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1. Introduction

Copyright © 2022 Muhammad Jawad et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

In this work, we inspect and analyze a two dimensional, unsteady mixed convectional hybrid nanofluid hydromagnetic flow
(A1,05-Cu/H,0) over a convectional heated an extending/contracting surface with the influence of thermal radiation. Hybrid
nanofluid (Al,0;-Cu/H,0) flows with magnetohydrodynamic and heat source or sink. Brownian motion and thermophoresis
were incorporated using the Buongiorno model. Hybrid nanofluid with vol. fraction range limited to 1.5% and within the
higher temperature range of 50°C to 70°C is considered for thermal conductivity and viscosity analysis. The proposed model is
then converted into ODEs through similarity transformation with the help of homotopy analysis. The effect of embedded input
factors on the temperature, velocity, and concentration profiles is visually demonstrated and explained. The magnetic field has
inverse impact on velocity and temperature profiles. Velocity profile increases for both mixed convection and buoyancy ratio
parameters. It has been noticed that the temperature profile increases with thermal radiation. For increasing values of Lewis
number, the concentration of hybrid nanoparticles is considerably lowered. Moreover, we observed an increase in the
concentration of hybrid nanoparticles through a destructive chemical reaction, whereas a generative chemical reaction has the
reverse effect. It has been proved that skin friction is increasing function of &, Mand decreasing function of A;, N,. On the
other hand, Nusselt number increased with the increase of R, Q, N, N, while Sherwood number is decreased, with the increase
of N, N,, Le.

dics, and naval constructions. Nanofluid flow, in particular,
is long familiar for its high heat conveyance when equated
to regular fluid. The hybrid nanofluid is applied to raise it

It is eminent that many studies have been carried out on two
cases of nanoparticles floating in a base fluid known as
“Hybrid Nanofluid” the forefront nanofluid. The key impor-
tance of the hybrid nanofluid is that by selecting the right
mix of nanoparticles, favorable characteristics may be
enhanced, and drawbacks can be mitigated owing to their
interactive influence. It is reported that these hybrid nano-
fluids are new and have a number of application acoustics,
defense, manufacturing, transportation, medical, microflui-

even further. Jamshed and Aziz [1] studied the Cattaneo-
Christov heat flux impact and discovered that spherical
shaped nanoparticles transmit heat at the fastest rate when
compared to hexagon, platelet type nanoparticles. The
authors in [2] examined squeezing flow in a hybrid base
fluid with nanoparticles suspended in it. The hybrid nano-
fluid stagnation point flow past an extending sheet was
investigated by the researchers [3]. The influence on flow
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between two riga-plates was investigated by Ahmed et al. [4].
The authors in [5] studied the impact of changing viscosity
on a stretched sheet containing hybrid nanoparticles using
the Runge-Kutta fourth order technique. The researchers
in [6] interrogated the synthesis of hybrid nanofluid while
in [7] examined the effects of a hybrid nanofluid of
(Al,0;-Cu/H,0) on heat transmission.

There are numerous numerical methods in the literature to
inspect the boundary layer flow and heat transport of a hybrid
nanofluid. These concepts were further explored by the
researchers in their research [9] to conceptualize the main
idea. The problem was then expanded to a three-dimensional
flow capable to the Newtonian heating consideration by the
authors [10]. In both the above studies, they obtained key
results about the heat transfer. The difficulty of a hybrid nano-
fluid consisting of a rotating flow was described by Hayat and
Nadeem [11]. Zainal et al. [12] inspected the unsteady stagna-
tion point flow of a hybrid nanofluid past a convectional
heated an extending/contracting surface while accounting for
velocity slip’s influence on heat transfer. Using the Buongiorno
model, Daniel et al. [13] investigated an unstable blended con-
vectional electrical magnetohydrodynamic (MHD) flow and
heat conveyance generated by nanofluid across a permeable
stretched surface. The friction coefficient and wear volume
were studied by Xie et al. [14] to determine the tribological
properties of hybrid nanoparticles. Devi and Anjali [10] inves-
tigated the three-dimensional flow of (Cu-Al,O,/water) cop-
per alumina/water hybrid nanofluid using the RK-Fehlberg
integration technique.

Thermal radiation’s effect on MHD blood flow and heat
conveyance in a permeable capillary in extending motion
was inspected. It has been examined that at high tempera-
tures, heat transfer and thermal radiation are recognized to
have a significant influence on numerous physiological pro-
cesses, technological, and engineering industry equipment.
Solar collector performance, plume dynamics, rocket pro-
pulsion, high-dose cancer therapy, fire propagation, material
processing, and combustion systems are just a few examples.
With the advancement of analytical and computational tech-
niques, thermal convection flows with high radiative flux
have received more attention recently. The effect of heat
radiation on peristaltic transport of ionic nanoliquids in bio-
microfluid channels had analyzed by Prakash et al. [15]. In
context from melting heat transfer and thermal radiation,
the researcher [16] proposed the dynamics of stagnation
point flow of carbon nanotubes. To get series solution, the
optimal homotopy technique was used. Muhammad et al.
[17] make another notable attempt to address the key
aspects of heat radiation and viscous dissipation impacts in
a viscous nanofluid. Mixed convectional and slide impacts
in viscous nanofluid across an extended sheet were described
by Hsiao [18]. The solution was numerically defined using
the convective boundary conditions [19]. The reader can
further study about heat transfer through nanofluid flow in
refs. [20-27]. The relevant study has been seen in [28-31].

The main aim of this research is to see how magnetic
fields, thermal radiation, and heat generation/absorption
affect unstable hybrid nanofluid hydromagnetic flow
(Al,05-Cu/H,0) across a convectional heated an extend-
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ing/contracting surface. The thermophoresis and Brownian
motion characteristics were included in the Buongiorno
model. To minimize the autonomous variables in gover-
nance equations resulting from mathematical modelling, a
suitable collection of dimensionless variables is employed.
By implementing the homotopy approach, an analytical
solution has been calculated. Comparison between HAM
and ND solve has been shown in Table 1.

2. Mathematical Formulation

Assume the unsteady hybrid nanofluid hydromagnetic flow
(AL,O5-Cu/H,0) past a convectional heated an extending/
contracting surface in the bearing of the magnetic field, chem-
ical reaction, heat generation/absorption, and thermal radia-
tion. The flow problem plot is depicted in Figure 1, where
u,(x,t) =bx/(1 —ct), the extending/contracting is surface
velocity, b indicates a constant that agree to extending (b > 0
) and contracting(b < 0) instances, and ¢ denotes the problem
of unsteadiness. The velocity of the free stream is notified by
u,(x,t) = ax/(1 — ct), where a > 0 is the strength of the stagna-
tion flow. T, and T, are used to represent the ambient and ref-
erence temperature separately. Then, we consider that the
bottom of the surface is heated by convectional from a hot
fluid at a particular temperature T((x,t) =T, - T, (ax*/2v)
(1—ct)™ and coefficient of heat transfer has noted by hy
while the mass transfer coefficient is indicated by h,. The gov-
erning boundary layer equations may be recognized as [12, 13]
based on all of the assumptions mentioned.

ou Ou

= 1
8x+8y 0. (1)

au+uau+vau_aue+ aue+.‘4hnfazu
ot ox 0y ot He x p,mfa_y2

(1= Coo) (T = T)

+
Phnf
2
Ghnfﬂo
~(p,-p;)(C-C L Ly
(pp pf)( m)}wphnf(l_ct)u

(2)

UtV et | 5
ot = ox 0y (pey)y, W (PG)y, \OY
o |p. (2CATY\ Dy (0T :
\ayay) T, \oy
+ 2 (T-Tg)
(PCP)hnf

(3)

Applying concept of Rosseland approximation g, is as fol-
lows:

4o, 0T*
Ty

(4)
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TaBLE 1: Comparison of HAM with ND solve solution ¢, =0.25,¢,=0.25,6=0.3,N,=1.0,4, =0.2,Q=0.5,Pr=6.5,M=0.5,R=0.5,

Sc=1.0,N,=0.2,N,=0.1.

" ) ')
HAM ND solve HAM ND solve HAM ND solve HAM ND solve

0 0 0 0.02453760 0.02452978 0.487 0.487 0.55 0.55

0.5 0.03469568 0.03468659 0.04076865 0.04056421 0.50874001 0.50873986 0.61285007 0.61284999
1.0 0.06034958 0.06033885 0.20425912 0.20425742 0.51243432 0.51242415 0.55162402 0.55162416
1.5 0.12373158 0.12373098 0.21768635 0.21767085 0.52785902 0.52785899 0.84572417 0.84572406
2.0 0.11524238 0.11519427 0.22753476 0.22753087 0.53762042 0.53761997 0.85465107 0.85465099
2.5 0.28505217 0.28505214 0.10843705 0.10843604 0.54702062 0.54701015 1.04640087 1.04640015
3.0 0.37086918 0.37086908 0.10784304 0.10784291 0.49093352 0.49093295 1.04465601 1.04465592
3.5 0.39292487 0.39292467 0.02030697 0.02030691 0.47529652 0.47529605 1.03547618 1.03547608
4.0 0.40946208 0.40946179 0.02363014 0.02363001 0.48842752 0.48842702 1.03840447 1.03840396
4.5 0.41575308 0.41575305 0.04157226 0.04155423 0.49605602 0.49605595 1.03905327 1.03915306
5.0 0.42407258 0.42407239 0.04216302 0.04216271 0.39754262 0.39754187 1.05743307 1.05743298
5.5 0.44812538 0.44810615 0.04341604 0.04341581 0.35504732 0.35504711 1.05816737 1.05816706
6.0 0.45242414 0.45242409 0.04539012 0.04538997 0.34648862 0.34648795 1.00908797 1.00908706
6.5 0.47365747 0.47365729 0.04683201 0.04683192 0.35742472 0.35703415 0.94253457 0.94253406
7.0 0.49502798 0.49502796 0.04765024 0.04764981 0.37508582 0.37508565 0.92718608 0.92718594
7.5 0.50392098 0.50391896 0.04852079 0.04851972 0.38710902 0.38710875 0.85842701 0.85842689

where the parameters o, and k™ are explained in nomencla-
ture

T*=4T,T - 3T,. (5)

Further simplification leads us to the following:

160,13
(4),=— 0Ly ©

Here, we rewrite Equation (3) as follows:

8T+uaT+VaT_ Kinf 82T+ 1 (aq, .
o “ox 3y (pg),, W (PG),,
9CoT\ Dy (3T\*
D, —— = 7
o B(ay ay) T, <ay) } 7
+ &(T— Ty)s
(pCP)hnf
oC aC oC *C (D;
E+ua+v5=DBa—y2+(K)Tw, (8)

where u denotes the factor of velocity in x-axis, v is the velocity
factor in y-axis, y,, ¢ is the ALO;-Cu/H,0O dynamic viscosity,
and D, and D, are the Brownian thermophoretic diffusion
terms while p,, - is the density of ALO;-Cu/H,0, T is the
AL O;-Cu/H,0 temperature, kj,,( is the thermal/heat conduc-
tivity of Al,0,-Cu/H,0, and (pcp)hn y is the Al,0,;-Cu/H,0

heat capacity. The boundary conditions, as well as the velocity
partial slip, are set to

ou
oy
= hf(Tf - T),Dbcy = hS(Cf — C) aty: 0)

U=y (1) + Hio=—,v=0,-k, T,

u—u,(x,1), T — Ty,C— Cyaty—o0, (9)

where H, = H(1 — ct)""? is the velocity slip term, in which
H stands for the starting merit of the velocity slip term. Table 2
lists the thermophysical characteristics of copper (Cu), as well
as aluminium oxide (Al,O;) and water (H,O) nanoparticles.
The thermophysical characteristics of hybrid nanofluid are
shown in Table 3. The solid volume fraction of nanoparticles
is described as ¢, where p, denotes the density, p, is the den-
sity of the hybrid nanoparticle, ¢, is the constant pressure of
heat capacity, k; represents the thermal conductivity of H,0,
and k, is the thermal conductivity of the hybrid nanoparticle.

The follower similarity transformations are provided in
order to represent the governed Equations (1), (2), (7), and
(8) concerning the BCs (9) in a much easy way [12].

av \12 T-Tg
V/:(l_ct> xf(n),@(r[)= Tf—T >

a 1/2
@(n) = Cf_c°;n= (v(l _Ct)> b2 (10)
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FIGURE 1: Schematic diagram of the 2D flow past a stretching/shrinking sheet.

TaBLE 2: Cu thermophysical properties along with Al,O5 and H,O
[12].

Thermophysical properties Cu AL O, H,0
k(W/mK) 400 40 0.613
p(kg/m?) 8933 3970 9971
¢, (J7kgK) 385 765 4179
Bx 10°(1/K) 1.67 0.85 21

where y is the stream function that can be specified as u =
0y/0y and v = —0y/0x and # is the similarity variable. Thus,
we attain

ax
u=
1—ct

fov=-(2) s

1—ct

Equations (2), (7), and (8) are converted into the follow-
ing set of nonlinear similarity ODEs by using the similarity
variables (10) and (11) in light of the aforementioned rela-
tionships.

/ n
Auhnf Mff +2ff//_f12+l_€<f/_ %Tlf”—l)

Pung!Pf
—/\ﬁh”f [6— i ¢]+

Ghnf/anfl -0

>

B ﬁhnf/ﬁ Phnf!Ps
(12)
rr (khf + 4R> 0" +f0' —2f'60
Pr (pcp)hnf/(pCP)f ke 3
Q(pc
+ £ (119' + 39) + [N,,G'(D' +Nt6'2] + (p p)f0=0,
2 (pcp)hn_f
(13)
@" +Scfd' - et (;1(15' +3q>) + Negr_o, (14)
2 N

b

Now the starting and final constraints (9) are also chan-
ged into the following:

£(0)=0,f'(0) =A+yf"(0),

_ Koy 6'(0) = Bi[1 - 6(0)],
ky

@' (0) = —Ny(1 - D(0)),
f'(11) — 1,0(n) — 0, D(n) — 0, whiley — oo, (15)

where & M,R,Pr,N,,Bi,Re,,A,Q,A;,S¢c, N,,andN, are
unsteadiness parameter, magnetic parameter, thermal radia-
tion parameter, Prandtl number, buoyancy ratio parameter,
Biot number, local Reynolds number in x-axis, ratio of
velocity parameter, heat source/sink parameter, mixed con-
vection parameter, Lewis number, thermophoretic parame-
ter, and Brownian motion parameter.

2
&= E)M: 0_/3()’);:H(av)1/2,
a pra
Biv by Jo(1 —ct),
ky a
Re 2 X p_ 40*T?,
* v 3k*kf
Q= QO(]' _Ct)z)Pr: B’
ax (24
(pp pf)AC
" P B(I- Co)AT’
b G
A: —> Al = 4 P
a (Re,)
SC: L,Nt — TDT(TS B TO)’
Dy v¢T,
D _
sz T B(Cw Coo). (16)
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(ga)/2(99) %+ { (/991 "(g9) ) '9(%6 - 1) + (6~ 1)(*9~ 1) } = "(gld)

[(“0—Y0)'¢ + Loz + “o/(¥o - /0) ¢z — Loz + “o] = 0/#"0
[(Fo—70) % + fog + oy (To - #0) % — #0 + To] = Mo//o

T«\ée — (Ty% + Uyl¢)g - \«N " Ah@:s\ﬁ«@ " z«&v \Q?@N — (Ty% + Pylp)z + \«N + A\Es\mwﬁs i Q&vz — \«\bs«

©(t20) 9+ () g+ (50) (P49~ 1) = P ()

uorsuedxs [ewWIAY],

IYM
£31AT)ONPUOD [€dL1303

A)1AnoNpuOd [eULIdY T,

Ayoedes eurrey,

Cdlp + Tdlg + \QA\E@ _ ﬁv = Juuyg Aysuaq
wNA\Es _ ﬁv /1 = Fin AJTSOOSTA
pmyjoueu prLqiy Aradoag

‘[21] pmpoueu prqdy oy jo senzedod fesrsAydourtoyy 10y sppowr parddy :¢ a1av],



2.1. Physical Quantities of Interest. For above model local
Nusselt number (Nu,), the skin friction coefficient (cy)

and Sherwood number are clear as follows:

Ty xqy, X4
¢ =——>,Nu,= —_— _Shy=—
prit; ke (T~ Too) Dy(Cy ~ Co)
(17)
where
. <6u>
w=HU nf\ 3., >
hnf ay 10
oT
9w = _khn <_ - qr) >
1f dy 0
4, = —Db(Cy)y:0~ (18)
In dimensional form, we have from above as
n"lhn
[Re,J"Cy = ~£"(0),
f
k 4
[Re,| " Nu, = - (1 + _R>6’(0),
[Re,] 2Sh=~¢'(0). (19)

2.2. Idea of HAM for the Model. Here, we used HAM to solve
Equations (12)-(14) using boundary conditions (15). The
Mathematica software is utilized for this, and the proposed
model can be solved using HAM in the following manner:

L(F)=f -7 15(8) =0" 8,1, () =0" -0,
(20)

where operators are specified as L} and L ; moreover, we

have

Lo(ri+ppe +y5¢") =0, Ly (y,e™ +yse’)
(21)

=0, Lg(yée*" +7y,e)=0.
We also define the operators, such that

N, [£(130),00:0), @(n50)]

_ Mgy -7 7 2 1~
_phnf/pf ot 2f foy =yt 1-e fn_iﬂfﬂﬂ_l
> N, ~| oploy  ~
_ Aﬁhnf 0 — " ol + hnf foﬂ)
B .Bhnf/ﬁ Phng! Ps

Advances in Mathematical Physics

Fins o) 8] = L 1 ks 42\ 5
Né[f(n’Z)’e("’C)}_})r%/(,)%)J‘(kf +3R)9m1

+f6,7—2j?}75+ ;(;15,1+35)

T —~ o~ ~2
+ [Nbe'cl)’ +N,0’ ]
T

N (D(n;(),f(n;f),e(n;f)]
~ e~ o~ e, N5
=@, +Scf B, ~ Scf - Sc (17(15,7+3(D) 0

(22)

For Equations (12)-(14), the Oth-order system is shown
as follows:

(=L [ F(138) = Folm)] =ph, N5 [ £ (130)],

(=015 [00758) = Oo(m)] =phN; 0130, £ (1:0)-

(1=0) Ly [@(130) = @y(n)| = phpN [@(130), £ (1), 0(130)]

(23)
with the BCs are
~ Af (¢ (3¢
Fonsn| =0 any IO -0,
n=0 n=0
ky20(:0)| a0 2201:8)
b | Bz(l (0)), o |,
= —Nd(l - cf)(o))
of (1:¢) . >
o W_Oo_u,e(q,c)‘n_ ﬁo,@(q,c)‘nzm%o
(24)

While the embedding constraint is { € [0, 1], to regulate
for the solution convergence h}, hg, and h&) are used. At spe-

cific values { = 0and { = 1, the following is obtained:

Fi1)=F(n).0(n31)=0(n), B(ns 1) =D(y).  (25)
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Expand the 7‘(11;(), 5(;7;(:), and (?3(11 ;{) through Tay-
lor’s series for { =0

—~ —~

F(n:8)=foln)

+
Mg
)
X
S
I~
v:

n=1
0(n:0)=6o(n) + Y 6, (n¢"
n=1
(1) =Do(n) + Y. @, ()",
n=1
~ o 19f(n30)
fn(n) ' 817 ) >
p=0
S 100(5:0)
0,(n) _ET >
p=0
- 1 00(11;)
n(m) =5 o (26)
p=0
While BCs are
F(0)=0,f"(0)=A+yf"(0),
ing 6'(0) = —Bi(l - 5(0)), D' (0) = —Nd<1 —@(0)),
ky
£ (1) =0, 8(1) — 0,B(1) —> O—co.
/ _m w-1 — ~2
f _ Mhnf [’lf 2 " !
phnf/pf fn—l P fw—l—] j n—1
~ 1 7 /
+1-¢( fl - =nf._ 1) Il S Mf!
<f 1 2’7f 1 phn_f/pf 1

7
. T w-1l —~ ~2
(;19”_1+39n_1) + (T/UJ)‘f N, ) 0, @ +N8
=
. Q(Pcp)fg 1
n— b
(Pcp)hnj
RO -0 15 ST DS T D
(}7)_ n-1 1 szwlj j ¢ fw—l—]]
=0 J= (27)
N £/ ~ ~
+ F; 0] + Se5 (q(D;_l + 3(Dn_1)
While
0, ifn<l, (28)
Xn=
1, ififn>1.

