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In underwater acoustic sensor networks (UASNs), energy awareness, best path selection, reliability, and scalability are among the
key factors that decide information delivery to the sea surface. Existing protocols usually do not combine such performance-
affecting factors in information routing. As a result, the performance of such protocols usually deteriorates if multiple
performance factors are taken into account. To cope with such performance deterioration, this article proposes two routing
protocols for UASNs: energy and path-aware reliable routing (EPRR) and cooperative EPRR (Co-EPRR). Compared with the
counterpart systems, the proposed protocols have been designed to deal with the problem of long propagation delays and
achieve network reliability. The EPRR scheme uses nodes’ physical distance from the surface with its depth, which minimized
the delay of packet transmission. The channel interaction time has been reduced, therefore, reducing unwanted channel effects
on the data. Furthermore, the density of the nodes in the upper part of the network prevents data loss and limits the rapid
death of the nodes. The second proposed scheme, Co-EPRR, uses the concept of routing information from the source to the
destination on multiple paths. In Co-EPRR routing, the destination node can receive more than one copy of the data packet.
This reduces unfavorable channel effects during data delivery. Both the schemes show good performance in terms of packet
delivery ratio, received packet analysis, and end-to-end delay.

1. Introduction

Energy awareness, best route selection, reliability, and scalabil-
ity are among the principal factors that determine the perfor-
mance of underwater acoustic sensor networks (UASNs) [1]
in information routing to the desired target, as these factors
are directly linked with performance evaluation. In addition,
these performance factors play a key role in undersea applica-
tions such as underwater exploration, monitoring, submarine
tracking, and navigation and are used for military purposes

[2–5]. Unfortunately, existing schemes usually do not consider
these factors altogether in information routing, which leads to
compromised network performance since one or the other
performance parameter can get compromised.

Channel noise and bit error rate can be looked into
channel conditions during data routing in order to minimize
to a certain extent [6, 7] that the channel impairments affect-
ing data delivery. As described in [6], cooperative communi-
cation is one of the techniques that could be exploited to deal
with channel properties. This technique is based on multiple
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paths and on the combination of data at the destination; this
approach has been used to increase the reliability of data
delivery. In cooperative communication, a relay forwards
data to the destination by amplifying or decoding the
received signal. The first is known as amplify and forward
(AF), and the second is known as decode and forward
(DF) [8]. The AF scheme is simpler and forwards data with
a lower latency than DF, as DF completely decodes the signal
before forwarding [9]. In general, two cooperative methods,
called fixed and incremental cooperative relay schemes, are
used [10, 11]. In fixed cooperation, the relay always cooper-
ates. While in incremental relaying, the cooperation is done
when a destination needs to send the desired signal. In incre-
mental relaying, instantaneous information from the chan-
nel reduces data forwarding by limiting the feedback
packets to a few bits. In fixed relaying, data are transmitted
to the destination regardless of the channel condition [12].
In cooperative communication, The receiver can get more
than one copy of the same data packets. All these data
packets are then combined using one of the combining tech-
niques to improve the correct reception of the data [13].

Using multiple antennas at a sensor node provides data
reliability. However, in the case of UASNs, adding antennas
is difficult and expensive. Therefore, to improve reliability,
cooperative communication is usually used instead of multi-
ple antennas. In such a case, overhearing of the data by
neighboring nodes can lead to high data reliability [14] even
when a single antenna node is used. Anyway, in cooperative
communication, data retransmission by a relay is used to have
error-free data. However, multiple data transmission leads to
additional energy consumption and increases latency.

Protocols that do not consider channel awareness and
noise in data routing generally do not guarantee reliable data
delivery, since there is no retransmission of data packets. On
the other hand, cooperative routing protocols enhance data
reliability, since data are transmitted by sender and relay
nodes as well. Many cooperative [15, 16], noncooperative
[17], and different other types of routing protocols are pro-
posed for UASNs [18, 19]. These routing algorithms achieve
high reliability at the cost of high latency and excessive
energy consumption.

The selection of the best and shortest path during data
routing takes into account the overall time to transmit the
packet from the source to the desired target. This not only
shortens the time of data delivery, which is necessary in
emergency and military applications, but also makes the
data affected by the channel properties for a short period
of time. As a result, reliability is also increased. Scalability
ensures that new nodes can be added to the network so that
the network can be easily extended when desired.

The existing schemes that route data in UASNs do not
consider energy awareness, shortest path selection, reliabil-
ity, and scalability together [15, 16]. Instead, the proposed
methods generally exploit a single parameter or indicator
in the routing of information [20–22]. Even when more than
one parameter is considered, if the computation of the
Euclidean distance for route determination is needed, the
network scalability is affected [23, 24]; the calculation of
Euclidean distance is, in fact, cumbersome in UASNs, as it

involves the computation of nodes’ position coordinates
and nodes constantly change their positions. As a result,
one or more performance indicators are not always optimal
when the network operates.

This work proposes two approaches (EPRR and Co-
EPRR) to cope with these limitations. In EPRR, data are
reached to the sink along the shortest links, so less time is
taken by the data. This minimizes the propagation delay
and shortens the time it takes for the channel properties to
affect the data. As a result, the data transfer reliability is
improved. Moreover, consideration of energy and noise
parameters further improves routing strategies and data for-
warding. The Co-EPRR also adds cooperative routing to
EPRR to make data communication even more reliable. In
Co-EPRR, data overhearing of the node is exploited and
the relay cooperates with the destination. If the destination
fails to receive the correct data, then, a relay retransmits
the data on request of the destination. The Co-EPRR utilizes
amplify and forward incremental cooperation; data retrans-
mission is controlled by using the bit error rate (BER)
threshold. Cooperation of the nodes provides data reliability
and increases the chances of a successful reception of the
data.

Both the proposed schemes have promising performance
in data delivery to the desired target and do not affect the
scalability of the network as they do not require the Euclid-
ean distance computation in route computation. Instead,
nodes’ physical distance is involved, which is computation-
ally less complex.

To summarize, the contributions of the proposed work
are as follows:

(i) The nodes are deployed in the network in such a
way as to avoid early death of the nodes and
improve performance. Specifically, the density of
nodes in the upper area of the network is greater
than other lower part of the network

(ii) The proposed EPRR scheme considers the shortest
and best routes, which are the paths that provide
the least time from a source to the desired target.
The choice of the shortest path is based on the dis-
tance amongst nodes and sinks. Channel noise,
residual energy, and depth are considered as well
for further improving successful delivery

(iii) In the proposed Co-EPRR scheme, to ensure reli-
able delivery of data packets, cooperative routing is
added to the EPRR protocol. Desired information
amongst the nodes is shared to advance throughput
and reliable data exchange. The relay cooperates
with the destination node if the data have an error
greater than a given threshold. The relay node
retransmits the same data again on request of the
destination. Data are processed using maximum
ratio combining (MRC) to obtain the required data
at the destination

(iv) Both EPRR and Co-EPRR use timer-based opera-
tions to compute the distance rather than the
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computationally complex Euclidean distance. This
reduces the complexity of computation and avoids
the loss of scalability. As a result, network perfor-
mance is improved without compromising scalabil-
ity, as is the usual case with existing schemes

2. Related Work

A routing algorithm presented in [17] uses depth informa-
tion for data delivery and is a receiver-based approach.
The data is exchanged with the nodes having low depth.
The lowest depth node accepts data for further transmission
to the next step. The node having the lowest depth then
informs all other neighbors by transmitting the same packet
with the highest preference. When the neighbors receive the
same packet, they discard the old one and consider success-
ful delivery of the packet. This algorithm performs very well.
However, high traffic on the upper nodes creates data over-
head and leads to early death of nodes.

A recent approach [25] that improves the most popular
existing algorithm [17] is presented. The fuzzy logic and
the bloom filter are utilized to improve the existing routing
strategy. The fuzzy logic is used for the uncertainty of energy
estimation and hop count. Moreover, for the memory
improvement of the DBR, a bloom filter is utilized. This
algorithm performs best in terms of many performance met-
rics, such as energy, data delivery, and node lifetime.

The algorithm in [26] utilized an opportunistic tech-
nique for data routing and titled as “confined energy deple-
tion (CED) opportunistic routing (OR) mechanism”. The
data is routed in steps in order to achieve better performance
such as energy utilization and packet reception. Firstly, the
data advanced towards the next nodes. Then, the best for-
warder is selected to advance the data. Next, the signal-to-
noise ratio (SNR) and link quality are determined for the
next step to advance the data.

The author suggested a clustered routing method, the
location, and energy-aware k-means clustered routing (LE-
KCR) algorithm, in [27]. K-means technology is used to deter-
mine the location of each node and the remaining energy of
each node. Cluster-head selection considers both the situated
site and the remaining energy of a prospective cluster-head,
as well as the distance between it and its sink node. Compared
with the traditional low-energy adaptive clustering hierarchy
(LEACH) protocol and the enhanced LEACH protocol based
on K-means clustering technology, the LE-KCR scheme con-
sumes less energy and has fewer dead nodes.

To enable time-saving and reliable routing for UWSN,
[28] offers the energy-efficient guiding-network-based rout-
ing (EEGNBR) protocol. It considers the beneficial
distance-vector technique and creates a guiding network to
give underwater sensor nodes the shortest route (least hop
counts) toward the sinks in order to reduce network latency.
Furthermore, it combined classic opportunistic routing with
a revolutionary data forwarding technique known as a con-
current working mechanism, which also significantly mini-
mizes forwarding delay while ensuring reliable routing. In
terms of network latency, the protocol outperforms certain

related traditional protocols while maintaining an equivalent
or even superior energy usage and packet delivery ratio.

An energy-aware multilevel clustering scheme is sug-
gested in [29], to increase the lifetime of the underwater
wireless sensor network. The undersea network area is com-
posed of 3D concentric cylinders with many layers, and each
level is separated into several blocks, each of which repre-
sents a cluster. The proposed algorithm employs a vertical
communication route from the sea floor to the surface
region. Simulations are used to demonstrate the efficacy of
the proposed approach, which performs well in terms of net-
work lifespan and residual energy.

A delay-tolerant algorithm with sink mobility is pre-
sented in [30]. In order to minimize duplicate data and
energy cost, this scheme uses different variations of the
depth threshold. For further improvements, the algorithm
uses mobile sinks. The deployment of mobile sinks reduces
the path length between two nodes. Reducing path length
tends to minimize latency and improve successful data
exchange. However, the path trajectories for sinks are diffi-
cult and costly underwater. Moreover, the depth threshold
increases the computational complexity of the algorithm.

The algorithm in [31] tries to maximize the network
throughput and data reception by using the novel incremen-
tal cooperation. In this case, the retransmission of data by
the relay occurs when the receiver fails to retrieve the correct
data. Moreover, the algorithm implements a multilayer net-
work structure and uses courier nodes. The courier nodes
move in each layer for the collection of data, which maxi-
mizes the network throughput and latency. However, the
courier nodes increase the cost of network deployment.
Due to the cooperation, the energy cost is also high.

A delay-sensitive-energy efficient scheme for UWSNs
called FVBF is proposed in [23]. The FVBF enhances the
performance of the VBF [24] by using the fuzzy logic
technique, where the best forward node is selected by con-
sidering the position of the node and the energy informa-
tion in the cylinder. In FVBF, consideration of the residual
energy ratio (RER) and fuzzy logic interference system
reduces energy consumption and interference. The lowest
distance and highest remaining energy are considered for
selection of the destination to forward the information to
the desired sink node through the multihop path. The
fuzzy logic interference system reduces the contribution
of the other nodes during the routing and follows the
shortest path to reach the sink node. FVBF minimizes
delay during the information forwarding and reduces
energy consumption. However, the nodes have a large data
burden on the cylinder.

To reduce latency and improve network energy, Ali et al.
introduced DVRP [20]. DVRP forwards the information in
the network in a diagonal or vertical manner to reduce the
path length and decreases the latency. Moreover, the hori-
zontal flow of information in the existing schemes increases
the routing path, which increases the energy cost and
latency. The best forwarder selection is made on energy
and flood angle. Data to the next node are delivered in the
same manner. The information is forwarded only in the
flooding zones vertically or diagonally to decrease the path
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length and allow the node to forward the information to the
upper sink node with a small delay. DVRP reduces the net-
work energy consumption and minimizes the latency during
packet forwarding. However, the flooding angle updating is
required for data forwarding.

In [21], an efficient energy and delay minimization algo-
rithm named PBR for underwater UWSNs is presented. The
information flows in two different ways, one is a regular
information packet and the other is an emergency informa-
tion packet, and it is transmitted by the path which leads to

Radio tower

Radio waveSink node

Sensor node

500 m

50
0 

m

Figure 1: Network model.

1 Initialization;
2 S source: Source node;
3 D i: Depth possesses by sensor node i;
4 S source broadcast a hello packet;
5 Calculate response time t;
6 ds,n: distance between sender and neighbor node;
7 ds,n = ðv × tÞ/2;
8 dn,sink: distance between sink and neighbor node;
9 ds,sink = ds, n1 + :⋯ dn1, ni + dni, sink;
10 Neighbor nodes reply;
11 for round=1:end do
12 if Ssource receives reply then
13 compute ds,n and dn,sink;
14 compute weight function WsðnÞ;
15 WsðnÞ = R/ds,n + dn,sink +Dn +N
16 end
17 end
18 Find maximum value of the WsðnÞ to choose relay node;
19 The Best relay having the highest value of the weight function

Algorithm 1: Network initialization and destination selection.
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deliver data through the shortest path. The picking of the
best forwarder node is based on the desired attributes such
as the remaining energy, delay, and number of hops. The
node having a minimum number of hops, delay, and high
residual energy which lies within the communication range
is considered the best forwarder node which forwards the
information further to the sink node. By taking the desired
parameters, it reduces the path length and increases the
information that reached the sink node with low cost of
energy and taking less time as compared to the counterpart
schemes. However, the regular information is received with
a high latency compared to the emergency packet. An effi-
cient mechanism for the video and image transmission using
acoustic waves is discussed in [32].

The UMDR [22] algorithm forwards the information
with a small latency and uses a directional antenna. Instead
of the broadcast nature of the data transmission, the nodes

use a directional antenna to deliver data in less time. In
addition, it reduces the energy cost and the overhead of
the control message due to the directional antenna. How-
ever, the computational complexity due to the directional
antenna is high.

The idea is introduced in [33] to obtain an efficient algo-
rithm in energy consumption and reliability of the network
by considering nodes’ depth and minimum number of
neighbors. The selection of the best forwarder node is estab-
lished on the function parameter; minimum depth, and
number of neighbors to reduce the interference between
the nodes. In this algorithm, the source node first broadcasts
a hello packet to collect the information of all the nodes. The
node close to the sink node having the least number of
neighbors is selected as the destination node. Selecting the
node which has the minimum number of neighbors as a for-
warder reduces the interference and collision of the data
packets. The algorithm sounds superior in energy consump-
tion, remaining energy, packets received at the sink node,
packets dropped, PDR, and delay. However, the data load
at the lowest depth is greater in the network and tends to
die soon.

A cooperative depth-based routing (CoDBR) is pre-
sented in [15]. Data are forwarded to the destination using
the fixed relaying cooperative technique. Three copies of
the data are received by the destination, one is transferred
directly to the destination by the sender, and the other two
copies of the data are transmitted by the relay nodes. The
data are then combined utilizing the MRC technique. The
relay and destination selection is based on the depth infor-
mation. The node that has the lowest depth is selected as a
destination. The CoDBR improves the network throughput
and reliability with high latency and high energy

Transmission range

1 2 3
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Transmission range
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Sensor node

Sender node

Data packet

Sink node

Figure 2: Data forwarding in EPRR.
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Data packet

Relay node

Broadcasting
Destination node

Relaying

Figure 3: Data forwarding technique.
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consumption. Lee and his colleagues propose an automatic
repeat request (ARQ) cooperative algorithm in [16]. All
relay nodes transmit the data one by one on the destination
request for correct data reception to achieve high through-
put. However, the request of the destination to all the relay
nodes one by one for retransmission consumes excessive
energy and increases latency.

A cooperative void avoiding routing that requires the
location information of the nodes for data forwarding is pre-
sented in [34]. For data forwarding, the sender considers an
imaginary pipeline to the sink node to avoid data flooding.
Nodes within the cylinder are eligible for data forwarding.
The redundant packet forwarding is restricted using data

holding mechanism. The protocol achieves a better packet
delivery ratio by utilizing a minimum amount of energy.
However, this routing algorithm requires the location of
the sensor nodes for information exchange.

In the region-based cooperative routing protocol
(RBCRP) [35], the whole network is divided into four
regions. In each region, a mobile sink moves horizontally
in the network and collects data from the nodes in its own
region. The source transmits data directly or through a relay
node to the MS. Direct transmission is done when the source
node finds MS in its transmission range. Otherwise, the data
are transmitted through a relay node to the MS. The RBCRP
is an energy-efficient and reliable algorithm in terms of PDR.

Soure node

Relay node

Destinstion node

Non cooperative areaNon cooperative area

Cooperative area

Figure 4: Relay selection.
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Broadcasting
Destination node

Relaying

Figure 5: Data transmission (ACK).
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However, the movement of the mobile sink node is difficult
underwater in terms of defining its path.

An algorithm in [36] is proposed for cooperative data
transmission to the sink with a minimum energy consump-
tion. The fuzzy logic chooses the best relay among the neigh-
boring nodes. The proposed scheme improves the PDR and
delay of the network. Packet collision minimization is done
using the holding time. However, the remaining energy of
the node is used for relay selection which is updated after a
short time interval causes communication overhead and
high latency.

REQ

Source node

Data packet

Relay node

Broadcasting
Destination node

Relaying

Figure 6: Data transmission (REQ).

While data
reached to sink

If next hop
is sink node

If BER < 0.5

Send REQ to relay
node

Data reached to sink
node

Select next hop node
as destination node

If BER < 0.5

Send REQ to relay
node

Data relay to receiver
Data forwarded to that
node whom send the

REQ

Forward data packet

Start

End

Yes

No

No

Yes

Yes Yes

NoNo

Figure 7: Flow chart.

1 S sender : Sender node;
2 N i: Neighbor node i of the sender node;
3 S sender send a data packet;
4 for round=1:end do
5 while data packet not reached to sink node do
6 if Next hop = Sink node then
7 if BER < 0:5 then
8 data packet accepted;
9 send ACK to sender;
10 Data reached to sink node = true
11 else
12 Select N 1 as relay node;
13 Send REQ to N 1 by the sink node;
14 Forward data by N 1;
15 data packet accepted;
16 Data reached to sink node = true;
17 end
18 else
19 Select N 1 as destination;
20 if BER < 0:5 then
21 data packet accepted;
22 S sender = N 1:
23 else
24 Select N 2 as a relay node;
25 send REQ to N 2 by N 1;
26 Forward data by N 2
27 data packet accepted;
28 S sender = N 1
29 end
30 end
31 end
32 end

Algorithm 2: Routing mechanism.

Table 1: Parameters choice.

Parameters Size Unit

Network size 500 × 500 × 500 Meter

Sink nodes 4

Sensor nodes 225

Transmission range 100 Meter

Depth threshold 60 Meter

Data packet 50 Bytes

Threshold 0.5

Frequency 30 kHz
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The cooperative routing that uses fixed ratio combining
(FRC) is proposed in [37]. The selection of the relay is made
on the channel noise, the distance of the source to the relay
node, and the remaining energy of the node. The protocol
achieves better energy consumption, delay, and network life-
time than its counterpart schemes. However, acknowledg-
ment consumes excessive energy. The same routing metrics
such as SNR, time of arrival, and distance between are used
also in the algorithm presented in [38]. The relay node coop-
erates with the destination node whenever it does not receive
the correct data. PDR and delay are improved. However,
using CTS, RTS, and ACK causes communication overhead.

A cooperative communication is presented in [39], in
which the relay regenerates the data followed by its transfer
further to destination. The best relay node is selected using
the SNR, time of arrival (TOA), and hop count information.
In this approach, a better packet delivery ratio is achieved
with minimal energy usage and delay. The sink node broad-
casts an advertising packet to obtain the hop count informa-
tion. However, this needs to be updated after specific
intervals of time that cause delay.

In [40], a cooperative algorithm is proposed. The relay
and destination nodes are chosen using three parameters:
link quality, time of arrival, and hop count information.

The data are retransmitted by the sender when it receives a
request from the destination. If the sender does not receive
a request from the receiver, then after some time intervals
the sender forwards the same packet to the receiver. This
scheme achieves better PDR with minimum energy con-
sumption and latency. However, information updating is
required for relay and destination node selection and loca-
tion information is needed for data routing. A most recent
approach that used both acoustic and optical waves is pre-
sented in [41]. The acoustic waves are used for the control
signal transmission, while data is exchanged using optical
waves.

3. Proposed EPRR Algorithm

3.1. Network Architecture. Below the water surface, a sensor
network setup is installed as shown in Figure 1. The deploy-
ment of the nodes affects the performance of the network,
especially underwater. In particular, nodes are deployed to
have a bigger number in the upper part of the network than
in the other part of the area to be monitored. The nodes are
capable of detecting attributes such as temperature, pressure,
and light. These sensor nodes are powered by a limited bat-
tery. The communications among sensor nodes are done
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Figure 8: Packet delivery ratio (PDR).

Table 2: Packet delivery ratio (PDR) analysis.

Protocol
PDR at
round 1

PDR at round
200

PDR at round
400

PDR at round
600

PDR at round
800

PDR at round
1000

PDR at round
1200

PDR at round
1400

Co-EPRR 0.688 0.571 0.515 0.478 0.453 0.437 0.424 0.416

EPRR 0.480 0.410 0.363 0.344 0.340 0.336 0.332 0.329

DBR 0.426 0.393 0.300 0.238 0.210 0.195 0.184 0.176
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using acoustic waves. Each sensor node acts as a relay or
source node. On the other hand, on the sea surface, sinks
are placed at a fixed position. The sink nodes are different
from the sensor nodes and communicate with each other
through radio waves, while still using acoustic waves to com-
municate with the sink nodes. The acoustic modem is
installed to communicate between sensor nodes at each sen-
sor node. The sink nodes gather information from the sensor
nodes; for further processing, the data is then delivered to
the base station.

3.2. Network Initialization and Forwarder Selection. After
network setup, the depth information of every sensor node
is obtained by a pressure sensor attached to it. The depth
value of the node i is denoted by Di. Each node finds the dis-
tance from their neighbor nodes sending a specific “hello”
packet. When a node receives the broadcasted hello packet
from a sender, it sends a response. The sender, once it
receives a response from a neighbor node, can calculate the
roundtrip time taken t and then calculate the distance. The
neighbors also share their depth with the sender in the hello
packet. The sender s finds that its distance from every neigh-
bor node n is represented by ds,n = ðv × tÞ/2, where v repre-

sents the speed of acoustic waves in water. Then, the next
forwarder finds its distance in the same manner from the
next nodes and shares that distance value with the sender.
At the end of the process, each node knows the distance
value from the sink ds,sink = ds, n1 +⋯+dn1, ni + dni, sink,
where ni is the last node which communicates directly with
the sink. In other words, the sink lies in the coverage area
of the node. Based on the parameters Dn, ds,n,dn,sink , noise
N , and residual energy R a sender node can also compute
a weight function for the neighbor node as follows:

Ws nð Þ = R
ds,n + dn,sink +Dn +N

: ð1Þ

The weight function for each neighbor node is deter-
mined by equation (1). The source then determines the next
forwarder on the basis of the maximum value of the weight
function. The best forwarder node is selected as the one with
the highest value of the weight function. Algorithm 1 depicts
the selection of the forwarder node.

The sender calculates the weight function for every
neighbor and selects the node that follows the shortest route
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Table 3: Successful packet reception analysis.

Protocol
Received data
at round 1

Received data
at round 200

Received data
at round 400

Received data
at round 600

Received data
at round 800

Received data
at round 1000

Received data
at round 1200

Received data
at round 1400

Co-EPRR 155 24632 40199 49275 54039 56783 57789 58091

EPRR 108 18039 30047 40000 49259 56280 60344 61778

DBR 96 17300 24351 25865 26753 27235 27522 27766
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to the sink. Two different scenarios are depicted in Figure 2
in which all neighbors have the same depth. When using
only depth information, all neighbors will direct data to
the next stage because of having the same depth value.
Therefore, the proposed approach chooses the best for-
warder using the distance with the depth information of
the nodes. In the scenario depicted in part a, node 2 is
selected as the next forwarder, because it has the highest
value of the weight function than the other neighbors. In
other words, it is the shortest route to the sink than the
others. In part b, both nodes have the same depth and dis-
tance from the source and the sink. So, both hold the same
value of the weight function. Therefore, in this case, the
sender has an open choice to select any of these nodes.
And one of them directs data toward the sink.

3.3. Data Forwarding. When a source needs to exchange a
data, it first checks the sink in its proximity. If a sink is avail-
able, then, direct exchanging of data with the sink node is
performed without any other indirect path. When a sink is
not present, the data are routed through other nodes until
they reach the sink node. Namely, the source node gives

the packet to be sent to its neighbor nodes in case of not
finding any sink node in its neighborhood. When the source
to destination link fails, the data are dropped. From these
neighbor nodes, a destination is selected on the basis of
equation (1) which has the maximum value. Then, the
sender sends the data with their unique ID and also embed
the ID of the destination to the data packet. The same pro-
cess is followed at every next hop until the data reach the
sink node.

4. Proposed Co-EPRR Algorithm

The EPRR does not guarantee reliable data delivery, because
if the source to destination link fails, then, the data is lost.
The Co-EPRR is proposed, which provides data reliability
whenever the source to the destination link is failed and then
relays the data to the destination. The cooperation of the
relay node and the combining technique is discussed in this
section. The network architecture, network initialization,
and destination selection are the same in Co-EPRR as in
EPRR.
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Table 4: End to end latency analysis.

Protocol
Delay at
round 1

Delay at
round 200

Delay at
round 400

Delay at
round 600

Delay at
round 800

Delay at round
1000

Delay at round
1200

Delay at round
1400

Co-EPRR 5:62 × 103 1:35 × 108 3:15 × 108 4:44 × 108 5:18 × 108 5:77 × 108 6:19 × 108 6:46 × 108

EPRR 2:43 × 103 7:07 × 107 1:86 × 108 2:91 × 108 3:71 × 108 4:37 × 108 4:87 × 108 5:09 × 108

DBR 2:74 × 103 1:36 × 108 4:42 × 108 7:30 × 108 9:30 × 108 1:05 × 109 1:13 × 109 1:21 × 109
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4.1. Relay Selection Using Cooperation. For cooperation,
three nodes are considered: the source, the relay, and the
destination nodes as depicted in Figure 3. In cooperative

schemes, data is received at the destination from the sender
as well as by the relay node. The first one is known as broad-
casting, and the second is relaying. In the first phase, the
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Figure 11: Residual energy analysis.
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destination and relay nodes receive data directly from the
source node. In the second phase, the data received by the
relay node is directed toward the destination.

The data forwarding from source S to relay R and desti-
nation D is formulated as

ysd tð Þ = hsdXs tð Þ +Nsd tð Þ,
ysr tð Þ = hsrXs tð Þ +Nsr tð Þ,

ð2Þ

where hsd and hsr are the channel gains between S −D and
S − R, respectively. The signal that S transmits at time t is
Xs. The ysd and ysr are signals from S −D and S − R, respec-
tively. The Nsd and Nsr are the channel noise added to the
desired signal from the S −D and S − R links, respectively.

Data communications from R to D are formulated as fol-
lows:

yrd tð Þ = hrd f ysr tð Þð Þ +Nrd tð Þ, ð3Þ

where hrd is the channel gain from R −D. The Nrd is the
channel noise along the R −D link. R processes the signal
received from S represented by a function f ðysrÞ. In this
paper, the AF technique (amplify and forward) is used. R
amplifies the desired signal by a factor of β before sending
it to D and receives the signal as follows:

yrd tð Þ = hrdβ hsrXs tð Þ +Nsr tð Þð Þ +Nrd tð Þ: ð4Þ

The channel is modeled as Rayleigh fading and AWGN
is used to simulate the channel noise. The sequence of bit
generated by a sender using binary phase shift keying
(BPSK) is sent over the AWGN channel directly to a destina-
tion. Then the destination checks the bit error rate (BER)
and is given as [42]

BER = 1
2 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�SNR
1 + �SNR

s0

@

1

A, ð5Þ

Table 5: Remaining energy analysis.

Protocol
Residual
energy at
round 1

Residual
energy at
round 200

Residual
energy at
round 400

Residual
energy at
round 600

Residual
energy at
round 800

Residual
energy at
round 1000

Residual
energy at
round 1200

Residual
energy at
round 1400

Co-EPRR 3:37 × 103 1:71 × 103 880:00 445:84 232:27 103:85 35:49 0
EPRR 3:37 × 103 2:20 × 103 1:45 × 103 918:23 520:10 235:62 64:68 0
DBR 3:37 × 103 2:15 × 103 1:23 × 103 676:52 358:38 191:74 89:66 0
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where

�SNR = 10SNR/10,

SNR = Pt

A d, fð ÞN fð Þ ,
ð6Þ

where Pt represents the transmitted power of the source.
The Aðd, f Þ and Nð f Þ represent the attenuation and noise
associated with the underwater channel.

The relay is selected from the nodes which lie in the
common transmission range (cooperative area) of both S
and D as shown in Figure 4. The relay and destination selec-
tion criterion is the same as for the destination selection in
the EPRR. Based on the weight function, two nodes are
selected: one serves as a relay and the other as a destination
(equation (1)). The destination is selected which has the
highest value of the weight function, and the second node
is selected as a relay which holds the highest value of the
weight function. The relay forwards data only once to the
destination to reduce the data collision and delay time.

When a data is received by the destination, it analyzes
the BER. If the BER is less than 0.5, then, the destination
responds to the sender and sends an acknowledgment

(ACK) as shown in Figure 5. When the data packet BER is
greater than 0.5, then, D requests R for retransmission as
shown in Figure 6. The sender node embeds relay ID infor-
mation when transmitting the hello packet. Whenever the
destination needs for retransmission of the data, then, the
destination requests to relay which is close to it. The relay
node amplifies and forwards (AF) the desired data packet
and sends it to the destination.

4.2. Combining Technique. When a destination has multiple
replica of the same data packet, all these data packets are
combined using one of the diversity combining techniques.
In this paper, the MRC technique is used. At the destination,
the received signal yd is the combination of all relaying and
directly transmitted signals, which is combined by using
the MRC technique and is given as [43]

yd tð Þ = 〠
L

k=1
h∗kd × ykd tð Þ, ð7Þ

where ykd is the received signal through multiple paths and
h∗kd represents the conjugate of the channel gain. In this case,
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Table 6: Analysis of the number of alive nodes in the network.

Protocol
Alive nodes
at round 1

Alive nodes at
round 200

Alive nodes at
round 400

Alive nodes at
round 600

Alive nodes at
round 800

Alive nodes at
round 1000

Alive nodes at
round 1200

Alive nodes at
round 1400

Co-EPRR 225 199 150 100 66 43 23 0

EPRR 225 209 178 158 127 92 53 0

DBR 225 209 165 114 73 52 44 0
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D combines two signals: one from S and one from R; there-
fore, L = 2 and is expressed as follows:

yd tð Þ = h∗rd × yrd tð Þ + h∗sd × ysd tð Þ: ð8Þ

The flow chart in Figure 7 shows the detail of the data
transmission of the proposed algorithm. Algorithm 2 also
explains the whole process of the proposed scheme.

5. Simulation Results and Discussion

MATLAB is used for simulation purposes to authenticate
the results of the EPRR and Co-EPRR. The EPRR and
Co-EPRR schemes are compared with DBR, because the
DBR considers the depth of the node for data routing.
For fair comparison, the mobility model and the MAC
scheme considered in DBR are also taken into consideration
by the proposed schemes. A network having a size of 500m
× 500m × 500m is considered which distributes nodes ran-
domly. The density in the upper area of the network is kept
higher than that of the rest of the network. It is due to the
high traffic load on the upper nodes, in which the death ratio
is greater than the highest depth nodes. Among 225 nodes,
100 of them are deployed in the upper 100m3. The sinks
are placed at the top of the networks. The sink node has an
infinite energy source, because it can be easily powered on
the sea surface. The sensor node consumes 2W, 0:8W, and
8mW power in transmission, reception, and idle mode,
respectively. A hello packet contains 48 bits and is broad-
casted to establish a connection. The transmission range
and depth threshold of the sensor nodes are 100m and 60
m, respectively. Table 1 shows metrics under consideration.

In Co-EPRR, the packet delivery ratio is the highest than
EPRR and DBR. Because when data are received by a desti-
nation, it is checked. When the BER is less than the thresh-
old value, it is accepted. However, if BER exceeds the limits,
then, the destination requests are relayed for retransmission,
which enhances the packet delivery ratio. The cooperation is
helpful in advancing packets to the surface that raises PDR.
Moreover, the greater number of nodes in the upper area
of the network provides a path for the data. The path provid-
ing by the upper nodes leads to enhance the packet reception
probability. Also, the selection of the shortest path is another
reason for the highest PDR. The effects of the channel are
less due to the shortest path. Due to all these reasons, the
PDR of the Co-EPRR is the highest than that of the rest of
the algorithms. The results of PDR are shown in Figure 8.

The PDR of the proposed EPRR is better than the DBR.
Because in the former, the shortest path is followed toward
the sink node in which the probability of packet loss is less.
Also, the packet is less affected by the channel noise and
attenuation which is received correctly at the destination
and the packet drop probability is less than DBR. Another
reason for better PDR is the density of the network. In the
upper area of the network, the number of nodes is kept
greater in order to increase the packet delivery probability.
So, the proposed algorithms get good performance with
respect to PDR.

The DBR has the lowest PDR. It is due to the high traffic
on the upper nodes that the death ratio is high. The death of
the nodes leads to break the communication between sinks
and the lower nodes. Moreover, DBR considers the depth
for path selection which does not guarantee the shortest path
and the data may be corrupted by noise and tend to reduce
the PDR. The PDR performance analysis is also shown in
Table 2.

The received packet analysis is shown in Figure 9. The
number of packets received in Co-EPRR is higher than that
in EPRR and DBR. Due to the cooperation of the nodes, it
maximizes the number of received packets. The proposed
cooperative scheme requests to relay for retransmission of
the data. Retransmission of data increases the chances of
successful reception. Another reason for the highest data
reception is the best possible route for the data exchange.
Moreover, the network topology also contributes. The
greater number of nodes provides multiple paths to the sur-
face which enhances the reception of the data. At round
1000, the reception of the packets performance goes down
than the EPRR. It is due to the death of the node. The death
of the nodes reduces the chances of cooperation. Reduction
in the cooperation process leads to fewer packet reception.

The EPRR has a higher packet reception than DBR. Due
to the distribution of nodes in the network, multiple paths
are available for data exchange, which increases the recep-
tion of the packets. Also, the shortest path selection leads
to reduce channel effects on the data. The less channel effects
on the data tend to the correct data reception and increase
them. At the start up to 200 rounds, the packet reception
in both EPRR and DBR is the same. It is due to the flooding
of the data in DBR. After that, the nodes die, leading to
reduction of packet reception. The analysis is also shown
in Table 3.

The EPRR delay is the lowest than the others as shown in
Figure 10, because it follows the shortest path to the sink
node which deliver data with small latency, while the Co-
EPRR has a greater delay than the proposed EPRR scheme.
The reason is that the destination takes time to check the
received data through multiple paths and to combine these
data packets. The cooperation at every next hop node takes
time, which results in delay. Therefore, in the Co-EPRR,
the data is received at the sink node with high latency.

In the counterpart DBR scheme, redundant packets are
transmitted, which increases packet collision, energy con-
sumption, and latency. Also, the selection parameter only
considers the nodes’ depth for data routing, which does
not guarantee the shortest route to the destination. In the
proposed EPRR and Co-EPRR schemes, the shortest route
is used for data transmission by considering the distance
with the depth value of the node. The decision for the for-
warder selection is made by the sender which selects only
one forwarder which leads to reducing the packet collision
probability and redundant transmission. The delay perfor-
mance is further elaborated in Table 4.

In Figures 11 and 12, the residual energy and energy
consumption results are shown. The Co-EPRR residual
energy is the lowest than the counterpart schemes as it
checks the BER prior to packet advancing. If BER is greater
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than 0.5, then, the destination requests to relay for retrans-
mission. In short, two sensor nodes are used to transmit
the same data packet and both sensor nodes consume
energy. The cooperation is done at every next hop node,
which consumes excessive energy. So, in Co-EPRR, the
energy consumption is greater than that of the proposed
EPRR and the counterpart scheme. Conversely, the residual
energy is minimum than the counterpart schemes.

The EPRR has a higher residual energy than the counter-
part scheme. The shortest path is followed to the sink node,
which reduces energy consumption as few nodes are
involved in data forwarding. Also, multipath transmission
is avoided which consumes less energy and its residual
energy is higher than the counterpart schemes. While in
the competitor DBR algorithm, redundant data transmission
tends the more energy consumption and reduces the net-
work lifetime. Table 5 shows more detail about the energy
of the network.

In Co-EPRR, nodes die soon as cooperation makes them
use of their energy rapidly. Therefore, cooperative schemes
have the lowest alive nodes and the highest dead nodes com-
pared to DBR and EPRR as shown in Figures 13 and 14,
respectively. In EPRR, the nodes do not die soon due to
the lower energy usage. In DBR, the higher energy consump-
tion leads to rapid death of the nodes. Therefore, the number
of alive nodes in DBR is lower than that of the proposed
EPRR. As a result, the number of alive nodes is higher in
EPRR than in the counterpart scheme as shown in
Figure 13 and also in Table 6.

6. Conclusion and Future Work

Two routing algorithms are proposed for UASNs: EPRR
and Co-EPRR. The former used delay-sensitive paths for
data routing. This reduced the delay and shortened the
time for which data are affected by channel properties,
which improved the reliability of data delivery. The latter
algorithm added cooperative routing to EPRR to further
counteract adverse properties of the channel in the data,
which involved sending data over multiple links from a
source to a destination. This increased the probability of
successful data delivery to the desired target, even if some
links failed to deliver the data. Both protocols maintained
scalability of the network by computing physical distance
rather than the computationally complex Euclidean dis-
tance. Network scalability is lost when Euclidean distance
is computed, as it involves nodes’ coordinate computa-
tions, and nodes constantly change their positions. Fur-
thermore, the higher density of the nodes provides stable
operation in the proposed schemes. Extensive simulations
proved that the proposed schemes performed better in
delivering packets to the desired target. The delay of the
EPRR scheme was shorter than that of the counterpart
scheme. However, the delay of Co-EPRR was greater than
that of the counterpart scheme due to the routing data
over multiple paths in the former. In the future, energy
harvesting techniques will be used to energize the surface
nodes to prolong the network lifetime.
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A traditional Viterbi decoder is primarily optimized for additive white Gaussian noise (AWGN). With the AWGN channel, it
offers good decoding performance. However, the underwater acoustic communication (UAC) channel is extremely
complicated. In addition to white noise, there are a variety of artificial and natural impulse noise that occur suddenly. The
traditional Viterbi decoder cannot obtain the optimum performance under this case. In order to solve this problem, this paper
introduces a novel Viterbi decoder with the impulsive noise, which is considered to be subjected to Middleton Class A
distribution in shallow ocean. Since Middleton Class A noise is very complicated, a simplified model is first introduced. Then,
the error analysis of simplified model under various parameters is discussed in detail. The analysis shows that the simplified
one just leads to slight error. Hereafter, a novel Veterbi decoder using the simplified model is discussed. Compared to a
traditional decoder, a preprocessing is just required. The performance of soft decision-based decoder in the Middleton Class A
noise channel (MAIN) and AWGN are further compared. Based on our simulations, the new decoder can significantly
improve the performance in comparison with conventional one, which further validates our presented method.

1. Introduction

The noise distribution [1, 2] plays an important role in
developing underwater signal processors. Traditional signal
processors such as underwater localization [3–13], underwa-
ter tracking [9, 14, 15], sonar imaging [16–27], direction of
arrival (DOA) estimation [28–32], and underwater acoustic
communication (UAC) are mostly based on Gaussian noise,
which can be supported by a central limit theorem. Besides,
the Gaussian model is just determined by the first-order and
second-order statistics [33]. Under this case, the linear pro-
cessors can be obtained with Gaussian noise. Using the lin-
ear processors, the signal processing can be significantly

simplified. In practice, the shallow ocean often suffers from
ambient noise from shipping vessels, marine life, activity
on the surrounding land, and so on. This noise is impulsive
[34, 35], and it is called non-Gaussian noise [36–41], which
exhibits heavier tails than the Gaussian noise. Consequently,
this noise cannot be directly described by using the probabil-
ity density function (PDF) of Gaussian distribution. Com-
pared to traditional Gaussian noise, the PDF of non-
Gaussian noise is extremely complicated [42–46].

Nowadays, the non-Gaussian noise [36–41, 47–49] in
shallow ocean has attracted much attention in the underwa-
ter field. The related work of non-Gaussian noise, especially
impulse noise, has been widely researched. The receiver
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performance under different impulse noise models is also
inconsistent. The duration of impulse noise is very short
while its amplitude is quite high. The energy of impulse
noise is almost dozens of times higher than Gaussian noise
in dB. Impulse noise models can be divided into memory
noise channels, such as Gilbert-Elliott channel [50] and
Markov-Gaussian channel models [51–53]. GE memory
impulse channel belongs to the first order two state Markov
process. It assumes that the channel has one good state and
one bad state. The two different states are distinguished by
setting the threshold. Until now, there has been a lot of liter-
ature on the and research of Markov memory channel. For
instance, the literature [51] designed a quasicyclic low-
density parity-check (QC-LDPC) code to resist Markov
memory impulse noise and improve the robustness. In
[53], Tseng et al. added the Polar Code over Markov Gauss-
ian memory impulse noise channels and compared the per-
formance of SC and BP algorithms. A previous work was
only Polar Code over memoryless impulse noise channels.
In [54], the α-sub-Gaussian noise model with memory order
m (αSGN(m)) was applied in the description of snapping
shrimp noise in shallow water. The scheme tackled the opti-
mal detection of transmitted symbols in catching shrimp
noise. In this paper, we consider the impulse noise is inde-
pendent of each other in the underwater acoustic channel.
Therefore, we consider using the memoryless noise model.

Impulse noise also includes memoryless models such as
the Gaussian Mixture Model (GMM), symmetric α-stable
(SαS) distribution, and additive Middleton class A and B
models. The Gaussian Mixture Model (GMM) is a paramet-
ric probability density function defined as a weighted sum of
Gaussian component densities. In [55], the GMM is used to
model the ocean noise, and the expectation-maximization
(EM) iteration method is exploited to estimate the GMM
parameters. In [56], the performance of underwater commu-
nication system in noise with GMM statistics is discussed in
detail. However, the heavier tail of non-Gaussian noise can-
not be comprehensively described by this statistic. To solve
this problem, symmetric α-stable (SαS) distribution [57] is
proposed to model the shallow ocean noise. However, this
model does not have the closed-form distribution except
for the Cauchy, Levy, and Gaussian distributions. This is
not convenient for the performance analysis of signal pro-
cessors. In addition, Middleton class A noise has a strict
probability density function(PDF) which simplifies the algo-
rithmic complexity. The major advantage is that Middleton
class A noise is a generalized GMM model. We can adjust
the parameters of Middleton Class A impulse noise models
to fit the underwater acoustic environment.

Actually, traditional processors are often discussed based
on the empirical non-Gaussian models. To some degree, the
statistics of ocean ambient noise are just fitted by using
empirical non-Gaussian models, and the parameters of
non-Gaussian noise model do not have physical meaning.
Based on the physical mechanism of noise source and noise
propagation characteristic, Middleton noise [58] possessing
physical meaning is proposed. In [39], a parameter estima-
tion method based on characteristic function for the Middle-
ton Class A model is presented. In [38], the parameter

estimation of Middleton Class B noise is discussed based
on the least-square estimation method. In [59], the mixture
noise including SÎ ± S distribution and Gaussian distribution
is discussed. In practice, their model is a simplification of
Middleton Class B model. In general, Middleton Class A is
a general GMM model. Compare to the Class A model, the
Class B model is very complicated. In this paper, we mainly
concentrate on the Viterbi decoder and its performance with
the Middleton Class A model.

The remainder of this work is arranged in the following.
Section 2 introduces the PDF of Middleton Class A model
and simplified one. In Section 3, the convolutional code and
Viterbi decoder are presented. Then, the performance of the
Viterbi decoder with Class A model is discussed in detail.
Lastly, some conclusions are reported in the last section.

2. Middleton Class A Impulsive Model

In this section, an impulsive noise model named Middleton
Class A is introduced.

2.1. The PDF of the Middleton Class A Noise. The one-
dimensional PDF of normalized Middleton’s Class A noise
model can be expressed as

f A,Γ nð Þ = 〠
∞

m=0
Cm · 1ffiffiffiffiffiffiffiffiffiffiffi

2πσ2m
p exp −

n2

2σ2
m

� �
, ð1Þ

Cm = e−AAm

m!
, ð2Þ

where the impulse index A is the product of the average
number of pulses received per unit time and the pulse
duration. It determines that the noise can be arbitrarily
close to Gaussian noise and the Poisson process. The
Gaussian coefficient Γ is the ratio of the average power
of the Gaussian noise to the average power of the impulse
noise. It is defined as

Γ = σ2G
σ2I

, ð3Þ

where the receiver variance 0, 0, 1σ2m can be described by

σ2m = σ2G + σ2
I
m
A

= σ2
m/A + Γ

1 + Γ
: ð4Þ

The total noise variance of the receiver σ2 can be cal-
culated as

σ2 = σ2G + σ2
I : ð5Þ

The PDF of Class A noise is the sum of numerous
zero-mean Gaussian PDFs with different weights. As
shown by Equation (1), the noise source distribution obeys
the Poisson distribution. In general, the impulse of noise is
influenced by A and Γ. The Middleton Class A noise
model is very close to Gaussian noise when the values of
A and Γ are relatively large. The impulse of noise will
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become stronger as A and Γ decrease. Thus, the total
noise interference can be influenced through A and Γ.

2.2. The Error Analysis of Truncated Model of Class A Noise.
Since the PDF of Class A noise consists of infinite series, it is
undesirable in reality. We explore the truncation model for
Class A noise. Experiments indicate that the finite terms of
noise can be adopted when A is small enough [60].

A truncation to the first three terms of the PDF is as
follows:

f̂ A,Γ nð Þ = 〠
2

m=0
Cm · 1ffiffiffiffiffiffiffiffiffiffiffi

2πσ2m
p exp −

n2

2σ2
m

� �
: ð6Þ

The impact of parameters A, Γ, and No on the PDF
between the simplified model and true one (Approximate
replacement of the first 300,000 terms) is then discussed.

2.2.1. Error Analysis with Different Parameter A. Before dis-
cussion, we need to normalize the probability density func-
tion and then take the logarithm.

When Γ = 0:01, No = 20W, and A = ½0:001 0:01 0:1 1�,
respectively, the error between the simplified model and
the true one of the Class A noise PDF is discussed in
Figure 1.

As depicted in Figure 1, the order m of the Middleton
Class A noise approximate model is related to A. When A
is small enough, the error of the approximation model in
Equation (6) is close to 0. When A is in the range from 0.1
to 1, the simplified model can not be a good substitution.
The reason is owed to the impulsive weakening of non-
Gaussian noise, bringing it closer to Gaussian noise.

2.2.2. Error Analysis with Different Parameter Γ. When Γ
= ½0:001 0:01 0:1 1�, the error between the simplified model
and the true one of Class A noise PDF is shown in
Figures 2–4. In the simulations, No is set to 20W, and A is
[0.001 0.01 0.1 1].

By comparing Figures 2–4, it can be observed that the
value of Γ has no effect on the error of the PDF approximate
model in Middleton Class A noise.

2.2.3. Error Analysis with Different Parameter No. In this
subsection, the differences between the simplified model
and the true model of the Class A noise PDF will be
discussed. The results are exhibited in Figure 5, where Γ =
0:01, No = ½20 2 0:2�, and A = 0:01.

In Figure 5, note that the error of the PDF simplified
model has nothing to do with the parameter No. When No
takes different values, the error is always around 0.
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Figure 1: PDF of Middleton Class A with the different parameter A ðΓ = 0:01,No = 20WÞ.
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3. Convolutional Code and Viterbi Decoding

Convolutional coding is a very promising coding technique
proposed by Elias et al. in 1955. It has been widely used in
communication systems, especially in satellite communica-
tion systems. Among them, the Odenwalder convolutional
coding with code rates of 1/2 and 1/3 and constraint length
K = 7 has become the standard coding method in commer-
cial satellite communication systems. In 1967, Viterbi pro-
posed a probabilistic decoding algorithm for convolutional
encoding—the Viterbi algorithm. When the constraint
degree of the code is small, it is more efficient and faster than
other probabilistic decoding algorithms. Besides, the decoder
is simpler. Since the Viterbi algorithm was proposed, it has
been developed quickly in both theory and practice. The
Viterbi algorithm has been widely used in various digital
communication systems.

3.1. Generation of Convolutional Code. Convolutional code
is a channel code with error correction capability, which
can effectively reduce transmission error [61]. The decoding
method is Viterbi decoding. Convolutional code can be
described by ðn, k, LÞ. In this way, n represents the code
length corresponding to the output of the encoder. k is the
length of the effective information group, which is the input

of the encoder. L denotes the constraint length. The code
rate of the convolutional code is k/n. The n bits of the encod-
ing output not only depend on the k bits but also depend on
the k − 1 bit input before this. So the convolutional encoder
has the property of “memory.”

Take ð2, 1, 3Þ convolutional code as an example.
By using the delay factor, the information sequence M0

M1M2 ⋯Ml−1 and convolutional code series C0C1C2 ⋯
Cl−1 can be described by

ai =Mi ⊕Mi−1 ⊕Mi−2, 0 ≤ i ≤ l − 1, ð7Þ

bi =Mi ⊕Mi−2, 0 ≤ i ≤ l − 1: ð8Þ
Ci = aibi, ð9Þ

where Mi is current input information bit and Mi−1 and
Mi−2 are the first and the first two information bits. When
i ≤ 0,Mi = 0, set the initial state of the delay register to 0.

The generator polynomial of the Convolutional code is
expressed as

G Zð Þ = 1 + Z−1 + Z−2 1 + Z−2� �
, ð10Þ

where Z represents delay register.
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Figure 2: PDF of Middleton Class A with the different parameter Γ ðA = 0:01,No = 20WÞ.
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3.2. Trellis Diagram. Trellis graphs are used in the Viterbi
decoding. It cannot be a representation of a single state.
The trellis graphs are joined in a chronological sequence to
define the relationship between time and state transition,
generating a network of convolutional codes. The encoding
process of the convolutional encoder is dynamic.

The following are the important concepts in the trellis
diagram:

(i) Calculate the branch metric (BM)

Calculate the Hamming distance (hard decision) or
Euclidean distance (soft decision) between the input symbol
and the output symbol corresponding to two paths, which is
the branch metric of two paths.

(ii) Calculate the path metric (PM)

To obtain the two metrics at time t, the BM of the two
pathways is added to the state metrics recorded in the appro-
priate state at time t − 1.

(iii) Select the surviving path

Compare the path metrics and maintain the smallest one
as the state metric at time t, as well as the formation path.

(iv) Traceback depth

Generally, the Viterbi decoder’s backtracking depth is 6
times the constraint length. Set the traceback depth to 18
in this document.

In Figure 6, the uncoded sequence is M =M0M1M2 ⋯
Ml−1. The output sequence of convolutional code is C = C0
C1C2 ⋯ Cl−1. Assume that the sequence after binary modu-
lation is V =V0V1V2 ⋯ Vl−1 and the channel output
sequence is R = R0R1R2 ⋯ Rl−1. The decoder must generate
an estimate of the code sequence V̂ based on the accepted
sequence R. The maximum likelihood decoding is to choose
maximize the log likelihood function log PðrjcÞ as V̂.

P r vjð Þ =
YN−1

l=0
P rl vljð Þ: ð11Þ

Hence,

log P r vjð Þ = 〠
N−1

l=0
log P rl vljð Þ, ð12Þ

where PðrljvlÞ is the channel transition probability. Log-
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Figure 3: PDF of Middleton Class A with the different parameter Γ ðA = 0:1,No = 20WÞ.
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likelihood function log PðrjvÞ is the metric of C, where log
PðrljvlÞ is called the branch metric.

4. Performance of Viterbi Decoder under Class
A Noise

The system block diagram and bit error rate formula under
BPSK modulation are presented in this section. In addition,
we pay specific attention to the effect on the best receivers
after the Class A noise channel.

The full simulation system is presented in Figure 7.
As a soft decision symbol, the log-likelihood ratio is

introduced to the Viterbi decoder input [62].

LLR = ln f A,Γ rl −
ffiffiffiffiffi
Eb

p� �
− ln f A,Γ rl +

ffiffiffiffiffi
Eb

p� �
: ð13Þ

We first introduce the branch metric and LLR formula of
Viterbi decoding under the Gaussian channel.

In BPSK modulation, we use the bit energy Eb to nor-
malize the Gaussian pdf, where the mapping rule 1⟶ +ffiffiffiffiffi
Eb

p
, 1⟶ −

ffiffiffiffiffi
Eb

p
. Denote Eb = v2l and NG = 2σ2 as bit

energy and total noise power, respectively. The code rate of
convolutional code is Rc = 1/2. We consider the value of ±1

sequence V =V0V1V2 ⋯ Vl−1 and accepted sequence R =
R0R1R2 ⋯ Rl−1.

The PDF of Gaussian noise can be expressed as

PG nð Þ = 1ffiffiffiffiffiffi
2π

p
σ
exp −

n2

2σ2
� �

: ð14Þ

The branch metric and LLR under the traditional Gauss-
ian decoder can be expressed as

r × v = 〠
N−1

l=0
rl · vl, ð15Þ

L ykð Þ = 2
σ2G

yk: ð16Þ

The bit error rate formula under the influence of Gauss-
ian noise can be written as

BERAWGN = 1
2 erf c

ffiffiffiffiffiffiffi
Eb

NG

s !
: ð17Þ

The PDF of Class A noise consists of infinite terms,

–10 –5 0 10
–60

–50

–40

–30

–20

–10

0

Cl
as

s A
 P

D
F 

(d
B)

Γ = 0.001 True (dB)
Γ = 0.001 3th (dB)

5

(a) A = 1, Γ = 0:001,No = 20W

–10 –5 0 10
–50

–40

–30

–20

–10

0

Cl
as

s A
 P

D
F 

(d
B)

Γ = 0.01 True (dB)
Γ = 0.01 3th (dB)

5

(b) A = 1, Γ = 0:01,No = 20W

–10 –5 0 10
–40

–30

–20

–10

0

Cl
as

s A
 P

D
F 

(d
B)

Γ = 0.1 True (dB)
Γ = 0.1 3th (dB)

5

(c) A = 1, Γ = 0:1,No = 20W

–10 –5 0 10
–80

–60

–40

–20

0

Cl
as

s A
 P

D
F 

(d
B)

Γ = 1 True (dB)
Γ = 1 3th (dB)

5

(d) A = 1, Γ = 1,No = 20W

Figure 4: PDF of Middleton Class A with the different parameter Γ ðA = 1,No = 20WÞ.
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leading to the enormous complexity of logarithmic. We use
the 3-order approximate model and Equation (13) to sim-
plify the soft symbol.

ln f̂ A,Γ nð Þ = lnmaxm=0,1,2

Cm · 1/
ffiffiffiffiffiffi
2π

p
σm

� �
e − ri−

ffiffiffiffi
Eb

pð Þ2
	 


/2σ2m
� �

Cm · 1/
ffiffiffiffiffiffi
2π

p
σm

� �
e − ri+

ffiffiffiffi
Eb

pð Þ2
	 


/2σ2m
� � :

ð18Þ

The Class A noise Viterbi decoder can be established by

Equation (13). The algorithm equation can be depicted as
soft decision based on Class A noise PDF simplified model,
as shown in Equation (18).

The bit error rate formula under the influence of Class A
noise can be obtained as

BERMAIN = 1
2 〠

+∞

m=0

e−AAm

m!
erf c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AΓ + A
AΓ +m

Eb

N0

s !
: ð19Þ

When A is very small, we take the first 3 orders as an
approximation
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Figure 6: ð2, 1, 3Þ convolutional encoder.
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BERMAIN = 1
2 〠

2

m=0

e−AAm

m!
erf c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AΓ + A
AΓ +m

Eb

N0

s !
: ð20Þ

Finally, based on our simplified model, we present the
soft decision of BER performance in the proposed decoder
after signal processing Middleton Class A noise under differ-
ent parameters.

According to Figure 8, the proposed decoder outper-
forms the signal processing of soft decision in the Class A
noise channel. It is worth noting that when the noise has a
higher impulse, the BER performance improves signifi-
cantly. When the BER approaches 10−5, the gain of A =
0:01 and Γ = 0:01 is around 25-30 dB. As shown in
Figure 9, the gain of A = 0:01 and Γ = 0:1 is only 20 dB,
which is owing to the noise trending to Gaussian noise at
this time. It can be seen that the coefficient of the Gaussian
Γ will also affect the performance of the decoder.

5. Conclusion

In this paper, a method of processing Middleton Class A
noise by the Viterbi decoder is introduced in the field of
shallow water acoustic communication. The effects of the
three parameters A, No, and Γ of Middleton class A noise
on the third-order approximate model are also investigated.
It can be concluded that parameters No and Γ just influence
the curve’s shape but have no effect on the third-order
approximate model, while parameter A influences the
approximate model. When A is less than 0.1, the third-
order model can be a good approximation to replace the real
model in the curve of probability density probability. At the
same time, the BER performance in the final section proves
its feasibility under various parameters.

Additionally, the Class A noise decoder’s system block
diagram is constructed in the paper. The noise processing
algorithm is derived from the optimum reception theory of
Class A noise. After signal processing, the decoder over-
comes the drawbacks of traditional decoders in Class A
noise channel reception and enhances soft decision
performance.

Data Availability
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By contraposing the signal detection for filter bank multicarrier (FBMC) communications with the underwater acoustic (UWA)
channel, this paper analyzes the traditional imaginary interference problem and proposes a deep learning-based method. The
neural network with feature extraction and automatic learning ability is employed to replace the demodulation modules to
recover transmitted signals without explicit channel estimation and equalization. Sufficient data sets are generated according
to the measured channel conditions in Qingjiang river, the optimization of network parameters is finished by constraining
cost function in offline training, and the signal detection is carried out directly with the well-trained network in online testing.
The system performance of various supervised learning models such as multilayer perceptron (MLP), convolutional neural
network (CNN), and bidirectional long short-term memory (BLSTM) network is compared under different data sizes, network
parameters, and prototype filters. The simulation results show that the bit error rate (BER) performance of the proposed
signal detection is better than that of the classic one, which indicates that deep learning is a promising tool in UWA
communication systems.

1. Introduction

Compared with other transmission media, UWA channel is
much more complicated due to strict bandwidth limitation,
Doppler frequency shift, and background noise. Orthogonal
frequency division multiplexing (OFDM) is currently an
effective method to realize high-rate UWA communication
due to its ability to handle long multipath broadening and
frequency selectivity [1–4]. However, the orthogonality of
the subcarriers in OFDM system is easily affected by Dopp-
ler effect, which will cause difficulties in channel estimation
and signal detection [5–7].

As a new force in 5G multicarrier modulation, FBMC
introduces filter bank in OFDM to ensure the independence
between subchannels without cyclic prefix that provides
protection interval, which greatly improves the spectrum
efficiency. The prototype filter bank has excellent time-
frequency (TF) focusing characteristics to make FBMC more
robust against both ISI and ICI [8–10]. The subcarriers of

FBMC only meet the orthogonality in the real domain,
resulting in the inherent imaginary interference between
adjacent subcarriers and symbols. Furthermore, the classical
signal processing method cannot be directly used, which
makes the signal detection of FBMC system more challeng-
ing. Researchers have proposed many signal detection
approaches based on pilot to counter imaginary interference
including interference approximation method [11, 12] and
interference cancellation method [13–15], so as to maximize
the symbol amplitude at the pilot after demodulation. The
interference approximation method is designed to calculate
the value of the neighborhood symbol interference, and the
interference cancellation method makes full use of the odd
symmetry of the filter fuzzy function, but the performance
of these systems still depends on the accuracy of channel
estimation and the pilot overhead is high.

Recently, deep learning has sprung up in speech process-
ing [16], real-time vision [17], and other engineering fields.
The concept of applying deep learning to wireless communi-
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cation systems, especially UWA communication systems,
has just begun to emerge in public. According to [18], a sym-
bol demodulation and detection model based on twice train-
ing network is proposed whose performance is far better
than that of the maximum likelihood algorithm. According
to [19], a linear channel coding and decoding algorithm
based on deep neural network has been proved to be supe-
rior to the classical belief propagation algorithm. MLP is
the most basic deep learning model, which consists of mul-
tiple fully connected neural layers [20]. Ye et al. introduce
MLP into the receiver of OFDM system for channel estima-
tion and signal detection and reveal that deep learning
method can obtain the analogous BER performance com-
pared with the traditional OFDM system [21]. Inspired by
the above, Zhang et al. propose a deep learning-based
OFDM communication system and analyze the robustness
under the UWA channel [22]. Qasem et al. propose a new
scheme called deep learning-coded index modulation-
spread spectrum to deal with the increasing data rate restric-
tion of limited user number [23].

Stimulated by the potential of neural network in the
UWA communication field, this paper proposes a deep
learning-based receiver for FBMC system. By regarding
FBMC signal detection as label prediction of neural net-
works, several supervised learning models such as feedfor-
ward MLP, CNN [24], and BLSTM [25, 26] have been
adopted to realize implicit channel estimation and equaliza-
tion. The performance of the proposed method is quantita-
tively analyzed with sufficient amount of transmitted data
which is simulated by the channel impulse response (CIR)
measured in Qingjiang river. Simulation results demonstrate
that compared to classical channel estimation methods such
as least square (LS), the signal detection method based on
deep learning is more effective in improving the BER perfor-
mance of UWA FBMC communication.

The rest of this paper is organized as follows. In Section
2, the model of FBMC and the problem of imaginary inter-
ference are introduced. In Section 3, several supervised
learning models are reviewed, and then, the deep learning-
based signal detection for UWA FBMC systems is presented.

4In Section 4, the system performance analysis and compar-
ison are provided. The conclusions are made in Section 5.

Notations: ð⋅Þm,n denotes the ðm, nÞth TF point. Rf⋅g
denotes the real part of complex number. ð⋅Þ∗ denotes the
conjugate. ∗ denotes the convolution. ∘ denotes the Hada-
mard product.

2. System Model and Problem Formulation

2.1. UWA FBMC System Model. Different from OFDM, the
transmitted symbol of FBMC system is offset quadrature
amplitude modulation (QAM) symbol; namely, the real
and imaginary parts of complex QAM symbols are
extracted, respectively, and then sent after misplacing half
symbol period. Figure 1 shows the block diagram of FBMC
system implemented by filter bank and IFFT. The output
of the transmitted symbol through the synthesis filter bank
(SFB) can be expressed as [27]

s lð Þ = 〠
M−1

m=0
〠
n

am,ng l − n
M
2

� �
ej2πml/Mejφm,n

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
gm,n lð Þ

, ð1Þ

where M is the subcarrier number, am,n is real data on the m
th subcarrier of the nth FBMC symbol, and phase factor φm,n
is set to ðπ/2Þðm + nÞ. gðlÞ denotes the prototype filter with
length Lg = KM, where K denotes the overlap factor. gm,nðl
Þ represents the synthesis basis obtained from the TF trans-
formation of gðlÞ. After channel and analysis filter bank
(AFB), the demodulation symbol at TF point ðp, qÞ is

yp,q = 〠
M−1

m=0
〠
n

am,n〠
l

gm,n lð Þg∗p,q lð Þ, ð2Þ

where the orthogonal condition of gðlÞ for perfect signal
reconstruction satisfies Rf∑lgm,nðlÞg∗p,qðlÞg = δm,pδn,q. δm,p
denotes the Kronecker delta function which equals 1 if
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m = p and equals 0 if m ≠ p. Thus, the transmitted symbol
can be accurately recovered at FBMC receiver after taking
the real part of the demodulated symbol.

