fractional orders. From the given graphical
simulations, we conclude that in the case of fractional-order
values there is no clear existence of any periodic attractors,
but the chaotic attractors are achieved in much better form.
In the future, the proposed dynamical model can be further
solved by using any other fractional operators.
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'is paper investigates the event-based consensus problem for the heterogeneous hybrid multiagent system (MAS). First, the
heterogeneous hybrid MAS is proposed which contains continuous and discrete-time subsystems with second-order and first-
order heterogeneous dynamics. Second, the event-triggered protocols are proposed, whichmainly include the event-based control
laws and event-triggered conditions for different kinds of agents.'en, the consensus conclusions of fixed topology and switching
topologies are obtained based on graph theory and nonnegative matrix theory, which include the constraints on control pa-
rameters, coupling gains, and sampling interval to guarantee consensus. Finally, a simulation example is given to verify the
efficiency of the proposed protocols.

1. Introduction

With the popularity of distributed artificial intelligence,
multiagent system (MAS) has been widely researched and
applied to engineering, military, and other fields. It can
accomplish huge and complex tasks in the real world
through the mutual communication and coordination
among individuals. It can also explain some complex phe-
nomena in nature and human society, such as fish schools,
bird flocks [1, 2], and the dynamics of opinion forming in
human society [3]. At present, the research on multiagent
system is mainly about consensus [4–8], flocking [9–11],
formation [12–15], and so on.

Consensus, as one of the most fundamental cooperative
behaviors of MASs, has attracted extensive interest. It means
that the agents can reach the same states from any initial
states by a suitable consensus algorithm or control law. Up to
now, researchers have proposed many consensus algorithms
for MASs through different analysis methods, such as the
analysis based on nonnegative matrix theory [16–19], Lya-
punov function analysis [20, 21], and frequency domain
analysis [22–24]. In 2006, Xiao et al. studied the consensus
problem for discrete-time first-order MASs with fixed

topology and considered the structural decomposition of the
leader-follower model [25]. 'en, Xie et al. and Ren et al.
gave some sufficient conditions for solving the consensus
problem for second-order MASs with fixed and switching
topologies [26, 27]. Shi et al. further considered the
weighted-average consensus problem for second-order
MASs and obtained necessary and sufficient conditions [28].
In recent years, the multiagent networks studied have be-
come more and more complicated with the wide application
of MASs.'e heterogeneous MASs composed of agents with
different dynamics are more suitable for real systems. Taking
the multirobots systems into account, heterogeneous sys-
tems composed of robots with different perceptual capa-
bilities can complete tasks faster [29]. A number of results
about the consensus of heterogeneous MASs have been
obtained, including low-order linear systems [30–32] and
high-order linear systems [33–35]. In addition, the hybrid
MASs including continuous and discrete-time subsystems
have also attracted attention. Examples include the refrig-
eration and heating system. 'e heat-loss dynamics and the
control of air conditioners belong to continuous-time sys-
tems, whereas the thermostat is controlled by a discrete-time
system [36]. Since 2018, Zheng et al. have studied the
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consensus problems of first-order and second-order hybrid
systems and have proposed a game-theoretic approach to
analyze the hybrid systems [37–39]. Su et al. designed an
event-triggered consensus strategy for the second-order
hybrid system [40] in 2019. Other researchers obtained more
results about the hybrid MAS [41, 42].

In addition, interest in the event-based consensus
problem for MASs has grown in the past decade. Compared
with traditional methods, the event-triggered method has
certain advantages in studying practical problems, such as
minimizing the number of control actions and saving energy
by updating the controller only at the trigger time and
avoiding continuous communications. However, it also
brings new theoretical and practical problems.'emain task
is the design of distributed event-triggered protocols, in-
cluding event-triggered control laws and trigger conditions.
In 2012, Dimarogonas et al. proposed effective event-trig-
gered consensus algorithms for the first-order agents under
undirected connected communication topologies [43].'en,
Fan et al. designed a fully distributed event-triggered
strategy for solving the consensus problem of general linear
MASs [44]. In recent years, several event-triggered con-
sensus problems based on state feedback, output feedback,
and leader-follower models were considered in [45–50].

In this paper, we consider the heterogeneous multi-
agent systems with continuous-time and discrete-time
individuals (the heterogeneous hybrid MASs). For exam-
ple, in the complex system of nature and human interac-
tion, the biological signals are continuous signals, whereas
the automated instruments with different functions are
mostly discrete-time systems. Compared with the MASs in
[42], the consensus problem for the heterogeneous hybrid
MASs with a more general form is investigated, and the
event-triggered protocols are proposed. First-order and
second-order dynamic agents coexist in a system. Some of
them belong to the continuous-time system, whereas the
other agents are controlled by the discrete-time system.'e
main contributions of this paper are as follows. First, for
the different dynamic characteristics of first-order and
second-order agents, two kinds of event-triggered control
laws are proposed. 'e event-triggered conditions are
designed, which contain the position of all agents and the
velocity of only second-order agents. Second, the sampled-
data approach is used to solve the consensus problem for
the heterogeneous hybrid MASs. On the one hand, the
continuous-time subsystem and discrete-time subsystem
can be better analyzed by the overall analysis method. On
the other hand, this approach shows that the trigger time
interval exists in a lower bound. Hence, the Zeno behavior
is avoided. Finally, under the assumption that the fixed
topology or the union of switching topologies contains a
spanning tree, several results for solving the consensus
problem are obtained by using graph theory and non-
negative matrix theory. Some selection conditions of
control parameters, as well as the constraints of coupling
gains and sampling interval, are given to guarantee
consensus.

'roughout this paper, assume 0<M<N, IM � 1, 2,{

. . . , M} and IN/IM � M + 1, M + 2, . . . , N{ }.N+ represents
the set of positive integers. Consider a vector or a matrix A,
A ∈ Rn means A is a real column vector of length
N. Similarly, A is an n × p-dimensional real matrix, which is
defined by A ∈ Rn×p. 'e symbol AT and ‖A‖ represent the
transpose and Euclidean norm of A, respectively. 'e cal-
culational symbols ⊗ represent the Kronecker product of
matrices.

2. Preliminaries and Problem Formulation

2.1. Preliminaries. 'e communication topology is de-
scribed by a weighted directed graph G(V,E,A), where
V � v1, . . . , vN􏼈 􏼉 represents the nodes set and E⊆V × V

represents the set of edges between nodes.A � [aij] ∈ RN×N

denotes the related adjacency matrix. If there is a directed
path ϵji ∈ E, indicating that the j th agent can transmit data
to the i th agent, then aij > 0; otherwise, aij � 0. A diagonal
matrix D � diag(d1, d2, . . . , dN) is defined as the degree
matrix of the directed graph G, where di � 􏽐

N
j�1 aij. 'e

Laplacian matrix is expressed asL � D − A. For a weighted
directed graph G, it is said to contain a directed spanning
tree, indicating that there is a node, which has directed paths
that can lead to all other nodes.

A nonnegative matrix C ∈ Rn×r is also called a row
stochastic matrix if the sum of its each row is equal to 1.
Furthermore, if it also satisfies limk⟶∞C

k � 1n × vT, where
v ∈ Rn, then it is indecomposable and aperiodic (SIA).