3. Outcomes with Discussion

In the following discussion section, the outcomes of various
parametric quantity on velocity, concentration profiles, and
temperature are shown graphically and discussed. These
parameters are unsteadiness parameter, buoyancy ratio
parameter, magnetic parameter, thermal radiation parame-
ter, Lewis number, mixed convection parameter, Prandtl
number and thermophorotic parameter, and Brownian
motion parameter. The geometry of the problem is shown
in Figure 1. It can be seen that when the magnetic parameter
M assigns maximum values, the velocity distribution retains
its declining tendency as shown in Figure 2. There is a peri-
odic oscillation velocity with diminishing amplitude while
the magnetic force produces a resistive nature force known
as the Lorentz force which controls the flow of fluid parti-
cles. As a result, to demonstrate the value of reducing the
velocity of moving particles, the effect of the unsteadiness
parameter on ¢ the nanofluid velocity profile has seen in
Figure 3. Because of the acceleration situation, (¢ > 0) brings
down rate of fluid flow and a narrower momentum bound-
ary barrier thickness; the behavior occurs. The velocity pro-
file reduces for the higher acceleration.

Figure 4 illustrates the influence of the buoyancy ratio
parameter on velocity drawings and also increasing levels
of N,; there is a noticeable increase in velocity. This increase
in velocity drawings is more noticeable in stable condition
than in the unsteadness situation. Figure 5 shows the effect
of A, on f'(1). From Figure 5, it can be expected that f'(x
) has greater values of A,. Physically, this is because of the
larger values of buoyancy force. The impact of heat genera-
tion/absorption on the temperature is plotted in Figure 6.
The temperature of the fluid and the thickness of the ther-
mal boundary level are both increased when a heat source
(Q>0) is used. The heat sink (Q<0), on the other hand,
lowers the fluid’s temperature and thins the thermal bound-
ary level thickness.
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To denote (Q = 0), the lack of heat generation or absorp-
tion, the increase in thermal radiation raises the temperature
but lowers the concentration profiles, as seen in Figure 7.
This is because an increase in thermal radiation gives to a
greater extent heat to the hybrid nanofluid, resulting in a rise
in temperature and the thickness of the thermal boundary
layer. Physically, radiative aspect creates the Brownian
motion of minute ingredients faster than normal; thus, ran-
dom migrated particles strike with one another, and the
caused frictional energy transforms it to thermal energy.

The effect from the Prandtl number along the temperature
profile has seen in Figure 8. By increasing the Prandtl num-
ber, the fluid’s thermal conductivity decreases. This fact is
due to inverse relation of Pr with thermal diffusivity, and it
is well-known fact that the fluid with higher values of Pr
has weaker thermal diffusion so that the temperature
declines. Figures 9 and 10 demonstrate the consequence of
the thermophoresis parametric quantity (N,) along the ther-
mal profile. When the thermophoresis parametric quantity
is increased which enhance the behavior of the system,
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thermophoresis effect is associated with movement of nano-
particles from a hot wall to a cold wall, and since it is gener-
ated by temperature gradients, it creates a fast flow away
from the moving plate; thus, more fluid is heated away from
the surface, and this leads to an increase in the temperature
within the thermal boundary layer. Figure 10 demonstrates
the consequence of the Brownian diffusion parameter (N,,)
on the thermal profile. Physically, the imperfect nature of
the Brownian motion parametric quantity enables heating
the physical setup. This heating causes nanoparticles to be

transferred from the cooler stretched sheet area to the quies-
cent fluid zone. Because the particles migrate from a high up
to a low concentration part, an increase in the Brownian
motion parameter N, and ®@(5) leads decrease in the fluid
concentration gradient, as seen in Figure 11.

The Brownian motion is the movement of fluid particles
from higher to lower concentration so increases in the ther-
mophoresis parameter (N,) produce a huge rise in the con-
centration dispersion of the fluid flow @(#), which meet to
zero at the boundary level, as shown in Figure 12. A minor
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TaBLE 4: Representation of the influence of different physical
factors on skin friction [Rex]me = (/,lhnf/yf)f”(o).
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TaBLE 6: lllustration of the influence of different physical factors
over Sherwood number Re s™2Sh_=—¢'(0)..
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change in the thermophoresis parameter causes the fluid
particles to move quickly, releasing surplus heat energy
and causing a huge rise in the concentration dispersion. As
a result, with an increase in the value of (N,), Figure 12 indi-
cates a considerable rise in the concentration dispersion.
Figure 13 also shows the influence of the Schmidt number
on the concentration dispersion. It is noticed that for larger
values of Sc, the fluid concentration decreases. This fact is
quite similar with that of Prandtl number impact on temper-
ature. Actually, Sc has inverse relation with mass diffusivity;
therefore, larger values of Sc correspond thinner concentra-
tion boundary layer.

4. Discussion on Tabulated Results

Table 4 shows that C is increased when the values of &, M
are increased. The C; is decreased, when the values of A,
N, are increased. Table 5 shows that Nu, is increased when
the values of R,Q,N,,N, are increased. The Nu, is
decreased, when the values of Pr are increased. Table 6
shows that Sh is decreased, when the values of N, N,, Le
are increased. Table 1 shows the very excellent agreement
of the HAM and ND solve solution by computer-based
package Mathematica 11.1.0.

5. Conclusions

In this research work, the uniform mixed convectional with
the combined consequences of thermal radiation and heat
generation/absorption along the magnetohydrodynamic
(MHD) flow of hybrid nanofluid via a convectional heated
the stretching/shrinking surface is studied. Brownian motion
and thermophoresis were incorporated using the Buon-
giorno model. We came at the following key conclusions
based on our findings with various factors in this study:

(i) Increasing the combined convection and buoyancy
ratio parameters improved nanofluid flow properties

(ii) It is well established that an increase in the
unsteadiness and magnetic parameters result in a
decrease in the velocity profile

(iii) Consequently, a rise in the thermophorotic param-
eter, radiation parameter, or Brownian motion
parameter means an increase in the temperature
profile

(iv) It is noticed that the increase of the Prandtl num-
ber decreases the temperature profile

(v) Increases in the values of the thermophoretic
parameter and Brownian motion parameter have
an inverse influence on the concentration profile

(vi) The @(y) displays lessening tendency for rising
values of Le
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(vii) Skin friction is augmented when the values of &, M
are improved. When the values of A,N, is
enlarged, C; is reduced

(viii) Nusselt number is improved when the values R,

(ix) Sherwood number is declined, when the values of
N, N,, Le are enlarged

Q, Ny, N, are increased. The Nu,, is reduced, when
the values of Pr are augmented

Nomenclature

u and v: Components of velocity along x- and y-axes (m/s)

Uyt Stretching/shrinking velocity (m/s)

Ty Ambient temperature (K)

hy: Heat transfer coefficient

Hins (kgm™'s™") Viscosity of hybrid nanofluid

Re,: Reynolds number

0: Dimensionless temperature

py The density of the nanoparticle (kgm™)

kg Nanoparticle thermal conductivity (Wm™K™)

v Stream function

M: Magnetic parameter

Hi: Velocity slip factor

A: Ratio of velocity parameter and heat

Nu,: Local Nusselt number

f' Dimensionless velocity

v Kinematic viscosity (m?s™)

A Wall mass flux

q,: Rosseland approximation

¢: Nanoparticle solid volume fraction

k™ Coefficient of mean absorption

Cp: Plate concentration

Cy: Concentration of ambient

hg: Mass transfer coefficient

Ny: Brownian motion parameter

X, y: Cartesian coordinate axis

u,: Strength of the stagnation flow

Ty Reference temperature (K)

Phns Hybrid nanofluid density (kgm )

(pc,) nf’ g—lyl?rid nanofluid volumetric heat capacity (m’s
K™)

H: Initial value of the velocity slip factor

Cpt Constant pressure of heat capacity

Py Base fluid density (kgm™)

kf: Base fluid thermal conductivity (Wm™'K™?)

& Unsteadiness parameter

OF Dimensionless concentration

Pr: Prandtl number

Q: Source/sink parameter

¢ Skin friction coefficient

T: Temperature of fluid (K)

fy Dynamic viscosity (kgm™'s™)

Tyt Wall shear stress

4y Transportation of heat

o*: Stefan-Boltzmann constant

Porosity parameter

15
R: Thermal radiation parameter
Cy,: Wall concentration
Bi: Biot number
N Thermophoretic parameter.
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This paper studies the problem of a cracked orthotropic solid subject to linear thermal flux and linear mechanical load. The
proposed extended partially insulated crack model is employed to simulate two collinear cracks. Taking advantage of Fourier
transform technique and superposition theory, the closed form of some physical quantities and fracture parameters is
obtained. Some simple examples are employed to demonstrate dimensionless thermal conductivity (R.) between the upper
and below crack regions, and the proposed coeflicient (¢) has great effects on some physical quantities and fracture parameters.

1. Introduction

Multicomponent composite materials are widely used in
the material industry. However, considering the complex
factors involving working environment, internal and exter-
nal loads, and production process, it is inevitable to con-
tain a series of various cracks in these solids. The
appearances of different kinds of cracks will reduce the
capacity of cracked structures and even bring about severe
accidents. Therefore, it is vital to do some research on
fracture analysis of a cracked solid by utilizing the theory
of thermal elasticity for the purpose of safety [1-3]. With
the rapid growth of thermoelasticity theory, a great deal of
treatises and papers was published to investigate fracture
characters of cracked solids [4-6]. The fracture parameters
of an orthotropic material containing a central crack
under heat flow were obtained by Tsai [7]. The closed
form of fracture parameters of cracked orthotropic solids
was calculated by Ju and Rowlands [8]. The closed form
of some physical quantities of two collinear cracks was

studied by Chen and Zhang [9]. The transient thermal
problem of a cracked orthotropic plate was taken into
account by Noda [10]. Some physical quantities of a
cracked orthotropic semi-infinite medium were given by
Rizk [11]. On the other hand, the thermoelastic problems
of orthotropic functionally graded solids brought about the
widespread attention. For example, the fracture parameters
of orthotropic functionally graded solids under mechanical
load were given explicitly by Kim and Paulino [12]. The
problem of a cracked solid subject to plane temperature-
step waves was investigated by Brock [13]. The equivalent
domain integral was formulated to study the fracture
problems subject to thermal stresses by Dag [14]. The
problems of cracked orthotropic solids subject to symmet-
rical thermomechanical loads with application of Fourier
transform technique (FTT) and superposition principle
were studied by Wu et al. [15].

Subject to thermal load, the analysis of fracture behavior
for cracked solids which were often regarded as orthotropic
or isotropic has generated enormous publicity [16-20]. To
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simulate two collinear cracks, a partially insulated crack
model prevailed [21-23].

Q1C = _hcAT’ (1)

where the definitions of Q,,, /., and AT have been given in
detail [3]. The case of h, — 0 or h, — co denotes a fully
thermally impermeable or permeable state.

The following extended partially insulated crack model
is also put forward by virtue of mathematical intuition.

Q,.=-h AT +£Q,, (2)

where Q, presents initial heat flux. The coefficient ¢ is con-
sidered a constant. Whether it is negative or positive is
mainly relies on the portion of thermal flux and mechanical
load. Clearly, the crack model proposed in (2) returns to (1)
when & =0.

The reasons of introducing constant eéQ, in (2) are as fol-
lows. First, the value of h. does not precisely address the
cracks with thermal resistance. Second, the constant €Q,,
which is introduced as an adjustment factor, conforms to
the complex situation and meets the abnormal state of crack
surface.

This paper employs an extended partially insulated
crack model to discuss two collinear cracks under linear
thermal flux and linear mechanical load. The thermoelastic
field is given in explicit form based on the proposed
extended partially insulated crack model, Fourier trans-
form, and superposition theory. The results show the
effects of dimensionless thermal conductivity (R.) between
the upper and below crack regions and the proposed coef-
ficient (¢) on Q,, and K; and S. It is revealed the bound-
ary conditions of crack surface, thermal properties of
crack, and the raised coefficient should be paid attention
to the analysis of crack growth under thermal load in
numerical results.

2. Problem Statement

Two collinear cracks in an orthotropic solid are taken into
account as shown in Figure 1. They are located at a < |x| < b.
Making use of the state of plane stress [3], we obtain

ou ov
szcna +C1287y -BiT, (3)

ou ov
Gy:ﬁza"'czza—y_ﬁzn (4)
B ou N ov (5)
Txy - C66 a a 5
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Ay

a,|x|/(b-a)+o,

-Q,x/2(b-a)

o,|x|/(b-a)+0,

FIGURE 1: Two collinear cracks subject to linear thermal flux and
linear mechanical load.

where

[A]_lﬁl C12] [“xx]
B, ) Cn ] [ %y ’

where the definitions of u, v, 0, 0, 7, T, v

¢s6 = Gyy» %> and a,, have been given in [3].

VyyEro Eyys

XX

do, 0Ty,
+ =0,
0x dy
(7)
or,, Jo,
+—===0
0x dy
One obtains
o’u 0’u %y oT

an+C6sa—yz+(clz+csé)m:ﬁ1a’ (8)

0%y 0%y *u oT
CGGW +sza—y2 +(612+566)W :ﬂ2@~ (9)

Making use of the Fourier heat conduction leads to

00T
o o

Q :_A =

Y )’ay

where the definitions of Q,, Q,, A,, and A, have been given
in [3]. Furthermore, based on the equilibrium equation,
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one has

0Q, 0Q,
5> " o =0. (11)

Taking advantage of the thermal equilibrium equations
brings out

Ll + or =0 (12)
where
A
A== (13)
Ay

The crack face boundary conditions are depicted as

le

Q}I/I(x, 0) - Q;(x, 0)= _W

. Jal<x<[b  (14)

o!'(x,0) = 0! (x,0) = Zl_";'

Hereafter, the subscript I’ or ‘I’ denotes the physical
quantity of the upper (y > 0) or below (y < 0) part. Q,, Q,,
0y, and o, stand for the prescribed constants. Based on
(14) and (15), thermal flux is composed of only one part
(—le/2(b—a)2) and mechanical loading is divided into two
parts (o, |x|/(b— a) and o). As linear thermal flux and linear
mechanical load are antisymmetrical and symmetrical,
respectively, the thermoelastic field of the region (x> 0) is
only dealt with. The crack-surface boundary conditions are
expressed with the application of the improved partially
insulated crack model.

|la| <x <], (15)

Tfy(x, 0):Tiy(x, 0)=0, a<x<b, (16)
Q;I(x,O)—Q}I,(x,O): Q(lb S;C x a<x<b, (17)

0.x
aj,l(x, 0)=0, L(x,0)= b i

According to Equations (17) and (18), the solutions
under thermal flux (-Q,x/2(b-a)*) and mechanical loading
(0,) have been given explicitly in [24, 25]. Next, we depict
the boundary conditions of crack-surface subject to linear
mechanical load (o,x/(b — a)).

+0y, a<x<b. (18)

7,(%,0) =7, (x,0) =0, a<x<b, (19)
11 I 01X
> = > = > > 20
0, (x,0)=0,(x,0) P a<x<b (20)
where
Q). =—h(T'(x,0) - T"(x,0)) +£Q,. (21)

Besides, some physical quantities conform to the follow-
ing conditions:

(x 0)= T”(x 0), o (x,O):a}I,I(x,O), x>bor0<x<a,
ul(x, 0)= —u”(x, 0),v (x, 0)= —v”(x, 0),

T'(x,0) = T"(x, 0), Q) (x, 0) = Q) (x, 0),

x>bor0<x<a,
x>bor0<x<a.

(22)

3. Solution Procedure

3.1. Temperature Field. According to [25], one obtains the
explicit form of temperature difference on crack faces as

Ql - Qlc
2(b-a)’Ad,

T'(x,0) - T"(x,0) = - (2 -a2) (P> -x?), a<x<b.
(23)

3.2. Elastic Field. To achieve the goal of explicit form in
Equations (8) and (9), u"!(x, y) and v"!(x, y) are expressed
according to [26].

2 2
Wy = Y ully), My = Y (n), (24)

LIT

where the definitions of ;" (x,y) and v§’H (x,y)(j=1,2)

have been given in [26].

i (x,y) = ZJ gi" ()¢ sin (Ex)dE,  (25)
0

J=1

2 r+00
IH ZJ 17]8+ 111 (E)e 55 cos (Ex)dE. (26)

j=1J0

Hereafter, 8" =1 or 8" =—1 denotes y >0 or y < 0. gl A
(§) need to solve. The definitions of y;(j=1,2) have been
given in [26].

