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�e shearlet transform is a promising and powerful time-frequency tool for analyzing nonstationary signals. In this article, we
introduce a novel integral transform coined as the Cli�ord-valued shearlet transform on Cl(p,q) algebras which is designed to
represent Cli�ord-valued signals at di�erent scales, locations, and orientations. We investigated the fundamental properties of the
Cli�ord-valued shearlet transform including Parseval’s formula, isometry, inversion formula, and characterization of range using
the machinery of Cli�ord Fourier transforms. Moreover, we derived the pointwise convergence and homogeneous approximation
properties for the proposed transform. We culminated our investigation by deriving several uncertainty principles such as the
Heisenberg–Pauli–Weyl uncertainty inequality, Pitt’s inequality, and logarithmic and local-type uncertainty inequalities for the
Cli�ord-valued shearlet transform.

1. Introduction

Wavelet transforms have been proved to be a successful tool
for analyzing nontransient signals and have been applied in a
number of �elds including signal and image processing,
di�erential and integral equations, sampling theory, quan-
tum mechanics, medicine, and so on [1]. However, the ef-
�ciency of the wavelet transforms is considerably reduced
when applied to higher dimensional signals as they are not
able to capture the geometric features like edges and corners
at di�erent scales e�ciently.�e detection of such geometric
features in nontransient signals is often highly desirable in
numerous practical applications such as medical imaging,
remote sensing, crystallography, and several other areas. To
circumvent these constraints, a number of novel directional
representation systems have been introduced and employed
in recent years, such as the wedgelets, ridgelets, ripplets,
curvelets, contourlets, surfacelets, brushlets, and shearlets.
Among all these geometrical wavelet systems, the shearlet
systems have been widely acknowledged and emerged as one
of the most e�ective frameworks for representing multidi-
mensional data because they are nonisotropic nature, and
they o�er optimally sparse representations [2], allow

compactly supported analysing elements [3], are associated
with fast decomposition and reconstruction algorithms, and
provide a uni�ed treatment of continuum and digital data
[4, 5].

Cli�ord algebras have dethroned both the Grossmann’s
exterior algebra and Hamilton’s quaternion algebra in the
sense that they incorporate both the geometrical and alge-
braic features of Euclidean space into a single structure [6].
As a result, the theory of Cli�ord algebras has attained an
overwhelming response and gained a respectable status in
higher-dimensional signal and image processing mainly due
to the reason that such algebras encompass all dimensions at
once unlike the multidimensional tensorial approach with
tensor products of one-dimensional phenomena. �is true
multidimensional nature allows speci�c constructions of
higher dimensional signal and image processing tools in-
cluding the Cli�ord Fourier transforms [7, 8], Cli�ord
Gabor transforms, Cli�ord wavelet transforms, and other
integral transforms in general [9–13].

Motivated and inspired by the contemporary develop-
ments in the theory of shearlet transforms abreast the
profound applicability of the Cli�ord algebras, we introduce
the notion of Cli�ord-valued shearlet transforms on Cl(p,q)
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algebras in the context of multidimensional signal analysis.
Unlike the conventional shearlet transform, the proposed
transform inherits both the geometric and algebraic prop-
erties of shearlet transforms and Clifford algebras. Although
a meek analgoue of shearlet transform in the Clifford do-
main has been proposed in [14], it only deals with the
Cl(0,n)algebra, where n � 3mod4. -erefore, the centre piece
of this study is to construct the Clifford-valued shearlets and
the corresponding shearlet transforms in the most general
setting Cl(p,q) by employing translations, sharing, scaling,
and spinning elements. Besides, we study the basic prop-
erties of the Clifford-valued shearlet transforms including
Parseval’s and inversion formulae and range theorem using
the machinery of Clifford Fourier transforms. Moreover, we
derive the pointwise convergence and homogeneous ap-
proximation properties for the proposed transform. Finally,
we formulate some uncertainty inequalities including the
classical Heisenberg–Pauli–Weyl inequality, Pitt’s inequal-
ity, and logarithmic inequality for the Clifford shearlet
transforms.

-e structure of this article is as follows. Section 2 deals
with the preliminaries of Clifford algebras, whereas a
comprehensive analysis of the general Clifford-valued
shearlet transforms is carried out in Section 3. In Section 4,
we study the homogeneous approximation properties for
proposed transform. Several uncertainty principles for the
proposed transform are also being studied in Section 5.
Finally, a conclusion is summarized in Section 6.

2. Basics of Clifford Algebras

In this section, we present a brief overview of the Clifford
algebras including the definitions of Clifford Fourier
transforms, spin group, and some unitary operators.

-e Clifford algebra Cl(p,q) is a noncommutative, as-
sociative algebra generated by the orthonormal basis
e1, e2, . . . , en􏼈 􏼉 of the n-dimensional Euclidean space Rn

governed by the multiplication rule:

eiej + ejei � 2εiδij, i, j � 1, 2, . . . , n, (1)

where n � p + q, εi � +1 for i � 1, 2, . . . , p and εi � − 1 for
i � p + 1, p + 2, . . . , n, with δij denoting the usual Kro-
necker’s delta function. -e noncommutative product and
the additional axiom of associativity generates the 2n− di-
mensional Clifford geometric algebra Cl(p,q), which can be
decomposed as

Cl(p,q) � a
n

k�0
Cl

k
(p,q), (2)

where Clk(p,q) denotes the space of k-vectors given by

Cl
k
(p,q) ≔ span ei1

, ei2
, . . . , eik

; i1 ≤ i2 ≤ . . . ≤ ik􏽮 􏽯. (3)

Any general element of the Clifford algebra is called a
multivector and every multivector M ∈ Cl(p,q) can be rep-
resented in the following form:

M � 􏽘
A

MAeA � 〈M〉0 + 〈M〉1 + · · · + 〈M〉n, MA ∈ R, A ⊂ 1, 2, . . . , n{ }, (4)

where eA � ei1
ei2

. . . eik
and i1 ≤ i2 ≤ . . . ≤ ik. Moreover, 〈·〉k

is called as the grade k-part of M, and 〈·〉0, 〈·〉1, 〈·〉2, . . .,
respectively, denote the scalar part, vector part, bivector part,
and so on. -e Clifford conjugate of a multivector
M ∈ Cl(p,q) is given by

M � 􏽘
n

r�0
(− 1)

r(r− 1)/2
〈M〉r, (5)

where the scalar product of multivectors M and N is defined
as

Sc(MN) � |MN| � M⋆N � 􏽘
A

MANA. (6)

Moreover, for any pair of multivectors M, N ∈ Cl(p,q), it
can be easily verified that

|MN|≤ 2n
|M||N|. (7)

We now intend to recall the fundamental notion of
Clifford Fourier transforms in Lr(R(p,q), Cl(p,q)), 1≤ r<∞
as

L
r
R

(p,q)
, Cl(p,q)􏼐 􏼑 � f: R(p,q)⟶ Cl(p,q); ‖f‖r � 􏽚

R(p,q)
|f(x)|

rdn
x􏼠 􏼡

1/r

<∞
⎧⎨

⎩

⎫⎬

⎭. (8)

It is imperative to mention that any function
f ∈ Lr(R(p,q), Cl(p,q)) can be expressed as a combination of
the real-valued functions fA and the basis elements eA as

f(x) � 􏽘
A

fA(x)eA. (9)

Due to the noncommutativity of Clifford-valued
functions, several analogues of the Clifford Fourier
transforms have been introduced in the literature.
However, we shall be interested in following definition
due to Bahri et al. [15].
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Definition 1. Let I ∈ Cl(p,q) be a square root of − 1. -e
Clifford Fourier transform of any function f ∈ L1(R(p,q),

Cl(p,q)) is defined by

FCl[f(x)](ξ) �
1

(2π)
n/2 􏽚

R(p,q)
f(x)e

− Iυ(ξ,x)dn
x, (10)

where nx, ξ ∈ R(p,q), dnx � dx1dx2 . . . dxn, υ: R(p,q)×

R(p,q)⟶ R, and υ(ξ, x) � ξ1x1 + ξ2x2 + · · · + ξnxn.
-e inversion and Plancherel formulae associated with

the Clifford Fourier transform (10) are given by

f(x) �
1

(2π)
n/2 􏽚

R(p,q)
FCl[f(x)](ξ)e

Iυ(ξ,x)dnξ,

〈f , g〉
L2 R(p,q) ,Cl(p,q)( 􏼁

�〈FCl[f],FCl[g]〉
L2 R(p,q) ,Cl(p,q)( 􏼁

,

(11)

In this case, the inner product of twomultivector functions f
and g is described through

〈f , g〉
L2 R(p,q) ,Cl(p,q)( 􏼁

� 􏽚
R(p,q)

f(x)g(x)dn
x, (12)

and its scalar part is given by

|〈f , g〉|
L2 R(p,q) ,Cl(p,q)( 􏼁

� 􏽚
R(p,q)

|f(x)g(x)|
2dn

x

� 􏽚
R(p,q)

Sc(f(x)g(x))dn
x

� Sc 􏽚
R(p,q)

f(x)g(x)dn
x􏼒 􏼓.

(13)

For an efficient representation of Clifford-valued func-
tions, we employ the spin elements obtained from the spin
group as defined below.

Definition 2. -e spin-group is a double covering of special
orthogonal group of Rn and is defined by

Spin(n) � r ∈ Cl
+
(p,q); rr � rr � 1􏽮 􏽯, (14)

where Cl+(p,q) is a subgroup of the invertible elements in the
Clifford algebra Cl(p,q).

To facilitate the construction of Clifford-valued shearlets,
we define the fundamental unitary operators acting on the
space Lr(R(p,q)). For a> 0, s ∈ Rn− 1 and b ∈ Rn, and the
scaling, shearing, spin-rotation, and translation operators
are denoted by DAa

, DSs
, Rr, Tb, respectively, and are de-

fined as

DAa
Ψ(x) � detAa

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
− 1/2Ψ A

− 1
a x􏼐 􏼑,

DSs
Ψ(x) � Ψ S

− 1
s x􏼐 􏼑,

RrΨ(x) � rΨ(rxr)r,

TbΨ(x) � Ψ(x − b),

(15)

and the matrices involved in equation (15) are

Aa �
a 0T

n− 1

0n− 1 sgn(a)|a|
1/n

In− 1

⎛⎝ ⎞⎠,

Ss �
1 sT

0n− 1 In− 1

⎛⎝ ⎞⎠,

(16)

where sT � (s1, s2, . . . , sn− 1), and sgn(·) and 0 denote the
well-known Signum function and the null vector, respec-
tively. Moreover, the composition of the scaling matrix Aa

and the shearing matrix Ss is given by

SsAa �

a sgn(a)a
1/n

s1 sgn(a)a
1/n

s2 sgn(a)a
1/n

s3 · · · sgn(a)a
1/n

sn− 1

0 sgn(a)a
1/n 0 0 · · · · · ·

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 0 0 sgn(a)a
1/n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (17)

3. The Clifford-Valued Shearlet Transform on
Cl(p,q) Algebras

In this section, we shall construct the Clifford-valued shearlets
on Cl(p,q) algebras by using the combined action of the scaling,
sharing, spin-rotation and translation operators. Besides, we
study the fundamental properties of the Clifford-valued shearlet
transform including Parseval’s formula, inversion formula, and
obtain a complete characterization of the range. Prior to that, we
shall demonstrate that the novel family of Clifford-valued
shearlets is endowed with an affine group structure.

Consider that the set G � R+ × Spin(n) × Rn− 1 × Rn

endowed with the binary operation ⊙ is defined as

(a, r, s, b)⊙ a′, r′, s′, b′( 􏼁

� aa′, r + r′, s + a
1− (1/n)

s′, b + SsAab′􏼐 􏼑,
(18)

where a, a′ ∈ R+, s, s′ ∈ Rn− 1, b, b′ ∈ Rn, r, r′ ∈ Spin(n).
Clearly, (1, 0, 0n− 1, 0n, ) is the neutral element of G, whereas
(a− 1, − r, − a1/n− 1s, − A− 1

a S− 1
s b) is the inverse of any arbitrary

element (a, r, s, b) ∈ G. Moreover, it is easy to verify that
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(a, r, s, b)⊙ a′, r′, s′, b′( 􏼁( 􏼁⊙ a″, r″, s″, b″( 􏼁

� (a, r, s, b)⊙ a′, r′, s′, b′( 􏼁⊙ a″, r″, s″, b″( 􏼁( 􏼁.

(19)

Hence, we conclude that (G, ⊙ ) constitutes a group and is
formally called as the similitude group of dilations, trans-
lations, shearing, and spinning.

Furthermore, we claim that the left Haar measure onG is
given by dη � dadrdn− 1sdnb/an+1. In fact, for any function
f ∈ L2(G, Cl(p,q)), we have

􏽚
G
f (a, r, s, b)⊙ a′, r′, s′, b′( 􏼁􏼂 􏼃dη � 􏽚

R+×Spin(n)×Rn×Rn
f aa′, r + r′, s + a

1− (1/n)
s′, b + SsAab′􏼐 􏼑􏽨 􏽩

dadrdn− 1
sdn

b

a
n+1 . (20)

Making use of the substitution 􏽥a: � aa′, 􏽥r: �

rr′,􏽥s: � s + (a)1− 1/ns′, 􏽥b: � b + SsAab′, i.e., da � (a′)− 1d􏽥a,

dr � d􏽥r, dn− 1s � (a)− ((n− 1)2/n)dn− 1􏽥s, dnb � (a)− 2+1/ndn􏽥b, the
above expression becomes

􏽚
G

f (a, r, s, b)⊙ a′, r′, s′, b′( 􏼁􏼂 􏼃dη � 􏽚
R+×Rn×Spin(n)×Rn

f[(􏽥a, 􏽥r,􏽥s, 􏽥b)]
a′( 􏼁

− 1d􏽥ad􏽥r(a)
− (n− 1)2/n( )dn− 1

􏽥s(a)
− 2+1/ndn􏽥b

􏽥a/a′( 􏼁
n+1

� 􏽚
R+×Rn×Spin(n)×Rn

f[(􏽥a, 􏽥r,􏽥s, 􏽥b)]
d􏽥ad􏽥rdn− 1

􏽥sdn􏽥b

(􏽥a)
n+1 ,

(21)

which validates the claim that dη � dadrdn− 1sdnb/an+1 is
indeed the left Haar measure on G.

Next, we shall construct a novel class of shearlet systems
on Cl(p,q) algebras by the combined action of the scaling DAa

,
sharing DSs

, spin-rotation Rr, and translation Tb operators
on any analyzing function Ψ ∈ L2(R(p,q), Cl(p,q)).

For any a ∈ R+, s ∈ Rn− 1, b ∈ Rn, and r ∈ Spin(n),
consider the family of analyzing functions:

Ψr
a,s,b(x) � DAa

DSs
RrTbΨ(x) � a

(1/2n)− 1rΨ A
− 1
a S

− 1
s r(x − b)r􏼐 􏼑r􏽮 􏽯,

(22)

which is called as the family of Clifford-valued shearlets on
the geometric algebra-Cℓ(p,q). -e system of functions (22)
satisfies the following properties:

(i) -e system (22) is a dense subspace of
L2(Rn, Cl(p,q))

(ii) -e following norm equality holds good:

Ψr
a,s,b

����
����

L2 Rn,Cl(p,q)( 􏼁
� ‖Ψ‖

L2 Rn,Cl(p,q)( 􏼁
. (23)

(iii) -e Clifford Fourier transform of the family of
functions Ψra,s,b(x) reads

FCl Ψ
r
a,s,b􏽨 􏽩(ξ) � a

1− (1/2n)
FCl[rΨ(·)r] rSsAaξr( 􏼁e

− Iυ(ξ,b)
.

(24)

Next, we shall present the notion of an admissible
Clifford-valued shearlet on the space of Clifford-valued
functions L2(Rn, Cl(p,q)).

Definition 3 (Admissibility). A nontrivial function
Ψ ∈ L2(Rn, Cl(p,q)) is called an admissible Clifford-valued
shearlet if

CΨ � 􏽚
R+×Rn− 1×Spin(n)

FCl[rΨ(·)r] rSsAaξr( 􏼁􏼈 􏼉 FCl[rΨ(·)r] rSsAaξr( 􏼁􏼈 􏼉
dadn− 1

sdr

a
n2− n+1/n( )

, (25)

which is an invertible multivector and finite, i.e., ξ ∈ R(p,q).

Remark 1. It is worth noticing that FCl[rΨ(·)r](0) � 0, for
ξ � 0; that is, Ψ(x) � 􏽐AΨA(x)eA. and

􏽚
R(p,q)
ΨA(x)eAe

− Iυ(0,x)dn
x � 0, (26)

which in turn implies that for every component ΨA of the
Clifford-valued shearlet Ψ is zero; that is,

􏽚
R(p,q)
ΨA(x)dn

x � 0. (27)

Based on the novel family of Clifford-valued shearlets
defined in equation (22), we have the following main def-
inition of the continuous Clifford-valued shearlet transform.
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Definition 4. -e continuous Clifford-valued shearlet
transform of any multivector signal f ∈ L2(Rn, Cl(p,q)) with
respect to an analysing Clifford-valued shearlet
Ψ ∈ L2(R(p,q), Cl(p,q)) is defined by

CSΨf(a, r, s, b) �〈f,Ψr
a,s,b〉L2 R(p,q) ,Cl(p,q)( 􏼁

� 􏽚
R(p,q)

f(x)Ψr
a,s,b(x)dn

x.
(28)

where Ψra,s,b(x) is given by equation (22).
-e corresponding spectral representation of the Clif-

ford-valued shearlet transform is

CSΨf(a, r, s, b) � a
1− (1/2n)

􏽚
Rn
FCl[f](ξ)

· e
Iυ(ξ,b)

FCl[rΨ(·)r] rSsAaξr( 􏼁dnξ.

(29)

We now present an example for the lucid illustration of
the proposed Clifford-valued shearlet transform (28).

Example 1. Consider the Clifford-valued Hermite wavelets
[16]as

ψn(x) � (− 1)
n
z

n
x exp −

|x|
2

2
􏼠 􏼡􏼢 􏼣,

z
n
x �

z
n

zx1
+

z
n

zx2
+ · · · +

z
n

zxn

􏼠 􏼡.

(30)

-erefore, the corresponding Clifford-valued shearlets
of ψn(x) are obtained as

Ψra,s,b(x) � detAa

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
− 1/2r A

− 1
a S

− 1
s (x − b)

n
􏼐 􏼑exp −

A
− 1
a S

− 1
s (x − b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

2
⎛⎝ ⎞⎠r,

(31)

and the Clifford-valued shearlet transform (28) of any
function f ∈ L2(Rn, Cln), with respect to the analyzing
shearlets (31) can be computed as

CSΨf(a, r, s, b) � detAa

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
− 1/2

􏽚
Rn
f(x)r A

− 1
a S

− 1
s (x − b)

n
􏼐 􏼑

× exp −
A

− 1
a S

− 1
s (x − b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

2
⎛⎝ ⎞⎠rdn

x.

(32)

For simplicity, we shall compute the two-dimensional
Clifford-valued shearlet transform for the given function f
with respect to the shearlets:

Ψra,s,b x1, x2( 􏼁 � detAa

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
− 1/2

A
− 1
a S

− 1
s x1 − b1( 􏼁

2
, x2 − b2( 􏼁

2
􏽨 􏽩􏼐 􏼑

× exp −
A

− 1
a S

− 1
s x1 − b1, x2 − b2( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

2
⎛⎝ ⎞⎠,

(33)

where Aa �
a 0
0 a

1/2􏼢 􏼣, Ss �
1 s

0 1􏼢 􏼣. After simplifying, we
obtain

Ψra,s,b x1, x2( 􏼁 �
��
a

√
x1 − b1( 􏼁

2
− s − a

3/2
􏼐 􏼑 x2 − b2( 􏼁

2
􏼐 􏼑

× exp −
x1 − b1( 􏼁

2
+ s − a

− (1/2)
􏼐 􏼑 x2 − b2( 􏼁

2

2a
2

⎛⎝ ⎞⎠.

(34)

-e two-dimensional analyzing shearlets ψr
a,s,b(x1, x2)

given by equation (34) at different values of a, s, r, and b are
plotted in Figure 1. -e parameters a and s determine the
scaling anisotropy and the decaying rate of shearlets pro-
viding more accurate location and orientation. In com-
parison with wavelets, shearlets not only inherits advantages
of wavelets (s � 0) but also provide detailed information of
position, normal and curvature of discontinuities.

-e Clifford-valued shearlet transform of f(x1, x2) �

exp − (x2
1 + x2

2)/2􏼈 􏼉 is computed as

CSψf(a, r, s, b) �
��
a

√
􏽚
R2

x1 − b1( 􏼁
2

− s − a
3/2

􏼐 􏼑 x2 − b2( 􏼁
2

􏼐 􏼑 × exp −
x1 − b1( 􏼁

2
+ s − a

− 1/2
􏼐 􏼑 x2 − b2( 􏼁

2
+ a

2
x
2
1 + x

2
2􏼐 􏼑

2a
2

⎛⎝ ⎞⎠dx1dx2. (35)

For different values of a, s, r, and b, the corresponding
Clifford-valued shearlet transforms of f(x1, x2) with respect
the analysing shearlets (34) are depicted in Figure 2 after
computing the integrals (35) inMathematica software. From
the simulation, we infer that the Clifford-valued shearlet
transform enables a precise characterization of location,
orientation, and curvature of discontinuities in two di-
mensional signals.

In the following theorem, we assemble some of the basic
properties of the Clifford-valued shearlet transform (28).

Theorem 1. Ψra,s,b(x1, x2)for f , g ∈ L2(R(p,q), Cl(p,q)), and
admissible Clifford-valued shearletsΨ andΦ. 9e continuous

Clifford-valued shearlet transform (28) satisfies the following
properties:

(i) Linearity: CSΨ(αf + βg)(a, r, s, b) � αCSΨf(a, r,
s, b) + βCSΨg(a, r, s, b), α, β ∈ Cl(p,q)

(ii) Anti − linearity: CSαΨ+βΦf(a, r, s, b) � CSΨf(a, r,
s, b)α + CSΦf(a, r, s, b)β

(iii) Translation covariance: CSΨ(Tkf)(a, r, s, b) �

CSΨf(a, r, s, b − k)

(iv) Dilation covariance: CSΨ(D(1/c)f(x))(a, r, s, b) �

(CSDcΨf(x))(a, r, s, (b/c)), c ∈ R
(v) Parity: CSΨ(Pf(x))(a, r, s, b) � (− 1)nCSPΨ (f(x))

(a, r, s, − b), Pf(x) � f(− x)
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(vi) Translation inΨ: CSTkΨ(f(x))(a, r, s, b) � CSΨ(f(x))

(a, r, s, b + k)

Proof. For the sake of brevity, we omit the proof.
In our next theorem, we show that the Clifford-valued

shearlet transform sets up an isometry from L2(R(p,q),

Cl(p,q)) to L2(R+ × Rn− 1 × Rn × Spin(n), Cl(p,q)). □

Theorem 2. (Plancherel theorem). Let CSΨf(a, r, s, b) and
CSΨg(a, r, s, b) be the Clifford-valued shearlet transforms of
the multivector signals f and g, respectively. 9en, we have

􏽚
R+×Rn− 1×Rn×Spin(n)

Sc CSΨf(a, r, s, b)CSΨg(a, r, s, b)􏼐 􏼑
dadn− 1

sdn
bdr

a
n+1

� (2π)
n
􏽚
R(p,q)

Sc f(x)CΨg(x)􏼐 􏼑dn
x � (2π)

n 〈fCΨ, g〉
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
L2 R(p,q) ,Cl(p,q)( 􏼁

,

(36)
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Figure 1: Two-dimensional analyzing shearlets ψr
a,s,b(x1, x2) given by equation (34) at different values of a, r, b, and s. (a) 2D-shearlets at

a� 1, b� 1, and s� 0. (b) Contour plot of 2D-shearlets at a� 1, b� 1, and s� 0. (c) 2D-shearlets at a� 1/2, b� 1 and s� 1. (d) Contour plot of
2D-shearlets at a� 1/2, b� 1 and s� 1.
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where CΨ is given by equation (25). Proof. .Invoking the spectral representation (29) of Clifford
shearlet transforms, we obtain

􏽚
R+×Rn− 1×Rn×Spin(n)

Sc CSΨf(a, r, s, b)CSΨg(a, r, s, b)􏼐 􏼑
dadn− 1

sdn
bdr

a
n+1

� 􏽚
R+×Rn− 1×Rn×Spin(n)

a
2− (1/n)

Sc 􏽚
Rn
FCl[f](ξ)e

Iυ(ξ,b)
FCl[rΨ(·)r] rSsAaξr( 􏼁dnξ􏼒

× 􏽚
Rn
FCl[g] ξ′( 􏼁e

Iυ ξ′,b( )FCl[rΨ(·)r] rSsAaξ′r( 􏼁dnξ′􏼓
dadn− 1

sdn
bdr

a
n+1 ,

� 􏽚
R+×Rn− 1×Rn×Spin(n)

a
2− (1/n)

􏽚
Rn

􏽚
Rn

Sc FCl[f](ξ)e
Iυ(ξ,b)

FCl[rΨ(·)r] rSsAaξr( 􏼁􏼐

×FCl[rΨ(·)r] rSsAaξ′r( 􏼁e
− Iυ ξ′ ,b( )FCl[g] ξ′( 􏼁􏼓dnξdnξ′

dadn− 1
sdn

bdr
a

n+1 .

(37)

-en, equation (37) can be rewritten as
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Figure 2: Two-dimensional Clifford-valued shearlet transforms of f(x1, x2) � exp − (x2
1 + x2

2)/2􏼈 􏼉 with respect to analyzing function
Ψra,s,b(x1, x2) given by equation (35). (a) Clifford-valued STof f at a� 1/2, b� 1, and s� 1/2. (b) Clifford-valued STof f at a� b� 1, and s� 1.
(c) Contour plot of Clifford-valued ST of f at a� 1/2, b� 1, and s� 1/2. (d) Contour plot of Clifford-valued ST of f at a� b� 1, and s� 1.
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􏽚
R+×Rn− 1×Rn×Spin(n)

Sc CSΨf(a, r, s, b)CSΨg(a, r, s, b)􏼐 􏼑
dadn− 1

sdn
bdr

a
n+1

� 􏽚
R+×Rn− 1×Rn×Spin(n)

􏽚
Rn

􏽚
Rn

Sc FCl[f](ξ)e
Iυ(ξ,b)

e
− Iυ ξ′ ,b( )􏼒

× FCl[rΨ(·)r] rSsAaξr( 􏼁􏼈 􏼉 FCl[rΨ(·)r] rSsAaξ′r( 􏼁􏼈 􏼉FCl[g] ξ′( 􏼁􏼑dnξdnξ′
dadrdn− 1

sdn
b

a
n2− n+1/n( )

􏼡

� (2π)
n
􏽚
Rn

􏽚
Rn

Sc FCl[f](ξ)
1

(2π)
n 􏽚

Rn
e

Iυ ξ− ξ′ ,b( )dn
b􏼠 􏼡

× 􏽚
R+×Spin(n)×Rn− 1

FCl[rΨ(·)r] rSsAaξr( 􏼁􏼈 􏼉 FCl[rΨ(·)r] rSsAaξ′r( 􏼁􏼈 􏼉
dadrdn− 1

s

a
n2− n+1/n( )

×FCl[g] ξ′( 􏼁􏼑dnξdnξ′

� (2π)
n

􏽚
Rn

􏽚
Rn

Sc FCl[f](ξ)δ ξ − ξ′( 􏼁(􏼔

× 􏽚
R+×Spin(n)×Rn− 1

FCl[rΨ(·)r] rSsAaξr( 􏼁􏼈 􏼉 FCl[rΨ(·)r] rSsAaξ′r( 􏼁􏼈 􏼉
dadrdn− 1

s

a
n2− n+1/n( )

×FCl[g] ξ′( 􏼁􏼑dnξdnξ′

� (2π)
n
􏽚
Rn

Sc FCl[f](ξ) × 􏽚
R+×Spin(n)×Rn− 1

FCl[rΨ(·)r] rSsAaξr( 􏼁􏼈 􏼉 FCl[rΨ(·)r] rSsAaξr( 􏼁􏼈 􏼉
dadrdn− 1

s

a
n2− n+1/n( )

×FCl[g](ξ)􏼑dnξ􏼠

� (2π)
n
􏽚
Rn

Sc FCl[f](ξ)CΨFCl[g](ξ)􏼐 􏼑dnξ

� (2π)
n
􏽚
R(p,q)

Sc f(x)CΨg(x)􏼐 􏼑dn
x.