2.2. Problem Formulation. Considering the position and
velocity states of the second-order agents and the position
states of the first-order agents, the dynamic models are
proposed, respectively. Suppose the number of agents in the
entire system is N, where the first M(M<N) agents are
second-order agents, the remaining (N − M) agents are
first-order. 'e second-order dynamic agents are expressed
as follows:
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(1)

where xi ∈ R, vi ∈ R, and ui ∈ R represent the position,
velocity, and control input of the second-order agent i,
respectively. 'e superscripts c and d denote that the agent
belongs to continuous and discrete-time subsystems. h> 0 is
the sampling interval of the discrete-time subsystem. 'e
dynamic model of first-order agents is given by
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(2)

Definition 1. 'e heterogeneous hybridMAS is said to reach
consensus if the position of all agents satisfies the following
conditions from any initial state.

lim
t⟶∞

x
c
i (t) � lim

kh⟶∞
x

d
i (kh)

� C, i ∈ IN,

(3)

where C is a constant. To ensure that all agents can keep the
same position state, (3) also indicates that the velocity of the
second-order agents will tend to zero when t⟶∞ or
kh⟶∞.

In order to propose the event-triggered protocols to
solve this consensus problem, we first design the following
event-triggered control laws for second-order agents:
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(4)

where α, β> 0 are control parameters, and (ti
0, . . . , ti

ξ , · · ·)

and (ki
0h, . . . , ki

ξh, · · ·) are the trigger time series. 'e event-
triggered control laws of the first-order agents are designed
as follows:
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Before proposing the event-triggered conditions, the
following definitions of the combined measurement and
combined measurement error are given. 'e combined
measurement is defined as
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'e combined measurement error is defined as
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In this paper, the event-triggered conditions are pre-
sented as follows:

t
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+
,

k
i
ξ+1h � k

i
ξh + min lih􏼈 􏼉, i ∈ IN, li ∈N

+
,

(8)

where min lih􏼈 􏼉 is the time interval between two adjacent
trigger times, which lih satisfies the following inequalities for
the continuous and discrete-time agents:
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where c1, c2 > 0 are the threshold parameters, δ > 0 is the
exponential component. And zi is a new definition of hybrid
state quantity for the second-order agent, which is defined as

zi � xi + hvi, i � 1, 2, . . . , M (10)
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According to the event-triggered conditions proposed
above, the Zeno behavior is avoided because there is a lower
bound h> 0 for the event-trigger interval lih, which ensures

that the agent does not trigger infinitely for a limited time.
'en, based on the definitions of (6) and (7), the event-
triggered control laws (4) and (5) can be written as follows:
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Each controller updates only at its own trigger time, so
the energy can be saved. For any t ∈ (ti

ξ , ti
ξ+1], ui(t) � ui(ti

ξ)

does not change, and the continuous-time dynamics in (1)
and (2) can be described as
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To analyze the entire MAS with continuous and discrete-
time subsystems by the overall analysis method, the sam-
pled-data method is applied in this paper. Considering the
continuous subsystem in the discrete-time scale, a new

discrete-time scale κh � li′h is defined to describe the entire
MASs. κi

ξh represents the trigger time ti
ξ and ki

ξh. 'e unified
form of the entire MASs can be described as the following
expression:
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Substituting (7) into (13), we get the following
expression:
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In order to obtain the relationship between consensus
achievement and system parameters, the following defini-
tions are given:
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'en, (14) can be written as
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Considering the communication between different dy-
namics, the Laplacian matrix representing the communi-
cation topology is divided into four parts.
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􏼢 􏼣, (17)

where L1 represents the directed communication from
second-order agents to second-order agents; L2, L3, and
L4 represent the directed communication from first-order
agents to second-order agents, from first-order agents to
first-order agents, and from second-order agents to first-
order agents, respectively. (16) can be converted into the
following expression:
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'en, two large matrices

Y(kh) � x
T
s (kh), z

T
s (kh), x

T
f(kh)􏽨 􏽩

T
,

E(kh) � E
T
xs(kh), E

T
v (kh), E

T
xf(kh)􏽨 􏽩

T
.

(19)

are defined. We can get

Y(κh + h) � H(κh)Y(κh) + PE(κh), (20)

where

H(κh) �

hβ
2

IM −
h
2α
2
L1(κh)

2 − hβ
2

IM −
h
2α
2
L2(κh)

3hβ − 2
2

IM −
3h

2α
2

L1(κh)
4 − 3hβ

2
IM −

3h
2α
2

L2(κh)

−hαL3(κh) 0 IN−M − hαL4(κh)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊗ In,

P �

h
2α
2

IM −
h
2β
2

IM 0

3h
2α
2

IM −
3h

2β
2

IM 0

0 0 hαIN−M

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊗ In.

(21)

Based on the analysis method in [40], the error system is
further constructed. Define

6 Complexity



ϕs(kh) � x
T
2 (kh) − x

T
1 (kh), . . . , x

T
M(kh) − x

T
1 (kh)􏽨 􏽩

T
,

ψs(kh) � z
T
2 (kh) − z

T
1 (kh), . . . , z

T
M(kh) − z

T
1 (kh)􏽨 􏽩

T
,

ϕf(kh) � x
T
M+1(kh) − x

T
1 (kh), . . . , x

T
N(kh) − x

T
1 (kh)􏽨 􏽩

T
,

L �

l2,2 − l1,2 l2,3 − l1,3 · · · l2,N − l1,N

l3,2 − l1,2 l3,3 − l1,3 · · · l3,N − l1,N

⋮ ⋮ ⋱ ⋮

lN,2 − l1,2 lN,3 − l1,3 · · · lN,N − l1,N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
L1L2

L3L4

⎡⎣ ⎤⎦,

Y(kh) � ϕT
s (kh)ψT

s (kh)ϕT
f(kh)􏽨 􏽩

T
.

(22)

'en, (18) can be rewritten as

Y(κh + h) � H(κh)Y(κh) + PE(κh), (23)

where

H(κh) �

hβ
2

IM −
h
2α
2
L1(κh)

2 − hβ
2

IM −
h
2α
2
L2(κh)

3hβ − 2
2

IM −
3h

2α
2

L1(κh)
4 − 3hβ

2
IM −

3h
2α
2

L2(κh)

−hαL3(κh) 0 IN−M − hαL4(κh)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊗ In,

P �

h
2α
2

IM −
h
2β
2

IM 0

3h
2α
2

IM −
3h

2β
2

IM 0

0 0 hαIN−M

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

−1M−1 IM−1 0 0 0

0 0 −1M−1 IM−1 0

−1N−M 0 0 0 IN−M

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⊗ In.

(24)

3. Main Result

3.1. Fixed Communication Topology. Consider the consen-
sus problem of fixed communication topology, which
means the directed graphG(V,E,A) does not change over
time and aij(t) � aij(kh) � aij.

Lemma 1. [8] If the sum of each row of nonnegative matrix
H � [hij] ∈ R(M+N)×(M+N) is a positive constant μ> 0, then μ
is an eigenvalue of H corresponding to the eigenvector 1N+M.
Furthermore, if the algebraic multiplicity of the eigenvalue μ
of H is 1 and hii > 0, i � 1, 2, . . . , M + N, then, for each ei-
genvalue λ≠ μ, |λ|< μ is satisfied.

