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In recent years, Internet of Things (IoT) and advanced sensor technologies have gained considerable interest in linking different
medical devices, patients, and healthcare professionals to improve the quality of medical services in a cost-effective manner. The
evolution of the smart healthcare sector has considerably enhanced patient safety, accessibility, and operational competence while
minimizing the costs incurred in healthcare services. In this background, the current study develops intelligent energy-aware
thermal exchange optimization with deep learning (IEA-TEODL) model for IoT-enabled smart healthcare. The aim of the
proposed IEA-TOEDL technique is to group the IoT devices into clusters and make decisions in the smart healthcare sector. The
proposed IEA-TEODL technique constructs clusters using the energy-aware chaotic thermal exchange optimization-based
clustering (EACTEO-C) scheme. In addition, the disease diagnosis model also intends to classify the collected healthcare data as
either presence or absence of the disease. To accomplish this, the proposed IEA-TODL technique involves several subprocesses
such as preprocessing, K-medoid clustering-based outlier removal, multihead attention bidirectional long short-term memory
(MHA-BLSTM), and weighted salp swarm algorithm (WSSA). The utilization of outlier removal and WSSA-based hyper-
parameter tuning process assist in achieving enhanced classification outcomes. In order to demonstrate the enhanced outcomes of
the IEA-TEODL approach, a wide range of simulations was conducted against benchmark datasets. The simulation results
inferred the enhanced outcomes of the IEA-TEODL technique over recent techniques under distinct evaluation metrics.

1. Introduction

With the advancements made in smart sensorial media,
Internet of Things (IoT), and cloud techniques, smart health
care has gained considerable interest in different domains
such as healthcare, academia, government, and industry [1].
In recent times, Internet of Things (IoT) has brought the
vision of a smart world into reality, with numerous services
in the pipeline generating massive amounts of data. Cloud
computing (CC) suits well as an enabling technique since it
presents a flexible stack of software, computing, and storage
services at a lower cost [2]. Cloud-based service has the

potential to provide a high-quality seamless experience to
clinicians, physicians, and other caregivers, anytime and
anywhere. While research has been making advances in
cloud services and IoT separately, minimum attention has
been paid to emerging, affordable, and cost-effective in-
telligent healthcare services [3]. At present, cloud and IoT
technologies have assisted in delivering smart healthcare
services on a real-time basis and also have made considerable
improvements.

With the integration of the IoT cloud, a great demand for
intelligent and smart healthcare systems provides a rapid
and seamless response. Artificial intelligence (AI) and deep
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learning (DL) techniques can improve decision-making and
cognitive behaviour [4]. Advanced electronic applications
are presented to intelligent healthcare stakeholders along
with smart sensor devices. In spite of these, it is challenging
to access or find hospitals and medical professionals in
intelligent healthcare environments. In general, patients
with serious medical needs must be provided quick attention
and faster response in order to save their lives [5]. Therefore,
data recorded from patients needs to be interpreted and
transferred to healthcare professionals with minimum delay
while the results need to be sufficiently accurate so that it can
be utilized by healthcare experts for disease prognosis.
Hence, a smart healthcare system is required that could
resolve the above-mentioned problems and leverage the
technology and services available in the intelligent health-
care environment. Figure 1 illustrates the structure of
a smart healthcare system.

Though there have been advancements in this domain,
the concept of a smart healthcare system remained uncertain
without cognitive function. Smart city service can never be
exploited completely without the cognitive knowledge of its
stakeholders [6]. Even though the conventional methods
achieve rapid delivery of results, it is expected to obtain
highly accurate results. But, most of the time, the results
suffer from complex data [7]. In this situation, high accuracy
can be accomplished by deep learning (DL) techniques and
its different versions. In literature, these techniques are
trained using large datasets [8]. DL method is an emerging
field that has gained considerable outcomes in sequence
prediction, mixed-modality data sets, and natural language
processing tasks that have received heavy growth in various
applications such as computer vision and speech
recognition [9, 10].

The current article develops intelligent energy-aware
thermal exchange optimization with deep learning (IEA-
TEODL) model for IoT-enabled smart healthcare. The
proposed IEA-TEODL technique derives energy-aware
chaotic thermal exchange optimization-based clustering
(EACTEO-C) scheme. Besides, a disease diagnosis model is
also involved to classify the collected healthcare data into
either presence or absence of the disease. To accomplish this,
the proposed IEA-TODL technique involves several sub-
processes such as preprocessing, K-medoid clustering-based
outlier removal, multihead attention bidirectional long
short-term memory (MHA-BLSTM), and weighted salp
swarm algorithm (WSSA). In order to validate the promising
performance of the IEA-TEODL technique, a wide range of
simulations was performed against benchmark datasets, and
the results were validated under different measures.

2. Literature Review

Mansour et al. [11] developed a disease diagnosis system for
diabetes and heart disease using IoT and AI convergence
methods. The presented technique employed crow search
optimization approach-based cascaded LSTM (CSO-
CLSTM) for disease diagnoses. To accomplish improved
classification of healthcare information, CSO was employed
for tuning “weights” and “bias” parameters of the presented
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approach. The authors in the literature [12] developed
a cloud-centric IoT-based m-healthcare monitoring disease
diagnosis system that predicts the possible disease occur-
rence with the severity level. In this study, key terminology
was determined to generate user-based health measurement
by examining computation science concepts.

In literature [13-15], the authors presented a disease
diagnosis system with DL as well as IoT. The healthcare
information is preprocessed since it contains noise. The
preprocessed information is then passed onto isolation
forest (iForest) for outlier recognition with high precision
and linear time complexity. The data undergo a classification
method in which DenseNet169 and PSO methods are in-
corporated to diagnose the disease; the parameter is then
tuned to improve the performance. Awotunde et al. [16]
developed an IoT-WBN-based architecture with an ML
approach. The data collected from wearable sensors such as
glucose sensors, body temperature, chest, and heartbeat
sensors are transferred by IoT device to the cloud dataset.

Nagarajan et al. [17] designed an IoT-based FoG-enabled
cloud network framework that accumulates real-time
healthcare information from patients through a number
of healthcare IoT sensor networks. This information is ex-
amined by the DL technique deployed in a fog-based
healthcare environment. Moreover, the presented ap-
proach was utilized in sustainable smart city solutions to
estimate real-time process. Ihnaini et al. [18] proposed an
intelligent healthcare system for diabetes based on deep ML
and data fusion perspectives. With data fusion, the unrelated
burden of computation abilities was removed, and the
presented system’s efficiency in terms of recommendation
and prediction of this severe disease, in a precise format, was
increased. At last, the ensemble ML approach was trained for
predicting diabetes.

3. The Proposed Model

In this study, a novel IEA-TEODL technique has been
developed to accomplish clustering and decision-making in
an JoT-enabled smart healthcare environment. The pro-
posed IEA-TEODL technique follows 2-stage processes,
namely EACTEO-C-based cluster construction and optimal
DL-based disease classification. The detailed working pro-
cess of these two modules is elaborated in the succeeding
subsections. Figure 2 displays the block diagram of the IEA-
TEODL technique.

3.1. Process Involved in EACTEO-C Technique. In the pri-
mary stage, the IoT devices are placed in the healthcare
environment to gather medical data from the patients. In
order to achieve effectual energy utilization and data
transmission to the cloud server, the EACTEO-C technique
is executed to select the cluster head (CH) and construct it.

3.1.1. Overview of CTEO Algorithm. The primary aim be-
hind the adaption of a meta-heuristic approach named
thermal exchange optimization (TEO) is to cluster the
nodes. The model of temperature from TEO reflects the
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interface feature of nodes [19]. The cooling object mentions
the place of nodes whereas the environmental temperature
signifies the adjacent nodes. The object is considered as
a sensor node. Therefore, important nodes are either
interpreted as objects or conversely.
The primary temperature of every node is defined as
follows:
T)=T

i min

+ rndx (Tmax - Tmin)’ (1)

where T? refers to the primary solution vector of the node, i.
T..in and T .. signify the limits of temperature variables. In
addition, rnd stands for arbitrary vector, whereas all the
components are in the range of zero and one. The main
function computes the cost value of all the nodes. The
memory has regarded that hierarchy holds the optimum T
vector, and the main function value is connected to these
vectors. It improves the technical performance with no
increase in computational cost. In this way, a thermal
memory (TM) is utilized to save several optimum solutions
at the moment. So, during this phase, solution vectors,
stored from TM, are transmitted to populations. In addition,
a similar amount of accessible worse nodes is not assumed.
Eventually, the node is sorted in an ascending order based on
its respective main function values. The node is divided into
two equivalent groups. For instance, T, is an environment
object for T,,,; cooling object and conversely.

Generally, if the f3 value of object is lesser, it somewhat
modifies the temperatures. An analogy is simulated as this
feature is projected. The value of all the nodes is calculated
based on equation (2). Therefore, the 8 value of lesser cost
node remains a minimum value, and somewhat it modifies
the node place.

_ cost(node) )
p= cost(wnode)

The time is dependent upon the number of iterations. ¢
denotes the time value for all the nodes and is computed as
follows:

t = N iter ( 3)
N max —iter
where N, and N, .. demonstrate the present and

maximal number of iterations correspondingly. The envi-
ronment temperature is replaced by equation (4). At this
point, ¢; and ¢, denote control variables.

T = (1= (c;+cy* (1=8))#rnd) « T, (4)

TP™™ refers to the previous temperature of the node
modified to T{™.

(i) (1 —1t) is recognized to decrease arbitrariness when
approaching the final iteration. While the procedure
is nearing the end, t improves and reduces the
production of arbitrariness in a linear fashion.

(ii) ¢; checks the size of arbitrary steps. Besides, c,
contains arbitrariness if it does not utilize
a descending method (c, = 0).
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(iii) ¢, controls (1 —¢). That is, where a decrease is not
needed, this could be regarded as equivalent to zero.

Where the condition of C=0(c; =c¢, =0), the pre-
ceding temperature is multiplied by I" and ¢, and c, are
chosen in {0 or 1}. With the preceding stages and equation
(4), the upgrade temperature of all the nodes is defined based
on equation.

TO = T 4 (TP — T Vexp (=Bt (5)

P, parameter from (0, 1) defines whether the element of
all the nodes is replaced. To all the nodes, P, is related to
rnd (i) (i = 1,2,---,n) and is an arbitrary number that is
equally distributed from zero and one. If rnd (i) < P,, a di-
mension nodes, i is arbitrarily selected, and their values are
redefined as follows:

Ti;=Tjmn + rndx(T - Tj,min)> (6)

Jj,max

where T ; refers to the variable j of node i. T i, and T'j
imply lower as well as upper limits of the variable j cor-
respondingly. Only one size is altered to preserve the in-
frastructure of nodes. This method presents many benefits to
nodes for moving throughout the searching region and
attaining the optimum diversity.

In this work, the TEO algorithm can be improved with
the design of the CTEO algorithm using chaotic concepts
[20]. A chaos map employs chaotic variables with change-
able nature before arbitrary variables. This order is initiated
from nonlinear and dynamic systems whereas non-
convergent orders are from nonperiodic and bounded
systems. It can offer easy searching together with a superior
convergence rate than arbitrary search. This process uses the
technique for providing the optimum exploration from
solution spaces due to their dynamic performance of tur-
bulence sequence. The current analysis utilizes a sinusoidal
chaotic map function to improve both convergence speed
and premature convergence of the TEO technique so as to
consider a trade-off between exploitation as well as explo-
ration techniques. This is performed to provide a well-
defined outcome from the solution space which does not
stuck at the local optimum points. In order to modify the
TEO approach with the help of a chaos map, the chaos value
is replaced with arbitrary numbers using the important
formula as follows:

Tig = P.ri2 sin (7.r;), (7)

where P defines the control parameter, and r; and r;,; imply
the chaotic arbitrary numbers generated from preceding and
the existing iterations correspondingly. At this point, r, =
0.7 and P = 2.3.

3.1.2. Application of EACTEO-C Technique for CH Selection.
The primary goal of the EACTCO-C technique is to min-
imize the distance among the carefully chosen CH nodes.
The main objective is to minimize the delay during the
transmission of information from one node to another. In
contrast, for the network energy should be higher, it should
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consume a small number of energies at the time of data
communication. The objective function of the adapted CH is
given in equation (7), where the value of # must depend
upon 0 < 77 < 1. Now, v,, and v, show the operations as given
as follows. The constraints on distance, delay, and energy are
stated as 0, 0,, and 05. The condition of this constraint is
represented by o, +0,+0; =1. X* - B, represents the
distance between normal and sink nodes.

Hn =nv, + (1 - 1’])Vm, (8)

N

V= 01 % Vidis + 0y * Viene + 03 % Viad,

1L 9)
Vn = E Z"Xx - Bs“’
x=1

where v‘(iifl) represents the packet transmission from the
normal node to CH and from CH to BS. vs must depend
upon [0, 1]. The value of v;ss remains high when the normal
node is more along with distance among CH [21].
dis
_Vm
Vidis = — g5
Vin)

. Ny N,
Vi = 2 lIC=Bl+ Yle =X a0
x=1 y=1
) Ny N,
v‘g:f) = Xx—Xy”.
x=1 y=1

X, denotes the normal node in x™ cluster, C, represents
the CH of x™ cluster, the distance between the BS and CH is
shown as C, — B,, C, — X, represents the distance between
normal node and CH, and X, — X, shows the distance among
two normal nodes, N, and N, indicate the node amount that
does not assume x™ and y™ cluster. The value of v, becomes
higher than one, and the whole CH cumulative v} and v{}§ is
considered as less energy value with high number of CH s.

ene
e = 2 (11)

i ene *
V)

Delta fitness function is directly proportionate to each
node that resides in the cluster. Thus, a delay gets reduced,
when the CH owns a lesser number of nodes. The de-
nominator N shows the overall number of nodes in WSN,
and the numerator indicates the high amount of CH.

Furthermore, the value of vfel must be in d[0, 1].

o _max(le. - )Y,

; (12)
1 NN

3.2. Disease Diagnosis Module. In this work, the disease
diagnosis model encompasses a series of subprocesses,
namely preprocessing outlier removal, MHA-BLSTM-based
classification, =~ and =~ WSSA-based  hyperparameter
optimization.

3.2.1. Data Preprocessing. At the initial stage, preprocessing
takes place in different ways, namely data normalization,
data transformation, and data augmentation. In this work,
min-max normalization approach is used to normalize the
input medical data. Besides, data are also transformed into
a useful format, and data augmentation is applied using
SMOTE technique to increase the size of the dataset.

3.2.2. K-Medoid Clustering. Next to data preprocessing, the
outlier removal process is carried out using the K-medoid
clustering approach. The K-means approach that utilizes
and determines the means of data point in the calculation is
mainly sensitive to the outlier. To resolve this, a new ap-
proach was developed in which the medoids are utilized
rather than the average value from the cluster. Medoids are
centre points from the cluster, and the approach is named
as k-medoids clustering. Even though k-medoids com-
putationally increase their demands, the k-medoids cluster
is not mainly sensitive to the existence of outlier points and
is appropriate to discrete and continuous fields of in-
formation [22]. Generally, the input provided has the value
of k that denotes the amount of clusters determined to data.
For every k cluster, a k-reference point is chosen. The
variance between k-medoids and k-means algorithms is
that the former k-medoids considers the point as a refer-
ence object for the cluster whereas k-means considers the
average value from the former k-medoid cluster as the
reference point.

3.2.3. Data Classification Using MHA-BLSTM Model.
During the data classification process, the MHA-BLSTM
model can be employed for the classification process. RNN is
a well-known technique to train the series data, namely
image processing, video capture, and word prediction that
could remember the series element using a memory cell. The
main problem of handling RNN is that once it is utilized for
training with long step size, it cannot remember the data for
a longer period since the backpropagated gradient either
shrinks or grows at every time step. This makes the training
weight vanish or explode. LSTM memory overcomes this
problem while a standard LSTM unit consists of input,
output, and forget gates that control the data into and out of
the memory cell. The structure of a single LSTM cell includes
the logistic sigmoid function whereas i, f, 0, and ¢ represent
the input gate, forget gate, output gate, and cell state, cor-
respondingly. The input gate determines the ratio of input
and has an impact on the value of the cell state [23]. The
framework could resolve the exploding and vanishing
gradient problems.

Figure 3 demonstrates the framework of Bi-LSTM. Bi-
LSTM has both forward and backward LSTM layers. The
forward layer captures the historical data of order while the
backward layer captures the future data of the sequences.
The combined layers are linked to a similar resultant layer.
Our network utilizes Bi-LSTM with a multihead (MH)
process. MH permits the model for combined data to
appear in various representations of subspaces at distinct
places. The attention process plays a vital role in the DL
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network to capture the explicit and latent context. MH
attention process is presented since it utilizes several in-
dividual attention functions to capture distinct contexts.
The attention function gets input as an order of query Q =
{Q;,...,Qy} and group of key-value  pairs
{K,V} ={(K,V}),..., (Kg, Vg)}. MH attention method
primary transforms Q, K, and V to C subspaces, with
distinct and learnable linear projection.

At this point. Q¢, K¢, and V* signify the ¢ head of query,
key, and value correspondingly. {W2 WK WV} e R
implies the parameter matrices, and d and d; stand for
models and their subspace dimensions. Moreover, C at-
tention functions are executed concurrently to obtain the
resultant state, O}, ..., OC.

O = AVS,

cKcT (13)
A° = softmax Q—

Vi

A° implies the attention distribution, formed by cth at-
tention head. These resultant states are concatenated to
produce the last state.

3.2.4. Parameter Tuning Using WSSA Technique. In order to
fine-tune the parameters involved in the DL model, the
WSSA technique is used which in turn improves the clas-
sifier results. The SSA approach is stimulated from navi-
gation behaviour of salps in search of food in the ocean [24].
It is classified as leader and follower. In the searching
method of optimization technique, it is important to balance
the exploration and exploitation capabilities to accomplish
better efficiency. The idea of inertia weight factor is initially
presented to quicken the convergence speed. Researchers
find that when inertia weight is lesser, the particle has
stronger exploitation capability. However, it easily falls into

local optima. In contrast, when inertia weight is larger, the
particle still has a stronger exploration ability; however, the
searching efficacy becomes low. Furthermore, the researcher
presented the inertia weight factor to enhance the searching
method. Here, the weight factor reduces linearly to balance
between exploration and exploitation ability; thus, the
particle has a stronger global searching capability in the
earlier stage and searches for the precise outcome in the later
stage. In the current study, to enhance the outcomes from
traditional SSA, a weight factor is included to update the
position. It changes dynamically with the number of iter-
ations [25]. The weighted factor decreases linearly with the
number of iterations from maximum to minimum values to
accomplish optimal outcomes.

(14)

w(#) = wmaX _( (wmax — wmin) t),

L

whereas w max and w min denote the maximal and minimal
values of the weighted factors, ¢ represents the present it-
eration, and L indicates the maximal iteration. The position
is upgraded in WSSA for leader and follower and is modelled
as follows:

e { w*F + ¢, ((UB - LB) * ¢, + LB)c; 20,

w"F — ¢, ((UB = LB)*c, + LB)c; >0, (15)

X =05%ws (X + X771,

whereas the variable has a similar meaning as in SSA.

WSSA approach derives a fitness function to accomplish
better classification accuracy. It describes a positive integer
to characterize the improved accuracy of the candidate
solution. Here, the minimization of the classification error
rate is taken into account as the fitness function. The op-
timum solution has the least error rate whereas the worst
solution achieves an increased error rate.
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fitness (x;) = classifier error rate (x;)

number of misclassified instances 100
= k .
Total number of instances

(16)

4. Experimental Validation

In this section, the proposed IEA-TEODL model is ex-
perimentally validated for its performance using a heart
disease dataset [26]. It comprises of 270 samples with 13
attributes such as age, sex, chest pain value, resting blood
sugar, serum cholesterol, fasting blood sugar, resting
electrocardiographic results, maximum heart rate achieved,
exercise-induced angina, old peak, slope of peak exercise,
number of major vessels, and thal. Besides, the dataset
includes two class labels, namely the presence of CKD and
the absence of CKD.

4.1. Results Analysis. Table 1 and Figure 4 provide the overall
results of the analysis of the IEA-TEODL model on the heart
disease dataset under three runs. The results demonstrate
that the proposed IEA-TEODL model accomplished an
effectual classification outcome under all runs. For instance,
with run-1, the IEA-TEODL model achieved a sens, of
98.76%, spec, of 93.09%, accu,, of 91.27%, and an F . of
95.61%. Along with that, with run-2, the proposed IEA-
TEODL approach accomplished a sens,, of 98.21%, spec,, of
92.56%, accu,, 0f 94.19%, and an F . 0of 94.16%. In line with
these, with run-3, IEA-TEODL methodology offered a sens,,
of 99.15%, spec, of 96.32%, accu,, of 95.92%, and an F . of
99.33%.

Figure 5 depicts the ROC curve generated by the IEA-
TEODL approach under three runs. The figure exposes that
the proposed IAOA-DLFD technique reached an enhanced
outcome with maximum output under different runs. For
the sample, with run-1, the proposed IEA-TEODL meth-
odology obtained a high ROC of 97.0602. Likewise, with
run-2, the IEA-TEODL algorithm obtained an enhanced
outcome (ROC) of 97.4922. Eventually, with run-3, the
proposed IEA-TEODL system achieved an increased ROC of
98.4221.