(38)

-is completes the proof of -eorem 2. □ Corollary 1. For f � g, we have the following identity:

􏽚
R+×Rn− 1×Rn×Spin(n)

CSΨf(a, r, s, b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2dadn− 1

sdn
bdr

a
n+1 � (2π)

n
􏽚
R(p,q)

Sc f(x)CΨf(x)􏼐 􏼑dn
x. (39)

By taking Ψ ∈ L2(R(p,q), Cl(p,q)) with CΨ � 1, the Clif-
ford-valued shearlet transform CSΨf(a, r, s, b) becomes an
isometry from L2(R(p,q), Cl(p,q)) to L2(R+ × Rn− 1×

Rn × Spin(n), Cl(p,q)).
Ke next theorem guarantees the reconstruction of the

input Clifford-valued signal from the corresponding Clif-
ford-valued shearlet transform.

Theorem 3 (Inversion formula). Any Clifford-valued signal
f ∈ L2(R(p,q), Cl(p,q)) can be reconstructed from the Clifford-
valued shearlet transform CSΨf(a, r, s, b) via the formula:

f(x) �
1

(2π)
n 􏽚

R+×Rn− 1×Rn×Spin(n)
CSΨf(a, r, s, b)Ψra,s,b(x)C

− 1
Ψ
dadn− 1

sdn
bdr

a
n+1 . (40)
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Proof. Implication of Plancherel theorem of Clifford-valued
shearlet transform (36) for every g ∈ L2(R(p,q), Cl(p,q))

yields that

(2π)
n 〈fCΨ, g〉
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
L2 R(p,q) ,Cl(p,q)( 􏼁

� 〈CSΨf ,CSΨg〉
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
L2 G,Cl(p,q)( 􏼁

� 􏽚
R+×Rn− 1×Rn×Spin(n)

Sc CSΨf(a, r, s, b)CSΨg(a, r, s, b)􏼐 􏼑
dadn− 1

sdn
bdr

a
n+1

� 􏽚
R+×Rn− 1×Rn×Spin(n)

Sc CSΨf(a, r, s, b)􏽚
R(p,q)

g(x)Ψra,s,b(x)􏼒 􏼓dn
x
dadn− 1

sdn
bdr

a
n+1

� 􏽚
R+×Rn− 1×Rn×Spin(n)

􏽚
R(p,q)

Sc CSΨf(a, r, s, b)Ψra,s,b(x)g(x)􏼐 􏼑dn
x
dadn− 1

sdn
bdr

a
n+1

� 􏽚
R(p,q)

􏽚
R+×Rn− 1×Rn×Spin(n)

Sc CSΨf(a, r, s, b)Ψra,s,b(x)􏼐 􏼑
dadn− 1

sdn
bdr

a
n+1 g(x)dn

x

� 􏽚
R+×Rn− 1×Rn×Spin(n)

CSΨf(a, r, s, b)Ψra,s,b(x)
dadn− 1sdnbdr

an+1 , g􏼪 􏼫

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
L2 R(p,q) ,Cl(p,q)( 􏼁

,

(41)

where we used the Fubini–Tonelli theorem in getting the
second last step. Since g ∈ L2(R(p,q), Cl(p,q)) is arbitrary, we
have

(2π)
nf(x)CΨ � 􏽚

R+×Rn− 1×Rn×Spin(n)
CSΨf(a, r, s, b)Ψra,s,b(x)

dadn− 1
sdn

bdr
a

n+1 , (42)

or equivalently

f(x) �
1

(2π)
n 􏽚

R+×Rn− 1×Rn×Spin(n)
CSΨf(a, r, s, b)Ψra,s,b(x)C

− 1
Ψ
dadn− 1

sdn
bdr

a
n+1 . (43)

-is completes the proof of -eorem 3.
-e next theorem presents a characterization of the

range of the Clifford-valued shearlet transformCSHΨ. -e
result follows as a consequence of the reconstruction for-
mula (40) and the well known Fubini theorem. □

Theorem 4 (Characterization of range of CSΨ ). If
h � CSΨf ∈ L2(G, Cl(p,q)), let Ψ be an admissible Clifford-
valued shearlet. 9en, h is a Clifford-valued shearlet trans-
form of a function f ∈ L2(G, Cl(p,q)) if and only if it satisfies
the reproducing property:

h a′, r′, s′, b′( 􏼁 �
1

(2π)
n 􏽚

G
h(a, r, s, b)〈Ψra,s,bC

− 1
Ψ ,Ψr′a′ ,s′ ,b′〉L2 R(p,q) ,Cl(p,q)( 􏼁

dadn− 1
sdn

bdr
a

n+1 . (44)

Proof. Let h belongs to the range of the Clifford-valued
shearlet transform CSΨ. -en, there exist a Clifford-valued

function f ∈ L2(R(p,q), Cl(p,q)) such thatCSΨf � h. In order
to show that h satisfies equation (44), we proceed as
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h a′, r′, s′, b′( 􏼁 � CSΨf a′, r′, s′, b′( 􏼁

� 􏽚
R(p,q)

f(x)Ψr′a′,s′,b′d
n
x

� 􏽚
R(p,q)

1
(2π)

n 􏽚
G
CSΨf(a, r, s, b)Ψra,s,b(x)C

− 1
Ψ
dadn− 1

sdn
bdr

a
n+1􏼢 􏼣Ψr′a′,s′ ,b′d

n
x

�
1

(2π)
n 􏽚

G
CSΨf(a, r, s, b) 􏽚

R(p,q)
Ψra,s,b(x)C

− 1
Ψ Ψ

r′
a′ ,s′ ,b′d

n
x􏼔 􏼕

dadn− 1
sdn

bdr
a

n+1

�
1

(2π)
n 􏽚

G
CSΨf(a, r, s, b)〈Ψra,s,bC

− 1
Ψ ,Ψr′a′ ,s′ ,b′〉L2 R(p,q) ,Cl(p,q)( 􏼁

dadn− 1
sdn

bdr
a

n+1

�
1

(2π)
n 􏽚

G
h(a, r, s, b)〈Ψra,s,bC

− 1
Ψ ,Ψr′a′,s′ ,b′〉L2 R(p,q) ,Cl(p,q)( 􏼁

dadn− 1
sdn

bdr
a

n+1 .

(45)

Conversely, suppose that an arbitrary function
h ∈ L2(G, Cl(p,q)) satisfies equation (44). -en, we show that
there exists f ∈ L2(R(p,q), Cl(p,q)), such that CSΨf � h.
Assume that

f(x) �
1

(2π)
n 􏽚

G
h(a, r, s, b)Ψra,s,b(x)C

− 1
Ψ
dadn− 1

sdn
bdr

a
n+1 .

(46)

-en, it can be easily verified that

‖f‖2
L2 R(p,q) ,Cl(p,q)( 􏼁

�
1

(2π)
2n

C
− 1
Ψ

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
Ψra,s,b

����
����
2
L2 R(p,q) ,Cl(p,q)( 􏼁‖h(a, r, s, b)‖

2
L2 G,Cl(p,q)( 􏼁

, (47)

which implies that f ∈ L2(R(p,q), Cl(p,q)). Moreover, as a
consequence of the well-known Fubini theorem and in-
version -eorem (40), we have

CSΨf a′, r′, s′, b′( 􏼁 � 􏽚
R(p,q)

f(x)Ψr′a′ ,s′ ,b′(x)dn
x

� 􏽚
R(p,q)

1
(2π)

n 􏽚
G
CSΨf(a, r, s, b)Ψra,s,bC

− 1
Ψ
dadn− 1

sdn
bdr

a
n+1􏼢 􏼣Ψr′a′,s′,b′(x)dn

x

�
1

(2π)
n 􏽚

G
CSΨf(a, r, s, b)􏽚

R(p,q)
Ψra,s,bC

− 1
Ψ Ψ

r′
a′ ,s′ ,b′(x)dn

x
dadn− 1

sdn
bdr

a
n+1

�
1

(2π)
n 􏽚

G
h(a, r, s, b)〈Ψra,s,bC

− 1
Ψ ,Ψr′a′ ,s′ ,b′〉L2 R(p,q) ,Cl(p,q)( 􏼁

dadn− 1
sdn

bdr
a

n+1

� h a′, r′, s′, b′( 􏼁.

(48)

-is evidently completes the proof of theorem. □

Corollary 2. For an admissible Clifford shearlet
Ψ ∈ L2(R(p,q), Cl(p,q)), the range of the Clifford shearlet

transform 28) is a reproducing kernel in L2(R(p,q), Cl(p,q))

with kernel that can be given by

KΨ a, r, s, b, a′, r′, s′, b′( 􏼁 �
1

(2π)
n〈Ψ

r
a,s,bC

− 1
Ψ ,Ψr′a′ ,s′ ,b′〉L2 R(p,q) ,Cl(p,q)( 􏼁

. (49)
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4. HAP Property for the Clifford-Valued
Shearlet Transforms

Homogeneous approximation property (HAP) means that
the approximation rate in a reconstruction of signal is es-
sentially invariant under time-scale shifts. -e HAP is being
extensively used for studying frame density [17]. In this

section, we investigate the homogeneous approximation
property for the proposed Clifford-valued shearlet trans-
forms. Initially, we shall present some results related to the
pointwise convergence of the reconstruction formula (40).

Theorem 5. Let CSΨf(a, r, s, b) be the Clifford-valued
shearlet transform of any f ∈ L2(R(p,q), Cl(p,q)) such that

fM,N(x) �
1

(2π)
n 􏽚

N

M
􏽚
Rn×Rn− 1×Spin(n)

CSΨf(a, r, s, b)Ψra,s,b(x)C
− 1
Ψ
drdn− 1

sdn
bda

a
n+1 , N>M> 0, (50)

where Ψ ∈ L2(R(p,q), Cl(p,q)) is an admissible Clifford-valued
shearlet with CΨ ≠ 0, real valued. 9en, we have

FCl fM,N􏽨 􏽩(ξ) � FCl[f](ξ) 􏽚
N

M
􏽚
Rn− 1×Spin(n)

FCl[rΨ(·)r] rSsAaξ′r( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
C

− 1
Ψ
drdn− 1

sda

a
n2− n+1/n( )

. (51)

Proof. For M, N ∈ R+, we define

fM,N(x) �
1

(2π)
n 􏽚

N

M
􏽚
Rn×Rn− 1×Spin(n)

CSΨf(a, r, s, b)Ψra,s,b(x)C
− 1
Ψ
drdn− 1

sdn
bda

a
n+1 . (52)

-en, the application of Schwartz’s inequality implies
that

􏽚
N

M
􏽚
Rn×Rn− 1×Spin(n)

CSΨf(a, r, s, b)Ψra,s,b(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌C
− 1
Ψ
drdn− 1

sdn
bda

a
n+1 ≤ 􏽚

N

M
􏽚
Rn×Rn− 1×Spin(n)

CSΨf(a, r, s, b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2drdn− 1

sdn
b􏼨 􏼩

1/2

× 􏽚
Rn×Rn− 1×Spin(n)

Ψra,s,b(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2drdn− 1

sdn
b􏼨 􏼩

1/2

C
− 1
Ψ

da

a
n+1

� 􏽚
N

M
􏽚
Rn×Rn− 1×Spin(n)

CSΨf(a, r, s, b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2drdn− 1

sdn
b􏼨 􏼩

1/2

× Ψra,s,b(x)
����

����L2 Rn×Rn− 1×Spin(n)( )C
− 1
Ψ

da

a
n+1

≤ 􏽚
N

M
􏽚
Rn×Rn− 1×Spin(n)

CSΨf(a, r, s, b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2drdn− 1

sdn
b
da

an+1􏼨 􏼩

1/2

×‖Ψ‖L2 Rn×Rn− 1×Spin(n)( )C
− 1
Ψ 􏽚

N

M

da

an+1􏼨 􏼩

1/2

≤ (2π)
n 〈fCΨ, f〉
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
L2 R(p,q) ,Cl(p,q)( 􏼁􏼚 􏼛

1/2

‖Ψ‖L2 Rn×Rn− 1×Spin(n)( )C
− 1
Ψ

1
�
n

√ M
− n

− N
− n

􏼂 􏼃
1/2 <∞.

(53)
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-is shows that fM,N is well defined on R2. Next, we show that fM,N is uniformly continuous on Rn.
For any x, x′ ∈ Rn, we have

fM,N(x) − fM,N x′( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �
1

(2π)
n 􏽚

N

M
􏽚
Rn×Rn− 1×Spin(n)

CSΨf(a, r, s, b) Ψra,s,b(x) − Ψra,s,b x′( 􏼁􏽨 􏽩C
− 1
Ψ
drdn− 1

sdn
bda

a
n+1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
1

(2π)n 􏽚
N

M
􏽚
Rn×Rn− 1×Spin(n)

CSΨf(a, r, s, b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2 drdn− 1sdnbda

an+1􏼨 􏼩

1/2

×
1

(2π)n 􏽚
N

M
􏽚
Rn×Rn− 1×Spin(n)

Ψra,s,b(x) − Ψra,s,b x′( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2 drdn− 1sdnbda

an+1􏼨 􏼩

1/2

C
− 1
Ψ

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

≤
1

(2π)
n/2 〈fCΨ, f〉

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
L2 R(p,q) ,Cl(p,q)( 􏼁􏼚 􏼛

1/2
× 􏽚

N

M
􏽚
Rn×Rn− 1×Spin(n)

Ψra,s,b(x) − Ψra,s,b x′( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2 drdn− 1sdnbda

an+1􏼨 􏼩

1/2

C
− 1
Ψ

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌.

(54)

From equation (54), we observe that
|fM,N(x) − fM,N(x′)|⟶ 0 as ‖x − x′‖⟶ 0. -us, we
conclude that fM,N is uniformly continuous on R(p,q).

Moreover, for any g ∈ L1 ∩ L2(R(p,q), Cl(p,q)), we have

〈fM,N, g〉
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
L2 Rn,Cl(p,q)( 􏼁

� 􏽚
Rn

Sc fM,N(x)g(x)􏼐 􏼑dn
x

� Sc 􏽚
Rn

1
(2π)

n 􏽚
N

M
􏽚
Rn×Rn− 1×Spin(n)

CSΨf(a, r, s, b)Ψra,s,b(x)C
− 1
Ψ
drdn− 1

sdn
bda

a
n+1􏼨 􏼩g(x)􏼠 􏼡dn

x

�
1

(2π)
n 􏽚

N

M
􏽚
Rn×Rn− 1×Spin(n)

Sc CSΨf(a, r, s, b) 􏽚
Rn
Ψra,s,b(x)g(x)dn

x􏼚 􏼛C
− 1
Ψ􏼒 􏼓

drdn− 1
sdn

bda

a
n+1

�
1

(2π)
n 􏽚

N

M
􏽚
Rn×Rn− 1×Spin(n)

Sc CSΨf(a, r, s, b)CSΨg(a, r, s, b)dn
xC

− 1
Ψ􏼐 􏼑

drdn− 1
sdn

bda

a
n+1

�
1

(2π)
n Sc 􏽚

N

M
􏽚
Rn×Rn− 1×Spin(n)

a
1− (1/2n)

􏽚
Rn
FCl[f](ξ)e

Iυ(ξ,b)
FCl[rΨ(·)r] rSsAaξr( 􏼁dnξ􏼚 􏼛􏼠

× a
1− (1/2n)

􏽚
Rn
FCl[g] ξ′( 􏼁e

Iυ(ξ,b)
FCl[rΨ(·)r] rSsAaξ′r( 􏼁dnξ′􏼚 􏼛C

− 1
Ψ
drdn− 1

sdn
bda

a
n+1 􏼡

�
1

(2π)
n Sc 􏽚

N

M
􏽚
Rn×Rn− 1×Spin(n)

􏽚
Rn
FCl[f](ξ)e

Iυ(ξ,b)
FCl[rΨ(·)r] rSsAaξr( 􏼁dnξ􏼠

×􏽚
Rn
FCl[rΨ(·)r] rSsAaξ′r( 􏼁e

− Iυ ξ′ ,b( )FCl[g] ξ′( 􏼁dnξ′C− 1
Ψ
drdn− 1

sdn
bda

a
n2− n+1/n( )

􏼡

�
1

(2π)
n Sc 􏽚

N

M
􏽚
Rn×Rn− 1×Spin(n)

􏽚
Rn

􏽚
Rn
FCl[f](ξ)e

Iυ(ξ,b)
e

− Iυ ξ′,b( )FCl[rΨ(·)r] rSsAaξr( 􏼁dnξ􏼠

×FCl[rΨ(·)r] rSsAaξ′r( 􏼁FCl[g] ξ′( 􏼁dnξ′C− 1
Ψ
drdn− 1

sdn
bda

a
n2− n+1/n( )

􏼡
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� Sc 􏽚
N

M
􏽚
Rn×Rn− 1×Spin(n)

􏽚
Rn
FCl[f](ξ)

1
(2π)

n 􏽚
Rn

e
Iυ ξ− ξ′ ,b( )dn

bFCl[rΨ(·)r] rSsAaξr( 􏼁dnξ􏼠

×FCl[rΨ(·)r] rSsAaξr( 􏼁FCl[g] ξ′( 􏼁dnξ′C− 1
Ψ
drdn− 1

sdn
bda

a
n2− n+1/n( )

􏼡

� Sc 􏽚
N

M
􏽚
Rn×Rn− 1×Spin(n)

􏽚
Rn
FCl[f](ξ)δ ξ − ξ′( 􏼁FCl[rΨ(·)r] rSsAaξr( 􏼁􏼠

×FCl[rΨ(·)r] rSsAaξ′r( 􏼁FCl[g] ξ′( 􏼁dnξ′C− 1
Ψ 􏼑

drdn− 1
sda

a
n2− n+1/n( )

� Sc 􏽚
N

M
􏽚
Rn×Rn− 1×Spin(n)

􏽚
Rn
FCl[f](ξ)FCl[rΨ(·)r] rSsAaξr( 􏼁􏼠

×FCl[g](ξ)FCl[rΨ(·)r] rSsAaξr( 􏼁dnξC
− 1
Ψ
drdn− 1

sda

a
n2− n+1/n( )

􏼡

� 􏽚
N

M
􏽚
Rn− 1×Spin(n)

􏽚
Rn

Sc FCl[f](ξ) FCl[rΨ(·)r] rSsAaξr( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
FCl[g](ξ)dnξC

− 1
Ψ􏼐 􏼑

drdn− 1
sda

a
n2− n+1/n( )

� 􏽚
Rn

Sc FCl[f](ξ) 􏽚
N

M
􏽚
Rn− 1×Spin(n)

FCl[rΨ(·)r] rSsAaξr( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
C

− 1
Ψ
drdn− 1

sda

a
n2− n+1/n( )

􏼨 􏼩FCl[g](ξ)􏼠 􏼡dnξ. (55)

Invoking scalar part for the Clifford Fourier transform,
we can deduce that

F fM,N􏽨 􏽩(ξ) � FCl[f](ξ) 􏽚
N

M
􏽚
Rn− 1×Spin(n)

FCl[rΨ(·)r] rSsAaξr( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
C

− 1
Ψ
drdn− 1

sda

a
n2− n+1/n( )

. (56)

-is completes the proof of -eorem 5. □

Theorem 6. Let Ψ ∈ L2(R(p,q), Cl(p,q)) be an admissible
Clifford-valued shearlet. 9en, for any f ∈ L1 ∩ L2(R(p,q),

Cl(p,q))), we have

lim
M⟶0

, N⟶∞ f − fM,N

����
����∞ � 0,

lim
M⟶0

, N⟶∞ f − fM,N

����
����2 � 0.

(57)

Proof. Using Parseval’s formula for the Clifford Fourier
transforms together with an application of -eorem 5, we
have

f − fM,N

����
����

L∞ Rn,Cl(p,q)( 􏼁
≤ f − fM,N

����
����

L1 Rn,Cl(p,q)( 􏼁

� FCl[f](ξ) − FCl fM,N􏽨 􏽩(ξ)
�����

�����L1 Rn,Cl(p,q)( 􏼁

� ‖FCl[f](ξ) − FCl[f](ξ) 􏽚
N

M
􏽚
Rn− 1

× Spin(n)×FCl[rΨ(·)r] rSsAaξr( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2drdn− 1sda

a n2− n+1/n( )
C

− 1
Ψ 􏼩‖

L1 Rn,Cl(p,q)( 􏼁􏼨

� ‖FCl[f](ξ) 1 − 􏽚
N

M
􏽚
Rn− 1

× Spin(n)×FCl[rΨ(·)r] rSsAaξr( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2drdn− 1sda

a n2− n+1/n( )
C

− 1
Ψ 􏼩‖

L1 Rn,Cl(p,q)( 􏼁􏼨

� 􏽚
Rn

FCl[f](ξ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌‖1 − 􏽚
N

M
􏽚
Rn− 1

×Spin(n) × FCl[rΨ(·)r] rSsAaξr( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2drdn− 1

sda

a
n2− n+1/n( )

C
− 1
Ψ |dnξ.

(58)

Journal of Mathematics 13



Since Ψ is given to be admissible, it follows that

􏽚
N

M
􏽚
Rn− 1×Spin(n)

FCl[rΨ(·)r] rSsAaξr( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2 drdn− 1

sda

a
n2− n+1/n( )

≤􏽚
R+

􏽚
Rn− 1×Spin(n)

FCl[rΨ(·)r] rSsAaξr( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2 drdn− 1

sda

a
n2− n+1/n( )

� CΨ <∞.

(59)

-erefore, we have

lim
M⟶0

, N⟶∞ 1 − 􏽚
N

M
􏽚
Rn− 1×Spin(n)

FCl[rΨ(·)r] rSsAaξr( 􏼁|
2drd

n− 1
sda

a
n2− n+1/n( )

C
− 1
Ψ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 0. (60)

Using dominated convergence theorem in equation (58),
we conclude that

lim
M⟶0

, N⟶∞ f − fM,N

����
����

L∞ Rn,Cl(p,q)( 􏼁
� 0. (61)

Proceeding in a manner similar to the above case, we can
show that

lim
M⟶0

, N⟶∞ f − fM,N

����
����

L2 Rn,Cl(p,q)( 􏼁
� 0. (62)

-is completes the proof of -eorem 6.
In the sequel, we study the homogeneous approximation

property for the proposed Clifford-valued shearlet trans-
forms. Prior to that, we introduce some notations as given
below:

For every (a′, r′, s′, b′) ∈ L2(R+ × Spin(n) × Rn− 1×

Rn, Cl(p,q)) and M>N, P> 0, we denote

QM,N;P � ([− N, − M]∪ [N, M]) × Spin(n) ×[− P, P]
n− 1

×[− P, P]
n
,

a′, s′, b′, r′( 􏼁QM,N;P � a′, s′, b′, r′( 􏼁(a, s, b, r)􏼈

� a′a, s′ + a′
1− (1/n)

s + s′, b′ + Ss′Aa′b, r′r􏼒 􏼓􏼛,

(63)

where a ∈ [− N, − M]∪ [N, M], r ∈ Spin(n), s ∈ [− P, P]n− 1

and b ∈ [− P, P]n. □

Theorem 7. Let Ψ ∈ L2(R(p,q), Cl(p,q))be an admissible
Clifford-valued shearlet with CΨ ≠ 0, real valued. 9en,

for any f ∈ L2(R(p,q), Cl(p,q)) and ε> 0, there exist some
constants N>M> 0, P> 0, such that for any
(a′, r′, s′, b′) ∈ L2(R+ × Spin(n) × Rn− 1 × Rn, Cl(p,q)), with
any 0<M′ ≤M, N≤N′ and P′ ≥P, we have

fr′a′ ,s′ ,b′ − 􏽚
(a,s,b,r)∈Q′
〈fr′a′,s′ ,b′ ,Ψ

r
a,s,b〉C

− 1
Ψ Ψ

r
a,s,b

dadn− 1sdnbdr
an+1

��������

��������

2

L2 R(p,q) ,Cl(p,q)( 􏼁
< ε, (64)

where (a′, s′, b′, r′)QM′ ,N′;P′ � Q′.

Proof. For an arbitrary g ∈ L2(R(p,q), Cl(p,q)), we have
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� 􏽚
(a,s,b,r)∉Q

M′ ,N′ ;P′
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􏼌􏼌􏼌􏼌
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sdn
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a
n+1 C

− 1
Ψ

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

× CΨ.

(65)

By choosing N and P large enough and M arbitrary
small, we can make R. H. S as small as we need. -is
completes the proof of -eorem 7. □

5. Uncertainty Principles for the Clifford-
Valued Shearlet Transforms

In this section, we shall establish several uncertainty in-
equalities including Heisenberg–Pauli–Weyl uncertainty
inequality, Pitt’s inequality, and logarithmic and local un-
certainty inequality for the Clifford-valued shearlet

transform as defined by equation (28). Prior to establishing
the uncertainty principle for the Clifford-valued shearlet
transform, we have the following lemma which shall be
employed for deriving certain uncertainty inequalities and
whose proof follows directly from the Parseval’s and in-
version formulae of the Clifford Fourier transforms.

Lemma 1. Let Ψ ∈ L2(R(p,q), Cl(p,q)) be an admissible
Clifford-valued shearlet. 9en, for any f ∈ L2(R(p,q), Cl(p,q))),
we have

FCl CSΨf(a, r, s, b)􏼂 􏼃(ξ) � (2π)
(n/2)

a
1− (1/2n)

FCl[f](ξ)FCl[rΨ(·)r] rSsAaξr( 􏼁. (66)

Theorem 8 (Heisenberg–Weyl inequality). Let CSΨf(a, r,
s, b) be the Clifford-valued shearlet transform of any Clifford-

valued function f ∈ L2(R(p,q), Cl(p,q))). 9en, the following
inequality follows
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bCSΨf(a, r, s, b)
����

����
L2 G,Cl(p,q)( 􏼁

ξFCl[f](ξ)CΨ
����

����
L2 R(p,q) ,Cl(p,q)( 􏼁

≥
1
2
〈f(x)CΨ, f(x)〉

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
L2 G,Cl(p,q)( 􏼁

. (67)

Proof. For any Clifford-valued function f ∈ L2(R(p,q),

Cl(p,q)), the Heisenberg–Paul–Weyl inequality for the
Clifford Fourier transforms [8, 18] is given by

􏽚
Rn

|b|
2
|f(b)|

2dn
b􏼚 􏼛

1/2
􏽚
Rn

|ξ|
2
FCl[f](ξ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dnξ􏼚 􏼛

1/2
≥

1
2(2π)

n/2 􏽚
Rn

|f(b)|
2dn

b. (68)

Considering CSΨf(a, r, s, b) as a function of b and
replacing f by CSΨf(a, r, s, b) in (68), we get

􏽚
Rn

|b|
2
CSΨf(a, r, s, b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dn

b􏼚 􏼛
1/2

􏽚
Rn

|ξ|
2
FCl CSΨf(a, r, s, b)􏼂 􏼃(ξ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dnξ􏼚 􏼛

1/2
≥

1
2(2π)

(n/2)
􏽚
Rn

CSΨf(a, r, s, b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2dn

b. (69)

We now integrate the above inequality with respect to
measure (drdn− 1sda/an+1), and using Schwartz inequality, to
obtain

􏽚
R+×Rn− 1×Spin(n)

􏽚
Rn

|b|
2
CSΨf(a, r, s, b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dn

b
drdn− 1sda

an+1􏼨 􏼩

1/2

× 􏽚
R+×Rn− 1×Spin(n)

􏽚
Rn

|ξ|
2
Fc CSΨf(a, r, s, b)􏼂 􏼃(ξ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dnξ

drdn− 1sda

an+1􏼨 􏼩

1/2

≥
1

2(2π)
(n/2)

􏽚
R+×Rn− 1×Spin(n)

􏽚
Rn

CSΨf(a, r, s, b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2drdn− 1

sda

a
n+1 dn

b.

(70)

Using Lemma 1 together with Fubini theorem, we obtain

􏽚
Rn×R+×Rn− 1×Spin(n)

|b|
2
CSΨf(a, r, s, b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dn

b
drdn− 1sda

an+1􏼨 􏼩

(1/2)

× 􏽚
R+×Rn− 1×Spin(n)

􏽚
Rn

|ξ|
2

(2π)
(n/2)

a
1− (1/2n)

FCl[f](ξ)FCl[rΨ(·)r] rSsAaξr( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
dnξ

drdn− 1sda

an+1􏼨 􏼩

(1/2)

≥
1

2(2π)
(n/2)

􏽚
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CSΨf(a, r, s, b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2drdn− 1

sda

a
n+1 dn

b.