Remark 1. In practical applications, the movement of the
agents should be multidimensional. 'is article only con-
siders motion in a single dimension; in other words, In � 1,
because motion in a certain direction can be decomposed

into motion in several independent directions. 'erefore,
the conclusion under a single dimension can also be ex-
tended to a multidimensional scale.

Theorem 1. @e matrix H defined in (18) contains eigen-
value 1, and the remaining eigenvalues satisfy |λ|< 1, and all
the eigenvalues of H defined in (20) satisfy |λ|< 1, if and only
if the fixed communication topology contains a directed
spanning tree and coupling gains, and sampling interval and
control parameters satisfy as follows:

4
3
> hβ>

2
3

+ h
2αmax

i∈IM

􏽘

N

j�1
aij

⎛⎝ ⎞⎠,

1> hα max
i∈IN/IM

􏽘

N

j�1
aij

⎛⎝ ⎞⎠.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)
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Proof. Under condition (21), H is a row stochastic matrix
with positive diagonal elements, and λ � 1 is one of the
eigenvalues of H corresponding to eigenvector 1N+M. 'e

column and row transformations of H − IN+M are per-
formed as follows:

H − IN+M �

hβ − 2
2

IM −
h
2α
2
L1

2 − hβ
2

IM −
h
2α
2
L2

3hβ − 2
2

IM −
3h

2α
2

L1
2 − 3hβ

2
IM −

3h
2α
2

L2

−hαL3 0 −hαL4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⟶

L1 0 L2

IM −IM 0

L3 0 L4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⟶

IM 0 0

0 L1 L2

0 L3 L4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(26)

We obtain rank(H − IM+N) � M + rank(L). H has one
eigenvalue λ � 1 with algebraic multiplicity 1, if and only if
rank(L) � N − 1, which is equivalent to the topology con-
taining a directed spanning tree [8]. Based on Lemma 1, we
can obtain that all the other eigenvalues of H satisfy |λ|< 1.

Next, it can be proved that all the nonzero eigenvalues of
L are also the eigenvalues ofL. By observing (18) and (20),
the mapping of the eigenvalues of H andL is the same as the
mapping of the eigenvalues of H and L. 'us, the eigen-
values of H and H are equal if L and L have the same
eigenvalues. Additionally, the eigenvalue of H corre-
sponding to the zero eigenvalue of L is one. 'erefore, all
eigenvalues of H are also eigenvalues of H except for ei-
genvalue 1. In other words, all the eigenvalues of H satisfy
|λ|< 1. □

Lemma 2. [40] If a matrix H satisfies that all its eigenvalues
are inside the unit circle, then the following inequality is
satisfied:

‖H‖
k ≤ a · b

k
, (27)

where a and b are positive constants that satisfy a≥ 1 and
0< b< 1.

Theorem 2. Consider the consensus of the heterogeneous
hybrid MASs (1) and (2) with fixed communication topology

under the event-triggered control laws (4) and (5) and event-
triggered conditions (8), (9), and (10) with c1 ∈ (0, 1),
c2 ∈ (0,∞), and δ ∈ (b, 1). If the fixed communication to-
pology G has a directed spanning tree and conditions (21) in
@eorem 1 are satisfied, the heterogeneous hybrid MASs can
reach the consensus condition (3).

Proof. Firstly, (20) is written in the following form by
iteration.

Y(κh) � H
κ
Y(0) + P 􏽘

κ−1

s�0
H

κ− 1− s
E(sh). (28)

By 'eorem 1 and Lemma 2, we have

‖Y(κh)‖ ≤ ab
κ
‖Y(0)‖ + ‖P 􏽘

κ−1

s�0
ab

κ− 1− s
‖E(sh)

���������

���������
, (29)

where a≥ 1 and 0< b< 1. According to the designed event-
trigger conditions (9) and (10), ‖E(κh)‖ can be expressed as

‖E(κh)‖ ≤ c1

Qs(κh)

Qf(κh)

zs(κh)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�������������

�������������

+ c2
������
N + M

√
δκ. (30)

Two positive constants C1 and C2 are defined, and then

Qs(κh)

Qf(κh)
⎡⎣ ⎤⎦

���������

���������
≤ ‖L‖ ·

ϕs(κh)

ϕf(κh)
⎡⎣ ⎤⎦

���������

���������
� C1

ϕs(κh)

ϕf(κh)
⎡⎣ ⎤⎦

���������

���������
,
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zs(κh)
����

����≤
1 01×(M−1)

−1(M−1)×1 IM−1
􏼢 􏼣

��������

��������
·

z1(κh)

ψs(κh)
􏼢 􏼣

��������

��������

≤
1 01×(M−1)

−1(M−1)×1 IM−1
􏼢 􏼣

��������

��������
zs(κh)

����
���� + ψs(κh)

����
����􏽮 􏽯.

(31)

'rough (28), we further obtain

zs(κh)
����

����≤

1 01×(M−1)

−1(M−1)×1 IM−1

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

�����������

�����������

1 −

1 01×(M−1)

−1(M−1)×1 IM−1

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

�����������

�����������

· ψs(κh)
����

���� � C2 · ψs(κh)
����

����. (32)

From (27) and (29), (30) can be converted as follows:

‖E(κh)‖ ≤ c1‖CY(κh)‖ + c2
������
N + M

√
δκ, (33)

where C is a bounded positive constant only related to
communication topology. Letting ρ � ‖P‖ and Z � max
ρac2

������
N + M

√
/(δ − b − ρac1C), a‖Y(0)‖􏼈 􏼉, ρ andZ are also

bounded positive constants related to communication to-
pology. 'en, the following inequality will be proved by
contradiction:

‖Y(κh)‖≤Zδκ. (34)

Consider that there is a constant k∗ > κ> 0 that makes
inequality (31) invalid. 'us,

Y k
∗
h( 􏼁

����
����>Zδk∗

. (35)

According to (25) and (30), one has

Zδk∗ < Y k
∗
h( 􏼁

����
����

≤ ab
k∗

‖Y(0)‖ + ρ 􏽘

k∗−1

s�0
ab

k∗− 1− s
c1CZ + c2

������
N + M

√
􏼐 􏼑δs

≤ ab
k∗

‖Y(0)‖ + ρa c1CZ + c2
������
N + M

√
􏼐 􏼑

b
k∗

− δk∗

b − δ

� a‖Y(0)‖ +
ρa c1CZ + c2

������
N + M

√
􏼐 􏼑

b − δ
⎡⎣ ⎤⎦b

k∗

+
ρa c1CZ + c2

������
N + M

√
􏼐 􏼑

δ − b
δk∗

.

(36)

Next, (31) can be proved in three cases. □

Case 1.

Z � ρac2

������
N + M

√

δ − b − ρac1C( 􏼁
, (37)

which indicates that

ρa c1CZ + c2
������
N + M

√
􏼐 􏼑

(δ − b)
� Z (38)

ρa c1CZ + c2
������
N + M

√
􏼐 􏼑

(δ − b)
> a‖Y(0)‖. (39)

According to (33), we have

Zδk∗ < a‖Y(0)‖ +
ρa c1CZ + c2

������
N + M

√
􏼐 􏼑

b − δ
⎡⎣ ⎤⎦b

k∗

+
ρa c1CZ + c2

������
N + M

√
􏼐 􏼑

δ − b
δk∗

<
ρa c1CZ + c2

������
N + M

√
􏼐 􏼑

δ − b
δk∗

� Zδk∗
.