Figure 6 provides the accuracy and loss graph analysis
results accomplished by the IEA-TEODL approach under
three runs. The outcomes show that the accuracy value
increased while the loss value decreased with an increase in
epoch count. It can be also understood that the training loss
is low, and validation accuracy is high under three runs.

y score

4.2. Discussion. A brief sens,, analysis was conducted on the
IEA-TEODL model against existing ones, and the results are
shown in Table 2 and Figure 7. The results report that the
proposed IEA-TEODL model achieved better outcomes in
terms of sens,, under distinct instances. For instance, with
2000 instances, IEA-TEODL model reached an increased
sens,, of 96.58%, but NN approach, NB methodology, SVM

system, and ANN models obtained reduced sens,, values

TaBLE 1: Analytical results of IEA-TEODL technique under
three runs.

No. of runs  Sensitivity ~ Specificity =~ Accuracy  F-score
Run-1 98.76 93.09 91.27 95.61
Run-2 98.21 92.56 94.19 94.16
Run-3 99.15 96.32 95.92 99.33
Average 98.71 93.99 93.79 96.37
100 |
98 4 ]
£ 961 ] —
g
=
<
- 94 4
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Sensi'tivity Speci'ficity Acctllracy F—séore
I Run-1
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FIGURE 4: Analytical results of IEA-TEODL technique under
three runs.

such as 93.55%, 87.97%, 83.16%, and 95.33% correspond-
ingly. In addition, with 10000 instances, the proposed IEA-
TEODL model reached an increased sen of 99.15%, while
NN approach, NB methodology, SVM system, and ANN
models obtained reduced sens, values such as 93.47%,
88.26%, 84.21%, and 98.70%, respectively.

A comparative spec, analysis was conducted on the IEA-
TEODL model against existing ones, and the results are
shown in Table 3 and Figure 8. The results report that the
proposed IEA-TEODL approach achieved better outcomes
in terms of spec,, under various instances. For instance, with
2000 instances, IEA-TEODL approach reached an increased
spec,, of 95.40%, whereas NN approach, NB methodology,
SVM system, and ANN models obtained the least spec,
values such as 84.86%, 83.71%, 80.93%, and 94.36% re-
spectively. Furthermore, with 10000 instances, the proposed
IEA-TEODL technique reached an increased spec, of
96.32%, whereas NN approach, NB methodology, SVM
system, and ANN methodologies obtained less spec, values

such as 90.26%, 86.91%, 84.13%, and 91.90%
correspondingly.
A detailed acc,, analysis was conducted on the IEA-

TEODL algorithm against existing methods, and the results
are shown in Table 4 and Figure 9. The results report that the
proposed IEA-TEODL technique achieved better outcomes
with respect to acc, under distinct instances. For instance,
with 2000 instances, the proposed IEA-TEODL model
attained an increased acc,, of 94.28%, but NN approach, NB
methodology, SVM system, and ANN systems obtained less
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FIGURE 5: ROC analysis results of IEA-TEODL technique under three runs.

acc, values such as 88.73%, 77.43%, 73.17%, and 92.54%
correspondingly.

Additionally, with 10000 instances, the proposed IEA-
TEODL approach reached the maximum acc, of 95.92%,
whereas NN approach, NB methodology, SVM system, and
ANN models obtained low acc, values, namely 89.61%,
82.02%, 81.98%, and 93.88% correspondingly.

A brief F_,,. analysis was conducted between the IEA-
TEODL method and the existing models, and the results are
shown in Table 5 and Figure 10. The results infer that the
proposed IEA-TEODL approach achieved better outcomes
in terms of F,. under distinct instances. For instance, with
2000 instances, the presented IEA-TEODL model reached
the maximum F . of 98.32%, while NN approach, NB
methodology, SVM system, and ANN algorithms obtained

low Fg,,. values such as 92.33%, 84.63%, 81.59%, and
97.67% correspondingly. Finally, with 10000 instances, the
proposed IEA-TEODL algorithm obtained an increased
Foore 0f 99.33%, whereas NN approach, NB methodology,

SVM system, and ANN models reached less F,_,. values
such as 97.71%, 84.25%, 82.32%, and 95.84%
correspondingly.

At last, a brief TEC examination was conducted between
IEA-TEODL model and recent methods, and the results are
shown in Table 6 and Figure 11 [27]. The experimental
values highlight that the proposed IEA-TEODL model
produced effective TEC values under distinct IoT sensor
counts. For instance, with 100 IoT sensors, the IEA-TEODL
model gained a low TEC of 41.30%, whereas EE-PSO, ABC,
GWO, and ACO algorithms obtained high TEC values such
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FIGURE 6: Accuracy and loss analysis results of IEA-TEODL technique under three runs.

as 45.04%, 57.14%, 60.65%, and 66.16%, respectively. At the  line with this, with 500 IoT sensors, the proposed IEA-
same time, with 300 IoT sensors, the proposed IEA-TEODL ~ TEODL model gained a low TEC of 65.74%, whereas EE-
method gained a low TEC of 57.71%, whereas EE-PSO, ABC, ~ PSO, ABC, GWO, and ACO approaches attained high TEC
GWO, and ACO systems obtained high TEC values such as  values namely 69.28%, 78.51%, 82.11%, and 84.08%
59.73%, 67.24%, 73.44%, and 77.15% correspondingly. In  correspondingly.
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TABLE 2: Sensitivity analysis results of IEA-TEODL technique against existing approaches.

Instances Nearest neighbour Naive Bayes SVM model ANN model IEA-TEODL
2000 93.55 87.97 83.16 95.33 96.58
4000 88.03 85.03 81.95 94.33 95.41
6000 92.92 86.87 83.62 95.53 97.41
8000 92.02 88.98 81.40 96.96 98.71
10000 93.47 88.26 84.21 98.70 99.15
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FIGURE 8: Specy analysis results of the IEA-TEODL technique against recent approaches.
TaBLE 3: Specificity analysis results of IEA-TEODL technique against existing approaches.
Instances Nearest neighbour Naive Bayes SVM model ANN model IEA-TEODL
2000 84.86 83.71 80.93 94.36 95.40
4000 86.58 84.08 82.75 92.92 95.29
6000 86.72 86.59 84.01 94.27 96.14
8000 87.65 81.34 78.14 92.26 94.40
10000 90.26 86.91 84.13 91.90 96.32
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TABLE 4: Accuracy analysis results of the IEA-TEODL technique against existing approaches.
Instances Nearest neighbour Naive Bayes SVM model ANN model IEA-TEODL
2000 88.73 77.43 73.17 92.54 94.28
4000 90.97 77.80 76.69 94.33 95.86
6000 86.99 76.89 75.86 92.59 93.70
8000 86.43 80.42 77.86 94.82 95.15
10000 89.61 82.02 81.98 93.88 95.92
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FIGURE 9: Acc, analysis results of the IEA-TEODL technique against recent approaches.
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FIGURE 10: F,,. analysis results of the IEA-TEODL technique against recent approaches.
TaBLE 5: F-score analysis results of the IEA-TEODL technique against existing approaches.
Instances Nearest neighbour Naive Bayes SVM model ANN model IEA-TEODL
2000 92.33 84.63 81.59 97.67 98.32
4000 89.47 84.91 82.45 95.87 96.87
6000 92.57 88.19 87.16 95.33 96.52
8000 92.28 83.73 80.61 94.49 96.29
10000 91.71 84.25 82.32 95.84 99.33
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TaBLE 6: Results of the analysis of total energy consumption (%) between the existing and the proposed methods.

IoT sensors IEA-TEODL EE-PSO model ABC model GWO model ACO model
100 41.30 45.04 57.14 60.65 66.16
200 49.85 52.35 61.01 68.66 74.26
300 57.71 59.73 67.24 73.44 77.15
400 60.99 63.72 72.49 76.00 81.06
500 65.74 69.28 78.51 82.11 84.08
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Figure 11: TEC analysis of IEA-TEODL technique with recent
approaches.

After examining the above-mentioned tables and figures, it
is apparent that the proposed IEA-TEODL technique out-
performed other methods. The enhanced performance of the
proposed model is due to the integration of EACTEO-C-based
cluster construction and optimal DL-based disease classification.

5. Conclusion

In this study, a novel IEA-TEODL technique has been
developed to accomplish clustering and decision-making in
an JoT-enabled smart healthcare environment. The pro-
posed IEA-TEODL technique follows a two-stage process,
namely EACTEO-C-based cluster construction and optimal
DL-based disease classification. Besides, the disease di-
agnosis model encompasses a series of subprocesses, namely
preprocessing outlier removal, MHA-BLSTM-based classi-
fication, and WSSA-based hyperparameter optimization. In
order to validate the promising performance of the proposed
IEA-TEODL technique, a wide range of simulations was
conducted against benchmark datasets. The simulation re-
sults established the enhanced outcomes of the IEA-TEODL
technique over other recent techniques under distinct
evaluation metrics. Thus, the IEA-TEDOL technique can be
utilized as an effectual tool to accomplish energy efficiency
and data classification in an IoT environment. In the future,
lightweight cryptography and authentication mechanisms
can be included to assure security in the smart healthcare
environment.
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The impact of demyelinization on muscle fiber changes and the type of changes in multiple sclerosis (MS) is very hard to estimate.
One of the major problems of MS patients is muscle fatigue and decrease of muscle force in the range of 16-57%. The objective of
this research work is to estimate various aspects of muscle changes at tibial muscle (mTA) level using a noninvasive method
named as tensiomyography (TMG). TMG provides information about muscle functions in MS. This study includes 40 MS patients
among which 18 are males (45%) and 22 are females (55%). They are divided in two subgroups: subgroup A and subgroup
B. Subgroup A includes 20 MS patients without clinical decelable gait disorders and subgroup B includes 20 MS patients with
clinical decelable gait disorders. Also, we have a control group that includes 20 healthy people with the same average age. Average
age is 38.15 + 11.19 y for MS patients and 39.34 + 10.57 for healthy people. Evaluation measures include ADL score and EDSS scale.
The ADL score is 0 for patients from subgroup A and 1 for patients from subgroup B. The EDSS score is 1 for subgroup A and 2.5
for subgroup B. This study confirms the importance of TMG based evaluation of muscle changes in MS patients. This smart
healthcare system is also used for prediction of the muscle changes and muscle imbalance. Contraction time (Tc) recordings are
used to detect the muscle fatigue which is a specific symptom of MS. The value of Tc for subgroup A is 45.8 ms and subgroup B is
61.37 ms for right side. Analysis of these two parameters such as Dm and Tc could define the muscle behaviour and help provide
early information about the possibility of developing gait disorders. This smart TMG system analyses the muscle tone in the best
possible way to predict the onset of any diseases which is an integral part of the smart healthcare system.

1. Introduction

Multiple sclerosis (MS) is an autoimmune disease which
affects myelin that surrounds nerve cell axons. The result of
the demyelinization process is specific for MS which leads to
the development of the local inflammation and subsequently
the installation of scars nerve cell axons. This results in the
decrease of nervous conductibility. This is the main reason
for the sensor-motor difficulties in MS patients. However,
the demyelinization process is very complex and nonlinear.
It is very difficult to estimate the intensity of muscle fiber
changes and the type of changes. Several researchers have

analyzed the decrease of muscle force with the isokinetic
system which leads to muscle atrophy [1, 2]. Specifically,
lower limb muscles are much affected than the upper limb
muscles [3].

One of the major problems for MS patients is muscle
fatigue and decrease of muscle force that could be between
16 and 57% [4]. The main reason seems to be the demye-
linization process at the upper central neuron [5]. Ac-
cordingly, muscle activation in MS is reduced because of the
deficiency in motor units [4]. Other observations are the
decrease in the production of peripheric nervous mediators,
reduction in the dimensions of muscle fibers, change of
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muscle types fibers distribution, and neuromuscular
transmission. Muscle changes-based research in MS also
includes muscle biopsy at vastus lateral muscle. MS patients
with EDSS score of 4.75 show the presence of type II-a
myosin heavy chain (MHC) isoform. This increases in
according with the disability level and is associated with
decrease of muscle fiber type L.

Thus, fibers from the MS group displayed a subtle shift in
fast MHC isoform coexpression and a modest reduction in
cross-bridge number, density, or average force. All these
occurs with no change in maximal cross-bridge cycling rate
or susceptibility to intracellular metabolites. These changes
explain the part of the muscle weakness and fatigue expe-
rienced by individuals with MS [6]. MS patients seem to have
a lower percentage of type I fiber and a higher percentage of
type II fiber. Changes in muscle fibers distribution are
connected with spasticity and muscle weakness which are
seen in most of the MS patients. In spite of the availability of
many literature on spasticity, the necessity for more in-
formation still persists for the assessment of muscle weak-
ness in MS. Muscle weakness is one of the main features that
disturbs the muscle force which impacts the daily activities
of human beings.

2. Related Works

In this context, there are a lot of studies that discuss about
correlation between muscle weakness in MS and the MMT
scale (manual muscle testing) based estimated muscle force
values. McDonald and Compston, in their book McAlpine’s
Multiple Sclerosis [7], show that from a group of 301 pa-
tients, 52% suffer from muscle weakness. Hoang et al.
demonstrates the presence of muscle weakness among 72%
patients from a total of 142 patients with MS [8].

At the same time, muscle weakness in MS is associated
with decrease of fitness, functional status [9, 10], and general
fatigue [9]. This leads to decrease in the level of daily ac-
tivities and also the quality of life. Thus, it is evident that the
muscle fiber dimension reduction is the major element in the
development of muscle weakness.

Literature survey describes numerous pathogenic
mechanisms which are the reasons for the evolution of
unpredictable nature of lesion evolution in MS patients. The
unpredictability is mainly due to the presence of older le-
sions and new lesions at the same time. This indicates the
dynamic evolution of these diseases and the nonlinear
changes in the progression of this disease. Silent lesions are a
specific feature and pathognomonic for MS [11]. In the
context of evolution of MS, clinical evaluation is the first
process and it is followed by analysis of cerebrospinal fluid.
Thus, it is necessary and possible to have the evolution
pattern of immune response. Evoked potential and MRI also
assist in the complete diagnosis [12].

Evoked potential includes visual auditive and somato-
sensorial potentials for assessing the magnitude and re-
sponse time after stimulation. These potentials provide a
clear picture about nervous central system status func-
tionality. The advancement in smart healthcare systems aid
in the identification, development, and implementation of a
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new model for data acquisition for early diagnosis, moni-
toring, and treatment planning. The aim of this paper is to
present various aspects of muscle changes at tibial muscle
(mTA) level using a noninvasive method named tensio-
myography (TMG) which gives us numerous information
about muscle function in MS. The rationale of this study is to
present some aspects regarding the possible muscle changes
produced in MS with a technology like TMG. This will assist
in detecting the onset of any gait disorders developed during
the MS. Analysis of the muscle response after electrical
stimulation with TMG provides information about the
muscle fibers’ response in terms of muscle fatigue. Early
detection of gait abnormalities is extremely important for
proper treatment planning.

The rest of the paper is organized as follows: Section 3
deals with the materials and methods, Section 4 dem-
onstrates the statistical analysis carried out on the real-
time data, Section 5 illustrates the experimental results
and discussion, and Section 6 provides the conclusions
with the key findings of this real-time research work.

3. Materials and Methods

The study includes 40 MS patients among which are 18
males (45%) and 22 females (55%). The control group
includes 20 healthy people with the same average age for
the comparative analysis of TMG parameters. However,
the analysis is always complex due to the polymorphism of
lesions in MS and the clinical and functional evolution.
The criteria for selection of MS patients are certainty of
MS diagnosis in accordance with clinical and paraclinic
criteria and clear evidence for not associated with any
other pathologies. Diagnosis criteria [13-15] that are
accounted for in this work are as follows: certainty of MS,
minimal two episodes of clinical manifestation of MS,
clinical symptoms for two separately different lesions or
clinical symptoms for one clinical lesion, and another
subclinical lesion that is demonstrated by neurophysio-
logic evaluation or MRI. The exclusion criteria of this
research work are lack of all clinical information about the
patient and the patients that do not agree to participate in
the study.

The small number of the patients is mainly because of the
huge diversity in the evolution of the MS in different mo-
ments, difficulty in generating the evolution of symptom-
atology, and difficulty in ambulation. The patient’s selection
is based on gender, age, and evolution stage because of the
requirement for the variety of abnormalities. However, MS is
more frequent in female patients. Additionally, the following
aspects are considered:

(i) All patients are from urban zone

(ii) Average age is 38.15+11.19y for MS patients and
39.34+10.57 for healthy people

(iii) Subgroup A consists of 20 MS patients without
clinical decelable gait disorders

(iv) Subgroup B consists of 20 MS patients with clinical
decelable gait disorders
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Analysis of gait disorders from the clinical point of view
is made using ADL scale [16]. The interpretation is given as
follows: 0 = normal (8 points); 1 =mild disability (6 points);
2 =moderate disability (4 points); 3 =severe disability (less
than 4 points). Patients from subgroup A have ADL score 0,
and patients from subgroup B have ADL score 1. For
functional evaluation, we use EDSS scale which has a score
from 0 to 10. The score is 1 for subgroup A and 2.5 for
subgroup B. For subgroup A, Tc value is 60.3 ms for left side
and 45.8 ms for right side. For subgroup B, Tc value is 61 ms
for left side and 61.375ms for right side. For subgroup A,
Dm value is 3.2 mm for left side and 3.9 mm for right side.
For subgroup B, Dm value is 3.83 mm for left side and
3.69 mm for right side. We observe a significant difference
for both subgroups in terms of Tc and Dm.

Tensiomyography is a new method for the assessment of
the muscle functional status which allows to evaluate the
contractile proprieties of muscle fibers after electrical
stimulation. The assessment includes tibial anterior muscle
(mTA) and analysis of two TMG parameters: muscle dis-
placement (Dm) and time of contraction (Tc) during elec-
trical stimulation. These parameters are correlated with
muscle fatigue and muscle composition of type I and type II
muscle fibers. The statistical analysis is focused on data
distribution, descriptive analysis, and analysis of significant
variance (p <0.05) between MS subgroups and control
group. Results show normal distribution of the data and
significant differences between TMG parameters that in-
cludes decrease of Dm and increase of Tc for subgroups A
and B in comparison to the control group.

The method consists of application of a progressive
electrical stimulation (single stimulation but progressive
increase of intensity), using surface electrodes, from 10 mA
until the muscle response becomes maximal. An illustration
on muscle contraction is given in Figure 1. The stimulation
consists of successive impulses and the frequency of stim-
ulation is 5-25 Hz, 40-50 V. Time of stimulation is 10 s. The
muscle response is collected by a sensor of TMG (G40, RLS
Inc.), which is placed on the maximal muscle belly point. The
exact point is detected by maximal isometric contraction in
rest position before stimulation. The surface electrodes are
placed towards the sensor. The stimulus is applied on the
proximal electrode. The electrical stimulation generates
isometric muscle contraction. The sensor has a bow of size
0.17N/mm and is placed perpendicular to the muscle
surface.

The electrical stimulation produces a transversal dis-
placement of muscle fibers which is taken over by the sensor.
The displacement is proportional to the muscle force during
isometric contraction. By this way, displacement and other
TMG parameters can help assess the muscle fatigue. Mea-
sure of muscle response, database, and analysis of the re-
cording data are made using a dedicated TMG software.

The TMG parameters are as follows:

(i) Delay time (Td): the time elapsed from the moment
of stimulation to the level of reaching 10% muscle
contraction (ms);
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FIGURE 1: Graphic of muscle displacement (and other TMG pa-
rameters) during electrical stimulation.

(ii) Contraction time (Tc): the time between the mo-
ment when the muscle contraction is 10% and
muscle contraction is 90% from maximal level (ms).

Contraction time depends on muscle composition
(percent of type I fiber and type II fiber). The Tc
increases if the percent of type II fibers increase and
type I fibers decrease and this is in correlation with
the onset of muscle fatigue.

(i) Sustain time (Ts): the time between the moment
when the contraction is 50% and the moment when
the relaxation reaches 50% (ms);

(ii) Relax time (Tr): the time elapsed from the moment
when the relaxation is 50% and the moment when
the relaxation is 90% (ms);

(iii) Amplitude of muscle displacement Dm (mm) is
correlated with Tc and depends on muscle tissue
elasticity. Dm increases during muscle explosive
force and decreases if the muscle tone increases.

In this work, the analysis is performed only with two
parameters Dm and Tc. These two parameters allow esti-
mating the muscle composition and behaviour of muscle
fatigue. The muscle fatigue is correlated with Tc and Dm. The
assessment of tibial muscle mTA (Figure 2) is given much
emphasis because this muscle is involved in foot dorsal
flexion during the first moment of the gait.

4. Statistical Analysis

The aim of the statistical analysis is to identify the significant
differences of Dm and Tc between the control group and
subgroups of MS patients. The statistical analysis is also used
for evaluating the significant differences from left and right
side, for each subgroup A and B. This is to assess the
functional asymmetry and muscle imbalance. Data analysis-
based software packages are used for the statistical analysis.