4 2 2 _
Gy t (512 + 2015666 — C12522)Y + 11666 =0, (27)
where

2
Ci1 ~ GV

n=——->. (28)

T (cn * Ce)Y;

Furthermore, 1> (x, y) and v2 (x, y) are chosen as

2 pt00
111 X,y Z J «1, II -atw sin (Ex)dE, (29)
j=1

ij SELHI(E)e 05V cos (Ex)dE. (30)

Taking advantage of Equations (29), (30), (8), and (9),



4
we have
*I,H(g) - M1 g[][(g)
lL*I’II(E) - M2 E > (31)
where

[M1] _ [ o — e’ (e + CGG)A] N [ B,
M, (€12 + Co6)A BrA
By the aid of Equations (3)-(5), (25), (26), (29), and (30),

the components of stress are in the form of the following
expressions:

]. ®)

2
Co6 — A

2 (+oo
0! (x,0) = ZJO (cur = ooy, ) €07 (&) cos (Ex)de

J=1

+ (e M, - CuAMz—ﬁl)J;OOg””(f) cos (Ex)dE,

(33)
0= 3 [, (e comyn )" €) cos (et
+(cpM; - szAMz_ﬁz)ngI’H(f) cos (§x)dg,
0
(34)

2

Ti’}fl(x, 0) = —cgq [Z on(?i (yj + nj) ’q’gﬁ’”(f) sin (§x)d¢

j=1 0

+J+008+(M1/\ +M,)g"" () sin (fx)dE} :

(35)

In order to get the explicit solution of this considered
problem, we depict the dual integral equations as

Ty (%,0) = 7(%,0) =0, x>0, (36)
Vi(x,0)==v"(x,0)=0, O<x<aorx>b. (37)

Using Equations (36) and (37), one gets
9;(8) =g (&),

Logy— Yt ey
52(8) == 5, 9 )

(38)

Applying Equations (20) and (37), one obtains

onfg{ (§) cos (§x)dE=0, O<x<aorx>b,  (39)

0

a<x<b, (40)

+00 O.X
|, el cos (et
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where

Y1t
Y2+,

& = (cp—cpyimy) - (€12 = €¥aM,)- (41)

In order to solve Equations (39) and (40), the auxiliary
function ¢(x) is introduced as

o= 2000, (®2)

Applying inverse Fourier transform leads to

b
__2natm) J ¢(s) sin (&s)ds. (43)

I _
$8):= (MY, —my)m

a

Inserting Equation (43) into (40), one has

b o . .
EJ ¢(s)dsj sin (&s) cos (&x)dE = _Mx.

T)a 0 € (v, +1m,)(b—a)
(44)
Recalling the known result [27],
J cos (&x) sin (&s)d& = % (45)
0 $—x
Based on Equation (45), Equation (44) can be expressed
as
b -
lj 25¢(s) ds=— 0y (1Y, = My¥1) X (46)
T)e $—X €, (v, +1,)(b—a)

It is convenient to introduce s* =3, x% =X, 2sds = ds, a®
=a,b* =b, and ¢(5) = ¢(s). Equation (46) is rewritten as

1 E%(E) —_ 9y, —my) =
R @)

According to the singular integral containing the Cauchy
kernel4 [28], the solution of Equation (47) is obtained

_ 1 J" S6=a)(b=5) o, (n,y, ~my))
- % a X-s € (y, +1,)(b-a)

(48)

In the application of Equation (42), the closed form of
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elastic displacement is obtained

vi(x,0) = k@
(x,0) Lzﬁd?. (49)

Inserting Equation (48) into (34), the stress field is
obtained as

okl (x,0) = - T
n(b—a),/(a? - x2) (b - x2)
x w F(M) + szzE(A)l
+0(1), 0<x<a,
ol (x,0) = - %1
n(b—a),/ (a2 —x2)(b* - x2)
x M F(A) + 2bx2E(A)]
+0(1), x>b

(50)

F(A) and E(A) denote the first and second kinds of com-
plete elliptical integrals, respectively, where

2 _ 32
A= bba. (51)

For simplicity, the detailed procedure of reduction under
thermal flux is omitted. The shear stresses are obtained
according to [25].

o (0) = Ceoll?
C(Vally = Vit )/ (¥ = a2) (b = 22)
422 b 2 12)\2 2/ 2,12
| (@ -8) 26 (@ + P)EY
3 2 3F(A)
_ (2x2 —a’- bZ)Z} +0(1), O<x<a,
Ty (3.0) = Ceol 0

(Yol = Vi) (2 — @) (0P = 22)
2.2 2 _ p2)2 20,2 o 12
y [461 v (@-b) 26 (a4 P)E()

3 2 TR
- (- =p)'[ o), x>b,
(52)

where
_ (Q - Q)8 0 = Hy
(b-ap(b+a)dd, * H,
= (y1 + 1) (€2y2, My — cpAM, = 3,)
+ (v, + 1) (cpAM, + B, — oy M,y) (53)
+ Cp (MyA + My) (y11, = VaMtn)

H, = (yy + 1) (€2¥2M, — €12)
+(yy + 1) (€12 = ¥1M)-

> 11y

By superposition theory, the exact solutions of the phys-
ical quantities are obtained subject to linear thermal flux
(-Qx/2(b-a)’)  and mechanical  load
(o,]x]/(b—a) +ay).

linear

3.3. Crack-Tip Field. Using Equations (2) and (23), one
obtains the closed form of heat flux to the crack surface.

26Q,(b-a)’A+ QR / (x? — a2)(b* - x2)
Q= . (54)
2(b—a)’A+ R/ (x2 - a?) (b* - x2)

We define the value of R, = A /h, to stand for the dimen-
sionless thermal resistance between crack faces. It is easily
found Equation (54) is different from that in [25]. When
R.=0 and R, — 00, one obtains Q,,=£Q, or Q,,— Q,,
meaning partially thermally insulated or fully conductive
cracks. When R =0 and £=0, one has Q, =0, meaning
fully thermally insulated cracks.

4. Fracture Parameters

It is important that the stress intensity factors including the
mode-I and mode-II should be defined as the analysis of
cracked growth.

K™ = Jim \/27(a - x)o ! (x, 0), K,

(55)
_ T LI
_xhir}ﬁ\/Zﬂ(x—b)ay (x,0),
K™ :xlij}f 271(a—x)rgl(x, 0), K, 56
56
= lemb+ \2m(x — b)TJIC’){I(x, 0).
Based on Equation (55), one can obtain
s o
K™= |—— _2ab[F()) - E\)]} —L—,
I a(bZ_az){ a [ ( ) ( )]}T[(b—a)
Ko%= | 0p[PEA) - aF(V)]Y -
1 b(bZ_az){ [ ( ) a ( )]}ﬂ(b—a)
(57)

When a =0, it means the mode-I stress intensity factor
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TaBLE 1: Tyrannohex.

Ep E,, Gy Vi o e %y Ay A,
(MPa) (MPa) (MPa) (1077/C) (107/°C) (w/m°C) (w/m°C)
135000 87000 50000 0.15 0.09667 32 32 3.08 2.81

of a single crack with 2b. It is easily found that 08
2V nbo ST RN
KO =" (58) 0.6 : g
7'[ N

According to Equation (56) and Reference [25], one has

ceeH,P
2¢0 (Va1 = Vi)
<4a2b2 (@-0%)" 2% (a®+ bz)E(/\)) 7
3 2 3F(A) a(b® -a2)’

Inn _
I -

Out _ _ CosHaP
" 2¢(VaMy = Y1)
<4a2b2 (@ -0 20 (a®+ bZ)E(A)> 7
3 2 3F(M) b(b* - a?)

(59)

The importance of strain energy in a unit volume of the
solid is illustrated for nonisothermal [29, 30].

dw s )
av - r’

where the definitions of Sand r have been given in [24]. For
the orthotropic solid, Equation (60) can also be given based
on the above concepts of energy density function

2 2
1\2 I I I I
() +Cll(0y) - 2¢1,0,0), (Txy)
T 261Gy — €2 * 20 (61)
11622 ~ €12 66

The following strain energy density factor on the crack
line is defined to study crack growth in fracture mechanics
[24].

2
gimmout _ 1 {sze +on 2658 (Kfnn,Out)z L b (KZm,Our) 2} ’
4m oy~ Co6
(62)
where

1 iYLt
£=— E -y =Y )- 63
el j:1( ) y] j<C11 ‘12 j ]) ( )

5. Numerical Results

For the sake of simplicity, some numerical examples are
employed to demonstrate R, and & have great effects on

€=0.01

: a/b=3/4
0.4 -

Qid/Q

0.2

0 T T T T |
0.75 0.8 0.85 0.9 0.95 1
x/b
— R=1 S _R=3
= R=2 R=4

C

FIGURE 2: Q,./Q, versus x/b with R.=1,2,3,4 for £ =0.01 and a/
b=3/4.

Q,» K;p» and S subject to linear thermal flux(~Q,x/2(b - a)’
) and linear mechanical load (o|x|/(b — a)). The orthotropic
material like Tyrannohex is selected as in [31] (Table 1).

Figure 2 shows Q,./Q, versus x/b with R. =1, 2,3, 4 for
£=0.01 and a/b=3/4. Q,/Q, increases with an increase of
R, for a fixed x/b as shown in Figure 2. The case of R, =1
implies the heat conduction between the upper and blow
crack faces is the same as that of external material of crack.
The cases of R.=2,3,4 imply to the heat conduction
between the upper and blow crack faces are twice, triple,
and quadruple as much as thermal conductivities of the
external material of crack. Figure 3 displays Q,./Q, versus
x/b with € =-0.02,0,0.02,0.04 for R, =2 and a/b=3/4. As
the dimensionless thermal resistance R, increases, Q,./Q,
increases. The constant ¢ is considered to be an adjustment
quantity. The bigger the value of constant ¢, the greater the
heat flux per thickness through crack. It means making use
of the extended partially insulated crack model involving
the greater R, or € will overestimate the heat flux per thick-
ness to the crack surface. Furthermore, it is suitable to
decease or increase stress field near outer and inn cracks
tip by the way of filling certain materials into the region
between the upper and below crack faces according to
Figures 2 and 3.

Figure 4 displays K;;"%/K ;'™ or K;%"/K,;,°" versus
x/b with a/b=0.25,0.5,0.75 where K}» and K$)3' denote
K™ and K, for Q,. =0, respectively. K,;"™/K ;'™ or
K;;OU/K,;,O" decreases when R, increases for a fixed x/b.
Figure 5 displays K;;"™/K ;o™ or K;;%"/K;,°" versus x/b
with R.=1,2,3,4 for €=0.01 and a/b=3/4. As the
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0.5

0.4

0.3

R=2
a/b=3/4

Qid/Q

0.2 +

0.1
0 T T T T ]
0.75 0.8 0.85 0.9 0.95 1
x/b
— e€=-0.02 —-- €=0.02
——€=0 €=0.04

FIGURE 3: Q,;./Q; versus x/b with € =-0.02,0,0.02,0.04 for R, =2
and a/b=3/4.

€=0.01
a/b=3/4 ’:

Inn

110

i

i

K Out/KHOOUt orK Inn/K

—  R=1

C

~-R=2 R.= 4

FIGURE 4: K;™/K 7o' or K;;O"/K 1, versus x/b with R, = 1,2
,3,4 for € =0.01 and a/b = 3/4.

dimensionless thermal resistance R, increases, the mode-II
stress intensity factors decrease. The bigger the value of con-
stant &, the smaller the mode-II stress intensity factors. It
means making use of the extended partially insulated crack
model involving the greater R. and & will underestimate
the mode-II stress intensity factors. The obtained results
reveal that the crack face boundary conditions, the thermal
properties of crack, and the raised coefficients have great
influences on the heat flux per thickness to the crack surface
and the mode-II stress intensity factors.

In order to present the influence of the thermal proper-
ties of crack on S™™OUt, the value of S, is easily defined.

0+ ¢y —2¢,,8
-2ty (o
(€116 = €11%)

Inn
110
—
|

0.9 4

1T

R=2

&
=1
E
N
"6 0.8 a/b=3/4
8 =]
o 0.7+
=B
O =
0.6
0.5 T T T T l
0.75 0.8 0.85 0.9 0.95 1
x/b
— €=-0.02 —--- €=0.02
——€=0 €=0.04

FIGURE 5: Kp™/K o™ or K OU/K O versus x/b with e=—
0.02,0,0.02,0.04 for R. =2 anda/b = 3/4.

54
R=0
4 a/b=1/4
0y=1MPa / 7

s
g
>,

1

0 |

0 40

Q; (J/(mZ2.s))

—— €=-0.03
.- €=0
_--€=0.03

FIGURE 6: S™/S, versus Q, with e =—0.03,0,0.03 for R, =0, 0, = 1
MPa, anda/b =1/4.

which denotes the strain energy density factor of a crack
with 2b under mechanical load 0. Figures 6 and 7 show
§'1/S, and SOU/S, versus Q, with e =-0.03,0,0.03 for R,
=2, 0, =1MPa, and a/b = 1/4. Figures 6 and 7 respond to
the two cases of strain energy density factor near outer and
inn cracks for partially thermally insulated cracks. It is easily
seen that §™/S, and S°"/S, are made up of the mode-II
stress intensity factor under thermal flux (-Q,x/2(b - a)?)
and the mode-I stress intensity factor induced by mechanical
load (0, |x|/(b—a)). The corresponding S™/S, and S°*/S,
increase with an increase of thermal flux and mechanical
load. The strain energy density factor on the crack line is
greatly influenced by the adjustment quantity e. The bigger
the value of constant &, the smaller $™/S, and $°"/S,. So,



R=0
a/b=1/4 2

Sout/s,

--- €=0.03

FIGURE 7: SO‘“/S0 versus Q; with e =-0.03,0,0.03 for R, =0,0,=1
MPa, anda/b=1/4.

applying the bigger value of constant & will underestimate
S'1/S, and SOU/S,.

From the above figures, it is revealed R, and ¢ have signif-
icant impacts on the analysis of a cracked solid. In other
words, some physical quantities (i.e., R, and €) should be given
enough attention to the analysis of the thermoelastic field.

6. Conclusions

This paper addresses two collinear cracks in an orthotropic
solid under linear thermal flux and linear mechanical load
in this paper. Some physical quantities and fracture param-
eters are obtained in explicit forms with application of the
proposed extended partially insulated crack model, Fourier
transform, and superposition theory. The results show that
R, and ¢ have vital effects on Q,. and some fracture param-
eters. The obtained results reveal the boundary conditions of
crack face, thermal properties of crack, and the raised coeffi-
cients should be concerned about the analysis of a cracked
solid under the thermal load.
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Different strategies have been utilized by investigators with the intention of upgrading the thermal characteristics of ordinary liquids
like water and kerosene oil. The focus is currently on hybrid nanomaterials since they are more efficient than nanofluids, so as to
increase the thermal conductivity of fluids and mixtures. In a similar manner, this investigation is performed with the aim of breaking
down the consistent mixed convection flow close to a two-dimensional unstable flow between two squeezing plates with ho-
mogeneous and heterogeneous reaction in the presence of hybrid nanoparticles of the porous medium. A sustainable suspension in
the ethylene glycol with water is set by dissolving inorganic substances, iron oxide (Fe;O,) and cobalt (Co), to form Fe;O, —
Co/C,H0, — H,0 hybrid nanofluid. The numerical and analytical model portraying the fluid flow has been planned, and similitude
conditions have been determined with the assistance of the same transformations. The shooting technique has been used to solve
nonlinear numerical solution. To check the validity of the results obtained from the shooting mode, the Matlab built-in function
BVP4c and Mathematica built-in function homotopy analysis method (HAM) are used. The influence of rising parameters on
velocity, temperature, skin friction factor, Nusselt number, and Sherwood number is evaluated with the help of graphs and tables. It
has been found in this work that to acquire a productive thermal framework, the hybrid nanoparticles should be considered instead of
a single sort of nanoparticles. In addition, the velocities of both the hybrid nanofluids and simple nanofluids are upgraded by the
mixed convection boundary, whereas they are decreased by the porosity. An augmentation in volumetric fraction of nanoparticles
correlates to an increment in the heat transmission rate. It is also found that heat transfer rate for Fe;O, — Co/C,H;O, — H,O hybrid
nanofluids (HNF) is better than that of the Fe;O, — C,H,O, — H,O of single nanofluids (SNF). This research shows that hybrid
nanofluids play a significant part in the transfer of heat and in the distribution of nanofluids at higher temperatures.

1. Introduction lifts, scattering and formulation, chemical equipment pro-

cessing, food processing, film damage, and frost damage

Pressure flows have many engineering, scientific, and  syringes and nasogastric tubes. The initial study of squeezing
technical applications in the industry such as lubrication  flow was published by Stefan [1] who reported the lubri-
system, moveable pistons, hydrodynamic engines, hydraulic =~ cation method in his research. New doors were opened by
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Stephen’s rewarding work for researchers on squeezing
flows. Different researchers studied the flow of compression
and followed him. From different research perspectives, this
study has been pushed forward in recent years to compress
the flow. Hayat et al. [2] have examined the squeezed flow of
MHD fluid between two horizontal disks using homotopy
analysis. The result of their investigation was found to be an
increase in the velocity field of for augmenting values of
micropolar parameter. Mustafa et al. [3] analyzed the fluid
flow with magnetic effects upon thermal and mass trans-
mission behavior of an incompressible viscous Casson fluid
flow amid parallel plates. They have noticed in this work that
flow has been augmented with escalating values of squeezing
parameter. The two-dimensional magnetized laminar con-
stant Marangoni convection of the incompressible viscous
fluid was explored by Mahanthesh et al. [4] by implementing
the Runge-Kutta-Fehlberg technique. The authors have
found that the boundary layer thickness and the increasing
meridian convection have increased the fluid velocity within
the flow area.

Ferroliquids are magnetic nanofluids suspended in
nondirecting liquids such as water, hydrocarbons, and
kerosene. These ferrofluids have various applications in
medical science like cell partition, focusing of drug medi-
cation, and imaging of magnetic characters. The thermal and
magnet functions of the ferrofluid flow were investigated by
Neuringer [5]. Khan et al. [6] examined the influence of a
homogeneous heat stream on flat-surface slip flows with heat
transfer. They evaluated three distinct ferrofluids with two
distinct basic fluids (CoFe,O,, Fe;O,, and Mn — ZnFe,0,)
(water and kerosene). Rashad [7] examined the magnetic
slip-flow function containing nonisothermal convection and
radiation wedge kerosene based cobalt ferrofluid. Zaib et al.
[8] investigated a mixed convective flow entropy of a vertical
plate of magnetite ferrofluid. Ali et al. [9] recently discussed
the magnetic dipole impact on micropolar fluid consisting of
the EG and the water-based ferrofluids Fe and Fe;O, from a
stretched sheet.