(40)

Case 2. Z � a‖Y(0)‖ and ρac2
������
N + M

√
/(δ − b − ρac1

C)> 0, which indicates δ > b. According to (33), we can
obtain that

Zδk∗ < a‖Y(0)‖ +
ρa c1CZ + c2

������
N + M

√
􏼐 􏼑

b − δ
⎡⎣ ⎤⎦δk∗

+
ρa c1CZ + c2

������
N + M

√
􏼐 􏼑

δ − b
δk∗

� a‖Y(0)‖δk∗
� Zδk∗

.

(41)

Case 3. Z � a‖Y(0)‖ and ρac2
������
N + M

√
/(δ − b − ρac1

C)> 0, which indicates a‖Y(0)‖< ρa(c1CZ+

c2
������
N + M

√
)/(δ − b). 'e proof is similar to case 1 that

Zδk∗ <
ρa c1CZ + c2

������
N + M

√
􏼐 􏼑

δ − b
δk∗ <Zδk∗

. (42)
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Combining the three cases, the inequality (31) holds,
from which we can obtain that

lim
κh⟶∞

ϕs(kh)

ψs(kh)

ϕf(kh)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

��������������

��������������

� 0. (43)

'en, we further consider the consensus of the con-
tinuous-time agents in real time. 'e following inequality is
established:

v
c
i (t) − v

c
j(t)

�����

�����≤ v
c
i (t) − v

c
i (kh)

����
���� + v

c
i (kh) − v

c
j(kh)

�����

�����

+ v
c
j(kh) − v

c
j(t)

�����

�����, i ∈ IM,

x
c
i (t) − x

c
j(t)

�����

�����≤ x
c
i (t) − x

c
i (kh)

����
���� + x

c
i (kh) − x

c
j(kh)

�����

�����

+ x
c
i (kh) − x

c
j(t)

�����

�����, i ∈ IN.

(44)

When κh⟶∞, we can get vc,d
i (ki

ξh)⟶ 0, qc,d
i

(ki
ξh)⟶ 0. Combined with (4), (5), (6), and (12), when

t ∈ (kh, kh + h], the following inequalities are obtained:

lim
t,kh⟶∞

v
c
i (t) − v

c
i (kh)

����
����≤ lim

t,kh⟶∞
h −βv

c,d
i k

i
ξh􏼐 􏼑 + αq

c,d
i k

i
ξh􏼐 􏼑􏽮 􏽯, i ∈ IM,

lim
t,kh⟶∞

� x
c
i (t) − x

c
i (kh)

����
����≤ lim

t,kh⟶∞
hv

c,d
i k

i
ξh􏼐 􏼑

+
t − k

i
ξh􏼐 􏼑

2
− kh − k

i
ξh􏼐 􏼑

2

2
−βv

c,d
i k

i
ξh􏼐 􏼑 + αq

c,d
i k

i
ξh􏼐 􏼑􏽮 􏽯, i ∈ IM,

lim
t,kh⟶∞

‖θ‖≤ lim
t,kh⟶∞

hαq
c,d
l k

l
ξh􏼐 􏼑, l ∈ IN/IM.

(45)

'en,

lim
t,kh⟶∞

x
c
i (t) − x

c
i (kh)

����
���� � 0, i ∈ IM,

lim
t,kh⟶∞

x
c
i (t) − x

c
i (kh)

����
���� � 0, l ∈

IN

IM

.

(46)

From (44) and (46), continuous-time individuals can
also achieve consensus on continuous-time scales. Com-
bined with (43), the consensus conditions (3) are satisfied.

3.2. Switching Communication Topologies. According to the
above conclusions with the fixed topology, the consensus of
the heterogeneous hybrid MASs with switching commu-
nication topologies is considered. 'e system description
(18) is rewritten as

Y kp+1h􏼐 􏼑 � Ω kp􏼐 􏼑 kph􏼐 􏼑 + QE kp􏼐 􏼑, p � 1, 2, . . . ,∞, (47)

where kp ∈ κ is the p th event-triggering instant of an agent
from its initial state, Ω(kp) � 􏽑

kp+1−1
s�kp

H(sh) is the matrix
product of H, corresponding to all switching communica-
tion topologies during each interval [kph, kp+1h), and

QE kp􏼐 􏼑 � PE kp+1 − 1􏼐 􏼑h􏽨 􏽩 + P 􏽘

kp+1−2

s�kp

E(sh) · 􏽙

kp+1−1

d�s+1
H(dh) (48)

is the accumulation of errors. Similarly, the error system
description (20) can also be rewritten as

Y kp+1h􏼐 􏼑 � Ω kp􏼐 􏼑Y kph􏼐 􏼑 + QE kp􏼐 􏼑, p � 1, 2, . . . ,∞, (49)

where

Ω kp􏼐 􏼑 � 􏽙

kp+1−1

s�kp

H(sh), (50)

QE kp􏼐 􏼑 � PE kp+1 − 1􏼐 􏼑h􏽨 􏽩 + P 􏽘

kp+1−2

s�kp

E(sh) · 􏽙

kp+1−1

d�s+1
H(dh).

(51)

Remark 2. To simplify subsequent proofs, it is assumed that
kp+1 − kp > 1 in the subsection on switching communication
topologies, which means there are at least two different
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communication topologies in the period [kp, kp+1). Other-
wise, it can be regarded as a fixed communication topology
in a short period of time, and the convergence will not be
destroyed according to the existing conclusions.

Theorem 3. @e matrix product Ω(kp) is SIA, and all the
eigenvalues of Ω(kp) satisfy |λΩ|< 1 if the union of com-
munication topologies G[kph], G[(kp + 1)h], . . . , G[(kp+1􏽮

−1)h]} of each interval [kph, kp+1h) contains a spanning tree
and the coupling gains, and sampling interval and control
parameters satisfy conditions (21) in @eorem 1.

Proof. Define 􏽥L � 􏽐
kp+1−1
s�kp

L(sh)/(kp+1 − kp) as the Lap-
lacian matrix of the union of directed graphs during time
interval [kph, kp+1h), and 􏽥L is the matrix obtained by 􏽥L

through the same transformation as L in (19).

􏽥H � 􏽘

kp+1−1

s�kp

H(sh)

kp+1 − kp􏼐 􏼑
(52)

still satisfies the sum of each row is 1. 'en, we can get
rank( 􏽥H − IN+M) � M + rank( 􏽥L) by taking the elements
column and row transforms as follows:

􏽥H − IN+M �

hβ − 2
2

IM −
h
2α
2

􏽦L1
2 − hβ

2
IM −

h
2α
2

􏽦L2

3hβ − 2
2

IM −
3h

2α
2

􏽦L1
2 − 3hβ

2
IM −

3h
2α
2

􏽦L2

−hα􏽦L3 0 −hα􏽦L4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⟶
IM 0

0 􏽥L

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦. (53)

'us, 􏽥H has eigenvalue 􏽥λ � 1 with algebraic multiplicity
1, if and only if rank( 􏽥L) � N − 1, which means that the
union of topologies contains a spanning tree. According to
Lemma 3.1 in [18], we can get that

􏽙

kp+1−1

s�kp

H(sh)> 􏽘

kp+1−1

s�kp

H(sh)/ kp+1 − kp􏼐 􏼑, (54)

which indicates that the graph of the matrix product Ω(kp)

also contains a spanning tree. Besides, Ω(kp) is a stochastic
matrix with positive diagonal elements if conditions (21) are
satisfied, because the matrix multiplication among stochastic
matrixes with positive diagonal elements is closed. In other
words, Ω(kp) is SIA.