(71)

Equivalently, we have

􏽚
G

|b|
2
CSΨf(a, r, s, b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dη􏼚 􏼛

1/2
× 􏽚

Rn
|ξ|

2
FCl[f](ξ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
􏽚
R+×Rn− 1×Spin(n)

FCl[rΨ(·)r] rSsAaξr( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
dnξ

drdn− 1sda

a n2− n+1/n( )
dnξ􏼨 􏼩

1/2

≥
1

2(2π)
n 􏽚

G
CSΨf(a, r, s, b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dη.

(72)
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Using the definition of CΨ in L. H. S and Corollary 1 in
R. H. S, we obtain the desired result as follows

bCSΨf(a, r, s, b)
����

����
L2 G,Cl(p,q)( 􏼁

ξFCl[f](ξ)CΨ
����

����
L2 R(p,q) ,Cl(p,q)( 􏼁

≥
1
2
〈f(x)CΨ, f(x)〉

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
L2 G,Cl(p,q)( 􏼁

. (73)

-is completes the proof of -eorem 8. □ Remark 2. For real-valued CΨ, -eorem 5 boils down to

bCSΨf(a, r, s, b)
����

����
L2 G,Cl(p,q)( 􏼁

ξFCl[f](ξ)
����

����
L2 R(p,q) ,Cl(p,q)( 􏼁

≥
���
CΨ

􏽰

2
‖f(x)‖

2
L2 G,Cl(p,q)( 􏼁

. (74)

-e classical Pitt’s inequality expresses a fundamental
relationship between a sufficiently smooth function f and the
corresponding Clifford Fourier transform [19]. We derive

the Pitt’s type inequality for the proposed Clifford-valued
shearlet transform (28). -e Schwartz space on Cℓ(p,q) al-
gebras is given by

S R
(p,q)

, Cl(p,q)􏼐 􏼑 � f ∈ C
∞

R
(p,q)

, Cl(p,q)􏼐 􏼑: sup
t∈R(p,q)

t
α
z
β
t f(t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌<∞
⎧⎨

⎩

⎫⎬

⎭, (75)

where C∞(R(p,q), Cl(p,q)) is the class of smooth functions,
and α, β denote multiindices, and zt denotes the usual partial
differential operator.

Theorem 9 (Pitt’s inequality for CSΨ). For any
f ∈ S(R(p,q), Cl(p,q)), the Pitt’s inequality for the Clifford-
valued shearlet transform (28) is given by

􏽚
Rn

|ξ|
− λ

FCl[f](ξ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2dnξ ≤

Cλ

(2π)
2 􏽚

G
|b|

λ
CSΨf(a, r, s, b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
C

− 1
Ψ dη, (76)

where CΨ is the admissibility condition of Clifford-valued
shearlet, and Cλ is given by

Cλ � πλ
Γ′(n − λ/4)

Γ(n + λ/4)
􏼢 􏼣

2

, 0≤ λ< n, (77)

where Γ(·) denotes the well-known Euler’s gamma function.

Proof. Considering CSΨf(a, r, s, b) as a function of the
translation variable b, the Pitt’s inequality in the Clifford
Fourier domain implies 13:

􏽚
Rn

|ξ|
− λ

FCℓ CSΨf(a, r, s, b)􏼂 􏼃(ξ)
􏼌􏼌􏼌􏼌
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b, (78)

which upon integration with respect to the measure
(drdn− 1sda/an+1) yields

􏽚
R+×Rn− 1×Spin(n)

􏽚
Rn

|ξ|
− λ

FCl CSψf(a, r, s, b)􏽨 􏽩(ξ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
dnξ

drdn− 1
sda

a
n+1

≤
Cλ

(2π)
n 􏽚

R+×Rn− 1×Spin(n)
􏽚
Rn

|b|
λ
CSΨf(a, r, s, b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dn

b
drdn− 1

sda

a
n+1 .

(79)
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Invoking Lemma 1, we can express the inequality (79) in
the following manner:
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Equivalently, we have
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Since Ψ is an admissible Clifford shearlet, inequality (81)
boils down to
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which is the desired Pitt’s inequality for the Clifford-valued
shearlet transform. □

Remark 3. For λ � 0, equality which holds in equation (76)
is equivalent to equation (39).

Next, we shall formulate the logarithmic uncertainty
principle for the Clifford-valued shearlet transform
CSΨf(a, r, s, b) given by equation (28).

Theorem 10 (Logarithmic uncertainty principle). For any
f ∈ S(R(p,q), Cl(p,q)), the Clifford-valued shearlet transform
CSΨf(a, r, s, b) satisfies the following logarithmic estimate of
the uncertainty inequality:

1
(2π)

n 􏽚
G
CSΨf(a, r, s, b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
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, (83)

provided the left hand side of this inequality is defined. Proof. For the Clifford-valued function f ∈ S(R(p,q),

Cl(p,q)), the logarithmic uncertainty inequality in the Clif-
ford Fourier domain yields [18]
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b. (84)

Upon replacing f(b) by CSΨf(a, r, s, b) in the above
inequality, we obtain
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Integrating equation (85) with respect to measure
(drdn− 1sda/an+1) and then invoking the Fubini theorem, we
obtain
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Using Lemma 1, the inequality (86) can be further
simplified as

􏽚
G
CSΨf(a, r, s, b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 ln|b|dn

b
drdn− 1

sda

a
n+1 +(2π)

n
􏽚
G

(2π)
(n/2)

a
1− (1/2n)

FCl[f](ξ)FCl[rΨ(·)r] rSsAaξr( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
ln|ξ|dnξ

drdn− 1
sda

a
n+1

× ln|ξ|dnξ
drdn− 1

sda

a
n+1 ≥

Γ′(n/4)

Γ(n/4)
− ln π􏼠 􏼡􏽚

G
CSΨf(a, r, s, b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dn

b
drdn− 1

sda

a
n+1 .

(87)

Alternatively, the above inequality can be rewritten as

􏽚
G
CSΨf(a, r, s, b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 ln|b|dη +(2π)

2n
􏽚
Rn

FCl[f](ξ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

× 􏽚
R+×Rn− 1×Spin(n)

FCl[rΨ(·)r] rSsAaξr( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2drdn− 1

sda

a
n2− n+1/n( )

ln|ξ|dnξ

≥
Γ′(n/4)

Γ(n/4)
− ln π􏼠 􏼡􏽚

G
CSΨf(a, r, s, b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dη.

(88)

Noting that Ψ is admissible and using Corollary 1, we
obtain the desired result as

1
(2π)

n 􏽚
G
CSΨf(a, r, s, b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 ln|b|dη +(2π)

n
􏽚
Rn

FCl[f](ξ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
CΨ ln|ξ|dnξ ≥

Γ′(n/4)

Γ(n/4)
− ln π􏼠 􏼡 〈fCΨ, f〉

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
L2 G,Cl(p,q)( 􏼁

. (89)

-is completes the proof of -eorem 10.
In the following, we establish a local-type uncertainty

principle for the Clifford-valued sharelet transform CSΨf
defined by equation (28). More precisely, we shall dem-
onstrate that the portion of CSΨ lying outside some given
set M of finite Lebesgue measure cannot be arbitrarily
small. □

Theorem 11 (Concentration of CSΨ in small sets). Let
Ψ ∈ L2(R(p,q), Cl(p,q)) be an admissible Clifford-valued
shearlet satisfying 0< (|a|(1/2n)− 1‖Ψ‖2μ(M)/CΨ)< 1. 9en,
for any measurable subset M of G � R+ × Rn− 1×

Rn × Spin(n) and f ∈ L2(R(p,q), Cl(p,q)), we have
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CSΨf(a, r, s, b)
����

����
L2 Ec,Cl(p,q)( 􏼁

≥
���
CΨ

􏽰
1 −

|a|(1/2n)− 1μ(M)‖Ψ‖2
L2 R(p,q) ,Cl(p,q)( 􏼁

CΨ

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

1/2

‖f‖
L2 R(p,q) ,Cl(p,q)( 􏼁

, (90)

where μ(M) denotes the measure of M. Proof. Using the definition of Clifford-valued shearlet
transforms, we have

CSΨf(a, r, s, b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
L2 R(p,q) ,Cl(p,q)( 􏼁

� a
(1/2n)− 1

􏽚
R(p,q)

f(x)rΨ A− 1
a S− 1

s r(x − b)r( 􏼁rdn
x

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌L2R(p,q) ,Cl(p,q)

≤ |a|
(1/2n)− 1

􏽚
R(p,q)

|f(x)| rΨ A
− 1
a S

− 1
s r(x − b)r􏼐 􏼑r

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌d
n
x.

(91)

By virtue of Holders inequality, we have

CSΨf(a, r, s, b)
����

����
L2 R(p,q) ,Cl(p,q)( 􏼁

≤ |a|
((1/2n)− 1)

‖f‖
L2 R(p,q) ,Cl(p,q)( 􏼁

‖Ψ‖
L2 R(p,q) ,Cl(p,q)( 􏼁

. (92)

On the other hand, we can write

CSΨf(a, r, s, b)
����

����
2
L2 G,Cl(p,q)( 􏼁􏼉 � 􏽚C

G
CSΨf(a, r, s, b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
L2 R(p,q) ,Cl(p,q)( 􏼁dη

� 􏽚C
M

CSΨf(a, r, s, b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
L2 R(p,q) ,Cl(p,q)( 􏼁dη + 􏽚C

Mc
CSΨf(a, r, s, b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
L2 R(p,q) ,Cl(p,q)( 􏼁dη

≤ |a|
(1/2n)− 1μ(M)‖f‖

2
L2 R(p,q) ,Cl(p,q)( 􏼁

‖Ψ‖
2
L2 R(p,q) ,Cl(p,q)( 􏼁

+ CSΨf(a, r, s, b)
����

����
2
L2 Ec,Cl(p,q)( 􏼁.

(93)

Application of Corollary 1 for the real-valued CΨ implies
that

CΨ‖f‖
2
L2 R(p,q) ,Cl(p,q)( 􏼁

≤ |a|
(1/2n)− 1μ(M)‖f‖

2
L2 R(p,q) ,Cl(p,q)( 􏼁

‖Ψ‖
2
L2 R(p,q) ,Cl(p,q)( 􏼁

+ CSΨf(a, r, s, b)
����

����
2
L2 Ec,Cl(p,q)( 􏼁, (94)

or

CSΨf(a, r, s, b)
����

����
L2 Ec,Cl(p,q)( 􏼁

≥ CΨ − |a|
(1/2n)− 1μ(M)‖Ψ‖

2
L2 R(p,q) ,Cl(p,q)( 􏼁

􏼒 􏼓
1/2

‖f‖
L2 R(p,q) ,Cl(p,q)( 􏼁

�
���
CΨ

􏽰
1 −

|a|(1/2n)− 1μ(M)‖Ψ‖2
L2 R(p,q) ,Cl(p,q)( 􏼁

CΨ

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

1/2

‖f‖
L2 R(p,q) ,Cl(p,q)( 􏼁

.

(95)

-is completes the proof of -eorem 11. □ 6. Conclusion

In the present study, we formulated the notion of continuous
Clifford-valued shearlet transform on the generalized
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geometric algebra Clp, q. -e proposed transform has the
advantage of efficiently handling Clifford-valued signals at
various scales, positions and orientations while upholding
the affine structure. Besides, studying the fundamental as-
pects of the Clifford-valued shearlet transform, the homo-
geneous approximation property is also investigated in
detail. Nevertheless, some prominent uncertainty inequal-
ities, such as the Hesienberg–Puali–Weyl logarithmic and
local uncertainty principles are obtained at the end.
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In this study, the highly accurate analytical Aboodh transform decomposition method (ATDM) in the sense of Caputo fractional
derivative is used to determine the approximate and exact solutions of both linear and nonlinear time-fractional Schrodinger
di�erential equations (SDEs) with zero and nonzero trapping potential that describe the nonrelativistic quantum mechanical
activity. ­e Adomian decomposition method (ADM) and the Aboodh transform of Caputo’s fractional derivative are combined
in this method. ­e recurrence and absolute error of the four problems are analyzed to evaluate the e�ciency and consistency of
the presented method. In addition, numerical results are also compared with other methods such as the fractional reduced
di�erential transform method (FRDTM), the homotopy analysis method (HAM), and the homotopy perturbation method
(HPM). ­e results obtained by the proposed method show excellent agreement with these methods, which indicates its ef-
fectiveness and reliability. ­is technique has the bene�t of not requiring any minor or major physical parameter assumptions in
the problem. As a result, it may be used to solve both weakly and strongly nonlinear problems, overcoming some of the inherent
constraints of classic perturbation approaches. To solve nonlinear fractional-order di�erential equations, just a few computations
are necessary. As a consequence, it outperforms homotopy analysis and homotopy perturbation approaches signi�cantly. ­e
procedure is quick, precise, and easy to implement. Convergence analysis of the series solution is also o�ered.

1. Introduction

­e shortcoming of classical mechanics to explain several
physical processes, including those on microscopic scales,
such as the photoelectric e�ect, black body radiation, and
atomic stability, led to the development of modern quantum
mechanics. It is explained by the fact that all physical
quantities of a bound system are con�ned to discrete value
quantization. Quantum mechanics may successfully de-
scribe various modern physics processes in atomic and
nuclear physics, as well as other �elds of modern physics,
where the Schrödinger equation can be used to describe the
behavior of electrons in atomic physics and nucleons in
nuclear physics [1].­is equation was developed by Austrian

physicist Erwin Schrodinger in late 1925 and published in
1926.

Fractional partial di�erential equations (PDEs), which
are an extension of integer-order PDEs, have subsequently
received much interest. ­ey can be used to extract memory
and hereditary qualities from a variety of materials and
processes. Fractional PDEs such as the Boussinesq equation,
Korteweg-de Vries equation, Schrodinger equation, Burger’s
equation, and others are frequently used to describe varied
nonlinear wave processes in mechanics, physics, biology,
chemistry, and other areas [2]. ­e time-fractional SDE is
the fundamental physics equation for characterizing non-
relativistic quantum mechanical activity. Electromagnetic
waves, quantitative �nance, quantum development of
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complex systems, and dielectric polarization have all been
pulled into the time-fractional SDE in recent years [3, 4].

We examined the exact and numerical approaches to
comprehend the physical mechanism of such a natural
phenomenon. As a result, we are looking for a mathematical
solution to PDEs that is both precise and numerical. Many
papers have focused on constructing solutions to PDEs
through well-known methods. Lie symmetry analysis [5],
inverse scattering approach [6], spectral collocation method
[7], Hirota method [8], Backlund transformation method
[9], Modified Kudryashov method [10], Laplace transform
coupled with Adomian decomposition method [11], Elzaki
residual power series method [12], adaptation on power
series method with conformable operator [13], Legendre
wavelet method [14] and modified conformable Shehu
transform decomposition method [15] are some of the most
effective and efficient methods.

Differential equations (DEs), partial integrodifferential
equations (PIDs), and delayed differential equations (DDEs)
are all solved by employing integral transforms, which are
among the most valuable techniques in mathematics. )e
conversion of DEs and integral equations into terms of a
simple algebraic equation is enabled by the appropriate
selection of integral transforms. )e origins of integral
transforms can be traced back to P. S. Laplace’s work in the
1780s and Joseph Fourier’s work in 1822. In the beginning,
ordinary and PDEs were solved using the Laplace transform
and the Fourier transform which are two well-known
transforms. )ese modifications were then applied to
fractional-order DEs in the domain of fractional calculus
[16–19]. In recent years, researchers have proposed lots of
new different transformations to solve a variety of mathe-
matical problems. Fractional-order DEs are solved using the
Laplace transform [20], fractional complex transform [21],
travelling wave transform [22], Elzaki transform [23],
Sumudu transforms [24], and ZZ transforms [25], among
others. )ese transformations are paired with additional
analytical, numerical, or homotopy-based techniques to
handle fractional-order DEs.

)e general state of quantum mechanics equations,
which are commonly described as fractional-order SDEs,
will be solved in this study using an appealing and effective
analytical technique, the Aboodh transform decomposition
method (ATDM). )e Aboodh transform was established in
2013 by Khalid Aboodh to facilitate solving ordinary DEs
and PDEs in the time domain [26].)e Aboodh transform is
generated using the traditional Fourier integral. )e Elzaki
transform and the Laplace transform are intimately related
to this integral transform. )e A-T, which has been used by
several researchers for fractional-order DEs [27–31], has
recently caught the interest of many mathematicians.

We analyze then on linear time fractional-order SDE
with zero trapping potential in its more general version,
which is represented by the complex-valued function ξ(ϖ, τ)

of the form [32].

iD
]
τξ(ϖ, τ) + Dϖϖξ(ϖ, τ) + η|ξ(ϖ, τ)|

2ƛξ(ϖ, τ) � 0, (1)

where η ∈ R, 0< ]≤ 1, i �
���
− 1

√
, D]

τ indicates Caputo frac-
tional derivative of order ], ξ(ϖ, τ) is the unknown complex-
valued function to be determined, ϖ ∈ R, τ ≥ 0, and |ξ(ϖ, τ)|

represent the modulus of ξ(ϖ, τ); with the following initial
and boundary conditions given by ξ(ϖ, 0) � Υ(ϖ),
ξ(0, τ) � A(ϖ), and ξϖ(0, τ) � B(ϖ).

)e time-fractional nonlinear SDE with nonzero trap-
ping potential has the following form [33]:

iD
]
τξ(ϖ, τ) � −

1
2
Iϖξ(ϖ, τ) + Θ(ϖ)ξ(ϖ, τ) + HdQ(ξ(ϖ, τ)),

τ ≥ 0, 0< ]≤ 1, ϖ ∈ R,

(2)

with the initial condition:

ξ(ϖ, 0) � Υ(ϖ), (3)

where ϖ ∈ R, Θd(ϖ) is the trapping potential and Hd is a
real constant Iϖ is a linear operator, Q(ξ(ϖ, τ)) is a non-
linear function, and D]

τ is the Caputo fractional differential
operator.

)e physical model (2) and its generalized forms arise in
various areas of physics, including nonlinear optics, plasma
physics, superconductivity, and quantum mechanics [34].

)e time-fractional SDE has been investigated through
various methods, such as the homotopy perturbation
method [35], exponential rational function method [36],
residual power series method [37], modified transformation
method [38], two-dimensional differential transform
method [39], extended simple equation method [40], trig-
onometric B-spline method [41], fractional reduced differ-
ential transform method [42], and homotopy analysis
method [43]. All these methods have their own specific
limits and deficiencies. )ese methods require enormous
computational work and high running times. In this study,
we used the simple and efficient technique known as the
ATDM to solve the SDE of the fractional derivative in the
sense of Caputo. )e recommended method is simple to use
and can be applied to both linear and nonlinear problems. It
also has the ability to reduce the complexity of the com-
putational effort. )e set of rules of ATDM depends on
converting the SDE into Aboodh transform space and, after
converting the SDE into an algebraic equation, applying
inverse A-Tand then introducing a series of solutions to the
obtained algebraic equation, at the final step, obtaining the
target result through the iteration process.

)e structure of the paper is as follows: we will employ
various fundamental definitions and results from fractional
calculus theory in the next section. )e primary idea of the
ATDM is investigated in Section 3 in order to establish
fractional SDE solutions. Section 4 demonstrates the
method’s potential, capability, and simplicity by obtaining
approximate and exact solutions to four SDE problems. )e
proposed method is illustrated numerically and graphically
in Section 5, and the numerical results are evaluated in
Section 5. )e conclusion is covered in Section 6.
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2. Basic Concepts and Representations in
Fractional Calculus Theory

Fractional calculus is a modified version of classical calculus.
Fractional calculus can explain a wide range of complex
phenomena, including memory and heredity. )is subject
has drawn many researchers because of its worldwide aspect
and numerous applications in several domains of science,
such as physics, signal processing, modeling, control theory,
economics, and chemistry [44, 45]. In this section, we
covered some definitions and basic features of fractional
calculus theory, as well as the fundamentals of the Aboodh
transformation, which will be used later in this paper.

Definition 1 (see [43]). )e Aboodh transform (A-T) for
function ξ(τ) of exponential order over the set of functions
is defined as

R � ξ(τ)|∃M, u1, u2 > 0, |ξ(τ)|<Me
− Zτ

􏽮 􏽯, (4)

where M is a finite number and u1, u2 may be finite or
infinite. A-T is denoted by the operator A [.] and defined as

A[ξ(τ)] � Q(Z) �
1
Z

􏽚
∞

0
ξ(τ)e

− τZdτ, τ ≥ 0, u1 ≤ Z≤ u2. (5)

Definition 2 (see [46]). )e Inverse A-T of function ξ(τ) is
denoted by A− 1[Q(Z)] and defined as

A
− 1

[Q(Z)] � ξ(τ) �
1
2πi

􏽚
w+i∞

w− i∞
Ze

Zτ
Q(Z)dZ. (6)

A-T of several functions can be seen in Table 1 [27–29].
A-T for some elementary functions is given as

ξ(τ)Q(Z) � A[ξ(τ)]

1
1
Z

τ
1
Z
2

τα
α!

Z
α+2, α � 1, 2, . . .

τ]
Γ(] + 1)

Z
]+2 .

(7)

Definition 3 (see [47]). )e Caputo fractional derivative of
order ]> 0 is defined by

D
]
τξ(τ) �

dα

dτα
ξ τ( ), α � ] ∈ N,

1
Γ(α − ])

􏽚
τ

0
(τ − ρ)

α− ]− 1ξ(α)
(ρ)dρ, α − 1< ]< α.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

We have a few properties of Caputo’s fractional
derivative.

D
]1
τ D

]2
τ ξ(τ) � D

]1+]2
τ ξ(τ),

D
]
τ C � 0, C ∈ R,

D
]
τ(τ − η)

β
�
Γ(β + 1)

Γ(β + 1 − ])
(τ − η)

β− ]
,

α − 1< ]≤ α, β> α − 1, α ∈ N, β ∈ R,

D
]
τ C1ξ1(τ) + C2ξ2(τ)( 􏼁 � C1D

]
τξ1(τ) + C2D

]
τξ2(τ), C1, C2 ∈ R.

(9)

i. D]
τ(J]τξ(τ)) � ξ(τ), J]τ is the R-L integral of ξ(τ) order ].

Lemma 1 (see [27–31]). If ξ1(τ) and ξ2(τ) are piecewise
continuous on [0, ∞) and are of exponential order
A[ξ1(τ)] � Q1(Z), A[ξ2(τ)] � Q2(Z), and C1, C2 are con-
stants, then the properties mentioned below are valid:

A C1ξ1(τ) + C2ξ2(τ)􏼂 􏼃 � C1Q1(Z) + C2Q2(Z),

A
− 1

C1Q1(Z) + C2Q2(Z)􏼂 􏼃 � C1ξ1(τ) + C2ξ2(τ),

A D
]
τξ(τ)􏼂 􏼃 � Z

]
Q(Z) − 􏽘

α− 1

κ�0

ξ(κ)
(0)

Z
κ− ]+2 ,

α − 1< ]≤ α, α ∈ N.

(10)

3. Analysis of the Aboodh Transform
Decomposition Method

In this section, we derive the main algorithms of the ATDM
separately for the time-fractional Schrodinger differential
equation with zero and nonzero trapping potential. )e
convergence analysis of the expansion solution is also
presented.

To present the ATDM on the general SDE with zero
trapping potential given in equation (1), we first rewrite
equation (1) as

Table 1: )e absolute error in ATDM and FRDTM for Example 1 at ]� 1.

τ Real part [ATDM] Abs. error Img. part [ATDM] Abs. error Real part [FRDTM] Abs. error Img. part [FRTDM] Abs. error
0.2 0 2.775557561562891× 10− 17 0 2.775557561562891× 10− 17

0.4 3.508304757815494×10− 14 6.661338147750939×10− 16 3.508304757815494×10− 14 6.66133814775093×10− 16

0.6 4.540257059204578×10− 12 1.743050148661495×10− 14 4.540257059204578×10− 12 1.743050148661495×10− 14

0.8 1.43222100845719×10− 10 1.645683589401869×10− 12 1.43222100845719×10− 10 1.645683589401869×10− 12

1.0 2.081645966711676×10− 9 5.585931717178028×10− 11 2.081645966711676×10− 9 5.585931717178028×10− 11
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D
]
τξ(ϖ, τ) � iDϖϖξ(ϖ, τ) + iη|ξ(ϖ, τ)|

2ƛξ(ϖ, τ). (11)

Now, applying the A-T to equation (11), we have

A D
]
τξ(ϖ, τ)􏼂 􏼃 � A iDϖϖξ(ϖ, τ) + iη|ξ(ϖ, τ)|

2ƛξ(ϖ, τ)􏽨 􏽩.

(12)

Using the differentiation property of the A-T and the
initial condition of equation (12), we get

Z
]
A[ξ(ϖ, τ)] −

ξ(ϖ, 0)

Z
2− ] � A iDϖϖξ(ϖ, τ)􏼂 􏼃

+ A iη|ξ(ϖ, τ)|
2ƛξ(ϖ, τ)􏽨 􏽩.

(13)

A[ξ(ϖ, τ)] �
ξ(ϖ, 0)

Z
2− ] +

1
Z
] A iDϖϖξ(ϖ, τ)􏼂 􏼃

+
1
Z
] A iη|ξ(ϖ, τ)|

2ƛξ(ϖ, τ)􏽨 􏽩.

(14)

Taking the inverse A-T on equation (14), we get as

ξ(ϖ, τ) � A
− 1 ξ(ϖ, 0)

Z
2􏼨 􏼩 + A

− 1 1
Z
] A iDϖϖξ(ϖ, τ)􏼂 􏼃􏼚 􏼛

+ A
− 1 1

Z
] A iη|ξ(ϖ, τ)|

2ƛξ(ϖ, τ)􏽨 􏽩􏼚 􏼛.

(15)

So, according to the ATDM, we can acquire the solution
ξ(ϖ, τ) to equation (15) as follows:

ξ(ϖ, τ) � 􏽘
∞

α�0
ξα(ϖ, τ). (16)

)e nonlinear operator is decomposed as

ℵ(ξ(ϖ, τ)) � 􏽘
∞

α�0
Wα ξ0, ξ1, ξ2, . . .( 􏼁, (17)

where

Wα �
1
α!

dα

dƛα
ℵ 􏽘

α

κ�0
ƛκξκ(ϖ, τ)⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

ƛ�0

. (18)

)e few terms of the decomposed nonlinear terms which
are calculated from equation (18) are given as

W0 � ξ20(ϖ, τ)ξ(ϖ, τ),

W1 � ξ20(ϖ, τ)ξ1(ϖ, τ) + 2ξ0(ϖ, τ)ξ1(ϖ, τ)ξ0(ϖ, τ),

W2 � ξ21(ϖ, τ)ξ0(ϖ, τ) + 2ξ0(ϖ, τ)ξ2(ϖ, τ)ξ0(ϖ, τ)

+ 2ξ0(ϖ, τ)ξ1(ϖ, τ)ξ1(ϖ, τ) + ξ20(ϖ, τ)ξ0(ϖ, τ).

(19)

Now, by replacing equations (18) and (16) with equation
(15), we attain as follows:

􏽘

∞

α�0
ξα(ϖ, τ) � A

− 1 ξ(ϖ, 0)

Z
2􏼨 􏼩 + A

− 1 1
Z
] A iDϖϖ􏽘

∞

α�0
ξα(ϖ, τ)⎡⎣ ⎤⎦

⎧⎨

⎩

⎫⎬

⎭

+ A
− 1 1

Z
] A iη 􏽘

∞

α�0
Wα⎡⎣ ⎤⎦

⎧⎨

⎩

⎫⎬

⎭.

(20)

Equating the like terms on both sides of equation (20)
yields the general solution of equation (11), which is re-
cursively expressed as

ξ0(ϖ, τ) � A
− 1 ξ(ϖ, 0)

Z
2􏼨 􏼩,

ξ1(ϖ, τ) � A
− 1 1

Z
] A iDϖϖ􏽘

∞

α�0
ξ0(ϖ, τ)⎡⎣ ⎤⎦

⎧⎨

⎩

⎫⎬

⎭

+ A
− 1 1

Z
] A ηiW0􏼂 􏼃􏼚 􏼛,

ξ2(ϖ, τ) � A
− 1 1

Z
] A iDϖϖ􏽘

∞

α�0
ξ1(ϖ, τ)⎡⎣ ⎤⎦

⎧⎨

⎩

⎫⎬

⎭

+ A
− 1 1

Z
] A ηiW1􏼂 􏼃􏼚 􏼛,

ξ3(ϖ, τ) � A
− 1 1

Z
] A iDϖϖ􏽘

∞

α�0
ξ2(ϖ, τ)⎡⎣ ⎤⎦

⎧⎨

⎩

⎫⎬

⎭

+ A
− 1 1

Z
] A ηiW2􏼂 􏼃􏼚 􏼛,

ξ4(ϖ, τ) � A
− 1 1

Z
] A iDϖϖ􏽘

∞

α�0
ξ3(ϖ, τ)⎡⎣ ⎤⎦

⎧⎨

⎩

⎫⎬

⎭

+ A
− 1 1

Z
] A ηiW3􏼂 􏼃􏼚 􏼛,

ξα+1(ϖ, τ) � A
− 1 1

Z
] A iDϖϖ􏽘

∞

α�0
ξα(ϖ, τ)⎡⎣ ⎤⎦

⎧⎨

⎩

⎫⎬

⎭

+ A
− 1 1

Z
] A iη 􏽘

∞

α�0
Wα

⎡⎣ ⎤⎦
⎧⎨

⎩

⎫⎬

⎭.