Hybrid nanoliquids, however, are deliberately captured
by blending several different nanoparticles with better
thermal and rheological characteristics. The introduction of
hybrid ferroliquids is to increase heat transfer efficiency in
fluid flow. It has several scientific applications such as dy-
namic sealing, naval sealing, dampening, and microfluidics.
Suresh et al. [10] investigated the effect of dissipation on
time-based flux comprising a rounded pipe of hybrid
nanoliquid. They have achieved a lower friction factor for
nanolytes than for hybrid nanol. The pressurization decline
in the volume percentage of the water-based Cu - TiO,
hybrid nanolic was examined by Madhesh and Kalaiselvam
[11]. Minea [12] revealed the association with the date of the
temperature gradient of alumina hybrids and nanofluids.
The fluid flow characteristics of hybrid nanoliquids from
water-based Ag-CuO were evaluated by Hayat and Nadeem
[13]. Mebarek-Oudina [14] examined the thermal and hy-
drodynamic parameters of Titania nanoliquids that satisfy a
cylinder annulus, the impact of annulus, Mahanthesh et al.
[15] An exponential spatially dependent magneto slip heat
source flow from an extendable rotation consisting of carbon
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nanofluids. Marzougui et al. [16] investigated the surface
effects. Al,O; — CuO stability roughness and radiation
nanolic hybrid through the widespread use of the model.
Recently, Wakif et al. [17] examined the entropy exami-
nation through convective flow including nanoliquid by
means of MHD with chamfers in a hole. The investigation of
the attractive capacity has significant sales in MHD orien-
tation; topography, astronomy, siphons, generators, medi-
cation, control of limit layer, and so on are many noticeable
MHD applications. Alshomrani and Gul [18] inspected the
slight film flow of water-based Al,0; and Cu nanofluid
through an extended chamber under the effect of attractive
capacity. The characteristics of magneto thermal transport,
comprising a time dependent flux of liquid nanofluid thin
film flow to a starched surface, were examined by Sandeep
and Malvandi [19]. Sandeep [20] examined the character-
istics of the hybrid nanolytic flux with various heat and drag
forces. Ahmad and Nadeem [21] examined the magnetic
effects of hybrid nanofluid with a heat sink/source on
micropolitan fluid and achieved numerous findings for
hybrid nanofluid and micropolar fluid. Hamrelaine et al.
[22] examined the magnetic effect of Jeffery-Hamel flow
between nonparallel permeable walls or permeable plates.
The attractive impact on the radiative progression of the
hybrid nanoliquid thin film with sporadic warmth sink/
source was examined by Anantha Kumar et al. [23]. Zaib
et al. [24] got the comparability of various outcomes from
magnetite ferroliquid passing on non-Newtonian blood
stream with entropy age. Wakif et al. [25] assessed the
impact of the magnetic field on progressions of Stokes’
second issue with entropy generation. Recently, Kames-
waran et al. [26] investigated homogeneous-heterogeneous
reactions in nanofluid flow due to a microscopic stretch
sheet. They showed that the velocity profiles decrease with an
increasing volume of the nanoparticles, while the liquid
concentration is reversed by the volume of the nanoparticles
for both Cu-water and Ag-water nanofluids.

The cited literature and similar other works show that no
study is conducted to examine the combined effects of
unstable flow between two squeezing plates in the presence
of hybrid nanoparticles. Therefore, using all the studies
mentioned above, we analyzed the multifaceted and ho-
mogeneous chemical reaction effects on the flow between
two compression plates in the presence of hybrid nano-
particles. Navier-Stokes equations, heat transfer, and ho-
mogeneous and multifaceted reactions are solved by the
HAM and BVP4c. In this work, we analyzed, discussed, and
obtained the effects of different parameters on velocity,
temperature, concentration, skin friction coefficient, and
Nusselt and Sherwood numbers through graphs and tables.

2. Mathematical Formulation

Figure 1 shows a laminar, unsteady incompressible, and two-
dimensional and hybrid nanofluid flowing between hori-
zontally parallel and squeezing plates with homogeneous
and heterogeneous reactions. Hybrid nanoparticles com-
prise Fe;O, and Fe;O, + Co in the ethylene glycol with
water as base fluid suspension. The plates are separated by a
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FiGure 1: Geometrical view of flow problem.

gap of h(t) =11 — at with a as squeezed parameter. For
a >0, the plates are squeezing but when t = (1/a) and a <0,
the two plates are separated. The velocity field is often
impacted by a uniform magnetic field B(t) = By/V1 — at
distributed along the y-axis. The upper and lower plates are
held at steady temperature T, and T, respectively. The
proposed model of Chaudhary and Merkin [27] for ho-
mogeneous as well as heterogeneous reaction has been used
in this study as described below.

The homogeneous reaction for cubic autocatalyst
surface is

N1+2N2 — 3N2. (1)

The heterogeneous reaction upon catalyst surface is

N1 — A2. (2)

The quantities of the chemical sorts N1 and N2 are
signified by a and b, respectively, while the initial conditions

OT  Kyuf

Homogeneous and heterogeneous equations are as
follows:

da da da d’a

—+uU—+v—=D,— —K.ab’,
at+uax+vay Aay2 a

(6)
ob ob ob b 5
—+tuz—+v=—=Dp—+K.ab".
ot dx Ody dy

In the above equations, T represents temperature, P
represents pressure, py,, Te€presents effective density,
(pc ) s represents effective heat power, and 0y, ¢ represents
electrical conductivity of nanofluid. The quantities (u,v)
denote the fluid’s nanofluid velocity component, T is the
temperature, and D, and Dy are the respective diffusion
constants of the chemical sorts a and b. The permeability is
provided by K*. kj,,s nanofluid thermal conductivity, Q*

are denoted by k. The reaction rate vanishes in exterior flow
and beyond the boundary layer bottom, as shown by the
equations above. The equations that governed the flow
system are presented as [28, 29].

Continuity equation is as follows:

a_u+ﬁ_0 (3)
ox oy

Navier-Stokes equation is as follows:
ou Ou  Ou_ 1 0p iy <82u o’u

—tU—+V—=—— = +— —anBzu,
Ot 0x 0y  PuusOxX  Prp \0x° a)/2> n

ap+‘uh"f<azv &)

ov ov ov 1

—tU—+V—=— = —+ .
Ot " 0x 0y POy Pus \Ox> 0y
(4)
Energy equation is as follows:
1 160"T, o'T Q
+ (T -T,). (5)

T S I

(PCP)hnf 3 a_yz (PCP)hnf

heat generation, kj,,; nanofluid thermal conductivity, ky,,
nanofluid thermal conductivity, kj,; nanofluid thermal
conduct.

2.1. Boundary Conditions. The squeezing flow under con-

sideration has the undermentioned conditions at
boundaries:
oda ob
u=0,v=0,T = Tl,DA@ = ksa,DB@ =—kjaaty =0,
-a D
u=0,v= m,T =T,a=ayb=0aty=h(t).

(7)

Use the transformations [2]
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_ocxf'(n)
”_2(1—at)’
_—alf(n)
v= >
(1-at) (72)
T=0(n)Ty,
_ Yy
n_l 1—at
a = ayH (1),
= ayG(7),
__ B 7b
Bt) = 1-at (70)
T-T,
ele—Tu'

Implementing equations (7a) and (7b), we have the
following system of equations:

f"'_s(j—l)(nf”’+2f"+f”f’—ff’”)—(ﬁ—j)Hasz” =0

(8)

Ui 4 !
0 <1+§R>+Prs(f0 ~270+Q0) =0, (9)
H"-S,K,HG*-S.S(nH' - fH)=0, (10)
G"8-S,K,HG*-S.S(nG' - fG') =0, (11)

and the boundary conditions are reduced to

£(0)=0,f(0)=0,6(0) =1,H"(0)
= K,H (0),8G' (0) = —-K,H (0), (12)
f(1)=0.5f(1)=0,0(1)=0,H(1) =1,G(1) = 0.

Here, S = (oclz/ZVf) is the squeezed Reynolds number,

P, = (pc,/K) is the Prandtl number, Ha = [By+[0y,, ¢/t is
the Hartmann number, R = (40*T3/KK*) is the radiation
parameter, Q = 2Q* (1 — at)/« (pcp)hn £ ls the heat generation
parameter, L= (ao,¢/x) is the length parameter,
S. = (v;/D,) is the Schmidt number, K, = 8k.ag (1 - at)/a’
is the homogeneous reaction strength, K, = (k,/D,) is the
heterogeneous reaction strength, and & = (D,/Dp) is the
ratio of the diffusion coefficients. Here, it is considered that A
and B diffusion coefficients of chemical species are of com-

parable size. The other hypothesis is that D, and Dy are
equivalent, so § = (D,/Dg) =1, and G(%) + H () = 1 [30].

2.2. Coefficients of Interest. The local Nusselt number (Nu),
Sherwood number (Sh), and skin friction coefficient (Cf)
are some of the coefficients of interest in engineering.
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c* _§C _f// (0)
A ’

-6 (0) = Nu, (13)

-G'(0) =-H'(0) = Sh.
By using A, for the dimensionless constant, the result will
be as follows:

_Mnf_ 1 _

Vo T gt e

Pnf P1 P2
A, =——=(1- 1| — 21 —= ),
PR R v

g, i
As = a_; :(1 +3(0¢; + ‘72‘/52)0f - ‘/’)

+((a1 + 02)0}1 + 2)71 —((algb1 + angz)a}l + gbl)fl,
(14)

The total volume fraction of nanoparticles is represented
by ¢. The volume fractions of the discrete nanoparticles are
represented by the symbols ¢1 and ¢2; the density of first,
second, and base fluids of nanoparticles is p;, p,, and p ; and
the electrical conductivity of 1st, 2nd, and base fluids of
nanoparticles is 0, 0, and 0.

3. Approximate Analytical Solution

To solve system of equations (8)-(11), the analytic method
HAM is used. Due to HAM, the functions f (0), 8(g), H (),
and G (g) can be stated by a set of base functions ¢, ¢ >0 as

felQ) = gaggf, (15)
Oy (0) = gbgdz, (16)
Hy (o) = 2%95, (17)
Gy (0) = 2015@‘{, (18)

where ag, bf, e and df are the constant coefficients to be
determined. Initial approximations are chosen as follows:

fo(@ =;Q2—Q3> (19)
0, (0) = (S, - 1)o+1, (20)
H,(0) =1-o, (21)
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Gy(0)=1-0. (22) with the following properties:
3 2 _
The auxiliary operators are chosen as (8o + 6" vhevdy) =0, (24)
4
0, = i o (&s0+&) =0, (25)
f aQ4
2 br(Eo+ &) =0 (26)
0
8= —
? aQZ (890 + &) = 0, (27)
(23) .
P where &), &,, &, &, &, &, &, &, &, and & are arbitrary
by =— constants.
d¢ The zeroth order deformation problems can be obtained
> as
KG = T
ol

(1; @€ [f(0; @) — fo(@)] = ghsN [ f (@), 0(g; @), 7 (0; @), 7(g; ),
(1;@)¢5[6(g; @) - 6, (0)] = ghgNolf (05 @), 0(0; @), 7 (0; @), 71(g; )],
(1;@)€y; [H (¢; @) — Hy (0)] = qhyy Ny [ f (0; @), H (¢; ), G (¢; @)1,

(1;@)¢5[G(g; @) - G, (9)] = g NG f (0; @), H (0; 9), G (¢; @))-

The nonlinear operators of (17)-(20) are defined as

N [f (@), 0(0; )] = @ - S[Q 8378(5; LA azja(gg; o, 827(_)(;; @ of E_fg; ¢ 8373(;3; @)
- HaZLaZLQ;@),
de
No[f (¢;®),0(e; ®)] = 8256(—52;@)<1 + §R> + Pfs[faé(aLQ;@) - 200(g; @) + QO (e; @) |,
Ny[f (¢;@), H(¢; ®),G(g; @)] = azﬁ(—g;‘b)— S.K1H (¢; (D)azaa(—gw)— SCS[QaEgiE;(D) - fH(g;®) |,
G (; @)

>

2

_ _ _ _ 0°G(o: oG (o: oG (o:
NolF (0070060 ) = =2 825 - 5., 0 0) (%’Q)—SCS[Q (0;0) _ 9G(e:@)

do do

where @ is an embedding parameter; %4, fig, 1y, and h; are
the nonzero auxiliary parameter; and N, Ny, Ny, and N
are the nonlinear parameters.

(28)

(29)

(30)

(31)

(32)
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For ® = 0 and 1, we have The convergence is strongly supported by 7t ¢, ig, h1yy, and
F(@0) = f,(0.F (e = f (o) O or @ = L we have
_5(Q,0)=90(Q),5i9,1)=9(9), (33) o - =
H(0,0) = H, () H(o1) = H(0), 0 fo(@)+\yz::1f\y(9)> (35)
G(0,0) = G,(0),G(e,1) = G(0), .
s0 we can say that as @ varies from 0 to 1, f (g, 0), 6(g,0), 0(e) = 6, (o) + WZ,I Oy (), (36)

H (0,0), and G (g, 0) vary from initial guesses f, (o), 6, (0),
H, (0), and G, (g) to exact solutions f (g), 8(e), H (g), and

G (p), respectively. H(g) = Hy(0) + Z Hy (0), (37)
Taylor’s series expansion of these functions yields ¥ol
. 4 00
;) = ® N
v=1
0(0; @) = 0, (o) + i @‘ye\y (0), Differentiating the deformation equations (25)-(28)
] ¥ — times with respect to ® and putting @ = 0, we have
& e[ fe (@~ xyfy1 (@] =hRpy (o), (39)
e vS v Rrw
H(g; @) = Hy(0) + ). @ Hy (o),
- 268y (0) ~ x4y, ()] = higRyy (0), (40)
G(g@) =G @Gy (o),
(0:@) =Gy (o) + \1; v (Q) o 24 [Hy (0) - xyHy_1 ()] = hyRypp (0), (41)
10" f(Q,GD) €6[Gy (@) = xyGy_1 (0)] = hyRsy (0), (42)

fol@) = gy - LED)
subject to the boundary conditions
(@) = g oY Fo© =0, £4(0) = 0,6, 0) =1,
H{ (0) = k,H (0), 8Gy (0) = —k,H (0),

3
Hy (o) =i,aWH—(§®) , Fa(1) =05, i, (1) = 0,6, (1) =0, w
vl Qe @=0 Hy (1) = 1,Gfy(1) =0,
1 0'G
Gy (0) = i % o’ where

" A " = "
Ry () = fy (@) - < )|:Qf\y (@ +2fy, (Q)+22f](Q)f\y O Zf,(@)f\u i 1(@)] ( )Ha Lfy., (0),

(44)
4 Y-1
Row(0) = 04, (@(1+3R)+ Prs[z (0611 (0) — 2004, (0) + Qby., <@>} (45)
=0
Y-l v-1
Ry (0) = Hy_, () +S.K, Z H; (Q)G’\;/_j_l (0) - SCS|:QH\’1/_1 (0) - Z f]' (Q)H\y_j_l (Q):|, (46)
j=0 j=0
Y-1 Y-1
Rey (0) = Gy_y (00— S.K, ) H;(9Gy_ ;. (0) - ScS|:QG\,{'—1 @ - f;@GCy i, (Q)} (47)
=0 =0

and yy = {L,if ¥>1,and 0,if ¥ = 1}.
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Finally, the general solution of (36)-(39) can be written
as
Folo) = JZ Jo JZ JZ Ry (2)dzdzdzdz + o fyy + 00" + 620" + 0+ & (48)
By () = JZ JO hoRosy (2)dzdz + oy, + &5 + &, (49)
Hy (0) = JZ J-; hyRyy (2)dzdz + xyHy_| + &0+ &1, (50)
Gy (o) = JO JZ heRoy (2)dzdz + yoGuy + &30 + Erp (51)
e, =l +e +ell + 6§, (54)

and so the exact solutions f(g), 8(0), H(g), and H (o)
become

v
f@= ) falo),
n=0

v
6(e) = Y 6,(0),

n=0

. (52)
H(e)= ) H,(0),

n=0

v
G() = ) G,(0)

4. Optimizing the Convergence of
Control Parameter

It is important to note that the series solutions (46)-(49)
include % ¢, f1g, iy, and g nonzero auxiliary parameters that
define the convergence area as well as rate of the homotopy
series solutions. The residual error to obtain the maximum
values of 7u¢, hg, fy, and h was used as

1 &r Yoo Voo 2
by NfZﬂg),Ze(g)] de.
oL iz i0

Due to Liao

where €, is the total squared residual error.

5. Analysis of Error

An error analysis is conducted to ensure a minimum re-
sidual error for the efficiency of the analysis. HAM and
BVP4c solve the problem analytically and numerically. The
analysis is conducted using an approximation order of the
40th order. For this analysis, the validity of HAM techniques
is also evaluated using the Mathematica software BVPh 2.0
for maximum residual error 107, The results are compared
with the numerical solution of BVP4c using Matlab for the
authentication and consistency of the HAM solution. The
reliability of the two methods for various concerning
physical parameters is investigated by error analysis in
Figure 2 and Tables 1-12. Figure 2 shows that up to the 16th
transition series, the maximum average residual errors of
£"(n), =0 (n), —=H' (1), and -G’ () are almost gradually
decreased. The cumulative residual error for the various
approximation orders of fixed P, = 0.5, S = -0.5, L = 0.01,
Q=5R=0.7,6=1,5=2.5K1=0.1,K2=1,and Ha =
0.1 values is shown in Table 1. Table 2 shows various orders
of approximation with distinct average squared residual
error for f"(n), =0'(n), —H' (1), and -G’ () with fixed
values as P, =0.5, S=-0.5 L=0.01, §=1, Q=0.01,
R=0.1, Sc=25, K1=0.3, K2=0.1, Ha=0.2 ¢ =0.02,
¢1=¢2=001, pl=5180, p2=8900, p3 = 1056,
01 =10.74 x 10%, 62 = 1.602 x 107, ¢3 = 0.00509. The com-
parison of the analytical and numerical values by HAM and
BVP4c is shown in Table 3 for various values of # and fixed
values of other parameters, P, = 0.5, S =-0.5, L =0.01,
=1, Q=001, R=0.1, Sc=25, K1=0.3, K2=0.1,
Ha =02, ¢ =0.02, ¢1 = ¢2 =0.01, pl = 5180, p2 = 8900,
p3=1056, 01=0.74x10%  02=1.602x10’, and
03 =0.00509.