Similar to the proof of'eorem 1, for the error system, it
can be proved that all eigenvalues of Ω(kp) except eigen-
value 1 are also eigenvalues of Ω(kp). □

Theorem 4. Consider the consensus of the heterogeneous
hybrid MASs (1) and (2) with switching communication
topologies under the event-triggered control laws (4) and (5)
and event-triggered conditions (8), (9), and (10) with
c1 ∈ (0, 1), c2 ∈ (0,∞), and δ ∈ (b, 1). If the union of
switching topologies G[kph], G[(kp + 1)h], . . . , G[(kp+1􏽮

−1)h]} of each interval [kph, kp+1h) has a directed spanning
tree and conditions (21) in @eorem 1 are satisfied, the

heterogeneous hybrid MASs can reach the consensus condi-
tion (3).

Proof. 'rough iteration, the error system description (39)
with switching communication topologies can be expressed
as

Y kph􏼐 􏼑 � Ω k0( 􏼁Ω k1( 􏼁 · · ·Ω kp−1􏼐 􏼑Y(0)

+Ω k1( 􏼁Ω k2( 􏼁 · · ·Ω kp−1􏼐 􏼑QE k0( 􏼁

+ · · ·

+Ω kp−1􏼐 􏼑QE kp−2􏼐 􏼑

+ QE kp−1􏼐 􏼑.

(55)

Let

Ω∗ � max Ω k0( 􏼁
����

����, Ω k1( 􏼁
����

����, . . . , Ω kp−1􏼐 􏼑
�����

�����􏼚 􏼛. (56)

Combined with Lemma 2, we have

Y kph􏼐 􏼑
�����

�����≤Ω
∗p

‖Y(0)‖ + 􏽘

p−1

s�0
Ω∗p− 1− s

QE ks( 􏼁
����

����

≤ a′Bp
‖Y(0)‖ + 􏽘

p−1

s�0
a′Bp− 1− s

QE ks( 􏼁
����

����,

(57)
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: CTS0; : DTS0; : CTF0; : DTF0;

(a) Topology 1 (b) Topology 2
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Figure 1: Switching topologies.

0 5 10 15 20 25 30
time (k)

-10

-5

0

5

10

15

po
sit

io
n 

sta
te

agent1
agent2
agent3
agent4

agent5
agent6
agent7
agent8

Figure 2: Position of the dynamic agents.
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Figure 3: Velocity of the second-order dynamic agents.
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where 0<B< 1 and a′ > 1 are positive constants. Next, the
norm of QE(ks) is considered as follows:

QE ks( 􏼁
����

����≤ ρ H ks + 1( 􏼁h􏼂 􏼃
����

���� H ks + 2( 􏼁h􏼂 􏼃
����

���� · · · H ks+1 − 1( 􏼁h􏼂 􏼃
����

���� E ksh( 􏼁
����

����

+ · · ·

+ ρ H ks+1 − 1( 􏼁h􏼂 􏼃
����

���� H ks+1 − 2( 􏼁h􏼂 􏼃
����

����

+ ρ H ks+1 − 1( 􏼁h􏼂 􏼃
����

����

< ρηs 􏽘

ks+1−1

τ�ks

‖E(τh)‖,

(58)

where
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Figure 4: Control inputs of the dynamic agents.
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ηs � max H ks + 1( 􏼁h􏼂 􏼃 · · · H ks + 1( 􏼁h􏼂 􏼃
����

����, . . . ,􏽮

H ks + 1( 􏼁h􏼂 􏼃
����

����, 1􏽯,
(59)

is a positive constant. In addition, there are bp and bp
′ that

satisfy b
kp+1−kp

p � B and b
′kp+1−kp−1
p � B for each interval

[kph, kp+1h). Letting η � max ηs􏼈 􏼉, b′ � max bp, bp
′􏽮 􏽯, we can

get b′ < 1 and (42) can be converted into

B Y kph􏼐 􏼑
�����

�����< a′b′
kp

B‖Y(0)‖

+ a′ρηb′
kp− 1

E k0( 􏼁
����

���� + E k0 + 1( 􏼁
����

���� + · · · + E k1 − 1( 􏼁
����

����􏽨 􏽩 + · · ·

+ a′ρηb′
k0− 1

E kp−1􏼐 􏼑
�����

����� + E kp−1 + 1􏼐 􏼑
�����

����� + · · · + E kp − 1􏼐 􏼑
�����

�����􏼔 􏼕

< a′b′
kp

B‖Y(0)‖ + a′ρη 􏽘

kp−1

s�0
b′

kp− 1− s
‖E(sh)‖.

(60)

'us, let

ρ′ �
a′pη

B
, (61)

Y kph􏼐 􏼑
�����

�����< a′b′
kp ‖Y(0)‖ + ρ′ 􏽘

kp−1

s�0
b′

kp− 1− s
‖E(sh)‖, (62)

which has a similar form to (25). 'e subsequent proof of
this theorem is the same as 'eorem 2. □

Remark 3. 'e parameters of switching communication
topologies, such as the switching rate and the dwell time,
have certain impacts on the convergence rate. It mainly
depends on the structure of each switching communication
topology. In a period of time, more different agents com-
municating can improve the convergence efficiency. If there
are different edges in the switching topologies, increasing the
switching rate can reduce the time for the system to reach
consensus.

4. Simulation Examples

A heterogeneous hybrid MAS is assumed to consist of four
second-order (SO) agents and four first-order (FO) agents.
'ey both contain two continuous-time (CT) individuals
and two discrete-time (DT) individuals, respectively. Let
[xs(0), xf(0)]T � [7, 5, 3, 1, −1, −3, −5, −7]T and v(0)T �

[4, 3, 2, −1]T.
Consider the consensus of heterogeneous hybrid MASs

with switching topologies.'e communication topology can
be switched between topology 1 and topology 2 in Figure 1
every step. 'e union of topology 1 and topology 2 has a
spanning tree. Suppose the coupling gains of each edge in
topology 1 and topology 2 are 1 and α � 1.6, β � 1.2. By
calculating, we choose h � 0.6< 0.625 to satisfy conditions
(21) in'eorem 1.'en, choosing c1 � 0.2 and c2 � 0.01, we
can obtain the simulation graphics as follows. 'e position
and velocity are shown in Figures 2 and 3.'e control inputs

are shown in Figure 4. And the triggered instants of each
agent are shown in Figure 5.

All agents can achieve consensus, and the controllers are
triggered a limited number of times within a finite time,
which indicates that the event-triggered protocols algorithm
is effective.