(21)

where α � 0, 1, 2, . . .

Now, to present the ATDM on the general SDE with
nonzero trapping potential given in equation (2), we first
rewrite equation (2) as

D
]
τξ(ϖ, τ) � − i −

1
2
Iϖξ(ϖ, τ) + Θd(ϖ)ξ(ϖ, τ) + HdQ(ξ(ϖ, τ))􏼒 􏼓.

(22)
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Now, applying the A-T to equation (22), we have:

A D
]
τξ(ϖ, τ)􏼂 􏼃 � − iA −

1
2
Iϖξ(ϖ, τ) +Θd(ϖ)ξ(ϖ, τ)􏼒

+ HdQ(ξ(ϖ, τ))􏼓.

(23)

Using the differentiation property of the A-T and the
initial condition on equation (23), we get

Z
]
A[ξ(ϖ, τ)] −

ξ(ϖ, 0)

Z
2− ] � − iA −

1
2
Iϖξ(ϖ, τ)􏼒

+ Θd(ϖ)ξ(ϖ, τ) + HdQ(ξ(ϖ, τ))􏼓.

(24)

A[ξ(ϖ, τ)] �
ξ(ϖ, 0)

Z
2

−
1
Z
] iA −

1
2
Iϖξ(ϖ, τ) + Θd(ϖ)ξ(ϖ, τ)􏼒

+ HdQ(ξ(ϖ, τ))􏼓.

(25)

Taking the inverse A-T on equation (25), we get as

ξ(ϖ, τ) � A
− 1 ξ(ϖ, 0)

Z
2􏼨 􏼩

− A
− 1 1

Z
] iA −

1
2
Iϖξ(ϖ, τ) + Θd(ϖ)ξ(ϖ, τ)􏼒􏼚

+ HdQ(ξ(ϖ, τ))􏼓􏼛.

(26)

So, according to the ATDM, we can acquire the solution
ξ(ϖ, τ) to equation (26) as follows:

ξ(ϖ, τ) � 􏽘
∞

α�0
ξα(ϖ, τ). (27)

Q(ξ(ϖ, τ)) � 􏽘
∞

α�0
Wα. (28)

Wα �
1
α!

dα

dƛα
ℵ 􏽘

α

κ�0
ƛκξκ(ϖ, τ)⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

ƛ�0

. (29)

)e few terms of the decomposed nonlinear terms which
are calculated from equation (29) are given as

W0 � ξ20(ϖ, τ)ξ(ϖ, τ),

W1 � ξ20(ϖ, τ)ξ1(ϖ, τ) + 2ξ0(ϖ, τ)ξ1(ϖ, τ)ξ0(ϖ, τ),

W2 � ξ21(ϖ, τ)ξ0(ϖ, τ) + 2ξ0(ϖ, τ)ξ2(ϖ, τ)ξ0(ϖ, τ)

+ 2ξ0(ϖ, τ)ξ1(ϖ, τ)ξ1(ϖ, τ) + ξ20(ϖ, τ)ξ0(ϖ, τ).

(30)

Now, by replacing equations (27) and (29) with equation
(26), we attain as follows:

􏽘

∞

α�0
ξα(ϖ, τ) � A

− 1 ξ(ϖ, 0)

Z
2􏼨 􏼩 − A

− 1 1
Z
] iA −

1
2
Iϖ􏽘

∞

α�0
ξα(ϖ, τ) + Θd(ϖ) 􏽘

∞

α�0
ξα(ϖ, τ) + Hd 􏽘

∞

α�0
Wα

⎛⎝ ⎞⎠
⎧⎨

⎩

⎫⎬

⎭. (31)

Equating the like terms on both sides of equation (20),
we finally obtain the general solution of equation (22) given
recursively as

ξ0(ϖ, τ) � ξ(ϖ, 0),

ξ1(ϖ, τ) � − A
− 1 1

Z
] iA −

1
2
Iϖξ0(ϖ, τ) + Θd(ϖ)ξ0(ϖ, τ) + HdW0􏼒 􏼓􏼚 􏼛,

ξ2(ϖ, τ) � − A
− 1 1

Z
] iA −

1
2
Iϖξ1(ϖ, τ) + Θd(ϖ)ξ1(ϖ, τ) + HdW1􏼒 􏼓􏼚 􏼛,

ξ3(ϖ, τ) � − A
− 1 1

Z
] iA −

1
2
Iϖξ2(ϖ, τ) + Θd(ϖ)ξ2(ϖ, τ) + HdW2􏼒 􏼓􏼚 􏼛,

ξα+1(ϖ, τ) � − A
− 1 1

Z
] iA −

1
2
Iϖξα(ϖ, τ) + Θd(ϖ)ξα(ϖ, τ) + HdWα􏼒 􏼓􏼚 􏼛,

ξ(ϖ, τ) � ξ0(ϖ, τ) + ξ1(ϖ, τ) + ξ2(ϖ, τ) + · · · ,

(32)
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where α � 0, 1, 2, . . .

)e following theorem describes the criteria for the
expansion solution to converge.

Theorem 1. Let M be a Banach space with an appropriate
norm . and a series of partial sums 􏽐

∞
α�0 ξα(ϖ, τ) defined over

it. Assume that the initial guess w0 � ξ0(ϖ, τ) remains inside
the ball Br(ξ) of the solution ξ(ϖ, τ). 6en, the series solution
􏽐
∞
α�0 ξα(ϖ, τ) converges if ∃σ > 0 such that

ξα+1(ϖ, τ)≤ σξα(ϖ, τ).

Proof. )e following is the description of a sequence of
partial sums:

Θ0 � ξ0(ϖ, τ),

Θ1 � ξ0(ϖ, τ) + ξ1(ϖ, τ),

Θ2 � ξ0(ϖ, τ) + ξ1(ϖ, τ) + ξ2(ϖ, τ),

Θ3 � ξ0(ϖ, τ) + ξ1(ϖ, τ) + ξ2(ϖ, τ) + ξ3(ϖ, τ),

⋮ ⋮ ⋮

Θα � ξ0(ϖ, τ) + ξ1(ϖ, τ) + ξ2(ϖ, τ)

+ ξ3(ϖ, τ) + · · · + ξα(ϖ, τ).

(33)

)en, we would have to demonstrate that Θα􏼈 􏼉
∞
α�0 is a

Cauchy sequence in M. To demonstrate this, consider the
relationship that

Θα+1 − Θα � ξα+1(ϖ, τ)≤ σξα(ϖ, τ)≤ σ2ξα− 1(ϖ, τ)

≤ σ3ξα− 2(ϖ, τ)≤ · · · σα+1ξ0(ϖ, τ),
(34)

where α � 0, 1, 2, 3, . . .

For every ℓ, α ∈ Ν, α≥ ℓ, we have

Θα − Θℓ � Θα − Θα− 1( 􏼁 + Θα− 1 − Θα− 2( 􏼁

+ Θα− 2 − Θα− 3( 􏼁 + Θα− 3 − Θα− 4( 􏼁 + σ4

ξα− 3(ϖ, τ)≤ · · · + Θℓ+1 − Θℓ( 􏼁.

(35)

We get the following from the triangle inequality:

Θα − Θα− 1( 􏼁 + Θα− 1 − Θα− 2( 􏼁 + Θα− 2 − Θα− 3( 􏼁

+ Θα− 3 − Θα− 4( 􏼁 + · · · + Θℓ+1 − Θℓ( 􏼁

≤ Θα − Θα− 1( 􏼁 + Θα− 1 − Θα− 2( 􏼁 + Θα− 2 − Θα− 3( 􏼁

+ Θα− 3 − Θα− 4( 􏼁 + · · · + Θℓ+1 − Θℓ( 􏼁,

Θα − Θα− 1( 􏼁 + Θα− 1 − Θα− 2( 􏼁

+ Θα− 2 − Θα− 3( 􏼁 + Θα− 3 − Θα− 4( 􏼁 + · · · +

Θℓ+1 − Θℓ( 􏼁≤ σαξ0(ϖ, τ) + σα− 1ξ0(ϖ, τ) + σα− 2ξ0(ϖ, τ) + · · ·

+ σℓξ0(ϖ, τ) �
1 − σα− ℓ

1 − σ
􏼠 􏼡σℓ+1ξ0(ϖ, τ).

(36)

As a result, we have the following inequality:

Θα − Θℓ ≤
1 − σα− ℓ

1 − σ
􏼠 􏼡σα+1ξ0(ϖ, τ). (37)

Demonstrating that the sequence is bounded and we can
attain for 0< σ < 1, that,

lim
ℓ, α⟶∞
Θα − Θℓ � 0. (38)

As a consequence, the sequence of partial sums of the
ATDM is Cauchy and so convergent. □

4. Approximate and Exact Solutions to
SDEs with Zero and Nonzero
Trapping Potential

In this part, we determined the exact solution to linear and
nonlinear time-fractional SDEs with zero and nonzero
potential by using the ATDM.

Example 1. We consider the following linear SDE with zero
trapping potential:

iD
]
τξ(ϖ, τ) + Dϖϖξ(ϖ, τ) � 0,

0< ]≤ 1, τ ≥ 0,ϖ ∈ R,
(39)

with the initial condition:

ξ(ϖ, 0) � be
iaϖ

. (40)

By using the A-Ton both sides of equation (39), we get as
follows:

A iD
]
τξ(ϖ, τ) + Dϖϖξ(ϖ, τ)􏼂 􏼃 � 0. (41)

Using the third part of Lemma 1, equation (41) is
transformed as follows:

A[ξ(ϖ, τ)] �
ξ(ϖ, 0)

Z
2 −

1
Z
]DϖϖA[ξϖ, τ]. (42)

By using the inverse A-T, equation (42) becomes as

ξ(ϖ, τ) � A
− 1 ξ(ϖ, 0)

Z
2􏼨 􏼩 − A

− 1 1
Z
]DϖϖA[ξ(ϖ, τ)]􏼚 􏼛. (43)

By using the procedure of ATDM, as explained in
Section 3, the expansion solution of equation (39) can be
represented by the expansion form as follows:

ξ(ϖ, τ) � 􏽘
∞

α�0
ξα(ϖ, τ). (44)

We get as by substituting equation (44) into equation
(43).

􏽘

∞

α�0
ξα(ϖ, τ) � A

− 1 ξ(ϖ, 0)

Z
2􏼨 􏼩 − A

− 1 1
Z
]DϖϖA 􏽘

∞

α�0
ξα(ϖ, τ)⎡⎣ ⎤⎦

⎧⎨

⎩

⎫⎬

⎭.

(45)

Using the approach outlined in Section 3, we can get the
following from equation (45):
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ξ0(ϖ, τ) � be
iaϖ

, (46)

ξα+1(ϖ, τ) � − A
− 1 1

ϕ]
DϖϖQ ξα(ϖ, τ)􏼂 􏼃􏼨 􏼩, α � 0, 1, 2, . . . .

(47)

By repeating the iteration process in equation (47), we
obtain the following results:

ξ1(ϖ, τ) � −
iτ]a2

be
iaϖ

Γ(] + 1)
,

ξ2(ϖ, τ) � −
τ2]a4

be
iaϖ

Γ(2] + 1)
,

ξ3(ϖ, τ) �
iτ3]a6

be
iaϖ

Γ(3] + 1)
,

ξ4(ϖ, τ) �
τ4]a8

be
iaϖ

Γ(4] + 1)
,

ξ5(ϖ, τ) � −
iτ5]a10

be
iaϖ

Γ(5] + 1)
.

(48)

As a result, we can find the series solution as

ξ(ϖ, τ) � be
iaϖ

−
iτ]a2

be
iaϖ

Γ(] + 1)
−
τ2]a4

be
iaϖ

Γ(2] + 1)
+

iτ3]a6
be

iaϖ

Γ(3] + 1)

+
τ4]a8

be
iaϖ

Γ(4] + 1)
−

iτ5]a10
be

iaϖ

Γ(5] + 1)
+ · · · .

(49)

When we use ] � 1 in equation (49), we get the following
precise solution to equation (39).

ξ(ϖ, τ) � be
ia(ϖ− aτ)

. (50)

Example 2. Consider the following one-dimensional non-
linear SDE with zero trapping potential:

iD
]
τξ(ϖ, τ) + Dϖϖξ(ϖ, τ) + 2|ξ(ϖ, τ)|

2ξ(ϖ, τ) � 0,

0< ]≤ 1, τ ≥ 0,ϖ ∈ R,
(51)

with the initial condition:

ξ(ϖ, 0) � e
iϖ

. (52)

By using A-T on both sides of equation (52), we get as

A[ξ(ϖ, τ)] �
ξ(ϖ, 0)

Z
2− ] +

1
Z
] A iDϖϖξ(ϖ, τ)􏼂 􏼃 +

1
Z
] A 2i|ξ(ϖ, τ)|

2ξ(ϖ, τ)􏽨 􏽩.

(53)

By following the process stated in Section 3, we achieve
the following result:

ξ(ϖ, τ) � A
− 1 e

iϖ

Z
2􏼨 􏼩 + A

− 1 1
Z
] A iDϖϖξ(ϖ, τ)􏼂 􏼃􏼚 􏼛

+ A
− 1 1

Z
] A 2i|ξ(ϖ, τ)|

2ξ(ϖ, τ)􏽨 􏽩􏼚 􏼛.

(54)

ξ(ϖ, τ) � 􏽘
∞

α�0
ξα(ϖ, τ),

|ξ(ϖ, τ)|
2ξ(ϖ, τ) � ℵ(ξ(ϖ, τ)),

ℵ(ξ(ϖ, τ)) � 􏽘
∞

α�0
Qα ξ0, ξ1, ξ2, . . .( 􏼁,

W0 � ξ20(ϖ, τ)ξ(ϖ, τ),

W1 � ξ20(ϖ, τ)ξ1(ϖ, τ)

+ 2ξ0(ϖ, τ)ξ1(ϖ, τ)ξ0(ϖ, τ),

W2 � ξ21(ϖ, τ)ξ0(ϖ, τ)

+ 2ξ0(ϖ, τ)ξ2(ϖ, τ)ξ0(ϖ, τ)

+ 2ξ0(ϖ, τ)ξ1(ϖ, τ)ξ1(ϖ, τ)

+ ξ20(ϖ, τ)ξ0(ϖ, τ).

(55)

By using equation (55) in equation (54), we obtain as
follows:

􏽘

∞

α�0
ξα(ϖ, τ) � A

− 1 e
iϖ

Z
2􏼨 􏼩 + A

− 1 1
Z
] A iDϖϖ􏽘

∞

α�0
ξα(ϖ, τ)⎡⎣ ⎤⎦

⎧⎨

⎩

⎫⎬

⎭

+ A
− 1 1

Z
] A 2i 􏽘

∞

α�0
Qα

⎡⎣ ⎤⎦
⎧⎨

⎩

⎫⎬

⎭.

(56)

By following the process stated in Section 3, we achieve
the following result:

ξ0(ϖ, τ) � e
iϖ

,

ξ1(ϖ, τ) �
e

iϖ
iτ]( 􏼁

1

Γ(] + 1)
,

ξ2(ϖ, τ) �
e

iϖ
iτ]( 􏼁

2

Γ(2] + 1)
,

ξ3(ϖ, τ) �
e

iϖ
iτ]( 􏼁

3

Γ(3] + 1)
,

ξ4(ϖ, τ) �
e

iϖ
iτ]( 􏼁

4

Γ(4] + 1)
,

ξ5(ϖ, τ) �
e

iϖ
iτ]( 􏼁

5

Γ(5] + 1)
.

(57)

As a result, we get the following solution in series form
for equation (51).
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ξ(ϖ, τ) � e
iϖ

+
e

iϖ
iτ]( 􏼁

1

Γ(] + 1)
+

e
iϖ

iτ]( 􏼁
2

Γ(2] + 1)
+

e
iϖ

iτ]( 􏼁
3

Γ(3] + 1)

+
e

iϖ 9iτ]( 􏼁
4

Γ(4] + 1)
+

e
iϖ

iτ]( 􏼁
5

Γ(5] + 1)
+ · · · .

(58)

When we use ] � 1 in equation (58), we get the following
precise solution to equation (51).

ξ(ϖ, τ) � e
i(ϖ+τ)

. (59)

Example 3. Consider the following one-dimensional non-
linear SDE with trapping potential:

D
]
τξ(ϖ, τ) � − i −

1
2
Dϖξ(ϖ, τ) + cos2ϖξ(ϖ, τ) +|ξ(ϖ, τ)|

2ξ(ϖ, τ)􏼒 􏼓,

0< ]≤ 1, τ ≥ 0,ϖ ∈ R.

(60)

with the initial condition:

ξ(ϖ, 0) � sinϖ. (61)

By using the A-T on both sides of equation (69), we
obtain as follows:

A D
]
τξ(ϖ, τ)􏼂 􏼃 � A − i −

1
2
Dϖξ(ϖ, τ) + cos2ϖξ(ϖ, τ)􏼒􏼔

+|ξ(ϖ, τ)|
2ξ(ϖ, τ)􏼓􏼕.

(62)

Using the third part of Lemma 1, equation (62) is
transformed as follows:

A[ξ(ϖ, τ)] �
ξ(ϖ, 0)

Z
2

+
1
Z
] A − i −

1
2
Dϖξ(ϖ, τ) + cos2ϖξ(ϖ, τ)􏼒􏼔

+|ξ(ϖ, τ)|
2ξ(ϖ, τ)􏼓􏼕.

(63)

On both sides of equation (63), consider the inverse of
the A-T.

ξ(ϖ, τ) � A
− 1 ξ(ϖ, 0)

Z
2􏼨 􏼩

+ A
− 1 1

Z
] A − i −

1
2
Dϖξ(ϖ, τ) + cos2ϖξ(ϖ, τ)􏼒􏼔􏼚

+|ξ(ϖ, τ)|
2ξ(ϖ, τ)􏼓􏼕􏼛.

(64)

By following the process stated in Section 3, we achieve
the following result:

ξ(ϖ, τ) � 􏽘
∞

α�0
ξα(ϖ, τ),

Q(ξ(ϖ, τ)) � |ξ(ϖ, τ)|
2ξ(ϖ, τ) � 􏽘

∞

α�0
Wα.

(65)

Using equation (65) in equation (64), we get as follows:

􏽘

∞

α�0
ξα(ϖ, τ) � A

− 1 ξ(ϖ, 0)

Z
2􏼨 􏼩

+ A
− 1 1

Z
] A − i −

1
2
Dϖ􏽘

∞

α�0
ξα(ϖ, τ)⎛⎝⎡⎢⎢⎣

⎧⎨

⎩

+ cos2ϖ􏽘
∞

α�0
ξα(ϖ, τ) + 􏽘

∞

α�0
Wα

⎞⎠⎤⎥⎥⎦
⎫⎬

⎭.

(66)

By equating the like terms on both sides of equation (66),
we get as follows:

ξ0(ϖ, τ) � A
− 1 ξ(ϖ, 0)

Z
2􏼨 􏼩,

ξα+1(ϖ, τ) � A
− 1 1

Z
] A − i −

1
2
Dϖξα(ϖ, τ) + cos2ϖξα(ϖ, τ) + Wα􏼒 􏼓􏼔 􏼕􏼚 􏼛.

(67)

)e following results are obtained from equation (67)
using the iteration procedure stated in Section 3.

ξ0(ϖ, τ) � sinϖ,

ξ1(ϖ, τ) � −
3iτ]

2Γ(] + 1)
sinϖ,

ξ2(ϖ, τ) � −
9τ2]

4Γ(2] + 1)
sinϖ,

ξ3(ϖ, τ) �
27iτ3]

8Γ(3] + 1)
sinϖ,

ξ4(ϖ, τ) �
81τ4]

16Γ(4] + 1)
sinϖ,

ξ5(ϖ, τ) � −
243iτ5]

32Γ(5] + 1)
sinϖ.

(68)

As a result, we get the following solution in series form
for equation (60).

ξ(ϖ, τ) � sinϖ −
3iτ]

2Γ(] + 1)
sinϖ −

9τ2]

4Γ(2] + 1)
sinϖ

+
27iτ3]

8Γ(3] + 1)
sinϖ +

81τ4]

16Γ(4] + 1)
sinϖ

−
243iτ5]

32Γ(5] + 1)
sinϖ + · · · .

(69)
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When we use ] � 1 in equation (69), we get the following
precise solution to equation (60).

ξ(ϖ, τ) � sinϖe− (3i/2)τ
. (70)

Example 4. Consider the nonlinear three-dimensional SDE
with trapping potential:

D
]
τξ(ϖ, β, μ, τ) � − i −

1
2

z
2

zϖ2
+

z
2

zβ2
+

z
2

zμ2
􏼠 􏼡ξ(ϖ, β, μ, τ) + K(ϖ, β, μ)ξ(ϖ, β, μ, τ) + |ξ(ϖ, β, μ, τ)|

2ξ(ϖ, β, μ, τ)􏼠 􏼡, (71)

where 0< ]≤ 1, τ ≥ 0,ϖ, β, μ ∈ R × R × R, and
K(ϖ, β, μ) � 1 − sin2ϖ sin2β sin2μ, with the initial condition:

ξ(ϖ, β, μ, 0) � sinϖ sin β sin μ. (72)

Using the A-T on equation (71), we get:

A D
]
τξ(ϖ, β, μ, τ)􏼂 􏼃 � A − i −

1
2

z
2

zϖ2
+

z
2

zβ2
+

z
2

zμ2
􏼠 􏼡ξ(ϖ, τ) + K(ϖ, β, μ)ξ(ϖ, β, μ, τ) + |ξ(ϖ, β, μ, τ)|

2ξ(ϖ, β, μ, τ)􏼠 􏼡􏼢 􏼣. (73)

Using the third part of Lemma 1, equation (73) is
transformed as follows:

A[ξ(ϖ, β, μ, τ)] �
ξ(ϖ, β, μ, 0)

Z
2 +

1
Z
] A − i −

1
2

z
2

zϖ2
+

z
2

zβ2
+

z
2

zμ2
􏼠 􏼡ξ(ϖ, β, μ, τ) + K(ϖ, β, μ)ξ(ϖ, β, μ, τ) +|ξ(ϖ, β, μ, τ)|

2ξ(ϖ, β, μ, τ)􏼠 􏼡􏼢 􏼣.

(74)

On both sides of equation (74), consider the inverse of
the A-T.

ξ(ϖ, β, μ, τ) � A
− 1 ξ(ϖ, β, μ, 0)

Z
2􏼨 􏼩

+ A
− 1 1

Z
] A − i −

z
2

zϖ2
+

z
2

zβ2
+

z
2

zμ2
􏼠 􏼡

1
2
ξ(ϖ, β, μ, τ) + K(ϖ, β, μ)ξ(ϖ, β, μ, τ) +|ξ(ϖ, β, μ, τ)|

2ξ(ϖ, β, μ, τ)􏼠 􏼡􏼢 􏼣􏼨 􏼩.

(75)

By following the process stated in Section 3, we achieve
the following result:

ξ(ϖ, β, μ, τ) � 􏽘
∞

α�0
ξα(ϖ, β, μ, τ),

Q(ξ(ϖ, β, μ, τ)) � |ξ(ϖ, β, μ, τ)|
2ξ(ϖ, β, μ, τ) � 􏽘

∞

α�0
Wα.

(76)

Using equation (76) in equation (75), we get as follows:

􏽘

∞

α�0
ξα(ϖ, β, μ, τ) � A

− 1 ξ(ϖ, β, μ, 0)

Z
2􏼨 􏼩

+ A
− 1 1

Z
] A − i −

1
2

z
2

zϖ2
+

z
2

zβ2
+

z
2

zμ2
􏼠 􏼡 􏽘

∞

α�0
ξα(ϖ, β, μ, τ) + K(ϖ, β, μ) 􏽘

∞

α�0
ξα(ϖ, β, μ, τ) + 􏽘

∞

α�0
Wα

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦
⎧⎨

⎩

⎫⎬

⎭.

(77)
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By equating the like terms on both sides of equation (77),
we get as follows:

ξ0(ϖ, β, μ, τ) � A
− 1 ξ(ϖ, β, μ, 0)

Z
2􏼨 􏼩,

ξα+1(ϖ, β, μ, τ) � A
− 1 1

Z
] A − i −

1
2

z
2

zϖ2
+

z
2

zβ2
+

z
2

zμ2
􏼠 􏼡ξα(ϖ, β, μ, τ) + K(ϖ, β, μ)ξα(ϖ, β, μ, τ) + Wα􏼠 􏼡􏼢 􏼣􏼨 􏼩.

(78)

)e following results are obtained from equation (78)
using the iteration procedure stated in Section 3.

ξ0(ϖ, β, μ, τ) � sinϖ sin β sin μ,

ξ1(ϖ, β, μ, τ) � −
5iτ]

2Γ(] + 1)
sinϖ sin β sin μ,

ξ2(ϖ, β, μ, τ) �
25i

2τ2]

4Γ(2] + 1)
sinϖ sin β sin μ,

ξ3(ϖ, β, μ, τ) � −
125i

3τ3]

8Γ(3] + 1)
sinϖ sin β sin μ,

ξ4(ϖ, β, μ, τ) �
625i

4τ4]

16Γ(4] + 1)
sinϖ sin β sin μ,

ξ5(ϖ, β, μ, τ) � −
3125i

5τ5]

32Γ(5] + 1)
sinϖ sin β sin μ.

(79)

As a result, we get the following solution in series form
for equation (78).

ξ(ϖ, β, μ, τ) � sinϖ sin β sin μ −
5iτ]

2Γ(] + 1)
sinϖ sin β sin μ

+
25i

2τ2]

4Γ(2] + 1)
sinϖ sin β sin μ

−
125i

3τ3]

8Γ(3] + 1)
sinϖ sin β sin μ

+
625i

4τ4]

16Γ(4] + 1)
sinϖ sin β sin μ

−
3125i

5τ5]

32Γ(5] + 1)
sinϖ sin β sin μ + · · · .

(80)

When we use ] � 1 in equation (80), we get the following
precise solution to equation (78).

ξ(ϖ, β, μ, τ) � sinϖ sin β sin μe
− (i5/2)τ

. (81)

5. Numerical Simulation and Discussion

In this section, we discuss and evaluate the graphic and
numerical results of the approximate and exact solutions to
the models discussed in Examples 1–4. Figures 1–8 represent
the 2D graphs of the 5th approximate solution obtained by
ATDM at ] � 0.6, 0.7, 0.8, 0.9, 1.0 and the exact solution.
)ese figures show that the approximate solutions obtained
by the ATDM approach the exact solutions. )e approxi-
mate result corresponds with the precise result at ] � 1, and
this proves the effectiveness and precision of the suggested
method. Figures 9–16 demonstrate the 2D graph of absolute
error over the 5th term, with approximate and exact solu-
tions to Examples 1–4. As for the figure, approximate and
exact solutions are in very good agreement. Tables 1–4 show
comparisons of the absolute error of the 5th approximate
solution obtained by ATDM of Examples 1–4 at ] � 1 with
the absolute error of approximate solutions obtained by
FRDTM [42], HPM [35], and HAM [43]. )e results ob-
tained from the suggested method are extremely similar to
those obtained by FRDTM, HPM, and HAM. )e conver-
gence of the approximate solution to the exact solution for
Examples 1–4 has been shown numerically as in Tables 5–12.
)e results show that the proposed method is a useful and
efficient algorithm for solving certain classes of fractional-
order differential equations with fewer calculations and it-
eration steps. )e 3D graphs of these solutions are also
sketched to show the behavior of the exact solutions in
Figures 17–24.

)e following 2D graphs show the real and imaginary
parts of approximate and exact solutions to Example 1:

Figures 1 and 2 show the behavior of real imaginary in
the interval τ ∈ [0, 1] between the 5th step iteration ap-
proximate and exact solutions of equation (39) at several
values of ] when ϖ � 0.05, a � 1 and b � 1. )e approxi-
mate result corresponds with the precise result at ] � 1 and
this proves the effectiveness and precision of the suggested
method.