A database is initially created with the experimental data
from the significant aspects for this research which are
extracted. The recording values of the parameters are ana-
lyzed to visualize the variables, and the statistical analysis is
performed to observe the significant differences between
data series for each group. Descriptive data (means SD) are



FiGure 2: Position of the electrodes and sensor on the mTA.

reported for the entire patient cohort. Normal distribution is
tested using the JB (Jarque-Bera) test and visual analysis of
Gauss function for Dm and Tec.

The Jarque-Bera test is the easiest way to test the as-
sumption that the values in a dataset are normally dis-
tributed. This test uses the following hypotheses: Hy: the data
are normally distributed; H;: the data are not normally
distributed.

We apply the t-test for equal and unequal variances
depending on the results of the Levene test, for Dm and Tc.

Levene’s test is an inferential statistic used to assess the
equality of variances for a variable calculated for two groups.
Levene’s test is used before a comparison of means. The ¢ test
is a statistical test that is used to compare the means of two
groups. It is used in hypothesis testing to determine two
groups that are different from one another from the TMG
parameters. Statistical significance is set at a level of p < 0.05.

5. Experimental Results and Discussion

The normalization of the measurements for all three groups
(control, subgroup A, and subgroup B) is checked using the
Jarque-Bera test (JB test). Table 1 shows the analysis of
Gauss function for Dm and Tec.

Statistical significance is set at a level of p <0.05. It is
evident from the table that all data follow normal distri-
bution. Gauss graphics are presented in Figures 3-5 and the
normal distribution is followed in them too.

Table 2 shows the average values and SD of Tc and Dm
for mTA. This falls under the category of descriptive sta-
tistical analysis.

We observe in Table 2 that Dm are mostly with small
values which are close for both subgroups A and B (sub-
group A 3.9 mm and subgroup B 3.69 mm) for the right side.
The values are lesser than those for the control group where a
value of 5mm is observed for Dm of the right side. The
differences between MS subgroups and control group are
also significant for the left side. The Dm values are almost
similar for subgroups A and B (subgroup A 3.2mm and
subgroup B 3.83 mm). The Dm value of the control group is
4.5 mm. Tc parameters are observed with higher values for
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TABLE 1: Jarque-Bera test and p value* for Dm and Tc.

m TA right side m TA left side

JB test
Tc (ms) Dm (mm) Tc (ms) Dm (mm)

JB test control group  1.548 1.465 1.270 1.270
P value control group  0.461 0.481 0.530 0.530
JB test group A 3.012 2.970 1.117 0.988
P value group A 0.222 0.227 0.572 0.610
JB test group B 0.055 0.041 6.016 1.208
P value group B 0.973 0.979 0.054 0.547

*Statistical significance was set at a level of p<0.05.

subgroups A and B, but with a significant difference between
the subgroups as shown in Table 2. The value of Tc for
subgroup A is 45.8 ms and subgroup B is 61.37 ms for right
side. The values are lesser than the values for the control
group whose value is 42.78 ms.

However, higher values are observed for the left side for
both subgroups A and B. The values are also similar with
subgroup A recording a value of 60.3 ms and subgroup B
recording a value of 61 ms. The values are higher than the
values for the control group whose value is 41.85ms. An
analysis on the variation of Dm and Tc for subgroups A and
B is carried out to check if there are any significant dif-
ferences between subgroups and control group. The t-test
based on series dispersion, equal, or unequal variances is
used as the statistical method for this analysis. Tables 3 and 4
show the results of the Levene test which provides infor-
mation about the type of dispersion.

Based on the above results, the p value is estimated to
quantify the significance of the variance. These details are
supplied in Tables 5-7.

A significant difference between two subgroups A and B
for both parameters is observed, which is constant for both
parameters. Also, significant differences between subgroups
and control group for both parameters are also observed
from Tables 5 and 6. An analysis is also performed for the
estimation of functional symmetry (right/left) for each
subgroup and the results are presented in Table 7. A sig-
nificant difference is observed for Tc parameters and only for
subgroup A (p = 0.025).

Analysis of the results in this research reveals that the
average Dm values are smaller for subgroups A and B in
comparison to the average values for the control group.
This means that the patients from subgroups A and B have
an increase of muscle tone. Tc is higher for MS patients,
and it is correlated with muscle fibers type. This provides
information about the decrease in the percent of muscle
type I fibers and increase in the risk of muscle fatigue.
Increase in the percent of muscle type II fibers is corre-
lated with small values of Dm which indirectly indicates
the increase in muscle tone. Motor performances of lower
limb depend on the muscle proprieties. TMG assists in
assessing the muscle changes from the morphofunctional
point of view in MS patients. Muscle tone and muscle
force are components that depend on the muscle com-
position and muscle atrophy. Muscle atrophy is often
visible in MS patients, which is evidence for the onset of
muscle imbalance.
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FiGure 3: Control group Gauss function: (a) Dm; (b) Tc.
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FIGURE 4: Subgroup A Gauss function: (a) Dm; (b) Tc.
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FIGURE 5: Subgroup B Gauss function: (a) Dm; (b) Tc.

The small values of Dm in MS and the values of Dm for
subgroup A explain the nondecelable clinical gait disorders
of subgroup A. This aspect is related with the ankle kinetic
during the gait and it is an important element for initiation
of the gait. In subgroup B, the average value for Dm is very
less than the values of the control group. This is the main
reason for the gait disorders to be clinically complex between
subgroups A and B. Tc parameter values are higher and this
suggests an increase of muscle fibers type II. This could be
considered like an adaptive process during the pathology of

MS. This aspect was also observed by Kent-Braun et al. [17]
in their study. At the same time, muscle biopsy of mTA
revealed the decrease in the percent of type I fibers and
increase in type II fibers in MS patients. This new muscle
configuration is called as “fiber effect” and is based on fibril
[Ix (transition fibers). It also depends on the morpho-
functional muscle changes and requirements.

Most of the research works have focused only on muscle
changes during spasticity in stroke. In our research, more
emphasis is given for the assessment using TMG for MS
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TABLE 2: Average values and standard deviation (SD) for Dm and Tc, for m TA.

Group Dm (mm) Tc (ms)
Right Left Right Left
Control grou Average 5 4.5 42.78 41.85
grotp SD 21 22 10.69 11.70
MS without gait disorders (subgroup A) Avselr)a 8¢ zz ;§ ;25'587 6;3
MS with gait disorders (subgroup B) Av;:lr)a 8¢ ’;’Zg igi 611438725 fé

TaBLE 3: Result of the Levene test for Tc.

TA muscle Subgroups A-B Control group — subgroup A Control group — subgroup B
Right t-UV t-UV t-EV
Left t-UV t-Uv t-EV

t-UV, t-test unequal variances; t-EV, t-test equal variances.

TABLE 4: Result of the Levene test for Dm.

TA muscle Subgroups A-B Control group — subgroup A Control group — subgroup B
Right t-EV t-UV t-EV
Left t-EV t-EV t-EV

t-UV, t-test unequal variances; t-EV, t-test equal variances.

TaBLE 5: P value® (test t-Student) for Tc, compare subgroups A and B, compare subgroups and control group.

TA muscle Subgroups A-B Control group —subgroup A Control group — subgroup B
Right 0.008 0.034 0.00038
Left 0.044 0.01 0.0001

*Statistical significance was set at a level of p<0.05.

TABLE 6: P value* (test t-Student) for Dm, compare subgroups A and B, compare subgroups and control group.

TA muscle Subgroups A-B Control group — subgroup A Control group —subgroup B
Right 0.046 0.044 0.013
Left 0.047 0.017 0.0182

*Statistical significance was set at a level of p <0.05.

TABLE 7: P values* (test t-Student) for Dm and Tc, functional
symmetry right/left.

TA muscle Right/left —subgroup A  Right/left — subgroup B
Tc 0.025 0.485
Dm 0.158 0.210

*Statistical significance was set at a level of p <0.05.

patients. This is the main contribution of the work. The
proposed model is in contrast to the study of Krizaj et al. [18]
which analyses the TMG parameters (Tr, Ts, Dm) in stroke
for monitoring the effect of botulin toxin BTX-A admin-
istration. This study confirms the importance of TMG in the
assessment process of muscle changes in MS, monitoring the
evolution and the prediction of the muscle changes and
muscle imbalance. Based on the study of Simunic et al. [19],
this work can be extended in future to propose the reha-
bilitation process in athletes in terms of muscle fatigue.

6. Conclusions

A smart healthcare system is heavily dependent on the smart
diagnostics methodologies. In this research work, the smart
sensor based TMG system is used to detect the muscle
strength, which can be used to predict the gait disorders and
other MS abnormalities. The smart assessment is based on Tc
and Dm. Contraction time Tc is high for mTA, and it is
correlated with increase of type II fibers and muscle fatigue
which are specific symptoms of MS. TMG is a noninvasive
way for assessment of the muscle proprieties without in-
volving the tendon property or joint movement during the
electrical stimulation. Analysis of these two parameters such
as Dm and Tc can define the muscle behaviour and help to
have early information about the possibility of developing
the gait disorders. Hence, the therapeutic intervention can
be started early to limit the progression of muscle damage
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The aim of the study is to study the prenatal monitoring of perinatal pregnant women based on a smart electronic fetal monitoring
system. Through the comparative analysis of 230 pregnant women in maternal and child health care hospital who received fetal
heart monitoring during the perinatal period and those who did not receive fetal heart monitoring during the perinatal period,
cases of fetal distress, neonatal asphyxia, and cesarean section were observed in both groups. Results show that the incidences of
fetal complications and cesarean sections in the experimental group were 16.36% and 36.82%, which was significantly higher than
4.50% and 17.50% in the control group(p < 0.05); the neonatal mild and severe asphyxia rates in the experimental group were
3.18% and 1.36%, which were significantly lower than 9.50% and 6.50% in the control group (p < 0.05). The experimental results
show that the correct application of fetal heart rate monitoring in the perinatal period can aid in early detection and dealing with
fetal distress and reduce the occurrence of various complications such as neonatal asphyxia. It is worthy to be popularized and

applied in clinics.

1. Introduction

Fetal distress caused by intrauterine hypoxia is an important
factor leading to fetal death. According to statistics, at least 30%
of newborns born every year have cerebral palsy and 10% of
patients with severe mental retardation are caused by fetal
intrauterine hypoxia. The fetal heart is an organ that supplies
oxygen and transports nutrients. It is controlled by the central
nervous system of the brain and regulated by body fluids such
as blood flow hormones (Figure 1). If there are problems, it can
lead to fetal distress, growth retardation, even premature de-
livery, and dystocia [1]. However, these clinical features can be
reflected from the changes of the fetal heart rate and uterine
contractility (CTG) curve. CTG is a kind of monitor that
describes the fetal heart rate and uterine contractile pressure of
pregnant women and is also called a heart delivery force re-
corder. Different fetal heart contractions (CTG) have a com-
plete set of different interpretation methods. The traditional
interpretation method is to analyze the fetal heart contraction
curve with the naked eye and experience. In recent years, the

electronic fetal heart rate monitoring system has developed
rapidly. With the introduction of computer-aided analysis of
characteristics of the fetal heart rate cardiotocograph (CTG)
curve and clinical parameters, fetal heart rate changes due to
anemia or hypoxia can be detected early. Therefore, a smart
electronic fetal monitoring system is of great significance for
eugenics, early detection of fetal abnormalities, and prevention
of fetal damage [2, 3]. At present, it is the most commonly used,
sensitive, and effective monitoring method of fetal intrauterine
conditions. Especially for the third trimester of pregnancy,
effective fetal electronic monitoring can timely find the exis-
tence of fetal distress, and then through active and effective
intervention, the incidence and mortality of various compli-
cations such as neonatal asphyxia can be significantly reduced.

2. Related Works

Gomez, O., pointed out through research that the fetus
should be monitored after 32 weeks of pregnancy. On the
one hand, it can ensure high security. On the other hand, it
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FIGURE 1: Fetal detection system.

can minimize and avoid a series of adverse results caused by
iatrogenic over prediction. [4]. Han, J., and others suggested
that antenatal fetal monitoring should be initiated at
32-34 weeks of gestation. If pregnant women had high-risk
factors such as diabetes, the start-up time should be ad-
vanced to 26-28 weeks. We chose the time to start fetal heart
rate monitoring for pregnant women without complications
at 36 weeks of pregnancy [5]. Khan, S. M., and others
conducted a prenatal fetal heart monitoring on 780 pregnant
women and screened 756 cases of the reactive type and 41
cases of the nonreactive type. The rate of reactive cesarean
section was 25.1% (196/756), and the rate of nonreactive
cesarean section was 61.0% (25/41) [6]. Amjad O. performed
NST once a week for 1400 pregnant women after 36 weeks of
pregnancy. The value of NST in predicting fetal condition
was studied. The Apgar score of less than 7 was used as the
judgment standard of neonatal asphyxia. The results showed
that 18 cases (1.3%) of 1320 reactive types and 36 cases (45%)
of 80 nonreactive types had neonatal asphyxia[7]. Huang, Q.,
and others proposed that fetal distress is when the fetal heart
rate is more than 160 or less than 100 times per minute.
Irregular fetal rate and fetal agitation are also manifestations
of fetal hypoxia [8]. Johnston, J. C., and others believe that
the application of Internet technology and short-range
wireless transmission technology to the electronic fetal
monitoring system has become a hot spot of research for
current experts and scholars. The traditional fetal moni-
toring mode has also changed greatly, and the traditional
mode of “arriving at the hospital after the disease” has begun
to move toward the modern medical mode of “early pre-
vention and early active diagnosis and treatment” [9]. Oweis,
R. and others believe that the traditional fetal monitoring
equipment can only be monitored in the hospital. The
monitoring host is huge and bulky. Pregnant women have a
baby and heavy body. For each prenatal examination, the
patient needs to travel back and forth between home and the
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hospital, which brings great trouble to pregnant women [10].
When Pitts, D. S. and others found the development and
application of wireless communication technology and In-
ternet technology. Various portable wireless monitoring
devices appear, such as portable fetal heart rate monitor,
central monitoring station, and intelligent electronic fetal
monitoring system [11].

3. Experimental Analysis
3.1. Data and Methods

3.1.1. General Information. 230 pregnant women in ma-
ternal and child health care hospital were selected to form
the experimental group. They were 21 ~ 39 years old, with an
average of 26.6 + 5.1 years old. The gestational weeks were 36
~ 42 weeks, with an average of 39.8 weeks. Among them, 170
cases were primipara and 60 cases were postmenopausal
women; 190 cases were normal pregnancy and 30 cases were
high-risk pregnancy. 200 parturients in the hospital with
detailed records in the past were selected as the control
group; they were 21-41 years old, with a mean of (25.5 £ 5.6)
years old; the gestation week lasts 35 to 42 weeks, with an
average of 39.5 weeks; among them, 154 cases were pri-
mipara and 46 cases were postmenopausal women; 172 cases
were normal pregnancy and 28 cases were high-risk preg-
nancy. There were no significant differences in age, gesta-
tional period, and total pregnancy rate between the two
groups (p > 0.05). The details are shown in Table 1 below.

3.1.2. Method. When the pregnant woman is in the non-
starvation state, the body position is taken as the semi-re-
cumbent position or the left recumbent position. The ul-
trasonic Doppler probe is fixed at the position with the
clearest fetal heart sound, and the uterine contraction probe
is fixed at the two transverse fingers under the uterus to
receive the signal. The fetus is monitored routinely for
20 minutes. In case of abnormality, it shall be extended to 30
~ 60 min and rechecked in time to eliminate the impact of
fetal sleep, pregnant women’s spirit, and other factors on the
monitoring results. If the uterine orifice of pregnant women
expands more than 2cm, continuous monitoring shall be
carried out [12], with a minimum time of 0.5h and a
maximum time of 7.5 h, and no sedatives shall be used. Non-
stimulation test, oxytocin test, and uterine contraction test
were carried out according to relevant standards.

(1) NST Examination. All pregnant women had routine NST
examination once a week from the 36th week of pregnancy
until delivery. The pregnant woman takes the semi-re-
cumbent position and the ultrasonic probe is placed on the
abdomen (fetal heart sound area) after coating the coupling
agent, and fixed with an abdominal band. The paper feeding
speed is set at 3 cm/min. While tracing the fetal heart rate,
when the pregnant woman feels that fetal movement occurs,
the fetal movement tracing button is pressed by hand to
make a mark on the paper [12]. Continuous recording shall
not be less than 20 min. If the fetal heart rate is 120-160
beats/min, the baseline rate rises to 15 beats/min or more,
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TaBLE 1: Experimental object situation table.

Age Gestational week (weeks) Primipara Normal pregnancy High-risk pregnancy
Experience group 26.6+5.1 39.8 170 190 30
Control group 25.5%5.6 39.8 154 46 172

and the fetal movement is 2-4 or more, and each time lasts
for more than 15s, it is a reactive type; if the abovementioned
indicators are not met, the monitoring time shall be ex-
tended for 30-40 min, and the examiner shall gently push
the abdomen of the pregnant woman to stimulate the fetus.
If the abovementioned indicators can be met, it is still
considered that NST has a response [13]. For those who fail
to meet the above indicators, the nonreactive type can be
judged only after monitoring for at least 40 min, the baseline
variability is below 6bpm, there is no fetal movement, or
there is fetal movement without fetal heart rate acceleration
and the duration of acceleration amplitude is below the
reactive type standard.

3.1.3. Observation Index. Cases of fetal complications,
neonatal asphyxia, and cesarean delivery have been reported.
Diagnostic criteria of fetal distress: when the fetal heart rate
is <120 beats/min or >160 beats/min, it indicates that the
fetus has hypoxia; in terms of fetal movement, at first, fetal
movement was frequent, and then fetal movement decreased
or disappeared; amniotic fluid: those with grade II ~ III fecal
contamination; and in terms of umbilical cord, the S/D ratio
of umbilical cord blood flow >2.6. Diagnostic criteria of
neonatal asphyxia: mild asphyxia with an Apgar score of 4 ~
7 at 1 minute of birth; an Apgar score of 0 ~ 3 at 1 min of
birth is severe asphyxia [12].

3.2. Result Analysis. According to statistics, the fetal com-
plications and cesarean section rates in the experimental
group were 16.38% (36/220) and 36.81% (82/220), which is
significantly higher than 5.40% (9/200) and 17.60% (35/200)
(P <0.05) in the control group. The mild and severe asphyxia
of newborns in the experimental group were observed 3.28%
(7/220) and 1.43% (3/220), respectively, significantly lower
than 9.60% (19/200)) and 6.50% (13/200) of the control
group (p<0.05). See Table 2.

Relationship between NST examination results and
neonatal asphyxia: there were 190 cases of the NST reactive
type, including 10 cases of mild neonatal asphyxia, accounting
for 1.18%. There were 49 cases of the NST unresponsive type,
including 18 cases of neonatal mild asphyxia, accounting for
36.73%, 2 cases of severe asphyxia, accounting for 4.09%, and
20 cases of asphyxia, accounting for 40.82%. There was a very
significant difference between the two groups (p <0.01).
Figure 2 shows the specific experimental results.

4. Discussion

According to the existing research results, neonatal asphyxia
is still a very important cause of neonatal death and dis-
ability. The latest foreign reports show that its incidence is
5% ~ 6%, while in China, it also has an incidence of 4.7% ~

8.9%. According to the survey results of 18 cities in China,
asphyxia and its complications account for 33.5% of the
death causes of newborns. It is generally believed that the
occurrence of neonatal asphyxia and complications is a
continuation of fetal intrauterine distress, which indicates
that in the clinical process, we should study the causes of
fetal intrauterine distress and deal with it timely and ef-
fectively. Fetal intrauterine distress generally refers to a
series of clinical manifestations caused by fetal circulatory
hypoxia in the uterus, which is an important complication
during delivery; in terms of clinical manifestations, it is
mainly the abnormal fetal heart rate and decreased or
disappeared fetal movement. In the actual clinical work [14],
researchers generally take the abnormality of fetal heart rate
and meconium pollution as the main diagnostic criteria, this
requires careful monitoring of changes in the fetal heart rate.
This is caused by fetal hypoxia, the peristalsis of the intestine
shows a certain hyperactivity, while the anal sphincter is
relaxed, and the meconium is discharged into the amniotic
fluid, causing pollution. The fetus inhales the meconium into
the trachea, aggravating the hypoxia. This requires medical
workers to clear the respiratory tract after the delivery of the
fetus and ensure the smoothness of the respiratory tract,
which has become the primary task of rescuing neonatal
asphyxia. In the process of observation, if there is serious
meconium pollution, they can choose to terminate the
pregnancy immediately to prevent asphyxia and other
complications. Various factors of blood gas exchange be-
tween the mother and fetus can cause fetal distress. Various
factors of decreasing blood oxygen saturation can lead to
neonatal asphyxia, which can occur at any stage of preg-
nancy, but most of them occur after the beginning of labor. If
there is severe hypoxia in this process, it may cause fetal
death in uterus [14].