2.2. The Problem of Imaginary Interference. It is worth
noting that FBMC systems satisfy orthogonality only in the
real field, which implies that even under ideal channel
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conditions, there will be inherent imaginary interference
ζp,qm,n =∑lgm,nðlÞg∗

p,qðlÞ in the AFB if any ðm, nÞ ≠ ðp, qÞ. The
distribution of ζp,qm,n varies according to the filter bank
employed.

We assume that the channel is frequency flat and
unchanged over the duration of the prototype filter, so the
output of the AFB at ðp, qÞ can be shown as [12]

yp,q =Hp,qap,q + j〠
m,nð Þ≠ p,qð ÞHm,nam,nζ

p,q
m,n|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ip,q

+ ηp,q, ð3Þ

where Hp,q is the channel frequency response and Ip,q and
ηp,q denote the imaginary interference and noise component.
Considering that imaginary interference mainly comes from
adjacent TF points, the first-order neighborhood of ðp, qÞ is
defined as Ωp,q = fðp ± 1, q ± 1Þ, ðp, q ± 1Þ, ðp ± 1, qÞg, where
Hp,q ≈Hm,n. Then, Equation (3) can be further expressed as

yp,q =Hp,q ap,q + j〠
m,nð Þ∈Ωp,q

am,nζ
p,q
m,n

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

cp,q

+ ηp,q, ð4Þ

where cp,q is the symbol virtually transmitted. When data at
ðp, qÞ and Ωp,q are known, cp,q can be treated as a pseudopi-
lot to estimate channel frequency response by the LS princi-
ple, as Ĥp,q = yp,q/cp,q ≈Hp,q + ηp,q/cp,q.

3. Supervised Learning Models and Deep
Learning-Based Signal Detection

3.1. Multilayer Perceptron. As shown in the dashed box in
Figure 2(a), a MLP can be summarized as an artificial neural
network with multiple hidden layers between input and out-
put layers [28]. The output of the jth neuron in the ith layer
can be expressed as

zij = f 〠
k

ωi
jkz

i−1
k + bij

 !
, ð5Þ

where ωi
jk is the weight between the jth neuron in the ith

layer and the kth neuron in the ði‐1Þth layer, bij is the bias
of the jth neuron in the ith layer, and f ð⋅Þ is the selected acti-
vation function of this layer. f leakyReLUðxÞ =max ðαx, xÞ, α
= 0:05, an improved ReLU function, is employed for the
hidden layers, and the output layer applies the function
f sigmoidðxÞ = 1/ð1 + e−xÞ to make the network output in the
interval ð0, 1Þ. In addition, each hidden layer adopts dropout
regularization to prevent the network from favoring certain
features with iterative training, so as to guarantee the gener-
alization ability of the system.

3.2. Convolutional Neural Network. The CNN in
Figure 2(b) uses shared convolution kernels to automati-
cally extract local spatial correlation features of input data

[29]. The weight sharing method greatly reduces the num-
ber of parameters and makes the whole training process
easier. The output of the ith convolutional layer can be
expressed as [30]

Zi = f Wi ∗ Zi−1 p, qð Þ + bi
� �

= f 〠
m

〠
n

Zi−1 p −m, q − nð ÞWi m, nð Þ + bi
 !

,

ð6Þ

where Wi is the convolution kernel with adjustable weights
of the ith layer, bi is the bias, and Wi ∗ Zi−1ðp, qÞ represents
the result of two-dimensional convolution. Batch normali-
zation, an efficient regularization method with faster con-
vergence speed, is adopted in the convolutional layer to
prevent gradient disappearance and overfitting. Pooling
layer is not taken in this article because the input tensor
is not large. The whole convolution process can be regarded
as a special feature extraction, in which the feature data is
output through a few fully connected layers after flattening.

3.3. Bidirectional Long Short-Term Memory. Recurrent neu-
ral network is a kind of recursive neural network which
characterizes the time correlation of input sequence. As
shown in Figure 3, LSTM introduces gate mechanism
and storage units to neurons to address the long-term
dependence challenge of sequences. At time t, the input
gate, forget gate, output gate, LSTM input, LSTM output,
cell state, and the candidate are, respectively, represented
as it , f t , ot , xt , ht , Ct , and ~Ct ; the operational processes
are as follows [31]:

it = f sigmoid Wixxt +Wihht−1 + bið Þ,
f t = f sigmoid Wfxxt +Wfhht−1 + bf

� �
,

~Ct = f tanh Wcxxt +Wchht−1 + bcð Þ,
Ct = it ∘ ~Ct + f t ∘ Ct−1,

ot = f sigmoid Woxxt +Wohht−1 + boð Þ,
ht = ot ∘ f tanh Ctð Þ,

ð7Þ
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Figure 3: The inner structure of LSTM neurons.
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where W and b represent weights and biases, Ct−1 is the state
of the cell at the previous moment, and f tanhðxÞ = ðex − e−xÞ/
ðex + e−xÞ is also an activation function. Figure 2(c) shows that
a BLSTM layer consists of two LSTM layers stacked in oppo-
site directions, whose output is calculated jointly through
two layers of hidden state by

Zt = f W
Zh
!h
!

t +W
Zh
 h
 

t + bZ

� �
, ð8Þ

where h
!

t is the forward sequence and h
 
t is the backward

sequence. So the final prediction depends not only on the past
input but also on the future input.

3.4. Neural Network-Driven UWA FBMC Systems. Figure 2
shows the structure of the deep learning-based UWA FBMC
system, in which the neural network models replace the
channel estimation, equalization, and demapping modules
at the receiver of the traditional system, while the transmit-
ter remains unchanged. In each simulation, the frequency
domain data received after FFT and the random binary
sequence transmitted are recorded as a set of input and cor-
responding label d. The models are trained by viewing
FBMC demodulation and UWA channels as black boxes
[21]. With the network iteration, the weights W (or ω) and
biases b of the neural network are adjusted, and the differ-
ence between output d̂ and label d is continuously reduced.

In this paper, we take signal detection as binary label
classification and adopt crossentropy (CE) cost function to
measure the difference

CE = −
1
N
〠
N

k=1
d kð Þ ln d̂ kð Þ + 1 − d kð Þð Þ ln 1 − d̂ kð Þ

� �h i
, ð9Þ

where N represents the number of neurons in the output
layer. When the cost function meets the preset threshold
condition or the network iteration reaches the maximum

epoch limit, the neural network finishes the training process,
and W (or ω) and b stop updating and are saved accord-
ingly. The online neural network directly outputs the pre-
dicted binary sequence after loading the new received
frequency domain signal.

4. System Performance

4.1. Simulation Configuration. In order to carry out offline
training more realistically and effectively, we use the mea-
sured underwater acoustic channel of Qingjiang river (as
shown in Figure 4) to generate enough communication data.
Figure 5 depicts the layout of this experiment. The river
depth at the experimental site is about 100m, the hanging
depth of the transmitting transducer is about 30m, and the
hanging depth of the receiving hydrophone is about 10m.
During the experiment, both the sending ship and the
receiving ship are in a free-drifting state, with a distance of
about 1.5 km.
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Figure 4: Channel impulse response of Qingjiang river measured by LFM signal at a certain moment.

Figure 5: Layout of Qingjiang river experiment.
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The input number depends on the number of real and
imaginary parts of 2 FBMC blocks with 512 subcarriers.
The networks involved in this paper extract features from
the amplitude, space, and time dimensions, respectively,
whose input tensor, selection of the network layer, and set-
tings of hyperparameter are shown in Table 1. A rate Rc =
1/2 convolutional coder with generator polynomial [5, 7]
in octal format and 4-QAM is considered. The PHYDYAS
filter [32] is adopted as prototype filter, and a total of
50000 sets of obtained communication data are divided into
training set and test set by 9 : 1.

4.2. BER versus the Data Size. Several supervised learning
models are first compared with LS method for signal detec-
tion in Figure 6, where the LS method performs the worst
because the accuracy of channel estimation is easily affected
by imaginary interference. The MLP method (the number of
neurons in each layer is 2048, 512, 128, 32, and 16) signifi-
cantly improves BER performance through data-driven
implicit channel estimation. In addition, CNN (the number

of channels in each kernel is 4 and 8) and BLSTM methods
further explore the spatial correlation and temporal correla-
tion among the input data, respectively, which perform
state-of-the-art signal detection.

We also double the communication data and maintain
the original proportion to explore the impact of data size
on the proposed system. The MLP method seems to achieve
greater gain than CNN and BLSTM do due to the more
space for learning caused by the amplitude feature extraction
only, but the latter two still have better BER performance
when more data is provided. The results indicate that the
characteristics of UWA channel are efficiently learned by
deep learning-based methods and the BER performance is
sensitive to the data size.

4.3. BER versus the Network Parameters. The accuracy of
deep learning-based signal detection mainly depends on
the complexity of its model. According to the structural
characteristics of different networks, the network parameters
such as hidden layer neurons of MLP, channels in the

Table 1: Parameter setting of deep learning models.

MLP CNN BLSTM

Hyperparameter

Learning rate 10-4

Optimizer Adam

Dropout rate 0.5

Minibatch size 1000

Network structure

Input tensor (None, 2048) (None, 32, 32, 2) (None, 2, 1024)

Fully connected layers 5 2 1

Convolutional layers — 2 —

LSTM layers — — 2

5 10 15 20 25 30
SNR (dB)

10–3

10–2

10–1

100

BE
R

LS
MLP
MLP with more data
CNN

CNN with more data
BLSTM
BLSTM with more data

Figure 6: BER performance comparison among various signal detection methods.
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convolution kernel of CNN, and direction of propagation of
LSTM are regulated to make them deeper. The number of
neurons in MLP is reset to 2048, 1024, 512, 64, and 16; the
number of kernel channels in CNN is reset to 8 and 16;
and BLSTM is compared with unidirectional LSTM. From
Figure 7, the BER performance of the deeper model is gener-

ally improved. It is noted that the gain of BLSTM indicates
that the transmitted symbols in the future also have an
impact on the current signal detection.

4.4. BER versus the Prototype Filter.Wondering how the BER
performance of the deep learning-based signal detection and
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Figure 7: BER performance comparison with various network parameters.
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Figure 8: BER performance comparison with various prototype filters.

7Wireless Communications and Mobile Computing



LS-based signal detection is affected by the selection of proto-
type filter, we add EGF ðα = 2Þ and IOAT filters in simulation.
For fair comparison, the settings of UWA communication sys-
tem and network parameters remain fixed. As depicted in
Figure 8, MLP and CNN methods own more stable perfor-
mance and better robustness than LS algorithm under
different communication scenarios, but the BLSTM method
presents an obvious performance difference. That is, BLSTM
is sensitive to the degree of matching between filter banks
and underwater acoustic channels.

5. Conclusion

This paper presents a deep learning-based FBMC signal
detection for UWA communications, which only need to
collect received symbols for implicit channel estimation
and equalization in a data-driven way. Furthermore, CNN
with spatial correlation and BLSTM with temporal correla-
tion are analyzed for deeper feature extraction. The pro-
posed receiver has been tested with CIR measured in
Qingjiang river at a range of 1.5 km. Results of comparison
show that the proposed methods outperform classical algo-
rithms in detection accuracy, which leads a flexible design
for future UWA communications.
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Due to the high spectral efficiency (SE) and fast synchronization, the time-domain synchronization orthogonal frequency division
multiplexing (TDS-OFDM) system has gotten much more attraction of researchers as compared to cyclic-prefix (CP) and zero
padding (ZP) OFDM in terrestrial as well as underwater acoustic communication. Inter-block interference (IBI) degrades the
TDS-OFDM performance due to its long-delay multiple channels. In TDS-OFDM, dual pseudo-random noise (DPN)
sequences utilize two PN sequences as a guard interval (GI) after every data block to cope with interference from the OFDM
data block to the next PN sequence resulting in compromising the energy efficiency (EE) and spectral efficiency. We have
proposed compressed sensing-based technique compressive sensing matching pursuit (CoSaMP), orthogonal matching pursuit
(OMP), and look-ahead and backtracking OMP (LABOMP) for TDS-OFDM over the real-time underwater channel in this
paper. Moreover, prior to estimating the channel, the received PN sequence is considered in the time domain to compensate
for the Doppler shift of the UWA channel. The real-time data experiment has been initially conducted for testing in a water
tank in our laboratory. Furthermore, it has been tested on the sea for long communications under the water at the Wuyuan
sea area in Xiamen, China. Simulations and experimental results evident that the compressed sensing techniques have better
performance over the conventional TDS-OFDM and DPN-TDS-OFDM, even LABOMP outperform OMP and CoSaMP in
terms of bit-error-rate (BER), SE, and EE.

1. Introduction

The water has covered the major area of Earth’s surface;
nearly 71% of the earth is water covered. Such water is split
into various principles such as small-scale seas, oceans, and
rivers. Ocean tenderness commands the wind originals and
the environment changes that make different lifestyles on
top of the earth’s surface. Lakes and rivers include no more
than 1% of freshwater over the earth’s surface. Its disease
seriously harms ecosystems. The internet of underwater
thighs (IoUT), the control of enormous areas of uncharted
water [1]. The purpose of this study proposal is to propose
a green underwater multicarrier modulation technique.

The full design supporting the accepted data rate with
reliable communication IoUT nodes has been considered
among one of the most challenging underwater communica-
tion problems due to the weak spread of electromagnetic
waves in the water and the low data rate future in the case
of acoustic waves propagation [2]. Recently, magnetic induc-
tion was proposed for underground and underwater data
transmission, but unfortunately, ocean conductivity makes
harsh attenuation for both the magnetic induction and elec-
tromagnetic signals. To prevail over that kind of attenuation
problem, ultra-low frequency bands with very low data
transmission rates should be used. With a high potential
data rate, optical data transmission has been proposed for
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underwater data transmission. Unfortunately, optical-based
underwater communication systems suffer from modeling
the chemical and physical traits of the water. Due to all the
above, the acoustic-based underwater communication sys-
tem is considered the broadest technology [3]. Research on
underwater communication was mainly focused on increas-
ing data rate over the limited acoustic bandwidth and solv-
ing acoustic-based problems such as high ambient noise,
Doppler shift, and propagation delay [4].

The designing acoustic-based communication system
should consider the natural features of the ocean media. Such
features such as high attenuation power and such attenuation
restrict and limit the communication distance. Plus, the
transmitter and receiver motion due to water waves increase
the Doppler Effect. Also, due to the variations in geography,
underwater communication considers environmental-based
communication and provides a non-uniformly fluctuated
acoustic propagation [5]. To obtain reliable acoustic-based
underwater communication researchers and industry go-to
multicarrier modulation. Thanks to the multicarrier modula-
tion, the data rate can be increased even over limited channel
bandwidth such as acoustic-based underwater channels. Also
mitigates the Doppler shift and unwanted inter symbol inter-
ference (ISI). Another advantage point of the multicarrier
modulation technique is the easy equalization [6, 7]. The
multicarrier technique is a reserve to defeat the long-time
interval which creates a greater symbol period but shrinks
the ISI. Due to all the above, the channel estimation tech-
nique can be a key parameter in providing reliable underwa-
ter and deserved great attention [8–10].

The multicarrier communication technique, i.e., orthogo-
nal frequency division multiplexing (OFDM), is considered
among the key notable underwater multicarrier modulation
techniques. The OFDM technique is further divided into three
main categories including (1) zero padding (ZP - OFDM), (2)
cyclic-prefix (CP - OFDM), and (3) time-domain synchroni-
zation (TDS - OFDM) [11–13]. The difference between the
three schemes is the inter-block interference (IBI) mitigation
way over the multipath channels [11, 12]. Each way has its
advantage and disadvantages. CP provides linear convolution
and can be used for channel estimation at the expense of trans-
mitted power. Unfortunately, saving the IoUT node’s power is
a very important point due to the hard recharging capability.
ZP-OFDM solves the channel null problem and saves the
transmitted power at the expense of the on-off problem [14].
TDS-OFDM technique, at the cost of the bit-error rate
(BER) in the functioning of the system, presents exceptional
power and energy efficiency [11, 15, 16]. In the present era,
the system data rate has been increased following the tech-
nique of index modulation [17–20]. Unfortunately, the index
modulation technique cannot support the long underwater
communication distance as the multipath nature of the acous-
tic underwater channel can destroy the indexed data plus data
recovery needs high receiver complexity.

In the multicarrier modulation, the guard interval tech-
nique is required to circumvent the inter-carrier interference
(ICI) in the underwater acoustic channel, such long guard
interval wastes the channel utilization. Such spectral loss will
be more severe as the long tap delay underwater channel

needs long pilots’ signals. The overhead information of pilot’s
and guard interval waste IoUTs nodes as well as spectral.
Energy saving is very important for a newmodern communi-
cation system, and such importance is very effective in the
IoUT nodes as the recharging capability is hard in the under-
water communication and saving energy increases the
battery lifetime. Therefore, based on that, the TDS-OFDM
schemes and the ZP-OFDM systems are the utmost desired
multicarrier modulation techniques. However, the energy-
saving capability and the spectral efficiency of the ZP-
OFDM system are low in comparison to the TDS-OFDM
scheme. The primary disadvantage of the TDS-OFDM sys-
tems is the excessive BER owing to the IBI amid the OFDM
data blocks and the pseudo-noise (PN) sequences intro-
duced in the guard intervals. The researchers focused on
reducing and removing such IBI with different methods
such as interference cancelation based on the iterative algo-
rithm [21], and with addition without fluctuations in the
frame construction of the TDS-OFDM scheme [22]. Unfor-
tunately, these schemes slightly improve the TDS-OFDM
BER performance [23], and such schemes cannot support
a reliable TDS-OFDM-based underwater acoustic commu-
nication. Different BER improvement methods of the
TDS-OFDM are changing the frame structure, and the
modified frame structure is based on interference cancel-
ation [23]. In the proposed unique word (UW) OFDM sys-
tem, the time domain guard interval is produced by
assigning the redundant pilots in the frequency domain
[24]. Unfortunately, the UW-OFDM complexity is high
without interference-free for the OFDM data blocks. Dual
PN sequences have been used for TDS-OFDM in [23, 25,
26] to receive OFDM without inference. Dual PN simplified
the channel estimation and equalization, but duplicate
guard interval reduces the spectral efficiency. Duplication
for guard interval is inapplicable for IoUT, as a duplicate
of the guard interval is a waste of energy and spectrum.

Owing to the reduced length of multipath intervals than
the channel spread, the channel impulse response (CIR) is
sparse in the channel of underwater acoustics [27]. There-
fore, the compressive sensing theory is applied for sparse
channel estimation because of the sparse performance of
the underwater channel [3, 28–30]. This paper applies the
methods of CS theory to estimate the underwater CIR by
using a small region free from the IBI. This arrangement at
first approximates the Doppler factor followed by balancing
through the collected PN structure. The later step predicts
the channel with the aid of sparse recovery greedy algorithm,
look-ahead, and backtracking orthogonal matching pursuit
(LABOMP). The LABOMP was applied to the chosen small
IBI-free region to get better recovery and ignore the IBI
effect. LABOMP is used as multistage estimation providing
better signal recovery. The proposed CS-based schemes are
applied in real field measurements and show better energy,
spectral, and BER performance. Compared to convention
TDS-OFDM schemes, the proposed one provides reliable
underwater communication.

The paper is structured to discuss the detailed model of
the system in Section II while Section III explains the tech-
nique for channel estimation applied to the underwater

2 Wireless Communications and Mobile Computing



acoustic channel based on compressive sensing. Section IV
provides the simulation results followed by their validation
through experimental results and discussion in Section V.
Finally, the conclusive summary of the article is given in Sec-
tion VI.

2. Model of the System

As we know, CP-OFDM, TDS-OFDM, and ZP-OFDM are
the three different types of the OFDM system that are widely
applicable in the technology of wireless communication [13,
31]. CP has been used as guard interval for CP-OFDM, ZP
has been considered in ZP-OFDM as guard interval, and
PN sequences are inserted as guard interval in TDS-OFDM.
The comparative analysis of the structure of the signal, for
the ZP-OFDM, TDS-OFDM, and CP-OFDM, in the fre-
quency domain is shown in Figure 1 [23]. In comparison to
the maximum delay of the time-varying multipath channel,
the length of the guard interval (GI) must be larger so the
information data block is not affected by ISI or IBI [3]. To
evade the IBI issue in the multipath channel, the IBI-free
region ith transmitted OFDM block can be mathematically
formulated as:

xi = pi, di½ �TM+NX1, ð1Þ

where pi = fpi,kgM−1
k=0 , M is the PN sequence length, di =

fdi,kgN−1
k=0 , k signifies the kth constituent of the ith block of

the TDS-OFDM, and N specifies the length of the block for
the OFDM information data.

3. Channel Estimation Based on CS for
Underwater Communication

The interference in TDS-OFDM comprises several charac-
teristics in a way that the perfect detection over multiple
channels is difficult to achieve for the unknown OFDM data
blocks. Figure 2 depicts this response behavior. Owing to the

data block of the OFDM, it is a difficult task to anticipate
and mitigate IBI completely in support of the perfectly
employed channel estimation techniques. Furthermore,
because of the large size of the data block for the OFDM,
the computational complexity is increased while calculating
IBI. The training sequence is exploited on the receiver end
besides knowing the training sequences; therefore, the IBI
can then be computed only after the successful and accurate
achievement of channel estimation [3]. While estimating
channels accurately and overlooking the effects of the data
block for OFDM on the sequence of training, there will be
a resulting unmanageable mutual interference. The small
IBI-free region exists because of the margin design of the
system within the training received and is also analyzed in
some practical applications. The worst case for the CP-
OFDM and TDS-OFDM is observed in the equivalent chan-
nel length and guard interval. To avoid such a scenario, it is
better to increase the guard size and minimize the channel
length to achieve perfect estimation while avoiding the IBI.
Figure 3 shows the proposed transceiver model.

The perfect channel estimation results in the complete
elimination of the interference induced mutually from the
data block of the TDS-OFDM. The ZP-OFDM system and
the TDS-OFDM scheme, after ignoring the PN sequence,
depict the same results. The technique of the DPN-TDS-
OFDM dealt with the problem of the mutual interference,
in the conventional TDS-OFDM system, arising from the
data block to the PN sequence. The perfect channel estima-
tion while ignoring the IBI and duplication of the guard
interval to get a PN sequence is achieved in the DPN-TDS-
OFDM frame. Figure 2 depicts the results of the TDS-
OFDM schemes for multipath channels. The IBI affected
the received PN sequence due to the former data block of
the OFDM in the multipath channel resulting in channel esti-
mation. The channel estimation is obtained in the time
domain for the TDS-OFDM system, and the PN sequence
received can be expressed as:

ri =φihi + ui, ð2Þ

Frequency domain

CP-OFDM/ZP-OFDM

Data

Data

TDS-OFDM

Pilots

Figure 1: The frequency domain response of the OFDM standard signal structure.
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where ui signifies the AWGN noise having a mean value of
zero and variance σ2. φi can be mathematically represented
as:

φi =

pi,0 di−1,N−1 ⋯ di−1,N−L+1

pi,1 pi,0 ⋯ di−1,N−L+2

⋮ ⋮ ⋱ ⋮

pi,L−1 pi,L−2 ⋯ pi,0

pi,L pi,L−1 ⋯ pi,1

⋮ ⋮ ⋱ ⋮

pi,M−1 pi,M−2 ⋯ pi,M−L

2
666666666666664

3
777777777777775
MXL

: ð3Þ

The i − 1th element shows the last transmitted block that
interferes with the present symbol of the TDS-OFDM in eq.
(3). It can be observed that the preceding samples, i.e., M –
L + 1, show no corrupted signals generating from the previ-
ous data blocks of the TDS-OFDM. Therefore, the CS theory

utilizes the IBI-free region for the estimation of the channel.
The observation matrix is introduced by extracting the pre-
ceding F =M – L + 1. A new sub-matrix is developed and is
mathematically expressed as:

Φ =

pi,L−1 pi,L−2 ⋯ pi,0

pi,L pi,L−1 ⋯ pi,1

⋮ ⋮ ⋱ ⋮

pi,M−1 pi,M−2 ⋯ pi,M−L

2
666664

3
777775

FXL

: ð4Þ

The PN sequence is used to obtain the observation matrix
F-X-L size. Eventually, the noise in IBI-free region corrupts
the received signal and thus can be denoted as under:

yi =Φihi + ui: ð5Þ

3.1. Proposed Algorithm. The energy and spectrum in the
UWA communication can be saved by minimizing the free
IBI regions in TDS-OFDM. Thus, a small IBI-free region is
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Demodulation

Interpolation

De-interpolation

IFFT

IFFT Unsampling PSF Upconversion

PN

PNEstimate channel Compensate CFO Estimating CFO

Channel
decoding Egualizing FFT Data Downsampling MF Downconversion

Underwater
channel

Figure 3: Block diagram of the transceiver proposed for the real underwater experiment.
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Figure 2: Received frame signal structure of different TDS-OFDM systems. (a) Conventional TDS-OFDM. (b) DPN-TDS-OFDM. (c) TDS-
OFDM based on CS.
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used and a LABOMP algorithm is proposed in this paper to
address this issue. The backtracking pruning (BP) and look-
ahead residue (LAR) functions are utilized in the LABOMP
algorithm [3], by implementing the backtracking and look-
ahead scheme, respectively. In the LABOMP algorithm flow
chart depicted in Figure 4, the steps of the LAR function
are presented in algorithm 1. In the first part, the potential l
atoms are chosen that are more correlative with the residue
of the last loop using a fixed look-ahead parameter l. In the
second step, the support set is obtained by selecting the best
one before predicting the effects of each potential atom.
The residue and estimated signals are updated in the third
step. Finally, the termination condition of the algorithm is
evaluated by determining the current iteration status.

Functions 1 and 2 are defined by utilizing the flow chart
of LABOMP in Figure 4. The second step of the LABOMP
flow chart shows that K is the sparsity level and Function
1 is the look-ahead residual set, where r ∈ RFX1 and Φ ∈
RFXL: The parameter I and i represent the set of intermediate
support and optimal atom index in the current iteration,
respectively. Hence, the given algorithmic function is used
to find the output residual rr ∈ RF : Function 2 is the back-
tracking pruning and is shown in step 6 of the LABOMP
flow chart, where K is the sparsity level and μ ∈ ½0, 1� by con-
sidering that the ĥIk is the estimated signal passing LAR
function and Ik is the present selected set of intermediate
support. Thus, the backtracking k and the new index of
atoms Ik are obtained by using the following algorithmic
function. The total iterations are divided into two types by
the backtracking scheme that comprises cascade backtrack-
ing and a dominant look-ahead convergence. The stage of

the cascade backtracking is triggered by the preset constant
threshold, i.e., λ = μ · K , that deletes the incorrect selected
atoms in the last iteration. Moreover, the rule for adding
atoms and signal structure has been associated with λ and
the anticipated empirical value for LABOMP algorithm is
0:8K ∼ 0:9K . Algorithm 2 depicts the twofold idea of the
BP function. In the first step, dominant look-ahead conver-
gence provides the correct large coefficient atoms. The mis-
matched atoms that are selected in the previous iteration
are not strictly orthogonal due to small coefficients. There-
fore, to prune the maximum mismatching atoms, the
scheme of backtracking utilizes the support set in the second
step [3].

4. Simulation Results and Discussion

4.1. Spectral Efficiency. The mathematical formulation of
spectral efficiency for OFDM systems has been presented
in [23]:

SpectralEfficiency = NData
NData + PPilots

× NFrame
NFrame +M

� �
× 100%,

ð6Þ

where NData denotes the data size (data subcarriers) and
PPilots signifies the pilot sub-carriers, M shows the guard
interval length, and NFrame is the length of the frame (data
subcarriers and pilots subcarriers). Figure 5 relates the spec-
tral efficiency of our proposed method LABOMP with DPN-
TDS-OFDM, TDS-OFDM, and conventional CP-OFDM.

End

YES

NO

>rk rk-12 2

k > K

Initialization

Calculate he final residual

Search the index of the atom with
the minimum final residual

Update the support set

Update the estimate signal

Perform the backtraking scheme

Update the estimate signal and the
residual

rr = LAR (Φ, y, K, Ik-1, Jl)

Ik = Ik–1Uik

I0 = Ø , k = 0, r0 = y, h0 = 0^

m = arg min NLl = 1:L

^
hIk

 = Φ†
I
k
 y

[Ik, k] = BP (𝜇, K, Ik, hIk
)^

^ ^
hIk

 = Φ†
I
k
 y, rk = y – ΦIk

hIk 

Figure 4: Flow chart of our proposed LABOMP algorithm for underwater acoustic channel estimation.

5Wireless Communications and Mobile Computing



Despite the consistent and fast synchronization, TDS-
OFDM, due to the removal of pilots, shows more spectral
efficiency in comparison to CP-OFDM systems. Here, the

consequence of these advantages is more critical and crucial
to revoke the iterative interfering because of the mutual inter-
ference in between the PN sequence (guard interval) and the

Input: Sparsity K , y ∈ℝF×1, Φ ∈ℝF×L, newly selected index i, previous support set I;
Initialization: The approximate coefficient ĥIk =Φ†

Ik
y, residual rk = y −ΦIk

· ĥIk , the intermediate support set Ik = Ik ∪ i, counter k
= jIkj;
Repeat:
k = k + +;
ik = argmaxNi=1Φ

T
i rk−1, i ∉ Ik−1; matching the filter values

Ik = Ik ∪ i; updating support set
ĥIk =Φ†

Ik
y;

rk = y −ΦIk
· ĥIk ;

Until krk−1k2 < krkk2 or k > K
Output: rk = y −ΦIk

Φ†
Ik
y;

Algorithm 1: LAR algorithm

Input: K , ĥIk , μ, Ik;
Initialization: λ = μK ;
while k ≥ λ & k%2 = 1
½v, pp� = argminjĥIk j;
Ik = Ik \ pp the minimum value of ĥIk to eliminate
end while
Output: Ik, pp;

Algorithm 2: BP algorithm
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Figure 5: Spectral efficiency comparison of CP-OFDM, TDS-OFDM, DPN-TDS-OFDM, and proposed LABOMP-TDS-OFDM.
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data block of OFDM. Double the PN sequences in DPN-
TDS-OFDM cancel out the interferences but the spectral
efficiency was highly affected. There is no alteration required
in the structure of the TDS-OFDM system while using the
CS concept into TDS-OFDM, so the spectral efficiency has
been improved concerning BER and MSE with high per-
formance. Figure 5 depicts the spectral efficiency compar-
ison of LABOMP-TDS-OFDM with conventional TDS-
OFDM, conventional CP-OFDM, and DPN-TDS-OFDM.

4.2. Energy Efficiency. The energy efficiency for OFDM sys-
tems has been formulated in [23]:

EnergyEfficiency = NData
NData + b2PPilots

× NFrame
NFrame + a2M

� �
× 100%

ð7Þ

where a and b signify the amplitude factor imposed on the
guard interval and the amplitude factor imposed on the
pilots in the time and frequency domain, respectively. The
pilot’s amplitudes have been increased for CP-OFDM
requirement which increases the receiver channel estima-
tion performance such as b = 4/3 has been identified by
the digital video broadcasting second generation terrestrial
(DVB-T2) standard [23, 32]. Similarly, to guarantee the
reliable channel estimation in TDS-OFDM, the amplitude
of PN sequences has been increased; DTMB standard indi-
cated the value of a =√2 [23, 33]. Alternatively, channel
estimation performance of CS-based proposed LABOMP-
TDS-OFDM has been improved with IBI-free region. IBI-
free region has been employed in the LABOMP-TDS-
OFDM so the guard interval does not require a high power;
hence, the used PN training sequence amplitude is desig-
nated as a = 0:5. Figure 6 depicts the energy efficiency per-
formance of TDS-OFDM, DPN-TDS-OFDM, CP-OFDM,
and LABOMP-TDS-OFDM CS-based IBI-free region. In
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Figure 6: Energy efficiency comparison of CP-OFDM, conventional TDS-OFDM, DPN-TDS-OFDM, TDS-OFDM a=1, TDS-OFDM a=
sqrt (1/2), and proposed LABOMP-TDS-OFDM.

Table 1: System specifications of parameters.

Parameters Values

PN sequence (M) 255

Data block (N) 1024

Free-region length in channel (F) 75

Channel size (L) 255

Bandwidth 6KHz

Carrier frequency 20KHz

Sampling frequency 96KHz

Central frequency 30KHz

Modulation QPSK

Data rate 11.99 kbits/sec

OFDM symbol duration 170.67msec

CFO 0.2
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CP-OFDM, the 4K mode of the DVB-T2 is used that result
in the pilot occupation ratio of 11.29% [32]. The standard
amplitude factor selected for DPN-TDS-OFDM and DTMB
is 1 and √2, respectively [25].

4.3. Computational Complexity. We have noted from the
proposed method that its performance mainly depends upon
two parameters, present constant threshold λ and look-
ahead parameter l. The better performance has been attained
by increasing the value of l but it has a trade-off with com-
putational complexity. Moreover, the performance can be
not significantly improved with a small value of λ. The fact
is that in the initial many iterations, atoms have been chosen
with the larger value of coefficients, though the early match-
ing backtracking has been suppressed. If the value of l = 1
and λ = K , LABOMP will behave like OMP. The complexity
of LABOMP has been analyzed. It is known that multiplica-
tion operation is slower than summation so multiplication is
mainly reported. The standard multiplication requires for
matching filter FL while for estimating the spares channel
requires OðSFÞ multiplication by using least square (LS).

The total iterations performed by LABOMP is 2S − λ + 1.
LABOMP computational complexity is OðlS2½1 + ðS − λÞ2/
S2�ðSF + FLÞÞ. In LAR, the LS estimator and matching filter
multiplication cost are OðlS2½1 + ðS − λÞ2/S2�Þ and total
backtracking LS estimation cost is ðS − λ + 1Þ.

The overall computational complexity of CoSaMP con-
taining iterations equal to the sparsity level S is Oð4FS3 + 8
S4Þ [34], and OMP is OðFLSÞ. In the conventional TDS-
OFDM and DPN-OFDM, the channel is estimated based
on the good features of the training sequence without inter-
ference cancelation. In these schemes, the received PN
sequence directly correlated with the local PN sequence to
generate the channel impulse response by efficiently imple-
menting M-point fast Fourier transform; hence, these
schemes have OððM/2Þ log2MÞ [21, 22, 35].

5. Experimental Results and Discussion

The real data experiment was first conducted in the water
tank for testing. Furthermore, it was also conducted in the
sea at Wuyuan sea area Xiamen, China. The experimental
field depth in the tank is almost 1m. We have transmitted
the signal from one transducer at the water depth of 1m,
and the signal was received by another transducer at the
depth of 1m also. The experimental depth of both transmit-
ter and receiver was almost 3m in the sea, and the distances
between transmitter and receivers were almost 1m, 10m,
30m, 100m, and 1 Km, respectively. The sea experiment
was done on different distances.

In the TDS-OFDM system, the total number of carriers
only contained data subcarriers and there is no pilot subcar-
rier. The channel is estimated by guard interval (PN
sequences). The parameters’ specification of real sea testing
is shown in Table 1. The transmitting frame structure of
OFDM data is shown in Figure 7. The frame structure
includes zeros vector with length of 120, linear frequency
modulation (LFM) pulse vector has the 4096 sizes, after
LFM there are zeros that has the length of 12000, and in
the end is the transmitting data (OFDM symbols). There
are five symbols, each symbol has five frames, and every
frame size is 2560. For synchronization, auto-correlation

Zeros ZerosSynchronization Transmitting
data

PN PN PN PNZP
OFDM
symbol

OFDM
symbol

frame

Figure 7: Frame structure of the transmitting signal.

Table 2: BER of OFDM received symbols at short distance.

Symbols DPN OMP CoSaMP LABOMP

1 0.0045 0.0032 0.0032 0.0018

2 0.0073 0.0053 0.0050 0.0042

3 0.0117 0.0086 0.0073 0.00671

4 0.0081 0.0053 0.0050 0.0039

5 0.0092 0.0072 0.0061 0.0048

Table 3: BER of OFDM received symbols with different distances.

Symbols DPN OMP CoSaMP LABOMP

1m 0 0 0 0

10m 0.0033 0.0019 0.0012 0.0008

30m 0.0107 0.0062 0.0050 0.0031

100m 0.0866 0.0583 0.0466 0.0311

1 km 0.0988 0.0662 0.0574 0.0446
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method has been utilized to find the starting point of the sig-
nal for exact data recovery after channel estimation.

The performance evaluation of the TDS-OFDM system
in the UWA channel has compared the DPN-TDS-OFDM

and compressed sensing-based methods, namely, OMP,
CoSaMP, and LABOMP. First, the channel is estimated by
all these methods in the time domain. After the channel esti-
mation, the results are for data demodulation in the form
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Figure 8: BER comparison of semi experiment DPN-TDS-OFDM, OMP, CoSaMP, and LABOMP.
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Figure 9: Underwater estimated CIR by known PN sequence.
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MMSE equalizer to ease the channel estimation method
performance evaluation. In last, data is detected in the fre-
quency domain. The LABOMP is for the first time proposed
for underwater TDS-OFDM system which outperforms in
comparison of DPN, OMP, and CoSaMP. The different

channel estimation method’s performance has been ana-
lyzed using PN sequences. In DPN-TDS-OFDM channel, it
is estimated by using two repeated PN sequences; for
OMP, CoSaMP, and LABOMP channel, estimation is done
by using IBI-free region in the received PN sequence.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−1500
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−500
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Figure 10: LFM-based auto-correlation.

0 2 4 6 8 10 12 14

0

0.3

0.2

0.1

−0.1

−0.2

−0.3

−0.4

x 105

Figure 11: OFDM transmitting signal before sending over the underwater acoustic channel.
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Table 2 shows the BER of five received OFDM data symbols.
These results of BER have been attained at a short distance
of almost 10m between transmitter and receiver. It is clearly
shown that all techniques give better BER performance at a
short distance. All CS-based methods outperform DPN-
TDS-OFDM in terms of BER, but LABOMP gives better

performance than OMP and CoSaMP. Table 3 depicts the
BER performance of DPN-TDS-OFDM, OMP, CoSaMP,
and LABOMP at different distances as 1m, 10m, 30m,
100m, and 1 Km. At a distance of 1.5m, all methods give out-
standing performance in terms of BER. As the distance is
going to increase, the BER is affected. Our proposed CS-

6
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2

1

0
0 2 4 6 8 10 12 14 16 18

x 105

Figure 12: OFDM received signal through the underwater acoustic channel.

Figure 13: Field area of a real experiment.
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based greedy algorithm, namely, LABOMP, gives better per-
formance in terms of BER as compared to other methods
including DPN-TDS-OFDM, OMP, and CoSaMP.

The BER performance of the semi experiment with
DPN-TDS-OFDM, OMP, CoSaMP, and LABOMP is shown
in Figure 8. Thanks to the sparse nature of the UWA chan-
nel, it is seen that greedy algorithms outperform DPN-TDS-
OFDM in terms of BER with different SNR gains. But, luck-
ily the LABOMP algorithm also gives better performance in
terms of BER compared to OMP and CoSaMP. The SNR of
the channel is 18.6 dB. Figure 9 depicts the CIR of the
OFDM data symbol which is estimated by a known PN
sequence. As we say, the UWA channel is multipath and
sparse, so it is seen in Figure 9.

Figure 10, Figure 11, and Figure 12 show the auto-corre-
lation, OFDM transmitted signal, and received signal from
the UWA channel, respectively. In Figure 10, LFM has been
used to find the synchronization point. As we know auto-
correlation gives the highest point at the beginning of the
signal, so in this way, we get the starting point of the signal
at receiving side. It is seen from Figure 12, that signal is
affected by UWA channel and noise also, even there is a
delay in received signal as compared to transmitted signal
as seen in Figure 11. In real-time, the receiver has to wait
for the information which will be sent by the transmitter.

Figure 13 depicts the map of the allocation where we
have tasted underwater real-time experiments. The experi-
ment was tested at different distances from 1m to almost 1
Km. The black straight line in Figure 13 shows the long-
distance experiment is 967m which is almost equal to 1

Km. Figure 14 illustrates the hardware system which has
been used for the sea experiment. The hardware system con-
tains a laptop, battery, power amplifier, and analog to digital
(A/D) converter. For a real sea experiment, the transmitting
data has been saved in a MATLAB file (.m). After that, the
data format has been converted to .bin format. That.bin file
has been transmitted wireless from one computer to another
using LABVIEW on both sides.

6. Conclusion

In this paper, algorithms for the UWA TDS-OFDM have
been proposed based on CS to curtail the IBI for sparse
channel estimation between PN training sequence and data
frames. The IBI-free region in PN sequences plays a vital
role; the channel has been properly reconstructed by CS-
based techniques to attain higher EE and SE. PN sequence
has been utilized to estimate and compensate the Doppler
shift. In the real sea testing, experimental results show that
the performance of the CS-based algorithms is much better
than the DPN-TDS-OFDM and TDS-OFDM. A relevant
comparison is performed among LABOMOP, CoSaMP,
and OMP to observe the effectiveness of each CS-based algo-
rithm. It is evident from the simulation and experimental
results that the LABOMOP outperforms the conventional
CS algorithms such as CoSaMP and OMP. Furthermore,
the proposed CS-based methods achieved better spectral
SE, EE, and substantial BER improvement for TDS-OFDM
in comparison with conventional systems.

Figure 14: Instruments used for real sea experiment.
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In an autonomous underwater vehicles– (AUVs–) based optical-acoustic hybrid network, it is critical to achieve ultra high-speed
reliable communications, in order to reap the benefits of the complementary systems and perform high-bandwidth and low-
latency operations. However, as the mobile AUVs operate in harsh oceanic environments, it is essential to design an effective
switching algorithm to execute flexible hybrid acoustic-optical communications and increase the network throughput. In this
paper, we propose a Q-learning-based adaptive switching scheme to maximize the network throughput by capturing the
dynamics of the varying channels as well as the mobility of AUVs. In order to address the challenge associated with partial
observations of the optical channel and improve the switching efficiency in extreme conditions, a blind optical channel
estimation method is designed and implemented with the Extended Kalman Filter (EKF), in which the relationship between
the underwater acoustic and optical channels is utilized to improve the channel prediction accuracy. Based on this
environmental status, a reinforcement learning approach is leveraged to build a near-optimal switching strategy for the hybrid
network. We conduct numerical simulations to verify the performance of the scheme, and the simulation results demonstrate
that the proposed switching scheme is effective and robust.

1. Introduction

The deployment of underwater sensor networks (USNs) has
enabled extensive marine activities of ocean monitoring and
exploring [1, 2], in which both underwater acoustic commu-
nication (UAC) and underwater wireless optical communi-
cation (UWOC) are utilized for underwater networking.
Although UAC is the only reliable and dominated technol-
ogy that currently enables medium and long-range underwa-
ter wireless communications, it also suffers from several
shortcomings (e.g., limited bandwidth, low-speed, high prop-
agation delay, and high energy consumption [3]), which may
make it difficult to meet growing application demands, such
as transferring underwater real-time ultra high-definition
videos and conducting real-time remotely controlled opera-
tions [4, 5].

To alleviate the limitations of UAC, as an alternative and
complementary technology, UWOC has developed rapidly
recently that enables high-speed, low-delay, and low-energy
consumption networks, which may compensate for the defi-
ciencies of UAC in terms of latency and bandwidth [6]. Nev-
ertheless, UWOC has its own drawbacks communicating
only with relatively short range, and it is also affected by haz-
ardous oceanic environments (e.g., underwater obstacles,
turbulence, turbidity, and light noise) [7]. To address these
problems, a paradigm of multimodal networking is proposed
to integrate multiple communicating systems (e.g., optical
and acoustic) in a hybrid network, in order to mitigate short-
comings and take advantage of complementary technologies
[8–10]. Along this line, the integration of optical and acoustic
systems has been explored in both simulations and experi-
ments [11–14], and these optical-acoustic hybrid systems
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are leveraged to retrieve monitored data [9, 15], control coor-
dination [16], build multiple routing paths [17, 18], and
transfer real-time video [9], which demonstrate the benefit
and effectiveness of such hybrid optical-acoustic systems [19].

Since a fleet of AUVs are desirable mobile vehicles to
perform flexible underwater tasks under operational scenar-
ios, such as environment monitoring, security surveillance,
and underwater asset investigation [1, 20], the study focused
on leveraging a swarm of AUVs to form underwater mobile
networks has been developing rapidly in the recent years [3,
21]. By networking a swarm of AUVs equipped with both
optical and acoustic communication systems, such a hybrid
network enables high-bandwidth and low-latency underwa-
ter video transmission and real-time underwater operation
and control [9, 22]. However, implementing such a network
is not trivial as the associated challenges should be addressed
carefully due to the limitations of the system, the hostile
environments, as well as the mobility of AUVs [23, 24].
Among them, one critical issue is to maximize the hybrid
network throughput by exploiting the complementary com-
municating technologies in terms of both acoustic and opti-
cal, especially the optical waves, as UWOC suffers from
limited communication range [23]. Therefore, the optical
link needs to be switched ON or OFF complementarily to
the acoustic link in an automatic manner [13]. However,
the optical system is affected by the communication dis-
tance, beam width, and the mobility of AUVs. Moreover,
as the AUVs are operated in the harsh environments, the
temporal and spatial dynamics of the channel (e.g., the tur-
bidity of the seawater, the obstacles, and the turbulence
and currents) may degrade the performance of the commu-
nication significantly [7]. Consequently, it is desirable to
monitor and even predict the changing conditions of the
channels in order to carry out the switching scheme in an
adaptive and effective manner [25, 26].

There are a few pioneering studies dealing with the switch-
ing issue and providing precious investigations of underwater
multimodal wireless networks [13, 27–29]. In [13], the authors
explored the multimodal switching issue to maximize instan-
taneous network throughput using the range-based triggering
mechanism to proactively switch among different physical
layers (PHYs). However, the switching strategy uses a preset
threshold to execute the switching policy. In [27], the authors
discussed the statistical relationship between acoustic and
optical channels and proved feasibility of predicting the optical
channel state based on the properties of acoustic channels.
Although a switching scheme based on optical signal-to-
noise ratio (SNR) threshold was presented, no further specific
experiments and simulations were conducted to validate the
performance. Nevertheless, an effective switching strategy
should be adaptive to the environmental dynamics, and as
reinforcement learning (RL) has the capability of interacting
with the environment and could gradually learn an optimal
or near-optimal action policy, it is a promising artificial intel-
ligence (AI) tool to develop switching strategy for underwater
sensor networks. In a recent research, a model-free RLmethod
is adopted to deal with the dynamics of the channels in order
to smoothly switch among different types of acoustic modems

in an adaptive manner [28, 29]. However, the switching policy
in a hybrid optical-acoustic communication system, involving
two different types of links, has not been studied much.
Furthermore, as the UWOC has more restrictions compared
to the acoustic communication, these limitations should be
carefully addressed in the switching scheme.

To tackle the aforementioned challenges, in order to
maximize the throughput of the hybrid AUV mobile net-
work, as depicted in Figure 1, in this paper, we leverage
the Q-learning and Extended Kalman Filter (EKF) tools
to deal with the severe oceanic environments and propose
an adaptive switching scheme. Compared to these learning-
ignorant schemes, the proposed scheme does not require
prior knowledge of the environments. Furthermore, we
leverage the relationship between the acoustic and optical
channels to enhance the effectiveness of switching strategy
by capturing the dynamics of the varying channels [27]. To
the best of our knowledge, this is the first study to provide
an adaptive switching scheme for the AUV-based hybrid
optical-acoustic network. To summarize, the major contribu-
tions of this paper are listed as follows:

(1) We propose an adaptive switching scheme for an
AUV-based optical-acoustic hybrid network that
leverages both the Q-learning and EKF tools to
increase the network throughput

(2) A blind estimation method for underwater optical
channel state is implemented with the EKF tool to
improve the channel prediction accuracy for effective
proactive switching

(3) The critical factors (e.g., acoustic and solar noise,
water turbidity, AUV mobility, and optical beam
width) which affect the effectiveness and robustness
of the switching scheme are investigated via numer-
ical simulations

2. Preliminaries

In this section, we introduce the preliminaries for the pro-
posed adaptive switching scheme, which include the follow-
ing: network model, acoustic channel, optical channel, and
localization of AUVs.

2.1. Basics of Network Model. The hybrid underwater
acoustic-optical network includes a swarm of AUVs and an
underwater positioning system, as shown in Figure 1. Each
AUV is equipped with both the acoustic and optical commu-
nication technologies. Moreover, the positioning system is
deployed either on an assistant ship or on a floating buoy,
which is near the AUV operating area. As depicted in
Figure 2, the hybrid system consists of an underwater wire-
less acoustic communication (UWAC) link and an UWOC
link. The UWAC link is dedicated for conveying the feedback
information of channel states and the positioning informa-
tion of the AUVs. Therefore, the acoustic channel is used
for both the control and low-rate data transmission purposes.

As the swarm of AUVs are mobile, the designated switch-
ing scheme aims to choose the UWAC link or UWOC link
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for data transmission in an adaptive manner based on the
channel conditions and the AUV positions. Once the condi-
tions for the optical link are favorable, a well-designed
scheme should switch it ON, which means the initiation of
optical transmission for many tasks, such as pointing, acqui-
sition, and tracking (PAT) system [30]. During the process,
the receiver sends back the feedback information (e.g., chan-
nel state information (CSI)) into the acknowledge string
(ACK) via acoustic links until the UWOC link has been
established.

2.2. Basics of Acoustic Channel. To monitor the channel state
and measure the noise level, the signal-to-noise ratio (SNR) is
selected as CSI to characterize the channel. The path loss in
the underwater acoustic channel is given by [31]: Aðr, f Þ =
A0r

bað f Þr , where A0 is the normalizing constant, r is the

distance between the transmitter and the receiver, b is the
spreading factor, f is the acoustic signal frequency, and a
ð f Þ is the absorption coefficient estimated by Thorp’s der-
ivation which is constant for the specific frequency sound
wave.

By ignoring the changes of noise and transmission power
in a short time period, the observation of SNR of time-
varying and frequency-selective channel can be formalized
as Markov chains in discrete time domain, which implies
that the current theoretical prediction of SNR depends on
the past prediction. The SNR of transmission performed at
frequency over distance between a transmitter and a receiver
can be expressed as follows [31]:

SNRA =
P

A r, fð ÞN0 fð ÞB , ð1Þ

Acoustic link

Optical link

Figure 1: A sample structure of the hybrid optical-acoustic network.
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Figure 2: A sample block diagram of hybrid optical-acoustic systems.
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where P is the transmit power, N0 is the noise power, and B
is the narrow band around the signal frequency.

Although the underwater acoustic noise can be described
as the white Gaussian noise, the received signal always suf-
fers from Non-Gaussian noise (e.g., alpha noise and Middle-
ton Class A and Class B noise) consisting of short spike
pulses generated by external interference in the underwater
channel [32, 33], which result in the probability density
function (PDF) of the noise with longer and extended tails.
According to these studies, it is known that the Non-
Gaussian noise follows the symmetrical alpha-stable (SaS)
distribution class [34]. The characteristic function of the
SaS distribution class is given by

φ xð Þ = exp iμx − γ xj jαð Þ ð2Þ

where α is the characteristic exponent that determines the
degree of pulse characteristic of the distribution and 0 < α
≤ 2 holds. The terms μ and γ are the location and dispersion
parameters, which are similar to the mean and variance of
the Gaussian distribution. When α = 2 holds, the α stable
distribution is equivalent to the Gaussian distribution.

To suppress the spikes and make the noise conform to
the Gaussian distribution, some filters have been proposed
such as U-filter’s Gaussianization process [35] and median
filter [36]. By leveraging the aforementioned filters, the noise
of the acoustic channel NoiseA is defined as

NoiseA ~N SNRA, σ2AC
� �

, ð3Þ

where σ2AC represents the mean error variance.

2.3. Basics of Optical Channel. To build an UWOC link
among the mobile AUVs, an LED is adopted as the transmit-
ter in this work, which has a wide beam angle to reduce the
strict alignment requirement and guarantee the communica-
tion between AUVs [27].

Correspondingly, we also choose SNR as the main fea-
ture of the optical CSI, since in a real-time control system
(RTCS), the optical PAT is driven by affluent SNR. Note that
when the AUV is equipped with an optical noise sensor, the
short-term noise dynamics can be taken into consideration.
The SNR can be modelled as a Markov chain [37] as follows:

SNRO = Pte
−c λð ÞrD2 cos ϕ

4r2NEP tan2θ

� �2
, ð4Þ

where Pt is the optical transmit power, r is the distance
between the transmitter and the receiver, cðλÞ stands for
the attenuation coefficient which consists of absorption
coefficient aðλÞ and scattering coefficient bðλÞ: cðλÞ = aðλÞ
+ bðλÞ, λ is the beam wavelength, D is the receiver aperture
diameter, ϕ is the incident angle between the optical axis of
the receiver and the line-of-sight (LOS) direction, θ is the half
angle transmitter beam width, and NEP is the noise equiva-
lent power.

Under the consumption of unchanged transmit power
and fixed optical system parameters, the noise of optical
channel NoiseO is defined by

NoiseO ~N SNRO,NEP2� �
, ð5Þ

where the noise of optical NEP2 can be modelled as the sum
of a series of Gaussian noises. It includes the thermal noise
in the signal amplification process, the quantum shot noise
generated at the receiving end, the photodetector dark cur-
rent noise generated by the photodetector electrical current
leakage, and the background noise caused by environment
optical clutter.

2.4. Localization of AUVs. Since both the acoustic and the
optical channels are affected by the communication distance,
a positioning system is required to determine the positions
of AUVs [3]. As shown in Figure 3, we use the ultra short
baseline positioning (USBL) technique to locate AUVs by
measuring the phase difference of the target’s acoustic signal
to the hydrophone through the shipborne array probe as fol-
lows:

x = d cos α

y = d cos β
,

(
ð6Þ

where d represents the distance between the shipborne base
station and the positioning target, α is the azimuth angle
along the x-axis, and β is the azimuth angle along the y-axis.
Then, the position information is broadcast to the transmit-
ter AUV Tx and the receiver AUV Rx. After that, Tx can
calculate the relative position Pt

Tx⟶Rx by the following for-
mula [38]:

Pt
Tx⟶Rx =

xRx − xTx

yRx − yTx

zRx − zTx

2
664

3
775, ð7Þ

where zTx is the depth of the transmitter and zRx is the depth
of the receiver, which are updated after completing each
communication round. We assume that the trajectory of
the AUV is preset by the shipborne base station. Thus, the
relative position in the next time slot can be predicted in
advance.

3. Adaptive Switching Scheme

In this section, we present the adaptive switching scheme
design based on the RL technique. The overall diagram of
switching scheme is shown in Figure 2. We first provide
the fundamental mechanism of the proposed switching pol-
icy, then propose an optical channel estimation based on the
EKF in detail, and finally provide the switching algorithm at
the end of the section.

3.1. The Design of the Switching Scheme. As shown in
Figure 4, we briefly describe the primary mechanisms of
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the switching scheme. To design an effective switching pol-
icy, the AUV should consider the positioning of the target
transmitter, the states of acoustic and optical channels. The
channel states are denoted as SNRA and SNRO, respectively.

These sensed information are then fed into the EKF tool for
further processing before sending to the agent as part of the
environment states. It should be noted that SNRO is only
measured and collected after the UWOC link is switched
ON.

More precisely, the agent in an AUV generates and
updates the policy function πðsÞ. The inputs to the policy
function come from the communications with the target
AUV via acoustic link, including state S and reward R. The
state set S consists of acoustic channel state estimation out-
come Spre and the optical channel state estimation outcome
Sest as shown in Figure 4. The output of the policy function
is only a single action, which affects the measurement of
the next state.

Optical state information is more difficult to acquire
compared to acoustic channel states because of the extra cost
of alignments. Therefore, we keep apart the acoustic and
optical communications in the learning process, which in
turn requires a reward function R specifically for the optical
communication, but not for the acoustic communication.
Subsequently, the AUV alternating policy function πðsÞ is
equivalent to the exploration of the successful connections
for the optical communications. To realize the exploration,
we design a blind estimation model for the optical channel.
The basic idea of the estimation process is that the receiver
estimates the optical CSI by combining the theoretical value
of optical CSI and the acoustic measurement outcome when
the optical information is not available via the relationship
between the acoustic and optical channel states [27].

The proposed optical channel state estimation model is
developed based on the EKF tool, and the optical CSI mea-
surement is used to estimate the optical channel SNRO.
When the optical CSI measurement is not available, we
obtain the optical estimation state Sest by updating the obser-
vation matrix with the acoustic CSI tracking information
SNRA and its theoretical value.

3.2. Design of the RL Technique. The interaction between an
AUV and the optical channel can be formulated as a Markov
Decision Process (MDP). The UWOC channel state transi-
tion matrix is estimated and updated by acoustic channel

𝛼
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O

y
d

x

¤

Ship

Rx

Tx

Figure 3: The positioning system by ultra short baseline positioning technology.
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Figure 4: The illustration of the adaptive switching scheme.
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observations while switching. Therefore, there is a trade-off
between exploration and exploitation in AUV. Exploration
implies updating the model frequently so as to obtain a more
accurate future prediction, which incurs additional costs. On
the other hand, the higher degree of exploitation may result
in a local optimal solution. For this reason, an effective
quantification function is proposed to adjust ε, which urges
the agent to have more explorations when the constructed
model is ineffective. The following elements are included in
the design of the proposed scheme:

(i) Environment: The environment contains the acous-
tic and optical channels and the receiver, and it gen-
erates reward when the optical communication is
ON

(ii) State: The state S describes the current environment.
We combine the SNR Spre of the acoustic channel
and the optical estimated SNR Sest obtained by the
EKF tool as states S, which is denoted as S = ½Spre,
Sest �. To simplify the design, the state quantities are
discretized into N and M levels in a total of N ×M
states

(iii) State value function: The estimated value of current
state VπðsÞ is calculated as the expectations of the
future rewards

(iv) Action: The action set Action = ½0, 1� is the UWOC
link binary controller bit, where 0 means OFF and
1 means ON

(v) Reward: The reward function Rt can be set accord-
ing to the different tasks of the AUV. An agent seeks
the optimal policy to maximize the value function
Vπ while leveraging the feedback information from
the environment. As there is only a unique task, the
reward function Rt is set to a fixed value, which is
only obtained during the UWOC link. If the
UWOC is successfully established, the agent will
get the reward χ to update Q-value of action ON.
While UWOC is failed to set up, the agent will get
the reward φ to modify Q-value of action OFF:

Rt =

χ, Success

φ, Fail

0, Otherwise

8>><
>>: , ð8Þ

The policy function π is a greedy strategy, which bal-
ances the relationship between the exploration and exploita-
tion as follows:

π sð Þ =
argmaxτ∈ActionQ s, τð Þ, 1 − ε

random, ε

(
, ð9Þ

where the action τ to maximize the Q-value is chosen with
probability 1 − ε and the action is selected randomly with
probability ε.

Bellman equation is used to describe the relationship
between the current state value and the consequent state
value that the current state value is equal to the expectation
of the sum of discount next state value and the instantaneous
reward [29]:

Vπ sð Þ = Eπ Rt+1 + γVπ St+1ð Þ Stj = sð Þ, ð10Þ

where γ is the discount factor. The learned action value
function Q directly approximates the optimal action and
maximizes over all possible actions in the next state as fol-
lows:

Q s, τð Þ = 1 − δð ÞQ s, τð Þ + δ Rt+1 + γ max
τ′

Q s′, τ′
� �� 	

:

ð11Þ

where δ is the learning rate. We assume that the environ-
mental information is observable. Then, we set the reward
function Rt according to the network requirement. For
example, as we want to increase the successful trial of the
switching process, we continuously update Q-table in inter-
action with the environment. The Q-function πðsÞ uses a
tabular approximation method, and the CSI information is
approximated into several levels.

3.3. Optical Channel Estimation. As discussed earlier, the
state of the RL technique consists of two kinds of informa-
tion: SNRA and SNRO. Since the acoustic link is used for
the control channel, its SNR can be easily obtained. The
actual optical SNR, especially when there is no optical com-
municating link, cannot be obtained directly. In [27], the
possibility of using acoustic SNR to predict optical SNR is
discussed. Inspired by this research, we use the EKF tool to
estimate optical SNR from the acoustic SNR which require
a small amount of prior knowledge and is adapted to the
AUV movement.

Table 1: The settings of the SNR levels.

Setting
State dB Level

Spre SNRA ≤ 5 0

5 < SNRA ≤ 10 1
10 < SNRA ≤ 15 2
SNRA > 15 3

Sest SNRO ≤ 5 0
5 < SNRO ≤ 10 1
10 < SNRO ≤ 15 2
15 < SNRO ≤ 20 3
SNRO > 20 4
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We first define the state space vector Xt at time slot t as
follows [38]:

Xt =

Pt
A⟶B

SNRt
O

SNRt
A

2
664

3
775
5×1

, ð12Þ

where Pt
A⟶B is the relative position vector of AUVs and

SNRt
O and SNRt

A are the SNRs of optical and acoustic chan-
nels, respectively. Then, we derive the state transition func-
tion from (4) as follows:

Xt = f Xt−1ð Þ = FtXt−1 + ωt ,

=

I3×3 0 0

⋯ Gt
O 0

0 ⋯ Gt
A

2
664

3
775
5×5

Xt−1 + ωt ,
ð13Þ

Gt
O =

1
ec Ptj j− Pt−1j jð Þ × Ptj j/ Pt−1j jð Þ3 × xt−12 + yt−1

2/xt2 + yt
2ð Þ� �2 ,

Gt
A =

1
1 + Δr/rt−1ð Þð Þb × a fð ÞΔr

, ð14Þ

where Ft is the transfer matrix and is used to adjust the prior
estimation covariance matrix Ptjt−1 and ωt is the process
noise which obeys the Gaussian distribution with mean 0
and covariance Q. Secondly, the observations can be divided
into two stages based on the availability of optical channel

Initialization: Learning rate δ, exploration and exploitation threshold ε state-action-value-
function Qðs, τÞ = 0.
1: for t = 1, 2, 3,⋯do:
2: Obtain the relative position Pt

Tx⟶Rx using the relation in (7)
3: Predict the hybrid channel state mean X̂tjt−1
4: Predict the variance Ptjt−1 using the relation in (23).
Blind Estimation Stage
5: if τ = 0 then
6: Estimate the observation Zb

t using the relation in (17).
7: Obtain the channel estimation X̂tjt using the relation in (24).
8: end if
Feedback Stage
9: if τ = 1 then

10: Observe the channel state Zf
t using the relation in (20).

11: Estimate the channel state X̂tjt using the relation in (24).
12: Obtain the reward Rt .
13: end if
Online Learning Stage
14: Update St+1 = ½Spre, Sest �
15: Update Q-Value Qðs, τÞ using the relation in (11).
16: Choose action τ ∈ Action using the relation in (9).
17: Update the EKF parameters.
18: end for

Algorithm 1: The proposed adaptive switching algorithm.