6. Results and Discussion

For various values of parameters S, Ha, P,, Q, R, S¢, K1, K2,
and ¢, the system of nonlinear equations (8)-(11), resulting
in the boundary conditions equation (12), is numerically
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FIGURE 2: Error analysis on f (1), 0(%), G(#),and H (1) with P, = -0.5,§ = -0.5,L = 0.01,Q=5,R=0.7,§ =1,8¢ = 2.5,K1 = 0.1, K2 = 1,

and Ha = 0.1.

TasLE 1: Thermophysical properties of iron oxide, cobalt, and ethylene glycol with water at 20°C [7].

Physical properties p (kg/m?) ¢, (J/kgK) k(W/mK) Bx107° (K1) o(sm™)
Fe,0, 5180 670 9.7 1.3 0.74 x 10°
Co (cobalt) 8900 420 100 1.3% 107 1.602 x 107
C,HsO0, -H,0 1056 3630 0.387 58 0.00509

TaBLE 2: Total residual error of f (%), 8(y), G(n), and H (y) with P, =-0.5,S=-0.5,L=0.01, Q=5 R=0.7,8 =1, Sc =2.5, K1 = 0.1,

K2 =1, and Ha =0.1.

n €f1’l 661’1

H G

€En €EnNn
1 0.186129 2.4373 %1077 3.17987 x 1077 2.30094 x 107°
5 2.936895 x 10710 2.30705 x 1077 7.84948 x 10718 8.67775 x 10720
10 1.34057 x 10720 1.16169 x 10727 3.02765 x 10728 6.44809 x 10730
15 1.3174 x 10730 3.18812 x 10734 3.27408 x 107% 1.86574 x 10736
16 3.64848 x 107! 3.20099 x 10734 3.17778 x 1073° 1.86574 x 10736
20 3.64848 x 10731 3.20099 x 10734 3.17778 x 107 1.86574 x 10736
25 3.64848 x 1073! 3.20099 x 10734 3.17778 x 107% 1.86574 x 10736
30 3.64848 x 10731 3.20099 x 10734 3.17778 x 1073 1.86574 x 10736
35 3.64848 x 10731 3.20099 x 10734 3.17778 x 107% 1.86574 x 10736
40 3.64848 x 107! 3.20099 x 10734 3.17778 x 1072° 1.86574 x 10736

resolved using HAM and BVP4c numerical routines. The
local skin friction coefficient as well as the local rates of heat
and mass transfer at the surface of the squeezing plates, both
of which are extremely important in terms of physical
properties, is also computed. Because there are so many
physical parameters in the current problem, a wide range of
results can be obtained. The distributions of temperature,
velocity, pressure, and mass transfer are obtained by solving

(8)-(11) and are shown in Figures 1-10 for various physical
parameters. The impact of the squeeze number S on the
velocity and temperature distribution for both heating and
cooling surfaces is plotted on f (1), f' (1), 6(%), H (1), and
G () in Figure 5 in the case of both Fe;O, — C,H,O, — H,0
single nanofluids (SNF) and Fe;O, — Co/C,H,O, - H,0O
hybrid nanofluids (HNF). The values of the squeeze number
have been set to be higher than zero in this case, indicating



Advances in Mathematical Physics 9

TaBLE 3: Computation of nanoparticles (iron oxide, cobalt) and ethylene glycol for f (#), 8(%), H(#), and G(#) with P, = 0.5, S = -0.5,
L=0.01, §=1, Q=0.01, R=0.1, Sc =2.5, K1 =0.3, K2=0.1, Ha = 0.2, ¢ = 0.02, §1 = ¢2 = 0.01, p1 = 5180, p2 = 8900, p3 = 1056,
01 =0.74 x 10%, 2 = 1.602 x 107, and ¢3 = 0.00509.

HAM results Numerical results

Ul f) 0(n) H(n) G(n) f() 0(n) H(n) G(n)

0.0000 0.0000 1.0000 1.0193 0.1242 0.0000 1.0000 1.0193 0.1242
0.1001 0.0146 0.9229 1.0308 0.1106 0.0146 0.9229 1.0308 0.1106
0.2002 0.0542 0.8441 1.0447 0.0966 0.0542 0.8441 1.0447 0.0966
0.3003 0.1122 0.7621 1.0602 0.0825 0.1122 0.7621 1.0602 0.0825
0.4004 0.1820 0.6752 1.0757 0.0685 0.1820 0.6752 1.0757 0.0685
0.5005 0.2570 0.5822 1.0892 0.0550 0.2570 0.5822 1.0892 0.0550
0.6006 0.3310 0.4820 1.0980 0.0422 0.3310 0.4820 1.0980 0.0422
0.7007 0.3978 0.3736 1.0986 0.0301 0.3978 0.3736 1.0986 0.0301
0.8008 0.4517 0.2567 1.0865 0.0189 0.4517 0.2567 1.0865 0.0189
0.9009 0.4873 0.1315 1.0560 0.0088 0.4873 0.1315 1.0560 0.0088
0.0000 0.5000 0.0000 1.0000 0.0000 0.5000 0.0000 1.0000 0.0000

TasLE 4: Convergence of homotopy solution for different orders of calculation of nanoparticles (iron oxide, cobalt) and ethylene glycol for
" (), =6' (), =H' (1), and -G’ () with P, = 0.5, S =-0.5, L=0.01, § =1, Q = 0.01, R=0.1, Sc = 2.5, K1 = 0.3, K2 = 0.1, Ha = 0.2,
¢ =0.02, ¢1 = ¢2 = 0.01, pl = 5180, p2 = 8900, p3 = 1056, o1 = 0.74 x 10°, 62 = 1.602 x 107, and 03 = 0.00509.

1 () -0'(0) -H'(0) -G'(0)
0.0000 3.1331 0.7679 -0.1019 0.1019
0.1001 2.4908 0.7758 -0.1279 0.0911
0.2002 1.8362 0.8006 —0.1486 0.0800
0.3003 1.1779 0.8413 -0.1576 0.0689
0.4004 0.5255 0.8963 —-0.1490 0.0579
0.5005 -0.1106 0.9637 0.1166 0.0472
0.6066 —-0.7555 1.0459 0.0484 0.0362
0.7007 -1.2931 1.1247 0.0492 0.0268
0.8008 -1.8216 1.2101 0.2020 0.0173
0.9009 —2.2987 1.2912 0.4208 0.0082
1.0000 -2.7161 1.3595 0.7259 0.0000

TaBLE 5: Computation of nanoparticles (iron oxide and ethylene glycol) and hybrid nanoparticles (iron oxide, cobalt, and ethylene glycol
with water) for skin friction f" (0).

Different fluid model parameters Nanoparticles Hybrid nanoparticles
S Ha ¢ £"(0) £"(0)

-0.5 1 0.1 0.057180 3.083700
-1 0.053850 3.077570
-1.5 0.050680 3.072110
-2 1 3.057180 3.028170
3 3.057180 3.028170
5 3.057180 3.028170
7 0.1 3.019960 3.029040
0.2 3.019620 3.028170
0.3 3.019160 3.026870

that the upper plate is moving away from the lower sta-  concentration profiles H () and G (1) of the parameter S can

tionary plate and the opposite inequality of the squeeze  be observed in Figure 3 in both SNF and HNF. The con-
number indicating that the lower plate is moving away from  centration profile H (#) decreases and G () increases. It has
the upper plate. Effect of Son f (1) and f' (1) is depictedin ~ been discovered that as S increases, the homogeneous
Figure 3 in the case of both SNF and HNF. In reality, for =~ chemical reaction increases, resulting in a decrease in vis-
larger S, the upper plate slides downward, which puts more  cosity. However, the H (7) indicates the reverse of the G (1)
stress on nanoparticles, and consequently velocity compo-  above can seen in Figure 3. The impact of Hartmann number
nents f (1), f'(n) are amplified. Effect of S on 6() is  Hashow in Figure 3 on f (1) against the similarity variable 7
demonstrated in Figure 3. For bigger S, the top plate shift  for the phenomenon of both SNF and HNF are decreases.
downwards, and interatomic collision nanoparticles in- ~ When the HNF flow is applied, the fluid velocity is reduced
crease; hence, the temperature increases. The influence on by moving down the horizontal axis and the SNF flow
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TaBLE 6: Computation of nanoparticles (iron oxide and ethylene glycol) and hybrid nanoparticles (iron oxide, cobalt) and ethylene glycol

with water for Nusselt number —8' (0).

Different fluid model parameters Nanoparticles Hybrid nanoparticles
s P, Q R é 0 (0) 9 (0)
-0.5 1 1 1 0.1 1.101390 1.101380
-1 1.201800 1.201760
-1.5 1.301230 1.301160
-2 1 1.201810 1.201790
2 1.399750 1.399710
3 1.593820 1.593760
4 1 1.008540 1.008530
2 1.039600 1.039590
3 1.070550 1.070540
4 1 1.094100 1.094100
2 1.079550 1.079550
3 1.064990 1.064990
4 0.1 1.054580 1.054580
0.2 1.054580 1.054580
0.3 1.054580 1.054580

TaBLE 7: Computation of nanoparticles (iron oxide and ethylene glycol) and hybrid nanoparticles (iron oxide, cobalt) and ethylene glycol
with water for Sherwood numbers (homogeneous-heterogeneous) H" (0) and G" (0).

Variation in parameters Nanoparticles Hybrid nanoparticles

S Sc k1 k2 ¢ —-H'(0) -G'(0) —-H'(0) -G'(0)
-0.5 1 0.1 1 0.1 —0.333233 0.167006 -0.333230 0.167016
-1 —0.332977 0.167346 —0.332968 0.167332
0.5 -0.332720 0.167686 —-0.332700 0.167680
-2 1 —0.333233 0.167006 —0.333230 0.167005
2 —0.333135 0.167346 -0.333129 0.167345
3 —0.333038 0.167688 -0.333029 0.167686
4 0.1 —0.333283 0.166396 —0.333286 0.166396
0.2 -0.332976 0.166531 -0.332979 0.166532
0.3 —0.332669 0.166531 —0.332672 0.166667
0.4 1 -0.499141 0.249089 -0.499141 0.249089
6 —0.852392 0.430977 —0.852392 0.430977
11 -0.911060 0.460473 -0.911060 0.460473
4 0.1 —-0.333387 0.166454 —0.333387 0.166454
0.2 —0.333387 0.166454 —0.333387 0.166454
0.3 —0.333387 0.166454 —0.333387 0.166454

TasLE 8: Computation for f" (0), -6’ (0), —-H' (0), and -G’ (0) with P, = 0.5, = —0.5,L = 0.01,§ = 1,Q = 0.01, R = 0.1, Sc = 2.5, K1 = 0.3,
K2=0.1, Ha=0.2, ¢ = 0.02, ¢1 = ¢2 = 0.01, pl = 5180, p2 = 8900, p3 = 1056, o1 = 0.74 x 10°, 62 = 1.602 x 107, and 03 = 0.00509 and

varied values of S.

HAM results

Numerical results

N f"(0) -6'(0) -H'(0) -G'(0) f"(0) -6’ (0) -H'(0) -G'(0)
-1.1 3.1283 0.8762 -0.1209 0.1209 3.1283 0.8762 -0.1209 0.1209
-12 3.1357 0.8641 -0.1324 0.1324 3.1357 0.8641 -0.1324 0.1324
-1.3 3.1443 0.8519 -0.1411 0.1411 3.1443 0.8519 -0.1411 0.1411
-14 3.1540 0.8395 -0.1515 0.1515 3.1540 0.8395 -0.1515 0.1515

TasLE 9: Computation for f" (0), -6’ (0), —-H' (0), and -G’ (0) with P, = 0.5, S = -0.5,L = 0.01,8 = 1,Q = 0.01, R = 0.1, Sc = 2.5, K1 = 0.3,
K2=0.1, Ha=0.2, ¢ = 0.02, ¢1 = ¢2 = 0.01, p1 = 5180, p2 = 8900, p3 = 1056, o1 = 0.74 x 10, 62 = 1.602 x 107, and 03 = 0.00509 and

varied values of P,.

HAM results

Numerical results

P, £"(0) -6'(0) -H'(0) -G'(0) £"(0) -6'(0) -H'(0) -G'(0)
0.5 3.1059 1.2983 -0.0996 0.0398 3.1059 1.2983 —-0.0996 0.0398
0.6 3.1059 1.3545 —0.0996 0.0398 3.1059 1.3545 —0.0996 0.0398
0.7 3.1059 1.4096 -0.0996 0.0398 3.1059 1.4096 -0.0996 0.0398
0.8 3.1059 1.4638 —0.0996 0.0398 3.1059 1.4638 —0.0996 0.0398
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TasLE 10: Computation for f” (0), —6' (0), -H' (0), and -G’ (0) with P, = 0.5,S = -0.5,L = 0.01,8 = 1,Q = 0.01, R = 0.1, Sc = 2.5, K1 = 0.3,
K2=10.1,Ha =0.2,¢ = 0.02,$1 = ¢2 = 0.01, p1 = 5180, p2 = 8900, p3 = 1056, 61 = 0.74 x 10°, 62 = 1.602 x 107, and ¢3 = 0.00509 and varied

values of 6.

HAM results Numerical results
0 £"(0) -6 (0) -H'(0) -G' (0) "0 -6'(0) -H'(0) -G' (0)
1 3.1059 1.2983 —0.0994 0.0994 3.1059 1.2983 —0.0994 0.0994
2 3.1059 1.2983 -0.0996 0.0398 3.1059 1.2983 —0.0996 0.0398
3 3.1059 1.2983 —0.0996 0.0332 3.1059 1.2983 —0.0996 0.0332
4 3.1059 1.2983 -0.0996 0.0249 3.1059 1.2983 —0.0996 0.0249

TasLe 11: Computation for f"(0), -6’ (0), —H' (0), and -G’ (0) with P, = 0.5, S=-0.5, L=10.01, §=1, R=0.1, Sc = 2.5, K1 =10.3,
K2=0.1, Ha=0.2, ¢ = 0.02, $1 = ¢2 = 0.01, pl = 5180, p2 = 8900, p3 = 1056, o1 = 0.74 x 10°%, 02 = 1.602 x 107, and ¢3 = 0.00509 and
varied values of Q.

HAM results

Numerical results

Q f"(0) -6'(0) -H'(0) -G'(0) f"(0) -6 (0) -H'(0) -G'(0)
0.01 3.1059 0.9457 —0.0994 0.0994 3.1059 0.9457 —-0.0994 0.0994
0.02 3.1059 0.9465 —0.0994 0.0994 3.1059 0.9465 —0.0994 0.0994
0.03 3.1059 0.9472 —0.0994 0.0994 3.1059 0.9472 —-0.0994 0.0994
0.04 3.1059 0.9480 —0.0994 0.0994 3.1059 0.9480 —0.0994 0.0994

TasLE 12: Computation for f" (0), -0’ (0), —H' (0), and -G’ (0) with P, = 0.5, S=-0.5, L=0.01, § =1, Q =0.01, R=0.1, Sc = 2.5,
K1=03, K2=0.1, Ha=02, ¢ =0.02, $1 = ¢2 = 0.01, pl = 5180, p2 = 8900, p3 = 1056, o1 = 0.74 x 10°%, ¢2 = 1.602 x 107, and 03 =
0.00509 and varied values of R.

HAM results

Numerical results

R f"(0) ~6'(0) -H'(0) -G'(0) f"(0) -6'(0) -H'(0) -G'(0)
0.1 3.1059 0.9457 -0.0994 0.0994 3.1059 0.9457 -0.0994 0.0994
0.2 3.1059 0.9515 -0.0994 0.0994 3.1059 0.9515 -0.0994 0.0994
0.3 3.1059 0.9562 -0.0994 0.0994 3.1059 0.9562 -0.0994 0.0994
0.4 3.1059 0.9601 -0.0994 0.0994 3.1059 0.9601 —0.0994 0.0994

velocity is increased for continued positive changes in Ha
values while the same behavior is displayed as in the figure,
for both situations. It is also found that the maximum ve-
locity of HNF is greater than that of SNF. The impact on the
temperature profile of the Prandtl number P, is seen in
Figure 4. It is examined to show 8(#) in the case of SNF and
the inclining performance for high values of P, in the case of
HNF. Essentially, larger P, values enhance the boundary
layer thickness that stimulates the nanoparticle’s cooling
effect due to thermal diffusion ratio. As contrast to in the
HNF nanoparticles are tightly packed SNF. The impact on
the temperature profile of Q (heat generation parameter) is
seen in Figure 4. For rising values of heat parameter Q,
T, > T, indicates a further transfer of heat from the surface
into the fluid, thus raising the fluid temperature for both
SNF and HNF. The growing temperature behavior in SNF
and HNF for the larger value of R is shown in Figure 4.
However, it is commonly recognized that the heat transfer
phenomena of their radiation process emit the energy via
fluid particles, so that more heat is created during flow. Thus,
the thermal boundary layer with more R is defined as a
development. Figure 5 indicates a rise in the Schmidt
number Sc for SNF and HNF concentration profile of H (7)
and G(#) and, as a result, reduction in the thickness of
concentration boundary layer. The reactant concentration is
observed to be increasing at a quicker rate when the diffusion

coefficient of species is reduced; i.e., higher Sc values lead to a
more rapid increase of the flow field concentration. The
impact of homogeneous parameter k1 and a heterogeneous
parameter k2 on the concentration profile H (#) can be seen
in Figure 6. Increase in the concentration profiles H (#) it is
observed that due to increase in kl. According to this an
increase in the homogeneous chemical reaction parameter
which decreases viscosity. The concentration profile in-
creases as the thickness of the boundary layer decreases for
lower strength values of homogeneous reaction parameter. It
is also proved that concentration profile is lower for the
situation of HNF when compared with SNF. In both situ-
ations of SNF and HNF, the concentration boundary layer of
the reactants decreases. However, they coincide for smaller
values of # which physically means that the homogeneous
and heterogeneous reactions have no effect on the con-
centration of the reactants. The strong conduct of hetero-
geneous reaction parameters K2 on the distribution is
studied in Figure 6. The distribution of the concentration is
increasing towards the surface of the plate and decreasing
away from the surface with smaller values of K2. When
compared to HNF, the concentration distribution is smaller
(SNF). It is noticed in Figure 6 that the behavior of con-
centration profile G (1) and H (#) is opposite. This shows the
effects of the homogeneous chemical reaction parameter k1
and the heterogeneous chemical reaction parameter k2 on
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F1GURE 3: Impact of S for Fe;O, — C,H¢O, — H,0 and Fe;0, — Co/C,H,0, - H,O on f (), ' (1), 6(%), H (1), G (%) and impact of Ha on
f(y) with L=2, §=1, Q=4, R=2, Sc=P,=Ha=K1=K2=05, ¢=002, ¢l =¢2=0.01, pl =5180, p2=8900, p3 = 1056,
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FIGURE 4: Impact of Q for Fe;O, — C,H,O, — H,0 and Fe;0, — Co/C,H;O, — H,0 on f (#) and 0(#) and impacts of P, and R on 8(#) with
L=28=1,Q=4, R=2,Sc=P, =Ha=KIl=K2=05, ¢ =002 ¢1 = ¢2=0.01, pl = 5180, p2 = 8900, p3 = 1056, o1 = 0.74 x 10°,
02 = 1.602 x 107, and 03 = 0.00509.