Changes in fetal heartbeat are regulated by the fetal
central nervous system, and fetal heartbeat acceleration and
fetal movement are considered to be the circulatory system’s
response to fetal movement. It is believed that stimulating
fetal movement causes the fetal heartbeat to accelerate
through the central nervous system, such as the cerebral
circulation. Therefore, fetal heart monitoring is the moni-
toring of the cardiac regulation function of the fetal central
nervous system. In order to correctly respond to the health
status of the fetal central nervous system, it can be used to
judge whether the fetus has intrauterine hypoxia and its
severity, and take effective measures according to specific
conditions, such as intrauterine resuscitation or termination
of pregnancy, which can prevent fetal acidosis and secondary
damage to fetal heart, brain, liver, kidney and other tissues
and cells; improve the prognosis of the fetus; improve the
occurrence of various complications and sequelae of the
newborn; and improve the quality of life of the newborn. In
the process of monitoring, the midwife should closely
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TaBLE 2: Comparison of fetal complications and cesarean section between the two groups (N%).

Group Number of cases  Fetal distress ~ Mild neonatal asphyxia ~ Severe neonatal asphyxia ~ Cesarean section

Experience group 230 36 (16.38) 7 (3.28) 3 (1.43) 82 (36.81)

Control group 200 9 (5.40) 20 (9.60) 13 (6.50) 34 (17.60)

p Value <0.05 <0.05 <0.05 <0.05
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FIGURe 2: Relationship between NST examination results and
neonatal asphyxia.

observe the changes of fetal heart rate and uterine con-
traction pressure, make various relevant necessary records,
and adjust the probe position in time according to the
situation, so that the fetal heart signal transmission is the
clearest and most convenient, and the results obtained are
the most authentic and credible. It also requires obstetricians
to have a clear and full understanding of various changes of
fetal heart rate, make sufficient preparations before fetal
delivery, correctly deal with each stage of labor, and actively
prevent the occurrence of premature birth and low birth
weight infants, which play a positive role in reducing the
occurrence of neonatal asphyxia.

4.1. Algorithm for Deriving the Fetal Heart Rate Curve

4.1.1. Analysis of the Fetal Heart Rate Baseline Extraction
Algorithm. Baseline FHR is defined as the average fetal heart
rate over 10 minutes in the absence of fetal movement or
uterine contractions as the fetal heart rate base (e.g., FHR
base). The fetal heart rate graph recorded on the monitor is a
fluctuating band-like curve. According to the baseline fetal
heart rate, the fetal heart rate curve can be divided into three
types: tachycardia, normal, and bradycardia. The classifi-
cation framework is shown in Table 3.

The fetal heart rate is susceptible to stimuli such as fetal
movement, contractions, and palpation, and will tempo-
rarily accelerate and decelerate (for 10-20s) before
returning to the baseline. Because it is easy to update the fetal
base and body time, it is necessary to accurately calculate the
heart rate throughout the fetal period [15].

TaBLE 3: Baseline classification of the fetal heart rate.

Classification Variation range (times/minute)
Normal 120-160

. Light 161-180
Tachycardia Severe Above 180

_ Light 100-119
Bradycardia Severe Below 99

Based on the clinical characteristics of the fetal heart rate,
a method for estimating baseline fetal heart rate was de-
veloped in this paper. The main idea of the algorithm is as
follows: (1) First read the fetal heart rate data, delete the fetal
heart rate data (data other than 90-200 times/min), analyze
the remaining data with histogram, and record the fetal heart
rate and histogram with FHR, as the base value, accounts for
the largest proportion of the remaining data. (2) Taking the
baseline as the reference point, the fetal heart curve is
smoothed and filtered. (3) The fetal heart rate curve varies
greatly, and it is not recommended to use the smoothening
algorithm alone. Therefore, the steep part of the change must
be corrected and filtered after the threshold is set. (4) After
four thresholds of correction and repeated processing, a
relatively uniform baseline fetal heart rate can be obtained.

When obtaining the position of reference point through
histogram analysis, first the fetal instantaneous heart rate
from BPM to time domain unit (fetal cardiac cycle) is
converted to facilitate the calculation and screening of the
fetal heart rate data. For example, the selected fetal heart rate
range is 90bpm-200bpm and the time domain is 300ms-
600 ms. The fetal heart rate reference point can be reflected
by finding a relatively concentrated fetal heart cycle in a
sampling point through the histogram. As shown in Fig-
ure 3, the position and size of the reference point (inverted
triangle identification) can be obtained by intuitive
observation.

The smoothening filtering adopts forward and backward
smoothening at the same time. The obtained reference point
is used as the reference point B, for the smooth filtering of
the fetal heart rate, and the filtering processing is carried out
on the basis of B,. The forward and backward filtering
formulas are as follows:

Initial position: B, = 0.975B, + 0.025B;

Forward filtering: B; = 0.965B,;,, + 0.035B;

Backward filtering: B; = 0.965B;_; + 0.035B;

If the fetal heart rate fluctuates greatly, smoothening is
not recommended, and the part with large fluctuation needs
to be corrected. The process of correcting the algorithm is to
preset an upper and lower threshold. When the fetal heart
rate data are greater than the upper threshold of the baseline,
the current fetal heart rate value is replaced. According to the
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FIGURE 3: Analysis of the fetal heart rate baseline by a histogram
method.

set threshold, the position and size of the point to be replaced
can be found. Similarly, when the fetal heart rate data are less
than the lower threshold of the flow baseline [16], it is
replaced in the same way. The closed value parameter set-
tings of three iterations are shown in Table 4.

As shown in Figure 4, the baseline of fetal heart rate
during the whole monitoring process is obtained. The thin
line with large fluctuation is the instantaneous rate curve of
the fetal heart rate, and the thick line more stability and
smoothness is the baseline of the fetal heart rate.

4.1.2. Analysis of FHR Acceleration and FHR Deceleration
Algorithms. Fetal heart rate acceleration is defined as a
temporary increase in fetal heart rate at baseline, the fetus is
not less than twice within 20 minutes after the beginning of
the experiment, and the instantaneous rate is greater than
the baseline of fetal heart rate by more than 15bpm for more
than 15s. In the process of fetal development, acceleration
begins to appear about 18 weeks of pregnancy, and the
improvement of acceleration ~mechanism is after
28-29 weeks. Therefore, acceleration is an important
physiological phenomenon in the third trimester of preg-
nancy and an index to judge the health and safety of the fetus
in the womb. There are two main types of acceleration:
periodic acceleration and aperiodic acceleration. Non-
periodic acceleration occurs with fetal movement, internal
diagnosis, or abdominal palpation. Periodic contractions
accompany uterine contractions, with an increase in the fetal
heart rate occurring in tandem with the contractions. Based
on the fetal heart rate definition, an algorithm was developed
to accelerate the fetal heart rate. The basic process is as
follows: (1) obtain the baseline of fetal heart rate and detect
the instantaneous FHR value of each sampling point. (2)
Find the data greater than 10bpm of FHR baseline value,
search the maximum value in the next minute, and record
the peak value and occurrence time. (3) Then, search for
points 3 BPM larger than the baseline value in 55s forward
and backward respectively. (4) In the third step, search the

TABLE 4: Parameter setting of baseline correction threshold of the
fetal heart rate.

. . Upper
Number of iterations threshold (bpm) Lower threshold (bpm)
1 25 20
20 15
3 10 10
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FIGURE 4: Baseline detection and analysis of fetal heart rate.

FHR minimum value point of the corresponding time range,
and record the occurrence time as the starting point and
ending point [17].

The definition of fetal heart rate deceleration is the
temporary deceleration of fetal heart rate accompanied by
uterine contraction. It can be divided into periodic decel-
eration and aperiodic deceleration according to the occur-
rence time, shape, and continuous length. At present, most
of them still use Edward Hon’s method to classify, record the
fetal heart rate and uterine contraction curve for
40-60 minutes, and then see whether the deceleration pat-
tern of each fetal heart rate is basically the same and whether
the deceleration waveform has a certain relationship with the
uterine contraction waveform. Periodic deceleration is
judged according to the time-position relationship between
the fetal heart rate curve and uterine contraction. It is di-
vided into early deceleration, late deceleration, and variable
deceleration. Their clinical manifestations are as follows: (1)
Early deceleration generally occurs in the later stage of the
first stage of labor. Uterine contraction is caused by fetal
head compression and is not changed by the pregnant
women’s body position or oxygen inhalation. (2) Mutation
decelerates, suggesting umbilical cord compression. (3) The
classification range of late deceleration, placental dysfunc-
tion, and fetal hypoxia is shown in Table 5.

The idea and process of deceleration detection algorithm
is similar to that of acceleration algorithm: (1) obtain the
baseline of fetal heart rate and detect the instantaneous FHR
value of each sampling point. (2) Find the data less than
20bpm of FHR baseline value, and search the minimum
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TaBLE 5: Types of fetal heart rate deceleration.

Decrease of fetal heart rate Lag time Deceleration duration
Get up early and slow down [15, 50] bpm <15s 60-70s
Late deceleration [15, 30] bpm [30, 60] s 60-70s
Mutation deceleration >15bpm Uncertain 15-20s
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FI1GURE 5: Analysis of fetal heart rate deceleration and deceleration
detection.

value, marked trough value and occurrence time in the next
minute. (3) Then, search for points 3 BPM smaller than the
baseline value in 55s forward and backward, respectively. (4)
Find the point that meets the conditions (FHR in the cor-
responding range is the fetal heart rate deceleration event)
and mark the decline amplitude and occurrence time. The
actual detection effect is shown in Figure 5. The acceleration
event points detected above the baseline are marked with
“x“, and the deceleration event points detected below the
baseline are marked with “+%, so that the number and time of
fetal heart rate acceleration and deceleration can be
obtained.

5. Conclusion

In this study, the incidence of fetal distress and cesarean
section rate in the experimental group were significantly
higher than those in the control group (p <0.05). The rates
of mild and severe neonatal asphyxia in the experimental
group were significantly lower than those in the control
group (p <0.05). To sum up, the correct application of fetal
heart rate monitoring in the perinatal period can early detect
and deal with fetal distress and reduce the occurrence of
various complications such as neonatal asphyxia, which is
worthy of popularization and application in clinics. The
smart electronic fetal monitoring system realizes intelligent
monitoring through Internet of things technology, Internet
platform, and portable sensor equipment, and uploads the
monitoring data to the cloud. Doctors and pregnant women
interact through the intelligent maternal and infant care
platform based on the Internet of things and cloud platform.
Doctors can timely understand the health status of pregnant

women and fetuses and remotely guide them to carry out
corresponding operations. Pregnant women can enjoy the
same supervision as in the hospital anytime and anywhere.
The whole maternal and infant monitoring system consti-
tutes a network system with monitoring, analysis, and
feedback functions, which realizes smart monitoring any-
time and anywhere, and reduces the pain of patients running
between families and hospitals. In terms of fetal heart rate
detection, obstetric experts and large sample clinical data
need to be tested repeatedly to optimize and improve the
recognition algorithm of relevant parameters of fetal heart
rate contraction curve, so as to improve its accuracy and
reliability.
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Survival analysis is a collection of statistical techniques which examine the time it takes for an event to occur, and it is one of the
most important fields in biomedical sciences and other variety of scientific disciplines. Furthermore, the computational rapid
advancements in recent decades have advocated the application of Bayesian techniques in this field, giving a powerful and flexible
alternative to the classical inference. The aim of this study is to consider the Bayesian inference for the generalized log-logistic
proportional hazard model with applications to right-censored healthcare data sets. We assume an independent gamma prior for
the baseline hazard parameters and a normal prior is placed on the regression coefficients. We then obtain the exact form of the
joint posterior distribution of the regression coefficients and distributional parameters. The Bayesian estimates of the parameters
of the proposed model are obtained using the Markov chain Monte Carlo (McMC) simulation technique. All computations are
performed in Bayesian analysis using Gibbs sampling (BUGS) syntax that can be run with Just Another Gibbs Sampling (JAGS)
from the R software. A detailed simulation study was used to assess the performance of the proposed parametric proportional
hazard model. Two real-survival data problems in the healthcare are analyzed for illustration of the proposed model and for model
comparison. Furthermore, the convergence diagnostic tests are presented and analyzed. Finally, our research found that the
proposed parametric proportional hazard model performs well and could be beneficial in analyzing various types of survival data.

1. Introduction

The healthcare domain has evolved significantly in recent
years as a result of computational developments. The use of
Bayesian statistics in healthcare has encouraged the appli-
cation of computational developments, providing a powerful
and versatile alternative to traditional methodologies used in
healthcare [1]. The progress of Bayesian approaches in
healthcare aims to make an individual’s life more affordable

and comfortable, similar to how smartphones have made life
easier [2]. Despite the fact that the idea of applying com-
putational Bayesian statistics to survival analysis dates back
to the 19th century, McMC techniques are now garnering
more attention in the literature because of abundant and
cheap computation [3]. The application of deep learning to
the context of parametric survival models was discussed by
[4]. Through an efficient training process, the quality of the
developed system improves. Data portioning is done three
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times to confirm the trained algorithms (training-testing-
validation) [5]. The main goal of this article is to present the
Bayesian parametric proportional hazard model using BUGs
syntax.

The statistical analysis of survival data is an essential
topic in many fields, including medicine, biology, envi-
ronmental science, healthcare, economics, engineering,
social science, and epidemiology, among others. Probability
distributions serve as the foundation for survival models.
The family of distributions can be parametric, semi-
parametric, or nonparametric. The parametric survival
models lead to more efficient and smaller standard errors of
the estimates than semiparametric and nonparametric
models [6] if the distributional assumption is correct, to be
more specific.

In analyzing survival data, parametric survival models
are crucial. The benefits of using parametric survival models
include the following: (1) handling all types of censored data
(left, right, interval, double, and middle); (2) application of
survival analysis in a healthcare care problem and (3)
producing better estimation when you have a theoretical
expectation of the baseline hazard; also, (4) they can apply
random effects—frailty models—and can also be used to
estimate expected lives, not only hazard ratios like the
accelerated failure time models [7].

The proportional hazards (PH) model, in which cova-
riates affect the hazard rate function, and the accelerated
failure time (AFT) model, in which covariates affect both the
hazard rate and time scale, are the two most common
methods for developing parametric regression models for
survival data [8]. However, other class of models have also
been proposed such as the accelerated hazard (AH) model
[9] and the proportional odds (PO) model [10].

One of the first steps in using a parametric approach to
model survival data is to choose a suitable baseline distri-
bution that can capture significant features of the obser-
vations of interest. Certain probability distributions are
widely used in the modelling of survival data. Only a few are
closed under the proportional hazard model, and none are
flexible enough to describe a wide range of survival data [11].
Most of the distributions closed under the PH assumption
fails to model a nonmonotone (i.e., bathtub and unimodal)
survival data sets.

The log-logistic (LL) distribution has a wide range of
applications in survival data analysis and can accommodate
unimodal survival data sets. The distribution is closed under
both proportionality odds (PO) and multiplication of failure
time (AFT) frameworks [7]. It is not a PH model, but an AFT
model. However, when the log-logistic distribution is gen-
eralized, it has the appealing feature of being a member of all
classes of parametric hazard-based regression models of the
survival analysis because its failure rate function is quite
versatile and its cumulative hazard function (chf) has a
tractable form.

Extensive efforts have been made over the last decades to
extend classical distributions to use as a baseline distribution
for parametric hazard-based regression models. Many
modifications to the LL distribution have been introduced to
make it more adaptable to a wide range of hazard shapes
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[12-16]. The generalized log-logistic distribution (GLL) is
one such model, which modifies the log-logistic distribution
by inducing an additional shape parameter [17]. The model
is tractable and closed under the PH assumption and can
account for both nonmonotone and monotone hazard rates
[11]. On the other hand, recent computational advances
have advocated for the use of Bayesian techniques in the field
of survival and reliability analysis.

The motivating ideas behind our work on Bayesian
parametric proportional hazard (PH) model with GLL
baseline hazard are as follows: (i) despite the fact that there
are some classical distributions closed under the PH
framework, none of which is flexible enough to incorporate
both monotone and nonmonotone hazard rate; (ii) Bayesian
inference does not rely on asymptotic approximation for
statistical inference; (iii) the availability of software makes
Bayesian implementation for hazard-based complicated
models relatively more straightforward and simple than
classical inference [18]; (iv) parametric PH model may lead
to more precise estimates than the semiparametric PH
model; and, last but not the least, (v) the use of generalized
distributions that can capture both monotone and non-
monotone hazard rate functions is what makes our work
unique and more appealing to biostatisticians, epidemiol-
ogists, healthcare workers, and other applied researchers in
multiple disciplines.

To the best of author’s knowledge, no Bayesian infer-
ences study has been conducted on the PH model with
generalized log-logistic baseline hazard. As a result, in this
paper, we consider the Bayesian inference for the generalized
log-logistic proportional hazard model, beginning with the
PH model formulation and assumptions, revising the gen-
eralized log-logistic distribution, and verifying that the GLL
distribution is closed under the PH framework. In addition,
we discuss the inferential procedures and how to obtain the
classical and Bayesian estimators for the model’s parameters.
We also compare the proposed model to other existing
distributions closed under the PH framework, and one
interesting feature of this model is that it can incorporate
different hazard rate shapes. Hence, the formulation of the
parametric PH model and its lifetime function, the infer-
ential procedures using both classical and Bayesian ap-
proaches, and the development of the computational
algorithms to fit the proposed PH model and its competing
models using RJAGS in R software are the novelty of this
study.

The article is structured as follows: the PH model for-
mulation, assumptions, and its probabilistic functions are
discussed in Section 2. Section 3 revises the most common
probability distributions closed under the PH model. Section
4 presents the proposed baseline hazard function which is a
generalized log-logistic (GLL) distribution. The GLL dis-
tribution under the PH model is presented in Section 5.
Section 6 discusses the inferential procedures of the pro-
posed model. In Section 7, we present an McMC simulation
study to assess the performance of the proposed model.
Section 8 presents the application of the proposed model to
two right-censored cancer data sets with monotone and
nonmontone hazard rates. In addition, the convergence
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diagnostics of the McMC techniques were discussed. The
Bayesian model selection criterion is presented in Section 9.
Finally, in the final portion, the article’s concluding notes are
offered, and some future works are mentioned.

2. PH Model Formulation and Assumptions

In many real-life applications, survival times are affected by
explanatory variables. The explanatory variable vector is
related to response variable through a regression model. An
important aspect of survival modelling is the inclusion of
explanatory variables. The hazard-based regression models
can be formulated in a number of ways. One of the most
frequently used method is the proportional hazard (PH)
model formulation.

PH models play an essential role in analyzing time-to-
event data and are broadly used in survival and reliability
analysis as well as in joint modelling of survival and lon-
gitudinal data [7]. It is the most popular parametric model in
medical studies and clinical trials because of the existence of
a semiparametric PH hazard model which is robust against
the distributional assumption of the survival time. The
parametric PH model is given with the similar form to the
Cox PH model. It is the parametric form of the Cox PH
models [6].

2.1. PH Model Formulation. The parametric proportional
hazard (PH) models are formulated using a defined baseline
hazard and a link function y (x ') for the covariates which is
defined as follows:

v(x'B)>0, Vx#0,

v (x'p)is a monotone function that has a one

(1

-to-one correspondence,
y(0) =1,

The most commonly found option for the link function
v (x'p) is the exponential exp (x’[S) (or log-linear) function.
In this work, we define the PH model with the assumption

that v (x'p) = exp (x'p).

2.2. PH Assumptions. The PH model assumption is that the
effect of covariates is to increase or decrease the hazard rate
function by a proportionate amount which does not depend
on t. The assumption of the PH model can be defined as
follows:

h(t;x) = hy (Dy (x'B) = hy (Dexp (x'B) = hy (D",  (2)
where h (t) is called the baseline hazard.
Simplifying, we get,
h(tlx) = hy(exp(Byx, + Poxy + ...+ Byx,).  (3)
The main difference between the Cox PH model and the
parametric PH model is that the baseline hazard function is

assumed to follow a specific distribution when it is fitted to
the data. Using equation (2), we can see that the hazard ratio

(HR) comparing any two specifications of the covariates, for
example, (xandx*) is
h(tlx, hy (t ’
HR(x,x*,hy,f8) = ( Ix* B) _ o (tix)exp (B )
h(tlx", B) ho(tlx)exp(ﬁx* )

_ exp[(x'— x*’)Tp].

The above equation shows us that the baseline hazards
cancel each other from this ratio, so the hazard rate for one
individual is proportional to the hazard rate for any other
individual. On the other hand, the proportionality constant
is independent of time which makes the main assumption of
this model [6]. As a result, the model is known as the
proportional hazard (PH) model in the literature.

Unlike most parametric regression models including
accelerated failure time (AFT) models, PH models does not
include an intercept [19]. More properly, the vector X in the
PH model is not assumed to have x = 1. An intercept would
get confounded with the baseline hazard function h.

(4)

2.3. Lifetime Functions Describing the PH Model. The five
frequent representatives of a lifetime distribution function
that are used to characterize the PH model are addressed in
this section.