)e graphs of absolute error for the real and imaginary
parts of the 5th approximation and exact solutions to Ex-
ample 1 are as follows:

Figures 9 and 10 demonstrate the 2D graph of real and
imaginary parts of absolute error in the intervals τ ∈ [0, 1]

when ϖ � 0.05, a � 1, and b � 1 are over the 5th terms,
approximate and exact solutions of equation (39) at ] � 1. As
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for the figures, approximate and exact solutions are in very
good agreement.

)e accuracy and capability of the numerical method can
be determined using error functions. To demonstrate the
accuracy and capability of the ATDM, we used recurrence
and absolute error functions.

Table 1 shows comparisons of the real and imaginary
parts of the absolute error of the 5th approximate solution
obtained by ATDM in Example 1 at ] � 1 with the absolute
error of approximate solutions obtained by FRDTM [42].
)e results obtained from the suggested method are ex-
tremely similar to those obtained by FRDTM.

)e recurrence error |ξ5(ϖ, τ) − ξ4(ϖ, τ)| between the
5th and 4th approximate solutions of the real part with
different values of ], when ϖ � 0.05, a � 1, and b � 1 in
Example 1 are presented as follows:

)e recurrence error |ξ5(ϖ, τ) − ξ4(ϖ, τ)| between the
5th and 4th approximate solutions of the imaginary part

with different values of ], when ϖ � 0.05, a � 1, and b � 1 in
Example 1 are presented as follows:

)e convergence of the ATDM of real and imaginary of
the approximate solution to the exact solution for equation
(39) has been shown numerically as in Tables 5 and 6. )e
results show that the current technique is a useful and ef-
ficient algorithm for solving fractional-order differential
equations with fewer calculations and iteration steps.

)e following are 3D graphs for the real and imaginary
parts of the exact solution to Example 1:

)e real and imaginary parts of the exact solution
equation (39) at ] � 1 are shown in Figures 17 and 18 re-
spectively in the intervals τ ∈ [0, 2],ϖ ∈ [− 2π, 2π]with a � 1
and b � 1.

)e following 2D graphs show the real and imaginary
parts of approximate and exact solutions to Example 2:

Figures 3 and 4 show the behavior of real and imaginary
parts in the interval τ ∈ [0, 1] between the 5th step iteration
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Exact

Figure 1: )e approximate and exact solutions to the real part of
Example 1.
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Figure 2: )e approximate and exact solutions to the imaginary
part of Example 1.
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Figure 3: )e approximate and exact solutions to the real part of
Example 2.
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Figure 4: )e approximate and exact solutions to the imaginary
part of Example 2.
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approximate and exact solutions of equation (51) at several
values of ] when ϖ � 0.05. )e approximate result corre-
sponds with the precise result at ] � 1, and this proves the
effectiveness and precision of the suggested method.

)e graphs of absolute error for the real and imaginary
parts of the 5th approximation and exact solutions to Ex-
ample 2 are as follows:
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Figure 5: )e approximate and exact solutions to the real part of
Example 3.
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Figure 6: )e approximate and exact solutions to the imaginary
part of Example 3.
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Figure 7: )e approximate and exact solutions to the real part of
Example 4.
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Figure 8: )e approximate and exact solutions to the imaginary
part of Example 4.
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Figure 9: )e absolute error for the real part of Example 1.
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Figure 10: )e absolute error for the imaginary part of Example 1.

12 Journal of Mathematics



Figures 11 and 12 demonstrate the 2D graph of real and
imaginary parts of absolute error in the intervals τ ∈ [0, 1]

when ϖ � 0.05 are over the 5th terms approximate and exact
solutions of equation (51) at ] � 1. As for the figures, ap-
proximate and precise solutions are in very good agreement.

Table 2 shows comparisons of the real and imaginary
parts of absolute error of the 5th approximate solution
obtained by ATDM of Example 2 at ] � 1 with the absolute
error of approximate solutions obtained by FRDTM [42].
)e results obtained from the suggested method are ex-
tremely similar to those obtained by FRDTM.

)e recurrence error |ξ5(ϖ, τ) − ξ4(ϖ, τ)| between the
5th and 4th approximate solutions of the real part with
different values of ], when ϖ � 0.05 in Example 2 are
presented as follows:

)e recurrence error |ξ5(ϖ, τ) − ξ4(ϖ, τ)| between the
5th and 4th approximate solutions of the imaginary part
with different values of ], when ϖ � 0.05 in Example 2 are
presented as follows:

)e convergence of the ATDM of real and imaginary of
the approximate solution to the exact solution for equation
(51) has been shown numerically as in Tables 7 and 8. )e
results show that the current technique is a useful and
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Figure 11: )e absolute error for the real part of Example 2.
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Figure 12: )e absolute error for the imaginary part of Example 2.
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Figure 13: )e absolute error for the real part of Example 3.
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Figure 14: )e absolute error for the imaginary part of Example 3.
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Figure 15: )e absolute error for the real part of Example 4.
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Figure 16: )e absolute error for the imaginary part of Example 4.
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Table 2: )e absolute error in ATDM and FRDTM for Example 2 at ]� 2.

τ Real part [ATDM] Abs. error Img. part [ATDM] Abs. error Real part [FRDTM] Abs. error Img. part [FRTDM] Abs. error
0.2 0 2.775557561562891× 10− 17 0 2.775557561562891× 10− 17

0.4 3.508304757815494×10− 14 2.886579864025407×10− 15 3.508304757815494×10− 14 2.886579864025407×10− 15

0.6 4.519384866341625×10− 12 4.35984581770299×10− 13 4.519384866341625×10− 12 4.35984581770299×10− 13

0.8 1.423423601210061× 10− 10 1.593580822856211× 10− 11 1.423423601210061× 10− 10 1.593580822856211× 10− 11

1.0 2.065669746365017×10− 9 2.633981921462691× 10− 10 2.065669746365017×10− 9 2.633981921462691× 10− 10

Table 3: )e absolute error in ATDM and HPM for Example 3 at ]� 1.

τ Real part [ATDM] Abs. error Img. part [ATDM] Abs. error Real part [HPM] Abs. error Img. part [HPM] Abs. error
0.2 5.551115123125783×10− 17 0 5.551115123125783×10− 17 0
0.4 2.266797860528413×10− 13 1.047079090099600×10− 14 2.266797860528413×10− 13 1.047079090099600×10− 14

0.6 2.933806669824790×10− 11 2.032304879939772×10− 12 2.933806669824790×10− 11 2.032304879939772×10− 12

0.8 9.229918426778560×10− 10 8.528888012504510×10− 11 9.229918426778560×10− 10 8.528888012504510×10− 11

1.0 1.337196644298627×10− 8 1.545451835949229×10− 9 1.337196644298627×10− 8 1.5454518359492290×10− 9

Table 4: )e absolute error in ATDM and HAM for Example 4 at ]� 1.

τ Real part [ATDM] Abs. error Img. part [ATDM] Abs. error Real part [HAM] Abs. error Img. part [HAM] Abs. error
0.2 3.794707603699265×10− 16 1.463672932855431× 10− 17 3.794707603699265×10− 16 1.463672932855431× 10− 17

0.4 1.548127132131732×10− 12 1.191737680761306×10− 13 1.548127132131732×10− 12 1.191737680761306×10− 13

0.6 1.994952888051838×10− 10 2.305647122877174×10− 11 1.994952888051838×10− 10 2.305647122877174×10− 11

0.8 6.238188888683330×10− 9 9.625127946185849×10− 10 6.238188888683330×10− 9 9.625127946185849×10− 10

1.0 8.967831111224030×10− 8 1.732387384885186×10− 8 8.967831111224030×10− 8 1.732387384885186×10− 8

Table 5: )e recurrence error of the 5th approximate solution of the real part in Example 1.

τ ]� 0.7 ]� 0.8 ]� 0.9 ]� 1.0
0.1 1.9863230258832510×10− 11 2.480476538225475×10− 13 2.754480547804426×10− 15 2.753540058639898×10− 17

0.2 2.5462310564404910×10− 9 6.356503419032404×10− 11 1.41126628375623×10− 12 2.820907153618413×10− 14

0.3 4.3559264601363860×10− 8 1.630598080005387×10− 9 5.428928326273314×10− 11 1.6274165548755540×10− 12

0.4 3.2669475564040040×10− 7 1.630154704745158×10− 8 7.234972435809250×10− 10 2.8912347348589850×10− 11

0.5 1.5594317330665020×10− 6 9.724388066839424×10− 8 5.393791208135125×10− 9 2.6938949149435820×10− 10

0.6 5.5932228619978110×10− 6 4.184575219876433×10− 7 2.784754999984136×10− 8 1.6687458133498650×10− 9

0.7 1.6470066797307933×10− 5 1.437319768581204×10− 6 1.115745763781643×10− 7 7.7992900939752010×10− 9

0.8 4.1978532985731196×10− 5 4.186076646645796×10− 6 3.713180897405904×10− 7 2.9660020264616400×10− 8

0.9 9.5822726035593689×10− 5 1.0748242434163506×10− 6 1.072429735204339×10− 6 9.6359264875560130×10− 8

1.0 2.0050812724929500×10− 4 2.4986212656296714×10− 5 2.769704199336456×10− 6 2.7648088107301450×10− 7

Table 6: )e recurrence error of the 5th approximate solution of the imaginary part in Example 1.

τ ]� 0.7 ]� 0.8 ]� 0.9 ]� 1.0
0.1 5.729282854280857×10− 14 5.566602532673186×10− 15 9.391428658269753×10− 17 1.127083924407682×10− 18

0.2 6.735588070529998×10− 13 1.29434773662193×10− 13 2.86554558790132×10− 14 8.979209489138208×10− 16

0.3 2.240327760588405×10− 9 2.657335380224294×10− 11 3.928763432275554×10− 13 3.7004114535955×10− 14

0.4 2.415220588436187×10− 8 5.443488739768476×10− 10 3.891048192098205×10− 12 3.947468488238387×10− 13

0.5 1.477344106931362×10− 7 4.825025026815447×10− 9 9.526894455781187×10− 11 1.232929037808270×10− 12

0.6 6.392078149330569×10− 7 2.727397229393246×10− 8 8.267292729705227×10− 10 7.495149197961302×10− 12

0.7 2.187803743850105×10− 6 1.152748324472957×10− 7 4.630213360876863×10− 9 1.0569208657930970×10− 10

0.8 6.320873774992085×10− 6 3.96750649205628×10− 7 1.972744306783386×10− 8 6.7041439426968450×10− 10

0.9 1.606257206934282×10− 5 1.171284786793358×10− 6 6.92782295622906×10− 8 3.0494721017930660×10− 9

1.0 3.691229597776269×10− 5 3.069260602197251× 10− 6 2.103049742344222×10− 7 1.1247880551985750×10− 8
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Table 7: )e recurrence error of the the approximate solution of the real part in Example 2.

τ ]� 0.7 ]� 0.8 ]� 0.9 ]� 1.0
0.1 1.976971658223765×10− 11 2.473641816908283×10− 13 2.750095402344202×10− 15 2.751035891508731× 10− 17

0.2 2.52678613921649×10− 9 6.326039570110015×10− 11 1.407076602719864×10− 12 2.815778619333783×10− 14

0.3 4.311799014005643×10− 8 1.619798972797868×10− 9 5.405728516404219×10− 11 1.622980497927706×10− 12

0.4 3.226514454036917×10− 7 1.616576300475306×10− 8 7.19494314294836×10− 10 2.880731496644064×10− 11

0.5 1.536892238892099×10− 6 9.627636757901811× 10− 8 5.357333694498901× 10− 9 2.681667536373432×10− 10

0.6 5.501465744903981× 10− 6 4.136441235299919×10− 7 2.762589303466765×10− 8 1.659660768720673×10− 9

0.7 1.616936914302743×10− 5 1.418630876198142×10− 6 1.105549182157846×10− 7 7.749774527601226×10− 9

0.8 4.113778074791275×10− 5 4.125554726718593×10− 6 3.674935878917996×10− 7 2.944491394597482×10− 8

0.9 9.374043008389243×10− 5 1.0577612629278684×10− 5 1.060155771139881× 10− 6 9.557343069541972×10− 8

1.0 1.9582134116140592×10− 4 2.45549708950409×10− 5 2.734871750812168×10− 6 2.739767139418478×10− 7

Table 8: )e recurrence error of the 5th approximate solution of the imaginary part in Example 2.

τ ]� 0.7 ]� 0.8 ]� 0.9 ]� 1.0
0.1 1.926007539341256×10− 12 1.922465206587756×10− 14 1.815440978456445×10− 16 1.627499919875739×10− 18

0.2 3.212183277944602×10− 10 6.217126403566797×10− 12 1.123792369482977×10− 13 1.922772907632402×10− 15

0.3 6.577805665150846×10− 9 1.892287752233342×10− 10 5.028971037475495×10− 12 1.256513068851356×10− 13

0.4 5.664659911177431× 10− 8 2.169068535347471× 10− 9 7.610081091968145×10− 11 2.493643660279493×10− 12

0.5 3.026797519340784×10− 7 1.450910885437432×10− 8 6.332736016444167×10− 10 2.566730381652197×10− 11

0.6 1.194404986717049×10− 6 6.891376017773192×10− 8 3.602715131890486×10− 9 1.740543007331589×10− 10

0.7 3.821136878718447×10− 6 2.581914817482758×10− 7 1.574595275095308×10− 8 8.837938438846447×10− 10

0.8 1.0480156108100884×10− 5 8.126788825165077×10− 7 5.66988415843565×10− 8 3.628126275591497×10− 9

0.9 2.5548636246620873×10− 5 2.238467006737139×10− 6 1.759964515566688×10− 7 1.265411208128710×10− 8

1.0 5.674529965660330×10− 5 5.548386062052328×10− 6 4.85763358662764×10− 7 3.879371899481992×10− 8

Table 9: )e recurrence error of the 5th approximate solution of the real part in Example 3.

τ ]� 0.7 ]� 0.8 ]� 0.9 ]� 1.0
0.1 5.718354659335265×10− 11 7.147943324169061× 10− 13 7.942159249076738×10− 15 7.942159249076745×10− 17

0.2 7.319493963949132×10− 9 1.829873490987278×10− 10 4.066385535527289×10− 12 8.132771071054586×10− 14

0.3 1.250604163996619×10− 7 4.689765614987320×10− 9 1.563255204995775×10− 10 4.689765614987315×10− 12

0.4 9.368952273854868×10− 7 4.684476136927436×10− 8 2.081989394189970×10− 9 8.327957576759896×10− 11

0.5 4.467464577605666×10− 6 2.792165361003536×10− 7 1.551202978335300×10− 8 7.756014891676498×10− 10

0.6 1.6007733299156725×10− 5 1.200579997436754×10− 6 8.003866649578365×10− 8 4.802319989747010×10− 9

0.7 4.709310951212926×10− 5 4.120647082311310×10− 6 3.204947730686570×10− 7 2.243463411480599×10− 8

0.8 1.1992258910534259×10− 4 1.1992258910534254×10− 5 1.065978569825267×10− 6 8.527828558602135×10− 8

0.9 2.735071306660605×10− 4 3.076955219993183×10− 5 3.076955219993184×10− 6 2.769259697993865×10− 7

1.0 5.718354659335249×10− 4 7.147943324169061× 10− 5 7.942159249076736×10− 6 7.942159249076734×10− 7

Table 10: )e recurrence error of the 5th approximate solution of the imaginary part in Example 3.

τ ]� 0.7 ]� 0.8 ]� 0.9 ]� 1.0
0.1 4.044352360290241× 10− 12 2.95593353802917×10− 14 1.896521881939167×10− 16 1.083021715783192×10− 18

0.2 8.40968933466814×10− 10 1.317524278577765×10− 11 1.811985904661213×10− 13 2.218028473923979×10− 15

0.3 1.908458178643264×10− 8 4.670482042212528×10− 10 1.003363456757901× 10− 11 1.918540478858446×10− 13

0.4 1.748682320562088×10− 7 3.375983249079892×10− 8 1.731218052350544×10− 10 4.542522314596309×10− 12

0.5 9.748056090119807×10− 7 4.184376006926562×10− 8 1.576742960965881× 10− 9 5.288191971597613×10− 11

0.6 3.968383306108540×10− 7 2.081736075628826×10− 7 9.586393166413172×10− 9 3.929170900702099×10− 10

0.7 1.3004806485065536×10− 5 4.646598110881215×10− 7 4.409897082301801× 10− 8 2.141487801867844×10− 9

0.8 3.636150797676397×10− 5 2.617499157554769×10− 6 1.654050363788450×10− 7 9.303085700293241× 10− 9

0.9 9.005675804590360×10− 5 7.379530772932580×10− 6 5.308339629215292×10− 7 3.398636902083380×10− 8

1.0 2.0269777712677892×10− 4 1.8650679756148277×10− 5 1.506460878596710×10− 6 1.083021715783191× 10− 7
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efficient algorithm for solving fractional-order differential
equations with fewer calculations and iteration steps.

)e following are the 3D graphs for the real and
imaginary parts of the exact solution to Example 2:

)e real and imaginary parts of the exact solution
equation (51) at ] � 1 are shown in Figures 19 and 20 re-
spectively in the intervals τ ∈ [0, 2], and ϖ ∈ [− 2π, 2π].

)e following 2D graphs show the real and imaginary
parts of approximate and exact solutions to Example 3:

Figures 5 and 6 show the behavior of the real and
imaginary parts in the interval τ ∈ [0, 1] between the 5th
step iteration approximate and exact solutions of equation
(60) at several values of ] when ϖ � 0.05. )e approximate
result corresponds with the precise result at ] � 1 and this
proves the effectiveness and precision of the suggested
method.

)e 2D graphs of absolute error for the real and
imaginary parts of the 5th approximation and exact solu-
tions to Example 3 are as follows:

Table 11: )e recurrence error of the 5th approximate solution of the real part in Example 4.

τ ]� 0.7 ]� 0.8 ]� 0.9 ]� 1.0
0.1 1.410899077403071× 10− 10 1.763623846753835×10− 12 1.959582051948707×10− 14 1.959582051948706×10− 16

0.2 1.80595081907593×10− 8 4.514877047689823×10− 10 1.003306010597737×10− 11 2.006612021195475×10− 13

0.3 3.085636282280515×10− 7 1.15711360585519×10− 8 3.857045352850636×10− 10 1.157113605855191× 10− 11

0.4 2.311617048417188×10− 6 1.155808524208595×10− 7 5.136926774260415×10− 9 2.054770709704167×10− 10

0.5 1.1022649042211474×10− 5 6.889155651382168×10− 7 3.827308695212317×10− 8 1.913654347606158×10− 9

0.6 3.949614441319053×10− 5 2.96221083098929×10− 6 1.974807220659528×10− 7 1.184884332395716×10− 8

0.7 1.1619360589017545×10− 4 1.0166940515390365×10− 5 7.907620400859165×10− 7 5.535334280601419×10− 8

0.8 2.958869821974002×10− 4 2.958869821974005×10− 5 0.000002630106508421338 2.104085206737067×10− 7

0.9 6.748286549347473×10− 4 7.591822368015921× 10− 5 7.591822368015916×10− 6 6.832640131214322×10− 7

1.0 1.410899077403069×10− 3 1.7636238467538362×10− 4 1.959582051948707×10− 5 1.959582051948706×10− 6

Table 12: )e recurrence error of the 5th approximate solution of the imaginary part in Example 4.

τ ]� 0.7 ]� 0.8 ]� 0.9 ]� 1.0
0.1 1.663116214880405×10− 11 1.215537262646501× 10− 13 7.79886620339425×10− 16 4.453595572610698×10− 18

0.2 3.458227535246130×10− 9 5.417915641366231× 10− 11 7.451237851492589×10− 13 9.120963732706710×10− 15

0.3 7.847950572968780×10− 8 1.920592896894366×10− 9 4.126025345211919×10− 11 7.889410949012672×10− 13

0.4 7.190921222780890×10− 7 2.414883590902916×10− 8 7.119104761067955×10− 10 1.867973372458334×10− 11

0.5 4.008589930546624×10− 6 1.720696657048121× 10− 7 6.483873192722287×10− 9 2.174607213188817×10− 10

0.6 1.6318762648010684×10− 5 8.560502928660110×10− 7 3.942110997503766×10− 8 1.615751362357795×10− 9

0.7 5.347828925356589×10− 5 3.323770499911620×10− 6 1.813435301914099×10− 7 8.806213628229532×10− 9

0.8 1.495255806774449×10− 4 1.076366474421812×10− 5 6.801776242977975×10− 7 3.825609466794668×10− 8

0.9 3.703308743231145×10− 4 3.0346063333097793×10− 5 2.182892321184059×10− 6 6.832640131214322×10− 7

1.0 8.335326149365687×10− 4 7.669521633561604×10− 5 6.194859624193012×10− 6 4.453595572610698×10− 7
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Figure 17: )e real part of the exact solution to Example 1.
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Figure 18: )e imaginary part of the exact solution to Example 1.
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Figures 11 and 12 demonstrate the 2D graph of real and
imaginary parts of absolute error in the intervals τ ∈ [0, 1]

when ϖ � 0.05 are over the 5th terms approximate and exact
solutions of equation (60) at ] � 1. As for the figures, ap-
proximate and precise solutions are in very good agreement.

Table 3 shows comparisons of the real and imaginary
parts of the absolute error of the 5th approximate solution
obtained by ATDM of Example 3 at ] � 1 with the absolute
error of approximate solutions obtained by HPM [35]. )e
results obtained from the suggested method are extremely
similar to those obtained by HPM.

)e recurrence error |ξ5(ϖ, τ) − ξ4(ϖ, τ)| between the
5th and 4th approximate solution of the real part with
different values of ], when ϖ � 0.05 for Example 3 are
presented as follows:

)e recurrence error |ξ5(ϖ, τ) − ξ4(ϖ, τ)| between the
5th and 4th approximate solution of the imaginary part with

different values of ], when ϖ � 0.05 for Example 3 are
presented as follows:

)e convergence of the ATDM of real and imaginary of
the approximate solution to the exact solution for equation
(60) has been shown numerically as in Tables 9 and 10. )e
results show that the proposed technique is a useful and
efficient algorithm for solving fractional-order differential
equations with fewer calculations and iteration steps.

)e following are 3D graphs for the real and imaginary
parts of the exact solution to Example 3:

)e real and imaginary parts of the exact solution
equation (60) at ] � 1 are shown in Figures 21 and 22, re-
spectively, in the intervals τ ∈ [0, 2],ϖ ∈ [− 3π, 3π].

)e following 2D graphs show the real and imaginary
parts of approximate and exact solutions to Example 4:

Figures 7 and 8 show the behavior of the real and
imaginary parts in the interval τ ∈ [0, 1] between the 5th
step iteration approximate and exact solutions of equation
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Figure 19: )e real part of the exact solution to Example 2.
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Figure 20: )e imaginary part of the exact solution to Example 2.
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Figure 21: )e real part of the exact solution to Example 3.
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Figure 22: )e imaginary part of the exact solution to Example 3.
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(71) at several values of ] when ϖ � 0.05, β � 0.10,

and μ � 0.15. )e approximate result corresponds with the
precise result at ] � 1 and this proves the effectiveness and
precision of the recommended method.

)e 2D graphs of absolute error for the real and
imaginary parts of the 5th approximation and exact solu-
tions to Example 4 are as follows:

Figures 15 and 16 demonstrate the 2D graph of real and
imaginary parts of absolute error in the intervals τ ∈ [0, 1]

when ϖ � 0.05, β � 0.10, and μ � 0.15 are over the 5th
terms approximate and exact solutions of equation (71) at
] � 1. As for the figures, approximate and precise solutions
are in very good agreement.

Table 4 shows comparisons of the real and imaginary
parts of the absolute error of the 5th approximate solution
obtained by ATDM of Example 4 at ] � 1 with the absolute
error of the approximate solution obtained by HAM [43].

)e results obtained from the suggested method are ex-
tremely similar to those obtained by HAM.

)e recurrence error |ξ5(ϖ, β, μ, τ) − ξ4(ϖ, β, μ, τ)| be-
tween the 5th and 4th approximate solution of the real part
with different values of ], when ϖ � 0.05, β � 0.10, and μ �

0.15 for Example 4 are presented.
)e recurrence error |ξ5(ϖ, β, μ, τ) − ξ4(ϖ, β, μ, τ)| be-

tween the 5th and 4th approximate solutions of the imag-
inary part with different values of ], whenϖ � 0.05, β � 0.10,
and μ � 0.15 for Example 4 are presented.

)e convergence of the ATDM of real and imaginary of
the approximate solution to the exact solution for equation
(71) has been shown numerically as in Tables 11 and 12. )e
results show that the proposed technique is a useful and
efficient algorithm for solving fractional-order differential
equations with fewer calculations and iteration steps.

)e following are 3D graphs for the real and imaginary
parts of the exact solution to Example 4:

)e real and imaginary parts of the exact solution
equation (71) at ] � 1 are shown in Figures 23 and 24 re-
spectively in the intervals τ ∈ [0, 2],ϖ ∈ [− 3π, 3π] with β �

0.1 and μ � 0.2.

6. Conclusion

)e Aboodh transform decomposition method is effectively
used in this study to obtain analytical approximate and exact
solutions to time-fractional linear and nonlinear Schro-
dinger equations with zero and nonzero trapping potential
that are regarded in the Caputo sense. )e Aboodh trans-
form is more closely related to the Laplace and Elzaki
transforms. )e Aboodh transform is a useful method for
solving time-domain differential equations. )e recurrence
and absolute error of the four problems are analyzed to
evaluate the efficiency and consistency of the presented
method. In addition, numerical results are also compared
with other methods such as the fractional reduced differ-
ential transform method (FRDTM), the homotopy analysis
method (HAM), and the homotopy perturbation method
(HPM). )e results obtained by the proposed method show
excellent agreement with these methods, which indicates its
effectiveness and reliability. )is method has the advantage
of needing no assumptions regarding minor or important
physical parameters in the problem. As a result, it can solve
both weakly and strongly nonlinear problems, overcoming
some of the drawbacks of traditional perturbation methods.
Only a few computations are required to solve nonlinear
fractional-order differential equations. As a result, it greatly
improves homotopy analysis and homotopy perturbation
techniques. )e ATDM can construct expansion solutions
for linear and nonlinear fractional-order differential equa-
tions without the requirement for perturbation, lineariza-
tion, or discretization, unlike earlier analytic approximation
methods.

)erefore, we concluded that our proposed technique is
simple to apply, accurate, and efficient according to the
results. It is significant to consider that implementing the
ATDM to solve other kinds of ordinary and partial DEs of
noninteger order is actively attainable. For example,
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Figure 23: )e real part of the exact solution to Example 4.
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Figure 24: )e imaginary part of the exact solution to Example 4.
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fractional kdv equations, fractional phi-4 equations, frac-
tional Schrodinger equations, and many more.
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Many nonlinear phenomena are modeled in terms of di­erential and integral equations. However, modeling nonlinear phe-
nomena with fractional derivatives provides a better understanding of processes having memory e­ects. In this paper, we
introduce an e­ective model of iterative fractional partial integro-di­erential equations (FPIDEs) with memory terms subject to
initial conditions in a Banach space. 
e convergence, existence, uniqueness, and error analysis are introduced as new theorems.
Moreover, an extension of the successive approximations method (SAM) is established to solve FPIDEs in sense of Caputo
fractional derivative. Furthermore, new results of stability analysis of solution are also shown.

1. Introduction

Most of the physical phenomena are modeled in ordinary
di­erential equations (ODEs) and partial di­erential
equations (PDEs). During the last decades, it has been noted
that modeling complex phenomena, using fractional de-
rivatives, provides a good �t due to their nonlocal nature.
Fractional derivatives are e­ective tools to formulate pro-
cesses having memory e­ects. Furthermore, fractional PDEs,
which are considered the generalization of PDEs with
fractional-order derivatives, have been widely used in many
areas of sciences and engineering, and they have been the
topics of many workshops and conferences due to their
essential uses applied in numerous diverse and wide-
spread �elds in applied sciences [1–7]. Furthermore,
FPIDEs are applicable in sciences and engineering, and
many works in FPIDEs have been introduced (see, for
example, [3, 8–11]), while studying iterative FPIDEs is
very rare and currently an active area of research due to
their particular applications in neural networks. However,
iterative FPIDEs are useful tools for modeling the memory
properties of various materials and processes, with a

nonlinear relationship to time, such as anomalous dif-
fusion, an elasticity theory, solids mechanic, and other
applications [12–14]. 
e study of the theory of the it-
erative di­erential equations began with the work of Eder
[15] where Eder worked on a solution of an iterative
functional di­erential equation. Moreover, many studies
on iterative di­erential equations have been conducted
(see, for example, [16–18]).