the concentration profiles H(x#) and G(n). It has been  because as k2 increases, diffusion decreases, and the con-
observed that increasing k1 causes the concentration profiles ~ centration of less diffused particles grows. The impacts of
H () and G () to increase. This is due to the fact that asthe =~ nanoparticles volume fraction ¢ on the velocity profiles
homogeneous chemical reaction parameter rises, the vis- f(n), 0(n), H(xn), and G(n) in case of SNF and HNF are
cosity declines. However, the heterogeneous parameter k2 ~ shown in Figure 7. It can be clearly seen that the volume
yields the opposite result, as shown in Figure 6. This is  fraction parameter ¢ is increased with the increase in the
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03 = 0.00509.

velocity for both SNF and HNF. In this physical problem the
increase in velocity is because of the converse relationship
that exists between the dynamic viscosity of nanofluid and
the volume fraction. Consequently, the consistency of reg-
ular liquid is reduced against an increase in ¢, and therefore
the fluid flow is supported up. The quantities related to the
local coefficient of skin friction, the local Nusselt number,
and the Sherwood number (homogeneous-heterogeneous
reactions), that is, f (1), 0(#), H (), and G (), for various
values of ¢ are depicted in Figure 7. The values of f (#)
increase with increasing ¢, whereas the heat transfer rate
0(n) decreases. The values of homogeneous H () increase
with the increase in ¢, whereas the values of heterogeneous
G (%) decrease. It is also seen from these figures that the
values of f(n), 0(xn), H(#), and G(r) are always positive.
The influence on concentration profiles f (1), 6(#), H (1),
and G () of the parameter S can be observed in Figure 8 in
nanoparticles. All the concentration profiles are increased
while G (#) decreases, it is observed that due to increase in S.
Figure 9 indicates that the f(#) and H (%) concentration
profiles have increased with rising values of Schmidt number
Sc, while 6(x) and G(#) decrease. Figure 10 displays the
effects of the homogeneous and heterogeneous chemical
reaction parameters k1 and k2 on the concentration profiles
f(n), H(#),and G (). It has been observed that k1 increases
and k2 decreases on the concentration profile f(#); both
decrease on the concentration profile H (4); and both in-
crease on G(#). The purpose of Tables 5-12 is to test the
impact of various physical parameters numerically. As can
be seen from the tables, all of the results are in good

settlement with the BVP4c and HAM results. It is observed
that effects of skin friction coefficient, velocity, temperature,
and Nusselt and Sherwood numbers, both homogeneous as
well as the heterogeneous parameters cause increment in the
mass transfer rate. A decrease in the skin friction coefficient,
as well as the heat and mass transfer rate, is caused by an
increment in the internal heat generation parameter. A
similar set of results has been observed when the squeezing
parameter S is increased. As the squeezing parameter S is
enhanced, the friction factor reduces and the local Nusselt
and Sherwood numbers increase. The skin friction coeffi-
cient showed a downward trend, showing that the fluid was
being drawn by the floor. Tables 312, respectively, show the
results of f (1), 0(n), H(n), G(n), f'(n), =6’ (), -H' (),
and -G’ ().

It is acknowledged from Table 5 that perhaps the skin
friction factor f'(x) tends to increase the squeezing
number S; the disruptive effect can be seen for the
Hartmann number Ha and the volume fraction ¢ of
nanoparticles and hybrid nanoparticles. From Table 6, it
has been noticed that the squeezing number S has de-
clining influence on heat transfer efliciency, but Prandtl
number P,, Q (heat generation parameter), radiation R,
and volume fraction ¢ of nanoparticles and hybrid
nanoparticles are greatly influencing the heat transfer
efficiency. Table 7 depicts the behavior of nanoparticles
and hybrid nanoparticles on ~H' () and -G’ (1) when
8 = 1. It shows the decreasing values of —H' (1) and in-
creasing values of squeezing number S, Schmidt number
Sc, and homogeneous reaction strength K1, but values of
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TasLE 13: Computation for f” (0), —6' (0), -H' (0), and -G’ (0) with P, = 0.5,S = -0.5,L = 0.01,8 = 1,Q = 0.01, R = 0.1, Sc = 2.5, K1 = 0.3,
K2=10.1,Ha =0.2,¢ = 0.02,$1 = ¢2 = 0.01, p1 = 5180, p2 = 8900, p3 = 1056, 61 = 0.74 x 10°, 62 = 1.602 x 107, and ¢3 = 0.00509 and varied

values of Sc.

HAM results Numerical results
Sc f"(0) -6 (0) -H'(0) -G'(0) f"(0) -6'(0) -H'(0) -G'(0)
2.5 3.1059 0.9457 —0.0994 0.0994 3.1059 0.9457 —0.0994 0.0994
3.5 3.1059 0.9457 —0.1044 0.1044 3.1059 0.9457 —0.1044 0.1044
4.5 3.1059 0.9457 —0.1106 0.1106 3.1059 0.9457 —0.1106 0.1106
5.5 3.1059 0.9457 —0.1200 0.1200 3.1059 0.9457 —-0.1200 0.1200

TasLE 14: Computation for f"(0), —6' (0), —H' (0), and -G’ (0) with P, =0.5, S=-10, L =0.01, § =1, Q = 0.01, R = 0.1, Sc = 2.5,
K2=0.1, Ha=0.2, ¢ = 0.02, $1 = ¢2 = 0.01, pl = 5180, p2 = 8900, p3 = 1056, o1 = 0.74 x 10°%, 02 = 1.602 x 107, and 03 = 0.00509 and
varied values of K1.

HAM results

Numerical results

K1 1" (0) -6’ (0) -H'(0) -G' (0) f"(0) -6'(0) -H'(0) -G'(0)
1.1 3.1059 0.9457 —0.0994 0.0994 3.1059 0.9457 —-0.0994 0.0994
1.5 3.1059 0.9457 —0.0995 0.0995 3.1059 0.9457 —0.0995 0.0995
1.9 3.1059 0.9457 —-0.0997 0.0997 3.1059 0.9457 -0.0997 0.0997
2.5 3.1059 0.9457 —0.0999 0.0999 3.1059 0.9457 —0.0999 0.0999

TasLE 15: Computation for f" (0), =6’ (0), —H' (0), and -G’ (0) with P, =0.5, S=-10, L=0.01, § =1, Q = 0.01, R=0.1, Sc = 2.5,
K1=0.3, Ha=0.2, ¢ =0.02, $1 = ¢2 = 0.01, pl = 5180, p2 = 8900, p3 = 1056, o1 = 0.74 x 10°, 02 = 1.602 x 107, and 03 = 0.00509 and
varied values of K2.

HAM results

Numerical results

K2 0 -0'(0) -H'(0) -G'(0) (0 -0'(0) -H'(0) -G'(0)
0.01 3.1059 0.9457 -0.0994 0.0994 3.1059 0.9457 -0.0994 0.0994
0.02 3.1059 0.9457 -0.1758 0.1758 3.1059 0.9457 -0.1758 0.1758
0.03 3.1059 0.9457 -0.2362 0.2362 3.1059 0.9457 -0.2362 0.2362
0.04 3.1059 0.9457 —0.2850 0.2850 3.1059 0.9457 -0.2850 0.2850

heterogeneous reaction strength k2, for both —H' (1) and
-G’ (), show incremental behavior. The volume fraction
¢ of nanoparticles and hybrid nanoparticles has the same
values’ behavior.

7. Conclusion

This investigation gives a mathematical answer for dissecting
the impacts of flow between two squeezing plates with a
homogeneous and heterogeneous reaction in the presence of
hybrid nanoparticles. The impact of dimensional overseeing
boundaries on velocity, temperature, profiles with skin
friction, and local Nusselt and Sherwood numbers is ex-
amined with the assistance of graphs and tables. The effects
of the current examination are listed below:

(i) The skin friction coefficient augmenting for growing
values of solid volume fraction ¢.

(ii) The increasing values of the squeezing parameter S
reduced the friction factor and local Nusselt
numbers, but from Table 7 Sherwood numbers are
decreasing and increasing on the —H (0) and -G (0).

(iii) The Prandtl number, heat generation, and radiation
parameters appear to increase in the local Nusselt
numbers, as shown in Tables 9, 11, and 12.

(iv) Homogeneous-heterogeneous parameters assist in
observing the flow’s utility profiles.

(v) The local Nusselt and friction factor in fluid vis-
cosity are similar as Sc increases and the homoge-
neous parameter decreases while heterogeneous
parameter increases, as shown in Table 13.

(vi) Tables 14 and 15 show that homogeneous reaction
strength and heterogeneous reaction strength are
decreasing and increasing on the profile of —H (0)

and -G (0).
Nomenclature
T: Temperature
T, Upper plate’s temperature
Ty Lower plate’s temperature
P: Pressure

Phnf Effective density

(pcy)mny: Effective heat capacity

Ot Electrical conductivity of nanofluid

u,v: Nanofluid velocity

D,, Dy: Diftusion coefficients of the chemical species
: Ratio of the diffusion coefficients

K*: Permeability

Ky g Nanofluid thermal conductivity
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K;: Homogeneous reaction strength
K,: Heterogeneous reaction strength
S: Squeeze number

P, Prandtl number

Ha: Hartmann number

R: Radiation parameter

Q: Heat generation parameter

L: Length

Cy: Skin friction coefficient

Nu: Local Nusselt number

Sh: Local Sherwood number

N1, N2: Chemical species.
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This article presents a new bivariate extended generalized inverted Kumaraswamy Weibull (BIEGIKw-Weibull) distribution with
nine parameters. Statistical properties of the new distribution are discussed. Forms of copulas, moments, conditional moments,
bivariate reliability function, and bivariate hazard rate function are derived. Maximum likelihood estimators are formulated.
Simulation is conducted for three different sets of parameters to verify the theoretical results and to discuss the new
distribution properties. The performance of the maximum likelihood method is investigated via Monte Carlo simulation
depending on the bias and the standard error. Simulated lifetime data is used as an application of the new model.

1. Introduction

The inverse Weibull (IW) distribution is widely used
because of its applicability in various fields, like medicine,
statistics, engineering, physics, and fluid mechanics [1-11].
To enhance such distributions, researchers introduced new
generators by supplementing shape parameters to the base
line distribution. The inverted Kumaraswamy (IK) with
two shape parameters has been derived by Abd AL-Fattah
et al. [12]. To accommodate both monotonic and nonmono-
tonic failure rates, the IK distribution has been generalized
to involve three shape parameters (GIKum) by Igbal et al.
[13]. A new version with five parameters (GIKw-W) has
been introduced by Jamal et al. [14]. Although the univariate
continuous models suit many types of data sets, they cannot
be used to model dependent sets of data; therefore, a lot of
efforts have been done to develop bivariate distributions.
Muhammed [15] proposed a bivariate generalized Kumaras-

wamy distribution. A bivariate inverse Weibull distribution
has been developed by Mondal and Kundu [16]. Darwish
and Shahbaz [17] formulated a bivariate transmuted Burr
distribution; see also [18-25]. Most of the developed bivari-
ate distributions have different shapes for the joint pdf and
have singular part. In some cases, their joint probability
distribution function can be expressed in compact forms.
The maximum likelihood estimators cannot be expressed
in explicit forms in most of the cases. Ganji et al. [26] gener-
alized the method introduced by Alzaatreh et al. [27] to
generate bivariate distributions with marginals having T -
X families. Let gy y(x, y) be the pdf of the bivariate random
variable (X, Y), with x € a;, b;], y € a,, b,], —00 < a; < b;<c0
,—00<a, < by<co. Consider F,(Gy(u)) and F,(Gy(v)) be
functions of the cdfs of a random variables U and V, respec-
tively, such that

(1) Fi(Gy(u)) € ay, by] and F,(Gy(v)) € [a,, by
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(2) F1(Gy(u)) and F,(Gy(v)) are differentiable and
monotonically nondecreasing functions

(3) Fi(Gy(u)) — a, as u—> —o0, Fi(Gy(u)) — b
as u — 00, F,(G,(v)) — a, as v — —00, and F,
(Gy(v)) — by as v — 00

The cdf of the random variable (U, V) is given by

Fl(Gx(“))JFz(GY(V))

FMV<FAC&<u»,F2«a<z»>=J’ Gy (3 y)dxdly

(1)

O 3

In this paper, we introduce a new bivariate extended
generalized inverted Kumaraswamy Weibull (BIEGIKw-
Weibull) distribution; its joint pdf is absolutely continuous,
takes only one form with no singular parts, and ofters differ-
ent shapes for different values of parameters, and its hazard
function shows different shapes. Almost all statistical quan-
tities of the new distribution can be obtained in closed forms
including the maximum likelihood estimators. The new
model is developed using the new six parameter distribution
that is more flexible with so favorable properties [28]. Theo-
retical properties of the proposed distribution including
marginal distributions, copulas, moments, conditional
moments, bivariate reliability function, and bivariate hazard
function are computed. Theoretical properties are investi-
gated via simulation. Monte Carlo simulation is used to dis-
cuss the goodness of fit and the availability of the maximum
likelihood method. A real data application is presented that
proves the applicability of the new distribution. The paper
is organized as follows. The new distribution is formulated
in Section 2. In Section 3, closed forms of moments are
derived. Reliability and hazard function are computed in
Section 4. Estimation is performed in Section 5. Simulation
for different three sets of parameters is performed in Section
6. A real data application is discussed in Section 7. Conclu-
sion is given in Section 8.

2. Model Description

A one-dimensional random variable Z is said to have a
GIKw-Weibull distribution if its cumulative distribution
function (cdf) is given by

F(z) = (1 - {1 + ([1 —e*‘SZ“"r— 1>_Y}_Q)ﬁ, )

where z>0, a, 3, 9,6,A, ¢ >0 are shape parameters [29].
Using (2) as a baseline distribution and gy, (x,y) =1+6,
(1-x)+08,(1-y)+28;(1—x—y) in (1), where x,y €0, 1],
8y,0,,0,6-1,1],-1<8,+8;<1, and -1<5,+5;<1, we
formulate the following definition.

Definition 1. A bivariate random variable (U, V) is said to be
a BIEGIKw-Weibull random variable if its cumulative prob-
ability function (cdf) and probability density function (pdf)
are given by

Advances in Mathematical Physics

Fuy (1) = (1 - {1 . ([l e 1>fy}fa>ﬁ
«(1-{os ([1_8—51»}%_1)-1'}%)%3
,{1+(61+a3)x (1_ (1-fre ([1—efw]**_1)‘y}*“>ﬂ>
+(8,+8;) <1 _ (1_ {1+ ([l _E,M]fk_g-y}fa),g) }

(3)

Fu(16:v) = (aPyAsy)? (ur)? 00

([1 - e ][1 - _W])—um y
{([1 _5u¢] _ 1)([1 _5vw]f/\ B 1)}—(y+1) y
{(1+([1- e—(w]—/\ )‘ )(1 . [ ,M] B 1)—V)}—(a+1)

1 (
x{(1= {1+ (1= = 1)} ) x (1—{1+([

ST {14 (8, + &:)(1 -
(1-{1+(1- *Wr* 'y >> (8, +85)(1 -
- (- =" )

(4)

where  u,v>0,0,5,9,6>0,8,,0,,0;€-1,1],-1<65, + 8,
<l,and -1<6,+8;<1.

3. Marginals and Moments
Lemma 2. Let (U, V) be a BIEGIKw-Weibull random vari-

able with cdf and pdf given in (3) and (4). Then, the mar-
ginals are

= (1= (=] -1) )Y -
() YY)

(5)

ro (e b YY
fremen (== (=T}

(6)

fu(u) = aByrdpus'e®” [ 1- eﬂw} -+ <[ i e,w} = 1) ~(r+1)
ol )
(o fre (b))
o1 )Y

(7)
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~(y+1)

Fo() = approgur-te e [1 - o] <[1 —et) 1>

x {1 + ([1 - e—wr - 1>y}(w)_a .
X
X{1+62+63—2(82+63)<1—{1+([I—e";"q%—I) } ) }

(8)

For &,=0,=-0;, baseline distribution
EGIKw-Weibull.
Copula function is commonly used to investigate the

dependence between two random variables.

we get the

Definition 3 (see [30]). Let (U, V') be a BIGIKw-Weibull ran-
dom variable with cpf F; (1, v) and marginals F (1) and
Fy(v), and then, its copula function can be defied as
Fyy(u,v) 2 C(v, ¢), where v=Fy(u), ¢=Fy(v), and v,¢
€ (0,1)and the copula density function is defined as c(v, ¢)
= 0%C(v, $)/0vd¢.

Using chain rule, we obtain
_ OF(u,v) _ 9°C(Fy(u), Fy(v))
Fuy(v) = oudv ouov

_ 9*C(v, ) OF () OFy (v) .
T ovog 5y )y @y ().