2.3.1. Hazard Rate Function of the PH Model. In the PH
analysis, one of the most important lifetime functions is the
concept of the hazard rate function (hrf). The hazard rate
function h(t|x), abbreviated by hrf, also called the instan-
taneous failure rate or as force of mortality of a PH model is
of the form:

h(t;x) = hy (D (x'B) = hy (exp (x'B) = hy (e P (5)

2.3.2. Cumulative Hazard Function of the PH Model.
The hazard or survival functions, rather than the cumulative
distribution or probability density function, are typically
used in the PH analysis of survival data. The hazard rate
function is used to interpret the most common survival
regression models; however, the cumulative hazard function
(chf), also known as the integrated hazard rate function, can
be easily written down. Hence, the chf of a PH model takes
the following form:

t t
H (t]x) = jh(s; X)ds = F Jho(s) ds = P Hy (1)  (6)
0 0

2.3.3. Survival Function of the PH Model. The survivor
function (sf) for a PH model can be derived using the
following relationship between survival function and the
hazard rate function. Hazard function is given by



4
_ J(tx)
h(t|x) = St (7)
Cumulative hazard function:
t t t
_ _ (S —dS(w)
H (t]x) = !h(u)du - l du= l Seotdu
(8)
= —log{S()},
J (#lx) = h(tlx)S(¢lx) = h(t|x)exp{—H (t]x)}.
Using the above expressions, we can easily find
S(tlx) = exp{-H (t|x)},
S(t]x) = exp{=H (t]x)} = eXp{— JO v (hy (1) dt},
= eXP‘[—V/(X) Joho(t) dt}, 9)
t y(x)
:[exp{—J ho(t)dt} ] ,
0
- [So(t)]“’(").

2.3.4. Cumulative Distribution Function of the PH Model.
The cdf of the PH model, also known as the lifetime dis-
tribution function, is given by

F(t)=1-S(t)=1- exp{-H(t)},

10
F(t)=1- [S,(0)]"™. (1)

2.3.5. Probability Density Function of the PH Model. The pdf
or the failure density function of the PH model is defined as

() = foywx)[S, 1] (11)

The five representatives used here were chosen for their
special meaning for lifetime data, their intuitive appeal, their
utility in survival data analysis, and, last but not the least,
their popularity in probability theory and statistics.

The PH model can be formulated without assuming a
probability distribution for survival times, and this leads to
the well-known Cox PH model [20]. On the other hand,
assuming a probability distribution for survival times leads
to the fully parametric PH model. The most common
parametric survival models used are as follows: exponential,
Weibull, Gompertz, log-logistic, log-normal, gamma, and
the generalized gamma distributions. Only the exponential,
Weibull, and Gompertz distributions are used for the PH
model. The log-logistic and the log-normal distributions are
not closed under the PH framework. Weibull distribution is
the only one that is closed under both parametric AFT and
PH models.
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3. Distributions Closed under PH Framework

In this section, we present most common parametric dis-
tributions that are closed under the PH framework and are
used to analyze survival data. These distributions have been
studied and used in various contexts in the literature.

3.1. Exponential PH Model. Exponential distribution is a
continuous probability distribution with only one unknown
parameter k. It is the simplest distribution for lifetime
distribution models. The distribution is not flexible enough
to describe commonly encountered hazard rate shapes for
survival data. The pdf, cdf, sf, hrf, and chf of the exponential
random variable are, respectively, as follows.
Let X ~ exponential (k),

f(t) = k exp{-kt},
F(t) = 1 —exp{-kt},
S(t) = exp{-kt}, (12)
h(t) = k,
H(t) = -logS(t) = —log(exp{-kt} = kt,
where k > 0 is the scale parameter and t > 0. A short value of
k shows low risk and long survival, where a large value shows

high risk and short survival. For the PH model, the expo-
nential baseline hazard is

h(t) = k. (13)

So, according to the formulation of the PH framework,
the hazard rate for an individual with covariate vector x and
link function v (x) is

h(t) = hy(8) y(x) = ky (). (14)

Applying the log-linear function ¥ (x'B) = exp (x'B) , we
can simplify into

hpy () = k. exp(x B) = k. exp(B,x, + By, + ...+ B,x,).  (15)

In this equation, the hrf has the exponential distribution
with scale parameter k. exp (x'f) which indicates that the
PH assumption is satisfied with the exponential distribution.
It is worth mentioning that the exponential distribution is
often found to be inadequate to describe survival data. This
makes the applicability of this distribution fairly limited.

The other lifetime distributions of the exponential PH
model are as follows.

The survival function of the exponential PH model is

Seps (1) = [exp{-kt}] 7 F). (16)
The pdf of the exponential PH model is
Feont (£) = k exp{~ktlexp (x'B) [exp{~kt}] *A)~1 (17)
The cdf of the exponential PH model is
Fppy (£) = 1 — [exp{—kt}] & (¥P), (18)

The chf of the exponential PH model is
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Hypy (t) = kt exp (x'P). (19)

3.2. Gompertz PH Model. Gompertz distribution is named
after Benjamin Gompertz, a British mathematician and
actuary, who developed it in 1825. It is a continuous
probability distribution used for modelling adult life spans
and other application under different disciplines such as
actuarial science, demography, survival, and reliability
analysis. This distribution is flexible and can be skewed both
in right and in left. The pdf, cdf, sf, hrf, and chf of the
exponential random variable are, respectively, as follows.
Let X ~ Gompertz (k, ),

)= ak.e™ exp{— oc(etk - 1}, t € [0, 00),
F(t)=1- exp{— oc(etk - 1},
S(t) = exp{— oc(etk - 1},
ht)= = ake',
H(t) = -logS(t) = - log[exp{— oc(etk - 1}] = oc(etk - 1),
(20)

wherek > 0istherate parameter,a > 0 is the shape parameter,
andt>0. When k >0, the survival time then has an expo-
nential distribution; therefore, Gompertz distribution is a
generalization of exponential distribution. For the PH model,
the Gompertz baseline hazard rate function is given by

h(t) = ake'™, (21)

So, according to the formulation of the PH framework,
the hazard rate for an individual with covariate vector x and
link function v (x) is

h(t) = hy(8) y(x) = ake™ .y (x). (22)

Applying the log-linear function y (x'B) = exp (x'B) , we
can simplify into
hgopy (£) = ak.e™. exp(x'B) = ak.e'. exp(ﬁlx1 +Byxy ... +ﬁpxp).

(23)

In the above equation, it is straightforward that the PH
property is satisfied. However, the Gompertz PH model is
rarely used in the real-life applications.

The other lifetime distributions of the Gompertz PH

model are as follows: the survival function of the Gompertz
PH model is

Seepit (1) = [exp{— ae® — 1}] PP (24)
The pdf of the Gompertz PH model is

Feopn () = ak.e™ exp{— (x(etk - l}exp (x'B) [exp{— a(etk - 1}] e (x')-1,
(25)

The cdf of the Gompertz PH model is

Feopn (t) = 1 - [exp{- (x(e”‘ ~1}] exp (x'B) (26)

The chf of the Gompertz PH model is

Hgopp () = exp (x'B) ae™ - 1). (27)

3.3. Weibull PH Model. Weibull distribution is a general-
ization of the exponential distribution. It is a versatile
distribution that can take on the characteristics of other
types of continuous distributions. It has an additional pa-
rameter compared to the exponential. The additional pa-
rameter describes the shape of the hazard functions, based
on the value of the shape parameter [21]. The pdf, cdf, sf, hrf,
and chf of the Weibull random variable are, respectively, as
follows.
Let X ~ Weibull (k, «),

f(t) = ak(kt)* " exp{~(kt) "},

F(t) = 1 - exp{-(kt)“},

S(t) = exp{-(kt)*}, (28)

h(t) = ak(kt)*"},

H(t) = -logS(t) = —log(exp{—(kt)“} = (kt)*,
where a>0 is the shape parameter and k>0 is the rate
parameter. The hazard rate function increases when a> 1,
decreases for a < 1, and constant for « = 1. When « = 1, the
Weibull distribution reduces to exponential. It is worth
mentioning that the Weibull distribution does not accom-
modate nonmonotone (i.e., unimodal or bathtub) hazard

rates.
For the PH model the Weibull baseline hazard is

h(t) = ak(kt)* L. (29)

So, according to the formulation of the PH framework,
the hazard rate for an individual with covariate vector x and
link function v (x) is

h(t) = hy () w(x) = ak(kt)* 'y (x). (30)

Applying the log-linear function v (x f) = exp (x ), we
can simplify into
hypy () = ak (kt)* " exp (x'B) -

31
= ok (kt)*! exp(ﬁlx1 +Byxy + ..+ ﬁpxp).

In this equation, the model has the Weibull distribution
with rate parameter k. exp (xf) and shape parameter «
which indicates that the PH assumption is satisfied with the
Weibull distribution with constant «.

The other lifetime distributions of the PH Weibull model

are as follows: the survival function of the Weibull PH model
is

Syprt () = [exp{—(kt) “}] *° (P, (32)
The pdf of the Weibull PH model is

Fovpn (B) = ak (k) * " exp{—(kt) “Yexp (x'B) [exp{—(kt) ¥} *» (P)-1.
(33)



The cdf of the Weibull PH model is

Fyprs () = 1= [exp{-(k)*}] D (39)
The chf of the Weibull PH model is
Hypy (£) = exp (x'B) (kt)“. (35)

4. Parametric Baseline Hazard

The parametric baseline hazard function is essential because
it determines which hazard shapes can be captured by the
proportional hazard (PH) model. Most classical distribu-
tions that are closed under the PH framework, such as the
exponential, Weibull, and Gompertz distributions, are in-
capable of accommodating unimodal hazard shapes. As a
result, it is worth looking into some modifications to the
classical distributions that can account for both monotone
and nonmonotone hazard rates.

In this paper, we consider the Bayesian inference for the
parametric PH models with generalized log-logistic (GLL)
baseline. The GLL is a flexible survival distribution proposed
by [11]. This distribution has a characteristic similar to those
of the log-logistic distribution. Also, the advantage of the
GLL distribution is that it approaches to Weibull in the limit.
These properties allowed the GLL to handle both monotone
and nonmonotone hazard functions, and also it makes to be
a baseline distribution that is closed under both AFT and PH
model [22] like the Weibull distribution. The distribution is
adaptable, and the two shape parameters enable a wide range
of hazard shapes. It also includes a variety of important
distributions such as the exponential, Weibull, Burr XII, and
log-logistic distributions. In addition, when compared to
competitors, it is relatively tractable. We refer to, for more
information on the distribution and its properties, [17].

For a positive-valued random variable T, the hrf of the
GLL distribution with three unknown parameters
k>0, a>0,17>0 is given by

a—1 a a-1
h(t; 8) = ak (k) = akt > t20, k, a,>0.
[T+ [1+ ()]
(36)
The chf of the GLL distribution is given by
K* o
H(t; 0) = ?log[1+(11t) ], t=0, k, a, 1>0. (37)

The distribution function of the GLL model is of the

form:
F(t;0)=1-[1+(0)*] ", t20, k, a, n>0.  (38)

The survival function (sf) of the GLL model is given by

St 0) = [1+(n)*] ¥, t>0, k,a, n>0, (39
where k>0, a>0,andy>0 are parameters and
0= (k an).

The quantile function of the GLL model is given by
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(1/1—q- 1" — 1}
{[1/1-q
n

,1 . _
Xp=F (g5 ko, 1) = ,0<g<1.

(40)

The reverse cumulative hazard rate function is expressed
as follows:

afeay, 1/
H;' (u; 0) = u. (41)

Figure 1 illustrates shapes that the failure rate function
can accept such as constant, increasing, decreasing, V-shape,
and unimodal among others.

5. The Proposed PH Model

For the PH model, the generalized log-logistic baseline
hazard is

ak (kt)*!
1+

So, according to (2), the hazard rate for an individual
with covariate vector x and link function v (x) is

ak (kt)*!
[1+ ()]

Applying the log-linear function v (x'f) = exp (x'f), we
can simplify into

h(t) = (42)

h(t) = hy(t) y(x) = ¥ (x). (43)

k kt a—1 ) ktxtzx—l ,
hgripn (t) = E)Cli(;t)“] xp(x'B) = m exp(x'p)
~ oc(k. exp (x '/5)1/“)“1?“_1 _akt !
- [1+ ()] 1+

(44)

In this equation, the hrf can be recognized as a gener-
alized log-logistic distribution as well, but contrary to (36),
the rate parameter is k* = k. exp (x'B)"* and shape pa-
rameters are « and 5 which indicates that the PH assumption
is satisfied with the GLL distribution and the proposed
model is closed under the PH framework.

The other lifetime distribution functions for the GLL PH
model are as follows: the survivor function of the GLL PH
model is

SGLLPH (t) = [[1 + (rlt)a]—kﬂ/na] exp (x/ﬂ). (45)
The pdf of the GLL PH model is
t/j’l , ke exp(x’[})—l
Saven (6) = %exp(x /3)[[1 +(nt) ]k " ] :
[1+ )]
(46)
The cdf of the GLL PH model is
FGLLPH (t) =1- [[1 + (rlt)tx]fk“/ﬂa ] exp (x’ﬂ). (47)
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FIGURE 1: Visual representation for the different hazard rate shapes of the GLL distribution with different values of the parameters.
The chf of the GLL PH model is n N s
L(9,BID) = [T [f (119, B,%)]" [ (119, 8,%)]",
K~ i=1
Hgupn (1) = exp(x ’ﬁ)? log [1 + (nt)"]. (48)
= [T (119 B ).5 (119, B, )] [s (119, B x)]
i=1
6. Model Inference n ,
. . . N = [T [P (619, B.3)1 [s (819t nq, b))
We discuss the classical approach (using maximum likeli- i=1
hood (MLE)) and Bayesian approach (assuming non- n s t
i i i imati i = h(t;19,B,x)]"exp| — | h(u)du
informative priors) estimation techniques for the proposed 1_[ [ (t; P
parametric PH model parameters in this section. ’::1
5
= [T [r(t:19)exp (x'B)] " exp [-[H (119)exp (x'B)]].
i=1
6.1. MLE for Right Censored Survival Data. We examine the (49)
challenge of estimating the proposed model’s distributional An iterative optimization procedure (eg, New-

parameters and regression coefficients for right-censored
survival data in this section. Because of its appealing
qualities, such as consistency, asymptotic efficiency, as-
ymptotic unbiasedness, and asymptotic normality, MLE is
one of the most common strategies for estimating the pa-
rameters of hazard-based regression models. Let there be n
individuals with lifetimes represented by T,T,, ..., T,.
Assuming that the data are subject to right censoring, we
observe t; = min(T;,C;), where C;>0 corresponds to a
potential censoring time for individual i. Allow §; = I(T;, C;)
that equals 1 if T;<C; and 0 otherwise.

Suppose that a right-censored random sample with data
D=(t, 6, %), i=1,2,...,n, is available, where ¢; is the
censoring time or a survival time according to whether J; =
0O or 1, respectively,andx; = x;, x,, ..., x,, isann x 1 column
vector of external covariates for the i individual, 9is the
vector of parameters associated with the baseline distribution,
and B is the vector of regression coefficients. When the
parametric PH model is considered, the censored likelihood
function can be expressed as

ton-Raphson algorithm) can be used to obtain the maxi-
mum likelihood estimation 9of9. Hypothesis testing and
interval estimations of model parameters are possible due to
the MLEs’ approaching normality [7]. The natural logarithm
of the likelihood function, so-called log-likelihood function
can be written as follows:

n

¢(9,BID) = Z 8i108[h0 (ti|‘9) + X;ﬁ] - Z H, (ti|9)eXP (X;ﬁ)>
i=1 i

i=1

(50)

where B is a vector of the regression coefficients and 9’ =
(k,a,n) is the vector of the baseline distributional
parameters.

In our case, if we assume that a = Y| 8,,p; = exp (x;f3)
and g; = (yt,)". Use (36) for h, (.) and note that H (¢; 6) =
fg h(u)du is the baseline cumulative hazard rate function as
given by (37). The full log-likelihood function of the GLL PH
model can be expressed as follows:



2(9|t) = aloga + aalogk + (a — 1) Z d;logt;

i=1

- Z dilog (1 +q;) + alogp; —<S> zpilog(l +q;)-

i=1 i=1

(51)

aE(rlt) a,
3 + alogp; + Z &;logt; —

i=1

oe(t|t) a\ & qi ] (a)(k)“ L
= (2 Vs (Z)(E :
on (n)zl ’[Hqi n)\n ;P’

ob(rlt) aa (a\(k
ok ?‘(E)(Z
ae(‘rlt) L

3 2o () 2

To maximize log-likelihood functions, many software
packages are available including proven optimization
algorithms.

6.2. Bayesian Inference. In this section, Bayesian inference
was used to estimate distributional parameters and regres-
sion coefficients using objective (or noninformative) priors
to obtain proper posterior distributions.

6.2.1. Priors for the Model Parameters. The specification of a
prior distribution is a crucial aspect of any Bayesian in-
ference. In parametric survival regression models, this is
especially true. As a result, the prior scenario is built in this
study using a noninformative independent prior for the
parameters. The marginal prior distribution for every re-
gression coefficient B, m=1,...,5, is prompted as a
normal distribution centred at zero and with a small pre-
cision, N (0, 0.001); on the other hand, a gamma distribu-
tion, gamma(10,10), is chosen as the marginal prior
distribution for the parameters of the GLL PH model due to
the versatility of gamma distribution that include the
noninformative priors (uniform) on the shape parameters.
Many research publications in the literature, such as Danish
and Aslam [23, 24], considered the assumption of the
gamma priors for the baseline hazard parameters of PH
models. Alvares et al. [1] took the assumption of indepen-
dent gamma priors for the baseline hazard parameters of
eight different parametric survival models. Muse et al. [22]
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To obtain the MLE’s of 8’ = (k,a,7) and B, we can
maximize (51) directly with respect to (k, a,7) and B’ or we
can solve the nonlinear equations below or the 1** derivative
of the log-likelihood function. The 1* derivatives of the log-
likelihood function are

251 g, o8 4
(1+a)

HOUEeL)

pilog(1+¢g;)Z;;forj=1,2,...,p.

used the assumption of independent gamma priors for the
baseline hazard parameters of the of the generalized log-
logistic AFT model, and other researchers take these priors
into account.

For the baseline parameters of the GLL-PH model, we
assume independent gamma priors.

bl a1 b
~G(a,b) = —A=a"" e "% a,b,a>0,

(a)
P I'(a,)
p(n) ~G(ay,b,) = b—;zr]”z_le_hzng a,b,,n>0,  (53)
I'(a,)
p(k) ~G(azby) = b pas-1,-bik, : a3, b3, k> 0.
F(a3)

Prior to that, we had the regression coefficients (as-
suming a normal distribution).

p(B') ~ N(ayby) (54)

The density function of the combined prior distribution
of all unknown parameters and the regression coeflicients
are given as

plakn, B') = p@pmpp(B). (55)

6.2.2. The Likelihood Function. Unfortunately, the likeli-
hood function of this generalized model is not implemented
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in BUGS and JAGS syntax. To generate the likelihood
function, we use the “zero’s trick” method that become
popular in survival analysis and relies on Poisson modelling
of expanded or reconstructed data [1]. The zero’s trick
approach works on the assumption that perhaps the con-
tribution of a Poisson (1) observable of zero is exp (—A); if we
set A = —log ( f (t;]9, B, x)) with observable data as a vector of
015, we receive the right contributions of the proposed model
(18].

6.2.3. The Posterior Distribution. The joint posterior density
function is equal to the multiplication of the prior distri-
bution p(a,k,n, ') and the likelihood function the joint

2 ak (kx)* !

L(awk,n, B') = L T+
P
p (k7 B'lx) o H“(ﬁ))

J

The marginal distributions of the model parameters and
the normalising joint posterior density function are difficult
to calculate analytically, requiring high-dimensional inte-
gration and no close form inferences. To obtain estimates, we
use McMC simulation methods, which involve sampling
from the posterior distribution through using the Metro-
polis—-Hastings Algorithm.

7. Simulation Study

In this section, we undertake an extensive simulation in-
vestigation to demonstrate the proposed parametric pro-
portional hazard model’s good Bayesian features. The
parameter values are chosen to construct situations that
mimic cancer population studies using a cancer that is severe
(with a lower five-year survival rate), such as lung cancer
[9, 25]. We demonstrate parameter estimation, the effect of
censoring proportions, and sample sizes on inference in
more detail.

7.1. Generating Survival Data from the PH Model. To sim-
ulate survival data for the GLL PH model, we use the in-
version technique [40, 41] to generate survival data. This
strategy is based on the link between a survival random
variable’s cumulative hazard rate function and a standard
uniform random variable. When the cumulative hazard rate
function has a closed form expression, it may be immediately
applied, inverted, and readily implemented with R [26]. The
censoring rates were estimated using administrative cen-
sorship at (1) Tc=5 years, which resulted in around 20%
censoring in all sets, and (2) Tc =3 years, which resulted in
about 30% censoring in all sets.