Table 2: UWOC parameters.

Parameters Value

Receiver sensitivity R 0:26A/W

Receiver aperture diameter D 1:1mm2

Half angle transmitter beam width θ 0:5 rad

Electron charge q 1:6 × 10−19 C

Wavelength λ 532 nm

Downwelling irradiance E 1440watts/m2

Radiance factor Lf ac 2:9

Diffuse attenuation coefficient TA exp −τ0ð Þ
Boltzmann’s constant k 1:381 × 10−23

Equivalent temperature Te 290K

Dark noise IDC 1:226 × 10−9 Ampere

Transmit power 30W

Beam attenuation coefficient 1:0

Signal bandwidth 100 kHz

Planck’s constant 6:6261 × 10−34 Js

Underwater reflectance 1:25%

Speed of light 2:25257 × 108

Radiant absorption factor 0:5

Noise figure of system 4

Load resistance 100Ω
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observations, such as blind estimation stage and feedback
stage.

In the blind estimation stage, due to the lack of the opti-
cal channel observation, we resort the relationship between
acoustic and optical channels to estimate the optical SNR
via the acoustic measurements. At this stage, the observation
(or measurement) vector Zb

t at time t can be expressed as

Zb
t =

Pt
A⟶B

SNRt
A

" #
4×1

, ð15Þ

where Pt
A⟶B and SNRt

A are the measurement of relative
positions of AUVs and the acoustic SNR. Then, the observa-
tion is expressed as

Zb
t = hb Xtð Þ =Hb

t Xt + vbt b =
I3×3 0 0

0 0 Lt

" #
4×5

Xt + vbt ,

ð16Þ

Lt = CbSNRO
r4−b exp2crNEP2

ar cos2∅
, ð17Þ

where hbð∙Þ represents the mapping at the blind estimation
stage, which converts the 5 × 1 state vector X to the corre-
sponding 4 × 1 measurement vector Zb. H

b
t is observation

matrix and vbt is the observation noise, which is assumed
to be zero mean Gaussian white noise with covariance R.
Cb is a constant related to signal amplifier circuits and the
underwater environment.

In the feedback stage, we use the optical channel mea-
surement as feedback to the EKF tool, in order to improve
the accuracy of the estimation. The observation (or measure-

ment) vector Zf
t at time t of this stage can be expressed as

Zf
t =

Pt
A⟶B

SNRt
O

SNRt
A

2
664

3
775
5×1

, ð18Þ

where SNRt
A is the measured value of the optical SNR. After-

wards, the observation is expressed as

Zf
t = hf Xtð Þ =Hf

t Xt + vft , ð19Þ

Hf
t = I5×5: ð20Þ

where hf ð∙Þ represents the mapping at the feedback stage,
which converts the 5 × 1 state vector X to the corresponding

5 × 1 measurement vector Zf . Hf
t is an identity matrix and

vft is the observation noise, which is assumed to be zero
mean Gaussian white noise with covariance R. According
to the aforementioned descriptions, the observation function
hð∙Þ and the observation matrix Ht of the system can be
abbreviated as the following relation:

Zt+1 = h Xtð Þ =
hb Xtð Þ + vbt , at Blind Stage

hf Xtð Þ + vft , at Feedback Stage
,

8<
: ð21Þ

Ht =
Hb

t , at Blind Stage

Hf
t , at Feedback Stage

(
, ð22Þ

Due to the nonlinearity nature of the system view state
and observation function, EKF is employed for channel state
estimation since it is a nonlinear version of Kalman filter.
Standard EKF tool generally consists of two phases: predic-
tion and updating. There are three covariance matrices: P,
Q, and R [39]. The Q and R are both positive definite matri-
ces which depended on the environment settings, and the
P0j0 is initialized as an identity matrix. The state vector and
its covariance matrix can be iteratively updated by the fol-
lowing relations [39]:

Prediction:

X̂t t−1j = f X̂t−1 t−1j
� �

,

Pt t−1j = FtPt−1 t−1j FTt + Q:
ð23Þ

Updating:

~yt = zt − h X̂t t−1j
� �

,

St = HtPt t−1j HT
t + R,

Kt = Pt t−1j HT
t S

−1
t ,

X̂t∣t = X̂t t−1j + Kt~yt,

Pt∣t = I −KtHtð ÞPt t−1j :

ð24Þ

VA

VB

Ф

𝜃

Figure 6: A sample optical communication scenario between two
AUVs.
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After the observations, such as relative position, acoustic
SNR, or optical SNR, have been processed, the EKF tool pro-
vides an estimation of X as the input state for the RL tech-
nique to make decisions.

3.4. The Description of the Proposed Switching Algorithm.
The proposed algorithm is deployed in the controllers of
the AUVs, and the switching policy is stored in a Q-table
and updated by communicating with other AUVs. The dis-
crete time slot is denoted as the period which begins at the
packet transmission until Tx has received the ACK from
Rx and updates the Q-table, and the sequences are related
to the packet transmission process as shown in Figure 5.

We assume that the environment remains relatively sta-
ble over a short period of time. At the beginning of each
interaction, the transmitter first receives the positioning
information PTx⟶Rx , and the receiver tracks and estimates
the channel state Xt using the EKF tool while receiving the
packets. Once the transmission is initiated, the receiver esti-
mates the optical channel state X̂t and places the estimation
value into the ACK. Finally, the transmitter progresses to the
online learning stage and updates the policy function πðsÞ.
The initial parameters are the learning rate δ, the explora-
tion constant ε, and the system error σ. Before the packet
transmission, the position of the target is determined by
the positioning system which resides in the shipborne base
station or a buoy.

Then, the receiver calculates the prediction of the hybrid
channel state X̂t using the relation in (23) and collects the
observations. The value of the observation function is
defined in (21). While the optical communication is OFF,
the measurement function Zt is obtained by the blind esti-
mation which combines the theoretical value of optical
SNRO and the acoustic measurement SNRA using the rela-
tion in (17). Then, the observation is updated with the opti-
cal measurement outcome using the relation in (20) under
the process of optical communication. We choose SNR to
represent CSI [23]; thus, we have a double state tuple St con-
sisting of both the acoustic SNR estimation outcome SNRt

A
and the optical SNR estimation outcome SNRt

O. The quanti-
fied levels are shown in Table 1, and we set the state St =
½Stpre, Stest� for the RL algorithm.

The condition for judging optical communication suc-
cessful is based on an SNR threshold which the PD on the
receiver conceives the optical signal is real [23]. It should be
noted that the optical signal measurement of the receiver is
sent back to the transmitter via the acoustic channel. There-
fore, the online learning stage can be reached at both the
transmitter and the receiver ends through the bi-directional
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communication process, and it reduces the costs of learning.
After the successful switching operation, the optical SNR is
used to assist the PAT procedure [39].

The adaptive switching process is summarized in Algo-
rithm 1. Once the system is initialized, the algorithm is
mainly divided into three parts: blind estimated stage, feed-
back stage, and online learning stage. At the beginning of
each interaction, the relative position P of each agent is
obtained to predict the channel state X̂tjt−1 and the covari-
ance P. When the optical channel is not obtained by the
agent, the blind estimation stage is used to estimate the opti-
cal channel observation Z by the acoustic observations using
the relation in (17). Otherwise, when the UWOC is switched
ON, the feedback stage is used to estimate the optical chan-
nel state Z by the optical observations. Subsequently, the
corresponding agent obtains the reward R at the end of
UWOC switching trials. After getting the channel estimation
X̂tjt from the blind estimation stage or the feedback stage
where the optical state is measured at the feedback stage
but absent at the blind estimation stage, the agent updates
the next state St+1 using SNRA and SNRO in Table 1. In
the online learning stage, the agent updates the Q-table
and EKF parameters, and then the action of the next interac-
tion is chosen using the relation in (9).

4. Performance Evaluation

In this section, we evaluate the performance of the proposed
switching scheme through simulations. The operating area
of AUVs is set to 2000m × 2000m × 500m. The primary
simulation parameters and settings are provided in
Table 2. We first simulate the characteristics of optical com-
munication between mobile AUVs. Then, we verify the
effectiveness of the proposed switching algorithm. Finally,
we testify the robustness of the proposed scheme.

4.1. The Characteristics of Optical Communication between
Mobile AUVs. The performance of the optical communica-
tion of mobile AUVs is affected by several factors. As shown
in Figure 6, when two mobile AUVs encounter, the chance
of performing reliable visible light communication (VLC)
via LOS link depends on several factors (e.g., the distance
between two AUVs, the transmit power P, the half-angle
FOV θ, the incident angle of the receiver ∅, and the speed
of AUV v).

As shown in Figure 7, we illustrate the performance
variations under different communication distances between
two AUVs, and also with different levels of transmit power P
and the incident angle ∅. The half angle is fixed to θ = π/6.
The collision avoidance range of AUVs is set to 10m [40].

As shown in the figure, the solid lines describe the
throughput, and the dotted lines represent the bit error rate
(BER). The distance between two AUVs is varying from
10m to 100m. We take different settings of transmit power
and incident angle to compare the performance, such as the
transmit power is set to 10W and 30W, and the incident
angle is set to 0 rad and 0.5 rad. Figure 7 shows that the opti-
cal communication throughput has good performance
which can reach the magnitude of Mbit. However, the
throughput declines rapidly when the distance is larger than
a number in between the range of 30m and 50m. Conse-
quently, we can take some measures to improve the optical
transmission capability, such as improving the transmit
power. The figure also shows that the BER has a significant
performance for applications associated with the communi-
cation distance of 40m.

Figure 8 shows the UWOC characteristics of two mobile
AUVs with respect to different speeds and half angles. The
speed of AUVs is set to 2 and 5 knots, and the half angle θ
is set to π/6 and π/4. As shown in the figure, it can be
observed that under the same half angle θ, the time window
is larger with a slow speed of AUVs in terms of BER com-
munication performance. The delay that an AUV experi-
ences while communicating with another one via the
optical link is longer with a wide half angle compared to
the narrow half angle under the same speed.

4.2. The Effectiveness of the Switching Scheme. In order to
verify the effectiveness of the proposed scheme, we simulate
the performance of the EKF and Q-learning tools. In the
simulations, two AUVs are deployed in the depth of 15m
and 25m. The trajectories of these AUVs are in a linear
roundtrip patrol along a straight line with a range span
about 500m. The initial positions of the AUVs are on the
left and right sides of their patrol lines, and the AUVs are
moving towards each other at a speed of 2 knot and 4 knot,
respectively. Each interaction process is defined as a time
slot as shown in Figure 5. When the two AUVs patrol along
the preset lines, the SNR of UWOC gradually increases and
decreases in accordance with the change of distance between
two AUVs.

As shown in Figure 9, the EKF tool has a good perfor-
mance when the optical SNR is large enough, and both states
are generated under the simulated environments. Overall,
the EKF is relatively stable when estimating the states, and
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Figure 9: The convergence of the estimation and the actual state.
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the actual states are generally match the estimated states,
especially when there is no optical measured values.

The effectiveness of the Q-learning process is simulated
and analyzed, and the corresponding results are shown in
Figure 10. The accuracy is defined as the ratio of the success-
ful switching time to the total switching trials. The initial
learning rate δ is set to 0.01, and the reward discount γ is
0.7. When the optical communication is successful, the cor-
responding AUV gets the reward χ =1, and the punishment
is φ =0.8 for the other case. The ε of the greedy strategy is
initially set to 0.06, and it decreases with the increasing level
of accuracy.

To compare the performance of the learning process,
we set different half angles in Figures 10(a) and 10(b) to

evaluate the convergence process of Q-function. Overall,
Figure 10 shows that the accuracy of the switching scheme
has significant improvement with the increasing training
rounds. During the beginning stage of the training process,
the optical communication delay becomes less due to the
few number of training samples. However, after the con-
vergence of the policy function, the optical communication
delay is increasing, while the accuracy of switching policy
is stabilized.

The figures also show that the half angle has an impact
on the learning process. Compared to Figures 10(a) and
10(b), the narrow half angle means the shorter switching
time window, and so the exploration trials at the beginning
of the learning process are fewer. However, with the increas-
ing of the training trials, the accuracy with narrow half angle
converges to 80%, which is almost identical to the wide one.

Figure 11 shows the switching accuracy performance of
the proposed method in yellow color compared with tradi-
tional methods which include distance-based method in blue
color [41] and SVM-based switching method in red color
[27]. There are six different underwater communication
locations considered in our simulation which include har-
bor, rough sea, calm sea, calm sea with working boat, turbid
waters, and clear waters corresponding to locations 1, 2, 3, 4,
7, and 8 in [27]. It is worth noting that there are different
kinds of mechanical noise interference in the harbor, obvi-
ous spikes in the rough sea, fixed frequency noise in the calm
sea with working boat, and large attenuation coefficient of
beam in turbid water. As shown in Figure 11, the distance-
based switching method is insensitive to acoustic noise but
vulnerable to the turbidity of the water, and the SVM-
based method depending on acoustic SNR is mainly affected
by the acoustic noise. Compared to these traditional
methods, our proposed method achieves more than 75%
switching accuracy in all cases.

4.3. The Robustness for Switching Scheme. In this part, we
evaluate the robustness of the switching scheme under
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different types of water and sunlight-noise levels for realistic
underwater wireless communication environments.

As the real underwater wireless communication environ-
ment is very complex, we focus on evaluating the robustness
of the switching scheme under different noises and optical
attenuation coefficients. The parameters related to the
underwater environment are taken from the work in [42].
The simulated results are shown in Figure 12, and we can
observe that the environmental noise affects the overall per-
formance of the switching scheme. Moreover, as the radia-
tion noise of sunlight increases, the performance of the
switching scheme decreases. However, under the condition
of strong noise, increasing the transmit power alleviates the

influence and thus improves the adaptivity caused by the
variation of optical attenuation coefficient.

Figure 13 shows the performance of the proposed
scheme under different SNR levels. The left y-axis is the
value of SNR sorting the optical SNR from the smallest to
the largest according to the open dataset in [27] correspond-
ing to locations 7, 8, 4, 5, 6, 3, 2, 9, and 1, respectively. The
dotted line is defined as the mean value of SNR of the acous-
tic and optical channels in the communication range of 10m
and 20m. The right y-axis is the switching accuracy, and the
solid line shows the performance of the proposed method. It
can be seen that the switching accuracy is lower when either
the acoustic or optical SNR is weak. This is because the high
attenuation coefficient of the optical channel can lead to
transmission link instability, while the low acoustic SNR
can lead to poor estimation of the optical channel. Overall,
the proposed method has a good performance under differ-
ent SNR levels.

The learning process generally involves the optical align-
ment procedure, and as the alignment process of the optical
system needs a certain duration of time to perform the task,
it requires the switching scheme to remain effective for that
duration of time. Therefore, the time delay caused by the
alignment procedure affects the successful ratio of the
switching. As shown in Figure 14, the time tolerance of the
Q-learning-based strategy is tested with a greedy coefficient
of 0.01, and the average value of the accuracy is calculated
with different time delays, learning rates, and discounter fac-
tors. As depicted in the figure, the larger time delay leads to
less belief in the past experience, which implies that a larger
learning rate has a better time tolerance. Since the discount
factor indicates the weight to the future reward, as shown
in the figure, a large discount factor γ has a better adaptation
to time delay.
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5. Conclusions

In this paper, we proposed an adaptive switching scheme for
the underwater AUV-based acoustic-optical hybrid mobile
network while combining the long-range but low-rate acous-
tic and the high-rate but short-range optical communica-
tions. In this scheme, we leveraged a RL-based method and
the EKF tool to improve the adaptivity of the switching
method. In response to the challenge associated with the
intermittent feature of the optical channel, a blind estimation
method based on EKF was proposed to estimate the optical
channel state using the acoustic channel measurement. To
deal with the harsh ocean environments, in the scheme, the
relationship between the acoustic and optical channels, the
channel variations and the mobility of the AUVs were con-
sidered and integrated into the learning process of the agent.
We also conducted numerous simulations to verify the effec-
tiveness and robustness of the proposed switching algorithm
by considering the AUV speed, the environmental noise, the
half angle beamwidth, and the optical alignment delay. In the
future, we will apply multi-agent RL techniques in the
switching scheme to improve the overall throughput further.
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Systematic error and random error are main factors affecting the positioning of biorthogonal signal underwater positioning
system. Based on the operation theory of USBL, this paper quantitatively analyzes a theoretical analysis and simulation
calculations on influence of different error sources on the positioning accuracy and qualitatively analyzes the effectiveness of
the towed linear array shape measurement method based on biorthogonal signal through practical experiments. By comparing
the measurement effect after correction by using the measurement array with the measurement effect based on the linear array,
the effectiveness of the method is verified.

1. Introduction

With the development ofmarine resources, underwater acous-
tic positioning and navigation system have received extensive
attention and research. According to the length of array, it can
be divided into long baseline LBL, short baseline SBL, and
ultrashort baseline USBL [1]. This kind of underwater acoustic
navigation and positioning system is very similar to the radio
navigation systemwith the shore radio beacon as the reference
point. The distance between the two sides is determined by
measuring the phase difference and time delay between the
reference point and the moving carrier, and then, the position
of the moving carrier is calculated to realize the function of
navigation and positioning. The advantages of long baseline
are high positioning accuracy and long operating distance,
but the disadvantages are high cost and difficult to place and
recover. The short baseline is longer, and the positioning accu-
racy and operating distance of the baseline are poor, so the
cost is reduced. The ultrashort baseline array has small size
and convenient installation [2].

Based on the principle of ultrashort baseline positioning
system, this paper analyzes the research on towed linear
array shape measurement method based on biorthogonal
signal, which mainly measures the influence of positioning
error under different array element radius, depth error

caused by pressure sensor, attitude angle error caused by
attitude sensor, and signal-to-noise ratio error in random
error on positioning accuracy. This paper quantitatively ana-
lyzes a theoretical analysis and simulation calculations on
influence of different error sources on the positioning accu-
racy and qualitatively analyzes the effectiveness of the towed
linear array shape measurement method based on biortho-
gonal signal through practical experiments. By comparing
the measurement effect after correction by using the mea-
surement array with the measurement effect based on the
linear array, the effectiveness of the method is verified.

2. Working Principle

The system consists of transmitting terminal and receiving
terminal. The transmitting terminal consists of two trans-
mitting transducers connected by rigid connection and two
transmitting transducers to launch different orthogonal sig-
nal at the same time; a receiving transducer is used as the
receiver to receive the two signals, by processing the separa-
tion and obtaining the time delay between the signal and
phase difference. Thus, the azimuth of the receiver relative
to the transmitter is obtained. Then, measure the distance
between the transmitting terminal and the receiving termi-
nal (the depth difference between the transmitting terminal
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and the receiving terminal can be obtained with the help of
the depth sensor), and the position of the receiving terminal
relative to the transmitting terminal can be obtained.

Set A and B as two transmitting array, take the connecting
line between them as the x-axis, the midpoint between them as
the origin O, and the vertical downward as the z-axis, and
establish the coordinate system as shown in Figure 1. T is
the target terminal, and ½x, y, z� is its coordinates. The receiver
terminal T with the launch of the distance between A and B,
respectively, is RA and RB, the distance between the origin O,
and the target terminal T is R. The angle between attachment
OT and X axis is α, and the angle between the ABT plane and
the XOY plane is β [3–5].

Assuming that the located target end meets the far-field
assumption conditions, then:

cos α = RBA

L
= tBAc

L
, ð1Þ

where L is the interval between the array elements, d is
the radius of the element, RBA = RB − RA is the range differ-
ence between the two transmitting terminal and the posi-
tioning target terminal T , tBA is the corresponding
propagation time difference, and c is the sound speed. The
coordinates of the targeted terminal T are as follows:

x = R cos α,
y = R sin α cos β,
z = R sin α sin β:

8>><
>>: ð2Þ

When t is the propagation time of acoustic wave propa-
gating from the origin O to the targeted terminal T , then R
= c ∗ t; at this point, the x-axis coordinate of t point is

x = R cos α = c2t
tBA
2d : ð3Þ

The depth z of the target terminal to be located is mea-
sured by the depth sensor, set z =D, and then:

sin β = D
R sin α

: ð4Þ

After simplification, the coordinate value of T can be
solved:

x = c2t
tBA
2d ,

y =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2t2 − x2 −D2

p
,

z =D:

8>>><
>>>:

ð5Þ

According to trigonometry, the distance between the tar-
get terminal and the origin of coordinates can be expressed
as follows:

R = 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2RA

2 + 2RB
2 − 4d2

q
: ð6Þ

At this point, the propagation delay can be expressed as
follows:

t = R
c
= 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2tA2 + 2tB2 −

4d2
c2

r
: ð7Þ

3. System Composition

The system consists of transmitter and receiver, as shown
in Figure 2. The transmitter is located on the towed body
and consists of transducer array, transmitter subsystem,
and attitude measurement subsystem. The receiving termi-
nal is located on the ship and consists of towed line array
subsystem and receiving and processing subsystem. The
time synchronization between the transmitter and the
receiver is realized by the synchronization clock mod-
ule [3].

3.1. Control and Processing Center. The control and process-
ing center mainly performs the following functions: (1)
receive PPS and UTC clock data output by GPS receiver,
synchronize with internal thermostatic crystal oscillator,
and maintains its own time; (2) read the attitude sensor data,
add the time stamp, and save it; (3) generate two channel
phase coded signals and output them to the power amplifier;
and (4) the attitude sensor data and temperature and depth
sensor data stored in the control center can be read exter-
nally through Ethernet.

3.2. Power Amplifier. The power amplifier mainly performs
the following functions: (1) power amplification of the trans-
mitted signal generated by the signal source; and (2) com-
plete the impedance matching with the transmitting
transducer.

3.3. Transmitting Transducer Array. The transmitting termi-
nal is composed of two transmitting transducers through
rigid connection, and the two transmitting transducers
simultaneously emit different orthogonal signals.

x

y

d d AB 0

T

RA

RB

[x, y, z]

z

𝛼

𝛽

Figure 1: Principle of ranging and positioning.
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3.4. Receiving Terminal. The receiver terminal amplifies and
filters the received weak electrical signal. The synchroniza-
tion clock generates the trigger clock at the agreed time (i.
e., the launch time), which triggers the data acquisition unit
to start collecting. The data acquisition module converts
analog signals into digital signals and sends them to the data
storage module for storage. The data storage module con-
tains gigabit Ethernet ports. After being reclaimed, the data
stored on the data storage module is read through gigabit
Ethernet ports and processed offline.

4. Positioning Error Analysis

4.1. System Error. Systematic error is caused by factors that
are fixed or change according to a certain law. Under the
same measurement conditions, this law can be repeated
and expressed by functions or curves in principle.

Firstly, the positioning error in the horizontal direction
is analyzed and obtained from Equation (3):

x = c2t
tBA
2d , ð8Þ

where t is the propagation delay from the transmitting
terminal to the receiving terminal and the synchronous

ranging method is adopted in this paper and is the one-
way time difference. Let us differentiate both sides
completely,

Δx = cttBA
d

Δc + c2tBA
2d Δt + c2t

2d ΔtBA −
c2ttBA
2d2

Δd: ð9Þ

Similarly, the positioning error of the y-axis can be
obtained:

Δy = ct2Δcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2t2 − x2 −D2

p + c2tΔtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2t2 − x2 −D2

p

−
xΔxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2t2 − x2 −D2
p −

DΔDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2t2 − x2 −D2

p :

ð10Þ

The depth information D of z-axis can be obtained from
the pressure sensor:

Δz = ΔD: ð11Þ

As for the positioning of the receiving terminal, the total
position error is caused by the errors in the three directions
of x-axis, y-axis, and z-axis, so the relative deviation is

Control center
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Control and processing
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Figure 2: Schematic diagram of transmitter and receiver.
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ΔP
R

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx
R

� �2
+ Δy

R

� �2
+ Δz

R

� �2
s

: ð12Þ

According to Equations (9)–(12), the main error sources
are sound velocity error, delay measurement error, array ele-
ment radius error, and depth measurement error caused by
array installation.

After the array is installed and fixed, the radius error
caused by the array installation can be ignored. At present,
the sound velocity error can usually be controlled within
0.1% distance, so it has little influence. However, the phase
measurement error caused by sound bending depends on
the sound velocity structure in the operation area and is
mainly caused by the temperature density change of water
in the sound propagation path [6, 7]. In the simulation
experiment, it is assumed that the sound velocity is constant,
which is 1500m/s. According to Equations (9)–(12), the
larger the radius of the array element is, the smaller the
mean square positioning error is. However, the radius of
the array element should be controlled according to the
actual needs. The depth error generated by the pressure sen-
sor can be seen from Equation (11), which will have an
impact on the positioning error, mainly determined by the
performance parameters of the pressure sensor.

In addition to acoustic positioning errors, joint transmit-
ter attitude information is required in the conversion to the
geodetic coordinate system. The attitude angle error gener-
ated by the attitude sensor causes the deviation of the array
coordinate system, which need to be converted into actual
coordinates through the rotation matrix, as shown in the fol-
lowing formula [8–10]:

P =
cos θ −sin θ 0
sin θ cos θ 0
0 0 1

2
664

3
775
−1

x∗ y∗ z∗½ �: ð13Þ

In Equation (13), P is the actual coordinate, α is the atti-
tude angle error, and ½x∗, y∗, z∗� is the measured coordinate
without attitude angle error. The change of attitude angle
error will affect the positioning error.

4.2. Random Error. The random error mainly includes delay
measurement error and phase measurement error caused by
noise. The timing error consists of clock error and pulse
front measurement error. The clock error is very small and
can not be considered. The measurement error of pulse front
is caused by ocean noise and related to SNR.

Δt, the error caused by time delay measurement, and as can
be known from signal detection and estimation knowledge, the
time delay measurement error through correlation processing is

Δt ≈
1

2πf0
ffiffiffiffiffiffi
BT

p ffiffiffiffiffiffiffiffiffi
SNR

p , ð14Þ

where B is the transmitted signal bandwidth (Hz), SNR is
the signal-to-noise ratio, and T is the duration. Since acoustic

wave propagation can be regarded as spherical expansion,
SNR approximation is inversely proportional to the square of
the distance under the condition of constant transmitting
power; then,

ffiffiffiffiffiffiffiffiffi
SNR

p
approximation is inversely proportional

to the distance. Δt can be approximately regarded as propor-
tional to distance change, while 1/t is inversely proportional to
distance change. The combination of the two can approximately
offset the error effect caused by propagation loss in distance var-
iation. Therefore, the error of time delaymeasurement is mainly
determined by the center frequency of the system. The farther
the distance is, the greater the error is (SNR decreases due to
the propagation loss). At present, the relative error of experi-
mental measurement can be controlled within 0.1%, so the
influence is not significant [10].

For the phase measurement error, the optimality of the
estimated value can be determined by using the Cramer-
Rao lower bound:

Δφ ≈
1ffiffiffiffiffiffiffiffiffi
SNR

p : ð15Þ

It can be seen from Equation (15) that the phase mea-
surement error is inversely proportional to the square root
of SNR. The effective method to improve the phase measure-
ment accuracy is to improve SNR. It is more advantageous
to use lower frequency and broadband signal. Therefore,
the greater the noise in the propagation process of underwa-
ter acoustic signal, the greater the random error of measure-
ment. Improving SNR can effectively reduce the influence of
ocean noise on measurement results and improve the per-
formance of the whole system.

In this paper, the experimental system error mainly con-
siders the array radius error caused by the array installation,
the depth error caused by the pressure sensor, and the atti-
tude angle error caused by the attitude sensor.

5. Simulation Analysis of Positioning Error

In this section, the influence of different error sources on
positioning accuracy was compared by simulation. The
MATLAB 2016a software was used for simulation. The spe-
cific simulation environment was z = 300m at the receiving
terminal, SNR was 20dB, and the influence on positioning
accuracy of the system when the array element radius chan-
ged within the range of 0.5-3m was considered. We used
Monte Carlo method to calculate the radius error of each
element 100 times. When the receiver was at different posi-
tions (100,600) and (200,600), the mean square positioning
error changed with the radius of array element, as shown
in Figure 3.

Considering the influence of attitude angle error on posi-
tioning accuracy of the system when it varied within 0-0.2°,
when the receiver was at different positions (100,600) and
(200,600), the change of the mean square positioning error
with attitude angle error was shown in Figure 4.

Considering that the depth measurement error z varies
between 0 and 0.1m, when the receiving terminal is at differ-
ent depths, namely, z = 300m and z = 500m, the change of
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the mean square positioning error with depth measurement
error is shown in Figure 5.

Similarly, when the SNR error varies within the range of
-5-20 dB, the influence on the positioning accuracy of the
system is considered. When the receiver is at different posi-
tions (100,600) and (200,600), the change of the mean

square positioning error with the SNR error is shown in
Figure 6.

As shown in Figure 3, in the general trend, the mean
square positioning error gradually decreases as the radius
error of array element increases, and the error is less than
0.1%. Due to the influence of signal coherence, the error will
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show certain ups and downs when the receiver is at different
positions. As shown in Figure 4, the mean square position-
ing error increases with the increase of attitude angle error,
showing an approximate linear relationship. As shown in
Figure 5, the mean square positioning error increases as
the depth measurement error increases, and the mean
square positioning error does not exceed 0.03%. As shown

in Figure 6, the mean square positioning error tends to be
stable with the increase of SNR. The main reason is that
the positioning signals are multiple orthogonal signals with
large time broadband and wide product. At a certain SNR,
the cross-correlation sidelobe level signal is higher than the
noise signal after matched filtering, so the change of SNR
has little influence on the positioning error.
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-5 0 5

SNR (dB)

Th
e m

ea
n 

sq
ua

re
 p

os
iti

on
in

g 
er

ro
r (

R%
)

10 15 20
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

x = 100
x = 200

Figure 6: SNR error.

6 Wireless Communications and Mobile Computing



-50 0 50 100 150 200 250

X/m

-50

0

50

100

150

Y/
m

Figure 7: Formation measurement results during sea test.

Table 1: Towed body roll angle and inclination angle data.

Amount of data Average Standard deviation Minimum value Median Maximum

Inclination angle 205153 5.21631 1.06777 8.63 5.36 0.94

Roll angle 205153 1.1049 0.40981 0.56 1.09 2.7
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Figure 8: Process diagram after array correction by measuring array.
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6. Positioning Test Certificate

In April 2021, sea trials were carried out in the South China
Sea in four stages: launching of the towed vehicle, operation
stability test of towed vehicle under different ship speed,
operation stability test of towed body and receiving array
cable, and measurement test of towed line array under
maneuvering steering condition of towed body cable.

The test of the towed body under the condition of
maneuvering steering of the cable was conducted for 348
minutes in total. After entering the water for 20 minutes,
the towed body gradually dived to a depth of 27m and con-
tinued to run at a depth of about 27m for about 130min.
The heading gradually changed from 180° to about 0°. From
the 150th minute, the dive reached a depth of about
35~40m, and the operation lasted for 200min. The heading
gradually changed from 0° to -180°, completing a circle. In
the stable operation stage, the roll angle and inclination
angle of the towed body changed in a small range, as shown
in Table 1.

During the sea test in South China Sea, the measurement
formation was shown in Figure 7 during the turning process.

It can be seen from Figure 7 that the spacing of array ele-
ments is obviously different, which is consistent with the
actual situation. At the same time, it can be clearly seen that
the dragging array turns from the left side of the array to the
right side of the array during the steering process, which is
consistent with the dragging state.

It can be seen from Figures 8 and 9 that the red line is the
heading of the towboat, which turns from 58° to 113° (about
50°) within 500 s. The red point is the heading of the target
ship measured by GPS. As shown in Figure 9, when using
linear array for beamforming, the heading course of the tar-
get is blurred and divergent. As shown in Figure 8, after cor-

rection, the target is more concentrated and can achieve
accurate and steady direction finding in the process of
turning.

7. Conclusion

To sum up, the error of attitude sensor has a great impact on
the measurement accuracy and limit the positioning accu-
racy of the system. At present, the heading measurement
error of the fiber optic inertial navigation sensor is usually
about 0.1°, so the overall positioning accuracy is about
0.2% slant distance. At the same time, the experiment proves
that the technique of using orthogonal signal to measure the
formation is feasible, which can measure the position of each
element of the line array effectively in the state of dragging.

The experiment still has the following deficiencies:

(1) In the actual experiment in the South China Sea, due
to the difficulty of controlling different influence
sources, the effectiveness of the experiment can only
be qualitatively analyzed by comparing the measure-
ment effect after correction by using the measure-
ment array with the measurement effect based on
the linear array. The influence of different error
sources on positioning accuracy is quantitatively
analyzed through simulation experiments

(2) In order to measure real-time data, we need to install
a measuring device on the towed cable, so it will have
an impact on the layout and salvage process of the
towed cable

We will continue to improve relevant experiments in the
follow-up work.
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Figure 9: Process diagram based on linear array.
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Underwater target localization is the most crucial part of the underwater wireless sensor network (UWSN). Due to limited
communication range and energy constraints in underwater scenarios, only a subset of sensors can be selected to localize. This
paper investigates the sensor selection schemes for hybrid angle-of-arrival (AOA) and time-of-arrival (TOA) localization in the
underwater scenario. We first develop the Cramér-Rao lower bound (CRLB) for the hybrid AOA-TOA localization with
correlated measurement noise model with Gaussian priors, and a Boolean vector is introduced to denote the selected sensors
for hybrid measurement. Secondly, the sensor selection schemes are formulated as an optimization problem, and the
optimality criterion is to minimize the trace of CRLB. The original nonconvex problem has been modified to the semidefinite
problem program (SDP) by convex relaxation, and then, a randomization algorithm is chosen to advance the result of the SDP
method. Finally, simulations verify that the proposed algorithm approaches the exhaustive search algorithm, and the effect of
correlated measurement noise on the estimation performance in the hybrid localization system is proved.

1. Introduction

Target localization technology plays a significant role in
marine target detection and tracking, marine environment
monitoring, underwater vehicle navigation, etc. [1, 2]. How-
ever, owing to the limitations are high power consumption,
severe propagation delay, and so on [3–6]; it is not feasible
to active all sensors to localize or track the unknown target
in the underwater wireless sensor network (UWSN). Thus,
the problems of sensor selection for target localization in
UWSN have been considered; the goal is to make a compro-
mise solution between the localization estimation accuracy
and the best subset of activated sensors [7, 8].

Several localization methods have been developed using
different localization measurements, e.g., time-difference-
of-arrival (TDOA) or time-of-arrival (TOA) [9], angle-of-
arrival (AOA) [10], received signal strength (RSS) [11],

and frequency difference of arrival (FDOA) [12]. The
AOA-based and TOA-based localization are the most popu-
larly used ones. The AOA-based localization can be easily
obtained using triangulation approaches, but the estimation
accuracy is lower than the TOA localization. A reduced-
complexity algorithm based on a pseudo maximum likeli-
hood (ML) estimation is presented in [13]; an AOA-based
mechanism that associates the line-of-sight (LOS) over time
for a given trial location was described. Recently, a novel
AOA-based approximately unbiased estimation is derived
by using semidefinite relaxation (SDR) in [14]. In contrast,
the TOA can achieve better localization performance when
the high-precision timing measurements are acquired [15].
In [16], a new algebraic localization method was derived
based on a minimum number of localization measurements.
On this basis, an optimal linear unbiased estimator is
designed to calculate the final position estimation.
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Extensive research has been conducted to investigate the
sensor selection schemes in [17–21]. Generally, sensor selec-
tion schemes are transformed as an optimization issue by
using different optimality criterion. Two frequently used
optimization criteria are minimizing the trace of Cramér-
Rao lower bound (CRLB) (A-optimality criterion) and max-
imizing the determinant of the Fisher information matrix
(FIM) (D-optimality criterion). On this basis, the scheme
of sensor selection is transformed into an integer program-
ming (IP) scheme with an optimization variable. However,
owing to the IP scheme is an NP-hard scheme. The direct
way to acquire the best sensor subset is the exhaustive search
algorithm, which has high computational complexity and
does not apply to broad sensor networks. For these reasons,
several suboptimal algorithms have been presented to deal
with the sensor selection schemes.

The sensor selection scheme was formulated based on
minimizing the log-determinant of the estimated error
covariance matrix, and the convex relaxation was adopted
to solve the problem in [17]. The authors proposed a
sparsity-promoting method by minimizing the number of
sensors to be selected with the limitation of the estimation
performance in [18]. Thus, the original nonconvex optimi-
zation issue can be transformed to a sparse vector design
scheme. The problem of sensor scheduling in the linear sys-
tem with correlated measurement noise was presented in
[19], which was transformed to minimize the trace of the
inverse of the Bayesian FIM. Recently, the sensor selection
issue for TDOA-based localization was formulated by mini-
mizing the trace of CRLB and two independent Boolean vec-
tors as the selected reference sensors and ordinary sensors in
[20]. The convex relaxation methods are utilized to formu-
late the nonconvex problem as an SDP. The two suboptimal
sensor selection algorithms were designed for DOA-based
and TOA-based localization algorithms to minimize the
trace of CRLB, which only used one Boolean vector as the
optimization variable in [21]. Both of the nonconvex prob-
lems were relaxed as convex SDP.

In the literature mentioned above, sensor selection
schemes usually utilize only one kind of measurement. The
key to locating a target is obtaining sufficient measurement
from the multiple sensors to improve estimation accuracy.
Therefore, an intuitive method, knowns as hybrid measure-
ments, has attracted considerable attention recently [22, 23].
Besides, since the underwater channel has the features of low
communication channel bandwidth, serious multipath
effect, and variable acoustic velocity [24], it is necessary to
improve the localization performance using the hybrid local-
ization method. Plenty of hybrid target location methods are
implemented based on different combinations of mixed
measurements, e.g., TDOA-RSS, AOA-TOA, and RSS-
AOA [22, 23, 25–28]. The authors derived the CRLB for
the hybrid method using both AOA and TOA estimates in
[25]. Lately, a joint TOA and AOA estimator was proposed
for UWB indoor ranging under LOS operating conditions
[26]. In [27], the authors focus on the energy-efficient local-
ization strategy using hybrid TOA/AOA measurements, and
a joint resource allocation and an antenna selection frame-
work were presented to minimize the estimation error. In

[28], the authors extend the sensor selection method to a
mixed TDOA and AOA localization scenario with the pres-
ence of sensor location error. However, the sensor selection
schemes with correlated noise measurement were little con-
sidered in the above literature due to the FIM being a non-
linear function. Besides, the FIM becomes more
complicated by using more types of measurements. There-
fore, the sensor selection problems for the hybrid measure-
ments with correlated noise in UWSN are nontrivial tasks.
Moreover, the inaccurate sensor locations can also cause a
considerable reduction of localization accuracy, which
should be considered in the sensor selection schemes.

This paper investigates sensor selection strategies for
hybrid AOA-TOA-based localization in underwater sce-
nario. The key contributions are summarized as follows:

(1) The CRLB for the hybrid AOA-TOA cooperative
localization measurement model is presented for
Gaussian priors, and one Boolean vector is used for
the expressions of sensor selection scheme with the
hybrid AOA-TOA measurement under correlated
measurement noise

(2) To mitigate the localization error caused by uncer-
tainty in sensor locations, a calibration source with
precisely known location is introduced. The sensor
selection scheme is formulated by a nonconvex opti-
mization problem based on minimizing the trace of
CRLB, and the convex relaxation techniques are
adopted to transform the original problem as SDP
problem. Besides, a randomization algorithm is also
approved to improve the result

The rest of this paper is organized as follows: In Section
2, the CRB for the hybrid AOA-TOA-based localization is
derived, and sensor selection scheme is formulated. Section
3 investigates the method to reduce the sensor location error
and then transform the original scheme to the nonconvex
optimization schemes. The convex relaxation and a random-
ization algorithm are developed to solve the sensor selection
problems in Section 4. The comprehensive simulation
results are presented in Section 5. Finally, Section 6 is
devoted to our conclusions and future research directions.

2. Problem Formulation

This section introduces the hybrid AOA-TOA measurement
model and the CRLB for the hybrid AOA-TOA-based local-
ization in UWSN, and the sensor selection scheme is
introduced.

2.1. The Hybrid AOA-TOA Measurement Model. We con-
sider a two-dimensional underwater scenario composed of
multiple sensors with known locations and an unknown sta-
tionary target. Assuming that the unknown target follows a
given prior probability density function (PDF) p ~N ðp0,
C0Þ, where p0 and C0 are the mean and covariance matrix
of p. The unknown target location is p = ðpx, pyÞT , and the

kth mutiple sensor is sk = ðsxk, sykÞT , k = 1,⋯,N . Each
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multiple sensors can achieve the hybrid AOA and TOA
measurements. Consequently, the hybrid measurement can
acquire an estimator for the unknown target. The calibration
source is located at c = ðcx, cyÞT , which is utilized to correct
the sensor location errors.

The kth sensor has the measurement model as follows:

~zk = zk + αk = f k p, skð Þ + αk, ð1Þ

and f kðp, skÞ denotes a nonlinear measurement model with
p and sk. We assume that the measurement noise is αk.

Stacking ~zk for k = 1,⋯,N . The vector form of the above
(1) is

~z = z + α, ð2Þ

with

~z = ~z1,⋯,~zN½ �T ,
z = z1,⋯,zN½ �T = f1 p, s1ð Þ,⋯,f N p, sNð Þ½ �T ,

α = α1,⋯,αN½ �T ,
ð3Þ

and we assume that α is white, Gaussian, zero-mean random
vectors. Owing to the noise experienced is correlated among
different sensors; the covariance matrix Rα of α is a nondia-
gonal matrix.

Without loss of generality, different sensor types obtain
different measurements and parameter expressions. Hence,
we first introduce the AOA and TOA measurements,
respectively.

The measurement model of AOA-based localization at
the kth sensor is given [29]

zk = f k p, skð Þ = tan−1
py − syk
px − sxk

, ð4Þ

and tan−1 denotes the 4-quadrant arctangent; and the noisy
AOA measurement of the $k$th sensor is ${{\tilde{\theta
}}_{k}}$.We assume AOA measurement noise vector β ~N

ð0, σ2
ARAÞ, with σ2A denoting the noise power, while ΣA =

σ2ARA represents the covariance matirx.
For the noisy circular-based TOA measurement of the

kth sensor, we obtain [30]

~tk = tk + lk =
p − skk k
v

+ lk, ð5Þ

where tk ignores the presence of distance errors, v is the sig-
nal velocity, and lk denotes the measurement noise. Writing
the range measurement equation in the (5) form gives

zk = f k p, skð Þ = p − skk k, ð6Þ

where dk = kp − skk denotes the distance of the target and
sensor, and we also assume the TOA measurement noise
vector χ ~N ð0, σ2

TRTÞ, with σ2
T denoting the noise, while

ΣT = σ2TRT represents the covariance matirx.

Therefore, the hybrid AOA-TOA measurement noise
vector can be expressed as

ζ = β, χ½ �, ð7Þ

the hybrid AOA-TOA measurement noise covariance
matrix with 2N measurements is given by

Σ = E ζζT
n o

= diag E ββT
n o

, E χχT� �n o

  = diag ΣA, ΣTf g = diag σ2
ARA, σ2TRT

� �
:

ð8Þ

The Jacobian matrices of the N sensor for the AOA mea-
surement errors and the TOA measurement errors can be
expressed as, respectively

JAOA =

∂eθ1
∂px

∂eθ1
∂py

⋮ ⋮

∂eθN
∂px

∂eθN
∂py

2
66666664

3
77777775

�������������
p

=

−sin θ1
d1

cos θ1
d1

⋮ ⋮
−sin θN
dN

cos θN
dN

2
666664

3
777775
N×2

,

JTOA =

∂~t1
∂px

∂~t1
∂py

⋮ ⋮

∂~tN
∂px

∂~tN
∂py

2
6666664

3
7777775

������������
p

=

2 cos θ1 2 sin θ1

⋮ ⋮

2 cos θN 2 sin θN

2
664

3
775
N×2

:

ð9Þ

Thus, we can get the Jacobian matrix of the hybrid AOA-
TOA measurements as

J =
JAOA
JTOA

" #
2N×2

: ð10Þ

Using (8) and (10), the FIM for the hybrid AOA-TOA
localization with Gaussian priors yields [31]

FIM =C−1
0 + JTΣ−1J, ð11Þ

CRLB = FIM−1: ð12Þ

2.2. Sensor Selection Problem. The goal of the sensor selec-
tion scheme is to select the best nonredundant set of sensors
for localization tasks while satisfying some performance. We
consider a localization problem, which chooses a specific
subclass with M sensors of N (N >M) sensors to satisfy a
range of demand. We assume N sensors can obtain N
AOA and N TOA measurements in the UWSN. Conse-
quently, two different measurements are obtained by the
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same sensor. A Boolean vector can be defined as

r = wT , vT
� �T , ð13Þ

w = w1,w2,⋯,wN½ �T ,wi ∈ 0, 1f g, i = 1, 2,⋯,N ,

v = v1, v2,⋯,vN½ �T , vj ∈ 0, 1f g, i = 1, 2,⋯,N ,
ð14Þ

and ith element of w denotes if the ith sensor is selected or
not for the AOA measurement, and the ith element of v
denotes if the ith sensor is selected or not for the TOA mea-
surement. It assumed that when the ith sensor is selected,
both the AOA and TOA measurements from that sensor
are jointly considered for the localization task.

More specifically, we define two sensing matrices Φw
ðΦw ∈ℝM×NÞ and ΦvðΦv ∈ℝM×NÞ [17], where Φw is a sub-
matrix of diag ðwÞðdiag ðwÞ ∈ℝN×NÞ that only contains all
rows corresponding to the selected sensors, diag ðwÞ is a
diagonal matrix, and the diagonal elements are obtain by w
. The similarly definition is available for Φv and v. Note that
the links of them are associated by

ΦwΦT
w = Iw,ΦT

wΦw = diag wð Þ,
ΦvΦT

v = Iv,ΦT
vΦv = diag vð Þ,

ð15Þ

thus

ΦrΦT
r = Ir ,ΦT

r Φr = diag rð Þ: ð16Þ

Based on the above definitions, the covariance matrix of
the hybrid measurements for the selected sensor is given by

Σr = E Φrζ Φrζð ÞT
h i

=ΦrΣΦT
r : ð17Þ

With the above hybrid measurement model and the def-
initions, the FIM for selected sensors is expressed as

FIMr =C−1
0 + JTΦT

r Σ−1
r Φr J: ð18Þ

3. Sensor Selection Method for the Hybrid
AOA-TOA-Based Localization

This section introduces a calibration source with a precisely
known location to alleviate the localization performance
degeneration caused by the sensor position errors. The sen-
sor selection issue for hybrid AOA-TOA-based localization
is transformed into an optimization issue. The optimality
criterion chosen is to minimize the inverse of the FIM,
which is also known as the A-optimality criterion. Other cri-
teria are also available such as the D-optimality criterion
(maximizing the determinant of the FIM or minimizing
the volume of the localization error ellipsoid), which may
be cause large estimation error with volume minimization
in some cases, and the E-optimality criterion (minimizing
the maximum eigenvalue of the CRLB matrix), and the A-
optimality criterion is the most commonly used criteria for

performance measurement, which is equivalent the estima-
tion mean squared error (MSE).

3.1. The Method to Correct Sensor Location Errors. To miti-
gate the localization inaccuracy caused by sensor position
error in the underwater scenario, a calibration source is
introduced to correct the sensor location errors. Assuming
that the calibration source location in the localization model
is precisely known, the signal for sensor position compensat-
ing is sent to sensors through the calibration source. Accord-
ing to the received signal and the calibration source location,
the sensors can use the arrival time to realize the correction
of position error.

On the premise that the calibration source is completely
synchronized with the sensor clock in the UWSN, the time
delay of the sensors that received the signal is sent by the cal-
ibration source and can be expressed as

τk =
1
v

sk − c + Δskk k + εk = Δτk + εk, ð19Þ

where v represents the transmission speed of underwater
acoustic signal and Δsk denotes the position error contained
in the kth sensor. εk denotes the measurement noise, which
follows εk ~N ð0, α2kÞ. We assume that ε = ðε1, ε2,⋯, εNÞT ,
τ = ðτ1, τ2,⋯, τNÞΔτ = ðΔτ1, Δτ2,⋯, ΔτNÞ. When the noise
variance of each sensor is different, Q = cov ðεεTÞ = diag ð
α21, α22,⋯, α2NÞ, which is the covariance matrix of the time
of arrival measurement error.

The likelihood function of sensor measurement can be
expressed as

f τjsð Þ = 1
2πð ÞN/2 ffiffiffiffiffiffiffiffiffiffiffiffi

det Q
p exp −

1
2

τ − τ sð Þð ÞTQ−1 τ − τ sð Þð Þ
� 	

:

ð20Þ

The maximum likelihood estimation of target location is

ŝτ = arg min
sτ

f sτð Þ, ð21Þ

where the f ðsτÞ is denoted as cost function.

f sτð Þ = τ − τ sτð Þð ÞTQ−1 τ − τ sτð Þð Þ: ð22Þ

It assumed that the variable estimation sτ has the intial
estimation s0τ, and the kth estimation obtained by iteration
is skτ. We denote the residual error as

e sτð Þ = τ skτ

 �

− τ: ð23Þ

To compute the residual error, the first-order Taylor
series approximation is used for eðsτÞ in skτ . Therefore,
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(23) can be rewritten as

e sτð Þ ≈ e skτ

 �

+
∂τ sτð Þ
∂sτ

����
sτ=skτ

sτ − skτ

 �

= e skτ

 �

+ J skτ

 �

Δskτ:

ð24Þ

By substituting (24) into (22), we obtain

f sτð Þ = τ − τ sτð Þð ÞTQ−1 τ − τ sτð Þð Þ

≈ e skτ

 �

+ J skτ

 �

Δskτ

 �T

Q−1 e skτ

 �

+ J skτ

 �

Δskτ

 �

=eT skτ

 �

Q−1e skτ

 �

+ 2eT skτ

 �

Q−1J skτ

 �

Δskτ + ΔskτJT skτ

 �

Q−1J skτ

 �

Δskτ:

ð25Þ

We take the derivative of Δskτ to the above formula and
make it zero to obtain

Δskτ = − JT skτ

 �

Q−1J skτ

 �
 �−1

JT skτ

 �

Q−1e skτ

 �

: ð26Þ

Thus, the k + 1 estimation of the variable can be
expressed as

sk+1τ = skτ + Δskτ: ð27Þ

Hence, we can adopt the above method to modify the
sensor position error before sensor selection. For simplify,
we still use sk to represent the precise sensor position.

3.2. Sensor Selection for Correlated Noises. We shall investi-
gate the sensor selection scheme for hybrid AOA-TOA-
based localization with the correlated noises. Using [31],
the noise covariance matrix can be decomposed as

ΣA = λAIN + ZA,

ΣT = λTIN + ZT ,
ð28Þ

where the positive scalar is λA, λT is selected to make sure
the matrix ZA, ZT is all positive definite, and I denotes the
identity matrix. The hybrid AOA-TOA measurement for
the decomposition can be expressed as

Σ = ΓN + Z, ð29Þ

with Γ = diag fλAIN , λTINg and Z = diag fZA, ZTg.
Using (29) in (17), we can obtain

Σr =Φr ΓN + Zð ÞΦT
r = Γr +ΦrZΦT

r , ð30Þ

with Γr = diag fλAIM , λTIMg. Substituting (30) into (18),
with the matrix lemma [32], we have

ΦT
r Σ−1

r Φr

=ΦT
r Γr +ΦrZΦT

r

� −1Φr

= Z−1 − Z−1 Z−1 + Γ−1r ΦT
r Φr

� −1Z−1

= Z−1 − Z−1 Z−1 + Γ−1r diag rð Þ� −1Z−1:

ð31Þ

Substituting (31) into (18), it derives

FIMr =
C−1
0 + JTZ−1J

−JTZ−1 Z−1 + Γ−1r diag rð Þ� −1Z−1J:
ð32Þ

As discussed above, the relationship between FIMr and r
is created absolutely by (32). We adopt the A-optimality cri-
terion as the optimization objective, which is equivalent to
minimize the trace of inverse of the FIM; thus, the sensor
selection issue in the hybrid AOA-TOA-based localization
is given by

min
r

tr FIM−1
r

� 

s:t:
1Tr = 2M

r ∈ 0, 1f g2N
ð33Þ

It is clear from the (33) is a nonconvex optimization
scheme because of the last Boolean constraints. In the fol-
lowing sections, we propose employing the convex relaxa-
tion to approximately solve it.

4. Semidefinite Relaxation for Sensor
Selection Problem

This section we analyze and present the method to settle the
above nonconvex problem. The sensor selection scheme
described in Section 3 is a nonconvex and NP-hard problem.
We present a convex relaxation solution for the hybrid
AOA-TOA sensor selection. What is more, a randomization
algorithm is approved to advance the achievement of the
SDP.

4.1. The SDP Method. To simplify the problem and facilitate
theoretical analysis, we construe A =C−1

0 + JTZ−1J and B =
Z−1J in (32). Hence, the optimization issue in (33) is trans-
formed as

min
r

tr Xð Þ

s:t: A − BT Z−1 + Γ−1r diag rð Þ� −1BμX−1

1Tr = 2M

r ∈ 0, 1f g2N
ð34Þ

and the X ∈ℝM×M in the above optimization issue is an
auxiliary variable; the first constraint in (34) is given by [17]

A − BT Z−1 + Γ−1r diag rð Þ� −1B
 �
′X: ð35Þ

Here, we introduce the other one variable Y ∈ℝM×M and
the inequality constraint in (35) can be equivalently trans-
formed to

A − YμX−1, ð36Þ
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YμBT Z−1 + Γ−1r diag rð Þ� −1B: ð37Þ

Here, the U ≤VðorU ≥VÞ shows that V −U (or U −V)
is the positive semidefinite matrix. Applying to the Schurs
complement, the first constraint in (34) is transformed to
the below linear matrix inequality (LMI)

A − Y I
I X

" #
μ0,

Y BT

B Z−1 + Γ−1r diag rð Þ

" #
μ0, ð38Þ

Substituting (38) into (34), and the original optimization
issue is rewritten as

min
r,X,Y

tr Xð Þ

s:t: LMIs in 38ð Þ
  1Tr = 2M

  r ∈ 0, 1f g2N

ð39Þ

We can find that the above optimization problem is non-
convex owing to the Boolean selection vector r. Thus, we uti-
lize (16) and introduce an auxiliary variable R = rrT ; the
number of sensor selection and Boolean constraints in (39)
is given by

tr Rð Þ =M, diag Rð Þ = r, ð40Þ

and then, the R = rrT can be relaxed to RμrrT ; we reach the
following optimization problem

min
r,X,Y

tr Xð Þ

s:t: LMIs in 38ð Þ
  tr Rð Þ =M

  diag Rð Þ = r

 
R r
rT 1

" #
μ0

ð41Þ

For the SDP (41) problem, the interior point algorithm is
utilized to solve it quickly, and then, the fractional r can be
obtained. Thus, the w and v also can be extracted from the
r as defined before. The convenient method is to select the
M largest sum of a fractional element wk and vk, and the cor-
responding index denotes the selected sensors.

We also can use a randomization algorithm to get a bet-
ter solution, which consists of an iterative procedure. The
aforementioned procedure is called “SDP,” and the details
of the randomization algorithm are shown in Algorithm 1,
which is called “SDP with randomization.”

5. Number Results

In this section, we first analyze the complexities of the pro-
posed approach, and then, extensive simulations prove that

the proposed approach can obtain high estimation perfor-
mance for the hybrid TOA-AOA-based localization.

The commonly used method is the interior point
method for the SDP solution, which the computational com-
plexity is OðN3Þ [33]. Furthermore, the SDP with the ran-
domization algorithm should be considered. Due to the
additional multiplication operations are needed for the ran-
domization algorithm isSOM , and S denotes the number of
random vectors. The exhaustive search algorithm itemizes
all the possible sensor subsets with M from the total N sen-
sors; thus, all possible sensor subsets are N!/ðN −MÞ!M!,
and we can choose the sensor subset with the minimum
trace of CRLB. The exhaustive search algorithm that has
high computational complexity isOðN!Þ. It is noticeable that
the proposed algorithm has lower computational complexity
compared to the exhaustive algorithm.

In what follows, the proposed algorithm validity is dem-
onstrated by simulation results. In the simulation experi-
ment, let us assume that N sensors are randomly arranged
in a region of size 1000m × 1000m. The prior PDF of p is
given by p ~N ðp0, C0Þ, and p0 = ð0, 0ÞT , C = diag ð50, 50Þ.
The calibration source location is c0 = ð30,−20ÞT . The posi-
tive definite is ZA and ZT , and we set λ = 0:9λmin, where
λmin is the minimum eigenvalue of ΣA and ΣT . Two general
approaches, the closest sensor algorithm and exhaustive
search algorithm are recommended to contract with the pro-
posed approach in this paper. The exhaustive algorithm can
obtain the best result and is also used for comparison. In the
closest sensor algorithm, the M shortest distance between
the sensors and target of sensors is chosen. For simplicity,
“Exhaustive search” is used to represent the exhaustive
search algorithm, and “Closest sensors” is used to represent
theM closest sensors. “SDP” and “SDP with randomization”
are utilized to indicate our proposed SDP algorithm and
SDP with Algorithm 1. Besides, we also use “All sensors”
to represent the total activated sensors, and “Random selec-
tion” is utilized to represent randomly selected M sensors.

In the first experiment, we investigate the algorithm’s
performance to correct the sensor location errors using the
calibration source. We assume that noise variance of the
TOA measurement is σ1 =⋯ = σN = 1m, and the noise var-
iance of the AOA measurement is γ1 =⋯ = γN = 1°. The
errors of the sensor position are within a 2-mile radius of
the true position. Figure 1 depicts the localization accuracy
with the different number of sensors. We observe that the
trðCRLBÞ of the corrected sensor position is close to trð
CRLBÞ of the ture sensors; the conclusion can be realized
under the SDP solution and SDP with randomization algo-
rithm. The effectiveness of the sensor position error correc-
tion method is proved, and the SDP with randomization
obtains a high localization accuracy with the different num-
ber of selected sensors.

Next, we consider that the simulation scenarios are com-
posed of M = 5 and M = 10 selected sensor, and the noise
variance of AOA measurement remains constant while the
noise variance of TOA measurement is a variable from
1m2 to 10m2. Figure 2 presents the trðCRLBÞ increase as
the noise variance growing of all these algorithms. However,
the SDP with randomization algorithm always has better
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localization accuracy and is close to the exhaustive search
algorithm.

To further demonstrate the efficiency of the proposed
method, we also consider the simulation scenarios in that
the noise variance of TOA measurement remains constant.
In contrast, the noise variance of AOA measurement varies
from 1° to 10°. Other parameter settings remain unchanged
as Figure 2.

We observe in Figure 3 that the trðCRLBÞ does not
increase significantly as γ2 increases, which is consistent
with the results in [34].

Furthermore, we consider the sensor selection scenario
with each sensor having different noise variance while the
number of the selected sensor varies from 4 to 16. Figure 4
plots the trðCRLBÞ corresponding to these algorithms. It is

observed from Figure 4 that the trðCRLBÞ decreases with
the selected sensor number from 4 to 16. The SDP with ran-
domization algorithm yields a lower estimation error than
other algorithms and almost achieves the exhaustive search
algorithm.

Finally, the correlated measurement noise scenario is
considered. The correlation parameter λA = λT = λ varies
from 0.1 to 0.9, and the remaining parameters of this simu-
lation unchange as above. Figure 5 depicts the trðCRLBÞ
comparison of different number of selected sensors. and it
can be observed that the trðCRLBÞ curve of the SDP with
randomization algorithm has the same variation tendency
when the different selected sensors. That is the localization
accuracy is raising as the correlation gets stronger, which is
consistent with the results in [35]. Due to the strongly

Input: The fractional solution w and v;
1: fork = 1, 2,⋯,Ndo
2: Generate two random vectors: wk

ς ~N ðwO,Ww −wowoTÞ, vkς ~
N ðvO,Vv −VoVoTÞ.
3: set the largest M elements as 1 and the rest as 0 to generate two feasible vectors ðwk

ςÞN and ðvkςÞN
4: Obtain the selected sensor index from ðwk

ςÞN and ðvkςÞN , select the same sensor index of the two vectos as 1.
5: selsect the rest ðM − aÞ sensors from the rest of “1” sensors.
end for

6:Substitute each possible combination into objective fuction and choose vectors with the minimum value.
7: Output: the solved Boolean vector to choose with the minimum value

Algorithm 1: A randomization algorithm.
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Figure 1: Comparison with different number of sensors.
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correlated noise, noise cancellation is achieved by subtract-
ing one sensor from the rest. Furthermore, it is observed that
SDP with randomization approach obtained better localiza-
tion accuracy than the SDP solution.

6. Conclusion

This paper explores the sensor selection scheme for an
uncertain target localization based on hybrid AOA-TOA
measurements with the correlated noise in the underwater
scenario. Considering that the original nonconvex optimiza-
tion problem is formulated by minimizing the trðCRLBÞ, the
optimization issue can be relaxed by convex relaxation and
solved by the SDP method. The randomization algorithm
is utilized to refine the results. Besides, a calibration source
with a precise position is used to correct the sensor position.
Simulation studies confirm that the superiority of the pro-
posed algorithm over the existing algorithms; besides, the
influence of the noise correlation on the sensor selection
scheme is also discussed.

In the future work, we will investigate the sensor selec-
tion scheme for multiple underwater unknown targets with
correlated noise, which will be formulated as a convex com-
bination problem. We will develop the SDP solution for sen-
sor selection for TDOA, AOA, and/or RSS. Furthermore, it
is interesting to devise the sensor selection scheme with
hybrid localization for target tracking in the underwater sce-
nario. Sensor selection in the presence of non-line-of-sight
propagation is also a challenging research topic.
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As a high-precision gravity measuring device, a marine atomic gravimeter is highly sensitive to vibration signals. Accurate
measurement and analysis of vibration signal is the primary condition to realize vibration compensation and vibration
suppression. Denoising plays a crucial role in the processing of these vibration signals. The vibration signals of a marine
gravimeter contain numerous nonlinear and nonstationary components. In this paper, a vibration signal denoising method of
marine atomic gravimeter based on improved variational mode decomposition (VMD) was put forward to effectively suppress
the noise. An improved genetic particle swarm optimization (GPSO) was first adopted for the parametric optimization of
VMD by taking minimum permutation entropy (PE) as fitness function and adaptively determining the optimal parameters of
VMD. PE was then utilized to calculate the proportion of noise-containing components in the intrinsic mode function (IMF)
components obtained by VMD. The components were classified into noise and signal components by searching for the
mutation points of two adjacent IMF permutation entropies. On this basis, noise components were denoised by Savitzky-Golay
(SG) filter. In the end, the denoised components were reconstructed with the signal components to generate denoised vibration
signals. To verify the effectiveness, the proposed method was applied in denoising, simulated and measured vibration signals of
a marine atomic gravimeter, and compared with Daubechies (db) wavelet, Symlets (sym) wavelet, and empirical mode
decomposition (EMD). The results showed that the proposed method could effectively remove the noise from nonlinear
vibration signals and retain the authentic and useful information, so that it was able to provide the supporting data for gravity
compensation of marine atomic gravimeter.