In many physical systems described as models in terms of
initial and boundary value problems, it is essential to develop
techniques based on various types of successive approximations
constructed explicitly in analytic forms. Several analytical and
numerical methods for solving di­erential and integral equa-
tions are available in the literature. One of the powerfulmethods
is the successive approximations method (SAM) which was
introduced in 1891 by E. Picard, and it has been used to prove
the existence and uniqueness of solutions of di­erential
equations [19–22]. 
e SAM, which is also called the Picard
iterative solutions method, has been increasingly applied to
solve di­erential equations and integral equations [23, 24]. 
e
SAM provides an approximate solution in a short series con-
vergent with readily determinable terms [25].
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�e existence and uniqueness of solutions are proved
with initial conditions for various types of iterative differ-
ential equations or iterative integro-differential in some
works available in the literature, for example, the exact
analytical solution for an iterative nonlinear differential
equation was given in [26] where the authors studied a
second-order nonlinear iterated differential equation, ana-
lytic solutions for an iterative differential equation were
given in [27] where the authors studied an iterative func-
tional differential equation, Yang and Zhang introduced
solutions for iterative differential equations [28], and Zhang
et al. [29] introduced the existence of wavefront solutions for
an integral differential equation in a nonlinear nonlocal
neuronal network. However, few works have been intro-
duced for the stability analysis of solutions for iterative
fractional integro-differential equations [30, 31].

�is paper presents new analytical and numerical so-
lutions of a new model called “iterative fractional partial
integro-differential equation” of iterative Volterra-type
equation. �is model is solved by using the method of
successive approximations. Moreover, the primary advances
applied in this paper are very effective with applications of a
Banach space and Gronwall–Bellman integral inequality in
sense of Caputo derivative. �e rest of the paper is organized
as follows. Section 2 gives the preliminaries. Section 3
presents the description of the method of successive ap-
proximations, existence, uniqueness, convergence, and error
analysis of the solution for the proposed model. Section 4
introduces solutions for two types of iterative FPIDEs.
Numerical results and discussion are given in Section 5.

2. Preliminaries and Definitions

�ere are various definitions and theorems of fractional
calculus available in the literature. �is section presents
some of these definitions and theorems that are needed in
this paper and can be found in [32–36] and among other
references cited therein.

Definition 1. Let u(x, t): R × (0,∞)⟶ R and
n − 1< α< n ∈ N. �e Riemann–Liouville integral of time
fractional order α for a function u is defined by

I
α
t u(x, t) �

1
Γ(α)

􏽚
t

0
(t − τ)

α−1
u(x, τ)dτ, (1)

where Γ is the well-known gamma function.

Definition 2. Let u(x, t): R × (0,∞)⟶ R and n − 1< α
< n ∈ N. �e Riemann–Liouville time fractional partial
derivative of order α for a function u is defined by

RL
D

α
t u(x, t) �

z
n

zt
n 􏽚

t

0

(t − τ)
n−α−1

Γ(n − α)
u(x, τ)dτ. (2)

Definition 3. Let u(x, t): R × (0,∞)⟶ R and
n − 1< α< n ∈ N; then, the Caputo derivative of time frac-
tional order α for a function u is

D
α
t u(x, t) � 􏽚

t

0

(t − τ)
n−α−1

Γ(n − α)

z
n
u(x, τ)

zτn dτ,

D
α
t u(x, t) �

z
n
u(x, t)

zt
n , α � n ∈ N.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(3)

Theorem 1 Let u(x, t): R × (0,∞)⟶ R and
n − 1< α< n ∈ N. 'en,

I
α
t D

α
t u(x, t) � u(x, t) − 􏽘

n−1

k�0

t
k

k!

z
k
u x, 0+

( 􏼁

zt
k

,

D
α
t I

α
t u(x, t) � u(x, t).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

Theorem 2 Let α, t ∈ R, t> 0, and n − 1< α< n ∈ N. 'en,

D
α
t t

q
�
Γ(q + 1)

Γ(q − α + 1)
t
q−α

, n≤ q, q ∈ R,

D
α
t t

q
� 0, q≤ n − 1.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(5)

Lemma 1 (Gronwall–Bellman inequality). Let u(x, t) be a
nonnegative continuous function on J × J, J � [a, a + h],
0< a, h ∈ R. If u(x, t)≤ c + 􏽒

t

a
f(x, r)u(x, r)dr where f is

an analytic function and c is a nonnegative constant, then
u(x, t)≤ c exp(􏽒

t

a
f(x, r)dr).

3. Description of the Numerical Scheme

In this section, we introduce an effective model of an it-
erative fractional partial integro-differential equation with
memory term subject to initial value conditions of the
following form:

D
α
t u(x, t) � f(x, t) + 􏽚

t

0
K(x, r)u(x, u(x, r))dr,

z
k
u(x, 0)

zt
k

� fk(x), k � 0, 1, 2, . . . , n − 1, (x, t) ∈ J × J, J � [0, T], n − 1< α< n,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(6)
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where Dα
t is the α-th Caputo fractional partial derivative,

K(x, t) is a bivariate kernel, f(x, t) and fk(x) are known
analytic functions, and u(x, t) is the unknown function to be
determined.

To find the solution for the iterative fractional partial
integro-differential equation (6), we introduce an extension
of the SAM as follows. We assume that (6) has an ap-
proximate solution given by

un+1(x, t) � u0 + 􏽚
t

0

(x − τ)
α−1

Γ(α)

· f(x, τ) + 􏽚
τ

0
K(x, r)un x, un(x, r)( 􏼁dr􏼒 􏼓dτ,

(7)

for n � 0, 1, 2, . . . where u0(x, t) is of class C1 from
[0, T] to [0, T] for |u0′(x, t)|≤T.

Our extension here is that all the components un(x, t)

are continuous where un can be given as a sum of successive
differences in the following form:

un(x, t) � u0(x, t) + 􏽘
n

k�1
uk(x, t) − uk−1(x, t)( 􏼁. (8)

Next, if (uk(x, t) − uk−1(x, t) converges, then un(x, t)

converges and the solution for (6) is given by

u(x, t) � lim
n⟶∞

un(x, t). (9)

Lemma 2. Let a function u ∈ C1([0, T] × [0, T]) satisfy (6)
on [0, T] × [0, T]; then,

u(x, t) � u0 + 􏽚
t

0

(x − τ)
α−1

Γ(α)

· f(x, τ) + 􏽚
τ

0
K(x, r)u(x, u(x, r))dr􏼒 􏼓dτ.

(10)

3.1. Existence and Uniqueness. �is section presents new
results for existence and uniqueness of solution for the
proposed model (6).

Theorem 3. Suppose that |u0 + Tα(N + T3kT)/Γ(α + 1)|≤T

and 0<M< Γ(α + 1)/Tα+1kT − 1< 1. 'en, there is a unique
solution for equation (6).

Proof. Let B � C([0, T] × [0, T]) be a Banach space with a
norm ‖u‖ � max(x,t)∈Ω|u(x, t)|,Ω ⊂ J × J, J � [0, T] and

S(ρ) � u ∈ B: 0≤ u≤ ρ, u x, t1( 􏼁
􏼌􏼌􏼌􏼌􏽮

− u x, t2( 􏼁
􏼌􏼌􏼌􏼌≤M t1 − t2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, ∀t1, t2 ∈ J􏽯,

(11)

where ρ � u0 + Tα(N + T2kT)/Γ(α + 1) and kT � sup
|K(x, t)|: 0≤ t≤T{ }.

Before we apply the Banach contraction principle, we
need to define an operator P: B⟶ B as

P(u(x, t)) � u0 + 􏽚
t

0

(t − τ)
α−1

Γ(α)

· f(x, τ) + 􏽚
τ

0
K(x, r)u(x, u(x, r))dr􏼒 􏼓dτ.

(12)

From (12), we have

0≤ |P(u(x, t))| � u0 + 􏽚
t

0

(t − τ)
α−1

Γ(α)
f(x, τ) + 􏽚

τ

0
K(x, r)u(x, u(x, r))dr􏼒 􏼓dτ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ u0 + 􏽚
t

0

(t − τ)
α−1

Γ(α)
f(x, τ) + 􏽚

τ

0
K(x, r)u(x, u(x, r))dr

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼒 􏼓dτ

≤ u0 + 􏽚
t

0

(t − τ)
α−1

Γ(α)
|f(x, τ)| + 􏽚

τ

0
|K(x, r)||(x, u(x, r))|dr􏼒 􏼓dτ ≤ u0 +

T
α

N + T
3
kT􏼐 􏼑

Γ(α + 1)
.

(13)

By similar argument, we obtain
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P u x, t1( 􏼁( 􏼁 − P u x, t2( 􏼁( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 􏽚
t1

0

(t − τ)
α−1

Γ(α)
f(x, τ) + 􏽚

τ

0
K(x, r)u(x, u(x, r))dr􏼒 􏼓dτ − 􏽚

t2

0

(t − τ)
α−1

Γ(α)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

· f(x, τ) + 􏽚
τ

0
K(x, r)u(x, u(x, r))dr􏼒 􏼓dτ|

≤ 􏽚
t1

t2

(t − τ)
α−1

Γ(α)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
|f(x, τ)| + 􏽚

τ

0
|K(x, r)||u(x, u(x, r))|dr􏼒 􏼓dτ ≤

N + kTT
3

􏼐 􏼑

Γ(α + 1)
t1 − t2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
α
.

(14)

�is proves that P is a function from S(ρ) to S(ρ). Next,
for u, v ∈ S(ρ), we have

|P(u(x, t)) − P(v(x, t))|≤ 􏽚
t

0

(x − τ)
α−1

Γ(α)
􏽚
τ

0
(|K(x, r)||u(x, u(x, r)) − v(x, v(x, r))|)dr􏼒 􏼓dτ

≤ kT 􏽚
t

0

(x − τ)
α−1

Γ(α)
􏽚
τ

0
(|u(x, u(x, r)) − u(x, v(x, r))| +|u(x, v(x, r)) − v(x, v(x, r))|)dr􏼒 􏼓dτ

≤ kT 􏽚
t

0

(x − τ)
α−1

Γ(α)
􏽚
τ

0
(M(|u(x, r) − v(x, r)|) +|u(x, r) − v(x, r)|)dr􏼒 􏼓dτ

≤ kT 􏽚
t

0

(x − τ)
α−1

Γ(α)
􏽚
τ

0
(M + 1)|u(x, r) − v(x, r)|dr􏼒 􏼓dτ

≤TkT(M + 1)‖u − v‖ 􏽚
t

0

(x − τ)
α−1

Γ(α)
dτ ≤

T
α+1

kT(M + 1)

Γ(α + 1)
‖u − v‖.

(15)

�erefore, we obtain

‖(P(u(x, t)) − P(v(x, t))‖≤
T
α+1

kT(M + 1)

Γ(α + 1)
‖u − v‖.

(16)

Since M< Γ(α + 1)/Tα+1kT − 1 which implies that
Tα+1kT(M + 1)/Γ(α + 1)< 1, then by Banach principle, the

operator P has a unique fixed point. �erefore, equation (6)
has a solution. □

Theorem 4 (convergence).. If the assumptions of 'eorem 3
are proposed, then (7) converges.

Proof. Define the sequence Sk � max(x,t)∈J×J|uk(x, t)−

uk−1(x, t)|. �en,

S0 � max
(x,t)∈J×J

u0(x, t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

S1 � max
(x,t)∈J×J

u1(x, t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

� max
(x,t)∈J×J

u0 + 􏽚
t

0

(t − τ)
α−1

Γ(α)
f(x, τ) + 􏽚

τ

0
K(x, r)u0 x, u0(x, r)( 􏼁dr􏼒 􏼓dτ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ u0 +

T
α

Γ(α + 1)
N + T

3
kT􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
<T.

(17)

Since u0 is a function from [0, T] to [0, T], we get
U1 ≤ u0 + Tα/Γ(α + 1)(N + T3kT)≤T:
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S2 � max
(x,t)∈J×J

u2(x, t) − u1(x, t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

� max
(x,t)∈J×J

u0 + 􏽚
t

0

(t − τ)
α−1

Γ(α)
f(x, τ) + 􏽚

τ

0
K(x, r)u1 x, u1(x, r)( 􏼁dr􏼒 􏼓dτ − u0

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

− 􏽚
t

0

(t − τ)
α−1

Γ(α)
f(x, τ) + 􏽚

τ

0
K(x, r)u0 x, u0(x, r)( 􏼁dr􏼒 􏼓dτ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� max
(x,t)∈J×J

􏽚
t

0

(t − τ)
α−1

Γ(α)
􏽚
τ

0
K(x, r) u1 x, u1(x, r)( 􏼁 − u0 x, u0(x, r)( 􏼁( 􏼁dr􏼒 􏼓dτ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ max
(x,t)∈J×J

􏽚
t

0

(t − τ)
α−1

Γ(α)
􏽚
τ

0
K(x, r) u1 x, u1(x, r)( 􏼁 − u0 x, u0(x, r)( 􏼁( 􏼁

����
����dr􏼒 􏼓dτ ≤TS1 ≤T

2
,

(18)

S3 � max
(x,t)∈J×J

u3(x, t) − u2(x, t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 max
(x,t)∈J×J

· u0 + 􏽚
t

0

(t − τ)
α−1

Γ(α)
f(x, τ) + 􏽚

τ

0
K(x, r)u2 x, u2(x, r)( 􏼁dr􏼒 􏼓dτ − u0

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

− 􏽚
t

0

(x − τ)
α−1

Γ(α)
f(x, τ) + 􏽚

τ

0
K(x, r)u1 x, u1(x, r)( 􏼁dr􏼒 􏼓dτ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� max
(x,t)∈J×J

􏽚
t

0

(t − τ)
α−1

Γ(α)
􏽚
τ

0
K(x, r) u2 x, u2(x, r)( 􏼁 − u1 x, u1(x, r)( 􏼁( 􏼁dr􏼒 􏼓dτ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ max
(x,t)∈J×J

􏽚
t

0

(t − τ)
α−1

Γ(α)
􏽚
τ

0
K(x, r) u2 x, u2(x, r)( 􏼁 − u1 x, u1(x, r)( 􏼁( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dr􏼒 􏼓dτ ≤TS2 ≤T

3
.

(19)

By induction, we have Sk ≤Tk. Since |u0 + Tα

(N + T3kT)/Γ(α + 1)|≤T, we get T< 1 when u0 ≥ 0.
�erefore, Sk goes to zero as k goes to infinity. For every
subsequence ukj􏽮 􏽯 of Sk􏼈 􏼉, there exists a subsequence skj􏽮 􏽯

which uniformly converges and the limit must to be a so-
lution of (6). �us, Sk􏼈 􏼉 uniformly goes to a unique solution
of (6). □

3.2. Error Analysis. In this section, we evaluate the maxi-
mum absolute error of the proposed method for the solution
series (7) for (6).

Theorem 5. Suppose that the hypothesis of 'eorem 3 holds.
Let un and sn be two solutions satisfying equation (6) for

0≤x, t≤T, M> 0 with the initial approximations un(x, t)

and sn(x, t), respectively. 'en, the maximum absolute error
for a solution series (7) for (6) is estimated to be

max
(x,t)∈J×J

un(x, t) − sn(x, t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ exp
kT(M + 1)T

α+1

Γ(α + 1)
􏼠 􏼡 max

(x,t)∈J×J
u0(x, t) − s0(x, t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌.

(20)

Proof. By using �eorem 3, we have

un(x, t) � u0(x, t) + 􏽚
t

0

(t − τ)
α−1

Γ(α)
f(x, τ) + 􏽚

τ

0
K(x, r)un−1 x, un−1(x, r)( 􏼁dr􏼒 􏼓dτ,

sn(x, t) � s0(x, t) + 􏽚
t

0

(t − τ)
α−1

Γ(α)
f(x, τ) + 􏽚

τ

0
K(x, r)sn−1 x, sn−1(x, r)( 􏼁dr􏼒 􏼓dτ.

(21)
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Next, by using �eorem 4, we have

un − sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � u0(x, t) − s0(x, t) + 􏽚

t

0

(t − τ)
α−1

Γ(α)
􏽚

t

0
K(x, r) un x, un(x, r)( 􏼁 − sn x, sn(x, r)( 􏼁( 􏼁dr􏼠 􏼡dτ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ u0(x, t) − s0(x, t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 􏽚
t

0

(t − τ)
α−1

Γ(α)
kT 􏽚

τ

0
un x, un(x, r)( 􏼁 − sn x, sn(x, r)( 􏼁( 􏼁dr􏼒 􏼓dτ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� u0(x, t) − s0(x, t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + kT 􏽚
t

0

(t − τ)
α−1

Γ(α)
􏽚
τ

0
un x, un(x, r)( 􏼁 − un x, sn(x, r)( 􏼁 + un x, sn(x, r)( 􏼁 − sn x, sn(x, r)( 􏼁dr( 􏼁dτ􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ u0(x, t) − s0(x, t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + kT 􏽚
t

0

(t − τ)
α−1

Γ(α)
􏽚
τ

0
(M + 1) un(x, r) − sn(x, r)( 􏼁dr􏼒 􏼓dτ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� u0(x, t) − s0(x, t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + kT(M + 1) 􏽚
t

0
􏽚
τ

0

(t − τ)
α−1

Γ(α)
un(x, r) − sn(x, r)( 􏼁drdτ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� u0(x, t) − s0(x, t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + kT(M + 1) 􏽚
t

0
􏽚
τ

0

(t − τ)
α−1

Γ(α)
un(x, r) − sn(x, r)( 􏼁dτdr

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ u0(x, t) − s0(x, t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
kT(M + 1)T

α

Γ(α + 1)
􏽚

t

0
un(x, τ) − sn(x, τ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dτ.

(22)

By using Gronwall–Bellman inequality given by Lemma
1, we get

un(x, t) − sn(x, t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ u0(x, t) − s0(x, t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌exp 􏽚
t

0

kT(M + 1)T
α

Γ(α + 1)
dr􏼠 􏼡≤ u0(x, t) − s0(x, t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌exp

kT(M + 1)T
α+1

Γ(α + 1)
􏼠 􏼡. (23)

�us, we obtain

max
(x,t)∈J×J

un(x, t) − sn(x, t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ exp
kT(M + 1)T

α+1

Γ(α + 1)
􏼠 􏼡

× max
(x,t)∈J×J

u0(x, t) − s0(x, t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌.

(24)

�is completes the proof of �eorem 5. □

3.3. Algorithms for Computer Implementations. In this sec-
tion, we introduce algorithms for computing numerical
results. Algorithm 1 computes the existence conditions given
by �eorem 3.

Further, Algorithm 2 can be used to obtain particular
approximate numerical solutions at particular values of the
fractional order α.

4. Analytical Solutions for Iterative
Volterra FPIDEs

�is section introduces solutions for new examples of it-
erative FPIDEs. �ese examples are chosen since their so-
lutions are not available in the literature or they have been
solved previously some other well-known methods.for
0≤x, t≤ 0.75, 0< α< 1.

Example 1. In this example, we solve the following iterative
FPIDEs of Volterra type with initial value:

D
α
t u(x, t) � cos

x

2
􏼒 􏼓 􏽚

t

0
u(x, u(x, r))dr,

u(x, 0) �
sin(x)

2
,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(25)
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�en, equation (25) is of form (6) with T � 0.75, N �

0, kT � 1 which satisfies

u0 +
T
α

N + T
3
kT􏼐 􏼑

Γ(α + 1)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
�
sin(x)

2
+
0.75α 0 + 0.753 × cos(x/2)􏼐

Γ(α + 1)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
< 0.75 � T, (26)

where 0<M< Γ(α + 1)/Tα+1kT − 1 � Γ(α + 1)/0.75α+1

|cos(x/2)| − 1< 1 for all 0≤x≤ 0.75 and 0< α< 1.
As the hypotheses of �eorem 3 are satisfied, a unique

solution for equation (25) exists.

Next, by using �eorem 4 and assuming that
u0(x, t) � u(x, 0) � sin(x)/2, the first few iterative solutions
are

u1(x, t) � u1(x, 0) + 􏽚
t

0

(x − τ)
α−1

Γ(α)
cos

x

2
􏼒 􏼓 􏽚

t

0
u0 x, u0(x, r)( 􏼁dr􏼠 􏼡dτ, u1(x, 0) � 0

�
1

2 α2 + α􏼐 􏼑Γ(α)
t
α+1 sin(x)cos

x

2
􏼒 􏼓,

(27)

u2(x, t) � u2(x, 0) +
1
Γ(α)

􏽚
t

0
(x − τ)

α−1 cos
x

2
􏼒 􏼓 􏽚

t

0
u1 x, u1(x, r)( 􏼁dr􏼠 􏼡dτ, u2(x, 0) � 0

�
2−α−2Γ(α + 2)

−α−1Γ(α(α + 2) + 3)t
(α+1)(α+2)csc(x)(sin(x)cos(x/2))

α+3

×(α(α + 2) + 2)Γ(α(α + 3) + 3)
,

(28)

Input: T< 1, N � |f(x, t)|, kT � K(x, t), u0(x, 0) � f(x),
(1) for 0≤x≤ 1, 0≤ t≤ 1, i − 1< α< i, do
(2) special treatment of the first element of line i;
(3) for i � 1, 2, . . . , n, do
(4) Compute |u0 + Tα(N + T3kT)/Γ(α + 1)|, Γ(α + 1)/Tα+1kT − 1.

Output: |u0 + Tα(N + T3kT)/Γ(α + 1)|<T, 0< Γ(α + 1)/Tα+1kT − 1< 1.

ALGORITHM 1: �e computation of the existence conditions.

Input: T< 1, N � |f(x, t)|, kT � K(x, t), u0(x, 0) � f(x),
(1) for 0≤x≤ 1, 0≤ t≤ 1, i − 1< α< i, do
(2) special treatment of the first element of line i;
(3) for i � 1, 2, . . . , n, do
(4) Compute |u0 + Tα(N + T3kT)/Γ(α + 1)|, Γ(α + 1)/Tα+1kT − 1.;
(5) if |u0 + Tα(N + T3kT)/Γ(α + 1)|<T, Γ(α + 1)/Tα+1kT − 1< 1 then
(6) Compute ui+1(x, t) � u0 + 􏽒

t

0 (x − τ)α− 1/Γ(α)(f(x, τ) + 􏽒
τ
0 K(x, r)ui(x, ui(x, r))dr)dτ.

(7) Output: ui+1(x, t) � u0 + 􏽒
t

0 (x − τ)α− 1/Γ(α)(f(x, τ) + 􏽒
τ
0 K(x, r)ui(x, ui(x, r))dr)dτ.

ALGORITHM 2: �e computation of the numerical solutions.
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u3(x, t) � u2(x, 0) + 􏽚
t

0

(x − τ)
α−1

Γ(α)
cos

x

2
􏼒 􏼓 􏽚

t

0
u2 x, u2(x, r)( 􏼁dr􏼠 􏼡dτ, u3(x, 0) � 0,

�
((α(α + 2) + 2)Γ(α(α + 3) + 3))

− α(α+3)− 3

α2 + α + 1􏼐 􏼑(α(α + 5) + 7)Γ(α(α(α(α + 6) + 13) + 13) + 8)

× Γ(α(α + 3)(α(α + 3) + 4) + 8)t
α(α(α(α+6)+13)+13)+7

× 2−α−2Γ(α + 2)
−α−1Γ(α(α + 2) + 3)csc(x) sin(x)cos

x

2
􏼒 􏼓􏼒 􏼓

α+3
􏼠 􏼡

α(α+3)+3

.

(29)

�erefore, the approximate solution of (25) is obtained
by u(x, t) ≈ 􏽐

3
i�0 ui(x, t).

Example 2. In this example, we solve the following iterative
FPIDEs of Volterra type with initial value:

D
α
t u(x, t) �

sin(x)

3
+ 􏽚

t

0
u(x, u(x, r))dr, 0≤x, t≤ 0.75, 0< α< 1,

u(x, 0) � 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(30)

Equation (30) is of form (8) with
T � 0.75, N � |sin(x)/3|, kT � 1, which satisfies

u0 +
T
α

N + T
2
kT􏼐 􏼑

Γ(α + 1)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 0 +
0.75α sin(x)/3 + 0.753􏼐 􏼑

Γ(α + 1)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
< 0.75 � T,

(31)

where 0<M< Γ(α + 1)/Tα+1kT − 1< 1 for all x ∈ [0, 0.75]

and 0< α< 1. As all the hypotheses of �eorem 3 are sat-
isfied, a unique solution for (30) exists.

By using �eorem 4, we obtain a solution of (30) for
different values of α. We assume that u0(x, t) � u(x, 0) � 0
and by using Mathematica software, the first three iterative
solutions are obtained as follows:

u1(x, t) �
1

4Γ(α)
􏽚

t

0
(x − τ)

α−1 sin(x)/3 + 􏽚
t

0
u0 x, u0(x, r)( 􏼁dr􏼠 􏼡dτ

�
t
α

3αΓ(α)
sin(x),

(32)

u2(x, t) �
1

4Γ(α)
􏽚

t

0
(x − τ)

α−1 sin(x)

3
+ 􏽚

t

0
u1 x, u1(x, r)( 􏼁dr􏼠 􏼡dτ

�
3−α−1

t
α sin(x) 2 × 3αΓ α2 + α + 2􏼐 􏼑 + Γ α2 + 2􏼐 􏼑t

α2+1
(sin(x)/Γ(α + 1))

α
􏼒 􏼓

2Γ(α + 1)Γ α2 + α + 2􏼐 􏼑
,

(33)
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u3(x, t) �
1

4Γ(α)
􏽚

t

0
(x − τ)

α−1 sin(x)

3
+ 􏽚

t

0
, u2 x, u2(x, r)( 􏼁dr􏼠 􏼡dτ

�
sin(x)

12Γ(α + 1)Γ(α + 2)Γ α2 + α + 2􏼐 􏼑
3−αΓ α2 + 2􏼐 􏼑t

α+1 sin(x)

Γ(α + 1)
􏼠 􏼡􏼠

α

􏼠

×
2−2α−1 2 × 3αΓ α2 + α + 2( 􏼁 + 4−α2− 1Γ α2 + 2( 􏼁(sin(x)/Γ(α + 1))α􏼐 􏼑

Γ(α + 1)Γ α2 + α + 2( )
⎛⎝ ⎞⎠

α2+α+1

× 3−α−1 sin(x)􏼐 􏼑
α2+α+1

+
4Γ(α + 2)Γ α2 + α + 2􏼐 􏼑t

α
+ 2tΓ α2 + α + 2􏼐 􏼑

Γ(α + 1)Γ α2 + α + 2􏼐 􏼑

× 2−2α−13−α−1
t sin(x) 2 3αΓ α2 + α + 2􏼐 􏼑 + 2−2 α2+1( )Γ α2 + 2􏼐 􏼑􏼒􏼒

×
sin(x)

Γ(α + 1)
􏼠 􏼡

α

􏼡􏼡

α

􏼡.

(34)

�erefore, the third order term iterative solution (30) is
u(x, t) ≈ 􏽐

3
i�1 ui(x, t).