©)
Lemma 4. Let (U, V) be a BIEGIKw-Weibull random vari-

able with pdf and marginals given in (4), (7), and (8). Then,
the copula density function is given by

1
)= w5, H(5,)

{7 }))
oo (o) Y )}

(10)
Lemma 5. Let (U, V) be a BIEGIKw-Weibull random vari-
able with pdf and marginals given in (4), (7), and (8). Then,

the conditional density functions are

aPyASpu?le [1- )] -0+
77.3)

x <1 - [1 fe—suqﬂ)-(w){l . <[1 76,&&]4 - 1>—y}—<a+1)

({0 )
freeaa (20 foe (1)) )

Foluiv) =

+(8,+8,) (1 —2(1 - {1+ ({1 —ew]k—1>y}_a>ﬁ> } (11)

o= PR 1 o))

x {1 + (1 - e"w]% - 1>7Y}_a_1

Y -y o Al
x <17{1+ (l—e"w] 71> } >
. {1 +(8,+03) <1 72(1 - {1 + <[1 7e*5“"r - 1>y}a)ﬁ>
+(8,+0 )( (1— {1 + ([1—{”}1—1)?_“)[3) }
(12)

where

H(x,8)=1+68+033.7-2(6+3;)

Y “ry o\ A
: (1—2(1—{1+ <[1—e‘5"“’} —1) } ) )
(13)
Lemma 6. Let (U, V) be a BIEGIKw-Weibull random vari-

able whose conditionals are given in (11) and (13). Then,
the conditional moments are given by

1 1
:v>:H( ){6"‘/’(1+6 +08,+26;

(- (1—{1+ ([l—e’avv)]%‘l)_y}m)ﬁ)
) 2 Ajek-1 ey <A(yj +lk) -1 ) ?l(irg()”;ﬁ

0
0o 21 AMyj+k)—1
,4&+&>Z ’i (4%W<<w+) )X
k= 1

U’
T —
m%(v) =E <—V

@
+
>

I((rg) +1) }
(14 1)t
.{8i¢(1+51+52+253
-(1—2(1—{“( "‘““ ) y}a ﬂ))
1

o AR Ayi+k) =1\ r((r1g) + 1) (14)
Z (=1)'&; l (l+1)(7/q))+1

—2(8,+65)

X

ijk=0 =0
2(6,+98;)
- 6v/<p Z

A <A<w+k) ) . F((r/(p)+1)}

where

. ai+7j—1 i+k—1
si,j,k<p>=<—1>”u<yj+k><’;>( +; )(”+k )

(15)



y is a positive integer and H is given by (13); for more
details, see [28].

Lemma 7. Let (U, V) be a BIEGIKw-Weibull random vari-
able whose density function is given in (4). Then, the joint
moments are given by

m, = E(U'V*) = (1+0;+0,+2683)
s 6r/(p85/<p

co  Ayj+k)-1 A( '+k)—1 .
X{ Z Z (U%i,j,k(ﬁ)( 1 )F(( /o) + 1)

iik=0 =0 I (1+ 1)l

S s A0~ 1\ s
x Z Z (1)[Ei,j,k(ﬁ)< ! tq >F(( /‘P)‘*I)}

opa0 0 (t + 1)(5/(p)+1

oo Alyjtk)-1 2Myj+k) -1 r
- yTZ(;skp { Z Z (_I)I’Ei,j,k(zﬁ)< l ) Lirig) + 1)

ijk=0 =0 (I+ I)WWH

o Mgt Ayp+4a) =1\ r((sip) + 1)
x a,;::o ;} (-1) fa,p,q(.s)< )W}

o Ayjrh)-1 Ayj+k) -1 .
_2(52+53)[Z » (—1)’Ei,j,k(13)< (vj+k) )r(( 1g) + 1)

510509 (] + 1)(”?’)”

ijk=0  1=0 l
o Ayjtg)-I . 2Myp+49) =1\ r((s/g) + 1
Y <1>su,p,q<2ﬁ>< ) (t(ff)’l;)ﬁ},
0,p,q=0 t=0

(16)

where y is a positive integer and &, (p) is given by
Equation (15).

4. Reliability and Hazard Functions

Bivariate hazard function can be used to characterize bivar-
iate distributions. It describes the failure characteristics of
the individual variables and their joint failure behavior.
Here, we compute the bivariate reliability function and the
hazard function defined by Navarro [30].

Lemma 8. Let (U, V) be a BIEGIKw-Weibull random vari-
able whose cumulative and marginals are given in (3), (5),

and (6), respectively. Then, its bivariate reliability function
is given by

R(u,v) =R;(u,v) + Ry(u, v), (17)

where

Ry(u,v)=1- (1 - {1 N ([1 _e—auw]—/\_l)-y}a)ﬁ
» <1+ @vo(1- {1+ ([l_ew]u)y}ay)
el
. <1+ (62+a3>(17 {1 . ([lew}-”)y}-a)ﬁ))
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(A+1)

Ry(u, v) = (afyrdp)? (uv)? e 004 +%) ( [1 - e"w] [1 - e’w} )7

Lemma 9. Let (U, V) be a BIEGIKw-Weibull random vari-
able whose density and reliability functions are given in (4)
and (17). Then, its bivariate hazard rate function is given by

—(A+1)

h(u,v) = {((xﬁy/\&p)Z(uv)‘P’Ie"s("hW) ( [1 - e"w] [1 - e"w])
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FIGURE I: For the set of parametersa =1, $=1.8,y=2.0,A=1.5,0=1.6,6, =-0.6,5, = -0.5, §; = 0.7, and ¢ = 2.5, the density function (4)
is given in (a), the cumulative function (3) is given in (b), the hazard function (17) is given in (c), and the marginals (5), (7), (6), and (8) are

given in (d-g), respectively.

5. Estimation

The maximum likelihood method is used to perform point
estimators of the unknown  parameters @@=

(B 1> 4, 9,8,8,,85,83)". Let (g, v), (143, v,)s - (14 7,,)
be a random sample from the BIEGIKw-Weibull random
variable. The maximum log-likelihood function is given by
L(®)=L,(0®) + L,(®), where

L(®)=2nIn (afyrdep) + (¢ — 1) ilnui - 8iu? -(A+1)

i=1

y gln[l ~eo)) - (M)gln([l et 1)
—(a+1)x iln{l + ([1 —e“”ﬂ“’]%— 1)7Y}

i=1

s Sn(a- ({ae (o= 7))

L2<@)=(¢—1>i1nvi_aivga_u+ l)iln[ueﬂsq
-+ llz)lx gln <[11 ] - _11>
(T
ol (1T )

S R R (RN

(o o) )}

(20)

Consider the score vector ¥ = (¥, 'Pﬁ, 'f’y, ¥, ‘P(P, ¥ s
Vs, Wo, Ws,)'s where W, =W + W0, W=V + ¥ 5,7,
:'}/yl +lI/y2, l}’/\ :lI//\l +¥,/\2’lI/(p :'}/({Jl +lI/(p2 +lII lI/(g:
'}/51 + ?’52; then,

The system of equations can be solved via symbolic
mathematical packages.

93>

6. Simulation

In this section, simulation is performed for three different sets of
parameters to verify our theoretical results and to discuss the
new bivariate distribution properties. For the first set of param-
eters, a=1, $=1.8,9y=2.0,1=1.5,0=1.6,8, =-0.6,5, =—
0.5, §;=0.7, and ¢ =2.5. The symmetry, unimodality, and
high beakness of the density function (4) can be observed in
Figure 1(a). For (u,v) approximately greater than (2,2), the
cumulative function (3) approaches 1 (Figure 1(b)). The
bivariate hazard function increases with the increase of (u,
v) as displayed in Figure 1(c). Symmetry of marginals and
bell shape densities with beakness can be noted in
Figures 1(d)-1(g). For the second set of parameters, « =1.5
, B=1.0,y=07,1=2.0,6=0.6,6,=0.7,8,=0.8, &, =—
0.5, and ¢ =1.0. The density function (4) is unimodal and
has high beak (Figure 2(a)). For (u, v) approximately greater
than (10, 10), the cumulative function (3) approaches 1
(Figure 2(b)). The bivariate hazard function decreases with
the increase of (u,v) (Figure 2(c)). Unimodality and right
tail property can be observed for marginals (Figures 2(d)-
2(g)). For the third set of parameters, « =0.5, $=0.7,y =
0.9,1=0.6,6=02,8,=0.5,8,=0.4, 6,=0.1, and ¢=0.3.
The density function (4) deformed and becomes an open
surface (Figure 3(a)). The cumulative function (3)
approaches 1 as (u,v) approaches infinity (Figure 3(b)).
The bivariate hazard function decreases with the increase of
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FIGURE 2: For the set of parameters  =1.5, 3=1.0,9=0.7,1=2.0,§ =0.6,6, =0.7,8, = 0.8, §; = -0.5, and ¢ = 1.0, the density function (4)
is given in (a), the cumulative function (3) is given in (b), the hazard function (17) is given in (c), and the marginals (5), (7), (6), and (8) are
given in (d-g), respectively.
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FIGURE 3: For the set of parameters « =0.5,3=0.7,y=0.9,A=0.6,6 =0.2,8, =0.5,5, = 0.4, §; = 0.1, and ¢ = 0.3, the density function (4)
is given in (a), the cumulative function (3) is given in (b), the hazard function (17) is given in (c), and the marginals (5), (7), (6), and (8) are
given in (d-g), respectively.

TaBLE 1: Average maximum likelihood estimates for the first set of =~ TABLE 2: Average maximum likelihood estimates for the second set

observations. of observations.

Sample size  Parameter  Average estimate Bias SE Sample size  Parameter ~ Average estimate Bias SE
o 0.3420 -0.158  0.0279 a 1.463 -0.237  0.185
B 2.510 -0.49 0.134 B 1.98 0.18 1.40
y 0.535 0.035 0.102 y 0.96 -0.04 1.24

n=20 n=20
A 0.573 0.073 0.118 A 1.148 0.052  0.366
é 1.216 -0.284  0.143 6 1.991 0.391 0.561
@ 2.902 -0.098  0.103 [ 0.883 0.183 0.240
a 0.4829 -0.017  0.0914 o 1.405 -0.259  0.104
B 4.508 1.508 0.667 B 2.424 0.624  0.956
y 0.5422 0.042  0.0986 y 1.39 0.39 1.21

n=>50 n=>50
A 0.4006 -0.099  0.0773 A 1.497 0.297  0.579
9 0.858 -0.642  0.153 9 1.941 0.341 0.378
9] 2.801 -0.199  0.177 [ 0.714 -0.014  0.310
o 0.2661 -0.244  0.0203 o 1.448 -0.251  0.0804
B 3.206 0.206 0.243 B 1.363 -0.437  0.332
y 0.9153 0.4153  0.0441 y 1.08 0.08 1.76

n =100 n =100
A 0.4187 -0.0813  0.0748 A 1.403 0.203 0.309
é 0.3047 -0.1953  0.0325 0 1.323 -0.123 0422
) 3.1596 0.1596  0.0850 [ 0.63 -0.07 0.276

(u, v) (Figure 3(c)). Marginals are given in Figures 3(d)-3(g). @ a=0.5, f=3,y=0.5,A=0.6,0=1.5,0,=-0.7,0,=-0.6,
Monte Carlo simulation is used to generate samples for differ- ~ §; =0.9, and ¢ = 3; the second set is generated for the param-
ent sizes to discuss the performance of the new distribution.  eters a=1.7, $=1.8,y=1.0,A=1.2,§=1.6,6, =-0.6,6, =
The first set of observations is generated for the parameters ~ —0.5, §;=0.8, and ¢ =0.7. Considering §,, §,, and &; as



10 Advances in Mathematical Physics
TaBLE 3: Simulated computer series system of two components.
Processor Memory Processor Memory Svs Processor Memory Svs Processor Memory Svs Processor Memory
lifetime  lifetime lifetime  lifetime °° lifetime  lifetime °7° lifetime lifetime >'° lifetime lifetime
1 1.9292 39291 11 1.9386 4.0043 21 1.1739 3.3857 31 0.1181 0.0884 41 0.6270 1.7289
2 3.6621 0.0026 12 2.1000 2.0513 22 1.3482 1.9705 32 5.0533 2.3238 42 0.7947 0.7947
3 3.9608 0.8323 13 0.9867 0.9867 23 3.0935 3.0935 33 1.6465 2.0197 43  0.5079 5.3535
4 2.3504 3.3364 14  0.1837 0.1837 24 21396 2.1548 34 0.9096 0.6214 44 25913 2.5913
5 1.0833 33059 15 1.3989 4.1268 25 1.3288 0.9689 35 1.7494 2.3643 45 2.5372 2.4923
6 2.8414 1.8438 16  2.3757 27953 26  0.1115 0.1115 36  0.1058 0.1058 46 1.1917 0.0801
7 0.3309 0.3309 17  3.5202 1.4095 27  0.8503 2.8578 37  0.4593 0.4593 47 1.5254 4.4088
8 2.9884 1.5961 18  2.3364 0.1624 28  0.1955 0.1955 38 0.9938 1.7689 48 1.0986 1.0986
9 0.5784 1.8795 19  0.8584 1.9556 29  0.4614 0.8584 39  5.7561 0.3212 49  1.0051 1.0051
10 0.5520 0.5520 20  4.3435 1.0001 30  3.3887 1.9796 40  6.2950 1.0495 50  1.3640 1.3640
0.30 Histogram 0.30 Histogram
0.15 0.15
0.00 M 0.00 —|1
I T T T T T T 1 I T T T T T 1
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6
wy 2
() (b)
FIGURE 4: Histogram of the data in Table 3.
TaBLE 4: The average maximum likelihood estimates of the BIEGIKw-Weibull parameters for the data in Table 3.
Parameter Estimate AIC BIC
a 0.82096924
B 0.38096869
y 1.03547483
A 1.25168661
9 0.23330064 325.4836 342.6918
¢ 1.65658910
8, -0.36575551
8, 0.86741494
8 -0.05319925

w
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FIGURE 5: (a) The joint density function, (b) the cumulative function, (c) the hazard function, and (d-g) the marginals for the estimated

parameters in Table 4.

chosen parameters, the maximum likelihood method is used
to estimate the rest parameters; results are given in Tables 1
and 2. Depending on the bias and standard error, the maxi-
mum likelihood method shows well performance.

7. Real Data Application

In this section, the data discussed by [31] is used to
investigate the applicability of the new distribution. Let
(uy, vp), (thy, v5), +++, (U5, Vo) be observed values of a
BIEGIKw-Weibull random variable (U, V) with parame-
ters (o, 3,1, A, 8, ¢, 8y, 05, 85), where U is the processor life-
time and V is the memory lifetime; see Table 3 and Figure 4.
The maximum likelihood method is conducted to estimate
the parameters with AIC and BIC; see Table 4. The joint den-
sity function, hazard function, and marginals for the estimated
parameters are given in Figure 5.

8. Conclusions

Analysis of correlated data is one of the most important
problems in statistics and data science. Here, we introduced
a new bivariate distribution named BIEGIKw-Weibull. The
proposed model is with nine parameters. It is a flexible
one. Theoretical properties including density function,
cumulative function, marginals, copula function, conditional
distributions, and conditional moments have been derived
explicitly. The new model exhibits very rich characteristics
that differ according to the parameters. That supports the
applicability of the model for a large set of correlated data
with various properties. Simulation clearly verified the theo-
retical properties and the richness of its preferable character-
istics. For different values of the parameters, the distribution
has extremely different properties that are clear from
Figures 1-3. For a set of values, we can observe symmetry
and close surface for density function side by side with
unimodality (Figure 1). All these properties deformed for

another set of parameters (Figure 3). The bivariate hazard
function exhibited different shapes. Monte Carlo simula-
tion and real data application prove the applicability of
the new distribution and the availability of the maximum
likelihood method.
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Unsteady electrohydrodynamic hybrid nanofluid (Al,0;-Cu/H,O) past a convective heat stretched/shrinked sheet is examined. A
stagnation point fluid flow with velocity slip constrains and heat source or sink is deliberated. The combined set of PDEs is
translated into ODEs by including approved similarity transformations. HAM is applied for the solution to the obtained
nonlinear system. The magnetic input factor, Prandtl number, electric field factor, Eckert number, heat source factor, and
unstable factor are the governing parameters. The impact of these factors on the temperature and velocity profiles features of
the problem is considered with explanation. Intensification in values of electric and magnetic fields parameters enhanced the
heat transfer rate. The greater Prandtl number lessens the temperature. Amplification in temperature is perceived for Eckert
parameter. The heat transferred rate of hybrid nanofluid in the entire domain increases as the heat source increases, while the
heat sink has the opposite effect. Skin friction and Nusselt number is increased for increasing values of magnetic field
parameters. It is also noted that Nusselt number lessens for raising in Pr, E, and Ec. Furthermore, it is eminent that the hybrid
nanofluid possesses better result compared to the nanofluid.

1. Introduction

The ability of nanofluids to improve heat transfer perfor-
mance in a range of industrial applications due to the sub-
stantial raise in thermal conductivity of the resulting fluid
has piqued interest in recent years. A liquid in which nano-
sized metallic or nonmetallic components are suspended is
defined as this new class of fluids. By dispersing a composite
nanopowder or various types of nanoparticles in the hybrid
nano- and base fluids, which are a continuation of nano-
fluids, can be created. An enhanced nanofluid having two
distinct nanoparticles scattered in the base fluid is called a
hybrid nanofluid.

Many researchers have been interested in studying heat
source in a hybrid nanofluid in recent years because of its
ability to boost heat transfer rates when compared to ordi-
nary nanofluid. As a result, most heat transferring uses, such
as transformer cooling, electronic cooling, and coolant in
machines, have used hybrid nanofluid as the heat source
fluid. Nanofluid is an eminent as a high heat transferred
when compared to other fluids. The hybrid nanofluid, on
the other hand, is researched in this study is to strengthen
the rate of heat source of the standard nanofluid. Several sci-
entists used numerical methods to explore the heat transport
and the boundary layering flow of a hybrid nanofluid. The
researchers in [1] studied the flow of a hybrid nanofluid past
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a stretched sheet by considering Cu-Al, 0, nanoparticles with
magnetic impacts. Newtonian heated condition was examined
by these researchers with the 3-D flow [2]. The rate of heat
transferring of hybrid nanofluid was found to be greater than
that of standard nanofluid. Hayat and Nadeem [3] considered
the rotating flow of hybrid nanofluid which consisted of Ag-
CuO/water. The authors in [4] conceptualize and investigate
the flow of hybrid nanofluid over an unsteady stagnation point
convective heat stretch/shrink surface including the velocity
slip impact on heat transfer. Using the Buongiorno model,
Daniel et al. [5] analyzed and interrogated mixed convection
electrico MHD flow and heat source caused nano-fluid over
a permeable stretched surface. Xie et al. [6] worked out on
the friction coefficient and wear volume of hybrid nanoparti-
cles to determine their tribological properties of the SiO,/Mo
S,. When compared to pure nanofluids, they found that
hybrid nanofluids have a smaller friction coefficient and wear
volume. The authors in [7] scrutinized the impact of nanopar-
ticle concentration and temperature distribution on rheologi-
cal performance of (Fe;0,-Ag/EG) hybrid nanofluid.

Ghadikolaei et al. [8] examined the thermophysical pos-
sessions of (TiO,-Cu/H,0O) with a shape factor with Lorentz
forces. Hussian et al. [9] considered hybrid nanofluid con-
taining (Al,05-Cu/H,0) and proved excellent results in the
circumstance of their assumptions. They calculated numeri-
cal solutions using the finite element scheme and analyzed
the impact of various input factors on the hybrid nanofluids.
Magnetohydrodynamic (MHD) has recently gotten promi-
nent attention due to its wide range of applications in geo-
physics, petroleum, chemical technology, environmental,
engineering, and many other branches of science and tech-
nology. The Lorentz force which is also known as the drag
force produced through the magnetic field that is used by
MHD. Wagqas et al. [10] investigated non-Newtonian liquid
MHD mixed convection flow of fluid on stretched and non-
linear surface. Furthermore, the impact of magnetic field
heat transferred of nanofluids in microchannels was dis-
cussed by the researchers in their research [11]. Other
researchers also worked out in this area and produced a sig-
nificant work in the field [12-14].