For the purposes of this simulation, we assume that
survival times are distributed using the generalized log-

posterior density function of the parameters a, k,#, an d
of GLL PH model given the data can be expressed using
Bayes’ theorem as

p(wkn, B'lx)ocp(a ko, B)L (o ko, B1),

p (ak,7, B'lx) o< p(a)p(mp(K)p(B') Lk, B),
(56)

where the first four terms on the equation represent the prior
specification for the unknown parameters and are assumed
to be independent and L(a,k,#, f) is the likelihood
function expressed as follows:

5 K*
exp (x'B) ] [exp (x ’/3))7 log [1+(Ax)"] |,

(57)

o lna2+n— 1jastn=1 - (blrx+bzr1+b3k)L (0(, k.1, B I).

logistic distribution (e, #, k). Using the reverse chf given in
equation (41), lifetime data can be simulated as follows:

1/«
af_ _ Bxi
< (q/k) [ log(l U)/e ] 1)

T=H, . , (58)

where a, #, and k> 0.

7.2. Simulation Design. The simulation analysis was carried
out by conducting a series of simulations with different
sample sizes (n=100, and 300) sets and censoring pro-
portions (Tc=20 and 30 percentages), all based on the PH
model in equation (1). The GLL PH model’s true parameter
vector is set as follows: (1) set I: distributional parameter
values (a = 1.5, k = 0.75, and # = 1.25) and covariates § =
(0.75,-0.75,0.5), (2) set II: distributional parameter values
(0=15 k=095 and #n=15) and covariates
B = (0.75,-0.75, 0.5).

The values of the covariates were simulated as follows: (1)
combination of uniform distributions with 0.25 probability
on (30, 65), 0.35 probability on (65, 75), and 0.40 probability
on (75, 85) years old was used to simulate the continuous
covariate “age,” and (2) the binary covariates “treatment”
and “gender” were both simulated using a 0.5 binomial
distribution. We recommend that the reader can refer [9] for
further details.

7.3. Posterior Analysis of the Simulated Data. We fitted the
proposed PH model with GLL baseline hazard to assess its
Bayesian properties in the simulation sets. With all cen-
soring rates and different sample sizes, each simulation set
was used to estimate the proposed PH model. JAGS software
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TaBLE 1: Simulation results from a GLL PH framework with distributional parameters (« = 1.5, k = 0.75, and # = 1.25), covariates

B = (0.75,-0.75,0.5),and n = 100.

Posterior properties

True value (@) Posterior mean (@) Bias Naive SE MSE CP R No. of eff
C=20%
a =150 1.506 0.006 0.001 0.032 0.032 1.000 3782
B, =0.75 0.837 0.087 0.002 0.057 0.935 1.001 3740
B, =-0.75 -0.695 0.055 0.001 0.011 0.945 1.000 3720
B3 =0.50 0.480 0.020 0.002 0.049 0.920 1.002 3700
n=125 1.431 0.181 0.002 0.107 0.890 1.000 4039
k=0.75 0.720 0.030 0.001 0.013 0.935 1.001 4039
C=30%
a=1.50 1.463 -0.037 0.001 0.029 0.935 1.000 3802
B, =0.75 0.872 0.122 0.002 0.072 0.880 1.000 3823
B, =-0.75 -0.727 0.023 0.001 0.008 0.945 1.001 3761
B5 =0.50 0.501 0.001 0.002 0.060 0.997 1.000 3700
n=125 1.575 0.325 0.002 0.193 0.851 1.002 3865
k=0.75 0.567 -0.183 0.001 0.045 0.911 1.000 4084
[27] was used to approximate posterior distributions using i posterior SD
three parallel chains with 40,000 iterations each plus another Naive SE = T (61)

3,000 for the burn-in period. To minimize autocorrelation in
the sequences, the chains were thinned further by storing
every 10th draw.

7.4. Measures of Performance. The actual mean, standard
deviation (SD), Naive standard error, bias, percentage of
bias, coverage probability (CP), potential scale reduction
factor (R), and the effective number of separate simulation
draws were used to test the posterior distribution stability for
the suggested PH model.

7.4.1. Evaluating the Performance of the Estimators. We
calculate the bias of the estimators using:

-1 Y
Bias (6) = ) (6-0).

i=1

(59)

An underestimation is indicated by a negative bias,
whereas an overestimation is shown by a positive bias.

7.4.2. Accuracy of the Estimators. The mean square error
(MSE) is a good indicator of overall accuracy and is cal-
culated as follows:

N
MSE (8) = )’ (0- 6 (60)
i=1

This metric determines how accurate the estimates are as
follows. The lower the MSE, the more accurate the esti-
mations of impacts.

The Naive standard error, which is calculated by dividing
the posterior standard deviation by the square root of the
sample size, is another accuracy metric. As a result, the
smaller the standard error, the larger the sample size. The
Naive SE incorporates simulation error rather than posterior
uncertainty.

7.4.3. Coverage. The 95 percent coverage probability (CP) is
the percentage of N simulated data sets in which the true
estimates were included in the 95 percent confidence in-
terval. The more precise the estimations are, the closer the
outcome is to a 95 percent coverage probability. The fol-
lowing is how CP is expressed:

CP = 071.96 x SE(0). (62)

7.4.4. Convergence Diagnostics. Quantitatively, Gelman
et al. [28] recommended that the acceptable limit of mul-
tivariate potential scale reduction factor (MPSRF) and
potential scale reduction factor (PSRF) be near 1 R<1.1,and
the effective number of sample size simulation draws be
greater than or equal to 100 for checking the convergence of
McMC simulations. It is clear from the summary charac-
teristics (Tables 1-4) that the PSRF is less than 1.1, that
number of sample size simulation draws is larger than 100,
and that Naive SE is smaller than the standard deviations
(SD) for all of the distributional parameters and regression
coeflicients, as expected, indicating that the McMC algo-
rithm has converged to the posterior distribution. Trace
plots, autocorrelation plots, and Gelman plot diagnostics are
the most common ways to judge the convergence of a
McMC simulation graphically [28]. The McMC simulation
has been achieved as evidenced by the trace plot, density
plot, autocorrelation plot, and Gelman diagnostic plots for
each distributional parameter and regression coeflicients.
That is, the McMC simulation for the GLL PH model ex-
plores the target posterior distribution appropriately.

7.5. Simulation Results. Tables 1-4 shows the simulation
results for the posterior mean, bias, Naive standard error
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TaBLE 2: Simulation results from a GLL PH framework with distributional parameters (« = 1.5, k = 0.75, and # = 1.25), covariates

B = (0.75,-0.75,0.5), and n = 300.

Posterior properties

True (5) Value Posterior mean (@) Bias Naive SE MSE CP R No. of eff
C=20%
a =150 1.449 —0.001 0.001 0.017 0.991 1.000 4017
B, =0.75 0.712 -0.038 0.001 0.019 0.946 1.000 3700
B, =-0.75 -0.723 0.027 0.000 0.003 0.956 1.000 3761
B3 =0.50 0.483 -0.017 0.001 0.016 0.962 1.000 3782
n=125 1.309 0.059 0.002 0.070 0.923 1.001 4609
k=0.75 0.731 -0.019 0.001 0.012 0.941 1.001 4609
C=30%
o =1.50 1.527 0.027 0.001 0.021 0.945 1.000 4174
B, =0.75 0.726 -0.024 0.001 0.023 0.954 1.000 3660
B, =-0.75 -0.752 0.002 0.000 0.004 0.975 1.001 3802
B5 =0.50 0.445 —0.055 0.001 0.023 0.937 1.001 3802
n=125 1.437 0.187 0.002 0.123 0.911 1.002 4434
k=0.75 0.847 0.097 0.001 0.023 0.907 1.003 4792

TaBLE 3: Simulation results from a GLL PH framework with distributional parameters (a = 1.75, k

B = (0.5,-0.85,0.5),and n = 100.

=0.95, and # = 1.5), covariates

Posterior properties

True (@) Value Posterior mean (@) Bias Naive SE MSE CP R No. of eff
C=20%
a =175 1.718 -0.032 0.002 0.038 0.942 1.000 3865
ﬁl =0.50 0.523 0.023 0.002 0.051 0.955 1.000 3823
ﬁz =-0.85 -0.817 —-0.033 0.001 0.010 0.946 1.000 3720
ﬁ3 =0.50 0.489 -0.011 0.002 0.050 0.981 1.000 3740
n =150 1.441 —0.059 0.002 0.068 0.931 1.000 4084
k=0.95 0.828 -0.122 0.001 0.147 0.925 1.001 4084
C=30%
a =175 1.717 -0.033 0.002 0.044 0.939 1.000 3802
B, =0.50 0.577 0.077 0.002 0.063 0.943 1.000 3823
ﬁz =-0.85 -0.833 -0.017 0.001 0.009 0.971 1.000 3761
[33 =0.50 0.474 —-0.026 0.002 0.058 0.952 1.000 3700
n =150 1.625 0.125 0.002 0.143 0.919 1.002 3865
k=0.95 0.778 -0.172 0.001 0.213 0.908 1.001 4084

TaBLE 4: Simulation results from a GLL PH framework with distributional parameters (a = 1.75, k

B = (0.5,-0.85,0.5),and n = 300.

=0.95, and # = 1.5), covariates

Posterior properties

True (6) value Posterior mean (6) Bias Naive SE MSE CP R No. of eff
C=20%
o =175 1.756 0.006 0.001 0.023 0.978 1.000 3951
B, =0.50 0.503 0.003 0.001 0.040 0.991 1.000 3761
B, =-0.85 -0.827 -0.023 0.000 0.003 0.963 1.000 3761
B5 =0.50 0.505 0.005 0.000 0.045 0.987 1.000 3740
n =150 1.519 0.019 0.002 0.107 0.942 1.000 4458
k=095 0.973 0.023 0.001 0.013 0.941 1.001 4458
C=30%
a =175 1.811 0.061 0.001 0.091 0.935 1.000 4011
ﬂl =0.50 0.612 0.112 0.001 0.129 0.880 1.000 3978
B, =-0.85 -0.815 -0.035 0.000 0.004 0.945 1.000 4011
B3 =0.50 0.521 0.021 0.001 0.063 0.997 1.000 3789
n =150 1.531 0.031 0.002 0.171 0.851 1.001 4458
k=10.95 0.990 0.040 0.002 0.145 0.911 1.002 4565
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FIGURE 2: Gelman diagnostics from a GLL PH framework with distributional parameters (« = 1.5, k = 0.75, and 7 = 1.25), covariates
B = (0.75,-0.75,0.5),and n = 300 and censoring proportion for 20 percentage.
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FiGure 3: Trace plots from a GLL PH framework with distributional parameters (« =1.5, k=0.75, and # = 1.25), covariates
B = (0.75,-0.75,0.5),and n = 300 and censoring proportion for 20 percentage.

(SE), mean square error (MSE), coverage probability (CP),
Gelman-Rubin diagnostic (R), and the number of sample
size simulation draws (no. of Eff) of the proposed PH model,
and Figures 2-5 shows the visual summary for the con-

vergence diagnostics.

Based on these findings, we may deduce that, as the
sample size grows, the biases and MSE of the estimators
decrease; also, the censoring proportion impacts the bias and
MSE of the estimators, with larger censoring rates increasing

the bias and MSE. The Gelman-Rubin diagnostic, on the
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other hand, as well as the number of efficiency sample size
draws show that convergence has been attained. However,
the estimators’ coverage probability was close to 95%.

8. Practical Illustrations

In this section, two real-life survival data sets dealing with
right-censored cancer data sets were considered to dem-
onstrate the flexibility and applicability of the proposed GLL
PH in modelling different survival data sets with different
hazard rate shapes.

8.1. Data Set I: Lung Cancer Survival Data

8.1.1. Data Description. In this section, we reanalyse the data
set reported in [29] which is available in the R package
survival. The Veterans Administration Lung Cancer Study
Group followed up on n =137 patients in this data set. For
this clinical investigation, the censorship rate is around 6.5
percent (9 observations out of 137 were censored). The
response and exploratory factors in this clinical trial are the
time until death (in days), the number of months from
diagnosis to study enrolment (diagt), age (in years), a history
of previous lung cancer therapy (prior), and the trt=
(treatment = conventional chemotherapy).

8.1.2. Hazard Rate Shape. The hazard rate function appears
to be unimodal or decreasing in Figure 6 based on the TTT
plot (careful inspection reveals a slight indication of
unimodality). The data could be evaluated with a model like
the log-logistic distribution, which can accommodate de-
creasing or unimodal hazard rate forms. However, because
the classical LL distribution is not closed under the PH
framework, we employ the GLL distribution, which is closed
and can encompass various hazard rate shapes. The box plot,
histogram, and TTT plots are shown in Figure 6.

8.1.3. Proportionality Assumption. There are two widely used
methods for assessing the PH assumption: (1) graphical di-
agnostics based on (a) time-dependent variables [7] and (b)
standardized Schoenfeld residuals [30] and (2) statistical tests.
The standardized Schoenfeld residuals are used in this section to
evaluate the PH assumption of the Cox model for each covariate
included in the model. Based on Figure 7 and the significance
threshold of 5%, there is no evidence to reject the proportional
hazards assumption. As a result, we anticipate that the GLL PH
model will provide a good fit when compared to the other
existing parametric PH model employed in this study.

8.1.4. Posterior Analysis. In this paper, we assume the
noninformative independent framework with a normal prior
N (0, 0.001) for fBrs (regression coefficients) and an inde-
pendent gamma prior for the distributional parameters
a~G(a;, b)), 1 ~G(ayb,), andk ~ G(as, b;) with hyper-
parameter values (a, = b, = a, = b, = a; = b; = 10).

Journal of Healthcare Engineering

(1) Numerical Summary. We looked at various quantities of
interest and their numerical values using the McMC sample of
posterior properties for the generalized log-logistic propor-
tional hazard model using the lung cancer data in this section.
The posterior summaries for the generalized log-logistic
PH model parameters using Veterans lung cancer data setsare
illustrated in Table 5. The probability that the corresponding
parameter is +ve is given in the last row of Table 5. A posterior
probability of 0.5 indicates that a positive parameter valueis as
likely as a negative one. Once we’ve saved the posterior sample
for each model parameter, we can compute the posterior
probability, for example, for f3;, using mean (f3, >0).

(2) Visual Summary. We looked at density strip plots, trace
plots, Gelman-Rubin diagnostic plots, Ergodic mean plots,
and autocorrelation diagnostic plots in this section to get a
visual description of the posterior properties. These plots
and graphs provide a nearly comprehensive representation
of the parameters’ posterior uncertainty for the application
of the lung cancer data sets.

(3) Density Plots. Density can be compared to the fundamental
shapes associated with typical analytic distributions, and
density plots can reveal behaviour in the tails, skewness,
existence of multimodal behaviour, and data outliers. Figure 8
illustrates the density plots for the GLL PH model parameters.

(4) Time-Series Plots. One of the most common diagnostics of
an McMC simulation is a time series plot (or trace plot) [28].
Figure 9 shows that the McMC sampling process converges
to the joint posterior distribution with no periodicity. As a
result, we can say that the chains have converged.

(5) Brooks-Gelman-Rubin (BGR) Convergence Diagnostic.
Gelman and Rubin [31] propose a convergence diagnostic
technique to check the McMC algorithms simulation and is
based on within chain variance and between chain variance.
Gelman et al. [28] suggested that the limit of acceptance of
potential scale reduction factor (PSRF) to be less than 1.1.
Figure 10 shows us that both PSRF and MPSREF are less than 1.1.

(6) Running Mean Plots. The running mean (also referred to
Ergodic mean) is a well-known convergence diagnostic for
McMC algorithms. The Ergodic mean is defined as the mean
of all simulated sample values of up to a specific iteration
[32]. Ergodic mean is used to observe the convergence
pattern of the McMC chains. Figure 11 shows us the Ergodic
mean plots for the regression coefficients and the baseline
hazard parameters. It is quite clear from the running mean
time-series plots that the chains converge after N iterations
to their mean values. However, these plots display only at the
mean of the baseline hazard parameters and the regression
coefficients and therefore are inadequate.

(7) Autocorrelation Plots. Although the autocorrelation plot
is not strictly a convergence diagnostic tool, it does aid in
indirectly assessing the convergence of the McMC simula-
tion process [33]. Figure 12 shows the autocorrelation plots
for all parameters and regression coefficients.
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Figure 6: TTT plot, box plot, and the histogram for the survival times of the lung cancer data sets.
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TaBLE 5: Numerical summaries of posterior characteristics based on McMC sample of the GLL PH model for the lung cancer data set.

Pars
Characteristics Alpha B, (diagt) B, (age) B5 (prior) B, (trt) Eta Kappa
Mean 1.317 0.002 —0.024 -0.015 —0.151 0.042 0.103
SD 0.173 0.010 0.008 0.021 0.178 0.015 0.049
Naive SE 0.001 0.0001 0.0001 0.0002 0.001 0.0001 0.0004
Time series SE 0.003 0.0001 0.0001 0.0001 0.002 0.0002 0.001
Minimum 0.813 —0.046 —0.054 -0.109 —0.890 0.007 0.019
2,51 percentile 1.023 —0.020 —0.040 -0.057 —0.500 0.019 0.040
Q1 1.194 —0.005 —0.029 -0.029 -0.271 0.031 0.068
Medium (Q2) 1.302 0.003 —0.024 -0.015 —0.150 0.040 0.092
Q3 1.422 0.010 -0.018 —-0.0003 -0.029 0.051 0.125
97.5th percentile 1.697 0.021 —0.007 0.027 0.193 0.078 0.231
Maximum 2.324 0.032 0.006 0.082 0.511 0.143 0.658
Mode 1.250 0.003 —0.028 -0.015 -0.150 0.035 0.075
Variance 0.030 0.0001 0.0001 0.001 0.032 0.0002 0.002
Skewness 0.550 —-0.361 0.082 —-0.058 -0.027 0.957 1.656
Kurtosis 0.558 0.152 0.011 0.001 —0.009 1.510 4.992

95% credible interval (1.023, 1.697) -0.020, 0.021) (-0.040, —0.007) (-0.057, 0.027) (-0.500, 0.193) (0.019, 0.078) (0.040, 0.231)
P (.>0|data) 1.000 0.598 0.003 0.244 0.199 1.000 1.000
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FIGURE 9: The time series plots for the baseline hazard parameters and the regression coefficients for the Veterans lung cancer data.

8.1.5. Convergence of McMC Algorithm for the Veterans Lung
Cancer Data Set. Computational developments in the
previous few decades have recently emerged as a very useful
instrument for employing McMC approaches [34] and

fitting Bayesian survival regression models in time-to-event
analysis. The complicated posterior distribution is sampled
using the McMC algorithm. As a result, when an algorithm
converges to the target posterior distribution, the Markov
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FIGURE 12: Autocorrelation plots for all the baseline distributional parameters and regression coefficients for the Veterans lung cancer data

set.

chain is stationary, and adding more samples will not change
the shape and position of the posterior distribution’s density
in a meaningful way and hence will not change the esti-
mations or other relevant outcomes.

(1) Common Statistical Tests for Convergence Diagnostics.
The convergence of the McMC algorithm was checked
quantitatively using conventional statistical tests for con-
vergence diagnostics: (1) Brooks-Gelman-Rubin diagnos-
tics [28]; (2) Raftery and Lewi diagnostics [35]; (3)
Heidelberger and Welch’s diagnostic tests [36]; and (4)
Geweke diagnostics [37]. For more information about these
tests, we can refer to [34]. Table 6 indicates the Geweke,
Raftery-Lewis, and Heidelberger-Welch diagnostics for the
GLL PH model parameters.

(2) Graphical Techniques for Convergence Diagnostics.
Convergence diagnostics of an McMC algorithm can be
examined graphically, including: (1) time series plot; (2)

autocorrelation plot; (3) running mean plot; and (4) Gel-
man-Rubin plots. See Figures 9-12.

8.2. Data Set II: Larynx Cancer Data Sets

8.2.1. Data Description. Lifetimes for 90 patients with lar-
ynx-cancer, according to the stage of cancer tumour (stages
I-1V) are given in Table 7. The study time or time to death
are recorded in months (where, * shows us the censored
time). Alvares et al. [1]; Wang et al. [8]; and Christensen et al.
[19] discussed the data from different aspects under different
hazard-based regression models, and the data were first
reported by [38]. The survival times (in months) of patients
is illustrated in Table 7.

The other covariates of the data are as follows: (1) age (in
years) at diagnosis and (2) the year of diagnosis. One goal of
this study was to see if the age, year of diagnosis, and stage of
cancer were associated with the death of patients with la-
ryngeal cancer.
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TABLE 6: Summaries for Raftery-Lewis’s diagnostic, Geweke diagnostic, and Heidelberger-Welch diagnostics test of the GLL PH model

parameters for the Veterans lung cancer data set.