1. Introduction

As a high-precision absolute gravimeter, an atomic gravime-
ter may be applied in inertial navigation and earth gravity
field measurement [1]. In terms of marine measurement,
Bidel et al. [2] employed an atomic gravimeter in marine
gravity measurement for the first time. An atomic gravime-
ter was attached to a gyroscope stabilized platform, so that
it could always measure the actual virtual component of
gravity field regardless of waves and sways. The platform
overcame effectively the poor verticality of a ship-borne
atomic gravimeter in measurement. Based on an inertial sta-
bilized platform, Cheng et al. [3] conducted an absolute

measurement experiment with a ship-borne atomic gravi-
meter when the ship was moored, and Li et al. [4] performed
a further lake test of an atomic gravimeter in absolute gravity
measurement.

During measurement, an atomic gravimeter is severely
affected by the vibration of Raman retroreflection mirror
since its measurement precision and reliability are highly
restricted by vibration noise. For this reason, vibration noise
isolation and attenuation are crucial to obtaining accurate
atomic interference phase and realizing accurate gravity field
information detection. In order to guarantee the measure-
ment precision of an atomic gravity, vibration isolation tech-
niques [5, 6] and vibration compensation methods [7–9] are
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often employed for vibration noise suppression. The noise in
the marine environment is very complex and vulnerable to
impulse noise, so it is difficult to process the signal [10].
In the structure of a ship, noise is mainly caused by the
vibration of main engine, diesel engine, main propulsion
system, main propeller, and other devices. The noise
caused by crew activities intermittently is also coupled into
the signals of main vibration noise. These vibration signals
are nonlinear and nonstationary [11–14]. For the purpose
of vibration noise suppression in measurement with an
atomic gravimeter, accurate measurement and analysis of
vibration signals lays a basis for vibration compensation
and suppression. Normally, an accelerometer is utilized
to gather vibration signals, but these vibration signals are
inevitably mingled with ambient noise and circuit noise
in the process. Denoising analysis must be therefore con-
ducted with the gathered vibration data to extract the
actual vibration information of vibration sources, so as to
provide the reliable data for vibration isolation design
and vibration compensation [15].

Wavelet transform denoising is a denoising method
suitable for nonstationary signals. It has been widely
applied in engineering, but its final effect is affected by
the selection of threshold and wavelet basis function
[16]. In 1998, Huang et al. put forth an analysis method
for nonlinear and nonstationary signals based on Hilbert-
Huang transform, that is, empirical mode decomposition
(EMD), which could adaptively decompose a signal into
a number of intrinsic mode functions (IMFs) with actual
physical implications. The method had been widely
applied in denoising nonlinear and nonstationary signals.
Kopsinis and McLaughlin combined wavelet decomposi-
tion with EMD to denoise signals and used different
thresholds for IMFs in filtering and reconstruction to real-
ize signal denoising [17]. Rezaee and Osguei [18] made an
improvement to EMD by introducing a new parameter to
obtain a new local mean. In this way, they enhanced the
precision and efficiency of EMD and effectively applied it
in the analysis of vibration signals. Nevertheless, the appli-
cation of EMD was also troubled by end effect and mode
mixing especially when the signal to noise ratio (SNR) was
low. In order to resolve this problem, some improvements
of EMD have been explored including ensemble empirical
mode decomposition (EEMD), improved complete ensem-
ble empirical mode decomposition (ICEEMD), and partial
ensemble empirical mode decomposition (PEEMD) [16,
19, 20]. Nevertheless, these methods can inhibit mode
mixing to some extent but intrinsically extract local extre-
mum and interpolate envelopes. They are still empirical
and lack a solid mathematic basis.

In order to effectively inhibit the mode mixing of
EMD, Dragomiretski and Zosso [21] put forward varia-
tional mode decomposition (VMD) in 2014. Based on
the three-dimensional variational constraint theory, this
algorithm estimated multiple modes simultaneously by
virtue of nonrecursion and improved the computational
efficiency while guaranteeing the integrity of features.
Hence, it could satisfactorily resist noise and reduce
mode mixing. With its solid mathematic basis for the

decomposition of nonstationary signals, VMD has been
applied in earthquake time-frequency analysis, signal fil-
ter denoising, and ground vibration attenuation, which
is a sufficient proof of its effectiveness and superiority
in signal decomposition [22–24]. Nevertheless, number
of decomposed modes K and penalty term α must be
artificially set in the VMD of signals. If the value of K
is set too high, overdecomposition may be caused to
generate false components. If it is set too low, under
decomposition occurs and results in the mixing of
modes close to frequency. Moreover, the penalty factor
α also affects the extraction of single-component modes.
If it is set too large, the bandwidth will be narrower for
single modes, causing to intercept the effective frequency
components outside bandwidth. If it is set too small, the
bandwidth will be wider, and the two adjacent modes
will share the center frequency and result in information
redundancy [25, 26].

In order to adaptively decompose signals, some methods
have been developed to determine the K value based on kur-
tosis [27] and energy factor [28]. In these methods, only the
number of decomposed modes K is optimized while
the penalty factor α is ignored. Therefore, optimal decompo-
sition cannot be achieved with these methods. Along with
the emergence of intelligent optimization algorithms,
attempts have been made to apply some optimization algo-
rithms in the optimization of VMD parameters, and satisfy-
ing results have been obtained [24, 29, 30]. Zhou et al. [31]
put forward the particle swarm optimization (PSO) to opti-
mize the VMD parameters. In this method, they used mean
permutation entropy (MPE) as its fitness function and deter-
mined the optimal combination of K and α by searching for
the minimum of the fitness function. It was an efficient
search algorithm because of its fast convergence while
requiring the setting of fewer parameters. Nevertheless, the
PSO is troubled by premature convergence and faces slower
convergence in the late stage since population diversity dis-
appears in the searched space. Meanwhile, it cannot be fur-
ther optimized after reaching a certain precision of
convergence, so that its final precision is not good. Based
on genetic algorithm (GA), Kumar et al. took kernel-based
mutual information (KEMI) as fitness function to find out
the optimal parameters K and α of VMD [29]. The GA algo-
rithm has strong global search capability and avoids local
optimum, but it may be easily affected by such problems as
premature convergence, numerous computations, slow con-
vergence, and poor stability.

To solve the above problems, a vibration signal denois-
ing method combining improved VMD parameter optimi-
zation algorithm and Savitzky-Golay (SG) filter is
proposed in this paper. Firstly, the improved genetic parti-
cle swarm optimization (GPSO) is applied to VMD, and
the permutation entropy (PE) is used as the fitness func-
tion to optimize the VMD parameters and decompose
the noisy vibration signal. Secondly, the noise proportion
in IMF is calculated by PE, and the IMF component is
divided into noise component and the signal component.
SG filter was applied for denoising noisy components.
Finally, the denoised component and signal component
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are reconstructed to obtain the denoised vibration signal.
The method is applied to the analysis of vibration simula-
tion signals and measured signals.

2. Theoretical Background

2.1. Variational Mode Decomposition. As for the structural
variation of signals in VMD,Wiener filter is introduced to solve
variation by virtue of iterative computation. Each input signal is
decomposed into K IMFs with different center frequencies ωk.
The variational model is correspondingly described by
Equation (1).

min ukf g, ωkf g 〠
K

k=1
∂t δ tð Þ + j

πt

� �
∗ uk tð Þ

� �
e−jωk

t
����

����
2

2

( )
s:t:〠

K

k=1
uk = f

(
,

ð1Þ

where fukg = fu1,⋯,ukg is K IMF components after decom-
position, fωkg = fω1,⋯,ωkg is the center frequency of each
component, δðtÞ is the unit pulse function, j is the imaginary
unit, ∗ is the convolution operation, and ∂t is the partial deriv-
ative with respect to t. Lagrangian multiplier λ and secondary
penalty term α are introduced to obtain the optimal solution of
constrained variation as follows:
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The alternation ofmultiplication operators is conducted to
iteratively update uk, ωk, λ and obtain the optimal mode com-
ponent uk, center frequency ωk, and Lagrangian multiplier λ.

ûn+1k ωð Þ = f̂ ωð Þ −∑i≠kûi ωð Þ + bλ ωð Þ/2
1 + 2α ω − ωkð Þ2 , ð3Þ

ωn+1
k =

Ð∞
0 ω û ωð Þj j2dωÐ∞
0 û ωð Þj jdω , ð4Þ

bλn+1
ωð Þ = bλn

ωð Þ + τ f̂ ωð Þ −〠
k

ûn+1 ωð Þ
 !

, ð5Þ

where ∧ is the Fourier transform, τ is the fidelity coefficient,
and n is the iteration times. Iteration is constantly updated
but halted when relative error is less than convergence preci-
sion. The decomposition result uk is eventually outputted.

〠
k

ûn+1k ωð Þ − ûnk ωð Þ�� ��2
2

ûnkk k22
< ε: ð6Þ

2.2. GPSO Optimized VMD. The effect of VMD depends sig-
nificantly on the number of decomposed modes K and
penalty term α. Considering their limitations in VMD,
GA and PSO are combined in this paper. In this way,
genetic computation is adopted to obtain the optimal solu-
tion of PSO. Under specific conditions, genetic operations
including reproduction, crossover, and mutation are carried
out for particles and their displacement rate, so that the
particles can be alienated from local optimal to obtain the
global optimal solution. The GPSO has quicker convergence
and better grouping quality than traditional PSO. The com-
bined algorithm makes full use of the advantages of both
GA and PSO, so as to guarantee the quick convergence to
global optimal solution. The process flow is presented in
Figure 1. The specific steps are given as follows:

(1) Randomly initialize the particles in a population and set
their corresponding parameters. Generate n particles
randomly with Xi = hpi, viiði = 1, 2,⋯,nÞ, where pi
and viare the geometrical location and velocity vector.
So the initial generation of particle swarm t = 0 is
identified as

Ye s

Input vibration
signal

Initialize and set parameters. Initial position and
velocity of randomly generated particles

Choose a random combination K and 𝛼 as the initial
parameter setting

Calculate the fitness value of each particle (PE), and
find out the individual optimal fitness value and the

global optimal fitness value

Updates the speed and position of each particle

Genetic operation, crossover and mutation

Calculate the fitness value and update the global optimal
solution and local optimal solution

Update the optimization parameter [K, 𝛼]

No

T = T+1

Does the current iteration number T
satisfy the termination condition?

Output the optimization parameter[K, 𝛼]

Figure 1: Process flow of VMD parametric optimization by GPSO.
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X 0ð Þ = X1 0ð Þ, X2 0ð Þ,⋯,Xn 0ð Þð Þ
= p1 0ð Þ, v1 0ð Þh i, p2 0ð Þ, v2 0ð Þh i,⋯, pn 0ð Þ, vn 0ð Þh ið Þ:

ð7Þ

(2) VMD Decomposition. Calculate the fitness of individ-
uals in the initial population, and select the
individual’s optimal value PpbðtÞ and the global optimal
value PgbðtÞ in the particle swarm. In this paper, PE is
taken as the fitness function, and minimum PE is
employed to determine optimal solution. By calculating
the fitness function, the complexity of the signal is
obtained from the PE value. The more complex the sig-
nal is, the greater the calculated PE value is, vice versa.
After the vibration signal is decomposed by VMD, if
there are many noise components included in the
IMF component, the higher the complexity of the signal
is, the greater the PE value is. If a few noise components
are included in the IMF component, the stronger the
regularity of the signal, the simpler the signal, and the
lower the PE value.

(3) Update the position and velocity of each particle. For
each particle XiðtÞ = hpiðtÞ, viðtÞi, we let

pi t + 1ð Þ = pi tð Þ + vi t + 1ð Þ, ð8Þ

vi t + 1ð Þ = C1vi tð Þ + C2r1 0, 1ð Þ Ppb tð Þ − Pi tð Þ
� �

+ C3r2 0, 1ð Þ Pgb tð Þ − Pi tð Þ
� �

,
ð9Þ

where r1ð0, 1Þ and r2ð0, 1Þ are the random numbers in (0, 1),
C1 is the inertia weight, and C2 and C3 are the learning fac-
tors. Therefore, the t + 1th generation of particle swarm is
formed as follows:

X t + 1ð Þ = X1 t + 1ð Þ, X2 t + 1ð Þ,⋯,Xn t + 1ð Þð Þ
= p1 t + 1ð Þ, v1 t + 1ð Þh i, p2 t + 1ð Þ, v2 t + 1ð Þh i,⋯, pn t + 1ð Þ, vn t + 1ð Þh ið Þ:

ð10Þ

Larger inertia weight helps get out of local minimum
point and facilitates global search, while smaller inertia
weight is conductive to precise local search in the current
region of search and helpful to the convergence of algorithm.
For this reason, a linearly changing weight can be employed.
An inertia weight decreases linearly from the maximum
value Cmax to the minimum value Cmin. It varies with the
iteration times of the algorithm as follows:

C1 = Cmax −
t ∗ Cmax − Cminð Þ

tmax
, ð11Þ

where t is the current iteration steps, tmax is the maximum
iteration steps, and Cmax and Cmin are the maximum and
minimum inertia weights, respectively, which are set to 1.2
and 0.6 in this paper.

Signal-dominated IMFs Noise-dominated IMFs

Reconstruction

< l

Input original signal

Use GPSO to decompose
the original signal

Calculate the PE value of
each IMF

>= l
Find the mutation point IMFl

of PE value

Savitzky-Golay filter
denosing

Denoised dignal

Figure 2: Process flow of the proposed denoising method.
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(4) Crossover Operation. Apply a crossover operator to a
population, and switch some chromosomes in each
selected pair of individuals at a probability to gener-
ate new individuals. The crossover probability is set
to 0.8 in this paper.

(5) Mutation Operation. Apply a mutation operator to
the population. Change any or some genes of the
selected individuals to other allele(s) at a probability.
For a population PðtÞ, selection, crossover, and
mutation operations are conducted to obtain its
next-generation population Pðt + 1Þ, whose fitness
is calculated. The fitness is then used for sequencing.
These genetic operations will be repeated. The cross-
over probability is set to 0.3 in this paper.

(6) Recalculate the fitness of particles in the new popula-
tion, update the optimal solution (PpbðtÞ and GgbðtÞ)
of the population based on the fitness, and calculate
the optimal particles XpbðtÞ = hPpbðtÞ, vpbðtÞi that
have been found so far for each particle i. Calculate
the optimal particles XgbðtÞ = hPgbðtÞ, vgbðtÞi that
have been found so far for the current population
XðtÞ.

(7) Determine whether the conditions for the end of
iteration are satisfied. If not, return to Step 3.

2.3. Fitness Function. When the GPSO is employed to opti-
mize the VMD parameters, a fitness function must be deter-

mined to evaluate its optimization results. PE is a mean
entropy parameter to measure the complexity of one-
dimensional time series, which can be used to detect
dynamic mutation and time series randomness [32]. Phase
space reconstruction is carried out for a set of time series
fXðiÞ, i = 1, 2,⋯,Ng to obtain a matrix Y:

Y =

x 1ð Þ x 1 + τð Þ ⋯ x 1 + d − 1ð Þτð Þ
x 2ð Þ x 2 + τð Þ ⋯ x 2 + d − 1ð Þτð Þ
x jð Þ x j + τð Þ ⋯ x j + d − 1ð Þτð Þ
⋮ ⋮ ⋮

x Kð Þ x K + τð Þ ⋯ x K + d − 1ð Þτð Þ

0
BBBBBBBB@

1
CCCCCCCCA
, j = 1, 2,⋯, K ,

ð12Þ

where d is the embedding dimensions, τ is the delay time,
K is the number of reconstructed components, and xðjÞ is
the components in the Jth column of the reconstruction
matrix. The elements in each column of the reconstruction
matrix Y are reorganized in ascending order, so that a
group of symbol sequence SðlÞ = fj1, j2,⋯,jdg can be
obtained for each column of the matrix Y. The occurrence
probability of each symbol sequence P1, P2,⋯, Pk can be
calculated. At this time, the PE Hp of K different symbol
sequences for the time series XðiÞ can be defined in the
form of Shannon entropy as HpðdÞ = −∑k

j=1Pj ln ðPjÞ.
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Figure 3: Time-frequency waveform of each subsignal in simulation signals.
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In the above definition, the value of Hp represents how
time series is stochastic. A smaller value implies simpler time
series, while a larger value leads to more complex and sto-
chastic time series. Hence, minimum PE is taken as a fitness
function in this paper and then solved to determine optimal
decomposition parameters.
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Figure 4: Time-frequency waveform of simulation signals.
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Table 1: Comparison of optimization results.

Method Best parameter (α/K) Time (s)

GA-VMD 2077.6/5.5 2262

PSO-VMD 2359.8/4.4 1805

GPSO-VMD 2219.4/5.1 1627
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2.4. Savitzky-Golay Filter. SG filter, a method put forth by
Savitzky and Golay, is widely applied in denoising the nonsta-
tionary signals containing non-Gaussian noise [33]. In the
method, univariate P-order polynomials are adopted to fit
the fixed length neighborhood of each data point in the
selected data. Least squares criterion is followed to determine
the polynomial coefficients by minimizing fitting error, so as
to obtain the optimal fitted value of the data point, which is
the value obtained after denoising. In this way, signals are
denoised. At the time of denoising, the SG filter method can
effectively retain the variation information of signals.

min 〠
m

j=−m
Y j − yj
	 
2

,

s:t: Yi = c0 + c1i + c2i
2+⋯+cpip:

ð13Þ

3. The Proposed Vibration Signal
Denoising Method

In this paper, a vibration signal denoising method combin-
ing improved VMD parameter optimization algorithm and

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 0.2 0.3 0.4 0.5
Time (s)

0.6 0.7 0.8 0.9 1

–1
0
1

–1
0
1

–1
0
1

–2

0

2

–1

0

1

IM
F1

IM
F2

IM
F3

IM
F4

IM
F5

Figure 6: Decomposition results of simulation signals by VMD.
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SG filter is proposed. This method adopts the improved heu-
ristic method GPSO and takes PE as the fitness function to
automatically determine the number K of modal compo-
nents and the penalty factor α of VMD. The optimal
parameters K and α are used to perform the VMD of
noise-containing vibration signals and obtain a number of
IMFs. Subsequently, PE is employed to calculate the portion
of noise in decomposed signal components. The compo-
nents are classified into noise and signal components by
searching for the mutation points of two adjacent IMF per-
mutation entropies. Noise components are denoised by vir-
tue of SG filter. In the end, the denoised components are
reconstructed with signal components to eventually obtain
denoised vibration signals. Through decomposition and
reconstruction, the main information of the signal is
retained and a large amount of noise contained in the signal
is eliminated. This method can be adaptively select optimi-
zation parameters and noise components. We do not
directly abandon noise-containing components but optimize
them to prevent overfiltering from causing signal distortion.
The signals reconstructed after denoising contain more sig-
nal information. The denoising process of the proposed
algorithm is given in Figure 2. The exact procedures of the
proposed algorithm can be expressed as follows:

Step 1. Taking PE as the fitness function, GPSO-VMD is
applied to decompose the vibration signal, and K and α at
the minimum PE value are taken as the optimal decomposi-
tion values.

Step 2. Set the obtained K and α as VMD parameters and
decompose the vibration signal into K IMFs.

Step 3. Calculate the PE of IMF obtained by decomposition.
The signal-dominated IMF and noise-dominated IMF are
distinguished by the mutation point of PE of two
adjacent IMF.

Step 4. Apply SG filter to denoise the noise component.

Step 5. Reconstruct the IMFs dominated by the signal and
the IMF component after denoising to obtain the final
denoised signal.

4. Simulation

4.1. Construction of Simulation Signals. The vibration signals
measured by an atomic gravimeter in a ship environment
are very complicated, nonlinear, and nonstationary. These
signals actually contain lots of unpredictable disturbance
noises. In order to verify the effectiveness of the proposed
method, vibration simulation signals were designed with
nonlinear and nonstationary features. The simulation signals
xðtÞ consisted of sinusoidal signal x1ðtÞ, frequency-
modulated signals x2ðtÞ, amplitude-modulated signals x3ðtÞ
, exponentially decayed sinusoidal signals x4ðtÞ, and other
random noises with mean 0, standard deviation 1, and
amplitude 1.4. Moreover, they had t = ½0, 0:001� and sam-
pling frequency 1000Hz. These simulation signals are
defined by Equation (14).
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Figure 8: Simulation signals denoised by different algorithms.

Table 2: Denoising results with different algorithms.

Methods SNR (dB) MSE

Original signal -7.2690 2.0352

db5 -4.4865 2.1325

sym6 -4.4810 2.1436

EMD-PE-SG -0.4277 1.1413

The proposed method 1.2517 0.7204
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x1 tð Þ = 0:6 sin 20πt + π/6ð Þ,
x2 tð Þ = 0:4 cos 60πt + sin 10πtð Þ,
x3 tð Þ = 1 + 0:3 cos 20πtð Þ ⋅ sin 400πtð Þ,
x4 tð Þ = 2e−5t ⋅ sin 600πt,
x = x1 + x2 + x3 + x4 + 1:4 ⋅ rand nð Þ:

8>>>>>>>><
>>>>>>>>:

ð14Þ

The time-frequency domain waveform of each subsignal
is given in Figure 3, and the mixed signal is presented in
Figure 4. As revealed in the frequency domain waveform
of mixed signals, noises had higher power than signals, so
that signals were submerged in a highly noisy environment.
Moreover, noises were evenly distributed in the entire fre-
quency domain of signals, which makes it very difficult to
accurately extract feature signals.

Prior to VMD, number of decomposed modes K and
penalty term α should be properly selected. The improved
GPSO was adopted to optimize the VMD algorithm. Thus,
we set population size 50, crossover 0.8, and mutation prob-
ability 0.3. The number of decomposed modes K was set in
the range [2, 10], while the penalty term α was set in the
range [200, 3000]. Minimum PE was adopted as the fitness
function. The fitness function convergence curve of GPSO
is shown in Figure 5. Convergence was achieved at the time
of the second iteration, when the optimal VMD parameters
K and α were 5.1 and 2219.4, respectively, and rounded to
5 and 2219 since they must be integral. In order to prove
its superiority, the GPSO was compared with GA and PSO
algorithms, respectively. All optimization methods
employed minimum PE as fitness function and had the same
population size and maximum iteration times. The experi-
ment used Windows 10 operating system, Intel Corei7-
8750H and matlab2019a for simulation. The convergence
results of the fitness function for these three algorithms are
presented in Figure 5 and summed up in Table 1.

As shown in Figure 5, the GPSO, GA, and PSO con-
verged after the second, fifth, and seventh iteration, respec-
tively. The GPSO had the lowest fitness after convergence
and achieved the fastest convergence among them, which
proves the strong global search capability and fast
convergence rate.

4.2. Denoising Analysis of Simulation Signals. Noise simula-
tion signals were decomposed in VMD based on the K and
α values obtained by GPSO, so as to gain a number of IMF
components as shown in Figure 6. Obviously, signals could
be effectively decomposed in VMD. The decomposition
results were greatly consistent with simulation signals, prov-
ing the efficacy of the parameters obtained by GPSO.

The IMF components obtained by VMD were arranged
from low frequency to high frequency. Noises were mainly
concentrated in high-frequency components, but there were
still some effective IMF components. If they were simply
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abandoned, some effective signals would be lost. For this rea-
son, effective components must be separated from
noise-containing components, so as to denoise the
latter. For this purpose, PE of each IMF component was cal-
culated separately and used to determine the proportion of
noise-containing components in the IMF components. This
was achieved by calculating the mutation point in the PE of
two adjacent components, that is, β =max jHPðIMFl+1Þ −
HPðIMFlÞj with l for mutated IMF components. The noise-
containing components were denoised by SG filter and then
reconstructed with the effective IMF components to finally
obtain denoised signals. A simulation signal xðtÞ was
decomposed into five IMF components, whose permutation
entropies were calculated separately.

Based on the PE of each IMF component in Figure 7, the
difference between the permutation entropies of adjacent
IMF components was 0.00154, 0.00271, 0.00252, and
0.00018, respectively. The difference between IMF2
and IMF3 was the largest. Hence, IMF3 was a mutation
point, which helped identify IMF3-IMF5 as high-frequency
noise-containing components. These high-frequency noise-
containing components were treated by SG filter to obtain
a signal. In this paper, the SG filter parameters are set as
polynomial order 3 and data frame length 41. This signal
was reconstructed with other signal components including
IMF1 and IMF2 to obtain denoised vibration signal.

We also compared the proposed method with the classic
wavelet denoising and empirical mode decomposition
(EMD) to verify its effectiveness. Daubechies (db) wavelet
and Symlets (sym) wavelet with good orthogonality in the
wavelet transform denoising were selected to denoise simu-
lation signals. The green and cyan signals in Figure 8 show
the results of wavelet transform denoising with five layers
of soft threshold by db5 and sym6 wavelets, respectively.
After analyzing these results, it was found that the denoising
by db5 and sym6 wavelets might achieve the desired effect of
denoising but filtered lots of useful high-frequency
information, resulting in information distortion. The yellow
signal in Figure 8 shows the result of denoising by EMD. In
order to highlight the advancement of the proposed VMD
algorithm, the denoising by EMD was performed in the
same way as the proposed algorithm. A noise was first
decomposed by EMD to obtain a number of IMF compo-
nents. The PE of each component was calculated to find
out the mutation point. The SG filtering was carried out
for the IMF components in front of the mutation point. At
last, the denoised signal was obtained through reconstruc-
tion. Based on the denoising results presented in Figure 8,
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EMD was more effective than db5 and symb6 wavelets in
terms of denoising but still troubled by severe information
distortion, causing the excessive loss of useful information.
The denoising results of the proposed VMD algorithm are
shown in the red signal in Figure 8. Obviously, the proposed
algorithm could effectively retain the information of signals,
achieve good denoising effect, and achieve high consistency
regardless the denoised signal or the original signal.

In order to quantitatively analyze the denoising effect of
the proposed method, we took signal-to-noise ratio (SNR)
and Mean Square Error (MSE) as the indicators to evaluate
the denoising effect with denoised signals and noise-
containing signals [34]. The greater SNR, the better effect
of denoising. The lower MSE, the poorer effect of denoising.
The SNR and MSE values are expressed by

SNR = 10 lg ∑n
i=1x

2
i

∑n
i yi − xið Þ2 , ð15Þ

MSE = 〠
n

i=1

1
n

xi − yið Þ2, ð16Þ

where xi indicates the signals that do not contain noise and
yi means the denoised signals. The SNR and MSE values in
the test of algorithms with simulation signals are presented
in Table 2.

As revealed in Table 2, SNR was -7.2690 after adding
random noise into a simulation signal xðtÞ. It was evident
that the signal had lower power than noise, so that it was
entirely submerged by the latter, making it very difficult to
perform denoising. After being denoised by db5, sym6,
EMD, and the proposed method, the proposed method
achieved SNR 1.2517, which was the largest among them.
Moreover, the proposed method realized the lowest MSE,

revealing the most remarkable improvement by the pro-
posed method. The proposed algorithm proves that denois-
ing can be significantly achieved even in a highly noisy
environment.

5. Vibration Signal Denoising of Marine
Atomic Gravimeter

5.1. Data Collection. The vibration data of an atomic gravi-
meter was collected by navigation test. The test platform
was composed of an atomic gravimeter, an inertial stabilized
platform, and a vibration measuring device. The collection
of vibration data was performed by a collecting unit formed
by a data collector, an accelerometer, and a computer. The
accelerometer was attached to the atomic gravimeter placed
on the inertial stabilized platform. The accelerometer con-
verted the vibration information into analog voltage output.
The data collector performed the analog-to-digital conver-
sion of analog signals collected by sensors and transferred
the digital information to the computer. Data collection soft-
ware was installed in the computer to store and process the
received digital information. We selected the vibration signal
xsignal and took the data from 1000 sampling points for anal-
ysis, as shown in Figure 9.

5.2. Implementation of Denoising. The GPSO was employed
to optimize the VMD parameters in the proposed method,
so as to obtain the optimal number of decomposed modes
K and penalty term α. We set population size 50, crossover
probability 0.8, mutation probability 0.3, number of decom-
posed modes in [2, 10], and penalty term in [200, 3000]. PE
was used as the fitness function. At the third iteration, the
fitness function has completed convergence, and the mini-
mum PE value is 0.69137. The corresponding optimization
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results were [6, 2301]. The convergence curve of the fitness
function is shown in Figure 10.

Subsequently, the parameters optimized by GPSO were
used in the decomposition by VMD to obtain six IMF com-
ponents. Based on these components, it was found that noise
signals were concentrated in IMF5 and IMF6.

The PE of each IMF component was calculated. Then the
maximum difference between the permutation entropies of
two adjacent IMF components was calculated to find out a
mutation point and classify IMF components into effective
signal IMF components and noise-containing IMF compo-
nents as shown in Figure 11. As revealed in the slope of PE
in Figure 12, the mutation point of PE for the signal xsignal
was IMF, so that the noise components of the signal xsignal
were IMF5-IMF6. The SG filtering was conducted for noise
components. The filtered IMF components were recon-
structed with the effective IMF components to obtain the
denoised vibration signal as shown in Figure 13.

The vibration signal of a marine atomic gravimeter was
measured during navigation, so that it was impossible to
obtain a noise-free original vibration signal. For this reason,
SNR and MSE could not be used to quantitatively analyze
and compare the proposed method with other algorithms.
Figure 13 shows the results of wavelet transform denoising
by five layers of soft threshold with db5 and sym6 wavelets
and the effects of denoising by EMD-PE-SG, respectively.
As revealed in Figure 13, EMD-PE-SG achieved better
denoising than db5 and sym6 wavelets and could retain
more actual information. However, it still lost too much use-
ful information compared with the proposed method, so it
resulted in severe loss and distortion of signal information.

6. Conclusion

A vibration signal denoising method based on improved
VMD is put forward in this paper. In this method, an
improved GPSO based on PSO and GA is first adopted for
the parametric optimization of VMD. Minimum PE is taken
as the fitness function to adaptively search for the optimal
parameters K and α in VMD. Based on the obtained param-
eters K and α, a noise-contained signal is decomposed into a
number of IMF components. PE is utilized to calculate the
proportion of noise-containing components in the signal
components obtained by decomposition. A mutation point
is found with PE of adjacent IMF components to classify
these components into noise and signal components. The
SG filter is carried out to denoise these noise components.
At last, the denoised components are reconstructed with sig-
nal components to generate the denoised vibration signal.
The reconstructed signal contains more physical informa-
tion. The proposed method makes use of signal mode
decomposition to adaptively extract noise but does not use
any fixed priori threshold. In order to demonstrate its effec-
tiveness, the proposed method is applied in denoising with
the vibration data collected by vibration and measured by
a marine atomic gravimeter. As proved in the test, the pro-
posed method can effectively separate noise from vibration
signals and achieve great denoising. Its potential has been

demonstrated in filtering noise and improving the quality
of vibration data to provide the supporting data for the
vibration compensation of a marine atomic gravimeter.
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Modulation parameters are very significant to underwater target recognition. But influenced by the severe and time-space varying
channel, most currently proposed intelligent classification networks cannot work well under these large dynamic environments.
Based on supervised contrastive learning, an underwater acoustic (UWA) communication modulation classifier named UMC-
SCL is proposed. Firstly, the UMC-SCL uses a simply convolutional neural networks (CNN) to identify the presence of the
UWA signals. Then, the UMC-SCL uses ResNet50 as an encoder and updates the network by supervised contrastive learning
loss function, which can effectively use the category information and make the eigenvector distribution of the same category
more concentrated. Then, the classifier uses the feature vector output by the encoder to distinguish the final modulation
categories. Finally, extensive ocean, pool, and simulation experiments are done to verify the performance of the UMC-SCL.
Without any prior information, the average classification accuracy for MPSK and MFSK can reach 98.6% at 0 dB and is
increased by 6% compared to the benchmark algorithm under low SNR.

1. Introduction

With the development of UWA communication technology,
more and more ocean applications have installed UWA
communication equipments. Through modulation classifi-
cation can explore the influence of ocean multipath and
Doppler effect and more effectively assistant target identifi-
cation, signal identification, interference identification, and
spectrum management.

In general, conventional modulation classification algo-
rithms can be divided into two categories: likelihood-based
and feature-based methods [1]. The likelihood-based method
requires a large amount of prior information and computa-
tion, which makes it unsuitable for harsh noncooperative
UWA communication. On the contrary, feature-based
method has gradually become the mainstream method due
to its low computational complexity and no dependence on
prior information.

Feature-based methods consist of two parts: feature
extraction and classifier. In [2], multiscale reverse dispersion
entropy and grey relational degree features are used to
improve the classification performance of ship-radiated

noise. In [3–5], support vector machine (SVM) is used to
distinguish wireless signals. In [6], high order cumulant
features are put into SVM based on mixture kernel function
to classify the digital signals. Wei et al. [7] use a SVM based
on hybrid features, cyclostationary, and information entropy
to classify the modulation types, including BPSK, QPSK,
2FSK, 4FSK, and MSK. By this means, the parameter extrac-
tion process is complicated, and the capacity is low. Even if
more training data is added, the classification performance
cannot always be improved [8]. For recent years, deep learn-
ing [9–16] has shown excellent performance in image fea-
ture extraction, speech recognition, and natural language
processing and has been successfully used on acoustic signal
sets [17, 18]. However, in modulation classification area, it is
mainly used in the electromagnetic communication.

In [9], long-short term memory (LSTM) is used to
classify the modulation schemes for a distributed wireless
spectrum sensing network. Li et al. [10] use the I/Q data to
classify signal directly through deep neural networks
(DNN). In [11, 12], adaption of deep learning to the com-
plex temporal signal domain is studied, and first proposed
a CNN-based classifier to solve the problem of excessive
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parameters in DNN. In [13], AlexNet and GoogLeNet are
used to classify the constellation of the signal samples.
Huang et al. [14] introduce a novel cascaded CNN that cas-
cade two-block CNN to identify MPSK and MQAM hierar-
chically. Wang et al. [15] propose a hierarchical CNN
scheme to more accurately classify the higher-order QAM
signals. Liu et al. [16] combine CNN with long short-term
memory (LSTM) architecture into DNN and increase the
accuracy rate by 13.5% compared with original CNN. In
these classic end-to-end neural networks, cross-entropy loss
is the most widely used loss function to achieve the purpose
of updating network weights. However, the cross-entropy
loss function also lacks robustness to noisy tags [19, 20]
and may have marginality [21, 22], leading to reduce gener-
alization performance. The traditional end-to-end super-
vised training methods focus on the final classification
accuracy rather than the quality of the features extracted
from the UWA data. As a result, when the signal-to-noise
ratio (SNR) becomes low, the accuracy of traditional
methods will drop sharply and cannot work well. In recent
years, the renaissance of contrastive learning has led to
major advances in self-supervised performance learning
[23–25]. When there is no available label, the data is aug-
mented through its own cropping and flipping, and the
encoder is updated through the self-supervised loss function.
Although it can alleviate the disadvantages of traditional
networks to a certain extent, it cannot learn from the other
samples in the same category. As a result, self-supervised
contrastive learning methods are not suitable for UWA data
with different SNR.

In this paper, from the perspective of representation
learning, we extract features with high discrimination
through supervised contrastive learning [26] to support the
normal classification tasks in harsh UWA channel and pro-
pose a novel classification framework named UMC-SCL. We
first distinguish between valid signal and ocean noise
through a simply CNN. Then, the supervised contrastive
learning module will learn from the valid modulation signal
and update the encoder network by supervised contrastive
learning loss function. Go through this module, the features
of the same category are as close as possible, and the features
of different categories are as far away as possible. Therefore,
we can achieve the purpose of classification only by using a
fully connected layer. Finally, we verify the superiority of
the proposed method through extensive ocean, pool, and
simulation experiments and use principal component analy-
sis (PCA) to visualize the output features for interpretability.
Compared with the known traditional supervised networks,
the proposed method greatly improves the classification
accuracy under low SNR without any prior information
and parameter extraction process.

2. System Model

2.1. Signal Model. The UWA communication channel is one
of the most challenging wireless communication media
known to human. The medium space of underwater sound
propagation is very complicated, with high attenuation, long
time delay, strong multipath, and high Doppler effect.

Figure 1 shows the basic process of UWA communication.
~hðtÞ is the energy normalized impulse response of UWA
channel, sðtÞ is the original signal, and nðtÞ is the ocean
noise. aðtÞ is related to SNR. Node 1, Node 2, and Node 3
communicate with each other. The listener can intercept
their communication signals from the sea water. SL is emit-
ting sound source level, TL is propagation loss, and NL is the
background noise level [27].

2.2. UWA Data Sources. In order to make the research result
more applicable, we have constructed a complete data set
through actual ocean experiments, pool experiments, and
simulation experiments that are close to the reality.

2.2.1. Ocean Data. The ocean data are collected in Wuyuan
Bay, Xiamen, China. As shown in Figure 2, the sound source
Tx1 and the receiving hydrophone Rx1 are placed in the shal-
low sea near the footpath, with a depth of 5m and a commu-
nication distance of 60m.

We send and receive signals at four different times of the
day. During the experiment, there are some activities such as
yachts, fishing boats, and other activities that introduce a lot
of man-made noise. Besides, dozens of plank road bridge
piers between the sending and receiving ends make the
reflection effect more significant.

2.2.2. Pool Data. Ocean experiments are costly, and the data
acquisition is difficult. In order to increase the richness of
the dataset, we further conduct pool experiments. The pool
is located in UAC laboratory in Xiamen University.
Figure 3(a) is the photo of the pool. The pool has a length
of 25m and a width of 5m. It is divided into deep water area
(depth = 1:5m) and shallow water area (depth = 1:15m).
Figure 3(b) is the distribution of transmitter and receivers
for pool experiment. Tx is the sound source, and Rx is the
hydrophone. The distances between Rx1, Rx2, Rx3, and Tx
are 3m, 6m, and 12m, respectively, and the depth is 1m.
When Tx sends a signal, the sound rays will be attenuated
by water and reflected on the pool wall.

UWA
communication

Node 3

Node 2

~

Node 1

Listener

x(t)=a(t)⨯h(t)⊗s(t)+n(t)
SNR=SL–TL–NL

Figure 1: The progress of UWA communication.
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2.2.3. Simulation Data. Constructing a good simulation
UWA channel is the basis for carrying out practical experi-
ments. Figure 4 shows the sound ray propagation in a shal-
low sea channel. The sound ray will be reflected by the sea
surface and bottom during propagation. Moreover, the
speed of sound in seawater changes with temperature, salin-
ity, and water depth, causing sound rays to be refracted. The
speed of sound can be described according to the following
formula [27].

c = 1449:2 + 4:6T − 0:055T2 + 0:00029T3

+ 1:34 − 0:01Tð Þ S − 35ð Þ + 0:016Z,
ð1Þ

where T is temperature in, S is salinity in ppm, and Z is the
depth of seawater in m.

In UWA communication, the impulse response can be
assessed by beam tracing for typical acoustic communication
frequencies. The basic path loss of the received signal that
traveling through the UWA channel is given by [28].

A lð Þ = A0l
kαl, ð2Þ

where A0 is a scaling constant, l is the traveling distance of
sound ray, k is the spreading factor, and α is the absorption
coefficient which is closely related to the frequency of sound
waves and can be obtained by Thorp’s empirical formula as

α =
0:11f 2

1 + f 2
+

44f 2

4100 + f 2
+ 2:75 × 10−4 f 2 + 0:003, ð3Þ

where the units of α and f are dB/km and kHz, respectively.
The impulse response of the multipath channel can be
expressed as the summary of the transfer function of each
path

�H fð Þ =〠
p

�Hp fð Þe−j2πf �τp =〠
p

Γpffiffiffiffiffiffiffiffiffiffiffi
A �lp
� �q e−j2πf �τp , ð4Þ

where Γp, τp, and �lp are, respectively, the cumulative reflec-
tion coefficient of the surface and bottom, propagation delay,
and the propagation distance of the p-th path. Generally
speaking, an ideal surface can be modeled by a reflection

coefficient γs = −1, while the bottom reflection can be
modeled by

γb θp
� �

=

ρp sin θp − ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c/cbð Þ2 − cos2θp

� �q

ρp sin θp + ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c/cbð Þ2 − cos2θp

� �q
,

cos θp ≤
c
cb

1, otherwise

,

8>>><
>>>:

ð5Þ

where θp is the grazing angle associated with the p-th prop-
agation path and ρ and c are the nominal density and the
speed of sound in water (ρ = 1000 kg/m3 and c = 1500m/s).
ρp and cb (calculated by Equation (1)) are the density and
the speed of sound in bottom. The propagation delay of
p-th path can be simple calculated as

�τp =
�lp −�l0

c
, ð6Þ

where �l0 is the direct distance from the sender to the
receiver. In order to get a tractable, simple channel model,
we examine an approximation to the function. Taking p = 0 as
the reference path and �H0ð f Þ as the impulse function corre-
sponding to �l0, the impulse function of the receiving end can
be further expressed as

�Hp fð Þ = Γpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�lp/�l0
� �k

α
�lp−�l0

q �H0 fð Þ: ð7Þ

3. Supervised Contrastive Learning-Based
Modulation Classification

A large number of studies have proved that DNN is superior
to SVM. In the field of UWA modulation classification, the
application of DNN is still scarce and all use end-to-end
supervised methods. However, when the SNR becomes
low, the accuracy will drop sharply. In response to this prob-
lem, we use supervised contrastive learning to narrow the
feature distance between the same category and expand the
distance between different categories, so as to improve the
classification accuracy of modulation schemes under low
SNR.

3.1. Classification System Model. As shown in Figure 5, in
Step 1, the signals received by the receiver may be useful
signal or useless ocean noise. In Step 2, the input signals
are recognized through a simple two convolutional layers
and a fully connected layer. Conv11 × 32 means the chan-
nel number is 32, and the size of convolutional kernels is
11 × 11.

If the input signal is useful signal, it will be transported
to supervised contrastive learning module for further classi-
fication; if it is ocean noise, it will be discarded.

In Step 3, supervised contrastive learning loss function is
used to update the backbone network (ResNet50) to extract
features from UWA data and then put the features into

Figure 2: The scene map of ocean experiment.
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classifier for classification. By this means, the influence of
ocean noise can be effectively eliminated, and the classifica-
tion accuracy at low SNR will be significantly improved. In
the following content, the specific network architecture will
be given in details.

3.2. Backbone Network. The backbone network of supervised
contrastive learning in this paper is ResNet50. ResNet50 is a
residual CNN with 50 layers. It directly skips several layers
and introduces the output of a certain layer into the input
part of the following data layer, which overcomes the prob-
lems of low learning efficiency and ineffective improvement
of accuracy due to the deepening of the network. Another
two important operations in the network are batch normal-
ization and ReLU. Batch normalization is aimed at convert-
ing the input data to an output data distribution with a
variance of 1 and a mean of 0 to improve the speed of net-
work optimization. ReLU is a nonlinear activation function.
It makes the output of some neurons be 0, so as to improve
the sparsity and avoid the overfitting phenomenon of the
network.

In traditional supervised end-to-end CNN, as shown in
Figure 6, the output of the classifier is used as the only indi-
cator to update the network. The most widely used loss func-
tion is the cross-entropy loss function, and the expression is

Loss =
1
N
〠
i

Li = −
1
N
〠
i

〠
M

c=1
yic log picð Þ, ð8Þ

where N is the number of samples and M is the number of
label categories. If the true category of sample i is equal to

c, then yic = 1; otherwise, yic = 0. pic is the predicted probabil-
ity that the sample i belongs to the corresponding category.

3.3. Supervised Contrastive Learning. Supervised contrastive
learning effectively utilizes the category label information,
making the feature points from the same category closer
than the points from different categories. Different from
self-supervised learning [24], the positive samples are other
samples in the same category. As shown in Figure 7, the
progress is divided into two training stages. The first stage
focuses on the training of the encoder and uses the super-
vised contrastive learning loss function to update the
encoder. The second stage focuses on the training of the
classifier using the feature output by the encoder and using
the cross-entropy loss function to update.

In self-supervision, the function of the two converters is
to flip or crop the input picture so that the two newly gener-
ated images can be used as the positive samples. Due to the
high complexity of UWA data, cropping or flipping the time
domain signal will destroy its original characteristics. Since
the label information is known, the supervised contrastive
learning takes all the samples from the same class in the
batch as positive samples and compares them with the neg-
ative samples in the rest of the batch. The loss function
becomes

Lsup = 〠
2N

i=1
Lsupi , ð9Þ

where

Lsupi =
−1

2N~yi
− 1

〠
2N

j=1
1i≠j · 1~yi=~yj · log

exp zi · zj/τ
� �

∑2N
k=11i≠k · exp zi · zk/τð Þ

,

ð10Þ

where i is the blind UWA data and zi represents the feature
generated by the backbone network. zj represents the feature
that comes from the same category with data i, and zk repre-
sents the feature generated by backbone network that is dif-
ferent from data i. τ is a scalar temperature parameter larger
than 0. ~yi is the category label of i. To update the network
parameters under the constraint of the loss function, the

(a)

Depth
=1.15 m

Depth
=1.5 m

Rx2 Rx3

Rx1Tx Pool wall

(b)

Figure 3: The real pool (a) vs. top view of equipment distribution for pool experiment (b).
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Figure 4: Sound ray propagation in shallow sea channel.
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feature output from backbone network will have the follow-
ing characteristics:

(1) The sum of the cosine distance between the feature
vectors of all other samples in the same category
and the feature vectors of the sample i, the larger
the better

(2) The sum of the cosine distance between the feature
vectors of the sample in different categories and the
feature vectors of the sample i, the smaller the better

The classifier in the second stage is a simple fully
connected layer. It uses the 2048-dimensional standardized
feature output by the encoder to classify the modulation

schemes. It should be mentioned that the parameters of
the encoder are frozen in the second stage. Therefore,
whether the encoder can obtain excellent features after train-
ing plays a decisive role.

Algorithm 1 describes the update process of the super-
vised contrastive learning.

4. Experiments and Results

In this section, the details of the experiments are explained.
We also evaluate the modulation classification performance
of the proposed method and compare it with the existing
methods. In order to analyze the algorithm performance
more intuitively, we use PCA to visualize the features to pro-
vide the interpretability of the proposed method.

4.1. Dataset Generation. The original modulation signals are
generated through the MATLAB simulation platform. The
candidate modulation set is given by

M = BPSK, QPSK, 8PSK, 2FSK, 4FSK, 8FSKf g: ð11Þ

Table 1 shows the parameter setting of different modula-
tion schemes. The ocean noise is actually collected in the
Wuyuan Bay sea area. After passing through the ocean chan-
nel, the pool channel, and the simulation channel, the data
with the characteristics of multipath fading and Doppler
frequency shift is obtained. On this basis, Gaussian white
noise with different SNR is superimposed on the obtained
data through MATLAB. In this paper, the intraband SNR
is used to evaluate the performance of the proposed algo-
rithm. It can be calculated as

SNR = 10log10
Fs

Bs

� �
+ SNRGaussian dBð Þ, ð12Þ

Step 1 Step 3

Step 2

Conv11⨯32 Conv6⨯16 FC

Marine noise

(BPSK, QPSK, 8PSK,
2FSK, 4FSK, 8FSK)

Classifier

Supervise contrast
learning

Converter ResNet50

Marine
noise

Useful
signals

Useful
signals

Figure 5: Flow chart of supervised contrastive learning-based modulation classification scheme.
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Figure 6: Schematic diagram of traditional supervised end-to-end
training progress.

Stage 1 Stage 2

Input data

Converter

Converter

Backbone Classifier Output

Cross
entropy

Supervised
contrast learning

Backward
Backward

Figure 7: Schematic diagram of supervised contrastive learning
structure.
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where Fs is the sampling frequency and Bs is the bandwidth
of the signal.

In Step 2, it is aimed at distinguishing the ocean noise
and the useful signals. The train set consists of 2,000 ocean
noise samples and 2,000 modulation signal samples with dif-
ferent SNR. The corresponding test set is 800 samples per
category. In Step 3, the training set of supervised contrastive
learning consists the data with different SNR after noise pol-
lution. Among them, 550 samples of each modulated signal
are generated from -9dB to 9 dB every 2 dB, 250 samples
of which are used as the training set and 300 samples are
used as the test set. Therefore, the training set contains
15,000 samples with different SNR, and the test set of each
SNR contains 1,800 samples.

4.2. Experimental Implements. In the ocean and pool exper-
iments, NI USB-6259 Pinout capture card is used to convert
the digital signal to analog signal at the transmitter and con-
vert the analog signal to digital signal at the receiver.
JYH500A power amplifier and Type-2692-0S2 charge ampli-
fier are used to amplify the transmitted signal and the
received signal, respectively. WBT22-1107 transducer which
can convert the analog electrical signal to acoustic signal is
used to send and receive signal in the water. Besides, the
experiments are performed on computing server equipped
with an Intel(R) Core(TM) i7-9700K 3.6GHz CPU, a NVI-
DIA GeForce RTX 2060 SUPER GPU, “Pytorch” and

“Python” programming language, the CUDA 10.1 and
CUNDD software. The optimizer of ResNet50 is “Adam,”
and the learning rate is 0.05 and decays to 10% of the origi-
nal learning rate every 30 epochs.

4.3. Experiment Results

4.3.1. Simulation Results. The simulation experiment is car-
ried out under the simulation UWA channel. In the noise
distinction stage, the distinction between ocean noise and
useful signals is obvious, especially in the frequency domain.
Even when the SNR is -6 dB, the classification accuracy can
still achieve 100%. Therefore, it can be explained that the
simple convolutional network of Step 2 can well eliminate
the influence of marine noise. In the Step 3, Figure 8 gives
the classification accuracy of six modulation schemes. In
general, the classification accuracy of six modulation signals
increases with the increase of SNR and can achieve an aver-
age accuracy of 98.84% at 0 dB. When the SNR decreases to
-6 dB, the recognition of 8PSK is the most difficult, and the
confusion of modulation categories is mainly concentrated
on QPSK and 8PSK.

4.3.2. Actual Ocean and Pool Experiment Results. Due to the
difficulty and high cost of obtaining ocean data, in practical
experiments, we mix pool data with the ocean data to
increase the richness of training set, so that the trained
encoder and classifier can better fit the distribution charac-
teristics of UWA data. The result of Step 2 in practical exper-
iments is the same as mentioned in the previous simulation
part. In Step 3, using the feature output by the encoder, the
classification accuracy of the single fully connected layer is
shown in Figure 9. For MPSK, its information is modulated
in phase, so its characteristics in the time domain are not as
obvious as MFSK. When the SNR is -6 dB, the average accu-
racy of MPSK is 79.7%, while MFSK can achieve a high

Input: Encoder training: batch size 32, initial learning rate α=5e − 2, epoch E p=100, τ=0.07

Classifier network training: batch size 128, initial learning rate α′= 1e − 3, epoch E p′=100
Output: Backbone network parameter θ, The Classifier network Θ:
//Encoder training
1: for epoch =1:E p

2: sample a batch of data, update α as described in Section III −D
3: Backbone encodes m into F.
4: calculates loss Lsup (10)
5: update θ with θ⟵ θ−α·∇θL

sup

6: end for
//Classifier network training
7: for epoch = 1:E p′ do
8: Freeze encoder parameter, update α′ as described in Section III −D
9: Classifier network decodes F into result
10: calculates loss Loss (8)
11: update Θ with Θ⟵Θ−α′·∇ΘLoss
12: end for
//Finish training
Return the parameter θ, Θ

Algorithm 1: Two-stage training of supervised contrastive learning.

Table 1: Parameter setting of the modulation signals.

Modulation type 2/4/8PSK 2/4/8FSK

Modulation point
θm = 2πm/M

m = 0, 1,⋯,M − 1
f m = 11 kHz + 2mkHz
m = 0, 1,⋯,M − 1

Sample frequency 66 kHz

Symbol width 1ms
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accuracy of 97.3%. When the SNR increases to 0 dB, the
average accuracy of six types of modulation signals can reach
98.6%.

Classification performance results of six modulation cat-
egories at -6 dB and 0dB are presented using confusion
matrix in Figure 10. In each modulation category, 300 tests
are implemented. When SNR is -6 dB, BPSK, 2FSK, 4FSK,
and 8FSK have achieved high classification accuracy through
supervised contrastive learning. However, since QPSK and
8PSK are relatively similar in modulation phase, they are
easy to be confused. There are 102 QPSK samples that are
mistaken for 8PSK and 70 8PSK samples that are mistaken
for QPSK. When the SNR reaches 0 dB, except for the

slightly larger classification error of QPSK, the recognition
accuracy of other modulation schemes almost reaches 100%.

4.3.3. Accuracy Comparison. To verify the superiority of the
proposed method in this paper, the performance is investi-
gated by making comparisons with four relevant algorithms
in recent years; the comparison algorithms are as follows:

(1) Algorithm 1 based on ResNet50 using constellation
density as feature [29]

(2) Algorithm 2 based on AlexNet using 3-channel
image as feature [13]

(3) Algorithm 3 based on VGGNet using original gray
image as feature [30]

(4) Algorithm 4 based on SE-Net using the features in
time domain, frequency domain, and time-
frequency domain [31]

Figure 11 presents the average classification accuracy of
five algorithms versus SNR. The average accuracy is
obtained by averaging the classification performance of six
modulation categories. As shown in Figure 11, the following
observations can be made.

(1) For all five algorithms, the modulation classification
performance improves with an increasing SNR value

(2) Given the same SNR, in addition to the proposed
algorithm, the other four algorithms will have a
sharp decay on the classification accuracy when the
SNR becomes low

(3) The proposed supervised contrastive learning algo-
rithm has strong adaptability to low SNR UWA
modulation signals and outperform all other algo-
rithms. When the SNR is -6 dB, the accuracy of our
proposed method is 6% higher than the benchmark
algorithm [29]

4.3.4. PCA for Interpretability. PCA can reduce a set of n
-dimensional vectors to k-dimension through orthogonal
transformation. That is, k unit orthogonal basis is selected,
so that the original n-dimensional data is represented by this
group of basis. For high-dimensional data, first make the
mean of the input vector to 0 and then use the covariance
to represent the correlation between vectors a and b. The
covariance is calculated as

Cov a, bð Þ = 1
n
〠
n

i=1
ai − μað Þ bi − μbð Þ = 1

n
〠
n

i=1
aibi: ð13Þ

Formn-dimensional vectors fa1, a2,⋯amg, the matrix X
is composed of

X =

a11 ⋯ a1n

⋮ ⋱ ⋮

am1 ⋯ amn

2
664

3
775: ð14Þ
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Figure 9: Classification accuracy of ocean and pool experiments
versus SNR.
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The covariance matrix C is

C =
1
n
XXT ,

=

1
n
〠
n

i=1
a1i

2 ⋯
1
n
〠
n

i=1
a1iami

⋮ ⋱ ⋮

1
n
〠
n

i=1
amia1i ⋯

1
n
〠
n

i=1
ami

2

0
BBBBBBB@

1
CCCCCCCA
:

ð15Þ

It can be seen that the diagonal of the matrix C is the
variance of the vectors, and the other elements are the
covariances between different vectors. Supposing Y = PX is
the vector of the original data X projected to the low-

dimensional space, P is the transformation matrix, and D
is the covariance matrix of Y , there is the following equation

D =
1
n
YYT =

1
n

PXð Þ PXð ÞT = PCPT : ð16Þ

In order to enable the transformed low-dimensional vec-
tors to represent more original information, we hope that
they are not correlated with each other; that is, the covari-
ance is equal to 0. Therefore, the matrix D should be a diag-
onal matrix. According to the relevant knowledge of linear
algebra, the matrix P should be the eigenvector matrix of
matrix C, and it should be arranged from top to bottom
according to the size of the corresponding eigenvalues. Select
the matrix Pk composed of the first k rows of matrix P, and
obtain a matrix Yk with k-dimensional vectors. Taking k = 3,
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Figure 11: Classification accuracy of the proposed algorithm and the comparison algorithm versus SNR.
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Figure 10: Confusion matrix under different SNR based on supervised contrastive learning.
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the high-dimensional feature outputs by the network are
presented in a 3-dimensional plane. Figure 12 shows a 3-
dimensional space cross-sectional view of the feature point
distributions extracted by different networks.

It is easy to see that the features extracted by the super-
vised contrastive learning method have a higher degree of
discrimination and better classification effect under low
SNR. When SNR is -6 dB, the features extracted by ResNet50
[29] are overlapped. In contrast, the features extracted by the
proposed method, except that the features of QPSK, 8PSK,
and 8FSK, have some overlap; the feature distributions of
the other three modulation signals are concentrated and easy
to distinguish. What is more, with the increase of the SNR,
the feature point distribution boundaries of different modu-
lation schemes become clearer and clearer.

5. Conclusion

In this paper, we are the first to propose a novel modulation
classification scheme based on supervised contrastive learn-
ing. Firstly, the useful signals and ocean noise will be distin-
guished in the first module. Secondly, the encoder ResNet50
in the supervised contrastive learning module will learn the
input UWA data under the guidance of the supervised con-
trastive learning loss function to update the network. By this
means, the distance between feature vectors in the same cat-
egory but with different SNR will be minimized, and the dis-
tance between feature vectors of different categories will be
expanded as much as possible. Then, the classifier recognizes
the modulation scheme according to the feature output by
the encoder. Finally, the ocean, pool, and simulation experi-
mental results verify the superiority of the proposed method.
Compared with the existing researches, the experimental
verification in this paper is more complete. The proposed
method eliminates the complex parameter extraction pro-
cess and does not require any prior information. When the
SNR is 0 dB, the average accuracy can achieve 98.6%. Com-

pared to the benchmark algorithm, the accuracy at -6 dB is
improved by 6%. Moreover, we use PCA to visualize the fea-
ture distribution, which can intuitively analyze the superior-
ity of the proposed algorithm.
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Underwater acoustic localization is an important, yet challenging problem: (1) node mobility issue, (2) Doppler effect, and (3)
clock imperfection. To be specific, underwater nodes are not stationary in real-life due to unpredictable currents. Relative
motion between a transmitter and a receiver causes the time scaling problem on the received signals, where the time scaling
factor is termed as Doppler scale. Then, due to the slow acoustic signal propagation speed, the underwater Doppler scale
becomes more severe compared with the one in terrestrial environments. Thus, the differential Doppler scale (DDS)
measurements should also be collected, other than the time measurements like time-difference-of-arrival (TDOA), for
enhancing the underwater localization. Since DDS/TDOA measurements and clock skew are tightly coupled, clock
synchronization is essential for accurate localization. However, due to the stringent cost and power constrains of underwater
nodes, low-cost clocks with relative low precision are normally employed, which makes it even more difficult to guarantee a
perfect clock synchronization between transmitter/receiver pairs. In order to cope with those issues, we propose an algebraic
underwater localization method using the hybrid DDS/TDOA measurements, which is particularly robust against the node
clock imperfection. A new DDS/TDOA measurement model with clock imperfection is first presented by analyzing the
received signals over underwater acoustic channels. Then, we devise a two-step weighted least square-based estimator, and the
analytical study shows that our estimator can achieve the Cramer-Rao lower bound (CRLB) accuracy under small noise.
Simulations corroborate the theoretical results and the good performance of the proposed method.

1. Introduction

Underwater localization has been an active area in recent
years owing to its extensive applications such as data collec-
tion, environment monitoring, military surveillance, and
assisted navigation [1–5]. Basically, the underwater localiza-
tion process follows two steps, i.e., measurement collection
and measurement fusion. To be specific, the measurements
between the target and the predeployed anchors with prior
known locations are first collected, from which we infer
the target location. Since the Global Positioning System
(GPS) signals are not available in underwater scenarios due
to the severe power attenuation of electromagnetic waves,
we can do nothing but collecting measurements from the
acoustic signals [6]. For acoustic communication, there are

many modulation methods, such as frequency-shift keying
(FSK), phase-shift keying (PSK), and orthogonal
frequency-division multiplexing (OFDM) [7]. For the low
complexity of receivers, which is required to deal with highly
dispersive channels, in our study, we consider the OFDM
scheme for data exchange [8]. There are different types of
measurements that can be extracted from data exchanges,
such as time-of-arrival (TOA), time-difference-of-arrive
(TDOA) [9, 10], received signal strength (RSS), differential
RSS, and angle-of-arrival (AOA) [11]. Among those, the
TDOA-based method becomes the primary concern of most
engineers in designing the underwater localization owing to
its relative high-accuracy ranging results and the relaxation
of clock synchronization requirements [12]. We should also
mention here the kind of differential Doppler scale (DDS)
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measurement, which results from the underwater nodes’ rel-
ative motion that always exist in practice [13]. This kind of
measurement will be explained in details later. With all the
collected measurements, the target’s position can be esti-
mated by different families of measurement fusion methods,
which are maximum likelihood (ML), semidefinite program-
ming (SDP) based, least squares (LS) based, and alternating
direction method of multipliers (ADMM) based [14, 15].
The ML method is asymptotically optimal, but the formed
ML optimization problem is highly nonlinear and noncon-
vex, and thus, a closed-form solutions does not exist [16].
Although it can be solved approximately by iterative
methods, they involve intensive computations and cannot
guarantee the convergence to the correct solution unless
the initial guess is close enough to it. The SDP-based method
relaxes the nonconvex optimization problem to a convex
one such that a global minimum can be effectively found
[17, 18]. However, this method still requires a high complex-
ity as well as a tight relaxation to guarantee an accurate esti-
mate. To allow low complexity implementation as well as to
ensure global convergence, (weighted) LS-based methods
have been proposed in [19–21]. The LS-based method rear-
range the nonlinear equations into a set of linear equations
by introducing extra variables, which are functions of the
target parameters (position and velocity). Furthermore, the
relation between the extra variables and the unknown
parameters of the target can also be utilized to improve the
estimation accuracy, which reaches the Cramer-Rao lower
bound (CRLB) under Gaussian noise at moderate to high
signal-to-noise [19]. Therefore, due to the attractive advan-
tages of the LS-based method over other methods, we choose
it as our measurement fusion method.

Besides choosing the appropriate measurement fusion
method, it is worth noting that when the target is moving,
the DDS measurements can be explored together with the
TDOA measurements to further improve the localization
accuracy. Actually, underwater nodes can hardly maintain
stationary due to the unpredictable ocean currents. A rela-
tive transmitter/receiver motion results into the time scaling
problem on the received signals [22]. The time scaling factor
is conventionally called as Doppler scale. Moreover, the low
propagation speed of acoustic waves (about 1500m/s) makes
the acoustic signals very susceptible to the Doppler scale.
Thus, the DDS measurements have to be effectively
extracted from the received signals and exploited for under-
water localization. It is worth noting that a similar kind of
measurement called frequency-difference-of-arrival (FDOA)
has been extensively studied for terrestrial localization prob-
lem [19–21]. One might ask what is the difference between
the DDS and FDOA measurements. In fact, the DDS is the
difference in received Doppler scales in time-domain, while
the FDOA is the difference in received Doppler frequency
offsets in frequency-domain, and both of them results from
the Doppler effect. However, from the measurement point
of view, narrowband signals will have more precise FDOA
measurements compared with wideband signals [23].
Though underwater channels are wideband in nature
because the signal bandwidth is not negligible compared to
the carrier frequency [24]. To be specific, taking OFDM sig-

nals as an example, each subcarrier experiences a Doppler-
induced frequency offset, which depends on the frequency
of the subcarrier. This kind of Doppler shifts is called as
nonuniform Doppler frequency offsets, and directly estimat-
ing it in frequency domain is intractable [6]. As a result, pre-
cisely estimating the Doppler frequency offsets in frequency-
domain from the received signals over underwater channels
might be difficult. Therefore, we alternatively choose to mea-
sure the time scaling factor of received signals in time-
domain, which results in DDS measurements.