5. Conclusion

In this paper, the event-triggered consensus was studied for
the heterogeneous hybrid MASs, consisting of continuous
and discrete-time subsystems with second-order and first-
order heterogeneous dynamics. We designed the effective
event-triggered protocols, including the event-triggered
control laws for the first-order and second-order agents,
respectively, and the event-triggered conditions, which can
make the controllers only update at their own trigger time
and ensure all agents meet consensus. Some criteria were
obtained for solving the consensus problems of the het-
erogeneous hybrid MASs with fixed topology and switching
topologies. 'e main results showed that the MASs can
reach consensus if the control parameter, coupling gains,
and sampling interval meet certain conditions, and the fixed
topology or the union of switching topologies contain a
directed spanning tree. Future work may consider the
consensus of the heterogeneous hybrid MASs with time
delay or communication noise.
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In this research work, we have explored the physical and topological properties of the crystal structure of metal-insulator
transition superlattice (GST-SL). In recent times, two-dimensional substantial have enamored comprehensive considerations
owing to their novel ophthalmic and mechanical properties for anticipated employment. Recently, some researchers put their
interest in modifying this material into useful forms in human life. Also, Metal-Insulator Transition Superlattice (GST–SL) is
useful in form of a thin film to utilize as two-dimensional (2D) transition metal dichalcogenides (TMDs). Moreover, we have
defined the computed-based bond properties such as the degree constructed topological indices and their heat of formation for
single crystal and monolayered structure of Ge-Sb-Te. Also, this structure is one of the most interesting composites in modern
resources of science.

1. Introduction

)e germanium (Ge), Antimony (Sb), Tellurium (Te)
(GST), and some other elements are present as metalloids.
)ese metalloids lead to heat, electricity intermediates,
metals, and they form large structure oxides. Metalloids are
normal elements that have divided properties among metal
and nonmetals, present in the Earth’s outside layer [1],
which occurred in an environment with a combination of
organic and inorganic mixtures and other normal syn-
thetics. )e unpredictable modern abuse of these elements
and possible dangers to humans are restricted in free use
[2].

Some researchers put their interest in modification this
material into useful forms in human life for different fields
such as the GST alloy in form of a thin film is utilized as then
the two-dimensional (2D) transition metal dichalcogenides
(TMD) were discovered comparable applications in

numerous fields [3]. )ese are made of cationic elements
such as transition metals, group IIIA (In, Ga), and group
IVA (Sn,Pb) [4]. Moreover, the anionic elements of chal-
cogenides (O, S, Se, Te) are essential in numerous fields.
Moreover, to improve the bandgap energy of Ge–Sb–Te
(GST), the physico-chemical properties are useful for
sensing, in nonvolatile RAM, thermoelectric, and face
change properties [5, 6].)e 2D TMDs are mainly dissimilar
to pure transition bulk compounds and show new properties
[7, 8]. Phase change material (PCM) properties of Ge − Sb −

Te (GST) complex with a group of chalcogenides are
promising technology and well known for so many years
[9, 10].

A chemical graph S � S(SV, SE) is an ordered pair of two
finite sets SV and SE, where SV is the set of vertices (atoms)
and SE is the set of edges (bonds) in chemical graph S [11].
)e valence of molecules is usually portrayed by the vertex
degrees [7, 12].
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)e number of edges affiliated with a vertex is identified
as the degree of the vertex [13]. In this study, it is indicated
by τ. Among different categories of topological indices, we
will deliberate about degree-based topological indices
depending on degree of end vertices of a graph, (see Table 1).
For detailed study and application of these indices, see
[24–27], respectively. In current circumstances, the basic
aim of graph theory is the elaboration and enforcement of
many contemporary scientific theories in assorted branches
of chemistry. )e QSPR/QSAR study is one of the essential
reasons for broadening graph theory to chemistry [28].

2. Structure of GST− SL[n]

Another kind of PCM material named Ge − Sb − Te
superlattice (GST-SL) has attracted large attention because
of its ultralow power utilization. )is superb exhibition has
been ascribed to a special information storage system such as
crystalline to crystalline stage change as compared to pre-
vious references [10, 29]. 1D semiconductor nano stares,
attributable to their low dimensionality, display novel
properties that discover application in numerous gadget
fields [30]. )e working rule of ordinary PCM gadgets
depends on the changes between the metastable and
amorphous crystalline stages set off either by optical. )e
thin film is deposited by femtosecond, picosecond, and
nanosecond laser ablation [31, 32].

To this point, numerous investigations have been dis-
tributed over the most recent couple of years, proposing
various distinctive atomic arrangements either for the
amorphous and glasslike structure of the conceivable GST
compounds or highlight by three unique stoichiometries,
specifically Ge2Sb2Te5 (most common for PMC s) [33],
Ge1Sb2Te4, and Ge1Sb4Te7. )e bulk GST intensifies two
distinctive glasslike polymorphs: a metastable stage with

rock salt design and a stable ground state structure at
marginally low energy having a hexagonal/rhombohedral
structure [34].

It is shown that the imperfection is restricted into two
atomic layers of Ga, Sb, Te and shows confirmed stacking
flaws. In-situ analysis demonstrated that the GeSb and Te
bilayers can be effectively reconfigured into such bilayer
stacking shortcomings with ensuring the arrangement of
another van der Waals hole, showing a component of un-
derlying reconfiguration of the building block in layered
Ge − Sb − Te compounds [35]. )e enormous distinction of
dielectric capacities between the amorphous and glass-like
structure of Ge − Sb − Te-based stage change materials
(PCM s) utilized in-memory storage gadgets likewise in-
fluences their Schottky barrier heights (SBHs) and conse-
quently their electric gadget properties. Here, the SBHs of
each structure of Ge2Sb2Te5, GeSb, GeSe, and SnTe are
found by thickness of useful supercell computations [2].

)e worldwide substance stoichiometry of the material
and the local substance stoichiometry of individual layer
blocks are needed to have a protecting band hole as per the
electron checking model examination.)e electron property
can be changed by changing the local stoichiometry, for
example, creating flaws around van der Waals holes (Fig-
ure 1) [10]. Moreover, the unite cell and generalized
structure of GST − SL[n] are depicted in Figure 2.

After some basic computation, we can see that |V(GST −

SL[n])| � 9n + 3 and |E(GST − SL[n])| � 13n. )e principle
strategy utilized here is the way to deal with edge parti-
tioning and vertice degree calculating (see Table 2).

2.1. Computations of Results for GST − SL[n]

(i) )e general Randi c
�
index of GST − SL[n].

Rα(S) � (n + 2)(1 × 3)
α

+(2n + 6)(2 × 3)
α

+(2n)(3 × 3) +(8n − 8)(3 × 4). (1)

For α � 1, −1, 1/2, −1/2, we have

R1(GST − SL) � 3(43n − 18),

R−1(GST − SL) �
14n

9
+ 1,

R1/2(GST − SL) � 6
�
6

√
− 14

�
3

√
+(6 + 17

�
3

√
+ 2

�
6

√
)n,

R−1/2(GST − SL) �
�
6

√
−

2
�
3

√ +
2
3

+
5
�
3

√ +

�
2
3

􏽲

􏼠 􏼡n.

(2)

(ii) )e atom bond connectivity index of GST − SL[n].
)e ABC index with the help of Tables 1 and 2 is

ABC(G) �

�
2
3

􏽲

(n + 2) + +
1
�
2

√ (2n + 6) +
2
3

(2n) +

�
5

√

2
�
3

√ (8n − 8)

�
4

�
5

√

�
3

√ +
4
3

+
�
2

√
+
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2
3

􏽲

􏼠 􏼡n + 3
�
2

√
+
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�
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√

�
3
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4

�
5

√

�
3

√ .

(3)

(iii) )e geometric arithmetic index of GST − SL[n].
)e GA index with the help of Tables 1 and 2 is

2 Complexity



Table 1: Topological descriptors.