Geweke diagnostic

Diagnostics for the Raftery Lewis

Diagnostics for the Heidelberger-Welch

Parameter . . .
Pr> |z Dependency factor (I) Stationarity test p value Halfwidth test
Alpha -0.383 2.430 Passed 0.648 Passed
B (diagt) 0.820 1.030 Passed 0.337 Passed
B, (age) -0.272 3.640 Passed 0.613 Passed
B5 (prior) -0.680 0.988 Passed 0.885 Passed
B (trt) 0.608 2.120 Passed 0.112 Passed
Eta -1.436 1.160 Passed 0.178 Passed
Kappa -0.142 3.500 Passed 0.506 Passed
TABLE 7: Survival times (in months) of patients with larynx cancer according to stages of tumour (1-4).
Stages Survival time (* = indicating censoring)

Stage I (33 patients)
Stage II (17 patients)
Stage III (patients)
Stage IV (13 patients)

0.6, 1.3, 2.4, 2.5%, 3.2, 3.3%, 3.5, 3.5, 4.0, 4.0, 4.3, 4.5%, 4.5%, 5.3, 5.5%, 5.9%, 5.9%, 6.0, 6.1%, 6.2%,
6.4, 6.5, 6.5*, 6.7%, 7.0*, 7.4, 7.4%, 8.1%, 8.1%, 9.6*, 10.7*
0.2, 1.8, 2.0, 2.2%, 2.6%, 3.3%, 3.6, 4.0%, 4.3, 4.3%, 5.0%, 6.2, 7.0, 7.5%, 7.6", 9.3*
0.3,0.3,05,0.7, 08, 1.0, 1.3, 1.6, 1.8, 1.9, 1.9, 3.2, 3.5, 3.7%, 4.5%, 4.8", 4.8", 5.0, 5.0%, 5.1%, 6.3, 6.4, 6.5

*, 7.8, 8.0, 9.3%, 10.1*

0.1, 0.3, 0.4, 0.8, 0.8, 1.0, 1.5, 2.0, 2.3, 2.9%, 3.6, 3.8, 4.3"

Larynx cancer data

Larynx cancer data
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FIGure 13: TTT plot, box plot, and the histogram for the survival times of the larynx cancer data set.

8.2.2. Hazard Rate Shape. Based on the TTT plot, the hazard
rate function is an increasing hazard in Figure 13. The data
could be analyzed using a model such as the Weibull dis-
tribution, which can handle monotone hazard rate forms.
We adopt the GLL distribution, which would be represented
by the PH framework and can accommodate a variety of
hazard rate shapes to see its applicability of the monotone
(increasing) hazard rates. Figure 13 shows the box plot,
histogram, and TTT plots.

8.2.3. Proportionality Assumption. We investigated if the
proportional hazards model could be used with this data set.
The underlying assumption of the Cox model for each
explanatory variable utilized in the model is depicted in

Figure 14. With a significance level of 5%, there is no ev-
idence to reject the PH assumption. As a result, we an-
ticipate that the parametric PH model will provide a strong
fit.

8.2.4. Posterior Analysis. In this paper, we assume the
noninformative independent framework with N (0, 0.001)
for s (regression coeflicients) and an independent gamma
prior for the distributional parameters o ~G(a,,b,),
n~G(ayb,), andk ~ G(a;,b;) with  hyperparameter
values (a, = b, =a, =b, =a, =b; = 10).

(1) Numerical Summary. We looked at various quantities of
importance as well as their numerical values using the
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FiGure 14: The standardized Schoenfeld residuals from the data |—larynx cancer data set, taking the test p value for each covariate into

account.

TaBLE 8: Numerical summaries of posterior characteristics based on McMC sample for GLL PH model for the larynx cancer data.

Characteristics Pars )
Alpha B (stage 2) B, (stage 3)  f3; (stage 4) B, (age) Bs (diagyr) Eta Kappa
Mean 1.539 -0.182 0.376 1.222 0.187 -0.111 0.869 0.336
SD 0.215 0.454 0.337 0.411 0.144 0.149 0.247 0.077
Naive SE 0.002 0.004 0.003 0.004 0.001 0.001 0.002 0.001
Time series SE 0.002 0.004 0.003 0.004 0.001 0.001 0.003 0.001
Minimum 0.847 -1.975 -0.902 -0.531 -0.373 -0.730 0.197 0.112
2.5 percentile 1.157 -1.108 -0.289 0.396 -0.091 —0.403 0.457 0.207
Q1 1.389 —-0.480 0.152 0.952 0.089 -0.212 0.691 0.282
Medium (Q2) 1.524 -0.170 0.377 1.230 0.187 -0.112 0.846 0.328
Q3 1.668 0.128 0.605 1.498 0.284 -0.012 1.020 0.382
97.5th percentile 2.005 0.667 1.030 2.010 0.476 0.181 1.412 0.507
Maximum 2.701 1.648 1.770 2.848 0.817 0.509 2.131 0.763
Mode 1.550 —-0.100 0.300 1.300 0.150 -0.150 0.850 0.325
Variance 0.046 0.207 0.113 0.169 0.021 0.022 0.061 0.006
Skewness 0.447 -0.173 —-0.041 —-0.086 0.081 0.023 0.595 0.604
Kurtosis 0.511 0.068 0.010 0.070 0.102 0.027 0.514 0.656
s 1157, (-1.108, (-0.289, (0.396, (-0.091, (-0.730, (0.197, (0.112,
95% credibleinterval ) 4,5y 0.667) 1.030) 2.010) 0.476) 0.181) 1412)  0.507)
P (>0|data) 1.000 0.352 0.870 0.998 0.906 0.227 1.000 1.000

McMC sample of posterior properties for the generalized
log-logistic proportional hazard model considering the
larynx data in this section.

The posterior summaries for the GLL-PH model pa-
rameters using larynx cancer data are illustrated in Table 8.
The probability that the corresponding parameter is +ve is
given in the last row of Table 8.

(2) Visual Summary. We looked at density strip plots
(Figure 15), trace plots (Figure 16), Ergodic mean plots
(Figure 17), autocorrelation plots (Figure 18), and

Gelman-Rubin diagnostic plots (Figure 19), in this section,
to get a visual description of the posterior properties. These
plots and graphs provide a nearly comprehensive repre-
sentation of the parameters’ posterior uncertainty.

8.2.5. Convergence Diagnostic Tests for the Larynx Cancer
Data Using GLL PH Model

(1) Statistical Tests. Table 9 indicates the Geweke, Rafter-
y-Lewis, and Heidelberger-Welch diagnostics for the GLL
PH model parameters.
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density

density

(2) Graphical Techniques. Convergence diagnostics of an
McMC algorithm for the larynx cancer data set are presented
in Figures 16-19.
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FIGURE 15: Density plots for the baseline hazard parameters and the regression coefficients for the larynx cancer data.

8.2.6. Hazard Ratio (HR). One of the most intriguing as-
pects of PH models is that the regression coeflicients can be
interpreted using the hazard ratio, which is preferred by
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FIGURE 16: The time series plots for baseline hazard parameters and the regression coeflicients for the larynx cancer.

_ h(tlxy o, B) _

also known as the relative risk, between two individuals with
covariate vectors x; and x,. The HR is defined as

(63)
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FIGURE 17: The Ergodic mean plots for the baseline hazard parameters and regression coefficients for the larynx cancer data.

which does not depend on time ¢. the hazard function in the
numerator is equal to this constant HR times the hazard in
the denominator, i.e.,

h(tx, , ho, B) = HR x h (txy, hg» B)- (64)

Hence, the name “proportional hazards model” [19]. For
example, the posterior distributions of the HR between two
individuals of the same age and diagyr (year of diagnosis) but
in different stages can be easily summarized.

Table 10 depicts the posterior characteristics of the
hazard ratio between two men of the same age and diagnosis
year (diagyr) but in different stages.

9. Bayesian Model Selection

In this study, we will use the deviance information criterion
(DIC) to distinguish between the proposed models. DIC is a
popular Bayesian model selection criterion. This criterion is
available in most McMC packages [39]. The DIC is com-
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FIGURE 18: Autocorrelation plots for all the baseline hazard parameters and regression coefficients for the larynx cancer data.
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TaBLE 9: Summaries for the Raftery-Lewis’s, Geweke, and Heidelberger-Welch diagnostics test for the GLL PH model parameters for the
right-censored larynx cancer data.

Parameter Geweke diagnostic Diagnostics for Raftery-Lewis Diagnostics for the Heidelberger-Welch
Pr> |z Dependency factor (I) p value Stationarity test Half width test

Alpha 1.083 1.020 0.787 Passed Passed
B, (stage 2) -1.105 0.982 0.730 Passed Passed
B, (stage 3) -0.333 1.060 0.497 Passed Passed
B5 (stage 4) 0.969 1.030 0.053 Passed Passed
B, (age) —-0.800 1.020 0.680 Passed Passed
B5 (diagyr) -1.177 0.998 0.425 Passed Passed
Eta 0.133 1.090 0.252 Passed Passed
Kappa 0.317 1.150 0.189 Passed Passed

TaBLE 10: Posterior characteristics of the hazard ratio between two men of the same age and diagnosis year but in different tumour stages.

Posterior characteristics Stages 3 and 4 Stages 2 and 4 Stages 2 and 3
Mean 0.467 0.280 0.638
Standard deviation (SD) 0.203 0.149 0.298
Naive SE 0.001 0.001 0.002
Time series SE 0.002 0.001 0.002
2.5% 0.197 0.088 0.218
Lower quartile (Q1) 0.326 0.175 0.423
Medium (Q2) 0.425 0.250 0.585
Upper quartile (Q3) 0.564 0.349 0.791
97.5% 0.967 0.648 1.366

TaBLE 11: Posterior properties summaries and the information criterion values for the considered GLL PH model and its competing models
for the lung cancer data.

Summaries Posterior characteristics
Parametric competitive models Parameter(s) Posterior mean Posterior SD Pr (>|0|data) HPD interval (95%)
GLL-PH model (DIC=1505.165)
Alpha 1.317 0.173 1.000 (1.001, 1.661)
B, (diagt) 0.002 0.010 0.598 (~0.019, 0.021)
B, (age) —0.024 0.008 0.003 (=0.039, —0.007)
B5 (prior) -0.015 0.021 0.244 (-0.057, 0.026)
B, (trt) -0.151 0.178 0.199 (=0.505, 0.186)
Eta 0.042 0.015 1.000 (0.016, 0.073)
Kappa 0.103 0.049 1.000 (0.029, 0.200)
Weibull-PH model (DIC =1521.310)
Alpha 0.744 0.048 1.000 (0.654, 0.842)
B, (diagt) 0.005 0.010 0.648 (-0.018, 0.024)
B, (age) -0.025 0.007 0.001 (-0.039, —-0.010)
B (prior) -1.027 0.021 0.102 (~0.068, 0.015)
B, (trt) -0.252 0.180 0.080 (=0.593, 0.108)
Kappa 0.206 0.090 1.000 (0.060, 0.388)
Gompertz-PH model (DIC = 1556.407)
Alpha 1.134 0.311 1.000 (0.567, 1.746)
B, (diagt) 0.021 0.009 0.984 (0.003, 0.039)
B, (age) 0.027 0.006 1.000 (0.014, 0.039)
B5 (prior) -0.056 0.023 0.006 (=0.099, -0.012)
B, (trt) -0.136 0.182 0.228 (~0.494, —0.211)

Kappa 0.001 0.0002 1.000 (0.001, 0.002)
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TABLE 12: Posterior properties summaries and the information criterion values for the considered GLL PH model and its competing models

for the larynx cancer data.

Summaries Posterior characteristics
Parametric competitive models Parameter(s) Posterior mean Posterior SD Pr (>|0|data) HPD interval (95%)
GLL-PH model (DIC =294.412)
Alpha 1.539 0.215 1.000 (1.157, 2.005)
B, (stage 2) -0.182 0.454 0.352 (-1.108, 0.667)
B, (stage 3) 0.376 0.337 0.870 (~0.289, 1.030)
B5 (stage 4) 1.222 0.411 0.998 (0.396, 2.010)
B, (age) 0.187 0.144 0.906 (~0.091, 0.476)
Bs (diagyr) -0.111 0.149 0.227 -0.730, 0.181)
Eta 0.869 0.247 1.000 (0.197, 1.412)
Kappa 0.336 0.077 1.000 (0.112, 0.507)
Weibull-PH model (DIC =296.776)
Alpha 0.908 0.105 1.000 (0.713, 1.118)
B, (stage 2) ~0.380 0.446 0.198 (~1.275, 0.468)
B, (stage 3) 0.174 0.318 0.711 (-0.483, 0.781)
B, (stage 4) 1.095 0.393 0.997 (0.329, 1.857)
B, (age) 0.176 0.141 0.899 (~0.092, 0.461)
Bs (diagyr) -0.012 0.146 0.468 (~0.294, 0.274)
Kappa 0.154 0.041 1.000 (0.081, 0.236)
Gompertz-PH model (WAIC =297.560)
Alpha 0.134 0.031 1.000 (0.076, 0.196)
B, (stage 2) -0.138 0.455 0.392 (-1.040, 0.737)
B, (stage 3) 0.393 0.328 0.886 (-0.252, 1.041)
B, (stage 4) 1.544 0.397 1.000 (0.776, 2.308)
B, (age) 0.206 0.149 0.919 (~0.084, —0.501)
Bs (diagyr) 0.075 0.155 0.685 (-0.230, 0.374)
Kappa 0.552 0.186 1.000 (0.227, 0.919)
puted as follows: its goodness-of-fit and versatility comparing to the com-
peting parametric PH models.
DIC =D+ pD = D +2pD, (65)

where D denotes the deviance’s posterior mean and is a
goodness of fit test for parametric survival models and pD
calculates as the difference between pD = D-D, and it is
denoted the effective number of proposed model
parameters.

9.1. Data Set 1. Table 11 displays some posterior character-
istics for the three PH models (generalized log-logistic,
Gompertz, and Weibull). Even though the estimates of the
regression coefficient are significant compared, the flexibility
provided by the GLL distribution’s additional shape parameter
contributes to its ultimate superiority over the Gompertz and
Weibull models and the DIC shows us its goodness-of-fit and
versatility comparing to the competing parametric PH models.

9.2. Data Set II. Table 12 displays some posterior charac-
teristics for the three PH models (generalized log-logistic,
Gompertz, and Weibull). Even though the estimates of the
regression coeflicient are significant compared, the flexibility
provided by the GLL distribution’s additional shape pa-
rameter contributes to its ultimate superiority over the
Gompertz and Weibull models and the DIC demonstrates us

10. Conclusion and Future Work

In this paper, we explored how to derive Bayesian estimates
of the baseline hazard parameters and the regression coef-
ficients of the parametric proportional hazard model with
generalized log-logistic baseline hazard using right-censored
survival data utilizing McMC approaches. The McMC
techniques offer an alternative technique for estimating the
parameters of the proposed model that is more flexible than
frequentist techniques such as maximum likelihood esti-
mation. Bayesian inference was performed with a variety of
priors, and the convergence pattern was investigated using
various diagnostic procedures.

To test the performance of the proposed parametric PH
model, a comprehensive McMC simulation study was
conducted. According to the simulation results, the PH
model produces better results, with fewer absolute biases and
MSEs for most regression coefficients and baseline distri-
butional parameters. The behavior of the PH model in a
generic PH regression situation comprising numerous
covariates was also examined using synthetic right-censored
data sets. Our findings indicate that the PH model performs
well when handling with multiple factors. The paper’s final
analysis focused on a real-world application involving two
well-known right-censored survival data sets for lung cancer
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and laryngeal cancer patients. In conclusion, the findings of
the proposed parametric PH model show that it performs
better and is superior to the other competing PH model, as
well as indicating significant distributional parameters and
regression coefficients.

Furthermore, for both simulation and real-data analysis,
the regression coefficients were assumed to have a normal
prior, and the baseline distribution parameters were as-
sumed to have an independent gamma prior to compute the
quantities of importance derived from the proposed model’s
posterior distribution. It has been attempted to create a
visual summary and other essential graphs to aid in the
interpretation of results and decision making. Finally, we
hope that this paper will be an extension of the work of Khan
and Khosa [11] and will encourage researchers who employ
parametric hazard-based regression models to conduct their
analyses using the Bayesian approach from the BUGs codes
with the help of the R software’s RJAGS package.

In terms of future work, we intend to produce an R package
to fit the most prevalent parametric hazard-based regression
models, including the PH model. The method given in this
study can also be applied to multiple event scenarios, such as
the competing risk model, and to survival data with a cure
fraction rate. It can also be applied to joint model frameworks.
Other types of censored and truncated observations, such as left
censoring, interval censoring, and double censoring, could be
used in future research. This is outside the scope of this study
and will be addressed in future ones.
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A variety of receptor and donor characteristics influence long-and short-term kidney graft survival. It is critical to predict the
effectiveness of kidney transplantation to optimise organ allocation. This would allow patients to choose the best accessible kidney
donor and the optimal immunosuppressive medication. Several studies have attempted to identify factors that predispose to graft
rejection, but the results have been contradictory. As a result, the goal of this paper is to use the African buffalo-based artificial
neural network (AB-ANN) approach to uncover predictive risk variables related to kidney graft. These two feature selection
approaches combine to provide a novel hybrid feature selection technique that could select the most important elements to
improve prediction accuracy. The feature analysis revealed that clinical features have varied effects on transplant survival. The
collected data is processed in both training and testing methods. The prediction model’s performance, in terms of accuracy,
precision, recall, and F-measure, was examined, and the results were compared with those of other existing systems, including
naive Bayesian, random forest, and J48 classifier. The results suggest that the proposed approach can forecast graft survival in
kidney recipients’ next visits in a creative manner and with more accuracy compared with other classifiers. This proposed method
is more efficient for predicting kidney graft survival. Incorporating those clinical tools into outpatient clinics’ everyday workflows
could help physicians make better and more personalised decisions.

1. Introduction

The importance of predicting the outcome of kidney
transplantation cannot be overstated [1]. Research scholars
and decision makers are progressively being urged to pro-
mote patient-centred care that respects the preferences,
requirements, and values of patients. Patients with end-stage
organ dysfunction require organ transplant, which improves
their quality of life [2]. The capacity to forecast survival rate

after transplant is vital and plays a key role in compre-
hending the donor-recipient matching procedure. This
matching is essential for renal replacement success because it
allows patients to choose the fine accessible kidney donor
and the finest immunosuppressive medication. Prognosis of
organ transplantation outcome is a clinically important and
difficult subject. Predicting survival before treatment sim-
plifies the patient’s decisions and improves survival by
influencing clinical practise decisions [3]. Many variables
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that influence the prediction problems have been extensively
investigated, but the complicated relationship among these
variables make prediction process a difficult task. Kidney
transplantation is regarded as the potential alternate med-
ication for individuals having end-stage renal illness since it
has several benefits over dialysis, including a higher quality
of life and a longer survival rate [4].

Graft functioning and survivals have improved sig-
nificantly over the last two decades, yet several transplanted
kidneys are discarded due to chronic allograft nephropathy
and acute rejection [5]. Compared with the individuals
with functioning grafts, this results in a three-fold in-
creased risk of death. In terms of results, it has long been
suspected that in the case of kidney transplantation, patient
preferences prefer graft survival over the danger of illness
or malignancy. Prediction of individual graft survival [6]
could thus be an initial step in enhancing patient’s health
status information and promote patient-centred care.
Because of the scarcity of organs, long waiting lists, the
higher retransplantation costs, the risk of graft failure, and
kidney graft performance must be closely monitored. A
variety of receptor-donor related parameters that affect
graft survival affect the kidney transplant distribution. As
the demand for kidney transplantation grows around the
world, it is essential to recognize the possible issues for graft
failure so as to enhance the survivability of patients and the
quality of their life [7]. Investigating, identifying, and
adjusting for risk variables are critical because transplan-
tation failure is connected with negative outcomes for
patients. Nevertheless, due to the obvious wide range of risk
variables for graft failure, this evidence is much harder to
quantify at an individual scale [8].

Various prognostic and predictive factors impacting the
effectiveness of renal grafts were explored in different re-
searches, including age of donor and receptor, sex, type of
donor (alive or deceased), body mass index, anaemia, kind of
immunosuppressive regimen, and so on. However, the
outcomes were contradictory. Several clinical investigations
on the impact of these parameters on graft survival have
been undertaken [9], but considering the complicated in-
terplay among those factors, still there is more to explore in
this domain. With receiver operating characteristic scores,
current risk forecasting models could only predict the
outcomes of kidney transplantation recipients to a smaller
extent. On the basis of covariates and predictors, numerous
classification techniques are employed for predicting a
categorical response variable. Although neural networks
may predict the whole clinical results, they cannot discern
particular risk variables for a specific clinical event [10]. The
existence of unrelated factors may increase the approach’s
difficulty, making it hard to build a predictive model uti-
lizing clinical data.

Machine learning approaches presented in this field
have shown a reliable and robust performance in catego-
rizing dualistic responses. To develop nonlinear models,
the artificial neural network strategy is introduced, and it is
capable of automatically detecting complicated nonlinear
correlations among dependent and independent variables,
as well as all conceivable relations among predictor
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variables [11]. Kidney transplant is the most effective
therapy for end-stage kidney problems. It enhances sur-
vival of patients and provides a greater quality of life than
haemodialysis. Moreover, it decreases the long-term
healthcare costs for such individuals significantly. Ex-
tended immunosuppression, on the other hand, is con-
nected to a number of adverse effects that could change
both patient and graft survivability. Graft survival is the
period of time that a kidney transplant (graft) works well
enough for the patient not to require dialysis or any other
transplant method. The goal of the research is to establish a
novel forecasting approach which combines feature engi-
neering with the deep learning techniques via an optimi-
zation mechanism in order to increase prediction
performance. To accomplish this goal, a unique prediction
approach based on kidney graft survival data has been
developed for forecasting the survival of graft after
transplantation, which could be used in real-time and is
suitable for forecasting kidney transplantation outcomes
via data analysis. Any transplantation dataset can be used
with the proposed prediction algorithm.