It is well known that time-based localization is very sus-
ceptible to the clock imperfection that always exists in prac-
tice. For example, due to the stringent cost and power
constrains of underwater nodes, low-cost clocks are nor-
mally employed. This implies that the clock parameters of
underwater nodes, i.e., clock skew and clock offset, might
drift away over time. Although the anchor nodes can be syn-
chronized with a reference clock by precalibration, the target
node is usually very difficult to be guaranteed the same par-
ticularly for underwater scenarios. Even though the target is
synchronized with the anchors, the clock imperfection might
still exist due to the fact that the synchronization perfor-
mance might significantly deteriorate in severe underwater
communication environments. This will certainty incur the
clock imperfection for the target node. Thus, taking into
account the clock imperfection in underwater localization
becomes an important task. In this work, we assume an
independent clock for the target node and synchronized
clocks among all the anchors. Traditionally, clock imperfec-
tion are usually considered while developing TOA- or
TDOA-based localization algorithm [25, 26]. Compared
with the TOA-based localization, TDOA technique resolves
the clock offset ambiguity, though it can still suffer from
the clock skew [27]. Other than the TDOA measurements,
we also use the DDS measurements for enhancing the
underwater localization. Obviously, the DDS measurement
provides more information for localization. As a trade-off,
when considering the clock imperfection, using the DDS is
at price of a complicated measurement model since the mea-
sured DDS at the receiver is actually a combination of the
Doppler effect and the clock skew between the transmitter/
receiver pair, which will exacerbate the nonlinearity issue.
However, the coupling nature between the DDS and clock
skew is often overlooked in Doppler measurement based
localization approaches. Recently, some pioneering research
works noticed the potential coupling relationship between
the Doppler scale measurement and clock skew [28–30].
However, they only explored the time synchronization prob-
lem in underwater sensor networks (UWSNs) using the
clock skew-interfered Doppler scale measurements. In a nut-
shell, the clock imperfection will significantly degrade the
DDS/TDOA-based localization performance, and hence,
the localization methods that are robust against to this
imperfection are ungently required.

To tackle the aforementioned clock imperfection prob-
lem, the first contribution of this work is proposing a new
DDS/TDOA model with the clock imperfection by analyzing
the received signals over underwater acoustic channels.
Based on this model, we then contribute to localization
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algorithm development by exploiting the linearization
approach. Based on the pseudolinear equations with nui-
sance variables, two weighted least square (WLS) estimators
are devised. The first one ignores the built-in relationships
between the unknown parameters and gives a coarse solu-
tion. The second one improves the solution by exploiting
the known relationships between the estimates resulted from
the first WLS estimator. Since only two WLS estimators are
involved, our proposed method is computationally attrac-
tive. We compare analytically the location accuracy of the
proposed estimator to the Cramér-Rao lower bound (CRLB)
for Gaussian measurement noise. We also conduct simula-
tions to compare the performance of the proposed localiza-
tion method with the corresponding CRLB and that of the
WLS method assuming perfect clock [19] and the proposed
method using a mismatched DDS model under different
noise conditions. The numerical results verify the effective-
ness of the proposed localization method.

1.1. Notations. Column vectors and matrices are denoted by
bold lower- and uppercase letters, respectively; aðiÞ and Aði
, jÞ are the ith element of a and the ði, jÞth element of A,
respectively; aði : jÞ denotes a subvector with the ith to the
jth elements of a; Aði, :Þ represents the ith row of A; k·k is
the Euclidean distance norm; δð·Þ denotes the Dirac delta
function; ∗ denotes the convolution operator; superscript
T denotes the transpose of a matrix (vector); e denotes the
element-wise multiplication; 1 and 0 are vectors (or
matrixes) of 1 and 0, O is zero matrix, I denotes the identity
matrix (size indicated in the subscript if necessary); diag ð·Þ
and blkdiagð·Þ represent the diagonal and the block-
diagonal matrices; Eð·Þ denotes the expectation operator.

2. Problem Formulation and CRLB

In this section, we first show how the underwater acoustic
channel and clock imperfection affect the DDS and TDOA
measurement model, then the localization problem is formu-
lated. The Cramér-Rao lower bound (CRLB) is also derived.

2.1. Problem Formulation. As depicted in Figure 1, consider
a three-dimensional underwater localization scenario where
N moving anchors are used to determine the position u =
½x, y, z�T and velocity _u = ½ _x, _y, _z�T of a moving target using
the DDS and TDOA measurements. The anchors are prede-
ployed in the interested monitoring area, and their positions
and velocities are known to the localization algorithm as si
= ½xi, yi, zi�T and _si = ½ _xi, _yi, _zi�T , i = 1,⋯,N , respectively.
Assume the anchors are synchronized and behave a com-
mon clock skew w and clock offset θ. Thus, the local time
of the anchors with respect to (w.r.t.) a universal standard
time t is give by [31].

c tð Þ =wt + θ: ð1Þ

We assume the local time of the target is the universal
standard time, i.e., clock skew is 1 and clock offset is 0.

To implement a DDS/TDOA information-based local-
ization algorithm, it is necessary to transmit signals from

the target to anchors and/or vice versa. For simplicity, we
here assume that the target radiates a signal at a single time
instant and received by each anchor after a propagation
delay. Generally, some preprocessing steps including detec-
tion, synchronization, and Doppler scale estimation are
required for underwater acoustic communication systems
[24]. Several structures of the transmitted signal can be
employed for the preprocessing steps, such as linear-
frequency-modulated (LFM) signal, cyclic-prefixed (CP)
OFDM signal, and m-sequence [32]. In this paper, as origi-
nally suggested in [33], we adopt an LFM preamble and an
LFM postamble around each data frame to estimate the
DDS and TDOA. The main reason for choosing an LFM sig-
nal rather than other signals is its robustness against the
Doppler effect as well as its good cross-correlation perfor-
mance in environments corrupted by white Gaussian noise.

Consider a multipath underwater channel between the
target and the ith anchor that has the impulse response [6].

hi τ, tð Þ = 〠
M

p=1
Ai,p tð Þδ τ − τi,p tð Þ� �

, ð2Þ

whereM is the number of paths, Ai,pðtÞ is the corresponding
time-varying path attenuation, and τi,pðtÞ is the time-varying
path delay. Assuming that the duration of transmitted signal
is short enough, the relative movement between the target
and anchor is small. Thus, the time variation of the path
delay can be reasonably approximated by a Doppler scale
ai,p as

τi,p tð Þ = τi,p − ai,pt, ð3Þ

and the path attenuation are assumed constant Ai,pðtÞ = Ai,p.
Moreover, we assume all paths have a similar Doppler scale
ai, which has already been justified in [6]. Finally, the under-
water acoustic channel model is approximated as

target 
node u°

u°
Local time: 𝜔t+𝜃

Local time: t

Local time: t

Local time: t

anchor 
node 

SN

SN

x

y

z

•
S 1

S 1

S i

S i
•

•

Measurements:

The differential doppler scale (DDS)
Time–difference–of–arrival (TDOA)

•
•

Figure 1: The underwater localization scenario.
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hi τ, tð Þ = 〠
M

p=1
Ai,pδ τ − τi,p + ait

� �
: ð4Þ

Let sðtÞ be the transmitted passband signal at the target
with duration T0, then the received passband signal at the
ith anchor is given by

yi tð Þ = s tð Þ ∗ hi τ, tð Þ = 〠
M

p=1
Ai,ps 1 + aið Þt − τi,p

� �
+ εi tð Þ, ð5Þ

where εiðtÞ is additive noise. Sampling yiðtÞ yields its discrete
time sequence which is used for extracting the DDS and
TDOA measurements. Due to the clock imperfection, the
actual sampling interval of the anchor is Ts′= Ts/w, where
Ts is the reference sampling interval. Thus, the received sig-
nal at the ith anchor is discretized as

yi n½ � = yi tð Þjt=nTs/w = 〠
M

p=1
Ai,ps

1 + ai
w

� �
n − τi,p

� �
+ εi n½ �, ð6Þ

where n = dwt/TseTs is the time index and d·e denotes the
upward rounding operator. From (6), we observe that the
joint effect of Doppler scaling and clock skew manifests itself
in scaling the signal duration from T0 to Ti,r =wT0/ð1 + ai,Þ.
The scaled signal duration can be estimated by cross-
correlating the received signal with the known LFM pream-
ble and postamble, denoted as T̂ i,r . Then, by knowing the
original signal duration T0, the Doppler scale measurement
of the ith anchor is estimated as âi = T0/T̂i,r − 1. Thus, the
Doppler scale measurement model can be defined as

âi =
1 + ai
w

− 1 + vi, i = 1,⋯,N , ð7Þ

where ai is modeled as the actual Doppler scale caused by the
target/anchor motion and is given by

ai =
u − sið ÞT _u − _sið Þ

croi
: ð8Þ

c is the acoustic propagation speed, and roi = ku − sik; vi is
the measurement noises, which are independent and identi-
cally distributed (i.i.d.) Gaussian random variables with
zero-mean and variance σ2a,i. Furthermore, based on the
LFM preamble that inserted in the transmitted signal, each
anchor is able to measure the arrival time of the first path
by using matched filtering [33]. Considering the clock model
defined in (1), the TOAmeasurement for the signal transmit-
ted from the target at the ith anchor

bτ i =w t0 + roi /cð Þ + θ + ni, i = 1,⋯,N , ð9Þ

where t0 is the unknown start transmission time of the target
and ni is TOA estimation error and modeled by i.i.d. Gauss-
ian random variables with zero-mean and variance σ2τ,i. Note
that the ocean ambient noise is very complicated; and it is
hard to model it accurately [34, 35]; we hence use the Gauss-
ian noise model for the convenience of derivation. Without
loss of generality, we choose i = 1 as the reference Doppler
scale and TOA measurement and form the DDS and TDOA
measurements, respectively, as

Δâi1 = âi − â1 =
1
w

ai − a1ð Þ + vi1, ð10aÞ

Δbτ i1 = bτ i − bτ1 = w
c

roi − ro1ð Þ + ni1, ð10bÞ

where vi1 = vi − v1, ni1 = ni − n1, and i = 2,⋯,N . It can be
seen from (10b) that the parameters t0 and θ are cancelled
out by the TDOA calculation while the clock skew w still
affects the TDOA measurements. So far, we have elaborated
the method for extracting the DDS and TDOA measure-
ments. For better understanding, this method is illustrated
in Figure 2 in which an underwater acoustic channel example
with 3 paths is used.

Stacking the DDS and TDOA measurements and fusing
them into a 2ðN − 1Þ × 1 vector, we obtain

m ≜ f T , τT
h iT

, ð11Þ

where

f = 1
w

a2 − a1,⋯, aN − a1½ �T + v21,⋯, vN1½ �T

= f o + Γv, andΓ = −1N−1, IN−1½ �,

v = v1,⋯, vN½ �T ,

τ = w
c

ro2 − ro1ð Þ,⋯, roN − ro1ð Þ½ �T + n21,⋯, nN1½ �T

= τo + Γn, and n = n1,⋯, nN½ �T :
ð12Þ

LFM 
postamble

LFM 
preamble

Data frameLFM 
preamble Data frame

Data frame
LFM 

preamble
LFM 

postamble
Transmitted 

signal
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Path 2

Path 3

Matched filter output

Received signal 
by ith anchor

𝜏
i,1

𝜏
i,2
𝜏
i,3

T
0

Tr = 1+a
𝜃T

0

LFM 
preamble

Data frame

LFM 
postambleLFM 

postamble

Figure 2: An example of extracting the Doppler scale and TOA
measurements: T0 is the signal duration, w is the clock skew, ai is
the Doppler scale, and the underwater acoustic channel has 3
paths with delay τi,1, τi,2, and τi,3, respectively.

4 Wireless Communications and Mobile Computing



The measurement error vector is Δm ≜ ½ðΓvÞT , ðΓnÞT �T ,
and its covariance matrix is Qm ≜ E½ΔmΔmT � = blkdiagðΓQv

ΓT , ΓQnΓ
TÞ, where Qv = diag ð½σ2

a,1,⋯, σ2a,N �TÞ and Qn =
diag ð½σ2

τ,1,⋯, σ2τ,N �TÞ. Note that the Doppler scale measure-
ment noises v are assumed to be independent of the TOA
measurement noises n. From (11), we can write the observed
DDS and TDOA equation in matrix form as

m =mo + Δm, ð13Þ

wheremo = ½ f oT , τoT �T . The goal of underwater localization is
estimating u, _u, andw, from the noisy measurement vectorm.
Under the mutually independent Gaussian noise condition,
the ML estimator of u, _u, and w can be formulated as [36]

ûT , b_uT , ŵ
h iT

=min
u, _u,w

m −moð ÞTQ−1
m m −moð Þ: ð14Þ

The ML problem is nonconvex, implying that there exist
multiple local minima, and the global minimum can hardly
be obtained. We shall develop an efficient estimator by con-
verting the nonconvex ML problem to a linear one.

2.2. CRLB. As observed in (13), the DDS/TDOA measure-
ment vector m is Gaussian distributed as m ~N ðmo,QmÞ.
The CRLB is the lowest possible variance that an unbiased
estimator can achieve. For the unknown vector φ =
½u, _u,w�T , its CRLB is given by [36]

CRLB φð Þ = J φð Þ−1, ð15Þ

where JðφÞ is the Fisher information matrix (FIM). Using
the notation ∇a

b = ∂a/∂b, JðφÞ can be calculated as

J φð Þ = ∇mo

φ

� 	T
Q−1

m ∇mo

φ : ð16Þ

The partial derivative in (16) can be expressed as

∇mo

φ = ∇f o

u ∇f o

_u ∇f o

w

∇τo

u ∇τo

_u ∇τo

w

" #
, ð17Þ

where

∇f o

w i − 1ð Þ = −w−2 ai − a1ð Þ,

∇f o

u i − 1 :ð Þ =w−1 _u − _sið ÞT
croi

−
ai u − sið ÞT

roi
2 −

_u − _s1ð ÞT
cro1

+ a1 u − s1ð ÞT
ro1

2

!
,

 

∇f o

_u i − 1 :ð Þ = w−1

c
u − sið ÞT
roi

−
u − s1ð ÞT
ro1

 !
,

∇τo

w i − 1ð Þ = roi − ro1
c

, ∇τo

u i − 1 :ð Þ =w2∇f o

_u i − 1 :ð Þ,

∇τo

_u =O N−1ð Þ×3, i = 2,⋯,N:

ð18Þ

Based on the equations above, the FIM can be easily cal-
culated, and hence, the CRLB is obtained.

3. Proposed Methods

The proposed method has two stages. The first stage creates
a set of pseudolinear equations for the nonlinear DDS and
TDOA measurements by introducing nuisance variables.
Then, an initial solution is obtained through WLS optimiza-
tion. The second stage utilizes the relationship between the
nuisance variables and the interested parameters to refine
the first stage solution.

3.1. First Stage: Transforming the Nonlinear Measurement
Equation to a Pseudolinear One. To fuse the DDS and
TDOA measurements, we start from transforming (10a)
and (10b) as

_ri1 = _roi1 + _εi1 =
1
w

_roi − _ro1ð Þ + _εi1, ð19aÞ

ri1 = roi1 + εi1 =w roi − ro1ð Þ + εi1, ð19bÞ

where _ri1 = cΔâi1, ri1 = cΔbτ i1, _εi1 = cvi1, εi1 = cni1, and

_roi =
u − sið ÞT _u − _sið Þ

roi
: ð20Þ

Considering the noise free TDOA measurement in
(19b), which can be written as

roi1 =w roi − ro1ð Þ: ð21Þ

Upon rewriting (21) as roi1 +wro1 =wroi , squaring both
sides, and substituting roi = ku − sik for roi

2 and ro1
2, we have

a set of TDOA equations for i = 2,⋯,N .

roi1
2 + 2wroi1ro1 =w2 sTi si − sT1 s1 − 2 si − s1ð ÞTu

� 	
: ð22Þ

Taking the time derivative of (22) results in a set of DDS
equations for i = 2,⋯,N .

wroi1 _r
o
i1 +w2 _roi1r

o
1 + roi1 _r

o
1 =w sTi _si − sT1 _s1 − _si − _s1ð ÞTu − si − s1ð ÞT _u

� 	
:

ð23Þ

In terms of the noisy quantities by putting roi1 = ri1 − εi1
and _roi1 = _ri1 − _εi1 into (22) and (23) and ignoring the
second-order error terms, we arrive at

e1 = h1 − G1φ1, ð24Þ

where φ1 = ½u, η1, η2, _u, η3,w1�T is defined as the parameter
vector, in which η1 = ro1w

−1, η2 =w−2, η3 = _ro1w
−1, and w1 =
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wro1. The vector h1 and matrix G1 are defined as

h1 =

sT1 s1 − sT2 s2

⋮

sT1 s1 − sTNsN

2 r21 _r21 + sT1 _s1 − sT2 _s2
� �

⋮

2 rN1 _rN1 + sT1 _s1 − sTN _sN
� �

2666666666664

3777777777775
,

G1 i − 1, :ð Þ = −2 si − s1ð ÞT , ri1, 0:5r2i1, 01×5
h i

,

G1 i +N − 2, :ð Þ = −2 _si − _s1ð ÞT , 01×2, si − s1ð ÞT , ri1, _ri1
h i

,

i = 2,⋯,N ,
ð25Þ

and the noise vector e1 is defined as

e1 = B1
ε1

ε2

" #
, B1 =

O B

D C

" #
,

ε1 = _ε21,⋯,_εN1½ �T , ε2 = ε21,⋯,εN1½ �T ,
B = 2w−1 diag ro2,⋯, roN½ �ð Þ,
C = 2w−1 diag _ro2,⋯, _roN½ �ð Þ,
D = 2w diag ro2,⋯, roN½ �ð Þ:

ð26Þ

Thanks to the nuisance variables η1, η2, η3, and w1 intro-
duced in the parameter vector φ1, it makes (24) become a set
of linear equations with respect to φ1. As a result, φ1 can be
estimated by the WLS method, whose solution is given as
[36]

bφ1 = G1
TW1G1

� �−1
G1

TW1h1, ð27Þ

where W1 is the weighting matrix chosen as

W1 = E e1e1
T
 �−1 = B1QmB1

T� �−1, ð28Þ

where Qm = c2Qm. Note that the weighting matrix is depen-
dent on the true values of clock skew, source position, and

velocity through B1. To cope with this, W1 = ~Q−1
m is first

employed to calculate an initial estimate from (27), which
will be used back into (28) for an improved version of W1,
then leading to a better estimate of φ1. The estimation error
in bφ1 can be calculated as

Δφ1 = bφ1 −φ1 = G1
TW1G1

� �−1
G1

TW1e1: ð29Þ

The covariance matrix of bφ1 is, therefore, assuming small
measurement noise so that the noise in G1 can be ignored

[36].

cov bφ1ð Þ ≈ G1
TW1G1

� �−1
: ð30Þ

3.2. Second Stage: Refining the Estimate Obtained in the First
Stage. In this stage, we shall refine the estimate obtained in
the first stage by utilizing the relationship between the
parameters in φ1. In fact, they are related to each other
through the following equations:

η1w1 = ro1
2 = u − s1k k2, ð31aÞ

η1
2 = η2r

o
1
2 = η2 u − s1k k2, ð31bÞ

η1η3 = η2 _r
o
1r

o
1 = η2 u − s1ð ÞT _u − _s1ð Þ, ð31cÞ

η3w1 = _ro1r
o
1 = u − s1ð ÞT _u − _s1ð Þ: ð31dÞ

Note that there are only three independent equations
among the equations in (31a), (31b), (31c), and (31d), since
any one of the equations in (31a), (31b), (31c), and (31d) can
be interpreted from the others. Without loss of generality,
we use the relationships in (31a), (31b), and (31d) to per-
form the second stage estimation.

To start with, recall that the estimation error in bφ1 is
Δφ1. Expressing bφ1ð1 : 3Þ = u + Δφ1ð1 : 3Þ and subtracting
both sides by s1, we have

bφ1 1 : 3ð Þ − s1ð Þ ⊙ bφ1 1 : 3ð Þ − s1ð Þ ≈ u − s1ð Þ ⊙ u − s1ð Þ
+ 2 u − s1ð Þ ⊙ Δφ1 1 : 3ð Þ:

ð32Þ

where the second-order error terms are ignored. Similarly,
expressing bφ1ð6 : 8Þ = _u + Δφ1ð6 : 8Þ and combing with
the position estimates, we have

bφ1 1 : 3ð Þ − s1ð Þ ⊙ bφ1 6 : 8ð Þ − _s1ð Þ ≈ u − s1ð Þ ⊙ _u − _s1ð Þ
+ _u − _s1ð Þ ⊙ Δφ1 1 : 3ð Þ + u − s1ð Þ ⊙ Δφ1 6 : 8ð Þ:

ð33Þ

Substituting η1 = bφ1ð4Þ − Δφ1ð4Þ, η2 = bφ1ð5Þ − Δφ1ð5Þ,
η3 = bφ1ð9Þ − Δφ1ð9Þ, and w1 = bφ1ð10Þ − Δφ1ð10Þ into the
equations (31a), (31b), and (31d), we obtain

bφ1 10ð ÞΔφ1 4ð Þ + bφ1 4ð ÞΔφ1 10ð Þ ≈ bφ1 4ð Þbφ1 10ð Þ − u − s1k k2,
ð34aÞ

2bφ1 4ð ÞΔφ1 4ð Þ − ro1
2Δφ1 5ð Þ ≈ bφ1 4ð Þ2 − bφ1 5ð Þ u − s1k k2,

ð34bÞ

bφ1 10ð ÞΔφ1 9ð Þ + bφ1 9ð ÞΔφ1 10ð Þ ≈ bφ1 9ð Þbφ1 10ð Þ − u − s1ð ÞT _u − _s1ð Þ:
ð34cÞ

In order to provide an estimation of w in the second
stage, we incorporates an additional equation
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Δφ1 5ð Þ = bφ1 5ð Þ −w−2: ð35Þ

Staking (32)–(35), we arrive at

e2 = h2 −G2φ2, ð36Þ

where

h2 =

bφ1 1 : 3ð Þ − s1ð Þ ⊙ bφ1 1 : 3ð Þ − s1ð Þbφ1 1 : 3ð Þ − s1ð Þ ⊙ bφ1 6 : 8ð Þ − _s1ð Þbφ1 4ð Þbφ1 10ð Þbφ1 4ð Þ2bφ1 9ð Þbφ1 10ð Þbφ1 5ð Þ

2666666666664

3777777777775
,

G2 =

I3 O3×3 03×1
O3×3 I3 03×1
11×3 01×3 0bφ1 5ð Þ11×3 01×3 0
01×3 11×3 0
01×3 01×3 1

266666666664

377777777775
,

φ2 =
u − s1ð Þ ⨀ u − s1ð Þ
u − s1ð Þ ⨀ _u − _s1ð Þ

w−2

2664
3775:

ð37Þ

On the left side of (45), the noise vector e2 is defined as

e2 = B2Δφ1,

B2 =
2C1 O3×2 O3×3

D1 O3×2 C1

O4×3 ET
1 O4×3

O3×2

O3×2

ET
2

2664
3775,

C1 = diag u − s1ð Þ,D1 = diag _u − _s1ð Þ,

E1 =
wro1 2w−1ro1

0 −ro1
2

0 0
0 1

" #
,

E2 =
0 0

w−1ro1 0
wro1 0
w−1 _ro1 0

" #
:

ð38Þ

Equation (36) is a set of linear equations with respect to
φ2; its WLS solution is given by [36]

bφ2 = G2
TW2G2

� �−1
G2

TW2h2, ð39Þ

where W2 is the weighting matrix, which is given as

W2 = E e2e2
T
 �−1 = B2 cov bφ1ð ÞB2

T� �−1
: ð40Þ

To examine the covariance of the second-stage solutionbφ2, subtracting both sides of (39) by φ2 and using (36) gives

Δφ2 =φ2 − bφ2 = GT
2W2G2

� �−1
GT
2W2e2: ð41Þ

Hence, under small noise conditions, the covariance of
the second stage solution bφ2 is given by [36]

cov bφ2ð Þ ≈ G2
TW2G2

� �−1
: ð42Þ

Finally, the clock skew, source position, and velocity

The proposed estimator
Input: Anchor’s parameter, DDS/FDOA measurements, the measurement noise covariance.
First stage processing:

1: Initialization: W1 = ~Q−1
m .

2: Forl = 1toNiter (Niter is the number of iterations)
3: computing bφ1 from (27);
4: substituting bφ1 into (28) to update W1;
5: end For
Second stage processing:
6: Computing covðbφ1Þ using (30).
7: Using bφ1 to calculate B2 and obtaining W2 using (40).
8: Forl = 1toNiter
9: computing bφ2 from (39);
10: applying (43a), (43b), and (43c) to generate the estimates;
11: substituting the estimates from (43a), (43b), and (43c) in B2 and updating W2 using (40) accordingly;
12: end For
Output: the target position and velocity, and the clock skew estimates.

Algorithm 1
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Figure 3: RMSE performance versus σ under scenario 1: (a) clock skew; (b) target position; (c) target velocity.
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Figure 4: RMSE performance versus σ under scenario 2: (a) clock skew; (b) target position; (c) target velocity.
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estimates can be deduced from the definition of φ2.

û =Π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibφ2 1 : 3ð Þ

q
+ s1, ð43aÞ

b_u = bφ2 4 : 6ð Þ:
u − s1ð Þ + _s1

, ð43bÞ

ŵ = 1ffiffiffiffiffiffiffiffiffiffiffiffibφ2 7ð Þ
p , ð43cÞ

where Π = diag ðsign ðbφ1ð1 : 3Þ − s1ÞÞ is used to avoid the
sign ambiguity caused by the square root operation.

Similar to W1, the weighting matrix W2 is also depen-
dent on the true values of clock skew, source position, and
velocity through B2. In practice, these true values can be
substituted by the solution in bφ1 and then updated by the
values in (43a), (43b),and (43c). We find that iterating one
or two times leads to a good solution that meets the CRLB
performance.

We summarize the prototype of our proposed estimator
in Algorithm 1.

4. Performance Analysis

In this section, we shall analyze the theoretical covariance
matrix of the proposed solution and compare it with the
CRLB. By taking the differential of φ2 defined below (45),
we can relate the estimation error of (43a), (43b), and

(43c) with that of bφ2 as

Δφ = Δu, Δ _u, Δw½ �T = B−1
3 Δφ2,

B3 =
2 diag u − s1ð Þ O3×3 03×1
diag _u − _s1ð Þ diag u − s1ð Þ 03×1

01×3 01×3 −2w−3

2664
3775: ð44Þ

The bias of the final solution is given by taking expecta-
tion of Δφ. Obviously, it can be seen that Δφ is linearly
related to ½ε1, ε2�T through the definitions of e1, Δφ1, e2,
and Δφ2. Since ½ε1, ε2�T is zero mean (when the noise is
small), Δφ is also zero mean, which implies that the solution
estimate is unbiased over a small noise region. Multiplying
(44) by its transpose and taking expectation yields

cov bφð Þ = B−1
3 cov bφ2ð ÞB−T

3 : ð45Þ

After substituting the corresponding covariance matrices
in (30) and (42), (45) becomes

cov bφð Þ = GT
3Q

−1
m G3

� �−1, ð46Þ

where

G3 = c−1B−1
1 G1B

−1
2 G2B3: ð47Þ

Note that (46) has the same form as the CRLB given in
(15) and (16). We shall compare cov ðbφÞ with the CRLB
under the case of far-field target. It has been shown that
comparing cov ðbφÞ with the CRLB for near-field target is
not easy due to the tedious form of cov ðbφÞ; however, the
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Figure 5: RMSE performance versus σ under scenario 2: (a) clock skew; (b) target position; (c) target velocity.
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theoretical result drawn from the case of far-field target is
also valid for near-field target in most cases [20]. For far-
field target, we have the following two conditions

ið Þ ro1 ≈ ro2 ≈⋯≈ roN ,
iið Þ _roi /roi ≈ 0, i = 1,⋯,N:

ð48Þ

The first condition indicates that the distances of the tar-
get to different receivers are approximately the same since
the target is very far away from the anchors. The second
condition implies that the velocities of underwater nodes
are ignorable compared to the distances. This is valid due
to two reasons: (1) the distances are large for far-field target;
(2) underwater objects usually move slowly (several meters
per second).

We now evaluate the matrix G3. Substituting the relevant
matrices into G3, after some straightforward algebraic
manipulation and appropriately using the conditions in
(48), we can show that the elements of G3 can be approxi-
mated as

G3 i − 1, 1 : 3ð Þ ≈w−1 _s1 − _si
croi

−
_roi s1 − sið Þ

croi
2

� �
,

G3 i − 1, 4 : 6ð Þ ≈ w−1

c
s1 − sið Þ
roi

,

G3 i − 1, 7ð Þ ≈ −
w−1

c
ro1 _ri1
roi

,

G3 N + i − 2, 1 : 3ð Þ ≈ w
c

s1 − sið Þ
roi

,

G3 N + i − 2, 4 : 6ð Þ ≈ 01×3,

G3 N + i − 2, 7ð Þ ≈ w−1

c
ro1ri1
roi

,

ð49Þ

where i = 2,⋯,N . Then, using the variable relationships that
_roi = cai, w_roi1 = _roi − _ro1, and roi1 =wðroi − ro1Þ and the approxi-
mations that _ri1 ≈ _roi1, ri1 ≈ roi1 and roi ≈ ro1, i ≠ 1, we arrive at

G3 ≈ ∇mo

φ : ð50Þ

This completes the proof that the proposed solution in
Section 3 can attain the CRLB accuracy for small Gaussian
noise and far-field target. Due to the tedious form of cov ðbφÞ, so far, we are not able to study the performance of the
proposed solution under the case of near-field target. How-
ever, the simulation results in the next section show that
the proposed solution can reach the CRLB for near-field tar-
get as well.

5. Numerical Examples

In this section, Matlab simulations are carried out to verify
the effectiveness of the proposed localization algorithm
(denoted by “proposed method-case 1”) by comparing with
the CRLB, the WLS method assuming perfect clock [19],

and the proposed method considering the combination
model of clock skew-free DDS model and clock skew-
involved TDOA model (denoted by “proposed method-
case 2”) (Note that the case of only considering the clock
skew in DDS measurements is not included for comparison.
This is because that the DDS measurement is much less than
the TDOAmeasurement (about two orders of magnitude) so
that the clock skew marginally affects the DDS measurement
or even be overwhelmed by the noise. Thus, the estimates
under this case is of poor accuracy as we observed in the
simulations. As a result, the estimation performance of this
case is not included.). The algorithm derivation of the pro-
posed method, case 2, is similar to the procedure given in
Section 3, and we would not repeat the derivation for sim-
plicity. The performance criterion is the average root mean
square error (RMSE), which can be expressed asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1/Nexp∑
Nexp
j=1 kbξ ðjÞ − ξk

2
r

, where bξ ðjÞ is the estimate of ξ ∈
fu, _u,wg obtained in the jth trial. Each simulation result is
averaged over Nexp = 2000Monte Carlo trials. Two scenarios
are considered in our simulation with the target being a
near-field one and a far-field one. In scenario 1, 10 anchors
and 1 target are randomly placed in a 1000 × 1000 × 1000
cube centered at ½500, 500, 500�T , the velocities of the nodes
are randomly drawn from ½−3, 3�m/s, and the clock skew is
randomly drawn from ½0:995, 1:005�. The sound propaga-
tion speed is set as 1500m/s. The errors fεi1g and f_εi1g are
zero-mean white Gaussian processes with identical variances
of σ2 and 0:01σ2, respectively. In scenario 2, the target is
placed in ½−300,−300,−300�T while the other settings are
the same as scenario 1. Scenario 1 is a near-field target case
while the scenario 2 is a far-field target case. Both scenarios
are used to test the RMSE performance of the considered
localization methods.

Figure 3 plots the RMSE of the considered localization
algorithms versus σ ∈ ½1, 5�ms under scenario 1. It should
be noted that perfect clock is assumed to be available in [19].
Therefore, only the clock skew estimation of our proposed
method is presented in Figure 3(a). It is seen that the accuracy
of the proposed method-case 1 approaches the CRLB in the
whole noise range while the one that is using a mismatched
DDS model (i.e., “proposed method-case 2”) is optimal only
when σ ≤ 3ms. This corroborates the theoretical analysis in
Section 4. As expected, the WLS method assuming a perfect
clock yields the worst performance in the whole noise range.
The performance gap between the WLS method assuming
perfect clock and the proposed method-case 1 increases as
the measurement noise increases. This demonstrates the sig-
nificance of taking the clock imperfection into account.
Regarding implementation complexity, the average computa-
tion times per trial for the proposed method-case 1, proposed
method-case 2, and the WLS method assuming perfect clock
[19] are measured as 8:9 × 10−4 s, 10 × 10−4 s, and 7:8 × 10−4
s, respectively. This indicates the computational attractiveness
of the proposed method.

Figure 4 plots the RMSE of the considered localization
algorithms versus σ ∈ ½1, 5�ms under scenario 2. We again
see the superiority of our proposed method over the WLS
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method without considering the clock imperfection. How-
ever, the location accuracy is generally worse for a far-field
target than a near-field target as shown in Figures 4(a) and
4(b). To be specific, the proposed method reaches the CRLB
only when σ ≤ 2ms. Despite the optimality, the RMSE of the
target position and the velocity are larger than the one under
scenario 1 by around 10 times as illustrated in Figures 4(b)
and 4(c). This is because that the far-field target case implies
a bad localization geometry, which leads to a significant
decrease in target location accuracy. What is more, as shown
in Figure 4(b), the position RMSEs of the proposed method-
case 1 and proposed method-case 2 almost overlap. This
indicates that the contribution of explicitly considering the
clock skew in DDS model to the position estimation is mar-
ginal for a far-field target. To conclude the effect of the target
position on the considered localization methods, a good
localization geometry is very significant for all the methods.
Although the RMSE performance of our proposed method is
heavily deteriorated under a far-field target case, it still out-
performs the localization method ignoring the clock
imperfection.

Figure 5 plots the RMSE of the considered localization
algorithms versus clock skew ∈½0:96,1:04� under scenario 1.
The noise standard deviation σ is set to be 3ms. In this sim-
ulation, we aim to study the impact of the value of clock
skew on the considered algorithms. Note that the range of
clock skew adopted here is based on the clock synchroniza-
tion performance of widely used underwater acoustic
modem (S2CR series) [37]. As it can be seen from
Figure 5, along with the increase of the clock skew (both in
positive or negative direction), the localization performance
of the WLS method which have no regard for the clock skew
gets worse. However, it has almost no effect on our proposed
methods. This validates that the proposed localization algo-
rithm is robust to the clock skew variation.

6. Conclusion

A new model for DDS/TDOA-based underwater localization
with considering the clock imperfection has been proposed.
Based on such a model, two WLS estimators are devised for
underwater target parameters (position and velocity) and the
clock skew estimation. The first one introduces nuisance
variables to eliminate the coupling relationships between
parameters; as a result, we obtain a pseudolinear estimation
model for calculating a coarse estimate. The second WLS
estimator refines the estimate by exploiting the coupling
relationships between the target parameter, clock skew, and
nuisance variables. The RMSE performances of the proposed
estimator are compared with other competitive estimators
by computer simulations. The performance of the proposed
method is shown in theory and by simulations to reach the
CRLB accuracy under sufficiently small noise conditions.
As a future direction, we shall validate the performance of
the proposed method using real underwater DDS/TDOA
measurements.

With regard to the scalability issue, we notice that the
proposed algorithm is designed to localize a single target
node by using multiple anchor nodes. However, when there

presents multiple target nodes, the localization scheme pro-
posed in this work may turn to be inapplicable. In the future
work, we aim to develop a multistage underwater node local-
ization scheme to achieve large-scale underwater network
positioning. The key idea of multistage scheme lies in that
the localized target nodes can be used as anchor nodes to
localize other unlocated nodes. As performing iteratively,
the localization range is gradually increasing.
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The nature of the multipath channel and the peak-to-average power ratio (PAPR) are regarded as the main challenges restricting
the design of a multicarrier reliable underwater acoustic (UWA) communication. This paper proposes a new scheme, precoded
index modulation orthogonal frequency division modulation spread spectrum (IM-OFDM-SS), for UWA communication. The
precoded IM-OFDM-SS is proposed to increase the transmission efficiency and exploit the spreading and multipath diversities
and, at the same time, reduce the PAPR to achieve a reliable communication system. Two different precoders, discrete Hartley
transform (DHT) and discrete cosine transform (DCT), are utilized in the proposed scheme and compared with the
conventional IM-OFDM-SS scheme. Simulation and real experimental results demonstrate the outperformance of the proposed
precoded IM-OFDM-SS in comparison to the conventional benchmarks in terms of PAPR and bit error rate (BER) performance.

1. Introduction

An underwater acoustic (UWA) channel is regarded as one of
the most complicated media in use due to its challenging
effects. The main challenges of UWA channels are represented
by the long-delay effect and doubly selective channel caused by
the oceanic environment [1, 2]. As the receiver, the signal is
superimposed due to the substantial multipath effect causing
a superposition of the signal at the receiver side rising a severe
intersymbol interference (ISI) in the ocean environment.
Therefore, exhaustive processing must be employed at the
receiving end for equalizing and estimating the channel to
ensure the reliability of UWA communication.

As a result, researchers are working hard to establish a
reliable UWA communication with an acceptable data rate
in that environment using two main modulation techniques,
which are single-carrier and multicarrier modulations. On
the one hand, single-carrier modulation was proven to be
capable of dealing with the ISI since the adaptive equalizer
can be employed, e.g., a decision feedback equalizer with a
recursive least squares algorithm [3]. Furthermore, the use
of correcting coding can also provide communication with

better quality [4]. The main drawback of a single-carrier sys-
tem is the high-complexity process required for recovering
the channel’s effects at the receiving end. On the other hand,
multicarrier modulation is presented to avoid that concern;
it can mitigate the delay spread and bandwidth limitation
of the UWA channel with less required processing. A multi-
carrier modulation system is able to recover the channel
using a significantly low-complexity equalizer, but unfortu-
nately, the significant Doppler effect leads to severe intercar-
rier interference (ICI) [5, 6].

Orthogonal frequency division multiplexing (OFDM)
can be considered the finest choice which can effectively
overcome the UWA channel effects. That is due to its ability
to deal with the long multipath spread UWA channel with
low-complex frequency-domain equalization; this means
that, different from signal carrier systems, OFDM does not
require a complicated time-domain equalization [5, 7, 8].
Despite those advantages, OFDM still has a problem with
the high peak-to-average power ratio (PAPR) in UWA com-
munication, limited spectral efficiency, and performance
deterioration in communication systems with harsh chan-
nels [9].
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Consequently, to overcome the OFDM PAPR perfor-
mance and increase its resilience to multipath fading chan-
nels, channel-independent unitary precoders were utilized
in OFDM systems [10]. Intensive research on using different
unitary precoders such as Walsh-Hadamard transforms
(WHT), discrete Hartley transform (DHT) [11], and discrete
cosine transform (DCT) [12, 13] showed that system com-
plexity and PAPR reduction level are mainly determined
by the used unitary precoder.

Recently, the index modulation OFDM (IM-OFDM) was
proposed [14–17] to overcome the intercarrier interference
(ICI) that existed in the conventional OFDM scheme as well
as improve its spectral efficiency. Unlike OFDM, the subcar-
riers in OFDM-IM are classified to be active or idle, where
the data is carried physically by digital modulation via the
active subcarriers and, at the same time, the index of the
active subcarriers conveys additional information bits.
OFDM-IM can provide better BER performance in low-to-
medium data rate systems compared to OFDM. The maxi-
mum likelihood (ML) detector, regarded as an optimal
detector, is employed at the receiver for jointly detecting
the index of active subcarriers and modulated data. Apart
from the high computational complexity of the ML receiver,
the channel estimation error leads to dramatic deterioration
of the performance of the ML decoder [18]. That issue
becomes exhaustive in such untrusted communication sys-
tems like UWA communication. That is because of the
dependence between the detection of data symbols and
active subcarriers. In other words, the erroneous detection
of active subcarriers leads to the incorrect decision of the
data symbols [19]. Therefore, detecting the varied index of
active subcarriers must be guaranteed at the receiving end
by having perfect knowledge on the channel, which is one
of the main difficulties in UWA communication.

On the other hand, the index modulation OFDM spread
spectrum (IM-OFDM-SS) [18] was presented to improve the
diversity gain of OFDM-IM. Unlike OFDM-IM, IM-OFDM-
SS activates all subcarriers to transmit the modulated data
symbols, but it spreads each data symbol across different
subcarriers using a predefined spreading code. Specifically,
the information bits are divided into two parts: one part is
transmitted via the index of that predefined spreading code
and the other part is carried by the spread modulated data
symbols. Therefore, additional diversity is gained as the data
symbols are spread across different subcarriers. Additionally,
the maximal ratio combining (MRC) detector can straight-
forwardly be employed at the receiving end for performing
low-complex detection as well as avoiding the issues of the
ML detector related to the channel estimation susceptibility
[18]. Despite those advantages, IM-OFDM-SS and OFDM-
IM inherit the high PAPR from conventional OFDM
systems.

In order to overcome the PAPR issue of OFDM and har-
vest higher diversity gain, X-transform IM-OFDM-SS has
been presented in [20]. The higher performance of PAPR
in that scheme is acquired by the low-complex X-
transform matrix, composed of the discrete Fourier trans-
form (DFT) matrix and DHT matrix. The channel effects
in that scheme are recovered in the time-domain pseudo-

noise (PN) packet inserted for estimation tasks as well as
guard interval. The enhanced performance provided by X-
transform IM-OFDM-SS can only be guaranteed when con-
sidering the slow-varied UWA channel as the overhead
packets are inserted at the beginning and at the end of each
symbol. Moreover, inserting additional overhead packets
might lead to deteriorating the structure of the X-
transform matrix.

Motivated by those advantages offered by IM-OFDM-SS
and X-transform IM-OFDM-SS, the contribution of this
paper is to propose a new scheme called precoded IM-
OFDM-SS to maximize the efficiency of the limited band-
width of the UWA channel, decrease the higher PAPR,
and suppress the residual ICI. Discrete cosine transform
(DCT) type II and Hartley transform (DHT) are used as a
spreading matrix for the new precoded IM-OFDM-SS.
Unlike X-transform IM-OFDM-SS [20], the proposed
schemes insert the overhead packets in the frequency
domain to track the fast-varied UWA channel effects.
Although the PAPR performance is a little bit deteriorated
compared to our proposed scheme in [20], we believe that
the proposed schemes are environment dependent making
them very attractive for the untrusted UWA communication
systems. Thanks to the precoding and spreading techniques
of the new schemes, the information symbols are distributed
over all new scheme subcarriers; hence, the symbol of a
highly attenuated subcarrier can be recovered from the other
subcarriers. The new precoded IM-OFDM-SS uses the
unequal attenuation effect over the spread subcarrier sym-
bols to avoid the underwater burst error and improve the
UWA communication reliability. The rest of this paper is
structured as follows: the system model, including the trans-
mitter and the receiver of the proposed schemes, is pre-
sented in Section 2. The system performance analysis is
studied in Section 3. Simulation and experimental results
are shown in Section 4, and the conclusion of this paper is
presented in Section 5.

2. System Model

The proposed IM-OFDM-SS structure is shown in Figure 1,
letting the input of the bit splitter be B data bits. The B bits
are divided into G groups, and each group has m bits, m =
B/G. Bit splitter divides bits of each group g ∈ f1,⋯,Gg into

two subgroups PðgÞ
1 and PðgÞ

2 . PðgÞ
1 is transmitted via the index

of the selected spreading code ciðgÞ out of the preconfigured
code set ∁ = fc1,⋯,cng, where iðgÞ ∈ f1,⋯ng is the index of
the g-th group spreading code. The ciðgÞ length is n. The

other subgroup PðgÞ
2 is mapped into the sðgÞ ∈ χ symbol, χ

is any M-ary digital modulation with a unit average power,

and PðgÞ
2 = log2ðMÞ. The modulated constellation symbols

sðgÞ will be spread over the spreading code ciðgÞ selected using

PðgÞ
1 index bits as follows:

xg = x gð Þ
1 ,⋯, x gð Þ

n

h iT
= s gð Þci gð Þ ,1,⋯, s gð Þci gð Þ ,n

h iT
: ð1Þ
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In this paper, to relax the receiver complexity, the max-
imum size of ∁ spreading codes is normally restricted to
be n since it must be mutually orthogonal, and we can con-
sider 5the orthogonal codes of Walsh or Zadoff-Chu (ZC)
[18]. The data symbol vector ½�d�M×1 = ½x1, x2,⋯, xG� is gen-
erated by concatenating xg of all groups, and the total trans-
mitted bits via the new precoded IM-OFDM-SS can be
written as

N =G × log2 nð Þ + log2 Mð Þð Þ: ð2Þ

Unlike the conventional IM-OFDM-SS, the proposed
precoded IM-OFDM-SS multiplies the vector of spread data
symbol �d by a precoding matrix; P resulting in the pre-
coded data symbol noted d, noted byd =P�d. In this
paper, DCT type II and DHT are considered precoding
matricesP,P ∈ℝM×M; the ðr, lÞ entries of DCT and DHT
are given in (3) and (4), respectively. In both cases, the P
matrix is invertible and has a flexible size which can be
any positive integer; its entries have the same magnitude.
Consequently, all IM-OFDM-SS data symbols 5are equally
spread over M with significant diversity gain compared to
the conventional IM-OFDM-SS.

pr,l =

ffiffiffiffiffiffiffi
2
M

r
cos l − 1ð Þ 2l − 1ð Þπ

2M

� �
, r > 1,ffiffiffiffiffiffi

1
M

r
, r = 1,

8>>>><>>>>:
ð3Þ

ρr,l = cos 2πrl
M

� �
+ sin 2πrl

M

� �
: ð4Þ

For channel estimation purposes, pilot tones dP are
multiplexed with the d to estimate the doubly selective
UWA channel. The resulted vector dT ∈ℂN×1 including

data, pilots, and null subcarriers is fed into the OFDM mod-
ulator as the inverse fast Fourier transform (IFFT) is used for
modulating information symbols. Then, the cyclic prefix
(CP) is inserted as a guard interval resulting in the transmit-
ted baseband signal expressed as follows:

s tð Þ = 〠
N/2−1

n=−N/2
dT n½ �ej2πnΔft, ð5Þ

where Δf is the OFDM subcarrier frequency spacing. Then,
the baseband signal transmitted over the UWA channel will
be processed by upconversion including upsampling and
carrier modulation. The underwater channel can be written
as [21]

h t, τð Þ = 〠
L

ρ=1
αρ tð Þδ τ − τρ − βρt

� �� �
, ð6Þ

where αρðtÞ, τρðtÞ, δðtÞ, and βρ denote the time-varying
amplitudes of the path ρ, delays of L multipath components,
Dirac delta function, and Doppler scaling factor (DSF),
respectively. The received passband signal is

y tð Þ = Re 〠
L

ρ=1
αρ 〠

N/2−1

n=−N/2
dT n½ �ej2πnΔf t+βt−τρð Þ:p t + β − τρ

� �" #(
× ej2πf c t+βt−τρð Þo + v tð Þ,

ð7Þ

where vðtÞ ~CN ð0, σ2Þ is the passband additive white
Gaussian noise (AWGN). f c and pðtÞ denote the carrier fre-
quency and pulse shaping filter, respectively. Root-raised
cosine-type pulse shaping filters are used in both the trans-
mitter and the receiver. In (7), each path of the received

B bits

Code
selector

m(g)

m(1)

ci (g)

ci (1)

s (g)

s (g)

x (g)
x1

(g)

x1
(1)

xn
(g)

xn
(1)s (1)

x (1)

Modulated
 data

Code
selector

Modulated
data

Block
creator

IFFT
transform

Guard
insertion 

Up-sampling Carrier
modulationBit

splitter

Band-
pass filter

Band-
pass filter

UWA
channel

Data frame
synchroni

zation

Doppler
estimation &

compensation 
Carrier de-
modulation

Channel
estimation &
equalization 

Down-sampling &
guard removal

Demodulation
B bits IM

Detector

Pilot data
insertion

Pilot data

FFT
transform

Pilot data
removal

Despread

S (t)

y (t)

Spreading

Spreading

s

s

P2
(g)

P1
(1)

P1
(g)

P2
(1)

d

d

d

d

dp

p

p–1

Z

Z

...
...

...

ˆ

ˆ

ˆ ˆ

Figure 1: Structure of the UWA precoded IM-OFDM-SS system.
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signal is scaled in ðT ~ T/ð1 + βÞÞ; T is the OFDM symbol
duration. Also, a Doppler shift ej2πβf n t is affecting every sub-
carrier. The frequency-dependent Doppler shift causes a
critical ICI in the UWAC. To mitigate the ICI effect, the
two-step Doppler estimation and compensation in [21] are
adopted in this paper where two low-frequency modulation
(LFM) segments are used as preamble and postamble to
coarsely estimate the DSF at the receiver end. The DSF is
estimated by a cross-correlation between yðtÞ and those
two known segments, preamble and postamble. Cross-
correlation operation will give a signal with two peaks; the
first one is utilized for synchronization. The difference
between first and second cross-correlation peaks is used to
find the length of the received signalB′. By comparing B

′ with the length of transmitted signal lengthB which is
supposed to be known, the DSF can be estimated as

β′ = B

B′ − 1: ð8Þ

The received signal is resampled at the receiving end as
in (7) at ð1 + β′Þf s, where f s is the original sampling fre-
quency used at the transmitter side. The resampled received
signal under a resampling factor β′ is zðtÞ = yðt/ð1 + β′ÞÞ, z
ðtÞ = Re ðzðtÞej2πf ctÞ. Considering ð1 + βÞ/ð1 + β′Þ = 1, zðtÞ
can be expressed as

z tð Þ ≈ ej2πβ−β′/1+β′ f ct

× 〠
N/2−1

n=−N/2
dT n½ �ej2πnΔft × 〠

L

ρ=1
αρe

−j2πfnτρp t − τρ
� �" #( )

+ �v tð Þ,

ð9Þ

where �vðtÞ ~CN ð0, σ2Þ is the AWGN in the baseband. The
expression of the frequency-independent Doppler shift is
given following (9) by

E = β − β′
1 + β′

f c: ð10Þ

The ε term in (10) is called carrier frequency offset
(CFO) when the narrowband is considered. The CFO is esti-
mated by minimizing the null subcarriers’ energy. To
explain the CFO estimation in the precoded IM-OFDM-SS,
we use the null subcarrier of the received data, after resam-
pling each OFDM data block. Assume a vector fn of ðN + L

Þ × 1, where fn = ½1, ej2πn/N ,⋯⋯ , ej2πnðN+L−1Þ/N �T and a ð
N + LÞ × ðN + LÞ diagonal matrix ζðEÞ = diag f½1, ej2πTnE ,
⋯⋯ ⋯ , 1, ej2πTnðN+L−1ÞE �g; E is the residual CFO, and
Tn = T/N is the sample’s duration. The energy of the null
subcarrier whose locations are well known is used as a cost
function, and the CFO can be obtained as

Ê = arg min
E

〠
n∈SN

fHn ζH Eð Þẑ
			 			2( )

: ð11Þ

The collected N + L samples after resampling of each
block are ẑ = ½ẑð0Þ,⋯⋯ ⋯ , ẑðN + L − 1Þ�T . After CFO
estimation and compensation, the signal of the n-th subcar-
rier is given by

ŝ n½ � = fHn ζH Ê
� �

ẑ =H nð Þd̂T n½ � + �vn, ð12Þ

where H =∑L
ρ=1αρe

−j2πf nτρ is the channel frequency
response, �vn is the resulting noise of the n-th subcarrier,
and Hð:Þ is the Hermitian transpose. Using ŝ½n�, channel
estimation is performed based on pilot symbols located as
predefined. Without loss of generality, orthogonal matching
pursuit (OMP) [22] is adopted in this paper for underwater
channel estimation, and the minimum means square error
(MMSE) is used for equalization. After removing the over-
head packets from the MMSE equalizer output, the resultant
signal d̂ ∈ℂM×1 is the received precoded estimated data.
The IM-OFDM-SS demapping extracts the physically trans-
mitted data encapsulated in the index of the spreading code.
First, the dispreading matrix PH is used to extract the

transmitted data symbols b�d (noted by b�d =PHd̂).
The maximum ratio combining (MRC) detector is

employed, as shown in Figure 2, for detecting the received

information bits. Each vectorbx ðgÞ ∈ℂn×1, picked from b�d ,
which is corresponding to the subgroup g, is dispread by
all predefined spreading codes used at the transmitting
end. Thus, the output of the l-th code, l ∈ f1,⋯ng, can be
expressed as follows:

Δl = 〠
n

k=1
x̂ gð Þcl gð Þ ,k: ð13Þ

Therefore, PðgÞ
1 can be found using (13) as follows:

î
gð Þ = arg max

l
Δlj j2: ð14Þ

Finally, the output of dispreading x̂ðgÞ using îðgÞ is corre-
sponding to PðgÞ

2 .

3. Performance Analysis

This section evaluates the proposed precoded IM-OFDM-SS
scheme in terms of pairwise error probability (PEP) and
coding and diversity gains. The conditional PEP of the esti-
mated d̂ data to the transmitted data d is given by

P d⟶
d̂
H

 !
=Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HP d − d̂

� �


 


2
2N0

vuut0BB@
1CCA, ð15Þ

where Qð:Þ is the Gaussian tail probability [23]. Using the Q
-function, an alternative form of (15) can be expressed as
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follows [23]:

P d⟶
d̂
H

 !
= 1
π

ðπ/2
0

e
− μ

4N0 sin2∅

� �
d∅, ð16Þ

where μ = kHPðd − d̂Þk2 which can be rewritten as μ =
∑M

i=1σijhij2, σi = jℊiðd − d̂Þj2, and ℊi is the i-th row of P.
The unconditional PEP is given by averaging (16) with
respect to μ as follows:

P d⟶ d̂
� �

= 1
π

ðπ/2
0

ℵμ −
1

4N0 sin2∅

� �
d∅, ð17Þ

where ℵμ is the moment generating function (MGF) of μ.

Due to the channel model, the MGF of Λi = σijhij2 of μ is
ℵΛi

ðtÞ = ð1 − σiφ
2tÞ−1 which

givesℵμðtÞ =
QM

i=1ð1 − σiφ
2tÞ−1. Therefore, (17) can be

expressed as

P d⟶ d̂
� �

= 1
π

ðπ/2
0

YM
i=1

sin2∅
sin2∅+ σiφ

2/4N0ð Þ d∅: ð18Þ

For any precoding matrixP, let us define Γd,d̂ as the car-
dinality of a defined setQd,d̂ = fi ∣ σi ≠ 0g, Γd,d̂ = jQd,d̂j, we
can approximate sin2∅ðsin2∅+ðσiφ2/4N0ÞÞ−1 ≤
ð1 + ðσiφ2/4N0ÞÞ−1 ≈ 4/σi�γ at high signal-to-noise ratios
(SNRs) because 0≤sin2∅≤1. The integrant of (18) can be
approximated as

P d⟶ d̂
� �

≈
�γ/4ð Þ−Γd,d̂

2Qi∈Qd,d̂
σi
: ð19Þ

2

2

Comparator

Demodulator

∆1
2

2∆n
s (g)

l (g)

x (g)

(.)

𝜅 = 1

n

ˆ

ˆ

ˆ

c1
⁎

cn
⁎

...
...

(.)

𝜅 = 1

n

Figure 2: MRC detector of the precoded IM-OFDM-SS.
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Therefore, the diversity and coding gains of the precoded
IM-OFDM-SS are, respectively, given by

G ℯ =min
d≠d̂

Γd,d̂ , G c = min
d≠d̂, Γd,d̂=G ℯ

Y
i∈Qd,d̂

σi

0@ 1A:1/Gℯ ð20Þ

Finally, the upper bound BEP can be written based on
Pðd⟶ d̂Þ evaluation using the union bound theory as fol-
lows:

Pb ≤
1

mnMG
〠
d
〠
d̂

℧ d, d̂
� �

�γ/4ð Þ−Γd,d̂

2Qi∈Qd,d̂
σi

: ð21Þ

Moreover, the use of IM-OFDM-SS instead of IM-
OFDM offers additional diversity order since the data of
each subcarrier is spread over many subcarriers. The for-
mula of BER given by IM-OFDM-SS is calculated in [18].

4. Simulation and Experimental Results

The proposed precoded IM-OFDM-SS performance is eval-
uated in terms of BER and PAPR based on simulation and
real experimental underwater channels.

4.1. Simulation Evaluation. For the simulation channel, the
results are obtained over the 105-symbol transmitter over a
statistical underwater channel presented in [24]. The pro-
posed precoded IM-OFDM-SS performances are compared
with those of the conventional UWA-OFDM [21] and IM-
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Figure 7: Received signal: (a) DCT-IM-OFDM-SS Walsh; (b) DCT-IM-OFDM-SS ZC; (c) DHT-IM-OFDM-SS Walsh; (d) DHT-IM-
OFDM-SS ZC.
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Figure 8: Estimated channel using the preamble correlation—pool experiments.
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OFDM-SS [18]. In this simulation and without loss of gener-
ality, Walsh and ZC codes are used as spreading codes ciðgÞ .

In simulation demonstration, each block con-
tainsN = 1024 with a guard interval of 256. For a fair compar-
ison, all communication schemes have the same system data
rate, T = 0:25ms, and the bandwidth of 5 kHz; f c and f s are
set to be 23kHz and 122.8 kHz, respectively. To guarantee a
similar transmitted rate for all communication schemes, the

binary phase-shift keying (BPSK) is used with the conven-
tional OFDM and the quadrature amplitude modulation
(QAM) is employed for the IM-OFDM-SS and precoded
IM-OFDM-SS atn = 4. Both the transmitter and receiver are
10m below the surface with a 0.2 km distance between them.
The CFO = 0:02 and β = 3e − 4 are used. The RRC filter has
been used at the transmitter and receiver with a roll-off of
0.55. Figure 3 shows the PAPR complementary cumulative
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Figure 9: Constellation plot: (a) DCT-IM-OFDM-SS Walsh; (b) DCT-IM-OFDM-SS ZC; (c) DHT-IM-OFDM-SS Walsh; (d) DHT-IM-
OFDM-SS ZC—pool experiments.

Table 1: Experimental pool results.

No. OFDM
IM-OFDM-SS

Walsh
IM-OFDM-SS

ZC
Proposed DCT

Walsh
Proposed DCT

ZC
Proposed DHT

Walsh
Proposed DHT

ZC

1 0.018 0.020 0.020 0.0038 0.0031 0.0035 0.0031

2 0.0096 0.0072 0.0061 0.0021 0.0022 0.0021 0.0021

3 0.027 0.0041 0.0035 0.0035 0.0035 0.0030 0.0033

4 0.026 0.023 0.022 0.0091 0.009 0.0093 0.0088

5 0.0072 0.0061 0.0065 0.00054 0.00052 0.00053 0.00054

Average 0.0176 0.0121 0.0116 0.0038 0.0037 0.0037 0.0036
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distribution function (CCDF) performance. As shown, the
IM-OFDM-SS when using ciðgÞ Walsh or ZC is suffering from
higher PAPR compared with the conventional OFDM, while
the proposed schemes including both DCT-based precoding
and DHT-based precoding offer about 1.5 dB and 3dB superi-
ority compared with the conventional schemes, respectively.
The low PAPR of the precoded IM-OFDM-SS schemes is
because the precoded schemes overcome the input informa-

tion symbol superposition which forms each OFDM sample.
DHT-based precoding offers better PAPR than DCT-based
precoding. This is because of the similarity of the IFFT and
the DHT where some matrix kernels are canceling each one
another leading to avoiding the superposition of the input data
symbols due to the combined DHT-IFFT [11, 12, 20, 25].
Figures 4 and 5 show the BER performance of precoded
schemes when using ciðgÞ Walsh and ZC, respectively. The
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Figure 10: Constellation plot: (a) DCT-IM-OFDM-SS Walsh; (b) DCT-IM-OFDM-SS ZC; (c) DHT-IM-OFDM-SS Walsh; (d) DHT-IM-
OFDM-SS ZC—shallow-water experiments.

Table 2: Experimental shallow water results.

No. OFDM
IM-OFDM-SS

Walsh
IM-OFDM-SS

ZC
Proposed DCT

Walsh
Proposed DCT

ZC
Proposed DHT

Walsh
Proposed DHT

ZC

1 0.042 0.043 0.042 0.015 0.014 0.021 0.009

2 0.031 0.022 0.026 0.0083 0.0072 0.007 0.008

3 0.061 0.046 0.040 0.0091 0.0098 0.0084 0.0072

4 0.008 0.006 0.01 0.002 0.003 0.001 0.001

5 0.0096 0.0090 0.006 0.0079 0.0068 0.008 0.0085

Average 0.0303 0.0252 0.0248 0.0085 0.0082 0.0076 0.0067
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proposed precoded IM-OFDM-SS in both cases offers more
than 5~10dB compared with IM-OFDM-SS and traditional
UWA-OFDM. The BER improvement in the precoded IM-
OFDM-SS is because of spreading symbol data vectors over
all subcarriers enabling the recovery of highly attenuated sym-
bols from the others which are well received. Both precoded
IM-OFDM-SS using the Walsh code and ZC code achieve
maximum diversity with slight superiority when using the
ZC code due to the large Euclidean distance in ZC code vec-
tors. Moreover, it is worth mentioning here that in low SNR,
below 5dB, there is a slightly small BER gain in the conven-
tional scheme in comparison to the proposed scheme. This
is because the power in the case of the proposed precoded sys-
tem is spread over two transforms instead of a single trans-
form in the case of a conventional scheme, making the
system more susceptible to error in the case of extremely low
SNR. However, this has no impact on the superiority of our
proposed scheme in the practical scenarios as it achieves about
9dB SNR gain at 10-4 BER in comparison to the conventional
IM-OFDM-SS.

4.2. Pool Experimental Results. The proposed scheme’s effec-
tiveness is also evaluated over a UWA real channel. This
experiment was carried out at Xiamen University, where a
pool of size 18m × 5m is used for transmitting a signal
between one transmitting and one receiving hydrophone.
The depth of the transmitter and the receiver is 1.2m
beneath the water’s surface, and 7m distance is separating
them. The transmitted packet is shown in Figure 6, five
packets with ten symbols in each frame have been transmit-
ted with FFT size, guard interval, f c, f s, effective bandwidth,
symbol duration, and data rate being set similar to parame-
ters mentioned above in the case of the simulated channel
Section 4.1. The used structure of the packet to be practically
transmitted is shown in Figure 6 where two LFM segments
are transmitted before and after the packet. Those two seg-
ments are used for synchronization and DSF estimation as
explained in Section 2. A vector of zeros is inserted between
the preamble and data vectors to prevent the inference while
an optional zero vector can be inserted between the data vec-
tor and postamble too. The received data corresponding to
yðtÞ in (6) is shown in Figure 7 including the DHT-based
and DCT-based precoded IM-OFDM-SS for one frame
based on ciðgÞ of Walsh and ZC codes.

In practical real experiments, a cross-correlation
between the received signal and the well-known preamble
and postamble segments is first performed; the first resulted
peak was used for synchronization while the difference
between the first and the second peaks is utilized to evaluate
the DSF as in (8). The output of cross-correlation is shown
in Figure 8. After estimating and compensating the DSF,
the signal shows the output of the correlator between the
preamble and the received signal processed as explained in
Section 2. Figure 9 shows the constellation of the received
signal of the proposed precoded schemes after despreading
the signal following (14). It is worth mentioning that IM-
OFDM-SS is practically evaluated in this paper for underwa-
ter communication for the first time. Precoded IM-OFDM-
SS offers better performance than conventional OFDM and

IM-OFDM-SS schemes in both cases of using the Walsh
and ZC codes. The DHT-based precoded IM-OFDM-SS
scheme slightly outperforms the DCT-based precoded IM-
OFDM-SS scheme. In fact, under a perfect linear communi-
cation system that is completely free of nonlinear devices, all
the aforementioned precoded systems should have the same
diversity degree and ultimately the same BER performance.
However, as the system is not perfectly linear, the DHT pre-
coded IM-OFDM-SS has better BER performance than the
other precoders as it has less PAPR as mentioned above,
and consequently, the interference due to the performance
of the nonlinear device is reduced. The proposed scheme is
compared to the traditional UWA-OFDM in Table 1.