Topological descriptors Expression
)e Randi�c index Rα with α � 1, −1, 1/2, −1/2 (τ(a) × τ(s))α

)e atom bond connectivity index ABC(S) [14–17]
����������������������
τ(a) + τ(s) − 2/τ(a) × τ(s)

􏽰

)e geometric arithmetic index GA(S) [14–17] 2
����������
τ(a) × τ(s)

􏽰
/τ(a) + τ(s)

)e first Zagreb index M1(S) [14–17] τ(a) + τ(s)

)e second Zagreb index M2(S) [14, 15, 17] τ(a) + τ(s)

)e hyper Zagreb index HM(S) [18] [τ(a) + τ(s)]2

)e forgotten index F(S) [19] (τ(a))2 + (τ(s))2

)e augmented Zagreb index AZI(S) [20] (τ(a)τ(s)/τ(a) + τ(s) − 2)3

)e Balaban index J(S) [21, 22] (m/m − n + 2)1/
�������
τ(a)τ(s)

􏽰

)e redefined first Zagreb index ReZG1(S) [23] τ(a) + τ(s)/τ(a)τ(s)

)e redefined second Zagreb index ReZG2(S) [23] τ(a)τ(s)/τ(a) + τ(s)

)e redefined third Zagreb index ReZG3(S) [23] (τ(a)τ(s))(τ(a) + τ(s))

(a)
Ferro

(b)
Petrow

(a)
Stoichiometric Model

(b)
non-Stoichiometric Model

(d)
Kooi

Te

Ge

Sb

(b)
Inverted-Petrow

�e four popular models of GST-SL

Figure 1: )e general structure of (GST − SL).

Ge

Sb

Te

(a) (b)

Figure 2: (a) Unit cell. (b) Generalized structure of GST − SL[n].

Table 2: Edge partition of GST − SL[n].

(τ(y), τ(z)) Number of repetitions Types of edges
(1, 3) n + 2 SE1
(2, 3) 2n + 6 SE2
(3, 3) 2n SE3
(3, 4) 8n − 8 SE4
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GA(S) �

�
3

√

2
(n + 2) +

2
�
6

√

5
(2n + 6) +

2
�
9

√

6
(2n)

+
2

��
12

√

7
(8n − 8)

� 2 +
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�
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+
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14
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25

�
3
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7
.

(4)

(iv) )e first Zagreb index of GST − SL[n].
)e first Zagreb index by using Tables 1 and 2 is

M1(GST − SL) � 4(n + 2) + 5(2n + 6) + 6(2n) + 7(8n − 8) � 82n − 18. (5)

(v) )e second Zagreb index of GST − SL[n]. )e second Zagreb index by using Tables 1 and 2 is

M2(GST − SL) � 3(n + 2) + 6(2n + 6) + 9(2n) + 12(8n − 8) � 129n − 54. (6)

(vi) )e hyper Zagreb index of GST − SL[n]. )e hyper Zagreb index by using Tables 1 and 2 is

HM(GST − SL) � 16(n + 2) + 25(2n + 6) + 36(2n) + 49(8n − 8) � 530n − 210. (7)

(vii) )e forgotten index of GST − SL[n]. )e forgotten index calculated by using Tables 1
and 2 is

F(GST − SL) � 10(n + 2) + 13(2n + 6) + 18(2n) + 25(8n − 8) � 272n − 102. (8)

(viii) )e augmented Zagreb index of GST − SL[n]. )e augmented Zagreb index with the help of
Tables 1 and 2 is

AZI(GST − SL) �
3
2

􏼒 􏼓
3
(n + 2) + 8(2n + 6) +

9
4

􏼒 􏼓
3
(2n) +

12
5

􏼒 􏼓
3
(8n − 8)

�
610993
4000

n −
27921
500

.

(9)

(xi) )e Balaban index of GST − SL[n]. It is easy to see that the Balaban index by using
Tables 1 and 2 is

J(GST − SL) �
13n

13n − 9n − 3 + 2
1
�
3

√ (n + 2) +
1
�
6

√ (2n + 6) +
1
3

(2n) +
1
��
12

√ (8n − 8)􏼢 􏼣

�
13n

4n − 1
5
�
3

√ +

�
2
3

􏽲

+
2
3

􏼠 􏼡n −
2
�
3

√ +
�
6

√
􏼢 􏼣.

(10)
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(x) )e redefined first Zagreb index of GST − SL[n]. )e redefined first Zagreb index with the help of
Tables 1 and 2 is

ReZG1(GST − SL) �
4
3

(n + 2) +
5
6

(2n + 6) +
6
9

(2n) +
7
12

(8n − 8)

� 3(3n + 1).

(11)

(xi) )e redefined second Zagreb index of
GST − SL[n].

)e redefined second Zagreb index by using Ta-
bles 1 and 2 is

ReZG2(GST − SL) �
3
4

(n + 2) +
6
5

(2n + 6) +
9
6

(2n) +
12
7

(8n − 8)

�
2781n

140
−
351
70

.

(12)

(xii) )e redefined third Zagreb index of GST − SL[n].
)e Redefined third Zagreb index by using Tables 1
and 2 is:

ReZG3(GST − SL) � 12(n + 2) + 30(2n + 6) + 54(2n) + 84(8n − 8)

� 852n − 468.
(13)

3. Applications and Discussion of
Computed Results

)e geometric arithmetic index gives improved prediction as
compared to other descriptors. We can easily see that the
heat formation of GST − SL[n] is lower as the values of n

increases. )e first and the second Zagreb indices are
established to appear within specific estimated expressions
for the total π-electron energy [7, 20]. )e augmented
Zagreb index gives better correlation for measuring the
strain energy of molecules.

)e computed numerical results of Randi c
�
indices are

portrayed in Tables 3 and 4. )e graphical illustration of
Rα(S) for α � 1, −1, 1/2, −1/2 is characterized in Figures 3
and 4.

We can use equation (14) for the transformation of
Randi c indices into the approximate heat of formation for
GST − SL[n].

HR1(S) � 1030 · −0.0094 · R1(S) + 3.0145( 􏼁,

HR−1(S) � 1030 · −0.6133 · R−1(S) + 4.7743( 􏼁,

HR1/2(S) � 1030 · −0.0810 · R1/2(S) + 3.9374( 􏼁,

HR−1/2(S) � 1030 · −0.2913 · R−1/2(S) + 4.1071( 􏼁.

(14)

)e computed numerical results of ABC index and GA
index are portrayed in Table 5. )e graphical illustration of

these indices is characterized in Figure 5.)e transformation
of ABC index and GA index into the approximate heat of
formation of GST − SL[n] at any level can be estimated with
the help of the following equation:

HABC � 1040 · (−0.0045 · ABC − 3.4699),

HGA � 1030 · (−0.0917 · GA + 2.0126).
(15)

)e computed numerical results for the first and the
second Zagreb indices are shown in Table 6, while their
graphical illustration is shown in Figure 6. )e transfor-
mation of the first and the second Zagreb indices into the
approximate heat of formation of GST − SL[n] at any level
can be exercised with the help of the equation as follows:

HM1
� 1030 · −0.045 · M1 + 4.3142( 􏼁,

HM2
� 1030 · −0.0094 · M2 + 3.0145( 􏼁.