The remainder of the article is laid out as follows. The
present researches on the prediction of kidney transplan-
tation graft survival are examined in Section 2. The novel
proposed AB-ANN prediction approach is presented in
detailed manner in Section 3. Section 4 discusses the in-
cluded dataset, as well as the test results, and Section 5
describes the discussions, and Section 6 concludes this study.

2. Related Works

2.1. Predictive Modelling Technique. Data-driven strategies
were used in a number of studies to predict graft survival
following transplantation. The authors in [12] investigated
the factors impacting graft survival before and after kidney
transplantation by employing Kaplan-Meier methods. To
improve organ retrieval allocation, a multivariate analysis
[13] was utilized for predicting the kidney transplantation
outcomes using a deceased donor. However, by relying
solely on statistical methodologies, these researches were
limited. As a result, better methodologies are needed to
uncover potentially hidden information among the various
characteristics that could influence the graft survival state
forecasting of a kidney transplant.

To determine graft survival out of a deceased individual,
a tree regression model [14] has been introduced. After
transplanting kidney, a neural network strategy was devel-
oped for estimating the delayed graft functioning [3].
However, those researches were limited to the deceased
donors. Other researchers sought to develop transplantation
outcome prediction models. To identify essential variables
and subsequently design a Bayesian belief network, re-
searchers utilized statistical mechanisms like elastic nets
with machine learning techniques like ANN, bootstrap,
random forest, and support vector machines. This model
looked into the variables’ hidden dependencies. This model
had a precision of 68.4%.

Cox-based models [15] have been used extensively in the
survival assessment of complex organ transplants; but when
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the feature space grows larger, such techniques lose the
prediction accuracy. A feature selection scheme based on a
hybrid genetic algorithm determines the key traits for lung
transplantation. They employed three different classification
prediction processes for forecasting the lung transplantation
and quality of life of patients [16]. The findings excelled the
previous research. Some other studies deployed artificial
neural networks and a statistically determined nomogram
for forecasting the five-year graft survival after transplanting
the kidney, using clinical and demographic data [17]. Using
an external validation dataset, they discovered that the ar-
tificial neural networks outperformed the nomograms. The
authors in [18] created a Bayesian belief network for pre-
dicting the graft survival. With good accuracy, the model can
determine the graft failure. A Bayesian belief network ar-
chitecture is employed in some other studies for forecasting
the heart transplantation outcome. Compared with other
approaches in the literature, the results showed identical
predictive effectiveness.

In kidney transplantation, machine learning-based
predictive algorithms identify the main correlations among
receptor and donor characteristics for predicting transplant
outcomes based upon acceptor-donor data. ML approaches
were used in a number of researches for predicting the
outcome of kidney graft [19], but almost in all examined
studies, the conventional mechanism has been to choose one
or more arbitrary time periods commencing from the
transplant date and use categorization techniques for pre-
dictive purpose. In terms of prediction modelling and fea-
ture engineering, there is a definite requirement for more
research into data stratification methodologies and other
machine learning methods [20].

2.2. Explanatory Modelling Technique. The alternative
models for kidney graft and receiver survival prediction
include artificial neural networks as well as linear re-
gression mechanisms [21]. Other approaches like land-
mark modelling and joint modelling utilize time-
dependent factors to increase predictive performance in
addition to such approaches that have used static cova-
riates. The feature selection is a key issue in a variety of
fields, including document classification, prediction object
identification, and bioinformatics, as well as the repre-
sentation of complicated production technologies. In such
applications, datasets with hundreds of features are fre-
quent. For some situations, all the features could be sig-
nificant, but for certain target concepts, just a small subset
of features are highly essential. Some classification tech-
niques have learned to focus on the most critical features
while ignoring the less important feature points. Decision
trees are one type of such methods; however, multilayer
perceptron neural networks with significant normalization
of the input layer also can automatically eliminate un-
necessary features [22].

The kidney graft survival is derived by Bayesian belief
network modelling. In this research, the 5155 patients
were randomly selected from the database of renal data
system in US.

The key contributions of this research are as follows:

(i) Introducing a newly proposed African buffalo op-
timization for feature selection, which could ef-
fectively choose the most relevant feature set for
prediction

(ii) Designing a newly combined predictive model,
which could correctly assess the status of kidney
graft transplantation and improve the limitations in
the prior studies

(iii) Combining information gain function and the ABO
mechanism with the ANN model to attain good
predictive abilities

3. Proposed AB-ANN Methodology

The research extends to the prediction of graft survival
approach by proposing a new three-phase approach, that is,
(i) data processing phase, (ii) feature selection phase, and
(iii) prediction phase [23].

Prior to data processing, donor and recipient charac-
teristics such as age, gender, blood type, and health are
analysed. The cross match test is used to find out how the
donor’s blood reacts with the recipient’s blood, and the HLA
test analyses the immune system to determine the outcome
of the operation.

The input data is first gathered and preprocessed to be
used for training and testing purpose. Data cleaning and data
censoring are the two phases of data processing phase.
Followed by this, feature selection is accomplished to rec-
ognize the most essential features which would be used in
the prediction phase, reducing both the complexity of the
technique and the features dimensionality. Information gain
along with the ABO mechanism is utilized to choose the
most relevant features. These two feature selection ap-
proaches combine to provide a novel hybrid feature selection
technique, which could select the most important elements
to improve prediction accuracy. Finally, the status of the
graft is forecasted as survive or not survive in the prediction
phase. The workflow of the proposed AB-ANN model is
represented in Figure 1.

3.1. Training and Testing Data. The kidney transplantation
dataset given by Mansoura University’s Urology and Ne-
phrology Center [24] was utilized to validate the suggested
prediction approach for predicting graft survival. This data-
base includes medical history, demographic data, some pre-
operative considerations for either recipient and donors,
physical situations both during and after transplantation, and
extra features like transplant date and dialysis information of
kidney transplant patients. The data is divided into two cat-
egories: training (70%) and testing (30%). Initially, a portion of
the dataset is utilized to train the proposed predictive model
(training set). The system is then utilized to forecast survival
class by testing a new subset of the dataset (test set).

3.2. Data Processing Phase. The input data is preprocessed
during the data processing step, so that it may be used during
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FIGURE 1: A novel AB-ANN prediction model.

training and testing. The dataset was preprocessed during
this stage. Data cleaning and data censoring are the two
phases that make up this process.

Because the prediction approach is meant to forecast the
outcome of kidney transplantation before transplanting, all
operational and postoperational features are deleted during
the data cleaning process. The traits that will have no pre-
dictive value are removed in the second level (e.g., patient’s
name, the hospital ID, and date of examination). In the last
stage, certain occurrences are deleted since the dataset
contains missing data. Missing value imputation can be done
in a variety of ways. For 1 percent missing values, the custom
mean imputation approach was utilized, in which each
covariate’s missing values were replaced with the mean of its
preceding and next values in the temporal order.

Graft survival condition was censored in the data cen-
soring process when the graft time was less than the number
of days in the five-year period and the graft was still alive, or
the study finishing date. If the patient is on dialysis or died
with a failing graft, the graft time is calculated by deducting
the transplantation date from the dialysis initiation date. If
the individual’s state is surviving with functional graft or
died with functioning graft, deduct the transplantation date
from the last follow-up date.

3.3. Functioning of AB-ANN Mechanism

3.3.1. Feature Selection Phase. Selection of features is a
significant part in any data mining procedures. Choosing the
most important features would increase the prediction ac-
curacy of the model thereby reducing the computation time
and processing costs. An optimised feature selection ap-
proach called African buffalo optimization mechanism with
information gain function is used in this study to success-
fully determine the most significant features that could
improve the prediction process. The novel combined feature
selection mechanism combines the advantages of either
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method, resulting in
performance.

To get started, IGBFS is structured to identify key at-
tributes based on choosing which features to use. To use
UNC databases, identify 55 features of 67 attributes as
important. These important properties vary with IG rather
than zero. Second, in addition to selecting the most im-
portant features, NBBFS was used to specify the most im-
portant features from the basic features developed by the
IGBES system.

The goal of employing information gain (IG) is to
identify characteristics that provide the most significant
knowledge about the classes [25]. Such characteristics are
primarily discriminatory and occur within a single class. IG
is a feature ranking methodology that utilizes entropy to
calculate the degree to which the entropy is reduced when
observing the value of a particular feature. As a result, the
value of information gain indicates how much information
this feature contributes to the database. Each feature has an
information gain rating that indicates whether it is necessary
or not. As a result, the feature with IG =0 is rejected. With a
higher IG, the chances of attaining clear classes in the target
class increase.

The critical characteristics are determined after calcu-
lating the information gain values for all features. The
qualities with an information gain value higher than zero are
considered as essential. The features are examined using an
edge value; if a feature’s information gain value is more than
the edge value, it is chosen; otherwise, it is not. In this study,
a threshold of zero is employed, and features having an
information gain more than zero are regarded the most
essential features for prediction.

The African buffalo optimization mechanism [26] selects
the essential features for prediction using its fitness function.
The African buffalo optimization mechanism is also
employed as an optimizer in the last layer of the AB-ANN
model for enhancing the prediction accuracy. Furthermore,
the learning factors help to process the trace of essential
feature points. The cooperative behaviour of buffalo is
reorganised by le, (ﬁ;‘rg —wy), and the intelligence of the
buffalo is denoted by le, (b, s — wy). Also, the fitness
value is computed by

significantly improved system

pmax

mp+1 :mf+lel(/3;“g—wf)+le2(bpmax.f—wf). (1)

Here, m; + 1 denotes the next feature, and also, m;
represents the current feature value. In addition, new feature
update is deliberated using
w f +m f

A* b
where w, and m, indicate the respective exploration and
exploitation fitness of f.

(2)

Wf+1=

3.3.2. Prediction Phase. For predictive purpose, an artificial
neural network was deployed. It assigns the tested instances
to the class with the greatest likelihood. It is assumed that
impact of features on a class is unaffected by other variables.
The enhanced ANN model speeds up and improves the
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computation accuracy. A multilayer feed forward percep-

tron was employed as the neural network [3]. The following

(3)-(5) are the mathematical depiction of a neural network.
Let

t = f,(ml Hpply +pply gl ) (3)

th = f,(mn +phaly + phply et l ), (4)

where ¢, is the output from m™ hidden node, m is the total
number of nodes in the hidden layer, # is the number of
covariate, m is the intercept parameter, /,, is the p™ covariate,
Hpp is the p'™ covariate and nth hidden node parameter, and
£"(-) is considered to be the activation function.

Now,

s=g' (ay+bit,+---+b,t,), (5)

where s indicates the neural network output, a is the bias
parameter, b is the output parameter from the nth hidden
node, t,, is the output from the nth hidden node, and g’ (-) is
considered as the output function. The arbitrary functions
f'(-) and g'(-) could be any function; however, the hy-
perbolic tangent function (et + e/ (e —e), the logistic
function €//(1+¢€'), or the linear function is the most
common.

The critical characteristics list is trained and tested using
the AB-ANN algorithm as shown in Algorithm 1. Assume
that the input dataset comprises n features (f1, £2, ..., fn).
The information gain is calculated for each feature, indi-
cating how much data is there in that feature set. The features
with information gain higher than 0 are then considered and
added to the list of important features. The accuracy of the
classifier is then calculated. Remove each feature from the
list of essential elements one by one. Then, train and test the
remaining features through the ANN classifier model. If
removing this characteristic affects classifier accuracy, it is
the most important feature, and it is thus included to the list
of the most important features. If removing this feature
improves classifier accuracy, it is no longer a necessary
feature and will be removed. This approach is continued till
all key features have been tested and a list of the most
important features has been created. The prediction is made
as to whether or not the character would survive based on
the most essential features from the feature list. This method
can be used to save the lives of patients who have undergone
transplant surgery.

4. Results and Discussions

This section evaluates the proposed AB-ANN method’s
performance. Two important indicators are used to evaluate
performance in the test: the number of selected character-
istics and predictive accuracy.

4.1. Performance Metrics. The following performance mea-
sures were used: true positive (tp): the model’s predicted
number of graft survival matches with the historical data;
true negative (tn): the number of graft failures predicted by

the model matches with the historical data; false positive
(fp): the number of grafts that the model predicts will survive
although the prior examples have resulted in graft failure;
false negative (fn): the number of graft failures predicted by
the model when historical data have shown graft survival.
After the computation of those metrics, the following
measures are calculated. They are classification accuracy,
precision, recall, F-measure, root mean square error, and
mean absolute error.

The root mean square error and mean absolute error
comparison of the proposed and existing methods is de-
scribed in Table 1, and its pictorial representation is men-
tioned in Figure 2. From the figure, it is clear that the
proposed method has minimum error rate compared with
the existing mechanisms. The proposed method has lower
root mean square error of 15.4% and lower mean absolute
error of 9.3%.

4.1.1. Accuracy. The simplest intuitive performance metric
is accuracy, which is defined as the ratio of precisely pre-
dicted observations to all observations. The proportion of
accurately categorized patterns to the total number of
classified patterns is known as accuracy. It is calculated using
(6) as follows:

tp + tn

A =
ccuracy tp+fp+tn+in

(6)

Table 2 and Figure 3 compare the suggested method’s
accuracy to that of the most recent techniques. Table 2 shows
that the proposed AB-ANN predictive approach for renal
transplantation could improve the classification accuracy
rate while reducing the feature selection difficulty.

4.1.2. Precision. Precision is measured by the amount of
positive class predictions which belongs to the positive class
[28-30]. Precision is characterized as the proportion of the
rate of correctly classified events in all detected events. It is
computed using the following:

tp
tn + fp’

Precision = (7)

The precision comparison of the proposed and existing
methods is described in Table 3, and its pictorial repre-
sentation is mentioned in Figure 4. From the figure, it is clear
that the proposed AB-ANN method has higher precision
value (97.6%) compared with the existing mechanisms. This
shows the outperformance of the proposed method over
existing mechanisms.

4.1.3. Recall. Recall is described as the amount of positive
class predictions that are made of all positive examples in the
dataset [31-33]. The fraction of right events among all events
is known as recall. It is calculated using the following:

tp
tp +

Recall =

fn' (8)
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Input: Input Dataset

Consider a test data point P
Data processing operation

for each fn do

Calculate the information gain (IG)
if IG(fn) >0

Add the fn to feature list FL
for each fn in FL do

Remove fm from FL

if A(fm) <A

Output: Input point classified as survive or not
The training samples are represented in n dimensional vector space

Data cleaning to remove post-operative data like name, ID, etc.
Data censoring to ensure the graft survival status
f1, f2, .. .., fn represents the feature set for the selected point from the n-dimensional space

Select the most important features fm using the fitness of ABO mechanism (1)
Compute accuracy for the selected fm A(fm) and accuracy of the remaining features in FL

Include fm to the most important feature list
From the fm the test point P is classified as survive or not through the ANN model

ALGORITHM 1: Proposed AB-ANN algorithm.

TaBLE 1: Error rate comparison of existing and proposed methods.

Root mean square  Mean absolute error

Methods error (%) (%)
Naive Bayesian 57.44 38.79
J48 52.23 36.83
Random forest 41.99 34.08
Proposed (AB-
ANN) 154 9.3
RMSE and MAE
70.00 . . . .
60.00
3 50.00
& 40.00
s
S 30.00
& 20.00 . . . . .
0.00
Naive ]48 Random  Proposed
Bayesian forest (AB-ANN)

B Root Mean Square error
B Mean absolute error

FIGURE 2: Comparison of RMSE and MAE.

TABLE 2: Accuracy comparison of existing and proposed methods.

Technique
References
Feature selection Classification AC((Z(I;I‘)aCY
(g
Data analytic Bayes net
(19] method classifier 68.4
[27] Kaplan-Meier Nomogram 72
Proposed IG+ABO ANN 99.89

Accuracy
120.00

100.00
80.00
60.00

40.00

Percentage (%)

20.00

0.00

(8] [12] Proposed

AB-ANN

FiGure 3: Comparison of accuracy.

TaBLE 3: Precision comparison of existing and proposed methods.

Methods

Precision (%)

Naive Bayesian 68.3
48 63.1
Random forest 57.1
Proposed (AB-ANN) 97.6
Precision
120.00
100.00
£ 80.00
S
£ 60.00
=
S
z 40.00
Ay
20.00
0.00
Naive 148 Random  Proposed
Bayesian forest AB-ANN

FIGURE 4: Comparison of precision.
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TABLE 4: Recall comparison of existing and proposed methods.

Methods Recall (%)
Naive Bayesian 60.6
J48 68.1
Random forest 75.4
Proposed (AB-ANN) 98.2

The recall comparison of the proposed and existing
methods is described in Table 4, and its pictorial repre-
sentation is mentioned in Figure 5. From the figure, it is clear
that the proposed AB-ANN method has higher recall value
(98.2%) compared with other existing mechanisms.

4.1.4. F-Measure. It is the degree of harmonic mean among
precision and recall. It is a statistical measure utilized to rate
the performance. F1-score is formulated as follows:

2 x Precision x Recall

F — measure = — . 9)
Precision + Recall

The F-measure comparison of the proposed and existing
methods is described in Table 5, and its pictorial repre-
sentation is mentioned in Figure 6. From the figure, it is clear
that the proposed AB-ANN method has higher recall value
(99.2%) compared with other existing mechanisms.

5. Discussion

The extensive availability of alternative treatments has in-
creased the life span of patients having end-stage renal
disease. The performance of the AB-ANN technique in
detecting the survival rate of persons with kidney graft
failure was compared with that of other methodologies in
this research. The suggested prediction methodology is
tested using the UNC dataset, and the results are compared
with other recent methods. The predictions generated by
ANN were more exact than previous techniques based on
the evaluation parameters like accuracy, precision, recall,
f-measure, and error rate.

Experiments demonstrated that the newly proposed
kidney transplantation survival estimation technique sur-
passed all previous current strategies, with prediction ac-
curacy and F-measure scores of 99.89 percent and 99.2
percent, respectively. The proposed prediction technique has
achieved best accuracy, higher speed, and higher F-measure.
Furthermore, the novel feature selection strategy has been
successful in speeding up categorization by decreasing the
amount of characteristics to a minimum. As a result, it is
obvious that the proposed procedure is quite reliable and
produces excellent outcomes. The nature of this model al-
lows it to be utilized for both short and long-term
forecasting.

Such predictive techniques could aid in the imple-
mentation of personalised treatment in kidney transplan-
tation. It is stated that the innovative proposed prediction
technique can increase classification accuracy while reduc-
ing feature selection complexity. These results show the
efficacy of the proposed strategy. The proposed prediction

7
Recall
120.00
100.00 : : : :
£ 80.00
L
oo
£ 60.00
=
S
o 40.00
(=W
20.00
0.00
Naive Random  Proposed
Bayesian forest AB-ANN

FiGure 5: Comparison of recall.

TaBLE 5: F-measure comparison of existing and proposed methods.

Methods F-measure (%)
Naive Bayesian 62.5
J48 64.3
Random forest 65
Proposed (AB-ANN) 99.2
F-measure
120
100 e
£ 80
)
£ 60
=
3
s 40
=9
0
Naive Random  Proposed
Bayesian forest AB-ANN

FIGURE 6: Comparison of F-measure.

model might be used to a variety of transplant datasets,
according to the researchers.

6. Conclusion

The importance of predicting the outcome of kidney
transplantation cannot be overstated. This will allow patients
to choose the best accessible kidney donor and the best
immunosuppressive medication. The ability to predict graft
survival following transplanting is essential, and it is espe-
cially a challenging problem since it is important to un-
derstand the donor-recipient matching method. As finding
donors is challenging, this matching is highly essential.
Prediction of graft survival in kidney transplantation is a
serious and therapeutically significant issue. An optimised
deep learning framework for risk prediction of graft failure
was built in this study, and it displayed a higher level of
prediction performance. These algorithms outperformed
those reported in the literature for existing risk prediction



tools, and the future research would focus on how to best
integrate such models into healthcare algorithms to improve
kidney recipients’ long-term health.
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Recently, with the availability of fast and reliable Internet, the distance between a patient and a doctor is becoming unimportant.
Physicians will be able to request the medical images of their patients regardless of the geographical area. However, a lot of
challenges face such successful implementation. To facilitate remote diagnosis, patient electronic medical record (EMR), including
medical images, that originates in one system needs to be exchanged either within the same organization or across different
organizations. Steganography is the practice of concealing a secret message inside a cover medium. In this paper, steganography
will be used to embed the patient’s personal information securely and imperceptibly in their medical images to enhance
confidentiality in case of a distant diagnosis. The security of the medical data is improved to maintain confidentiality and integrity
using IoT. The least significant bit of the approximate coefficient of integer wavelet transform is proposed. The distortion between
the cover image and stego-image is obtained by measuring the mean square error and PSNR, and normalized cross-correlation is

utilized to estimate the degree of closeness between the cover image and stego-image.

1. Introduction

Communication through digitized media has been in-
creasingly evident with the development of the Internet. All
individual and commercial communication takes place on
the Internet, where computerized media is the primary
means. When sensitive data from businesses and organi-
zations is shared, the security of the information is a major
problem. They are required to ke