4.3. Shallow Water Experimental Results. The experiment
took place in Xiamen, China, at the port of Xiamen. Five
frames with ten symbols in each frame have been trans-
mitted; the transmitter and receiver are separated by 106
meters, with depth of 5 meters beneath the sea surface.
FFT size, guard interval, f c, f s, effective bandwidth, sym-
bol duration, and data rate were set similar to the param-
eters mentioned above in Sections 4.1 and 4.2. The sea’s
channel is considered to be a harsh channel, so to guaran-
tee communication reliability, conventional coding with
the rate of 2/3 and interleaving are adopted. The received
signal is processed similar to Section 4.2 where the con-
stellation of the received signal after (14) is shown in
Figure 10, and the experimental results are shown in
Table 2. The performance of the proposed schemes con-
firms the effectiveness of the proposed schemes over the
practical UWA channel.

5. Conclusion

This paper proposed a new scheme called precoded IM-
OFDM-SS for UWA communication. The IM-OFDM-SS
data symbols are spread over all other subcarriers; hence,
the reliability of the UWA communication system can be
improved. Thanks to the precoding and spreading scheme,
the proposed IM-OFDM-SS increases the transmit diversity,
domesticates the spreading and multipath diversities of the
UWA channel, and reduces the PAPR. The performance of
the proposed schemes has been evaluated over simulation
and experimental results. The new scheme outperformed
the conventional OFDM multicarrier modulation scheme
currently used in the UWAC and the new conventional
IM-OFDM-SS proposed for the next 5G mobile networks
which are not previously practically evaluated over the
UWA channel. Field measurements and simulation results
clearly show how the proposed precoded IM-OFDM-SS is
suitable for the UWAC.
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In high-mobility scenarios, the time variation of mobile radio channels leads to a loss of orthogonality among subcarriers in
orthogonal frequency division multiplexing (OFDM) systems, resulting in intercarrier interference (ICI) and performance
deterioration. Conventional channel estimation schemes are usually based on pilot tones, which are distributed in each OFDM
symbol to estimate the channel variation. Hence, the channel estimator itself suffers from ICI. In this study, a new estimation
scheme, which does not suffer from ICI, is proposed to estimate the channel variation within OFDM symbols. %e main idea is to
zero-pad (ZP) the OFDM symbol in the time domain.%en, in the middle of the ZP interval, an impulse signal is inserted as a pilot
sample, which is used to estimate the channel at the pilot signal in the OFDM symbol. Finally, a linear model is used to estimate the
channel variation over an OFDM symbol. Additionally, we derive the mean squared error (MSE) of the proposed estimation
technique under the constraint that the channel varies linearly within OFDM symbols. Simulation results show that our scheme
can achieve a substantial improvement in the bit error rate (BER) performance of OFDM, in spite of the OFDM symbol length
being increased. Moreover, in many cases, the new scheme can achieve the same BER performance as the perfect knowledge of
channel state information (CSI). %eoretical analysis and numerical simulations show that our scheme achieves excellent
performance with much lower computational complexity.

1. Introduction

Due to the rapid deployment of high-speed vehicles, such as
high-speed railway and low-altitude fly objects systems,
during the past few years, wireless communication systems
should be able to provide reliable service to the mobile
devices in such high-mobility environment [1, 2]. %us,
high-mobility communications have become an integral part
of the fifth generation (5G) of wireless systems standards,
which first deployed in the year 2020 [3, 4]. %e 5G
communication systems are expected to support high speed
up to 500 km/h and provide high data rate up to 150Mb/s,
simultaneously [5].

To achieve the 5G requirements, many technologies have
been proposed, such as massive multiple-input multiple-
output (MIMO) systems. Orthogonal frequency division
multiplexing (OFDM) combined with massive MIMO is a
promising technique for wideband massive MIMO

transmission [6]. OFDM is one of the most attractive
modulation techniques due to its high spectral efficiency and
its robustness against multipath delay. Recently, index
modulation-OFDM-spread spectrum (IM-OFDM-SS) [7]
and low-redundant energy UW-OFDM (LRE-UW-OFDM)
[8] schemes have been proposed to improve the spectral and
energy efficiencies, respectively, in OFDM systems. OFDM
has been extensively used in wired and wireless application,
digital audio/video broadcast (DAB/DVB), and many
standards such as IEEE 802.16a and IEEE 802.11e [9, 10].

However, OFDM is vulnerable to the time variation of
the channel, which is one of its main drawbacks. In high-
mobility environments, the time variation of the channel
destroys the orthogonality of the subcarriers severely,
resulting in intercarrier interference (ICI) and performance
degradation [11, 12]. Usually, the normalized maximum
Doppler frequency, ε � fd,maxTu, is used tomeasure the time
variation of the channel, where fd,max is the maximum
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Doppler spread, Tu � 1/Δf is the useful OFDM symbol
duration, and Δf is the subcarriers spacing.

2. Related Work

To estimate the channel variation over several OFDM
symbols or within one OFDM symbol, different estimation
techniques have been proposed. Most channel estimation
techniques are based on pilots’ (arrangement in OFDM)
symbols [13, 14]. In fast time-varying channel environments,
the channel variation during one OFDM symbol period
exhibits high-order variation [15, 16]. Hence, the number of
unknown channel coefficients to be estimated is very large.
To reduce the number of estimated coefficients, various
models have been developed to approximate the channel
variation, such as a basis expansion model (BEM) [17, 18], a
block-sparse Bayesian learning (BSBL) [19, 20], and a piece-
wise linear model (PLM) [21].

In this paper, a zero-padding (ZP) scheme is proposed to
estimate the channel variation in OFDM systems, which can
be summarized as follows. First, a cyclic prefixed OFDM
symbol is zero-padded. After that, an impulse signal is
inserted in the middle of these zeros, which is used in the
receiver to estimate the channel at the pilot sample of each
OFDM symbol. Lastly, a linear model is used to estimate the
channel variation within the OFDM symbol period.

%e remainder of this paper is organized as follows. First,
the proposed model of an OFDM system is described briefly
in Section 3. %en, the ICI due to time-varying channel is
described in Section 4. %e channel estimation is presented
in Section 5. Simulation results are presented and discussed
in Section 6. Finally, in Section 7, the conclusions of this
paper are drawn.

Notations: superscripts (·)− 1, (.)H, and (.)T stand for
inverse, conjugate transpose (Hermitian), and transpose
operators, respectively. [A]P, diag(.), JM×N, and IQ denote a
submatrix of A with row indices which correspond to the set
P, a diagonal matrix is constructed from the vector-valued
argument, an M × N is all-ones matrix, and Q × Q is identity
matrix, respectively. ‖ · ‖F denotes the Frobenius matrix
norm. %e notation CM×N represents the set of M × N

matrices in the complex field.

3. System Model

Figure 1 shows a discrete model of a baseband OFDM
system with the proposed scheme (dashed line blocks). %e
OFDM system with the proposed scheme is different from
conventional OFDM systems by adding and removing ZP
blocks, after and before adding and removing a cyclic prefix
(CP), respectively. After IDFT is performed, the ith time-
domain OFDM signal can be expressed as

x
(i)
n �

1
��
N

√ 

N− 1

k�0
X

(i)
k e

j2πkn/N
, 0≤ n≤N − 1, (1)

where N is the number of subcarriers and X
(i)
k is the data

symbol transmitted on the kth subcarrier.

Let x(i)
cp � [(x(i)

N− Ng+1: N)T (x(i))T]T be the discrete time
of ith OFDM symbol vector after adding the CP of length
Ng, that is, longer than the maximum delay spread of the
channel impulse responses (CIR), where
x(i) � [x

(i)
0 , x

(i)
1 , . . . , x

(i)
N− 1]

T. In our scheme, first, the cyclic
prefixed symbol is extended by an interval (of zero samples)
of total length 2Ng + 1. %en, an impulse signal, Aδ− (2Ng+1),
with amplitude A, is inserted in the middle of these zeros,
which is served as a pilot.%e guard interval on the left of the
impulse signal is used for eliminating intersymbol inter-
ference (ISI) caused by multipath fading channels, whereas
the guard interval on the right is used for channel estimation.
Hence, the OFDM symbol with the time-domain pilot
samples can be written as follows:

s(i)
� 0, . . . , 0, AδN/2, 0, . . . , 0

√√√√√√√√√√√√√√√√√√√√
2Ng+1

, x(i)
cp 

T⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

, (2)

where δ(·) denotes the Kronecker delta function.

4. ICI Analysis

Assuming perfect synchronization of time, the received
samples of the ith OFDM symbol, after transmitting over a
time-varying multipath channel, can be expressed as (after
discarding both ZP and CP samples)

y
(i)
n � 

L− 1

l�0
h

(i)
l,n x

(i)
n− l + w

(i)
n , 0≤ n≤N − 1, (3)

where h
(i)
l,n is the gain of lth time-domain channel path at the

nth sample, L is the total number of propagation paths, and
w(i)

n is the additive white Gaussian noise (AWGN). Let us
define the DFT of Y

(i)
k as

Y
(i)
k �

1
��
N

√ 

N− 1

n�0
y

(i)
n e

− j2πkn/N
, 0≤ k≤N − 1. (4)

Substituting (3) into (4) and with some manipulations,
the DFT of y(i)

n and Y
(i)
k can be written as

IDFT
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Figure 1: A baseband model of an OFDM system with the pro-
posed scheme.
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(6)

where H
(i)
k,m is a channel coefficient, which represents the ICI

interference, due to Doppler spread, from themth subcarrier
on kth subcarrier. Equation (5) can be written in the matrix
form as follows:

Y(i)
� H(i)X(i)

+ W(i)
, (7)

where X(i) � [X
(i)
0 , X

(i)
1 , . . . , X

(i)
N− 1]

T, Y(i) � [Y
(i)
0 , Y

(i)
1 ,

. . . , Y
(i)
N− 1]

T,W(i) � [W
(i)
0 , W

(i)
1 , . . . , W

(i)
N− 1]

T, and H(i) is the
frequency-domain channel matrix, given by (for simplicity,
the OFDM symbol index i is omitted)

H �

H0,0 H0,1 . . . H0,N− 1

H1,0 H1,1 . . . H1,N− 1

⋮ ⋮ ⋮ ⋱ ⋮

HN− 1,0 HN− 1,1 . . . HN− 1,N− 1
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. (8)

5. Channel Estimation

One should note that, in our proposed scheme, the received
samples at nl � − 2Ng − 1 + l(0≤ l≤L − 1) comprise the CIR
corresponding to the pilot sample in anOFDM symbol. Hence,
the channel path’s variation during one OFDM symbol can be
estimated by using a linear model, as depicted in Figure 2.

Let r(i) denote the ith received vector, where
r(i) � [r

(i)
− (3Ng+1), r

(i)
− 3Ng

. . . , r
(i)
− 1 , r

(i)
0 , r

(i)
1 , . . . , r

(i)
N− 1]

T ∈ CNT×1,

where NT � N + 3Ng + 1.
%e CIR through r(i) can be extracted by using row

selector matrix Ψ � [INT
]P ∈ CL×NT , while P �

n0, n1, . . . , nL− 1  denotes the set of row indices corre-
sponding to the time-domain pilot samples locations.

For symbol r(i), the CIR can be written as

r(i)
 

P
� Ψr(i)

. (9)

%en, the channel path gains at the pilot samples are
obtained by using the conventional least-squares (LS)
method. Let h

(i)

l,nl
and h

(i+1)

l,nl
denote, respectively, the LS es-

timated CIR corresponding to the pilot sample of the current
s(i) and the next s(i+1) symbols of the lth path at nl. %en, the
time-domain variation of the lth path h

(i)

l � [h
(i)

l,0 ,

h
(i)

l,1 , . . . , h
(i)

l,N− 1]
T in the current OFDM symbol can be es-

timated as follows:

h
(i)

l,n �

h
(i+1)

l,nl
− h

(i)

l,nl
  n − n

(i)
l 

NT − 1
+ h

(i)

l,nl
, (10)

where n � 0, 1, . . . , N − 1, i � 1, 2, . . ., l � 0, 1, . . . , L − 1, and
nl < 0.

After estimating the time-domain variation of all paths
over an OFDM symbol period, the estimated channel matrix
in time-domain ( H

∗
) can be composed as follows (for

simplicity, the OFDM symbol index i is omitted):

H
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, (11)

where H
∗ ∈ CL×N.

Combining (10) with (11), we can define the new linear
interpolation model in a matrix form as

H
∗

�
1

NT − 1
diag Ψ r(i+1)

− r(i)
  M + Ψr(i)J1×N, (12)

in which

M � JL×1V − WJ1×N ∈ C
L×N

, (13)

where

V � [0, 1, 2, . . . , N − 1] ∈ C1×N

W � [n0, n1, n2, . . . , nL− 1]
T ∈ CL×1

In order to obtain the OFDM channel matrix, H, we
rearrange the entries of H

∗
as follows:

H �

h0,0 0 . . . 0 hL− 1,0 . . . h1,0

h1,1
h0,1 0 ⋱ 0 ⋱ h2,0

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
hL− 1,L− 1 ⋮ ⋱ ⋱ ⋱ ⋱ 0

0 hL− 1,L ⋱ ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ 0

0 . . . 0 hL− 1,N− 1 . . . h1,N− 1
h0,N− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(14)

ZP DataCPZP DataCP

s(i) s(i+1)

nl
(i+1)nl

(i)

Figure 2: Channel approximation. Solid line: real or imaginary
part of a channel path. Dashed line: linear model approximation of
the channel path.
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Finally, the received symbol, Y, at the output of DFT is
equalized (by multiplying the vector Y by the inverse of
estimated frequency-domain channel matrix H):

X � H− 1Y, (15)

in which

H � F HFH
, (16)

where FH is the IDFT matrix.

5.1. Complexity and Noise Reduction (CNR) Criterion. In
most cases, mobile communication channel has only a few
dominant channel paths, compared to maximum delay
spread (see Table 1 as an example). Hence, many samples of
the CIR have little or no energy and comprise noise, re-
moving these nondominant paths will reduce the estimator
complexity, and it is expected to improve its performance.
%erefore, to remove those nondominant paths and con-
sequently reduce the noise effect, all paths are compared
against a threshold.

%e optimum threshold requires knowledge of the sig-
nal-to-noise ratio, which is not practically feasible for a very
high Doppler scenario. Hence, we suggested a simple but
effective method to remove most of those paths. %e sug-
gested threshold depends on the maximum absolute value of
the CIR and also on its mean value as follows:

Threshold �
βE h

(i)

l,nl
 

max h
(i)

l,nl





, 0≤ β≤ 1, 0≤ l≤L − 1, (17)

where the parameter β is used to set the threshold. If β is
set to low, some noise components are treated as channel
paths. On the contrary, if β is set high, some dominant
channel paths are removed.

In our simulation in Section 6, we set β � 0.50, such that
most of the dominant channel paths are preserved. More-
over, to reduce the probability of erroneously zeroing
dominant channel paths, the final decision to set the current
path to zero is based on both the current and next CIRs as
follows:

If both h
(i)

l,nl



 and h
(i+1)

l,nl



≤Threshold⟹ h
(i)

l,nl
� 0. (18)

%erefore, by implementing the CNR criterion, instead
of estimating numerous channel paths, only few dominant
channel paths are estimated. Hence, the CNR criterion
substantially reduces the computational complexity. Addi-
tionally, we expect better BER performance due to removing
those noise perturbation paths.

5.2. Mean-Square Error Analysis. In this subsection, we
derive an analytical expression for the mean-squared error
(MSE) under some reasonable assumptions. In our scheme,
the estimation errors come from linear interpolation and
AWGN components in the received pilot samples. First, we
assume the channel varies linearly within the OFDM symbol

and is noiseless. Hence, in this case, the proposed scheme
will estimate the channel perfectly without any error.

5.2.1. Noise-Free Case. Let the true value of the channel path
at instant time n be h

(i)
l,n . %en, by using LS estimation, the

estimated CIR at pilot samples for the lth path, 0≤ l≤L − 1,
can be found as follows:

h
(i)

l,nl
�

Ah
(i)
l,nl

A
� h

(i)
l,nl

,

h
(i+1)

l,nl
�

Ah
(i+1)
l,nl

A
� h

(i+1)
l,nl

.

(19)

Substituting, h
(i)

l,nl
and h

(i+1)

l,nl
into (10), we have

h
(i)
l,n �

h
(i+1)
l,nl

− h
(i)
l,nl

  n − n
(i)
l 

NT − 1
+ h

(i)
l,nl

, 0≤ n≤N − 1. (20)

Equation (20) provides an error free estimate of the lth
channel path.

5.2.2. Noise Case. In this case, we assume the channel varies
linearly over an OFDM symbol and take into account the
noise effect. %en, by using LS estimation, the estimated CIR
at pilot samples can be found as follows:

h
(i)

l,nl
� h

(i)
l,nl

+
w

(i)
l,nl

A
,

h
(i+1)

l,nl
� h

(i+1)
l,nl

+
w

(i+1)
l,nl

A
.

(21)

Substituting h
(i)

l,nl
and h

(i+1)

l,nl
into (10) yields, after simple

math manipulation,

h
(i)

l,n �
h

(i+1)
l,nl

− h
(i)
l,nl

  n − n
(i)
l 

NT − 1
+ h

(i)
l,nl

+
w

(i+1)
l,nl

− w
(i)
l,nl

  n − n
(i)
l 

A NT − 1( 
+

w
(i)
l,nl

A
,

0≤ n≤N − 1.

(22)

Considering (20), in the noise-free case, (22) can be
rewritten in terms of h

(i)
l,n as

Table 1: OFDM simulation parameters.

Parameters Specifications
IFFT, FFT size (N) 1024
Subcarrier spacing (Δf) 10.94 kHz
Signal constellation 16QAM, 64QAM
Effective symbol duration (Tu) 91.40 μ s
Guard interval (Tg) 5.71 μ s
Sampling interval (Ts) 89.26 ns
Bandwidth 11.20MHz
Number of OFDM symbols (I) 3000
Carrier frequency (fc) 3GHz
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h
(i)

l,n � h
(i)
l,n +

w
(i+1)
l,nl

− w
(i)
l,nl

  n − n
(i)
l 

A NT − 1( 
+

w
(i)
l,nl

A
. (23)

%e MSE of the lth channel path during the ith OFDM
symbol interval can be defined as

MSE � E h
(i)

l,n − h
(i)
l,n





2
 , 0≤ n≤N − 1. (24)

Substituting (23) into (24), after some manipulation, we
have

MSE � E
w

(i+1)
l,nl

 
2

− 2w
(i+1)
l,nl

w
(i)
l,nl

+ w
(i)
l,nl

 
2

A
2

NT − 1( 
2

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ n − n

(i)
l 

2⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

+ E
2w

(i+1)
l,nl

w
(i)
l,nl

A
2

NT − 1( 
−

2 w
(i)
l,nl

 
2

A
2

NT − 1( 

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ n − n

(i)
l 

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

+ E
w

(i)
l,nl

 
2

A
2

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦.

(25)

Since the noise is modeled as complex AWGN with zero
mean and unit variance, we can rewrite (25) as

MSE �
σ2wl,nl

A
2 2E

n − n
(i)
l 

2

NT − 1( 
2

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ − 2E
n − n

(i)
l

NT − 1
  + 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (26)

%en, we have the following approximations (derived in
Appendixes A and B):

E
n − n

(i)
l 

2

NT − 1( 
2

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ ≈
1
3
,

E
n − n

(i)
l

NT − 1
  ≈

1
2
.

(27)

%us, we have

MSE ≈
2

3A
2σ

2
wl,nl

. (28)

Since the channel paths are statistically independent.
%erefore, a general formula for the MSE of the proposed
estimator with L channel paths can be written as follows:

MSE ≈
2L

3A
2σ

2
w. (29)

5.3. Complexity Comparison. Here, we briefly discuss the
main complexity of the proposed estimator in terms of the
required complex multiplications and additions/subtrac-
tions operations. In the proposed scheme, the channel path
is obtained directly by extracting the CIR from the time-
domain received signal. %e complexity of our scheme
mainly exists in the linear interpolation between CIRs.

According to (12) and (13), our analysis shows that the
computational complexity of calculating M and H

∗
are

O(3LMDPN) and O(L2
M DPN + 3LMDPN + NT+ LMDPNT)

≈ O(L2
MDPN + 4LMDPN), respectively. %erefore, the

overall complexity of the proposed scheme is approximately
equal to O(L2

MDPN + 7LM DPN), where LMDP is the number
of most dominant channel paths (LM DP≪Ng).

On the contrary, the complexity of the BSBL scheme,
which is used for comparison, is given by O(Q3L2Niter +

Q3N3
gNiter) [19]. In addition to the direct complexity of

BSBL scheme, the number of required iterations (Niter) for
convergence is another issue for complexity analysis. Fur-
thermore, simulations (Section 6) show that the BSBL
scheme can work with a significant large Niter. However, the
complexity of the BSBL estimator is usually too high for
practical use.

Finally, both schemes need amatrix inversion to perform
the equalization in the frequency domain, in which com-
putational complexity is high, especially for large OFDM
symbol sizes (N). It should be emphasized here that our
scheme achieves better performance while providing dra-
matically lower complexity.

6. Simulation Results

To investigate the performance of our estimator, a com-
parison is made between the BER performance of OFDM
with our scheme and BSBL scheme [19], which uses the pilot
subcarriers to estimate the time-domain channel matrix.
Additionally, a BER performance of OFDM with perfect
channel state information (CSI) is considered. Furthermore,
the performance of channel estimators is evaluated by using
the normalized mean square error (NMSE), which is defined
as

NMSE �
1
I



I

i�1

H(i)
− H(i)

�����

�����
2

F

H(i)
�����

�����
2

F

, (30)

where I is the number of the channel realizations and H(i) is
the estimated channel matrix of H(i) at the ith realization.

In the simulation, an uncoded OFDM system with 16-
quadrature amplitude modulation (QAM) is considered.
Moreover, the new scheme is also tested with the higher-
order modulation constellations of 64-QAM. %e relevant
OFDM system parameters are given in Table 1.

To verify the performance of the proposed scheme, two
different channel models are considered. %e power-delay
profile (PDP) of channel #1 is the COST 207 typical urban
six-path (TU6) model which is given in Table 2. However,
the PDP of channel #2 has two paths with power profile [0.64
0.34], which are separated by 5.7 μs. In addition, each
channel path weight is simulated based on Jakes’ Rayleigh
model [22].Also, two maximum normalized Doppler
spreads of ε �0.02 and 0.07 are considered, corresponding to
a mobile terminal moving at maximum speeds of 78 and
276 km/h, respectively. Moreover, based on the simulation
results, the amplitude of the pilot signal is set equal to 10,
which gives the best results for our scheme. Furthermore, in
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the new scheme, the OFDM is zero-padded by 2Ng + 1
samples; thus, the spectral efficiency is reduced. Hence, for
fair comparison, 47 equally spaced subcarriers are allocated
for pilot subcarriers in the BSBL scheme. %erefore, both
schemes have approximately the same spectral efficiency.
Moreover, the same transmitted power is used for both
schemes.

Figure 3 shows a comparison of the analytical and
simulation results of MSE for the proposed scheme. At high
Eb/N0 s (>20 dB), excellent agreement between the ana-
lytical and simulation results is observed. However, at low
Eb/N0 s (< 20 dB), the difference between the analytical and
simulation results decreases with increasing Eb/N0 s. %is
can be explained as follows; according to (29), the MSE is
directly proportional to the number of paths. At high
Eb/N0 s, the noise power is low. Hence, the CNR criterion
removes most of the nondominant paths (noise pertur-
bation paths), so the number of estimated paths is ap-
proximately equal to the actual number of channel paths.
Hence, there is great agreement between the theoretical and
simulation MSE.

On the contrary, at low Eb/N0 s, the noise power is high.
Hence, the CNR criterion removes few nondominant paths,
so the number of estimated channel paths is very large
compared with the actual channel paths. Hence, theoretical
and simulation MSE results are not identical.

Figure 4 shows BER vs. Eb/N0 for 16QAM-OFDM with
the proposed and BSBL schemes over channel #1, for dif-
ferent values of normalized Doppler frequency (ε � 0.02 and
ε � 0.07). In case of ε � 0.01, at low Eb/N0 s (<25 dB), it is
clear that our scheme consistently outperforms BSBL
scheme whereas, at high Eb/N0 s (>25 dB), our scheme
significantly outperforms the BSBL scheme. %is is due to
the fact that, at low Eb/N0 s, the noise significantly affects the
amplitude of the pilot sample, which severely degrades the
performance of the proposed scheme. Furthermore, in case
of ε � 0.07, one can observe that our scheme effectively
reduces the error floor. Moreover, in both cases, ε � 0.02 and
ε � 0.07, the performance of the proposed scheme is very
close to the performance of CSI. Also, one can observe, in
case of ε � 0.02, our scheme has a slight performance gain
over CSI. %is is not a surprising result, since LS estimate
yields some noise reduction.

Figure 5 shows a BER performance comparison for 64-
QAM-OFDM, over channel #1. In case ε � 0.07, one can
observe that, at low Eb/N0 (<10 dB), the proposed scheme
can only achieve a slight improvement in BER performance
over the BSBL scheme. However, at high Eb/N0 s, our
scheme can achieve impressive BER performance compared
with BSBL scheme, particularly, when Eb/N0s> 20 dB.

Additionally, from Figure 5, in case of ε � 0.02, the
performance of our scheme shows a very good agreement

with the CSI. However, in case of ε � 0.07, the proposed
scheme and CSI have different performance when
Eb/N0s> 30 dB. A clear improvement in BER performance
of the proposed scheme can be observed compared with the
BSBL scheme. More specifically, the effect of ICI resulting in
an error floor is significantly decreased. %is can be
explained by the fact that, in pilot subcarrier-based estimator
(for example, BSBL scheme), the pilot itself suffers from ICI.
Consequently, the channel estimator accuracy degrades as
ICI increases. However, in pilot sample-based estimator (for
example, the proposed scheme), the pilot is affected only by
AWGN. Also, one can see from Figure 5, in case of ε � 0.02,
that the proposed scheme consistently outperforms BSBL
scheme, and it can achieve a BER of 1.1 × 10− 3 at

0 5

10-6

10-4

10-2

100

M
SE

10 15 20 25 30 35 40
Eb/N0 (dB)

Simulation
Theoretical

Figure 3: %e MSE of the proposed estimator for 16QAM-OFDM
over channel #1, with vehicle moving at 40 km/h.

Table 2: Power-delay profile of channel #1.

Path index 1 2 3 4 5 6
Delay (μ s) 0.0 0.2 0.5 1.6 2.3 5.0
Average power (dB) − 3 0 − 2 − 6 − 8 − 10

0 5

10-3

10-4

10-2

10-1

100

BE
R

10 15 20 25 30 35 40
Eb/N0 (dB)

Proposed (ε = 0.02)
BSBL (ε = 0.02)
Perfect CSI (ε = 0.02)

Proposed (ε = 0.07)
BSBL (ε = 0.07)
Perfect CSI (ε = 0.07)

Figure 4: BER performance comparison among different channel
estimators for 16QAM-OFDM over channel #1.
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Eb/N0 � 30 dB. At a BER of 2 × 10− 3, our estimator out-
performs the BSBL scheme by about 3 dB.

A BER performance comparison for 16QAM-OFDM
with the proposed and BSBL schemes over channel #2 is
shown in Figure 6. In case ε � 0.02, one can observe that our
scheme outperforms the BSBL scheme. However, ε � 0.07,
and our scheme significantly outperforms the BSBL scheme,
particularly, at high Eb/N0s. %is can be explained by noting
that the channel has only two dominant paths, so the
proposed scheme with CNR criterion removes many noise
perturbation paths, which results in significant noise re-
duction. As a consequence, substantial performance im-
provement is compared with Figure 4. On the contrary, the
BSBL scheme shows slight performance improvement
compared with Figure 4.

Figure 7 illustrates a BER performance comparison as a
function of ε% for 16QAM-OFDM. In these comparisons,
channel #1 is used and Eb/N0 is set to 30 dB. In the same
figure, one can see that the proposed scheme significantly
outperforms the BSBL scheme in BER performance, par-
ticularly, when ε< 10%. Moreover, the BER performance of
our estimator is very close to that with perfect channel
knowledge, when ε< 7%. However, when ε< 7%, the gap
between our estimator and CSI gradually increases with
respect to ε. %is can be explained that the channel variation
within OFDM symbols is no longer linear, whereas the
proposed scheme uses a linear model to approximate the
channel variation.

Figure 8 shows NMSE comparison of the estimated
frequency-domain channel for 16QAM-OFDM with the
proposed and BSBL schemes over channel #1. When
ε � 0.02, our scheme estimates the channel perfectly;
however, when ε � 0.07, the proposed scheme fails to track
channel variations within OFDM symbols, which is not
surprising, since, in this case, the channel variation no longer
linear. Hence, the linear approximation becomes ineffective,

in this case, and leads to an error floor which cannot be
overcome by increasing Eb/N0.

Figure 9 illustrates the BER performance for 16QAM-
OFDM with the two estimation schemes versus Eb/N0 and
the maximum velocity over channel #1. It can be seen that
the rate of the BER scheme increases as velocity increases for
fixed values of Eb/N0. Also, in Figure 9, one can see that the
proposed scheme can significantly improve the BER per-
formance as compared to the BSBL scheme in the high
Eb/N0 and low-speed regions, especially when
Eb/N0 > 20 dB and the velocity < 400 km/h. However, in the
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Perfect CSI (ε = 0.02)

Proposed (ε = 0.07)
BSBL (ε = 0.07)
Perfect CSI (ε = 0.07)

Figure 6: BER performance comparison among different channel
estimators for 16QAM-OFDM over channel #2.
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Figure 7: BER performance comparison as a function of ε among
different channel estimators for 16QAM-OFDM over channel #1,
with Eb/N0 � 30 dB.
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Figure 5: BER performance comparison among different channel
estimators for 64-QAM-OFDM over channel #1.
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high-speed regions, both schemes suffer large estimation
errors, which are due to the fact that, in high mobility, the
channel paths show high-order time variation, whereas pilot
subcarriers strongly suffer from ICI.

7. Conclusions

In this paper, a new scheme, which is mainly based on a
sample pilot with ZP in the time domain, is proposed to
estimate the channel variation over an OFDM symbol pe-
riod. Simulation results of MSE, showing excellent agree-
ment with theoretical analysis, confirm the validity of our
MSE analysis. Also, simulation results demonstrate that the
proposed scheme can greatly improve the BER performance
of the OFDM system as compared with the BSBL scheme, in
particular, at high Eb/N0 s. Additionally, results show that

the error floor resulting from the effect of ICI is significantly
decreased by implementing the new scheme. Furthermore,
the BER performance of our scheme can nearly achieve the
performance as good as the perfect knowledge of channel
state information when ε< 0.02. It is expected that our es-
timator will achieve best results when both the OFDM
symbol duration and the channel delay spread are small,
since, in this case, the separation between any two adjacent
pilot signals is minimal.%e complexity of the new estimator
is significantly lower than BSBL, while showing a better
performance.

Appendix

A. Analysis of the First Term in (20)

E n − n
(i)
l 

2
  �

1
N



N− 1

n�0
n − n

(i)
l 

2
,

E n − n
(i)
l 

2
  �

2N
2

− 3N + 1 − 6n
(i)
l N + 6n

(i)
l + 6n

(i)2

l

6
.

(A.1)

%en, we have the approximation:

E n − n
(i)
l 

2
  ≈

2N
2

− 6n
(i)
l N + 6n

(i)2

l

6
,

E
n − n

(i)
l 

2

NT − 1( 
2

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ ≈
2N

2
− 6n

(i)
l N + 6n

(i)2

l

6 NT − 1( 
2 .

(A.2)

For large symbol duration and small delay spread, we
obtain the approximation:

E
n − n

(i)
l 

2

NT − 1( 
2

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ ≈
1
3
. (A.3)

B. Analysis of the Second Term in (20)
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For large symbol duration and small delay spread, we
have the approximation:

E
n − n

(i)
l

NT − 1
  ≈

1
2
. (B.2)
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Figure 9: BER performance comparison among different channel
estimators for 16QAM-OFDM over channel #1, at different speeds.
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To solve the problems of poor quality of service and low energy efficiency of nodes in underwater multinode communication
networks, a distributed power allocation algorithm based on reinforcement learning is proposed. .e transmitter with rein-
forcement learning capability can select the power level autonomously to achieve the goal of getting higher user experience quality
with lower power consumption. Firstly, we propose a distributed power optimization model based on the Markov decision
process. Secondly, we further give a reward function suitable for multiobjective optimization. Finally, we present a distributed
power allocation algorithm based on Q-learning and use it as an adaptive mechanism to enable each transmitter in the network to
adjust the transmit power according to its own environment. .e simulation results show that the proposed algorithm not only
increases the total channel capacity of the system but also improves the energy efficiency of each transmitter.

1. Introduction

Marine information technology not only plays an important
role in the fields of marine environment monitoring, ex-
ploration and resource development, marine disaster
warning, and underwater target location tracking but also is
a hot direction for information science research [1, 2]. .e
primary problem to be solved in the development of marine
information technology is the construction of underwater
sensor networks and the allocation of resources for network
communication; otherwise, marine information technology
is not possible [3–5]. With the increasing exploitation of
underwater resources, the variety and number of commu-
nication nodes deployed underwater are becomingmore and
more abundant, and there will even be multiple types of
underwater communication networks deployed in the same
sea area. For example, in Ref. [6], a two-dimensional un-
derwater sensing network structure was developed in which
the sensor nodes were anchored to the seafloor. .is means
that the sensors can only detect a range of data on the
seafloor. However, many other important 3D data, such as
the flow rate and salinity of seawater, which are crucial for

one to study the characteristics of the marine environment,
are not detectable. Correspondingly, this paper proposes an
autonomous underwater vehicle (AUV) to monitor and
collect important 3D data, and uses different types of sensors
to detect a range of data on the seafloor.

Unlike wireless electromagnetic wave communication
networks, most acoustic modems in underwater acoustic
communication networks (UACNs) are battery-powered,
but in an underwater environment, battery replacement
and charging are extremely difficult [7]. Meanwhile, there
are many types of nodes deployed in UACNs, including
multiple types of nodes such as master nodes, sub-nodes,
AUVs, and so on. Normally, different types of nodes hope
to transmit data with greater power to obtain a higher
quality of service [8]. In this case, if proper interference
control is not performed, there will be increased inter-
ference between nodes and a huge waste of transmit power.
So it can be seen that, because of the complex underwater
acoustic communication environment, the proposed re-
source allocation algorithm needs to have strong adaptive
characteristics to counter the dynamic underwater acoustic
communication environment. .e low transmission rate of
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orthogonal frequency-division multiplexing (OFDM)
technology has obvious advantages in combating the
complex communication environment of underwater
acoustics. Its low transmission rate effectively reduces
multipath reflection interference [9], and it is also ex-
tremely resistant to inter-code interference [10]. Motivated
by previous analysis, based on the modeling of OFDM
underwater heterogeneous communication networks, we
consider how to find a balance between power consump-
tion and interference level to achieve optimal system
performance.

To summarize, we consider the issue of energy efficiency
optimization in cooperative UACNs. Since the resource
allocation process can be considered as a Markov decision
process (MDP), reinforcement learning (RL) is applied to
solve the above problems [11]. Specifically, RL methods are
used to find the equilibrium between power consumption
and interference level, i.e., to select the appropriate transmit
power for each node to obtain a high quality of service within
the interference allowable range. To this end, this paper seeks
the global optimal strategy by constructing a global MDP.
.e main contributions of this work are summarized as
follows:

(i) We propose a learning framework suitable for
communication nodes. .e framework realizes the
transformation of resource allocation problem like
the Markov decision model, which defines the state
space and action set in the environment according
to the actual problem that needs to be solved.

(ii) We propose a systematic reward function design
method based on the multiobjective optimization
problem and the nature of RL, which is used to
guide the training method of the transmitter. .e
designed reward function takes into account the
network environment and node energy which are
uncontrollable factors, and achieves maximization
of quality of service (QoS) of communication nodes
with relatively small energy consumption. We
further show that the proposed reward function can
achieve significant improvements in energy
efficiency.

(iii) We propose a resource allocation strategy for un-
derwater transmitters based on Q-learning, which is
distributed and scalable. .e simulation results
show that, compared with the greedy algorithm, the
resource allocation strategy based on Q-learning
achieves a higher system capacity and a longer life
cycle.

.e rest of this paper is organized as follows. Section 2
reviews the work related to resource allocation in UACNs.
Section 3 introduces the multisectional cooperative com-
munication network model and describes the problems
related to resource allocation. Section 4 proposes a resource
allocation strategy based on Q-learning and proves the ef-
fectiveness of the designed scheme theoretically, and Section
5 compares the proposed algorithm with the greedy algo-
rithm. Finally, Section 6 concludes the paper.

2. Related Work

Compared to the channel bandwidth on land, the available
bandwidth underwater is very narrow, only a few kilohertz.
When there are more underwater communication nodes,
many nodes will communicate in similar frequency bands,
which will generate large interference between nodes and
affect the communication quality of underwater nodes.
Facing the complicated underwater communication envi-
ronment, many scholars have improved the communication
quality of underwater sensor networks by rationally allo-
cating resources such as channels and power.

.e problem of resource allocation has been extensively
studied in UACNs. Aiming at the energy limitation and
throughput problems in UACNs, the linear Gaussian relay
channel (LGRC) model is used in Ref. [12] to optimize the
power spectral density of the input power, effectively
expanding the transmission capacity of UACNs. In a similar
study, For the MQAM-OFDM underwater acoustic com-
munication system, a joint power-rate allocation algorithm
is proposed in Ref. [13], which optimizes the transmission
power of the node and improves the transmission rate of the
system. In Ref. [14], the authors proposed an efficient
spectrum management system receiver-initiated spectrum
management (RISM) for underwater acoustic cognitive
networks and aimed to maximize the node channel capacity
for power allocation, which effectively avoids conflicts in
data transmission and improves the data transmission rate.
However, the centralized optimization algorithm proposed
by the abovementioned study only optimizes the trans-
mission rate of the node, and does not consider the quality of
service of the network. In order to improve its own
throughput, each transmitting node usually chooses a larger
transmitting power, which causes more serious network
interference and further reduces the life cycle of the node. In
Ref. [15], a joint frequency-power allocation-based algo-
rithm is proposed for UACNs, which effectively extends the
life cycle of nodes by setting the power level according to the
distance between nodes. .e disadvantage is that this al-
gorithm is only suitable for environments with dense net-
work nodes. Meanwhile, considering the complex
underwater communication environment, it is difficult to
deploy a centralized control center underwater, so the
abovementioned centralized power algorithm cannot meet
the strong distributed application requirements of the
UACNs.

RL has been developed to continuously optimize its own
strategies through continuous interaction with unknown
environments, and can be used in a distributed manner to
achieve better results in many scenarios [16, 17]. For ex-
ample, in order to solve the multinode interference problem
in UACNs, in Ref. [5], the authors converted the resource
allocation problem into a Markov decision model and
proposed a cooperative Q-learning optimization scheme.
However, Ref. [6] did not consider the node energy con-
sumption. Furthermore, an anti-interference relay selection
scheme for deep Q network (DQN) is proposed in Ref. [18],
which selects the node position based on the interference
level of the node on the one hand, and adjusts the node
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transmit power according to the magnitude of the BER on
the other hand. .e disadvantage is that the algorithm only
considers a network composed of a few nodes and lacks
scalability. .erefore, in order to balance node energy
consumption and network interference level, and at the
same time, considering the scalability of the algorithm, this
paper regards the communication node as an agent, and
transforms the resource allocation problem into the
Q-learning algorithmmodel to obtain the optimized strategy
result.

3. System Model and Problem Formulation

3.1. System Model. In this paper, we consider the UACNs
OFDM system composed of multiple transmitter-receiver
pairs. In UACNs, the transmitting nodes collect environ-
mental information, and the receiving nodes are relay nodes
or data fusion centers. According to application needs, there
are many types of transmitting nodes, including sensor
nodes, Autonomous Underwater Vehicle (AUV), Un-
manned Underwater Vehicle (UUV), and many others.
Different types of transmitter-receiver pairs have different
communication requirements and priority levels. .e
bandwidth of the OFDM system is equally divided into L
orthogonal sub-channels, whose set is denoted as
L � [1, 2, . . . , L]. For convenience, we assume that the
bandwidth of each sub-channel is the unit bandwidth. All
orthogonal channels are shared channels that can be freely
accessed by all transmitter-receiver pairs. Meanwhile, sup-
pose that there are N pairs of sensor nodes and 1 pair of
AUV pairs in the network, where N � [1, 2, . . . , N] repre-
sents the index of the sensor node. .e overall network
configuration is shown in Figure 1. Please note that although

we consider each transmitter to serve a single receiver, the
proposed method can be easily adapted to serve more
transmitter-receiver pairs.

From the above text, the received signal of node
nR

i ,∀i ∈ N includes interference from node nR
i (j≠ i, j ∈ N)

and thermal noise; then the signal-to-interference-to-noise
ratio (SINR) at node nR

i ,∀i ∈ N can be expressed as Ref. [19]

ηi �
pihii


N
k�1,k≠i pkhki + pjhji + σ2

, (1)

where pj is the transmit power of AUV j; hji denotes the
channel gain from the AUV j to node nR

i ; pi indicates the
transmit power of node nT

i ; hii is the channel gain from node
nT

i to node nR
i ; pk is the transmit power of node nT

k ; and hki

denotes the channel gain from node nT
k to node nR

i . σ
2

denotes the noise power of the underwater acoustic channel.
Underwater acoustic channel noise is an important topic in
the application practice of UACNs, as hydrostatic pressure
effects (tides, waves, etc., caused by wind, rain, and seismic
disturbances) and industrial behavior (e.g., surface sailing)
remain one of the main reasons hindering the development
of underwater acoustic communication [20–22]. Calculating
the noise power σ2 is a very complex challenge, because of
the significant time-space-frequency variability of under-
water acoustic channel noise [23, 24]. Fortunately, σ2 can be
calculated from the corresponding power spectral density
[15, 25], which can be described as follows:

φ(f) � Nτ(f) + Nw(f) + Nth(f) + Nt(f), (2)

where

10 log Nτ(f) � 40 + 20(τ − 0.5) + 26log10(f) − 60log10(f + 3),

10 log Nw(f) � 50 + 7.5
��
w

√
+ 20log10(f) − 40log10(f + 0.4),

10 log Nth(f) � −15 + 20log10(f),

10 log Nt(f) � 17 − 30log10(f),

(3)

where Nτ(f), Nw(f), Nth(f), and Nt(f) denote ocean
turbulence, ship activity, wind and waves, and thermal
movement of molecules in the water, respectively. In ad-
dition, w and τ represent the influencing factor of sea surface
wind speed and ship activity, respectively.

In the underwater acoustic communication system, the
channel gain h can be expressed as Ref. [25]

h � A
−1
0 d

− sp
(α(f))

− d
, (4)

where A0 is the normalization coefficient, d denotes the
transmission distance (km), f indicates the communication
frequency (Hz), d− sp is the expansion loss, which describes
the channel characteristics of underwater acoustic propa-
gation, sp denotes the expansion coefficient, with a value of
1.5, and α(f) is the absorption coefficient, which can be
expressed by .orp empirical formula as [26]

10α(f) �
0.11f

2

1 + f
2 +

44f
2

4100 + f
2 + 2.75 × 10− 4

f
2

+ 0.003. (5)

Assume that all channel parameters are known by the
transmitting node, which is consistent with previous work
such as Refs. [3, 5]. In fact, this is reasonable, because the
channel information can be fed back to each transmitting
node through the backhaul network. .us, the normalized
capacity of any receiver can be expressed as follows:

Ci � log2 1 + ηi( , ∀i ∈ N. (6)

3.2. Problem Formulation. During the operation of UACNs,
when the noise conditions of the underwater acoustic
channel are given, each transmitter hopes to transmit data
with a larger power in order to obtain a higher quality of
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service. However, excessive transmission of power will in-
crease the level of network interference, which will greatly
reduce the communication quality. Besides this, transmitter
usually uses battery power when working underwater, and
excessive transmitting power will accelerate the energy
consumption of the transmitter. .erefore, the main goal of
our work is to solve the energy optimization problem, i.e., to
maximize the service quality of the receiver with a smaller
energy consumption.

As mentioned previously, if we assume that the trans-
mitting power of the transmitting node nT is
P � [p1, p2, . . . , pN], then the optimization goal can be
expressed as follows:

max 
N

i�1
Ci, − 

N

i�1
pi

⎧⎨

⎩

⎫⎬

⎭, (7)

s.t. pmin ≤pi ≤pmax, i � 1, 2, . . . , N, (8)

ηi ≥ ηth, i � 1, 2, . . . , N, (9)

ηAUV ≥ ηth′ , (10)

where the objective (7) indicates the maximization of the
network capacity with relatively small energy consumption.
Ci denotes the information transmission capacity between
the j-th transmitter-receiver pair, and pj is the transmit
power of the j-th transmitter node. .e first constraint (8)
denotes the power limit of the transmitting node nT

i ,∀i ∈ N.
.e ηth in (9) and ηth′ in (10), respectively, denote the
minimum SINR of node nR

i ,∀i ∈ N and the AUV when
meeting application requirements. In other words, con-
straints (9) and (10) ensure that all receivers have sufficient
quality of service. Considering (8)–(10), it can be concluded
that the optimization in (7) is not only a multiobjective
optimization problem but also a nonconvex problem of
UACNs..is is mainly because of the SINR expression in (1)

and the optimization goal of (7). In the next section, a
method based on reinforcement learning is proposed to
solve the above problems.

4. Resource Allocation Based on
Reinforcement Learning

4.1. Markov Decision Process. .e environment that inter-
acts with the agent is usually called a Markov Decision
Process (MDP) with a finite state. We assume that S rep-
resents the discrete set of environmental states, A is the
discrete set of actions that the agent can perform, r repre-
sents the reward value of the agent performing action
a, a ∈ A in state s, s ∈ S, and g be the state transition
function. At each time t, the agent interacts with the en-
vironment to obtain the current state st � s, and selects an
action at � a from the action set A to execute. According to
the probability distribution relation g(s′|s, a), the envi-
ronment is thus changed, shifting from state st � s to s(t+1) �

s′ and generating feedback on the choice of action of the
intelligence, that is, the reward value r(s, a). .e whole
process is iterated and optimized until convergence.

.e goal of the RL method is to continuously optimize
the agent’s decision strategy π in the iterative process.
Formally, strategy π describes the mapping relationship
from environmental state to action selection. .e task of the
intelligence is to obtain the optimal policy during the
learning process so that the total expected discounted return
reaches the maximum in a finite number of steps, that is

V
π
(s) � E 

+∞
t�0 c

t
r s

t
, π s

t
  |s

0
� s0 , (11)

where ct is the reward discount factor at the moment; s0 is
the initial state of the system; and r is the immediate reward
obtained by executing the action strategy. Vπ(s) is often
referred to as the value function of the intelligence at state s.

.e process of RL can be described as an MDP, which
has Markov properties. In other words, the state of the

Sea level

Transmitting node nT

Receiving node nR

Transmitter-receiver pair

Transmission signal

Interference signal

AUV

Figure 1: Underwater acoustic communication network model.
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environment is only related to the state of the previous
moment, and not related to the state of the earlier time.
.erefore, the value function can be simplified to

V
π
(s) � E[r(s, π(s))] + c 

s′∈S

g s′ | s, π(s)( V
π

s′( . (12)

.erefore, the optimal strategy satisfies the Bellman
equation as [9]

V
∗
(s) � max

a∈A
E[r(s, a)] + c 

s′∈S

g s′ | s, a( V
∗

s′( 
⎧⎨

⎩

⎫⎬

⎭. (13)

However, in the actual systems, the state transition
function is generally unknown. .e agent cannot model the
quadruple 〈S, A, r, g〉 of reinforcement learning. .erefore,
it is necessary to use model-free RL algorithms. Q-learning is
the most representative of these algorithms. .e Q-function
is defined as

Q
∗
(s, a) � E[r(s, a)] + c 

s′∈S

g s′ | s, a( V
∗

s′( , (14)

where Q∗(s, a) denotes the cumulative discount reward
obtained by selecting action a at state s and choosing the
optimal policy all the way through the subsequent policy
selection process. Combining equations (12) and (13), the
relationship between the value function and the state-action
value function can be obtained as follows:

V
∗
(s) � max

a∈A
Q
∗
(s, a). (15)

.erefore, the optimal value function V∗(s) can be
obtained from Q∗(s, a). .en, (14) can be expressed as
follows:

Q
∗
(s, a) � E[r(s, a)] + c 

s′∈S

g s′ | s, a( max
b∈A

Q
∗

s′, b(  .

(16)

From the above equation, the update rule of the pre-
dicted Q function is provided as [5]

Q
t+1

(s, a) � 1 − αt( Q
t
(s, a) + αt r

t
+ cmax

b∈A
Q
∗

s′, b(  ,

(17)

where Qt+1 and Qt denote the Q values before and after the
update, respectively; αt ∈ [0, 1] is the learning rate, and a
larger αt value indicates that the update of rewards depends
more on immediate rewards than on the accumulation of
past experience. It can be seen that the Q value is updated
using the optimal Q value of the immediate reward and the
next state to which it is transferred, and the basic idea is to
estimate the Q function by incrementally summing the Q
values of the previous state action pairs.

4.2. Reinforcement Learning-Based Power Allocation
Approach. In this paper, each emitter is considered as an
intelligent body with RL capability. Next, the most impor-
tant thing is to transform the resource optimization problem

in UACNs into a RL algorithm model and use it to obtain
optimal decision results. .e existing problem scenario is
modeled based on the four elements of reinforcement
learning.

4.2.1. Action Space A. According to the optimization goal
described in (7), the action of the agent is to select the power.
Generally speaking, the Q function is stored in a look-up
table. For this, we first discretize the power selection. As-
suming the transmit power of the i-th agent, the selection
range is [Pmin, Pmax], which can be discretized as follows:

pi ai(  � pmin +
ai

Yi

pmax − pmin( , yi � 0, 1, . . . , Yi, (18)

where Yi is the number of discretized powers.

4.2.2. State Space S. .e state of the environment should be
defined based on local observations. .e key to the problem
of UACNs resource allocation is to determine the level of
interference around each receiver and the energy con-
sumption of the transmitter. .erefore, at time t, we can
define the state observed by transmitter i as follows:

s
t
i � i,ψi, pi ai( ( , (19)

where ψi ∈ 0, 1{ } indicates whether the SINR ηi received by
receiver i is greater than or lower than its threshold η∗i , that
is,

ψi �
1, if ηi ai, a−i( ≥ η∗i ,

0, otherwise,
 (20)

where a−i � (a1, a2, . . . , ai−1, ai+1, . . . , aN) ∈ A−i represents
the action vector of other receivers. In this paper, we use si to
represent the discrete set of environmental states related to
receiver i.

4.2.3. Reward Function. .e reward value of the agent’s RL
indicates the degree of satisfaction of the agent with the
strategy choice. In the current scenario, the optimization
goal is to maximize the QoS of the receiver device with less
power consumption, which is essentially a multiobjective
optimization problem. In this paper, we transform the
multiobjective problem into a single-objective problem by
the weight coefficient method, and transform the optimi-
zation goal setting into the reward value, denoted as follows:

r
t
i ai, a−i(  �

βi

pi

C
2
i CH −

1
βi

CH − Γth( 
2

− Ci − Γth′( 
2
. (21)

.is is based on the following points. In (21), CH and Ci,
respectively, denote the capacity of AUV and node nR

i , i ∈ N
at time t. Γth and Γth′ are equal to log2(1 + Γth) and
log2(1 + Γth′ ), respectively. If there is a higher SINR at the
receiver, a lower bit error rate will usually be obtained, which
in turn will have a higher throughput. However, an exces-
sively high SINR requires the transmitter to transmit at a
high-power level, which in turn will cause more energy
consumption and increase interference to other users. To
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avoid this, we consider energy efficiency, i.e., (21) select the
correct number of received bits per unit of energy con-
sumption as part of the reward function. Simultaneously,
(21) also considers the deviation of AUV and node nR

i , i ∈ N
from their required capacity thresholds, that is, (CH − Γth′)

2

and (Ci − Γth)2 are reduced from (21) to decrease the value
of the reward. In addition, the parameter βi ensures the
fairness of the algorithm. βi represents the distance between
the node nR

i , i ∈ N and the AUV normalized to dth. dth is a
constant, indicating whether the node nR

i , i ∈ N is near an
AUV. For example, if the distance between the node
nR

i , i ∈ N and the AUV is less than dth, the node nR
i , i ∈ Nwill

be affected by the AUVmore than any other transmitter with
a distance greater than dth. .en, the node nT

i , i ∈ N should
give less reward, which means that the first and third terms
in (21) are multiplied by the inverse of βi and βi to reduce the
reward, respectively.

Due to the independent selection of power levels by
devices, different devices may interfere greatly with other
devices in order to maximize their own profits. In other
words, incorrect action selection may cause the SINR of
some receivers to fall below its threshold, so the reward value
is redefined as

Ri si, ai, a−i(  �
ri ai, a−i( , if ψi � 1,

0, if ψi � 0.
 (22)

Specifically, if the SINR in the current channel is greater
than the predefined threshold ηth (see (9)), i.e., the QoS is
greater than the minimum requirement, the reward value is
calculated from (21); otherwise, the reward value is 0.
Overall, (22) is the payoff for choosing the power pi under
state st

i to ensure the quality of service of the transmission, as
well as to achieve energy efficiency.

.e convergence of the Q-learning algorithm mainly
depends on the convergence of the Q-value function [27].
Next, we will analyze the convergence of the proposed
algorithm.

Theorem 1. <e value of the reward function r formulated
according to formula (22) is bounded in different system
states.

Proof. From (22),

Ri si, ai, a−i(  �
ri ai, a−i( , if ψi � 1,

0, if ψi � 0,
 (23)

we need to prove that the reward function Ri(si, ai, a−i) is
bounded in different system states when ψi � 1.

From (21), ri(ai, a−i) consists of three components,
which are the energy efficiency βiC

2
i CH/pi, the deviation of

the communication capacity of the AUV from the corre-
sponding capacity threshold (CH − Γth)2/βi, and the devi-
ation of the communication capacity of the sensor node
from the corresponding capacity threshold (Ci − Γi)

2. Here,
βi, Γth � log2(1 + ηth) and Γth′ � log2(1 + ηth′ ) are constant.

Consider that the action space A defined by power
discretization is a discrete finite value, i.e.,

A � p0, p1, . . . , pYi
 , the communication capacityCH of the

AUV and the communication capacity Ci, i ∈ N of the
sensor node are bounded in any state.

Furthermore, the product form composed of the ca-
pacity value CH, the capacity value Ci, i ∈ N, and the power
value pi must also be a discrete finite value, i.e., the energy
efficiency value βiC

2
i CH/pi is bounded. Meanwhile,

(Ci − Γth)2 and (CH − Γth′)
2 are bounded. So ri(ai, a−i) must

be bounded. □

Theorem 2. In the iteration of the Q-value of a
bounded reward function r(s,a), the learn factor 0 < λ ≤ 1 and
satisfies



∞

t�1
λt �∞, 

∞

t�1
λ2t <∞, ∀s, a. (24)

If the optimalQ-value is denoted asQ∗ (s, a), then when
t⟶∞, we have

lim
t⟶∞

Qt st, at(  � Q
∗

st, at( . (25)

The conclusion exhibited in Theorem 2 has a detailed
proof process in Ref. [28], which will not be repeated here.

4.3. Algorithm Description. Based on the above preparatory
work, the Q-learning-based resource allocation algorithm
for UACNs can be described as follows. Algorithm 1 first
initializes the relevant parameters, and then uses the greedy
method [29] to guide the behavior selection of the intelligent
Q-Agent, and updates the Q-value function based on
equation (17), and iterates until the Q-value function con-
verges to make a decision on the resource allocation scheme
of UACNs.

5. Numerical Results

In order to verify the effectiveness of the proposed algo-
rithm, the next objective of this section is to evaluate the
performance in two different scenarios, i.e., a sparse network
consisting of four transmitter-receiver pairs and a dense
network with dynamic access consisting of multiple trans-
mitter-receiver pairs. .e network model of this paper is
shown in Figure 1, and the simulation parameters are set
according to Refs. [19, 30]. .e maximum transmit power of
the transmitter Pmax � 11W, system bandwidth
W � 1MHz, propagation coefficient ε � 1.5, carrier fre-
quency f � 20 kHz, noise power σ2 � 1.5 × 10− 7 W. In ad-
dition, we consider the random nonstationary
characteristics of the underwater signal, and use δ to reflect
the influence of the underwater uncertainty factors on the
underwater acoustic channel, where δ � h × ϑ and ϑ obeys
the Rayleigh distribution with a mean value of 0.1..erefore,
h + δ is used for the gain of the hydroacoustic channel in the
simulation.

.e minimum SINR requirement for node nR
i , i ∈ N and

AUV is defined in terms of the rate required to support its
corresponding receiver. In the simulation, we assume that
the minimum transmission rate required to satisfy QoS for
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node nT
i , i ∈ N is 0.4 b/s/Hz, i.e. log2(1 + ηth) � 0.4(b/s/Hz).

In addition, for AUV, the minimum rate required is set to
1 b/s/Hz, i.e. log2(1 + ηth′ ) � 1(b/s/Hz). It is important to
note that by knowing the media access control (MAC) layer
parameters, the value of the channel transmission rate can be
calculated using (Ref. [21], equations (20) and (21)). .e
parameters associated with performing Q-learning are set as
follows: learning rate λ � 0.5, discount factor c � 0.9.
e-greedy algorithm is used for the first 80% of iterations,
random e � 0.2, and the maximum number of iterations is
set to 50,000. Besides, in order to achieve noncooperative
power allocation in UACNs, one of the most important
issues is the definition of the receiving reward. In this paper,
the concept of energy efficiency is introduced in (11), which
will be used as one of the metrics for numerical evaluation.

We first consider a sparse network consisting of four
transmitter-receiver pairs. Assume that the four transmitters
and four receivers are randomly distributed in a region that
is 1.5 km deep, 1.5 km long, and 1 km wide, and the coor-
dinate information of the nodes is shown in Table 1. Figure 2
shows the effect of the transmit power of the AUV on the
other three node nT

i , i ∈ 1, 2, 3{ }. As a whole, the SINR of the
three nodes nR

i , i ∈ 1, 2, 3{ } gradually decreases as the
transmit power of the AUV increases and the network
environment interference enhances, which makes the
transmission capacity of the three nodes decrease contin-
uously. Further, when the AUV is a certain fixed value, node
nR
1 is closest to the AUV and suffers the strongest inter-

ference, i.e., the smallest SINR, and thus its acquired capacity
is the smallest among the three links. Conversely, node nR

3 is
farthest from the AUV and its acquired capacity is the
largest.

Figure 3 shows the results of the proposed learning
algorithm in this paper compared with the greedy algorithm.
In order to make a fair comparison between the two al-
gorithms, we choose energy efficiency as the evaluation
index..e results are shown in Figure 3, which indicates that
as the power of AUV increases, the network energy efficiency
of the proposed learning algorithm, although gradually
decreasing, is significantly better than that of the greedy

algorithm. It should be noted that, as shown in Figure 2, the
decrease in network energy efficiency is a reasonable phe-
nomenon. In fact, in the greedy algorithm, each transmitting
node always chooses the maximum power for transmission,
which keeps the energy in a high consumption state, but the
transmission capacity does not increase significantly.

Figure 4 illustrates the curve of AUV transmission
capacity variation with transmit power. From the figure, it
can be seen that the proposed algorithm can make the
transmission capacity of AUV better than the greedy
algorithm. .is is mainly because the proposed algorithm
can better balance the energy consumption and network
interference level, so that the transmit power of each node
in the network can be adjusted adaptively to achieve a
win-win situation.

Next, we further consider a dynamic access dense net-
work consisting of multiple transmitter-receiver pairs. As-
sume that the transmitting power of the AUV is 8W, while
the number of sensor nodes in the network increases
continuously from 1 to 20 with random distribution. .e
simulation starts with one transmitter-receiver pair. After
convergence, the next transmitter-receiver pair is added to
the network and so on. Figure 5 shows the state of the node
capacity distribution as the number of nodes in the network
increases. As can be seen from the figure, under the same
conditions, compared to the greedy algorithm, the learning
algorithm proposed in this paper is able to maintain a better
network quality of service by adaptively adjusting the node
transmitting power according to the changes in the network
environment. At the same time, it should be noted that as the
number of nodes increases, the level of network interference
increases, which makes the overall energy efficiency of nodes
show a decreasing trend.

Figure 6 shows the graph of network energy efficiency
with increasing number of nodes. It is obvious from the
graphs that the proposed algorithm can well balance the
network transmission capacity and energy consumption,
which greatly improves the network service quality. In the
greedy algorithm, all nodes choose the maximum trans-
mission power for the pursuit of higher transmission

Initialization:
(1) Set c � 0.9, λ � 0.5.
(2) Initialize Q(s, a) � 0, s ∈ S, a ∈ A.

Repeated Learning: (for each episode)
(3) Looks up the Q-table and selects the state s, i.e.,

s � argmax s∈S
a∈A

Q(s, a).

(4) Execute the ε-greedy [29] method to select the action a

π(a|s)← 1 − ε + (ε/|A(s)|), if a � argmaxaQ(s, a),

(ε/|A(s)|), if a≠ argmaxaQ(s, a)


(5) Calculate the reward function r(s, a) based on equation (22).
(6) Calculate the current Q-value function.
(7) Update the Q-table according to equation (17).
(8) Update the state s⟵s′.
(9) Go back to 3 until the state s is the final state.

ALGORITHM 1: Q-learning-based UACNs resource allocation algorithm for node nT
i , i ∈ N.

Wireless Communications and Mobile Computing 7
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Table 1: Location information of the four transmitting receiver pairs.

Location information (km) nT
1 nT

2 nT
3 AUV

x 0.25 0.5 0.75 0.3
y −0.2 −0.4 −0.8 −0.3
z 0 0 0 100
Location information (km) nR

1 nR
2 nR

3 AUV
x 0.25 0.5 0.75 0.3
y −0.2 −0.4 −0.8 −0.1
z 100 100 100 100
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Figure 3: .e graph of the change of network energy efficiency with the transmitting power of AUV.
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capacity, which not only causes energy waste but also en-
hances the interference between networks, and finally makes
the network energy efficiency maintain at a low level.

Finally, we perform the convergence and complexity
analysis of the algorithm. .e maximum number of itera-
tions of the proposed learning algorithm is set to 50,000, and
the average number of iterations for the convergence of the
algorithm in the two scenarios is shown in Figure 7. From
the figure, it can be found that the proposed algorithm
requires approximately equal number of iterations in the two
different scenarios. In other words, the mathematical ex-
pectation and the variance of the number of iterations re-
quired for the proposed algorithm to converge are 41,200
and 35.6, respectively, in the underwater sparse scenario
when the firing power of the heterogeneous nodes varies

between 0 and 15, and 41236 and 49.1, respectively, in the
underwater dense scenario when the number of nodes varies
between 1 and 20. .e stability of the proposed algorithm is
thus demonstrated.