Scientists are interested in the stretching surface because
of its numerous uses in engineering domains such as glass
blowing, polymer extrusion, fast spray, wire drawing,
quenching in metal foundries, and microelectronics cooling.
The theoretical boundary layer flows over stretched sheet
has been scrutinized by Crane [15]. Different authors inves-
tigated the exponentially stretching sheet [16-19], the main
applications in technology and industry. In everyday life
and industrial challenges, the exponentially shrinked/-
stretched sheet is often used with fluid flow and heat trans-
mission. The article by Magyari and Keller [20] appears to
be the first to investigate at the fluid boundary layer flow
on an exponentially stretched sheet. The exponential simi-
larity variables were used by Mushtaq et al. [21] to turn
the controlling PDEs into ODEs. Furthermore, the
researchers in [22] interrogated the mixed convective flow
of nanofluid and obtained excellent result and find out the
influence of input parameter in the flow. The MHD fluid
flow for the stagnation point was created by Rahman et al.
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[23], who employed exponential similarity variables to gen-
erate ODEs.

Fluid movement near a solid surface’s stagnation area is
explained by the stagnation point flow. Hiemenz [24] was
the first to inspect stagnation-point flow problem in a flow-
ing fluid over a fixed surface. Homann [25] then enlarged to
a 3-D stagnation-point flow problem in the axis symmetric
condition. The researcher in [26] reported a stagnation fluid
flow in a diminishing surface. According to him, the pres-
ence of a stagnation fluid flow velocity can constrain the vor-
ticity to maintain the flow, eliminating the need for suction
on the shrinked sheet. Many academics have studied numer-
ous influences on flow behavior by extending the stagnation-
point flow problem. This problem is further investigated by
Bachok et al. [27] without and with heat transferred where
the authors discovered the decreasing case’s solutions are
no unique and that increasing the melting parameter
reduces the heat source rate at the solid-fluid interface. In
1992, Liao [28] discovered that this method was a faster
technique to get approximated solution and that it was a bet-
ter fit for solving nonlinear problems. Several researchers
contributed to find the solution through a homotopy analy-
sis scheme (HAM) [29-32]. The reader can further study
about heat transfer through nanofluid flow in Refs. [33-40].

The target of this work is to look into the combined
impact of magnetic field, heat generation/absorption, elec-
tric field, and velocity slip parameter for unstable
stagnation-point flow of electrical conducting hybrid nano-
fluids with the velocity slip input factor. In addition to
this, we will focus on the stability of the system. As a
result of the aforementioned issues, the researchers
decided to interrogate the unstable stagnation-point flow
towards a convective heated stretched or shrinked surface
in alumina-copper/water (Al,0;-Cu/H,0) to see how
velocity slip affects heat transfer. To decrease the indepen-
dent variables in governing equations resulting from math-
ematical modelling, a suitable set of dimensionless
variables is utilised. By applying the homotopy method,
an analytical solution has been computed.

2. Mathematical Formulation

This research considers the unstable 2-D stagnation point
flow of a hybrid system (Al,05-Cu/H,0) nanofluid over a
convective heated stretched or shrinked surface with the
impact of velocity slip. In our formulation, the term u,,(x, t
) =bx/(1 - ct) is the stretched/shrinked velocity in which b
represent a fix association with shrinked (b<0) and
stretched (b>0). We have the following cases while ¢
denotes the unsteadiness problem and the velocity of the free
stream is defined by u,(x, t) = ax/(1 - ct). Here, a >0 indi-
cates the power of the stagnation flow. T, and T, are the
ambient temperature and the reference temperature, respec-
tively. Further, heat is provided to it with some specific tem-
perature given by T;(x,t) =T, —Ty(ax*/2v)(1~ )"
which provided a heat transferred coefficient, denoted by
hy. Then, the governing equation of [4] with all our
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assumptions is as follows:

Ju oOu
E— —_— = 1
ax dy 0 v

ou Ou Odu Ou Ou, phy;0°U  Opye

_ e _RB?
ot "ox +Vai)/ T THeGe Pht 0¥ " Phnf (EoBo = By)
(2)
oT 9T OT ko 0°T  Opy 2
—tU— +V— =  + —— (uB, — E,)
ot ox ay (pCP)hnf oy’ (pCP)hnf v
b2 (r-T,),
(PCP)hnf
(3)

where u and v indicated the velocity components along
the x-axis and along the y-axis, respectively, while the
dynamic viscosity is indicated by y; ., T is the Al,O;-Cu/
H,O temperature, p, . is the density of Al,0;-Cu/H,o0, ky ¢
is the conductivity of thermal/heat of Al,0,-Cu/H,0, and
(pcy), ¢ 1s the ALoy-Cu/H,o0 heat capacity.

ou
u=u,(x,t)+ Hlva—y, v=0,-ky, T, =h;(T; - T)aty=0,

u— u,(x,t), T — T, aty—o00.

(4)

The above given Equation (4) show the Bcs, together
with the partial slip for velocity component, the velocity slip
factor is H, = H(1 —ct)"*, where the initial value of the
velocity slip parameter has been denoted by H. The proper-
ties of copper (Cu) thermophysical along with water (H,O)
nanoparticles and with aluminum oxide (Al,O5) have been
presented in Table 1. In the meantime, the thermophysical
properties of hybrid nanofluid were published in Table 2.
All the related input factors and symbols are represented
in the nomenclature with detailed description.

To simplify the abovementioned problem represented in
Equations (1)-(3) along with condition (4), we take the fol-
lowing similarity transformations [4]:

av 12 T 4 12
l//:(l—ct>/xf(ﬂ)’e(n):77“;—71:00”1:<v(1—ct)> Y

()

In the above, # is the similarity variable and u = oy/dy
and v = —0y/0x are satisfied through the stream function y
; thus, we get the following:

ax

u:
1—ct

fv=-(2) " ©

1—ct

In the case, when the similarity variables (5) and (6) are
employed to (2) and (3), they are converted to the following

3
equations:
/ mn
Mg #ff +2ff" _f12+1_8(fr _ l?]f” _ 1)
/ 2
Phnt! Py )
O'hnf/O'fM(E_f/> =0,
Phnf/Pf
1 khnf/kf " ’ / € l
——————0 +f0 -2 0+ = (50 +30
Pr (Pep) e/ (P%p) s 2 ( > @®
Q(pc
_Owmtl% g (f'-E)+ Ps)g_
(PD) ! P1 (PE)

After that, the beginning and boundary constrain (4)
becomes

0)=0.5'(0)=A+21" (0) 246/ (0 = BilL 000,

f'(n) — 1,0(n) — 0, while y—00,
9)

Where &, M, E,Ec,Pr,Bi,Re,A,and Q unsteadiness
parameter, magnetic parameter, ELECTRIC FIELD PARAMETER,
Eckert number, local Reynolds number in the x-axis, Biot
number, Prandtl number, ratio of velocity parameter, and
heat source/sink parameter.

" pa’ (10)
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TasBLE 1: Illustration of thermo-physical properties of Al,O5, H,O, and Cu [4].

Thermophysical properties Cu AL O, H,0

¢, (J/kgK) 385 765 4179

p(kg/m?) 8933 3970 9971

k(W/mK) 400 40 0.613

B % 10°(1/K) 1.67 0.85 21
TaBLE 2: Applied models for thermophysical properties of the hybrid nanofluid [4].

Property Hybrid nanofluid

Thermal -

capacity (Pcp)hnf - (1 - ¢hnf) (Pcp)f + ¢1 (pcp)sl + ¢2 (pcp)sz

Density Prng = (1= Brng) s + P11 + $2P0

Viscosity Pt = 1(1 = )

Th 1

COITg.rlilcatiVity khnf/kf = [((¢lksl + ¢2k52)/¢hnf) + 2kf + 2(¢1k31 + ¢2k52) - 2¢hnfkf/((¢lksl + ¢2k32)/¢hnf) + 2kf - 2(¢1k51 + ¢2k52) - gbhnfkf}

3. Physical Quantities of Interest

For the above model, we take the coeflicient of skin friction
(¢;) and local Nusselt number (Nu,) as follows:

T

C,= _w_
f 2’
P
e (11)
Xq,,
Ny, = — dw
ke (T = Too)
In which
_— (Bu)
w hnf ay y:O,
- (12)
Gy = kit <—> .
w ay 10
The dimensional form of the above is
12, _ Moot o1
[Re,] “Cp = ;Tff (0),
(13)

R *Nu, =009’ 0)
ky

4. Solution by HAM

In this section of the paper, HAM will be used to solve Equa-
tions (7) and (8) with boundary conditions (9). Mathematica
software is utilized for this purpose. The basic HAM deriva-
tion is given as follows:

—~ —~

L}(j‘) :ﬁ’—f’,Lé(e)zﬁ”—e. (14)

Linear operators Lf and L are specified by
L}(Yl +y,e T +y5e") =0, L (v, +y5¢") = 0. (15)

The nonlinear operators N 7 and N are as follows:

2 Hng/Hg 2l
N- | f(n:0)| = Fom+2f Fog—Fp+1
f [ ( >} Pont!Ps o m=
- 1 ~ Ghnf/af ~
- - Znf, -1 E-f,),
s(” anm ) ’ Phnt!Pf ( f")

Ny [£ (50, 00130, 6(130)|
1 khnf/kf N NN N
=—— —~* 0 _+f0, -2f 0
P (o)l (), T

& [N ~ Ohnf/o'f
+§(;19,7+36)+—

iU

/o)

(PCP)fA

+ 0,
(pCP)hnf

(16)

For Equations (7) and (8), we have shown the 0™-order
system as

A=OL; [ f1:0) = Folm)| =ph,N; [ F(n50)],

(1=0)Lg [00130) = Bom)] =phy NG [0(n50). £ (n30)].
(17)
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The BCs are:

~ of (n; ~

Fsq)] =0, 240 A 0500
-

kf on o
3f (n:0) 5
1,0(n; 0,
o —L00:9)|  —
7=00

(18)

While the embedded constraint is € [0, 1], h? and hg are

utilized to regulate the convergence. When {=0and{ =1,
we have

Fs1)=f ), 0(n:1)=0(n), (19)

After that, ?(17;() and 5(11;( ) are expended through
Taylor’s expansion for { = 0:

Fns)=Foln)+ 3 Futi

n=1
~ 20
S 1o 20)
fn(rl) _ﬁ Fl 4
! n o
~ 106 n;¢
0,1) =y g
p=0
The BCs are

—~
—~

F0)=0.7'0)= A" 0). 526'0)=-5i(1-6(0)

—~
—

f'(n) —0,0(n) — 0,n—00
(21)

Now,
—~ 7. /‘bl o w-1 — e
mz(ﬂ): ul ffn—l Z jf nl+1
Phnf/Pf j=0
- lp Uhnf/af
- - ~1)+ E-
8<fn1 znfn—l > phnf/pf ( fn 1)

5
5 1 k, /k -~ wol N
mﬂm—“ff<mw>+ 0, f,
P (el (o) 1) * 2 O
w-1 . . € . s
-2 Z eu)flfjfjl'-f_ 5 (’79;—1 + 36;171)
j=0
Q(pc,) . ~
+ MMEC(]‘ E) + (pey), 0,
(PC )h ( Py (Pcp)hnf
(22)
with the condition
0,ifn<l, 23)
M Liens 1,

5. Results and Discussion

The transformed equations of concentration, energy, and
momentum (7) and (8) with the boundary condition (9)
are solved using the homotopy analysis technique in this
work. Pr, M, E, €, Ec, and Q are some of the parameters used
in the computational analysis. ' (7) for the different embed-
ded parameters, such as E, M _and &, are shown in Figures 1-
3 to highlight the influence of these input factors on the
system.

Higher values of E enhance the hybrid nanofluid
velocity, as seen in Figure 1. An accelerating force is pro-
vided by an electric parameter. The stronger Lorentz force
is connected with the higher value of E, whereas the
weaker Lorentz force is related with the lower value of E
. The larger Lorentz force enhances and resolves the sticky
effect caused by nanoparticles in the fluid, indicating an
enhancement in convective heating transferred and the
thickness of the momentum barrier layer. In Figure 2,
we have shown the effect of M on the hybrid nanofluid
f'(n). In which, we observed that the thickness of the
velocity and momentum boundary layers decreased as
the magnetic parameter was raised. Lorentz flow is a resis-
tive type force that occurs when a magnetic field is applied
in the opposite flow direction. As a result, the fluid flow
behavior becomes more resistive, resulting in a decline in
f'(n) and a thickness boundary layer. In addition to this,

we highlighted the impact of ¢ on the nanofluid f'(#) in
Figure 3.

Because of the acceleration situation (&> 0), the hybrid
nanofluid flow rate is slower, and the thickness of bound-
ary layer of momentum is thinner. For enhanced accelera-
tion, the f' (1) decreases. In Figures 4-9, we illustrated the
effect of Ec, E, Q, M, ¢, and Pr on 6(r). Figure 4 shows
that the thickness of the thermal boundary layer and the
nanofluid temperature are increased as the kinetic energy
to enthalpy ratio rises with an enhance in the Ec values.
In Figures 5 and 6, the influence of heat absorption or
generation on 0() is highlighted numerically. The param-
eter 0(n) of the fluid and the thickness of the thermal
boundary layer are both increased when (Q>0) is used.
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Ficure 9: Illustration of the influence of the input factor Pr on 6(#)

TaBLE 3: Impact of different input factors on skin friction [R,,]"?

Cr= (Mhnf///‘f)f"(o)-

BX]

€ E M (thf”"f)fﬂ (0)
0.3 0.1 04 0.72059328
0.5 0.83542092
0.7 1.03614135
0.1 1.86313569
0.2 1.64385204
0.3 1.76103193
0.4 1.03873708
0.8 1.30863981
1.0 1.58376213

On the other hand, (Q < 0) outcomes in a lower fluid tem-
perature and a smaller thickness of the thermal boundary
layer. Q =0 denotes the lack of heat generation or absorp-
tion. Figure 7 reveals the impact of M on 6(y) of the
nanofluids. We noticed that the transverse magnetic field
increases the thickness of the thermal boundary layer. As
a result, the temperature of the fluid as well as the thick-
ness of the thermal boundary layer increased. The mag-
netic field acts as a strong Lorentz force, increasing the
temperature of the nanofluid in the boundary region.
Figure 8 shows the depicts the impact of E on 0(#).

The impact of E on 6(5) is shown in Figure 8, which
showed that the electric field acts as an accelerating force,
raising the fluid flow temperature and increasing the
thickness of the thermal boundary layer. A thicker, higher
quantity temperature distribution within the boundary
layer region of the hybrid nanofluid’s vicinity is connected
with a greater value of an electric field. The Prandtl num-
ber is a material property that varies depending on the
fluid. From Figure 9, it reveals that as it raises in Pr, 0(y
) declines. Moreover, the higher value of Pr implies
smaller thermal diffusivity than the momentum diffusivity.
As a result, the energy boundary layer thickness declines.
Table 3 represents that C; is raised when the values of

M,e,andE are increased. Table 4 shows that Nu, is

TaBLE 4: Impact of different input factors on the Nusselt number

[(~kng /k7)6" (0)].

Ec Q Pr M E —(knnt k)6 (0)
0.3 0.5 45 0.4 0.1 1.07386504
0.5 1.17290347
0.7 1.23893104
0.5 2.30319769
1.0 2.15912307
15 2.02463073
4.5 0.54354079
5.5 0.73865302
6.5 0.93865321
0.4 1.13159603
0.8 1.09764384
1.0 1.05346068
0.1 1.12183304
0.2 1.23583931
0.3 1.30346893

increased when the values of M,Q are increased. The
Nu,_ is decreased, when the values of Pr, E,andEc is

X
increased.

6. Concluding Remarks

This study investigates the unsteady electrohydrodynamic
stagnation-point fluid flow of a hybrid nanofluid over a
convective heat stretch or shrink sheet, taking into
account the velocity slip effect on heat transferred. The
effects of heat generation and absorption, as well as the
electric and magnetic fields, are all taken into account.
The following are the main observations of the present
study:

(i) f'(n) and 6(y) raises with an enhance in the value
of E

(ii) The magnetic factor has an inverse impact for
velocity and temperature gradient

(iii) A heat source raises the temperature, whereas a
heat sink does the opposite

(iv) The velocity and temperature are reduced at higher
levels of the unsteadiness parameter

(v) The Eckert parameter shows an enhance in temper-
ature, while Pr shows a reduction

(vi) Skin friction is raised when the values of M, ¢, and E
are augmented

(vii) The Nusselt number is enlarged when the values
M, Q are increased, and Nu, is diminished, when
the values of Pr, E, and Ec are enlarged
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Nomenclature

Uyt Stretched/shrinking velocity (m/s)

u and v: Along x- and y-axis velocity terms (m/s)

(pcy),. ¢+ Volumetric heat capacity of hybrid nanofluid (
m?s2K!)

T,: Ambient temperature (K)

hy: Coeflicient of heat transfer

Mg Hybrid nanofluid viscosity (kgm™s™)

Ky e Hybrid nanofluid thermal/heat conductivity

Re,: Reynolds number

Hi: Velocity slip factor

o The density of the nanoparticle(kgm ™)

v Stream function

Ec: Eckert number

Pr: Prandtl number

Bi: Biot number

Nu,: Local Nusselt number

A Ratio of velocity parameter and heat

f: Dimensionless velocity

v: Kinematic viscosity (m?s™!)

¢: Nanoparticle solid volume fraction

X, y: Plane coordinate axis

Uu,: Strength of the stagnation flow

P Basie fluid density (kgm™)

Ty: Reference temperature (K)

Phnf Hybrid nanofluid density (kgm™)

k: Nanoparticle thermal conductivity (Wm™'K™)

n: Similarity variable

H: Initial value of the velocity slip factor

o Heat capacity constant pressure

kp: Base fluid thermal conductivity (Wm™'K™)

& Unsteadiness parameter

E: Electric field parameter

M: Magnetic parameter

Q: Source/sink parameter.

¢ Coeflicient of skin friction

% Dynamic viscosity (kgm™s™)

T: Temperature of fluid (K)

Ty Wall shear stress

4y Transportation of heat.
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