5. Numerical Solutions and Discussion

Table 1 presents numerical solutions for equation (25)
through various values of x, t when α � 0.5, 1. Table 2 in-
cludes numerical values of the iterative solutions for
equation (30) by different values of x, t at α � 0.5, 1. In
Figures 1(a) and 1(b), we plot the graphs of first-order it-
erative solution for (25) using various values of x, t at α �

0.5, 1 respectively. We plot the graph of second-order it-
erative solution for (25) by various values of x, t at α � 0.5, 1
in Figures 2(a) and 2(b), respectively. �e iterative solution

for Example 1 is graphically represented in Figures 3(a) and
3(b) through various points of x, t when α � 0.5, 1, re-
spectively. Figures 4(a) and 4(b) represent the graphs of
solution through various values of t for a fixed value of x �

0.75 when α � 0.5, 1, respectively, for Example 1. �e first-
order iterative solution for Example 2 is graphically rep-
resented in Figures 5(a) and 5(b) through various values of
x, t when α � 0.5, 1, respectively. �e second order of it-
erative solution for Example 2 is graphically represented in
Figures 6(a) and 6(b) by various values of x, t when
α � 0.5, 1, respectively. �e third-order iterative solution for
Example 2 is graphically represented in Figures 7(a) and 7(b)
by various points of x, t at α � 0.5, 1, respectively. �e so-
lution for Example 2 is graphically represented in

Table 1: Numerical values of the iterative solution when q1 � q2 � 0.5, 1 and α � β � 0.5 for Example 2.

x t u0(x, t)
α � 0.5 α � 1 α � 0.5 α � 1

u1(x, t) u2(x, t) u3(x, t) u1(x, t) u2(x, t) u3(x, t) 􏽐
3
i�0 ui 􏽐

3
i�0 ui

0.25
0.25 0.123702 0.011541 2.901×10−6 9.774×10−29 0.003836 3.732×10−9 1.035×10−61 0.135246 0.127538
0.50 0.123702 0.032643 0.000039 1.892×10−23 0.0153421 2.389×10−7 1.138×10−49 0.156384 0.139044
0.75 0.123702 0.059970 0.000179 2.342×10−20 0.034520 2.721×10−6 1.258×10−42 0.18385 158224

0.50
0.25 0.239713 0.021840 0.000014 1.700×10−25 0.007258 2.470×10−8 5.750×10−56 0.261567 0.246971
0.50 0.239713 0.061772 0.000188 3.291×10−20 0.029033 1.581×10−6 6.322×10−44 0.301673 0.268747
0.75 0.239713 0.113483 0.000859 4.073×10−17 0.065323 0.000018 6.991×10−37 0.354055 0.305054

0.75
0.25 0.340819 0.029821 0.000030 5.667×10−24 0.003836 6.038×10−8 3.002×10−53 0.370669 0.350730
0.50 0.340819 0.084346 0.000393 1.097×10−18 0.039642 3.865×10−6 3.301×10−41 0.425558 0.380465
0.75 0.340819 0.154953 0.001797 1.358×10−15 0.089194 0.000044 3.649×10−34 0.497569 0.430058

Table 2: Numerical values of the iterative solutions when q1 � q2 � 0.5, 1 and α � β � 0.5 for Example 1.

x t
α � 0.5 α � 1 α � 0.5 α � 1

u1(x, t) u2(x, t) u3(x, t) u1(x, t) u2(x, t) u3(x, t) 􏽐
3
i�1 ui 􏽐

3
i�0 ui

0.25
0.25 0.0465276 0.047411 0.047483 0.020617 0.020635 0.020644 0.141421 0.061895
0.50 0.065800 0.068773 0.068501 0.041234 0.041376 0.041340 0.20307 0.123950
0.75 0.080588 0.086632 0.085550 0.061851 0.062329 0.062090 0.25277 0.186270

0.50
0.25 0.090162 0.092546 0.092761 0.039952 0.040018 0.040052 0.275470 0.120023
0.50 0.127509 0.135527 0.134859 0.079904 0.080436 0.080304 0.397895 0.240645
0.75 0.156166 0.172468 0.169670 0.119856 0.121652 0.120756 0.498304 0.362264

0.75
0.25 0.128191 0.132233 0.132637 0.020617 0.056938 0.057005 0.393061 0.170746
0.50 0.181290 0.194884 0.193864 0.113606 0.114682 0.114415 0.570037 0.342704
0.75 0.222034 0.249672 0.245134 0.170410 0.174040 0.172229 0.716839 0.516678
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Figure 1: �e graphs of the first-order iterative solution u1(x, t) for (25) through various values of x, t at α � 0.5, 1, respectively. (a) �e
graph of first-order iterative solution for (25) through various values of x, t at α � 0.5. (b) �e graph of the first-order iterative solution for
(25) through various values of x, t at α � 1.
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Figure 3: �e graphs of the approximate iterative solution u(x, t) for (25) through various values of x, t at α � 0.5, 1, respectively. (a) �e
graph of the approximate iterative solution u(x, t) for (25) through various values of x, t at α � 0.5. (b) �e graph of the approximate
iterative solution u(x, t) for (25) through various values of x, t at α � 1.
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Figure 2: �e graphs of the second-order iterative solution u2(x, t) for (25) through various values of x, t at α � 0.5, 1, respectively. (a) �e
graph of the second-order iterative solution for (25) through various values of x, t at α � 0.5. (b) �e graph of the second-order iterative
solution for (25) through various values of x, t at α � 1.
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Figure 5: �e graphs of the first-order iterative solution u1(x, t) for (30) through various values of x, t at α � 0.5, 1, respectively. (a) �e
graph of first-order iterative solution u1(x, t) for (30) through various values of x, t at α � 0.5. (b) �e graph of the first-order iterative
solution u1(x, t) for (30) through various values of x, t at α � 1.
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Figure 4: �e graphical comparison of the iterative solutions for (25) through various values of t at x � 0.75 and α � 0.5, 1, respectively.
(a) �e graphical comparison of the iterative solutions for (25) through various values of t at x � 0.75 and α � 0.5. (b) �e graphical
comparison of the iterative solutions for (25) through various values of t at x � 0.75 and α � 1.
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Figure 6:�e graphs of second-order iterative solution u2(x, t) for (30) through various points x, t at α � 0.5, 1, respectively. (a) �e graph
of second-order iterative solution u2(x, t) for (30) through various values of x, t at α � 0.5. (b) �e graph of second-order iterative solution
u2(x, t) for (30) through various values of x, t at α � 1.
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Figure 7: �e graphs of the third-order iterative solution u3(x, t) for (30) through various values of x, t at α � 0.5, 1, respectively. (a) �e
graph of third-order iterative solution u3(x, t) for (30) through various values of x, t at α � 0.5. (b) �e graph of the third-order iterative
solution u3(x, t) for (30) through various values of x, t at α � 1.
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Figure 8: �e graphs of the third-order approximate iterative solution u(x, t) for (30) through various values of x, t at α � 0.5, 1, re-
spectively. (a) �e graph of the approximate iterative solution u(x, t) for (30) through various values of x, t at α � 0.5. (b) �e graph of the
approximate iterative solution u(x, t) for (30) through various values of x, t at α � 1.
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Figure 9: �e graphical comparison of solutions for (30) through various values of t at x � 0.75, α � 0.5, 1, respectively. (a) �e graphical
comparison of solutions for (30) through various values of t at x � 0.75; α � 0.5. (b)�e graphical comparison of solutions for (30) through
various values of t at x � 0.75; α � 1.
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Figures 8(a) and 8(b) using various points of x, t when
α � 0.5, 1, respectively. In Figures 9(a) and 9(b), we plot the
graphs of the solution through different values of t for a
fixed value of x � 0.75 when α � 0.5, 1, respectively, for
Example 2.

6. Conclusion

In this paper, we introduced a model of FPIDEs. �e
proposed model is iterative with fractional derivative, which
can be used in neural networks and help us to describe how
the input data can be accessed. For instance, for subdiffusion
in the porous media, fractional-order derivatives determine
the decaying rate of the breakthrough curve for long-term
observations. Moreover, new results on the local existence,
uniqueness, and stability analysis of the solution for the
proposed model were introduced. Furthermore, we ex-
tended the method of successive approximations to solve
FPIDEs with memory terms subject to initial conditions in a
Banach space. �is extension derives good approximations
and reliable techniques to handle iterative FPIDEs. New
solutions for Volterra types of iterative FPIDEs were in-
troduced. �e numerical solutions were successfully ob-
tained which confirm the presented results.
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In this paper, a new class of functions, namely, exponentially (α, h − m) − p-convex functions is introduced to unify various
classes of functions already de�ned in the subject of convex analysis. By using this class of functions, generalized versions of well
known fractional integral inequalities of Hadamard and Fejér–Hadamard type are obtained. �e results of this paper generate
fractional integral inequalities of Hadamard and Fejér–Hadamard type for various types of convex and exponentially convex
functions simultaneously.

1. Introduction and Preliminary Results

Inequalities are important tools for mathematical modeling
of problems that occur in the diverse �elds of science and
engineering. Convex functions are very useful in establishing
new and generalized inequalities. For example, Jensen’s
inequality for convex functions is one of themost celebrating
inequalities in the literature. Many classical inequalities are
direct consequences of Jensen’s inequality. Motivated from
the properties and representations of convex functions,
researchers have published a lot of new de�nitions of
functions which are usually utilized for extensions, re�ne-
ments, and generalizations of well known inequalities. In
recent decades, it becomes a fashion for authors to generalize
the classical concepts related to ordinary derivatives and
integrals via fractional integral/derivative operators. �ese
techniques are used frequently in generalizing the classical
mathematical inequalities. For a detailed study, we refer the
readers to [1–13].

�e goal of this paper is to establish general Rie-
mann–Liouville fractional integral inequalities of Hadamard
and Fejér–Hadamard type by de�ning a new class of
functions which will concurrently hold for many kinds of
convex and exponentially convex functions. Next, we give
de�nitions of Riemann–Liouville fractional integrals which
we will utilize to establish main results. After that we will
give de�nition of convex function with a detailed discussion
on related de�nitions.

De�nition 1 (see [14]). Let f ∈ L1[a, b]. �en, the left- and
right-sided Riemann–Liouville fractional integrals of f of
order τ ∈ R (τ > 0) are given as follows:

Iτa+f(x) �
1
Γ(τ)

∫
x

a
(x − t)τ− 1f(t)dt, x> a, (1)

Iτb− f(x) �
1
Γ(τ)

∫
b

x
(t − x)τ− 1f(t)dt, x< b, (2)
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where Γ(·) is the gamma function.

Definition 2 (see [15]). A real-valued function f: [a, b]

⟶ R is called convex if the following inequality holds:

f(tx +(1 − t)y)≤ tf(x) +(1 − t)f(y),

∀x, y ∈ [a, b], t ∈ [0, 1].
(3)

)ere are many kinds of functions which have been
defined inspiring by inequality (3). For example, functions,
namely, p-convex [16], h-convex [17], m-convex [15],
s-convex [18], harmonically convex [6], and many others are
defined just by convenient possible modifications in the
inequality (3). Moreover, (s, m)-convex [19], (α, m)-convex
[20], (h − m)-convex [21], (α, h − m)-convex [22], and
(p, h)-convex [3] functions have been defined elegantly after
the definition of convex function. Further, in [23], the notion
of (α, h − m) − p-convex function is defined which unifies
all the aforementioned convexities.

)ere also exists a class of exponentially convex func-
tions stated as follows.

Definition 3 (see [24]). A real-valued function f: J ⊂
R⟶ R+ is called exponentially convex on J if the following
inequality holds:

f(tx +(1 − t)y)≤
tf(x)

e
ηx +

(1 − t)f(y)

e
ηy ,

t ∈ [0, 1],∀x, y ∈ J, η ∈ R.

(4)

)e term exponentially convex function is used likewise
to convex function, and notions of exponentially p-convex
[25], exponentially h-convex [26], exponentially s-convex
[25] have been introduced. Also, definitions of exponentially
(s, m)-convex [27], exponentially (α, m)-convex [26], ex-
ponentially (h − m)-convex [26], exponentially
(α, h − m)-convex [28], and exponentially (p, h)-convex
[29] functions have been published.

)e exponentially (α, h − m)-convex function is defined
as follows.

Definition 4 (see [28]). Let J⊆R be an interval containing
(0, 1), and let h: J⟶ R be a nonnegative function. )en, a
function f: I⟶ R on an interval of real line is said to be
exponentially (α, h − m)-convex, if for all x, y ∈ I, t ∈ (0, 1),
α, m ∈ [0, 1], and η ∈ R, the following inequality holds:

f(tx + m(1 − t)y)≤
h t

α
( 􏼁f(x)

e
ηu1

+
mh 1 − t

α
( 􏼁f(y)

e
ηy . (5)

)e following example is important to distinguish an
exponentially convex function from convex function.

Example 1 (see [30]). )e function f(x) � x exp(− x) is
exponentially (1, Id − 1)-convex function but not
(1, Id − 1)-convex function. More precisely the function f is

exponentially convex function on [0,∞) but not a convex
function on this domain.

All the aforementioned definitions have been used to
derive Hadamard and Fejér–Hadamard type inequalities.
We are motivated to combine all types of convexities and
exponential convexities in a single definition. We will define
exponentially (α, h − m) − p-convex function and prove
Hadamard and Fejér–Hadamard type inequalities which will
unify a plenty of classical inequalities.

)e paper is organized as follows: In Section 2, a new
class of functions will be called exponentially
(α, h − m) − p-convex function. Some new definitions will
be deduced in connection with existing definitions in the
literature of mathematical inequalities. In Section 3, we will
present the Hadamard and Fejér–Hadamard inequalities for
newly defined functions via Riemann–Liouville fractional
integrals. We will identify a number of implications of the
results established in this section.

2. Exponentially(α, h−m)−p-ConvexFunction
and Deduced Definitions

We define exponentially (α, h − m) − p-convex function as
follows.

Definition 5. Let J⊆R be an interval containing (0, 1), and
let h: J⟶ R be a nonnegative function. Let I ⊂ (0,∞)

be a real interval and p ∈ R∖ 0{ }. A function f: I⟶ R

is called exponentially (α, h − m) − p-convex if for
t ∈ (0, 1), η ∈ R and (α, m) ∈ [0, 1]2, the following in-
equality holds:

f ta
p

+ m(1 − t)b
p

( 􏼁
1/p

􏼒 􏼓≤
h t

α
( 􏼁f(a)

e
ηa +

mh 1 − t
α

( 􏼁f(b)

e
ηb

,

(6)

where a, b ∈ I provided (tap + m(1 − t)bp)1/p ∈ I.

Remark 1. )e following convex functions are reproduced
from above definition:

(i) In Definition 5, if we put p � − 1, m � α � 1, and
η � 0, we have harmonically h-convex function
reproduced (see Definition 2.10 in [31]).

(ii) In Definition 5, for p � 1 and η � 0, we have
(α, h − m)-convex function reproduced (see Def-
inition 4.5 in [20]).

(iii) In Definition 5, for α � m � 1 and η � 0, we have
(p, h)-convex function reproduced (see [3]).

(iv) In Definition 5, for p � 1, exponentially
(α, h − m)-convex function is reproduced (see
Definition 1 in [26]). For further deduced func-
tions, see Remark 1 in [26].

(v) In Definition 5, for α � p � 1, exponentially
(h − m)-convex function is reproduced (see Def-
inition 2 in [26]).
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(vi) In Definition 5, for p � 1 and h(t) � t, exponen-
tially (α, m)-convex function is reproduced (see
Definition 3 in [26]).

(vii) In Definition 5, for p � − 1, α � m � 1, h(t) � ts,
and η � 0, we have harmonic s-convex function in
second sense reproduced (see Remark 1 in [32]).

(viii) In Definition 5, for p � − 1, α � m � 1, h(t) � t,
and η � 0, we have harmonic convex function
reproduced (see [33]).

(ix) In Definition 5, for p � 1, α � 1, h(t) � ts, and
η � 0, we have (s, m)-convex function in second
sense reproduced (see Definition 1.2 in [19]).

(x) In Definition 5, for p � − 1, α � 1, h(t) � t, and
η � 0, we have m-HA-convex function reproduced
(see Definition 2 in [34]).

(xi) In Definition 5, for p � − 1, h(t) � t, and η � 0,
(α, m)-HA-convex function is reproduced (see
Definition 2.1 in [35]).

For α � 1 in (6), we get exponentially
(h − m) − p-convex function as follows:

f ta
p

+ m(1 − t)b
p

( 􏼁
1/p

􏼒 􏼓≤
h(t)f(a)

e
ηa +

mh(1 − t)f(b)

e
ηb

.

(7)

For h(t) � t in (6), we get exponentially
(α, m) − p-convex function as follows:

f ta
p

+ m(1 − t)b
p

( 􏼁
1/p

􏼒 􏼓≤
t
α
f(a)

e
ηa +

m 1 − t
α

( 􏼁f(b)

e
ηb

. (8)

For m � 1 in (6), we get exponentially (α, h) − p-convex
function as follows:

f ta
p

+(1 − t)b
p

( 􏼁
1/p

􏼒 􏼓≤
h t

α
( 􏼁f(a)

e
ηa +

h 1 − t
α

( 􏼁f(b)

e
ηb

. (9)

For α � 1 and h(t) � ts in (6), we get exponentially
(s, m) − p-convex function as follows:

f ta
p

+ m(1 − t)b
p

( 􏼁
1/p

􏼒 􏼓≤
t
s
f(a)

e
ηa +

m(1 − t)
s
f(b)

e
ηb

. (10)

For h(t) � ts in (6), we get exponentially
(s, m) − p-Godunova–Levin function of second kind as
follows:

f ta
p

+ m(1 − t)b
p

( 􏼁
1/p

􏼒 􏼓≤
1
t
s

f(a)

e
ηa +

m

(1 − t)
s

f(b)

e
ηb

. (11)

For m � α � 1 and h(t) � 1 in (6), we get exponentially
(p, P)-convex function as follows:

f ta
p

+(1 − t)b
p

( 􏼁
1/p

􏼒 􏼓≤
f(a)

e
ηa +

f(b)

e
ηb

. (12)

For α � m � 1, p � − 1, and h(t) � (1/t) in (6), we get
exponentially Godunova–Levin type exponentially har-
monic convex function as follows:

f
ab

tb +(1 − t)a
􏼠 􏼡≤

1
t

f(a)

e
ηa +

1
1 − t

f(b)

e
ηb

. (13)

For α � m � 1, p � − 1, and h(t) � (1/ts) in (6), we get
exponentially harmonic convex function as follows:

f
ab

tb +(1 − t)a
􏼠 􏼡≤

1
t
s

f(a)

e
ηa +

1
(1 − t)

s

f(b)

e
ηb

. (14)

For p � − 1 in (6), we get exponentially (α, h − m)-HA-
convex function as follows:

f
ab

tb + m(1 − t)a
􏼠 􏼡≤

h t
α

( 􏼁f(a)

e
ηa +

mh 1 − t
α

( 􏼁f(b)

e
ηb

. (15)

For p � − 1 and m � 1 in (6), we get exponentially
(α, h)-HA-convex function as follows:

f
ab

tb +(1 − t)a
􏼠 􏼡≤

h t
α

( 􏼁f(a)

e
ηa +

h 1 − t
α

( 􏼁f(b)

e
ηb

. (16)

For p � − 1, m � α � 1, and h(t) � t in (6), we get ex-
ponentially HA-convex function as follows:

f
ab

tb +(1 − t)a
􏼠 􏼡≤

tf(a)

e
ηa +

(1 − t)f(b)

e
ηb

. (17)

For p � − 1 and h(t) � t in (6), we get exponentially
(α, m)-HA-convex function as follows:

f
ab

tb + m(1 − t)a
􏼠 􏼡≤

t
α
f(a)

e
ηa +

m 1 − t
α

( 􏼁f(b)

e
ηb

. (18)

From now to onward, we will use the notation Ep(α, h −

m) for exponentially (α, h − m) − p-convex function.

3. Inequalities of Hadamard Type for
Ep(α, h−m) Function

Theorem 1. Let f: I ⊂ (0,∞)⟶ R be an Ep(α, h − m)

positive function as defined in Definition 5 and
f ∈ L1[a, b], a, b ∈ I, a< b. �en, for (α, m) ∈ (0, 1]2, one
can have fractional integral inequalities for operators (1) and
(2) as follows.

(i) For p> 0, we have
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f
ap + mbp

2
􏼠 􏼡

1/p
⎛⎝ ⎞⎠≤

Γ(τ + 1)

mb
p

− a
p

( 􏼁
τ D1(η)h

1
2α

􏼒 􏼓 I
τ
ap+ f°ξ( 􏼁 mb

p
( 􏼁 + D2(η)m

τ+1
h

2α − 1
2α

􏼠 􏼡 I
τ
bp− f°ξ( 􏼁

a
p

m
􏼠 􏼡􏼠 􏼡

≤ τ D1(η)h
1
2α

􏼒 􏼓
f(a)

e
ηa + D2(η)mh

2α − 1
2α

􏼠 􏼡
f(b)

e
ηb

􏼠 􏼡 􏽚
1

0
t
τ− 1

h t
α

( 􏼁dt􏼨

+m D1(η)h
1
2α

􏼒 􏼓
f(b)

e
ηb

+ D2(η)mh
2α − 1
2α

􏼠 􏼡
f a/m2

􏼐 􏼑

e
ηa/m2( )

⎛⎝ ⎞⎠ 􏽚
1

0
t
τ− 1

h 1 − t
α

( 􏼁dt
⎫⎬

⎭,

(19)

where ξ(z) � z1/p, z ∈ [ap, mbp],D1(η) � e− ηbm1/p for η< 0,
D1(η) � e− ηa for η≥ 0, D2(η) � e− η(a/(m(1/p))) for η> 0, and
D2(η) � e− ηb for η≤ 0.

(ii) For p< 0, we have

f
ap + mbp

2
􏼠 􏼡

1/p
⎛⎝ ⎞⎠≤

Γ(τ + 1)

a
p

− mb
p

( 􏼁
τ D3(η)h

1
2α

􏼒 􏼓 I
τ
ap− f°ξ( 􏼁 mb

p
( 􏼁 + D4(η)m

τ+1
h

2α − 1
2α

􏼠 􏼡 I
τ
bp+ f°ξ( 􏼁

a
p

m
􏼠 􏼡􏼠 􏼡

≤ τ D3(η)h
1
2α

􏼒 􏼓
f(a)

e
ηa + D4(η)mh

2α − 1
2α

􏼠 􏼡
f(b)

e
ηb

􏼠 􏼡 􏽚
1

0
t
τ− 1

h t
α

( 􏼁dt􏼨

+m D3(η)h
1
2α

􏼒 􏼓
f(b)

e
ηb

+ D4(η)mh
2α − 1
2α

􏼠 􏼡
f a/m2

􏼐 􏼑

e
ηa/m2( )

⎛⎝ ⎞⎠ 􏽚
1

0
t
τ− 1

h 1 − t
α

( 􏼁dt
⎫⎬

⎭ ,

(20)

where ξ(z) � z1/p, z ∈ [mbp, ap],D3(η) � e− ηbm1/p for η< 0,
D3(η) � e− ηa for η≥ 0, D4(η) � e− η(a/m1/p) for η< 0, and
D4(η) � e− ηb for η≥ 0.

Proof. (i) By using (6), one can have the following
inequality:

f
xp + myp

2
􏼠 􏼡

1/p
⎛⎝ ⎞⎠≤ h

1
2α

􏼒 􏼓
f(x)

e
ηx + mh

2α − 1
2α

􏼠 􏼡
f(y)

e
ηy .

(21)

For x � (tap + m(1 − t)bp)1/p and y � (tbp + (1 − t)

(ap/m))1/p in (21), we get

f
ap + mbp

2
􏼠 􏼡

1/p
⎛⎝ ⎞⎠≤ h

1
2α

􏼒 􏼓

f ta
p

+ m(1 − t)b
p

( 􏼁
1/p

􏼒 􏼓

e
η tap+m(1− t)bp( )

1/p( )
+ mh

2α − 1
2α

􏼠 􏼡

f tb
p

+(1 − t) a
p/m( 􏼁( 􏼁

1/p
􏼒 􏼓

e
η tbp+(1− t) ap/m( )( )

1/p( )
. (22)

Multiplying the above inequality with tτ− 1 on both sides
and integrating over [0, 1], we have

f
ap + mbp

2
􏼠 􏼡

1/p
⎛⎝ ⎞⎠ 􏽚

1

0
t
τ− 1dt≤ h

1
2α

􏼒 􏼓 􏽚
1

0

t
τ− 1

f ta
p

+ m(1 − t)b
p

( 􏼁
1/p

􏼒 􏼓

e
η tap+m(1− t)bp( )

1/p( )
dt

+ mh
2α − 1
2α

􏼠 􏼡 􏽚
1

0

t
τ− 1

f tb
p

+(1 − t) a
p/m( 􏼁( 􏼁

1/p
􏼒 􏼓

e
η tbp+(1− t) ap/m( )( )

1/p( )
dt.

(23)

Set tap + m(1 − t)bp � x, that is, t � (mbp − x)/(mbp −

ap) and tbp + (1 − t)(ap/m) � y, that is, t � (y − (ap /m))/
(bp− (ap/m)) in right hand side of the above inequality.
)en, after some calculations, one can obtain the first in-
equality of (19).
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On the other hand, by using (6) on the right hand side of
(22), one can obtain the inequality as follows:

h
1
2α

􏼒 􏼓

f ta
p

+ m(1 − t)b
p

( 􏼁
1/p

􏼒 􏼓

e
η tap+m(1− t)bp( )

1/p( )
+ mh

2α − 1
2α

􏼠 􏼡

f tb
p

+(1 − t) a
p/m( 􏼁( 􏼁

1/p
􏼒 􏼓

e
η tbp+(1− t) ap/m( )( )

1/p( )

≤
h 1/2α( 􏼁

e
η tap+m(1− t)bp( )

1/p( )
h t

α
( 􏼁

f(a)

e
ηa +

mh 1 − t
α

( 􏼁f(b)

e
ηb

􏼠 􏼡

+
mh 2α − 1( 􏼁/2α( 􏼁

e
η tbp+(1− t) ap/m( )( )

1/p( )

h t
α

( 􏼁f(b)

e
ηb

+
mh 1 − t

α
( 􏼁f a/m2

􏼐 􏼑

e
ηa/m2( )

⎛⎝ ⎞⎠.

(24)

Multiplying the above inequality with tτ− 1, by inte-
grating over [0, 1], one can get

D1(η)h
1
2α

􏼒 􏼓 􏽚
1

0
t
τ− 1

f ta
p

+ m(1 − t)b
p

( 􏼁
1/p

􏼒 􏼓dt

+ D2(η)mh
2α − 1
2α

􏼠 􏼡 􏽚
1

0
t
τ− 1

f tb
p

+(1 − t)
ap

m
􏼠 􏼡

1/p
⎛⎝ ⎞⎠dt

≤ D1(η)h
1
2α

􏼒 􏼓
f(a)

e
ηa + D2(η)mh

2α − 1
2α

􏼠 􏼡
f(b)

e
ηb

􏼠 􏼡 􏽚
1

0
t
τ− 1

h t
α

( 􏼁dt

+ m D1(η)h
1
2α

􏼒 􏼓
f(b)

e
ηb

+ D2(η)mh
2α − 1
2α

􏼠 􏼡
f a/m2

􏼐 􏼑

e
ηa/m2( )

⎛⎝ ⎞⎠ 􏽚
1

0
t
τ− 1

h 1 − t
α

( 􏼁dt.

(25)

Set tap + m(1 − t)bp � x, that is. t � (mbp − x)/(mbp −

ap) and tbp + (1 − t)(ap/m) � y, that is,
t � (y − (ap/m))/(bp − (ap/m)) in (25). )en, after some
calculations, the second inequality of (19) is obtained.

(ii) Proof is similar as (i). □

Remark 2.
(i) In )eorem 1 (i), if we put α � m � 1, h(t) � t,

η � 0, and p � 1, then )eorem 2 in [12] is
reproduced.

(ii) In )eorem 1 (i), if we put α � m � 1, p � 1,
h(t) � t, η � 0, and τ � 1, then classical Hadamard
inequality is reproduced.

(iii) In )eorem 1 (ii), if we put α � m � 1, h(t) � t,
η � 0, and p � − 1, then )eorem 4 in [8] is
reproduced.

)e other variant of the Hadamard inequality is stated
and proved as follows.

Theorem 2. Let the assumptions of�eorem 1 hold.�en, we
have the following inequalities.

(i) For p> 0, we have

f
ap + mbp

2
􏼠 􏼡

1/p
⎛⎝ ⎞⎠≤ Γ(τ + 1)

2
mbp − ap

􏼒 􏼓
τ

× D1(η)h
1
2α

􏼒 􏼓 I
τ

ap+mbp( )/2( )
+ f ∘ ξ􏼐 􏼑 mb

p
( 􏼁 + D2(η)m

τ+1
h

2α − 1
2α

􏼠 􏼡 I
τ

ap+mbp( )/2m( )
− f°ξ􏼐 􏼑

a
p

m
􏼠 􏼡􏼠 􏼡

≤ τ D1(η)h
1
2α

􏼒 􏼓
f(a)

e
ηa + D2(η)mh

2α − 1
2α

􏼠 􏼡
f(b)

e
ηb

􏼠 􏼡 􏽚
1

0
t
τ− 1

h
t

2
􏼒 􏼓

α
􏼒 􏼓dt􏼨

+m D1(η)h
1
2α

􏼒 􏼓
f(b)

e
ηb

+ D2(η)mh
2α − 1
2α

􏼠 􏼡
f a/m2

􏼐 􏼑

e
ηa/m2( )

⎛⎝ ⎞⎠ 􏽚
1

0
t
τ− 1

h 1 −
t

2
􏼒 􏼓

α
􏼒 􏼓dt

⎫⎬

⎭,

(26)
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where ξ(z) � z1/p, z ∈ [ap, mbp], D1(η), andD2(η) are
same as given in )eorem 1 (i).