To better understand the running time of the proposed
algorithm, Figure 8 shows the actual running time of the
proposed algorithm on a conventional processor. Specifi-
cally, in the underwater sparse scenario, when the transmit
power of the heterogeneous nodes varies between 0 and 15,
the mathematical expectation and variance of the running
time required for the proposed algorithm to converge are
5.65 and 0.51, respectively. In the underwater dense scenario,
when the number of nodes varies between 1 and 20, the
running time required for the proposed algorithm to con-
verge gradually increases. .is is mainly because when the
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number of nodes increases, a lot of time is needed to find the
equilibrium between communication capacity and energy
consumption.

6. Conclusion

.is paper proposes a power allocation scheme based on
Q-learning. .is scheme considers the interference problem
in UACNs composed of multiple transmitter-receiver pairs
and the energy efficiency of each transmitter, while each
transmitter (sensor node, AUV) is able to train itself to select
the appropriate transmit power to support its service nodes
while protecting other nodes in the network. In addition, the
learning algorithm proposed in this paper, as a distributed
method, can solve the power optimization problem for
networks with dynamic access of sensor nodes while having
low complexity. .e scheme is scalable and has a clear
advantage in energy efficiency compared to the greedy al-
gorithm. In future work, we design function approximators
for neural networks to solve the problem of large state space
and action space.
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*e Internet of Underwater *ings (IoUT) has lately gained popularity as a means of facilitating a wide range of underwater
applications. In the IoUT, underwater communication is best accomplished by the usage of acoustic waves, whereas the terrestrial
communication between the surface sinks and the on-shore control stations is typically achieved using radio waves. As a result, the
greatest portion of an IoUT is enabled by the underwater acoustic sensor network (UASN), where the specific issues provided by
the use of acoustic waves, the underwater node mobility, and the localization difficulties have yet to be addressed. In this paper, we
discuss the challenges faced by the IoUT in terms of the currently proposed routing protocols and propose a Directional Selective
Power Routing Protocol (DSPR) to cope with most of these challenges.*e proposed protocol (i.e., DSPR) uses the angle of arrival
and the sender depth information to find the best direction to the surface sink. In addition, the DSPR uses selective power control
to enhance the delivery ratio and ensure connectivity while reducing energy consumption. To testify the performance of the
proposed protocol, intensive simulation experiments have been conducted. *e simulation results show that the proposed DSPR
protocol outperforms two variations of the fixed directional routing (DR) protocol and the variable power depth-based routing
(VDBR) protocol in terms of energy consumption and delivery ratio. For instance, the proposed DSPR protocol achieves at least 8
times enhancement in energy consumption compared with VDBR. In addition, DSPR saves around 30% of energy consumption
over the DR protocols when the network is mobile. Moreover, the DSPR protocol acquires a delivery ratio above 90% for static/
dynamic scenarios in both sparse and dense networks.

1. Introduction

Recent years have witnessed a rise in the usage of Internet of
things (IoT), where smart devices from different heteroge-
neous systems are connected to exchange data and form one
homogeneous large system. *e IoTs have been extended to
include the underwater networks deployed in submarine
environment such as oceans, seas, etc. *is extension is
uniquely identified as the Internet of underwater things
(IoUT). *e IoUT is a promising technology that connects
around 72% of the Earth surface with the land-connected
Internet. In addition, this promising technology will serve
many potential applications such as environmental moni-
toring, undersea explorations, disaster prevention, military

submarine tracking, and oil industry [1]. *ese applications
require the deployment of smart underwater system which
uses a mishmash of acoustic, radio, and optical waves for
communications. It is worth mentioning that the optical
waves suffer sever attenuation in the underwater environ-
ment. Henceforth, it can only be utilized at extremely high
frequencies in the range of THz or in shallow water ap-
plications. Furthermore, the optical waves mandate a clear
and precise Line of Sight (LOS), which is hard to achieve in
marine environment [2]. In addition, the optical wave
characteristics varies according to the water content, the
temporal changes produced by turbulence, and other en-
vironmental variables. However, the underwater radio
communication often operates at frequencies ranging from a
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few kHz to hundreds of MHz, providing high data rates and
low propagation delays [3]. Nevertheless, the radio waves
suffer from significant attenuation at high frequencies and
require the use of large and expensive antennas at low
frequencies. As a result, the radio waves have been inves-
tigated in the communication between the surface sinks,
buoys, and the offshore infrastructure. Additionally, the
radio waves have been utilized in the shallow regions for
real-time underwater applications, which require short la-
tency and large bandwidth. Another communication tech-
nology called magneto inductive (MI) has been proposed as
a carrier for data communication in underwater wireless
sensor networks. Albeit the MI technology does not suffer
from multipath fading, scattering, and signal propagation
delay, it is only efficient for shallow water applications at
distances up to 40m [4].

According to the aforementioned limitations of radio,
optical, and MI systems, acoustic waves are extensively
employed as an alternative carrier for data communica-
tion in deep underwater environments. *e key charac-
teristics of acoustic waves include the low attenuation that
allows signals to travel long distances without losing data.
However, the main drawback of acoustic waves is long
propagation delays and limited bandwidth. Fortunately,
most underwater networks are used to send small sized
packets to the surface or to the on-land Internet that
represent the sensory data. *us, the limited bandwidth
imposed by the acoustic waves is no longer a significant
communication barrier.

*e key contribution of this work is twofold. Firstly,
we highlight the challenges imposed by acoustic waves
usage in IoUT communication. In addition, we discourse
the effect of underwater nodes mobility patterns on the
design of successful routing protocols [5, 6]. Secondly, we
propose a reliable and energy-efficient routing protocol
named directional selective power (DSPR) to combat the
challenges of IoUT. In the DSPR protocol, the underwater
nodes do not need the three-dimensional position of
themselves or other nodes within the network. *e un-
derwater nodes communicate their sensed data in the
direction of the nearest sink by employing the arrival
angle of the acoustic signal [7, 8]. Furthermore, we
combine the directional approach by a selective power
control to maintain the network connectivity [9]. *us, we
increase the delivery ratio and enhance the overall net-
work reliability. Moreover, the DSPR protocol is appli-
cable for both sparse and dense networks as it can cope
with the mobility of underwater nodes.

*e rest of this paper is organized as follows. Section 2
presents the main features of the Internet of underwater
things and the key issues that result from the acoustic wave
utilization, the nodes mobility, and the difficulty of locali-
zation within the three-dimensional underwater architec-
ture. Section 3 summarizes the main locations unaware
routing techniques used for underwater acoustic sensor
network (UASN) and the IoUT. Section 4 presents and
analyzes the proposed routing protocol.Section 5 presents
and illustrates the simulation results. Finally, Section 6
concludes the paper and gives directions for future work.

2. Challenges for Efficient Communication in
Internet of Underwater Things

As was previously mentioned, an IoUT is enabled mainly by
the use of UASN. In this type of network, smart underwater
sensor nodes, autonomous underwater vehicles (AUV), and
remotely operated vehicles (ROV) have been introduced to
the research and industry communities to facilitate various
underwater applications [10]. *e smart underwater sensor
nodes are often equipped with several types of sensors, an
acoustic modem, and other smart features. *ese nodes may
record various observed data and selectively send them to a
surface sink. In general, the surface sink is equipped with
both acoustic and radio modems to connect the undersea
world to the terrestrial Internet and hence forms the IoUT.
Figure 1 illustrates an example of an IoUT where acoustic
wireless links are used as a communicationmedium between
a surface sink, a set of underwater nodes, and an autono-
mous underwater vehicle [1]. *e communicated data are
then relayed by the surface sink to a satellite station or to on-
shore control centers using radio links. *e upcoming
subsections present the challenges and crucial issues for
efficient communication in the IoUT.

Like IoT, the performance metrics such as reduced
energy consumption, reliability, and shorter end-to-end
delays are the main concerns for designers of the IoUT
protocols. Unfortunately, there are different communication
challenges in the underwater environment than that of the
terrestrial environment. *erefor, to improve the overall
network performance, different performance and special
design factors are to be considered.*esemetrics include the
unique characteristics of acoustic waves, the deployment
architecture, the high energy requirements, the mobility of
underwater nodes, and the localization difficulty [1, 11].
Table 1 compares the unique characteristics and challenges
experienced by the designers of IoUTwith those experienced
by IoT.*e next subsections elaborate more on each of these
challenges.

2.1. Acoustic Wave Communication. *e acoustic waves
compromise the largest part of communications in the
underwater world. *e radio waves are still the dominant
medium for communication between surface sinks and the
on-land control stations. Needless to say, the acoustic waves
have their own set of challenges, such as the limited
bandwidth and the slow propagation speed (1500m/s). *is
speed is five times slower than that of radio waves. *e
acoustic signal speed is also affected by different water
characteristics such as salinity, depth, and temperature. *e
effect of these characteristics is more noticeable near the
shore or in the shallow water, where salinity and temper-
ature vary greatly. In deep oceans, these variations are
limited and hence the acoustic signal speed is almost fixed.
*e depth of water is another factor that impacts the sound
speed where it increases by the increase in water pressure.
*erefore, in deep underwater communications where the
acoustic waves are required to travel for distances up to a few
kilometers, the slow speed of sound results in huge
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propagation delays [3, 12]. Hence, for time sensitive IoUT
applications, optimized delivery techniques in the presence
of such long delays are required. It is either done by re-
ducing the control packet exchange in multihop routing or
by using one or more AUVs for data collection in a timely
manner [13].

*e acoustic waves suffer from absorption loss that is
directly affected by the imperfections of the water medium,
the frequency used by acoustic transceivers, and the distance
traveled by the acoustics signal. *e absorption loss of both
radio and optical waves is much higher than that for acoustic
waves [12]. Moreover, the multipath propagation can se-
verely affect the acoustic based communication in under
water medium. For instance, in the shallow water envi-
ronment, the multipath arrivals of reflected signals are
caused by the surface or bottom of the deployment region. In
deep water, the multipath propagation can occur due to the
refraction induced by changing the acoustic wave speed [3].
*ese challenges are usually overcome by the modem de-
signs according to the physical layer level. However, the
effect of multipath propagation may be mitigated at other
protocol layers [14].

2.2. Deployment Architecture and Energy Efficiency. *e
deployment architecture of underwater sensor networks is
inextricably coupled with the application requirements. For
example, in some applications, the sensor nodes are

deployed in a two-dimensional centralized topology at the
seabed. A highly efficient node (gateways) collects data
from sensor nodes and forwards it to the surface sink
directly via a single hop. Other applications might use
multihop communication to interact with one or more
surface sinks that require the deployment of sensor nodes
in a three-dimensional architecture at various depths. *is
will lead to categorizing the UASN deployments into either
a two-dimensional or a three-dimensional architecture.
*e deployment strategies can also be classified as static if it
is performed once at the network setup or dynamic/
adaptive if a redeployment decision is made during the
network operation. Pompili et al. in [15] discussed the two
architectures and investigated the problem of achieving
maximal coverage with the lowest sensor count. *ese
architectures were combined with multiple sink architec-
ture to efficiently reduce delay, decrease energy con-
sumption, and alleviate the limited bandwidth problem in
acoustic communications [16]. *e static deployment was
illustrated by many frameworks and thus, many solutions
were proposed for the underwater sensor network de-
ployment. *e dynamic node deployment strategies, on the
other hand, are required to encounter the mobility of
underwater nodes [11, 17, 18]. Nevertheless, dynamic
deployment necessitates physical relocation of nodes and
continuous update of nodes positions. *erefore, the
mobility handling at the protocol layer stack is less ex-
pensive than dealing with it via dynamic deployment.

It is worth noting that the underwater nodes are battery
powered. Henceforth, conserving their energy is a crucial
requirement. *is requirement has risen since most un-
derwater node’ deployment is done in remote underwater
regions. *us, replacing the battery of these nodes is difficult
or infeasible. Furthermore, the acoustic modems require
higher power than the radio modems, which can be in the
order of watts compared to milliwatts for the radio modems.
As a result, an underwater network protocol should pri-
oritize energy efficiency while maintaining reliable
connectivity.

2.3. Mobility and Localization. In the underwater settings,
the node movement is unavoidable, negating the benefits of
static-based methods proposed for terrestrial WSN. As a
result, resilience to mobility should always be considered
while designing efficient routing protocols [19]. In the AUVs
and remotely operated vehicles (ROVs), mobility is super-
vised and controlled. On the other hand, the floating un-
derwater sensor nodes are affected by uncontrolled mobility
due to the water currents and dispersion that is also
influenced by water temperature and varies with depth. In
the UASN, simulating and predicting the performance of a
given protocol requires precise modeling of nodes’ mobility.
*is is because the node movement in a particular undersea
environment is not completely random. *us, customized
mobility models such as the meandering model and the tidal
mobility model have been used for modeling the movement
of the underwater nodes [20, 21]. *e tidal model is better
suited in offshore locations where tides are the primary

Control
station Satellite

Surface SinkWireless Link

AUV

Underwater Node

Figure 1: An architecture for IoUT.

Table 1: IoUT vs IoT features and challenges.

Feature IoUT IoT
Communication
medium Acoustic waves Radio wave

Propagation speed 1500m/s 2 × 108 m/s
Transmission range 100–10 000 meters 10–100 meters
Localization Expensive algorithms Cheap with GPS

Modem Expensive large/
acoustic

Cheap small/
radio

Transmission power Up to 10 s of watts In milliwatts
Data rate In 10’s of kbps In Mbps
Deployment
architecture Mostly 3D Mostly 2D

Mobility Affected by water
current Easily tracked
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driver of water movement, whereas the meandering one is
used in the deepwater environments. Nonetheless, more
precise prediction models based on the spatial and temporal
correlation of movement patterns in UASN are still needed
[22–25].

When compared to other routing categories, geographic-
based routing protocols have been found to be the most
scalable and efficient for UASN [26]. Nevertheless, the
majority of these protocols need that nodes be aware of their
three-dimensional position [27]. However, in the presence
of mobility, locating nodes in large-scale mobile underwater
sensor networks is a challenge. *is is because the typical
GPS-based approaches cannot operate in the water medium.
*erefore, the localization is typically accomplished using
expensive algorithms, which might cost additional energy
expenditure and time [6, 28]. As a result, location unaware
routing protocols are favored by the UASN.

3. Routing Protocols for the IoUT

According to the aforementioned challenges of under-
water communication, the location unaware routing
protocols are best suited for communication in the un-
derwater part of the IoUT network. *ere have been
various efficient location unaware routing protocols
proposed [29]. However, only a few discussed the suc-
cessful data delivery while maintaining the network
connectivity and saving energy expenditure in the pres-
ence of nodes mobility in the IoUT communication.

One of the location unaware routing protocols proposed
for underwater communication is depth-based routing
(DBR) [30]. In the DBR protocol, the depth information
collected by the pressure sensors is the only dimension used
by the network nodes for data forwarding. *e nodes for-
ward data if the depth of the current node is less than that of
the previous node. *e DBR protocol improves the per-
formance of the dynamic scenarios. However, it still suffers
from void region handling and redundant forwarding with
high energy consumption. To overcome the problem of
energy efficiency in the DBR protocol, an Enhanced Energy
Depth-Based Routing (EEDBR) protocol was proposed in
[31]. In this protocol, a residual energy indicator is used to
achieve energy balancing and efficiency. *e authors of [32]
proposed two variants to enhance the DBR protocol. *e
first variation (or protocol) is an energy efficient one that is
developed to decrease the redundancy of forwarding in the
multiple paths. *e second variation is the directional depth
which is developed to enhance the end-to-end delay. In the
first protocol, energy efficiency is achieved by prohibiting the
nodes in the void region from performing the forwarding
process. Instead, these nodes use the time of arrival ranging
technique to decide on nodes in void regions. Surely, this will
add extra overhead. In the directional DBR protocol, the
nodes use the depth and angle metrics in the holding time
calculations to guide the packets forwarding toward a sur-
face sink via an optimal route. *us, the end-to-end delays
are drastically decreased and the delivery ratio is enhanced as
well. However, in both protocols, the redundancy is reduced
but not eliminated and void region formation is handled via

expensive ranging technique in only one enhancement of the
DBR protocol.

In [33], Adaptive Mobility of Courier nodes in
*reshold-Optimized DBR (AMCTD) protocol is proposed.
To reduce the number of forwarders, the AMCTD sets a
predefined depth threshold for numerous nodes based on
the network density. In addition, the AMCTD relies on a
motorizedmovement of a set of courier nodes to handle void
regions. *erefore, this protocol was not appropriate for
data-sensitive applications. Hence, an Improved-AMCTD
(I-AMCTD) protocol is developed in [34]. *e I-AMCTD
protocol minimizes the end-to-end delay by optimizing the
mobility pattern of the sink. It also varies the depth threshold
in order to increase the number of forwarders to minimize
data loss and enhance the delivery ratio for delay-sensitive
applications. However, like the AMCTD, the locations of
courier nodes are mechanically adjusted and thus, extra
overhead will take place.

A Delay-Sensitive Depth-Based Routing (DSDBR)
protocol was proposed to solve the delay problem in the
depth based routing schemes [35]. Here, the authors im-
plement a delay sensitive holding time and a delay efficient
priority factor. *ese factors reduce the end-to-end delay at
an expense of lowering the throughput. Unfortunately, the
DSDBR protocol was demonstrated only for static scenarios.
In these scenarios, a time-consuming mechanical movement
of courier nodes is used to bypass the void region.

Moreover, an Enhanced location un-aware Channel
Aware Routing Protocol (ECARP) was specifically proposed
for the IoUT [36]. *is protocol is an enhancement of the
channel aware routing protocol [37]. *e ECARP protocol
uses the previously collected information to aid forwarders
in the decision whether to forward the incoming packets or
not. Forwarders in ECARP might select a previous-hop
forwarder even if this hop is not the best. *is selection is
performed to cope with the mobility of the nodes. *is
protocol efficiently forwards useful packets and reduces
energy consumption. In ECARP, the nodes are assumed to
store sensory data and make a comparison before for-
warding decisions. *is comparison will add extra storage
cost and processing overhead. Furthermore, the network
nodes are expected to switch between two power levels to
achieve the same bit error ratio for both control and data
packets.

A localization-Free Interference and Energy Holes
Minimization (LF-IEHM) routing protocol was proposed to
overcome the energy hole problem in multihop routing [38].
*e authors of [38] used the holding time to limit the in-
terference between consecutive Hello packets for forwarders
discovery. Further, a variable transmission range is used by
the sensor node to select forwarders. However, this selection
process relies on the sound pressure value. According to this
value, a forwarder that is not in the direction of the surface
sink might be selected. In addition, it is not clear how the
transmission range of nodes varies. Needless to say, this
range should be directly related to the acoustic modem
power.

In [8], a shortest path routing protocol based on the
vertical angle (SPRVA) is proposed. *is protocol improves
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both energy efficiency and the end-to-end delay by using the
directional approach. *is protocol is similar to the protocol
we proposed as both use the directional approach. In the
SPRVA protocol, the best forwarder is chosen according to
the main priority which is indicated by the residual energy
and the vertical angle between the propagation and the depth
orientations. An alternative priority is utilized when the
main priorities of the candidate nodes are equal. Reduced
delivery ration in a sparse deployment is mitigated by
implementing a recovery algorithm to bypass the nodes in
void regions from participating in the forwarding process.

In an energy efficient routing approach for the IoUTs,
researchers have used terrestrial based adaptive clustering
protocols to enhance the delivery ratio and to reduce the
energy consumption [39]. Here, an extension of a lifetime is
achieved compared with the depth based routing. In general,
the clustering approach provides energy balance, but it
comes at a high cost in terms of communication overhead,
especially, in mobile scenarios.

Authors in [40] introduced an opportunistic routing for
optoacoustic IoUTs.*ey used the directional nature of light
to guide the packet forwarding toward the surface sink.
Unlike our proposed protocol, this protocol is applicable
only for shallow and clear underwater communication.

*e most recent proposed enhancement for the DBR
protocol suggests using the variable power control protocol
to bypass the routing voids [41]. However, the high energy
consumption of this protocol has not been solved yet.

Taking routing decisions based on predicting mobility is
proposed in [25, 42, 43]. However, in order to reduce the
prediction error and obtain high efficiency, a huge input data
should be recorded and analyzed by time consuming
algorithms.

In our work, we consider the unique challenges of un-
derwater environment while focusing on the application
requirements for IoUTs. *ese requirements include in-
creasing the delivery ratio and reducing the energy ex-
penditure in both dense and sparse deployment. *e
proposed protocol is location unaware. In addition, it
combines the directional and the selective power routing
approaches in a three-dimensional mobile network to
handle the void regions and maintain the connectivity.

4. A Directional Selective Power Routing
Protocol for IoUT

*emultihop routing protocols are the best candidate for an
Underwater acoustic sensor network. *ey are usually de-
veloped based on geographical information [5]. In this kind
of routing protocol, the exact location of nodes is a re-
quirement. However, in the underwater environment, nodes
location is obtained by running costly localization tech-
niques [6].*e cost grows exponentially when the process of
finding a location is frequently performed. For instance, in a
dynamic environment, the nodes are susceptible to constant
movement with water currents and thus finding their exact
location at a certain moment seems difficult. In the proposed
location unaware directional selective power routing the
network connectivity is maintained by using the power

control and an optimized shortest path is selected based on
the angle of arrival of acoustic signal.

4.1. Network Architecture. In the proposed protocol, we
assume that an underwater network consists of one or N
surface sinks: S1, S2, . . . , SN. *e surface sinks and the un-
derwater nodes are both assumed to be equipped with an
acoustic modem that is capable of switching to a set of k

power levels. For instance, the power level of node i can be
characterized as Plti ∈ 1, 2, . . . , k. At each power level, the
acoustic signal can be correctly received and detected within
a range specified by the acoustic modem characteristics and
channel equations. All nodes are equipped with on-board
arrays of multiple microphones to determine the arrival
angle of the received acoustic signal [44].

*e proposed routing protocol is subdivided into two
phases; (1) the network setup phase where nodes assign
themselves to a certain sink and select the minimum power
level to choose a set of possible forwarders. (2) *e network
operation phase where the nodes use the initial settings and
can switch back to renew their possible forwarders if the
network is disconnected due to mobility or node failure.

4.2. Network Setup. During network setup, the sink node
will broadcast a Hello packet using its maximum trans-
mission power. A surface sink is usually equipped with an
acoustic transmitter that can send at maximum transmission
power to a distance of up to a few kilometers. *e under-
water nodes which received the Hello packet will record the
angle of arrival (sinkAoA) of each received sink’s along with
its sinkID. Using this information, the underwater nodes will
determine the relative directions toward each of the surface
sinks. Consequently, the underwater nodes will use this
information to determine the directional path toward the
closest sink Si that has the lowest vertical angle of arrival
such as

Si � argmin
(t)

θi − 90
����

����. (1)

Figure 2 shows an illustration of the sink selection
process. Here, a source node S receives two Hello packets
from sink1 and sink2. Accordingly, it will select sink1 as its
final destination since it has a lower arrival angle (i.e.,
θ1 < θ2).

4.3. Forwarder Discovery. *e forwarder discovery step is
performed initially after the network setup. *is step will be
repeated when a sender receive no acknowledgments (Acks)
for data packets due to the network topology change. In this
step, the sender nodes send Hello packets to select the best
forwarders using their minimum transmission power and
sets a timer to receive the acknowledgments. *e timer is
selected to slightly exceed the round trip time required for
the acoustic signal to reach the furthest node in its range.*e
waiting time (wti) for each power level is defined by the
following:
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wti �
2Ri

c
+ δ, (2)

where Ri is the maximum distance at which an acoustic
signal at a power level Pli can be correctly received and
detected, c is the sound speed (1500m/s), and δ is a marginal
time added to slightly exceed the Hello packet transmission
time.

Nodes receiving thisHello packet will reply with an Ack
packet that includes the potential forwarder ID, its sin-
kAoA, and residual energy level. Each forwarder holds an
indicator to the residual energy level. *ese levels range
from 1 to 5 where 1 indicates the least power level, whereas
5 indicates the maximum. A sender node will calculate the
Ack angle of arrival (ackAoA) and compare it with its
sinkAoA. *e senders will select the best possible for-
warders based on two metrics: the angle of arrival differ-
ence for the Ack packet and the sink identification packet
and the residual energy level of potential forwarders. If no
Ack is received before the timer expires, the sender switch
to a higher power level to find forwarders and will again
select the best forwarders based on sinkAoA and ackAoA.
*is step is repeated until the nodes find the correct power
level needed to find the candidate forwarders or until the
maximum power level is reached. Figure 3 shows a sender S

finds two possible forwarders when switching to the power
level associated with range r2. S will then select between n1
and n2 based on the angle of arrival values and the residual
energy level. It is worth mentioning that nodes will be
disconnected if it cannot find neighbors at the highest
available power level. *erefore, the number of power
levels should be carefully selected.

4.4. Forwarder Selection. After the forwarder discovery step,
each sender will maintain a table of possible forwarders with
information extracted from the Ack packet including the
forwarder ID, its ackAoA, and a residual energy indicator.
*e later information consists of multiple values where 1 and
5 values indicate very low and very high, respectively. When
a sender has data to send, it will only look for forwarders

with residual energy indicators above 1. In addition, it will
select the forwarder with the least difference between the
possible forwarder ackAoA and the sender sinkAoA. *is
ensures the minimum directional path toward the sink. *e
residual energy indicator in the forwarder table will be
updated with the forwarders information of the received Ack
packets. If the residual energy of all forwarders is very low
(say at 1), the discovery procedure will be triggered to look
for another set of possible forwarders using a higher
transmission power level.

4.5. Power Control Implementation. To obtain the relative
power values for the selected communication ranges used by
the underwater nodes, we used the acoustics path loss model
presented in [45, 46]. *e relation between the power level
P(l) values and the power spectral density (psd) of a
transmitted acoustic signal Sl(f) over the frequency
bandwidth B(l) is defined by the following:

P(l) � 
B(l)

Sl(f)df. (3)

To simplify the calculation of the proposed protocol, we
consider that Sl(f) are flat over a narrow band bandwidth
B(l). So equation (3) becomes as follows:

P(l) � B(l)Sl(f). (4)

In order for a signal to be correctly received and detected
by an acoustics modem, the signal-to-noise ratio SNR(l, f)

should be greater than a modem specified threshold SNR0.
*is value is affected by the noise level N(f), the attenuation
level A(l, f), and the psd of the signal level Sl(f) that can be
derived from equation (4).*erefore, SNR(l, f) at a distance
l and frequency f can be written as follows:

SNR(l, f) �
P(l)

(N(f)A(l, f)B(l))
. (5)

*e attenuation A(l, f) can be obtained by applying
equation (6) as follows:

A(l, f) � 10 log
A(l, f)

A0
  � k.10 log l + l.10 log a(f),

(6)
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Figure 2: *e source node S selects its destination as sink1.
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Figure 3: Two possible forwarders for node S at power range r2.

6 Wireless Communications and Mobile Computing



where A0 is a unit normalizing factor that represents fixed
losses, a(f) is the absorption coefficient, and k is the
spreading factor defined as 1 for cylindrical, 2 for spherical,
and 1.5 for practical spreading. *e absorption coefficient is
expressed using*orp’s formula that returns a(f) in dB/km
for f in kHz as follows:

a(f) �
0.11f

2

1 + f
2 +

44f
2

4100 + f
2 +

2.75f
2

1000 + f
2 + 0.003. (7)

Additionally, the noise level N(f) is a combination of
different kind of noise such as the ambient noise which is
caused by shipping Ns(f), the waves noise which is caused
by wind Nw(f), the turbulence noise Nt(f), and the
thermal noise Nth(f). Equations (8) to (11) listed below
calculate each individual noise as follows:

10 log10Ns(f) � 40 + 20(s − 0.5) + 26 log10 f

+ 60 log10(f + 0.03),
(8)

10 log10Nw(f) � 50 + 7.5
��
w

√
+ 20 log10 f

− 40 log10(f + 0.4),
(9)

10 log10Nt(f) � 17 − 30 log10 f, (10)

10 log10Nth(f) � −15 + 20 log10 f. (11)

*e N(f) noise can now be computed in log scale by
adding equations (8) to (11). It is worth noting that, for the
deep marine environment, the N(f) noise can be ap-
proximated as follows:

10 log10 N(f) � 50 − 18 log10 f. (12)

As we are interested in finding the required power level
needed to be detected at a distance l, we can rewrite equation
(4) in the following form:

P(l) � SNR(l, f)N(f)A(l, f)B(l). (13)

*e signal-to-noise ratio should be greater than an
acoustic modem specified threshold SNR0 to detect and
decode correctly. Substituting Sl(f) from equation (13) into
(4) gives the required acoustic power as follows:

P(l) ≈ SNR0B3(l)
N(f)

A
−1

(l, f)
. (14)

In acoustic communication, the transducer of an
acoustic modem changes the electrical power Pt in watt to
an acoustic sound power in micro-Pascal (μPa). *e
electrical power of an acoustic modem is a function of the
modem efficiency and the acoustic power P(l) needed to
cover a distance l. Since no transducer is 100% efficient, the
acoustic power is reduced by the transducer efficiency η.
*e relationship between the electrical power and the
acoustic power needed to cover a distance l is defined by the
following:

10 log(ηPt(l)) � 170.8 − 10 log P(l) + DI, (15)

where 170.8 is a conversion factor between electric power
and acoustic power. DI is the directivity index of the an-
tenna, which is equal to zero for the omnidirectional
antenna.

5. Performance Evaluation

To evaluate the proposed routing strategy, we have con-
ducted extensive simulations for different static and mobile
scenarios. In all simulation scenarios, the nodes are assumed
to be uniformly distributed within 1 km× 1 km× 1 km three
dimensional topology. We also adopted the power settings
used in EvoLogic acoustic modem [47]. Nodes are able to set
their transmission power Ptx to a set of values between
5.5watt and 10.2watt that is associated with a set of four
communication ranges 250m, 350m, 500m, and 650m.
Equation (14) is used to find the transmission power used at
each range. *e power value for receiving one bit of in-
formation has been set to Prx � 0.8watt. *e bit error ratio
of acoustic modem has also been set to 10−9. *e data packet
size is 512 bits and the data rate is 30 kbps. *e receiver
minimum signal-to-noise ratio is SNR0 � 30 dB. *e un-
derlying MAC protocol has been used as the underwater
broadcast MAC. We measured the average end-to-end
delays of all packets generated throughout the whole sim-
ulation time which was fixed at 1200 s.*e per bit energy
consumption is defined by the total consumed power over
the total number of delivered data bits. In addition, the total
energy consumption is the sum of all energy dissipated by all
nodes. *e delivery ratio is calculated as the total number of
packets submitted successfully to the sink node over the total
number of packets generated by all source nodes.

5.1. Static Scenarios. Here, we evaluate the performance of
the proposed directional selective power protocol. A com-
parison between the performance of the proposed protocol
and that of the VDBR protocol is performed. We also
compare the performance of the proposed protocol with that
of the other two versions of a directional fixed power routing
using two ranges (500m and 250m).*e two aforementioned
ranges represent two cases where a low range at 250m is
suitable for dense networks, and the 500m works best to
maintain connectivity for the sparse networks. Figure 4 shows
the delivery ratio for the fixed directional routing at the range
of 250m (DR250). Here, one can see that the delivery ratio is
between 20% and 45%. In addition, the achieved ration almost
doubled to that of RD250 when increasing the power range to
500m (DR500). A fixed low communication range (i.e.,
DR250) requires a dense network to maintain the network
connectivity and hence achieves a high delivery ratio.
However, the VDBR and DSPR protocols have a very high
delivery ratio above 92% for all node densities. Furthermore,
the VDBR protocol achieves a slightly better delivery ratio
than the DSPR one. *is is due to the nature of the depth
based routing, which allows multiple forwarders at each step
to acquire higher delivery probability. As a result, the power
consumption is drastically increased.
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Figure 5 shows the end-to-end delays for one sink with
varying nodes density. *e data packets in the DBR250 and
VDBR reach the surface sinks in less time than that of DR500
and DSPR by about 0.2 seconds. *is is due to the fact that
the depth based routing protocols do not employ retrans-
missions for dropped packets and hence data is delivered
faster with no delays. In the DR250, the delivery is scarce,
and it happens only when a sender finds one forwarder
within 250m. *erefore, the probability of collisions that
triggers the time-consuming retransmissions in DR500 is
lowered in DR250. In the DSPR, the extra delay is due to the
time needed to exchange the control packet for the for-
warder and the power range selection. As a result, for the
time sensitive applications, the VDBR protocol is rather to
be used in favour of the DSPR protocol.

Although the VDBR protocol shows a relatively low end-
to-end delay and high delivery ratio, the energy expenditure
is extremely high. Table 2 shows that the energy con-
sumption by the VDBR protocol is around 8 times higher
than that of the DSPR protocol when the number of nodes is
50. Moreover, the energy consumption is 15.7 times higher
than that at 200 nodes. *is excessive energy expenditure is
due to the flooding of multiple copies of the same packet
when the number of nodes in the network increases. In the
directional scenarios, we limit the maximum number of
nodes that can participate in the forwarding process to two
nodes. Each node keeps a record of the forwarded packet IDs
to forbid forwarding the same packet twice. *us, the un-
necessary forwarding is reduced in the DBR protocol.

Figure 6 also shows that using the selective power
routing achieves considerably better energy savings than that
of both fixed case scenarios at the 250m range for both high
and low node densities with more than 40% savings. *e per
bit energy saving achieved by the DSPR protocol is more
than 25% compared to the DR500 when the node densities
get high.

*e proposed routing protocol has also been illustrated
with four sinks. Similarly, the proposed protocol achieves a
noticeable enhancement in both energy and delivery ratios.
Figure 7 shows that the DR500, VDBR, and DSPR protocols
delivery ratios are always above 90%. However, the DR250

protocol achieves a very low delivery ratio. *is is because of
the limited communication range where the senders can
rarely find forwarders. When we increase the number of
nodes (i.e., higher nodes densities), the probability of finding
forwarders increases, and hence the delivery ratio increases
to 46% at 150 nodes.

Figure 8 shows the end-to-end delay with four sinks. One
can see that the end-to-end delay is slightly less than that for
one sink architecture. *is is because having more sinks will
lead to shortening the distances from the underwater nodes
to the surface and thus reducing the propagation delays. *e
other forms of delay are a result of control message exchange
and packet retransmissions that slows the directional
routing protocol compared to the VDBR.
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Figure 5: *e end-to-end delay, one sink, static scenario.

Table 2: Per bit energy consumption VDBR vs DSPR.

Per bit energy 10−3 joule
Routing scheme at 50 node at 100 node at 200 node
VDBR 18.50 32.47 51.04
DSPR 2.22 2.44 3.23
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*e energy expenditure is reduced when using multiple
sinks architecture as shown in Figure 9. DSPR is also shown
to outperforms both fixed directional routing techniques at
DR250 and DR500. More than 20% saving is obtained when
number of nodes greater than 150. *is results from the fact
that in DSPR, nodes tends to use lowest power level needed
to reach forwarders. At low densities energy saving in DR500
is almost the same as in DSPR since both strategies tend to
use the same power range at 500m and hence will consume
same amount of power.

5.2. Mobility Consideration. We ran a set of more experi-
ments to test our technique against directional routing in
dynamic scenarios. For modeling the node mobility, we
adopted the a tidal mobility model where tidal and residual
current fields are used for determining the composite cur-
rent field. *e residual current field is assumed to be an
infinite sequence of clockwise and anticlockwise spinning
eddies, and the tidal field is assumed to be a spatially uniform
oscillating current in one direction [23]. In this model, the
velocity fields in the x and y directions field are approxi-
mated by using the kinematic model as follows:

Vx � k1λv sin e k2x( cos k3y  + k1λ cos 2k1t(  + k4,

Vy � −λv cos k2x( sin k3y(  + k5,
(16)

where Vx and Vx are the speed in the x and y directions. k1,
k2, k3, k5 and λ are parameters related to water environment
factors including bathymetry and tides. In our simulations,
we used the settings for deep underwater environments as in
[22] with an underwater node speed in the range of 1–5m/s.
In DR250 and due to limited communication range, senders
can rarely find forwarders at low node densities. In fixed
scenarios delivery ratio is less than 46% when the number of
nodes is less than 150. When the network is mobile, for-
warders keep moving and get out of senders’ range. Senders
with fixed low power range will suffer updating their for-
warding list and the delivery ration will dropmore. Figure 10
shows that for a mobile network, the delivery ratio in fixed
directional power cases is less than 10% at the 250m range
and is less than 68% when using the 500m range. On the
other hand, the delivery ratio in DSPR is just slightly lower
than that found in a static network situation and remains
over 90% when varying node density. As a result, DSPR is
best suited for mobile scenarios since it improves network
connectivity significantly compared to fixed directional
routing strategies.

*e energy consumption is also advantageous in the
DSPR protocol with more than 80% and 30% saving
compared to the DR250 and the DR500, respectively, as
shown in Figure 11. *e extra energy expenditure in the
DR250 protocol results from increasing the number of hops.
*us, more nodes use lower power levels to participate in the
data packet forwarding. In the DR500 protocol, the collision
domain is high and the extra energy is consumed because of
the retransmissions. *erefore, selecting the best power level
shows an advantage over the other two variations of di-
rectional routing. *is is because the usage of the correct
power level is chosen in accordance with forwarders
availability.

*e advantage of DSPR over other tested static strategies
and the VDBR was also clear when finding total energy
consumption by nodes. Our simulation results showed a
much higher energy expenditure of dynamic case VDBR
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than that for the static case VDBR as shown previously in
Table 2. *e energy expenditure, in this case, was at least 20
times more than the dynamic case of our proposed DSPR.
On the other hand, very low energy consumption was found
with fixed directional routing DR250. *is is due to the fact
no energy is consumed in sending data packets as forwarders
are not actually found at this low range. *erefore, in this
case, we only compare DSPR with DR500 since they tend to
have a comparable delivery ratio. Figure 12 shows that the
total energy expenditure is reduced when the network be-
comes denser as nodes tend to use lower power levels to
reach forwarders. *erefore, collisions and retransmissions
are reduced and the network lifetime in enhanced.

6. Conclusion

In this paper, we focused our attention on the issues and
challenges that affect the protocol design for the underwater
part of IoUT network. Increasing reliability by maintaining
connectivity and conserving energy are of the most important
requirements for efficient communication in a dynamic un-
derwater environment. *e unique challenges imposed by the
characteristics of the underwater communication channel
have impacted the underwater routing performance. To
overcome these challenges, we proposed a directional selective
power technique that is location-free, robust to mobility, and
energy efficient. In the proposed technique, we acquire the
simplicity of sender-based angle of arrival forwarding decision
with a practical power control implementation of an acoustic
modem. *e senders in the proposed protocol select the best
forwarder in the direction of the nearest sink via directional
routing. In addition, the sender nodes can switch to use a
higher power level when the network is sparse. *is will help
the acoustic signal to traverse higher distances to locate the
most suited forwarders. Hence, a forwarder is guaranteed to be
found with the least possible power level to reduce the energy
expenditure and maintain network connectivity. Extensive
simulations show enhancements over other protocols re-
garding energy expenditure and delivery ratio for both static
and mobile scenarios, dense or sparse networks, and with one
or multiple surface sink architectures. However, a slight in-
crease in the end-to-end delays is observed as an overhead of
switching to the correct power level and increasing the number
of hops. In future work, an optimization of the number of
power levels is to be conducted to further reduce energy
expenditure and to avoid transmission delay overhead.
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Designing an efficient, reliable, and stable algorithm for underwater acoustic wireless sensor networks (UA-WSNs) needs
immense attention. It is due to their notable and distinctive challenges. To address the difficulties and challenges, the article
introduces two algorithms: the multilayer sink (MuLSi) algorithm and its reliable version MuLSi-Co using the cooperation
technique. The first algorithm proposes a multilayered network structure instead of a solid single structure and sinks
placement at the optimal position, which reduces multiple hops communication. Moreover, the best forwarder selection
amongst the nodes based on nodes’ closeness to the sink is a good choice. As a result, it makes the network perform better.
Unlike the traditional algorithms, the proposed scheme does not need location information about nodes. However, the MuLSi
algorithm does not fulfill the requirement of reliable operation due to a single link. Therefore, the MuLSi-Co algorithm utilizes
nodes’collaborative behavior for reliable information. In cooperation, the receiver has multiple copies of the same data. Then, it
combines these packets for the purpose of correct data reception. The data forwarding by the relay without any latency
eliminates the synchronization problem. Moreover, the overhearing of the data gets rid of duplicate transmissions. The
proposed schemes are superior in energy cost and reliable exchanging of data and have more alive and less dead nodes.

1. Introduction

The network structure, reliability, and energy efficiency play
an important role in the algorithm designing for UA-WSNs
due to its tremendous applications and crucial challenges. A
reliable, stable, and efficient algorithm with good network
formation is used for many applications, such as military

operations, mission, time, and data critical situations, locat-
ing and directing submarines and examining oil pipelines
and cables [1, 2]. Moreover, addressing the unique and crit-
ical challenges during designing such an algorithm gets
stringent attention of the researchers and academia. The
acoustic communication amongst nodes tends to extreme
latency than the optical and radio communication [3]. But
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optical and radio communication is not feasible for these
networks. It is because of the scattering and absorption of
these waves [4]. Attaining the location information of the
nodes is also challenging due to the constraint of the global
position system (GPS) in the water. It is due to the working
of GPS on radio waves [5, 6]. Another way of getting loca-
tion information is complex simulations. However, this is
time and energy consuming, which also introduces compu-
tational complexity [7]. Moreover, nodes’ movement with
water waves degrades the reliable and efficient operation of
the algorithm [8]. Furthermore, energy-efficient operations
are required due to the constraint of energy. The replace-
ment and energizing of the nodes are hard [9]. The noisy
environment in these networks also reduces reliable data
exchanging between nodes. These challenges are given in
Figure 1. Due to the mentioned reasons, limitations, and
challenges, a good algorithm is required for operation of
these networks.

Cooperative communication is the best solution in these
networks to achieve reliable communication amongst the
nodes and reduces data failure. The data advancement
through multiple paths towards the destination for increas-
ing the chances of correct data reception is called coopera-
tion [10]. The data advancement every time by the relay
for data reliability is called fixed cooperation. While in the
incremental cooperation, the delivery is done when the
receiver demands from it. Before advancing data to the for-
warder/receiver, either it is boosted or decoded by the relay.
Based on relay behavior, it is named as amplify forward (AF)
and decode forward (DF) [11]. The DF is complex in com-
putation than AF. The cooperative algorithms obtain greater
data reception and less packet drop. However, excessive
energy and time consumption make these challenging and
difficult. In the case of acoustic waves, it is more challenging
because of energy resources and the low speed of
communication.

In noncooperative algorithms, delivery through a single
link consumes less energy and time than cooperative tech-
niques. However, these algorithms are not reliable and have
greater chances of packets loss [12]. A small obstacle may
lead to data loss and failure. Moreover, noise sources also
cause data corruption and have greater effects on data loss
in noncooperative algorithms. The retransmission mecha-
nism is not a suitable choice for data reception again over
the same noisy link. Also, multiple antennas are costly and
not feasible in underwater [13]. Cooperation is the best
choice to achieve reliable and good communication in UA-
WSNs.

The network structure has greater effects on routing per-
formance, especially in UA-WSNs. Poorly designed network
leads to bad performance, while a well-designed network
structure improves the results and performance. Further-
more, sink placement plays an important role in algorithm
efficiency. Sink placement at the best position tends to per-
form enhancement. Many algorithms such as [14–17]
designed network in a single solid structure and placed the
sink on the top. Placement of the sink on such positions
leads to high and imbalance data load. The high load tends
to traffic congestion and data collision. The collision causes

the packets to drop and forwards data with greater latency.
Moreover, the life of the nodes near to the sink is less com-
pared to the other nodes which are far away from the sink.

Many cooperative algorithms exist in the literature
[18–24]. Some of the existing cooperative algorithms, such
as [25–27], are reliable but they compromise on energy,
which leads to less stability and reduces the life of the net-
work. In the case of poorly designed network architecture
in cooperative algorithms, its stability is further reduced.
Data and time synchronization are other issues in these algo-
rithms. The nodes near to the sink have the highest data traf-
fic. This traffic creates issues, like data collision, a greater
amount of energy cost, and high time consumption.

Considering the aforementioned challenges and difficul-
ties, the article proposes two carefully designed algorithms.
The first one is the MuLSi algorithm, and the second one
is its extended version using the cooperation methodology
for reliability enhancement of the MuLSi algorithm. The
MuLSi technique proposes a network structure in layers
instead of a single solid structure. The sinks are placed in
the middle of each layer to reduce the multihop communica-
tion between nodes and sinks. Such placement of sinks also
reduces the path length between the nodes and the final des-
tination. Reduction in the path length tends to minimize the
effects on the data. The next stage consists of data exchang-
ing. The data is delivered to the sink using multihop com-
munication. Therefore, the next forwarder selection is
made upon the distance of the nodes from the sink. The
node which is the nearest is selected as the next forwarder.
In MuLSi algorithm, the data exchanges with the receiver/
forwarder on a single link. The single link does not achieve
the best and reliable results. Therefore, cooperation is one
of the best solutions to intensify a reliable operation. The
article proposes the extended version of the MuLSi algo-
rithm named as MuLSi-Co algorithm. The MuLSi-Co algo-
rithm provides reliable operation by utilizing the broadcast
behavior of nodes. The relay forwards data to the destination
without any latency. As a result, the forwarder/receiver
receives the data along two paths and then combines the
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Figure 1: Challenges in UA-WSNs.
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data to minimize the channel effects and ensure its reliable
operation. The overall contributions of the article are
summarized as follows:

(i) The network structure plays an important role in
network performance improvement. Therefore, the
suggested MuLSi algorithm in this article proposes
the network structure in layers instead of a single
solid structure. Moreover, the layered structure
decreases the dependency on other nodes as com-
pared to a single solid structure. Then in each layer,
a sink is positioned in the top center. This reduces
the multi-hop communication between nodes and
tends to reliable and energy-efficient operation.
Then instead of the receiver-based approach, the
proposed scheme prefers the sender-based approach
due to latency, synchronization between nodes, and
reduction in computational cost. The sender decides
its next forwarder upon nodes’ distance from the
destination. Instead of complete information about
the distance, a simple distance formula is utilized
to reduce the computational complexity and cost.
Moreover, the knowledge acquisition stage is
designed in such a way that reduces the data over-
head, traffic congestion, data overload, and energy
expenses

(ii) Due to the high effects of the channel on a single
link data in the MuLSi algorithm, the chance of data
corruption is high. The single link breaking has high
chances which affect the reliable transmission and
sometimes leads to loss of data. So, this motivation
leads to the extended version of the MuLSi algo-
rithm termed as MuLSi-Co. In this, the cooperative
behavior of the nodes makes the network reliable.
The relay forwards the data to the forwarder/
receiver and combines the copy and original packets
to reduce its chances of being dropped

(iii) The redundant packet transmission and synchroni-
zation between nodes, sender, receiver, and for-
warder, are two of the most important aspects of
the cooperative techniques. In order to improve
synchronization, a fixed cooperative behavior of
the relay tends to eliminate such issues. The relay
advances the data as it receives it without any
time-wasting. The other nodes in the proximity of
the sender discard the data after analyzing it, which
leads to a reduction in duplicate data transmission.
The suppression of such packets improves efficiency
in terms of energy and data collision

2. Related Work

The two most important parameters, the power of sensor
nodes and less noisy links to transmit data in the harsh envi-
ronment of the UA-WSNs, are addressed in [28] by propos-
ing two routing protocols. The first scheme “energy effective
and reliable delivery (EERD)” deals with the battery con-
sumption parameter, and the second scheme “cooperative

energy effective and reliable delivery (CoEERD)” incorpo-
rates the noisy link issue. The EERD consists of only one sin-
gle path, in order to deliver the data from one state to the
next higher state. Initially, the source node generates infor-
mation and advances it. Every source has its own transmis-
sion range. All those nodes which come in the range of
transmitter receive the data. The source nominates a node
(forwarder) amongst the nodes which are around the source
for further transmission. The nominating criteria for the for-
warder node depends on a weight function. The weight
function includes the information of residual energy, bit
error rate (BER), and distance. In other words, the node is
selected as a forwarder that has maximum residual energy,
less BER, and the lowest distance to the sink node. Due to
a single link for data transmission, it has the maximum
probability of data corruption. To avoid and tackle such
issues, an extended version of the EERD is proposed, called
CoEERD. In CoEERD, along with the forwarder, a relay is
also selected for data advancement to the next stage. The
selection criteria of the forwarder and relay nodes are similar
as in the EERD mechanism. If the BER increases from the
threshold value, then the relay node sends the data. This
way improves data exchanging over the noisy links, and
the original data is transmitted in a safe mode. The discussed
routing schemes outperform, in terms of alive and dead
nodes, the successful packet reception with the lowest a
lower energy cost.

A “reliable multipath energy-efficient routing protocol
(RMEER)” is presented in [29]. This research work targets
to enhance the network lifetime and set an optimal route
to deliver the information to the desired target. The whole
network is divided into five different and equal layers. The
final destination node is placed at the top of the water sur-
face, and static powerful carriers are deployed in the remain-
ing layers. The last layer of the network contains ordinary
sensor nodes. The multipath data routing mechanism is
followed to deliver the information. In order to improve
the packet delivery ratio multisinks with the multipath dis-
joint algorithm are used. In this algorithm, if any node dies,
then an alternate route selection bypasses the died node
route. The data forwarding process is defined by a routing
table. A hello packet is sent by the courier node; after receiv-
ing this packet, every source node updates its routing table.
This table contains the residual energy, link quality, and
node ID. By analyzing all these parameters, an optimal for-
warder node is selected for the data transmission towards
the sink.

Once the battery of sensor nodes dies, it is impossible to
change it in a harsh environment. In addition, the noise
degrades the quality of the information packets. These two
major problems are incorporated in [30]. For these two
problems, two different routing protocols are designed.
One deals with a power consumption problem called SRSPR:
“stable and reliable short-path routing”, and the second
deals with the successful transmission of the data called
Co-SRSPR. Initially, all the sensor nodes are not familiar
with the basic information of the neighbor nodes. So, the
hello packet is a method to collect records, all the necessary
and basic information of the nodes like residual energy,
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signal to noise ratio, Euclidean distance, and a minimum
number of hops. Information in the form of packets is gen-
erated and is not sent directly to the sink because of maxi-
mum energy consumption and noise. However, it is sent
through a multihop mechanism. The best forwarder selec-
tion depends on the maximum residual energy, signal to
noise ratio, the lowest Euclidean distance to the sink, and
minimum hopes. The whole purpose of the mentioned arti-
cle is to minimize energy consumption. However, this proto-
col is not able to enhance reliable operation; to do so, a new
routing scheme is developed by adding the cooperation to
the SRSPR protocol called Co-SRSPR. In Co-SRSPR, one
extranode called relay takes part in data transmission in
delivery. The relay is selected on the basis of the second larg-
est value of the weight function. If the link is noisy and the
BER crosses the limit, then the relay transmits the packet
to the final destination. This mechanism minimizes the
packet drop ratio and hence increases the successful trans-
mission of the data. Experimental outcomes clearly indicate
the best performance of the presented protocol in energy
consumption and maximum packet delivery ratio.

In [31], cooperation and multihop energy-efficient rout-
ing schemes are introduced for UA-WSNs. The information
is generated by the nodes and directs this information
towards the sinks through a multihop algorithm. To
enhance the reliability of the network, a cooperation scheme
is introduced to the one-hop communication. The data for-
warding stage is accomplished in two phases. In the first
phase, the forwarder node receives the information, and in
the second phase, along with the forwarder node, one relay
node is set to transmit the data. When both forwarders
receive the information, then MRC technique is used which
merges these two packets to make one reliable packet. To
find the relative distance between nodes, the RSS algorithm
is used. The outcomes of the proposed scheme show the best
responses in terms of energy and stability of the network.

The fuzzy vector technique is determined in [32] which
copes with the delay minimization and battery life issues.
This is an advanced version in which fuzzy logic technique
(FLT) is utilized. The source generates information and then
directs it towards the sink through a multihop mechanism
and considers the maximum residual energy for data
advancement. The best forwarder selection depends on the
residual energy along with the node position. When the data
packet generated by the source is broadcasted, all its neigh-
bors receive the packet. Amongst all neighbors, one optimal
node is chosen to deliver data to the next node. The residual
energy of the selected node should be maximum so that it
does not die soon and the position of this node should be
minimum to sink node. The experimental results show the
best responses in terms of fast data transmission and the
network have maximum alive nodes.

In [33], a new mechanism is introduced called “multime-
dia- and multiband-based adaptation layer techniques”
which deals with the bandwidth limitation, propagation
delay, and power constraint problems in UA-WSNs. In this
routing scheme, the information is collected and transmitted
in an effective way. The delivery of data to the sink is accom-
plished in a hierarchical manner. In order to choose the

path, this task is divided into two different phases. The Man-
hattan approach determines the nodes which are nearer and
away from the final destination and selects the medium for
data exchanging. The RSSI technique also determines the
distance. The modem used for multimedia is developed
which supports the bandwidth of acoustic wave range from
70 to 140KHz. Only one single bandwidth is used for infra-
red wavelength ranges from 700 nm to 1mm. For visible
light communication, the blue light with 450 to 485nm
wavelength is used. In the simulation results, the proposed
scheme seems better in propagation delay, bandwidth, and
energy consumption.

To reduce the interference and undesired signals to the
information signal and to use minimum energy by the nodes
for transmission and reception of data are proposed in [34].
Multiple datasets are received with minimum or no interfer-
ence. To control the power parameter of the nodes, a
frequency-selective interference channel based on a nonco-
operative game-theoretic approach is discussed in which
the uniqueness and existence of Nash equilibrium are
proved. The throughput and cost function of the proposed
network is defined by the utility function, in which the cost
function indicates the power consumption record of the
nodes. The utility function of the nodes changes with the
noncooperative mechanism. Hence, increase the throughput
and reduce the energy usage of nodes.

Energy-efficient clustering algorithm is proposed in [35],
to deal with the balancing and energy problems of the nodes
in UWSNs. To reduce the overhead of energy problem dur-
ing rotation in cluster heads (CHs), leomna, a dual cluster
head mechanism, is introduced. To manage the energy of
network nodes, a noncooperative game model is also dis-
cussed. In this approach, the whole workload in terms of
energy is measured first. Then, equal distribution is carried
out for each node in terms of energy. In this game model,
the Nash equilibrium point is carried out and justified with
solid proof. This means a single average value of the energy
is defined which every node uses in transmission. Transmis-
sion of information amongst intracluster and intercluster
domains is carried out in an efficient way to reduce energy
usage; to do so, cluster-combined game theory and dual
cluster head are proposed, which distribute the energy in
an effective way. As a result, the overall network in balancing
and energy consumption is optimal compared to existing
techniques as shown in the simulation result section.

In [36], network stability and noise awareness are the
main concern. This routing called depth-based noise aware
scheme targets these two parameters. Initially, the network
is idle and knows nothing about nodes. Hello packet is
issued from the sink and channel reciprocity obeys in this
routing mechanism. By receiving this hello packet, every
node puts its ID number, depth, and noise information. By
doing this, all nodes become familiar with each other. When
the source generates the information signal, every node in
the source transmission range will receive this. If all nodes
send this data to the final destination node called sink node,
then there is huge energy crisis within the network. For this
purpose, only one node has been selected to transmit the
packet. This node selects the lowest depth and lowest noise
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parameters. Such node is selected up to complete success-
fully transferring of data to sink node. Hence, the selection
of such node reduces the energy consumption, optimizing
the path quality of the signal. Moreover, the reliability of
the network increases, alive nodes increase, and dead nodes
decrease.

Due to the harsh and unpredictable atmosphere of the
underwater networks, it hits the overall performance of the
network in the aspect of packet delivery, battery life, and
the error rate of data. In order to cope with these issues,
new ideas have been presented in [37]. This protocol divided
the whole network into 4 different regions based on the
depth of the nodes. Three different depth-based regions are
classified on the base of the depth of the sensor nodes, which
are the lowest depth node region, medium depth node
region, and highest depth node region. At the top of each
region, a sink node is placed which directly communicates
with the offshore sink node. Every region has different ran-
dom nodes amongst which only one node is chosen to trans-
mit the data towards the sink node of each region,
respectively. The one forwarder node is selected on the base
of the highest residual energy and the lowest depth value.
This whole arrangement increases the network time and
increases the throughput and reliability of the network.

Due to the most frequent use of top nodes, the energy of
those nodes ends which stops further transmission of data;
this is called hole generation. The work in [38] avoids the
hole generation. Sink nodes are placed far away from the
region of interest; therefore, two routing schemes are dis-
cussed here, called distributed energy-efficient and
connectivity-aware routing protocols. These schemes avoid
the mostly used of overhead lowest depth nodes which are
responsible to create a hole as a result of which blockage of
data transmission in the underwater network takes place.
In this protocol, the route changes to multihop. Although
the burden of data transmission on the lowest depth nodes
minimizes as the output of which the probability of dead
ratio in upper surface nodes is reduced, the simulation result
shows that the lifespan of the lowest depth nodes increases
from 50 to 70 percent. Dead node ratio minimizes, and alive
nodes are in maximum number.

In [39], different issues are highlighted and tried to fix
them when someone deals with underwater wireless sensor
networks. These issues include delay in data processing,
more energy usage, and noisy links. However, the most
dominant problems are energy consumption and network
reliability. An opportunistic energy-efficient routing scheme
(EECOR) is proposed here to tackle these problems. In the
opportunistic scheme, relay node is selected in cooperative
mode with the forwarder node to deliver the data packet in
an efficient way. With EECOR, fuzzy logic-based relay is
chosen for energy usage and maximum data delivery proba-
bility. This scheme avoids the collision of the data packets
which reduces the most energy usage of the nodes. The timer
mechanism is fixed which notes the time of the already
transmitted data packet, and after a fixed time, it sends
another packet; in this way, the collision is controlled. The
experimental graph shows that the average packet transmis-
sion ratio, average delay, and average network lifetime are

optimal for the presented protocol compared to the rest
schemes.

A multilayer multipath data forwarding scheme is pro-
posed in [40]. Three phases are defined to forwarding the
data from bottom to top of the water surface. The first phase
explain the network architecture, and in this model, nodes
are randomly deployed. In the second phase, the whole rout-
ing mechanism is explained, how the data is forwarded to
the next higher state nodes. In this phase, the seabed sources
initialize the information signal; acoustic powerful nodes are
fixed in the upper layer of the surface. The transmitter node
is responsible to transmit the data to the acoustic powerful
nodes from which the data is directed towards the sink
nodes placed on the water surface. The forwarder node
selects with lowest depth information; once the forwarder
node is selected, this will receive and transmit the informa-
tion data to powerful acoustic nodes. The RREQ/RREP algo-
rithm is used to choose the best route for multipath
transmission. The last phase clearly verifies the shortest dis-
tance node selection which sends the data from the source to
the sink node. The outcomes show the best performance and
maximum improvement in network lifetime, throughput.

DIEER routing is proposed in [41]; it is a delay intolerant
energy-efficient algorithm. This protocol can avoid the colli-
sion in data packet propagation delay and increase the PDR.
No one routing protocol deals with all these problems except
the DIEER protocol. The retransmission of data minimizes
which reduces the energy usage of the network and hence
decreases the delay of the network. The joint optimization
framework for sink mobility, hold, and forwarding mecha-
nism is introduced. To reduce the network delay, maximum
data delivery, enhancing network life, minimizing energy
usage, and the adaptive value of the threshold is fixed with
data aggregation and pattern matching schemes. Three-
dimensional underwater environment is designed with sink
mobility and dense deployment of the nodes with varying
communication radii. There is no retransmission of the data
that occurs by the adaptation of the presented protocol.

In [42], deep learning-coded index modulation-spread
spectrum (DL-CIM-SS) technique is adopted to overcome
the data rate issue for multiusers and hence remove the flaw
that exists in multiuser direct sequence spread spectrum
(DSSS). This mechanism sends the data via index of spread-
ing code instead of sending data to all users physically. In
this way, the energy usage is reduced, and the maximum
data is transmitted. The algorithm proposed in [43] trans-
mits data at a high rate which is the key parameter of under-
water communication systems in order to reduce battery
power, spreading, and scattering phenomena. The experi-
mental results show the advancement in energy and spectral
efficiency.

Secure energy efficiency with cooperation setup is intro-
duced in [18]. The security parameter is not only important
for terrestrial networks but also for underwater networks.
The security of the data is analyzed for combatting attacks.
At the bottom of the network, information has been gener-
ated; the main task of the proposed scheme is how to make
secure the generated data while transmitting it to the water
surface. Along with this, to consume minimum energy in

5Wireless Communications and Mobile Computing



transmission and reception, a hello packet is transmitted to
all nodes; every node can add the path loss, residual energy,
and depth information to this hello packet. The depth
threshold from 20m to 40m is included to avoid the flood-
ing process in the underwater network. Attack of unauthen-
tic signals is checking mechanism to secure the information
packet. A duplicate copy of the data packet is already sent to
the minisink. When the original data is sent to the sink by
multihop process, this original data packet and already sent
duplicate copy have been compared. In this way, this proto-
col ensures the security of the data. This protocol was best
performed in terms of security network lifespan. Tables 1
and 2 show the analysis of these algorithms.

3. The Proposed Scheme

3.1. Multilayer Sink Algorithm

3.1.1. Proposed Network Structure. The network structure
has tremendous effects on the performance parameters, such
as reliability, stability, scalability, delay, and energy effi-
ciency. The poorly designed network model reduces the
overall performance and does not complete the main objec-
tives and aims of the network. So, the network structure
plays an important and fundamental role in precise opera-
tion to achieve fair and worthy performances. On account
of this, a multilayer network structure is proposed as shown
in Figure 2. The proposed network is partitioned into five
equal layers called a multilayer network. The intention
behind the multilayer network structure is to place the sinks
on the optimal position, which motive is to accumulate data
more efficiently and conveniently. The network comprises of
a set S = Sn ∪ Ss of sensor nodes and sinks, where the set of
sensor and sink nodes is represented by Sn and Ss,
respectively.

The set of nodes Sn = n1, n2, n3,⋯nn is arranged irregu-
larly in the network. These nodes have different sensors for
monitoring and investigation of different environmental fac-
tors. For transmission of data, each node is equipped with an
acoustic modem. The energy at the initial stage of every
node is Eo. Therefore, the total energy of the network is n
× Eo, where n represents the total number of nodes. Two
nodes x and y are neighbors if their transmission range rt
is less than its Euclidean distance. All nodes are identical
in all aspects, such as energy consumption, data rate, and
battery power.

Nodes’ random distribution has a negligible effect on
performance of the network, while the positioning of the
sinks is very important and crucial for performance
enhancement, improvement, and data accumulation. So,
the sinks Ss = s1, s2, s3, s4, s5 are placed in the middle top of
each layer. The position of the first sink is given as

s1 x, yð Þ = xc, yo, ð1Þ

where the yo is the value of y coordinate, and it is 0 for the
first sink, while xc represents the center point of the x coor-

dinate in the network and is obtained as

xc =
totallenghtofx − axis

2 : ð2Þ

The positions of the second, third, fourth, and fifth sinks
are

s2 x, yð Þ = xc, yo + a, ð3Þ

s3 x, yð Þ = xc, yo + 2a, ð4Þ

s4 x, yð Þ = xc, yo + 3a, ð5Þ

Table 1: Related work comparison.