(16)

Numerical comparison of hyper Zagreb index and
forgotten index is shown in Table 7, while graphically, their
comparison is shown in Figure 7 Equation (17) can be
employed for the transformation of hyper and forgotten
indices into the approximate heat of formation of GST −

SL[n] at any cubic level.

HHM(S) � 1020 · (−0.0238 · HM(S) + 3.4663),

HF(S) � 1030 · (−0.008 · F(S) + 3.6558).
(17)
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Figure 3: (a) Comparison of Randi c index for α � 1 with heat of formation. (b) Comparison of Randi c index for α � −1 with heat of
formation.
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Figure 4: (a) Randi c index for α � 1/2 with heat of formation, (b) Randi c index for α � −1/2 with heat of formation.

Table 3: Comparison of R1 and R−1 with their respective heat of formation for GST − SL[n].

[n] R1 HR1
R−1 HR−1

[21] 75 2378.785 2.555 6 3303.159 0
[22] 204 1129.807 4.111 1 2320.551 2
[14] 333 −119.171 5.666 7 1337.943 4
[3] 462 −1368.149 7.222 2 355.272 5
[9] 591 −2617.127 8.777 8 −627.3985
[12] 720 −3866.105 10.333 3 −1610.0063
[31] 849 −5115.083 11.888 9 −2592.6709

Table 4: Comparison of R1/2 and R−1/2 with their respective heat formation for GST − SL[n].

[n] R1/2 HR1/2
R−1/2 HR−1/2

[21] 30.7921 2755.171 6 5.664 7 2530.6821
[22] 71.135 9 1051.452 9 10.034 6 1219.541 7
[14] 111.479 8 −652.2699 14.404 5 −91.5988
[3] 151.823 6 −2355.9886 18.774 4 −1402.7392
[9] 192.167 4 −4059.7073 23.144 3 −2713.8796
[12] 232.511 2 −5763.4260 27.514 3 −4025.0501
[31] 272.8551 −7467.1489 31.884 2 −5336.1905
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Table 5: Comparison of ABC index and GA index with their respective heat of formation for GST − SL[n].

[n] ABC HABC GA HGA

[21] 9.439 7 −3652.8738 12.436 4 898.3476
[22] 18.167 7 −3693.7208 25.18 −305.2982
[14] 26.895 7 −3734.569 37.923 6 −1508.9439
[3] 35.623 7 −3775.4149 50.6671 −2712.5803
[9] 44.351 8 −3816.2624 63.410 7 −3916.2260
[12] 53.079 8 −3857.1095 76.154 3 −5119.8718
[31] 61.807 8 −3897.9565 88.897 8 −6323.5081
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Figure 5: (a) )e ABC index with heat of formation (b) )e GA index with heat of formation.

Table 6: Comparison of Zagreb indices with their respective heat of formations for GST − SL[n].

[n] M1 HM1
M2 HM2

[21] 64 2424.826 0 75 2378.785
[22] 146 1157.926 0 204 1129.807 0
[14] 228 −108.9740 333 −119.1710
[3] 310 −1375.8740 462 −1368.1490
[9] 392 −2642.7740 591 −2617.1270
[12] 474 −3909.6740 720 −3866.1050
[31] 556 −5176.5740 849 −5115.0830
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Figure 6: (a) )e rirst Zagreb index with heat of formation. (b) )e second Zagreb index with heat of formation.
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Table 7: Comparison of HM and F indices with their respective heat of formation for GST − SL[n].

[n] HM HHM F HF

[21] 320 −5252.6940 170 2364.6740
[22] 850 −18118.9740 442 123.3940
[14] 1380 −30985.2540 714 −2117.8860
[3] 1910 −43851.5340 986 −4359.1660
[9] 2440 −56717.8140 1258 −6600.4460
[12] 2970 −69584.0940 1530 −8841.7260
[31] 3500 −82450.3740 1802 −11083.006
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Figure 7: (a) )e hyper Zagreb index with heat of formation. (b) )e forgotten index with heat of formation.

Table 8: Comparison of AZI and J indices with their respective heat of formation for GST − SL[n].

[n] AZI HAZI J HJ

[21] 96.906 3 1711.769 2 24.547 −6023.6551
[22] 249.654 5 −490.8599 37.271 4 −8256.9399
[14] 402.402 8 −2693.4904 51.070 6 −10678.8652
[3] 555.151 −4896.1194 65.084 8 −13138.5254
[9] 707.899 3 −7098.7499 79.1781 −15612.0687
[12] 860.647 5 −9301.3790 93.309 3 1486.552 8
[31] 1013.396 −11504.0123 107.461 5 361.706 6
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Figure 8: (a) )e augmented Zagreb index with heat of formation. (b) )e Balaban index with heat of formation.
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Numerical results for AZI and J indices are shown in
Table 8, while Figure 8 illustrates the results graphically. For
the transformation of augmented Zagreb index and Balaban
index into the approximate heat of formation of
GST − SL[n] at any level can be exercised with the help of the
equation as follows:

HAZI � 1030 · (−0.014 · AZI + 3.0186),

HJ � 1030 · (−0.1704 · J + 1.6654).
(18)

Numerical results of redefined Zagreb indices are shown
in Table 9, while Figure 9 illustrates these indices graphically.
)e transformation of redefined Zagreb entropies into the
approximate heat of formation of GST − SL[n] at any cubic
level can be employed by using the equation as follows:

HReG1
(S) � 1030 · −0.412 · ReG1 + 3.126( 􏼁,

HReG2
� 1030 · −0.145 · ReG2 + 2.321( 􏼁,

HReG3
� 1030 · −0.0050 · ReG3 − 3.2173( 􏼁.

(19)

Table 9: Comparison of the redefined Zagreb rntropies with their respective heat of formations for GST − SL[n].

[n] ReZG1 HReZG2
ReZG2 HReZG2

ReZG3 HReZG3

[21] 2 2371.060 14.85 172.782 5 384 1548.090
[22] 21 −5691.780 34.714 3 −2793.9507 1236 −2839.710
[14] 30 −9511.020 54.578 6 −5760.6839 2088 −7227.51
[3] 39 −13330.260 74.442 9 −8727.4171 2940 −11615.31
[9] 48 −17149.5 94.3071 −11694.1354 3792 −16003.11
[12] 57 −20968.74 114.171 4 −14660.8686 4644 −20390.91
[31] 66 −24787.98 134.035 7 −17627.6018 5496 −24778.71
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Figure 9: (a) )e redefined first Zagreb index, (b) the redefined second Zagreb entropy, and (c) the Redefined third Zagreb index, with
respective heat of formation for GST − SL[n].
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4. Conclusion

In this paper, some degree constructed topological indices
are computed which can be used to find out different
physicochemical properties. More preciously, we have
computed the Randic� index, the atom bond connectivity
index, the geometric arithmetic index, the first and second
Zagreb indices, and the Balaban index.We also determined a
relation between the degree constructed topological indices
with heat of formation, and then, we discussed the crystal
structure of Ge − Sb − Te (GST) and also its applications in
different fields. )e heat of formation and the entropy
measure are computed in this study, which is useful to
analyze the thermodynamic properties of the metal-insu-
lator transition. We illustrated the comparison between the
degree constructed topological indices and heat of forma-
tion, which leads us to know the physicochemical properties
of this two-dimensional material GST.
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