(ii) For p< 0, we have

f
ap + mbp

2
􏼠 􏼡

1/p
⎛⎝ ⎞⎠≤ Γ(τ + 1)

2
ap − mbp

􏼒 􏼓
τ

× D3(η)h
1
2α

􏼒 􏼓 I
τ

ap+mbp( )/2( )
− f ∘ ξ􏼐 􏼑 mb

p
( 􏼁 + D4(η)m

τ+1
h

2α − 1
2α

􏼠 􏼡 I
τ

ap+mbp( )/2m( )
+ f°ξ􏼐 􏼑

a
p

m
􏼠 􏼡􏼠 􏼡

≤ τ D3(η)h
1
2α

􏼒 􏼓
f(a)

e
ηa + D4(η)mh

2α − 1
2α

􏼠 􏼡
f(b)

e
ηb

􏼠 􏼡 􏽚
1

0
t
τ− 1

h
t

2
􏼒 􏼓

α
􏼒 􏼓dt􏼨

+m D3(η)h
1
2α

􏼒 􏼓
f(b)

e
ηb

+ D4(η)mh
2α − 1
2α

􏼠 􏼡
f a/m2

􏼐 􏼑

e
ηa/m2( )

⎛⎝ ⎞⎠ 􏽚
1

0
t
τ− 1

h 1 −
t

2
􏼒 􏼓

α
􏼒 􏼓dt

⎫⎬

⎭,

(27)

where ξ(z) � z(1/p), z ∈ [mbp, ap], D3(η), andD4(η) are
same as given in )eorem 1 (ii).

Proof. (i) For x � ((t/2)ap + m(1 − (t/2))bp)1/p and y �

((t/2)bp + (1 − (t/2))(ap/m))1/p in (21), we get

f
ap + mbp

2
􏼠 􏼡

1/p
⎛⎝ ⎞⎠≤ h

1
2α

􏼒 􏼓

f (t/2)a
p

+ m(1 − (t/2))b
p

( 􏼁
1/p

􏼒 􏼓

e
η (t/2)ap+m(1− (t/2))bp( )

1/p( )
+ mh

2α − 1
2α

􏼠 􏼡

f (t/2)b
p

+(1 − (t/2)) a
p/m( 􏼁( 􏼁

1/p
􏼒 􏼓

e
η (t/2)bp+(1− (t/2)) ap/m( )( )

1/p( )
. (28)

Multiplying the above inequality with tτ− 1 on both sides
and integrating over [0, 1], we have

f
ap + mbp

2
􏼠 􏼡

1/p
⎛⎝ ⎞⎠ 􏽚

1

0
t
τ− 1dt≤ h

1
2α

􏼒 􏼓 􏽚
1

0

t
τ− 1

f (t/2)a
p

+ m(1 − (t/2))b
p

( 􏼁
1/p

􏼒 􏼓

e
η (t/2)ap+m(1− (t/2))bp( )

1/p( )
dt

+ mh
2α − 1
2α

􏼠 􏼡 􏽚
1

0

t
τ− 1

f (t/2)b
p

+(1 − (t/2)) a
p/m( 􏼁( 􏼁

1/p
􏼒 􏼓

e
η (t/2)bp+(1− (t/2)) ap/m( )( )

1/p( )
dt.

(29)

Set (t/2)ap + m(1 − (t/2))bp � x, that is, (t/2) � (mbp −

x)/(mbp − ap) and (1 − (t/2))(ap/m) + (t/2)bp � y, that is,
(t/2) � (y − (ap/m))/(bp − (ap/m)) in right hand side of
the above inequality. )en, after some calculations, one can
obtain the first inequality of (26).

On the other hand, by applying the Ep(α, h − m) of f,
from right hand side of (28), one can obtain the following
inequality:

h
1
2α

􏼒 􏼓

f (t/2)a
p

+ m(1 − (t/2))b
p

( 􏼁
1/p

􏼒 􏼓

e
η (t/2)ap+m(1− (t/2))bp( )

1/p( )
+ mh

2α − 1
2α

􏼠 􏼡

f (t/2)b
p

+(1 − (t/2)) a
p/m( 􏼁( 􏼁

1/p
􏼒 􏼓

e
η (t/2)bp+(1− (t/2)) ap/m( )( )

1/p( )

≤
h 1/2α( 􏼁

e
η (t/2)ap+m(1− (t/2))bp( )

1/p( )
h

t

2
􏼒 􏼓

α
􏼒 􏼓

f(a)

e
ηa + mh 1 −

t

2
􏼒 􏼓

α
􏼒 􏼓

f(b)

e
ηb

􏼠 􏼡

+
mh 2α − 1( 􏼁/2α( 􏼁

e
η (t/2)bp+(1− (t/2)) ap/m( )( )

1/p( )
h

t

2
􏼒 􏼓

α
􏼒 􏼓

f(b)

e
ηb

+ mh 1 −
t

2
􏼒 􏼓

α
􏼒 􏼓

f a/m2
􏼐 􏼑

e
ηa/m2( )

⎛⎝ ⎞⎠.

(30)
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Multiplying tτ− 1 on both sides of (30), then by inte-
grating on [0, 1], one can get

D1(η)h
1
2α

􏼒 􏼓 􏽚
1

0
t
τ− 1

f
t

2
a

p
+ m 1 −

t

2
􏼒 􏼓b

p
􏼒 􏼓

1/p
􏼠 􏼡dt

+ D2(η)mh
2α − 1
2α

􏼠 􏼡 􏽚
1

0
t
τ− 1

f
t

2
b

p
+ 1 −

t

2
􏼒 􏼓

ap

m
􏼠 􏼡

1/p
⎛⎝ ⎞⎠dt

≤ D1(η)h
1
2α

􏼒 􏼓
f(a)

e
ηa + D2(η)mh

2α − 1
2α

􏼠 􏼡
f(b)

e
ηb

􏼠 􏼡 􏽚
1

0
t
τ− 1

h
t

2
􏼒 􏼓

α
􏼒 􏼓dt

+ m D1(η)h
1
2α

􏼒 􏼓
f(b)

e
ηb

+ D2(η)mh
2α − 1
2α

􏼠 􏼡
f a/m2

􏼐 􏼑

e
ηa/m2( )

⎛⎝ ⎞⎠ 􏽚
1

0
t
τ− 1

h 1 −
t

2
􏼒 􏼓

α
􏼒 􏼓dt.

(31)

Set (t/2)ap + m(1 − (t/2))bp � x, that is, (t/2) � (mbp −

x)/(mbp − ap) and (1 − (t/2))(ap/m) + (t/2)bp � y, that is,
(t/2) � (y − (ap/m))/(bp − (ap/m)) in (31). )en, after
some calculations, the second inequality of (26) is obtained.

(ii) Proof is similar as (i). □

Remark 3.
(i) In )eorem 2 (i), if we put α � 1 � m, η � 0, p> 0,

and h(t) � t, then )eorem 2.1(i) in [36] is
reproduced.

(ii) In )eorem 2 (ii), if we put α � 1 � m, η � 0, p< 0,
and h(t) � t, then )eorem 2.1(ii) in [36] is
reproduced.

(iii) In )eorem 2 (i), if we put α � 1 � m, p � 1, η � 0,
and h(t) � t, then Corollary 2.1 in [36] is
reproduced.

Remark 4. From )eorems 1 and 2, one can deduce results
for convex, exponentially convex, Ep(1, Id − 1),
Ep(1, Id − m), Ep(1, h − 1), Ep(α, Id − m), Ep(1, h − m),
and Ep(1, h − 1) functions.

4. Fejér–Hadamard Type Inequalities for
Ep(α, h−m) Function

Theorem 3. Let f: I⟶ R be an Ep(α, h − m) positive
function as given in Definition 5 and
f((ap + mbp − x)/m) � f(x), a, b ∈ I, a< b, m≠ 0. If
g: I⟶ R is a positive function and f, g ∈ L1[a, b], then one
can have fractional integral inequalities for operators (1) and
(2) as follows.

(i) For p> 0, we have

f
ap + mbp

2
􏼠 􏼡

1/p
⎛⎝ ⎞⎠ I

τ
ap+ g ∘ ξ( 􏼁 mb

p
( 􏼁

≤D1(η)h
1
2α

􏼒 􏼓 I
τ
ap+ fg ∘ ξ( 􏼁 mb

p
( 􏼁 + D2(η)m

τ+1
h

2α − 1
2α

􏼠 􏼡 I
τ
bp− fg°ξ( 􏼁

a
p

m
􏼠 􏼡

≤
mb

p
− a

p
( 􏼁

τ

Γ(τ)
D1(η)h

1
2α

􏼒 􏼓
f(a)

e
ηa + D2(η)mh

2α − 1
2α

􏼠 􏼡
f(b)

e
ηb

􏼠 􏼡􏼨

× 􏽚
1

0
t
τ− 1

g ta
p

+ m(1 − t)b
p

( 􏼁
1/p

􏼒 􏼓h t
α

( 􏼁dt

+ m D1(η)h
1
2α

􏼒 􏼓
f(b)

e
ηb

+ D2(η)mh
2α − 1
2α

􏼠 􏼡
f a/m2

􏼐 􏼑

e
ηa/m2( )

⎛⎝ ⎞⎠

× 􏽚
1

0
t
τ− 1

g ta
p

+ m(1 − t)b
p

( 􏼁
1/p

􏼒 􏼓h 1 − t
α

( 􏼁dt􏼩,

(32)
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where ξ(z) � z1/p, z ∈ [ap, mbp], fg ∘ ξ � (f ∘ ξ)(g ∘ ξ),
D1(η), andD2(η) are same as given in )eorem 1 (i).

(ii) For p< 0, we have

f
ap + mbp

2
􏼠 􏼡

1/p
⎛⎝ ⎞⎠ I

τ
ap− g ∘ ξ( 􏼁 mb

p
( 􏼁

≤D3(η)h
1
2α

􏼒 􏼓 I
τ
ap− fg ∘ ξ( 􏼁 mb

p
( 􏼁 + D4(η)m

τ+1
h

2α − 1
2α

􏼠 􏼡 I
τ
bp+ fg ∘ ξ( 􏼁

a
p

m
􏼠 􏼡

≤
a

p
− mb

p
( 􏼁

τ

Γ(τ)
D3(η)h

1
2α

􏼒 􏼓
f(a)

e
ηa + D4(η)mh

2α − 1
2α

􏼠 􏼡
f(b)

e
ηb

􏼠 􏼡􏼨

× 􏽚
1

0
t
τ− 1

g ta
p

+ m(1 − t)b
p

( 􏼁
1/p

􏼒 􏼓h t
α

( 􏼁dt

+ m D3(η)h
1
2α

􏼒 􏼓
f(b)

e
ηb

+ D4(η)mh
2α − 1
2α

􏼠 􏼡
f a/m2

􏼐 􏼑

e
ηa/m2( )

⎛⎝ ⎞⎠

× 􏽚
1

0
t
τ− 1

g ta
p

+ m(1 − t)b
p

( 􏼁
1/p

􏼒 􏼓h 1 − t
α

( 􏼁dt􏼩,

(33)

where ξ(z) � z1/p, z ∈ [mbp, ap], fg ∘ ξ � (f ∘ ξ)(g ∘ ξ),
D3(η), andD4(η) are same as given in )eorem 1 (ii).

Proof. (i) Multiplying (22) by tτ− 1g((tap + m(1 − t)bp)1/p),
then making integration on [0, 1], the following inequality is
yielded:

f
ap + mbp

2
􏼠 􏼡

1/p
⎛⎝ ⎞⎠ 􏽚

1

0
t
τ− 1

g ta
p

+ m(1 − t)b
p

( 􏼁
1/p

􏼒 􏼓dt

≤D1(η)h
1
2α

􏼒 􏼓 􏽚
1

0
t
τ− 1

f ta
p

+ m(1 − t)b
p

( 􏼁
1/p

􏼒 􏼓g ta
p

+ m(1 − t)b
p

( 􏼁
1/p

􏼒 􏼓dt

+ D2(η)mh
2α − 1
2α

􏼠 􏼡 􏽚
1

0
t
τ− 1

f tb
p

+(1 − t)
ap

m
􏼠 􏼡

1/p
⎛⎝ ⎞⎠g ta

p
+ m(1 − t)b

p
( 􏼁

1/p
􏼒 􏼓dt.

(34)

For tap + m(1 − t)bp � x, that is, (1 − t)(ap/m) + tbp �

((ap + mbp − x)/m) in (34) and then utilizing condition
f(x) � f((ap + mbp − x)/m) and equations (1) and (2), the
first inequality of (32) can be achieved.

Now, multiplying tτ− 1g((tap + m(1 − t)bp)1/p) with
(24) and integrating over [0, 1], we have

D1(η)h
1
2α

􏼒 􏼓 􏽚
1

0
t
τ− 1

f ta
p

+ m(1 − t)b
p

( 􏼁
1/p

􏼒 􏼓g ta
p

+ m(1 − t)b
p

( 􏼁
1/p

􏼒 􏼓dt

+ D2(η)mh
2α − 1
2α

􏼠 􏼡 􏽚
1

0
t
τ− 1

f tb
p

+(1 − t)
ap

m
􏼠 􏼡

1/p
⎛⎝ ⎞⎠g ta

p
+ m(1 − t)b

p
( 􏼁

1/p
􏼒 􏼓dt
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≤ D1(η)h
1
2α

􏼒 􏼓
f(a)

e
ηa + D2(η)mh

2α − 1
2α

􏼠 􏼡
f(b)

e
ηb

􏼠 􏼡 􏽚
1

0
t
τ− 1

g ta
p

+ m(1 − t)b
p

( 􏼁
1/p

􏼒 􏼓h t
α

( 􏼁dt

+ m D1(η)h
1
2α

􏼒 􏼓
f(b)

e
ηb

+ D2(η)mh
2α − 1
2α

􏼠 􏼡
f a/m2

􏼐 􏼑

e
ηa/m2( )

⎛⎝ ⎞⎠ 􏽚
1

0
t
τ− 1

g ta
p

+ m(1 − t)b
p

( 􏼁
1/p

􏼒 􏼓h 1 − t
α

( 􏼁dt.

(35)

Again, setting tap + m(1 − t)bp � x, that is,
(1 − t)(ap/m) + tbp � ((ap + mbp − x)/m) in (35) and uti-
lizing condition f(x) � f((ap + mbp − x)/m), then by us-
ing definitions (1) and (2), one can get second inequality of
(32).

(ii) Proof is similar as (i). □

Remark 5.
(i) In )eorem 3 (i), if we put α � m � 1, h(t) � t,

g(x) � 1, η � 0, and p � 1 then)eorem 2 in [12] is
reproduced.

(ii) In )eorem 3 (i), if we put α � m � 1, p � 1,
h(t) � t, g(x) � 1, η � 0, and τ � 1, then the
Hadamard inequality is reproduced.

(iii) In )eorem 3 (i), if we put α � m � 1, p � 1,
h(t) � t, η � 0, and τ � 1 then classical
Fejér–Hadamard inequality is reproduced.

(iv) In )eorem 3 (ii), if we put α � m � 1, h(t) � t,
g(x) � 1, η � 0, and p � − 1, then )eorem 4 in [8]
is reproduced.

(v) In )eorem 3 (ii), if we put α � m � 1, h(t) � t,
η � 0, and p � − 1 then )eorem 5 in [8] is
reproduced.

)e second variant of the Fejér–Hadamard inequality is
stated and proved as follows.

Theorem 4. Let the assumptions of�eorem 3 hold.�en, we
have the following inequalities.

(i) For p> 0, we have

f
ap + mbp

2
􏼠 􏼡

1/p
⎛⎝ ⎞⎠ I

τ
ap+mbp( )/2( )

+ g ∘ ξ􏼐 􏼑 mb
p

( 􏼁

≤D1(η)h
1
2α

􏼒 􏼓 I
τ

ap+mbp( )/2( )+ fg ∘ ξ􏼐 􏼑 mb
p

( 􏼁 + D2(η)m
τ+1

h
2α − 1
2α

􏼠 􏼡 I
τ

ap+mbp( )/2m( )− fg ∘ ξ􏼐 􏼑
a

p

m
􏼠 􏼡

≤
1
Γ(τ)

mbp − ap

2
􏼠 􏼡

τ

D1(η)h
1
2α

􏼒 􏼓
f(a)

e
ηa + D2(η)mh

2α − 1
2α

􏼠 􏼡
f(b)

e
ηb

􏼠 􏼡􏼨

× 􏽚
1

0
t
τ− 1

g
t

2
a

p
+ m 1 −

t

2
􏼒 􏼓b

p
􏼒 􏼓

1/p
􏼠 􏼡h

t

2
􏼒 􏼓

α
􏼒 􏼓dt + m D1(η)h

1
2α

􏼒 􏼓
f(b)

e
ηb

􏼠

+D2(η)mh
2α − 1
2α

􏼠 􏼡
f a/m2

􏼐 􏼑

e
ηa/m2( )

⎞⎠ 􏽚
1

0
t
τ− 1

g
t

2
a

p
+ m 1 −

t

2
􏼒 􏼓b

p
􏼒 􏼓

1/p
􏼠 􏼡h 1 −

t

2
􏼒 􏼓

α
􏼒 􏼓dt

⎫⎬

⎭,

(36)

where ξ(z) � z1/p, z ∈ [ap, mbp], fg ∘ ξ � (f ∘ ξ)(g ∘ ξ),
D1(η), andD2(η) are same as given in )eorem 1 (i).

(ii) For p< 0, we have

f
ap + mbp

2
􏼠 􏼡

1/p
⎛⎝ ⎞⎠ I

τ
ap+mbp( )/2( )− g ∘ ξ􏼐 􏼑 mb

p
( 􏼁

≤D3(η)h
1
2α

􏼒 􏼓 I
τ

ap+mbp( )/2( )− fg ∘ ξ􏼐 􏼑 mb
p

( 􏼁 + D4(η)m
τ+1

h
2α − 1
2α

􏼠 􏼡 I
τ

ap+mbp( )/2m( )+ fg ∘ ξ􏼐 􏼑
a

p

m
􏼠 􏼡
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≤
1
Γ(τ)

ap − mbp

2
􏼠 􏼡

τ

D3(η)h
1
2α

􏼒 􏼓
f(a)

e
ηa + D4(η)mh

2α − 1
2α

􏼠 􏼡
f(b)

e
ηb

􏼠 􏼡􏼨

× 􏽚
1

0
t
τ− 1

g
t

2
a

p
+ m 1 −

t

2
􏼒 􏼓b

p
􏼒 􏼓

1/p
􏼠 􏼡h

t

2
􏼒 􏼓

α
􏼒 􏼓dt + m D3(η)h

1
2α

􏼒 􏼓
f(b)

e
ηb

􏼠

+D4(η)mh
2α − 1
2α

􏼠 􏼡
f a/m2

􏼐 􏼑

e
​ ηa/m2( )

⎞⎠ 􏽚
1

0
t
τ− 1

g
t

2
a

p
+ m 1 −

t

2
􏼒 􏼓b

p
􏼒 􏼓

1/p
􏼠 􏼡h 1 −

t

2
􏼒 􏼓

α
􏼒 􏼓dt

⎫⎬

⎭,

(37)

where ξ(z) � z1/p, z ∈ [mbp, ap], fg ∘ ξ � (f ∘ ξ)(g ∘ ξ),
D3(η), andD4(η) are same as given in )eorem 1 (ii).

Proof. (i) Multiplying (28) by tτ− 1g(((t/2)ap + m

(1 − (t/2))bp)1/p) and integrating over [0, 1], the following
inequality is yielded:

f
ap + mbp

2
􏼠 􏼡

1/p
⎛⎝ ⎞⎠ 􏽚

1

0
t
τ− 1

g
t

2
a

p
+ m 1 −

t

2
􏼒 􏼓b

p
􏼒 􏼓

1/p
􏼠 􏼡dt

≤D1(η)h
1
2α

􏼒 􏼓 􏽚
1

0
t
τ− 1

f
t

2
a

p
+ m 1 −

t

2
􏼒 􏼓b

p
􏼒 􏼓

1/p
􏼠 􏼡g

t

2
a

p
+ m 1 −

t

2
􏼒 􏼓b

p
􏼒 􏼓

1/p
􏼠 􏼡dt

+ D2(η)mh
2α − 1
2α

􏼠 􏼡 􏽚
1

0
t
τ− 1

f
t

2
b

p
+ 1 −

t

2
􏼒 􏼓

ap

m
􏼠 􏼡

1/p
⎛⎝ ⎞⎠g

t

2
a

p
+ m 1 −

t

2
􏼒 􏼓b

p
􏼒 􏼓

1/p
􏼠 􏼡dt.

(38)

Setting (t/2)ap + m(1 − (t/2))bp � x, that is
(1 − (t/2))(ap/m) + (t/2)bp � (ap + mbp − x)/m in (38)
and using condition f(x) � f((ap + mbp − x)/m) and the
definitions (1), (2), one can get first inequality of (36).

Now, multiplying tτ− 1g(((t/2)ap + m(1 − (t/2))bp)1/p)

with (30) and integrating over [0, 1], we have

D1(η)h
1
2α

􏼒 􏼓 􏽚
1

0
t
τ− 1

f
t

2
a

p
+ m 1 −

t

2
􏼒 􏼓b

p
􏼒 􏼓

1/p
􏼠 􏼡g
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Again for (t/2)ap + m(1 − (t/2))bp � x, that is,
(1 − (t/2))(ap/m) + (t/2)bp � (ap + mbp − x)/m in (39)
and the utilizing condition f(x) � f((ap + mbp − x)/m)

and equations (1) and (2), the second inequality of (36) can
be achieved.

(ii) Proof is similar as (i). □

Remark 6.
(i) In )eorem 4 (i), if we put α � 1 � m, p> 0,

g(x) � 1, η � 0, and h(t) � t, then )eorem 2.1 (i)
in [36] is reproduced.

(ii) In )eorem 4 (ii), if we put α � 1 � m, p< 0,
g(x) � 1, η � 0, and h(t) � t, then )eorem 2.1(ii)
in [36] is reproduced.

(iii) In )eorem 4 (i), if we put α � 1 � m, p � 1,
g(x) � 1, η � 0, and h(t) � t, then Corollary 2.1 in
[36] is reproduced.

Remark 7. From)eorems 3 and 4, one can deduce results
for convex, exponentially convex, Ep(1, Id − 1),
Ep(1, Id − m), Ep(1, h − 1), Ep(α, Id − m), Ep(1, h − m),
and Ep(1, h − 1) functions.
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4.1. Results for Ep(h − m) Function. For α � 1 in )eorems
1–4, one can obtain the results for Ep(h − m) function:

Theorem 5. With the same conditions of �eorem 1, for
Ep(h − m) functions, the following inequalities hold:

(i) For p> 0, we have
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(40)

(ii) For p< 0, we have
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Theorem 6. With the same conditions of �eorem 2, for
Ep(h − m) function, the following inequalities hold:

(i) For p> 0, we have
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(ii) For p< 0, we have
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(43)
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Theorem 7. With the same conditions of �eorem 3, for
Ep(h − m) functions, the following inequalities hold:

(i) For p> 0, we have
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(ii) For p< 0, we have
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Theorem 8. With the same conditions of �eorem 4, for
Ep(h − m) functions, the following inequalities hold:

(i) For p> 0, we have
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(ii) For p< 0, we have
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4.2. Results for Ep(α − m) Functions. For h(t) � t in )eo-
rems 1–4, one can obtain the results for Ep(α − m) function
as follows.

Theorem 9. With the same conditions of �eorem 1, for
Ep(α − m) functions, the following inequalities hold:

(1) For p> 0, we have
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(ii) For p< 0, we have
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Theorem 10. With the same conditions of �eorem 2, for
Ep(α − m) functions, the following inequalities hold:

(i) For p> 0, we have
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(ii) For p< 0, we have
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Theorem 11. Under the assumptions of �eorem 3, for
Ep(α − m) functions, the following inequalities hold:

(i) For p> 0, we have
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(ii) For p< 0, we have

14 Journal of Mathematics



2αf
ap + mbp

2
􏼠 􏼡

1/p
⎛⎝ ⎞⎠ I

τ
ap− g ∘ ξ( 􏼁 mb

p
( 􏼁≤D3(η) I

τ
ap− fg ∘ ξ( 􏼁 mb

p
( 􏼁 + D4(η)m

τ+1 2α − 1( 􏼁 I
τ
bp+ fg ∘ ξ( 􏼁

a
p

m
􏼠 􏼡

≤ D3(η)
f(a)

e
ηa + D4(η)m 2α − 1( 􏼁

f(b)

e
ηb

􏼠 􏼡 I
τ+α
ap− g ∘ ξ( 􏼁 mb

p
( 􏼁

+ m D3(η)
f(b)

e
ηb

+ D4(η)m 2α − 1( 􏼁
f a/m2

􏼐 􏼑

e
ηa/m2( )

⎛⎝ ⎞⎠ I
τ
ap− g ∘ ξ( 􏼁 mb

p
( 􏼁 − I

τ+α
ap− g ∘ ξ( 􏼁 mb

p
( 􏼁( 􏼁.

(53)

Theorem 12. With the same conditions of �eorem 4, for
Ep(α − m) functions,

(i) For p> 0, we have
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( 􏼁 −
1
2α

I
τ+α

ap+mbp( )/2( )+ g ∘ ξ􏼐 􏼑 mb
p

( 􏼁􏼒 􏼓.

(54)

(ii) For p< 0, we have

2αf
ap + mbp

2
􏼠 􏼡

1/p
⎛⎝ ⎞⎠ I

τ
ap+mbp( )/2( )

− g°ξ􏼐 􏼑 mb
p

( 􏼁

≤D3(η) I
τ

ap+mbp( )/2( )
− fg ∘ ξ􏼐 􏼑 mb

p
( 􏼁 + D4(η)m

τ+1 2α − 1( 􏼁 I
τ

ap+mbp( )/2m( )
+ fg ∘ ξ􏼐 􏼑

a
p

m
􏼠 􏼡

≤
1
2α

D3(η)
f(a)

e
ηa + D4(η)m 2α − 1( 􏼁

f(b)

e
ηb

􏼠 􏼡 I
τ+α

ap+mbp( )/2( )
− g ∘ ξ􏼐 􏼑 mb

p
( 􏼁 + m D3(η)

f(b)

e
ηb

􏼠

+D4(η)m 2α − 1( 􏼁
f a/m2

􏼐 􏼑

e
ηa/m2( )

⎞⎠ I
τ

ap+mbp( )/2( )− g ∘ ξ􏼐 􏼑 mb
p

( 􏼁 −
1
2α

I
τ+α

ap+mbp( )/2( )− g ∘ ξ􏼐 􏼑 mb
p

( 􏼁􏼒 􏼓.

(55)

Remark 8. From )eorems 1–4, one can deduce results for
exponentially (α, h) − p-convex function, exponentially
(s, m) − p-convex function of second kind, exponentially
(s, m) − p-Godunova–Levin-convex function of second kind,
exponentially (p, P)-convex function, Godunova–Levin type
exponentially harmonic convex function, s-Godunova–Levin
type exponentially harmonic convex function, exponentially
(α, h − m)-HA-convex function, exponentially (α, h)-HA-
convex function, exponentially HA-convex function, and
exponentially (α, m)-HA-convex function.

5. Conclusion

)e Hadamard and the Fejér–Hadamard inequalities for
Riemann–Liouville fractional integrals are proved by ap-
plying a generalized class of functions. Two fractional

versions of the Hadamard inequality lead to almost all
variants of such inequalities already published by different
authors using various kinds of convex functions. Hadamard
type inequalities for some new classes of functions are also
given. Two fractional versions of the Fejér–Hadamard in-
equality are also proved which appear as generalizations of
the Hadamard inequalities. By using the generalized con-
vexity defined in this paper, one can obtain extensions of
other classical integral inequalities hold for convex and
related functions. It is also possible to establish these in-
equalities for many kinds of integral operators already
existing in the literature.
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[32] I. B. Baloch, İ. İscan, and S. S. Dragomir, “Fejér type in-
equalities for harmonically (s, m)-convex functions,”

16 Journal of Mathematics



International Journal of Analysis and Applications, vol. 12,
no. 2, pp. 188–197, 2016.

[33] İ. İscan, “Hermite Hadamard type inequalities for harmon-
ically convex functions,” Hacettepe Journal of Mathematics
and Statistics, vol. 43, no. 6, pp. 935–942, 2014.

[34] B.-Y. Xi, F. Qi, and T.-Y. Zhanga, “Some inequalities of
Hermite-Hadamard type for m-harmonic-arithmetically
convex functions,” ScienceAsia, vol. 41, pp. 357–361, 2015.

[35] C.-Y. He, Y. Wang, B.-Y. Xi, and F. Qi, “Hermite-Hadamard
type inequalities for (α, m)-HA and strongly (α, m)-HA
convex functions,” �e Journal of Nonlinear Science and
Applications, vol. 10, pp. 205–214, 2017.
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