Protocol Energy cost PDR Packet drops Delay

Co-EERD High High Low High

RMEER Low Low High Low

Co-RSPR Low High Low Low

CAEEC Low High Low Low

FLVB Low Low High Low

MMMBB Low Low High Low

PCNC Low High Low Low

EECA Low High Low High

EBLFCN Low High Low Low

DEADS Low High Low Low

EEPEH Low Low High High

EECOR Low High Low Low

MLMP Low High High Low

DIEER Low High Low Low

SEECR Low High Low Low

Table 2: Related work information.

Protocol
Location

information
Cooperation

Energy
efficient

Multilayers

Co-
EERD

No Yes Yes No

RMEER No No Yes Yes

Co-RSPR No Yes Yes No

CAEEC Yes Yes Yes No

FLVB No No Yes No

MMMBB No No Yes Yes

PCNC No No Yes No

EECA No No Yes No

EBLFCN Yes Yes Yes No

DEADS Yes Yes Yes Yes

EEPEH No No Yes No

EECOR No Yes Yes No

MLMP No No Yes Yes

DIEER No No Yes No

SEECR No Yes Yes No
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s5 x, yð Þ = xc, yo + 4a, ð6Þ

where a = 100. The sink has a greater energy resource than
the other nodes. The nodes communicate with each other
or sink through acoustic waves with a data rate of m bit/
sec and frequency f KHz. The base station collects all the
data from the sinks for further processing and analysis as
considered in [16].

3.1.2. Knowledge Acquisition. After sinks’ and nodes’ place-
ment, information about the nodes and sinks are exchanged
with each other. In order to minimize the data overhead,
traffic congestion, and energy expenditure, information
acquisition takes place in parts. The purpose of information
or knowledge acquisition is to find the distance of nodes
from the sink and their neighbors to select the best candi-
dates for data forwarding. In the first part, the sink broad-
casts data of one bit in order to inform the nodes in its
transmission area. The node within the transmission area
of the sink receives the data. In response to this data, each
node transmits INFO PACKET, which contains the ID of
that node. As the node broadcasts the INFO PACKET, it
set a timer and starts measuring the time. When the sink
receives the INFO PACKET, it updates the INFO PACKET
by embedding its own information and transmits it towards
that node. When the node receives the updated INFO
PACKET, it stops the timer and notes its one-way transmis-
sion time t. The node finds its distance d from the sink by
d = vt, where v denotes the acoustic wave speed.

In the second part, the other nodes send INFO PACKET
and start time counting. In response to this, the nodes which
have calculated their distance now respond to other nodes.
The node then calculates its distance from each respondent
node and its distance from the sink. The sink distance is
added to nodes’ mutual distance. The INFO PACKET for-
mat is given in Figure 3.

In order to enhance network performances, further,
updating of information is not done very frequently. How-
ever, information acquisition occurred after some interval
of time. The updating process is necessary to find its recent
and most suitable neighbor for data forwarding.

3.1.3. Data Forwarding. To enhance the network perfor-
mance, the sender-based approach is a preferred choice in
the proposed algorithm. In a sender-based approach, the
sender decides its next forwarder which reduces the data for-
warding time and computational cost. The reduction of
computational cost leads to less energy cost. The nodes near
to the sink and lying in sink’s transmission area directly
communicate with it as shown in Figure 4. These nodes do
not need any further route for data delivery. The nodes
which are far away from the sink and cannot exchange data
with the sink directly follow a multihop communication.

In order to deliver the data quickly, the proposed algo-
rithms follow the shortest route towards the sink by using
distance from the destination. Before broadcasting of the
data from the sender, it arranges all its neighbours in
descending order based on distance information to assign
priority to each neighbour. Another word, the nodes hav-
ing the nearest to the sink, is assigned the first priority
for data delivery. When the sender arrange all its neigh-
bours, then it forwards the data packet. Figure 5 depicts
and elaborates the packet forwarding scenario. The packet
header contains the complete information of the forwarder,
final sink, and its own information. The header contains
the sender ID, forwarder ID, and the sink ID. After the
header data is appended with, they analyze the packet
and look for its own ID. When the neighbour ID matches
with the ID in the packet, then forward the data packet
towards the next stage using the same procedure. The
other nodes which receive the data from the sender holds
the data for a while, because this data held by the nodes
will be utilized in it improved cooperative version of the
proposed MuLSi.

The nodes are far away from the sink and follow path to
the sink. There are two scenarios of possible position of the
neighbours. When these are at different distance from the
same, then the sender gives priority to the node which is
near to the sink. On another hand, when the nodes are the
same distance from the sink, then the sender is free to select
anyone of these nodes. Although the second scenario has
low chances to occur, it is considered in the proposed
algorithm.

It is considered that each sink communicates and for-
wards its data to the sink placed in the upper layer. The sink
placed at the top of the network communicates with the base
station. It exchanges all its data with the base station for fur-
ther processing and analyzing.

Base station Radio wave  Sensor node 

500m

50
0m

Sink node

Figure 2: Proposed multilayer network structure.
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3.1.4. Suppression of Redundant Packets and
Acknowledgment. The proposed algorithms tries to control
the redundant packet transmission by utilizing the broadcast
nature of the nodes. When these nodes overhear the same
packet, then they delete the packet from its memory. They
consider that the data is delivered to the next destination.
In order to reduce the traffic congestion, data overhead,
and energy cost, the acknowledgment is not considered in
the proposed algorithm.

3.2. MULSI-Co: Multilayer Sink Algorithm with Cooperation.
In the unpredictable and high noise availability in the under-
water, a single link is not feasible for communication. The
retransmission of the data through the same link is not a
good choice, because the data reception through the same
link has high chances of data corruption again, which will
tend to waste energy and high latency in the data exchang-
ing. The proposed MuLSi algorithm follows a single link
for exchanging of data. In order to increase the reliable data
reception at the destination of the proposed MuLSi algo-
rithm, the cooperation technique is added to it. Delivery of
the same data over many paths towards the destination is
known as cooperation. This increases the correct reception

of the data with a cost of more energy and latency than the
noncooperative methods. This section gives the details of
the proposed MuLSi-Co algorithm.

3.2.1. Cooperative Relay Identification. The important step in
cooperation is the relay selection. The best relay selection
amongst the neighbors tends to improve the performance.
The cooperation technique is reliable, but its cost in terms
of energy and delay are greater. So, to minimize the delay
and reduce the channel effects, the proposed MuLSi-Co
selects the relay which is the nearest to the final destination.

During the knowledge acquisition phase in the MuLSi
algorithm, each node has its neighbours list along with their
distance information. If the sink is not reachable by the
sender directly, then amongst these neighbours, the node
which is the nearest to the sink is considered as the for-
warder, and the nearer node is selected as relay by the
sender. If the sender can exchange its data directly with the
sink, then the nearest node is selected as the relay. These
relays cooperate with forwarders and destinations to
improve reliability.

3.2.2. Data Exchanging and Synchronization. After identifi-
cation of the relay and forwarder/destination by the sender,
the next phase is about data exchanging. Whenever the
sender wants to deliver its packet, it appends the informa-
tion of the relay and forwarder/destination. The sender,
relay, and forwarder/destination IDs are appended with the

INFO PACKET
Destination

IDSender ID

Figure 3: Structure of INFO PACKET.

Transmission range

Sensor node

Sender node

Sinknode

Data

Figure 4: Data exchanging directly with sink.

Transmission range

Transmission range

Sinknode

Sendernode

Sensornode

Data

Forwarder

Figure 5: Data exchanging with sink through forwarder.
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data. In case of the direct communication with the sink, the
sender appends the ID to it. Otherwise, the node nearest to
the sink works as a forwarder, and the sender declares it as
a forwarder and appends its ID. And the next node ID is
appended as a relay.

Whenever the data is received by any node from any
sender, then the node searches for its own ID in the packet.
If it finds its own ID in the data as forwarder, this node can
work as a forwarder for that sender. The relay also searches
for its own ID and works as a relay. When the forwarder
receives a packet, it waits for a while to receive its copy from
the relay. The data received by the relay is delivered to the
forwarder as it is received. The other nodes which hear the
data ignore it and become silent. Whenever there is no relay,
the forwarder does not wait and deliver it to the next stage
without cooperation. The forwarder knows the relay by ana-
lyzing the packet.

The time and data synchronization are one of the most
challenging stage in cooperation. The delivery of the data
by the relay in the exact time is important to improve perfor-
mance. Therefore, for simplicity, the proposed MuLSi-Co
routing is designed in a manner to handle the time synchro-
nization between the relay and forwarder. Whenever the
relay receives the data, it forwards it without any wait and
holding. Due to the broadcast nature of the nodes, all neigh-
bours hear the data. These neighbors check for its own ID in
the data. If they do not find its ID, then they ignore the data.
This reduces the duplicate packet transmission and
improves the energy cost.

3.2.3. Cooperation and Data Combining Model. In the pro-
posed cooperative algorithm, the data advancement occurs
in three steps. In the first step, the sender advances its data
to the forwarder and relay. In the second step, the forwarder
holds the data for a while and waits for the relay data. As the
relay receives data, it sends it to the forwarder. In the third
state, two copies of the same data are merged to make one
reliable data packet from these.

Considering three nodes, sender j, receiver or forwarder
k, and relay l are depicted in Figure 6. In the first stage, the j
broadcasts the generated data T j towards the k and l. The
received signal Rjk at k is given as

Rjk = gjkT j + njk: ð7Þ

The channel noise njk and the fading gjk affects the data
when transmitting from the j to k. Likewise, putting a sub-
script jl to n and g indicates the noise and fading between
j and l. The received data Rjl is represented as

Rjl = gjlT j + njl: ð8Þ

In the second stage, the forwarder/receiver k waits for
the copy of the same data packet from the l. As l receives
the data in the first stage, it analyze it. In case the l finds
himself eligible for data forwarding, it forwards the data Tl
to the k without any holding. The factors which influence
the data transmission between l and k are the channel noise

nlk and fading glk. The l receives the data Rlk and is given as

Rlk = glkTl + nlk: ð9Þ

In the third stage, k has a direct received packet Rjk and
its copy Rlk received through l. Now, the k combines these
data using maximal ratio combining. The combined data is
given as

Rk = Rjk +
RjlRlk

1 + Rjl + Rlk
: ð10Þ

4. Analysis and Simulation Results

Validation of the results and network implementation of the
proposed schemes are accomplished using MATLAB simu-
lations. The dimension of the network is taken 500m. The
network is further split into five layers having an equal size
of 100m2. The purpose of making such layers is to collect
data with easiness and quickly. Moreover, it increases the
stability and reliability of these networks. The sink at the
top of every layer is placed for data collection and informa-
tion acquisition of the nodes. The nodes are homogeneous in
all aspects scattered randomly in the networks. The total
amount of energy on each node is 20 J. These nodes are
capable of detecting different environment parameters, for
example, temperature and pressures. The LinkQuest UMW
2000 cite modem is coupled with every node for data
exchanging. The energy expenditure according to the
modem used is considered for transmission and reception
are 2W and 0.8W, respectively, while the idle state or sleep

Sender Relay

DataForwarder

Figure 6: Cooperation model.

Table 3: Analysis of the proposed and counterpart algorithms.

Protocol
Routing
parameter

Routing
Network
structure

DBR Depth Multihop Single

CoDBR Depth
Multihop
cooperation

Single

MuLSi Distance Multihop Multi layers

MuLSi-
Co

Distance
Multihop
cooperation

Multi layers
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Table 4: PDR.

Protocol
PDR at
round 1

PDR at
round 100

PDR at
round 200

PDR at
round 300

PDR at
round 400

PDR at
round 500

PDR at
round 600

PDR at
round 700

PDR at
round 800

PDR at
round 900

MuLSi-
Co

1.0000 0.6971 0.6035 0.5403 0.4846 0.4457 0.4299 0.4260 0.4255 0.4264

MuLSi 0.4667 0.4959 0.4045 0.3767 0.3453 0.3237 0.3075 0.2984 0.2951 0.2944

CoDBR 1.0000 0.6285 0.4972 0.4283 0.3889 0.3649 0.3492 0.3412 0.3383 0.3375

DBR 0.4800 0.4401 0.3674 0.3144 0.2808 0.2606 0.2488 0.2432 0.2407 0.2402
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mode energy exhaustion is 8mW. Moreover, the data trans-
mission rate is 9600 bps. For the sake of reducing the com-
putational complexity, the data is considered dropped
when the channel is busy. The proposed MuLSi and
MuLSi-Co schemes are compared with some existing tech-
niques DBR and CoDBR from the literature. The motivation
behind choosing these competitive algorithms is the same

network architecture, topology, and cooperative behavior
of the nodes. An overview of all these algorithms are given
in Table 3.

4.1. Packet Delivery Ratio (PDR) or Packet Acceptance Ration
(PAR). The ratio of the number of correct packet reception
to the total sent packets is termed as PDR or PAR. The

Table 5: Received packet analysis.

Protocol
Received
packets at
round 1

Received
packets at
round 100

Received
packets at
round 200

Received
packets at
round 300

Received
packets at
round 400

Received
packets at
round 500

Received
packets at
round 600

Received
packets at
round 700

Received
packets at
round 800

Received
packets at
round 900

MuLSi-
Co

225 15589 25755 32361 35210 36208 37108 37824 38406 38902

MuLSi 105 11252 17850 24087 27809 30021 30750 31030 31229 31442

CoDBR 225 13682 19076 21361 22502 23148 23405 23553 23610 23610

DBR 108 9889 15465 18092 19093 19426 19638 19678 19678 19678

0 100 200 300 400 500 600 700 800 900

Rounds

0

500

1000

1500

2000

En
er

gy
 co

ns
up

tio
n 

(J
)

Total energy consumption of the network

MuLSi
MuLSi-Co

DBR
CoDBR

Figure 9: Energy consumption.

Table 6: Residual energy analysis.

Protocol
Residual
energy at
round 1

Residual
energy at
round 100

Residual
energy at
round 200

Residual
energy at
round 300

Residual
energy at
round 400

Residual
energy at
round 500

Residual
energy at
round 600

Residual
energy at
round 700

Residual
energy at
round 800

Residual
energy at
round 900

MuLSi-
Co

2:2499 × 103 1:5577 × 103 1:0187 × 103 592.5394 307.6515 151.7722 66.7701 30.8496 13.0675 2.4202

MuLSi 2:2499 × 103 1:7196 × 103 1:2608 × 103 831.2838 469.9592 234.0915 106.1561 41.8966 14.0033 2.8491

CoDBR 2:2499 × 103 1:1205 × 103 572.6635 293.6711 157.3787 76.1240 33.0757 10.1817 1.7483 0

DBR 2:2499 × 103 1:3937 × 103 804.4937 412.6768 200.1105 93.9679 33.8725 10.9521 1.8618 0.1186
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PDR performance is give in Figure 7. The order of algorithm
based on PDR performance from highest to the lowest is
MuLSi- Co, CoDBR, MuLSi, and then, DBR. The highest
PDR of the proposed MuLSi-Co is due to the sink placement
and cooperation. The sink placement in every layer ensures
the data reception with the lowest delay than the other
schemes, which tends to less effect of the data. Both the
MuLSIi-Co and CoDBR are cooperative schemes. However,
the sink placement in the proposed cooperative algorithm
reduces the path losses and improves the packet reception.
In result, the proposed cooperative technique has the highest
PDR. Moreover, the best destination and cooperative node
selection is another reason of the highest PDR in MuLSi-
Co algorithm. The second reason behind the highest perfor-
mance is the cooperation. Incorrect data are exchanged with
the retransmitted data by the cooperative node, which makes
sure the correct packet reception at the destination.

The CoDBR algorithm PDR has the best performance
than the noncooperative schemes, MuLSi and DBR, due to
the cooperation and multiple paths are followed for data
delivery. The same packets received through many paths
are then combined to improve the packet reception and lead
to the highest PDR than the noncooperative algorithms.

The MuLSi has the higher PDR than the competitor
scheme DBR. It is because of the network topology and node
selection using distance parameter for data advancement
towards the final destination. The sink placement in each
layer and the distance parameter reduce the path for data
delivery. This tends to reduce the effects of the channel attri-
butes and increases the probability of correct data reception,
while in DBR, the depth is utilized for data forwarding, and
the sinks are at the top which are far away from the bottom
nodes. Therefore, this increases the channel effect on the
data and degrades the packet reception and tends to the low-
est PDR. More detail PDR performance is given in Table 4.

4.2. Correct Received Packets. The successful received packet
results are shown in Figure 8. The proposed cooperative
algorithm has the highest number of received packets. It
is due to the data forwarding on multiple paths towards
the sink node. The same packet is received through multi-
ple paths and then combined, which increases the proba-
bility of correct data reception. Moreover, the sink
placement also enhances the probability of correct data
reception. Most of the nodes are directly exchange data
with the sink. All these parameters lead to the highest data
packet reception.
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The proposed MuLSi algorithm has the highest packet
reception than the counterpart algorithms after 230 rounds,
although it is a noncooperative algorithm due to well place-
ment of sink nodes and the node selection for data forward-
ing. The sinks are near to the nodes which exchange data
easily, and the channel effects are less on the data. Also,
the distance parameter chooses the nearest node to destina-
tion. All these factors lead to the highest packet reception.

The CoDBR has the highest packet reception up to 230
rounds. Due to the cooperation of the nodes, the packet
reception probability is the highest at the start. Onward,
the death ratio of the nodes in CoDBR is high due to the
multiple forwards for a single-packet delivery. The multiple
forwarders lead to excessive energy consumption and have
less chance of cooperation at the end. Therefore, the packet
reception becomes lower than the proposed MuLSi algo-
rithm. On the other hand, the DBR has the lowest packet
reception due the noncooperative algorithm. The analysis
of the packet reception of all these schemes is shown in
Table 5.

4.3. Energy Expenditure and Residual Energy Analysis. The
energy expenditure is one of the most important parameter
for performance evaluation especially in UA-WSNs. The

corresponding results are given in Figure 9. Due to the coop-
eration mechanism, the consumption of energy in CoDBR is
the highest than all other schemes. In cooperation, the data
is delivered through multiple paths to the destination. The
multipath transmission of the same data tends to consume
excessive energy and leads to increase the overall expendi-
ture in terms of energy.

The DBR consumes the highest amount of energy than
the remaining algorithms, due the involvement of many
nodes for data advancement towards the sink leads to more
energy consumption. Another reason of such high-energy
expenditure is of the data burden on the top nodes in the
network. The top nodes are selected again and again by the
lowest nodes to deliver the data. In result, the consumption
is the highest than MuLSi-Co and MuLSi. Although
MuLSi-Co is a cooperative algorithm, its energy expenditure
is lower than the noncooperative algorithm DBR. It is due to
the longest route followed for data transmission, and sinks
are far away from the bottom nodes in DBR.

The MuLSi-Co has the higher energy consumption than
MuLSi algorithm. In MuLSi-Co, for increasing the reliability
of the network, the cooperative behaviour of the node is uti-
lised. The cooperation of the nodes tends to consume exces-
sive energy and leads to less network lifetime, while in

Table 7: Dead node analysis.

Protocol
Dead

nodes at
round 1

Dead
nodes at
round 100

Dead
nodes at
round 200

Dead
nodes at
round 300

Dead
nodes at
round 400

Dead
nodes at
round 500

Dead
nodes at
round 600

Dead
nodes at
round 700

Dead
nodes at
round 800

Dead
nodes at
round 900

MuLSi-
Co

0 9 31 77 118 154 189 208 213 217

MuLSi 0 3 14 43 78 124 172 196 211 217

CoDBR 0 33 81 130 158 179 197 210 221 225

DBR 0 13 49 91 138 170 196 213 222 224
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MuLSi, the multilayer network structure and sink placement
at the optimal position reduce the path length and node
involvement in the data forwarding. Therefore, the resultant
energy expenditure of the proposed MuLSi algorithm is the
lowest than all other algorithms. The energy performance
evaluation is given in detail in Table 6. The above discussion
is conversely true for the residual energy and is shown in
Figure 10.

4.4. Alive and Dead Node Analysis. The analysis of these
algorithms with reference to dead nodes is shown in
Figure 11, also with more details in Table 7. The dead nodes
in CoDBR algorithm are the highest than the rest of algo-
rithms. As discussed, the network energy expenditure is
the highest due to cooperation, and many nodes take part
in single-packet delivery. Therefore, in the result, it is con-
cluded that the nodes are spending high amount of energy
and tends to greatest number of dead nodes. So, the overall
performance of the dead nodes is the highest than the rest
of the algorithms.

The DBR has the highest number of dead nodes than the
proposed algorithm. For a single-packet delivery, many
nodes participate. Due to the involvement of many nodes,
they consume a greater amount of energy and tend to
increase its death ratio. Therefore, the resultant dead node
in DBR is the highest than the proposed algorithm.

On another hand, both the proposed algorithms have the
lowest number of dead nodes than the competitor. Due to
the well management of network architecture, sink place-
ment and best node selection during data transmission lead
to less energy consumption. The less amount of energy con-
sumption also decreased the number of dead nodes in the
network. Therefore, the resultant dead nodes are the highest
than the counterpart, while, comparing the proposed nonco-
operative MuLSi with cooperative MuLSi-Co algorithm, the
cooperative algorithm has the higher number of dead nodes.
It is because of the greater number of forwarder nodes in the
MuLSi-Co algorithm. This discussion is true conversely for
the alive nodes and is shown in Figure 12.

5. Conclusion

To design and configure an efficient, reliable, and stable
algorithm for underwater acoustic wireless sensor networks
(UA-WSNs) needs great attention on account of its notable
and distinctive challenges and amazing applications. The
energy-efficient operation of these networks takes care of
their working and running for a longer time and tends to
have more stability. The best network structure reduces the
number of multiple hops between the sender and destina-
tion; this leads to less energy cost and minimized effects of
the channel on data. To increase the reliable data exchang-
ing, the cooperation is the best and suitable choice instead
of other costly and complex techniques. However, in cooper-
ative techniques, the excessive expenditure of energy makes
it challenging. Moreover, the time and data synchronization
are also crucial issues in cooperation. To address these diffi-
culties, the article introduces two algorithms: multilayer sink
(MuLSi) algorithm and its reliable version MuLSi-Co using

the cooperation technique. The first algorithm proposes a
multiple-layered network structure instead of a solid single
structure and sink placement at the optimal position. This
reduces the multiple hops between the sender and sink.
Moreover, the best forwarder selection amongst nodes based
on the node closeness to sink makes the network perfor-
mances more better and valuable. The node closest to the
sink is a good choice for choosing the best forwarder. How-
ever, the MuLSi algorithm does not fulfil the requirement of
reliable operation due to a single link for data exchanging.
Unlike the traditional algorithms, the proposed scheme does
not need the location information about nodes.
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Underwater Wireless Sensor Networks (UWSN) have gained more attention from researchers in recent years due to their
advancement in marine monitoring, deployment of various applications, and ocean surveillance. The UWSN is an attractive
field for both researchers and the industrial side. Due to the harsh underwater environment, own capabilities, and open acoustic
channel, it is also vulnerable to malicious attacks and threats. Attackers can easily take advantage of these characteristics to steal
the data between the source and destination. Many review articles are addressed some of the security attacks and taxonomy of
the Underwater Wireless Sensor Networks. In this study, we have briefly addressed the taxonomy of the UWSNs from the most
recent research articles related to the well-known research databases. This paper also discussed the security threats on each layer
of the Underwater Wireless sensor networks. This study will help the researchers design the routing protocols to cover the
known security threats and help industries manufacture the devices to observe these threats and security issues.

1. Introduction

Underwater Wireless Sensor Networks (UWSNs) are com-
monly used nowadays to detect and monitor the underwater
environment. It contains several sensors and vehicles placed
in a selected area to perform specific tasks. These networks
are further connected with base stations and satellites to
process the detected data for further processing. UWSNs
support several applications such as river and sea pollution
discovery, a compilation of oceanographic data, resource
exploration, disaster prevention, monitoring, and marine
surveillance [1]. Due to the attenuation of radio signals in
an underwater environment, the global positioning system

(GPS) cannot be used to locate sensor nodes. Therefore,
UWSNs use an acoustic method of communication to send
and receive the data between the source and destination.
Terrestrial wireless sensor networks (TWSN) and UWSNs
have distinct characteristics and functionalities. These varia-
tions can be observed in a variety of ways. To begin, UWSNs
communicate by acoustic signals rather than radio transmis-
sions like TWSNs do. TWSNs have more static networks,
whereas UWSNs have more dynamic networks.

Third, compared to TWSNs, the underwater placement
is unmanaged and limited. Node localization is more diffi-
cult in UWSNs than TWSNs. In addition, underwater sensor
devices have more expensive hardware and are constrained
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by resources (i.e., memory and energy). It is also difficult to
repair or recharge the batteries once they have been
deployed [2]. In underwater sensor networks, the speed of
sound is assumed to be constant. However, acoustic signals
have distinct characteristics from radio waves. Underwater,
acoustic signals travel at around 1500m/s, which is five
times a magnitude slower than radio waves. The speed is
changeable and is determined by the water’s temperature,
pressure, and salinity. These variables cause changes in the
speed of sound in underwater situations. Different applica-
tions rely on wireless sensor networks (WSNs), which serve
as a key link between the physical environment and the
Internet of Things [3]. WSNs are widely used in the industry
for continuous object boundary detection, which is essential
for WSNs [4]. Improper packet size determination degrades
network performance in terms of latency, resource utiliza-
tion, throughput efficiency, and energy consumption in
multihop underwater networks. Still, using the optimum
packet size will increase [5].

Underwater wireless sensor networks are made up of
nodes deployed both on the underwater and surface of the
water. All nodes must communicate and share data with other
devices in the same network and the ground station. Sensor
network communication methods feature data transmission
via acoustic, electromagnetic, or optical wave mediums.
Because of the attenuation properties of water, acoustic com-
munication is the most common and widely utilized approach
among various types of media. The poor transmission factor is
generated from the conversion of energy and absorption into
temperature in the water. On the other hand, acoustic signals
operate at low frequencies, allowing them to be broadcast and
received over great distances. Figure 1 shows the Underwater
Wireless Sensor Network environment.

2. UWSNS Taxonomy

This article suggests a taxonomy based on trend analysis and
surveys of reliable published articles over the last few years.
Before developing the thematic taxonomy, the utmost
frequently discussed issues in the related work are also con-
sidered. Figure 2 depicts a UWSN thematic taxonomy to
help realize its features. It divides the vital elements into
Communication, Architectural Elements, Security, Applica-
tions, Routing Protocols, and Standards. These characteris-
tics are discussed in the sections that follow:

2.1. Architectural Elements. The underwater wireless sensor
network architecture types are categorized based on the
network’s three-dimensional area of the applications and
sensor nodes.

2.1.1. Sensors. Smart things in IoT networks, also known as
sensor nodes in Wireless Sensor Networks (WSN), are
required to sense configuration parameters on a regular
basis, collect and route received data packets to the middle,
similar to the mobile sink in WSN, for anomalous investiga-
tion and source persistence [6]. For maximizing the network
abilities for data collection, the mobile node requires two
transceivers. Remotely operated underwater vehicles

(ROVs), autonomous underwater vehicles (AUVs), and sea
gliders are examples of such vehicles. The third type of
hybrid architecture consolidates mobile and static sensor
nodes to carry out particular tasks. Mobile nodes can act as
routers or controllers in a hybrid system to interact with
static or basic data sensors. The sensor nodes in the dynamic
architecture can move freely, allowing the network topology
to change dynamically. Finally, ocean depth anchors are
used in two-dimensional UWSN architecture to collect data
from sensor devices.

Underwater sink-node can gather data from deep-sea sen-
sors and transfer it to offshore base stations via surface chan-
nels. Underwater sinks are provided for this purpose, along
with vertically and horizontally acoustic transmitters. Sensor
nodes communicate with horizontal transceivers to collect
data or provide instructions received by the offshore base
station, whereas vertical transceivers send data to the base
station. Through the use of various planned underwater sink
nodes, a surface sink equipped with acoustic transceivers is
capable of managing parallel communication [7]. The ocean
floor is used to anchor sensor nodes in the architecture of
underwater three-dimensional sensor networks. The depth
of these sensor nodes is adjusted via wires attached to these
anchors. However, the marine ecosystems’ existing proper-
ties impact a significant obstacle to such a network.

2.1.2. Network Operations. The underwater sensor network
operation goals are to maintain and enhance various func-
tions, attributes, and specific requirements for improved
functionality. As per recent publications, we conclude that
the critical application development trends favour a greater
emphasis on implementation and localization responsibili-
ties that have made the foundation for UWSN architecture
to improve full network functionality. As a result, this
section contextualizes each job’s strategies and features that
enhance the network’s performance.

(i) Localization

Localization methods have been extensively investigated
in underwater sensor networks and are crucial for providing
information about the location of sensor nodes in typical
applications. We classified localization methods into three
broad branches: mobile, hybrid, and stationary algorithms
based on research articles. Classification is contingent upon
sensor node movement in UWSNs. According to these
categories, the majority of researchers concentrated on tech-
niques for the localization of stationary nodes. For the static
localization process, all sensor nodes are permanent and
constant in the particular selected area, either tethered to
sea floats or secured on the seafloor. The position of station-
ary nodes can be determined using a variety of methods. A
recent approach [8] advocated using conventional ray equa-
tions to handle uncertainty in the anchor node position
based on the rigidity theory. Some new research, such as
[9], has supported that energy usage is reduced by minimiz-
ing the communication burden in the transmission process.
To support near real-time decision making, an accurate
border identification of continuous objects is an essential
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research topic that relies on wireless sensor networks
(WSNs) installed inside the geographical region to be
monitored [10]. The researchers discovered that the unpre-
dictability of sound speed made distance estimate for node
identification less reliable.

(ii) Deployment

UWSNs are made up of hops placed underwater and
nodes deployed on the water’s surface, and they perform
their jobs in specific locations. Underwater sensors that
occupy a sparse area must be deployed optimally to make
the best use of the low power consumption. Based on the
ability to support different critical activities, such as local-
ization, network topology, and routing protocol, which
substantially affect net performance, node placement is a

crucial step in underwater sensor networks. According to
[11], there are three types of node deployment in UWSNs:
limited mobility or self-adjusted, movement-assisted or
accessible mobility, and static or fixed placement. All nodes
are moored on the seafloor or affixed to surface buoys in a
specific region of interest in the static node deployment. A
disturbance in the sensor node area, according to [12], is an
approach for achieving a final predicted configuration. To
report their detection status, the nodes exchange control
messages with each other and with the sink node. Nodes
at the phenomenon boundary must be carefully selected
for accurate tracking and detection [13]. After some net-
work modifications have happened, such as node failure
or target/event detection, reorganization or redeployment
is required. The authors predicted that mobile sensor nodes
would adjust their existing location actively to facilitate
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ultimate connectivity and stabilize the network coverage.
Moreover, refs. [14] enhanced detection rates in mobile sensor
nodes compared to the static and hybrid sensor nodes.

2.1.3. Enabling Technologies. In industry 4.0, this novelty has
developed the driving force for deploying the Internet of Things
industry (IIoT). Data from various sensor devices can be
securely forwarded to the cloud network and updated regularly,
thanks to IIoT. According to [15], IIoT combines IoT technolo-
gies and industrial wireless connections into a unified system
comprising terminals, cloud networks, equipment, and
machines. As a result, recent advancements in IoT andUWSNs
have rekindled interest in the Internet of Underwater Things
(IoUT). Aside from the greenhouse effect, underwater nodes
and vehicles consume a lot of power, which can cause critical
missions or applications to fail rashly. This problem prompted
the authors in [16] to develop a new design based on energy
efficiency for UWSNs, precisely discovering offshore oil and
gas environments. In the coming years, communication in
underwater systems will face some threats, including com-
plex architectural design, integrating underwater vehicles or
heterogeneous nodes, and various other underwater applica-
tions. SDN IIoT architecture incorporates 3 layers model
[15]. Node data is transferred to the control layer from the
physical layer via a southbound edge, and then through
the northbound interface, data are transferred to the applica-
tion layer. Relationships of SDN, IIoT, IoUT, and industry
4.0 among enabling technologies are shown in Figure 3.

2.2. Communication. Over the last half-century, there has
been a substantial increase in acoustic study and develop-
ment, mainly marine acoustics. Commercially, an auditory
method is used to disclose ocean mammals and even subma-
rines. The army sector is also similar to public acoustic com-
munication, especially in ocean surveillance applications. As
a result, this section covers the fundamentals of underwater
acoustic communication, such as sources, receivers, and
sound velocity properties. Furthermore, all aspects influence
the sound speed and affect the network functioning or
devices installed in the network.

2.2.1. Sound Velocity. The acoustic waveform in the sea is
affected by sound velocity and the surrounding environ-
ment. Through actual investigation, [17] discovered that
many main elements influence the excellent speed in water:
salinity, temperature, and hydrostatic pressure. The follow-
ing sections discuss the key points of these aspects.

(i) Temperature

The sound intensity and climate of the water are strongly
associated when the water temperature rises. The velocity
increases as well. When near the water’s surface, the temper-
ature increases, the sound velocity is also increasing.

(ii) Salinity

The salinity ratio is the second component that affects the
sound velocity in water. However, as compared to tempera-
ture, salinity has a more negligible effect on sound speed.

Sound speed is affected by the concentration of solidified salts
in pure water. The ocean average level salinity is 35 Pascal.
However, this figure fluctuates based on soil and qualities of
water, atmosphere, and rock. Another aspect is affecting the
level of salinity that they change with the depth of water.

(iii) Hydrostatic pressure

The sound speed of the water is also being affected by
hydrostatic factors. Hydrostatic pressure enhances sound
speed and depth [18]. This is because the increase in the
center of the hydrostatic pressure is directly proportional.

(iv) Sound velocity profile

Based on ocean depth, the ocean is divided into two
major zones. Each degree of profound results in distinctive
sound velocity changes referred to as sound velocity profiles.

(v) Ocean depth below 200m

The ocean consists of two main ocean-depth areas.
Each depth causes various variations in sound speeds, known
as sound velocity profiles. The top surface (0–100m) is liable
to wind, temperature, and environmental change. This layer
can be mixed, and wind power converted into isothermic
energy. The sound speed is significantly reduced when the
wind is more than seven m/s because of the dominance of bal-
loons at a distance of 10m lower than the water’s surface. The
temperature varies seasonally in the seasonal thermocline
region (100–200m); the temperature decreases depending on
the water depth. As a result, the thermocline is weak in winter,
as the water surface is always excellent.

(vi) Ocean depth of more than 200meters

The primary thermocline is located at depths of 200–100m
and has the lowest sound speed. The temperature of the water
begins to rise at this depth. Temperature features in the deep
isothermal layer are determined by water density and salinity.
However, the temperature and salinity are considerably less
significant than the hydrostatic pressure on sound velocity.

(vii) Ray bending

The amount of ray bending is determined by the differ-
ence in sound velocity, defined by salinity changes, pressure,
and water temperature. The sound speed increases with
depth in qualitative ray bending, paralleling the growing
number of bubble populations. With improved routes at
the sea surface, the number of bubbles reduces. A reflection
occurs near the surface when acoustic energy concentrates
within a layer. It does not transmit on all sides because it
reduces the sound speed when the wave fronts propel
toward the ocean depth. The SOFAR (Sound Fixing and
Ranging) channel is named after this velocity profile.

(viii) Extended distance propagation

In the SOFAR channel geometry, attenuation and ther-
mometry all impact sound reduction in signal-to-noise
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amplitude caused by long-distance transmission. However,
the action on the SOFAR channel is slightly various. The
rays do not bend spherically but instead spread in the form
of a cylinder symmetry from a line source. The geometric
spreading can decrease the power of acoustic waves as
distance decreases based on inverse-square law.

Finally, noise, low variable speed, frequency-dependent
absorption, and the architecture of communications in
underwater networks are significantly affected. As a result
of the considerable delays in spreading submarine transmis-
sion, spatial uncertainty and spatial unfairness also affect the
networks [19]. As the reception time of the packet relies on
the distance from the transmitter, the emitter first and then
the receiver will be free.

(ix) Sea surface

There are varied proportions to the sound velocity
parameters in various regions, such as at the frontier, bot-
tom, and sea interface. Factors affecting the increase or
decrease of sonority are the density and composition of
rocks and trash in the sea bottom. Moreover, another factor
influencing the sound speed is the bubble population near
the surface of the sea. Average water density rises due to
the presence of bubbles. As demonstrated in formulations
and experiments, the speed of sound reduces the incidence
of bubbles.

2.3. Routing Protocols. The routing protocol made a critical
scheme challenge inside a network layer to identify and
support network routes by providing different needs for
acoustic communication. Several protocols to boost the net-
work performance for underwater sensor networks have
been developed and examined in the past and the present.
The authors examined the previous study on UWSN routing
protocols and identified that energy efficiency is the primary
goal of most routing protocols (see Table 1—routing table).
The main issue is to keep the limited amount of energy when
using the UWSNs.

Underwater Acoustic communications use more energy
than terrestrial radiofrequency. Static sink would suffer from
battery power if the sensors located one hope away, poten-
tially resulting in energy holes. In addition, it may result in
preventing messages from reaching the sink node and net-
work disconnectivity. In designing a routing protocol, the
unique component of the underwater situation should be
taken into account by using a time-varying channel. Most
current studies on the network layer focused on minimizing
latency while producing energy-efficient communication.
But neglected to account for essential propagation factors
such as bottom surface reflections, the Doppler effect and
frequency-dependent attenuation, all of which, significantly
impact energy consumption via rate and power.

Furthermore, modern routing protocols stress the usage
of opportunistic routing, adaptive routing, cooperative,
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artificial intelligence-related, and cross-layer routing proto-
cols to meet the various requirements of UWSNs. The
underwater environment is, by definition, unreliable and
scant and hostile. As a result, these inconsistent states
uncover UWSNs to the natural division caused by sensor
mobility, decreasing the accuracy of data transmission from
sender to receiver. As a result, routing protocol designs and
approaches are necessary to address these difficulties.

2.4. Security. UWSN sensor nodes are often infrequently
installed in harsh and dangerous conditions. As a result, they
are susceptible to network attacks. One of the most impor-
tant factors of UWSNs is security to ensure that an applica-
tion smoothly functions and generates secure data. Internal
and external attacks have been made against UWSNs due
to their characteristics (e.g., limited bandwidth, high propa-
gation latency, computational capability limitations, and
high bit error rates).

2.4.1. Authentication. As previously stated, the acoustic
channel is open; further, without encryption, a malicious
attacker can readily grab manipulate their content. As a
result, to filter malicious attacks, the receiving node must
identify the data source, services, and channels, to access
and share the applications and data on that network, nodes
must be authorized. A trust management system and intru-
sion detection can be used to recognize aberrant behaviour
and remove rogue nodes from the web. These procedures
confirm that only verify nodes have access to the system’s
resources [40]. During transmission, all of the nodes
connected with the network must have the authorization
or permission of the network services. After the competition
of the authentication process, the devices will be ready to
carry out any duties that have been allocated to them using
the encoded procedures. As a result, in UWSN, the imple-
mentation of a robust authentication technique is critical.

2.4.2. Access Control. The data access limitation is used in
the access control process to protect the data (front–end
and back end), resources, and services of underwater sensor
networks. Intelligent devices or adaptive methods can help
avoid or reduce the risk of malicious nodes and unautho-
rized data vulnerability. The two kinds of access methods
are present: distributed and centralized. To permit a connec-
tion, all control access inquiries must process through the
server in a centralized approach. However, with the distrib-
uted control access technique, an entity is designated by
the access control server to authorize access to UWSN
resources. Services that are used by the system should always
be present in the system to reduce any communication prob-
lems in UWSNs.

2.4.3. Confidentiality and Data Integrity. In addition, integ-
rity is a critical security requirement. During data transmis-
sion, each node must maintain the confidentiality of the
data. The packet’s header must also be encrypted in some
security techniques to protect each node’s identity. The node
can ensure that the messages must be newly generated, and
information that is already stored from previous broadcasts
is not received or transferred by utilizing the difference time

approach. If a node has older communicated data, then the
mentioned node cannot refuse the completed transmission.
Nonrepudiation is the legal term for this process.

More work is undertaken to discover the existing tech-
niques of attacks. According to the researchers, the invasion
in UWSNs happened through data transfer in physical node
attacks, denial of service (DoS), and impersonation and rep-
lication. According to [41], DoS attacks are common in
UWSNs due to their challenges, low operational costs, and
high effectiveness. [42, 43] have conducted a more profound
study of DoS attacks on the physical layer. They put the
results to the test in a real-world environment. A data assault
is another common security concern with UWSNs. One way
for protecting data from DoS assaults is data management
utilizing information-centric architecture. Attacks from
innovative DoS types are still capable of damaging the data.
As a result, ref. [44] detected different types of mobile
attackers by the use of machine learning in information-
centric architecture.

According to prior investigations, security challenges
in underwater sensor networks are focused primarily on
routing, data aggregation, localization, and intrusion
detection models. Five methods, including the secure
localization and trust model, are proposed in the evalua-
tion process [45]. The authors in [46] refined the imple-
mentation of the mentioned trust model by establishing
a single point of trust management in underwater sensor
networks by utilizing a cloud paradigm. The mentioned
management methodology aims to govern each sensor
node’s trustworthiness using a mathematical technique to
gather trust proof.

Multiple experiments are conducted in [47] and discov-
ered that the effective encryption technique could maintain
the integrity and secrecy of the data. Furthermore, the
method has the potential to decrease communication over-
head on the upper layer. The authors in [48] developed a
crucial model to generate more helpful hash bits for under-
water sensor networks secure acoustic communications.

2.5. Applications. The technology used in underwater wire-
less sensor networks can replace conventional methods by
remote control of underwater appliances and onshore
systems, advanced data recording devices, and real-time
monitoring. Underwater wireless sensor network applica-
tions are typically classified into three branches: commercial,
military and security, and scientific (see Figure 4). Sensor
devices are utilized in the military to sense the enemy’s activ-
ity and position. It can be used to monitor ports and
harbors, detect enemy submarines, identify underwater mine
locations, and conduct border surveillance. In addition,
sensor nodes can see marine environments in advance of
natural disasters by performing seismic monitoring.

2.5.1. Scientific. UWSNs have diverse applications in science,
including ocean sampling, environmental monitoring, and
most importantly, Great Barrier Reef activities. For example,
the ecological monitoring application is used to track the
amount of trash, both biological and chemical, accumulated
on the sea-bed [8]. Furthermore, in [49], a robotic model
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was used to evaluate the level of oxygen in the water and
track temperature and pressure [50]. The authors in [51]
present a coral reefs application that integrates big data,
IoT, and sensor networks to assess the impact of humidity,
pressure, ocean temperature, marine ecosystems, and salin-
ity on coral bleaching. Deep maritime conditional surveil-
lance can also be accomplished by using a variety of agents
and communication methods.

2.5.2. Commercial. UWSN industrial applications have an
important effect on commercial activity facilitation. Under-
water sensor network monitors applications such as under-
water gas and oil pipeline monitoring. The researchers in
[52] have been developed a model for underwater tracking
of gas and oil pipelines. The network was created to provide
facts on the health of channels that are linked across large
environments. Additionally, [53] developed a monitoring
system for underwater gas and oil pipelines, including the
desired components requiring control.

One of the most labour-intensive industries that help in
a healthy economy is referred to as fish farming. Moreover,
it necessitates a rigorous monitoring system to assess the
fish’s environmental conditions. In [54] proposed a Zigbee-
based underwater sensor network observation system for
big fish farms that can be accessed through remote control
for interested users. Additionally, the system can monitor
fish farms based on pH values, water level, humidity temper-
ature, and dissolved oxygen. Further, wireless cameras are
interconnected with the design and the Internet to enable
remote monitoring from any location in the world. Addi-
tionally, the researchers of [55] built a comparable commer-

cial fishery monitoring system that communicates via
acoustic waves.

2.5.3. Disaster Prevention and Defense Application. Under-
water sensor networks are used for military and defense appli-
cations to detect possible enemies before ports and port
surveillance and control in [56]. Sea mines discovery in [57],
border protection against illegal fighting ships in [58]. In addi-
tion, underwater sensors network advanced technologies such
as the mobile UWSNs provide warning alerts prior to the
natural disasters, such as seismic and seafloor activities [59].

The network settings are classified by the characteristics of
the application, the region, the network’s size and frequency of
communication, the distance among hops, the sensor types,
and the total number of sensor devices. In general, the overall
communication among the hops is accomplished through
acoustic waves or a combination of radiofrequency and acous-
tic signals. Therefore, it is difficult to detect and prevent a
malicious node disguised as a valid user from disturbing the
network. Even worse, internal threats may be initiated by
hacked nodes that were previously correct.

The network settings are classified by the characteristics of
the application, the region, the network’s size and frequency of
communication, the distance among hops, the sensor types,
and the total number of sensor devices. In general, the overall
communication among the hops is accomplished through
acoustic waves or a combination of radiofrequency and acous-
tic signals. Therefore, it is difficult to detect and prevent a
malicious node disguised as a valid user from disturbing the
network. Even worse, internal threats may be initiated by
hacked nodes that were previously correct.

UWSN Applications 

Oil/Mineral Extraction
Pipelines
Space Station Commercial
Fisheries
Control & actuation

Industrial

Environmental Monitoring
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Scientific
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Assisted navigation
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Figure 4: Application of UWSNs.

8 Wireless Communications and Mobile Computing



3. Security Threats and Attacks

Many limitations exist in underwater acoustic channels and
UWSNs, causing potential security risks. As a result,
UWSNs are subject to a variety of risks, including malicious
attacks. These challenges and attacks were thoroughly exam-
ined and evaluated in this work. These attacks can be passive
or active, depending on the behaviour of the malicious
attacker. As illustrated in Figure 5, these challenges and
attacks are classified broadly into active and passive attacks.

3.1. Passive Attacks. Passive attacks are attempts performed
by effected devices to detect the activities and gather data
transferred in the network without interfering with its func-
tioning, such as interference, eavesdropping, impersonation,
message distortion, message replay, and secret information
leakage. The acoustic channels are open channels and easily
come under attack.

Using a hydrophone or underwater microphone, mali-
cious attackers can capture packets transmitted in the data
channel. Furthermore, the attacker can determine the nature
of communication by evaluating packet flow, detecting
packet exchange, identifying the data transferring hosts,
and determining the position of nodes. Unfortunately, it is
challenging to determine the mentioned attacks because
the network functionality is unaffected. So, the efficient solu-
tion is to use encryption technologies that make it difficult
for eavesdroppers to obtain any information. Unfortunately,
the current encryption algorithms used in wireless networks
cannot be immediately translated into UWSNs due to the
high energy consumption and massive overhead. The
encryption techniques utilized by UWSNs will be discussed
in further detail in the following sections.

3.1.1. Eavesdropping. Additionally, eavesdropping is referred
to as “passive information collecting.” Eavesdropping on
confidential data is possible through the tapping of commu-
nication cables. As a result, wireless networks are much
more vulnerable to passive attacks than wireless connec-
tions. Because UWSNs use short-range transmissions, an
attacker must be nearby to eavesdrop on important informa-
tion, making UWSNs less vulnerable to tapping than lengthy
wireless communication technologies. Interception of mes-
sages transmitted by UWSNs may expose valuable informa-
tion such as gateways, the physical location of specific nodes,
key distribution centers, timestamps, message identifiers
(IDs), and other fields, even nearly everything that was not
secured. Using a mathematical model that takes underwater
acoustic channel characteristics, including ambient noise
and signal attenuation in [60], the authors looked into the
possibility of eavesdropping attempts. Underwater acoustic
signal channels are shown to be related to an intercept’s
success condition. According to the authors, both isotropic
and array eavesdroppers are considered when calculating
the eavesdropping probability. To make matters even more
complicated, node density and wind speed all impact the
probability of a collision.

3.1.2. Node Malfunctioning. It can occur for many reasons,
including defective sensors or energy depletion due to sensor
overloading or other denial-of-service attacks.

3.1.3. Node Destruction. Physically destroying a node (by
using an electrical surge, physical force, or gunfire) in any
way possible so that the node is rendered inoperable.

3.1.4. Traffic Analysis. For attackers, the traffic pattern of a
network may be as helpful as the substance of data packets.
By examining traffic patterns, sensitive data about the net-
working infrastructure can be gleaned. In UWSNs, the nodes
closest to the access point, i.e., the sink, transmit more
packets than the other nodes because they relay more
packets. Similarly, clustering is a critical component of
UWSN stability.

3.1.5. Node Outage. Such a threat happens if a node’s stan-
dard functionality is compromised. For instance, if a central
node in a heterogeneous network fails to operate normally,
the WSN protocols must be robust enough to offset the
negative consequences of such node outages by choosing
new cluster heads and offering alternate network channels.

3.2. Active Attacks. Active attacks aim to inject, change,
destroy, or delete data carried over a network. Active cyber-
attacks may capture network data and attempt to alter or

Threats & Attacks in
UWSNs

Passive Attacks Active Attacks

Node Compromise Attack

Repudiation Attacks

Packet-Oriented Attacks

Protocol-Oriented
Attacks

DoS Attacks

Figure 5: Security threats and attacks.
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destroy packets to disturb network communication and
operation. Both internal and external attackers can carry
out active attacks if the attacks are conducted out by hops
that are not part of the network, and they are classified as
external attacks, which are capable of finding and protecting.
If an attempt is launched from an insider node, it is classified
as an inside threat, which can cause significant harm to the
network. According to the results of the prior research, inte-
rior attacks are harder to trace and may cause more danger
than outside ones. The possible answer to this problem is
to use security techniques such as encryption, trust manage-
ment, and authentication.

3.3. Attacks Occur on Physical Layer

3.3.1. Node Capture. An attacker seizes control of the sensor
node using a physical attack, such as connecting wires to its
circuit board and accessing both stored data and continuous
communication in the UWSN [61]. Capturing a node may
disclose vital data, most notably cryptographic keys,
compromising the entire UWSN. Additionally, attackers
can tamper with the actual wiring of the electronic board
or the content of the nodes’ memory, allowing them to uti-
lize the seized slave node in any way they like. Two issues
occur in this instance:

(i) The hijacked node can make unlimited requests on
behalf of the attacker

(ii) Hijacked nodes may offer erroneous information to
genuine users

3.3.2. Jamming DoS. According to [62], a hostile machine
may lead to jam its transmission in case of sending informa-
tion with same frequency. The jamming signal adds to the
carrier’s noise. Its intensity is sufficient to drop the SNR
below the threshold required for the nodes utilizing that
channel to receive data effectively. Constant jamming can
be carried out in a region, effectively preventing all nodes
in that zone from communicating. However, temporary
jamming using random time intervals can be used to disrupt
signals successfully. There are a limited number of antijam-
ming devices available for UWSNs that can be used to
defend against WSN jamming attacks. Acoustic communi-
cation underwater frequently makes use of spread-
spectrum techniques. Frequency-hopping spread spectrum
(FHSS) and direct sequence spread spectrum (DSSS) are
two of these approaches gaining popularity because of their
superior performance in noisy environments and dealing
with multipath interference. FHSS and DSSS approaches
can withstand interference from jammers to a certain extent.
If FHSS is employed, the jamming attacker will still jam a
large portion of the spectrum. Even worse, a powerful
jamming signal can compromise the DSSS system.

3.4. Attacks Occur on Data Link Layer. Algorithms at the
data link layer, particularly MAC address techniques,
provide numerous options for exploitation. For example,
continuous channel jamming via DoS assaults or more
complicated cases depending on MAC layer addressing tech-

niques. Collision, Dos, weariness, spoofing, desynchroniza-
tion, link-layer jamming, flooding, and unfairness are all
examples of data link layer attacks.

3.4.1. Denial of Sleep (Sleep Deprivation Torture). A denial of
sleep attack will result in energy depletion for battery-
powered devices [63]. This attack can be carried out by col-
lision threats or repetitive handshaking, which involves
repeatedly manipulating the clear to send (CTS) and request
to send (RTS) flow control signals, thereby preventing the
node from entering the sleep state.

3.4.2. Collision. During this type of attack, an attacker com-
municates on the same frequency as a legitimate network
node. As a result, the two broadcasts collide, rendering the
data received unintelligible to the recipient. At some point,
the receiver will request retransmission of the same packet
[64]. A single byte of a message colliding would result in a
CRC (cyclic redundancy check) error, rendering the entire
message unusable. This assault is more advantageous for
an attacker than jamming, as it consumes less transmission
energy and has a lower risk of detection [65]. A colluding
collision attack can be mitigated via a mitigating colluding
collision strategy. The error-correcting code, in a sense, is a
practical method of preventing collisions.

3.4.3. Jamming Attack. A datalink layer jamming attack is
similar to a physical layer jamming attack, but it is more
intelligent and effective. The potential hacker can accom-
plish this purpose by sending a request to send (RTS)
packets continuously. The valid nodes are denied access to
the channel. The potential hacker can assign the highest pri-
ority to himself and constantly utilize the medium regarding
MAC protocols. As a result, scheduled MAC protocols can
protect against the exploit. These attacks can be mitigated
with antireplay prevention and link-layer verification. Con-
sequently, receiving a significant number of RTS packets
costs energy and utilizes channels on a node [66].

3.4.4. Exhaustion Attack. This type of attack can be used to
keep the communication line busy and drain the device’s
energy by hosting a malicious node into the network. It
can be triggered by the attacker or by a hijacked node with
the attacker’s internal program code. Another type of
exhaustion attack is when the hijacked node sends RTS/
CTS messages or requests to join to push the receiver node
to transmit and receive. A strategy proposed by [58] is based
on fuzzy logic for defending against dispersed node exhaus-
tion attacks. Rate limiting on each node of the network is a
reasonable solution. [58] proposes a fuzzy logic-based
antidistributed-node-exhaustion solution.

3.4.5. Unfairness. It is a weak type of DoS attempt in which
the attacker decreases the network’s performance rather
than entirely blocking authorized sensor nodes from using
the communication channel. A minor frames method is
utilized to cut down on time. It is vulnerable to further
disparity. An attacker, for example, may resend at a faster
rate instead of just randomly stopping [67]. Most of the
DoS attacks on the data link layer listed above can be
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mitigated by utilizing error detection code, limiting trans-
mission speed, and splitting packets into short frames. To
lower the amount of time required, consider using a small
frames approach. Utilizing this strategy results in a smaller
impact at the sacrifice of effectiveness. In addition, it is open
to future exploitation. Instead of randomly delaying, an
attacker might retransmit at a higher speed.

Most datalink layer denial-of-service attacks described
above can be mitigated using rate limiter, error detection
code, and packet slicing.

3.5. Network Layer Attacks. Routing the packets from source
to destination is the main task of the network layer. Due to
the particular features, the network layer is subject to various
threats and attacks that disrupt the network’s routing,
including selective forwarding, replay, misdirection, neglect
and greed, sinkhole, Sybil, wormhole, blackhole/gray hole,
homing, and hello flooding attacks.

3.5.1. Selective Forwarding Attack. There is a possibility that
the adjacent node will locate different routes to the destina-
tion node. As a result, to avoid detection, it intentionally
transmits and drops specific packets. The attacker who is
focused on overwhelming and changing a packet created
from a few source nodes can effectively transfer the rest
packets while minimizing suspicion of misbehaviour [68].

Evidential assessment is used in [69] to discover node
capture attacks that employ the Dempster–Shafer theory of
integrated numerous facts. These attacks can be detected
and isolated from the network using trust management
and reputation methods based on behaviour evaluation [46].

3.5.2. Misdirection Attack. In this type of attack, the attacker
redirects packets to invalid paths, modifies the routes, or
redirects the packets to a hijacked node. This attack can be
mitigated by changing the route path, including the source
route in each packet.

3.5.3. Greed and Neglect. This type of attack is a variation of
the selective forwarding threat. The attacker may drop
incoming packets at random while still acknowledging the
source node or giving high precedence to its packets [70,
71]. Declaring alternate routing paths is a feasible solution
to this type of attack by sending repeated messages. But in
conversation, more power would be required, and UWSNs
would face the most serious energy shortage.

3.5.4. Gray Hole/Black Hole Attack. In this type of attack, the
attacker broadcasts fake routing information with the short-
est path or lowest cost toward the receiver. The hijacked
nodes would choose this path as the best option, even
though it passes over the adversary computer. Furthermore,
the adversary can evaluate, change, or even destroy packets
at will. A black hole attack occurs when the attacker drops
all data packets. If the attacker removes some crucial
packets, then it is called a gray hole attack.

This form of attack damages those sensor nodes located
a long distance away from the sink node. In a more sophis-
ticated manner, the adversary may drop necessary packets at

a specific period or a specified percentage, proving it more
challenging to detect.

3.5.5. Sybil Attack. An attacker can use the Sybil attack to
create many identities and appear in multiple locations
simultaneously. The primary purpose of these fake identities
is to prevent the information transmission operation from
taking place. These numerous identities can be taken by
inventing defects or hijacking legitimate node IDs. As a
result, the Sybil attack can severely harm distance-based or
location-based routing schemes. Furthermore, the attacker
can act as a base station or recipient, sending acknowledg-
ment packets to sensor nodes to prevent retransmission. In
[72, 73], the researchers provided a lightweight and robust
scheme based on the received signal strength indicator for
detecting the Sybil attacks. Also, the authors in [74] designed
the random key predistribution method for protecting the
Sybil attacks.

3.5.6. Homing Attack. A potential hacker may monitor the
traffic in a homing attack to identify and target nodes with
individual responsibility, such as sinkhole nodes or cluster
heads. Furthermore, the attacker may execute additional
DoS operations to block or disable these specific nodes.
The use of “dummy packets” in an antitraffic analysis
method helps hide the location of the base station from
observers [75]. It is unfortunate that these dummy packets
use up a lot of nodes’ energy, particularly for UWSNs. As
a result, it should only be utilized when preventing traffic
analysis is absolutely necessary.

3.6. Attacks on Transport Layer. The UWSN transport layer
has the responsibility for source to destination reliable
communication of data. This layer of common attacks
contains the synchronization flooding attack and desyn-
chronization attack.

3.6.1. Synchronization Flooding Attack. An intruder may
create new user request indefinitely until the resources
required by each connection are consumed or reach the
highest limit. A popular type of DoS attack includes deliver-
ing a large number of common packets, such as internet
control message protocol (ICMP), transmission control
protocol (TCP), and user datagram protocol (UDP), all
intended at the exact location. Because of the large data flood
created by these packets, the network can no longer differen-
tiate between authentic and fraudulent traffic in [76].

3.6.2. Desynchronization Attack. A desynchronization attack
occurs when a malicious user disrupts existing connections
between nodes by sending faked packets with faked
sequence numbers or control signals that desynchronize
destinations. Synchronization is critical and challenging
for UWSNs; additionally, the global positioning system
(GPS) is ineffective [77].

4. Open Issues and Challenges

UWSNs have a wide range of uses, including civic,
military, and a variety of others. UWSN research and
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implementation have been increasingly popular in both
academia and industry. Following a study of existing devel-
opments and investigations, various problems remain to be
explored to progress further.

4.1. Reliability. In order to ensure reliability in all aspects,
such as hop-by-hop, data, and end-to-end reliability, reli-
ability is essential. The ability to successfully convey and
transfer data between participating sensor nodes in the
UWSNs is critical to its stability. Reliability ensures that
packets are delivered successfully between sensor nodes
involved in joint operations [78]. Therefore, proposing a
cooperation method that takes this reliability into account
and solves it.

4.2. Propagation Delay. The MAC or retransmission time-
out (RTO) waiting time directly impacts throughput. The
authors of [79] discovered that the current fixed RTO is
not efficient. Furthermore, because of the lengthy propaga-
tion delay in UWSNs, a handshaking method that enables
all nodes to share a channel costs a lot more than in a terres-
trial sensor network. It will gradually result in high hand-
shaking overheads, resulting in a limited bandwidth.

4.3. Variance Delay. Variance delay is a factor that leads to
erroneous round-trip time (RTT) estimates and makes mea-
suring the waiting time in the MAC protocol challenges.
However, according to [80], most MAC protocol studies
did not account for the variable delay in their findings.

4.4. Mobility of Nodes. While nodes in terrestrial networks
are likely to remain static, underwater vertices will certainly
wander due to underwater shipping activity, currents, winds,
and other factors. Because the oceanic current is spatially
dependent, nodes may drift in different directions. While
GPS updates can pinpoint reference nodes tied to surface
buoys, maintaining submerged underwater nodes at precise
positions is problematic. It may have an impact on the accu-
racy of the localization.

4.5. Efficiency. Efficiency is essential for providing a cooper-
ative mechanism and making communication easier
between nodes in a communication network. Underwater
localization collaborative control tasks necessitate a reliable
means for transferring and receiving data. In order to use
resources that enable efficient delivery of information, coop-
erative gaming strategies must include efficiency; otherwise,
the cost of such information distribution will rise, i.e., delays
and throughput will grow.

4.6. Privacy and Security. The authors of [81] explained how
security assaults might affect underwater localization and
countermeasures and how privacy is affected. For the sensor
node to be localized, it must show specific information, lead-
ing to privacy gaps. When gathering location-related infor-
mation, location privacy is a topic that is discussed. DoS
attacks, range-based assaults, no range estimation attacks,
noncooperation, and deceptive advertising information are
some examples of these types of attacks.

4.7. Communication Range. In the underwater environment,
a signal’s absorption depends on the water’s depth, one of
the distinctive characteristics. Signal absorption can be min-
imized by lowering the frequency. Even nevertheless, when
the transmission range expands, new issues arise regarding
interruption probability and high data collision rates.

4.8. Hardware Dependent. Sensor nodes in the water, such as
autonomous underwater vehicles (AUVs), wheels, or
unscrewed aircraft, use battery power and are difficult to
change once in place. As a result, customizing another
system is difficult because different applications have distinct
data formats, protocols, and service constraints.

4.9. Reliability of Link. High delivery rates in real-time sce-
narios require good link reliability as well. The sensor nodes
in the network’s link dependability factor might affect the
delivery rates and, as a result, the transmission loss, which
lowers the aggregated strength of the waveform’s propaga-
tion from sender to the receiver. Data transmission reliabil-
ity can be harmed by noise in the underwater environment,
resulting in dropped transmissions. If the link is unreliable,
continuous transmission of data will increase node energy
consumption and bandwidth utilization. Data transmission
efficiency must be taken into account to prevent using unre-
liable connections.

5. Conclusion and Future Directions

Wireless sensor networks are a great area nowadays for
researchers. As advancements are made in technology, this
field is also growing faster than other fields. As the nature
of the network, it broadcast the signals in an open environ-
ment. Underwater Wireless Sensor Networks is one of the
branches of this network that operates underwater to moni-
tor the marine environment and collect data for different
purposes. This study first investigated the Underwater Wire-
less Sensor Network taxonomy from the latest research
articles and well-known databases. This paper also indicates
and analyses the current security threats for Underwater
Wireless Sensor Networks on each layer. UWSNs have come
a long way in recent years, but there is still more to be done,
especially when it comes to building large-scale systems.
There is room for improvement in a future study on node
mobility with high monitoring area to explore the impact
on the network connection, energy consumption, network
longevity, and coverage resulting from these findings. Stud-
ies should focus on creating cooperative control among a
few underwater vehicles to raise the efficiencies of UWSNs
and improve their performance. Future research should
improve the cars’ ability to communicate cooperatively by
increasing the channel capacity and autonomy level. Future
studies could look at environmental factors and underwater
vehicle designs simultaneously, extending the algorithm’s
usefulness. A high-level planning layer follows this that the
researchers construct to specify the ideal vehicle configura-
tions or strategic regions of interest for the vehicle to inves-
tigate. Complex network scenarios such as mobility,
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multipath fading, and shadowing could potentially be
addressed in the research.
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